* elf64-hppa.c (elf64_hppa_new_dyn_hash_entry): Don't clear everything,
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #define ARCH_SIZE 0
26 #include "elf-bfd.h"
27 #include "safe-ctype.h"
28 #include "libiberty.h"
29
30 bfd_boolean
31 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
32 {
33 flagword flags;
34 asection *s;
35 struct elf_link_hash_entry *h;
36 struct bfd_link_hash_entry *bh;
37 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
38 int ptralign;
39
40 /* This function may be called more than once. */
41 s = bfd_get_section_by_name (abfd, ".got");
42 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
43 return TRUE;
44
45 switch (bed->s->arch_size)
46 {
47 case 32:
48 ptralign = 2;
49 break;
50
51 case 64:
52 ptralign = 3;
53 break;
54
55 default:
56 bfd_set_error (bfd_error_bad_value);
57 return FALSE;
58 }
59
60 flags = bed->dynamic_sec_flags;
61
62 s = bfd_make_section (abfd, ".got");
63 if (s == NULL
64 || !bfd_set_section_flags (abfd, s, flags)
65 || !bfd_set_section_alignment (abfd, s, ptralign))
66 return FALSE;
67
68 if (bed->want_got_plt)
69 {
70 s = bfd_make_section (abfd, ".got.plt");
71 if (s == NULL
72 || !bfd_set_section_flags (abfd, s, flags)
73 || !bfd_set_section_alignment (abfd, s, ptralign))
74 return FALSE;
75 }
76
77 if (bed->want_got_sym)
78 {
79 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
80 (or .got.plt) section. We don't do this in the linker script
81 because we don't want to define the symbol if we are not creating
82 a global offset table. */
83 bh = NULL;
84 if (!(_bfd_generic_link_add_one_symbol
85 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
86 bed->got_symbol_offset, NULL, FALSE, bed->collect, &bh)))
87 return FALSE;
88 h = (struct elf_link_hash_entry *) bh;
89 h->def_regular = 1;
90 h->type = STT_OBJECT;
91 h->other = STV_HIDDEN;
92
93 if (! info->executable
94 && ! bfd_elf_link_record_dynamic_symbol (info, h))
95 return FALSE;
96
97 elf_hash_table (info)->hgot = h;
98 }
99
100 /* The first bit of the global offset table is the header. */
101 s->size += bed->got_header_size + bed->got_symbol_offset;
102
103 return TRUE;
104 }
105 \f
106 /* Create a strtab to hold the dynamic symbol names. */
107 static bfd_boolean
108 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
109 {
110 struct elf_link_hash_table *hash_table;
111
112 hash_table = elf_hash_table (info);
113 if (hash_table->dynobj == NULL)
114 hash_table->dynobj = abfd;
115
116 if (hash_table->dynstr == NULL)
117 {
118 hash_table->dynstr = _bfd_elf_strtab_init ();
119 if (hash_table->dynstr == NULL)
120 return FALSE;
121 }
122 return TRUE;
123 }
124
125 /* Create some sections which will be filled in with dynamic linking
126 information. ABFD is an input file which requires dynamic sections
127 to be created. The dynamic sections take up virtual memory space
128 when the final executable is run, so we need to create them before
129 addresses are assigned to the output sections. We work out the
130 actual contents and size of these sections later. */
131
132 bfd_boolean
133 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
134 {
135 flagword flags;
136 register asection *s;
137 struct elf_link_hash_entry *h;
138 struct bfd_link_hash_entry *bh;
139 const struct elf_backend_data *bed;
140
141 if (! is_elf_hash_table (info->hash))
142 return FALSE;
143
144 if (elf_hash_table (info)->dynamic_sections_created)
145 return TRUE;
146
147 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
148 return FALSE;
149
150 abfd = elf_hash_table (info)->dynobj;
151 bed = get_elf_backend_data (abfd);
152
153 flags = bed->dynamic_sec_flags;
154
155 /* A dynamically linked executable has a .interp section, but a
156 shared library does not. */
157 if (info->executable)
158 {
159 s = bfd_make_section (abfd, ".interp");
160 if (s == NULL
161 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
162 return FALSE;
163 }
164
165 if (! info->traditional_format)
166 {
167 s = bfd_make_section (abfd, ".eh_frame_hdr");
168 if (s == NULL
169 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
170 || ! bfd_set_section_alignment (abfd, s, 2))
171 return FALSE;
172 elf_hash_table (info)->eh_info.hdr_sec = s;
173 }
174
175 /* Create sections to hold version informations. These are removed
176 if they are not needed. */
177 s = bfd_make_section (abfd, ".gnu.version_d");
178 if (s == NULL
179 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
180 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
181 return FALSE;
182
183 s = bfd_make_section (abfd, ".gnu.version");
184 if (s == NULL
185 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
186 || ! bfd_set_section_alignment (abfd, s, 1))
187 return FALSE;
188
189 s = bfd_make_section (abfd, ".gnu.version_r");
190 if (s == NULL
191 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
192 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
193 return FALSE;
194
195 s = bfd_make_section (abfd, ".dynsym");
196 if (s == NULL
197 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
198 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
199 return FALSE;
200
201 s = bfd_make_section (abfd, ".dynstr");
202 if (s == NULL
203 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
204 return FALSE;
205
206 s = bfd_make_section (abfd, ".dynamic");
207 if (s == NULL
208 || ! bfd_set_section_flags (abfd, s, flags)
209 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
210 return FALSE;
211
212 /* The special symbol _DYNAMIC is always set to the start of the
213 .dynamic section. We could set _DYNAMIC in a linker script, but we
214 only want to define it if we are, in fact, creating a .dynamic
215 section. We don't want to define it if there is no .dynamic
216 section, since on some ELF platforms the start up code examines it
217 to decide how to initialize the process. */
218 h = elf_link_hash_lookup (elf_hash_table (info), "_DYNAMIC",
219 FALSE, FALSE, FALSE);
220 if (h != NULL)
221 {
222 /* Zap symbol defined in an as-needed lib that wasn't linked.
223 This is a symptom of a larger problem: Absolute symbols
224 defined in shared libraries can't be overridden, because we
225 lose the link to the bfd which is via the symbol section. */
226 h->root.type = bfd_link_hash_new;
227 }
228 bh = &h->root;
229 if (! (_bfd_generic_link_add_one_symbol
230 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, 0, NULL, FALSE,
231 get_elf_backend_data (abfd)->collect, &bh)))
232 return FALSE;
233 h = (struct elf_link_hash_entry *) bh;
234 h->def_regular = 1;
235 h->type = STT_OBJECT;
236
237 if (! info->executable
238 && ! bfd_elf_link_record_dynamic_symbol (info, h))
239 return FALSE;
240
241 s = bfd_make_section (abfd, ".hash");
242 if (s == NULL
243 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
244 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
245 return FALSE;
246 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
247
248 /* Let the backend create the rest of the sections. This lets the
249 backend set the right flags. The backend will normally create
250 the .got and .plt sections. */
251 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
252 return FALSE;
253
254 elf_hash_table (info)->dynamic_sections_created = TRUE;
255
256 return TRUE;
257 }
258
259 /* Create dynamic sections when linking against a dynamic object. */
260
261 bfd_boolean
262 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
263 {
264 flagword flags, pltflags;
265 asection *s;
266 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
267
268 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
269 .rel[a].bss sections. */
270 flags = bed->dynamic_sec_flags;
271
272 pltflags = flags;
273 if (bed->plt_not_loaded)
274 /* We do not clear SEC_ALLOC here because we still want the OS to
275 allocate space for the section; it's just that there's nothing
276 to read in from the object file. */
277 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
278 else
279 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
280 if (bed->plt_readonly)
281 pltflags |= SEC_READONLY;
282
283 s = bfd_make_section (abfd, ".plt");
284 if (s == NULL
285 || ! bfd_set_section_flags (abfd, s, pltflags)
286 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
287 return FALSE;
288
289 if (bed->want_plt_sym)
290 {
291 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
292 .plt section. */
293 struct elf_link_hash_entry *h;
294 struct bfd_link_hash_entry *bh = NULL;
295
296 if (! (_bfd_generic_link_add_one_symbol
297 (info, abfd, "_PROCEDURE_LINKAGE_TABLE_", BSF_GLOBAL, s, 0, NULL,
298 FALSE, get_elf_backend_data (abfd)->collect, &bh)))
299 return FALSE;
300 h = (struct elf_link_hash_entry *) bh;
301 h->def_regular = 1;
302 h->type = STT_OBJECT;
303
304 if (! info->executable
305 && ! bfd_elf_link_record_dynamic_symbol (info, h))
306 return FALSE;
307 }
308
309 s = bfd_make_section (abfd,
310 bed->default_use_rela_p ? ".rela.plt" : ".rel.plt");
311 if (s == NULL
312 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
313 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
314 return FALSE;
315
316 if (! _bfd_elf_create_got_section (abfd, info))
317 return FALSE;
318
319 if (bed->want_dynbss)
320 {
321 /* The .dynbss section is a place to put symbols which are defined
322 by dynamic objects, are referenced by regular objects, and are
323 not functions. We must allocate space for them in the process
324 image and use a R_*_COPY reloc to tell the dynamic linker to
325 initialize them at run time. The linker script puts the .dynbss
326 section into the .bss section of the final image. */
327 s = bfd_make_section (abfd, ".dynbss");
328 if (s == NULL
329 || ! bfd_set_section_flags (abfd, s, SEC_ALLOC | SEC_LINKER_CREATED))
330 return FALSE;
331
332 /* The .rel[a].bss section holds copy relocs. This section is not
333 normally needed. We need to create it here, though, so that the
334 linker will map it to an output section. We can't just create it
335 only if we need it, because we will not know whether we need it
336 until we have seen all the input files, and the first time the
337 main linker code calls BFD after examining all the input files
338 (size_dynamic_sections) the input sections have already been
339 mapped to the output sections. If the section turns out not to
340 be needed, we can discard it later. We will never need this
341 section when generating a shared object, since they do not use
342 copy relocs. */
343 if (! info->shared)
344 {
345 s = bfd_make_section (abfd,
346 (bed->default_use_rela_p
347 ? ".rela.bss" : ".rel.bss"));
348 if (s == NULL
349 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
350 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
351 return FALSE;
352 }
353 }
354
355 return TRUE;
356 }
357 \f
358 /* Record a new dynamic symbol. We record the dynamic symbols as we
359 read the input files, since we need to have a list of all of them
360 before we can determine the final sizes of the output sections.
361 Note that we may actually call this function even though we are not
362 going to output any dynamic symbols; in some cases we know that a
363 symbol should be in the dynamic symbol table, but only if there is
364 one. */
365
366 bfd_boolean
367 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
368 struct elf_link_hash_entry *h)
369 {
370 if (h->dynindx == -1)
371 {
372 struct elf_strtab_hash *dynstr;
373 char *p;
374 const char *name;
375 bfd_size_type indx;
376
377 /* XXX: The ABI draft says the linker must turn hidden and
378 internal symbols into STB_LOCAL symbols when producing the
379 DSO. However, if ld.so honors st_other in the dynamic table,
380 this would not be necessary. */
381 switch (ELF_ST_VISIBILITY (h->other))
382 {
383 case STV_INTERNAL:
384 case STV_HIDDEN:
385 if (h->root.type != bfd_link_hash_undefined
386 && h->root.type != bfd_link_hash_undefweak)
387 {
388 h->forced_local = 1;
389 return TRUE;
390 }
391
392 default:
393 break;
394 }
395
396 h->dynindx = elf_hash_table (info)->dynsymcount;
397 ++elf_hash_table (info)->dynsymcount;
398
399 dynstr = elf_hash_table (info)->dynstr;
400 if (dynstr == NULL)
401 {
402 /* Create a strtab to hold the dynamic symbol names. */
403 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
404 if (dynstr == NULL)
405 return FALSE;
406 }
407
408 /* We don't put any version information in the dynamic string
409 table. */
410 name = h->root.root.string;
411 p = strchr (name, ELF_VER_CHR);
412 if (p != NULL)
413 /* We know that the p points into writable memory. In fact,
414 there are only a few symbols that have read-only names, being
415 those like _GLOBAL_OFFSET_TABLE_ that are created specially
416 by the backends. Most symbols will have names pointing into
417 an ELF string table read from a file, or to objalloc memory. */
418 *p = 0;
419
420 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
421
422 if (p != NULL)
423 *p = ELF_VER_CHR;
424
425 if (indx == (bfd_size_type) -1)
426 return FALSE;
427 h->dynstr_index = indx;
428 }
429
430 return TRUE;
431 }
432 \f
433 /* Record an assignment to a symbol made by a linker script. We need
434 this in case some dynamic object refers to this symbol. */
435
436 bfd_boolean
437 bfd_elf_record_link_assignment (bfd *output_bfd ATTRIBUTE_UNUSED,
438 struct bfd_link_info *info,
439 const char *name,
440 bfd_boolean provide)
441 {
442 struct elf_link_hash_entry *h;
443
444 if (!is_elf_hash_table (info->hash))
445 return TRUE;
446
447 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, TRUE, FALSE);
448 if (h == NULL)
449 return FALSE;
450
451 /* Since we're defining the symbol, don't let it seem to have not
452 been defined. record_dynamic_symbol and size_dynamic_sections
453 may depend on this. */
454 if (h->root.type == bfd_link_hash_undefweak
455 || h->root.type == bfd_link_hash_undefined)
456 {
457 struct elf_link_hash_table *htab = elf_hash_table (info);
458
459 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
460 bfd_link_repair_undef_list (&htab->root);
461 h->root.type = bfd_link_hash_new;
462 }
463
464 if (h->root.type == bfd_link_hash_new)
465 h->non_elf = 0;
466
467 /* If this symbol is being provided by the linker script, and it is
468 currently defined by a dynamic object, but not by a regular
469 object, then mark it as undefined so that the generic linker will
470 force the correct value. */
471 if (provide
472 && h->def_dynamic
473 && !h->def_regular)
474 h->root.type = bfd_link_hash_undefined;
475
476 /* If this symbol is not being provided by the linker script, and it is
477 currently defined by a dynamic object, but not by a regular object,
478 then clear out any version information because the symbol will not be
479 associated with the dynamic object any more. */
480 if (!provide
481 && h->def_dynamic
482 && !h->def_regular)
483 h->verinfo.verdef = NULL;
484
485 h->def_regular = 1;
486
487 if ((h->def_dynamic
488 || h->ref_dynamic
489 || info->shared)
490 && h->dynindx == -1)
491 {
492 if (! bfd_elf_link_record_dynamic_symbol (info, h))
493 return FALSE;
494
495 /* If this is a weak defined symbol, and we know a corresponding
496 real symbol from the same dynamic object, make sure the real
497 symbol is also made into a dynamic symbol. */
498 if (h->u.weakdef != NULL
499 && h->u.weakdef->dynindx == -1)
500 {
501 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
502 return FALSE;
503 }
504 }
505
506 return TRUE;
507 }
508
509 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
510 success, and 2 on a failure caused by attempting to record a symbol
511 in a discarded section, eg. a discarded link-once section symbol. */
512
513 int
514 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
515 bfd *input_bfd,
516 long input_indx)
517 {
518 bfd_size_type amt;
519 struct elf_link_local_dynamic_entry *entry;
520 struct elf_link_hash_table *eht;
521 struct elf_strtab_hash *dynstr;
522 unsigned long dynstr_index;
523 char *name;
524 Elf_External_Sym_Shndx eshndx;
525 char esym[sizeof (Elf64_External_Sym)];
526
527 if (! is_elf_hash_table (info->hash))
528 return 0;
529
530 /* See if the entry exists already. */
531 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
532 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
533 return 1;
534
535 amt = sizeof (*entry);
536 entry = bfd_alloc (input_bfd, amt);
537 if (entry == NULL)
538 return 0;
539
540 /* Go find the symbol, so that we can find it's name. */
541 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
542 1, input_indx, &entry->isym, esym, &eshndx))
543 {
544 bfd_release (input_bfd, entry);
545 return 0;
546 }
547
548 if (entry->isym.st_shndx != SHN_UNDEF
549 && (entry->isym.st_shndx < SHN_LORESERVE
550 || entry->isym.st_shndx > SHN_HIRESERVE))
551 {
552 asection *s;
553
554 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
555 if (s == NULL || bfd_is_abs_section (s->output_section))
556 {
557 /* We can still bfd_release here as nothing has done another
558 bfd_alloc. We can't do this later in this function. */
559 bfd_release (input_bfd, entry);
560 return 2;
561 }
562 }
563
564 name = (bfd_elf_string_from_elf_section
565 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
566 entry->isym.st_name));
567
568 dynstr = elf_hash_table (info)->dynstr;
569 if (dynstr == NULL)
570 {
571 /* Create a strtab to hold the dynamic symbol names. */
572 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
573 if (dynstr == NULL)
574 return 0;
575 }
576
577 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
578 if (dynstr_index == (unsigned long) -1)
579 return 0;
580 entry->isym.st_name = dynstr_index;
581
582 eht = elf_hash_table (info);
583
584 entry->next = eht->dynlocal;
585 eht->dynlocal = entry;
586 entry->input_bfd = input_bfd;
587 entry->input_indx = input_indx;
588 eht->dynsymcount++;
589
590 /* Whatever binding the symbol had before, it's now local. */
591 entry->isym.st_info
592 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
593
594 /* The dynindx will be set at the end of size_dynamic_sections. */
595
596 return 1;
597 }
598
599 /* Return the dynindex of a local dynamic symbol. */
600
601 long
602 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
603 bfd *input_bfd,
604 long input_indx)
605 {
606 struct elf_link_local_dynamic_entry *e;
607
608 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
609 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
610 return e->dynindx;
611 return -1;
612 }
613
614 /* This function is used to renumber the dynamic symbols, if some of
615 them are removed because they are marked as local. This is called
616 via elf_link_hash_traverse. */
617
618 static bfd_boolean
619 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
620 void *data)
621 {
622 size_t *count = data;
623
624 if (h->root.type == bfd_link_hash_warning)
625 h = (struct elf_link_hash_entry *) h->root.u.i.link;
626
627 if (h->dynindx != -1)
628 h->dynindx = ++(*count);
629
630 return TRUE;
631 }
632
633 /* Return true if the dynamic symbol for a given section should be
634 omitted when creating a shared library. */
635 bfd_boolean
636 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
637 struct bfd_link_info *info,
638 asection *p)
639 {
640 switch (elf_section_data (p)->this_hdr.sh_type)
641 {
642 case SHT_PROGBITS:
643 case SHT_NOBITS:
644 /* If sh_type is yet undecided, assume it could be
645 SHT_PROGBITS/SHT_NOBITS. */
646 case SHT_NULL:
647 if (strcmp (p->name, ".got") == 0
648 || strcmp (p->name, ".got.plt") == 0
649 || strcmp (p->name, ".plt") == 0)
650 {
651 asection *ip;
652 bfd *dynobj = elf_hash_table (info)->dynobj;
653
654 if (dynobj != NULL
655 && (ip = bfd_get_section_by_name (dynobj, p->name)) != NULL
656 && (ip->flags & SEC_LINKER_CREATED)
657 && ip->output_section == p)
658 return TRUE;
659 }
660 return FALSE;
661
662 /* There shouldn't be section relative relocations
663 against any other section. */
664 default:
665 return TRUE;
666 }
667 }
668
669 /* Assign dynsym indices. In a shared library we generate a section
670 symbol for each output section, which come first. Next come all of
671 the back-end allocated local dynamic syms, followed by the rest of
672 the global symbols. */
673
674 unsigned long
675 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
676 {
677 unsigned long dynsymcount = 0;
678
679 if (info->shared)
680 {
681 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
682 asection *p;
683 for (p = output_bfd->sections; p ; p = p->next)
684 if ((p->flags & SEC_EXCLUDE) == 0
685 && (p->flags & SEC_ALLOC) != 0
686 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
687 elf_section_data (p)->dynindx = ++dynsymcount;
688 }
689
690 if (elf_hash_table (info)->dynlocal)
691 {
692 struct elf_link_local_dynamic_entry *p;
693 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
694 p->dynindx = ++dynsymcount;
695 }
696
697 elf_link_hash_traverse (elf_hash_table (info),
698 elf_link_renumber_hash_table_dynsyms,
699 &dynsymcount);
700
701 /* There is an unused NULL entry at the head of the table which
702 we must account for in our count. Unless there weren't any
703 symbols, which means we'll have no table at all. */
704 if (dynsymcount != 0)
705 ++dynsymcount;
706
707 return elf_hash_table (info)->dynsymcount = dynsymcount;
708 }
709
710 /* This function is called when we want to define a new symbol. It
711 handles the various cases which arise when we find a definition in
712 a dynamic object, or when there is already a definition in a
713 dynamic object. The new symbol is described by NAME, SYM, PSEC,
714 and PVALUE. We set SYM_HASH to the hash table entry. We set
715 OVERRIDE if the old symbol is overriding a new definition. We set
716 TYPE_CHANGE_OK if it is OK for the type to change. We set
717 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
718 change, we mean that we shouldn't warn if the type or size does
719 change. */
720
721 bfd_boolean
722 _bfd_elf_merge_symbol (bfd *abfd,
723 struct bfd_link_info *info,
724 const char *name,
725 Elf_Internal_Sym *sym,
726 asection **psec,
727 bfd_vma *pvalue,
728 struct elf_link_hash_entry **sym_hash,
729 bfd_boolean *skip,
730 bfd_boolean *override,
731 bfd_boolean *type_change_ok,
732 bfd_boolean *size_change_ok)
733 {
734 asection *sec, *oldsec;
735 struct elf_link_hash_entry *h;
736 struct elf_link_hash_entry *flip;
737 int bind;
738 bfd *oldbfd;
739 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
740 bfd_boolean newweak, oldweak;
741
742 *skip = FALSE;
743 *override = FALSE;
744
745 sec = *psec;
746 bind = ELF_ST_BIND (sym->st_info);
747
748 if (! bfd_is_und_section (sec))
749 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
750 else
751 h = ((struct elf_link_hash_entry *)
752 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
753 if (h == NULL)
754 return FALSE;
755 *sym_hash = h;
756
757 /* This code is for coping with dynamic objects, and is only useful
758 if we are doing an ELF link. */
759 if (info->hash->creator != abfd->xvec)
760 return TRUE;
761
762 /* For merging, we only care about real symbols. */
763
764 while (h->root.type == bfd_link_hash_indirect
765 || h->root.type == bfd_link_hash_warning)
766 h = (struct elf_link_hash_entry *) h->root.u.i.link;
767
768 /* If we just created the symbol, mark it as being an ELF symbol.
769 Other than that, there is nothing to do--there is no merge issue
770 with a newly defined symbol--so we just return. */
771
772 if (h->root.type == bfd_link_hash_new)
773 {
774 h->non_elf = 0;
775 return TRUE;
776 }
777
778 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
779 existing symbol. */
780
781 switch (h->root.type)
782 {
783 default:
784 oldbfd = NULL;
785 oldsec = NULL;
786 break;
787
788 case bfd_link_hash_undefined:
789 case bfd_link_hash_undefweak:
790 oldbfd = h->root.u.undef.abfd;
791 oldsec = NULL;
792 break;
793
794 case bfd_link_hash_defined:
795 case bfd_link_hash_defweak:
796 oldbfd = h->root.u.def.section->owner;
797 oldsec = h->root.u.def.section;
798 break;
799
800 case bfd_link_hash_common:
801 oldbfd = h->root.u.c.p->section->owner;
802 oldsec = h->root.u.c.p->section;
803 break;
804 }
805
806 /* In cases involving weak versioned symbols, we may wind up trying
807 to merge a symbol with itself. Catch that here, to avoid the
808 confusion that results if we try to override a symbol with
809 itself. The additional tests catch cases like
810 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
811 dynamic object, which we do want to handle here. */
812 if (abfd == oldbfd
813 && ((abfd->flags & DYNAMIC) == 0
814 || !h->def_regular))
815 return TRUE;
816
817 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
818 respectively, is from a dynamic object. */
819
820 if ((abfd->flags & DYNAMIC) != 0)
821 newdyn = TRUE;
822 else
823 newdyn = FALSE;
824
825 if (oldbfd != NULL)
826 olddyn = (oldbfd->flags & DYNAMIC) != 0;
827 else
828 {
829 asection *hsec;
830
831 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
832 indices used by MIPS ELF. */
833 switch (h->root.type)
834 {
835 default:
836 hsec = NULL;
837 break;
838
839 case bfd_link_hash_defined:
840 case bfd_link_hash_defweak:
841 hsec = h->root.u.def.section;
842 break;
843
844 case bfd_link_hash_common:
845 hsec = h->root.u.c.p->section;
846 break;
847 }
848
849 if (hsec == NULL)
850 olddyn = FALSE;
851 else
852 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
853 }
854
855 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
856 respectively, appear to be a definition rather than reference. */
857
858 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
859 newdef = FALSE;
860 else
861 newdef = TRUE;
862
863 if (h->root.type == bfd_link_hash_undefined
864 || h->root.type == bfd_link_hash_undefweak
865 || h->root.type == bfd_link_hash_common)
866 olddef = FALSE;
867 else
868 olddef = TRUE;
869
870 /* Check TLS symbol. */
871 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
872 && ELF_ST_TYPE (sym->st_info) != h->type)
873 {
874 bfd *ntbfd, *tbfd;
875 bfd_boolean ntdef, tdef;
876 asection *ntsec, *tsec;
877
878 if (h->type == STT_TLS)
879 {
880 ntbfd = abfd;
881 ntsec = sec;
882 ntdef = newdef;
883 tbfd = oldbfd;
884 tsec = oldsec;
885 tdef = olddef;
886 }
887 else
888 {
889 ntbfd = oldbfd;
890 ntsec = oldsec;
891 ntdef = olddef;
892 tbfd = abfd;
893 tsec = sec;
894 tdef = newdef;
895 }
896
897 if (tdef && ntdef)
898 (*_bfd_error_handler)
899 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
900 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
901 else if (!tdef && !ntdef)
902 (*_bfd_error_handler)
903 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
904 tbfd, ntbfd, h->root.root.string);
905 else if (tdef)
906 (*_bfd_error_handler)
907 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
908 tbfd, tsec, ntbfd, h->root.root.string);
909 else
910 (*_bfd_error_handler)
911 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
912 tbfd, ntbfd, ntsec, h->root.root.string);
913
914 bfd_set_error (bfd_error_bad_value);
915 return FALSE;
916 }
917
918 /* We need to remember if a symbol has a definition in a dynamic
919 object or is weak in all dynamic objects. Internal and hidden
920 visibility will make it unavailable to dynamic objects. */
921 if (newdyn && !h->dynamic_def)
922 {
923 if (!bfd_is_und_section (sec))
924 h->dynamic_def = 1;
925 else
926 {
927 /* Check if this symbol is weak in all dynamic objects. If it
928 is the first time we see it in a dynamic object, we mark
929 if it is weak. Otherwise, we clear it. */
930 if (!h->ref_dynamic)
931 {
932 if (bind == STB_WEAK)
933 h->dynamic_weak = 1;
934 }
935 else if (bind != STB_WEAK)
936 h->dynamic_weak = 0;
937 }
938 }
939
940 /* If the old symbol has non-default visibility, we ignore the new
941 definition from a dynamic object. */
942 if (newdyn
943 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
944 && !bfd_is_und_section (sec))
945 {
946 *skip = TRUE;
947 /* Make sure this symbol is dynamic. */
948 h->ref_dynamic = 1;
949 /* A protected symbol has external availability. Make sure it is
950 recorded as dynamic.
951
952 FIXME: Should we check type and size for protected symbol? */
953 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
954 return bfd_elf_link_record_dynamic_symbol (info, h);
955 else
956 return TRUE;
957 }
958 else if (!newdyn
959 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
960 && h->def_dynamic)
961 {
962 /* If the new symbol with non-default visibility comes from a
963 relocatable file and the old definition comes from a dynamic
964 object, we remove the old definition. */
965 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
966 h = *sym_hash;
967
968 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
969 && bfd_is_und_section (sec))
970 {
971 /* If the new symbol is undefined and the old symbol was
972 also undefined before, we need to make sure
973 _bfd_generic_link_add_one_symbol doesn't mess
974 up the linker hash table undefs list. Since the old
975 definition came from a dynamic object, it is still on the
976 undefs list. */
977 h->root.type = bfd_link_hash_undefined;
978 h->root.u.undef.abfd = abfd;
979 }
980 else
981 {
982 h->root.type = bfd_link_hash_new;
983 h->root.u.undef.abfd = NULL;
984 }
985
986 if (h->def_dynamic)
987 {
988 h->def_dynamic = 0;
989 h->ref_dynamic = 1;
990 h->dynamic_def = 1;
991 }
992 /* FIXME: Should we check type and size for protected symbol? */
993 h->size = 0;
994 h->type = 0;
995 return TRUE;
996 }
997
998 /* Differentiate strong and weak symbols. */
999 newweak = bind == STB_WEAK;
1000 oldweak = (h->root.type == bfd_link_hash_defweak
1001 || h->root.type == bfd_link_hash_undefweak);
1002
1003 /* If a new weak symbol definition comes from a regular file and the
1004 old symbol comes from a dynamic library, we treat the new one as
1005 strong. Similarly, an old weak symbol definition from a regular
1006 file is treated as strong when the new symbol comes from a dynamic
1007 library. Further, an old weak symbol from a dynamic library is
1008 treated as strong if the new symbol is from a dynamic library.
1009 This reflects the way glibc's ld.so works.
1010
1011 Do this before setting *type_change_ok or *size_change_ok so that
1012 we warn properly when dynamic library symbols are overridden. */
1013
1014 if (newdef && !newdyn && olddyn)
1015 newweak = FALSE;
1016 if (olddef && newdyn)
1017 oldweak = FALSE;
1018
1019 /* It's OK to change the type if either the existing symbol or the
1020 new symbol is weak. A type change is also OK if the old symbol
1021 is undefined and the new symbol is defined. */
1022
1023 if (oldweak
1024 || newweak
1025 || (newdef
1026 && h->root.type == bfd_link_hash_undefined))
1027 *type_change_ok = TRUE;
1028
1029 /* It's OK to change the size if either the existing symbol or the
1030 new symbol is weak, or if the old symbol is undefined. */
1031
1032 if (*type_change_ok
1033 || h->root.type == bfd_link_hash_undefined)
1034 *size_change_ok = TRUE;
1035
1036 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1037 symbol, respectively, appears to be a common symbol in a dynamic
1038 object. If a symbol appears in an uninitialized section, and is
1039 not weak, and is not a function, then it may be a common symbol
1040 which was resolved when the dynamic object was created. We want
1041 to treat such symbols specially, because they raise special
1042 considerations when setting the symbol size: if the symbol
1043 appears as a common symbol in a regular object, and the size in
1044 the regular object is larger, we must make sure that we use the
1045 larger size. This problematic case can always be avoided in C,
1046 but it must be handled correctly when using Fortran shared
1047 libraries.
1048
1049 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1050 likewise for OLDDYNCOMMON and OLDDEF.
1051
1052 Note that this test is just a heuristic, and that it is quite
1053 possible to have an uninitialized symbol in a shared object which
1054 is really a definition, rather than a common symbol. This could
1055 lead to some minor confusion when the symbol really is a common
1056 symbol in some regular object. However, I think it will be
1057 harmless. */
1058
1059 if (newdyn
1060 && newdef
1061 && !newweak
1062 && (sec->flags & SEC_ALLOC) != 0
1063 && (sec->flags & SEC_LOAD) == 0
1064 && sym->st_size > 0
1065 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
1066 newdyncommon = TRUE;
1067 else
1068 newdyncommon = FALSE;
1069
1070 if (olddyn
1071 && olddef
1072 && h->root.type == bfd_link_hash_defined
1073 && h->def_dynamic
1074 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1075 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1076 && h->size > 0
1077 && h->type != STT_FUNC)
1078 olddyncommon = TRUE;
1079 else
1080 olddyncommon = FALSE;
1081
1082 /* If both the old and the new symbols look like common symbols in a
1083 dynamic object, set the size of the symbol to the larger of the
1084 two. */
1085
1086 if (olddyncommon
1087 && newdyncommon
1088 && sym->st_size != h->size)
1089 {
1090 /* Since we think we have two common symbols, issue a multiple
1091 common warning if desired. Note that we only warn if the
1092 size is different. If the size is the same, we simply let
1093 the old symbol override the new one as normally happens with
1094 symbols defined in dynamic objects. */
1095
1096 if (! ((*info->callbacks->multiple_common)
1097 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1098 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1099 return FALSE;
1100
1101 if (sym->st_size > h->size)
1102 h->size = sym->st_size;
1103
1104 *size_change_ok = TRUE;
1105 }
1106
1107 /* If we are looking at a dynamic object, and we have found a
1108 definition, we need to see if the symbol was already defined by
1109 some other object. If so, we want to use the existing
1110 definition, and we do not want to report a multiple symbol
1111 definition error; we do this by clobbering *PSEC to be
1112 bfd_und_section_ptr.
1113
1114 We treat a common symbol as a definition if the symbol in the
1115 shared library is a function, since common symbols always
1116 represent variables; this can cause confusion in principle, but
1117 any such confusion would seem to indicate an erroneous program or
1118 shared library. We also permit a common symbol in a regular
1119 object to override a weak symbol in a shared object. */
1120
1121 if (newdyn
1122 && newdef
1123 && (olddef
1124 || (h->root.type == bfd_link_hash_common
1125 && (newweak
1126 || ELF_ST_TYPE (sym->st_info) == STT_FUNC))))
1127 {
1128 *override = TRUE;
1129 newdef = FALSE;
1130 newdyncommon = FALSE;
1131
1132 *psec = sec = bfd_und_section_ptr;
1133 *size_change_ok = TRUE;
1134
1135 /* If we get here when the old symbol is a common symbol, then
1136 we are explicitly letting it override a weak symbol or
1137 function in a dynamic object, and we don't want to warn about
1138 a type change. If the old symbol is a defined symbol, a type
1139 change warning may still be appropriate. */
1140
1141 if (h->root.type == bfd_link_hash_common)
1142 *type_change_ok = TRUE;
1143 }
1144
1145 /* Handle the special case of an old common symbol merging with a
1146 new symbol which looks like a common symbol in a shared object.
1147 We change *PSEC and *PVALUE to make the new symbol look like a
1148 common symbol, and let _bfd_generic_link_add_one_symbol will do
1149 the right thing. */
1150
1151 if (newdyncommon
1152 && h->root.type == bfd_link_hash_common)
1153 {
1154 *override = TRUE;
1155 newdef = FALSE;
1156 newdyncommon = FALSE;
1157 *pvalue = sym->st_size;
1158 *psec = sec = bfd_com_section_ptr;
1159 *size_change_ok = TRUE;
1160 }
1161
1162 /* If the old symbol is from a dynamic object, and the new symbol is
1163 a definition which is not from a dynamic object, then the new
1164 symbol overrides the old symbol. Symbols from regular files
1165 always take precedence over symbols from dynamic objects, even if
1166 they are defined after the dynamic object in the link.
