bfd/
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #define ARCH_SIZE 0
28 #include "elf-bfd.h"
29 #include "safe-ctype.h"
30 #include "libiberty.h"
31 #include "objalloc.h"
32
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
35
36 struct elf_info_failed
37 {
38 struct bfd_link_info *info;
39 bfd_boolean failed;
40 };
41
42 /* This structure is used to pass information to
43 _bfd_elf_link_find_version_dependencies. */
44
45 struct elf_find_verdep_info
46 {
47 /* General link information. */
48 struct bfd_link_info *info;
49 /* The number of dependencies. */
50 unsigned int vers;
51 /* Whether we had a failure. */
52 bfd_boolean failed;
53 };
54
55 static bfd_boolean _bfd_elf_fix_symbol_flags
56 (struct elf_link_hash_entry *, struct elf_info_failed *);
57
58 /* Define a symbol in a dynamic linkage section. */
59
60 struct elf_link_hash_entry *
61 _bfd_elf_define_linkage_sym (bfd *abfd,
62 struct bfd_link_info *info,
63 asection *sec,
64 const char *name)
65 {
66 struct elf_link_hash_entry *h;
67 struct bfd_link_hash_entry *bh;
68 const struct elf_backend_data *bed;
69
70 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
71 if (h != NULL)
72 {
73 /* Zap symbol defined in an as-needed lib that wasn't linked.
74 This is a symptom of a larger problem: Absolute symbols
75 defined in shared libraries can't be overridden, because we
76 lose the link to the bfd which is via the symbol section. */
77 h->root.type = bfd_link_hash_new;
78 }
79
80 bh = &h->root;
81 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
82 sec, 0, NULL, FALSE,
83 get_elf_backend_data (abfd)->collect,
84 &bh))
85 return NULL;
86 h = (struct elf_link_hash_entry *) bh;
87 h->def_regular = 1;
88 h->non_elf = 0;
89 h->type = STT_OBJECT;
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
91
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94 return h;
95 }
96
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
99 {
100 flagword flags;
101 asection *s;
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
105
106 /* This function may be called more than once. */
107 s = bfd_get_section_by_name (abfd, ".got");
108 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
109 return TRUE;
110
111 flags = bed->dynamic_sec_flags;
112
113 s = bfd_make_section_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
117 | SEC_READONLY));
118 if (s == NULL
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
120 return FALSE;
121 htab->srelgot = s;
122
123 s = bfd_make_section_with_flags (abfd, ".got", flags);
124 if (s == NULL
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
126 return FALSE;
127 htab->sgot = s;
128
129 if (bed->want_got_plt)
130 {
131 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
132 if (s == NULL
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
135 return FALSE;
136 htab->sgotplt = s;
137 }
138
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
141
142 if (bed->want_got_sym)
143 {
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
151 if (h == NULL)
152 return FALSE;
153 }
154
155 return TRUE;
156 }
157 \f
158 /* Create a strtab to hold the dynamic symbol names. */
159 static bfd_boolean
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
161 {
162 struct elf_link_hash_table *hash_table;
163
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
167
168 if (hash_table->dynstr == NULL)
169 {
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
172 return FALSE;
173 }
174 return TRUE;
175 }
176
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
183
184 bfd_boolean
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
186 {
187 flagword flags;
188 asection *s;
189 const struct elf_backend_data *bed;
190
191 if (! is_elf_hash_table (info->hash))
192 return FALSE;
193
194 if (elf_hash_table (info)->dynamic_sections_created)
195 return TRUE;
196
197 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
198 return FALSE;
199
200 abfd = elf_hash_table (info)->dynobj;
201 bed = get_elf_backend_data (abfd);
202
203 flags = bed->dynamic_sec_flags;
204
205 /* A dynamically linked executable has a .interp section, but a
206 shared library does not. */
207 if (info->executable)
208 {
209 s = bfd_make_section_with_flags (abfd, ".interp",
210 flags | SEC_READONLY);
211 if (s == NULL)
212 return FALSE;
213 }
214
215 /* Create sections to hold version informations. These are removed
216 if they are not needed. */
217 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
218 flags | SEC_READONLY);
219 if (s == NULL
220 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
221 return FALSE;
222
223 s = bfd_make_section_with_flags (abfd, ".gnu.version",
224 flags | SEC_READONLY);
225 if (s == NULL
226 || ! bfd_set_section_alignment (abfd, s, 1))
227 return FALSE;
228
229 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
230 flags | SEC_READONLY);
231 if (s == NULL
232 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
233 return FALSE;
234
235 s = bfd_make_section_with_flags (abfd, ".dynsym",
236 flags | SEC_READONLY);
237 if (s == NULL
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
239 return FALSE;
240
241 s = bfd_make_section_with_flags (abfd, ".dynstr",
242 flags | SEC_READONLY);
243 if (s == NULL)
244 return FALSE;
245
246 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
247 if (s == NULL
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
249 return FALSE;
250
251 /* The special symbol _DYNAMIC is always set to the start of the
252 .dynamic section. We could set _DYNAMIC in a linker script, but we
253 only want to define it if we are, in fact, creating a .dynamic
254 section. We don't want to define it if there is no .dynamic
255 section, since on some ELF platforms the start up code examines it
256 to decide how to initialize the process. */
257 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
258 return FALSE;
259
260 if (info->emit_hash)
261 {
262 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
263 if (s == NULL
264 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
265 return FALSE;
266 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
267 }
268
269 if (info->emit_gnu_hash)
270 {
271 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
272 flags | SEC_READONLY);
273 if (s == NULL
274 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
275 return FALSE;
276 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
277 4 32-bit words followed by variable count of 64-bit words, then
278 variable count of 32-bit words. */
279 if (bed->s->arch_size == 64)
280 elf_section_data (s)->this_hdr.sh_entsize = 0;
281 else
282 elf_section_data (s)->this_hdr.sh_entsize = 4;
283 }
284
285 /* Let the backend create the rest of the sections. This lets the
286 backend set the right flags. The backend will normally create
287 the .got and .plt sections. */
288 if (bed->elf_backend_create_dynamic_sections == NULL
289 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
290 return FALSE;
291
292 elf_hash_table (info)->dynamic_sections_created = TRUE;
293
294 return TRUE;
295 }
296
297 /* Create dynamic sections when linking against a dynamic object. */
298
299 bfd_boolean
300 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
301 {
302 flagword flags, pltflags;
303 struct elf_link_hash_entry *h;
304 asection *s;
305 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
306 struct elf_link_hash_table *htab = elf_hash_table (info);
307
308 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
309 .rel[a].bss sections. */
310 flags = bed->dynamic_sec_flags;
311
312 pltflags = flags;
313 if (bed->plt_not_loaded)
314 /* We do not clear SEC_ALLOC here because we still want the OS to
315 allocate space for the section; it's just that there's nothing
316 to read in from the object file. */
317 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
318 else
319 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
320 if (bed->plt_readonly)
321 pltflags |= SEC_READONLY;
322
323 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
324 if (s == NULL
325 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
326 return FALSE;
327 htab->splt = s;
328
329 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
330 .plt section. */
331 if (bed->want_plt_sym)
332 {
333 h = _bfd_elf_define_linkage_sym (abfd, info, s,
334 "_PROCEDURE_LINKAGE_TABLE_");
335 elf_hash_table (info)->hplt = h;
336 if (h == NULL)
337 return FALSE;
338 }
339
340 s = bfd_make_section_with_flags (abfd,
341 (bed->rela_plts_and_copies_p
342 ? ".rela.plt" : ".rel.plt"),
343 flags | SEC_READONLY);
344 if (s == NULL
345 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
346 return FALSE;
347 htab->srelplt = s;
348
349 if (! _bfd_elf_create_got_section (abfd, info))
350 return FALSE;
351
352 if (bed->want_dynbss)
353 {
354 /* The .dynbss section is a place to put symbols which are defined
355 by dynamic objects, are referenced by regular objects, and are
356 not functions. We must allocate space for them in the process
357 image and use a R_*_COPY reloc to tell the dynamic linker to
358 initialize them at run time. The linker script puts the .dynbss
359 section into the .bss section of the final image. */
360 s = bfd_make_section_with_flags (abfd, ".dynbss",
361 (SEC_ALLOC
362 | SEC_LINKER_CREATED));
363 if (s == NULL)
364 return FALSE;
365
366 /* The .rel[a].bss section holds copy relocs. This section is not
367 normally needed. We need to create it here, though, so that the
368 linker will map it to an output section. We can't just create it
369 only if we need it, because we will not know whether we need it
370 until we have seen all the input files, and the first time the
371 main linker code calls BFD after examining all the input files
372 (size_dynamic_sections) the input sections have already been
373 mapped to the output sections. If the section turns out not to
374 be needed, we can discard it later. We will never need this
375 section when generating a shared object, since they do not use
376 copy relocs. */
377 if (! info->shared)
378 {
379 s = bfd_make_section_with_flags (abfd,
380 (bed->rela_plts_and_copies_p
381 ? ".rela.bss" : ".rel.bss"),
382 flags | SEC_READONLY);
383 if (s == NULL
384 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
385 return FALSE;
386 }
387 }
388
389 return TRUE;
390 }
391 \f
392 /* Record a new dynamic symbol. We record the dynamic symbols as we
393 read the input files, since we need to have a list of all of them
394 before we can determine the final sizes of the output sections.
395 Note that we may actually call this function even though we are not
396 going to output any dynamic symbols; in some cases we know that a
397 symbol should be in the dynamic symbol table, but only if there is
398 one. */
399
400 bfd_boolean
401 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
402 struct elf_link_hash_entry *h)
403 {
404 if (h->dynindx == -1)
405 {
406 struct elf_strtab_hash *dynstr;
407 char *p;
408 const char *name;
409 bfd_size_type indx;
410
411 /* XXX: The ABI draft says the linker must turn hidden and
412 internal symbols into STB_LOCAL symbols when producing the
413 DSO. However, if ld.so honors st_other in the dynamic table,
414 this would not be necessary. */
415 switch (ELF_ST_VISIBILITY (h->other))
416 {
417 case STV_INTERNAL:
418 case STV_HIDDEN:
419 if (h->root.type != bfd_link_hash_undefined
420 && h->root.type != bfd_link_hash_undefweak)
421 {
422 h->forced_local = 1;
423 if (!elf_hash_table (info)->is_relocatable_executable)
424 return TRUE;
425 }
426
427 default:
428 break;
429 }
430
431 h->dynindx = elf_hash_table (info)->dynsymcount;
432 ++elf_hash_table (info)->dynsymcount;
433
434 dynstr = elf_hash_table (info)->dynstr;
435 if (dynstr == NULL)
436 {
437 /* Create a strtab to hold the dynamic symbol names. */
438 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
439 if (dynstr == NULL)
440 return FALSE;
441 }
442
443 /* We don't put any version information in the dynamic string
444 table. */
445 name = h->root.root.string;
446 p = strchr (name, ELF_VER_CHR);
447 if (p != NULL)
448 /* We know that the p points into writable memory. In fact,
449 there are only a few symbols that have read-only names, being
450 those like _GLOBAL_OFFSET_TABLE_ that are created specially
451 by the backends. Most symbols will have names pointing into
452 an ELF string table read from a file, or to objalloc memory. */
453 *p = 0;
454
455 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
456
457 if (p != NULL)
458 *p = ELF_VER_CHR;
459
460 if (indx == (bfd_size_type) -1)
461 return FALSE;
462 h->dynstr_index = indx;
463 }
464
465 return TRUE;
466 }
467 \f
468 /* Mark a symbol dynamic. */
469
470 static void
471 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
472 struct elf_link_hash_entry *h,
473 Elf_Internal_Sym *sym)
474 {
475 struct bfd_elf_dynamic_list *d = info->dynamic_list;
476
477 /* It may be called more than once on the same H. */
478 if(h->dynamic || info->relocatable)
479 return;
480
481 if ((info->dynamic_data
482 && (h->type == STT_OBJECT
483 || (sym != NULL
484 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
485 || (d != NULL
486 && h->root.type == bfd_link_hash_new
487 && (*d->match) (&d->head, NULL, h->root.root.string)))
488 h->dynamic = 1;
489 }
490
491 /* Record an assignment to a symbol made by a linker script. We need
492 this in case some dynamic object refers to this symbol. */
493
494 bfd_boolean
495 bfd_elf_record_link_assignment (bfd *output_bfd,
496 struct bfd_link_info *info,
497 const char *name,
498 bfd_boolean provide,
499 bfd_boolean hidden)
500 {
501 struct elf_link_hash_entry *h, *hv;
502 struct elf_link_hash_table *htab;
503 const struct elf_backend_data *bed;
504
505 if (!is_elf_hash_table (info->hash))
506 return TRUE;
507
508 htab = elf_hash_table (info);
509 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
510 if (h == NULL)
511 return provide;
512
513 switch (h->root.type)
514 {
515 case bfd_link_hash_defined:
516 case bfd_link_hash_defweak:
517 case bfd_link_hash_common:
518 break;
519 case bfd_link_hash_undefweak:
520 case bfd_link_hash_undefined:
521 /* Since we're defining the symbol, don't let it seem to have not
522 been defined. record_dynamic_symbol and size_dynamic_sections
523 may depend on this. */
524 h->root.type = bfd_link_hash_new;
525 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
526 bfd_link_repair_undef_list (&htab->root);
527 break;
528 case bfd_link_hash_new:
529 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
530 h->non_elf = 0;
531 break;
532 case bfd_link_hash_indirect:
533 /* We had a versioned symbol in a dynamic library. We make the
534 the versioned symbol point to this one. */
535 bed = get_elf_backend_data (output_bfd);
536 hv = h;
537 while (hv->root.type == bfd_link_hash_indirect
538 || hv->root.type == bfd_link_hash_warning)
539 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
540 /* We don't need to update h->root.u since linker will set them
541 later. */
542 h->root.type = bfd_link_hash_undefined;
543 hv->root.type = bfd_link_hash_indirect;
544 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
545 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
546 break;
547 case bfd_link_hash_warning:
548 abort ();
549 break;
550 }
551
552 /* If this symbol is being provided by the linker script, and it is
553 currently defined by a dynamic object, but not by a regular
554 object, then mark it as undefined so that the generic linker will
555 force the correct value. */
556 if (provide
557 && h->def_dynamic
558 && !h->def_regular)
559 h->root.type = bfd_link_hash_undefined;
560
561 /* If this symbol is not being provided by the linker script, and it is
562 currently defined by a dynamic object, but not by a regular object,
563 then clear out any version information because the symbol will not be
564 associated with the dynamic object any more. */
565 if (!provide
566 && h->def_dynamic
567 && !h->def_regular)
568 h->verinfo.verdef = NULL;
569
570 h->def_regular = 1;
571
572 if (provide && hidden)
573 {
574 bed = get_elf_backend_data (output_bfd);
575 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
576 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
577 }
578
579 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
580 and executables. */
581 if (!info->relocatable
582 && h->dynindx != -1
583 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
584 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
585 h->forced_local = 1;
586
587 if ((h->def_dynamic
588 || h->ref_dynamic
589 || info->shared
590 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
591 && h->dynindx == -1)
592 {
593 if (! bfd_elf_link_record_dynamic_symbol (info, h))
594 return FALSE;
595
596 /* If this is a weak defined symbol, and we know a corresponding
597 real symbol from the same dynamic object, make sure the real
598 symbol is also made into a dynamic symbol. */
599 if (h->u.weakdef != NULL
600 && h->u.weakdef->dynindx == -1)
601 {
602 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
603 return FALSE;
604 }
605 }
606
607 return TRUE;
608 }
609
610 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
611 success, and 2 on a failure caused by attempting to record a symbol
612 in a discarded section, eg. a discarded link-once section symbol. */
613
614 int
615 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
616 bfd *input_bfd,
617 long input_indx)
618 {
619 bfd_size_type amt;
620 struct elf_link_local_dynamic_entry *entry;
621 struct elf_link_hash_table *eht;
622 struct elf_strtab_hash *dynstr;
623 unsigned long dynstr_index;
624 char *name;
625 Elf_External_Sym_Shndx eshndx;
626 char esym[sizeof (Elf64_External_Sym)];
627
628 if (! is_elf_hash_table (info->hash))
629 return 0;
630
631 /* See if the entry exists already. */
632 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
633 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
634 return 1;
635
636 amt = sizeof (*entry);
637 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
638 if (entry == NULL)
639 return 0;
640
641 /* Go find the symbol, so that we can find it's name. */
642 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
643 1, input_indx, &entry->isym, esym, &eshndx))
644 {
645 bfd_release (input_bfd, entry);
646 return 0;
647 }
648
649 if (entry->isym.st_shndx != SHN_UNDEF
650 && entry->isym.st_shndx < SHN_LORESERVE)
651 {
652 asection *s;
653
654 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
655 if (s == NULL || bfd_is_abs_section (s->output_section))
656 {
657 /* We can still bfd_release here as nothing has done another
658 bfd_alloc. We can't do this later in this function. */
659 bfd_release (input_bfd, entry);
660 return 2;
661 }
662 }
663
664 name = (bfd_elf_string_from_elf_section
665 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
666 entry->isym.st_name));
667
668 dynstr = elf_hash_table (info)->dynstr;
669 if (dynstr == NULL)
670 {
671 /* Create a strtab to hold the dynamic symbol names. */
672 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
673 if (dynstr == NULL)
674 return 0;
675 }
676
677 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
678 if (dynstr_index == (unsigned long) -1)
679 return 0;
680 entry->isym.st_name = dynstr_index;
681
682 eht = elf_hash_table (info);
683
684 entry->next = eht->dynlocal;
685 eht->dynlocal = entry;
686 entry->input_bfd = input_bfd;
687 entry->input_indx = input_indx;
688 eht->dynsymcount++;
689
690 /* Whatever binding the symbol had before, it's now local. */
691 entry->isym.st_info
692 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
693
694 /* The dynindx will be set at the end of size_dynamic_sections. */
695
696 return 1;
697 }
698
699 /* Return the dynindex of a local dynamic symbol. */
700
701 long
702 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
703 bfd *input_bfd,
704 long input_indx)
705 {
706 struct elf_link_local_dynamic_entry *e;
707
708 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
709 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
710 return e->dynindx;
711 return -1;
712 }
713
714 /* This function is used to renumber the dynamic symbols, if some of
715 them are removed because they are marked as local. This is called
716 via elf_link_hash_traverse. */
717
718 static bfd_boolean
719 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
720 void *data)
721 {
722 size_t *count = (size_t *) data;
723
724 if (h->forced_local)
725 return TRUE;
726
727 if (h->dynindx != -1)
728 h->dynindx = ++(*count);
729
730 return TRUE;
731 }
732
733
734 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
735 STB_LOCAL binding. */
736
737 static bfd_boolean
738 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
739 void *data)
740 {
741 size_t *count = (size_t *) data;
742
743 if (!h->forced_local)
744 return TRUE;
745
746 if (h->dynindx != -1)
747 h->dynindx = ++(*count);
748
749 return TRUE;
750 }
751
752 /* Return true if the dynamic symbol for a given section should be
753 omitted when creating a shared library. */
754 bfd_boolean
755 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
756 struct bfd_link_info *info,
757 asection *p)
758 {
759 struct elf_link_hash_table *htab;
760
761 switch (elf_section_data (p)->this_hdr.sh_type)
762 {
763 case SHT_PROGBITS:
764 case SHT_NOBITS:
765 /* If sh_type is yet undecided, assume it could be
766 SHT_PROGBITS/SHT_NOBITS. */
767 case SHT_NULL:
768 htab = elf_hash_table (info);
769 if (p == htab->tls_sec)
770 return FALSE;
771
772 if (htab->text_index_section != NULL)
773 return p != htab->text_index_section && p != htab->data_index_section;
774
775 if (strcmp (p->name, ".got") == 0
776 || strcmp (p->name, ".got.plt") == 0
777 || strcmp (p->name, ".plt") == 0)
778 {
779 asection *ip;
780
781 if (htab->dynobj != NULL
782 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
783 && (ip->flags & SEC_LINKER_CREATED)
784 && ip->output_section == p)
785 return TRUE;
786 }
787 return FALSE;
788
789 /* There shouldn't be section relative relocations
790 against any other section. */
791 default:
792 return TRUE;
793 }
794 }
795
796 /* Assign dynsym indices. In a shared library we generate a section
797 symbol for each output section, which come first. Next come symbols
798 which have been forced to local binding. Then all of the back-end
799 allocated local dynamic syms, followed by the rest of the global
800 symbols. */
801
802 static unsigned long
803 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
804 struct bfd_link_info *info,
805 unsigned long *section_sym_count)
806 {
807 unsigned long dynsymcount = 0;
808
809 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
810 {
811 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
812 asection *p;
813 for (p = output_bfd->sections; p ; p = p->next)
814 if ((p->flags & SEC_EXCLUDE) == 0
815 && (p->flags & SEC_ALLOC) != 0
816 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
817 elf_section_data (p)->dynindx = ++dynsymcount;
818 else
819 elf_section_data (p)->dynindx = 0;
820 }
821 *section_sym_count = dynsymcount;
822
823 elf_link_hash_traverse (elf_hash_table (info),
824 elf_link_renumber_local_hash_table_dynsyms,
825 &dynsymcount);
826
827 if (elf_hash_table (info)->dynlocal)
828 {
829 struct elf_link_local_dynamic_entry *p;
830 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
831 p->dynindx = ++dynsymcount;
832 }
833
834 elf_link_hash_traverse (elf_hash_table (info),
835 elf_link_renumber_hash_table_dynsyms,
836 &dynsymcount);
837
838 /* There is an unused NULL entry at the head of the table which
839 we must account for in our count. Unless there weren't any
840 symbols, which means we'll have no table at all. */
841 if (dynsymcount != 0)
842 ++dynsymcount;
843
844 elf_hash_table (info)->dynsymcount = dynsymcount;
845 return dynsymcount;
846 }
847
848 /* Merge st_other field. */
849
850 static void
851 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
852 Elf_Internal_Sym *isym, bfd_boolean definition,
853 bfd_boolean dynamic)
854 {
855 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
856
857 /* If st_other has a processor-specific meaning, specific
858 code might be needed here. We never merge the visibility
859 attribute with the one from a dynamic object. */
860 if (bed->elf_backend_merge_symbol_attribute)
861 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
862 dynamic);
863
864 /* If this symbol has default visibility and the user has requested
865 we not re-export it, then mark it as hidden. */
866 if (definition
867 && !dynamic
868 && (abfd->no_export
869 || (abfd->my_archive && abfd->my_archive->no_export))
870 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
871 isym->st_other = (STV_HIDDEN
872 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
873
874 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
875 {
876 unsigned char hvis, symvis, other, nvis;
877
878 /* Only merge the visibility. Leave the remainder of the
879 st_other field to elf_backend_merge_symbol_attribute. */
880 other = h->other & ~ELF_ST_VISIBILITY (-1);
881
882 /* Combine visibilities, using the most constraining one. */
883 hvis = ELF_ST_VISIBILITY (h->other);
884 symvis = ELF_ST_VISIBILITY (isym->st_other);
885 if (! hvis)
886 nvis = symvis;
887 else if (! symvis)
888 nvis = hvis;
889 else
890 nvis = hvis < symvis ? hvis : symvis;
891
892 h->other = other | nvis;
893 }
894 }
895
896 /* This function is called when we want to define a new symbol. It
897 handles the various cases which arise when we find a definition in
898 a dynamic object, or when there is already a definition in a
899 dynamic object. The new symbol is described by NAME, SYM, PSEC,
900 and PVALUE. We set SYM_HASH to the hash table entry. We set
901 OVERRIDE if the old symbol is overriding a new definition. We set
902 TYPE_CHANGE_OK if it is OK for the type to change. We set
903 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
904 change, we mean that we shouldn't warn if the type or size does
905 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
906 object is overridden by a regular object. */
907
908 bfd_boolean
909 _bfd_elf_merge_symbol (bfd *abfd,
910 struct bfd_link_info *info,
911 const char *name,
912 Elf_Internal_Sym *sym,
913 asection **psec,
914 bfd_vma *pvalue,
915 unsigned int *pold_alignment,
916 struct elf_link_hash_entry **sym_hash,
917 bfd_boolean *skip,
918 bfd_boolean *override,
919 bfd_boolean *type_change_ok,
920 bfd_boolean *size_change_ok)
921 {
922 asection *sec, *oldsec;
923 struct elf_link_hash_entry *h;
924 struct elf_link_hash_entry *flip;
925 int bind;
926 bfd *oldbfd;
927 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
928 bfd_boolean newweak, oldweak, newfunc, oldfunc;
929 const struct elf_backend_data *bed;
930
931 *skip = FALSE;
932 *override = FALSE;
933
934 sec = *psec;
935 bind = ELF_ST_BIND (sym->st_info);
936
937 /* Silently discard TLS symbols from --just-syms. There's no way to
938 combine a static TLS block with a new TLS block for this executable. */
939 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
940 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
941 {
942 *skip = TRUE;
943 return TRUE;
944 }
945
946 if (! bfd_is_und_section (sec))
947 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
948 else
949 h = ((struct elf_link_hash_entry *)
950 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
951 if (h == NULL)
952 return FALSE;
953 *sym_hash = h;
954
955 bed = get_elf_backend_data (abfd);
956
957 /* This code is for coping with dynamic objects, and is only useful
958 if we are doing an ELF link. */
959 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
960 return TRUE;
961
962 /* For merging, we only care about real symbols. */
963
964 while (h->root.type == bfd_link_hash_indirect
965 || h->root.type == bfd_link_hash_warning)
966 h = (struct elf_link_hash_entry *) h->root.u.i.link;
967
968 /* We have to check it for every instance since the first few may be
969 refereences and not all compilers emit symbol type for undefined
970 symbols. */
971 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
972
973 /* If we just created the symbol, mark it as being an ELF symbol.
974 Other than that, there is nothing to do--there is no merge issue
975 with a newly defined symbol--so we just return. */
976
977 if (h->root.type == bfd_link_hash_new)
978 {
979 h->non_elf = 0;
980 return TRUE;
981 }
982
983 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
984 existing symbol. */
985
986 switch (h->root.type)
987 {
988 default:
989 oldbfd = NULL;
990 oldsec = NULL;
991 break;
992
993 case bfd_link_hash_undefined:
994 case bfd_link_hash_undefweak:
995 oldbfd = h->root.u.undef.abfd;
996 oldsec = NULL;
997 break;
998
999 case bfd_link_hash_defined:
1000 case bfd_link_hash_defweak:
1001 oldbfd = h->root.u.def.section->owner;
1002 oldsec = h->root.u.def.section;
1003 break;
1004
1005 case bfd_link_hash_common:
1006 oldbfd = h->root.u.c.p->section->owner;
1007 oldsec = h->root.u.c.p->section;
1008 break;
1009 }
1010
1011 /* Differentiate strong and weak symbols. */
1012 newweak = bind == STB_WEAK;
1013 oldweak = (h->root.type == bfd_link_hash_defweak
1014 || h->root.type == bfd_link_hash_undefweak);
1015
1016 /* In cases involving weak versioned symbols, we may wind up trying
1017 to merge a symbol with itself. Catch that here, to avoid the
1018 confusion that results if we try to override a symbol with
1019 itself. The additional tests catch cases like
1020 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1021 dynamic object, which we do want to handle here. */
1022 if (abfd == oldbfd
1023 && (newweak || oldweak)
1024 && ((abfd->flags & DYNAMIC) == 0
1025 || !h->def_regular))
1026 return TRUE;
1027
1028 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1029 respectively, is from a dynamic object. */
1030
1031 newdyn = (abfd->flags & DYNAMIC) != 0;
1032
1033 olddyn = FALSE;
1034 if (oldbfd != NULL)
1035 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1036 else if (oldsec != NULL)
1037 {
1038 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1039 indices used by MIPS ELF. */
1040 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1041 }
1042
1043 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1044 respectively, appear to be a definition rather than reference. */
1045
1046 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1047
1048 olddef = (h->root.type != bfd_link_hash_undefined
1049 && h->root.type != bfd_link_hash_undefweak
1050 && h->root.type != bfd_link_hash_common);
1051
1052 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1053 respectively, appear to be a function. */
1054
1055 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1056 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1057
1058 oldfunc = (h->type != STT_NOTYPE
1059 && bed->is_function_type (h->type));
1060
1061 /* When we try to create a default indirect symbol from the dynamic
1062 definition with the default version, we skip it if its type and
1063 the type of existing regular definition mismatch. We only do it
1064 if the existing regular definition won't be dynamic. */
1065 if (pold_alignment == NULL
1066 && !info->shared
1067 && !info->export_dynamic
1068 && !h->ref_dynamic
1069 && newdyn
1070 && newdef
1071 && !olddyn
1072 && (olddef || h->root.type == bfd_link_hash_common)
1073 && ELF_ST_TYPE (sym->st_info) != h->type
1074 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1075 && h->type != STT_NOTYPE
1076 && !(newfunc && oldfunc))
1077 {
1078 *skip = TRUE;
1079 return TRUE;
1080 }
1081
1082 /* Plugin symbol type isn't currently set. Stop bogus errors. */
1083 if (oldbfd != NULL && (oldbfd->flags & BFD_PLUGIN) != 0)
1084 *type_change_ok = TRUE;
1085
1086 /* Check TLS symbol. We don't check undefined symbol introduced by
1087 "ld -u". */
1088 else if (oldbfd != NULL
1089 && ELF_ST_TYPE (sym->st_info) != h->type
1090 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1091 {
1092 bfd *ntbfd, *tbfd;
1093 bfd_boolean ntdef, tdef;
1094 asection *ntsec, *tsec;
1095
1096 if (h->type == STT_TLS)
1097 {
1098 ntbfd = abfd;
1099 ntsec = sec;
1100 ntdef = newdef;
1101 tbfd = oldbfd;
1102 tsec = oldsec;
1103 tdef = olddef;
1104 }
1105 else
1106 {
1107 ntbfd = oldbfd;
1108 ntsec = oldsec;
1109 ntdef = olddef;
1110 tbfd = abfd;
1111 tsec = sec;
1112 tdef = newdef;
1113 }
1114
1115 if (tdef && ntdef)
1116 (*_bfd_error_handler)
1117 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1118 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1119 else if (!tdef && !ntdef)
1120 (*_bfd_error_handler)
1121 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1122 tbfd, ntbfd, h->root.root.string);
1123 else if (tdef)
1124 (*_bfd_error_handler)
1125 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1126 tbfd, tsec, ntbfd, h->root.root.string);
1127 else
1128 (*_bfd_error_handler)
1129 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1130 tbfd, ntbfd, ntsec, h->root.root.string);
1131
1132 bfd_set_error (bfd_error_bad_value);
1133 return FALSE;
1134 }
1135
1136 /* We need to remember if a symbol has a definition in a dynamic
1137 object or is weak in all dynamic objects. Internal and hidden
1138 visibility will make it unavailable to dynamic objects. */
1139 if (newdyn && !h->dynamic_def)
1140 {
1141 if (!bfd_is_und_section (sec))
1142 h->dynamic_def = 1;
1143 else
1144 {
1145 /* Check if this symbol is weak in all dynamic objects. If it
1146 is the first time we see it in a dynamic object, we mark
1147 if it is weak. Otherwise, we clear it. */
1148 if (!h->ref_dynamic)
1149 {
1150 if (bind == STB_WEAK)
1151 h->dynamic_weak = 1;
1152 }
1153 else if (bind != STB_WEAK)
1154 h->dynamic_weak = 0;
1155 }
1156 }
1157
1158 /* If the old symbol has non-default visibility, we ignore the new
1159 definition from a dynamic object. */
1160 if (newdyn
1161 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1162 && !bfd_is_und_section (sec))
1163 {
1164 *skip = TRUE;
1165 /* Make sure this symbol is dynamic. */
1166 h->ref_dynamic = 1;
1167 /* A protected symbol has external availability. Make sure it is
1168 recorded as dynamic.
1169
1170 FIXME: Should we check type and size for protected symbol? */
1171 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1172 return bfd_elf_link_record_dynamic_symbol (info, h);
1173 else
1174 return TRUE;
1175 }
1176 else if (!newdyn
1177 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1178 && h->def_dynamic)
1179 {
1180 /* If the new symbol with non-default visibility comes from a
1181 relocatable file and the old definition comes from a dynamic
1182 object, we remove the old definition. */
1183 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1184 {
1185 /* Handle the case where the old dynamic definition is
1186 default versioned. We need to copy the symbol info from
1187 the symbol with default version to the normal one if it
1188 was referenced before. */
1189 if (h->ref_regular)
1190 {
1191 struct elf_link_hash_entry *vh = *sym_hash;
1192
1193 vh->root.type = h->root.type;
1194 h->root.type = bfd_link_hash_indirect;
1195 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1196 /* Protected symbols will override the dynamic definition
1197 with default version. */
1198 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1199 {
1200 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1201 vh->dynamic_def = 1;
1202 vh->ref_dynamic = 1;
1203 }
1204 else
1205 {
1206 h->root.type = vh->root.type;
1207 vh->ref_dynamic = 0;
1208 /* We have to hide it here since it was made dynamic
1209 global with extra bits when the symbol info was
1210 copied from the old dynamic definition. */
1211 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1212 }
1213 h = vh;
1214 }
1215 else
1216 h = *sym_hash;
1217 }
1218
1219 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1220 && bfd_is_und_section (sec))
1221 {
1222 /* If the new symbol is undefined and the old symbol was
1223 also undefined before, we need to make sure
1224 _bfd_generic_link_add_one_symbol doesn't mess
1225 up the linker hash table undefs list. Since the old
1226 definition came from a dynamic object, it is still on the
1227 undefs list. */
1228 h->root.type = bfd_link_hash_undefined;
1229 h->root.u.undef.abfd = abfd;
1230 }
1231 else
1232 {
1233 h->root.type = bfd_link_hash_new;
1234 h->root.u.undef.abfd = NULL;
1235 }
1236
1237 if (h->def_dynamic)
1238 {
1239 h->def_dynamic = 0;
1240 h->ref_dynamic = 1;
1241 h->dynamic_def = 1;
1242 }
1243 /* FIXME: Should we check type and size for protected symbol? */
1244 h->size = 0;
1245 h->type = 0;
1246 return TRUE;
1247 }
1248
1249 if (bind == STB_GNU_UNIQUE)
1250 h->unique_global = 1;
1251
1252 /* If a new weak symbol definition comes from a regular file and the
1253 old symbol comes from a dynamic library, we treat the new one as
1254 strong. Similarly, an old weak symbol definition from a regular
1255 file is treated as strong when the new symbol comes from a dynamic
1256 library. Further, an old weak symbol from a dynamic library is
1257 treated as strong if the new symbol is from a dynamic library.
1258 This reflects the way glibc's ld.so works.
1259
1260 Do this before setting *type_change_ok or *size_change_ok so that
1261 we warn properly when dynamic library symbols are overridden. */
1262
1263 if (newdef && !newdyn && olddyn)
1264 newweak = FALSE;
1265 if (olddef && newdyn)
1266 oldweak = FALSE;
1267
1268 /* Allow changes between different types of function symbol. */
1269 if (newfunc && oldfunc)
1270 *type_change_ok = TRUE;
1271
1272 /* It's OK to change the type if either the existing symbol or the
1273 new symbol is weak. A type change is also OK if the old symbol
1274 is undefined and the new symbol is defined. */
1275
1276 if (oldweak
1277 || newweak
1278 || (newdef
1279 && h->root.type == bfd_link_hash_undefined))
1280 *type_change_ok = TRUE;
1281
1282 /* It's OK to change the size if either the existing symbol or the
1283 new symbol is weak, or if the old symbol is undefined. */
1284
1285 if (*type_change_ok
1286 || h->root.type == bfd_link_hash_undefined)
1287 *size_change_ok = TRUE;
1288
1289 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1290 symbol, respectively, appears to be a common symbol in a dynamic
1291 object. If a symbol appears in an uninitialized section, and is
1292 not weak, and is not a function, then it may be a common symbol
1293 which was resolved when the dynamic object was created. We want
1294 to treat such symbols specially, because they raise special
1295 considerations when setting the symbol size: if the symbol
1296 appears as a common symbol in a regular object, and the size in
1297 the regular object is larger, we must make sure that we use the
1298 larger size. This problematic case can always be avoided in C,
1299 but it must be handled correctly when using Fortran shared
1300 libraries.
1301
1302 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1303 likewise for OLDDYNCOMMON and OLDDEF.
1304
1305 Note that this test is just a heuristic, and that it is quite
1306 possible to have an uninitialized symbol in a shared object which
1307 is really a definition, rather than a common symbol. This could
1308 lead to some minor confusion when the symbol really is a common
1309 symbol in some regular object. However, I think it will be
1310 harmless. */
1311
1312 if (newdyn
1313 && newdef
1314 && !newweak
1315 && (sec->flags & SEC_ALLOC) != 0
1316 && (sec->flags & SEC_LOAD) == 0
1317 && sym->st_size > 0
1318 && !newfunc)
1319 newdyncommon = TRUE;
1320 else
1321 newdyncommon = FALSE;
1322
1323 if (olddyn
1324 && olddef
1325 && h->root.type == bfd_link_hash_defined
1326 && h->def_dynamic
1327 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1328 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1329 && h->size > 0
1330 && !oldfunc)
1331 olddyncommon = TRUE;
1332 else
1333 olddyncommon = FALSE;
1334
1335 /* We now know everything about the old and new symbols. We ask the
1336 backend to check if we can merge them. */
1337 if (bed->merge_symbol
1338 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1339 pold_alignment, skip, override,
1340 type_change_ok, size_change_ok,
1341 &newdyn, &newdef, &newdyncommon, &newweak,
1342 abfd, &sec,
1343 &olddyn, &olddef, &olddyncommon, &oldweak,
1344 oldbfd, &oldsec))
1345 return FALSE;
1346
1347 /* If both the old and the new symbols look like common symbols in a
1348 dynamic object, set the size of the symbol to the larger of the
1349 two. */
1350
1351 if (olddyncommon
1352 && newdyncommon
1353 && sym->st_size != h->size)
1354 {
1355 /* Since we think we have two common symbols, issue a multiple
1356 common warning if desired. Note that we only warn if the
1357 size is different. If the size is the same, we simply let
1358 the old symbol override the new one as normally happens with
1359 symbols defined in dynamic objects. */
1360
1361 if (! ((*info->callbacks->multiple_common)
1362 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1363 return FALSE;
1364
1365 if (sym->st_size > h->size)
1366 h->size = sym->st_size;
1367
1368 *size_change_ok = TRUE;
1369 }
1370
1371 /* If we are looking at a dynamic object, and we have found a
1372 definition, we need to see if the symbol was already defined by
1373 some other object. If so, we want to use the existing
1374 definition, and we do not want to report a multiple symbol
1375 definition error; we do this by clobbering *PSEC to be
1376 bfd_und_section_ptr.
1377
1378 We treat a common symbol as a definition if the symbol in the
1379 shared library is a function, since common symbols always
1380 represent variables; this can cause confusion in principle, but
1381 any such confusion would seem to indicate an erroneous program or
1382 shared library. We also permit a common symbol in a regular
1383 object to override a weak symbol in a shared object. */
1384
1385 if (newdyn
1386 && newdef
1387 && (olddef
1388 || (h->root.type == bfd_link_hash_common
1389 && (newweak || newfunc))))
1390 {
1391 *override = TRUE;
1392 newdef = FALSE;
1393 newdyncommon = FALSE;
1394
1395 *psec = sec = bfd_und_section_ptr;
1396 *size_change_ok = TRUE;
1397
1398 /* If we get here when the old symbol is a common symbol, then
1399 we are explicitly letting it override a weak symbol or
1400 function in a dynamic object, and we don't want to warn about
1401 a type change. If the old symbol is a defined symbol, a type
1402 change warning may still be appropriate. */
1403
1404 if (h->root.type == bfd_link_hash_common)
1405 *type_change_ok = TRUE;
1406 }
1407
1408 /* Handle the special case of an old common symbol merging with a
1409 new symbol which looks like a common symbol in a shared object.
1410 We change *PSEC and *PVALUE to make the new symbol look like a
1411 common symbol, and let _bfd_generic_link_add_one_symbol do the
1412 right thing. */
1413
1414 if (newdyncommon
1415 && h->root.type == bfd_link_hash_common)
1416 {
1417 *override = TRUE;
1418 newdef = FALSE;
1419 newdyncommon = FALSE;
1420 *pvalue = sym->st_size;
1421 *psec = sec = bed->common_section (oldsec);
1422 *size_change_ok = TRUE;
1423 }
1424
1425 /* Skip weak definitions of symbols that are already defined. */
1426 if (newdef && olddef && newweak)
1427 {
1428 /* Don't skip new non-IR weak syms. */
1429 if (!(oldbfd != NULL
1430 && (oldbfd->flags & BFD_PLUGIN) != 0
1431 && (abfd->flags & BFD_PLUGIN) == 0))
1432 *skip = TRUE;
1433
1434 /* Merge st_other. If the symbol already has a dynamic index,
1435 but visibility says it should not be visible, turn it into a
1436 local symbol. */
1437 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1438 if (h->dynindx != -1)
1439 switch (ELF_ST_VISIBILITY (h->other))
1440 {
1441 case STV_INTERNAL:
1442 case STV_HIDDEN:
1443 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1444 break;
1445 }
1446 }
1447
1448 /* If the old symbol is from a dynamic object, and the new symbol is
1449 a definition which is not from a dynamic object, then the new
1450 symbol overrides the old symbol. Symbols from regular files
1451 always take precedence over symbols from dynamic objects, even if
1452 they are defined after the dynamic object in the link.
1453
1454 As above, we again permit a common symbol in a regular object to
1455 override a definition in a shared object if the shared object
1456 symbol is a function or is weak. */
1457
1458 flip = NULL;
1459 if (!newdyn
1460 && (newdef
1461 || (bfd_is_com_section (sec)
1462 && (oldweak || oldfunc)))
1463 && olddyn
1464 && olddef
1465 && h->def_dynamic)
1466 {
1467 /* Change the hash table entry to undefined, and let
1468 _bfd_generic_link_add_one_symbol do the right thing with the
1469 new definition. */
1470
1471 h->root.type = bfd_link_hash_undefined;
1472 h->root.u.undef.abfd = h->root.u.def.section->owner;
1473 *size_change_ok = TRUE;
1474
1475 olddef = FALSE;
1476 olddyncommon = FALSE;
1477
1478 /* We again permit a type change when a common symbol may be
1479 overriding a function. */
1480
1481 if (bfd_is_com_section (sec))
1482 {
1483 if (oldfunc)
1484 {
1485 /* If a common symbol overrides a function, make sure
1486 that it isn't defined dynamically nor has type
1487 function. */
1488 h->def_dynamic = 0;
1489 h->type = STT_NOTYPE;
1490 }
1491 *type_change_ok = TRUE;
1492 }
1493
1494 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1495 flip = *sym_hash;
1496 else
1497 /* This union may have been set to be non-NULL when this symbol
1498 was seen in a dynamic object. We must force the union to be
1499 NULL, so that it is correct for a regular symbol. */
1500 h->verinfo.vertree = NULL;
1501 }
1502
1503 /* Handle the special case of a new common symbol merging with an
1504 old symbol that looks like it might be a common symbol defined in
1505 a shared object. Note that we have already handled the case in
1506 which a new common symbol should simply override the definition
1507 in the shared library. */
1508
1509 if (! newdyn
1510 && bfd_is_com_section (sec)
1511 && olddyncommon)
1512 {
1513 /* It would be best if we could set the hash table entry to a
1514 common symbol, but we don't know what to use for the section
1515 or the alignment. */
1516 if (! ((*info->callbacks->multiple_common)
1517 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1518 return FALSE;
1519
1520 /* If the presumed common symbol in the dynamic object is
1521 larger, pretend that the new symbol has its size. */
1522
1523 if (h->size > *pvalue)
1524 *pvalue = h->size;
1525
1526 /* We need to remember the alignment required by the symbol
1527 in the dynamic object. */
1528 BFD_ASSERT (pold_alignment);
1529 *pold_alignment = h->root.u.def.section->alignment_power;
1530
1531 olddef = FALSE;
1532 olddyncommon = FALSE;
1533
1534 h->root.type = bfd_link_hash_undefined;
1535 h->root.u.undef.abfd = h->root.u.def.section->owner;
1536
1537 *size_change_ok = TRUE;
1538 *type_change_ok = TRUE;
1539
1540 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1541 flip = *sym_hash;
1542 else
1543 h->verinfo.vertree = NULL;
1544 }
1545
1546 if (flip != NULL)
1547 {
1548 /* Handle the case where we had a versioned symbol in a dynamic
1549 library and now find a definition in a normal object. In this
1550 case, we make the versioned symbol point to the normal one. */
1551 flip->root.type = h->root.type;
1552 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1553 h->root.type = bfd_link_hash_indirect;
1554 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1555 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1556 if (h->def_dynamic)
1557 {
1558 h->def_dynamic = 0;
1559 flip->ref_dynamic = 1;
1560 }
1561 }
1562
1563 return TRUE;
1564 }
1565
1566 /* This function is called to create an indirect symbol from the
1567 default for the symbol with the default version if needed. The
1568 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1569 set DYNSYM if the new indirect symbol is dynamic. */
1570
1571 static bfd_boolean
1572 _bfd_elf_add_default_symbol (bfd *abfd,
1573 struct bfd_link_info *info,
1574 struct elf_link_hash_entry *h,
1575 const char *name,
1576 Elf_Internal_Sym *sym,
1577 asection **psec,
1578 bfd_vma *value,
1579 bfd_boolean *dynsym,
1580 bfd_boolean override)
1581 {
1582 bfd_boolean type_change_ok;
1583 bfd_boolean size_change_ok;
1584 bfd_boolean skip;
1585 char *shortname;
1586 struct elf_link_hash_entry *hi;
1587 struct bfd_link_hash_entry *bh;
1588 const struct elf_backend_data *bed;
1589 bfd_boolean collect;
1590 bfd_boolean dynamic;
1591 char *p;
1592 size_t len, shortlen;
1593 asection *sec;
1594
1595 /* If this symbol has a version, and it is the default version, we
1596 create an indirect symbol from the default name to the fully
1597 decorated name. This will cause external references which do not
1598 specify a version to be bound to this version of the symbol. */
1599 p = strchr (name, ELF_VER_CHR);
1600 if (p == NULL || p[1] != ELF_VER_CHR)
1601 return TRUE;
1602
1603 if (override)
1604 {
1605 /* We are overridden by an old definition. We need to check if we
1606 need to create the indirect symbol from the default name. */
1607 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1608 FALSE, FALSE);
1609 BFD_ASSERT (hi != NULL);
1610 if (hi == h)
1611 return TRUE;
1612 while (hi->root.type == bfd_link_hash_indirect
1613 || hi->root.type == bfd_link_hash_warning)
1614 {
1615 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1616 if (hi == h)
1617 return TRUE;
1618 }
1619 }
1620
1621 bed = get_elf_backend_data (abfd);
1622 collect = bed->collect;
1623 dynamic = (abfd->flags & DYNAMIC) != 0;
1624
1625 shortlen = p - name;
1626 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1627 if (shortname == NULL)
1628 return FALSE;
1629 memcpy (shortname, name, shortlen);
1630 shortname[shortlen] = '\0';
1631
1632 /* We are going to create a new symbol. Merge it with any existing
1633 symbol with this name. For the purposes of the merge, act as
1634 though we were defining the symbol we just defined, although we
1635 actually going to define an indirect symbol. */
1636 type_change_ok = FALSE;
1637 size_change_ok = FALSE;
1638 sec = *psec;
1639 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1640 NULL, &hi, &skip, &override,
1641 &type_change_ok, &size_change_ok))
1642 return FALSE;
1643
1644 if (skip)
1645 goto nondefault;
1646
1647 if (! override)
1648 {
1649 bh = &hi->root;
1650 if (! (_bfd_generic_link_add_one_symbol
1651 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1652 0, name, FALSE, collect, &bh)))
1653 return FALSE;
1654 hi = (struct elf_link_hash_entry *) bh;
1655 }
1656 else
1657 {
1658 /* In this case the symbol named SHORTNAME is overriding the
1659 indirect symbol we want to add. We were planning on making
1660 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1661 is the name without a version. NAME is the fully versioned
1662 name, and it is the default version.
