ad146d48fc92b073978cff054b80f72adcfb21a8
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2019 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #define ARCH_SIZE 0
26 #include "elf-bfd.h"
27 #include "safe-ctype.h"
28 #include "libiberty.h"
29 #include "objalloc.h"
30 #if BFD_SUPPORTS_PLUGINS
31 #include "plugin-api.h"
32 #include "plugin.h"
33 #endif
34
35 /* This struct is used to pass information to routines called via
36 elf_link_hash_traverse which must return failure. */
37
38 struct elf_info_failed
39 {
40 struct bfd_link_info *info;
41 bfd_boolean failed;
42 };
43
44 /* This structure is used to pass information to
45 _bfd_elf_link_find_version_dependencies. */
46
47 struct elf_find_verdep_info
48 {
49 /* General link information. */
50 struct bfd_link_info *info;
51 /* The number of dependencies. */
52 unsigned int vers;
53 /* Whether we had a failure. */
54 bfd_boolean failed;
55 };
56
57 static bfd_boolean _bfd_elf_fix_symbol_flags
58 (struct elf_link_hash_entry *, struct elf_info_failed *);
59
60 asection *
61 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
62 unsigned long r_symndx,
63 bfd_boolean discard)
64 {
65 if (r_symndx >= cookie->locsymcount
66 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
67 {
68 struct elf_link_hash_entry *h;
69
70 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
71
72 while (h->root.type == bfd_link_hash_indirect
73 || h->root.type == bfd_link_hash_warning)
74 h = (struct elf_link_hash_entry *) h->root.u.i.link;
75
76 if ((h->root.type == bfd_link_hash_defined
77 || h->root.type == bfd_link_hash_defweak)
78 && discarded_section (h->root.u.def.section))
79 return h->root.u.def.section;
80 else
81 return NULL;
82 }
83 else
84 {
85 /* It's not a relocation against a global symbol,
86 but it could be a relocation against a local
87 symbol for a discarded section. */
88 asection *isec;
89 Elf_Internal_Sym *isym;
90
91 /* Need to: get the symbol; get the section. */
92 isym = &cookie->locsyms[r_symndx];
93 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
94 if (isec != NULL
95 && discard ? discarded_section (isec) : 1)
96 return isec;
97 }
98 return NULL;
99 }
100
101 /* Define a symbol in a dynamic linkage section. */
102
103 struct elf_link_hash_entry *
104 _bfd_elf_define_linkage_sym (bfd *abfd,
105 struct bfd_link_info *info,
106 asection *sec,
107 const char *name)
108 {
109 struct elf_link_hash_entry *h;
110 struct bfd_link_hash_entry *bh;
111 const struct elf_backend_data *bed;
112
113 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
114 if (h != NULL)
115 {
116 /* Zap symbol defined in an as-needed lib that wasn't linked.
117 This is a symptom of a larger problem: Absolute symbols
118 defined in shared libraries can't be overridden, because we
119 lose the link to the bfd which is via the symbol section. */
120 h->root.type = bfd_link_hash_new;
121 bh = &h->root;
122 }
123 else
124 bh = NULL;
125
126 bed = get_elf_backend_data (abfd);
127 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
128 sec, 0, NULL, FALSE, bed->collect,
129 &bh))
130 return NULL;
131 h = (struct elf_link_hash_entry *) bh;
132 BFD_ASSERT (h != NULL);
133 h->def_regular = 1;
134 h->non_elf = 0;
135 h->root.linker_def = 1;
136 h->type = STT_OBJECT;
137 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
138 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
139
140 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
141 return h;
142 }
143
144 bfd_boolean
145 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
146 {
147 flagword flags;
148 asection *s;
149 struct elf_link_hash_entry *h;
150 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
151 struct elf_link_hash_table *htab = elf_hash_table (info);
152
153 /* This function may be called more than once. */
154 if (htab->sgot != NULL)
155 return TRUE;
156
157 flags = bed->dynamic_sec_flags;
158
159 s = bfd_make_section_anyway_with_flags (abfd,
160 (bed->rela_plts_and_copies_p
161 ? ".rela.got" : ".rel.got"),
162 (bed->dynamic_sec_flags
163 | SEC_READONLY));
164 if (s == NULL
165 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
166 return FALSE;
167 htab->srelgot = s;
168
169 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
170 if (s == NULL
171 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
172 return FALSE;
173 htab->sgot = s;
174
175 if (bed->want_got_plt)
176 {
177 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
178 if (s == NULL
179 || !bfd_set_section_alignment (abfd, s,
180 bed->s->log_file_align))
181 return FALSE;
182 htab->sgotplt = s;
183 }
184
185 /* The first bit of the global offset table is the header. */
186 s->size += bed->got_header_size;
187
188 if (bed->want_got_sym)
189 {
190 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
191 (or .got.plt) section. We don't do this in the linker script
192 because we don't want to define the symbol if we are not creating
193 a global offset table. */
194 h = _bfd_elf_define_linkage_sym (abfd, info, s,
195 "_GLOBAL_OFFSET_TABLE_");
196 elf_hash_table (info)->hgot = h;
197 if (h == NULL)
198 return FALSE;
199 }
200
201 return TRUE;
202 }
203 \f
204 /* Create a strtab to hold the dynamic symbol names. */
205 static bfd_boolean
206 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
207 {
208 struct elf_link_hash_table *hash_table;
209
210 hash_table = elf_hash_table (info);
211 if (hash_table->dynobj == NULL)
212 {
213 /* We may not set dynobj, an input file holding linker created
214 dynamic sections to abfd, which may be a dynamic object with
215 its own dynamic sections. We need to find a normal input file
216 to hold linker created sections if possible. */
217 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
218 {
219 bfd *ibfd;
220 asection *s;
221 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
222 if ((ibfd->flags
223 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0
224 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
225 && elf_object_id (ibfd) == elf_hash_table_id (hash_table)
226 && !((s = ibfd->sections) != NULL
227 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS))
228 {
229 abfd = ibfd;
230 break;
231 }
232 }
233 hash_table->dynobj = abfd;
234 }
235
236 if (hash_table->dynstr == NULL)
237 {
238 hash_table->dynstr = _bfd_elf_strtab_init ();
239 if (hash_table->dynstr == NULL)
240 return FALSE;
241 }
242 return TRUE;
243 }
244
245 /* Create some sections which will be filled in with dynamic linking
246 information. ABFD is an input file which requires dynamic sections
247 to be created. The dynamic sections take up virtual memory space
248 when the final executable is run, so we need to create them before
249 addresses are assigned to the output sections. We work out the
250 actual contents and size of these sections later. */
251
252 bfd_boolean
253 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
254 {
255 flagword flags;
256 asection *s;
257 const struct elf_backend_data *bed;
258 struct elf_link_hash_entry *h;
259
260 if (! is_elf_hash_table (info->hash))
261 return FALSE;
262
263 if (elf_hash_table (info)->dynamic_sections_created)
264 return TRUE;
265
266 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
267 return FALSE;
268
269 abfd = elf_hash_table (info)->dynobj;
270 bed = get_elf_backend_data (abfd);
271
272 flags = bed->dynamic_sec_flags;
273
274 /* A dynamically linked executable has a .interp section, but a
275 shared library does not. */
276 if (bfd_link_executable (info) && !info->nointerp)
277 {
278 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
279 flags | SEC_READONLY);
280 if (s == NULL)
281 return FALSE;
282 }
283
284 /* Create sections to hold version informations. These are removed
285 if they are not needed. */
286 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
287 flags | SEC_READONLY);
288 if (s == NULL
289 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
290 return FALSE;
291
292 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
293 flags | SEC_READONLY);
294 if (s == NULL
295 || ! bfd_set_section_alignment (abfd, s, 1))
296 return FALSE;
297
298 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
299 flags | SEC_READONLY);
300 if (s == NULL
301 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
302 return FALSE;
303
304 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
305 flags | SEC_READONLY);
306 if (s == NULL
307 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
308 return FALSE;
309 elf_hash_table (info)->dynsym = s;
310
311 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
312 flags | SEC_READONLY);
313 if (s == NULL)
314 return FALSE;
315
316 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
317 if (s == NULL
318 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
319 return FALSE;
320
321 /* The special symbol _DYNAMIC is always set to the start of the
322 .dynamic section. We could set _DYNAMIC in a linker script, but we
323 only want to define it if we are, in fact, creating a .dynamic
324 section. We don't want to define it if there is no .dynamic
325 section, since on some ELF platforms the start up code examines it
326 to decide how to initialize the process. */
327 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
328 elf_hash_table (info)->hdynamic = h;
329 if (h == NULL)
330 return FALSE;
331
332 if (info->emit_hash)
333 {
334 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
335 flags | SEC_READONLY);
336 if (s == NULL
337 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
338 return FALSE;
339 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
340 }
341
342 if (info->emit_gnu_hash)
343 {
344 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
345 flags | SEC_READONLY);
346 if (s == NULL
347 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
348 return FALSE;
349 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
350 4 32-bit words followed by variable count of 64-bit words, then
351 variable count of 32-bit words. */
352 if (bed->s->arch_size == 64)
353 elf_section_data (s)->this_hdr.sh_entsize = 0;
354 else
355 elf_section_data (s)->this_hdr.sh_entsize = 4;
356 }
357
358 /* Let the backend create the rest of the sections. This lets the
359 backend set the right flags. The backend will normally create
360 the .got and .plt sections. */
361 if (bed->elf_backend_create_dynamic_sections == NULL
362 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
363 return FALSE;
364
365 elf_hash_table (info)->dynamic_sections_created = TRUE;
366
367 return TRUE;
368 }
369
370 /* Create dynamic sections when linking against a dynamic object. */
371
372 bfd_boolean
373 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
374 {
375 flagword flags, pltflags;
376 struct elf_link_hash_entry *h;
377 asection *s;
378 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
379 struct elf_link_hash_table *htab = elf_hash_table (info);
380
381 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
382 .rel[a].bss sections. */
383 flags = bed->dynamic_sec_flags;
384
385 pltflags = flags;
386 if (bed->plt_not_loaded)
387 /* We do not clear SEC_ALLOC here because we still want the OS to
388 allocate space for the section; it's just that there's nothing
389 to read in from the object file. */
390 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
391 else
392 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
393 if (bed->plt_readonly)
394 pltflags |= SEC_READONLY;
395
396 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
397 if (s == NULL
398 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
399 return FALSE;
400 htab->splt = s;
401
402 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
403 .plt section. */
404 if (bed->want_plt_sym)
405 {
406 h = _bfd_elf_define_linkage_sym (abfd, info, s,
407 "_PROCEDURE_LINKAGE_TABLE_");
408 elf_hash_table (info)->hplt = h;
409 if (h == NULL)
410 return FALSE;
411 }
412
413 s = bfd_make_section_anyway_with_flags (abfd,
414 (bed->rela_plts_and_copies_p
415 ? ".rela.plt" : ".rel.plt"),
416 flags | SEC_READONLY);
417 if (s == NULL
418 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
419 return FALSE;
420 htab->srelplt = s;
421
422 if (! _bfd_elf_create_got_section (abfd, info))
423 return FALSE;
424
425 if (bed->want_dynbss)
426 {
427 /* The .dynbss section is a place to put symbols which are defined
428 by dynamic objects, are referenced by regular objects, and are
429 not functions. We must allocate space for them in the process
430 image and use a R_*_COPY reloc to tell the dynamic linker to
431 initialize them at run time. The linker script puts the .dynbss
432 section into the .bss section of the final image. */
433 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
434 SEC_ALLOC | SEC_LINKER_CREATED);
435 if (s == NULL)
436 return FALSE;
437 htab->sdynbss = s;
438
439 if (bed->want_dynrelro)
440 {
441 /* Similarly, but for symbols that were originally in read-only
442 sections. This section doesn't really need to have contents,
443 but make it like other .data.rel.ro sections. */
444 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
445 flags);
446 if (s == NULL)
447 return FALSE;
448 htab->sdynrelro = s;
449 }
450
451 /* The .rel[a].bss section holds copy relocs. This section is not
452 normally needed. We need to create it here, though, so that the
453 linker will map it to an output section. We can't just create it
454 only if we need it, because we will not know whether we need it
455 until we have seen all the input files, and the first time the
456 main linker code calls BFD after examining all the input files
457 (size_dynamic_sections) the input sections have already been
458 mapped to the output sections. If the section turns out not to
459 be needed, we can discard it later. We will never need this
460 section when generating a shared object, since they do not use
461 copy relocs. */
462 if (bfd_link_executable (info))
463 {
464 s = bfd_make_section_anyway_with_flags (abfd,
465 (bed->rela_plts_and_copies_p
466 ? ".rela.bss" : ".rel.bss"),
467 flags | SEC_READONLY);
468 if (s == NULL
469 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
470 return FALSE;
471 htab->srelbss = s;
472
473 if (bed->want_dynrelro)
474 {
475 s = (bfd_make_section_anyway_with_flags
476 (abfd, (bed->rela_plts_and_copies_p
477 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
478 flags | SEC_READONLY));
479 if (s == NULL
480 || ! bfd_set_section_alignment (abfd, s,
481 bed->s->log_file_align))
482 return FALSE;
483 htab->sreldynrelro = s;
484 }
485 }
486 }
487
488 return TRUE;
489 }
490 \f
491 /* Record a new dynamic symbol. We record the dynamic symbols as we
492 read the input files, since we need to have a list of all of them
493 before we can determine the final sizes of the output sections.
494 Note that we may actually call this function even though we are not
495 going to output any dynamic symbols; in some cases we know that a
496 symbol should be in the dynamic symbol table, but only if there is
497 one. */
498
499 bfd_boolean
500 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
501 struct elf_link_hash_entry *h)
502 {
503 if (h->dynindx == -1)
504 {
505 struct elf_strtab_hash *dynstr;
506 char *p;
507 const char *name;
508 size_t indx;
509
510 /* XXX: The ABI draft says the linker must turn hidden and
511 internal symbols into STB_LOCAL symbols when producing the
512 DSO. However, if ld.so honors st_other in the dynamic table,
513 this would not be necessary. */
514 switch (ELF_ST_VISIBILITY (h->other))
515 {
516 case STV_INTERNAL:
517 case STV_HIDDEN:
518 if (h->root.type != bfd_link_hash_undefined
519 && h->root.type != bfd_link_hash_undefweak)
520 {
521 h->forced_local = 1;
522 if (!elf_hash_table (info)->is_relocatable_executable)
523 return TRUE;
524 }
525
526 default:
527 break;
528 }
529
530 h->dynindx = elf_hash_table (info)->dynsymcount;
531 ++elf_hash_table (info)->dynsymcount;
532
533 dynstr = elf_hash_table (info)->dynstr;
534 if (dynstr == NULL)
535 {
536 /* Create a strtab to hold the dynamic symbol names. */
537 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
538 if (dynstr == NULL)
539 return FALSE;
540 }
541
542 /* We don't put any version information in the dynamic string
543 table. */
544 name = h->root.root.string;
545 p = strchr (name, ELF_VER_CHR);
546 if (p != NULL)
547 /* We know that the p points into writable memory. In fact,
548 there are only a few symbols that have read-only names, being
549 those like _GLOBAL_OFFSET_TABLE_ that are created specially
550 by the backends. Most symbols will have names pointing into
551 an ELF string table read from a file, or to objalloc memory. */
552 *p = 0;
553
554 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
555
556 if (p != NULL)
557 *p = ELF_VER_CHR;
558
559 if (indx == (size_t) -1)
560 return FALSE;
561 h->dynstr_index = indx;
562 }
563
564 return TRUE;
565 }
566 \f
567 /* Mark a symbol dynamic. */
568
569 static void
570 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
571 struct elf_link_hash_entry *h,
572 Elf_Internal_Sym *sym)
573 {
574 struct bfd_elf_dynamic_list *d = info->dynamic_list;
575
576 /* It may be called more than once on the same H. */
577 if(h->dynamic || bfd_link_relocatable (info))
578 return;
579
580 if ((info->dynamic_data
581 && (h->type == STT_OBJECT
582 || h->type == STT_COMMON
583 || (sym != NULL
584 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
585 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
586 || (d != NULL
587 && h->non_elf
588 && (*d->match) (&d->head, NULL, h->root.root.string)))
589 {
590 h->dynamic = 1;
591 /* NB: If a symbol is made dynamic by --dynamic-list, it has
592 non-IR reference. */
593 h->root.non_ir_ref_dynamic = 1;
594 }
595 }
596
597 /* Record an assignment to a symbol made by a linker script. We need
598 this in case some dynamic object refers to this symbol. */
599
600 bfd_boolean
601 bfd_elf_record_link_assignment (bfd *output_bfd,
602 struct bfd_link_info *info,
603 const char *name,
604 bfd_boolean provide,
605 bfd_boolean hidden)
606 {
607 struct elf_link_hash_entry *h, *hv;
608 struct elf_link_hash_table *htab;
609 const struct elf_backend_data *bed;
610
611 if (!is_elf_hash_table (info->hash))
612 return TRUE;
613
614 htab = elf_hash_table (info);
615 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
616 if (h == NULL)
617 return provide;
618
619 if (h->root.type == bfd_link_hash_warning)
620 h = (struct elf_link_hash_entry *) h->root.u.i.link;
621
622 if (h->versioned == unknown)
623 {
624 /* Set versioned if symbol version is unknown. */
625 char *version = strrchr (name, ELF_VER_CHR);
626 if (version)
627 {
628 if (version > name && version[-1] != ELF_VER_CHR)
629 h->versioned = versioned_hidden;
630 else
631 h->versioned = versioned;
632 }
633 }
634
635 /* Symbols defined in a linker script but not referenced anywhere
636 else will have non_elf set. */
637 if (h->non_elf)
638 {
639 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
640 h->non_elf = 0;
641 }
642
643 switch (h->root.type)
644 {
645 case bfd_link_hash_defined:
646 case bfd_link_hash_defweak:
647 case bfd_link_hash_common:
648 break;
649 case bfd_link_hash_undefweak:
650 case bfd_link_hash_undefined:
651 /* Since we're defining the symbol, don't let it seem to have not
652 been defined. record_dynamic_symbol and size_dynamic_sections
653 may depend on this. */
654 h->root.type = bfd_link_hash_new;
655 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
656 bfd_link_repair_undef_list (&htab->root);
657 break;
658 case bfd_link_hash_new:
659 break;
660 case bfd_link_hash_indirect:
661 /* We had a versioned symbol in a dynamic library. We make the
662 the versioned symbol point to this one. */
663 bed = get_elf_backend_data (output_bfd);
664 hv = h;
665 while (hv->root.type == bfd_link_hash_indirect
666 || hv->root.type == bfd_link_hash_warning)
667 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
668 /* We don't need to update h->root.u since linker will set them
669 later. */
670 h->root.type = bfd_link_hash_undefined;
671 hv->root.type = bfd_link_hash_indirect;
672 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
673 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
674 break;
675 default:
676 BFD_FAIL ();
677 return FALSE;
678 }
679
680 /* If this symbol is being provided by the linker script, and it is
681 currently defined by a dynamic object, but not by a regular
682 object, then mark it as undefined so that the generic linker will
683 force the correct value. */
684 if (provide
685 && h->def_dynamic
686 && !h->def_regular)
687 h->root.type = bfd_link_hash_undefined;
688
689 /* If this symbol is currently defined by a dynamic object, but not
690 by a regular object, then clear out any version information because
691 the symbol will not be associated with the dynamic object any
692 more. */
693 if (h->def_dynamic && !h->def_regular)
694 h->verinfo.verdef = NULL;
695
696 /* Make sure this symbol is not garbage collected. */
697 h->mark = 1;
698
699 h->def_regular = 1;
700
701 if (hidden)
702 {
703 bed = get_elf_backend_data (output_bfd);
704 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
705 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
706 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
707 }
708
709 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
710 and executables. */
711 if (!bfd_link_relocatable (info)
712 && h->dynindx != -1
713 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
714 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
715 h->forced_local = 1;
716
717 if ((h->def_dynamic
718 || h->ref_dynamic
719 || bfd_link_dll (info)
720 || elf_hash_table (info)->is_relocatable_executable)
721 && !h->forced_local
722 && h->dynindx == -1)
723 {
724 if (! bfd_elf_link_record_dynamic_symbol (info, h))
725 return FALSE;
726
727 /* If this is a weak defined symbol, and we know a corresponding
728 real symbol from the same dynamic object, make sure the real
729 symbol is also made into a dynamic symbol. */
730 if (h->is_weakalias)
731 {
732 struct elf_link_hash_entry *def = weakdef (h);
733
734 if (def->dynindx == -1
735 && !bfd_elf_link_record_dynamic_symbol (info, def))
736 return FALSE;
737 }
738 }
739
740 return TRUE;
741 }
742
743 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
744 success, and 2 on a failure caused by attempting to record a symbol
745 in a discarded section, eg. a discarded link-once section symbol. */
746
747 int
748 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
749 bfd *input_bfd,
750 long input_indx)
751 {
752 bfd_size_type amt;
753 struct elf_link_local_dynamic_entry *entry;
754 struct elf_link_hash_table *eht;
755 struct elf_strtab_hash *dynstr;
756 size_t dynstr_index;
757 char *name;
758 Elf_External_Sym_Shndx eshndx;
759 char esym[sizeof (Elf64_External_Sym)];
760
761 if (! is_elf_hash_table (info->hash))
762 return 0;
763
764 /* See if the entry exists already. */
765 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
766 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
767 return 1;
768
769 amt = sizeof (*entry);
770 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
771 if (entry == NULL)
772 return 0;
773
774 /* Go find the symbol, so that we can find it's name. */
775 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
776 1, input_indx, &entry->isym, esym, &eshndx))
777 {
778 bfd_release (input_bfd, entry);
779 return 0;
780 }
781
782 if (entry->isym.st_shndx != SHN_UNDEF
783 && entry->isym.st_shndx < SHN_LORESERVE)
784 {
785 asection *s;
786
787 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
788 if (s == NULL || bfd_is_abs_section (s->output_section))
789 {
790 /* We can still bfd_release here as nothing has done another
791 bfd_alloc. We can't do this later in this function. */
792 bfd_release (input_bfd, entry);
793 return 2;
794 }
795 }
796
797 name = (bfd_elf_string_from_elf_section
798 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
799 entry->isym.st_name));
800
801 dynstr = elf_hash_table (info)->dynstr;
802 if (dynstr == NULL)
803 {
804 /* Create a strtab to hold the dynamic symbol names. */
805 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
806 if (dynstr == NULL)
807 return 0;
808 }
809
810 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
811 if (dynstr_index == (size_t) -1)
812 return 0;
813 entry->isym.st_name = dynstr_index;
814
815 eht = elf_hash_table (info);
816
817 entry->next = eht->dynlocal;
818 eht->dynlocal = entry;
819 entry->input_bfd = input_bfd;
820 entry->input_indx = input_indx;
821 eht->dynsymcount++;
822
823 /* Whatever binding the symbol had before, it's now local. */
824 entry->isym.st_info
825 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
826
827 /* The dynindx will be set at the end of size_dynamic_sections. */
828
829 return 1;
830 }
831
832 /* Return the dynindex of a local dynamic symbol. */
833
834 long
835 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
836 bfd *input_bfd,
837 long input_indx)
838 {
839 struct elf_link_local_dynamic_entry *e;
840
841 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
842 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
843 return e->dynindx;
844 return -1;
845 }
846
847 /* This function is used to renumber the dynamic symbols, if some of
848 them are removed because they are marked as local. This is called
849 via elf_link_hash_traverse. */
850
851 static bfd_boolean
852 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
853 void *data)
854 {
855 size_t *count = (size_t *) data;
856
857 if (h->forced_local)
858 return TRUE;
859
860 if (h->dynindx != -1)
861 h->dynindx = ++(*count);
862
863 return TRUE;
864 }
865
866
867 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
868 STB_LOCAL binding. */
869
870 static bfd_boolean
871 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
872 void *data)
873 {
874 size_t *count = (size_t *) data;
875
876 if (!h->forced_local)
877 return TRUE;
878
879 if (h->dynindx != -1)
880 h->dynindx = ++(*count);
881
882 return TRUE;
883 }
884
885 /* Return true if the dynamic symbol for a given section should be
886 omitted when creating a shared library. */
887 bfd_boolean
888 _bfd_elf_omit_section_dynsym_default (bfd *output_bfd ATTRIBUTE_UNUSED,
889 struct bfd_link_info *info,
890 asection *p)
891 {
892 struct elf_link_hash_table *htab;
893 asection *ip;
894
895 switch (elf_section_data (p)->this_hdr.sh_type)
896 {
897 case SHT_PROGBITS:
898 case SHT_NOBITS:
899 /* If sh_type is yet undecided, assume it could be
900 SHT_PROGBITS/SHT_NOBITS. */
901 case SHT_NULL:
902 htab = elf_hash_table (info);
903 if (htab->text_index_section != NULL)
904 return p != htab->text_index_section && p != htab->data_index_section;
905
906 return (htab->dynobj != NULL
907 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
908 && ip->output_section == p);
909
910 /* There shouldn't be section relative relocations
911 against any other section. */
912 default:
913 return TRUE;
914 }
915 }
916
917 bfd_boolean
918 _bfd_elf_omit_section_dynsym_all
919 (bfd *output_bfd ATTRIBUTE_UNUSED,
920 struct bfd_link_info *info ATTRIBUTE_UNUSED,
921 asection *p ATTRIBUTE_UNUSED)
922 {
923 return TRUE;
924 }
925
926 /* Assign dynsym indices. In a shared library we generate a section
927 symbol for each output section, which come first. Next come symbols
928 which have been forced to local binding. Then all of the back-end
929 allocated local dynamic syms, followed by the rest of the global
930 symbols. If SECTION_SYM_COUNT is NULL, section dynindx is not set.
931 (This prevents the early call before elf_backend_init_index_section
932 and strip_excluded_output_sections setting dynindx for sections
933 that are stripped.) */
934
935 static unsigned long
936 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
937 struct bfd_link_info *info,
938 unsigned long *section_sym_count)
939 {
940 unsigned long dynsymcount = 0;
941 bfd_boolean do_sec = section_sym_count != NULL;
942
943 if (bfd_link_pic (info)
944 || elf_hash_table (info)->is_relocatable_executable)
945 {
946 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
947 asection *p;
948 for (p = output_bfd->sections; p ; p = p->next)
949 if ((p->flags & SEC_EXCLUDE) == 0
950 && (p->flags & SEC_ALLOC) != 0
951 && elf_hash_table (info)->dynamic_relocs
952 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
953 {
954 ++dynsymcount;
955 if (do_sec)
956 elf_section_data (p)->dynindx = dynsymcount;
957 }
958 else if (do_sec)
959 elf_section_data (p)->dynindx = 0;
960 }
961 if (do_sec)
962 *section_sym_count = dynsymcount;
963
964 elf_link_hash_traverse (elf_hash_table (info),
965 elf_link_renumber_local_hash_table_dynsyms,
966 &dynsymcount);
967
968 if (elf_hash_table (info)->dynlocal)
969 {
970 struct elf_link_local_dynamic_entry *p;
971 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
972 p->dynindx = ++dynsymcount;
973 }
974 elf_hash_table (info)->local_dynsymcount = dynsymcount;
975
976 elf_link_hash_traverse (elf_hash_table (info),
977 elf_link_renumber_hash_table_dynsyms,
978 &dynsymcount);
979
980 /* There is an unused NULL entry at the head of the table which we
981 must account for in our count even if the table is empty since it
982 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
983 .dynamic section. */
984 dynsymcount++;
985
986 elf_hash_table (info)->dynsymcount = dynsymcount;
987 return dynsymcount;
988 }
989
990 /* Merge st_other field. */
991
992 static void
993 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
994 const Elf_Internal_Sym *isym, asection *sec,
995 bfd_boolean definition, bfd_boolean dynamic)
996 {
997 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
998
999 /* If st_other has a processor-specific meaning, specific
1000 code might be needed here. */
1001 if (bed->elf_backend_merge_symbol_attribute)
1002 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
1003 dynamic);
1004
1005 if (!dynamic)
1006 {
1007 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
1008 unsigned hvis = ELF_ST_VISIBILITY (h->other);
1009
1010 /* Keep the most constraining visibility. Leave the remainder
1011 of the st_other field to elf_backend_merge_symbol_attribute. */
1012 if (symvis - 1 < hvis - 1)
1013 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
1014 }
1015 else if (definition
1016 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
1017 && (sec->flags & SEC_READONLY) == 0)
1018 h->protected_def = 1;
1019 }
1020
1021 /* This function is called when we want to merge a new symbol with an
1022 existing symbol. It handles the various cases which arise when we
1023 find a definition in a dynamic object, or when there is already a
1024 definition in a dynamic object. The new symbol is described by
1025 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
1026 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
1027 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
1028 of an old common symbol. We set OVERRIDE if the old symbol is
1029 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
1030 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
1031 to change. By OK to change, we mean that we shouldn't warn if the
1032 type or size does change. */
1033
1034 static bfd_boolean
1035 _bfd_elf_merge_symbol (bfd *abfd,
1036 struct bfd_link_info *info,
1037 const char *name,
1038 Elf_Internal_Sym *sym,
1039 asection **psec,
1040 bfd_vma *pvalue,
1041 struct elf_link_hash_entry **sym_hash,
1042 bfd **poldbfd,
1043 bfd_boolean *pold_weak,
1044 unsigned int *pold_alignment,
1045 bfd_boolean *skip,
1046 bfd_boolean *override,
1047 bfd_boolean *type_change_ok,
1048 bfd_boolean *size_change_ok,
1049 bfd_boolean *matched)
1050 {
1051 asection *sec, *oldsec;
1052 struct elf_link_hash_entry *h;
1053 struct elf_link_hash_entry *hi;
1054 struct elf_link_hash_entry *flip;
1055 int bind;
1056 bfd *oldbfd;
1057 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1058 bfd_boolean newweak, oldweak, newfunc, oldfunc;
1059 const struct elf_backend_data *bed;
1060 char *new_version;
1061 bfd_boolean default_sym = *matched;
1062
1063 *skip = FALSE;
1064 *override = FALSE;
1065
1066 sec = *psec;
1067 bind = ELF_ST_BIND (sym->st_info);
1068
1069 if (! bfd_is_und_section (sec))
1070 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
1071 else
1072 h = ((struct elf_link_hash_entry *)
1073 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1074 if (h == NULL)
1075 return FALSE;
1076 *sym_hash = h;
1077
1078 bed = get_elf_backend_data (abfd);
1079
1080 /* NEW_VERSION is the symbol version of the new symbol. */
1081 if (h->versioned != unversioned)
1082 {
1083 /* Symbol version is unknown or versioned. */
1084 new_version = strrchr (name, ELF_VER_CHR);
1085 if (new_version)
1086 {
1087 if (h->versioned == unknown)
1088 {
1089 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1090 h->versioned = versioned_hidden;
1091 else
1092 h->versioned = versioned;
1093 }
1094 new_version += 1;
1095 if (new_version[0] == '\0')
1096 new_version = NULL;
1097 }
1098 else
1099 h->versioned = unversioned;
1100 }
1101 else
1102 new_version = NULL;
1103
1104 /* For merging, we only care about real symbols. But we need to make
1105 sure that indirect symbol dynamic flags are updated. */
1106 hi = h;
1107 while (h->root.type == bfd_link_hash_indirect
1108 || h->root.type == bfd_link_hash_warning)
1109 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1110
1111 if (!*matched)
1112 {
1113 if (hi == h || h->root.type == bfd_link_hash_new)
1114 *matched = TRUE;
1115 else
1116 {
1117 /* OLD_HIDDEN is true if the existing symbol is only visible
1118 to the symbol with the same symbol version. NEW_HIDDEN is
1119 true if the new symbol is only visible to the symbol with
1120 the same symbol version. */
1121 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1122 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1123 if (!old_hidden && !new_hidden)
1124 /* The new symbol matches the existing symbol if both
1125 aren't hidden. */
1126 *matched = TRUE;
1127 else
1128 {
1129 /* OLD_VERSION is the symbol version of the existing
1130 symbol. */
1131 char *old_version;
1132
1133 if (h->versioned >= versioned)
1134 old_version = strrchr (h->root.root.string,
1135 ELF_VER_CHR) + 1;
1136 else
1137 old_version = NULL;
1138
1139 /* The new symbol matches the existing symbol if they
1140 have the same symbol version. */
1141 *matched = (old_version == new_version
1142 || (old_version != NULL
1143 && new_version != NULL
1144 && strcmp (old_version, new_version) == 0));
1145 }
1146 }
1147 }
1148
1149 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1150 existing symbol. */
1151
1152 oldbfd = NULL;
1153 oldsec = NULL;
1154 switch (h->root.type)
1155 {
1156 default:
1157 break;
1158
1159 case bfd_link_hash_undefined:
1160 case bfd_link_hash_undefweak:
1161 oldbfd = h->root.u.undef.abfd;
1162 break;
1163
1164 case bfd_link_hash_defined:
1165 case bfd_link_hash_defweak:
1166 oldbfd = h->root.u.def.section->owner;
1167 oldsec = h->root.u.def.section;
1168 break;
1169
1170 case bfd_link_hash_common:
1171 oldbfd = h->root.u.c.p->section->owner;
1172 oldsec = h->root.u.c.p->section;
1173 if (pold_alignment)
1174 *pold_alignment = h->root.u.c.p->alignment_power;
1175 break;
1176 }
1177 if (poldbfd && *poldbfd == NULL)
1178 *poldbfd = oldbfd;
1179
1180 /* Differentiate strong and weak symbols. */
1181 newweak = bind == STB_WEAK;
1182 oldweak = (h->root.type == bfd_link_hash_defweak
1183 || h->root.type == bfd_link_hash_undefweak);
1184 if (pold_weak)
1185 *pold_weak = oldweak;
1186
1187 /* We have to check it for every instance since the first few may be
1188 references and not all compilers emit symbol type for undefined
1189 symbols. */
1190 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1191
1192 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1193 respectively, is from a dynamic object. */
1194
1195 newdyn = (abfd->flags & DYNAMIC) != 0;
1196
1197 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1198 syms and defined syms in dynamic libraries respectively.
1199 ref_dynamic on the other hand can be set for a symbol defined in
1200 a dynamic library, and def_dynamic may not be set; When the
1201 definition in a dynamic lib is overridden by a definition in the
1202 executable use of the symbol in the dynamic lib becomes a
1203 reference to the executable symbol. */
1204 if (newdyn)
1205 {
1206 if (bfd_is_und_section (sec))
1207 {
1208 if (bind != STB_WEAK)
1209 {
1210 h->ref_dynamic_nonweak = 1;
1211 hi->ref_dynamic_nonweak = 1;
1212 }
1213 }
1214 else
1215 {
1216 /* Update the existing symbol only if they match. */
1217 if (*matched)
1218 h->dynamic_def = 1;
1219 hi->dynamic_def = 1;
1220 }
1221 }
1222
1223 /* If we just created the symbol, mark it as being an ELF symbol.
1224 Other than that, there is nothing to do--there is no merge issue
1225 with a newly defined symbol--so we just return. */
1226
1227 if (h->root.type == bfd_link_hash_new)
1228 {
1229 h->non_elf = 0;
1230 return TRUE;
1231 }
1232
1233 /* In cases involving weak versioned symbols, we may wind up trying
1234 to merge a symbol with itself. Catch that here, to avoid the
1235 confusion that results if we try to override a symbol with
1236 itself. The additional tests catch cases like
1237 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1238 dynamic object, which we do want to handle here. */
1239 if (abfd == oldbfd
1240 && (newweak || oldweak)
1241 && ((abfd->flags & DYNAMIC) == 0
1242 || !h->def_regular))
1243 return TRUE;
1244
1245 olddyn = FALSE;
1246 if (oldbfd != NULL)
1247 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1248 else if (oldsec != NULL)
1249 {
1250 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1251 indices used by MIPS ELF. */
1252 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1253 }
1254
1255 /* Handle a case where plugin_notice won't be called and thus won't
1256 set the non_ir_ref flags on the first pass over symbols. */
1257 if (oldbfd != NULL
1258 && (oldbfd->flags & BFD_PLUGIN) != (abfd->flags & BFD_PLUGIN)
1259 && newdyn != olddyn)
1260 {
1261 h->root.non_ir_ref_dynamic = TRUE;
1262 hi->root.non_ir_ref_dynamic = TRUE;
1263 }
1264
1265 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1266 respectively, appear to be a definition rather than reference. */
1267
1268 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1269
1270 olddef = (h->root.type != bfd_link_hash_undefined
1271 && h->root.type != bfd_link_hash_undefweak
1272 && h->root.type != bfd_link_hash_common);
1273
1274 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1275 respectively, appear to be a function. */
1276
1277 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1278 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1279
1280 oldfunc = (h->type != STT_NOTYPE
1281 && bed->is_function_type (h->type));
1282
1283 if (!(newfunc && oldfunc)
1284 && ELF_ST_TYPE (sym->st_info) != h->type
1285 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1286 && h->type != STT_NOTYPE
1287 && (newdef || bfd_is_com_section (sec))
1288 && (olddef || h->root.type == bfd_link_hash_common))
1289 {
1290 /* If creating a default indirect symbol ("foo" or "foo@") from
1291 a dynamic versioned definition ("foo@@") skip doing so if
1292 there is an existing regular definition with a different
1293 type. We don't want, for example, a "time" variable in the
1294 executable overriding a "time" function in a shared library. */
1295 if (newdyn
1296 && !olddyn)
1297 {
1298 *skip = TRUE;
1299 return TRUE;
1300 }
1301
1302 /* When adding a symbol from a regular object file after we have
1303 created indirect symbols, undo the indirection and any
1304 dynamic state. */
1305 if (hi != h
1306 && !newdyn
1307 && olddyn)
1308 {
1309 h = hi;
1310 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1311 h->forced_local = 0;
1312 h->ref_dynamic = 0;
1313 h->def_dynamic = 0;
1314 h->dynamic_def = 0;
1315 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1316 {
1317 h->root.type = bfd_link_hash_undefined;
1318 h->root.u.undef.abfd = abfd;
1319 }
1320 else
1321 {
1322 h->root.type = bfd_link_hash_new;
1323 h->root.u.undef.abfd = NULL;
1324 }
1325 return TRUE;
1326 }
1327 }
1328
1329 /* Check TLS symbols. We don't check undefined symbols introduced
1330 by "ld -u" which have no type (and oldbfd NULL), and we don't
1331 check symbols from plugins because they also have no type. */
1332 if (oldbfd != NULL
1333 && (oldbfd->flags & BFD_PLUGIN) == 0
1334 && (abfd->flags & BFD_PLUGIN) == 0
1335 && ELF_ST_TYPE (sym->st_info) != h->type
1336 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1337 {
1338 bfd *ntbfd, *tbfd;
1339 bfd_boolean ntdef, tdef;
1340 asection *ntsec, *tsec;
1341
1342 if (h->type == STT_TLS)
1343 {
1344 ntbfd = abfd;
1345 ntsec = sec;
1346 ntdef = newdef;
1347 tbfd = oldbfd;
1348 tsec = oldsec;
1349 tdef = olddef;
1350 }
1351 else
1352 {
1353 ntbfd = oldbfd;
1354 ntsec = oldsec;
1355 ntdef = olddef;
1356 tbfd = abfd;
1357 tsec = sec;
1358 tdef = newdef;
1359 }
1360
1361 if (tdef && ntdef)
1362 _bfd_error_handler
1363 /* xgettext:c-format */
1364 (_("%s: TLS definition in %pB section %pA "
1365 "mismatches non-TLS definition in %pB section %pA"),
1366 h->root.root.string, tbfd, tsec, ntbfd, ntsec);
1367 else if (!tdef && !ntdef)
1368 _bfd_error_handler
1369 /* xgettext:c-format */
1370 (_("%s: TLS reference in %pB "
1371 "mismatches non-TLS reference in %pB"),
1372 h->root.root.string, tbfd, ntbfd);
1373 else if (tdef)
1374 _bfd_error_handler
1375 /* xgettext:c-format */
1376 (_("%s: TLS definition in %pB section %pA "
1377 "mismatches non-TLS reference in %pB"),
1378 h->root.root.string, tbfd, tsec, ntbfd);
1379 else
1380 _bfd_error_handler
1381 /* xgettext:c-format */
1382 (_("%s: TLS reference in %pB "
1383 "mismatches non-TLS definition in %pB section %pA"),
1384 h->root.root.string, tbfd, ntbfd, ntsec);
1385
1386 bfd_set_error (bfd_error_bad_value);
1387 return FALSE;
1388 }
1389
1390 /* If the old symbol has non-default visibility, we ignore the new
1391 definition from a dynamic object. */
1392 if (newdyn
1393 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1394 && !bfd_is_und_section (sec))
1395 {
1396 *skip = TRUE;
1397 /* Make sure this symbol is dynamic. */
1398 h->ref_dynamic = 1;
1399 hi->ref_dynamic = 1;
1400 /* A protected symbol has external availability. Make sure it is
1401 recorded as dynamic.
1402
1403 FIXME: Should we check type and size for protected symbol? */
1404 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1405 return bfd_elf_link_record_dynamic_symbol (info, h);
1406 else
1407 return TRUE;
1408 }
1409 else if (!newdyn
1410 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1411 && h->def_dynamic)
1412 {
1413 /* If the new symbol with non-default visibility comes from a
1414 relocatable file and the old definition comes from a dynamic
1415 object, we remove the old definition. */
1416 if (hi->root.type == bfd_link_hash_indirect)
1417 {
1418 /* Handle the case where the old dynamic definition is
1419 default versioned. We need to copy the symbol info from
1420 the symbol with default version to the normal one if it
1421 was referenced before. */
1422 if (h->ref_regular)
1423 {
1424 hi->root.type = h->root.type;
1425 h->root.type = bfd_link_hash_indirect;
1426 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1427
1428 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1429 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1430 {
1431 /* If the new symbol is hidden or internal, completely undo
1432 any dynamic link state. */
1433 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1434 h->forced_local = 0;
1435 h->ref_dynamic = 0;
1436 }
1437 else
1438 h->ref_dynamic = 1;
1439
1440 h->def_dynamic = 0;
1441 /* FIXME: Should we check type and size for protected symbol? */
1442 h->size = 0;
1443 h->type = 0;
1444
1445 h = hi;
1446 }
1447 else
1448 h = hi;
1449 }
1450
1451 /* If the old symbol was undefined before, then it will still be
1452 on the undefs list. If the new symbol is undefined or
1453 common, we can't make it bfd_link_hash_new here, because new
1454 undefined or common symbols will be added to the undefs list
1455 by _bfd_generic_link_add_one_symbol. Symbols may not be
1456 added twice to the undefs list. Also, if the new symbol is
1457 undefweak then we don't want to lose the strong undef. */
1458 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1459 {
1460 h->root.type = bfd_link_hash_undefined;
1461 h->root.u.undef.abfd = abfd;
1462 }
1463 else
1464 {
1465 h->root.type = bfd_link_hash_new;
1466 h->root.u.undef.abfd = NULL;
1467 }
1468
1469 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1470 {
1471 /* If the new symbol is hidden or internal, completely undo
1472 any dynamic link state. */
1473 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1474 h->forced_local = 0;
1475 h->ref_dynamic = 0;
1476 }
1477 else
1478 h->ref_dynamic = 1;
1479 h->def_dynamic = 0;
1480 /* FIXME: Should we check type and size for protected symbol? */
1481 h->size = 0;
1482 h->type = 0;
1483 return TRUE;
1484 }
1485
1486 /* If a new weak symbol definition comes from a regular file and the
1487 old symbol comes from a dynamic library, we treat the new one as
1488 strong. Similarly, an old weak symbol definition from a regular
1489 file is treated as strong when the new symbol comes from a dynamic
1490 library. Further, an old weak symbol from a dynamic library is
1491 treated as strong if the new symbol is from a dynamic library.