1167
1168 As above, we again permit a common symbol in a regular object to
1169 override a definition in a shared object if the shared object
1170 symbol is a function or is weak. */
1171
1172 flip = NULL;
1173 if (!newdyn
1174 && (newdef
1175 || (bfd_is_com_section (sec)
1176 && (oldweak
1177 || h->type == STT_FUNC)))
1178 && olddyn
1179 && olddef
1180 && h->def_dynamic)
1181 {
1182 /* Change the hash table entry to undefined, and let
1183 _bfd_generic_link_add_one_symbol do the right thing with the
1184 new definition. */
1185
1186 h->root.type = bfd_link_hash_undefined;
1187 h->root.u.undef.abfd = h->root.u.def.section->owner;
1188 *size_change_ok = TRUE;
1189
1190 olddef = FALSE;
1191 olddyncommon = FALSE;
1192
1193 /* We again permit a type change when a common symbol may be
1194 overriding a function. */
1195
1196 if (bfd_is_com_section (sec))
1197 *type_change_ok = TRUE;
1198
1199 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1200 flip = *sym_hash;
1201 else
1202 /* This union may have been set to be non-NULL when this symbol
1203 was seen in a dynamic object. We must force the union to be
1204 NULL, so that it is correct for a regular symbol. */
1205 h->verinfo.vertree = NULL;
1206 }
1207
1208 /* Handle the special case of a new common symbol merging with an
1209 old symbol that looks like it might be a common symbol defined in
1210 a shared object. Note that we have already handled the case in
1211 which a new common symbol should simply override the definition
1212 in the shared library. */
1213
1214 if (! newdyn
1215 && bfd_is_com_section (sec)
1216 && olddyncommon)
1217 {
1218 /* It would be best if we could set the hash table entry to a
1219 common symbol, but we don't know what to use for the section
1220 or the alignment. */
1221 if (! ((*info->callbacks->multiple_common)
1222 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1223 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1224 return FALSE;
1225
1226 /* If the presumed common symbol in the dynamic object is
1227 larger, pretend that the new symbol has its size. */
1228
1229 if (h->size > *pvalue)
1230 *pvalue = h->size;
1231
1232 /* FIXME: We no longer know the alignment required by the symbol
1233 in the dynamic object, so we just wind up using the one from
1234 the regular object. */
1235
1236 olddef = FALSE;
1237 olddyncommon = FALSE;
1238
1239 h->root.type = bfd_link_hash_undefined;
1240 h->root.u.undef.abfd = h->root.u.def.section->owner;
1241
1242 *size_change_ok = TRUE;
1243 *type_change_ok = TRUE;
1244
1245 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1246 flip = *sym_hash;
1247 else
1248 h->verinfo.vertree = NULL;
1249 }
1250
1251 if (flip != NULL)
1252 {
1253 /* Handle the case where we had a versioned symbol in a dynamic
1254 library and now find a definition in a normal object. In this
1255 case, we make the versioned symbol point to the normal one. */
1256 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1257 flip->root.type = h->root.type;
1258 h->root.type = bfd_link_hash_indirect;
1259 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1260 (*bed->elf_backend_copy_indirect_symbol) (bed, flip, h);
1261 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1262 if (h->def_dynamic)
1263 {
1264 h->def_dynamic = 0;
1265 flip->ref_dynamic = 1;
1266 }
1267 }
1268
1269 return TRUE;
1270 }
1271
1272 /* This function is called to create an indirect symbol from the
1273 default for the symbol with the default version if needed. The
1274 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1275 set DYNSYM if the new indirect symbol is dynamic. */
1276
1277 bfd_boolean
1278 _bfd_elf_add_default_symbol (bfd *abfd,
1279 struct bfd_link_info *info,
1280 struct elf_link_hash_entry *h,
1281 const char *name,
1282 Elf_Internal_Sym *sym,
1283 asection **psec,
1284 bfd_vma *value,
1285 bfd_boolean *dynsym,
1286 bfd_boolean override)
1287 {
1288 bfd_boolean type_change_ok;
1289 bfd_boolean size_change_ok;
1290 bfd_boolean skip;
1291 char *shortname;
1292 struct elf_link_hash_entry *hi;
1293 struct bfd_link_hash_entry *bh;
1294 const struct elf_backend_data *bed;
1295 bfd_boolean collect;
1296 bfd_boolean dynamic;
1297 char *p;
1298 size_t len, shortlen;
1299 asection *sec;
1300
1301 /* If this symbol has a version, and it is the default version, we
1302 create an indirect symbol from the default name to the fully
1303 decorated name. This will cause external references which do not
1304 specify a version to be bound to this version of the symbol. */
1305 p = strchr (name, ELF_VER_CHR);
1306 if (p == NULL || p[1] != ELF_VER_CHR)
1307 return TRUE;
1308
1309 if (override)
1310 {
1311 /* We are overridden by an old definition. We need to check if we
1312 need to create the indirect symbol from the default name. */
1313 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1314 FALSE, FALSE);
1315 BFD_ASSERT (hi != NULL);
1316 if (hi == h)
1317 return TRUE;
1318 while (hi->root.type == bfd_link_hash_indirect
1319 || hi->root.type == bfd_link_hash_warning)
1320 {
1321 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1322 if (hi == h)
1323 return TRUE;
1324 }
1325 }
1326
1327 bed = get_elf_backend_data (abfd);
1328 collect = bed->collect;
1329 dynamic = (abfd->flags & DYNAMIC) != 0;
1330
1331 shortlen = p - name;
1332 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1333 if (shortname == NULL)
1334 return FALSE;
1335 memcpy (shortname, name, shortlen);
1336 shortname[shortlen] = '\0';
1337
1338 /* We are going to create a new symbol. Merge it with any existing
1339 symbol with this name. For the purposes of the merge, act as
1340 though we were defining the symbol we just defined, although we
1341 actually going to define an indirect symbol. */
1342 type_change_ok = FALSE;
1343 size_change_ok = FALSE;
1344 sec = *psec;
1345 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1346 &hi, &skip, &override, &type_change_ok,
1347 &size_change_ok))
1348 return FALSE;
1349
1350 if (skip)
1351 goto nondefault;
1352
1353 if (! override)
1354 {
1355 bh = &hi->root;
1356 if (! (_bfd_generic_link_add_one_symbol
1357 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1358 0, name, FALSE, collect, &bh)))
1359 return FALSE;
1360 hi = (struct elf_link_hash_entry *) bh;
1361 }
1362 else
1363 {
1364 /* In this case the symbol named SHORTNAME is overriding the
1365 indirect symbol we want to add. We were planning on making
1366 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1367 is the name without a version. NAME is the fully versioned
1368 name, and it is the default version.
1369
1370 Overriding means that we already saw a definition for the
1371 symbol SHORTNAME in a regular object, and it is overriding
1372 the symbol defined in the dynamic object.
1373
1374 When this happens, we actually want to change NAME, the
1375 symbol we just added, to refer to SHORTNAME. This will cause
1376 references to NAME in the shared object to become references
1377 to SHORTNAME in the regular object. This is what we expect
1378 when we override a function in a shared object: that the
1379 references in the shared object will be mapped to the
1380 definition in the regular object. */
1381
1382 while (hi->root.type == bfd_link_hash_indirect
1383 || hi->root.type == bfd_link_hash_warning)
1384 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1385
1386 h->root.type = bfd_link_hash_indirect;
1387 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1388 if (h->def_dynamic)
1389 {
1390 h->def_dynamic = 0;
1391 hi->ref_dynamic = 1;
1392 if (hi->ref_regular
1393 || hi->def_regular)
1394 {
1395 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1396 return FALSE;
1397 }
1398 }
1399
1400 /* Now set HI to H, so that the following code will set the
1401 other fields correctly. */
1402 hi = h;
1403 }
1404
1405 /* If there is a duplicate definition somewhere, then HI may not
1406 point to an indirect symbol. We will have reported an error to
1407 the user in that case. */
1408
1409 if (hi->root.type == bfd_link_hash_indirect)
1410 {
1411 struct elf_link_hash_entry *ht;
1412
1413 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1414 (*bed->elf_backend_copy_indirect_symbol) (bed, ht, hi);
1415
1416 /* See if the new flags lead us to realize that the symbol must
1417 be dynamic. */
1418 if (! *dynsym)
1419 {
1420 if (! dynamic)
1421 {
1422 if (info->shared
1423 || hi->ref_dynamic)
1424 *dynsym = TRUE;
1425 }
1426 else
1427 {
1428 if (hi->ref_regular)
1429 *dynsym = TRUE;
1430 }
1431 }
1432 }
1433
1434 /* We also need to define an indirection from the nondefault version
1435 of the symbol. */
1436
1437 nondefault:
1438 len = strlen (name);
1439 shortname = bfd_hash_allocate (&info->hash->table, len);
1440 if (shortname == NULL)
1441 return FALSE;
1442 memcpy (shortname, name, shortlen);
1443 memcpy (shortname + shortlen, p + 1, len - shortlen);
1444
1445 /* Once again, merge with any existing symbol. */
1446 type_change_ok = FALSE;
1447 size_change_ok = FALSE;
1448 sec = *psec;
1449 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1450 &hi, &skip, &override, &type_change_ok,
1451 &size_change_ok))
1452 return FALSE;
1453
1454 if (skip)
1455 return TRUE;
1456
1457 if (override)
1458 {
1459 /* Here SHORTNAME is a versioned name, so we don't expect to see
1460 the type of override we do in the case above unless it is
1461 overridden by a versioned definition. */
1462 if (hi->root.type != bfd_link_hash_defined
1463 && hi->root.type != bfd_link_hash_defweak)
1464 (*_bfd_error_handler)
1465 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1466 abfd, shortname);
1467 }
1468 else
1469 {
1470 bh = &hi->root;
1471 if (! (_bfd_generic_link_add_one_symbol
1472 (info, abfd, shortname, BSF_INDIRECT,
1473 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1474 return FALSE;
1475 hi = (struct elf_link_hash_entry *) bh;
1476
1477 /* If there is a duplicate definition somewhere, then HI may not
1478 point to an indirect symbol. We will have reported an error
1479 to the user in that case. */
1480
1481 if (hi->root.type == bfd_link_hash_indirect)
1482 {
1483 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
1484
1485 /* See if the new flags lead us to realize that the symbol
1486 must be dynamic. */
1487 if (! *dynsym)
1488 {
1489 if (! dynamic)
1490 {
1491 if (info->shared
1492 || hi->ref_dynamic)
1493 *dynsym = TRUE;
1494 }
1495 else
1496 {
1497 if (hi->ref_regular)
1498 *dynsym = TRUE;
1499 }
1500 }
1501 }
1502 }
1503
1504 return TRUE;
1505 }
1506 \f
1507 /* This routine is used to export all defined symbols into the dynamic
1508 symbol table. It is called via elf_link_hash_traverse. */
1509
1510 bfd_boolean
1511 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1512 {
1513 struct elf_info_failed *eif = data;
1514
1515 /* Ignore indirect symbols. These are added by the versioning code. */
1516 if (h->root.type == bfd_link_hash_indirect)
1517 return TRUE;
1518
1519 if (h->root.type == bfd_link_hash_warning)
1520 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1521
1522 if (h->dynindx == -1
1523 && (h->def_regular
1524 || h->ref_regular))
1525 {
1526 struct bfd_elf_version_tree *t;
1527 struct bfd_elf_version_expr *d;
1528
1529 for (t = eif->verdefs; t != NULL; t = t->next)
1530 {
1531 if (t->globals.list != NULL)
1532 {
1533 d = (*t->match) (&t->globals, NULL, h->root.root.string);
1534 if (d != NULL)
1535 goto doit;
1536 }
1537
1538 if (t->locals.list != NULL)
1539 {
1540 d = (*t->match) (&t->locals, NULL, h->root.root.string);
1541 if (d != NULL)
1542 return TRUE;
1543 }
1544 }
1545
1546 if (!eif->verdefs)
1547 {
1548 doit:
1549 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1550 {
1551 eif->failed = TRUE;
1552 return FALSE;
1553 }
1554 }
1555 }
1556
1557 return TRUE;
1558 }
1559 \f
1560 /* Look through the symbols which are defined in other shared
1561 libraries and referenced here. Update the list of version
1562 dependencies. This will be put into the .gnu.version_r section.
1563 This function is called via elf_link_hash_traverse. */
1564
1565 bfd_boolean
1566 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1567 void *data)
1568 {
1569 struct elf_find_verdep_info *rinfo = data;
1570 Elf_Internal_Verneed *t;
1571 Elf_Internal_Vernaux *a;
1572 bfd_size_type amt;
1573
1574 if (h->root.type == bfd_link_hash_warning)
1575 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1576
1577 /* We only care about symbols defined in shared objects with version
1578 information. */
1579 if (!h->def_dynamic
1580 || h->def_regular
1581 || h->dynindx == -1
1582 || h->verinfo.verdef == NULL)
1583 return TRUE;
1584
1585 /* See if we already know about this version. */
1586 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
1587 {
1588 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1589 continue;
1590
1591 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1592 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1593 return TRUE;
1594
1595 break;
1596 }
1597
1598 /* This is a new version. Add it to tree we are building. */
1599
1600 if (t == NULL)
1601 {
1602 amt = sizeof *t;
1603 t = bfd_zalloc (rinfo->output_bfd, amt);
1604 if (t == NULL)
1605 {
1606 rinfo->failed = TRUE;
1607 return FALSE;
1608 }
1609
1610 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1611 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
1612 elf_tdata (rinfo->output_bfd)->verref = t;
1613 }
1614
1615 amt = sizeof *a;
1616 a = bfd_zalloc (rinfo->output_bfd, amt);
1617
1618 /* Note that we are copying a string pointer here, and testing it
1619 above. If bfd_elf_string_from_elf_section is ever changed to
1620 discard the string data when low in memory, this will have to be
1621 fixed. */
1622 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1623
1624 a->vna_flags = h->verinfo.verdef->vd_flags;
1625 a->vna_nextptr = t->vn_auxptr;
1626
1627 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1628 ++rinfo->vers;
1629
1630 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1631
1632 t->vn_auxptr = a;
1633
1634 return TRUE;
1635 }
1636
1637 /* Figure out appropriate versions for all the symbols. We may not
1638 have the version number script until we have read all of the input
1639 files, so until that point we don't know which symbols should be
1640 local. This function is called via elf_link_hash_traverse. */
1641
1642 bfd_boolean
1643 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1644 {
1645 struct elf_assign_sym_version_info *sinfo;
1646 struct bfd_link_info *info;
1647 const struct elf_backend_data *bed;
1648 struct elf_info_failed eif;
1649 char *p;
1650 bfd_size_type amt;
1651
1652 sinfo = data;
1653 info = sinfo->info;
1654
1655 if (h->root.type == bfd_link_hash_warning)
1656 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1657
1658 /* Fix the symbol flags. */
1659 eif.failed = FALSE;
1660 eif.info = info;
1661 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1662 {
1663 if (eif.failed)
1664 sinfo->failed = TRUE;
1665 return FALSE;
1666 }
1667
1668 /* We only need version numbers for symbols defined in regular
1669 objects. */
1670 if (!h->def_regular)
1671 return TRUE;
1672
1673 bed = get_elf_backend_data (sinfo->output_bfd);
1674 p = strchr (h->root.root.string, ELF_VER_CHR);
1675 if (p != NULL && h->verinfo.vertree == NULL)
1676 {
1677 struct bfd_elf_version_tree *t;
1678 bfd_boolean hidden;
1679
1680 hidden = TRUE;
1681
1682 /* There are two consecutive ELF_VER_CHR characters if this is
1683 not a hidden symbol. */
1684 ++p;
1685 if (*p == ELF_VER_CHR)
1686 {
1687 hidden = FALSE;
1688 ++p;
1689 }
1690
1691 /* If there is no version string, we can just return out. */
1692 if (*p == '\0')
1693 {
1694 if (hidden)
1695 h->hidden = 1;
1696 return TRUE;
1697 }
1698
1699 /* Look for the version. If we find it, it is no longer weak. */
1700 for (t = sinfo->verdefs; t != NULL; t = t->next)
1701 {
1702 if (strcmp (t->name, p) == 0)
1703 {
1704 size_t len;
1705 char *alc;
1706 struct bfd_elf_version_expr *d;
1707
1708 len = p - h->root.root.string;
1709 alc = bfd_malloc (len);
1710 if (alc == NULL)
1711 return FALSE;
1712 memcpy (alc, h->root.root.string, len - 1);
1713 alc[len - 1] = '\0';
1714 if (alc[len - 2] == ELF_VER_CHR)
1715 alc[len - 2] = '\0';
1716
1717 h->verinfo.vertree = t;
1718 t->used = TRUE;
1719 d = NULL;
1720
1721 if (t->globals.list != NULL)
1722 d = (*t->match) (&t->globals, NULL, alc);
1723
1724 /* See if there is anything to force this symbol to
1725 local scope. */
1726 if (d == NULL && t->locals.list != NULL)
1727 {
1728 d = (*t->match) (&t->locals, NULL, alc);
1729 if (d != NULL
1730 && h->dynindx != -1
1731 && info->shared
1732 && ! info->export_dynamic)
1733 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1734 }
1735
1736 free (alc);
1737 break;
1738 }
1739 }
1740
1741 /* If we are building an application, we need to create a
1742 version node for this version. */
1743 if (t == NULL && info->executable)
1744 {
1745 struct bfd_elf_version_tree **pp;
1746 int version_index;
1747
1748 /* If we aren't going to export this symbol, we don't need
1749 to worry about it. */
1750 if (h->dynindx == -1)
1751 return TRUE;
1752
1753 amt = sizeof *t;
1754 t = bfd_zalloc (sinfo->output_bfd, amt);
1755 if (t == NULL)
1756 {
1757 sinfo->failed = TRUE;
1758 return FALSE;
1759 }
1760
1761 t->name = p;
1762 t->name_indx = (unsigned int) -1;
1763 t->used = TRUE;
1764
1765 version_index = 1;
1766 /* Don't count anonymous version tag. */
1767 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
1768 version_index = 0;
1769 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
1770 ++version_index;
1771 t->vernum = version_index;
1772
1773 *pp = t;
1774
1775 h->verinfo.vertree = t;
1776 }
1777 else if (t == NULL)
1778 {
1779 /* We could not find the version for a symbol when
1780 generating a shared archive. Return an error. */
1781 (*_bfd_error_handler)
1782 (_("%B: undefined versioned symbol name %s"),
1783 sinfo->output_bfd, h->root.root.string);
1784 bfd_set_error (bfd_error_bad_value);
1785 sinfo->failed = TRUE;
1786 return FALSE;
1787 }
1788
1789 if (hidden)
1790 h->hidden = 1;
1791 }
1792
1793 /* If we don't have a version for this symbol, see if we can find
1794 something. */
1795 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
1796 {
1797 struct bfd_elf_version_tree *t;
1798 struct bfd_elf_version_tree *local_ver;
1799 struct bfd_elf_version_expr *d;
1800
1801 /* See if can find what version this symbol is in. If the
1802 symbol is supposed to be local, then don't actually register
1803 it. */
1804 local_ver = NULL;
1805 for (t = sinfo->verdefs; t != NULL; t = t->next)
1806 {
1807 if (t->globals.list != NULL)
1808 {
1809 bfd_boolean matched;
1810
1811 matched = FALSE;
1812 d = NULL;
1813 while ((d = (*t->match) (&t->globals, d,
1814 h->root.root.string)) != NULL)
1815 if (d->symver)
1816 matched = TRUE;
1817 else
1818 {
1819 /* There is a version without definition. Make
1820 the symbol the default definition for this
1821 version. */
1822 h->verinfo.vertree = t;
1823 local_ver = NULL;
1824 d->script = 1;
1825 break;
1826 }
1827 if (d != NULL)
1828 break;
1829 else if (matched)
1830 /* There is no undefined version for this symbol. Hide the
1831 default one. */
1832 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1833 }
1834
1835 if (t->locals.list != NULL)
1836 {
1837 d = NULL;
1838 while ((d = (*t->match) (&t->locals, d,
1839 h->root.root.string)) != NULL)
1840 {
1841 local_ver = t;
1842 /* If the match is "*", keep looking for a more
1843 explicit, perhaps even global, match.
1844 XXX: Shouldn't this be !d->wildcard instead? */
1845 if (d->pattern[0] != '*' || d->pattern[1] != '\0')
1846 break;
1847 }
1848
1849 if (d != NULL)
1850 break;
1851 }
1852 }
1853
1854 if (local_ver != NULL)
1855 {
1856 h->verinfo.vertree = local_ver;
1857 if (h->dynindx != -1
1858 && info->shared
1859 && ! info->export_dynamic)
1860 {
1861 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1862 }
1863 }
1864 }
1865
1866 return TRUE;
1867 }
1868 \f
1869 /* Read and swap the relocs from the section indicated by SHDR. This
1870 may be either a REL or a RELA section. The relocations are
1871 translated into RELA relocations and stored in INTERNAL_RELOCS,
1872 which should have already been allocated to contain enough space.
1873 The EXTERNAL_RELOCS are a buffer where the external form of the
1874 relocations should be stored.
1875
1876 Returns FALSE if something goes wrong. */
1877
1878 static bfd_boolean
1879 elf_link_read_relocs_from_section (bfd *abfd,
1880 asection *sec,
1881 Elf_Internal_Shdr *shdr,
1882 void *external_relocs,
1883 Elf_Internal_Rela *internal_relocs)
1884 {
1885 const struct elf_backend_data *bed;
1886 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
1887 const bfd_byte *erela;
1888 const bfd_byte *erelaend;
1889 Elf_Internal_Rela *irela;
1890 Elf_Internal_Shdr *symtab_hdr;
1891 size_t nsyms;
1892
1893 /* Position ourselves at the start of the section. */
1894 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
1895 return FALSE;
1896
1897 /* Read the relocations. */
1898 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
1899 return FALSE;
1900
1901 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1902 nsyms = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
1903
1904 bed = get_elf_backend_data (abfd);
1905
1906 /* Convert the external relocations to the internal format. */
1907 if (shdr->sh_entsize == bed->s->sizeof_rel)
1908 swap_in = bed->s->swap_reloc_in;
1909 else if (shdr->sh_entsize == bed->s->sizeof_rela)
1910 swap_in = bed->s->swap_reloca_in;
1911 else
1912 {
1913 bfd_set_error (bfd_error_wrong_format);
1914 return FALSE;
1915 }
1916
1917 erela = external_relocs;
1918 erelaend = erela + shdr->sh_size;
1919 irela = internal_relocs;
1920 while (erela < erelaend)
1921 {
1922 bfd_vma r_symndx;
1923
1924 (*swap_in) (abfd, erela, irela);
1925 r_symndx = ELF32_R_SYM (irela->r_info);
1926 if (bed->s->arch_size == 64)
1927 r_symndx >>= 24;
1928 if ((size_t) r_symndx >= nsyms)
1929 {
1930 (*_bfd_error_handler)
1931 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
1932 " for offset 0x%lx in section `%A'"),
1933 abfd, sec,
1934 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
1935 bfd_set_error (bfd_error_bad_value);
1936 return FALSE;
1937 }
1938 irela += bed->s->int_rels_per_ext_rel;
1939 erela += shdr->sh_entsize;
1940 }
1941
1942 return TRUE;
1943 }
1944
1945 /* Read and swap the relocs for a section O. They may have been
1946 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
1947 not NULL, they are used as buffers to read into. They are known to
1948 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
1949 the return value is allocated using either malloc or bfd_alloc,
1950 according to the KEEP_MEMORY argument. If O has two relocation
1951 sections (both REL and RELA relocations), then the REL_HDR
1952 relocations will appear first in INTERNAL_RELOCS, followed by the
1953 REL_HDR2 relocations. */
1954
1955 Elf_Internal_Rela *
1956 _bfd_elf_link_read_relocs (bfd *abfd,
1957 asection *o,
1958 void *external_relocs,
1959 Elf_Internal_Rela *internal_relocs,
1960 bfd_boolean keep_memory)
1961 {
1962 Elf_Internal_Shdr *rel_hdr;
1963 void *alloc1 = NULL;
1964 Elf_Internal_Rela *alloc2 = NULL;
1965 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1966
1967 if (elf_section_data (o)->relocs != NULL)
1968 return elf_section_data (o)->relocs;
1969
1970 if (o->reloc_count == 0)
1971 return NULL;
1972
1973 rel_hdr = &elf_section_data (o)->rel_hdr;
1974
1975 if (internal_relocs == NULL)
1976 {
1977 bfd_size_type size;
1978
1979 size = o->reloc_count;
1980 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
1981 if (keep_memory)
1982 internal_relocs = bfd_alloc (abfd, size);
1983 else
1984 internal_relocs = alloc2 = bfd_malloc (size);
1985 if (internal_relocs == NULL)
1986 goto error_return;
1987 }
1988
1989 if (external_relocs == NULL)
1990 {
1991 bfd_size_type size = rel_hdr->sh_size;
1992
1993 if (elf_section_data (o)->rel_hdr2)
1994 size += elf_section_data (o)->rel_hdr2->sh_size;
1995 alloc1 = bfd_malloc (size);
1996 if (alloc1 == NULL)
1997 goto error_return;
1998 external_relocs = alloc1;
1999 }
2000
2001 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
2002 external_relocs,
2003 internal_relocs))
2004 goto error_return;
2005 if (elf_section_data (o)->rel_hdr2
2006 && (!elf_link_read_relocs_from_section
2007 (abfd, o,
2008 elf_section_data (o)->rel_hdr2,
2009 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2010 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2011 * bed->s->int_rels_per_ext_rel))))
2012 goto error_return;
2013
2014 /* Cache the results for next time, if we can. */
2015 if (keep_memory)
2016 elf_section_data (o)->relocs = internal_relocs;
2017
2018 if (alloc1 != NULL)
2019 free (alloc1);
2020
2021 /* Don't free alloc2, since if it was allocated we are passing it
2022 back (under the name of internal_relocs). */
2023
2024 return internal_relocs;
2025
2026 error_return:
2027 if (alloc1 != NULL)
2028 free (alloc1);
2029 if (alloc2 != NULL)
2030 free (alloc2);
2031 return NULL;
2032 }
2033
2034 /* Compute the size of, and allocate space for, REL_HDR which is the
2035 section header for a section containing relocations for O. */
2036
2037 bfd_boolean
2038 _bfd_elf_link_size_reloc_section (bfd *abfd,
2039 Elf_Internal_Shdr *rel_hdr,
2040 asection *o)
2041 {
2042 bfd_size_type reloc_count;
2043 bfd_size_type num_rel_hashes;
2044
2045 /* Figure out how many relocations there will be. */
2046 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2047 reloc_count = elf_section_data (o)->rel_count;
2048 else
2049 reloc_count = elf_section_data (o)->rel_count2;
2050
2051 num_rel_hashes = o->reloc_count;
2052 if (num_rel_hashes < reloc_count)
2053 num_rel_hashes = reloc_count;
2054
2055 /* That allows us to calculate the size of the section. */
2056 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2057
2058 /* The contents field must last into write_object_contents, so we
2059 allocate it with bfd_alloc rather than malloc. Also since we
2060 cannot be sure that the contents will actually be filled in,
2061 we zero the allocated space. */
2062 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
2063 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2064 return FALSE;
2065
2066 /* We only allocate one set of hash entries, so we only do it the
2067 first time we are called. */
2068 if (elf_section_data (o)->rel_hashes == NULL
2069 && num_rel_hashes)
2070 {
2071 struct elf_link_hash_entry **p;
2072
2073 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
2074 if (p == NULL)
2075 return FALSE;
2076
2077 elf_section_data (o)->rel_hashes = p;
2078 }
2079
2080 return TRUE;
2081 }
2082
2083 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2084 originated from the section given by INPUT_REL_HDR) to the
2085 OUTPUT_BFD. */
2086
2087 bfd_boolean
2088 _bfd_elf_link_output_relocs (bfd *output_bfd,
2089 asection *input_section,
2090 Elf_Internal_Shdr *input_rel_hdr,
2091 Elf_Internal_Rela *internal_relocs)
2092 {
2093 Elf_Internal_Rela *irela;
2094 Elf_Internal_Rela *irelaend;
2095 bfd_byte *erel;
2096 Elf_Internal_Shdr *output_rel_hdr;
2097 asection *output_section;
2098 unsigned int *rel_countp = NULL;
2099 const struct elf_backend_data *bed;
2100 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2101
2102 output_section = input_section->output_section;
2103 output_rel_hdr = NULL;
2104
2105 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2106 == input_rel_hdr->sh_entsize)
2107 {
2108 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2109 rel_countp = &elf_section_data (output_section)->rel_count;
2110 }
2111 else if (elf_section_data (output_section)->rel_hdr2
2112 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2113 == input_rel_hdr->sh_entsize))
2114 {
2115 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2116 rel_countp = &elf_section_data (output_section)->rel_count2;
2117 }
2118 else
2119 {
2120 (*_bfd_error_handler)
2121 (_("%B: relocation size mismatch in %B section %A"),
2122 output_bfd, input_section->owner, input_section);
2123 bfd_set_error (bfd_error_wrong_object_format);
2124 return FALSE;
2125 }
2126
2127 bed = get_elf_backend_data (output_bfd);
2128 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2129 swap_out = bed->s->swap_reloc_out;
2130 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2131 swap_out = bed->s->swap_reloca_out;
2132 else
2133 abort ();
2134
2135 erel = output_rel_hdr->contents;
2136 erel += *rel_countp * input_rel_hdr->sh_entsize;
2137 irela = internal_relocs;
2138 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2139 * bed->s->int_rels_per_ext_rel);
2140 while (irela < irelaend)
2141 {
2142 (*swap_out) (output_bfd, irela, erel);
2143 irela += bed->s->int_rels_per_ext_rel;
2144 erel += input_rel_hdr->sh_entsize;
2145 }
2146
2147 /* Bump the counter, so that we know where to add the next set of
2148 relocations. */
2149 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2150
2151 return TRUE;
2152 }
2153 \f
2154 /* Fix up the flags for a symbol. This handles various cases which
2155 can only be fixed after all the input files are seen. This is
2156 currently called by both adjust_dynamic_symbol and
2157 assign_sym_version, which is unnecessary but perhaps more robust in
2158 the face of future changes. */
2159
2160 bfd_boolean
2161 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2162 struct elf_info_failed *eif)
2163 {
2164 /* If this symbol was mentioned in a non-ELF file, try to set
2165 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2166 permit a non-ELF file to correctly refer to a symbol defined in
2167 an ELF dynamic object. */
2168 if (h->non_elf)
2169 {
2170 while (h->root.type == bfd_link_hash_indirect)
2171 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2172
2173 if (h->root.type != bfd_link_hash_defined
2174 && h->root.type != bfd_link_hash_defweak)
2175 {
2176 h->ref_regular = 1;
2177 h->ref_regular_nonweak = 1;
2178 }
2179 else
2180 {
2181 if (h->root.u.def.section->owner != NULL
2182 && (bfd_get_flavour (h->root.u.def.section->owner)
2183 == bfd_target_elf_flavour))
2184 {
2185 h->ref_regular = 1;
2186 h->ref_regular_nonweak = 1;
2187 }
2188 else
2189 h->def_regular = 1;
2190 }
2191
2192 if (h->dynindx == -1
2193 && (h->def_dynamic
2194 || h->ref_dynamic))
2195 {
2196 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2197 {
2198 eif->failed = TRUE;
2199 return FALSE;
2200 }
2201 }
2202 }
2203 else
2204 {
2205 /* Unfortunately, NON_ELF is only correct if the symbol
2206 was first seen in a non-ELF file. Fortunately, if the symbol
2207 was first seen in an ELF file, we're probably OK unless the
2208 symbol was defined in a non-ELF file. Catch that case here.
2209 FIXME: We're still in trouble if the symbol was first seen in
2210 a dynamic object, and then later in a non-ELF regular object. */
2211 if ((h->root.type == bfd_link_hash_defined
2212 || h->root.type == bfd_link_hash_defweak)
2213 && !h->def_regular
2214 && (h->root.u.def.section->owner != NULL
2215 ? (bfd_get_flavour (h->root.u.def.section->owner)
2216 != bfd_target_elf_flavour)
2217 : (bfd_is_abs_section (h->root.u.def.section)
2218 && !h->def_dynamic)))
2219 h->def_regular = 1;
2220 }
2221
2222 /* If this is a final link, and the symbol was defined as a common
2223 symbol in a regular object file, and there was no definition in
2224 any dynamic object, then the linker will have allocated space for
2225 the symbol in a common section but the DEF_REGULAR
2226 flag will not have been set. */
2227 if (h->root.type == bfd_link_hash_defined
2228 && !h->def_regular
2229 && h->ref_regular
2230 && !h->def_dynamic
2231 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2232 h->def_regular = 1;
2233
2234 /* If -Bsymbolic was used (which means to bind references to global
2235 symbols to the definition within the shared object), and this
2236 symbol was defined in a regular object, then it actually doesn't
2237 need a PLT entry. Likewise, if the symbol has non-default
2238 visibility. If the symbol has hidden or internal visibility, we
2239 will force it local. */
2240 if (h->needs_plt
2241 && eif->info->shared
2242 && is_elf_hash_table (eif->info->hash)
2243 && (eif->info->symbolic
2244 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2245 && h->def_regular)
2246 {
2247 const struct elf_backend_data *bed;
2248 bfd_boolean force_local;
2249
2250 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2251
2252 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2253 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2254 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2255 }
2256
2257 /* If a weak undefined symbol has non-default visibility, we also
2258 hide it from the dynamic linker. */
2259 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2260 && h->root.type == bfd_link_hash_undefweak)
2261 {
2262 const struct elf_backend_data *bed;
2263 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2264 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2265 }
2266
2267 /* If this is a weak defined symbol in a dynamic object, and we know
2268 the real definition in the dynamic object, copy interesting flags
2269 over to the real definition. */
2270 if (h->u.weakdef != NULL)
2271 {
2272 struct elf_link_hash_entry *weakdef;
2273
2274 weakdef = h->u.weakdef;
2275 if (h->root.type == bfd_link_hash_indirect)
2276 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2277
2278 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2279 || h->root.type == bfd_link_hash_defweak);
2280 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2281 || weakdef->root.type == bfd_link_hash_defweak);
2282 BFD_ASSERT (weakdef->def_dynamic);
2283
2284 /* If the real definition is defined by a regular object file,
2285 don't do anything special. See the longer description in
2286 _bfd_elf_adjust_dynamic_symbol, below. */
2287 if (weakdef->def_regular)
2288 h->u.weakdef = NULL;
2289 else
2290 {
2291 const struct elf_backend_data *bed;
2292
2293 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2294 (*bed->elf_backend_copy_indirect_symbol) (bed, weakdef, h);
2295 }
2296 }
2297
2298 return TRUE;
2299 }
2300
2301 /* Make the backend pick a good value for a dynamic symbol. This is
2302 called via elf_link_hash_traverse, and also calls itself
2303 recursively. */
2304
2305 bfd_boolean
2306 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2307 {
2308 struct elf_info_failed *eif = data;
2309 bfd *dynobj;
2310 const struct elf_backend_data *bed;
2311
2312 if (! is_elf_hash_table (eif->info->hash))
2313 return FALSE;
2314
2315 if (h->root.type == bfd_link_hash_warning)
2316 {
2317 h->plt = elf_hash_table (eif->info)->init_offset;
2318 h->got = elf_hash_table (eif->info)->init_offset;
2319
2320 /* When warning symbols are created, they **replace** the "real"
2321 entry in the hash table, thus we never get to see the real
2322 symbol in a hash traversal. So look at it now. */
2323 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2324 }
2325
2326 /* Ignore indirect symbols. These are added by the versioning code. */
2327 if (h->root.type == bfd_link_hash_indirect)
2328 return TRUE;
2329
2330 /* Fix the symbol flags. */
2331 if (! _bfd_elf_fix_symbol_flags (h, eif))
2332 return FALSE;
2333
2334 /* If this symbol does not require a PLT entry, and it is not
2335 defined by a dynamic object, or is not referenced by a regular
2336 object, ignore it. We do have to handle a weak defined symbol,
2337 even if no regular object refers to it, if we decided to add it
2338 to the dynamic symbol table. FIXME: Do we normally need to worry
2339 about symbols which are defined by one dynamic object and
2340 referenced by another one? */
2341 if (!h->needs_plt
2342 && (h->def_regular
2343 || !h->def_dynamic
2344 || (!h->ref_regular
2345 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2346 {
2347 h->plt = elf_hash_table (eif->info)->init_offset;
2348 return TRUE;
2349 }
2350
2351 /* If we've already adjusted this symbol, don't do it again. This
2352 can happen via a recursive call. */
2353 if (h->dynamic_adjusted)
2354 return TRUE;
2355
2356 /* Don't look at this symbol again. Note that we must set this
2357 after checking the above conditions, because we may look at a
2358 symbol once, decide not to do anything, and then get called
2359 recursively later after REF_REGULAR is set below. */
2360 h->dynamic_adjusted = 1;
2361
2362 /* If this is a weak definition, and we know a real definition, and
2363 the real symbol is not itself defined by a regular object file,
2364 then get a good value for the real definition. We handle the
2365 real symbol first, for the convenience of the backend routine.
2366
2367 Note that there is a confusing case here. If the real definition
2368 is defined by a regular object file, we don't get the real symbol
2369 from the dynamic object, but we do get the weak symbol. If the
2370 processor backend uses a COPY reloc, then if some routine in the
2371 dynamic object changes the real symbol, we will not see that
2372 change in the corresponding weak symbol. This is the way other
2373 ELF linkers work as well, and seems to be a result of the shared
2374 library model.
2375
2376 I will clarify this issue. Most SVR4 shared libraries define the
2377 variable _timezone and define timezone as a weak synonym. The
2378 tzset call changes _timezone. If you write
2379 extern int timezone;
2380 int _timezone = 5;
2381 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2382 you might expect that, since timezone is a synonym for _timezone,
2383 the same number will print both times. However, if the processor
2384 backend uses a COPY reloc, then actually timezone will be copied
2385 into your process image, and, since you define _timezone
2386 yourself, _timezone will not. Thus timezone and _timezone will
2387 wind up at different memory locations. The tzset call will set
2388 _timezone, leaving timezone unchanged. */
2389
2390 if (h->u.weakdef != NULL)
2391 {
2392 /* If we get to this point, we know there is an implicit
2393 reference by a regular object file via the weak symbol H.
2394 FIXME: Is this really true? What if the traversal finds
2395 H->U.WEAKDEF before it finds H? */
2396 h->u.weakdef->ref_regular = 1;
2397
2398 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2399 return FALSE;
2400 }
2401
2402 /* If a symbol has no type and no size and does not require a PLT
2403 entry, then we are probably about to do the wrong thing here: we
2404 are probably going to create a COPY reloc for an empty object.
