Check !executable instead of shared for PIE.
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #define ARCH_SIZE 0
28 #include "elf-bfd.h"
29 #include "safe-ctype.h"
30 #include "libiberty.h"
31 #include "objalloc.h"
32
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
35
36 struct elf_info_failed
37 {
38 struct bfd_link_info *info;
39 struct bfd_elf_version_tree *verdefs;
40 bfd_boolean failed;
41 };
42
43 /* This structure is used to pass information to
44 _bfd_elf_link_find_version_dependencies. */
45
46 struct elf_find_verdep_info
47 {
48 /* General link information. */
49 struct bfd_link_info *info;
50 /* The number of dependencies. */
51 unsigned int vers;
52 /* Whether we had a failure. */
53 bfd_boolean failed;
54 };
55
56 static bfd_boolean _bfd_elf_fix_symbol_flags
57 (struct elf_link_hash_entry *, struct elf_info_failed *);
58
59 /* Define a symbol in a dynamic linkage section. */
60
61 struct elf_link_hash_entry *
62 _bfd_elf_define_linkage_sym (bfd *abfd,
63 struct bfd_link_info *info,
64 asection *sec,
65 const char *name)
66 {
67 struct elf_link_hash_entry *h;
68 struct bfd_link_hash_entry *bh;
69 const struct elf_backend_data *bed;
70
71 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
72 if (h != NULL)
73 {
74 /* Zap symbol defined in an as-needed lib that wasn't linked.
75 This is a symptom of a larger problem: Absolute symbols
76 defined in shared libraries can't be overridden, because we
77 lose the link to the bfd which is via the symbol section. */
78 h->root.type = bfd_link_hash_new;
79 }
80
81 bh = &h->root;
82 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
83 sec, 0, NULL, FALSE,
84 get_elf_backend_data (abfd)->collect,
85 &bh))
86 return NULL;
87 h = (struct elf_link_hash_entry *) bh;
88 h->def_regular = 1;
89 h->type = STT_OBJECT;
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
91
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94 return h;
95 }
96
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
99 {
100 flagword flags;
101 asection *s;
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
105
106 /* This function may be called more than once. */
107 s = bfd_get_section_by_name (abfd, ".got");
108 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
109 return TRUE;
110
111 flags = bed->dynamic_sec_flags;
112
113 s = bfd_make_section_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
117 | SEC_READONLY));
118 if (s == NULL
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
120 return FALSE;
121 htab->srelgot = s;
122
123 s = bfd_make_section_with_flags (abfd, ".got", flags);
124 if (s == NULL
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
126 return FALSE;
127 htab->sgot = s;
128
129 if (bed->want_got_plt)
130 {
131 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
132 if (s == NULL
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
135 return FALSE;
136 htab->sgotplt = s;
137 }
138
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
141
142 if (bed->want_got_sym)
143 {
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
151 if (h == NULL)
152 return FALSE;
153 }
154
155 return TRUE;
156 }
157 \f
158 /* Create a strtab to hold the dynamic symbol names. */
159 static bfd_boolean
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
161 {
162 struct elf_link_hash_table *hash_table;
163
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
167
168 if (hash_table->dynstr == NULL)
169 {
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
172 return FALSE;
173 }
174 return TRUE;
175 }
176
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
183
184 bfd_boolean
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
186 {
187 flagword flags;
188 asection *s;
189 const struct elf_backend_data *bed;
190
191 if (! is_elf_hash_table (info->hash))
192 return FALSE;
193
194 if (elf_hash_table (info)->dynamic_sections_created)
195 return TRUE;
196
197 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
198 return FALSE;
199
200 abfd = elf_hash_table (info)->dynobj;
201 bed = get_elf_backend_data (abfd);
202
203 flags = bed->dynamic_sec_flags;
204
205 /* A dynamically linked executable has a .interp section, but a
206 shared library does not. */
207 if (info->executable)
208 {
209 s = bfd_make_section_with_flags (abfd, ".interp",
210 flags | SEC_READONLY);
211 if (s == NULL)
212 return FALSE;
213 }
214
215 /* Create sections to hold version informations. These are removed
216 if they are not needed. */
217 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
218 flags | SEC_READONLY);
219 if (s == NULL
220 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
221 return FALSE;
222
223 s = bfd_make_section_with_flags (abfd, ".gnu.version",
224 flags | SEC_READONLY);
225 if (s == NULL
226 || ! bfd_set_section_alignment (abfd, s, 1))
227 return FALSE;
228
229 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
230 flags | SEC_READONLY);
231 if (s == NULL
232 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
233 return FALSE;
234
235 s = bfd_make_section_with_flags (abfd, ".dynsym",
236 flags | SEC_READONLY);
237 if (s == NULL
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
239 return FALSE;
240
241 s = bfd_make_section_with_flags (abfd, ".dynstr",
242 flags | SEC_READONLY);
243 if (s == NULL)
244 return FALSE;
245
246 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
247 if (s == NULL
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
249 return FALSE;
250
251 /* The special symbol _DYNAMIC is always set to the start of the
252 .dynamic section. We could set _DYNAMIC in a linker script, but we
253 only want to define it if we are, in fact, creating a .dynamic
254 section. We don't want to define it if there is no .dynamic
255 section, since on some ELF platforms the start up code examines it
256 to decide how to initialize the process. */
257 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
258 return FALSE;
259
260 if (info->emit_hash)
261 {
262 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
263 if (s == NULL
264 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
265 return FALSE;
266 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
267 }
268
269 if (info->emit_gnu_hash)
270 {
271 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
272 flags | SEC_READONLY);
273 if (s == NULL
274 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
275 return FALSE;
276 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
277 4 32-bit words followed by variable count of 64-bit words, then
278 variable count of 32-bit words. */
279 if (bed->s->arch_size == 64)
280 elf_section_data (s)->this_hdr.sh_entsize = 0;
281 else
282 elf_section_data (s)->this_hdr.sh_entsize = 4;
283 }
284
285 /* Let the backend create the rest of the sections. This lets the
286 backend set the right flags. The backend will normally create
287 the .got and .plt sections. */
288 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
289 return FALSE;
290
291 elf_hash_table (info)->dynamic_sections_created = TRUE;
292
293 return TRUE;
294 }
295
296 /* Create dynamic sections when linking against a dynamic object. */
297
298 bfd_boolean
299 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
300 {
301 flagword flags, pltflags;
302 struct elf_link_hash_entry *h;
303 asection *s;
304 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
305 struct elf_link_hash_table *htab = elf_hash_table (info);
306
307 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
308 .rel[a].bss sections. */
309 flags = bed->dynamic_sec_flags;
310
311 pltflags = flags;
312 if (bed->plt_not_loaded)
313 /* We do not clear SEC_ALLOC here because we still want the OS to
314 allocate space for the section; it's just that there's nothing
315 to read in from the object file. */
316 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
317 else
318 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
319 if (bed->plt_readonly)
320 pltflags |= SEC_READONLY;
321
322 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
323 if (s == NULL
324 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
325 return FALSE;
326 htab->splt = s;
327
328 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
329 .plt section. */
330 if (bed->want_plt_sym)
331 {
332 h = _bfd_elf_define_linkage_sym (abfd, info, s,
333 "_PROCEDURE_LINKAGE_TABLE_");
334 elf_hash_table (info)->hplt = h;
335 if (h == NULL)
336 return FALSE;
337 }
338
339 s = bfd_make_section_with_flags (abfd,
340 (bed->rela_plts_and_copies_p
341 ? ".rela.plt" : ".rel.plt"),
342 flags | SEC_READONLY);
343 if (s == NULL
344 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
345 return FALSE;
346 htab->srelplt = s;
347
348 if (! _bfd_elf_create_got_section (abfd, info))
349 return FALSE;
350
351 if (bed->want_dynbss)
352 {
353 /* The .dynbss section is a place to put symbols which are defined
354 by dynamic objects, are referenced by regular objects, and are
355 not functions. We must allocate space for them in the process
356 image and use a R_*_COPY reloc to tell the dynamic linker to
357 initialize them at run time. The linker script puts the .dynbss
358 section into the .bss section of the final image. */
359 s = bfd_make_section_with_flags (abfd, ".dynbss",
360 (SEC_ALLOC
361 | SEC_LINKER_CREATED));
362 if (s == NULL)
363 return FALSE;
364
365 /* The .rel[a].bss section holds copy relocs. This section is not
366 normally needed. We need to create it here, though, so that the
367 linker will map it to an output section. We can't just create it
368 only if we need it, because we will not know whether we need it
369 until we have seen all the input files, and the first time the
370 main linker code calls BFD after examining all the input files
371 (size_dynamic_sections) the input sections have already been
372 mapped to the output sections. If the section turns out not to
373 be needed, we can discard it later. We will never need this
374 section when generating a shared object, since they do not use
375 copy relocs. */
376 if (! info->shared)
377 {
378 s = bfd_make_section_with_flags (abfd,
379 (bed->rela_plts_and_copies_p
380 ? ".rela.bss" : ".rel.bss"),
381 flags | SEC_READONLY);
382 if (s == NULL
383 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
384 return FALSE;
385 }
386 }
387
388 return TRUE;
389 }
390 \f
391 /* Record a new dynamic symbol. We record the dynamic symbols as we
392 read the input files, since we need to have a list of all of them
393 before we can determine the final sizes of the output sections.
394 Note that we may actually call this function even though we are not
395 going to output any dynamic symbols; in some cases we know that a
396 symbol should be in the dynamic symbol table, but only if there is
397 one. */
398
399 bfd_boolean
400 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
401 struct elf_link_hash_entry *h)
402 {
403 if (h->dynindx == -1)
404 {
405 struct elf_strtab_hash *dynstr;
406 char *p;
407 const char *name;
408 bfd_size_type indx;
409
410 /* XXX: The ABI draft says the linker must turn hidden and
411 internal symbols into STB_LOCAL symbols when producing the
412 DSO. However, if ld.so honors st_other in the dynamic table,
413 this would not be necessary. */
414 switch (ELF_ST_VISIBILITY (h->other))
415 {
416 case STV_INTERNAL:
417 case STV_HIDDEN:
418 if (h->root.type != bfd_link_hash_undefined
419 && h->root.type != bfd_link_hash_undefweak)
420 {
421 h->forced_local = 1;
422 if (!elf_hash_table (info)->is_relocatable_executable)
423 return TRUE;
424 }
425
426 default:
427 break;
428 }
429
430 h->dynindx = elf_hash_table (info)->dynsymcount;
431 ++elf_hash_table (info)->dynsymcount;
432
433 dynstr = elf_hash_table (info)->dynstr;
434 if (dynstr == NULL)
435 {
436 /* Create a strtab to hold the dynamic symbol names. */
437 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
438 if (dynstr == NULL)
439 return FALSE;
440 }
441
442 /* We don't put any version information in the dynamic string
443 table. */
444 name = h->root.root.string;
445 p = strchr (name, ELF_VER_CHR);
446 if (p != NULL)
447 /* We know that the p points into writable memory. In fact,
448 there are only a few symbols that have read-only names, being
449 those like _GLOBAL_OFFSET_TABLE_ that are created specially
450 by the backends. Most symbols will have names pointing into
451 an ELF string table read from a file, or to objalloc memory. */
452 *p = 0;
453
454 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
455
456 if (p != NULL)
457 *p = ELF_VER_CHR;
458
459 if (indx == (bfd_size_type) -1)
460 return FALSE;
461 h->dynstr_index = indx;
462 }
463
464 return TRUE;
465 }
466 \f
467 /* Mark a symbol dynamic. */
468
469 static void
470 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
471 struct elf_link_hash_entry *h,
472 Elf_Internal_Sym *sym)
473 {
474 struct bfd_elf_dynamic_list *d = info->dynamic_list;
475
476 /* It may be called more than once on the same H. */
477 if(h->dynamic || info->relocatable)
478 return;
479
480 if ((info->dynamic_data
481 && (h->type == STT_OBJECT
482 || (sym != NULL
483 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
484 || (d != NULL
485 && h->root.type == bfd_link_hash_new
486 && (*d->match) (&d->head, NULL, h->root.root.string)))
487 h->dynamic = 1;
488 }
489
490 /* Record an assignment to a symbol made by a linker script. We need
491 this in case some dynamic object refers to this symbol. */
492
493 bfd_boolean
494 bfd_elf_record_link_assignment (bfd *output_bfd,
495 struct bfd_link_info *info,
496 const char *name,
497 bfd_boolean provide,
498 bfd_boolean hidden)
499 {
500 struct elf_link_hash_entry *h, *hv;
501 struct elf_link_hash_table *htab;
502 const struct elf_backend_data *bed;
503
504 if (!is_elf_hash_table (info->hash))
505 return TRUE;
506
507 htab = elf_hash_table (info);
508 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
509 if (h == NULL)
510 return provide;
511
512 switch (h->root.type)
513 {
514 case bfd_link_hash_defined:
515 case bfd_link_hash_defweak:
516 case bfd_link_hash_common:
517 break;
518 case bfd_link_hash_undefweak:
519 case bfd_link_hash_undefined:
520 /* Since we're defining the symbol, don't let it seem to have not
521 been defined. record_dynamic_symbol and size_dynamic_sections
522 may depend on this. */
523 h->root.type = bfd_link_hash_new;
524 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
525 bfd_link_repair_undef_list (&htab->root);
526 break;
527 case bfd_link_hash_new:
528 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
529 h->non_elf = 0;
530 break;
531 case bfd_link_hash_indirect:
532 /* We had a versioned symbol in a dynamic library. We make the
533 the versioned symbol point to this one. */
534 bed = get_elf_backend_data (output_bfd);
535 hv = h;
536 while (hv->root.type == bfd_link_hash_indirect
537 || hv->root.type == bfd_link_hash_warning)
538 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
539 /* We don't need to update h->root.u since linker will set them
540 later. */
541 h->root.type = bfd_link_hash_undefined;
542 hv->root.type = bfd_link_hash_indirect;
543 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
544 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
545 break;
546 case bfd_link_hash_warning:
547 abort ();
548 break;
549 }
550
551 /* If this symbol is being provided by the linker script, and it is
552 currently defined by a dynamic object, but not by a regular
553 object, then mark it as undefined so that the generic linker will
554 force the correct value. */
555 if (provide
556 && h->def_dynamic
557 && !h->def_regular)
558 h->root.type = bfd_link_hash_undefined;
559
560 /* If this symbol is not being provided by the linker script, and it is
561 currently defined by a dynamic object, but not by a regular object,
562 then clear out any version information because the symbol will not be
563 associated with the dynamic object any more. */
564 if (!provide
565 && h->def_dynamic
566 && !h->def_regular)
567 h->verinfo.verdef = NULL;
568
569 h->def_regular = 1;
570
571 if (provide && hidden)
572 {
573 bed = get_elf_backend_data (output_bfd);
574 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
575 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
576 }
577
578 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
579 and executables. */
580 if (!info->relocatable
581 && h->dynindx != -1
582 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
583 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
584 h->forced_local = 1;
585
586 if ((h->def_dynamic
587 || h->ref_dynamic
588 || info->shared
589 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
590 && h->dynindx == -1)
591 {
592 if (! bfd_elf_link_record_dynamic_symbol (info, h))
593 return FALSE;
594
595 /* If this is a weak defined symbol, and we know a corresponding
596 real symbol from the same dynamic object, make sure the real
597 symbol is also made into a dynamic symbol. */
598 if (h->u.weakdef != NULL
599 && h->u.weakdef->dynindx == -1)
600 {
601 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
602 return FALSE;
603 }
604 }
605
606 return TRUE;
607 }
608
609 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
610 success, and 2 on a failure caused by attempting to record a symbol
611 in a discarded section, eg. a discarded link-once section symbol. */
612
613 int
614 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
615 bfd *input_bfd,
616 long input_indx)
617 {
618 bfd_size_type amt;
619 struct elf_link_local_dynamic_entry *entry;
620 struct elf_link_hash_table *eht;
621 struct elf_strtab_hash *dynstr;
622 unsigned long dynstr_index;
623 char *name;
624 Elf_External_Sym_Shndx eshndx;
625 char esym[sizeof (Elf64_External_Sym)];
626
627 if (! is_elf_hash_table (info->hash))
628 return 0;
629
630 /* See if the entry exists already. */
631 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
632 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
633 return 1;
634
635 amt = sizeof (*entry);
636 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
637 if (entry == NULL)
638 return 0;
639
640 /* Go find the symbol, so that we can find it's name. */
641 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
642 1, input_indx, &entry->isym, esym, &eshndx))
643 {
644 bfd_release (input_bfd, entry);
645 return 0;
646 }
647
648 if (entry->isym.st_shndx != SHN_UNDEF
649 && entry->isym.st_shndx < SHN_LORESERVE)
650 {
651 asection *s;
652
653 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
654 if (s == NULL || bfd_is_abs_section (s->output_section))
655 {
656 /* We can still bfd_release here as nothing has done another
657 bfd_alloc. We can't do this later in this function. */
658 bfd_release (input_bfd, entry);
659 return 2;
660 }
661 }
662
663 name = (bfd_elf_string_from_elf_section
664 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
665 entry->isym.st_name));
666
667 dynstr = elf_hash_table (info)->dynstr;
668 if (dynstr == NULL)
669 {
670 /* Create a strtab to hold the dynamic symbol names. */
671 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
672 if (dynstr == NULL)
673 return 0;
674 }
675
676 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
677 if (dynstr_index == (unsigned long) -1)
678 return 0;
679 entry->isym.st_name = dynstr_index;
680
681 eht = elf_hash_table (info);
682
683 entry->next = eht->dynlocal;
684 eht->dynlocal = entry;
685 entry->input_bfd = input_bfd;
686 entry->input_indx = input_indx;
687 eht->dynsymcount++;
688
689 /* Whatever binding the symbol had before, it's now local. */
690 entry->isym.st_info
691 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
692
693 /* The dynindx will be set at the end of size_dynamic_sections. */
694
695 return 1;
696 }
697
698 /* Return the dynindex of a local dynamic symbol. */
699
700 long
701 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
702 bfd *input_bfd,
703 long input_indx)
704 {
705 struct elf_link_local_dynamic_entry *e;
706
707 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
708 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
709 return e->dynindx;
710 return -1;
711 }
712
713 /* This function is used to renumber the dynamic symbols, if some of
714 them are removed because they are marked as local. This is called
715 via elf_link_hash_traverse. */
716
717 static bfd_boolean
718 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
719 void *data)
720 {
721 size_t *count = (size_t *) data;
722
723 if (h->root.type == bfd_link_hash_warning)
724 h = (struct elf_link_hash_entry *) h->root.u.i.link;
725
726 if (h->forced_local)
727 return TRUE;
728
729 if (h->dynindx != -1)
730 h->dynindx = ++(*count);
731
732 return TRUE;
733 }
734
735
736 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
737 STB_LOCAL binding. */
738
739 static bfd_boolean
740 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
741 void *data)
742 {
743 size_t *count = (size_t *) data;
744
745 if (h->root.type == bfd_link_hash_warning)
746 h = (struct elf_link_hash_entry *) h->root.u.i.link;
747
748 if (!h->forced_local)
749 return TRUE;
750
751 if (h->dynindx != -1)
752 h->dynindx = ++(*count);
753
754 return TRUE;
755 }
756
757 /* Return true if the dynamic symbol for a given section should be
758 omitted when creating a shared library. */
759 bfd_boolean
760 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
761 struct bfd_link_info *info,
762 asection *p)
763 {
764 struct elf_link_hash_table *htab;
765
766 switch (elf_section_data (p)->this_hdr.sh_type)
767 {
768 case SHT_PROGBITS:
769 case SHT_NOBITS:
770 /* If sh_type is yet undecided, assume it could be
771 SHT_PROGBITS/SHT_NOBITS. */
772 case SHT_NULL:
773 htab = elf_hash_table (info);
774 if (p == htab->tls_sec)
775 return FALSE;
776
777 if (htab->text_index_section != NULL)
778 return p != htab->text_index_section && p != htab->data_index_section;
779
780 if (strcmp (p->name, ".got") == 0
781 || strcmp (p->name, ".got.plt") == 0
782 || strcmp (p->name, ".plt") == 0)
783 {
784 asection *ip;
785
786 if (htab->dynobj != NULL
787 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
788 && (ip->flags & SEC_LINKER_CREATED)
789 && ip->output_section == p)
790 return TRUE;
791 }
792 return FALSE;
793
794 /* There shouldn't be section relative relocations
795 against any other section. */
796 default:
797 return TRUE;
798 }
799 }
800
801 /* Assign dynsym indices. In a shared library we generate a section
802 symbol for each output section, which come first. Next come symbols
803 which have been forced to local binding. Then all of the back-end
804 allocated local dynamic syms, followed by the rest of the global
805 symbols. */
806
807 static unsigned long
808 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
809 struct bfd_link_info *info,
810 unsigned long *section_sym_count)
811 {
812 unsigned long dynsymcount = 0;
813
814 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
815 {
816 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
817 asection *p;
818 for (p = output_bfd->sections; p ; p = p->next)
819 if ((p->flags & SEC_EXCLUDE) == 0
820 && (p->flags & SEC_ALLOC) != 0
821 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
822 elf_section_data (p)->dynindx = ++dynsymcount;
823 else
824 elf_section_data (p)->dynindx = 0;
825 }
826 *section_sym_count = dynsymcount;
827
828 elf_link_hash_traverse (elf_hash_table (info),
829 elf_link_renumber_local_hash_table_dynsyms,
830 &dynsymcount);
831
832 if (elf_hash_table (info)->dynlocal)
833 {
834 struct elf_link_local_dynamic_entry *p;
835 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
836 p->dynindx = ++dynsymcount;
837 }
838
839 elf_link_hash_traverse (elf_hash_table (info),
840 elf_link_renumber_hash_table_dynsyms,
841 &dynsymcount);
842
843 /* There is an unused NULL entry at the head of the table which
844 we must account for in our count. Unless there weren't any
845 symbols, which means we'll have no table at all. */
846 if (dynsymcount != 0)
847 ++dynsymcount;
848
849 elf_hash_table (info)->dynsymcount = dynsymcount;
850 return dynsymcount;
851 }
852
853 /* Merge st_other field. */
854
855 static void
856 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
857 Elf_Internal_Sym *isym, bfd_boolean definition,
858 bfd_boolean dynamic)
859 {
860 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
861
862 /* If st_other has a processor-specific meaning, specific
863 code might be needed here. We never merge the visibility
864 attribute with the one from a dynamic object. */
865 if (bed->elf_backend_merge_symbol_attribute)
866 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
867 dynamic);
868
869 /* If this symbol has default visibility and the user has requested
870 we not re-export it, then mark it as hidden. */
871 if (definition
872 && !dynamic
873 && (abfd->no_export
874 || (abfd->my_archive && abfd->my_archive->no_export))
875 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
876 isym->st_other = (STV_HIDDEN
877 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
878
879 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
880 {
881 unsigned char hvis, symvis, other, nvis;
882
883 /* Only merge the visibility. Leave the remainder of the
884 st_other field to elf_backend_merge_symbol_attribute. */
885 other = h->other & ~ELF_ST_VISIBILITY (-1);
886
887 /* Combine visibilities, using the most constraining one. */
888 hvis = ELF_ST_VISIBILITY (h->other);
889 symvis = ELF_ST_VISIBILITY (isym->st_other);
890 if (! hvis)
891 nvis = symvis;
892 else if (! symvis)
893 nvis = hvis;
894 else
895 nvis = hvis < symvis ? hvis : symvis;
896
897 h->other = other | nvis;
898 }
899 }
900
901 /* This function is called when we want to define a new symbol. It
902 handles the various cases which arise when we find a definition in
903 a dynamic object, or when there is already a definition in a
904 dynamic object. The new symbol is described by NAME, SYM, PSEC,
905 and PVALUE. We set SYM_HASH to the hash table entry. We set
906 OVERRIDE if the old symbol is overriding a new definition. We set
907 TYPE_CHANGE_OK if it is OK for the type to change. We set
908 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
909 change, we mean that we shouldn't warn if the type or size does
910 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
911 object is overridden by a regular object. */
912
913 bfd_boolean
914 _bfd_elf_merge_symbol (bfd *abfd,
915 struct bfd_link_info *info,
916 const char *name,
917 Elf_Internal_Sym *sym,
918 asection **psec,
919 bfd_vma *pvalue,
920 unsigned int *pold_alignment,
921 struct elf_link_hash_entry **sym_hash,
922 bfd_boolean *skip,
923 bfd_boolean *override,
924 bfd_boolean *type_change_ok,
925 bfd_boolean *size_change_ok)
926 {
927 asection *sec, *oldsec;
928 struct elf_link_hash_entry *h;
929 struct elf_link_hash_entry *flip;
930 int bind;
931 bfd *oldbfd;
932 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
933 bfd_boolean newweak, oldweak, newfunc, oldfunc;
934 const struct elf_backend_data *bed;
935
936 *skip = FALSE;
937 *override = FALSE;
938
939 sec = *psec;
940 bind = ELF_ST_BIND (sym->st_info);
941
942 /* Silently discard TLS symbols from --just-syms. There's no way to
943 combine a static TLS block with a new TLS block for this executable. */
944 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
945 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
946 {
947 *skip = TRUE;
948 return TRUE;
949 }
950
951 if (! bfd_is_und_section (sec))
952 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
953 else
954 h = ((struct elf_link_hash_entry *)
955 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
956 if (h == NULL)
957 return FALSE;
958 *sym_hash = h;
959
960 bed = get_elf_backend_data (abfd);
961
962 /* This code is for coping with dynamic objects, and is only useful
963 if we are doing an ELF link. */
964 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
965 return TRUE;
966
967 /* For merging, we only care about real symbols. */
968
969 while (h->root.type == bfd_link_hash_indirect
970 || h->root.type == bfd_link_hash_warning)
971 h = (struct elf_link_hash_entry *) h->root.u.i.link;
972
973 /* We have to check it for every instance since the first few may be
974 refereences and not all compilers emit symbol type for undefined
975 symbols. */
976 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
977
978 /* If we just created the symbol, mark it as being an ELF symbol.
979 Other than that, there is nothing to do--there is no merge issue
980 with a newly defined symbol--so we just return. */
981
982 if (h->root.type == bfd_link_hash_new)
983 {
984 h->non_elf = 0;
985 return TRUE;
986 }
987
988 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
989 existing symbol. */
990
991 switch (h->root.type)
992 {
993 default:
994 oldbfd = NULL;
995 oldsec = NULL;
996 break;
997
998 case bfd_link_hash_undefined:
999 case bfd_link_hash_undefweak:
1000 oldbfd = h->root.u.undef.abfd;
1001 oldsec = NULL;
1002 break;
1003
1004 case bfd_link_hash_defined:
1005 case bfd_link_hash_defweak:
1006 oldbfd = h->root.u.def.section->owner;
1007 oldsec = h->root.u.def.section;
1008 break;
1009
1010 case bfd_link_hash_common:
1011 oldbfd = h->root.u.c.p->section->owner;
1012 oldsec = h->root.u.c.p->section;
1013 break;
1014 }
1015
1016 /* In cases involving weak versioned symbols, we may wind up trying
1017 to merge a symbol with itself. Catch that here, to avoid the
1018 confusion that results if we try to override a symbol with
1019 itself. The additional tests catch cases like
1020 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1021 dynamic object, which we do want to handle here. */
1022 if (abfd == oldbfd
1023 && ((abfd->flags & DYNAMIC) == 0
1024 || !h->def_regular))
1025 return TRUE;
1026
1027 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1028 respectively, is from a dynamic object. */
1029
1030 newdyn = (abfd->flags & DYNAMIC) != 0;
1031
1032 olddyn = FALSE;
1033 if (oldbfd != NULL)
1034 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1035 else if (oldsec != NULL)
1036 {
1037 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1038 indices used by MIPS ELF. */
1039 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1040 }
1041
1042 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1043 respectively, appear to be a definition rather than reference. */
1044
1045 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1046
1047 olddef = (h->root.type != bfd_link_hash_undefined
1048 && h->root.type != bfd_link_hash_undefweak
1049 && h->root.type != bfd_link_hash_common);
1050
1051 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1052 respectively, appear to be a function. */
1053
1054 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1055 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1056
1057 oldfunc = (h->type != STT_NOTYPE
1058 && bed->is_function_type (h->type));
1059
1060 /* When we try to create a default indirect symbol from the dynamic
1061 definition with the default version, we skip it if its type and
1062 the type of existing regular definition mismatch. We only do it
1063 if the existing regular definition won't be dynamic. */
1064 if (pold_alignment == NULL
1065 && !info->shared
1066 && !info->export_dynamic
1067 && !h->ref_dynamic
1068 && newdyn
1069 && newdef
1070 && !olddyn
1071 && (olddef || h->root.type == bfd_link_hash_common)
1072 && ELF_ST_TYPE (sym->st_info) != h->type
1073 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1074 && h->type != STT_NOTYPE
1075 && !(newfunc && oldfunc))
1076 {
1077 *skip = TRUE;
1078 return TRUE;
1079 }
1080
1081 /* Check TLS symbol. We don't check undefined symbol introduced by
1082 "ld -u". */
1083 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
1084 && ELF_ST_TYPE (sym->st_info) != h->type
1085 && oldbfd != NULL)
1086 {
1087 bfd *ntbfd, *tbfd;
1088 bfd_boolean ntdef, tdef;
1089 asection *ntsec, *tsec;
1090
1091 if (h->type == STT_TLS)
1092 {
1093 ntbfd = abfd;
1094 ntsec = sec;
1095 ntdef = newdef;
1096 tbfd = oldbfd;
1097 tsec = oldsec;
1098 tdef = olddef;
1099 }
1100 else
1101 {
1102 ntbfd = oldbfd;
1103 ntsec = oldsec;
1104 ntdef = olddef;
1105 tbfd = abfd;
1106 tsec = sec;
1107 tdef = newdef;
1108 }
1109
1110 if (tdef && ntdef)
1111 (*_bfd_error_handler)
1112 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1113 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1114 else if (!tdef && !ntdef)
1115 (*_bfd_error_handler)
1116 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1117 tbfd, ntbfd, h->root.root.string);
1118 else if (tdef)
1119 (*_bfd_error_handler)
1120 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1121 tbfd, tsec, ntbfd, h->root.root.string);
1122 else
1123 (*_bfd_error_handler)
1124 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1125 tbfd, ntbfd, ntsec, h->root.root.string);
1126
1127 bfd_set_error (bfd_error_bad_value);
1128 return FALSE;
1129 }
1130
1131 /* We need to remember if a symbol has a definition in a dynamic
1132 object or is weak in all dynamic objects. Internal and hidden
1133 visibility will make it unavailable to dynamic objects. */
1134 if (newdyn && !h->dynamic_def)
1135 {
1136 if (!bfd_is_und_section (sec))
1137 h->dynamic_def = 1;
1138 else
1139 {
1140 /* Check if this symbol is weak in all dynamic objects. If it
1141 is the first time we see it in a dynamic object, we mark
1142 if it is weak. Otherwise, we clear it. */
1143 if (!h->ref_dynamic)
1144 {
1145 if (bind == STB_WEAK)
1146 h->dynamic_weak = 1;
1147 }
1148 else if (bind != STB_WEAK)
1149 h->dynamic_weak = 0;
1150 }
1151 }
1152
1153 /* If the old symbol has non-default visibility, we ignore the new
1154 definition from a dynamic object. */
1155 if (newdyn
1156 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1157 && !bfd_is_und_section (sec))
1158 {
1159 *skip = TRUE;
1160 /* Make sure this symbol is dynamic. */
1161 h->ref_dynamic = 1;
1162 /* A protected symbol has external availability. Make sure it is
1163 recorded as dynamic.
1164
1165 FIXME: Should we check type and size for protected symbol? */
1166 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1167 return bfd_elf_link_record_dynamic_symbol (info, h);
1168 else
1169 return TRUE;
1170 }
1171 else if (!newdyn
1172 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1173 && h->def_dynamic)
1174 {
1175 /* If the new symbol with non-default visibility comes from a
1176 relocatable file and the old definition comes from a dynamic
1177 object, we remove the old definition. */
1178 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1179 {
1180 /* Handle the case where the old dynamic definition is
1181 default versioned. We need to copy the symbol info from
1182 the symbol with default version to the normal one if it
1183 was referenced before. */
1184 if (h->ref_regular)
1185 {
1186 struct elf_link_hash_entry *vh = *sym_hash;
1187
1188 vh->root.type = h->root.type;
1189 h->root.type = bfd_link_hash_indirect;
1190 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1191 /* Protected symbols will override the dynamic definition
1192 with default version. */
1193 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1194 {
1195 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1196 vh->dynamic_def = 1;
1197 vh->ref_dynamic = 1;
1198 }
1199 else
1200 {
1201 h->root.type = vh->root.type;
1202 vh->ref_dynamic = 0;
1203 /* We have to hide it here since it was made dynamic
1204 global with extra bits when the symbol info was
1205 copied from the old dynamic definition. */
1206 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1207 }
1208 h = vh;
1209 }
1210 else
1211 h = *sym_hash;
1212 }
1213
1214 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1215 && bfd_is_und_section (sec))
1216 {
1217 /* If the new symbol is undefined and the old symbol was
1218 also undefined before, we need to make sure
1219 _bfd_generic_link_add_one_symbol doesn't mess
1220 up the linker hash table undefs list. Since the old
1221 definition came from a dynamic object, it is still on the
1222 undefs list. */
1223 h->root.type = bfd_link_hash_undefined;
1224 h->root.u.undef.abfd = abfd;
1225 }
1226 else
1227 {
1228 h->root.type = bfd_link_hash_new;
1229 h->root.u.undef.abfd = NULL;
1230 }
1231
1232 if (h->def_dynamic)
1233 {
1234 h->def_dynamic = 0;
1235 h->ref_dynamic = 1;
1236 h->dynamic_def = 1;
1237 }
1238 /* FIXME: Should we check type and size for protected symbol? */
1239 h->size = 0;
1240 h->type = 0;
1241 return TRUE;
1242 }
1243
1244 /* Differentiate strong and weak symbols. */
1245 newweak = bind == STB_WEAK;
1246 oldweak = (h->root.type == bfd_link_hash_defweak
1247 || h->root.type == bfd_link_hash_undefweak);
1248
1249 if (bind == STB_GNU_UNIQUE)
1250 h->unique_global = 1;
1251
1252 /* If a new weak symbol definition comes from a regular file and the
1253 old symbol comes from a dynamic library, we treat the new one as
1254 strong. Similarly, an old weak symbol definition from a regular
1255 file is treated as strong when the new symbol comes from a dynamic
1256 library. Further, an old weak symbol from a dynamic library is
1257 treated as strong if the new symbol is from a dynamic library.
1258 This reflects the way glibc's ld.so works.
1259
1260 Do this before setting *type_change_ok or *size_change_ok so that
1261 we warn properly when dynamic library symbols are overridden. */
1262
1263 if (newdef && !newdyn && olddyn)
1264 newweak = FALSE;
1265 if (olddef && newdyn)
1266 oldweak = FALSE;
1267
1268 /* Allow changes between different types of function symbol. */
1269 if (newfunc && oldfunc)
1270 *type_change_ok = TRUE;
1271
1272 /* It's OK to change the type if either the existing symbol or the
1273 new symbol is weak. A type change is also OK if the old symbol
1274 is undefined and the new symbol is defined. */
1275
1276 if (oldweak
1277 || newweak
1278 || (newdef
1279 && h->root.type == bfd_link_hash_undefined))
1280 *type_change_ok = TRUE;
1281
1282 /* It's OK to change the size if either the existing symbol or the
1283 new symbol is weak, or if the old symbol is undefined. */
1284
1285 if (*type_change_ok
1286 || h->root.type == bfd_link_hash_undefined)
1287 *size_change_ok = TRUE;
1288
1289 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1290 symbol, respectively, appears to be a common symbol in a dynamic
1291 object. If a symbol appears in an uninitialized section, and is
1292 not weak, and is not a function, then it may be a common symbol
1293 which was resolved when the dynamic object was created. We want
1294 to treat such symbols specially, because they raise special
1295 considerations when setting the symbol size: if the symbol
1296 appears as a common symbol in a regular object, and the size in
1297 the regular object is larger, we must make sure that we use the
1298 larger size. This problematic case can always be avoided in C,
1299 but it must be handled correctly when using Fortran shared
1300 libraries.
1301
1302 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1303 likewise for OLDDYNCOMMON and OLDDEF.
1304
1305 Note that this test is just a heuristic, and that it is quite
1306 possible to have an uninitialized symbol in a shared object which
1307 is really a definition, rather than a common symbol. This could
1308 lead to some minor confusion when the symbol really is a common
1309 symbol in some regular object. However, I think it will be
1310 harmless. */
1311
1312 if (newdyn
1313 && newdef
1314 && !newweak
1315 && (sec->flags & SEC_ALLOC) != 0
1316 && (sec->flags & SEC_LOAD) == 0
1317 && sym->st_size > 0
1318 && !newfunc)
1319 newdyncommon = TRUE;
1320 else
1321 newdyncommon = FALSE;
1322
1323 if (olddyn
1324 && olddef
1325 && h->root.type == bfd_link_hash_defined
1326 && h->def_dynamic
1327 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1328 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1329 && h->size > 0
1330 && !oldfunc)
1331 olddyncommon = TRUE;
1332 else
1333 olddyncommon = FALSE;
1334
1335 /* We now know everything about the old and new symbols. We ask the
1336 backend to check if we can merge them. */
1337 if (bed->merge_symbol
1338 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1339 pold_alignment, skip, override,
1340 type_change_ok, size_change_ok,
1341 &newdyn, &newdef, &newdyncommon, &newweak,
1342 abfd, &sec,
1343 &olddyn, &olddef, &olddyncommon, &oldweak,
1344 oldbfd, &oldsec))
1345 return FALSE;
1346
1347 /* If both the old and the new symbols look like common symbols in a
1348 dynamic object, set the size of the symbol to the larger of the
1349 two. */
1350
1351 if (olddyncommon
1352 && newdyncommon
1353 && sym->st_size != h->size)
1354 {
1355 /* Since we think we have two common symbols, issue a multiple
1356 common warning if desired. Note that we only warn if the
1357 size is different. If the size is the same, we simply let
1358 the old symbol override the new one as normally happens with
1359 symbols defined in dynamic objects. */
1360
1361 if (! ((*info->callbacks->multiple_common)
1362 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1363 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1364 return FALSE;
1365
1366 if (sym->st_size > h->size)
1367 h->size = sym->st_size;
1368
1369 *size_change_ok = TRUE;
1370 }
1371
1372 /* If we are looking at a dynamic object, and we have found a
1373 definition, we need to see if the symbol was already defined by
1374 some other object. If so, we want to use the existing
1375 definition, and we do not want to report a multiple symbol
1376 definition error; we do this by clobbering *PSEC to be
1377 bfd_und_section_ptr.
1378
1379 We treat a common symbol as a definition if the symbol in the
1380 shared library is a function, since common symbols always
1381 represent variables; this can cause confusion in principle, but
1382 any such confusion would seem to indicate an erroneous program or
1383 shared library. We also permit a common symbol in a regular
1384 object to override a weak symbol in a shared object. */
1385
1386 if (newdyn
1387 && newdef
1388 && (olddef
1389 || (h->root.type == bfd_link_hash_common
1390 && (newweak || newfunc))))
1391 {
1392 *override = TRUE;
1393 newdef = FALSE;
1394 newdyncommon = FALSE;
1395
1396 *psec = sec = bfd_und_section_ptr;
1397 *size_change_ok = TRUE;
1398
1399 /* If we get here when the old symbol is a common symbol, then
1400 we are explicitly letting it override a weak symbol or
1401 function in a dynamic object, and we don't want to warn about
1402 a type change. If the old symbol is a defined symbol, a type
1403 change warning may still be appropriate. */
1404
1405 if (h->root.type == bfd_link_hash_common)
1406 *type_change_ok = TRUE;
1407 }
1408
1409 /* Handle the special case of an old common symbol merging with a
1410 new symbol which looks like a common symbol in a shared object.
1411 We change *PSEC and *PVALUE to make the new symbol look like a
1412 common symbol, and let _bfd_generic_link_add_one_symbol do the
1413 right thing. */
1414
1415 if (newdyncommon
1416 && h->root.type == bfd_link_hash_common)
1417 {
1418 *override = TRUE;
1419 newdef = FALSE;
1420 newdyncommon = FALSE;
1421 *pvalue = sym->st_size;
1422 *psec = sec = bed->common_section (oldsec);
1423 *size_change_ok = TRUE;
1424 }
1425
1426 /* Skip weak definitions of symbols that are already defined. */
1427 if (newdef && olddef && newweak)
1428 {
1429 *skip = TRUE;
1430
1431 /* Merge st_other. If the symbol already has a dynamic index,
1432 but visibility says it should not be visible, turn it into a
1433 local symbol. */
1434 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1435 if (h->dynindx != -1)
1436 switch (ELF_ST_VISIBILITY (h->other))
1437 {
1438 case STV_INTERNAL:
1439 case STV_HIDDEN:
1440 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1441 break;
1442 }
1443 }
1444
1445 /* If the old symbol is from a dynamic object, and the new symbol is
1446 a definition which is not from a dynamic object, then the new
1447 symbol overrides the old symbol. Symbols from regular files
1448 always take precedence over symbols from dynamic objects, even if
1449 they are defined after the dynamic object in the link.
1450
1451 As above, we again permit a common symbol in a regular object to
1452 override a definition in a shared object if the shared object
1453 symbol is a function or is weak. */
1454
1455 flip = NULL;
1456 if (!newdyn
1457 && (newdef
1458 || (bfd_is_com_section (sec)
1459 && (oldweak || oldfunc)))
1460 && olddyn
1461 && olddef
1462 && h->def_dynamic)
1463 {
1464 /* Change the hash table entry to undefined, and let
1465 _bfd_generic_link_add_one_symbol do the right thing with the
1466 new definition. */
1467
1468 h->root.type = bfd_link_hash_undefined;
1469 h->root.u.undef.abfd = h->root.u.def.section->owner;
1470 *size_change_ok = TRUE;
1471
1472 olddef = FALSE;
1473 olddyncommon = FALSE;
1474
1475 /* We again permit a type change when a common symbol may be
1476 overriding a function. */
1477
1478 if (bfd_is_com_section (sec))
1479 {
1480 if (oldfunc)
1481 {
1482 /* If a common symbol overrides a function, make sure
1483 that it isn't defined dynamically nor has type
1484 function. */
1485 h->def_dynamic = 0;
1486 h->type = STT_NOTYPE;
1487 }
1488 *type_change_ok = TRUE;
1489 }
1490
1491 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1492 flip = *sym_hash;
1493 else
1494 /* This union may have been set to be non-NULL when this symbol
1495 was seen in a dynamic object. We must force the union to be
1496 NULL, so that it is correct for a regular symbol. */
1497 h->verinfo.vertree = NULL;
1498 }
1499
1500 /* Handle the special case of a new common symbol merging with an
1501 old symbol that looks like it might be a common symbol defined in
1502 a shared object. Note that we have already handled the case in
1503 which a new common symbol should simply override the definition
1504 in the shared library. */
1505
1506 if (! newdyn
1507 && bfd_is_com_section (sec)
1508 && olddyncommon)
1509 {
1510 /* It would be best if we could set the hash table entry to a
1511 common symbol, but we don't know what to use for the section
1512 or the alignment. */
1513 if (! ((*info->callbacks->multiple_common)
1514 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1515 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1516 return FALSE;
1517
1518 /* If the presumed common symbol in the dynamic object is
1519 larger, pretend that the new symbol has its size. */
1520
1521 if (h->size > *pvalue)
1522 *pvalue = h->size;
1523
1524 /* We need to remember the alignment required by the symbol
1525 in the dynamic object. */
1526 BFD_ASSERT (pold_alignment);
1527 *pold_alignment = h->root.u.def.section->alignment_power;
1528
1529 olddef = FALSE;
1530 olddyncommon = FALSE;
1531
1532 h->root.type = bfd_link_hash_undefined;
1533 h->root.u.undef.abfd = h->root.u.def.section->owner;
1534
1535 *size_change_ok = TRUE;
1536 *type_change_ok = TRUE;
1537
1538 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1539 flip = *sym_hash;
1540 else
1541 h->verinfo.vertree = NULL;
1542 }
1543
1544 if (flip != NULL)
1545 {
1546 /* Handle the case where we had a versioned symbol in a dynamic
1547 library and now find a definition in a normal object. In this
1548 case, we make the versioned symbol point to the normal one. */
1549 flip->root.type = h->root.type;
1550 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1551 h->root.type = bfd_link_hash_indirect;
1552 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1553 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1554 if (h->def_dynamic)
1555 {
1556 h->def_dynamic = 0;
1557 flip->ref_dynamic = 1;
1558 }
1559 }
1560
1561 return TRUE;
1562 }
1563
1564 /* This function is called to create an indirect symbol from the
1565 default for the symbol with the default version if needed. The
1566 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1567 set DYNSYM if the new indirect symbol is dynamic. */
1568
1569 static bfd_boolean
1570 _bfd_elf_add_default_symbol (bfd *abfd,
1571 struct bfd_link_info *info,
1572 struct elf_link_hash_entry *h,
1573 const char *name,
1574 Elf_Internal_Sym *sym,
1575 asection **psec,
1576 bfd_vma *value,
1577 bfd_boolean *dynsym,
1578 bfd_boolean override)
1579 {
1580 bfd_boolean type_change_ok;
1581 bfd_boolean size_change_ok;
1582 bfd_boolean skip;
1583 char *shortname;
1584 struct elf_link_hash_entry *hi;
1585 struct bfd_link_hash_entry *bh;
1586 const struct elf_backend_data *bed;
1587 bfd_boolean collect;
1588 bfd_boolean dynamic;
1589 char *p;
1590 size_t len, shortlen;
1591 asection *sec;
1592
1593 /* If this symbol has a version, and it is the default version, we
1594 create an indirect symbol from the default name to the fully
1595 decorated name. This will cause external references which do not
1596 specify a version to be bound to this version of the symbol. */
1597 p = strchr (name, ELF_VER_CHR);
1598 if (p == NULL || p[1] != ELF_VER_CHR)
1599 return TRUE;
1600
1601 if (override)
1602 {
1603 /* We are overridden by an old definition. We need to check if we
1604 need to create the indirect symbol from the default name. */
1605 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1606 FALSE, FALSE);
1607 BFD_ASSERT (hi != NULL);
1608 if (hi == h)
1609 return TRUE;
1610 while (hi->root.type == bfd_link_hash_indirect
1611 || hi->root.type == bfd_link_hash_warning)
1612 {
1613 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1614 if (hi == h)
1615 return TRUE;
1616 }
1617 }
1618
1619 bed = get_elf_backend_data (abfd);
1620 collect = bed->collect;
1621 dynamic = (abfd->flags & DYNAMIC) != 0;
1622
1623 shortlen = p - name;
1624 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1625 if (shortname == NULL)
1626 return FALSE;
1627 memcpy (shortname, name, shortlen);
1628 shortname[shortlen] = '\0';
1629
1630 /* We are going to create a new symbol. Merge it with any existing
1631 symbol with this name. For the purposes of the merge, act as
1632 though we were defining the symbol we just defined, although we
1633 actually going to define an indirect symbol. */
1634 type_change_ok = FALSE;
1635 size_change_ok = FALSE;
1636 sec = *psec;
1637 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1638 NULL, &hi, &skip, &override,
1639 &type_change_ok, &size_change_ok))
1640 return FALSE;
1641
1642 if (skip)
1643 goto nondefault;
1644
1645 if (! override)
1646 {
1647 bh = &hi->root;
1648 if (! (_bfd_generic_link_add_one_symbol
1649 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1650 0, name, FALSE, collect, &bh)))
1651 return FALSE;
1652 hi = (struct elf_link_hash_entry *) bh;
1653 }
1654 else
1655 {
1656 /* In this case the symbol named SHORTNAME is overriding the
1657 indirect symbol we want to add. We were planning on making
1658 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1659 is the name without a version. NAME is the fully versioned
1660 name, and it is the default version.
