gas: detect DCTI couples in sparc
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2016 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfd_stdint.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31 #if BFD_SUPPORTS_PLUGINS
32 #include "plugin-api.h"
33 #include "plugin.h"
34 #endif
35
36 /* This struct is used to pass information to routines called via
37 elf_link_hash_traverse which must return failure. */
38
39 struct elf_info_failed
40 {
41 struct bfd_link_info *info;
42 bfd_boolean failed;
43 };
44
45 /* This structure is used to pass information to
46 _bfd_elf_link_find_version_dependencies. */
47
48 struct elf_find_verdep_info
49 {
50 /* General link information. */
51 struct bfd_link_info *info;
52 /* The number of dependencies. */
53 unsigned int vers;
54 /* Whether we had a failure. */
55 bfd_boolean failed;
56 };
57
58 static bfd_boolean _bfd_elf_fix_symbol_flags
59 (struct elf_link_hash_entry *, struct elf_info_failed *);
60
61 asection *
62 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
63 unsigned long r_symndx,
64 bfd_boolean discard)
65 {
66 if (r_symndx >= cookie->locsymcount
67 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
68 {
69 struct elf_link_hash_entry *h;
70
71 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
72
73 while (h->root.type == bfd_link_hash_indirect
74 || h->root.type == bfd_link_hash_warning)
75 h = (struct elf_link_hash_entry *) h->root.u.i.link;
76
77 if ((h->root.type == bfd_link_hash_defined
78 || h->root.type == bfd_link_hash_defweak)
79 && discarded_section (h->root.u.def.section))
80 return h->root.u.def.section;
81 else
82 return NULL;
83 }
84 else
85 {
86 /* It's not a relocation against a global symbol,
87 but it could be a relocation against a local
88 symbol for a discarded section. */
89 asection *isec;
90 Elf_Internal_Sym *isym;
91
92 /* Need to: get the symbol; get the section. */
93 isym = &cookie->locsyms[r_symndx];
94 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
95 if (isec != NULL
96 && discard ? discarded_section (isec) : 1)
97 return isec;
98 }
99 return NULL;
100 }
101
102 /* Define a symbol in a dynamic linkage section. */
103
104 struct elf_link_hash_entry *
105 _bfd_elf_define_linkage_sym (bfd *abfd,
106 struct bfd_link_info *info,
107 asection *sec,
108 const char *name)
109 {
110 struct elf_link_hash_entry *h;
111 struct bfd_link_hash_entry *bh;
112 const struct elf_backend_data *bed;
113
114 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
115 if (h != NULL)
116 {
117 /* Zap symbol defined in an as-needed lib that wasn't linked.
118 This is a symptom of a larger problem: Absolute symbols
119 defined in shared libraries can't be overridden, because we
120 lose the link to the bfd which is via the symbol section. */
121 h->root.type = bfd_link_hash_new;
122 }
123
124 bh = &h->root;
125 bed = get_elf_backend_data (abfd);
126 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
127 sec, 0, NULL, FALSE, bed->collect,
128 &bh))
129 return NULL;
130 h = (struct elf_link_hash_entry *) bh;
131 h->def_regular = 1;
132 h->non_elf = 0;
133 h->root.linker_def = 1;
134 h->type = STT_OBJECT;
135 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
136 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
137
138 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
139 return h;
140 }
141
142 bfd_boolean
143 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
144 {
145 flagword flags;
146 asection *s;
147 struct elf_link_hash_entry *h;
148 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
149 struct elf_link_hash_table *htab = elf_hash_table (info);
150
151 /* This function may be called more than once. */
152 s = bfd_get_linker_section (abfd, ".got");
153 if (s != NULL)
154 return TRUE;
155
156 flags = bed->dynamic_sec_flags;
157
158 s = bfd_make_section_anyway_with_flags (abfd,
159 (bed->rela_plts_and_copies_p
160 ? ".rela.got" : ".rel.got"),
161 (bed->dynamic_sec_flags
162 | SEC_READONLY));
163 if (s == NULL
164 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
165 return FALSE;
166 htab->srelgot = s;
167
168 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
169 if (s == NULL
170 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
171 return FALSE;
172 htab->sgot = s;
173
174 if (bed->want_got_plt)
175 {
176 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
177 if (s == NULL
178 || !bfd_set_section_alignment (abfd, s,
179 bed->s->log_file_align))
180 return FALSE;
181 htab->sgotplt = s;
182 }
183
184 /* The first bit of the global offset table is the header. */
185 s->size += bed->got_header_size;
186
187 if (bed->want_got_sym)
188 {
189 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
190 (or .got.plt) section. We don't do this in the linker script
191 because we don't want to define the symbol if we are not creating
192 a global offset table. */
193 h = _bfd_elf_define_linkage_sym (abfd, info, s,
194 "_GLOBAL_OFFSET_TABLE_");
195 elf_hash_table (info)->hgot = h;
196 if (h == NULL)
197 return FALSE;
198 }
199
200 return TRUE;
201 }
202 \f
203 /* Create a strtab to hold the dynamic symbol names. */
204 static bfd_boolean
205 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
206 {
207 struct elf_link_hash_table *hash_table;
208
209 hash_table = elf_hash_table (info);
210 if (hash_table->dynobj == NULL)
211 {
212 /* We may not set dynobj, an input file holding linker created
213 dynamic sections to abfd, which may be a dynamic object with
214 its own dynamic sections. We need to find a normal input file
215 to hold linker created sections if possible. */
216 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
217 {
218 bfd *ibfd;
219 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
220 if ((ibfd->flags
221 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0)
222 {
223 abfd = ibfd;
224 break;
225 }
226 }
227 hash_table->dynobj = abfd;
228 }
229
230 if (hash_table->dynstr == NULL)
231 {
232 hash_table->dynstr = _bfd_elf_strtab_init ();
233 if (hash_table->dynstr == NULL)
234 return FALSE;
235 }
236 return TRUE;
237 }
238
239 /* Create some sections which will be filled in with dynamic linking
240 information. ABFD is an input file which requires dynamic sections
241 to be created. The dynamic sections take up virtual memory space
242 when the final executable is run, so we need to create them before
243 addresses are assigned to the output sections. We work out the
244 actual contents and size of these sections later. */
245
246 bfd_boolean
247 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
248 {
249 flagword flags;
250 asection *s;
251 const struct elf_backend_data *bed;
252 struct elf_link_hash_entry *h;
253
254 if (! is_elf_hash_table (info->hash))
255 return FALSE;
256
257 if (elf_hash_table (info)->dynamic_sections_created)
258 return TRUE;
259
260 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
261 return FALSE;
262
263 abfd = elf_hash_table (info)->dynobj;
264 bed = get_elf_backend_data (abfd);
265
266 flags = bed->dynamic_sec_flags;
267
268 /* A dynamically linked executable has a .interp section, but a
269 shared library does not. */
270 if (bfd_link_executable (info) && !info->nointerp)
271 {
272 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
273 flags | SEC_READONLY);
274 if (s == NULL)
275 return FALSE;
276 }
277
278 /* Create sections to hold version informations. These are removed
279 if they are not needed. */
280 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
281 flags | SEC_READONLY);
282 if (s == NULL
283 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
284 return FALSE;
285
286 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
287 flags | SEC_READONLY);
288 if (s == NULL
289 || ! bfd_set_section_alignment (abfd, s, 1))
290 return FALSE;
291
292 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
293 flags | SEC_READONLY);
294 if (s == NULL
295 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
296 return FALSE;
297
298 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
299 flags | SEC_READONLY);
300 if (s == NULL
301 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
302 return FALSE;
303 elf_hash_table (info)->dynsym = s;
304
305 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
306 flags | SEC_READONLY);
307 if (s == NULL)
308 return FALSE;
309
310 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
311 if (s == NULL
312 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
313 return FALSE;
314
315 /* The special symbol _DYNAMIC is always set to the start of the
316 .dynamic section. We could set _DYNAMIC in a linker script, but we
317 only want to define it if we are, in fact, creating a .dynamic
318 section. We don't want to define it if there is no .dynamic
319 section, since on some ELF platforms the start up code examines it
320 to decide how to initialize the process. */
321 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
322 elf_hash_table (info)->hdynamic = h;
323 if (h == NULL)
324 return FALSE;
325
326 if (info->emit_hash)
327 {
328 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
329 flags | SEC_READONLY);
330 if (s == NULL
331 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
332 return FALSE;
333 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
334 }
335
336 if (info->emit_gnu_hash)
337 {
338 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
339 flags | SEC_READONLY);
340 if (s == NULL
341 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
342 return FALSE;
343 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
344 4 32-bit words followed by variable count of 64-bit words, then
345 variable count of 32-bit words. */
346 if (bed->s->arch_size == 64)
347 elf_section_data (s)->this_hdr.sh_entsize = 0;
348 else
349 elf_section_data (s)->this_hdr.sh_entsize = 4;
350 }
351
352 /* Let the backend create the rest of the sections. This lets the
353 backend set the right flags. The backend will normally create
354 the .got and .plt sections. */
355 if (bed->elf_backend_create_dynamic_sections == NULL
356 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
357 return FALSE;
358
359 elf_hash_table (info)->dynamic_sections_created = TRUE;
360
361 return TRUE;
362 }
363
364 /* Create dynamic sections when linking against a dynamic object. */
365
366 bfd_boolean
367 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
368 {
369 flagword flags, pltflags;
370 struct elf_link_hash_entry *h;
371 asection *s;
372 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
373 struct elf_link_hash_table *htab = elf_hash_table (info);
374
375 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
376 .rel[a].bss sections. */
377 flags = bed->dynamic_sec_flags;
378
379 pltflags = flags;
380 if (bed->plt_not_loaded)
381 /* We do not clear SEC_ALLOC here because we still want the OS to
382 allocate space for the section; it's just that there's nothing
383 to read in from the object file. */
384 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
385 else
386 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
387 if (bed->plt_readonly)
388 pltflags |= SEC_READONLY;
389
390 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
391 if (s == NULL
392 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
393 return FALSE;
394 htab->splt = s;
395
396 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
397 .plt section. */
398 if (bed->want_plt_sym)
399 {
400 h = _bfd_elf_define_linkage_sym (abfd, info, s,
401 "_PROCEDURE_LINKAGE_TABLE_");
402 elf_hash_table (info)->hplt = h;
403 if (h == NULL)
404 return FALSE;
405 }
406
407 s = bfd_make_section_anyway_with_flags (abfd,
408 (bed->rela_plts_and_copies_p
409 ? ".rela.plt" : ".rel.plt"),
410 flags | SEC_READONLY);
411 if (s == NULL
412 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
413 return FALSE;
414 htab->srelplt = s;
415
416 if (! _bfd_elf_create_got_section (abfd, info))
417 return FALSE;
418
419 if (bed->want_dynbss)
420 {
421 /* The .dynbss section is a place to put symbols which are defined
422 by dynamic objects, are referenced by regular objects, and are
423 not functions. We must allocate space for them in the process
424 image and use a R_*_COPY reloc to tell the dynamic linker to
425 initialize them at run time. The linker script puts the .dynbss
426 section into the .bss section of the final image. */
427 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
428 (SEC_ALLOC | SEC_LINKER_CREATED));
429 if (s == NULL)
430 return FALSE;
431
432 /* The .rel[a].bss section holds copy relocs. This section is not
433 normally needed. We need to create it here, though, so that the
434 linker will map it to an output section. We can't just create it
435 only if we need it, because we will not know whether we need it
436 until we have seen all the input files, and the first time the
437 main linker code calls BFD after examining all the input files
438 (size_dynamic_sections) the input sections have already been
439 mapped to the output sections. If the section turns out not to
440 be needed, we can discard it later. We will never need this
441 section when generating a shared object, since they do not use
442 copy relocs. */
443 if (! bfd_link_pic (info))
444 {
445 s = bfd_make_section_anyway_with_flags (abfd,
446 (bed->rela_plts_and_copies_p
447 ? ".rela.bss" : ".rel.bss"),
448 flags | SEC_READONLY);
449 if (s == NULL
450 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
451 return FALSE;
452 }
453 }
454
455 return TRUE;
456 }
457 \f
458 /* Record a new dynamic symbol. We record the dynamic symbols as we
459 read the input files, since we need to have a list of all of them
460 before we can determine the final sizes of the output sections.
461 Note that we may actually call this function even though we are not
462 going to output any dynamic symbols; in some cases we know that a
463 symbol should be in the dynamic symbol table, but only if there is
464 one. */
465
466 bfd_boolean
467 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
468 struct elf_link_hash_entry *h)
469 {
470 if (h->dynindx == -1)
471 {
472 struct elf_strtab_hash *dynstr;
473 char *p;
474 const char *name;
475 size_t indx;
476
477 /* XXX: The ABI draft says the linker must turn hidden and
478 internal symbols into STB_LOCAL symbols when producing the
479 DSO. However, if ld.so honors st_other in the dynamic table,
480 this would not be necessary. */
481 switch (ELF_ST_VISIBILITY (h->other))
482 {
483 case STV_INTERNAL:
484 case STV_HIDDEN:
485 if (h->root.type != bfd_link_hash_undefined
486 && h->root.type != bfd_link_hash_undefweak)
487 {
488 h->forced_local = 1;
489 if (!elf_hash_table (info)->is_relocatable_executable)
490 return TRUE;
491 }
492
493 default:
494 break;
495 }
496
497 h->dynindx = elf_hash_table (info)->dynsymcount;
498 ++elf_hash_table (info)->dynsymcount;
499
500 dynstr = elf_hash_table (info)->dynstr;
501 if (dynstr == NULL)
502 {
503 /* Create a strtab to hold the dynamic symbol names. */
504 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
505 if (dynstr == NULL)
506 return FALSE;
507 }
508
509 /* We don't put any version information in the dynamic string
510 table. */
511 name = h->root.root.string;
512 p = strchr (name, ELF_VER_CHR);
513 if (p != NULL)
514 /* We know that the p points into writable memory. In fact,
515 there are only a few symbols that have read-only names, being
516 those like _GLOBAL_OFFSET_TABLE_ that are created specially
517 by the backends. Most symbols will have names pointing into
518 an ELF string table read from a file, or to objalloc memory. */
519 *p = 0;
520
521 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
522
523 if (p != NULL)
524 *p = ELF_VER_CHR;
525
526 if (indx == (size_t) -1)
527 return FALSE;
528 h->dynstr_index = indx;
529 }
530
531 return TRUE;
532 }
533 \f
534 /* Mark a symbol dynamic. */
535
536 static void
537 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
538 struct elf_link_hash_entry *h,
539 Elf_Internal_Sym *sym)
540 {
541 struct bfd_elf_dynamic_list *d = info->dynamic_list;
542
543 /* It may be called more than once on the same H. */
544 if(h->dynamic || bfd_link_relocatable (info))
545 return;
546
547 if ((info->dynamic_data
548 && (h->type == STT_OBJECT
549 || h->type == STT_COMMON
550 || (sym != NULL
551 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
552 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
553 || (d != NULL
554 && h->root.type == bfd_link_hash_new
555 && (*d->match) (&d->head, NULL, h->root.root.string)))
556 h->dynamic = 1;
557 }
558
559 /* Record an assignment to a symbol made by a linker script. We need
560 this in case some dynamic object refers to this symbol. */
561
562 bfd_boolean
563 bfd_elf_record_link_assignment (bfd *output_bfd,
564 struct bfd_link_info *info,
565 const char *name,
566 bfd_boolean provide,
567 bfd_boolean hidden)
568 {
569 struct elf_link_hash_entry *h, *hv;
570 struct elf_link_hash_table *htab;
571 const struct elf_backend_data *bed;
572
573 if (!is_elf_hash_table (info->hash))
574 return TRUE;
575
576 htab = elf_hash_table (info);
577 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
578 if (h == NULL)
579 return provide;
580
581 if (h->versioned == unknown)
582 {
583 /* Set versioned if symbol version is unknown. */
584 char *version = strrchr (name, ELF_VER_CHR);
585 if (version)
586 {
587 if (version > name && version[-1] != ELF_VER_CHR)
588 h->versioned = versioned_hidden;
589 else
590 h->versioned = versioned;
591 }
592 }
593
594 switch (h->root.type)
595 {
596 case bfd_link_hash_defined:
597 case bfd_link_hash_defweak:
598 case bfd_link_hash_common:
599 break;
600 case bfd_link_hash_undefweak:
601 case bfd_link_hash_undefined:
602 /* Since we're defining the symbol, don't let it seem to have not
603 been defined. record_dynamic_symbol and size_dynamic_sections
604 may depend on this. */
605 h->root.type = bfd_link_hash_new;
606 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
607 bfd_link_repair_undef_list (&htab->root);
608 break;
609 case bfd_link_hash_new:
610 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
611 h->non_elf = 0;
612 break;
613 case bfd_link_hash_indirect:
614 /* We had a versioned symbol in a dynamic library. We make the
615 the versioned symbol point to this one. */
616 bed = get_elf_backend_data (output_bfd);
617 hv = h;
618 while (hv->root.type == bfd_link_hash_indirect
619 || hv->root.type == bfd_link_hash_warning)
620 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
621 /* We don't need to update h->root.u since linker will set them
622 later. */
623 h->root.type = bfd_link_hash_undefined;
624 hv->root.type = bfd_link_hash_indirect;
625 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
626 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
627 break;
628 case bfd_link_hash_warning:
629 abort ();
630 break;
631 }
632
633 /* If this symbol is being provided by the linker script, and it is
634 currently defined by a dynamic object, but not by a regular
635 object, then mark it as undefined so that the generic linker will
636 force the correct value. */
637 if (provide
638 && h->def_dynamic
639 && !h->def_regular)
640 h->root.type = bfd_link_hash_undefined;
641
642 /* If this symbol is not being provided by the linker script, and it is
643 currently defined by a dynamic object, but not by a regular object,
644 then clear out any version information because the symbol will not be
645 associated with the dynamic object any more. */
646 if (!provide
647 && h->def_dynamic
648 && !h->def_regular)
649 h->verinfo.verdef = NULL;
650
651 h->def_regular = 1;
652
653 if (hidden)
654 {
655 bed = get_elf_backend_data (output_bfd);
656 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
657 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
658 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
659 }
660
661 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
662 and executables. */
663 if (!bfd_link_relocatable (info)
664 && h->dynindx != -1
665 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
666 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
667 h->forced_local = 1;
668
669 if ((h->def_dynamic
670 || h->ref_dynamic
671 || bfd_link_dll (info)
672 || elf_hash_table (info)->is_relocatable_executable)
673 && h->dynindx == -1)
674 {
675 if (! bfd_elf_link_record_dynamic_symbol (info, h))
676 return FALSE;
677
678 /* If this is a weak defined symbol, and we know a corresponding
679 real symbol from the same dynamic object, make sure the real
680 symbol is also made into a dynamic symbol. */
681 if (h->u.weakdef != NULL
682 && h->u.weakdef->dynindx == -1)
683 {
684 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
685 return FALSE;
686 }
687 }
688
689 return TRUE;
690 }
691
692 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
693 success, and 2 on a failure caused by attempting to record a symbol
694 in a discarded section, eg. a discarded link-once section symbol. */
695
696 int
697 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
698 bfd *input_bfd,
699 long input_indx)
700 {
701 bfd_size_type amt;
702 struct elf_link_local_dynamic_entry *entry;
703 struct elf_link_hash_table *eht;
704 struct elf_strtab_hash *dynstr;
705 size_t dynstr_index;
706 char *name;
707 Elf_External_Sym_Shndx eshndx;
708 char esym[sizeof (Elf64_External_Sym)];
709
710 if (! is_elf_hash_table (info->hash))
711 return 0;
712
713 /* See if the entry exists already. */
714 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
715 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
716 return 1;
717
718 amt = sizeof (*entry);
719 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
720 if (entry == NULL)
721 return 0;
722
723 /* Go find the symbol, so that we can find it's name. */
724 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
725 1, input_indx, &entry->isym, esym, &eshndx))
726 {
727 bfd_release (input_bfd, entry);
728 return 0;
729 }
730
731 if (entry->isym.st_shndx != SHN_UNDEF
732 && entry->isym.st_shndx < SHN_LORESERVE)
733 {
734 asection *s;
735
736 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
737 if (s == NULL || bfd_is_abs_section (s->output_section))
738 {
739 /* We can still bfd_release here as nothing has done another
740 bfd_alloc. We can't do this later in this function. */
741 bfd_release (input_bfd, entry);
742 return 2;
743 }
744 }
745
746 name = (bfd_elf_string_from_elf_section
747 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
748 entry->isym.st_name));
749
750 dynstr = elf_hash_table (info)->dynstr;
751 if (dynstr == NULL)
752 {
753 /* Create a strtab to hold the dynamic symbol names. */
754 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
755 if (dynstr == NULL)
756 return 0;
757 }
758
759 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
760 if (dynstr_index == (size_t) -1)
761 return 0;
762 entry->isym.st_name = dynstr_index;
763
764 eht = elf_hash_table (info);
765
766 entry->next = eht->dynlocal;
767 eht->dynlocal = entry;
768 entry->input_bfd = input_bfd;
769 entry->input_indx = input_indx;
770 eht->dynsymcount++;
771
772 /* Whatever binding the symbol had before, it's now local. */
773 entry->isym.st_info
774 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
775
776 /* The dynindx will be set at the end of size_dynamic_sections. */
777
778 return 1;
779 }
780
781 /* Return the dynindex of a local dynamic symbol. */
782
783 long
784 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
785 bfd *input_bfd,
786 long input_indx)
787 {
788 struct elf_link_local_dynamic_entry *e;
789
790 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
791 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
792 return e->dynindx;
793 return -1;
794 }
795
796 /* This function is used to renumber the dynamic symbols, if some of
797 them are removed because they are marked as local. This is called
798 via elf_link_hash_traverse. */
799
800 static bfd_boolean
801 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
802 void *data)
803 {
804 size_t *count = (size_t *) data;
805
806 if (h->forced_local)
807 return TRUE;
808
809 if (h->dynindx != -1)
810 h->dynindx = ++(*count);
811
812 return TRUE;
813 }
814
815
816 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
817 STB_LOCAL binding. */
818
819 static bfd_boolean
820 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
821 void *data)
822 {
823 size_t *count = (size_t *) data;
824
825 if (!h->forced_local)
826 return TRUE;
827
828 if (h->dynindx != -1)
829 h->dynindx = ++(*count);
830
831 return TRUE;
832 }
833
834 /* Return true if the dynamic symbol for a given section should be
835 omitted when creating a shared library. */
836 bfd_boolean
837 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
838 struct bfd_link_info *info,
839 asection *p)
840 {
841 struct elf_link_hash_table *htab;
842 asection *ip;
843
844 switch (elf_section_data (p)->this_hdr.sh_type)
845 {
846 case SHT_PROGBITS:
847 case SHT_NOBITS:
848 /* If sh_type is yet undecided, assume it could be
849 SHT_PROGBITS/SHT_NOBITS. */
850 case SHT_NULL:
851 htab = elf_hash_table (info);
852 if (p == htab->tls_sec)
853 return FALSE;
854
855 if (htab->text_index_section != NULL)
856 return p != htab->text_index_section && p != htab->data_index_section;
857
858 return (htab->dynobj != NULL
859 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
860 && ip->output_section == p);
861
862 /* There shouldn't be section relative relocations
863 against any other section. */
864 default:
865 return TRUE;
866 }
867 }
868
869 /* Assign dynsym indices. In a shared library we generate a section
870 symbol for each output section, which come first. Next come symbols
871 which have been forced to local binding. Then all of the back-end
872 allocated local dynamic syms, followed by the rest of the global
873 symbols. */
874
875 static unsigned long
876 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
877 struct bfd_link_info *info,
878 unsigned long *section_sym_count)
879 {
880 unsigned long dynsymcount = 0;
881
882 if (bfd_link_pic (info)
883 || elf_hash_table (info)->is_relocatable_executable)
884 {
885 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
886 asection *p;
887 for (p = output_bfd->sections; p ; p = p->next)
888 if ((p->flags & SEC_EXCLUDE) == 0
889 && (p->flags & SEC_ALLOC) != 0
890 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
891 elf_section_data (p)->dynindx = ++dynsymcount;
892 else
893 elf_section_data (p)->dynindx = 0;
894 }
895 *section_sym_count = dynsymcount;
896
897 elf_link_hash_traverse (elf_hash_table (info),
898 elf_link_renumber_local_hash_table_dynsyms,
899 &dynsymcount);
900
901 if (elf_hash_table (info)->dynlocal)
902 {
903 struct elf_link_local_dynamic_entry *p;
904 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
905 p->dynindx = ++dynsymcount;
906 }
907 elf_hash_table (info)->local_dynsymcount = dynsymcount;
908
909 elf_link_hash_traverse (elf_hash_table (info),
910 elf_link_renumber_hash_table_dynsyms,
911 &dynsymcount);
912
913 /* There is an unused NULL entry at the head of the table which we
914 must account for in our count even if the table is empty since it
915 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
916 .dynamic section. */
917 dynsymcount++;
918
919 elf_hash_table (info)->dynsymcount = dynsymcount;
920 return dynsymcount;
921 }
922
923 /* Merge st_other field. */
924
925 static void
926 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
927 const Elf_Internal_Sym *isym, asection *sec,
928 bfd_boolean definition, bfd_boolean dynamic)
929 {
930 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
931
932 /* If st_other has a processor-specific meaning, specific
933 code might be needed here. */
934 if (bed->elf_backend_merge_symbol_attribute)
935 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
936 dynamic);
937
938 if (!dynamic)
939 {
940 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
941 unsigned hvis = ELF_ST_VISIBILITY (h->other);
942
943 /* Keep the most constraining visibility. Leave the remainder
944 of the st_other field to elf_backend_merge_symbol_attribute. */
945 if (symvis - 1 < hvis - 1)
946 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
947 }
948 else if (definition
949 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
950 && (sec->flags & SEC_READONLY) == 0)
951 h->protected_def = 1;
952 }
953
954 /* This function is called when we want to merge a new symbol with an
955 existing symbol. It handles the various cases which arise when we
956 find a definition in a dynamic object, or when there is already a
957 definition in a dynamic object. The new symbol is described by
958 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
959 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
960 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
961 of an old common symbol. We set OVERRIDE if the old symbol is
962 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
963 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
964 to change. By OK to change, we mean that we shouldn't warn if the
965 type or size does change. */
966
967 static bfd_boolean
968 _bfd_elf_merge_symbol (bfd *abfd,
969 struct bfd_link_info *info,
970 const char *name,
971 Elf_Internal_Sym *sym,
972 asection **psec,
973 bfd_vma *pvalue,
974 struct elf_link_hash_entry **sym_hash,
975 bfd **poldbfd,
976 bfd_boolean *pold_weak,
977 unsigned int *pold_alignment,
978 bfd_boolean *skip,
979 bfd_boolean *override,
980 bfd_boolean *type_change_ok,
981 bfd_boolean *size_change_ok,
982 bfd_boolean *matched)
983 {
984 asection *sec, *oldsec;
985 struct elf_link_hash_entry *h;
986 struct elf_link_hash_entry *hi;
987 struct elf_link_hash_entry *flip;
988 int bind;
989 bfd *oldbfd;
990 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
991 bfd_boolean newweak, oldweak, newfunc, oldfunc;
992 const struct elf_backend_data *bed;
993 char *new_version;
994
995 *skip = FALSE;
996 *override = FALSE;
997
998 sec = *psec;
999 bind = ELF_ST_BIND (sym->st_info);
1000
1001 if (! bfd_is_und_section (sec))
1002 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
1003 else
1004 h = ((struct elf_link_hash_entry *)
1005 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1006 if (h == NULL)
1007 return FALSE;
1008 *sym_hash = h;
1009
1010 bed = get_elf_backend_data (abfd);
1011
1012 /* NEW_VERSION is the symbol version of the new symbol. */
1013 if (h->versioned != unversioned)
1014 {
1015 /* Symbol version is unknown or versioned. */
1016 new_version = strrchr (name, ELF_VER_CHR);
1017 if (new_version)
1018 {
1019 if (h->versioned == unknown)
1020 {
1021 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1022 h->versioned = versioned_hidden;
1023 else
1024 h->versioned = versioned;
1025 }
1026 new_version += 1;
1027 if (new_version[0] == '\0')
1028 new_version = NULL;
1029 }
1030 else
1031 h->versioned = unversioned;
1032 }
1033 else
1034 new_version = NULL;
1035
1036 /* For merging, we only care about real symbols. But we need to make
1037 sure that indirect symbol dynamic flags are updated. */
1038 hi = h;
1039 while (h->root.type == bfd_link_hash_indirect
1040 || h->root.type == bfd_link_hash_warning)
1041 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1042
1043 if (!*matched)
1044 {
1045 if (hi == h || h->root.type == bfd_link_hash_new)
1046 *matched = TRUE;
1047 else
1048 {
1049 /* OLD_HIDDEN is true if the existing symbol is only visible
1050 to the symbol with the same symbol version. NEW_HIDDEN is
1051 true if the new symbol is only visible to the symbol with
1052 the same symbol version. */
1053 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1054 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1055 if (!old_hidden && !new_hidden)
1056 /* The new symbol matches the existing symbol if both
1057 aren't hidden. */
1058 *matched = TRUE;
1059 else
1060 {
1061 /* OLD_VERSION is the symbol version of the existing
1062 symbol. */
1063 char *old_version;
1064
1065 if (h->versioned >= versioned)
1066 old_version = strrchr (h->root.root.string,
1067 ELF_VER_CHR) + 1;
1068 else
1069 old_version = NULL;
1070
1071 /* The new symbol matches the existing symbol if they
1072 have the same symbol version. */
1073 *matched = (old_version == new_version
1074 || (old_version != NULL
1075 && new_version != NULL
1076 && strcmp (old_version, new_version) == 0));
1077 }
1078 }
1079 }
1080
1081 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1082 existing symbol. */
1083
1084 oldbfd = NULL;
1085 oldsec = NULL;
1086 switch (h->root.type)
1087 {
1088 default:
1089 break;
1090
1091 case bfd_link_hash_undefined:
1092 case bfd_link_hash_undefweak:
1093 oldbfd = h->root.u.undef.abfd;
1094 break;
1095
1096 case bfd_link_hash_defined:
1097 case bfd_link_hash_defweak:
1098 oldbfd = h->root.u.def.section->owner;
1099 oldsec = h->root.u.def.section;
1100 break;
1101
1102 case bfd_link_hash_common:
1103 oldbfd = h->root.u.c.p->section->owner;
1104 oldsec = h->root.u.c.p->section;
1105 if (pold_alignment)
1106 *pold_alignment = h->root.u.c.p->alignment_power;
1107 break;
1108 }
1109 if (poldbfd && *poldbfd == NULL)
1110 *poldbfd = oldbfd;
1111
1112 /* Differentiate strong and weak symbols. */
1113 newweak = bind == STB_WEAK;
1114 oldweak = (h->root.type == bfd_link_hash_defweak
1115 || h->root.type == bfd_link_hash_undefweak);
1116 if (pold_weak)
1117 *pold_weak = oldweak;
1118
1119 /* This code is for coping with dynamic objects, and is only useful
1120 if we are doing an ELF link. */
1121 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
1122 return TRUE;
1123
1124 /* We have to check it for every instance since the first few may be
1125 references and not all compilers emit symbol type for undefined
1126 symbols. */
1127 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1128
1129 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1130 respectively, is from a dynamic object. */
1131
1132 newdyn = (abfd->flags & DYNAMIC) != 0;
1133
1134 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1135 syms and defined syms in dynamic libraries respectively.
1136 ref_dynamic on the other hand can be set for a symbol defined in
1137 a dynamic library, and def_dynamic may not be set; When the
1138 definition in a dynamic lib is overridden by a definition in the
1139 executable use of the symbol in the dynamic lib becomes a
1140 reference to the executable symbol. */
1141 if (newdyn)
1142 {
1143 if (bfd_is_und_section (sec))
1144 {
1145 if (bind != STB_WEAK)
1146 {
1147 h->ref_dynamic_nonweak = 1;
1148 hi->ref_dynamic_nonweak = 1;
1149 }
1150 }
1151 else
1152 {
1153 /* Update the existing symbol only if they match. */
1154 if (*matched)
1155 h->dynamic_def = 1;
1156 hi->dynamic_def = 1;
1157 }
1158 }
1159
1160 /* If we just created the symbol, mark it as being an ELF symbol.
1161 Other than that, there is nothing to do--there is no merge issue
1162 with a newly defined symbol--so we just return. */
1163
1164 if (h->root.type == bfd_link_hash_new)
1165 {
1166 h->non_elf = 0;
1167 return TRUE;
1168 }
1169
1170 /* In cases involving weak versioned symbols, we may wind up trying
1171 to merge a symbol with itself. Catch that here, to avoid the
1172 confusion that results if we try to override a symbol with
1173 itself. The additional tests catch cases like
1174 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1175 dynamic object, which we do want to handle here. */
1176 if (abfd == oldbfd
1177 && (newweak || oldweak)
1178 && ((abfd->flags & DYNAMIC) == 0
1179 || !h->def_regular))
1180 return TRUE;
1181
1182 olddyn = FALSE;
1183 if (oldbfd != NULL)
1184 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1185 else if (oldsec != NULL)
1186 {
1187 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1188 indices used by MIPS ELF. */
1189 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1190 }
1191
1192 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1193 respectively, appear to be a definition rather than reference. */
1194
1195 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1196
1197 olddef = (h->root.type != bfd_link_hash_undefined
1198 && h->root.type != bfd_link_hash_undefweak
1199 && h->root.type != bfd_link_hash_common);
1200
1201 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1202 respectively, appear to be a function. */
1203
1204 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1205 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1206
1207 oldfunc = (h->type != STT_NOTYPE
1208 && bed->is_function_type (h->type));
1209
1210 /* If creating a default indirect symbol ("foo" or "foo@") from a
1211 dynamic versioned definition ("foo@@") skip doing so if there is
1212 an existing regular definition with a different type. We don't
1213 want, for example, a "time" variable in the executable overriding
1214 a "time" function in a shared library. */
1215 if (pold_alignment == NULL
1216 && newdyn
1217 && newdef
1218 && !olddyn
1219 && (olddef || h->root.type == bfd_link_hash_common)
1220 && ELF_ST_TYPE (sym->st_info) != h->type
1221 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1222 && h->type != STT_NOTYPE
1223 && !(newfunc && oldfunc))
1224 {
1225 *skip = TRUE;
1226 return TRUE;
1227 }
1228
1229 /* Check TLS symbols. We don't check undefined symbols introduced
1230 by "ld -u" which have no type (and oldbfd NULL), and we don't
1231 check symbols from plugins because they also have no type. */
1232 if (oldbfd != NULL
1233 && (oldbfd->flags & BFD_PLUGIN) == 0
1234 && (abfd->flags & BFD_PLUGIN) == 0
1235 && ELF_ST_TYPE (sym->st_info) != h->type
1236 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1237 {
1238 bfd *ntbfd, *tbfd;
1239 bfd_boolean ntdef, tdef;
1240 asection *ntsec, *tsec;
1241
1242 if (h->type == STT_TLS)
1243 {
1244 ntbfd = abfd;
1245 ntsec = sec;
1246 ntdef = newdef;
1247 tbfd = oldbfd;
1248 tsec = oldsec;
1249 tdef = olddef;
1250 }
1251 else
1252 {
1253 ntbfd = oldbfd;
1254 ntsec = oldsec;
1255 ntdef = olddef;
1256 tbfd = abfd;
1257 tsec = sec;
1258 tdef = newdef;
1259 }
1260
1261 if (tdef && ntdef)
1262 (*_bfd_error_handler)
1263 (_("%s: TLS definition in %B section %A "
1264 "mismatches non-TLS definition in %B section %A"),
1265 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1266 else if (!tdef && !ntdef)
1267 (*_bfd_error_handler)
1268 (_("%s: TLS reference in %B "
1269 "mismatches non-TLS reference in %B"),
1270 tbfd, ntbfd, h->root.root.string);
1271 else if (tdef)
1272 (*_bfd_error_handler)
1273 (_("%s: TLS definition in %B section %A "
1274 "mismatches non-TLS reference in %B"),
1275 tbfd, tsec, ntbfd, h->root.root.string);
1276 else
1277 (*_bfd_error_handler)
1278 (_("%s: TLS reference in %B "
1279 "mismatches non-TLS definition in %B section %A"),
1280 tbfd, ntbfd, ntsec, h->root.root.string);
1281
1282 bfd_set_error (bfd_error_bad_value);
1283 return FALSE;
1284 }
1285
1286 /* If the old symbol has non-default visibility, we ignore the new
1287 definition from a dynamic object. */
1288 if (newdyn
1289 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1290 && !bfd_is_und_section (sec))
1291 {
1292 *skip = TRUE;
1293 /* Make sure this symbol is dynamic. */
1294 h->ref_dynamic = 1;
1295 hi->ref_dynamic = 1;
1296 /* A protected symbol has external availability. Make sure it is
1297 recorded as dynamic.
1298
1299 FIXME: Should we check type and size for protected symbol? */
1300 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1301 return bfd_elf_link_record_dynamic_symbol (info, h);
1302 else
1303 return TRUE;
1304 }
1305 else if (!newdyn
1306 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1307 && h->def_dynamic)
1308 {
1309 /* If the new symbol with non-default visibility comes from a
1310 relocatable file and the old definition comes from a dynamic
1311 object, we remove the old definition. */
1312 if (hi->root.type == bfd_link_hash_indirect)
1313 {
1314 /* Handle the case where the old dynamic definition is
1315 default versioned. We need to copy the symbol info from
1316 the symbol with default version to the normal one if it
1317 was referenced before. */
1318 if (h->ref_regular)
1319 {
1320 hi->root.type = h->root.type;
1321 h->root.type = bfd_link_hash_indirect;
1322 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1323
1324 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1325 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1326 {
1327 /* If the new symbol is hidden or internal, completely undo
1328 any dynamic link state. */
1329 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1330 h->forced_local = 0;
1331 h->ref_dynamic = 0;
1332 }
1333 else
1334 h->ref_dynamic = 1;
1335
1336 h->def_dynamic = 0;
1337 /* FIXME: Should we check type and size for protected symbol? */
1338 h->size = 0;
1339 h->type = 0;
1340
1341 h = hi;
1342 }
1343 else
1344 h = hi;
1345 }
1346
1347 /* If the old symbol was undefined before, then it will still be
1348 on the undefs list. If the new symbol is undefined or
1349 common, we can't make it bfd_link_hash_new here, because new
1350 undefined or common symbols will be added to the undefs list
1351 by _bfd_generic_link_add_one_symbol. Symbols may not be
1352 added twice to the undefs list. Also, if the new symbol is
1353 undefweak then we don't want to lose the strong undef. */
1354 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1355 {
1356 h->root.type = bfd_link_hash_undefined;
1357 h->root.u.undef.abfd = abfd;
1358 }
1359 else
1360 {
1361 h->root.type = bfd_link_hash_new;
1362 h->root.u.undef.abfd = NULL;
1363 }
1364
1365 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1366 {
1367 /* If the new symbol is hidden or internal, completely undo
1368 any dynamic link state. */
1369 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1370 h->forced_local = 0;
1371 h->ref_dynamic = 0;
1372 }
1373 else
1374 h->ref_dynamic = 1;
1375 h->def_dynamic = 0;
1376 /* FIXME: Should we check type and size for protected symbol? */
1377 h->size = 0;
1378 h->type = 0;
1379 return TRUE;
1380 }
1381
1382 /* If a new weak symbol definition comes from a regular file and the
1383 old symbol comes from a dynamic library, we treat the new one as
1384 strong. Similarly, an old weak symbol definition from a regular
1385 file is treated as strong when the new symbol comes from a dynamic
1386 library. Further, an old weak symbol from a dynamic library is
1387 treated as strong if the new symbol is from a dynamic library.
1388 This reflects the way glibc's ld.so works.
1389
1390 Do this before setting *type_change_ok or *size_change_ok so that
1391 we warn properly when dynamic library symbols are overridden. */
1392
1393 if (newdef && !newdyn && olddyn)
1394 newweak = FALSE;
1395 if (olddef && newdyn)
1396 oldweak = FALSE;
1397
1398 /* Allow changes between different types of function symbol. */
1399 if (newfunc && oldfunc)
1400 *type_change_ok = TRUE;
1401
1402 /* It's OK to change the type if either the existing symbol or the
1403 new symbol is weak. A type change is also OK if the old symbol
1404 is undefined and the new symbol is defined. */
1405
1406 if (oldweak
1407 || newweak
1408 || (newdef
1409 && h->root.type == bfd_link_hash_undefined))
1410 *type_change_ok = TRUE;
1411
1412 /* It's OK to change the size if either the existing symbol or the
1413 new symbol is weak, or if the old symbol is undefined. */
1414
1415 if (*type_change_ok
1416 || h->root.type == bfd_link_hash_undefined)
1417 *size_change_ok = TRUE;
1418
1419 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1420 symbol, respectively, appears to be a common symbol in a dynamic
1421 object. If a symbol appears in an uninitialized section, and is
1422 not weak, and is not a function, then it may be a common symbol
1423 which was resolved when the dynamic object was created. We want
1424 to treat such symbols specially, because they raise special
1425 considerations when setting the symbol size: if the symbol
1426 appears as a common symbol in a regular object, and the size in
1427 the regular object is larger, we must make sure that we use the
1428 larger size. This problematic case can always be avoided in C,
1429 but it must be handled correctly when using Fortran shared
1430 libraries.
1431
1432 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1433 likewise for OLDDYNCOMMON and OLDDEF.
1434
1435 Note that this test is just a heuristic, and that it is quite
1436 possible to have an uninitialized symbol in a shared object which
1437 is really a definition, rather than a common symbol. This could
1438 lead to some minor confusion when the symbol really is a common
1439 symbol in some regular object. However, I think it will be
1440 harmless. */
1441
1442 if (newdyn
1443 && newdef
1444 && !newweak
1445 && (sec->flags & SEC_ALLOC) != 0
1446 && (sec->flags & SEC_LOAD) == 0
1447 && sym->st_size > 0
1448 && !newfunc)
1449 newdyncommon = TRUE;
1450 else
1451 newdyncommon = FALSE;
1452
1453 if (olddyn
1454 && olddef
1455 && h->root.type == bfd_link_hash_defined
1456 && h->def_dynamic
1457 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1458 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1459 && h->size > 0
1460 && !oldfunc)
1461 olddyncommon = TRUE;
1462 else
1463 olddyncommon = FALSE;
1464
1465 /* We now know everything about the old and new symbols. We ask the
1466 backend to check if we can merge them. */
1467 if (bed->merge_symbol != NULL)
1468 {
1469 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1470 return FALSE;
1471 sec = *psec;
1472 }
1473
1474 /* If both the old and the new symbols look like common symbols in a
1475 dynamic object, set the size of the symbol to the larger of the
1476 two. */
1477
1478 if (olddyncommon
1479 && newdyncommon
1480 && sym->st_size != h->size)
1481 {
1482 /* Since we think we have two common symbols, issue a multiple
1483 common warning if desired. Note that we only warn if the
1484 size is different. If the size is the same, we simply let
1485 the old symbol override the new one as normally happens with
1486 symbols defined in dynamic objects. */
1487
1488 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1489 bfd_link_hash_common, sym->st_size);
1490 if (sym->st_size > h->size)
1491 h->size = sym->st_size;
1492
1493 *size_change_ok = TRUE;
1494 }
1495
1496 /* If we are looking at a dynamic object, and we have found a
1497 definition, we need to see if the symbol was already defined by
1498 some other object. If so, we want to use the existing
1499 definition, and we do not want to report a multiple symbol
1500 definition error; we do this by clobbering *PSEC to be
1501 bfd_und_section_ptr.
1502
1503 We treat a common symbol as a definition if the symbol in the
1504 shared library is a function, since common symbols always
1505 represent variables; this can cause confusion in principle, but
1506 any such confusion would seem to indicate an erroneous program or
1507 shared library. We also permit a common symbol in a regular
1508 object to override a weak symbol in a shared object. A common
1509 symbol in executable also overrides a symbol in a shared object. */
1510
1511 if (newdyn
1512 && newdef
1513 && (olddef
1514 || (h->root.type == bfd_link_hash_common
1515 && (newweak
1516 || newfunc
1517 || (!olddyn && bfd_link_executable (info))))))
1518 {
1519 *override = TRUE;
1520 newdef = FALSE;
1521 newdyncommon = FALSE;
1522
1523 *psec = sec = bfd_und_section_ptr;
1524 *size_change_ok = TRUE;
1525
1526 /* If we get here when the old symbol is a common symbol, then
1527 we are explicitly letting it override a weak symbol or
1528 function in a dynamic object, and we don't want to warn about
1529 a type change. If the old symbol is a defined symbol, a type
1530 change warning may still be appropriate. */
1531
1532 if (h->root.type == bfd_link_hash_common)
1533 *type_change_ok = TRUE;
1534 }
1535
1536 /* Handle the special case of an old common symbol merging with a
1537 new symbol which looks like a common symbol in a shared object.
1538 We change *PSEC and *PVALUE to make the new symbol look like a
1539 common symbol, and let _bfd_generic_link_add_one_symbol do the
1540 right thing. */
1541
1542 if (newdyncommon
1543 && h->root.type == bfd_link_hash_common)
1544 {
1545 *override = TRUE;
1546 newdef = FALSE;
1547 newdyncommon = FALSE;
1548 *pvalue = sym->st_size;
1549 *psec = sec = bed->common_section (oldsec);
1550 *size_change_ok = TRUE;
1551 }
1552
1553 /* Skip weak definitions of symbols that are already defined. */
1554 if (newdef && olddef && newweak)
1555 {
1556 /* Don't skip new non-IR weak syms. */
1557 if (!(oldbfd != NULL
1558 && (oldbfd->flags & BFD_PLUGIN) != 0
1559 && (abfd->flags & BFD_PLUGIN) == 0))
1560 {
1561 newdef = FALSE;
1562 *skip = TRUE;
1563 }
1564
1565 /* Merge st_other. If the symbol already has a dynamic index,
1566 but visibility says it should not be visible, turn it into a
1567 local symbol. */
1568 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1569 if (h->dynindx != -1)
1570 switch (ELF_ST_VISIBILITY (h->other))
1571 {
1572 case STV_INTERNAL:
1573 case STV_HIDDEN:
1574 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1575 break;
1576 }
1577 }
1578
1579 /* If the old symbol is from a dynamic object, and the new symbol is
1580 a definition which is not from a dynamic object, then the new
1581 symbol overrides the old symbol. Symbols from regular files
1582 always take precedence over symbols from dynamic objects, even if
1583 they are defined after the dynamic object in the link.
1584
1585 As above, we again permit a common symbol in a regular object to
1586 override a definition in a shared object if the shared object
1587 symbol is a function or is weak. */
1588
1589 flip = NULL;
1590 if (!newdyn
1591 && (newdef
1592 || (bfd_is_com_section (sec)
1593 && (oldweak || oldfunc)))
1594 && olddyn
1595 && olddef
1596 && h->def_dynamic)
1597 {
1598 /* Change the hash table entry to undefined, and let
1599 _bfd_generic_link_add_one_symbol do the right thing with the
1600 new definition. */
1601
1602 h->root.type = bfd_link_hash_undefined;
1603 h->root.u.undef.abfd = h->root.u.def.section->owner;
1604 *size_change_ok = TRUE;
1605
1606 olddef = FALSE;
1607 olddyncommon = FALSE;
1608
1609 /* We again permit a type change when a common symbol may be
1610 overriding a function. */
1611
1612 if (bfd_is_com_section (sec))
1613 {
1614 if (oldfunc)
1615 {
1616 /* If a common symbol overrides a function, make sure
1617 that it isn't defined dynamically nor has type
1618 function. */
1619 h->def_dynamic = 0;
1620 h->type = STT_NOTYPE;
1621 }
1622 *type_change_ok = TRUE;
1623 }
1624
1625 if (hi->root.type == bfd_link_hash_indirect)
1626 flip = hi;
1627 else
1628 /* This union may have been set to be non-NULL when this symbol
1629 was seen in a dynamic object. We must force the union to be
1630 NULL, so that it is correct for a regular symbol. */
1631 h->verinfo.vertree = NULL;
1632 }
1633
1634 /* Handle the special case of a new common symbol merging with an
1635 old symbol that looks like it might be a common symbol defined in
1636 a shared object. Note that we have already handled the case in
1637 which a new common symbol should simply override the definition
1638 in the shared library. */
1639
1640 if (! newdyn
1641 && bfd_is_com_section (sec)
1642 && olddyncommon)
1643 {
1644 /* It would be best if we could set the hash table entry to a
1645 common symbol, but we don't know what to use for the section
1646 or the alignment. */
1647 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1648 bfd_link_hash_common, sym->st_size);
1649
1650 /* If the presumed common symbol in the dynamic object is
1651 larger, pretend that the new symbol has its size. */
1652
1653 if (h->size > *pvalue)
1654 *pvalue = h->size;
1655
1656 /* We need to remember the alignment required by the symbol
1657 in the dynamic object. */
1658 BFD_ASSERT (pold_alignment);
1659 *pold_alignment = h->root.u.def.section->alignment_power;
1660
1661 olddef = FALSE;
1662 olddyncommon = FALSE;
1663
1664 h->root.type = bfd_link_hash_undefined;
1665 h->root.u.undef.abfd = h->root.u.def.section->owner;
1666
1667 *size_change_ok = TRUE;
1668 *type_change_ok = TRUE;
1669
1670 if (hi->root.type == bfd_link_hash_indirect)
1671 flip = hi;
1672 else
1673 h->verinfo.vertree = NULL;
1674 }
1675
1676 if (flip != NULL)
1677 {
1678 /* Handle the case where we had a versioned symbol in a dynamic
1679 library and now find a definition in a normal object. In this
1680 case, we make the versioned symbol point to the normal one. */
1681 flip->root.type = h->root.type;
1682 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1683 h->root.type = bfd_link_hash_indirect;
1684 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1685 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1686 if (h->def_dynamic)
1687 {
1688 h->def_dynamic = 0;
1689 flip->ref_dynamic = 1;
1690 }
1691 }
1692
1693 return TRUE;
1694 }
1695
1696 /* This function is called to create an indirect symbol from the
1697 default for the symbol with the default version if needed. The
1698 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1699 set DYNSYM if the new indirect symbol is dynamic. */
1700
1701 static bfd_boolean
1702 _bfd_elf_add_default_symbol (bfd *abfd,
1703 struct bfd_link_info *info,
1704 struct elf_link_hash_entry *h,
1705 const char *name,
1706 Elf_Internal_Sym *sym,
1707 asection *sec,
1708 bfd_vma value,
1709 bfd **poldbfd,
1710 bfd_boolean *dynsym)
1711 {
1712 bfd_boolean type_change_ok;
1713 bfd_boolean size_change_ok;
1714 bfd_boolean skip;
1715 char *shortname;
1716 struct elf_link_hash_entry *hi;
1717 struct bfd_link_hash_entry *bh;
1718 const struct elf_backend_data *bed;
1719 bfd_boolean collect;
1720 bfd_boolean dynamic;
1721 bfd_boolean override;
1722 char *p;
1723 size_t len, shortlen;
1724 asection *tmp_sec;
1725 bfd_boolean matched;
1726
1727 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1728 return TRUE;
1729
1730 /* If this symbol has a version, and it is the default version, we
1731 create an indirect symbol from the default name to the fully
1732 decorated name. This will cause external references which do not
1733 specify a version to be bound to this version of the symbol. */
1734 p = strchr (name, ELF_VER_CHR);
1735 if (h->versioned == unknown)
1736 {
1737 if (p == NULL)
1738 {
1739 h->versioned = unversioned;
1740 return TRUE;
1741 }
1742 else
1743 {
1744 if (p[1] != ELF_VER_CHR)
1745 {
1746 h->versioned = versioned_hidden;
1747 return TRUE;
1748 }
1749 else
1750 h->versioned = versioned;
1751 }
1752 }
1753 else
1754 {
1755 /* PR ld/19073: We may see an unversioned definition after the
1756 default version. */
1757 if (p == NULL)
1758 return TRUE;
1759 }
1760
1761 bed = get_elf_backend_data (abfd);
1762 collect = bed->collect;
1763 dynamic = (abfd->flags & DYNAMIC) != 0;
1764
1765 shortlen = p - name;
1766 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1767 if (shortname == NULL)
1768 return FALSE;
1769 memcpy (shortname, name, shortlen);
1770 shortname[shortlen] = '\0';
1771
1772 /* We are going to create a new symbol. Merge it with any existing
1773 symbol with this name. For the purposes of the merge, act as
1774 though we were defining the symbol we just defined, although we
1775 actually going to define an indirect symbol. */
1776 type_change_ok = FALSE;
1777 size_change_ok = FALSE;
1778 matched = TRUE;
1779 tmp_sec = sec;
1780 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1781 &hi, poldbfd, NULL, NULL, &skip, &override,
1782 &type_change_ok, &size_change_ok, &matched))
1783 return FALSE;
1784
1785 if (skip)
1786 goto nondefault;
1787
1788 if (hi->def_regular)
1789 {
1790 /* If the undecorated symbol will have a version added by a
1791 script different to H, then don't indirect to/from the
1792 undecorated symbol. This isn't ideal because we may not yet
1793 have seen symbol versions, if given by a script on the
1794 command line rather than via --version-script. */
1795 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1796 {
1797 bfd_boolean hide;
1798
1799 hi->verinfo.vertree
1800 = bfd_find_version_for_sym (info->version_info,
1801 hi->root.root.string, &hide);
1802 if (hi->verinfo.vertree != NULL && hide)
1803 {
1804 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1805 goto nondefault;
1806 }
1807 }
1808 if (hi->verinfo.vertree != NULL
1809 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1810 goto nondefault;
1811 }
1812
1813 if (! override)
1814 {
1815 /* Add the default symbol if not performing a relocatable link. */
1816 if (! bfd_link_relocatable (info))
1817 {
1818 bh = &hi->root;
1819 if (! (_bfd_generic_link_add_one_symbol
1820 (info, abfd, shortname, BSF_INDIRECT,
1821 bfd_ind_section_ptr,
1822 0, name, FALSE, collect, &bh)))
1823 return FALSE;
1824 hi = (struct elf_link_hash_entry *) bh;
1825 }
1826 }
1827 else
1828 {
1829 /* In this case the symbol named SHORTNAME is overriding the
1830 indirect symbol we want to add. We were planning on making
1831 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1832 is the name without a version. NAME is the fully versioned
1833 name, and it is the default version.