2405 This case can arise when a shared object is built with assembly
2406 code, and the assembly code fails to set the symbol type. */
2407 if (h->size == 0
2408 && h->type == STT_NOTYPE
2409 && !h->needs_plt)
2410 (*_bfd_error_handler)
2411 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2412 h->root.root.string);
2413
2414 dynobj = elf_hash_table (eif->info)->dynobj;
2415 bed = get_elf_backend_data (dynobj);
2416 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2417 {
2418 eif->failed = TRUE;
2419 return FALSE;
2420 }
2421
2422 return TRUE;
2423 }
2424
2425 /* Adjust all external symbols pointing into SEC_MERGE sections
2426 to reflect the object merging within the sections. */
2427
2428 bfd_boolean
2429 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2430 {
2431 asection *sec;
2432
2433 if (h->root.type == bfd_link_hash_warning)
2434 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2435
2436 if ((h->root.type == bfd_link_hash_defined
2437 || h->root.type == bfd_link_hash_defweak)
2438 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2439 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2440 {
2441 bfd *output_bfd = data;
2442
2443 h->root.u.def.value =
2444 _bfd_merged_section_offset (output_bfd,
2445 &h->root.u.def.section,
2446 elf_section_data (sec)->sec_info,
2447 h->root.u.def.value);
2448 }
2449
2450 return TRUE;
2451 }
2452
2453 /* Returns false if the symbol referred to by H should be considered
2454 to resolve local to the current module, and true if it should be
2455 considered to bind dynamically. */
2456
2457 bfd_boolean
2458 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2459 struct bfd_link_info *info,
2460 bfd_boolean ignore_protected)
2461 {
2462 bfd_boolean binding_stays_local_p;
2463
2464 if (h == NULL)
2465 return FALSE;
2466
2467 while (h->root.type == bfd_link_hash_indirect
2468 || h->root.type == bfd_link_hash_warning)
2469 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2470
2471 /* If it was forced local, then clearly it's not dynamic. */
2472 if (h->dynindx == -1)
2473 return FALSE;
2474 if (h->forced_local)
2475 return FALSE;
2476
2477 /* Identify the cases where name binding rules say that a
2478 visible symbol resolves locally. */
2479 binding_stays_local_p = info->executable || info->symbolic;
2480
2481 switch (ELF_ST_VISIBILITY (h->other))
2482 {
2483 case STV_INTERNAL:
2484 case STV_HIDDEN:
2485 return FALSE;
2486
2487 case STV_PROTECTED:
2488 /* Proper resolution for function pointer equality may require
2489 that these symbols perhaps be resolved dynamically, even though
2490 we should be resolving them to the current module. */
2491 if (!ignore_protected || h->type != STT_FUNC)
2492 binding_stays_local_p = TRUE;
2493 break;
2494
2495 default:
2496 break;
2497 }
2498
2499 /* If it isn't defined locally, then clearly it's dynamic. */
2500 if (!h->def_regular)
2501 return TRUE;
2502
2503 /* Otherwise, the symbol is dynamic if binding rules don't tell
2504 us that it remains local. */
2505 return !binding_stays_local_p;
2506 }
2507
2508 /* Return true if the symbol referred to by H should be considered
2509 to resolve local to the current module, and false otherwise. Differs
2510 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2511 undefined symbols and weak symbols. */
2512
2513 bfd_boolean
2514 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2515 struct bfd_link_info *info,
2516 bfd_boolean local_protected)
2517 {
2518 /* If it's a local sym, of course we resolve locally. */
2519 if (h == NULL)
2520 return TRUE;
2521
2522 /* Common symbols that become definitions don't get the DEF_REGULAR
2523 flag set, so test it first, and don't bail out. */
2524 if (ELF_COMMON_DEF_P (h))
2525 /* Do nothing. */;
2526 /* If we don't have a definition in a regular file, then we can't
2527 resolve locally. The sym is either undefined or dynamic. */
2528 else if (!h->def_regular)
2529 return FALSE;
2530
2531 /* Forced local symbols resolve locally. */
2532 if (h->forced_local)
2533 return TRUE;
2534
2535 /* As do non-dynamic symbols. */
2536 if (h->dynindx == -1)
2537 return TRUE;
2538
2539 /* At this point, we know the symbol is defined and dynamic. In an
2540 executable it must resolve locally, likewise when building symbolic
2541 shared libraries. */
2542 if (info->executable || info->symbolic)
2543 return TRUE;
2544
2545 /* Now deal with defined dynamic symbols in shared libraries. Ones
2546 with default visibility might not resolve locally. */
2547 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2548 return FALSE;
2549
2550 /* However, STV_HIDDEN or STV_INTERNAL ones must be local. */
2551 if (ELF_ST_VISIBILITY (h->other) != STV_PROTECTED)
2552 return TRUE;
2553
2554 /* STV_PROTECTED non-function symbols are local. */
2555 if (h->type != STT_FUNC)
2556 return TRUE;
2557
2558 /* Function pointer equality tests may require that STV_PROTECTED
2559 symbols be treated as dynamic symbols, even when we know that the
2560 dynamic linker will resolve them locally. */
2561 return local_protected;
2562 }
2563
2564 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2565 aligned. Returns the first TLS output section. */
2566
2567 struct bfd_section *
2568 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2569 {
2570 struct bfd_section *sec, *tls;
2571 unsigned int align = 0;
2572
2573 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2574 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2575 break;
2576 tls = sec;
2577
2578 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2579 if (sec->alignment_power > align)
2580 align = sec->alignment_power;
2581
2582 elf_hash_table (info)->tls_sec = tls;
2583
2584 /* Ensure the alignment of the first section is the largest alignment,
2585 so that the tls segment starts aligned. */
2586 if (tls != NULL)
2587 tls->alignment_power = align;
2588
2589 return tls;
2590 }
2591
2592 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2593 static bfd_boolean
2594 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2595 Elf_Internal_Sym *sym)
2596 {
2597 /* Local symbols do not count, but target specific ones might. */
2598 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2599 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2600 return FALSE;
2601
2602 /* Function symbols do not count. */
2603 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC)
2604 return FALSE;
2605
2606 /* If the section is undefined, then so is the symbol. */
2607 if (sym->st_shndx == SHN_UNDEF)
2608 return FALSE;
2609
2610 /* If the symbol is defined in the common section, then
2611 it is a common definition and so does not count. */
2612 if (sym->st_shndx == SHN_COMMON)
2613 return FALSE;
2614
2615 /* If the symbol is in a target specific section then we
2616 must rely upon the backend to tell us what it is. */
2617 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2618 /* FIXME - this function is not coded yet:
2619
2620 return _bfd_is_global_symbol_definition (abfd, sym);
2621
2622 Instead for now assume that the definition is not global,
2623 Even if this is wrong, at least the linker will behave
2624 in the same way that it used to do. */
2625 return FALSE;
2626
2627 return TRUE;
2628 }
2629
2630 /* Search the symbol table of the archive element of the archive ABFD
2631 whose archive map contains a mention of SYMDEF, and determine if
2632 the symbol is defined in this element. */
2633 static bfd_boolean
2634 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2635 {
2636 Elf_Internal_Shdr * hdr;
2637 bfd_size_type symcount;
2638 bfd_size_type extsymcount;
2639 bfd_size_type extsymoff;
2640 Elf_Internal_Sym *isymbuf;
2641 Elf_Internal_Sym *isym;
2642 Elf_Internal_Sym *isymend;
2643 bfd_boolean result;
2644
2645 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2646 if (abfd == NULL)
2647 return FALSE;
2648
2649 if (! bfd_check_format (abfd, bfd_object))
2650 return FALSE;
2651
2652 /* If we have already included the element containing this symbol in the
2653 link then we do not need to include it again. Just claim that any symbol
2654 it contains is not a definition, so that our caller will not decide to
2655 (re)include this element. */
2656 if (abfd->archive_pass)
2657 return FALSE;
2658
2659 /* Select the appropriate symbol table. */
2660 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2661 hdr = &elf_tdata (abfd)->symtab_hdr;
2662 else
2663 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2664
2665 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2666
2667 /* The sh_info field of the symtab header tells us where the
2668 external symbols start. We don't care about the local symbols. */
2669 if (elf_bad_symtab (abfd))
2670 {
2671 extsymcount = symcount;
2672 extsymoff = 0;
2673 }
2674 else
2675 {
2676 extsymcount = symcount - hdr->sh_info;
2677 extsymoff = hdr->sh_info;
2678 }
2679
2680 if (extsymcount == 0)
2681 return FALSE;
2682
2683 /* Read in the symbol table. */
2684 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2685 NULL, NULL, NULL);
2686 if (isymbuf == NULL)
2687 return FALSE;
2688
2689 /* Scan the symbol table looking for SYMDEF. */
2690 result = FALSE;
2691 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2692 {
2693 const char *name;
2694
2695 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2696 isym->st_name);
2697 if (name == NULL)
2698 break;
2699
2700 if (strcmp (name, symdef->name) == 0)
2701 {
2702 result = is_global_data_symbol_definition (abfd, isym);
2703 break;
2704 }
2705 }
2706
2707 free (isymbuf);
2708
2709 return result;
2710 }
2711 \f
2712 /* Add an entry to the .dynamic table. */
2713
2714 bfd_boolean
2715 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
2716 bfd_vma tag,
2717 bfd_vma val)
2718 {
2719 struct elf_link_hash_table *hash_table;
2720 const struct elf_backend_data *bed;
2721 asection *s;
2722 bfd_size_type newsize;
2723 bfd_byte *newcontents;
2724 Elf_Internal_Dyn dyn;
2725
2726 hash_table = elf_hash_table (info);
2727 if (! is_elf_hash_table (hash_table))
2728 return FALSE;
2729
2730 if (info->warn_shared_textrel && info->shared && tag == DT_TEXTREL)
2731 _bfd_error_handler
2732 (_("warning: creating a DT_TEXTREL in a shared object."));
2733
2734 bed = get_elf_backend_data (hash_table->dynobj);
2735 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
2736 BFD_ASSERT (s != NULL);
2737
2738 newsize = s->size + bed->s->sizeof_dyn;
2739 newcontents = bfd_realloc (s->contents, newsize);
2740 if (newcontents == NULL)
2741 return FALSE;
2742
2743 dyn.d_tag = tag;
2744 dyn.d_un.d_val = val;
2745 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
2746
2747 s->size = newsize;
2748 s->contents = newcontents;
2749
2750 return TRUE;
2751 }
2752
2753 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
2754 otherwise just check whether one already exists. Returns -1 on error,
2755 1 if a DT_NEEDED tag already exists, and 0 on success. */
2756
2757 static int
2758 elf_add_dt_needed_tag (bfd *abfd,
2759 struct bfd_link_info *info,
2760 const char *soname,
2761 bfd_boolean do_it)
2762 {
2763 struct elf_link_hash_table *hash_table;
2764 bfd_size_type oldsize;
2765 bfd_size_type strindex;
2766
2767 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
2768 return -1;
2769
2770 hash_table = elf_hash_table (info);
2771 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
2772 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
2773 if (strindex == (bfd_size_type) -1)
2774 return -1;
2775
2776 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
2777 {
2778 asection *sdyn;
2779 const struct elf_backend_data *bed;
2780 bfd_byte *extdyn;
2781
2782 bed = get_elf_backend_data (hash_table->dynobj);
2783 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
2784 if (sdyn != NULL)
2785 for (extdyn = sdyn->contents;
2786 extdyn < sdyn->contents + sdyn->size;
2787 extdyn += bed->s->sizeof_dyn)
2788 {
2789 Elf_Internal_Dyn dyn;
2790
2791 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
2792 if (dyn.d_tag == DT_NEEDED
2793 && dyn.d_un.d_val == strindex)
2794 {
2795 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2796 return 1;
2797 }
2798 }
2799 }
2800
2801 if (do_it)
2802 {
2803 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
2804 return -1;
2805
2806 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
2807 return -1;
2808 }
2809 else
2810 /* We were just checking for existence of the tag. */
2811 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2812
2813 return 0;
2814 }
2815
2816 /* Called via elf_link_hash_traverse, elf_smash_syms sets all symbols
2817 belonging to NOT_NEEDED to bfd_link_hash_new. We know there are no
2818 references to these symbols. */
2819
2820 struct elf_smash_syms_data
2821 {
2822 bfd *not_needed;
2823 struct elf_link_hash_table *htab;
2824 bfd_boolean twiddled;
2825 };
2826
2827 static bfd_boolean
2828 elf_smash_syms (struct elf_link_hash_entry *h, void *data)
2829 {
2830 struct elf_smash_syms_data *inf = (struct elf_smash_syms_data *) data;
2831 struct bfd_link_hash_entry *bh;
2832
2833 switch (h->root.type)
2834 {
2835 default:
2836 case bfd_link_hash_new:
2837 return TRUE;
2838
2839 case bfd_link_hash_undefined:
2840 case bfd_link_hash_undefweak:
2841 if (h->root.u.undef.abfd != inf->not_needed)
2842 return TRUE;
2843 break;
2844
2845 case bfd_link_hash_defined:
2846 case bfd_link_hash_defweak:
2847 if (h->root.u.def.section->owner != inf->not_needed)
2848 return TRUE;
2849 break;
2850
2851 case bfd_link_hash_common:
2852 if (h->root.u.c.p->section->owner != inf->not_needed)
2853 return TRUE;
2854 break;
2855
2856 case bfd_link_hash_warning:
2857 case bfd_link_hash_indirect:
2858 elf_smash_syms ((struct elf_link_hash_entry *) h->root.u.i.link, data);
2859 if (h->root.u.i.link->type != bfd_link_hash_new)
2860 return TRUE;
2861 if (h->root.u.i.link->u.undef.abfd != inf->not_needed)
2862 return TRUE;
2863 break;
2864 }
2865
2866 /* Set sym back to newly created state, but keep undefs list pointer. */
2867 bh = h->root.u.undef.next;
2868 if (bh != NULL || inf->htab->root.undefs_tail == &h->root)
2869 inf->twiddled = TRUE;
2870 (*inf->htab->root.table.newfunc) (&h->root.root,
2871 &inf->htab->root.table,
2872 h->root.root.string);
2873 h->root.u.undef.next = bh;
2874 h->root.u.undef.abfd = inf->not_needed;
2875 h->non_elf = 0;
2876 return TRUE;
2877 }
2878
2879 /* Sort symbol by value and section. */
2880 static int
2881 elf_sort_symbol (const void *arg1, const void *arg2)
2882 {
2883 const struct elf_link_hash_entry *h1;
2884 const struct elf_link_hash_entry *h2;
2885 bfd_signed_vma vdiff;
2886
2887 h1 = *(const struct elf_link_hash_entry **) arg1;
2888 h2 = *(const struct elf_link_hash_entry **) arg2;
2889 vdiff = h1->root.u.def.value - h2->root.u.def.value;
2890 if (vdiff != 0)
2891 return vdiff > 0 ? 1 : -1;
2892 else
2893 {
2894 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
2895 if (sdiff != 0)
2896 return sdiff > 0 ? 1 : -1;
2897 }
2898 return 0;
2899 }
2900
2901 /* This function is used to adjust offsets into .dynstr for
2902 dynamic symbols. This is called via elf_link_hash_traverse. */
2903
2904 static bfd_boolean
2905 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
2906 {
2907 struct elf_strtab_hash *dynstr = data;
2908
2909 if (h->root.type == bfd_link_hash_warning)
2910 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2911
2912 if (h->dynindx != -1)
2913 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
2914 return TRUE;
2915 }
2916
2917 /* Assign string offsets in .dynstr, update all structures referencing
2918 them. */
2919
2920 static bfd_boolean
2921 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
2922 {
2923 struct elf_link_hash_table *hash_table = elf_hash_table (info);
2924 struct elf_link_local_dynamic_entry *entry;
2925 struct elf_strtab_hash *dynstr = hash_table->dynstr;
2926 bfd *dynobj = hash_table->dynobj;
2927 asection *sdyn;
2928 bfd_size_type size;
2929 const struct elf_backend_data *bed;
2930 bfd_byte *extdyn;
2931
2932 _bfd_elf_strtab_finalize (dynstr);
2933 size = _bfd_elf_strtab_size (dynstr);
2934
2935 bed = get_elf_backend_data (dynobj);
2936 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2937 BFD_ASSERT (sdyn != NULL);
2938
2939 /* Update all .dynamic entries referencing .dynstr strings. */
2940 for (extdyn = sdyn->contents;
2941 extdyn < sdyn->contents + sdyn->size;
2942 extdyn += bed->s->sizeof_dyn)
2943 {
2944 Elf_Internal_Dyn dyn;
2945
2946 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
2947 switch (dyn.d_tag)
2948 {
2949 case DT_STRSZ:
2950 dyn.d_un.d_val = size;
2951 break;
2952 case DT_NEEDED:
2953 case DT_SONAME:
2954 case DT_RPATH:
2955 case DT_RUNPATH:
2956 case DT_FILTER:
2957 case DT_AUXILIARY:
2958 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
2959 break;
2960 default:
2961 continue;
2962 }
2963 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
2964 }
2965
2966 /* Now update local dynamic symbols. */
2967 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
2968 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
2969 entry->isym.st_name);
2970
2971 /* And the rest of dynamic symbols. */
2972 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
2973
2974 /* Adjust version definitions. */
2975 if (elf_tdata (output_bfd)->cverdefs)
2976 {
2977 asection *s;
2978 bfd_byte *p;
2979 bfd_size_type i;
2980 Elf_Internal_Verdef def;
2981 Elf_Internal_Verdaux defaux;
2982
2983 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
2984 p = s->contents;
2985 do
2986 {
2987 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
2988 &def);
2989 p += sizeof (Elf_External_Verdef);
2990 if (def.vd_aux != sizeof (Elf_External_Verdef))
2991 continue;
2992 for (i = 0; i < def.vd_cnt; ++i)
2993 {
2994 _bfd_elf_swap_verdaux_in (output_bfd,
2995 (Elf_External_Verdaux *) p, &defaux);
2996 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
2997 defaux.vda_name);
2998 _bfd_elf_swap_verdaux_out (output_bfd,
2999 &defaux, (Elf_External_Verdaux *) p);
3000 p += sizeof (Elf_External_Verdaux);
3001 }
3002 }
3003 while (def.vd_next);
3004 }
3005
3006 /* Adjust version references. */
3007 if (elf_tdata (output_bfd)->verref)
3008 {
3009 asection *s;
3010 bfd_byte *p;
3011 bfd_size_type i;
3012 Elf_Internal_Verneed need;
3013 Elf_Internal_Vernaux needaux;
3014
3015 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3016 p = s->contents;
3017 do
3018 {
3019 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3020 &need);
3021 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3022 _bfd_elf_swap_verneed_out (output_bfd, &need,
3023 (Elf_External_Verneed *) p);
3024 p += sizeof (Elf_External_Verneed);
3025 for (i = 0; i < need.vn_cnt; ++i)
3026 {
3027 _bfd_elf_swap_vernaux_in (output_bfd,
3028 (Elf_External_Vernaux *) p, &needaux);
3029 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3030 needaux.vna_name);
3031 _bfd_elf_swap_vernaux_out (output_bfd,
3032 &needaux,
3033 (Elf_External_Vernaux *) p);
3034 p += sizeof (Elf_External_Vernaux);
3035 }
3036 }
3037 while (need.vn_next);
3038 }
3039
3040 return TRUE;
3041 }
3042 \f
3043 /* Add symbols from an ELF object file to the linker hash table. */
3044
3045 static bfd_boolean
3046 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3047 {
3048 bfd_boolean (*add_symbol_hook)
3049 (bfd *, struct bfd_link_info *, Elf_Internal_Sym *,
3050 const char **, flagword *, asection **, bfd_vma *);
3051 bfd_boolean (*check_relocs)
3052 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
3053 bfd_boolean (*check_directives)
3054 (bfd *, struct bfd_link_info *);
3055 bfd_boolean collect;
3056 Elf_Internal_Shdr *hdr;
3057 bfd_size_type symcount;
3058 bfd_size_type extsymcount;
3059 bfd_size_type extsymoff;
3060 struct elf_link_hash_entry **sym_hash;
3061 bfd_boolean dynamic;
3062 Elf_External_Versym *extversym = NULL;
3063 Elf_External_Versym *ever;
3064 struct elf_link_hash_entry *weaks;
3065 struct elf_link_hash_entry **nondeflt_vers = NULL;
3066 bfd_size_type nondeflt_vers_cnt = 0;
3067 Elf_Internal_Sym *isymbuf = NULL;
3068 Elf_Internal_Sym *isym;
3069 Elf_Internal_Sym *isymend;
3070 const struct elf_backend_data *bed;
3071 bfd_boolean add_needed;
3072 struct elf_link_hash_table * hash_table;
3073 bfd_size_type amt;
3074
3075 hash_table = elf_hash_table (info);
3076
3077 bed = get_elf_backend_data (abfd);
3078 add_symbol_hook = bed->elf_add_symbol_hook;
3079 collect = bed->collect;
3080
3081 if ((abfd->flags & DYNAMIC) == 0)
3082 dynamic = FALSE;
3083 else
3084 {
3085 dynamic = TRUE;
3086
3087 /* You can't use -r against a dynamic object. Also, there's no
3088 hope of using a dynamic object which does not exactly match
3089 the format of the output file. */
3090 if (info->relocatable
3091 || !is_elf_hash_table (hash_table)
3092 || hash_table->root.creator != abfd->xvec)
3093 {
3094 if (info->relocatable)
3095 bfd_set_error (bfd_error_invalid_operation);
3096 else
3097 bfd_set_error (bfd_error_wrong_format);
3098 goto error_return;
3099 }
3100 }
3101
3102 /* As a GNU extension, any input sections which are named
3103 .gnu.warning.SYMBOL are treated as warning symbols for the given
3104 symbol. This differs from .gnu.warning sections, which generate
3105 warnings when they are included in an output file. */
3106 if (info->executable)
3107 {
3108 asection *s;
3109
3110 for (s = abfd->sections; s != NULL; s = s->next)
3111 {
3112 const char *name;
3113
3114 name = bfd_get_section_name (abfd, s);
3115 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
3116 {
3117 char *msg;
3118 bfd_size_type sz;
3119 bfd_size_type prefix_len;
3120 const char * gnu_warning_prefix = _("warning: ");
3121
3122 name += sizeof ".gnu.warning." - 1;
3123
3124 /* If this is a shared object, then look up the symbol
3125 in the hash table. If it is there, and it is already
3126 been defined, then we will not be using the entry
3127 from this shared object, so we don't need to warn.
3128 FIXME: If we see the definition in a regular object
3129 later on, we will warn, but we shouldn't. The only
3130 fix is to keep track of what warnings we are supposed
3131 to emit, and then handle them all at the end of the
3132 link. */
3133 if (dynamic)
3134 {
3135 struct elf_link_hash_entry *h;
3136
3137 h = elf_link_hash_lookup (hash_table, name,
3138 FALSE, FALSE, TRUE);
3139
3140 /* FIXME: What about bfd_link_hash_common? */
3141 if (h != NULL
3142 && (h->root.type == bfd_link_hash_defined
3143 || h->root.type == bfd_link_hash_defweak))
3144 {
3145 /* We don't want to issue this warning. Clobber
3146 the section size so that the warning does not
3147 get copied into the output file. */
3148 s->size = 0;
3149 continue;
3150 }
3151 }
3152
3153 sz = s->size;
3154 prefix_len = strlen (gnu_warning_prefix);
3155 msg = bfd_alloc (abfd, prefix_len + sz + 1);
3156 if (msg == NULL)
3157 goto error_return;
3158
3159 strcpy (msg, gnu_warning_prefix);
3160 if (! bfd_get_section_contents (abfd, s, msg + prefix_len, 0, sz))
3161 goto error_return;
3162
3163 msg[prefix_len + sz] = '\0';
3164
3165 if (! (_bfd_generic_link_add_one_symbol
3166 (info, abfd, name, BSF_WARNING, s, 0, msg,
3167 FALSE, collect, NULL)))
3168 goto error_return;
3169
3170 if (! info->relocatable)
3171 {
3172 /* Clobber the section size so that the warning does
3173 not get copied into the output file. */
3174 s->size = 0;
3175 }
3176 }
3177 }
3178 }
3179
3180 add_needed = TRUE;
3181 if (! dynamic)
3182 {
3183 /* If we are creating a shared library, create all the dynamic
3184 sections immediately. We need to attach them to something,
3185 so we attach them to this BFD, provided it is the right
3186 format. FIXME: If there are no input BFD's of the same
3187 format as the output, we can't make a shared library. */
3188 if (info->shared
3189 && is_elf_hash_table (hash_table)
3190 && hash_table->root.creator == abfd->xvec
3191 && ! hash_table->dynamic_sections_created)
3192 {
3193 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3194 goto error_return;
3195 }
3196 }
3197 else if (!is_elf_hash_table (hash_table))
3198 goto error_return;
3199 else
3200 {
3201 asection *s;
3202 const char *soname = NULL;
3203 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3204 int ret;
3205
3206 /* ld --just-symbols and dynamic objects don't mix very well.
3207 Test for --just-symbols by looking at info set up by
3208 _bfd_elf_link_just_syms. */
3209 if ((s = abfd->sections) != NULL
3210 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3211 goto error_return;
3212
3213 /* If this dynamic lib was specified on the command line with
3214 --as-needed in effect, then we don't want to add a DT_NEEDED
3215 tag unless the lib is actually used. Similary for libs brought
3216 in by another lib's DT_NEEDED. When --no-add-needed is used
3217 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3218 any dynamic library in DT_NEEDED tags in the dynamic lib at
3219 all. */
3220 add_needed = (elf_dyn_lib_class (abfd)
3221 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3222 | DYN_NO_NEEDED)) == 0;
3223
3224 s = bfd_get_section_by_name (abfd, ".dynamic");
3225 if (s != NULL)
3226 {
3227 bfd_byte *dynbuf;
3228 bfd_byte *extdyn;
3229 int elfsec;
3230 unsigned long shlink;
3231
3232 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3233 goto error_free_dyn;
3234
3235 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3236 if (elfsec == -1)
3237 goto error_free_dyn;
3238 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3239
3240 for (extdyn = dynbuf;
3241 extdyn < dynbuf + s->size;
3242 extdyn += bed->s->sizeof_dyn)
3243 {
3244 Elf_Internal_Dyn dyn;
3245
3246 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3247 if (dyn.d_tag == DT_SONAME)
3248 {
3249 unsigned int tagv = dyn.d_un.d_val;
3250 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3251 if (soname == NULL)
3252 goto error_free_dyn;
3253 }
3254 if (dyn.d_tag == DT_NEEDED)
3255 {
3256 struct bfd_link_needed_list *n, **pn;
3257 char *fnm, *anm;
3258 unsigned int tagv = dyn.d_un.d_val;
3259
3260 amt = sizeof (struct bfd_link_needed_list);
3261 n = bfd_alloc (abfd, amt);
3262 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3263 if (n == NULL || fnm == NULL)
3264 goto error_free_dyn;
3265 amt = strlen (fnm) + 1;
3266 anm = bfd_alloc (abfd, amt);
3267 if (anm == NULL)
3268 goto error_free_dyn;
3269 memcpy (anm, fnm, amt);
3270 n->name = anm;
3271 n->by = abfd;
3272 n->next = NULL;
3273 for (pn = & hash_table->needed;
3274 *pn != NULL;
3275 pn = &(*pn)->next)
3276 ;
3277 *pn = n;
3278 }
3279 if (dyn.d_tag == DT_RUNPATH)
3280 {
3281 struct bfd_link_needed_list *n, **pn;
3282 char *fnm, *anm;
3283 unsigned int tagv = dyn.d_un.d_val;
3284
3285 amt = sizeof (struct bfd_link_needed_list);
3286 n = bfd_alloc (abfd, amt);
3287 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3288 if (n == NULL || fnm == NULL)
3289 goto error_free_dyn;
3290 amt = strlen (fnm) + 1;
3291 anm = bfd_alloc (abfd, amt);
3292 if (anm == NULL)
3293 goto error_free_dyn;
3294 memcpy (anm, fnm, amt);
3295 n->name = anm;
3296 n->by = abfd;
3297 n->next = NULL;
3298 for (pn = & runpath;
3299 *pn != NULL;
3300 pn = &(*pn)->next)
3301 ;
3302 *pn = n;
3303 }
3304 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3305 if (!runpath && dyn.d_tag == DT_RPATH)
3306 {
3307 struct bfd_link_needed_list *n, **pn;
3308 char *fnm, *anm;
3309 unsigned int tagv = dyn.d_un.d_val;
3310
3311 amt = sizeof (struct bfd_link_needed_list);
3312 n = bfd_alloc (abfd, amt);
3313 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3314 if (n == NULL || fnm == NULL)
3315 goto error_free_dyn;
3316 amt = strlen (fnm) + 1;
3317 anm = bfd_alloc (abfd, amt);
3318 if (anm == NULL)
3319 {
3320 error_free_dyn:
3321 free (dynbuf);
3322 goto error_return;
3323 }
3324 memcpy (anm, fnm, amt);
3325 n->name = anm;
3326 n->by = abfd;
3327 n->next = NULL;
3328 for (pn = & rpath;
3329 *pn != NULL;
3330 pn = &(*pn)->next)
3331 ;
3332 *pn = n;
3333 }
3334 }
3335
3336 free (dynbuf);
3337 }
3338
3339 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3340 frees all more recently bfd_alloc'd blocks as well. */
3341 if (runpath)
3342 rpath = runpath;
3343
3344 if (rpath)
3345 {
3346 struct bfd_link_needed_list **pn;
3347 for (pn = & hash_table->runpath;
3348 *pn != NULL;
3349 pn = &(*pn)->next)
3350 ;
3351 *pn = rpath;
3352 }
3353
3354 /* We do not want to include any of the sections in a dynamic
3355 object in the output file. We hack by simply clobbering the
3356 list of sections in the BFD. This could be handled more
3357 cleanly by, say, a new section flag; the existing
3358 SEC_NEVER_LOAD flag is not the one we want, because that one
3359 still implies that the section takes up space in the output
3360 file. */
3361 bfd_section_list_clear (abfd);
3362
3363 /* Find the name to use in a DT_NEEDED entry that refers to this
3364 object. If the object has a DT_SONAME entry, we use it.
3365 Otherwise, if the generic linker stuck something in
3366 elf_dt_name, we use that. Otherwise, we just use the file
3367 name. */
3368 if (soname == NULL || *soname == '\0')
3369 {
3370 soname = elf_dt_name (abfd);
3371 if (soname == NULL || *soname == '\0')
3372 soname = bfd_get_filename (abfd);
3373 }
3374
3375 /* Save the SONAME because sometimes the linker emulation code
3376 will need to know it. */
3377 elf_dt_name (abfd) = soname;
3378
3379 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3380 if (ret < 0)
3381 goto error_return;
3382
3383 /* If we have already included this dynamic object in the
3384 link, just ignore it. There is no reason to include a
3385 particular dynamic object more than once. */
3386 if (ret > 0)
3387 return TRUE;
3388 }
3389
3390 /* If this is a dynamic object, we always link against the .dynsym
3391 symbol table, not the .symtab symbol table. The dynamic linker
3392 will only see the .dynsym symbol table, so there is no reason to
3393 look at .symtab for a dynamic object. */
3394
3395 if (! dynamic || elf_dynsymtab (abfd) == 0)
3396 hdr = &elf_tdata (abfd)->symtab_hdr;
3397 else
3398 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3399
3400 symcount = hdr->sh_size / bed->s->sizeof_sym;
3401
3402 /* The sh_info field of the symtab header tells us where the
3403 external symbols start. We don't care about the local symbols at
3404 this point. */
3405 if (elf_bad_symtab (abfd))
3406 {
3407 extsymcount = symcount;
3408 extsymoff = 0;
3409 }
3410 else
3411 {
3412 extsymcount = symcount - hdr->sh_info;
3413 extsymoff = hdr->sh_info;
3414 }
3415
3416 sym_hash = NULL;
3417 if (extsymcount != 0)
3418 {
3419 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3420 NULL, NULL, NULL);
3421 if (isymbuf == NULL)
3422 goto error_return;
3423
3424 /* We store a pointer to the hash table entry for each external
3425 symbol. */
3426 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3427 sym_hash = bfd_alloc (abfd, amt);
3428 if (sym_hash == NULL)
3429 goto error_free_sym;
3430 elf_sym_hashes (abfd) = sym_hash;
3431 }
3432
3433 if (dynamic)
3434 {
3435 /* Read in any version definitions. */
3436 if (!_bfd_elf_slurp_version_tables (abfd,
3437 info->default_imported_symver))
3438 goto error_free_sym;
3439
3440 /* Read in the symbol versions, but don't bother to convert them
3441 to internal format. */
3442 if (elf_dynversym (abfd) != 0)
3443 {
3444 Elf_Internal_Shdr *versymhdr;
3445
3446 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3447 extversym = bfd_malloc (versymhdr->sh_size);
3448 if (extversym == NULL)
3449 goto error_free_sym;
3450 amt = versymhdr->sh_size;
3451 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3452 || bfd_bread (extversym, amt, abfd) != amt)
3453 goto error_free_vers;
3454 }
3455 }
3456
3457 weaks = NULL;
3458
3459 ever = extversym != NULL ? extversym + extsymoff : NULL;
3460 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3461 isym < isymend;
3462 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3463 {
3464 int bind;
3465 bfd_vma value;
3466 asection *sec;
3467 flagword flags;
3468 const char *name;
3469 struct elf_link_hash_entry *h;
3470 bfd_boolean definition;
3471 bfd_boolean size_change_ok;
3472 bfd_boolean type_change_ok;
3473 bfd_boolean new_weakdef;
3474 bfd_boolean override;
3475 unsigned int old_alignment;
3476 bfd *old_bfd;
3477
3478 override = FALSE;
3479
3480 flags = BSF_NO_FLAGS;
3481 sec = NULL;
3482 value = isym->st_value;
3483 *sym_hash = NULL;
3484
3485 bind = ELF_ST_BIND (isym->st_info);
3486 if (bind == STB_LOCAL)
3487 {
3488 /* This should be impossible, since ELF requires that all
3489 global symbols follow all local symbols, and that sh_info
3490 point to the first global symbol. Unfortunately, Irix 5
3491 screws this up. */
3492 continue;
3493 }
3494 else if (bind == STB_GLOBAL)
3495 {
3496 if (isym->st_shndx != SHN_UNDEF
3497 && isym->st_shndx != SHN_COMMON)
3498 flags = BSF_GLOBAL;
3499 }
3500 else if (bind == STB_WEAK)
3501 flags = BSF_WEAK;
3502 else
3503 {
3504 /* Leave it up to the processor backend. */
3505 }
3506
3507 if (isym->st_shndx == SHN_UNDEF)
3508 sec = bfd_und_section_ptr;
3509 else if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
3510 {
3511 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3512 if (sec == NULL)
3513 sec = bfd_abs_section_ptr;
3514 else if (sec->kept_section)
3515 {
3516 /* Symbols from discarded section are undefined. */
3517 sec = bfd_und_section_ptr;
3518 isym->st_shndx = SHN_UNDEF;
3519 }
3520 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3521 value -= sec->vma;
3522 }
3523 else if (isym->st_shndx == SHN_ABS)
3524 sec = bfd_abs_section_ptr;
3525 else if (isym->st_shndx == SHN_COMMON)
3526 {
3527 sec = bfd_com_section_ptr;
3528 /* What ELF calls the size we call the value. What ELF
3529 calls the value we call the alignment. */
3530 value = isym->st_size;
3531 }
3532 else
3533 {
3534 /* Leave it up to the processor backend. */
3535 }
3536
3537 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3538 isym->st_name);
3539 if (name == NULL)
3540 goto error_free_vers;
3541
3542 if (isym->st_shndx == SHN_COMMON
3543 && ELF_ST_TYPE (isym->st_info) == STT_TLS)
3544 {
3545 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3546
3547 if (tcomm == NULL)
3548 {
3549 tcomm = bfd_make_section (abfd, ".tcommon");
3550 if (tcomm == NULL
3551 || !bfd_set_section_flags (abfd, tcomm, (SEC_ALLOC
3552 | SEC_IS_COMMON
3553 | SEC_LINKER_CREATED
3554 | SEC_THREAD_LOCAL)))
3555 goto error_free_vers;
3556 }
3557 sec = tcomm;
3558 }
3559 else if (add_symbol_hook)
3560 {
3561 if (! (*add_symbol_hook) (abfd, info, isym, &name, &flags, &sec,
3562 &value))
3563 goto error_free_vers;
3564
3565 /* The hook function sets the name to NULL if this symbol
3566 should be skipped for some reason. */
3567 if (name == NULL)
3568 continue;
3569 }
3570
3571 /* Sanity check that all possibilities were handled. */
3572 if (sec == NULL)
3573 {
3574 bfd_set_error (bfd_error_bad_value);
3575 goto error_free_vers;
3576 }
3577
3578 if (bfd_is_und_section (sec)
3579 || bfd_is_com_section (sec))
3580 definition = FALSE;
3581 else
3582 definition = TRUE;
3583
3584 size_change_ok = FALSE;
3585 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
3586 old_alignment = 0;
3587 old_bfd = NULL;
3588
3589 if (is_elf_hash_table (hash_table))
3590 {
3591 Elf_Internal_Versym iver;
3592 unsigned int vernum = 0;
3593 bfd_boolean skip;
3594
3595 if (ever == NULL)
3596 {
3597 if (info->default_imported_symver)
3598 /* Use the default symbol version created earlier. */
3599 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3600 else
3601 iver.vs_vers = 0;
3602 }
3603 else
3604 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3605
3606 vernum = iver.vs_vers & VERSYM_VERSION;
3607
3608 /* If this is a hidden symbol, or if it is not version
3609 1, we append the version name to the symbol name.