1661
1662 Overriding means that we already saw a definition for the
1663 symbol SHORTNAME in a regular object, and it is overriding
1664 the symbol defined in the dynamic object.
1665
1666 When this happens, we actually want to change NAME, the
1667 symbol we just added, to refer to SHORTNAME. This will cause
1668 references to NAME in the shared object to become references
1669 to SHORTNAME in the regular object. This is what we expect
1670 when we override a function in a shared object: that the
1671 references in the shared object will be mapped to the
1672 definition in the regular object. */
1673
1674 while (hi->root.type == bfd_link_hash_indirect
1675 || hi->root.type == bfd_link_hash_warning)
1676 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1677
1678 h->root.type = bfd_link_hash_indirect;
1679 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1680 if (h->def_dynamic)
1681 {
1682 h->def_dynamic = 0;
1683 hi->ref_dynamic = 1;
1684 if (hi->ref_regular
1685 || hi->def_regular)
1686 {
1687 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1688 return FALSE;
1689 }
1690 }
1691
1692 /* Now set HI to H, so that the following code will set the
1693 other fields correctly. */
1694 hi = h;
1695 }
1696
1697 /* Check if HI is a warning symbol. */
1698 if (hi->root.type == bfd_link_hash_warning)
1699 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1700
1701 /* If there is a duplicate definition somewhere, then HI may not
1702 point to an indirect symbol. We will have reported an error to
1703 the user in that case. */
1704
1705 if (hi->root.type == bfd_link_hash_indirect)
1706 {
1707 struct elf_link_hash_entry *ht;
1708
1709 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1710 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1711
1712 /* See if the new flags lead us to realize that the symbol must
1713 be dynamic. */
1714 if (! *dynsym)
1715 {
1716 if (! dynamic)
1717 {
1718 if (! info->executable
1719 || hi->ref_dynamic)
1720 *dynsym = TRUE;
1721 }
1722 else
1723 {
1724 if (hi->ref_regular)
1725 *dynsym = TRUE;
1726 }
1727 }
1728 }
1729
1730 /* We also need to define an indirection from the nondefault version
1731 of the symbol. */
1732
1733 nondefault:
1734 len = strlen (name);
1735 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1736 if (shortname == NULL)
1737 return FALSE;
1738 memcpy (shortname, name, shortlen);
1739 memcpy (shortname + shortlen, p + 1, len - shortlen);
1740
1741 /* Once again, merge with any existing symbol. */
1742 type_change_ok = FALSE;
1743 size_change_ok = FALSE;
1744 sec = *psec;
1745 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1746 NULL, &hi, &skip, &override,
1747 &type_change_ok, &size_change_ok))
1748 return FALSE;
1749
1750 if (skip)
1751 return TRUE;
1752
1753 if (override)
1754 {
1755 /* Here SHORTNAME is a versioned name, so we don't expect to see
1756 the type of override we do in the case above unless it is
1757 overridden by a versioned definition. */
1758 if (hi->root.type != bfd_link_hash_defined
1759 && hi->root.type != bfd_link_hash_defweak)
1760 (*_bfd_error_handler)
1761 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1762 abfd, shortname);
1763 }
1764 else
1765 {
1766 bh = &hi->root;
1767 if (! (_bfd_generic_link_add_one_symbol
1768 (info, abfd, shortname, BSF_INDIRECT,
1769 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1770 return FALSE;
1771 hi = (struct elf_link_hash_entry *) bh;
1772
1773 /* If there is a duplicate definition somewhere, then HI may not
1774 point to an indirect symbol. We will have reported an error
1775 to the user in that case. */
1776
1777 if (hi->root.type == bfd_link_hash_indirect)
1778 {
1779 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1780
1781 /* See if the new flags lead us to realize that the symbol
1782 must be dynamic. */
1783 if (! *dynsym)
1784 {
1785 if (! dynamic)
1786 {
1787 if (! info->executable
1788 || hi->ref_dynamic)
1789 *dynsym = TRUE;
1790 }
1791 else
1792 {
1793 if (hi->ref_regular)
1794 *dynsym = TRUE;
1795 }
1796 }
1797 }
1798 }
1799
1800 return TRUE;
1801 }
1802 \f
1803 /* This routine is used to export all defined symbols into the dynamic
1804 symbol table. It is called via elf_link_hash_traverse. */
1805
1806 static bfd_boolean
1807 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1808 {
1809 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1810
1811 /* Ignore this if we won't export it. */
1812 if (!eif->info->export_dynamic && !h->dynamic)
1813 return TRUE;
1814
1815 /* Ignore indirect symbols. These are added by the versioning code. */
1816 if (h->root.type == bfd_link_hash_indirect)
1817 return TRUE;
1818
1819 if (h->root.type == bfd_link_hash_warning)
1820 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1821
1822 if (h->dynindx == -1
1823 && (h->def_regular
1824 || h->ref_regular))
1825 {
1826 bfd_boolean hide;
1827
1828 if (eif->verdefs == NULL
1829 || (bfd_find_version_for_sym (eif->verdefs, h->root.root.string, &hide)
1830 && !hide))
1831 {
1832 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1833 {
1834 eif->failed = TRUE;
1835 return FALSE;
1836 }
1837 }
1838 }
1839
1840 return TRUE;
1841 }
1842 \f
1843 /* Look through the symbols which are defined in other shared
1844 libraries and referenced here. Update the list of version
1845 dependencies. This will be put into the .gnu.version_r section.
1846 This function is called via elf_link_hash_traverse. */
1847
1848 static bfd_boolean
1849 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1850 void *data)
1851 {
1852 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1853 Elf_Internal_Verneed *t;
1854 Elf_Internal_Vernaux *a;
1855 bfd_size_type amt;
1856
1857 if (h->root.type == bfd_link_hash_warning)
1858 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1859
1860 /* We only care about symbols defined in shared objects with version
1861 information. */
1862 if (!h->def_dynamic
1863 || h->def_regular
1864 || h->dynindx == -1
1865 || h->verinfo.verdef == NULL)
1866 return TRUE;
1867
1868 /* See if we already know about this version. */
1869 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1870 t != NULL;
1871 t = t->vn_nextref)
1872 {
1873 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1874 continue;
1875
1876 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1877 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1878 return TRUE;
1879
1880 break;
1881 }
1882
1883 /* This is a new version. Add it to tree we are building. */
1884
1885 if (t == NULL)
1886 {
1887 amt = sizeof *t;
1888 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1889 if (t == NULL)
1890 {
1891 rinfo->failed = TRUE;
1892 return FALSE;
1893 }
1894
1895 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1896 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1897 elf_tdata (rinfo->info->output_bfd)->verref = t;
1898 }
1899
1900 amt = sizeof *a;
1901 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1902 if (a == NULL)
1903 {
1904 rinfo->failed = TRUE;
1905 return FALSE;
1906 }
1907
1908 /* Note that we are copying a string pointer here, and testing it
1909 above. If bfd_elf_string_from_elf_section is ever changed to
1910 discard the string data when low in memory, this will have to be
1911 fixed. */
1912 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1913
1914 a->vna_flags = h->verinfo.verdef->vd_flags;
1915 a->vna_nextptr = t->vn_auxptr;
1916
1917 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1918 ++rinfo->vers;
1919
1920 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1921
1922 t->vn_auxptr = a;
1923
1924 return TRUE;
1925 }
1926
1927 /* Figure out appropriate versions for all the symbols. We may not
1928 have the version number script until we have read all of the input
1929 files, so until that point we don't know which symbols should be
1930 local. This function is called via elf_link_hash_traverse. */
1931
1932 static bfd_boolean
1933 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1934 {
1935 struct elf_info_failed *sinfo;
1936 struct bfd_link_info *info;
1937 const struct elf_backend_data *bed;
1938 struct elf_info_failed eif;
1939 char *p;
1940 bfd_size_type amt;
1941
1942 sinfo = (struct elf_info_failed *) data;
1943 info = sinfo->info;
1944
1945 if (h->root.type == bfd_link_hash_warning)
1946 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1947
1948 /* Fix the symbol flags. */
1949 eif.failed = FALSE;
1950 eif.info = info;
1951 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1952 {
1953 if (eif.failed)
1954 sinfo->failed = TRUE;
1955 return FALSE;
1956 }
1957
1958 /* We only need version numbers for symbols defined in regular
1959 objects. */
1960 if (!h->def_regular)
1961 return TRUE;
1962
1963 bed = get_elf_backend_data (info->output_bfd);
1964 p = strchr (h->root.root.string, ELF_VER_CHR);
1965 if (p != NULL && h->verinfo.vertree == NULL)
1966 {
1967 struct bfd_elf_version_tree *t;
1968 bfd_boolean hidden;
1969
1970 hidden = TRUE;
1971
1972 /* There are two consecutive ELF_VER_CHR characters if this is
1973 not a hidden symbol. */
1974 ++p;
1975 if (*p == ELF_VER_CHR)
1976 {
1977 hidden = FALSE;
1978 ++p;
1979 }
1980
1981 /* If there is no version string, we can just return out. */
1982 if (*p == '\0')
1983 {
1984 if (hidden)
1985 h->hidden = 1;
1986 return TRUE;
1987 }
1988
1989 /* Look for the version. If we find it, it is no longer weak. */
1990 for (t = sinfo->verdefs; t != NULL; t = t->next)
1991 {
1992 if (strcmp (t->name, p) == 0)
1993 {
1994 size_t len;
1995 char *alc;
1996 struct bfd_elf_version_expr *d;
1997
1998 len = p - h->root.root.string;
1999 alc = (char *) bfd_malloc (len);
2000 if (alc == NULL)
2001 {
2002 sinfo->failed = TRUE;
2003 return FALSE;
2004 }
2005 memcpy (alc, h->root.root.string, len - 1);
2006 alc[len - 1] = '\0';
2007 if (alc[len - 2] == ELF_VER_CHR)
2008 alc[len - 2] = '\0';
2009
2010 h->verinfo.vertree = t;
2011 t->used = TRUE;
2012 d = NULL;
2013
2014 if (t->globals.list != NULL)
2015 d = (*t->match) (&t->globals, NULL, alc);
2016
2017 /* See if there is anything to force this symbol to
2018 local scope. */
2019 if (d == NULL && t->locals.list != NULL)
2020 {
2021 d = (*t->match) (&t->locals, NULL, alc);
2022 if (d != NULL
2023 && h->dynindx != -1
2024 && ! info->export_dynamic)
2025 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2026 }
2027
2028 free (alc);
2029 break;
2030 }
2031 }
2032
2033 /* If we are building an application, we need to create a
2034 version node for this version. */
2035 if (t == NULL && info->executable)
2036 {
2037 struct bfd_elf_version_tree **pp;
2038 int version_index;
2039
2040 /* If we aren't going to export this symbol, we don't need
2041 to worry about it. */
2042 if (h->dynindx == -1)
2043 return TRUE;
2044
2045 amt = sizeof *t;
2046 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2047 if (t == NULL)
2048 {
2049 sinfo->failed = TRUE;
2050 return FALSE;
2051 }
2052
2053 t->name = p;
2054 t->name_indx = (unsigned int) -1;
2055 t->used = TRUE;
2056
2057 version_index = 1;
2058 /* Don't count anonymous version tag. */
2059 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
2060 version_index = 0;
2061 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
2062 ++version_index;
2063 t->vernum = version_index;
2064
2065 *pp = t;
2066
2067 h->verinfo.vertree = t;
2068 }
2069 else if (t == NULL)
2070 {
2071 /* We could not find the version for a symbol when
2072 generating a shared archive. Return an error. */
2073 (*_bfd_error_handler)
2074 (_("%B: version node not found for symbol %s"),
2075 info->output_bfd, h->root.root.string);
2076 bfd_set_error (bfd_error_bad_value);
2077 sinfo->failed = TRUE;
2078 return FALSE;
2079 }
2080
2081 if (hidden)
2082 h->hidden = 1;
2083 }
2084
2085 /* If we don't have a version for this symbol, see if we can find
2086 something. */
2087 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
2088 {
2089 bfd_boolean hide;
2090
2091 h->verinfo.vertree = bfd_find_version_for_sym (sinfo->verdefs,
2092 h->root.root.string, &hide);
2093 if (h->verinfo.vertree != NULL && hide)
2094 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2095 }
2096
2097 return TRUE;
2098 }
2099 \f
2100 /* Read and swap the relocs from the section indicated by SHDR. This
2101 may be either a REL or a RELA section. The relocations are
2102 translated into RELA relocations and stored in INTERNAL_RELOCS,
2103 which should have already been allocated to contain enough space.
2104 The EXTERNAL_RELOCS are a buffer where the external form of the
2105 relocations should be stored.
2106
2107 Returns FALSE if something goes wrong. */
2108
2109 static bfd_boolean
2110 elf_link_read_relocs_from_section (bfd *abfd,
2111 asection *sec,
2112 Elf_Internal_Shdr *shdr,
2113 void *external_relocs,
2114 Elf_Internal_Rela *internal_relocs)
2115 {
2116 const struct elf_backend_data *bed;
2117 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2118 const bfd_byte *erela;
2119 const bfd_byte *erelaend;
2120 Elf_Internal_Rela *irela;
2121 Elf_Internal_Shdr *symtab_hdr;
2122 size_t nsyms;
2123
2124 /* Position ourselves at the start of the section. */
2125 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2126 return FALSE;
2127
2128 /* Read the relocations. */
2129 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2130 return FALSE;
2131
2132 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2133 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2134
2135 bed = get_elf_backend_data (abfd);
2136
2137 /* Convert the external relocations to the internal format. */
2138 if (shdr->sh_entsize == bed->s->sizeof_rel)
2139 swap_in = bed->s->swap_reloc_in;
2140 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2141 swap_in = bed->s->swap_reloca_in;
2142 else
2143 {
2144 bfd_set_error (bfd_error_wrong_format);
2145 return FALSE;
2146 }
2147
2148 erela = (const bfd_byte *) external_relocs;
2149 erelaend = erela + shdr->sh_size;
2150 irela = internal_relocs;
2151 while (erela < erelaend)
2152 {
2153 bfd_vma r_symndx;
2154
2155 (*swap_in) (abfd, erela, irela);
2156 r_symndx = ELF32_R_SYM (irela->r_info);
2157 if (bed->s->arch_size == 64)
2158 r_symndx >>= 24;
2159 if (nsyms > 0)
2160 {
2161 if ((size_t) r_symndx >= nsyms)
2162 {
2163 (*_bfd_error_handler)
2164 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2165 " for offset 0x%lx in section `%A'"),
2166 abfd, sec,
2167 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2168 bfd_set_error (bfd_error_bad_value);
2169 return FALSE;
2170 }
2171 }
2172 else if (r_symndx != 0)
2173 {
2174 (*_bfd_error_handler)
2175 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2176 " when the object file has no symbol table"),
2177 abfd, sec,
2178 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2179 bfd_set_error (bfd_error_bad_value);
2180 return FALSE;
2181 }
2182 irela += bed->s->int_rels_per_ext_rel;
2183 erela += shdr->sh_entsize;
2184 }
2185
2186 return TRUE;
2187 }
2188
2189 /* Read and swap the relocs for a section O. They may have been
2190 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2191 not NULL, they are used as buffers to read into. They are known to
2192 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2193 the return value is allocated using either malloc or bfd_alloc,
2194 according to the KEEP_MEMORY argument. If O has two relocation
2195 sections (both REL and RELA relocations), then the REL_HDR
2196 relocations will appear first in INTERNAL_RELOCS, followed by the
2197 REL_HDR2 relocations. */
2198
2199 Elf_Internal_Rela *
2200 _bfd_elf_link_read_relocs (bfd *abfd,
2201 asection *o,
2202 void *external_relocs,
2203 Elf_Internal_Rela *internal_relocs,
2204 bfd_boolean keep_memory)
2205 {
2206 Elf_Internal_Shdr *rel_hdr;
2207 void *alloc1 = NULL;
2208 Elf_Internal_Rela *alloc2 = NULL;
2209 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2210
2211 if (elf_section_data (o)->relocs != NULL)
2212 return elf_section_data (o)->relocs;
2213
2214 if (o->reloc_count == 0)
2215 return NULL;
2216
2217 rel_hdr = &elf_section_data (o)->rel_hdr;
2218
2219 if (internal_relocs == NULL)
2220 {
2221 bfd_size_type size;
2222
2223 size = o->reloc_count;
2224 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2225 if (keep_memory)
2226 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2227 else
2228 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2229 if (internal_relocs == NULL)
2230 goto error_return;
2231 }
2232
2233 if (external_relocs == NULL)
2234 {
2235 bfd_size_type size = rel_hdr->sh_size;
2236
2237 if (elf_section_data (o)->rel_hdr2)
2238 size += elf_section_data (o)->rel_hdr2->sh_size;
2239 alloc1 = bfd_malloc (size);
2240 if (alloc1 == NULL)
2241 goto error_return;
2242 external_relocs = alloc1;
2243 }
2244
2245 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
2246 external_relocs,
2247 internal_relocs))
2248 goto error_return;
2249 if (elf_section_data (o)->rel_hdr2
2250 && (!elf_link_read_relocs_from_section
2251 (abfd, o,
2252 elf_section_data (o)->rel_hdr2,
2253 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2254 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2255 * bed->s->int_rels_per_ext_rel))))
2256 goto error_return;
2257
2258 /* Cache the results for next time, if we can. */
2259 if (keep_memory)
2260 elf_section_data (o)->relocs = internal_relocs;
2261
2262 if (alloc1 != NULL)
2263 free (alloc1);
2264
2265 /* Don't free alloc2, since if it was allocated we are passing it
2266 back (under the name of internal_relocs). */
2267
2268 return internal_relocs;
2269
2270 error_return:
2271 if (alloc1 != NULL)
2272 free (alloc1);
2273 if (alloc2 != NULL)
2274 {
2275 if (keep_memory)
2276 bfd_release (abfd, alloc2);
2277 else
2278 free (alloc2);
2279 }
2280 return NULL;
2281 }
2282
2283 /* Compute the size of, and allocate space for, REL_HDR which is the
2284 section header for a section containing relocations for O. */
2285
2286 static bfd_boolean
2287 _bfd_elf_link_size_reloc_section (bfd *abfd,
2288 Elf_Internal_Shdr *rel_hdr,
2289 asection *o)
2290 {
2291 bfd_size_type reloc_count;
2292 bfd_size_type num_rel_hashes;
2293
2294 /* Figure out how many relocations there will be. */
2295 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2296 reloc_count = elf_section_data (o)->rel_count;
2297 else
2298 reloc_count = elf_section_data (o)->rel_count2;
2299
2300 num_rel_hashes = o->reloc_count;
2301 if (num_rel_hashes < reloc_count)
2302 num_rel_hashes = reloc_count;
2303
2304 /* That allows us to calculate the size of the section. */
2305 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2306
2307 /* The contents field must last into write_object_contents, so we
2308 allocate it with bfd_alloc rather than malloc. Also since we
2309 cannot be sure that the contents will actually be filled in,
2310 we zero the allocated space. */
2311 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2312 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2313 return FALSE;
2314
2315 /* We only allocate one set of hash entries, so we only do it the
2316 first time we are called. */
2317 if (elf_section_data (o)->rel_hashes == NULL
2318 && num_rel_hashes)
2319 {
2320 struct elf_link_hash_entry **p;
2321
2322 p = (struct elf_link_hash_entry **)
2323 bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
2324 if (p == NULL)
2325 return FALSE;
2326
2327 elf_section_data (o)->rel_hashes = p;
2328 }
2329
2330 return TRUE;
2331 }
2332
2333 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2334 originated from the section given by INPUT_REL_HDR) to the
2335 OUTPUT_BFD. */
2336
2337 bfd_boolean
2338 _bfd_elf_link_output_relocs (bfd *output_bfd,
2339 asection *input_section,
2340 Elf_Internal_Shdr *input_rel_hdr,
2341 Elf_Internal_Rela *internal_relocs,
2342 struct elf_link_hash_entry **rel_hash
2343 ATTRIBUTE_UNUSED)
2344 {
2345 Elf_Internal_Rela *irela;
2346 Elf_Internal_Rela *irelaend;
2347 bfd_byte *erel;
2348 Elf_Internal_Shdr *output_rel_hdr;
2349 asection *output_section;
2350 unsigned int *rel_countp = NULL;
2351 const struct elf_backend_data *bed;
2352 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2353
2354 output_section = input_section->output_section;
2355 output_rel_hdr = NULL;
2356
2357 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2358 == input_rel_hdr->sh_entsize)
2359 {
2360 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2361 rel_countp = &elf_section_data (output_section)->rel_count;
2362 }
2363 else if (elf_section_data (output_section)->rel_hdr2
2364 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2365 == input_rel_hdr->sh_entsize))
2366 {
2367 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2368 rel_countp = &elf_section_data (output_section)->rel_count2;
2369 }
2370 else
2371 {
2372 (*_bfd_error_handler)
2373 (_("%B: relocation size mismatch in %B section %A"),
2374 output_bfd, input_section->owner, input_section);
2375 bfd_set_error (bfd_error_wrong_format);
2376 return FALSE;
2377 }
2378
2379 bed = get_elf_backend_data (output_bfd);
2380 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2381 swap_out = bed->s->swap_reloc_out;
2382 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2383 swap_out = bed->s->swap_reloca_out;
2384 else
2385 abort ();
2386
2387 erel = output_rel_hdr->contents;
2388 erel += *rel_countp * input_rel_hdr->sh_entsize;
2389 irela = internal_relocs;
2390 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2391 * bed->s->int_rels_per_ext_rel);
2392 while (irela < irelaend)
2393 {
2394 (*swap_out) (output_bfd, irela, erel);
2395 irela += bed->s->int_rels_per_ext_rel;
2396 erel += input_rel_hdr->sh_entsize;
2397 }
2398
2399 /* Bump the counter, so that we know where to add the next set of
2400 relocations. */
2401 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2402
2403 return TRUE;
2404 }
2405 \f
2406 /* Make weak undefined symbols in PIE dynamic. */
2407
2408 bfd_boolean
2409 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2410 struct elf_link_hash_entry *h)
2411 {
2412 if (info->pie
2413 && h->dynindx == -1
2414 && h->root.type == bfd_link_hash_undefweak)
2415 return bfd_elf_link_record_dynamic_symbol (info, h);
2416
2417 return TRUE;
2418 }
2419
2420 /* Fix up the flags for a symbol. This handles various cases which
2421 can only be fixed after all the input files are seen. This is
2422 currently called by both adjust_dynamic_symbol and
2423 assign_sym_version, which is unnecessary but perhaps more robust in
2424 the face of future changes. */
2425
2426 static bfd_boolean
2427 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2428 struct elf_info_failed *eif)
2429 {
2430 const struct elf_backend_data *bed;
2431
2432 /* If this symbol was mentioned in a non-ELF file, try to set
2433 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2434 permit a non-ELF file to correctly refer to a symbol defined in
2435 an ELF dynamic object. */
2436 if (h->non_elf)
2437 {
2438 while (h->root.type == bfd_link_hash_indirect)
2439 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2440
2441 if (h->root.type != bfd_link_hash_defined
2442 && h->root.type != bfd_link_hash_defweak)
2443 {
2444 h->ref_regular = 1;
2445 h->ref_regular_nonweak = 1;
2446 }
2447 else
2448 {
2449 if (h->root.u.def.section->owner != NULL
2450 && (bfd_get_flavour (h->root.u.def.section->owner)
2451 == bfd_target_elf_flavour))
2452 {
2453 h->ref_regular = 1;
2454 h->ref_regular_nonweak = 1;
2455 }
2456 else
2457 h->def_regular = 1;
2458 }
2459
2460 if (h->dynindx == -1
2461 && (h->def_dynamic
2462 || h->ref_dynamic))
2463 {
2464 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2465 {
2466 eif->failed = TRUE;
2467 return FALSE;
2468 }
2469 }
2470 }
2471 else
2472 {
2473 /* Unfortunately, NON_ELF is only correct if the symbol
2474 was first seen in a non-ELF file. Fortunately, if the symbol
2475 was first seen in an ELF file, we're probably OK unless the
2476 symbol was defined in a non-ELF file. Catch that case here.
2477 FIXME: We're still in trouble if the symbol was first seen in
2478 a dynamic object, and then later in a non-ELF regular object. */
2479 if ((h->root.type == bfd_link_hash_defined
2480 || h->root.type == bfd_link_hash_defweak)
2481 && !h->def_regular
2482 && (h->root.u.def.section->owner != NULL
2483 ? (bfd_get_flavour (h->root.u.def.section->owner)
2484 != bfd_target_elf_flavour)
2485 : (bfd_is_abs_section (h->root.u.def.section)
2486 && !h->def_dynamic)))
2487 h->def_regular = 1;
2488 }
2489
2490 /* Backend specific symbol fixup. */
2491 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2492 if (bed->elf_backend_fixup_symbol
2493 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2494 return FALSE;
2495
2496 /* If this is a final link, and the symbol was defined as a common
2497 symbol in a regular object file, and there was no definition in
2498 any dynamic object, then the linker will have allocated space for
2499 the symbol in a common section but the DEF_REGULAR
2500 flag will not have been set. */
2501 if (h->root.type == bfd_link_hash_defined
2502 && !h->def_regular
2503 && h->ref_regular
2504 && !h->def_dynamic
2505 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2506 h->def_regular = 1;
2507
2508 /* If -Bsymbolic was used (which means to bind references to global
2509 symbols to the definition within the shared object), and this
2510 symbol was defined in a regular object, then it actually doesn't
2511 need a PLT entry. Likewise, if the symbol has non-default
2512 visibility. If the symbol has hidden or internal visibility, we
2513 will force it local. */
2514 if (h->needs_plt
2515 && eif->info->shared
2516 && is_elf_hash_table (eif->info->hash)
2517 && (SYMBOLIC_BIND (eif->info, h)
2518 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2519 && h->def_regular)
2520 {
2521 bfd_boolean force_local;
2522
2523 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2524 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2525 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2526 }
2527
2528 /* If a weak undefined symbol has non-default visibility, we also
2529 hide it from the dynamic linker. */
2530 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2531 && h->root.type == bfd_link_hash_undefweak)
2532 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2533
2534 /* If this is a weak defined symbol in a dynamic object, and we know
2535 the real definition in the dynamic object, copy interesting flags
2536 over to the real definition. */
2537 if (h->u.weakdef != NULL)
2538 {
2539 struct elf_link_hash_entry *weakdef;
2540
2541 weakdef = h->u.weakdef;
2542 if (h->root.type == bfd_link_hash_indirect)
2543 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2544
2545 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2546 || h->root.type == bfd_link_hash_defweak);
2547 BFD_ASSERT (weakdef->def_dynamic);
2548
2549 /* If the real definition is defined by a regular object file,
2550 don't do anything special. See the longer description in
2551 _bfd_elf_adjust_dynamic_symbol, below. */
2552 if (weakdef->def_regular)
2553 h->u.weakdef = NULL;
2554 else
2555 {
2556 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2557 || weakdef->root.type == bfd_link_hash_defweak);
2558 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2559 }
2560 }
2561
2562 return TRUE;
2563 }
2564
2565 /* Make the backend pick a good value for a dynamic symbol. This is
2566 called via elf_link_hash_traverse, and also calls itself
2567 recursively. */
2568
2569 static bfd_boolean
2570 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2571 {
2572 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2573 bfd *dynobj;
2574 const struct elf_backend_data *bed;
2575
2576 if (! is_elf_hash_table (eif->info->hash))
2577 return FALSE;
2578
2579 if (h->root.type == bfd_link_hash_warning)
2580 {
2581 h->got = elf_hash_table (eif->info)->init_got_offset;
2582 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2583
2584 /* When warning symbols are created, they **replace** the "real"
2585 entry in the hash table, thus we never get to see the real
2586 symbol in a hash traversal. So look at it now. */
2587 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2588 }
2589
2590 /* Ignore indirect symbols. These are added by the versioning code. */
2591 if (h->root.type == bfd_link_hash_indirect)
2592 return TRUE;
2593
2594 /* Fix the symbol flags. */
2595 if (! _bfd_elf_fix_symbol_flags (h, eif))
2596 return FALSE;
2597
2598 /* If this symbol does not require a PLT entry, and it is not
2599 defined by a dynamic object, or is not referenced by a regular
2600 object, ignore it. We do have to handle a weak defined symbol,
2601 even if no regular object refers to it, if we decided to add it
2602 to the dynamic symbol table. FIXME: Do we normally need to worry
2603 about symbols which are defined by one dynamic object and
2604 referenced by another one? */
2605 if (!h->needs_plt
2606 && h->type != STT_GNU_IFUNC
2607 && (h->def_regular
2608 || !h->def_dynamic
2609 || (!h->ref_regular
2610 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2611 {
2612 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2613 return TRUE;
2614 }
2615
2616 /* If we've already adjusted this symbol, don't do it again. This
2617 can happen via a recursive call. */
2618 if (h->dynamic_adjusted)
2619 return TRUE;
2620
2621 /* Don't look at this symbol again. Note that we must set this
2622 after checking the above conditions, because we may look at a
2623 symbol once, decide not to do anything, and then get called
2624 recursively later after REF_REGULAR is set below. */
2625 h->dynamic_adjusted = 1;
2626
2627 /* If this is a weak definition, and we know a real definition, and
2628 the real symbol is not itself defined by a regular object file,
2629 then get a good value for the real definition. We handle the
2630 real symbol first, for the convenience of the backend routine.
2631
2632 Note that there is a confusing case here. If the real definition
2633 is defined by a regular object file, we don't get the real symbol
2634 from the dynamic object, but we do get the weak symbol. If the
2635 processor backend uses a COPY reloc, then if some routine in the
2636 dynamic object changes the real symbol, we will not see that
2637 change in the corresponding weak symbol. This is the way other
2638 ELF linkers work as well, and seems to be a result of the shared
2639 library model.
2640
2641 I will clarify this issue. Most SVR4 shared libraries define the
2642 variable _timezone and define timezone as a weak synonym. The
2643 tzset call changes _timezone. If you write
2644 extern int timezone;
2645 int _timezone = 5;
2646 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2647 you might expect that, since timezone is a synonym for _timezone,
2648 the same number will print both times. However, if the processor
2649 backend uses a COPY reloc, then actually timezone will be copied
2650 into your process image, and, since you define _timezone
2651 yourself, _timezone will not. Thus timezone and _timezone will
2652 wind up at different memory locations. The tzset call will set
2653 _timezone, leaving timezone unchanged. */
2654
2655 if (h->u.weakdef != NULL)
2656 {
2657 /* If we get to this point, we know there is an implicit
2658 reference by a regular object file via the weak symbol H.
2659 FIXME: Is this really true? What if the traversal finds
2660 H->U.WEAKDEF before it finds H? */
2661 h->u.weakdef->ref_regular = 1;
2662
2663 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2664 return FALSE;
2665 }
2666
2667 /* If a symbol has no type and no size and does not require a PLT
2668 entry, then we are probably about to do the wrong thing here: we
2669 are probably going to create a COPY reloc for an empty object.
2670 This case can arise when a shared object is built with assembly
2671 code, and the assembly code fails to set the symbol type. */
2672 if (h->size == 0
2673 && h->type == STT_NOTYPE
2674 && !h->needs_plt)
2675 (*_bfd_error_handler)
2676 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2677 h->root.root.string);
2678
2679 dynobj = elf_hash_table (eif->info)->dynobj;
2680 bed = get_elf_backend_data (dynobj);
2681
2682 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2683 {
2684 eif->failed = TRUE;
2685 return FALSE;
2686 }
2687
2688 return TRUE;
2689 }
2690
2691 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2692 DYNBSS. */
2693
2694 bfd_boolean
2695 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2696 asection *dynbss)
2697 {
2698 unsigned int power_of_two;
2699 bfd_vma mask;
2700 asection *sec = h->root.u.def.section;
2701
2702 /* The section aligment of definition is the maximum alignment
2703 requirement of symbols defined in the section. Since we don't
2704 know the symbol alignment requirement, we start with the
2705 maximum alignment and check low bits of the symbol address
2706 for the minimum alignment. */
2707 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2708 mask = ((bfd_vma) 1 << power_of_two) - 1;
2709 while ((h->root.u.def.value & mask) != 0)
2710 {
2711 mask >>= 1;
2712 --power_of_two;
2713 }
2714
2715 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2716 dynbss))
2717 {
2718 /* Adjust the section alignment if needed. */
2719 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2720 power_of_two))
2721 return FALSE;
2722 }
2723
2724 /* We make sure that the symbol will be aligned properly. */
2725 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2726
2727 /* Define the symbol as being at this point in DYNBSS. */
2728 h->root.u.def.section = dynbss;
2729 h->root.u.def.value = dynbss->size;
2730
2731 /* Increment the size of DYNBSS to make room for the symbol. */
2732 dynbss->size += h->size;
2733
2734 return TRUE;
2735 }
2736
2737 /* Adjust all external symbols pointing into SEC_MERGE sections
2738 to reflect the object merging within the sections. */
2739
2740 static bfd_boolean
2741 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2742 {
2743 asection *sec;
2744
2745 if (h->root.type == bfd_link_hash_warning)
2746 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2747
2748 if ((h->root.type == bfd_link_hash_defined
2749 || h->root.type == bfd_link_hash_defweak)
2750 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2751 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2752 {
2753 bfd *output_bfd = (bfd *) data;
2754
2755 h->root.u.def.value =
2756 _bfd_merged_section_offset (output_bfd,
2757 &h->root.u.def.section,
2758 elf_section_data (sec)->sec_info,
2759 h->root.u.def.value);
2760 }
2761
2762 return TRUE;
2763 }
2764
2765 /* Returns false if the symbol referred to by H should be considered
2766 to resolve local to the current module, and true if it should be
2767 considered to bind dynamically. */
2768
2769 bfd_boolean
2770 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2771 struct bfd_link_info *info,
2772 bfd_boolean ignore_protected)
2773 {
2774 bfd_boolean binding_stays_local_p;
2775 const struct elf_backend_data *bed;
2776 struct elf_link_hash_table *hash_table;
2777
2778 if (h == NULL)
2779 return FALSE;
2780
2781 while (h->root.type == bfd_link_hash_indirect
2782 || h->root.type == bfd_link_hash_warning)
2783 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2784
2785 /* If it was forced local, then clearly it's not dynamic. */
2786 if (h->dynindx == -1)
2787 return FALSE;
2788 if (h->forced_local)
2789 return FALSE;
2790
2791 /* Identify the cases where name binding rules say that a
2792 visible symbol resolves locally. */
2793 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2794
2795 switch (ELF_ST_VISIBILITY (h->other))
2796 {
2797 case STV_INTERNAL:
2798 case STV_HIDDEN:
2799 return FALSE;
2800
2801 case STV_PROTECTED:
2802 hash_table = elf_hash_table (info);
2803 if (!is_elf_hash_table (hash_table))
2804 return FALSE;
2805
2806 bed = get_elf_backend_data (hash_table->dynobj);
2807
2808 /* Proper resolution for function pointer equality may require
2809 that these symbols perhaps be resolved dynamically, even though
2810 we should be resolving them to the current module. */
2811 if (!ignore_protected || !bed->is_function_type (h->type))
2812 binding_stays_local_p = TRUE;
2813 break;
2814
2815 default:
2816 break;
2817 }
2818
2819 /* If it isn't defined locally, then clearly it's dynamic. */
2820 if (!h->def_regular)
2821 return TRUE;
2822
2823 /* Otherwise, the symbol is dynamic if binding rules don't tell
2824 us that it remains local. */
2825 return !binding_stays_local_p;
2826 }
2827
2828 /* Return true if the symbol referred to by H should be considered
2829 to resolve local to the current module, and false otherwise. Differs
2830 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2831 undefined symbols and weak symbols. */
2832
2833 bfd_boolean
2834 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2835 struct bfd_link_info *info,
2836 bfd_boolean local_protected)
2837 {
2838 const struct elf_backend_data *bed;
2839 struct elf_link_hash_table *hash_table;
2840
2841 /* If it's a local sym, of course we resolve locally. */
2842 if (h == NULL)
2843 return TRUE;
2844
2845 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2846 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2847 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2848 return TRUE;
2849
2850 /* Common symbols that become definitions don't get the DEF_REGULAR
2851 flag set, so test it first, and don't bail out. */
2852 if (ELF_COMMON_DEF_P (h))
2853 /* Do nothing. */;
2854 /* If we don't have a definition in a regular file, then we can't
2855 resolve locally. The sym is either undefined or dynamic. */
2856 else if (!h->def_regular)
2857 return FALSE;
2858
2859 /* Forced local symbols resolve locally. */
2860 if (h->forced_local)
2861 return TRUE;
2862
2863 /* As do non-dynamic symbols. */
2864 if (h->dynindx == -1)
2865 return TRUE;
2866
2867 /* At this point, we know the symbol is defined and dynamic. In an
2868 executable it must resolve locally, likewise when building symbolic
2869 shared libraries. */
2870 if (info->executable || SYMBOLIC_BIND (info, h))
2871 return TRUE;
2872
2873 /* Now deal with defined dynamic symbols in shared libraries. Ones
2874 with default visibility might not resolve locally. */
2875 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2876 return FALSE;
2877
2878 hash_table = elf_hash_table (info);
2879 if (!is_elf_hash_table (hash_table))
2880 return TRUE;
2881
2882 bed = get_elf_backend_data (hash_table->dynobj);
2883
2884 /* STV_PROTECTED non-function symbols are local. */
2885 if (!bed->is_function_type (h->type))
2886 return TRUE;
2887
2888 /* Function pointer equality tests may require that STV_PROTECTED
2889 symbols be treated as dynamic symbols, even when we know that the
2890 dynamic linker will resolve them locally. */
2891 return local_protected;
2892 }
2893
2894 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2895 aligned. Returns the first TLS output section. */
2896
2897 struct bfd_section *
2898 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2899 {
2900 struct bfd_section *sec, *tls;
2901 unsigned int align = 0;
2902
2903 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2904 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2905 break;
2906 tls = sec;
2907
2908 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2909 if (sec->alignment_power > align)
2910 align = sec->alignment_power;
2911
2912 elf_hash_table (info)->tls_sec = tls;
2913
2914 /* Ensure the alignment of the first section is the largest alignment,
2915 so that the tls segment starts aligned. */
2916 if (tls != NULL)
2917 tls->alignment_power = align;
2918
2919 return tls;
2920 }
2921
2922 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2923 static bfd_boolean
2924 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2925 Elf_Internal_Sym *sym)
2926 {
2927 const struct elf_backend_data *bed;
2928
2929 /* Local symbols do not count, but target specific ones might. */
2930 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2931 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2932 return FALSE;
2933
2934 bed = get_elf_backend_data (abfd);
2935 /* Function symbols do not count. */
2936 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2937 return FALSE;
2938
2939 /* If the section is undefined, then so is the symbol. */
2940 if (sym->st_shndx == SHN_UNDEF)
2941 return FALSE;
2942
2943 /* If the symbol is defined in the common section, then
2944 it is a common definition and so does not count. */
2945 if (bed->common_definition (sym))
2946 return FALSE;
2947
2948 /* If the symbol is in a target specific section then we
2949 must rely upon the backend to tell us what it is. */
2950 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2951 /* FIXME - this function is not coded yet:
2952
2953 return _bfd_is_global_symbol_definition (abfd, sym);
2954
2955 Instead for now assume that the definition is not global,
2956 Even if this is wrong, at least the linker will behave
2957 in the same way that it used to do. */
2958 return FALSE;
2959
2960 return TRUE;
2961 }
2962
2963 /* Search the symbol table of the archive element of the archive ABFD
2964 whose archive map contains a mention of SYMDEF, and determine if
2965 the symbol is defined in this element. */
2966 static bfd_boolean
2967 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2968 {
2969 Elf_Internal_Shdr * hdr;
2970 bfd_size_type symcount;
2971 bfd_size_type extsymcount;
2972 bfd_size_type extsymoff;
2973 Elf_Internal_Sym *isymbuf;
2974 Elf_Internal_Sym *isym;
2975 Elf_Internal_Sym *isymend;
2976 bfd_boolean result;
2977
2978 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2979 if (abfd == NULL)
2980 return FALSE;
2981
2982 if (! bfd_check_format (abfd, bfd_object))
2983 return FALSE;
2984
2985 /* If we have already included the element containing this symbol in the
2986 link then we do not need to include it again. Just claim that any symbol
2987 it contains is not a definition, so that our caller will not decide to
2988 (re)include this element. */
2989 if (abfd->archive_pass)
2990 return FALSE;
2991
2992 /* Select the appropriate symbol table. */
2993 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2994 hdr = &elf_tdata (abfd)->symtab_hdr;
2995 else
2996 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2997
2998 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2999
3000 /* The sh_info field of the symtab header tells us where the
3001 external symbols start. We don't care about the local symbols. */
3002 if (elf_bad_symtab (abfd))
3003 {
3004 extsymcount = symcount;
3005 extsymoff = 0;
3006 }
3007 else
3008 {
3009 extsymcount = symcount - hdr->sh_info;
3010 extsymoff = hdr->sh_info;
3011 }
3012
3013 if (extsymcount == 0)
3014 return FALSE;
3015
3016 /* Read in the symbol table. */
3017 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3018 NULL, NULL, NULL);
3019 if (isymbuf == NULL)
3020 return FALSE;
3021
3022 /* Scan the symbol table looking for SYMDEF. */
3023 result = FALSE;
3024 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3025 {
3026 const char *name;
3027
3028 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3029 isym->st_name);
3030 if (name == NULL)
3031 break;
3032
3033 if (strcmp (name, symdef->name) == 0)
3034 {
3035 result = is_global_data_symbol_definition (abfd, isym);
3036 break;
3037 }
3038 }
3039
3040 free (isymbuf);
3041
3042 return result;
3043 }
3044 \f
3045 /* Add an entry to the .dynamic table. */
3046
3047 bfd_boolean
3048 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3049 bfd_vma tag,
3050 bfd_vma val)
3051 {
3052 struct elf_link_hash_table *hash_table;
3053 const struct elf_backend_data *bed;
3054 asection *s;
3055 bfd_size_type newsize;
3056 bfd_byte *newcontents;
3057 Elf_Internal_Dyn dyn;
3058
3059 hash_table = elf_hash_table (info);
3060 if (! is_elf_hash_table (hash_table))
3061 return FALSE;
3062
3063 bed = get_elf_backend_data (hash_table->dynobj);
3064 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3065 BFD_ASSERT (s != NULL);
3066
3067 newsize = s->size + bed->s->sizeof_dyn;
3068 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3069 if (newcontents == NULL)
3070 return FALSE;
3071
3072 dyn.d_tag = tag;
3073 dyn.d_un.d_val = val;
3074 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3075
3076 s->size = newsize;
3077 s->contents = newcontents;
3078
3079 return TRUE;
3080 }
3081
3082 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3083 otherwise just check whether one already exists. Returns -1 on error,
3084 1 if a DT_NEEDED tag already exists, and 0 on success. */
3085
3086 static int
3087 elf_add_dt_needed_tag (bfd *abfd,
3088 struct bfd_link_info *info,
3089 const char *soname,
3090 bfd_boolean do_it)
3091 {
3092 struct elf_link_hash_table *hash_table;
3093 bfd_size_type oldsize;
3094 bfd_size_type strindex;
3095
3096 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3097 return -1;
3098
3099 hash_table = elf_hash_table (info);
3100 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3101 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3102 if (strindex == (bfd_size_type) -1)
3103 return -1;
3104
3105 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3106 {
3107 asection *sdyn;
3108 const struct elf_backend_data *bed;
3109 bfd_byte *extdyn;
3110
3111 bed = get_elf_backend_data (hash_table->dynobj);
3112 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3113 if (sdyn != NULL)
3114 for (extdyn = sdyn->contents;
3115 extdyn < sdyn->contents + sdyn->size;
3116 extdyn += bed->s->sizeof_dyn)
3117 {
3118 Elf_Internal_Dyn dyn;
3119
3120 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3121 if (dyn.d_tag == DT_NEEDED
3122 && dyn.d_un.d_val == strindex)
3123 {
3124 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3125 return 1;
3126 }
3127 }
3128 }
3129
3130 if (do_it)
3131 {
3132 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3133 return -1;
3134
3135 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3136 return -1;
3137 }
3138 else
3139 /* We were just checking for existence of the tag. */
3140 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3141
3142 return 0;
3143 }
3144
3145 static bfd_boolean
3146 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3147 {
3148 for (; needed != NULL; needed = needed->next)
3149 if (strcmp (soname, needed->name) == 0)
3150 return TRUE;
3151
3152 return FALSE;
3153 }
3154
3155 /* Sort symbol by value and section. */
3156 static int
3157 elf_sort_symbol (const void *arg1, const void *arg2)
3158 {
3159 const struct elf_link_hash_entry *h1;
3160 const struct elf_link_hash_entry *h2;
3161 bfd_signed_vma vdiff;
3162
3163 h1 = *(const struct elf_link_hash_entry **) arg1;
3164 h2 = *(const struct elf_link_hash_entry **) arg2;
3165 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3166 if (vdiff != 0)
3167 return vdiff > 0 ? 1 : -1;
3168 else
3169 {
3170 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3171 if (sdiff != 0)
3172 return sdiff > 0 ? 1 : -1;
3173 }
3174 return 0;
3175 }
3176
3177 /* This function is used to adjust offsets into .dynstr for
3178 dynamic symbols. This is called via elf_link_hash_traverse. */
3179
3180 static bfd_boolean
3181 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3182 {
3183 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3184
3185 if (h->root.type == bfd_link_hash_warning)
3186 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3187
3188 if (h->dynindx != -1)
3189 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3190 return TRUE;
3191 }
3192
3193 /* Assign string offsets in .dynstr, update all structures referencing
3194 them. */
3195
3196 static bfd_boolean
3197 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3198 {
3199 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3200 struct elf_link_local_dynamic_entry *entry;
3201 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3202 bfd *dynobj = hash_table->dynobj;
3203 asection *sdyn;
3204 bfd_size_type size;
3205 const struct elf_backend_data *bed;
3206 bfd_byte *extdyn;
3207
3208 _bfd_elf_strtab_finalize (dynstr);
3209 size = _bfd_elf_strtab_size (dynstr);
3210
3211 bed = get_elf_backend_data (dynobj);
3212 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3213 BFD_ASSERT (sdyn != NULL);
3214
3215 /* Update all .dynamic entries referencing .dynstr strings. */
3216 for (extdyn = sdyn->contents;
3217 extdyn < sdyn->contents + sdyn->size;
3218 extdyn += bed->s->sizeof_dyn)
3219 {
3220 Elf_Internal_Dyn dyn;
3221
3222 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3223 switch (dyn.d_tag)
3224 {
3225 case DT_STRSZ:
3226 dyn.d_un.d_val = size;
3227 break;
3228 case DT_NEEDED:
3229 case DT_SONAME:
3230 case DT_RPATH:
3231 case DT_RUNPATH:
3232 case DT_FILTER:
3233 case DT_AUXILIARY:
3234 case DT_AUDIT:
3235 case DT_DEPAUDIT:
3236 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3237 break;
3238 default:
3239 continue;
3240 }
3241 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3242 }
3243
3244 /* Now update local dynamic symbols. */
3245 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3246 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3247 entry->isym.st_name);
3248
3249 /* And the rest of dynamic symbols. */
3250 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3251
3252 /* Adjust version definitions. */
3253 if (elf_tdata (output_bfd)->cverdefs)
3254 {
3255 asection *s;
3256 bfd_byte *p;
3257 bfd_size_type i;
3258 Elf_Internal_Verdef def;
3259 Elf_Internal_Verdaux defaux;
3260
3261 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3262 p = s->contents;
3263 do
3264 {
3265 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3266 &def);
3267 p += sizeof (Elf_External_Verdef);
3268 if (def.vd_aux != sizeof (Elf_External_Verdef))
3269 continue;
3270 for (i = 0; i < def.vd_cnt; ++i)
3271 {
3272 _bfd_elf_swap_verdaux_in (output_bfd,
3273 (Elf_External_Verdaux *) p, &defaux);
3274 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3275 defaux.vda_name);
3276 _bfd_elf_swap_verdaux_out (output_bfd,
3277 &defaux, (Elf_External_Verdaux *) p);
3278 p += sizeof (Elf_External_Verdaux);
3279 }
3280 }
3281 while (def.vd_next);
3282 }
3283
3284 /* Adjust version references. */
3285 if (elf_tdata (output_bfd)->verref)
3286 {
3287 asection *s;
3288 bfd_byte *p;
3289 bfd_size_type i;
3290 Elf_Internal_Verneed need;
3291 Elf_Internal_Vernaux needaux;
3292
3293 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3294 p = s->contents;
3295 do
3296 {
3297 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3298 &need);
3299 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3300 _bfd_elf_swap_verneed_out (output_bfd, &need,
3301 (Elf_External_Verneed *) p);
3302 p += sizeof (Elf_External_Verneed);
3303 for (i = 0; i < need.vn_cnt; ++i)
3304 {
3305 _bfd_elf_swap_vernaux_in (output_bfd,
3306 (Elf_External_Vernaux *) p, &needaux);
3307 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3308 needaux.vna_name);
3309 _bfd_elf_swap_vernaux_out (output_bfd,
3310 &needaux,
3311 (Elf_External_Vernaux *) p);
3312 p += sizeof (Elf_External_Vernaux);
3313 }
3314 }
3315 while (need.vn_next);
3316 }
3317
3318 return TRUE;
3319 }
3320 \f
3321 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3322 The default is to only match when the INPUT and OUTPUT are exactly
3323 the same target. */
3324
3325 bfd_boolean
3326 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3327 const bfd_target *output)
3328 {
3329 return input == output;
3330 }
3331
3332 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3333 This version is used when different targets for the same architecture
3334 are virtually identical. */
3335
3336 bfd_boolean
3337 _bfd_elf_relocs_compatible (const bfd_target *input,
3338 const bfd_target *output)
3339 {
3340 const struct elf_backend_data *obed, *ibed;
3341
3342 if (input == output)
3343 return TRUE;
3344
3345 ibed = xvec_get_elf_backend_data (input);
3346 obed = xvec_get_elf_backend_data (output);
3347
3348 if (ibed->arch != obed->arch)
3349 return FALSE;
3350
3351 /* If both backends are using this function, deem them compatible. */
3352 return ibed->relocs_compatible == obed->relocs_compatible;
3353 }
3354
3355 /* Add symbols from an ELF object file to the linker hash table. */
3356
3357 static bfd_boolean
3358 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3359 {
3360 Elf_Internal_Ehdr *ehdr;
3361 Elf_Internal_Shdr *hdr;
3362 bfd_size_type symcount;
3363 bfd_size_type extsymcount;
3364 bfd_size_type extsymoff;
3365 struct elf_link_hash_entry **sym_hash;
3366 bfd_boolean dynamic;
3367 Elf_External_Versym *extversym = NULL;
3368 Elf_External_Versym *ever;
3369 struct elf_link_hash_entry *weaks;
3370 struct elf_link_hash_entry **nondeflt_vers = NULL;
3371 bfd_size_type nondeflt_vers_cnt = 0;
3372 Elf_Internal_Sym *isymbuf = NULL;
3373 Elf_Internal_Sym *isym;
3374 Elf_Internal_Sym *isymend;
3375 const struct elf_backend_data *bed;
3376 bfd_boolean add_needed;
3377 struct elf_link_hash_table *htab;
3378 bfd_size_type amt;
3379 void *alloc_mark = NULL;
3380 struct bfd_hash_entry **old_table = NULL;
3381 unsigned int old_size = 0;
3382 unsigned int old_count = 0;
3383 void *old_tab = NULL;
3384 void *old_hash;
3385 void *old_ent;
3386 struct bfd_link_hash_entry *old_undefs = NULL;
3387 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3388 long old_dynsymcount = 0;
3389 size_t tabsize = 0;
3390 size_t hashsize = 0;
3391
3392 htab = elf_hash_table (info);
3393 bed = get_elf_backend_data (abfd);
3394
3395 if ((abfd->flags & DYNAMIC) == 0)
3396 dynamic = FALSE;
3397 else
3398 {
3399 dynamic = TRUE;
3400
3401 /* You can't use -r against a dynamic object. Also, there's no
3402 hope of using a dynamic object which does not exactly match
3403 the format of the output file. */
3404 if (info->relocatable
3405 || !is_elf_hash_table (htab)
3406 || info->output_bfd->xvec != abfd->xvec)
3407 {
3408 if (info->relocatable)
3409 bfd_set_error (bfd_error_invalid_operation);
3410 else
3411 bfd_set_error (bfd_error_wrong_format);
3412 goto error_return;
3413 }
3414 }
3415
3416 ehdr = elf_elfheader (abfd);
3417 if (info->warn_alternate_em
3418 && bed->elf_machine_code != ehdr->e_machine
3419 && ((bed->elf_machine_alt1 != 0
3420 && ehdr->e_machine == bed->elf_machine_alt1)
3421 || (bed->elf_machine_alt2 != 0
3422 && ehdr->e_machine == bed->elf_machine_alt2)))
3423 info->callbacks->einfo
3424 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3425 ehdr->e_machine, abfd, bed->elf_machine_code);
3426
3427 /* As a GNU extension, any input sections which are named
3428 .gnu.warning.SYMBOL are treated as warning symbols for the given
3429 symbol. This differs from .gnu.warning sections, which generate
3430 warnings when they are included in an output file. */
3431 if (info->executable)
3432 {
3433 asection *s;
3434
3435 for (s = abfd->sections; s != NULL; s = s->next)
3436 {
3437 const char *name;
3438
3439 name = bfd_get_section_name (abfd, s);
3440 if (CONST_STRNEQ (name, ".gnu.warning."))