1834
1835 Overriding means that we already saw a definition for the
1836 symbol SHORTNAME in a regular object, and it is overriding
1837 the symbol defined in the dynamic object.
1838
1839 When this happens, we actually want to change NAME, the
1840 symbol we just added, to refer to SHORTNAME. This will cause
1841 references to NAME in the shared object to become references
1842 to SHORTNAME in the regular object. This is what we expect
1843 when we override a function in a shared object: that the
1844 references in the shared object will be mapped to the
1845 definition in the regular object. */
1846
1847 while (hi->root.type == bfd_link_hash_indirect
1848 || hi->root.type == bfd_link_hash_warning)
1849 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1850
1851 h->root.type = bfd_link_hash_indirect;
1852 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1853 if (h->def_dynamic)
1854 {
1855 h->def_dynamic = 0;
1856 hi->ref_dynamic = 1;
1857 if (hi->ref_regular
1858 || hi->def_regular)
1859 {
1860 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1861 return FALSE;
1862 }
1863 }
1864
1865 /* Now set HI to H, so that the following code will set the
1866 other fields correctly. */
1867 hi = h;
1868 }
1869
1870 /* Check if HI is a warning symbol. */
1871 if (hi->root.type == bfd_link_hash_warning)
1872 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1873
1874 /* If there is a duplicate definition somewhere, then HI may not
1875 point to an indirect symbol. We will have reported an error to
1876 the user in that case. */
1877
1878 if (hi->root.type == bfd_link_hash_indirect)
1879 {
1880 struct elf_link_hash_entry *ht;
1881
1882 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1883 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1884
1885 /* A reference to the SHORTNAME symbol from a dynamic library
1886 will be satisfied by the versioned symbol at runtime. In
1887 effect, we have a reference to the versioned symbol. */
1888 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1889 hi->dynamic_def |= ht->dynamic_def;
1890
1891 /* See if the new flags lead us to realize that the symbol must
1892 be dynamic. */
1893 if (! *dynsym)
1894 {
1895 if (! dynamic)
1896 {
1897 if (! bfd_link_executable (info)
1898 || hi->def_dynamic
1899 || hi->ref_dynamic)
1900 *dynsym = TRUE;
1901 }
1902 else
1903 {
1904 if (hi->ref_regular)
1905 *dynsym = TRUE;
1906 }
1907 }
1908 }
1909
1910 /* We also need to define an indirection from the nondefault version
1911 of the symbol. */
1912
1913 nondefault:
1914 len = strlen (name);
1915 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1916 if (shortname == NULL)
1917 return FALSE;
1918 memcpy (shortname, name, shortlen);
1919 memcpy (shortname + shortlen, p + 1, len - shortlen);
1920
1921 /* Once again, merge with any existing symbol. */
1922 type_change_ok = FALSE;
1923 size_change_ok = FALSE;
1924 tmp_sec = sec;
1925 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1926 &hi, poldbfd, NULL, NULL, &skip, &override,
1927 &type_change_ok, &size_change_ok, &matched))
1928 return FALSE;
1929
1930 if (skip)
1931 return TRUE;
1932
1933 if (override)
1934 {
1935 /* Here SHORTNAME is a versioned name, so we don't expect to see
1936 the type of override we do in the case above unless it is
1937 overridden by a versioned definition. */
1938 if (hi->root.type != bfd_link_hash_defined
1939 && hi->root.type != bfd_link_hash_defweak)
1940 (*_bfd_error_handler)
1941 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1942 abfd, shortname);
1943 }
1944 else
1945 {
1946 bh = &hi->root;
1947 if (! (_bfd_generic_link_add_one_symbol
1948 (info, abfd, shortname, BSF_INDIRECT,
1949 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1950 return FALSE;
1951 hi = (struct elf_link_hash_entry *) bh;
1952
1953 /* If there is a duplicate definition somewhere, then HI may not
1954 point to an indirect symbol. We will have reported an error
1955 to the user in that case. */
1956
1957 if (hi->root.type == bfd_link_hash_indirect)
1958 {
1959 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1960 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1961 hi->dynamic_def |= h->dynamic_def;
1962
1963 /* See if the new flags lead us to realize that the symbol
1964 must be dynamic. */
1965 if (! *dynsym)
1966 {
1967 if (! dynamic)
1968 {
1969 if (! bfd_link_executable (info)
1970 || hi->ref_dynamic)
1971 *dynsym = TRUE;
1972 }
1973 else
1974 {
1975 if (hi->ref_regular)
1976 *dynsym = TRUE;
1977 }
1978 }
1979 }
1980 }
1981
1982 return TRUE;
1983 }
1984 \f
1985 /* This routine is used to export all defined symbols into the dynamic
1986 symbol table. It is called via elf_link_hash_traverse. */
1987
1988 static bfd_boolean
1989 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1990 {
1991 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1992
1993 /* Ignore indirect symbols. These are added by the versioning code. */
1994 if (h->root.type == bfd_link_hash_indirect)
1995 return TRUE;
1996
1997 /* Ignore this if we won't export it. */
1998 if (!eif->info->export_dynamic && !h->dynamic)
1999 return TRUE;
2000
2001 if (h->dynindx == -1
2002 && (h->def_regular || h->ref_regular)
2003 && ! bfd_hide_sym_by_version (eif->info->version_info,
2004 h->root.root.string))
2005 {
2006 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2007 {
2008 eif->failed = TRUE;
2009 return FALSE;
2010 }
2011 }
2012
2013 return TRUE;
2014 }
2015 \f
2016 /* Look through the symbols which are defined in other shared
2017 libraries and referenced here. Update the list of version
2018 dependencies. This will be put into the .gnu.version_r section.
2019 This function is called via elf_link_hash_traverse. */
2020
2021 static bfd_boolean
2022 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2023 void *data)
2024 {
2025 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2026 Elf_Internal_Verneed *t;
2027 Elf_Internal_Vernaux *a;
2028 bfd_size_type amt;
2029
2030 /* We only care about symbols defined in shared objects with version
2031 information. */
2032 if (!h->def_dynamic
2033 || h->def_regular
2034 || h->dynindx == -1
2035 || h->verinfo.verdef == NULL
2036 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2037 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2038 return TRUE;
2039
2040 /* See if we already know about this version. */
2041 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2042 t != NULL;
2043 t = t->vn_nextref)
2044 {
2045 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2046 continue;
2047
2048 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2049 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2050 return TRUE;
2051
2052 break;
2053 }
2054
2055 /* This is a new version. Add it to tree we are building. */
2056
2057 if (t == NULL)
2058 {
2059 amt = sizeof *t;
2060 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2061 if (t == NULL)
2062 {
2063 rinfo->failed = TRUE;
2064 return FALSE;
2065 }
2066
2067 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2068 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2069 elf_tdata (rinfo->info->output_bfd)->verref = t;
2070 }
2071
2072 amt = sizeof *a;
2073 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2074 if (a == NULL)
2075 {
2076 rinfo->failed = TRUE;
2077 return FALSE;
2078 }
2079
2080 /* Note that we are copying a string pointer here, and testing it
2081 above. If bfd_elf_string_from_elf_section is ever changed to
2082 discard the string data when low in memory, this will have to be
2083 fixed. */
2084 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2085
2086 a->vna_flags = h->verinfo.verdef->vd_flags;
2087 a->vna_nextptr = t->vn_auxptr;
2088
2089 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2090 ++rinfo->vers;
2091
2092 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2093
2094 t->vn_auxptr = a;
2095
2096 return TRUE;
2097 }
2098
2099 /* Figure out appropriate versions for all the symbols. We may not
2100 have the version number script until we have read all of the input
2101 files, so until that point we don't know which symbols should be
2102 local. This function is called via elf_link_hash_traverse. */
2103
2104 static bfd_boolean
2105 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2106 {
2107 struct elf_info_failed *sinfo;
2108 struct bfd_link_info *info;
2109 const struct elf_backend_data *bed;
2110 struct elf_info_failed eif;
2111 char *p;
2112
2113 sinfo = (struct elf_info_failed *) data;
2114 info = sinfo->info;
2115
2116 /* Fix the symbol flags. */
2117 eif.failed = FALSE;
2118 eif.info = info;
2119 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2120 {
2121 if (eif.failed)
2122 sinfo->failed = TRUE;
2123 return FALSE;
2124 }
2125
2126 /* We only need version numbers for symbols defined in regular
2127 objects. */
2128 if (!h->def_regular)
2129 return TRUE;
2130
2131 bed = get_elf_backend_data (info->output_bfd);
2132 p = strchr (h->root.root.string, ELF_VER_CHR);
2133 if (p != NULL && h->verinfo.vertree == NULL)
2134 {
2135 struct bfd_elf_version_tree *t;
2136
2137 ++p;
2138 if (*p == ELF_VER_CHR)
2139 ++p;
2140
2141 /* If there is no version string, we can just return out. */
2142 if (*p == '\0')
2143 return TRUE;
2144
2145 /* Look for the version. If we find it, it is no longer weak. */
2146 for (t = sinfo->info->version_info; t != NULL; t = t->next)
2147 {
2148 if (strcmp (t->name, p) == 0)
2149 {
2150 size_t len;
2151 char *alc;
2152 struct bfd_elf_version_expr *d;
2153
2154 len = p - h->root.root.string;
2155 alc = (char *) bfd_malloc (len);
2156 if (alc == NULL)
2157 {
2158 sinfo->failed = TRUE;
2159 return FALSE;
2160 }
2161 memcpy (alc, h->root.root.string, len - 1);
2162 alc[len - 1] = '\0';
2163 if (alc[len - 2] == ELF_VER_CHR)
2164 alc[len - 2] = '\0';
2165
2166 h->verinfo.vertree = t;
2167 t->used = TRUE;
2168 d = NULL;
2169
2170 if (t->globals.list != NULL)
2171 d = (*t->match) (&t->globals, NULL, alc);
2172
2173 /* See if there is anything to force this symbol to
2174 local scope. */
2175 if (d == NULL && t->locals.list != NULL)
2176 {
2177 d = (*t->match) (&t->locals, NULL, alc);
2178 if (d != NULL
2179 && h->dynindx != -1
2180 && ! info->export_dynamic)
2181 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2182 }
2183
2184 free (alc);
2185 break;
2186 }
2187 }
2188
2189 /* If we are building an application, we need to create a
2190 version node for this version. */
2191 if (t == NULL && bfd_link_executable (info))
2192 {
2193 struct bfd_elf_version_tree **pp;
2194 int version_index;
2195
2196 /* If we aren't going to export this symbol, we don't need
2197 to worry about it. */
2198 if (h->dynindx == -1)
2199 return TRUE;
2200
2201 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2202 sizeof *t);
2203 if (t == NULL)
2204 {
2205 sinfo->failed = TRUE;
2206 return FALSE;
2207 }
2208
2209 t->name = p;
2210 t->name_indx = (unsigned int) -1;
2211 t->used = TRUE;
2212
2213 version_index = 1;
2214 /* Don't count anonymous version tag. */
2215 if (sinfo->info->version_info != NULL
2216 && sinfo->info->version_info->vernum == 0)
2217 version_index = 0;
2218 for (pp = &sinfo->info->version_info;
2219 *pp != NULL;
2220 pp = &(*pp)->next)
2221 ++version_index;
2222 t->vernum = version_index;
2223
2224 *pp = t;
2225
2226 h->verinfo.vertree = t;
2227 }
2228 else if (t == NULL)
2229 {
2230 /* We could not find the version for a symbol when
2231 generating a shared archive. Return an error. */
2232 (*_bfd_error_handler)
2233 (_("%B: version node not found for symbol %s"),
2234 info->output_bfd, h->root.root.string);
2235 bfd_set_error (bfd_error_bad_value);
2236 sinfo->failed = TRUE;
2237 return FALSE;
2238 }
2239 }
2240
2241 /* If we don't have a version for this symbol, see if we can find
2242 something. */
2243 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2244 {
2245 bfd_boolean hide;
2246
2247 h->verinfo.vertree
2248 = bfd_find_version_for_sym (sinfo->info->version_info,
2249 h->root.root.string, &hide);
2250 if (h->verinfo.vertree != NULL && hide)
2251 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2252 }
2253
2254 return TRUE;
2255 }
2256 \f
2257 /* Read and swap the relocs from the section indicated by SHDR. This
2258 may be either a REL or a RELA section. The relocations are
2259 translated into RELA relocations and stored in INTERNAL_RELOCS,
2260 which should have already been allocated to contain enough space.
2261 The EXTERNAL_RELOCS are a buffer where the external form of the
2262 relocations should be stored.
2263
2264 Returns FALSE if something goes wrong. */
2265
2266 static bfd_boolean
2267 elf_link_read_relocs_from_section (bfd *abfd,
2268 asection *sec,
2269 Elf_Internal_Shdr *shdr,
2270 void *external_relocs,
2271 Elf_Internal_Rela *internal_relocs)
2272 {
2273 const struct elf_backend_data *bed;
2274 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2275 const bfd_byte *erela;
2276 const bfd_byte *erelaend;
2277 Elf_Internal_Rela *irela;
2278 Elf_Internal_Shdr *symtab_hdr;
2279 size_t nsyms;
2280
2281 /* Position ourselves at the start of the section. */
2282 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2283 return FALSE;
2284
2285 /* Read the relocations. */
2286 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2287 return FALSE;
2288
2289 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2290 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2291
2292 bed = get_elf_backend_data (abfd);
2293
2294 /* Convert the external relocations to the internal format. */
2295 if (shdr->sh_entsize == bed->s->sizeof_rel)
2296 swap_in = bed->s->swap_reloc_in;
2297 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2298 swap_in = bed->s->swap_reloca_in;
2299 else
2300 {
2301 bfd_set_error (bfd_error_wrong_format);
2302 return FALSE;
2303 }
2304
2305 erela = (const bfd_byte *) external_relocs;
2306 erelaend = erela + shdr->sh_size;
2307 irela = internal_relocs;
2308 while (erela < erelaend)
2309 {
2310 bfd_vma r_symndx;
2311
2312 (*swap_in) (abfd, erela, irela);
2313 r_symndx = ELF32_R_SYM (irela->r_info);
2314 if (bed->s->arch_size == 64)
2315 r_symndx >>= 24;
2316 if (nsyms > 0)
2317 {
2318 if ((size_t) r_symndx >= nsyms)
2319 {
2320 (*_bfd_error_handler)
2321 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2322 " for offset 0x%lx in section `%A'"),
2323 abfd, sec,
2324 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2325 bfd_set_error (bfd_error_bad_value);
2326 return FALSE;
2327 }
2328 }
2329 else if (r_symndx != STN_UNDEF)
2330 {
2331 (*_bfd_error_handler)
2332 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2333 " when the object file has no symbol table"),
2334 abfd, sec,
2335 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2336 bfd_set_error (bfd_error_bad_value);
2337 return FALSE;
2338 }
2339 irela += bed->s->int_rels_per_ext_rel;
2340 erela += shdr->sh_entsize;
2341 }
2342
2343 return TRUE;
2344 }
2345
2346 /* Read and swap the relocs for a section O. They may have been
2347 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2348 not NULL, they are used as buffers to read into. They are known to
2349 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2350 the return value is allocated using either malloc or bfd_alloc,
2351 according to the KEEP_MEMORY argument. If O has two relocation
2352 sections (both REL and RELA relocations), then the REL_HDR
2353 relocations will appear first in INTERNAL_RELOCS, followed by the
2354 RELA_HDR relocations. */
2355
2356 Elf_Internal_Rela *
2357 _bfd_elf_link_read_relocs (bfd *abfd,
2358 asection *o,
2359 void *external_relocs,
2360 Elf_Internal_Rela *internal_relocs,
2361 bfd_boolean keep_memory)
2362 {
2363 void *alloc1 = NULL;
2364 Elf_Internal_Rela *alloc2 = NULL;
2365 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2366 struct bfd_elf_section_data *esdo = elf_section_data (o);
2367 Elf_Internal_Rela *internal_rela_relocs;
2368
2369 if (esdo->relocs != NULL)
2370 return esdo->relocs;
2371
2372 if (o->reloc_count == 0)
2373 return NULL;
2374
2375 if (internal_relocs == NULL)
2376 {
2377 bfd_size_type size;
2378
2379 size = o->reloc_count;
2380 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2381 if (keep_memory)
2382 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2383 else
2384 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2385 if (internal_relocs == NULL)
2386 goto error_return;
2387 }
2388
2389 if (external_relocs == NULL)
2390 {
2391 bfd_size_type size = 0;
2392
2393 if (esdo->rel.hdr)
2394 size += esdo->rel.hdr->sh_size;
2395 if (esdo->rela.hdr)
2396 size += esdo->rela.hdr->sh_size;
2397
2398 alloc1 = bfd_malloc (size);
2399 if (alloc1 == NULL)
2400 goto error_return;
2401 external_relocs = alloc1;
2402 }
2403
2404 internal_rela_relocs = internal_relocs;
2405 if (esdo->rel.hdr)
2406 {
2407 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2408 external_relocs,
2409 internal_relocs))
2410 goto error_return;
2411 external_relocs = (((bfd_byte *) external_relocs)
2412 + esdo->rel.hdr->sh_size);
2413 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2414 * bed->s->int_rels_per_ext_rel);
2415 }
2416
2417 if (esdo->rela.hdr
2418 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2419 external_relocs,
2420 internal_rela_relocs)))
2421 goto error_return;
2422
2423 /* Cache the results for next time, if we can. */
2424 if (keep_memory)
2425 esdo->relocs = internal_relocs;
2426
2427 if (alloc1 != NULL)
2428 free (alloc1);
2429
2430 /* Don't free alloc2, since if it was allocated we are passing it
2431 back (under the name of internal_relocs). */
2432
2433 return internal_relocs;
2434
2435 error_return:
2436 if (alloc1 != NULL)
2437 free (alloc1);
2438 if (alloc2 != NULL)
2439 {
2440 if (keep_memory)
2441 bfd_release (abfd, alloc2);
2442 else
2443 free (alloc2);
2444 }
2445 return NULL;
2446 }
2447
2448 /* Compute the size of, and allocate space for, REL_HDR which is the
2449 section header for a section containing relocations for O. */
2450
2451 static bfd_boolean
2452 _bfd_elf_link_size_reloc_section (bfd *abfd,
2453 struct bfd_elf_section_reloc_data *reldata)
2454 {
2455 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2456
2457 /* That allows us to calculate the size of the section. */
2458 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2459
2460 /* The contents field must last into write_object_contents, so we
2461 allocate it with bfd_alloc rather than malloc. Also since we
2462 cannot be sure that the contents will actually be filled in,
2463 we zero the allocated space. */
2464 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2465 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2466 return FALSE;
2467
2468 if (reldata->hashes == NULL && reldata->count)
2469 {
2470 struct elf_link_hash_entry **p;
2471
2472 p = ((struct elf_link_hash_entry **)
2473 bfd_zmalloc (reldata->count * sizeof (*p)));
2474 if (p == NULL)
2475 return FALSE;
2476
2477 reldata->hashes = p;
2478 }
2479
2480 return TRUE;
2481 }
2482
2483 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2484 originated from the section given by INPUT_REL_HDR) to the
2485 OUTPUT_BFD. */
2486
2487 bfd_boolean
2488 _bfd_elf_link_output_relocs (bfd *output_bfd,
2489 asection *input_section,
2490 Elf_Internal_Shdr *input_rel_hdr,
2491 Elf_Internal_Rela *internal_relocs,
2492 struct elf_link_hash_entry **rel_hash
2493 ATTRIBUTE_UNUSED)
2494 {
2495 Elf_Internal_Rela *irela;
2496 Elf_Internal_Rela *irelaend;
2497 bfd_byte *erel;
2498 struct bfd_elf_section_reloc_data *output_reldata;
2499 asection *output_section;
2500 const struct elf_backend_data *bed;
2501 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2502 struct bfd_elf_section_data *esdo;
2503
2504 output_section = input_section->output_section;
2505
2506 bed = get_elf_backend_data (output_bfd);
2507 esdo = elf_section_data (output_section);
2508 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2509 {
2510 output_reldata = &esdo->rel;
2511 swap_out = bed->s->swap_reloc_out;
2512 }
2513 else if (esdo->rela.hdr
2514 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2515 {
2516 output_reldata = &esdo->rela;
2517 swap_out = bed->s->swap_reloca_out;
2518 }
2519 else
2520 {
2521 (*_bfd_error_handler)
2522 (_("%B: relocation size mismatch in %B section %A"),
2523 output_bfd, input_section->owner, input_section);
2524 bfd_set_error (bfd_error_wrong_format);
2525 return FALSE;
2526 }
2527
2528 erel = output_reldata->hdr->contents;
2529 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2530 irela = internal_relocs;
2531 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2532 * bed->s->int_rels_per_ext_rel);
2533 while (irela < irelaend)
2534 {
2535 (*swap_out) (output_bfd, irela, erel);
2536 irela += bed->s->int_rels_per_ext_rel;
2537 erel += input_rel_hdr->sh_entsize;
2538 }
2539
2540 /* Bump the counter, so that we know where to add the next set of
2541 relocations. */
2542 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2543
2544 return TRUE;
2545 }
2546 \f
2547 /* Make weak undefined symbols in PIE dynamic. */
2548
2549 bfd_boolean
2550 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2551 struct elf_link_hash_entry *h)
2552 {
2553 if (bfd_link_pie (info)
2554 && h->dynindx == -1
2555 && h->root.type == bfd_link_hash_undefweak)
2556 return bfd_elf_link_record_dynamic_symbol (info, h);
2557
2558 return TRUE;
2559 }
2560
2561 /* Fix up the flags for a symbol. This handles various cases which
2562 can only be fixed after all the input files are seen. This is
2563 currently called by both adjust_dynamic_symbol and
2564 assign_sym_version, which is unnecessary but perhaps more robust in
2565 the face of future changes. */
2566
2567 static bfd_boolean
2568 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2569 struct elf_info_failed *eif)
2570 {
2571 const struct elf_backend_data *bed;
2572
2573 /* If this symbol was mentioned in a non-ELF file, try to set
2574 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2575 permit a non-ELF file to correctly refer to a symbol defined in
2576 an ELF dynamic object. */
2577 if (h->non_elf)
2578 {
2579 while (h->root.type == bfd_link_hash_indirect)
2580 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2581
2582 if (h->root.type != bfd_link_hash_defined
2583 && h->root.type != bfd_link_hash_defweak)
2584 {
2585 h->ref_regular = 1;
2586 h->ref_regular_nonweak = 1;
2587 }
2588 else
2589 {
2590 if (h->root.u.def.section->owner != NULL
2591 && (bfd_get_flavour (h->root.u.def.section->owner)
2592 == bfd_target_elf_flavour))
2593 {
2594 h->ref_regular = 1;
2595 h->ref_regular_nonweak = 1;
2596 }
2597 else
2598 h->def_regular = 1;
2599 }
2600
2601 if (h->dynindx == -1
2602 && (h->def_dynamic
2603 || h->ref_dynamic))
2604 {
2605 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2606 {
2607 eif->failed = TRUE;
2608 return FALSE;
2609 }
2610 }
2611 }
2612 else
2613 {
2614 /* Unfortunately, NON_ELF is only correct if the symbol
2615 was first seen in a non-ELF file. Fortunately, if the symbol
2616 was first seen in an ELF file, we're probably OK unless the
2617 symbol was defined in a non-ELF file. Catch that case here.
2618 FIXME: We're still in trouble if the symbol was first seen in
2619 a dynamic object, and then later in a non-ELF regular object. */
2620 if ((h->root.type == bfd_link_hash_defined
2621 || h->root.type == bfd_link_hash_defweak)
2622 && !h->def_regular
2623 && (h->root.u.def.section->owner != NULL
2624 ? (bfd_get_flavour (h->root.u.def.section->owner)
2625 != bfd_target_elf_flavour)
2626 : (bfd_is_abs_section (h->root.u.def.section)
2627 && !h->def_dynamic)))
2628 h->def_regular = 1;
2629 }
2630
2631 /* Backend specific symbol fixup. */
2632 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2633 if (bed->elf_backend_fixup_symbol
2634 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2635 return FALSE;
2636
2637 /* If this is a final link, and the symbol was defined as a common
2638 symbol in a regular object file, and there was no definition in
2639 any dynamic object, then the linker will have allocated space for
2640 the symbol in a common section but the DEF_REGULAR
2641 flag will not have been set. */
2642 if (h->root.type == bfd_link_hash_defined
2643 && !h->def_regular
2644 && h->ref_regular
2645 && !h->def_dynamic
2646 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2647 h->def_regular = 1;
2648
2649 /* If -Bsymbolic was used (which means to bind references to global
2650 symbols to the definition within the shared object), and this
2651 symbol was defined in a regular object, then it actually doesn't
2652 need a PLT entry. Likewise, if the symbol has non-default
2653 visibility. If the symbol has hidden or internal visibility, we
2654 will force it local. */
2655 if (h->needs_plt
2656 && bfd_link_pic (eif->info)
2657 && is_elf_hash_table (eif->info->hash)
2658 && (SYMBOLIC_BIND (eif->info, h)
2659 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2660 && h->def_regular)
2661 {
2662 bfd_boolean force_local;
2663
2664 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2665 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2666 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2667 }
2668
2669 /* If a weak undefined symbol has non-default visibility, we also
2670 hide it from the dynamic linker. */
2671 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2672 && h->root.type == bfd_link_hash_undefweak)
2673 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2674
2675 /* If this is a weak defined symbol in a dynamic object, and we know
2676 the real definition in the dynamic object, copy interesting flags
2677 over to the real definition. */
2678 if (h->u.weakdef != NULL)
2679 {
2680 /* If the real definition is defined by a regular object file,
2681 don't do anything special. See the longer description in
2682 _bfd_elf_adjust_dynamic_symbol, below. */
2683 if (h->u.weakdef->def_regular)
2684 h->u.weakdef = NULL;
2685 else
2686 {
2687 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2688
2689 while (h->root.type == bfd_link_hash_indirect)
2690 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2691
2692 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2693 || h->root.type == bfd_link_hash_defweak);
2694 BFD_ASSERT (weakdef->def_dynamic);
2695 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2696 || weakdef->root.type == bfd_link_hash_defweak);
2697 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2698 }
2699 }
2700
2701 return TRUE;
2702 }
2703
2704 /* Make the backend pick a good value for a dynamic symbol. This is
2705 called via elf_link_hash_traverse, and also calls itself
2706 recursively. */
2707
2708 static bfd_boolean
2709 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2710 {
2711 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2712 bfd *dynobj;
2713 const struct elf_backend_data *bed;
2714
2715 if (! is_elf_hash_table (eif->info->hash))
2716 return FALSE;
2717
2718 /* Ignore indirect symbols. These are added by the versioning code. */
2719 if (h->root.type == bfd_link_hash_indirect)
2720 return TRUE;
2721
2722 /* Fix the symbol flags. */
2723 if (! _bfd_elf_fix_symbol_flags (h, eif))
2724 return FALSE;
2725
2726 /* If this symbol does not require a PLT entry, and it is not
2727 defined by a dynamic object, or is not referenced by a regular
2728 object, ignore it. We do have to handle a weak defined symbol,
2729 even if no regular object refers to it, if we decided to add it
2730 to the dynamic symbol table. FIXME: Do we normally need to worry
2731 about symbols which are defined by one dynamic object and
2732 referenced by another one? */
2733 if (!h->needs_plt
2734 && h->type != STT_GNU_IFUNC
2735 && (h->def_regular
2736 || !h->def_dynamic
2737 || (!h->ref_regular
2738 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2739 {
2740 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2741 return TRUE;
2742 }
2743
2744 /* If we've already adjusted this symbol, don't do it again. This
2745 can happen via a recursive call. */
2746 if (h->dynamic_adjusted)
2747 return TRUE;
2748
2749 /* Don't look at this symbol again. Note that we must set this
2750 after checking the above conditions, because we may look at a
2751 symbol once, decide not to do anything, and then get called
2752 recursively later after REF_REGULAR is set below. */
2753 h->dynamic_adjusted = 1;
2754
2755 /* If this is a weak definition, and we know a real definition, and
2756 the real symbol is not itself defined by a regular object file,
2757 then get a good value for the real definition. We handle the
2758 real symbol first, for the convenience of the backend routine.
2759
2760 Note that there is a confusing case here. If the real definition
2761 is defined by a regular object file, we don't get the real symbol
2762 from the dynamic object, but we do get the weak symbol. If the
2763 processor backend uses a COPY reloc, then if some routine in the
2764 dynamic object changes the real symbol, we will not see that
2765 change in the corresponding weak symbol. This is the way other
2766 ELF linkers work as well, and seems to be a result of the shared
2767 library model.
2768
2769 I will clarify this issue. Most SVR4 shared libraries define the
2770 variable _timezone and define timezone as a weak synonym. The
2771 tzset call changes _timezone. If you write
2772 extern int timezone;
2773 int _timezone = 5;
2774 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2775 you might expect that, since timezone is a synonym for _timezone,
2776 the same number will print both times. However, if the processor
2777 backend uses a COPY reloc, then actually timezone will be copied
2778 into your process image, and, since you define _timezone
2779 yourself, _timezone will not. Thus timezone and _timezone will
2780 wind up at different memory locations. The tzset call will set
2781 _timezone, leaving timezone unchanged. */
2782
2783 if (h->u.weakdef != NULL)
2784 {
2785 /* If we get to this point, there is an implicit reference to
2786 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2787 h->u.weakdef->ref_regular = 1;
2788
2789 /* Ensure that the backend adjust_dynamic_symbol function sees
2790 H->U.WEAKDEF before H by recursively calling ourselves. */
2791 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2792 return FALSE;
2793 }
2794
2795 /* If a symbol has no type and no size and does not require a PLT
2796 entry, then we are probably about to do the wrong thing here: we
2797 are probably going to create a COPY reloc for an empty object.
2798 This case can arise when a shared object is built with assembly
2799 code, and the assembly code fails to set the symbol type. */
2800 if (h->size == 0
2801 && h->type == STT_NOTYPE
2802 && !h->needs_plt)
2803 (*_bfd_error_handler)
2804 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2805 h->root.root.string);
2806
2807 dynobj = elf_hash_table (eif->info)->dynobj;
2808 bed = get_elf_backend_data (dynobj);
2809
2810 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2811 {
2812 eif->failed = TRUE;
2813 return FALSE;
2814 }
2815
2816 return TRUE;
2817 }
2818
2819 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2820 DYNBSS. */
2821
2822 bfd_boolean
2823 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2824 struct elf_link_hash_entry *h,
2825 asection *dynbss)
2826 {
2827 unsigned int power_of_two;
2828 bfd_vma mask;
2829 asection *sec = h->root.u.def.section;
2830
2831 /* The section aligment of definition is the maximum alignment
2832 requirement of symbols defined in the section. Since we don't
2833 know the symbol alignment requirement, we start with the
2834 maximum alignment and check low bits of the symbol address
2835 for the minimum alignment. */
2836 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2837 mask = ((bfd_vma) 1 << power_of_two) - 1;
2838 while ((h->root.u.def.value & mask) != 0)
2839 {
2840 mask >>= 1;
2841 --power_of_two;
2842 }
2843
2844 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2845 dynbss))
2846 {
2847 /* Adjust the section alignment if needed. */
2848 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2849 power_of_two))
2850 return FALSE;
2851 }
2852
2853 /* We make sure that the symbol will be aligned properly. */
2854 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2855
2856 /* Define the symbol as being at this point in DYNBSS. */
2857 h->root.u.def.section = dynbss;
2858 h->root.u.def.value = dynbss->size;
2859
2860 /* Increment the size of DYNBSS to make room for the symbol. */
2861 dynbss->size += h->size;
2862
2863 /* No error if extern_protected_data is true. */
2864 if (h->protected_def
2865 && (!info->extern_protected_data
2866 || (info->extern_protected_data < 0
2867 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
2868 info->callbacks->einfo
2869 (_("%P: copy reloc against protected `%T' is dangerous\n"),
2870 h->root.root.string);
2871
2872 return TRUE;
2873 }
2874
2875 /* Adjust all external symbols pointing into SEC_MERGE sections
2876 to reflect the object merging within the sections. */
2877
2878 static bfd_boolean
2879 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2880 {
2881 asection *sec;
2882
2883 if ((h->root.type == bfd_link_hash_defined
2884 || h->root.type == bfd_link_hash_defweak)
2885 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2886 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2887 {
2888 bfd *output_bfd = (bfd *) data;
2889
2890 h->root.u.def.value =
2891 _bfd_merged_section_offset (output_bfd,
2892 &h->root.u.def.section,
2893 elf_section_data (sec)->sec_info,
2894 h->root.u.def.value);
2895 }
2896
2897 return TRUE;
2898 }
2899
2900 /* Returns false if the symbol referred to by H should be considered
2901 to resolve local to the current module, and true if it should be
2902 considered to bind dynamically. */
2903
2904 bfd_boolean
2905 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2906 struct bfd_link_info *info,
2907 bfd_boolean not_local_protected)
2908 {
2909 bfd_boolean binding_stays_local_p;
2910 const struct elf_backend_data *bed;
2911 struct elf_link_hash_table *hash_table;
2912
2913 if (h == NULL)
2914 return FALSE;
2915
2916 while (h->root.type == bfd_link_hash_indirect
2917 || h->root.type == bfd_link_hash_warning)
2918 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2919
2920 /* If it was forced local, then clearly it's not dynamic. */
2921 if (h->dynindx == -1)
2922 return FALSE;
2923 if (h->forced_local)
2924 return FALSE;
2925
2926 /* Identify the cases where name binding rules say that a
2927 visible symbol resolves locally. */
2928 binding_stays_local_p = (bfd_link_executable (info)
2929 || SYMBOLIC_BIND (info, h));
2930
2931 switch (ELF_ST_VISIBILITY (h->other))
2932 {
2933 case STV_INTERNAL:
2934 case STV_HIDDEN:
2935 return FALSE;
2936
2937 case STV_PROTECTED:
2938 hash_table = elf_hash_table (info);
2939 if (!is_elf_hash_table (hash_table))
2940 return FALSE;
2941
2942 bed = get_elf_backend_data (hash_table->dynobj);
2943
2944 /* Proper resolution for function pointer equality may require
2945 that these symbols perhaps be resolved dynamically, even though
2946 we should be resolving them to the current module. */
2947 if (!not_local_protected || !bed->is_function_type (h->type))
2948 binding_stays_local_p = TRUE;
2949 break;
2950
2951 default:
2952 break;
2953 }
2954
2955 /* If it isn't defined locally, then clearly it's dynamic. */
2956 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2957 return TRUE;
2958
2959 /* Otherwise, the symbol is dynamic if binding rules don't tell
2960 us that it remains local. */
2961 return !binding_stays_local_p;
2962 }
2963
2964 /* Return true if the symbol referred to by H should be considered
2965 to resolve local to the current module, and false otherwise. Differs
2966 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2967 undefined symbols. The two functions are virtually identical except
2968 for the place where forced_local and dynindx == -1 are tested. If
2969 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2970 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2971 the symbol is local only for defined symbols.
2972 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2973 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2974 treatment of undefined weak symbols. For those that do not make
2975 undefined weak symbols dynamic, both functions may return false. */
2976
2977 bfd_boolean
2978 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2979 struct bfd_link_info *info,
2980 bfd_boolean local_protected)
2981 {
2982 const struct elf_backend_data *bed;
2983 struct elf_link_hash_table *hash_table;
2984
2985 /* If it's a local sym, of course we resolve locally. */
2986 if (h == NULL)
2987 return TRUE;
2988
2989 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2990 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2991 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2992 return TRUE;
2993
2994 /* Common symbols that become definitions don't get the DEF_REGULAR
2995 flag set, so test it first, and don't bail out. */
2996 if (ELF_COMMON_DEF_P (h))
2997 /* Do nothing. */;
2998 /* If we don't have a definition in a regular file, then we can't
2999 resolve locally. The sym is either undefined or dynamic. */
3000 else if (!h->def_regular)
3001 return FALSE;
3002
3003 /* Forced local symbols resolve locally. */
3004 if (h->forced_local)
3005 return TRUE;
3006
3007 /* As do non-dynamic symbols. */
3008 if (h->dynindx == -1)
3009 return TRUE;
3010
3011 /* At this point, we know the symbol is defined and dynamic. In an
3012 executable it must resolve locally, likewise when building symbolic
3013 shared libraries. */
3014 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3015 return TRUE;
3016
3017 /* Now deal with defined dynamic symbols in shared libraries. Ones
3018 with default visibility might not resolve locally. */
3019 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3020 return FALSE;
3021
3022 hash_table = elf_hash_table (info);
3023 if (!is_elf_hash_table (hash_table))
3024 return TRUE;
3025
3026 bed = get_elf_backend_data (hash_table->dynobj);
3027
3028 /* If extern_protected_data is false, STV_PROTECTED non-function
3029 symbols are local. */
3030 if ((!info->extern_protected_data
3031 || (info->extern_protected_data < 0
3032 && !bed->extern_protected_data))
3033 && !bed->is_function_type (h->type))
3034 return TRUE;
3035
3036 /* Function pointer equality tests may require that STV_PROTECTED
3037 symbols be treated as dynamic symbols. If the address of a
3038 function not defined in an executable is set to that function's
3039 plt entry in the executable, then the address of the function in
3040 a shared library must also be the plt entry in the executable. */
3041 return local_protected;
3042 }
3043
3044 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3045 aligned. Returns the first TLS output section. */
3046
3047 struct bfd_section *
3048 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3049 {
3050 struct bfd_section *sec, *tls;
3051 unsigned int align = 0;
3052
3053 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3054 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3055 break;
3056 tls = sec;
3057
3058 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3059 if (sec->alignment_power > align)
3060 align = sec->alignment_power;
3061
3062 elf_hash_table (info)->tls_sec = tls;
3063
3064 /* Ensure the alignment of the first section is the largest alignment,
3065 so that the tls segment starts aligned. */
3066 if (tls != NULL)
3067 tls->alignment_power = align;
3068
3069 return tls;
3070 }
3071
3072 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3073 static bfd_boolean
3074 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3075 Elf_Internal_Sym *sym)
3076 {
3077 const struct elf_backend_data *bed;
3078
3079 /* Local symbols do not count, but target specific ones might. */
3080 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3081 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3082 return FALSE;
3083
3084 bed = get_elf_backend_data (abfd);
3085 /* Function symbols do not count. */
3086 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3087 return FALSE;
3088
3089 /* If the section is undefined, then so is the symbol. */
3090 if (sym->st_shndx == SHN_UNDEF)
3091 return FALSE;
3092
3093 /* If the symbol is defined in the common section, then
3094 it is a common definition and so does not count. */
3095 if (bed->common_definition (sym))
3096 return FALSE;
3097
3098 /* If the symbol is in a target specific section then we
3099 must rely upon the backend to tell us what it is. */
3100 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3101 /* FIXME - this function is not coded yet:
3102
3103 return _bfd_is_global_symbol_definition (abfd, sym);
3104
3105 Instead for now assume that the definition is not global,
3106 Even if this is wrong, at least the linker will behave
3107 in the same way that it used to do. */
3108 return FALSE;
3109
3110 return TRUE;
3111 }
3112
3113 /* Search the symbol table of the archive element of the archive ABFD
3114 whose archive map contains a mention of SYMDEF, and determine if
3115 the symbol is defined in this element. */
3116 static bfd_boolean
3117 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3118 {
3119 Elf_Internal_Shdr * hdr;
3120 size_t symcount;
3121 size_t extsymcount;
3122 size_t extsymoff;
3123 Elf_Internal_Sym *isymbuf;
3124 Elf_Internal_Sym *isym;
3125 Elf_Internal_Sym *isymend;
3126 bfd_boolean result;
3127
3128 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3129 if (abfd == NULL)
3130 return FALSE;
3131
3132 if (! bfd_check_format (abfd, bfd_object))
3133 return FALSE;
3134
3135 /* Select the appropriate symbol table. If we don't know if the
3136 object file is an IR object, give linker LTO plugin a chance to
3137 get the correct symbol table. */
3138 if (abfd->plugin_format == bfd_plugin_yes
3139 #if BFD_SUPPORTS_PLUGINS
3140 || (abfd->plugin_format == bfd_plugin_unknown
3141 && bfd_link_plugin_object_p (abfd))
3142 #endif
3143 )
3144 {
3145 /* Use the IR symbol table if the object has been claimed by
3146 plugin. */
3147 abfd = abfd->plugin_dummy_bfd;
3148 hdr = &elf_tdata (abfd)->symtab_hdr;
3149 }
3150 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3151 hdr = &elf_tdata (abfd)->symtab_hdr;
3152 else
3153 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3154
3155 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3156
3157 /* The sh_info field of the symtab header tells us where the
3158 external symbols start. We don't care about the local symbols. */
3159 if (elf_bad_symtab (abfd))
3160 {
3161 extsymcount = symcount;
3162 extsymoff = 0;
3163 }
3164 else
3165 {
3166 extsymcount = symcount - hdr->sh_info;
3167 extsymoff = hdr->sh_info;
3168 }
3169
3170 if (extsymcount == 0)
3171 return FALSE;
3172
3173 /* Read in the symbol table. */
3174 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3175 NULL, NULL, NULL);
3176 if (isymbuf == NULL)
3177 return FALSE;
3178
3179 /* Scan the symbol table looking for SYMDEF. */
3180 result = FALSE;
3181 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3182 {
3183 const char *name;
3184
3185 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3186 isym->st_name);
3187 if (name == NULL)
3188 break;
3189
3190 if (strcmp (name, symdef->name) == 0)
3191 {
3192 result = is_global_data_symbol_definition (abfd, isym);
3193 break;
3194 }
3195 }
3196
3197 free (isymbuf);
3198
3199 return result;
3200 }
3201 \f
3202 /* Add an entry to the .dynamic table. */
3203
3204 bfd_boolean
3205 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3206 bfd_vma tag,
3207 bfd_vma val)
3208 {
3209 struct elf_link_hash_table *hash_table;
3210 const struct elf_backend_data *bed;
3211 asection *s;
3212 bfd_size_type newsize;
3213 bfd_byte *newcontents;
3214 Elf_Internal_Dyn dyn;
3215
3216 hash_table = elf_hash_table (info);
3217 if (! is_elf_hash_table (hash_table))
3218 return FALSE;
3219
3220 bed = get_elf_backend_data (hash_table->dynobj);
3221 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3222 BFD_ASSERT (s != NULL);
3223
3224 newsize = s->size + bed->s->sizeof_dyn;
3225 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3226 if (newcontents == NULL)
3227 return FALSE;
3228
3229 dyn.d_tag = tag;
3230 dyn.d_un.d_val = val;
3231 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3232
3233 s->size = newsize;
3234 s->contents = newcontents;
3235
3236 return TRUE;
3237 }
3238
3239 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3240 otherwise just check whether one already exists. Returns -1 on error,
3241 1 if a DT_NEEDED tag already exists, and 0 on success. */
3242
3243 static int
3244 elf_add_dt_needed_tag (bfd *abfd,
3245 struct bfd_link_info *info,
3246 const char *soname,
3247 bfd_boolean do_it)
3248 {
3249 struct elf_link_hash_table *hash_table;
3250 size_t strindex;
3251
3252 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3253 return -1;
3254
3255 hash_table = elf_hash_table (info);
3256 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3257 if (strindex == (size_t) -1)
3258 return -1;
3259
3260 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3261 {
3262 asection *sdyn;
3263 const struct elf_backend_data *bed;
3264 bfd_byte *extdyn;
3265
3266 bed = get_elf_backend_data (hash_table->dynobj);
3267 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3268 if (sdyn != NULL)
3269 for (extdyn = sdyn->contents;
3270 extdyn < sdyn->contents + sdyn->size;
3271 extdyn += bed->s->sizeof_dyn)
3272 {
3273 Elf_Internal_Dyn dyn;
3274
3275 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3276 if (dyn.d_tag == DT_NEEDED
3277 && dyn.d_un.d_val == strindex)
3278 {
3279 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3280 return 1;
3281 }
3282 }
3283 }
3284
3285 if (do_it)
3286 {
3287 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3288 return -1;
3289
3290 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3291 return -1;
3292 }
3293 else
3294 /* We were just checking for existence of the tag. */
3295 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3296
3297 return 0;
3298 }
3299
3300 /* Return true if SONAME is on the needed list between NEEDED and STOP
3301 (or the end of list if STOP is NULL), and needed by a library that
3302 will be loaded. */
3303
3304 static bfd_boolean
3305 on_needed_list (const char *soname,
3306 struct bfd_link_needed_list *needed,
3307 struct bfd_link_needed_list *stop)
3308 {
3309 struct bfd_link_needed_list *look;
3310 for (look = needed; look != stop; look = look->next)
3311 if (strcmp (soname, look->name) == 0
3312 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3313 /* If needed by a library that itself is not directly
3314 needed, recursively check whether that library is
3315 indirectly needed. Since we add DT_NEEDED entries to
3316 the end of the list, library dependencies appear after
3317 the library. Therefore search prior to the current
3318 LOOK, preventing possible infinite recursion. */
3319 || on_needed_list (elf_dt_name (look->by), needed, look)))
3320 return TRUE;
3321
3322 return FALSE;
3323 }
3324
3325 /* Sort symbol by value, section, and size. */
3326 static int
3327 elf_sort_symbol (const void *arg1, const void *arg2)
3328 {
3329 const struct elf_link_hash_entry *h1;
3330 const struct elf_link_hash_entry *h2;
3331 bfd_signed_vma vdiff;
3332
3333 h1 = *(const struct elf_link_hash_entry **) arg1;
3334 h2 = *(const struct elf_link_hash_entry **) arg2;
3335 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3336 if (vdiff != 0)
3337 return vdiff > 0 ? 1 : -1;
3338 else
3339 {
3340 int sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3341 if (sdiff != 0)
3342 return sdiff > 0 ? 1 : -1;
3343 }
3344 vdiff = h1->size - h2->size;
3345 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3346 }
3347
3348 /* This function is used to adjust offsets into .dynstr for
3349 dynamic symbols. This is called via elf_link_hash_traverse. */
3350
3351 static bfd_boolean
3352 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3353 {
3354 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3355
3356 if (h->dynindx != -1)
3357 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3358 return TRUE;
3359 }
3360
3361 /* Assign string offsets in .dynstr, update all structures referencing
3362 them. */
3363
3364 static bfd_boolean
3365 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3366 {
3367 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3368 struct elf_link_local_dynamic_entry *entry;
3369 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3370 bfd *dynobj = hash_table->dynobj;
3371 asection *sdyn;
3372 bfd_size_type size;
3373 const struct elf_backend_data *bed;
3374 bfd_byte *extdyn;
3375
3376 _bfd_elf_strtab_finalize (dynstr);
3377 size = _bfd_elf_strtab_size (dynstr);
3378
3379 bed = get_elf_backend_data (dynobj);
3380 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3381 BFD_ASSERT (sdyn != NULL);
3382
3383 /* Update all .dynamic entries referencing .dynstr strings. */
3384 for (extdyn = sdyn->contents;
3385 extdyn < sdyn->contents + sdyn->size;
3386 extdyn += bed->s->sizeof_dyn)
3387 {
3388 Elf_Internal_Dyn dyn;
3389
3390 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3391 switch (dyn.d_tag)
3392 {
3393 case DT_STRSZ:
3394 dyn.d_un.d_val = size;
3395 break;
3396 case DT_NEEDED:
3397 case DT_SONAME:
3398 case DT_RPATH:
3399 case DT_RUNPATH:
3400 case DT_FILTER:
3401 case DT_AUXILIARY:
3402 case DT_AUDIT:
3403 case DT_DEPAUDIT:
3404 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3405 break;
3406 default:
3407 continue;
3408 }
3409 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3410 }
3411
3412 /* Now update local dynamic symbols. */
3413 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3414 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3415 entry->isym.st_name);
3416
3417 /* And the rest of dynamic symbols. */
3418 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3419
3420 /* Adjust version definitions. */
3421 if (elf_tdata (output_bfd)->cverdefs)
3422 {
3423 asection *s;
3424 bfd_byte *p;
3425 size_t i;
3426 Elf_Internal_Verdef def;
3427 Elf_Internal_Verdaux defaux;
3428
3429 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3430 p = s->contents;
3431 do
3432 {
3433 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3434 &def);
3435 p += sizeof (Elf_External_Verdef);
3436 if (def.vd_aux != sizeof (Elf_External_Verdef))
3437 continue;
3438 for (i = 0; i < def.vd_cnt; ++i)
3439 {
3440 _bfd_elf_swap_verdaux_in (output_bfd,
3441 (Elf_External_Verdaux *) p, &defaux);
3442 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3443 defaux.vda_name);
3444 _bfd_elf_swap_verdaux_out (output_bfd,
3445 &defaux, (Elf_External_Verdaux *) p);
3446 p += sizeof (Elf_External_Verdaux);
3447 }
3448 }
3449 while (def.vd_next);
3450 }
3451
3452 /* Adjust version references. */
3453 if (elf_tdata (output_bfd)->verref)
3454 {
3455 asection *s;
3456 bfd_byte *p;
3457 size_t i;
3458 Elf_Internal_Verneed need;
3459 Elf_Internal_Vernaux needaux;
3460
3461 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3462 p = s->contents;
3463 do
3464 {
3465 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3466 &need);
3467 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3468 _bfd_elf_swap_verneed_out (output_bfd, &need,
3469 (Elf_External_Verneed *) p);
3470 p += sizeof (Elf_External_Verneed);
3471 for (i = 0; i < need.vn_cnt; ++i)
3472 {
3473 _bfd_elf_swap_vernaux_in (output_bfd,
3474 (Elf_External_Vernaux *) p, &needaux);
3475 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3476 needaux.vna_name);
3477 _bfd_elf_swap_vernaux_out (output_bfd,
3478 &needaux,
3479 (Elf_External_Vernaux *) p);
3480 p += sizeof (Elf_External_Vernaux);
3481 }
3482 }
3483 while (need.vn_next);
3484 }
3485
3486 return TRUE;
3487 }
3488 \f
3489 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3490 The default is to only match when the INPUT and OUTPUT are exactly
3491 the same target. */
3492
3493 bfd_boolean
3494 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3495 const bfd_target *output)
3496 {
3497 return input == output;
3498 }
3499
3500 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3501 This version is used when different targets for the same architecture
3502 are virtually identical. */
3503
3504 bfd_boolean
3505 _bfd_elf_relocs_compatible (const bfd_target *input,
3506 const bfd_target *output)
3507 {
3508 const struct elf_backend_data *obed, *ibed;
3509
3510 if (input == output)
3511 return TRUE;
3512
3513 ibed = xvec_get_elf_backend_data (input);
3514 obed = xvec_get_elf_backend_data (output);
3515
3516 if (ibed->arch != obed->arch)
3517 return FALSE;
3518
3519 /* If both backends are using this function, deem them compatible. */
3520 return ibed->relocs_compatible == obed->relocs_compatible;
3521 }
3522
3523 /* Make a special call to the linker "notice" function to tell it that
3524 we are about to handle an as-needed lib, or have finished
3525 processing the lib. */
3526
3527 bfd_boolean
3528 _bfd_elf_notice_as_needed (bfd *ibfd,
3529 struct bfd_link_info *info,
3530 enum notice_asneeded_action act)
3531 {
3532 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3533 }
3534
3535 /* Check relocations an ELF object file. */
3536
3537 bfd_boolean
3538 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3539 {
3540 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3541 struct elf_link_hash_table *htab = elf_hash_table (info);
3542
3543 /* If this object is the same format as the output object, and it is
3544 not a shared library, then let the backend look through the
3545 relocs.