1663
1664 Overriding means that we already saw a definition for the
1665 symbol SHORTNAME in a regular object, and it is overriding
1666 the symbol defined in the dynamic object.
1667
1668 When this happens, we actually want to change NAME, the
1669 symbol we just added, to refer to SHORTNAME. This will cause
1670 references to NAME in the shared object to become references
1671 to SHORTNAME in the regular object. This is what we expect
1672 when we override a function in a shared object: that the
1673 references in the shared object will be mapped to the
1674 definition in the regular object. */
1675
1676 while (hi->root.type == bfd_link_hash_indirect
1677 || hi->root.type == bfd_link_hash_warning)
1678 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1679
1680 h->root.type = bfd_link_hash_indirect;
1681 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1682 if (h->def_dynamic)
1683 {
1684 h->def_dynamic = 0;
1685 hi->ref_dynamic = 1;
1686 if (hi->ref_regular
1687 || hi->def_regular)
1688 {
1689 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1690 return FALSE;
1691 }
1692 }
1693
1694 /* Now set HI to H, so that the following code will set the
1695 other fields correctly. */
1696 hi = h;
1697 }
1698
1699 /* Check if HI is a warning symbol. */
1700 if (hi->root.type == bfd_link_hash_warning)
1701 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1702
1703 /* If there is a duplicate definition somewhere, then HI may not
1704 point to an indirect symbol. We will have reported an error to
1705 the user in that case. */
1706
1707 if (hi->root.type == bfd_link_hash_indirect)
1708 {
1709 struct elf_link_hash_entry *ht;
1710
1711 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1712 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1713
1714 /* See if the new flags lead us to realize that the symbol must
1715 be dynamic. */
1716 if (! *dynsym)
1717 {
1718 if (! dynamic)
1719 {
1720 if (! info->executable
1721 || hi->ref_dynamic)
1722 *dynsym = TRUE;
1723 }
1724 else
1725 {
1726 if (hi->ref_regular)
1727 *dynsym = TRUE;
1728 }
1729 }
1730 }
1731
1732 /* We also need to define an indirection from the nondefault version
1733 of the symbol. */
1734
1735 nondefault:
1736 len = strlen (name);
1737 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1738 if (shortname == NULL)
1739 return FALSE;
1740 memcpy (shortname, name, shortlen);
1741 memcpy (shortname + shortlen, p + 1, len - shortlen);
1742
1743 /* Once again, merge with any existing symbol. */
1744 type_change_ok = FALSE;
1745 size_change_ok = FALSE;
1746 sec = *psec;
1747 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1748 NULL, &hi, &skip, &override,
1749 &type_change_ok, &size_change_ok))
1750 return FALSE;
1751
1752 if (skip)
1753 return TRUE;
1754
1755 if (override)
1756 {
1757 /* Here SHORTNAME is a versioned name, so we don't expect to see
1758 the type of override we do in the case above unless it is
1759 overridden by a versioned definition. */
1760 if (hi->root.type != bfd_link_hash_defined
1761 && hi->root.type != bfd_link_hash_defweak)
1762 (*_bfd_error_handler)
1763 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1764 abfd, shortname);
1765 }
1766 else
1767 {
1768 bh = &hi->root;
1769 if (! (_bfd_generic_link_add_one_symbol
1770 (info, abfd, shortname, BSF_INDIRECT,
1771 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1772 return FALSE;
1773 hi = (struct elf_link_hash_entry *) bh;
1774
1775 /* If there is a duplicate definition somewhere, then HI may not
1776 point to an indirect symbol. We will have reported an error
1777 to the user in that case. */
1778
1779 if (hi->root.type == bfd_link_hash_indirect)
1780 {
1781 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1782
1783 /* See if the new flags lead us to realize that the symbol
1784 must be dynamic. */
1785 if (! *dynsym)
1786 {
1787 if (! dynamic)
1788 {
1789 if (! info->executable
1790 || hi->ref_dynamic)
1791 *dynsym = TRUE;
1792 }
1793 else
1794 {
1795 if (hi->ref_regular)
1796 *dynsym = TRUE;
1797 }
1798 }
1799 }
1800 }
1801
1802 return TRUE;
1803 }
1804 \f
1805 /* This routine is used to export all defined symbols into the dynamic
1806 symbol table. It is called via elf_link_hash_traverse. */
1807
1808 static bfd_boolean
1809 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1810 {
1811 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1812
1813 /* Ignore indirect symbols. These are added by the versioning code. */
1814 if (h->root.type == bfd_link_hash_indirect)
1815 return TRUE;
1816
1817 /* Ignore this if we won't export it. */
1818 if (!eif->info->export_dynamic && !h->dynamic)
1819 return TRUE;
1820
1821 if (h->dynindx == -1
1822 && (h->def_regular || h->ref_regular)
1823 && ! bfd_hide_sym_by_version (eif->info->version_info,
1824 h->root.root.string))
1825 {
1826 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1827 {
1828 eif->failed = TRUE;
1829 return FALSE;
1830 }
1831 }
1832
1833 return TRUE;
1834 }
1835 \f
1836 /* Look through the symbols which are defined in other shared
1837 libraries and referenced here. Update the list of version
1838 dependencies. This will be put into the .gnu.version_r section.
1839 This function is called via elf_link_hash_traverse. */
1840
1841 static bfd_boolean
1842 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1843 void *data)
1844 {
1845 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1846 Elf_Internal_Verneed *t;
1847 Elf_Internal_Vernaux *a;
1848 bfd_size_type amt;
1849
1850 /* We only care about symbols defined in shared objects with version
1851 information. */
1852 if (!h->def_dynamic
1853 || h->def_regular
1854 || h->dynindx == -1
1855 || h->verinfo.verdef == NULL)
1856 return TRUE;
1857
1858 /* See if we already know about this version. */
1859 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1860 t != NULL;
1861 t = t->vn_nextref)
1862 {
1863 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1864 continue;
1865
1866 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1867 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1868 return TRUE;
1869
1870 break;
1871 }
1872
1873 /* This is a new version. Add it to tree we are building. */
1874
1875 if (t == NULL)
1876 {
1877 amt = sizeof *t;
1878 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1879 if (t == NULL)
1880 {
1881 rinfo->failed = TRUE;
1882 return FALSE;
1883 }
1884
1885 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1886 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1887 elf_tdata (rinfo->info->output_bfd)->verref = t;
1888 }
1889
1890 amt = sizeof *a;
1891 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1892 if (a == NULL)
1893 {
1894 rinfo->failed = TRUE;
1895 return FALSE;
1896 }
1897
1898 /* Note that we are copying a string pointer here, and testing it
1899 above. If bfd_elf_string_from_elf_section is ever changed to
1900 discard the string data when low in memory, this will have to be
1901 fixed. */
1902 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1903
1904 a->vna_flags = h->verinfo.verdef->vd_flags;
1905 a->vna_nextptr = t->vn_auxptr;
1906
1907 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1908 ++rinfo->vers;
1909
1910 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1911
1912 t->vn_auxptr = a;
1913
1914 return TRUE;
1915 }
1916
1917 /* Figure out appropriate versions for all the symbols. We may not
1918 have the version number script until we have read all of the input
1919 files, so until that point we don't know which symbols should be
1920 local. This function is called via elf_link_hash_traverse. */
1921
1922 static bfd_boolean
1923 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1924 {
1925 struct elf_info_failed *sinfo;
1926 struct bfd_link_info *info;
1927 const struct elf_backend_data *bed;
1928 struct elf_info_failed eif;
1929 char *p;
1930 bfd_size_type amt;
1931
1932 sinfo = (struct elf_info_failed *) data;
1933 info = sinfo->info;
1934
1935 /* Fix the symbol flags. */
1936 eif.failed = FALSE;
1937 eif.info = info;
1938 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1939 {
1940 if (eif.failed)
1941 sinfo->failed = TRUE;
1942 return FALSE;
1943 }
1944
1945 /* We only need version numbers for symbols defined in regular
1946 objects. */
1947 if (!h->def_regular)
1948 return TRUE;
1949
1950 bed = get_elf_backend_data (info->output_bfd);
1951 p = strchr (h->root.root.string, ELF_VER_CHR);
1952 if (p != NULL && h->verinfo.vertree == NULL)
1953 {
1954 struct bfd_elf_version_tree *t;
1955 bfd_boolean hidden;
1956
1957 hidden = TRUE;
1958
1959 /* There are two consecutive ELF_VER_CHR characters if this is
1960 not a hidden symbol. */
1961 ++p;
1962 if (*p == ELF_VER_CHR)
1963 {
1964 hidden = FALSE;
1965 ++p;
1966 }
1967
1968 /* If there is no version string, we can just return out. */
1969 if (*p == '\0')
1970 {
1971 if (hidden)
1972 h->hidden = 1;
1973 return TRUE;
1974 }
1975
1976 /* Look for the version. If we find it, it is no longer weak. */
1977 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1978 {
1979 if (strcmp (t->name, p) == 0)
1980 {
1981 size_t len;
1982 char *alc;
1983 struct bfd_elf_version_expr *d;
1984
1985 len = p - h->root.root.string;
1986 alc = (char *) bfd_malloc (len);
1987 if (alc == NULL)
1988 {
1989 sinfo->failed = TRUE;
1990 return FALSE;
1991 }
1992 memcpy (alc, h->root.root.string, len - 1);
1993 alc[len - 1] = '\0';
1994 if (alc[len - 2] == ELF_VER_CHR)
1995 alc[len - 2] = '\0';
1996
1997 h->verinfo.vertree = t;
1998 t->used = TRUE;
1999 d = NULL;
2000
2001 if (t->globals.list != NULL)
2002 d = (*t->match) (&t->globals, NULL, alc);
2003
2004 /* See if there is anything to force this symbol to
2005 local scope. */
2006 if (d == NULL && t->locals.list != NULL)
2007 {
2008 d = (*t->match) (&t->locals, NULL, alc);
2009 if (d != NULL
2010 && h->dynindx != -1
2011 && ! info->export_dynamic)
2012 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2013 }
2014
2015 free (alc);
2016 break;
2017 }
2018 }
2019
2020 /* If we are building an application, we need to create a
2021 version node for this version. */
2022 if (t == NULL && info->executable)
2023 {
2024 struct bfd_elf_version_tree **pp;
2025 int version_index;
2026
2027 /* If we aren't going to export this symbol, we don't need
2028 to worry about it. */
2029 if (h->dynindx == -1)
2030 return TRUE;
2031
2032 amt = sizeof *t;
2033 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2034 if (t == NULL)
2035 {
2036 sinfo->failed = TRUE;
2037 return FALSE;
2038 }
2039
2040 t->name = p;
2041 t->name_indx = (unsigned int) -1;
2042 t->used = TRUE;
2043
2044 version_index = 1;
2045 /* Don't count anonymous version tag. */
2046 if (sinfo->info->version_info != NULL
2047 && sinfo->info->version_info->vernum == 0)
2048 version_index = 0;
2049 for (pp = &sinfo->info->version_info;
2050 *pp != NULL;
2051 pp = &(*pp)->next)
2052 ++version_index;
2053 t->vernum = version_index;
2054
2055 *pp = t;
2056
2057 h->verinfo.vertree = t;
2058 }
2059 else if (t == NULL)
2060 {
2061 /* We could not find the version for a symbol when
2062 generating a shared archive. Return an error. */
2063 (*_bfd_error_handler)
2064 (_("%B: version node not found for symbol %s"),
2065 info->output_bfd, h->root.root.string);
2066 bfd_set_error (bfd_error_bad_value);
2067 sinfo->failed = TRUE;
2068 return FALSE;
2069 }
2070
2071 if (hidden)
2072 h->hidden = 1;
2073 }
2074
2075 /* If we don't have a version for this symbol, see if we can find
2076 something. */
2077 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2078 {
2079 bfd_boolean hide;
2080
2081 h->verinfo.vertree
2082 = bfd_find_version_for_sym (sinfo->info->version_info,
2083 h->root.root.string, &hide);
2084 if (h->verinfo.vertree != NULL && hide)
2085 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2086 }
2087
2088 return TRUE;
2089 }
2090 \f
2091 /* Read and swap the relocs from the section indicated by SHDR. This
2092 may be either a REL or a RELA section. The relocations are
2093 translated into RELA relocations and stored in INTERNAL_RELOCS,
2094 which should have already been allocated to contain enough space.
2095 The EXTERNAL_RELOCS are a buffer where the external form of the
2096 relocations should be stored.
2097
2098 Returns FALSE if something goes wrong. */
2099
2100 static bfd_boolean
2101 elf_link_read_relocs_from_section (bfd *abfd,
2102 asection *sec,
2103 Elf_Internal_Shdr *shdr,
2104 void *external_relocs,
2105 Elf_Internal_Rela *internal_relocs)
2106 {
2107 const struct elf_backend_data *bed;
2108 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2109 const bfd_byte *erela;
2110 const bfd_byte *erelaend;
2111 Elf_Internal_Rela *irela;
2112 Elf_Internal_Shdr *symtab_hdr;
2113 size_t nsyms;
2114
2115 /* Position ourselves at the start of the section. */
2116 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2117 return FALSE;
2118
2119 /* Read the relocations. */
2120 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2121 return FALSE;
2122
2123 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2124 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2125
2126 bed = get_elf_backend_data (abfd);
2127
2128 /* Convert the external relocations to the internal format. */
2129 if (shdr->sh_entsize == bed->s->sizeof_rel)
2130 swap_in = bed->s->swap_reloc_in;
2131 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2132 swap_in = bed->s->swap_reloca_in;
2133 else
2134 {
2135 bfd_set_error (bfd_error_wrong_format);
2136 return FALSE;
2137 }
2138
2139 erela = (const bfd_byte *) external_relocs;
2140 erelaend = erela + shdr->sh_size;
2141 irela = internal_relocs;
2142 while (erela < erelaend)
2143 {
2144 bfd_vma r_symndx;
2145
2146 (*swap_in) (abfd, erela, irela);
2147 r_symndx = ELF32_R_SYM (irela->r_info);
2148 if (bed->s->arch_size == 64)
2149 r_symndx >>= 24;
2150 if (nsyms > 0)
2151 {
2152 if ((size_t) r_symndx >= nsyms)
2153 {
2154 (*_bfd_error_handler)
2155 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2156 " for offset 0x%lx in section `%A'"),
2157 abfd, sec,
2158 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2159 bfd_set_error (bfd_error_bad_value);
2160 return FALSE;
2161 }
2162 }
2163 else if (r_symndx != STN_UNDEF)
2164 {
2165 (*_bfd_error_handler)
2166 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2167 " when the object file has no symbol table"),
2168 abfd, sec,
2169 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2170 bfd_set_error (bfd_error_bad_value);
2171 return FALSE;
2172 }
2173 irela += bed->s->int_rels_per_ext_rel;
2174 erela += shdr->sh_entsize;
2175 }
2176
2177 return TRUE;
2178 }
2179
2180 /* Read and swap the relocs for a section O. They may have been
2181 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2182 not NULL, they are used as buffers to read into. They are known to
2183 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2184 the return value is allocated using either malloc or bfd_alloc,
2185 according to the KEEP_MEMORY argument. If O has two relocation
2186 sections (both REL and RELA relocations), then the REL_HDR
2187 relocations will appear first in INTERNAL_RELOCS, followed by the
2188 RELA_HDR relocations. */
2189
2190 Elf_Internal_Rela *
2191 _bfd_elf_link_read_relocs (bfd *abfd,
2192 asection *o,
2193 void *external_relocs,
2194 Elf_Internal_Rela *internal_relocs,
2195 bfd_boolean keep_memory)
2196 {
2197 void *alloc1 = NULL;
2198 Elf_Internal_Rela *alloc2 = NULL;
2199 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2200 struct bfd_elf_section_data *esdo = elf_section_data (o);
2201 Elf_Internal_Rela *internal_rela_relocs;
2202
2203 if (esdo->relocs != NULL)
2204 return esdo->relocs;
2205
2206 if (o->reloc_count == 0)
2207 return NULL;
2208
2209 if (internal_relocs == NULL)
2210 {
2211 bfd_size_type size;
2212
2213 size = o->reloc_count;
2214 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2215 if (keep_memory)
2216 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2217 else
2218 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2219 if (internal_relocs == NULL)
2220 goto error_return;
2221 }
2222
2223 if (external_relocs == NULL)
2224 {
2225 bfd_size_type size = 0;
2226
2227 if (esdo->rel.hdr)
2228 size += esdo->rel.hdr->sh_size;
2229 if (esdo->rela.hdr)
2230 size += esdo->rela.hdr->sh_size;
2231
2232 alloc1 = bfd_malloc (size);
2233 if (alloc1 == NULL)
2234 goto error_return;
2235 external_relocs = alloc1;
2236 }
2237
2238 internal_rela_relocs = internal_relocs;
2239 if (esdo->rel.hdr)
2240 {
2241 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2242 external_relocs,
2243 internal_relocs))
2244 goto error_return;
2245 external_relocs = (((bfd_byte *) external_relocs)
2246 + esdo->rel.hdr->sh_size);
2247 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2248 * bed->s->int_rels_per_ext_rel);
2249 }
2250
2251 if (esdo->rela.hdr
2252 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2253 external_relocs,
2254 internal_rela_relocs)))
2255 goto error_return;
2256
2257 /* Cache the results for next time, if we can. */
2258 if (keep_memory)
2259 esdo->relocs = internal_relocs;
2260
2261 if (alloc1 != NULL)
2262 free (alloc1);
2263
2264 /* Don't free alloc2, since if it was allocated we are passing it
2265 back (under the name of internal_relocs). */
2266
2267 return internal_relocs;
2268
2269 error_return:
2270 if (alloc1 != NULL)
2271 free (alloc1);
2272 if (alloc2 != NULL)
2273 {
2274 if (keep_memory)
2275 bfd_release (abfd, alloc2);
2276 else
2277 free (alloc2);
2278 }
2279 return NULL;
2280 }
2281
2282 /* Compute the size of, and allocate space for, REL_HDR which is the
2283 section header for a section containing relocations for O. */
2284
2285 static bfd_boolean
2286 _bfd_elf_link_size_reloc_section (bfd *abfd,
2287 struct bfd_elf_section_reloc_data *reldata)
2288 {
2289 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2290
2291 /* That allows us to calculate the size of the section. */
2292 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2293
2294 /* The contents field must last into write_object_contents, so we
2295 allocate it with bfd_alloc rather than malloc. Also since we
2296 cannot be sure that the contents will actually be filled in,
2297 we zero the allocated space. */
2298 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2299 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2300 return FALSE;
2301
2302 if (reldata->hashes == NULL && reldata->count)
2303 {
2304 struct elf_link_hash_entry **p;
2305
2306 p = (struct elf_link_hash_entry **)
2307 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2308 if (p == NULL)
2309 return FALSE;
2310
2311 reldata->hashes = p;
2312 }
2313
2314 return TRUE;
2315 }
2316
2317 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2318 originated from the section given by INPUT_REL_HDR) to the
2319 OUTPUT_BFD. */
2320
2321 bfd_boolean
2322 _bfd_elf_link_output_relocs (bfd *output_bfd,
2323 asection *input_section,
2324 Elf_Internal_Shdr *input_rel_hdr,
2325 Elf_Internal_Rela *internal_relocs,
2326 struct elf_link_hash_entry **rel_hash
2327 ATTRIBUTE_UNUSED)
2328 {
2329 Elf_Internal_Rela *irela;
2330 Elf_Internal_Rela *irelaend;
2331 bfd_byte *erel;
2332 struct bfd_elf_section_reloc_data *output_reldata;
2333 asection *output_section;
2334 const struct elf_backend_data *bed;
2335 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2336 struct bfd_elf_section_data *esdo;
2337
2338 output_section = input_section->output_section;
2339
2340 bed = get_elf_backend_data (output_bfd);
2341 esdo = elf_section_data (output_section);
2342 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2343 {
2344 output_reldata = &esdo->rel;
2345 swap_out = bed->s->swap_reloc_out;
2346 }
2347 else if (esdo->rela.hdr
2348 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2349 {
2350 output_reldata = &esdo->rela;
2351 swap_out = bed->s->swap_reloca_out;
2352 }
2353 else
2354 {
2355 (*_bfd_error_handler)
2356 (_("%B: relocation size mismatch in %B section %A"),
2357 output_bfd, input_section->owner, input_section);
2358 bfd_set_error (bfd_error_wrong_format);
2359 return FALSE;
2360 }
2361
2362 erel = output_reldata->hdr->contents;
2363 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2364 irela = internal_relocs;
2365 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2366 * bed->s->int_rels_per_ext_rel);
2367 while (irela < irelaend)
2368 {
2369 (*swap_out) (output_bfd, irela, erel);
2370 irela += bed->s->int_rels_per_ext_rel;
2371 erel += input_rel_hdr->sh_entsize;
2372 }
2373
2374 /* Bump the counter, so that we know where to add the next set of
2375 relocations. */
2376 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2377
2378 return TRUE;
2379 }
2380 \f
2381 /* Make weak undefined symbols in PIE dynamic. */
2382
2383 bfd_boolean
2384 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2385 struct elf_link_hash_entry *h)
2386 {
2387 if (info->pie
2388 && h->dynindx == -1
2389 && h->root.type == bfd_link_hash_undefweak)
2390 return bfd_elf_link_record_dynamic_symbol (info, h);
2391
2392 return TRUE;
2393 }
2394
2395 /* Fix up the flags for a symbol. This handles various cases which
2396 can only be fixed after all the input files are seen. This is
2397 currently called by both adjust_dynamic_symbol and
2398 assign_sym_version, which is unnecessary but perhaps more robust in
2399 the face of future changes. */
2400
2401 static bfd_boolean
2402 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2403 struct elf_info_failed *eif)
2404 {
2405 const struct elf_backend_data *bed;
2406
2407 /* If this symbol was mentioned in a non-ELF file, try to set
2408 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2409 permit a non-ELF file to correctly refer to a symbol defined in
2410 an ELF dynamic object. */
2411 if (h->non_elf)
2412 {
2413 while (h->root.type == bfd_link_hash_indirect)
2414 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2415
2416 if (h->root.type != bfd_link_hash_defined
2417 && h->root.type != bfd_link_hash_defweak)
2418 {
2419 h->ref_regular = 1;
2420 h->ref_regular_nonweak = 1;
2421 }
2422 else
2423 {
2424 if (h->root.u.def.section->owner != NULL
2425 && (bfd_get_flavour (h->root.u.def.section->owner)
2426 == bfd_target_elf_flavour))
2427 {
2428 h->ref_regular = 1;
2429 h->ref_regular_nonweak = 1;
2430 }
2431 else
2432 h->def_regular = 1;
2433 }
2434
2435 if (h->dynindx == -1
2436 && (h->def_dynamic
2437 || h->ref_dynamic))
2438 {
2439 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2440 {
2441 eif->failed = TRUE;
2442 return FALSE;
2443 }
2444 }
2445 }
2446 else
2447 {
2448 /* Unfortunately, NON_ELF is only correct if the symbol
2449 was first seen in a non-ELF file. Fortunately, if the symbol
2450 was first seen in an ELF file, we're probably OK unless the
2451 symbol was defined in a non-ELF file. Catch that case here.
2452 FIXME: We're still in trouble if the symbol was first seen in
2453 a dynamic object, and then later in a non-ELF regular object. */
2454 if ((h->root.type == bfd_link_hash_defined
2455 || h->root.type == bfd_link_hash_defweak)
2456 && !h->def_regular
2457 && (h->root.u.def.section->owner != NULL
2458 ? (bfd_get_flavour (h->root.u.def.section->owner)
2459 != bfd_target_elf_flavour)
2460 : (bfd_is_abs_section (h->root.u.def.section)
2461 && !h->def_dynamic)))
2462 h->def_regular = 1;
2463 }
2464
2465 /* Backend specific symbol fixup. */
2466 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2467 if (bed->elf_backend_fixup_symbol
2468 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2469 return FALSE;
2470
2471 /* If this is a final link, and the symbol was defined as a common
2472 symbol in a regular object file, and there was no definition in
2473 any dynamic object, then the linker will have allocated space for
2474 the symbol in a common section but the DEF_REGULAR
2475 flag will not have been set. */
2476 if (h->root.type == bfd_link_hash_defined
2477 && !h->def_regular
2478 && h->ref_regular
2479 && !h->def_dynamic
2480 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2481 h->def_regular = 1;
2482
2483 /* If -Bsymbolic was used (which means to bind references to global
2484 symbols to the definition within the shared object), and this
2485 symbol was defined in a regular object, then it actually doesn't
2486 need a PLT entry. Likewise, if the symbol has non-default
2487 visibility. If the symbol has hidden or internal visibility, we
2488 will force it local. */
2489 if (h->needs_plt
2490 && eif->info->shared
2491 && is_elf_hash_table (eif->info->hash)
2492 && (SYMBOLIC_BIND (eif->info, h)
2493 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2494 && h->def_regular)
2495 {
2496 bfd_boolean force_local;
2497
2498 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2499 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2500 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2501 }
2502
2503 /* If a weak undefined symbol has non-default visibility, we also
2504 hide it from the dynamic linker. */
2505 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2506 && h->root.type == bfd_link_hash_undefweak)
2507 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2508
2509 /* If this is a weak defined symbol in a dynamic object, and we know
2510 the real definition in the dynamic object, copy interesting flags
2511 over to the real definition. */
2512 if (h->u.weakdef != NULL)
2513 {
2514 struct elf_link_hash_entry *weakdef;
2515
2516 weakdef = h->u.weakdef;
2517 while (h->root.type == bfd_link_hash_indirect)
2518 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2519
2520 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2521 || h->root.type == bfd_link_hash_defweak);
2522 BFD_ASSERT (weakdef->def_dynamic);
2523
2524 /* If the real definition is defined by a regular object file,
2525 don't do anything special. See the longer description in
2526 _bfd_elf_adjust_dynamic_symbol, below. */
2527 if (weakdef->def_regular)
2528 h->u.weakdef = NULL;
2529 else
2530 {
2531 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2532 || weakdef->root.type == bfd_link_hash_defweak);
2533 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2534 }
2535 }
2536
2537 return TRUE;
2538 }
2539
2540 /* Make the backend pick a good value for a dynamic symbol. This is
2541 called via elf_link_hash_traverse, and also calls itself
2542 recursively. */
2543
2544 static bfd_boolean
2545 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2546 {
2547 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2548 bfd *dynobj;
2549 const struct elf_backend_data *bed;
2550
2551 if (! is_elf_hash_table (eif->info->hash))
2552 return FALSE;
2553
2554 /* Ignore indirect symbols. These are added by the versioning code. */
2555 if (h->root.type == bfd_link_hash_indirect)
2556 return TRUE;
2557
2558 /* Fix the symbol flags. */
2559 if (! _bfd_elf_fix_symbol_flags (h, eif))
2560 return FALSE;
2561
2562 /* If this symbol does not require a PLT entry, and it is not
2563 defined by a dynamic object, or is not referenced by a regular
2564 object, ignore it. We do have to handle a weak defined symbol,
2565 even if no regular object refers to it, if we decided to add it
2566 to the dynamic symbol table. FIXME: Do we normally need to worry
2567 about symbols which are defined by one dynamic object and
2568 referenced by another one? */
2569 if (!h->needs_plt
2570 && h->type != STT_GNU_IFUNC
2571 && (h->def_regular
2572 || !h->def_dynamic
2573 || (!h->ref_regular
2574 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2575 {
2576 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2577 return TRUE;
2578 }
2579
2580 /* If we've already adjusted this symbol, don't do it again. This
2581 can happen via a recursive call. */
2582 if (h->dynamic_adjusted)
2583 return TRUE;
2584
2585 /* Don't look at this symbol again. Note that we must set this
2586 after checking the above conditions, because we may look at a
2587 symbol once, decide not to do anything, and then get called
2588 recursively later after REF_REGULAR is set below. */
2589 h->dynamic_adjusted = 1;
2590
2591 /* If this is a weak definition, and we know a real definition, and
2592 the real symbol is not itself defined by a regular object file,
2593 then get a good value for the real definition. We handle the
2594 real symbol first, for the convenience of the backend routine.
2595
2596 Note that there is a confusing case here. If the real definition
2597 is defined by a regular object file, we don't get the real symbol
2598 from the dynamic object, but we do get the weak symbol. If the
2599 processor backend uses a COPY reloc, then if some routine in the
2600 dynamic object changes the real symbol, we will not see that
2601 change in the corresponding weak symbol. This is the way other
2602 ELF linkers work as well, and seems to be a result of the shared
2603 library model.
2604
2605 I will clarify this issue. Most SVR4 shared libraries define the
2606 variable _timezone and define timezone as a weak synonym. The
2607 tzset call changes _timezone. If you write
2608 extern int timezone;
2609 int _timezone = 5;
2610 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2611 you might expect that, since timezone is a synonym for _timezone,
2612 the same number will print both times. However, if the processor
2613 backend uses a COPY reloc, then actually timezone will be copied
2614 into your process image, and, since you define _timezone
2615 yourself, _timezone will not. Thus timezone and _timezone will
2616 wind up at different memory locations. The tzset call will set
2617 _timezone, leaving timezone unchanged. */
2618
2619 if (h->u.weakdef != NULL)
2620 {
2621 /* If we get to this point, there is an implicit reference to
2622 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2623 h->u.weakdef->ref_regular = 1;
2624
2625 /* Ensure that the backend adjust_dynamic_symbol function sees
2626 H->U.WEAKDEF before H by recursively calling ourselves. */
2627 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2628 return FALSE;
2629 }
2630
2631 /* If a symbol has no type and no size and does not require a PLT
2632 entry, then we are probably about to do the wrong thing here: we
2633 are probably going to create a COPY reloc for an empty object.
2634 This case can arise when a shared object is built with assembly
2635 code, and the assembly code fails to set the symbol type. */
2636 if (h->size == 0
2637 && h->type == STT_NOTYPE
2638 && !h->needs_plt)
2639 (*_bfd_error_handler)
2640 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2641 h->root.root.string);
2642
2643 dynobj = elf_hash_table (eif->info)->dynobj;
2644 bed = get_elf_backend_data (dynobj);
2645
2646 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2647 {
2648 eif->failed = TRUE;
2649 return FALSE;
2650 }
2651
2652 return TRUE;
2653 }
2654
2655 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2656 DYNBSS. */
2657
2658 bfd_boolean
2659 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2660 asection *dynbss)
2661 {
2662 unsigned int power_of_two;
2663 bfd_vma mask;
2664 asection *sec = h->root.u.def.section;
2665
2666 /* The section aligment of definition is the maximum alignment
2667 requirement of symbols defined in the section. Since we don't
2668 know the symbol alignment requirement, we start with the
2669 maximum alignment and check low bits of the symbol address
2670 for the minimum alignment. */
2671 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2672 mask = ((bfd_vma) 1 << power_of_two) - 1;
2673 while ((h->root.u.def.value & mask) != 0)
2674 {
2675 mask >>= 1;
2676 --power_of_two;
2677 }
2678
2679 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2680 dynbss))
2681 {
2682 /* Adjust the section alignment if needed. */
2683 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2684 power_of_two))
2685 return FALSE;
2686 }
2687
2688 /* We make sure that the symbol will be aligned properly. */
2689 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2690
2691 /* Define the symbol as being at this point in DYNBSS. */
2692 h->root.u.def.section = dynbss;
2693 h->root.u.def.value = dynbss->size;
2694
2695 /* Increment the size of DYNBSS to make room for the symbol. */
2696 dynbss->size += h->size;
2697
2698 return TRUE;
2699 }
2700
2701 /* Adjust all external symbols pointing into SEC_MERGE sections
2702 to reflect the object merging within the sections. */
2703
2704 static bfd_boolean
2705 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2706 {
2707 asection *sec;
2708
2709 if ((h->root.type == bfd_link_hash_defined
2710 || h->root.type == bfd_link_hash_defweak)
2711 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2712 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2713 {
2714 bfd *output_bfd = (bfd *) data;
2715
2716 h->root.u.def.value =
2717 _bfd_merged_section_offset (output_bfd,
2718 &h->root.u.def.section,
2719 elf_section_data (sec)->sec_info,
2720 h->root.u.def.value);
2721 }
2722
2723 return TRUE;
2724 }
2725
2726 /* Returns false if the symbol referred to by H should be considered
2727 to resolve local to the current module, and true if it should be
2728 considered to bind dynamically. */
2729
2730 bfd_boolean
2731 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2732 struct bfd_link_info *info,
2733 bfd_boolean not_local_protected)
2734 {
2735 bfd_boolean binding_stays_local_p;
2736 const struct elf_backend_data *bed;
2737 struct elf_link_hash_table *hash_table;
2738
2739 if (h == NULL)
2740 return FALSE;
2741
2742 while (h->root.type == bfd_link_hash_indirect
2743 || h->root.type == bfd_link_hash_warning)
2744 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2745
2746 /* If it was forced local, then clearly it's not dynamic. */
2747 if (h->dynindx == -1)
2748 return FALSE;
2749 if (h->forced_local)
2750 return FALSE;
2751
2752 /* Identify the cases where name binding rules say that a
2753 visible symbol resolves locally. */
2754 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2755
2756 switch (ELF_ST_VISIBILITY (h->other))
2757 {
2758 case STV_INTERNAL:
2759 case STV_HIDDEN:
2760 return FALSE;
2761
2762 case STV_PROTECTED:
2763 hash_table = elf_hash_table (info);
2764 if (!is_elf_hash_table (hash_table))
2765 return FALSE;
2766
2767 bed = get_elf_backend_data (hash_table->dynobj);
2768
2769 /* Proper resolution for function pointer equality may require
2770 that these symbols perhaps be resolved dynamically, even though
2771 we should be resolving them to the current module. */
2772 if (!not_local_protected || !bed->is_function_type (h->type))
2773 binding_stays_local_p = TRUE;
2774 break;
2775
2776 default:
2777 break;
2778 }
2779
2780 /* If it isn't defined locally, then clearly it's dynamic. */
2781 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2782 return TRUE;
2783
2784 /* Otherwise, the symbol is dynamic if binding rules don't tell
2785 us that it remains local. */
2786 return !binding_stays_local_p;
2787 }
2788
2789 /* Return true if the symbol referred to by H should be considered
2790 to resolve local to the current module, and false otherwise. Differs
2791 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2792 undefined symbols. The two functions are virtually identical except
2793 for the place where forced_local and dynindx == -1 are tested. If
2794 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2795 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2796 the symbol is local only for defined symbols.
2797 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2798 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2799 treatment of undefined weak symbols. For those that do not make
2800 undefined weak symbols dynamic, both functions may return false. */
2801
2802 bfd_boolean
2803 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2804 struct bfd_link_info *info,
2805 bfd_boolean local_protected)
2806 {
2807 const struct elf_backend_data *bed;
2808 struct elf_link_hash_table *hash_table;
2809
2810 /* If it's a local sym, of course we resolve locally. */
2811 if (h == NULL)
2812 return TRUE;
2813
2814 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2815 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2816 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2817 return TRUE;
2818
2819 /* Common symbols that become definitions don't get the DEF_REGULAR
2820 flag set, so test it first, and don't bail out. */
2821 if (ELF_COMMON_DEF_P (h))
2822 /* Do nothing. */;
2823 /* If we don't have a definition in a regular file, then we can't
2824 resolve locally. The sym is either undefined or dynamic. */
2825 else if (!h->def_regular)
2826 return FALSE;
2827
2828 /* Forced local symbols resolve locally. */
2829 if (h->forced_local)
2830 return TRUE;
2831
2832 /* As do non-dynamic symbols. */
2833 if (h->dynindx == -1)
2834 return TRUE;
2835
2836 /* At this point, we know the symbol is defined and dynamic. In an
2837 executable it must resolve locally, likewise when building symbolic
2838 shared libraries. */
2839 if (info->executable || SYMBOLIC_BIND (info, h))
2840 return TRUE;
2841
2842 /* Now deal with defined dynamic symbols in shared libraries. Ones
2843 with default visibility might not resolve locally. */
2844 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2845 return FALSE;
2846
2847 hash_table = elf_hash_table (info);
2848 if (!is_elf_hash_table (hash_table))
2849 return TRUE;
2850
2851 bed = get_elf_backend_data (hash_table->dynobj);
2852
2853 /* STV_PROTECTED non-function symbols are local. */
2854 if (!bed->is_function_type (h->type))
2855 return TRUE;
2856
2857 /* Function pointer equality tests may require that STV_PROTECTED
2858 symbols be treated as dynamic symbols. If the address of a
2859 function not defined in an executable is set to that function's
2860 plt entry in the executable, then the address of the function in
2861 a shared library must also be the plt entry in the executable. */
2862 return local_protected;
2863 }
2864
2865 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2866 aligned. Returns the first TLS output section. */
2867
2868 struct bfd_section *
2869 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2870 {
2871 struct bfd_section *sec, *tls;
2872 unsigned int align = 0;
2873
2874 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2875 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2876 break;
2877 tls = sec;
2878
2879 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2880 if (sec->alignment_power > align)
2881 align = sec->alignment_power;
2882
2883 elf_hash_table (info)->tls_sec = tls;
2884
2885 /* Ensure the alignment of the first section is the largest alignment,
2886 so that the tls segment starts aligned. */
2887 if (tls != NULL)
2888 tls->alignment_power = align;
2889
2890 return tls;
2891 }
2892
2893 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2894 static bfd_boolean
2895 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2896 Elf_Internal_Sym *sym)
2897 {
2898 const struct elf_backend_data *bed;
2899
2900 /* Local symbols do not count, but target specific ones might. */
2901 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2902 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2903 return FALSE;
2904
2905 bed = get_elf_backend_data (abfd);
2906 /* Function symbols do not count. */
2907 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2908 return FALSE;
2909
2910 /* If the section is undefined, then so is the symbol. */
2911 if (sym->st_shndx == SHN_UNDEF)
2912 return FALSE;
2913
2914 /* If the symbol is defined in the common section, then
2915 it is a common definition and so does not count. */
2916 if (bed->common_definition (sym))
2917 return FALSE;
2918
2919 /* If the symbol is in a target specific section then we
2920 must rely upon the backend to tell us what it is. */
2921 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2922 /* FIXME - this function is not coded yet:
2923
2924 return _bfd_is_global_symbol_definition (abfd, sym);
2925
2926 Instead for now assume that the definition is not global,
2927 Even if this is wrong, at least the linker will behave
2928 in the same way that it used to do. */
2929 return FALSE;
2930
2931 return TRUE;
2932 }
2933
2934 /* Search the symbol table of the archive element of the archive ABFD
2935 whose archive map contains a mention of SYMDEF, and determine if
2936 the symbol is defined in this element. */
2937 static bfd_boolean
2938 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2939 {
2940 Elf_Internal_Shdr * hdr;
2941 bfd_size_type symcount;
2942 bfd_size_type extsymcount;
2943 bfd_size_type extsymoff;
2944 Elf_Internal_Sym *isymbuf;
2945 Elf_Internal_Sym *isym;
2946 Elf_Internal_Sym *isymend;
2947 bfd_boolean result;
2948
2949 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2950 if (abfd == NULL)
2951 return FALSE;
2952
2953 if (! bfd_check_format (abfd, bfd_object))
2954 return FALSE;
2955
2956 /* If we have already included the element containing this symbol in the
2957 link then we do not need to include it again. Just claim that any symbol
2958 it contains is not a definition, so that our caller will not decide to
2959 (re)include this element. */
2960 if (abfd->archive_pass)
2961 return FALSE;
2962
2963 /* Select the appropriate symbol table. */
2964 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2965 hdr = &elf_tdata (abfd)->symtab_hdr;
2966 else
2967 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2968
2969 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2970
2971 /* The sh_info field of the symtab header tells us where the
2972 external symbols start. We don't care about the local symbols. */
2973 if (elf_bad_symtab (abfd))
2974 {
2975 extsymcount = symcount;
2976 extsymoff = 0;
2977 }
2978 else
2979 {
2980 extsymcount = symcount - hdr->sh_info;
2981 extsymoff = hdr->sh_info;
2982 }
2983
2984 if (extsymcount == 0)
2985 return FALSE;
2986
2987 /* Read in the symbol table. */
2988 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2989 NULL, NULL, NULL);
2990 if (isymbuf == NULL)
2991 return FALSE;
2992
2993 /* Scan the symbol table looking for SYMDEF. */
2994 result = FALSE;
2995 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2996 {
2997 const char *name;
2998
2999 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3000 isym->st_name);
3001 if (name == NULL)
3002 break;
3003
3004 if (strcmp (name, symdef->name) == 0)
3005 {
3006 result = is_global_data_symbol_definition (abfd, isym);
3007 break;
3008 }
3009 }
3010
3011 free (isymbuf);
3012
3013 return result;
3014 }
3015 \f
3016 /* Add an entry to the .dynamic table. */
3017
3018 bfd_boolean
3019 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3020 bfd_vma tag,
3021 bfd_vma val)
3022 {
3023 struct elf_link_hash_table *hash_table;
3024 const struct elf_backend_data *bed;
3025 asection *s;
3026 bfd_size_type newsize;
3027 bfd_byte *newcontents;
3028 Elf_Internal_Dyn dyn;
3029
3030 hash_table = elf_hash_table (info);
3031 if (! is_elf_hash_table (hash_table))
3032 return FALSE;
3033
3034 bed = get_elf_backend_data (hash_table->dynobj);
3035 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3036 BFD_ASSERT (s != NULL);
3037
3038 newsize = s->size + bed->s->sizeof_dyn;
3039 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3040 if (newcontents == NULL)
3041 return FALSE;
3042
3043 dyn.d_tag = tag;
3044 dyn.d_un.d_val = val;
3045 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3046
3047 s->size = newsize;
3048 s->contents = newcontents;
3049
3050 return TRUE;
3051 }
3052
3053 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3054 otherwise just check whether one already exists. Returns -1 on error,
3055 1 if a DT_NEEDED tag already exists, and 0 on success. */
3056
3057 static int
3058 elf_add_dt_needed_tag (bfd *abfd,
3059 struct bfd_link_info *info,
3060 const char *soname,
3061 bfd_boolean do_it)
3062 {
3063 struct elf_link_hash_table *hash_table;
3064 bfd_size_type oldsize;
3065 bfd_size_type strindex;
3066
3067 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3068 return -1;
3069
3070 hash_table = elf_hash_table (info);
3071 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3072 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3073 if (strindex == (bfd_size_type) -1)
3074 return -1;
3075
3076 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3077 {
3078 asection *sdyn;
3079 const struct elf_backend_data *bed;
3080 bfd_byte *extdyn;
3081
3082 bed = get_elf_backend_data (hash_table->dynobj);
3083 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3084 if (sdyn != NULL)
3085 for (extdyn = sdyn->contents;
3086 extdyn < sdyn->contents + sdyn->size;
3087 extdyn += bed->s->sizeof_dyn)
3088 {
3089 Elf_Internal_Dyn dyn;
3090
3091 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3092 if (dyn.d_tag == DT_NEEDED
3093 && dyn.d_un.d_val == strindex)
3094 {
3095 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3096 return 1;
3097 }
3098 }
3099 }
3100
3101 if (do_it)
3102 {
3103 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3104 return -1;
3105
3106 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3107 return -1;
3108 }
3109 else
3110 /* We were just checking for existence of the tag. */
3111 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3112
3113 return 0;
3114 }
3115
3116 static bfd_boolean
3117 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3118 {
3119 for (; needed != NULL; needed = needed->next)
3120 if (strcmp (soname, needed->name) == 0)
3121 return TRUE;
3122
3123 return FALSE;
3124 }
3125
3126 /* Sort symbol by value and section. */
3127 static int
3128 elf_sort_symbol (const void *arg1, const void *arg2)
3129 {
3130 const struct elf_link_hash_entry *h1;
3131 const struct elf_link_hash_entry *h2;
3132 bfd_signed_vma vdiff;
3133
3134 h1 = *(const struct elf_link_hash_entry **) arg1;
3135 h2 = *(const struct elf_link_hash_entry **) arg2;
3136 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3137 if (vdiff != 0)
3138 return vdiff > 0 ? 1 : -1;
3139 else
3140 {
3141 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3142 if (sdiff != 0)
3143 return sdiff > 0 ? 1 : -1;
3144 }
3145 return 0;
3146 }
3147
3148 /* This function is used to adjust offsets into .dynstr for
3149 dynamic symbols. This is called via elf_link_hash_traverse. */
3150
3151 static bfd_boolean
3152 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3153 {
3154 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3155
3156 if (h->dynindx != -1)
3157 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3158 return TRUE;
3159 }
3160
3161 /* Assign string offsets in .dynstr, update all structures referencing
3162 them. */
3163
3164 static bfd_boolean
3165 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3166 {
3167 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3168 struct elf_link_local_dynamic_entry *entry;
3169 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3170 bfd *dynobj = hash_table->dynobj;
3171 asection *sdyn;
3172 bfd_size_type size;
3173 const struct elf_backend_data *bed;
3174 bfd_byte *extdyn;
3175
3176 _bfd_elf_strtab_finalize (dynstr);
3177 size = _bfd_elf_strtab_size (dynstr);
3178
3179 bed = get_elf_backend_data (dynobj);
3180 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3181 BFD_ASSERT (sdyn != NULL);
3182
3183 /* Update all .dynamic entries referencing .dynstr strings. */
3184 for (extdyn = sdyn->contents;
3185 extdyn < sdyn->contents + sdyn->size;
3186 extdyn += bed->s->sizeof_dyn)
3187 {
3188 Elf_Internal_Dyn dyn;
3189
3190 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3191 switch (dyn.d_tag)
3192 {
3193 case DT_STRSZ:
3194 dyn.d_un.d_val = size;
3195 break;
3196 case DT_NEEDED:
3197 case DT_SONAME:
3198 case DT_RPATH:
3199 case DT_RUNPATH:
3200 case DT_FILTER:
3201 case DT_AUXILIARY:
3202 case DT_AUDIT:
3203 case DT_DEPAUDIT:
3204 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3205 break;
3206 default:
3207 continue;
3208 }
3209 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3210 }
3211
3212 /* Now update local dynamic symbols. */
3213 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3214 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3215 entry->isym.st_name);
3216
3217 /* And the rest of dynamic symbols. */
3218 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3219
3220 /* Adjust version definitions. */
3221 if (elf_tdata (output_bfd)->cverdefs)
3222 {
3223 asection *s;
3224 bfd_byte *p;
3225 bfd_size_type i;
3226 Elf_Internal_Verdef def;
3227 Elf_Internal_Verdaux defaux;
3228
3229 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3230 p = s->contents;
3231 do
3232 {
3233 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3234 &def);
3235 p += sizeof (Elf_External_Verdef);
3236 if (def.vd_aux != sizeof (Elf_External_Verdef))
3237 continue;
3238 for (i = 0; i < def.vd_cnt; ++i)
3239 {
3240 _bfd_elf_swap_verdaux_in (output_bfd,
3241 (Elf_External_Verdaux *) p, &defaux);
3242 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3243 defaux.vda_name);
3244 _bfd_elf_swap_verdaux_out (output_bfd,
3245 &defaux, (Elf_External_Verdaux *) p);
3246 p += sizeof (Elf_External_Verdaux);
3247 }
3248 }
3249 while (def.vd_next);
3250 }
3251
3252 /* Adjust version references. */
3253 if (elf_tdata (output_bfd)->verref)
3254 {
3255 asection *s;
3256 bfd_byte *p;
3257 bfd_size_type i;
3258 Elf_Internal_Verneed need;
3259 Elf_Internal_Vernaux needaux;
3260
3261 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3262 p = s->contents;
3263 do
3264 {
3265 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3266 &need);
3267 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3268 _bfd_elf_swap_verneed_out (output_bfd, &need,
3269 (Elf_External_Verneed *) p);
3270 p += sizeof (Elf_External_Verneed);
3271 for (i = 0; i < need.vn_cnt; ++i)
3272 {
3273 _bfd_elf_swap_vernaux_in (output_bfd,
3274 (Elf_External_Vernaux *) p, &needaux);
3275 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3276 needaux.vna_name);
3277 _bfd_elf_swap_vernaux_out (output_bfd,
3278 &needaux,
3279 (Elf_External_Vernaux *) p);
3280 p += sizeof (Elf_External_Vernaux);
3281 }
3282 }
3283 while (need.vn_next);
3284 }
3285
3286 return TRUE;
3287 }
3288 \f
3289 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3290 The default is to only match when the INPUT and OUTPUT are exactly
3291 the same target. */
3292
3293 bfd_boolean
3294 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3295 const bfd_target *output)
3296 {
3297 return input == output;
3298 }
3299
3300 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3301 This version is used when different targets for the same architecture
3302 are virtually identical. */
3303
3304 bfd_boolean
3305 _bfd_elf_relocs_compatible (const bfd_target *input,
3306 const bfd_target *output)
3307 {
3308 const struct elf_backend_data *obed, *ibed;
3309
3310 if (input == output)
3311 return TRUE;
3312
3313 ibed = xvec_get_elf_backend_data (input);
3314 obed = xvec_get_elf_backend_data (output);
3315
3316 if (ibed->arch != obed->arch)
3317 return FALSE;
3318
3319 /* If both backends are using this function, deem them compatible. */
3320 return ibed->relocs_compatible == obed->relocs_compatible;
3321 }
3322
3323 /* Add symbols from an ELF object file to the linker hash table. */
3324
3325 static bfd_boolean
3326 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3327 {
3328 Elf_Internal_Ehdr *ehdr;
3329 Elf_Internal_Shdr *hdr;
3330 bfd_size_type symcount;
3331 bfd_size_type extsymcount;
3332 bfd_size_type extsymoff;
3333 struct elf_link_hash_entry **sym_hash;
3334 bfd_boolean dynamic;
3335 Elf_External_Versym *extversym = NULL;
3336 Elf_External_Versym *ever;
3337 struct elf_link_hash_entry *weaks;
3338 struct elf_link_hash_entry **nondeflt_vers = NULL;
3339 bfd_size_type nondeflt_vers_cnt = 0;
3340 Elf_Internal_Sym *isymbuf = NULL;
3341 Elf_Internal_Sym *isym;
3342 Elf_Internal_Sym *isymend;
3343 const struct elf_backend_data *bed;
3344 bfd_boolean add_needed;
3345 struct elf_link_hash_table *htab;
3346 bfd_size_type amt;
3347 void *alloc_mark = NULL;
3348 struct bfd_hash_entry **old_table = NULL;
3349 unsigned int old_size = 0;
3350 unsigned int old_count = 0;
3351 void *old_tab = NULL;
3352 void *old_hash;
3353 void *old_ent;
3354 struct bfd_link_hash_entry *old_undefs = NULL;
3355 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3356 long old_dynsymcount = 0;
3357 size_t tabsize = 0;
3358 size_t hashsize = 0;
3359
3360 htab = elf_hash_table (info);
3361 bed = get_elf_backend_data (abfd);
3362
3363 if ((abfd->flags & DYNAMIC) == 0)
3364 dynamic = FALSE;
3365 else
3366 {
3367 dynamic = TRUE;
3368
3369 /* You can't use -r against a dynamic object. Also, there's no
3370 hope of using a dynamic object which does not exactly match
3371 the format of the output file. */
3372 if (info->relocatable
3373 || !is_elf_hash_table (htab)
3374 || info->output_bfd->xvec != abfd->xvec)
3375 {
3376 if (info->relocatable)
3377 bfd_set_error (bfd_error_invalid_operation);
3378 else
3379 bfd_set_error (bfd_error_wrong_format);
3380 goto error_return;
3381 }
3382 }
3383
3384 ehdr = elf_elfheader (abfd);
3385 if (info->warn_alternate_em
3386 && bed->elf_machine_code != ehdr->e_machine
3387 && ((bed->elf_machine_alt1 != 0
3388 && ehdr->e_machine == bed->elf_machine_alt1)
3389 || (bed->elf_machine_alt2 != 0
3390 && ehdr->e_machine == bed->elf_machine_alt2)))
3391 info->callbacks->einfo
3392 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3393 ehdr->e_machine, abfd, bed->elf_machine_code);
3394
3395 /* As a GNU extension, any input sections which are named
3396 .gnu.warning.SYMBOL are treated as warning symbols for the given
3397 symbol. This differs from .gnu.warning sections, which generate
3398 warnings when they are included in an output file. */
3399 /* PR 12761: Also generate this warning when building shared libraries. */
3400 if (info->executable || info->shared)
3401 {
3402 asection *s;
3403
3404 for (s = abfd->sections; s != NULL; s = s->next)
3405 {
3406 const char *name;
3407
3408 name = bfd_get_section_name (abfd, s);
3409 if (CONST_STRNEQ (name, ".gnu.warning."))