3441 {
3442 char *msg;
3443 bfd_size_type sz;
3444
3445 name += sizeof ".gnu.warning." - 1;
3446
3447 /* If this is a shared object, then look up the symbol
3448 in the hash table. If it is there, and it is already
3449 been defined, then we will not be using the entry
3450 from this shared object, so we don't need to warn.
3451 FIXME: If we see the definition in a regular object
3452 later on, we will warn, but we shouldn't. The only
3453 fix is to keep track of what warnings we are supposed
3454 to emit, and then handle them all at the end of the
3455 link. */
3456 if (dynamic)
3457 {
3458 struct elf_link_hash_entry *h;
3459
3460 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3461
3462 /* FIXME: What about bfd_link_hash_common? */
3463 if (h != NULL
3464 && (h->root.type == bfd_link_hash_defined
3465 || h->root.type == bfd_link_hash_defweak))
3466 {
3467 /* We don't want to issue this warning. Clobber
3468 the section size so that the warning does not
3469 get copied into the output file. */
3470 s->size = 0;
3471 continue;
3472 }
3473 }
3474
3475 sz = s->size;
3476 msg = (char *) bfd_alloc (abfd, sz + 1);
3477 if (msg == NULL)
3478 goto error_return;
3479
3480 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3481 goto error_return;
3482
3483 msg[sz] = '\0';
3484
3485 if (! (_bfd_generic_link_add_one_symbol
3486 (info, abfd, name, BSF_WARNING, s, 0, msg,
3487 FALSE, bed->collect, NULL)))
3488 goto error_return;
3489
3490 if (! info->relocatable)
3491 {
3492 /* Clobber the section size so that the warning does
3493 not get copied into the output file. */
3494 s->size = 0;
3495
3496 /* Also set SEC_EXCLUDE, so that symbols defined in
3497 the warning section don't get copied to the output. */
3498 s->flags |= SEC_EXCLUDE;
3499 }
3500 }
3501 }
3502 }
3503
3504 add_needed = TRUE;
3505 if (! dynamic)
3506 {
3507 /* If we are creating a shared library, create all the dynamic
3508 sections immediately. We need to attach them to something,
3509 so we attach them to this BFD, provided it is the right
3510 format. FIXME: If there are no input BFD's of the same
3511 format as the output, we can't make a shared library. */
3512 if (info->shared
3513 && is_elf_hash_table (htab)
3514 && info->output_bfd->xvec == abfd->xvec
3515 && !htab->dynamic_sections_created)
3516 {
3517 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3518 goto error_return;
3519 }
3520 }
3521 else if (!is_elf_hash_table (htab))
3522 goto error_return;
3523 else
3524 {
3525 asection *s;
3526 const char *soname = NULL;
3527 char *audit = NULL;
3528 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3529 int ret;
3530
3531 /* ld --just-symbols and dynamic objects don't mix very well.
3532 ld shouldn't allow it. */
3533 if ((s = abfd->sections) != NULL
3534 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3535 abort ();
3536
3537 /* If this dynamic lib was specified on the command line with
3538 --as-needed in effect, then we don't want to add a DT_NEEDED
3539 tag unless the lib is actually used. Similary for libs brought
3540 in by another lib's DT_NEEDED. When --no-add-needed is used
3541 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3542 any dynamic library in DT_NEEDED tags in the dynamic lib at
3543 all. */
3544 add_needed = (elf_dyn_lib_class (abfd)
3545 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3546 | DYN_NO_NEEDED)) == 0;
3547
3548 s = bfd_get_section_by_name (abfd, ".dynamic");
3549 if (s != NULL)
3550 {
3551 bfd_byte *dynbuf;
3552 bfd_byte *extdyn;
3553 unsigned int elfsec;
3554 unsigned long shlink;
3555
3556 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3557 {
3558 error_free_dyn:
3559 free (dynbuf);
3560 goto error_return;
3561 }
3562
3563 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3564 if (elfsec == SHN_BAD)
3565 goto error_free_dyn;
3566 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3567
3568 for (extdyn = dynbuf;
3569 extdyn < dynbuf + s->size;
3570 extdyn += bed->s->sizeof_dyn)
3571 {
3572 Elf_Internal_Dyn dyn;
3573
3574 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3575 if (dyn.d_tag == DT_SONAME)
3576 {
3577 unsigned int tagv = dyn.d_un.d_val;
3578 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3579 if (soname == NULL)
3580 goto error_free_dyn;
3581 }
3582 if (dyn.d_tag == DT_NEEDED)
3583 {
3584 struct bfd_link_needed_list *n, **pn;
3585 char *fnm, *anm;
3586 unsigned int tagv = dyn.d_un.d_val;
3587
3588 amt = sizeof (struct bfd_link_needed_list);
3589 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3590 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3591 if (n == NULL || fnm == NULL)
3592 goto error_free_dyn;
3593 amt = strlen (fnm) + 1;
3594 anm = (char *) bfd_alloc (abfd, amt);
3595 if (anm == NULL)
3596 goto error_free_dyn;
3597 memcpy (anm, fnm, amt);
3598 n->name = anm;
3599 n->by = abfd;
3600 n->next = NULL;
3601 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3602 ;
3603 *pn = n;
3604 }
3605 if (dyn.d_tag == DT_RUNPATH)
3606 {
3607 struct bfd_link_needed_list *n, **pn;
3608 char *fnm, *anm;
3609 unsigned int tagv = dyn.d_un.d_val;
3610
3611 amt = sizeof (struct bfd_link_needed_list);
3612 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3613 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3614 if (n == NULL || fnm == NULL)
3615 goto error_free_dyn;
3616 amt = strlen (fnm) + 1;
3617 anm = (char *) bfd_alloc (abfd, amt);
3618 if (anm == NULL)
3619 goto error_free_dyn;
3620 memcpy (anm, fnm, amt);
3621 n->name = anm;
3622 n->by = abfd;
3623 n->next = NULL;
3624 for (pn = & runpath;
3625 *pn != NULL;
3626 pn = &(*pn)->next)
3627 ;
3628 *pn = n;
3629 }
3630 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3631 if (!runpath && dyn.d_tag == DT_RPATH)
3632 {
3633 struct bfd_link_needed_list *n, **pn;
3634 char *fnm, *anm;
3635 unsigned int tagv = dyn.d_un.d_val;
3636
3637 amt = sizeof (struct bfd_link_needed_list);
3638 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3639 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3640 if (n == NULL || fnm == NULL)
3641 goto error_free_dyn;
3642 amt = strlen (fnm) + 1;
3643 anm = (char *) bfd_alloc (abfd, amt);
3644 if (anm == NULL)
3645 goto error_free_dyn;
3646 memcpy (anm, fnm, amt);
3647 n->name = anm;
3648 n->by = abfd;
3649 n->next = NULL;
3650 for (pn = & rpath;
3651 *pn != NULL;
3652 pn = &(*pn)->next)
3653 ;
3654 *pn = n;
3655 }
3656 if (dyn.d_tag == DT_AUDIT)
3657 {
3658 unsigned int tagv = dyn.d_un.d_val;
3659 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3660 }
3661 }
3662
3663 free (dynbuf);
3664 }
3665
3666 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3667 frees all more recently bfd_alloc'd blocks as well. */
3668 if (runpath)
3669 rpath = runpath;
3670
3671 if (rpath)
3672 {
3673 struct bfd_link_needed_list **pn;
3674 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3675 ;
3676 *pn = rpath;
3677 }
3678
3679 /* We do not want to include any of the sections in a dynamic
3680 object in the output file. We hack by simply clobbering the
3681 list of sections in the BFD. This could be handled more
3682 cleanly by, say, a new section flag; the existing
3683 SEC_NEVER_LOAD flag is not the one we want, because that one
3684 still implies that the section takes up space in the output
3685 file. */
3686 bfd_section_list_clear (abfd);
3687
3688 /* Find the name to use in a DT_NEEDED entry that refers to this
3689 object. If the object has a DT_SONAME entry, we use it.
3690 Otherwise, if the generic linker stuck something in
3691 elf_dt_name, we use that. Otherwise, we just use the file
3692 name. */
3693 if (soname == NULL || *soname == '\0')
3694 {
3695 soname = elf_dt_name (abfd);
3696 if (soname == NULL || *soname == '\0')
3697 soname = bfd_get_filename (abfd);
3698 }
3699
3700 /* Save the SONAME because sometimes the linker emulation code
3701 will need to know it. */
3702 elf_dt_name (abfd) = soname;
3703
3704 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3705 if (ret < 0)
3706 goto error_return;
3707
3708 /* If we have already included this dynamic object in the
3709 link, just ignore it. There is no reason to include a
3710 particular dynamic object more than once. */
3711 if (ret > 0)
3712 return TRUE;
3713
3714 /* Save the DT_AUDIT entry for the linker emulation code. */
3715 elf_dt_audit (abfd) = audit;
3716 }
3717
3718 /* If this is a dynamic object, we always link against the .dynsym
3719 symbol table, not the .symtab symbol table. The dynamic linker
3720 will only see the .dynsym symbol table, so there is no reason to
3721 look at .symtab for a dynamic object. */
3722
3723 if (! dynamic || elf_dynsymtab (abfd) == 0)
3724 hdr = &elf_tdata (abfd)->symtab_hdr;
3725 else
3726 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3727
3728 symcount = hdr->sh_size / bed->s->sizeof_sym;
3729
3730 /* The sh_info field of the symtab header tells us where the
3731 external symbols start. We don't care about the local symbols at
3732 this point. */
3733 if (elf_bad_symtab (abfd))
3734 {
3735 extsymcount = symcount;
3736 extsymoff = 0;
3737 }
3738 else
3739 {
3740 extsymcount = symcount - hdr->sh_info;
3741 extsymoff = hdr->sh_info;
3742 }
3743
3744 sym_hash = NULL;
3745 if (extsymcount != 0)
3746 {
3747 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3748 NULL, NULL, NULL);
3749 if (isymbuf == NULL)
3750 goto error_return;
3751
3752 /* We store a pointer to the hash table entry for each external
3753 symbol. */
3754 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3755 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3756 if (sym_hash == NULL)
3757 goto error_free_sym;
3758 elf_sym_hashes (abfd) = sym_hash;
3759 }
3760
3761 if (dynamic)
3762 {
3763 /* Read in any version definitions. */
3764 if (!_bfd_elf_slurp_version_tables (abfd,
3765 info->default_imported_symver))
3766 goto error_free_sym;
3767
3768 /* Read in the symbol versions, but don't bother to convert them
3769 to internal format. */
3770 if (elf_dynversym (abfd) != 0)
3771 {
3772 Elf_Internal_Shdr *versymhdr;
3773
3774 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3775 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3776 if (extversym == NULL)
3777 goto error_free_sym;
3778 amt = versymhdr->sh_size;
3779 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3780 || bfd_bread (extversym, amt, abfd) != amt)
3781 goto error_free_vers;
3782 }
3783 }
3784
3785 /* If we are loading an as-needed shared lib, save the symbol table
3786 state before we start adding symbols. If the lib turns out
3787 to be unneeded, restore the state. */
3788 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3789 {
3790 unsigned int i;
3791 size_t entsize;
3792
3793 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3794 {
3795 struct bfd_hash_entry *p;
3796 struct elf_link_hash_entry *h;
3797
3798 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3799 {
3800 h = (struct elf_link_hash_entry *) p;
3801 entsize += htab->root.table.entsize;
3802 if (h->root.type == bfd_link_hash_warning)
3803 entsize += htab->root.table.entsize;
3804 }
3805 }
3806
3807 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3808 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3809 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3810 if (old_tab == NULL)
3811 goto error_free_vers;
3812
3813 /* Remember the current objalloc pointer, so that all mem for
3814 symbols added can later be reclaimed. */
3815 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3816 if (alloc_mark == NULL)
3817 goto error_free_vers;
3818
3819 /* Make a special call to the linker "notice" function to
3820 tell it that we are about to handle an as-needed lib. */
3821 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3822 notice_as_needed))
3823 goto error_free_vers;
3824
3825 /* Clone the symbol table and sym hashes. Remember some
3826 pointers into the symbol table, and dynamic symbol count. */
3827 old_hash = (char *) old_tab + tabsize;
3828 old_ent = (char *) old_hash + hashsize;
3829 memcpy (old_tab, htab->root.table.table, tabsize);
3830 memcpy (old_hash, sym_hash, hashsize);
3831 old_undefs = htab->root.undefs;
3832 old_undefs_tail = htab->root.undefs_tail;
3833 old_table = htab->root.table.table;
3834 old_size = htab->root.table.size;
3835 old_count = htab->root.table.count;
3836 old_dynsymcount = htab->dynsymcount;
3837
3838 for (i = 0; i < htab->root.table.size; i++)
3839 {
3840 struct bfd_hash_entry *p;
3841 struct elf_link_hash_entry *h;
3842
3843 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3844 {
3845 memcpy (old_ent, p, htab->root.table.entsize);
3846 old_ent = (char *) old_ent + htab->root.table.entsize;
3847 h = (struct elf_link_hash_entry *) p;
3848 if (h->root.type == bfd_link_hash_warning)
3849 {
3850 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3851 old_ent = (char *) old_ent + htab->root.table.entsize;
3852 }
3853 }
3854 }
3855 }
3856
3857 weaks = NULL;
3858 ever = extversym != NULL ? extversym + extsymoff : NULL;
3859 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3860 isym < isymend;
3861 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3862 {
3863 int bind;
3864 bfd_vma value;
3865 asection *sec, *new_sec;
3866 flagword flags;
3867 const char *name;
3868 struct elf_link_hash_entry *h;
3869 bfd_boolean definition;
3870 bfd_boolean size_change_ok;
3871 bfd_boolean type_change_ok;
3872 bfd_boolean new_weakdef;
3873 bfd_boolean override;
3874 bfd_boolean common;
3875 unsigned int old_alignment;
3876 bfd *old_bfd;
3877 bfd * undef_bfd = NULL;
3878
3879 override = FALSE;
3880
3881 flags = BSF_NO_FLAGS;
3882 sec = NULL;
3883 value = isym->st_value;
3884 *sym_hash = NULL;
3885 common = bed->common_definition (isym);
3886
3887 bind = ELF_ST_BIND (isym->st_info);
3888 switch (bind)
3889 {
3890 case STB_LOCAL:
3891 /* This should be impossible, since ELF requires that all
3892 global symbols follow all local symbols, and that sh_info
3893 point to the first global symbol. Unfortunately, Irix 5
3894 screws this up. */
3895 continue;
3896
3897 case STB_GLOBAL:
3898 if (isym->st_shndx != SHN_UNDEF && !common)
3899 flags = BSF_GLOBAL;
3900 break;
3901
3902 case STB_WEAK:
3903 flags = BSF_WEAK;
3904 break;
3905
3906 case STB_GNU_UNIQUE:
3907 flags = BSF_GNU_UNIQUE;
3908 break;
3909
3910 default:
3911 /* Leave it up to the processor backend. */
3912 break;
3913 }
3914
3915 if (isym->st_shndx == SHN_UNDEF)
3916 sec = bfd_und_section_ptr;
3917 else if (isym->st_shndx == SHN_ABS)
3918 sec = bfd_abs_section_ptr;
3919 else if (isym->st_shndx == SHN_COMMON)
3920 {
3921 sec = bfd_com_section_ptr;
3922 /* What ELF calls the size we call the value. What ELF
3923 calls the value we call the alignment. */
3924 value = isym->st_size;
3925 }
3926 else
3927 {
3928 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3929 if (sec == NULL)
3930 sec = bfd_abs_section_ptr;
3931 else if (sec->kept_section)
3932 {
3933 /* Symbols from discarded section are undefined. We keep
3934 its visibility. */
3935 sec = bfd_und_section_ptr;
3936 isym->st_shndx = SHN_UNDEF;
3937 }
3938 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3939 value -= sec->vma;
3940 }
3941
3942 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3943 isym->st_name);
3944 if (name == NULL)
3945 goto error_free_vers;
3946
3947 if (isym->st_shndx == SHN_COMMON
3948 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3949 && !info->relocatable)
3950 {
3951 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3952
3953 if (tcomm == NULL)
3954 {
3955 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3956 (SEC_ALLOC
3957 | SEC_IS_COMMON
3958 | SEC_LINKER_CREATED
3959 | SEC_THREAD_LOCAL));
3960 if (tcomm == NULL)
3961 goto error_free_vers;
3962 }
3963 sec = tcomm;
3964 }
3965 else if (bed->elf_add_symbol_hook)
3966 {
3967 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3968 &sec, &value))
3969 goto error_free_vers;
3970
3971 /* The hook function sets the name to NULL if this symbol
3972 should be skipped for some reason. */
3973 if (name == NULL)
3974 continue;
3975 }
3976
3977 /* Sanity check that all possibilities were handled. */
3978 if (sec == NULL)
3979 {
3980 bfd_set_error (bfd_error_bad_value);
3981 goto error_free_vers;
3982 }
3983
3984 if (bfd_is_und_section (sec)
3985 || bfd_is_com_section (sec))
3986 definition = FALSE;
3987 else
3988 definition = TRUE;
3989
3990 size_change_ok = FALSE;
3991 type_change_ok = bed->type_change_ok;
3992 old_alignment = 0;
3993 old_bfd = NULL;
3994 new_sec = sec;
3995
3996 if (is_elf_hash_table (htab))
3997 {
3998 Elf_Internal_Versym iver;
3999 unsigned int vernum = 0;
4000 bfd_boolean skip;
4001
4002 /* If this is a definition of a symbol which was previously
4003 referenced in a non-weak manner then make a note of the bfd
4004 that contained the reference. This is used if we need to
4005 refer to the source of the reference later on. */
4006 if (! bfd_is_und_section (sec))
4007 {
4008 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4009
4010 if (h != NULL
4011 && h->root.type == bfd_link_hash_undefined
4012 && h->root.u.undef.abfd)
4013 undef_bfd = h->root.u.undef.abfd;
4014 }
4015
4016 if (ever == NULL)
4017 {
4018 if (info->default_imported_symver)
4019 /* Use the default symbol version created earlier. */
4020 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4021 else
4022 iver.vs_vers = 0;
4023 }
4024 else
4025 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4026
4027 vernum = iver.vs_vers & VERSYM_VERSION;
4028
4029 /* If this is a hidden symbol, or if it is not version
4030 1, we append the version name to the symbol name.
4031 However, we do not modify a non-hidden absolute symbol
4032 if it is not a function, because it might be the version
4033 symbol itself. FIXME: What if it isn't? */
4034 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4035 || (vernum > 1
4036 && (!bfd_is_abs_section (sec)
4037 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4038 {
4039 const char *verstr;
4040 size_t namelen, verlen, newlen;
4041 char *newname, *p;
4042
4043 if (isym->st_shndx != SHN_UNDEF)
4044 {
4045 if (vernum > elf_tdata (abfd)->cverdefs)
4046 verstr = NULL;
4047 else if (vernum > 1)
4048 verstr =
4049 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4050 else
4051 verstr = "";
4052
4053 if (verstr == NULL)
4054 {
4055 (*_bfd_error_handler)
4056 (_("%B: %s: invalid version %u (max %d)"),
4057 abfd, name, vernum,
4058 elf_tdata (abfd)->cverdefs);
4059 bfd_set_error (bfd_error_bad_value);
4060 goto error_free_vers;
4061 }
4062 }
4063 else
4064 {
4065 /* We cannot simply test for the number of
4066 entries in the VERNEED section since the
4067 numbers for the needed versions do not start
4068 at 0. */
4069 Elf_Internal_Verneed *t;
4070
4071 verstr = NULL;
4072 for (t = elf_tdata (abfd)->verref;
4073 t != NULL;
4074 t = t->vn_nextref)
4075 {
4076 Elf_Internal_Vernaux *a;
4077
4078 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4079 {
4080 if (a->vna_other == vernum)
4081 {
4082 verstr = a->vna_nodename;
4083 break;
4084 }
4085 }
4086 if (a != NULL)
4087 break;
4088 }
4089 if (verstr == NULL)
4090 {
4091 (*_bfd_error_handler)
4092 (_("%B: %s: invalid needed version %d"),
4093 abfd, name, vernum);
4094 bfd_set_error (bfd_error_bad_value);
4095 goto error_free_vers;
4096 }
4097 }
4098
4099 namelen = strlen (name);
4100 verlen = strlen (verstr);
4101 newlen = namelen + verlen + 2;
4102 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4103 && isym->st_shndx != SHN_UNDEF)
4104 ++newlen;
4105
4106 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4107 if (newname == NULL)
4108 goto error_free_vers;
4109 memcpy (newname, name, namelen);
4110 p = newname + namelen;
4111 *p++ = ELF_VER_CHR;
4112 /* If this is a defined non-hidden version symbol,
4113 we add another @ to the name. This indicates the
4114 default version of the symbol. */
4115 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4116 && isym->st_shndx != SHN_UNDEF)
4117 *p++ = ELF_VER_CHR;
4118 memcpy (p, verstr, verlen + 1);
4119
4120 name = newname;
4121 }
4122
4123 /* If necessary, make a second attempt to locate the bfd
4124 containing an unresolved, non-weak reference to the
4125 current symbol. */
4126 if (! bfd_is_und_section (sec) && undef_bfd == NULL)
4127 {
4128 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4129
4130 if (h != NULL
4131 && h->root.type == bfd_link_hash_undefined
4132 && h->root.u.undef.abfd)
4133 undef_bfd = h->root.u.undef.abfd;
4134 }
4135
4136 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4137 &value, &old_alignment,
4138 sym_hash, &skip, &override,
4139 &type_change_ok, &size_change_ok))
4140 goto error_free_vers;
4141
4142 if (skip)
4143 continue;
4144
4145 if (override)
4146 definition = FALSE;
4147
4148 h = *sym_hash;
4149 while (h->root.type == bfd_link_hash_indirect
4150 || h->root.type == bfd_link_hash_warning)
4151 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4152
4153 /* Remember the old alignment if this is a common symbol, so
4154 that we don't reduce the alignment later on. We can't
4155 check later, because _bfd_generic_link_add_one_symbol
4156 will set a default for the alignment which we want to
4157 override. We also remember the old bfd where the existing
4158 definition comes from. */
4159 switch (h->root.type)
4160 {
4161 default:
4162 break;
4163
4164 case bfd_link_hash_defined:
4165 case bfd_link_hash_defweak:
4166 old_bfd = h->root.u.def.section->owner;
4167 break;
4168
4169 case bfd_link_hash_common:
4170 old_bfd = h->root.u.c.p->section->owner;
4171 old_alignment = h->root.u.c.p->alignment_power;
4172 break;
4173 }
4174
4175 if (elf_tdata (abfd)->verdef != NULL
4176 && ! override
4177 && vernum > 1
4178 && definition)
4179 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4180 }
4181
4182 if (! (_bfd_generic_link_add_one_symbol
4183 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4184 (struct bfd_link_hash_entry **) sym_hash)))
4185 goto error_free_vers;
4186
4187 h = *sym_hash;
4188 while (h->root.type == bfd_link_hash_indirect
4189 || h->root.type == bfd_link_hash_warning)
4190 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4191
4192 *sym_hash = h;
4193 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4194
4195 new_weakdef = FALSE;
4196 if (dynamic
4197 && definition
4198 && (flags & BSF_WEAK) != 0
4199 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4200 && is_elf_hash_table (htab)
4201 && h->u.weakdef == NULL)
4202 {
4203 /* Keep a list of all weak defined non function symbols from
4204 a dynamic object, using the weakdef field. Later in this
4205 function we will set the weakdef field to the correct
4206 value. We only put non-function symbols from dynamic
4207 objects on this list, because that happens to be the only
4208 time we need to know the normal symbol corresponding to a
4209 weak symbol, and the information is time consuming to
4210 figure out. If the weakdef field is not already NULL,
4211 then this symbol was already defined by some previous
4212 dynamic object, and we will be using that previous
4213 definition anyhow. */
4214
4215 h->u.weakdef = weaks;
4216 weaks = h;
4217 new_weakdef = TRUE;
4218 }
4219
4220 /* Set the alignment of a common symbol. */
4221 if ((common || bfd_is_com_section (sec))
4222 && h->root.type == bfd_link_hash_common)
4223 {
4224 unsigned int align;
4225
4226 if (common)
4227 align = bfd_log2 (isym->st_value);
4228 else
4229 {
4230 /* The new symbol is a common symbol in a shared object.
4231 We need to get the alignment from the section. */
4232 align = new_sec->alignment_power;
4233 }
4234 if (align > old_alignment
4235 /* Permit an alignment power of zero if an alignment of one
4236 is specified and no other alignments have been specified. */
4237 || (isym->st_value == 1 && old_alignment == 0))
4238 h->root.u.c.p->alignment_power = align;
4239 else
4240 h->root.u.c.p->alignment_power = old_alignment;
4241 }
4242
4243 if (is_elf_hash_table (htab))
4244 {
4245 bfd_boolean dynsym;
4246
4247 /* Check the alignment when a common symbol is involved. This
4248 can change when a common symbol is overridden by a normal
4249 definition or a common symbol is ignored due to the old
4250 normal definition. We need to make sure the maximum
4251 alignment is maintained. */
4252 if ((old_alignment || common)
4253 && h->root.type != bfd_link_hash_common)
4254 {
4255 unsigned int common_align;
4256 unsigned int normal_align;
4257 unsigned int symbol_align;
4258 bfd *normal_bfd;
4259 bfd *common_bfd;
4260
4261 symbol_align = ffs (h->root.u.def.value) - 1;
4262 if (h->root.u.def.section->owner != NULL
4263 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4264 {
4265 normal_align = h->root.u.def.section->alignment_power;
4266 if (normal_align > symbol_align)
4267 normal_align = symbol_align;
4268 }
4269 else
4270 normal_align = symbol_align;
4271
4272 if (old_alignment)
4273 {
4274 common_align = old_alignment;
4275 common_bfd = old_bfd;
4276 normal_bfd = abfd;
4277 }
4278 else
4279 {
4280 common_align = bfd_log2 (isym->st_value);
4281 common_bfd = abfd;
4282 normal_bfd = old_bfd;
4283 }
4284
4285 if (normal_align < common_align)
4286 {
4287 /* PR binutils/2735 */
4288 if (normal_bfd == NULL)
4289 (*_bfd_error_handler)
4290 (_("Warning: alignment %u of common symbol `%s' in %B"
4291 " is greater than the alignment (%u) of its section %A"),
4292 common_bfd, h->root.u.def.section,
4293 1 << common_align, name, 1 << normal_align);
4294 else
4295 (*_bfd_error_handler)
4296 (_("Warning: alignment %u of symbol `%s' in %B"
4297 " is smaller than %u in %B"),
4298 normal_bfd, common_bfd,
4299 1 << normal_align, name, 1 << common_align);
4300 }
4301 }
4302
4303 /* Remember the symbol size if it isn't undefined. */
4304 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4305 && (definition || h->size == 0))
4306 {
4307 if (h->size != 0
4308 && h->size != isym->st_size
4309 && ! size_change_ok)
4310 (*_bfd_error_handler)
4311 (_("Warning: size of symbol `%s' changed"
4312 " from %lu in %B to %lu in %B"),
4313 old_bfd, abfd,
4314 name, (unsigned long) h->size,
4315 (unsigned long) isym->st_size);
4316
4317 h->size = isym->st_size;
4318 }
4319
4320 /* If this is a common symbol, then we always want H->SIZE
4321 to be the size of the common symbol. The code just above
4322 won't fix the size if a common symbol becomes larger. We
4323 don't warn about a size change here, because that is
4324 covered by --warn-common. Allow changed between different
4325 function types. */
4326 if (h->root.type == bfd_link_hash_common)
4327 h->size = h->root.u.c.size;
4328
4329 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4330 && (definition || h->type == STT_NOTYPE))
4331 {
4332 unsigned int type = ELF_ST_TYPE (isym->st_info);
4333
4334 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4335 symbol. */
4336 if (type == STT_GNU_IFUNC
4337 && (abfd->flags & DYNAMIC) != 0)
4338 type = STT_FUNC;
4339
4340 if (h->type != type)
4341 {
4342 if (h->type != STT_NOTYPE && ! type_change_ok)
4343 (*_bfd_error_handler)
4344 (_("Warning: type of symbol `%s' changed"
4345 " from %d to %d in %B"),
4346 abfd, name, h->type, type);
4347
4348 h->type = type;
4349 }
4350 }
4351
4352 /* Merge st_other field. */
4353 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4354
4355 /* Set a flag in the hash table entry indicating the type of
4356 reference or definition we just found. Keep a count of
4357 the number of dynamic symbols we find. A dynamic symbol
4358 is one which is referenced or defined by both a regular
4359 object and a shared object. */
4360 dynsym = FALSE;
4361 if (! dynamic)
4362 {
4363 if (! definition)
4364 {
4365 h->ref_regular = 1;
4366 if (bind != STB_WEAK)
4367 h->ref_regular_nonweak = 1;
4368 }
4369 else
4370 {
4371 h->def_regular = 1;
4372 if (h->def_dynamic)
4373 {
4374 h->def_dynamic = 0;
4375 h->ref_dynamic = 1;
4376 h->dynamic_def = 1;
4377 }
4378 }
4379 if (! info->executable
4380 || h->def_dynamic
4381 || h->ref_dynamic)
4382 dynsym = TRUE;
4383 }
4384 else
4385 {
4386 if (! definition)
4387 h->ref_dynamic = 1;
4388 else
4389 h->def_dynamic = 1;
4390 if (h->def_regular
4391 || h->ref_regular
4392 || (h->u.weakdef != NULL
4393 && ! new_weakdef
4394 && h->u.weakdef->dynindx != -1))
4395 dynsym = TRUE;
4396 }
4397
4398 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4399 {
4400 /* We don't want to make debug symbol dynamic. */
4401 dynsym = FALSE;
4402 }
4403
4404 /* Check to see if we need to add an indirect symbol for
4405 the default name. */
4406 if (definition || h->root.type == bfd_link_hash_common)
4407 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4408 &sec, &value, &dynsym,
4409 override))
4410 goto error_free_vers;
4411
4412 if (definition && !dynamic)
4413 {
4414 char *p = strchr (name, ELF_VER_CHR);
4415 if (p != NULL && p[1] != ELF_VER_CHR)
4416 {
4417 /* Queue non-default versions so that .symver x, x@FOO
4418 aliases can be checked. */
4419 if (!nondeflt_vers)
4420 {
4421 amt = ((isymend - isym + 1)
4422 * sizeof (struct elf_link_hash_entry *));
4423 nondeflt_vers =
4424 (struct elf_link_hash_entry **) bfd_malloc (amt);
4425 if (!nondeflt_vers)
4426 goto error_free_vers;
4427 }
4428 nondeflt_vers[nondeflt_vers_cnt++] = h;
4429 }
4430 }
4431
4432 if (dynsym && h->dynindx == -1)
4433 {
4434 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4435 goto error_free_vers;
4436 if (h->u.weakdef != NULL
4437 && ! new_weakdef
4438 && h->u.weakdef->dynindx == -1)
4439 {
4440 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4441 goto error_free_vers;
4442 }
4443 }
4444 else if (dynsym && h->dynindx != -1)
4445 /* If the symbol already has a dynamic index, but
4446 visibility says it should not be visible, turn it into
4447 a local symbol. */
4448 switch (ELF_ST_VISIBILITY (h->other))
4449 {
4450 case STV_INTERNAL:
4451 case STV_HIDDEN:
4452 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4453 dynsym = FALSE;
4454 break;
4455 }
4456
4457 if (!add_needed
4458 && definition
4459 && ((dynsym
4460 && h->ref_regular)
4461 || (h->ref_dynamic
4462 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4463 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4464 {
4465 int ret;
4466 const char *soname = elf_dt_name (abfd);
4467
4468 /* A symbol from a library loaded via DT_NEEDED of some
4469 other library is referenced by a regular object.
4470 Add a DT_NEEDED entry for it. Issue an error if
4471 --no-add-needed is used and the reference was not
4472 a weak one. */
4473 if (undef_bfd != NULL
4474 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4475 {
4476 (*_bfd_error_handler)
4477 (_("%B: undefined reference to symbol '%s'"),
4478 undef_bfd, name);
4479 (*_bfd_error_handler)
4480 (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4481 abfd, name);
4482 bfd_set_error (bfd_error_invalid_operation);
4483 goto error_free_vers;
4484 }
4485
4486 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4487 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4488
4489 add_needed = TRUE;
4490 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4491 if (ret < 0)
4492 goto error_free_vers;
4493
4494 BFD_ASSERT (ret == 0);
4495 }
4496 }
4497 }
4498
4499 if (extversym != NULL)
4500 {
4501 free (extversym);
4502 extversym = NULL;
4503 }
4504
4505 if (isymbuf != NULL)
4506 {
4507 free (isymbuf);
4508 isymbuf = NULL;
4509 }
4510
4511 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4512 {
4513 unsigned int i;
4514
4515 /* Restore the symbol table. */
4516 if (bed->as_needed_cleanup)
4517 (*bed->as_needed_cleanup) (abfd, info);
4518 old_hash = (char *) old_tab + tabsize;
4519 old_ent = (char *) old_hash + hashsize;
4520 sym_hash = elf_sym_hashes (abfd);
4521 htab->root.table.table = old_table;
4522 htab->root.table.size = old_size;
4523 htab->root.table.count = old_count;
4524 memcpy (htab->root.table.table, old_tab, tabsize);
4525 memcpy (sym_hash, old_hash, hashsize);
4526 htab->root.undefs = old_undefs;
4527 htab->root.undefs_tail = old_undefs_tail;
4528 for (i = 0; i < htab->root.table.size; i++)
4529 {
4530 struct bfd_hash_entry *p;
4531 struct elf_link_hash_entry *h;
4532
4533 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4534 {
4535 h = (struct elf_link_hash_entry *) p;
4536 if (h->root.type == bfd_link_hash_warning)
4537 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4538 if (h->dynindx >= old_dynsymcount)
4539 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4540
4541 memcpy (p, old_ent, htab->root.table.entsize);
4542 old_ent = (char *) old_ent + htab->root.table.entsize;
4543 h = (struct elf_link_hash_entry *) p;
4544 if (h->root.type == bfd_link_hash_warning)
4545 {
4546 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4547 old_ent = (char *) old_ent + htab->root.table.entsize;
4548 }
4549 }
4550 }
4551
4552 /* Make a special call to the linker "notice" function to
4553 tell it that symbols added for crefs may need to be removed. */
4554 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4555 notice_not_needed))
4556 goto error_free_vers;
4557
4558 free (old_tab);
4559 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4560 alloc_mark);
4561 if (nondeflt_vers != NULL)
4562 free (nondeflt_vers);
4563 return TRUE;
4564 }
4565
4566 if (old_tab != NULL)
4567 {
4568 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4569 notice_needed))
4570 goto error_free_vers;
4571 free (old_tab);
4572 old_tab = NULL;
4573 }
4574
4575 /* Now that all the symbols from this input file are created, handle
4576 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4577 if (nondeflt_vers != NULL)
4578 {
4579 bfd_size_type cnt, symidx;
4580
4581 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4582 {
4583 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4584 char *shortname, *p;
4585
4586 p = strchr (h->root.root.string, ELF_VER_CHR);
4587 if (p == NULL
4588 || (h->root.type != bfd_link_hash_defined
4589 && h->root.type != bfd_link_hash_defweak))
4590 continue;
4591
4592 amt = p - h->root.root.string;
4593 shortname = (char *) bfd_malloc (amt + 1);
4594 if (!shortname)
4595 goto error_free_vers;
4596 memcpy (shortname, h->root.root.string, amt);
4597 shortname[amt] = '\0';
4598
4599 hi = (struct elf_link_hash_entry *)
4600 bfd_link_hash_lookup (&htab->root, shortname,
4601 FALSE, FALSE, FALSE);
4602 if (hi != NULL
4603 && hi->root.type == h->root.type
4604 && hi->root.u.def.value == h->root.u.def.value
4605 && hi->root.u.def.section == h->root.u.def.section)
4606 {
4607 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4608 hi->root.type = bfd_link_hash_indirect;
4609 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4610 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4611 sym_hash = elf_sym_hashes (abfd);
4612 if (sym_hash)
4613 for (symidx = 0; symidx < extsymcount; ++symidx)
4614 if (sym_hash[symidx] == hi)
4615 {
4616 sym_hash[symidx] = h;
4617 break;
4618 }
4619 }
4620 free (shortname);
4621 }
4622 free (nondeflt_vers);
4623 nondeflt_vers = NULL;
4624 }
4625
4626 /* Now set the weakdefs field correctly for all the weak defined
4627 symbols we found. The only way to do this is to search all the
4628 symbols. Since we only need the information for non functions in
4629 dynamic objects, that's the only time we actually put anything on
4630 the list WEAKS. We need this information so that if a regular
4631 object refers to a symbol defined weakly in a dynamic object, the
4632 real symbol in the dynamic object is also put in the dynamic
4633 symbols; we also must arrange for both symbols to point to the
4634 same memory location. We could handle the general case of symbol
4635 aliasing, but a general symbol alias can only be generated in
4636 assembler code, handling it correctly would be very time
4637 consuming, and other ELF linkers don't handle general aliasing
4638 either. */
4639 if (weaks != NULL)
4640 {
4641 struct elf_link_hash_entry **hpp;
4642 struct elf_link_hash_entry **hppend;
4643 struct elf_link_hash_entry **sorted_sym_hash;
4644 struct elf_link_hash_entry *h;
4645 size_t sym_count;
4646
4647 /* Since we have to search the whole symbol list for each weak
4648 defined symbol, search time for N weak defined symbols will be
4649 O(N^2). Binary search will cut it down to O(NlogN). */
4650 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4651 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4652 if (sorted_sym_hash == NULL)
4653 goto error_return;
4654 sym_hash = sorted_sym_hash;
4655 hpp = elf_sym_hashes (abfd);
4656 hppend = hpp + extsymcount;
4657 sym_count = 0;
4658 for (; hpp < hppend; hpp++)
4659 {
4660 h = *hpp;
4661 if (h != NULL
4662 && h->root.type == bfd_link_hash_defined
4663 && !bed->is_function_type (h->type))
4664 {
4665 *sym_hash = h;
4666 sym_hash++;
4667 sym_count++;
4668 }
4669 }
4670
4671 qsort (sorted_sym_hash, sym_count,
4672 sizeof (struct elf_link_hash_entry *),
4673 elf_sort_symbol);
4674
4675 while (weaks != NULL)
4676 {
4677 struct elf_link_hash_entry *hlook;
4678 asection *slook;
4679 bfd_vma vlook;
4680 long ilook;
4681 size_t i, j, idx;
4682
4683 hlook = weaks;
4684 weaks = hlook->u.weakdef;
4685 hlook->u.weakdef = NULL;
4686
4687 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4688 || hlook->root.type == bfd_link_hash_defweak
4689 || hlook->root.type == bfd_link_hash_common
4690 || hlook->root.type == bfd_link_hash_indirect);
4691 slook = hlook->root.u.def.section;
4692 vlook = hlook->root.u.def.value;
4693
4694 ilook = -1;
4695 i = 0;
4696 j = sym_count;
4697 while (i < j)
4698 {
4699 bfd_signed_vma vdiff;
4700 idx = (i + j) / 2;
4701 h = sorted_sym_hash [idx];
4702 vdiff = vlook - h->root.u.def.value;
4703 if (vdiff < 0)
4704 j = idx;
4705 else if (vdiff > 0)
4706 i = idx + 1;
4707 else
4708 {
4709 long sdiff = slook->id - h->root.u.def.section->id;
4710 if (sdiff < 0)
4711 j = idx;
4712 else if (sdiff > 0)
4713 i = idx + 1;
4714 else
4715 {
4716 ilook = idx;
4717 break;
4718 }
4719 }
4720 }
4721
4722 /* We didn't find a value/section match. */
4723 if (ilook == -1)
4724 continue;
4725
4726 for (i = ilook; i < sym_count; i++)
4727 {
4728 h = sorted_sym_hash [i];
4729
4730 /* Stop if value or section doesn't match. */
4731 if (h->root.u.def.value != vlook
4732 || h->root.u.def.section != slook)
4733 break;
4734 else if (h != hlook)
4735 {
4736 hlook->u.weakdef = h;
4737
4738 /* If the weak definition is in the list of dynamic
4739 symbols, make sure the real definition is put
4740 there as well. */
4741 if (hlook->dynindx != -1 && h->dynindx == -1)
4742 {
4743 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4744 {
4745 err_free_sym_hash:
4746 free (sorted_sym_hash);
4747 goto error_return;
4748 }
4749 }
4750
4751 /* If the real definition is in the list of dynamic
4752 symbols, make sure the weak definition is put
4753 there as well. If we don't do this, then the
4754 dynamic loader might not merge the entries for the
4755 real definition and the weak definition. */
4756 if (h->dynindx != -1 && hlook->dynindx == -1)
4757 {
4758 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4759 goto err_free_sym_hash;
4760 }
4761 break;
4762 }
4763 }
4764 }
4765
4766 free (sorted_sym_hash);
4767 }
4768
4769 if (bed->check_directives
4770 && !(*bed->check_directives) (abfd, info))
4771 return FALSE;
4772
4773 /* If this object is the same format as the output object, and it is
4774 not a shared library, then let the backend look through the
4775 relocs.