3546
3547 This is required to build global offset table entries and to
3548 arrange for dynamic relocs. It is not required for the
3549 particular common case of linking non PIC code, even when linking
3550 against shared libraries, but unfortunately there is no way of
3551 knowing whether an object file has been compiled PIC or not.
3552 Looking through the relocs is not particularly time consuming.
3553 The problem is that we must either (1) keep the relocs in memory,
3554 which causes the linker to require additional runtime memory or
3555 (2) read the relocs twice from the input file, which wastes time.
3556 This would be a good case for using mmap.
3557
3558 I have no idea how to handle linking PIC code into a file of a
3559 different format. It probably can't be done. */
3560 if ((abfd->flags & DYNAMIC) == 0
3561 && is_elf_hash_table (htab)
3562 && bed->check_relocs != NULL
3563 && elf_object_id (abfd) == elf_hash_table_id (htab)
3564 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3565 {
3566 asection *o;
3567
3568 for (o = abfd->sections; o != NULL; o = o->next)
3569 {
3570 Elf_Internal_Rela *internal_relocs;
3571 bfd_boolean ok;
3572
3573 /* Don't check relocations in excluded sections. */
3574 if ((o->flags & SEC_RELOC) == 0
3575 || (o->flags & SEC_EXCLUDE) != 0
3576 || o->reloc_count == 0
3577 || ((info->strip == strip_all || info->strip == strip_debugger)
3578 && (o->flags & SEC_DEBUGGING) != 0)
3579 || bfd_is_abs_section (o->output_section))
3580 continue;
3581
3582 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3583 info->keep_memory);
3584 if (internal_relocs == NULL)
3585 return FALSE;
3586
3587 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3588
3589 if (elf_section_data (o)->relocs != internal_relocs)
3590 free (internal_relocs);
3591
3592 if (! ok)
3593 return FALSE;
3594 }
3595 }
3596
3597 return TRUE;
3598 }
3599
3600 /* Add symbols from an ELF object file to the linker hash table. */
3601
3602 static bfd_boolean
3603 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3604 {
3605 Elf_Internal_Ehdr *ehdr;
3606 Elf_Internal_Shdr *hdr;
3607 size_t symcount;
3608 size_t extsymcount;
3609 size_t extsymoff;
3610 struct elf_link_hash_entry **sym_hash;
3611 bfd_boolean dynamic;
3612 Elf_External_Versym *extversym = NULL;
3613 Elf_External_Versym *ever;
3614 struct elf_link_hash_entry *weaks;
3615 struct elf_link_hash_entry **nondeflt_vers = NULL;
3616 size_t nondeflt_vers_cnt = 0;
3617 Elf_Internal_Sym *isymbuf = NULL;
3618 Elf_Internal_Sym *isym;
3619 Elf_Internal_Sym *isymend;
3620 const struct elf_backend_data *bed;
3621 bfd_boolean add_needed;
3622 struct elf_link_hash_table *htab;
3623 bfd_size_type amt;
3624 void *alloc_mark = NULL;
3625 struct bfd_hash_entry **old_table = NULL;
3626 unsigned int old_size = 0;
3627 unsigned int old_count = 0;
3628 void *old_tab = NULL;
3629 void *old_ent;
3630 struct bfd_link_hash_entry *old_undefs = NULL;
3631 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3632 void *old_strtab = NULL;
3633 size_t tabsize = 0;
3634 asection *s;
3635 bfd_boolean just_syms;
3636
3637 htab = elf_hash_table (info);
3638 bed = get_elf_backend_data (abfd);
3639
3640 if ((abfd->flags & DYNAMIC) == 0)
3641 dynamic = FALSE;
3642 else
3643 {
3644 dynamic = TRUE;
3645
3646 /* You can't use -r against a dynamic object. Also, there's no
3647 hope of using a dynamic object which does not exactly match
3648 the format of the output file. */
3649 if (bfd_link_relocatable (info)
3650 || !is_elf_hash_table (htab)
3651 || info->output_bfd->xvec != abfd->xvec)
3652 {
3653 if (bfd_link_relocatable (info))
3654 bfd_set_error (bfd_error_invalid_operation);
3655 else
3656 bfd_set_error (bfd_error_wrong_format);
3657 goto error_return;
3658 }
3659 }
3660
3661 ehdr = elf_elfheader (abfd);
3662 if (info->warn_alternate_em
3663 && bed->elf_machine_code != ehdr->e_machine
3664 && ((bed->elf_machine_alt1 != 0
3665 && ehdr->e_machine == bed->elf_machine_alt1)
3666 || (bed->elf_machine_alt2 != 0
3667 && ehdr->e_machine == bed->elf_machine_alt2)))
3668 info->callbacks->einfo
3669 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3670 ehdr->e_machine, abfd, bed->elf_machine_code);
3671
3672 /* As a GNU extension, any input sections which are named
3673 .gnu.warning.SYMBOL are treated as warning symbols for the given
3674 symbol. This differs from .gnu.warning sections, which generate
3675 warnings when they are included in an output file. */
3676 /* PR 12761: Also generate this warning when building shared libraries. */
3677 for (s = abfd->sections; s != NULL; s = s->next)
3678 {
3679 const char *name;
3680
3681 name = bfd_get_section_name (abfd, s);
3682 if (CONST_STRNEQ (name, ".gnu.warning."))
3683 {
3684 char *msg;
3685 bfd_size_type sz;
3686
3687 name += sizeof ".gnu.warning." - 1;
3688
3689 /* If this is a shared object, then look up the symbol
3690 in the hash table. If it is there, and it is already
3691 been defined, then we will not be using the entry
3692 from this shared object, so we don't need to warn.
3693 FIXME: If we see the definition in a regular object
3694 later on, we will warn, but we shouldn't. The only
3695 fix is to keep track of what warnings we are supposed
3696 to emit, and then handle them all at the end of the
3697 link. */
3698 if (dynamic)
3699 {
3700 struct elf_link_hash_entry *h;
3701
3702 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3703
3704 /* FIXME: What about bfd_link_hash_common? */
3705 if (h != NULL
3706 && (h->root.type == bfd_link_hash_defined
3707 || h->root.type == bfd_link_hash_defweak))
3708 continue;
3709 }
3710
3711 sz = s->size;
3712 msg = (char *) bfd_alloc (abfd, sz + 1);
3713 if (msg == NULL)
3714 goto error_return;
3715
3716 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3717 goto error_return;
3718
3719 msg[sz] = '\0';
3720
3721 if (! (_bfd_generic_link_add_one_symbol
3722 (info, abfd, name, BSF_WARNING, s, 0, msg,
3723 FALSE, bed->collect, NULL)))
3724 goto error_return;
3725
3726 if (bfd_link_executable (info))
3727 {
3728 /* Clobber the section size so that the warning does
3729 not get copied into the output file. */
3730 s->size = 0;
3731
3732 /* Also set SEC_EXCLUDE, so that symbols defined in
3733 the warning section don't get copied to the output. */
3734 s->flags |= SEC_EXCLUDE;
3735 }
3736 }
3737 }
3738
3739 just_syms = ((s = abfd->sections) != NULL
3740 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3741
3742 add_needed = TRUE;
3743 if (! dynamic)
3744 {
3745 /* If we are creating a shared library, create all the dynamic
3746 sections immediately. We need to attach them to something,
3747 so we attach them to this BFD, provided it is the right
3748 format and is not from ld --just-symbols. Always create the
3749 dynamic sections for -E/--dynamic-list. FIXME: If there
3750 are no input BFD's of the same format as the output, we can't
3751 make a shared library. */
3752 if (!just_syms
3753 && (bfd_link_pic (info)
3754 || (!bfd_link_relocatable (info)
3755 && (info->export_dynamic || info->dynamic)))
3756 && is_elf_hash_table (htab)
3757 && info->output_bfd->xvec == abfd->xvec
3758 && !htab->dynamic_sections_created)
3759 {
3760 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3761 goto error_return;
3762 }
3763 }
3764 else if (!is_elf_hash_table (htab))
3765 goto error_return;
3766 else
3767 {
3768 const char *soname = NULL;
3769 char *audit = NULL;
3770 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3771 int ret;
3772
3773 /* ld --just-symbols and dynamic objects don't mix very well.
3774 ld shouldn't allow it. */
3775 if (just_syms)
3776 abort ();
3777
3778 /* If this dynamic lib was specified on the command line with
3779 --as-needed in effect, then we don't want to add a DT_NEEDED
3780 tag unless the lib is actually used. Similary for libs brought
3781 in by another lib's DT_NEEDED. When --no-add-needed is used
3782 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3783 any dynamic library in DT_NEEDED tags in the dynamic lib at
3784 all. */
3785 add_needed = (elf_dyn_lib_class (abfd)
3786 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3787 | DYN_NO_NEEDED)) == 0;
3788
3789 s = bfd_get_section_by_name (abfd, ".dynamic");
3790 if (s != NULL)
3791 {
3792 bfd_byte *dynbuf;
3793 bfd_byte *extdyn;
3794 unsigned int elfsec;
3795 unsigned long shlink;
3796
3797 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3798 {
3799 error_free_dyn:
3800 free (dynbuf);
3801 goto error_return;
3802 }
3803
3804 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3805 if (elfsec == SHN_BAD)
3806 goto error_free_dyn;
3807 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3808
3809 for (extdyn = dynbuf;
3810 extdyn < dynbuf + s->size;
3811 extdyn += bed->s->sizeof_dyn)
3812 {
3813 Elf_Internal_Dyn dyn;
3814
3815 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3816 if (dyn.d_tag == DT_SONAME)
3817 {
3818 unsigned int tagv = dyn.d_un.d_val;
3819 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3820 if (soname == NULL)
3821 goto error_free_dyn;
3822 }
3823 if (dyn.d_tag == DT_NEEDED)
3824 {
3825 struct bfd_link_needed_list *n, **pn;
3826 char *fnm, *anm;
3827 unsigned int tagv = dyn.d_un.d_val;
3828
3829 amt = sizeof (struct bfd_link_needed_list);
3830 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3831 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3832 if (n == NULL || fnm == NULL)
3833 goto error_free_dyn;
3834 amt = strlen (fnm) + 1;
3835 anm = (char *) bfd_alloc (abfd, amt);
3836 if (anm == NULL)
3837 goto error_free_dyn;
3838 memcpy (anm, fnm, amt);
3839 n->name = anm;
3840 n->by = abfd;
3841 n->next = NULL;
3842 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3843 ;
3844 *pn = n;
3845 }
3846 if (dyn.d_tag == DT_RUNPATH)
3847 {
3848 struct bfd_link_needed_list *n, **pn;
3849 char *fnm, *anm;
3850 unsigned int tagv = dyn.d_un.d_val;
3851
3852 amt = sizeof (struct bfd_link_needed_list);
3853 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3854 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3855 if (n == NULL || fnm == NULL)
3856 goto error_free_dyn;
3857 amt = strlen (fnm) + 1;
3858 anm = (char *) bfd_alloc (abfd, amt);
3859 if (anm == NULL)
3860 goto error_free_dyn;
3861 memcpy (anm, fnm, amt);
3862 n->name = anm;
3863 n->by = abfd;
3864 n->next = NULL;
3865 for (pn = & runpath;
3866 *pn != NULL;
3867 pn = &(*pn)->next)
3868 ;
3869 *pn = n;
3870 }
3871 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3872 if (!runpath && dyn.d_tag == DT_RPATH)
3873 {
3874 struct bfd_link_needed_list *n, **pn;
3875 char *fnm, *anm;
3876 unsigned int tagv = dyn.d_un.d_val;
3877
3878 amt = sizeof (struct bfd_link_needed_list);
3879 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3880 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3881 if (n == NULL || fnm == NULL)
3882 goto error_free_dyn;
3883 amt = strlen (fnm) + 1;
3884 anm = (char *) bfd_alloc (abfd, amt);
3885 if (anm == NULL)
3886 goto error_free_dyn;
3887 memcpy (anm, fnm, amt);
3888 n->name = anm;
3889 n->by = abfd;
3890 n->next = NULL;
3891 for (pn = & rpath;
3892 *pn != NULL;
3893 pn = &(*pn)->next)
3894 ;
3895 *pn = n;
3896 }
3897 if (dyn.d_tag == DT_AUDIT)
3898 {
3899 unsigned int tagv = dyn.d_un.d_val;
3900 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3901 }
3902 }
3903
3904 free (dynbuf);
3905 }
3906
3907 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3908 frees all more recently bfd_alloc'd blocks as well. */
3909 if (runpath)
3910 rpath = runpath;
3911
3912 if (rpath)
3913 {
3914 struct bfd_link_needed_list **pn;
3915 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3916 ;
3917 *pn = rpath;
3918 }
3919
3920 /* We do not want to include any of the sections in a dynamic
3921 object in the output file. We hack by simply clobbering the
3922 list of sections in the BFD. This could be handled more
3923 cleanly by, say, a new section flag; the existing
3924 SEC_NEVER_LOAD flag is not the one we want, because that one
3925 still implies that the section takes up space in the output
3926 file. */
3927 bfd_section_list_clear (abfd);
3928
3929 /* Find the name to use in a DT_NEEDED entry that refers to this
3930 object. If the object has a DT_SONAME entry, we use it.
3931 Otherwise, if the generic linker stuck something in
3932 elf_dt_name, we use that. Otherwise, we just use the file
3933 name. */
3934 if (soname == NULL || *soname == '\0')
3935 {
3936 soname = elf_dt_name (abfd);
3937 if (soname == NULL || *soname == '\0')
3938 soname = bfd_get_filename (abfd);
3939 }
3940
3941 /* Save the SONAME because sometimes the linker emulation code
3942 will need to know it. */
3943 elf_dt_name (abfd) = soname;
3944
3945 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3946 if (ret < 0)
3947 goto error_return;
3948
3949 /* If we have already included this dynamic object in the
3950 link, just ignore it. There is no reason to include a
3951 particular dynamic object more than once. */
3952 if (ret > 0)
3953 return TRUE;
3954
3955 /* Save the DT_AUDIT entry for the linker emulation code. */
3956 elf_dt_audit (abfd) = audit;
3957 }
3958
3959 /* If this is a dynamic object, we always link against the .dynsym
3960 symbol table, not the .symtab symbol table. The dynamic linker
3961 will only see the .dynsym symbol table, so there is no reason to
3962 look at .symtab for a dynamic object. */
3963
3964 if (! dynamic || elf_dynsymtab (abfd) == 0)
3965 hdr = &elf_tdata (abfd)->symtab_hdr;
3966 else
3967 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3968
3969 symcount = hdr->sh_size / bed->s->sizeof_sym;
3970
3971 /* The sh_info field of the symtab header tells us where the
3972 external symbols start. We don't care about the local symbols at
3973 this point. */
3974 if (elf_bad_symtab (abfd))
3975 {
3976 extsymcount = symcount;
3977 extsymoff = 0;
3978 }
3979 else
3980 {
3981 extsymcount = symcount - hdr->sh_info;
3982 extsymoff = hdr->sh_info;
3983 }
3984
3985 sym_hash = elf_sym_hashes (abfd);
3986 if (extsymcount != 0)
3987 {
3988 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3989 NULL, NULL, NULL);
3990 if (isymbuf == NULL)
3991 goto error_return;
3992
3993 if (sym_hash == NULL)
3994 {
3995 /* We store a pointer to the hash table entry for each
3996 external symbol. */
3997 amt = extsymcount;
3998 amt *= sizeof (struct elf_link_hash_entry *);
3999 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4000 if (sym_hash == NULL)
4001 goto error_free_sym;
4002 elf_sym_hashes (abfd) = sym_hash;
4003 }
4004 }
4005
4006 if (dynamic)
4007 {
4008 /* Read in any version definitions. */
4009 if (!_bfd_elf_slurp_version_tables (abfd,
4010 info->default_imported_symver))
4011 goto error_free_sym;
4012
4013 /* Read in the symbol versions, but don't bother to convert them
4014 to internal format. */
4015 if (elf_dynversym (abfd) != 0)
4016 {
4017 Elf_Internal_Shdr *versymhdr;
4018
4019 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4020 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
4021 if (extversym == NULL)
4022 goto error_free_sym;
4023 amt = versymhdr->sh_size;
4024 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
4025 || bfd_bread (extversym, amt, abfd) != amt)
4026 goto error_free_vers;
4027 }
4028 }
4029
4030 /* If we are loading an as-needed shared lib, save the symbol table
4031 state before we start adding symbols. If the lib turns out
4032 to be unneeded, restore the state. */
4033 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4034 {
4035 unsigned int i;
4036 size_t entsize;
4037
4038 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4039 {
4040 struct bfd_hash_entry *p;
4041 struct elf_link_hash_entry *h;
4042
4043 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4044 {
4045 h = (struct elf_link_hash_entry *) p;
4046 entsize += htab->root.table.entsize;
4047 if (h->root.type == bfd_link_hash_warning)
4048 entsize += htab->root.table.entsize;
4049 }
4050 }
4051
4052 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4053 old_tab = bfd_malloc (tabsize + entsize);
4054 if (old_tab == NULL)
4055 goto error_free_vers;
4056
4057 /* Remember the current objalloc pointer, so that all mem for
4058 symbols added can later be reclaimed. */
4059 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4060 if (alloc_mark == NULL)
4061 goto error_free_vers;
4062
4063 /* Make a special call to the linker "notice" function to
4064 tell it that we are about to handle an as-needed lib. */
4065 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4066 goto error_free_vers;
4067
4068 /* Clone the symbol table. Remember some pointers into the
4069 symbol table, and dynamic symbol count. */
4070 old_ent = (char *) old_tab + tabsize;
4071 memcpy (old_tab, htab->root.table.table, tabsize);
4072 old_undefs = htab->root.undefs;
4073 old_undefs_tail = htab->root.undefs_tail;
4074 old_table = htab->root.table.table;
4075 old_size = htab->root.table.size;
4076 old_count = htab->root.table.count;
4077 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4078 if (old_strtab == NULL)
4079 goto error_free_vers;
4080
4081 for (i = 0; i < htab->root.table.size; i++)
4082 {
4083 struct bfd_hash_entry *p;
4084 struct elf_link_hash_entry *h;
4085
4086 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4087 {
4088 memcpy (old_ent, p, htab->root.table.entsize);
4089 old_ent = (char *) old_ent + htab->root.table.entsize;
4090 h = (struct elf_link_hash_entry *) p;
4091 if (h->root.type == bfd_link_hash_warning)
4092 {
4093 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4094 old_ent = (char *) old_ent + htab->root.table.entsize;
4095 }
4096 }
4097 }
4098 }
4099
4100 weaks = NULL;
4101 ever = extversym != NULL ? extversym + extsymoff : NULL;
4102 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4103 isym < isymend;
4104 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4105 {
4106 int bind;
4107 bfd_vma value;
4108 asection *sec, *new_sec;
4109 flagword flags;
4110 const char *name;
4111 struct elf_link_hash_entry *h;
4112 struct elf_link_hash_entry *hi;
4113 bfd_boolean definition;
4114 bfd_boolean size_change_ok;
4115 bfd_boolean type_change_ok;
4116 bfd_boolean new_weakdef;
4117 bfd_boolean new_weak;
4118 bfd_boolean old_weak;
4119 bfd_boolean override;
4120 bfd_boolean common;
4121 bfd_boolean discarded;
4122 unsigned int old_alignment;
4123 bfd *old_bfd;
4124 bfd_boolean matched;
4125
4126 override = FALSE;
4127
4128 flags = BSF_NO_FLAGS;
4129 sec = NULL;
4130 value = isym->st_value;
4131 common = bed->common_definition (isym);
4132 discarded = FALSE;
4133
4134 bind = ELF_ST_BIND (isym->st_info);
4135 switch (bind)
4136 {
4137 case STB_LOCAL:
4138 /* This should be impossible, since ELF requires that all
4139 global symbols follow all local symbols, and that sh_info
4140 point to the first global symbol. Unfortunately, Irix 5
4141 screws this up. */
4142 continue;
4143
4144 case STB_GLOBAL:
4145 if (isym->st_shndx != SHN_UNDEF && !common)
4146 flags = BSF_GLOBAL;
4147 break;
4148
4149 case STB_WEAK:
4150 flags = BSF_WEAK;
4151 break;
4152
4153 case STB_GNU_UNIQUE:
4154 flags = BSF_GNU_UNIQUE;
4155 break;
4156
4157 default:
4158 /* Leave it up to the processor backend. */
4159 break;
4160 }
4161
4162 if (isym->st_shndx == SHN_UNDEF)
4163 sec = bfd_und_section_ptr;
4164 else if (isym->st_shndx == SHN_ABS)
4165 sec = bfd_abs_section_ptr;
4166 else if (isym->st_shndx == SHN_COMMON)
4167 {
4168 sec = bfd_com_section_ptr;
4169 /* What ELF calls the size we call the value. What ELF
4170 calls the value we call the alignment. */
4171 value = isym->st_size;
4172 }
4173 else
4174 {
4175 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4176 if (sec == NULL)
4177 sec = bfd_abs_section_ptr;
4178 else if (discarded_section (sec))
4179 {
4180 /* Symbols from discarded section are undefined. We keep
4181 its visibility. */
4182 sec = bfd_und_section_ptr;
4183 discarded = TRUE;
4184 isym->st_shndx = SHN_UNDEF;
4185 }
4186 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4187 value -= sec->vma;
4188 }
4189
4190 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4191 isym->st_name);
4192 if (name == NULL)
4193 goto error_free_vers;
4194
4195 if (isym->st_shndx == SHN_COMMON
4196 && (abfd->flags & BFD_PLUGIN) != 0)
4197 {
4198 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4199
4200 if (xc == NULL)
4201 {
4202 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4203 | SEC_EXCLUDE);
4204 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4205 if (xc == NULL)
4206 goto error_free_vers;
4207 }
4208 sec = xc;
4209 }
4210 else if (isym->st_shndx == SHN_COMMON
4211 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4212 && !bfd_link_relocatable (info))
4213 {
4214 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4215
4216 if (tcomm == NULL)
4217 {
4218 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4219 | SEC_LINKER_CREATED);
4220 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4221 if (tcomm == NULL)
4222 goto error_free_vers;
4223 }
4224 sec = tcomm;
4225 }
4226 else if (bed->elf_add_symbol_hook)
4227 {
4228 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4229 &sec, &value))
4230 goto error_free_vers;
4231
4232 /* The hook function sets the name to NULL if this symbol
4233 should be skipped for some reason. */
4234 if (name == NULL)
4235 continue;
4236 }
4237
4238 /* Sanity check that all possibilities were handled. */
4239 if (sec == NULL)
4240 {
4241 bfd_set_error (bfd_error_bad_value);
4242 goto error_free_vers;
4243 }
4244
4245 /* Silently discard TLS symbols from --just-syms. There's
4246 no way to combine a static TLS block with a new TLS block
4247 for this executable. */
4248 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4249 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4250 continue;
4251
4252 if (bfd_is_und_section (sec)
4253 || bfd_is_com_section (sec))
4254 definition = FALSE;
4255 else
4256 definition = TRUE;
4257
4258 size_change_ok = FALSE;
4259 type_change_ok = bed->type_change_ok;
4260 old_weak = FALSE;
4261 matched = FALSE;
4262 old_alignment = 0;
4263 old_bfd = NULL;
4264 new_sec = sec;
4265
4266 if (is_elf_hash_table (htab))
4267 {
4268 Elf_Internal_Versym iver;
4269 unsigned int vernum = 0;
4270 bfd_boolean skip;
4271
4272 if (ever == NULL)
4273 {
4274 if (info->default_imported_symver)
4275 /* Use the default symbol version created earlier. */
4276 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4277 else
4278 iver.vs_vers = 0;
4279 }
4280 else
4281 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4282
4283 vernum = iver.vs_vers & VERSYM_VERSION;
4284
4285 /* If this is a hidden symbol, or if it is not version
4286 1, we append the version name to the symbol name.
4287 However, we do not modify a non-hidden absolute symbol
4288 if it is not a function, because it might be the version
4289 symbol itself. FIXME: What if it isn't? */
4290 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4291 || (vernum > 1
4292 && (!bfd_is_abs_section (sec)
4293 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4294 {
4295 const char *verstr;
4296 size_t namelen, verlen, newlen;
4297 char *newname, *p;
4298
4299 if (isym->st_shndx != SHN_UNDEF)
4300 {
4301 if (vernum > elf_tdata (abfd)->cverdefs)
4302 verstr = NULL;
4303 else if (vernum > 1)
4304 verstr =
4305 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4306 else
4307 verstr = "";
4308
4309 if (verstr == NULL)
4310 {
4311 (*_bfd_error_handler)
4312 (_("%B: %s: invalid version %u (max %d)"),
4313 abfd, name, vernum,
4314 elf_tdata (abfd)->cverdefs);
4315 bfd_set_error (bfd_error_bad_value);
4316 goto error_free_vers;
4317 }
4318 }
4319 else
4320 {
4321 /* We cannot simply test for the number of
4322 entries in the VERNEED section since the
4323 numbers for the needed versions do not start
4324 at 0. */
4325 Elf_Internal_Verneed *t;
4326
4327 verstr = NULL;
4328 for (t = elf_tdata (abfd)->verref;
4329 t != NULL;
4330 t = t->vn_nextref)
4331 {
4332 Elf_Internal_Vernaux *a;
4333
4334 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4335 {
4336 if (a->vna_other == vernum)
4337 {
4338 verstr = a->vna_nodename;
4339 break;
4340 }
4341 }
4342 if (a != NULL)
4343 break;
4344 }
4345 if (verstr == NULL)
4346 {
4347 (*_bfd_error_handler)
4348 (_("%B: %s: invalid needed version %d"),
4349 abfd, name, vernum);
4350 bfd_set_error (bfd_error_bad_value);
4351 goto error_free_vers;
4352 }
4353 }
4354
4355 namelen = strlen (name);
4356 verlen = strlen (verstr);
4357 newlen = namelen + verlen + 2;
4358 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4359 && isym->st_shndx != SHN_UNDEF)
4360 ++newlen;
4361
4362 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4363 if (newname == NULL)
4364 goto error_free_vers;
4365 memcpy (newname, name, namelen);
4366 p = newname + namelen;
4367 *p++ = ELF_VER_CHR;
4368 /* If this is a defined non-hidden version symbol,
4369 we add another @ to the name. This indicates the
4370 default version of the symbol. */
4371 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4372 && isym->st_shndx != SHN_UNDEF)
4373 *p++ = ELF_VER_CHR;
4374 memcpy (p, verstr, verlen + 1);
4375
4376 name = newname;
4377 }
4378
4379 /* If this symbol has default visibility and the user has
4380 requested we not re-export it, then mark it as hidden. */
4381 if (!bfd_is_und_section (sec)
4382 && !dynamic
4383 && abfd->no_export
4384 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4385 isym->st_other = (STV_HIDDEN
4386 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4387
4388 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4389 sym_hash, &old_bfd, &old_weak,
4390 &old_alignment, &skip, &override,
4391 &type_change_ok, &size_change_ok,
4392 &matched))
4393 goto error_free_vers;
4394
4395 if (skip)
4396 continue;
4397
4398 /* Override a definition only if the new symbol matches the
4399 existing one. */
4400 if (override && matched)
4401 definition = FALSE;
4402
4403 h = *sym_hash;
4404 while (h->root.type == bfd_link_hash_indirect
4405 || h->root.type == bfd_link_hash_warning)
4406 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4407
4408 if (elf_tdata (abfd)->verdef != NULL
4409 && vernum > 1
4410 && definition)
4411 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4412 }
4413
4414 if (! (_bfd_generic_link_add_one_symbol
4415 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4416 (struct bfd_link_hash_entry **) sym_hash)))
4417 goto error_free_vers;
4418
4419 if ((flags & BSF_GNU_UNIQUE)
4420 && (abfd->flags & DYNAMIC) == 0
4421 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
4422 elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_unique;
4423
4424 h = *sym_hash;
4425 /* We need to make sure that indirect symbol dynamic flags are
4426 updated. */
4427 hi = h;
4428 while (h->root.type == bfd_link_hash_indirect
4429 || h->root.type == bfd_link_hash_warning)
4430 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4431
4432 /* Setting the index to -3 tells elf_link_output_extsym that
4433 this symbol is defined in a discarded section. */
4434 if (discarded)
4435 h->indx = -3;
4436
4437 *sym_hash = h;
4438
4439 new_weak = (flags & BSF_WEAK) != 0;
4440 new_weakdef = FALSE;
4441 if (dynamic
4442 && definition
4443 && new_weak
4444 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4445 && is_elf_hash_table (htab)
4446 && h->u.weakdef == NULL)
4447 {
4448 /* Keep a list of all weak defined non function symbols from
4449 a dynamic object, using the weakdef field. Later in this
4450 function we will set the weakdef field to the correct
4451 value. We only put non-function symbols from dynamic
4452 objects on this list, because that happens to be the only
4453 time we need to know the normal symbol corresponding to a
4454 weak symbol, and the information is time consuming to
4455 figure out. If the weakdef field is not already NULL,
4456 then this symbol was already defined by some previous
4457 dynamic object, and we will be using that previous
4458 definition anyhow. */
4459
4460 h->u.weakdef = weaks;
4461 weaks = h;
4462 new_weakdef = TRUE;
4463 }
4464
4465 /* Set the alignment of a common symbol. */
4466 if ((common || bfd_is_com_section (sec))
4467 && h->root.type == bfd_link_hash_common)
4468 {
4469 unsigned int align;
4470
4471 if (common)
4472 align = bfd_log2 (isym->st_value);
4473 else
4474 {
4475 /* The new symbol is a common symbol in a shared object.
4476 We need to get the alignment from the section. */
4477 align = new_sec->alignment_power;
4478 }
4479 if (align > old_alignment)
4480 h->root.u.c.p->alignment_power = align;
4481 else
4482 h->root.u.c.p->alignment_power = old_alignment;
4483 }
4484
4485 if (is_elf_hash_table (htab))
4486 {
4487 /* Set a flag in the hash table entry indicating the type of
4488 reference or definition we just found. A dynamic symbol
4489 is one which is referenced or defined by both a regular
4490 object and a shared object. */
4491 bfd_boolean dynsym = FALSE;
4492
4493 /* Plugin symbols aren't normal. Don't set def_regular or
4494 ref_regular for them, or make them dynamic. */
4495 if ((abfd->flags & BFD_PLUGIN) != 0)
4496 ;
4497 else if (! dynamic)
4498 {
4499 if (! definition)
4500 {
4501 h->ref_regular = 1;
4502 if (bind != STB_WEAK)
4503 h->ref_regular_nonweak = 1;
4504 }
4505 else
4506 {
4507 h->def_regular = 1;
4508 if (h->def_dynamic)
4509 {
4510 h->def_dynamic = 0;
4511 h->ref_dynamic = 1;
4512 }
4513 }
4514
4515 /* If the indirect symbol has been forced local, don't
4516 make the real symbol dynamic. */
4517 if ((h == hi || !hi->forced_local)
4518 && (bfd_link_dll (info)
4519 || h->def_dynamic
4520 || h->ref_dynamic))
4521 dynsym = TRUE;
4522 }
4523 else
4524 {
4525 if (! definition)
4526 {
4527 h->ref_dynamic = 1;
4528 hi->ref_dynamic = 1;
4529 }
4530 else
4531 {
4532 h->def_dynamic = 1;
4533 hi->def_dynamic = 1;
4534 }
4535
4536 /* If the indirect symbol has been forced local, don't
4537 make the real symbol dynamic. */
4538 if ((h == hi || !hi->forced_local)
4539 && (h->def_regular
4540 || h->ref_regular
4541 || (h->u.weakdef != NULL
4542 && ! new_weakdef
4543 && h->u.weakdef->dynindx != -1)))
4544 dynsym = TRUE;
4545 }
4546
4547 /* Check to see if we need to add an indirect symbol for
4548 the default name. */
4549 if (definition
4550 || (!override && h->root.type == bfd_link_hash_common))
4551 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4552 sec, value, &old_bfd, &dynsym))
4553 goto error_free_vers;
4554
4555 /* Check the alignment when a common symbol is involved. This
4556 can change when a common symbol is overridden by a normal
4557 definition or a common symbol is ignored due to the old
4558 normal definition. We need to make sure the maximum
4559 alignment is maintained. */
4560 if ((old_alignment || common)
4561 && h->root.type != bfd_link_hash_common)
4562 {
4563 unsigned int common_align;
4564 unsigned int normal_align;
4565 unsigned int symbol_align;
4566 bfd *normal_bfd;
4567 bfd *common_bfd;
4568
4569 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4570 || h->root.type == bfd_link_hash_defweak);
4571
4572 symbol_align = ffs (h->root.u.def.value) - 1;
4573 if (h->root.u.def.section->owner != NULL
4574 && (h->root.u.def.section->owner->flags
4575 & (DYNAMIC | BFD_PLUGIN)) == 0)
4576 {
4577 normal_align = h->root.u.def.section->alignment_power;
4578 if (normal_align > symbol_align)
4579 normal_align = symbol_align;
4580 }
4581 else
4582 normal_align = symbol_align;
4583
4584 if (old_alignment)
4585 {
4586 common_align = old_alignment;
4587 common_bfd = old_bfd;
4588 normal_bfd = abfd;
4589 }
4590 else
4591 {
4592 common_align = bfd_log2 (isym->st_value);
4593 common_bfd = abfd;
4594 normal_bfd = old_bfd;
4595 }
4596
4597 if (normal_align < common_align)
4598 {
4599 /* PR binutils/2735 */
4600 if (normal_bfd == NULL)
4601 (*_bfd_error_handler)
4602 (_("Warning: alignment %u of common symbol `%s' in %B is"
4603 " greater than the alignment (%u) of its section %A"),
4604 common_bfd, h->root.u.def.section,
4605 1 << common_align, name, 1 << normal_align);
4606 else
4607 (*_bfd_error_handler)
4608 (_("Warning: alignment %u of symbol `%s' in %B"
4609 " is smaller than %u in %B"),
4610 normal_bfd, common_bfd,
4611 1 << normal_align, name, 1 << common_align);
4612 }
4613 }
4614
4615 /* Remember the symbol size if it isn't undefined. */
4616 if (isym->st_size != 0
4617 && isym->st_shndx != SHN_UNDEF
4618 && (definition || h->size == 0))
4619 {
4620 if (h->size != 0
4621 && h->size != isym->st_size
4622 && ! size_change_ok)
4623 (*_bfd_error_handler)
4624 (_("Warning: size of symbol `%s' changed"
4625 " from %lu in %B to %lu in %B"),
4626 old_bfd, abfd,
4627 name, (unsigned long) h->size,
4628 (unsigned long) isym->st_size);
4629
4630 h->size = isym->st_size;
4631 }
4632
4633 /* If this is a common symbol, then we always want H->SIZE
4634 to be the size of the common symbol. The code just above
4635 won't fix the size if a common symbol becomes larger. We
4636 don't warn about a size change here, because that is
4637 covered by --warn-common. Allow changes between different
4638 function types. */
4639 if (h->root.type == bfd_link_hash_common)
4640 h->size = h->root.u.c.size;
4641
4642 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4643 && ((definition && !new_weak)
4644 || (old_weak && h->root.type == bfd_link_hash_common)
4645 || h->type == STT_NOTYPE))
4646 {
4647 unsigned int type = ELF_ST_TYPE (isym->st_info);
4648
4649 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4650 symbol. */
4651 if (type == STT_GNU_IFUNC
4652 && (abfd->flags & DYNAMIC) != 0)
4653 type = STT_FUNC;
4654
4655 if (h->type != type)
4656 {
4657 if (h->type != STT_NOTYPE && ! type_change_ok)
4658 (*_bfd_error_handler)
4659 (_("Warning: type of symbol `%s' changed"
4660 " from %d to %d in %B"),
4661 abfd, name, h->type, type);
4662
4663 h->type = type;
4664 }
4665 }
4666
4667 /* Merge st_other field. */
4668 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4669
4670 /* We don't want to make debug symbol dynamic. */
4671 if (definition
4672 && (sec->flags & SEC_DEBUGGING)
4673 && !bfd_link_relocatable (info))
4674 dynsym = FALSE;
4675
4676 /* Nor should we make plugin symbols dynamic. */
4677 if ((abfd->flags & BFD_PLUGIN) != 0)
4678 dynsym = FALSE;
4679
4680 if (definition)
4681 {
4682 h->target_internal = isym->st_target_internal;
4683 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4684 }
4685
4686 if (definition && !dynamic)
4687 {
4688 char *p = strchr (name, ELF_VER_CHR);
4689 if (p != NULL && p[1] != ELF_VER_CHR)
4690 {
4691 /* Queue non-default versions so that .symver x, x@FOO
4692 aliases can be checked. */
4693 if (!nondeflt_vers)
4694 {
4695 amt = ((isymend - isym + 1)
4696 * sizeof (struct elf_link_hash_entry *));
4697 nondeflt_vers
4698 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4699 if (!nondeflt_vers)
4700 goto error_free_vers;
4701 }
4702 nondeflt_vers[nondeflt_vers_cnt++] = h;
4703 }
4704 }
4705
4706 if (dynsym && h->dynindx == -1)
4707 {
4708 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4709 goto error_free_vers;
4710 if (h->u.weakdef != NULL
4711 && ! new_weakdef
4712 && h->u.weakdef->dynindx == -1)
4713 {
4714 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4715 goto error_free_vers;
4716 }
4717 }
4718 else if (h->dynindx != -1)
4719 /* If the symbol already has a dynamic index, but
4720 visibility says it should not be visible, turn it into
4721 a local symbol. */
4722 switch (ELF_ST_VISIBILITY (h->other))
4723 {
4724 case STV_INTERNAL:
4725 case STV_HIDDEN:
4726 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4727 dynsym = FALSE;
4728 break;
4729 }
4730
4731 /* Don't add DT_NEEDED for references from the dummy bfd nor
4732 for unmatched symbol. */
4733 if (!add_needed
4734 && matched
4735 && definition
4736 && ((dynsym
4737 && h->ref_regular_nonweak
4738 && (old_bfd == NULL
4739 || (old_bfd->flags & BFD_PLUGIN) == 0))
4740 || (h->ref_dynamic_nonweak
4741 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4742 && !on_needed_list (elf_dt_name (abfd),
4743 htab->needed, NULL))))
4744 {
4745 int ret;
4746 const char *soname = elf_dt_name (abfd);
4747
4748 info->callbacks->minfo ("%!", soname, old_bfd,
4749 h->root.root.string);
4750
4751 /* A symbol from a library loaded via DT_NEEDED of some
4752 other library is referenced by a regular object.
4753 Add a DT_NEEDED entry for it. Issue an error if
4754 --no-add-needed is used and the reference was not
4755 a weak one. */
4756 if (old_bfd != NULL
4757 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4758 {
4759 (*_bfd_error_handler)
4760 (_("%B: undefined reference to symbol '%s'"),
4761 old_bfd, name);
4762 bfd_set_error (bfd_error_missing_dso);
4763 goto error_free_vers;
4764 }
4765
4766 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4767 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4768
4769 add_needed = TRUE;
4770 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4771 if (ret < 0)
4772 goto error_free_vers;
4773
4774 BFD_ASSERT (ret == 0);
4775 }
4776 }
4777 }
4778
4779 if (extversym != NULL)
4780 {
4781 free (extversym);
4782 extversym = NULL;
4783 }
4784
4785 if (isymbuf != NULL)
4786 {
4787 free (isymbuf);
4788 isymbuf = NULL;
4789 }
4790
4791 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4792 {
4793 unsigned int i;
4794
4795 /* Restore the symbol table. */
4796 old_ent = (char *) old_tab + tabsize;
4797 memset (elf_sym_hashes (abfd), 0,
4798 extsymcount * sizeof (struct elf_link_hash_entry *));
4799 htab->root.table.table = old_table;
4800 htab->root.table.size = old_size;
4801 htab->root.table.count = old_count;
4802 memcpy (htab->root.table.table, old_tab, tabsize);
4803 htab->root.undefs = old_undefs;
4804 htab->root.undefs_tail = old_undefs_tail;
4805 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
4806 free (old_strtab);
4807 old_strtab = NULL;
4808 for (i = 0; i < htab->root.table.size; i++)
4809 {
4810 struct bfd_hash_entry *p;
4811 struct elf_link_hash_entry *h;
4812 bfd_size_type size;
4813 unsigned int alignment_power;
4814
4815 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4816 {
4817 h = (struct elf_link_hash_entry *) p;
4818 if (h->root.type == bfd_link_hash_warning)
4819 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4820
4821 /* Preserve the maximum alignment and size for common
4822 symbols even if this dynamic lib isn't on DT_NEEDED
4823 since it can still be loaded at run time by another
4824 dynamic lib. */
4825 if (h->root.type == bfd_link_hash_common)
4826 {
4827 size = h->root.u.c.size;
4828 alignment_power = h->root.u.c.p->alignment_power;
4829 }
4830 else
4831 {
4832 size = 0;
4833 alignment_power = 0;
4834 }
4835 memcpy (p, old_ent, htab->root.table.entsize);
4836 old_ent = (char *) old_ent + htab->root.table.entsize;
4837 h = (struct elf_link_hash_entry *) p;
4838 if (h->root.type == bfd_link_hash_warning)
4839 {
4840 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4841 old_ent = (char *) old_ent + htab->root.table.entsize;
4842 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4843 }
4844 if (h->root.type == bfd_link_hash_common)
4845 {
4846 if (size > h->root.u.c.size)
4847 h->root.u.c.size = size;
4848 if (alignment_power > h->root.u.c.p->alignment_power)
4849 h->root.u.c.p->alignment_power = alignment_power;
4850 }
4851 }
4852 }
4853
4854 /* Make a special call to the linker "notice" function to
4855 tell it that symbols added for crefs may need to be removed. */
4856 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4857 goto error_free_vers;
4858
4859 free (old_tab);
4860 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4861 alloc_mark);
4862 if (nondeflt_vers != NULL)
4863 free (nondeflt_vers);
4864 return TRUE;
4865 }
4866
4867 if (old_tab != NULL)
4868 {
4869 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4870 goto error_free_vers;
4871 free (old_tab);
4872 old_tab = NULL;
4873 }
4874
4875 /* Now that all the symbols from this input file are created, if
4876 not performing a relocatable link, handle .symver foo, foo@BAR
4877 such that any relocs against foo become foo@BAR. */
4878 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
4879 {
4880 size_t cnt, symidx;
4881
4882 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4883 {
4884 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4885 char *shortname, *p;
4886
4887 p = strchr (h->root.root.string, ELF_VER_CHR);
4888 if (p == NULL
4889 || (h->root.type != bfd_link_hash_defined
4890 && h->root.type != bfd_link_hash_defweak))
4891 continue;
4892
4893 amt = p - h->root.root.string;
4894 shortname = (char *) bfd_malloc (amt + 1);
4895 if (!shortname)
4896 goto error_free_vers;
4897 memcpy (shortname, h->root.root.string, amt);
4898 shortname[amt] = '\0';
4899
4900 hi = (struct elf_link_hash_entry *)
4901 bfd_link_hash_lookup (&htab->root, shortname,
4902 FALSE, FALSE, FALSE);
4903 if (hi != NULL
4904 && hi->root.type == h->root.type
4905 && hi->root.u.def.value == h->root.u.def.value
4906 && hi->root.u.def.section == h->root.u.def.section)
4907 {
4908 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4909 hi->root.type = bfd_link_hash_indirect;
4910 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4911 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4912 sym_hash = elf_sym_hashes (abfd);
4913 if (sym_hash)
4914 for (symidx = 0; symidx < extsymcount; ++symidx)
4915 if (sym_hash[symidx] == hi)
4916 {
4917 sym_hash[symidx] = h;
4918 break;
4919 }
4920 }
4921 free (shortname);
4922 }
4923 free (nondeflt_vers);
4924 nondeflt_vers = NULL;
4925 }
4926
4927 /* Now set the weakdefs field correctly for all the weak defined
4928 symbols we found. The only way to do this is to search all the
4929 symbols. Since we only need the information for non functions in
4930 dynamic objects, that's the only time we actually put anything on
4931 the list WEAKS. We need this information so that if a regular
4932 object refers to a symbol defined weakly in a dynamic object, the
4933 real symbol in the dynamic object is also put in the dynamic
4934 symbols; we also must arrange for both symbols to point to the
4935 same memory location. We could handle the general case of symbol
4936 aliasing, but a general symbol alias can only be generated in
4937 assembler code, handling it correctly would be very time
4938 consuming, and other ELF linkers don't handle general aliasing
4939 either. */
4940 if (weaks != NULL)
4941 {
4942 struct elf_link_hash_entry **hpp;
4943 struct elf_link_hash_entry **hppend;
4944 struct elf_link_hash_entry **sorted_sym_hash;
4945 struct elf_link_hash_entry *h;
4946 size_t sym_count;
4947
4948 /* Since we have to search the whole symbol list for each weak
4949 defined symbol, search time for N weak defined symbols will be
4950 O(N^2). Binary search will cut it down to O(NlogN). */
4951 amt = extsymcount;
4952 amt *= sizeof (struct elf_link_hash_entry *);
4953 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4954 if (sorted_sym_hash == NULL)
4955 goto error_return;
4956 sym_hash = sorted_sym_hash;
4957 hpp = elf_sym_hashes (abfd);
4958 hppend = hpp + extsymcount;
4959 sym_count = 0;
4960 for (; hpp < hppend; hpp++)
4961 {
4962 h = *hpp;
4963 if (h != NULL
4964 && h->root.type == bfd_link_hash_defined
4965 && !bed->is_function_type (h->type))
4966 {
4967 *sym_hash = h;
4968 sym_hash++;
4969 sym_count++;
4970 }
4971 }
4972
4973 qsort (sorted_sym_hash, sym_count,
4974 sizeof (struct elf_link_hash_entry *),
4975 elf_sort_symbol);
4976
4977 while (weaks != NULL)
4978 {
4979 struct elf_link_hash_entry *hlook;
4980 asection *slook;
4981 bfd_vma vlook;
4982 size_t i, j, idx = 0;
4983
4984 hlook = weaks;
4985 weaks = hlook->u.weakdef;
4986 hlook->u.weakdef = NULL;
4987
4988 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4989 || hlook->root.type == bfd_link_hash_defweak
4990 || hlook->root.type == bfd_link_hash_common
4991 || hlook->root.type == bfd_link_hash_indirect);
4992 slook = hlook->root.u.def.section;
4993 vlook = hlook->root.u.def.value;
4994
4995 i = 0;
4996 j = sym_count;
4997 while (i != j)
4998 {
4999 bfd_signed_vma vdiff;
5000 idx = (i + j) / 2;
5001 h = sorted_sym_hash[idx];
5002 vdiff = vlook - h->root.u.def.value;
5003 if (vdiff < 0)
5004 j = idx;
5005 else if (vdiff > 0)
5006 i = idx + 1;
5007 else
5008 {
5009 int sdiff = slook->id - h->root.u.def.section->id;
5010 if (sdiff < 0)
5011 j = idx;
5012 else if (sdiff > 0)
5013 i = idx + 1;
5014 else
5015 break;
5016 }
5017 }
5018
5019 /* We didn't find a value/section match. */
5020 if (i == j)
5021 continue;
5022
5023 /* With multiple aliases, or when the weak symbol is already
5024 strongly defined, we have multiple matching symbols and
5025 the binary search above may land on any of them. Step
5026 one past the matching symbol(s). */
5027 while (++idx != j)
5028 {
5029 h = sorted_sym_hash[idx];
5030 if (h->root.u.def.section != slook
5031 || h->root.u.def.value != vlook)
5032 break;
5033 }
5034
5035 /* Now look back over the aliases. Since we sorted by size
5036 as well as value and section, we'll choose the one with
5037 the largest size. */
5038 while (idx-- != i)
5039 {
5040 h = sorted_sym_hash[idx];
5041
5042 /* Stop if value or section doesn't match. */
5043 if (h->root.u.def.section != slook
5044 || h->root.u.def.value != vlook)
5045 break;
5046 else if (h != hlook)
5047 {
5048 hlook->u.weakdef = h;
5049
5050 /* If the weak definition is in the list of dynamic
5051 symbols, make sure the real definition is put
5052 there as well. */
5053 if (hlook->dynindx != -1 && h->dynindx == -1)
5054 {
5055 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5056 {
5057 err_free_sym_hash:
5058 free (sorted_sym_hash);
5059 goto error_return;
5060 }
5061 }
5062
5063 /* If the real definition is in the list of dynamic
5064 symbols, make sure the weak definition is put
5065 there as well. If we don't do this, then the
5066 dynamic loader might not merge the entries for the
5067 real definition and the weak definition. */
5068 if (h->dynindx != -1 && hlook->dynindx == -1)
5069 {
5070 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5071 goto err_free_sym_hash;
5072 }
5073 break;
5074 }
5075 }
5076 }
5077
5078 free (sorted_sym_hash);
5079 }
5080
5081 if (bed->check_directives
5082 && !(*bed->check_directives) (abfd, info))
5083 return FALSE;
5084
5085 if (!info->check_relocs_after_open_input
5086 && !_bfd_elf_link_check_relocs (abfd, info))
5087 return FALSE;
5088
5089 /* If this is a non-traditional link, try to optimize the handling
5090 of the .stab/.stabstr sections. */
5091 if (! dynamic
5092 && ! info->traditional_format
5093 && is_elf_hash_table (htab)
5094 && (info->strip != strip_all && info->strip != strip_debugger))
5095 {
5096 asection *stabstr;
5097
5098 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5099 if (stabstr != NULL)
5100 {
5101 bfd_size_type string_offset = 0;
5102 asection *stab;
5103
5104 for (stab = abfd->sections; stab; stab = stab->next)
5105 if (CONST_STRNEQ (stab->name, ".stab")
5106 && (!stab->name[5] ||
5107 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5108 && (stab->flags & SEC_MERGE) == 0
5109 && !bfd_is_abs_section (stab->output_section))
5110 {
5111 struct bfd_elf_section_data *secdata;
5112
5113 secdata = elf_section_data (stab);
5114 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5115 stabstr, &secdata->sec_info,
5116 &string_offset))
5117 goto error_return;
5118 if (secdata->sec_info)
5119 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5120 }
5121 }
5122 }
5123
5124 if (is_elf_hash_table (htab) && add_needed)
5125 {
5126 /* Add this bfd to the loaded list. */
5127 struct elf_link_loaded_list *n;
5128
5129 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5130 if (n == NULL)
5131 goto error_return;
5132 n->abfd = abfd;
5133 n->next = htab->loaded;
5134 htab->loaded = n;
5135 }
5136
5137 return TRUE;
5138
5139 error_free_vers:
5140 if (old_tab != NULL)
5141 free (old_tab);
5142 if (old_strtab != NULL)
5143 free (old_strtab);
5144 if (nondeflt_vers != NULL)
5145 free (nondeflt_vers);
5146 if (extversym != NULL)
5147 free (extversym);
5148 error_free_sym:
5149 if (isymbuf != NULL)
5150 free (isymbuf);
5151 error_return:
5152 return FALSE;
5153 }
5154
5155 /* Return the linker hash table entry of a symbol that might be
5156 satisfied by an archive symbol. Return -1 on error. */
5157
5158 struct elf_link_hash_entry *
5159 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5160 struct bfd_link_info *info,
5161 const char *name)
5162 {
5163 struct elf_link_hash_entry *h;
5164 char *p, *copy;
5165 size_t len, first;
5166
5167 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5168 if (h != NULL)
5169 return h;
5170
5171 /* If this is a default version (the name contains @@), look up the
5172 symbol again with only one `@' as well as without the version.
5173 The effect is that references to the symbol with and without the
5174 version will be matched by the default symbol in the archive. */
5175
5176 p = strchr (name, ELF_VER_CHR);
5177 if (p == NULL || p[1] != ELF_VER_CHR)
5178 return h;
5179
5180 /* First check with only one `@'. */
5181 len = strlen (name);
5182 copy = (char *) bfd_alloc (abfd, len);
5183 if (copy == NULL)
5184 return (struct elf_link_hash_entry *) 0 - 1;
5185
5186 first = p - name + 1;
5187 memcpy (copy, name, first);
5188 memcpy (copy + first, name + first + 1, len - first);
5189
5190 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5191 if (h == NULL)
5192 {
5193 /* We also need to check references to the symbol without the
5194 version. */
5195 copy[first - 1] = '\0';
5196 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5197 FALSE, FALSE, TRUE);
5198 }
5199
5200 bfd_release (abfd, copy);
5201 return h;
5202 }
5203
5204 /* Add symbols from an ELF archive file to the linker hash table. We
5205 don't use _bfd_generic_link_add_archive_symbols because we need to
5206 handle versioned symbols.
5207
5208 Fortunately, ELF archive handling is simpler than that done by
5209 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5210 oddities. In ELF, if we find a symbol in the archive map, and the
5211 symbol is currently undefined, we know that we must pull in that
5212 object file.