3410 {
3411 char *msg;
3412 bfd_size_type sz;
3413
3414 name += sizeof ".gnu.warning." - 1;
3415
3416 /* If this is a shared object, then look up the symbol
3417 in the hash table. If it is there, and it is already
3418 been defined, then we will not be using the entry
3419 from this shared object, so we don't need to warn.
3420 FIXME: If we see the definition in a regular object
3421 later on, we will warn, but we shouldn't. The only
3422 fix is to keep track of what warnings we are supposed
3423 to emit, and then handle them all at the end of the
3424 link. */
3425 if (dynamic)
3426 {
3427 struct elf_link_hash_entry *h;
3428
3429 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3430
3431 /* FIXME: What about bfd_link_hash_common? */
3432 if (h != NULL
3433 && (h->root.type == bfd_link_hash_defined
3434 || h->root.type == bfd_link_hash_defweak))
3435 {
3436 /* We don't want to issue this warning. Clobber
3437 the section size so that the warning does not
3438 get copied into the output file. */
3439 s->size = 0;
3440 continue;
3441 }
3442 }
3443
3444 sz = s->size;
3445 msg = (char *) bfd_alloc (abfd, sz + 1);
3446 if (msg == NULL)
3447 goto error_return;
3448
3449 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3450 goto error_return;
3451
3452 msg[sz] = '\0';
3453
3454 if (! (_bfd_generic_link_add_one_symbol
3455 (info, abfd, name, BSF_WARNING, s, 0, msg,
3456 FALSE, bed->collect, NULL)))
3457 goto error_return;
3458
3459 if (! info->relocatable)
3460 {
3461 /* Clobber the section size so that the warning does
3462 not get copied into the output file. */
3463 s->size = 0;
3464
3465 /* Also set SEC_EXCLUDE, so that symbols defined in
3466 the warning section don't get copied to the output. */
3467 s->flags |= SEC_EXCLUDE;
3468 }
3469 }
3470 }
3471 }
3472
3473 add_needed = TRUE;
3474 if (! dynamic)
3475 {
3476 /* If we are creating a shared library, create all the dynamic
3477 sections immediately. We need to attach them to something,
3478 so we attach them to this BFD, provided it is the right
3479 format. FIXME: If there are no input BFD's of the same
3480 format as the output, we can't make a shared library. */
3481 if (info->shared
3482 && is_elf_hash_table (htab)
3483 && info->output_bfd->xvec == abfd->xvec
3484 && !htab->dynamic_sections_created)
3485 {
3486 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3487 goto error_return;
3488 }
3489 }
3490 else if (!is_elf_hash_table (htab))
3491 goto error_return;
3492 else
3493 {
3494 asection *s;
3495 const char *soname = NULL;
3496 char *audit = NULL;
3497 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3498 int ret;
3499
3500 /* ld --just-symbols and dynamic objects don't mix very well.
3501 ld shouldn't allow it. */
3502 if ((s = abfd->sections) != NULL
3503 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3504 abort ();
3505
3506 /* If this dynamic lib was specified on the command line with
3507 --as-needed in effect, then we don't want to add a DT_NEEDED
3508 tag unless the lib is actually used. Similary for libs brought
3509 in by another lib's DT_NEEDED. When --no-add-needed is used
3510 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3511 any dynamic library in DT_NEEDED tags in the dynamic lib at
3512 all. */
3513 add_needed = (elf_dyn_lib_class (abfd)
3514 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3515 | DYN_NO_NEEDED)) == 0;
3516
3517 s = bfd_get_section_by_name (abfd, ".dynamic");
3518 if (s != NULL)
3519 {
3520 bfd_byte *dynbuf;
3521 bfd_byte *extdyn;
3522 unsigned int elfsec;
3523 unsigned long shlink;
3524
3525 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3526 {
3527 error_free_dyn:
3528 free (dynbuf);
3529 goto error_return;
3530 }
3531
3532 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3533 if (elfsec == SHN_BAD)
3534 goto error_free_dyn;
3535 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3536
3537 for (extdyn = dynbuf;
3538 extdyn < dynbuf + s->size;
3539 extdyn += bed->s->sizeof_dyn)
3540 {
3541 Elf_Internal_Dyn dyn;
3542
3543 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3544 if (dyn.d_tag == DT_SONAME)
3545 {
3546 unsigned int tagv = dyn.d_un.d_val;
3547 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3548 if (soname == NULL)
3549 goto error_free_dyn;
3550 }
3551 if (dyn.d_tag == DT_NEEDED)
3552 {
3553 struct bfd_link_needed_list *n, **pn;
3554 char *fnm, *anm;
3555 unsigned int tagv = dyn.d_un.d_val;
3556
3557 amt = sizeof (struct bfd_link_needed_list);
3558 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3559 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3560 if (n == NULL || fnm == NULL)
3561 goto error_free_dyn;
3562 amt = strlen (fnm) + 1;
3563 anm = (char *) bfd_alloc (abfd, amt);
3564 if (anm == NULL)
3565 goto error_free_dyn;
3566 memcpy (anm, fnm, amt);
3567 n->name = anm;
3568 n->by = abfd;
3569 n->next = NULL;
3570 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3571 ;
3572 *pn = n;
3573 }
3574 if (dyn.d_tag == DT_RUNPATH)
3575 {
3576 struct bfd_link_needed_list *n, **pn;
3577 char *fnm, *anm;
3578 unsigned int tagv = dyn.d_un.d_val;
3579
3580 amt = sizeof (struct bfd_link_needed_list);
3581 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3582 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3583 if (n == NULL || fnm == NULL)
3584 goto error_free_dyn;
3585 amt = strlen (fnm) + 1;
3586 anm = (char *) bfd_alloc (abfd, amt);
3587 if (anm == NULL)
3588 goto error_free_dyn;
3589 memcpy (anm, fnm, amt);
3590 n->name = anm;
3591 n->by = abfd;
3592 n->next = NULL;
3593 for (pn = & runpath;
3594 *pn != NULL;
3595 pn = &(*pn)->next)
3596 ;
3597 *pn = n;
3598 }
3599 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3600 if (!runpath && dyn.d_tag == DT_RPATH)
3601 {
3602 struct bfd_link_needed_list *n, **pn;
3603 char *fnm, *anm;
3604 unsigned int tagv = dyn.d_un.d_val;
3605
3606 amt = sizeof (struct bfd_link_needed_list);
3607 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3608 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3609 if (n == NULL || fnm == NULL)
3610 goto error_free_dyn;
3611 amt = strlen (fnm) + 1;
3612 anm = (char *) bfd_alloc (abfd, amt);
3613 if (anm == NULL)
3614 goto error_free_dyn;
3615 memcpy (anm, fnm, amt);
3616 n->name = anm;
3617 n->by = abfd;
3618 n->next = NULL;
3619 for (pn = & rpath;
3620 *pn != NULL;
3621 pn = &(*pn)->next)
3622 ;
3623 *pn = n;
3624 }
3625 if (dyn.d_tag == DT_AUDIT)
3626 {
3627 unsigned int tagv = dyn.d_un.d_val;
3628 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3629 }
3630 }
3631
3632 free (dynbuf);
3633 }
3634
3635 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3636 frees all more recently bfd_alloc'd blocks as well. */
3637 if (runpath)
3638 rpath = runpath;
3639
3640 if (rpath)
3641 {
3642 struct bfd_link_needed_list **pn;
3643 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3644 ;
3645 *pn = rpath;
3646 }
3647
3648 /* We do not want to include any of the sections in a dynamic
3649 object in the output file. We hack by simply clobbering the
3650 list of sections in the BFD. This could be handled more
3651 cleanly by, say, a new section flag; the existing
3652 SEC_NEVER_LOAD flag is not the one we want, because that one
3653 still implies that the section takes up space in the output
3654 file. */
3655 bfd_section_list_clear (abfd);
3656
3657 /* Find the name to use in a DT_NEEDED entry that refers to this
3658 object. If the object has a DT_SONAME entry, we use it.
3659 Otherwise, if the generic linker stuck something in
3660 elf_dt_name, we use that. Otherwise, we just use the file
3661 name. */
3662 if (soname == NULL || *soname == '\0')
3663 {
3664 soname = elf_dt_name (abfd);
3665 if (soname == NULL || *soname == '\0')
3666 soname = bfd_get_filename (abfd);
3667 }
3668
3669 /* Save the SONAME because sometimes the linker emulation code
3670 will need to know it. */
3671 elf_dt_name (abfd) = soname;
3672
3673 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3674 if (ret < 0)
3675 goto error_return;
3676
3677 /* If we have already included this dynamic object in the
3678 link, just ignore it. There is no reason to include a
3679 particular dynamic object more than once. */
3680 if (ret > 0)
3681 return TRUE;
3682
3683 /* Save the DT_AUDIT entry for the linker emulation code. */
3684 elf_dt_audit (abfd) = audit;
3685 }
3686
3687 /* If this is a dynamic object, we always link against the .dynsym
3688 symbol table, not the .symtab symbol table. The dynamic linker
3689 will only see the .dynsym symbol table, so there is no reason to
3690 look at .symtab for a dynamic object. */
3691
3692 if (! dynamic || elf_dynsymtab (abfd) == 0)
3693 hdr = &elf_tdata (abfd)->symtab_hdr;
3694 else
3695 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3696
3697 symcount = hdr->sh_size / bed->s->sizeof_sym;
3698
3699 /* The sh_info field of the symtab header tells us where the
3700 external symbols start. We don't care about the local symbols at
3701 this point. */
3702 if (elf_bad_symtab (abfd))
3703 {
3704 extsymcount = symcount;
3705 extsymoff = 0;
3706 }
3707 else
3708 {
3709 extsymcount = symcount - hdr->sh_info;
3710 extsymoff = hdr->sh_info;
3711 }
3712
3713 sym_hash = NULL;
3714 if (extsymcount != 0)
3715 {
3716 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3717 NULL, NULL, NULL);
3718 if (isymbuf == NULL)
3719 goto error_return;
3720
3721 /* We store a pointer to the hash table entry for each external
3722 symbol. */
3723 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3724 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3725 if (sym_hash == NULL)
3726 goto error_free_sym;
3727 elf_sym_hashes (abfd) = sym_hash;
3728 }
3729
3730 if (dynamic)
3731 {
3732 /* Read in any version definitions. */
3733 if (!_bfd_elf_slurp_version_tables (abfd,
3734 info->default_imported_symver))
3735 goto error_free_sym;
3736
3737 /* Read in the symbol versions, but don't bother to convert them
3738 to internal format. */
3739 if (elf_dynversym (abfd) != 0)
3740 {
3741 Elf_Internal_Shdr *versymhdr;
3742
3743 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3744 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3745 if (extversym == NULL)
3746 goto error_free_sym;
3747 amt = versymhdr->sh_size;
3748 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3749 || bfd_bread (extversym, amt, abfd) != amt)
3750 goto error_free_vers;
3751 }
3752 }
3753
3754 /* If we are loading an as-needed shared lib, save the symbol table
3755 state before we start adding symbols. If the lib turns out
3756 to be unneeded, restore the state. */
3757 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3758 {
3759 unsigned int i;
3760 size_t entsize;
3761
3762 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3763 {
3764 struct bfd_hash_entry *p;
3765 struct elf_link_hash_entry *h;
3766
3767 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3768 {
3769 h = (struct elf_link_hash_entry *) p;
3770 entsize += htab->root.table.entsize;
3771 if (h->root.type == bfd_link_hash_warning)
3772 entsize += htab->root.table.entsize;
3773 }
3774 }
3775
3776 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3777 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3778 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3779 if (old_tab == NULL)
3780 goto error_free_vers;
3781
3782 /* Remember the current objalloc pointer, so that all mem for
3783 symbols added can later be reclaimed. */
3784 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3785 if (alloc_mark == NULL)
3786 goto error_free_vers;
3787
3788 /* Make a special call to the linker "notice" function to
3789 tell it that we are about to handle an as-needed lib. */
3790 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3791 notice_as_needed, 0, NULL))
3792 goto error_free_vers;
3793
3794 /* Clone the symbol table and sym hashes. Remember some
3795 pointers into the symbol table, and dynamic symbol count. */
3796 old_hash = (char *) old_tab + tabsize;
3797 old_ent = (char *) old_hash + hashsize;
3798 memcpy (old_tab, htab->root.table.table, tabsize);
3799 memcpy (old_hash, sym_hash, hashsize);
3800 old_undefs = htab->root.undefs;
3801 old_undefs_tail = htab->root.undefs_tail;
3802 old_table = htab->root.table.table;
3803 old_size = htab->root.table.size;
3804 old_count = htab->root.table.count;
3805 old_dynsymcount = htab->dynsymcount;
3806
3807 for (i = 0; i < htab->root.table.size; i++)
3808 {
3809 struct bfd_hash_entry *p;
3810 struct elf_link_hash_entry *h;
3811
3812 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3813 {
3814 memcpy (old_ent, p, htab->root.table.entsize);
3815 old_ent = (char *) old_ent + htab->root.table.entsize;
3816 h = (struct elf_link_hash_entry *) p;
3817 if (h->root.type == bfd_link_hash_warning)
3818 {
3819 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3820 old_ent = (char *) old_ent + htab->root.table.entsize;
3821 }
3822 }
3823 }
3824 }
3825
3826 weaks = NULL;
3827 ever = extversym != NULL ? extversym + extsymoff : NULL;
3828 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3829 isym < isymend;
3830 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3831 {
3832 int bind;
3833 bfd_vma value;
3834 asection *sec, *new_sec;
3835 flagword flags;
3836 const char *name;
3837 struct elf_link_hash_entry *h;
3838 bfd_boolean definition;
3839 bfd_boolean size_change_ok;
3840 bfd_boolean type_change_ok;
3841 bfd_boolean new_weakdef;
3842 bfd_boolean override;
3843 bfd_boolean common;
3844 unsigned int old_alignment;
3845 bfd *old_bfd;
3846 bfd * undef_bfd = NULL;
3847
3848 override = FALSE;
3849
3850 flags = BSF_NO_FLAGS;
3851 sec = NULL;
3852 value = isym->st_value;
3853 *sym_hash = NULL;
3854 common = bed->common_definition (isym);
3855
3856 bind = ELF_ST_BIND (isym->st_info);
3857 switch (bind)
3858 {
3859 case STB_LOCAL:
3860 /* This should be impossible, since ELF requires that all
3861 global symbols follow all local symbols, and that sh_info
3862 point to the first global symbol. Unfortunately, Irix 5
3863 screws this up. */
3864 continue;
3865
3866 case STB_GLOBAL:
3867 if (isym->st_shndx != SHN_UNDEF && !common)
3868 flags = BSF_GLOBAL;
3869 break;
3870
3871 case STB_WEAK:
3872 flags = BSF_WEAK;
3873 break;
3874
3875 case STB_GNU_UNIQUE:
3876 flags = BSF_GNU_UNIQUE;
3877 break;
3878
3879 default:
3880 /* Leave it up to the processor backend. */
3881 break;
3882 }
3883
3884 if (isym->st_shndx == SHN_UNDEF)
3885 sec = bfd_und_section_ptr;
3886 else if (isym->st_shndx == SHN_ABS)
3887 sec = bfd_abs_section_ptr;
3888 else if (isym->st_shndx == SHN_COMMON)
3889 {
3890 sec = bfd_com_section_ptr;
3891 /* What ELF calls the size we call the value. What ELF
3892 calls the value we call the alignment. */
3893 value = isym->st_size;
3894 }
3895 else
3896 {
3897 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3898 if (sec == NULL)
3899 sec = bfd_abs_section_ptr;
3900 else if (elf_discarded_section (sec))
3901 {
3902 /* Symbols from discarded section are undefined. We keep
3903 its visibility. */
3904 sec = bfd_und_section_ptr;
3905 isym->st_shndx = SHN_UNDEF;
3906 }
3907 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3908 value -= sec->vma;
3909 }
3910
3911 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3912 isym->st_name);
3913 if (name == NULL)
3914 goto error_free_vers;
3915
3916 if (isym->st_shndx == SHN_COMMON
3917 && (abfd->flags & BFD_PLUGIN) != 0)
3918 {
3919 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3920
3921 if (xc == NULL)
3922 {
3923 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3924 | SEC_EXCLUDE);
3925 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3926 if (xc == NULL)
3927 goto error_free_vers;
3928 }
3929 sec = xc;
3930 }
3931 else if (isym->st_shndx == SHN_COMMON
3932 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3933 && !info->relocatable)
3934 {
3935 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3936
3937 if (tcomm == NULL)
3938 {
3939 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3940 | SEC_LINKER_CREATED);
3941 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3942 if (tcomm == NULL)
3943 goto error_free_vers;
3944 }
3945 sec = tcomm;
3946 }
3947 else if (bed->elf_add_symbol_hook)
3948 {
3949 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3950 &sec, &value))
3951 goto error_free_vers;
3952
3953 /* The hook function sets the name to NULL if this symbol
3954 should be skipped for some reason. */
3955 if (name == NULL)
3956 continue;
3957 }
3958
3959 /* Sanity check that all possibilities were handled. */
3960 if (sec == NULL)
3961 {
3962 bfd_set_error (bfd_error_bad_value);
3963 goto error_free_vers;
3964 }
3965
3966 if (bfd_is_und_section (sec)
3967 || bfd_is_com_section (sec))
3968 definition = FALSE;
3969 else
3970 definition = TRUE;
3971
3972 size_change_ok = FALSE;
3973 type_change_ok = bed->type_change_ok;
3974 old_alignment = 0;
3975 old_bfd = NULL;
3976 new_sec = sec;
3977
3978 if (is_elf_hash_table (htab))
3979 {
3980 Elf_Internal_Versym iver;
3981 unsigned int vernum = 0;
3982 bfd_boolean skip;
3983
3984 /* If this is a definition of a symbol which was previously
3985 referenced in a non-weak manner then make a note of the bfd
3986 that contained the reference. This is used if we need to
3987 refer to the source of the reference later on. */
3988 if (! bfd_is_und_section (sec))
3989 {
3990 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
3991
3992 if (h != NULL
3993 && h->root.type == bfd_link_hash_undefined
3994 && h->root.u.undef.abfd)
3995 undef_bfd = h->root.u.undef.abfd;
3996 }
3997
3998 if (ever == NULL)
3999 {
4000 if (info->default_imported_symver)
4001 /* Use the default symbol version created earlier. */
4002 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4003 else
4004 iver.vs_vers = 0;
4005 }
4006 else
4007 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4008
4009 vernum = iver.vs_vers & VERSYM_VERSION;
4010
4011 /* If this is a hidden symbol, or if it is not version
4012 1, we append the version name to the symbol name.
4013 However, we do not modify a non-hidden absolute symbol
4014 if it is not a function, because it might be the version
4015 symbol itself. FIXME: What if it isn't? */
4016 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4017 || (vernum > 1
4018 && (!bfd_is_abs_section (sec)
4019 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4020 {
4021 const char *verstr;
4022 size_t namelen, verlen, newlen;
4023 char *newname, *p;
4024
4025 if (isym->st_shndx != SHN_UNDEF)
4026 {
4027 if (vernum > elf_tdata (abfd)->cverdefs)
4028 verstr = NULL;
4029 else if (vernum > 1)
4030 verstr =
4031 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4032 else
4033 verstr = "";
4034
4035 if (verstr == NULL)
4036 {
4037 (*_bfd_error_handler)
4038 (_("%B: %s: invalid version %u (max %d)"),
4039 abfd, name, vernum,
4040 elf_tdata (abfd)->cverdefs);
4041 bfd_set_error (bfd_error_bad_value);
4042 goto error_free_vers;
4043 }
4044 }
4045 else
4046 {
4047 /* We cannot simply test for the number of
4048 entries in the VERNEED section since the
4049 numbers for the needed versions do not start
4050 at 0. */
4051 Elf_Internal_Verneed *t;
4052
4053 verstr = NULL;
4054 for (t = elf_tdata (abfd)->verref;
4055 t != NULL;
4056 t = t->vn_nextref)
4057 {
4058 Elf_Internal_Vernaux *a;
4059
4060 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4061 {
4062 if (a->vna_other == vernum)
4063 {
4064 verstr = a->vna_nodename;
4065 break;
4066 }
4067 }
4068 if (a != NULL)
4069 break;
4070 }
4071 if (verstr == NULL)
4072 {
4073 (*_bfd_error_handler)
4074 (_("%B: %s: invalid needed version %d"),
4075 abfd, name, vernum);
4076 bfd_set_error (bfd_error_bad_value);
4077 goto error_free_vers;
4078 }
4079 }
4080
4081 namelen = strlen (name);
4082 verlen = strlen (verstr);
4083 newlen = namelen + verlen + 2;
4084 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4085 && isym->st_shndx != SHN_UNDEF)
4086 ++newlen;
4087
4088 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4089 if (newname == NULL)
4090 goto error_free_vers;
4091 memcpy (newname, name, namelen);
4092 p = newname + namelen;
4093 *p++ = ELF_VER_CHR;
4094 /* If this is a defined non-hidden version symbol,
4095 we add another @ to the name. This indicates the
4096 default version of the symbol. */
4097 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4098 && isym->st_shndx != SHN_UNDEF)
4099 *p++ = ELF_VER_CHR;
4100 memcpy (p, verstr, verlen + 1);
4101
4102 name = newname;
4103 }
4104
4105 /* If necessary, make a second attempt to locate the bfd
4106 containing an unresolved, non-weak reference to the
4107 current symbol. */
4108 if (! bfd_is_und_section (sec) && undef_bfd == NULL)
4109 {
4110 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4111
4112 if (h != NULL
4113 && h->root.type == bfd_link_hash_undefined
4114 && h->root.u.undef.abfd)
4115 undef_bfd = h->root.u.undef.abfd;
4116 }
4117
4118 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4119 &value, &old_alignment,
4120 sym_hash, &skip, &override,
4121 &type_change_ok, &size_change_ok))
4122 goto error_free_vers;
4123
4124 if (skip)
4125 continue;
4126
4127 if (override)
4128 definition = FALSE;
4129
4130 h = *sym_hash;
4131 while (h->root.type == bfd_link_hash_indirect
4132 || h->root.type == bfd_link_hash_warning)
4133 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4134
4135 /* Remember the old alignment if this is a common symbol, so
4136 that we don't reduce the alignment later on. We can't
4137 check later, because _bfd_generic_link_add_one_symbol
4138 will set a default for the alignment which we want to
4139 override. We also remember the old bfd where the existing
4140 definition comes from. */
4141 switch (h->root.type)
4142 {
4143 default:
4144 break;
4145
4146 case bfd_link_hash_defined:
4147 case bfd_link_hash_defweak:
4148 old_bfd = h->root.u.def.section->owner;
4149 break;
4150
4151 case bfd_link_hash_common:
4152 old_bfd = h->root.u.c.p->section->owner;
4153 old_alignment = h->root.u.c.p->alignment_power;
4154 break;
4155 }
4156
4157 if (elf_tdata (abfd)->verdef != NULL
4158 && ! override
4159 && vernum > 1
4160 && definition)
4161 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4162 }
4163
4164 if (! (_bfd_generic_link_add_one_symbol
4165 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4166 (struct bfd_link_hash_entry **) sym_hash)))
4167 goto error_free_vers;
4168
4169 h = *sym_hash;
4170 while (h->root.type == bfd_link_hash_indirect
4171 || h->root.type == bfd_link_hash_warning)
4172 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4173
4174 *sym_hash = h;
4175 if (is_elf_hash_table (htab))
4176 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4177
4178 new_weakdef = FALSE;
4179 if (dynamic
4180 && definition
4181 && (flags & BSF_WEAK) != 0
4182 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4183 && is_elf_hash_table (htab)
4184 && h->u.weakdef == NULL)
4185 {
4186 /* Keep a list of all weak defined non function symbols from
4187 a dynamic object, using the weakdef field. Later in this
4188 function we will set the weakdef field to the correct
4189 value. We only put non-function symbols from dynamic
4190 objects on this list, because that happens to be the only
4191 time we need to know the normal symbol corresponding to a
4192 weak symbol, and the information is time consuming to
4193 figure out. If the weakdef field is not already NULL,
4194 then this symbol was already defined by some previous
4195 dynamic object, and we will be using that previous
4196 definition anyhow. */
4197
4198 h->u.weakdef = weaks;
4199 weaks = h;
4200 new_weakdef = TRUE;
4201 }
4202
4203 /* Set the alignment of a common symbol. */
4204 if ((common || bfd_is_com_section (sec))
4205 && h->root.type == bfd_link_hash_common)
4206 {
4207 unsigned int align;
4208
4209 if (common)
4210 align = bfd_log2 (isym->st_value);
4211 else
4212 {
4213 /* The new symbol is a common symbol in a shared object.
4214 We need to get the alignment from the section. */
4215 align = new_sec->alignment_power;
4216 }
4217 if (align > old_alignment)
4218 h->root.u.c.p->alignment_power = align;
4219 else
4220 h->root.u.c.p->alignment_power = old_alignment;
4221 }
4222
4223 if (is_elf_hash_table (htab))
4224 {
4225 bfd_boolean dynsym;
4226
4227 /* Check the alignment when a common symbol is involved. This
4228 can change when a common symbol is overridden by a normal
4229 definition or a common symbol is ignored due to the old
4230 normal definition. We need to make sure the maximum
4231 alignment is maintained. */
4232 if ((old_alignment || common)
4233 && h->root.type != bfd_link_hash_common)
4234 {
4235 unsigned int common_align;
4236 unsigned int normal_align;
4237 unsigned int symbol_align;
4238 bfd *normal_bfd;
4239 bfd *common_bfd;
4240
4241 symbol_align = ffs (h->root.u.def.value) - 1;
4242 if (h->root.u.def.section->owner != NULL
4243 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4244 {
4245 normal_align = h->root.u.def.section->alignment_power;
4246 if (normal_align > symbol_align)
4247 normal_align = symbol_align;
4248 }
4249 else
4250 normal_align = symbol_align;
4251
4252 if (old_alignment)
4253 {
4254 common_align = old_alignment;
4255 common_bfd = old_bfd;
4256 normal_bfd = abfd;
4257 }
4258 else
4259 {
4260 common_align = bfd_log2 (isym->st_value);
4261 common_bfd = abfd;
4262 normal_bfd = old_bfd;
4263 }
4264
4265 if (normal_align < common_align)
4266 {
4267 /* PR binutils/2735 */
4268 if (normal_bfd == NULL)
4269 (*_bfd_error_handler)
4270 (_("Warning: alignment %u of common symbol `%s' in %B"
4271 " is greater than the alignment (%u) of its section %A"),
4272 common_bfd, h->root.u.def.section,
4273 1 << common_align, name, 1 << normal_align);
4274 else
4275 (*_bfd_error_handler)
4276 (_("Warning: alignment %u of symbol `%s' in %B"
4277 " is smaller than %u in %B"),
4278 normal_bfd, common_bfd,
4279 1 << normal_align, name, 1 << common_align);
4280 }
4281 }
4282
4283 /* Remember the symbol size if it isn't undefined. */
4284 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4285 && (definition || h->size == 0))
4286 {
4287 if (h->size != 0
4288 && h->size != isym->st_size
4289 && ! size_change_ok)
4290 (*_bfd_error_handler)
4291 (_("Warning: size of symbol `%s' changed"
4292 " from %lu in %B to %lu in %B"),
4293 old_bfd, abfd,
4294 name, (unsigned long) h->size,
4295 (unsigned long) isym->st_size);
4296
4297 h->size = isym->st_size;
4298 }
4299
4300 /* If this is a common symbol, then we always want H->SIZE
4301 to be the size of the common symbol. The code just above
4302 won't fix the size if a common symbol becomes larger. We
4303 don't warn about a size change here, because that is
4304 covered by --warn-common. Allow changed between different
4305 function types. */
4306 if (h->root.type == bfd_link_hash_common)
4307 h->size = h->root.u.c.size;
4308
4309 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4310 && (definition || h->type == STT_NOTYPE))
4311 {
4312 unsigned int type = ELF_ST_TYPE (isym->st_info);
4313
4314 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4315 symbol. */
4316 if (type == STT_GNU_IFUNC
4317 && (abfd->flags & DYNAMIC) != 0)
4318 type = STT_FUNC;
4319
4320 if (h->type != type)
4321 {
4322 if (h->type != STT_NOTYPE && ! type_change_ok)
4323 (*_bfd_error_handler)
4324 (_("Warning: type of symbol `%s' changed"
4325 " from %d to %d in %B"),
4326 abfd, name, h->type, type);
4327
4328 h->type = type;
4329 }
4330 }
4331
4332 /* Merge st_other field. */
4333 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4334
4335 /* Set a flag in the hash table entry indicating the type of
4336 reference or definition we just found. Keep a count of
4337 the number of dynamic symbols we find. A dynamic symbol
4338 is one which is referenced or defined by both a regular
4339 object and a shared object. */
4340 dynsym = FALSE;
4341 if (! dynamic)
4342 {
4343 if (! definition)
4344 {
4345 h->ref_regular = 1;
4346 if (bind != STB_WEAK)
4347 h->ref_regular_nonweak = 1;
4348 }
4349 else
4350 {
4351 h->def_regular = 1;
4352 if (h->def_dynamic)
4353 {
4354 h->def_dynamic = 0;
4355 h->ref_dynamic = 1;
4356 h->dynamic_def = 1;
4357 }
4358 }
4359 if (! info->executable
4360 || h->def_dynamic
4361 || h->ref_dynamic)
4362 dynsym = TRUE;
4363 }
4364 else
4365 {
4366 if (! definition)
4367 h->ref_dynamic = 1;
4368 else
4369 h->def_dynamic = 1;
4370 if (h->def_regular
4371 || h->ref_regular
4372 || (h->u.weakdef != NULL
4373 && ! new_weakdef
4374 && h->u.weakdef->dynindx != -1))
4375 dynsym = TRUE;
4376 }
4377
4378 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4379 {
4380 /* We don't want to make debug symbol dynamic. */
4381 dynsym = FALSE;
4382 }
4383
4384 if (definition)
4385 h->target_internal = isym->st_target_internal;
4386
4387 /* Check to see if we need to add an indirect symbol for
4388 the default name. */
4389 if (definition || h->root.type == bfd_link_hash_common)
4390 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4391 &sec, &value, &dynsym,
4392 override))
4393 goto error_free_vers;
4394
4395 if (definition && !dynamic)
4396 {
4397 char *p = strchr (name, ELF_VER_CHR);
4398 if (p != NULL && p[1] != ELF_VER_CHR)
4399 {
4400 /* Queue non-default versions so that .symver x, x@FOO
4401 aliases can be checked. */
4402 if (!nondeflt_vers)
4403 {
4404 amt = ((isymend - isym + 1)
4405 * sizeof (struct elf_link_hash_entry *));
4406 nondeflt_vers =
4407 (struct elf_link_hash_entry **) bfd_malloc (amt);
4408 if (!nondeflt_vers)
4409 goto error_free_vers;
4410 }
4411 nondeflt_vers[nondeflt_vers_cnt++] = h;
4412 }
4413 }
4414
4415 if (dynsym && h->dynindx == -1)
4416 {
4417 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4418 goto error_free_vers;
4419 if (h->u.weakdef != NULL
4420 && ! new_weakdef
4421 && h->u.weakdef->dynindx == -1)
4422 {
4423 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4424 goto error_free_vers;
4425 }
4426 }
4427 else if (dynsym && h->dynindx != -1)
4428 /* If the symbol already has a dynamic index, but
4429 visibility says it should not be visible, turn it into
4430 a local symbol. */
4431 switch (ELF_ST_VISIBILITY (h->other))
4432 {
4433 case STV_INTERNAL:
4434 case STV_HIDDEN:
4435 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4436 dynsym = FALSE;
4437 break;
4438 }
4439
4440 if (!add_needed
4441 && definition
4442 && ((dynsym
4443 && h->ref_regular)
4444 || (h->ref_dynamic
4445 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4446 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4447 {
4448 int ret;
4449 const char *soname = elf_dt_name (abfd);
4450
4451 /* A symbol from a library loaded via DT_NEEDED of some
4452 other library is referenced by a regular object.
4453 Add a DT_NEEDED entry for it. Issue an error if
4454 --no-add-needed is used and the reference was not
4455 a weak one. */
4456 if (undef_bfd != NULL
4457 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4458 {
4459 (*_bfd_error_handler)
4460 (_("%B: undefined reference to symbol '%s'"),
4461 undef_bfd, name);
4462 (*_bfd_error_handler)
4463 (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4464 abfd, name);
4465 bfd_set_error (bfd_error_invalid_operation);
4466 goto error_free_vers;
4467 }
4468
4469 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4470 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4471
4472 add_needed = TRUE;
4473 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4474 if (ret < 0)
4475 goto error_free_vers;
4476
4477 BFD_ASSERT (ret == 0);
4478 }
4479 }
4480 }
4481
4482 if (extversym != NULL)
4483 {
4484 free (extversym);
4485 extversym = NULL;
4486 }
4487
4488 if (isymbuf != NULL)
4489 {
4490 free (isymbuf);
4491 isymbuf = NULL;
4492 }
4493
4494 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4495 {
4496 unsigned int i;
4497
4498 /* Restore the symbol table. */
4499 if (bed->as_needed_cleanup)
4500 (*bed->as_needed_cleanup) (abfd, info);
4501 old_hash = (char *) old_tab + tabsize;
4502 old_ent = (char *) old_hash + hashsize;
4503 sym_hash = elf_sym_hashes (abfd);
4504 htab->root.table.table = old_table;
4505 htab->root.table.size = old_size;
4506 htab->root.table.count = old_count;
4507 memcpy (htab->root.table.table, old_tab, tabsize);
4508 memcpy (sym_hash, old_hash, hashsize);
4509 htab->root.undefs = old_undefs;
4510 htab->root.undefs_tail = old_undefs_tail;
4511 for (i = 0; i < htab->root.table.size; i++)
4512 {
4513 struct bfd_hash_entry *p;
4514 struct elf_link_hash_entry *h;
4515
4516 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4517 {
4518 h = (struct elf_link_hash_entry *) p;
4519 if (h->root.type == bfd_link_hash_warning)
4520 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4521 if (h->dynindx >= old_dynsymcount)
4522 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4523
4524 memcpy (p, old_ent, htab->root.table.entsize);
4525 old_ent = (char *) old_ent + htab->root.table.entsize;
4526 h = (struct elf_link_hash_entry *) p;
4527 if (h->root.type == bfd_link_hash_warning)
4528 {
4529 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4530 old_ent = (char *) old_ent + htab->root.table.entsize;
4531 }
4532 }
4533 }
4534
4535 /* Make a special call to the linker "notice" function to
4536 tell it that symbols added for crefs may need to be removed. */
4537 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4538 notice_not_needed, 0, NULL))
4539 goto error_free_vers;
4540
4541 free (old_tab);
4542 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4543 alloc_mark);
4544 if (nondeflt_vers != NULL)
4545 free (nondeflt_vers);
4546 return TRUE;
4547 }
4548
4549 if (old_tab != NULL)
4550 {
4551 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4552 notice_needed, 0, NULL))
4553 goto error_free_vers;
4554 free (old_tab);
4555 old_tab = NULL;
4556 }
4557
4558 /* Now that all the symbols from this input file are created, handle
4559 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4560 if (nondeflt_vers != NULL)
4561 {
4562 bfd_size_type cnt, symidx;
4563
4564 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4565 {
4566 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4567 char *shortname, *p;
4568
4569 p = strchr (h->root.root.string, ELF_VER_CHR);
4570 if (p == NULL
4571 || (h->root.type != bfd_link_hash_defined
4572 && h->root.type != bfd_link_hash_defweak))
4573 continue;
4574
4575 amt = p - h->root.root.string;
4576 shortname = (char *) bfd_malloc (amt + 1);
4577 if (!shortname)
4578 goto error_free_vers;
4579 memcpy (shortname, h->root.root.string, amt);
4580 shortname[amt] = '\0';
4581
4582 hi = (struct elf_link_hash_entry *)
4583 bfd_link_hash_lookup (&htab->root, shortname,
4584 FALSE, FALSE, FALSE);
4585 if (hi != NULL
4586 && hi->root.type == h->root.type
4587 && hi->root.u.def.value == h->root.u.def.value
4588 && hi->root.u.def.section == h->root.u.def.section)
4589 {
4590 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4591 hi->root.type = bfd_link_hash_indirect;
4592 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4593 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4594 sym_hash = elf_sym_hashes (abfd);
4595 if (sym_hash)
4596 for (symidx = 0; symidx < extsymcount; ++symidx)
4597 if (sym_hash[symidx] == hi)
4598 {
4599 sym_hash[symidx] = h;
4600 break;
4601 }
4602 }
4603 free (shortname);
4604 }
4605 free (nondeflt_vers);
4606 nondeflt_vers = NULL;
4607 }
4608
4609 /* Now set the weakdefs field correctly for all the weak defined
4610 symbols we found. The only way to do this is to search all the
4611 symbols. Since we only need the information for non functions in
4612 dynamic objects, that's the only time we actually put anything on
4613 the list WEAKS. We need this information so that if a regular
4614 object refers to a symbol defined weakly in a dynamic object, the
4615 real symbol in the dynamic object is also put in the dynamic
4616 symbols; we also must arrange for both symbols to point to the
4617 same memory location. We could handle the general case of symbol
4618 aliasing, but a general symbol alias can only be generated in
4619 assembler code, handling it correctly would be very time
4620 consuming, and other ELF linkers don't handle general aliasing
4621 either. */
4622 if (weaks != NULL)
4623 {
4624 struct elf_link_hash_entry **hpp;
4625 struct elf_link_hash_entry **hppend;
4626 struct elf_link_hash_entry **sorted_sym_hash;
4627 struct elf_link_hash_entry *h;
4628 size_t sym_count;
4629
4630 /* Since we have to search the whole symbol list for each weak
4631 defined symbol, search time for N weak defined symbols will be
4632 O(N^2). Binary search will cut it down to O(NlogN). */
4633 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4634 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4635 if (sorted_sym_hash == NULL)
4636 goto error_return;
4637 sym_hash = sorted_sym_hash;
4638 hpp = elf_sym_hashes (abfd);
4639 hppend = hpp + extsymcount;
4640 sym_count = 0;
4641 for (; hpp < hppend; hpp++)
4642 {
4643 h = *hpp;
4644 if (h != NULL
4645 && h->root.type == bfd_link_hash_defined
4646 && !bed->is_function_type (h->type))
4647 {
4648 *sym_hash = h;
4649 sym_hash++;
4650 sym_count++;
4651 }
4652 }
4653
4654 qsort (sorted_sym_hash, sym_count,
4655 sizeof (struct elf_link_hash_entry *),
4656 elf_sort_symbol);
4657
4658 while (weaks != NULL)
4659 {
4660 struct elf_link_hash_entry *hlook;
4661 asection *slook;
4662 bfd_vma vlook;
4663 long ilook;
4664 size_t i, j, idx;
4665
4666 hlook = weaks;
4667 weaks = hlook->u.weakdef;
4668 hlook->u.weakdef = NULL;
4669
4670 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4671 || hlook->root.type == bfd_link_hash_defweak
4672 || hlook->root.type == bfd_link_hash_common
4673 || hlook->root.type == bfd_link_hash_indirect);
4674 slook = hlook->root.u.def.section;
4675 vlook = hlook->root.u.def.value;
4676
4677 ilook = -1;
4678 i = 0;
4679 j = sym_count;
4680 while (i < j)
4681 {
4682 bfd_signed_vma vdiff;
4683 idx = (i + j) / 2;
4684 h = sorted_sym_hash [idx];
4685 vdiff = vlook - h->root.u.def.value;
4686 if (vdiff < 0)
4687 j = idx;
4688 else if (vdiff > 0)
4689 i = idx + 1;
4690 else
4691 {
4692 long sdiff = slook->id - h->root.u.def.section->id;
4693 if (sdiff < 0)
4694 j = idx;
4695 else if (sdiff > 0)
4696 i = idx + 1;
4697 else
4698 {
4699 ilook = idx;
4700 break;
4701 }
4702 }
4703 }
4704
4705 /* We didn't find a value/section match. */
4706 if (ilook == -1)
4707 continue;
4708
4709 for (i = ilook; i < sym_count; i++)
4710 {
4711 h = sorted_sym_hash [i];
4712
4713 /* Stop if value or section doesn't match. */
4714 if (h->root.u.def.value != vlook
4715 || h->root.u.def.section != slook)
4716 break;
4717 else if (h != hlook)
4718 {
4719 hlook->u.weakdef = h;
4720
4721 /* If the weak definition is in the list of dynamic
4722 symbols, make sure the real definition is put
4723 there as well. */
4724 if (hlook->dynindx != -1 && h->dynindx == -1)
4725 {
4726 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4727 {
4728 err_free_sym_hash:
4729 free (sorted_sym_hash);
4730 goto error_return;
4731 }
4732 }
4733
4734 /* If the real definition is in the list of dynamic
4735 symbols, make sure the weak definition is put
4736 there as well. If we don't do this, then the
4737 dynamic loader might not merge the entries for the
4738 real definition and the weak definition. */
4739 if (h->dynindx != -1 && hlook->dynindx == -1)
4740 {
4741 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4742 goto err_free_sym_hash;
4743 }
4744 break;
4745 }
4746 }
4747 }
4748
4749 free (sorted_sym_hash);
4750 }
4751
4752 if (bed->check_directives
4753 && !(*bed->check_directives) (abfd, info))
4754 return FALSE;
4755
4756 /* If this object is the same format as the output object, and it is
4757 not a shared library, then let the backend look through the
4758 relocs.
4759
4760 This is required to build global offset table entries and to
4761 arrange for dynamic relocs. It is not required for the
4762 particular common case of linking non PIC code, even when linking
4763 against shared libraries, but unfortunately there is no way of
4764 knowing whether an object file has been compiled PIC or not.
4765 Looking through the relocs is not particularly time consuming.
4766 The problem is that we must either (1) keep the relocs in memory,
4767 which causes the linker to require additional runtime memory or
4768 (2) read the relocs twice from the input file, which wastes time.