4776
4777 This is required to build global offset table entries and to
4778 arrange for dynamic relocs. It is not required for the
4779 particular common case of linking non PIC code, even when linking
4780 against shared libraries, but unfortunately there is no way of
4781 knowing whether an object file has been compiled PIC or not.
4782 Looking through the relocs is not particularly time consuming.
4783 The problem is that we must either (1) keep the relocs in memory,
4784 which causes the linker to require additional runtime memory or
4785 (2) read the relocs twice from the input file, which wastes time.
4786 This would be a good case for using mmap.
4787
4788 I have no idea how to handle linking PIC code into a file of a
4789 different format. It probably can't be done. */
4790 if (! dynamic
4791 && is_elf_hash_table (htab)
4792 && bed->check_relocs != NULL
4793 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4794 {
4795 asection *o;
4796
4797 for (o = abfd->sections; o != NULL; o = o->next)
4798 {
4799 Elf_Internal_Rela *internal_relocs;
4800 bfd_boolean ok;
4801
4802 if ((o->flags & SEC_RELOC) == 0
4803 || o->reloc_count == 0
4804 || ((info->strip == strip_all || info->strip == strip_debugger)
4805 && (o->flags & SEC_DEBUGGING) != 0)
4806 || bfd_is_abs_section (o->output_section))
4807 continue;
4808
4809 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4810 info->keep_memory);
4811 if (internal_relocs == NULL)
4812 goto error_return;
4813
4814 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4815
4816 if (elf_section_data (o)->relocs != internal_relocs)
4817 free (internal_relocs);
4818
4819 if (! ok)
4820 goto error_return;
4821 }
4822 }
4823
4824 /* If this is a non-traditional link, try to optimize the handling
4825 of the .stab/.stabstr sections. */
4826 if (! dynamic
4827 && ! info->traditional_format
4828 && is_elf_hash_table (htab)
4829 && (info->strip != strip_all && info->strip != strip_debugger))
4830 {
4831 asection *stabstr;
4832
4833 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4834 if (stabstr != NULL)
4835 {
4836 bfd_size_type string_offset = 0;
4837 asection *stab;
4838
4839 for (stab = abfd->sections; stab; stab = stab->next)
4840 if (CONST_STRNEQ (stab->name, ".stab")
4841 && (!stab->name[5] ||
4842 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4843 && (stab->flags & SEC_MERGE) == 0
4844 && !bfd_is_abs_section (stab->output_section))
4845 {
4846 struct bfd_elf_section_data *secdata;
4847
4848 secdata = elf_section_data (stab);
4849 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4850 stabstr, &secdata->sec_info,
4851 &string_offset))
4852 goto error_return;
4853 if (secdata->sec_info)
4854 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4855 }
4856 }
4857 }
4858
4859 if (is_elf_hash_table (htab) && add_needed)
4860 {
4861 /* Add this bfd to the loaded list. */
4862 struct elf_link_loaded_list *n;
4863
4864 n = (struct elf_link_loaded_list *)
4865 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4866 if (n == NULL)
4867 goto error_return;
4868 n->abfd = abfd;
4869 n->next = htab->loaded;
4870 htab->loaded = n;
4871 }
4872
4873 return TRUE;
4874
4875 error_free_vers:
4876 if (old_tab != NULL)
4877 free (old_tab);
4878 if (nondeflt_vers != NULL)
4879 free (nondeflt_vers);
4880 if (extversym != NULL)
4881 free (extversym);
4882 error_free_sym:
4883 if (isymbuf != NULL)
4884 free (isymbuf);
4885 error_return:
4886 return FALSE;
4887 }
4888
4889 /* Return the linker hash table entry of a symbol that might be
4890 satisfied by an archive symbol. Return -1 on error. */
4891
4892 struct elf_link_hash_entry *
4893 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4894 struct bfd_link_info *info,
4895 const char *name)
4896 {
4897 struct elf_link_hash_entry *h;
4898 char *p, *copy;
4899 size_t len, first;
4900
4901 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4902 if (h != NULL)
4903 return h;
4904
4905 /* If this is a default version (the name contains @@), look up the
4906 symbol again with only one `@' as well as without the version.
4907 The effect is that references to the symbol with and without the
4908 version will be matched by the default symbol in the archive. */
4909
4910 p = strchr (name, ELF_VER_CHR);
4911 if (p == NULL || p[1] != ELF_VER_CHR)
4912 return h;
4913
4914 /* First check with only one `@'. */
4915 len = strlen (name);
4916 copy = (char *) bfd_alloc (abfd, len);
4917 if (copy == NULL)
4918 return (struct elf_link_hash_entry *) 0 - 1;
4919
4920 first = p - name + 1;
4921 memcpy (copy, name, first);
4922 memcpy (copy + first, name + first + 1, len - first);
4923
4924 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4925 if (h == NULL)
4926 {
4927 /* We also need to check references to the symbol without the
4928 version. */
4929 copy[first - 1] = '\0';
4930 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4931 FALSE, FALSE, FALSE);
4932 }
4933
4934 bfd_release (abfd, copy);
4935 return h;
4936 }
4937
4938 /* Add symbols from an ELF archive file to the linker hash table. We
4939 don't use _bfd_generic_link_add_archive_symbols because of a
4940 problem which arises on UnixWare. The UnixWare libc.so is an
4941 archive which includes an entry libc.so.1 which defines a bunch of
4942 symbols. The libc.so archive also includes a number of other
4943 object files, which also define symbols, some of which are the same
4944 as those defined in libc.so.1. Correct linking requires that we
4945 consider each object file in turn, and include it if it defines any
4946 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4947 this; it looks through the list of undefined symbols, and includes
4948 any object file which defines them. When this algorithm is used on
4949 UnixWare, it winds up pulling in libc.so.1 early and defining a
4950 bunch of symbols. This means that some of the other objects in the
4951 archive are not included in the link, which is incorrect since they
4952 precede libc.so.1 in the archive.
4953
4954 Fortunately, ELF archive handling is simpler than that done by
4955 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4956 oddities. In ELF, if we find a symbol in the archive map, and the
4957 symbol is currently undefined, we know that we must pull in that
4958 object file.
4959
4960 Unfortunately, we do have to make multiple passes over the symbol
4961 table until nothing further is resolved. */
4962
4963 static bfd_boolean
4964 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4965 {
4966 symindex c;
4967 bfd_boolean *defined = NULL;
4968 bfd_boolean *included = NULL;
4969 carsym *symdefs;
4970 bfd_boolean loop;
4971 bfd_size_type amt;
4972 const struct elf_backend_data *bed;
4973 struct elf_link_hash_entry * (*archive_symbol_lookup)
4974 (bfd *, struct bfd_link_info *, const char *);
4975
4976 if (! bfd_has_map (abfd))
4977 {
4978 /* An empty archive is a special case. */
4979 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4980 return TRUE;
4981 bfd_set_error (bfd_error_no_armap);
4982 return FALSE;
4983 }
4984
4985 /* Keep track of all symbols we know to be already defined, and all
4986 files we know to be already included. This is to speed up the
4987 second and subsequent passes. */
4988 c = bfd_ardata (abfd)->symdef_count;
4989 if (c == 0)
4990 return TRUE;
4991 amt = c;
4992 amt *= sizeof (bfd_boolean);
4993 defined = (bfd_boolean *) bfd_zmalloc (amt);
4994 included = (bfd_boolean *) bfd_zmalloc (amt);
4995 if (defined == NULL || included == NULL)
4996 goto error_return;
4997
4998 symdefs = bfd_ardata (abfd)->symdefs;
4999 bed = get_elf_backend_data (abfd);
5000 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5001
5002 do
5003 {
5004 file_ptr last;
5005 symindex i;
5006 carsym *symdef;
5007 carsym *symdefend;
5008
5009 loop = FALSE;
5010 last = -1;
5011
5012 symdef = symdefs;
5013 symdefend = symdef + c;
5014 for (i = 0; symdef < symdefend; symdef++, i++)
5015 {
5016 struct elf_link_hash_entry *h;
5017 bfd *element;
5018 struct bfd_link_hash_entry *undefs_tail;
5019 symindex mark;
5020
5021 if (defined[i] || included[i])
5022 continue;
5023 if (symdef->file_offset == last)
5024 {
5025 included[i] = TRUE;
5026 continue;
5027 }
5028
5029 h = archive_symbol_lookup (abfd, info, symdef->name);
5030 if (h == (struct elf_link_hash_entry *) 0 - 1)
5031 goto error_return;
5032
5033 if (h == NULL)
5034 continue;
5035
5036 if (h->root.type == bfd_link_hash_common)
5037 {
5038 /* We currently have a common symbol. The archive map contains
5039 a reference to this symbol, so we may want to include it. We
5040 only want to include it however, if this archive element
5041 contains a definition of the symbol, not just another common
5042 declaration of it.
5043
5044 Unfortunately some archivers (including GNU ar) will put
5045 declarations of common symbols into their archive maps, as
5046 well as real definitions, so we cannot just go by the archive
5047 map alone. Instead we must read in the element's symbol
5048 table and check that to see what kind of symbol definition
5049 this is. */
5050 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5051 continue;
5052 }
5053 else if (h->root.type != bfd_link_hash_undefined)
5054 {
5055 if (h->root.type != bfd_link_hash_undefweak)
5056 defined[i] = TRUE;
5057 continue;
5058 }
5059
5060 /* We need to include this archive member. */
5061 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5062 if (element == NULL)
5063 goto error_return;
5064
5065 if (! bfd_check_format (element, bfd_object))
5066 goto error_return;
5067
5068 /* Doublecheck that we have not included this object
5069 already--it should be impossible, but there may be
5070 something wrong with the archive. */
5071 if (element->archive_pass != 0)
5072 {
5073 bfd_set_error (bfd_error_bad_value);
5074 goto error_return;
5075 }
5076 element->archive_pass = 1;
5077
5078 undefs_tail = info->hash->undefs_tail;
5079
5080 if (! (*info->callbacks->add_archive_element) (info, element,
5081 symdef->name))
5082 goto error_return;
5083 if (! bfd_link_add_symbols (element, info))
5084 goto error_return;
5085
5086 /* If there are any new undefined symbols, we need to make
5087 another pass through the archive in order to see whether
5088 they can be defined. FIXME: This isn't perfect, because
5089 common symbols wind up on undefs_tail and because an
5090 undefined symbol which is defined later on in this pass
5091 does not require another pass. This isn't a bug, but it
5092 does make the code less efficient than it could be. */
5093 if (undefs_tail != info->hash->undefs_tail)
5094 loop = TRUE;
5095
5096 /* Look backward to mark all symbols from this object file
5097 which we have already seen in this pass. */
5098 mark = i;
5099 do
5100 {
5101 included[mark] = TRUE;
5102 if (mark == 0)
5103 break;
5104 --mark;
5105 }
5106 while (symdefs[mark].file_offset == symdef->file_offset);
5107
5108 /* We mark subsequent symbols from this object file as we go
5109 on through the loop. */
5110 last = symdef->file_offset;
5111 }
5112 }
5113 while (loop);
5114
5115 free (defined);
5116 free (included);
5117
5118 return TRUE;
5119
5120 error_return:
5121 if (defined != NULL)
5122 free (defined);
5123 if (included != NULL)
5124 free (included);
5125 return FALSE;
5126 }
5127
5128 /* Given an ELF BFD, add symbols to the global hash table as
5129 appropriate. */
5130
5131 bfd_boolean
5132 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5133 {
5134 switch (bfd_get_format (abfd))
5135 {
5136 case bfd_object:
5137 return elf_link_add_object_symbols (abfd, info);
5138 case bfd_archive:
5139 return elf_link_add_archive_symbols (abfd, info);
5140 default:
5141 bfd_set_error (bfd_error_wrong_format);
5142 return FALSE;
5143 }
5144 }
5145 \f
5146 struct hash_codes_info
5147 {
5148 unsigned long *hashcodes;
5149 bfd_boolean error;
5150 };
5151
5152 /* This function will be called though elf_link_hash_traverse to store
5153 all hash value of the exported symbols in an array. */
5154
5155 static bfd_boolean
5156 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5157 {
5158 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5159 const char *name;
5160 char *p;
5161 unsigned long ha;
5162 char *alc = NULL;
5163
5164 if (h->root.type == bfd_link_hash_warning)
5165 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5166
5167 /* Ignore indirect symbols. These are added by the versioning code. */
5168 if (h->dynindx == -1)
5169 return TRUE;
5170
5171 name = h->root.root.string;
5172 p = strchr (name, ELF_VER_CHR);
5173 if (p != NULL)
5174 {
5175 alc = (char *) bfd_malloc (p - name + 1);
5176 if (alc == NULL)
5177 {
5178 inf->error = TRUE;
5179 return FALSE;
5180 }
5181 memcpy (alc, name, p - name);
5182 alc[p - name] = '\0';
5183 name = alc;
5184 }
5185
5186 /* Compute the hash value. */
5187 ha = bfd_elf_hash (name);
5188
5189 /* Store the found hash value in the array given as the argument. */
5190 *(inf->hashcodes)++ = ha;
5191
5192 /* And store it in the struct so that we can put it in the hash table
5193 later. */
5194 h->u.elf_hash_value = ha;
5195
5196 if (alc != NULL)
5197 free (alc);
5198
5199 return TRUE;
5200 }
5201
5202 struct collect_gnu_hash_codes
5203 {
5204 bfd *output_bfd;
5205 const struct elf_backend_data *bed;
5206 unsigned long int nsyms;
5207 unsigned long int maskbits;
5208 unsigned long int *hashcodes;
5209 unsigned long int *hashval;
5210 unsigned long int *indx;
5211 unsigned long int *counts;
5212 bfd_vma *bitmask;
5213 bfd_byte *contents;
5214 long int min_dynindx;
5215 unsigned long int bucketcount;
5216 unsigned long int symindx;
5217 long int local_indx;
5218 long int shift1, shift2;
5219 unsigned long int mask;
5220 bfd_boolean error;
5221 };
5222
5223 /* This function will be called though elf_link_hash_traverse to store
5224 all hash value of the exported symbols in an array. */
5225
5226 static bfd_boolean
5227 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5228 {
5229 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5230 const char *name;
5231 char *p;
5232 unsigned long ha;
5233 char *alc = NULL;
5234
5235 if (h->root.type == bfd_link_hash_warning)
5236 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5237
5238 /* Ignore indirect symbols. These are added by the versioning code. */
5239 if (h->dynindx == -1)
5240 return TRUE;
5241
5242 /* Ignore also local symbols and undefined symbols. */
5243 if (! (*s->bed->elf_hash_symbol) (h))
5244 return TRUE;
5245
5246 name = h->root.root.string;
5247 p = strchr (name, ELF_VER_CHR);
5248 if (p != NULL)
5249 {
5250 alc = (char *) bfd_malloc (p - name + 1);
5251 if (alc == NULL)
5252 {
5253 s->error = TRUE;
5254 return FALSE;
5255 }
5256 memcpy (alc, name, p - name);
5257 alc[p - name] = '\0';
5258 name = alc;
5259 }
5260
5261 /* Compute the hash value. */
5262 ha = bfd_elf_gnu_hash (name);
5263
5264 /* Store the found hash value in the array for compute_bucket_count,
5265 and also for .dynsym reordering purposes. */
5266 s->hashcodes[s->nsyms] = ha;
5267 s->hashval[h->dynindx] = ha;
5268 ++s->nsyms;
5269 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5270 s->min_dynindx = h->dynindx;
5271
5272 if (alc != NULL)
5273 free (alc);
5274
5275 return TRUE;
5276 }
5277
5278 /* This function will be called though elf_link_hash_traverse to do
5279 final dynaminc symbol renumbering. */
5280
5281 static bfd_boolean
5282 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5283 {
5284 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5285 unsigned long int bucket;
5286 unsigned long int val;
5287
5288 if (h->root.type == bfd_link_hash_warning)
5289 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5290
5291 /* Ignore indirect symbols. */
5292 if (h->dynindx == -1)
5293 return TRUE;
5294
5295 /* Ignore also local symbols and undefined symbols. */
5296 if (! (*s->bed->elf_hash_symbol) (h))
5297 {
5298 if (h->dynindx >= s->min_dynindx)
5299 h->dynindx = s->local_indx++;
5300 return TRUE;
5301 }
5302
5303 bucket = s->hashval[h->dynindx] % s->bucketcount;
5304 val = (s->hashval[h->dynindx] >> s->shift1)
5305 & ((s->maskbits >> s->shift1) - 1);
5306 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5307 s->bitmask[val]
5308 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5309 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5310 if (s->counts[bucket] == 1)
5311 /* Last element terminates the chain. */
5312 val |= 1;
5313 bfd_put_32 (s->output_bfd, val,
5314 s->contents + (s->indx[bucket] - s->symindx) * 4);
5315 --s->counts[bucket];
5316 h->dynindx = s->indx[bucket]++;
5317 return TRUE;
5318 }
5319
5320 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5321
5322 bfd_boolean
5323 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5324 {
5325 return !(h->forced_local
5326 || h->root.type == bfd_link_hash_undefined
5327 || h->root.type == bfd_link_hash_undefweak
5328 || ((h->root.type == bfd_link_hash_defined
5329 || h->root.type == bfd_link_hash_defweak)
5330 && h->root.u.def.section->output_section == NULL));
5331 }
5332
5333 /* Array used to determine the number of hash table buckets to use
5334 based on the number of symbols there are. If there are fewer than
5335 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5336 fewer than 37 we use 17 buckets, and so forth. We never use more
5337 than 32771 buckets. */
5338
5339 static const size_t elf_buckets[] =
5340 {
5341 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5342 16411, 32771, 0
5343 };
5344
5345 /* Compute bucket count for hashing table. We do not use a static set
5346 of possible tables sizes anymore. Instead we determine for all
5347 possible reasonable sizes of the table the outcome (i.e., the
5348 number of collisions etc) and choose the best solution. The
5349 weighting functions are not too simple to allow the table to grow
5350 without bounds. Instead one of the weighting factors is the size.
5351 Therefore the result is always a good payoff between few collisions
5352 (= short chain lengths) and table size. */
5353 static size_t
5354 compute_bucket_count (struct bfd_link_info *info,
5355 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5356 unsigned long int nsyms,
5357 int gnu_hash)
5358 {
5359 size_t best_size = 0;
5360 unsigned long int i;
5361
5362 /* We have a problem here. The following code to optimize the table
5363 size requires an integer type with more the 32 bits. If
5364 BFD_HOST_U_64_BIT is set we know about such a type. */
5365 #ifdef BFD_HOST_U_64_BIT
5366 if (info->optimize)
5367 {
5368 size_t minsize;
5369 size_t maxsize;
5370 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5371 bfd *dynobj = elf_hash_table (info)->dynobj;
5372 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5373 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5374 unsigned long int *counts;
5375 bfd_size_type amt;
5376
5377 /* Possible optimization parameters: if we have NSYMS symbols we say
5378 that the hashing table must at least have NSYMS/4 and at most
5379 2*NSYMS buckets. */
5380 minsize = nsyms / 4;
5381 if (minsize == 0)
5382 minsize = 1;
5383 best_size = maxsize = nsyms * 2;
5384 if (gnu_hash)
5385 {
5386 if (minsize < 2)
5387 minsize = 2;
5388 if ((best_size & 31) == 0)
5389 ++best_size;
5390 }
5391
5392 /* Create array where we count the collisions in. We must use bfd_malloc
5393 since the size could be large. */
5394 amt = maxsize;
5395 amt *= sizeof (unsigned long int);
5396 counts = (unsigned long int *) bfd_malloc (amt);
5397 if (counts == NULL)
5398 return 0;
5399
5400 /* Compute the "optimal" size for the hash table. The criteria is a
5401 minimal chain length. The minor criteria is (of course) the size
5402 of the table. */
5403 for (i = minsize; i < maxsize; ++i)
5404 {
5405 /* Walk through the array of hashcodes and count the collisions. */
5406 BFD_HOST_U_64_BIT max;
5407 unsigned long int j;
5408 unsigned long int fact;
5409
5410 if (gnu_hash && (i & 31) == 0)
5411 continue;
5412
5413 memset (counts, '\0', i * sizeof (unsigned long int));
5414
5415 /* Determine how often each hash bucket is used. */
5416 for (j = 0; j < nsyms; ++j)
5417 ++counts[hashcodes[j] % i];
5418
5419 /* For the weight function we need some information about the
5420 pagesize on the target. This is information need not be 100%
5421 accurate. Since this information is not available (so far) we
5422 define it here to a reasonable default value. If it is crucial
5423 to have a better value some day simply define this value. */
5424 # ifndef BFD_TARGET_PAGESIZE
5425 # define BFD_TARGET_PAGESIZE (4096)
5426 # endif
5427
5428 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5429 and the chains. */
5430 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5431
5432 # if 1
5433 /* Variant 1: optimize for short chains. We add the squares
5434 of all the chain lengths (which favors many small chain
5435 over a few long chains). */
5436 for (j = 0; j < i; ++j)
5437 max += counts[j] * counts[j];
5438
5439 /* This adds penalties for the overall size of the table. */
5440 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5441 max *= fact * fact;
5442 # else
5443 /* Variant 2: Optimize a lot more for small table. Here we
5444 also add squares of the size but we also add penalties for
5445 empty slots (the +1 term). */
5446 for (j = 0; j < i; ++j)
5447 max += (1 + counts[j]) * (1 + counts[j]);
5448
5449 /* The overall size of the table is considered, but not as
5450 strong as in variant 1, where it is squared. */
5451 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5452 max *= fact;
5453 # endif
5454
5455 /* Compare with current best results. */
5456 if (max < best_chlen)
5457 {
5458 best_chlen = max;
5459 best_size = i;
5460 }
5461 }
5462
5463 free (counts);
5464 }
5465 else
5466 #endif /* defined (BFD_HOST_U_64_BIT) */
5467 {
5468 /* This is the fallback solution if no 64bit type is available or if we
5469 are not supposed to spend much time on optimizations. We select the
5470 bucket count using a fixed set of numbers. */
5471 for (i = 0; elf_buckets[i] != 0; i++)
5472 {
5473 best_size = elf_buckets[i];
5474 if (nsyms < elf_buckets[i + 1])
5475 break;
5476 }
5477 if (gnu_hash && best_size < 2)
5478 best_size = 2;
5479 }
5480
5481 return best_size;
5482 }
5483
5484 /* Size any SHT_GROUP section for ld -r. */
5485
5486 bfd_boolean
5487 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5488 {
5489 bfd *ibfd;
5490
5491 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5492 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5493 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5494 return FALSE;
5495 return TRUE;
5496 }
5497
5498 /* Set up the sizes and contents of the ELF dynamic sections. This is
5499 called by the ELF linker emulation before_allocation routine. We
5500 must set the sizes of the sections before the linker sets the
5501 addresses of the various sections. */
5502
5503 bfd_boolean
5504 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5505 const char *soname,
5506 const char *rpath,
5507 const char *filter_shlib,
5508 const char *audit,
5509 const char *depaudit,
5510 const char * const *auxiliary_filters,
5511 struct bfd_link_info *info,
5512 asection **sinterpptr,
5513 struct bfd_elf_version_tree *verdefs)
5514 {
5515 bfd_size_type soname_indx;
5516 bfd *dynobj;
5517 const struct elf_backend_data *bed;
5518 struct elf_info_failed asvinfo;
5519
5520 *sinterpptr = NULL;
5521
5522 soname_indx = (bfd_size_type) -1;
5523
5524 if (!is_elf_hash_table (info->hash))
5525 return TRUE;
5526
5527 bed = get_elf_backend_data (output_bfd);
5528 if (info->execstack)
5529 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5530 else if (info->noexecstack)
5531 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5532 else
5533 {
5534 bfd *inputobj;
5535 asection *notesec = NULL;
5536 int exec = 0;
5537
5538 for (inputobj = info->input_bfds;
5539 inputobj;
5540 inputobj = inputobj->link_next)
5541 {
5542 asection *s;
5543
5544 if (inputobj->flags & (DYNAMIC | EXEC_P | BFD_LINKER_CREATED))
5545 continue;
5546 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5547 if (s)
5548 {
5549 if (s->flags & SEC_CODE)
5550 exec = PF_X;
5551 notesec = s;
5552 }
5553 else if (bed->default_execstack)
5554 exec = PF_X;
5555 }
5556 if (notesec)
5557 {
5558 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5559 if (exec && info->relocatable
5560 && notesec->output_section != bfd_abs_section_ptr)
5561 notesec->output_section->flags |= SEC_CODE;
5562 }
5563 }
5564
5565 /* Any syms created from now on start with -1 in
5566 got.refcount/offset and plt.refcount/offset. */
5567 elf_hash_table (info)->init_got_refcount
5568 = elf_hash_table (info)->init_got_offset;
5569 elf_hash_table (info)->init_plt_refcount
5570 = elf_hash_table (info)->init_plt_offset;
5571
5572 if (info->relocatable
5573 && !_bfd_elf_size_group_sections (info))
5574 return FALSE;
5575
5576 /* The backend may have to create some sections regardless of whether
5577 we're dynamic or not. */
5578 if (bed->elf_backend_always_size_sections
5579 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5580 return FALSE;
5581
5582 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5583 return FALSE;
5584
5585 dynobj = elf_hash_table (info)->dynobj;
5586
5587 /* If there were no dynamic objects in the link, there is nothing to
5588 do here. */
5589 if (dynobj == NULL)
5590 return TRUE;
5591
5592 if (elf_hash_table (info)->dynamic_sections_created)
5593 {
5594 struct elf_info_failed eif;
5595 struct elf_link_hash_entry *h;
5596 asection *dynstr;
5597 struct bfd_elf_version_tree *t;
5598 struct bfd_elf_version_expr *d;
5599 asection *s;
5600 bfd_boolean all_defined;
5601
5602 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5603 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5604
5605 if (soname != NULL)
5606 {
5607 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5608 soname, TRUE);
5609 if (soname_indx == (bfd_size_type) -1
5610 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5611 return FALSE;
5612 }
5613
5614 if (info->symbolic)
5615 {
5616 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5617 return FALSE;
5618 info->flags |= DF_SYMBOLIC;
5619 }
5620
5621 if (rpath != NULL)
5622 {
5623 bfd_size_type indx;
5624
5625 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5626 TRUE);
5627 if (indx == (bfd_size_type) -1
5628 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5629 return FALSE;
5630
5631 if (info->new_dtags)
5632 {
5633 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5634 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5635 return FALSE;
5636 }
5637 }
5638
5639 if (filter_shlib != NULL)
5640 {
5641 bfd_size_type indx;
5642
5643 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5644 filter_shlib, TRUE);
5645 if (indx == (bfd_size_type) -1
5646 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5647 return FALSE;
5648 }
5649
5650 if (auxiliary_filters != NULL)
5651 {
5652 const char * const *p;
5653
5654 for (p = auxiliary_filters; *p != NULL; p++)
5655 {
5656 bfd_size_type indx;
5657
5658 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5659 *p, TRUE);
5660 if (indx == (bfd_size_type) -1
5661 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5662 return FALSE;
5663 }
5664 }
5665
5666 if (audit != NULL)
5667 {
5668 bfd_size_type indx;
5669
5670 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5671 TRUE);
5672 if (indx == (bfd_size_type) -1
5673 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5674 return FALSE;
5675 }
5676
5677 if (depaudit != NULL)
5678 {
5679 bfd_size_type indx;
5680
5681 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5682 TRUE);
5683 if (indx == (bfd_size_type) -1
5684 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5685 return FALSE;
5686 }
5687
5688 eif.info = info;
5689 eif.verdefs = verdefs;
5690 eif.failed = FALSE;
5691
5692 /* If we are supposed to export all symbols into the dynamic symbol
5693 table (this is not the normal case), then do so. */
5694 if (info->export_dynamic
5695 || (info->executable && info->dynamic))
5696 {
5697 elf_link_hash_traverse (elf_hash_table (info),
5698 _bfd_elf_export_symbol,
5699 &eif);
5700 if (eif.failed)
5701 return FALSE;
5702 }
5703
5704 /* Make all global versions with definition. */
5705 for (t = verdefs; t != NULL; t = t->next)
5706 for (d = t->globals.list; d != NULL; d = d->next)
5707 if (!d->symver && d->literal)
5708 {
5709 const char *verstr, *name;
5710 size_t namelen, verlen, newlen;
5711 char *newname, *p;
5712 struct elf_link_hash_entry *newh;
5713
5714 name = d->pattern;
5715 namelen = strlen (name);
5716 verstr = t->name;
5717 verlen = strlen (verstr);
5718 newlen = namelen + verlen + 3;
5719
5720 newname = (char *) bfd_malloc (newlen);
5721 if (newname == NULL)
5722 return FALSE;
5723 memcpy (newname, name, namelen);
5724
5725 /* Check the hidden versioned definition. */
5726 p = newname + namelen;
5727 *p++ = ELF_VER_CHR;
5728 memcpy (p, verstr, verlen + 1);
5729 newh = elf_link_hash_lookup (elf_hash_table (info),
5730 newname, FALSE, FALSE,
5731 FALSE);
5732 if (newh == NULL
5733 || (newh->root.type != bfd_link_hash_defined
5734 && newh->root.type != bfd_link_hash_defweak))
5735 {
5736 /* Check the default versioned definition. */
5737 *p++ = ELF_VER_CHR;
5738 memcpy (p, verstr, verlen + 1);
5739 newh = elf_link_hash_lookup (elf_hash_table (info),
5740 newname, FALSE, FALSE,
5741 FALSE);
5742 }
5743 free (newname);
5744
5745 /* Mark this version if there is a definition and it is
5746 not defined in a shared object. */
5747 if (newh != NULL
5748 && !newh->def_dynamic
5749 && (newh->root.type == bfd_link_hash_defined
5750 || newh->root.type == bfd_link_hash_defweak))
5751 d->symver = 1;
5752 }
5753
5754 /* Attach all the symbols to their version information. */
5755 asvinfo.info = info;
5756 asvinfo.verdefs = verdefs;
5757 asvinfo.failed = FALSE;
5758
5759 elf_link_hash_traverse (elf_hash_table (info),
5760 _bfd_elf_link_assign_sym_version,
5761 &asvinfo);
5762 if (asvinfo.failed)
5763 return FALSE;
5764
5765 if (!info->allow_undefined_version)
5766 {
5767 /* Check if all global versions have a definition. */
5768 all_defined = TRUE;
5769 for (t = verdefs; t != NULL; t = t->next)
5770 for (d = t->globals.list; d != NULL; d = d->next)
5771 if (d->literal && !d->symver && !d->script)
5772 {
5773 (*_bfd_error_handler)
5774 (_("%s: undefined version: %s"),
5775 d->pattern, t->name);
5776 all_defined = FALSE;
5777 }
5778
5779 if (!all_defined)
5780 {
5781 bfd_set_error (bfd_error_bad_value);
5782 return FALSE;
5783 }
5784 }
5785
5786 /* Find all symbols which were defined in a dynamic object and make
5787 the backend pick a reasonable value for them. */
5788 elf_link_hash_traverse (elf_hash_table (info),
5789 _bfd_elf_adjust_dynamic_symbol,
5790 &eif);
5791 if (eif.failed)
5792 return FALSE;
5793
5794 /* Add some entries to the .dynamic section. We fill in some of the
5795 values later, in bfd_elf_final_link, but we must add the entries
5796 now so that we know the final size of the .dynamic section. */
5797
5798 /* If there are initialization and/or finalization functions to
5799 call then add the corresponding DT_INIT/DT_FINI entries. */
5800 h = (info->init_function
5801 ? elf_link_hash_lookup (elf_hash_table (info),
5802 info->init_function, FALSE,
5803 FALSE, FALSE)
5804 : NULL);
5805 if (h != NULL
5806 && (h->ref_regular
5807 || h->def_regular))
5808 {
5809 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5810 return FALSE;
5811 }
5812 h = (info->fini_function
5813 ? elf_link_hash_lookup (elf_hash_table (info),
5814 info->fini_function, FALSE,
5815 FALSE, FALSE)
5816 : NULL);
5817 if (h != NULL
5818 && (h->ref_regular
5819 || h->def_regular))
5820 {
5821 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5822 return FALSE;
5823 }
5824
5825 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5826 if (s != NULL && s->linker_has_input)
5827 {
5828 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5829 if (! info->executable)
5830 {
5831 bfd *sub;
5832 asection *o;
5833
5834 for (sub = info->input_bfds; sub != NULL;
5835 sub = sub->link_next)
5836 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5837 for (o = sub->sections; o != NULL; o = o->next)
5838 if (elf_section_data (o)->this_hdr.sh_type
5839 == SHT_PREINIT_ARRAY)
5840 {
5841 (*_bfd_error_handler)
5842 (_("%B: .preinit_array section is not allowed in DSO"),
5843 sub);
5844 break;
5845 }
5846
5847 bfd_set_error (bfd_error_nonrepresentable_section);
5848 return FALSE;
5849 }
5850
5851 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5852 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5853 return FALSE;
5854 }
5855 s = bfd_get_section_by_name (output_bfd, ".init_array");
5856 if (s != NULL && s->linker_has_input)
5857 {
5858 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5859 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5860 return FALSE;
5861 }
5862 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5863 if (s != NULL && s->linker_has_input)
5864 {
5865 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5866 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5867 return FALSE;
5868 }
5869
5870 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5871 /* If .dynstr is excluded from the link, we don't want any of
5872 these tags. Strictly, we should be checking each section
5873 individually; This quick check covers for the case where
5874 someone does a /DISCARD/ : { *(*) }. */
5875 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5876 {
5877 bfd_size_type strsize;
5878
5879 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5880 if ((info->emit_hash
5881 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5882 || (info->emit_gnu_hash
5883 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5884 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5885 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5886 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5887 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5888 bed->s->sizeof_sym))
5889 return FALSE;
5890 }
5891 }
5892
5893 /* The backend must work out the sizes of all the other dynamic
5894 sections. */
5895 if (bed->elf_backend_size_dynamic_sections
5896 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5897 return FALSE;
5898
5899 if (elf_hash_table (info)->dynamic_sections_created)
5900 {
5901 unsigned long section_sym_count;
5902 asection *s;
5903
5904 /* Set up the version definition section. */
5905 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5906 BFD_ASSERT (s != NULL);
5907
5908 /* We may have created additional version definitions if we are
5909 just linking a regular application. */
5910 verdefs = asvinfo.verdefs;
5911
5912 /* Skip anonymous version tag. */
5913 if (verdefs != NULL && verdefs->vernum == 0)
5914 verdefs = verdefs->next;
5915
5916 if (verdefs == NULL && !info->create_default_symver)
5917 s->flags |= SEC_EXCLUDE;
5918 else
5919 {
5920 unsigned int cdefs;
5921 bfd_size_type size;
5922 struct bfd_elf_version_tree *t;
5923 bfd_byte *p;
5924 Elf_Internal_Verdef def;
5925 Elf_Internal_Verdaux defaux;
5926 struct bfd_link_hash_entry *bh;
5927 struct elf_link_hash_entry *h;
5928 const char *name;
5929
5930 cdefs = 0;
5931 size = 0;
5932
5933 /* Make space for the base version. */
5934 size += sizeof (Elf_External_Verdef);
5935 size += sizeof (Elf_External_Verdaux);
5936 ++cdefs;
5937
5938 /* Make space for the default version. */
5939 if (info->create_default_symver)
5940 {
5941 size += sizeof (Elf_External_Verdef);
5942 ++cdefs;
5943 }
5944
5945 for (t = verdefs; t != NULL; t = t->next)
5946 {
5947 struct bfd_elf_version_deps *n;
5948
5949 /* Don't emit base version twice. */
5950 if (t->vernum == 0)
5951 continue;
5952
5953 size += sizeof (Elf_External_Verdef);
5954 size += sizeof (Elf_External_Verdaux);
5955 ++cdefs;
5956
5957 for (n = t->deps; n != NULL; n = n->next)
5958 size += sizeof (Elf_External_Verdaux);
5959 }
5960
5961 s->size = size;
5962 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5963 if (s->contents == NULL && s->size != 0)
5964 return FALSE;
5965
5966 /* Fill in the version definition section. */
5967
5968 p = s->contents;
5969
5970 def.vd_version = VER_DEF_CURRENT;
5971 def.vd_flags = VER_FLG_BASE;
5972 def.vd_ndx = 1;
5973 def.vd_cnt = 1;
5974 if (info->create_default_symver)
5975 {
5976 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5977 def.vd_next = sizeof (Elf_External_Verdef);
5978 }
5979 else
5980 {
5981 def.vd_aux = sizeof (Elf_External_Verdef);
5982 def.vd_next = (sizeof (Elf_External_Verdef)
5983 + sizeof (Elf_External_Verdaux));
5984 }
5985
5986 if (soname_indx != (bfd_size_type) -1)
5987 {
5988 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5989 soname_indx);
5990 def.vd_hash = bfd_elf_hash (soname);
5991 defaux.vda_name = soname_indx;
5992 name = soname;
5993 }
5994 else
5995 {
5996 bfd_size_type indx;
5997
5998 name = lbasename (output_bfd->filename);
5999 def.vd_hash = bfd_elf_hash (name);
6000 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6001 name, FALSE);
6002 if (indx == (bfd_size_type) -1)
6003 return FALSE;
6004 defaux.vda_name = indx;
6005 }
6006 defaux.vda_next = 0;
6007
6008 _bfd_elf_swap_verdef_out (output_bfd, &def,
6009 (Elf_External_Verdef *) p);
6010 p += sizeof (Elf_External_Verdef);
6011 if (info->create_default_symver)
6012 {
6013 /* Add a symbol representing this version. */
6014 bh = NULL;
6015 if (! (_bfd_generic_link_add_one_symbol
6016 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6017 0, NULL, FALSE,
6018 get_elf_backend_data (dynobj)->collect, &bh)))
6019 return FALSE;
6020 h = (struct elf_link_hash_entry *) bh;
6021 h->non_elf = 0;
6022 h->def_regular = 1;
6023 h->type = STT_OBJECT;
6024 h->verinfo.vertree = NULL;
6025
6026 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6027 return FALSE;
6028
6029 /* Create a duplicate of the base version with the same
6030 aux block, but different flags. */
6031 def.vd_flags = 0;
6032 def.vd_ndx = 2;
6033 def.vd_aux = sizeof (Elf_External_Verdef);
6034 if (verdefs)
6035 def.vd_next = (sizeof (Elf_External_Verdef)
6036 + sizeof (Elf_External_Verdaux));
6037 else
6038 def.vd_next = 0;
6039 _bfd_elf_swap_verdef_out (output_bfd, &def,
6040 (Elf_External_Verdef *) p);
6041 p += sizeof (Elf_External_Verdef);
6042 }
6043 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6044 (Elf_External_Verdaux *) p);
6045 p += sizeof (Elf_External_Verdaux);
6046
6047 for (t = verdefs; t != NULL; t = t->next)
6048 {
6049 unsigned int cdeps;
6050 struct bfd_elf_version_deps *n;
6051
6052 /* Don't emit the base version twice. */
6053 if (t->vernum == 0)
6054 continue;
6055
6056 cdeps = 0;
6057 for (n = t->deps; n != NULL; n = n->next)
6058 ++cdeps;
6059
6060 /* Add a symbol representing this version. */
6061 bh = NULL;
6062 if (! (_bfd_generic_link_add_one_symbol
6063 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6064 0, NULL, FALSE,
6065 get_elf_backend_data (dynobj)->collect, &bh)))
6066 return FALSE;
6067 h = (struct elf_link_hash_entry *) bh;
6068 h->non_elf = 0;
6069 h->def_regular = 1;
6070 h->type = STT_OBJECT;
6071 h->verinfo.vertree = t;
6072
6073 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6074 return FALSE;
6075
6076 def.vd_version = VER_DEF_CURRENT;
6077 def.vd_flags = 0;
6078 if (t->globals.list == NULL
6079 && t->locals.list == NULL
6080 && ! t->used)
6081 def.vd_flags |= VER_FLG_WEAK;
6082 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6083 def.vd_cnt = cdeps + 1;
6084 def.vd_hash = bfd_elf_hash (t->name);
6085 def.vd_aux = sizeof (Elf_External_Verdef);
6086 def.vd_next = 0;
6087
6088 /* If a basever node is next, it *must* be the last node in
6089 the chain, otherwise Verdef construction breaks. */
6090 if (t->next != NULL && t->next->vernum == 0)
6091 BFD_ASSERT (t->next->next == NULL);
6092
6093 if (t->next != NULL && t->next->vernum != 0)
6094 def.vd_next = (sizeof (Elf_External_Verdef)
6095 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6096
6097 _bfd_elf_swap_verdef_out (output_bfd, &def,
6098 (Elf_External_Verdef *) p);
6099 p += sizeof (Elf_External_Verdef);
6100
6101 defaux.vda_name = h->dynstr_index;
6102 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6103 h->dynstr_index);
6104 defaux.vda_next = 0;
6105 if (t->deps != NULL)
6106 defaux.vda_next = sizeof (Elf_External_Verdaux);
6107 t->name_indx = defaux.vda_name;
6108
6109 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6110 (Elf_External_Verdaux *) p);
6111 p += sizeof (Elf_External_Verdaux);
6112
6113 for (n = t->deps; n != NULL; n = n->next)
6114 {
6115 if (n->version_needed == NULL)
6116 {
6117 /* This can happen if there was an error in the
6118 version script. */
6119 defaux.vda_name = 0;
6120 }
6121 else
6122 {
6123 defaux.vda_name = n->version_needed->name_indx;
6124 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6125 defaux.vda_name);
6126 }
6127 if (n->next == NULL)
6128 defaux.vda_next = 0;
6129 else
6130 defaux.vda_next = sizeof (Elf_External_Verdaux);
6131
6132 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6133 (Elf_External_Verdaux *) p);
6134 p += sizeof (Elf_External_Verdaux);
6135 }
6136 }
6137
6138 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6139 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6140 return FALSE;
6141
6142 elf_tdata (output_bfd)->cverdefs = cdefs;
6143 }
6144
6145 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6146 {
6147 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6148 return FALSE;
6149 }
6150 else if (info->flags & DF_BIND_NOW)
6151 {
6152 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6153 return FALSE;
6154 }
6155
6156 if (info->flags_1)
6157 {
6158 if (info->executable)
6159 info->flags_1 &= ~ (DF_1_INITFIRST
6160 | DF_1_NODELETE
6161 | DF_1_NOOPEN);
6162 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6163 return FALSE;
6164 }
6165
6166 /* Work out the size of the version reference section. */
6167
6168 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
6169 BFD_ASSERT (s != NULL);
6170 {
6171 struct elf_find_verdep_info sinfo;
6172
6173 sinfo.info = info;
6174 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6175 if (sinfo.vers == 0)
6176 sinfo.vers = 1;
6177 sinfo.failed = FALSE;
6178
6179 elf_link_hash_traverse (elf_hash_table (info),
6180 _bfd_elf_link_find_version_dependencies,
6181 &sinfo);
6182 if (sinfo.failed)
6183 return FALSE;
6184
6185 if (elf_tdata (output_bfd)->verref == NULL)
6186 s->flags |= SEC_EXCLUDE;
6187 else
6188 {
6189 Elf_Internal_Verneed *t;
6190 unsigned int size;
6191 unsigned int crefs;
6192 bfd_byte *p;
6193
6194 /* Build the version dependency section. */
6195 size = 0;
6196 crefs = 0;
6197 for (t = elf_tdata (output_bfd)->verref;
6198 t != NULL;
6199 t = t->vn_nextref)
6200 {
6201 Elf_Internal_Vernaux *a;
6202
6203 size += sizeof (Elf_External_Verneed);
6204 ++crefs;
6205 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6206 size += sizeof (Elf_External_Vernaux);
6207 }
6208
6209 s->size = size;
6210 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6211 if (s->contents == NULL)
6212 return FALSE;
6213
6214 p = s->contents;
6215 for (t = elf_tdata (output_bfd)->verref;
6216 t != NULL;
6217 t = t->vn_nextref)
6218 {
6219 unsigned int caux;
6220 Elf_Internal_Vernaux *a;
6221 bfd_size_type indx;
6222
6223 caux = 0;
6224 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6225 ++caux;
6226
6227 t->vn_version = VER_NEED_CURRENT;
6228 t->vn_cnt = caux;
6229 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6230 elf_dt_name (t->vn_bfd) != NULL
6231 ? elf_dt_name (t->vn_bfd)
6232 : lbasename (t->vn_bfd->filename),
6233 FALSE);
6234 if (indx == (bfd_size_type) -1)
6235 return FALSE;
6236 t->vn_file = indx;
6237 t->vn_aux = sizeof (Elf_External_Verneed);
6238 if (t->vn_nextref == NULL)
6239 t->vn_next = 0;
6240 else
6241 t->vn_next = (sizeof (Elf_External_Verneed)
6242 + caux * sizeof (Elf_External_Vernaux));
6243
6244 _bfd_elf_swap_verneed_out (output_bfd, t,
6245 (Elf_External_Verneed *) p);
6246 p += sizeof (Elf_External_Verneed);
6247
6248 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6249 {
6250 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6251 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6252 a->vna_nodename, FALSE);
6253 if (indx == (bfd_size_type) -1)
6254 return FALSE;
6255 a->vna_name = indx;
6256 if (a->vna_nextptr == NULL)
6257 a->vna_next = 0;
6258 else
6259 a->vna_next = sizeof (Elf_External_Vernaux);
6260
6261 _bfd_elf_swap_vernaux_out (output_bfd, a,
6262 (Elf_External_Vernaux *) p);
6263 p += sizeof (Elf_External_Vernaux);
6264 }
6265 }
6266
6267 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6268 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6269 return FALSE;
6270
6271 elf_tdata (output_bfd)->cverrefs = crefs;
6272 }
6273 }
6274
6275 if ((elf_tdata (output_bfd)->cverrefs == 0
6276 && elf_tdata (output_bfd)->cverdefs == 0)
6277 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6278 &section_sym_count) == 0)
6279 {
6280 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6281 s->flags |= SEC_EXCLUDE;
6282 }
6283 }
6284 return TRUE;
6285 }
6286
6287 /* Find the first non-excluded output section. We'll use its
6288 section symbol for some emitted relocs. */
6289 void
6290 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6291 {
6292 asection *s;
6293
6294 for (s = output_bfd->sections; s != NULL; s = s->next)
6295 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6296 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6297 {
6298 elf_hash_table (info)->text_index_section = s;
6299 break;
6300 }
6301 }
6302
6303 /* Find two non-excluded output sections, one for code, one for data.
6304 We'll use their section symbols for some emitted relocs. */
6305 void
6306 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6307 {
6308 asection *s;
6309
6310 /* Data first, since setting text_index_section changes
6311 _bfd_elf_link_omit_section_dynsym. */
6312 for (s = output_bfd->sections; s != NULL; s = s->next)
6313 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6314 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6315 {
6316 elf_hash_table (info)->data_index_section = s;
6317 break;
6318 }
6319
6320 for (s = output_bfd->sections; s != NULL; s = s->next)
6321 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6322 == (SEC_ALLOC | SEC_READONLY))
6323 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6324 {
6325 elf_hash_table (info)->text_index_section = s;
6326 break;
6327 }
6328
6329 if (elf_hash_table (info)->text_index_section == NULL)
6330 elf_hash_table (info)->text_index_section
6331 = elf_hash_table (info)->data_index_section;
6332 }
6333
6334 bfd_boolean
6335 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6336 {
6337 const struct elf_backend_data *bed;
6338
6339 if (!is_elf_hash_table (info->hash))
6340 return TRUE;
6341
6342 bed = get_elf_backend_data (output_bfd);
6343 (*bed->elf_backend_init_index_section) (output_bfd, info);
6344
6345 if (elf_hash_table (info)->dynamic_sections_created)
6346 {
6347 bfd *dynobj;
6348 asection *s;
6349 bfd_size_type dynsymcount;
6350 unsigned long section_sym_count;
6351 unsigned int dtagcount;
6352
6353 dynobj = elf_hash_table (info)->dynobj;
6354
6355 /* Assign dynsym indicies. In a shared library we generate a
6356 section symbol for each output section, which come first.