5213
5214 Unfortunately, we do have to make multiple passes over the symbol
5215 table until nothing further is resolved. */
5216
5217 static bfd_boolean
5218 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5219 {
5220 symindex c;
5221 unsigned char *included = NULL;
5222 carsym *symdefs;
5223 bfd_boolean loop;
5224 bfd_size_type amt;
5225 const struct elf_backend_data *bed;
5226 struct elf_link_hash_entry * (*archive_symbol_lookup)
5227 (bfd *, struct bfd_link_info *, const char *);
5228
5229 if (! bfd_has_map (abfd))
5230 {
5231 /* An empty archive is a special case. */
5232 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5233 return TRUE;
5234 bfd_set_error (bfd_error_no_armap);
5235 return FALSE;
5236 }
5237
5238 /* Keep track of all symbols we know to be already defined, and all
5239 files we know to be already included. This is to speed up the
5240 second and subsequent passes. */
5241 c = bfd_ardata (abfd)->symdef_count;
5242 if (c == 0)
5243 return TRUE;
5244 amt = c;
5245 amt *= sizeof (*included);
5246 included = (unsigned char *) bfd_zmalloc (amt);
5247 if (included == NULL)
5248 return FALSE;
5249
5250 symdefs = bfd_ardata (abfd)->symdefs;
5251 bed = get_elf_backend_data (abfd);
5252 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5253
5254 do
5255 {
5256 file_ptr last;
5257 symindex i;
5258 carsym *symdef;
5259 carsym *symdefend;
5260
5261 loop = FALSE;
5262 last = -1;
5263
5264 symdef = symdefs;
5265 symdefend = symdef + c;
5266 for (i = 0; symdef < symdefend; symdef++, i++)
5267 {
5268 struct elf_link_hash_entry *h;
5269 bfd *element;
5270 struct bfd_link_hash_entry *undefs_tail;
5271 symindex mark;
5272
5273 if (included[i])
5274 continue;
5275 if (symdef->file_offset == last)
5276 {
5277 included[i] = TRUE;
5278 continue;
5279 }
5280
5281 h = archive_symbol_lookup (abfd, info, symdef->name);
5282 if (h == (struct elf_link_hash_entry *) 0 - 1)
5283 goto error_return;
5284
5285 if (h == NULL)
5286 continue;
5287
5288 if (h->root.type == bfd_link_hash_common)
5289 {
5290 /* We currently have a common symbol. The archive map contains
5291 a reference to this symbol, so we may want to include it. We
5292 only want to include it however, if this archive element
5293 contains a definition of the symbol, not just another common
5294 declaration of it.
5295
5296 Unfortunately some archivers (including GNU ar) will put
5297 declarations of common symbols into their archive maps, as
5298 well as real definitions, so we cannot just go by the archive
5299 map alone. Instead we must read in the element's symbol
5300 table and check that to see what kind of symbol definition
5301 this is. */
5302 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5303 continue;
5304 }
5305 else if (h->root.type != bfd_link_hash_undefined)
5306 {
5307 if (h->root.type != bfd_link_hash_undefweak)
5308 /* Symbol must be defined. Don't check it again. */
5309 included[i] = TRUE;
5310 continue;
5311 }
5312
5313 /* We need to include this archive member. */
5314 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5315 if (element == NULL)
5316 goto error_return;
5317
5318 if (! bfd_check_format (element, bfd_object))
5319 goto error_return;
5320
5321 undefs_tail = info->hash->undefs_tail;
5322
5323 if (!(*info->callbacks
5324 ->add_archive_element) (info, element, symdef->name, &element))
5325 continue;
5326 if (!bfd_link_add_symbols (element, info))
5327 goto error_return;
5328
5329 /* If there are any new undefined symbols, we need to make
5330 another pass through the archive in order to see whether
5331 they can be defined. FIXME: This isn't perfect, because
5332 common symbols wind up on undefs_tail and because an
5333 undefined symbol which is defined later on in this pass
5334 does not require another pass. This isn't a bug, but it
5335 does make the code less efficient than it could be. */
5336 if (undefs_tail != info->hash->undefs_tail)
5337 loop = TRUE;
5338
5339 /* Look backward to mark all symbols from this object file
5340 which we have already seen in this pass. */
5341 mark = i;
5342 do
5343 {
5344 included[mark] = TRUE;
5345 if (mark == 0)
5346 break;
5347 --mark;
5348 }
5349 while (symdefs[mark].file_offset == symdef->file_offset);
5350
5351 /* We mark subsequent symbols from this object file as we go
5352 on through the loop. */
5353 last = symdef->file_offset;
5354 }
5355 }
5356 while (loop);
5357
5358 free (included);
5359
5360 return TRUE;
5361
5362 error_return:
5363 if (included != NULL)
5364 free (included);
5365 return FALSE;
5366 }
5367
5368 /* Given an ELF BFD, add symbols to the global hash table as
5369 appropriate. */
5370
5371 bfd_boolean
5372 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5373 {
5374 switch (bfd_get_format (abfd))
5375 {
5376 case bfd_object:
5377 return elf_link_add_object_symbols (abfd, info);
5378 case bfd_archive:
5379 return elf_link_add_archive_symbols (abfd, info);
5380 default:
5381 bfd_set_error (bfd_error_wrong_format);
5382 return FALSE;
5383 }
5384 }
5385 \f
5386 struct hash_codes_info
5387 {
5388 unsigned long *hashcodes;
5389 bfd_boolean error;
5390 };
5391
5392 /* This function will be called though elf_link_hash_traverse to store
5393 all hash value of the exported symbols in an array. */
5394
5395 static bfd_boolean
5396 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5397 {
5398 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5399 const char *name;
5400 unsigned long ha;
5401 char *alc = NULL;
5402
5403 /* Ignore indirect symbols. These are added by the versioning code. */
5404 if (h->dynindx == -1)
5405 return TRUE;
5406
5407 name = h->root.root.string;
5408 if (h->versioned >= versioned)
5409 {
5410 char *p = strchr (name, ELF_VER_CHR);
5411 if (p != NULL)
5412 {
5413 alc = (char *) bfd_malloc (p - name + 1);
5414 if (alc == NULL)
5415 {
5416 inf->error = TRUE;
5417 return FALSE;
5418 }
5419 memcpy (alc, name, p - name);
5420 alc[p - name] = '\0';
5421 name = alc;
5422 }
5423 }
5424
5425 /* Compute the hash value. */
5426 ha = bfd_elf_hash (name);
5427
5428 /* Store the found hash value in the array given as the argument. */
5429 *(inf->hashcodes)++ = ha;
5430
5431 /* And store it in the struct so that we can put it in the hash table
5432 later. */
5433 h->u.elf_hash_value = ha;
5434
5435 if (alc != NULL)
5436 free (alc);
5437
5438 return TRUE;
5439 }
5440
5441 struct collect_gnu_hash_codes
5442 {
5443 bfd *output_bfd;
5444 const struct elf_backend_data *bed;
5445 unsigned long int nsyms;
5446 unsigned long int maskbits;
5447 unsigned long int *hashcodes;
5448 unsigned long int *hashval;
5449 unsigned long int *indx;
5450 unsigned long int *counts;
5451 bfd_vma *bitmask;
5452 bfd_byte *contents;
5453 long int min_dynindx;
5454 unsigned long int bucketcount;
5455 unsigned long int symindx;
5456 long int local_indx;
5457 long int shift1, shift2;
5458 unsigned long int mask;
5459 bfd_boolean error;
5460 };
5461
5462 /* This function will be called though elf_link_hash_traverse to store
5463 all hash value of the exported symbols in an array. */
5464
5465 static bfd_boolean
5466 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5467 {
5468 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5469 const char *name;
5470 unsigned long ha;
5471 char *alc = NULL;
5472
5473 /* Ignore indirect symbols. These are added by the versioning code. */
5474 if (h->dynindx == -1)
5475 return TRUE;
5476
5477 /* Ignore also local symbols and undefined symbols. */
5478 if (! (*s->bed->elf_hash_symbol) (h))
5479 return TRUE;
5480
5481 name = h->root.root.string;
5482 if (h->versioned >= versioned)
5483 {
5484 char *p = strchr (name, ELF_VER_CHR);
5485 if (p != NULL)
5486 {
5487 alc = (char *) bfd_malloc (p - name + 1);
5488 if (alc == NULL)
5489 {
5490 s->error = TRUE;
5491 return FALSE;
5492 }
5493 memcpy (alc, name, p - name);
5494 alc[p - name] = '\0';
5495 name = alc;
5496 }
5497 }
5498
5499 /* Compute the hash value. */
5500 ha = bfd_elf_gnu_hash (name);
5501
5502 /* Store the found hash value in the array for compute_bucket_count,
5503 and also for .dynsym reordering purposes. */
5504 s->hashcodes[s->nsyms] = ha;
5505 s->hashval[h->dynindx] = ha;
5506 ++s->nsyms;
5507 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5508 s->min_dynindx = h->dynindx;
5509
5510 if (alc != NULL)
5511 free (alc);
5512
5513 return TRUE;
5514 }
5515
5516 /* This function will be called though elf_link_hash_traverse to do
5517 final dynaminc symbol renumbering. */
5518
5519 static bfd_boolean
5520 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5521 {
5522 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5523 unsigned long int bucket;
5524 unsigned long int val;
5525
5526 /* Ignore indirect symbols. */
5527 if (h->dynindx == -1)
5528 return TRUE;
5529
5530 /* Ignore also local symbols and undefined symbols. */
5531 if (! (*s->bed->elf_hash_symbol) (h))
5532 {
5533 if (h->dynindx >= s->min_dynindx)
5534 h->dynindx = s->local_indx++;
5535 return TRUE;
5536 }
5537
5538 bucket = s->hashval[h->dynindx] % s->bucketcount;
5539 val = (s->hashval[h->dynindx] >> s->shift1)
5540 & ((s->maskbits >> s->shift1) - 1);
5541 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5542 s->bitmask[val]
5543 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5544 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5545 if (s->counts[bucket] == 1)
5546 /* Last element terminates the chain. */
5547 val |= 1;
5548 bfd_put_32 (s->output_bfd, val,
5549 s->contents + (s->indx[bucket] - s->symindx) * 4);
5550 --s->counts[bucket];
5551 h->dynindx = s->indx[bucket]++;
5552 return TRUE;
5553 }
5554
5555 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5556
5557 bfd_boolean
5558 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5559 {
5560 return !(h->forced_local
5561 || h->root.type == bfd_link_hash_undefined
5562 || h->root.type == bfd_link_hash_undefweak
5563 || ((h->root.type == bfd_link_hash_defined
5564 || h->root.type == bfd_link_hash_defweak)
5565 && h->root.u.def.section->output_section == NULL));
5566 }
5567
5568 /* Array used to determine the number of hash table buckets to use
5569 based on the number of symbols there are. If there are fewer than
5570 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5571 fewer than 37 we use 17 buckets, and so forth. We never use more
5572 than 32771 buckets. */
5573
5574 static const size_t elf_buckets[] =
5575 {
5576 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5577 16411, 32771, 0
5578 };
5579
5580 /* Compute bucket count for hashing table. We do not use a static set
5581 of possible tables sizes anymore. Instead we determine for all
5582 possible reasonable sizes of the table the outcome (i.e., the
5583 number of collisions etc) and choose the best solution. The
5584 weighting functions are not too simple to allow the table to grow
5585 without bounds. Instead one of the weighting factors is the size.
5586 Therefore the result is always a good payoff between few collisions
5587 (= short chain lengths) and table size. */
5588 static size_t
5589 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5590 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5591 unsigned long int nsyms,
5592 int gnu_hash)
5593 {
5594 size_t best_size = 0;
5595 unsigned long int i;
5596
5597 /* We have a problem here. The following code to optimize the table
5598 size requires an integer type with more the 32 bits. If
5599 BFD_HOST_U_64_BIT is set we know about such a type. */
5600 #ifdef BFD_HOST_U_64_BIT
5601 if (info->optimize)
5602 {
5603 size_t minsize;
5604 size_t maxsize;
5605 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5606 bfd *dynobj = elf_hash_table (info)->dynobj;
5607 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5608 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5609 unsigned long int *counts;
5610 bfd_size_type amt;
5611 unsigned int no_improvement_count = 0;
5612
5613 /* Possible optimization parameters: if we have NSYMS symbols we say
5614 that the hashing table must at least have NSYMS/4 and at most
5615 2*NSYMS buckets. */
5616 minsize = nsyms / 4;
5617 if (minsize == 0)
5618 minsize = 1;
5619 best_size = maxsize = nsyms * 2;
5620 if (gnu_hash)
5621 {
5622 if (minsize < 2)
5623 minsize = 2;
5624 if ((best_size & 31) == 0)
5625 ++best_size;
5626 }
5627
5628 /* Create array where we count the collisions in. We must use bfd_malloc
5629 since the size could be large. */
5630 amt = maxsize;
5631 amt *= sizeof (unsigned long int);
5632 counts = (unsigned long int *) bfd_malloc (amt);
5633 if (counts == NULL)
5634 return 0;
5635
5636 /* Compute the "optimal" size for the hash table. The criteria is a
5637 minimal chain length. The minor criteria is (of course) the size
5638 of the table. */
5639 for (i = minsize; i < maxsize; ++i)
5640 {
5641 /* Walk through the array of hashcodes and count the collisions. */
5642 BFD_HOST_U_64_BIT max;
5643 unsigned long int j;
5644 unsigned long int fact;
5645
5646 if (gnu_hash && (i & 31) == 0)
5647 continue;
5648
5649 memset (counts, '\0', i * sizeof (unsigned long int));
5650
5651 /* Determine how often each hash bucket is used. */
5652 for (j = 0; j < nsyms; ++j)
5653 ++counts[hashcodes[j] % i];
5654
5655 /* For the weight function we need some information about the
5656 pagesize on the target. This is information need not be 100%
5657 accurate. Since this information is not available (so far) we
5658 define it here to a reasonable default value. If it is crucial
5659 to have a better value some day simply define this value. */
5660 # ifndef BFD_TARGET_PAGESIZE
5661 # define BFD_TARGET_PAGESIZE (4096)
5662 # endif
5663
5664 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5665 and the chains. */
5666 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5667
5668 # if 1
5669 /* Variant 1: optimize for short chains. We add the squares
5670 of all the chain lengths (which favors many small chain
5671 over a few long chains). */
5672 for (j = 0; j < i; ++j)
5673 max += counts[j] * counts[j];
5674
5675 /* This adds penalties for the overall size of the table. */
5676 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5677 max *= fact * fact;
5678 # else
5679 /* Variant 2: Optimize a lot more for small table. Here we
5680 also add squares of the size but we also add penalties for
5681 empty slots (the +1 term). */
5682 for (j = 0; j < i; ++j)
5683 max += (1 + counts[j]) * (1 + counts[j]);
5684
5685 /* The overall size of the table is considered, but not as
5686 strong as in variant 1, where it is squared. */
5687 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5688 max *= fact;
5689 # endif
5690
5691 /* Compare with current best results. */
5692 if (max < best_chlen)
5693 {
5694 best_chlen = max;
5695 best_size = i;
5696 no_improvement_count = 0;
5697 }
5698 /* PR 11843: Avoid futile long searches for the best bucket size
5699 when there are a large number of symbols. */
5700 else if (++no_improvement_count == 100)
5701 break;
5702 }
5703
5704 free (counts);
5705 }
5706 else
5707 #endif /* defined (BFD_HOST_U_64_BIT) */
5708 {
5709 /* This is the fallback solution if no 64bit type is available or if we
5710 are not supposed to spend much time on optimizations. We select the
5711 bucket count using a fixed set of numbers. */
5712 for (i = 0; elf_buckets[i] != 0; i++)
5713 {
5714 best_size = elf_buckets[i];
5715 if (nsyms < elf_buckets[i + 1])
5716 break;
5717 }
5718 if (gnu_hash && best_size < 2)
5719 best_size = 2;
5720 }
5721
5722 return best_size;
5723 }
5724
5725 /* Size any SHT_GROUP section for ld -r. */
5726
5727 bfd_boolean
5728 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5729 {
5730 bfd *ibfd;
5731
5732 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5733 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5734 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5735 return FALSE;
5736 return TRUE;
5737 }
5738
5739 /* Set a default stack segment size. The value in INFO wins. If it
5740 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5741 undefined it is initialized. */
5742
5743 bfd_boolean
5744 bfd_elf_stack_segment_size (bfd *output_bfd,
5745 struct bfd_link_info *info,
5746 const char *legacy_symbol,
5747 bfd_vma default_size)
5748 {
5749 struct elf_link_hash_entry *h = NULL;
5750
5751 /* Look for legacy symbol. */
5752 if (legacy_symbol)
5753 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5754 FALSE, FALSE, FALSE);
5755 if (h && (h->root.type == bfd_link_hash_defined
5756 || h->root.type == bfd_link_hash_defweak)
5757 && h->def_regular
5758 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5759 {
5760 /* The symbol has no type if specified on the command line. */
5761 h->type = STT_OBJECT;
5762 if (info->stacksize)
5763 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5764 output_bfd, legacy_symbol);
5765 else if (h->root.u.def.section != bfd_abs_section_ptr)
5766 (*_bfd_error_handler) (_("%B: %s not absolute"),
5767 output_bfd, legacy_symbol);
5768 else
5769 info->stacksize = h->root.u.def.value;
5770 }
5771
5772 if (!info->stacksize)
5773 /* If the user didn't set a size, or explicitly inhibit the
5774 size, set it now. */
5775 info->stacksize = default_size;
5776
5777 /* Provide the legacy symbol, if it is referenced. */
5778 if (h && (h->root.type == bfd_link_hash_undefined
5779 || h->root.type == bfd_link_hash_undefweak))
5780 {
5781 struct bfd_link_hash_entry *bh = NULL;
5782
5783 if (!(_bfd_generic_link_add_one_symbol
5784 (info, output_bfd, legacy_symbol,
5785 BSF_GLOBAL, bfd_abs_section_ptr,
5786 info->stacksize >= 0 ? info->stacksize : 0,
5787 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5788 return FALSE;
5789
5790 h = (struct elf_link_hash_entry *) bh;
5791 h->def_regular = 1;
5792 h->type = STT_OBJECT;
5793 }
5794
5795 return TRUE;
5796 }
5797
5798 /* Set up the sizes and contents of the ELF dynamic sections. This is
5799 called by the ELF linker emulation before_allocation routine. We
5800 must set the sizes of the sections before the linker sets the
5801 addresses of the various sections. */
5802
5803 bfd_boolean
5804 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5805 const char *soname,
5806 const char *rpath,
5807 const char *filter_shlib,
5808 const char *audit,
5809 const char *depaudit,
5810 const char * const *auxiliary_filters,
5811 struct bfd_link_info *info,
5812 asection **sinterpptr)
5813 {
5814 size_t soname_indx;
5815 bfd *dynobj;
5816 const struct elf_backend_data *bed;
5817 struct elf_info_failed asvinfo;
5818
5819 *sinterpptr = NULL;
5820
5821 soname_indx = (size_t) -1;
5822
5823 if (!is_elf_hash_table (info->hash))
5824 return TRUE;
5825
5826 bed = get_elf_backend_data (output_bfd);
5827
5828 /* Any syms created from now on start with -1 in
5829 got.refcount/offset and plt.refcount/offset. */
5830 elf_hash_table (info)->init_got_refcount
5831 = elf_hash_table (info)->init_got_offset;
5832 elf_hash_table (info)->init_plt_refcount
5833 = elf_hash_table (info)->init_plt_offset;
5834
5835 if (bfd_link_relocatable (info)
5836 && !_bfd_elf_size_group_sections (info))
5837 return FALSE;
5838
5839 /* The backend may have to create some sections regardless of whether
5840 we're dynamic or not. */
5841 if (bed->elf_backend_always_size_sections
5842 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5843 return FALSE;
5844
5845 /* Determine any GNU_STACK segment requirements, after the backend
5846 has had a chance to set a default segment size. */
5847 if (info->execstack)
5848 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5849 else if (info->noexecstack)
5850 elf_stack_flags (output_bfd) = PF_R | PF_W;
5851 else
5852 {
5853 bfd *inputobj;
5854 asection *notesec = NULL;
5855 int exec = 0;
5856
5857 for (inputobj = info->input_bfds;
5858 inputobj;
5859 inputobj = inputobj->link.next)
5860 {
5861 asection *s;
5862
5863 if (inputobj->flags
5864 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5865 continue;
5866 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5867 if (s)
5868 {
5869 if (s->flags & SEC_CODE)
5870 exec = PF_X;
5871 notesec = s;
5872 }
5873 else if (bed->default_execstack)
5874 exec = PF_X;
5875 }
5876 if (notesec || info->stacksize > 0)
5877 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5878 if (notesec && exec && bfd_link_relocatable (info)
5879 && notesec->output_section != bfd_abs_section_ptr)
5880 notesec->output_section->flags |= SEC_CODE;
5881 }
5882
5883 dynobj = elf_hash_table (info)->dynobj;
5884
5885 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5886 {
5887 struct elf_info_failed eif;
5888 struct elf_link_hash_entry *h;
5889 asection *dynstr;
5890 struct bfd_elf_version_tree *t;
5891 struct bfd_elf_version_expr *d;
5892 asection *s;
5893 bfd_boolean all_defined;
5894
5895 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5896 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
5897
5898 if (soname != NULL)
5899 {
5900 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5901 soname, TRUE);
5902 if (soname_indx == (size_t) -1
5903 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5904 return FALSE;
5905 }
5906
5907 if (info->symbolic)
5908 {
5909 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5910 return FALSE;
5911 info->flags |= DF_SYMBOLIC;
5912 }
5913
5914 if (rpath != NULL)
5915 {
5916 size_t indx;
5917 bfd_vma tag;
5918
5919 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5920 TRUE);
5921 if (indx == (size_t) -1)
5922 return FALSE;
5923
5924 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5925 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5926 return FALSE;
5927 }
5928
5929 if (filter_shlib != NULL)
5930 {
5931 size_t indx;
5932
5933 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5934 filter_shlib, TRUE);
5935 if (indx == (size_t) -1
5936 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5937 return FALSE;
5938 }
5939
5940 if (auxiliary_filters != NULL)
5941 {
5942 const char * const *p;
5943
5944 for (p = auxiliary_filters; *p != NULL; p++)
5945 {
5946 size_t indx;
5947
5948 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5949 *p, TRUE);
5950 if (indx == (size_t) -1
5951 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5952 return FALSE;
5953 }
5954 }
5955
5956 if (audit != NULL)
5957 {
5958 size_t indx;
5959
5960 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5961 TRUE);
5962 if (indx == (size_t) -1
5963 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5964 return FALSE;
5965 }
5966
5967 if (depaudit != NULL)
5968 {
5969 size_t indx;
5970
5971 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5972 TRUE);
5973 if (indx == (size_t) -1
5974 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5975 return FALSE;
5976 }
5977
5978 eif.info = info;
5979 eif.failed = FALSE;
5980
5981 /* If we are supposed to export all symbols into the dynamic symbol
5982 table (this is not the normal case), then do so. */
5983 if (info->export_dynamic
5984 || (bfd_link_executable (info) && info->dynamic))
5985 {
5986 elf_link_hash_traverse (elf_hash_table (info),
5987 _bfd_elf_export_symbol,
5988 &eif);
5989 if (eif.failed)
5990 return FALSE;
5991 }
5992
5993 /* Make all global versions with definition. */
5994 for (t = info->version_info; t != NULL; t = t->next)
5995 for (d = t->globals.list; d != NULL; d = d->next)
5996 if (!d->symver && d->literal)
5997 {
5998 const char *verstr, *name;
5999 size_t namelen, verlen, newlen;
6000 char *newname, *p, leading_char;
6001 struct elf_link_hash_entry *newh;
6002
6003 leading_char = bfd_get_symbol_leading_char (output_bfd);
6004 name = d->pattern;
6005 namelen = strlen (name) + (leading_char != '\0');
6006 verstr = t->name;
6007 verlen = strlen (verstr);
6008 newlen = namelen + verlen + 3;
6009
6010 newname = (char *) bfd_malloc (newlen);
6011 if (newname == NULL)
6012 return FALSE;
6013 newname[0] = leading_char;
6014 memcpy (newname + (leading_char != '\0'), name, namelen);
6015
6016 /* Check the hidden versioned definition. */
6017 p = newname + namelen;
6018 *p++ = ELF_VER_CHR;
6019 memcpy (p, verstr, verlen + 1);
6020 newh = elf_link_hash_lookup (elf_hash_table (info),
6021 newname, FALSE, FALSE,
6022 FALSE);
6023 if (newh == NULL
6024 || (newh->root.type != bfd_link_hash_defined
6025 && newh->root.type != bfd_link_hash_defweak))
6026 {
6027 /* Check the default versioned definition. */
6028 *p++ = ELF_VER_CHR;
6029 memcpy (p, verstr, verlen + 1);
6030 newh = elf_link_hash_lookup (elf_hash_table (info),
6031 newname, FALSE, FALSE,
6032 FALSE);
6033 }
6034 free (newname);
6035
6036 /* Mark this version if there is a definition and it is
6037 not defined in a shared object. */
6038 if (newh != NULL
6039 && !newh->def_dynamic
6040 && (newh->root.type == bfd_link_hash_defined
6041 || newh->root.type == bfd_link_hash_defweak))
6042 d->symver = 1;
6043 }
6044
6045 /* Attach all the symbols to their version information. */
6046 asvinfo.info = info;
6047 asvinfo.failed = FALSE;
6048
6049 elf_link_hash_traverse (elf_hash_table (info),
6050 _bfd_elf_link_assign_sym_version,
6051 &asvinfo);
6052 if (asvinfo.failed)
6053 return FALSE;
6054
6055 if (!info->allow_undefined_version)
6056 {
6057 /* Check if all global versions have a definition. */
6058 all_defined = TRUE;
6059 for (t = info->version_info; t != NULL; t = t->next)
6060 for (d = t->globals.list; d != NULL; d = d->next)
6061 if (d->literal && !d->symver && !d->script)
6062 {
6063 (*_bfd_error_handler)
6064 (_("%s: undefined version: %s"),
6065 d->pattern, t->name);
6066 all_defined = FALSE;
6067 }
6068
6069 if (!all_defined)
6070 {
6071 bfd_set_error (bfd_error_bad_value);
6072 return FALSE;
6073 }
6074 }
6075
6076 /* Find all symbols which were defined in a dynamic object and make
6077 the backend pick a reasonable value for them. */
6078 elf_link_hash_traverse (elf_hash_table (info),
6079 _bfd_elf_adjust_dynamic_symbol,
6080 &eif);
6081 if (eif.failed)
6082 return FALSE;
6083
6084 /* Add some entries to the .dynamic section. We fill in some of the
6085 values later, in bfd_elf_final_link, but we must add the entries
6086 now so that we know the final size of the .dynamic section. */
6087
6088 /* If there are initialization and/or finalization functions to
6089 call then add the corresponding DT_INIT/DT_FINI entries. */
6090 h = (info->init_function
6091 ? elf_link_hash_lookup (elf_hash_table (info),
6092 info->init_function, FALSE,
6093 FALSE, FALSE)
6094 : NULL);
6095 if (h != NULL
6096 && (h->ref_regular
6097 || h->def_regular))
6098 {
6099 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
6100 return FALSE;
6101 }
6102 h = (info->fini_function
6103 ? elf_link_hash_lookup (elf_hash_table (info),
6104 info->fini_function, FALSE,
6105 FALSE, FALSE)
6106 : NULL);
6107 if (h != NULL
6108 && (h->ref_regular
6109 || h->def_regular))
6110 {
6111 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
6112 return FALSE;
6113 }
6114
6115 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
6116 if (s != NULL && s->linker_has_input)
6117 {
6118 /* DT_PREINIT_ARRAY is not allowed in shared library. */
6119 if (! bfd_link_executable (info))
6120 {
6121 bfd *sub;
6122 asection *o;
6123
6124 for (sub = info->input_bfds; sub != NULL;
6125 sub = sub->link.next)
6126 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
6127 for (o = sub->sections; o != NULL; o = o->next)
6128 if (elf_section_data (o)->this_hdr.sh_type
6129 == SHT_PREINIT_ARRAY)
6130 {
6131 (*_bfd_error_handler)
6132 (_("%B: .preinit_array section is not allowed in DSO"),
6133 sub);
6134 break;
6135 }
6136
6137 bfd_set_error (bfd_error_nonrepresentable_section);
6138 return FALSE;
6139 }
6140
6141 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6142 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
6143 return FALSE;
6144 }
6145 s = bfd_get_section_by_name (output_bfd, ".init_array");
6146 if (s != NULL && s->linker_has_input)
6147 {
6148 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
6149 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
6150 return FALSE;
6151 }
6152 s = bfd_get_section_by_name (output_bfd, ".fini_array");
6153 if (s != NULL && s->linker_has_input)
6154 {
6155 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
6156 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
6157 return FALSE;
6158 }
6159
6160 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
6161 /* If .dynstr is excluded from the link, we don't want any of
6162 these tags. Strictly, we should be checking each section
6163 individually; This quick check covers for the case where
6164 someone does a /DISCARD/ : { *(*) }. */
6165 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6166 {
6167 bfd_size_type strsize;
6168
6169 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6170 if ((info->emit_hash
6171 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6172 || (info->emit_gnu_hash
6173 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6174 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6175 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6176 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6177 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6178 bed->s->sizeof_sym))
6179 return FALSE;
6180 }
6181 }
6182
6183 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6184 return FALSE;
6185
6186 /* The backend must work out the sizes of all the other dynamic
6187 sections. */
6188 if (dynobj != NULL
6189 && bed->elf_backend_size_dynamic_sections != NULL
6190 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6191 return FALSE;
6192
6193 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6194 {
6195 unsigned long section_sym_count;
6196 struct bfd_elf_version_tree *verdefs;
6197 asection *s;
6198
6199 /* Set up the version definition section. */
6200 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6201 BFD_ASSERT (s != NULL);
6202
6203 /* We may have created additional version definitions if we are
6204 just linking a regular application. */
6205 verdefs = info->version_info;
6206
6207 /* Skip anonymous version tag. */
6208 if (verdefs != NULL && verdefs->vernum == 0)
6209 verdefs = verdefs->next;
6210
6211 if (verdefs == NULL && !info->create_default_symver)
6212 s->flags |= SEC_EXCLUDE;
6213 else
6214 {
6215 unsigned int cdefs;
6216 bfd_size_type size;
6217 struct bfd_elf_version_tree *t;
6218 bfd_byte *p;
6219 Elf_Internal_Verdef def;
6220 Elf_Internal_Verdaux defaux;
6221 struct bfd_link_hash_entry *bh;
6222 struct elf_link_hash_entry *h;
6223 const char *name;
6224
6225 cdefs = 0;
6226 size = 0;
6227
6228 /* Make space for the base version. */
6229 size += sizeof (Elf_External_Verdef);
6230 size += sizeof (Elf_External_Verdaux);
6231 ++cdefs;
6232
6233 /* Make space for the default version. */
6234 if (info->create_default_symver)
6235 {
6236 size += sizeof (Elf_External_Verdef);
6237 ++cdefs;
6238 }
6239
6240 for (t = verdefs; t != NULL; t = t->next)
6241 {
6242 struct bfd_elf_version_deps *n;
6243
6244 /* Don't emit base version twice. */
6245 if (t->vernum == 0)
6246 continue;
6247
6248 size += sizeof (Elf_External_Verdef);
6249 size += sizeof (Elf_External_Verdaux);
6250 ++cdefs;
6251
6252 for (n = t->deps; n != NULL; n = n->next)
6253 size += sizeof (Elf_External_Verdaux);
6254 }
6255
6256 s->size = size;
6257 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6258 if (s->contents == NULL && s->size != 0)
6259 return FALSE;
6260
6261 /* Fill in the version definition section. */
6262
6263 p = s->contents;
6264
6265 def.vd_version = VER_DEF_CURRENT;
6266 def.vd_flags = VER_FLG_BASE;
6267 def.vd_ndx = 1;
6268 def.vd_cnt = 1;
6269 if (info->create_default_symver)
6270 {
6271 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6272 def.vd_next = sizeof (Elf_External_Verdef);
6273 }
6274 else
6275 {
6276 def.vd_aux = sizeof (Elf_External_Verdef);
6277 def.vd_next = (sizeof (Elf_External_Verdef)
6278 + sizeof (Elf_External_Verdaux));
6279 }
6280
6281 if (soname_indx != (size_t) -1)
6282 {
6283 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6284 soname_indx);
6285 def.vd_hash = bfd_elf_hash (soname);
6286 defaux.vda_name = soname_indx;
6287 name = soname;
6288 }
6289 else
6290 {
6291 size_t indx;
6292
6293 name = lbasename (output_bfd->filename);
6294 def.vd_hash = bfd_elf_hash (name);
6295 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6296 name, FALSE);
6297 if (indx == (size_t) -1)
6298 return FALSE;
6299 defaux.vda_name = indx;
6300 }
6301 defaux.vda_next = 0;
6302
6303 _bfd_elf_swap_verdef_out (output_bfd, &def,
6304 (Elf_External_Verdef *) p);
6305 p += sizeof (Elf_External_Verdef);
6306 if (info->create_default_symver)
6307 {
6308 /* Add a symbol representing this version. */
6309 bh = NULL;
6310 if (! (_bfd_generic_link_add_one_symbol
6311 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6312 0, NULL, FALSE,
6313 get_elf_backend_data (dynobj)->collect, &bh)))
6314 return FALSE;
6315 h = (struct elf_link_hash_entry *) bh;
6316 h->non_elf = 0;
6317 h->def_regular = 1;
6318 h->type = STT_OBJECT;
6319 h->verinfo.vertree = NULL;
6320
6321 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6322 return FALSE;
6323
6324 /* Create a duplicate of the base version with the same
6325 aux block, but different flags. */
6326 def.vd_flags = 0;
6327 def.vd_ndx = 2;
6328 def.vd_aux = sizeof (Elf_External_Verdef);
6329 if (verdefs)
6330 def.vd_next = (sizeof (Elf_External_Verdef)
6331 + sizeof (Elf_External_Verdaux));
6332 else
6333 def.vd_next = 0;
6334 _bfd_elf_swap_verdef_out (output_bfd, &def,
6335 (Elf_External_Verdef *) p);
6336 p += sizeof (Elf_External_Verdef);
6337 }
6338 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6339 (Elf_External_Verdaux *) p);
6340 p += sizeof (Elf_External_Verdaux);
6341
6342 for (t = verdefs; t != NULL; t = t->next)
6343 {
6344 unsigned int cdeps;
6345 struct bfd_elf_version_deps *n;
6346
6347 /* Don't emit the base version twice. */
6348 if (t->vernum == 0)
6349 continue;
6350
6351 cdeps = 0;
6352 for (n = t->deps; n != NULL; n = n->next)
6353 ++cdeps;
6354
6355 /* Add a symbol representing this version. */
6356 bh = NULL;
6357 if (! (_bfd_generic_link_add_one_symbol
6358 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6359 0, NULL, FALSE,
6360 get_elf_backend_data (dynobj)->collect, &bh)))
6361 return FALSE;
6362 h = (struct elf_link_hash_entry *) bh;
6363 h->non_elf = 0;
6364 h->def_regular = 1;
6365 h->type = STT_OBJECT;
6366 h->verinfo.vertree = t;
6367
6368 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6369 return FALSE;
6370
6371 def.vd_version = VER_DEF_CURRENT;
6372 def.vd_flags = 0;
6373 if (t->globals.list == NULL
6374 && t->locals.list == NULL
6375 && ! t->used)
6376 def.vd_flags |= VER_FLG_WEAK;
6377 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6378 def.vd_cnt = cdeps + 1;
6379 def.vd_hash = bfd_elf_hash (t->name);
6380 def.vd_aux = sizeof (Elf_External_Verdef);
6381 def.vd_next = 0;
6382
6383 /* If a basever node is next, it *must* be the last node in
6384 the chain, otherwise Verdef construction breaks. */
6385 if (t->next != NULL && t->next->vernum == 0)
6386 BFD_ASSERT (t->next->next == NULL);
6387
6388 if (t->next != NULL && t->next->vernum != 0)
6389 def.vd_next = (sizeof (Elf_External_Verdef)
6390 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6391
6392 _bfd_elf_swap_verdef_out (output_bfd, &def,
6393 (Elf_External_Verdef *) p);
6394 p += sizeof (Elf_External_Verdef);
6395
6396 defaux.vda_name = h->dynstr_index;
6397 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6398 h->dynstr_index);
6399 defaux.vda_next = 0;
6400 if (t->deps != NULL)
6401 defaux.vda_next = sizeof (Elf_External_Verdaux);
6402 t->name_indx = defaux.vda_name;
6403
6404 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6405 (Elf_External_Verdaux *) p);
6406 p += sizeof (Elf_External_Verdaux);
6407
6408 for (n = t->deps; n != NULL; n = n->next)
6409 {
6410 if (n->version_needed == NULL)
6411 {
6412 /* This can happen if there was an error in the
6413 version script. */
6414 defaux.vda_name = 0;
6415 }
6416 else
6417 {
6418 defaux.vda_name = n->version_needed->name_indx;
6419 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6420 defaux.vda_name);
6421 }
6422 if (n->next == NULL)
6423 defaux.vda_next = 0;
6424 else
6425 defaux.vda_next = sizeof (Elf_External_Verdaux);
6426
6427 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6428 (Elf_External_Verdaux *) p);
6429 p += sizeof (Elf_External_Verdaux);
6430 }
6431 }
6432
6433 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6434 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6435 return FALSE;
6436
6437 elf_tdata (output_bfd)->cverdefs = cdefs;
6438 }
6439
6440 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6441 {
6442 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6443 return FALSE;
6444 }
6445 else if (info->flags & DF_BIND_NOW)
6446 {
6447 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6448 return FALSE;
6449 }
6450
6451 if (info->flags_1)
6452 {
6453 if (bfd_link_executable (info))
6454 info->flags_1 &= ~ (DF_1_INITFIRST
6455 | DF_1_NODELETE
6456 | DF_1_NOOPEN);
6457 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6458 return FALSE;
6459 }
6460
6461 /* Work out the size of the version reference section. */
6462
6463 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6464 BFD_ASSERT (s != NULL);
6465 {
6466 struct elf_find_verdep_info sinfo;
6467
6468 sinfo.info = info;
6469 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6470 if (sinfo.vers == 0)
6471 sinfo.vers = 1;
6472 sinfo.failed = FALSE;
6473
6474 elf_link_hash_traverse (elf_hash_table (info),
6475 _bfd_elf_link_find_version_dependencies,
6476 &sinfo);
6477 if (sinfo.failed)
6478 return FALSE;
6479
6480 if (elf_tdata (output_bfd)->verref == NULL)
6481 s->flags |= SEC_EXCLUDE;
6482 else
6483 {
6484 Elf_Internal_Verneed *t;
6485 unsigned int size;
6486 unsigned int crefs;
6487 bfd_byte *p;
6488
6489 /* Build the version dependency section. */
6490 size = 0;
6491 crefs = 0;
6492 for (t = elf_tdata (output_bfd)->verref;
6493 t != NULL;
6494 t = t->vn_nextref)
6495 {
6496 Elf_Internal_Vernaux *a;
6497
6498 size += sizeof (Elf_External_Verneed);
6499 ++crefs;
6500 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6501 size += sizeof (Elf_External_Vernaux);
6502 }
6503
6504 s->size = size;
6505 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6506 if (s->contents == NULL)
6507 return FALSE;
6508
6509 p = s->contents;
6510 for (t = elf_tdata (output_bfd)->verref;
6511 t != NULL;
6512 t = t->vn_nextref)
6513 {
6514 unsigned int caux;
6515 Elf_Internal_Vernaux *a;
6516 size_t indx;
6517
6518 caux = 0;
6519 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6520 ++caux;
6521
6522 t->vn_version = VER_NEED_CURRENT;
6523 t->vn_cnt = caux;
6524 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6525 elf_dt_name (t->vn_bfd) != NULL
6526 ? elf_dt_name (t->vn_bfd)
6527 : lbasename (t->vn_bfd->filename),
6528 FALSE);
6529 if (indx == (size_t) -1)
6530 return FALSE;
6531 t->vn_file = indx;
6532 t->vn_aux = sizeof (Elf_External_Verneed);
6533 if (t->vn_nextref == NULL)
6534 t->vn_next = 0;
6535 else
6536 t->vn_next = (sizeof (Elf_External_Verneed)
6537 + caux * sizeof (Elf_External_Vernaux));
6538
6539 _bfd_elf_swap_verneed_out (output_bfd, t,
6540 (Elf_External_Verneed *) p);
6541 p += sizeof (Elf_External_Verneed);
6542
6543 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6544 {
6545 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6546 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6547 a->vna_nodename, FALSE);
6548 if (indx == (size_t) -1)
6549 return FALSE;
6550 a->vna_name = indx;
6551 if (a->vna_nextptr == NULL)
6552 a->vna_next = 0;
6553 else
6554 a->vna_next = sizeof (Elf_External_Vernaux);
6555
6556 _bfd_elf_swap_vernaux_out (output_bfd, a,
6557 (Elf_External_Vernaux *) p);
6558 p += sizeof (Elf_External_Vernaux);
6559 }
6560 }
6561
6562 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6563 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6564 return FALSE;
6565
6566 elf_tdata (output_bfd)->cverrefs = crefs;
6567 }
6568 }
6569
6570 if ((elf_tdata (output_bfd)->cverrefs == 0
6571 && elf_tdata (output_bfd)->cverdefs == 0)
6572 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6573 &section_sym_count) == 0)
6574 {
6575 s = bfd_get_linker_section (dynobj, ".gnu.version");
6576 s->flags |= SEC_EXCLUDE;
6577 }
6578 }
6579 return TRUE;
6580 }
6581
6582 /* Find the first non-excluded output section. We'll use its
6583 section symbol for some emitted relocs. */
6584 void
6585 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6586 {
6587 asection *s;
6588
6589 for (s = output_bfd->sections; s != NULL; s = s->next)
6590 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6591 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6592 {
6593 elf_hash_table (info)->text_index_section = s;
6594 break;
6595 }
6596 }
6597
6598 /* Find two non-excluded output sections, one for code, one for data.
6599 We'll use their section symbols for some emitted relocs. */
6600 void
6601 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6602 {
6603 asection *s;
6604
6605 /* Data first, since setting text_index_section changes
6606 _bfd_elf_link_omit_section_dynsym. */
6607 for (s = output_bfd->sections; s != NULL; s = s->next)
6608 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6609 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6610 {
6611 elf_hash_table (info)->data_index_section = s;
6612 break;
6613 }
6614
6615 for (s = output_bfd->sections; s != NULL; s = s->next)
6616 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6617 == (SEC_ALLOC | SEC_READONLY))
6618 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6619 {
6620 elf_hash_table (info)->text_index_section = s;
6621 break;
6622 }
6623
6624 if (elf_hash_table (info)->text_index_section == NULL)
6625 elf_hash_table (info)->text_index_section
6626 = elf_hash_table (info)->data_index_section;
6627 }
6628
6629 bfd_boolean
6630 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6631 {
6632 const struct elf_backend_data *bed;
6633
6634 if (!is_elf_hash_table (info->hash))
6635 return TRUE;
6636
6637 bed = get_elf_backend_data (output_bfd);
6638 (*bed->elf_backend_init_index_section) (output_bfd, info);
6639
6640 if (elf_hash_table (info)->dynamic_sections_created)
6641 {
6642 bfd *dynobj;
6643 asection *s;
6644 bfd_size_type dynsymcount;
6645 unsigned long section_sym_count;
6646 unsigned int dtagcount;
6647
6648 dynobj = elf_hash_table (info)->dynobj;
6649
6650 /* Assign dynsym indicies. In a shared library we generate a
6651 section symbol for each output section, which come first.
6652 Next come all of the back-end allocated local dynamic syms,
6653 followed by the rest of the global symbols. */
6654
6655 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6656 &section_sym_count);
6657
6658 /* Work out the size of the symbol version section. */
6659 s = bfd_get_linker_section (dynobj, ".gnu.version");
6660 BFD_ASSERT (s != NULL);
6661 if ((s->flags & SEC_EXCLUDE) == 0)
6662 {
6663 s->size = dynsymcount * sizeof (Elf_External_Versym);
6664 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6665 if (s->contents == NULL)
6666 return FALSE;
6667
6668 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6669 return FALSE;
6670 }
6671
6672 /* Set the size of the .dynsym and .hash sections. We counted
6673 the number of dynamic symbols in elf_link_add_object_symbols.
6674 We will build the contents of .dynsym and .hash when we build
6675 the final symbol table, because until then we do not know the
6676 correct value to give the symbols. We built the .dynstr
6677 section as we went along in elf_link_add_object_symbols. */
6678 s = elf_hash_table (info)->dynsym;
6679 BFD_ASSERT (s != NULL);
6680 s->size = dynsymcount * bed->s->sizeof_sym;
6681
6682 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6683 if (s->contents == NULL)
6684 return FALSE;
6685
6686 /* The first entry in .dynsym is a dummy symbol. Clear all the
6687 section syms, in case we don't output them all. */
6688 ++section_sym_count;
6689 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6690
6691 elf_hash_table (info)->bucketcount = 0;
6692
6693 /* Compute the size of the hashing table. As a side effect this
6694 computes the hash values for all the names we export. */
6695 if (info->emit_hash)
6696 {
6697 unsigned long int *hashcodes;
6698 struct hash_codes_info hashinf;
6699 bfd_size_type amt;
6700 unsigned long int nsyms;
6701 size_t bucketcount;
6702 size_t hash_entry_size;
6703
6704 /* Compute the hash values for all exported symbols. At the same
6705 time store the values in an array so that we could use them for
6706 optimizations. */
6707 amt = dynsymcount * sizeof (unsigned long int);
6708 hashcodes = (unsigned long int *) bfd_malloc (amt);
6709 if (hashcodes == NULL)
6710 return FALSE;
6711 hashinf.hashcodes = hashcodes;
6712 hashinf.error = FALSE;
6713
6714 /* Put all hash values in HASHCODES. */
6715 elf_link_hash_traverse (elf_hash_table (info),
6716 elf_collect_hash_codes, &hashinf);
6717 if (hashinf.error)
6718 {
6719 free (hashcodes);
6720 return FALSE;
6721 }
6722
6723 nsyms = hashinf.hashcodes - hashcodes;
6724 bucketcount
6725 = compute_bucket_count (info, hashcodes, nsyms, 0);
6726 free (hashcodes);
6727
6728 if (bucketcount == 0)
6729 return FALSE;
6730
6731 elf_hash_table (info)->bucketcount = bucketcount;
6732
6733 s = bfd_get_linker_section (dynobj, ".hash");
6734 BFD_ASSERT (s != NULL);
6735 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6736 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6737 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6738 if (s->contents == NULL)
6739 return FALSE;
6740
6741 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6742 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6743 s->contents + hash_entry_size);
6744 }
6745
6746 if (info->emit_gnu_hash)
6747 {
6748 size_t i, cnt;
6749 unsigned char *contents;
6750 struct collect_gnu_hash_codes cinfo;
6751 bfd_size_type amt;
6752 size_t bucketcount;
6753
6754 memset (&cinfo, 0, sizeof (cinfo));
6755
6756 /* Compute the hash values for all exported symbols. At the same
6757 time store the values in an array so that we could use them for
6758 optimizations. */
6759 amt = dynsymcount * 2 * sizeof (unsigned long int);
6760 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6761 if (cinfo.hashcodes == NULL)
6762 return FALSE;
6763
6764 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6765 cinfo.min_dynindx = -1;
6766 cinfo.output_bfd = output_bfd;
6767 cinfo.bed = bed;
6768
6769 /* Put all hash values in HASHCODES. */
6770 elf_link_hash_traverse (elf_hash_table (info),
6771 elf_collect_gnu_hash_codes, &cinfo);
6772 if (cinfo.error)
6773 {
6774 free (cinfo.hashcodes);
6775 return FALSE;
6776 }
6777
6778 bucketcount
6779 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6780
6781 if (bucketcount == 0)
6782 {
6783 free (cinfo.hashcodes);
6784 return FALSE;
6785 }
6786
6787 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6788 BFD_ASSERT (s != NULL);
6789
6790 if (cinfo.nsyms == 0)
6791 {
6792 /* Empty .gnu.hash section is special. */
6793 BFD_ASSERT (cinfo.min_dynindx == -1);
6794 free (cinfo.hashcodes);
6795 s->size = 5 * 4 + bed->s->arch_size / 8;
6796 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6797 if (contents == NULL)
6798 return FALSE;
6799 s->contents = contents;
6800 /* 1 empty bucket. */
6801 bfd_put_32 (output_bfd, 1, contents);
6802 /* SYMIDX above the special symbol 0. */
6803 bfd_put_32 (output_bfd, 1, contents + 4);
6804 /* Just one word for bitmask. */
6805 bfd_put_32 (output_bfd, 1, contents + 8);
6806 /* Only hash fn bloom filter. */
6807 bfd_put_32 (output_bfd, 0, contents + 12);
6808 /* No hashes are valid - empty bitmask. */
6809 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6810 /* No hashes in the only bucket. */
6811 bfd_put_32 (output_bfd, 0,
6812 contents + 16 + bed->s->arch_size / 8);
6813 }
6814 else
6815 {
6816 unsigned long int maskwords, maskbitslog2, x;
6817 BFD_ASSERT (cinfo.min_dynindx != -1);
6818
6819 x = cinfo.nsyms;
6820 maskbitslog2 = 1;
6821 while ((x >>= 1) != 0)
6822 ++maskbitslog2;
6823 if (maskbitslog2 < 3)
6824 maskbitslog2 = 5;
6825 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6826 maskbitslog2 = maskbitslog2 + 3;
6827 else
6828 maskbitslog2 = maskbitslog2 + 2;
6829 if (bed->s->arch_size == 64)
6830 {
6831 if (maskbitslog2 == 5)
6832 maskbitslog2 = 6;
6833 cinfo.shift1 = 6;
6834 }
6835 else
6836 cinfo.shift1 = 5;
6837 cinfo.mask = (1 << cinfo.shift1) - 1;
6838 cinfo.shift2 = maskbitslog2;
6839 cinfo.maskbits = 1 << maskbitslog2;
6840 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6841 amt = bucketcount * sizeof (unsigned long int) * 2;
6842 amt += maskwords * sizeof (bfd_vma);
6843 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6844 if (cinfo.bitmask == NULL)
6845 {
6846 free (cinfo.hashcodes);
6847 return FALSE;
6848 }
6849
6850 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6851 cinfo.indx = cinfo.counts + bucketcount;
6852 cinfo.symindx = dynsymcount - cinfo.nsyms;
6853 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6854
6855 /* Determine how often each hash bucket is used. */
6856 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6857 for (i = 0; i < cinfo.nsyms; ++i)
6858 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6859
6860 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6861 if (cinfo.counts[i] != 0)
6862 {
6863 cinfo.indx[i] = cnt;
6864 cnt += cinfo.counts[i];
6865 }
6866 BFD_ASSERT (cnt == dynsymcount);
6867 cinfo.bucketcount = bucketcount;
6868 cinfo.local_indx = cinfo.min_dynindx;
6869
6870 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6871 s->size += cinfo.maskbits / 8;
6872 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6873 if (contents == NULL)
6874 {
6875 free (cinfo.bitmask);
6876 free (cinfo.hashcodes);
6877 return FALSE;
6878 }
6879
6880 s->contents = contents;
6881 bfd_put_32 (output_bfd, bucketcount, contents);
6882 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6883 bfd_put_32 (output_bfd, maskwords, contents + 8);
6884 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6885 contents += 16 + cinfo.maskbits / 8;
6886
6887 for (i = 0; i < bucketcount; ++i)
6888 {
6889 if (cinfo.counts[i] == 0)
6890 bfd_put_32 (output_bfd, 0, contents);
6891 else
6892 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6893 contents += 4;
6894 }
6895
6896 cinfo.contents = contents;
6897
6898 /* Renumber dynamic symbols, populate .gnu.hash section. */
6899 elf_link_hash_traverse (elf_hash_table (info),
6900 elf_renumber_gnu_hash_syms, &cinfo);
6901
6902 contents = s->contents + 16;
6903 for (i = 0; i < maskwords; ++i)
6904 {
6905 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6906 contents);
6907 contents += bed->s->arch_size / 8;
6908 }
6909
6910 free (cinfo.bitmask);
6911 free (cinfo.hashcodes);
6912 }
6913 }
6914
6915 s = bfd_get_linker_section (dynobj, ".dynstr");
6916 BFD_ASSERT (s != NULL);
6917
6918 elf_finalize_dynstr (output_bfd, info);
6919
6920 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6921
6922 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6923 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6924 return FALSE;
6925 }
6926
6927 return TRUE;
6928 }
6929 \f
6930 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6931
6932 static void
6933 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6934 asection *sec)
6935 {
6936 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6937 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6938 }
6939
6940 /* Finish SHF_MERGE section merging. */
6941
6942 bfd_boolean
6943 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
6944 {
6945 bfd *ibfd;
6946 asection *sec;
6947
6948 if (!is_elf_hash_table (info->hash))
6949 return FALSE;
6950
6951 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6952 if ((ibfd->flags & DYNAMIC) == 0
6953 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
6954 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
6955 == get_elf_backend_data (obfd)->s->elfclass))
6956 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6957 if ((sec->flags & SEC_MERGE) != 0
6958 && !bfd_is_abs_section (sec->output_section))
6959 {
6960 struct bfd_elf_section_data *secdata;
6961
6962 secdata = elf_section_data (sec);
6963 if (! _bfd_add_merge_section (obfd,
6964 &elf_hash_table (info)->merge_info,
6965 sec, &secdata->sec_info))
6966 return FALSE;
6967 else if (secdata->sec_info)
6968 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6969 }
6970
6971 if (elf_hash_table (info)->merge_info != NULL)
6972 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
6973 merge_sections_remove_hook);
6974 return TRUE;
6975 }
6976
6977 /* Create an entry in an ELF linker hash table. */
6978
6979 struct bfd_hash_entry *
6980 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6981 struct bfd_hash_table *table,
6982 const char *string)
6983 {
6984 /* Allocate the structure if it has not already been allocated by a
6985 subclass. */
6986 if (entry == NULL)
6987 {
6988 entry = (struct bfd_hash_entry *)
6989 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6990 if (entry == NULL)
6991 return entry;
6992 }
6993
6994 /* Call the allocation method of the superclass. */
6995 entry = _bfd_link_hash_newfunc (entry, table, string);
6996 if (entry != NULL)
6997 {
6998 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6999 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7000
7001 /* Set local fields. */
7002 ret->indx = -1;
7003 ret->dynindx = -1;
7004 ret->got = htab->init_got_refcount;
7005 ret->plt = htab->init_plt_refcount;
7006 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7007 - offsetof (struct elf_link_hash_entry, size)));
7008 /* Assume that we have been called by a non-ELF symbol reader.