4769 This would be a good case for using mmap.
4770
4771 I have no idea how to handle linking PIC code into a file of a
4772 different format. It probably can't be done. */
4773 if (! dynamic
4774 && is_elf_hash_table (htab)
4775 && bed->check_relocs != NULL
4776 && elf_object_id (abfd) == elf_hash_table_id (htab)
4777 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4778 {
4779 asection *o;
4780
4781 for (o = abfd->sections; o != NULL; o = o->next)
4782 {
4783 Elf_Internal_Rela *internal_relocs;
4784 bfd_boolean ok;
4785
4786 if ((o->flags & SEC_RELOC) == 0
4787 || o->reloc_count == 0
4788 || ((info->strip == strip_all || info->strip == strip_debugger)
4789 && (o->flags & SEC_DEBUGGING) != 0)
4790 || bfd_is_abs_section (o->output_section))
4791 continue;
4792
4793 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4794 info->keep_memory);
4795 if (internal_relocs == NULL)
4796 goto error_return;
4797
4798 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4799
4800 if (elf_section_data (o)->relocs != internal_relocs)
4801 free (internal_relocs);
4802
4803 if (! ok)
4804 goto error_return;
4805 }
4806 }
4807
4808 /* If this is a non-traditional link, try to optimize the handling
4809 of the .stab/.stabstr sections. */
4810 if (! dynamic
4811 && ! info->traditional_format
4812 && is_elf_hash_table (htab)
4813 && (info->strip != strip_all && info->strip != strip_debugger))
4814 {
4815 asection *stabstr;
4816
4817 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4818 if (stabstr != NULL)
4819 {
4820 bfd_size_type string_offset = 0;
4821 asection *stab;
4822
4823 for (stab = abfd->sections; stab; stab = stab->next)
4824 if (CONST_STRNEQ (stab->name, ".stab")
4825 && (!stab->name[5] ||
4826 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4827 && (stab->flags & SEC_MERGE) == 0
4828 && !bfd_is_abs_section (stab->output_section))
4829 {
4830 struct bfd_elf_section_data *secdata;
4831
4832 secdata = elf_section_data (stab);
4833 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4834 stabstr, &secdata->sec_info,
4835 &string_offset))
4836 goto error_return;
4837 if (secdata->sec_info)
4838 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4839 }
4840 }
4841 }
4842
4843 if (is_elf_hash_table (htab) && add_needed)
4844 {
4845 /* Add this bfd to the loaded list. */
4846 struct elf_link_loaded_list *n;
4847
4848 n = (struct elf_link_loaded_list *)
4849 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4850 if (n == NULL)
4851 goto error_return;
4852 n->abfd = abfd;
4853 n->next = htab->loaded;
4854 htab->loaded = n;
4855 }
4856
4857 return TRUE;
4858
4859 error_free_vers:
4860 if (old_tab != NULL)
4861 free (old_tab);
4862 if (nondeflt_vers != NULL)
4863 free (nondeflt_vers);
4864 if (extversym != NULL)
4865 free (extversym);
4866 error_free_sym:
4867 if (isymbuf != NULL)
4868 free (isymbuf);
4869 error_return:
4870 return FALSE;
4871 }
4872
4873 /* Return the linker hash table entry of a symbol that might be
4874 satisfied by an archive symbol. Return -1 on error. */
4875
4876 struct elf_link_hash_entry *
4877 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4878 struct bfd_link_info *info,
4879 const char *name)
4880 {
4881 struct elf_link_hash_entry *h;
4882 char *p, *copy;
4883 size_t len, first;
4884
4885 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4886 if (h != NULL)
4887 return h;
4888
4889 /* If this is a default version (the name contains @@), look up the
4890 symbol again with only one `@' as well as without the version.
4891 The effect is that references to the symbol with and without the
4892 version will be matched by the default symbol in the archive. */
4893
4894 p = strchr (name, ELF_VER_CHR);
4895 if (p == NULL || p[1] != ELF_VER_CHR)
4896 return h;
4897
4898 /* First check with only one `@'. */
4899 len = strlen (name);
4900 copy = (char *) bfd_alloc (abfd, len);
4901 if (copy == NULL)
4902 return (struct elf_link_hash_entry *) 0 - 1;
4903
4904 first = p - name + 1;
4905 memcpy (copy, name, first);
4906 memcpy (copy + first, name + first + 1, len - first);
4907
4908 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4909 if (h == NULL)
4910 {
4911 /* We also need to check references to the symbol without the
4912 version. */
4913 copy[first - 1] = '\0';
4914 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4915 FALSE, FALSE, TRUE);
4916 }
4917
4918 bfd_release (abfd, copy);
4919 return h;
4920 }
4921
4922 /* Add symbols from an ELF archive file to the linker hash table. We
4923 don't use _bfd_generic_link_add_archive_symbols because of a
4924 problem which arises on UnixWare. The UnixWare libc.so is an
4925 archive which includes an entry libc.so.1 which defines a bunch of
4926 symbols. The libc.so archive also includes a number of other
4927 object files, which also define symbols, some of which are the same
4928 as those defined in libc.so.1. Correct linking requires that we
4929 consider each object file in turn, and include it if it defines any
4930 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4931 this; it looks through the list of undefined symbols, and includes
4932 any object file which defines them. When this algorithm is used on
4933 UnixWare, it winds up pulling in libc.so.1 early and defining a
4934 bunch of symbols. This means that some of the other objects in the
4935 archive are not included in the link, which is incorrect since they
4936 precede libc.so.1 in the archive.
4937
4938 Fortunately, ELF archive handling is simpler than that done by
4939 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4940 oddities. In ELF, if we find a symbol in the archive map, and the
4941 symbol is currently undefined, we know that we must pull in that
4942 object file.
4943
4944 Unfortunately, we do have to make multiple passes over the symbol
4945 table until nothing further is resolved. */
4946
4947 static bfd_boolean
4948 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4949 {
4950 symindex c;
4951 bfd_boolean *defined = NULL;
4952 bfd_boolean *included = NULL;
4953 carsym *symdefs;
4954 bfd_boolean loop;
4955 bfd_size_type amt;
4956 const struct elf_backend_data *bed;
4957 struct elf_link_hash_entry * (*archive_symbol_lookup)
4958 (bfd *, struct bfd_link_info *, const char *);
4959
4960 if (! bfd_has_map (abfd))
4961 {
4962 /* An empty archive is a special case. */
4963 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4964 return TRUE;
4965 bfd_set_error (bfd_error_no_armap);
4966 return FALSE;
4967 }
4968
4969 /* Keep track of all symbols we know to be already defined, and all
4970 files we know to be already included. This is to speed up the
4971 second and subsequent passes. */
4972 c = bfd_ardata (abfd)->symdef_count;
4973 if (c == 0)
4974 return TRUE;
4975 amt = c;
4976 amt *= sizeof (bfd_boolean);
4977 defined = (bfd_boolean *) bfd_zmalloc (amt);
4978 included = (bfd_boolean *) bfd_zmalloc (amt);
4979 if (defined == NULL || included == NULL)
4980 goto error_return;
4981
4982 symdefs = bfd_ardata (abfd)->symdefs;
4983 bed = get_elf_backend_data (abfd);
4984 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4985
4986 do
4987 {
4988 file_ptr last;
4989 symindex i;
4990 carsym *symdef;
4991 carsym *symdefend;
4992
4993 loop = FALSE;
4994 last = -1;
4995
4996 symdef = symdefs;
4997 symdefend = symdef + c;
4998 for (i = 0; symdef < symdefend; symdef++, i++)
4999 {
5000 struct elf_link_hash_entry *h;
5001 bfd *element;
5002 struct bfd_link_hash_entry *undefs_tail;
5003 symindex mark;
5004
5005 if (defined[i] || included[i])
5006 continue;
5007 if (symdef->file_offset == last)
5008 {
5009 included[i] = TRUE;
5010 continue;
5011 }
5012
5013 h = archive_symbol_lookup (abfd, info, symdef->name);
5014 if (h == (struct elf_link_hash_entry *) 0 - 1)
5015 goto error_return;
5016
5017 if (h == NULL)
5018 continue;
5019
5020 if (h->root.type == bfd_link_hash_common)
5021 {
5022 /* We currently have a common symbol. The archive map contains
5023 a reference to this symbol, so we may want to include it. We
5024 only want to include it however, if this archive element
5025 contains a definition of the symbol, not just another common
5026 declaration of it.
5027
5028 Unfortunately some archivers (including GNU ar) will put
5029 declarations of common symbols into their archive maps, as
5030 well as real definitions, so we cannot just go by the archive
5031 map alone. Instead we must read in the element's symbol
5032 table and check that to see what kind of symbol definition
5033 this is. */
5034 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5035 continue;
5036 }
5037 else if (h->root.type != bfd_link_hash_undefined)
5038 {
5039 if (h->root.type != bfd_link_hash_undefweak)
5040 defined[i] = TRUE;
5041 continue;
5042 }
5043
5044 /* We need to include this archive member. */
5045 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5046 if (element == NULL)
5047 goto error_return;
5048
5049 if (! bfd_check_format (element, bfd_object))
5050 goto error_return;
5051
5052 /* Doublecheck that we have not included this object
5053 already--it should be impossible, but there may be
5054 something wrong with the archive. */
5055 if (element->archive_pass != 0)
5056 {
5057 bfd_set_error (bfd_error_bad_value);
5058 goto error_return;
5059 }
5060 element->archive_pass = 1;
5061
5062 undefs_tail = info->hash->undefs_tail;
5063
5064 if (!(*info->callbacks
5065 ->add_archive_element) (info, element, symdef->name, &element))
5066 goto error_return;
5067 if (!bfd_link_add_symbols (element, info))
5068 goto error_return;
5069
5070 /* If there are any new undefined symbols, we need to make
5071 another pass through the archive in order to see whether
5072 they can be defined. FIXME: This isn't perfect, because
5073 common symbols wind up on undefs_tail and because an
5074 undefined symbol which is defined later on in this pass
5075 does not require another pass. This isn't a bug, but it
5076 does make the code less efficient than it could be. */
5077 if (undefs_tail != info->hash->undefs_tail)
5078 loop = TRUE;
5079
5080 /* Look backward to mark all symbols from this object file
5081 which we have already seen in this pass. */
5082 mark = i;
5083 do
5084 {
5085 included[mark] = TRUE;
5086 if (mark == 0)
5087 break;
5088 --mark;
5089 }
5090 while (symdefs[mark].file_offset == symdef->file_offset);
5091
5092 /* We mark subsequent symbols from this object file as we go
5093 on through the loop. */
5094 last = symdef->file_offset;
5095 }
5096 }
5097 while (loop);
5098
5099 free (defined);
5100 free (included);
5101
5102 return TRUE;
5103
5104 error_return:
5105 if (defined != NULL)
5106 free (defined);
5107 if (included != NULL)
5108 free (included);
5109 return FALSE;
5110 }
5111
5112 /* Given an ELF BFD, add symbols to the global hash table as
5113 appropriate. */
5114
5115 bfd_boolean
5116 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5117 {
5118 switch (bfd_get_format (abfd))
5119 {
5120 case bfd_object:
5121 return elf_link_add_object_symbols (abfd, info);
5122 case bfd_archive:
5123 return elf_link_add_archive_symbols (abfd, info);
5124 default:
5125 bfd_set_error (bfd_error_wrong_format);
5126 return FALSE;
5127 }
5128 }
5129 \f
5130 struct hash_codes_info
5131 {
5132 unsigned long *hashcodes;
5133 bfd_boolean error;
5134 };
5135
5136 /* This function will be called though elf_link_hash_traverse to store
5137 all hash value of the exported symbols in an array. */
5138
5139 static bfd_boolean
5140 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5141 {
5142 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5143 const char *name;
5144 char *p;
5145 unsigned long ha;
5146 char *alc = NULL;
5147
5148 /* Ignore indirect symbols. These are added by the versioning code. */
5149 if (h->dynindx == -1)
5150 return TRUE;
5151
5152 name = h->root.root.string;
5153 p = strchr (name, ELF_VER_CHR);
5154 if (p != NULL)
5155 {
5156 alc = (char *) bfd_malloc (p - name + 1);
5157 if (alc == NULL)
5158 {
5159 inf->error = TRUE;
5160 return FALSE;
5161 }
5162 memcpy (alc, name, p - name);
5163 alc[p - name] = '\0';
5164 name = alc;
5165 }
5166
5167 /* Compute the hash value. */
5168 ha = bfd_elf_hash (name);
5169
5170 /* Store the found hash value in the array given as the argument. */
5171 *(inf->hashcodes)++ = ha;
5172
5173 /* And store it in the struct so that we can put it in the hash table
5174 later. */
5175 h->u.elf_hash_value = ha;
5176
5177 if (alc != NULL)
5178 free (alc);
5179
5180 return TRUE;
5181 }
5182
5183 struct collect_gnu_hash_codes
5184 {
5185 bfd *output_bfd;
5186 const struct elf_backend_data *bed;
5187 unsigned long int nsyms;
5188 unsigned long int maskbits;
5189 unsigned long int *hashcodes;
5190 unsigned long int *hashval;
5191 unsigned long int *indx;
5192 unsigned long int *counts;
5193 bfd_vma *bitmask;
5194 bfd_byte *contents;
5195 long int min_dynindx;
5196 unsigned long int bucketcount;
5197 unsigned long int symindx;
5198 long int local_indx;
5199 long int shift1, shift2;
5200 unsigned long int mask;
5201 bfd_boolean error;
5202 };
5203
5204 /* This function will be called though elf_link_hash_traverse to store
5205 all hash value of the exported symbols in an array. */
5206
5207 static bfd_boolean
5208 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5209 {
5210 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5211 const char *name;
5212 char *p;
5213 unsigned long ha;
5214 char *alc = NULL;
5215
5216 /* Ignore indirect symbols. These are added by the versioning code. */
5217 if (h->dynindx == -1)
5218 return TRUE;
5219
5220 /* Ignore also local symbols and undefined symbols. */
5221 if (! (*s->bed->elf_hash_symbol) (h))
5222 return TRUE;
5223
5224 name = h->root.root.string;
5225 p = strchr (name, ELF_VER_CHR);
5226 if (p != NULL)
5227 {
5228 alc = (char *) bfd_malloc (p - name + 1);
5229 if (alc == NULL)
5230 {
5231 s->error = TRUE;
5232 return FALSE;
5233 }
5234 memcpy (alc, name, p - name);
5235 alc[p - name] = '\0';
5236 name = alc;
5237 }
5238
5239 /* Compute the hash value. */
5240 ha = bfd_elf_gnu_hash (name);
5241
5242 /* Store the found hash value in the array for compute_bucket_count,
5243 and also for .dynsym reordering purposes. */
5244 s->hashcodes[s->nsyms] = ha;
5245 s->hashval[h->dynindx] = ha;
5246 ++s->nsyms;
5247 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5248 s->min_dynindx = h->dynindx;
5249
5250 if (alc != NULL)
5251 free (alc);
5252
5253 return TRUE;
5254 }
5255
5256 /* This function will be called though elf_link_hash_traverse to do
5257 final dynaminc symbol renumbering. */
5258
5259 static bfd_boolean
5260 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5261 {
5262 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5263 unsigned long int bucket;
5264 unsigned long int val;
5265
5266 /* Ignore indirect symbols. */
5267 if (h->dynindx == -1)
5268 return TRUE;
5269
5270 /* Ignore also local symbols and undefined symbols. */
5271 if (! (*s->bed->elf_hash_symbol) (h))
5272 {
5273 if (h->dynindx >= s->min_dynindx)
5274 h->dynindx = s->local_indx++;
5275 return TRUE;
5276 }
5277
5278 bucket = s->hashval[h->dynindx] % s->bucketcount;
5279 val = (s->hashval[h->dynindx] >> s->shift1)
5280 & ((s->maskbits >> s->shift1) - 1);
5281 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5282 s->bitmask[val]
5283 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5284 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5285 if (s->counts[bucket] == 1)
5286 /* Last element terminates the chain. */
5287 val |= 1;
5288 bfd_put_32 (s->output_bfd, val,
5289 s->contents + (s->indx[bucket] - s->symindx) * 4);
5290 --s->counts[bucket];
5291 h->dynindx = s->indx[bucket]++;
5292 return TRUE;
5293 }
5294
5295 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5296
5297 bfd_boolean
5298 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5299 {
5300 return !(h->forced_local
5301 || h->root.type == bfd_link_hash_undefined
5302 || h->root.type == bfd_link_hash_undefweak
5303 || ((h->root.type == bfd_link_hash_defined
5304 || h->root.type == bfd_link_hash_defweak)
5305 && h->root.u.def.section->output_section == NULL));
5306 }
5307
5308 /* Array used to determine the number of hash table buckets to use
5309 based on the number of symbols there are. If there are fewer than
5310 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5311 fewer than 37 we use 17 buckets, and so forth. We never use more
5312 than 32771 buckets. */
5313
5314 static const size_t elf_buckets[] =
5315 {
5316 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5317 16411, 32771, 0
5318 };
5319
5320 /* Compute bucket count for hashing table. We do not use a static set
5321 of possible tables sizes anymore. Instead we determine for all
5322 possible reasonable sizes of the table the outcome (i.e., the
5323 number of collisions etc) and choose the best solution. The
5324 weighting functions are not too simple to allow the table to grow
5325 without bounds. Instead one of the weighting factors is the size.
5326 Therefore the result is always a good payoff between few collisions
5327 (= short chain lengths) and table size. */
5328 static size_t
5329 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5330 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5331 unsigned long int nsyms,
5332 int gnu_hash)
5333 {
5334 size_t best_size = 0;
5335 unsigned long int i;
5336
5337 /* We have a problem here. The following code to optimize the table
5338 size requires an integer type with more the 32 bits. If
5339 BFD_HOST_U_64_BIT is set we know about such a type. */
5340 #ifdef BFD_HOST_U_64_BIT
5341 if (info->optimize)
5342 {
5343 size_t minsize;
5344 size_t maxsize;
5345 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5346 bfd *dynobj = elf_hash_table (info)->dynobj;
5347 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5348 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5349 unsigned long int *counts;
5350 bfd_size_type amt;
5351 unsigned int no_improvement_count = 0;
5352
5353 /* Possible optimization parameters: if we have NSYMS symbols we say
5354 that the hashing table must at least have NSYMS/4 and at most
5355 2*NSYMS buckets. */
5356 minsize = nsyms / 4;
5357 if (minsize == 0)
5358 minsize = 1;
5359 best_size = maxsize = nsyms * 2;
5360 if (gnu_hash)
5361 {
5362 if (minsize < 2)
5363 minsize = 2;
5364 if ((best_size & 31) == 0)
5365 ++best_size;
5366 }
5367
5368 /* Create array where we count the collisions in. We must use bfd_malloc
5369 since the size could be large. */
5370 amt = maxsize;
5371 amt *= sizeof (unsigned long int);
5372 counts = (unsigned long int *) bfd_malloc (amt);
5373 if (counts == NULL)
5374 return 0;
5375
5376 /* Compute the "optimal" size for the hash table. The criteria is a
5377 minimal chain length. The minor criteria is (of course) the size
5378 of the table. */
5379 for (i = minsize; i < maxsize; ++i)
5380 {
5381 /* Walk through the array of hashcodes and count the collisions. */
5382 BFD_HOST_U_64_BIT max;
5383 unsigned long int j;
5384 unsigned long int fact;
5385
5386 if (gnu_hash && (i & 31) == 0)
5387 continue;
5388
5389 memset (counts, '\0', i * sizeof (unsigned long int));
5390
5391 /* Determine how often each hash bucket is used. */
5392 for (j = 0; j < nsyms; ++j)
5393 ++counts[hashcodes[j] % i];
5394
5395 /* For the weight function we need some information about the
5396 pagesize on the target. This is information need not be 100%
5397 accurate. Since this information is not available (so far) we
5398 define it here to a reasonable default value. If it is crucial
5399 to have a better value some day simply define this value. */
5400 # ifndef BFD_TARGET_PAGESIZE
5401 # define BFD_TARGET_PAGESIZE (4096)
5402 # endif
5403
5404 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5405 and the chains. */
5406 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5407
5408 # if 1
5409 /* Variant 1: optimize for short chains. We add the squares
5410 of all the chain lengths (which favors many small chain
5411 over a few long chains). */
5412 for (j = 0; j < i; ++j)
5413 max += counts[j] * counts[j];
5414
5415 /* This adds penalties for the overall size of the table. */
5416 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5417 max *= fact * fact;
5418 # else
5419 /* Variant 2: Optimize a lot more for small table. Here we
5420 also add squares of the size but we also add penalties for
5421 empty slots (the +1 term). */
5422 for (j = 0; j < i; ++j)
5423 max += (1 + counts[j]) * (1 + counts[j]);
5424
5425 /* The overall size of the table is considered, but not as
5426 strong as in variant 1, where it is squared. */
5427 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5428 max *= fact;
5429 # endif
5430
5431 /* Compare with current best results. */
5432 if (max < best_chlen)
5433 {
5434 best_chlen = max;
5435 best_size = i;
5436 no_improvement_count = 0;
5437 }
5438 /* PR 11843: Avoid futile long searches for the best bucket size
5439 when there are a large number of symbols. */
5440 else if (++no_improvement_count == 100)
5441 break;
5442 }
5443
5444 free (counts);
5445 }
5446 else
5447 #endif /* defined (BFD_HOST_U_64_BIT) */
5448 {
5449 /* This is the fallback solution if no 64bit type is available or if we
5450 are not supposed to spend much time on optimizations. We select the
5451 bucket count using a fixed set of numbers. */
5452 for (i = 0; elf_buckets[i] != 0; i++)
5453 {
5454 best_size = elf_buckets[i];
5455 if (nsyms < elf_buckets[i + 1])
5456 break;
5457 }
5458 if (gnu_hash && best_size < 2)
5459 best_size = 2;
5460 }
5461
5462 return best_size;
5463 }
5464
5465 /* Size any SHT_GROUP section for ld -r. */
5466
5467 bfd_boolean
5468 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5469 {
5470 bfd *ibfd;
5471
5472 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5473 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5474 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5475 return FALSE;
5476 return TRUE;
5477 }
5478
5479 /* Set up the sizes and contents of the ELF dynamic sections. This is
5480 called by the ELF linker emulation before_allocation routine. We
5481 must set the sizes of the sections before the linker sets the
5482 addresses of the various sections. */
5483
5484 bfd_boolean
5485 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5486 const char *soname,
5487 const char *rpath,
5488 const char *filter_shlib,
5489 const char *audit,
5490 const char *depaudit,
5491 const char * const *auxiliary_filters,
5492 struct bfd_link_info *info,
5493 asection **sinterpptr)
5494 {
5495 bfd_size_type soname_indx;
5496 bfd *dynobj;
5497 const struct elf_backend_data *bed;
5498 struct elf_info_failed asvinfo;
5499
5500 *sinterpptr = NULL;
5501
5502 soname_indx = (bfd_size_type) -1;
5503
5504 if (!is_elf_hash_table (info->hash))
5505 return TRUE;
5506
5507 bed = get_elf_backend_data (output_bfd);
5508 if (info->execstack)
5509 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5510 else if (info->noexecstack)
5511 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5512 else
5513 {
5514 bfd *inputobj;
5515 asection *notesec = NULL;
5516 int exec = 0;
5517
5518 for (inputobj = info->input_bfds;
5519 inputobj;
5520 inputobj = inputobj->link_next)
5521 {
5522 asection *s;
5523
5524 if (inputobj->flags
5525 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5526 continue;
5527 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5528 if (s)
5529 {
5530 if (s->flags & SEC_CODE)
5531 exec = PF_X;
5532 notesec = s;
5533 }
5534 else if (bed->default_execstack)
5535 exec = PF_X;
5536 }
5537 if (notesec)
5538 {
5539 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5540 if (exec && info->relocatable
5541 && notesec->output_section != bfd_abs_section_ptr)
5542 notesec->output_section->flags |= SEC_CODE;
5543 }
5544 }
5545
5546 /* Any syms created from now on start with -1 in
5547 got.refcount/offset and plt.refcount/offset. */
5548 elf_hash_table (info)->init_got_refcount
5549 = elf_hash_table (info)->init_got_offset;
5550 elf_hash_table (info)->init_plt_refcount
5551 = elf_hash_table (info)->init_plt_offset;
5552
5553 if (info->relocatable
5554 && !_bfd_elf_size_group_sections (info))
5555 return FALSE;
5556
5557 /* The backend may have to create some sections regardless of whether
5558 we're dynamic or not. */
5559 if (bed->elf_backend_always_size_sections
5560 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5561 return FALSE;
5562
5563 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5564 return FALSE;
5565
5566 dynobj = elf_hash_table (info)->dynobj;
5567
5568 /* If there were no dynamic objects in the link, there is nothing to
5569 do here. */
5570 if (dynobj == NULL)
5571 return TRUE;
5572
5573 if (elf_hash_table (info)->dynamic_sections_created)
5574 {
5575 struct elf_info_failed eif;
5576 struct elf_link_hash_entry *h;
5577 asection *dynstr;
5578 struct bfd_elf_version_tree *t;
5579 struct bfd_elf_version_expr *d;
5580 asection *s;
5581 bfd_boolean all_defined;
5582
5583 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5584 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5585
5586 if (soname != NULL)
5587 {
5588 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5589 soname, TRUE);
5590 if (soname_indx == (bfd_size_type) -1
5591 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5592 return FALSE;
5593 }
5594
5595 if (info->symbolic)
5596 {
5597 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5598 return FALSE;
5599 info->flags |= DF_SYMBOLIC;
5600 }
5601
5602 if (rpath != NULL)
5603 {
5604 bfd_size_type indx;
5605
5606 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5607 TRUE);
5608 if (indx == (bfd_size_type) -1
5609 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5610 return FALSE;
5611
5612 if (info->new_dtags)
5613 {
5614 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5615 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5616 return FALSE;
5617 }
5618 }
5619
5620 if (filter_shlib != NULL)
5621 {
5622 bfd_size_type indx;
5623
5624 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5625 filter_shlib, TRUE);
5626 if (indx == (bfd_size_type) -1
5627 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5628 return FALSE;
5629 }
5630
5631 if (auxiliary_filters != NULL)
5632 {
5633 const char * const *p;
5634
5635 for (p = auxiliary_filters; *p != NULL; p++)
5636 {
5637 bfd_size_type indx;
5638
5639 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5640 *p, TRUE);
5641 if (indx == (bfd_size_type) -1
5642 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5643 return FALSE;
5644 }
5645 }
5646
5647 if (audit != NULL)
5648 {
5649 bfd_size_type indx;
5650
5651 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5652 TRUE);
5653 if (indx == (bfd_size_type) -1
5654 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5655 return FALSE;
5656 }
5657
5658 if (depaudit != NULL)
5659 {
5660 bfd_size_type indx;
5661
5662 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5663 TRUE);
5664 if (indx == (bfd_size_type) -1
5665 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5666 return FALSE;
5667 }
5668
5669 eif.info = info;
5670 eif.failed = FALSE;
5671
5672 /* If we are supposed to export all symbols into the dynamic symbol
5673 table (this is not the normal case), then do so. */
5674 if (info->export_dynamic
5675 || (info->executable && info->dynamic))
5676 {
5677 elf_link_hash_traverse (elf_hash_table (info),
5678 _bfd_elf_export_symbol,
5679 &eif);
5680 if (eif.failed)
5681 return FALSE;
5682 }
5683
5684 /* Make all global versions with definition. */
5685 for (t = info->version_info; t != NULL; t = t->next)
5686 for (d = t->globals.list; d != NULL; d = d->next)
5687 if (!d->symver && d->literal)
5688 {
5689 const char *verstr, *name;
5690 size_t namelen, verlen, newlen;
5691 char *newname, *p, leading_char;
5692 struct elf_link_hash_entry *newh;
5693
5694 leading_char = bfd_get_symbol_leading_char (output_bfd);
5695 name = d->pattern;
5696 namelen = strlen (name) + (leading_char != '\0');
5697 verstr = t->name;
5698 verlen = strlen (verstr);
5699 newlen = namelen + verlen + 3;
5700
5701 newname = (char *) bfd_malloc (newlen);
5702 if (newname == NULL)
5703 return FALSE;
5704 newname[0] = leading_char;
5705 memcpy (newname + (leading_char != '\0'), name, namelen);
5706
5707 /* Check the hidden versioned definition. */
5708 p = newname + namelen;
5709 *p++ = ELF_VER_CHR;
5710 memcpy (p, verstr, verlen + 1);
5711 newh = elf_link_hash_lookup (elf_hash_table (info),
5712 newname, FALSE, FALSE,
5713 FALSE);
5714 if (newh == NULL
5715 || (newh->root.type != bfd_link_hash_defined
5716 && newh->root.type != bfd_link_hash_defweak))
5717 {
5718 /* Check the default versioned definition. */
5719 *p++ = ELF_VER_CHR;
5720 memcpy (p, verstr, verlen + 1);
5721 newh = elf_link_hash_lookup (elf_hash_table (info),
5722 newname, FALSE, FALSE,
5723 FALSE);
5724 }
5725 free (newname);
5726
5727 /* Mark this version if there is a definition and it is
5728 not defined in a shared object. */
5729 if (newh != NULL
5730 && !newh->def_dynamic
5731 && (newh->root.type == bfd_link_hash_defined
5732 || newh->root.type == bfd_link_hash_defweak))
5733 d->symver = 1;
5734 }
5735
5736 /* Attach all the symbols to their version information. */
5737 asvinfo.info = info;
5738 asvinfo.failed = FALSE;
5739
5740 elf_link_hash_traverse (elf_hash_table (info),
5741 _bfd_elf_link_assign_sym_version,
5742 &asvinfo);
5743 if (asvinfo.failed)
5744 return FALSE;
5745
5746 if (!info->allow_undefined_version)
5747 {
5748 /* Check if all global versions have a definition. */
5749 all_defined = TRUE;
5750 for (t = info->version_info; t != NULL; t = t->next)
5751 for (d = t->globals.list; d != NULL; d = d->next)
5752 if (d->literal && !d->symver && !d->script)
5753 {
5754 (*_bfd_error_handler)
5755 (_("%s: undefined version: %s"),
5756 d->pattern, t->name);
5757 all_defined = FALSE;
5758 }
5759
5760 if (!all_defined)
5761 {
5762 bfd_set_error (bfd_error_bad_value);
5763 return FALSE;
5764 }
5765 }
5766
5767 /* Find all symbols which were defined in a dynamic object and make
5768 the backend pick a reasonable value for them. */
5769 elf_link_hash_traverse (elf_hash_table (info),
5770 _bfd_elf_adjust_dynamic_symbol,
5771 &eif);
5772 if (eif.failed)
5773 return FALSE;
5774
5775 /* Add some entries to the .dynamic section. We fill in some of the
5776 values later, in bfd_elf_final_link, but we must add the entries
5777 now so that we know the final size of the .dynamic section. */
5778
5779 /* If there are initialization and/or finalization functions to
5780 call then add the corresponding DT_INIT/DT_FINI entries. */
5781 h = (info->init_function
5782 ? elf_link_hash_lookup (elf_hash_table (info),
5783 info->init_function, FALSE,
5784 FALSE, FALSE)
5785 : NULL);
5786 if (h != NULL
5787 && (h->ref_regular
5788 || h->def_regular))
5789 {
5790 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5791 return FALSE;
5792 }
5793 h = (info->fini_function
5794 ? elf_link_hash_lookup (elf_hash_table (info),
5795 info->fini_function, FALSE,
5796 FALSE, FALSE)
5797 : NULL);
5798 if (h != NULL
5799 && (h->ref_regular
5800 || h->def_regular))
5801 {
5802 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5803 return FALSE;
5804 }
5805
5806 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5807 if (s != NULL && s->linker_has_input)
5808 {
5809 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5810 if (! info->executable)
5811 {
5812 bfd *sub;
5813 asection *o;
5814
5815 for (sub = info->input_bfds; sub != NULL;
5816 sub = sub->link_next)
5817 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5818 for (o = sub->sections; o != NULL; o = o->next)
5819 if (elf_section_data (o)->this_hdr.sh_type
5820 == SHT_PREINIT_ARRAY)
5821 {
5822 (*_bfd_error_handler)
5823 (_("%B: .preinit_array section is not allowed in DSO"),
5824 sub);
5825 break;
5826 }
5827
5828 bfd_set_error (bfd_error_nonrepresentable_section);
5829 return FALSE;
5830 }
5831
5832 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5833 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5834 return FALSE;
5835 }
5836 s = bfd_get_section_by_name (output_bfd, ".init_array");
5837 if (s != NULL && s->linker_has_input)
5838 {
5839 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5840 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5841 return FALSE;
5842 }
5843 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5844 if (s != NULL && s->linker_has_input)
5845 {
5846 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5847 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5848 return FALSE;
5849 }
5850
5851 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5852 /* If .dynstr is excluded from the link, we don't want any of
5853 these tags. Strictly, we should be checking each section
5854 individually; This quick check covers for the case where
5855 someone does a /DISCARD/ : { *(*) }. */
5856 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5857 {
5858 bfd_size_type strsize;
5859
5860 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5861 if ((info->emit_hash
5862 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5863 || (info->emit_gnu_hash
5864 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5865 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5866 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5867 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5868 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5869 bed->s->sizeof_sym))
5870 return FALSE;
5871 }
5872 }
5873
5874 /* The backend must work out the sizes of all the other dynamic
5875 sections. */
5876 if (bed->elf_backend_size_dynamic_sections
5877 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5878 return FALSE;
5879
5880 if (elf_hash_table (info)->dynamic_sections_created)
5881 {
5882 unsigned long section_sym_count;
5883 struct bfd_elf_version_tree *verdefs;
5884 asection *s;
5885
5886 /* Set up the version definition section. */
5887 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5888 BFD_ASSERT (s != NULL);
5889
5890 /* We may have created additional version definitions if we are
5891 just linking a regular application. */
5892 verdefs = info->version_info;
5893
5894 /* Skip anonymous version tag. */
5895 if (verdefs != NULL && verdefs->vernum == 0)
5896 verdefs = verdefs->next;
5897
5898 if (verdefs == NULL && !info->create_default_symver)
5899 s->flags |= SEC_EXCLUDE;
5900 else
5901 {
5902 unsigned int cdefs;
5903 bfd_size_type size;
5904 struct bfd_elf_version_tree *t;
5905 bfd_byte *p;
5906 Elf_Internal_Verdef def;
5907 Elf_Internal_Verdaux defaux;
5908 struct bfd_link_hash_entry *bh;
5909 struct elf_link_hash_entry *h;
5910 const char *name;
5911
5912 cdefs = 0;
5913 size = 0;
5914
5915 /* Make space for the base version. */
5916 size += sizeof (Elf_External_Verdef);
5917 size += sizeof (Elf_External_Verdaux);
5918 ++cdefs;
5919
5920 /* Make space for the default version. */
5921 if (info->create_default_symver)
5922 {
5923 size += sizeof (Elf_External_Verdef);
5924 ++cdefs;
5925 }
5926
5927 for (t = verdefs; t != NULL; t = t->next)
5928 {
5929 struct bfd_elf_version_deps *n;
5930
5931 /* Don't emit base version twice. */
5932 if (t->vernum == 0)
5933 continue;
5934
5935 size += sizeof (Elf_External_Verdef);
5936 size += sizeof (Elf_External_Verdaux);
5937 ++cdefs;
5938
5939 for (n = t->deps; n != NULL; n = n->next)
5940 size += sizeof (Elf_External_Verdaux);
5941 }
5942
5943 s->size = size;
5944 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5945 if (s->contents == NULL && s->size != 0)
5946 return FALSE;
5947
5948 /* Fill in the version definition section. */
5949
5950 p = s->contents;
5951
5952 def.vd_version = VER_DEF_CURRENT;
5953 def.vd_flags = VER_FLG_BASE;
5954 def.vd_ndx = 1;
5955 def.vd_cnt = 1;
5956 if (info->create_default_symver)
5957 {
5958 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5959 def.vd_next = sizeof (Elf_External_Verdef);
5960 }
5961 else
5962 {
5963 def.vd_aux = sizeof (Elf_External_Verdef);
5964 def.vd_next = (sizeof (Elf_External_Verdef)
5965 + sizeof (Elf_External_Verdaux));
5966 }
5967
5968 if (soname_indx != (bfd_size_type) -1)
5969 {
5970 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5971 soname_indx);
5972 def.vd_hash = bfd_elf_hash (soname);
5973 defaux.vda_name = soname_indx;
5974 name = soname;
5975 }
5976 else
5977 {
5978 bfd_size_type indx;
5979
5980 name = lbasename (output_bfd->filename);
5981 def.vd_hash = bfd_elf_hash (name);
5982 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5983 name, FALSE);
5984 if (indx == (bfd_size_type) -1)
5985 return FALSE;
5986 defaux.vda_name = indx;
5987 }
5988 defaux.vda_next = 0;
5989
5990 _bfd_elf_swap_verdef_out (output_bfd, &def,
5991 (Elf_External_Verdef *) p);
5992 p += sizeof (Elf_External_Verdef);
5993 if (info->create_default_symver)
5994 {
5995 /* Add a symbol representing this version. */
5996 bh = NULL;
5997 if (! (_bfd_generic_link_add_one_symbol
5998 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
5999 0, NULL, FALSE,
6000 get_elf_backend_data (dynobj)->collect, &bh)))
6001 return FALSE;
6002 h = (struct elf_link_hash_entry *) bh;
6003 h->non_elf = 0;
6004 h->def_regular = 1;
6005 h->type = STT_OBJECT;
6006 h->verinfo.vertree = NULL;
6007
6008 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6009 return FALSE;
6010
6011 /* Create a duplicate of the base version with the same
6012 aux block, but different flags. */
6013 def.vd_flags = 0;
6014 def.vd_ndx = 2;
6015 def.vd_aux = sizeof (Elf_External_Verdef);
6016 if (verdefs)
6017 def.vd_next = (sizeof (Elf_External_Verdef)
6018 + sizeof (Elf_External_Verdaux));
6019 else
6020 def.vd_next = 0;
6021 _bfd_elf_swap_verdef_out (output_bfd, &def,
6022 (Elf_External_Verdef *) p);
6023 p += sizeof (Elf_External_Verdef);
6024 }
6025 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6026 (Elf_External_Verdaux *) p);
6027 p += sizeof (Elf_External_Verdaux);
6028
6029 for (t = verdefs; t != NULL; t = t->next)
6030 {
6031 unsigned int cdeps;
6032 struct bfd_elf_version_deps *n;
6033
6034 /* Don't emit the base version twice. */
6035 if (t->vernum == 0)
6036 continue;
6037
6038 cdeps = 0;
6039 for (n = t->deps; n != NULL; n = n->next)
6040 ++cdeps;
6041
6042 /* Add a symbol representing this version. */
6043 bh = NULL;
6044 if (! (_bfd_generic_link_add_one_symbol
6045 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6046 0, NULL, FALSE,
6047 get_elf_backend_data (dynobj)->collect, &bh)))
6048 return FALSE;
6049 h = (struct elf_link_hash_entry *) bh;
6050 h->non_elf = 0;
6051 h->def_regular = 1;
6052 h->type = STT_OBJECT;
6053 h->verinfo.vertree = t;
6054
6055 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6056 return FALSE;
6057
6058 def.vd_version = VER_DEF_CURRENT;
6059 def.vd_flags = 0;
6060 if (t->globals.list == NULL
6061 && t->locals.list == NULL
6062 && ! t->used)
6063 def.vd_flags |= VER_FLG_WEAK;
6064 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6065 def.vd_cnt = cdeps + 1;
6066 def.vd_hash = bfd_elf_hash (t->name);
6067 def.vd_aux = sizeof (Elf_External_Verdef);
6068 def.vd_next = 0;
6069
6070 /* If a basever node is next, it *must* be the last node in
6071 the chain, otherwise Verdef construction breaks. */
6072 if (t->next != NULL && t->next->vernum == 0)
6073 BFD_ASSERT (t->next->next == NULL);
6074
6075 if (t->next != NULL && t->next->vernum != 0)
6076 def.vd_next = (sizeof (Elf_External_Verdef)
6077 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6078
6079 _bfd_elf_swap_verdef_out (output_bfd, &def,
6080 (Elf_External_Verdef *) p);
6081 p += sizeof (Elf_External_Verdef);
6082
6083 defaux.vda_name = h->dynstr_index;
6084 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6085 h->dynstr_index);
6086 defaux.vda_next = 0;
6087 if (t->deps != NULL)
6088 defaux.vda_next = sizeof (Elf_External_Verdaux);
6089 t->name_indx = defaux.vda_name;
6090
6091 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6092 (Elf_External_Verdaux *) p);
6093 p += sizeof (Elf_External_Verdaux);
6094
6095 for (n = t->deps; n != NULL; n = n->next)
6096 {
6097 if (n->version_needed == NULL)
6098 {
6099 /* This can happen if there was an error in the
6100 version script. */
6101 defaux.vda_name = 0;
6102 }
6103 else
6104 {
6105 defaux.vda_name = n->version_needed->name_indx;
6106 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6107 defaux.vda_name);
6108 }
6109 if (n->next == NULL)
6110 defaux.vda_next = 0;
6111 else
6112 defaux.vda_next = sizeof (Elf_External_Verdaux);
6113
6114 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6115 (Elf_External_Verdaux *) p);
6116 p += sizeof (Elf_External_Verdaux);
6117 }
6118 }
6119
6120 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6121 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6122 return FALSE;
6123
6124 elf_tdata (output_bfd)->cverdefs = cdefs;
6125 }
6126
6127 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6128 {
6129 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6130 return FALSE;
6131 }
6132 else if (info->flags & DF_BIND_NOW)
6133 {
6134 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6135 return FALSE;
6136 }
6137
6138 if (info->flags_1)
6139 {
6140 if (info->executable)
6141 info->flags_1 &= ~ (DF_1_INITFIRST
6142 | DF_1_NODELETE
6143 | DF_1_NOOPEN);
6144 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6145 return FALSE;
6146 }
6147
6148 /* Work out the size of the version reference section. */
6149
6150 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
6151 BFD_ASSERT (s != NULL);
6152 {
6153 struct elf_find_verdep_info sinfo;
6154
6155 sinfo.info = info;
6156 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6157 if (sinfo.vers == 0)
6158 sinfo.vers = 1;
6159 sinfo.failed = FALSE;
6160
6161 elf_link_hash_traverse (elf_hash_table (info),
6162 _bfd_elf_link_find_version_dependencies,
6163 &sinfo);
6164 if (sinfo.failed)
6165 return FALSE;
6166
6167 if (elf_tdata (output_bfd)->verref == NULL)
6168 s->flags |= SEC_EXCLUDE;
6169 else
6170 {
6171 Elf_Internal_Verneed *t;
6172 unsigned int size;
6173 unsigned int crefs;
6174 bfd_byte *p;
6175
6176 /* Build the version dependency section. */
6177 size = 0;
6178 crefs = 0;
6179 for (t = elf_tdata (output_bfd)->verref;
6180 t != NULL;
6181 t = t->vn_nextref)
6182 {
6183 Elf_Internal_Vernaux *a;
6184
6185 size += sizeof (Elf_External_Verneed);
6186 ++crefs;
6187 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6188 size += sizeof (Elf_External_Vernaux);
6189 }
6190
6191 s->size = size;
6192 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6193 if (s->contents == NULL)
6194 return FALSE;
6195
6196 p = s->contents;
6197 for (t = elf_tdata (output_bfd)->verref;
6198 t != NULL;
6199 t = t->vn_nextref)
6200 {
6201 unsigned int caux;
6202 Elf_Internal_Vernaux *a;
6203 bfd_size_type indx;
6204
6205 caux = 0;
6206 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6207 ++caux;
6208
6209 t->vn_version = VER_NEED_CURRENT;
6210 t->vn_cnt = caux;
6211 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6212 elf_dt_name (t->vn_bfd) != NULL
6213 ? elf_dt_name (t->vn_bfd)
6214 : lbasename (t->vn_bfd->filename),
6215 FALSE);
6216 if (indx == (bfd_size_type) -1)
6217 return FALSE;
6218 t->vn_file = indx;
6219 t->vn_aux = sizeof (Elf_External_Verneed);
6220 if (t->vn_nextref == NULL)
6221 t->vn_next = 0;
6222 else
6223 t->vn_next = (sizeof (Elf_External_Verneed)
6224 + caux * sizeof (Elf_External_Vernaux));
6225
6226 _bfd_elf_swap_verneed_out (output_bfd, t,
6227 (Elf_External_Verneed *) p);
6228 p += sizeof (Elf_External_Verneed);
6229
6230 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6231 {
6232 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6233 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6234 a->vna_nodename, FALSE);
6235 if (indx == (bfd_size_type) -1)
6236 return FALSE;
6237 a->vna_name = indx;
6238 if (a->vna_nextptr == NULL)
6239 a->vna_next = 0;
6240 else
6241 a->vna_next = sizeof (Elf_External_Vernaux);
6242
6243 _bfd_elf_swap_vernaux_out (output_bfd, a,
6244 (Elf_External_Vernaux *) p);
6245 p += sizeof (Elf_External_Vernaux);
6246 }
6247 }
6248
6249 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6250 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6251 return FALSE;
6252
6253 elf_tdata (output_bfd)->cverrefs = crefs;
6254 }
6255 }
6256
6257 if ((elf_tdata (output_bfd)->cverrefs == 0
6258 && elf_tdata (output_bfd)->cverdefs == 0)
6259 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6260 &section_sym_count) == 0)
6261 {
6262 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6263 s->flags |= SEC_EXCLUDE;
6264 }
6265 }
6266 return TRUE;
6267 }
6268
6269 /* Find the first non-excluded output section. We'll use its
6270 section symbol for some emitted relocs. */
6271 void
6272 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6273 {
6274 asection *s;
6275
6276 for (s = output_bfd->sections; s != NULL; s = s->next)
6277 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6278 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6279 {
6280 elf_hash_table (info)->text_index_section = s;
6281 break;
6282 }
6283 }
6284
6285 /* Find two non-excluded output sections, one for code, one for data.
6286 We'll use their section symbols for some emitted relocs. */
6287 void
6288 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6289 {
6290 asection *s;
6291
6292 /* Data first, since setting text_index_section changes
6293 _bfd_elf_link_omit_section_dynsym. */
6294 for (s = output_bfd->sections; s != NULL; s = s->next)
6295 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6296 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6297 {
6298 elf_hash_table (info)->data_index_section = s;
6299 break;
6300 }
6301
6302 for (s = output_bfd->sections; s != NULL; s = s->next)
6303 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6304 == (SEC_ALLOC | SEC_READONLY))
6305 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6306 {
6307 elf_hash_table (info)->text_index_section = s;
6308 break;
6309 }
6310
6311 if (elf_hash_table (info)->text_index_section == NULL)
6312 elf_hash_table (info)->text_index_section
6313 = elf_hash_table (info)->data_index_section;
6314 }
6315
6316 bfd_boolean
6317 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6318 {
6319 const struct elf_backend_data *bed;
6320
6321 if (!is_elf_hash_table (info->hash))
6322 return TRUE;
6323
6324 bed = get_elf_backend_data (output_bfd);
6325 (*bed->elf_backend_init_index_section) (output_bfd, info);
6326
6327 if (elf_hash_table (info)->dynamic_sections_created)
6328 {
6329 bfd *dynobj;
6330 asection *s;
6331 bfd_size_type dynsymcount;
6332 unsigned long section_sym_count;
6333 unsigned int dtagcount;
6334
6335 dynobj = elf_hash_table (info)->dynobj;
6336
6337 /* Assign dynsym indicies. In a shared library we generate a
6338 section symbol for each output section, which come first.
6339 Next come all of the back-end allocated local dynamic syms,
6340 followed by the rest of the global symbols. */
6341
6342 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6343 &section_sym_count);
6344
6345 /* Work out the size of the symbol version section. */
6346 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6347 BFD_ASSERT (s != NULL);
6348 if (dynsymcount != 0
6349 && (s->flags & SEC_EXCLUDE) == 0)
6350 {
6351 s->size = dynsymcount * sizeof (Elf_External_Versym);
6352 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6353 if (s->contents == NULL)
6354 return FALSE;
6355
6356 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6357 return FALSE;
6358 }
6359
6360 /* Set the size of the .dynsym and .hash sections. We counted
6361 the number of dynamic symbols in elf_link_add_object_symbols.
6362 We will build the contents of .dynsym and .hash when we build
6363 the final symbol table, because until then we do not know the
6364 correct value to give the symbols. We built the .dynstr
6365 section as we went along in elf_link_add_object_symbols. */
6366 s = bfd_get_section_by_name (dynobj, ".dynsym");
6367 BFD_ASSERT (s != NULL);
6368 s->size = dynsymcount * bed->s->sizeof_sym;
6369
6370 if (dynsymcount != 0)
6371 {
6372 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6373 if (s->contents == NULL)
6374 return FALSE;
6375
6376 /* The first entry in .dynsym is a dummy symbol.