6357 Next come all of the back-end allocated local dynamic syms,
6358 followed by the rest of the global symbols. */
6359
6360 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6361 &section_sym_count);
6362
6363 /* Work out the size of the symbol version section. */
6364 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6365 BFD_ASSERT (s != NULL);
6366 if (dynsymcount != 0
6367 && (s->flags & SEC_EXCLUDE) == 0)
6368 {
6369 s->size = dynsymcount * sizeof (Elf_External_Versym);
6370 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6371 if (s->contents == NULL)
6372 return FALSE;
6373
6374 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6375 return FALSE;
6376 }
6377
6378 /* Set the size of the .dynsym and .hash sections. We counted
6379 the number of dynamic symbols in elf_link_add_object_symbols.
6380 We will build the contents of .dynsym and .hash when we build
6381 the final symbol table, because until then we do not know the
6382 correct value to give the symbols. We built the .dynstr
6383 section as we went along in elf_link_add_object_symbols. */
6384 s = bfd_get_section_by_name (dynobj, ".dynsym");
6385 BFD_ASSERT (s != NULL);
6386 s->size = dynsymcount * bed->s->sizeof_sym;
6387
6388 if (dynsymcount != 0)
6389 {
6390 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6391 if (s->contents == NULL)
6392 return FALSE;
6393
6394 /* The first entry in .dynsym is a dummy symbol.
6395 Clear all the section syms, in case we don't output them all. */
6396 ++section_sym_count;
6397 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6398 }
6399
6400 elf_hash_table (info)->bucketcount = 0;
6401
6402 /* Compute the size of the hashing table. As a side effect this
6403 computes the hash values for all the names we export. */
6404 if (info->emit_hash)
6405 {
6406 unsigned long int *hashcodes;
6407 struct hash_codes_info hashinf;
6408 bfd_size_type amt;
6409 unsigned long int nsyms;
6410 size_t bucketcount;
6411 size_t hash_entry_size;
6412
6413 /* Compute the hash values for all exported symbols. At the same
6414 time store the values in an array so that we could use them for
6415 optimizations. */
6416 amt = dynsymcount * sizeof (unsigned long int);
6417 hashcodes = (unsigned long int *) bfd_malloc (amt);
6418 if (hashcodes == NULL)
6419 return FALSE;
6420 hashinf.hashcodes = hashcodes;
6421 hashinf.error = FALSE;
6422
6423 /* Put all hash values in HASHCODES. */
6424 elf_link_hash_traverse (elf_hash_table (info),
6425 elf_collect_hash_codes, &hashinf);
6426 if (hashinf.error)
6427 {
6428 free (hashcodes);
6429 return FALSE;
6430 }
6431
6432 nsyms = hashinf.hashcodes - hashcodes;
6433 bucketcount
6434 = compute_bucket_count (info, hashcodes, nsyms, 0);
6435 free (hashcodes);
6436
6437 if (bucketcount == 0)
6438 return FALSE;
6439
6440 elf_hash_table (info)->bucketcount = bucketcount;
6441
6442 s = bfd_get_section_by_name (dynobj, ".hash");
6443 BFD_ASSERT (s != NULL);
6444 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6445 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6446 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6447 if (s->contents == NULL)
6448 return FALSE;
6449
6450 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6451 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6452 s->contents + hash_entry_size);
6453 }
6454
6455 if (info->emit_gnu_hash)
6456 {
6457 size_t i, cnt;
6458 unsigned char *contents;
6459 struct collect_gnu_hash_codes cinfo;
6460 bfd_size_type amt;
6461 size_t bucketcount;
6462
6463 memset (&cinfo, 0, sizeof (cinfo));
6464
6465 /* Compute the hash values for all exported symbols. At the same
6466 time store the values in an array so that we could use them for
6467 optimizations. */
6468 amt = dynsymcount * 2 * sizeof (unsigned long int);
6469 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6470 if (cinfo.hashcodes == NULL)
6471 return FALSE;
6472
6473 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6474 cinfo.min_dynindx = -1;
6475 cinfo.output_bfd = output_bfd;
6476 cinfo.bed = bed;
6477
6478 /* Put all hash values in HASHCODES. */
6479 elf_link_hash_traverse (elf_hash_table (info),
6480 elf_collect_gnu_hash_codes, &cinfo);
6481 if (cinfo.error)
6482 {
6483 free (cinfo.hashcodes);
6484 return FALSE;
6485 }
6486
6487 bucketcount
6488 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6489
6490 if (bucketcount == 0)
6491 {
6492 free (cinfo.hashcodes);
6493 return FALSE;
6494 }
6495
6496 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6497 BFD_ASSERT (s != NULL);
6498
6499 if (cinfo.nsyms == 0)
6500 {
6501 /* Empty .gnu.hash section is special. */
6502 BFD_ASSERT (cinfo.min_dynindx == -1);
6503 free (cinfo.hashcodes);
6504 s->size = 5 * 4 + bed->s->arch_size / 8;
6505 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6506 if (contents == NULL)
6507 return FALSE;
6508 s->contents = contents;
6509 /* 1 empty bucket. */
6510 bfd_put_32 (output_bfd, 1, contents);
6511 /* SYMIDX above the special symbol 0. */
6512 bfd_put_32 (output_bfd, 1, contents + 4);
6513 /* Just one word for bitmask. */
6514 bfd_put_32 (output_bfd, 1, contents + 8);
6515 /* Only hash fn bloom filter. */
6516 bfd_put_32 (output_bfd, 0, contents + 12);
6517 /* No hashes are valid - empty bitmask. */
6518 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6519 /* No hashes in the only bucket. */
6520 bfd_put_32 (output_bfd, 0,
6521 contents + 16 + bed->s->arch_size / 8);
6522 }
6523 else
6524 {
6525 unsigned long int maskwords, maskbitslog2;
6526 BFD_ASSERT (cinfo.min_dynindx != -1);
6527
6528 maskbitslog2 = bfd_log2 (cinfo.nsyms) + 1;
6529 if (maskbitslog2 < 3)
6530 maskbitslog2 = 5;
6531 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6532 maskbitslog2 = maskbitslog2 + 3;
6533 else
6534 maskbitslog2 = maskbitslog2 + 2;
6535 if (bed->s->arch_size == 64)
6536 {
6537 if (maskbitslog2 == 5)
6538 maskbitslog2 = 6;
6539 cinfo.shift1 = 6;
6540 }
6541 else
6542 cinfo.shift1 = 5;
6543 cinfo.mask = (1 << cinfo.shift1) - 1;
6544 cinfo.shift2 = maskbitslog2;
6545 cinfo.maskbits = 1 << maskbitslog2;
6546 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6547 amt = bucketcount * sizeof (unsigned long int) * 2;
6548 amt += maskwords * sizeof (bfd_vma);
6549 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6550 if (cinfo.bitmask == NULL)
6551 {
6552 free (cinfo.hashcodes);
6553 return FALSE;
6554 }
6555
6556 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6557 cinfo.indx = cinfo.counts + bucketcount;
6558 cinfo.symindx = dynsymcount - cinfo.nsyms;
6559 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6560
6561 /* Determine how often each hash bucket is used. */
6562 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6563 for (i = 0; i < cinfo.nsyms; ++i)
6564 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6565
6566 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6567 if (cinfo.counts[i] != 0)
6568 {
6569 cinfo.indx[i] = cnt;
6570 cnt += cinfo.counts[i];
6571 }
6572 BFD_ASSERT (cnt == dynsymcount);
6573 cinfo.bucketcount = bucketcount;
6574 cinfo.local_indx = cinfo.min_dynindx;
6575
6576 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6577 s->size += cinfo.maskbits / 8;
6578 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6579 if (contents == NULL)
6580 {
6581 free (cinfo.bitmask);
6582 free (cinfo.hashcodes);
6583 return FALSE;
6584 }
6585
6586 s->contents = contents;
6587 bfd_put_32 (output_bfd, bucketcount, contents);
6588 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6589 bfd_put_32 (output_bfd, maskwords, contents + 8);
6590 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6591 contents += 16 + cinfo.maskbits / 8;
6592
6593 for (i = 0; i < bucketcount; ++i)
6594 {
6595 if (cinfo.counts[i] == 0)
6596 bfd_put_32 (output_bfd, 0, contents);
6597 else
6598 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6599 contents += 4;
6600 }
6601
6602 cinfo.contents = contents;
6603
6604 /* Renumber dynamic symbols, populate .gnu.hash section. */
6605 elf_link_hash_traverse (elf_hash_table (info),
6606 elf_renumber_gnu_hash_syms, &cinfo);
6607
6608 contents = s->contents + 16;
6609 for (i = 0; i < maskwords; ++i)
6610 {
6611 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6612 contents);
6613 contents += bed->s->arch_size / 8;
6614 }
6615
6616 free (cinfo.bitmask);
6617 free (cinfo.hashcodes);
6618 }
6619 }
6620
6621 s = bfd_get_section_by_name (dynobj, ".dynstr");
6622 BFD_ASSERT (s != NULL);
6623
6624 elf_finalize_dynstr (output_bfd, info);
6625
6626 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6627
6628 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6629 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6630 return FALSE;
6631 }
6632
6633 return TRUE;
6634 }
6635 \f
6636 /* Indicate that we are only retrieving symbol values from this
6637 section. */
6638
6639 void
6640 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6641 {
6642 if (is_elf_hash_table (info->hash))
6643 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6644 _bfd_generic_link_just_syms (sec, info);
6645 }
6646
6647 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6648
6649 static void
6650 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6651 asection *sec)
6652 {
6653 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6654 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6655 }
6656
6657 /* Finish SHF_MERGE section merging. */
6658
6659 bfd_boolean
6660 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6661 {
6662 bfd *ibfd;
6663 asection *sec;
6664
6665 if (!is_elf_hash_table (info->hash))
6666 return FALSE;
6667
6668 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6669 if ((ibfd->flags & DYNAMIC) == 0)
6670 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6671 if ((sec->flags & SEC_MERGE) != 0
6672 && !bfd_is_abs_section (sec->output_section))
6673 {
6674 struct bfd_elf_section_data *secdata;
6675
6676 secdata = elf_section_data (sec);
6677 if (! _bfd_add_merge_section (abfd,
6678 &elf_hash_table (info)->merge_info,
6679 sec, &secdata->sec_info))
6680 return FALSE;
6681 else if (secdata->sec_info)
6682 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6683 }
6684
6685 if (elf_hash_table (info)->merge_info != NULL)
6686 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6687 merge_sections_remove_hook);
6688 return TRUE;
6689 }
6690
6691 /* Create an entry in an ELF linker hash table. */
6692
6693 struct bfd_hash_entry *
6694 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6695 struct bfd_hash_table *table,
6696 const char *string)
6697 {
6698 /* Allocate the structure if it has not already been allocated by a
6699 subclass. */
6700 if (entry == NULL)
6701 {
6702 entry = (struct bfd_hash_entry *)
6703 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6704 if (entry == NULL)
6705 return entry;
6706 }
6707
6708 /* Call the allocation method of the superclass. */
6709 entry = _bfd_link_hash_newfunc (entry, table, string);
6710 if (entry != NULL)
6711 {
6712 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6713 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6714
6715 /* Set local fields. */
6716 ret->indx = -1;
6717 ret->dynindx = -1;
6718 ret->got = htab->init_got_refcount;
6719 ret->plt = htab->init_plt_refcount;
6720 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6721 - offsetof (struct elf_link_hash_entry, size)));
6722 /* Assume that we have been called by a non-ELF symbol reader.
6723 This flag is then reset by the code which reads an ELF input
6724 file. This ensures that a symbol created by a non-ELF symbol
6725 reader will have the flag set correctly. */
6726 ret->non_elf = 1;
6727 }
6728
6729 return entry;
6730 }
6731
6732 /* Copy data from an indirect symbol to its direct symbol, hiding the
6733 old indirect symbol. Also used for copying flags to a weakdef. */
6734
6735 void
6736 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6737 struct elf_link_hash_entry *dir,
6738 struct elf_link_hash_entry *ind)
6739 {
6740 struct elf_link_hash_table *htab;
6741
6742 /* Copy down any references that we may have already seen to the
6743 symbol which just became indirect. */
6744
6745 dir->ref_dynamic |= ind->ref_dynamic;
6746 dir->ref_regular |= ind->ref_regular;
6747 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6748 dir->non_got_ref |= ind->non_got_ref;
6749 dir->needs_plt |= ind->needs_plt;
6750 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6751
6752 if (ind->root.type != bfd_link_hash_indirect)
6753 return;
6754
6755 /* Copy over the global and procedure linkage table refcount entries.
6756 These may have been already set up by a check_relocs routine. */
6757 htab = elf_hash_table (info);
6758 if (ind->got.refcount > htab->init_got_refcount.refcount)
6759 {
6760 if (dir->got.refcount < 0)
6761 dir->got.refcount = 0;
6762 dir->got.refcount += ind->got.refcount;
6763 ind->got.refcount = htab->init_got_refcount.refcount;
6764 }
6765
6766 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6767 {
6768 if (dir->plt.refcount < 0)
6769 dir->plt.refcount = 0;
6770 dir->plt.refcount += ind->plt.refcount;
6771 ind->plt.refcount = htab->init_plt_refcount.refcount;
6772 }
6773
6774 if (ind->dynindx != -1)
6775 {
6776 if (dir->dynindx != -1)
6777 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6778 dir->dynindx = ind->dynindx;
6779 dir->dynstr_index = ind->dynstr_index;
6780 ind->dynindx = -1;
6781 ind->dynstr_index = 0;
6782 }
6783 }
6784
6785 void
6786 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6787 struct elf_link_hash_entry *h,
6788 bfd_boolean force_local)
6789 {
6790 /* STT_GNU_IFUNC symbol must go through PLT. */
6791 if (h->type != STT_GNU_IFUNC)
6792 {
6793 h->plt = elf_hash_table (info)->init_plt_offset;
6794 h->needs_plt = 0;
6795 }
6796 if (force_local)
6797 {
6798 h->forced_local = 1;
6799 if (h->dynindx != -1)
6800 {
6801 h->dynindx = -1;
6802 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6803 h->dynstr_index);
6804 }
6805 }
6806 }
6807
6808 /* Initialize an ELF linker hash table. */
6809
6810 bfd_boolean
6811 _bfd_elf_link_hash_table_init
6812 (struct elf_link_hash_table *table,
6813 bfd *abfd,
6814 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6815 struct bfd_hash_table *,
6816 const char *),
6817 unsigned int entsize,
6818 enum elf_target_id target_id)
6819 {
6820 bfd_boolean ret;
6821 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6822
6823 memset (table, 0, sizeof * table);
6824 table->init_got_refcount.refcount = can_refcount - 1;
6825 table->init_plt_refcount.refcount = can_refcount - 1;
6826 table->init_got_offset.offset = -(bfd_vma) 1;
6827 table->init_plt_offset.offset = -(bfd_vma) 1;
6828 /* The first dynamic symbol is a dummy. */
6829 table->dynsymcount = 1;
6830
6831 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6832
6833 table->root.type = bfd_link_elf_hash_table;
6834 table->hash_table_id = target_id;
6835
6836 return ret;
6837 }
6838
6839 /* Create an ELF linker hash table. */
6840
6841 struct bfd_link_hash_table *
6842 _bfd_elf_link_hash_table_create (bfd *abfd)
6843 {
6844 struct elf_link_hash_table *ret;
6845 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6846
6847 ret = (struct elf_link_hash_table *) bfd_malloc (amt);
6848 if (ret == NULL)
6849 return NULL;
6850
6851 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6852 sizeof (struct elf_link_hash_entry),
6853 GENERIC_ELF_DATA))
6854 {
6855 free (ret);
6856 return NULL;
6857 }
6858
6859 return &ret->root;
6860 }
6861
6862 /* This is a hook for the ELF emulation code in the generic linker to
6863 tell the backend linker what file name to use for the DT_NEEDED
6864 entry for a dynamic object. */
6865
6866 void
6867 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6868 {
6869 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6870 && bfd_get_format (abfd) == bfd_object)
6871 elf_dt_name (abfd) = name;
6872 }
6873
6874 int
6875 bfd_elf_get_dyn_lib_class (bfd *abfd)
6876 {
6877 int lib_class;
6878 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6879 && bfd_get_format (abfd) == bfd_object)
6880 lib_class = elf_dyn_lib_class (abfd);
6881 else
6882 lib_class = 0;
6883 return lib_class;
6884 }
6885
6886 void
6887 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6888 {
6889 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6890 && bfd_get_format (abfd) == bfd_object)
6891 elf_dyn_lib_class (abfd) = lib_class;
6892 }
6893
6894 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6895 the linker ELF emulation code. */
6896
6897 struct bfd_link_needed_list *
6898 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6899 struct bfd_link_info *info)
6900 {
6901 if (! is_elf_hash_table (info->hash))
6902 return NULL;
6903 return elf_hash_table (info)->needed;
6904 }
6905
6906 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6907 hook for the linker ELF emulation code. */
6908
6909 struct bfd_link_needed_list *
6910 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6911 struct bfd_link_info *info)
6912 {
6913 if (! is_elf_hash_table (info->hash))
6914 return NULL;
6915 return elf_hash_table (info)->runpath;
6916 }
6917
6918 /* Get the name actually used for a dynamic object for a link. This
6919 is the SONAME entry if there is one. Otherwise, it is the string
6920 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6921
6922 const char *
6923 bfd_elf_get_dt_soname (bfd *abfd)
6924 {
6925 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6926 && bfd_get_format (abfd) == bfd_object)
6927 return elf_dt_name (abfd);
6928 return NULL;
6929 }
6930
6931 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6932 the ELF linker emulation code. */
6933
6934 bfd_boolean
6935 bfd_elf_get_bfd_needed_list (bfd *abfd,
6936 struct bfd_link_needed_list **pneeded)
6937 {
6938 asection *s;
6939 bfd_byte *dynbuf = NULL;
6940 unsigned int elfsec;
6941 unsigned long shlink;
6942 bfd_byte *extdyn, *extdynend;
6943 size_t extdynsize;
6944 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6945
6946 *pneeded = NULL;
6947
6948 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6949 || bfd_get_format (abfd) != bfd_object)
6950 return TRUE;
6951
6952 s = bfd_get_section_by_name (abfd, ".dynamic");
6953 if (s == NULL || s->size == 0)
6954 return TRUE;
6955
6956 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6957 goto error_return;
6958
6959 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6960 if (elfsec == SHN_BAD)
6961 goto error_return;
6962
6963 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6964
6965 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6966 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6967
6968 extdyn = dynbuf;
6969 extdynend = extdyn + s->size;
6970 for (; extdyn < extdynend; extdyn += extdynsize)
6971 {
6972 Elf_Internal_Dyn dyn;
6973
6974 (*swap_dyn_in) (abfd, extdyn, &dyn);
6975
6976 if (dyn.d_tag == DT_NULL)
6977 break;
6978
6979 if (dyn.d_tag == DT_NEEDED)
6980 {
6981 const char *string;
6982 struct bfd_link_needed_list *l;
6983 unsigned int tagv = dyn.d_un.d_val;
6984 bfd_size_type amt;
6985
6986 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6987 if (string == NULL)
6988 goto error_return;
6989
6990 amt = sizeof *l;
6991 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
6992 if (l == NULL)
6993 goto error_return;
6994
6995 l->by = abfd;
6996 l->name = string;
6997 l->next = *pneeded;
6998 *pneeded = l;
6999 }
7000 }
7001
7002 free (dynbuf);
7003
7004 return TRUE;
7005
7006 error_return:
7007 if (dynbuf != NULL)
7008 free (dynbuf);
7009 return FALSE;
7010 }
7011
7012 struct elf_symbuf_symbol
7013 {
7014 unsigned long st_name; /* Symbol name, index in string tbl */
7015 unsigned char st_info; /* Type and binding attributes */
7016 unsigned char st_other; /* Visibilty, and target specific */
7017 };
7018
7019 struct elf_symbuf_head
7020 {
7021 struct elf_symbuf_symbol *ssym;
7022 bfd_size_type count;
7023 unsigned int st_shndx;
7024 };
7025
7026 struct elf_symbol
7027 {
7028 union
7029 {
7030 Elf_Internal_Sym *isym;
7031 struct elf_symbuf_symbol *ssym;
7032 } u;
7033 const char *name;
7034 };
7035
7036 /* Sort references to symbols by ascending section number. */
7037
7038 static int
7039 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7040 {
7041 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7042 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7043
7044 return s1->st_shndx - s2->st_shndx;
7045 }
7046
7047 static int
7048 elf_sym_name_compare (const void *arg1, const void *arg2)
7049 {
7050 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7051 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7052 return strcmp (s1->name, s2->name);
7053 }
7054
7055 static struct elf_symbuf_head *
7056 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7057 {
7058 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7059 struct elf_symbuf_symbol *ssym;
7060 struct elf_symbuf_head *ssymbuf, *ssymhead;
7061 bfd_size_type i, shndx_count, total_size;
7062
7063 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7064 if (indbuf == NULL)
7065 return NULL;
7066
7067 for (ind = indbuf, i = 0; i < symcount; i++)
7068 if (isymbuf[i].st_shndx != SHN_UNDEF)
7069 *ind++ = &isymbuf[i];
7070 indbufend = ind;
7071
7072 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7073 elf_sort_elf_symbol);
7074
7075 shndx_count = 0;
7076 if (indbufend > indbuf)
7077 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7078 if (ind[0]->st_shndx != ind[1]->st_shndx)
7079 shndx_count++;
7080
7081 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7082 + (indbufend - indbuf) * sizeof (*ssym));
7083 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7084 if (ssymbuf == NULL)
7085 {
7086 free (indbuf);
7087 return NULL;
7088 }
7089
7090 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7091 ssymbuf->ssym = NULL;
7092 ssymbuf->count = shndx_count;
7093 ssymbuf->st_shndx = 0;
7094 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7095 {
7096 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7097 {
7098 ssymhead++;
7099 ssymhead->ssym = ssym;
7100 ssymhead->count = 0;
7101 ssymhead->st_shndx = (*ind)->st_shndx;
7102 }
7103 ssym->st_name = (*ind)->st_name;
7104 ssym->st_info = (*ind)->st_info;
7105 ssym->st_other = (*ind)->st_other;
7106 ssymhead->count++;
7107 }
7108 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7109 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7110 == total_size));
7111
7112 free (indbuf);
7113 return ssymbuf;
7114 }
7115
7116 /* Check if 2 sections define the same set of local and global
7117 symbols. */
7118
7119 static bfd_boolean
7120 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7121 struct bfd_link_info *info)
7122 {
7123 bfd *bfd1, *bfd2;
7124 const struct elf_backend_data *bed1, *bed2;
7125 Elf_Internal_Shdr *hdr1, *hdr2;
7126 bfd_size_type symcount1, symcount2;
7127 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7128 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7129 Elf_Internal_Sym *isym, *isymend;
7130 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7131 bfd_size_type count1, count2, i;
7132 unsigned int shndx1, shndx2;
7133 bfd_boolean result;
7134
7135 bfd1 = sec1->owner;
7136 bfd2 = sec2->owner;
7137
7138 /* Both sections have to be in ELF. */
7139 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7140 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7141 return FALSE;
7142
7143 if (elf_section_type (sec1) != elf_section_type (sec2))
7144 return FALSE;
7145
7146 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7147 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7148 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7149 return FALSE;
7150
7151 bed1 = get_elf_backend_data (bfd1);
7152 bed2 = get_elf_backend_data (bfd2);
7153 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7154 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7155 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7156 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7157
7158 if (symcount1 == 0 || symcount2 == 0)
7159 return FALSE;
7160
7161 result = FALSE;
7162 isymbuf1 = NULL;
7163 isymbuf2 = NULL;
7164 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7165 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7166
7167 if (ssymbuf1 == NULL)
7168 {
7169 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7170 NULL, NULL, NULL);
7171 if (isymbuf1 == NULL)
7172 goto done;
7173
7174 if (!info->reduce_memory_overheads)
7175 elf_tdata (bfd1)->symbuf = ssymbuf1
7176 = elf_create_symbuf (symcount1, isymbuf1);
7177 }
7178
7179 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7180 {
7181 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7182 NULL, NULL, NULL);
7183 if (isymbuf2 == NULL)
7184 goto done;
7185
7186 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7187 elf_tdata (bfd2)->symbuf = ssymbuf2
7188 = elf_create_symbuf (symcount2, isymbuf2);
7189 }
7190
7191 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7192 {
7193 /* Optimized faster version. */
7194 bfd_size_type lo, hi, mid;
7195 struct elf_symbol *symp;
7196 struct elf_symbuf_symbol *ssym, *ssymend;
7197
7198 lo = 0;
7199 hi = ssymbuf1->count;
7200 ssymbuf1++;
7201 count1 = 0;
7202 while (lo < hi)
7203 {
7204 mid = (lo + hi) / 2;
7205 if (shndx1 < ssymbuf1[mid].st_shndx)
7206 hi = mid;
7207 else if (shndx1 > ssymbuf1[mid].st_shndx)
7208 lo = mid + 1;
7209 else
7210 {
7211 count1 = ssymbuf1[mid].count;
7212 ssymbuf1 += mid;
7213 break;
7214 }
7215 }
7216
7217 lo = 0;
7218 hi = ssymbuf2->count;
7219 ssymbuf2++;
7220 count2 = 0;
7221 while (lo < hi)
7222 {
7223 mid = (lo + hi) / 2;
7224 if (shndx2 < ssymbuf2[mid].st_shndx)
7225 hi = mid;
7226 else if (shndx2 > ssymbuf2[mid].st_shndx)
7227 lo = mid + 1;
7228 else
7229 {
7230 count2 = ssymbuf2[mid].count;
7231 ssymbuf2 += mid;
7232 break;
7233 }
7234 }
7235
7236 if (count1 == 0 || count2 == 0 || count1 != count2)
7237 goto done;
7238
7239 symtable1 = (struct elf_symbol *)
7240 bfd_malloc (count1 * sizeof (struct elf_symbol));
7241 symtable2 = (struct elf_symbol *)
7242 bfd_malloc (count2 * sizeof (struct elf_symbol));
7243 if (symtable1 == NULL || symtable2 == NULL)
7244 goto done;
7245
7246 symp = symtable1;
7247 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7248 ssym < ssymend; ssym++, symp++)
7249 {
7250 symp->u.ssym = ssym;
7251 symp->name = bfd_elf_string_from_elf_section (bfd1,
7252 hdr1->sh_link,
7253 ssym->st_name);
7254 }
7255
7256 symp = symtable2;
7257 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7258 ssym < ssymend; ssym++, symp++)
7259 {
7260 symp->u.ssym = ssym;
7261 symp->name = bfd_elf_string_from_elf_section (bfd2,
7262 hdr2->sh_link,
7263 ssym->st_name);
7264 }
7265
7266 /* Sort symbol by name. */
7267 qsort (symtable1, count1, sizeof (struct elf_symbol),
7268 elf_sym_name_compare);
7269 qsort (symtable2, count1, sizeof (struct elf_symbol),
7270 elf_sym_name_compare);
7271
7272 for (i = 0; i < count1; i++)
7273 /* Two symbols must have the same binding, type and name. */
7274 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7275 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7276 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7277 goto done;
7278
7279 result = TRUE;
7280 goto done;
7281 }
7282
7283 symtable1 = (struct elf_symbol *)
7284 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7285 symtable2 = (struct elf_symbol *)
7286 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7287 if (symtable1 == NULL || symtable2 == NULL)
7288 goto done;
7289
7290 /* Count definitions in the section. */
7291 count1 = 0;
7292 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7293 if (isym->st_shndx == shndx1)
7294 symtable1[count1++].u.isym = isym;
7295
7296 count2 = 0;
7297 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7298 if (isym->st_shndx == shndx2)
7299 symtable2[count2++].u.isym = isym;
7300
7301 if (count1 == 0 || count2 == 0 || count1 != count2)
7302 goto done;
7303
7304 for (i = 0; i < count1; i++)
7305 symtable1[i].name
7306 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7307 symtable1[i].u.isym->st_name);
7308
7309 for (i = 0; i < count2; i++)
7310 symtable2[i].name
7311 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7312 symtable2[i].u.isym->st_name);
7313
7314 /* Sort symbol by name. */
7315 qsort (symtable1, count1, sizeof (struct elf_symbol),
7316 elf_sym_name_compare);
7317 qsort (symtable2, count1, sizeof (struct elf_symbol),
7318 elf_sym_name_compare);
7319
7320 for (i = 0; i < count1; i++)
7321 /* Two symbols must have the same binding, type and name. */
7322 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7323 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7324 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7325 goto done;
7326
7327 result = TRUE;
7328
7329 done:
7330 if (symtable1)
7331 free (symtable1);
7332 if (symtable2)
7333 free (symtable2);
7334 if (isymbuf1)
7335 free (isymbuf1);
7336 if (isymbuf2)
7337 free (isymbuf2);
7338
7339 return result;
7340 }
7341
7342 /* Return TRUE if 2 section types are compatible. */
7343
7344 bfd_boolean
7345 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7346 bfd *bbfd, const asection *bsec)
7347 {
7348 if (asec == NULL
7349 || bsec == NULL
7350 || abfd->xvec->flavour != bfd_target_elf_flavour
7351 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7352 return TRUE;
7353
7354 return elf_section_type (asec) == elf_section_type (bsec);
7355 }
7356 \f
7357 /* Final phase of ELF linker. */
7358
7359 /* A structure we use to avoid passing large numbers of arguments. */
7360
7361 struct elf_final_link_info
7362 {
7363 /* General link information. */
7364 struct bfd_link_info *info;
7365 /* Output BFD. */
7366 bfd *output_bfd;
7367 /* Symbol string table. */
7368 struct bfd_strtab_hash *symstrtab;
7369 /* .dynsym section. */
7370 asection *dynsym_sec;
7371 /* .hash section. */
7372 asection *hash_sec;
7373 /* symbol version section (.gnu.version). */
7374 asection *symver_sec;
7375 /* Buffer large enough to hold contents of any section. */
7376 bfd_byte *contents;
7377 /* Buffer large enough to hold external relocs of any section. */
7378 void *external_relocs;
7379 /* Buffer large enough to hold internal relocs of any section. */
7380 Elf_Internal_Rela *internal_relocs;
7381 /* Buffer large enough to hold external local symbols of any input
7382 BFD. */
7383 bfd_byte *external_syms;
7384 /* And a buffer for symbol section indices. */
7385 Elf_External_Sym_Shndx *locsym_shndx;
7386 /* Buffer large enough to hold internal local symbols of any input
7387 BFD. */
7388 Elf_Internal_Sym *internal_syms;
7389 /* Array large enough to hold a symbol index for each local symbol
7390 of any input BFD. */
7391 long *indices;
7392 /* Array large enough to hold a section pointer for each local
7393 symbol of any input BFD. */
7394 asection **sections;
7395 /* Buffer to hold swapped out symbols. */
7396 bfd_byte *symbuf;
7397 /* And one for symbol section indices. */
7398 Elf_External_Sym_Shndx *symshndxbuf;
7399 /* Number of swapped out symbols in buffer. */
7400 size_t symbuf_count;
7401 /* Number of symbols which fit in symbuf. */
7402 size_t symbuf_size;
7403 /* And same for symshndxbuf. */
7404 size_t shndxbuf_size;
7405 };
7406
7407 /* This struct is used to pass information to elf_link_output_extsym. */
7408
7409 struct elf_outext_info
7410 {
7411 bfd_boolean failed;
7412 bfd_boolean localsyms;
7413 struct elf_final_link_info *finfo;
7414 };
7415
7416
7417 /* Support for evaluating a complex relocation.
7418
7419 Complex relocations are generalized, self-describing relocations. The
7420 implementation of them consists of two parts: complex symbols, and the
7421 relocations themselves.
7422
7423 The relocations are use a reserved elf-wide relocation type code (R_RELC
7424 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7425 information (start bit, end bit, word width, etc) into the addend. This
7426 information is extracted from CGEN-generated operand tables within gas.
7427
7428 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7429 internal) representing prefix-notation expressions, including but not
7430 limited to those sorts of expressions normally encoded as addends in the
7431 addend field. The symbol mangling format is:
7432
7433 <node> := <literal>
7434 | <unary-operator> ':' <node>
7435 | <binary-operator> ':' <node> ':' <node>
7436 ;
7437
7438 <literal> := 's' <digits=N> ':' <N character symbol name>
7439 | 'S' <digits=N> ':' <N character section name>
7440 | '#' <hexdigits>
7441 ;
7442
7443 <binary-operator> := as in C
7444 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7445
7446 static void
7447 set_symbol_value (bfd *bfd_with_globals,
7448 Elf_Internal_Sym *isymbuf,
7449 size_t locsymcount,
7450 size_t symidx,
7451 bfd_vma val)
7452 {
7453 struct elf_link_hash_entry **sym_hashes;
7454 struct elf_link_hash_entry *h;
7455 size_t extsymoff = locsymcount;
7456
7457 if (symidx < locsymcount)
7458 {
7459 Elf_Internal_Sym *sym;
7460
7461 sym = isymbuf + symidx;
7462 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7463 {
7464 /* It is a local symbol: move it to the
7465 "absolute" section and give it a value. */
7466 sym->st_shndx = SHN_ABS;
7467 sym->st_value = val;
7468 return;
7469 }
7470 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7471 extsymoff = 0;
7472 }
7473
7474 /* It is a global symbol: set its link type
7475 to "defined" and give it a value. */
7476
7477 sym_hashes = elf_sym_hashes (bfd_with_globals);
7478 h = sym_hashes [symidx - extsymoff];
7479 while (h->root.type == bfd_link_hash_indirect
7480 || h->root.type == bfd_link_hash_warning)
7481 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7482 h->root.type = bfd_link_hash_defined;
7483 h->root.u.def.value = val;
7484 h->root.u.def.section = bfd_abs_section_ptr;
7485 }
7486
7487 static bfd_boolean
7488 resolve_symbol (const char *name,
7489 bfd *input_bfd,
7490 struct elf_final_link_info *finfo,
7491 bfd_vma *result,
7492 Elf_Internal_Sym *isymbuf,
7493 size_t locsymcount)
7494 {
7495 Elf_Internal_Sym *sym;
7496 struct bfd_link_hash_entry *global_entry;
7497 const char *candidate = NULL;
7498 Elf_Internal_Shdr *symtab_hdr;
7499 size_t i;
7500
7501 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7502
7503 for (i = 0; i < locsymcount; ++ i)
7504 {
7505 sym = isymbuf + i;
7506
7507 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7508 continue;
7509
7510 candidate = bfd_elf_string_from_elf_section (input_bfd,
7511 symtab_hdr->sh_link,
7512 sym->st_name);
7513 #ifdef DEBUG
7514 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7515 name, candidate, (unsigned long) sym->st_value);
7516 #endif
7517 if (candidate && strcmp (candidate, name) == 0)
7518 {
7519 asection *sec = finfo->sections [i];
7520
7521 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7522 *result += sec->output_offset + sec->output_section->vma;
7523 #ifdef DEBUG
7524 printf ("Found symbol with value %8.8lx\n",
7525 (unsigned long) *result);
7526 #endif
7527 return TRUE;
7528 }
7529 }
7530
7531 /* Hmm, haven't found it yet. perhaps it is a global. */
7532 global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7533 FALSE, FALSE, TRUE);
7534 if (!global_entry)
7535 return FALSE;
7536
7537 if (global_entry->type == bfd_link_hash_defined
7538 || global_entry->type == bfd_link_hash_defweak)
7539 {
7540 *result = (global_entry->u.def.value
7541 + global_entry->u.def.section->output_section->vma
7542 + global_entry->u.def.section->output_offset);
7543 #ifdef DEBUG
7544 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7545 global_entry->root.string, (unsigned long) *result);
7546 #endif
7547 return TRUE;
7548 }
7549
7550 return FALSE;
7551 }
7552
7553 static bfd_boolean
7554 resolve_section (const char *name,
7555 asection *sections,
7556 bfd_vma *result)
7557 {
7558 asection *curr;
7559 unsigned int len;
7560
7561 for (curr = sections; curr; curr = curr->next)
7562 if (strcmp (curr->name, name) == 0)
7563 {
7564 *result = curr->vma;
7565 return TRUE;
7566 }
7567
7568 /* Hmm. still haven't found it. try pseudo-section names. */
7569 for (curr = sections; curr; curr = curr->next)
7570 {
7571 len = strlen (curr->name);
7572 if (len > strlen (name))
7573 continue;
7574
7575 if (strncmp (curr->name, name, len) == 0)
7576 {
7577 if (strncmp (".end", name + len, 4) == 0)
7578 {
7579 *result = curr->vma + curr->size;
7580 return TRUE;
7581 }
7582
7583 /* Insert more pseudo-section names here, if you like. */
7584 }
7585 }
7586
7587 return FALSE;
7588 }
7589
7590 static void
7591 undefined_reference (const char *reftype, const char *name)
7592 {
7593 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7594 reftype, name);
7595 }
7596
7597 static bfd_boolean
7598 eval_symbol (bfd_vma *result,
7599 const char **symp,
7600 bfd *input_bfd,
7601 struct elf_final_link_info *finfo,
7602 bfd_vma dot,
7603 Elf_Internal_Sym *isymbuf,
7604 size_t locsymcount,
7605 int signed_p)
7606 {
7607 size_t len;
7608 size_t symlen;
7609 bfd_vma a;
7610 bfd_vma b;
7611 char symbuf[4096];
7612 const char *sym = *symp;
7613 const char *symend;
7614 bfd_boolean symbol_is_section = FALSE;
7615
7616 len = strlen (sym);
7617 symend = sym + len;
7618
7619 if (len < 1 || len > sizeof (symbuf))
7620 {
7621 bfd_set_error (bfd_error_invalid_operation);
7622 return FALSE;
7623 }
7624
7625 switch (* sym)
7626 {
7627 case '.':
7628 *result = dot;
7629 *symp = sym + 1;
7630 return TRUE;
7631
7632 case '#':
7633 ++sym;
7634 *result = strtoul (sym, (char **) symp, 16);
7635 return TRUE;
7636
7637 case 'S':
7638 symbol_is_section = TRUE;
7639 case 's':
7640 ++sym;
7641 symlen = strtol (sym, (char **) symp, 10);
7642 sym = *symp + 1; /* Skip the trailing ':'. */
7643
7644 if (symend < sym || symlen + 1 > sizeof (symbuf))
7645 {
7646 bfd_set_error (bfd_error_invalid_operation);
7647 return FALSE;
7648 }
7649
7650 memcpy (symbuf, sym, symlen);
7651 symbuf[symlen] = '\0';
7652 *symp = sym + symlen;
7653
7654 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7655 the symbol as a section, or vice-versa. so we're pretty liberal in our
7656 interpretation here; section means "try section first", not "must be a
7657 section", and likewise with symbol. */
7658
7659 if (symbol_is_section)
7660 {
7661 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7662 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7663 isymbuf, locsymcount))
7664 {
7665 undefined_reference ("section", symbuf);
7666 return FALSE;
7667 }
7668 }
7669 else
7670 {
7671 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7672 isymbuf, locsymcount)
7673 && !resolve_section (symbuf, finfo->output_bfd->sections,
7674 result))
7675 {
7676 undefined_reference ("symbol", symbuf);
7677 return FALSE;
7678 }
7679 }
7680
7681 return TRUE;
7682
7683 /* All that remains are operators. */
7684
7685 #define UNARY_OP(op) \
7686 if (strncmp (sym, #op, strlen (#op)) == 0) \
7687 { \
7688 sym += strlen (#op); \
7689 if (*sym == ':') \
7690 ++sym; \
7691 *symp = sym; \
7692 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7693 isymbuf, locsymcount, signed_p)) \
7694 return FALSE; \
7695 if (signed_p) \
7696 *result = op ((bfd_signed_vma) a); \
7697 else \
7698 *result = op a; \
7699 return TRUE; \
7700 }
7701
7702 #define BINARY_OP(op) \
7703 if (strncmp (sym, #op, strlen (#op)) == 0) \
7704 { \
7705 sym += strlen (#op); \
7706 if (*sym == ':') \
7707 ++sym; \
7708 *symp = sym; \
7709 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7710 isymbuf, locsymcount, signed_p)) \
7711 return FALSE; \
7712 ++*symp; \
7713 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7714 isymbuf, locsymcount, signed_p)) \
7715 return FALSE; \
7716 if (signed_p) \
7717 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7718 else \
7719 *result = a op b; \
7720 return TRUE; \
7721 }
7722
7723 default:
7724 UNARY_OP (0-);
7725 BINARY_OP (<<);
7726 BINARY_OP (>>);
7727 BINARY_OP (==);
7728 BINARY_OP (!=);
7729 BINARY_OP (<=);
7730 BINARY_OP (>=);
7731 BINARY_OP (&&);
7732 BINARY_OP (||);
7733 UNARY_OP (~);
7734 UNARY_OP (!);
7735 BINARY_OP (*);
7736 BINARY_OP (/);
7737 BINARY_OP (%);
7738 BINARY_OP (^);
7739 BINARY_OP (|);
7740 BINARY_OP (&);
7741 BINARY_OP (+);
7742 BINARY_OP (-);
7743 BINARY_OP (<);
7744 BINARY_OP (>);
7745 #undef UNARY_OP
7746 #undef BINARY_OP
7747 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7748 bfd_set_error (bfd_error_invalid_operation);
7749 return FALSE;
7750 }
7751 }
7752
7753 static void
7754 put_value (bfd_vma size,
7755 unsigned long chunksz,
7756 bfd *input_bfd,
7757 bfd_vma x,
7758 bfd_byte *location)
7759 {
7760 location += (size - chunksz);
7761
7762 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7763 {
7764 switch (chunksz)
7765 {
7766 default:
7767 case 0:
7768 abort ();
7769 case 1:
7770 bfd_put_8 (input_bfd, x, location);
7771 break;
7772 case 2:
7773 bfd_put_16 (input_bfd, x, location);
7774 break;
7775 case 4:
7776 bfd_put_32 (input_bfd, x, location);
7777 break;
7778 case 8:
7779 #ifdef BFD64
7780 bfd_put_64 (input_bfd, x, location);
7781 #else
7782 abort ();
7783 #endif
7784 break;
7785 }
7786 }
7787 }
7788
7789 static bfd_vma
7790 get_value (bfd_vma size,
7791 unsigned long chunksz,
7792 bfd *input_bfd,
7793 bfd_byte *location)
7794 {
7795 bfd_vma x = 0;
7796
7797 for (; size; size -= chunksz, location += chunksz)
7798 {
7799 switch (chunksz)
7800 {
7801 default:
7802 case 0:
7803 abort ();
7804 case 1:
7805 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7806 break;
7807 case 2:
7808 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7809 break;
7810 case 4:
7811 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7812 break;
7813 case 8:
7814 #ifdef BFD64
7815 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7816 #else
7817 abort ();
7818 #endif
7819 break;
7820 }
7821 }
7822 return x;
7823 }
7824
7825 static void
7826 decode_complex_addend (unsigned long *start, /* in bits */
7827 unsigned long *oplen, /* in bits */
7828 unsigned long *len, /* in bits */
7829 unsigned long *wordsz, /* in bytes */
7830 unsigned long *chunksz, /* in bytes */
7831 unsigned long *lsb0_p,
7832 unsigned long *signed_p,
7833 unsigned long *trunc_p,
7834 unsigned long encoded)
7835 {
7836 * start = encoded & 0x3F;
7837 * len = (encoded >> 6) & 0x3F;
7838 * oplen = (encoded >> 12) & 0x3F;
7839 * wordsz = (encoded >> 18) & 0xF;
7840 * chunksz = (encoded >> 22) & 0xF;
7841 * lsb0_p = (encoded >> 27) & 1;
7842 * signed_p = (encoded >> 28) & 1;
7843 * trunc_p = (encoded >> 29) & 1;
7844 }
7845
7846 bfd_reloc_status_type
7847 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7848 asection *input_section ATTRIBUTE_UNUSED,
7849 bfd_byte *contents,
7850 Elf_Internal_Rela *rel,
7851 bfd_vma relocation)
7852 {
7853 bfd_vma shift, x, mask;
7854 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7855 bfd_reloc_status_type r;
7856
7857 /* Perform this reloc, since it is complex.
7858 (this is not to say that it necessarily refers to a complex
7859 symbol; merely that it is a self-describing CGEN based reloc.