7009 This flag is then reset by the code which reads an ELF input
7010 file. This ensures that a symbol created by a non-ELF symbol
7011 reader will have the flag set correctly. */
7012 ret->non_elf = 1;
7013 }
7014
7015 return entry;
7016 }
7017
7018 /* Copy data from an indirect symbol to its direct symbol, hiding the
7019 old indirect symbol. Also used for copying flags to a weakdef. */
7020
7021 void
7022 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7023 struct elf_link_hash_entry *dir,
7024 struct elf_link_hash_entry *ind)
7025 {
7026 struct elf_link_hash_table *htab;
7027
7028 /* Copy down any references that we may have already seen to the
7029 symbol which just became indirect if DIR isn't a hidden versioned
7030 symbol. */
7031
7032 if (dir->versioned != versioned_hidden)
7033 {
7034 dir->ref_dynamic |= ind->ref_dynamic;
7035 dir->ref_regular |= ind->ref_regular;
7036 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7037 dir->non_got_ref |= ind->non_got_ref;
7038 dir->needs_plt |= ind->needs_plt;
7039 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7040 }
7041
7042 if (ind->root.type != bfd_link_hash_indirect)
7043 return;
7044
7045 /* Copy over the global and procedure linkage table refcount entries.
7046 These may have been already set up by a check_relocs routine. */
7047 htab = elf_hash_table (info);
7048 if (ind->got.refcount > htab->init_got_refcount.refcount)
7049 {
7050 if (dir->got.refcount < 0)
7051 dir->got.refcount = 0;
7052 dir->got.refcount += ind->got.refcount;
7053 ind->got.refcount = htab->init_got_refcount.refcount;
7054 }
7055
7056 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7057 {
7058 if (dir->plt.refcount < 0)
7059 dir->plt.refcount = 0;
7060 dir->plt.refcount += ind->plt.refcount;
7061 ind->plt.refcount = htab->init_plt_refcount.refcount;
7062 }
7063
7064 if (ind->dynindx != -1)
7065 {
7066 if (dir->dynindx != -1)
7067 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7068 dir->dynindx = ind->dynindx;
7069 dir->dynstr_index = ind->dynstr_index;
7070 ind->dynindx = -1;
7071 ind->dynstr_index = 0;
7072 }
7073 }
7074
7075 void
7076 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7077 struct elf_link_hash_entry *h,
7078 bfd_boolean force_local)
7079 {
7080 /* STT_GNU_IFUNC symbol must go through PLT. */
7081 if (h->type != STT_GNU_IFUNC)
7082 {
7083 h->plt = elf_hash_table (info)->init_plt_offset;
7084 h->needs_plt = 0;
7085 }
7086 if (force_local)
7087 {
7088 h->forced_local = 1;
7089 if (h->dynindx != -1)
7090 {
7091 h->dynindx = -1;
7092 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7093 h->dynstr_index);
7094 }
7095 }
7096 }
7097
7098 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7099 caller. */
7100
7101 bfd_boolean
7102 _bfd_elf_link_hash_table_init
7103 (struct elf_link_hash_table *table,
7104 bfd *abfd,
7105 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7106 struct bfd_hash_table *,
7107 const char *),
7108 unsigned int entsize,
7109 enum elf_target_id target_id)
7110 {
7111 bfd_boolean ret;
7112 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7113
7114 table->init_got_refcount.refcount = can_refcount - 1;
7115 table->init_plt_refcount.refcount = can_refcount - 1;
7116 table->init_got_offset.offset = -(bfd_vma) 1;
7117 table->init_plt_offset.offset = -(bfd_vma) 1;
7118 /* The first dynamic symbol is a dummy. */
7119 table->dynsymcount = 1;
7120
7121 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7122
7123 table->root.type = bfd_link_elf_hash_table;
7124 table->hash_table_id = target_id;
7125
7126 return ret;
7127 }
7128
7129 /* Create an ELF linker hash table. */
7130
7131 struct bfd_link_hash_table *
7132 _bfd_elf_link_hash_table_create (bfd *abfd)
7133 {
7134 struct elf_link_hash_table *ret;
7135 bfd_size_type amt = sizeof (struct elf_link_hash_table);
7136
7137 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7138 if (ret == NULL)
7139 return NULL;
7140
7141 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7142 sizeof (struct elf_link_hash_entry),
7143 GENERIC_ELF_DATA))
7144 {
7145 free (ret);
7146 return NULL;
7147 }
7148 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7149
7150 return &ret->root;
7151 }
7152
7153 /* Destroy an ELF linker hash table. */
7154
7155 void
7156 _bfd_elf_link_hash_table_free (bfd *obfd)
7157 {
7158 struct elf_link_hash_table *htab;
7159
7160 htab = (struct elf_link_hash_table *) obfd->link.hash;
7161 if (htab->dynstr != NULL)
7162 _bfd_elf_strtab_free (htab->dynstr);
7163 _bfd_merge_sections_free (htab->merge_info);
7164 _bfd_generic_link_hash_table_free (obfd);
7165 }
7166
7167 /* This is a hook for the ELF emulation code in the generic linker to
7168 tell the backend linker what file name to use for the DT_NEEDED
7169 entry for a dynamic object. */
7170
7171 void
7172 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7173 {
7174 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7175 && bfd_get_format (abfd) == bfd_object)
7176 elf_dt_name (abfd) = name;
7177 }
7178
7179 int
7180 bfd_elf_get_dyn_lib_class (bfd *abfd)
7181 {
7182 int lib_class;
7183 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7184 && bfd_get_format (abfd) == bfd_object)
7185 lib_class = elf_dyn_lib_class (abfd);
7186 else
7187 lib_class = 0;
7188 return lib_class;
7189 }
7190
7191 void
7192 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7193 {
7194 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7195 && bfd_get_format (abfd) == bfd_object)
7196 elf_dyn_lib_class (abfd) = lib_class;
7197 }
7198
7199 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7200 the linker ELF emulation code. */
7201
7202 struct bfd_link_needed_list *
7203 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7204 struct bfd_link_info *info)
7205 {
7206 if (! is_elf_hash_table (info->hash))
7207 return NULL;
7208 return elf_hash_table (info)->needed;
7209 }
7210
7211 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7212 hook for the linker ELF emulation code. */
7213
7214 struct bfd_link_needed_list *
7215 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7216 struct bfd_link_info *info)
7217 {
7218 if (! is_elf_hash_table (info->hash))
7219 return NULL;
7220 return elf_hash_table (info)->runpath;
7221 }
7222
7223 /* Get the name actually used for a dynamic object for a link. This
7224 is the SONAME entry if there is one. Otherwise, it is the string
7225 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7226
7227 const char *
7228 bfd_elf_get_dt_soname (bfd *abfd)
7229 {
7230 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7231 && bfd_get_format (abfd) == bfd_object)
7232 return elf_dt_name (abfd);
7233 return NULL;
7234 }
7235
7236 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7237 the ELF linker emulation code. */
7238
7239 bfd_boolean
7240 bfd_elf_get_bfd_needed_list (bfd *abfd,
7241 struct bfd_link_needed_list **pneeded)
7242 {
7243 asection *s;
7244 bfd_byte *dynbuf = NULL;
7245 unsigned int elfsec;
7246 unsigned long shlink;
7247 bfd_byte *extdyn, *extdynend;
7248 size_t extdynsize;
7249 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7250
7251 *pneeded = NULL;
7252
7253 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7254 || bfd_get_format (abfd) != bfd_object)
7255 return TRUE;
7256
7257 s = bfd_get_section_by_name (abfd, ".dynamic");
7258 if (s == NULL || s->size == 0)
7259 return TRUE;
7260
7261 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7262 goto error_return;
7263
7264 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7265 if (elfsec == SHN_BAD)
7266 goto error_return;
7267
7268 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7269
7270 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7271 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7272
7273 extdyn = dynbuf;
7274 extdynend = extdyn + s->size;
7275 for (; extdyn < extdynend; extdyn += extdynsize)
7276 {
7277 Elf_Internal_Dyn dyn;
7278
7279 (*swap_dyn_in) (abfd, extdyn, &dyn);
7280
7281 if (dyn.d_tag == DT_NULL)
7282 break;
7283
7284 if (dyn.d_tag == DT_NEEDED)
7285 {
7286 const char *string;
7287 struct bfd_link_needed_list *l;
7288 unsigned int tagv = dyn.d_un.d_val;
7289 bfd_size_type amt;
7290
7291 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7292 if (string == NULL)
7293 goto error_return;
7294
7295 amt = sizeof *l;
7296 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7297 if (l == NULL)
7298 goto error_return;
7299
7300 l->by = abfd;
7301 l->name = string;
7302 l->next = *pneeded;
7303 *pneeded = l;
7304 }
7305 }
7306
7307 free (dynbuf);
7308
7309 return TRUE;
7310
7311 error_return:
7312 if (dynbuf != NULL)
7313 free (dynbuf);
7314 return FALSE;
7315 }
7316
7317 struct elf_symbuf_symbol
7318 {
7319 unsigned long st_name; /* Symbol name, index in string tbl */
7320 unsigned char st_info; /* Type and binding attributes */
7321 unsigned char st_other; /* Visibilty, and target specific */
7322 };
7323
7324 struct elf_symbuf_head
7325 {
7326 struct elf_symbuf_symbol *ssym;
7327 size_t count;
7328 unsigned int st_shndx;
7329 };
7330
7331 struct elf_symbol
7332 {
7333 union
7334 {
7335 Elf_Internal_Sym *isym;
7336 struct elf_symbuf_symbol *ssym;
7337 } u;
7338 const char *name;
7339 };
7340
7341 /* Sort references to symbols by ascending section number. */
7342
7343 static int
7344 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7345 {
7346 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7347 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7348
7349 return s1->st_shndx - s2->st_shndx;
7350 }
7351
7352 static int
7353 elf_sym_name_compare (const void *arg1, const void *arg2)
7354 {
7355 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7356 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7357 return strcmp (s1->name, s2->name);
7358 }
7359
7360 static struct elf_symbuf_head *
7361 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
7362 {
7363 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7364 struct elf_symbuf_symbol *ssym;
7365 struct elf_symbuf_head *ssymbuf, *ssymhead;
7366 size_t i, shndx_count, total_size;
7367
7368 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7369 if (indbuf == NULL)
7370 return NULL;
7371
7372 for (ind = indbuf, i = 0; i < symcount; i++)
7373 if (isymbuf[i].st_shndx != SHN_UNDEF)
7374 *ind++ = &isymbuf[i];
7375 indbufend = ind;
7376
7377 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7378 elf_sort_elf_symbol);
7379
7380 shndx_count = 0;
7381 if (indbufend > indbuf)
7382 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7383 if (ind[0]->st_shndx != ind[1]->st_shndx)
7384 shndx_count++;
7385
7386 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7387 + (indbufend - indbuf) * sizeof (*ssym));
7388 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7389 if (ssymbuf == NULL)
7390 {
7391 free (indbuf);
7392 return NULL;
7393 }
7394
7395 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7396 ssymbuf->ssym = NULL;
7397 ssymbuf->count = shndx_count;
7398 ssymbuf->st_shndx = 0;
7399 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7400 {
7401 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7402 {
7403 ssymhead++;
7404 ssymhead->ssym = ssym;
7405 ssymhead->count = 0;
7406 ssymhead->st_shndx = (*ind)->st_shndx;
7407 }
7408 ssym->st_name = (*ind)->st_name;
7409 ssym->st_info = (*ind)->st_info;
7410 ssym->st_other = (*ind)->st_other;
7411 ssymhead->count++;
7412 }
7413 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
7414 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7415 == total_size));
7416
7417 free (indbuf);
7418 return ssymbuf;
7419 }
7420
7421 /* Check if 2 sections define the same set of local and global
7422 symbols. */
7423
7424 static bfd_boolean
7425 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7426 struct bfd_link_info *info)
7427 {
7428 bfd *bfd1, *bfd2;
7429 const struct elf_backend_data *bed1, *bed2;
7430 Elf_Internal_Shdr *hdr1, *hdr2;
7431 size_t symcount1, symcount2;
7432 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7433 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7434 Elf_Internal_Sym *isym, *isymend;
7435 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7436 size_t count1, count2, i;
7437 unsigned int shndx1, shndx2;
7438 bfd_boolean result;
7439
7440 bfd1 = sec1->owner;
7441 bfd2 = sec2->owner;
7442
7443 /* Both sections have to be in ELF. */
7444 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7445 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7446 return FALSE;
7447
7448 if (elf_section_type (sec1) != elf_section_type (sec2))
7449 return FALSE;
7450
7451 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7452 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7453 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7454 return FALSE;
7455
7456 bed1 = get_elf_backend_data (bfd1);
7457 bed2 = get_elf_backend_data (bfd2);
7458 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7459 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7460 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7461 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7462
7463 if (symcount1 == 0 || symcount2 == 0)
7464 return FALSE;
7465
7466 result = FALSE;
7467 isymbuf1 = NULL;
7468 isymbuf2 = NULL;
7469 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7470 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7471
7472 if (ssymbuf1 == NULL)
7473 {
7474 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7475 NULL, NULL, NULL);
7476 if (isymbuf1 == NULL)
7477 goto done;
7478
7479 if (!info->reduce_memory_overheads)
7480 elf_tdata (bfd1)->symbuf = ssymbuf1
7481 = elf_create_symbuf (symcount1, isymbuf1);
7482 }
7483
7484 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7485 {
7486 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7487 NULL, NULL, NULL);
7488 if (isymbuf2 == NULL)
7489 goto done;
7490
7491 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7492 elf_tdata (bfd2)->symbuf = ssymbuf2
7493 = elf_create_symbuf (symcount2, isymbuf2);
7494 }
7495
7496 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7497 {
7498 /* Optimized faster version. */
7499 size_t lo, hi, mid;
7500 struct elf_symbol *symp;
7501 struct elf_symbuf_symbol *ssym, *ssymend;
7502
7503 lo = 0;
7504 hi = ssymbuf1->count;
7505 ssymbuf1++;
7506 count1 = 0;
7507 while (lo < hi)
7508 {
7509 mid = (lo + hi) / 2;
7510 if (shndx1 < ssymbuf1[mid].st_shndx)
7511 hi = mid;
7512 else if (shndx1 > ssymbuf1[mid].st_shndx)
7513 lo = mid + 1;
7514 else
7515 {
7516 count1 = ssymbuf1[mid].count;
7517 ssymbuf1 += mid;
7518 break;
7519 }
7520 }
7521
7522 lo = 0;
7523 hi = ssymbuf2->count;
7524 ssymbuf2++;
7525 count2 = 0;
7526 while (lo < hi)
7527 {
7528 mid = (lo + hi) / 2;
7529 if (shndx2 < ssymbuf2[mid].st_shndx)
7530 hi = mid;
7531 else if (shndx2 > ssymbuf2[mid].st_shndx)
7532 lo = mid + 1;
7533 else
7534 {
7535 count2 = ssymbuf2[mid].count;
7536 ssymbuf2 += mid;
7537 break;
7538 }
7539 }
7540
7541 if (count1 == 0 || count2 == 0 || count1 != count2)
7542 goto done;
7543
7544 symtable1
7545 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7546 symtable2
7547 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7548 if (symtable1 == NULL || symtable2 == NULL)
7549 goto done;
7550
7551 symp = symtable1;
7552 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7553 ssym < ssymend; ssym++, symp++)
7554 {
7555 symp->u.ssym = ssym;
7556 symp->name = bfd_elf_string_from_elf_section (bfd1,
7557 hdr1->sh_link,
7558 ssym->st_name);
7559 }
7560
7561 symp = symtable2;
7562 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7563 ssym < ssymend; ssym++, symp++)
7564 {
7565 symp->u.ssym = ssym;
7566 symp->name = bfd_elf_string_from_elf_section (bfd2,
7567 hdr2->sh_link,
7568 ssym->st_name);
7569 }
7570
7571 /* Sort symbol by name. */
7572 qsort (symtable1, count1, sizeof (struct elf_symbol),
7573 elf_sym_name_compare);
7574 qsort (symtable2, count1, sizeof (struct elf_symbol),
7575 elf_sym_name_compare);
7576
7577 for (i = 0; i < count1; i++)
7578 /* Two symbols must have the same binding, type and name. */
7579 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7580 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7581 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7582 goto done;
7583
7584 result = TRUE;
7585 goto done;
7586 }
7587
7588 symtable1 = (struct elf_symbol *)
7589 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7590 symtable2 = (struct elf_symbol *)
7591 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7592 if (symtable1 == NULL || symtable2 == NULL)
7593 goto done;
7594
7595 /* Count definitions in the section. */
7596 count1 = 0;
7597 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7598 if (isym->st_shndx == shndx1)
7599 symtable1[count1++].u.isym = isym;
7600
7601 count2 = 0;
7602 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7603 if (isym->st_shndx == shndx2)
7604 symtable2[count2++].u.isym = isym;
7605
7606 if (count1 == 0 || count2 == 0 || count1 != count2)
7607 goto done;
7608
7609 for (i = 0; i < count1; i++)
7610 symtable1[i].name
7611 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7612 symtable1[i].u.isym->st_name);
7613
7614 for (i = 0; i < count2; i++)
7615 symtable2[i].name
7616 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7617 symtable2[i].u.isym->st_name);
7618
7619 /* Sort symbol by name. */
7620 qsort (symtable1, count1, sizeof (struct elf_symbol),
7621 elf_sym_name_compare);
7622 qsort (symtable2, count1, sizeof (struct elf_symbol),
7623 elf_sym_name_compare);
7624
7625 for (i = 0; i < count1; i++)
7626 /* Two symbols must have the same binding, type and name. */
7627 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7628 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7629 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7630 goto done;
7631
7632 result = TRUE;
7633
7634 done:
7635 if (symtable1)
7636 free (symtable1);
7637 if (symtable2)
7638 free (symtable2);
7639 if (isymbuf1)
7640 free (isymbuf1);
7641 if (isymbuf2)
7642 free (isymbuf2);
7643
7644 return result;
7645 }
7646
7647 /* Return TRUE if 2 section types are compatible. */
7648
7649 bfd_boolean
7650 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7651 bfd *bbfd, const asection *bsec)
7652 {
7653 if (asec == NULL
7654 || bsec == NULL
7655 || abfd->xvec->flavour != bfd_target_elf_flavour
7656 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7657 return TRUE;
7658
7659 return elf_section_type (asec) == elf_section_type (bsec);
7660 }
7661 \f
7662 /* Final phase of ELF linker. */
7663
7664 /* A structure we use to avoid passing large numbers of arguments. */
7665
7666 struct elf_final_link_info
7667 {
7668 /* General link information. */
7669 struct bfd_link_info *info;
7670 /* Output BFD. */
7671 bfd *output_bfd;
7672 /* Symbol string table. */
7673 struct elf_strtab_hash *symstrtab;
7674 /* .hash section. */
7675 asection *hash_sec;
7676 /* symbol version section (.gnu.version). */
7677 asection *symver_sec;
7678 /* Buffer large enough to hold contents of any section. */
7679 bfd_byte *contents;
7680 /* Buffer large enough to hold external relocs of any section. */
7681 void *external_relocs;
7682 /* Buffer large enough to hold internal relocs of any section. */
7683 Elf_Internal_Rela *internal_relocs;
7684 /* Buffer large enough to hold external local symbols of any input
7685 BFD. */
7686 bfd_byte *external_syms;
7687 /* And a buffer for symbol section indices. */
7688 Elf_External_Sym_Shndx *locsym_shndx;
7689 /* Buffer large enough to hold internal local symbols of any input
7690 BFD. */
7691 Elf_Internal_Sym *internal_syms;
7692 /* Array large enough to hold a symbol index for each local symbol
7693 of any input BFD. */
7694 long *indices;
7695 /* Array large enough to hold a section pointer for each local
7696 symbol of any input BFD. */
7697 asection **sections;
7698 /* Buffer for SHT_SYMTAB_SHNDX section. */
7699 Elf_External_Sym_Shndx *symshndxbuf;
7700 /* Number of STT_FILE syms seen. */
7701 size_t filesym_count;
7702 };
7703
7704 /* This struct is used to pass information to elf_link_output_extsym. */
7705
7706 struct elf_outext_info
7707 {
7708 bfd_boolean failed;
7709 bfd_boolean localsyms;
7710 bfd_boolean file_sym_done;
7711 struct elf_final_link_info *flinfo;
7712 };
7713
7714
7715 /* Support for evaluating a complex relocation.
7716
7717 Complex relocations are generalized, self-describing relocations. The
7718 implementation of them consists of two parts: complex symbols, and the
7719 relocations themselves.
7720
7721 The relocations are use a reserved elf-wide relocation type code (R_RELC
7722 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7723 information (start bit, end bit, word width, etc) into the addend. This
7724 information is extracted from CGEN-generated operand tables within gas.
7725
7726 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7727 internal) representing prefix-notation expressions, including but not
7728 limited to those sorts of expressions normally encoded as addends in the
7729 addend field. The symbol mangling format is:
7730
7731 <node> := <literal>
7732 | <unary-operator> ':' <node>
7733 | <binary-operator> ':' <node> ':' <node>
7734 ;
7735
7736 <literal> := 's' <digits=N> ':' <N character symbol name>
7737 | 'S' <digits=N> ':' <N character section name>
7738 | '#' <hexdigits>
7739 ;
7740
7741 <binary-operator> := as in C
7742 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7743
7744 static void
7745 set_symbol_value (bfd *bfd_with_globals,
7746 Elf_Internal_Sym *isymbuf,
7747 size_t locsymcount,
7748 size_t symidx,
7749 bfd_vma val)
7750 {
7751 struct elf_link_hash_entry **sym_hashes;
7752 struct elf_link_hash_entry *h;
7753 size_t extsymoff = locsymcount;
7754
7755 if (symidx < locsymcount)
7756 {
7757 Elf_Internal_Sym *sym;
7758
7759 sym = isymbuf + symidx;
7760 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7761 {
7762 /* It is a local symbol: move it to the
7763 "absolute" section and give it a value. */
7764 sym->st_shndx = SHN_ABS;
7765 sym->st_value = val;
7766 return;
7767 }
7768 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7769 extsymoff = 0;
7770 }
7771
7772 /* It is a global symbol: set its link type
7773 to "defined" and give it a value. */
7774
7775 sym_hashes = elf_sym_hashes (bfd_with_globals);
7776 h = sym_hashes [symidx - extsymoff];
7777 while (h->root.type == bfd_link_hash_indirect
7778 || h->root.type == bfd_link_hash_warning)
7779 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7780 h->root.type = bfd_link_hash_defined;
7781 h->root.u.def.value = val;
7782 h->root.u.def.section = bfd_abs_section_ptr;
7783 }
7784
7785 static bfd_boolean
7786 resolve_symbol (const char *name,
7787 bfd *input_bfd,
7788 struct elf_final_link_info *flinfo,
7789 bfd_vma *result,
7790 Elf_Internal_Sym *isymbuf,
7791 size_t locsymcount)
7792 {
7793 Elf_Internal_Sym *sym;
7794 struct bfd_link_hash_entry *global_entry;
7795 const char *candidate = NULL;
7796 Elf_Internal_Shdr *symtab_hdr;
7797 size_t i;
7798
7799 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7800
7801 for (i = 0; i < locsymcount; ++ i)
7802 {
7803 sym = isymbuf + i;
7804
7805 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7806 continue;
7807
7808 candidate = bfd_elf_string_from_elf_section (input_bfd,
7809 symtab_hdr->sh_link,
7810 sym->st_name);
7811 #ifdef DEBUG
7812 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7813 name, candidate, (unsigned long) sym->st_value);
7814 #endif
7815 if (candidate && strcmp (candidate, name) == 0)
7816 {
7817 asection *sec = flinfo->sections [i];
7818
7819 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7820 *result += sec->output_offset + sec->output_section->vma;
7821 #ifdef DEBUG
7822 printf ("Found symbol with value %8.8lx\n",
7823 (unsigned long) *result);
7824 #endif
7825 return TRUE;
7826 }
7827 }
7828
7829 /* Hmm, haven't found it yet. perhaps it is a global. */
7830 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7831 FALSE, FALSE, TRUE);
7832 if (!global_entry)
7833 return FALSE;
7834
7835 if (global_entry->type == bfd_link_hash_defined
7836 || global_entry->type == bfd_link_hash_defweak)
7837 {
7838 *result = (global_entry->u.def.value
7839 + global_entry->u.def.section->output_section->vma
7840 + global_entry->u.def.section->output_offset);
7841 #ifdef DEBUG
7842 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7843 global_entry->root.string, (unsigned long) *result);
7844 #endif
7845 return TRUE;
7846 }
7847
7848 return FALSE;
7849 }
7850
7851 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
7852 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
7853 names like "foo.end" which is the end address of section "foo". */
7854
7855 static bfd_boolean
7856 resolve_section (const char *name,
7857 asection *sections,
7858 bfd_vma *result,
7859 bfd * abfd)
7860 {
7861 asection *curr;
7862 unsigned int len;
7863
7864 for (curr = sections; curr; curr = curr->next)
7865 if (strcmp (curr->name, name) == 0)
7866 {
7867 *result = curr->vma;
7868 return TRUE;
7869 }
7870
7871 /* Hmm. still haven't found it. try pseudo-section names. */
7872 /* FIXME: This could be coded more efficiently... */
7873 for (curr = sections; curr; curr = curr->next)
7874 {
7875 len = strlen (curr->name);
7876 if (len > strlen (name))
7877 continue;
7878
7879 if (strncmp (curr->name, name, len) == 0)
7880 {
7881 if (strncmp (".end", name + len, 4) == 0)
7882 {
7883 *result = curr->vma + curr->size / bfd_octets_per_byte (abfd);
7884 return TRUE;
7885 }
7886
7887 /* Insert more pseudo-section names here, if you like. */
7888 }
7889 }
7890
7891 return FALSE;
7892 }
7893
7894 static void
7895 undefined_reference (const char *reftype, const char *name)
7896 {
7897 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7898 reftype, name);
7899 }
7900
7901 static bfd_boolean
7902 eval_symbol (bfd_vma *result,
7903 const char **symp,
7904 bfd *input_bfd,
7905 struct elf_final_link_info *flinfo,
7906 bfd_vma dot,
7907 Elf_Internal_Sym *isymbuf,
7908 size_t locsymcount,
7909 int signed_p)
7910 {
7911 size_t len;
7912 size_t symlen;
7913 bfd_vma a;
7914 bfd_vma b;
7915 char symbuf[4096];
7916 const char *sym = *symp;
7917 const char *symend;
7918 bfd_boolean symbol_is_section = FALSE;
7919
7920 len = strlen (sym);
7921 symend = sym + len;
7922
7923 if (len < 1 || len > sizeof (symbuf))
7924 {
7925 bfd_set_error (bfd_error_invalid_operation);
7926 return FALSE;
7927 }
7928
7929 switch (* sym)
7930 {
7931 case '.':
7932 *result = dot;
7933 *symp = sym + 1;
7934 return TRUE;
7935
7936 case '#':
7937 ++sym;
7938 *result = strtoul (sym, (char **) symp, 16);
7939 return TRUE;
7940
7941 case 'S':
7942 symbol_is_section = TRUE;
7943 case 's':
7944 ++sym;
7945 symlen = strtol (sym, (char **) symp, 10);
7946 sym = *symp + 1; /* Skip the trailing ':'. */
7947
7948 if (symend < sym || symlen + 1 > sizeof (symbuf))
7949 {
7950 bfd_set_error (bfd_error_invalid_operation);
7951 return FALSE;
7952 }
7953
7954 memcpy (symbuf, sym, symlen);
7955 symbuf[symlen] = '\0';
7956 *symp = sym + symlen;
7957
7958 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7959 the symbol as a section, or vice-versa. so we're pretty liberal in our
7960 interpretation here; section means "try section first", not "must be a
7961 section", and likewise with symbol. */
7962
7963 if (symbol_is_section)
7964 {
7965 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
7966 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7967 isymbuf, locsymcount))
7968 {
7969 undefined_reference ("section", symbuf);
7970 return FALSE;
7971 }
7972 }
7973 else
7974 {
7975 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7976 isymbuf, locsymcount)
7977 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7978 result, input_bfd))
7979 {
7980 undefined_reference ("symbol", symbuf);
7981 return FALSE;
7982 }
7983 }
7984
7985 return TRUE;
7986
7987 /* All that remains are operators. */
7988
7989 #define UNARY_OP(op) \
7990 if (strncmp (sym, #op, strlen (#op)) == 0) \
7991 { \
7992 sym += strlen (#op); \
7993 if (*sym == ':') \
7994 ++sym; \
7995 *symp = sym; \
7996 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7997 isymbuf, locsymcount, signed_p)) \
7998 return FALSE; \
7999 if (signed_p) \
8000 *result = op ((bfd_signed_vma) a); \
8001 else \
8002 *result = op a; \
8003 return TRUE; \
8004 }
8005
8006 #define BINARY_OP(op) \
8007 if (strncmp (sym, #op, strlen (#op)) == 0) \
8008 { \
8009 sym += strlen (#op); \
8010 if (*sym == ':') \
8011 ++sym; \
8012 *symp = sym; \
8013 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8014 isymbuf, locsymcount, signed_p)) \
8015 return FALSE; \
8016 ++*symp; \
8017 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8018 isymbuf, locsymcount, signed_p)) \
8019 return FALSE; \
8020 if (signed_p) \
8021 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8022 else \
8023 *result = a op b; \
8024 return TRUE; \
8025 }
8026
8027 default:
8028 UNARY_OP (0-);
8029 BINARY_OP (<<);
8030 BINARY_OP (>>);
8031 BINARY_OP (==);
8032 BINARY_OP (!=);
8033 BINARY_OP (<=);
8034 BINARY_OP (>=);
8035 BINARY_OP (&&);
8036 BINARY_OP (||);
8037 UNARY_OP (~);
8038 UNARY_OP (!);
8039 BINARY_OP (*);
8040 BINARY_OP (/);
8041 BINARY_OP (%);
8042 BINARY_OP (^);
8043 BINARY_OP (|);
8044 BINARY_OP (&);
8045 BINARY_OP (+);
8046 BINARY_OP (-);
8047 BINARY_OP (<);
8048 BINARY_OP (>);
8049 #undef UNARY_OP
8050 #undef BINARY_OP
8051 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8052 bfd_set_error (bfd_error_invalid_operation);
8053 return FALSE;
8054 }
8055 }
8056
8057 static void
8058 put_value (bfd_vma size,
8059 unsigned long chunksz,
8060 bfd *input_bfd,
8061 bfd_vma x,
8062 bfd_byte *location)
8063 {
8064 location += (size - chunksz);
8065
8066 for (; size; size -= chunksz, location -= chunksz)
8067 {
8068 switch (chunksz)
8069 {
8070 case 1:
8071 bfd_put_8 (input_bfd, x, location);
8072 x >>= 8;
8073 break;
8074 case 2:
8075 bfd_put_16 (input_bfd, x, location);
8076 x >>= 16;
8077 break;
8078 case 4:
8079 bfd_put_32 (input_bfd, x, location);
8080 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8081 x >>= 16;
8082 x >>= 16;
8083 break;
8084 #ifdef BFD64
8085 case 8:
8086 bfd_put_64 (input_bfd, x, location);
8087 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8088 x >>= 32;
8089 x >>= 32;
8090 break;
8091 #endif
8092 default:
8093 abort ();
8094 break;
8095 }
8096 }
8097 }
8098
8099 static bfd_vma
8100 get_value (bfd_vma size,
8101 unsigned long chunksz,
8102 bfd *input_bfd,
8103 bfd_byte *location)
8104 {
8105 int shift;
8106 bfd_vma x = 0;
8107
8108 /* Sanity checks. */
8109 BFD_ASSERT (chunksz <= sizeof (x)
8110 && size >= chunksz
8111 && chunksz != 0
8112 && (size % chunksz) == 0
8113 && input_bfd != NULL
8114 && location != NULL);
8115
8116 if (chunksz == sizeof (x))
8117 {
8118 BFD_ASSERT (size == chunksz);
8119
8120 /* Make sure that we do not perform an undefined shift operation.
8121 We know that size == chunksz so there will only be one iteration
8122 of the loop below. */
8123 shift = 0;
8124 }
8125 else
8126 shift = 8 * chunksz;
8127
8128 for (; size; size -= chunksz, location += chunksz)
8129 {
8130 switch (chunksz)
8131 {
8132 case 1:
8133 x = (x << shift) | bfd_get_8 (input_bfd, location);
8134 break;
8135 case 2:
8136 x = (x << shift) | bfd_get_16 (input_bfd, location);
8137 break;
8138 case 4:
8139 x = (x << shift) | bfd_get_32 (input_bfd, location);
8140 break;
8141 #ifdef BFD64
8142 case 8:
8143 x = (x << shift) | bfd_get_64 (input_bfd, location);
8144 break;
8145 #endif
8146 default:
8147 abort ();
8148 }
8149 }
8150 return x;
8151 }
8152
8153 static void
8154 decode_complex_addend (unsigned long *start, /* in bits */
8155 unsigned long *oplen, /* in bits */
8156 unsigned long *len, /* in bits */
8157 unsigned long *wordsz, /* in bytes */
8158 unsigned long *chunksz, /* in bytes */
8159 unsigned long *lsb0_p,
8160 unsigned long *signed_p,
8161 unsigned long *trunc_p,
8162 unsigned long encoded)
8163 {
8164 * start = encoded & 0x3F;
8165 * len = (encoded >> 6) & 0x3F;
8166 * oplen = (encoded >> 12) & 0x3F;
8167 * wordsz = (encoded >> 18) & 0xF;
8168 * chunksz = (encoded >> 22) & 0xF;
8169 * lsb0_p = (encoded >> 27) & 1;
8170 * signed_p = (encoded >> 28) & 1;
8171 * trunc_p = (encoded >> 29) & 1;
8172 }
8173
8174 bfd_reloc_status_type
8175 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8176 asection *input_section ATTRIBUTE_UNUSED,
8177 bfd_byte *contents,
8178 Elf_Internal_Rela *rel,
8179 bfd_vma relocation)
8180 {
8181 bfd_vma shift, x, mask;
8182 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8183 bfd_reloc_status_type r;
8184
8185 /* Perform this reloc, since it is complex.
8186 (this is not to say that it necessarily refers to a complex
8187 symbol; merely that it is a self-describing CGEN based reloc.
8188 i.e. the addend has the complete reloc information (bit start, end,
8189 word size, etc) encoded within it.). */
8190
8191 decode_complex_addend (&start, &oplen, &len, &wordsz,
8192 &chunksz, &lsb0_p, &signed_p,
8193 &trunc_p, rel->r_addend);
8194
8195 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8196
8197 if (lsb0_p)
8198 shift = (start + 1) - len;
8199 else
8200 shift = (8 * wordsz) - (start + len);
8201
8202 x = get_value (wordsz, chunksz, input_bfd,
8203 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8204
8205 #ifdef DEBUG
8206 printf ("Doing complex reloc: "
8207 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8208 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8209 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8210 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8211 oplen, (unsigned long) x, (unsigned long) mask,
8212 (unsigned long) relocation);
8213 #endif
8214
8215 r = bfd_reloc_ok;
8216 if (! trunc_p)
8217 /* Now do an overflow check. */
8218 r = bfd_check_overflow ((signed_p
8219 ? complain_overflow_signed
8220 : complain_overflow_unsigned),
8221 len, 0, (8 * wordsz),
8222 relocation);
8223
8224 /* Do the deed. */
8225 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8226
8227 #ifdef DEBUG
8228 printf (" relocation: %8.8lx\n"
8229 " shifted mask: %8.8lx\n"
8230 " shifted/masked reloc: %8.8lx\n"
8231 " result: %8.8lx\n",
8232 (unsigned long) relocation, (unsigned long) (mask << shift),
8233 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8234 #endif
8235 put_value (wordsz, chunksz, input_bfd, x,
8236 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8237 return r;
8238 }
8239
8240 /* Functions to read r_offset from external (target order) reloc
8241 entry. Faster than bfd_getl32 et al, because we let the compiler
8242 know the value is aligned. */
8243
8244 static bfd_vma
8245 ext32l_r_offset (const void *p)
8246 {
8247 union aligned32
8248 {
8249 uint32_t v;
8250 unsigned char c[4];
8251 };
8252 const union aligned32 *a
8253 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8254
8255 uint32_t aval = ( (uint32_t) a->c[0]
8256 | (uint32_t) a->c[1] << 8
8257 | (uint32_t) a->c[2] << 16
8258 | (uint32_t) a->c[3] << 24);
8259 return aval;
8260 }
8261
8262 static bfd_vma
8263 ext32b_r_offset (const void *p)
8264 {
8265 union aligned32
8266 {
8267 uint32_t v;
8268 unsigned char c[4];
8269 };
8270 const union aligned32 *a
8271 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8272
8273 uint32_t aval = ( (uint32_t) a->c[0] << 24
8274 | (uint32_t) a->c[1] << 16
8275 | (uint32_t) a->c[2] << 8
8276 | (uint32_t) a->c[3]);
8277 return aval;
8278 }
8279
8280 #ifdef BFD_HOST_64_BIT
8281 static bfd_vma
8282 ext64l_r_offset (const void *p)
8283 {
8284 union aligned64
8285 {
8286 uint64_t v;
8287 unsigned char c[8];
8288 };
8289 const union aligned64 *a
8290 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8291
8292 uint64_t aval = ( (uint64_t) a->c[0]
8293 | (uint64_t) a->c[1] << 8
8294 | (uint64_t) a->c[2] << 16
8295 | (uint64_t) a->c[3] << 24
8296 | (uint64_t) a->c[4] << 32
8297 | (uint64_t) a->c[5] << 40
8298 | (uint64_t) a->c[6] << 48
8299 | (uint64_t) a->c[7] << 56);
8300 return aval;
8301 }
8302
8303 static bfd_vma
8304 ext64b_r_offset (const void *p)
8305 {
8306 union aligned64
8307 {
8308 uint64_t v;
8309 unsigned char c[8];
8310 };
8311 const union aligned64 *a
8312 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8313
8314 uint64_t aval = ( (uint64_t) a->c[0] << 56
8315 | (uint64_t) a->c[1] << 48
8316 | (uint64_t) a->c[2] << 40
8317 | (uint64_t) a->c[3] << 32
8318 | (uint64_t) a->c[4] << 24
8319 | (uint64_t) a->c[5] << 16
8320 | (uint64_t) a->c[6] << 8
8321 | (uint64_t) a->c[7]);
8322 return aval;
8323 }
8324 #endif
8325
8326 /* When performing a relocatable link, the input relocations are
8327 preserved. But, if they reference global symbols, the indices
8328 referenced must be updated. Update all the relocations found in
8329 RELDATA. */
8330
8331 static bfd_boolean
8332 elf_link_adjust_relocs (bfd *abfd,
8333 struct bfd_elf_section_reloc_data *reldata,
8334 bfd_boolean sort)
8335 {
8336 unsigned int i;
8337 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8338 bfd_byte *erela;
8339 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8340 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8341 bfd_vma r_type_mask;
8342 int r_sym_shift;
8343 unsigned int count = reldata->count;
8344 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8345
8346 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8347 {
8348 swap_in = bed->s->swap_reloc_in;
8349 swap_out = bed->s->swap_reloc_out;
8350 }
8351 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8352 {
8353 swap_in = bed->s->swap_reloca_in;
8354 swap_out = bed->s->swap_reloca_out;
8355 }
8356 else
8357 abort ();
8358
8359 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8360 abort ();
8361
8362 if (bed->s->arch_size == 32)
8363 {
8364 r_type_mask = 0xff;
8365 r_sym_shift = 8;
8366 }
8367 else
8368 {
8369 r_type_mask = 0xffffffff;
8370 r_sym_shift = 32;
8371 }
8372
8373 erela = reldata->hdr->contents;
8374 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8375 {
8376 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8377 unsigned int j;
8378
8379 if (*rel_hash == NULL)
8380 continue;
8381
8382 BFD_ASSERT ((*rel_hash)->indx >= 0);
8383
8384 (*swap_in) (abfd, erela, irela);
8385 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8386 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8387 | (irela[j].r_info & r_type_mask));
8388 (*swap_out) (abfd, irela, erela);
8389 }
8390
8391 if (sort && count != 0)
8392 {
8393 bfd_vma (*ext_r_off) (const void *);
8394 bfd_vma r_off;
8395 size_t elt_size;
8396 bfd_byte *base, *end, *p, *loc;
8397 bfd_byte *buf = NULL;
8398
8399 if (bed->s->arch_size == 32)
8400 {
8401 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8402 ext_r_off = ext32l_r_offset;
8403 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8404 ext_r_off = ext32b_r_offset;
8405 else
8406 abort ();
8407 }
8408 else
8409 {
8410 #ifdef BFD_HOST_64_BIT
8411 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8412 ext_r_off = ext64l_r_offset;
8413 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8414 ext_r_off = ext64b_r_offset;
8415 else
8416 #endif
8417 abort ();
8418 }
8419
8420 /* Must use a stable sort here. A modified insertion sort,
8421 since the relocs are mostly sorted already. */
8422 elt_size = reldata->hdr->sh_entsize;
8423 base = reldata->hdr->contents;
8424 end = base + count * elt_size;
8425 if (elt_size > sizeof (Elf64_External_Rela))
8426 abort ();
8427
8428 /* Ensure the first element is lowest. This acts as a sentinel,
8429 speeding the main loop below. */
8430 r_off = (*ext_r_off) (base);
8431 for (p = loc = base; (p += elt_size) < end; )
8432 {
8433 bfd_vma r_off2 = (*ext_r_off) (p);
8434 if (r_off > r_off2)
8435 {
8436 r_off = r_off2;
8437 loc = p;
8438 }
8439 }
8440 if (loc != base)
8441 {
8442 /* Don't just swap *base and *loc as that changes the order
8443 of the original base[0] and base[1] if they happen to
8444 have the same r_offset. */
8445 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
8446 memcpy (onebuf, loc, elt_size);
8447 memmove (base + elt_size, base, loc - base);
8448 memcpy (base, onebuf, elt_size);
8449 }
8450
8451 for (p = base + elt_size; (p += elt_size) < end; )
8452 {
8453 /* base to p is sorted, *p is next to insert. */
8454 r_off = (*ext_r_off) (p);
8455 /* Search the sorted region for location to insert. */
8456 loc = p - elt_size;
8457 while (r_off < (*ext_r_off) (loc))
8458 loc -= elt_size;
8459 loc += elt_size;
8460 if (loc != p)
8461 {
8462 /* Chances are there is a run of relocs to insert here,
8463 from one of more input files. Files are not always
8464 linked in order due to the way elf_link_input_bfd is
8465 called. See pr17666. */
8466 size_t sortlen = p - loc;
8467 bfd_vma r_off2 = (*ext_r_off) (loc);
8468 size_t runlen = elt_size;
8469 size_t buf_size = 96 * 1024;
8470 while (p + runlen < end
8471 && (sortlen <= buf_size
8472 || runlen + elt_size <= buf_size)
8473 && r_off2 > (*ext_r_off) (p + runlen))
8474 runlen += elt_size;
8475 if (buf == NULL)
8476 {
8477 buf = bfd_malloc (buf_size);
8478 if (buf == NULL)
8479 return FALSE;
8480 }
8481 if (runlen < sortlen)
8482 {
8483 memcpy (buf, p, runlen);
8484 memmove (loc + runlen, loc, sortlen);
8485 memcpy (loc, buf, runlen);
8486 }
8487 else
8488 {
8489 memcpy (buf, loc, sortlen);
8490 memmove (loc, p, runlen);
8491 memcpy (loc + runlen, buf, sortlen);
8492 }
8493 p += runlen - elt_size;
8494 }
8495 }
8496 /* Hashes are no longer valid. */
8497 free (reldata->hashes);
8498 reldata->hashes = NULL;
8499 free (buf);
8500 }
8501 return TRUE;
8502 }
8503
8504 struct elf_link_sort_rela
8505 {
8506 union {
8507 bfd_vma offset;
8508 bfd_vma sym_mask;
8509 } u;
8510 enum elf_reloc_type_class type;
8511 /* We use this as an array of size int_rels_per_ext_rel. */
8512 Elf_Internal_Rela rela[1];
8513 };
8514
8515 static int
8516 elf_link_sort_cmp1 (const void *A, const void *B)
8517 {
8518 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8519 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8520 int relativea, relativeb;
8521
8522 relativea = a->type == reloc_class_relative;
8523 relativeb = b->type == reloc_class_relative;
8524
8525 if (relativea < relativeb)
8526 return 1;
8527 if (relativea > relativeb)
8528 return -1;
8529 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8530 return -1;
8531 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8532 return 1;
8533 if (a->rela->r_offset < b->rela->r_offset)
8534 return -1;
8535 if (a->rela->r_offset > b->rela->r_offset)
8536 return 1;
8537 return 0;
8538 }
8539
8540 static int
8541 elf_link_sort_cmp2 (const void *A, const void *B)
8542 {
8543 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8544 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8545
8546 if (a->type < b->type)
8547 return -1;
8548 if (a->type > b->type)
8549 return 1;
8550 if (a->u.offset < b->u.offset)
8551 return -1;
8552 if (a->u.offset > b->u.offset)
8553 return 1;
8554 if (a->rela->r_offset < b->rela->r_offset)
8555 return -1;
8556 if (a->rela->r_offset > b->rela->r_offset)
8557 return 1;
8558 return 0;
8559 }
8560
8561 static size_t
8562 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8563 {
8564 asection *dynamic_relocs;
8565 asection *rela_dyn;
8566 asection *rel_dyn;
8567 bfd_size_type count, size;
8568 size_t i, ret, sort_elt, ext_size;
8569 bfd_byte *sort, *s_non_relative, *p;
8570 struct elf_link_sort_rela *sq;
8571 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8572 int i2e = bed->s->int_rels_per_ext_rel;
8573 unsigned int opb = bfd_octets_per_byte (abfd);
8574 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8575 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8576 struct bfd_link_order *lo;
8577 bfd_vma r_sym_mask;
8578 bfd_boolean use_rela;
8579
8580 /* Find a dynamic reloc section. */
8581 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8582 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8583 if (rela_dyn != NULL && rela_dyn->size > 0
8584 && rel_dyn != NULL && rel_dyn->size > 0)
8585 {
8586 bfd_boolean use_rela_initialised = FALSE;
8587
8588 /* This is just here to stop gcc from complaining.
8589 Its initialization checking code is not perfect. */
8590 use_rela = TRUE;
8591
8592 /* Both sections are present. Examine the sizes
8593 of the indirect sections to help us choose. */
8594 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8595 if (lo->type == bfd_indirect_link_order)
8596 {
8597 asection *o = lo->u.indirect.section;
8598
8599 if ((o->size % bed->s->sizeof_rela) == 0)
8600 {
8601 if ((o->size % bed->s->sizeof_rel) == 0)
8602 /* Section size is divisible by both rel and rela sizes.
8603 It is of no help to us. */
8604 ;
8605 else
8606 {
8607 /* Section size is only divisible by rela. */
8608 if (use_rela_initialised && (use_rela == FALSE))
8609 {
8610 _bfd_error_handler (_("%B: Unable to sort relocs - "
8611 "they are in more than one size"),
8612 abfd);
8613 bfd_set_error (bfd_error_invalid_operation);
8614 return 0;
8615 }
8616 else
8617 {
8618 use_rela = TRUE;
8619 use_rela_initialised = TRUE;
8620 }
8621 }
8622 }
8623 else if ((o->size % bed->s->sizeof_rel) == 0)
8624 {
8625 /* Section size is only divisible by rel. */
8626 if (use_rela_initialised && (use_rela == TRUE))
8627 {
8628 _bfd_error_handler (_("%B: Unable to sort relocs - "
8629 "they are in more than one size"),
8630 abfd);
8631 bfd_set_error (bfd_error_invalid_operation);
8632 return 0;
8633 }
8634 else
8635 {
8636 use_rela = FALSE;
8637 use_rela_initialised = TRUE;
8638 }
8639 }
8640 else
8641 {
8642 /* The section size is not divisible by either -
8643 something is wrong. */
8644 _bfd_error_handler (_("%B: Unable to sort relocs - "
8645 "they are of an unknown size"), abfd);
8646 bfd_set_error (bfd_error_invalid_operation);
8647 return 0;
8648 }
8649 }
8650
8651 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8652 if (lo->type == bfd_indirect_link_order)
8653 {
8654 asection *o = lo->u.indirect.section;
8655
8656 if ((o->size % bed->s->sizeof_rela) == 0)
8657 {
8658 if ((o->size % bed->s->sizeof_rel) == 0)
8659 /* Section size is divisible by both rel and rela sizes.