1492 This reflects the way glibc's ld.so works.
1493
1494 Also allow a weak symbol to override a linker script symbol
1495 defined by an early pass over the script. This is done so the
1496 linker knows the symbol is defined in an object file, for the
1497 DEFINED script function.
1498
1499 Do this before setting *type_change_ok or *size_change_ok so that
1500 we warn properly when dynamic library symbols are overridden. */
1501
1502 if (newdef && !newdyn && (olddyn || h->root.ldscript_def))
1503 newweak = FALSE;
1504 if (olddef && newdyn)
1505 oldweak = FALSE;
1506
1507 /* Allow changes between different types of function symbol. */
1508 if (newfunc && oldfunc)
1509 *type_change_ok = TRUE;
1510
1511 /* It's OK to change the type if either the existing symbol or the
1512 new symbol is weak. A type change is also OK if the old symbol
1513 is undefined and the new symbol is defined. */
1514
1515 if (oldweak
1516 || newweak
1517 || (newdef
1518 && h->root.type == bfd_link_hash_undefined))
1519 *type_change_ok = TRUE;
1520
1521 /* It's OK to change the size if either the existing symbol or the
1522 new symbol is weak, or if the old symbol is undefined. */
1523
1524 if (*type_change_ok
1525 || h->root.type == bfd_link_hash_undefined)
1526 *size_change_ok = TRUE;
1527
1528 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1529 symbol, respectively, appears to be a common symbol in a dynamic
1530 object. If a symbol appears in an uninitialized section, and is
1531 not weak, and is not a function, then it may be a common symbol
1532 which was resolved when the dynamic object was created. We want
1533 to treat such symbols specially, because they raise special
1534 considerations when setting the symbol size: if the symbol
1535 appears as a common symbol in a regular object, and the size in
1536 the regular object is larger, we must make sure that we use the
1537 larger size. This problematic case can always be avoided in C,
1538 but it must be handled correctly when using Fortran shared
1539 libraries.
1540
1541 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1542 likewise for OLDDYNCOMMON and OLDDEF.
1543
1544 Note that this test is just a heuristic, and that it is quite
1545 possible to have an uninitialized symbol in a shared object which
1546 is really a definition, rather than a common symbol. This could
1547 lead to some minor confusion when the symbol really is a common
1548 symbol in some regular object. However, I think it will be
1549 harmless. */
1550
1551 if (newdyn
1552 && newdef
1553 && !newweak
1554 && (sec->flags & SEC_ALLOC) != 0
1555 && (sec->flags & SEC_LOAD) == 0
1556 && sym->st_size > 0
1557 && !newfunc)
1558 newdyncommon = TRUE;
1559 else
1560 newdyncommon = FALSE;
1561
1562 if (olddyn
1563 && olddef
1564 && h->root.type == bfd_link_hash_defined
1565 && h->def_dynamic
1566 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1567 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1568 && h->size > 0
1569 && !oldfunc)
1570 olddyncommon = TRUE;
1571 else
1572 olddyncommon = FALSE;
1573
1574 /* We now know everything about the old and new symbols. We ask the
1575 backend to check if we can merge them. */
1576 if (bed->merge_symbol != NULL)
1577 {
1578 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1579 return FALSE;
1580 sec = *psec;
1581 }
1582
1583 /* There are multiple definitions of a normal symbol. Skip the
1584 default symbol as well as definition from an IR object. */
1585 if (olddef && !olddyn && !oldweak && newdef && !newdyn && !newweak
1586 && !default_sym && h->def_regular
1587 && !(oldbfd != NULL
1588 && (oldbfd->flags & BFD_PLUGIN) != 0
1589 && (abfd->flags & BFD_PLUGIN) == 0))
1590 {
1591 /* Handle a multiple definition. */
1592 (*info->callbacks->multiple_definition) (info, &h->root,
1593 abfd, sec, *pvalue);
1594 *skip = TRUE;
1595 return TRUE;
1596 }
1597
1598 /* If both the old and the new symbols look like common symbols in a
1599 dynamic object, set the size of the symbol to the larger of the
1600 two. */
1601
1602 if (olddyncommon
1603 && newdyncommon
1604 && sym->st_size != h->size)
1605 {
1606 /* Since we think we have two common symbols, issue a multiple
1607 common warning if desired. Note that we only warn if the
1608 size is different. If the size is the same, we simply let
1609 the old symbol override the new one as normally happens with
1610 symbols defined in dynamic objects. */
1611
1612 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1613 bfd_link_hash_common, sym->st_size);
1614 if (sym->st_size > h->size)
1615 h->size = sym->st_size;
1616
1617 *size_change_ok = TRUE;
1618 }
1619
1620 /* If we are looking at a dynamic object, and we have found a
1621 definition, we need to see if the symbol was already defined by
1622 some other object. If so, we want to use the existing
1623 definition, and we do not want to report a multiple symbol
1624 definition error; we do this by clobbering *PSEC to be
1625 bfd_und_section_ptr.
1626
1627 We treat a common symbol as a definition if the symbol in the
1628 shared library is a function, since common symbols always
1629 represent variables; this can cause confusion in principle, but
1630 any such confusion would seem to indicate an erroneous program or
1631 shared library. We also permit a common symbol in a regular
1632 object to override a weak symbol in a shared object. */
1633
1634 if (newdyn
1635 && newdef
1636 && (olddef
1637 || (h->root.type == bfd_link_hash_common
1638 && (newweak || newfunc))))
1639 {
1640 *override = TRUE;
1641 newdef = FALSE;
1642 newdyncommon = FALSE;
1643
1644 *psec = sec = bfd_und_section_ptr;
1645 *size_change_ok = TRUE;
1646
1647 /* If we get here when the old symbol is a common symbol, then
1648 we are explicitly letting it override a weak symbol or
1649 function in a dynamic object, and we don't want to warn about
1650 a type change. If the old symbol is a defined symbol, a type
1651 change warning may still be appropriate. */
1652
1653 if (h->root.type == bfd_link_hash_common)
1654 *type_change_ok = TRUE;
1655 }
1656
1657 /* Handle the special case of an old common symbol merging with a
1658 new symbol which looks like a common symbol in a shared object.
1659 We change *PSEC and *PVALUE to make the new symbol look like a
1660 common symbol, and let _bfd_generic_link_add_one_symbol do the
1661 right thing. */
1662
1663 if (newdyncommon
1664 && h->root.type == bfd_link_hash_common)
1665 {
1666 *override = TRUE;
1667 newdef = FALSE;
1668 newdyncommon = FALSE;
1669 *pvalue = sym->st_size;
1670 *psec = sec = bed->common_section (oldsec);
1671 *size_change_ok = TRUE;
1672 }
1673
1674 /* Skip weak definitions of symbols that are already defined. */
1675 if (newdef && olddef && newweak)
1676 {
1677 /* Don't skip new non-IR weak syms. */
1678 if (!(oldbfd != NULL
1679 && (oldbfd->flags & BFD_PLUGIN) != 0
1680 && (abfd->flags & BFD_PLUGIN) == 0))
1681 {
1682 newdef = FALSE;
1683 *skip = TRUE;
1684 }
1685
1686 /* Merge st_other. If the symbol already has a dynamic index,
1687 but visibility says it should not be visible, turn it into a
1688 local symbol. */
1689 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1690 if (h->dynindx != -1)
1691 switch (ELF_ST_VISIBILITY (h->other))
1692 {
1693 case STV_INTERNAL:
1694 case STV_HIDDEN:
1695 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1696 break;
1697 }
1698 }
1699
1700 /* If the old symbol is from a dynamic object, and the new symbol is
1701 a definition which is not from a dynamic object, then the new
1702 symbol overrides the old symbol. Symbols from regular files
1703 always take precedence over symbols from dynamic objects, even if
1704 they are defined after the dynamic object in the link.
1705
1706 As above, we again permit a common symbol in a regular object to
1707 override a definition in a shared object if the shared object
1708 symbol is a function or is weak. */
1709
1710 flip = NULL;
1711 if (!newdyn
1712 && (newdef
1713 || (bfd_is_com_section (sec)
1714 && (oldweak || oldfunc)))
1715 && olddyn
1716 && olddef
1717 && h->def_dynamic)
1718 {
1719 /* Change the hash table entry to undefined, and let
1720 _bfd_generic_link_add_one_symbol do the right thing with the
1721 new definition. */
1722
1723 h->root.type = bfd_link_hash_undefined;
1724 h->root.u.undef.abfd = h->root.u.def.section->owner;
1725 *size_change_ok = TRUE;
1726
1727 olddef = FALSE;
1728 olddyncommon = FALSE;
1729
1730 /* We again permit a type change when a common symbol may be
1731 overriding a function. */
1732
1733 if (bfd_is_com_section (sec))
1734 {
1735 if (oldfunc)
1736 {
1737 /* If a common symbol overrides a function, make sure
1738 that it isn't defined dynamically nor has type
1739 function. */
1740 h->def_dynamic = 0;
1741 h->type = STT_NOTYPE;
1742 }
1743 *type_change_ok = TRUE;
1744 }
1745
1746 if (hi->root.type == bfd_link_hash_indirect)
1747 flip = hi;
1748 else
1749 /* This union may have been set to be non-NULL when this symbol
1750 was seen in a dynamic object. We must force the union to be
1751 NULL, so that it is correct for a regular symbol. */
1752 h->verinfo.vertree = NULL;
1753 }
1754
1755 /* Handle the special case of a new common symbol merging with an
1756 old symbol that looks like it might be a common symbol defined in
1757 a shared object. Note that we have already handled the case in
1758 which a new common symbol should simply override the definition
1759 in the shared library. */
1760
1761 if (! newdyn
1762 && bfd_is_com_section (sec)
1763 && olddyncommon)
1764 {
1765 /* It would be best if we could set the hash table entry to a
1766 common symbol, but we don't know what to use for the section
1767 or the alignment. */
1768 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1769 bfd_link_hash_common, sym->st_size);
1770
1771 /* If the presumed common symbol in the dynamic object is
1772 larger, pretend that the new symbol has its size. */
1773
1774 if (h->size > *pvalue)
1775 *pvalue = h->size;
1776
1777 /* We need to remember the alignment required by the symbol
1778 in the dynamic object. */
1779 BFD_ASSERT (pold_alignment);
1780 *pold_alignment = h->root.u.def.section->alignment_power;
1781
1782 olddef = FALSE;
1783 olddyncommon = FALSE;
1784
1785 h->root.type = bfd_link_hash_undefined;
1786 h->root.u.undef.abfd = h->root.u.def.section->owner;
1787
1788 *size_change_ok = TRUE;
1789 *type_change_ok = TRUE;
1790
1791 if (hi->root.type == bfd_link_hash_indirect)
1792 flip = hi;
1793 else
1794 h->verinfo.vertree = NULL;
1795 }
1796
1797 if (flip != NULL)
1798 {
1799 /* Handle the case where we had a versioned symbol in a dynamic
1800 library and now find a definition in a normal object. In this
1801 case, we make the versioned symbol point to the normal one. */
1802 flip->root.type = h->root.type;
1803 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1804 h->root.type = bfd_link_hash_indirect;
1805 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1806 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1807 if (h->def_dynamic)
1808 {
1809 h->def_dynamic = 0;
1810 flip->ref_dynamic = 1;
1811 }
1812 }
1813
1814 return TRUE;
1815 }
1816
1817 /* This function is called to create an indirect symbol from the
1818 default for the symbol with the default version if needed. The
1819 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1820 set DYNSYM if the new indirect symbol is dynamic. */
1821
1822 static bfd_boolean
1823 _bfd_elf_add_default_symbol (bfd *abfd,
1824 struct bfd_link_info *info,
1825 struct elf_link_hash_entry *h,
1826 const char *name,
1827 Elf_Internal_Sym *sym,
1828 asection *sec,
1829 bfd_vma value,
1830 bfd **poldbfd,
1831 bfd_boolean *dynsym)
1832 {
1833 bfd_boolean type_change_ok;
1834 bfd_boolean size_change_ok;
1835 bfd_boolean skip;
1836 char *shortname;
1837 struct elf_link_hash_entry *hi;
1838 struct bfd_link_hash_entry *bh;
1839 const struct elf_backend_data *bed;
1840 bfd_boolean collect;
1841 bfd_boolean dynamic;
1842 bfd_boolean override;
1843 char *p;
1844 size_t len, shortlen;
1845 asection *tmp_sec;
1846 bfd_boolean matched;
1847
1848 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1849 return TRUE;
1850
1851 /* If this symbol has a version, and it is the default version, we
1852 create an indirect symbol from the default name to the fully
1853 decorated name. This will cause external references which do not
1854 specify a version to be bound to this version of the symbol. */
1855 p = strchr (name, ELF_VER_CHR);
1856 if (h->versioned == unknown)
1857 {
1858 if (p == NULL)
1859 {
1860 h->versioned = unversioned;
1861 return TRUE;
1862 }
1863 else
1864 {
1865 if (p[1] != ELF_VER_CHR)
1866 {
1867 h->versioned = versioned_hidden;
1868 return TRUE;
1869 }
1870 else
1871 h->versioned = versioned;
1872 }
1873 }
1874 else
1875 {
1876 /* PR ld/19073: We may see an unversioned definition after the
1877 default version. */
1878 if (p == NULL)
1879 return TRUE;
1880 }
1881
1882 bed = get_elf_backend_data (abfd);
1883 collect = bed->collect;
1884 dynamic = (abfd->flags & DYNAMIC) != 0;
1885
1886 shortlen = p - name;
1887 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1888 if (shortname == NULL)
1889 return FALSE;
1890 memcpy (shortname, name, shortlen);
1891 shortname[shortlen] = '\0';
1892
1893 /* We are going to create a new symbol. Merge it with any existing
1894 symbol with this name. For the purposes of the merge, act as
1895 though we were defining the symbol we just defined, although we
1896 actually going to define an indirect symbol. */
1897 type_change_ok = FALSE;
1898 size_change_ok = FALSE;
1899 matched = TRUE;
1900 tmp_sec = sec;
1901 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1902 &hi, poldbfd, NULL, NULL, &skip, &override,
1903 &type_change_ok, &size_change_ok, &matched))
1904 return FALSE;
1905
1906 if (skip)
1907 goto nondefault;
1908
1909 if (hi->def_regular)
1910 {
1911 /* If the undecorated symbol will have a version added by a
1912 script different to H, then don't indirect to/from the
1913 undecorated symbol. This isn't ideal because we may not yet
1914 have seen symbol versions, if given by a script on the
1915 command line rather than via --version-script. */
1916 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1917 {
1918 bfd_boolean hide;
1919
1920 hi->verinfo.vertree
1921 = bfd_find_version_for_sym (info->version_info,
1922 hi->root.root.string, &hide);
1923 if (hi->verinfo.vertree != NULL && hide)
1924 {
1925 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1926 goto nondefault;
1927 }
1928 }
1929 if (hi->verinfo.vertree != NULL
1930 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1931 goto nondefault;
1932 }
1933
1934 if (! override)
1935 {
1936 /* Add the default symbol if not performing a relocatable link. */
1937 if (! bfd_link_relocatable (info))
1938 {
1939 bh = &hi->root;
1940 if (bh->type == bfd_link_hash_defined
1941 && bh->u.def.section->owner != NULL
1942 && (bh->u.def.section->owner->flags & BFD_PLUGIN) != 0)
1943 {
1944 /* Mark the previous definition from IR object as
1945 undefined so that the generic linker will override
1946 it. */
1947 bh->type = bfd_link_hash_undefined;
1948 bh->u.undef.abfd = bh->u.def.section->owner;
1949 }
1950 if (! (_bfd_generic_link_add_one_symbol
1951 (info, abfd, shortname, BSF_INDIRECT,
1952 bfd_ind_section_ptr,
1953 0, name, FALSE, collect, &bh)))
1954 return FALSE;
1955 hi = (struct elf_link_hash_entry *) bh;
1956 }
1957 }
1958 else
1959 {
1960 /* In this case the symbol named SHORTNAME is overriding the
1961 indirect symbol we want to add. We were planning on making
1962 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1963 is the name without a version. NAME is the fully versioned
1964 name, and it is the default version.
1965
1966 Overriding means that we already saw a definition for the
1967 symbol SHORTNAME in a regular object, and it is overriding
1968 the symbol defined in the dynamic object.
1969
1970 When this happens, we actually want to change NAME, the
1971 symbol we just added, to refer to SHORTNAME. This will cause
1972 references to NAME in the shared object to become references
1973 to SHORTNAME in the regular object. This is what we expect
1974 when we override a function in a shared object: that the
1975 references in the shared object will be mapped to the
1976 definition in the regular object. */
1977
1978 while (hi->root.type == bfd_link_hash_indirect
1979 || hi->root.type == bfd_link_hash_warning)
1980 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1981
1982 h->root.type = bfd_link_hash_indirect;
1983 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1984 if (h->def_dynamic)
1985 {
1986 h->def_dynamic = 0;
1987 hi->ref_dynamic = 1;
1988 if (hi->ref_regular
1989 || hi->def_regular)
1990 {
1991 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1992 return FALSE;
1993 }
1994 }
1995
1996 /* Now set HI to H, so that the following code will set the
1997 other fields correctly. */
1998 hi = h;
1999 }
2000
2001 /* Check if HI is a warning symbol. */
2002 if (hi->root.type == bfd_link_hash_warning)
2003 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
2004
2005 /* If there is a duplicate definition somewhere, then HI may not
2006 point to an indirect symbol. We will have reported an error to
2007 the user in that case. */
2008
2009 if (hi->root.type == bfd_link_hash_indirect)
2010 {
2011 struct elf_link_hash_entry *ht;
2012
2013 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
2014 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
2015
2016 /* A reference to the SHORTNAME symbol from a dynamic library
2017 will be satisfied by the versioned symbol at runtime. In
2018 effect, we have a reference to the versioned symbol. */
2019 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2020 hi->dynamic_def |= ht->dynamic_def;
2021
2022 /* See if the new flags lead us to realize that the symbol must
2023 be dynamic. */
2024 if (! *dynsym)
2025 {
2026 if (! dynamic)
2027 {
2028 if (! bfd_link_executable (info)
2029 || hi->def_dynamic
2030 || hi->ref_dynamic)
2031 *dynsym = TRUE;
2032 }
2033 else
2034 {
2035 if (hi->ref_regular)
2036 *dynsym = TRUE;
2037 }
2038 }
2039 }
2040
2041 /* We also need to define an indirection from the nondefault version
2042 of the symbol. */
2043
2044 nondefault:
2045 len = strlen (name);
2046 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
2047 if (shortname == NULL)
2048 return FALSE;
2049 memcpy (shortname, name, shortlen);
2050 memcpy (shortname + shortlen, p + 1, len - shortlen);
2051
2052 /* Once again, merge with any existing symbol. */
2053 type_change_ok = FALSE;
2054 size_change_ok = FALSE;
2055 tmp_sec = sec;
2056 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
2057 &hi, poldbfd, NULL, NULL, &skip, &override,
2058 &type_change_ok, &size_change_ok, &matched))
2059 return FALSE;
2060
2061 if (skip)
2062 return TRUE;
2063
2064 if (override)
2065 {
2066 /* Here SHORTNAME is a versioned name, so we don't expect to see
2067 the type of override we do in the case above unless it is
2068 overridden by a versioned definition. */
2069 if (hi->root.type != bfd_link_hash_defined
2070 && hi->root.type != bfd_link_hash_defweak)
2071 _bfd_error_handler
2072 /* xgettext:c-format */
2073 (_("%pB: unexpected redefinition of indirect versioned symbol `%s'"),
2074 abfd, shortname);
2075 }
2076 else
2077 {
2078 bh = &hi->root;
2079 if (! (_bfd_generic_link_add_one_symbol
2080 (info, abfd, shortname, BSF_INDIRECT,
2081 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
2082 return FALSE;
2083 hi = (struct elf_link_hash_entry *) bh;
2084
2085 /* If there is a duplicate definition somewhere, then HI may not
2086 point to an indirect symbol. We will have reported an error
2087 to the user in that case. */
2088
2089 if (hi->root.type == bfd_link_hash_indirect)
2090 {
2091 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
2092 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2093 hi->dynamic_def |= h->dynamic_def;
2094
2095 /* See if the new flags lead us to realize that the symbol
2096 must be dynamic. */
2097 if (! *dynsym)
2098 {
2099 if (! dynamic)
2100 {
2101 if (! bfd_link_executable (info)
2102 || hi->ref_dynamic)
2103 *dynsym = TRUE;
2104 }
2105 else
2106 {
2107 if (hi->ref_regular)
2108 *dynsym = TRUE;
2109 }
2110 }
2111 }
2112 }
2113
2114 return TRUE;
2115 }
2116 \f
2117 /* This routine is used to export all defined symbols into the dynamic
2118 symbol table. It is called via elf_link_hash_traverse. */
2119
2120 static bfd_boolean
2121 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2122 {
2123 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2124
2125 /* Ignore indirect symbols. These are added by the versioning code. */
2126 if (h->root.type == bfd_link_hash_indirect)
2127 return TRUE;
2128
2129 /* Ignore this if we won't export it. */
2130 if (!eif->info->export_dynamic && !h->dynamic)
2131 return TRUE;
2132
2133 if (h->dynindx == -1
2134 && (h->def_regular || h->ref_regular)
2135 && ! bfd_hide_sym_by_version (eif->info->version_info,
2136 h->root.root.string))
2137 {
2138 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2139 {
2140 eif->failed = TRUE;
2141 return FALSE;
2142 }
2143 }
2144
2145 return TRUE;
2146 }
2147 \f
2148 /* Look through the symbols which are defined in other shared
2149 libraries and referenced here. Update the list of version
2150 dependencies. This will be put into the .gnu.version_r section.
2151 This function is called via elf_link_hash_traverse. */
2152
2153 static bfd_boolean
2154 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2155 void *data)
2156 {
2157 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2158 Elf_Internal_Verneed *t;
2159 Elf_Internal_Vernaux *a;
2160 bfd_size_type amt;
2161
2162 /* We only care about symbols defined in shared objects with version
2163 information. */
2164 if (!h->def_dynamic
2165 || h->def_regular
2166 || h->dynindx == -1
2167 || h->verinfo.verdef == NULL
2168 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2169 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2170 return TRUE;
2171
2172 /* See if we already know about this version. */
2173 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2174 t != NULL;
2175 t = t->vn_nextref)
2176 {
2177 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2178 continue;
2179
2180 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2181 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2182 return TRUE;
2183
2184 break;
2185 }
2186
2187 /* This is a new version. Add it to tree we are building. */
2188
2189 if (t == NULL)
2190 {
2191 amt = sizeof *t;
2192 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2193 if (t == NULL)
2194 {
2195 rinfo->failed = TRUE;
2196 return FALSE;
2197 }
2198
2199 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2200 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2201 elf_tdata (rinfo->info->output_bfd)->verref = t;
2202 }
2203
2204 amt = sizeof *a;
2205 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2206 if (a == NULL)
2207 {
2208 rinfo->failed = TRUE;
2209 return FALSE;
2210 }
2211
2212 /* Note that we are copying a string pointer here, and testing it
2213 above. If bfd_elf_string_from_elf_section is ever changed to
2214 discard the string data when low in memory, this will have to be
2215 fixed. */
2216 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2217
2218 a->vna_flags = h->verinfo.verdef->vd_flags;
2219 a->vna_nextptr = t->vn_auxptr;
2220
2221 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2222 ++rinfo->vers;
2223
2224 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2225
2226 t->vn_auxptr = a;
2227
2228 return TRUE;
2229 }
2230
2231 /* Return TRUE and set *HIDE to TRUE if the versioned symbol is
2232 hidden. Set *T_P to NULL if there is no match. */
2233
2234 static bfd_boolean
2235 _bfd_elf_link_hide_versioned_symbol (struct bfd_link_info *info,
2236 struct elf_link_hash_entry *h,
2237 const char *version_p,
2238 struct bfd_elf_version_tree **t_p,
2239 bfd_boolean *hide)
2240 {
2241 struct bfd_elf_version_tree *t;
2242
2243 /* Look for the version. If we find it, it is no longer weak. */
2244 for (t = info->version_info; t != NULL; t = t->next)
2245 {
2246 if (strcmp (t->name, version_p) == 0)
2247 {
2248 size_t len;
2249 char *alc;
2250 struct bfd_elf_version_expr *d;
2251
2252 len = version_p - h->root.root.string;
2253 alc = (char *) bfd_malloc (len);
2254 if (alc == NULL)
2255 return FALSE;
2256 memcpy (alc, h->root.root.string, len - 1);
2257 alc[len - 1] = '\0';
2258 if (alc[len - 2] == ELF_VER_CHR)
2259 alc[len - 2] = '\0';
2260
2261 h->verinfo.vertree = t;
2262 t->used = TRUE;
2263 d = NULL;
2264
2265 if (t->globals.list != NULL)
2266 d = (*t->match) (&t->globals, NULL, alc);
2267
2268 /* See if there is anything to force this symbol to
2269 local scope. */
2270 if (d == NULL && t->locals.list != NULL)
2271 {
2272 d = (*t->match) (&t->locals, NULL, alc);
2273 if (d != NULL
2274 && h->dynindx != -1
2275 && ! info->export_dynamic)
2276 *hide = TRUE;
2277 }
2278
2279 free (alc);
2280 break;
2281 }
2282 }
2283
2284 *t_p = t;
2285
2286 return TRUE;
2287 }
2288
2289 /* Return TRUE if the symbol H is hidden by version script. */
2290
2291 bfd_boolean
2292 _bfd_elf_link_hide_sym_by_version (struct bfd_link_info *info,
2293 struct elf_link_hash_entry *h)
2294 {
2295 const char *p;
2296 bfd_boolean hide = FALSE;
2297 const struct elf_backend_data *bed
2298 = get_elf_backend_data (info->output_bfd);
2299
2300 /* Version script only hides symbols defined in regular objects. */
2301 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2302 return TRUE;
2303
2304 p = strchr (h->root.root.string, ELF_VER_CHR);
2305 if (p != NULL && h->verinfo.vertree == NULL)
2306 {
2307 struct bfd_elf_version_tree *t;
2308
2309 ++p;
2310 if (*p == ELF_VER_CHR)
2311 ++p;
2312
2313 if (*p != '\0'
2314 && _bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide)
2315 && hide)
2316 {
2317 if (hide)
2318 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2319 return TRUE;
2320 }
2321 }
2322
2323 /* If we don't have a version for this symbol, see if we can find
2324 something. */
2325 if (h->verinfo.vertree == NULL && info->version_info != NULL)
2326 {
2327 h->verinfo.vertree
2328 = bfd_find_version_for_sym (info->version_info,
2329 h->root.root.string, &hide);
2330 if (h->verinfo.vertree != NULL && hide)
2331 {
2332 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2333 return TRUE;
2334 }
2335 }
2336
2337 return FALSE;
2338 }
2339
2340 /* Figure out appropriate versions for all the symbols. We may not
2341 have the version number script until we have read all of the input
2342 files, so until that point we don't know which symbols should be
2343 local. This function is called via elf_link_hash_traverse. */
2344
2345 static bfd_boolean
2346 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2347 {
2348 struct elf_info_failed *sinfo;
2349 struct bfd_link_info *info;
2350 const struct elf_backend_data *bed;
2351 struct elf_info_failed eif;
2352 char *p;
2353 bfd_boolean hide;
2354
2355 sinfo = (struct elf_info_failed *) data;
2356 info = sinfo->info;
2357
2358 /* Fix the symbol flags. */
2359 eif.failed = FALSE;
2360 eif.info = info;
2361 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2362 {
2363 if (eif.failed)
2364 sinfo->failed = TRUE;
2365 return FALSE;
2366 }
2367
2368 bed = get_elf_backend_data (info->output_bfd);
2369
2370 /* We only need version numbers for symbols defined in regular
2371 objects. */
2372 if (!h->def_regular)
2373 {
2374 /* Hide symbols defined in discarded input sections. */
2375 if ((h->root.type == bfd_link_hash_defined
2376 || h->root.type == bfd_link_hash_defweak)
2377 && discarded_section (h->root.u.def.section))
2378 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2379 return TRUE;
2380 }
2381
2382 hide = FALSE;
2383 p = strchr (h->root.root.string, ELF_VER_CHR);
2384 if (p != NULL && h->verinfo.vertree == NULL)
2385 {
2386 struct bfd_elf_version_tree *t;
2387
2388 ++p;
2389 if (*p == ELF_VER_CHR)
2390 ++p;
2391
2392 /* If there is no version string, we can just return out. */
2393 if (*p == '\0')
2394 return TRUE;
2395
2396 if (!_bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide))
2397 {
2398 sinfo->failed = TRUE;
2399 return FALSE;
2400 }
2401
2402 if (hide)
2403 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2404
2405 /* If we are building an application, we need to create a
2406 version node for this version. */
2407 if (t == NULL && bfd_link_executable (info))
2408 {
2409 struct bfd_elf_version_tree **pp;
2410 int version_index;
2411
2412 /* If we aren't going to export this symbol, we don't need
2413 to worry about it. */
2414 if (h->dynindx == -1)
2415 return TRUE;
2416
2417 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2418 sizeof *t);
2419 if (t == NULL)
2420 {
2421 sinfo->failed = TRUE;
2422 return FALSE;
2423 }
2424
2425 t->name = p;
2426 t->name_indx = (unsigned int) -1;
2427 t->used = TRUE;
2428
2429 version_index = 1;
2430 /* Don't count anonymous version tag. */
2431 if (sinfo->info->version_info != NULL
2432 && sinfo->info->version_info->vernum == 0)
2433 version_index = 0;
2434 for (pp = &sinfo->info->version_info;
2435 *pp != NULL;
2436 pp = &(*pp)->next)
2437 ++version_index;
2438 t->vernum = version_index;
2439
2440 *pp = t;
2441
2442 h->verinfo.vertree = t;
2443 }
2444 else if (t == NULL)
2445 {
2446 /* We could not find the version for a symbol when
2447 generating a shared archive. Return an error. */
2448 _bfd_error_handler
2449 /* xgettext:c-format */
2450 (_("%pB: version node not found for symbol %s"),
2451 info->output_bfd, h->root.root.string);
2452 bfd_set_error (bfd_error_bad_value);
2453 sinfo->failed = TRUE;
2454 return FALSE;
2455 }
2456 }
2457
2458 /* If we don't have a version for this symbol, see if we can find
2459 something. */
2460 if (!hide
2461 && h->verinfo.vertree == NULL
2462 && sinfo->info->version_info != NULL)
2463 {
2464 h->verinfo.vertree
2465 = bfd_find_version_for_sym (sinfo->info->version_info,
2466 h->root.root.string, &hide);
2467 if (h->verinfo.vertree != NULL && hide)
2468 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2469 }
2470
2471 return TRUE;
2472 }
2473 \f
2474 /* Read and swap the relocs from the section indicated by SHDR. This
2475 may be either a REL or a RELA section. The relocations are
2476 translated into RELA relocations and stored in INTERNAL_RELOCS,
2477 which should have already been allocated to contain enough space.
2478 The EXTERNAL_RELOCS are a buffer where the external form of the
2479 relocations should be stored.
2480
2481 Returns FALSE if something goes wrong. */
2482
2483 static bfd_boolean
2484 elf_link_read_relocs_from_section (bfd *abfd,
2485 asection *sec,
2486 Elf_Internal_Shdr *shdr,
2487 void *external_relocs,
2488 Elf_Internal_Rela *internal_relocs)
2489 {
2490 const struct elf_backend_data *bed;
2491 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2492 const bfd_byte *erela;
2493 const bfd_byte *erelaend;
2494 Elf_Internal_Rela *irela;
2495 Elf_Internal_Shdr *symtab_hdr;
2496 size_t nsyms;
2497
2498 /* Position ourselves at the start of the section. */
2499 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2500 return FALSE;
2501
2502 /* Read the relocations. */
2503 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2504 return FALSE;
2505
2506 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2507 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2508
2509 bed = get_elf_backend_data (abfd);
2510
2511 /* Convert the external relocations to the internal format. */
2512 if (shdr->sh_entsize == bed->s->sizeof_rel)
2513 swap_in = bed->s->swap_reloc_in;
2514 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2515 swap_in = bed->s->swap_reloca_in;
2516 else
2517 {
2518 bfd_set_error (bfd_error_wrong_format);
2519 return FALSE;
2520 }
2521
2522 erela = (const bfd_byte *) external_relocs;
2523 /* Setting erelaend like this and comparing with <= handles case of
2524 a fuzzed object with sh_size not a multiple of sh_entsize. */
2525 erelaend = erela + shdr->sh_size - shdr->sh_entsize;
2526 irela = internal_relocs;
2527 while (erela <= erelaend)
2528 {
2529 bfd_vma r_symndx;
2530
2531 (*swap_in) (abfd, erela, irela);
2532 r_symndx = ELF32_R_SYM (irela->r_info);
2533 if (bed->s->arch_size == 64)
2534 r_symndx >>= 24;
2535 if (nsyms > 0)
2536 {
2537 if ((size_t) r_symndx >= nsyms)
2538 {
2539 _bfd_error_handler
2540 /* xgettext:c-format */
2541 (_("%pB: bad reloc symbol index (%#" PRIx64 " >= %#lx)"
2542 " for offset %#" PRIx64 " in section `%pA'"),
2543 abfd, (uint64_t) r_symndx, (unsigned long) nsyms,
2544 (uint64_t) irela->r_offset, sec);
2545 bfd_set_error (bfd_error_bad_value);
2546 return FALSE;
2547 }
2548 }
2549 else if (r_symndx != STN_UNDEF)
2550 {
2551 _bfd_error_handler
2552 /* xgettext:c-format */
2553 (_("%pB: non-zero symbol index (%#" PRIx64 ")"
2554 " for offset %#" PRIx64 " in section `%pA'"
2555 " when the object file has no symbol table"),
2556 abfd, (uint64_t) r_symndx,
2557 (uint64_t) irela->r_offset, sec);
2558 bfd_set_error (bfd_error_bad_value);
2559 return FALSE;
2560 }
2561 irela += bed->s->int_rels_per_ext_rel;
2562 erela += shdr->sh_entsize;
2563 }
2564
2565 return TRUE;
2566 }
2567
2568 /* Read and swap the relocs for a section O. They may have been
2569 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2570 not NULL, they are used as buffers to read into. They are known to
2571 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2572 the return value is allocated using either malloc or bfd_alloc,
2573 according to the KEEP_MEMORY argument. If O has two relocation
2574 sections (both REL and RELA relocations), then the REL_HDR
2575 relocations will appear first in INTERNAL_RELOCS, followed by the
2576 RELA_HDR relocations. */
2577
2578 Elf_Internal_Rela *
2579 _bfd_elf_link_read_relocs (bfd *abfd,
2580 asection *o,
2581 void *external_relocs,
2582 Elf_Internal_Rela *internal_relocs,
2583 bfd_boolean keep_memory)
2584 {
2585 void *alloc1 = NULL;
2586 Elf_Internal_Rela *alloc2 = NULL;
2587 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2588 struct bfd_elf_section_data *esdo = elf_section_data (o);
2589 Elf_Internal_Rela *internal_rela_relocs;
2590
2591 if (esdo->relocs != NULL)
2592 return esdo->relocs;
2593
2594 if (o->reloc_count == 0)
2595 return NULL;
2596
2597 if (internal_relocs == NULL)
2598 {
2599 bfd_size_type size;
2600
2601 size = (bfd_size_type) o->reloc_count * sizeof (Elf_Internal_Rela);
2602 if (keep_memory)
2603 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2604 else
2605 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2606 if (internal_relocs == NULL)
2607 goto error_return;
2608 }
2609
2610 if (external_relocs == NULL)
2611 {
2612 bfd_size_type size = 0;
2613
2614 if (esdo->rel.hdr)
2615 size += esdo->rel.hdr->sh_size;
2616 if (esdo->rela.hdr)
2617 size += esdo->rela.hdr->sh_size;
2618
2619 alloc1 = bfd_malloc (size);
2620 if (alloc1 == NULL)
2621 goto error_return;
2622 external_relocs = alloc1;
2623 }
2624
2625 internal_rela_relocs = internal_relocs;
2626 if (esdo->rel.hdr)
2627 {
2628 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2629 external_relocs,
2630 internal_relocs))
2631 goto error_return;
2632 external_relocs = (((bfd_byte *) external_relocs)
2633 + esdo->rel.hdr->sh_size);
2634 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2635 * bed->s->int_rels_per_ext_rel);
2636 }
2637
2638 if (esdo->rela.hdr
2639 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2640 external_relocs,
2641 internal_rela_relocs)))
2642 goto error_return;
2643
2644 /* Cache the results for next time, if we can. */
2645 if (keep_memory)
2646 esdo->relocs = internal_relocs;
2647
2648 if (alloc1 != NULL)
2649 free (alloc1);
2650
2651 /* Don't free alloc2, since if it was allocated we are passing it
2652 back (under the name of internal_relocs). */
2653
2654 return internal_relocs;
2655
2656 error_return:
2657 if (alloc1 != NULL)
2658 free (alloc1);
2659 if (alloc2 != NULL)
2660 {
2661 if (keep_memory)
2662 bfd_release (abfd, alloc2);
2663 else
2664 free (alloc2);
2665 }
2666 return NULL;
2667 }
2668
2669 /* Compute the size of, and allocate space for, REL_HDR which is the
2670 section header for a section containing relocations for O. */
2671
2672 static bfd_boolean
2673 _bfd_elf_link_size_reloc_section (bfd *abfd,
2674 struct bfd_elf_section_reloc_data *reldata)
2675 {
2676 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2677
2678 /* That allows us to calculate the size of the section. */
2679 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2680
2681 /* The contents field must last into write_object_contents, so we
2682 allocate it with bfd_alloc rather than malloc. Also since we
2683 cannot be sure that the contents will actually be filled in,
2684 we zero the allocated space. */
2685 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2686 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2687 return FALSE;
2688
2689 if (reldata->hashes == NULL && reldata->count)
2690 {
2691 struct elf_link_hash_entry **p;
2692
2693 p = ((struct elf_link_hash_entry **)
2694 bfd_zmalloc (reldata->count * sizeof (*p)));
2695 if (p == NULL)
2696 return FALSE;
2697
2698 reldata->hashes = p;
2699 }
2700
2701 return TRUE;
2702 }
2703
2704 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2705 originated from the section given by INPUT_REL_HDR) to the
2706 OUTPUT_BFD. */
2707
2708 bfd_boolean
2709 _bfd_elf_link_output_relocs (bfd *output_bfd,
2710 asection *input_section,
2711 Elf_Internal_Shdr *input_rel_hdr,
2712 Elf_Internal_Rela *internal_relocs,
2713 struct elf_link_hash_entry **rel_hash
2714 ATTRIBUTE_UNUSED)
2715 {
2716 Elf_Internal_Rela *irela;
2717 Elf_Internal_Rela *irelaend;
2718 bfd_byte *erel;
2719 struct bfd_elf_section_reloc_data *output_reldata;
2720 asection *output_section;
2721 const struct elf_backend_data *bed;
2722 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2723 struct bfd_elf_section_data *esdo;
2724
2725 output_section = input_section->output_section;
2726
2727 bed = get_elf_backend_data (output_bfd);
2728 esdo = elf_section_data (output_section);
2729 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2730 {
2731 output_reldata = &esdo->rel;
2732 swap_out = bed->s->swap_reloc_out;
2733 }
2734 else if (esdo->rela.hdr
2735 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2736 {
2737 output_reldata = &esdo->rela;
2738 swap_out = bed->s->swap_reloca_out;
2739 }
2740 else
2741 {
2742 _bfd_error_handler
2743 /* xgettext:c-format */
2744 (_("%pB: relocation size mismatch in %pB section %pA"),
2745 output_bfd, input_section->owner, input_section);
2746 bfd_set_error (bfd_error_wrong_format);
2747 return FALSE;
2748 }
2749
2750 erel = output_reldata->hdr->contents;
2751 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2752 irela = internal_relocs;
2753 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2754 * bed->s->int_rels_per_ext_rel);
2755 while (irela < irelaend)
2756 {
2757 (*swap_out) (output_bfd, irela, erel);
2758 irela += bed->s->int_rels_per_ext_rel;
2759 erel += input_rel_hdr->sh_entsize;
2760 }
2761
2762 /* Bump the counter, so that we know where to add the next set of
2763 relocations. */
2764 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2765
2766 return TRUE;
2767 }
2768 \f
2769 /* Make weak undefined symbols in PIE dynamic. */
2770
2771 bfd_boolean
2772 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2773 struct elf_link_hash_entry *h)
2774 {
2775 if (bfd_link_pie (info)
2776 && h->dynindx == -1
2777 && h->root.type == bfd_link_hash_undefweak)
2778 return bfd_elf_link_record_dynamic_symbol (info, h);
2779
2780 return TRUE;
2781 }
2782
2783 /* Fix up the flags for a symbol. This handles various cases which
2784 can only be fixed after all the input files are seen. This is
2785 currently called by both adjust_dynamic_symbol and
2786 assign_sym_version, which is unnecessary but perhaps more robust in
2787 the face of future changes. */
2788
2789 static bfd_boolean
2790 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2791 struct elf_info_failed *eif)
2792 {
2793 const struct elf_backend_data *bed;
2794
2795 /* If this symbol was mentioned in a non-ELF file, try to set
2796 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2797 permit a non-ELF file to correctly refer to a symbol defined in
2798 an ELF dynamic object. */
2799 if (h->non_elf)
2800 {
2801 while (h->root.type == bfd_link_hash_indirect)
2802 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2803
2804 if (h->root.type != bfd_link_hash_defined
2805 && h->root.type != bfd_link_hash_defweak)
2806 {
2807 h->ref_regular = 1;
2808 h->ref_regular_nonweak = 1;
2809 }
2810 else
2811 {
2812 if (h->root.u.def.section->owner != NULL
2813 && (bfd_get_flavour (h->root.u.def.section->owner)
2814 == bfd_target_elf_flavour))
2815 {
2816 h->ref_regular = 1;
2817 h->ref_regular_nonweak = 1;
2818 }
2819 else
2820 h->def_regular = 1;
2821 }
2822
2823 if (h->dynindx == -1
2824 && (h->def_dynamic
2825 || h->ref_dynamic))
2826 {
2827 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2828 {
2829 eif->failed = TRUE;
2830 return FALSE;
2831 }
2832 }
2833 }
2834 else
2835 {
2836 /* Unfortunately, NON_ELF is only correct if the symbol
2837 was first seen in a non-ELF file. Fortunately, if the symbol
2838 was first seen in an ELF file, we're probably OK unless the
2839 symbol was defined in a non-ELF file. Catch that case here.