7860 i.e. the addend has the complete reloc information (bit start, end,
7861 word size, etc) encoded within it.). */
7862
7863 decode_complex_addend (&start, &oplen, &len, &wordsz,
7864 &chunksz, &lsb0_p, &signed_p,
7865 &trunc_p, rel->r_addend);
7866
7867 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7868
7869 if (lsb0_p)
7870 shift = (start + 1) - len;
7871 else
7872 shift = (8 * wordsz) - (start + len);
7873
7874 /* FIXME: octets_per_byte. */
7875 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7876
7877 #ifdef DEBUG
7878 printf ("Doing complex reloc: "
7879 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7880 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7881 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7882 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7883 oplen, x, mask, relocation);
7884 #endif
7885
7886 r = bfd_reloc_ok;
7887 if (! trunc_p)
7888 /* Now do an overflow check. */
7889 r = bfd_check_overflow ((signed_p
7890 ? complain_overflow_signed
7891 : complain_overflow_unsigned),
7892 len, 0, (8 * wordsz),
7893 relocation);
7894
7895 /* Do the deed. */
7896 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7897
7898 #ifdef DEBUG
7899 printf (" relocation: %8.8lx\n"
7900 " shifted mask: %8.8lx\n"
7901 " shifted/masked reloc: %8.8lx\n"
7902 " result: %8.8lx\n",
7903 relocation, (mask << shift),
7904 ((relocation & mask) << shift), x);
7905 #endif
7906 /* FIXME: octets_per_byte. */
7907 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7908 return r;
7909 }
7910
7911 /* When performing a relocatable link, the input relocations are
7912 preserved. But, if they reference global symbols, the indices
7913 referenced must be updated. Update all the relocations in
7914 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
7915
7916 static void
7917 elf_link_adjust_relocs (bfd *abfd,
7918 Elf_Internal_Shdr *rel_hdr,
7919 unsigned int count,
7920 struct elf_link_hash_entry **rel_hash)
7921 {
7922 unsigned int i;
7923 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7924 bfd_byte *erela;
7925 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7926 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7927 bfd_vma r_type_mask;
7928 int r_sym_shift;
7929
7930 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
7931 {
7932 swap_in = bed->s->swap_reloc_in;
7933 swap_out = bed->s->swap_reloc_out;
7934 }
7935 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
7936 {
7937 swap_in = bed->s->swap_reloca_in;
7938 swap_out = bed->s->swap_reloca_out;
7939 }
7940 else
7941 abort ();
7942
7943 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7944 abort ();
7945
7946 if (bed->s->arch_size == 32)
7947 {
7948 r_type_mask = 0xff;
7949 r_sym_shift = 8;
7950 }
7951 else
7952 {
7953 r_type_mask = 0xffffffff;
7954 r_sym_shift = 32;
7955 }
7956
7957 erela = rel_hdr->contents;
7958 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
7959 {
7960 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7961 unsigned int j;
7962
7963 if (*rel_hash == NULL)
7964 continue;
7965
7966 BFD_ASSERT ((*rel_hash)->indx >= 0);
7967
7968 (*swap_in) (abfd, erela, irela);
7969 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7970 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7971 | (irela[j].r_info & r_type_mask));
7972 (*swap_out) (abfd, irela, erela);
7973 }
7974 }
7975
7976 struct elf_link_sort_rela
7977 {
7978 union {
7979 bfd_vma offset;
7980 bfd_vma sym_mask;
7981 } u;
7982 enum elf_reloc_type_class type;
7983 /* We use this as an array of size int_rels_per_ext_rel. */
7984 Elf_Internal_Rela rela[1];
7985 };
7986
7987 static int
7988 elf_link_sort_cmp1 (const void *A, const void *B)
7989 {
7990 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
7991 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
7992 int relativea, relativeb;
7993
7994 relativea = a->type == reloc_class_relative;
7995 relativeb = b->type == reloc_class_relative;
7996
7997 if (relativea < relativeb)
7998 return 1;
7999 if (relativea > relativeb)
8000 return -1;
8001 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8002 return -1;
8003 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8004 return 1;
8005 if (a->rela->r_offset < b->rela->r_offset)
8006 return -1;
8007 if (a->rela->r_offset > b->rela->r_offset)
8008 return 1;
8009 return 0;
8010 }
8011
8012 static int
8013 elf_link_sort_cmp2 (const void *A, const void *B)
8014 {
8015 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8016 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8017 int copya, copyb;
8018
8019 if (a->u.offset < b->u.offset)
8020 return -1;
8021 if (a->u.offset > b->u.offset)
8022 return 1;
8023 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
8024 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
8025 if (copya < copyb)
8026 return -1;
8027 if (copya > copyb)
8028 return 1;
8029 if (a->rela->r_offset < b->rela->r_offset)
8030 return -1;
8031 if (a->rela->r_offset > b->rela->r_offset)
8032 return 1;
8033 return 0;
8034 }
8035
8036 static size_t
8037 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8038 {
8039 asection *dynamic_relocs;
8040 asection *rela_dyn;
8041 asection *rel_dyn;
8042 bfd_size_type count, size;
8043 size_t i, ret, sort_elt, ext_size;
8044 bfd_byte *sort, *s_non_relative, *p;
8045 struct elf_link_sort_rela *sq;
8046 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8047 int i2e = bed->s->int_rels_per_ext_rel;
8048 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8049 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8050 struct bfd_link_order *lo;
8051 bfd_vma r_sym_mask;
8052 bfd_boolean use_rela;
8053
8054 /* Find a dynamic reloc section. */
8055 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8056 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8057 if (rela_dyn != NULL && rela_dyn->size > 0
8058 && rel_dyn != NULL && rel_dyn->size > 0)
8059 {
8060 bfd_boolean use_rela_initialised = FALSE;
8061
8062 /* This is just here to stop gcc from complaining.
8063 It's initialization checking code is not perfect. */
8064 use_rela = TRUE;
8065
8066 /* Both sections are present. Examine the sizes
8067 of the indirect sections to help us choose. */
8068 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8069 if (lo->type == bfd_indirect_link_order)
8070 {
8071 asection *o = lo->u.indirect.section;
8072
8073 if ((o->size % bed->s->sizeof_rela) == 0)
8074 {
8075 if ((o->size % bed->s->sizeof_rel) == 0)
8076 /* Section size is divisible by both rel and rela sizes.
8077 It is of no help to us. */
8078 ;
8079 else
8080 {
8081 /* Section size is only divisible by rela. */
8082 if (use_rela_initialised && (use_rela == FALSE))
8083 {
8084 _bfd_error_handler
8085 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8086 bfd_set_error (bfd_error_invalid_operation);
8087 return 0;
8088 }
8089 else
8090 {
8091 use_rela = TRUE;
8092 use_rela_initialised = TRUE;
8093 }
8094 }
8095 }
8096 else if ((o->size % bed->s->sizeof_rel) == 0)
8097 {
8098 /* Section size is only divisible by rel. */
8099 if (use_rela_initialised && (use_rela == TRUE))
8100 {
8101 _bfd_error_handler
8102 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8103 bfd_set_error (bfd_error_invalid_operation);
8104 return 0;
8105 }
8106 else
8107 {
8108 use_rela = FALSE;
8109 use_rela_initialised = TRUE;
8110 }
8111 }
8112 else
8113 {
8114 /* The section size is not divisible by either - something is wrong. */
8115 _bfd_error_handler
8116 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8117 bfd_set_error (bfd_error_invalid_operation);
8118 return 0;
8119 }
8120 }
8121
8122 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8123 if (lo->type == bfd_indirect_link_order)
8124 {
8125 asection *o = lo->u.indirect.section;
8126
8127 if ((o->size % bed->s->sizeof_rela) == 0)
8128 {
8129 if ((o->size % bed->s->sizeof_rel) == 0)
8130 /* Section size is divisible by both rel and rela sizes.
8131 It is of no help to us. */
8132 ;
8133 else
8134 {
8135 /* Section size is only divisible by rela. */
8136 if (use_rela_initialised && (use_rela == FALSE))
8137 {
8138 _bfd_error_handler
8139 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8140 bfd_set_error (bfd_error_invalid_operation);
8141 return 0;
8142 }
8143 else
8144 {
8145 use_rela = TRUE;
8146 use_rela_initialised = TRUE;
8147 }
8148 }
8149 }
8150 else if ((o->size % bed->s->sizeof_rel) == 0)
8151 {
8152 /* Section size is only divisible by rel. */
8153 if (use_rela_initialised && (use_rela == TRUE))
8154 {
8155 _bfd_error_handler
8156 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8157 bfd_set_error (bfd_error_invalid_operation);
8158 return 0;
8159 }
8160 else
8161 {
8162 use_rela = FALSE;
8163 use_rela_initialised = TRUE;
8164 }
8165 }
8166 else
8167 {
8168 /* The section size is not divisible by either - something is wrong. */
8169 _bfd_error_handler
8170 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8171 bfd_set_error (bfd_error_invalid_operation);
8172 return 0;
8173 }
8174 }
8175
8176 if (! use_rela_initialised)
8177 /* Make a guess. */
8178 use_rela = TRUE;
8179 }
8180 else if (rela_dyn != NULL && rela_dyn->size > 0)
8181 use_rela = TRUE;
8182 else if (rel_dyn != NULL && rel_dyn->size > 0)
8183 use_rela = FALSE;
8184 else
8185 return 0;
8186
8187 if (use_rela)
8188 {
8189 dynamic_relocs = rela_dyn;
8190 ext_size = bed->s->sizeof_rela;
8191 swap_in = bed->s->swap_reloca_in;
8192 swap_out = bed->s->swap_reloca_out;
8193 }
8194 else
8195 {
8196 dynamic_relocs = rel_dyn;
8197 ext_size = bed->s->sizeof_rel;
8198 swap_in = bed->s->swap_reloc_in;
8199 swap_out = bed->s->swap_reloc_out;
8200 }
8201
8202 size = 0;
8203 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8204 if (lo->type == bfd_indirect_link_order)
8205 size += lo->u.indirect.section->size;
8206
8207 if (size != dynamic_relocs->size)
8208 return 0;
8209
8210 sort_elt = (sizeof (struct elf_link_sort_rela)
8211 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8212
8213 count = dynamic_relocs->size / ext_size;
8214 if (count == 0)
8215 return 0;
8216 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8217
8218 if (sort == NULL)
8219 {
8220 (*info->callbacks->warning)
8221 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8222 return 0;
8223 }
8224
8225 if (bed->s->arch_size == 32)
8226 r_sym_mask = ~(bfd_vma) 0xff;
8227 else
8228 r_sym_mask = ~(bfd_vma) 0xffffffff;
8229
8230 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8231 if (lo->type == bfd_indirect_link_order)
8232 {
8233 bfd_byte *erel, *erelend;
8234 asection *o = lo->u.indirect.section;
8235
8236 if (o->contents == NULL && o->size != 0)
8237 {
8238 /* This is a reloc section that is being handled as a normal
8239 section. See bfd_section_from_shdr. We can't combine
8240 relocs in this case. */
8241 free (sort);
8242 return 0;
8243 }
8244 erel = o->contents;
8245 erelend = o->contents + o->size;
8246 /* FIXME: octets_per_byte. */
8247 p = sort + o->output_offset / ext_size * sort_elt;
8248
8249 while (erel < erelend)
8250 {
8251 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8252
8253 (*swap_in) (abfd, erel, s->rela);
8254 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8255 s->u.sym_mask = r_sym_mask;
8256 p += sort_elt;
8257 erel += ext_size;
8258 }
8259 }
8260
8261 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8262
8263 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8264 {
8265 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8266 if (s->type != reloc_class_relative)
8267 break;
8268 }
8269 ret = i;
8270 s_non_relative = p;
8271
8272 sq = (struct elf_link_sort_rela *) s_non_relative;
8273 for (; i < count; i++, p += sort_elt)
8274 {
8275 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8276 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8277 sq = sp;
8278 sp->u.offset = sq->rela->r_offset;
8279 }
8280
8281 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8282
8283 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8284 if (lo->type == bfd_indirect_link_order)
8285 {
8286 bfd_byte *erel, *erelend;
8287 asection *o = lo->u.indirect.section;
8288
8289 erel = o->contents;
8290 erelend = o->contents + o->size;
8291 /* FIXME: octets_per_byte. */
8292 p = sort + o->output_offset / ext_size * sort_elt;
8293 while (erel < erelend)
8294 {
8295 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8296 (*swap_out) (abfd, s->rela, erel);
8297 p += sort_elt;
8298 erel += ext_size;
8299 }
8300 }
8301
8302 free (sort);
8303 *psec = dynamic_relocs;
8304 return ret;
8305 }
8306
8307 /* Flush the output symbols to the file. */
8308
8309 static bfd_boolean
8310 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8311 const struct elf_backend_data *bed)
8312 {
8313 if (finfo->symbuf_count > 0)
8314 {
8315 Elf_Internal_Shdr *hdr;
8316 file_ptr pos;
8317 bfd_size_type amt;
8318
8319 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8320 pos = hdr->sh_offset + hdr->sh_size;
8321 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8322 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8323 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8324 return FALSE;
8325
8326 hdr->sh_size += amt;
8327 finfo->symbuf_count = 0;
8328 }
8329
8330 return TRUE;
8331 }
8332
8333 /* Add a symbol to the output symbol table. */
8334
8335 static int
8336 elf_link_output_sym (struct elf_final_link_info *finfo,
8337 const char *name,
8338 Elf_Internal_Sym *elfsym,
8339 asection *input_sec,
8340 struct elf_link_hash_entry *h)
8341 {
8342 bfd_byte *dest;
8343 Elf_External_Sym_Shndx *destshndx;
8344 int (*output_symbol_hook)
8345 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8346 struct elf_link_hash_entry *);
8347 const struct elf_backend_data *bed;
8348
8349 bed = get_elf_backend_data (finfo->output_bfd);
8350 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8351 if (output_symbol_hook != NULL)
8352 {
8353 int ret = (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h);
8354 if (ret != 1)
8355 return ret;
8356 }
8357
8358 if (name == NULL || *name == '\0')
8359 elfsym->st_name = 0;
8360 else if (input_sec->flags & SEC_EXCLUDE)
8361 elfsym->st_name = 0;
8362 else
8363 {
8364 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8365 name, TRUE, FALSE);
8366 if (elfsym->st_name == (unsigned long) -1)
8367 return 0;
8368 }
8369
8370 if (finfo->symbuf_count >= finfo->symbuf_size)
8371 {
8372 if (! elf_link_flush_output_syms (finfo, bed))
8373 return 0;
8374 }
8375
8376 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8377 destshndx = finfo->symshndxbuf;
8378 if (destshndx != NULL)
8379 {
8380 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8381 {
8382 bfd_size_type amt;
8383
8384 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8385 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8386 amt * 2);
8387 if (destshndx == NULL)
8388 return 0;
8389 finfo->symshndxbuf = destshndx;
8390 memset ((char *) destshndx + amt, 0, amt);
8391 finfo->shndxbuf_size *= 2;
8392 }
8393 destshndx += bfd_get_symcount (finfo->output_bfd);
8394 }
8395
8396 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8397 finfo->symbuf_count += 1;
8398 bfd_get_symcount (finfo->output_bfd) += 1;
8399
8400 return 1;
8401 }
8402
8403 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8404
8405 static bfd_boolean
8406 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8407 {
8408 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8409 && sym->st_shndx < SHN_LORESERVE)
8410 {
8411 /* The gABI doesn't support dynamic symbols in output sections
8412 beyond 64k. */
8413 (*_bfd_error_handler)
8414 (_("%B: Too many sections: %d (>= %d)"),
8415 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8416 bfd_set_error (bfd_error_nonrepresentable_section);
8417 return FALSE;
8418 }
8419 return TRUE;
8420 }
8421
8422 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8423 allowing an unsatisfied unversioned symbol in the DSO to match a
8424 versioned symbol that would normally require an explicit version.
8425 We also handle the case that a DSO references a hidden symbol
8426 which may be satisfied by a versioned symbol in another DSO. */
8427
8428 static bfd_boolean
8429 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8430 const struct elf_backend_data *bed,
8431 struct elf_link_hash_entry *h)
8432 {
8433 bfd *abfd;
8434 struct elf_link_loaded_list *loaded;
8435
8436 if (!is_elf_hash_table (info->hash))
8437 return FALSE;
8438
8439 switch (h->root.type)
8440 {
8441 default:
8442 abfd = NULL;
8443 break;
8444
8445 case bfd_link_hash_undefined:
8446 case bfd_link_hash_undefweak:
8447 abfd = h->root.u.undef.abfd;
8448 if ((abfd->flags & DYNAMIC) == 0
8449 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8450 return FALSE;
8451 break;
8452
8453 case bfd_link_hash_defined:
8454 case bfd_link_hash_defweak:
8455 abfd = h->root.u.def.section->owner;
8456 break;
8457
8458 case bfd_link_hash_common:
8459 abfd = h->root.u.c.p->section->owner;
8460 break;
8461 }
8462 BFD_ASSERT (abfd != NULL);
8463
8464 for (loaded = elf_hash_table (info)->loaded;
8465 loaded != NULL;
8466 loaded = loaded->next)
8467 {
8468 bfd *input;
8469 Elf_Internal_Shdr *hdr;
8470 bfd_size_type symcount;
8471 bfd_size_type extsymcount;
8472 bfd_size_type extsymoff;
8473 Elf_Internal_Shdr *versymhdr;
8474 Elf_Internal_Sym *isym;
8475 Elf_Internal_Sym *isymend;
8476 Elf_Internal_Sym *isymbuf;
8477 Elf_External_Versym *ever;
8478 Elf_External_Versym *extversym;
8479
8480 input = loaded->abfd;
8481
8482 /* We check each DSO for a possible hidden versioned definition. */
8483 if (input == abfd
8484 || (input->flags & DYNAMIC) == 0
8485 || elf_dynversym (input) == 0)
8486 continue;
8487
8488 hdr = &elf_tdata (input)->dynsymtab_hdr;
8489
8490 symcount = hdr->sh_size / bed->s->sizeof_sym;
8491 if (elf_bad_symtab (input))
8492 {
8493 extsymcount = symcount;
8494 extsymoff = 0;
8495 }
8496 else
8497 {
8498 extsymcount = symcount - hdr->sh_info;
8499 extsymoff = hdr->sh_info;
8500 }
8501
8502 if (extsymcount == 0)
8503 continue;
8504
8505 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8506 NULL, NULL, NULL);
8507 if (isymbuf == NULL)
8508 return FALSE;
8509
8510 /* Read in any version definitions. */
8511 versymhdr = &elf_tdata (input)->dynversym_hdr;
8512 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8513 if (extversym == NULL)
8514 goto error_ret;
8515
8516 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8517 || (bfd_bread (extversym, versymhdr->sh_size, input)
8518 != versymhdr->sh_size))
8519 {
8520 free (extversym);
8521 error_ret:
8522 free (isymbuf);
8523 return FALSE;
8524 }
8525
8526 ever = extversym + extsymoff;
8527 isymend = isymbuf + extsymcount;
8528 for (isym = isymbuf; isym < isymend; isym++, ever++)
8529 {
8530 const char *name;
8531 Elf_Internal_Versym iver;
8532 unsigned short version_index;
8533
8534 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8535 || isym->st_shndx == SHN_UNDEF)
8536 continue;
8537
8538 name = bfd_elf_string_from_elf_section (input,
8539 hdr->sh_link,
8540 isym->st_name);
8541 if (strcmp (name, h->root.root.string) != 0)
8542 continue;
8543
8544 _bfd_elf_swap_versym_in (input, ever, &iver);
8545
8546 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8547 && !(h->def_regular
8548 && h->forced_local))
8549 {
8550 /* If we have a non-hidden versioned sym, then it should
8551 have provided a definition for the undefined sym unless
8552 it is defined in a non-shared object and forced local.
8553 */
8554 abort ();
8555 }
8556
8557 version_index = iver.vs_vers & VERSYM_VERSION;
8558 if (version_index == 1 || version_index == 2)
8559 {
8560 /* This is the base or first version. We can use it. */
8561 free (extversym);
8562 free (isymbuf);
8563 return TRUE;
8564 }
8565 }
8566
8567 free (extversym);
8568 free (isymbuf);
8569 }
8570
8571 return FALSE;
8572 }
8573
8574 /* Add an external symbol to the symbol table. This is called from
8575 the hash table traversal routine. When generating a shared object,
8576 we go through the symbol table twice. The first time we output
8577 anything that might have been forced to local scope in a version
8578 script. The second time we output the symbols that are still
8579 global symbols. */
8580
8581 static bfd_boolean
8582 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
8583 {
8584 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8585 struct elf_final_link_info *finfo = eoinfo->finfo;
8586 bfd_boolean strip;
8587 Elf_Internal_Sym sym;
8588 asection *input_sec;
8589 const struct elf_backend_data *bed;
8590 long indx;
8591 int ret;
8592
8593 if (h->root.type == bfd_link_hash_warning)
8594 {
8595 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8596 if (h->root.type == bfd_link_hash_new)
8597 return TRUE;
8598 }
8599
8600 /* Decide whether to output this symbol in this pass. */
8601 if (eoinfo->localsyms)
8602 {
8603 if (!h->forced_local)
8604 return TRUE;
8605 }
8606 else
8607 {
8608 if (h->forced_local)
8609 return TRUE;
8610 }
8611
8612 bed = get_elf_backend_data (finfo->output_bfd);
8613
8614 if (h->root.type == bfd_link_hash_undefined)
8615 {
8616 /* If we have an undefined symbol reference here then it must have
8617 come from a shared library that is being linked in. (Undefined
8618 references in regular files have already been handled unless
8619 they are in unreferenced sections which are removed by garbage
8620 collection). */
8621 bfd_boolean ignore_undef = FALSE;
8622
8623 /* Some symbols may be special in that the fact that they're
8624 undefined can be safely ignored - let backend determine that. */
8625 if (bed->elf_backend_ignore_undef_symbol)
8626 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8627
8628 /* If we are reporting errors for this situation then do so now. */
8629 if (ignore_undef == FALSE
8630 && h->ref_dynamic
8631 && (!h->ref_regular || finfo->info->gc_sections)
8632 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8633 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8634 {
8635 if (! (finfo->info->callbacks->undefined_symbol
8636 (finfo->info, h->root.root.string,
8637 h->ref_regular ? NULL : h->root.u.undef.abfd,
8638 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8639 {
8640 eoinfo->failed = TRUE;
8641 return FALSE;
8642 }
8643 }
8644 }
8645
8646 /* We should also warn if a forced local symbol is referenced from
8647 shared libraries. */
8648 if (! finfo->info->relocatable
8649 && (! finfo->info->shared)
8650 && h->forced_local
8651 && h->ref_dynamic
8652 && !h->dynamic_def
8653 && !h->dynamic_weak
8654 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8655 {
8656 (*_bfd_error_handler)
8657 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
8658 finfo->output_bfd,
8659 h->root.u.def.section == bfd_abs_section_ptr
8660 ? finfo->output_bfd : h->root.u.def.section->owner,
8661 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
8662 ? "internal"
8663 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
8664 ? "hidden" : "local",
8665 h->root.root.string);
8666 eoinfo->failed = TRUE;
8667 return FALSE;
8668 }
8669
8670 /* We don't want to output symbols that have never been mentioned by
8671 a regular file, or that we have been told to strip. However, if
8672 h->indx is set to -2, the symbol is used by a reloc and we must
8673 output it. */
8674 if (h->indx == -2)
8675 strip = FALSE;
8676 else if ((h->def_dynamic
8677 || h->ref_dynamic
8678 || h->root.type == bfd_link_hash_new)
8679 && !h->def_regular
8680 && !h->ref_regular)
8681 strip = TRUE;
8682 else if (finfo->info->strip == strip_all)
8683 strip = TRUE;
8684 else if (finfo->info->strip == strip_some
8685 && bfd_hash_lookup (finfo->info->keep_hash,
8686 h->root.root.string, FALSE, FALSE) == NULL)
8687 strip = TRUE;
8688 else if (finfo->info->strip_discarded
8689 && (h->root.type == bfd_link_hash_defined
8690 || h->root.type == bfd_link_hash_defweak)
8691 && elf_discarded_section (h->root.u.def.section))
8692 strip = TRUE;
8693 else
8694 strip = FALSE;
8695
8696 /* If we're stripping it, and it's not a dynamic symbol, there's
8697 nothing else to do unless it is a forced local symbol or a
8698 STT_GNU_IFUNC symbol. */
8699 if (strip
8700 && h->dynindx == -1
8701 && h->type != STT_GNU_IFUNC
8702 && !h->forced_local)
8703 return TRUE;
8704
8705 sym.st_value = 0;
8706 sym.st_size = h->size;
8707 sym.st_other = h->other;
8708 if (h->forced_local)
8709 {
8710 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8711 /* Turn off visibility on local symbol. */
8712 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8713 }
8714 else if (h->unique_global)
8715 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8716 else if (h->root.type == bfd_link_hash_undefweak
8717 || h->root.type == bfd_link_hash_defweak)
8718 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8719 else
8720 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8721
8722 switch (h->root.type)
8723 {
8724 default:
8725 case bfd_link_hash_new:
8726 case bfd_link_hash_warning:
8727 abort ();
8728 return FALSE;
8729
8730 case bfd_link_hash_undefined:
8731 case bfd_link_hash_undefweak:
8732 input_sec = bfd_und_section_ptr;
8733 sym.st_shndx = SHN_UNDEF;
8734 break;
8735
8736 case bfd_link_hash_defined:
8737 case bfd_link_hash_defweak:
8738 {
8739 input_sec = h->root.u.def.section;
8740 if (input_sec->output_section != NULL)
8741 {
8742 sym.st_shndx =
8743 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8744 input_sec->output_section);
8745 if (sym.st_shndx == SHN_BAD)
8746 {
8747 (*_bfd_error_handler)
8748 (_("%B: could not find output section %A for input section %A"),
8749 finfo->output_bfd, input_sec->output_section, input_sec);
8750 eoinfo->failed = TRUE;
8751 return FALSE;
8752 }
8753
8754 /* ELF symbols in relocatable files are section relative,
8755 but in nonrelocatable files they are virtual
8756 addresses. */
8757 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8758 if (! finfo->info->relocatable)
8759 {
8760 sym.st_value += input_sec->output_section->vma;
8761 if (h->type == STT_TLS)
8762 {
8763 asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8764 if (tls_sec != NULL)
8765 sym.st_value -= tls_sec->vma;
8766 else
8767 {
8768 /* The TLS section may have been garbage collected. */
8769 BFD_ASSERT (finfo->info->gc_sections
8770 && !input_sec->gc_mark);
8771 }
8772 }
8773 }
8774 }
8775 else
8776 {
8777 BFD_ASSERT (input_sec->owner == NULL
8778 || (input_sec->owner->flags & DYNAMIC) != 0);
8779 sym.st_shndx = SHN_UNDEF;
8780 input_sec = bfd_und_section_ptr;
8781 }
8782 }
8783 break;
8784
8785 case bfd_link_hash_common:
8786 input_sec = h->root.u.c.p->section;
8787 sym.st_shndx = bed->common_section_index (input_sec);
8788 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8789 break;
8790
8791 case bfd_link_hash_indirect:
8792 /* These symbols are created by symbol versioning. They point
8793 to the decorated version of the name. For example, if the
8794 symbol foo@@GNU_1.2 is the default, which should be used when
8795 foo is used with no version, then we add an indirect symbol
8796 foo which points to foo@@GNU_1.2. We ignore these symbols,
8797 since the indirected symbol is already in the hash table. */
8798 return TRUE;
8799 }
8800
8801 /* Give the processor backend a chance to tweak the symbol value,
8802 and also to finish up anything that needs to be done for this
8803 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8804 forced local syms when non-shared is due to a historical quirk.
8805 STT_GNU_IFUNC symbol must go through PLT. */
8806 if ((h->type == STT_GNU_IFUNC
8807 && h->def_regular
8808 && !finfo->info->relocatable)
8809 || ((h->dynindx != -1
8810 || h->forced_local)
8811 && ((finfo->info->shared
8812 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8813 || h->root.type != bfd_link_hash_undefweak))
8814 || !h->forced_local)
8815 && elf_hash_table (finfo->info)->dynamic_sections_created))
8816 {
8817 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8818 (finfo->output_bfd, finfo->info, h, &sym)))
8819 {
8820 eoinfo->failed = TRUE;
8821 return FALSE;
8822 }
8823 }
8824
8825 /* If we are marking the symbol as undefined, and there are no
8826 non-weak references to this symbol from a regular object, then
8827 mark the symbol as weak undefined; if there are non-weak
8828 references, mark the symbol as strong. We can't do this earlier,
8829 because it might not be marked as undefined until the
8830 finish_dynamic_symbol routine gets through with it. */
8831 if (sym.st_shndx == SHN_UNDEF
8832 && h->ref_regular
8833 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8834 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8835 {
8836 int bindtype;
8837 unsigned int type = ELF_ST_TYPE (sym.st_info);
8838
8839 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8840 if (type == STT_GNU_IFUNC)
8841 type = STT_FUNC;
8842
8843 if (h->ref_regular_nonweak)
8844 bindtype = STB_GLOBAL;
8845 else
8846 bindtype = STB_WEAK;
8847 sym.st_info = ELF_ST_INFO (bindtype, type);
8848 }
8849
8850 /* If this is a symbol defined in a dynamic library, don't use the
8851 symbol size from the dynamic library. Relinking an executable
8852 against a new library may introduce gratuitous changes in the
8853 executable's symbols if we keep the size. */
8854 if (sym.st_shndx == SHN_UNDEF
8855 && !h->def_regular
8856 && h->def_dynamic)
8857 sym.st_size = 0;
8858
8859 /* If a non-weak symbol with non-default visibility is not defined
8860 locally, it is a fatal error. */
8861 if (! finfo->info->relocatable
8862 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8863 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8864 && h->root.type == bfd_link_hash_undefined
8865 && !h->def_regular)
8866 {
8867 (*_bfd_error_handler)
8868 (_("%B: %s symbol `%s' isn't defined"),
8869 finfo->output_bfd,
8870 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
8871 ? "protected"
8872 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
8873 ? "internal" : "hidden",
8874 h->root.root.string);
8875 eoinfo->failed = TRUE;
8876 return FALSE;
8877 }
8878
8879 /* If this symbol should be put in the .dynsym section, then put it
8880 there now. We already know the symbol index. We also fill in
8881 the entry in the .hash section. */
8882 if (h->dynindx != -1
8883 && elf_hash_table (finfo->info)->dynamic_sections_created)
8884 {
8885 bfd_byte *esym;
8886
8887 sym.st_name = h->dynstr_index;
8888 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8889 if (! check_dynsym (finfo->output_bfd, &sym))
8890 {
8891 eoinfo->failed = TRUE;
8892 return FALSE;
8893 }
8894 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8895
8896 if (finfo->hash_sec != NULL)
8897 {
8898 size_t hash_entry_size;
8899 bfd_byte *bucketpos;
8900 bfd_vma chain;
8901 size_t bucketcount;
8902 size_t bucket;
8903
8904 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8905 bucket = h->u.elf_hash_value % bucketcount;
8906
8907 hash_entry_size
8908 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8909 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8910 + (bucket + 2) * hash_entry_size);
8911 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8912 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8913 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8914 ((bfd_byte *) finfo->hash_sec->contents
8915 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8916 }
8917
8918 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8919 {
8920 Elf_Internal_Versym iversym;
8921 Elf_External_Versym *eversym;
8922
8923 if (!h->def_regular)
8924 {
8925 if (h->verinfo.verdef == NULL)
8926 iversym.vs_vers = 0;
8927 else
8928 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8929 }
8930 else
8931 {
8932 if (h->verinfo.vertree == NULL)
8933 iversym.vs_vers = 1;
8934 else
8935 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8936 if (finfo->info->create_default_symver)
8937 iversym.vs_vers++;
8938 }
8939
8940 if (h->hidden)
8941 iversym.vs_vers |= VERSYM_HIDDEN;
8942
8943 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8944 eversym += h->dynindx;
8945 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8946 }
8947 }
8948
8949 /* If we're stripping it, then it was just a dynamic symbol, and
8950 there's nothing else to do. */
8951 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8952 return TRUE;
8953
8954 indx = bfd_get_symcount (finfo->output_bfd);
8955 ret = elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h);
8956 if (ret == 0)
8957 {
8958 eoinfo->failed = TRUE;
8959 return FALSE;
8960 }
8961 else if (ret == 1)
8962 h->indx = indx;
8963 else if (h->indx == -2)
8964 abort();
8965
8966 return TRUE;
8967 }
8968
8969 /* Return TRUE if special handling is done for relocs in SEC against
8970 symbols defined in discarded sections. */
8971
8972 static bfd_boolean
8973 elf_section_ignore_discarded_relocs (asection *sec)
8974 {
8975 const struct elf_backend_data *bed;
8976
8977 switch (sec->sec_info_type)
8978 {
8979 case ELF_INFO_TYPE_STABS:
8980 case ELF_INFO_TYPE_EH_FRAME:
8981 return TRUE;
8982 default:
8983 break;
8984 }
8985
8986 bed = get_elf_backend_data (sec->owner);
8987 if (bed->elf_backend_ignore_discarded_relocs != NULL
8988 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8989 return TRUE;
8990
8991 return FALSE;
8992 }
8993
8994 /* Return a mask saying how ld should treat relocations in SEC against
8995 symbols defined in discarded sections. If this function returns
8996 COMPLAIN set, ld will issue a warning message. If this function
8997 returns PRETEND set, and the discarded section was link-once and the
8998 same size as the kept link-once section, ld will pretend that the
8999 symbol was actually defined in the kept section. Otherwise ld will
9000 zero the reloc (at least that is the intent, but some cooperation by
9001 the target dependent code is needed, particularly for REL targets). */
9002
9003 unsigned int
9004 _bfd_elf_default_action_discarded (asection *sec)
9005 {
9006 if (sec->flags & SEC_DEBUGGING)
9007 return PRETEND;
9008
9009 if (strcmp (".eh_frame", sec->name) == 0)
9010 return 0;
9011
9012 if (strcmp (".gcc_except_table", sec->name) == 0)
9013 return 0;
9014
9015 return COMPLAIN | PRETEND;
9016 }
9017
9018 /* Find a match between a section and a member of a section group. */
9019
9020 static asection *
9021 match_group_member (asection *sec, asection *group,
9022 struct bfd_link_info *info)
9023 {
9024 asection *first = elf_next_in_group (group);
9025 asection *s = first;
9026
9027 while (s != NULL)
9028 {
9029 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9030 return s;
9031
9032 s = elf_next_in_group (s);
9033 if (s == first)
9034 break;
9035 }
9036
9037 return NULL;
9038 }
9039
9040 /* Check if the kept section of a discarded section SEC can be used
9041 to replace it. Return the replacement if it is OK. Otherwise return
9042 NULL. */
9043
9044 asection *
9045 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9046 {
9047 asection *kept;
9048
9049 kept = sec->kept_section;
9050 if (kept != NULL)
9051 {
9052 if ((kept->flags & SEC_GROUP) != 0)
9053 kept = match_group_member (sec, kept, info);
9054 if (kept != NULL
9055 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9056 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9057 kept = NULL;
9058 sec->kept_section = kept;
9059 }
9060 return kept;
9061 }
9062
9063 /* Link an input file into the linker output file. This function
9064 handles all the sections and relocations of the input file at once.
9065 This is so that we only have to read the local symbols once, and
9066 don't have to keep them in memory. */
9067
9068 static bfd_boolean
9069 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
9070 {
9071 int (*relocate_section)
9072 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9073 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9074 bfd *output_bfd;
9075 Elf_Internal_Shdr *symtab_hdr;
9076 size_t locsymcount;
9077 size_t extsymoff;
9078 Elf_Internal_Sym *isymbuf;
9079 Elf_Internal_Sym *isym;
9080 Elf_Internal_Sym *isymend;
9081 long *pindex;
9082 asection **ppsection;
9083 asection *o;
9084 const struct elf_backend_data *bed;
9085 struct elf_link_hash_entry **sym_hashes;
9086
9087 output_bfd = finfo->output_bfd;
9088 bed = get_elf_backend_data (output_bfd);
9089 relocate_section = bed->elf_backend_relocate_section;
9090
9091 /* If this is a dynamic object, we don't want to do anything here:
9092 we don't want the local symbols, and we don't want the section
9093 contents. */
9094 if ((input_bfd->flags & DYNAMIC) != 0)
9095 return TRUE;
9096
9097 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9098 if (elf_bad_symtab (input_bfd))
9099 {
9100 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9101 extsymoff = 0;
9102 }
9103 else
9104 {
9105 locsymcount = symtab_hdr->sh_info;
9106 extsymoff = symtab_hdr->sh_info;
9107 }
9108
9109 /* Read the local symbols. */
9110 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9111 if (isymbuf == NULL && locsymcount != 0)
9112 {
9113 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9114 finfo->internal_syms,
9115 finfo->external_syms,
9116 finfo->locsym_shndx);
9117 if (isymbuf == NULL)
9118 return FALSE;
9119 }
9120
9121 /* Find local symbol sections and adjust values of symbols in
9122 SEC_MERGE sections. Write out those local symbols we know are
9123 going into the output file. */
9124 isymend = isymbuf + locsymcount;
9125 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
9126 isym < isymend;
9127 isym++, pindex++, ppsection++)
9128 {
9129 asection *isec;
9130 const char *name;
9131 Elf_Internal_Sym osym;
9132 long indx;
9133 int ret;
9134
9135 *pindex = -1;
9136
9137 if (elf_bad_symtab (input_bfd))
9138 {
9139 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9140 {
9141 *ppsection = NULL;
9142 continue;
9143 }
9144 }
9145
9146 if (isym->st_shndx == SHN_UNDEF)
9147 isec = bfd_und_section_ptr;
9148 else if (isym->st_shndx == SHN_ABS)
9149 isec = bfd_abs_section_ptr;
9150 else if (isym->st_shndx == SHN_COMMON)
9151 isec = bfd_com_section_ptr;
9152 else
9153 {
9154 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9155 if (isec == NULL)
9156 {
9157 /* Don't attempt to output symbols with st_shnx in the
9158 reserved range other than SHN_ABS and SHN_COMMON. */
9159 *ppsection = NULL;
9160 continue;
9161 }
9162 else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
9163 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9164 isym->st_value =
9165 _bfd_merged_section_offset (output_bfd, &isec,
9166 elf_section_data (isec)->sec_info,
9167 isym->st_value);
9168 }
9169
9170 *ppsection = isec;
9171
9172 /* Don't output the first, undefined, symbol. */
9173 if (ppsection == finfo->sections)
9174 continue;
9175
9176 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9177 {
9178 /* We never output section symbols. Instead, we use the
9179 section symbol of the corresponding section in the output
9180 file. */
9181 continue;
9182 }
9183
9184 /* If we are stripping all symbols, we don't want to output this
9185 one. */
9186 if (finfo->info->strip == strip_all)
9187 continue;
9188
9189 /* If we are discarding all local symbols, we don't want to
9190 output this one. If we are generating a relocatable output
9191 file, then some of the local symbols may be required by
9192 relocs; we output them below as we discover that they are
9193 needed. */
9194 if (finfo->info->discard == discard_all)
9195 continue;
9196
9197 /* If this symbol is defined in a section which we are
9198 discarding, we don't need to keep it. */
9199 if (isym->st_shndx != SHN_UNDEF
9200 && isym->st_shndx < SHN_LORESERVE
9201 && bfd_section_removed_from_list (output_bfd,
9202 isec->output_section))
9203 continue;
9204
9205 /* Get the name of the symbol. */
9206 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9207 isym->st_name);
9208 if (name == NULL)
9209 return FALSE;
9210
9211 /* See if we are discarding symbols with this name. */
9212 if ((finfo->info->strip == strip_some
9213 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
9214 == NULL))
9215 || (((finfo->info->discard == discard_sec_merge
9216 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
9217 || finfo->info->discard == discard_l)
9218 && bfd_is_local_label_name (input_bfd, name)))
9219 continue;
9220
9221 osym = *isym;
9222
9223 /* Adjust the section index for the output file. */
9224 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9225 isec->output_section);
9226 if (osym.st_shndx == SHN_BAD)
9227 return FALSE;
9228
9229 /* ELF symbols in relocatable files are section relative, but
9230 in executable files they are virtual addresses. Note that
9231 this code assumes that all ELF sections have an associated
9232 BFD section with a reasonable value for output_offset; below
9233 we assume that they also have a reasonable value for
9234 output_section. Any special sections must be set up to meet
9235 these requirements. */
9236 osym.st_value += isec->output_offset;
9237 if (! finfo->info->relocatable)
9238 {
9239 osym.st_value += isec->output_section->vma;
9240 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9241 {
9242 /* STT_TLS symbols are relative to PT_TLS segment base. */
9243 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9244 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9245 }
9246 }
9247
9248 indx = bfd_get_symcount (output_bfd);
9249 ret = elf_link_output_sym (finfo, name, &osym, isec, NULL);
9250 if (ret == 0)
9251 return FALSE;
9252 else if (ret == 1)
9253 *pindex = indx;
9254 }
9255
9256 /* Relocate the contents of each section. */
9257 sym_hashes = elf_sym_hashes (input_bfd);
9258 for (o = input_bfd->sections; o != NULL; o = o->next)
9259 {
9260 bfd_byte *contents;
9261
9262 if (! o->linker_mark)
9263 {
9264 /* This section was omitted from the link. */
9265 continue;
9266 }
9267
9268 if (finfo->info->relocatable
9269 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9270 {
9271 /* Deal with the group signature symbol. */
9272 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9273 unsigned long symndx = sec_data->this_hdr.sh_info;
9274 asection *osec = o->output_section;
9275
9276 if (symndx >= locsymcount
9277 || (elf_bad_symtab (input_bfd)
9278 && finfo->sections[symndx] == NULL))
9279 {
9280 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9281 while (h->root.type == bfd_link_hash_indirect
9282 || h->root.type == bfd_link_hash_warning)
9283 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9284 /* Arrange for symbol to be output. */
9285 h->indx = -2;
9286 elf_section_data (osec)->this_hdr.sh_info = -2;
9287 }
9288 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9289 {
9290 /* We'll use the output section target_index. */
9291 asection *sec = finfo->sections[symndx]->output_section;
9292 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9293 }
9294 else
9295 {
9296 if (finfo->indices[symndx] == -1)
9297 {
9298 /* Otherwise output the local symbol now. */
9299 Elf_Internal_Sym sym = isymbuf[symndx];
9300 asection *sec = finfo->sections[symndx]->output_section;
9301 const char *name;
9302 long indx;
9303 int ret;
9304
9305 name = bfd_elf_string_from_elf_section (input_bfd,
9306 symtab_hdr->sh_link,
9307 sym.st_name);
9308 if (name == NULL)
9309 return FALSE;
9310
9311 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9312 sec);
9313 if (sym.st_shndx == SHN_BAD)
9314 return FALSE;
9315
9316 sym.st_value += o->output_offset;
9317
9318 indx = bfd_get_symcount (output_bfd);
9319 ret = elf_link_output_sym (finfo, name, &sym, o, NULL);
9320 if (ret == 0)
9321 return FALSE;
9322 else if (ret == 1)
9323 finfo->indices[symndx] = indx;
9324 else
9325 abort ();
9326 }
9327 elf_section_data (osec)->this_hdr.sh_info
9328 = finfo->indices[symndx];
9329 }
9330 }
9331
9332 if ((o->flags & SEC_HAS_CONTENTS) == 0
9333 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9334 continue;
9335
9336 if ((o->flags & SEC_LINKER_CREATED) != 0)
9337 {
9338 /* Section was created by _bfd_elf_link_create_dynamic_sections
9339 or somesuch. */
9340 continue;
9341 }
9342
9343 /* Get the contents of the section. They have been cached by a
9344 relaxation routine. Note that o is a section in an input
9345 file, so the contents field will not have been set by any of
9346 the routines which work on output files. */
9347 if (elf_section_data (o)->this_hdr.contents != NULL)
9348 contents = elf_section_data (o)->this_hdr.contents;
9349 else
9350 {
9351 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
9352
9353 contents = finfo->contents;
9354 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
9355 return FALSE;
9356 }
9357
9358 if ((o->flags & SEC_RELOC) != 0)
9359 {
9360 Elf_Internal_Rela *internal_relocs;
9361 Elf_Internal_Rela *rel, *relend;
9362 bfd_vma r_type_mask;
9363 int r_sym_shift;
9364 int action_discarded;
9365 int ret;
9366
9367 /* Get the swapped relocs. */
9368 internal_relocs
9369 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9370 finfo->internal_relocs, FALSE);
9371 if (internal_relocs == NULL
9372 && o->reloc_count > 0)
9373 return FALSE;
9374
9375 if (bed->s->arch_size == 32)
9376 {
9377 r_type_mask = 0xff;
9378 r_sym_shift = 8;
9379 }
9380 else
9381 {
9382 r_type_mask = 0xffffffff;
9383 r_sym_shift = 32;
9384 }
9385
9386 action_discarded = -1;
9387 if (!elf_section_ignore_discarded_relocs (o))
9388 action_discarded = (*bed->action_discarded) (o);
9389
9390 /* Run through the relocs evaluating complex reloc symbols and
9391 looking for relocs against symbols from discarded sections
9392 or section symbols from removed link-once sections.
9393 Complain about relocs against discarded sections. Zero
9394 relocs against removed link-once sections. */
9395
9396 rel = internal_relocs;
9397 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9398 for ( ; rel < relend; rel++)
9399 {
9400 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9401 unsigned int s_type;
9402 asection **ps, *sec;
9403 struct elf_link_hash_entry *h = NULL;
9404 const char *sym_name;
9405
9406 if (r_symndx == STN_UNDEF)
9407 continue;
9408
9409 if (r_symndx >= locsymcount
9410 || (elf_bad_symtab (input_bfd)
9411 && finfo->sections[r_symndx] == NULL))
9412 {
9413 h = sym_hashes[r_symndx - extsymoff];
9414
9415 /* Badly formatted input files can contain relocs that
9416 reference non-existant symbols. Check here so that
9417 we do not seg fault. */
9418 if (h == NULL)
9419 {
9420 char buffer [32];
9421
9422 sprintf_vma (buffer, rel->r_info);
9423 (*_bfd_error_handler)
9424 (_("error: %B contains a reloc (0x%s) for section %A "
9425 "that references a non-existent global symbol"),
9426 input_bfd, o, buffer);
9427 bfd_set_error (bfd_error_bad_value);
9428 return FALSE;
9429 }
9430
9431 while (h->root.type == bfd_link_hash_indirect
9432 || h->root.type == bfd_link_hash_warning)
9433 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9434
9435 s_type = h->type;
9436
9437 ps = NULL;
9438 if (h->root.type == bfd_link_hash_defined
9439 || h->root.type == bfd_link_hash_defweak)
9440 ps = &h->root.u.def.section;
9441
9442 sym_name = h->root.root.string;
9443 }
9444 else
9445 {
9446 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9447
9448 s_type = ELF_ST_TYPE (sym->st_info);
9449 ps = &finfo->sections[r_symndx];
9450 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9451 sym, *ps);
9452 }
9453
9454 if ((s_type == STT_RELC || s_type == STT_SRELC)
9455 && !finfo->info->relocatable)
9456 {
9457 bfd_vma val;
9458 bfd_vma dot = (rel->r_offset
9459 + o->output_offset + o->output_section->vma);
9460 #ifdef DEBUG
9461 printf ("Encountered a complex symbol!");
9462 printf (" (input_bfd %s, section %s, reloc %ld\n",
9463 input_bfd->filename, o->name, rel - internal_relocs);
9464 printf (" symbol: idx %8.8lx, name %s\n",
9465 r_symndx, sym_name);
9466 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9467 (unsigned long) rel->r_info,
9468 (unsigned long) rel->r_offset);
9469 #endif
9470 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9471 isymbuf, locsymcount, s_type == STT_SRELC))
9472 return FALSE;
9473
9474 /* Symbol evaluated OK. Update to absolute value. */
9475 set_symbol_value (input_bfd, isymbuf, locsymcount,
9476 r_symndx, val);
9477 continue;
9478 }
9479
9480 if (action_discarded != -1 && ps != NULL)
9481 {
9482 /* Complain if the definition comes from a
9483 discarded section. */
9484 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9485 {
9486 BFD_ASSERT (r_symndx != 0);
9487 if (action_discarded & COMPLAIN)
9488 (*finfo->info->callbacks->einfo)
9489 (_("%X`%s' referenced in section `%A' of %B: "
9490 "defined in discarded section `%A' of %B\n"),
9491 sym_name, o, input_bfd, sec, sec->owner);
9492
9493 /* Try to do the best we can to support buggy old
9494 versions of gcc. Pretend that the symbol is
9495 really defined in the kept linkonce section.
9496 FIXME: This is quite broken. Modifying the
9497 symbol here means we will be changing all later
9498 uses of the symbol, not just in this section. */
9499 if (action_discarded & PRETEND)
9500 {
9501 asection *kept;
9502
9503 kept = _bfd_elf_check_kept_section (sec,
9504 finfo->info);
9505 if (kept != NULL)
9506 {
9507 *ps = kept;
9508 continue;
9509 }
9510 }
9511 }
9512 }
9513 }
9514
9515 /* Relocate the section by invoking a back end routine.
9516
9517 The back end routine is responsible for adjusting the
9518 section contents as necessary, and (if using Rela relocs
9519 and generating a relocatable output file) adjusting the
9520 reloc addend as necessary.
9521
9522 The back end routine does not have to worry about setting
9523 the reloc address or the reloc symbol index.
9524
9525 The back end routine is given a pointer to the swapped in
9526 internal symbols, and can access the hash table entries
9527 for the external symbols via elf_sym_hashes (input_bfd).