3610 However, we do not modify a non-hidden absolute
3611 symbol, because it might be the version symbol
3612 itself. FIXME: What if it isn't? */
3613 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3614 || (vernum > 1 && ! bfd_is_abs_section (sec)))
3615 {
3616 const char *verstr;
3617 size_t namelen, verlen, newlen;
3618 char *newname, *p;
3619
3620 if (isym->st_shndx != SHN_UNDEF)
3621 {
3622 if (vernum > elf_tdata (abfd)->cverdefs)
3623 verstr = NULL;
3624 else if (vernum > 1)
3625 verstr =
3626 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
3627 else
3628 verstr = "";
3629
3630 if (verstr == NULL)
3631 {
3632 (*_bfd_error_handler)
3633 (_("%B: %s: invalid version %u (max %d)"),
3634 abfd, name, vernum,
3635 elf_tdata (abfd)->cverdefs);
3636 bfd_set_error (bfd_error_bad_value);
3637 goto error_free_vers;
3638 }
3639 }
3640 else
3641 {
3642 /* We cannot simply test for the number of
3643 entries in the VERNEED section since the
3644 numbers for the needed versions do not start
3645 at 0. */
3646 Elf_Internal_Verneed *t;
3647
3648 verstr = NULL;
3649 for (t = elf_tdata (abfd)->verref;
3650 t != NULL;
3651 t = t->vn_nextref)
3652 {
3653 Elf_Internal_Vernaux *a;
3654
3655 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3656 {
3657 if (a->vna_other == vernum)
3658 {
3659 verstr = a->vna_nodename;
3660 break;
3661 }
3662 }
3663 if (a != NULL)
3664 break;
3665 }
3666 if (verstr == NULL)
3667 {
3668 (*_bfd_error_handler)
3669 (_("%B: %s: invalid needed version %d"),
3670 abfd, name, vernum);
3671 bfd_set_error (bfd_error_bad_value);
3672 goto error_free_vers;
3673 }
3674 }
3675
3676 namelen = strlen (name);
3677 verlen = strlen (verstr);
3678 newlen = namelen + verlen + 2;
3679 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3680 && isym->st_shndx != SHN_UNDEF)
3681 ++newlen;
3682
3683 newname = bfd_alloc (abfd, newlen);
3684 if (newname == NULL)
3685 goto error_free_vers;
3686 memcpy (newname, name, namelen);
3687 p = newname + namelen;
3688 *p++ = ELF_VER_CHR;
3689 /* If this is a defined non-hidden version symbol,
3690 we add another @ to the name. This indicates the
3691 default version of the symbol. */
3692 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3693 && isym->st_shndx != SHN_UNDEF)
3694 *p++ = ELF_VER_CHR;
3695 memcpy (p, verstr, verlen + 1);
3696
3697 name = newname;
3698 }
3699
3700 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
3701 sym_hash, &skip, &override,
3702 &type_change_ok, &size_change_ok))
3703 goto error_free_vers;
3704
3705 if (skip)
3706 continue;
3707
3708 if (override)
3709 definition = FALSE;
3710
3711 h = *sym_hash;
3712 while (h->root.type == bfd_link_hash_indirect
3713 || h->root.type == bfd_link_hash_warning)
3714 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3715
3716 /* Remember the old alignment if this is a common symbol, so
3717 that we don't reduce the alignment later on. We can't
3718 check later, because _bfd_generic_link_add_one_symbol
3719 will set a default for the alignment which we want to
3720 override. We also remember the old bfd where the existing
3721 definition comes from. */
3722 switch (h->root.type)
3723 {
3724 default:
3725 break;
3726
3727 case bfd_link_hash_defined:
3728 case bfd_link_hash_defweak:
3729 old_bfd = h->root.u.def.section->owner;
3730 break;
3731
3732 case bfd_link_hash_common:
3733 old_bfd = h->root.u.c.p->section->owner;
3734 old_alignment = h->root.u.c.p->alignment_power;
3735 break;
3736 }
3737
3738 if (elf_tdata (abfd)->verdef != NULL
3739 && ! override
3740 && vernum > 1
3741 && definition)
3742 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
3743 }
3744
3745 if (! (_bfd_generic_link_add_one_symbol
3746 (info, abfd, name, flags, sec, value, NULL, FALSE, collect,
3747 (struct bfd_link_hash_entry **) sym_hash)))
3748 goto error_free_vers;
3749
3750 h = *sym_hash;
3751 while (h->root.type == bfd_link_hash_indirect
3752 || h->root.type == bfd_link_hash_warning)
3753 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3754 *sym_hash = h;
3755
3756 new_weakdef = FALSE;
3757 if (dynamic
3758 && definition
3759 && (flags & BSF_WEAK) != 0
3760 && ELF_ST_TYPE (isym->st_info) != STT_FUNC
3761 && is_elf_hash_table (hash_table)
3762 && h->u.weakdef == NULL)
3763 {
3764 /* Keep a list of all weak defined non function symbols from
3765 a dynamic object, using the weakdef field. Later in this
3766 function we will set the weakdef field to the correct
3767 value. We only put non-function symbols from dynamic
3768 objects on this list, because that happens to be the only
3769 time we need to know the normal symbol corresponding to a
3770 weak symbol, and the information is time consuming to
3771 figure out. If the weakdef field is not already NULL,
3772 then this symbol was already defined by some previous
3773 dynamic object, and we will be using that previous
3774 definition anyhow. */
3775
3776 h->u.weakdef = weaks;
3777 weaks = h;
3778 new_weakdef = TRUE;
3779 }
3780
3781 /* Set the alignment of a common symbol. */
3782 if (isym->st_shndx == SHN_COMMON
3783 && h->root.type == bfd_link_hash_common)
3784 {
3785 unsigned int align;
3786
3787 align = bfd_log2 (isym->st_value);
3788 if (align > old_alignment
3789 /* Permit an alignment power of zero if an alignment of one
3790 is specified and no other alignments have been specified. */
3791 || (isym->st_value == 1 && old_alignment == 0))
3792 h->root.u.c.p->alignment_power = align;
3793 else
3794 h->root.u.c.p->alignment_power = old_alignment;
3795 }
3796
3797 if (is_elf_hash_table (hash_table))
3798 {
3799 bfd_boolean dynsym;
3800
3801 /* Check the alignment when a common symbol is involved. This
3802 can change when a common symbol is overridden by a normal
3803 definition or a common symbol is ignored due to the old
3804 normal definition. We need to make sure the maximum
3805 alignment is maintained. */
3806 if ((old_alignment || isym->st_shndx == SHN_COMMON)
3807 && h->root.type != bfd_link_hash_common)
3808 {
3809 unsigned int common_align;
3810 unsigned int normal_align;
3811 unsigned int symbol_align;
3812 bfd *normal_bfd;
3813 bfd *common_bfd;
3814
3815 symbol_align = ffs (h->root.u.def.value) - 1;
3816 if (h->root.u.def.section->owner != NULL
3817 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3818 {
3819 normal_align = h->root.u.def.section->alignment_power;
3820 if (normal_align > symbol_align)
3821 normal_align = symbol_align;
3822 }
3823 else
3824 normal_align = symbol_align;
3825
3826 if (old_alignment)
3827 {
3828 common_align = old_alignment;
3829 common_bfd = old_bfd;
3830 normal_bfd = abfd;
3831 }
3832 else
3833 {
3834 common_align = bfd_log2 (isym->st_value);
3835 common_bfd = abfd;
3836 normal_bfd = old_bfd;
3837 }
3838
3839 if (normal_align < common_align)
3840 (*_bfd_error_handler)
3841 (_("Warning: alignment %u of symbol `%s' in %B"
3842 " is smaller than %u in %B"),
3843 normal_bfd, common_bfd,
3844 1 << normal_align, name, 1 << common_align);
3845 }
3846
3847 /* Remember the symbol size and type. */
3848 if (isym->st_size != 0
3849 && (definition || h->size == 0))
3850 {
3851 if (h->size != 0 && h->size != isym->st_size && ! size_change_ok)
3852 (*_bfd_error_handler)
3853 (_("Warning: size of symbol `%s' changed"
3854 " from %lu in %B to %lu in %B"),
3855 old_bfd, abfd,
3856 name, (unsigned long) h->size,
3857 (unsigned long) isym->st_size);
3858
3859 h->size = isym->st_size;
3860 }
3861
3862 /* If this is a common symbol, then we always want H->SIZE
3863 to be the size of the common symbol. The code just above
3864 won't fix the size if a common symbol becomes larger. We
3865 don't warn about a size change here, because that is
3866 covered by --warn-common. */
3867 if (h->root.type == bfd_link_hash_common)
3868 h->size = h->root.u.c.size;
3869
3870 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
3871 && (definition || h->type == STT_NOTYPE))
3872 {
3873 if (h->type != STT_NOTYPE
3874 && h->type != ELF_ST_TYPE (isym->st_info)
3875 && ! type_change_ok)
3876 (*_bfd_error_handler)
3877 (_("Warning: type of symbol `%s' changed"
3878 " from %d to %d in %B"),
3879 abfd, name, h->type, ELF_ST_TYPE (isym->st_info));
3880
3881 h->type = ELF_ST_TYPE (isym->st_info);
3882 }
3883
3884 /* If st_other has a processor-specific meaning, specific
3885 code might be needed here. We never merge the visibility
3886 attribute with the one from a dynamic object. */
3887 if (bed->elf_backend_merge_symbol_attribute)
3888 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
3889 dynamic);
3890
3891 /* If this symbol has default visibility and the user has requested
3892 we not re-export it, then mark it as hidden. */
3893 if (definition && !dynamic
3894 && (abfd->no_export
3895 || (abfd->my_archive && abfd->my_archive->no_export))
3896 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
3897 isym->st_other = STV_HIDDEN | (isym->st_other & ~ ELF_ST_VISIBILITY (-1));
3898
3899 if (isym->st_other != 0 && !dynamic)
3900 {
3901 unsigned char hvis, symvis, other, nvis;
3902
3903 /* Take the balance of OTHER from the definition. */
3904 other = (definition ? isym->st_other : h->other);
3905 other &= ~ ELF_ST_VISIBILITY (-1);
3906
3907 /* Combine visibilities, using the most constraining one. */
3908 hvis = ELF_ST_VISIBILITY (h->other);
3909 symvis = ELF_ST_VISIBILITY (isym->st_other);
3910 if (! hvis)
3911 nvis = symvis;
3912 else if (! symvis)
3913 nvis = hvis;
3914 else
3915 nvis = hvis < symvis ? hvis : symvis;
3916
3917 h->other = other | nvis;
3918 }
3919
3920 /* Set a flag in the hash table entry indicating the type of
3921 reference or definition we just found. Keep a count of
3922 the number of dynamic symbols we find. A dynamic symbol
3923 is one which is referenced or defined by both a regular
3924 object and a shared object. */
3925 dynsym = FALSE;
3926 if (! dynamic)
3927 {
3928 if (! definition)
3929 {
3930 h->ref_regular = 1;
3931 if (bind != STB_WEAK)
3932 h->ref_regular_nonweak = 1;
3933 }
3934 else
3935 h->def_regular = 1;
3936 if (! info->executable
3937 || h->def_dynamic
3938 || h->ref_dynamic)
3939 dynsym = TRUE;
3940 }
3941 else
3942 {
3943 if (! definition)
3944 h->ref_dynamic = 1;
3945 else
3946 h->def_dynamic = 1;
3947 if (h->def_regular
3948 || h->ref_regular
3949 || (h->u.weakdef != NULL
3950 && ! new_weakdef
3951 && h->u.weakdef->dynindx != -1))
3952 dynsym = TRUE;
3953 }
3954
3955 /* Check to see if we need to add an indirect symbol for
3956 the default name. */
3957 if (definition || h->root.type == bfd_link_hash_common)
3958 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
3959 &sec, &value, &dynsym,
3960 override))
3961 goto error_free_vers;
3962
3963 if (definition && !dynamic)
3964 {
3965 char *p = strchr (name, ELF_VER_CHR);
3966 if (p != NULL && p[1] != ELF_VER_CHR)
3967 {
3968 /* Queue non-default versions so that .symver x, x@FOO
3969 aliases can be checked. */
3970 if (! nondeflt_vers)
3971 {
3972 amt = (isymend - isym + 1)
3973 * sizeof (struct elf_link_hash_entry *);
3974 nondeflt_vers = bfd_malloc (amt);
3975 }
3976 nondeflt_vers [nondeflt_vers_cnt++] = h;
3977 }
3978 }
3979
3980 if (dynsym && h->dynindx == -1)
3981 {
3982 if (! bfd_elf_link_record_dynamic_symbol (info, h))
3983 goto error_free_vers;
3984 if (h->u.weakdef != NULL
3985 && ! new_weakdef
3986 && h->u.weakdef->dynindx == -1)
3987 {
3988 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
3989 goto error_free_vers;
3990 }
3991 }
3992 else if (dynsym && h->dynindx != -1)
3993 /* If the symbol already has a dynamic index, but
3994 visibility says it should not be visible, turn it into
3995 a local symbol. */
3996 switch (ELF_ST_VISIBILITY (h->other))
3997 {
3998 case STV_INTERNAL:
3999 case STV_HIDDEN:
4000 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4001 dynsym = FALSE;
4002 break;
4003 }
4004
4005 if (!add_needed
4006 && definition
4007 && dynsym
4008 && h->ref_regular)
4009 {
4010 int ret;
4011 const char *soname = elf_dt_name (abfd);
4012
4013 /* A symbol from a library loaded via DT_NEEDED of some
4014 other library is referenced by a regular object.
4015 Add a DT_NEEDED entry for it. Issue an error if
4016 --no-add-needed is used. */
4017 if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4018 {
4019 (*_bfd_error_handler)
4020 (_("%s: invalid DSO for symbol `%s' definition"),
4021 abfd, name);
4022 bfd_set_error (bfd_error_bad_value);
4023 goto error_free_vers;
4024 }
4025
4026 elf_dyn_lib_class (abfd) &= ~DYN_AS_NEEDED;
4027
4028 add_needed = TRUE;
4029 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4030 if (ret < 0)
4031 goto error_free_vers;
4032
4033 BFD_ASSERT (ret == 0);
4034 }
4035 }
4036 }
4037
4038 /* Now that all the symbols from this input file are created, handle
4039 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4040 if (nondeflt_vers != NULL)
4041 {
4042 bfd_size_type cnt, symidx;
4043
4044 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4045 {
4046 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4047 char *shortname, *p;
4048
4049 p = strchr (h->root.root.string, ELF_VER_CHR);
4050 if (p == NULL
4051 || (h->root.type != bfd_link_hash_defined
4052 && h->root.type != bfd_link_hash_defweak))
4053 continue;
4054
4055 amt = p - h->root.root.string;
4056 shortname = bfd_malloc (amt + 1);
4057 memcpy (shortname, h->root.root.string, amt);
4058 shortname[amt] = '\0';
4059
4060 hi = (struct elf_link_hash_entry *)
4061 bfd_link_hash_lookup (&hash_table->root, shortname,
4062 FALSE, FALSE, FALSE);
4063 if (hi != NULL
4064 && hi->root.type == h->root.type
4065 && hi->root.u.def.value == h->root.u.def.value
4066 && hi->root.u.def.section == h->root.u.def.section)
4067 {
4068 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4069 hi->root.type = bfd_link_hash_indirect;
4070 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4071 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
4072 sym_hash = elf_sym_hashes (abfd);
4073 if (sym_hash)
4074 for (symidx = 0; symidx < extsymcount; ++symidx)
4075 if (sym_hash[symidx] == hi)
4076 {
4077 sym_hash[symidx] = h;
4078 break;
4079 }
4080 }
4081 free (shortname);
4082 }
4083 free (nondeflt_vers);
4084 nondeflt_vers = NULL;
4085 }
4086
4087 if (extversym != NULL)
4088 {
4089 free (extversym);
4090 extversym = NULL;
4091 }
4092
4093 if (isymbuf != NULL)
4094 free (isymbuf);
4095 isymbuf = NULL;
4096
4097 if (!add_needed)
4098 {
4099 struct elf_smash_syms_data inf;
4100 inf.not_needed = abfd;
4101 inf.htab = hash_table;
4102 inf.twiddled = FALSE;
4103 elf_link_hash_traverse (hash_table, elf_smash_syms, &inf);
4104 if (inf.twiddled)
4105 bfd_link_repair_undef_list (&hash_table->root);
4106 weaks = NULL;
4107 }
4108
4109 /* Now set the weakdefs field correctly for all the weak defined
4110 symbols we found. The only way to do this is to search all the
4111 symbols. Since we only need the information for non functions in
4112 dynamic objects, that's the only time we actually put anything on
4113 the list WEAKS. We need this information so that if a regular
4114 object refers to a symbol defined weakly in a dynamic object, the
4115 real symbol in the dynamic object is also put in the dynamic
4116 symbols; we also must arrange for both symbols to point to the
4117 same memory location. We could handle the general case of symbol
4118 aliasing, but a general symbol alias can only be generated in
4119 assembler code, handling it correctly would be very time
4120 consuming, and other ELF linkers don't handle general aliasing
4121 either. */
4122 if (weaks != NULL)
4123 {
4124 struct elf_link_hash_entry **hpp;
4125 struct elf_link_hash_entry **hppend;
4126 struct elf_link_hash_entry **sorted_sym_hash;
4127 struct elf_link_hash_entry *h;
4128 size_t sym_count;
4129
4130 /* Since we have to search the whole symbol list for each weak
4131 defined symbol, search time for N weak defined symbols will be
4132 O(N^2). Binary search will cut it down to O(NlogN). */
4133 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4134 sorted_sym_hash = bfd_malloc (amt);
4135 if (sorted_sym_hash == NULL)
4136 goto error_return;
4137 sym_hash = sorted_sym_hash;
4138 hpp = elf_sym_hashes (abfd);
4139 hppend = hpp + extsymcount;
4140 sym_count = 0;
4141 for (; hpp < hppend; hpp++)
4142 {
4143 h = *hpp;
4144 if (h != NULL
4145 && h->root.type == bfd_link_hash_defined
4146 && h->type != STT_FUNC)
4147 {
4148 *sym_hash = h;
4149 sym_hash++;
4150 sym_count++;
4151 }
4152 }
4153
4154 qsort (sorted_sym_hash, sym_count,
4155 sizeof (struct elf_link_hash_entry *),
4156 elf_sort_symbol);
4157
4158 while (weaks != NULL)
4159 {
4160 struct elf_link_hash_entry *hlook;
4161 asection *slook;
4162 bfd_vma vlook;
4163 long ilook;
4164 size_t i, j, idx;
4165
4166 hlook = weaks;
4167 weaks = hlook->u.weakdef;
4168 hlook->u.weakdef = NULL;
4169
4170 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4171 || hlook->root.type == bfd_link_hash_defweak
4172 || hlook->root.type == bfd_link_hash_common
4173 || hlook->root.type == bfd_link_hash_indirect);
4174 slook = hlook->root.u.def.section;
4175 vlook = hlook->root.u.def.value;
4176
4177 ilook = -1;
4178 i = 0;
4179 j = sym_count;
4180 while (i < j)
4181 {
4182 bfd_signed_vma vdiff;
4183 idx = (i + j) / 2;
4184 h = sorted_sym_hash [idx];
4185 vdiff = vlook - h->root.u.def.value;
4186 if (vdiff < 0)
4187 j = idx;
4188 else if (vdiff > 0)
4189 i = idx + 1;
4190 else
4191 {
4192 long sdiff = slook->id - h->root.u.def.section->id;
4193 if (sdiff < 0)
4194 j = idx;
4195 else if (sdiff > 0)
4196 i = idx + 1;
4197 else
4198 {
4199 ilook = idx;
4200 break;
4201 }
4202 }
4203 }
4204
4205 /* We didn't find a value/section match. */
4206 if (ilook == -1)
4207 continue;
4208
4209 for (i = ilook; i < sym_count; i++)
4210 {
4211 h = sorted_sym_hash [i];
4212
4213 /* Stop if value or section doesn't match. */
4214 if (h->root.u.def.value != vlook
4215 || h->root.u.def.section != slook)
4216 break;
4217 else if (h != hlook)
4218 {
4219 hlook->u.weakdef = h;
4220
4221 /* If the weak definition is in the list of dynamic
4222 symbols, make sure the real definition is put
4223 there as well. */
4224 if (hlook->dynindx != -1 && h->dynindx == -1)
4225 {
4226 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4227 goto error_return;
4228 }
4229
4230 /* If the real definition is in the list of dynamic
4231 symbols, make sure the weak definition is put
4232 there as well. If we don't do this, then the
4233 dynamic loader might not merge the entries for the
4234 real definition and the weak definition. */
4235 if (h->dynindx != -1 && hlook->dynindx == -1)
4236 {
4237 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4238 goto error_return;
4239 }
4240 break;
4241 }
4242 }
4243 }
4244
4245 free (sorted_sym_hash);
4246 }
4247
4248 check_directives = get_elf_backend_data (abfd)->check_directives;
4249 if (check_directives)
4250 check_directives (abfd, info);
4251
4252 /* If this object is the same format as the output object, and it is
4253 not a shared library, then let the backend look through the
4254 relocs.
4255
4256 This is required to build global offset table entries and to
4257 arrange for dynamic relocs. It is not required for the
4258 particular common case of linking non PIC code, even when linking
4259 against shared libraries, but unfortunately there is no way of
4260 knowing whether an object file has been compiled PIC or not.
4261 Looking through the relocs is not particularly time consuming.
4262 The problem is that we must either (1) keep the relocs in memory,
4263 which causes the linker to require additional runtime memory or
4264 (2) read the relocs twice from the input file, which wastes time.
4265 This would be a good case for using mmap.
4266
4267 I have no idea how to handle linking PIC code into a file of a
4268 different format. It probably can't be done. */
4269 check_relocs = get_elf_backend_data (abfd)->check_relocs;
4270 if (! dynamic
4271 && is_elf_hash_table (hash_table)
4272 && hash_table->root.creator == abfd->xvec
4273 && check_relocs != NULL)
4274 {
4275 asection *o;
4276
4277 for (o = abfd->sections; o != NULL; o = o->next)
4278 {
4279 Elf_Internal_Rela *internal_relocs;
4280 bfd_boolean ok;
4281
4282 if ((o->flags & SEC_RELOC) == 0
4283 || o->reloc_count == 0
4284 || ((info->strip == strip_all || info->strip == strip_debugger)
4285 && (o->flags & SEC_DEBUGGING) != 0)
4286 || bfd_is_abs_section (o->output_section))
4287 continue;
4288
4289 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4290 info->keep_memory);
4291 if (internal_relocs == NULL)
4292 goto error_return;
4293
4294 ok = (*check_relocs) (abfd, info, o, internal_relocs);
4295
4296 if (elf_section_data (o)->relocs != internal_relocs)
4297 free (internal_relocs);
4298
4299 if (! ok)
4300 goto error_return;
4301 }
4302 }
4303
4304 /* If this is a non-traditional link, try to optimize the handling
4305 of the .stab/.stabstr sections. */
4306 if (! dynamic
4307 && ! info->traditional_format
4308 && is_elf_hash_table (hash_table)
4309 && (info->strip != strip_all && info->strip != strip_debugger))
4310 {
4311 asection *stabstr;
4312
4313 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4314 if (stabstr != NULL)
4315 {
4316 bfd_size_type string_offset = 0;
4317 asection *stab;
4318
4319 for (stab = abfd->sections; stab; stab = stab->next)
4320 if (strncmp (".stab", stab->name, 5) == 0
4321 && (!stab->name[5] ||
4322 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4323 && (stab->flags & SEC_MERGE) == 0
4324 && !bfd_is_abs_section (stab->output_section))
4325 {
4326 struct bfd_elf_section_data *secdata;
4327
4328 secdata = elf_section_data (stab);
4329 if (! _bfd_link_section_stabs (abfd,
4330 &hash_table->stab_info,
4331 stab, stabstr,
4332 &secdata->sec_info,
4333 &string_offset))
4334 goto error_return;
4335 if (secdata->sec_info)
4336 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4337 }
4338 }
4339 }
4340
4341 if (is_elf_hash_table (hash_table) && add_needed)
4342 {
4343 /* Add this bfd to the loaded list. */
4344 struct elf_link_loaded_list *n;
4345
4346 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4347 if (n == NULL)
4348 goto error_return;
4349 n->abfd = abfd;
4350 n->next = hash_table->loaded;
4351 hash_table->loaded = n;
4352 }
4353
4354 return TRUE;
4355
4356 error_free_vers:
4357 if (nondeflt_vers != NULL)
4358 free (nondeflt_vers);
4359 if (extversym != NULL)
4360 free (extversym);
4361 error_free_sym:
4362 if (isymbuf != NULL)
4363 free (isymbuf);
4364 error_return:
4365 return FALSE;
4366 }
4367
4368 /* Return the linker hash table entry of a symbol that might be
4369 satisfied by an archive symbol. Return -1 on error. */
4370
4371 struct elf_link_hash_entry *
4372 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4373 struct bfd_link_info *info,
4374 const char *name)
4375 {
4376 struct elf_link_hash_entry *h;
4377 char *p, *copy;
4378 size_t len, first;
4379
4380 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4381 if (h != NULL)
4382 return h;
4383
4384 /* If this is a default version (the name contains @@), look up the
4385 symbol again with only one `@' as well as without the version.
4386 The effect is that references to the symbol with and without the
4387 version will be matched by the default symbol in the archive. */
4388
4389 p = strchr (name, ELF_VER_CHR);
4390 if (p == NULL || p[1] != ELF_VER_CHR)
4391 return h;
4392
4393 /* First check with only one `@'. */
4394 len = strlen (name);
4395 copy = bfd_alloc (abfd, len);
4396 if (copy == NULL)
4397 return (struct elf_link_hash_entry *) 0 - 1;
4398
4399 first = p - name + 1;
4400 memcpy (copy, name, first);
4401 memcpy (copy + first, name + first + 1, len - first);
4402
4403 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4404 if (h == NULL)
4405 {
4406 /* We also need to check references to the symbol without the
4407 version. */
4408 copy[first - 1] = '\0';
4409 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4410 FALSE, FALSE, FALSE);
4411 }
4412
4413 bfd_release (abfd, copy);
4414 return h;
4415 }
4416
4417 /* Add symbols from an ELF archive file to the linker hash table. We
4418 don't use _bfd_generic_link_add_archive_symbols because of a
4419 problem which arises on UnixWare. The UnixWare libc.so is an
4420 archive which includes an entry libc.so.1 which defines a bunch of
4421 symbols. The libc.so archive also includes a number of other
4422 object files, which also define symbols, some of which are the same
4423 as those defined in libc.so.1. Correct linking requires that we
4424 consider each object file in turn, and include it if it defines any
4425 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4426 this; it looks through the list of undefined symbols, and includes
4427 any object file which defines them. When this algorithm is used on
4428 UnixWare, it winds up pulling in libc.so.1 early and defining a
4429 bunch of symbols. This means that some of the other objects in the
4430 archive are not included in the link, which is incorrect since they
4431 precede libc.so.1 in the archive.
4432
4433 Fortunately, ELF archive handling is simpler than that done by
4434 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4435 oddities. In ELF, if we find a symbol in the archive map, and the
4436 symbol is currently undefined, we know that we must pull in that
4437 object file.
4438
4439 Unfortunately, we do have to make multiple passes over the symbol
4440 table until nothing further is resolved. */
4441
4442 static bfd_boolean
4443 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4444 {
4445 symindex c;
4446 bfd_boolean *defined = NULL;
4447 bfd_boolean *included = NULL;
4448 carsym *symdefs;
4449 bfd_boolean loop;
4450 bfd_size_type amt;
4451 const struct elf_backend_data *bed;
4452 struct elf_link_hash_entry * (*archive_symbol_lookup)
4453 (bfd *, struct bfd_link_info *, const char *);
4454
4455 if (! bfd_has_map (abfd))
4456 {
4457 /* An empty archive is a special case. */
4458 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4459 return TRUE;
4460 bfd_set_error (bfd_error_no_armap);
4461 return FALSE;
4462 }
4463
4464 /* Keep track of all symbols we know to be already defined, and all
4465 files we know to be already included. This is to speed up the
4466 second and subsequent passes. */
4467 c = bfd_ardata (abfd)->symdef_count;
4468 if (c == 0)
4469 return TRUE;
4470 amt = c;
4471 amt *= sizeof (bfd_boolean);
4472 defined = bfd_zmalloc (amt);
4473 included = bfd_zmalloc (amt);
4474 if (defined == NULL || included == NULL)
4475 goto error_return;
4476
4477 symdefs = bfd_ardata (abfd)->symdefs;
4478 bed = get_elf_backend_data (abfd);
4479 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4480
4481 do
4482 {
4483 file_ptr last;
4484 symindex i;
4485 carsym *symdef;
4486 carsym *symdefend;
4487
4488 loop = FALSE;
4489 last = -1;
4490
4491 symdef = symdefs;
4492 symdefend = symdef + c;
4493 for (i = 0; symdef < symdefend; symdef++, i++)
4494 {
4495 struct elf_link_hash_entry *h;
4496 bfd *element;
4497 struct bfd_link_hash_entry *undefs_tail;
4498 symindex mark;
4499
4500 if (defined[i] || included[i])
4501 continue;
4502 if (symdef->file_offset == last)
4503 {
4504 included[i] = TRUE;
4505 continue;
4506 }
4507
4508 h = archive_symbol_lookup (abfd, info, symdef->name);
4509 if (h == (struct elf_link_hash_entry *) 0 - 1)
4510 goto error_return;
4511
4512 if (h == NULL)
4513 continue;
4514
4515 if (h->root.type == bfd_link_hash_common)
4516 {
4517 /* We currently have a common symbol. The archive map contains
4518 a reference to this symbol, so we may want to include it. We
4519 only want to include it however, if this archive element
4520 contains a definition of the symbol, not just another common
4521 declaration of it.
4522
4523 Unfortunately some archivers (including GNU ar) will put
4524 declarations of common symbols into their archive maps, as
4525 well as real definitions, so we cannot just go by the archive
4526 map alone. Instead we must read in the element's symbol
4527 table and check that to see what kind of symbol definition
4528 this is. */
4529 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
4530 continue;
4531 }
4532 else if (h->root.type != bfd_link_hash_undefined)
4533 {
4534 if (h->root.type != bfd_link_hash_undefweak)
4535 defined[i] = TRUE;
4536 continue;
4537 }
4538
4539 /* We need to include this archive member. */
4540 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
4541 if (element == NULL)
4542 goto error_return;
4543
4544 if (! bfd_check_format (element, bfd_object))
4545 goto error_return;
4546
4547 /* Doublecheck that we have not included this object
4548 already--it should be impossible, but there may be
4549 something wrong with the archive. */
4550 if (element->archive_pass != 0)
4551 {
4552 bfd_set_error (bfd_error_bad_value);
4553 goto error_return;
4554 }
4555 element->archive_pass = 1;
4556
4557 undefs_tail = info->hash->undefs_tail;
4558
4559 if (! (*info->callbacks->add_archive_element) (info, element,
4560 symdef->name))
4561 goto error_return;
4562 if (! bfd_link_add_symbols (element, info))
4563 goto error_return;
4564
4565 /* If there are any new undefined symbols, we need to make
4566 another pass through the archive in order to see whether
4567 they can be defined. FIXME: This isn't perfect, because
4568 common symbols wind up on undefs_tail and because an
4569 undefined symbol which is defined later on in this pass
4570 does not require another pass. This isn't a bug, but it
4571 does make the code less efficient than it could be. */
4572 if (undefs_tail != info->hash->undefs_tail)
4573 loop = TRUE;
4574
4575 /* Look backward to mark all symbols from this object file
4576 which we have already seen in this pass. */
4577 mark = i;
4578 do
4579 {
4580 included[mark] = TRUE;
4581 if (mark == 0)
4582 break;
4583 --mark;
4584 }
4585 while (symdefs[mark].file_offset == symdef->file_offset);
4586
4587 /* We mark subsequent symbols from this object file as we go
4588 on through the loop. */
4589 last = symdef->file_offset;
4590 }
4591 }
4592 while (loop);
4593
4594 free (defined);
4595 free (included);
4596
4597 return TRUE;
4598
4599 error_return:
4600 if (defined != NULL)
4601 free (defined);
4602 if (included != NULL)
4603 free (included);
4604 return FALSE;
4605 }
4606
4607 /* Given an ELF BFD, add symbols to the global hash table as
4608 appropriate. */
4609
4610 bfd_boolean
4611 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
4612 {
4613 switch (bfd_get_format (abfd))
4614 {
4615 case bfd_object:
4616 return elf_link_add_object_symbols (abfd, info);
4617 case bfd_archive:
4618 return elf_link_add_archive_symbols (abfd, info);
4619 default:
4620 bfd_set_error (bfd_error_wrong_format);
4621 return FALSE;
4622 }
4623 }
4624 \f
4625 /* This function will be called though elf_link_hash_traverse to store
4626 all hash value of the exported symbols in an array. */
4627
4628 static bfd_boolean
4629 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
4630 {
4631 unsigned long **valuep = data;
4632 const char *name;
4633 char *p;
4634 unsigned long ha;
4635 char *alc = NULL;
4636
4637 if (h->root.type == bfd_link_hash_warning)
4638 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4639
4640 /* Ignore indirect symbols. These are added by the versioning code. */
4641 if (h->dynindx == -1)
4642 return TRUE;
4643
4644 name = h->root.root.string;
4645 p = strchr (name, ELF_VER_CHR);
4646 if (p != NULL)
4647 {
4648 alc = bfd_malloc (p - name + 1);
4649 memcpy (alc, name, p - name);
4650 alc[p - name] = '\0';
4651 name = alc;
4652 }
4653
4654 /* Compute the hash value. */
4655 ha = bfd_elf_hash (name);
4656
4657 /* Store the found hash value in the array given as the argument. */
4658 *(*valuep)++ = ha;
4659
4660 /* And store it in the struct so that we can put it in the hash table
4661 later. */
4662 h->u.elf_hash_value = ha;
4663
4664 if (alc != NULL)
4665 free (alc);
4666
4667 return TRUE;
4668 }
4669
4670 /* Array used to determine the number of hash table buckets to use
4671 based on the number of symbols there are. If there are fewer than
4672 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
4673 fewer than 37 we use 17 buckets, and so forth. We never use more
4674 than 32771 buckets. */
4675
4676 static const size_t elf_buckets[] =
4677 {
4678 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
4679 16411, 32771, 0
4680 };
4681
4682 /* Compute bucket count for hashing table. We do not use a static set
4683 of possible tables sizes anymore. Instead we determine for all
4684 possible reasonable sizes of the table the outcome (i.e., the
4685 number of collisions etc) and choose the best solution. The
4686 weighting functions are not too simple to allow the table to grow
4687 without bounds. Instead one of the weighting factors is the size.