2840 FIXME: We're still in trouble if the symbol was first seen in
2841 a dynamic object, and then later in a non-ELF regular object. */
2842 if ((h->root.type == bfd_link_hash_defined
2843 || h->root.type == bfd_link_hash_defweak)
2844 && !h->def_regular
2845 && (h->root.u.def.section->owner != NULL
2846 ? (bfd_get_flavour (h->root.u.def.section->owner)
2847 != bfd_target_elf_flavour)
2848 : (bfd_is_abs_section (h->root.u.def.section)
2849 && !h->def_dynamic)))
2850 h->def_regular = 1;
2851 }
2852
2853 /* Backend specific symbol fixup. */
2854 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2855 if (bed->elf_backend_fixup_symbol
2856 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2857 return FALSE;
2858
2859 /* If this is a final link, and the symbol was defined as a common
2860 symbol in a regular object file, and there was no definition in
2861 any dynamic object, then the linker will have allocated space for
2862 the symbol in a common section but the DEF_REGULAR
2863 flag will not have been set. */
2864 if (h->root.type == bfd_link_hash_defined
2865 && !h->def_regular
2866 && h->ref_regular
2867 && !h->def_dynamic
2868 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2869 h->def_regular = 1;
2870
2871 /* Symbols defined in discarded sections shouldn't be dynamic. */
2872 if (h->root.type == bfd_link_hash_undefined && h->indx == -3)
2873 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2874
2875 /* If a weak undefined symbol has non-default visibility, we also
2876 hide it from the dynamic linker. */
2877 else if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2878 && h->root.type == bfd_link_hash_undefweak)
2879 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2880
2881 /* A hidden versioned symbol in executable should be forced local if
2882 it is is locally defined, not referenced by shared library and not
2883 exported. */
2884 else if (bfd_link_executable (eif->info)
2885 && h->versioned == versioned_hidden
2886 && !eif->info->export_dynamic
2887 && !h->dynamic
2888 && !h->ref_dynamic
2889 && h->def_regular)
2890 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2891
2892 /* If -Bsymbolic was used (which means to bind references to global
2893 symbols to the definition within the shared object), and this
2894 symbol was defined in a regular object, then it actually doesn't
2895 need a PLT entry. Likewise, if the symbol has non-default
2896 visibility. If the symbol has hidden or internal visibility, we
2897 will force it local. */
2898 else if (h->needs_plt
2899 && bfd_link_pic (eif->info)
2900 && is_elf_hash_table (eif->info->hash)
2901 && (SYMBOLIC_BIND (eif->info, h)
2902 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2903 && h->def_regular)
2904 {
2905 bfd_boolean force_local;
2906
2907 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2908 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2909 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2910 }
2911
2912 /* If this is a weak defined symbol in a dynamic object, and we know
2913 the real definition in the dynamic object, copy interesting flags
2914 over to the real definition. */
2915 if (h->is_weakalias)
2916 {
2917 struct elf_link_hash_entry *def = weakdef (h);
2918
2919 /* If the real definition is defined by a regular object file,
2920 don't do anything special. See the longer description in
2921 _bfd_elf_adjust_dynamic_symbol, below. If the def is not
2922 bfd_link_hash_defined as it was when put on the alias list
2923 then it must have originally been a versioned symbol (for
2924 which a non-versioned indirect symbol is created) and later
2925 a definition for the non-versioned symbol is found. In that
2926 case the indirection is flipped with the versioned symbol
2927 becoming an indirect pointing at the non-versioned symbol.
2928 Thus, not an alias any more. */
2929 if (def->def_regular
2930 || def->root.type != bfd_link_hash_defined)
2931 {
2932 h = def;
2933 while ((h = h->u.alias) != def)
2934 h->is_weakalias = 0;
2935 }
2936 else
2937 {
2938 while (h->root.type == bfd_link_hash_indirect)
2939 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2940 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2941 || h->root.type == bfd_link_hash_defweak);
2942 BFD_ASSERT (def->def_dynamic);
2943 (*bed->elf_backend_copy_indirect_symbol) (eif->info, def, h);
2944 }
2945 }
2946
2947 return TRUE;
2948 }
2949
2950 /* Make the backend pick a good value for a dynamic symbol. This is
2951 called via elf_link_hash_traverse, and also calls itself
2952 recursively. */
2953
2954 static bfd_boolean
2955 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2956 {
2957 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2958 struct elf_link_hash_table *htab;
2959 const struct elf_backend_data *bed;
2960
2961 if (! is_elf_hash_table (eif->info->hash))
2962 return FALSE;
2963
2964 /* Ignore indirect symbols. These are added by the versioning code. */
2965 if (h->root.type == bfd_link_hash_indirect)
2966 return TRUE;
2967
2968 /* Fix the symbol flags. */
2969 if (! _bfd_elf_fix_symbol_flags (h, eif))
2970 return FALSE;
2971
2972 htab = elf_hash_table (eif->info);
2973 bed = get_elf_backend_data (htab->dynobj);
2974
2975 if (h->root.type == bfd_link_hash_undefweak)
2976 {
2977 if (eif->info->dynamic_undefined_weak == 0)
2978 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2979 else if (eif->info->dynamic_undefined_weak > 0
2980 && h->ref_regular
2981 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2982 && !bfd_hide_sym_by_version (eif->info->version_info,
2983 h->root.root.string))
2984 {
2985 if (!bfd_elf_link_record_dynamic_symbol (eif->info, h))
2986 {
2987 eif->failed = TRUE;
2988 return FALSE;
2989 }
2990 }
2991 }
2992
2993 /* If this symbol does not require a PLT entry, and it is not
2994 defined by a dynamic object, or is not referenced by a regular
2995 object, ignore it. We do have to handle a weak defined symbol,
2996 even if no regular object refers to it, if we decided to add it
2997 to the dynamic symbol table. FIXME: Do we normally need to worry
2998 about symbols which are defined by one dynamic object and
2999 referenced by another one? */
3000 if (!h->needs_plt
3001 && h->type != STT_GNU_IFUNC
3002 && (h->def_regular
3003 || !h->def_dynamic
3004 || (!h->ref_regular
3005 && (!h->is_weakalias || weakdef (h)->dynindx == -1))))
3006 {
3007 h->plt = elf_hash_table (eif->info)->init_plt_offset;
3008 return TRUE;
3009 }
3010
3011 /* If we've already adjusted this symbol, don't do it again. This
3012 can happen via a recursive call. */
3013 if (h->dynamic_adjusted)
3014 return TRUE;
3015
3016 /* Don't look at this symbol again. Note that we must set this
3017 after checking the above conditions, because we may look at a
3018 symbol once, decide not to do anything, and then get called
3019 recursively later after REF_REGULAR is set below. */
3020 h->dynamic_adjusted = 1;
3021
3022 /* If this is a weak definition, and we know a real definition, and
3023 the real symbol is not itself defined by a regular object file,
3024 then get a good value for the real definition. We handle the
3025 real symbol first, for the convenience of the backend routine.
3026
3027 Note that there is a confusing case here. If the real definition
3028 is defined by a regular object file, we don't get the real symbol
3029 from the dynamic object, but we do get the weak symbol. If the
3030 processor backend uses a COPY reloc, then if some routine in the
3031 dynamic object changes the real symbol, we will not see that
3032 change in the corresponding weak symbol. This is the way other
3033 ELF linkers work as well, and seems to be a result of the shared
3034 library model.
3035
3036 I will clarify this issue. Most SVR4 shared libraries define the
3037 variable _timezone and define timezone as a weak synonym. The
3038 tzset call changes _timezone. If you write
3039 extern int timezone;
3040 int _timezone = 5;
3041 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3042 you might expect that, since timezone is a synonym for _timezone,
3043 the same number will print both times. However, if the processor
3044 backend uses a COPY reloc, then actually timezone will be copied
3045 into your process image, and, since you define _timezone
3046 yourself, _timezone will not. Thus timezone and _timezone will
3047 wind up at different memory locations. The tzset call will set
3048 _timezone, leaving timezone unchanged. */
3049
3050 if (h->is_weakalias)
3051 {
3052 struct elf_link_hash_entry *def = weakdef (h);
3053
3054 /* If we get to this point, there is an implicit reference to
3055 the alias by a regular object file via the weak symbol H. */
3056 def->ref_regular = 1;
3057
3058 /* Ensure that the backend adjust_dynamic_symbol function sees
3059 the strong alias before H by recursively calling ourselves. */
3060 if (!_bfd_elf_adjust_dynamic_symbol (def, eif))
3061 return FALSE;
3062 }
3063
3064 /* If a symbol has no type and no size and does not require a PLT
3065 entry, then we are probably about to do the wrong thing here: we
3066 are probably going to create a COPY reloc for an empty object.
3067 This case can arise when a shared object is built with assembly
3068 code, and the assembly code fails to set the symbol type. */
3069 if (h->size == 0
3070 && h->type == STT_NOTYPE
3071 && !h->needs_plt)
3072 _bfd_error_handler
3073 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3074 h->root.root.string);
3075
3076 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3077 {
3078 eif->failed = TRUE;
3079 return FALSE;
3080 }
3081
3082 return TRUE;
3083 }
3084
3085 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
3086 DYNBSS. */
3087
3088 bfd_boolean
3089 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
3090 struct elf_link_hash_entry *h,
3091 asection *dynbss)
3092 {
3093 unsigned int power_of_two;
3094 bfd_vma mask;
3095 asection *sec = h->root.u.def.section;
3096
3097 /* The section alignment of the definition is the maximum alignment
3098 requirement of symbols defined in the section. Since we don't
3099 know the symbol alignment requirement, we start with the
3100 maximum alignment and check low bits of the symbol address
3101 for the minimum alignment. */
3102 power_of_two = bfd_get_section_alignment (sec->owner, sec);
3103 mask = ((bfd_vma) 1 << power_of_two) - 1;
3104 while ((h->root.u.def.value & mask) != 0)
3105 {
3106 mask >>= 1;
3107 --power_of_two;
3108 }
3109
3110 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
3111 dynbss))
3112 {
3113 /* Adjust the section alignment if needed. */
3114 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
3115 power_of_two))
3116 return FALSE;
3117 }
3118
3119 /* We make sure that the symbol will be aligned properly. */
3120 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
3121
3122 /* Define the symbol as being at this point in DYNBSS. */
3123 h->root.u.def.section = dynbss;
3124 h->root.u.def.value = dynbss->size;
3125
3126 /* Increment the size of DYNBSS to make room for the symbol. */
3127 dynbss->size += h->size;
3128
3129 /* No error if extern_protected_data is true. */
3130 if (h->protected_def
3131 && (!info->extern_protected_data
3132 || (info->extern_protected_data < 0
3133 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
3134 info->callbacks->einfo
3135 (_("%P: copy reloc against protected `%pT' is dangerous\n"),
3136 h->root.root.string);
3137
3138 return TRUE;
3139 }
3140
3141 /* Adjust all external symbols pointing into SEC_MERGE sections
3142 to reflect the object merging within the sections. */
3143
3144 static bfd_boolean
3145 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
3146 {
3147 asection *sec;
3148
3149 if ((h->root.type == bfd_link_hash_defined
3150 || h->root.type == bfd_link_hash_defweak)
3151 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
3152 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
3153 {
3154 bfd *output_bfd = (bfd *) data;
3155
3156 h->root.u.def.value =
3157 _bfd_merged_section_offset (output_bfd,
3158 &h->root.u.def.section,
3159 elf_section_data (sec)->sec_info,
3160 h->root.u.def.value);
3161 }
3162
3163 return TRUE;
3164 }
3165
3166 /* Returns false if the symbol referred to by H should be considered
3167 to resolve local to the current module, and true if it should be
3168 considered to bind dynamically. */
3169
3170 bfd_boolean
3171 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
3172 struct bfd_link_info *info,
3173 bfd_boolean not_local_protected)
3174 {
3175 bfd_boolean binding_stays_local_p;
3176 const struct elf_backend_data *bed;
3177 struct elf_link_hash_table *hash_table;
3178
3179 if (h == NULL)
3180 return FALSE;
3181
3182 while (h->root.type == bfd_link_hash_indirect
3183 || h->root.type == bfd_link_hash_warning)
3184 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3185
3186 /* If it was forced local, then clearly it's not dynamic. */
3187 if (h->dynindx == -1)
3188 return FALSE;
3189 if (h->forced_local)
3190 return FALSE;
3191
3192 /* Identify the cases where name binding rules say that a
3193 visible symbol resolves locally. */
3194 binding_stays_local_p = (bfd_link_executable (info)
3195 || SYMBOLIC_BIND (info, h));
3196
3197 switch (ELF_ST_VISIBILITY (h->other))
3198 {
3199 case STV_INTERNAL:
3200 case STV_HIDDEN:
3201 return FALSE;
3202
3203 case STV_PROTECTED:
3204 hash_table = elf_hash_table (info);
3205 if (!is_elf_hash_table (hash_table))
3206 return FALSE;
3207
3208 bed = get_elf_backend_data (hash_table->dynobj);
3209
3210 /* Proper resolution for function pointer equality may require
3211 that these symbols perhaps be resolved dynamically, even though
3212 we should be resolving them to the current module. */
3213 if (!not_local_protected || !bed->is_function_type (h->type))
3214 binding_stays_local_p = TRUE;
3215 break;
3216
3217 default:
3218 break;
3219 }
3220
3221 /* If it isn't defined locally, then clearly it's dynamic. */
3222 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3223 return TRUE;
3224
3225 /* Otherwise, the symbol is dynamic if binding rules don't tell
3226 us that it remains local. */
3227 return !binding_stays_local_p;
3228 }
3229
3230 /* Return true if the symbol referred to by H should be considered
3231 to resolve local to the current module, and false otherwise. Differs
3232 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3233 undefined symbols. The two functions are virtually identical except
3234 for the place where dynindx == -1 is tested. If that test is true,
3235 _bfd_elf_dynamic_symbol_p will say the symbol is local, while
3236 _bfd_elf_symbol_refs_local_p will say the symbol is local only for
3237 defined symbols.
3238 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3239 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3240 treatment of undefined weak symbols. For those that do not make
3241 undefined weak symbols dynamic, both functions may return false. */
3242
3243 bfd_boolean
3244 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3245 struct bfd_link_info *info,
3246 bfd_boolean local_protected)
3247 {
3248 const struct elf_backend_data *bed;
3249 struct elf_link_hash_table *hash_table;
3250
3251 /* If it's a local sym, of course we resolve locally. */
3252 if (h == NULL)
3253 return TRUE;
3254
3255 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
3256 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3257 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3258 return TRUE;
3259
3260 /* Forced local symbols resolve locally. */
3261 if (h->forced_local)
3262 return TRUE;
3263
3264 /* Common symbols that become definitions don't get the DEF_REGULAR
3265 flag set, so test it first, and don't bail out. */
3266 if (ELF_COMMON_DEF_P (h))
3267 /* Do nothing. */;
3268 /* If we don't have a definition in a regular file, then we can't
3269 resolve locally. The sym is either undefined or dynamic. */
3270 else if (!h->def_regular)
3271 return FALSE;
3272
3273 /* Non-dynamic symbols resolve locally. */
3274 if (h->dynindx == -1)
3275 return TRUE;
3276
3277 /* At this point, we know the symbol is defined and dynamic. In an
3278 executable it must resolve locally, likewise when building symbolic
3279 shared libraries. */
3280 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3281 return TRUE;
3282
3283 /* Now deal with defined dynamic symbols in shared libraries. Ones
3284 with default visibility might not resolve locally. */
3285 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3286 return FALSE;
3287
3288 hash_table = elf_hash_table (info);
3289 if (!is_elf_hash_table (hash_table))
3290 return TRUE;
3291
3292 bed = get_elf_backend_data (hash_table->dynobj);
3293
3294 /* If extern_protected_data is false, STV_PROTECTED non-function
3295 symbols are local. */
3296 if ((!info->extern_protected_data
3297 || (info->extern_protected_data < 0
3298 && !bed->extern_protected_data))
3299 && !bed->is_function_type (h->type))
3300 return TRUE;
3301
3302 /* Function pointer equality tests may require that STV_PROTECTED
3303 symbols be treated as dynamic symbols. If the address of a
3304 function not defined in an executable is set to that function's
3305 plt entry in the executable, then the address of the function in
3306 a shared library must also be the plt entry in the executable. */
3307 return local_protected;
3308 }
3309
3310 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3311 aligned. Returns the first TLS output section. */
3312
3313 struct bfd_section *
3314 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3315 {
3316 struct bfd_section *sec, *tls;
3317 unsigned int align = 0;
3318
3319 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3320 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3321 break;
3322 tls = sec;
3323
3324 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3325 if (sec->alignment_power > align)
3326 align = sec->alignment_power;
3327
3328 elf_hash_table (info)->tls_sec = tls;
3329
3330 /* Ensure the alignment of the first section is the largest alignment,
3331 so that the tls segment starts aligned. */
3332 if (tls != NULL)
3333 tls->alignment_power = align;
3334
3335 return tls;
3336 }
3337
3338 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3339 static bfd_boolean
3340 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3341 Elf_Internal_Sym *sym)
3342 {
3343 const struct elf_backend_data *bed;
3344
3345 /* Local symbols do not count, but target specific ones might. */
3346 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3347 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3348 return FALSE;
3349
3350 bed = get_elf_backend_data (abfd);
3351 /* Function symbols do not count. */
3352 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3353 return FALSE;
3354
3355 /* If the section is undefined, then so is the symbol. */
3356 if (sym->st_shndx == SHN_UNDEF)
3357 return FALSE;
3358
3359 /* If the symbol is defined in the common section, then
3360 it is a common definition and so does not count. */
3361 if (bed->common_definition (sym))
3362 return FALSE;
3363
3364 /* If the symbol is in a target specific section then we
3365 must rely upon the backend to tell us what it is. */
3366 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3367 /* FIXME - this function is not coded yet:
3368
3369 return _bfd_is_global_symbol_definition (abfd, sym);
3370
3371 Instead for now assume that the definition is not global,
3372 Even if this is wrong, at least the linker will behave
3373 in the same way that it used to do. */
3374 return FALSE;
3375
3376 return TRUE;
3377 }
3378
3379 /* Search the symbol table of the archive element of the archive ABFD
3380 whose archive map contains a mention of SYMDEF, and determine if
3381 the symbol is defined in this element. */
3382 static bfd_boolean
3383 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3384 {
3385 Elf_Internal_Shdr * hdr;
3386 size_t symcount;
3387 size_t extsymcount;
3388 size_t extsymoff;
3389 Elf_Internal_Sym *isymbuf;
3390 Elf_Internal_Sym *isym;
3391 Elf_Internal_Sym *isymend;
3392 bfd_boolean result;
3393
3394 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3395 if (abfd == NULL)
3396 return FALSE;
3397
3398 if (! bfd_check_format (abfd, bfd_object))
3399 return FALSE;
3400
3401 /* Select the appropriate symbol table. If we don't know if the
3402 object file is an IR object, give linker LTO plugin a chance to
3403 get the correct symbol table. */
3404 if (abfd->plugin_format == bfd_plugin_yes
3405 #if BFD_SUPPORTS_PLUGINS
3406 || (abfd->plugin_format == bfd_plugin_unknown
3407 && bfd_link_plugin_object_p (abfd))
3408 #endif
3409 )
3410 {
3411 /* Use the IR symbol table if the object has been claimed by
3412 plugin. */
3413 abfd = abfd->plugin_dummy_bfd;
3414 hdr = &elf_tdata (abfd)->symtab_hdr;
3415 }
3416 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3417 hdr = &elf_tdata (abfd)->symtab_hdr;
3418 else
3419 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3420
3421 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3422
3423 /* The sh_info field of the symtab header tells us where the
3424 external symbols start. We don't care about the local symbols. */
3425 if (elf_bad_symtab (abfd))
3426 {
3427 extsymcount = symcount;
3428 extsymoff = 0;
3429 }
3430 else
3431 {
3432 extsymcount = symcount - hdr->sh_info;
3433 extsymoff = hdr->sh_info;
3434 }
3435
3436 if (extsymcount == 0)
3437 return FALSE;
3438
3439 /* Read in the symbol table. */
3440 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3441 NULL, NULL, NULL);
3442 if (isymbuf == NULL)
3443 return FALSE;
3444
3445 /* Scan the symbol table looking for SYMDEF. */
3446 result = FALSE;
3447 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3448 {
3449 const char *name;
3450
3451 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3452 isym->st_name);
3453 if (name == NULL)
3454 break;
3455
3456 if (strcmp (name, symdef->name) == 0)
3457 {
3458 result = is_global_data_symbol_definition (abfd, isym);
3459 break;
3460 }
3461 }
3462
3463 free (isymbuf);
3464
3465 return result;
3466 }
3467 \f
3468 /* Add an entry to the .dynamic table. */
3469
3470 bfd_boolean
3471 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3472 bfd_vma tag,
3473 bfd_vma val)
3474 {
3475 struct elf_link_hash_table *hash_table;
3476 const struct elf_backend_data *bed;
3477 asection *s;
3478 bfd_size_type newsize;
3479 bfd_byte *newcontents;
3480 Elf_Internal_Dyn dyn;
3481
3482 hash_table = elf_hash_table (info);
3483 if (! is_elf_hash_table (hash_table))
3484 return FALSE;
3485
3486 if (tag == DT_RELA || tag == DT_REL)
3487 hash_table->dynamic_relocs = TRUE;
3488
3489 bed = get_elf_backend_data (hash_table->dynobj);
3490 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3491 BFD_ASSERT (s != NULL);
3492
3493 newsize = s->size + bed->s->sizeof_dyn;
3494 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3495 if (newcontents == NULL)
3496 return FALSE;
3497
3498 dyn.d_tag = tag;
3499 dyn.d_un.d_val = val;
3500 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3501
3502 s->size = newsize;
3503 s->contents = newcontents;
3504
3505 return TRUE;
3506 }
3507
3508 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3509 otherwise just check whether one already exists. Returns -1 on error,
3510 1 if a DT_NEEDED tag already exists, and 0 on success. */
3511
3512 static int
3513 elf_add_dt_needed_tag (bfd *abfd,
3514 struct bfd_link_info *info,
3515 const char *soname,
3516 bfd_boolean do_it)
3517 {
3518 struct elf_link_hash_table *hash_table;
3519 size_t strindex;
3520
3521 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3522 return -1;
3523
3524 hash_table = elf_hash_table (info);
3525 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3526 if (strindex == (size_t) -1)
3527 return -1;
3528
3529 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3530 {
3531 asection *sdyn;
3532 const struct elf_backend_data *bed;
3533 bfd_byte *extdyn;
3534
3535 bed = get_elf_backend_data (hash_table->dynobj);
3536 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3537 if (sdyn != NULL)
3538 for (extdyn = sdyn->contents;
3539 extdyn < sdyn->contents + sdyn->size;
3540 extdyn += bed->s->sizeof_dyn)
3541 {
3542 Elf_Internal_Dyn dyn;
3543
3544 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3545 if (dyn.d_tag == DT_NEEDED
3546 && dyn.d_un.d_val == strindex)
3547 {
3548 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3549 return 1;
3550 }
3551 }
3552 }
3553
3554 if (do_it)
3555 {
3556 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3557 return -1;
3558
3559 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3560 return -1;
3561 }
3562 else
3563 /* We were just checking for existence of the tag. */
3564 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3565
3566 return 0;
3567 }
3568
3569 /* Return true if SONAME is on the needed list between NEEDED and STOP
3570 (or the end of list if STOP is NULL), and needed by a library that
3571 will be loaded. */
3572
3573 static bfd_boolean
3574 on_needed_list (const char *soname,
3575 struct bfd_link_needed_list *needed,
3576 struct bfd_link_needed_list *stop)
3577 {
3578 struct bfd_link_needed_list *look;
3579 for (look = needed; look != stop; look = look->next)
3580 if (strcmp (soname, look->name) == 0
3581 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3582 /* If needed by a library that itself is not directly
3583 needed, recursively check whether that library is
3584 indirectly needed. Since we add DT_NEEDED entries to
3585 the end of the list, library dependencies appear after
3586 the library. Therefore search prior to the current
3587 LOOK, preventing possible infinite recursion. */
3588 || on_needed_list (elf_dt_name (look->by), needed, look)))
3589 return TRUE;
3590
3591 return FALSE;
3592 }
3593
3594 /* Sort symbol by value, section, and size. */
3595 static int
3596 elf_sort_symbol (const void *arg1, const void *arg2)
3597 {
3598 const struct elf_link_hash_entry *h1;
3599 const struct elf_link_hash_entry *h2;
3600 bfd_signed_vma vdiff;
3601
3602 h1 = *(const struct elf_link_hash_entry **) arg1;
3603 h2 = *(const struct elf_link_hash_entry **) arg2;
3604 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3605 if (vdiff != 0)
3606 return vdiff > 0 ? 1 : -1;
3607 else
3608 {
3609 int sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3610 if (sdiff != 0)
3611 return sdiff > 0 ? 1 : -1;
3612 }
3613 vdiff = h1->size - h2->size;
3614 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3615 }
3616
3617 /* This function is used to adjust offsets into .dynstr for
3618 dynamic symbols. This is called via elf_link_hash_traverse. */
3619
3620 static bfd_boolean
3621 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3622 {
3623 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3624
3625 if (h->dynindx != -1)
3626 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3627 return TRUE;
3628 }
3629
3630 /* Assign string offsets in .dynstr, update all structures referencing
3631 them. */
3632
3633 static bfd_boolean
3634 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3635 {
3636 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3637 struct elf_link_local_dynamic_entry *entry;
3638 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3639 bfd *dynobj = hash_table->dynobj;
3640 asection *sdyn;
3641 bfd_size_type size;
3642 const struct elf_backend_data *bed;
3643 bfd_byte *extdyn;
3644
3645 _bfd_elf_strtab_finalize (dynstr);
3646 size = _bfd_elf_strtab_size (dynstr);
3647
3648 bed = get_elf_backend_data (dynobj);
3649 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3650 BFD_ASSERT (sdyn != NULL);
3651
3652 /* Update all .dynamic entries referencing .dynstr strings. */
3653 for (extdyn = sdyn->contents;
3654 extdyn < sdyn->contents + sdyn->size;
3655 extdyn += bed->s->sizeof_dyn)
3656 {
3657 Elf_Internal_Dyn dyn;
3658
3659 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3660 switch (dyn.d_tag)
3661 {
3662 case DT_STRSZ:
3663 dyn.d_un.d_val = size;
3664 break;
3665 case DT_NEEDED:
3666 case DT_SONAME:
3667 case DT_RPATH:
3668 case DT_RUNPATH:
3669 case DT_FILTER:
3670 case DT_AUXILIARY:
3671 case DT_AUDIT:
3672 case DT_DEPAUDIT:
3673 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3674 break;
3675 default:
3676 continue;
3677 }
3678 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3679 }
3680
3681 /* Now update local dynamic symbols. */
3682 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3683 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3684 entry->isym.st_name);
3685
3686 /* And the rest of dynamic symbols. */
3687 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3688
3689 /* Adjust version definitions. */
3690 if (elf_tdata (output_bfd)->cverdefs)
3691 {
3692 asection *s;
3693 bfd_byte *p;
3694 size_t i;
3695 Elf_Internal_Verdef def;
3696 Elf_Internal_Verdaux defaux;
3697
3698 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3699 p = s->contents;
3700 do
3701 {
3702 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3703 &def);
3704 p += sizeof (Elf_External_Verdef);
3705 if (def.vd_aux != sizeof (Elf_External_Verdef))
3706 continue;
3707 for (i = 0; i < def.vd_cnt; ++i)
3708 {
3709 _bfd_elf_swap_verdaux_in (output_bfd,
3710 (Elf_External_Verdaux *) p, &defaux);
3711 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3712 defaux.vda_name);
3713 _bfd_elf_swap_verdaux_out (output_bfd,
3714 &defaux, (Elf_External_Verdaux *) p);
3715 p += sizeof (Elf_External_Verdaux);
3716 }
3717 }
3718 while (def.vd_next);
3719 }
3720
3721 /* Adjust version references. */
3722 if (elf_tdata (output_bfd)->verref)
3723 {
3724 asection *s;
3725 bfd_byte *p;
3726 size_t i;
3727 Elf_Internal_Verneed need;
3728 Elf_Internal_Vernaux needaux;
3729
3730 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3731 p = s->contents;
3732 do
3733 {
3734 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3735 &need);
3736 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3737 _bfd_elf_swap_verneed_out (output_bfd, &need,
3738 (Elf_External_Verneed *) p);
3739 p += sizeof (Elf_External_Verneed);
3740 for (i = 0; i < need.vn_cnt; ++i)
3741 {
3742 _bfd_elf_swap_vernaux_in (output_bfd,
3743 (Elf_External_Vernaux *) p, &needaux);
3744 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3745 needaux.vna_name);
3746 _bfd_elf_swap_vernaux_out (output_bfd,
3747 &needaux,
3748 (Elf_External_Vernaux *) p);
3749 p += sizeof (Elf_External_Vernaux);
3750 }
3751 }
3752 while (need.vn_next);
3753 }
3754
3755 return TRUE;
3756 }
3757 \f
3758 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3759 The default is to only match when the INPUT and OUTPUT are exactly
3760 the same target. */
3761
3762 bfd_boolean
3763 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3764 const bfd_target *output)
3765 {
3766 return input == output;
3767 }
3768
3769 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3770 This version is used when different targets for the same architecture
3771 are virtually identical. */
3772
3773 bfd_boolean
3774 _bfd_elf_relocs_compatible (const bfd_target *input,
3775 const bfd_target *output)
3776 {
3777 const struct elf_backend_data *obed, *ibed;
3778
3779 if (input == output)
3780 return TRUE;
3781
3782 ibed = xvec_get_elf_backend_data (input);
3783 obed = xvec_get_elf_backend_data (output);
3784
3785 if (ibed->arch != obed->arch)
3786 return FALSE;
3787
3788 /* If both backends are using this function, deem them compatible. */
3789 return ibed->relocs_compatible == obed->relocs_compatible;
3790 }
3791
3792 /* Make a special call to the linker "notice" function to tell it that
3793 we are about to handle an as-needed lib, or have finished
3794 processing the lib. */
3795
3796 bfd_boolean
3797 _bfd_elf_notice_as_needed (bfd *ibfd,
3798 struct bfd_link_info *info,
3799 enum notice_asneeded_action act)
3800 {
3801 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3802 }
3803
3804 /* Check relocations an ELF object file. */
3805
3806 bfd_boolean
3807 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3808 {
3809 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3810 struct elf_link_hash_table *htab = elf_hash_table (info);
3811
3812 /* If this object is the same format as the output object, and it is
3813 not a shared library, then let the backend look through the
3814 relocs.
3815
3816 This is required to build global offset table entries and to
3817 arrange for dynamic relocs. It is not required for the
3818 particular common case of linking non PIC code, even when linking
3819 against shared libraries, but unfortunately there is no way of
3820 knowing whether an object file has been compiled PIC or not.
3821 Looking through the relocs is not particularly time consuming.
3822 The problem is that we must either (1) keep the relocs in memory,
3823 which causes the linker to require additional runtime memory or
3824 (2) read the relocs twice from the input file, which wastes time.
3825 This would be a good case for using mmap.
3826
3827 I have no idea how to handle linking PIC code into a file of a
3828 different format. It probably can't be done. */
3829 if ((abfd->flags & DYNAMIC) == 0
3830 && is_elf_hash_table (htab)
3831 && bed->check_relocs != NULL
3832 && elf_object_id (abfd) == elf_hash_table_id (htab)
3833 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3834 {
3835 asection *o;
3836
3837 for (o = abfd->sections; o != NULL; o = o->next)
3838 {
3839 Elf_Internal_Rela *internal_relocs;
3840 bfd_boolean ok;
3841
3842 /* Don't check relocations in excluded sections. */
3843 if ((o->flags & SEC_RELOC) == 0
3844 || (o->flags & SEC_EXCLUDE) != 0
3845 || o->reloc_count == 0
3846 || ((info->strip == strip_all || info->strip == strip_debugger)
3847 && (o->flags & SEC_DEBUGGING) != 0)
3848 || bfd_is_abs_section (o->output_section))
3849 continue;
3850
3851 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3852 info->keep_memory);
3853 if (internal_relocs == NULL)
3854 return FALSE;
3855
3856 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3857
3858 if (elf_section_data (o)->relocs != internal_relocs)
3859 free (internal_relocs);
3860
3861 if (! ok)
3862 return FALSE;
3863 }
3864 }
3865
3866 return TRUE;
3867 }
3868
3869 /* Add symbols from an ELF object file to the linker hash table. */
3870
3871 static bfd_boolean
3872 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3873 {
3874 Elf_Internal_Ehdr *ehdr;
3875 Elf_Internal_Shdr *hdr;
3876 size_t symcount;
3877 size_t extsymcount;
3878 size_t extsymoff;
3879 struct elf_link_hash_entry **sym_hash;
3880 bfd_boolean dynamic;
3881 Elf_External_Versym *extversym = NULL;
3882 Elf_External_Versym *extversym_end = NULL;
3883 Elf_External_Versym *ever;
3884 struct elf_link_hash_entry *weaks;
3885 struct elf_link_hash_entry **nondeflt_vers = NULL;
3886 size_t nondeflt_vers_cnt = 0;
3887 Elf_Internal_Sym *isymbuf = NULL;
3888 Elf_Internal_Sym *isym;
3889 Elf_Internal_Sym *isymend;
3890 const struct elf_backend_data *bed;
3891 bfd_boolean add_needed;
3892 struct elf_link_hash_table *htab;
3893 bfd_size_type amt;
3894 void *alloc_mark = NULL;
3895 struct bfd_hash_entry **old_table = NULL;
3896 unsigned int old_size = 0;
3897 unsigned int old_count = 0;
3898 void *old_tab = NULL;
3899 void *old_ent;
3900 struct bfd_link_hash_entry *old_undefs = NULL;
3901 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3902 void *old_strtab = NULL;
3903 size_t tabsize = 0;
3904 asection *s;
3905 bfd_boolean just_syms;
3906
3907 htab = elf_hash_table (info);
3908 bed = get_elf_backend_data (abfd);
3909
3910 if ((abfd->flags & DYNAMIC) == 0)
3911 dynamic = FALSE;
3912 else
3913 {
3914 dynamic = TRUE;
3915
3916 /* You can't use -r against a dynamic object. Also, there's no
3917 hope of using a dynamic object which does not exactly match
3918 the format of the output file. */
3919 if (bfd_link_relocatable (info)
3920 || !is_elf_hash_table (htab)
3921 || info->output_bfd->xvec != abfd->xvec)
3922 {
3923 if (bfd_link_relocatable (info))
3924 bfd_set_error (bfd_error_invalid_operation);
3925 else
3926 bfd_set_error (bfd_error_wrong_format);
3927 goto error_return;
3928 }
3929 }
3930
3931 ehdr = elf_elfheader (abfd);
3932 if (info->warn_alternate_em
3933 && bed->elf_machine_code != ehdr->e_machine
3934 && ((bed->elf_machine_alt1 != 0
3935 && ehdr->e_machine == bed->elf_machine_alt1)
3936 || (bed->elf_machine_alt2 != 0
3937 && ehdr->e_machine == bed->elf_machine_alt2)))
3938 _bfd_error_handler
3939 /* xgettext:c-format */
3940 (_("alternate ELF machine code found (%d) in %pB, expecting %d"),
3941 ehdr->e_machine, abfd, bed->elf_machine_code);
3942
3943 /* As a GNU extension, any input sections which are named
3944 .gnu.warning.SYMBOL are treated as warning symbols for the given
3945 symbol. This differs from .gnu.warning sections, which generate
3946 warnings when they are included in an output file. */
3947 /* PR 12761: Also generate this warning when building shared libraries. */
3948 for (s = abfd->sections; s != NULL; s = s->next)
3949 {
3950 const char *name;
3951
3952 name = bfd_get_section_name (abfd, s);
3953 if (CONST_STRNEQ (name, ".gnu.warning."))
3954 {
3955 char *msg;
3956 bfd_size_type sz;
3957
3958 name += sizeof ".gnu.warning." - 1;
3959
3960 /* If this is a shared object, then look up the symbol
3961 in the hash table. If it is there, and it is already
3962 been defined, then we will not be using the entry
3963 from this shared object, so we don't need to warn.
3964 FIXME: If we see the definition in a regular object
3965 later on, we will warn, but we shouldn't. The only
3966 fix is to keep track of what warnings we are supposed
3967 to emit, and then handle them all at the end of the
3968 link. */
3969 if (dynamic)
3970 {
3971 struct elf_link_hash_entry *h;
3972
3973 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3974
3975 /* FIXME: What about bfd_link_hash_common? */
3976 if (h != NULL
3977 && (h->root.type == bfd_link_hash_defined
3978 || h->root.type == bfd_link_hash_defweak))
3979 continue;
3980 }
3981
3982 sz = s->size;
3983 msg = (char *) bfd_alloc (abfd, sz + 1);
3984 if (msg == NULL)
3985 goto error_return;
3986
3987 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3988 goto error_return;
3989
3990 msg[sz] = '\0';
3991
3992 if (! (_bfd_generic_link_add_one_symbol
3993 (info, abfd, name, BSF_WARNING, s, 0, msg,
3994 FALSE, bed->collect, NULL)))
3995 goto error_return;
3996
3997 if (bfd_link_executable (info))
3998 {
3999 /* Clobber the section size so that the warning does
4000 not get copied into the output file. */
4001 s->size = 0;
4002
4003 /* Also set SEC_EXCLUDE, so that symbols defined in
4004 the warning section don't get copied to the output. */
4005 s->flags |= SEC_EXCLUDE;
4006 }
4007 }
4008 }
4009
4010 just_syms = ((s = abfd->sections) != NULL
4011 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
4012
4013 add_needed = TRUE;
4014 if (! dynamic)
4015 {
4016 /* If we are creating a shared library, create all the dynamic
4017 sections immediately. We need to attach them to something,
4018 so we attach them to this BFD, provided it is the right
4019 format and is not from ld --just-symbols. Always create the
4020 dynamic sections for -E/--dynamic-list. FIXME: If there
4021 are no input BFD's of the same format as the output, we can't
4022 make a shared library. */
4023 if (!just_syms
4024 && (bfd_link_pic (info)
4025 || (!bfd_link_relocatable (info)
4026 && info->nointerp
4027 && (info->export_dynamic || info->dynamic)))
4028 && is_elf_hash_table (htab)
4029 && info->output_bfd->xvec == abfd->xvec
4030 && !htab->dynamic_sections_created)
4031 {
4032 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
4033 goto error_return;
4034 }
4035 }
4036 else if (!is_elf_hash_table (htab))
4037 goto error_return;
4038 else
4039 {
4040 const char *soname = NULL;
4041 char *audit = NULL;
4042 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
4043 const Elf_Internal_Phdr *phdr;
4044 int ret;
4045
4046 /* ld --just-symbols and dynamic objects don't mix very well.
4047 ld shouldn't allow it. */
4048 if (just_syms)
4049 abort ();
4050
4051 /* If this dynamic lib was specified on the command line with
4052 --as-needed in effect, then we don't want to add a DT_NEEDED
4053 tag unless the lib is actually used. Similary for libs brought
4054 in by another lib's DT_NEEDED. When --no-add-needed is used
4055 on a dynamic lib, we don't want to add a DT_NEEDED entry for
4056 any dynamic library in DT_NEEDED tags in the dynamic lib at
4057 all. */
4058 add_needed = (elf_dyn_lib_class (abfd)
4059 & (DYN_AS_NEEDED | DYN_DT_NEEDED
4060 | DYN_NO_NEEDED)) == 0;
4061
4062 s = bfd_get_section_by_name (abfd, ".dynamic");
4063 if (s != NULL)
4064 {
4065 bfd_byte *dynbuf;
4066 bfd_byte *extdyn;
4067 unsigned int elfsec;
4068 unsigned long shlink;
4069
4070 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
4071 {
4072 error_free_dyn:
4073 free (dynbuf);
4074 goto error_return;
4075 }
4076
4077 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
4078 if (elfsec == SHN_BAD)
4079 goto error_free_dyn;
4080 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
4081
4082 for (extdyn = dynbuf;
4083 extdyn <= dynbuf + s->size - bed->s->sizeof_dyn;
4084 extdyn += bed->s->sizeof_dyn)
4085 {
4086 Elf_Internal_Dyn dyn;
4087
4088 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
4089 if (dyn.d_tag == DT_SONAME)
4090 {
4091 unsigned int tagv = dyn.d_un.d_val;
4092 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4093 if (soname == NULL)
4094 goto error_free_dyn;
4095 }
4096 if (dyn.d_tag == DT_NEEDED)
4097 {
4098 struct bfd_link_needed_list *n, **pn;
4099 char *fnm, *anm;
4100 unsigned int tagv = dyn.d_un.d_val;
4101
4102 amt = sizeof (struct bfd_link_needed_list);
4103 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4104 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4105 if (n == NULL || fnm == NULL)
4106 goto error_free_dyn;
4107 amt = strlen (fnm) + 1;
4108 anm = (char *) bfd_alloc (abfd, amt);
4109 if (anm == NULL)
4110 goto error_free_dyn;
4111 memcpy (anm, fnm, amt);
4112 n->name = anm;
4113 n->by = abfd;
4114 n->next = NULL;
4115 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
4116 ;
4117 *pn = n;
4118 }
4119 if (dyn.d_tag == DT_RUNPATH)
4120 {
4121 struct bfd_link_needed_list *n, **pn;
4122 char *fnm, *anm;
4123 unsigned int tagv = dyn.d_un.d_val;
4124
4125 amt = sizeof (struct bfd_link_needed_list);
4126 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4127 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4128 if (n == NULL || fnm == NULL)
4129 goto error_free_dyn;
4130 amt = strlen (fnm) + 1;
4131 anm = (char *) bfd_alloc (abfd, amt);
4132 if (anm == NULL)
4133 goto error_free_dyn;
4134 memcpy (anm, fnm, amt);
4135 n->name = anm;
4136 n->by = abfd;
4137 n->next = NULL;
4138 for (pn = & runpath;
4139 *pn != NULL;
4140 pn = &(*pn)->next)
4141 ;
4142 *pn = n;
4143 }
4144 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
4145 if (!runpath && dyn.d_tag == DT_RPATH)
4146 {
4147 struct bfd_link_needed_list *n, **pn;
4148 char *fnm, *anm;
4149 unsigned int tagv = dyn.d_un.d_val;
4150
4151 amt = sizeof (struct bfd_link_needed_list);
4152 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4153 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4154 if (n == NULL || fnm == NULL)
4155 goto error_free_dyn;
4156 amt = strlen (fnm) + 1;
4157 anm = (char *) bfd_alloc (abfd, amt);
4158 if (anm == NULL)
4159 goto error_free_dyn;
4160 memcpy (anm, fnm, amt);
4161 n->name = anm;
4162 n->by = abfd;
4163 n->next = NULL;
4164 for (pn = & rpath;
4165 *pn != NULL;
4166 pn = &(*pn)->next)
4167 ;
4168 *pn = n;
4169 }
4170 if (dyn.d_tag == DT_AUDIT)
4171 {
4172 unsigned int tagv = dyn.d_un.d_val;
4173 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4174 }
4175 }
4176
4177 free (dynbuf);
4178 }
4179
4180 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
4181 frees all more recently bfd_alloc'd blocks as well. */
4182 if (runpath)
4183 rpath = runpath;
4184
4185 if (rpath)
4186 {
4187 struct bfd_link_needed_list **pn;
4188 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
4189 ;
4190 *pn = rpath;
4191 }
4192
4193 /* If we have a PT_GNU_RELRO program header, mark as read-only
4194 all sections contained fully therein. This makes relro
4195 shared library sections appear as they will at run-time. */
4196 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
4197 while (phdr-- > elf_tdata (abfd)->phdr)
4198 if (phdr->p_type == PT_GNU_RELRO)
4199 {
4200 for (s = abfd->sections; s != NULL; s = s->next)
4201 if ((s->flags & SEC_ALLOC) != 0
4202 && s->vma >= phdr->p_vaddr
4203 && s->vma + s->size <= phdr->p_vaddr + phdr->p_memsz)
4204 s->flags |= SEC_READONLY;
4205 break;
4206 }
4207
4208 /* We do not want to include any of the sections in a dynamic
4209 object in the output file. We hack by simply clobbering the
4210 list of sections in the BFD. This could be handled more
4211 cleanly by, say, a new section flag; the existing
4212 SEC_NEVER_LOAD flag is not the one we want, because that one
4213 still implies that the section takes up space in the output
4214 file. */
4215 bfd_section_list_clear (abfd);
4216
4217 /* Find the name to use in a DT_NEEDED entry that refers to this
4218 object. If the object has a DT_SONAME entry, we use it.