8660 It is of no help to us. */
8661 ;
8662 else
8663 {
8664 /* Section size is only divisible by rela. */
8665 if (use_rela_initialised && (use_rela == FALSE))
8666 {
8667 _bfd_error_handler (_("%B: Unable to sort relocs - "
8668 "they are in more than one size"),
8669 abfd);
8670 bfd_set_error (bfd_error_invalid_operation);
8671 return 0;
8672 }
8673 else
8674 {
8675 use_rela = TRUE;
8676 use_rela_initialised = TRUE;
8677 }
8678 }
8679 }
8680 else if ((o->size % bed->s->sizeof_rel) == 0)
8681 {
8682 /* Section size is only divisible by rel. */
8683 if (use_rela_initialised && (use_rela == TRUE))
8684 {
8685 _bfd_error_handler (_("%B: Unable to sort relocs - "
8686 "they are in more than one size"),
8687 abfd);
8688 bfd_set_error (bfd_error_invalid_operation);
8689 return 0;
8690 }
8691 else
8692 {
8693 use_rela = FALSE;
8694 use_rela_initialised = TRUE;
8695 }
8696 }
8697 else
8698 {
8699 /* The section size is not divisible by either -
8700 something is wrong. */
8701 _bfd_error_handler (_("%B: Unable to sort relocs - "
8702 "they are of an unknown size"), abfd);
8703 bfd_set_error (bfd_error_invalid_operation);
8704 return 0;
8705 }
8706 }
8707
8708 if (! use_rela_initialised)
8709 /* Make a guess. */
8710 use_rela = TRUE;
8711 }
8712 else if (rela_dyn != NULL && rela_dyn->size > 0)
8713 use_rela = TRUE;
8714 else if (rel_dyn != NULL && rel_dyn->size > 0)
8715 use_rela = FALSE;
8716 else
8717 return 0;
8718
8719 if (use_rela)
8720 {
8721 dynamic_relocs = rela_dyn;
8722 ext_size = bed->s->sizeof_rela;
8723 swap_in = bed->s->swap_reloca_in;
8724 swap_out = bed->s->swap_reloca_out;
8725 }
8726 else
8727 {
8728 dynamic_relocs = rel_dyn;
8729 ext_size = bed->s->sizeof_rel;
8730 swap_in = bed->s->swap_reloc_in;
8731 swap_out = bed->s->swap_reloc_out;
8732 }
8733
8734 size = 0;
8735 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8736 if (lo->type == bfd_indirect_link_order)
8737 size += lo->u.indirect.section->size;
8738
8739 if (size != dynamic_relocs->size)
8740 return 0;
8741
8742 sort_elt = (sizeof (struct elf_link_sort_rela)
8743 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8744
8745 count = dynamic_relocs->size / ext_size;
8746 if (count == 0)
8747 return 0;
8748 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8749
8750 if (sort == NULL)
8751 {
8752 (*info->callbacks->warning)
8753 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8754 return 0;
8755 }
8756
8757 if (bed->s->arch_size == 32)
8758 r_sym_mask = ~(bfd_vma) 0xff;
8759 else
8760 r_sym_mask = ~(bfd_vma) 0xffffffff;
8761
8762 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8763 if (lo->type == bfd_indirect_link_order)
8764 {
8765 bfd_byte *erel, *erelend;
8766 asection *o = lo->u.indirect.section;
8767
8768 if (o->contents == NULL && o->size != 0)
8769 {
8770 /* This is a reloc section that is being handled as a normal
8771 section. See bfd_section_from_shdr. We can't combine
8772 relocs in this case. */
8773 free (sort);
8774 return 0;
8775 }
8776 erel = o->contents;
8777 erelend = o->contents + o->size;
8778 p = sort + o->output_offset * opb / ext_size * sort_elt;
8779
8780 while (erel < erelend)
8781 {
8782 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8783
8784 (*swap_in) (abfd, erel, s->rela);
8785 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8786 s->u.sym_mask = r_sym_mask;
8787 p += sort_elt;
8788 erel += ext_size;
8789 }
8790 }
8791
8792 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8793
8794 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8795 {
8796 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8797 if (s->type != reloc_class_relative)
8798 break;
8799 }
8800 ret = i;
8801 s_non_relative = p;
8802
8803 sq = (struct elf_link_sort_rela *) s_non_relative;
8804 for (; i < count; i++, p += sort_elt)
8805 {
8806 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8807 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8808 sq = sp;
8809 sp->u.offset = sq->rela->r_offset;
8810 }
8811
8812 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8813
8814 struct elf_link_hash_table *htab = elf_hash_table (info);
8815 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
8816 {
8817 /* We have plt relocs in .rela.dyn. */
8818 sq = (struct elf_link_sort_rela *) sort;
8819 for (i = 0; i < count; i++)
8820 if (sq[count - i - 1].type != reloc_class_plt)
8821 break;
8822 if (i != 0 && htab->srelplt->size == i * ext_size)
8823 {
8824 struct bfd_link_order **plo;
8825 /* Put srelplt link_order last. This is so the output_offset
8826 set in the next loop is correct for DT_JMPREL. */
8827 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
8828 if ((*plo)->type == bfd_indirect_link_order
8829 && (*plo)->u.indirect.section == htab->srelplt)
8830 {
8831 lo = *plo;
8832 *plo = lo->next;
8833 }
8834 else
8835 plo = &(*plo)->next;
8836 *plo = lo;
8837 lo->next = NULL;
8838 dynamic_relocs->map_tail.link_order = lo;
8839 }
8840 }
8841
8842 p = sort;
8843 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8844 if (lo->type == bfd_indirect_link_order)
8845 {
8846 bfd_byte *erel, *erelend;
8847 asection *o = lo->u.indirect.section;
8848
8849 erel = o->contents;
8850 erelend = o->contents + o->size;
8851 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
8852 while (erel < erelend)
8853 {
8854 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8855 (*swap_out) (abfd, s->rela, erel);
8856 p += sort_elt;
8857 erel += ext_size;
8858 }
8859 }
8860
8861 free (sort);
8862 *psec = dynamic_relocs;
8863 return ret;
8864 }
8865
8866 /* Add a symbol to the output symbol string table. */
8867
8868 static int
8869 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
8870 const char *name,
8871 Elf_Internal_Sym *elfsym,
8872 asection *input_sec,
8873 struct elf_link_hash_entry *h)
8874 {
8875 int (*output_symbol_hook)
8876 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8877 struct elf_link_hash_entry *);
8878 struct elf_link_hash_table *hash_table;
8879 const struct elf_backend_data *bed;
8880 bfd_size_type strtabsize;
8881
8882 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8883
8884 bed = get_elf_backend_data (flinfo->output_bfd);
8885 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8886 if (output_symbol_hook != NULL)
8887 {
8888 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8889 if (ret != 1)
8890 return ret;
8891 }
8892
8893 if (name == NULL
8894 || *name == '\0'
8895 || (input_sec->flags & SEC_EXCLUDE))
8896 elfsym->st_name = (unsigned long) -1;
8897 else
8898 {
8899 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
8900 to get the final offset for st_name. */
8901 elfsym->st_name
8902 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
8903 name, FALSE);
8904 if (elfsym->st_name == (unsigned long) -1)
8905 return 0;
8906 }
8907
8908 hash_table = elf_hash_table (flinfo->info);
8909 strtabsize = hash_table->strtabsize;
8910 if (strtabsize <= hash_table->strtabcount)
8911 {
8912 strtabsize += strtabsize;
8913 hash_table->strtabsize = strtabsize;
8914 strtabsize *= sizeof (*hash_table->strtab);
8915 hash_table->strtab
8916 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
8917 strtabsize);
8918 if (hash_table->strtab == NULL)
8919 return 0;
8920 }
8921 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
8922 hash_table->strtab[hash_table->strtabcount].dest_index
8923 = hash_table->strtabcount;
8924 hash_table->strtab[hash_table->strtabcount].destshndx_index
8925 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
8926
8927 bfd_get_symcount (flinfo->output_bfd) += 1;
8928 hash_table->strtabcount += 1;
8929
8930 return 1;
8931 }
8932
8933 /* Swap symbols out to the symbol table and flush the output symbols to
8934 the file. */
8935
8936 static bfd_boolean
8937 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
8938 {
8939 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
8940 bfd_size_type amt;
8941 size_t i;
8942 const struct elf_backend_data *bed;
8943 bfd_byte *symbuf;
8944 Elf_Internal_Shdr *hdr;
8945 file_ptr pos;
8946 bfd_boolean ret;
8947
8948 if (!hash_table->strtabcount)
8949 return TRUE;
8950
8951 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8952
8953 bed = get_elf_backend_data (flinfo->output_bfd);
8954
8955 amt = bed->s->sizeof_sym * hash_table->strtabcount;
8956 symbuf = (bfd_byte *) bfd_malloc (amt);
8957 if (symbuf == NULL)
8958 return FALSE;
8959
8960 if (flinfo->symshndxbuf)
8961 {
8962 amt = sizeof (Elf_External_Sym_Shndx);
8963 amt *= bfd_get_symcount (flinfo->output_bfd);
8964 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
8965 if (flinfo->symshndxbuf == NULL)
8966 {
8967 free (symbuf);
8968 return FALSE;
8969 }
8970 }
8971
8972 for (i = 0; i < hash_table->strtabcount; i++)
8973 {
8974 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
8975 if (elfsym->sym.st_name == (unsigned long) -1)
8976 elfsym->sym.st_name = 0;
8977 else
8978 elfsym->sym.st_name
8979 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
8980 elfsym->sym.st_name);
8981 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
8982 ((bfd_byte *) symbuf
8983 + (elfsym->dest_index
8984 * bed->s->sizeof_sym)),
8985 (flinfo->symshndxbuf
8986 + elfsym->destshndx_index));
8987 }
8988
8989 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8990 pos = hdr->sh_offset + hdr->sh_size;
8991 amt = hash_table->strtabcount * bed->s->sizeof_sym;
8992 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
8993 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
8994 {
8995 hdr->sh_size += amt;
8996 ret = TRUE;
8997 }
8998 else
8999 ret = FALSE;
9000
9001 free (symbuf);
9002
9003 free (hash_table->strtab);
9004 hash_table->strtab = NULL;
9005
9006 return ret;
9007 }
9008
9009 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9010
9011 static bfd_boolean
9012 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9013 {
9014 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9015 && sym->st_shndx < SHN_LORESERVE)
9016 {
9017 /* The gABI doesn't support dynamic symbols in output sections
9018 beyond 64k. */
9019 (*_bfd_error_handler)
9020 (_("%B: Too many sections: %d (>= %d)"),
9021 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9022 bfd_set_error (bfd_error_nonrepresentable_section);
9023 return FALSE;
9024 }
9025 return TRUE;
9026 }
9027
9028 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9029 allowing an unsatisfied unversioned symbol in the DSO to match a
9030 versioned symbol that would normally require an explicit version.
9031 We also handle the case that a DSO references a hidden symbol
9032 which may be satisfied by a versioned symbol in another DSO. */
9033
9034 static bfd_boolean
9035 elf_link_check_versioned_symbol (struct bfd_link_info *info,
9036 const struct elf_backend_data *bed,
9037 struct elf_link_hash_entry *h)
9038 {
9039 bfd *abfd;
9040 struct elf_link_loaded_list *loaded;
9041
9042 if (!is_elf_hash_table (info->hash))
9043 return FALSE;
9044
9045 /* Check indirect symbol. */
9046 while (h->root.type == bfd_link_hash_indirect)
9047 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9048
9049 switch (h->root.type)
9050 {
9051 default:
9052 abfd = NULL;
9053 break;
9054
9055 case bfd_link_hash_undefined:
9056 case bfd_link_hash_undefweak:
9057 abfd = h->root.u.undef.abfd;
9058 if (abfd == NULL
9059 || (abfd->flags & DYNAMIC) == 0
9060 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9061 return FALSE;
9062 break;
9063
9064 case bfd_link_hash_defined:
9065 case bfd_link_hash_defweak:
9066 abfd = h->root.u.def.section->owner;
9067 break;
9068
9069 case bfd_link_hash_common:
9070 abfd = h->root.u.c.p->section->owner;
9071 break;
9072 }
9073 BFD_ASSERT (abfd != NULL);
9074
9075 for (loaded = elf_hash_table (info)->loaded;
9076 loaded != NULL;
9077 loaded = loaded->next)
9078 {
9079 bfd *input;
9080 Elf_Internal_Shdr *hdr;
9081 size_t symcount;
9082 size_t extsymcount;
9083 size_t extsymoff;
9084 Elf_Internal_Shdr *versymhdr;
9085 Elf_Internal_Sym *isym;
9086 Elf_Internal_Sym *isymend;
9087 Elf_Internal_Sym *isymbuf;
9088 Elf_External_Versym *ever;
9089 Elf_External_Versym *extversym;
9090
9091 input = loaded->abfd;
9092
9093 /* We check each DSO for a possible hidden versioned definition. */
9094 if (input == abfd
9095 || (input->flags & DYNAMIC) == 0
9096 || elf_dynversym (input) == 0)
9097 continue;
9098
9099 hdr = &elf_tdata (input)->dynsymtab_hdr;
9100
9101 symcount = hdr->sh_size / bed->s->sizeof_sym;
9102 if (elf_bad_symtab (input))
9103 {
9104 extsymcount = symcount;
9105 extsymoff = 0;
9106 }
9107 else
9108 {
9109 extsymcount = symcount - hdr->sh_info;
9110 extsymoff = hdr->sh_info;
9111 }
9112
9113 if (extsymcount == 0)
9114 continue;
9115
9116 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9117 NULL, NULL, NULL);
9118 if (isymbuf == NULL)
9119 return FALSE;
9120
9121 /* Read in any version definitions. */
9122 versymhdr = &elf_tdata (input)->dynversym_hdr;
9123 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
9124 if (extversym == NULL)
9125 goto error_ret;
9126
9127 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9128 || (bfd_bread (extversym, versymhdr->sh_size, input)
9129 != versymhdr->sh_size))
9130 {
9131 free (extversym);
9132 error_ret:
9133 free (isymbuf);
9134 return FALSE;
9135 }
9136
9137 ever = extversym + extsymoff;
9138 isymend = isymbuf + extsymcount;
9139 for (isym = isymbuf; isym < isymend; isym++, ever++)
9140 {
9141 const char *name;
9142 Elf_Internal_Versym iver;
9143 unsigned short version_index;
9144
9145 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9146 || isym->st_shndx == SHN_UNDEF)
9147 continue;
9148
9149 name = bfd_elf_string_from_elf_section (input,
9150 hdr->sh_link,
9151 isym->st_name);
9152 if (strcmp (name, h->root.root.string) != 0)
9153 continue;
9154
9155 _bfd_elf_swap_versym_in (input, ever, &iver);
9156
9157 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9158 && !(h->def_regular
9159 && h->forced_local))
9160 {
9161 /* If we have a non-hidden versioned sym, then it should
9162 have provided a definition for the undefined sym unless
9163 it is defined in a non-shared object and forced local.
9164 */
9165 abort ();
9166 }
9167
9168 version_index = iver.vs_vers & VERSYM_VERSION;
9169 if (version_index == 1 || version_index == 2)
9170 {
9171 /* This is the base or first version. We can use it. */
9172 free (extversym);
9173 free (isymbuf);
9174 return TRUE;
9175 }
9176 }
9177
9178 free (extversym);
9179 free (isymbuf);
9180 }
9181
9182 return FALSE;
9183 }
9184
9185 /* Convert ELF common symbol TYPE. */
9186
9187 static int
9188 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9189 {
9190 /* Commom symbol can only appear in relocatable link. */
9191 if (!bfd_link_relocatable (info))
9192 abort ();
9193 switch (info->elf_stt_common)
9194 {
9195 case unchanged:
9196 break;
9197 case elf_stt_common:
9198 type = STT_COMMON;
9199 break;
9200 case no_elf_stt_common:
9201 type = STT_OBJECT;
9202 break;
9203 }
9204 return type;
9205 }
9206
9207 /* Add an external symbol to the symbol table. This is called from
9208 the hash table traversal routine. When generating a shared object,
9209 we go through the symbol table twice. The first time we output
9210 anything that might have been forced to local scope in a version
9211 script. The second time we output the symbols that are still
9212 global symbols. */
9213
9214 static bfd_boolean
9215 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9216 {
9217 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9218 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9219 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9220 bfd_boolean strip;
9221 Elf_Internal_Sym sym;
9222 asection *input_sec;
9223 const struct elf_backend_data *bed;
9224 long indx;
9225 int ret;
9226 unsigned int type;
9227 /* A symbol is bound locally if it is forced local or it is locally
9228 defined, hidden versioned, not referenced by shared library and
9229 not exported when linking executable. */
9230 bfd_boolean local_bind = (h->forced_local
9231 || (bfd_link_executable (flinfo->info)
9232 && !flinfo->info->export_dynamic
9233 && !h->dynamic
9234 && !h->ref_dynamic
9235 && h->def_regular
9236 && h->versioned == versioned_hidden));
9237
9238 if (h->root.type == bfd_link_hash_warning)
9239 {
9240 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9241 if (h->root.type == bfd_link_hash_new)
9242 return TRUE;
9243 }
9244
9245 /* Decide whether to output this symbol in this pass. */
9246 if (eoinfo->localsyms)
9247 {
9248 if (!local_bind)
9249 return TRUE;
9250 }
9251 else
9252 {
9253 if (local_bind)
9254 return TRUE;
9255 }
9256
9257 bed = get_elf_backend_data (flinfo->output_bfd);
9258
9259 if (h->root.type == bfd_link_hash_undefined)
9260 {
9261 /* If we have an undefined symbol reference here then it must have
9262 come from a shared library that is being linked in. (Undefined
9263 references in regular files have already been handled unless
9264 they are in unreferenced sections which are removed by garbage
9265 collection). */
9266 bfd_boolean ignore_undef = FALSE;
9267
9268 /* Some symbols may be special in that the fact that they're
9269 undefined can be safely ignored - let backend determine that. */
9270 if (bed->elf_backend_ignore_undef_symbol)
9271 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9272
9273 /* If we are reporting errors for this situation then do so now. */
9274 if (!ignore_undef
9275 && h->ref_dynamic
9276 && (!h->ref_regular || flinfo->info->gc_sections)
9277 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9278 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9279 (*flinfo->info->callbacks->undefined_symbol)
9280 (flinfo->info, h->root.root.string,
9281 h->ref_regular ? NULL : h->root.u.undef.abfd,
9282 NULL, 0,
9283 flinfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR);
9284
9285 /* Strip a global symbol defined in a discarded section. */
9286 if (h->indx == -3)
9287 return TRUE;
9288 }
9289
9290 /* We should also warn if a forced local symbol is referenced from
9291 shared libraries. */
9292 if (bfd_link_executable (flinfo->info)
9293 && h->forced_local
9294 && h->ref_dynamic
9295 && h->def_regular
9296 && !h->dynamic_def
9297 && h->ref_dynamic_nonweak
9298 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9299 {
9300 bfd *def_bfd;
9301 const char *msg;
9302 struct elf_link_hash_entry *hi = h;
9303
9304 /* Check indirect symbol. */
9305 while (hi->root.type == bfd_link_hash_indirect)
9306 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9307
9308 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9309 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
9310 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9311 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
9312 else
9313 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
9314 def_bfd = flinfo->output_bfd;
9315 if (hi->root.u.def.section != bfd_abs_section_ptr)
9316 def_bfd = hi->root.u.def.section->owner;
9317 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
9318 h->root.root.string);
9319 bfd_set_error (bfd_error_bad_value);
9320 eoinfo->failed = TRUE;
9321 return FALSE;
9322 }
9323
9324 /* We don't want to output symbols that have never been mentioned by
9325 a regular file, or that we have been told to strip. However, if
9326 h->indx is set to -2, the symbol is used by a reloc and we must
9327 output it. */
9328 strip = FALSE;
9329 if (h->indx == -2)
9330 ;
9331 else if ((h->def_dynamic
9332 || h->ref_dynamic
9333 || h->root.type == bfd_link_hash_new)
9334 && !h->def_regular
9335 && !h->ref_regular)
9336 strip = TRUE;
9337 else if (flinfo->info->strip == strip_all)
9338 strip = TRUE;
9339 else if (flinfo->info->strip == strip_some
9340 && bfd_hash_lookup (flinfo->info->keep_hash,
9341 h->root.root.string, FALSE, FALSE) == NULL)
9342 strip = TRUE;
9343 else if ((h->root.type == bfd_link_hash_defined
9344 || h->root.type == bfd_link_hash_defweak)
9345 && ((flinfo->info->strip_discarded
9346 && discarded_section (h->root.u.def.section))
9347 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9348 && h->root.u.def.section->owner != NULL
9349 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9350 strip = TRUE;
9351 else if ((h->root.type == bfd_link_hash_undefined
9352 || h->root.type == bfd_link_hash_undefweak)
9353 && h->root.u.undef.abfd != NULL
9354 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9355 strip = TRUE;
9356
9357 type = h->type;
9358
9359 /* If we're stripping it, and it's not a dynamic symbol, there's
9360 nothing else to do. However, if it is a forced local symbol or
9361 an ifunc symbol we need to give the backend finish_dynamic_symbol
9362 function a chance to make it dynamic. */
9363 if (strip
9364 && h->dynindx == -1
9365 && type != STT_GNU_IFUNC
9366 && !h->forced_local)
9367 return TRUE;
9368
9369 sym.st_value = 0;
9370 sym.st_size = h->size;
9371 sym.st_other = h->other;
9372 switch (h->root.type)
9373 {
9374 default:
9375 case bfd_link_hash_new:
9376 case bfd_link_hash_warning:
9377 abort ();
9378 return FALSE;
9379
9380 case bfd_link_hash_undefined:
9381 case bfd_link_hash_undefweak:
9382 input_sec = bfd_und_section_ptr;
9383 sym.st_shndx = SHN_UNDEF;
9384 break;
9385
9386 case bfd_link_hash_defined:
9387 case bfd_link_hash_defweak:
9388 {
9389 input_sec = h->root.u.def.section;
9390 if (input_sec->output_section != NULL)
9391 {
9392 sym.st_shndx =
9393 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9394 input_sec->output_section);
9395 if (sym.st_shndx == SHN_BAD)
9396 {
9397 (*_bfd_error_handler)
9398 (_("%B: could not find output section %A for input section %A"),
9399 flinfo->output_bfd, input_sec->output_section, input_sec);
9400 bfd_set_error (bfd_error_nonrepresentable_section);
9401 eoinfo->failed = TRUE;
9402 return FALSE;
9403 }
9404
9405 /* ELF symbols in relocatable files are section relative,
9406 but in nonrelocatable files they are virtual
9407 addresses. */
9408 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9409 if (!bfd_link_relocatable (flinfo->info))
9410 {
9411 sym.st_value += input_sec->output_section->vma;
9412 if (h->type == STT_TLS)
9413 {
9414 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9415 if (tls_sec != NULL)
9416 sym.st_value -= tls_sec->vma;
9417 }
9418 }
9419 }
9420 else
9421 {
9422 BFD_ASSERT (input_sec->owner == NULL
9423 || (input_sec->owner->flags & DYNAMIC) != 0);
9424 sym.st_shndx = SHN_UNDEF;
9425 input_sec = bfd_und_section_ptr;
9426 }
9427 }
9428 break;
9429
9430 case bfd_link_hash_common:
9431 input_sec = h->root.u.c.p->section;
9432 sym.st_shndx = bed->common_section_index (input_sec);
9433 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9434 break;
9435
9436 case bfd_link_hash_indirect:
9437 /* These symbols are created by symbol versioning. They point
9438 to the decorated version of the name. For example, if the
9439 symbol foo@@GNU_1.2 is the default, which should be used when
9440 foo is used with no version, then we add an indirect symbol
9441 foo which points to foo@@GNU_1.2. We ignore these symbols,
9442 since the indirected symbol is already in the hash table. */
9443 return TRUE;
9444 }
9445
9446 if (type == STT_COMMON || type == STT_OBJECT)
9447 switch (h->root.type)
9448 {
9449 case bfd_link_hash_common:
9450 type = elf_link_convert_common_type (flinfo->info, type);
9451 break;
9452 case bfd_link_hash_defined:
9453 case bfd_link_hash_defweak:
9454 if (bed->common_definition (&sym))
9455 type = elf_link_convert_common_type (flinfo->info, type);
9456 else
9457 type = STT_OBJECT;
9458 break;
9459 case bfd_link_hash_undefined:
9460 case bfd_link_hash_undefweak:
9461 break;
9462 default:
9463 abort ();
9464 }
9465
9466 if (local_bind)
9467 {
9468 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
9469 /* Turn off visibility on local symbol. */
9470 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
9471 }
9472 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
9473 else if (h->unique_global && h->def_regular)
9474 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
9475 else if (h->root.type == bfd_link_hash_undefweak
9476 || h->root.type == bfd_link_hash_defweak)
9477 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
9478 else
9479 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
9480 sym.st_target_internal = h->target_internal;
9481
9482 /* Give the processor backend a chance to tweak the symbol value,
9483 and also to finish up anything that needs to be done for this
9484 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9485 forced local syms when non-shared is due to a historical quirk.
9486 STT_GNU_IFUNC symbol must go through PLT. */
9487 if ((h->type == STT_GNU_IFUNC
9488 && h->def_regular
9489 && !bfd_link_relocatable (flinfo->info))
9490 || ((h->dynindx != -1
9491 || h->forced_local)
9492 && ((bfd_link_pic (flinfo->info)
9493 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9494 || h->root.type != bfd_link_hash_undefweak))
9495 || !h->forced_local)
9496 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9497 {
9498 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9499 (flinfo->output_bfd, flinfo->info, h, &sym)))
9500 {
9501 eoinfo->failed = TRUE;
9502 return FALSE;
9503 }
9504 }
9505
9506 /* If we are marking the symbol as undefined, and there are no
9507 non-weak references to this symbol from a regular object, then
9508 mark the symbol as weak undefined; if there are non-weak
9509 references, mark the symbol as strong. We can't do this earlier,
9510 because it might not be marked as undefined until the
9511 finish_dynamic_symbol routine gets through with it. */
9512 if (sym.st_shndx == SHN_UNDEF
9513 && h->ref_regular
9514 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9515 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9516 {
9517 int bindtype;
9518 type = ELF_ST_TYPE (sym.st_info);
9519
9520 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9521 if (type == STT_GNU_IFUNC)
9522 type = STT_FUNC;
9523
9524 if (h->ref_regular_nonweak)
9525 bindtype = STB_GLOBAL;
9526 else
9527 bindtype = STB_WEAK;
9528 sym.st_info = ELF_ST_INFO (bindtype, type);
9529 }
9530
9531 /* If this is a symbol defined in a dynamic library, don't use the
9532 symbol size from the dynamic library. Relinking an executable
9533 against a new library may introduce gratuitous changes in the
9534 executable's symbols if we keep the size. */
9535 if (sym.st_shndx == SHN_UNDEF
9536 && !h->def_regular
9537 && h->def_dynamic)
9538 sym.st_size = 0;
9539
9540 /* If a non-weak symbol with non-default visibility is not defined
9541 locally, it is a fatal error. */
9542 if (!bfd_link_relocatable (flinfo->info)
9543 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9544 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9545 && h->root.type == bfd_link_hash_undefined
9546 && !h->def_regular)
9547 {
9548 const char *msg;
9549
9550 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9551 msg = _("%B: protected symbol `%s' isn't defined");
9552 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9553 msg = _("%B: internal symbol `%s' isn't defined");
9554 else
9555 msg = _("%B: hidden symbol `%s' isn't defined");
9556 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9557 bfd_set_error (bfd_error_bad_value);
9558 eoinfo->failed = TRUE;
9559 return FALSE;
9560 }
9561
9562 /* If this symbol should be put in the .dynsym section, then put it
9563 there now. We already know the symbol index. We also fill in
9564 the entry in the .hash section. */
9565 if (elf_hash_table (flinfo->info)->dynsym != NULL
9566 && h->dynindx != -1
9567 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9568 {
9569 bfd_byte *esym;
9570
9571 /* Since there is no version information in the dynamic string,
9572 if there is no version info in symbol version section, we will
9573 have a run-time problem if not linking executable, referenced
9574 by shared library, not locally defined, or not bound locally.
9575 */
9576 if (h->verinfo.verdef == NULL
9577 && !local_bind
9578 && (!bfd_link_executable (flinfo->info)
9579 || h->ref_dynamic
9580 || !h->def_regular))
9581 {
9582 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9583
9584 if (p && p [1] != '\0')
9585 {
9586 (*_bfd_error_handler)
9587 (_("%B: No symbol version section for versioned symbol `%s'"),
9588 flinfo->output_bfd, h->root.root.string);
9589 eoinfo->failed = TRUE;
9590 return FALSE;
9591 }
9592 }
9593
9594 sym.st_name = h->dynstr_index;
9595 esym = (elf_hash_table (flinfo->info)->dynsym->contents
9596 + h->dynindx * bed->s->sizeof_sym);
9597 if (!check_dynsym (flinfo->output_bfd, &sym))
9598 {
9599 eoinfo->failed = TRUE;
9600 return FALSE;
9601 }
9602 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9603
9604 if (flinfo->hash_sec != NULL)
9605 {
9606 size_t hash_entry_size;
9607 bfd_byte *bucketpos;
9608 bfd_vma chain;
9609 size_t bucketcount;
9610 size_t bucket;
9611
9612 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9613 bucket = h->u.elf_hash_value % bucketcount;
9614
9615 hash_entry_size
9616 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9617 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9618 + (bucket + 2) * hash_entry_size);
9619 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9620 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9621 bucketpos);
9622 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9623 ((bfd_byte *) flinfo->hash_sec->contents
9624 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9625 }
9626
9627 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9628 {
9629 Elf_Internal_Versym iversym;
9630 Elf_External_Versym *eversym;
9631
9632 if (!h->def_regular)
9633 {
9634 if (h->verinfo.verdef == NULL
9635 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9636 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9637 iversym.vs_vers = 0;
9638 else
9639 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9640 }
9641 else
9642 {
9643 if (h->verinfo.vertree == NULL)
9644 iversym.vs_vers = 1;
9645 else
9646 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9647 if (flinfo->info->create_default_symver)
9648 iversym.vs_vers++;
9649 }
9650
9651 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
9652 defined locally. */
9653 if (h->versioned == versioned_hidden && h->def_regular)
9654 iversym.vs_vers |= VERSYM_HIDDEN;
9655
9656 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9657 eversym += h->dynindx;
9658 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9659 }
9660 }
9661
9662 /* If the symbol is undefined, and we didn't output it to .dynsym,
9663 strip it from .symtab too. Obviously we can't do this for
9664 relocatable output or when needed for --emit-relocs. */
9665 else if (input_sec == bfd_und_section_ptr
9666 && h->indx != -2
9667 && !bfd_link_relocatable (flinfo->info))
9668 return TRUE;
9669 /* Also strip others that we couldn't earlier due to dynamic symbol
9670 processing. */
9671 if (strip)
9672 return TRUE;
9673 if ((input_sec->flags & SEC_EXCLUDE) != 0)
9674 return TRUE;
9675
9676 /* Output a FILE symbol so that following locals are not associated
9677 with the wrong input file. We need one for forced local symbols
9678 if we've seen more than one FILE symbol or when we have exactly
9679 one FILE symbol but global symbols are present in a file other
9680 than the one with the FILE symbol. We also need one if linker
9681 defined symbols are present. In practice these conditions are
9682 always met, so just emit the FILE symbol unconditionally. */
9683 if (eoinfo->localsyms
9684 && !eoinfo->file_sym_done
9685 && eoinfo->flinfo->filesym_count != 0)
9686 {
9687 Elf_Internal_Sym fsym;
9688
9689 memset (&fsym, 0, sizeof (fsym));
9690 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9691 fsym.st_shndx = SHN_ABS;
9692 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
9693 bfd_und_section_ptr, NULL))
9694 return FALSE;
9695
9696 eoinfo->file_sym_done = TRUE;
9697 }
9698
9699 indx = bfd_get_symcount (flinfo->output_bfd);
9700 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
9701 input_sec, h);
9702 if (ret == 0)
9703 {
9704 eoinfo->failed = TRUE;
9705 return FALSE;
9706 }
9707 else if (ret == 1)
9708 h->indx = indx;
9709 else if (h->indx == -2)
9710 abort();
9711
9712 return TRUE;
9713 }
9714
9715 /* Return TRUE if special handling is done for relocs in SEC against
9716 symbols defined in discarded sections. */
9717
9718 static bfd_boolean
9719 elf_section_ignore_discarded_relocs (asection *sec)
9720 {
9721 const struct elf_backend_data *bed;
9722
9723 switch (sec->sec_info_type)
9724 {
9725 case SEC_INFO_TYPE_STABS:
9726 case SEC_INFO_TYPE_EH_FRAME:
9727 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
9728 return TRUE;
9729 default:
9730 break;
9731 }
9732
9733 bed = get_elf_backend_data (sec->owner);
9734 if (bed->elf_backend_ignore_discarded_relocs != NULL
9735 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9736 return TRUE;
9737
9738 return FALSE;
9739 }
9740
9741 /* Return a mask saying how ld should treat relocations in SEC against
9742 symbols defined in discarded sections. If this function returns
9743 COMPLAIN set, ld will issue a warning message. If this function
9744 returns PRETEND set, and the discarded section was link-once and the
9745 same size as the kept link-once section, ld will pretend that the
9746 symbol was actually defined in the kept section. Otherwise ld will
9747 zero the reloc (at least that is the intent, but some cooperation by
9748 the target dependent code is needed, particularly for REL targets). */
9749
9750 unsigned int
9751 _bfd_elf_default_action_discarded (asection *sec)
9752 {
9753 if (sec->flags & SEC_DEBUGGING)
9754 return PRETEND;
9755
9756 if (strcmp (".eh_frame", sec->name) == 0)
9757 return 0;
9758
9759 if (strcmp (".gcc_except_table", sec->name) == 0)
9760 return 0;
9761
9762 return COMPLAIN | PRETEND;
9763 }
9764
9765 /* Find a match between a section and a member of a section group. */
9766
9767 static asection *
9768 match_group_member (asection *sec, asection *group,
9769 struct bfd_link_info *info)
9770 {
9771 asection *first = elf_next_in_group (group);
9772 asection *s = first;
9773
9774 while (s != NULL)
9775 {
9776 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9777 return s;
9778
9779 s = elf_next_in_group (s);
9780 if (s == first)
9781 break;
9782 }
9783
9784 return NULL;
9785 }
9786
9787 /* Check if the kept section of a discarded section SEC can be used
9788 to replace it. Return the replacement if it is OK. Otherwise return
9789 NULL. */
9790
9791 asection *
9792 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9793 {
9794 asection *kept;
9795
9796 kept = sec->kept_section;
9797 if (kept != NULL)
9798 {
9799 if ((kept->flags & SEC_GROUP) != 0)
9800 kept = match_group_member (sec, kept, info);
9801 if (kept != NULL
9802 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9803 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9804 kept = NULL;
9805 sec->kept_section = kept;
9806 }
9807 return kept;
9808 }
9809
9810 /* Link an input file into the linker output file. This function
9811 handles all the sections and relocations of the input file at once.
9812 This is so that we only have to read the local symbols once, and
9813 don't have to keep them in memory. */
9814
9815 static bfd_boolean
9816 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9817 {
9818 int (*relocate_section)
9819 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9820 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9821 bfd *output_bfd;
9822 Elf_Internal_Shdr *symtab_hdr;
9823 size_t locsymcount;
9824 size_t extsymoff;
9825 Elf_Internal_Sym *isymbuf;
9826 Elf_Internal_Sym *isym;
9827 Elf_Internal_Sym *isymend;
9828 long *pindex;
9829 asection **ppsection;
9830 asection *o;
9831 const struct elf_backend_data *bed;
9832 struct elf_link_hash_entry **sym_hashes;
9833 bfd_size_type address_size;
9834 bfd_vma r_type_mask;
9835 int r_sym_shift;
9836 bfd_boolean have_file_sym = FALSE;
9837
9838 output_bfd = flinfo->output_bfd;
9839 bed = get_elf_backend_data (output_bfd);
9840 relocate_section = bed->elf_backend_relocate_section;
9841
9842 /* If this is a dynamic object, we don't want to do anything here:
9843 we don't want the local symbols, and we don't want the section
9844 contents. */
9845 if ((input_bfd->flags & DYNAMIC) != 0)
9846 return TRUE;
9847
9848 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9849 if (elf_bad_symtab (input_bfd))
9850 {
9851 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9852 extsymoff = 0;
9853 }
9854 else
9855 {
9856 locsymcount = symtab_hdr->sh_info;
9857 extsymoff = symtab_hdr->sh_info;
9858 }
9859
9860 /* Read the local symbols. */
9861 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9862 if (isymbuf == NULL && locsymcount != 0)
9863 {
9864 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9865 flinfo->internal_syms,
9866 flinfo->external_syms,
9867 flinfo->locsym_shndx);
9868 if (isymbuf == NULL)
9869 return FALSE;
9870 }
9871
9872 /* Find local symbol sections and adjust values of symbols in
9873 SEC_MERGE sections. Write out those local symbols we know are
9874 going into the output file. */
9875 isymend = isymbuf + locsymcount;
9876 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9877 isym < isymend;
9878 isym++, pindex++, ppsection++)
9879 {
9880 asection *isec;
9881 const char *name;
9882 Elf_Internal_Sym osym;
9883 long indx;
9884 int ret;
9885
9886 *pindex = -1;
9887
9888 if (elf_bad_symtab (input_bfd))
9889 {
9890 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9891 {
9892 *ppsection = NULL;
9893 continue;
9894 }
9895 }
9896
9897 if (isym->st_shndx == SHN_UNDEF)
9898 isec = bfd_und_section_ptr;
9899 else if (isym->st_shndx == SHN_ABS)
9900 isec = bfd_abs_section_ptr;
9901 else if (isym->st_shndx == SHN_COMMON)
9902 isec = bfd_com_section_ptr;
9903 else
9904 {
9905 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9906 if (isec == NULL)
9907 {
9908 /* Don't attempt to output symbols with st_shnx in the
9909 reserved range other than SHN_ABS and SHN_COMMON. */
9910 *ppsection = NULL;
9911 continue;
9912 }
9913 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9914 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9915 isym->st_value =
9916 _bfd_merged_section_offset (output_bfd, &isec,
9917 elf_section_data (isec)->sec_info,
9918 isym->st_value);
9919 }
9920
9921 *ppsection = isec;
9922
9923 /* Don't output the first, undefined, symbol. In fact, don't
9924 output any undefined local symbol. */
9925 if (isec == bfd_und_section_ptr)
9926 continue;
9927
9928 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9929 {
9930 /* We never output section symbols. Instead, we use the
9931 section symbol of the corresponding section in the output
9932 file. */
9933 continue;
9934 }
9935
9936 /* If we are stripping all symbols, we don't want to output this
9937 one. */
9938 if (flinfo->info->strip == strip_all)
9939 continue;
9940
9941 /* If we are discarding all local symbols, we don't want to
9942 output this one. If we are generating a relocatable output
9943 file, then some of the local symbols may be required by
9944 relocs; we output them below as we discover that they are
9945 needed. */
9946 if (flinfo->info->discard == discard_all)
9947 continue;
9948
9949 /* If this symbol is defined in a section which we are
9950 discarding, we don't need to keep it. */
9951 if (isym->st_shndx != SHN_UNDEF
9952 && isym->st_shndx < SHN_LORESERVE
9953 && bfd_section_removed_from_list (output_bfd,
9954 isec->output_section))
9955 continue;
9956
9957 /* Get the name of the symbol. */
9958 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9959 isym->st_name);
9960 if (name == NULL)
9961 return FALSE;
9962
9963 /* See if we are discarding symbols with this name. */
9964 if ((flinfo->info->strip == strip_some
9965 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9966 == NULL))
9967 || (((flinfo->info->discard == discard_sec_merge
9968 && (isec->flags & SEC_MERGE)
9969 && !bfd_link_relocatable (flinfo->info))
9970 || flinfo->info->discard == discard_l)
9971 && bfd_is_local_label_name (input_bfd, name)))
9972 continue;
9973
9974 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9975 {
9976 if (input_bfd->lto_output)
9977 /* -flto puts a temp file name here. This means builds
9978 are not reproducible. Discard the symbol. */
9979 continue;
9980 have_file_sym = TRUE;
9981 flinfo->filesym_count += 1;
9982 }
9983 if (!have_file_sym)
9984 {
9985 /* In the absence of debug info, bfd_find_nearest_line uses
9986 FILE symbols to determine the source file for local
9987 function symbols. Provide a FILE symbol here if input
9988 files lack such, so that their symbols won't be
9989 associated with a previous input file. It's not the
9990 source file, but the best we can do. */
9991 have_file_sym = TRUE;
9992 flinfo->filesym_count += 1;
9993 memset (&osym, 0, sizeof (osym));
9994 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9995 osym.st_shndx = SHN_ABS;
9996 if (!elf_link_output_symstrtab (flinfo,
9997 (input_bfd->lto_output ? NULL
9998 : input_bfd->filename),
9999 &osym, bfd_abs_section_ptr,
10000 NULL))
10001 return FALSE;
10002 }
10003
10004 osym = *isym;
10005
10006 /* Adjust the section index for the output file. */
10007 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10008 isec->output_section);
10009 if (osym.st_shndx == SHN_BAD)
10010 return FALSE;
10011
10012 /* ELF symbols in relocatable files are section relative, but
10013 in executable files they are virtual addresses. Note that
10014 this code assumes that all ELF sections have an associated
10015 BFD section with a reasonable value for output_offset; below
10016 we assume that they also have a reasonable value for
10017 output_section. Any special sections must be set up to meet
10018 these requirements. */
10019 osym.st_value += isec->output_offset;
10020 if (!bfd_link_relocatable (flinfo->info))
10021 {
10022 osym.st_value += isec->output_section->vma;
10023 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
10024 {
10025 /* STT_TLS symbols are relative to PT_TLS segment base. */
10026 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
10027 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
10028 }
10029 }
10030
10031 indx = bfd_get_symcount (output_bfd);
10032 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
10033 if (ret == 0)
10034 return FALSE;
10035 else if (ret == 1)
10036 *pindex = indx;
10037 }
10038
10039 if (bed->s->arch_size == 32)
10040 {
10041 r_type_mask = 0xff;
10042 r_sym_shift = 8;
10043 address_size = 4;
10044 }
10045 else
10046 {
10047 r_type_mask = 0xffffffff;
10048 r_sym_shift = 32;
10049 address_size = 8;
10050 }
10051
10052 /* Relocate the contents of each section. */
10053 sym_hashes = elf_sym_hashes (input_bfd);
10054 for (o = input_bfd->sections; o != NULL; o = o->next)
10055 {
10056 bfd_byte *contents;
10057
10058 if (! o->linker_mark)
10059 {
10060 /* This section was omitted from the link. */
10061 continue;
10062 }
10063
10064 if (bfd_link_relocatable (flinfo->info)
10065 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10066 {
10067 /* Deal with the group signature symbol. */
10068 struct bfd_elf_section_data *sec_data = elf_section_data (o);
10069 unsigned long symndx = sec_data->this_hdr.sh_info;
10070 asection *osec = o->output_section;
10071
10072 if (symndx >= locsymcount
10073 || (elf_bad_symtab (input_bfd)
10074 && flinfo->sections[symndx] == NULL))
10075 {
10076 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10077 while (h->root.type == bfd_link_hash_indirect
10078 || h->root.type == bfd_link_hash_warning)
10079 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10080 /* Arrange for symbol to be output. */
10081 h->indx = -2;
10082 elf_section_data (osec)->this_hdr.sh_info = -2;
10083 }
10084 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10085 {
10086 /* We'll use the output section target_index. */
10087 asection *sec = flinfo->sections[symndx]->output_section;
10088 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10089 }
10090 else
10091 {
10092 if (flinfo->indices[symndx] == -1)
10093 {
10094 /* Otherwise output the local symbol now. */
10095 Elf_Internal_Sym sym = isymbuf[symndx];
10096 asection *sec = flinfo->sections[symndx]->output_section;
10097 const char *name;
10098 long indx;
10099 int ret;
10100
10101 name = bfd_elf_string_from_elf_section (input_bfd,
10102 symtab_hdr->sh_link,
10103 sym.st_name);
10104 if (name == NULL)
10105 return FALSE;
10106
10107 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10108 sec);
10109 if (sym.st_shndx == SHN_BAD)
10110 return FALSE;
10111
10112 sym.st_value += o->output_offset;
10113
10114 indx = bfd_get_symcount (output_bfd);
10115 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10116 NULL);
10117 if (ret == 0)
10118 return FALSE;
10119 else if (ret == 1)
10120 flinfo->indices[symndx] = indx;
10121 else
10122 abort ();
10123 }
10124 elf_section_data (osec)->this_hdr.sh_info
10125 = flinfo->indices[symndx];
10126 }
10127 }
10128
10129 if ((o->flags & SEC_HAS_CONTENTS) == 0
10130 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10131 continue;
10132
10133 if ((o->flags & SEC_LINKER_CREATED) != 0)
10134 {
10135 /* Section was created by _bfd_elf_link_create_dynamic_sections
10136 or somesuch. */
10137 continue;
10138 }
10139
10140 /* Get the contents of the section. They have been cached by a
10141 relaxation routine. Note that o is a section in an input
10142 file, so the contents field will not have been set by any of
10143 the routines which work on output files. */
10144 if (elf_section_data (o)->this_hdr.contents != NULL)
10145 {
10146 contents = elf_section_data (o)->this_hdr.contents;
10147 if (bed->caches_rawsize
10148 && o->rawsize != 0
10149 && o->rawsize < o->size)
10150 {
10151 memcpy (flinfo->contents, contents, o->rawsize);
10152 contents = flinfo->contents;
10153 }
10154 }
10155 else
10156 {
10157 contents = flinfo->contents;
10158 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10159 return FALSE;
10160 }
10161
10162 if ((o->flags & SEC_RELOC) != 0)
10163 {
10164 Elf_Internal_Rela *internal_relocs;
10165 Elf_Internal_Rela *rel, *relend;
10166 int action_discarded;
10167 int ret;
10168
10169 /* Get the swapped relocs. */
10170 internal_relocs
10171 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10172 flinfo->internal_relocs, FALSE);
10173 if (internal_relocs == NULL
10174 && o->reloc_count > 0)
10175 return FALSE;
10176
10177 /* We need to reverse-copy input .ctors/.dtors sections if
10178 they are placed in .init_array/.finit_array for output. */
10179 if (o->size > address_size
10180 && ((strncmp (o->name, ".ctors", 6) == 0
10181 && strcmp (o->output_section->name,
10182 ".init_array") == 0)
10183 || (strncmp (o->name, ".dtors", 6) == 0
10184 && strcmp (o->output_section->name,
10185 ".fini_array") == 0))
10186 && (o->name[6] == 0 || o->name[6] == '.'))
10187 {
10188 if (o->size != o->reloc_count * address_size)
10189 {
10190 (*_bfd_error_handler)
10191 (_("error: %B: size of section %A is not "
10192 "multiple of address size"),
10193 input_bfd, o);
10194 bfd_set_error (bfd_error_on_input);
10195 return FALSE;
10196 }
10197 o->flags |= SEC_ELF_REVERSE_COPY;
10198 }
10199
10200 action_discarded = -1;
10201 if (!elf_section_ignore_discarded_relocs (o))
10202 action_discarded = (*bed->action_discarded) (o);
10203
10204 /* Run through the relocs evaluating complex reloc symbols and
10205 looking for relocs against symbols from discarded sections
10206 or section symbols from removed link-once sections.
10207 Complain about relocs against discarded sections. Zero
10208 relocs against removed link-once sections. */
10209
10210 rel = internal_relocs;
10211 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
10212 for ( ; rel < relend; rel++)
10213 {
10214 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10215 unsigned int s_type;
10216 asection **ps, *sec;
10217 struct elf_link_hash_entry *h = NULL;
10218 const char *sym_name;
10219
10220 if (r_symndx == STN_UNDEF)
10221 continue;
10222
10223 if (r_symndx >= locsymcount
10224 || (elf_bad_symtab (input_bfd)
10225 && flinfo->sections[r_symndx] == NULL))
10226 {
10227 h = sym_hashes[r_symndx - extsymoff];
10228
10229 /* Badly formatted input files can contain relocs that
10230 reference non-existant symbols. Check here so that
10231 we do not seg fault. */
10232 if (h == NULL)
10233 {
10234 char buffer [32];
10235
10236 sprintf_vma (buffer, rel->r_info);
10237 (*_bfd_error_handler)
10238 (_("error: %B contains a reloc (0x%s) for section %A "
10239 "that references a non-existent global symbol"),
10240 input_bfd, o, buffer);
10241 bfd_set_error (bfd_error_bad_value);
10242 return FALSE;
10243 }
10244
10245 while (h->root.type == bfd_link_hash_indirect
10246 || h->root.type == bfd_link_hash_warning)
10247 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10248
10249 s_type = h->type;
10250
10251 /* If a plugin symbol is referenced from a non-IR file,
10252 mark the symbol as undefined. Note that the
10253 linker may attach linker created dynamic sections
10254 to the plugin bfd. Symbols defined in linker
10255 created sections are not plugin symbols. */
10256 if (h->root.non_ir_ref
10257 && (h->root.type == bfd_link_hash_defined
10258 || h->root.type == bfd_link_hash_defweak)
10259 && (h->root.u.def.section->flags
10260 & SEC_LINKER_CREATED) == 0
10261 && h->root.u.def.section->owner != NULL
10262 && (h->root.u.def.section->owner->flags
10263 & BFD_PLUGIN) != 0)
10264 {
10265 h->root.type = bfd_link_hash_undefined;
10266 h->root.u.undef.abfd = h->root.u.def.section->owner;
10267 }
10268
10269 ps = NULL;
10270 if (h->root.type == bfd_link_hash_defined
10271 || h->root.type == bfd_link_hash_defweak)
10272 ps = &h->root.u.def.section;
10273
10274 sym_name = h->root.root.string;
10275 }
10276 else
10277 {
10278 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10279
10280 s_type = ELF_ST_TYPE (sym->st_info);
10281 ps = &flinfo->sections[r_symndx];
10282 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10283 sym, *ps);
10284 }
10285
10286 if ((s_type == STT_RELC || s_type == STT_SRELC)
10287 && !bfd_link_relocatable (flinfo->info))
10288 {
10289 bfd_vma val;
10290 bfd_vma dot = (rel->r_offset
10291 + o->output_offset + o->output_section->vma);
10292 #ifdef DEBUG
10293 printf ("Encountered a complex symbol!");
10294 printf (" (input_bfd %s, section %s, reloc %ld\n",
10295 input_bfd->filename, o->name,
10296 (long) (rel - internal_relocs));
10297 printf (" symbol: idx %8.8lx, name %s\n",
10298 r_symndx, sym_name);
10299 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10300 (unsigned long) rel->r_info,
10301 (unsigned long) rel->r_offset);
10302 #endif
10303 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10304 isymbuf, locsymcount, s_type == STT_SRELC))
10305 return FALSE;
10306
10307 /* Symbol evaluated OK. Update to absolute value. */
10308 set_symbol_value (input_bfd, isymbuf, locsymcount,
10309 r_symndx, val);
10310 continue;
10311 }
10312
10313 if (action_discarded != -1 && ps != NULL)
10314 {
10315 /* Complain if the definition comes from a
10316 discarded section. */
10317 if ((sec = *ps) != NULL && discarded_section (sec))
10318 {
10319 BFD_ASSERT (r_symndx != STN_UNDEF);
10320 if (action_discarded & COMPLAIN)
10321 (*flinfo->info->callbacks->einfo)
10322 (_("%X`%s' referenced in section `%A' of %B: "
10323 "defined in discarded section `%A' of %B\n"),
10324 sym_name, o, input_bfd, sec, sec->owner);
10325
10326 /* Try to do the best we can to support buggy old
10327 versions of gcc. Pretend that the symbol is
10328 really defined in the kept linkonce section.
10329 FIXME: This is quite broken. Modifying the
10330 symbol here means we will be changing all later
10331 uses of the symbol, not just in this section. */
10332 if (action_discarded & PRETEND)
10333 {
10334 asection *kept;
10335
10336 kept = _bfd_elf_check_kept_section (sec,
10337 flinfo->info);
10338 if (kept != NULL)
10339 {
10340 *ps = kept;
10341 continue;
10342 }
10343 }
10344 }
10345 }
10346 }
10347
10348 /* Relocate the section by invoking a back end routine.
10349
10350 The back end routine is responsible for adjusting the
10351 section contents as necessary, and (if using Rela relocs
10352 and generating a relocatable output file) adjusting the
10353 reloc addend as necessary.
10354
10355 The back end routine does not have to worry about setting
10356 the reloc address or the reloc symbol index.
10357
10358 The back end routine is given a pointer to the swapped in
10359 internal symbols, and can access the hash table entries
10360 for the external symbols via elf_sym_hashes (input_bfd).
10361
10362 When generating relocatable output, the back end routine
10363 must handle STB_LOCAL/STT_SECTION symbols specially. The
10364 output symbol is going to be a section symbol
10365 corresponding to the output section, which will require
10366 the addend to be adjusted. */
10367
10368 ret = (*relocate_section) (output_bfd, flinfo->info,
10369 input_bfd, o, contents,
10370 internal_relocs,
10371 isymbuf,
10372 flinfo->sections);
10373 if (!ret)
10374 return FALSE;
10375
10376 if (ret == 2
10377 || bfd_link_relocatable (flinfo->info)
10378 || flinfo->info->emitrelocations)
10379 {
10380 Elf_Internal_Rela *irela;
10381 Elf_Internal_Rela *irelaend, *irelamid;
10382 bfd_vma last_offset;
10383 struct elf_link_hash_entry **rel_hash;
10384 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
10385 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
10386 unsigned int next_erel;
10387 bfd_boolean rela_normal;
10388 struct bfd_elf_section_data *esdi, *esdo;
10389
10390 esdi = elf_section_data (o);
10391 esdo = elf_section_data (o->output_section);
10392 rela_normal = FALSE;
10393
10394 /* Adjust the reloc addresses and symbol indices. */
10395
10396 irela = internal_relocs;
10397 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
10398 rel_hash = esdo->rel.hashes + esdo->rel.count;
10399 /* We start processing the REL relocs, if any. When we reach
10400 IRELAMID in the loop, we switch to the RELA relocs. */
10401 irelamid = irela;
10402 if (esdi->rel.hdr != NULL)
10403 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10404 * bed->s->int_rels_per_ext_rel);
10405 rel_hash_list = rel_hash;
10406 rela_hash_list = NULL;
10407 last_offset = o->output_offset;
10408 if (!bfd_link_relocatable (flinfo->info))
10409 last_offset += o->output_section->vma;
10410 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10411 {
10412 unsigned long r_symndx;
10413 asection *sec;
10414 Elf_Internal_Sym sym;
10415
10416 if (next_erel == bed->s->int_rels_per_ext_rel)
10417 {
10418 rel_hash++;
10419 next_erel = 0;
10420 }
10421
10422 if (irela == irelamid)
10423 {
10424 rel_hash = esdo->rela.hashes + esdo->rela.count;
10425 rela_hash_list = rel_hash;
10426 rela_normal = bed->rela_normal;
10427 }
10428
10429 irela->r_offset = _bfd_elf_section_offset (output_bfd,
10430 flinfo->info, o,
10431 irela->r_offset);
10432 if (irela->r_offset >= (bfd_vma) -2)
10433 {
10434 /* This is a reloc for a deleted entry or somesuch.