6377 Clear all the section syms, in case we don't output them all. */
6378 ++section_sym_count;
6379 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6380 }
6381
6382 elf_hash_table (info)->bucketcount = 0;
6383
6384 /* Compute the size of the hashing table. As a side effect this
6385 computes the hash values for all the names we export. */
6386 if (info->emit_hash)
6387 {
6388 unsigned long int *hashcodes;
6389 struct hash_codes_info hashinf;
6390 bfd_size_type amt;
6391 unsigned long int nsyms;
6392 size_t bucketcount;
6393 size_t hash_entry_size;
6394
6395 /* Compute the hash values for all exported symbols. At the same
6396 time store the values in an array so that we could use them for
6397 optimizations. */
6398 amt = dynsymcount * sizeof (unsigned long int);
6399 hashcodes = (unsigned long int *) bfd_malloc (amt);
6400 if (hashcodes == NULL)
6401 return FALSE;
6402 hashinf.hashcodes = hashcodes;
6403 hashinf.error = FALSE;
6404
6405 /* Put all hash values in HASHCODES. */
6406 elf_link_hash_traverse (elf_hash_table (info),
6407 elf_collect_hash_codes, &hashinf);
6408 if (hashinf.error)
6409 {
6410 free (hashcodes);
6411 return FALSE;
6412 }
6413
6414 nsyms = hashinf.hashcodes - hashcodes;
6415 bucketcount
6416 = compute_bucket_count (info, hashcodes, nsyms, 0);
6417 free (hashcodes);
6418
6419 if (bucketcount == 0)
6420 return FALSE;
6421
6422 elf_hash_table (info)->bucketcount = bucketcount;
6423
6424 s = bfd_get_section_by_name (dynobj, ".hash");
6425 BFD_ASSERT (s != NULL);
6426 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6427 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6428 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6429 if (s->contents == NULL)
6430 return FALSE;
6431
6432 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6433 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6434 s->contents + hash_entry_size);
6435 }
6436
6437 if (info->emit_gnu_hash)
6438 {
6439 size_t i, cnt;
6440 unsigned char *contents;
6441 struct collect_gnu_hash_codes cinfo;
6442 bfd_size_type amt;
6443 size_t bucketcount;
6444
6445 memset (&cinfo, 0, sizeof (cinfo));
6446
6447 /* Compute the hash values for all exported symbols. At the same
6448 time store the values in an array so that we could use them for
6449 optimizations. */
6450 amt = dynsymcount * 2 * sizeof (unsigned long int);
6451 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6452 if (cinfo.hashcodes == NULL)
6453 return FALSE;
6454
6455 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6456 cinfo.min_dynindx = -1;
6457 cinfo.output_bfd = output_bfd;
6458 cinfo.bed = bed;
6459
6460 /* Put all hash values in HASHCODES. */
6461 elf_link_hash_traverse (elf_hash_table (info),
6462 elf_collect_gnu_hash_codes, &cinfo);
6463 if (cinfo.error)
6464 {
6465 free (cinfo.hashcodes);
6466 return FALSE;
6467 }
6468
6469 bucketcount
6470 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6471
6472 if (bucketcount == 0)
6473 {
6474 free (cinfo.hashcodes);
6475 return FALSE;
6476 }
6477
6478 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6479 BFD_ASSERT (s != NULL);
6480
6481 if (cinfo.nsyms == 0)
6482 {
6483 /* Empty .gnu.hash section is special. */
6484 BFD_ASSERT (cinfo.min_dynindx == -1);
6485 free (cinfo.hashcodes);
6486 s->size = 5 * 4 + bed->s->arch_size / 8;
6487 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6488 if (contents == NULL)
6489 return FALSE;
6490 s->contents = contents;
6491 /* 1 empty bucket. */
6492 bfd_put_32 (output_bfd, 1, contents);
6493 /* SYMIDX above the special symbol 0. */
6494 bfd_put_32 (output_bfd, 1, contents + 4);
6495 /* Just one word for bitmask. */
6496 bfd_put_32 (output_bfd, 1, contents + 8);
6497 /* Only hash fn bloom filter. */
6498 bfd_put_32 (output_bfd, 0, contents + 12);
6499 /* No hashes are valid - empty bitmask. */
6500 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6501 /* No hashes in the only bucket. */
6502 bfd_put_32 (output_bfd, 0,
6503 contents + 16 + bed->s->arch_size / 8);
6504 }
6505 else
6506 {
6507 unsigned long int maskwords, maskbitslog2, x;
6508 BFD_ASSERT (cinfo.min_dynindx != -1);
6509
6510 x = cinfo.nsyms;
6511 maskbitslog2 = 1;
6512 while ((x >>= 1) != 0)
6513 ++maskbitslog2;
6514 if (maskbitslog2 < 3)
6515 maskbitslog2 = 5;
6516 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6517 maskbitslog2 = maskbitslog2 + 3;
6518 else
6519 maskbitslog2 = maskbitslog2 + 2;
6520 if (bed->s->arch_size == 64)
6521 {
6522 if (maskbitslog2 == 5)
6523 maskbitslog2 = 6;
6524 cinfo.shift1 = 6;
6525 }
6526 else
6527 cinfo.shift1 = 5;
6528 cinfo.mask = (1 << cinfo.shift1) - 1;
6529 cinfo.shift2 = maskbitslog2;
6530 cinfo.maskbits = 1 << maskbitslog2;
6531 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6532 amt = bucketcount * sizeof (unsigned long int) * 2;
6533 amt += maskwords * sizeof (bfd_vma);
6534 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6535 if (cinfo.bitmask == NULL)
6536 {
6537 free (cinfo.hashcodes);
6538 return FALSE;
6539 }
6540
6541 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6542 cinfo.indx = cinfo.counts + bucketcount;
6543 cinfo.symindx = dynsymcount - cinfo.nsyms;
6544 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6545
6546 /* Determine how often each hash bucket is used. */
6547 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6548 for (i = 0; i < cinfo.nsyms; ++i)
6549 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6550
6551 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6552 if (cinfo.counts[i] != 0)
6553 {
6554 cinfo.indx[i] = cnt;
6555 cnt += cinfo.counts[i];
6556 }
6557 BFD_ASSERT (cnt == dynsymcount);
6558 cinfo.bucketcount = bucketcount;
6559 cinfo.local_indx = cinfo.min_dynindx;
6560
6561 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6562 s->size += cinfo.maskbits / 8;
6563 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6564 if (contents == NULL)
6565 {
6566 free (cinfo.bitmask);
6567 free (cinfo.hashcodes);
6568 return FALSE;
6569 }
6570
6571 s->contents = contents;
6572 bfd_put_32 (output_bfd, bucketcount, contents);
6573 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6574 bfd_put_32 (output_bfd, maskwords, contents + 8);
6575 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6576 contents += 16 + cinfo.maskbits / 8;
6577
6578 for (i = 0; i < bucketcount; ++i)
6579 {
6580 if (cinfo.counts[i] == 0)
6581 bfd_put_32 (output_bfd, 0, contents);
6582 else
6583 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6584 contents += 4;
6585 }
6586
6587 cinfo.contents = contents;
6588
6589 /* Renumber dynamic symbols, populate .gnu.hash section. */
6590 elf_link_hash_traverse (elf_hash_table (info),
6591 elf_renumber_gnu_hash_syms, &cinfo);
6592
6593 contents = s->contents + 16;
6594 for (i = 0; i < maskwords; ++i)
6595 {
6596 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6597 contents);
6598 contents += bed->s->arch_size / 8;
6599 }
6600
6601 free (cinfo.bitmask);
6602 free (cinfo.hashcodes);
6603 }
6604 }
6605
6606 s = bfd_get_section_by_name (dynobj, ".dynstr");
6607 BFD_ASSERT (s != NULL);
6608
6609 elf_finalize_dynstr (output_bfd, info);
6610
6611 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6612
6613 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6614 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6615 return FALSE;
6616 }
6617
6618 return TRUE;
6619 }
6620 \f
6621 /* Indicate that we are only retrieving symbol values from this
6622 section. */
6623
6624 void
6625 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6626 {
6627 if (is_elf_hash_table (info->hash))
6628 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6629 _bfd_generic_link_just_syms (sec, info);
6630 }
6631
6632 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6633
6634 static void
6635 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6636 asection *sec)
6637 {
6638 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6639 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6640 }
6641
6642 /* Finish SHF_MERGE section merging. */
6643
6644 bfd_boolean
6645 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6646 {
6647 bfd *ibfd;
6648 asection *sec;
6649
6650 if (!is_elf_hash_table (info->hash))
6651 return FALSE;
6652
6653 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6654 if ((ibfd->flags & DYNAMIC) == 0)
6655 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6656 if ((sec->flags & SEC_MERGE) != 0
6657 && !bfd_is_abs_section (sec->output_section))
6658 {
6659 struct bfd_elf_section_data *secdata;
6660
6661 secdata = elf_section_data (sec);
6662 if (! _bfd_add_merge_section (abfd,
6663 &elf_hash_table (info)->merge_info,
6664 sec, &secdata->sec_info))
6665 return FALSE;
6666 else if (secdata->sec_info)
6667 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6668 }
6669
6670 if (elf_hash_table (info)->merge_info != NULL)
6671 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6672 merge_sections_remove_hook);
6673 return TRUE;
6674 }
6675
6676 /* Create an entry in an ELF linker hash table. */
6677
6678 struct bfd_hash_entry *
6679 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6680 struct bfd_hash_table *table,
6681 const char *string)
6682 {
6683 /* Allocate the structure if it has not already been allocated by a
6684 subclass. */
6685 if (entry == NULL)
6686 {
6687 entry = (struct bfd_hash_entry *)
6688 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6689 if (entry == NULL)
6690 return entry;
6691 }
6692
6693 /* Call the allocation method of the superclass. */
6694 entry = _bfd_link_hash_newfunc (entry, table, string);
6695 if (entry != NULL)
6696 {
6697 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6698 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6699
6700 /* Set local fields. */
6701 ret->indx = -1;
6702 ret->dynindx = -1;
6703 ret->got = htab->init_got_refcount;
6704 ret->plt = htab->init_plt_refcount;
6705 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6706 - offsetof (struct elf_link_hash_entry, size)));
6707 /* Assume that we have been called by a non-ELF symbol reader.
6708 This flag is then reset by the code which reads an ELF input
6709 file. This ensures that a symbol created by a non-ELF symbol
6710 reader will have the flag set correctly. */
6711 ret->non_elf = 1;
6712 }
6713
6714 return entry;
6715 }
6716
6717 /* Copy data from an indirect symbol to its direct symbol, hiding the
6718 old indirect symbol. Also used for copying flags to a weakdef. */
6719
6720 void
6721 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6722 struct elf_link_hash_entry *dir,
6723 struct elf_link_hash_entry *ind)
6724 {
6725 struct elf_link_hash_table *htab;
6726
6727 /* Copy down any references that we may have already seen to the
6728 symbol which just became indirect. */
6729
6730 dir->ref_dynamic |= ind->ref_dynamic;
6731 dir->ref_regular |= ind->ref_regular;
6732 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6733 dir->non_got_ref |= ind->non_got_ref;
6734 dir->needs_plt |= ind->needs_plt;
6735 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6736
6737 if (ind->root.type != bfd_link_hash_indirect)
6738 return;
6739
6740 /* Copy over the global and procedure linkage table refcount entries.
6741 These may have been already set up by a check_relocs routine. */
6742 htab = elf_hash_table (info);
6743 if (ind->got.refcount > htab->init_got_refcount.refcount)
6744 {
6745 if (dir->got.refcount < 0)
6746 dir->got.refcount = 0;
6747 dir->got.refcount += ind->got.refcount;
6748 ind->got.refcount = htab->init_got_refcount.refcount;
6749 }
6750
6751 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6752 {
6753 if (dir->plt.refcount < 0)
6754 dir->plt.refcount = 0;
6755 dir->plt.refcount += ind->plt.refcount;
6756 ind->plt.refcount = htab->init_plt_refcount.refcount;
6757 }
6758
6759 if (ind->dynindx != -1)
6760 {
6761 if (dir->dynindx != -1)
6762 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6763 dir->dynindx = ind->dynindx;
6764 dir->dynstr_index = ind->dynstr_index;
6765 ind->dynindx = -1;
6766 ind->dynstr_index = 0;
6767 }
6768 }
6769
6770 void
6771 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6772 struct elf_link_hash_entry *h,
6773 bfd_boolean force_local)
6774 {
6775 /* STT_GNU_IFUNC symbol must go through PLT. */
6776 if (h->type != STT_GNU_IFUNC)
6777 {
6778 h->plt = elf_hash_table (info)->init_plt_offset;
6779 h->needs_plt = 0;
6780 }
6781 if (force_local)
6782 {
6783 h->forced_local = 1;
6784 if (h->dynindx != -1)
6785 {
6786 h->dynindx = -1;
6787 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6788 h->dynstr_index);
6789 }
6790 }
6791 }
6792
6793 /* Initialize an ELF linker hash table. */
6794
6795 bfd_boolean
6796 _bfd_elf_link_hash_table_init
6797 (struct elf_link_hash_table *table,
6798 bfd *abfd,
6799 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6800 struct bfd_hash_table *,
6801 const char *),
6802 unsigned int entsize,
6803 enum elf_target_id target_id)
6804 {
6805 bfd_boolean ret;
6806 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6807
6808 memset (table, 0, sizeof * table);
6809 table->init_got_refcount.refcount = can_refcount - 1;
6810 table->init_plt_refcount.refcount = can_refcount - 1;
6811 table->init_got_offset.offset = -(bfd_vma) 1;
6812 table->init_plt_offset.offset = -(bfd_vma) 1;
6813 /* The first dynamic symbol is a dummy. */
6814 table->dynsymcount = 1;
6815
6816 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6817
6818 table->root.type = bfd_link_elf_hash_table;
6819 table->hash_table_id = target_id;
6820
6821 return ret;
6822 }
6823
6824 /* Create an ELF linker hash table. */
6825
6826 struct bfd_link_hash_table *
6827 _bfd_elf_link_hash_table_create (bfd *abfd)
6828 {
6829 struct elf_link_hash_table *ret;
6830 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6831
6832 ret = (struct elf_link_hash_table *) bfd_malloc (amt);
6833 if (ret == NULL)
6834 return NULL;
6835
6836 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6837 sizeof (struct elf_link_hash_entry),
6838 GENERIC_ELF_DATA))
6839 {
6840 free (ret);
6841 return NULL;
6842 }
6843
6844 return &ret->root;
6845 }
6846
6847 /* This is a hook for the ELF emulation code in the generic linker to
6848 tell the backend linker what file name to use for the DT_NEEDED
6849 entry for a dynamic object. */
6850
6851 void
6852 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6853 {
6854 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6855 && bfd_get_format (abfd) == bfd_object)
6856 elf_dt_name (abfd) = name;
6857 }
6858
6859 int
6860 bfd_elf_get_dyn_lib_class (bfd *abfd)
6861 {
6862 int lib_class;
6863 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6864 && bfd_get_format (abfd) == bfd_object)
6865 lib_class = elf_dyn_lib_class (abfd);
6866 else
6867 lib_class = 0;
6868 return lib_class;
6869 }
6870
6871 void
6872 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6873 {
6874 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6875 && bfd_get_format (abfd) == bfd_object)
6876 elf_dyn_lib_class (abfd) = lib_class;
6877 }
6878
6879 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6880 the linker ELF emulation code. */
6881
6882 struct bfd_link_needed_list *
6883 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6884 struct bfd_link_info *info)
6885 {
6886 if (! is_elf_hash_table (info->hash))
6887 return NULL;
6888 return elf_hash_table (info)->needed;
6889 }
6890
6891 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6892 hook for the linker ELF emulation code. */
6893
6894 struct bfd_link_needed_list *
6895 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6896 struct bfd_link_info *info)
6897 {
6898 if (! is_elf_hash_table (info->hash))
6899 return NULL;
6900 return elf_hash_table (info)->runpath;
6901 }
6902
6903 /* Get the name actually used for a dynamic object for a link. This
6904 is the SONAME entry if there is one. Otherwise, it is the string
6905 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6906
6907 const char *
6908 bfd_elf_get_dt_soname (bfd *abfd)
6909 {
6910 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6911 && bfd_get_format (abfd) == bfd_object)
6912 return elf_dt_name (abfd);
6913 return NULL;
6914 }
6915
6916 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6917 the ELF linker emulation code. */
6918
6919 bfd_boolean
6920 bfd_elf_get_bfd_needed_list (bfd *abfd,
6921 struct bfd_link_needed_list **pneeded)
6922 {
6923 asection *s;
6924 bfd_byte *dynbuf = NULL;
6925 unsigned int elfsec;
6926 unsigned long shlink;
6927 bfd_byte *extdyn, *extdynend;
6928 size_t extdynsize;
6929 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6930
6931 *pneeded = NULL;
6932
6933 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6934 || bfd_get_format (abfd) != bfd_object)
6935 return TRUE;
6936
6937 s = bfd_get_section_by_name (abfd, ".dynamic");
6938 if (s == NULL || s->size == 0)
6939 return TRUE;
6940
6941 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6942 goto error_return;
6943
6944 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6945 if (elfsec == SHN_BAD)
6946 goto error_return;
6947
6948 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6949
6950 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6951 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6952
6953 extdyn = dynbuf;
6954 extdynend = extdyn + s->size;
6955 for (; extdyn < extdynend; extdyn += extdynsize)
6956 {
6957 Elf_Internal_Dyn dyn;
6958
6959 (*swap_dyn_in) (abfd, extdyn, &dyn);
6960
6961 if (dyn.d_tag == DT_NULL)
6962 break;
6963
6964 if (dyn.d_tag == DT_NEEDED)
6965 {
6966 const char *string;
6967 struct bfd_link_needed_list *l;
6968 unsigned int tagv = dyn.d_un.d_val;
6969 bfd_size_type amt;
6970
6971 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6972 if (string == NULL)
6973 goto error_return;
6974
6975 amt = sizeof *l;
6976 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
6977 if (l == NULL)
6978 goto error_return;
6979
6980 l->by = abfd;
6981 l->name = string;
6982 l->next = *pneeded;
6983 *pneeded = l;
6984 }
6985 }
6986
6987 free (dynbuf);
6988
6989 return TRUE;
6990
6991 error_return:
6992 if (dynbuf != NULL)
6993 free (dynbuf);
6994 return FALSE;
6995 }
6996
6997 struct elf_symbuf_symbol
6998 {
6999 unsigned long st_name; /* Symbol name, index in string tbl */
7000 unsigned char st_info; /* Type and binding attributes */
7001 unsigned char st_other; /* Visibilty, and target specific */
7002 };
7003
7004 struct elf_symbuf_head
7005 {
7006 struct elf_symbuf_symbol *ssym;
7007 bfd_size_type count;
7008 unsigned int st_shndx;
7009 };
7010
7011 struct elf_symbol
7012 {
7013 union
7014 {
7015 Elf_Internal_Sym *isym;
7016 struct elf_symbuf_symbol *ssym;
7017 } u;
7018 const char *name;
7019 };
7020
7021 /* Sort references to symbols by ascending section number. */
7022
7023 static int
7024 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7025 {
7026 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7027 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7028
7029 return s1->st_shndx - s2->st_shndx;
7030 }
7031
7032 static int
7033 elf_sym_name_compare (const void *arg1, const void *arg2)
7034 {
7035 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7036 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7037 return strcmp (s1->name, s2->name);
7038 }
7039
7040 static struct elf_symbuf_head *
7041 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7042 {
7043 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7044 struct elf_symbuf_symbol *ssym;
7045 struct elf_symbuf_head *ssymbuf, *ssymhead;
7046 bfd_size_type i, shndx_count, total_size;
7047
7048 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7049 if (indbuf == NULL)
7050 return NULL;
7051
7052 for (ind = indbuf, i = 0; i < symcount; i++)
7053 if (isymbuf[i].st_shndx != SHN_UNDEF)
7054 *ind++ = &isymbuf[i];
7055 indbufend = ind;
7056
7057 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7058 elf_sort_elf_symbol);
7059
7060 shndx_count = 0;
7061 if (indbufend > indbuf)
7062 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7063 if (ind[0]->st_shndx != ind[1]->st_shndx)
7064 shndx_count++;
7065
7066 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7067 + (indbufend - indbuf) * sizeof (*ssym));
7068 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7069 if (ssymbuf == NULL)
7070 {
7071 free (indbuf);
7072 return NULL;
7073 }
7074
7075 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7076 ssymbuf->ssym = NULL;
7077 ssymbuf->count = shndx_count;
7078 ssymbuf->st_shndx = 0;
7079 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7080 {
7081 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7082 {
7083 ssymhead++;
7084 ssymhead->ssym = ssym;
7085 ssymhead->count = 0;
7086 ssymhead->st_shndx = (*ind)->st_shndx;
7087 }
7088 ssym->st_name = (*ind)->st_name;
7089 ssym->st_info = (*ind)->st_info;
7090 ssym->st_other = (*ind)->st_other;
7091 ssymhead->count++;
7092 }
7093 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7094 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7095 == total_size));
7096
7097 free (indbuf);
7098 return ssymbuf;
7099 }
7100
7101 /* Check if 2 sections define the same set of local and global
7102 symbols. */
7103
7104 static bfd_boolean
7105 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7106 struct bfd_link_info *info)
7107 {
7108 bfd *bfd1, *bfd2;
7109 const struct elf_backend_data *bed1, *bed2;
7110 Elf_Internal_Shdr *hdr1, *hdr2;
7111 bfd_size_type symcount1, symcount2;
7112 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7113 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7114 Elf_Internal_Sym *isym, *isymend;
7115 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7116 bfd_size_type count1, count2, i;
7117 unsigned int shndx1, shndx2;
7118 bfd_boolean result;
7119
7120 bfd1 = sec1->owner;
7121 bfd2 = sec2->owner;
7122
7123 /* Both sections have to be in ELF. */
7124 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7125 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7126 return FALSE;
7127
7128 if (elf_section_type (sec1) != elf_section_type (sec2))
7129 return FALSE;
7130
7131 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7132 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7133 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7134 return FALSE;
7135
7136 bed1 = get_elf_backend_data (bfd1);
7137 bed2 = get_elf_backend_data (bfd2);
7138 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7139 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7140 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7141 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7142
7143 if (symcount1 == 0 || symcount2 == 0)
7144 return FALSE;
7145
7146 result = FALSE;
7147 isymbuf1 = NULL;
7148 isymbuf2 = NULL;
7149 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7150 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7151
7152 if (ssymbuf1 == NULL)
7153 {
7154 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7155 NULL, NULL, NULL);
7156 if (isymbuf1 == NULL)
7157 goto done;
7158
7159 if (!info->reduce_memory_overheads)
7160 elf_tdata (bfd1)->symbuf = ssymbuf1
7161 = elf_create_symbuf (symcount1, isymbuf1);
7162 }
7163
7164 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7165 {
7166 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7167 NULL, NULL, NULL);
7168 if (isymbuf2 == NULL)
7169 goto done;
7170
7171 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7172 elf_tdata (bfd2)->symbuf = ssymbuf2
7173 = elf_create_symbuf (symcount2, isymbuf2);
7174 }
7175
7176 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7177 {
7178 /* Optimized faster version. */
7179 bfd_size_type lo, hi, mid;
7180 struct elf_symbol *symp;
7181 struct elf_symbuf_symbol *ssym, *ssymend;
7182
7183 lo = 0;
7184 hi = ssymbuf1->count;
7185 ssymbuf1++;
7186 count1 = 0;
7187 while (lo < hi)
7188 {
7189 mid = (lo + hi) / 2;
7190 if (shndx1 < ssymbuf1[mid].st_shndx)
7191 hi = mid;
7192 else if (shndx1 > ssymbuf1[mid].st_shndx)
7193 lo = mid + 1;
7194 else
7195 {
7196 count1 = ssymbuf1[mid].count;
7197 ssymbuf1 += mid;
7198 break;
7199 }
7200 }
7201
7202 lo = 0;
7203 hi = ssymbuf2->count;
7204 ssymbuf2++;
7205 count2 = 0;
7206 while (lo < hi)
7207 {
7208 mid = (lo + hi) / 2;
7209 if (shndx2 < ssymbuf2[mid].st_shndx)
7210 hi = mid;
7211 else if (shndx2 > ssymbuf2[mid].st_shndx)
7212 lo = mid + 1;
7213 else
7214 {
7215 count2 = ssymbuf2[mid].count;
7216 ssymbuf2 += mid;
7217 break;
7218 }
7219 }
7220
7221 if (count1 == 0 || count2 == 0 || count1 != count2)
7222 goto done;
7223
7224 symtable1 = (struct elf_symbol *)
7225 bfd_malloc (count1 * sizeof (struct elf_symbol));
7226 symtable2 = (struct elf_symbol *)
7227 bfd_malloc (count2 * sizeof (struct elf_symbol));
7228 if (symtable1 == NULL || symtable2 == NULL)
7229 goto done;
7230
7231 symp = symtable1;
7232 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7233 ssym < ssymend; ssym++, symp++)
7234 {
7235 symp->u.ssym = ssym;
7236 symp->name = bfd_elf_string_from_elf_section (bfd1,
7237 hdr1->sh_link,
7238 ssym->st_name);
7239 }
7240
7241 symp = symtable2;
7242 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7243 ssym < ssymend; ssym++, symp++)
7244 {
7245 symp->u.ssym = ssym;
7246 symp->name = bfd_elf_string_from_elf_section (bfd2,
7247 hdr2->sh_link,
7248 ssym->st_name);
7249 }
7250
7251 /* Sort symbol by name. */
7252 qsort (symtable1, count1, sizeof (struct elf_symbol),
7253 elf_sym_name_compare);
7254 qsort (symtable2, count1, sizeof (struct elf_symbol),
7255 elf_sym_name_compare);
7256
7257 for (i = 0; i < count1; i++)
7258 /* Two symbols must have the same binding, type and name. */
7259 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7260 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7261 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7262 goto done;
7263
7264 result = TRUE;
7265 goto done;
7266 }
7267
7268 symtable1 = (struct elf_symbol *)
7269 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7270 symtable2 = (struct elf_symbol *)
7271 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7272 if (symtable1 == NULL || symtable2 == NULL)
7273 goto done;
7274
7275 /* Count definitions in the section. */
7276 count1 = 0;
7277 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7278 if (isym->st_shndx == shndx1)
7279 symtable1[count1++].u.isym = isym;
7280
7281 count2 = 0;
7282 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7283 if (isym->st_shndx == shndx2)
7284 symtable2[count2++].u.isym = isym;
7285
7286 if (count1 == 0 || count2 == 0 || count1 != count2)
7287 goto done;
7288
7289 for (i = 0; i < count1; i++)
7290 symtable1[i].name
7291 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7292 symtable1[i].u.isym->st_name);
7293
7294 for (i = 0; i < count2; i++)
7295 symtable2[i].name
7296 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7297 symtable2[i].u.isym->st_name);
7298
7299 /* Sort symbol by name. */
7300 qsort (symtable1, count1, sizeof (struct elf_symbol),
7301 elf_sym_name_compare);
7302 qsort (symtable2, count1, sizeof (struct elf_symbol),
7303 elf_sym_name_compare);
7304
7305 for (i = 0; i < count1; i++)
7306 /* Two symbols must have the same binding, type and name. */
7307 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7308 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7309 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7310 goto done;
7311
7312 result = TRUE;
7313
7314 done:
7315 if (symtable1)
7316 free (symtable1);
7317 if (symtable2)
7318 free (symtable2);
7319 if (isymbuf1)
7320 free (isymbuf1);
7321 if (isymbuf2)
7322 free (isymbuf2);
7323
7324 return result;
7325 }
7326
7327 /* Return TRUE if 2 section types are compatible. */
7328
7329 bfd_boolean
7330 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7331 bfd *bbfd, const asection *bsec)
7332 {
7333 if (asec == NULL
7334 || bsec == NULL
7335 || abfd->xvec->flavour != bfd_target_elf_flavour
7336 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7337 return TRUE;
7338
7339 return elf_section_type (asec) == elf_section_type (bsec);
7340 }
7341 \f
7342 /* Final phase of ELF linker. */
7343
7344 /* A structure we use to avoid passing large numbers of arguments. */
7345
7346 struct elf_final_link_info
7347 {
7348 /* General link information. */
7349 struct bfd_link_info *info;
7350 /* Output BFD. */
7351 bfd *output_bfd;
7352 /* Symbol string table. */
7353 struct bfd_strtab_hash *symstrtab;
7354 /* .dynsym section. */
7355 asection *dynsym_sec;
7356 /* .hash section. */
7357 asection *hash_sec;
7358 /* symbol version section (.gnu.version). */
7359 asection *symver_sec;
7360 /* Buffer large enough to hold contents of any section. */
7361 bfd_byte *contents;
7362 /* Buffer large enough to hold external relocs of any section. */
7363 void *external_relocs;
7364 /* Buffer large enough to hold internal relocs of any section. */
7365 Elf_Internal_Rela *internal_relocs;
7366 /* Buffer large enough to hold external local symbols of any input
7367 BFD. */
7368 bfd_byte *external_syms;
7369 /* And a buffer for symbol section indices. */
7370 Elf_External_Sym_Shndx *locsym_shndx;
7371 /* Buffer large enough to hold internal local symbols of any input
7372 BFD. */
7373 Elf_Internal_Sym *internal_syms;
7374 /* Array large enough to hold a symbol index for each local symbol
7375 of any input BFD. */
7376 long *indices;
7377 /* Array large enough to hold a section pointer for each local
7378 symbol of any input BFD. */
7379 asection **sections;
7380 /* Buffer to hold swapped out symbols. */
7381 bfd_byte *symbuf;
7382 /* And one for symbol section indices. */
7383 Elf_External_Sym_Shndx *symshndxbuf;
7384 /* Number of swapped out symbols in buffer. */
7385 size_t symbuf_count;
7386 /* Number of symbols which fit in symbuf. */
7387 size_t symbuf_size;
7388 /* And same for symshndxbuf. */
7389 size_t shndxbuf_size;
7390 };
7391
7392 /* This struct is used to pass information to elf_link_output_extsym. */
7393
7394 struct elf_outext_info
7395 {
7396 bfd_boolean failed;
7397 bfd_boolean localsyms;
7398 struct elf_final_link_info *finfo;
7399 };
7400
7401
7402 /* Support for evaluating a complex relocation.
7403
7404 Complex relocations are generalized, self-describing relocations. The
7405 implementation of them consists of two parts: complex symbols, and the
7406 relocations themselves.
7407
7408 The relocations are use a reserved elf-wide relocation type code (R_RELC
7409 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7410 information (start bit, end bit, word width, etc) into the addend. This
7411 information is extracted from CGEN-generated operand tables within gas.
7412
7413 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7414 internal) representing prefix-notation expressions, including but not
7415 limited to those sorts of expressions normally encoded as addends in the
7416 addend field. The symbol mangling format is:
7417
7418 <node> := <literal>
7419 | <unary-operator> ':' <node>
7420 | <binary-operator> ':' <node> ':' <node>
7421 ;
7422
7423 <literal> := 's' <digits=N> ':' <N character symbol name>
7424 | 'S' <digits=N> ':' <N character section name>
7425 | '#' <hexdigits>
7426 ;
7427
7428 <binary-operator> := as in C
7429 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7430
7431 static void
7432 set_symbol_value (bfd *bfd_with_globals,
7433 Elf_Internal_Sym *isymbuf,
7434 size_t locsymcount,
7435 size_t symidx,
7436 bfd_vma val)
7437 {
7438 struct elf_link_hash_entry **sym_hashes;
7439 struct elf_link_hash_entry *h;
7440 size_t extsymoff = locsymcount;
7441
7442 if (symidx < locsymcount)
7443 {
7444 Elf_Internal_Sym *sym;
7445
7446 sym = isymbuf + symidx;
7447 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7448 {
7449 /* It is a local symbol: move it to the
7450 "absolute" section and give it a value. */
7451 sym->st_shndx = SHN_ABS;
7452 sym->st_value = val;
7453 return;
7454 }
7455 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7456 extsymoff = 0;
7457 }
7458
7459 /* It is a global symbol: set its link type
7460 to "defined" and give it a value. */
7461
7462 sym_hashes = elf_sym_hashes (bfd_with_globals);
7463 h = sym_hashes [symidx - extsymoff];
7464 while (h->root.type == bfd_link_hash_indirect
7465 || h->root.type == bfd_link_hash_warning)
7466 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7467 h->root.type = bfd_link_hash_defined;
7468 h->root.u.def.value = val;
7469 h->root.u.def.section = bfd_abs_section_ptr;
7470 }
7471
7472 static bfd_boolean
7473 resolve_symbol (const char *name,
7474 bfd *input_bfd,
7475 struct elf_final_link_info *finfo,
7476 bfd_vma *result,
7477 Elf_Internal_Sym *isymbuf,
7478 size_t locsymcount)
7479 {
7480 Elf_Internal_Sym *sym;
7481 struct bfd_link_hash_entry *global_entry;
7482 const char *candidate = NULL;
7483 Elf_Internal_Shdr *symtab_hdr;
7484 size_t i;
7485
7486 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7487
7488 for (i = 0; i < locsymcount; ++ i)
7489 {
7490 sym = isymbuf + i;
7491
7492 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7493 continue;
7494
7495 candidate = bfd_elf_string_from_elf_section (input_bfd,
7496 symtab_hdr->sh_link,
7497 sym->st_name);
7498 #ifdef DEBUG
7499 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7500 name, candidate, (unsigned long) sym->st_value);
7501 #endif
7502 if (candidate && strcmp (candidate, name) == 0)
7503 {
7504 asection *sec = finfo->sections [i];
7505
7506 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7507 *result += sec->output_offset + sec->output_section->vma;
7508 #ifdef DEBUG
7509 printf ("Found symbol with value %8.8lx\n",
7510 (unsigned long) *result);
7511 #endif
7512 return TRUE;
7513 }
7514 }
7515
7516 /* Hmm, haven't found it yet. perhaps it is a global. */
7517 global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7518 FALSE, FALSE, TRUE);
7519 if (!global_entry)
7520 return FALSE;
7521
7522 if (global_entry->type == bfd_link_hash_defined
7523 || global_entry->type == bfd_link_hash_defweak)
7524 {
7525 *result = (global_entry->u.def.value
7526 + global_entry->u.def.section->output_section->vma
7527 + global_entry->u.def.section->output_offset);
7528 #ifdef DEBUG
7529 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7530 global_entry->root.string, (unsigned long) *result);
7531 #endif
7532 return TRUE;
7533 }
7534
7535 return FALSE;
7536 }
7537
7538 static bfd_boolean
7539 resolve_section (const char *name,
7540 asection *sections,
7541 bfd_vma *result)
7542 {
7543 asection *curr;
7544 unsigned int len;
7545
7546 for (curr = sections; curr; curr = curr->next)
7547 if (strcmp (curr->name, name) == 0)
7548 {
7549 *result = curr->vma;
7550 return TRUE;
7551 }
7552
7553 /* Hmm. still haven't found it. try pseudo-section names. */
7554 for (curr = sections; curr; curr = curr->next)
7555 {
7556 len = strlen (curr->name);
7557 if (len > strlen (name))
7558 continue;
7559
7560 if (strncmp (curr->name, name, len) == 0)
7561 {
7562 if (strncmp (".end", name + len, 4) == 0)
7563 {
7564 *result = curr->vma + curr->size;
7565 return TRUE;
7566 }
7567
7568 /* Insert more pseudo-section names here, if you like. */
7569 }
7570 }
7571
7572 return FALSE;
7573 }
7574
7575 static void
7576 undefined_reference (const char *reftype, const char *name)
7577 {
7578 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7579 reftype, name);
7580 }
7581
7582 static bfd_boolean
7583 eval_symbol (bfd_vma *result,
7584 const char **symp,
7585 bfd *input_bfd,
7586 struct elf_final_link_info *finfo,
7587 bfd_vma dot,
7588 Elf_Internal_Sym *isymbuf,
7589 size_t locsymcount,
7590 int signed_p)
7591 {
7592 size_t len;
7593 size_t symlen;
7594 bfd_vma a;
7595 bfd_vma b;
7596 char symbuf[4096];
7597 const char *sym = *symp;
7598 const char *symend;
7599 bfd_boolean symbol_is_section = FALSE;
7600
7601 len = strlen (sym);
7602 symend = sym + len;
7603
7604 if (len < 1 || len > sizeof (symbuf))
7605 {
7606 bfd_set_error (bfd_error_invalid_operation);
7607 return FALSE;
7608 }
7609
7610 switch (* sym)
7611 {
7612 case '.':
7613 *result = dot;
7614 *symp = sym + 1;
7615 return TRUE;
7616
7617 case '#':
7618 ++sym;
7619 *result = strtoul (sym, (char **) symp, 16);
7620 return TRUE;
7621
7622 case 'S':
7623 symbol_is_section = TRUE;
7624 case 's':
7625 ++sym;
7626 symlen = strtol (sym, (char **) symp, 10);
7627 sym = *symp + 1; /* Skip the trailing ':'. */
7628
7629 if (symend < sym || symlen + 1 > sizeof (symbuf))
7630 {
7631 bfd_set_error (bfd_error_invalid_operation);
7632 return FALSE;
7633 }
7634
7635 memcpy (symbuf, sym, symlen);
7636 symbuf[symlen] = '\0';
7637 *symp = sym + symlen;
7638
7639 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7640 the symbol as a section, or vice-versa. so we're pretty liberal in our
7641 interpretation here; section means "try section first", not "must be a
7642 section", and likewise with symbol. */
7643
7644 if (symbol_is_section)
7645 {
7646 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7647 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7648 isymbuf, locsymcount))
7649 {
7650 undefined_reference ("section", symbuf);
7651 return FALSE;
7652 }
7653 }
7654 else
7655 {
7656 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7657 isymbuf, locsymcount)
7658 && !resolve_section (symbuf, finfo->output_bfd->sections,
7659 result))
7660 {
7661 undefined_reference ("symbol", symbuf);
7662 return FALSE;
7663 }
7664 }
7665
7666 return TRUE;
7667
7668 /* All that remains are operators. */
7669
7670 #define UNARY_OP(op) \
7671 if (strncmp (sym, #op, strlen (#op)) == 0) \
7672 { \
7673 sym += strlen (#op); \
7674 if (*sym == ':') \
7675 ++sym; \
7676 *symp = sym; \
7677 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7678 isymbuf, locsymcount, signed_p)) \
7679 return FALSE; \
7680 if (signed_p) \
7681 *result = op ((bfd_signed_vma) a); \
7682 else \
7683 *result = op a; \
7684 return TRUE; \
7685 }
7686
7687 #define BINARY_OP(op) \
7688 if (strncmp (sym, #op, strlen (#op)) == 0) \
7689 { \
7690 sym += strlen (#op); \
7691 if (*sym == ':') \
7692 ++sym; \
7693 *symp = sym; \
7694 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7695 isymbuf, locsymcount, signed_p)) \
7696 return FALSE; \
7697 ++*symp; \
7698 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7699 isymbuf, locsymcount, signed_p)) \
7700 return FALSE; \
7701 if (signed_p) \
7702 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7703 else \
7704 *result = a op b; \
7705 return TRUE; \
7706 }
7707
7708 default:
7709 UNARY_OP (0-);
7710 BINARY_OP (<<);
7711 BINARY_OP (>>);
7712 BINARY_OP (==);
7713 BINARY_OP (!=);
7714 BINARY_OP (<=);
7715 BINARY_OP (>=);
7716 BINARY_OP (&&);
7717 BINARY_OP (||);
7718 UNARY_OP (~);
7719 UNARY_OP (!);
7720 BINARY_OP (*);
7721 BINARY_OP (/);
7722 BINARY_OP (%);
7723 BINARY_OP (^);
7724 BINARY_OP (|);
7725 BINARY_OP (&);
7726 BINARY_OP (+);
7727 BINARY_OP (-);
7728 BINARY_OP (<);
7729 BINARY_OP (>);
7730 #undef UNARY_OP
7731 #undef BINARY_OP
7732 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7733 bfd_set_error (bfd_error_invalid_operation);
7734 return FALSE;
7735 }
7736 }
7737
7738 static void
7739 put_value (bfd_vma size,
7740 unsigned long chunksz,
7741 bfd *input_bfd,
7742 bfd_vma x,
7743 bfd_byte *location)
7744 {
7745 location += (size - chunksz);
7746
7747 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7748 {
7749 switch (chunksz)
7750 {
7751 default:
7752 case 0:
7753 abort ();
7754 case 1:
7755 bfd_put_8 (input_bfd, x, location);
7756 break;
7757 case 2:
7758 bfd_put_16 (input_bfd, x, location);
7759 break;
7760 case 4:
7761 bfd_put_32 (input_bfd, x, location);
7762 break;
7763 case 8:
7764 #ifdef BFD64
7765 bfd_put_64 (input_bfd, x, location);
7766 #else
7767 abort ();
7768 #endif
7769 break;
7770 }
7771 }
7772 }
7773
7774 static bfd_vma
7775 get_value (bfd_vma size,
7776 unsigned long chunksz,
7777 bfd *input_bfd,
7778 bfd_byte *location)
7779 {
7780 bfd_vma x = 0;
7781
7782 for (; size; size -= chunksz, location += chunksz)
7783 {
7784 switch (chunksz)
7785 {
7786 default:
7787 case 0:
7788 abort ();
7789 case 1:
7790 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7791 break;
7792 case 2:
7793 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7794 break;
7795 case 4:
7796 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7797 break;
7798 case 8:
7799 #ifdef BFD64
7800 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7801 #else
7802 abort ();
7803 #endif
7804 break;
7805 }
7806 }
7807 return x;
7808 }
7809
7810 static void
7811 decode_complex_addend (unsigned long *start, /* in bits */
7812 unsigned long *oplen, /* in bits */
7813 unsigned long *len, /* in bits */
7814 unsigned long *wordsz, /* in bytes */
7815 unsigned long *chunksz, /* in bytes */
7816 unsigned long *lsb0_p,
7817 unsigned long *signed_p,
7818 unsigned long *trunc_p,
7819 unsigned long encoded)
7820 {
7821 * start = encoded & 0x3F;
7822 * len = (encoded >> 6) & 0x3F;
7823 * oplen = (encoded >> 12) & 0x3F;
7824 * wordsz = (encoded >> 18) & 0xF;
7825 * chunksz = (encoded >> 22) & 0xF;
7826 * lsb0_p = (encoded >> 27) & 1;
7827 * signed_p = (encoded >> 28) & 1;
7828 * trunc_p = (encoded >> 29) & 1;
7829 }
7830
7831 bfd_reloc_status_type
7832 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7833 asection *input_section ATTRIBUTE_UNUSED,
7834 bfd_byte *contents,
7835 Elf_Internal_Rela *rel,
7836 bfd_vma relocation)
7837 {
7838 bfd_vma shift, x, mask;
7839 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7840 bfd_reloc_status_type r;
7841
7842 /* Perform this reloc, since it is complex.
7843 (this is not to say that it necessarily refers to a complex
7844 symbol; merely that it is a self-describing CGEN based reloc.
7845 i.e. the addend has the complete reloc information (bit start, end,
7846 word size, etc) encoded within it.). */
7847
7848 decode_complex_addend (&start, &oplen, &len, &wordsz,
7849 &chunksz, &lsb0_p, &signed_p,
7850 &trunc_p, rel->r_addend);
7851
7852 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7853
7854 if (lsb0_p)
7855 shift = (start + 1) - len;
7856 else
7857 shift = (8 * wordsz) - (start + len);
7858
7859 /* FIXME: octets_per_byte. */
7860 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7861
7862 #ifdef DEBUG
7863 printf ("Doing complex reloc: "
7864 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7865 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7866 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7867 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7868 oplen, (unsigned long) x, (unsigned long) mask,
7869 (unsigned long) relocation);
7870 #endif
7871
7872 r = bfd_reloc_ok;
7873 if (! trunc_p)
7874 /* Now do an overflow check. */
7875 r = bfd_check_overflow ((signed_p
7876 ? complain_overflow_signed
7877 : complain_overflow_unsigned),
7878 len, 0, (8 * wordsz),
7879 relocation);
7880
7881 /* Do the deed. */
7882 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7883
7884 #ifdef DEBUG
7885 printf (" relocation: %8.8lx\n"
7886 " shifted mask: %8.8lx\n"
7887 " shifted/masked reloc: %8.8lx\n"
7888 " result: %8.8lx\n",
7889 (unsigned long) relocation, (unsigned long) (mask << shift),
7890 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7891 #endif
7892 /* FIXME: octets_per_byte. */
7893 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7894 return r;
7895 }
7896
7897 /* When performing a relocatable link, the input relocations are
7898 preserved. But, if they reference global symbols, the indices
7899 referenced must be updated. Update all the relocations found in
7900 RELDATA. */
7901
7902 static void
7903 elf_link_adjust_relocs (bfd *abfd,
7904 struct bfd_elf_section_reloc_data *reldata)
7905 {
7906 unsigned int i;
7907 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7908 bfd_byte *erela;
7909 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7910 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7911 bfd_vma r_type_mask;
7912 int r_sym_shift;
7913 unsigned int count = reldata->count;
7914 struct elf_link_hash_entry **rel_hash = reldata->hashes;
7915
7916 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
7917 {
7918 swap_in = bed->s->swap_reloc_in;
7919 swap_out = bed->s->swap_reloc_out;
7920 }
7921 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
7922 {
7923 swap_in = bed->s->swap_reloca_in;
7924 swap_out = bed->s->swap_reloca_out;
7925 }
7926 else
7927 abort ();
7928
7929 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7930 abort ();
7931
7932 if (bed->s->arch_size == 32)
7933 {
7934 r_type_mask = 0xff;
7935 r_sym_shift = 8;
7936 }
7937 else
7938 {
7939 r_type_mask = 0xffffffff;
7940 r_sym_shift = 32;
7941 }
7942
7943 erela = reldata->hdr->contents;
7944 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
7945 {
7946 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7947 unsigned int j;
7948
7949 if (*rel_hash == NULL)
7950 continue;
7951
7952 BFD_ASSERT ((*rel_hash)->indx >= 0);
7953
7954 (*swap_in) (abfd, erela, irela);
7955 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7956 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7957 | (irela[j].r_info & r_type_mask));
7958 (*swap_out) (abfd, irela, erela);
7959 }
7960 }
7961
7962 struct elf_link_sort_rela
7963 {
7964 union {
7965 bfd_vma offset;
7966 bfd_vma sym_mask;
7967 } u;
7968 enum elf_reloc_type_class type;
7969 /* We use this as an array of size int_rels_per_ext_rel. */
7970 Elf_Internal_Rela rela[1];
7971 };
7972
7973 static int
7974 elf_link_sort_cmp1 (const void *A, const void *B)
7975 {
7976 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
7977 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
7978 int relativea, relativeb;
7979
7980 relativea = a->type == reloc_class_relative;
7981 relativeb = b->type == reloc_class_relative;
7982
7983 if (relativea < relativeb)
7984 return 1;
7985 if (relativea > relativeb)
7986 return -1;
7987 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
7988 return -1;
7989 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
7990 return 1;
7991 if (a->rela->r_offset < b->rela->r_offset)
7992 return -1;
7993 if (a->rela->r_offset > b->rela->r_offset)
7994 return 1;
7995 return 0;
7996 }
7997
7998 static int
7999 elf_link_sort_cmp2 (const void *A, const void *B)
8000 {
8001 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8002 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8003 int copya, copyb;
8004
8005 if (a->u.offset < b->u.offset)
8006 return -1;
8007 if (a->u.offset > b->u.offset)
8008 return 1;
8009 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
8010 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
8011 if (copya < copyb)
8012 return -1;
8013 if (copya > copyb)
8014 return 1;
8015 if (a->rela->r_offset < b->rela->r_offset)
8016 return -1;
8017 if (a->rela->r_offset > b->rela->r_offset)
8018 return 1;
8019 return 0;
8020 }
8021
8022 static size_t
8023 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8024 {
8025 asection *dynamic_relocs;
8026 asection *rela_dyn;
8027 asection *rel_dyn;
8028 bfd_size_type count, size;
8029 size_t i, ret, sort_elt, ext_size;
8030 bfd_byte *sort, *s_non_relative, *p;
8031 struct elf_link_sort_rela *sq;
8032 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8033 int i2e = bed->s->int_rels_per_ext_rel;
8034 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8035 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8036 struct bfd_link_order *lo;
8037 bfd_vma r_sym_mask;
8038 bfd_boolean use_rela;
8039
8040 /* Find a dynamic reloc section. */
8041 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8042 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8043 if (rela_dyn != NULL && rela_dyn->size > 0
8044 && rel_dyn != NULL && rel_dyn->size > 0)
8045 {
8046 bfd_boolean use_rela_initialised = FALSE;
8047
8048 /* This is just here to stop gcc from complaining.