4219 Otherwise, if the generic linker stuck something in
4220 elf_dt_name, we use that. Otherwise, we just use the file
4221 name. */
4222 if (soname == NULL || *soname == '\0')
4223 {
4224 soname = elf_dt_name (abfd);
4225 if (soname == NULL || *soname == '\0')
4226 soname = bfd_get_filename (abfd);
4227 }
4228
4229 /* Save the SONAME because sometimes the linker emulation code
4230 will need to know it. */
4231 elf_dt_name (abfd) = soname;
4232
4233 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4234 if (ret < 0)
4235 goto error_return;
4236
4237 /* If we have already included this dynamic object in the
4238 link, just ignore it. There is no reason to include a
4239 particular dynamic object more than once. */
4240 if (ret > 0)
4241 return TRUE;
4242
4243 /* Save the DT_AUDIT entry for the linker emulation code. */
4244 elf_dt_audit (abfd) = audit;
4245 }
4246
4247 /* If this is a dynamic object, we always link against the .dynsym
4248 symbol table, not the .symtab symbol table. The dynamic linker
4249 will only see the .dynsym symbol table, so there is no reason to
4250 look at .symtab for a dynamic object. */
4251
4252 if (! dynamic || elf_dynsymtab (abfd) == 0)
4253 hdr = &elf_tdata (abfd)->symtab_hdr;
4254 else
4255 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4256
4257 symcount = hdr->sh_size / bed->s->sizeof_sym;
4258
4259 /* The sh_info field of the symtab header tells us where the
4260 external symbols start. We don't care about the local symbols at
4261 this point. */
4262 if (elf_bad_symtab (abfd))
4263 {
4264 extsymcount = symcount;
4265 extsymoff = 0;
4266 }
4267 else
4268 {
4269 extsymcount = symcount - hdr->sh_info;
4270 extsymoff = hdr->sh_info;
4271 }
4272
4273 sym_hash = elf_sym_hashes (abfd);
4274 if (extsymcount != 0)
4275 {
4276 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4277 NULL, NULL, NULL);
4278 if (isymbuf == NULL)
4279 goto error_return;
4280
4281 if (sym_hash == NULL)
4282 {
4283 /* We store a pointer to the hash table entry for each
4284 external symbol. */
4285 amt = extsymcount;
4286 amt *= sizeof (struct elf_link_hash_entry *);
4287 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4288 if (sym_hash == NULL)
4289 goto error_free_sym;
4290 elf_sym_hashes (abfd) = sym_hash;
4291 }
4292 }
4293
4294 if (dynamic)
4295 {
4296 /* Read in any version definitions. */
4297 if (!_bfd_elf_slurp_version_tables (abfd,
4298 info->default_imported_symver))
4299 goto error_free_sym;
4300
4301 /* Read in the symbol versions, but don't bother to convert them
4302 to internal format. */
4303 if (elf_dynversym (abfd) != 0)
4304 {
4305 Elf_Internal_Shdr *versymhdr;
4306
4307 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4308 amt = versymhdr->sh_size;
4309 extversym = (Elf_External_Versym *) bfd_malloc (amt);
4310 if (extversym == NULL)
4311 goto error_free_sym;
4312 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
4313 || bfd_bread (extversym, amt, abfd) != amt)
4314 goto error_free_vers;
4315 extversym_end = extversym + (amt / sizeof (* extversym));
4316 }
4317 }
4318
4319 /* If we are loading an as-needed shared lib, save the symbol table
4320 state before we start adding symbols. If the lib turns out
4321 to be unneeded, restore the state. */
4322 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4323 {
4324 unsigned int i;
4325 size_t entsize;
4326
4327 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4328 {
4329 struct bfd_hash_entry *p;
4330 struct elf_link_hash_entry *h;
4331
4332 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4333 {
4334 h = (struct elf_link_hash_entry *) p;
4335 entsize += htab->root.table.entsize;
4336 if (h->root.type == bfd_link_hash_warning)
4337 entsize += htab->root.table.entsize;
4338 }
4339 }
4340
4341 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4342 old_tab = bfd_malloc (tabsize + entsize);
4343 if (old_tab == NULL)
4344 goto error_free_vers;
4345
4346 /* Remember the current objalloc pointer, so that all mem for
4347 symbols added can later be reclaimed. */
4348 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4349 if (alloc_mark == NULL)
4350 goto error_free_vers;
4351
4352 /* Make a special call to the linker "notice" function to
4353 tell it that we are about to handle an as-needed lib. */
4354 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4355 goto error_free_vers;
4356
4357 /* Clone the symbol table. Remember some pointers into the
4358 symbol table, and dynamic symbol count. */
4359 old_ent = (char *) old_tab + tabsize;
4360 memcpy (old_tab, htab->root.table.table, tabsize);
4361 old_undefs = htab->root.undefs;
4362 old_undefs_tail = htab->root.undefs_tail;
4363 old_table = htab->root.table.table;
4364 old_size = htab->root.table.size;
4365 old_count = htab->root.table.count;
4366 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4367 if (old_strtab == NULL)
4368 goto error_free_vers;
4369
4370 for (i = 0; i < htab->root.table.size; i++)
4371 {
4372 struct bfd_hash_entry *p;
4373 struct elf_link_hash_entry *h;
4374
4375 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4376 {
4377 memcpy (old_ent, p, htab->root.table.entsize);
4378 old_ent = (char *) old_ent + htab->root.table.entsize;
4379 h = (struct elf_link_hash_entry *) p;
4380 if (h->root.type == bfd_link_hash_warning)
4381 {
4382 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4383 old_ent = (char *) old_ent + htab->root.table.entsize;
4384 }
4385 }
4386 }
4387 }
4388
4389 weaks = NULL;
4390 if (extversym == NULL)
4391 ever = NULL;
4392 else if (extversym + extsymoff < extversym_end)
4393 ever = extversym + extsymoff;
4394 else
4395 {
4396 /* xgettext:c-format */
4397 _bfd_error_handler (_("%pB: invalid version offset %lx (max %lx)"),
4398 abfd, (long) extsymoff,
4399 (long) (extversym_end - extversym) / sizeof (* extversym));
4400 bfd_set_error (bfd_error_bad_value);
4401 goto error_free_vers;
4402 }
4403
4404 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4405 isym < isymend;
4406 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4407 {
4408 int bind;
4409 bfd_vma value;
4410 asection *sec, *new_sec;
4411 flagword flags;
4412 const char *name;
4413 struct elf_link_hash_entry *h;
4414 struct elf_link_hash_entry *hi;
4415 bfd_boolean definition;
4416 bfd_boolean size_change_ok;
4417 bfd_boolean type_change_ok;
4418 bfd_boolean new_weak;
4419 bfd_boolean old_weak;
4420 bfd_boolean override;
4421 bfd_boolean common;
4422 bfd_boolean discarded;
4423 unsigned int old_alignment;
4424 unsigned int shindex;
4425 bfd *old_bfd;
4426 bfd_boolean matched;
4427
4428 override = FALSE;
4429
4430 flags = BSF_NO_FLAGS;
4431 sec = NULL;
4432 value = isym->st_value;
4433 common = bed->common_definition (isym);
4434 if (common && info->inhibit_common_definition)
4435 {
4436 /* Treat common symbol as undefined for --no-define-common. */
4437 isym->st_shndx = SHN_UNDEF;
4438 common = FALSE;
4439 }
4440 discarded = FALSE;
4441
4442 bind = ELF_ST_BIND (isym->st_info);
4443 switch (bind)
4444 {
4445 case STB_LOCAL:
4446 /* This should be impossible, since ELF requires that all
4447 global symbols follow all local symbols, and that sh_info
4448 point to the first global symbol. Unfortunately, Irix 5
4449 screws this up. */
4450 if (elf_bad_symtab (abfd))
4451 continue;
4452
4453 /* If we aren't prepared to handle locals within the globals
4454 then we'll likely segfault on a NULL symbol hash if the
4455 symbol is ever referenced in relocations. */
4456 shindex = elf_elfheader (abfd)->e_shstrndx;
4457 name = bfd_elf_string_from_elf_section (abfd, shindex, hdr->sh_name);
4458 _bfd_error_handler (_("%pB: %s local symbol at index %lu"
4459 " (>= sh_info of %lu)"),
4460 abfd, name, (long) (isym - isymbuf + extsymoff),
4461 (long) extsymoff);
4462
4463 /* Dynamic object relocations are not processed by ld, so
4464 ld won't run into the problem mentioned above. */
4465 if (dynamic)
4466 continue;
4467 bfd_set_error (bfd_error_bad_value);
4468 goto error_free_vers;
4469
4470 case STB_GLOBAL:
4471 if (isym->st_shndx != SHN_UNDEF && !common)
4472 flags = BSF_GLOBAL;
4473 break;
4474
4475 case STB_WEAK:
4476 flags = BSF_WEAK;
4477 break;
4478
4479 case STB_GNU_UNIQUE:
4480 flags = BSF_GNU_UNIQUE;
4481 break;
4482
4483 default:
4484 /* Leave it up to the processor backend. */
4485 break;
4486 }
4487
4488 if (isym->st_shndx == SHN_UNDEF)
4489 sec = bfd_und_section_ptr;
4490 else if (isym->st_shndx == SHN_ABS)
4491 sec = bfd_abs_section_ptr;
4492 else if (isym->st_shndx == SHN_COMMON)
4493 {
4494 sec = bfd_com_section_ptr;
4495 /* What ELF calls the size we call the value. What ELF
4496 calls the value we call the alignment. */
4497 value = isym->st_size;
4498 }
4499 else
4500 {
4501 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4502 if (sec == NULL)
4503 sec = bfd_abs_section_ptr;
4504 else if (discarded_section (sec))
4505 {
4506 /* Symbols from discarded section are undefined. We keep
4507 its visibility. */
4508 sec = bfd_und_section_ptr;
4509 discarded = TRUE;
4510 isym->st_shndx = SHN_UNDEF;
4511 }
4512 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4513 value -= sec->vma;
4514 }
4515
4516 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4517 isym->st_name);
4518 if (name == NULL)
4519 goto error_free_vers;
4520
4521 if (isym->st_shndx == SHN_COMMON
4522 && (abfd->flags & BFD_PLUGIN) != 0)
4523 {
4524 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4525
4526 if (xc == NULL)
4527 {
4528 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4529 | SEC_EXCLUDE);
4530 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4531 if (xc == NULL)
4532 goto error_free_vers;
4533 }
4534 sec = xc;
4535 }
4536 else if (isym->st_shndx == SHN_COMMON
4537 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4538 && !bfd_link_relocatable (info))
4539 {
4540 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4541
4542 if (tcomm == NULL)
4543 {
4544 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4545 | SEC_LINKER_CREATED);
4546 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4547 if (tcomm == NULL)
4548 goto error_free_vers;
4549 }
4550 sec = tcomm;
4551 }
4552 else if (bed->elf_add_symbol_hook)
4553 {
4554 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4555 &sec, &value))
4556 goto error_free_vers;
4557
4558 /* The hook function sets the name to NULL if this symbol
4559 should be skipped for some reason. */
4560 if (name == NULL)
4561 continue;
4562 }
4563
4564 /* Sanity check that all possibilities were handled. */
4565 if (sec == NULL)
4566 abort ();
4567
4568 /* Silently discard TLS symbols from --just-syms. There's
4569 no way to combine a static TLS block with a new TLS block
4570 for this executable. */
4571 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4572 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4573 continue;
4574
4575 if (bfd_is_und_section (sec)
4576 || bfd_is_com_section (sec))
4577 definition = FALSE;
4578 else
4579 definition = TRUE;
4580
4581 size_change_ok = FALSE;
4582 type_change_ok = bed->type_change_ok;
4583 old_weak = FALSE;
4584 matched = FALSE;
4585 old_alignment = 0;
4586 old_bfd = NULL;
4587 new_sec = sec;
4588
4589 if (is_elf_hash_table (htab))
4590 {
4591 Elf_Internal_Versym iver;
4592 unsigned int vernum = 0;
4593 bfd_boolean skip;
4594
4595 if (ever == NULL)
4596 {
4597 if (info->default_imported_symver)
4598 /* Use the default symbol version created earlier. */
4599 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4600 else
4601 iver.vs_vers = 0;
4602 }
4603 else if (ever >= extversym_end)
4604 {
4605 /* xgettext:c-format */
4606 _bfd_error_handler (_("%pB: not enough version information"),
4607 abfd);
4608 bfd_set_error (bfd_error_bad_value);
4609 goto error_free_vers;
4610 }
4611 else
4612 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4613
4614 vernum = iver.vs_vers & VERSYM_VERSION;
4615
4616 /* If this is a hidden symbol, or if it is not version
4617 1, we append the version name to the symbol name.
4618 However, we do not modify a non-hidden absolute symbol
4619 if it is not a function, because it might be the version
4620 symbol itself. FIXME: What if it isn't? */
4621 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4622 || (vernum > 1
4623 && (!bfd_is_abs_section (sec)
4624 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4625 {
4626 const char *verstr;
4627 size_t namelen, verlen, newlen;
4628 char *newname, *p;
4629
4630 if (isym->st_shndx != SHN_UNDEF)
4631 {
4632 if (vernum > elf_tdata (abfd)->cverdefs)
4633 verstr = NULL;
4634 else if (vernum > 1)
4635 verstr =
4636 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4637 else
4638 verstr = "";
4639
4640 if (verstr == NULL)
4641 {
4642 _bfd_error_handler
4643 /* xgettext:c-format */
4644 (_("%pB: %s: invalid version %u (max %d)"),
4645 abfd, name, vernum,
4646 elf_tdata (abfd)->cverdefs);
4647 bfd_set_error (bfd_error_bad_value);
4648 goto error_free_vers;
4649 }
4650 }
4651 else
4652 {
4653 /* We cannot simply test for the number of
4654 entries in the VERNEED section since the
4655 numbers for the needed versions do not start
4656 at 0. */
4657 Elf_Internal_Verneed *t;
4658
4659 verstr = NULL;
4660 for (t = elf_tdata (abfd)->verref;
4661 t != NULL;
4662 t = t->vn_nextref)
4663 {
4664 Elf_Internal_Vernaux *a;
4665
4666 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4667 {
4668 if (a->vna_other == vernum)
4669 {
4670 verstr = a->vna_nodename;
4671 break;
4672 }
4673 }
4674 if (a != NULL)
4675 break;
4676 }
4677 if (verstr == NULL)
4678 {
4679 _bfd_error_handler
4680 /* xgettext:c-format */
4681 (_("%pB: %s: invalid needed version %d"),
4682 abfd, name, vernum);
4683 bfd_set_error (bfd_error_bad_value);
4684 goto error_free_vers;
4685 }
4686 }
4687
4688 namelen = strlen (name);
4689 verlen = strlen (verstr);
4690 newlen = namelen + verlen + 2;
4691 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4692 && isym->st_shndx != SHN_UNDEF)
4693 ++newlen;
4694
4695 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4696 if (newname == NULL)
4697 goto error_free_vers;
4698 memcpy (newname, name, namelen);
4699 p = newname + namelen;
4700 *p++ = ELF_VER_CHR;
4701 /* If this is a defined non-hidden version symbol,
4702 we add another @ to the name. This indicates the
4703 default version of the symbol. */
4704 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4705 && isym->st_shndx != SHN_UNDEF)
4706 *p++ = ELF_VER_CHR;
4707 memcpy (p, verstr, verlen + 1);
4708
4709 name = newname;
4710 }
4711
4712 /* If this symbol has default visibility and the user has
4713 requested we not re-export it, then mark it as hidden. */
4714 if (!bfd_is_und_section (sec)
4715 && !dynamic
4716 && abfd->no_export
4717 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4718 isym->st_other = (STV_HIDDEN
4719 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4720
4721 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4722 sym_hash, &old_bfd, &old_weak,
4723 &old_alignment, &skip, &override,
4724 &type_change_ok, &size_change_ok,
4725 &matched))
4726 goto error_free_vers;
4727
4728 if (skip)
4729 continue;
4730
4731 /* Override a definition only if the new symbol matches the
4732 existing one. */
4733 if (override && matched)
4734 definition = FALSE;
4735
4736 h = *sym_hash;
4737 while (h->root.type == bfd_link_hash_indirect
4738 || h->root.type == bfd_link_hash_warning)
4739 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4740
4741 if (elf_tdata (abfd)->verdef != NULL
4742 && vernum > 1
4743 && definition)
4744 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4745 }
4746
4747 if (! (_bfd_generic_link_add_one_symbol
4748 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4749 (struct bfd_link_hash_entry **) sym_hash)))
4750 goto error_free_vers;
4751
4752 h = *sym_hash;
4753 /* We need to make sure that indirect symbol dynamic flags are
4754 updated. */
4755 hi = h;
4756 while (h->root.type == bfd_link_hash_indirect
4757 || h->root.type == bfd_link_hash_warning)
4758 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4759
4760 /* Setting the index to -3 tells elf_link_output_extsym that
4761 this symbol is defined in a discarded section. */
4762 if (discarded)
4763 h->indx = -3;
4764
4765 *sym_hash = h;
4766
4767 new_weak = (flags & BSF_WEAK) != 0;
4768 if (dynamic
4769 && definition
4770 && new_weak
4771 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4772 && is_elf_hash_table (htab)
4773 && h->u.alias == NULL)
4774 {
4775 /* Keep a list of all weak defined non function symbols from
4776 a dynamic object, using the alias field. Later in this
4777 function we will set the alias field to the correct
4778 value. We only put non-function symbols from dynamic
4779 objects on this list, because that happens to be the only
4780 time we need to know the normal symbol corresponding to a
4781 weak symbol, and the information is time consuming to
4782 figure out. If the alias field is not already NULL,
4783 then this symbol was already defined by some previous
4784 dynamic object, and we will be using that previous
4785 definition anyhow. */
4786
4787 h->u.alias = weaks;
4788 weaks = h;
4789 }
4790
4791 /* Set the alignment of a common symbol. */
4792 if ((common || bfd_is_com_section (sec))
4793 && h->root.type == bfd_link_hash_common)
4794 {
4795 unsigned int align;
4796
4797 if (common)
4798 align = bfd_log2 (isym->st_value);
4799 else
4800 {
4801 /* The new symbol is a common symbol in a shared object.
4802 We need to get the alignment from the section. */
4803 align = new_sec->alignment_power;
4804 }
4805 if (align > old_alignment)
4806 h->root.u.c.p->alignment_power = align;
4807 else
4808 h->root.u.c.p->alignment_power = old_alignment;
4809 }
4810
4811 if (is_elf_hash_table (htab))
4812 {
4813 /* Set a flag in the hash table entry indicating the type of
4814 reference or definition we just found. A dynamic symbol
4815 is one which is referenced or defined by both a regular
4816 object and a shared object. */
4817 bfd_boolean dynsym = FALSE;
4818
4819 /* Plugin symbols aren't normal. Don't set def_regular or
4820 ref_regular for them, or make them dynamic. */
4821 if ((abfd->flags & BFD_PLUGIN) != 0)
4822 ;
4823 else if (! dynamic)
4824 {
4825 if (! definition)
4826 {
4827 h->ref_regular = 1;
4828 if (bind != STB_WEAK)
4829 h->ref_regular_nonweak = 1;
4830 }
4831 else
4832 {
4833 h->def_regular = 1;
4834 if (h->def_dynamic)
4835 {
4836 h->def_dynamic = 0;
4837 h->ref_dynamic = 1;
4838 }
4839 }
4840
4841 /* If the indirect symbol has been forced local, don't
4842 make the real symbol dynamic. */
4843 if ((h == hi || !hi->forced_local)
4844 && (bfd_link_dll (info)
4845 || h->def_dynamic
4846 || h->ref_dynamic))
4847 dynsym = TRUE;
4848 }
4849 else
4850 {
4851 if (! definition)
4852 {
4853 h->ref_dynamic = 1;
4854 hi->ref_dynamic = 1;
4855 }
4856 else
4857 {
4858 h->def_dynamic = 1;
4859 hi->def_dynamic = 1;
4860 }
4861
4862 /* If the indirect symbol has been forced local, don't
4863 make the real symbol dynamic. */
4864 if ((h == hi || !hi->forced_local)
4865 && (h->def_regular
4866 || h->ref_regular
4867 || (h->is_weakalias
4868 && weakdef (h)->dynindx != -1)))
4869 dynsym = TRUE;
4870 }
4871
4872 /* Check to see if we need to add an indirect symbol for
4873 the default name. */
4874 if (definition
4875 || (!override && h->root.type == bfd_link_hash_common))
4876 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4877 sec, value, &old_bfd, &dynsym))
4878 goto error_free_vers;
4879
4880 /* Check the alignment when a common symbol is involved. This
4881 can change when a common symbol is overridden by a normal
4882 definition or a common symbol is ignored due to the old
4883 normal definition. We need to make sure the maximum
4884 alignment is maintained. */
4885 if ((old_alignment || common)
4886 && h->root.type != bfd_link_hash_common)
4887 {
4888 unsigned int common_align;
4889 unsigned int normal_align;
4890 unsigned int symbol_align;
4891 bfd *normal_bfd;
4892 bfd *common_bfd;
4893
4894 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4895 || h->root.type == bfd_link_hash_defweak);
4896
4897 symbol_align = ffs (h->root.u.def.value) - 1;
4898 if (h->root.u.def.section->owner != NULL
4899 && (h->root.u.def.section->owner->flags
4900 & (DYNAMIC | BFD_PLUGIN)) == 0)
4901 {
4902 normal_align = h->root.u.def.section->alignment_power;
4903 if (normal_align > symbol_align)
4904 normal_align = symbol_align;
4905 }
4906 else
4907 normal_align = symbol_align;
4908
4909 if (old_alignment)
4910 {
4911 common_align = old_alignment;
4912 common_bfd = old_bfd;
4913 normal_bfd = abfd;
4914 }
4915 else
4916 {
4917 common_align = bfd_log2 (isym->st_value);
4918 common_bfd = abfd;
4919 normal_bfd = old_bfd;
4920 }
4921
4922 if (normal_align < common_align)
4923 {
4924 /* PR binutils/2735 */
4925 if (normal_bfd == NULL)
4926 _bfd_error_handler
4927 /* xgettext:c-format */
4928 (_("warning: alignment %u of common symbol `%s' in %pB is"
4929 " greater than the alignment (%u) of its section %pA"),
4930 1 << common_align, name, common_bfd,
4931 1 << normal_align, h->root.u.def.section);
4932 else
4933 _bfd_error_handler
4934 /* xgettext:c-format */
4935 (_("warning: alignment %u of symbol `%s' in %pB"
4936 " is smaller than %u in %pB"),
4937 1 << normal_align, name, normal_bfd,
4938 1 << common_align, common_bfd);
4939 }
4940 }
4941
4942 /* Remember the symbol size if it isn't undefined. */
4943 if (isym->st_size != 0
4944 && isym->st_shndx != SHN_UNDEF
4945 && (definition || h->size == 0))
4946 {
4947 if (h->size != 0
4948 && h->size != isym->st_size
4949 && ! size_change_ok)
4950 _bfd_error_handler
4951 /* xgettext:c-format */
4952 (_("warning: size of symbol `%s' changed"
4953 " from %" PRIu64 " in %pB to %" PRIu64 " in %pB"),
4954 name, (uint64_t) h->size, old_bfd,
4955 (uint64_t) isym->st_size, abfd);
4956
4957 h->size = isym->st_size;
4958 }
4959
4960 /* If this is a common symbol, then we always want H->SIZE
4961 to be the size of the common symbol. The code just above
4962 won't fix the size if a common symbol becomes larger. We
4963 don't warn about a size change here, because that is
4964 covered by --warn-common. Allow changes between different
4965 function types. */
4966 if (h->root.type == bfd_link_hash_common)
4967 h->size = h->root.u.c.size;
4968
4969 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4970 && ((definition && !new_weak)
4971 || (old_weak && h->root.type == bfd_link_hash_common)
4972 || h->type == STT_NOTYPE))
4973 {
4974 unsigned int type = ELF_ST_TYPE (isym->st_info);
4975
4976 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4977 symbol. */
4978 if (type == STT_GNU_IFUNC
4979 && (abfd->flags & DYNAMIC) != 0)
4980 type = STT_FUNC;
4981
4982 if (h->type != type)
4983 {
4984 if (h->type != STT_NOTYPE && ! type_change_ok)
4985 /* xgettext:c-format */
4986 _bfd_error_handler
4987 (_("warning: type of symbol `%s' changed"
4988 " from %d to %d in %pB"),
4989 name, h->type, type, abfd);
4990
4991 h->type = type;
4992 }
4993 }
4994
4995 /* Merge st_other field. */
4996 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4997
4998 /* We don't want to make debug symbol dynamic. */
4999 if (definition
5000 && (sec->flags & SEC_DEBUGGING)
5001 && !bfd_link_relocatable (info))
5002 dynsym = FALSE;
5003
5004 /* Nor should we make plugin symbols dynamic. */
5005 if ((abfd->flags & BFD_PLUGIN) != 0)
5006 dynsym = FALSE;
5007
5008 if (definition)
5009 {
5010 h->target_internal = isym->st_target_internal;
5011 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
5012 }
5013
5014 if (definition && !dynamic)
5015 {
5016 char *p = strchr (name, ELF_VER_CHR);
5017 if (p != NULL && p[1] != ELF_VER_CHR)
5018 {
5019 /* Queue non-default versions so that .symver x, x@FOO
5020 aliases can be checked. */
5021 if (!nondeflt_vers)
5022 {
5023 amt = ((isymend - isym + 1)
5024 * sizeof (struct elf_link_hash_entry *));
5025 nondeflt_vers
5026 = (struct elf_link_hash_entry **) bfd_malloc (amt);
5027 if (!nondeflt_vers)
5028 goto error_free_vers;
5029 }
5030 nondeflt_vers[nondeflt_vers_cnt++] = h;
5031 }
5032 }
5033
5034 if (dynsym && h->dynindx == -1)
5035 {
5036 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5037 goto error_free_vers;
5038 if (h->is_weakalias
5039 && weakdef (h)->dynindx == -1)
5040 {
5041 if (!bfd_elf_link_record_dynamic_symbol (info, weakdef (h)))
5042 goto error_free_vers;
5043 }
5044 }
5045 else if (h->dynindx != -1)
5046 /* If the symbol already has a dynamic index, but
5047 visibility says it should not be visible, turn it into
5048 a local symbol. */
5049 switch (ELF_ST_VISIBILITY (h->other))
5050 {
5051 case STV_INTERNAL:
5052 case STV_HIDDEN:
5053 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
5054 dynsym = FALSE;
5055 break;
5056 }
5057
5058 /* Don't add DT_NEEDED for references from the dummy bfd nor
5059 for unmatched symbol. */
5060 if (!add_needed
5061 && matched
5062 && definition
5063 && ((dynsym
5064 && h->ref_regular_nonweak
5065 && (old_bfd == NULL
5066 || (old_bfd->flags & BFD_PLUGIN) == 0))
5067 || (h->ref_dynamic_nonweak
5068 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
5069 && !on_needed_list (elf_dt_name (abfd),
5070 htab->needed, NULL))))
5071 {
5072 int ret;
5073 const char *soname = elf_dt_name (abfd);
5074
5075 info->callbacks->minfo ("%!", soname, old_bfd,
5076 h->root.root.string);
5077
5078 /* A symbol from a library loaded via DT_NEEDED of some
5079 other library is referenced by a regular object.
5080 Add a DT_NEEDED entry for it. Issue an error if
5081 --no-add-needed is used and the reference was not
5082 a weak one. */
5083 if (old_bfd != NULL
5084 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
5085 {
5086 _bfd_error_handler
5087 /* xgettext:c-format */
5088 (_("%pB: undefined reference to symbol '%s'"),
5089 old_bfd, name);
5090 bfd_set_error (bfd_error_missing_dso);
5091 goto error_free_vers;
5092 }
5093
5094 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
5095 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
5096
5097 add_needed = TRUE;
5098 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
5099 if (ret < 0)
5100 goto error_free_vers;
5101
5102 BFD_ASSERT (ret == 0);
5103 }
5104 }
5105 }
5106
5107 if (info->lto_plugin_active
5108 && !bfd_link_relocatable (info)
5109 && (abfd->flags & BFD_PLUGIN) == 0
5110 && !just_syms
5111 && extsymcount)
5112 {
5113 int r_sym_shift;
5114
5115 if (bed->s->arch_size == 32)
5116 r_sym_shift = 8;
5117 else
5118 r_sym_shift = 32;
5119
5120 /* If linker plugin is enabled, set non_ir_ref_regular on symbols
5121 referenced in regular objects so that linker plugin will get
5122 the correct symbol resolution. */
5123
5124 sym_hash = elf_sym_hashes (abfd);
5125 for (s = abfd->sections; s != NULL; s = s->next)
5126 {
5127 Elf_Internal_Rela *internal_relocs;
5128 Elf_Internal_Rela *rel, *relend;
5129
5130 /* Don't check relocations in excluded sections. */
5131 if ((s->flags & SEC_RELOC) == 0
5132 || s->reloc_count == 0
5133 || (s->flags & SEC_EXCLUDE) != 0
5134 || ((info->strip == strip_all
5135 || info->strip == strip_debugger)
5136 && (s->flags & SEC_DEBUGGING) != 0))
5137 continue;
5138
5139 internal_relocs = _bfd_elf_link_read_relocs (abfd, s, NULL,
5140 NULL,
5141 info->keep_memory);
5142 if (internal_relocs == NULL)
5143 goto error_free_vers;
5144
5145 rel = internal_relocs;
5146 relend = rel + s->reloc_count;
5147 for ( ; rel < relend; rel++)
5148 {
5149 unsigned long r_symndx = rel->r_info >> r_sym_shift;
5150 struct elf_link_hash_entry *h;
5151
5152 /* Skip local symbols. */
5153 if (r_symndx < extsymoff)
5154 continue;
5155
5156 h = sym_hash[r_symndx - extsymoff];
5157 if (h != NULL)
5158 h->root.non_ir_ref_regular = 1;
5159 }
5160
5161 if (elf_section_data (s)->relocs != internal_relocs)
5162 free (internal_relocs);
5163 }
5164 }
5165
5166 if (extversym != NULL)
5167 {
5168 free (extversym);
5169 extversym = NULL;
5170 }
5171
5172 if (isymbuf != NULL)
5173 {
5174 free (isymbuf);
5175 isymbuf = NULL;
5176 }
5177
5178 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
5179 {
5180 unsigned int i;
5181
5182 /* Restore the symbol table. */
5183 old_ent = (char *) old_tab + tabsize;
5184 memset (elf_sym_hashes (abfd), 0,
5185 extsymcount * sizeof (struct elf_link_hash_entry *));
5186 htab->root.table.table = old_table;
5187 htab->root.table.size = old_size;
5188 htab->root.table.count = old_count;
5189 memcpy (htab->root.table.table, old_tab, tabsize);
5190 htab->root.undefs = old_undefs;
5191 htab->root.undefs_tail = old_undefs_tail;
5192 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
5193 free (old_strtab);
5194 old_strtab = NULL;
5195 for (i = 0; i < htab->root.table.size; i++)
5196 {
5197 struct bfd_hash_entry *p;
5198 struct elf_link_hash_entry *h;
5199 bfd_size_type size;
5200 unsigned int alignment_power;
5201 unsigned int non_ir_ref_dynamic;
5202
5203 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
5204 {
5205 h = (struct elf_link_hash_entry *) p;
5206 if (h->root.type == bfd_link_hash_warning)
5207 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5208
5209 /* Preserve the maximum alignment and size for common
5210 symbols even if this dynamic lib isn't on DT_NEEDED
5211 since it can still be loaded at run time by another
5212 dynamic lib. */
5213 if (h->root.type == bfd_link_hash_common)
5214 {
5215 size = h->root.u.c.size;
5216 alignment_power = h->root.u.c.p->alignment_power;
5217 }
5218 else
5219 {
5220 size = 0;
5221 alignment_power = 0;
5222 }
5223 /* Preserve non_ir_ref_dynamic so that this symbol
5224 will be exported when the dynamic lib becomes needed
5225 in the second pass. */
5226 non_ir_ref_dynamic = h->root.non_ir_ref_dynamic;
5227 memcpy (p, old_ent, htab->root.table.entsize);
5228 old_ent = (char *) old_ent + htab->root.table.entsize;
5229 h = (struct elf_link_hash_entry *) p;
5230 if (h->root.type == bfd_link_hash_warning)
5231 {
5232 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
5233 old_ent = (char *) old_ent + htab->root.table.entsize;
5234 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5235 }
5236 if (h->root.type == bfd_link_hash_common)
5237 {
5238 if (size > h->root.u.c.size)
5239 h->root.u.c.size = size;
5240 if (alignment_power > h->root.u.c.p->alignment_power)
5241 h->root.u.c.p->alignment_power = alignment_power;
5242 }
5243 h->root.non_ir_ref_dynamic = non_ir_ref_dynamic;
5244 }
5245 }
5246
5247 /* Make a special call to the linker "notice" function to
5248 tell it that symbols added for crefs may need to be removed. */
5249 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
5250 goto error_free_vers;
5251
5252 free (old_tab);
5253 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
5254 alloc_mark);
5255 if (nondeflt_vers != NULL)
5256 free (nondeflt_vers);
5257 return TRUE;
5258 }
5259
5260 if (old_tab != NULL)
5261 {
5262 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
5263 goto error_free_vers;
5264 free (old_tab);
5265 old_tab = NULL;
5266 }
5267
5268 /* Now that all the symbols from this input file are created, if
5269 not performing a relocatable link, handle .symver foo, foo@BAR
5270 such that any relocs against foo become foo@BAR. */
5271 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
5272 {
5273 size_t cnt, symidx;
5274
5275 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
5276 {
5277 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
5278 char *shortname, *p;
5279
5280 p = strchr (h->root.root.string, ELF_VER_CHR);
5281 if (p == NULL
5282 || (h->root.type != bfd_link_hash_defined
5283 && h->root.type != bfd_link_hash_defweak))
5284 continue;
5285
5286 amt = p - h->root.root.string;
5287 shortname = (char *) bfd_malloc (amt + 1);
5288 if (!shortname)
5289 goto error_free_vers;
5290 memcpy (shortname, h->root.root.string, amt);
5291 shortname[amt] = '\0';
5292
5293 hi = (struct elf_link_hash_entry *)
5294 bfd_link_hash_lookup (&htab->root, shortname,
5295 FALSE, FALSE, FALSE);
5296 if (hi != NULL
5297 && hi->root.type == h->root.type
5298 && hi->root.u.def.value == h->root.u.def.value
5299 && hi->root.u.def.section == h->root.u.def.section)
5300 {
5301 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
5302 hi->root.type = bfd_link_hash_indirect;
5303 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
5304 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
5305 sym_hash = elf_sym_hashes (abfd);
5306 if (sym_hash)
5307 for (symidx = 0; symidx < extsymcount; ++symidx)
5308 if (sym_hash[symidx] == hi)
5309 {
5310 sym_hash[symidx] = h;
5311 break;
5312 }
5313 }
5314 free (shortname);
5315 }
5316 free (nondeflt_vers);
5317 nondeflt_vers = NULL;
5318 }
5319
5320 /* Now set the alias field correctly for all the weak defined
5321 symbols we found. The only way to do this is to search all the
5322 symbols. Since we only need the information for non functions in
5323 dynamic objects, that's the only time we actually put anything on
5324 the list WEAKS. We need this information so that if a regular
5325 object refers to a symbol defined weakly in a dynamic object, the
5326 real symbol in the dynamic object is also put in the dynamic
5327 symbols; we also must arrange for both symbols to point to the
5328 same memory location. We could handle the general case of symbol
5329 aliasing, but a general symbol alias can only be generated in
5330 assembler code, handling it correctly would be very time
5331 consuming, and other ELF linkers don't handle general aliasing
5332 either. */
5333 if (weaks != NULL)
5334 {
5335 struct elf_link_hash_entry **hpp;
5336 struct elf_link_hash_entry **hppend;
5337 struct elf_link_hash_entry **sorted_sym_hash;
5338 struct elf_link_hash_entry *h;
5339 size_t sym_count;
5340
5341 /* Since we have to search the whole symbol list for each weak
5342 defined symbol, search time for N weak defined symbols will be
5343 O(N^2). Binary search will cut it down to O(NlogN). */
5344 amt = extsymcount;
5345 amt *= sizeof (struct elf_link_hash_entry *);
5346 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
5347 if (sorted_sym_hash == NULL)
5348 goto error_return;
5349 sym_hash = sorted_sym_hash;
5350 hpp = elf_sym_hashes (abfd);
5351 hppend = hpp + extsymcount;
5352 sym_count = 0;
5353 for (; hpp < hppend; hpp++)
5354 {
5355 h = *hpp;
5356 if (h != NULL
5357 && h->root.type == bfd_link_hash_defined
5358 && !bed->is_function_type (h->type))
5359 {
5360 *sym_hash = h;
5361 sym_hash++;
5362 sym_count++;
5363 }
5364 }
5365
5366 qsort (sorted_sym_hash, sym_count,
5367 sizeof (struct elf_link_hash_entry *),
5368 elf_sort_symbol);
5369
5370 while (weaks != NULL)
5371 {
5372 struct elf_link_hash_entry *hlook;
5373 asection *slook;
5374 bfd_vma vlook;
5375 size_t i, j, idx = 0;
5376
5377 hlook = weaks;
5378 weaks = hlook->u.alias;
5379 hlook->u.alias = NULL;
5380
5381 if (hlook->root.type != bfd_link_hash_defined
5382 && hlook->root.type != bfd_link_hash_defweak)
5383 continue;
5384
5385 slook = hlook->root.u.def.section;
5386 vlook = hlook->root.u.def.value;
5387
5388 i = 0;
5389 j = sym_count;
5390 while (i != j)
5391 {
5392 bfd_signed_vma vdiff;
5393 idx = (i + j) / 2;
5394 h = sorted_sym_hash[idx];
5395 vdiff = vlook - h->root.u.def.value;
5396 if (vdiff < 0)
5397 j = idx;
5398 else if (vdiff > 0)
5399 i = idx + 1;
5400 else
5401 {
5402 int sdiff = slook->id - h->root.u.def.section->id;
5403 if (sdiff < 0)
5404 j = idx;
5405 else if (sdiff > 0)
5406 i = idx + 1;
5407 else
5408 break;
5409 }
5410 }
5411
5412 /* We didn't find a value/section match. */
5413 if (i == j)
5414 continue;
5415
5416 /* With multiple aliases, or when the weak symbol is already
5417 strongly defined, we have multiple matching symbols and
5418 the binary search above may land on any of them. Step
5419 one past the matching symbol(s). */
5420 while (++idx != j)
5421 {
5422 h = sorted_sym_hash[idx];
5423 if (h->root.u.def.section != slook
5424 || h->root.u.def.value != vlook)
5425 break;
5426 }
5427
5428 /* Now look back over the aliases. Since we sorted by size
5429 as well as value and section, we'll choose the one with
5430 the largest size. */
5431 while (idx-- != i)
5432 {
5433 h = sorted_sym_hash[idx];
5434
5435 /* Stop if value or section doesn't match. */
5436 if (h->root.u.def.section != slook
5437 || h->root.u.def.value != vlook)
5438 break;
5439 else if (h != hlook)
5440 {
5441 struct elf_link_hash_entry *t;
5442
5443 hlook->u.alias = h;
5444 hlook->is_weakalias = 1;
5445 t = h;
5446 if (t->u.alias != NULL)
5447 while (t->u.alias != h)
5448 t = t->u.alias;
5449 t->u.alias = hlook;
5450
5451 /* If the weak definition is in the list of dynamic
5452 symbols, make sure the real definition is put
5453 there as well. */
5454 if (hlook->dynindx != -1 && h->dynindx == -1)
5455 {
5456 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5457 {
5458 err_free_sym_hash:
5459 free (sorted_sym_hash);
5460 goto error_return;
5461 }
5462 }
5463
5464 /* If the real definition is in the list of dynamic
5465 symbols, make sure the weak definition is put
5466 there as well. If we don't do this, then the
5467 dynamic loader might not merge the entries for the
5468 real definition and the weak definition. */
5469 if (h->dynindx != -1 && hlook->dynindx == -1)
5470 {
5471 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5472 goto err_free_sym_hash;
5473 }
5474 break;
5475 }
5476 }
5477 }
5478
5479 free (sorted_sym_hash);
5480 }
5481
5482 if (bed->check_directives
5483 && !(*bed->check_directives) (abfd, info))
5484 return FALSE;
5485
5486 /* If this is a non-traditional link, try to optimize the handling
5487 of the .stab/.stabstr sections. */
5488 if (! dynamic
5489 && ! info->traditional_format
5490 && is_elf_hash_table (htab)
5491 && (info->strip != strip_all && info->strip != strip_debugger))
5492 {
5493 asection *stabstr;
5494
5495 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5496 if (stabstr != NULL)
5497 {
5498 bfd_size_type string_offset = 0;
5499 asection *stab;
5500
5501 for (stab = abfd->sections; stab; stab = stab->next)
5502 if (CONST_STRNEQ (stab->name, ".stab")
5503 && (!stab->name[5] ||
5504 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5505 && (stab->flags & SEC_MERGE) == 0
5506 && !bfd_is_abs_section (stab->output_section))
5507 {
5508 struct bfd_elf_section_data *secdata;
5509
5510 secdata = elf_section_data (stab);
5511 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5512 stabstr, &secdata->sec_info,
5513 &string_offset))
5514 goto error_return;
5515 if (secdata->sec_info)
5516 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5517 }
5518 }
5519 }
5520
5521 if (is_elf_hash_table (htab) && add_needed)
5522 {
5523 /* Add this bfd to the loaded list. */
5524 struct elf_link_loaded_list *n;
5525
5526 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5527 if (n == NULL)
5528 goto error_return;
5529 n->abfd = abfd;
5530 n->next = htab->loaded;
5531 htab->loaded = n;
5532 }
5533
5534 return TRUE;
5535
5536 error_free_vers:
5537 if (old_tab != NULL)
5538 free (old_tab);
5539 if (old_strtab != NULL)
5540 free (old_strtab);
5541 if (nondeflt_vers != NULL)
5542 free (nondeflt_vers);
5543 if (extversym != NULL)
5544 free (extversym);
5545 error_free_sym:
5546 if (isymbuf != NULL)
5547 free (isymbuf);
5548 error_return:
5549 return FALSE;
5550 }
5551
5552 /* Return the linker hash table entry of a symbol that might be
5553 satisfied by an archive symbol. Return -1 on error. */
5554
5555 struct elf_link_hash_entry *
5556 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5557 struct bfd_link_info *info,
5558 const char *name)
5559 {
5560 struct elf_link_hash_entry *h;
5561 char *p, *copy;
5562 size_t len, first;
5563
5564 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5565 if (h != NULL)
5566 return h;
5567
5568 /* If this is a default version (the name contains @@), look up the
5569 symbol again with only one `@' as well as without the version.
5570 The effect is that references to the symbol with and without the
5571 version will be matched by the default symbol in the archive. */
5572
5573 p = strchr (name, ELF_VER_CHR);
5574 if (p == NULL || p[1] != ELF_VER_CHR)
5575 return h;
5576
5577 /* First check with only one `@'. */
5578 len = strlen (name);
5579 copy = (char *) bfd_alloc (abfd, len);
5580 if (copy == NULL)
5581 return (struct elf_link_hash_entry *) -1;
5582
5583 first = p - name + 1;
5584 memcpy (copy, name, first);
5585 memcpy (copy + first, name + first + 1, len - first);
5586
5587 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5588 if (h == NULL)
5589 {
5590 /* We also need to check references to the symbol without the
5591 version. */
5592 copy[first - 1] = '\0';
5593 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5594 FALSE, FALSE, TRUE);
5595 }
5596
5597 bfd_release (abfd, copy);
5598 return h;
5599 }
5600
5601 /* Add symbols from an ELF archive file to the linker hash table. We
5602 don't use _bfd_generic_link_add_archive_symbols because we need to
5603 handle versioned symbols.