4688 Therefore the result is always a good payoff between few collisions
4689 (= short chain lengths) and table size. */
4690 static size_t
4691 compute_bucket_count (struct bfd_link_info *info)
4692 {
4693 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
4694 size_t best_size = 0;
4695 unsigned long int *hashcodes;
4696 unsigned long int *hashcodesp;
4697 unsigned long int i;
4698 bfd_size_type amt;
4699
4700 /* Compute the hash values for all exported symbols. At the same
4701 time store the values in an array so that we could use them for
4702 optimizations. */
4703 amt = dynsymcount;
4704 amt *= sizeof (unsigned long int);
4705 hashcodes = bfd_malloc (amt);
4706 if (hashcodes == NULL)
4707 return 0;
4708 hashcodesp = hashcodes;
4709
4710 /* Put all hash values in HASHCODES. */
4711 elf_link_hash_traverse (elf_hash_table (info),
4712 elf_collect_hash_codes, &hashcodesp);
4713
4714 /* We have a problem here. The following code to optimize the table
4715 size requires an integer type with more the 32 bits. If
4716 BFD_HOST_U_64_BIT is set we know about such a type. */
4717 #ifdef BFD_HOST_U_64_BIT
4718 if (info->optimize)
4719 {
4720 unsigned long int nsyms = hashcodesp - hashcodes;
4721 size_t minsize;
4722 size_t maxsize;
4723 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
4724 unsigned long int *counts ;
4725 bfd *dynobj = elf_hash_table (info)->dynobj;
4726 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
4727
4728 /* Possible optimization parameters: if we have NSYMS symbols we say
4729 that the hashing table must at least have NSYMS/4 and at most
4730 2*NSYMS buckets. */
4731 minsize = nsyms / 4;
4732 if (minsize == 0)
4733 minsize = 1;
4734 best_size = maxsize = nsyms * 2;
4735
4736 /* Create array where we count the collisions in. We must use bfd_malloc
4737 since the size could be large. */
4738 amt = maxsize;
4739 amt *= sizeof (unsigned long int);
4740 counts = bfd_malloc (amt);
4741 if (counts == NULL)
4742 {
4743 free (hashcodes);
4744 return 0;
4745 }
4746
4747 /* Compute the "optimal" size for the hash table. The criteria is a
4748 minimal chain length. The minor criteria is (of course) the size
4749 of the table. */
4750 for (i = minsize; i < maxsize; ++i)
4751 {
4752 /* Walk through the array of hashcodes and count the collisions. */
4753 BFD_HOST_U_64_BIT max;
4754 unsigned long int j;
4755 unsigned long int fact;
4756
4757 memset (counts, '\0', i * sizeof (unsigned long int));
4758
4759 /* Determine how often each hash bucket is used. */
4760 for (j = 0; j < nsyms; ++j)
4761 ++counts[hashcodes[j] % i];
4762
4763 /* For the weight function we need some information about the
4764 pagesize on the target. This is information need not be 100%
4765 accurate. Since this information is not available (so far) we
4766 define it here to a reasonable default value. If it is crucial
4767 to have a better value some day simply define this value. */
4768 # ifndef BFD_TARGET_PAGESIZE
4769 # define BFD_TARGET_PAGESIZE (4096)
4770 # endif
4771
4772 /* We in any case need 2 + NSYMS entries for the size values and
4773 the chains. */
4774 max = (2 + nsyms) * (bed->s->arch_size / 8);
4775
4776 # if 1
4777 /* Variant 1: optimize for short chains. We add the squares
4778 of all the chain lengths (which favors many small chain
4779 over a few long chains). */
4780 for (j = 0; j < i; ++j)
4781 max += counts[j] * counts[j];
4782
4783 /* This adds penalties for the overall size of the table. */
4784 fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1;
4785 max *= fact * fact;
4786 # else
4787 /* Variant 2: Optimize a lot more for small table. Here we
4788 also add squares of the size but we also add penalties for
4789 empty slots (the +1 term). */
4790 for (j = 0; j < i; ++j)
4791 max += (1 + counts[j]) * (1 + counts[j]);
4792
4793 /* The overall size of the table is considered, but not as
4794 strong as in variant 1, where it is squared. */
4795 fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1;
4796 max *= fact;
4797 # endif
4798
4799 /* Compare with current best results. */
4800 if (max < best_chlen)
4801 {
4802 best_chlen = max;
4803 best_size = i;
4804 }
4805 }
4806
4807 free (counts);
4808 }
4809 else
4810 #endif /* defined (BFD_HOST_U_64_BIT) */
4811 {
4812 /* This is the fallback solution if no 64bit type is available or if we
4813 are not supposed to spend much time on optimizations. We select the
4814 bucket count using a fixed set of numbers. */
4815 for (i = 0; elf_buckets[i] != 0; i++)
4816 {
4817 best_size = elf_buckets[i];
4818 if (dynsymcount < elf_buckets[i + 1])
4819 break;
4820 }
4821 }
4822
4823 /* Free the arrays we needed. */
4824 free (hashcodes);
4825
4826 return best_size;
4827 }
4828
4829 /* Set up the sizes and contents of the ELF dynamic sections. This is
4830 called by the ELF linker emulation before_allocation routine. We
4831 must set the sizes of the sections before the linker sets the
4832 addresses of the various sections. */
4833
4834 bfd_boolean
4835 bfd_elf_size_dynamic_sections (bfd *output_bfd,
4836 const char *soname,
4837 const char *rpath,
4838 const char *filter_shlib,
4839 const char * const *auxiliary_filters,
4840 struct bfd_link_info *info,
4841 asection **sinterpptr,
4842 struct bfd_elf_version_tree *verdefs)
4843 {
4844 bfd_size_type soname_indx;
4845 bfd *dynobj;
4846 const struct elf_backend_data *bed;
4847 struct elf_assign_sym_version_info asvinfo;
4848
4849 *sinterpptr = NULL;
4850
4851 soname_indx = (bfd_size_type) -1;
4852
4853 if (!is_elf_hash_table (info->hash))
4854 return TRUE;
4855
4856 elf_tdata (output_bfd)->relro = info->relro;
4857 if (info->execstack)
4858 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
4859 else if (info->noexecstack)
4860 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
4861 else
4862 {
4863 bfd *inputobj;
4864 asection *notesec = NULL;
4865 int exec = 0;
4866
4867 for (inputobj = info->input_bfds;
4868 inputobj;
4869 inputobj = inputobj->link_next)
4870 {
4871 asection *s;
4872
4873 if (inputobj->flags & DYNAMIC)
4874 continue;
4875 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
4876 if (s)
4877 {
4878 if (s->flags & SEC_CODE)
4879 exec = PF_X;
4880 notesec = s;
4881 }
4882 else
4883 exec = PF_X;
4884 }
4885 if (notesec)
4886 {
4887 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
4888 if (exec && info->relocatable
4889 && notesec->output_section != bfd_abs_section_ptr)
4890 notesec->output_section->flags |= SEC_CODE;
4891 }
4892 }
4893
4894 /* Any syms created from now on start with -1 in
4895 got.refcount/offset and plt.refcount/offset. */
4896 elf_hash_table (info)->init_refcount = elf_hash_table (info)->init_offset;
4897
4898 /* The backend may have to create some sections regardless of whether
4899 we're dynamic or not. */
4900 bed = get_elf_backend_data (output_bfd);
4901 if (bed->elf_backend_always_size_sections
4902 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
4903 return FALSE;
4904
4905 dynobj = elf_hash_table (info)->dynobj;
4906
4907 /* If there were no dynamic objects in the link, there is nothing to
4908 do here. */
4909 if (dynobj == NULL)
4910 return TRUE;
4911
4912 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
4913 return FALSE;
4914
4915 if (elf_hash_table (info)->dynamic_sections_created)
4916 {
4917 struct elf_info_failed eif;
4918 struct elf_link_hash_entry *h;
4919 asection *dynstr;
4920 struct bfd_elf_version_tree *t;
4921 struct bfd_elf_version_expr *d;
4922 bfd_boolean all_defined;
4923
4924 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
4925 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
4926
4927 if (soname != NULL)
4928 {
4929 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
4930 soname, TRUE);
4931 if (soname_indx == (bfd_size_type) -1
4932 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
4933 return FALSE;
4934 }
4935
4936 if (info->symbolic)
4937 {
4938 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
4939 return FALSE;
4940 info->flags |= DF_SYMBOLIC;
4941 }
4942
4943 if (rpath != NULL)
4944 {
4945 bfd_size_type indx;
4946
4947 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
4948 TRUE);
4949 if (indx == (bfd_size_type) -1
4950 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
4951 return FALSE;
4952
4953 if (info->new_dtags)
4954 {
4955 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
4956 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
4957 return FALSE;
4958 }
4959 }
4960
4961 if (filter_shlib != NULL)
4962 {
4963 bfd_size_type indx;
4964
4965 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
4966 filter_shlib, TRUE);
4967 if (indx == (bfd_size_type) -1
4968 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
4969 return FALSE;
4970 }
4971
4972 if (auxiliary_filters != NULL)
4973 {
4974 const char * const *p;
4975
4976 for (p = auxiliary_filters; *p != NULL; p++)
4977 {
4978 bfd_size_type indx;
4979
4980 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
4981 *p, TRUE);
4982 if (indx == (bfd_size_type) -1
4983 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
4984 return FALSE;
4985 }
4986 }
4987
4988 eif.info = info;
4989 eif.verdefs = verdefs;
4990 eif.failed = FALSE;
4991
4992 /* If we are supposed to export all symbols into the dynamic symbol
4993 table (this is not the normal case), then do so. */
4994 if (info->export_dynamic)
4995 {
4996 elf_link_hash_traverse (elf_hash_table (info),
4997 _bfd_elf_export_symbol,
4998 &eif);
4999 if (eif.failed)
5000 return FALSE;
5001 }
5002
5003 /* Make all global versions with definition. */
5004 for (t = verdefs; t != NULL; t = t->next)
5005 for (d = t->globals.list; d != NULL; d = d->next)
5006 if (!d->symver && d->symbol)
5007 {
5008 const char *verstr, *name;
5009 size_t namelen, verlen, newlen;
5010 char *newname, *p;
5011 struct elf_link_hash_entry *newh;
5012
5013 name = d->symbol;
5014 namelen = strlen (name);
5015 verstr = t->name;
5016 verlen = strlen (verstr);
5017 newlen = namelen + verlen + 3;
5018
5019 newname = bfd_malloc (newlen);
5020 if (newname == NULL)
5021 return FALSE;
5022 memcpy (newname, name, namelen);
5023
5024 /* Check the hidden versioned definition. */
5025 p = newname + namelen;
5026 *p++ = ELF_VER_CHR;
5027 memcpy (p, verstr, verlen + 1);
5028 newh = elf_link_hash_lookup (elf_hash_table (info),
5029 newname, FALSE, FALSE,
5030 FALSE);
5031 if (newh == NULL
5032 || (newh->root.type != bfd_link_hash_defined
5033 && newh->root.type != bfd_link_hash_defweak))
5034 {
5035 /* Check the default versioned definition. */
5036 *p++ = ELF_VER_CHR;
5037 memcpy (p, verstr, verlen + 1);
5038 newh = elf_link_hash_lookup (elf_hash_table (info),
5039 newname, FALSE, FALSE,
5040 FALSE);
5041 }
5042 free (newname);
5043
5044 /* Mark this version if there is a definition and it is
5045 not defined in a shared object. */
5046 if (newh != NULL
5047 && !newh->def_dynamic
5048 && (newh->root.type == bfd_link_hash_defined
5049 || newh->root.type == bfd_link_hash_defweak))
5050 d->symver = 1;
5051 }
5052
5053 /* Attach all the symbols to their version information. */
5054 asvinfo.output_bfd = output_bfd;
5055 asvinfo.info = info;
5056 asvinfo.verdefs = verdefs;
5057 asvinfo.failed = FALSE;
5058
5059 elf_link_hash_traverse (elf_hash_table (info),
5060 _bfd_elf_link_assign_sym_version,
5061 &asvinfo);
5062 if (asvinfo.failed)
5063 return FALSE;
5064
5065 if (!info->allow_undefined_version)
5066 {
5067 /* Check if all global versions have a definition. */
5068 all_defined = TRUE;
5069 for (t = verdefs; t != NULL; t = t->next)
5070 for (d = t->globals.list; d != NULL; d = d->next)
5071 if (!d->symver && !d->script)
5072 {
5073 (*_bfd_error_handler)
5074 (_("%s: undefined version: %s"),
5075 d->pattern, t->name);
5076 all_defined = FALSE;
5077 }
5078
5079 if (!all_defined)
5080 {
5081 bfd_set_error (bfd_error_bad_value);
5082 return FALSE;
5083 }
5084 }
5085
5086 /* Find all symbols which were defined in a dynamic object and make
5087 the backend pick a reasonable value for them. */
5088 elf_link_hash_traverse (elf_hash_table (info),
5089 _bfd_elf_adjust_dynamic_symbol,
5090 &eif);
5091 if (eif.failed)
5092 return FALSE;
5093
5094 /* Add some entries to the .dynamic section. We fill in some of the
5095 values later, in bfd_elf_final_link, but we must add the entries
5096 now so that we know the final size of the .dynamic section. */
5097
5098 /* If there are initialization and/or finalization functions to
5099 call then add the corresponding DT_INIT/DT_FINI entries. */
5100 h = (info->init_function
5101 ? elf_link_hash_lookup (elf_hash_table (info),
5102 info->init_function, FALSE,
5103 FALSE, FALSE)
5104 : NULL);
5105 if (h != NULL
5106 && (h->ref_regular
5107 || h->def_regular))
5108 {
5109 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5110 return FALSE;
5111 }
5112 h = (info->fini_function
5113 ? elf_link_hash_lookup (elf_hash_table (info),
5114 info->fini_function, FALSE,
5115 FALSE, FALSE)
5116 : NULL);
5117 if (h != NULL
5118 && (h->ref_regular
5119 || h->def_regular))
5120 {
5121 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5122 return FALSE;
5123 }
5124
5125 if (bfd_get_section_by_name (output_bfd, ".preinit_array") != NULL)
5126 {
5127 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5128 if (! info->executable)
5129 {
5130 bfd *sub;
5131 asection *o;
5132
5133 for (sub = info->input_bfds; sub != NULL;
5134 sub = sub->link_next)
5135 for (o = sub->sections; o != NULL; o = o->next)
5136 if (elf_section_data (o)->this_hdr.sh_type
5137 == SHT_PREINIT_ARRAY)
5138 {
5139 (*_bfd_error_handler)
5140 (_("%B: .preinit_array section is not allowed in DSO"),
5141 sub);
5142 break;
5143 }
5144
5145 bfd_set_error (bfd_error_nonrepresentable_section);
5146 return FALSE;
5147 }
5148
5149 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5150 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5151 return FALSE;
5152 }
5153 if (bfd_get_section_by_name (output_bfd, ".init_array") != NULL)
5154 {
5155 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5156 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5157 return FALSE;
5158 }
5159 if (bfd_get_section_by_name (output_bfd, ".fini_array") != NULL)
5160 {
5161 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5162 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5163 return FALSE;
5164 }
5165
5166 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5167 /* If .dynstr is excluded from the link, we don't want any of
5168 these tags. Strictly, we should be checking each section
5169 individually; This quick check covers for the case where
5170 someone does a /DISCARD/ : { *(*) }. */
5171 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5172 {
5173 bfd_size_type strsize;
5174
5175 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5176 if (!_bfd_elf_add_dynamic_entry (info, DT_HASH, 0)
5177 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5178 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5179 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5180 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5181 bed->s->sizeof_sym))
5182 return FALSE;
5183 }
5184 }
5185
5186 /* The backend must work out the sizes of all the other dynamic
5187 sections. */
5188 if (bed->elf_backend_size_dynamic_sections
5189 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5190 return FALSE;
5191
5192 if (elf_hash_table (info)->dynamic_sections_created)
5193 {
5194 bfd_size_type dynsymcount;
5195 asection *s;
5196 size_t bucketcount = 0;
5197 size_t hash_entry_size;
5198 unsigned int dtagcount;
5199
5200 /* Set up the version definition section. */
5201 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5202 BFD_ASSERT (s != NULL);
5203
5204 /* We may have created additional version definitions if we are
5205 just linking a regular application. */
5206 verdefs = asvinfo.verdefs;
5207
5208 /* Skip anonymous version tag. */
5209 if (verdefs != NULL && verdefs->vernum == 0)
5210 verdefs = verdefs->next;
5211
5212 if (verdefs == NULL && !info->create_default_symver)
5213 _bfd_strip_section_from_output (info, s);
5214 else
5215 {
5216 unsigned int cdefs;
5217 bfd_size_type size;
5218 struct bfd_elf_version_tree *t;
5219 bfd_byte *p;
5220 Elf_Internal_Verdef def;
5221 Elf_Internal_Verdaux defaux;
5222 struct bfd_link_hash_entry *bh;
5223 struct elf_link_hash_entry *h;
5224 const char *name;
5225
5226 cdefs = 0;
5227 size = 0;
5228
5229 /* Make space for the base version. */
5230 size += sizeof (Elf_External_Verdef);
5231 size += sizeof (Elf_External_Verdaux);
5232 ++cdefs;
5233
5234 /* Make space for the default version. */
5235 if (info->create_default_symver)
5236 {
5237 size += sizeof (Elf_External_Verdef);
5238 ++cdefs;
5239 }
5240
5241 for (t = verdefs; t != NULL; t = t->next)
5242 {
5243 struct bfd_elf_version_deps *n;
5244
5245 size += sizeof (Elf_External_Verdef);
5246 size += sizeof (Elf_External_Verdaux);
5247 ++cdefs;
5248
5249 for (n = t->deps; n != NULL; n = n->next)
5250 size += sizeof (Elf_External_Verdaux);
5251 }
5252
5253 s->size = size;
5254 s->contents = bfd_alloc (output_bfd, s->size);
5255 if (s->contents == NULL && s->size != 0)
5256 return FALSE;
5257
5258 /* Fill in the version definition section. */
5259
5260 p = s->contents;
5261
5262 def.vd_version = VER_DEF_CURRENT;
5263 def.vd_flags = VER_FLG_BASE;
5264 def.vd_ndx = 1;
5265 def.vd_cnt = 1;
5266 if (info->create_default_symver)
5267 {
5268 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5269 def.vd_next = sizeof (Elf_External_Verdef);
5270 }
5271 else
5272 {
5273 def.vd_aux = sizeof (Elf_External_Verdef);
5274 def.vd_next = (sizeof (Elf_External_Verdef)
5275 + sizeof (Elf_External_Verdaux));
5276 }
5277
5278 if (soname_indx != (bfd_size_type) -1)
5279 {
5280 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5281 soname_indx);
5282 def.vd_hash = bfd_elf_hash (soname);
5283 defaux.vda_name = soname_indx;
5284 name = soname;
5285 }
5286 else
5287 {
5288 bfd_size_type indx;
5289
5290 name = basename (output_bfd->filename);
5291 def.vd_hash = bfd_elf_hash (name);
5292 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5293 name, FALSE);
5294 if (indx == (bfd_size_type) -1)
5295 return FALSE;
5296 defaux.vda_name = indx;
5297 }
5298 defaux.vda_next = 0;
5299
5300 _bfd_elf_swap_verdef_out (output_bfd, &def,
5301 (Elf_External_Verdef *) p);
5302 p += sizeof (Elf_External_Verdef);
5303 if (info->create_default_symver)
5304 {
5305 /* Add a symbol representing this version. */
5306 bh = NULL;
5307 if (! (_bfd_generic_link_add_one_symbol
5308 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
5309 0, NULL, FALSE,
5310 get_elf_backend_data (dynobj)->collect, &bh)))
5311 return FALSE;
5312 h = (struct elf_link_hash_entry *) bh;
5313 h->non_elf = 0;
5314 h->def_regular = 1;
5315 h->type = STT_OBJECT;
5316 h->verinfo.vertree = NULL;
5317
5318 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5319 return FALSE;
5320
5321 /* Create a duplicate of the base version with the same
5322 aux block, but different flags. */
5323 def.vd_flags = 0;
5324 def.vd_ndx = 2;
5325 def.vd_aux = sizeof (Elf_External_Verdef);
5326 if (verdefs)
5327 def.vd_next = (sizeof (Elf_External_Verdef)
5328 + sizeof (Elf_External_Verdaux));
5329 else
5330 def.vd_next = 0;
5331 _bfd_elf_swap_verdef_out (output_bfd, &def,
5332 (Elf_External_Verdef *) p);
5333 p += sizeof (Elf_External_Verdef);
5334 }
5335 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5336 (Elf_External_Verdaux *) p);
5337 p += sizeof (Elf_External_Verdaux);
5338
5339 for (t = verdefs; t != NULL; t = t->next)
5340 {
5341 unsigned int cdeps;
5342 struct bfd_elf_version_deps *n;
5343
5344 cdeps = 0;
5345 for (n = t->deps; n != NULL; n = n->next)
5346 ++cdeps;
5347
5348 /* Add a symbol representing this version. */
5349 bh = NULL;
5350 if (! (_bfd_generic_link_add_one_symbol
5351 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
5352 0, NULL, FALSE,
5353 get_elf_backend_data (dynobj)->collect, &bh)))
5354 return FALSE;
5355 h = (struct elf_link_hash_entry *) bh;
5356 h->non_elf = 0;
5357 h->def_regular = 1;
5358 h->type = STT_OBJECT;
5359 h->verinfo.vertree = t;
5360
5361 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5362 return FALSE;
5363
5364 def.vd_version = VER_DEF_CURRENT;
5365 def.vd_flags = 0;
5366 if (t->globals.list == NULL
5367 && t->locals.list == NULL
5368 && ! t->used)
5369 def.vd_flags |= VER_FLG_WEAK;
5370 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
5371 def.vd_cnt = cdeps + 1;
5372 def.vd_hash = bfd_elf_hash (t->name);
5373 def.vd_aux = sizeof (Elf_External_Verdef);
5374 def.vd_next = 0;
5375 if (t->next != NULL)
5376 def.vd_next = (sizeof (Elf_External_Verdef)
5377 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
5378
5379 _bfd_elf_swap_verdef_out (output_bfd, &def,
5380 (Elf_External_Verdef *) p);
5381 p += sizeof (Elf_External_Verdef);
5382
5383 defaux.vda_name = h->dynstr_index;
5384 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5385 h->dynstr_index);
5386 defaux.vda_next = 0;
5387 if (t->deps != NULL)
5388 defaux.vda_next = sizeof (Elf_External_Verdaux);
5389 t->name_indx = defaux.vda_name;
5390
5391 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5392 (Elf_External_Verdaux *) p);
5393 p += sizeof (Elf_External_Verdaux);
5394
5395 for (n = t->deps; n != NULL; n = n->next)
5396 {
5397 if (n->version_needed == NULL)
5398 {
5399 /* This can happen if there was an error in the
5400 version script. */
5401 defaux.vda_name = 0;
5402 }
5403 else
5404 {
5405 defaux.vda_name = n->version_needed->name_indx;
5406 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5407 defaux.vda_name);
5408 }
5409 if (n->next == NULL)
5410 defaux.vda_next = 0;
5411 else
5412 defaux.vda_next = sizeof (Elf_External_Verdaux);
5413
5414 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5415 (Elf_External_Verdaux *) p);
5416 p += sizeof (Elf_External_Verdaux);
5417 }
5418 }
5419
5420 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
5421 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
5422 return FALSE;
5423
5424 elf_tdata (output_bfd)->cverdefs = cdefs;
5425 }
5426
5427 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
5428 {
5429 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
5430 return FALSE;
5431 }
5432 else if (info->flags & DF_BIND_NOW)
5433 {
5434 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
5435 return FALSE;
5436 }
5437
5438 if (info->flags_1)
5439 {
5440 if (info->executable)
5441 info->flags_1 &= ~ (DF_1_INITFIRST
5442 | DF_1_NODELETE
5443 | DF_1_NOOPEN);
5444 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
5445 return FALSE;
5446 }
5447
5448 /* Work out the size of the version reference section. */
5449
5450 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
5451 BFD_ASSERT (s != NULL);
5452 {
5453 struct elf_find_verdep_info sinfo;
5454
5455 sinfo.output_bfd = output_bfd;
5456 sinfo.info = info;
5457 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
5458 if (sinfo.vers == 0)
5459 sinfo.vers = 1;
5460 sinfo.failed = FALSE;
5461
5462 elf_link_hash_traverse (elf_hash_table (info),
5463 _bfd_elf_link_find_version_dependencies,
5464 &sinfo);
5465
5466 if (elf_tdata (output_bfd)->verref == NULL)
5467 _bfd_strip_section_from_output (info, s);
5468 else
5469 {
5470 Elf_Internal_Verneed *t;
5471 unsigned int size;
5472 unsigned int crefs;
5473 bfd_byte *p;
5474
5475 /* Build the version definition section. */
5476 size = 0;
5477 crefs = 0;
5478 for (t = elf_tdata (output_bfd)->verref;
5479 t != NULL;
5480 t = t->vn_nextref)
5481 {
5482 Elf_Internal_Vernaux *a;
5483
5484 size += sizeof (Elf_External_Verneed);
5485 ++crefs;
5486 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5487 size += sizeof (Elf_External_Vernaux);
5488 }
5489
5490 s->size = size;
5491 s->contents = bfd_alloc (output_bfd, s->size);
5492 if (s->contents == NULL)
5493 return FALSE;
5494
5495 p = s->contents;
5496 for (t = elf_tdata (output_bfd)->verref;
5497 t != NULL;
5498 t = t->vn_nextref)
5499 {
5500 unsigned int caux;
5501 Elf_Internal_Vernaux *a;
5502 bfd_size_type indx;
5503
5504 caux = 0;
5505 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5506 ++caux;
5507
5508 t->vn_version = VER_NEED_CURRENT;
5509 t->vn_cnt = caux;
5510 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5511 elf_dt_name (t->vn_bfd) != NULL
5512 ? elf_dt_name (t->vn_bfd)
5513 : basename (t->vn_bfd->filename),
5514 FALSE);
5515 if (indx == (bfd_size_type) -1)
5516 return FALSE;
5517 t->vn_file = indx;
5518 t->vn_aux = sizeof (Elf_External_Verneed);
5519 if (t->vn_nextref == NULL)
5520 t->vn_next = 0;
5521 else
5522 t->vn_next = (sizeof (Elf_External_Verneed)
5523 + caux * sizeof (Elf_External_Vernaux));
5524
5525 _bfd_elf_swap_verneed_out (output_bfd, t,
5526 (Elf_External_Verneed *) p);
5527 p += sizeof (Elf_External_Verneed);
5528
5529 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5530 {
5531 a->vna_hash = bfd_elf_hash (a->vna_nodename);
5532 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5533 a->vna_nodename, FALSE);
5534 if (indx == (bfd_size_type) -1)
5535 return FALSE;
5536 a->vna_name = indx;
5537 if (a->vna_nextptr == NULL)
5538 a->vna_next = 0;
5539 else
5540 a->vna_next = sizeof (Elf_External_Vernaux);
5541
5542 _bfd_elf_swap_vernaux_out (output_bfd, a,
5543 (Elf_External_Vernaux *) p);
5544 p += sizeof (Elf_External_Vernaux);
5545 }
5546 }
5547
5548 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
5549 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
5550 return FALSE;
5551
5552 elf_tdata (output_bfd)->cverrefs = crefs;
5553 }
5554 }
5555
5556 /* Assign dynsym indicies. In a shared library we generate a
5557 section symbol for each output section, which come first.
5558 Next come all of the back-end allocated local dynamic syms,
5559 followed by the rest of the global symbols. */
5560
5561 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
5562
5563 /* Work out the size of the symbol version section. */
5564 s = bfd_get_section_by_name (dynobj, ".gnu.version");
5565 BFD_ASSERT (s != NULL);
5566 if (dynsymcount == 0
5567 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL
5568 && !info->create_default_symver))
5569 {
5570 _bfd_strip_section_from_output (info, s);
5571 /* The DYNSYMCOUNT might have changed if we were going to
5572 output a dynamic symbol table entry for S. */
5573 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
5574 }
5575 else
5576 {
5577 s->size = dynsymcount * sizeof (Elf_External_Versym);
5578 s->contents = bfd_zalloc (output_bfd, s->size);
5579 if (s->contents == NULL)
5580 return FALSE;
5581
5582 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
5583 return FALSE;
5584 }
5585
5586 /* Set the size of the .dynsym and .hash sections. We counted
5587 the number of dynamic symbols in elf_link_add_object_symbols.
5588 We will build the contents of .dynsym and .hash when we build
5589 the final symbol table, because until then we do not know the
5590 correct value to give the symbols. We built the .dynstr
5591 section as we went along in elf_link_add_object_symbols. */
5592 s = bfd_get_section_by_name (dynobj, ".dynsym");
5593 BFD_ASSERT (s != NULL);
5594 s->size = dynsymcount * bed->s->sizeof_sym;
5595 s->contents = bfd_alloc (output_bfd, s->size);
5596 if (s->contents == NULL && s->size != 0)
5597 return FALSE;
5598
5599 if (dynsymcount != 0)
5600 {
5601 Elf_Internal_Sym isym;
5602
5603 /* The first entry in .dynsym is a dummy symbol. */
5604 isym.st_value = 0;
5605 isym.st_size = 0;
5606 isym.st_name = 0;
5607 isym.st_info = 0;
5608 isym.st_other = 0;
5609 isym.st_shndx = 0;
5610 bed->s->swap_symbol_out (output_bfd, &isym, s->contents, 0);
5611 }
5612
5613 /* Compute the size of the hashing table. As a side effect this
5614 computes the hash values for all the names we export. */
5615 bucketcount = compute_bucket_count (info);
5616
5617 s = bfd_get_section_by_name (dynobj, ".hash");
5618 BFD_ASSERT (s != NULL);
5619 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
5620 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
5621 s->contents = bfd_zalloc (output_bfd, s->size);
5622 if (s->contents == NULL)
5623 return FALSE;
5624
5625 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
5626 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
5627 s->contents + hash_entry_size);
5628
5629 elf_hash_table (info)->bucketcount = bucketcount;
5630
5631 s = bfd_get_section_by_name (dynobj, ".dynstr");
5632 BFD_ASSERT (s != NULL);
5633
5634 elf_finalize_dynstr (output_bfd, info);
5635
5636 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5637
5638 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
5639 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
5640 return FALSE;
5641 }
5642
5643 return TRUE;
5644 }
5645
5646 /* Final phase of ELF linker. */
5647
5648 /* A structure we use to avoid passing large numbers of arguments. */
5649
5650 struct elf_final_link_info
5651 {
5652 /* General link information. */
5653 struct bfd_link_info *info;
5654 /* Output BFD. */
5655 bfd *output_bfd;
5656 /* Symbol string table. */
5657 struct bfd_strtab_hash *symstrtab;
5658 /* .dynsym section. */
5659 asection *dynsym_sec;
5660 /* .hash section. */
5661 asection *hash_sec;
5662 /* symbol version section (.gnu.version). */
5663 asection *symver_sec;
5664 /* Buffer large enough to hold contents of any section. */
5665 bfd_byte *contents;
5666 /* Buffer large enough to hold external relocs of any section. */
5667 void *external_relocs;
5668 /* Buffer large enough to hold internal relocs of any section. */
5669 Elf_Internal_Rela *internal_relocs;
5670 /* Buffer large enough to hold external local symbols of any input
5671 BFD. */
5672 bfd_byte *external_syms;
5673 /* And a buffer for symbol section indices. */
5674 Elf_External_Sym_Shndx *locsym_shndx;
5675 /* Buffer large enough to hold internal local symbols of any input
5676 BFD. */
5677 Elf_Internal_Sym *internal_syms;
5678 /* Array large enough to hold a symbol index for each local symbol
5679 of any input BFD. */
5680 long *indices;
5681 /* Array large enough to hold a section pointer for each local
5682 symbol of any input BFD. */
5683 asection **sections;
5684 /* Buffer to hold swapped out symbols. */
5685 bfd_byte *symbuf;
5686 /* And one for symbol section indices. */
5687 Elf_External_Sym_Shndx *symshndxbuf;
5688 /* Number of swapped out symbols in buffer. */
5689 size_t symbuf_count;
5690 /* Number of symbols which fit in symbuf. */
5691 size_t symbuf_size;
5692 /* And same for symshndxbuf. */
5693 size_t shndxbuf_size;
5694 };
5695
5696 /* This struct is used to pass information to elf_link_output_extsym. */
5697
5698 struct elf_outext_info
5699 {
5700 bfd_boolean failed;
5701 bfd_boolean localsyms;
5702 struct elf_final_link_info *finfo;
5703 };
5704
5705 /* When performing a relocatable link, the input relocations are
5706 preserved. But, if they reference global symbols, the indices
5707 referenced must be updated. Update all the relocations in
5708 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
5709
5710 static void
5711 elf_link_adjust_relocs (bfd *abfd,
5712 Elf_Internal_Shdr *rel_hdr,
5713 unsigned int count,
5714 struct elf_link_hash_entry **rel_hash)
5715 {
5716 unsigned int i;
5717 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5718 bfd_byte *erela;
5719 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
5720 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
5721 bfd_vma r_type_mask;
5722 int r_sym_shift;
5723
5724 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
5725 {
5726 swap_in = bed->s->swap_reloc_in;
5727 swap_out = bed->s->swap_reloc_out;
5728 }
5729 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
5730 {
5731 swap_in = bed->s->swap_reloca_in;
5732 swap_out = bed->s->swap_reloca_out;
5733 }
5734 else
5735 abort ();
5736
5737 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
5738 abort ();
5739
5740 if (bed->s->arch_size == 32)
5741 {
5742 r_type_mask = 0xff;
5743 r_sym_shift = 8;
5744 }
5745 else
5746 {
5747 r_type_mask = 0xffffffff;
5748 r_sym_shift = 32;
5749 }
5750
5751 erela = rel_hdr->contents;
5752 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
5753 {
5754 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
5755 unsigned int j;
5756
5757 if (*rel_hash == NULL)
5758 continue;
5759
5760 BFD_ASSERT ((*rel_hash)->indx >= 0);
5761
5762 (*swap_in) (abfd, erela, irela);
5763 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
5764 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
5765 | (irela[j].r_info & r_type_mask));
5766 (*swap_out) (abfd, irela, erela);
5767 }
5768 }
5769
5770 struct elf_link_sort_rela
5771 {
5772 union {
5773 bfd_vma offset;
5774 bfd_vma sym_mask;
5775 } u;
5776 enum elf_reloc_type_class type;
5777 /* We use this as an array of size int_rels_per_ext_rel. */
5778 Elf_Internal_Rela rela[1];
5779 };
5780
5781 static int
5782 elf_link_sort_cmp1 (const void *A, const void *B)
5783 {
5784 const struct elf_link_sort_rela *a = A;
5785 const struct elf_link_sort_rela *b = B;
5786 int relativea, relativeb;
5787
5788 relativea = a->type == reloc_class_relative;
5789 relativeb = b->type == reloc_class_relative;
5790
5791 if (relativea < relativeb)
5792 return 1;
5793 if (relativea > relativeb)
5794 return -1;
5795 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
5796 return -1;
5797 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
5798 return 1;
5799 if (a->rela->r_offset < b->rela->r_offset)
5800 return -1;
5801 if (a->rela->r_offset > b->rela->r_offset)
5802 return 1;
5803 return 0;
5804 }
5805
5806 static int
5807 elf_link_sort_cmp2 (const void *A, const void *B)
5808 {
5809 const struct elf_link_sort_rela *a = A;
5810 const struct elf_link_sort_rela *b = B;
5811 int copya, copyb;
5812
5813 if (a->u.offset < b->u.offset)
5814 return -1;
5815 if (a->u.offset > b->u.offset)
5816 return 1;
5817 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
5818 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
5819 if (copya < copyb)
5820 return -1;
5821 if (copya > copyb)
5822 return 1;
5823 if (a->rela->r_offset < b->rela->r_offset)
5824 return -1;
5825 if (a->rela->r_offset > b->rela->r_offset)
5826 return 1;
5827 return 0;
5828 }
5829
5830 static size_t
5831 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
5832 {
5833 asection *reldyn;
5834 bfd_size_type count, size;
5835 size_t i, ret, sort_elt, ext_size;
5836 bfd_byte *sort, *s_non_relative, *p;
5837 struct elf_link_sort_rela *sq;
5838 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5839 int i2e = bed->s->int_rels_per_ext_rel;
5840 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
5841 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
5842 struct bfd_link_order *lo;
5843 bfd_vma r_sym_mask;
5844
5845 reldyn = bfd_get_section_by_name (abfd, ".rela.dyn");
5846 if (reldyn == NULL || reldyn->size == 0)
5847 {
5848 reldyn = bfd_get_section_by_name (abfd, ".rel.dyn");
5849 if (reldyn == NULL || reldyn->size == 0)
5850 return 0;
5851 ext_size = bed->s->sizeof_rel;
5852 swap_in = bed->s->swap_reloc_in;
5853 swap_out = bed->s->swap_reloc_out;
5854 }
5855 else
5856 {
5857 ext_size = bed->s->sizeof_rela;
5858 swap_in = bed->s->swap_reloca_in;
5859 swap_out = bed->s->swap_reloca_out;
5860 }
5861 count = reldyn->size / ext_size;
5862
5863 size = 0;
5864 for (lo = reldyn->link_order_head; lo != NULL; lo = lo->next)
5865 if (lo->type == bfd_indirect_link_order)
5866 {
5867 asection *o = lo->u.indirect.section;
5868 size += o->size;
5869 }
5870
5871 if (size != reldyn->size)
5872 return 0;
5873
5874 sort_elt = (sizeof (struct elf_link_sort_rela)
5875 + (i2e - 1) * sizeof (Elf_Internal_Rela));
5876 sort = bfd_zmalloc (sort_elt * count);
5877 if (sort == NULL)
5878 {
5879 (*info->callbacks->warning)
5880 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
5881 return 0;
5882 }
5883
5884 if (bed->s->arch_size == 32)
5885 r_sym_mask = ~(bfd_vma) 0xff;
5886 else
5887 r_sym_mask = ~(bfd_vma) 0xffffffff;
5888
5889 for (lo = reldyn->link_order_head; lo != NULL; lo = lo->next)
5890 if (lo->type == bfd_indirect_link_order)
5891 {
5892 bfd_byte *erel, *erelend;
5893 asection *o = lo->u.indirect.section;
5894
5895 if (o->contents == NULL && o->size != 0)
5896 {
5897 /* This is a reloc section that is being handled as a normal
5898 section. See bfd_section_from_shdr. We can't combine
5899 relocs in this case. */
5900 free (sort);
5901 return 0;
5902 }
5903 erel = o->contents;
5904 erelend = o->contents + o->size;
5905 p = sort + o->output_offset / ext_size * sort_elt;
5906 while (erel < erelend)
5907 {
5908 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
5909 (*swap_in) (abfd, erel, s->rela);
5910 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
5911 s->u.sym_mask = r_sym_mask;
5912 p += sort_elt;
5913 erel += ext_size;
5914 }
5915 }
5916
5917 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
5918
5919 for (i = 0, p = sort; i < count; i++, p += sort_elt)
5920 {
5921 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
5922 if (s->type != reloc_class_relative)
5923 break;
5924 }
5925 ret = i;
5926 s_non_relative = p;
5927
5928 sq = (struct elf_link_sort_rela *) s_non_relative;
5929 for (; i < count; i++, p += sort_elt)
5930 {
5931 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
5932 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
5933 sq = sp;
5934 sp->u.offset = sq->rela->r_offset;
5935 }
5936
5937 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
5938
5939 for (lo = reldyn->link_order_head; lo != NULL; lo = lo->next)
5940 if (lo->type == bfd_indirect_link_order)
5941 {
5942 bfd_byte *erel, *erelend;
5943 asection *o = lo->u.indirect.section;
5944
5945 erel = o->contents;
5946 erelend = o->contents + o->size;
5947 p = sort + o->output_offset / ext_size * sort_elt;
5948 while (erel < erelend)
5949 {
5950 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
5951 (*swap_out) (abfd, s->rela, erel);
5952 p += sort_elt;
5953 erel += ext_size;
5954 }
5955 }
5956
5957 free (sort);
5958 *psec = reldyn;
5959 return ret;
5960 }
5961
5962 /* Flush the output symbols to the file. */
5963
5964 static bfd_boolean
5965 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
5966 const struct elf_backend_data *bed)
5967 {
5968 if (finfo->symbuf_count > 0)
5969 {
5970 Elf_Internal_Shdr *hdr;
5971 file_ptr pos;
5972 bfd_size_type amt;
5973
5974 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
5975 pos = hdr->sh_offset + hdr->sh_size;
5976 amt = finfo->symbuf_count * bed->s->sizeof_sym;
5977 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
5978 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
5979 return FALSE;
5980
5981 hdr->sh_size += amt;
5982 finfo->symbuf_count = 0;
5983 }
5984
5985 return TRUE;
5986 }
5987
5988 /* Add a symbol to the output symbol table. */
5989
5990 static bfd_boolean
5991 elf_link_output_sym (struct elf_final_link_info *finfo,
5992 const char *name,
5993 Elf_Internal_Sym *elfsym,
5994 asection *input_sec,
5995 struct elf_link_hash_entry *h)
5996 {
5997 bfd_byte *dest;
5998 Elf_External_Sym_Shndx *destshndx;
5999 bfd_boolean (*output_symbol_hook)
6000 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
6001 struct elf_link_hash_entry *);
6002 const struct elf_backend_data *bed;
6003
6004 bed = get_elf_backend_data (finfo->output_bfd);
6005 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
6006 if (output_symbol_hook != NULL)
6007 {
6008 if (! (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h))
6009 return FALSE;
6010 }
6011
6012 if (name == NULL || *name == '\0')
6013 elfsym->st_name = 0;
6014 else if (input_sec->flags & SEC_EXCLUDE)
6015 elfsym->st_name = 0;
6016 else
6017 {
6018 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
6019 name, TRUE, FALSE);
6020 if (elfsym->st_name == (unsigned long) -1)
6021 return FALSE;
6022 }
6023
6024 if (finfo->symbuf_count >= finfo->symbuf_size)
6025 {
6026 if (! elf_link_flush_output_syms (finfo, bed))
6027 return FALSE;
6028 }
6029
6030 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
6031 destshndx = finfo->symshndxbuf;
6032 if (destshndx != NULL)
6033 {
6034 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
6035 {
6036 bfd_size_type amt;
6037
6038 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
6039 finfo->symshndxbuf = destshndx = bfd_realloc (destshndx, amt * 2);
6040 if (destshndx == NULL)
6041 return FALSE;
6042 memset ((char *) destshndx + amt, 0, amt);
6043 finfo->shndxbuf_size *= 2;
6044 }
6045 destshndx += bfd_get_symcount (finfo->output_bfd);
6046 }
6047
6048 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
6049 finfo->symbuf_count += 1;
6050 bfd_get_symcount (finfo->output_bfd) += 1;
6051
6052 return TRUE;
6053 }
6054
6055 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
6056 allowing an unsatisfied unversioned symbol in the DSO to match a
6057 versioned symbol that would normally require an explicit version.