8049 It's initialization checking code is not perfect. */
8050 use_rela = TRUE;
8051
8052 /* Both sections are present. Examine the sizes
8053 of the indirect sections to help us choose. */
8054 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8055 if (lo->type == bfd_indirect_link_order)
8056 {
8057 asection *o = lo->u.indirect.section;
8058
8059 if ((o->size % bed->s->sizeof_rela) == 0)
8060 {
8061 if ((o->size % bed->s->sizeof_rel) == 0)
8062 /* Section size is divisible by both rel and rela sizes.
8063 It is of no help to us. */
8064 ;
8065 else
8066 {
8067 /* Section size is only divisible by rela. */
8068 if (use_rela_initialised && (use_rela == FALSE))
8069 {
8070 _bfd_error_handler
8071 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8072 bfd_set_error (bfd_error_invalid_operation);
8073 return 0;
8074 }
8075 else
8076 {
8077 use_rela = TRUE;
8078 use_rela_initialised = TRUE;
8079 }
8080 }
8081 }
8082 else if ((o->size % bed->s->sizeof_rel) == 0)
8083 {
8084 /* Section size is only divisible by rel. */
8085 if (use_rela_initialised && (use_rela == TRUE))
8086 {
8087 _bfd_error_handler
8088 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8089 bfd_set_error (bfd_error_invalid_operation);
8090 return 0;
8091 }
8092 else
8093 {
8094 use_rela = FALSE;
8095 use_rela_initialised = TRUE;
8096 }
8097 }
8098 else
8099 {
8100 /* The section size is not divisible by either - something is wrong. */
8101 _bfd_error_handler
8102 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8103 bfd_set_error (bfd_error_invalid_operation);
8104 return 0;
8105 }
8106 }
8107
8108 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8109 if (lo->type == bfd_indirect_link_order)
8110 {
8111 asection *o = lo->u.indirect.section;
8112
8113 if ((o->size % bed->s->sizeof_rela) == 0)
8114 {
8115 if ((o->size % bed->s->sizeof_rel) == 0)
8116 /* Section size is divisible by both rel and rela sizes.
8117 It is of no help to us. */
8118 ;
8119 else
8120 {
8121 /* Section size is only divisible by rela. */
8122 if (use_rela_initialised && (use_rela == FALSE))
8123 {
8124 _bfd_error_handler
8125 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8126 bfd_set_error (bfd_error_invalid_operation);
8127 return 0;
8128 }
8129 else
8130 {
8131 use_rela = TRUE;
8132 use_rela_initialised = TRUE;
8133 }
8134 }
8135 }
8136 else if ((o->size % bed->s->sizeof_rel) == 0)
8137 {
8138 /* Section size is only divisible by rel. */
8139 if (use_rela_initialised && (use_rela == TRUE))
8140 {
8141 _bfd_error_handler
8142 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8143 bfd_set_error (bfd_error_invalid_operation);
8144 return 0;
8145 }
8146 else
8147 {
8148 use_rela = FALSE;
8149 use_rela_initialised = TRUE;
8150 }
8151 }
8152 else
8153 {
8154 /* The section size is not divisible by either - something is wrong. */
8155 _bfd_error_handler
8156 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8157 bfd_set_error (bfd_error_invalid_operation);
8158 return 0;
8159 }
8160 }
8161
8162 if (! use_rela_initialised)
8163 /* Make a guess. */
8164 use_rela = TRUE;
8165 }
8166 else if (rela_dyn != NULL && rela_dyn->size > 0)
8167 use_rela = TRUE;
8168 else if (rel_dyn != NULL && rel_dyn->size > 0)
8169 use_rela = FALSE;
8170 else
8171 return 0;
8172
8173 if (use_rela)
8174 {
8175 dynamic_relocs = rela_dyn;
8176 ext_size = bed->s->sizeof_rela;
8177 swap_in = bed->s->swap_reloca_in;
8178 swap_out = bed->s->swap_reloca_out;
8179 }
8180 else
8181 {
8182 dynamic_relocs = rel_dyn;
8183 ext_size = bed->s->sizeof_rel;
8184 swap_in = bed->s->swap_reloc_in;
8185 swap_out = bed->s->swap_reloc_out;
8186 }
8187
8188 size = 0;
8189 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8190 if (lo->type == bfd_indirect_link_order)
8191 size += lo->u.indirect.section->size;
8192
8193 if (size != dynamic_relocs->size)
8194 return 0;
8195
8196 sort_elt = (sizeof (struct elf_link_sort_rela)
8197 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8198
8199 count = dynamic_relocs->size / ext_size;
8200 if (count == 0)
8201 return 0;
8202 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8203
8204 if (sort == NULL)
8205 {
8206 (*info->callbacks->warning)
8207 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8208 return 0;
8209 }
8210
8211 if (bed->s->arch_size == 32)
8212 r_sym_mask = ~(bfd_vma) 0xff;
8213 else
8214 r_sym_mask = ~(bfd_vma) 0xffffffff;
8215
8216 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8217 if (lo->type == bfd_indirect_link_order)
8218 {
8219 bfd_byte *erel, *erelend;
8220 asection *o = lo->u.indirect.section;
8221
8222 if (o->contents == NULL && o->size != 0)
8223 {
8224 /* This is a reloc section that is being handled as a normal
8225 section. See bfd_section_from_shdr. We can't combine
8226 relocs in this case. */
8227 free (sort);
8228 return 0;
8229 }
8230 erel = o->contents;
8231 erelend = o->contents + o->size;
8232 /* FIXME: octets_per_byte. */
8233 p = sort + o->output_offset / ext_size * sort_elt;
8234
8235 while (erel < erelend)
8236 {
8237 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8238
8239 (*swap_in) (abfd, erel, s->rela);
8240 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8241 s->u.sym_mask = r_sym_mask;
8242 p += sort_elt;
8243 erel += ext_size;
8244 }
8245 }
8246
8247 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8248
8249 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8250 {
8251 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8252 if (s->type != reloc_class_relative)
8253 break;
8254 }
8255 ret = i;
8256 s_non_relative = p;
8257
8258 sq = (struct elf_link_sort_rela *) s_non_relative;
8259 for (; i < count; i++, p += sort_elt)
8260 {
8261 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8262 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8263 sq = sp;
8264 sp->u.offset = sq->rela->r_offset;
8265 }
8266
8267 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8268
8269 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8270 if (lo->type == bfd_indirect_link_order)
8271 {
8272 bfd_byte *erel, *erelend;
8273 asection *o = lo->u.indirect.section;
8274
8275 erel = o->contents;
8276 erelend = o->contents + o->size;
8277 /* FIXME: octets_per_byte. */
8278 p = sort + o->output_offset / ext_size * sort_elt;
8279 while (erel < erelend)
8280 {
8281 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8282 (*swap_out) (abfd, s->rela, erel);
8283 p += sort_elt;
8284 erel += ext_size;
8285 }
8286 }
8287
8288 free (sort);
8289 *psec = dynamic_relocs;
8290 return ret;
8291 }
8292
8293 /* Flush the output symbols to the file. */
8294
8295 static bfd_boolean
8296 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8297 const struct elf_backend_data *bed)
8298 {
8299 if (finfo->symbuf_count > 0)
8300 {
8301 Elf_Internal_Shdr *hdr;
8302 file_ptr pos;
8303 bfd_size_type amt;
8304
8305 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8306 pos = hdr->sh_offset + hdr->sh_size;
8307 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8308 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8309 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8310 return FALSE;
8311
8312 hdr->sh_size += amt;
8313 finfo->symbuf_count = 0;
8314 }
8315
8316 return TRUE;
8317 }
8318
8319 /* Add a symbol to the output symbol table. */
8320
8321 static int
8322 elf_link_output_sym (struct elf_final_link_info *finfo,
8323 const char *name,
8324 Elf_Internal_Sym *elfsym,
8325 asection *input_sec,
8326 struct elf_link_hash_entry *h)
8327 {
8328 bfd_byte *dest;
8329 Elf_External_Sym_Shndx *destshndx;
8330 int (*output_symbol_hook)
8331 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8332 struct elf_link_hash_entry *);
8333 const struct elf_backend_data *bed;
8334
8335 bed = get_elf_backend_data (finfo->output_bfd);
8336 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8337 if (output_symbol_hook != NULL)
8338 {
8339 int ret = (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h);
8340 if (ret != 1)
8341 return ret;
8342 }
8343
8344 if (name == NULL || *name == '\0')
8345 elfsym->st_name = 0;
8346 else if (input_sec->flags & SEC_EXCLUDE)
8347 elfsym->st_name = 0;
8348 else
8349 {
8350 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8351 name, TRUE, FALSE);
8352 if (elfsym->st_name == (unsigned long) -1)
8353 return 0;
8354 }
8355
8356 if (finfo->symbuf_count >= finfo->symbuf_size)
8357 {
8358 if (! elf_link_flush_output_syms (finfo, bed))
8359 return 0;
8360 }
8361
8362 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8363 destshndx = finfo->symshndxbuf;
8364 if (destshndx != NULL)
8365 {
8366 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8367 {
8368 bfd_size_type amt;
8369
8370 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8371 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8372 amt * 2);
8373 if (destshndx == NULL)
8374 return 0;
8375 finfo->symshndxbuf = destshndx;
8376 memset ((char *) destshndx + amt, 0, amt);
8377 finfo->shndxbuf_size *= 2;
8378 }
8379 destshndx += bfd_get_symcount (finfo->output_bfd);
8380 }
8381
8382 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8383 finfo->symbuf_count += 1;
8384 bfd_get_symcount (finfo->output_bfd) += 1;
8385
8386 return 1;
8387 }
8388
8389 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8390
8391 static bfd_boolean
8392 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8393 {
8394 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8395 && sym->st_shndx < SHN_LORESERVE)
8396 {
8397 /* The gABI doesn't support dynamic symbols in output sections
8398 beyond 64k. */
8399 (*_bfd_error_handler)
8400 (_("%B: Too many sections: %d (>= %d)"),
8401 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8402 bfd_set_error (bfd_error_nonrepresentable_section);
8403 return FALSE;
8404 }
8405 return TRUE;
8406 }
8407
8408 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8409 allowing an unsatisfied unversioned symbol in the DSO to match a
8410 versioned symbol that would normally require an explicit version.
8411 We also handle the case that a DSO references a hidden symbol
8412 which may be satisfied by a versioned symbol in another DSO. */
8413
8414 static bfd_boolean
8415 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8416 const struct elf_backend_data *bed,
8417 struct elf_link_hash_entry *h)
8418 {
8419 bfd *abfd;
8420 struct elf_link_loaded_list *loaded;
8421
8422 if (!is_elf_hash_table (info->hash))
8423 return FALSE;
8424
8425 switch (h->root.type)
8426 {
8427 default:
8428 abfd = NULL;
8429 break;
8430
8431 case bfd_link_hash_undefined:
8432 case bfd_link_hash_undefweak:
8433 abfd = h->root.u.undef.abfd;
8434 if ((abfd->flags & DYNAMIC) == 0
8435 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8436 return FALSE;
8437 break;
8438
8439 case bfd_link_hash_defined:
8440 case bfd_link_hash_defweak:
8441 abfd = h->root.u.def.section->owner;
8442 break;
8443
8444 case bfd_link_hash_common:
8445 abfd = h->root.u.c.p->section->owner;
8446 break;
8447 }
8448 BFD_ASSERT (abfd != NULL);
8449
8450 for (loaded = elf_hash_table (info)->loaded;
8451 loaded != NULL;
8452 loaded = loaded->next)
8453 {
8454 bfd *input;
8455 Elf_Internal_Shdr *hdr;
8456 bfd_size_type symcount;
8457 bfd_size_type extsymcount;
8458 bfd_size_type extsymoff;
8459 Elf_Internal_Shdr *versymhdr;
8460 Elf_Internal_Sym *isym;
8461 Elf_Internal_Sym *isymend;
8462 Elf_Internal_Sym *isymbuf;
8463 Elf_External_Versym *ever;
8464 Elf_External_Versym *extversym;
8465
8466 input = loaded->abfd;
8467
8468 /* We check each DSO for a possible hidden versioned definition. */
8469 if (input == abfd
8470 || (input->flags & DYNAMIC) == 0
8471 || elf_dynversym (input) == 0)
8472 continue;
8473
8474 hdr = &elf_tdata (input)->dynsymtab_hdr;
8475
8476 symcount = hdr->sh_size / bed->s->sizeof_sym;
8477 if (elf_bad_symtab (input))
8478 {
8479 extsymcount = symcount;
8480 extsymoff = 0;
8481 }
8482 else
8483 {
8484 extsymcount = symcount - hdr->sh_info;
8485 extsymoff = hdr->sh_info;
8486 }
8487
8488 if (extsymcount == 0)
8489 continue;
8490
8491 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8492 NULL, NULL, NULL);
8493 if (isymbuf == NULL)
8494 return FALSE;
8495
8496 /* Read in any version definitions. */
8497 versymhdr = &elf_tdata (input)->dynversym_hdr;
8498 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8499 if (extversym == NULL)
8500 goto error_ret;
8501
8502 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8503 || (bfd_bread (extversym, versymhdr->sh_size, input)
8504 != versymhdr->sh_size))
8505 {
8506 free (extversym);
8507 error_ret:
8508 free (isymbuf);
8509 return FALSE;
8510 }
8511
8512 ever = extversym + extsymoff;
8513 isymend = isymbuf + extsymcount;
8514 for (isym = isymbuf; isym < isymend; isym++, ever++)
8515 {
8516 const char *name;
8517 Elf_Internal_Versym iver;
8518 unsigned short version_index;
8519
8520 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8521 || isym->st_shndx == SHN_UNDEF)
8522 continue;
8523
8524 name = bfd_elf_string_from_elf_section (input,
8525 hdr->sh_link,
8526 isym->st_name);
8527 if (strcmp (name, h->root.root.string) != 0)
8528 continue;
8529
8530 _bfd_elf_swap_versym_in (input, ever, &iver);
8531
8532 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8533 && !(h->def_regular
8534 && h->forced_local))
8535 {
8536 /* If we have a non-hidden versioned sym, then it should
8537 have provided a definition for the undefined sym unless
8538 it is defined in a non-shared object and forced local.
8539 */
8540 abort ();
8541 }
8542
8543 version_index = iver.vs_vers & VERSYM_VERSION;
8544 if (version_index == 1 || version_index == 2)
8545 {
8546 /* This is the base or first version. We can use it. */
8547 free (extversym);
8548 free (isymbuf);
8549 return TRUE;
8550 }
8551 }
8552
8553 free (extversym);
8554 free (isymbuf);
8555 }
8556
8557 return FALSE;
8558 }
8559
8560 /* Add an external symbol to the symbol table. This is called from
8561 the hash table traversal routine. When generating a shared object,
8562 we go through the symbol table twice. The first time we output
8563 anything that might have been forced to local scope in a version
8564 script. The second time we output the symbols that are still
8565 global symbols. */
8566
8567 static bfd_boolean
8568 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8569 {
8570 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8571 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8572 struct elf_final_link_info *finfo = eoinfo->finfo;
8573 bfd_boolean strip;
8574 Elf_Internal_Sym sym;
8575 asection *input_sec;
8576 const struct elf_backend_data *bed;
8577 long indx;
8578 int ret;
8579
8580 if (h->root.type == bfd_link_hash_warning)
8581 {
8582 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8583 if (h->root.type == bfd_link_hash_new)
8584 return TRUE;
8585 }
8586
8587 /* Decide whether to output this symbol in this pass. */
8588 if (eoinfo->localsyms)
8589 {
8590 if (!h->forced_local)
8591 return TRUE;
8592 }
8593 else
8594 {
8595 if (h->forced_local)
8596 return TRUE;
8597 }
8598
8599 bed = get_elf_backend_data (finfo->output_bfd);
8600
8601 if (h->root.type == bfd_link_hash_undefined)
8602 {
8603 /* If we have an undefined symbol reference here then it must have
8604 come from a shared library that is being linked in. (Undefined
8605 references in regular files have already been handled unless
8606 they are in unreferenced sections which are removed by garbage
8607 collection). */
8608 bfd_boolean ignore_undef = FALSE;
8609
8610 /* Some symbols may be special in that the fact that they're
8611 undefined can be safely ignored - let backend determine that. */
8612 if (bed->elf_backend_ignore_undef_symbol)
8613 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8614
8615 /* If we are reporting errors for this situation then do so now. */
8616 if (!ignore_undef
8617 && h->ref_dynamic
8618 && (!h->ref_regular || finfo->info->gc_sections)
8619 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8620 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8621 {
8622 if (! (finfo->info->callbacks->undefined_symbol
8623 (finfo->info, h->root.root.string,
8624 h->ref_regular ? NULL : h->root.u.undef.abfd,
8625 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8626 {
8627 bfd_set_error (bfd_error_bad_value);
8628 eoinfo->failed = TRUE;
8629 return FALSE;
8630 }
8631 }
8632 }
8633
8634 /* We should also warn if a forced local symbol is referenced from
8635 shared libraries. */
8636 if (! finfo->info->relocatable
8637 && (! finfo->info->shared)
8638 && h->forced_local
8639 && h->ref_dynamic
8640 && !h->dynamic_def
8641 && !h->dynamic_weak
8642 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8643 {
8644 bfd *def_bfd;
8645 const char *msg;
8646
8647 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8648 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8649 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8650 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8651 else
8652 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8653 def_bfd = finfo->output_bfd;
8654 if (h->root.u.def.section != bfd_abs_section_ptr)
8655 def_bfd = h->root.u.def.section->owner;
8656 (*_bfd_error_handler) (msg, finfo->output_bfd, def_bfd,
8657 h->root.root.string);
8658 bfd_set_error (bfd_error_bad_value);
8659 eoinfo->failed = TRUE;
8660 return FALSE;
8661 }
8662
8663 /* We don't want to output symbols that have never been mentioned by
8664 a regular file, or that we have been told to strip. However, if
8665 h->indx is set to -2, the symbol is used by a reloc and we must
8666 output it. */
8667 if (h->indx == -2)
8668 strip = FALSE;
8669 else if ((h->def_dynamic
8670 || h->ref_dynamic
8671 || h->root.type == bfd_link_hash_new)
8672 && !h->def_regular
8673 && !h->ref_regular)
8674 strip = TRUE;
8675 else if (finfo->info->strip == strip_all)
8676 strip = TRUE;
8677 else if (finfo->info->strip == strip_some
8678 && bfd_hash_lookup (finfo->info->keep_hash,
8679 h->root.root.string, FALSE, FALSE) == NULL)
8680 strip = TRUE;
8681 else if (finfo->info->strip_discarded
8682 && (h->root.type == bfd_link_hash_defined
8683 || h->root.type == bfd_link_hash_defweak)
8684 && elf_discarded_section (h->root.u.def.section))
8685 strip = TRUE;
8686 else if ((h->root.type == bfd_link_hash_undefined
8687 || h->root.type == bfd_link_hash_undefweak)
8688 && h->root.u.undef.abfd != NULL
8689 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8690 strip = TRUE;
8691 else
8692 strip = FALSE;
8693
8694 /* If we're stripping it, and it's not a dynamic symbol, there's
8695 nothing else to do unless it is a forced local symbol or a
8696 STT_GNU_IFUNC symbol. */
8697 if (strip
8698 && h->dynindx == -1
8699 && h->type != STT_GNU_IFUNC
8700 && !h->forced_local)
8701 return TRUE;
8702
8703 sym.st_value = 0;
8704 sym.st_size = h->size;
8705 sym.st_other = h->other;
8706 if (h->forced_local)
8707 {
8708 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8709 /* Turn off visibility on local symbol. */
8710 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8711 }
8712 else if (h->unique_global)
8713 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8714 else if (h->root.type == bfd_link_hash_undefweak
8715 || h->root.type == bfd_link_hash_defweak)
8716 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8717 else
8718 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8719 sym.st_target_internal = h->target_internal;
8720
8721 switch (h->root.type)
8722 {
8723 default:
8724 case bfd_link_hash_new:
8725 case bfd_link_hash_warning:
8726 abort ();
8727 return FALSE;
8728
8729 case bfd_link_hash_undefined:
8730 case bfd_link_hash_undefweak:
8731 input_sec = bfd_und_section_ptr;
8732 sym.st_shndx = SHN_UNDEF;
8733 break;
8734
8735 case bfd_link_hash_defined:
8736 case bfd_link_hash_defweak:
8737 {
8738 input_sec = h->root.u.def.section;
8739 if (input_sec->output_section != NULL)
8740 {
8741 sym.st_shndx =
8742 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8743 input_sec->output_section);
8744 if (sym.st_shndx == SHN_BAD)
8745 {
8746 (*_bfd_error_handler)
8747 (_("%B: could not find output section %A for input section %A"),
8748 finfo->output_bfd, input_sec->output_section, input_sec);
8749 bfd_set_error (bfd_error_nonrepresentable_section);
8750 eoinfo->failed = TRUE;
8751 return FALSE;
8752 }
8753
8754 /* ELF symbols in relocatable files are section relative,
8755 but in nonrelocatable files they are virtual
8756 addresses. */
8757 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8758 if (! finfo->info->relocatable)
8759 {
8760 sym.st_value += input_sec->output_section->vma;
8761 if (h->type == STT_TLS)
8762 {
8763 asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8764 if (tls_sec != NULL)
8765 sym.st_value -= tls_sec->vma;
8766 else
8767 {
8768 /* The TLS section may have been garbage collected. */
8769 BFD_ASSERT (finfo->info->gc_sections
8770 && !input_sec->gc_mark);
8771 }
8772 }
8773 }
8774 }
8775 else
8776 {
8777 BFD_ASSERT (input_sec->owner == NULL
8778 || (input_sec->owner->flags & DYNAMIC) != 0);
8779 sym.st_shndx = SHN_UNDEF;
8780 input_sec = bfd_und_section_ptr;
8781 }
8782 }
8783 break;
8784
8785 case bfd_link_hash_common:
8786 input_sec = h->root.u.c.p->section;
8787 sym.st_shndx = bed->common_section_index (input_sec);
8788 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8789 break;
8790
8791 case bfd_link_hash_indirect:
8792 /* These symbols are created by symbol versioning. They point
8793 to the decorated version of the name. For example, if the
8794 symbol foo@@GNU_1.2 is the default, which should be used when
8795 foo is used with no version, then we add an indirect symbol
8796 foo which points to foo@@GNU_1.2. We ignore these symbols,
8797 since the indirected symbol is already in the hash table. */
8798 return TRUE;
8799 }
8800
8801 /* Give the processor backend a chance to tweak the symbol value,
8802 and also to finish up anything that needs to be done for this
8803 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8804 forced local syms when non-shared is due to a historical quirk.
8805 STT_GNU_IFUNC symbol must go through PLT. */
8806 if ((h->type == STT_GNU_IFUNC
8807 && h->def_regular
8808 && !finfo->info->relocatable)
8809 || ((h->dynindx != -1
8810 || h->forced_local)
8811 && ((finfo->info->shared
8812 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8813 || h->root.type != bfd_link_hash_undefweak))
8814 || !h->forced_local)
8815 && elf_hash_table (finfo->info)->dynamic_sections_created))
8816 {
8817 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8818 (finfo->output_bfd, finfo->info, h, &sym)))
8819 {
8820 eoinfo->failed = TRUE;
8821 return FALSE;
8822 }
8823 }
8824
8825 /* If we are marking the symbol as undefined, and there are no
8826 non-weak references to this symbol from a regular object, then
8827 mark the symbol as weak undefined; if there are non-weak
8828 references, mark the symbol as strong. We can't do this earlier,
8829 because it might not be marked as undefined until the
8830 finish_dynamic_symbol routine gets through with it. */
8831 if (sym.st_shndx == SHN_UNDEF
8832 && h->ref_regular
8833 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8834 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8835 {
8836 int bindtype;
8837 unsigned int type = ELF_ST_TYPE (sym.st_info);
8838
8839 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8840 if (type == STT_GNU_IFUNC)
8841 type = STT_FUNC;
8842
8843 if (h->ref_regular_nonweak)
8844 bindtype = STB_GLOBAL;
8845 else
8846 bindtype = STB_WEAK;
8847 sym.st_info = ELF_ST_INFO (bindtype, type);
8848 }
8849
8850 /* If this is a symbol defined in a dynamic library, don't use the
8851 symbol size from the dynamic library. Relinking an executable
8852 against a new library may introduce gratuitous changes in the
8853 executable's symbols if we keep the size. */
8854 if (sym.st_shndx == SHN_UNDEF
8855 && !h->def_regular
8856 && h->def_dynamic)
8857 sym.st_size = 0;
8858
8859 /* If a non-weak symbol with non-default visibility is not defined
8860 locally, it is a fatal error. */
8861 if (! finfo->info->relocatable
8862 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8863 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8864 && h->root.type == bfd_link_hash_undefined
8865 && !h->def_regular)
8866 {
8867 const char *msg;
8868
8869 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
8870 msg = _("%B: protected symbol `%s' isn't defined");
8871 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
8872 msg = _("%B: internal symbol `%s' isn't defined");
8873 else
8874 msg = _("%B: hidden symbol `%s' isn't defined");
8875 (*_bfd_error_handler) (msg, finfo->output_bfd, h->root.root.string);
8876 bfd_set_error (bfd_error_bad_value);
8877 eoinfo->failed = TRUE;
8878 return FALSE;
8879 }
8880
8881 /* If this symbol should be put in the .dynsym section, then put it
8882 there now. We already know the symbol index. We also fill in
8883 the entry in the .hash section. */
8884 if (h->dynindx != -1
8885 && elf_hash_table (finfo->info)->dynamic_sections_created)
8886 {
8887 bfd_byte *esym;
8888
8889 sym.st_name = h->dynstr_index;
8890 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8891 if (! check_dynsym (finfo->output_bfd, &sym))
8892 {
8893 eoinfo->failed = TRUE;
8894 return FALSE;
8895 }
8896 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8897
8898 if (finfo->hash_sec != NULL)
8899 {
8900 size_t hash_entry_size;
8901 bfd_byte *bucketpos;
8902 bfd_vma chain;
8903 size_t bucketcount;
8904 size_t bucket;
8905
8906 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8907 bucket = h->u.elf_hash_value % bucketcount;
8908
8909 hash_entry_size
8910 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8911 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8912 + (bucket + 2) * hash_entry_size);
8913 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8914 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8915 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8916 ((bfd_byte *) finfo->hash_sec->contents
8917 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8918 }
8919
8920 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8921 {
8922 Elf_Internal_Versym iversym;
8923 Elf_External_Versym *eversym;
8924
8925 if (!h->def_regular)
8926 {
8927 if (h->verinfo.verdef == NULL)
8928 iversym.vs_vers = 0;
8929 else
8930 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8931 }
8932 else
8933 {
8934 if (h->verinfo.vertree == NULL)
8935 iversym.vs_vers = 1;
8936 else
8937 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8938 if (finfo->info->create_default_symver)
8939 iversym.vs_vers++;
8940 }
8941
8942 if (h->hidden)
8943 iversym.vs_vers |= VERSYM_HIDDEN;
8944
8945 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8946 eversym += h->dynindx;
8947 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8948 }
8949 }
8950
8951 /* If we're stripping it, then it was just a dynamic symbol, and
8952 there's nothing else to do. */
8953 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8954 return TRUE;
8955
8956 indx = bfd_get_symcount (finfo->output_bfd);
8957 ret = elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h);
8958 if (ret == 0)
8959 {
8960 eoinfo->failed = TRUE;
8961 return FALSE;
8962 }
8963 else if (ret == 1)
8964 h->indx = indx;
8965 else if (h->indx == -2)
8966 abort();
8967
8968 return TRUE;
8969 }
8970
8971 /* Return TRUE if special handling is done for relocs in SEC against
8972 symbols defined in discarded sections. */
8973
8974 static bfd_boolean
8975 elf_section_ignore_discarded_relocs (asection *sec)
8976 {
8977 const struct elf_backend_data *bed;
8978
8979 switch (sec->sec_info_type)
8980 {
8981 case ELF_INFO_TYPE_STABS:
8982 case ELF_INFO_TYPE_EH_FRAME:
8983 return TRUE;
8984 default:
8985 break;
8986 }
8987
8988 bed = get_elf_backend_data (sec->owner);
8989 if (bed->elf_backend_ignore_discarded_relocs != NULL
8990 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8991 return TRUE;
8992
8993 return FALSE;
8994 }
8995
8996 /* Return a mask saying how ld should treat relocations in SEC against
8997 symbols defined in discarded sections. If this function returns
8998 COMPLAIN set, ld will issue a warning message. If this function
8999 returns PRETEND set, and the discarded section was link-once and the
9000 same size as the kept link-once section, ld will pretend that the
9001 symbol was actually defined in the kept section. Otherwise ld will
9002 zero the reloc (at least that is the intent, but some cooperation by
9003 the target dependent code is needed, particularly for REL targets). */
9004
9005 unsigned int
9006 _bfd_elf_default_action_discarded (asection *sec)
9007 {
9008 if (sec->flags & SEC_DEBUGGING)
9009 return PRETEND;
9010
9011 if (strcmp (".eh_frame", sec->name) == 0)
9012 return 0;
9013
9014 if (strcmp (".gcc_except_table", sec->name) == 0)
9015 return 0;
9016
9017 return COMPLAIN | PRETEND;
9018 }
9019
9020 /* Find a match between a section and a member of a section group. */
9021
9022 static asection *
9023 match_group_member (asection *sec, asection *group,
9024 struct bfd_link_info *info)
9025 {
9026 asection *first = elf_next_in_group (group);
9027 asection *s = first;
9028
9029 while (s != NULL)
9030 {
9031 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9032 return s;
9033
9034 s = elf_next_in_group (s);
9035 if (s == first)
9036 break;
9037 }
9038
9039 return NULL;
9040 }
9041
9042 /* Check if the kept section of a discarded section SEC can be used
9043 to replace it. Return the replacement if it is OK. Otherwise return
9044 NULL. */
9045
9046 asection *
9047 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9048 {
9049 asection *kept;
9050
9051 kept = sec->kept_section;
9052 if (kept != NULL)
9053 {
9054 if ((kept->flags & SEC_GROUP) != 0)
9055 kept = match_group_member (sec, kept, info);
9056 if (kept != NULL
9057 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9058 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9059 kept = NULL;
9060 sec->kept_section = kept;
9061 }
9062 return kept;
9063 }
9064
9065 /* Link an input file into the linker output file. This function
9066 handles all the sections and relocations of the input file at once.
9067 This is so that we only have to read the local symbols once, and
9068 don't have to keep them in memory. */
9069
9070 static bfd_boolean
9071 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
9072 {
9073 int (*relocate_section)
9074 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9075 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9076 bfd *output_bfd;
9077 Elf_Internal_Shdr *symtab_hdr;
9078 size_t locsymcount;
9079 size_t extsymoff;
9080 Elf_Internal_Sym *isymbuf;
9081 Elf_Internal_Sym *isym;
9082 Elf_Internal_Sym *isymend;
9083 long *pindex;
9084 asection **ppsection;
9085 asection *o;
9086 const struct elf_backend_data *bed;
9087 struct elf_link_hash_entry **sym_hashes;
9088 bfd_size_type address_size;
9089 bfd_vma r_type_mask;
9090 int r_sym_shift;
9091
9092 output_bfd = finfo->output_bfd;
9093 bed = get_elf_backend_data (output_bfd);
9094 relocate_section = bed->elf_backend_relocate_section;
9095
9096 /* If this is a dynamic object, we don't want to do anything here:
9097 we don't want the local symbols, and we don't want the section
9098 contents. */
9099 if ((input_bfd->flags & DYNAMIC) != 0)
9100 return TRUE;
9101
9102 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9103 if (elf_bad_symtab (input_bfd))
9104 {
9105 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9106 extsymoff = 0;
9107 }
9108 else
9109 {
9110 locsymcount = symtab_hdr->sh_info;
9111 extsymoff = symtab_hdr->sh_info;
9112 }
9113
9114 /* Read the local symbols. */
9115 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9116 if (isymbuf == NULL && locsymcount != 0)
9117 {
9118 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9119 finfo->internal_syms,
9120 finfo->external_syms,
9121 finfo->locsym_shndx);
9122 if (isymbuf == NULL)
9123 return FALSE;
9124 }
9125
9126 /* Find local symbol sections and adjust values of symbols in
9127 SEC_MERGE sections. Write out those local symbols we know are
9128 going into the output file. */
9129 isymend = isymbuf + locsymcount;
9130 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
9131 isym < isymend;
9132 isym++, pindex++, ppsection++)
9133 {
9134 asection *isec;
9135 const char *name;
9136 Elf_Internal_Sym osym;
9137 long indx;
9138 int ret;
9139
9140 *pindex = -1;
9141
9142 if (elf_bad_symtab (input_bfd))
9143 {
9144 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9145 {
9146 *ppsection = NULL;
9147 continue;
9148 }
9149 }
9150
9151 if (isym->st_shndx == SHN_UNDEF)
9152 isec = bfd_und_section_ptr;
9153 else if (isym->st_shndx == SHN_ABS)
9154 isec = bfd_abs_section_ptr;
9155 else if (isym->st_shndx == SHN_COMMON)
9156 isec = bfd_com_section_ptr;
9157 else
9158 {
9159 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9160 if (isec == NULL)
9161 {
9162 /* Don't attempt to output symbols with st_shnx in the
9163 reserved range other than SHN_ABS and SHN_COMMON. */
9164 *ppsection = NULL;
9165 continue;
9166 }
9167 else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
9168 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9169 isym->st_value =
9170 _bfd_merged_section_offset (output_bfd, &isec,
9171 elf_section_data (isec)->sec_info,
9172 isym->st_value);
9173 }
9174
9175 *ppsection = isec;
9176
9177 /* Don't output the first, undefined, symbol. */
9178 if (ppsection == finfo->sections)
9179 continue;
9180
9181 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9182 {
9183 /* We never output section symbols. Instead, we use the
9184 section symbol of the corresponding section in the output
9185 file. */
9186 continue;
9187 }
9188
9189 /* If we are stripping all symbols, we don't want to output this
9190 one. */
9191 if (finfo->info->strip == strip_all)
9192 continue;
9193
9194 /* If we are discarding all local symbols, we don't want to
9195 output this one. If we are generating a relocatable output
9196 file, then some of the local symbols may be required by
9197 relocs; we output them below as we discover that they are
9198 needed. */
9199 if (finfo->info->discard == discard_all)
9200 continue;
9201
9202 /* If this symbol is defined in a section which we are
9203 discarding, we don't need to keep it. */
9204 if (isym->st_shndx != SHN_UNDEF
9205 && isym->st_shndx < SHN_LORESERVE
9206 && bfd_section_removed_from_list (output_bfd,
9207 isec->output_section))
9208 continue;
9209
9210 /* Get the name of the symbol. */
9211 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9212 isym->st_name);
9213 if (name == NULL)
9214 return FALSE;
9215
9216 /* See if we are discarding symbols with this name. */
9217 if ((finfo->info->strip == strip_some
9218 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
9219 == NULL))
9220 || (((finfo->info->discard == discard_sec_merge
9221 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
9222 || finfo->info->discard == discard_l)
9223 && bfd_is_local_label_name (input_bfd, name)))
9224 continue;
9225
9226 osym = *isym;
9227
9228 /* Adjust the section index for the output file. */
9229 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9230 isec->output_section);
9231 if (osym.st_shndx == SHN_BAD)
9232 return FALSE;
9233
9234 /* ELF symbols in relocatable files are section relative, but
9235 in executable files they are virtual addresses. Note that
9236 this code assumes that all ELF sections have an associated
9237 BFD section with a reasonable value for output_offset; below
9238 we assume that they also have a reasonable value for
9239 output_section. Any special sections must be set up to meet
9240 these requirements. */
9241 osym.st_value += isec->output_offset;
9242 if (! finfo->info->relocatable)
9243 {
9244 osym.st_value += isec->output_section->vma;
9245 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9246 {
9247 /* STT_TLS symbols are relative to PT_TLS segment base. */
9248 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9249 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9250 }
9251 }
9252
9253 indx = bfd_get_symcount (output_bfd);
9254 ret = elf_link_output_sym (finfo, name, &osym, isec, NULL);
9255 if (ret == 0)
9256 return FALSE;
9257 else if (ret == 1)
9258 *pindex = indx;
9259 }
9260
9261 if (bed->s->arch_size == 32)
9262 {
9263 r_type_mask = 0xff;
9264 r_sym_shift = 8;
9265 address_size = 4;
9266 }
9267 else
9268 {
9269 r_type_mask = 0xffffffff;
9270 r_sym_shift = 32;
9271 address_size = 8;
9272 }
9273
9274 /* Relocate the contents of each section. */
9275 sym_hashes = elf_sym_hashes (input_bfd);
9276 for (o = input_bfd->sections; o != NULL; o = o->next)
9277 {
9278 bfd_byte *contents;
9279
9280 if (! o->linker_mark)
9281 {
9282 /* This section was omitted from the link. */
9283 continue;
9284 }
9285
9286 if (finfo->info->relocatable
9287 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9288 {
9289 /* Deal with the group signature symbol. */
9290 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9291 unsigned long symndx = sec_data->this_hdr.sh_info;
9292 asection *osec = o->output_section;
9293
9294 if (symndx >= locsymcount
9295 || (elf_bad_symtab (input_bfd)
9296 && finfo->sections[symndx] == NULL))
9297 {
9298 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9299 while (h->root.type == bfd_link_hash_indirect
9300 || h->root.type == bfd_link_hash_warning)
9301 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9302 /* Arrange for symbol to be output. */
9303 h->indx = -2;
9304 elf_section_data (osec)->this_hdr.sh_info = -2;
9305 }
9306 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9307 {
9308 /* We'll use the output section target_index. */
9309 asection *sec = finfo->sections[symndx]->output_section;
9310 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9311 }
9312 else
9313 {
9314 if (finfo->indices[symndx] == -1)
9315 {
9316 /* Otherwise output the local symbol now. */
9317 Elf_Internal_Sym sym = isymbuf[symndx];
9318 asection *sec = finfo->sections[symndx]->output_section;
9319 const char *name;
9320 long indx;
9321 int ret;
9322
9323 name = bfd_elf_string_from_elf_section (input_bfd,
9324 symtab_hdr->sh_link,
9325 sym.st_name);
9326 if (name == NULL)
9327 return FALSE;
9328
9329 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9330 sec);
9331 if (sym.st_shndx == SHN_BAD)
9332 return FALSE;
9333
9334 sym.st_value += o->output_offset;
9335
9336 indx = bfd_get_symcount (output_bfd);
9337 ret = elf_link_output_sym (finfo, name, &sym, o, NULL);
9338 if (ret == 0)
9339 return FALSE;
9340 else if (ret == 1)
9341 finfo->indices[symndx] = indx;
9342 else
9343 abort ();
9344 }
9345 elf_section_data (osec)->this_hdr.sh_info
9346 = finfo->indices[symndx];
9347 }
9348 }
9349
9350 if ((o->flags & SEC_HAS_CONTENTS) == 0
9351 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9352 continue;
9353
9354 if ((o->flags & SEC_LINKER_CREATED) != 0)
9355 {
9356 /* Section was created by _bfd_elf_link_create_dynamic_sections
9357 or somesuch. */
9358 continue;
9359 }
9360
9361 /* Get the contents of the section. They have been cached by a
9362 relaxation routine. Note that o is a section in an input
9363 file, so the contents field will not have been set by any of
9364 the routines which work on output files. */
9365 if (elf_section_data (o)->this_hdr.contents != NULL)
9366 contents = elf_section_data (o)->this_hdr.contents;
9367 else
9368 {
9369 contents = finfo->contents;
9370 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9371 return FALSE;
9372 }
9373
9374 if ((o->flags & SEC_RELOC) != 0)
9375 {
9376 Elf_Internal_Rela *internal_relocs;
9377 Elf_Internal_Rela *rel, *relend;
9378 int action_discarded;
9379 int ret;
9380
9381 /* Get the swapped relocs. */
9382 internal_relocs
9383 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9384 finfo->internal_relocs, FALSE);
9385 if (internal_relocs == NULL
9386 && o->reloc_count > 0)
9387 return FALSE;
9388
9389 /* We need to reverse-copy input .ctors/.dtors sections if
9390 they are placed in .init_array/.finit_array for output. */
9391 if (o->size > address_size
9392 && ((strncmp (o->name, ".ctors", 6) == 0
9393 && strcmp (o->output_section->name,
9394 ".init_array") == 0)
9395 || (strncmp (o->name, ".dtors", 6) == 0
9396 && strcmp (o->output_section->name,
9397 ".fini_array") == 0))
9398 && (o->name[6] == 0 || o->name[6] == '.'))
9399 {
9400 if (o->size != o->reloc_count * address_size)
9401 {
9402 (*_bfd_error_handler)
9403 (_("error: %B: size of section %A is not "
9404 "multiple of address size"),
9405 input_bfd, o);
9406 bfd_set_error (bfd_error_on_input);
9407 return FALSE;
9408 }
9409 o->flags |= SEC_ELF_REVERSE_COPY;
9410 }
9411
9412 action_discarded = -1;
9413 if (!elf_section_ignore_discarded_relocs (o))
9414 action_discarded = (*bed->action_discarded) (o);
9415
9416 /* Run through the relocs evaluating complex reloc symbols and
9417 looking for relocs against symbols from discarded sections
9418 or section symbols from removed link-once sections.
9419 Complain about relocs against discarded sections. Zero
9420 relocs against removed link-once sections. */
9421
9422 rel = internal_relocs;
9423 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9424 for ( ; rel < relend; rel++)
9425 {
9426 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9427 unsigned int s_type;
9428 asection **ps, *sec;
9429 struct elf_link_hash_entry *h = NULL;
9430 const char *sym_name;
9431
9432 if (r_symndx == STN_UNDEF)
9433 continue;
9434
9435 if (r_symndx >= locsymcount
9436 || (elf_bad_symtab (input_bfd)
9437 && finfo->sections[r_symndx] == NULL))
9438 {
9439 h = sym_hashes[r_symndx - extsymoff];
9440
9441 /* Badly formatted input files can contain relocs that
9442 reference non-existant symbols. Check here so that
9443 we do not seg fault. */
9444 if (h == NULL)
9445 {
9446 char buffer [32];
9447
9448 sprintf_vma (buffer, rel->r_info);
9449 (*_bfd_error_handler)
9450 (_("error: %B contains a reloc (0x%s) for section %A "
9451 "that references a non-existent global symbol"),
9452 input_bfd, o, buffer);
9453 bfd_set_error (bfd_error_bad_value);
9454 return FALSE;
9455 }
9456
9457 while (h->root.type == bfd_link_hash_indirect
9458 || h->root.type == bfd_link_hash_warning)
9459 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9460
9461 s_type = h->type;
9462
9463 ps = NULL;
9464 if (h->root.type == bfd_link_hash_defined
9465 || h->root.type == bfd_link_hash_defweak)
9466 ps = &h->root.u.def.section;
9467
9468 sym_name = h->root.root.string;
9469 }
9470 else
9471 {
9472 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9473
9474 s_type = ELF_ST_TYPE (sym->st_info);
9475 ps = &finfo->sections[r_symndx];
9476 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9477 sym, *ps);
9478 }
9479
9480 if ((s_type == STT_RELC || s_type == STT_SRELC)
9481 && !finfo->info->relocatable)
9482 {
9483 bfd_vma val;
9484 bfd_vma dot = (rel->r_offset
9485 + o->output_offset + o->output_section->vma);
9486 #ifdef DEBUG
9487 printf ("Encountered a complex symbol!");
9488 printf (" (input_bfd %s, section %s, reloc %ld\n",
9489 input_bfd->filename, o->name,
9490 (long) (rel - internal_relocs));
9491 printf (" symbol: idx %8.8lx, name %s\n",
9492 r_symndx, sym_name);
9493 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9494 (unsigned long) rel->r_info,
9495 (unsigned long) rel->r_offset);
9496 #endif
9497 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9498 isymbuf, locsymcount, s_type == STT_SRELC))
9499 return FALSE;
9500
9501 /* Symbol evaluated OK. Update to absolute value. */
9502 set_symbol_value (input_bfd, isymbuf, locsymcount,
9503 r_symndx, val);
9504 continue;
9505 }
9506
9507 if (action_discarded != -1 && ps != NULL)
9508 {
9509 /* Complain if the definition comes from a
9510 discarded section. */
9511 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9512 {
9513 BFD_ASSERT (r_symndx != STN_UNDEF);
9514 if (action_discarded & COMPLAIN)
9515 (*finfo->info->callbacks->einfo)
9516 (_("%X`%s' referenced in section `%A' of %B: "
9517 "defined in discarded section `%A' of %B\n"),
9518 sym_name, o, input_bfd, sec, sec->owner);
9519
9520 /* Try to do the best we can to support buggy old
9521 versions of gcc. Pretend that the symbol is
9522 really defined in the kept linkonce section.
9523 FIXME: This is quite broken. Modifying the
9524 symbol here means we will be changing all later
9525 uses of the symbol, not just in this section. */
9526 if (action_discarded & PRETEND)
9527 {
9528 asection *kept;
9529
9530 kept = _bfd_elf_check_kept_section (sec,
9531 finfo->info);
9532 if (kept != NULL)
9533 {
9534 *ps = kept;
9535 continue;
9536 }
9537 }
9538 }
9539 }
9540 }
9541
9542 /* Relocate the section by invoking a back end routine.
9543
9544 The back end routine is responsible for adjusting the
9545 section contents as necessary, and (if using Rela relocs
9546 and generating a relocatable output file) adjusting the
9547 reloc addend as necessary.
9548
9549 The back end routine does not have to worry about setting
9550 the reloc address or the reloc symbol index.
9551
9552 The back end routine is given a pointer to the swapped in
9553 internal symbols, and can access the hash table entries
9554 for the external symbols via elf_sym_hashes (input_bfd).
9555
9556 When generating relocatable output, the back end routine
9557 must handle STB_LOCAL/STT_SECTION symbols specially. The
9558 output symbol is going to be a section symbol
9559 corresponding to the output section, which will require
9560 the addend to be adjusted. */
9561
9562 ret = (*relocate_section) (output_bfd, finfo->info,
9563 input_bfd, o, contents,
9564 internal_relocs,
9565 isymbuf,
9566 finfo->sections);
9567 if (!ret)
9568 return FALSE;
9569
9570 if (ret == 2
9571 || finfo->info->relocatable
9572 || finfo->info->emitrelocations)
9573 {
9574 Elf_Internal_Rela *irela;
9575 Elf_Internal_Rela *irelaend, *irelamid;
9576 bfd_vma last_offset;
9577 struct elf_link_hash_entry **rel_hash;
9578 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9579 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9580 unsigned int next_erel;
9581 bfd_boolean rela_normal;
9582 struct bfd_elf_section_data *esdi, *esdo;
9583
9584 esdi = elf_section_data (o);
9585 esdo = elf_section_data (o->output_section);
9586 rela_normal = FALSE;
9587
9588 /* Adjust the reloc addresses and symbol indices. */
9589
9590 irela = internal_relocs;
9591 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9592 rel_hash = esdo->rel.hashes + esdo->rel.count;
9593 /* We start processing the REL relocs, if any. When we reach
9594 IRELAMID in the loop, we switch to the RELA relocs. */
9595 irelamid = irela;
9596 if (esdi->rel.hdr != NULL)
9597 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9598 * bed->s->int_rels_per_ext_rel);
9599 rel_hash_list = rel_hash;
9600 rela_hash_list = NULL;
9601 last_offset = o->output_offset;
9602 if (!finfo->info->relocatable)
9603 last_offset += o->output_section->vma;
9604 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9605 {
9606 unsigned long r_symndx;
9607 asection *sec;
9608 Elf_Internal_Sym sym;
9609
9610 if (next_erel == bed->s->int_rels_per_ext_rel)
9611 {
9612 rel_hash++;
9613 next_erel = 0;
9614 }
9615
9616 if (irela == irelamid)
9617 {
9618 rel_hash = esdo->rela.hashes + esdo->rela.count;
9619 rela_hash_list = rel_hash;
9620 rela_normal = bed->rela_normal;
9621 }
9622
9623 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9624 finfo->info, o,
9625 irela->r_offset);
9626 if (irela->r_offset >= (bfd_vma) -2)
9627 {
9628 /* This is a reloc for a deleted entry or somesuch.