5604
5605 Fortunately, ELF archive handling is simpler than that done by
5606 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5607 oddities. In ELF, if we find a symbol in the archive map, and the
5608 symbol is currently undefined, we know that we must pull in that
5609 object file.
5610
5611 Unfortunately, we do have to make multiple passes over the symbol
5612 table until nothing further is resolved. */
5613
5614 static bfd_boolean
5615 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5616 {
5617 symindex c;
5618 unsigned char *included = NULL;
5619 carsym *symdefs;
5620 bfd_boolean loop;
5621 bfd_size_type amt;
5622 const struct elf_backend_data *bed;
5623 struct elf_link_hash_entry * (*archive_symbol_lookup)
5624 (bfd *, struct bfd_link_info *, const char *);
5625
5626 if (! bfd_has_map (abfd))
5627 {
5628 /* An empty archive is a special case. */
5629 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5630 return TRUE;
5631 bfd_set_error (bfd_error_no_armap);
5632 return FALSE;
5633 }
5634
5635 /* Keep track of all symbols we know to be already defined, and all
5636 files we know to be already included. This is to speed up the
5637 second and subsequent passes. */
5638 c = bfd_ardata (abfd)->symdef_count;
5639 if (c == 0)
5640 return TRUE;
5641 amt = c;
5642 amt *= sizeof (*included);
5643 included = (unsigned char *) bfd_zmalloc (amt);
5644 if (included == NULL)
5645 return FALSE;
5646
5647 symdefs = bfd_ardata (abfd)->symdefs;
5648 bed = get_elf_backend_data (abfd);
5649 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5650
5651 do
5652 {
5653 file_ptr last;
5654 symindex i;
5655 carsym *symdef;
5656 carsym *symdefend;
5657
5658 loop = FALSE;
5659 last = -1;
5660
5661 symdef = symdefs;
5662 symdefend = symdef + c;
5663 for (i = 0; symdef < symdefend; symdef++, i++)
5664 {
5665 struct elf_link_hash_entry *h;
5666 bfd *element;
5667 struct bfd_link_hash_entry *undefs_tail;
5668 symindex mark;
5669
5670 if (included[i])
5671 continue;
5672 if (symdef->file_offset == last)
5673 {
5674 included[i] = TRUE;
5675 continue;
5676 }
5677
5678 h = archive_symbol_lookup (abfd, info, symdef->name);
5679 if (h == (struct elf_link_hash_entry *) -1)
5680 goto error_return;
5681
5682 if (h == NULL)
5683 continue;
5684
5685 if (h->root.type == bfd_link_hash_common)
5686 {
5687 /* We currently have a common symbol. The archive map contains
5688 a reference to this symbol, so we may want to include it. We
5689 only want to include it however, if this archive element
5690 contains a definition of the symbol, not just another common
5691 declaration of it.
5692
5693 Unfortunately some archivers (including GNU ar) will put
5694 declarations of common symbols into their archive maps, as
5695 well as real definitions, so we cannot just go by the archive
5696 map alone. Instead we must read in the element's symbol
5697 table and check that to see what kind of symbol definition
5698 this is. */
5699 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5700 continue;
5701 }
5702 else if (h->root.type != bfd_link_hash_undefined)
5703 {
5704 if (h->root.type != bfd_link_hash_undefweak)
5705 /* Symbol must be defined. Don't check it again. */
5706 included[i] = TRUE;
5707 continue;
5708 }
5709
5710 /* We need to include this archive member. */
5711 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5712 if (element == NULL)
5713 goto error_return;
5714
5715 if (! bfd_check_format (element, bfd_object))
5716 goto error_return;
5717
5718 undefs_tail = info->hash->undefs_tail;
5719
5720 if (!(*info->callbacks
5721 ->add_archive_element) (info, element, symdef->name, &element))
5722 continue;
5723 if (!bfd_link_add_symbols (element, info))
5724 goto error_return;
5725
5726 /* If there are any new undefined symbols, we need to make
5727 another pass through the archive in order to see whether
5728 they can be defined. FIXME: This isn't perfect, because
5729 common symbols wind up on undefs_tail and because an
5730 undefined symbol which is defined later on in this pass
5731 does not require another pass. This isn't a bug, but it
5732 does make the code less efficient than it could be. */
5733 if (undefs_tail != info->hash->undefs_tail)
5734 loop = TRUE;
5735
5736 /* Look backward to mark all symbols from this object file
5737 which we have already seen in this pass. */
5738 mark = i;
5739 do
5740 {
5741 included[mark] = TRUE;
5742 if (mark == 0)
5743 break;
5744 --mark;
5745 }
5746 while (symdefs[mark].file_offset == symdef->file_offset);
5747
5748 /* We mark subsequent symbols from this object file as we go
5749 on through the loop. */
5750 last = symdef->file_offset;
5751 }
5752 }
5753 while (loop);
5754
5755 free (included);
5756
5757 return TRUE;
5758
5759 error_return:
5760 if (included != NULL)
5761 free (included);
5762 return FALSE;
5763 }
5764
5765 /* Given an ELF BFD, add symbols to the global hash table as
5766 appropriate. */
5767
5768 bfd_boolean
5769 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5770 {
5771 switch (bfd_get_format (abfd))
5772 {
5773 case bfd_object:
5774 return elf_link_add_object_symbols (abfd, info);
5775 case bfd_archive:
5776 return elf_link_add_archive_symbols (abfd, info);
5777 default:
5778 bfd_set_error (bfd_error_wrong_format);
5779 return FALSE;
5780 }
5781 }
5782 \f
5783 struct hash_codes_info
5784 {
5785 unsigned long *hashcodes;
5786 bfd_boolean error;
5787 };
5788
5789 /* This function will be called though elf_link_hash_traverse to store
5790 all hash value of the exported symbols in an array. */
5791
5792 static bfd_boolean
5793 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5794 {
5795 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5796 const char *name;
5797 unsigned long ha;
5798 char *alc = NULL;
5799
5800 /* Ignore indirect symbols. These are added by the versioning code. */
5801 if (h->dynindx == -1)
5802 return TRUE;
5803
5804 name = h->root.root.string;
5805 if (h->versioned >= versioned)
5806 {
5807 char *p = strchr (name, ELF_VER_CHR);
5808 if (p != NULL)
5809 {
5810 alc = (char *) bfd_malloc (p - name + 1);
5811 if (alc == NULL)
5812 {
5813 inf->error = TRUE;
5814 return FALSE;
5815 }
5816 memcpy (alc, name, p - name);
5817 alc[p - name] = '\0';
5818 name = alc;
5819 }
5820 }
5821
5822 /* Compute the hash value. */
5823 ha = bfd_elf_hash (name);
5824
5825 /* Store the found hash value in the array given as the argument. */
5826 *(inf->hashcodes)++ = ha;
5827
5828 /* And store it in the struct so that we can put it in the hash table
5829 later. */
5830 h->u.elf_hash_value = ha;
5831
5832 if (alc != NULL)
5833 free (alc);
5834
5835 return TRUE;
5836 }
5837
5838 struct collect_gnu_hash_codes
5839 {
5840 bfd *output_bfd;
5841 const struct elf_backend_data *bed;
5842 unsigned long int nsyms;
5843 unsigned long int maskbits;
5844 unsigned long int *hashcodes;
5845 unsigned long int *hashval;
5846 unsigned long int *indx;
5847 unsigned long int *counts;
5848 bfd_vma *bitmask;
5849 bfd_byte *contents;
5850 long int min_dynindx;
5851 unsigned long int bucketcount;
5852 unsigned long int symindx;
5853 long int local_indx;
5854 long int shift1, shift2;
5855 unsigned long int mask;
5856 bfd_boolean error;
5857 };
5858
5859 /* This function will be called though elf_link_hash_traverse to store
5860 all hash value of the exported symbols in an array. */
5861
5862 static bfd_boolean
5863 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5864 {
5865 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5866 const char *name;
5867 unsigned long ha;
5868 char *alc = NULL;
5869
5870 /* Ignore indirect symbols. These are added by the versioning code. */
5871 if (h->dynindx == -1)
5872 return TRUE;
5873
5874 /* Ignore also local symbols and undefined symbols. */
5875 if (! (*s->bed->elf_hash_symbol) (h))
5876 return TRUE;
5877
5878 name = h->root.root.string;
5879 if (h->versioned >= versioned)
5880 {
5881 char *p = strchr (name, ELF_VER_CHR);
5882 if (p != NULL)
5883 {
5884 alc = (char *) bfd_malloc (p - name + 1);
5885 if (alc == NULL)
5886 {
5887 s->error = TRUE;
5888 return FALSE;
5889 }
5890 memcpy (alc, name, p - name);
5891 alc[p - name] = '\0';
5892 name = alc;
5893 }
5894 }
5895
5896 /* Compute the hash value. */
5897 ha = bfd_elf_gnu_hash (name);
5898
5899 /* Store the found hash value in the array for compute_bucket_count,
5900 and also for .dynsym reordering purposes. */
5901 s->hashcodes[s->nsyms] = ha;
5902 s->hashval[h->dynindx] = ha;
5903 ++s->nsyms;
5904 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5905 s->min_dynindx = h->dynindx;
5906
5907 if (alc != NULL)
5908 free (alc);
5909
5910 return TRUE;
5911 }
5912
5913 /* This function will be called though elf_link_hash_traverse to do
5914 final dynaminc symbol renumbering. */
5915
5916 static bfd_boolean
5917 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5918 {
5919 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5920 unsigned long int bucket;
5921 unsigned long int val;
5922
5923 /* Ignore indirect symbols. */
5924 if (h->dynindx == -1)
5925 return TRUE;
5926
5927 /* Ignore also local symbols and undefined symbols. */
5928 if (! (*s->bed->elf_hash_symbol) (h))
5929 {
5930 if (h->dynindx >= s->min_dynindx)
5931 h->dynindx = s->local_indx++;
5932 return TRUE;
5933 }
5934
5935 bucket = s->hashval[h->dynindx] % s->bucketcount;
5936 val = (s->hashval[h->dynindx] >> s->shift1)
5937 & ((s->maskbits >> s->shift1) - 1);
5938 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5939 s->bitmask[val]
5940 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5941 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5942 if (s->counts[bucket] == 1)
5943 /* Last element terminates the chain. */
5944 val |= 1;
5945 bfd_put_32 (s->output_bfd, val,
5946 s->contents + (s->indx[bucket] - s->symindx) * 4);
5947 --s->counts[bucket];
5948 h->dynindx = s->indx[bucket]++;
5949 return TRUE;
5950 }
5951
5952 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5953
5954 bfd_boolean
5955 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5956 {
5957 return !(h->forced_local
5958 || h->root.type == bfd_link_hash_undefined
5959 || h->root.type == bfd_link_hash_undefweak
5960 || ((h->root.type == bfd_link_hash_defined
5961 || h->root.type == bfd_link_hash_defweak)
5962 && h->root.u.def.section->output_section == NULL));
5963 }
5964
5965 /* Array used to determine the number of hash table buckets to use
5966 based on the number of symbols there are. If there are fewer than
5967 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5968 fewer than 37 we use 17 buckets, and so forth. We never use more
5969 than 32771 buckets. */
5970
5971 static const size_t elf_buckets[] =
5972 {
5973 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5974 16411, 32771, 0
5975 };
5976
5977 /* Compute bucket count for hashing table. We do not use a static set
5978 of possible tables sizes anymore. Instead we determine for all
5979 possible reasonable sizes of the table the outcome (i.e., the
5980 number of collisions etc) and choose the best solution. The
5981 weighting functions are not too simple to allow the table to grow
5982 without bounds. Instead one of the weighting factors is the size.
5983 Therefore the result is always a good payoff between few collisions
5984 (= short chain lengths) and table size. */
5985 static size_t
5986 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5987 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5988 unsigned long int nsyms,
5989 int gnu_hash)
5990 {
5991 size_t best_size = 0;
5992 unsigned long int i;
5993
5994 /* We have a problem here. The following code to optimize the table
5995 size requires an integer type with more the 32 bits. If
5996 BFD_HOST_U_64_BIT is set we know about such a type. */
5997 #ifdef BFD_HOST_U_64_BIT
5998 if (info->optimize)
5999 {
6000 size_t minsize;
6001 size_t maxsize;
6002 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
6003 bfd *dynobj = elf_hash_table (info)->dynobj;
6004 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
6005 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
6006 unsigned long int *counts;
6007 bfd_size_type amt;
6008 unsigned int no_improvement_count = 0;
6009
6010 /* Possible optimization parameters: if we have NSYMS symbols we say
6011 that the hashing table must at least have NSYMS/4 and at most
6012 2*NSYMS buckets. */
6013 minsize = nsyms / 4;
6014 if (minsize == 0)
6015 minsize = 1;
6016 best_size = maxsize = nsyms * 2;
6017 if (gnu_hash)
6018 {
6019 if (minsize < 2)
6020 minsize = 2;
6021 if ((best_size & 31) == 0)
6022 ++best_size;
6023 }
6024
6025 /* Create array where we count the collisions in. We must use bfd_malloc
6026 since the size could be large. */
6027 amt = maxsize;
6028 amt *= sizeof (unsigned long int);
6029 counts = (unsigned long int *) bfd_malloc (amt);
6030 if (counts == NULL)
6031 return 0;
6032
6033 /* Compute the "optimal" size for the hash table. The criteria is a
6034 minimal chain length. The minor criteria is (of course) the size
6035 of the table. */
6036 for (i = minsize; i < maxsize; ++i)
6037 {
6038 /* Walk through the array of hashcodes and count the collisions. */
6039 BFD_HOST_U_64_BIT max;
6040 unsigned long int j;
6041 unsigned long int fact;
6042
6043 if (gnu_hash && (i & 31) == 0)
6044 continue;
6045
6046 memset (counts, '\0', i * sizeof (unsigned long int));
6047
6048 /* Determine how often each hash bucket is used. */
6049 for (j = 0; j < nsyms; ++j)
6050 ++counts[hashcodes[j] % i];
6051
6052 /* For the weight function we need some information about the
6053 pagesize on the target. This is information need not be 100%
6054 accurate. Since this information is not available (so far) we
6055 define it here to a reasonable default value. If it is crucial
6056 to have a better value some day simply define this value. */
6057 # ifndef BFD_TARGET_PAGESIZE
6058 # define BFD_TARGET_PAGESIZE (4096)
6059 # endif
6060
6061 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
6062 and the chains. */
6063 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
6064
6065 # if 1
6066 /* Variant 1: optimize for short chains. We add the squares
6067 of all the chain lengths (which favors many small chain
6068 over a few long chains). */
6069 for (j = 0; j < i; ++j)
6070 max += counts[j] * counts[j];
6071
6072 /* This adds penalties for the overall size of the table. */
6073 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6074 max *= fact * fact;
6075 # else
6076 /* Variant 2: Optimize a lot more for small table. Here we
6077 also add squares of the size but we also add penalties for
6078 empty slots (the +1 term). */
6079 for (j = 0; j < i; ++j)
6080 max += (1 + counts[j]) * (1 + counts[j]);
6081
6082 /* The overall size of the table is considered, but not as
6083 strong as in variant 1, where it is squared. */
6084 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6085 max *= fact;
6086 # endif
6087
6088 /* Compare with current best results. */
6089 if (max < best_chlen)
6090 {
6091 best_chlen = max;
6092 best_size = i;
6093 no_improvement_count = 0;
6094 }
6095 /* PR 11843: Avoid futile long searches for the best bucket size
6096 when there are a large number of symbols. */
6097 else if (++no_improvement_count == 100)
6098 break;
6099 }
6100
6101 free (counts);
6102 }
6103 else
6104 #endif /* defined (BFD_HOST_U_64_BIT) */
6105 {
6106 /* This is the fallback solution if no 64bit type is available or if we
6107 are not supposed to spend much time on optimizations. We select the
6108 bucket count using a fixed set of numbers. */
6109 for (i = 0; elf_buckets[i] != 0; i++)
6110 {
6111 best_size = elf_buckets[i];
6112 if (nsyms < elf_buckets[i + 1])
6113 break;
6114 }
6115 if (gnu_hash && best_size < 2)
6116 best_size = 2;
6117 }
6118
6119 return best_size;
6120 }
6121
6122 /* Size any SHT_GROUP section for ld -r. */
6123
6124 bfd_boolean
6125 _bfd_elf_size_group_sections (struct bfd_link_info *info)
6126 {
6127 bfd *ibfd;
6128 asection *s;
6129
6130 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6131 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
6132 && (s = ibfd->sections) != NULL
6133 && s->sec_info_type != SEC_INFO_TYPE_JUST_SYMS
6134 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
6135 return FALSE;
6136 return TRUE;
6137 }
6138
6139 /* Set a default stack segment size. The value in INFO wins. If it
6140 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
6141 undefined it is initialized. */
6142
6143 bfd_boolean
6144 bfd_elf_stack_segment_size (bfd *output_bfd,
6145 struct bfd_link_info *info,
6146 const char *legacy_symbol,
6147 bfd_vma default_size)
6148 {
6149 struct elf_link_hash_entry *h = NULL;
6150
6151 /* Look for legacy symbol. */
6152 if (legacy_symbol)
6153 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
6154 FALSE, FALSE, FALSE);
6155 if (h && (h->root.type == bfd_link_hash_defined
6156 || h->root.type == bfd_link_hash_defweak)
6157 && h->def_regular
6158 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
6159 {
6160 /* The symbol has no type if specified on the command line. */
6161 h->type = STT_OBJECT;
6162 if (info->stacksize)
6163 /* xgettext:c-format */
6164 _bfd_error_handler (_("%pB: stack size specified and %s set"),
6165 output_bfd, legacy_symbol);
6166 else if (h->root.u.def.section != bfd_abs_section_ptr)
6167 /* xgettext:c-format */
6168 _bfd_error_handler (_("%pB: %s not absolute"),
6169 output_bfd, legacy_symbol);
6170 else
6171 info->stacksize = h->root.u.def.value;
6172 }
6173
6174 if (!info->stacksize)
6175 /* If the user didn't set a size, or explicitly inhibit the
6176 size, set it now. */
6177 info->stacksize = default_size;
6178
6179 /* Provide the legacy symbol, if it is referenced. */
6180 if (h && (h->root.type == bfd_link_hash_undefined
6181 || h->root.type == bfd_link_hash_undefweak))
6182 {
6183 struct bfd_link_hash_entry *bh = NULL;
6184
6185 if (!(_bfd_generic_link_add_one_symbol
6186 (info, output_bfd, legacy_symbol,
6187 BSF_GLOBAL, bfd_abs_section_ptr,
6188 info->stacksize >= 0 ? info->stacksize : 0,
6189 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
6190 return FALSE;
6191
6192 h = (struct elf_link_hash_entry *) bh;
6193 h->def_regular = 1;
6194 h->type = STT_OBJECT;
6195 }
6196
6197 return TRUE;
6198 }
6199
6200 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6201
6202 struct elf_gc_sweep_symbol_info
6203 {
6204 struct bfd_link_info *info;
6205 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
6206 bfd_boolean);
6207 };
6208
6209 static bfd_boolean
6210 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
6211 {
6212 if (!h->mark
6213 && (((h->root.type == bfd_link_hash_defined
6214 || h->root.type == bfd_link_hash_defweak)
6215 && !((h->def_regular || ELF_COMMON_DEF_P (h))
6216 && h->root.u.def.section->gc_mark))
6217 || h->root.type == bfd_link_hash_undefined
6218 || h->root.type == bfd_link_hash_undefweak))
6219 {
6220 struct elf_gc_sweep_symbol_info *inf;
6221
6222 inf = (struct elf_gc_sweep_symbol_info *) data;
6223 (*inf->hide_symbol) (inf->info, h, TRUE);
6224 h->def_regular = 0;
6225 h->ref_regular = 0;
6226 h->ref_regular_nonweak = 0;
6227 }
6228
6229 return TRUE;
6230 }
6231
6232 /* Set up the sizes and contents of the ELF dynamic sections. This is
6233 called by the ELF linker emulation before_allocation routine. We
6234 must set the sizes of the sections before the linker sets the
6235 addresses of the various sections. */
6236
6237 bfd_boolean
6238 bfd_elf_size_dynamic_sections (bfd *output_bfd,
6239 const char *soname,
6240 const char *rpath,
6241 const char *filter_shlib,
6242 const char *audit,
6243 const char *depaudit,
6244 const char * const *auxiliary_filters,
6245 struct bfd_link_info *info,
6246 asection **sinterpptr)
6247 {
6248 bfd *dynobj;
6249 const struct elf_backend_data *bed;
6250
6251 *sinterpptr = NULL;
6252
6253 if (!is_elf_hash_table (info->hash))
6254 return TRUE;
6255
6256 dynobj = elf_hash_table (info)->dynobj;
6257
6258 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6259 {
6260 struct bfd_elf_version_tree *verdefs;
6261 struct elf_info_failed asvinfo;
6262 struct bfd_elf_version_tree *t;
6263 struct bfd_elf_version_expr *d;
6264 asection *s;
6265 size_t soname_indx;
6266
6267 /* If we are supposed to export all symbols into the dynamic symbol
6268 table (this is not the normal case), then do so. */
6269 if (info->export_dynamic
6270 || (bfd_link_executable (info) && info->dynamic))
6271 {
6272 struct elf_info_failed eif;
6273
6274 eif.info = info;
6275 eif.failed = FALSE;
6276 elf_link_hash_traverse (elf_hash_table (info),
6277 _bfd_elf_export_symbol,
6278 &eif);
6279 if (eif.failed)
6280 return FALSE;
6281 }
6282
6283 if (soname != NULL)
6284 {
6285 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6286 soname, TRUE);
6287 if (soname_indx == (size_t) -1
6288 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
6289 return FALSE;
6290 }
6291 else
6292 soname_indx = (size_t) -1;
6293
6294 /* Make all global versions with definition. */
6295 for (t = info->version_info; t != NULL; t = t->next)
6296 for (d = t->globals.list; d != NULL; d = d->next)
6297 if (!d->symver && d->literal)
6298 {
6299 const char *verstr, *name;
6300 size_t namelen, verlen, newlen;
6301 char *newname, *p, leading_char;
6302 struct elf_link_hash_entry *newh;
6303
6304 leading_char = bfd_get_symbol_leading_char (output_bfd);
6305 name = d->pattern;
6306 namelen = strlen (name) + (leading_char != '\0');
6307 verstr = t->name;
6308 verlen = strlen (verstr);
6309 newlen = namelen + verlen + 3;
6310
6311 newname = (char *) bfd_malloc (newlen);
6312 if (newname == NULL)
6313 return FALSE;
6314 newname[0] = leading_char;
6315 memcpy (newname + (leading_char != '\0'), name, namelen);
6316
6317 /* Check the hidden versioned definition. */
6318 p = newname + namelen;
6319 *p++ = ELF_VER_CHR;
6320 memcpy (p, verstr, verlen + 1);
6321 newh = elf_link_hash_lookup (elf_hash_table (info),
6322 newname, FALSE, FALSE,
6323 FALSE);
6324 if (newh == NULL
6325 || (newh->root.type != bfd_link_hash_defined
6326 && newh->root.type != bfd_link_hash_defweak))
6327 {
6328 /* Check the default versioned definition. */
6329 *p++ = ELF_VER_CHR;
6330 memcpy (p, verstr, verlen + 1);
6331 newh = elf_link_hash_lookup (elf_hash_table (info),
6332 newname, FALSE, FALSE,
6333 FALSE);
6334 }
6335 free (newname);
6336
6337 /* Mark this version if there is a definition and it is
6338 not defined in a shared object. */
6339 if (newh != NULL
6340 && !newh->def_dynamic
6341 && (newh->root.type == bfd_link_hash_defined
6342 || newh->root.type == bfd_link_hash_defweak))
6343 d->symver = 1;
6344 }
6345
6346 /* Attach all the symbols to their version information. */
6347 asvinfo.info = info;
6348 asvinfo.failed = FALSE;
6349
6350 elf_link_hash_traverse (elf_hash_table (info),
6351 _bfd_elf_link_assign_sym_version,
6352 &asvinfo);
6353 if (asvinfo.failed)
6354 return FALSE;
6355
6356 if (!info->allow_undefined_version)
6357 {
6358 /* Check if all global versions have a definition. */
6359 bfd_boolean all_defined = TRUE;
6360 for (t = info->version_info; t != NULL; t = t->next)
6361 for (d = t->globals.list; d != NULL; d = d->next)
6362 if (d->literal && !d->symver && !d->script)
6363 {
6364 _bfd_error_handler
6365 (_("%s: undefined version: %s"),
6366 d->pattern, t->name);
6367 all_defined = FALSE;
6368 }
6369
6370 if (!all_defined)
6371 {
6372 bfd_set_error (bfd_error_bad_value);
6373 return FALSE;
6374 }
6375 }
6376
6377 /* Set up the version definition section. */
6378 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6379 BFD_ASSERT (s != NULL);
6380
6381 /* We may have created additional version definitions if we are
6382 just linking a regular application. */
6383 verdefs = info->version_info;
6384
6385 /* Skip anonymous version tag. */
6386 if (verdefs != NULL && verdefs->vernum == 0)
6387 verdefs = verdefs->next;
6388
6389 if (verdefs == NULL && !info->create_default_symver)
6390 s->flags |= SEC_EXCLUDE;
6391 else
6392 {
6393 unsigned int cdefs;
6394 bfd_size_type size;
6395 bfd_byte *p;
6396 Elf_Internal_Verdef def;
6397 Elf_Internal_Verdaux defaux;
6398 struct bfd_link_hash_entry *bh;
6399 struct elf_link_hash_entry *h;
6400 const char *name;
6401
6402 cdefs = 0;
6403 size = 0;
6404
6405 /* Make space for the base version. */
6406 size += sizeof (Elf_External_Verdef);
6407 size += sizeof (Elf_External_Verdaux);
6408 ++cdefs;
6409
6410 /* Make space for the default version. */
6411 if (info->create_default_symver)
6412 {
6413 size += sizeof (Elf_External_Verdef);
6414 ++cdefs;
6415 }
6416
6417 for (t = verdefs; t != NULL; t = t->next)
6418 {
6419 struct bfd_elf_version_deps *n;
6420
6421 /* Don't emit base version twice. */
6422 if (t->vernum == 0)
6423 continue;
6424
6425 size += sizeof (Elf_External_Verdef);
6426 size += sizeof (Elf_External_Verdaux);
6427 ++cdefs;
6428
6429 for (n = t->deps; n != NULL; n = n->next)
6430 size += sizeof (Elf_External_Verdaux);
6431 }
6432
6433 s->size = size;
6434 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6435 if (s->contents == NULL && s->size != 0)
6436 return FALSE;
6437
6438 /* Fill in the version definition section. */
6439
6440 p = s->contents;
6441
6442 def.vd_version = VER_DEF_CURRENT;
6443 def.vd_flags = VER_FLG_BASE;
6444 def.vd_ndx = 1;
6445 def.vd_cnt = 1;
6446 if (info->create_default_symver)
6447 {
6448 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6449 def.vd_next = sizeof (Elf_External_Verdef);
6450 }
6451 else
6452 {
6453 def.vd_aux = sizeof (Elf_External_Verdef);
6454 def.vd_next = (sizeof (Elf_External_Verdef)
6455 + sizeof (Elf_External_Verdaux));
6456 }
6457
6458 if (soname_indx != (size_t) -1)
6459 {
6460 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6461 soname_indx);
6462 def.vd_hash = bfd_elf_hash (soname);
6463 defaux.vda_name = soname_indx;
6464 name = soname;
6465 }
6466 else
6467 {
6468 size_t indx;
6469
6470 name = lbasename (output_bfd->filename);
6471 def.vd_hash = bfd_elf_hash (name);
6472 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6473 name, FALSE);
6474 if (indx == (size_t) -1)
6475 return FALSE;
6476 defaux.vda_name = indx;
6477 }
6478 defaux.vda_next = 0;
6479
6480 _bfd_elf_swap_verdef_out (output_bfd, &def,
6481 (Elf_External_Verdef *) p);
6482 p += sizeof (Elf_External_Verdef);
6483 if (info->create_default_symver)
6484 {
6485 /* Add a symbol representing this version. */
6486 bh = NULL;
6487 if (! (_bfd_generic_link_add_one_symbol
6488 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6489 0, NULL, FALSE,
6490 get_elf_backend_data (dynobj)->collect, &bh)))
6491 return FALSE;
6492 h = (struct elf_link_hash_entry *) bh;
6493 h->non_elf = 0;
6494 h->def_regular = 1;
6495 h->type = STT_OBJECT;
6496 h->verinfo.vertree = NULL;
6497
6498 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6499 return FALSE;
6500
6501 /* Create a duplicate of the base version with the same
6502 aux block, but different flags. */
6503 def.vd_flags = 0;
6504 def.vd_ndx = 2;
6505 def.vd_aux = sizeof (Elf_External_Verdef);
6506 if (verdefs)
6507 def.vd_next = (sizeof (Elf_External_Verdef)
6508 + sizeof (Elf_External_Verdaux));
6509 else
6510 def.vd_next = 0;
6511 _bfd_elf_swap_verdef_out (output_bfd, &def,
6512 (Elf_External_Verdef *) p);
6513 p += sizeof (Elf_External_Verdef);
6514 }
6515 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6516 (Elf_External_Verdaux *) p);
6517 p += sizeof (Elf_External_Verdaux);
6518
6519 for (t = verdefs; t != NULL; t = t->next)
6520 {
6521 unsigned int cdeps;
6522 struct bfd_elf_version_deps *n;
6523
6524 /* Don't emit the base version twice. */
6525 if (t->vernum == 0)
6526 continue;
6527
6528 cdeps = 0;
6529 for (n = t->deps; n != NULL; n = n->next)
6530 ++cdeps;
6531
6532 /* Add a symbol representing this version. */
6533 bh = NULL;
6534 if (! (_bfd_generic_link_add_one_symbol
6535 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6536 0, NULL, FALSE,
6537 get_elf_backend_data (dynobj)->collect, &bh)))
6538 return FALSE;
6539 h = (struct elf_link_hash_entry *) bh;
6540 h->non_elf = 0;
6541 h->def_regular = 1;
6542 h->type = STT_OBJECT;
6543 h->verinfo.vertree = t;
6544
6545 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6546 return FALSE;
6547
6548 def.vd_version = VER_DEF_CURRENT;
6549 def.vd_flags = 0;
6550 if (t->globals.list == NULL
6551 && t->locals.list == NULL
6552 && ! t->used)
6553 def.vd_flags |= VER_FLG_WEAK;
6554 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6555 def.vd_cnt = cdeps + 1;
6556 def.vd_hash = bfd_elf_hash (t->name);
6557 def.vd_aux = sizeof (Elf_External_Verdef);
6558 def.vd_next = 0;
6559
6560 /* If a basever node is next, it *must* be the last node in
6561 the chain, otherwise Verdef construction breaks. */
6562 if (t->next != NULL && t->next->vernum == 0)
6563 BFD_ASSERT (t->next->next == NULL);
6564
6565 if (t->next != NULL && t->next->vernum != 0)
6566 def.vd_next = (sizeof (Elf_External_Verdef)
6567 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6568
6569 _bfd_elf_swap_verdef_out (output_bfd, &def,
6570 (Elf_External_Verdef *) p);
6571 p += sizeof (Elf_External_Verdef);
6572
6573 defaux.vda_name = h->dynstr_index;
6574 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6575 h->dynstr_index);
6576 defaux.vda_next = 0;
6577 if (t->deps != NULL)
6578 defaux.vda_next = sizeof (Elf_External_Verdaux);
6579 t->name_indx = defaux.vda_name;
6580
6581 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6582 (Elf_External_Verdaux *) p);
6583 p += sizeof (Elf_External_Verdaux);
6584
6585 for (n = t->deps; n != NULL; n = n->next)
6586 {
6587 if (n->version_needed == NULL)
6588 {
6589 /* This can happen if there was an error in the
6590 version script. */
6591 defaux.vda_name = 0;
6592 }
6593 else
6594 {
6595 defaux.vda_name = n->version_needed->name_indx;
6596 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6597 defaux.vda_name);
6598 }
6599 if (n->next == NULL)
6600 defaux.vda_next = 0;
6601 else
6602 defaux.vda_next = sizeof (Elf_External_Verdaux);
6603
6604 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6605 (Elf_External_Verdaux *) p);
6606 p += sizeof (Elf_External_Verdaux);
6607 }
6608 }
6609
6610 elf_tdata (output_bfd)->cverdefs = cdefs;
6611 }
6612 }
6613
6614 bed = get_elf_backend_data (output_bfd);
6615
6616 if (info->gc_sections && bed->can_gc_sections)
6617 {
6618 struct elf_gc_sweep_symbol_info sweep_info;
6619
6620 /* Remove the symbols that were in the swept sections from the
6621 dynamic symbol table. */
6622 sweep_info.info = info;
6623 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
6624 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
6625 &sweep_info);
6626 }
6627
6628 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6629 {
6630 asection *s;
6631 struct elf_find_verdep_info sinfo;
6632
6633 /* Work out the size of the version reference section. */
6634
6635 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6636 BFD_ASSERT (s != NULL);
6637
6638 sinfo.info = info;
6639 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6640 if (sinfo.vers == 0)
6641 sinfo.vers = 1;
6642 sinfo.failed = FALSE;
6643
6644 elf_link_hash_traverse (elf_hash_table (info),
6645 _bfd_elf_link_find_version_dependencies,
6646 &sinfo);
6647 if (sinfo.failed)
6648 return FALSE;
6649
6650 if (elf_tdata (output_bfd)->verref == NULL)
6651 s->flags |= SEC_EXCLUDE;
6652 else
6653 {
6654 Elf_Internal_Verneed *vn;
6655 unsigned int size;
6656 unsigned int crefs;
6657 bfd_byte *p;
6658
6659 /* Build the version dependency section. */
6660 size = 0;
6661 crefs = 0;
6662 for (vn = elf_tdata (output_bfd)->verref;
6663 vn != NULL;
6664 vn = vn->vn_nextref)
6665 {
6666 Elf_Internal_Vernaux *a;
6667
6668 size += sizeof (Elf_External_Verneed);
6669 ++crefs;
6670 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6671 size += sizeof (Elf_External_Vernaux);
6672 }
6673
6674 s->size = size;
6675 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6676 if (s->contents == NULL)
6677 return FALSE;
6678
6679 p = s->contents;
6680 for (vn = elf_tdata (output_bfd)->verref;
6681 vn != NULL;
6682 vn = vn->vn_nextref)
6683 {
6684 unsigned int caux;
6685 Elf_Internal_Vernaux *a;
6686 size_t indx;
6687
6688 caux = 0;
6689 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6690 ++caux;
6691
6692 vn->vn_version = VER_NEED_CURRENT;
6693 vn->vn_cnt = caux;
6694 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6695 elf_dt_name (vn->vn_bfd) != NULL
6696 ? elf_dt_name (vn->vn_bfd)
6697 : lbasename (vn->vn_bfd->filename),
6698 FALSE);
6699 if (indx == (size_t) -1)
6700 return FALSE;
6701 vn->vn_file = indx;
6702 vn->vn_aux = sizeof (Elf_External_Verneed);
6703 if (vn->vn_nextref == NULL)
6704 vn->vn_next = 0;
6705 else
6706 vn->vn_next = (sizeof (Elf_External_Verneed)
6707 + caux * sizeof (Elf_External_Vernaux));
6708
6709 _bfd_elf_swap_verneed_out (output_bfd, vn,
6710 (Elf_External_Verneed *) p);
6711 p += sizeof (Elf_External_Verneed);
6712
6713 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6714 {
6715 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6716 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6717 a->vna_nodename, FALSE);
6718 if (indx == (size_t) -1)
6719 return FALSE;
6720 a->vna_name = indx;
6721 if (a->vna_nextptr == NULL)
6722 a->vna_next = 0;
6723 else
6724 a->vna_next = sizeof (Elf_External_Vernaux);
6725
6726 _bfd_elf_swap_vernaux_out (output_bfd, a,
6727 (Elf_External_Vernaux *) p);
6728 p += sizeof (Elf_External_Vernaux);
6729 }
6730 }
6731
6732 elf_tdata (output_bfd)->cverrefs = crefs;
6733 }
6734 }
6735
6736 /* Any syms created from now on start with -1 in
6737 got.refcount/offset and plt.refcount/offset. */
6738 elf_hash_table (info)->init_got_refcount
6739 = elf_hash_table (info)->init_got_offset;
6740 elf_hash_table (info)->init_plt_refcount
6741 = elf_hash_table (info)->init_plt_offset;
6742
6743 if (bfd_link_relocatable (info)
6744 && !_bfd_elf_size_group_sections (info))
6745 return FALSE;
6746
6747 /* The backend may have to create some sections regardless of whether
6748 we're dynamic or not. */
6749 if (bed->elf_backend_always_size_sections
6750 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
6751 return FALSE;
6752
6753 /* Determine any GNU_STACK segment requirements, after the backend
6754 has had a chance to set a default segment size. */
6755 if (info->execstack)
6756 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
6757 else if (info->noexecstack)
6758 elf_stack_flags (output_bfd) = PF_R | PF_W;
6759 else
6760 {
6761 bfd *inputobj;
6762 asection *notesec = NULL;
6763 int exec = 0;
6764
6765 for (inputobj = info->input_bfds;
6766 inputobj;
6767 inputobj = inputobj->link.next)
6768 {
6769 asection *s;
6770
6771 if (inputobj->flags
6772 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
6773 continue;
6774 s = inputobj->sections;
6775 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
6776 continue;
6777
6778 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
6779 if (s)
6780 {
6781 if (s->flags & SEC_CODE)
6782 exec = PF_X;
6783 notesec = s;
6784 }
6785 else if (bed->default_execstack)
6786 exec = PF_X;
6787 }
6788 if (notesec || info->stacksize > 0)
6789 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
6790 if (notesec && exec && bfd_link_relocatable (info)
6791 && notesec->output_section != bfd_abs_section_ptr)
6792 notesec->output_section->flags |= SEC_CODE;
6793 }
6794
6795 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6796 {
6797 struct elf_info_failed eif;
6798 struct elf_link_hash_entry *h;
6799 asection *dynstr;
6800 asection *s;
6801
6802 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
6803 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
6804
6805 if (info->symbolic)
6806 {
6807 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
6808 return FALSE;
6809 info->flags |= DF_SYMBOLIC;
6810 }
6811
6812 if (rpath != NULL)
6813 {
6814 size_t indx;
6815 bfd_vma tag;
6816
6817 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
6818 TRUE);
6819 if (indx == (size_t) -1)
6820 return FALSE;
6821
6822 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
6823 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
6824 return FALSE;
6825 }
6826
6827 if (filter_shlib != NULL)
6828 {
6829 size_t indx;
6830
6831 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6832 filter_shlib, TRUE);
6833 if (indx == (size_t) -1
6834 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
6835 return FALSE;
6836 }
6837
6838 if (auxiliary_filters != NULL)
6839 {
6840 const char * const *p;
6841
6842 for (p = auxiliary_filters; *p != NULL; p++)
6843 {
6844 size_t indx;
6845
6846 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6847 *p, TRUE);
6848 if (indx == (size_t) -1
6849 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
6850 return FALSE;
6851 }
6852 }
6853
6854 if (audit != NULL)
6855 {
6856 size_t indx;
6857
6858 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
6859 TRUE);
6860 if (indx == (size_t) -1
6861 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
6862 return FALSE;
6863 }
6864
6865 if (depaudit != NULL)
6866 {
6867 size_t indx;
6868
6869 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
6870 TRUE);
6871 if (indx == (size_t) -1
6872 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
6873 return FALSE;
6874 }
6875
6876 eif.info = info;
6877 eif.failed = FALSE;
6878
6879 /* Find all symbols which were defined in a dynamic object and make
6880 the backend pick a reasonable value for them. */
6881 elf_link_hash_traverse (elf_hash_table (info),
6882 _bfd_elf_adjust_dynamic_symbol,
6883 &eif);
6884 if (eif.failed)
6885 return FALSE;
6886
6887 /* Add some entries to the .dynamic section. We fill in some of the
6888 values later, in bfd_elf_final_link, but we must add the entries
6889 now so that we know the final size of the .dynamic section. */
6890
6891 /* If there are initialization and/or finalization functions to
6892 call then add the corresponding DT_INIT/DT_FINI entries. */
6893 h = (info->init_function
6894 ? elf_link_hash_lookup (elf_hash_table (info),
6895 info->init_function, FALSE,
6896 FALSE, FALSE)
6897 : NULL);
6898 if (h != NULL
6899 && (h->ref_regular
6900 || h->def_regular))
6901 {
6902 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
6903 return FALSE;
6904 }
6905 h = (info->fini_function
6906 ? elf_link_hash_lookup (elf_hash_table (info),
6907 info->fini_function, FALSE,
6908 FALSE, FALSE)
6909 : NULL);
6910 if (h != NULL
6911 && (h->ref_regular
6912 || h->def_regular))
6913 {
6914 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
6915 return FALSE;
6916 }
6917
6918 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
6919 if (s != NULL && s->linker_has_input)
6920 {
6921 /* DT_PREINIT_ARRAY is not allowed in shared library. */
6922 if (! bfd_link_executable (info))
6923 {
6924 bfd *sub;
6925 asection *o;
6926
6927 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
6928 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
6929 && (o = sub->sections) != NULL
6930 && o->sec_info_type != SEC_INFO_TYPE_JUST_SYMS)
6931 for (o = sub->sections; o != NULL; o = o->next)
6932 if (elf_section_data (o)->this_hdr.sh_type
6933 == SHT_PREINIT_ARRAY)
6934 {
6935 _bfd_error_handler
6936 (_("%pB: .preinit_array section is not allowed in DSO"),
6937 sub);
6938 break;
6939 }
6940
6941 bfd_set_error (bfd_error_nonrepresentable_section);
6942 return FALSE;
6943 }
6944
6945 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6946 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
6947 return FALSE;
6948 }
6949 s = bfd_get_section_by_name (output_bfd, ".init_array");
6950 if (s != NULL && s->linker_has_input)
6951 {
6952 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
6953 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
6954 return FALSE;
6955 }
6956 s = bfd_get_section_by_name (output_bfd, ".fini_array");
6957 if (s != NULL && s->linker_has_input)
6958 {
6959 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
6960 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
6961 return FALSE;
6962 }
6963
6964 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
6965 /* If .dynstr is excluded from the link, we don't want any of
6966 these tags. Strictly, we should be checking each section
6967 individually; This quick check covers for the case where
6968 someone does a /DISCARD/ : { *(*) }. */
6969 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6970 {
6971 bfd_size_type strsize;
6972
6973 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6974 if ((info->emit_hash
6975 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6976 || (info->emit_gnu_hash
6977 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6978 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6979 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6980 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6981 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6982 bed->s->sizeof_sym))
6983 return FALSE;
6984 }
6985 }
6986
6987 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6988 return FALSE;
6989
6990 /* The backend must work out the sizes of all the other dynamic
6991 sections. */
6992 if (dynobj != NULL
6993 && bed->elf_backend_size_dynamic_sections != NULL
6994 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6995 return FALSE;
6996
6997 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6998 {
6999 if (elf_tdata (output_bfd)->cverdefs)
7000 {
7001 unsigned int crefs = elf_tdata (output_bfd)->cverdefs;
7002
7003 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
7004 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs))
7005 return FALSE;
7006 }
7007
7008 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
7009 {
7010 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
7011 return FALSE;
7012 }
7013 else if (info->flags & DF_BIND_NOW)
7014 {
7015 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
7016 return FALSE;
7017 }
7018
7019 if (info->flags_1)
7020 {
7021 if (bfd_link_executable (info))
7022 info->flags_1 &= ~ (DF_1_INITFIRST
7023 | DF_1_NODELETE
7024 | DF_1_NOOPEN);
7025 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
7026 return FALSE;
7027 }
7028
7029 if (elf_tdata (output_bfd)->cverrefs)
7030 {
7031 unsigned int crefs = elf_tdata (output_bfd)->cverrefs;
7032
7033 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
7034 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
7035 return FALSE;
7036 }
7037
7038 if ((elf_tdata (output_bfd)->cverrefs == 0
7039 && elf_tdata (output_bfd)->cverdefs == 0)
7040 || _bfd_elf_link_renumber_dynsyms (output_bfd, info, NULL) <= 1)
7041 {
7042 asection *s;
7043
7044 s = bfd_get_linker_section (dynobj, ".gnu.version");
7045 s->flags |= SEC_EXCLUDE;
7046 }
7047 }
7048 return TRUE;
7049 }
7050
7051 /* Find the first non-excluded output section. We'll use its
7052 section symbol for some emitted relocs. */
7053 void
7054 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
7055 {
7056 asection *s;
7057 asection *found = NULL;
7058
7059 for (s = output_bfd->sections; s != NULL; s = s->next)
7060 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7061 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7062 {
7063 found = s;
7064 if ((s->flags & SEC_THREAD_LOCAL) == 0)
7065 break;
7066 }
7067 elf_hash_table (info)->text_index_section = found;
7068 }
7069
7070 /* Find two non-excluded output sections, one for code, one for data.