6058 We also handle the case that a DSO references a hidden symbol
6059 which may be satisfied by a versioned symbol in another DSO. */
6060
6061 static bfd_boolean
6062 elf_link_check_versioned_symbol (struct bfd_link_info *info,
6063 const struct elf_backend_data *bed,
6064 struct elf_link_hash_entry *h)
6065 {
6066 bfd *abfd;
6067 struct elf_link_loaded_list *loaded;
6068
6069 if (!is_elf_hash_table (info->hash))
6070 return FALSE;
6071
6072 switch (h->root.type)
6073 {
6074 default:
6075 abfd = NULL;
6076 break;
6077
6078 case bfd_link_hash_undefined:
6079 case bfd_link_hash_undefweak:
6080 abfd = h->root.u.undef.abfd;
6081 if ((abfd->flags & DYNAMIC) == 0
6082 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
6083 return FALSE;
6084 break;
6085
6086 case bfd_link_hash_defined:
6087 case bfd_link_hash_defweak:
6088 abfd = h->root.u.def.section->owner;
6089 break;
6090
6091 case bfd_link_hash_common:
6092 abfd = h->root.u.c.p->section->owner;
6093 break;
6094 }
6095 BFD_ASSERT (abfd != NULL);
6096
6097 for (loaded = elf_hash_table (info)->loaded;
6098 loaded != NULL;
6099 loaded = loaded->next)
6100 {
6101 bfd *input;
6102 Elf_Internal_Shdr *hdr;
6103 bfd_size_type symcount;
6104 bfd_size_type extsymcount;
6105 bfd_size_type extsymoff;
6106 Elf_Internal_Shdr *versymhdr;
6107 Elf_Internal_Sym *isym;
6108 Elf_Internal_Sym *isymend;
6109 Elf_Internal_Sym *isymbuf;
6110 Elf_External_Versym *ever;
6111 Elf_External_Versym *extversym;
6112
6113 input = loaded->abfd;
6114
6115 /* We check each DSO for a possible hidden versioned definition. */
6116 if (input == abfd
6117 || (input->flags & DYNAMIC) == 0
6118 || elf_dynversym (input) == 0)
6119 continue;
6120
6121 hdr = &elf_tdata (input)->dynsymtab_hdr;
6122
6123 symcount = hdr->sh_size / bed->s->sizeof_sym;
6124 if (elf_bad_symtab (input))
6125 {
6126 extsymcount = symcount;
6127 extsymoff = 0;
6128 }
6129 else
6130 {
6131 extsymcount = symcount - hdr->sh_info;
6132 extsymoff = hdr->sh_info;
6133 }
6134
6135 if (extsymcount == 0)
6136 continue;
6137
6138 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
6139 NULL, NULL, NULL);
6140 if (isymbuf == NULL)
6141 return FALSE;
6142
6143 /* Read in any version definitions. */
6144 versymhdr = &elf_tdata (input)->dynversym_hdr;
6145 extversym = bfd_malloc (versymhdr->sh_size);
6146 if (extversym == NULL)
6147 goto error_ret;
6148
6149 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
6150 || (bfd_bread (extversym, versymhdr->sh_size, input)
6151 != versymhdr->sh_size))
6152 {
6153 free (extversym);
6154 error_ret:
6155 free (isymbuf);
6156 return FALSE;
6157 }
6158
6159 ever = extversym + extsymoff;
6160 isymend = isymbuf + extsymcount;
6161 for (isym = isymbuf; isym < isymend; isym++, ever++)
6162 {
6163 const char *name;
6164 Elf_Internal_Versym iver;
6165 unsigned short version_index;
6166
6167 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
6168 || isym->st_shndx == SHN_UNDEF)
6169 continue;
6170
6171 name = bfd_elf_string_from_elf_section (input,
6172 hdr->sh_link,
6173 isym->st_name);
6174 if (strcmp (name, h->root.root.string) != 0)
6175 continue;
6176
6177 _bfd_elf_swap_versym_in (input, ever, &iver);
6178
6179 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
6180 {
6181 /* If we have a non-hidden versioned sym, then it should
6182 have provided a definition for the undefined sym. */
6183 abort ();
6184 }
6185
6186 version_index = iver.vs_vers & VERSYM_VERSION;
6187 if (version_index == 1 || version_index == 2)
6188 {
6189 /* This is the base or first version. We can use it. */
6190 free (extversym);
6191 free (isymbuf);
6192 return TRUE;
6193 }
6194 }
6195
6196 free (extversym);
6197 free (isymbuf);
6198 }
6199
6200 return FALSE;
6201 }
6202
6203 /* Add an external symbol to the symbol table. This is called from
6204 the hash table traversal routine. When generating a shared object,
6205 we go through the symbol table twice. The first time we output
6206 anything that might have been forced to local scope in a version
6207 script. The second time we output the symbols that are still
6208 global symbols. */
6209
6210 static bfd_boolean
6211 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
6212 {
6213 struct elf_outext_info *eoinfo = data;
6214 struct elf_final_link_info *finfo = eoinfo->finfo;
6215 bfd_boolean strip;
6216 Elf_Internal_Sym sym;
6217 asection *input_sec;
6218 const struct elf_backend_data *bed;
6219
6220 if (h->root.type == bfd_link_hash_warning)
6221 {
6222 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6223 if (h->root.type == bfd_link_hash_new)
6224 return TRUE;
6225 }
6226
6227 /* Decide whether to output this symbol in this pass. */
6228 if (eoinfo->localsyms)
6229 {
6230 if (!h->forced_local)
6231 return TRUE;
6232 }
6233 else
6234 {
6235 if (h->forced_local)
6236 return TRUE;
6237 }
6238
6239 bed = get_elf_backend_data (finfo->output_bfd);
6240
6241 /* If we have an undefined symbol reference here then it must have
6242 come from a shared library that is being linked in. (Undefined
6243 references in regular files have already been handled). If we
6244 are reporting errors for this situation then do so now. */
6245 if (h->root.type == bfd_link_hash_undefined
6246 && h->ref_dynamic
6247 && !h->ref_regular
6248 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
6249 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
6250 {
6251 if (! ((*finfo->info->callbacks->undefined_symbol)
6252 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
6253 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
6254 {
6255 eoinfo->failed = TRUE;
6256 return FALSE;
6257 }
6258 }
6259
6260 /* We should also warn if a forced local symbol is referenced from
6261 shared libraries. */
6262 if (! finfo->info->relocatable
6263 && (! finfo->info->shared)
6264 && h->forced_local
6265 && h->ref_dynamic
6266 && !h->dynamic_def
6267 && !h->dynamic_weak
6268 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
6269 {
6270 (*_bfd_error_handler)
6271 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
6272 finfo->output_bfd, h->root.u.def.section->owner,
6273 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
6274 ? "internal"
6275 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
6276 ? "hidden" : "local",
6277 h->root.root.string);
6278 eoinfo->failed = TRUE;
6279 return FALSE;
6280 }
6281
6282 /* We don't want to output symbols that have never been mentioned by
6283 a regular file, or that we have been told to strip. However, if
6284 h->indx is set to -2, the symbol is used by a reloc and we must
6285 output it. */
6286 if (h->indx == -2)
6287 strip = FALSE;
6288 else if ((h->def_dynamic
6289 || h->ref_dynamic
6290 || h->root.type == bfd_link_hash_new)
6291 && !h->def_regular
6292 && !h->ref_regular)
6293 strip = TRUE;
6294 else if (finfo->info->strip == strip_all)
6295 strip = TRUE;
6296 else if (finfo->info->strip == strip_some
6297 && bfd_hash_lookup (finfo->info->keep_hash,
6298 h->root.root.string, FALSE, FALSE) == NULL)
6299 strip = TRUE;
6300 else if (finfo->info->strip_discarded
6301 && (h->root.type == bfd_link_hash_defined
6302 || h->root.type == bfd_link_hash_defweak)
6303 && elf_discarded_section (h->root.u.def.section))
6304 strip = TRUE;
6305 else
6306 strip = FALSE;
6307
6308 /* If we're stripping it, and it's not a dynamic symbol, there's
6309 nothing else to do unless it is a forced local symbol. */
6310 if (strip
6311 && h->dynindx == -1
6312 && !h->forced_local)
6313 return TRUE;
6314
6315 sym.st_value = 0;
6316 sym.st_size = h->size;
6317 sym.st_other = h->other;
6318 if (h->forced_local)
6319 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
6320 else if (h->root.type == bfd_link_hash_undefweak
6321 || h->root.type == bfd_link_hash_defweak)
6322 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
6323 else
6324 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
6325
6326 switch (h->root.type)
6327 {
6328 default:
6329 case bfd_link_hash_new:
6330 case bfd_link_hash_warning:
6331 abort ();
6332 return FALSE;
6333
6334 case bfd_link_hash_undefined:
6335 case bfd_link_hash_undefweak:
6336 input_sec = bfd_und_section_ptr;
6337 sym.st_shndx = SHN_UNDEF;
6338 break;
6339
6340 case bfd_link_hash_defined:
6341 case bfd_link_hash_defweak:
6342 {
6343 input_sec = h->root.u.def.section;
6344 if (input_sec->output_section != NULL)
6345 {
6346 sym.st_shndx =
6347 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
6348 input_sec->output_section);
6349 if (sym.st_shndx == SHN_BAD)
6350 {
6351 (*_bfd_error_handler)
6352 (_("%B: could not find output section %A for input section %A"),
6353 finfo->output_bfd, input_sec->output_section, input_sec);
6354 eoinfo->failed = TRUE;
6355 return FALSE;
6356 }
6357
6358 /* ELF symbols in relocatable files are section relative,
6359 but in nonrelocatable files they are virtual
6360 addresses. */
6361 sym.st_value = h->root.u.def.value + input_sec->output_offset;
6362 if (! finfo->info->relocatable)
6363 {
6364 sym.st_value += input_sec->output_section->vma;
6365 if (h->type == STT_TLS)
6366 {
6367 /* STT_TLS symbols are relative to PT_TLS segment
6368 base. */
6369 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
6370 sym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
6371 }
6372 }
6373 }
6374 else
6375 {
6376 BFD_ASSERT (input_sec->owner == NULL
6377 || (input_sec->owner->flags & DYNAMIC) != 0);
6378 sym.st_shndx = SHN_UNDEF;
6379 input_sec = bfd_und_section_ptr;
6380 }
6381 }
6382 break;
6383
6384 case bfd_link_hash_common:
6385 input_sec = h->root.u.c.p->section;
6386 sym.st_shndx = SHN_COMMON;
6387 sym.st_value = 1 << h->root.u.c.p->alignment_power;
6388 break;
6389
6390 case bfd_link_hash_indirect:
6391 /* These symbols are created by symbol versioning. They point
6392 to the decorated version of the name. For example, if the
6393 symbol foo@@GNU_1.2 is the default, which should be used when
6394 foo is used with no version, then we add an indirect symbol
6395 foo which points to foo@@GNU_1.2. We ignore these symbols,
6396 since the indirected symbol is already in the hash table. */
6397 return TRUE;
6398 }
6399
6400 /* Give the processor backend a chance to tweak the symbol value,
6401 and also to finish up anything that needs to be done for this
6402 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
6403 forced local syms when non-shared is due to a historical quirk. */
6404 if ((h->dynindx != -1
6405 || h->forced_local)
6406 && ((finfo->info->shared
6407 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6408 || h->root.type != bfd_link_hash_undefweak))
6409 || !h->forced_local)
6410 && elf_hash_table (finfo->info)->dynamic_sections_created)
6411 {
6412 if (! ((*bed->elf_backend_finish_dynamic_symbol)
6413 (finfo->output_bfd, finfo->info, h, &sym)))
6414 {
6415 eoinfo->failed = TRUE;
6416 return FALSE;
6417 }
6418 }
6419
6420 /* If we are marking the symbol as undefined, and there are no
6421 non-weak references to this symbol from a regular object, then
6422 mark the symbol as weak undefined; if there are non-weak
6423 references, mark the symbol as strong. We can't do this earlier,
6424 because it might not be marked as undefined until the
6425 finish_dynamic_symbol routine gets through with it. */
6426 if (sym.st_shndx == SHN_UNDEF
6427 && h->ref_regular
6428 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
6429 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
6430 {
6431 int bindtype;
6432
6433 if (h->ref_regular_nonweak)
6434 bindtype = STB_GLOBAL;
6435 else
6436 bindtype = STB_WEAK;
6437 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
6438 }
6439
6440 /* If a non-weak symbol with non-default visibility is not defined
6441 locally, it is a fatal error. */
6442 if (! finfo->info->relocatable
6443 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
6444 && ELF_ST_BIND (sym.st_info) != STB_WEAK
6445 && h->root.type == bfd_link_hash_undefined
6446 && !h->def_regular)
6447 {
6448 (*_bfd_error_handler)
6449 (_("%B: %s symbol `%s' isn't defined"),
6450 finfo->output_bfd,
6451 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
6452 ? "protected"
6453 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
6454 ? "internal" : "hidden",
6455 h->root.root.string);
6456 eoinfo->failed = TRUE;
6457 return FALSE;
6458 }
6459
6460 /* If this symbol should be put in the .dynsym section, then put it
6461 there now. We already know the symbol index. We also fill in
6462 the entry in the .hash section. */
6463 if (h->dynindx != -1
6464 && elf_hash_table (finfo->info)->dynamic_sections_created)
6465 {
6466 size_t bucketcount;
6467 size_t bucket;
6468 size_t hash_entry_size;
6469 bfd_byte *bucketpos;
6470 bfd_vma chain;
6471 bfd_byte *esym;
6472
6473 sym.st_name = h->dynstr_index;
6474 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
6475 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
6476
6477 bucketcount = elf_hash_table (finfo->info)->bucketcount;
6478 bucket = h->u.elf_hash_value % bucketcount;
6479 hash_entry_size
6480 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
6481 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
6482 + (bucket + 2) * hash_entry_size);
6483 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
6484 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
6485 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
6486 ((bfd_byte *) finfo->hash_sec->contents
6487 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
6488
6489 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
6490 {
6491 Elf_Internal_Versym iversym;
6492 Elf_External_Versym *eversym;
6493
6494 if (!h->def_regular)
6495 {
6496 if (h->verinfo.verdef == NULL)
6497 iversym.vs_vers = 0;
6498 else
6499 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
6500 }
6501 else
6502 {
6503 if (h->verinfo.vertree == NULL)
6504 iversym.vs_vers = 1;
6505 else
6506 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
6507 if (finfo->info->create_default_symver)
6508 iversym.vs_vers++;
6509 }
6510
6511 if (h->hidden)
6512 iversym.vs_vers |= VERSYM_HIDDEN;
6513
6514 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
6515 eversym += h->dynindx;
6516 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
6517 }
6518 }
6519
6520 /* If we're stripping it, then it was just a dynamic symbol, and
6521 there's nothing else to do. */
6522 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
6523 return TRUE;
6524
6525 h->indx = bfd_get_symcount (finfo->output_bfd);
6526
6527 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h))
6528 {
6529 eoinfo->failed = TRUE;
6530 return FALSE;
6531 }
6532
6533 return TRUE;
6534 }
6535
6536 /* Return TRUE if special handling is done for relocs in SEC against
6537 symbols defined in discarded sections. */
6538
6539 static bfd_boolean
6540 elf_section_ignore_discarded_relocs (asection *sec)
6541 {
6542 const struct elf_backend_data *bed;
6543
6544 switch (sec->sec_info_type)
6545 {
6546 case ELF_INFO_TYPE_STABS:
6547 case ELF_INFO_TYPE_EH_FRAME:
6548 return TRUE;
6549 default:
6550 break;
6551 }
6552
6553 bed = get_elf_backend_data (sec->owner);
6554 if (bed->elf_backend_ignore_discarded_relocs != NULL
6555 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
6556 return TRUE;
6557
6558 return FALSE;
6559 }
6560
6561 enum action_discarded
6562 {
6563 COMPLAIN = 1,
6564 PRETEND = 2
6565 };
6566
6567 /* Return a mask saying how ld should treat relocations in SEC against
6568 symbols defined in discarded sections. If this function returns
6569 COMPLAIN set, ld will issue a warning message. If this function
6570 returns PRETEND set, and the discarded section was link-once and the
6571 same size as the kept link-once section, ld will pretend that the
6572 symbol was actually defined in the kept section. Otherwise ld will
6573 zero the reloc (at least that is the intent, but some cooperation by
6574 the target dependent code is needed, particularly for REL targets). */
6575
6576 static unsigned int
6577 elf_action_discarded (asection *sec)
6578 {
6579 if (sec->flags & SEC_DEBUGGING)
6580 return PRETEND;
6581
6582 if (strcmp (".eh_frame", sec->name) == 0)
6583 return 0;
6584
6585 if (strcmp (".gcc_except_table", sec->name) == 0)
6586 return 0;
6587
6588 if (strcmp (".PARISC.unwind", sec->name) == 0)
6589 return 0;
6590
6591 if (strcmp (".fixup", sec->name) == 0)
6592 return 0;
6593
6594 return COMPLAIN | PRETEND;
6595 }
6596
6597 /* Find a match between a section and a member of a section group. */
6598
6599 static asection *
6600 match_group_member (asection *sec, asection *group)
6601 {
6602 asection *first = elf_next_in_group (group);
6603 asection *s = first;
6604
6605 while (s != NULL)
6606 {
6607 if (bfd_elf_match_symbols_in_sections (s, sec))
6608 return s;
6609
6610 if (s == first)
6611 break;
6612 }
6613
6614 return NULL;
6615 }
6616
6617 /* Link an input file into the linker output file. This function
6618 handles all the sections and relocations of the input file at once.
6619 This is so that we only have to read the local symbols once, and
6620 don't have to keep them in memory. */
6621
6622 static bfd_boolean
6623 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
6624 {
6625 bfd_boolean (*relocate_section)
6626 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
6627 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
6628 bfd *output_bfd;
6629 Elf_Internal_Shdr *symtab_hdr;
6630 size_t locsymcount;
6631 size_t extsymoff;
6632 Elf_Internal_Sym *isymbuf;
6633 Elf_Internal_Sym *isym;
6634 Elf_Internal_Sym *isymend;
6635 long *pindex;
6636 asection **ppsection;
6637 asection *o;
6638 const struct elf_backend_data *bed;
6639 bfd_boolean emit_relocs;
6640 struct elf_link_hash_entry **sym_hashes;
6641
6642 output_bfd = finfo->output_bfd;
6643 bed = get_elf_backend_data (output_bfd);
6644 relocate_section = bed->elf_backend_relocate_section;
6645
6646 /* If this is a dynamic object, we don't want to do anything here:
6647 we don't want the local symbols, and we don't want the section
6648 contents. */
6649 if ((input_bfd->flags & DYNAMIC) != 0)
6650 return TRUE;
6651
6652 emit_relocs = (finfo->info->relocatable
6653 || finfo->info->emitrelocations
6654 || bed->elf_backend_emit_relocs);
6655
6656 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6657 if (elf_bad_symtab (input_bfd))
6658 {
6659 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
6660 extsymoff = 0;
6661 }
6662 else
6663 {
6664 locsymcount = symtab_hdr->sh_info;
6665 extsymoff = symtab_hdr->sh_info;
6666 }
6667
6668 /* Read the local symbols. */
6669 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6670 if (isymbuf == NULL && locsymcount != 0)
6671 {
6672 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6673 finfo->internal_syms,
6674 finfo->external_syms,
6675 finfo->locsym_shndx);
6676 if (isymbuf == NULL)
6677 return FALSE;
6678 }
6679
6680 /* Find local symbol sections and adjust values of symbols in
6681 SEC_MERGE sections. Write out those local symbols we know are
6682 going into the output file. */
6683 isymend = isymbuf + locsymcount;
6684 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
6685 isym < isymend;
6686 isym++, pindex++, ppsection++)
6687 {
6688 asection *isec;
6689 const char *name;
6690 Elf_Internal_Sym osym;
6691
6692 *pindex = -1;
6693
6694 if (elf_bad_symtab (input_bfd))
6695 {
6696 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
6697 {
6698 *ppsection = NULL;
6699 continue;
6700 }
6701 }
6702
6703 if (isym->st_shndx == SHN_UNDEF)
6704 isec = bfd_und_section_ptr;
6705 else if (isym->st_shndx < SHN_LORESERVE
6706 || isym->st_shndx > SHN_HIRESERVE)
6707 {
6708 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
6709 if (isec
6710 && isec->sec_info_type == ELF_INFO_TYPE_MERGE
6711 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
6712 isym->st_value =
6713 _bfd_merged_section_offset (output_bfd, &isec,
6714 elf_section_data (isec)->sec_info,
6715 isym->st_value);
6716 }
6717 else if (isym->st_shndx == SHN_ABS)
6718 isec = bfd_abs_section_ptr;
6719 else if (isym->st_shndx == SHN_COMMON)
6720 isec = bfd_com_section_ptr;
6721 else
6722 {
6723 /* Who knows? */
6724 isec = NULL;
6725 }
6726
6727 *ppsection = isec;
6728
6729 /* Don't output the first, undefined, symbol. */
6730 if (ppsection == finfo->sections)
6731 continue;
6732
6733 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
6734 {
6735 /* We never output section symbols. Instead, we use the
6736 section symbol of the corresponding section in the output
6737 file. */
6738 continue;
6739 }
6740
6741 /* If we are stripping all symbols, we don't want to output this
6742 one. */
6743 if (finfo->info->strip == strip_all)
6744 continue;
6745
6746 /* If we are discarding all local symbols, we don't want to
6747 output this one. If we are generating a relocatable output
6748 file, then some of the local symbols may be required by
6749 relocs; we output them below as we discover that they are
6750 needed. */
6751 if (finfo->info->discard == discard_all)
6752 continue;
6753
6754 /* If this symbol is defined in a section which we are
6755 discarding, we don't need to keep it, but note that
6756 linker_mark is only reliable for sections that have contents.
6757 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
6758 as well as linker_mark. */
6759 if ((isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
6760 && isec != NULL
6761 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
6762 || (! finfo->info->relocatable
6763 && (isec->flags & SEC_EXCLUDE) != 0)))
6764 continue;
6765
6766 /* Get the name of the symbol. */
6767 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
6768 isym->st_name);
6769 if (name == NULL)
6770 return FALSE;
6771
6772 /* See if we are discarding symbols with this name. */
6773 if ((finfo->info->strip == strip_some
6774 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
6775 == NULL))
6776 || (((finfo->info->discard == discard_sec_merge
6777 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
6778 || finfo->info->discard == discard_l)
6779 && bfd_is_local_label_name (input_bfd, name)))
6780 continue;
6781
6782 /* If we get here, we are going to output this symbol. */
6783
6784 osym = *isym;
6785
6786 /* Adjust the section index for the output file. */
6787 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
6788 isec->output_section);
6789 if (osym.st_shndx == SHN_BAD)
6790 return FALSE;
6791
6792 *pindex = bfd_get_symcount (output_bfd);
6793
6794 /* ELF symbols in relocatable files are section relative, but
6795 in executable files they are virtual addresses. Note that
6796 this code assumes that all ELF sections have an associated
6797 BFD section with a reasonable value for output_offset; below
6798 we assume that they also have a reasonable value for
6799 output_section. Any special sections must be set up to meet
6800 these requirements. */
6801 osym.st_value += isec->output_offset;
6802 if (! finfo->info->relocatable)
6803 {
6804 osym.st_value += isec->output_section->vma;
6805 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
6806 {
6807 /* STT_TLS symbols are relative to PT_TLS segment base. */
6808 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
6809 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
6810 }
6811 }
6812
6813 if (! elf_link_output_sym (finfo, name, &osym, isec, NULL))
6814 return FALSE;
6815 }
6816
6817 /* Relocate the contents of each section. */
6818 sym_hashes = elf_sym_hashes (input_bfd);
6819 for (o = input_bfd->sections; o != NULL; o = o->next)
6820 {
6821 bfd_byte *contents;
6822
6823 if (! o->linker_mark)
6824 {
6825 /* This section was omitted from the link. */
6826 continue;
6827 }
6828
6829 if ((o->flags & SEC_HAS_CONTENTS) == 0
6830 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
6831 continue;
6832
6833 if ((o->flags & SEC_LINKER_CREATED) != 0)
6834 {
6835 /* Section was created by _bfd_elf_link_create_dynamic_sections
6836 or somesuch. */
6837 continue;
6838 }
6839
6840 /* Get the contents of the section. They have been cached by a
6841 relaxation routine. Note that o is a section in an input
6842 file, so the contents field will not have been set by any of
6843 the routines which work on output files. */
6844 if (elf_section_data (o)->this_hdr.contents != NULL)
6845 contents = elf_section_data (o)->this_hdr.contents;
6846 else
6847 {
6848 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
6849
6850 contents = finfo->contents;
6851 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
6852 return FALSE;
6853 }
6854
6855 if ((o->flags & SEC_RELOC) != 0)
6856 {
6857 Elf_Internal_Rela *internal_relocs;
6858 bfd_vma r_type_mask;
6859 int r_sym_shift;
6860
6861 /* Get the swapped relocs. */
6862 internal_relocs
6863 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
6864 finfo->internal_relocs, FALSE);
6865 if (internal_relocs == NULL
6866 && o->reloc_count > 0)
6867 return FALSE;
6868
6869 if (bed->s->arch_size == 32)
6870 {
6871 r_type_mask = 0xff;
6872 r_sym_shift = 8;
6873 }
6874 else
6875 {
6876 r_type_mask = 0xffffffff;
6877 r_sym_shift = 32;
6878 }
6879
6880 /* Run through the relocs looking for any against symbols
6881 from discarded sections and section symbols from
6882 removed link-once sections. Complain about relocs
6883 against discarded sections. Zero relocs against removed
6884 link-once sections. Preserve debug information as much
6885 as we can. */
6886 if (!elf_section_ignore_discarded_relocs (o))
6887 {
6888 Elf_Internal_Rela *rel, *relend;
6889 unsigned int action = elf_action_discarded (o);
6890
6891 rel = internal_relocs;
6892 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
6893 for ( ; rel < relend; rel++)
6894 {
6895 unsigned long r_symndx = rel->r_info >> r_sym_shift;
6896 asection **ps, *sec;
6897 struct elf_link_hash_entry *h = NULL;
6898 const char *sym_name;
6899
6900 if (r_symndx == STN_UNDEF)
6901 continue;
6902
6903 if (r_symndx >= locsymcount
6904 || (elf_bad_symtab (input_bfd)
6905 && finfo->sections[r_symndx] == NULL))
6906 {
6907 h = sym_hashes[r_symndx - extsymoff];
6908 while (h->root.type == bfd_link_hash_indirect
6909 || h->root.type == bfd_link_hash_warning)
6910 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6911
6912 if (h->root.type != bfd_link_hash_defined
6913 && h->root.type != bfd_link_hash_defweak)
6914 continue;
6915
6916 ps = &h->root.u.def.section;
6917 sym_name = h->root.root.string;
6918 }
6919 else
6920 {
6921 Elf_Internal_Sym *sym = isymbuf + r_symndx;
6922 ps = &finfo->sections[r_symndx];
6923 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym);
6924 }
6925
6926 /* Complain if the definition comes from a
6927 discarded section. */
6928 if ((sec = *ps) != NULL && elf_discarded_section (sec))
6929 {
6930 asection *kept;
6931
6932 BFD_ASSERT (r_symndx != 0);
6933 if (action & COMPLAIN)
6934 {
6935 (*_bfd_error_handler)
6936 (_("`%s' referenced in section `%A' of %B: "
6937 "defined in discarded section `%A' of %B\n"),
6938 o, input_bfd, sec, sec->owner, sym_name);
6939 }
6940
6941 /* Try to do the best we can to support buggy old
6942 versions of gcc. If we've warned, or this is
6943 debugging info, pretend that the symbol is
6944 really defined in the kept linkonce section.
6945 FIXME: This is quite broken. Modifying the
6946 symbol here means we will be changing all later
6947 uses of the symbol, not just in this section.
6948 The only thing that makes this half reasonable
6949 is that we warn in non-debug sections, and
6950 debug sections tend to come after other
6951 sections. */
6952 kept = sec->kept_section;
6953 if (kept != NULL && (action & PRETEND))
6954 {
6955 if (elf_sec_group (sec) != NULL)
6956 kept = match_group_member (sec, kept);
6957 if (kept != NULL
6958 && sec->size == kept->size)
6959 {
6960 *ps = kept;
6961 continue;
6962 }
6963 }
6964
6965 /* Remove the symbol reference from the reloc, but
6966 don't kill the reloc completely. This is so that
6967 a zero value will be written into the section,
6968 which may have non-zero contents put there by the
6969 assembler. Zero in things like an eh_frame fde
6970 pc_begin allows stack unwinders to recognize the
6971 fde as bogus. */
6972 rel->r_info &= r_type_mask;
6973 rel->r_addend = 0;
6974 }
6975 }
6976 }
6977
6978 /* Relocate the section by invoking a back end routine.
6979
6980 The back end routine is responsible for adjusting the
6981 section contents as necessary, and (if using Rela relocs
6982 and generating a relocatable output file) adjusting the
6983 reloc addend as necessary.
6984
6985 The back end routine does not have to worry about setting
6986 the reloc address or the reloc symbol index.
6987
6988 The back end routine is given a pointer to the swapped in
6989 internal symbols, and can access the hash table entries
6990 for the external symbols via elf_sym_hashes (input_bfd).
6991
6992 When generating relocatable output, the back end routine
6993 must handle STB_LOCAL/STT_SECTION symbols specially. The
6994 output symbol is going to be a section symbol
6995 corresponding to the output section, which will require
6996 the addend to be adjusted. */
6997
6998 if (! (*relocate_section) (output_bfd, finfo->info,
6999 input_bfd, o, contents,
7000 internal_relocs,
7001 isymbuf,
7002 finfo->sections))
7003 return FALSE;
7004
7005 if (emit_relocs)
7006 {
7007 Elf_Internal_Rela *irela;
7008 Elf_Internal_Rela *irelaend;
7009 bfd_vma last_offset;
7010 struct elf_link_hash_entry **rel_hash;
7011 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
7012 unsigned int next_erel;
7013 bfd_boolean (*reloc_emitter)
7014 (bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *);
7015 bfd_boolean rela_normal;
7016
7017 input_rel_hdr = &elf_section_data (o)->rel_hdr;
7018 rela_normal = (bed->rela_normal
7019 && (input_rel_hdr->sh_entsize
7020 == bed->s->sizeof_rela));
7021
7022 /* Adjust the reloc addresses and symbol indices. */
7023
7024 irela = internal_relocs;
7025 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
7026 rel_hash = (elf_section_data (o->output_section)->rel_hashes
7027 + elf_section_data (o->output_section)->rel_count
7028 + elf_section_data (o->output_section)->rel_count2);
7029 last_offset = o->output_offset;
7030 if (!finfo->info->relocatable)
7031 last_offset += o->output_section->vma;
7032 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
7033 {
7034 unsigned long r_symndx;
7035 asection *sec;
7036 Elf_Internal_Sym sym;
7037
7038 if (next_erel == bed->s->int_rels_per_ext_rel)
7039 {
7040 rel_hash++;
7041 next_erel = 0;
7042 }
7043
7044 irela->r_offset = _bfd_elf_section_offset (output_bfd,
7045 finfo->info, o,
7046 irela->r_offset);
7047 if (irela->r_offset >= (bfd_vma) -2)
7048 {
7049 /* This is a reloc for a deleted entry or somesuch.