9629 Turn it into an R_*_NONE reloc, at the same
9630 offset as the last reloc. elf_eh_frame.c and
9631 bfd_elf_discard_info rely on reloc offsets
9632 being ordered. */
9633 irela->r_offset = last_offset;
9634 irela->r_info = 0;
9635 irela->r_addend = 0;
9636 continue;
9637 }
9638
9639 irela->r_offset += o->output_offset;
9640
9641 /* Relocs in an executable have to be virtual addresses. */
9642 if (!finfo->info->relocatable)
9643 irela->r_offset += o->output_section->vma;
9644
9645 last_offset = irela->r_offset;
9646
9647 r_symndx = irela->r_info >> r_sym_shift;
9648 if (r_symndx == STN_UNDEF)
9649 continue;
9650
9651 if (r_symndx >= locsymcount
9652 || (elf_bad_symtab (input_bfd)
9653 && finfo->sections[r_symndx] == NULL))
9654 {
9655 struct elf_link_hash_entry *rh;
9656 unsigned long indx;
9657
9658 /* This is a reloc against a global symbol. We
9659 have not yet output all the local symbols, so
9660 we do not know the symbol index of any global
9661 symbol. We set the rel_hash entry for this
9662 reloc to point to the global hash table entry
9663 for this symbol. The symbol index is then
9664 set at the end of bfd_elf_final_link. */
9665 indx = r_symndx - extsymoff;
9666 rh = elf_sym_hashes (input_bfd)[indx];
9667 while (rh->root.type == bfd_link_hash_indirect
9668 || rh->root.type == bfd_link_hash_warning)
9669 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9670
9671 /* Setting the index to -2 tells
9672 elf_link_output_extsym that this symbol is
9673 used by a reloc. */
9674 BFD_ASSERT (rh->indx < 0);
9675 rh->indx = -2;
9676
9677 *rel_hash = rh;
9678
9679 continue;
9680 }
9681
9682 /* This is a reloc against a local symbol. */
9683
9684 *rel_hash = NULL;
9685 sym = isymbuf[r_symndx];
9686 sec = finfo->sections[r_symndx];
9687 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9688 {
9689 /* I suppose the backend ought to fill in the
9690 section of any STT_SECTION symbol against a
9691 processor specific section. */
9692 r_symndx = STN_UNDEF;
9693 if (bfd_is_abs_section (sec))
9694 ;
9695 else if (sec == NULL || sec->owner == NULL)
9696 {
9697 bfd_set_error (bfd_error_bad_value);
9698 return FALSE;
9699 }
9700 else
9701 {
9702 asection *osec = sec->output_section;
9703
9704 /* If we have discarded a section, the output
9705 section will be the absolute section. In
9706 case of discarded SEC_MERGE sections, use
9707 the kept section. relocate_section should
9708 have already handled discarded linkonce
9709 sections. */
9710 if (bfd_is_abs_section (osec)
9711 && sec->kept_section != NULL
9712 && sec->kept_section->output_section != NULL)
9713 {
9714 osec = sec->kept_section->output_section;
9715 irela->r_addend -= osec->vma;
9716 }
9717
9718 if (!bfd_is_abs_section (osec))
9719 {
9720 r_symndx = osec->target_index;
9721 if (r_symndx == STN_UNDEF)
9722 {
9723 struct elf_link_hash_table *htab;
9724 asection *oi;
9725
9726 htab = elf_hash_table (finfo->info);
9727 oi = htab->text_index_section;
9728 if ((osec->flags & SEC_READONLY) == 0
9729 && htab->data_index_section != NULL)
9730 oi = htab->data_index_section;
9731
9732 if (oi != NULL)
9733 {
9734 irela->r_addend += osec->vma - oi->vma;
9735 r_symndx = oi->target_index;
9736 }
9737 }
9738
9739 BFD_ASSERT (r_symndx != STN_UNDEF);
9740 }
9741 }
9742
9743 /* Adjust the addend according to where the
9744 section winds up in the output section. */
9745 if (rela_normal)
9746 irela->r_addend += sec->output_offset;
9747 }
9748 else
9749 {
9750 if (finfo->indices[r_symndx] == -1)
9751 {
9752 unsigned long shlink;
9753 const char *name;
9754 asection *osec;
9755 long indx;
9756
9757 if (finfo->info->strip == strip_all)
9758 {
9759 /* You can't do ld -r -s. */
9760 bfd_set_error (bfd_error_invalid_operation);
9761 return FALSE;
9762 }
9763
9764 /* This symbol was skipped earlier, but
9765 since it is needed by a reloc, we
9766 must output it now. */
9767 shlink = symtab_hdr->sh_link;
9768 name = (bfd_elf_string_from_elf_section
9769 (input_bfd, shlink, sym.st_name));
9770 if (name == NULL)
9771 return FALSE;
9772
9773 osec = sec->output_section;
9774 sym.st_shndx =
9775 _bfd_elf_section_from_bfd_section (output_bfd,
9776 osec);
9777 if (sym.st_shndx == SHN_BAD)
9778 return FALSE;
9779
9780 sym.st_value += sec->output_offset;
9781 if (! finfo->info->relocatable)
9782 {
9783 sym.st_value += osec->vma;
9784 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9785 {
9786 /* STT_TLS symbols are relative to PT_TLS
9787 segment base. */
9788 BFD_ASSERT (elf_hash_table (finfo->info)
9789 ->tls_sec != NULL);
9790 sym.st_value -= (elf_hash_table (finfo->info)
9791 ->tls_sec->vma);
9792 }
9793 }
9794
9795 indx = bfd_get_symcount (output_bfd);
9796 ret = elf_link_output_sym (finfo, name, &sym, sec,
9797 NULL);
9798 if (ret == 0)
9799 return FALSE;
9800 else if (ret == 1)
9801 finfo->indices[r_symndx] = indx;
9802 else
9803 abort ();
9804 }
9805
9806 r_symndx = finfo->indices[r_symndx];
9807 }
9808
9809 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9810 | (irela->r_info & r_type_mask));
9811 }
9812
9813 /* Swap out the relocs. */
9814 input_rel_hdr = esdi->rel.hdr;
9815 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
9816 {
9817 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9818 input_rel_hdr,
9819 internal_relocs,
9820 rel_hash_list))
9821 return FALSE;
9822 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9823 * bed->s->int_rels_per_ext_rel);
9824 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9825 }
9826
9827 input_rela_hdr = esdi->rela.hdr;
9828 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
9829 {
9830 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9831 input_rela_hdr,
9832 internal_relocs,
9833 rela_hash_list))
9834 return FALSE;
9835 }
9836 }
9837 }
9838
9839 /* Write out the modified section contents. */
9840 if (bed->elf_backend_write_section
9841 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9842 contents))
9843 {
9844 /* Section written out. */
9845 }
9846 else switch (o->sec_info_type)
9847 {
9848 case ELF_INFO_TYPE_STABS:
9849 if (! (_bfd_write_section_stabs
9850 (output_bfd,
9851 &elf_hash_table (finfo->info)->stab_info,
9852 o, &elf_section_data (o)->sec_info, contents)))
9853 return FALSE;
9854 break;
9855 case ELF_INFO_TYPE_MERGE:
9856 if (! _bfd_write_merged_section (output_bfd, o,
9857 elf_section_data (o)->sec_info))
9858 return FALSE;
9859 break;
9860 case ELF_INFO_TYPE_EH_FRAME:
9861 {
9862 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9863 o, contents))
9864 return FALSE;
9865 }
9866 break;
9867 default:
9868 {
9869 /* FIXME: octets_per_byte. */
9870 if (! (o->flags & SEC_EXCLUDE))
9871 {
9872 file_ptr offset = (file_ptr) o->output_offset;
9873 bfd_size_type todo = o->size;
9874 if ((o->flags & SEC_ELF_REVERSE_COPY))
9875 {
9876 /* Reverse-copy input section to output. */
9877 do
9878 {
9879 todo -= address_size;
9880 if (! bfd_set_section_contents (output_bfd,
9881 o->output_section,
9882 contents + todo,
9883 offset,
9884 address_size))
9885 return FALSE;
9886 if (todo == 0)
9887 break;
9888 offset += address_size;
9889 }
9890 while (1);
9891 }
9892 else if (! bfd_set_section_contents (output_bfd,
9893 o->output_section,
9894 contents,
9895 offset, todo))
9896 return FALSE;
9897 }
9898 }
9899 break;
9900 }
9901 }
9902
9903 return TRUE;
9904 }
9905
9906 /* Generate a reloc when linking an ELF file. This is a reloc
9907 requested by the linker, and does not come from any input file. This
9908 is used to build constructor and destructor tables when linking
9909 with -Ur. */
9910
9911 static bfd_boolean
9912 elf_reloc_link_order (bfd *output_bfd,
9913 struct bfd_link_info *info,
9914 asection *output_section,
9915 struct bfd_link_order *link_order)
9916 {
9917 reloc_howto_type *howto;
9918 long indx;
9919 bfd_vma offset;
9920 bfd_vma addend;
9921 struct bfd_elf_section_reloc_data *reldata;
9922 struct elf_link_hash_entry **rel_hash_ptr;
9923 Elf_Internal_Shdr *rel_hdr;
9924 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9925 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9926 bfd_byte *erel;
9927 unsigned int i;
9928 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
9929
9930 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9931 if (howto == NULL)
9932 {
9933 bfd_set_error (bfd_error_bad_value);
9934 return FALSE;
9935 }
9936
9937 addend = link_order->u.reloc.p->addend;
9938
9939 if (esdo->rel.hdr)
9940 reldata = &esdo->rel;
9941 else if (esdo->rela.hdr)
9942 reldata = &esdo->rela;
9943 else
9944 {
9945 reldata = NULL;
9946 BFD_ASSERT (0);
9947 }
9948
9949 /* Figure out the symbol index. */
9950 rel_hash_ptr = reldata->hashes + reldata->count;
9951 if (link_order->type == bfd_section_reloc_link_order)
9952 {
9953 indx = link_order->u.reloc.p->u.section->target_index;
9954 BFD_ASSERT (indx != 0);
9955 *rel_hash_ptr = NULL;
9956 }
9957 else
9958 {
9959 struct elf_link_hash_entry *h;
9960
9961 /* Treat a reloc against a defined symbol as though it were
9962 actually against the section. */
9963 h = ((struct elf_link_hash_entry *)
9964 bfd_wrapped_link_hash_lookup (output_bfd, info,
9965 link_order->u.reloc.p->u.name,
9966 FALSE, FALSE, TRUE));
9967 if (h != NULL
9968 && (h->root.type == bfd_link_hash_defined
9969 || h->root.type == bfd_link_hash_defweak))
9970 {
9971 asection *section;
9972
9973 section = h->root.u.def.section;
9974 indx = section->output_section->target_index;
9975 *rel_hash_ptr = NULL;
9976 /* It seems that we ought to add the symbol value to the
9977 addend here, but in practice it has already been added
9978 because it was passed to constructor_callback. */
9979 addend += section->output_section->vma + section->output_offset;
9980 }
9981 else if (h != NULL)
9982 {
9983 /* Setting the index to -2 tells elf_link_output_extsym that
9984 this symbol is used by a reloc. */
9985 h->indx = -2;
9986 *rel_hash_ptr = h;
9987 indx = 0;
9988 }
9989 else
9990 {
9991 if (! ((*info->callbacks->unattached_reloc)
9992 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9993 return FALSE;
9994 indx = 0;
9995 }
9996 }
9997
9998 /* If this is an inplace reloc, we must write the addend into the
9999 object file. */
10000 if (howto->partial_inplace && addend != 0)
10001 {
10002 bfd_size_type size;
10003 bfd_reloc_status_type rstat;
10004 bfd_byte *buf;
10005 bfd_boolean ok;
10006 const char *sym_name;
10007
10008 size = (bfd_size_type) bfd_get_reloc_size (howto);
10009 buf = (bfd_byte *) bfd_zmalloc (size);
10010 if (buf == NULL)
10011 return FALSE;
10012 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10013 switch (rstat)
10014 {
10015 case bfd_reloc_ok:
10016 break;
10017
10018 default:
10019 case bfd_reloc_outofrange:
10020 abort ();
10021
10022 case bfd_reloc_overflow:
10023 if (link_order->type == bfd_section_reloc_link_order)
10024 sym_name = bfd_section_name (output_bfd,
10025 link_order->u.reloc.p->u.section);
10026 else
10027 sym_name = link_order->u.reloc.p->u.name;
10028 if (! ((*info->callbacks->reloc_overflow)
10029 (info, NULL, sym_name, howto->name, addend, NULL,
10030 NULL, (bfd_vma) 0)))
10031 {
10032 free (buf);
10033 return FALSE;
10034 }
10035 break;
10036 }
10037 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10038 link_order->offset, size);
10039 free (buf);
10040 if (! ok)
10041 return FALSE;
10042 }
10043
10044 /* The address of a reloc is relative to the section in a
10045 relocatable file, and is a virtual address in an executable
10046 file. */
10047 offset = link_order->offset;
10048 if (! info->relocatable)
10049 offset += output_section->vma;
10050
10051 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10052 {
10053 irel[i].r_offset = offset;
10054 irel[i].r_info = 0;
10055 irel[i].r_addend = 0;
10056 }
10057 if (bed->s->arch_size == 32)
10058 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10059 else
10060 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10061
10062 rel_hdr = reldata->hdr;
10063 erel = rel_hdr->contents;
10064 if (rel_hdr->sh_type == SHT_REL)
10065 {
10066 erel += reldata->count * bed->s->sizeof_rel;
10067 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10068 }
10069 else
10070 {
10071 irel[0].r_addend = addend;
10072 erel += reldata->count * bed->s->sizeof_rela;
10073 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10074 }
10075
10076 ++reldata->count;
10077
10078 return TRUE;
10079 }
10080
10081
10082 /* Get the output vma of the section pointed to by the sh_link field. */
10083
10084 static bfd_vma
10085 elf_get_linked_section_vma (struct bfd_link_order *p)
10086 {
10087 Elf_Internal_Shdr **elf_shdrp;
10088 asection *s;
10089 int elfsec;
10090
10091 s = p->u.indirect.section;
10092 elf_shdrp = elf_elfsections (s->owner);
10093 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10094 elfsec = elf_shdrp[elfsec]->sh_link;
10095 /* PR 290:
10096 The Intel C compiler generates SHT_IA_64_UNWIND with
10097 SHF_LINK_ORDER. But it doesn't set the sh_link or
10098 sh_info fields. Hence we could get the situation
10099 where elfsec is 0. */
10100 if (elfsec == 0)
10101 {
10102 const struct elf_backend_data *bed
10103 = get_elf_backend_data (s->owner);
10104 if (bed->link_order_error_handler)
10105 bed->link_order_error_handler
10106 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10107 return 0;
10108 }
10109 else
10110 {
10111 s = elf_shdrp[elfsec]->bfd_section;
10112 return s->output_section->vma + s->output_offset;
10113 }
10114 }
10115
10116
10117 /* Compare two sections based on the locations of the sections they are
10118 linked to. Used by elf_fixup_link_order. */
10119
10120 static int
10121 compare_link_order (const void * a, const void * b)
10122 {
10123 bfd_vma apos;
10124 bfd_vma bpos;
10125
10126 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10127 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10128 if (apos < bpos)
10129 return -1;
10130 return apos > bpos;
10131 }
10132
10133
10134 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10135 order as their linked sections. Returns false if this could not be done
10136 because an output section includes both ordered and unordered
10137 sections. Ideally we'd do this in the linker proper. */
10138
10139 static bfd_boolean
10140 elf_fixup_link_order (bfd *abfd, asection *o)
10141 {
10142 int seen_linkorder;
10143 int seen_other;
10144 int n;
10145 struct bfd_link_order *p;
10146 bfd *sub;
10147 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10148 unsigned elfsec;
10149 struct bfd_link_order **sections;
10150 asection *s, *other_sec, *linkorder_sec;
10151 bfd_vma offset;
10152
10153 other_sec = NULL;
10154 linkorder_sec = NULL;
10155 seen_other = 0;
10156 seen_linkorder = 0;
10157 for (p = o->map_head.link_order; p != NULL; p = p->next)
10158 {
10159 if (p->type == bfd_indirect_link_order)
10160 {
10161 s = p->u.indirect.section;
10162 sub = s->owner;
10163 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10164 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10165 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10166 && elfsec < elf_numsections (sub)
10167 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10168 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10169 {
10170 seen_linkorder++;
10171 linkorder_sec = s;
10172 }
10173 else
10174 {
10175 seen_other++;
10176 other_sec = s;
10177 }
10178 }
10179 else
10180 seen_other++;
10181
10182 if (seen_other && seen_linkorder)
10183 {
10184 if (other_sec && linkorder_sec)
10185 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10186 o, linkorder_sec,
10187 linkorder_sec->owner, other_sec,
10188 other_sec->owner);
10189 else
10190 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10191 o);
10192 bfd_set_error (bfd_error_bad_value);
10193 return FALSE;
10194 }
10195 }
10196
10197 if (!seen_linkorder)
10198 return TRUE;
10199
10200 sections = (struct bfd_link_order **)
10201 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10202 if (sections == NULL)
10203 return FALSE;
10204 seen_linkorder = 0;
10205
10206 for (p = o->map_head.link_order; p != NULL; p = p->next)
10207 {
10208 sections[seen_linkorder++] = p;
10209 }
10210 /* Sort the input sections in the order of their linked section. */
10211 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10212 compare_link_order);
10213
10214 /* Change the offsets of the sections. */
10215 offset = 0;
10216 for (n = 0; n < seen_linkorder; n++)
10217 {
10218 s = sections[n]->u.indirect.section;
10219 offset &= ~(bfd_vma) 0 << s->alignment_power;
10220 s->output_offset = offset;
10221 sections[n]->offset = offset;
10222 /* FIXME: octets_per_byte. */
10223 offset += sections[n]->size;
10224 }
10225
10226 free (sections);
10227 return TRUE;
10228 }
10229
10230
10231 /* Do the final step of an ELF link. */
10232
10233 bfd_boolean
10234 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10235 {
10236 bfd_boolean dynamic;
10237 bfd_boolean emit_relocs;
10238 bfd *dynobj;
10239 struct elf_final_link_info finfo;
10240 asection *o;
10241 struct bfd_link_order *p;
10242 bfd *sub;
10243 bfd_size_type max_contents_size;
10244 bfd_size_type max_external_reloc_size;
10245 bfd_size_type max_internal_reloc_count;
10246 bfd_size_type max_sym_count;
10247 bfd_size_type max_sym_shndx_count;
10248 file_ptr off;
10249 Elf_Internal_Sym elfsym;
10250 unsigned int i;
10251 Elf_Internal_Shdr *symtab_hdr;
10252 Elf_Internal_Shdr *symtab_shndx_hdr;
10253 Elf_Internal_Shdr *symstrtab_hdr;
10254 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10255 struct elf_outext_info eoinfo;
10256 bfd_boolean merged;
10257 size_t relativecount = 0;
10258 asection *reldyn = 0;
10259 bfd_size_type amt;
10260 asection *attr_section = NULL;
10261 bfd_vma attr_size = 0;
10262 const char *std_attrs_section;
10263
10264 if (! is_elf_hash_table (info->hash))
10265 return FALSE;
10266
10267 if (info->shared)
10268 abfd->flags |= DYNAMIC;
10269
10270 dynamic = elf_hash_table (info)->dynamic_sections_created;
10271 dynobj = elf_hash_table (info)->dynobj;
10272
10273 emit_relocs = (info->relocatable
10274 || info->emitrelocations);
10275
10276 finfo.info = info;
10277 finfo.output_bfd = abfd;
10278 finfo.symstrtab = _bfd_elf_stringtab_init ();
10279 if (finfo.symstrtab == NULL)
10280 return FALSE;
10281
10282 if (! dynamic)
10283 {
10284 finfo.dynsym_sec = NULL;
10285 finfo.hash_sec = NULL;
10286 finfo.symver_sec = NULL;
10287 }
10288 else
10289 {
10290 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
10291 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
10292 BFD_ASSERT (finfo.dynsym_sec != NULL);
10293 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
10294 /* Note that it is OK if symver_sec is NULL. */
10295 }
10296
10297 finfo.contents = NULL;
10298 finfo.external_relocs = NULL;
10299 finfo.internal_relocs = NULL;
10300 finfo.external_syms = NULL;
10301 finfo.locsym_shndx = NULL;
10302 finfo.internal_syms = NULL;
10303 finfo.indices = NULL;
10304 finfo.sections = NULL;
10305 finfo.symbuf = NULL;
10306 finfo.symshndxbuf = NULL;
10307 finfo.symbuf_count = 0;
10308 finfo.shndxbuf_size = 0;
10309
10310 /* The object attributes have been merged. Remove the input
10311 sections from the link, and set the contents of the output
10312 secton. */
10313 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10314 for (o = abfd->sections; o != NULL; o = o->next)
10315 {
10316 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10317 || strcmp (o->name, ".gnu.attributes") == 0)
10318 {
10319 for (p = o->map_head.link_order; p != NULL; p = p->next)
10320 {
10321 asection *input_section;
10322
10323 if (p->type != bfd_indirect_link_order)
10324 continue;
10325 input_section = p->u.indirect.section;
10326 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10327 elf_link_input_bfd ignores this section. */
10328 input_section->flags &= ~SEC_HAS_CONTENTS;
10329 }
10330
10331 attr_size = bfd_elf_obj_attr_size (abfd);
10332 if (attr_size)
10333 {
10334 bfd_set_section_size (abfd, o, attr_size);
10335 attr_section = o;
10336 /* Skip this section later on. */
10337 o->map_head.link_order = NULL;
10338 }
10339 else
10340 o->flags |= SEC_EXCLUDE;
10341 }
10342 }
10343
10344 /* Count up the number of relocations we will output for each output
10345 section, so that we know the sizes of the reloc sections. We
10346 also figure out some maximum sizes. */
10347 max_contents_size = 0;
10348 max_external_reloc_size = 0;
10349 max_internal_reloc_count = 0;
10350 max_sym_count = 0;
10351 max_sym_shndx_count = 0;
10352 merged = FALSE;
10353 for (o = abfd->sections; o != NULL; o = o->next)
10354 {
10355 struct bfd_elf_section_data *esdo = elf_section_data (o);
10356 o->reloc_count = 0;
10357
10358 for (p = o->map_head.link_order; p != NULL; p = p->next)
10359 {
10360 unsigned int reloc_count = 0;
10361 struct bfd_elf_section_data *esdi = NULL;
10362
10363 if (p->type == bfd_section_reloc_link_order
10364 || p->type == bfd_symbol_reloc_link_order)
10365 reloc_count = 1;
10366 else if (p->type == bfd_indirect_link_order)
10367 {
10368 asection *sec;
10369
10370 sec = p->u.indirect.section;
10371 esdi = elf_section_data (sec);
10372
10373 /* Mark all sections which are to be included in the
10374 link. This will normally be every section. We need
10375 to do this so that we can identify any sections which
10376 the linker has decided to not include. */
10377 sec->linker_mark = TRUE;
10378
10379 if (sec->flags & SEC_MERGE)
10380 merged = TRUE;
10381
10382 if (info->relocatable || info->emitrelocations)
10383 reloc_count = sec->reloc_count;
10384 else if (bed->elf_backend_count_relocs)
10385 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10386
10387 if (sec->rawsize > max_contents_size)
10388 max_contents_size = sec->rawsize;
10389 if (sec->size > max_contents_size)
10390 max_contents_size = sec->size;
10391
10392 /* We are interested in just local symbols, not all
10393 symbols. */
10394 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10395 && (sec->owner->flags & DYNAMIC) == 0)
10396 {
10397 size_t sym_count;
10398
10399 if (elf_bad_symtab (sec->owner))
10400 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10401 / bed->s->sizeof_sym);
10402 else
10403 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10404
10405 if (sym_count > max_sym_count)
10406 max_sym_count = sym_count;
10407
10408 if (sym_count > max_sym_shndx_count
10409 && elf_symtab_shndx (sec->owner) != 0)
10410 max_sym_shndx_count = sym_count;
10411
10412 if ((sec->flags & SEC_RELOC) != 0)
10413 {
10414 size_t ext_size = 0;
10415
10416 if (esdi->rel.hdr != NULL)
10417 ext_size = esdi->rel.hdr->sh_size;
10418 if (esdi->rela.hdr != NULL)
10419 ext_size += esdi->rela.hdr->sh_size;
10420
10421 if (ext_size > max_external_reloc_size)
10422 max_external_reloc_size = ext_size;
10423 if (sec->reloc_count > max_internal_reloc_count)
10424 max_internal_reloc_count = sec->reloc_count;
10425 }
10426 }
10427 }
10428
10429 if (reloc_count == 0)
10430 continue;
10431
10432 o->reloc_count += reloc_count;
10433
10434 if (p->type == bfd_indirect_link_order
10435 && (info->relocatable || info->emitrelocations))
10436 {
10437 if (esdi->rel.hdr)
10438 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10439 if (esdi->rela.hdr)
10440 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10441 }
10442 else
10443 {
10444 if (o->use_rela_p)
10445 esdo->rela.count += reloc_count;
10446 else
10447 esdo->rel.count += reloc_count;
10448 }
10449 }
10450
10451 if (o->reloc_count > 0)
10452 o->flags |= SEC_RELOC;
10453 else
10454 {
10455 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10456 set it (this is probably a bug) and if it is set
10457 assign_section_numbers will create a reloc section. */
10458 o->flags &=~ SEC_RELOC;
10459 }
10460
10461 /* If the SEC_ALLOC flag is not set, force the section VMA to
10462 zero. This is done in elf_fake_sections as well, but forcing
10463 the VMA to 0 here will ensure that relocs against these
10464 sections are handled correctly. */
10465 if ((o->flags & SEC_ALLOC) == 0
10466 && ! o->user_set_vma)
10467 o->vma = 0;
10468 }
10469
10470 if (! info->relocatable && merged)
10471 elf_link_hash_traverse (elf_hash_table (info),
10472 _bfd_elf_link_sec_merge_syms, abfd);
10473
10474 /* Figure out the file positions for everything but the symbol table
10475 and the relocs. We set symcount to force assign_section_numbers
10476 to create a symbol table. */
10477 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10478 BFD_ASSERT (! abfd->output_has_begun);
10479 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10480 goto error_return;
10481
10482 /* Set sizes, and assign file positions for reloc sections. */
10483 for (o = abfd->sections; o != NULL; o = o->next)
10484 {
10485 struct bfd_elf_section_data *esdo = elf_section_data (o);
10486 if ((o->flags & SEC_RELOC) != 0)
10487 {
10488 if (esdo->rel.hdr
10489 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10490 goto error_return;
10491
10492 if (esdo->rela.hdr
10493 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10494 goto error_return;
10495 }
10496
10497 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10498 to count upwards while actually outputting the relocations. */
10499 esdo->rel.count = 0;
10500 esdo->rela.count = 0;
10501 }
10502
10503 _bfd_elf_assign_file_positions_for_relocs (abfd);
10504
10505 /* We have now assigned file positions for all the sections except
10506 .symtab and .strtab. We start the .symtab section at the current
10507 file position, and write directly to it. We build the .strtab
10508 section in memory. */
10509 bfd_get_symcount (abfd) = 0;
10510 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10511 /* sh_name is set in prep_headers. */
10512 symtab_hdr->sh_type = SHT_SYMTAB;
10513 /* sh_flags, sh_addr and sh_size all start off zero. */
10514 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10515 /* sh_link is set in assign_section_numbers. */
10516 /* sh_info is set below. */
10517 /* sh_offset is set just below. */
10518 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10519
10520 off = elf_tdata (abfd)->next_file_pos;
10521 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10522
10523 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10524 incorrect. We do not yet know the size of the .symtab section.
10525 We correct next_file_pos below, after we do know the size. */
10526
10527 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10528 continuously seeking to the right position in the file. */
10529 if (! info->keep_memory || max_sym_count < 20)
10530 finfo.symbuf_size = 20;
10531 else
10532 finfo.symbuf_size = max_sym_count;
10533 amt = finfo.symbuf_size;
10534 amt *= bed->s->sizeof_sym;
10535 finfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10536 if (finfo.symbuf == NULL)
10537 goto error_return;
10538 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10539 {
10540 /* Wild guess at number of output symbols. realloc'd as needed. */
10541 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10542 finfo.shndxbuf_size = amt;
10543 amt *= sizeof (Elf_External_Sym_Shndx);
10544 finfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10545 if (finfo.symshndxbuf == NULL)
10546 goto error_return;
10547 }
10548
10549 /* Start writing out the symbol table. The first symbol is always a
10550 dummy symbol. */
10551 if (info->strip != strip_all
10552 || emit_relocs)
10553 {
10554 elfsym.st_value = 0;
10555 elfsym.st_size = 0;
10556 elfsym.st_info = 0;
10557 elfsym.st_other = 0;
10558 elfsym.st_shndx = SHN_UNDEF;
10559 elfsym.st_target_internal = 0;
10560 if (elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10561 NULL) != 1)
10562 goto error_return;
10563 }
10564
10565 /* Output a symbol for each section. We output these even if we are
10566 discarding local symbols, since they are used for relocs. These
10567 symbols have no names. We store the index of each one in the
10568 index field of the section, so that we can find it again when
10569 outputting relocs. */
10570 if (info->strip != strip_all
10571 || emit_relocs)
10572 {
10573 elfsym.st_size = 0;
10574 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10575 elfsym.st_other = 0;
10576 elfsym.st_value = 0;
10577 elfsym.st_target_internal = 0;
10578 for (i = 1; i < elf_numsections (abfd); i++)
10579 {
10580 o = bfd_section_from_elf_index (abfd, i);
10581 if (o != NULL)
10582 {
10583 o->target_index = bfd_get_symcount (abfd);
10584 elfsym.st_shndx = i;
10585 if (!info->relocatable)
10586 elfsym.st_value = o->vma;
10587 if (elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL) != 1)
10588 goto error_return;
10589 }
10590 }
10591 }
10592
10593 /* Allocate some memory to hold information read in from the input
10594 files. */
10595 if (max_contents_size != 0)
10596 {
10597 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10598 if (finfo.contents == NULL)
10599 goto error_return;
10600 }
10601
10602 if (max_external_reloc_size != 0)
10603 {
10604 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10605 if (finfo.external_relocs == NULL)
10606 goto error_return;
10607 }
10608
10609 if (max_internal_reloc_count != 0)
10610 {
10611 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10612 amt *= sizeof (Elf_Internal_Rela);
10613 finfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10614 if (finfo.internal_relocs == NULL)
10615 goto error_return;
10616 }
10617
10618 if (max_sym_count != 0)
10619 {
10620 amt = max_sym_count * bed->s->sizeof_sym;
10621 finfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10622 if (finfo.external_syms == NULL)
10623 goto error_return;
10624
10625 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10626 finfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10627 if (finfo.internal_syms == NULL)
10628 goto error_return;
10629
10630 amt = max_sym_count * sizeof (long);
10631 finfo.indices = (long int *) bfd_malloc (amt);
10632 if (finfo.indices == NULL)
10633 goto error_return;
10634
10635 amt = max_sym_count * sizeof (asection *);
10636 finfo.sections = (asection **) bfd_malloc (amt);
10637 if (finfo.sections == NULL)
10638 goto error_return;
10639 }
10640
10641 if (max_sym_shndx_count != 0)
10642 {
10643 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10644 finfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10645 if (finfo.locsym_shndx == NULL)
10646 goto error_return;
10647 }
10648
10649 if (elf_hash_table (info)->tls_sec)
10650 {
10651 bfd_vma base, end = 0;
10652 asection *sec;
10653
10654 for (sec = elf_hash_table (info)->tls_sec;
10655 sec && (sec->flags & SEC_THREAD_LOCAL);
10656 sec = sec->next)
10657 {
10658 bfd_size_type size = sec->size;
10659
10660 if (size == 0
10661 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10662 {
10663 struct bfd_link_order *ord = sec->map_tail.link_order;
10664
10665 if (ord != NULL)
10666 size = ord->offset + ord->size;
10667 }
10668 end = sec->vma + size;
10669 }
10670 base = elf_hash_table (info)->tls_sec->vma;
10671 /* Only align end of TLS section if static TLS doesn't have special
10672 alignment requirements. */
10673 if (bed->static_tls_alignment == 1)
10674 end = align_power (end,
10675 elf_hash_table (info)->tls_sec->alignment_power);
10676 elf_hash_table (info)->tls_size = end - base;
10677 }
10678
10679 /* Reorder SHF_LINK_ORDER sections. */
10680 for (o = abfd->sections; o != NULL; o = o->next)
10681 {
10682 if (!elf_fixup_link_order (abfd, o))
10683 return FALSE;
10684 }
10685
10686 /* Since ELF permits relocations to be against local symbols, we
10687 must have the local symbols available when we do the relocations.
10688 Since we would rather only read the local symbols once, and we
10689 would rather not keep them in memory, we handle all the
10690 relocations for a single input file at the same time.
10691
10692 Unfortunately, there is no way to know the total number of local
10693 symbols until we have seen all of them, and the local symbol
10694 indices precede the global symbol indices. This means that when
10695 we are generating relocatable output, and we see a reloc against
10696 a global symbol, we can not know the symbol index until we have
10697 finished examining all the local symbols to see which ones we are
10698 going to output. To deal with this, we keep the relocations in
10699 memory, and don't output them until the end of the link. This is
10700 an unfortunate waste of memory, but I don't see a good way around
10701 it. Fortunately, it only happens when performing a relocatable
10702 link, which is not the common case. FIXME: If keep_memory is set
10703 we could write the relocs out and then read them again; I don't
10704 know how bad the memory loss will be. */
10705
10706 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10707 sub->output_has_begun = FALSE;
10708 for (o = abfd->sections; o != NULL; o = o->next)
10709 {
10710 for (p = o->map_head.link_order; p != NULL; p = p->next)
10711 {
10712 if (p->type == bfd_indirect_link_order
10713 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10714 == bfd_target_elf_flavour)
10715 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10716 {
10717 if (! sub->output_has_begun)
10718 {
10719 if (! elf_link_input_bfd (&finfo, sub))
10720 goto error_return;
10721 sub->output_has_begun = TRUE;
10722 }
10723 }
10724 else if (p->type == bfd_section_reloc_link_order
10725 || p->type == bfd_symbol_reloc_link_order)
10726 {
10727 if (! elf_reloc_link_order (abfd, info, o, p))
10728 goto error_return;
10729 }
10730 else
10731 {
10732 if (! _bfd_default_link_order (abfd, info, o, p))
10733 {
10734 if (p->type == bfd_indirect_link_order
10735 && (bfd_get_flavour (sub)
10736 == bfd_target_elf_flavour)
10737 && (elf_elfheader (sub)->e_ident[EI_CLASS]
10738 != bed->s->elfclass))
10739 {
10740 const char *iclass, *oclass;
10741
10742 if (bed->s->elfclass == ELFCLASS64)
10743 {
10744 iclass = "ELFCLASS32";
10745 oclass = "ELFCLASS64";
10746 }
10747 else
10748 {
10749 iclass = "ELFCLASS64";
10750 oclass = "ELFCLASS32";
10751 }
10752
10753 bfd_set_error (bfd_error_wrong_format);
10754 (*_bfd_error_handler)
10755 (_("%B: file class %s incompatible with %s"),
10756 sub, iclass, oclass);
10757 }
10758
10759 goto error_return;
10760 }
10761 }
10762 }
10763 }
10764
10765 /* Free symbol buffer if needed. */
10766 if (!info->reduce_memory_overheads)
10767 {
10768 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10769 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10770 && elf_tdata (sub)->symbuf)
10771 {
10772 free (elf_tdata (sub)->symbuf);
10773 elf_tdata (sub)->symbuf = NULL;
10774 }
10775 }
10776
10777 /* Output any global symbols that got converted to local in a
10778 version script or due to symbol visibility. We do this in a
10779 separate step since ELF requires all local symbols to appear
10780 prior to any global symbols. FIXME: We should only do this if
10781 some global symbols were, in fact, converted to become local.
10782 FIXME: Will this work correctly with the Irix 5 linker? */
10783 eoinfo.failed = FALSE;
10784 eoinfo.finfo = &finfo;
10785 eoinfo.localsyms = TRUE;
10786 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
10787 if (eoinfo.failed)
10788 return FALSE;
10789
10790 /* If backend needs to output some local symbols not present in the hash
10791 table, do it now. */
10792 if (bed->elf_backend_output_arch_local_syms)
10793 {
10794 typedef int (*out_sym_func)
10795 (void *, const char *, Elf_Internal_Sym *, asection *,
10796 struct elf_link_hash_entry *);
10797
10798 if (! ((*bed->elf_backend_output_arch_local_syms)
10799 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10800 return FALSE;
10801 }
10802
10803 /* That wrote out all the local symbols. Finish up the symbol table
10804 with the global symbols. Even if we want to strip everything we
10805 can, we still need to deal with those global symbols that got
10806 converted to local in a version script. */
10807
10808 /* The sh_info field records the index of the first non local symbol. */
10809 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10810
10811 if (dynamic
10812 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10813 {
10814 Elf_Internal_Sym sym;
10815 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10816 long last_local = 0;
10817
10818 /* Write out the section symbols for the output sections. */
10819 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10820 {
10821 asection *s;
10822
10823 sym.st_size = 0;
10824 sym.st_name = 0;
10825 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10826 sym.st_other = 0;
10827 sym.st_target_internal = 0;
10828
10829 for (s = abfd->sections; s != NULL; s = s->next)
10830 {
10831 int indx;
10832 bfd_byte *dest;
10833 long dynindx;
10834
10835 dynindx = elf_section_data (s)->dynindx;
10836 if (dynindx <= 0)
10837 continue;
10838 indx = elf_section_data (s)->this_idx;
10839 BFD_ASSERT (indx > 0);
10840 sym.st_shndx = indx;
10841 if (! check_dynsym (abfd, &sym))
10842 return FALSE;
10843 sym.st_value = s->vma;
10844 dest = dynsym + dynindx * bed->s->sizeof_sym;
10845 if (last_local < dynindx)
10846 last_local = dynindx;
10847 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10848 }
10849 }
10850
10851 /* Write out the local dynsyms. */
10852 if (elf_hash_table (info)->dynlocal)
10853 {
10854 struct elf_link_local_dynamic_entry *e;
10855 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10856 {
10857 asection *s;
10858 bfd_byte *dest;
10859
10860 /* Copy the internal symbol and turn off visibility.