7071 We'll use their section symbols for some emitted relocs. */
7072 void
7073 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
7074 {
7075 asection *s;
7076 asection *found = NULL;
7077
7078 /* Data first, since setting text_index_section changes
7079 _bfd_elf_omit_section_dynsym_default. */
7080 for (s = output_bfd->sections; s != NULL; s = s->next)
7081 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7082 && !(s->flags & SEC_READONLY)
7083 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7084 {
7085 found = s;
7086 if ((s->flags & SEC_THREAD_LOCAL) == 0)
7087 break;
7088 }
7089 elf_hash_table (info)->data_index_section = found;
7090
7091 for (s = output_bfd->sections; s != NULL; s = s->next)
7092 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7093 && (s->flags & SEC_READONLY)
7094 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7095 {
7096 found = s;
7097 break;
7098 }
7099 elf_hash_table (info)->text_index_section = found;
7100 }
7101
7102 bfd_boolean
7103 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
7104 {
7105 const struct elf_backend_data *bed;
7106 unsigned long section_sym_count;
7107 bfd_size_type dynsymcount = 0;
7108
7109 if (!is_elf_hash_table (info->hash))
7110 return TRUE;
7111
7112 bed = get_elf_backend_data (output_bfd);
7113 (*bed->elf_backend_init_index_section) (output_bfd, info);
7114
7115 /* Assign dynsym indices. In a shared library we generate a section
7116 symbol for each output section, which come first. Next come all
7117 of the back-end allocated local dynamic syms, followed by the rest
7118 of the global symbols.
7119
7120 This is usually not needed for static binaries, however backends
7121 can request to always do it, e.g. the MIPS backend uses dynamic
7122 symbol counts to lay out GOT, which will be produced in the
7123 presence of GOT relocations even in static binaries (holding fixed
7124 data in that case, to satisfy those relocations). */
7125
7126 if (elf_hash_table (info)->dynamic_sections_created
7127 || bed->always_renumber_dynsyms)
7128 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
7129 &section_sym_count);
7130
7131 if (elf_hash_table (info)->dynamic_sections_created)
7132 {
7133 bfd *dynobj;
7134 asection *s;
7135 unsigned int dtagcount;
7136
7137 dynobj = elf_hash_table (info)->dynobj;
7138
7139 /* Work out the size of the symbol version section. */
7140 s = bfd_get_linker_section (dynobj, ".gnu.version");
7141 BFD_ASSERT (s != NULL);
7142 if ((s->flags & SEC_EXCLUDE) == 0)
7143 {
7144 s->size = dynsymcount * sizeof (Elf_External_Versym);
7145 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7146 if (s->contents == NULL)
7147 return FALSE;
7148
7149 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
7150 return FALSE;
7151 }
7152
7153 /* Set the size of the .dynsym and .hash sections. We counted
7154 the number of dynamic symbols in elf_link_add_object_symbols.
7155 We will build the contents of .dynsym and .hash when we build
7156 the final symbol table, because until then we do not know the
7157 correct value to give the symbols. We built the .dynstr
7158 section as we went along in elf_link_add_object_symbols. */
7159 s = elf_hash_table (info)->dynsym;
7160 BFD_ASSERT (s != NULL);
7161 s->size = dynsymcount * bed->s->sizeof_sym;
7162
7163 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
7164 if (s->contents == NULL)
7165 return FALSE;
7166
7167 /* The first entry in .dynsym is a dummy symbol. Clear all the
7168 section syms, in case we don't output them all. */
7169 ++section_sym_count;
7170 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
7171
7172 elf_hash_table (info)->bucketcount = 0;
7173
7174 /* Compute the size of the hashing table. As a side effect this
7175 computes the hash values for all the names we export. */
7176 if (info->emit_hash)
7177 {
7178 unsigned long int *hashcodes;
7179 struct hash_codes_info hashinf;
7180 bfd_size_type amt;
7181 unsigned long int nsyms;
7182 size_t bucketcount;
7183 size_t hash_entry_size;
7184
7185 /* Compute the hash values for all exported symbols. At the same
7186 time store the values in an array so that we could use them for
7187 optimizations. */
7188 amt = dynsymcount * sizeof (unsigned long int);
7189 hashcodes = (unsigned long int *) bfd_malloc (amt);
7190 if (hashcodes == NULL)
7191 return FALSE;
7192 hashinf.hashcodes = hashcodes;
7193 hashinf.error = FALSE;
7194
7195 /* Put all hash values in HASHCODES. */
7196 elf_link_hash_traverse (elf_hash_table (info),
7197 elf_collect_hash_codes, &hashinf);
7198 if (hashinf.error)
7199 {
7200 free (hashcodes);
7201 return FALSE;
7202 }
7203
7204 nsyms = hashinf.hashcodes - hashcodes;
7205 bucketcount
7206 = compute_bucket_count (info, hashcodes, nsyms, 0);
7207 free (hashcodes);
7208
7209 if (bucketcount == 0 && nsyms > 0)
7210 return FALSE;
7211
7212 elf_hash_table (info)->bucketcount = bucketcount;
7213
7214 s = bfd_get_linker_section (dynobj, ".hash");
7215 BFD_ASSERT (s != NULL);
7216 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
7217 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
7218 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7219 if (s->contents == NULL)
7220 return FALSE;
7221
7222 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
7223 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
7224 s->contents + hash_entry_size);
7225 }
7226
7227 if (info->emit_gnu_hash)
7228 {
7229 size_t i, cnt;
7230 unsigned char *contents;
7231 struct collect_gnu_hash_codes cinfo;
7232 bfd_size_type amt;
7233 size_t bucketcount;
7234
7235 memset (&cinfo, 0, sizeof (cinfo));
7236
7237 /* Compute the hash values for all exported symbols. At the same
7238 time store the values in an array so that we could use them for
7239 optimizations. */
7240 amt = dynsymcount * 2 * sizeof (unsigned long int);
7241 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
7242 if (cinfo.hashcodes == NULL)
7243 return FALSE;
7244
7245 cinfo.hashval = cinfo.hashcodes + dynsymcount;
7246 cinfo.min_dynindx = -1;
7247 cinfo.output_bfd = output_bfd;
7248 cinfo.bed = bed;
7249
7250 /* Put all hash values in HASHCODES. */
7251 elf_link_hash_traverse (elf_hash_table (info),
7252 elf_collect_gnu_hash_codes, &cinfo);
7253 if (cinfo.error)
7254 {
7255 free (cinfo.hashcodes);
7256 return FALSE;
7257 }
7258
7259 bucketcount
7260 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
7261
7262 if (bucketcount == 0)
7263 {
7264 free (cinfo.hashcodes);
7265 return FALSE;
7266 }
7267
7268 s = bfd_get_linker_section (dynobj, ".gnu.hash");
7269 BFD_ASSERT (s != NULL);
7270
7271 if (cinfo.nsyms == 0)
7272 {
7273 /* Empty .gnu.hash section is special. */
7274 BFD_ASSERT (cinfo.min_dynindx == -1);
7275 free (cinfo.hashcodes);
7276 s->size = 5 * 4 + bed->s->arch_size / 8;
7277 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7278 if (contents == NULL)
7279 return FALSE;
7280 s->contents = contents;
7281 /* 1 empty bucket. */
7282 bfd_put_32 (output_bfd, 1, contents);
7283 /* SYMIDX above the special symbol 0. */
7284 bfd_put_32 (output_bfd, 1, contents + 4);
7285 /* Just one word for bitmask. */
7286 bfd_put_32 (output_bfd, 1, contents + 8);
7287 /* Only hash fn bloom filter. */
7288 bfd_put_32 (output_bfd, 0, contents + 12);
7289 /* No hashes are valid - empty bitmask. */
7290 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
7291 /* No hashes in the only bucket. */
7292 bfd_put_32 (output_bfd, 0,
7293 contents + 16 + bed->s->arch_size / 8);
7294 }
7295 else
7296 {
7297 unsigned long int maskwords, maskbitslog2, x;
7298 BFD_ASSERT (cinfo.min_dynindx != -1);
7299
7300 x = cinfo.nsyms;
7301 maskbitslog2 = 1;
7302 while ((x >>= 1) != 0)
7303 ++maskbitslog2;
7304 if (maskbitslog2 < 3)
7305 maskbitslog2 = 5;
7306 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
7307 maskbitslog2 = maskbitslog2 + 3;
7308 else
7309 maskbitslog2 = maskbitslog2 + 2;
7310 if (bed->s->arch_size == 64)
7311 {
7312 if (maskbitslog2 == 5)
7313 maskbitslog2 = 6;
7314 cinfo.shift1 = 6;
7315 }
7316 else
7317 cinfo.shift1 = 5;
7318 cinfo.mask = (1 << cinfo.shift1) - 1;
7319 cinfo.shift2 = maskbitslog2;
7320 cinfo.maskbits = 1 << maskbitslog2;
7321 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
7322 amt = bucketcount * sizeof (unsigned long int) * 2;
7323 amt += maskwords * sizeof (bfd_vma);
7324 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
7325 if (cinfo.bitmask == NULL)
7326 {
7327 free (cinfo.hashcodes);
7328 return FALSE;
7329 }
7330
7331 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
7332 cinfo.indx = cinfo.counts + bucketcount;
7333 cinfo.symindx = dynsymcount - cinfo.nsyms;
7334 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
7335
7336 /* Determine how often each hash bucket is used. */
7337 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
7338 for (i = 0; i < cinfo.nsyms; ++i)
7339 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
7340
7341 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
7342 if (cinfo.counts[i] != 0)
7343 {
7344 cinfo.indx[i] = cnt;
7345 cnt += cinfo.counts[i];
7346 }
7347 BFD_ASSERT (cnt == dynsymcount);
7348 cinfo.bucketcount = bucketcount;
7349 cinfo.local_indx = cinfo.min_dynindx;
7350
7351 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
7352 s->size += cinfo.maskbits / 8;
7353 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7354 if (contents == NULL)
7355 {
7356 free (cinfo.bitmask);
7357 free (cinfo.hashcodes);
7358 return FALSE;
7359 }
7360
7361 s->contents = contents;
7362 bfd_put_32 (output_bfd, bucketcount, contents);
7363 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
7364 bfd_put_32 (output_bfd, maskwords, contents + 8);
7365 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
7366 contents += 16 + cinfo.maskbits / 8;
7367
7368 for (i = 0; i < bucketcount; ++i)
7369 {
7370 if (cinfo.counts[i] == 0)
7371 bfd_put_32 (output_bfd, 0, contents);
7372 else
7373 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
7374 contents += 4;
7375 }
7376
7377 cinfo.contents = contents;
7378
7379 /* Renumber dynamic symbols, populate .gnu.hash section. */
7380 elf_link_hash_traverse (elf_hash_table (info),
7381 elf_renumber_gnu_hash_syms, &cinfo);
7382
7383 contents = s->contents + 16;
7384 for (i = 0; i < maskwords; ++i)
7385 {
7386 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
7387 contents);
7388 contents += bed->s->arch_size / 8;
7389 }
7390
7391 free (cinfo.bitmask);
7392 free (cinfo.hashcodes);
7393 }
7394 }
7395
7396 s = bfd_get_linker_section (dynobj, ".dynstr");
7397 BFD_ASSERT (s != NULL);
7398
7399 elf_finalize_dynstr (output_bfd, info);
7400
7401 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7402
7403 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
7404 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7405 return FALSE;
7406 }
7407
7408 return TRUE;
7409 }
7410 \f
7411 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
7412
7413 static void
7414 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7415 asection *sec)
7416 {
7417 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7418 sec->sec_info_type = SEC_INFO_TYPE_NONE;
7419 }
7420
7421 /* Finish SHF_MERGE section merging. */
7422
7423 bfd_boolean
7424 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7425 {
7426 bfd *ibfd;
7427 asection *sec;
7428
7429 if (!is_elf_hash_table (info->hash))
7430 return FALSE;
7431
7432 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7433 if ((ibfd->flags & DYNAMIC) == 0
7434 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7435 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7436 == get_elf_backend_data (obfd)->s->elfclass))
7437 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7438 if ((sec->flags & SEC_MERGE) != 0
7439 && !bfd_is_abs_section (sec->output_section))
7440 {
7441 struct bfd_elf_section_data *secdata;
7442
7443 secdata = elf_section_data (sec);
7444 if (! _bfd_add_merge_section (obfd,
7445 &elf_hash_table (info)->merge_info,
7446 sec, &secdata->sec_info))
7447 return FALSE;
7448 else if (secdata->sec_info)
7449 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7450 }
7451
7452 if (elf_hash_table (info)->merge_info != NULL)
7453 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7454 merge_sections_remove_hook);
7455 return TRUE;
7456 }
7457
7458 /* Create an entry in an ELF linker hash table. */
7459
7460 struct bfd_hash_entry *
7461 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7462 struct bfd_hash_table *table,
7463 const char *string)
7464 {
7465 /* Allocate the structure if it has not already been allocated by a
7466 subclass. */
7467 if (entry == NULL)
7468 {
7469 entry = (struct bfd_hash_entry *)
7470 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7471 if (entry == NULL)
7472 return entry;
7473 }
7474
7475 /* Call the allocation method of the superclass. */
7476 entry = _bfd_link_hash_newfunc (entry, table, string);
7477 if (entry != NULL)
7478 {
7479 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7480 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7481
7482 /* Set local fields. */
7483 ret->indx = -1;
7484 ret->dynindx = -1;
7485 ret->got = htab->init_got_refcount;
7486 ret->plt = htab->init_plt_refcount;
7487 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7488 - offsetof (struct elf_link_hash_entry, size)));
7489 /* Assume that we have been called by a non-ELF symbol reader.
7490 This flag is then reset by the code which reads an ELF input
7491 file. This ensures that a symbol created by a non-ELF symbol
7492 reader will have the flag set correctly. */
7493 ret->non_elf = 1;
7494 }
7495
7496 return entry;
7497 }
7498
7499 /* Copy data from an indirect symbol to its direct symbol, hiding the
7500 old indirect symbol. Also used for copying flags to a weakdef. */
7501
7502 void
7503 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7504 struct elf_link_hash_entry *dir,
7505 struct elf_link_hash_entry *ind)
7506 {
7507 struct elf_link_hash_table *htab;
7508
7509 /* Copy down any references that we may have already seen to the
7510 symbol which just became indirect. */
7511
7512 if (dir->versioned != versioned_hidden)
7513 dir->ref_dynamic |= ind->ref_dynamic;
7514 dir->ref_regular |= ind->ref_regular;
7515 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7516 dir->non_got_ref |= ind->non_got_ref;
7517 dir->needs_plt |= ind->needs_plt;
7518 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7519
7520 if (ind->root.type != bfd_link_hash_indirect)
7521 return;
7522
7523 /* Copy over the global and procedure linkage table refcount entries.
7524 These may have been already set up by a check_relocs routine. */
7525 htab = elf_hash_table (info);
7526 if (ind->got.refcount > htab->init_got_refcount.refcount)
7527 {
7528 if (dir->got.refcount < 0)
7529 dir->got.refcount = 0;
7530 dir->got.refcount += ind->got.refcount;
7531 ind->got.refcount = htab->init_got_refcount.refcount;
7532 }
7533
7534 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7535 {
7536 if (dir->plt.refcount < 0)
7537 dir->plt.refcount = 0;
7538 dir->plt.refcount += ind->plt.refcount;
7539 ind->plt.refcount = htab->init_plt_refcount.refcount;
7540 }
7541
7542 if (ind->dynindx != -1)
7543 {
7544 if (dir->dynindx != -1)
7545 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7546 dir->dynindx = ind->dynindx;
7547 dir->dynstr_index = ind->dynstr_index;
7548 ind->dynindx = -1;
7549 ind->dynstr_index = 0;
7550 }
7551 }
7552
7553 void
7554 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7555 struct elf_link_hash_entry *h,
7556 bfd_boolean force_local)
7557 {
7558 /* STT_GNU_IFUNC symbol must go through PLT. */
7559 if (h->type != STT_GNU_IFUNC)
7560 {
7561 h->plt = elf_hash_table (info)->init_plt_offset;
7562 h->needs_plt = 0;
7563 }
7564 if (force_local)
7565 {
7566 h->forced_local = 1;
7567 if (h->dynindx != -1)
7568 {
7569 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7570 h->dynstr_index);
7571 h->dynindx = -1;
7572 h->dynstr_index = 0;
7573 }
7574 }
7575 }
7576
7577 /* Hide a symbol. */
7578
7579 void
7580 _bfd_elf_link_hide_symbol (bfd *output_bfd,
7581 struct bfd_link_info *info,
7582 struct bfd_link_hash_entry *h)
7583 {
7584 if (is_elf_hash_table (info->hash))
7585 {
7586 const struct elf_backend_data *bed
7587 = get_elf_backend_data (output_bfd);
7588 struct elf_link_hash_entry *eh
7589 = (struct elf_link_hash_entry *) h;
7590 bed->elf_backend_hide_symbol (info, eh, TRUE);
7591 eh->def_dynamic = 0;
7592 eh->ref_dynamic = 0;
7593 eh->dynamic_def = 0;
7594 }
7595 }
7596
7597 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7598 caller. */
7599
7600 bfd_boolean
7601 _bfd_elf_link_hash_table_init
7602 (struct elf_link_hash_table *table,
7603 bfd *abfd,
7604 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7605 struct bfd_hash_table *,
7606 const char *),
7607 unsigned int entsize,
7608 enum elf_target_id target_id)
7609 {
7610 bfd_boolean ret;
7611 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7612
7613 table->init_got_refcount.refcount = can_refcount - 1;
7614 table->init_plt_refcount.refcount = can_refcount - 1;
7615 table->init_got_offset.offset = -(bfd_vma) 1;
7616 table->init_plt_offset.offset = -(bfd_vma) 1;
7617 /* The first dynamic symbol is a dummy. */
7618 table->dynsymcount = 1;
7619
7620 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7621
7622 table->root.type = bfd_link_elf_hash_table;
7623 table->hash_table_id = target_id;
7624
7625 return ret;
7626 }
7627
7628 /* Create an ELF linker hash table. */
7629
7630 struct bfd_link_hash_table *
7631 _bfd_elf_link_hash_table_create (bfd *abfd)
7632 {
7633 struct elf_link_hash_table *ret;
7634 bfd_size_type amt = sizeof (struct elf_link_hash_table);
7635
7636 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7637 if (ret == NULL)
7638 return NULL;
7639
7640 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7641 sizeof (struct elf_link_hash_entry),
7642 GENERIC_ELF_DATA))
7643 {
7644 free (ret);
7645 return NULL;
7646 }
7647 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7648
7649 return &ret->root;
7650 }
7651
7652 /* Destroy an ELF linker hash table. */
7653
7654 void
7655 _bfd_elf_link_hash_table_free (bfd *obfd)
7656 {
7657 struct elf_link_hash_table *htab;
7658
7659 htab = (struct elf_link_hash_table *) obfd->link.hash;
7660 if (htab->dynstr != NULL)
7661 _bfd_elf_strtab_free (htab->dynstr);
7662 _bfd_merge_sections_free (htab->merge_info);
7663 _bfd_generic_link_hash_table_free (obfd);
7664 }
7665
7666 /* This is a hook for the ELF emulation code in the generic linker to
7667 tell the backend linker what file name to use for the DT_NEEDED
7668 entry for a dynamic object. */
7669
7670 void
7671 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7672 {
7673 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7674 && bfd_get_format (abfd) == bfd_object)
7675 elf_dt_name (abfd) = name;
7676 }
7677
7678 int
7679 bfd_elf_get_dyn_lib_class (bfd *abfd)
7680 {
7681 int lib_class;
7682 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7683 && bfd_get_format (abfd) == bfd_object)
7684 lib_class = elf_dyn_lib_class (abfd);
7685 else
7686 lib_class = 0;
7687 return lib_class;
7688 }
7689
7690 void
7691 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7692 {
7693 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7694 && bfd_get_format (abfd) == bfd_object)
7695 elf_dyn_lib_class (abfd) = lib_class;
7696 }
7697
7698 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7699 the linker ELF emulation code. */
7700
7701 struct bfd_link_needed_list *
7702 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7703 struct bfd_link_info *info)
7704 {
7705 if (! is_elf_hash_table (info->hash))
7706 return NULL;
7707 return elf_hash_table (info)->needed;
7708 }
7709
7710 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7711 hook for the linker ELF emulation code. */
7712
7713 struct bfd_link_needed_list *
7714 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7715 struct bfd_link_info *info)
7716 {
7717 if (! is_elf_hash_table (info->hash))
7718 return NULL;
7719 return elf_hash_table (info)->runpath;
7720 }
7721
7722 /* Get the name actually used for a dynamic object for a link. This
7723 is the SONAME entry if there is one. Otherwise, it is the string
7724 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7725
7726 const char *
7727 bfd_elf_get_dt_soname (bfd *abfd)
7728 {
7729 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7730 && bfd_get_format (abfd) == bfd_object)
7731 return elf_dt_name (abfd);
7732 return NULL;
7733 }
7734
7735 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7736 the ELF linker emulation code. */
7737
7738 bfd_boolean
7739 bfd_elf_get_bfd_needed_list (bfd *abfd,
7740 struct bfd_link_needed_list **pneeded)
7741 {
7742 asection *s;
7743 bfd_byte *dynbuf = NULL;
7744 unsigned int elfsec;
7745 unsigned long shlink;
7746 bfd_byte *extdyn, *extdynend;
7747 size_t extdynsize;
7748 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7749
7750 *pneeded = NULL;
7751
7752 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7753 || bfd_get_format (abfd) != bfd_object)
7754 return TRUE;
7755
7756 s = bfd_get_section_by_name (abfd, ".dynamic");
7757 if (s == NULL || s->size == 0)
7758 return TRUE;
7759
7760 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7761 goto error_return;
7762
7763 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7764 if (elfsec == SHN_BAD)
7765 goto error_return;
7766
7767 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7768
7769 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7770 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7771
7772 extdyn = dynbuf;
7773 extdynend = extdyn + s->size;
7774 for (; extdyn < extdynend; extdyn += extdynsize)
7775 {
7776 Elf_Internal_Dyn dyn;
7777
7778 (*swap_dyn_in) (abfd, extdyn, &dyn);
7779
7780 if (dyn.d_tag == DT_NULL)
7781 break;
7782
7783 if (dyn.d_tag == DT_NEEDED)
7784 {
7785 const char *string;
7786 struct bfd_link_needed_list *l;
7787 unsigned int tagv = dyn.d_un.d_val;
7788 bfd_size_type amt;
7789
7790 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7791 if (string == NULL)
7792 goto error_return;
7793
7794 amt = sizeof *l;
7795 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7796 if (l == NULL)
7797 goto error_return;
7798
7799 l->by = abfd;
7800 l->name = string;
7801 l->next = *pneeded;
7802 *pneeded = l;
7803 }
7804 }
7805
7806 free (dynbuf);
7807
7808 return TRUE;
7809
7810 error_return:
7811 if (dynbuf != NULL)
7812 free (dynbuf);
7813 return FALSE;
7814 }
7815
7816 struct elf_symbuf_symbol
7817 {
7818 unsigned long st_name; /* Symbol name, index in string tbl */
7819 unsigned char st_info; /* Type and binding attributes */
7820 unsigned char st_other; /* Visibilty, and target specific */
7821 };
7822
7823 struct elf_symbuf_head
7824 {
7825 struct elf_symbuf_symbol *ssym;
7826 size_t count;
7827 unsigned int st_shndx;
7828 };
7829
7830 struct elf_symbol
7831 {
7832 union
7833 {
7834 Elf_Internal_Sym *isym;
7835 struct elf_symbuf_symbol *ssym;
7836 } u;
7837 const char *name;
7838 };
7839
7840 /* Sort references to symbols by ascending section number. */
7841
7842 static int
7843 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7844 {
7845 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7846 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7847
7848 return s1->st_shndx - s2->st_shndx;
7849 }
7850
7851 static int
7852 elf_sym_name_compare (const void *arg1, const void *arg2)
7853 {
7854 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7855 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7856 return strcmp (s1->name, s2->name);
7857 }
7858
7859 static struct elf_symbuf_head *
7860 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
7861 {
7862 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7863 struct elf_symbuf_symbol *ssym;
7864 struct elf_symbuf_head *ssymbuf, *ssymhead;
7865 size_t i, shndx_count, total_size;
7866
7867 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7868 if (indbuf == NULL)
7869 return NULL;
7870
7871 for (ind = indbuf, i = 0; i < symcount; i++)
7872 if (isymbuf[i].st_shndx != SHN_UNDEF)
7873 *ind++ = &isymbuf[i];
7874 indbufend = ind;
7875
7876 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7877 elf_sort_elf_symbol);
7878
7879 shndx_count = 0;
7880 if (indbufend > indbuf)
7881 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7882 if (ind[0]->st_shndx != ind[1]->st_shndx)
7883 shndx_count++;
7884
7885 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7886 + (indbufend - indbuf) * sizeof (*ssym));
7887 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7888 if (ssymbuf == NULL)
7889 {
7890 free (indbuf);
7891 return NULL;
7892 }
7893
7894 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7895 ssymbuf->ssym = NULL;
7896 ssymbuf->count = shndx_count;
7897 ssymbuf->st_shndx = 0;
7898 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7899 {
7900 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7901 {
7902 ssymhead++;
7903 ssymhead->ssym = ssym;
7904 ssymhead->count = 0;
7905 ssymhead->st_shndx = (*ind)->st_shndx;
7906 }
7907 ssym->st_name = (*ind)->st_name;
7908 ssym->st_info = (*ind)->st_info;
7909 ssym->st_other = (*ind)->st_other;
7910 ssymhead->count++;
7911 }
7912 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
7913 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7914 == total_size));
7915
7916 free (indbuf);
7917 return ssymbuf;
7918 }
7919
7920 /* Check if 2 sections define the same set of local and global
7921 symbols. */
7922
7923 static bfd_boolean
7924 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7925 struct bfd_link_info *info)
7926 {
7927 bfd *bfd1, *bfd2;
7928 const struct elf_backend_data *bed1, *bed2;
7929 Elf_Internal_Shdr *hdr1, *hdr2;
7930 size_t symcount1, symcount2;
7931 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7932 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7933 Elf_Internal_Sym *isym, *isymend;
7934 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7935 size_t count1, count2, i;
7936 unsigned int shndx1, shndx2;
7937 bfd_boolean result;
7938
7939 bfd1 = sec1->owner;
7940 bfd2 = sec2->owner;
7941
7942 /* Both sections have to be in ELF. */
7943 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7944 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7945 return FALSE;
7946
7947 if (elf_section_type (sec1) != elf_section_type (sec2))
7948 return FALSE;
7949
7950 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7951 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7952 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7953 return FALSE;
7954
7955 bed1 = get_elf_backend_data (bfd1);
7956 bed2 = get_elf_backend_data (bfd2);
7957 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7958 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7959 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7960 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7961
7962 if (symcount1 == 0 || symcount2 == 0)
7963 return FALSE;
7964
7965 result = FALSE;
7966 isymbuf1 = NULL;
7967 isymbuf2 = NULL;
7968 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7969 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7970
7971 if (ssymbuf1 == NULL)
7972 {
7973 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7974 NULL, NULL, NULL);
7975 if (isymbuf1 == NULL)
7976 goto done;
7977
7978 if (!info->reduce_memory_overheads)
7979 elf_tdata (bfd1)->symbuf = ssymbuf1
7980 = elf_create_symbuf (symcount1, isymbuf1);
7981 }
7982
7983 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7984 {
7985 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7986 NULL, NULL, NULL);
7987 if (isymbuf2 == NULL)
7988 goto done;
7989
7990 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7991 elf_tdata (bfd2)->symbuf = ssymbuf2
7992 = elf_create_symbuf (symcount2, isymbuf2);
7993 }
7994
7995 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7996 {
7997 /* Optimized faster version. */
7998 size_t lo, hi, mid;
7999 struct elf_symbol *symp;
8000 struct elf_symbuf_symbol *ssym, *ssymend;
8001
8002 lo = 0;
8003 hi = ssymbuf1->count;
8004 ssymbuf1++;
8005 count1 = 0;
8006 while (lo < hi)
8007 {
8008 mid = (lo + hi) / 2;
8009 if (shndx1 < ssymbuf1[mid].st_shndx)
8010 hi = mid;
8011 else if (shndx1 > ssymbuf1[mid].st_shndx)
8012 lo = mid + 1;
8013 else
8014 {
8015 count1 = ssymbuf1[mid].count;
8016 ssymbuf1 += mid;
8017 break;
8018 }
8019 }
8020
8021 lo = 0;
8022 hi = ssymbuf2->count;
8023 ssymbuf2++;
8024 count2 = 0;
8025 while (lo < hi)
8026 {
8027 mid = (lo + hi) / 2;
8028 if (shndx2 < ssymbuf2[mid].st_shndx)
8029 hi = mid;
8030 else if (shndx2 > ssymbuf2[mid].st_shndx)
8031 lo = mid + 1;
8032 else
8033 {
8034 count2 = ssymbuf2[mid].count;
8035 ssymbuf2 += mid;
8036 break;
8037 }
8038 }
8039
8040 if (count1 == 0 || count2 == 0 || count1 != count2)
8041 goto done;
8042
8043 symtable1
8044 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
8045 symtable2
8046 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
8047 if (symtable1 == NULL || symtable2 == NULL)
8048 goto done;
8049
8050 symp = symtable1;
8051 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
8052 ssym < ssymend; ssym++, symp++)
8053 {
8054 symp->u.ssym = ssym;
8055 symp->name = bfd_elf_string_from_elf_section (bfd1,
8056 hdr1->sh_link,
8057 ssym->st_name);
8058 }
8059
8060 symp = symtable2;
8061 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
8062 ssym < ssymend; ssym++, symp++)
8063 {
8064 symp->u.ssym = ssym;
8065 symp->name = bfd_elf_string_from_elf_section (bfd2,
8066 hdr2->sh_link,
8067 ssym->st_name);
8068 }
8069
8070 /* Sort symbol by name. */
8071 qsort (symtable1, count1, sizeof (struct elf_symbol),
8072 elf_sym_name_compare);
8073 qsort (symtable2, count1, sizeof (struct elf_symbol),
8074 elf_sym_name_compare);
8075
8076 for (i = 0; i < count1; i++)
8077 /* Two symbols must have the same binding, type and name. */
8078 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
8079 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
8080 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8081 goto done;
8082
8083 result = TRUE;
8084 goto done;
8085 }
8086
8087 symtable1 = (struct elf_symbol *)
8088 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
8089 symtable2 = (struct elf_symbol *)
8090 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
8091 if (symtable1 == NULL || symtable2 == NULL)
8092 goto done;
8093
8094 /* Count definitions in the section. */
8095 count1 = 0;
8096 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
8097 if (isym->st_shndx == shndx1)
8098 symtable1[count1++].u.isym = isym;
8099
8100 count2 = 0;
8101 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
8102 if (isym->st_shndx == shndx2)
8103 symtable2[count2++].u.isym = isym;
8104
8105 if (count1 == 0 || count2 == 0 || count1 != count2)
8106 goto done;
8107
8108 for (i = 0; i < count1; i++)
8109 symtable1[i].name
8110 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
8111 symtable1[i].u.isym->st_name);
8112
8113 for (i = 0; i < count2; i++)
8114 symtable2[i].name
8115 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
8116 symtable2[i].u.isym->st_name);
8117
8118 /* Sort symbol by name. */
8119 qsort (symtable1, count1, sizeof (struct elf_symbol),
8120 elf_sym_name_compare);
8121 qsort (symtable2, count1, sizeof (struct elf_symbol),
8122 elf_sym_name_compare);
8123
8124 for (i = 0; i < count1; i++)
8125 /* Two symbols must have the same binding, type and name. */
8126 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
8127 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
8128 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8129 goto done;
8130
8131 result = TRUE;
8132
8133 done:
8134 if (symtable1)
8135 free (symtable1);
8136 if (symtable2)
8137 free (symtable2);
8138 if (isymbuf1)
8139 free (isymbuf1);
8140 if (isymbuf2)
8141 free (isymbuf2);
8142
8143 return result;
8144 }
8145
8146 /* Return TRUE if 2 section types are compatible. */
8147
8148 bfd_boolean
8149 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8150 bfd *bbfd, const asection *bsec)
8151 {
8152 if (asec == NULL
8153 || bsec == NULL
8154 || abfd->xvec->flavour != bfd_target_elf_flavour
8155 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8156 return TRUE;
8157
8158 return elf_section_type (asec) == elf_section_type (bsec);
8159 }
8160 \f
8161 /* Final phase of ELF linker. */
8162
8163 /* A structure we use to avoid passing large numbers of arguments. */
8164
8165 struct elf_final_link_info
8166 {
8167 /* General link information. */
8168 struct bfd_link_info *info;
8169 /* Output BFD. */
8170 bfd *output_bfd;
8171 /* Symbol string table. */
8172 struct elf_strtab_hash *symstrtab;
8173 /* .hash section. */
8174 asection *hash_sec;
8175 /* symbol version section (.gnu.version). */
8176 asection *symver_sec;
8177 /* Buffer large enough to hold contents of any section. */
8178 bfd_byte *contents;
8179 /* Buffer large enough to hold external relocs of any section. */
8180 void *external_relocs;
8181 /* Buffer large enough to hold internal relocs of any section. */
8182 Elf_Internal_Rela *internal_relocs;
8183 /* Buffer large enough to hold external local symbols of any input
8184 BFD. */
8185 bfd_byte *external_syms;
8186 /* And a buffer for symbol section indices. */
8187 Elf_External_Sym_Shndx *locsym_shndx;
8188 /* Buffer large enough to hold internal local symbols of any input
8189 BFD. */
8190 Elf_Internal_Sym *internal_syms;
8191 /* Array large enough to hold a symbol index for each local symbol
8192 of any input BFD. */
8193 long *indices;
8194 /* Array large enough to hold a section pointer for each local
8195 symbol of any input BFD. */
8196 asection **sections;
8197 /* Buffer for SHT_SYMTAB_SHNDX section. */
8198 Elf_External_Sym_Shndx *symshndxbuf;
8199 /* Number of STT_FILE syms seen. */
8200 size_t filesym_count;
8201 };
8202
8203 /* This struct is used to pass information to elf_link_output_extsym. */
8204
8205 struct elf_outext_info
8206 {
8207 bfd_boolean failed;
8208 bfd_boolean localsyms;
8209 bfd_boolean file_sym_done;
8210 struct elf_final_link_info *flinfo;
8211 };
8212
8213
8214 /* Support for evaluating a complex relocation.
8215
8216 Complex relocations are generalized, self-describing relocations. The
8217 implementation of them consists of two parts: complex symbols, and the
8218 relocations themselves.
8219
8220 The relocations are use a reserved elf-wide relocation type code (R_RELC
8221 external / BFD_RELOC_RELC internal) and an encoding of relocation field
8222 information (start bit, end bit, word width, etc) into the addend. This
8223 information is extracted from CGEN-generated operand tables within gas.
8224
8225 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
8226 internal) representing prefix-notation expressions, including but not
8227 limited to those sorts of expressions normally encoded as addends in the
8228 addend field. The symbol mangling format is:
8229
8230 <node> := <literal>
8231 | <unary-operator> ':' <node>
8232 | <binary-operator> ':' <node> ':' <node>
8233 ;
8234
8235 <literal> := 's' <digits=N> ':' <N character symbol name>
8236 | 'S' <digits=N> ':' <N character section name>
8237 | '#' <hexdigits>
8238 ;
8239
8240 <binary-operator> := as in C
8241 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
8242
8243 static void
8244 set_symbol_value (bfd *bfd_with_globals,
8245 Elf_Internal_Sym *isymbuf,
8246 size_t locsymcount,
8247 size_t symidx,
8248 bfd_vma val)
8249 {
8250 struct elf_link_hash_entry **sym_hashes;
8251 struct elf_link_hash_entry *h;
8252 size_t extsymoff = locsymcount;
8253
8254 if (symidx < locsymcount)
8255 {
8256 Elf_Internal_Sym *sym;
8257
8258 sym = isymbuf + symidx;
8259 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
8260 {
8261 /* It is a local symbol: move it to the
8262 "absolute" section and give it a value. */
8263 sym->st_shndx = SHN_ABS;
8264 sym->st_value = val;
8265 return;
8266 }
8267 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
8268 extsymoff = 0;
8269 }
8270
8271 /* It is a global symbol: set its link type
8272 to "defined" and give it a value. */
8273
8274 sym_hashes = elf_sym_hashes (bfd_with_globals);
8275 h = sym_hashes [symidx - extsymoff];
8276 while (h->root.type == bfd_link_hash_indirect
8277 || h->root.type == bfd_link_hash_warning)
8278 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8279 h->root.type = bfd_link_hash_defined;
8280 h->root.u.def.value = val;
8281 h->root.u.def.section = bfd_abs_section_ptr;
8282 }
8283
8284 static bfd_boolean
8285 resolve_symbol (const char *name,
8286 bfd *input_bfd,
8287 struct elf_final_link_info *flinfo,
8288 bfd_vma *result,
8289 Elf_Internal_Sym *isymbuf,
8290 size_t locsymcount)
8291 {
8292 Elf_Internal_Sym *sym;
8293 struct bfd_link_hash_entry *global_entry;
8294 const char *candidate = NULL;
8295 Elf_Internal_Shdr *symtab_hdr;
8296 size_t i;
8297
8298 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
8299
8300 for (i = 0; i < locsymcount; ++ i)
8301 {
8302 sym = isymbuf + i;
8303
8304 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
8305 continue;
8306
8307 candidate = bfd_elf_string_from_elf_section (input_bfd,
8308 symtab_hdr->sh_link,
8309 sym->st_name);
8310 #ifdef DEBUG
8311 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
8312 name, candidate, (unsigned long) sym->st_value);
8313 #endif
8314 if (candidate && strcmp (candidate, name) == 0)
8315 {
8316 asection *sec = flinfo->sections [i];
8317
8318 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
8319 *result += sec->output_offset + sec->output_section->vma;
8320 #ifdef DEBUG
8321 printf ("Found symbol with value %8.8lx\n",
8322 (unsigned long) *result);
8323 #endif
8324 return TRUE;
8325 }
8326 }
8327
8328 /* Hmm, haven't found it yet. perhaps it is a global. */
8329 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
8330 FALSE, FALSE, TRUE);
8331 if (!global_entry)
8332 return FALSE;
8333
8334 if (global_entry->type == bfd_link_hash_defined
8335 || global_entry->type == bfd_link_hash_defweak)
8336 {
8337 *result = (global_entry->u.def.value
8338 + global_entry->u.def.section->output_section->vma
8339 + global_entry->u.def.section->output_offset);
8340 #ifdef DEBUG
8341 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
8342 global_entry->root.string, (unsigned long) *result);
8343 #endif
8344 return TRUE;
8345 }
8346
8347 return FALSE;
8348 }
8349
8350 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
8351 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
8352 names like "foo.end" which is the end address of section "foo". */
8353
8354 static bfd_boolean
8355 resolve_section (const char *name,
8356 asection *sections,
8357 bfd_vma *result,
8358 bfd * abfd)
8359 {
8360 asection *curr;
8361 unsigned int len;
8362
8363 for (curr = sections; curr; curr = curr->next)
8364 if (strcmp (curr->name, name) == 0)
8365 {
8366 *result = curr->vma;
8367 return TRUE;
8368 }
8369
8370 /* Hmm. still haven't found it. try pseudo-section names. */
8371 /* FIXME: This could be coded more efficiently... */
8372 for (curr = sections; curr; curr = curr->next)
8373 {
8374 len = strlen (curr->name);
8375 if (len > strlen (name))
8376 continue;
8377
8378 if (strncmp (curr->name, name, len) == 0)
8379 {
8380 if (strncmp (".end", name + len, 4) == 0)
8381 {
8382 *result = curr->vma + curr->size / bfd_octets_per_byte (abfd);
8383 return TRUE;
8384 }
8385
8386 /* Insert more pseudo-section names here, if you like. */
8387 }
8388 }
8389
8390 return FALSE;
8391 }
8392
8393 static void
8394 undefined_reference (const char *reftype, const char *name)
8395 {
8396 /* xgettext:c-format */
8397 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8398 reftype, name);
8399 }
8400
8401 static bfd_boolean
8402 eval_symbol (bfd_vma *result,
8403 const char **symp,
8404 bfd *input_bfd,
8405 struct elf_final_link_info *flinfo,
8406 bfd_vma dot,
8407 Elf_Internal_Sym *isymbuf,
8408 size_t locsymcount,
8409 int signed_p)
8410 {
8411 size_t len;
8412 size_t symlen;
8413 bfd_vma a;
8414 bfd_vma b;
8415 char symbuf[4096];
8416 const char *sym = *symp;
8417 const char *symend;
8418 bfd_boolean symbol_is_section = FALSE;
8419
8420 len = strlen (sym);
8421 symend = sym + len;
8422
8423 if (len < 1 || len > sizeof (symbuf))
8424 {
8425 bfd_set_error (bfd_error_invalid_operation);
8426 return FALSE;
8427 }
8428
8429 switch (* sym)
8430 {
8431 case '.':
8432 *result = dot;
8433 *symp = sym + 1;
8434 return TRUE;
8435
8436 case '#':
8437 ++sym;
8438 *result = strtoul (sym, (char **) symp, 16);
8439 return TRUE;
8440
8441 case 'S':
8442 symbol_is_section = TRUE;
8443 /* Fall through. */
8444 case 's':
8445 ++sym;
8446 symlen = strtol (sym, (char **) symp, 10);
8447 sym = *symp + 1; /* Skip the trailing ':'. */
8448
8449 if (symend < sym || symlen + 1 > sizeof (symbuf))
8450 {
8451 bfd_set_error (bfd_error_invalid_operation);
8452 return FALSE;
8453 }
8454
8455 memcpy (symbuf, sym, symlen);
8456 symbuf[symlen] = '\0';
8457 *symp = sym + symlen;
8458
8459 /* Is it always possible, with complex symbols, that gas "mis-guessed"
8460 the symbol as a section, or vice-versa. so we're pretty liberal in our
8461 interpretation here; section means "try section first", not "must be a
8462 section", and likewise with symbol. */
8463
8464 if (symbol_is_section)
8465 {
8466 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
8467 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
8468 isymbuf, locsymcount))
8469 {
8470 undefined_reference ("section", symbuf);
8471 return FALSE;
8472 }
8473 }
8474 else
8475 {
8476 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
8477 isymbuf, locsymcount)
8478 && !resolve_section (symbuf, flinfo->output_bfd->sections,
8479 result, input_bfd))
8480 {
8481 undefined_reference ("symbol", symbuf);
8482 return FALSE;
8483 }
8484 }
8485
8486 return TRUE;
8487
8488 /* All that remains are operators. */
8489
8490 #define UNARY_OP(op) \
8491 if (strncmp (sym, #op, strlen (#op)) == 0) \
8492 { \
8493 sym += strlen (#op); \
8494 if (*sym == ':') \
8495 ++sym; \
8496 *symp = sym; \
8497 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8498 isymbuf, locsymcount, signed_p)) \
8499 return FALSE; \
8500 if (signed_p) \
8501 *result = op ((bfd_signed_vma) a); \
8502 else \
8503 *result = op a; \
8504 return TRUE; \
8505 }
8506
8507 #define BINARY_OP(op) \
8508 if (strncmp (sym, #op, strlen (#op)) == 0) \
8509 { \
8510 sym += strlen (#op); \
8511 if (*sym == ':') \
8512 ++sym; \
8513 *symp = sym; \
8514 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8515 isymbuf, locsymcount, signed_p)) \
8516 return FALSE; \
8517 ++*symp; \
8518 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8519 isymbuf, locsymcount, signed_p)) \
8520 return FALSE; \
8521 if (signed_p) \
8522 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8523 else \
8524 *result = a op b; \
8525 return TRUE; \
8526 }
8527
8528 default:
8529 UNARY_OP (0-);
8530 BINARY_OP (<<);
8531 BINARY_OP (>>);
8532 BINARY_OP (==);
8533 BINARY_OP (!=);
8534 BINARY_OP (<=);
8535 BINARY_OP (>=);
8536 BINARY_OP (&&);
8537 BINARY_OP (||);
8538 UNARY_OP (~);
8539 UNARY_OP (!);
8540 BINARY_OP (*);
8541 BINARY_OP (/);
8542 BINARY_OP (%);
8543 BINARY_OP (^);
8544 BINARY_OP (|);
8545 BINARY_OP (&);
8546 BINARY_OP (+);
8547 BINARY_OP (-);
8548 BINARY_OP (<);
8549 BINARY_OP (>);
8550 #undef UNARY_OP
8551 #undef BINARY_OP
8552 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8553 bfd_set_error (bfd_error_invalid_operation);
8554 return FALSE;
8555 }
8556 }
8557
8558 static void
8559 put_value (bfd_vma size,
8560 unsigned long chunksz,
8561 bfd *input_bfd,
8562 bfd_vma x,
8563 bfd_byte *location)
8564 {
8565 location += (size - chunksz);
8566
8567 for (; size; size -= chunksz, location -= chunksz)
8568 {
8569 switch (chunksz)
8570 {
8571 case 1:
8572 bfd_put_8 (input_bfd, x, location);
8573 x >>= 8;
8574 break;
8575 case 2:
8576 bfd_put_16 (input_bfd, x, location);
8577 x >>= 16;
8578 break;
8579 case 4:
8580 bfd_put_32 (input_bfd, x, location);
8581 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8582 x >>= 16;
8583 x >>= 16;
8584 break;
8585 #ifdef BFD64
8586 case 8:
8587 bfd_put_64 (input_bfd, x, location);
8588 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8589 x >>= 32;
8590 x >>= 32;
8591 break;
8592 #endif
8593 default:
8594 abort ();
8595 break;
8596 }
8597 }
8598 }
8599
8600 static bfd_vma
8601 get_value (bfd_vma size,
8602 unsigned long chunksz,
8603 bfd *input_bfd,
8604 bfd_byte *location)
8605 {
8606 int shift;
8607 bfd_vma x = 0;
8608
8609 /* Sanity checks. */
8610 BFD_ASSERT (chunksz <= sizeof (x)
8611 && size >= chunksz
8612 && chunksz != 0
8613 && (size % chunksz) == 0
8614 && input_bfd != NULL
8615 && location != NULL);
8616
8617 if (chunksz == sizeof (x))
8618 {
8619 BFD_ASSERT (size == chunksz);
8620
8621 /* Make sure that we do not perform an undefined shift operation.