7050 Turn it into an R_*_NONE reloc, at the same
7051 offset as the last reloc. elf_eh_frame.c and
7052 elf_bfd_discard_info rely on reloc offsets
7053 being ordered. */
7054 irela->r_offset = last_offset;
7055 irela->r_info = 0;
7056 irela->r_addend = 0;
7057 continue;
7058 }
7059
7060 irela->r_offset += o->output_offset;
7061
7062 /* Relocs in an executable have to be virtual addresses. */
7063 if (!finfo->info->relocatable)
7064 irela->r_offset += o->output_section->vma;
7065
7066 last_offset = irela->r_offset;
7067
7068 r_symndx = irela->r_info >> r_sym_shift;
7069 if (r_symndx == STN_UNDEF)
7070 continue;
7071
7072 if (r_symndx >= locsymcount
7073 || (elf_bad_symtab (input_bfd)
7074 && finfo->sections[r_symndx] == NULL))
7075 {
7076 struct elf_link_hash_entry *rh;
7077 unsigned long indx;
7078
7079 /* This is a reloc against a global symbol. We
7080 have not yet output all the local symbols, so
7081 we do not know the symbol index of any global
7082 symbol. We set the rel_hash entry for this
7083 reloc to point to the global hash table entry
7084 for this symbol. The symbol index is then
7085 set at the end of bfd_elf_final_link. */
7086 indx = r_symndx - extsymoff;
7087 rh = elf_sym_hashes (input_bfd)[indx];
7088 while (rh->root.type == bfd_link_hash_indirect
7089 || rh->root.type == bfd_link_hash_warning)
7090 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
7091
7092 /* Setting the index to -2 tells
7093 elf_link_output_extsym that this symbol is
7094 used by a reloc. */
7095 BFD_ASSERT (rh->indx < 0);
7096 rh->indx = -2;
7097
7098 *rel_hash = rh;
7099
7100 continue;
7101 }
7102
7103 /* This is a reloc against a local symbol. */
7104
7105 *rel_hash = NULL;
7106 sym = isymbuf[r_symndx];
7107 sec = finfo->sections[r_symndx];
7108 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
7109 {
7110 /* I suppose the backend ought to fill in the
7111 section of any STT_SECTION symbol against a
7112 processor specific section. */
7113 r_symndx = 0;
7114 if (bfd_is_abs_section (sec))
7115 ;
7116 else if (sec == NULL || sec->owner == NULL)
7117 {
7118 bfd_set_error (bfd_error_bad_value);
7119 return FALSE;
7120 }
7121 else
7122 {
7123 asection *osec = sec->output_section;
7124
7125 /* If we have discarded a section, the output
7126 section will be the absolute section. In
7127 case of discarded link-once and discarded
7128 SEC_MERGE sections, use the kept section. */
7129 if (bfd_is_abs_section (osec)
7130 && sec->kept_section != NULL
7131 && sec->kept_section->output_section != NULL)
7132 {
7133 osec = sec->kept_section->output_section;
7134 irela->r_addend -= osec->vma;
7135 }
7136
7137 if (!bfd_is_abs_section (osec))
7138 {
7139 r_symndx = osec->target_index;
7140 BFD_ASSERT (r_symndx != 0);
7141 }
7142 }
7143
7144 /* Adjust the addend according to where the
7145 section winds up in the output section. */
7146 if (rela_normal)
7147 irela->r_addend += sec->output_offset;
7148 }
7149 else
7150 {
7151 if (finfo->indices[r_symndx] == -1)
7152 {
7153 unsigned long shlink;
7154 const char *name;
7155 asection *osec;
7156
7157 if (finfo->info->strip == strip_all)
7158 {
7159 /* You can't do ld -r -s. */
7160 bfd_set_error (bfd_error_invalid_operation);
7161 return FALSE;
7162 }
7163
7164 /* This symbol was skipped earlier, but
7165 since it is needed by a reloc, we
7166 must output it now. */
7167 shlink = symtab_hdr->sh_link;
7168 name = (bfd_elf_string_from_elf_section
7169 (input_bfd, shlink, sym.st_name));
7170 if (name == NULL)
7171 return FALSE;
7172
7173 osec = sec->output_section;
7174 sym.st_shndx =
7175 _bfd_elf_section_from_bfd_section (output_bfd,
7176 osec);
7177 if (sym.st_shndx == SHN_BAD)
7178 return FALSE;
7179
7180 sym.st_value += sec->output_offset;
7181 if (! finfo->info->relocatable)
7182 {
7183 sym.st_value += osec->vma;
7184 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
7185 {
7186 /* STT_TLS symbols are relative to PT_TLS
7187 segment base. */
7188 BFD_ASSERT (elf_hash_table (finfo->info)
7189 ->tls_sec != NULL);
7190 sym.st_value -= (elf_hash_table (finfo->info)
7191 ->tls_sec->vma);
7192 }
7193 }
7194
7195 finfo->indices[r_symndx]
7196 = bfd_get_symcount (output_bfd);
7197
7198 if (! elf_link_output_sym (finfo, name, &sym, sec,
7199 NULL))
7200 return FALSE;
7201 }
7202
7203 r_symndx = finfo->indices[r_symndx];
7204 }
7205
7206 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
7207 | (irela->r_info & r_type_mask));
7208 }
7209
7210 /* Swap out the relocs. */
7211 if (bed->elf_backend_emit_relocs
7212 && !(finfo->info->relocatable
7213 || finfo->info->emitrelocations))
7214 reloc_emitter = bed->elf_backend_emit_relocs;
7215 else
7216 reloc_emitter = _bfd_elf_link_output_relocs;
7217
7218 if (input_rel_hdr->sh_size != 0
7219 && ! (*reloc_emitter) (output_bfd, o, input_rel_hdr,
7220 internal_relocs))
7221 return FALSE;
7222
7223 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
7224 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
7225 {
7226 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
7227 * bed->s->int_rels_per_ext_rel);
7228 if (! (*reloc_emitter) (output_bfd, o, input_rel_hdr2,
7229 internal_relocs))
7230 return FALSE;
7231 }
7232 }
7233 }
7234
7235 /* Write out the modified section contents. */
7236 if (bed->elf_backend_write_section
7237 && (*bed->elf_backend_write_section) (output_bfd, o, contents))
7238 {
7239 /* Section written out. */
7240 }
7241 else switch (o->sec_info_type)
7242 {
7243 case ELF_INFO_TYPE_STABS:
7244 if (! (_bfd_write_section_stabs
7245 (output_bfd,
7246 &elf_hash_table (finfo->info)->stab_info,
7247 o, &elf_section_data (o)->sec_info, contents)))
7248 return FALSE;
7249 break;
7250 case ELF_INFO_TYPE_MERGE:
7251 if (! _bfd_write_merged_section (output_bfd, o,
7252 elf_section_data (o)->sec_info))
7253 return FALSE;
7254 break;
7255 case ELF_INFO_TYPE_EH_FRAME:
7256 {
7257 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
7258 o, contents))
7259 return FALSE;
7260 }
7261 break;
7262 default:
7263 {
7264 if (! (o->flags & SEC_EXCLUDE)
7265 && ! bfd_set_section_contents (output_bfd, o->output_section,
7266 contents,
7267 (file_ptr) o->output_offset,
7268 o->size))
7269 return FALSE;
7270 }
7271 break;
7272 }
7273 }
7274
7275 return TRUE;
7276 }
7277
7278 /* Generate a reloc when linking an ELF file. This is a reloc
7279 requested by the linker, and does come from any input file. This
7280 is used to build constructor and destructor tables when linking
7281 with -Ur. */
7282
7283 static bfd_boolean
7284 elf_reloc_link_order (bfd *output_bfd,
7285 struct bfd_link_info *info,
7286 asection *output_section,
7287 struct bfd_link_order *link_order)
7288 {
7289 reloc_howto_type *howto;
7290 long indx;
7291 bfd_vma offset;
7292 bfd_vma addend;
7293 struct elf_link_hash_entry **rel_hash_ptr;
7294 Elf_Internal_Shdr *rel_hdr;
7295 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
7296 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
7297 bfd_byte *erel;
7298 unsigned int i;
7299
7300 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
7301 if (howto == NULL)
7302 {
7303 bfd_set_error (bfd_error_bad_value);
7304 return FALSE;
7305 }
7306
7307 addend = link_order->u.reloc.p->addend;
7308
7309 /* Figure out the symbol index. */
7310 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
7311 + elf_section_data (output_section)->rel_count
7312 + elf_section_data (output_section)->rel_count2);
7313 if (link_order->type == bfd_section_reloc_link_order)
7314 {
7315 indx = link_order->u.reloc.p->u.section->target_index;
7316 BFD_ASSERT (indx != 0);
7317 *rel_hash_ptr = NULL;
7318 }
7319 else
7320 {
7321 struct elf_link_hash_entry *h;
7322
7323 /* Treat a reloc against a defined symbol as though it were
7324 actually against the section. */
7325 h = ((struct elf_link_hash_entry *)
7326 bfd_wrapped_link_hash_lookup (output_bfd, info,
7327 link_order->u.reloc.p->u.name,
7328 FALSE, FALSE, TRUE));
7329 if (h != NULL
7330 && (h->root.type == bfd_link_hash_defined
7331 || h->root.type == bfd_link_hash_defweak))
7332 {
7333 asection *section;
7334
7335 section = h->root.u.def.section;
7336 indx = section->output_section->target_index;
7337 *rel_hash_ptr = NULL;
7338 /* It seems that we ought to add the symbol value to the
7339 addend here, but in practice it has already been added
7340 because it was passed to constructor_callback. */
7341 addend += section->output_section->vma + section->output_offset;
7342 }
7343 else if (h != NULL)
7344 {
7345 /* Setting the index to -2 tells elf_link_output_extsym that
7346 this symbol is used by a reloc. */
7347 h->indx = -2;
7348 *rel_hash_ptr = h;
7349 indx = 0;
7350 }
7351 else
7352 {
7353 if (! ((*info->callbacks->unattached_reloc)
7354 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
7355 return FALSE;
7356 indx = 0;
7357 }
7358 }
7359
7360 /* If this is an inplace reloc, we must write the addend into the
7361 object file. */
7362 if (howto->partial_inplace && addend != 0)
7363 {
7364 bfd_size_type size;
7365 bfd_reloc_status_type rstat;
7366 bfd_byte *buf;
7367 bfd_boolean ok;
7368 const char *sym_name;
7369
7370 size = bfd_get_reloc_size (howto);
7371 buf = bfd_zmalloc (size);
7372 if (buf == NULL)
7373 return FALSE;
7374 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
7375 switch (rstat)
7376 {
7377 case bfd_reloc_ok:
7378 break;
7379
7380 default:
7381 case bfd_reloc_outofrange:
7382 abort ();
7383
7384 case bfd_reloc_overflow:
7385 if (link_order->type == bfd_section_reloc_link_order)
7386 sym_name = bfd_section_name (output_bfd,
7387 link_order->u.reloc.p->u.section);
7388 else
7389 sym_name = link_order->u.reloc.p->u.name;
7390 if (! ((*info->callbacks->reloc_overflow)
7391 (info, NULL, sym_name, howto->name, addend, NULL,
7392 NULL, (bfd_vma) 0)))
7393 {
7394 free (buf);
7395 return FALSE;
7396 }
7397 break;
7398 }
7399 ok = bfd_set_section_contents (output_bfd, output_section, buf,
7400 link_order->offset, size);
7401 free (buf);
7402 if (! ok)
7403 return FALSE;
7404 }
7405
7406 /* The address of a reloc is relative to the section in a
7407 relocatable file, and is a virtual address in an executable
7408 file. */
7409 offset = link_order->offset;
7410 if (! info->relocatable)
7411 offset += output_section->vma;
7412
7413 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7414 {
7415 irel[i].r_offset = offset;
7416 irel[i].r_info = 0;
7417 irel[i].r_addend = 0;
7418 }
7419 if (bed->s->arch_size == 32)
7420 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
7421 else
7422 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
7423
7424 rel_hdr = &elf_section_data (output_section)->rel_hdr;
7425 erel = rel_hdr->contents;
7426 if (rel_hdr->sh_type == SHT_REL)
7427 {
7428 erel += (elf_section_data (output_section)->rel_count
7429 * bed->s->sizeof_rel);
7430 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
7431 }
7432 else
7433 {
7434 irel[0].r_addend = addend;
7435 erel += (elf_section_data (output_section)->rel_count
7436 * bed->s->sizeof_rela);
7437 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
7438 }
7439
7440 ++elf_section_data (output_section)->rel_count;
7441
7442 return TRUE;
7443 }
7444
7445
7446 /* Get the output vma of the section pointed to by the sh_link field. */
7447
7448 static bfd_vma
7449 elf_get_linked_section_vma (struct bfd_link_order *p)
7450 {
7451 Elf_Internal_Shdr **elf_shdrp;
7452 asection *s;
7453 int elfsec;
7454
7455 s = p->u.indirect.section;
7456 elf_shdrp = elf_elfsections (s->owner);
7457 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
7458 elfsec = elf_shdrp[elfsec]->sh_link;
7459 /* PR 290:
7460 The Intel C compiler generates SHT_IA_64_UNWIND with
7461 SHF_LINK_ORDER. But it doesn't set theh sh_link or
7462 sh_info fields. Hence we could get the situation
7463 where elfsec is 0. */
7464 if (elfsec == 0)
7465 {
7466 const struct elf_backend_data *bed
7467 = get_elf_backend_data (s->owner);
7468 if (bed->link_order_error_handler)
7469 bed->link_order_error_handler
7470 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
7471 return 0;
7472 }
7473 else
7474 {
7475 s = elf_shdrp[elfsec]->bfd_section;
7476 return s->output_section->vma + s->output_offset;
7477 }
7478 }
7479
7480
7481 /* Compare two sections based on the locations of the sections they are
7482 linked to. Used by elf_fixup_link_order. */
7483
7484 static int
7485 compare_link_order (const void * a, const void * b)
7486 {
7487 bfd_vma apos;
7488 bfd_vma bpos;
7489
7490 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
7491 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
7492 if (apos < bpos)
7493 return -1;
7494 return apos > bpos;
7495 }
7496
7497
7498 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
7499 order as their linked sections. Returns false if this could not be done
7500 because an output section includes both ordered and unordered
7501 sections. Ideally we'd do this in the linker proper. */
7502
7503 static bfd_boolean
7504 elf_fixup_link_order (bfd *abfd, asection *o)
7505 {
7506 int seen_linkorder;
7507 int seen_other;
7508 int n;
7509 struct bfd_link_order *p;
7510 bfd *sub;
7511 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7512 int elfsec;
7513 struct bfd_link_order **sections;
7514 asection *s;
7515 bfd_vma offset;
7516
7517 seen_other = 0;
7518 seen_linkorder = 0;
7519 for (p = o->link_order_head; p != NULL; p = p->next)
7520 {
7521 if (p->type == bfd_indirect_link_order
7522 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
7523 == bfd_target_elf_flavour)
7524 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
7525 {
7526 s = p->u.indirect.section;
7527 elfsec = _bfd_elf_section_from_bfd_section (sub, s);
7528 if (elfsec != -1
7529 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER)
7530 seen_linkorder++;
7531 else
7532 seen_other++;
7533 }
7534 else
7535 seen_other++;
7536 }
7537
7538 if (!seen_linkorder)
7539 return TRUE;
7540
7541 if (seen_other && seen_linkorder)
7542 {
7543 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
7544 o);
7545 bfd_set_error (bfd_error_bad_value);
7546 return FALSE;
7547 }
7548
7549 sections = (struct bfd_link_order **)
7550 xmalloc (seen_linkorder * sizeof (struct bfd_link_order *));
7551 seen_linkorder = 0;
7552
7553 for (p = o->link_order_head; p != NULL; p = p->next)
7554 {
7555 sections[seen_linkorder++] = p;
7556 }
7557 /* Sort the input sections in the order of their linked section. */
7558 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
7559 compare_link_order);
7560
7561 /* Change the offsets of the sections. */
7562 offset = 0;
7563 for (n = 0; n < seen_linkorder; n++)
7564 {
7565 s = sections[n]->u.indirect.section;
7566 offset &= ~(bfd_vma)((1 << s->alignment_power) - 1);
7567 s->output_offset = offset;
7568 sections[n]->offset = offset;
7569 offset += sections[n]->size;
7570 }
7571
7572 return TRUE;
7573 }
7574
7575
7576 /* Do the final step of an ELF link. */
7577
7578 bfd_boolean
7579 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
7580 {
7581 bfd_boolean dynamic;
7582 bfd_boolean emit_relocs;
7583 bfd *dynobj;
7584 struct elf_final_link_info finfo;
7585 register asection *o;
7586 register struct bfd_link_order *p;
7587 register bfd *sub;
7588 bfd_size_type max_contents_size;
7589 bfd_size_type max_external_reloc_size;
7590 bfd_size_type max_internal_reloc_count;
7591 bfd_size_type max_sym_count;
7592 bfd_size_type max_sym_shndx_count;
7593 file_ptr off;
7594 Elf_Internal_Sym elfsym;
7595 unsigned int i;
7596 Elf_Internal_Shdr *symtab_hdr;
7597 Elf_Internal_Shdr *symtab_shndx_hdr;
7598 Elf_Internal_Shdr *symstrtab_hdr;
7599 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7600 struct elf_outext_info eoinfo;
7601 bfd_boolean merged;
7602 size_t relativecount = 0;
7603 asection *reldyn = 0;
7604 bfd_size_type amt;
7605
7606 if (! is_elf_hash_table (info->hash))
7607 return FALSE;
7608
7609 if (info->shared)
7610 abfd->flags |= DYNAMIC;
7611
7612 dynamic = elf_hash_table (info)->dynamic_sections_created;
7613 dynobj = elf_hash_table (info)->dynobj;
7614
7615 emit_relocs = (info->relocatable
7616 || info->emitrelocations
7617 || bed->elf_backend_emit_relocs);
7618
7619 finfo.info = info;
7620 finfo.output_bfd = abfd;
7621 finfo.symstrtab = _bfd_elf_stringtab_init ();
7622 if (finfo.symstrtab == NULL)
7623 return FALSE;
7624
7625 if (! dynamic)
7626 {
7627 finfo.dynsym_sec = NULL;
7628 finfo.hash_sec = NULL;
7629 finfo.symver_sec = NULL;
7630 }
7631 else
7632 {
7633 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
7634 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
7635 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
7636 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
7637 /* Note that it is OK if symver_sec is NULL. */
7638 }
7639
7640 finfo.contents = NULL;
7641 finfo.external_relocs = NULL;
7642 finfo.internal_relocs = NULL;
7643 finfo.external_syms = NULL;
7644 finfo.locsym_shndx = NULL;
7645 finfo.internal_syms = NULL;
7646 finfo.indices = NULL;
7647 finfo.sections = NULL;
7648 finfo.symbuf = NULL;
7649 finfo.symshndxbuf = NULL;
7650 finfo.symbuf_count = 0;
7651 finfo.shndxbuf_size = 0;
7652
7653 /* Count up the number of relocations we will output for each output
7654 section, so that we know the sizes of the reloc sections. We
7655 also figure out some maximum sizes. */
7656 max_contents_size = 0;
7657 max_external_reloc_size = 0;
7658 max_internal_reloc_count = 0;
7659 max_sym_count = 0;
7660 max_sym_shndx_count = 0;
7661 merged = FALSE;
7662 for (o = abfd->sections; o != NULL; o = o->next)
7663 {
7664 struct bfd_elf_section_data *esdo = elf_section_data (o);
7665 o->reloc_count = 0;
7666
7667 for (p = o->link_order_head; p != NULL; p = p->next)
7668 {
7669 unsigned int reloc_count = 0;
7670 struct bfd_elf_section_data *esdi = NULL;
7671 unsigned int *rel_count1;
7672
7673 if (p->type == bfd_section_reloc_link_order
7674 || p->type == bfd_symbol_reloc_link_order)
7675 reloc_count = 1;
7676 else if (p->type == bfd_indirect_link_order)
7677 {
7678 asection *sec;
7679
7680 sec = p->u.indirect.section;
7681 esdi = elf_section_data (sec);
7682
7683 /* Mark all sections which are to be included in the
7684 link. This will normally be every section. We need
7685 to do this so that we can identify any sections which
7686 the linker has decided to not include. */
7687 sec->linker_mark = TRUE;
7688
7689 if (sec->flags & SEC_MERGE)
7690 merged = TRUE;
7691
7692 if (info->relocatable || info->emitrelocations)
7693 reloc_count = sec->reloc_count;
7694 else if (bed->elf_backend_count_relocs)
7695 {
7696 Elf_Internal_Rela * relocs;
7697
7698 relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
7699 info->keep_memory);
7700
7701 reloc_count = (*bed->elf_backend_count_relocs) (sec, relocs);
7702
7703 if (elf_section_data (o)->relocs != relocs)
7704 free (relocs);
7705 }
7706
7707 if (sec->rawsize > max_contents_size)
7708 max_contents_size = sec->rawsize;
7709 if (sec->size > max_contents_size)
7710 max_contents_size = sec->size;
7711
7712 /* We are interested in just local symbols, not all
7713 symbols. */
7714 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
7715 && (sec->owner->flags & DYNAMIC) == 0)
7716 {
7717 size_t sym_count;
7718
7719 if (elf_bad_symtab (sec->owner))
7720 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
7721 / bed->s->sizeof_sym);
7722 else
7723 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
7724
7725 if (sym_count > max_sym_count)
7726 max_sym_count = sym_count;
7727
7728 if (sym_count > max_sym_shndx_count
7729 && elf_symtab_shndx (sec->owner) != 0)
7730 max_sym_shndx_count = sym_count;
7731
7732 if ((sec->flags & SEC_RELOC) != 0)
7733 {
7734 size_t ext_size;
7735
7736 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
7737 if (ext_size > max_external_reloc_size)
7738 max_external_reloc_size = ext_size;
7739 if (sec->reloc_count > max_internal_reloc_count)
7740 max_internal_reloc_count = sec->reloc_count;
7741 }
7742 }
7743 }
7744
7745 if (reloc_count == 0)
7746 continue;
7747
7748 o->reloc_count += reloc_count;
7749
7750 /* MIPS may have a mix of REL and RELA relocs on sections.
7751 To support this curious ABI we keep reloc counts in
7752 elf_section_data too. We must be careful to add the
7753 relocations from the input section to the right output
7754 count. FIXME: Get rid of one count. We have
7755 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
7756 rel_count1 = &esdo->rel_count;
7757 if (esdi != NULL)
7758 {
7759 bfd_boolean same_size;
7760 bfd_size_type entsize1;
7761
7762 entsize1 = esdi->rel_hdr.sh_entsize;
7763 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
7764 || entsize1 == bed->s->sizeof_rela);
7765 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
7766
7767 if (!same_size)
7768 rel_count1 = &esdo->rel_count2;
7769
7770 if (esdi->rel_hdr2 != NULL)
7771 {
7772 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
7773 unsigned int alt_count;
7774 unsigned int *rel_count2;
7775
7776 BFD_ASSERT (entsize2 != entsize1
7777 && (entsize2 == bed->s->sizeof_rel
7778 || entsize2 == bed->s->sizeof_rela));
7779
7780 rel_count2 = &esdo->rel_count2;
7781 if (!same_size)
7782 rel_count2 = &esdo->rel_count;
7783
7784 /* The following is probably too simplistic if the
7785 backend counts output relocs unusually. */
7786 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
7787 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
7788 *rel_count2 += alt_count;
7789 reloc_count -= alt_count;
7790 }
7791 }
7792 *rel_count1 += reloc_count;
7793 }
7794
7795 if (o->reloc_count > 0)
7796 o->flags |= SEC_RELOC;
7797 else
7798 {
7799 /* Explicitly clear the SEC_RELOC flag. The linker tends to
7800 set it (this is probably a bug) and if it is set
7801 assign_section_numbers will create a reloc section. */
7802 o->flags &=~ SEC_RELOC;
7803 }
7804
7805 /* If the SEC_ALLOC flag is not set, force the section VMA to
7806 zero. This is done in elf_fake_sections as well, but forcing
7807 the VMA to 0 here will ensure that relocs against these
7808 sections are handled correctly. */
7809 if ((o->flags & SEC_ALLOC) == 0
7810 && ! o->user_set_vma)
7811 o->vma = 0;
7812 }
7813
7814 if (! info->relocatable && merged)
7815 elf_link_hash_traverse (elf_hash_table (info),
7816 _bfd_elf_link_sec_merge_syms, abfd);
7817
7818 /* Figure out the file positions for everything but the symbol table
7819 and the relocs. We set symcount to force assign_section_numbers
7820 to create a symbol table. */
7821 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
7822 BFD_ASSERT (! abfd->output_has_begun);
7823 if (! _bfd_elf_compute_section_file_positions (abfd, info))
7824 goto error_return;
7825
7826 /* Set sizes, and assign file positions for reloc sections. */
7827 for (o = abfd->sections; o != NULL; o = o->next)
7828 {
7829 if ((o->flags & SEC_RELOC) != 0)
7830 {
7831 if (!(_bfd_elf_link_size_reloc_section
7832 (abfd, &elf_section_data (o)->rel_hdr, o)))
7833 goto error_return;
7834
7835 if (elf_section_data (o)->rel_hdr2
7836 && !(_bfd_elf_link_size_reloc_section
7837 (abfd, elf_section_data (o)->rel_hdr2, o)))
7838 goto error_return;
7839 }
7840
7841 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
7842 to count upwards while actually outputting the relocations. */
7843 elf_section_data (o)->rel_count = 0;
7844 elf_section_data (o)->rel_count2 = 0;
7845 }
7846
7847 _bfd_elf_assign_file_positions_for_relocs (abfd);
7848
7849 /* We have now assigned file positions for all the sections except
7850 .symtab and .strtab. We start the .symtab section at the current
7851 file position, and write directly to it. We build the .strtab
7852 section in memory. */
7853 bfd_get_symcount (abfd) = 0;
7854 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7855 /* sh_name is set in prep_headers. */
7856 symtab_hdr->sh_type = SHT_SYMTAB;
7857 /* sh_flags, sh_addr and sh_size all start off zero. */
7858 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
7859 /* sh_link is set in assign_section_numbers. */
7860 /* sh_info is set below. */
7861 /* sh_offset is set just below. */
7862 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
7863
7864 off = elf_tdata (abfd)->next_file_pos;
7865 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
7866
7867 /* Note that at this point elf_tdata (abfd)->next_file_pos is
7868 incorrect. We do not yet know the size of the .symtab section.
7869 We correct next_file_pos below, after we do know the size. */
7870
7871 /* Allocate a buffer to hold swapped out symbols. This is to avoid
7872 continuously seeking to the right position in the file. */
7873 if (! info->keep_memory || max_sym_count < 20)
7874 finfo.symbuf_size = 20;
7875 else
7876 finfo.symbuf_size = max_sym_count;
7877 amt = finfo.symbuf_size;
7878 amt *= bed->s->sizeof_sym;
7879 finfo.symbuf = bfd_malloc (amt);
7880 if (finfo.symbuf == NULL)
7881 goto error_return;
7882 if (elf_numsections (abfd) > SHN_LORESERVE)
7883 {
7884 /* Wild guess at number of output symbols. realloc'd as needed. */
7885 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
7886 finfo.shndxbuf_size = amt;
7887 amt *= sizeof (Elf_External_Sym_Shndx);
7888 finfo.symshndxbuf = bfd_zmalloc (amt);
7889 if (finfo.symshndxbuf == NULL)
7890 goto error_return;
7891 }
7892
7893 /* Start writing out the symbol table. The first symbol is always a
7894 dummy symbol. */
7895 if (info->strip != strip_all
7896 || emit_relocs)
7897 {
7898 elfsym.st_value = 0;
7899 elfsym.st_size = 0;
7900 elfsym.st_info = 0;
7901 elfsym.st_other = 0;
7902 elfsym.st_shndx = SHN_UNDEF;
7903 if (! elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
7904 NULL))
7905 goto error_return;
7906 }
7907
7908 /* Output a symbol for each section. We output these even if we are
7909 discarding local symbols, since they are used for relocs. These
7910 symbols have no names. We store the index of each one in the
7911 index field of the section, so that we can find it again when
7912 outputting relocs. */
7913 if (info->strip != strip_all
7914 || emit_relocs)
7915 {
7916 elfsym.st_size = 0;
7917 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
7918 elfsym.st_other = 0;
7919 for (i = 1; i < elf_numsections (abfd); i++)
7920 {
7921 o = bfd_section_from_elf_index (abfd, i);
7922 if (o != NULL)
7923 o->target_index = bfd_get_symcount (abfd);
7924 elfsym.st_shndx = i;
7925 if (info->relocatable || o == NULL)
7926 elfsym.st_value = 0;
7927 else
7928 elfsym.st_value = o->vma;
7929 if (! elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL))
7930 goto error_return;
7931 if (i == SHN_LORESERVE - 1)
7932 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
7933 }
7934 }
7935
7936 /* Allocate some memory to hold information read in from the input
7937 files. */
7938 if (max_contents_size != 0)
7939 {
7940 finfo.contents = bfd_malloc (max_contents_size);
7941 if (finfo.contents == NULL)
7942 goto error_return;
7943 }
7944
7945 if (max_external_reloc_size != 0)
7946 {
7947 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
7948 if (finfo.external_relocs == NULL)
7949 goto error_return;
7950 }
7951
7952 if (max_internal_reloc_count != 0)
7953 {
7954 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
7955 amt *= sizeof (Elf_Internal_Rela);
7956 finfo.internal_relocs = bfd_malloc (amt);
7957 if (finfo.internal_relocs == NULL)
7958 goto error_return;
7959 }
7960
7961 if (max_sym_count != 0)
7962 {
7963 amt = max_sym_count * bed->s->sizeof_sym;
7964 finfo.external_syms = bfd_malloc (amt);
7965 if (finfo.external_syms == NULL)
7966 goto error_return;
7967
7968 amt = max_sym_count * sizeof (Elf_Internal_Sym);
7969 finfo.internal_syms = bfd_malloc (amt);
7970 if (finfo.internal_syms == NULL)
7971 goto error_return;
7972
7973 amt = max_sym_count * sizeof (long);
7974 finfo.indices = bfd_malloc (amt);
7975 if (finfo.indices == NULL)
7976 goto error_return;
7977
7978 amt = max_sym_count * sizeof (asection *);
7979 finfo.sections = bfd_malloc (amt);
7980 if (finfo.sections == NULL)
7981 goto error_return;
7982 }
7983
7984 if (max_sym_shndx_count != 0)
7985 {
7986 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
7987 finfo.locsym_shndx = bfd_malloc (amt);
7988 if (finfo.locsym_shndx == NULL)
7989 goto error_return;
7990 }
7991
7992 if (elf_hash_table (info)->tls_sec)
7993 {
7994 bfd_vma base, end = 0;
7995 asection *sec;
7996
7997 for (sec = elf_hash_table (info)->tls_sec;
7998 sec && (sec->flags & SEC_THREAD_LOCAL);
7999 sec = sec->next)
8000 {
8001 bfd_vma size = sec->size;
8002
8003 if (size == 0 && (sec->flags & SEC_HAS_CONTENTS) == 0)
8004 {
8005 struct bfd_link_order *o;
8006
8007 for (o = sec->link_order_head; o != NULL; o = o->next)
8008 if (size < o->offset + o->size)
8009 size = o->offset + o->size;
8010 }
8011 end = sec->vma + size;
8012 }
8013 base = elf_hash_table (info)->tls_sec->vma;
8014 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
8015 elf_hash_table (info)->tls_size = end - base;
8016 }
8017
8018 /* Reorder SHF_LINK_ORDER sections. */
8019 for (o = abfd->sections; o != NULL; o = o->next)
8020 {
8021 if (!elf_fixup_link_order (abfd, o))
8022 return FALSE;
8023 }
8024
8025 /* Since ELF permits relocations to be against local symbols, we
8026 must have the local symbols available when we do the relocations.
8027 Since we would rather only read the local symbols once, and we
8028 would rather not keep them in memory, we handle all the
8029 relocations for a single input file at the same time.
8030
8031 Unfortunately, there is no way to know the total number of local
8032 symbols until we have seen all of them, and the local symbol
8033 indices precede the global symbol indices. This means that when
8034 we are generating relocatable output, and we see a reloc against
8035 a global symbol, we can not know the symbol index until we have
8036 finished examining all the local symbols to see which ones we are
8037 going to output. To deal with this, we keep the relocations in
8038 memory, and don't output them until the end of the link. This is
8039 an unfortunate waste of memory, but I don't see a good way around
8040 it. Fortunately, it only happens when performing a relocatable
8041 link, which is not the common case. FIXME: If keep_memory is set
8042 we could write the relocs out and then read them again; I don't
8043 know how bad the memory loss will be. */
8044
8045 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8046 sub->output_has_begun = FALSE;
8047 for (o = abfd->sections; o != NULL; o = o->next)
8048 {
8049 for (p = o->link_order_head; p != NULL; p = p->next)
8050 {
8051 if (p->type == bfd_indirect_link_order
8052 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
8053 == bfd_target_elf_flavour)
8054 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
8055 {
8056 if (! sub->output_has_begun)
8057 {
8058 if (! elf_link_input_bfd (&finfo, sub))
8059 goto error_return;
8060 sub->output_has_begun = TRUE;
8061 }
8062 }
8063 else if (p->type == bfd_section_reloc_link_order
8064 || p->type == bfd_symbol_reloc_link_order)
8065 {
8066 if (! elf_reloc_link_order (abfd, info, o, p))
8067 goto error_return;
8068 }
8069 else
8070 {
8071 if (! _bfd_default_link_order (abfd, info, o, p))
8072 goto error_return;
8073 }
8074 }
8075 }
8076
8077 /* Output any global symbols that got converted to local in a
8078 version script or due to symbol visibility. We do this in a
8079 separate step since ELF requires all local symbols to appear
8080 prior to any global symbols. FIXME: We should only do this if
8081 some global symbols were, in fact, converted to become local.
8082 FIXME: Will this work correctly with the Irix 5 linker? */
8083 eoinfo.failed = FALSE;
8084 eoinfo.finfo = &finfo;
8085 eoinfo.localsyms = TRUE;
8086 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
8087 &eoinfo);
8088 if (eoinfo.failed)
8089 return FALSE;
8090
8091 /* That wrote out all the local symbols. Finish up the symbol table
8092 with the global symbols. Even if we want to strip everything we
8093 can, we still need to deal with those global symbols that got
8094 converted to local in a version script. */
8095
8096 /* The sh_info field records the index of the first non local symbol. */
8097 symtab_hdr->sh_info = bfd_get_symcount (abfd);
8098
8099 if (dynamic
8100 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
8101 {
8102 Elf_Internal_Sym sym;
8103 bfd_byte *dynsym = finfo.dynsym_sec->contents;
8104 long last_local = 0;
8105
8106 /* Write out the section symbols for the output sections. */
8107 if (info->shared)
8108 {
8109 asection *s;
8110
8111 sym.st_size = 0;
8112 sym.st_name = 0;
8113 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8114 sym.st_other = 0;
8115
8116 for (s = abfd->sections; s != NULL; s = s->next)
8117 {
8118 int indx;
8119 bfd_byte *dest;
8120 long dynindx;
8121
8122 dynindx = elf_section_data (s)->dynindx;
8123 if (dynindx <= 0)
8124 continue;
8125 indx = elf_section_data (s)->this_idx;
8126 BFD_ASSERT (indx > 0);
8127 sym.st_shndx = indx;
8128 sym.st_value = s->vma;
8129 dest = dynsym + dynindx * bed->s->sizeof_sym;
8130 if (last_local < dynindx)
8131 last_local = dynindx;
8132 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
8133 }
8134 }
8135
8136 /* Write out the local dynsyms. */
8137 if (elf_hash_table (info)->dynlocal)
8138 {
8139 struct elf_link_local_dynamic_entry *e;
8140 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
8141 {
8142 asection *s;
8143 bfd_byte *dest;
8144
8145 sym.st_size = e->isym.st_size;
8146 sym.st_other = e->isym.st_other;
8147
8148 /* Copy the internal symbol as is.