10861 Note that we saved a word of storage and overwrote
10862 the original st_name with the dynstr_index. */
10863 sym = e->isym;
10864 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10865
10866 s = bfd_section_from_elf_index (e->input_bfd,
10867 e->isym.st_shndx);
10868 if (s != NULL)
10869 {
10870 sym.st_shndx =
10871 elf_section_data (s->output_section)->this_idx;
10872 if (! check_dynsym (abfd, &sym))
10873 return FALSE;
10874 sym.st_value = (s->output_section->vma
10875 + s->output_offset
10876 + e->isym.st_value);
10877 }
10878
10879 if (last_local < e->dynindx)
10880 last_local = e->dynindx;
10881
10882 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10883 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10884 }
10885 }
10886
10887 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10888 last_local + 1;
10889 }
10890
10891 /* We get the global symbols from the hash table. */
10892 eoinfo.failed = FALSE;
10893 eoinfo.localsyms = FALSE;
10894 eoinfo.finfo = &finfo;
10895 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
10896 if (eoinfo.failed)
10897 return FALSE;
10898
10899 /* If backend needs to output some symbols not present in the hash
10900 table, do it now. */
10901 if (bed->elf_backend_output_arch_syms)
10902 {
10903 typedef int (*out_sym_func)
10904 (void *, const char *, Elf_Internal_Sym *, asection *,
10905 struct elf_link_hash_entry *);
10906
10907 if (! ((*bed->elf_backend_output_arch_syms)
10908 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10909 return FALSE;
10910 }
10911
10912 /* Flush all symbols to the file. */
10913 if (! elf_link_flush_output_syms (&finfo, bed))
10914 return FALSE;
10915
10916 /* Now we know the size of the symtab section. */
10917 off += symtab_hdr->sh_size;
10918
10919 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10920 if (symtab_shndx_hdr->sh_name != 0)
10921 {
10922 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10923 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10924 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10925 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10926 symtab_shndx_hdr->sh_size = amt;
10927
10928 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10929 off, TRUE);
10930
10931 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10932 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10933 return FALSE;
10934 }
10935
10936
10937 /* Finish up and write out the symbol string table (.strtab)
10938 section. */
10939 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10940 /* sh_name was set in prep_headers. */
10941 symstrtab_hdr->sh_type = SHT_STRTAB;
10942 symstrtab_hdr->sh_flags = 0;
10943 symstrtab_hdr->sh_addr = 0;
10944 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10945 symstrtab_hdr->sh_entsize = 0;
10946 symstrtab_hdr->sh_link = 0;
10947 symstrtab_hdr->sh_info = 0;
10948 /* sh_offset is set just below. */
10949 symstrtab_hdr->sh_addralign = 1;
10950
10951 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10952 elf_tdata (abfd)->next_file_pos = off;
10953
10954 if (bfd_get_symcount (abfd) > 0)
10955 {
10956 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10957 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10958 return FALSE;
10959 }
10960
10961 /* Adjust the relocs to have the correct symbol indices. */
10962 for (o = abfd->sections; o != NULL; o = o->next)
10963 {
10964 struct bfd_elf_section_data *esdo = elf_section_data (o);
10965 if ((o->flags & SEC_RELOC) == 0)
10966 continue;
10967
10968 if (esdo->rel.hdr != NULL)
10969 elf_link_adjust_relocs (abfd, &esdo->rel);
10970 if (esdo->rela.hdr != NULL)
10971 elf_link_adjust_relocs (abfd, &esdo->rela);
10972
10973 /* Set the reloc_count field to 0 to prevent write_relocs from
10974 trying to swap the relocs out itself. */
10975 o->reloc_count = 0;
10976 }
10977
10978 if (dynamic && info->combreloc && dynobj != NULL)
10979 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10980
10981 /* If we are linking against a dynamic object, or generating a
10982 shared library, finish up the dynamic linking information. */
10983 if (dynamic)
10984 {
10985 bfd_byte *dyncon, *dynconend;
10986
10987 /* Fix up .dynamic entries. */
10988 o = bfd_get_section_by_name (dynobj, ".dynamic");
10989 BFD_ASSERT (o != NULL);
10990
10991 dyncon = o->contents;
10992 dynconend = o->contents + o->size;
10993 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10994 {
10995 Elf_Internal_Dyn dyn;
10996 const char *name;
10997 unsigned int type;
10998
10999 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11000
11001 switch (dyn.d_tag)
11002 {
11003 default:
11004 continue;
11005 case DT_NULL:
11006 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11007 {
11008 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11009 {
11010 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11011 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11012 default: continue;
11013 }
11014 dyn.d_un.d_val = relativecount;
11015 relativecount = 0;
11016 break;
11017 }
11018 continue;
11019
11020 case DT_INIT:
11021 name = info->init_function;
11022 goto get_sym;
11023 case DT_FINI:
11024 name = info->fini_function;
11025 get_sym:
11026 {
11027 struct elf_link_hash_entry *h;
11028
11029 h = elf_link_hash_lookup (elf_hash_table (info), name,
11030 FALSE, FALSE, TRUE);
11031 if (h != NULL
11032 && (h->root.type == bfd_link_hash_defined
11033 || h->root.type == bfd_link_hash_defweak))
11034 {
11035 dyn.d_un.d_ptr = h->root.u.def.value;
11036 o = h->root.u.def.section;
11037 if (o->output_section != NULL)
11038 dyn.d_un.d_ptr += (o->output_section->vma
11039 + o->output_offset);
11040 else
11041 {
11042 /* The symbol is imported from another shared
11043 library and does not apply to this one. */
11044 dyn.d_un.d_ptr = 0;
11045 }
11046 break;
11047 }
11048 }
11049 continue;
11050
11051 case DT_PREINIT_ARRAYSZ:
11052 name = ".preinit_array";
11053 goto get_size;
11054 case DT_INIT_ARRAYSZ:
11055 name = ".init_array";
11056 goto get_size;
11057 case DT_FINI_ARRAYSZ:
11058 name = ".fini_array";
11059 get_size:
11060 o = bfd_get_section_by_name (abfd, name);
11061 if (o == NULL)
11062 {
11063 (*_bfd_error_handler)
11064 (_("%B: could not find output section %s"), abfd, name);
11065 goto error_return;
11066 }
11067 if (o->size == 0)
11068 (*_bfd_error_handler)
11069 (_("warning: %s section has zero size"), name);
11070 dyn.d_un.d_val = o->size;
11071 break;
11072
11073 case DT_PREINIT_ARRAY:
11074 name = ".preinit_array";
11075 goto get_vma;
11076 case DT_INIT_ARRAY:
11077 name = ".init_array";
11078 goto get_vma;
11079 case DT_FINI_ARRAY:
11080 name = ".fini_array";
11081 goto get_vma;
11082
11083 case DT_HASH:
11084 name = ".hash";
11085 goto get_vma;
11086 case DT_GNU_HASH:
11087 name = ".gnu.hash";
11088 goto get_vma;
11089 case DT_STRTAB:
11090 name = ".dynstr";
11091 goto get_vma;
11092 case DT_SYMTAB:
11093 name = ".dynsym";
11094 goto get_vma;
11095 case DT_VERDEF:
11096 name = ".gnu.version_d";
11097 goto get_vma;
11098 case DT_VERNEED:
11099 name = ".gnu.version_r";
11100 goto get_vma;
11101 case DT_VERSYM:
11102 name = ".gnu.version";
11103 get_vma:
11104 o = bfd_get_section_by_name (abfd, name);
11105 if (o == NULL)
11106 {
11107 (*_bfd_error_handler)
11108 (_("%B: could not find output section %s"), abfd, name);
11109 goto error_return;
11110 }
11111 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11112 {
11113 (*_bfd_error_handler)
11114 (_("warning: section '%s' is being made into a note"), name);
11115 bfd_set_error (bfd_error_nonrepresentable_section);
11116 goto error_return;
11117 }
11118 dyn.d_un.d_ptr = o->vma;
11119 break;
11120
11121 case DT_REL:
11122 case DT_RELA:
11123 case DT_RELSZ:
11124 case DT_RELASZ:
11125 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11126 type = SHT_REL;
11127 else
11128 type = SHT_RELA;
11129 dyn.d_un.d_val = 0;
11130 dyn.d_un.d_ptr = 0;
11131 for (i = 1; i < elf_numsections (abfd); i++)
11132 {
11133 Elf_Internal_Shdr *hdr;
11134
11135 hdr = elf_elfsections (abfd)[i];
11136 if (hdr->sh_type == type
11137 && (hdr->sh_flags & SHF_ALLOC) != 0)
11138 {
11139 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11140 dyn.d_un.d_val += hdr->sh_size;
11141 else
11142 {
11143 if (dyn.d_un.d_ptr == 0
11144 || hdr->sh_addr < dyn.d_un.d_ptr)
11145 dyn.d_un.d_ptr = hdr->sh_addr;
11146 }
11147 }
11148 }
11149 break;
11150 }
11151 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11152 }
11153 }
11154
11155 /* If we have created any dynamic sections, then output them. */
11156 if (dynobj != NULL)
11157 {
11158 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11159 goto error_return;
11160
11161 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11162 if (info->warn_shared_textrel && info->shared)
11163 {
11164 bfd_byte *dyncon, *dynconend;
11165
11166 /* Fix up .dynamic entries. */
11167 o = bfd_get_section_by_name (dynobj, ".dynamic");
11168 BFD_ASSERT (o != NULL);
11169
11170 dyncon = o->contents;
11171 dynconend = o->contents + o->size;
11172 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11173 {
11174 Elf_Internal_Dyn dyn;
11175
11176 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11177
11178 if (dyn.d_tag == DT_TEXTREL)
11179 {
11180 info->callbacks->einfo
11181 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11182 break;
11183 }
11184 }
11185 }
11186
11187 for (o = dynobj->sections; o != NULL; o = o->next)
11188 {
11189 if ((o->flags & SEC_HAS_CONTENTS) == 0
11190 || o->size == 0
11191 || o->output_section == bfd_abs_section_ptr)
11192 continue;
11193 if ((o->flags & SEC_LINKER_CREATED) == 0)
11194 {
11195 /* At this point, we are only interested in sections
11196 created by _bfd_elf_link_create_dynamic_sections. */
11197 continue;
11198 }
11199 if (elf_hash_table (info)->stab_info.stabstr == o)
11200 continue;
11201 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11202 continue;
11203 if ((elf_section_data (o->output_section)->this_hdr.sh_type
11204 != SHT_STRTAB)
11205 && (strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0))
11206 {
11207 /* FIXME: octets_per_byte. */
11208 if (! bfd_set_section_contents (abfd, o->output_section,
11209 o->contents,
11210 (file_ptr) o->output_offset,
11211 o->size))
11212 goto error_return;
11213 }
11214 else
11215 {
11216 /* The contents of the .dynstr section are actually in a
11217 stringtab. */
11218 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11219 if (bfd_seek (abfd, off, SEEK_SET) != 0
11220 || ! _bfd_elf_strtab_emit (abfd,
11221 elf_hash_table (info)->dynstr))
11222 goto error_return;
11223 }
11224 }
11225 }
11226
11227 if (info->relocatable)
11228 {
11229 bfd_boolean failed = FALSE;
11230
11231 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11232 if (failed)
11233 goto error_return;
11234 }
11235
11236 /* If we have optimized stabs strings, output them. */
11237 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11238 {
11239 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11240 goto error_return;
11241 }
11242
11243 if (info->eh_frame_hdr)
11244 {
11245 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11246 goto error_return;
11247 }
11248
11249 if (finfo.symstrtab != NULL)
11250 _bfd_stringtab_free (finfo.symstrtab);
11251 if (finfo.contents != NULL)
11252 free (finfo.contents);
11253 if (finfo.external_relocs != NULL)
11254 free (finfo.external_relocs);
11255 if (finfo.internal_relocs != NULL)
11256 free (finfo.internal_relocs);
11257 if (finfo.external_syms != NULL)
11258 free (finfo.external_syms);
11259 if (finfo.locsym_shndx != NULL)
11260 free (finfo.locsym_shndx);
11261 if (finfo.internal_syms != NULL)
11262 free (finfo.internal_syms);
11263 if (finfo.indices != NULL)
11264 free (finfo.indices);
11265 if (finfo.sections != NULL)
11266 free (finfo.sections);
11267 if (finfo.symbuf != NULL)
11268 free (finfo.symbuf);
11269 if (finfo.symshndxbuf != NULL)
11270 free (finfo.symshndxbuf);
11271 for (o = abfd->sections; o != NULL; o = o->next)
11272 {
11273 struct bfd_elf_section_data *esdo = elf_section_data (o);
11274 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11275 free (esdo->rel.hashes);
11276 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11277 free (esdo->rela.hashes);
11278 }
11279
11280 elf_tdata (abfd)->linker = TRUE;
11281
11282 if (attr_section)
11283 {
11284 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11285 if (contents == NULL)
11286 return FALSE; /* Bail out and fail. */
11287 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11288 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11289 free (contents);
11290 }
11291
11292 return TRUE;
11293
11294 error_return:
11295 if (finfo.symstrtab != NULL)
11296 _bfd_stringtab_free (finfo.symstrtab);
11297 if (finfo.contents != NULL)
11298 free (finfo.contents);
11299 if (finfo.external_relocs != NULL)
11300 free (finfo.external_relocs);
11301 if (finfo.internal_relocs != NULL)
11302 free (finfo.internal_relocs);
11303 if (finfo.external_syms != NULL)
11304 free (finfo.external_syms);
11305 if (finfo.locsym_shndx != NULL)
11306 free (finfo.locsym_shndx);
11307 if (finfo.internal_syms != NULL)
11308 free (finfo.internal_syms);
11309 if (finfo.indices != NULL)
11310 free (finfo.indices);
11311 if (finfo.sections != NULL)
11312 free (finfo.sections);
11313 if (finfo.symbuf != NULL)
11314 free (finfo.symbuf);
11315 if (finfo.symshndxbuf != NULL)
11316 free (finfo.symshndxbuf);
11317 for (o = abfd->sections; o != NULL; o = o->next)
11318 {
11319 struct bfd_elf_section_data *esdo = elf_section_data (o);
11320 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11321 free (esdo->rel.hashes);
11322 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11323 free (esdo->rela.hashes);
11324 }
11325
11326 return FALSE;
11327 }
11328 \f
11329 /* Initialize COOKIE for input bfd ABFD. */
11330
11331 static bfd_boolean
11332 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11333 struct bfd_link_info *info, bfd *abfd)
11334 {
11335 Elf_Internal_Shdr *symtab_hdr;
11336 const struct elf_backend_data *bed;
11337
11338 bed = get_elf_backend_data (abfd);
11339 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11340
11341 cookie->abfd = abfd;
11342 cookie->sym_hashes = elf_sym_hashes (abfd);
11343 cookie->bad_symtab = elf_bad_symtab (abfd);
11344 if (cookie->bad_symtab)
11345 {
11346 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11347 cookie->extsymoff = 0;
11348 }
11349 else
11350 {
11351 cookie->locsymcount = symtab_hdr->sh_info;
11352 cookie->extsymoff = symtab_hdr->sh_info;
11353 }
11354
11355 if (bed->s->arch_size == 32)
11356 cookie->r_sym_shift = 8;
11357 else
11358 cookie->r_sym_shift = 32;
11359
11360 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11361 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11362 {
11363 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11364 cookie->locsymcount, 0,
11365 NULL, NULL, NULL);
11366 if (cookie->locsyms == NULL)
11367 {
11368 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11369 return FALSE;
11370 }
11371 if (info->keep_memory)
11372 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11373 }
11374 return TRUE;
11375 }
11376
11377 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11378
11379 static void
11380 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11381 {
11382 Elf_Internal_Shdr *symtab_hdr;
11383
11384 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11385 if (cookie->locsyms != NULL
11386 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11387 free (cookie->locsyms);
11388 }
11389
11390 /* Initialize the relocation information in COOKIE for input section SEC
11391 of input bfd ABFD. */
11392
11393 static bfd_boolean
11394 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11395 struct bfd_link_info *info, bfd *abfd,
11396 asection *sec)
11397 {
11398 const struct elf_backend_data *bed;
11399
11400 if (sec->reloc_count == 0)
11401 {
11402 cookie->rels = NULL;
11403 cookie->relend = NULL;
11404 }
11405 else
11406 {
11407 bed = get_elf_backend_data (abfd);
11408
11409 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11410 info->keep_memory);
11411 if (cookie->rels == NULL)
11412 return FALSE;
11413 cookie->rel = cookie->rels;
11414 cookie->relend = (cookie->rels
11415 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11416 }
11417 cookie->rel = cookie->rels;
11418 return TRUE;
11419 }
11420
11421 /* Free the memory allocated by init_reloc_cookie_rels,
11422 if appropriate. */
11423
11424 static void
11425 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11426 asection *sec)
11427 {
11428 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11429 free (cookie->rels);
11430 }
11431
11432 /* Initialize the whole of COOKIE for input section SEC. */
11433
11434 static bfd_boolean
11435 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11436 struct bfd_link_info *info,
11437 asection *sec)
11438 {
11439 if (!init_reloc_cookie (cookie, info, sec->owner))
11440 goto error1;
11441 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11442 goto error2;
11443 return TRUE;
11444
11445 error2:
11446 fini_reloc_cookie (cookie, sec->owner);
11447 error1:
11448 return FALSE;
11449 }
11450
11451 /* Free the memory allocated by init_reloc_cookie_for_section,
11452 if appropriate. */
11453
11454 static void
11455 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11456 asection *sec)
11457 {
11458 fini_reloc_cookie_rels (cookie, sec);
11459 fini_reloc_cookie (cookie, sec->owner);
11460 }
11461 \f
11462 /* Garbage collect unused sections. */
11463
11464 /* Default gc_mark_hook. */
11465
11466 asection *
11467 _bfd_elf_gc_mark_hook (asection *sec,
11468 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11469 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11470 struct elf_link_hash_entry *h,
11471 Elf_Internal_Sym *sym)
11472 {
11473 const char *sec_name;
11474
11475 if (h != NULL)
11476 {
11477 switch (h->root.type)
11478 {
11479 case bfd_link_hash_defined:
11480 case bfd_link_hash_defweak:
11481 return h->root.u.def.section;
11482
11483 case bfd_link_hash_common:
11484 return h->root.u.c.p->section;
11485
11486 case bfd_link_hash_undefined:
11487 case bfd_link_hash_undefweak:
11488 /* To work around a glibc bug, keep all XXX input sections
11489 when there is an as yet undefined reference to __start_XXX
11490 or __stop_XXX symbols. The linker will later define such
11491 symbols for orphan input sections that have a name
11492 representable as a C identifier. */
11493 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11494 sec_name = h->root.root.string + 8;
11495 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11496 sec_name = h->root.root.string + 7;
11497 else
11498 sec_name = NULL;
11499
11500 if (sec_name && *sec_name != '\0')
11501 {
11502 bfd *i;
11503
11504 for (i = info->input_bfds; i; i = i->link_next)
11505 {
11506 sec = bfd_get_section_by_name (i, sec_name);
11507 if (sec)
11508 sec->flags |= SEC_KEEP;
11509 }
11510 }
11511 break;
11512
11513 default:
11514 break;
11515 }
11516 }
11517 else
11518 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11519
11520 return NULL;
11521 }
11522
11523 /* COOKIE->rel describes a relocation against section SEC, which is
11524 a section we've decided to keep. Return the section that contains
11525 the relocation symbol, or NULL if no section contains it. */
11526
11527 asection *
11528 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11529 elf_gc_mark_hook_fn gc_mark_hook,
11530 struct elf_reloc_cookie *cookie)
11531 {
11532 unsigned long r_symndx;
11533 struct elf_link_hash_entry *h;
11534
11535 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11536 if (r_symndx == STN_UNDEF)
11537 return NULL;
11538
11539 if (r_symndx >= cookie->locsymcount
11540 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11541 {
11542 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11543 while (h->root.type == bfd_link_hash_indirect
11544 || h->root.type == bfd_link_hash_warning)
11545 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11546 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11547 }
11548
11549 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11550 &cookie->locsyms[r_symndx]);
11551 }
11552
11553 /* COOKIE->rel describes a relocation against section SEC, which is
11554 a section we've decided to keep. Mark the section that contains
11555 the relocation symbol. */
11556
11557 bfd_boolean
11558 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11559 asection *sec,
11560 elf_gc_mark_hook_fn gc_mark_hook,
11561 struct elf_reloc_cookie *cookie)
11562 {
11563 asection *rsec;
11564
11565 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11566 if (rsec && !rsec->gc_mark)
11567 {
11568 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11569 rsec->gc_mark = 1;
11570 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11571 return FALSE;
11572 }
11573 return TRUE;
11574 }
11575
11576 /* The mark phase of garbage collection. For a given section, mark
11577 it and any sections in this section's group, and all the sections
11578 which define symbols to which it refers. */
11579
11580 bfd_boolean
11581 _bfd_elf_gc_mark (struct bfd_link_info *info,
11582 asection *sec,
11583 elf_gc_mark_hook_fn gc_mark_hook)
11584 {
11585 bfd_boolean ret;
11586 asection *group_sec, *eh_frame;
11587
11588 sec->gc_mark = 1;
11589
11590 /* Mark all the sections in the group. */
11591 group_sec = elf_section_data (sec)->next_in_group;
11592 if (group_sec && !group_sec->gc_mark)
11593 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11594 return FALSE;
11595
11596 /* Look through the section relocs. */
11597 ret = TRUE;
11598 eh_frame = elf_eh_frame_section (sec->owner);
11599 if ((sec->flags & SEC_RELOC) != 0
11600 && sec->reloc_count > 0
11601 && sec != eh_frame)
11602 {
11603 struct elf_reloc_cookie cookie;
11604
11605 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11606 ret = FALSE;
11607 else
11608 {
11609 for (; cookie.rel < cookie.relend; cookie.rel++)
11610 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11611 {
11612 ret = FALSE;
11613 break;
11614 }
11615 fini_reloc_cookie_for_section (&cookie, sec);
11616 }
11617 }
11618
11619 if (ret && eh_frame && elf_fde_list (sec))
11620 {
11621 struct elf_reloc_cookie cookie;
11622
11623 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11624 ret = FALSE;
11625 else
11626 {
11627 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11628 gc_mark_hook, &cookie))
11629 ret = FALSE;
11630 fini_reloc_cookie_for_section (&cookie, eh_frame);
11631 }
11632 }
11633
11634 return ret;
11635 }
11636
11637 /* Keep debug and special sections. */
11638
11639 bfd_boolean
11640 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
11641 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
11642 {
11643 bfd *ibfd;
11644
11645 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11646 {
11647 asection *isec;
11648 bfd_boolean some_kept;
11649
11650 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
11651 continue;
11652
11653 /* Ensure all linker created sections are kept, and see whether
11654 any other section is already marked. */
11655 some_kept = FALSE;
11656 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11657 {
11658 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11659 isec->gc_mark = 1;
11660 else if (isec->gc_mark)
11661 some_kept = TRUE;
11662 }
11663
11664 /* If no section in this file will be kept, then we can
11665 toss out debug sections. */
11666 if (!some_kept)
11667 continue;
11668
11669 /* Keep debug and special sections like .comment when they are
11670 not part of a group. */
11671 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11672 if (elf_next_in_group (isec) == NULL
11673 && ((isec->flags & SEC_DEBUGGING) != 0
11674 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
11675 isec->gc_mark = 1;
11676 }
11677 return TRUE;
11678 }
11679
11680 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11681
11682 struct elf_gc_sweep_symbol_info
11683 {
11684 struct bfd_link_info *info;
11685 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11686 bfd_boolean);
11687 };
11688
11689 static bfd_boolean
11690 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11691 {
11692 if (((h->root.type == bfd_link_hash_defined
11693 || h->root.type == bfd_link_hash_defweak)
11694 && !h->root.u.def.section->gc_mark
11695 && (!(h->root.u.def.section->owner->flags & DYNAMIC)
11696 || (h->plt.refcount <= 0
11697 && h->got.refcount <= 0)))
11698 || (h->root.type == bfd_link_hash_undefined
11699 && h->plt.refcount <= 0
11700 && h->got.refcount <= 0))
11701 {
11702 struct elf_gc_sweep_symbol_info *inf =
11703 (struct elf_gc_sweep_symbol_info *) data;
11704 (*inf->hide_symbol) (inf->info, h, TRUE);
11705 }
11706
11707 return TRUE;
11708 }
11709
11710 /* The sweep phase of garbage collection. Remove all garbage sections. */
11711
11712 typedef bfd_boolean (*gc_sweep_hook_fn)
11713 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11714
11715 static bfd_boolean
11716 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11717 {
11718 bfd *sub;
11719 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11720 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11721 unsigned long section_sym_count;
11722 struct elf_gc_sweep_symbol_info sweep_info;
11723
11724 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11725 {
11726 asection *o;
11727
11728 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11729 continue;
11730
11731 for (o = sub->sections; o != NULL; o = o->next)
11732 {
11733 /* When any section in a section group is kept, we keep all
11734 sections in the section group. If the first member of
11735 the section group is excluded, we will also exclude the
11736 group section. */
11737 if (o->flags & SEC_GROUP)
11738 {
11739 asection *first = elf_next_in_group (o);
11740 o->gc_mark = first->gc_mark;
11741 }
11742
11743 if (o->gc_mark)
11744 continue;
11745
11746 /* Skip sweeping sections already excluded. */
11747 if (o->flags & SEC_EXCLUDE)
11748 continue;
11749
11750 /* Since this is early in the link process, it is simple
11751 to remove a section from the output. */
11752 o->flags |= SEC_EXCLUDE;
11753
11754 if (info->print_gc_sections && o->size != 0)
11755 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11756
11757 /* But we also have to update some of the relocation
11758 info we collected before. */
11759 if (gc_sweep_hook
11760 && (o->flags & SEC_RELOC) != 0
11761 && o->reloc_count > 0
11762 && !bfd_is_abs_section (o->output_section))
11763 {
11764 Elf_Internal_Rela *internal_relocs;
11765 bfd_boolean r;
11766
11767 internal_relocs
11768 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11769 info->keep_memory);
11770 if (internal_relocs == NULL)
11771 return FALSE;
11772
11773 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11774
11775 if (elf_section_data (o)->relocs != internal_relocs)
11776 free (internal_relocs);
11777
11778 if (!r)
11779 return FALSE;
11780 }
11781 }
11782 }
11783
11784 /* Remove the symbols that were in the swept sections from the dynamic
11785 symbol table. GCFIXME: Anyone know how to get them out of the
11786 static symbol table as well? */
11787 sweep_info.info = info;
11788 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11789 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11790 &sweep_info);
11791
11792 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11793 return TRUE;
11794 }
11795
11796 /* Propagate collected vtable information. This is called through
11797 elf_link_hash_traverse. */
11798
11799 static bfd_boolean
11800 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11801 {
11802 /* Those that are not vtables. */
11803 if (h->vtable == NULL || h->vtable->parent == NULL)
11804 return TRUE;
11805
11806 /* Those vtables that do not have parents, we cannot merge. */
11807 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11808 return TRUE;
11809
11810 /* If we've already been done, exit. */
11811 if (h->vtable->used && h->vtable->used[-1])
11812 return TRUE;
11813
11814 /* Make sure the parent's table is up to date. */
11815 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11816
11817 if (h->vtable->used == NULL)
11818 {
11819 /* None of this table's entries were referenced. Re-use the
11820 parent's table. */
11821 h->vtable->used = h->vtable->parent->vtable->used;
11822 h->vtable->size = h->vtable->parent->vtable->size;
11823 }
11824 else
11825 {
11826 size_t n;
11827 bfd_boolean *cu, *pu;
11828
11829 /* Or the parent's entries into ours. */
11830 cu = h->vtable->used;
11831 cu[-1] = TRUE;
11832 pu = h->vtable->parent->vtable->used;
11833 if (pu != NULL)
11834 {
11835 const struct elf_backend_data *bed;
11836 unsigned int log_file_align;
11837
11838 bed = get_elf_backend_data (h->root.u.def.section->owner);
11839 log_file_align = bed->s->log_file_align;
11840 n = h->vtable->parent->vtable->size >> log_file_align;
11841 while (n--)
11842 {
11843 if (*pu)
11844 *cu = TRUE;
11845 pu++;
11846 cu++;
11847 }
11848 }
11849 }
11850
11851 return TRUE;
11852 }
11853
11854 static bfd_boolean
11855 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11856 {
11857 asection *sec;
11858 bfd_vma hstart, hend;
11859 Elf_Internal_Rela *relstart, *relend, *rel;
11860 const struct elf_backend_data *bed;
11861 unsigned int log_file_align;
11862
11863 /* Take care of both those symbols that do not describe vtables as
11864 well as those that are not loaded. */
11865 if (h->vtable == NULL || h->vtable->parent == NULL)
11866 return TRUE;
11867
11868 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11869 || h->root.type == bfd_link_hash_defweak);
11870
11871 sec = h->root.u.def.section;
11872 hstart = h->root.u.def.value;
11873 hend = hstart + h->size;
11874
11875 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11876 if (!relstart)
11877 return *(bfd_boolean *) okp = FALSE;
11878 bed = get_elf_backend_data (sec->owner);
11879 log_file_align = bed->s->log_file_align;
11880
11881 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11882
11883 for (rel = relstart; rel < relend; ++rel)
11884 if (rel->r_offset >= hstart && rel->r_offset < hend)
11885 {
11886 /* If the entry is in use, do nothing. */
11887 if (h->vtable->used
11888 && (rel->r_offset - hstart) < h->vtable->size)
11889 {
11890 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11891 if (h->vtable->used[entry])
11892 continue;
11893 }
11894 /* Otherwise, kill it. */
11895 rel->r_offset = rel->r_info = rel->r_addend = 0;
11896 }
11897
11898 return TRUE;
11899 }
11900
11901 /* Mark sections containing dynamically referenced symbols. When
11902 building shared libraries, we must assume that any visible symbol is
11903 referenced. */
11904
11905 bfd_boolean
11906 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11907 {
11908 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11909
11910 if ((h->root.type == bfd_link_hash_defined
11911 || h->root.type == bfd_link_hash_defweak)
11912 && (h->ref_dynamic
11913 || (!info->executable
11914 && h->def_regular
11915 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11916 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
11917 && !bfd_hide_sym_by_version (info->version_info,
11918 h->root.root.string))))
11919 h->root.u.def.section->flags |= SEC_KEEP;
11920
11921 return TRUE;
11922 }
11923
11924 /* Keep all sections containing symbols undefined on the command-line,
11925 and the section containing the entry symbol. */
11926
11927 void
11928 _bfd_elf_gc_keep (struct bfd_link_info *info)
11929 {
11930 struct bfd_sym_chain *sym;
11931
11932 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11933 {
11934 struct elf_link_hash_entry *h;
11935
11936 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11937 FALSE, FALSE, FALSE);
11938
11939 if (h != NULL
11940 && (h->root.type == bfd_link_hash_defined
11941 || h->root.type == bfd_link_hash_defweak)
11942 && !bfd_is_abs_section (h->root.u.def.section))
11943 h->root.u.def.section->flags |= SEC_KEEP;
11944 }
11945 }
11946
11947 /* Do mark and sweep of unused sections. */
11948
11949 bfd_boolean
11950 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11951 {
11952 bfd_boolean ok = TRUE;
11953 bfd *sub;
11954 elf_gc_mark_hook_fn gc_mark_hook;
11955 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11956
11957 if (!bed->can_gc_sections
11958 || !is_elf_hash_table (info->hash))
11959 {
11960 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11961 return TRUE;
11962 }
11963
11964 bed->gc_keep (info);
11965
11966 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11967 at the .eh_frame section if we can mark the FDEs individually. */
11968 _bfd_elf_begin_eh_frame_parsing (info);
11969 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11970 {
11971 asection *sec;
11972 struct elf_reloc_cookie cookie;
11973
11974 sec = bfd_get_section_by_name (sub, ".eh_frame");
11975 if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
11976 {
11977 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
11978 if (elf_section_data (sec)->sec_info)
11979 elf_eh_frame_section (sub) = sec;
11980 fini_reloc_cookie_for_section (&cookie, sec);
11981 }
11982 }
11983 _bfd_elf_end_eh_frame_parsing (info);
11984
11985 /* Apply transitive closure to the vtable entry usage info. */
11986 elf_link_hash_traverse (elf_hash_table (info),
11987 elf_gc_propagate_vtable_entries_used,
11988 &ok);
11989 if (!ok)
11990 return FALSE;
11991
11992 /* Kill the vtable relocations that were not used. */
11993 elf_link_hash_traverse (elf_hash_table (info),
11994 elf_gc_smash_unused_vtentry_relocs,
11995 &ok);
11996 if (!ok)
11997 return FALSE;
11998
11999 /* Mark dynamically referenced symbols. */
12000 if (elf_hash_table (info)->dynamic_sections_created)
12001 elf_link_hash_traverse (elf_hash_table (info),
12002 bed->gc_mark_dynamic_ref,
12003 info);
12004
12005 /* Grovel through relocs to find out who stays ... */
12006 gc_mark_hook = bed->gc_mark_hook;
12007 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12008 {
12009 asection *o;
12010
12011 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12012 continue;
12013
12014 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12015 Also treat note sections as a root, if the section is not part
12016 of a group. */
12017 for (o = sub->sections; o != NULL; o = o->next)
12018 if (!o->gc_mark
12019 && (o->flags & SEC_EXCLUDE) == 0
12020 && ((o->flags & SEC_KEEP) != 0
12021 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12022 && elf_next_in_group (o) == NULL )))
12023 {
12024 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12025 return FALSE;
12026 }
12027 }
12028
12029 /* Allow the backend to mark additional target specific sections. */
12030 bed->gc_mark_extra_sections (info, gc_mark_hook);
12031
12032 /* ... and mark SEC_EXCLUDE for those that go. */
12033 return elf_gc_sweep (abfd, info);
12034 }
12035 \f
12036 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12037
12038 bfd_boolean
12039 bfd_elf_gc_record_vtinherit (bfd *abfd,
12040 asection *sec,
12041 struct elf_link_hash_entry *h,
12042 bfd_vma offset)
12043 {
12044 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12045 struct elf_link_hash_entry **search, *child;
12046 bfd_size_type extsymcount;
12047 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12048
12049 /* The sh_info field of the symtab header tells us where the
12050 external symbols start. We don't care about the local symbols at
12051 this point. */
12052 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12053 if (!elf_bad_symtab (abfd))
12054 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12055
12056 sym_hashes = elf_sym_hashes (abfd);
12057 sym_hashes_end = sym_hashes + extsymcount;
12058
12059 /* Hunt down the child symbol, which is in this section at the same
12060 offset as the relocation. */
12061 for (search = sym_hashes; search != sym_hashes_end; ++search)
12062 {
12063 if ((child = *search) != NULL
12064 && (child->root.type == bfd_link_hash_defined
12065 || child->root.type == bfd_link_hash_defweak)
12066 && child->root.u.def.section == sec
12067 && child->root.u.def.value == offset)
12068 goto win;
12069 }
12070
12071 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12072 abfd, sec, (unsigned long) offset);
12073 bfd_set_error (bfd_error_invalid_operation);
12074 return FALSE;
12075
12076 win:
12077 if (!child->vtable)
12078 {
12079 child->vtable = (struct elf_link_virtual_table_entry *)
12080 bfd_zalloc (abfd, sizeof (*child->vtable));
12081 if (!child->vtable)
12082 return FALSE;
12083 }
12084 if (!h)
12085 {
12086 /* This *should* only be the absolute section. It could potentially
12087 be that someone has defined a non-global vtable though, which
12088 would be bad. It isn't worth paging in the local symbols to be
12089 sure though; that case should simply be handled by the assembler. */
12090
12091 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12092 }
12093 else
12094 child->vtable->parent = h;
12095
12096 return TRUE;
12097 }
12098
12099 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12100
12101 bfd_boolean
12102 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12103 asection *sec ATTRIBUTE_UNUSED,
12104 struct elf_link_hash_entry *h,
12105 bfd_vma addend)
12106 {
12107 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12108 unsigned int log_file_align = bed->s->log_file_align;
12109
12110 if (!h->vtable)
12111 {
12112 h->vtable = (struct elf_link_virtual_table_entry *)
12113 bfd_zalloc (abfd, sizeof (*h->vtable));
12114 if (!h->vtable)
12115 return FALSE;
12116 }
12117
12118 if (addend >= h->vtable->size)
12119 {
12120 size_t size, bytes, file_align;
12121 bfd_boolean *ptr = h->vtable->used;
12122
12123 /* While the symbol is undefined, we have to be prepared to handle
12124 a zero size. */
12125 file_align = 1 << log_file_align;
12126 if (h->root.type == bfd_link_hash_undefined)
12127 size = addend + file_align;
12128 else
12129 {
12130 size = h->size;
12131 if (addend >= size)
12132 {
12133 /* Oops! We've got a reference past the defined end of
12134 the table. This is probably a bug -- shall we warn? */
12135 size = addend + file_align;
12136 }
12137 }
12138 size = (size + file_align - 1) & -file_align;
12139
12140 /* Allocate one extra entry for use as a "done" flag for the
12141 consolidation pass. */
12142 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12143
12144 if (ptr)
12145 {
12146 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12147
12148 if (ptr != NULL)
12149 {
12150 size_t oldbytes;
12151
12152 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12153 * sizeof (bfd_boolean));
12154 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12155 }
12156 }
12157 else
12158 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12159
12160 if (ptr == NULL)
12161 return FALSE;
12162
12163 /* And arrange for that done flag to be at index -1. */
12164 h->vtable->used = ptr + 1;
12165 h->vtable->size = size;
12166 }
12167
12168 h->vtable->used[addend >> log_file_align] = TRUE;
12169
12170 return TRUE;
12171 }
12172
12173 /* Map an ELF section header flag to its corresponding string. */
12174 typedef struct
12175 {
12176 char *flag_name;
12177 flagword flag_value;
12178 } elf_flags_to_name_table;
12179
12180 static elf_flags_to_name_table elf_flags_to_names [] =
12181 {
12182 { "SHF_WRITE", SHF_WRITE },
12183 { "SHF_ALLOC", SHF_ALLOC },
12184 { "SHF_EXECINSTR", SHF_EXECINSTR },
12185 { "SHF_MERGE", SHF_MERGE },
12186 { "SHF_STRINGS", SHF_STRINGS },
12187 { "SHF_INFO_LINK", SHF_INFO_LINK},
12188 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12189 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12190 { "SHF_GROUP", SHF_GROUP },
12191 { "SHF_TLS", SHF_TLS },
12192 { "SHF_MASKOS", SHF_MASKOS },
12193 { "SHF_EXCLUDE", SHF_EXCLUDE },
12194 };
12195
12196 void
12197 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12198 struct flag_info *finfo)
12199 {
12200 bfd *output_bfd = info->output_bfd;
12201 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
12202 struct flag_info_list *tf = finfo->flag_list;
12203 int with_hex = 0;
12204 int without_hex = 0;
12205
12206 for (tf = finfo->flag_list; tf != NULL; tf = tf->next)
12207 {
12208 int i;
12209 if (bed->elf_backend_lookup_section_flags_hook)
12210 {
12211 flagword hexval =
12212 (*bed->elf_backend_lookup_section_flags_hook) ((char *) tf->name);
12213
12214 if (hexval != 0)
12215 {
12216 if (tf->with == with_flags)
12217 with_hex |= hexval;
12218 else if (tf->with == without_flags)
12219 without_hex |= hexval;
12220 tf->valid = TRUE;
12221 continue;
12222 }
12223 }
12224 for (i = 0; i < 12; i++)
12225 {
12226 if (!strcmp (tf->name, elf_flags_to_names[i].flag_name))
12227 {
12228 if (tf->with == with_flags)
12229 with_hex |= elf_flags_to_names[i].flag_value;
12230 else if (tf->with == without_flags)
12231 without_hex |= elf_flags_to_names[i].flag_value;
12232 tf->valid = TRUE;
12233 continue;
12234 }
12235 }
12236 if (tf->valid == FALSE)
12237 {
12238 info->callbacks->einfo
12239 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12240 return;
12241 }
12242 }
12243 finfo->flags_initialized = TRUE;
12244 finfo->only_with_flags |= with_hex;
12245 finfo->not_with_flags |= without_hex;
12246
12247 return;
12248 }
12249
12250 struct alloc_got_off_arg {
12251 bfd_vma gotoff;
12252 struct bfd_link_info *info;
12253 };
12254
12255 /* We need a special top-level link routine to convert got reference counts
12256 to real got offsets. */
12257
12258 static bfd_boolean
12259 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12260 {
12261 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12262 bfd *obfd = gofarg->info->output_bfd;
12263 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12264
12265 if (h->got.refcount > 0)
12266 {
12267 h->got.offset = gofarg->gotoff;
12268 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12269 }
12270 else
12271 h->got.offset = (bfd_vma) -1;
12272
12273 return TRUE;
12274 }
12275
12276 /* And an accompanying bit to work out final got entry offsets once
12277 we're done. Should be called from final_link. */
12278
12279 bfd_boolean
12280 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12281 struct bfd_link_info *info)
12282 {
12283 bfd *i;
12284 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12285 bfd_vma gotoff;
12286 struct alloc_got_off_arg gofarg;
12287
12288 BFD_ASSERT (abfd == info->output_bfd);
12289
12290 if (! is_elf_hash_table (info->hash))
12291 return FALSE;
12292
12293 /* The GOT offset is relative to the .got section, but the GOT header is
12294 put into the .got.plt section, if the backend uses it. */
12295 if (bed->want_got_plt)
12296 gotoff = 0;
12297 else
12298 gotoff = bed->got_header_size;
12299
12300 /* Do the local .got entries first. */
12301 for (i = info->input_bfds; i; i = i->link_next)
12302 {
12303 bfd_signed_vma *local_got;
12304 bfd_size_type j, locsymcount;
12305 Elf_Internal_Shdr *symtab_hdr;
12306
12307 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12308 continue;
12309
12310 local_got = elf_local_got_refcounts (i);
12311 if (!local_got)
12312 continue;
12313
12314 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12315 if (elf_bad_symtab (i))
12316 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12317 else
12318 locsymcount = symtab_hdr->sh_info;
12319
12320 for (j = 0; j < locsymcount; ++j)
12321 {
12322 if (local_got[j] > 0)
12323 {
12324 local_got[j] = gotoff;
12325 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12326 }
12327 else
12328 local_got[j] = (bfd_vma) -1;
12329 }
12330 }
12331
12332 /* Then the global .got entries. .plt refcounts are handled by
12333 adjust_dynamic_symbol */
12334 gofarg.gotoff = gotoff;
12335 gofarg.info = info;
12336 elf_link_hash_traverse (elf_hash_table (info),
12337 elf_gc_allocate_got_offsets,
12338 &gofarg);
12339 return TRUE;
12340 }
12341
12342 /* Many folk need no more in the way of final link than this, once
12343 got entry reference counting is enabled. */
12344
12345 bfd_boolean
12346 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12347 {
12348 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12349 return FALSE;
12350
12351 /* Invoke the regular ELF backend linker to do all the work. */
12352 return bfd_elf_final_link (abfd, info);
12353 }
12354
12355 bfd_boolean
12356 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12357 {
12358 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12359
12360 if (rcookie->bad_symtab)
12361 rcookie->rel = rcookie->rels;
12362
12363 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12364 {
12365 unsigned long r_symndx;
12366
12367 if (! rcookie->bad_symtab)
12368 if (rcookie->rel->r_offset > offset)
12369 return FALSE;
12370 if (rcookie->rel->r_offset != offset)
12371 continue;
12372
12373 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12374 if (r_symndx == STN_UNDEF)
12375 return TRUE;
12376
12377 if (r_symndx >= rcookie->locsymcount
12378 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12379 {
12380 struct elf_link_hash_entry *h;
12381
12382 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12383
12384 while (h->root.type == bfd_link_hash_indirect
12385 || h->root.type == bfd_link_hash_warning)
12386 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12387
12388 if ((h->root.type == bfd_link_hash_defined
12389 || h->root.type == bfd_link_hash_defweak)
12390 && elf_discarded_section (h->root.u.def.section))
12391 return TRUE;
12392 else
12393 return FALSE;
12394 }
12395 else
12396 {
12397 /* It's not a relocation against a global symbol,
12398 but it could be a relocation against a local
12399 symbol for a discarded section. */
12400 asection *isec;
12401 Elf_Internal_Sym *isym;
12402
12403 /* Need to: get the symbol; get the section. */
12404 isym = &rcookie->locsyms[r_symndx];
12405 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12406 if (isec != NULL && elf_discarded_section (isec))
12407 return TRUE;
12408 }
12409 return FALSE;
12410 }
12411 return FALSE;
12412 }
12413
12414 /* Discard unneeded references to discarded sections.
12415 Returns TRUE if any section's size was changed. */
12416 /* This function assumes that the relocations are in sorted order,
12417 which is true for all known assemblers. */
12418
12419 bfd_boolean
12420 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12421 {
12422 struct elf_reloc_cookie cookie;
12423 asection *stab, *eh;
12424 const struct elf_backend_data *bed;
12425 bfd *abfd;
12426 bfd_boolean ret = FALSE;
12427
12428 if (info->traditional_format
12429 || !is_elf_hash_table (info->hash))
12430 return FALSE;
12431
12432 _bfd_elf_begin_eh_frame_parsing (info);
12433 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12434 {
12435 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12436 continue;
12437
12438 bed = get_elf_backend_data (abfd);
12439
12440 if ((abfd->flags & DYNAMIC) != 0)
12441 continue;
12442
12443 eh = NULL;
12444 if (!info->relocatable)
12445 {
12446 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12447 if (eh != NULL
12448 && (eh->size == 0
12449 || bfd_is_abs_section (eh->output_section)))
12450 eh = NULL;
12451 }
12452
12453 stab = bfd_get_section_by_name (abfd, ".stab");
12454 if (stab != NULL
12455 && (stab->size == 0
12456 || bfd_is_abs_section (stab->output_section)
12457 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
12458 stab = NULL;
12459
12460 if (stab == NULL
12461 && eh == NULL
12462 && bed->elf_backend_discard_info == NULL)
12463 continue;
12464
12465 if (!init_reloc_cookie (&cookie, info, abfd))
12466 return FALSE;
12467
12468 if (stab != NULL
12469 && stab->reloc_count > 0
12470 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12471 {
12472 if (_bfd_discard_section_stabs (abfd, stab,
12473 elf_section_data (stab)->sec_info,
12474 bfd_elf_reloc_symbol_deleted_p,
12475 &cookie))
12476 ret = TRUE;
12477 fini_reloc_cookie_rels (&cookie, stab);
12478 }
12479
12480 if (eh != NULL
12481 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12482 {
12483 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12484 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12485 bfd_elf_reloc_symbol_deleted_p,
12486 &cookie))
12487 ret = TRUE;
12488 fini_reloc_cookie_rels (&cookie, eh);
12489 }
12490
12491 if (bed->elf_backend_discard_info != NULL
12492 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12493 ret = TRUE;
12494
12495 fini_reloc_cookie (&cookie, abfd);
12496 }
12497 _bfd_elf_end_eh_frame_parsing (info);
12498
12499 if (info->eh_frame_hdr
12500 && !info->relocatable
12501 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12502 ret = TRUE;
12503
12504 return ret;
12505 }
12506
12507 bfd_boolean
12508 _bfd_elf_section_already_linked (bfd *abfd,
12509 asection *sec,
12510 struct bfd_link_info *info)
12511 {
12512 flagword flags;
12513 const char *name, *key;
12514 struct bfd_section_already_linked *l;
12515 struct bfd_section_already_linked_hash_entry *already_linked_list;
12516
12517 if (sec->output_section == bfd_abs_section_ptr)
12518 return FALSE;
12519
12520 flags = sec->flags;
12521
12522 /* Return if it isn't a linkonce section. A comdat group section
12523 also has SEC_LINK_ONCE set. */
12524 if ((flags & SEC_LINK_ONCE) == 0)
12525 return FALSE;
12526
12527 /* Don't put group member sections on our list of already linked
12528 sections. They are handled as a group via their group section. */
12529 if (elf_sec_group (sec) != NULL)
12530 return FALSE;
12531
12532 /* For a SHT_GROUP section, use the group signature as the key. */
12533 name = sec->name;
12534 if ((flags & SEC_GROUP) != 0
12535 && elf_next_in_group (sec) != NULL
12536 && elf_group_name (elf_next_in_group (sec)) != NULL)
12537 key = elf_group_name (elf_next_in_group (sec));
12538 else
12539 {
12540 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
12541 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12542 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12543 key++;
12544 else
12545 /* Must be a user linkonce section that doesn't follow gcc's
12546 naming convention. In this case we won't be matching
12547 single member groups. */
12548 key = name;
12549 }
12550
12551 already_linked_list = bfd_section_already_linked_table_lookup (key);
12552
12553 for (l = already_linked_list->entry; l != NULL; l = l->next)
12554 {
12555 /* We may have 2 different types of sections on the list: group
12556 sections with a signature of <key> (<key> is some string),
12557 and linkonce sections named .gnu.linkonce.<type>.<key>.
12558 Match like sections. LTO plugin sections are an exception.
12559 They are always named .gnu.linkonce.t.<key> and match either
12560 type of section. */
12561 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12562 && ((flags & SEC_GROUP) != 0
12563 || strcmp (name, l->sec->name) == 0))
12564 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
12565 {
12566 /* The section has already been linked. See if we should
12567 issue a warning. */
12568 if (!_bfd_handle_already_linked (sec, l, info))
12569 return FALSE;
12570
12571 if (flags & SEC_GROUP)
12572 {
12573 asection *first = elf_next_in_group (sec);
12574 asection *s = first;
12575
12576 while (s != NULL)
12577 {
12578 s->output_section = bfd_abs_section_ptr;
12579 /* Record which group discards it. */
12580 s->kept_section = l->sec;
12581 s = elf_next_in_group (s);
12582 /* These lists are circular. */
12583 if (s == first)
12584 break;
12585 }
12586 }
12587
12588 return TRUE;
12589 }
12590 }
12591
12592 /* A single member comdat group section may be discarded by a
12593 linkonce section and vice versa. */
12594 if ((flags & SEC_GROUP) != 0)
12595 {
12596 asection *first = elf_next_in_group (sec);
12597
12598 if (first != NULL && elf_next_in_group (first) == first)
12599 /* Check this single member group against linkonce sections. */
12600 for (l = already_linked_list->entry; l != NULL; l = l->next)
12601 if ((l->sec->flags & SEC_GROUP) == 0
12602 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12603 {
12604 first->output_section = bfd_abs_section_ptr;
12605 first->kept_section = l->sec;
12606 sec->output_section = bfd_abs_section_ptr;
12607 break;
12608 }
12609 }
12610 else
12611 /* Check this linkonce section against single member groups. */
12612 for (l = already_linked_list->entry; l != NULL; l = l->next)
12613 if (l->sec->flags & SEC_GROUP)
12614 {
12615 asection *first = elf_next_in_group (l->sec);
12616
12617 if (first != NULL
12618 && elf_next_in_group (first) == first
12619 && bfd_elf_match_symbols_in_sections (first, sec, info))
12620 {
12621 sec->output_section = bfd_abs_section_ptr;
12622 sec->kept_section = first;
12623 break;
12624 }
12625 }
12626
12627 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12628 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12629 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12630 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12631 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12632 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12633 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12634 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12635 The reverse order cannot happen as there is never a bfd with only the
12636 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12637 matter as here were are looking only for cross-bfd sections. */
12638
12639 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12640 for (l = already_linked_list->entry; l != NULL; l = l->next)
12641 if ((l->sec->flags & SEC_GROUP) == 0
12642 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12643 {
12644 if (abfd != l->sec->owner)
12645 sec->output_section = bfd_abs_section_ptr;
12646 break;
12647 }
12648
12649 /* This is the first section with this name. Record it. */
12650 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
12651 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12652 return sec->output_section == bfd_abs_section_ptr;
12653 }
12654
12655 bfd_boolean
12656 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12657 {
12658 return sym->st_shndx == SHN_COMMON;
12659 }
12660
12661 unsigned int
12662 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12663 {
12664 return SHN_COMMON;
12665 }
12666
12667 asection *
12668 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12669 {
12670 return bfd_com_section_ptr;
12671 }
12672
12673 bfd_vma
12674 _bfd_elf_default_got_elt_size (bfd *abfd,
12675 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12676 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12677 bfd *ibfd ATTRIBUTE_UNUSED,
12678 unsigned long symndx ATTRIBUTE_UNUSED)
12679 {
12680 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12681 return bed->s->arch_size / 8;
12682 }
12683
12684 /* Routines to support the creation of dynamic relocs. */
12685
12686 /* Returns the name of the dynamic reloc section associated with SEC. */
12687
12688 static const char *
12689 get_dynamic_reloc_section_name (bfd * abfd,
12690 asection * sec,
12691 bfd_boolean is_rela)
12692 {
12693 char *name;
12694 const char *old_name = bfd_get_section_name (NULL, sec);
12695 const char *prefix = is_rela ? ".rela" : ".rel";
12696
12697 if (old_name == NULL)
12698 return NULL;
12699
12700 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12701 sprintf (name, "%s%s", prefix, old_name);
12702
12703 return name;
12704 }
12705
12706 /* Returns the dynamic reloc section associated with SEC.
12707 If necessary compute the name of the dynamic reloc section based
12708 on SEC's name (looked up in ABFD's string table) and the setting
12709 of IS_RELA. */
12710
12711 asection *
12712 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12713 asection * sec,
12714 bfd_boolean is_rela)
12715 {
12716 asection * reloc_sec = elf_section_data (sec)->sreloc;
12717
12718 if (reloc_sec == NULL)
12719 {
12720 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12721
12722 if (name != NULL)
12723 {
12724 reloc_sec = bfd_get_section_by_name (abfd, name);
12725
12726 if (reloc_sec != NULL)
12727 elf_section_data (sec)->sreloc = reloc_sec;
12728 }
12729 }
12730
12731 return reloc_sec;
12732 }
12733
12734 /* Returns the dynamic reloc section associated with SEC. If the
12735 section does not exist it is created and attached to the DYNOBJ
12736 bfd and stored in the SRELOC field of SEC's elf_section_data
12737 structure.
12738
12739 ALIGNMENT is the alignment for the newly created section and
12740 IS_RELA defines whether the name should be .rela.<SEC's name>
12741 or .rel.<SEC's name>. The section name is looked up in the
12742 string table associated with ABFD. */
12743
12744 asection *
12745 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12746 bfd * dynobj,
12747 unsigned int alignment,
12748 bfd * abfd,
12749 bfd_boolean is_rela)
12750 {
12751 asection * reloc_sec = elf_section_data (sec)->sreloc;
12752
12753 if (reloc_sec == NULL)
12754 {
12755 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12756
12757 if (name == NULL)
12758 return NULL;
12759
12760 reloc_sec = bfd_get_section_by_name (dynobj, name);
12761
12762 if (reloc_sec == NULL)
12763 {
12764 flagword flags;
12765
12766 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12767 if ((sec->flags & SEC_ALLOC) != 0)
12768 flags |= SEC_ALLOC | SEC_LOAD;
12769
12770 reloc_sec = bfd_make_section_with_flags (dynobj, name, flags);
12771 if (reloc_sec != NULL)
12772 {
12773 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12774 reloc_sec = NULL;
12775 }
12776 }
12777
12778 elf_section_data (sec)->sreloc = reloc_sec;
12779 }
12780
12781 return reloc_sec;
12782 }
12783
12784 /* Copy the ELF symbol type associated with a linker hash entry. */
12785 void
12786 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
12787 struct bfd_link_hash_entry * hdest,
12788 struct bfd_link_hash_entry * hsrc)
12789 {
12790 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
12791 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
12792
12793 ehdest->type = ehsrc->type;
12794 ehdest->target_internal = ehsrc->target_internal;
12795 }
12796
12797 /* Append a RELA relocation REL to section S in BFD. */
12798
12799 void
12800 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
12801 {
12802 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12803 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
12804 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
12805 bed->s->swap_reloca_out (abfd, rel, loc);
12806 }
12807
12808 /* Append a REL relocation REL to section S in BFD. */
12809
12810 void
12811 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
12812 {
12813 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12814 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
12815 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
12816 bed->s->swap_reloca_out (abfd, rel, loc);
12817 }
This page took 0.296982 seconds and 4 git commands to generate.