9528
9529 When generating relocatable output, the back end routine
9530 must handle STB_LOCAL/STT_SECTION symbols specially. The
9531 output symbol is going to be a section symbol
9532 corresponding to the output section, which will require
9533 the addend to be adjusted. */
9534
9535 ret = (*relocate_section) (output_bfd, finfo->info,
9536 input_bfd, o, contents,
9537 internal_relocs,
9538 isymbuf,
9539 finfo->sections);
9540 if (!ret)
9541 return FALSE;
9542
9543 if (ret == 2
9544 || finfo->info->relocatable
9545 || finfo->info->emitrelocations)
9546 {
9547 Elf_Internal_Rela *irela;
9548 Elf_Internal_Rela *irelaend;
9549 bfd_vma last_offset;
9550 struct elf_link_hash_entry **rel_hash;
9551 struct elf_link_hash_entry **rel_hash_list;
9552 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
9553 unsigned int next_erel;
9554 bfd_boolean rela_normal;
9555
9556 input_rel_hdr = &elf_section_data (o)->rel_hdr;
9557 rela_normal = (bed->rela_normal
9558 && (input_rel_hdr->sh_entsize
9559 == bed->s->sizeof_rela));
9560
9561 /* Adjust the reloc addresses and symbol indices. */
9562
9563 irela = internal_relocs;
9564 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9565 rel_hash = (elf_section_data (o->output_section)->rel_hashes
9566 + elf_section_data (o->output_section)->rel_count
9567 + elf_section_data (o->output_section)->rel_count2);
9568 rel_hash_list = rel_hash;
9569 last_offset = o->output_offset;
9570 if (!finfo->info->relocatable)
9571 last_offset += o->output_section->vma;
9572 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9573 {
9574 unsigned long r_symndx;
9575 asection *sec;
9576 Elf_Internal_Sym sym;
9577
9578 if (next_erel == bed->s->int_rels_per_ext_rel)
9579 {
9580 rel_hash++;
9581 next_erel = 0;
9582 }
9583
9584 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9585 finfo->info, o,
9586 irela->r_offset);
9587 if (irela->r_offset >= (bfd_vma) -2)
9588 {
9589 /* This is a reloc for a deleted entry or somesuch.
9590 Turn it into an R_*_NONE reloc, at the same
9591 offset as the last reloc. elf_eh_frame.c and
9592 bfd_elf_discard_info rely on reloc offsets
9593 being ordered. */
9594 irela->r_offset = last_offset;
9595 irela->r_info = 0;
9596 irela->r_addend = 0;
9597 continue;
9598 }
9599
9600 irela->r_offset += o->output_offset;
9601
9602 /* Relocs in an executable have to be virtual addresses. */
9603 if (!finfo->info->relocatable)
9604 irela->r_offset += o->output_section->vma;
9605
9606 last_offset = irela->r_offset;
9607
9608 r_symndx = irela->r_info >> r_sym_shift;
9609 if (r_symndx == STN_UNDEF)
9610 continue;
9611
9612 if (r_symndx >= locsymcount
9613 || (elf_bad_symtab (input_bfd)
9614 && finfo->sections[r_symndx] == NULL))
9615 {
9616 struct elf_link_hash_entry *rh;
9617 unsigned long indx;
9618
9619 /* This is a reloc against a global symbol. We
9620 have not yet output all the local symbols, so
9621 we do not know the symbol index of any global
9622 symbol. We set the rel_hash entry for this
9623 reloc to point to the global hash table entry
9624 for this symbol. The symbol index is then
9625 set at the end of bfd_elf_final_link. */
9626 indx = r_symndx - extsymoff;
9627 rh = elf_sym_hashes (input_bfd)[indx];
9628 while (rh->root.type == bfd_link_hash_indirect
9629 || rh->root.type == bfd_link_hash_warning)
9630 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9631
9632 /* Setting the index to -2 tells
9633 elf_link_output_extsym that this symbol is
9634 used by a reloc. */
9635 BFD_ASSERT (rh->indx < 0);
9636 rh->indx = -2;
9637
9638 *rel_hash = rh;
9639
9640 continue;
9641 }
9642
9643 /* This is a reloc against a local symbol. */
9644
9645 *rel_hash = NULL;
9646 sym = isymbuf[r_symndx];
9647 sec = finfo->sections[r_symndx];
9648 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9649 {
9650 /* I suppose the backend ought to fill in the
9651 section of any STT_SECTION symbol against a
9652 processor specific section. */
9653 r_symndx = 0;
9654 if (bfd_is_abs_section (sec))
9655 ;
9656 else if (sec == NULL || sec->owner == NULL)
9657 {
9658 bfd_set_error (bfd_error_bad_value);
9659 return FALSE;
9660 }
9661 else
9662 {
9663 asection *osec = sec->output_section;
9664
9665 /* If we have discarded a section, the output
9666 section will be the absolute section. In
9667 case of discarded SEC_MERGE sections, use
9668 the kept section. relocate_section should
9669 have already handled discarded linkonce
9670 sections. */
9671 if (bfd_is_abs_section (osec)
9672 && sec->kept_section != NULL
9673 && sec->kept_section->output_section != NULL)
9674 {
9675 osec = sec->kept_section->output_section;
9676 irela->r_addend -= osec->vma;
9677 }
9678
9679 if (!bfd_is_abs_section (osec))
9680 {
9681 r_symndx = osec->target_index;
9682 if (r_symndx == 0)
9683 {
9684 struct elf_link_hash_table *htab;
9685 asection *oi;
9686
9687 htab = elf_hash_table (finfo->info);
9688 oi = htab->text_index_section;
9689 if ((osec->flags & SEC_READONLY) == 0
9690 && htab->data_index_section != NULL)
9691 oi = htab->data_index_section;
9692
9693 if (oi != NULL)
9694 {
9695 irela->r_addend += osec->vma - oi->vma;
9696 r_symndx = oi->target_index;
9697 }
9698 }
9699
9700 BFD_ASSERT (r_symndx != 0);
9701 }
9702 }
9703
9704 /* Adjust the addend according to where the
9705 section winds up in the output section. */
9706 if (rela_normal)
9707 irela->r_addend += sec->output_offset;
9708 }
9709 else
9710 {
9711 if (finfo->indices[r_symndx] == -1)
9712 {
9713 unsigned long shlink;
9714 const char *name;
9715 asection *osec;
9716 long indx;
9717
9718 if (finfo->info->strip == strip_all)
9719 {
9720 /* You can't do ld -r -s. */
9721 bfd_set_error (bfd_error_invalid_operation);
9722 return FALSE;
9723 }
9724
9725 /* This symbol was skipped earlier, but
9726 since it is needed by a reloc, we
9727 must output it now. */
9728 shlink = symtab_hdr->sh_link;
9729 name = (bfd_elf_string_from_elf_section
9730 (input_bfd, shlink, sym.st_name));
9731 if (name == NULL)
9732 return FALSE;
9733
9734 osec = sec->output_section;
9735 sym.st_shndx =
9736 _bfd_elf_section_from_bfd_section (output_bfd,
9737 osec);
9738 if (sym.st_shndx == SHN_BAD)
9739 return FALSE;
9740
9741 sym.st_value += sec->output_offset;
9742 if (! finfo->info->relocatable)
9743 {
9744 sym.st_value += osec->vma;
9745 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9746 {
9747 /* STT_TLS symbols are relative to PT_TLS
9748 segment base. */
9749 BFD_ASSERT (elf_hash_table (finfo->info)
9750 ->tls_sec != NULL);
9751 sym.st_value -= (elf_hash_table (finfo->info)
9752 ->tls_sec->vma);
9753 }
9754 }
9755
9756 indx = bfd_get_symcount (output_bfd);
9757 ret = elf_link_output_sym (finfo, name, &sym, sec,
9758 NULL);
9759 if (ret == 0)
9760 return FALSE;
9761 else if (ret == 1)
9762 finfo->indices[r_symndx] = indx;
9763 else
9764 abort ();
9765 }
9766
9767 r_symndx = finfo->indices[r_symndx];
9768 }
9769
9770 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9771 | (irela->r_info & r_type_mask));
9772 }
9773
9774 /* Swap out the relocs. */
9775 if (input_rel_hdr->sh_size != 0
9776 && !bed->elf_backend_emit_relocs (output_bfd, o,
9777 input_rel_hdr,
9778 internal_relocs,
9779 rel_hash_list))
9780 return FALSE;
9781
9782 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
9783 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
9784 {
9785 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9786 * bed->s->int_rels_per_ext_rel);
9787 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9788 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9789 input_rel_hdr2,
9790 internal_relocs,
9791 rel_hash_list))
9792 return FALSE;
9793 }
9794 }
9795 }
9796
9797 /* Write out the modified section contents. */
9798 if (bed->elf_backend_write_section
9799 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9800 contents))
9801 {
9802 /* Section written out. */
9803 }
9804 else switch (o->sec_info_type)
9805 {
9806 case ELF_INFO_TYPE_STABS:
9807 if (! (_bfd_write_section_stabs
9808 (output_bfd,
9809 &elf_hash_table (finfo->info)->stab_info,
9810 o, &elf_section_data (o)->sec_info, contents)))
9811 return FALSE;
9812 break;
9813 case ELF_INFO_TYPE_MERGE:
9814 if (! _bfd_write_merged_section (output_bfd, o,
9815 elf_section_data (o)->sec_info))
9816 return FALSE;
9817 break;
9818 case ELF_INFO_TYPE_EH_FRAME:
9819 {
9820 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9821 o, contents))
9822 return FALSE;
9823 }
9824 break;
9825 default:
9826 {
9827 /* FIXME: octets_per_byte. */
9828 if (! (o->flags & SEC_EXCLUDE)
9829 && ! (o->output_section->flags & SEC_NEVER_LOAD)
9830 && ! bfd_set_section_contents (output_bfd, o->output_section,
9831 contents,
9832 (file_ptr) o->output_offset,
9833 o->size))
9834 return FALSE;
9835 }
9836 break;
9837 }
9838 }
9839
9840 return TRUE;
9841 }
9842
9843 /* Generate a reloc when linking an ELF file. This is a reloc
9844 requested by the linker, and does not come from any input file. This
9845 is used to build constructor and destructor tables when linking
9846 with -Ur. */
9847
9848 static bfd_boolean
9849 elf_reloc_link_order (bfd *output_bfd,
9850 struct bfd_link_info *info,
9851 asection *output_section,
9852 struct bfd_link_order *link_order)
9853 {
9854 reloc_howto_type *howto;
9855 long indx;
9856 bfd_vma offset;
9857 bfd_vma addend;
9858 struct elf_link_hash_entry **rel_hash_ptr;
9859 Elf_Internal_Shdr *rel_hdr;
9860 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9861 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9862 bfd_byte *erel;
9863 unsigned int i;
9864
9865 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9866 if (howto == NULL)
9867 {
9868 bfd_set_error (bfd_error_bad_value);
9869 return FALSE;
9870 }
9871
9872 addend = link_order->u.reloc.p->addend;
9873
9874 /* Figure out the symbol index. */
9875 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
9876 + elf_section_data (output_section)->rel_count
9877 + elf_section_data (output_section)->rel_count2);
9878 if (link_order->type == bfd_section_reloc_link_order)
9879 {
9880 indx = link_order->u.reloc.p->u.section->target_index;
9881 BFD_ASSERT (indx != 0);
9882 *rel_hash_ptr = NULL;
9883 }
9884 else
9885 {
9886 struct elf_link_hash_entry *h;
9887
9888 /* Treat a reloc against a defined symbol as though it were
9889 actually against the section. */
9890 h = ((struct elf_link_hash_entry *)
9891 bfd_wrapped_link_hash_lookup (output_bfd, info,
9892 link_order->u.reloc.p->u.name,
9893 FALSE, FALSE, TRUE));
9894 if (h != NULL
9895 && (h->root.type == bfd_link_hash_defined
9896 || h->root.type == bfd_link_hash_defweak))
9897 {
9898 asection *section;
9899
9900 section = h->root.u.def.section;
9901 indx = section->output_section->target_index;
9902 *rel_hash_ptr = NULL;
9903 /* It seems that we ought to add the symbol value to the
9904 addend here, but in practice it has already been added
9905 because it was passed to constructor_callback. */
9906 addend += section->output_section->vma + section->output_offset;
9907 }
9908 else if (h != NULL)
9909 {
9910 /* Setting the index to -2 tells elf_link_output_extsym that
9911 this symbol is used by a reloc. */
9912 h->indx = -2;
9913 *rel_hash_ptr = h;
9914 indx = 0;
9915 }
9916 else
9917 {
9918 if (! ((*info->callbacks->unattached_reloc)
9919 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9920 return FALSE;
9921 indx = 0;
9922 }
9923 }
9924
9925 /* If this is an inplace reloc, we must write the addend into the
9926 object file. */
9927 if (howto->partial_inplace && addend != 0)
9928 {
9929 bfd_size_type size;
9930 bfd_reloc_status_type rstat;
9931 bfd_byte *buf;
9932 bfd_boolean ok;
9933 const char *sym_name;
9934
9935 size = (bfd_size_type) bfd_get_reloc_size (howto);
9936 buf = (bfd_byte *) bfd_zmalloc (size);
9937 if (buf == NULL)
9938 return FALSE;
9939 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
9940 switch (rstat)
9941 {
9942 case bfd_reloc_ok:
9943 break;
9944
9945 default:
9946 case bfd_reloc_outofrange:
9947 abort ();
9948
9949 case bfd_reloc_overflow:
9950 if (link_order->type == bfd_section_reloc_link_order)
9951 sym_name = bfd_section_name (output_bfd,
9952 link_order->u.reloc.p->u.section);
9953 else
9954 sym_name = link_order->u.reloc.p->u.name;
9955 if (! ((*info->callbacks->reloc_overflow)
9956 (info, NULL, sym_name, howto->name, addend, NULL,
9957 NULL, (bfd_vma) 0)))
9958 {
9959 free (buf);
9960 return FALSE;
9961 }
9962 break;
9963 }
9964 ok = bfd_set_section_contents (output_bfd, output_section, buf,
9965 link_order->offset, size);
9966 free (buf);
9967 if (! ok)
9968 return FALSE;
9969 }
9970
9971 /* The address of a reloc is relative to the section in a
9972 relocatable file, and is a virtual address in an executable
9973 file. */
9974 offset = link_order->offset;
9975 if (! info->relocatable)
9976 offset += output_section->vma;
9977
9978 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
9979 {
9980 irel[i].r_offset = offset;
9981 irel[i].r_info = 0;
9982 irel[i].r_addend = 0;
9983 }
9984 if (bed->s->arch_size == 32)
9985 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
9986 else
9987 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
9988
9989 rel_hdr = &elf_section_data (output_section)->rel_hdr;
9990 erel = rel_hdr->contents;
9991 if (rel_hdr->sh_type == SHT_REL)
9992 {
9993 erel += (elf_section_data (output_section)->rel_count
9994 * bed->s->sizeof_rel);
9995 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
9996 }
9997 else
9998 {
9999 irel[0].r_addend = addend;
10000 erel += (elf_section_data (output_section)->rel_count
10001 * bed->s->sizeof_rela);
10002 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10003 }
10004
10005 ++elf_section_data (output_section)->rel_count;
10006
10007 return TRUE;
10008 }
10009
10010
10011 /* Get the output vma of the section pointed to by the sh_link field. */
10012
10013 static bfd_vma
10014 elf_get_linked_section_vma (struct bfd_link_order *p)
10015 {
10016 Elf_Internal_Shdr **elf_shdrp;
10017 asection *s;
10018 int elfsec;
10019
10020 s = p->u.indirect.section;
10021 elf_shdrp = elf_elfsections (s->owner);
10022 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10023 elfsec = elf_shdrp[elfsec]->sh_link;
10024 /* PR 290:
10025 The Intel C compiler generates SHT_IA_64_UNWIND with
10026 SHF_LINK_ORDER. But it doesn't set the sh_link or
10027 sh_info fields. Hence we could get the situation
10028 where elfsec is 0. */
10029 if (elfsec == 0)
10030 {
10031 const struct elf_backend_data *bed
10032 = get_elf_backend_data (s->owner);
10033 if (bed->link_order_error_handler)
10034 bed->link_order_error_handler
10035 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10036 return 0;
10037 }
10038 else
10039 {
10040 s = elf_shdrp[elfsec]->bfd_section;
10041 return s->output_section->vma + s->output_offset;
10042 }
10043 }
10044
10045
10046 /* Compare two sections based on the locations of the sections they are
10047 linked to. Used by elf_fixup_link_order. */
10048
10049 static int
10050 compare_link_order (const void * a, const void * b)
10051 {
10052 bfd_vma apos;
10053 bfd_vma bpos;
10054
10055 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10056 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10057 if (apos < bpos)
10058 return -1;
10059 return apos > bpos;
10060 }
10061
10062
10063 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10064 order as their linked sections. Returns false if this could not be done
10065 because an output section includes both ordered and unordered
10066 sections. Ideally we'd do this in the linker proper. */
10067
10068 static bfd_boolean
10069 elf_fixup_link_order (bfd *abfd, asection *o)
10070 {
10071 int seen_linkorder;
10072 int seen_other;
10073 int n;
10074 struct bfd_link_order *p;
10075 bfd *sub;
10076 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10077 unsigned elfsec;
10078 struct bfd_link_order **sections;
10079 asection *s, *other_sec, *linkorder_sec;
10080 bfd_vma offset;
10081
10082 other_sec = NULL;
10083 linkorder_sec = NULL;
10084 seen_other = 0;
10085 seen_linkorder = 0;
10086 for (p = o->map_head.link_order; p != NULL; p = p->next)
10087 {
10088 if (p->type == bfd_indirect_link_order)
10089 {
10090 s = p->u.indirect.section;
10091 sub = s->owner;
10092 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10093 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10094 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10095 && elfsec < elf_numsections (sub)
10096 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10097 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10098 {
10099 seen_linkorder++;
10100 linkorder_sec = s;
10101 }
10102 else
10103 {
10104 seen_other++;
10105 other_sec = s;
10106 }
10107 }
10108 else
10109 seen_other++;
10110
10111 if (seen_other && seen_linkorder)
10112 {
10113 if (other_sec && linkorder_sec)
10114 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10115 o, linkorder_sec,
10116 linkorder_sec->owner, other_sec,
10117 other_sec->owner);
10118 else
10119 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10120 o);
10121 bfd_set_error (bfd_error_bad_value);
10122 return FALSE;
10123 }
10124 }
10125
10126 if (!seen_linkorder)
10127 return TRUE;
10128
10129 sections = (struct bfd_link_order **)
10130 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10131 if (sections == NULL)
10132 return FALSE;
10133 seen_linkorder = 0;
10134
10135 for (p = o->map_head.link_order; p != NULL; p = p->next)
10136 {
10137 sections[seen_linkorder++] = p;
10138 }
10139 /* Sort the input sections in the order of their linked section. */
10140 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10141 compare_link_order);
10142
10143 /* Change the offsets of the sections. */
10144 offset = 0;
10145 for (n = 0; n < seen_linkorder; n++)
10146 {
10147 s = sections[n]->u.indirect.section;
10148 offset &= ~(bfd_vma) 0 << s->alignment_power;
10149 s->output_offset = offset;
10150 sections[n]->offset = offset;
10151 /* FIXME: octets_per_byte. */
10152 offset += sections[n]->size;
10153 }
10154
10155 free (sections);
10156 return TRUE;
10157 }
10158
10159
10160 /* Do the final step of an ELF link. */
10161
10162 bfd_boolean
10163 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10164 {
10165 bfd_boolean dynamic;
10166 bfd_boolean emit_relocs;
10167 bfd *dynobj;
10168 struct elf_final_link_info finfo;
10169 asection *o;
10170 struct bfd_link_order *p;
10171 bfd *sub;
10172 bfd_size_type max_contents_size;
10173 bfd_size_type max_external_reloc_size;
10174 bfd_size_type max_internal_reloc_count;
10175 bfd_size_type max_sym_count;
10176 bfd_size_type max_sym_shndx_count;
10177 file_ptr off;
10178 Elf_Internal_Sym elfsym;
10179 unsigned int i;
10180 Elf_Internal_Shdr *symtab_hdr;
10181 Elf_Internal_Shdr *symtab_shndx_hdr;
10182 Elf_Internal_Shdr *symstrtab_hdr;
10183 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10184 struct elf_outext_info eoinfo;
10185 bfd_boolean merged;
10186 size_t relativecount = 0;
10187 asection *reldyn = 0;
10188 bfd_size_type amt;
10189 asection *attr_section = NULL;
10190 bfd_vma attr_size = 0;
10191 const char *std_attrs_section;
10192
10193 if (! is_elf_hash_table (info->hash))
10194 return FALSE;
10195
10196 if (info->shared)
10197 abfd->flags |= DYNAMIC;
10198
10199 dynamic = elf_hash_table (info)->dynamic_sections_created;
10200 dynobj = elf_hash_table (info)->dynobj;
10201
10202 emit_relocs = (info->relocatable
10203 || info->emitrelocations);
10204
10205 finfo.info = info;
10206 finfo.output_bfd = abfd;
10207 finfo.symstrtab = _bfd_elf_stringtab_init ();
10208 if (finfo.symstrtab == NULL)
10209 return FALSE;
10210
10211 if (! dynamic)
10212 {
10213 finfo.dynsym_sec = NULL;
10214 finfo.hash_sec = NULL;
10215 finfo.symver_sec = NULL;
10216 }
10217 else
10218 {
10219 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
10220 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
10221 BFD_ASSERT (finfo.dynsym_sec != NULL);
10222 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
10223 /* Note that it is OK if symver_sec is NULL. */
10224 }
10225
10226 finfo.contents = NULL;
10227 finfo.external_relocs = NULL;
10228 finfo.internal_relocs = NULL;
10229 finfo.external_syms = NULL;
10230 finfo.locsym_shndx = NULL;
10231 finfo.internal_syms = NULL;
10232 finfo.indices = NULL;
10233 finfo.sections = NULL;
10234 finfo.symbuf = NULL;
10235 finfo.symshndxbuf = NULL;
10236 finfo.symbuf_count = 0;
10237 finfo.shndxbuf_size = 0;
10238
10239 /* The object attributes have been merged. Remove the input
10240 sections from the link, and set the contents of the output
10241 secton. */
10242 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10243 for (o = abfd->sections; o != NULL; o = o->next)
10244 {
10245 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10246 || strcmp (o->name, ".gnu.attributes") == 0)
10247 {
10248 for (p = o->map_head.link_order; p != NULL; p = p->next)
10249 {
10250 asection *input_section;
10251
10252 if (p->type != bfd_indirect_link_order)
10253 continue;
10254 input_section = p->u.indirect.section;
10255 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10256 elf_link_input_bfd ignores this section. */
10257 input_section->flags &= ~SEC_HAS_CONTENTS;
10258 }
10259
10260 attr_size = bfd_elf_obj_attr_size (abfd);
10261 if (attr_size)
10262 {
10263 bfd_set_section_size (abfd, o, attr_size);
10264 attr_section = o;
10265 /* Skip this section later on. */
10266 o->map_head.link_order = NULL;
10267 }
10268 else
10269 o->flags |= SEC_EXCLUDE;
10270 }
10271 }
10272
10273 /* Count up the number of relocations we will output for each output
10274 section, so that we know the sizes of the reloc sections. We
10275 also figure out some maximum sizes. */
10276 max_contents_size = 0;
10277 max_external_reloc_size = 0;
10278 max_internal_reloc_count = 0;
10279 max_sym_count = 0;
10280 max_sym_shndx_count = 0;
10281 merged = FALSE;
10282 for (o = abfd->sections; o != NULL; o = o->next)
10283 {
10284 struct bfd_elf_section_data *esdo = elf_section_data (o);
10285 o->reloc_count = 0;
10286
10287 for (p = o->map_head.link_order; p != NULL; p = p->next)
10288 {
10289 unsigned int reloc_count = 0;
10290 struct bfd_elf_section_data *esdi = NULL;
10291 unsigned int *rel_count1;
10292
10293 if (p->type == bfd_section_reloc_link_order
10294 || p->type == bfd_symbol_reloc_link_order)
10295 reloc_count = 1;
10296 else if (p->type == bfd_indirect_link_order)
10297 {
10298 asection *sec;
10299
10300 sec = p->u.indirect.section;
10301 esdi = elf_section_data (sec);
10302
10303 /* Mark all sections which are to be included in the
10304 link. This will normally be every section. We need
10305 to do this so that we can identify any sections which
10306 the linker has decided to not include. */
10307 sec->linker_mark = TRUE;
10308
10309 if (sec->flags & SEC_MERGE)
10310 merged = TRUE;
10311
10312 if (info->relocatable || info->emitrelocations)
10313 reloc_count = sec->reloc_count;
10314 else if (bed->elf_backend_count_relocs)
10315 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10316
10317 if (sec->rawsize > max_contents_size)
10318 max_contents_size = sec->rawsize;
10319 if (sec->size > max_contents_size)
10320 max_contents_size = sec->size;
10321
10322 /* We are interested in just local symbols, not all
10323 symbols. */
10324 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10325 && (sec->owner->flags & DYNAMIC) == 0)
10326 {
10327 size_t sym_count;
10328
10329 if (elf_bad_symtab (sec->owner))
10330 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10331 / bed->s->sizeof_sym);
10332 else
10333 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10334
10335 if (sym_count > max_sym_count)
10336 max_sym_count = sym_count;
10337
10338 if (sym_count > max_sym_shndx_count
10339 && elf_symtab_shndx (sec->owner) != 0)
10340 max_sym_shndx_count = sym_count;
10341
10342 if ((sec->flags & SEC_RELOC) != 0)
10343 {
10344 size_t ext_size;
10345
10346 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
10347 if (ext_size > max_external_reloc_size)
10348 max_external_reloc_size = ext_size;
10349 if (sec->reloc_count > max_internal_reloc_count)
10350 max_internal_reloc_count = sec->reloc_count;
10351 }
10352 }
10353 }
10354
10355 if (reloc_count == 0)
10356 continue;
10357
10358 o->reloc_count += reloc_count;
10359
10360 /* MIPS may have a mix of REL and RELA relocs on sections.
10361 To support this curious ABI we keep reloc counts in
10362 elf_section_data too. We must be careful to add the
10363 relocations from the input section to the right output
10364 count. FIXME: Get rid of one count. We have
10365 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
10366 rel_count1 = &esdo->rel_count;
10367 if (esdi != NULL)
10368 {
10369 bfd_boolean same_size;
10370 bfd_size_type entsize1;
10371
10372 entsize1 = esdi->rel_hdr.sh_entsize;
10373 /* PR 9827: If the header size has not been set yet then
10374 assume that it will match the output section's reloc type. */
10375 if (entsize1 == 0)
10376 entsize1 = o->use_rela_p ? bed->s->sizeof_rela : bed->s->sizeof_rel;
10377 else
10378 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
10379 || entsize1 == bed->s->sizeof_rela);
10380 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
10381
10382 if (!same_size)
10383 rel_count1 = &esdo->rel_count2;
10384
10385 if (esdi->rel_hdr2 != NULL)
10386 {
10387 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
10388 unsigned int alt_count;
10389 unsigned int *rel_count2;
10390
10391 BFD_ASSERT (entsize2 != entsize1
10392 && (entsize2 == bed->s->sizeof_rel
10393 || entsize2 == bed->s->sizeof_rela));
10394
10395 rel_count2 = &esdo->rel_count2;
10396 if (!same_size)
10397 rel_count2 = &esdo->rel_count;
10398
10399 /* The following is probably too simplistic if the
10400 backend counts output relocs unusually. */
10401 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
10402 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
10403 *rel_count2 += alt_count;
10404 reloc_count -= alt_count;
10405 }
10406 }
10407 *rel_count1 += reloc_count;
10408 }
10409
10410 if (o->reloc_count > 0)
10411 o->flags |= SEC_RELOC;
10412 else
10413 {
10414 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10415 set it (this is probably a bug) and if it is set
10416 assign_section_numbers will create a reloc section. */
10417 o->flags &=~ SEC_RELOC;
10418 }
10419
10420 /* If the SEC_ALLOC flag is not set, force the section VMA to
10421 zero. This is done in elf_fake_sections as well, but forcing
10422 the VMA to 0 here will ensure that relocs against these
10423 sections are handled correctly. */
10424 if ((o->flags & SEC_ALLOC) == 0
10425 && ! o->user_set_vma)
10426 o->vma = 0;
10427 }
10428
10429 if (! info->relocatable && merged)
10430 elf_link_hash_traverse (elf_hash_table (info),
10431 _bfd_elf_link_sec_merge_syms, abfd);
10432
10433 /* Figure out the file positions for everything but the symbol table
10434 and the relocs. We set symcount to force assign_section_numbers
10435 to create a symbol table. */
10436 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10437 BFD_ASSERT (! abfd->output_has_begun);
10438 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10439 goto error_return;
10440
10441 /* Set sizes, and assign file positions for reloc sections. */
10442 for (o = abfd->sections; o != NULL; o = o->next)
10443 {
10444 if ((o->flags & SEC_RELOC) != 0)
10445 {
10446 if (!(_bfd_elf_link_size_reloc_section
10447 (abfd, &elf_section_data (o)->rel_hdr, o)))
10448 goto error_return;
10449
10450 if (elf_section_data (o)->rel_hdr2
10451 && !(_bfd_elf_link_size_reloc_section
10452 (abfd, elf_section_data (o)->rel_hdr2, o)))
10453 goto error_return;
10454 }
10455
10456 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10457 to count upwards while actually outputting the relocations. */
10458 elf_section_data (o)->rel_count = 0;
10459 elf_section_data (o)->rel_count2 = 0;
10460 }
10461
10462 _bfd_elf_assign_file_positions_for_relocs (abfd);
10463
10464 /* We have now assigned file positions for all the sections except
10465 .symtab and .strtab. We start the .symtab section at the current
10466 file position, and write directly to it. We build the .strtab
10467 section in memory. */
10468 bfd_get_symcount (abfd) = 0;
10469 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10470 /* sh_name is set in prep_headers. */
10471 symtab_hdr->sh_type = SHT_SYMTAB;
10472 /* sh_flags, sh_addr and sh_size all start off zero. */
10473 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10474 /* sh_link is set in assign_section_numbers. */
10475 /* sh_info is set below. */
10476 /* sh_offset is set just below. */
10477 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10478
10479 off = elf_tdata (abfd)->next_file_pos;
10480 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10481
10482 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10483 incorrect. We do not yet know the size of the .symtab section.
10484 We correct next_file_pos below, after we do know the size. */
10485
10486 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10487 continuously seeking to the right position in the file. */
10488 if (! info->keep_memory || max_sym_count < 20)
10489 finfo.symbuf_size = 20;
10490 else
10491 finfo.symbuf_size = max_sym_count;
10492 amt = finfo.symbuf_size;
10493 amt *= bed->s->sizeof_sym;
10494 finfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10495 if (finfo.symbuf == NULL)
10496 goto error_return;
10497 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10498 {
10499 /* Wild guess at number of output symbols. realloc'd as needed. */
10500 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10501 finfo.shndxbuf_size = amt;
10502 amt *= sizeof (Elf_External_Sym_Shndx);
10503 finfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10504 if (finfo.symshndxbuf == NULL)
10505 goto error_return;
10506 }
10507
10508 /* Start writing out the symbol table. The first symbol is always a
10509 dummy symbol. */
10510 if (info->strip != strip_all
10511 || emit_relocs)
10512 {
10513 elfsym.st_value = 0;
10514 elfsym.st_size = 0;
10515 elfsym.st_info = 0;
10516 elfsym.st_other = 0;
10517 elfsym.st_shndx = SHN_UNDEF;
10518 if (elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10519 NULL) != 1)
10520 goto error_return;
10521 }
10522
10523 /* Output a symbol for each section. We output these even if we are
10524 discarding local symbols, since they are used for relocs. These
10525 symbols have no names. We store the index of each one in the
10526 index field of the section, so that we can find it again when
10527 outputting relocs. */
10528 if (info->strip != strip_all
10529 || emit_relocs)
10530 {
10531 elfsym.st_size = 0;
10532 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10533 elfsym.st_other = 0;
10534 elfsym.st_value = 0;
10535 for (i = 1; i < elf_numsections (abfd); i++)
10536 {
10537 o = bfd_section_from_elf_index (abfd, i);
10538 if (o != NULL)
10539 {
10540 o->target_index = bfd_get_symcount (abfd);
10541 elfsym.st_shndx = i;
10542 if (!info->relocatable)
10543 elfsym.st_value = o->vma;
10544 if (elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL) != 1)
10545 goto error_return;
10546 }
10547 }
10548 }
10549
10550 /* Allocate some memory to hold information read in from the input
10551 files. */
10552 if (max_contents_size != 0)
10553 {
10554 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10555 if (finfo.contents == NULL)
10556 goto error_return;
10557 }
10558
10559 if (max_external_reloc_size != 0)
10560 {
10561 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10562 if (finfo.external_relocs == NULL)
10563 goto error_return;
10564 }
10565
10566 if (max_internal_reloc_count != 0)
10567 {
10568 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10569 amt *= sizeof (Elf_Internal_Rela);
10570 finfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10571 if (finfo.internal_relocs == NULL)
10572 goto error_return;
10573 }
10574
10575 if (max_sym_count != 0)
10576 {
10577 amt = max_sym_count * bed->s->sizeof_sym;
10578 finfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10579 if (finfo.external_syms == NULL)
10580 goto error_return;
10581
10582 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10583 finfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10584 if (finfo.internal_syms == NULL)
10585 goto error_return;
10586
10587 amt = max_sym_count * sizeof (long);
10588 finfo.indices = (long int *) bfd_malloc (amt);
10589 if (finfo.indices == NULL)
10590 goto error_return;
10591
10592 amt = max_sym_count * sizeof (asection *);
10593 finfo.sections = (asection **) bfd_malloc (amt);
10594 if (finfo.sections == NULL)
10595 goto error_return;
10596 }
10597
10598 if (max_sym_shndx_count != 0)
10599 {
10600 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10601 finfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10602 if (finfo.locsym_shndx == NULL)
10603 goto error_return;
10604 }
10605
10606 if (elf_hash_table (info)->tls_sec)
10607 {
10608 bfd_vma base, end = 0;
10609 asection *sec;
10610
10611 for (sec = elf_hash_table (info)->tls_sec;
10612 sec && (sec->flags & SEC_THREAD_LOCAL);
10613 sec = sec->next)
10614 {
10615 bfd_size_type size = sec->size;
10616
10617 if (size == 0
10618 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10619 {
10620 struct bfd_link_order *ord = sec->map_tail.link_order;
10621
10622 if (ord != NULL)
10623 size = ord->offset + ord->size;
10624 }
10625 end = sec->vma + size;
10626 }
10627 base = elf_hash_table (info)->tls_sec->vma;
10628 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
10629 elf_hash_table (info)->tls_size = end - base;
10630 }
10631
10632 /* Reorder SHF_LINK_ORDER sections. */
10633 for (o = abfd->sections; o != NULL; o = o->next)
10634 {
10635 if (!elf_fixup_link_order (abfd, o))
10636 return FALSE;
10637 }
10638
10639 /* Since ELF permits relocations to be against local symbols, we
10640 must have the local symbols available when we do the relocations.
10641 Since we would rather only read the local symbols once, and we
10642 would rather not keep them in memory, we handle all the
10643 relocations for a single input file at the same time.
10644
10645 Unfortunately, there is no way to know the total number of local
10646 symbols until we have seen all of them, and the local symbol
10647 indices precede the global symbol indices. This means that when
10648 we are generating relocatable output, and we see a reloc against
10649 a global symbol, we can not know the symbol index until we have
10650 finished examining all the local symbols to see which ones we are
10651 going to output. To deal with this, we keep the relocations in
10652 memory, and don't output them until the end of the link. This is
10653 an unfortunate waste of memory, but I don't see a good way around
10654 it. Fortunately, it only happens when performing a relocatable
10655 link, which is not the common case. FIXME: If keep_memory is set
10656 we could write the relocs out and then read them again; I don't
10657 know how bad the memory loss will be. */
10658
10659 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10660 sub->output_has_begun = FALSE;
10661 for (o = abfd->sections; o != NULL; o = o->next)
10662 {
10663 for (p = o->map_head.link_order; p != NULL; p = p->next)
10664 {
10665 if (p->type == bfd_indirect_link_order
10666 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10667 == bfd_target_elf_flavour)
10668 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10669 {
10670 if (! sub->output_has_begun)
10671 {
10672 if (! elf_link_input_bfd (&finfo, sub))
10673 goto error_return;
10674 sub->output_has_begun = TRUE;
10675 }
10676 }
10677 else if (p->type == bfd_section_reloc_link_order
10678 || p->type == bfd_symbol_reloc_link_order)
10679 {
10680 if (! elf_reloc_link_order (abfd, info, o, p))
10681 goto error_return;
10682 }
10683 else
10684 {
10685 if (! _bfd_default_link_order (abfd, info, o, p))
10686 goto error_return;
10687 }
10688 }
10689 }
10690
10691 /* Free symbol buffer if needed. */
10692 if (!info->reduce_memory_overheads)
10693 {
10694 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10695 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10696 && elf_tdata (sub)->symbuf)
10697 {
10698 free (elf_tdata (sub)->symbuf);
10699 elf_tdata (sub)->symbuf = NULL;
10700 }
10701 }
10702
10703 /* Output any global symbols that got converted to local in a
10704 version script or due to symbol visibility. We do this in a
10705 separate step since ELF requires all local symbols to appear
10706 prior to any global symbols. FIXME: We should only do this if
10707 some global symbols were, in fact, converted to become local.
10708 FIXME: Will this work correctly with the Irix 5 linker? */
10709 eoinfo.failed = FALSE;
10710 eoinfo.finfo = &finfo;
10711 eoinfo.localsyms = TRUE;
10712 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10713 &eoinfo);
10714 if (eoinfo.failed)
10715 return FALSE;
10716
10717 /* If backend needs to output some local symbols not present in the hash
10718 table, do it now. */
10719 if (bed->elf_backend_output_arch_local_syms)
10720 {
10721 typedef int (*out_sym_func)
10722 (void *, const char *, Elf_Internal_Sym *, asection *,
10723 struct elf_link_hash_entry *);
10724
10725 if (! ((*bed->elf_backend_output_arch_local_syms)
10726 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10727 return FALSE;
10728 }
10729
10730 /* That wrote out all the local symbols. Finish up the symbol table
10731 with the global symbols. Even if we want to strip everything we
10732 can, we still need to deal with those global symbols that got
10733 converted to local in a version script. */
10734
10735 /* The sh_info field records the index of the first non local symbol. */
10736 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10737
10738 if (dynamic
10739 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10740 {
10741 Elf_Internal_Sym sym;
10742 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10743 long last_local = 0;
10744
10745 /* Write out the section symbols for the output sections. */
10746 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10747 {
10748 asection *s;
10749
10750 sym.st_size = 0;
10751 sym.st_name = 0;
10752 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10753 sym.st_other = 0;
10754
10755 for (s = abfd->sections; s != NULL; s = s->next)
10756 {
10757 int indx;
10758 bfd_byte *dest;
10759 long dynindx;
10760
10761 dynindx = elf_section_data (s)->dynindx;
10762 if (dynindx <= 0)
10763 continue;
10764 indx = elf_section_data (s)->this_idx;
10765 BFD_ASSERT (indx > 0);
10766 sym.st_shndx = indx;
10767 if (! check_dynsym (abfd, &sym))
10768 return FALSE;
10769 sym.st_value = s->vma;
10770 dest = dynsym + dynindx * bed->s->sizeof_sym;
10771 if (last_local < dynindx)
10772 last_local = dynindx;
10773 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10774 }
10775 }
10776
10777 /* Write out the local dynsyms. */
10778 if (elf_hash_table (info)->dynlocal)
10779 {
10780 struct elf_link_local_dynamic_entry *e;
10781 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10782 {
10783 asection *s;
10784 bfd_byte *dest;
10785
10786 /* Copy the internal symbol and turn off visibility.