8622 We know that size == chunksz so there will only be one iteration
8623 of the loop below. */
8624 shift = 0;
8625 }
8626 else
8627 shift = 8 * chunksz;
8628
8629 for (; size; size -= chunksz, location += chunksz)
8630 {
8631 switch (chunksz)
8632 {
8633 case 1:
8634 x = (x << shift) | bfd_get_8 (input_bfd, location);
8635 break;
8636 case 2:
8637 x = (x << shift) | bfd_get_16 (input_bfd, location);
8638 break;
8639 case 4:
8640 x = (x << shift) | bfd_get_32 (input_bfd, location);
8641 break;
8642 #ifdef BFD64
8643 case 8:
8644 x = (x << shift) | bfd_get_64 (input_bfd, location);
8645 break;
8646 #endif
8647 default:
8648 abort ();
8649 }
8650 }
8651 return x;
8652 }
8653
8654 static void
8655 decode_complex_addend (unsigned long *start, /* in bits */
8656 unsigned long *oplen, /* in bits */
8657 unsigned long *len, /* in bits */
8658 unsigned long *wordsz, /* in bytes */
8659 unsigned long *chunksz, /* in bytes */
8660 unsigned long *lsb0_p,
8661 unsigned long *signed_p,
8662 unsigned long *trunc_p,
8663 unsigned long encoded)
8664 {
8665 * start = encoded & 0x3F;
8666 * len = (encoded >> 6) & 0x3F;
8667 * oplen = (encoded >> 12) & 0x3F;
8668 * wordsz = (encoded >> 18) & 0xF;
8669 * chunksz = (encoded >> 22) & 0xF;
8670 * lsb0_p = (encoded >> 27) & 1;
8671 * signed_p = (encoded >> 28) & 1;
8672 * trunc_p = (encoded >> 29) & 1;
8673 }
8674
8675 bfd_reloc_status_type
8676 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8677 asection *input_section ATTRIBUTE_UNUSED,
8678 bfd_byte *contents,
8679 Elf_Internal_Rela *rel,
8680 bfd_vma relocation)
8681 {
8682 bfd_vma shift, x, mask;
8683 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8684 bfd_reloc_status_type r;
8685
8686 /* Perform this reloc, since it is complex.
8687 (this is not to say that it necessarily refers to a complex
8688 symbol; merely that it is a self-describing CGEN based reloc.
8689 i.e. the addend has the complete reloc information (bit start, end,
8690 word size, etc) encoded within it.). */
8691
8692 decode_complex_addend (&start, &oplen, &len, &wordsz,
8693 &chunksz, &lsb0_p, &signed_p,
8694 &trunc_p, rel->r_addend);
8695
8696 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8697
8698 if (lsb0_p)
8699 shift = (start + 1) - len;
8700 else
8701 shift = (8 * wordsz) - (start + len);
8702
8703 x = get_value (wordsz, chunksz, input_bfd,
8704 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8705
8706 #ifdef DEBUG
8707 printf ("Doing complex reloc: "
8708 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8709 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8710 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8711 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8712 oplen, (unsigned long) x, (unsigned long) mask,
8713 (unsigned long) relocation);
8714 #endif
8715
8716 r = bfd_reloc_ok;
8717 if (! trunc_p)
8718 /* Now do an overflow check. */
8719 r = bfd_check_overflow ((signed_p
8720 ? complain_overflow_signed
8721 : complain_overflow_unsigned),
8722 len, 0, (8 * wordsz),
8723 relocation);
8724
8725 /* Do the deed. */
8726 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8727
8728 #ifdef DEBUG
8729 printf (" relocation: %8.8lx\n"
8730 " shifted mask: %8.8lx\n"
8731 " shifted/masked reloc: %8.8lx\n"
8732 " result: %8.8lx\n",
8733 (unsigned long) relocation, (unsigned long) (mask << shift),
8734 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8735 #endif
8736 put_value (wordsz, chunksz, input_bfd, x,
8737 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8738 return r;
8739 }
8740
8741 /* Functions to read r_offset from external (target order) reloc
8742 entry. Faster than bfd_getl32 et al, because we let the compiler
8743 know the value is aligned. */
8744
8745 static bfd_vma
8746 ext32l_r_offset (const void *p)
8747 {
8748 union aligned32
8749 {
8750 uint32_t v;
8751 unsigned char c[4];
8752 };
8753 const union aligned32 *a
8754 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8755
8756 uint32_t aval = ( (uint32_t) a->c[0]
8757 | (uint32_t) a->c[1] << 8
8758 | (uint32_t) a->c[2] << 16
8759 | (uint32_t) a->c[3] << 24);
8760 return aval;
8761 }
8762
8763 static bfd_vma
8764 ext32b_r_offset (const void *p)
8765 {
8766 union aligned32
8767 {
8768 uint32_t v;
8769 unsigned char c[4];
8770 };
8771 const union aligned32 *a
8772 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8773
8774 uint32_t aval = ( (uint32_t) a->c[0] << 24
8775 | (uint32_t) a->c[1] << 16
8776 | (uint32_t) a->c[2] << 8
8777 | (uint32_t) a->c[3]);
8778 return aval;
8779 }
8780
8781 #ifdef BFD_HOST_64_BIT
8782 static bfd_vma
8783 ext64l_r_offset (const void *p)
8784 {
8785 union aligned64
8786 {
8787 uint64_t v;
8788 unsigned char c[8];
8789 };
8790 const union aligned64 *a
8791 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8792
8793 uint64_t aval = ( (uint64_t) a->c[0]
8794 | (uint64_t) a->c[1] << 8
8795 | (uint64_t) a->c[2] << 16
8796 | (uint64_t) a->c[3] << 24
8797 | (uint64_t) a->c[4] << 32
8798 | (uint64_t) a->c[5] << 40
8799 | (uint64_t) a->c[6] << 48
8800 | (uint64_t) a->c[7] << 56);
8801 return aval;
8802 }
8803
8804 static bfd_vma
8805 ext64b_r_offset (const void *p)
8806 {
8807 union aligned64
8808 {
8809 uint64_t v;
8810 unsigned char c[8];
8811 };
8812 const union aligned64 *a
8813 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8814
8815 uint64_t aval = ( (uint64_t) a->c[0] << 56
8816 | (uint64_t) a->c[1] << 48
8817 | (uint64_t) a->c[2] << 40
8818 | (uint64_t) a->c[3] << 32
8819 | (uint64_t) a->c[4] << 24
8820 | (uint64_t) a->c[5] << 16
8821 | (uint64_t) a->c[6] << 8
8822 | (uint64_t) a->c[7]);
8823 return aval;
8824 }
8825 #endif
8826
8827 /* When performing a relocatable link, the input relocations are
8828 preserved. But, if they reference global symbols, the indices
8829 referenced must be updated. Update all the relocations found in
8830 RELDATA. */
8831
8832 static bfd_boolean
8833 elf_link_adjust_relocs (bfd *abfd,
8834 asection *sec,
8835 struct bfd_elf_section_reloc_data *reldata,
8836 bfd_boolean sort,
8837 struct bfd_link_info *info)
8838 {
8839 unsigned int i;
8840 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8841 bfd_byte *erela;
8842 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8843 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8844 bfd_vma r_type_mask;
8845 int r_sym_shift;
8846 unsigned int count = reldata->count;
8847 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8848
8849 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8850 {
8851 swap_in = bed->s->swap_reloc_in;
8852 swap_out = bed->s->swap_reloc_out;
8853 }
8854 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8855 {
8856 swap_in = bed->s->swap_reloca_in;
8857 swap_out = bed->s->swap_reloca_out;
8858 }
8859 else
8860 abort ();
8861
8862 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8863 abort ();
8864
8865 if (bed->s->arch_size == 32)
8866 {
8867 r_type_mask = 0xff;
8868 r_sym_shift = 8;
8869 }
8870 else
8871 {
8872 r_type_mask = 0xffffffff;
8873 r_sym_shift = 32;
8874 }
8875
8876 erela = reldata->hdr->contents;
8877 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8878 {
8879 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8880 unsigned int j;
8881
8882 if (*rel_hash == NULL)
8883 continue;
8884
8885 if ((*rel_hash)->indx == -2
8886 && info->gc_sections
8887 && ! info->gc_keep_exported)
8888 {
8889 /* PR 21524: Let the user know if a symbol was removed by garbage collection. */
8890 _bfd_error_handler (_("%pB:%pA: error: relocation references symbol %s which was removed by garbage collection"),
8891 abfd, sec,
8892 (*rel_hash)->root.root.string);
8893 _bfd_error_handler (_("%pB:%pA: error: try relinking with --gc-keep-exported enabled"),
8894 abfd, sec);
8895 bfd_set_error (bfd_error_invalid_operation);
8896 return FALSE;
8897 }
8898 BFD_ASSERT ((*rel_hash)->indx >= 0);
8899
8900 (*swap_in) (abfd, erela, irela);
8901 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8902 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8903 | (irela[j].r_info & r_type_mask));
8904 (*swap_out) (abfd, irela, erela);
8905 }
8906
8907 if (bed->elf_backend_update_relocs)
8908 (*bed->elf_backend_update_relocs) (sec, reldata);
8909
8910 if (sort && count != 0)
8911 {
8912 bfd_vma (*ext_r_off) (const void *);
8913 bfd_vma r_off;
8914 size_t elt_size;
8915 bfd_byte *base, *end, *p, *loc;
8916 bfd_byte *buf = NULL;
8917
8918 if (bed->s->arch_size == 32)
8919 {
8920 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8921 ext_r_off = ext32l_r_offset;
8922 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8923 ext_r_off = ext32b_r_offset;
8924 else
8925 abort ();
8926 }
8927 else
8928 {
8929 #ifdef BFD_HOST_64_BIT
8930 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8931 ext_r_off = ext64l_r_offset;
8932 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8933 ext_r_off = ext64b_r_offset;
8934 else
8935 #endif
8936 abort ();
8937 }
8938
8939 /* Must use a stable sort here. A modified insertion sort,
8940 since the relocs are mostly sorted already. */
8941 elt_size = reldata->hdr->sh_entsize;
8942 base = reldata->hdr->contents;
8943 end = base + count * elt_size;
8944 if (elt_size > sizeof (Elf64_External_Rela))
8945 abort ();
8946
8947 /* Ensure the first element is lowest. This acts as a sentinel,
8948 speeding the main loop below. */
8949 r_off = (*ext_r_off) (base);
8950 for (p = loc = base; (p += elt_size) < end; )
8951 {
8952 bfd_vma r_off2 = (*ext_r_off) (p);
8953 if (r_off > r_off2)
8954 {
8955 r_off = r_off2;
8956 loc = p;
8957 }
8958 }
8959 if (loc != base)
8960 {
8961 /* Don't just swap *base and *loc as that changes the order
8962 of the original base[0] and base[1] if they happen to
8963 have the same r_offset. */
8964 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
8965 memcpy (onebuf, loc, elt_size);
8966 memmove (base + elt_size, base, loc - base);
8967 memcpy (base, onebuf, elt_size);
8968 }
8969
8970 for (p = base + elt_size; (p += elt_size) < end; )
8971 {
8972 /* base to p is sorted, *p is next to insert. */
8973 r_off = (*ext_r_off) (p);
8974 /* Search the sorted region for location to insert. */
8975 loc = p - elt_size;
8976 while (r_off < (*ext_r_off) (loc))
8977 loc -= elt_size;
8978 loc += elt_size;
8979 if (loc != p)
8980 {
8981 /* Chances are there is a run of relocs to insert here,
8982 from one of more input files. Files are not always
8983 linked in order due to the way elf_link_input_bfd is
8984 called. See pr17666. */
8985 size_t sortlen = p - loc;
8986 bfd_vma r_off2 = (*ext_r_off) (loc);
8987 size_t runlen = elt_size;
8988 size_t buf_size = 96 * 1024;
8989 while (p + runlen < end
8990 && (sortlen <= buf_size
8991 || runlen + elt_size <= buf_size)
8992 && r_off2 > (*ext_r_off) (p + runlen))
8993 runlen += elt_size;
8994 if (buf == NULL)
8995 {
8996 buf = bfd_malloc (buf_size);
8997 if (buf == NULL)
8998 return FALSE;
8999 }
9000 if (runlen < sortlen)
9001 {
9002 memcpy (buf, p, runlen);
9003 memmove (loc + runlen, loc, sortlen);
9004 memcpy (loc, buf, runlen);
9005 }
9006 else
9007 {
9008 memcpy (buf, loc, sortlen);
9009 memmove (loc, p, runlen);
9010 memcpy (loc + runlen, buf, sortlen);
9011 }
9012 p += runlen - elt_size;
9013 }
9014 }
9015 /* Hashes are no longer valid. */
9016 free (reldata->hashes);
9017 reldata->hashes = NULL;
9018 free (buf);
9019 }
9020 return TRUE;
9021 }
9022
9023 struct elf_link_sort_rela
9024 {
9025 union {
9026 bfd_vma offset;
9027 bfd_vma sym_mask;
9028 } u;
9029 enum elf_reloc_type_class type;
9030 /* We use this as an array of size int_rels_per_ext_rel. */
9031 Elf_Internal_Rela rela[1];
9032 };
9033
9034 static int
9035 elf_link_sort_cmp1 (const void *A, const void *B)
9036 {
9037 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9038 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9039 int relativea, relativeb;
9040
9041 relativea = a->type == reloc_class_relative;
9042 relativeb = b->type == reloc_class_relative;
9043
9044 if (relativea < relativeb)
9045 return 1;
9046 if (relativea > relativeb)
9047 return -1;
9048 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
9049 return -1;
9050 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
9051 return 1;
9052 if (a->rela->r_offset < b->rela->r_offset)
9053 return -1;
9054 if (a->rela->r_offset > b->rela->r_offset)
9055 return 1;
9056 return 0;
9057 }
9058
9059 static int
9060 elf_link_sort_cmp2 (const void *A, const void *B)
9061 {
9062 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9063 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9064
9065 if (a->type < b->type)
9066 return -1;
9067 if (a->type > b->type)
9068 return 1;
9069 if (a->u.offset < b->u.offset)
9070 return -1;
9071 if (a->u.offset > b->u.offset)
9072 return 1;
9073 if (a->rela->r_offset < b->rela->r_offset)
9074 return -1;
9075 if (a->rela->r_offset > b->rela->r_offset)
9076 return 1;
9077 return 0;
9078 }
9079
9080 static size_t
9081 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
9082 {
9083 asection *dynamic_relocs;
9084 asection *rela_dyn;
9085 asection *rel_dyn;
9086 bfd_size_type count, size;
9087 size_t i, ret, sort_elt, ext_size;
9088 bfd_byte *sort, *s_non_relative, *p;
9089 struct elf_link_sort_rela *sq;
9090 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9091 int i2e = bed->s->int_rels_per_ext_rel;
9092 unsigned int opb = bfd_octets_per_byte (abfd);
9093 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
9094 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
9095 struct bfd_link_order *lo;
9096 bfd_vma r_sym_mask;
9097 bfd_boolean use_rela;
9098
9099 /* Find a dynamic reloc section. */
9100 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
9101 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
9102 if (rela_dyn != NULL && rela_dyn->size > 0
9103 && rel_dyn != NULL && rel_dyn->size > 0)
9104 {
9105 bfd_boolean use_rela_initialised = FALSE;
9106
9107 /* This is just here to stop gcc from complaining.
9108 Its initialization checking code is not perfect. */
9109 use_rela = TRUE;
9110
9111 /* Both sections are present. Examine the sizes
9112 of the indirect sections to help us choose. */
9113 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9114 if (lo->type == bfd_indirect_link_order)
9115 {
9116 asection *o = lo->u.indirect.section;
9117
9118 if ((o->size % bed->s->sizeof_rela) == 0)
9119 {
9120 if ((o->size % bed->s->sizeof_rel) == 0)
9121 /* Section size is divisible by both rel and rela sizes.
9122 It is of no help to us. */
9123 ;
9124 else
9125 {
9126 /* Section size is only divisible by rela. */
9127 if (use_rela_initialised && !use_rela)
9128 {
9129 _bfd_error_handler (_("%pB: unable to sort relocs - "
9130 "they are in more than one size"),
9131 abfd);
9132 bfd_set_error (bfd_error_invalid_operation);
9133 return 0;
9134 }
9135 else
9136 {
9137 use_rela = TRUE;
9138 use_rela_initialised = TRUE;
9139 }
9140 }
9141 }
9142 else if ((o->size % bed->s->sizeof_rel) == 0)
9143 {
9144 /* Section size is only divisible by rel. */
9145 if (use_rela_initialised && use_rela)
9146 {
9147 _bfd_error_handler (_("%pB: unable to sort relocs - "
9148 "they are in more than one size"),
9149 abfd);
9150 bfd_set_error (bfd_error_invalid_operation);
9151 return 0;
9152 }
9153 else
9154 {
9155 use_rela = FALSE;
9156 use_rela_initialised = TRUE;
9157 }
9158 }
9159 else
9160 {
9161 /* The section size is not divisible by either -
9162 something is wrong. */
9163 _bfd_error_handler (_("%pB: unable to sort relocs - "
9164 "they are of an unknown size"), abfd);
9165 bfd_set_error (bfd_error_invalid_operation);
9166 return 0;
9167 }
9168 }
9169
9170 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9171 if (lo->type == bfd_indirect_link_order)
9172 {
9173 asection *o = lo->u.indirect.section;
9174
9175 if ((o->size % bed->s->sizeof_rela) == 0)
9176 {
9177 if ((o->size % bed->s->sizeof_rel) == 0)
9178 /* Section size is divisible by both rel and rela sizes.
9179 It is of no help to us. */
9180 ;
9181 else
9182 {
9183 /* Section size is only divisible by rela. */
9184 if (use_rela_initialised && !use_rela)
9185 {
9186 _bfd_error_handler (_("%pB: unable to sort relocs - "
9187 "they are in more than one size"),
9188 abfd);
9189 bfd_set_error (bfd_error_invalid_operation);
9190 return 0;
9191 }
9192 else
9193 {
9194 use_rela = TRUE;
9195 use_rela_initialised = TRUE;
9196 }
9197 }
9198 }
9199 else if ((o->size % bed->s->sizeof_rel) == 0)
9200 {
9201 /* Section size is only divisible by rel. */
9202 if (use_rela_initialised && use_rela)
9203 {
9204 _bfd_error_handler (_("%pB: unable to sort relocs - "
9205 "they are in more than one size"),
9206 abfd);
9207 bfd_set_error (bfd_error_invalid_operation);
9208 return 0;
9209 }
9210 else
9211 {
9212 use_rela = FALSE;
9213 use_rela_initialised = TRUE;
9214 }
9215 }
9216 else
9217 {
9218 /* The section size is not divisible by either -
9219 something is wrong. */
9220 _bfd_error_handler (_("%pB: unable to sort relocs - "
9221 "they are of an unknown size"), abfd);
9222 bfd_set_error (bfd_error_invalid_operation);
9223 return 0;
9224 }
9225 }
9226
9227 if (! use_rela_initialised)
9228 /* Make a guess. */
9229 use_rela = TRUE;
9230 }
9231 else if (rela_dyn != NULL && rela_dyn->size > 0)
9232 use_rela = TRUE;
9233 else if (rel_dyn != NULL && rel_dyn->size > 0)
9234 use_rela = FALSE;
9235 else
9236 return 0;
9237
9238 if (use_rela)
9239 {
9240 dynamic_relocs = rela_dyn;
9241 ext_size = bed->s->sizeof_rela;
9242 swap_in = bed->s->swap_reloca_in;
9243 swap_out = bed->s->swap_reloca_out;
9244 }
9245 else
9246 {
9247 dynamic_relocs = rel_dyn;
9248 ext_size = bed->s->sizeof_rel;
9249 swap_in = bed->s->swap_reloc_in;
9250 swap_out = bed->s->swap_reloc_out;
9251 }
9252
9253 size = 0;
9254 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9255 if (lo->type == bfd_indirect_link_order)
9256 size += lo->u.indirect.section->size;
9257
9258 if (size != dynamic_relocs->size)
9259 return 0;
9260
9261 sort_elt = (sizeof (struct elf_link_sort_rela)
9262 + (i2e - 1) * sizeof (Elf_Internal_Rela));
9263
9264 count = dynamic_relocs->size / ext_size;
9265 if (count == 0)
9266 return 0;
9267 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
9268
9269 if (sort == NULL)
9270 {
9271 (*info->callbacks->warning)
9272 (info, _("not enough memory to sort relocations"), 0, abfd, 0, 0);
9273 return 0;
9274 }
9275
9276 if (bed->s->arch_size == 32)
9277 r_sym_mask = ~(bfd_vma) 0xff;
9278 else
9279 r_sym_mask = ~(bfd_vma) 0xffffffff;
9280
9281 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9282 if (lo->type == bfd_indirect_link_order)
9283 {
9284 bfd_byte *erel, *erelend;
9285 asection *o = lo->u.indirect.section;
9286
9287 if (o->contents == NULL && o->size != 0)
9288 {
9289 /* This is a reloc section that is being handled as a normal
9290 section. See bfd_section_from_shdr. We can't combine
9291 relocs in this case. */
9292 free (sort);
9293 return 0;
9294 }
9295 erel = o->contents;
9296 erelend = o->contents + o->size;
9297 p = sort + o->output_offset * opb / ext_size * sort_elt;
9298
9299 while (erel < erelend)
9300 {
9301 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9302
9303 (*swap_in) (abfd, erel, s->rela);
9304 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
9305 s->u.sym_mask = r_sym_mask;
9306 p += sort_elt;
9307 erel += ext_size;
9308 }
9309 }
9310
9311 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
9312
9313 for (i = 0, p = sort; i < count; i++, p += sort_elt)
9314 {
9315 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9316 if (s->type != reloc_class_relative)
9317 break;
9318 }
9319 ret = i;
9320 s_non_relative = p;
9321
9322 sq = (struct elf_link_sort_rela *) s_non_relative;
9323 for (; i < count; i++, p += sort_elt)
9324 {
9325 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
9326 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
9327 sq = sp;
9328 sp->u.offset = sq->rela->r_offset;
9329 }
9330
9331 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
9332
9333 struct elf_link_hash_table *htab = elf_hash_table (info);
9334 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
9335 {
9336 /* We have plt relocs in .rela.dyn. */
9337 sq = (struct elf_link_sort_rela *) sort;
9338 for (i = 0; i < count; i++)
9339 if (sq[count - i - 1].type != reloc_class_plt)
9340 break;
9341 if (i != 0 && htab->srelplt->size == i * ext_size)
9342 {
9343 struct bfd_link_order **plo;
9344 /* Put srelplt link_order last. This is so the output_offset
9345 set in the next loop is correct for DT_JMPREL. */
9346 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
9347 if ((*plo)->type == bfd_indirect_link_order
9348 && (*plo)->u.indirect.section == htab->srelplt)
9349 {
9350 lo = *plo;
9351 *plo = lo->next;
9352 }
9353 else
9354 plo = &(*plo)->next;
9355 *plo = lo;
9356 lo->next = NULL;
9357 dynamic_relocs->map_tail.link_order = lo;
9358 }
9359 }
9360
9361 p = sort;
9362 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9363 if (lo->type == bfd_indirect_link_order)
9364 {
9365 bfd_byte *erel, *erelend;
9366 asection *o = lo->u.indirect.section;
9367
9368 erel = o->contents;
9369 erelend = o->contents + o->size;
9370 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
9371 while (erel < erelend)
9372 {
9373 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9374 (*swap_out) (abfd, s->rela, erel);
9375 p += sort_elt;
9376 erel += ext_size;
9377 }
9378 }
9379
9380 free (sort);
9381 *psec = dynamic_relocs;
9382 return ret;
9383 }
9384
9385 /* Add a symbol to the output symbol string table. */
9386
9387 static int
9388 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
9389 const char *name,
9390 Elf_Internal_Sym *elfsym,
9391 asection *input_sec,
9392 struct elf_link_hash_entry *h)
9393 {
9394 int (*output_symbol_hook)
9395 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
9396 struct elf_link_hash_entry *);
9397 struct elf_link_hash_table *hash_table;
9398 const struct elf_backend_data *bed;
9399 bfd_size_type strtabsize;
9400
9401 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9402
9403 bed = get_elf_backend_data (flinfo->output_bfd);
9404 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
9405 if (output_symbol_hook != NULL)
9406 {
9407 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
9408 if (ret != 1)
9409 return ret;
9410 }
9411
9412 if (ELF_ST_TYPE (elfsym->st_info) == STT_GNU_IFUNC)
9413 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_ifunc;
9414 if (ELF_ST_BIND (elfsym->st_info) == STB_GNU_UNIQUE)
9415 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_unique;
9416
9417 if (name == NULL
9418 || *name == '\0'
9419 || (input_sec->flags & SEC_EXCLUDE))
9420 elfsym->st_name = (unsigned long) -1;
9421 else
9422 {
9423 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
9424 to get the final offset for st_name. */
9425 elfsym->st_name
9426 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
9427 name, FALSE);
9428 if (elfsym->st_name == (unsigned long) -1)
9429 return 0;
9430 }
9431
9432 hash_table = elf_hash_table (flinfo->info);
9433 strtabsize = hash_table->strtabsize;
9434 if (strtabsize <= hash_table->strtabcount)
9435 {
9436 strtabsize += strtabsize;
9437 hash_table->strtabsize = strtabsize;
9438 strtabsize *= sizeof (*hash_table->strtab);
9439 hash_table->strtab
9440 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
9441 strtabsize);
9442 if (hash_table->strtab == NULL)
9443 return 0;
9444 }
9445 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
9446 hash_table->strtab[hash_table->strtabcount].dest_index
9447 = hash_table->strtabcount;
9448 hash_table->strtab[hash_table->strtabcount].destshndx_index
9449 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
9450
9451 bfd_get_symcount (flinfo->output_bfd) += 1;
9452 hash_table->strtabcount += 1;
9453
9454 return 1;
9455 }
9456
9457 /* Swap symbols out to the symbol table and flush the output symbols to
9458 the file. */
9459
9460 static bfd_boolean
9461 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
9462 {
9463 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
9464 bfd_size_type amt;
9465 size_t i;
9466 const struct elf_backend_data *bed;
9467 bfd_byte *symbuf;
9468 Elf_Internal_Shdr *hdr;
9469 file_ptr pos;
9470 bfd_boolean ret;
9471
9472 if (!hash_table->strtabcount)
9473 return TRUE;
9474
9475 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9476
9477 bed = get_elf_backend_data (flinfo->output_bfd);
9478
9479 amt = bed->s->sizeof_sym * hash_table->strtabcount;
9480 symbuf = (bfd_byte *) bfd_malloc (amt);
9481 if (symbuf == NULL)
9482 return FALSE;
9483
9484 if (flinfo->symshndxbuf)
9485 {
9486 amt = sizeof (Elf_External_Sym_Shndx);
9487 amt *= bfd_get_symcount (flinfo->output_bfd);
9488 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
9489 if (flinfo->symshndxbuf == NULL)
9490 {
9491 free (symbuf);
9492 return FALSE;
9493 }
9494 }
9495
9496 for (i = 0; i < hash_table->strtabcount; i++)
9497 {
9498 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
9499 if (elfsym->sym.st_name == (unsigned long) -1)
9500 elfsym->sym.st_name = 0;
9501 else
9502 elfsym->sym.st_name
9503 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
9504 elfsym->sym.st_name);
9505 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
9506 ((bfd_byte *) symbuf
9507 + (elfsym->dest_index
9508 * bed->s->sizeof_sym)),
9509 (flinfo->symshndxbuf
9510 + elfsym->destshndx_index));
9511 }
9512
9513 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
9514 pos = hdr->sh_offset + hdr->sh_size;
9515 amt = hash_table->strtabcount * bed->s->sizeof_sym;
9516 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
9517 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
9518 {
9519 hdr->sh_size += amt;
9520 ret = TRUE;
9521 }
9522 else
9523 ret = FALSE;
9524
9525 free (symbuf);
9526
9527 free (hash_table->strtab);
9528 hash_table->strtab = NULL;
9529
9530 return ret;
9531 }
9532
9533 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9534
9535 static bfd_boolean
9536 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9537 {
9538 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9539 && sym->st_shndx < SHN_LORESERVE)
9540 {
9541 /* The gABI doesn't support dynamic symbols in output sections
9542 beyond 64k. */
9543 _bfd_error_handler
9544 /* xgettext:c-format */
9545 (_("%pB: too many sections: %d (>= %d)"),
9546 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9547 bfd_set_error (bfd_error_nonrepresentable_section);
9548 return FALSE;
9549 }
9550 return TRUE;
9551 }
9552
9553 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9554 allowing an unsatisfied unversioned symbol in the DSO to match a
9555 versioned symbol that would normally require an explicit version.
9556 We also handle the case that a DSO references a hidden symbol
9557 which may be satisfied by a versioned symbol in another DSO. */
9558
9559 static bfd_boolean
9560 elf_link_check_versioned_symbol (struct bfd_link_info *info,
9561 const struct elf_backend_data *bed,
9562 struct elf_link_hash_entry *h)
9563 {
9564 bfd *abfd;
9565 struct elf_link_loaded_list *loaded;
9566
9567 if (!is_elf_hash_table (info->hash))
9568 return FALSE;
9569
9570 /* Check indirect symbol. */
9571 while (h->root.type == bfd_link_hash_indirect)
9572 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9573
9574 switch (h->root.type)
9575 {
9576 default:
9577 abfd = NULL;
9578 break;
9579
9580 case bfd_link_hash_undefined:
9581 case bfd_link_hash_undefweak:
9582 abfd = h->root.u.undef.abfd;
9583 if (abfd == NULL
9584 || (abfd->flags & DYNAMIC) == 0
9585 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9586 return FALSE;
9587 break;
9588
9589 case bfd_link_hash_defined:
9590 case bfd_link_hash_defweak:
9591 abfd = h->root.u.def.section->owner;
9592 break;
9593
9594 case bfd_link_hash_common:
9595 abfd = h->root.u.c.p->section->owner;
9596 break;
9597 }
9598 BFD_ASSERT (abfd != NULL);
9599
9600 for (loaded = elf_hash_table (info)->loaded;
9601 loaded != NULL;
9602 loaded = loaded->next)
9603 {
9604 bfd *input;
9605 Elf_Internal_Shdr *hdr;
9606 size_t symcount;
9607 size_t extsymcount;
9608 size_t extsymoff;
9609 Elf_Internal_Shdr *versymhdr;
9610 Elf_Internal_Sym *isym;
9611 Elf_Internal_Sym *isymend;
9612 Elf_Internal_Sym *isymbuf;
9613 Elf_External_Versym *ever;
9614 Elf_External_Versym *extversym;
9615
9616 input = loaded->abfd;
9617
9618 /* We check each DSO for a possible hidden versioned definition. */
9619 if (input == abfd
9620 || (input->flags & DYNAMIC) == 0
9621 || elf_dynversym (input) == 0)
9622 continue;
9623
9624 hdr = &elf_tdata (input)->dynsymtab_hdr;
9625
9626 symcount = hdr->sh_size / bed->s->sizeof_sym;
9627 if (elf_bad_symtab (input))
9628 {
9629 extsymcount = symcount;
9630 extsymoff = 0;
9631 }
9632 else
9633 {
9634 extsymcount = symcount - hdr->sh_info;
9635 extsymoff = hdr->sh_info;
9636 }
9637
9638 if (extsymcount == 0)
9639 continue;
9640
9641 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9642 NULL, NULL, NULL);
9643 if (isymbuf == NULL)
9644 return FALSE;
9645
9646 /* Read in any version definitions. */
9647 versymhdr = &elf_tdata (input)->dynversym_hdr;
9648 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
9649 if (extversym == NULL)
9650 goto error_ret;
9651
9652 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9653 || (bfd_bread (extversym, versymhdr->sh_size, input)
9654 != versymhdr->sh_size))
9655 {
9656 free (extversym);
9657 error_ret:
9658 free (isymbuf);
9659 return FALSE;
9660 }
9661
9662 ever = extversym + extsymoff;
9663 isymend = isymbuf + extsymcount;
9664 for (isym = isymbuf; isym < isymend; isym++, ever++)
9665 {
9666 const char *name;
9667 Elf_Internal_Versym iver;
9668 unsigned short version_index;
9669
9670 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9671 || isym->st_shndx == SHN_UNDEF)
9672 continue;
9673
9674 name = bfd_elf_string_from_elf_section (input,
9675 hdr->sh_link,
9676 isym->st_name);
9677 if (strcmp (name, h->root.root.string) != 0)
9678 continue;
9679
9680 _bfd_elf_swap_versym_in (input, ever, &iver);
9681
9682 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9683 && !(h->def_regular
9684 && h->forced_local))
9685 {
9686 /* If we have a non-hidden versioned sym, then it should
9687 have provided a definition for the undefined sym unless
9688 it is defined in a non-shared object and forced local.
9689 */
9690 abort ();
9691 }
9692
9693 version_index = iver.vs_vers & VERSYM_VERSION;
9694 if (version_index == 1 || version_index == 2)
9695 {
9696 /* This is the base or first version. We can use it. */
9697 free (extversym);
9698 free (isymbuf);
9699 return TRUE;
9700 }
9701 }
9702
9703 free (extversym);
9704 free (isymbuf);
9705 }
9706
9707 return FALSE;
9708 }
9709
9710 /* Convert ELF common symbol TYPE. */
9711
9712 static int
9713 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9714 {
9715 /* Commom symbol can only appear in relocatable link. */
9716 if (!bfd_link_relocatable (info))
9717 abort ();
9718 switch (info->elf_stt_common)
9719 {
9720 case unchanged:
9721 break;
9722 case elf_stt_common:
9723 type = STT_COMMON;
9724 break;
9725 case no_elf_stt_common:
9726 type = STT_OBJECT;
9727 break;
9728 }
9729 return type;
9730 }
9731
9732 /* Add an external symbol to the symbol table. This is called from
9733 the hash table traversal routine. When generating a shared object,
9734 we go through the symbol table twice. The first time we output
9735 anything that might have been forced to local scope in a version
9736 script. The second time we output the symbols that are still
9737 global symbols. */
9738
9739 static bfd_boolean
9740 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9741 {
9742 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9743 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9744 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9745 bfd_boolean strip;
9746 Elf_Internal_Sym sym;
9747 asection *input_sec;
9748 const struct elf_backend_data *bed;
9749 long indx;
9750 int ret;
9751 unsigned int type;
9752
9753 if (h->root.type == bfd_link_hash_warning)
9754 {
9755 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9756 if (h->root.type == bfd_link_hash_new)
9757 return TRUE;
9758 }
9759
9760 /* Decide whether to output this symbol in this pass. */
9761 if (eoinfo->localsyms)
9762 {
9763 if (!h->forced_local)
9764 return TRUE;
9765 }
9766 else
9767 {
9768 if (h->forced_local)
9769 return TRUE;
9770 }
9771
9772 bed = get_elf_backend_data (flinfo->output_bfd);
9773
9774 if (h->root.type == bfd_link_hash_undefined)
9775 {
9776 /* If we have an undefined symbol reference here then it must have
9777 come from a shared library that is being linked in. (Undefined
9778 references in regular files have already been handled unless
9779 they are in unreferenced sections which are removed by garbage
9780 collection). */
9781 bfd_boolean ignore_undef = FALSE;
9782
9783 /* Some symbols may be special in that the fact that they're
9784 undefined can be safely ignored - let backend determine that. */
9785 if (bed->elf_backend_ignore_undef_symbol)
9786 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9787
9788 /* If we are reporting errors for this situation then do so now. */
9789 if (!ignore_undef
9790 && h->ref_dynamic_nonweak
9791 && (!h->ref_regular || flinfo->info->gc_sections)
9792 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9793 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9794 (*flinfo->info->callbacks->undefined_symbol)
9795 (flinfo->info, h->root.root.string,
9796 h->ref_regular ? NULL : h->root.u.undef.abfd,
9797 NULL, 0,
9798 flinfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR);
9799
9800 /* Strip a global symbol defined in a discarded section. */
9801 if (h->indx == -3)
9802 return TRUE;
9803 }
9804
9805 /* We should also warn if a forced local symbol is referenced from
9806 shared libraries. */
9807 if (bfd_link_executable (flinfo->info)
9808 && h->forced_local
9809 && h->ref_dynamic
9810 && h->def_regular
9811 && !h->dynamic_def
9812 && h->ref_dynamic_nonweak
9813 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9814 {
9815 bfd *def_bfd;
9816 const char *msg;
9817 struct elf_link_hash_entry *hi = h;
9818
9819 /* Check indirect symbol. */
9820 while (hi->root.type == bfd_link_hash_indirect)
9821 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9822
9823 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9824 /* xgettext:c-format */
9825 msg = _("%pB: internal symbol `%s' in %pB is referenced by DSO");
9826 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9827 /* xgettext:c-format */
9828 msg = _("%pB: hidden symbol `%s' in %pB is referenced by DSO");
9829 else
9830 /* xgettext:c-format */
9831 msg = _("%pB: local symbol `%s' in %pB is referenced by DSO");
9832 def_bfd = flinfo->output_bfd;
9833 if (hi->root.u.def.section != bfd_abs_section_ptr)
9834 def_bfd = hi->root.u.def.section->owner;
9835 _bfd_error_handler (msg, flinfo->output_bfd,
9836 h->root.root.string, def_bfd);
9837 bfd_set_error (bfd_error_bad_value);
9838 eoinfo->failed = TRUE;
9839 return FALSE;
9840 }
9841
9842 /* We don't want to output symbols that have never been mentioned by
9843 a regular file, or that we have been told to strip. However, if
9844 h->indx is set to -2, the symbol is used by a reloc and we must
9845 output it. */
9846 strip = FALSE;
9847 if (h->indx == -2)
9848 ;
9849 else if ((h->def_dynamic
9850 || h->ref_dynamic
9851 || h->root.type == bfd_link_hash_new)
9852 && !h->def_regular
9853 && !h->ref_regular)
9854 strip = TRUE;
9855 else if (flinfo->info->strip == strip_all)
9856 strip = TRUE;
9857 else if (flinfo->info->strip == strip_some
9858 && bfd_hash_lookup (flinfo->info->keep_hash,
9859 h->root.root.string, FALSE, FALSE) == NULL)
9860 strip = TRUE;
9861 else if ((h->root.type == bfd_link_hash_defined
9862 || h->root.type == bfd_link_hash_defweak)
9863 && ((flinfo->info->strip_discarded
9864 && discarded_section (h->root.u.def.section))
9865 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9866 && h->root.u.def.section->owner != NULL
9867 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9868 strip = TRUE;
9869 else if ((h->root.type == bfd_link_hash_undefined
9870 || h->root.type == bfd_link_hash_undefweak)
9871 && h->root.u.undef.abfd != NULL
9872 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9873 strip = TRUE;
9874
9875 type = h->type;
9876
9877 /* If we're stripping it, and it's not a dynamic symbol, there's
9878 nothing else to do. However, if it is a forced local symbol or
9879 an ifunc symbol we need to give the backend finish_dynamic_symbol
9880 function a chance to make it dynamic. */
9881 if (strip
9882 && h->dynindx == -1
9883 && type != STT_GNU_IFUNC
9884 && !h->forced_local)
9885 return TRUE;
9886
9887 sym.st_value = 0;
9888 sym.st_size = h->size;
9889 sym.st_other = h->other;
9890 switch (h->root.type)
9891 {
9892 default:
9893 case bfd_link_hash_new:
9894 case bfd_link_hash_warning:
9895 abort ();
9896 return FALSE;
9897
9898 case bfd_link_hash_undefined:
9899 case bfd_link_hash_undefweak:
9900 input_sec = bfd_und_section_ptr;
9901 sym.st_shndx = SHN_UNDEF;
9902 break;
9903
9904 case bfd_link_hash_defined:
9905 case bfd_link_hash_defweak:
9906 {
9907 input_sec = h->root.u.def.section;
9908 if (input_sec->output_section != NULL)
9909 {
9910 sym.st_shndx =
9911 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9912 input_sec->output_section);
9913 if (sym.st_shndx == SHN_BAD)
9914 {
9915 _bfd_error_handler
9916 /* xgettext:c-format */
9917 (_("%pB: could not find output section %pA for input section %pA"),
9918 flinfo->output_bfd, input_sec->output_section, input_sec);
9919 bfd_set_error (bfd_error_nonrepresentable_section);
9920 eoinfo->failed = TRUE;
9921 return FALSE;
9922 }
9923
9924 /* ELF symbols in relocatable files are section relative,
9925 but in nonrelocatable files they are virtual
9926 addresses. */
9927 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9928 if (!bfd_link_relocatable (flinfo->info))
9929 {
9930 sym.st_value += input_sec->output_section->vma;
9931 if (h->type == STT_TLS)
9932 {
9933 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9934 if (tls_sec != NULL)
9935 sym.st_value -= tls_sec->vma;
9936 }
9937 }
9938 }
9939 else
9940 {
9941 BFD_ASSERT (input_sec->owner == NULL
9942 || (input_sec->owner->flags & DYNAMIC) != 0);
9943 sym.st_shndx = SHN_UNDEF;
9944 input_sec = bfd_und_section_ptr;
9945 }
9946 }
9947 break;
9948
9949 case bfd_link_hash_common:
9950 input_sec = h->root.u.c.p->section;
9951 sym.st_shndx = bed->common_section_index (input_sec);
9952 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9953 break;
9954
9955 case bfd_link_hash_indirect:
9956 /* These symbols are created by symbol versioning. They point
9957 to the decorated version of the name. For example, if the
9958 symbol foo@@GNU_1.2 is the default, which should be used when
9959 foo is used with no version, then we add an indirect symbol
9960 foo which points to foo@@GNU_1.2. We ignore these symbols,
9961 since the indirected symbol is already in the hash table. */
9962 return TRUE;
9963 }
9964
9965 if (type == STT_COMMON || type == STT_OBJECT)
9966 switch (h->root.type)
9967 {
9968 case bfd_link_hash_common:
9969 type = elf_link_convert_common_type (flinfo->info, type);
9970 break;
9971 case bfd_link_hash_defined:
9972 case bfd_link_hash_defweak:
9973 if (bed->common_definition (&sym))
9974 type = elf_link_convert_common_type (flinfo->info, type);
9975 else
9976 type = STT_OBJECT;
9977 break;
9978 case bfd_link_hash_undefined:
9979 case bfd_link_hash_undefweak:
9980 break;
9981 default:
9982 abort ();
9983 }
9984
9985 if (h->forced_local)
9986 {
9987 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
9988 /* Turn off visibility on local symbol. */
9989 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
9990 }
9991 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
9992 else if (h->unique_global && h->def_regular)
9993 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
9994 else if (h->root.type == bfd_link_hash_undefweak
9995 || h->root.type == bfd_link_hash_defweak)
9996 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
9997 else
9998 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
9999 sym.st_target_internal = h->target_internal;
10000
10001 /* Give the processor backend a chance to tweak the symbol value,
10002 and also to finish up anything that needs to be done for this
10003 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
10004 forced local syms when non-shared is due to a historical quirk.