8149 Note that we saved a word of storage and overwrote
8150 the original st_name with the dynstr_index. */
8151 sym = e->isym;
8152
8153 if (e->isym.st_shndx != SHN_UNDEF
8154 && (e->isym.st_shndx < SHN_LORESERVE
8155 || e->isym.st_shndx > SHN_HIRESERVE))
8156 {
8157 s = bfd_section_from_elf_index (e->input_bfd,
8158 e->isym.st_shndx);
8159
8160 sym.st_shndx =
8161 elf_section_data (s->output_section)->this_idx;
8162 sym.st_value = (s->output_section->vma
8163 + s->output_offset
8164 + e->isym.st_value);
8165 }
8166
8167 if (last_local < e->dynindx)
8168 last_local = e->dynindx;
8169
8170 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
8171 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
8172 }
8173 }
8174
8175 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
8176 last_local + 1;
8177 }
8178
8179 /* We get the global symbols from the hash table. */
8180 eoinfo.failed = FALSE;
8181 eoinfo.localsyms = FALSE;
8182 eoinfo.finfo = &finfo;
8183 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
8184 &eoinfo);
8185 if (eoinfo.failed)
8186 return FALSE;
8187
8188 /* If backend needs to output some symbols not present in the hash
8189 table, do it now. */
8190 if (bed->elf_backend_output_arch_syms)
8191 {
8192 typedef bfd_boolean (*out_sym_func)
8193 (void *, const char *, Elf_Internal_Sym *, asection *,
8194 struct elf_link_hash_entry *);
8195
8196 if (! ((*bed->elf_backend_output_arch_syms)
8197 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
8198 return FALSE;
8199 }
8200
8201 /* Flush all symbols to the file. */
8202 if (! elf_link_flush_output_syms (&finfo, bed))
8203 return FALSE;
8204
8205 /* Now we know the size of the symtab section. */
8206 off += symtab_hdr->sh_size;
8207
8208 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
8209 if (symtab_shndx_hdr->sh_name != 0)
8210 {
8211 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
8212 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
8213 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
8214 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
8215 symtab_shndx_hdr->sh_size = amt;
8216
8217 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
8218 off, TRUE);
8219
8220 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
8221 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
8222 return FALSE;
8223 }
8224
8225
8226 /* Finish up and write out the symbol string table (.strtab)
8227 section. */
8228 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
8229 /* sh_name was set in prep_headers. */
8230 symstrtab_hdr->sh_type = SHT_STRTAB;
8231 symstrtab_hdr->sh_flags = 0;
8232 symstrtab_hdr->sh_addr = 0;
8233 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
8234 symstrtab_hdr->sh_entsize = 0;
8235 symstrtab_hdr->sh_link = 0;
8236 symstrtab_hdr->sh_info = 0;
8237 /* sh_offset is set just below. */
8238 symstrtab_hdr->sh_addralign = 1;
8239
8240 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
8241 elf_tdata (abfd)->next_file_pos = off;
8242
8243 if (bfd_get_symcount (abfd) > 0)
8244 {
8245 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
8246 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
8247 return FALSE;
8248 }
8249
8250 /* Adjust the relocs to have the correct symbol indices. */
8251 for (o = abfd->sections; o != NULL; o = o->next)
8252 {
8253 if ((o->flags & SEC_RELOC) == 0)
8254 continue;
8255
8256 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
8257 elf_section_data (o)->rel_count,
8258 elf_section_data (o)->rel_hashes);
8259 if (elf_section_data (o)->rel_hdr2 != NULL)
8260 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
8261 elf_section_data (o)->rel_count2,
8262 (elf_section_data (o)->rel_hashes
8263 + elf_section_data (o)->rel_count));
8264
8265 /* Set the reloc_count field to 0 to prevent write_relocs from
8266 trying to swap the relocs out itself. */
8267 o->reloc_count = 0;
8268 }
8269
8270 if (dynamic && info->combreloc && dynobj != NULL)
8271 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
8272
8273 /* If we are linking against a dynamic object, or generating a
8274 shared library, finish up the dynamic linking information. */
8275 if (dynamic)
8276 {
8277 bfd_byte *dyncon, *dynconend;
8278
8279 /* Fix up .dynamic entries. */
8280 o = bfd_get_section_by_name (dynobj, ".dynamic");
8281 BFD_ASSERT (o != NULL);
8282
8283 dyncon = o->contents;
8284 dynconend = o->contents + o->size;
8285 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
8286 {
8287 Elf_Internal_Dyn dyn;
8288 const char *name;
8289 unsigned int type;
8290
8291 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
8292
8293 switch (dyn.d_tag)
8294 {
8295 default:
8296 continue;
8297 case DT_NULL:
8298 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
8299 {
8300 switch (elf_section_data (reldyn)->this_hdr.sh_type)
8301 {
8302 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
8303 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
8304 default: continue;
8305 }
8306 dyn.d_un.d_val = relativecount;
8307 relativecount = 0;
8308 break;
8309 }
8310 continue;
8311
8312 case DT_INIT:
8313 name = info->init_function;
8314 goto get_sym;
8315 case DT_FINI:
8316 name = info->fini_function;
8317 get_sym:
8318 {
8319 struct elf_link_hash_entry *h;
8320
8321 h = elf_link_hash_lookup (elf_hash_table (info), name,
8322 FALSE, FALSE, TRUE);
8323 if (h != NULL
8324 && (h->root.type == bfd_link_hash_defined
8325 || h->root.type == bfd_link_hash_defweak))
8326 {
8327 dyn.d_un.d_val = h->root.u.def.value;
8328 o = h->root.u.def.section;
8329 if (o->output_section != NULL)
8330 dyn.d_un.d_val += (o->output_section->vma
8331 + o->output_offset);
8332 else
8333 {
8334 /* The symbol is imported from another shared
8335 library and does not apply to this one. */
8336 dyn.d_un.d_val = 0;
8337 }
8338 break;
8339 }
8340 }
8341 continue;
8342
8343 case DT_PREINIT_ARRAYSZ:
8344 name = ".preinit_array";
8345 goto get_size;
8346 case DT_INIT_ARRAYSZ:
8347 name = ".init_array";
8348 goto get_size;
8349 case DT_FINI_ARRAYSZ:
8350 name = ".fini_array";
8351 get_size:
8352 o = bfd_get_section_by_name (abfd, name);
8353 if (o == NULL)
8354 {
8355 (*_bfd_error_handler)
8356 (_("%B: could not find output section %s"), abfd, name);
8357 goto error_return;
8358 }
8359 if (o->size == 0)
8360 (*_bfd_error_handler)
8361 (_("warning: %s section has zero size"), name);
8362 dyn.d_un.d_val = o->size;
8363 break;
8364
8365 case DT_PREINIT_ARRAY:
8366 name = ".preinit_array";
8367 goto get_vma;
8368 case DT_INIT_ARRAY:
8369 name = ".init_array";
8370 goto get_vma;
8371 case DT_FINI_ARRAY:
8372 name = ".fini_array";
8373 goto get_vma;
8374
8375 case DT_HASH:
8376 name = ".hash";
8377 goto get_vma;
8378 case DT_STRTAB:
8379 name = ".dynstr";
8380 goto get_vma;
8381 case DT_SYMTAB:
8382 name = ".dynsym";
8383 goto get_vma;
8384 case DT_VERDEF:
8385 name = ".gnu.version_d";
8386 goto get_vma;
8387 case DT_VERNEED:
8388 name = ".gnu.version_r";
8389 goto get_vma;
8390 case DT_VERSYM:
8391 name = ".gnu.version";
8392 get_vma:
8393 o = bfd_get_section_by_name (abfd, name);
8394 if (o == NULL)
8395 {
8396 (*_bfd_error_handler)
8397 (_("%B: could not find output section %s"), abfd, name);
8398 goto error_return;
8399 }
8400 dyn.d_un.d_ptr = o->vma;
8401 break;
8402
8403 case DT_REL:
8404 case DT_RELA:
8405 case DT_RELSZ:
8406 case DT_RELASZ:
8407 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
8408 type = SHT_REL;
8409 else
8410 type = SHT_RELA;
8411 dyn.d_un.d_val = 0;
8412 for (i = 1; i < elf_numsections (abfd); i++)
8413 {
8414 Elf_Internal_Shdr *hdr;
8415
8416 hdr = elf_elfsections (abfd)[i];
8417 if (hdr->sh_type == type
8418 && (hdr->sh_flags & SHF_ALLOC) != 0)
8419 {
8420 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
8421 dyn.d_un.d_val += hdr->sh_size;
8422 else
8423 {
8424 if (dyn.d_un.d_val == 0
8425 || hdr->sh_addr < dyn.d_un.d_val)
8426 dyn.d_un.d_val = hdr->sh_addr;
8427 }
8428 }
8429 }
8430 break;
8431 }
8432 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
8433 }
8434 }
8435
8436 /* If we have created any dynamic sections, then output them. */
8437 if (dynobj != NULL)
8438 {
8439 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
8440 goto error_return;
8441
8442 for (o = dynobj->sections; o != NULL; o = o->next)
8443 {
8444 if ((o->flags & SEC_HAS_CONTENTS) == 0
8445 || o->size == 0
8446 || o->output_section == bfd_abs_section_ptr)
8447 continue;
8448 if ((o->flags & SEC_LINKER_CREATED) == 0)
8449 {
8450 /* At this point, we are only interested in sections
8451 created by _bfd_elf_link_create_dynamic_sections. */
8452 continue;
8453 }
8454 if (elf_hash_table (info)->stab_info.stabstr == o)
8455 continue;
8456 if (elf_hash_table (info)->eh_info.hdr_sec == o)
8457 continue;
8458 if ((elf_section_data (o->output_section)->this_hdr.sh_type
8459 != SHT_STRTAB)
8460 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
8461 {
8462 if (! bfd_set_section_contents (abfd, o->output_section,
8463 o->contents,
8464 (file_ptr) o->output_offset,
8465 o->size))
8466 goto error_return;
8467 }
8468 else
8469 {
8470 /* The contents of the .dynstr section are actually in a
8471 stringtab. */
8472 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
8473 if (bfd_seek (abfd, off, SEEK_SET) != 0
8474 || ! _bfd_elf_strtab_emit (abfd,
8475 elf_hash_table (info)->dynstr))
8476 goto error_return;
8477 }
8478 }
8479 }
8480
8481 if (info->relocatable)
8482 {
8483 bfd_boolean failed = FALSE;
8484
8485 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
8486 if (failed)
8487 goto error_return;
8488 }
8489
8490 /* If we have optimized stabs strings, output them. */
8491 if (elf_hash_table (info)->stab_info.stabstr != NULL)
8492 {
8493 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
8494 goto error_return;
8495 }
8496
8497 if (info->eh_frame_hdr)
8498 {
8499 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
8500 goto error_return;
8501 }
8502
8503 if (finfo.symstrtab != NULL)
8504 _bfd_stringtab_free (finfo.symstrtab);
8505 if (finfo.contents != NULL)
8506 free (finfo.contents);
8507 if (finfo.external_relocs != NULL)
8508 free (finfo.external_relocs);
8509 if (finfo.internal_relocs != NULL)
8510 free (finfo.internal_relocs);
8511 if (finfo.external_syms != NULL)
8512 free (finfo.external_syms);
8513 if (finfo.locsym_shndx != NULL)
8514 free (finfo.locsym_shndx);
8515 if (finfo.internal_syms != NULL)
8516 free (finfo.internal_syms);
8517 if (finfo.indices != NULL)
8518 free (finfo.indices);
8519 if (finfo.sections != NULL)
8520 free (finfo.sections);
8521 if (finfo.symbuf != NULL)
8522 free (finfo.symbuf);
8523 if (finfo.symshndxbuf != NULL)
8524 free (finfo.symshndxbuf);
8525 for (o = abfd->sections; o != NULL; o = o->next)
8526 {
8527 if ((o->flags & SEC_RELOC) != 0
8528 && elf_section_data (o)->rel_hashes != NULL)
8529 free (elf_section_data (o)->rel_hashes);
8530 }
8531
8532 elf_tdata (abfd)->linker = TRUE;
8533
8534 return TRUE;
8535
8536 error_return:
8537 if (finfo.symstrtab != NULL)
8538 _bfd_stringtab_free (finfo.symstrtab);
8539 if (finfo.contents != NULL)
8540 free (finfo.contents);
8541 if (finfo.external_relocs != NULL)
8542 free (finfo.external_relocs);
8543 if (finfo.internal_relocs != NULL)
8544 free (finfo.internal_relocs);
8545 if (finfo.external_syms != NULL)
8546 free (finfo.external_syms);
8547 if (finfo.locsym_shndx != NULL)
8548 free (finfo.locsym_shndx);
8549 if (finfo.internal_syms != NULL)
8550 free (finfo.internal_syms);
8551 if (finfo.indices != NULL)
8552 free (finfo.indices);
8553 if (finfo.sections != NULL)
8554 free (finfo.sections);
8555 if (finfo.symbuf != NULL)
8556 free (finfo.symbuf);
8557 if (finfo.symshndxbuf != NULL)
8558 free (finfo.symshndxbuf);
8559 for (o = abfd->sections; o != NULL; o = o->next)
8560 {
8561 if ((o->flags & SEC_RELOC) != 0
8562 && elf_section_data (o)->rel_hashes != NULL)
8563 free (elf_section_data (o)->rel_hashes);
8564 }
8565
8566 return FALSE;
8567 }
8568 \f
8569 /* Garbage collect unused sections. */
8570
8571 /* The mark phase of garbage collection. For a given section, mark
8572 it and any sections in this section's group, and all the sections
8573 which define symbols to which it refers. */
8574
8575 typedef asection * (*gc_mark_hook_fn)
8576 (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
8577 struct elf_link_hash_entry *, Elf_Internal_Sym *);
8578
8579 bfd_boolean
8580 _bfd_elf_gc_mark (struct bfd_link_info *info,
8581 asection *sec,
8582 gc_mark_hook_fn gc_mark_hook)
8583 {
8584 bfd_boolean ret;
8585 asection *group_sec;
8586
8587 sec->gc_mark = 1;
8588
8589 /* Mark all the sections in the group. */
8590 group_sec = elf_section_data (sec)->next_in_group;
8591 if (group_sec && !group_sec->gc_mark)
8592 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
8593 return FALSE;
8594
8595 /* Look through the section relocs. */
8596 ret = TRUE;
8597 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
8598 {
8599 Elf_Internal_Rela *relstart, *rel, *relend;
8600 Elf_Internal_Shdr *symtab_hdr;
8601 struct elf_link_hash_entry **sym_hashes;
8602 size_t nlocsyms;
8603 size_t extsymoff;
8604 bfd *input_bfd = sec->owner;
8605 const struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
8606 Elf_Internal_Sym *isym = NULL;
8607 int r_sym_shift;
8608
8609 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8610 sym_hashes = elf_sym_hashes (input_bfd);
8611
8612 /* Read the local symbols. */
8613 if (elf_bad_symtab (input_bfd))
8614 {
8615 nlocsyms = symtab_hdr->sh_size / bed->s->sizeof_sym;
8616 extsymoff = 0;
8617 }
8618 else
8619 extsymoff = nlocsyms = symtab_hdr->sh_info;
8620
8621 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
8622 if (isym == NULL && nlocsyms != 0)
8623 {
8624 isym = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, nlocsyms, 0,
8625 NULL, NULL, NULL);
8626 if (isym == NULL)
8627 return FALSE;
8628 }
8629
8630 /* Read the relocations. */
8631 relstart = _bfd_elf_link_read_relocs (input_bfd, sec, NULL, NULL,
8632 info->keep_memory);
8633 if (relstart == NULL)
8634 {
8635 ret = FALSE;
8636 goto out1;
8637 }
8638 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8639
8640 if (bed->s->arch_size == 32)
8641 r_sym_shift = 8;
8642 else
8643 r_sym_shift = 32;
8644
8645 for (rel = relstart; rel < relend; rel++)
8646 {
8647 unsigned long r_symndx;
8648 asection *rsec;
8649 struct elf_link_hash_entry *h;
8650
8651 r_symndx = rel->r_info >> r_sym_shift;
8652 if (r_symndx == 0)
8653 continue;
8654
8655 if (r_symndx >= nlocsyms
8656 || ELF_ST_BIND (isym[r_symndx].st_info) != STB_LOCAL)
8657 {
8658 h = sym_hashes[r_symndx - extsymoff];
8659 while (h->root.type == bfd_link_hash_indirect
8660 || h->root.type == bfd_link_hash_warning)
8661 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8662 rsec = (*gc_mark_hook) (sec, info, rel, h, NULL);
8663 }
8664 else
8665 {
8666 rsec = (*gc_mark_hook) (sec, info, rel, NULL, &isym[r_symndx]);
8667 }
8668
8669 if (rsec && !rsec->gc_mark)
8670 {
8671 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
8672 rsec->gc_mark = 1;
8673 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
8674 {
8675 ret = FALSE;
8676 goto out2;
8677 }
8678 }
8679 }
8680
8681 out2:
8682 if (elf_section_data (sec)->relocs != relstart)
8683 free (relstart);
8684 out1:
8685 if (isym != NULL && symtab_hdr->contents != (unsigned char *) isym)
8686 {
8687 if (! info->keep_memory)
8688 free (isym);
8689 else
8690 symtab_hdr->contents = (unsigned char *) isym;
8691 }
8692 }
8693
8694 return ret;
8695 }
8696
8697 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
8698
8699 static bfd_boolean
8700 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *idxptr)
8701 {
8702 int *idx = idxptr;
8703
8704 if (h->root.type == bfd_link_hash_warning)
8705 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8706
8707 if (h->dynindx != -1
8708 && ((h->root.type != bfd_link_hash_defined
8709 && h->root.type != bfd_link_hash_defweak)
8710 || h->root.u.def.section->gc_mark))
8711 h->dynindx = (*idx)++;
8712
8713 return TRUE;
8714 }
8715
8716 /* The sweep phase of garbage collection. Remove all garbage sections. */
8717
8718 typedef bfd_boolean (*gc_sweep_hook_fn)
8719 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
8720
8721 static bfd_boolean
8722 elf_gc_sweep (struct bfd_link_info *info, gc_sweep_hook_fn gc_sweep_hook)
8723 {
8724 bfd *sub;
8725
8726 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8727 {
8728 asection *o;
8729
8730 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
8731 continue;
8732
8733 for (o = sub->sections; o != NULL; o = o->next)
8734 {
8735 /* Keep debug and special sections. */
8736 if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
8737 || (o->flags & (SEC_ALLOC | SEC_LOAD)) == 0)
8738 o->gc_mark = 1;
8739
8740 if (o->gc_mark)
8741 continue;
8742
8743 /* Skip sweeping sections already excluded. */
8744 if (o->flags & SEC_EXCLUDE)
8745 continue;
8746
8747 /* Since this is early in the link process, it is simple
8748 to remove a section from the output. */
8749 o->flags |= SEC_EXCLUDE;
8750
8751 /* But we also have to update some of the relocation
8752 info we collected before. */
8753 if (gc_sweep_hook
8754 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
8755 {
8756 Elf_Internal_Rela *internal_relocs;
8757 bfd_boolean r;
8758
8759 internal_relocs
8760 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
8761 info->keep_memory);
8762 if (internal_relocs == NULL)
8763 return FALSE;
8764
8765 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
8766
8767 if (elf_section_data (o)->relocs != internal_relocs)
8768 free (internal_relocs);
8769
8770 if (!r)
8771 return FALSE;
8772 }
8773 }
8774 }
8775
8776 /* Remove the symbols that were in the swept sections from the dynamic
8777 symbol table. GCFIXME: Anyone know how to get them out of the
8778 static symbol table as well? */
8779 {
8780 int i = 0;
8781
8782 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol, &i);
8783
8784 elf_hash_table (info)->dynsymcount = i;
8785 }
8786
8787 return TRUE;
8788 }
8789
8790 /* Propagate collected vtable information. This is called through
8791 elf_link_hash_traverse. */
8792
8793 static bfd_boolean
8794 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
8795 {
8796 if (h->root.type == bfd_link_hash_warning)
8797 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8798
8799 /* Those that are not vtables. */
8800 if (h->vtable == NULL || h->vtable->parent == NULL)
8801 return TRUE;
8802
8803 /* Those vtables that do not have parents, we cannot merge. */
8804 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
8805 return TRUE;
8806
8807 /* If we've already been done, exit. */
8808 if (h->vtable->used && h->vtable->used[-1])
8809 return TRUE;
8810
8811 /* Make sure the parent's table is up to date. */
8812 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
8813
8814 if (h->vtable->used == NULL)
8815 {
8816 /* None of this table's entries were referenced. Re-use the
8817 parent's table. */
8818 h->vtable->used = h->vtable->parent->vtable->used;
8819 h->vtable->size = h->vtable->parent->vtable->size;
8820 }
8821 else
8822 {
8823 size_t n;
8824 bfd_boolean *cu, *pu;
8825
8826 /* Or the parent's entries into ours. */
8827 cu = h->vtable->used;
8828 cu[-1] = TRUE;
8829 pu = h->vtable->parent->vtable->used;
8830 if (pu != NULL)
8831 {
8832 const struct elf_backend_data *bed;
8833 unsigned int log_file_align;
8834
8835 bed = get_elf_backend_data (h->root.u.def.section->owner);
8836 log_file_align = bed->s->log_file_align;
8837 n = h->vtable->parent->vtable->size >> log_file_align;
8838 while (n--)
8839 {
8840 if (*pu)
8841 *cu = TRUE;
8842 pu++;
8843 cu++;
8844 }
8845 }
8846 }
8847
8848 return TRUE;
8849 }
8850
8851 static bfd_boolean
8852 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
8853 {
8854 asection *sec;
8855 bfd_vma hstart, hend;
8856 Elf_Internal_Rela *relstart, *relend, *rel;
8857 const struct elf_backend_data *bed;
8858 unsigned int log_file_align;
8859
8860 if (h->root.type == bfd_link_hash_warning)
8861 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8862
8863 /* Take care of both those symbols that do not describe vtables as
8864 well as those that are not loaded. */
8865 if (h->vtable == NULL || h->vtable->parent == NULL)
8866 return TRUE;
8867
8868 BFD_ASSERT (h->root.type == bfd_link_hash_defined
8869 || h->root.type == bfd_link_hash_defweak);
8870
8871 sec = h->root.u.def.section;
8872 hstart = h->root.u.def.value;
8873 hend = hstart + h->size;
8874
8875 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
8876 if (!relstart)
8877 return *(bfd_boolean *) okp = FALSE;
8878 bed = get_elf_backend_data (sec->owner);
8879 log_file_align = bed->s->log_file_align;
8880
8881 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8882
8883 for (rel = relstart; rel < relend; ++rel)
8884 if (rel->r_offset >= hstart && rel->r_offset < hend)
8885 {
8886 /* If the entry is in use, do nothing. */
8887 if (h->vtable->used
8888 && (rel->r_offset - hstart) < h->vtable->size)
8889 {
8890 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
8891 if (h->vtable->used[entry])
8892 continue;
8893 }
8894 /* Otherwise, kill it. */
8895 rel->r_offset = rel->r_info = rel->r_addend = 0;
8896 }
8897
8898 return TRUE;
8899 }
8900
8901 /* Mark sections containing dynamically referenced symbols. This is called
8902 through elf_link_hash_traverse. */
8903
8904 static bfd_boolean
8905 elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h,
8906 void *okp ATTRIBUTE_UNUSED)
8907 {
8908 if (h->root.type == bfd_link_hash_warning)
8909 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8910
8911 if ((h->root.type == bfd_link_hash_defined
8912 || h->root.type == bfd_link_hash_defweak)
8913 && h->ref_dynamic)
8914 h->root.u.def.section->flags |= SEC_KEEP;
8915
8916 return TRUE;
8917 }
8918
8919 /* Do mark and sweep of unused sections. */
8920
8921 bfd_boolean
8922 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
8923 {
8924 bfd_boolean ok = TRUE;
8925 bfd *sub;
8926 asection * (*gc_mark_hook)
8927 (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
8928 struct elf_link_hash_entry *h, Elf_Internal_Sym *);
8929
8930 if (!get_elf_backend_data (abfd)->can_gc_sections
8931 || info->relocatable
8932 || info->emitrelocations
8933 || info->shared
8934 || !is_elf_hash_table (info->hash))
8935 {
8936 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
8937 return TRUE;
8938 }
8939
8940 /* Apply transitive closure to the vtable entry usage info. */
8941 elf_link_hash_traverse (elf_hash_table (info),
8942 elf_gc_propagate_vtable_entries_used,
8943 &ok);
8944 if (!ok)
8945 return FALSE;
8946
8947 /* Kill the vtable relocations that were not used. */
8948 elf_link_hash_traverse (elf_hash_table (info),
8949 elf_gc_smash_unused_vtentry_relocs,
8950 &ok);
8951 if (!ok)
8952 return FALSE;
8953
8954 /* Mark dynamically referenced symbols. */
8955 if (elf_hash_table (info)->dynamic_sections_created)
8956 elf_link_hash_traverse (elf_hash_table (info),
8957 elf_gc_mark_dynamic_ref_symbol,
8958 &ok);
8959 if (!ok)
8960 return FALSE;
8961
8962 /* Grovel through relocs to find out who stays ... */
8963 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
8964 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8965 {
8966 asection *o;
8967
8968 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
8969 continue;
8970
8971 for (o = sub->sections; o != NULL; o = o->next)
8972 {
8973 if (o->flags & SEC_KEEP)
8974 {
8975 /* _bfd_elf_discard_section_eh_frame knows how to discard
8976 orphaned FDEs so don't mark sections referenced by the
8977 EH frame section. */
8978 if (strcmp (o->name, ".eh_frame") == 0)
8979 o->gc_mark = 1;
8980 else if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
8981 return FALSE;
8982 }
8983 }
8984 }
8985
8986 /* ... and mark SEC_EXCLUDE for those that go. */
8987 if (!elf_gc_sweep (info, get_elf_backend_data (abfd)->gc_sweep_hook))
8988 return FALSE;
8989
8990 return TRUE;
8991 }
8992 \f
8993 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
8994
8995 bfd_boolean
8996 bfd_elf_gc_record_vtinherit (bfd *abfd,
8997 asection *sec,
8998 struct elf_link_hash_entry *h,
8999 bfd_vma offset)
9000 {
9001 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
9002 struct elf_link_hash_entry **search, *child;
9003 bfd_size_type extsymcount;
9004 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9005
9006 /* The sh_info field of the symtab header tells us where the
9007 external symbols start. We don't care about the local symbols at
9008 this point. */
9009 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
9010 if (!elf_bad_symtab (abfd))
9011 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
9012
9013 sym_hashes = elf_sym_hashes (abfd);
9014 sym_hashes_end = sym_hashes + extsymcount;
9015
9016 /* Hunt down the child symbol, which is in this section at the same
9017 offset as the relocation. */
9018 for (search = sym_hashes; search != sym_hashes_end; ++search)
9019 {
9020 if ((child = *search) != NULL
9021 && (child->root.type == bfd_link_hash_defined
9022 || child->root.type == bfd_link_hash_defweak)
9023 && child->root.u.def.section == sec
9024 && child->root.u.def.value == offset)
9025 goto win;
9026 }
9027
9028 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
9029 abfd, sec, (unsigned long) offset);
9030 bfd_set_error (bfd_error_invalid_operation);
9031 return FALSE;
9032
9033 win:
9034 if (!child->vtable)
9035 {
9036 child->vtable = bfd_zalloc (abfd, sizeof (*child->vtable));
9037 if (!child->vtable)
9038 return FALSE;
9039 }
9040 if (!h)
9041 {
9042 /* This *should* only be the absolute section. It could potentially
9043 be that someone has defined a non-global vtable though, which
9044 would be bad. It isn't worth paging in the local symbols to be
9045 sure though; that case should simply be handled by the assembler. */
9046
9047 child->vtable->parent = (struct elf_link_hash_entry *) -1;
9048 }
9049 else
9050 child->vtable->parent = h;
9051
9052 return TRUE;
9053 }
9054
9055 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
9056
9057 bfd_boolean
9058 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
9059 asection *sec ATTRIBUTE_UNUSED,
9060 struct elf_link_hash_entry *h,
9061 bfd_vma addend)
9062 {
9063 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9064 unsigned int log_file_align = bed->s->log_file_align;
9065
9066 if (!h->vtable)
9067 {
9068 h->vtable = bfd_zalloc (abfd, sizeof (*h->vtable));
9069 if (!h->vtable)
9070 return FALSE;
9071 }
9072
9073 if (addend >= h->vtable->size)
9074 {
9075 size_t size, bytes, file_align;
9076 bfd_boolean *ptr = h->vtable->used;
9077
9078 /* While the symbol is undefined, we have to be prepared to handle
9079 a zero size. */
9080 file_align = 1 << log_file_align;
9081 if (h->root.type == bfd_link_hash_undefined)
9082 size = addend + file_align;
9083 else
9084 {
9085 size = h->size;
9086 if (addend >= size)
9087 {
9088 /* Oops! We've got a reference past the defined end of
9089 the table. This is probably a bug -- shall we warn? */
9090 size = addend + file_align;
9091 }
9092 }
9093 size = (size + file_align - 1) & -file_align;
9094
9095 /* Allocate one extra entry for use as a "done" flag for the
9096 consolidation pass. */
9097 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
9098
9099 if (ptr)
9100 {
9101 ptr = bfd_realloc (ptr - 1, bytes);
9102
9103 if (ptr != NULL)
9104 {
9105 size_t oldbytes;
9106
9107 oldbytes = (((h->vtable->size >> log_file_align) + 1)
9108 * sizeof (bfd_boolean));
9109 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
9110 }
9111 }
9112 else
9113 ptr = bfd_zmalloc (bytes);
9114
9115 if (ptr == NULL)
9116 return FALSE;
9117
9118 /* And arrange for that done flag to be at index -1. */
9119 h->vtable->used = ptr + 1;
9120 h->vtable->size = size;
9121 }
9122
9123 h->vtable->used[addend >> log_file_align] = TRUE;
9124
9125 return TRUE;
9126 }
9127
9128 struct alloc_got_off_arg {
9129 bfd_vma gotoff;
9130 unsigned int got_elt_size;
9131 };
9132
9133 /* We need a special top-level link routine to convert got reference counts
9134 to real got offsets. */
9135
9136 static bfd_boolean
9137 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
9138 {
9139 struct alloc_got_off_arg *gofarg = arg;
9140
9141 if (h->root.type == bfd_link_hash_warning)
9142 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9143
9144 if (h->got.refcount > 0)
9145 {
9146 h->got.offset = gofarg->gotoff;
9147 gofarg->gotoff += gofarg->got_elt_size;
9148 }
9149 else
9150 h->got.offset = (bfd_vma) -1;
9151
9152 return TRUE;
9153 }
9154
9155 /* And an accompanying bit to work out final got entry offsets once
9156 we're done. Should be called from final_link. */
9157
9158 bfd_boolean
9159 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
9160 struct bfd_link_info *info)
9161 {
9162 bfd *i;
9163 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9164 bfd_vma gotoff;
9165 unsigned int got_elt_size = bed->s->arch_size / 8;
9166 struct alloc_got_off_arg gofarg;
9167
9168 if (! is_elf_hash_table (info->hash))
9169 return FALSE;
9170
9171 /* The GOT offset is relative to the .got section, but the GOT header is
9172 put into the .got.plt section, if the backend uses it. */
9173 if (bed->want_got_plt)
9174 gotoff = 0;
9175 else
9176 gotoff = bed->got_header_size;
9177
9178 /* Do the local .got entries first. */
9179 for (i = info->input_bfds; i; i = i->link_next)
9180 {
9181 bfd_signed_vma *local_got;
9182 bfd_size_type j, locsymcount;
9183 Elf_Internal_Shdr *symtab_hdr;
9184
9185 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
9186 continue;
9187
9188 local_got = elf_local_got_refcounts (i);
9189 if (!local_got)
9190 continue;
9191
9192 symtab_hdr = &elf_tdata (i)->symtab_hdr;
9193 if (elf_bad_symtab (i))
9194 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9195 else
9196 locsymcount = symtab_hdr->sh_info;
9197
9198 for (j = 0; j < locsymcount; ++j)
9199 {
9200 if (local_got[j] > 0)
9201 {
9202 local_got[j] = gotoff;
9203 gotoff += got_elt_size;
9204 }
9205 else
9206 local_got[j] = (bfd_vma) -1;
9207 }
9208 }
9209
9210 /* Then the global .got entries. .plt refcounts are handled by
9211 adjust_dynamic_symbol */
9212 gofarg.gotoff = gotoff;
9213 gofarg.got_elt_size = got_elt_size;
9214 elf_link_hash_traverse (elf_hash_table (info),
9215 elf_gc_allocate_got_offsets,
9216 &gofarg);
9217 return TRUE;
9218 }
9219
9220 /* Many folk need no more in the way of final link than this, once
9221 got entry reference counting is enabled. */
9222
9223 bfd_boolean
9224 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
9225 {
9226 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
9227 return FALSE;
9228
9229 /* Invoke the regular ELF backend linker to do all the work. */
9230 return bfd_elf_final_link (abfd, info);
9231 }
9232
9233 bfd_boolean
9234 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
9235 {
9236 struct elf_reloc_cookie *rcookie = cookie;
9237
9238 if (rcookie->bad_symtab)
9239 rcookie->rel = rcookie->rels;
9240
9241 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
9242 {
9243 unsigned long r_symndx;
9244
9245 if (! rcookie->bad_symtab)
9246 if (rcookie->rel->r_offset > offset)
9247 return FALSE;
9248 if (rcookie->rel->r_offset != offset)
9249 continue;
9250
9251 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
9252 if (r_symndx == SHN_UNDEF)
9253 return TRUE;
9254
9255 if (r_symndx >= rcookie->locsymcount
9256 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
9257 {
9258 struct elf_link_hash_entry *h;
9259
9260 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
9261
9262 while (h->root.type == bfd_link_hash_indirect
9263 || h->root.type == bfd_link_hash_warning)
9264 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9265
9266 if ((h->root.type == bfd_link_hash_defined
9267 || h->root.type == bfd_link_hash_defweak)
9268 && elf_discarded_section (h->root.u.def.section))
9269 return TRUE;
9270 else
9271 return FALSE;
9272 }
9273 else
9274 {
9275 /* It's not a relocation against a global symbol,
9276 but it could be a relocation against a local
9277 symbol for a discarded section. */
9278 asection *isec;
9279 Elf_Internal_Sym *isym;
9280
9281 /* Need to: get the symbol; get the section. */
9282 isym = &rcookie->locsyms[r_symndx];
9283 if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
9284 {
9285 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
9286 if (isec != NULL && elf_discarded_section (isec))
9287 return TRUE;
9288 }
9289 }
9290 return FALSE;
9291 }
9292 return FALSE;
9293 }
9294
9295 /* Discard unneeded references to discarded sections.
9296 Returns TRUE if any section's size was changed. */
9297 /* This function assumes that the relocations are in sorted order,
9298 which is true for all known assemblers. */
9299
9300 bfd_boolean
9301 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
9302 {
9303 struct elf_reloc_cookie cookie;
9304 asection *stab, *eh;
9305 Elf_Internal_Shdr *symtab_hdr;
9306 const struct elf_backend_data *bed;
9307 bfd *abfd;
9308 unsigned int count;
9309 bfd_boolean ret = FALSE;
9310
9311 if (info->traditional_format
9312 || !is_elf_hash_table (info->hash))
9313 return FALSE;
9314
9315 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
9316 {
9317 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
9318 continue;
9319
9320 bed = get_elf_backend_data (abfd);
9321
9322 if ((abfd->flags & DYNAMIC) != 0)
9323 continue;
9324
9325 eh = bfd_get_section_by_name (abfd, ".eh_frame");
9326 if (info->relocatable
9327 || (eh != NULL
9328 && (eh->size == 0
9329 || bfd_is_abs_section (eh->output_section))))
9330 eh = NULL;
9331
9332 stab = bfd_get_section_by_name (abfd, ".stab");
9333 if (stab != NULL
9334 && (stab->size == 0
9335 || bfd_is_abs_section (stab->output_section)
9336 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
9337 stab = NULL;
9338
9339 if (stab == NULL
9340 && eh == NULL
9341 && bed->elf_backend_discard_info == NULL)
9342 continue;
9343
9344 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9345 cookie.abfd = abfd;
9346 cookie.sym_hashes = elf_sym_hashes (abfd);
9347 cookie.bad_symtab = elf_bad_symtab (abfd);
9348 if (cookie.bad_symtab)
9349 {
9350 cookie.locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9351 cookie.extsymoff = 0;
9352 }
9353 else
9354 {
9355 cookie.locsymcount = symtab_hdr->sh_info;
9356 cookie.extsymoff = symtab_hdr->sh_info;
9357 }
9358
9359 if (bed->s->arch_size == 32)
9360 cookie.r_sym_shift = 8;
9361 else
9362 cookie.r_sym_shift = 32;
9363
9364 cookie.locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
9365 if (cookie.locsyms == NULL && cookie.locsymcount != 0)
9366 {
9367 cookie.locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
9368 cookie.locsymcount, 0,
9369 NULL, NULL, NULL);
9370 if (cookie.locsyms == NULL)
9371 return FALSE;
9372 }
9373
9374 if (stab != NULL)
9375 {
9376 cookie.rels = NULL;
9377 count = stab->reloc_count;
9378 if (count != 0)
9379 cookie.rels = _bfd_elf_link_read_relocs (abfd, stab, NULL, NULL,
9380 info->keep_memory);
9381 if (cookie.rels != NULL)
9382 {
9383 cookie.rel = cookie.rels;
9384 cookie.relend = cookie.rels;
9385 cookie.relend += count * bed->s->int_rels_per_ext_rel;
9386 if (_bfd_discard_section_stabs (abfd, stab,
9387 elf_section_data (stab)->sec_info,
9388 bfd_elf_reloc_symbol_deleted_p,
9389 &cookie))
9390 ret = TRUE;
9391 if (elf_section_data (stab)->relocs != cookie.rels)
9392 free (cookie.rels);
9393 }
9394 }
9395
9396 if (eh != NULL)
9397 {
9398 cookie.rels = NULL;
9399 count = eh->reloc_count;
9400 if (count != 0)
9401 cookie.rels = _bfd_elf_link_read_relocs (abfd, eh, NULL, NULL,
9402 info->keep_memory);
9403 cookie.rel = cookie.rels;
9404 cookie.relend = cookie.rels;
9405 if (cookie.rels != NULL)
9406 cookie.relend += count * bed->s->int_rels_per_ext_rel;
9407
9408 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
9409 bfd_elf_reloc_symbol_deleted_p,
9410 &cookie))
9411 ret = TRUE;
9412
9413 if (cookie.rels != NULL
9414 && elf_section_data (eh)->relocs != cookie.rels)
9415 free (cookie.rels);
9416 }
9417
9418 if (bed->elf_backend_discard_info != NULL
9419 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
9420 ret = TRUE;
9421
9422 if (cookie.locsyms != NULL
9423 && symtab_hdr->contents != (unsigned char *) cookie.locsyms)
9424 {
9425 if (! info->keep_memory)
9426 free (cookie.locsyms);
9427 else
9428 symtab_hdr->contents = (unsigned char *) cookie.locsyms;
9429 }
9430 }
9431
9432 if (info->eh_frame_hdr
9433 && !info->relocatable
9434 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
9435 ret = TRUE;
9436
9437 return ret;
9438 }
9439
9440 void
9441 _bfd_elf_section_already_linked (bfd *abfd, struct bfd_section * sec)
9442 {
9443 flagword flags;
9444 const char *name, *p;
9445 struct bfd_section_already_linked *l;
9446 struct bfd_section_already_linked_hash_entry *already_linked_list;
9447 asection *group;
9448
9449 /* A single member comdat group section may be discarded by a
9450 linkonce section. See below. */
9451 if (sec->output_section == bfd_abs_section_ptr)
9452 return;
9453
9454 flags = sec->flags;
9455
9456 /* Check if it belongs to a section group. */
9457 group = elf_sec_group (sec);
9458
9459 /* Return if it isn't a linkonce section nor a member of a group. A
9460 comdat group section also has SEC_LINK_ONCE set. */
9461 if ((flags & SEC_LINK_ONCE) == 0 && group == NULL)
9462 return;
9463
9464 if (group)
9465 {
9466 /* If this is the member of a single member comdat group, check if
9467 the group should be discarded. */
9468 if (elf_next_in_group (sec) == sec
9469 && (group->flags & SEC_LINK_ONCE) != 0)
9470 sec = group;
9471 else
9472 return;
9473 }
9474
9475 /* FIXME: When doing a relocatable link, we may have trouble
9476 copying relocations in other sections that refer to local symbols
9477 in the section being discarded. Those relocations will have to
9478 be converted somehow; as of this writing I'm not sure that any of
9479 the backends handle that correctly.
9480
9481 It is tempting to instead not discard link once sections when
9482 doing a relocatable link (technically, they should be discarded
9483 whenever we are building constructors). However, that fails,
9484 because the linker winds up combining all the link once sections
9485 into a single large link once section, which defeats the purpose
9486 of having link once sections in the first place.
9487
9488 Also, not merging link once sections in a relocatable link
9489 causes trouble for MIPS ELF, which relies on link once semantics
9490 to handle the .reginfo section correctly. */
9491
9492 name = bfd_get_section_name (abfd, sec);
9493
9494 if (strncmp (name, ".gnu.linkonce.", sizeof (".gnu.linkonce.") - 1) == 0
9495 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
9496 p++;
9497 else
9498 p = name;
9499
9500 already_linked_list = bfd_section_already_linked_table_lookup (p);
9501
9502 for (l = already_linked_list->entry; l != NULL; l = l->next)
9503 {
9504 /* We may have 3 different sections on the list: group section,
9505 comdat section and linkonce section. SEC may be a linkonce or
9506 group section. We match a group section with a group section,
9507 a linkonce section with a linkonce section, and ignore comdat
9508 section. */
9509 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
9510 && strcmp (name, l->sec->name) == 0
9511 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
9512 {
9513 /* The section has already been linked. See if we should
9514 issue a warning. */
9515 switch (flags & SEC_LINK_DUPLICATES)
9516 {
9517 default:
9518 abort ();
9519
9520 case SEC_LINK_DUPLICATES_DISCARD:
9521 break;
9522
9523 case SEC_LINK_DUPLICATES_ONE_ONLY:
9524 (*_bfd_error_handler)
9525 (_("%B: ignoring duplicate section `%A'\n"),
9526 abfd, sec);
9527 break;
9528
9529 case SEC_LINK_DUPLICATES_SAME_SIZE:
9530 if (sec->size != l->sec->size)
9531 (*_bfd_error_handler)
9532 (_("%B: duplicate section `%A' has different size\n"),
9533 abfd, sec);
9534 break;
9535
9536 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
9537 if (sec->size != l->sec->size)
9538 (*_bfd_error_handler)
9539 (_("%B: duplicate section `%A' has different size\n"),
9540 abfd, sec);
9541 else if (sec->size != 0)
9542 {
9543 bfd_byte *sec_contents, *l_sec_contents;
9544
9545 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
9546 (*_bfd_error_handler)
9547 (_("%B: warning: could not read contents of section `%A'\n"),
9548 abfd, sec);
9549 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
9550 &l_sec_contents))
9551 (*_bfd_error_handler)
9552 (_("%B: warning: could not read contents of section `%A'\n"),
9553 l->sec->owner, l->sec);
9554 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
9555 (*_bfd_error_handler)
9556 (_("%B: warning: duplicate section `%A' has different contents\n"),
9557 abfd, sec);
9558
9559 if (sec_contents)
9560 free (sec_contents);
9561 if (l_sec_contents)
9562 free (l_sec_contents);
9563 }
9564 break;
9565 }
9566
9567 /* Set the output_section field so that lang_add_section
9568 does not create a lang_input_section structure for this
9569 section. Since there might be a symbol in the section
9570 being discarded, we must retain a pointer to the section
9571 which we are really going to use. */
9572 sec->output_section = bfd_abs_section_ptr;
9573 sec->kept_section = l->sec;
9574
9575 if (flags & SEC_GROUP)
9576 {
9577 asection *first = elf_next_in_group (sec);
9578 asection *s = first;
9579
9580 while (s != NULL)
9581 {
9582 s->output_section = bfd_abs_section_ptr;
9583 /* Record which group discards it. */
9584 s->kept_section = l->sec;
9585 s = elf_next_in_group (s);
9586 /* These lists are circular. */
9587 if (s == first)
9588 break;
9589 }
9590 }
9591
9592 return;
9593 }
9594 }
9595
9596 if (group)
9597 {
9598 /* If this is the member of a single member comdat group and the
9599 group hasn't be discarded, we check if it matches a linkonce
9600 section. We only record the discarded comdat group. Otherwise
9601 the undiscarded group will be discarded incorrectly later since
9602 itself has been recorded. */
9603 for (l = already_linked_list->entry; l != NULL; l = l->next)
9604 if ((l->sec->flags & SEC_GROUP) == 0
9605 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
9606 && bfd_elf_match_symbols_in_sections (l->sec,
9607 elf_next_in_group (sec)))
9608 {
9609 elf_next_in_group (sec)->output_section = bfd_abs_section_ptr;
9610 elf_next_in_group (sec)->kept_section = l->sec;
9611 group->output_section = bfd_abs_section_ptr;
9612 break;
9613 }
9614 if (l == NULL)
9615 return;
9616 }
9617 else
9618 /* There is no direct match. But for linkonce section, we should
9619 check if there is a match with comdat group member. We always
9620 record the linkonce section, discarded or not. */
9621 for (l = already_linked_list->entry; l != NULL; l = l->next)
9622 if (l->sec->flags & SEC_GROUP)
9623 {
9624 asection *first = elf_next_in_group (l->sec);
9625
9626 if (first != NULL
9627 && elf_next_in_group (first) == first
9628 && bfd_elf_match_symbols_in_sections (first, sec))
9629 {
9630 sec->output_section = bfd_abs_section_ptr;
9631 sec->kept_section = l->sec;
9632 break;
9633 }
9634 }
9635
9636 /* This is the first section with this name. Record it. */
9637 bfd_section_already_linked_table_insert (already_linked_list, sec);
9638 }
This page took 0.242484 seconds and 4 git commands to generate.