10787 Note that we saved a word of storage and overwrote
10788 the original st_name with the dynstr_index. */
10789 sym = e->isym;
10790 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10791
10792 s = bfd_section_from_elf_index (e->input_bfd,
10793 e->isym.st_shndx);
10794 if (s != NULL)
10795 {
10796 sym.st_shndx =
10797 elf_section_data (s->output_section)->this_idx;
10798 if (! check_dynsym (abfd, &sym))
10799 return FALSE;
10800 sym.st_value = (s->output_section->vma
10801 + s->output_offset
10802 + e->isym.st_value);
10803 }
10804
10805 if (last_local < e->dynindx)
10806 last_local = e->dynindx;
10807
10808 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10809 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10810 }
10811 }
10812
10813 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10814 last_local + 1;
10815 }
10816
10817 /* We get the global symbols from the hash table. */
10818 eoinfo.failed = FALSE;
10819 eoinfo.localsyms = FALSE;
10820 eoinfo.finfo = &finfo;
10821 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10822 &eoinfo);
10823 if (eoinfo.failed)
10824 return FALSE;
10825
10826 /* If backend needs to output some symbols not present in the hash
10827 table, do it now. */
10828 if (bed->elf_backend_output_arch_syms)
10829 {
10830 typedef int (*out_sym_func)
10831 (void *, const char *, Elf_Internal_Sym *, asection *,
10832 struct elf_link_hash_entry *);
10833
10834 if (! ((*bed->elf_backend_output_arch_syms)
10835 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10836 return FALSE;
10837 }
10838
10839 /* Flush all symbols to the file. */
10840 if (! elf_link_flush_output_syms (&finfo, bed))
10841 return FALSE;
10842
10843 /* Now we know the size of the symtab section. */
10844 off += symtab_hdr->sh_size;
10845
10846 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10847 if (symtab_shndx_hdr->sh_name != 0)
10848 {
10849 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10850 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10851 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10852 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10853 symtab_shndx_hdr->sh_size = amt;
10854
10855 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10856 off, TRUE);
10857
10858 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10859 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10860 return FALSE;
10861 }
10862
10863
10864 /* Finish up and write out the symbol string table (.strtab)
10865 section. */
10866 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10867 /* sh_name was set in prep_headers. */
10868 symstrtab_hdr->sh_type = SHT_STRTAB;
10869 symstrtab_hdr->sh_flags = 0;
10870 symstrtab_hdr->sh_addr = 0;
10871 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10872 symstrtab_hdr->sh_entsize = 0;
10873 symstrtab_hdr->sh_link = 0;
10874 symstrtab_hdr->sh_info = 0;
10875 /* sh_offset is set just below. */
10876 symstrtab_hdr->sh_addralign = 1;
10877
10878 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10879 elf_tdata (abfd)->next_file_pos = off;
10880
10881 if (bfd_get_symcount (abfd) > 0)
10882 {
10883 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10884 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10885 return FALSE;
10886 }
10887
10888 /* Adjust the relocs to have the correct symbol indices. */
10889 for (o = abfd->sections; o != NULL; o = o->next)
10890 {
10891 if ((o->flags & SEC_RELOC) == 0)
10892 continue;
10893
10894 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
10895 elf_section_data (o)->rel_count,
10896 elf_section_data (o)->rel_hashes);
10897 if (elf_section_data (o)->rel_hdr2 != NULL)
10898 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
10899 elf_section_data (o)->rel_count2,
10900 (elf_section_data (o)->rel_hashes
10901 + elf_section_data (o)->rel_count));
10902
10903 /* Set the reloc_count field to 0 to prevent write_relocs from
10904 trying to swap the relocs out itself. */
10905 o->reloc_count = 0;
10906 }
10907
10908 if (dynamic && info->combreloc && dynobj != NULL)
10909 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10910
10911 /* If we are linking against a dynamic object, or generating a
10912 shared library, finish up the dynamic linking information. */
10913 if (dynamic)
10914 {
10915 bfd_byte *dyncon, *dynconend;
10916
10917 /* Fix up .dynamic entries. */
10918 o = bfd_get_section_by_name (dynobj, ".dynamic");
10919 BFD_ASSERT (o != NULL);
10920
10921 dyncon = o->contents;
10922 dynconend = o->contents + o->size;
10923 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10924 {
10925 Elf_Internal_Dyn dyn;
10926 const char *name;
10927 unsigned int type;
10928
10929 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10930
10931 switch (dyn.d_tag)
10932 {
10933 default:
10934 continue;
10935 case DT_NULL:
10936 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
10937 {
10938 switch (elf_section_data (reldyn)->this_hdr.sh_type)
10939 {
10940 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
10941 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
10942 default: continue;
10943 }
10944 dyn.d_un.d_val = relativecount;
10945 relativecount = 0;
10946 break;
10947 }
10948 continue;
10949
10950 case DT_INIT:
10951 name = info->init_function;
10952 goto get_sym;
10953 case DT_FINI:
10954 name = info->fini_function;
10955 get_sym:
10956 {
10957 struct elf_link_hash_entry *h;
10958
10959 h = elf_link_hash_lookup (elf_hash_table (info), name,
10960 FALSE, FALSE, TRUE);
10961 if (h != NULL
10962 && (h->root.type == bfd_link_hash_defined
10963 || h->root.type == bfd_link_hash_defweak))
10964 {
10965 dyn.d_un.d_ptr = h->root.u.def.value;
10966 o = h->root.u.def.section;
10967 if (o->output_section != NULL)
10968 dyn.d_un.d_ptr += (o->output_section->vma
10969 + o->output_offset);
10970 else
10971 {
10972 /* The symbol is imported from another shared
10973 library and does not apply to this one. */
10974 dyn.d_un.d_ptr = 0;
10975 }
10976 break;
10977 }
10978 }
10979 continue;
10980
10981 case DT_PREINIT_ARRAYSZ:
10982 name = ".preinit_array";
10983 goto get_size;
10984 case DT_INIT_ARRAYSZ:
10985 name = ".init_array";
10986 goto get_size;
10987 case DT_FINI_ARRAYSZ:
10988 name = ".fini_array";
10989 get_size:
10990 o = bfd_get_section_by_name (abfd, name);
10991 if (o == NULL)
10992 {
10993 (*_bfd_error_handler)
10994 (_("%B: could not find output section %s"), abfd, name);
10995 goto error_return;
10996 }
10997 if (o->size == 0)
10998 (*_bfd_error_handler)
10999 (_("warning: %s section has zero size"), name);
11000 dyn.d_un.d_val = o->size;
11001 break;
11002
11003 case DT_PREINIT_ARRAY:
11004 name = ".preinit_array";
11005 goto get_vma;
11006 case DT_INIT_ARRAY:
11007 name = ".init_array";
11008 goto get_vma;
11009 case DT_FINI_ARRAY:
11010 name = ".fini_array";
11011 goto get_vma;
11012
11013 case DT_HASH:
11014 name = ".hash";
11015 goto get_vma;
11016 case DT_GNU_HASH:
11017 name = ".gnu.hash";
11018 goto get_vma;
11019 case DT_STRTAB:
11020 name = ".dynstr";
11021 goto get_vma;
11022 case DT_SYMTAB:
11023 name = ".dynsym";
11024 goto get_vma;
11025 case DT_VERDEF:
11026 name = ".gnu.version_d";
11027 goto get_vma;
11028 case DT_VERNEED:
11029 name = ".gnu.version_r";
11030 goto get_vma;
11031 case DT_VERSYM:
11032 name = ".gnu.version";
11033 get_vma:
11034 o = bfd_get_section_by_name (abfd, name);
11035 if (o == NULL)
11036 {
11037 (*_bfd_error_handler)
11038 (_("%B: could not find output section %s"), abfd, name);
11039 goto error_return;
11040 }
11041 dyn.d_un.d_ptr = o->vma;
11042 break;
11043
11044 case DT_REL:
11045 case DT_RELA:
11046 case DT_RELSZ:
11047 case DT_RELASZ:
11048 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11049 type = SHT_REL;
11050 else
11051 type = SHT_RELA;
11052 dyn.d_un.d_val = 0;
11053 dyn.d_un.d_ptr = 0;
11054 for (i = 1; i < elf_numsections (abfd); i++)
11055 {
11056 Elf_Internal_Shdr *hdr;
11057
11058 hdr = elf_elfsections (abfd)[i];
11059 if (hdr->sh_type == type
11060 && (hdr->sh_flags & SHF_ALLOC) != 0)
11061 {
11062 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11063 dyn.d_un.d_val += hdr->sh_size;
11064 else
11065 {
11066 if (dyn.d_un.d_ptr == 0
11067 || hdr->sh_addr < dyn.d_un.d_ptr)
11068 dyn.d_un.d_ptr = hdr->sh_addr;
11069 }
11070 }
11071 }
11072 break;
11073 }
11074 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11075 }
11076 }
11077
11078 /* If we have created any dynamic sections, then output them. */
11079 if (dynobj != NULL)
11080 {
11081 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11082 goto error_return;
11083
11084 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11085 if (info->warn_shared_textrel && info->shared)
11086 {
11087 bfd_byte *dyncon, *dynconend;
11088
11089 /* Fix up .dynamic entries. */
11090 o = bfd_get_section_by_name (dynobj, ".dynamic");
11091 BFD_ASSERT (o != NULL);
11092
11093 dyncon = o->contents;
11094 dynconend = o->contents + o->size;
11095 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11096 {
11097 Elf_Internal_Dyn dyn;
11098
11099 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11100
11101 if (dyn.d_tag == DT_TEXTREL)
11102 {
11103 info->callbacks->einfo
11104 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11105 break;
11106 }
11107 }
11108 }
11109
11110 for (o = dynobj->sections; o != NULL; o = o->next)
11111 {
11112 if ((o->flags & SEC_HAS_CONTENTS) == 0
11113 || o->size == 0
11114 || o->output_section == bfd_abs_section_ptr)
11115 continue;
11116 if ((o->flags & SEC_LINKER_CREATED) == 0)
11117 {
11118 /* At this point, we are only interested in sections
11119 created by _bfd_elf_link_create_dynamic_sections. */
11120 continue;
11121 }
11122 if (elf_hash_table (info)->stab_info.stabstr == o)
11123 continue;
11124 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11125 continue;
11126 if ((elf_section_data (o->output_section)->this_hdr.sh_type
11127 != SHT_STRTAB)
11128 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
11129 {
11130 /* FIXME: octets_per_byte. */
11131 if (! bfd_set_section_contents (abfd, o->output_section,
11132 o->contents,
11133 (file_ptr) o->output_offset,
11134 o->size))
11135 goto error_return;
11136 }
11137 else
11138 {
11139 /* The contents of the .dynstr section are actually in a
11140 stringtab. */
11141 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11142 if (bfd_seek (abfd, off, SEEK_SET) != 0
11143 || ! _bfd_elf_strtab_emit (abfd,
11144 elf_hash_table (info)->dynstr))
11145 goto error_return;
11146 }
11147 }
11148 }
11149
11150 if (info->relocatable)
11151 {
11152 bfd_boolean failed = FALSE;
11153
11154 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11155 if (failed)
11156 goto error_return;
11157 }
11158
11159 /* If we have optimized stabs strings, output them. */
11160 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11161 {
11162 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11163 goto error_return;
11164 }
11165
11166 if (info->eh_frame_hdr)
11167 {
11168 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11169 goto error_return;
11170 }
11171
11172 if (finfo.symstrtab != NULL)
11173 _bfd_stringtab_free (finfo.symstrtab);
11174 if (finfo.contents != NULL)
11175 free (finfo.contents);
11176 if (finfo.external_relocs != NULL)
11177 free (finfo.external_relocs);
11178 if (finfo.internal_relocs != NULL)
11179 free (finfo.internal_relocs);
11180 if (finfo.external_syms != NULL)
11181 free (finfo.external_syms);
11182 if (finfo.locsym_shndx != NULL)
11183 free (finfo.locsym_shndx);
11184 if (finfo.internal_syms != NULL)
11185 free (finfo.internal_syms);
11186 if (finfo.indices != NULL)
11187 free (finfo.indices);
11188 if (finfo.sections != NULL)
11189 free (finfo.sections);
11190 if (finfo.symbuf != NULL)
11191 free (finfo.symbuf);
11192 if (finfo.symshndxbuf != NULL)
11193 free (finfo.symshndxbuf);
11194 for (o = abfd->sections; o != NULL; o = o->next)
11195 {
11196 if ((o->flags & SEC_RELOC) != 0
11197 && elf_section_data (o)->rel_hashes != NULL)
11198 free (elf_section_data (o)->rel_hashes);
11199 }
11200
11201 elf_tdata (abfd)->linker = TRUE;
11202
11203 if (attr_section)
11204 {
11205 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11206 if (contents == NULL)
11207 return FALSE; /* Bail out and fail. */
11208 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11209 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11210 free (contents);
11211 }
11212
11213 return TRUE;
11214
11215 error_return:
11216 if (finfo.symstrtab != NULL)
11217 _bfd_stringtab_free (finfo.symstrtab);
11218 if (finfo.contents != NULL)
11219 free (finfo.contents);
11220 if (finfo.external_relocs != NULL)
11221 free (finfo.external_relocs);
11222 if (finfo.internal_relocs != NULL)
11223 free (finfo.internal_relocs);
11224 if (finfo.external_syms != NULL)
11225 free (finfo.external_syms);
11226 if (finfo.locsym_shndx != NULL)
11227 free (finfo.locsym_shndx);
11228 if (finfo.internal_syms != NULL)
11229 free (finfo.internal_syms);
11230 if (finfo.indices != NULL)
11231 free (finfo.indices);
11232 if (finfo.sections != NULL)
11233 free (finfo.sections);
11234 if (finfo.symbuf != NULL)
11235 free (finfo.symbuf);
11236 if (finfo.symshndxbuf != NULL)
11237 free (finfo.symshndxbuf);
11238 for (o = abfd->sections; o != NULL; o = o->next)
11239 {
11240 if ((o->flags & SEC_RELOC) != 0
11241 && elf_section_data (o)->rel_hashes != NULL)
11242 free (elf_section_data (o)->rel_hashes);
11243 }
11244
11245 return FALSE;
11246 }
11247 \f
11248 /* Initialize COOKIE for input bfd ABFD. */
11249
11250 static bfd_boolean
11251 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11252 struct bfd_link_info *info, bfd *abfd)
11253 {
11254 Elf_Internal_Shdr *symtab_hdr;
11255 const struct elf_backend_data *bed;
11256
11257 bed = get_elf_backend_data (abfd);
11258 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11259
11260 cookie->abfd = abfd;
11261 cookie->sym_hashes = elf_sym_hashes (abfd);
11262 cookie->bad_symtab = elf_bad_symtab (abfd);
11263 if (cookie->bad_symtab)
11264 {
11265 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11266 cookie->extsymoff = 0;
11267 }
11268 else
11269 {
11270 cookie->locsymcount = symtab_hdr->sh_info;
11271 cookie->extsymoff = symtab_hdr->sh_info;
11272 }
11273
11274 if (bed->s->arch_size == 32)
11275 cookie->r_sym_shift = 8;
11276 else
11277 cookie->r_sym_shift = 32;
11278
11279 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11280 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11281 {
11282 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11283 cookie->locsymcount, 0,
11284 NULL, NULL, NULL);
11285 if (cookie->locsyms == NULL)
11286 {
11287 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11288 return FALSE;
11289 }
11290 if (info->keep_memory)
11291 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11292 }
11293 return TRUE;
11294 }
11295
11296 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11297
11298 static void
11299 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11300 {
11301 Elf_Internal_Shdr *symtab_hdr;
11302
11303 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11304 if (cookie->locsyms != NULL
11305 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11306 free (cookie->locsyms);
11307 }
11308
11309 /* Initialize the relocation information in COOKIE for input section SEC
11310 of input bfd ABFD. */
11311
11312 static bfd_boolean
11313 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11314 struct bfd_link_info *info, bfd *abfd,
11315 asection *sec)
11316 {
11317 const struct elf_backend_data *bed;
11318
11319 if (sec->reloc_count == 0)
11320 {
11321 cookie->rels = NULL;
11322 cookie->relend = NULL;
11323 }
11324 else
11325 {
11326 bed = get_elf_backend_data (abfd);
11327
11328 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11329 info->keep_memory);
11330 if (cookie->rels == NULL)
11331 return FALSE;
11332 cookie->rel = cookie->rels;
11333 cookie->relend = (cookie->rels
11334 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11335 }
11336 cookie->rel = cookie->rels;
11337 return TRUE;
11338 }
11339
11340 /* Free the memory allocated by init_reloc_cookie_rels,
11341 if appropriate. */
11342
11343 static void
11344 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11345 asection *sec)
11346 {
11347 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11348 free (cookie->rels);
11349 }
11350
11351 /* Initialize the whole of COOKIE for input section SEC. */
11352
11353 static bfd_boolean
11354 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11355 struct bfd_link_info *info,
11356 asection *sec)
11357 {
11358 if (!init_reloc_cookie (cookie, info, sec->owner))
11359 goto error1;
11360 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11361 goto error2;
11362 return TRUE;
11363
11364 error2:
11365 fini_reloc_cookie (cookie, sec->owner);
11366 error1:
11367 return FALSE;
11368 }
11369
11370 /* Free the memory allocated by init_reloc_cookie_for_section,
11371 if appropriate. */
11372
11373 static void
11374 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11375 asection *sec)
11376 {
11377 fini_reloc_cookie_rels (cookie, sec);
11378 fini_reloc_cookie (cookie, sec->owner);
11379 }
11380 \f
11381 /* Garbage collect unused sections. */
11382
11383 /* Default gc_mark_hook. */
11384
11385 asection *
11386 _bfd_elf_gc_mark_hook (asection *sec,
11387 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11388 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11389 struct elf_link_hash_entry *h,
11390 Elf_Internal_Sym *sym)
11391 {
11392 const char *sec_name;
11393
11394 if (h != NULL)
11395 {
11396 switch (h->root.type)
11397 {
11398 case bfd_link_hash_defined:
11399 case bfd_link_hash_defweak:
11400 return h->root.u.def.section;
11401
11402 case bfd_link_hash_common:
11403 return h->root.u.c.p->section;
11404
11405 case bfd_link_hash_undefined:
11406 case bfd_link_hash_undefweak:
11407 /* To work around a glibc bug, keep all XXX input sections
11408 when there is an as yet undefined reference to __start_XXX
11409 or __stop_XXX symbols. The linker will later define such
11410 symbols for orphan input sections that have a name
11411 representable as a C identifier. */
11412 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11413 sec_name = h->root.root.string + 8;
11414 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11415 sec_name = h->root.root.string + 7;
11416 else
11417 sec_name = NULL;
11418
11419 if (sec_name && *sec_name != '\0')
11420 {
11421 bfd *i;
11422
11423 for (i = info->input_bfds; i; i = i->link_next)
11424 {
11425 sec = bfd_get_section_by_name (i, sec_name);
11426 if (sec)
11427 sec->flags |= SEC_KEEP;
11428 }
11429 }
11430 break;
11431
11432 default:
11433 break;
11434 }
11435 }
11436 else
11437 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11438
11439 return NULL;
11440 }
11441
11442 /* COOKIE->rel describes a relocation against section SEC, which is
11443 a section we've decided to keep. Return the section that contains
11444 the relocation symbol, or NULL if no section contains it. */
11445
11446 asection *
11447 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11448 elf_gc_mark_hook_fn gc_mark_hook,
11449 struct elf_reloc_cookie *cookie)
11450 {
11451 unsigned long r_symndx;
11452 struct elf_link_hash_entry *h;
11453
11454 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11455 if (r_symndx == 0)
11456 return NULL;
11457
11458 if (r_symndx >= cookie->locsymcount
11459 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11460 {
11461 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11462 while (h->root.type == bfd_link_hash_indirect
11463 || h->root.type == bfd_link_hash_warning)
11464 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11465 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11466 }
11467
11468 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11469 &cookie->locsyms[r_symndx]);
11470 }
11471
11472 /* COOKIE->rel describes a relocation against section SEC, which is
11473 a section we've decided to keep. Mark the section that contains
11474 the relocation symbol. */
11475
11476 bfd_boolean
11477 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11478 asection *sec,
11479 elf_gc_mark_hook_fn gc_mark_hook,
11480 struct elf_reloc_cookie *cookie)
11481 {
11482 asection *rsec;
11483
11484 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11485 if (rsec && !rsec->gc_mark)
11486 {
11487 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11488 rsec->gc_mark = 1;
11489 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11490 return FALSE;
11491 }
11492 return TRUE;
11493 }
11494
11495 /* The mark phase of garbage collection. For a given section, mark
11496 it and any sections in this section's group, and all the sections
11497 which define symbols to which it refers. */
11498
11499 bfd_boolean
11500 _bfd_elf_gc_mark (struct bfd_link_info *info,
11501 asection *sec,
11502 elf_gc_mark_hook_fn gc_mark_hook)
11503 {
11504 bfd_boolean ret;
11505 asection *group_sec, *eh_frame;
11506
11507 sec->gc_mark = 1;
11508
11509 /* Mark all the sections in the group. */
11510 group_sec = elf_section_data (sec)->next_in_group;
11511 if (group_sec && !group_sec->gc_mark)
11512 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11513 return FALSE;
11514
11515 /* Look through the section relocs. */
11516 ret = TRUE;
11517 eh_frame = elf_eh_frame_section (sec->owner);
11518 if ((sec->flags & SEC_RELOC) != 0
11519 && sec->reloc_count > 0
11520 && sec != eh_frame)
11521 {
11522 struct elf_reloc_cookie cookie;
11523
11524 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11525 ret = FALSE;
11526 else
11527 {
11528 for (; cookie.rel < cookie.relend; cookie.rel++)
11529 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11530 {
11531 ret = FALSE;
11532 break;
11533 }
11534 fini_reloc_cookie_for_section (&cookie, sec);
11535 }
11536 }
11537
11538 if (ret && eh_frame && elf_fde_list (sec))
11539 {
11540 struct elf_reloc_cookie cookie;
11541
11542 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11543 ret = FALSE;
11544 else
11545 {
11546 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11547 gc_mark_hook, &cookie))
11548 ret = FALSE;
11549 fini_reloc_cookie_for_section (&cookie, eh_frame);
11550 }
11551 }
11552
11553 return ret;
11554 }
11555
11556 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11557
11558 struct elf_gc_sweep_symbol_info
11559 {
11560 struct bfd_link_info *info;
11561 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11562 bfd_boolean);
11563 };
11564
11565 static bfd_boolean
11566 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11567 {
11568 if (h->root.type == bfd_link_hash_warning)
11569 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11570
11571 if ((h->root.type == bfd_link_hash_defined
11572 || h->root.type == bfd_link_hash_defweak)
11573 && !h->root.u.def.section->gc_mark
11574 && !(h->root.u.def.section->owner->flags & DYNAMIC))
11575 {
11576 struct elf_gc_sweep_symbol_info *inf =
11577 (struct elf_gc_sweep_symbol_info *) data;
11578 (*inf->hide_symbol) (inf->info, h, TRUE);
11579 }
11580
11581 return TRUE;
11582 }
11583
11584 /* The sweep phase of garbage collection. Remove all garbage sections. */
11585
11586 typedef bfd_boolean (*gc_sweep_hook_fn)
11587 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11588
11589 static bfd_boolean
11590 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11591 {
11592 bfd *sub;
11593 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11594 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11595 unsigned long section_sym_count;
11596 struct elf_gc_sweep_symbol_info sweep_info;
11597
11598 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11599 {
11600 asection *o;
11601
11602 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11603 continue;
11604
11605 for (o = sub->sections; o != NULL; o = o->next)
11606 {
11607 /* When any section in a section group is kept, we keep all
11608 sections in the section group. If the first member of
11609 the section group is excluded, we will also exclude the
11610 group section. */
11611 if (o->flags & SEC_GROUP)
11612 {
11613 asection *first = elf_next_in_group (o);
11614 o->gc_mark = first->gc_mark;
11615 }
11616 else if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
11617 || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0
11618 || elf_section_data (o)->this_hdr.sh_type == SHT_NOTE)
11619 {
11620 /* Keep debug, special and SHT_NOTE sections. */
11621 o->gc_mark = 1;
11622 }
11623
11624 if (o->gc_mark)
11625 continue;
11626
11627 /* Skip sweeping sections already excluded. */
11628 if (o->flags & SEC_EXCLUDE)
11629 continue;
11630
11631 /* Since this is early in the link process, it is simple
11632 to remove a section from the output. */
11633 o->flags |= SEC_EXCLUDE;
11634
11635 if (info->print_gc_sections && o->size != 0)
11636 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11637
11638 /* But we also have to update some of the relocation
11639 info we collected before. */
11640 if (gc_sweep_hook
11641 && (o->flags & SEC_RELOC) != 0
11642 && o->reloc_count > 0
11643 && !bfd_is_abs_section (o->output_section))
11644 {
11645 Elf_Internal_Rela *internal_relocs;
11646 bfd_boolean r;
11647
11648 internal_relocs
11649 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11650 info->keep_memory);
11651 if (internal_relocs == NULL)
11652 return FALSE;
11653
11654 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11655
11656 if (elf_section_data (o)->relocs != internal_relocs)
11657 free (internal_relocs);
11658
11659 if (!r)
11660 return FALSE;
11661 }
11662 }
11663 }
11664
11665 /* Remove the symbols that were in the swept sections from the dynamic
11666 symbol table. GCFIXME: Anyone know how to get them out of the
11667 static symbol table as well? */
11668 sweep_info.info = info;
11669 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11670 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11671 &sweep_info);
11672
11673 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11674 return TRUE;
11675 }
11676
11677 /* Propagate collected vtable information. This is called through
11678 elf_link_hash_traverse. */
11679
11680 static bfd_boolean
11681 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11682 {
11683 if (h->root.type == bfd_link_hash_warning)
11684 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11685
11686 /* Those that are not vtables. */
11687 if (h->vtable == NULL || h->vtable->parent == NULL)
11688 return TRUE;
11689
11690 /* Those vtables that do not have parents, we cannot merge. */
11691 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11692 return TRUE;
11693
11694 /* If we've already been done, exit. */
11695 if (h->vtable->used && h->vtable->used[-1])
11696 return TRUE;
11697
11698 /* Make sure the parent's table is up to date. */
11699 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11700
11701 if (h->vtable->used == NULL)
11702 {
11703 /* None of this table's entries were referenced. Re-use the
11704 parent's table. */
11705 h->vtable->used = h->vtable->parent->vtable->used;
11706 h->vtable->size = h->vtable->parent->vtable->size;
11707 }
11708 else
11709 {
11710 size_t n;
11711 bfd_boolean *cu, *pu;
11712
11713 /* Or the parent's entries into ours. */
11714 cu = h->vtable->used;
11715 cu[-1] = TRUE;
11716 pu = h->vtable->parent->vtable->used;
11717 if (pu != NULL)
11718 {
11719 const struct elf_backend_data *bed;
11720 unsigned int log_file_align;
11721
11722 bed = get_elf_backend_data (h->root.u.def.section->owner);
11723 log_file_align = bed->s->log_file_align;
11724 n = h->vtable->parent->vtable->size >> log_file_align;
11725 while (n--)
11726 {
11727 if (*pu)
11728 *cu = TRUE;
11729 pu++;
11730 cu++;
11731 }
11732 }
11733 }
11734
11735 return TRUE;
11736 }
11737
11738 static bfd_boolean
11739 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11740 {
11741 asection *sec;
11742 bfd_vma hstart, hend;
11743 Elf_Internal_Rela *relstart, *relend, *rel;
11744 const struct elf_backend_data *bed;
11745 unsigned int log_file_align;
11746
11747 if (h->root.type == bfd_link_hash_warning)
11748 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11749
11750 /* Take care of both those symbols that do not describe vtables as
11751 well as those that are not loaded. */
11752 if (h->vtable == NULL || h->vtable->parent == NULL)
11753 return TRUE;
11754
11755 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11756 || h->root.type == bfd_link_hash_defweak);
11757
11758 sec = h->root.u.def.section;
11759 hstart = h->root.u.def.value;
11760 hend = hstart + h->size;
11761
11762 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11763 if (!relstart)
11764 return *(bfd_boolean *) okp = FALSE;
11765 bed = get_elf_backend_data (sec->owner);
11766 log_file_align = bed->s->log_file_align;
11767
11768 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11769
11770 for (rel = relstart; rel < relend; ++rel)
11771 if (rel->r_offset >= hstart && rel->r_offset < hend)
11772 {
11773 /* If the entry is in use, do nothing. */
11774 if (h->vtable->used
11775 && (rel->r_offset - hstart) < h->vtable->size)
11776 {
11777 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11778 if (h->vtable->used[entry])
11779 continue;
11780 }
11781 /* Otherwise, kill it. */
11782 rel->r_offset = rel->r_info = rel->r_addend = 0;
11783 }
11784
11785 return TRUE;
11786 }
11787
11788 /* Mark sections containing dynamically referenced symbols. When
11789 building shared libraries, we must assume that any visible symbol is
11790 referenced. */
11791
11792 bfd_boolean
11793 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11794 {
11795 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11796
11797 if (h->root.type == bfd_link_hash_warning)
11798 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11799
11800 if ((h->root.type == bfd_link_hash_defined
11801 || h->root.type == bfd_link_hash_defweak)
11802 && (h->ref_dynamic
11803 || (!info->executable
11804 && h->def_regular
11805 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11806 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
11807 h->root.u.def.section->flags |= SEC_KEEP;
11808
11809 return TRUE;
11810 }
11811
11812 /* Keep all sections containing symbols undefined on the command-line,
11813 and the section containing the entry symbol. */
11814
11815 void
11816 _bfd_elf_gc_keep (struct bfd_link_info *info)
11817 {
11818 struct bfd_sym_chain *sym;
11819
11820 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11821 {
11822 struct elf_link_hash_entry *h;
11823
11824 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11825 FALSE, FALSE, FALSE);
11826
11827 if (h != NULL
11828 && (h->root.type == bfd_link_hash_defined
11829 || h->root.type == bfd_link_hash_defweak)
11830 && !bfd_is_abs_section (h->root.u.def.section))
11831 h->root.u.def.section->flags |= SEC_KEEP;
11832 }
11833 }
11834
11835 /* Do mark and sweep of unused sections. */
11836
11837 bfd_boolean
11838 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11839 {
11840 bfd_boolean ok = TRUE;
11841 bfd *sub;
11842 elf_gc_mark_hook_fn gc_mark_hook;
11843 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11844
11845 if (!bed->can_gc_sections
11846 || !is_elf_hash_table (info->hash))
11847 {
11848 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11849 return TRUE;
11850 }
11851
11852 bed->gc_keep (info);
11853
11854 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11855 at the .eh_frame section if we can mark the FDEs individually. */
11856 _bfd_elf_begin_eh_frame_parsing (info);
11857 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11858 {
11859 asection *sec;
11860 struct elf_reloc_cookie cookie;
11861
11862 sec = bfd_get_section_by_name (sub, ".eh_frame");
11863 if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
11864 {
11865 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
11866 if (elf_section_data (sec)->sec_info)
11867 elf_eh_frame_section (sub) = sec;
11868 fini_reloc_cookie_for_section (&cookie, sec);
11869 }
11870 }
11871 _bfd_elf_end_eh_frame_parsing (info);
11872
11873 /* Apply transitive closure to the vtable entry usage info. */
11874 elf_link_hash_traverse (elf_hash_table (info),
11875 elf_gc_propagate_vtable_entries_used,
11876 &ok);
11877 if (!ok)
11878 return FALSE;
11879
11880 /* Kill the vtable relocations that were not used. */
11881 elf_link_hash_traverse (elf_hash_table (info),
11882 elf_gc_smash_unused_vtentry_relocs,
11883 &ok);
11884 if (!ok)
11885 return FALSE;
11886
11887 /* Mark dynamically referenced symbols. */
11888 if (elf_hash_table (info)->dynamic_sections_created)
11889 elf_link_hash_traverse (elf_hash_table (info),
11890 bed->gc_mark_dynamic_ref,
11891 info);
11892
11893 /* Grovel through relocs to find out who stays ... */
11894 gc_mark_hook = bed->gc_mark_hook;
11895 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11896 {
11897 asection *o;
11898
11899 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11900 continue;
11901
11902 for (o = sub->sections; o != NULL; o = o->next)
11903 if ((o->flags & (SEC_EXCLUDE | SEC_KEEP)) == SEC_KEEP && !o->gc_mark)
11904 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11905 return FALSE;
11906 }
11907
11908 /* Allow the backend to mark additional target specific sections. */
11909 if (bed->gc_mark_extra_sections)
11910 bed->gc_mark_extra_sections (info, gc_mark_hook);
11911
11912 /* ... and mark SEC_EXCLUDE for those that go. */
11913 return elf_gc_sweep (abfd, info);
11914 }
11915 \f
11916 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11917
11918 bfd_boolean
11919 bfd_elf_gc_record_vtinherit (bfd *abfd,
11920 asection *sec,
11921 struct elf_link_hash_entry *h,
11922 bfd_vma offset)
11923 {
11924 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
11925 struct elf_link_hash_entry **search, *child;
11926 bfd_size_type extsymcount;
11927 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11928
11929 /* The sh_info field of the symtab header tells us where the
11930 external symbols start. We don't care about the local symbols at
11931 this point. */
11932 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
11933 if (!elf_bad_symtab (abfd))
11934 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
11935
11936 sym_hashes = elf_sym_hashes (abfd);
11937 sym_hashes_end = sym_hashes + extsymcount;
11938
11939 /* Hunt down the child symbol, which is in this section at the same
11940 offset as the relocation. */
11941 for (search = sym_hashes; search != sym_hashes_end; ++search)
11942 {
11943 if ((child = *search) != NULL
11944 && (child->root.type == bfd_link_hash_defined
11945 || child->root.type == bfd_link_hash_defweak)
11946 && child->root.u.def.section == sec
11947 && child->root.u.def.value == offset)
11948 goto win;
11949 }
11950
11951 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
11952 abfd, sec, (unsigned long) offset);
11953 bfd_set_error (bfd_error_invalid_operation);
11954 return FALSE;
11955
11956 win:
11957 if (!child->vtable)
11958 {
11959 child->vtable = (struct elf_link_virtual_table_entry *)
11960 bfd_zalloc (abfd, sizeof (*child->vtable));
11961 if (!child->vtable)
11962 return FALSE;
11963 }
11964 if (!h)
11965 {
11966 /* This *should* only be the absolute section. It could potentially
11967 be that someone has defined a non-global vtable though, which
11968 would be bad. It isn't worth paging in the local symbols to be
11969 sure though; that case should simply be handled by the assembler. */
11970
11971 child->vtable->parent = (struct elf_link_hash_entry *) -1;
11972 }
11973 else
11974 child->vtable->parent = h;
11975
11976 return TRUE;
11977 }
11978
11979 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
11980
11981 bfd_boolean
11982 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
11983 asection *sec ATTRIBUTE_UNUSED,
11984 struct elf_link_hash_entry *h,
11985 bfd_vma addend)
11986 {
11987 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11988 unsigned int log_file_align = bed->s->log_file_align;
11989
11990 if (!h->vtable)
11991 {
11992 h->vtable = (struct elf_link_virtual_table_entry *)
11993 bfd_zalloc (abfd, sizeof (*h->vtable));
11994 if (!h->vtable)
11995 return FALSE;
11996 }
11997
11998 if (addend >= h->vtable->size)
11999 {
12000 size_t size, bytes, file_align;
12001 bfd_boolean *ptr = h->vtable->used;
12002
12003 /* While the symbol is undefined, we have to be prepared to handle
12004 a zero size. */
12005 file_align = 1 << log_file_align;
12006 if (h->root.type == bfd_link_hash_undefined)
12007 size = addend + file_align;
12008 else
12009 {
12010 size = h->size;
12011 if (addend >= size)
12012 {
12013 /* Oops! We've got a reference past the defined end of
12014 the table. This is probably a bug -- shall we warn? */
12015 size = addend + file_align;
12016 }
12017 }
12018 size = (size + file_align - 1) & -file_align;
12019
12020 /* Allocate one extra entry for use as a "done" flag for the
12021 consolidation pass. */
12022 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12023
12024 if (ptr)
12025 {
12026 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12027
12028 if (ptr != NULL)
12029 {
12030 size_t oldbytes;
12031
12032 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12033 * sizeof (bfd_boolean));
12034 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12035 }
12036 }
12037 else
12038 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12039
12040 if (ptr == NULL)
12041 return FALSE;
12042
12043 /* And arrange for that done flag to be at index -1. */
12044 h->vtable->used = ptr + 1;
12045 h->vtable->size = size;
12046 }
12047
12048 h->vtable->used[addend >> log_file_align] = TRUE;
12049
12050 return TRUE;
12051 }
12052
12053 struct alloc_got_off_arg {
12054 bfd_vma gotoff;
12055 struct bfd_link_info *info;
12056 };
12057
12058 /* We need a special top-level link routine to convert got reference counts
12059 to real got offsets. */
12060
12061 static bfd_boolean
12062 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12063 {
12064 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12065 bfd *obfd = gofarg->info->output_bfd;
12066 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12067
12068 if (h->root.type == bfd_link_hash_warning)
12069 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12070
12071 if (h->got.refcount > 0)
12072 {
12073 h->got.offset = gofarg->gotoff;
12074 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12075 }
12076 else
12077 h->got.offset = (bfd_vma) -1;
12078
12079 return TRUE;
12080 }
12081
12082 /* And an accompanying bit to work out final got entry offsets once
12083 we're done. Should be called from final_link. */
12084
12085 bfd_boolean
12086 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12087 struct bfd_link_info *info)
12088 {
12089 bfd *i;
12090 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12091 bfd_vma gotoff;
12092 struct alloc_got_off_arg gofarg;
12093
12094 BFD_ASSERT (abfd == info->output_bfd);
12095
12096 if (! is_elf_hash_table (info->hash))
12097 return FALSE;
12098
12099 /* The GOT offset is relative to the .got section, but the GOT header is
12100 put into the .got.plt section, if the backend uses it. */
12101 if (bed->want_got_plt)
12102 gotoff = 0;
12103 else
12104 gotoff = bed->got_header_size;
12105
12106 /* Do the local .got entries first. */
12107 for (i = info->input_bfds; i; i = i->link_next)
12108 {
12109 bfd_signed_vma *local_got;
12110 bfd_size_type j, locsymcount;
12111 Elf_Internal_Shdr *symtab_hdr;
12112
12113 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12114 continue;
12115
12116 local_got = elf_local_got_refcounts (i);
12117 if (!local_got)
12118 continue;
12119
12120 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12121 if (elf_bad_symtab (i))
12122 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12123 else
12124 locsymcount = symtab_hdr->sh_info;
12125
12126 for (j = 0; j < locsymcount; ++j)
12127 {
12128 if (local_got[j] > 0)
12129 {
12130 local_got[j] = gotoff;
12131 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12132 }
12133 else
12134 local_got[j] = (bfd_vma) -1;
12135 }
12136 }
12137
12138 /* Then the global .got entries. .plt refcounts are handled by
12139 adjust_dynamic_symbol */
12140 gofarg.gotoff = gotoff;
12141 gofarg.info = info;
12142 elf_link_hash_traverse (elf_hash_table (info),
12143 elf_gc_allocate_got_offsets,
12144 &gofarg);
12145 return TRUE;
12146 }
12147
12148 /* Many folk need no more in the way of final link than this, once
12149 got entry reference counting is enabled. */
12150
12151 bfd_boolean
12152 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12153 {
12154 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12155 return FALSE;
12156
12157 /* Invoke the regular ELF backend linker to do all the work. */
12158 return bfd_elf_final_link (abfd, info);
12159 }
12160
12161 bfd_boolean
12162 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12163 {
12164 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12165
12166 if (rcookie->bad_symtab)
12167 rcookie->rel = rcookie->rels;
12168
12169 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12170 {
12171 unsigned long r_symndx;
12172
12173 if (! rcookie->bad_symtab)
12174 if (rcookie->rel->r_offset > offset)
12175 return FALSE;
12176 if (rcookie->rel->r_offset != offset)
12177 continue;
12178
12179 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12180 if (r_symndx == SHN_UNDEF)
12181 return TRUE;
12182
12183 if (r_symndx >= rcookie->locsymcount
12184 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12185 {
12186 struct elf_link_hash_entry *h;
12187
12188 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12189
12190 while (h->root.type == bfd_link_hash_indirect
12191 || h->root.type == bfd_link_hash_warning)
12192 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12193
12194 if ((h->root.type == bfd_link_hash_defined
12195 || h->root.type == bfd_link_hash_defweak)
12196 && elf_discarded_section (h->root.u.def.section))
12197 return TRUE;
12198 else
12199 return FALSE;
12200 }
12201 else
12202 {
12203 /* It's not a relocation against a global symbol,
12204 but it could be a relocation against a local
12205 symbol for a discarded section. */
12206 asection *isec;
12207 Elf_Internal_Sym *isym;
12208
12209 /* Need to: get the symbol; get the section. */
12210 isym = &rcookie->locsyms[r_symndx];
12211 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12212 if (isec != NULL && elf_discarded_section (isec))
12213 return TRUE;
12214 }
12215 return FALSE;
12216 }
12217 return FALSE;
12218 }
12219
12220 /* Discard unneeded references to discarded sections.
12221 Returns TRUE if any section's size was changed. */
12222 /* This function assumes that the relocations are in sorted order,
12223 which is true for all known assemblers. */
12224
12225 bfd_boolean
12226 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12227 {
12228 struct elf_reloc_cookie cookie;
12229 asection *stab, *eh;
12230 const struct elf_backend_data *bed;
12231 bfd *abfd;
12232 bfd_boolean ret = FALSE;
12233
12234 if (info->traditional_format
12235 || !is_elf_hash_table (info->hash))
12236 return FALSE;
12237
12238 _bfd_elf_begin_eh_frame_parsing (info);
12239 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12240 {
12241 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12242 continue;
12243
12244 bed = get_elf_backend_data (abfd);
12245
12246 if ((abfd->flags & DYNAMIC) != 0)
12247 continue;
12248
12249 eh = NULL;
12250 if (!info->relocatable)
12251 {
12252 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12253 if (eh != NULL
12254 && (eh->size == 0
12255 || bfd_is_abs_section (eh->output_section)))
12256 eh = NULL;
12257 }
12258
12259 stab = bfd_get_section_by_name (abfd, ".stab");
12260 if (stab != NULL
12261 && (stab->size == 0
12262 || bfd_is_abs_section (stab->output_section)
12263 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
12264 stab = NULL;
12265
12266 if (stab == NULL
12267 && eh == NULL
12268 && bed->elf_backend_discard_info == NULL)
12269 continue;
12270
12271 if (!init_reloc_cookie (&cookie, info, abfd))
12272 return FALSE;
12273
12274 if (stab != NULL
12275 && stab->reloc_count > 0
12276 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12277 {
12278 if (_bfd_discard_section_stabs (abfd, stab,
12279 elf_section_data (stab)->sec_info,
12280 bfd_elf_reloc_symbol_deleted_p,
12281 &cookie))
12282 ret = TRUE;
12283 fini_reloc_cookie_rels (&cookie, stab);
12284 }
12285
12286 if (eh != NULL
12287 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12288 {
12289 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12290 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12291 bfd_elf_reloc_symbol_deleted_p,
12292 &cookie))
12293 ret = TRUE;
12294 fini_reloc_cookie_rels (&cookie, eh);
12295 }
12296
12297 if (bed->elf_backend_discard_info != NULL
12298 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12299 ret = TRUE;
12300
12301 fini_reloc_cookie (&cookie, abfd);
12302 }
12303 _bfd_elf_end_eh_frame_parsing (info);
12304
12305 if (info->eh_frame_hdr
12306 && !info->relocatable
12307 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12308 ret = TRUE;
12309
12310 return ret;
12311 }
12312
12313 /* For a SHT_GROUP section, return the group signature. For other
12314 sections, return the normal section name. */
12315
12316 static const char *
12317 section_signature (asection *sec)
12318 {
12319 if ((sec->flags & SEC_GROUP) != 0
12320 && elf_next_in_group (sec) != NULL
12321 && elf_group_name (elf_next_in_group (sec)) != NULL)
12322 return elf_group_name (elf_next_in_group (sec));
12323 return sec->name;
12324 }
12325
12326 void
12327 _bfd_elf_section_already_linked (bfd *abfd, asection *sec,
12328 struct bfd_link_info *info)
12329 {
12330 flagword flags;
12331 const char *name, *p;
12332 struct bfd_section_already_linked *l;
12333 struct bfd_section_already_linked_hash_entry *already_linked_list;
12334
12335 if (sec->output_section == bfd_abs_section_ptr)
12336 return;
12337
12338 flags = sec->flags;
12339
12340 /* Return if it isn't a linkonce section. A comdat group section
12341 also has SEC_LINK_ONCE set. */
12342 if ((flags & SEC_LINK_ONCE) == 0)
12343 return;
12344
12345 /* Don't put group member sections on our list of already linked
12346 sections. They are handled as a group via their group section. */
12347 if (elf_sec_group (sec) != NULL)
12348 return;
12349
12350 /* FIXME: When doing a relocatable link, we may have trouble
12351 copying relocations in other sections that refer to local symbols
12352 in the section being discarded. Those relocations will have to
12353 be converted somehow; as of this writing I'm not sure that any of
12354 the backends handle that correctly.
12355
12356 It is tempting to instead not discard link once sections when
12357 doing a relocatable link (technically, they should be discarded
12358 whenever we are building constructors). However, that fails,
12359 because the linker winds up combining all the link once sections
12360 into a single large link once section, which defeats the purpose
12361 of having link once sections in the first place.
12362
12363 Also, not merging link once sections in a relocatable link
12364 causes trouble for MIPS ELF, which relies on link once semantics
12365 to handle the .reginfo section correctly. */
12366
12367 name = section_signature (sec);
12368
12369 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12370 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12371 p++;
12372 else
12373 p = name;
12374
12375 already_linked_list = bfd_section_already_linked_table_lookup (p);
12376
12377 for (l = already_linked_list->entry; l != NULL; l = l->next)
12378 {
12379 /* We may have 2 different types of sections on the list: group
12380 sections and linkonce sections. Match like sections. */
12381 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12382 && strcmp (name, section_signature (l->sec)) == 0
12383 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
12384 {
12385 /* The section has already been linked. See if we should
12386 issue a warning. */
12387 switch (flags & SEC_LINK_DUPLICATES)
12388 {
12389 default:
12390 abort ();
12391
12392 case SEC_LINK_DUPLICATES_DISCARD:
12393 break;
12394
12395 case SEC_LINK_DUPLICATES_ONE_ONLY:
12396 (*_bfd_error_handler)
12397 (_("%B: ignoring duplicate section `%A'"),
12398 abfd, sec);
12399 break;
12400
12401 case SEC_LINK_DUPLICATES_SAME_SIZE:
12402 if (sec->size != l->sec->size)
12403 (*_bfd_error_handler)
12404 (_("%B: duplicate section `%A' has different size"),
12405 abfd, sec);
12406 break;
12407
12408 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
12409 if (sec->size != l->sec->size)
12410 (*_bfd_error_handler)
12411 (_("%B: duplicate section `%A' has different size"),
12412 abfd, sec);
12413 else if (sec->size != 0)
12414 {
12415 bfd_byte *sec_contents, *l_sec_contents;
12416
12417 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
12418 (*_bfd_error_handler)
12419 (_("%B: warning: could not read contents of section `%A'"),
12420 abfd, sec);
12421 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
12422 &l_sec_contents))
12423 (*_bfd_error_handler)
12424 (_("%B: warning: could not read contents of section `%A'"),
12425 l->sec->owner, l->sec);
12426 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
12427 (*_bfd_error_handler)
12428 (_("%B: warning: duplicate section `%A' has different contents"),
12429 abfd, sec);
12430
12431 if (sec_contents)
12432 free (sec_contents);
12433 if (l_sec_contents)
12434 free (l_sec_contents);
12435 }
12436 break;
12437 }
12438
12439 /* Set the output_section field so that lang_add_section
12440 does not create a lang_input_section structure for this
12441 section. Since there might be a symbol in the section
12442 being discarded, we must retain a pointer to the section
12443 which we are really going to use. */
12444 sec->output_section = bfd_abs_section_ptr;
12445 sec->kept_section = l->sec;
12446
12447 if (flags & SEC_GROUP)
12448 {
12449 asection *first = elf_next_in_group (sec);
12450 asection *s = first;
12451
12452 while (s != NULL)
12453 {
12454 s->output_section = bfd_abs_section_ptr;
12455 /* Record which group discards it. */
12456 s->kept_section = l->sec;
12457 s = elf_next_in_group (s);
12458 /* These lists are circular. */
12459 if (s == first)
12460 break;
12461 }
12462 }
12463
12464 return;
12465 }
12466 }
12467
12468 /* A single member comdat group section may be discarded by a
12469 linkonce section and vice versa. */
12470
12471 if ((flags & SEC_GROUP) != 0)
12472 {
12473 asection *first = elf_next_in_group (sec);
12474
12475 if (first != NULL && elf_next_in_group (first) == first)
12476 /* Check this single member group against linkonce sections. */
12477 for (l = already_linked_list->entry; l != NULL; l = l->next)
12478 if ((l->sec->flags & SEC_GROUP) == 0
12479 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
12480 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12481 {
12482 first->output_section = bfd_abs_section_ptr;
12483 first->kept_section = l->sec;
12484 sec->output_section = bfd_abs_section_ptr;
12485 break;
12486 }
12487 }
12488 else
12489 /* Check this linkonce section against single member groups. */
12490 for (l = already_linked_list->entry; l != NULL; l = l->next)
12491 if (l->sec->flags & SEC_GROUP)
12492 {
12493 asection *first = elf_next_in_group (l->sec);
12494
12495 if (first != NULL
12496 && elf_next_in_group (first) == first
12497 && bfd_elf_match_symbols_in_sections (first, sec, info))
12498 {
12499 sec->output_section = bfd_abs_section_ptr;
12500 sec->kept_section = first;
12501 break;
12502 }
12503 }
12504
12505 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12506 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12507 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12508 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12509 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12510 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12511 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12512 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12513 The reverse order cannot happen as there is never a bfd with only the
12514 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12515 matter as here were are looking only for cross-bfd sections. */
12516
12517 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12518 for (l = already_linked_list->entry; l != NULL; l = l->next)
12519 if ((l->sec->flags & SEC_GROUP) == 0
12520 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12521 {
12522 if (abfd != l->sec->owner)
12523 sec->output_section = bfd_abs_section_ptr;
12524 break;
12525 }
12526
12527 /* This is the first section with this name. Record it. */
12528 if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
12529 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12530 }
12531
12532 bfd_boolean
12533 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12534 {
12535 return sym->st_shndx == SHN_COMMON;
12536 }
12537
12538 unsigned int
12539 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12540 {
12541 return SHN_COMMON;
12542 }
12543
12544 asection *
12545 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12546 {
12547 return bfd_com_section_ptr;
12548 }
12549
12550 bfd_vma
12551 _bfd_elf_default_got_elt_size (bfd *abfd,
12552 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12553 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12554 bfd *ibfd ATTRIBUTE_UNUSED,
12555 unsigned long symndx ATTRIBUTE_UNUSED)
12556 {
12557 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12558 return bed->s->arch_size / 8;
12559 }
12560
12561 /* Routines to support the creation of dynamic relocs. */
12562
12563 /* Return true if NAME is a name of a relocation
12564 section associated with section S. */
12565
12566 static bfd_boolean
12567 is_reloc_section (bfd_boolean rela, const char * name, asection * s)
12568 {
12569 if (rela)
12570 return CONST_STRNEQ (name, ".rela")
12571 && strcmp (bfd_get_section_name (NULL, s), name + 5) == 0;
12572
12573 return CONST_STRNEQ (name, ".rel")
12574 && strcmp (bfd_get_section_name (NULL, s), name + 4) == 0;
12575 }
12576
12577 /* Returns the name of the dynamic reloc section associated with SEC. */
12578
12579 static const char *
12580 get_dynamic_reloc_section_name (bfd * abfd,
12581 asection * sec,
12582 bfd_boolean is_rela)
12583 {
12584 const char * name;
12585 unsigned int strndx = elf_elfheader (abfd)->e_shstrndx;
12586 unsigned int shnam = elf_section_data (sec)->rel_hdr.sh_name;
12587
12588 name = bfd_elf_string_from_elf_section (abfd, strndx, shnam);
12589 if (name == NULL)
12590 return NULL;
12591
12592 if (! is_reloc_section (is_rela, name, sec))
12593 {
12594 static bfd_boolean complained = FALSE;
12595
12596 if (! complained)
12597 {
12598 (*_bfd_error_handler)
12599 (_("%B: bad relocation section name `%s\'"), abfd, name);
12600 complained = TRUE;
12601 }
12602 name = NULL;
12603 }
12604
12605 return name;
12606 }
12607
12608 /* Returns the dynamic reloc section associated with SEC.
12609 If necessary compute the name of the dynamic reloc section based
12610 on SEC's name (looked up in ABFD's string table) and the setting
12611 of IS_RELA. */
12612
12613 asection *
12614 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12615 asection * sec,
12616 bfd_boolean is_rela)
12617 {
12618 asection * reloc_sec = elf_section_data (sec)->sreloc;
12619
12620 if (reloc_sec == NULL)
12621 {
12622 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12623
12624 if (name != NULL)
12625 {
12626 reloc_sec = bfd_get_section_by_name (abfd, name);
12627
12628 if (reloc_sec != NULL)
12629 elf_section_data (sec)->sreloc = reloc_sec;
12630 }
12631 }
12632
12633 return reloc_sec;
12634 }
12635
12636 /* Returns the dynamic reloc section associated with SEC. If the
12637 section does not exist it is created and attached to the DYNOBJ
12638 bfd and stored in the SRELOC field of SEC's elf_section_data
12639 structure.
12640
12641 ALIGNMENT is the alignment for the newly created section and
12642 IS_RELA defines whether the name should be .rela.<SEC's name>
12643 or .rel.<SEC's name>. The section name is looked up in the
12644 string table associated with ABFD. */
12645
12646 asection *
12647 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12648 bfd * dynobj,
12649 unsigned int alignment,
12650 bfd * abfd,
12651 bfd_boolean is_rela)
12652 {
12653 asection * reloc_sec = elf_section_data (sec)->sreloc;
12654
12655 if (reloc_sec == NULL)
12656 {
12657 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12658
12659 if (name == NULL)
12660 return NULL;
12661
12662 reloc_sec = bfd_get_section_by_name (dynobj, name);
12663
12664 if (reloc_sec == NULL)
12665 {
12666 flagword flags;
12667
12668 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12669 if ((sec->flags & SEC_ALLOC) != 0)
12670 flags |= SEC_ALLOC | SEC_LOAD;
12671
12672 reloc_sec = bfd_make_section_with_flags (dynobj, name, flags);
12673 if (reloc_sec != NULL)
12674 {
12675 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12676 reloc_sec = NULL;
12677 }
12678 }
12679
12680 elf_section_data (sec)->sreloc = reloc_sec;
12681 }
12682
12683 return reloc_sec;
12684 }
12685
12686 /* Copy the ELF symbol type associated with a linker hash entry. */
12687 void
12688 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
12689 struct bfd_link_hash_entry * hdest,
12690 struct bfd_link_hash_entry * hsrc)
12691 {
12692 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
12693 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
12694
12695 ehdest->type = ehsrc->type;
12696 }
This page took 0.319005 seconds and 4 git commands to generate.