10435 Turn it into an R_*_NONE reloc, at the same
10436 offset as the last reloc. elf_eh_frame.c and
10437 bfd_elf_discard_info rely on reloc offsets
10438 being ordered. */
10439 irela->r_offset = last_offset;
10440 irela->r_info = 0;
10441 irela->r_addend = 0;
10442 continue;
10443 }
10444
10445 irela->r_offset += o->output_offset;
10446
10447 /* Relocs in an executable have to be virtual addresses. */
10448 if (!bfd_link_relocatable (flinfo->info))
10449 irela->r_offset += o->output_section->vma;
10450
10451 last_offset = irela->r_offset;
10452
10453 r_symndx = irela->r_info >> r_sym_shift;
10454 if (r_symndx == STN_UNDEF)
10455 continue;
10456
10457 if (r_symndx >= locsymcount
10458 || (elf_bad_symtab (input_bfd)
10459 && flinfo->sections[r_symndx] == NULL))
10460 {
10461 struct elf_link_hash_entry *rh;
10462 unsigned long indx;
10463
10464 /* This is a reloc against a global symbol. We
10465 have not yet output all the local symbols, so
10466 we do not know the symbol index of any global
10467 symbol. We set the rel_hash entry for this
10468 reloc to point to the global hash table entry
10469 for this symbol. The symbol index is then
10470 set at the end of bfd_elf_final_link. */
10471 indx = r_symndx - extsymoff;
10472 rh = elf_sym_hashes (input_bfd)[indx];
10473 while (rh->root.type == bfd_link_hash_indirect
10474 || rh->root.type == bfd_link_hash_warning)
10475 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10476
10477 /* Setting the index to -2 tells
10478 elf_link_output_extsym that this symbol is
10479 used by a reloc. */
10480 BFD_ASSERT (rh->indx < 0);
10481 rh->indx = -2;
10482
10483 *rel_hash = rh;
10484
10485 continue;
10486 }
10487
10488 /* This is a reloc against a local symbol. */
10489
10490 *rel_hash = NULL;
10491 sym = isymbuf[r_symndx];
10492 sec = flinfo->sections[r_symndx];
10493 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10494 {
10495 /* I suppose the backend ought to fill in the
10496 section of any STT_SECTION symbol against a
10497 processor specific section. */
10498 r_symndx = STN_UNDEF;
10499 if (bfd_is_abs_section (sec))
10500 ;
10501 else if (sec == NULL || sec->owner == NULL)
10502 {
10503 bfd_set_error (bfd_error_bad_value);
10504 return FALSE;
10505 }
10506 else
10507 {
10508 asection *osec = sec->output_section;
10509
10510 /* If we have discarded a section, the output
10511 section will be the absolute section. In
10512 case of discarded SEC_MERGE sections, use
10513 the kept section. relocate_section should
10514 have already handled discarded linkonce
10515 sections. */
10516 if (bfd_is_abs_section (osec)
10517 && sec->kept_section != NULL
10518 && sec->kept_section->output_section != NULL)
10519 {
10520 osec = sec->kept_section->output_section;
10521 irela->r_addend -= osec->vma;
10522 }
10523
10524 if (!bfd_is_abs_section (osec))
10525 {
10526 r_symndx = osec->target_index;
10527 if (r_symndx == STN_UNDEF)
10528 {
10529 irela->r_addend += osec->vma;
10530 osec = _bfd_nearby_section (output_bfd, osec,
10531 osec->vma);
10532 irela->r_addend -= osec->vma;
10533 r_symndx = osec->target_index;
10534 }
10535 }
10536 }
10537
10538 /* Adjust the addend according to where the
10539 section winds up in the output section. */
10540 if (rela_normal)
10541 irela->r_addend += sec->output_offset;
10542 }
10543 else
10544 {
10545 if (flinfo->indices[r_symndx] == -1)
10546 {
10547 unsigned long shlink;
10548 const char *name;
10549 asection *osec;
10550 long indx;
10551
10552 if (flinfo->info->strip == strip_all)
10553 {
10554 /* You can't do ld -r -s. */
10555 bfd_set_error (bfd_error_invalid_operation);
10556 return FALSE;
10557 }
10558
10559 /* This symbol was skipped earlier, but
10560 since it is needed by a reloc, we
10561 must output it now. */
10562 shlink = symtab_hdr->sh_link;
10563 name = (bfd_elf_string_from_elf_section
10564 (input_bfd, shlink, sym.st_name));
10565 if (name == NULL)
10566 return FALSE;
10567
10568 osec = sec->output_section;
10569 sym.st_shndx =
10570 _bfd_elf_section_from_bfd_section (output_bfd,
10571 osec);
10572 if (sym.st_shndx == SHN_BAD)
10573 return FALSE;
10574
10575 sym.st_value += sec->output_offset;
10576 if (!bfd_link_relocatable (flinfo->info))
10577 {
10578 sym.st_value += osec->vma;
10579 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10580 {
10581 /* STT_TLS symbols are relative to PT_TLS
10582 segment base. */
10583 BFD_ASSERT (elf_hash_table (flinfo->info)
10584 ->tls_sec != NULL);
10585 sym.st_value -= (elf_hash_table (flinfo->info)
10586 ->tls_sec->vma);
10587 }
10588 }
10589
10590 indx = bfd_get_symcount (output_bfd);
10591 ret = elf_link_output_symstrtab (flinfo, name,
10592 &sym, sec,
10593 NULL);
10594 if (ret == 0)
10595 return FALSE;
10596 else if (ret == 1)
10597 flinfo->indices[r_symndx] = indx;
10598 else
10599 abort ();
10600 }
10601
10602 r_symndx = flinfo->indices[r_symndx];
10603 }
10604
10605 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10606 | (irela->r_info & r_type_mask));
10607 }
10608
10609 /* Swap out the relocs. */
10610 input_rel_hdr = esdi->rel.hdr;
10611 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10612 {
10613 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10614 input_rel_hdr,
10615 internal_relocs,
10616 rel_hash_list))
10617 return FALSE;
10618 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10619 * bed->s->int_rels_per_ext_rel);
10620 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10621 }
10622
10623 input_rela_hdr = esdi->rela.hdr;
10624 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10625 {
10626 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10627 input_rela_hdr,
10628 internal_relocs,
10629 rela_hash_list))
10630 return FALSE;
10631 }
10632 }
10633 }
10634
10635 /* Write out the modified section contents. */
10636 if (bed->elf_backend_write_section
10637 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10638 contents))
10639 {
10640 /* Section written out. */
10641 }
10642 else switch (o->sec_info_type)
10643 {
10644 case SEC_INFO_TYPE_STABS:
10645 if (! (_bfd_write_section_stabs
10646 (output_bfd,
10647 &elf_hash_table (flinfo->info)->stab_info,
10648 o, &elf_section_data (o)->sec_info, contents)))
10649 return FALSE;
10650 break;
10651 case SEC_INFO_TYPE_MERGE:
10652 if (! _bfd_write_merged_section (output_bfd, o,
10653 elf_section_data (o)->sec_info))
10654 return FALSE;
10655 break;
10656 case SEC_INFO_TYPE_EH_FRAME:
10657 {
10658 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10659 o, contents))
10660 return FALSE;
10661 }
10662 break;
10663 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10664 {
10665 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
10666 flinfo->info,
10667 o, contents))
10668 return FALSE;
10669 }
10670 break;
10671 default:
10672 {
10673 if (! (o->flags & SEC_EXCLUDE))
10674 {
10675 file_ptr offset = (file_ptr) o->output_offset;
10676 bfd_size_type todo = o->size;
10677
10678 offset *= bfd_octets_per_byte (output_bfd);
10679
10680 if ((o->flags & SEC_ELF_REVERSE_COPY))
10681 {
10682 /* Reverse-copy input section to output. */
10683 do
10684 {
10685 todo -= address_size;
10686 if (! bfd_set_section_contents (output_bfd,
10687 o->output_section,
10688 contents + todo,
10689 offset,
10690 address_size))
10691 return FALSE;
10692 if (todo == 0)
10693 break;
10694 offset += address_size;
10695 }
10696 while (1);
10697 }
10698 else if (! bfd_set_section_contents (output_bfd,
10699 o->output_section,
10700 contents,
10701 offset, todo))
10702 return FALSE;
10703 }
10704 }
10705 break;
10706 }
10707 }
10708
10709 return TRUE;
10710 }
10711
10712 /* Generate a reloc when linking an ELF file. This is a reloc
10713 requested by the linker, and does not come from any input file. This
10714 is used to build constructor and destructor tables when linking
10715 with -Ur. */
10716
10717 static bfd_boolean
10718 elf_reloc_link_order (bfd *output_bfd,
10719 struct bfd_link_info *info,
10720 asection *output_section,
10721 struct bfd_link_order *link_order)
10722 {
10723 reloc_howto_type *howto;
10724 long indx;
10725 bfd_vma offset;
10726 bfd_vma addend;
10727 struct bfd_elf_section_reloc_data *reldata;
10728 struct elf_link_hash_entry **rel_hash_ptr;
10729 Elf_Internal_Shdr *rel_hdr;
10730 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10731 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10732 bfd_byte *erel;
10733 unsigned int i;
10734 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10735
10736 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10737 if (howto == NULL)
10738 {
10739 bfd_set_error (bfd_error_bad_value);
10740 return FALSE;
10741 }
10742
10743 addend = link_order->u.reloc.p->addend;
10744
10745 if (esdo->rel.hdr)
10746 reldata = &esdo->rel;
10747 else if (esdo->rela.hdr)
10748 reldata = &esdo->rela;
10749 else
10750 {
10751 reldata = NULL;
10752 BFD_ASSERT (0);
10753 }
10754
10755 /* Figure out the symbol index. */
10756 rel_hash_ptr = reldata->hashes + reldata->count;
10757 if (link_order->type == bfd_section_reloc_link_order)
10758 {
10759 indx = link_order->u.reloc.p->u.section->target_index;
10760 BFD_ASSERT (indx != 0);
10761 *rel_hash_ptr = NULL;
10762 }
10763 else
10764 {
10765 struct elf_link_hash_entry *h;
10766
10767 /* Treat a reloc against a defined symbol as though it were
10768 actually against the section. */
10769 h = ((struct elf_link_hash_entry *)
10770 bfd_wrapped_link_hash_lookup (output_bfd, info,
10771 link_order->u.reloc.p->u.name,
10772 FALSE, FALSE, TRUE));
10773 if (h != NULL
10774 && (h->root.type == bfd_link_hash_defined
10775 || h->root.type == bfd_link_hash_defweak))
10776 {
10777 asection *section;
10778
10779 section = h->root.u.def.section;
10780 indx = section->output_section->target_index;
10781 *rel_hash_ptr = NULL;
10782 /* It seems that we ought to add the symbol value to the
10783 addend here, but in practice it has already been added
10784 because it was passed to constructor_callback. */
10785 addend += section->output_section->vma + section->output_offset;
10786 }
10787 else if (h != NULL)
10788 {
10789 /* Setting the index to -2 tells elf_link_output_extsym that
10790 this symbol is used by a reloc. */
10791 h->indx = -2;
10792 *rel_hash_ptr = h;
10793 indx = 0;
10794 }
10795 else
10796 {
10797 (*info->callbacks->unattached_reloc)
10798 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
10799 indx = 0;
10800 }
10801 }
10802
10803 /* If this is an inplace reloc, we must write the addend into the
10804 object file. */
10805 if (howto->partial_inplace && addend != 0)
10806 {
10807 bfd_size_type size;
10808 bfd_reloc_status_type rstat;
10809 bfd_byte *buf;
10810 bfd_boolean ok;
10811 const char *sym_name;
10812
10813 size = (bfd_size_type) bfd_get_reloc_size (howto);
10814 buf = (bfd_byte *) bfd_zmalloc (size);
10815 if (buf == NULL && size != 0)
10816 return FALSE;
10817 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10818 switch (rstat)
10819 {
10820 case bfd_reloc_ok:
10821 break;
10822
10823 default:
10824 case bfd_reloc_outofrange:
10825 abort ();
10826
10827 case bfd_reloc_overflow:
10828 if (link_order->type == bfd_section_reloc_link_order)
10829 sym_name = bfd_section_name (output_bfd,
10830 link_order->u.reloc.p->u.section);
10831 else
10832 sym_name = link_order->u.reloc.p->u.name;
10833 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
10834 howto->name, addend, NULL, NULL,
10835 (bfd_vma) 0);
10836 break;
10837 }
10838
10839 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10840 link_order->offset
10841 * bfd_octets_per_byte (output_bfd),
10842 size);
10843 free (buf);
10844 if (! ok)
10845 return FALSE;
10846 }
10847
10848 /* The address of a reloc is relative to the section in a
10849 relocatable file, and is a virtual address in an executable
10850 file. */
10851 offset = link_order->offset;
10852 if (! bfd_link_relocatable (info))
10853 offset += output_section->vma;
10854
10855 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10856 {
10857 irel[i].r_offset = offset;
10858 irel[i].r_info = 0;
10859 irel[i].r_addend = 0;
10860 }
10861 if (bed->s->arch_size == 32)
10862 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10863 else
10864 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10865
10866 rel_hdr = reldata->hdr;
10867 erel = rel_hdr->contents;
10868 if (rel_hdr->sh_type == SHT_REL)
10869 {
10870 erel += reldata->count * bed->s->sizeof_rel;
10871 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10872 }
10873 else
10874 {
10875 irel[0].r_addend = addend;
10876 erel += reldata->count * bed->s->sizeof_rela;
10877 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10878 }
10879
10880 ++reldata->count;
10881
10882 return TRUE;
10883 }
10884
10885
10886 /* Get the output vma of the section pointed to by the sh_link field. */
10887
10888 static bfd_vma
10889 elf_get_linked_section_vma (struct bfd_link_order *p)
10890 {
10891 Elf_Internal_Shdr **elf_shdrp;
10892 asection *s;
10893 int elfsec;
10894
10895 s = p->u.indirect.section;
10896 elf_shdrp = elf_elfsections (s->owner);
10897 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10898 elfsec = elf_shdrp[elfsec]->sh_link;
10899 /* PR 290:
10900 The Intel C compiler generates SHT_IA_64_UNWIND with
10901 SHF_LINK_ORDER. But it doesn't set the sh_link or
10902 sh_info fields. Hence we could get the situation
10903 where elfsec is 0. */
10904 if (elfsec == 0)
10905 {
10906 const struct elf_backend_data *bed
10907 = get_elf_backend_data (s->owner);
10908 if (bed->link_order_error_handler)
10909 bed->link_order_error_handler
10910 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10911 return 0;
10912 }
10913 else
10914 {
10915 s = elf_shdrp[elfsec]->bfd_section;
10916 return s->output_section->vma + s->output_offset;
10917 }
10918 }
10919
10920
10921 /* Compare two sections based on the locations of the sections they are
10922 linked to. Used by elf_fixup_link_order. */
10923
10924 static int
10925 compare_link_order (const void * a, const void * b)
10926 {
10927 bfd_vma apos;
10928 bfd_vma bpos;
10929
10930 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10931 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10932 if (apos < bpos)
10933 return -1;
10934 return apos > bpos;
10935 }
10936
10937
10938 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10939 order as their linked sections. Returns false if this could not be done
10940 because an output section includes both ordered and unordered
10941 sections. Ideally we'd do this in the linker proper. */
10942
10943 static bfd_boolean
10944 elf_fixup_link_order (bfd *abfd, asection *o)
10945 {
10946 int seen_linkorder;
10947 int seen_other;
10948 int n;
10949 struct bfd_link_order *p;
10950 bfd *sub;
10951 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10952 unsigned elfsec;
10953 struct bfd_link_order **sections;
10954 asection *s, *other_sec, *linkorder_sec;
10955 bfd_vma offset;
10956
10957 other_sec = NULL;
10958 linkorder_sec = NULL;
10959 seen_other = 0;
10960 seen_linkorder = 0;
10961 for (p = o->map_head.link_order; p != NULL; p = p->next)
10962 {
10963 if (p->type == bfd_indirect_link_order)
10964 {
10965 s = p->u.indirect.section;
10966 sub = s->owner;
10967 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10968 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10969 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10970 && elfsec < elf_numsections (sub)
10971 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10972 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10973 {
10974 seen_linkorder++;
10975 linkorder_sec = s;
10976 }
10977 else
10978 {
10979 seen_other++;
10980 other_sec = s;
10981 }
10982 }
10983 else
10984 seen_other++;
10985
10986 if (seen_other && seen_linkorder)
10987 {
10988 if (other_sec && linkorder_sec)
10989 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10990 o, linkorder_sec,
10991 linkorder_sec->owner, other_sec,
10992 other_sec->owner);
10993 else
10994 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10995 o);
10996 bfd_set_error (bfd_error_bad_value);
10997 return FALSE;
10998 }
10999 }
11000
11001 if (!seen_linkorder)
11002 return TRUE;
11003
11004 sections = (struct bfd_link_order **)
11005 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
11006 if (sections == NULL)
11007 return FALSE;
11008 seen_linkorder = 0;
11009
11010 for (p = o->map_head.link_order; p != NULL; p = p->next)
11011 {
11012 sections[seen_linkorder++] = p;
11013 }
11014 /* Sort the input sections in the order of their linked section. */
11015 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
11016 compare_link_order);
11017
11018 /* Change the offsets of the sections. */
11019 offset = 0;
11020 for (n = 0; n < seen_linkorder; n++)
11021 {
11022 s = sections[n]->u.indirect.section;
11023 offset &= ~(bfd_vma) 0 << s->alignment_power;
11024 s->output_offset = offset / bfd_octets_per_byte (abfd);
11025 sections[n]->offset = offset;
11026 offset += sections[n]->size;
11027 }
11028
11029 free (sections);
11030 return TRUE;
11031 }
11032
11033 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11034 Returns TRUE upon success, FALSE otherwise. */
11035
11036 static bfd_boolean
11037 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11038 {
11039 bfd_boolean ret = FALSE;
11040 bfd *implib_bfd;
11041 const struct elf_backend_data *bed;
11042 flagword flags;
11043 enum bfd_architecture arch;
11044 unsigned int mach;
11045 asymbol **sympp = NULL;
11046 long symsize;
11047 long symcount;
11048 long src_count;
11049 elf_symbol_type *osymbuf;
11050
11051 implib_bfd = info->out_implib_bfd;
11052 bed = get_elf_backend_data (abfd);
11053
11054 if (!bfd_set_format (implib_bfd, bfd_object))
11055 return FALSE;
11056
11057 flags = bfd_get_file_flags (abfd);
11058 flags &= ~HAS_RELOC;
11059 if (!bfd_set_start_address (implib_bfd, 0)
11060 || !bfd_set_file_flags (implib_bfd, flags))
11061 return FALSE;
11062
11063 /* Copy architecture of output file to import library file. */
11064 arch = bfd_get_arch (abfd);
11065 mach = bfd_get_mach (abfd);
11066 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11067 && (abfd->target_defaulted
11068 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11069 return FALSE;
11070
11071 /* Get symbol table size. */
11072 symsize = bfd_get_symtab_upper_bound (abfd);
11073 if (symsize < 0)
11074 return FALSE;
11075
11076 /* Read in the symbol table. */
11077 sympp = (asymbol **) xmalloc (symsize);
11078 symcount = bfd_canonicalize_symtab (abfd, sympp);
11079 if (symcount < 0)
11080 goto free_sym_buf;
11081
11082 /* Allow the BFD backend to copy any private header data it
11083 understands from the output BFD to the import library BFD. */
11084 if (! bfd_copy_private_header_data (abfd, implib_bfd))
11085 goto free_sym_buf;
11086
11087 /* Filter symbols to appear in the import library. */
11088 if (bed->elf_backend_filter_implib_symbols)
11089 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11090 symcount);
11091 else
11092 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11093 if (symcount == 0)
11094 {
11095 bfd_set_error (bfd_error_no_symbols);
11096 (*_bfd_error_handler) (_("%B: no symbol found for import library"),
11097 implib_bfd);
11098 goto free_sym_buf;
11099 }
11100
11101
11102 /* Make symbols absolute. */
11103 osymbuf = (elf_symbol_type *) bfd_alloc2 (implib_bfd, symcount,
11104 sizeof (*osymbuf));
11105 for (src_count = 0; src_count < symcount; src_count++)
11106 {
11107 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11108 sizeof (*osymbuf));
11109 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
11110 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
11111 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
11112 osymbuf[src_count].internal_elf_sym.st_value =
11113 osymbuf[src_count].symbol.value;
11114 sympp[src_count] = &osymbuf[src_count].symbol;
11115 }
11116
11117 bfd_set_symtab (implib_bfd, sympp, symcount);
11118
11119 /* Allow the BFD backend to copy any private data it understands
11120 from the output BFD to the import library BFD. This is done last
11121 to permit the routine to look at the filtered symbol table. */
11122 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
11123 goto free_sym_buf;
11124
11125 if (!bfd_close (implib_bfd))
11126 goto free_sym_buf;
11127
11128 ret = TRUE;
11129
11130 free_sym_buf:
11131 free (sympp);
11132 return ret;
11133 }
11134
11135 static void
11136 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11137 {
11138 asection *o;
11139
11140 if (flinfo->symstrtab != NULL)
11141 _bfd_elf_strtab_free (flinfo->symstrtab);
11142 if (flinfo->contents != NULL)
11143 free (flinfo->contents);
11144 if (flinfo->external_relocs != NULL)
11145 free (flinfo->external_relocs);
11146 if (flinfo->internal_relocs != NULL)
11147 free (flinfo->internal_relocs);
11148 if (flinfo->external_syms != NULL)
11149 free (flinfo->external_syms);
11150 if (flinfo->locsym_shndx != NULL)
11151 free (flinfo->locsym_shndx);
11152 if (flinfo->internal_syms != NULL)
11153 free (flinfo->internal_syms);
11154 if (flinfo->indices != NULL)
11155 free (flinfo->indices);
11156 if (flinfo->sections != NULL)
11157 free (flinfo->sections);
11158 if (flinfo->symshndxbuf != NULL)
11159 free (flinfo->symshndxbuf);
11160 for (o = obfd->sections; o != NULL; o = o->next)
11161 {
11162 struct bfd_elf_section_data *esdo = elf_section_data (o);
11163 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11164 free (esdo->rel.hashes);
11165 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11166 free (esdo->rela.hashes);
11167 }
11168 }
11169
11170 /* Do the final step of an ELF link. */
11171
11172 bfd_boolean
11173 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11174 {
11175 bfd_boolean dynamic;
11176 bfd_boolean emit_relocs;
11177 bfd *dynobj;
11178 struct elf_final_link_info flinfo;
11179 asection *o;
11180 struct bfd_link_order *p;
11181 bfd *sub;
11182 bfd_size_type max_contents_size;
11183 bfd_size_type max_external_reloc_size;
11184 bfd_size_type max_internal_reloc_count;
11185 bfd_size_type max_sym_count;
11186 bfd_size_type max_sym_shndx_count;
11187 Elf_Internal_Sym elfsym;
11188 unsigned int i;
11189 Elf_Internal_Shdr *symtab_hdr;
11190 Elf_Internal_Shdr *symtab_shndx_hdr;
11191 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11192 struct elf_outext_info eoinfo;
11193 bfd_boolean merged;
11194 size_t relativecount = 0;
11195 asection *reldyn = 0;
11196 bfd_size_type amt;
11197 asection *attr_section = NULL;
11198 bfd_vma attr_size = 0;
11199 const char *std_attrs_section;
11200
11201 if (! is_elf_hash_table (info->hash))
11202 return FALSE;
11203
11204 if (bfd_link_pic (info))
11205 abfd->flags |= DYNAMIC;
11206
11207 dynamic = elf_hash_table (info)->dynamic_sections_created;
11208 dynobj = elf_hash_table (info)->dynobj;
11209
11210 emit_relocs = (bfd_link_relocatable (info)
11211 || info->emitrelocations);
11212
11213 flinfo.info = info;
11214 flinfo.output_bfd = abfd;
11215 flinfo.symstrtab = _bfd_elf_strtab_init ();
11216 if (flinfo.symstrtab == NULL)
11217 return FALSE;
11218
11219 if (! dynamic)
11220 {
11221 flinfo.hash_sec = NULL;
11222 flinfo.symver_sec = NULL;
11223 }
11224 else
11225 {
11226 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11227 /* Note that dynsym_sec can be NULL (on VMS). */
11228 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11229 /* Note that it is OK if symver_sec is NULL. */
11230 }
11231
11232 flinfo.contents = NULL;
11233 flinfo.external_relocs = NULL;
11234 flinfo.internal_relocs = NULL;
11235 flinfo.external_syms = NULL;
11236 flinfo.locsym_shndx = NULL;
11237 flinfo.internal_syms = NULL;
11238 flinfo.indices = NULL;
11239 flinfo.sections = NULL;
11240 flinfo.symshndxbuf = NULL;
11241 flinfo.filesym_count = 0;
11242
11243 /* The object attributes have been merged. Remove the input
11244 sections from the link, and set the contents of the output
11245 secton. */
11246 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11247 for (o = abfd->sections; o != NULL; o = o->next)
11248 {
11249 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11250 || strcmp (o->name, ".gnu.attributes") == 0)
11251 {
11252 for (p = o->map_head.link_order; p != NULL; p = p->next)
11253 {
11254 asection *input_section;
11255
11256 if (p->type != bfd_indirect_link_order)
11257 continue;
11258 input_section = p->u.indirect.section;
11259 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11260 elf_link_input_bfd ignores this section. */
11261 input_section->flags &= ~SEC_HAS_CONTENTS;
11262 }
11263
11264 attr_size = bfd_elf_obj_attr_size (abfd);
11265 if (attr_size)
11266 {
11267 bfd_set_section_size (abfd, o, attr_size);
11268 attr_section = o;
11269 /* Skip this section later on. */
11270 o->map_head.link_order = NULL;
11271 }
11272 else
11273 o->flags |= SEC_EXCLUDE;
11274 }
11275 }
11276
11277 /* Count up the number of relocations we will output for each output
11278 section, so that we know the sizes of the reloc sections. We
11279 also figure out some maximum sizes. */
11280 max_contents_size = 0;
11281 max_external_reloc_size = 0;
11282 max_internal_reloc_count = 0;
11283 max_sym_count = 0;
11284 max_sym_shndx_count = 0;
11285 merged = FALSE;
11286 for (o = abfd->sections; o != NULL; o = o->next)
11287 {
11288 struct bfd_elf_section_data *esdo = elf_section_data (o);
11289 o->reloc_count = 0;
11290
11291 for (p = o->map_head.link_order; p != NULL; p = p->next)
11292 {
11293 unsigned int reloc_count = 0;
11294 unsigned int additional_reloc_count = 0;
11295 struct bfd_elf_section_data *esdi = NULL;
11296
11297 if (p->type == bfd_section_reloc_link_order
11298 || p->type == bfd_symbol_reloc_link_order)
11299 reloc_count = 1;
11300 else if (p->type == bfd_indirect_link_order)
11301 {
11302 asection *sec;
11303
11304 sec = p->u.indirect.section;
11305 esdi = elf_section_data (sec);
11306
11307 /* Mark all sections which are to be included in the
11308 link. This will normally be every section. We need
11309 to do this so that we can identify any sections which
11310 the linker has decided to not include. */
11311 sec->linker_mark = TRUE;
11312
11313 if (sec->flags & SEC_MERGE)
11314 merged = TRUE;
11315
11316 if (esdo->this_hdr.sh_type == SHT_REL
11317 || esdo->this_hdr.sh_type == SHT_RELA)
11318 /* Some backends use reloc_count in relocation sections
11319 to count particular types of relocs. Of course,
11320 reloc sections themselves can't have relocations. */
11321 reloc_count = 0;
11322 else if (emit_relocs)
11323 {
11324 reloc_count = sec->reloc_count;
11325 if (bed->elf_backend_count_additional_relocs)
11326 {
11327 int c;
11328 c = (*bed->elf_backend_count_additional_relocs) (sec);
11329 additional_reloc_count += c;
11330 }
11331 }
11332 else if (bed->elf_backend_count_relocs)
11333 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11334
11335 if (sec->rawsize > max_contents_size)
11336 max_contents_size = sec->rawsize;
11337 if (sec->size > max_contents_size)
11338 max_contents_size = sec->size;
11339
11340 /* We are interested in just local symbols, not all
11341 symbols. */
11342 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11343 && (sec->owner->flags & DYNAMIC) == 0)
11344 {
11345 size_t sym_count;
11346
11347 if (elf_bad_symtab (sec->owner))
11348 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11349 / bed->s->sizeof_sym);
11350 else
11351 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11352
11353 if (sym_count > max_sym_count)
11354 max_sym_count = sym_count;
11355
11356 if (sym_count > max_sym_shndx_count
11357 && elf_symtab_shndx_list (sec->owner) != NULL)
11358 max_sym_shndx_count = sym_count;
11359
11360 if ((sec->flags & SEC_RELOC) != 0)
11361 {
11362 size_t ext_size = 0;
11363
11364 if (esdi->rel.hdr != NULL)
11365 ext_size = esdi->rel.hdr->sh_size;
11366 if (esdi->rela.hdr != NULL)
11367 ext_size += esdi->rela.hdr->sh_size;
11368
11369 if (ext_size > max_external_reloc_size)
11370 max_external_reloc_size = ext_size;
11371 if (sec->reloc_count > max_internal_reloc_count)
11372 max_internal_reloc_count = sec->reloc_count;
11373 }
11374 }
11375 }
11376
11377 if (reloc_count == 0)
11378 continue;
11379
11380 reloc_count += additional_reloc_count;
11381 o->reloc_count += reloc_count;
11382
11383 if (p->type == bfd_indirect_link_order && emit_relocs)
11384 {
11385 if (esdi->rel.hdr)
11386 {
11387 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
11388 esdo->rel.count += additional_reloc_count;
11389 }
11390 if (esdi->rela.hdr)
11391 {
11392 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
11393 esdo->rela.count += additional_reloc_count;
11394 }
11395 }
11396 else
11397 {
11398 if (o->use_rela_p)
11399 esdo->rela.count += reloc_count;
11400 else
11401 esdo->rel.count += reloc_count;
11402 }
11403 }
11404
11405 if (o->reloc_count > 0)
11406 o->flags |= SEC_RELOC;
11407 else
11408 {
11409 /* Explicitly clear the SEC_RELOC flag. The linker tends to
11410 set it (this is probably a bug) and if it is set
11411 assign_section_numbers will create a reloc section. */
11412 o->flags &=~ SEC_RELOC;
11413 }
11414
11415 /* If the SEC_ALLOC flag is not set, force the section VMA to
11416 zero. This is done in elf_fake_sections as well, but forcing
11417 the VMA to 0 here will ensure that relocs against these
11418 sections are handled correctly. */
11419 if ((o->flags & SEC_ALLOC) == 0
11420 && ! o->user_set_vma)
11421 o->vma = 0;
11422 }
11423
11424 if (! bfd_link_relocatable (info) && merged)
11425 elf_link_hash_traverse (elf_hash_table (info),
11426 _bfd_elf_link_sec_merge_syms, abfd);
11427
11428 /* Figure out the file positions for everything but the symbol table
11429 and the relocs. We set symcount to force assign_section_numbers
11430 to create a symbol table. */
11431 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
11432 BFD_ASSERT (! abfd->output_has_begun);
11433 if (! _bfd_elf_compute_section_file_positions (abfd, info))
11434 goto error_return;
11435
11436 /* Set sizes, and assign file positions for reloc sections. */
11437 for (o = abfd->sections; o != NULL; o = o->next)
11438 {
11439 struct bfd_elf_section_data *esdo = elf_section_data (o);
11440 if ((o->flags & SEC_RELOC) != 0)
11441 {
11442 if (esdo->rel.hdr
11443 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
11444 goto error_return;
11445
11446 if (esdo->rela.hdr
11447 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
11448 goto error_return;
11449 }
11450
11451 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
11452 to count upwards while actually outputting the relocations. */
11453 esdo->rel.count = 0;
11454 esdo->rela.count = 0;
11455
11456 if (esdo->this_hdr.sh_offset == (file_ptr) -1)
11457 {
11458 /* Cache the section contents so that they can be compressed
11459 later. Use bfd_malloc since it will be freed by
11460 bfd_compress_section_contents. */
11461 unsigned char *contents = esdo->this_hdr.contents;
11462 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
11463 abort ();
11464 contents
11465 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
11466 if (contents == NULL)
11467 goto error_return;
11468 esdo->this_hdr.contents = contents;
11469 }
11470 }
11471
11472 /* We have now assigned file positions for all the sections except
11473 .symtab, .strtab, and non-loaded reloc sections. We start the
11474 .symtab section at the current file position, and write directly
11475 to it. We build the .strtab section in memory. */
11476 bfd_get_symcount (abfd) = 0;
11477 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11478 /* sh_name is set in prep_headers. */
11479 symtab_hdr->sh_type = SHT_SYMTAB;
11480 /* sh_flags, sh_addr and sh_size all start off zero. */
11481 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
11482 /* sh_link is set in assign_section_numbers. */
11483 /* sh_info is set below. */
11484 /* sh_offset is set just below. */
11485 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
11486
11487 if (max_sym_count < 20)
11488 max_sym_count = 20;
11489 elf_hash_table (info)->strtabsize = max_sym_count;
11490 amt = max_sym_count * sizeof (struct elf_sym_strtab);
11491 elf_hash_table (info)->strtab
11492 = (struct elf_sym_strtab *) bfd_malloc (amt);
11493 if (elf_hash_table (info)->strtab == NULL)
11494 goto error_return;
11495 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
11496 flinfo.symshndxbuf
11497 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
11498 ? (Elf_External_Sym_Shndx *) -1 : NULL);
11499
11500 if (info->strip != strip_all || emit_relocs)
11501 {
11502 file_ptr off = elf_next_file_pos (abfd);
11503
11504 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
11505
11506 /* Note that at this point elf_next_file_pos (abfd) is
11507 incorrect. We do not yet know the size of the .symtab section.
11508 We correct next_file_pos below, after we do know the size. */
11509
11510 /* Start writing out the symbol table. The first symbol is always a
11511 dummy symbol. */
11512 elfsym.st_value = 0;
11513 elfsym.st_size = 0;
11514 elfsym.st_info = 0;
11515 elfsym.st_other = 0;
11516 elfsym.st_shndx = SHN_UNDEF;
11517 elfsym.st_target_internal = 0;
11518 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
11519 bfd_und_section_ptr, NULL) != 1)
11520 goto error_return;
11521
11522 /* Output a symbol for each section. We output these even if we are
11523 discarding local symbols, since they are used for relocs. These
11524 symbols have no names. We store the index of each one in the
11525 index field of the section, so that we can find it again when
11526 outputting relocs. */
11527
11528 elfsym.st_size = 0;
11529 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11530 elfsym.st_other = 0;
11531 elfsym.st_value = 0;
11532 elfsym.st_target_internal = 0;
11533 for (i = 1; i < elf_numsections (abfd); i++)
11534 {
11535 o = bfd_section_from_elf_index (abfd, i);
11536 if (o != NULL)
11537 {
11538 o->target_index = bfd_get_symcount (abfd);
11539 elfsym.st_shndx = i;
11540 if (!bfd_link_relocatable (info))
11541 elfsym.st_value = o->vma;
11542 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
11543 NULL) != 1)
11544 goto error_return;
11545 }
11546 }
11547 }
11548
11549 /* Allocate some memory to hold information read in from the input
11550 files. */
11551 if (max_contents_size != 0)
11552 {
11553 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
11554 if (flinfo.contents == NULL)
11555 goto error_return;
11556 }
11557
11558 if (max_external_reloc_size != 0)
11559 {
11560 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
11561 if (flinfo.external_relocs == NULL)
11562 goto error_return;
11563 }
11564
11565 if (max_internal_reloc_count != 0)
11566 {
11567 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
11568 amt *= sizeof (Elf_Internal_Rela);
11569 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
11570 if (flinfo.internal_relocs == NULL)
11571 goto error_return;
11572 }
11573
11574 if (max_sym_count != 0)
11575 {
11576 amt = max_sym_count * bed->s->sizeof_sym;
11577 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
11578 if (flinfo.external_syms == NULL)
11579 goto error_return;
11580
11581 amt = max_sym_count * sizeof (Elf_Internal_Sym);
11582 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
11583 if (flinfo.internal_syms == NULL)
11584 goto error_return;
11585
11586 amt = max_sym_count * sizeof (long);
11587 flinfo.indices = (long int *) bfd_malloc (amt);
11588 if (flinfo.indices == NULL)
11589 goto error_return;
11590
11591 amt = max_sym_count * sizeof (asection *);
11592 flinfo.sections = (asection **) bfd_malloc (amt);
11593 if (flinfo.sections == NULL)
11594 goto error_return;
11595 }
11596
11597 if (max_sym_shndx_count != 0)
11598 {
11599 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11600 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11601 if (flinfo.locsym_shndx == NULL)
11602 goto error_return;
11603 }
11604
11605 if (elf_hash_table (info)->tls_sec)
11606 {
11607 bfd_vma base, end = 0;
11608 asection *sec;
11609
11610 for (sec = elf_hash_table (info)->tls_sec;
11611 sec && (sec->flags & SEC_THREAD_LOCAL);
11612 sec = sec->next)
11613 {
11614 bfd_size_type size = sec->size;
11615
11616 if (size == 0
11617 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11618 {
11619 struct bfd_link_order *ord = sec->map_tail.link_order;
11620
11621 if (ord != NULL)
11622 size = ord->offset + ord->size;
11623 }
11624 end = sec->vma + size;
11625 }
11626 base = elf_hash_table (info)->tls_sec->vma;
11627 /* Only align end of TLS section if static TLS doesn't have special
11628 alignment requirements. */
11629 if (bed->static_tls_alignment == 1)
11630 end = align_power (end,
11631 elf_hash_table (info)->tls_sec->alignment_power);
11632 elf_hash_table (info)->tls_size = end - base;
11633 }
11634
11635 /* Reorder SHF_LINK_ORDER sections. */
11636 for (o = abfd->sections; o != NULL; o = o->next)
11637 {
11638 if (!elf_fixup_link_order (abfd, o))
11639 return FALSE;
11640 }
11641
11642 if (!_bfd_elf_fixup_eh_frame_hdr (info))
11643 return FALSE;
11644
11645 /* Since ELF permits relocations to be against local symbols, we
11646 must have the local symbols available when we do the relocations.
11647 Since we would rather only read the local symbols once, and we
11648 would rather not keep them in memory, we handle all the
11649 relocations for a single input file at the same time.
11650
11651 Unfortunately, there is no way to know the total number of local
11652 symbols until we have seen all of them, and the local symbol
11653 indices precede the global symbol indices. This means that when
11654 we are generating relocatable output, and we see a reloc against
11655 a global symbol, we can not know the symbol index until we have
11656 finished examining all the local symbols to see which ones we are
11657 going to output. To deal with this, we keep the relocations in
11658 memory, and don't output them until the end of the link. This is
11659 an unfortunate waste of memory, but I don't see a good way around
11660 it. Fortunately, it only happens when performing a relocatable
11661 link, which is not the common case. FIXME: If keep_memory is set
11662 we could write the relocs out and then read them again; I don't
11663 know how bad the memory loss will be. */
11664
11665 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11666 sub->output_has_begun = FALSE;
11667 for (o = abfd->sections; o != NULL; o = o->next)
11668 {
11669 for (p = o->map_head.link_order; p != NULL; p = p->next)
11670 {
11671 if (p->type == bfd_indirect_link_order
11672 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11673 == bfd_target_elf_flavour)
11674 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11675 {
11676 if (! sub->output_has_begun)
11677 {
11678 if (! elf_link_input_bfd (&flinfo, sub))
11679 goto error_return;
11680 sub->output_has_begun = TRUE;
11681 }
11682 }
11683 else if (p->type == bfd_section_reloc_link_order
11684 || p->type == bfd_symbol_reloc_link_order)
11685 {
11686 if (! elf_reloc_link_order (abfd, info, o, p))
11687 goto error_return;
11688 }
11689 else
11690 {
11691 if (! _bfd_default_link_order (abfd, info, o, p))
11692 {
11693 if (p->type == bfd_indirect_link_order
11694 && (bfd_get_flavour (sub)
11695 == bfd_target_elf_flavour)
11696 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11697 != bed->s->elfclass))
11698 {
11699 const char *iclass, *oclass;
11700
11701 switch (bed->s->elfclass)
11702 {
11703 case ELFCLASS64: oclass = "ELFCLASS64"; break;
11704 case ELFCLASS32: oclass = "ELFCLASS32"; break;
11705 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
11706 default: abort ();
11707 }
11708
11709 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
11710 {
11711 case ELFCLASS64: iclass = "ELFCLASS64"; break;
11712 case ELFCLASS32: iclass = "ELFCLASS32"; break;
11713 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
11714 default: abort ();
11715 }
11716
11717 bfd_set_error (bfd_error_wrong_format);
11718 (*_bfd_error_handler)
11719 (_("%B: file class %s incompatible with %s"),
11720 sub, iclass, oclass);
11721 }
11722
11723 goto error_return;
11724 }
11725 }
11726 }
11727 }
11728
11729 /* Free symbol buffer if needed. */
11730 if (!info->reduce_memory_overheads)
11731 {
11732 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11733 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11734 && elf_tdata (sub)->symbuf)
11735 {
11736 free (elf_tdata (sub)->symbuf);
11737 elf_tdata (sub)->symbuf = NULL;
11738 }
11739 }
11740
11741 /* Output any global symbols that got converted to local in a
11742 version script or due to symbol visibility. We do this in a
11743 separate step since ELF requires all local symbols to appear
11744 prior to any global symbols. FIXME: We should only do this if
11745 some global symbols were, in fact, converted to become local.
11746 FIXME: Will this work correctly with the Irix 5 linker? */
11747 eoinfo.failed = FALSE;
11748 eoinfo.flinfo = &flinfo;
11749 eoinfo.localsyms = TRUE;
11750 eoinfo.file_sym_done = FALSE;
11751 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11752 if (eoinfo.failed)
11753 return FALSE;
11754
11755 /* If backend needs to output some local symbols not present in the hash
11756 table, do it now. */
11757 if (bed->elf_backend_output_arch_local_syms
11758 && (info->strip != strip_all || emit_relocs))
11759 {
11760 typedef int (*out_sym_func)
11761 (void *, const char *, Elf_Internal_Sym *, asection *,
11762 struct elf_link_hash_entry *);
11763
11764 if (! ((*bed->elf_backend_output_arch_local_syms)
11765 (abfd, info, &flinfo,
11766 (out_sym_func) elf_link_output_symstrtab)))
11767 return FALSE;
11768 }
11769
11770 /* That wrote out all the local symbols. Finish up the symbol table
11771 with the global symbols. Even if we want to strip everything we
11772 can, we still need to deal with those global symbols that got
11773 converted to local in a version script. */
11774
11775 /* The sh_info field records the index of the first non local symbol. */
11776 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11777
11778 if (dynamic
11779 && elf_hash_table (info)->dynsym != NULL
11780 && (elf_hash_table (info)->dynsym->output_section
11781 != bfd_abs_section_ptr))
11782 {
11783 Elf_Internal_Sym sym;
11784 bfd_byte *dynsym = elf_hash_table (info)->dynsym->contents;
11785
11786 o = elf_hash_table (info)->dynsym->output_section;
11787 elf_section_data (o)->this_hdr.sh_info
11788 = elf_hash_table (info)->local_dynsymcount + 1;
11789
11790 /* Write out the section symbols for the output sections. */
11791 if (bfd_link_pic (info)
11792 || elf_hash_table (info)->is_relocatable_executable)
11793 {
11794 asection *s;
11795
11796 sym.st_size = 0;
11797 sym.st_name = 0;
11798 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11799 sym.st_other = 0;
11800 sym.st_target_internal = 0;
11801
11802 for (s = abfd->sections; s != NULL; s = s->next)
11803 {
11804 int indx;
11805 bfd_byte *dest;
11806 long dynindx;
11807
11808 dynindx = elf_section_data (s)->dynindx;
11809 if (dynindx <= 0)
11810 continue;
11811 indx = elf_section_data (s)->this_idx;
11812 BFD_ASSERT (indx > 0);
11813 sym.st_shndx = indx;
11814 if (! check_dynsym (abfd, &sym))
11815 return FALSE;
11816 sym.st_value = s->vma;
11817 dest = dynsym + dynindx * bed->s->sizeof_sym;
11818 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11819 }
11820 }
11821
11822 /* Write out the local dynsyms. */
11823 if (elf_hash_table (info)->dynlocal)
11824 {
11825 struct elf_link_local_dynamic_entry *e;
11826 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11827 {
11828 asection *s;
11829 bfd_byte *dest;
11830
11831 /* Copy the internal symbol and turn off visibility.
11832 Note that we saved a word of storage and overwrote
11833 the original st_name with the dynstr_index. */
11834 sym = e->isym;
11835 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11836
11837 s = bfd_section_from_elf_index (e->input_bfd,
11838 e->isym.st_shndx);
11839 if (s != NULL)
11840 {
11841 sym.st_shndx =
11842 elf_section_data (s->output_section)->this_idx;
11843 if (! check_dynsym (abfd, &sym))
11844 return FALSE;
11845 sym.st_value = (s->output_section->vma
11846 + s->output_offset
11847 + e->isym.st_value);
11848 }
11849
11850 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11851 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11852 }
11853 }
11854 }
11855
11856 /* We get the global symbols from the hash table. */
11857 eoinfo.failed = FALSE;
11858 eoinfo.localsyms = FALSE;
11859 eoinfo.flinfo = &flinfo;
11860 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11861 if (eoinfo.failed)
11862 return FALSE;
11863
11864 /* If backend needs to output some symbols not present in the hash
11865 table, do it now. */
11866 if (bed->elf_backend_output_arch_syms
11867 && (info->strip != strip_all || emit_relocs))
11868 {
11869 typedef int (*out_sym_func)
11870 (void *, const char *, Elf_Internal_Sym *, asection *,
11871 struct elf_link_hash_entry *);
11872
11873 if (! ((*bed->elf_backend_output_arch_syms)
11874 (abfd, info, &flinfo,
11875 (out_sym_func) elf_link_output_symstrtab)))
11876 return FALSE;
11877 }
11878
11879 /* Finalize the .strtab section. */
11880 _bfd_elf_strtab_finalize (flinfo.symstrtab);
11881
11882 /* Swap out the .strtab section. */
11883 if (!elf_link_swap_symbols_out (&flinfo))
11884 return FALSE;
11885
11886 /* Now we know the size of the symtab section. */
11887 if (bfd_get_symcount (abfd) > 0)
11888 {
11889 /* Finish up and write out the symbol string table (.strtab)
11890 section. */
11891 Elf_Internal_Shdr *symstrtab_hdr;
11892 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
11893
11894 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
11895 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
11896 {
11897 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11898 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11899 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11900 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11901 symtab_shndx_hdr->sh_size = amt;
11902
11903 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11904 off, TRUE);
11905
11906 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11907 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11908 return FALSE;
11909 }
11910
11911 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11912 /* sh_name was set in prep_headers. */
11913 symstrtab_hdr->sh_type = SHT_STRTAB;
11914 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
11915 symstrtab_hdr->sh_addr = 0;
11916 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
11917 symstrtab_hdr->sh_entsize = 0;
11918 symstrtab_hdr->sh_link = 0;
11919 symstrtab_hdr->sh_info = 0;
11920 /* sh_offset is set just below. */
11921 symstrtab_hdr->sh_addralign = 1;
11922
11923 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
11924 off, TRUE);
11925 elf_next_file_pos (abfd) = off;
11926
11927 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11928 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
11929 return FALSE;
11930 }
11931
11932 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
11933 {
11934 (*_bfd_error_handler) (_("%B: failed to generate import library"),
11935 info->out_implib_bfd);
11936 return FALSE;
11937 }
11938
11939 /* Adjust the relocs to have the correct symbol indices. */
11940 for (o = abfd->sections; o != NULL; o = o->next)
11941 {
11942 struct bfd_elf_section_data *esdo = elf_section_data (o);
11943 bfd_boolean sort;
11944 if ((o->flags & SEC_RELOC) == 0)
11945 continue;
11946
11947 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
11948 if (esdo->rel.hdr != NULL
11949 && !elf_link_adjust_relocs (abfd, &esdo->rel, sort))
11950 return FALSE;
11951 if (esdo->rela.hdr != NULL
11952 && !elf_link_adjust_relocs (abfd, &esdo->rela, sort))
11953 return FALSE;
11954
11955 /* Set the reloc_count field to 0 to prevent write_relocs from
11956 trying to swap the relocs out itself. */
11957 o->reloc_count = 0;
11958 }
11959
11960 if (dynamic && info->combreloc && dynobj != NULL)
11961 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11962
11963 /* If we are linking against a dynamic object, or generating a
11964 shared library, finish up the dynamic linking information. */
11965 if (dynamic)
11966 {
11967 bfd_byte *dyncon, *dynconend;
11968
11969 /* Fix up .dynamic entries. */
11970 o = bfd_get_linker_section (dynobj, ".dynamic");
11971 BFD_ASSERT (o != NULL);
11972
11973 dyncon = o->contents;
11974 dynconend = o->contents + o->size;
11975 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11976 {
11977 Elf_Internal_Dyn dyn;
11978 const char *name;
11979 unsigned int type;
11980
11981 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11982
11983 switch (dyn.d_tag)
11984 {
11985 default:
11986 continue;
11987 case DT_NULL:
11988 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11989 {
11990 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11991 {
11992 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11993 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11994 default: continue;
11995 }
11996 dyn.d_un.d_val = relativecount;
11997 relativecount = 0;
11998 break;
11999 }
12000 continue;
12001
12002 case DT_INIT:
12003 name = info->init_function;
12004 goto get_sym;
12005 case DT_FINI:
12006 name = info->fini_function;
12007 get_sym:
12008 {
12009 struct elf_link_hash_entry *h;
12010
12011 h = elf_link_hash_lookup (elf_hash_table (info), name,
12012 FALSE, FALSE, TRUE);
12013 if (h != NULL
12014 && (h->root.type == bfd_link_hash_defined
12015 || h->root.type == bfd_link_hash_defweak))
12016 {
12017 dyn.d_un.d_ptr = h->root.u.def.value;
12018 o = h->root.u.def.section;
12019 if (o->output_section != NULL)
12020 dyn.d_un.d_ptr += (o->output_section->vma
12021 + o->output_offset);
12022 else
12023 {
12024 /* The symbol is imported from another shared
12025 library and does not apply to this one. */
12026 dyn.d_un.d_ptr = 0;
12027 }
12028 break;
12029 }
12030 }
12031 continue;
12032
12033 case DT_PREINIT_ARRAYSZ:
12034 name = ".preinit_array";
12035 goto get_out_size;
12036 case DT_INIT_ARRAYSZ:
12037 name = ".init_array";
12038 goto get_out_size;
12039 case DT_FINI_ARRAYSZ:
12040 name = ".fini_array";
12041 get_out_size:
12042 o = bfd_get_section_by_name (abfd, name);
12043 if (o == NULL)
12044 {
12045 (*_bfd_error_handler)
12046 (_("could not find section %s"), name);
12047 goto error_return;
12048 }
12049 if (o->size == 0)
12050 (*_bfd_error_handler)
12051 (_("warning: %s section has zero size"), name);
12052 dyn.d_un.d_val = o->size;
12053 break;
12054
12055 case DT_PREINIT_ARRAY:
12056 name = ".preinit_array";
12057 goto get_out_vma;
12058 case DT_INIT_ARRAY:
12059 name = ".init_array";
12060 goto get_out_vma;
12061 case DT_FINI_ARRAY:
12062 name = ".fini_array";
12063 get_out_vma:
12064 o = bfd_get_section_by_name (abfd, name);
12065 goto do_vma;
12066
12067 case DT_HASH:
12068 name = ".hash";
12069 goto get_vma;
12070 case DT_GNU_HASH:
12071 name = ".gnu.hash";
12072 goto get_vma;
12073 case DT_STRTAB:
12074 name = ".dynstr";
12075 goto get_vma;
12076 case DT_SYMTAB:
12077 name = ".dynsym";
12078 goto get_vma;
12079 case DT_VERDEF:
12080 name = ".gnu.version_d";
12081 goto get_vma;
12082 case DT_VERNEED:
12083 name = ".gnu.version_r";
12084 goto get_vma;
12085 case DT_VERSYM:
12086 name = ".gnu.version";
12087 get_vma:
12088 o = bfd_get_linker_section (dynobj, name);
12089 do_vma:
12090 if (o == NULL)
12091 {
12092 (*_bfd_error_handler)
12093 (_("could not find section %s"), name);
12094 goto error_return;
12095 }
12096 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
12097 {
12098 (*_bfd_error_handler)
12099 (_("warning: section '%s' is being made into a note"), name);
12100 bfd_set_error (bfd_error_nonrepresentable_section);
12101 goto error_return;
12102 }
12103 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
12104 break;
12105
12106 case DT_REL:
12107 case DT_RELA:
12108 case DT_RELSZ:
12109 case DT_RELASZ:
12110 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12111 type = SHT_REL;
12112 else
12113 type = SHT_RELA;
12114 dyn.d_un.d_val = 0;
12115 dyn.d_un.d_ptr = 0;
12116 for (i = 1; i < elf_numsections (abfd); i++)
12117 {
12118 Elf_Internal_Shdr *hdr;
12119
12120 hdr = elf_elfsections (abfd)[i];
12121 if (hdr->sh_type == type
12122 && (hdr->sh_flags & SHF_ALLOC) != 0)
12123 {
12124 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
12125 dyn.d_un.d_val += hdr->sh_size;
12126 else
12127 {
12128 if (dyn.d_un.d_ptr == 0
12129 || hdr->sh_addr < dyn.d_un.d_ptr)
12130 dyn.d_un.d_ptr = hdr->sh_addr;
12131 }
12132 }
12133 }
12134 break;
12135 }
12136 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
12137 }
12138 }
12139
12140 /* If we have created any dynamic sections, then output them. */
12141 if (dynobj != NULL)
12142 {
12143 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
12144 goto error_return;
12145
12146 /* Check for DT_TEXTREL (late, in case the backend removes it). */
12147 if (((info->warn_shared_textrel && bfd_link_pic (info))
12148 || info->error_textrel)
12149 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
12150 {
12151 bfd_byte *dyncon, *dynconend;
12152
12153 dyncon = o->contents;
12154 dynconend = o->contents + o->size;
12155 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12156 {
12157 Elf_Internal_Dyn dyn;
12158
12159 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12160
12161 if (dyn.d_tag == DT_TEXTREL)
12162 {
12163 if (info->error_textrel)
12164 info->callbacks->einfo
12165 (_("%P%X: read-only segment has dynamic relocations.\n"));
12166 else
12167 info->callbacks->einfo
12168 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
12169 break;
12170 }
12171 }
12172 }
12173
12174 for (o = dynobj->sections; o != NULL; o = o->next)
12175 {
12176 if ((o->flags & SEC_HAS_CONTENTS) == 0
12177 || o->size == 0
12178 || o->output_section == bfd_abs_section_ptr)
12179 continue;
12180 if ((o->flags & SEC_LINKER_CREATED) == 0)
12181 {
12182 /* At this point, we are only interested in sections
12183 created by _bfd_elf_link_create_dynamic_sections. */
12184 continue;
12185 }
12186 if (elf_hash_table (info)->stab_info.stabstr == o)
12187 continue;
12188 if (elf_hash_table (info)->eh_info.hdr_sec == o)
12189 continue;
12190 if (strcmp (o->name, ".dynstr") != 0)
12191 {
12192 if (! bfd_set_section_contents (abfd, o->output_section,
12193 o->contents,
12194 (file_ptr) o->output_offset
12195 * bfd_octets_per_byte (abfd),
12196 o->size))
12197 goto error_return;
12198 }
12199 else
12200 {
12201 /* The contents of the .dynstr section are actually in a
12202 stringtab. */
12203 file_ptr off;
12204
12205 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
12206 if (bfd_seek (abfd, off, SEEK_SET) != 0
12207 || ! _bfd_elf_strtab_emit (abfd,
12208 elf_hash_table (info)->dynstr))
12209 goto error_return;
12210 }
12211 }
12212 }
12213
12214 if (bfd_link_relocatable (info))
12215 {
12216 bfd_boolean failed = FALSE;
12217
12218 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
12219 if (failed)
12220 goto error_return;
12221 }
12222
12223 /* If we have optimized stabs strings, output them. */
12224 if (elf_hash_table (info)->stab_info.stabstr != NULL)
12225 {
12226 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
12227 goto error_return;
12228 }
12229
12230 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
12231 goto error_return;
12232
12233 elf_final_link_free (abfd, &flinfo);
12234
12235 elf_linker (abfd) = TRUE;
12236
12237 if (attr_section)
12238 {
12239 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
12240 if (contents == NULL)
12241 return FALSE; /* Bail out and fail. */
12242 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
12243 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
12244 free (contents);
12245 }
12246
12247 return TRUE;
12248
12249 error_return:
12250 elf_final_link_free (abfd, &flinfo);
12251 return FALSE;
12252 }
12253 \f
12254 /* Initialize COOKIE for input bfd ABFD. */
12255
12256 static bfd_boolean
12257 init_reloc_cookie (struct elf_reloc_cookie *cookie,
12258 struct bfd_link_info *info, bfd *abfd)
12259 {
12260 Elf_Internal_Shdr *symtab_hdr;
12261 const struct elf_backend_data *bed;
12262
12263 bed = get_elf_backend_data (abfd);
12264 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12265
12266 cookie->abfd = abfd;
12267 cookie->sym_hashes = elf_sym_hashes (abfd);
12268 cookie->bad_symtab = elf_bad_symtab (abfd);
12269 if (cookie->bad_symtab)
12270 {
12271 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12272 cookie->extsymoff = 0;
12273 }
12274 else
12275 {
12276 cookie->locsymcount = symtab_hdr->sh_info;
12277 cookie->extsymoff = symtab_hdr->sh_info;
12278 }
12279
12280 if (bed->s->arch_size == 32)
12281 cookie->r_sym_shift = 8;
12282 else
12283 cookie->r_sym_shift = 32;
12284
12285 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
12286 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
12287 {
12288 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12289 cookie->locsymcount, 0,
12290 NULL, NULL, NULL);
12291 if (cookie->locsyms == NULL)
12292 {
12293 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
12294 return FALSE;
12295 }
12296 if (info->keep_memory)
12297 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
12298 }
12299 return TRUE;
12300 }
12301
12302 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
12303
12304 static void
12305 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
12306 {
12307 Elf_Internal_Shdr *symtab_hdr;
12308
12309 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12310 if (cookie->locsyms != NULL
12311 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
12312 free (cookie->locsyms);
12313 }
12314
12315 /* Initialize the relocation information in COOKIE for input section SEC
12316 of input bfd ABFD. */
12317
12318 static bfd_boolean
12319 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12320 struct bfd_link_info *info, bfd *abfd,
12321 asection *sec)
12322 {
12323 const struct elf_backend_data *bed;
12324
12325 if (sec->reloc_count == 0)
12326 {
12327 cookie->rels = NULL;
12328 cookie->relend = NULL;
12329 }
12330 else
12331 {
12332 bed = get_elf_backend_data (abfd);
12333
12334 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
12335 info->keep_memory);
12336 if (cookie->rels == NULL)
12337 return FALSE;
12338 cookie->rel = cookie->rels;
12339 cookie->relend = (cookie->rels
12340 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
12341 }
12342 cookie->rel = cookie->rels;
12343 return TRUE;
12344 }
12345
12346 /* Free the memory allocated by init_reloc_cookie_rels,
12347 if appropriate. */
12348
12349 static void
12350 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12351 asection *sec)
12352 {
12353 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
12354 free (cookie->rels);
12355 }
12356
12357 /* Initialize the whole of COOKIE for input section SEC. */
12358
12359 static bfd_boolean
12360 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12361 struct bfd_link_info *info,
12362 asection *sec)
12363 {
12364 if (!init_reloc_cookie (cookie, info, sec->owner))
12365 goto error1;
12366 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
12367 goto error2;
12368 return TRUE;
12369
12370 error2:
12371 fini_reloc_cookie (cookie, sec->owner);
12372 error1:
12373 return FALSE;
12374 }
12375
12376 /* Free the memory allocated by init_reloc_cookie_for_section,
12377 if appropriate. */
12378
12379 static void
12380 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12381 asection *sec)
12382 {
12383 fini_reloc_cookie_rels (cookie, sec);
12384 fini_reloc_cookie (cookie, sec->owner);
12385 }
12386 \f
12387 /* Garbage collect unused sections. */
12388
12389 /* Default gc_mark_hook. */
12390
12391 asection *
12392 _bfd_elf_gc_mark_hook (asection *sec,
12393 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12394 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12395 struct elf_link_hash_entry *h,
12396 Elf_Internal_Sym *sym)
12397 {
12398 if (h != NULL)
12399 {
12400 switch (h->root.type)
12401 {
12402 case bfd_link_hash_defined:
12403 case bfd_link_hash_defweak:
12404 return h->root.u.def.section;
12405
12406 case bfd_link_hash_common:
12407 return h->root.u.c.p->section;
12408
12409 default:
12410 break;
12411 }
12412 }
12413 else
12414 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
12415
12416 return NULL;
12417 }
12418
12419 /* For undefined __start_<name> and __stop_<name> symbols, return the
12420 first input section matching <name>. Return NULL otherwise. */
12421
12422 asection *
12423 _bfd_elf_is_start_stop (const struct bfd_link_info *info,
12424 struct elf_link_hash_entry *h)
12425 {
12426 asection *s;
12427 const char *sec_name;
12428
12429 if (h->root.type != bfd_link_hash_undefined
12430 && h->root.type != bfd_link_hash_undefweak)
12431 return NULL;
12432
12433 s = h->root.u.undef.section;
12434 if (s != NULL)
12435 {
12436 if (s == (asection *) 0 - 1)
12437 return NULL;
12438 return s;
12439 }
12440
12441 sec_name = NULL;
12442 if (strncmp (h->root.root.string, "__start_", 8) == 0)
12443 sec_name = h->root.root.string + 8;
12444 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
12445 sec_name = h->root.root.string + 7;
12446
12447 if (sec_name != NULL && *sec_name != '\0')
12448 {
12449 bfd *i;
12450
12451 for (i = info->input_bfds; i != NULL; i = i->link.next)
12452 {
12453 s = bfd_get_section_by_name (i, sec_name);
12454 if (s != NULL)
12455 {
12456 h->root.u.undef.section = s;
12457 break;
12458 }
12459 }
12460 }
12461
12462 if (s == NULL)
12463 h->root.u.undef.section = (asection *) 0 - 1;
12464
12465 return s;
12466 }
12467
12468 /* COOKIE->rel describes a relocation against section SEC, which is
12469 a section we've decided to keep. Return the section that contains
12470 the relocation symbol, or NULL if no section contains it. */
12471
12472 asection *
12473 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
12474 elf_gc_mark_hook_fn gc_mark_hook,
12475 struct elf_reloc_cookie *cookie,
12476 bfd_boolean *start_stop)
12477 {
12478 unsigned long r_symndx;
12479 struct elf_link_hash_entry *h;
12480
12481 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
12482 if (r_symndx == STN_UNDEF)
12483 return NULL;
12484
12485 if (r_symndx >= cookie->locsymcount
12486 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12487 {
12488 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
12489 if (h == NULL)
12490 {
12491 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
12492 sec->owner);
12493 return NULL;
12494 }
12495 while (h->root.type == bfd_link_hash_indirect
12496 || h->root.type == bfd_link_hash_warning)
12497 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12498 h->mark = 1;
12499 /* If this symbol is weak and there is a non-weak definition, we
12500 keep the non-weak definition because many backends put
12501 dynamic reloc info on the non-weak definition for code
12502 handling copy relocs. */
12503 if (h->u.weakdef != NULL)
12504 h->u.weakdef->mark = 1;
12505
12506 if (start_stop != NULL)
12507 {
12508 /* To work around a glibc bug, mark all XXX input sections
12509 when there is an as yet undefined reference to __start_XXX
12510 or __stop_XXX symbols. The linker will later define such
12511 symbols for orphan input sections that have a name
12512 representable as a C identifier. */
12513 asection *s = _bfd_elf_is_start_stop (info, h);
12514
12515 if (s != NULL)
12516 {
12517 *start_stop = !s->gc_mark;
12518 return s;
12519 }
12520 }
12521
12522 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
12523 }
12524
12525 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
12526 &cookie->locsyms[r_symndx]);
12527 }
12528
12529 /* COOKIE->rel describes a relocation against section SEC, which is
12530 a section we've decided to keep. Mark the section that contains
12531 the relocation symbol. */
12532
12533 bfd_boolean
12534 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
12535 asection *sec,
12536 elf_gc_mark_hook_fn gc_mark_hook,
12537 struct elf_reloc_cookie *cookie)
12538 {
12539 asection *rsec;
12540 bfd_boolean start_stop = FALSE;
12541
12542 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
12543 while (rsec != NULL)
12544 {
12545 if (!rsec->gc_mark)
12546 {
12547 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
12548 || (rsec->owner->flags & DYNAMIC) != 0)
12549 rsec->gc_mark = 1;
12550 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
12551 return FALSE;
12552 }
12553 if (!start_stop)
12554 break;
12555 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
12556 }
12557 return TRUE;
12558 }
12559
12560 /* The mark phase of garbage collection. For a given section, mark
12561 it and any sections in this section's group, and all the sections
12562 which define symbols to which it refers. */
12563
12564 bfd_boolean
12565 _bfd_elf_gc_mark (struct bfd_link_info *info,
12566 asection *sec,
12567 elf_gc_mark_hook_fn gc_mark_hook)
12568 {
12569 bfd_boolean ret;
12570 asection *group_sec, *eh_frame;
12571
12572 sec->gc_mark = 1;
12573
12574 /* Mark all the sections in the group. */
12575 group_sec = elf_section_data (sec)->next_in_group;
12576 if (group_sec && !group_sec->gc_mark)
12577 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
12578 return FALSE;
12579
12580 /* Look through the section relocs. */
12581 ret = TRUE;
12582 eh_frame = elf_eh_frame_section (sec->owner);
12583 if ((sec->flags & SEC_RELOC) != 0
12584 && sec->reloc_count > 0
12585 && sec != eh_frame)
12586 {
12587 struct elf_reloc_cookie cookie;
12588
12589 if (!init_reloc_cookie_for_section (&cookie, info, sec))
12590 ret = FALSE;
12591 else
12592 {
12593 for (; cookie.rel < cookie.relend; cookie.rel++)
12594 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
12595 {
12596 ret = FALSE;
12597 break;
12598 }
12599 fini_reloc_cookie_for_section (&cookie, sec);
12600 }
12601 }
12602
12603 if (ret && eh_frame && elf_fde_list (sec))
12604 {
12605 struct elf_reloc_cookie cookie;
12606
12607 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
12608 ret = FALSE;
12609 else
12610 {
12611 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
12612 gc_mark_hook, &cookie))
12613 ret = FALSE;
12614 fini_reloc_cookie_for_section (&cookie, eh_frame);
12615 }
12616 }
12617
12618 eh_frame = elf_section_eh_frame_entry (sec);
12619 if (ret && eh_frame && !eh_frame->gc_mark)
12620 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
12621 ret = FALSE;
12622
12623 return ret;
12624 }
12625
12626 /* Scan and mark sections in a special or debug section group. */
12627
12628 static void
12629 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
12630 {
12631 /* Point to first section of section group. */
12632 asection *ssec;
12633 /* Used to iterate the section group. */
12634 asection *msec;
12635
12636 bfd_boolean is_special_grp = TRUE;
12637 bfd_boolean is_debug_grp = TRUE;
12638
12639 /* First scan to see if group contains any section other than debug
12640 and special section. */
12641 ssec = msec = elf_next_in_group (grp);
12642 do
12643 {
12644 if ((msec->flags & SEC_DEBUGGING) == 0)
12645 is_debug_grp = FALSE;
12646
12647 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
12648 is_special_grp = FALSE;
12649
12650 msec = elf_next_in_group (msec);
12651 }
12652 while (msec != ssec);
12653
12654 /* If this is a pure debug section group or pure special section group,
12655 keep all sections in this group. */
12656 if (is_debug_grp || is_special_grp)
12657 {
12658 do
12659 {
12660 msec->gc_mark = 1;
12661 msec = elf_next_in_group (msec);
12662 }
12663 while (msec != ssec);
12664 }
12665 }
12666
12667 /* Keep debug and special sections. */
12668
12669 bfd_boolean
12670 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12671 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12672 {
12673 bfd *ibfd;
12674
12675 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12676 {
12677 asection *isec;
12678 bfd_boolean some_kept;
12679 bfd_boolean debug_frag_seen;
12680
12681 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12682 continue;
12683
12684 /* Ensure all linker created sections are kept,
12685 see if any other section is already marked,
12686 and note if we have any fragmented debug sections. */
12687 debug_frag_seen = some_kept = FALSE;
12688 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12689 {
12690 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12691 isec->gc_mark = 1;
12692 else if (isec->gc_mark)
12693 some_kept = TRUE;
12694
12695 if (debug_frag_seen == FALSE
12696 && (isec->flags & SEC_DEBUGGING)
12697 && CONST_STRNEQ (isec->name, ".debug_line."))
12698 debug_frag_seen = TRUE;
12699 }
12700
12701 /* If no section in this file will be kept, then we can
12702 toss out the debug and special sections. */
12703 if (!some_kept)
12704 continue;
12705
12706 /* Keep debug and special sections like .comment when they are
12707 not part of a group. Also keep section groups that contain
12708 just debug sections or special sections. */
12709 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12710 {
12711 if ((isec->flags & SEC_GROUP) != 0)
12712 _bfd_elf_gc_mark_debug_special_section_group (isec);
12713 else if (((isec->flags & SEC_DEBUGGING) != 0
12714 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12715 && elf_next_in_group (isec) == NULL)
12716 isec->gc_mark = 1;
12717 }
12718
12719 if (! debug_frag_seen)
12720 continue;
12721
12722 /* Look for CODE sections which are going to be discarded,
12723 and find and discard any fragmented debug sections which
12724 are associated with that code section. */
12725 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12726 if ((isec->flags & SEC_CODE) != 0
12727 && isec->gc_mark == 0)
12728 {
12729 unsigned int ilen;
12730 asection *dsec;
12731
12732 ilen = strlen (isec->name);
12733
12734 /* Association is determined by the name of the debug section
12735 containing the name of the code section as a suffix. For
12736 example .debug_line.text.foo is a debug section associated
12737 with .text.foo. */
12738 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12739 {
12740 unsigned int dlen;
12741
12742 if (dsec->gc_mark == 0
12743 || (dsec->flags & SEC_DEBUGGING) == 0)
12744 continue;
12745
12746 dlen = strlen (dsec->name);
12747
12748 if (dlen > ilen
12749 && strncmp (dsec->name + (dlen - ilen),
12750 isec->name, ilen) == 0)
12751 {
12752 dsec->gc_mark = 0;
12753 }
12754 }
12755 }
12756 }
12757 return TRUE;
12758 }
12759
12760 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
12761
12762 struct elf_gc_sweep_symbol_info
12763 {
12764 struct bfd_link_info *info;
12765 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
12766 bfd_boolean);
12767 };
12768
12769 static bfd_boolean
12770 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
12771 {
12772 if (!h->mark
12773 && (((h->root.type == bfd_link_hash_defined
12774 || h->root.type == bfd_link_hash_defweak)
12775 && !((h->def_regular || ELF_COMMON_DEF_P (h))
12776 && h->root.u.def.section->gc_mark))
12777 || h->root.type == bfd_link_hash_undefined
12778 || h->root.type == bfd_link_hash_undefweak))
12779 {
12780 struct elf_gc_sweep_symbol_info *inf;
12781
12782 inf = (struct elf_gc_sweep_symbol_info *) data;
12783 (*inf->hide_symbol) (inf->info, h, TRUE);
12784 h->def_regular = 0;
12785 h->ref_regular = 0;
12786 h->ref_regular_nonweak = 0;
12787 }
12788
12789 return TRUE;
12790 }
12791
12792 /* The sweep phase of garbage collection. Remove all garbage sections. */
12793
12794 typedef bfd_boolean (*gc_sweep_hook_fn)
12795 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
12796
12797 static bfd_boolean
12798 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
12799 {
12800 bfd *sub;
12801 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12802 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
12803 unsigned long section_sym_count;
12804 struct elf_gc_sweep_symbol_info sweep_info;
12805
12806 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12807 {
12808 asection *o;
12809
12810 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12811 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12812 continue;
12813
12814 for (o = sub->sections; o != NULL; o = o->next)
12815 {
12816 /* When any section in a section group is kept, we keep all
12817 sections in the section group. If the first member of
12818 the section group is excluded, we will also exclude the
12819 group section. */
12820 if (o->flags & SEC_GROUP)
12821 {
12822 asection *first = elf_next_in_group (o);
12823 o->gc_mark = first->gc_mark;
12824 }
12825
12826 if (o->gc_mark)
12827 continue;
12828
12829 /* Skip sweeping sections already excluded. */
12830 if (o->flags & SEC_EXCLUDE)
12831 continue;
12832
12833 /* Since this is early in the link process, it is simple
12834 to remove a section from the output. */
12835 o->flags |= SEC_EXCLUDE;
12836
12837 if (info->print_gc_sections && o->size != 0)
12838 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
12839
12840 /* But we also have to update some of the relocation
12841 info we collected before. */
12842 if (gc_sweep_hook
12843 && (o->flags & SEC_RELOC) != 0
12844 && o->reloc_count != 0
12845 && !((info->strip == strip_all || info->strip == strip_debugger)
12846 && (o->flags & SEC_DEBUGGING) != 0)
12847 && !bfd_is_abs_section (o->output_section))
12848 {
12849 Elf_Internal_Rela *internal_relocs;
12850 bfd_boolean r;
12851
12852 internal_relocs
12853 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12854 info->keep_memory);
12855 if (internal_relocs == NULL)
12856 return FALSE;
12857
12858 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12859
12860 if (elf_section_data (o)->relocs != internal_relocs)
12861 free (internal_relocs);
12862
12863 if (!r)
12864 return FALSE;
12865 }
12866 }
12867 }
12868
12869 /* Remove the symbols that were in the swept sections from the dynamic
12870 symbol table. GCFIXME: Anyone know how to get them out of the
12871 static symbol table as well? */
12872 sweep_info.info = info;
12873 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12874 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12875 &sweep_info);
12876
12877 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12878 return TRUE;
12879 }
12880
12881 /* Propagate collected vtable information. This is called through
12882 elf_link_hash_traverse. */
12883
12884 static bfd_boolean
12885 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12886 {
12887 /* Those that are not vtables. */
12888 if (h->vtable == NULL || h->vtable->parent == NULL)
12889 return TRUE;
12890
12891 /* Those vtables that do not have parents, we cannot merge. */
12892 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12893 return TRUE;
12894
12895 /* If we've already been done, exit. */
12896 if (h->vtable->used && h->vtable->used[-1])
12897 return TRUE;
12898
12899 /* Make sure the parent's table is up to date. */
12900 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12901
12902 if (h->vtable->used == NULL)
12903 {
12904 /* None of this table's entries were referenced. Re-use the
12905 parent's table. */
12906 h->vtable->used = h->vtable->parent->vtable->used;
12907 h->vtable->size = h->vtable->parent->vtable->size;
12908 }
12909 else
12910 {
12911 size_t n;
12912 bfd_boolean *cu, *pu;
12913
12914 /* Or the parent's entries into ours. */
12915 cu = h->vtable->used;
12916 cu[-1] = TRUE;
12917 pu = h->vtable->parent->vtable->used;
12918 if (pu != NULL)
12919 {
12920 const struct elf_backend_data *bed;
12921 unsigned int log_file_align;
12922
12923 bed = get_elf_backend_data (h->root.u.def.section->owner);
12924 log_file_align = bed->s->log_file_align;
12925 n = h->vtable->parent->vtable->size >> log_file_align;
12926 while (n--)
12927 {
12928 if (*pu)
12929 *cu = TRUE;
12930 pu++;
12931 cu++;
12932 }
12933 }
12934 }
12935
12936 return TRUE;
12937 }
12938
12939 static bfd_boolean
12940 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12941 {
12942 asection *sec;
12943 bfd_vma hstart, hend;
12944 Elf_Internal_Rela *relstart, *relend, *rel;
12945 const struct elf_backend_data *bed;
12946 unsigned int log_file_align;
12947
12948 /* Take care of both those symbols that do not describe vtables as
12949 well as those that are not loaded. */
12950 if (h->vtable == NULL || h->vtable->parent == NULL)
12951 return TRUE;
12952
12953 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12954 || h->root.type == bfd_link_hash_defweak);
12955
12956 sec = h->root.u.def.section;
12957 hstart = h->root.u.def.value;
12958 hend = hstart + h->size;
12959
12960 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12961 if (!relstart)
12962 return *(bfd_boolean *) okp = FALSE;
12963 bed = get_elf_backend_data (sec->owner);
12964 log_file_align = bed->s->log_file_align;
12965
12966 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12967
12968 for (rel = relstart; rel < relend; ++rel)
12969 if (rel->r_offset >= hstart && rel->r_offset < hend)
12970 {
12971 /* If the entry is in use, do nothing. */
12972 if (h->vtable->used
12973 && (rel->r_offset - hstart) < h->vtable->size)
12974 {
12975 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12976 if (h->vtable->used[entry])
12977 continue;
12978 }
12979 /* Otherwise, kill it. */
12980 rel->r_offset = rel->r_info = rel->r_addend = 0;
12981 }
12982
12983 return TRUE;
12984 }
12985
12986 /* Mark sections containing dynamically referenced symbols. When
12987 building shared libraries, we must assume that any visible symbol is
12988 referenced. */
12989
12990 bfd_boolean
12991 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12992 {
12993 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12994 struct bfd_elf_dynamic_list *d = info->dynamic_list;
12995
12996 if ((h->root.type == bfd_link_hash_defined
12997 || h->root.type == bfd_link_hash_defweak)
12998 && (h->ref_dynamic
12999 || ((h->def_regular || ELF_COMMON_DEF_P (h))
13000 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13001 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13002 && (!bfd_link_executable (info)
13003 || info->export_dynamic
13004 || (h->dynamic
13005 && d != NULL
13006 && (*d->match) (&d->head, NULL, h->root.root.string)))
13007 && (h->versioned >= versioned
13008 || !bfd_hide_sym_by_version (info->version_info,
13009 h->root.root.string)))))
13010 h->root.u.def.section->flags |= SEC_KEEP;
13011
13012 return TRUE;
13013 }
13014
13015 /* Keep all sections containing symbols undefined on the command-line,
13016 and the section containing the entry symbol. */
13017
13018 void
13019 _bfd_elf_gc_keep (struct bfd_link_info *info)
13020 {
13021 struct bfd_sym_chain *sym;
13022
13023 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13024 {
13025 struct elf_link_hash_entry *h;
13026
13027 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13028 FALSE, FALSE, FALSE);
13029
13030 if (h != NULL
13031 && (h->root.type == bfd_link_hash_defined
13032 || h->root.type == bfd_link_hash_defweak)
13033 && !bfd_is_abs_section (h->root.u.def.section))
13034 h->root.u.def.section->flags |= SEC_KEEP;
13035 }
13036 }
13037
13038 bfd_boolean
13039 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13040 struct bfd_link_info *info)
13041 {
13042 bfd *ibfd = info->input_bfds;
13043
13044 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13045 {
13046 asection *sec;
13047 struct elf_reloc_cookie cookie;
13048
13049 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13050 continue;
13051
13052 if (!init_reloc_cookie (&cookie, info, ibfd))
13053 return FALSE;
13054
13055 for (sec = ibfd->sections; sec; sec = sec->next)
13056 {
13057 if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
13058 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
13059 {
13060 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
13061 fini_reloc_cookie_rels (&cookie, sec);
13062 }
13063 }
13064 }
13065 return TRUE;
13066 }
13067
13068 /* Do mark and sweep of unused sections. */
13069
13070 bfd_boolean
13071 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
13072 {
13073 bfd_boolean ok = TRUE;
13074 bfd *sub;
13075 elf_gc_mark_hook_fn gc_mark_hook;
13076 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13077 struct elf_link_hash_table *htab;
13078
13079 if (!bed->can_gc_sections
13080 || !is_elf_hash_table (info->hash))
13081 {
13082 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
13083 return TRUE;
13084 }
13085
13086 bed->gc_keep (info);
13087 htab = elf_hash_table (info);
13088
13089 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
13090 at the .eh_frame section if we can mark the FDEs individually. */
13091 for (sub = info->input_bfds;
13092 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
13093 sub = sub->link.next)
13094 {
13095 asection *sec;
13096 struct elf_reloc_cookie cookie;
13097
13098 sec = bfd_get_section_by_name (sub, ".eh_frame");
13099 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
13100 {
13101 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
13102 if (elf_section_data (sec)->sec_info
13103 && (sec->flags & SEC_LINKER_CREATED) == 0)
13104 elf_eh_frame_section (sub) = sec;
13105 fini_reloc_cookie_for_section (&cookie, sec);
13106 sec = bfd_get_next_section_by_name (NULL, sec);
13107 }
13108 }
13109
13110 /* Apply transitive closure to the vtable entry usage info. */
13111 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
13112 if (!ok)
13113 return FALSE;
13114
13115 /* Kill the vtable relocations that were not used. */
13116 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
13117 if (!ok)
13118 return FALSE;
13119
13120 /* Mark dynamically referenced symbols. */
13121 if (htab->dynamic_sections_created)
13122 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
13123
13124 /* Grovel through relocs to find out who stays ... */
13125 gc_mark_hook = bed->gc_mark_hook;
13126 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13127 {
13128 asection *o;
13129
13130 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13131 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13132 continue;
13133
13134 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13135 Also treat note sections as a root, if the section is not part
13136 of a group. */
13137 for (o = sub->sections; o != NULL; o = o->next)
13138 if (!o->gc_mark
13139 && (o->flags & SEC_EXCLUDE) == 0
13140 && ((o->flags & SEC_KEEP) != 0
13141 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
13142 && elf_next_in_group (o) == NULL )))
13143 {
13144 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13145 return FALSE;
13146 }
13147 }
13148
13149 /* Allow the backend to mark additional target specific sections. */
13150 bed->gc_mark_extra_sections (info, gc_mark_hook);
13151
13152 /* ... and mark SEC_EXCLUDE for those that go. */
13153 return elf_gc_sweep (abfd, info);
13154 }
13155 \f
13156 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
13157
13158 bfd_boolean
13159 bfd_elf_gc_record_vtinherit (bfd *abfd,
13160 asection *sec,
13161 struct elf_link_hash_entry *h,
13162 bfd_vma offset)
13163 {
13164 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
13165 struct elf_link_hash_entry **search, *child;
13166 size_t extsymcount;
13167 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13168
13169 /* The sh_info field of the symtab header tells us where the
13170 external symbols start. We don't care about the local symbols at
13171 this point. */
13172 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
13173 if (!elf_bad_symtab (abfd))
13174 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
13175
13176 sym_hashes = elf_sym_hashes (abfd);
13177 sym_hashes_end = sym_hashes + extsymcount;
13178
13179 /* Hunt down the child symbol, which is in this section at the same
13180 offset as the relocation. */
13181 for (search = sym_hashes; search != sym_hashes_end; ++search)
13182 {
13183 if ((child = *search) != NULL
13184 && (child->root.type == bfd_link_hash_defined
13185 || child->root.type == bfd_link_hash_defweak)
13186 && child->root.u.def.section == sec
13187 && child->root.u.def.value == offset)
13188 goto win;
13189 }
13190
13191 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
13192 abfd, sec, (unsigned long) offset);
13193 bfd_set_error (bfd_error_invalid_operation);
13194 return FALSE;
13195
13196 win:
13197 if (!child->vtable)
13198 {
13199 child->vtable = ((struct elf_link_virtual_table_entry *)
13200 bfd_zalloc (abfd, sizeof (*child->vtable)));
13201 if (!child->vtable)
13202 return FALSE;
13203 }
13204 if (!h)
13205 {
13206 /* This *should* only be the absolute section. It could potentially
13207 be that someone has defined a non-global vtable though, which
13208 would be bad. It isn't worth paging in the local symbols to be
13209 sure though; that case should simply be handled by the assembler. */
13210
13211 child->vtable->parent = (struct elf_link_hash_entry *) -1;
13212 }
13213 else
13214 child->vtable->parent = h;
13215
13216 return TRUE;
13217 }
13218
13219 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
13220
13221 bfd_boolean
13222 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
13223 asection *sec ATTRIBUTE_UNUSED,
13224 struct elf_link_hash_entry *h,
13225 bfd_vma addend)
13226 {
13227 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13228 unsigned int log_file_align = bed->s->log_file_align;
13229
13230 if (!h->vtable)
13231 {
13232 h->vtable = ((struct elf_link_virtual_table_entry *)
13233 bfd_zalloc (abfd, sizeof (*h->vtable)));
13234 if (!h->vtable)
13235 return FALSE;
13236 }
13237
13238 if (addend >= h->vtable->size)
13239 {
13240 size_t size, bytes, file_align;
13241 bfd_boolean *ptr = h->vtable->used;
13242
13243 /* While the symbol is undefined, we have to be prepared to handle
13244 a zero size. */
13245 file_align = 1 << log_file_align;
13246 if (h->root.type == bfd_link_hash_undefined)
13247 size = addend + file_align;
13248 else
13249 {
13250 size = h->size;
13251 if (addend >= size)
13252 {
13253 /* Oops! We've got a reference past the defined end of
13254 the table. This is probably a bug -- shall we warn? */
13255 size = addend + file_align;
13256 }
13257 }
13258 size = (size + file_align - 1) & -file_align;
13259
13260 /* Allocate one extra entry for use as a "done" flag for the
13261 consolidation pass. */
13262 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
13263
13264 if (ptr)
13265 {
13266 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
13267
13268 if (ptr != NULL)
13269 {
13270 size_t oldbytes;
13271
13272 oldbytes = (((h->vtable->size >> log_file_align) + 1)
13273 * sizeof (bfd_boolean));
13274 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
13275 }
13276 }
13277 else
13278 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
13279
13280 if (ptr == NULL)
13281 return FALSE;
13282
13283 /* And arrange for that done flag to be at index -1. */
13284 h->vtable->used = ptr + 1;
13285 h->vtable->size = size;
13286 }
13287
13288 h->vtable->used[addend >> log_file_align] = TRUE;
13289
13290 return TRUE;
13291 }
13292
13293 /* Map an ELF section header flag to its corresponding string. */
13294 typedef struct
13295 {
13296 char *flag_name;
13297 flagword flag_value;
13298 } elf_flags_to_name_table;
13299
13300 static elf_flags_to_name_table elf_flags_to_names [] =
13301 {
13302 { "SHF_WRITE", SHF_WRITE },
13303 { "SHF_ALLOC", SHF_ALLOC },
13304 { "SHF_EXECINSTR", SHF_EXECINSTR },
13305 { "SHF_MERGE", SHF_MERGE },
13306 { "SHF_STRINGS", SHF_STRINGS },
13307 { "SHF_INFO_LINK", SHF_INFO_LINK},
13308 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
13309 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
13310 { "SHF_GROUP", SHF_GROUP },
13311 { "SHF_TLS", SHF_TLS },
13312 { "SHF_MASKOS", SHF_MASKOS },
13313 { "SHF_EXCLUDE", SHF_EXCLUDE },
13314 };
13315
13316 /* Returns TRUE if the section is to be included, otherwise FALSE. */
13317 bfd_boolean
13318 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
13319 struct flag_info *flaginfo,
13320 asection *section)
13321 {
13322 const bfd_vma sh_flags = elf_section_flags (section);
13323
13324 if (!flaginfo->flags_initialized)
13325 {
13326 bfd *obfd = info->output_bfd;
13327 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13328 struct flag_info_list *tf = flaginfo->flag_list;
13329 int with_hex = 0;
13330 int without_hex = 0;
13331
13332 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
13333 {
13334 unsigned i;
13335 flagword (*lookup) (char *);
13336
13337 lookup = bed->elf_backend_lookup_section_flags_hook;
13338 if (lookup != NULL)
13339 {
13340 flagword hexval = (*lookup) ((char *) tf->name);
13341
13342 if (hexval != 0)
13343 {
13344 if (tf->with == with_flags)
13345 with_hex |= hexval;
13346 else if (tf->with == without_flags)
13347 without_hex |= hexval;
13348 tf->valid = TRUE;
13349 continue;
13350 }
13351 }
13352 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
13353 {
13354 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
13355 {
13356 if (tf->with == with_flags)
13357 with_hex |= elf_flags_to_names[i].flag_value;
13358 else if (tf->with == without_flags)
13359 without_hex |= elf_flags_to_names[i].flag_value;
13360 tf->valid = TRUE;
13361 break;
13362 }
13363 }
13364 if (!tf->valid)
13365 {
13366 info->callbacks->einfo
13367 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
13368 return FALSE;
13369 }
13370 }
13371 flaginfo->flags_initialized = TRUE;
13372 flaginfo->only_with_flags |= with_hex;
13373 flaginfo->not_with_flags |= without_hex;
13374 }
13375
13376 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
13377 return FALSE;
13378
13379 if ((flaginfo->not_with_flags & sh_flags) != 0)
13380 return FALSE;
13381
13382 return TRUE;
13383 }
13384
13385 struct alloc_got_off_arg {
13386 bfd_vma gotoff;
13387 struct bfd_link_info *info;
13388 };
13389
13390 /* We need a special top-level link routine to convert got reference counts
13391 to real got offsets. */
13392
13393 static bfd_boolean
13394 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
13395 {
13396 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
13397 bfd *obfd = gofarg->info->output_bfd;
13398 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13399
13400 if (h->got.refcount > 0)
13401 {
13402 h->got.offset = gofarg->gotoff;
13403 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
13404 }
13405 else
13406 h->got.offset = (bfd_vma) -1;
13407
13408 return TRUE;
13409 }
13410
13411 /* And an accompanying bit to work out final got entry offsets once
13412 we're done. Should be called from final_link. */
13413
13414 bfd_boolean
13415 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
13416 struct bfd_link_info *info)
13417 {
13418 bfd *i;
13419 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13420 bfd_vma gotoff;
13421 struct alloc_got_off_arg gofarg;
13422
13423 BFD_ASSERT (abfd == info->output_bfd);
13424
13425 if (! is_elf_hash_table (info->hash))
13426 return FALSE;
13427
13428 /* The GOT offset is relative to the .got section, but the GOT header is
13429 put into the .got.plt section, if the backend uses it. */
13430 if (bed->want_got_plt)
13431 gotoff = 0;
13432 else
13433 gotoff = bed->got_header_size;
13434
13435 /* Do the local .got entries first. */
13436 for (i = info->input_bfds; i; i = i->link.next)
13437 {
13438 bfd_signed_vma *local_got;
13439 size_t j, locsymcount;
13440 Elf_Internal_Shdr *symtab_hdr;
13441
13442 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
13443 continue;
13444
13445 local_got = elf_local_got_refcounts (i);
13446 if (!local_got)
13447 continue;
13448
13449 symtab_hdr = &elf_tdata (i)->symtab_hdr;
13450 if (elf_bad_symtab (i))
13451 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13452 else
13453 locsymcount = symtab_hdr->sh_info;
13454
13455 for (j = 0; j < locsymcount; ++j)
13456 {
13457 if (local_got[j] > 0)
13458 {
13459 local_got[j] = gotoff;
13460 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
13461 }
13462 else
13463 local_got[j] = (bfd_vma) -1;
13464 }
13465 }
13466
13467 /* Then the global .got entries. .plt refcounts are handled by
13468 adjust_dynamic_symbol */
13469 gofarg.gotoff = gotoff;
13470 gofarg.info = info;
13471 elf_link_hash_traverse (elf_hash_table (info),
13472 elf_gc_allocate_got_offsets,
13473 &gofarg);
13474 return TRUE;
13475 }
13476
13477 /* Many folk need no more in the way of final link than this, once
13478 got entry reference counting is enabled. */
13479
13480 bfd_boolean
13481 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
13482 {
13483 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
13484 return FALSE;
13485
13486 /* Invoke the regular ELF backend linker to do all the work. */
13487 return bfd_elf_final_link (abfd, info);
13488 }
13489
13490 bfd_boolean
13491 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
13492 {
13493 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
13494
13495 if (rcookie->bad_symtab)
13496 rcookie->rel = rcookie->rels;
13497
13498 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
13499 {
13500 unsigned long r_symndx;
13501
13502 if (! rcookie->bad_symtab)
13503 if (rcookie->rel->r_offset > offset)
13504 return FALSE;
13505 if (rcookie->rel->r_offset != offset)
13506 continue;
13507
13508 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
13509 if (r_symndx == STN_UNDEF)
13510 return TRUE;
13511
13512 if (r_symndx >= rcookie->locsymcount
13513 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13514 {
13515 struct elf_link_hash_entry *h;
13516
13517 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
13518
13519 while (h->root.type == bfd_link_hash_indirect
13520 || h->root.type == bfd_link_hash_warning)
13521 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13522
13523 if ((h->root.type == bfd_link_hash_defined
13524 || h->root.type == bfd_link_hash_defweak)
13525 && (h->root.u.def.section->owner != rcookie->abfd
13526 || h->root.u.def.section->kept_section != NULL
13527 || discarded_section (h->root.u.def.section)))
13528 return TRUE;
13529 }
13530 else
13531 {
13532 /* It's not a relocation against a global symbol,
13533 but it could be a relocation against a local
13534 symbol for a discarded section. */
13535 asection *isec;
13536 Elf_Internal_Sym *isym;
13537
13538 /* Need to: get the symbol; get the section. */
13539 isym = &rcookie->locsyms[r_symndx];
13540 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
13541 if (isec != NULL
13542 && (isec->kept_section != NULL
13543 || discarded_section (isec)))
13544 return TRUE;
13545 }
13546 return FALSE;
13547 }
13548 return FALSE;
13549 }
13550
13551 /* Discard unneeded references to discarded sections.
13552 Returns -1 on error, 1 if any section's size was changed, 0 if
13553 nothing changed. This function assumes that the relocations are in
13554 sorted order, which is true for all known assemblers. */
13555
13556 int
13557 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
13558 {
13559 struct elf_reloc_cookie cookie;
13560 asection *o;
13561 bfd *abfd;
13562 int changed = 0;
13563
13564 if (info->traditional_format
13565 || !is_elf_hash_table (info->hash))
13566 return 0;
13567
13568 o = bfd_get_section_by_name (output_bfd, ".stab");
13569 if (o != NULL)
13570 {
13571 asection *i;
13572
13573 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13574 {
13575 if (i->size == 0
13576 || i->reloc_count == 0
13577 || i->sec_info_type != SEC_INFO_TYPE_STABS)
13578 continue;
13579
13580 abfd = i->owner;
13581 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13582 continue;
13583
13584 if (!init_reloc_cookie_for_section (&cookie, info, i))
13585 return -1;
13586
13587 if (_bfd_discard_section_stabs (abfd, i,
13588 elf_section_data (i)->sec_info,
13589 bfd_elf_reloc_symbol_deleted_p,
13590 &cookie))
13591 changed = 1;
13592
13593 fini_reloc_cookie_for_section (&cookie, i);
13594 }
13595 }
13596
13597 o = NULL;
13598 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
13599 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
13600 if (o != NULL)
13601 {
13602 asection *i;
13603
13604 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13605 {
13606 if (i->size == 0)
13607 continue;
13608
13609 abfd = i->owner;
13610 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13611 continue;
13612
13613 if (!init_reloc_cookie_for_section (&cookie, info, i))
13614 return -1;
13615
13616 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
13617 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
13618 bfd_elf_reloc_symbol_deleted_p,
13619 &cookie))
13620 changed = 1;
13621
13622 fini_reloc_cookie_for_section (&cookie, i);
13623 }
13624 }
13625
13626 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
13627 {
13628 const struct elf_backend_data *bed;
13629
13630 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13631 continue;
13632
13633 bed = get_elf_backend_data (abfd);
13634
13635 if (bed->elf_backend_discard_info != NULL)
13636 {
13637 if (!init_reloc_cookie (&cookie, info, abfd))
13638 return -1;
13639
13640 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
13641 changed = 1;
13642
13643 fini_reloc_cookie (&cookie, abfd);
13644 }
13645 }
13646
13647 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
13648 _bfd_elf_end_eh_frame_parsing (info);
13649
13650 if (info->eh_frame_hdr_type
13651 && !bfd_link_relocatable (info)
13652 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
13653 changed = 1;
13654
13655 return changed;
13656 }
13657
13658 bfd_boolean
13659 _bfd_elf_section_already_linked (bfd *abfd,
13660 asection *sec,
13661 struct bfd_link_info *info)
13662 {
13663 flagword flags;
13664 const char *name, *key;
13665 struct bfd_section_already_linked *l;
13666 struct bfd_section_already_linked_hash_entry *already_linked_list;
13667
13668 if (sec->output_section == bfd_abs_section_ptr)
13669 return FALSE;
13670
13671 flags = sec->flags;
13672
13673 /* Return if it isn't a linkonce section. A comdat group section
13674 also has SEC_LINK_ONCE set. */
13675 if ((flags & SEC_LINK_ONCE) == 0)
13676 return FALSE;
13677
13678 /* Don't put group member sections on our list of already linked
13679 sections. They are handled as a group via their group section. */
13680 if (elf_sec_group (sec) != NULL)
13681 return FALSE;
13682
13683 /* For a SHT_GROUP section, use the group signature as the key. */
13684 name = sec->name;
13685 if ((flags & SEC_GROUP) != 0
13686 && elf_next_in_group (sec) != NULL
13687 && elf_group_name (elf_next_in_group (sec)) != NULL)
13688 key = elf_group_name (elf_next_in_group (sec));
13689 else
13690 {
13691 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
13692 if (CONST_STRNEQ (name, ".gnu.linkonce.")
13693 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
13694 key++;
13695 else
13696 /* Must be a user linkonce section that doesn't follow gcc's
13697 naming convention. In this case we won't be matching
13698 single member groups. */
13699 key = name;
13700 }
13701
13702 already_linked_list = bfd_section_already_linked_table_lookup (key);
13703
13704 for (l = already_linked_list->entry; l != NULL; l = l->next)
13705 {
13706 /* We may have 2 different types of sections on the list: group
13707 sections with a signature of <key> (<key> is some string),
13708 and linkonce sections named .gnu.linkonce.<type>.<key>.
13709 Match like sections. LTO plugin sections are an exception.
13710 They are always named .gnu.linkonce.t.<key> and match either
13711 type of section. */
13712 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13713 && ((flags & SEC_GROUP) != 0
13714 || strcmp (name, l->sec->name) == 0))
13715 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13716 {
13717 /* The section has already been linked. See if we should
13718 issue a warning. */
13719 if (!_bfd_handle_already_linked (sec, l, info))
13720 return FALSE;
13721
13722 if (flags & SEC_GROUP)
13723 {
13724 asection *first = elf_next_in_group (sec);
13725 asection *s = first;
13726
13727 while (s != NULL)
13728 {
13729 s->output_section = bfd_abs_section_ptr;
13730 /* Record which group discards it. */
13731 s->kept_section = l->sec;
13732 s = elf_next_in_group (s);
13733 /* These lists are circular. */
13734 if (s == first)
13735 break;
13736 }
13737 }
13738
13739 return TRUE;
13740 }
13741 }
13742
13743 /* A single member comdat group section may be discarded by a
13744 linkonce section and vice versa. */
13745 if ((flags & SEC_GROUP) != 0)
13746 {
13747 asection *first = elf_next_in_group (sec);
13748
13749 if (first != NULL && elf_next_in_group (first) == first)
13750 /* Check this single member group against linkonce sections. */
13751 for (l = already_linked_list->entry; l != NULL; l = l->next)
13752 if ((l->sec->flags & SEC_GROUP) == 0
13753 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
13754 {
13755 first->output_section = bfd_abs_section_ptr;
13756 first->kept_section = l->sec;
13757 sec->output_section = bfd_abs_section_ptr;
13758 break;
13759 }
13760 }
13761 else
13762 /* Check this linkonce section against single member groups. */
13763 for (l = already_linked_list->entry; l != NULL; l = l->next)
13764 if (l->sec->flags & SEC_GROUP)
13765 {
13766 asection *first = elf_next_in_group (l->sec);
13767
13768 if (first != NULL
13769 && elf_next_in_group (first) == first
13770 && bfd_elf_match_symbols_in_sections (first, sec, info))
13771 {
13772 sec->output_section = bfd_abs_section_ptr;
13773 sec->kept_section = first;
13774 break;
13775 }
13776 }
13777
13778 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
13779 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
13780 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
13781 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
13782 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
13783 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
13784 `.gnu.linkonce.t.F' section from a different bfd not requiring any
13785 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
13786 The reverse order cannot happen as there is never a bfd with only the
13787 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
13788 matter as here were are looking only for cross-bfd sections. */
13789
13790 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
13791 for (l = already_linked_list->entry; l != NULL; l = l->next)
13792 if ((l->sec->flags & SEC_GROUP) == 0
13793 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
13794 {
13795 if (abfd != l->sec->owner)
13796 sec->output_section = bfd_abs_section_ptr;
13797 break;
13798 }
13799
13800 /* This is the first section with this name. Record it. */
13801 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
13802 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
13803 return sec->output_section == bfd_abs_section_ptr;
13804 }
13805
13806 bfd_boolean
13807 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
13808 {
13809 return sym->st_shndx == SHN_COMMON;
13810 }
13811
13812 unsigned int
13813 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
13814 {
13815 return SHN_COMMON;
13816 }
13817
13818 asection *
13819 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
13820 {
13821 return bfd_com_section_ptr;
13822 }
13823
13824 bfd_vma
13825 _bfd_elf_default_got_elt_size (bfd *abfd,
13826 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13827 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
13828 bfd *ibfd ATTRIBUTE_UNUSED,
13829 unsigned long symndx ATTRIBUTE_UNUSED)
13830 {
13831 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13832 return bed->s->arch_size / 8;
13833 }
13834
13835 /* Routines to support the creation of dynamic relocs. */
13836
13837 /* Returns the name of the dynamic reloc section associated with SEC. */
13838
13839 static const char *
13840 get_dynamic_reloc_section_name (bfd * abfd,
13841 asection * sec,
13842 bfd_boolean is_rela)
13843 {
13844 char *name;
13845 const char *old_name = bfd_get_section_name (NULL, sec);
13846 const char *prefix = is_rela ? ".rela" : ".rel";
13847
13848 if (old_name == NULL)
13849 return NULL;
13850
13851 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
13852 sprintf (name, "%s%s", prefix, old_name);
13853
13854 return name;
13855 }
13856
13857 /* Returns the dynamic reloc section associated with SEC.
13858 If necessary compute the name of the dynamic reloc section based
13859 on SEC's name (looked up in ABFD's string table) and the setting
13860 of IS_RELA. */
13861
13862 asection *
13863 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
13864 asection * sec,
13865 bfd_boolean is_rela)
13866 {
13867 asection * reloc_sec = elf_section_data (sec)->sreloc;
13868
13869 if (reloc_sec == NULL)
13870 {
13871 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13872
13873 if (name != NULL)
13874 {
13875 reloc_sec = bfd_get_linker_section (abfd, name);
13876
13877 if (reloc_sec != NULL)
13878 elf_section_data (sec)->sreloc = reloc_sec;
13879 }
13880 }
13881
13882 return reloc_sec;
13883 }
13884
13885 /* Returns the dynamic reloc section associated with SEC. If the
13886 section does not exist it is created and attached to the DYNOBJ
13887 bfd and stored in the SRELOC field of SEC's elf_section_data
13888 structure.
13889
13890 ALIGNMENT is the alignment for the newly created section and
13891 IS_RELA defines whether the name should be .rela.<SEC's name>
13892 or .rel.<SEC's name>. The section name is looked up in the
13893 string table associated with ABFD. */
13894
13895 asection *
13896 _bfd_elf_make_dynamic_reloc_section (asection *sec,
13897 bfd *dynobj,
13898 unsigned int alignment,
13899 bfd *abfd,
13900 bfd_boolean is_rela)
13901 {
13902 asection * reloc_sec = elf_section_data (sec)->sreloc;
13903
13904 if (reloc_sec == NULL)
13905 {
13906 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13907
13908 if (name == NULL)
13909 return NULL;
13910
13911 reloc_sec = bfd_get_linker_section (dynobj, name);
13912
13913 if (reloc_sec == NULL)
13914 {
13915 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13916 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13917 if ((sec->flags & SEC_ALLOC) != 0)
13918 flags |= SEC_ALLOC | SEC_LOAD;
13919
13920 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13921 if (reloc_sec != NULL)
13922 {
13923 /* _bfd_elf_get_sec_type_attr chooses a section type by
13924 name. Override as it may be wrong, eg. for a user
13925 section named "auto" we'll get ".relauto" which is
13926 seen to be a .rela section. */
13927 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13928 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13929 reloc_sec = NULL;
13930 }
13931 }
13932
13933 elf_section_data (sec)->sreloc = reloc_sec;
13934 }
13935
13936 return reloc_sec;
13937 }
13938
13939 /* Copy the ELF symbol type and other attributes for a linker script
13940 assignment from HSRC to HDEST. Generally this should be treated as
13941 if we found a strong non-dynamic definition for HDEST (except that
13942 ld ignores multiple definition errors). */
13943 void
13944 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
13945 struct bfd_link_hash_entry *hdest,
13946 struct bfd_link_hash_entry *hsrc)
13947 {
13948 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
13949 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
13950 Elf_Internal_Sym isym;
13951
13952 ehdest->type = ehsrc->type;
13953 ehdest->target_internal = ehsrc->target_internal;
13954
13955 isym.st_other = ehsrc->other;
13956 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
13957 }
13958
13959 /* Append a RELA relocation REL to section S in BFD. */
13960
13961 void
13962 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13963 {
13964 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13965 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13966 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13967 bed->s->swap_reloca_out (abfd, rel, loc);
13968 }
13969
13970 /* Append a REL relocation REL to section S in BFD. */
13971
13972 void
13973 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13974 {
13975 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13976 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13977 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13978 bed->s->swap_reloc_out (abfd, rel, loc);
13979 }
This page took 0.663406 seconds and 4 git commands to generate.