10005 STT_GNU_IFUNC symbol must go through PLT. */
10006 if ((h->type == STT_GNU_IFUNC
10007 && h->def_regular
10008 && !bfd_link_relocatable (flinfo->info))
10009 || ((h->dynindx != -1
10010 || h->forced_local)
10011 && ((bfd_link_pic (flinfo->info)
10012 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10013 || h->root.type != bfd_link_hash_undefweak))
10014 || !h->forced_local)
10015 && elf_hash_table (flinfo->info)->dynamic_sections_created))
10016 {
10017 if (! ((*bed->elf_backend_finish_dynamic_symbol)
10018 (flinfo->output_bfd, flinfo->info, h, &sym)))
10019 {
10020 eoinfo->failed = TRUE;
10021 return FALSE;
10022 }
10023 }
10024
10025 /* If we are marking the symbol as undefined, and there are no
10026 non-weak references to this symbol from a regular object, then
10027 mark the symbol as weak undefined; if there are non-weak
10028 references, mark the symbol as strong. We can't do this earlier,
10029 because it might not be marked as undefined until the
10030 finish_dynamic_symbol routine gets through with it. */
10031 if (sym.st_shndx == SHN_UNDEF
10032 && h->ref_regular
10033 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
10034 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
10035 {
10036 int bindtype;
10037 type = ELF_ST_TYPE (sym.st_info);
10038
10039 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
10040 if (type == STT_GNU_IFUNC)
10041 type = STT_FUNC;
10042
10043 if (h->ref_regular_nonweak)
10044 bindtype = STB_GLOBAL;
10045 else
10046 bindtype = STB_WEAK;
10047 sym.st_info = ELF_ST_INFO (bindtype, type);
10048 }
10049
10050 /* If this is a symbol defined in a dynamic library, don't use the
10051 symbol size from the dynamic library. Relinking an executable
10052 against a new library may introduce gratuitous changes in the
10053 executable's symbols if we keep the size. */
10054 if (sym.st_shndx == SHN_UNDEF
10055 && !h->def_regular
10056 && h->def_dynamic)
10057 sym.st_size = 0;
10058
10059 /* If a non-weak symbol with non-default visibility is not defined
10060 locally, it is a fatal error. */
10061 if (!bfd_link_relocatable (flinfo->info)
10062 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
10063 && ELF_ST_BIND (sym.st_info) != STB_WEAK
10064 && h->root.type == bfd_link_hash_undefined
10065 && !h->def_regular)
10066 {
10067 const char *msg;
10068
10069 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
10070 /* xgettext:c-format */
10071 msg = _("%pB: protected symbol `%s' isn't defined");
10072 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
10073 /* xgettext:c-format */
10074 msg = _("%pB: internal symbol `%s' isn't defined");
10075 else
10076 /* xgettext:c-format */
10077 msg = _("%pB: hidden symbol `%s' isn't defined");
10078 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
10079 bfd_set_error (bfd_error_bad_value);
10080 eoinfo->failed = TRUE;
10081 return FALSE;
10082 }
10083
10084 /* If this symbol should be put in the .dynsym section, then put it
10085 there now. We already know the symbol index. We also fill in
10086 the entry in the .hash section. */
10087 if (h->dynindx != -1
10088 && elf_hash_table (flinfo->info)->dynamic_sections_created
10089 && elf_hash_table (flinfo->info)->dynsym != NULL
10090 && !discarded_section (elf_hash_table (flinfo->info)->dynsym))
10091 {
10092 bfd_byte *esym;
10093
10094 /* Since there is no version information in the dynamic string,
10095 if there is no version info in symbol version section, we will
10096 have a run-time problem if not linking executable, referenced
10097 by shared library, or not bound locally. */
10098 if (h->verinfo.verdef == NULL
10099 && (!bfd_link_executable (flinfo->info)
10100 || h->ref_dynamic
10101 || !h->def_regular))
10102 {
10103 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
10104
10105 if (p && p [1] != '\0')
10106 {
10107 _bfd_error_handler
10108 /* xgettext:c-format */
10109 (_("%pB: no symbol version section for versioned symbol `%s'"),
10110 flinfo->output_bfd, h->root.root.string);
10111 eoinfo->failed = TRUE;
10112 return FALSE;
10113 }
10114 }
10115
10116 sym.st_name = h->dynstr_index;
10117 esym = (elf_hash_table (flinfo->info)->dynsym->contents
10118 + h->dynindx * bed->s->sizeof_sym);
10119 if (!check_dynsym (flinfo->output_bfd, &sym))
10120 {
10121 eoinfo->failed = TRUE;
10122 return FALSE;
10123 }
10124 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
10125
10126 if (flinfo->hash_sec != NULL)
10127 {
10128 size_t hash_entry_size;
10129 bfd_byte *bucketpos;
10130 bfd_vma chain;
10131 size_t bucketcount;
10132 size_t bucket;
10133
10134 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
10135 bucket = h->u.elf_hash_value % bucketcount;
10136
10137 hash_entry_size
10138 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
10139 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
10140 + (bucket + 2) * hash_entry_size);
10141 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
10142 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
10143 bucketpos);
10144 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
10145 ((bfd_byte *) flinfo->hash_sec->contents
10146 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
10147 }
10148
10149 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
10150 {
10151 Elf_Internal_Versym iversym;
10152 Elf_External_Versym *eversym;
10153
10154 if (!h->def_regular)
10155 {
10156 if (h->verinfo.verdef == NULL
10157 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
10158 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
10159 iversym.vs_vers = 0;
10160 else
10161 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
10162 }
10163 else
10164 {
10165 if (h->verinfo.vertree == NULL)
10166 iversym.vs_vers = 1;
10167 else
10168 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
10169 if (flinfo->info->create_default_symver)
10170 iversym.vs_vers++;
10171 }
10172
10173 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
10174 defined locally. */
10175 if (h->versioned == versioned_hidden && h->def_regular)
10176 iversym.vs_vers |= VERSYM_HIDDEN;
10177
10178 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
10179 eversym += h->dynindx;
10180 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
10181 }
10182 }
10183
10184 /* If the symbol is undefined, and we didn't output it to .dynsym,
10185 strip it from .symtab too. Obviously we can't do this for
10186 relocatable output or when needed for --emit-relocs. */
10187 else if (input_sec == bfd_und_section_ptr
10188 && h->indx != -2
10189 /* PR 22319 Do not strip global undefined symbols marked as being needed. */
10190 && (h->mark != 1 || ELF_ST_BIND (sym.st_info) != STB_GLOBAL)
10191 && !bfd_link_relocatable (flinfo->info))
10192 return TRUE;
10193
10194 /* Also strip others that we couldn't earlier due to dynamic symbol
10195 processing. */
10196 if (strip)
10197 return TRUE;
10198 if ((input_sec->flags & SEC_EXCLUDE) != 0)
10199 return TRUE;
10200
10201 /* Output a FILE symbol so that following locals are not associated
10202 with the wrong input file. We need one for forced local symbols
10203 if we've seen more than one FILE symbol or when we have exactly
10204 one FILE symbol but global symbols are present in a file other
10205 than the one with the FILE symbol. We also need one if linker
10206 defined symbols are present. In practice these conditions are
10207 always met, so just emit the FILE symbol unconditionally. */
10208 if (eoinfo->localsyms
10209 && !eoinfo->file_sym_done
10210 && eoinfo->flinfo->filesym_count != 0)
10211 {
10212 Elf_Internal_Sym fsym;
10213
10214 memset (&fsym, 0, sizeof (fsym));
10215 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10216 fsym.st_shndx = SHN_ABS;
10217 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
10218 bfd_und_section_ptr, NULL))
10219 return FALSE;
10220
10221 eoinfo->file_sym_done = TRUE;
10222 }
10223
10224 indx = bfd_get_symcount (flinfo->output_bfd);
10225 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
10226 input_sec, h);
10227 if (ret == 0)
10228 {
10229 eoinfo->failed = TRUE;
10230 return FALSE;
10231 }
10232 else if (ret == 1)
10233 h->indx = indx;
10234 else if (h->indx == -2)
10235 abort();
10236
10237 return TRUE;
10238 }
10239
10240 /* Return TRUE if special handling is done for relocs in SEC against
10241 symbols defined in discarded sections. */
10242
10243 static bfd_boolean
10244 elf_section_ignore_discarded_relocs (asection *sec)
10245 {
10246 const struct elf_backend_data *bed;
10247
10248 switch (sec->sec_info_type)
10249 {
10250 case SEC_INFO_TYPE_STABS:
10251 case SEC_INFO_TYPE_EH_FRAME:
10252 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10253 return TRUE;
10254 default:
10255 break;
10256 }
10257
10258 bed = get_elf_backend_data (sec->owner);
10259 if (bed->elf_backend_ignore_discarded_relocs != NULL
10260 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
10261 return TRUE;
10262
10263 return FALSE;
10264 }
10265
10266 /* Return a mask saying how ld should treat relocations in SEC against
10267 symbols defined in discarded sections. If this function returns
10268 COMPLAIN set, ld will issue a warning message. If this function
10269 returns PRETEND set, and the discarded section was link-once and the
10270 same size as the kept link-once section, ld will pretend that the
10271 symbol was actually defined in the kept section. Otherwise ld will
10272 zero the reloc (at least that is the intent, but some cooperation by
10273 the target dependent code is needed, particularly for REL targets). */
10274
10275 unsigned int
10276 _bfd_elf_default_action_discarded (asection *sec)
10277 {
10278 if (sec->flags & SEC_DEBUGGING)
10279 return PRETEND;
10280
10281 if (strcmp (".eh_frame", sec->name) == 0)
10282 return 0;
10283
10284 if (strcmp (".gcc_except_table", sec->name) == 0)
10285 return 0;
10286
10287 return COMPLAIN | PRETEND;
10288 }
10289
10290 /* Find a match between a section and a member of a section group. */
10291
10292 static asection *
10293 match_group_member (asection *sec, asection *group,
10294 struct bfd_link_info *info)
10295 {
10296 asection *first = elf_next_in_group (group);
10297 asection *s = first;
10298
10299 while (s != NULL)
10300 {
10301 if (bfd_elf_match_symbols_in_sections (s, sec, info))
10302 return s;
10303
10304 s = elf_next_in_group (s);
10305 if (s == first)
10306 break;
10307 }
10308
10309 return NULL;
10310 }
10311
10312 /* Check if the kept section of a discarded section SEC can be used
10313 to replace it. Return the replacement if it is OK. Otherwise return
10314 NULL. */
10315
10316 asection *
10317 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
10318 {
10319 asection *kept;
10320
10321 kept = sec->kept_section;
10322 if (kept != NULL)
10323 {
10324 if ((kept->flags & SEC_GROUP) != 0)
10325 kept = match_group_member (sec, kept, info);
10326 if (kept != NULL
10327 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
10328 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
10329 kept = NULL;
10330 sec->kept_section = kept;
10331 }
10332 return kept;
10333 }
10334
10335 /* Link an input file into the linker output file. This function
10336 handles all the sections and relocations of the input file at once.
10337 This is so that we only have to read the local symbols once, and
10338 don't have to keep them in memory. */
10339
10340 static bfd_boolean
10341 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
10342 {
10343 int (*relocate_section)
10344 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
10345 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
10346 bfd *output_bfd;
10347 Elf_Internal_Shdr *symtab_hdr;
10348 size_t locsymcount;
10349 size_t extsymoff;
10350 Elf_Internal_Sym *isymbuf;
10351 Elf_Internal_Sym *isym;
10352 Elf_Internal_Sym *isymend;
10353 long *pindex;
10354 asection **ppsection;
10355 asection *o;
10356 const struct elf_backend_data *bed;
10357 struct elf_link_hash_entry **sym_hashes;
10358 bfd_size_type address_size;
10359 bfd_vma r_type_mask;
10360 int r_sym_shift;
10361 bfd_boolean have_file_sym = FALSE;
10362
10363 output_bfd = flinfo->output_bfd;
10364 bed = get_elf_backend_data (output_bfd);
10365 relocate_section = bed->elf_backend_relocate_section;
10366
10367 /* If this is a dynamic object, we don't want to do anything here:
10368 we don't want the local symbols, and we don't want the section
10369 contents. */
10370 if ((input_bfd->flags & DYNAMIC) != 0)
10371 return TRUE;
10372
10373 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10374 if (elf_bad_symtab (input_bfd))
10375 {
10376 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10377 extsymoff = 0;
10378 }
10379 else
10380 {
10381 locsymcount = symtab_hdr->sh_info;
10382 extsymoff = symtab_hdr->sh_info;
10383 }
10384
10385 /* Read the local symbols. */
10386 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
10387 if (isymbuf == NULL && locsymcount != 0)
10388 {
10389 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
10390 flinfo->internal_syms,
10391 flinfo->external_syms,
10392 flinfo->locsym_shndx);
10393 if (isymbuf == NULL)
10394 return FALSE;
10395 }
10396
10397 /* Find local symbol sections and adjust values of symbols in
10398 SEC_MERGE sections. Write out those local symbols we know are
10399 going into the output file. */
10400 isymend = isymbuf + locsymcount;
10401 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
10402 isym < isymend;
10403 isym++, pindex++, ppsection++)
10404 {
10405 asection *isec;
10406 const char *name;
10407 Elf_Internal_Sym osym;
10408 long indx;
10409 int ret;
10410
10411 *pindex = -1;
10412
10413 if (elf_bad_symtab (input_bfd))
10414 {
10415 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
10416 {
10417 *ppsection = NULL;
10418 continue;
10419 }
10420 }
10421
10422 if (isym->st_shndx == SHN_UNDEF)
10423 isec = bfd_und_section_ptr;
10424 else if (isym->st_shndx == SHN_ABS)
10425 isec = bfd_abs_section_ptr;
10426 else if (isym->st_shndx == SHN_COMMON)
10427 isec = bfd_com_section_ptr;
10428 else
10429 {
10430 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
10431 if (isec == NULL)
10432 {
10433 /* Don't attempt to output symbols with st_shnx in the
10434 reserved range other than SHN_ABS and SHN_COMMON. */
10435 isec = bfd_und_section_ptr;
10436 }
10437 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
10438 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
10439 isym->st_value =
10440 _bfd_merged_section_offset (output_bfd, &isec,
10441 elf_section_data (isec)->sec_info,
10442 isym->st_value);
10443 }
10444
10445 *ppsection = isec;
10446
10447 /* Don't output the first, undefined, symbol. In fact, don't
10448 output any undefined local symbol. */
10449 if (isec == bfd_und_section_ptr)
10450 continue;
10451
10452 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
10453 {
10454 /* We never output section symbols. Instead, we use the
10455 section symbol of the corresponding section in the output
10456 file. */
10457 continue;
10458 }
10459
10460 /* If we are stripping all symbols, we don't want to output this
10461 one. */
10462 if (flinfo->info->strip == strip_all)
10463 continue;
10464
10465 /* If we are discarding all local symbols, we don't want to
10466 output this one. If we are generating a relocatable output
10467 file, then some of the local symbols may be required by
10468 relocs; we output them below as we discover that they are
10469 needed. */
10470 if (flinfo->info->discard == discard_all)
10471 continue;
10472
10473 /* If this symbol is defined in a section which we are
10474 discarding, we don't need to keep it. */
10475 if (isym->st_shndx != SHN_UNDEF
10476 && isym->st_shndx < SHN_LORESERVE
10477 && bfd_section_removed_from_list (output_bfd,
10478 isec->output_section))
10479 continue;
10480
10481 /* Get the name of the symbol. */
10482 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
10483 isym->st_name);
10484 if (name == NULL)
10485 return FALSE;
10486
10487 /* See if we are discarding symbols with this name. */
10488 if ((flinfo->info->strip == strip_some
10489 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
10490 == NULL))
10491 || (((flinfo->info->discard == discard_sec_merge
10492 && (isec->flags & SEC_MERGE)
10493 && !bfd_link_relocatable (flinfo->info))
10494 || flinfo->info->discard == discard_l)
10495 && bfd_is_local_label_name (input_bfd, name)))
10496 continue;
10497
10498 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
10499 {
10500 if (input_bfd->lto_output)
10501 /* -flto puts a temp file name here. This means builds
10502 are not reproducible. Discard the symbol. */
10503 continue;
10504 have_file_sym = TRUE;
10505 flinfo->filesym_count += 1;
10506 }
10507 if (!have_file_sym)
10508 {
10509 /* In the absence of debug info, bfd_find_nearest_line uses
10510 FILE symbols to determine the source file for local
10511 function symbols. Provide a FILE symbol here if input
10512 files lack such, so that their symbols won't be
10513 associated with a previous input file. It's not the
10514 source file, but the best we can do. */
10515 have_file_sym = TRUE;
10516 flinfo->filesym_count += 1;
10517 memset (&osym, 0, sizeof (osym));
10518 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10519 osym.st_shndx = SHN_ABS;
10520 if (!elf_link_output_symstrtab (flinfo,
10521 (input_bfd->lto_output ? NULL
10522 : input_bfd->filename),
10523 &osym, bfd_abs_section_ptr,
10524 NULL))
10525 return FALSE;
10526 }
10527
10528 osym = *isym;
10529
10530 /* Adjust the section index for the output file. */
10531 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10532 isec->output_section);
10533 if (osym.st_shndx == SHN_BAD)
10534 return FALSE;
10535
10536 /* ELF symbols in relocatable files are section relative, but
10537 in executable files they are virtual addresses. Note that
10538 this code assumes that all ELF sections have an associated
10539 BFD section with a reasonable value for output_offset; below
10540 we assume that they also have a reasonable value for
10541 output_section. Any special sections must be set up to meet
10542 these requirements. */
10543 osym.st_value += isec->output_offset;
10544 if (!bfd_link_relocatable (flinfo->info))
10545 {
10546 osym.st_value += isec->output_section->vma;
10547 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
10548 {
10549 /* STT_TLS symbols are relative to PT_TLS segment base. */
10550 if (elf_hash_table (flinfo->info)->tls_sec != NULL)
10551 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
10552 else
10553 osym.st_info = ELF_ST_INFO (ELF_ST_BIND (osym.st_info),
10554 STT_NOTYPE);
10555 }
10556 }
10557
10558 indx = bfd_get_symcount (output_bfd);
10559 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
10560 if (ret == 0)
10561 return FALSE;
10562 else if (ret == 1)
10563 *pindex = indx;
10564 }
10565
10566 if (bed->s->arch_size == 32)
10567 {
10568 r_type_mask = 0xff;
10569 r_sym_shift = 8;
10570 address_size = 4;
10571 }
10572 else
10573 {
10574 r_type_mask = 0xffffffff;
10575 r_sym_shift = 32;
10576 address_size = 8;
10577 }
10578
10579 /* Relocate the contents of each section. */
10580 sym_hashes = elf_sym_hashes (input_bfd);
10581 for (o = input_bfd->sections; o != NULL; o = o->next)
10582 {
10583 bfd_byte *contents;
10584
10585 if (! o->linker_mark)
10586 {
10587 /* This section was omitted from the link. */
10588 continue;
10589 }
10590
10591 if (!flinfo->info->resolve_section_groups
10592 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10593 {
10594 /* Deal with the group signature symbol. */
10595 struct bfd_elf_section_data *sec_data = elf_section_data (o);
10596 unsigned long symndx = sec_data->this_hdr.sh_info;
10597 asection *osec = o->output_section;
10598
10599 BFD_ASSERT (bfd_link_relocatable (flinfo->info));
10600 if (symndx >= locsymcount
10601 || (elf_bad_symtab (input_bfd)
10602 && flinfo->sections[symndx] == NULL))
10603 {
10604 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10605 while (h->root.type == bfd_link_hash_indirect
10606 || h->root.type == bfd_link_hash_warning)
10607 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10608 /* Arrange for symbol to be output. */
10609 h->indx = -2;
10610 elf_section_data (osec)->this_hdr.sh_info = -2;
10611 }
10612 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10613 {
10614 /* We'll use the output section target_index. */
10615 asection *sec = flinfo->sections[symndx]->output_section;
10616 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10617 }
10618 else
10619 {
10620 if (flinfo->indices[symndx] == -1)
10621 {
10622 /* Otherwise output the local symbol now. */
10623 Elf_Internal_Sym sym = isymbuf[symndx];
10624 asection *sec = flinfo->sections[symndx]->output_section;
10625 const char *name;
10626 long indx;
10627 int ret;
10628
10629 name = bfd_elf_string_from_elf_section (input_bfd,
10630 symtab_hdr->sh_link,
10631 sym.st_name);
10632 if (name == NULL)
10633 return FALSE;
10634
10635 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10636 sec);
10637 if (sym.st_shndx == SHN_BAD)
10638 return FALSE;
10639
10640 sym.st_value += o->output_offset;
10641
10642 indx = bfd_get_symcount (output_bfd);
10643 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10644 NULL);
10645 if (ret == 0)
10646 return FALSE;
10647 else if (ret == 1)
10648 flinfo->indices[symndx] = indx;
10649 else
10650 abort ();
10651 }
10652 elf_section_data (osec)->this_hdr.sh_info
10653 = flinfo->indices[symndx];
10654 }
10655 }
10656
10657 if ((o->flags & SEC_HAS_CONTENTS) == 0
10658 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10659 continue;
10660
10661 if ((o->flags & SEC_LINKER_CREATED) != 0)
10662 {
10663 /* Section was created by _bfd_elf_link_create_dynamic_sections
10664 or somesuch. */
10665 continue;
10666 }
10667
10668 /* Get the contents of the section. They have been cached by a
10669 relaxation routine. Note that o is a section in an input
10670 file, so the contents field will not have been set by any of
10671 the routines which work on output files. */
10672 if (elf_section_data (o)->this_hdr.contents != NULL)
10673 {
10674 contents = elf_section_data (o)->this_hdr.contents;
10675 if (bed->caches_rawsize
10676 && o->rawsize != 0
10677 && o->rawsize < o->size)
10678 {
10679 memcpy (flinfo->contents, contents, o->rawsize);
10680 contents = flinfo->contents;
10681 }
10682 }
10683 else
10684 {
10685 contents = flinfo->contents;
10686 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10687 return FALSE;
10688 }
10689
10690 if ((o->flags & SEC_RELOC) != 0)
10691 {
10692 Elf_Internal_Rela *internal_relocs;
10693 Elf_Internal_Rela *rel, *relend;
10694 int action_discarded;
10695 int ret;
10696
10697 /* Get the swapped relocs. */
10698 internal_relocs
10699 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10700 flinfo->internal_relocs, FALSE);
10701 if (internal_relocs == NULL
10702 && o->reloc_count > 0)
10703 return FALSE;
10704
10705 /* We need to reverse-copy input .ctors/.dtors sections if
10706 they are placed in .init_array/.finit_array for output. */
10707 if (o->size > address_size
10708 && ((strncmp (o->name, ".ctors", 6) == 0
10709 && strcmp (o->output_section->name,
10710 ".init_array") == 0)
10711 || (strncmp (o->name, ".dtors", 6) == 0
10712 && strcmp (o->output_section->name,
10713 ".fini_array") == 0))
10714 && (o->name[6] == 0 || o->name[6] == '.'))
10715 {
10716 if (o->size * bed->s->int_rels_per_ext_rel
10717 != o->reloc_count * address_size)
10718 {
10719 _bfd_error_handler
10720 /* xgettext:c-format */
10721 (_("error: %pB: size of section %pA is not "
10722 "multiple of address size"),
10723 input_bfd, o);
10724 bfd_set_error (bfd_error_bad_value);
10725 return FALSE;
10726 }
10727 o->flags |= SEC_ELF_REVERSE_COPY;
10728 }
10729
10730 action_discarded = -1;
10731 if (!elf_section_ignore_discarded_relocs (o))
10732 action_discarded = (*bed->action_discarded) (o);
10733
10734 /* Run through the relocs evaluating complex reloc symbols and
10735 looking for relocs against symbols from discarded sections
10736 or section symbols from removed link-once sections.
10737 Complain about relocs against discarded sections. Zero
10738 relocs against removed link-once sections. */
10739
10740 rel = internal_relocs;
10741 relend = rel + o->reloc_count;
10742 for ( ; rel < relend; rel++)
10743 {
10744 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10745 unsigned int s_type;
10746 asection **ps, *sec;
10747 struct elf_link_hash_entry *h = NULL;
10748 const char *sym_name;
10749
10750 if (r_symndx == STN_UNDEF)
10751 continue;
10752
10753 if (r_symndx >= locsymcount
10754 || (elf_bad_symtab (input_bfd)
10755 && flinfo->sections[r_symndx] == NULL))
10756 {
10757 h = sym_hashes[r_symndx - extsymoff];
10758
10759 /* Badly formatted input files can contain relocs that
10760 reference non-existant symbols. Check here so that
10761 we do not seg fault. */
10762 if (h == NULL)
10763 {
10764 _bfd_error_handler
10765 /* xgettext:c-format */
10766 (_("error: %pB contains a reloc (%#" PRIx64 ") for section %pA "
10767 "that references a non-existent global symbol"),
10768 input_bfd, (uint64_t) rel->r_info, o);
10769 bfd_set_error (bfd_error_bad_value);
10770 return FALSE;
10771 }
10772
10773 while (h->root.type == bfd_link_hash_indirect
10774 || h->root.type == bfd_link_hash_warning)
10775 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10776
10777 s_type = h->type;
10778
10779 /* If a plugin symbol is referenced from a non-IR file,
10780 mark the symbol as undefined. Note that the
10781 linker may attach linker created dynamic sections
10782 to the plugin bfd. Symbols defined in linker
10783 created sections are not plugin symbols. */
10784 if ((h->root.non_ir_ref_regular
10785 || h->root.non_ir_ref_dynamic)
10786 && (h->root.type == bfd_link_hash_defined
10787 || h->root.type == bfd_link_hash_defweak)
10788 && (h->root.u.def.section->flags
10789 & SEC_LINKER_CREATED) == 0
10790 && h->root.u.def.section->owner != NULL
10791 && (h->root.u.def.section->owner->flags
10792 & BFD_PLUGIN) != 0)
10793 {
10794 h->root.type = bfd_link_hash_undefined;
10795 h->root.u.undef.abfd = h->root.u.def.section->owner;
10796 }
10797
10798 ps = NULL;
10799 if (h->root.type == bfd_link_hash_defined
10800 || h->root.type == bfd_link_hash_defweak)
10801 ps = &h->root.u.def.section;
10802
10803 sym_name = h->root.root.string;
10804 }
10805 else
10806 {
10807 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10808
10809 s_type = ELF_ST_TYPE (sym->st_info);
10810 ps = &flinfo->sections[r_symndx];
10811 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10812 sym, *ps);
10813 }
10814
10815 if ((s_type == STT_RELC || s_type == STT_SRELC)
10816 && !bfd_link_relocatable (flinfo->info))
10817 {
10818 bfd_vma val;
10819 bfd_vma dot = (rel->r_offset
10820 + o->output_offset + o->output_section->vma);
10821 #ifdef DEBUG
10822 printf ("Encountered a complex symbol!");
10823 printf (" (input_bfd %s, section %s, reloc %ld\n",
10824 input_bfd->filename, o->name,
10825 (long) (rel - internal_relocs));
10826 printf (" symbol: idx %8.8lx, name %s\n",
10827 r_symndx, sym_name);
10828 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10829 (unsigned long) rel->r_info,
10830 (unsigned long) rel->r_offset);
10831 #endif
10832 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10833 isymbuf, locsymcount, s_type == STT_SRELC))
10834 return FALSE;
10835
10836 /* Symbol evaluated OK. Update to absolute value. */
10837 set_symbol_value (input_bfd, isymbuf, locsymcount,
10838 r_symndx, val);
10839 continue;
10840 }
10841
10842 if (action_discarded != -1 && ps != NULL)
10843 {
10844 /* Complain if the definition comes from a
10845 discarded section. */
10846 if ((sec = *ps) != NULL && discarded_section (sec))
10847 {
10848 BFD_ASSERT (r_symndx != STN_UNDEF);
10849 if (action_discarded & COMPLAIN)
10850 (*flinfo->info->callbacks->einfo)
10851 /* xgettext:c-format */
10852 (_("%X`%s' referenced in section `%pA' of %pB: "
10853 "defined in discarded section `%pA' of %pB\n"),
10854 sym_name, o, input_bfd, sec, sec->owner);
10855
10856 /* Try to do the best we can to support buggy old
10857 versions of gcc. Pretend that the symbol is
10858 really defined in the kept linkonce section.
10859 FIXME: This is quite broken. Modifying the
10860 symbol here means we will be changing all later
10861 uses of the symbol, not just in this section. */
10862 if (action_discarded & PRETEND)
10863 {
10864 asection *kept;
10865
10866 kept = _bfd_elf_check_kept_section (sec,
10867 flinfo->info);
10868 if (kept != NULL)
10869 {
10870 *ps = kept;
10871 continue;
10872 }
10873 }
10874 }
10875 }
10876 }
10877
10878 /* Relocate the section by invoking a back end routine.
10879
10880 The back end routine is responsible for adjusting the
10881 section contents as necessary, and (if using Rela relocs
10882 and generating a relocatable output file) adjusting the
10883 reloc addend as necessary.
10884
10885 The back end routine does not have to worry about setting
10886 the reloc address or the reloc symbol index.
10887
10888 The back end routine is given a pointer to the swapped in
10889 internal symbols, and can access the hash table entries
10890 for the external symbols via elf_sym_hashes (input_bfd).
10891
10892 When generating relocatable output, the back end routine
10893 must handle STB_LOCAL/STT_SECTION symbols specially. The
10894 output symbol is going to be a section symbol
10895 corresponding to the output section, which will require
10896 the addend to be adjusted. */
10897
10898 ret = (*relocate_section) (output_bfd, flinfo->info,
10899 input_bfd, o, contents,
10900 internal_relocs,
10901 isymbuf,
10902 flinfo->sections);
10903 if (!ret)
10904 return FALSE;
10905
10906 if (ret == 2
10907 || bfd_link_relocatable (flinfo->info)
10908 || flinfo->info->emitrelocations)
10909 {
10910 Elf_Internal_Rela *irela;
10911 Elf_Internal_Rela *irelaend, *irelamid;
10912 bfd_vma last_offset;
10913 struct elf_link_hash_entry **rel_hash;
10914 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
10915 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
10916 unsigned int next_erel;
10917 bfd_boolean rela_normal;
10918 struct bfd_elf_section_data *esdi, *esdo;
10919
10920 esdi = elf_section_data (o);
10921 esdo = elf_section_data (o->output_section);
10922 rela_normal = FALSE;
10923
10924 /* Adjust the reloc addresses and symbol indices. */
10925
10926 irela = internal_relocs;
10927 irelaend = irela + o->reloc_count;
10928 rel_hash = esdo->rel.hashes + esdo->rel.count;
10929 /* We start processing the REL relocs, if any. When we reach
10930 IRELAMID in the loop, we switch to the RELA relocs. */
10931 irelamid = irela;
10932 if (esdi->rel.hdr != NULL)
10933 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10934 * bed->s->int_rels_per_ext_rel);
10935 rel_hash_list = rel_hash;
10936 rela_hash_list = NULL;
10937 last_offset = o->output_offset;
10938 if (!bfd_link_relocatable (flinfo->info))
10939 last_offset += o->output_section->vma;
10940 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10941 {
10942 unsigned long r_symndx;
10943 asection *sec;
10944 Elf_Internal_Sym sym;
10945
10946 if (next_erel == bed->s->int_rels_per_ext_rel)
10947 {
10948 rel_hash++;
10949 next_erel = 0;
10950 }
10951
10952 if (irela == irelamid)
10953 {
10954 rel_hash = esdo->rela.hashes + esdo->rela.count;
10955 rela_hash_list = rel_hash;
10956 rela_normal = bed->rela_normal;
10957 }
10958
10959 irela->r_offset = _bfd_elf_section_offset (output_bfd,
10960 flinfo->info, o,
10961 irela->r_offset);
10962 if (irela->r_offset >= (bfd_vma) -2)
10963 {
10964 /* This is a reloc for a deleted entry or somesuch.
10965 Turn it into an R_*_NONE reloc, at the same
10966 offset as the last reloc. elf_eh_frame.c and
10967 bfd_elf_discard_info rely on reloc offsets
10968 being ordered. */
10969 irela->r_offset = last_offset;
10970 irela->r_info = 0;
10971 irela->r_addend = 0;
10972 continue;
10973 }
10974
10975 irela->r_offset += o->output_offset;
10976
10977 /* Relocs in an executable have to be virtual addresses. */
10978 if (!bfd_link_relocatable (flinfo->info))
10979 irela->r_offset += o->output_section->vma;
10980
10981 last_offset = irela->r_offset;
10982
10983 r_symndx = irela->r_info >> r_sym_shift;
10984 if (r_symndx == STN_UNDEF)
10985 continue;
10986
10987 if (r_symndx >= locsymcount
10988 || (elf_bad_symtab (input_bfd)
10989 && flinfo->sections[r_symndx] == NULL))
10990 {
10991 struct elf_link_hash_entry *rh;
10992 unsigned long indx;
10993
10994 /* This is a reloc against a global symbol. We
10995 have not yet output all the local symbols, so
10996 we do not know the symbol index of any global
10997 symbol. We set the rel_hash entry for this
10998 reloc to point to the global hash table entry
10999 for this symbol. The symbol index is then
11000 set at the end of bfd_elf_final_link. */
11001 indx = r_symndx - extsymoff;
11002 rh = elf_sym_hashes (input_bfd)[indx];
11003 while (rh->root.type == bfd_link_hash_indirect
11004 || rh->root.type == bfd_link_hash_warning)
11005 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
11006
11007 /* Setting the index to -2 tells
11008 elf_link_output_extsym that this symbol is
11009 used by a reloc. */
11010 BFD_ASSERT (rh->indx < 0);
11011 rh->indx = -2;
11012 *rel_hash = rh;
11013
11014 continue;
11015 }
11016
11017 /* This is a reloc against a local symbol. */
11018
11019 *rel_hash = NULL;
11020 sym = isymbuf[r_symndx];
11021 sec = flinfo->sections[r_symndx];
11022 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
11023 {
11024 /* I suppose the backend ought to fill in the
11025 section of any STT_SECTION symbol against a
11026 processor specific section. */
11027 r_symndx = STN_UNDEF;
11028 if (bfd_is_abs_section (sec))
11029 ;
11030 else if (sec == NULL || sec->owner == NULL)
11031 {
11032 bfd_set_error (bfd_error_bad_value);
11033 return FALSE;
11034 }
11035 else
11036 {
11037 asection *osec = sec->output_section;
11038
11039 /* If we have discarded a section, the output
11040 section will be the absolute section. In
11041 case of discarded SEC_MERGE sections, use
11042 the kept section. relocate_section should
11043 have already handled discarded linkonce
11044 sections. */
11045 if (bfd_is_abs_section (osec)
11046 && sec->kept_section != NULL
11047 && sec->kept_section->output_section != NULL)
11048 {
11049 osec = sec->kept_section->output_section;
11050 irela->r_addend -= osec->vma;
11051 }
11052
11053 if (!bfd_is_abs_section (osec))
11054 {
11055 r_symndx = osec->target_index;
11056 if (r_symndx == STN_UNDEF)
11057 {
11058 irela->r_addend += osec->vma;
11059 osec = _bfd_nearby_section (output_bfd, osec,
11060 osec->vma);
11061 irela->r_addend -= osec->vma;
11062 r_symndx = osec->target_index;
11063 }
11064 }
11065 }
11066
11067 /* Adjust the addend according to where the
11068 section winds up in the output section. */
11069 if (rela_normal)
11070 irela->r_addend += sec->output_offset;
11071 }
11072 else
11073 {
11074 if (flinfo->indices[r_symndx] == -1)
11075 {
11076 unsigned long shlink;
11077 const char *name;
11078 asection *osec;
11079 long indx;
11080
11081 if (flinfo->info->strip == strip_all)
11082 {
11083 /* You can't do ld -r -s. */
11084 bfd_set_error (bfd_error_invalid_operation);
11085 return FALSE;
11086 }
11087
11088 /* This symbol was skipped earlier, but
11089 since it is needed by a reloc, we
11090 must output it now. */
11091 shlink = symtab_hdr->sh_link;
11092 name = (bfd_elf_string_from_elf_section
11093 (input_bfd, shlink, sym.st_name));
11094 if (name == NULL)
11095 return FALSE;
11096
11097 osec = sec->output_section;
11098 sym.st_shndx =
11099 _bfd_elf_section_from_bfd_section (output_bfd,
11100 osec);
11101 if (sym.st_shndx == SHN_BAD)
11102 return FALSE;
11103
11104 sym.st_value += sec->output_offset;
11105 if (!bfd_link_relocatable (flinfo->info))
11106 {
11107 sym.st_value += osec->vma;
11108 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
11109 {
11110 struct elf_link_hash_table *htab
11111 = elf_hash_table (flinfo->info);
11112
11113 /* STT_TLS symbols are relative to PT_TLS
11114 segment base. */
11115 if (htab->tls_sec != NULL)
11116 sym.st_value -= htab->tls_sec->vma;
11117 else
11118 sym.st_info
11119 = ELF_ST_INFO (ELF_ST_BIND (sym.st_info),
11120 STT_NOTYPE);
11121 }
11122 }
11123
11124 indx = bfd_get_symcount (output_bfd);
11125 ret = elf_link_output_symstrtab (flinfo, name,
11126 &sym, sec,
11127 NULL);
11128 if (ret == 0)
11129 return FALSE;
11130 else if (ret == 1)
11131 flinfo->indices[r_symndx] = indx;
11132 else
11133 abort ();
11134 }
11135
11136 r_symndx = flinfo->indices[r_symndx];
11137 }
11138
11139 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
11140 | (irela->r_info & r_type_mask));
11141 }
11142
11143 /* Swap out the relocs. */
11144 input_rel_hdr = esdi->rel.hdr;
11145 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
11146 {
11147 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11148 input_rel_hdr,
11149 internal_relocs,
11150 rel_hash_list))
11151 return FALSE;
11152 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
11153 * bed->s->int_rels_per_ext_rel);
11154 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
11155 }
11156
11157 input_rela_hdr = esdi->rela.hdr;
11158 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
11159 {
11160 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11161 input_rela_hdr,
11162 internal_relocs,
11163 rela_hash_list))
11164 return FALSE;
11165 }
11166 }
11167 }
11168
11169 /* Write out the modified section contents. */
11170 if (bed->elf_backend_write_section
11171 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
11172 contents))
11173 {
11174 /* Section written out. */
11175 }
11176 else switch (o->sec_info_type)
11177 {
11178 case SEC_INFO_TYPE_STABS:
11179 if (! (_bfd_write_section_stabs
11180 (output_bfd,
11181 &elf_hash_table (flinfo->info)->stab_info,
11182 o, &elf_section_data (o)->sec_info, contents)))
11183 return FALSE;
11184 break;
11185 case SEC_INFO_TYPE_MERGE:
11186 if (! _bfd_write_merged_section (output_bfd, o,
11187 elf_section_data (o)->sec_info))
11188 return FALSE;
11189 break;
11190 case SEC_INFO_TYPE_EH_FRAME:
11191 {
11192 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
11193 o, contents))
11194 return FALSE;
11195 }
11196 break;
11197 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
11198 {
11199 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
11200 flinfo->info,
11201 o, contents))
11202 return FALSE;
11203 }
11204 break;
11205 default:
11206 {
11207 if (! (o->flags & SEC_EXCLUDE))
11208 {
11209 file_ptr offset = (file_ptr) o->output_offset;
11210 bfd_size_type todo = o->size;
11211
11212 offset *= bfd_octets_per_byte (output_bfd);
11213
11214 if ((o->flags & SEC_ELF_REVERSE_COPY))
11215 {
11216 /* Reverse-copy input section to output. */
11217 do
11218 {
11219 todo -= address_size;
11220 if (! bfd_set_section_contents (output_bfd,
11221 o->output_section,
11222 contents + todo,
11223 offset,
11224 address_size))
11225 return FALSE;
11226 if (todo == 0)
11227 break;
11228 offset += address_size;
11229 }
11230 while (1);
11231 }
11232 else if (! bfd_set_section_contents (output_bfd,
11233 o->output_section,
11234 contents,
11235 offset, todo))
11236 return FALSE;
11237 }
11238 }
11239 break;
11240 }
11241 }
11242
11243 return TRUE;
11244 }
11245
11246 /* Generate a reloc when linking an ELF file. This is a reloc
11247 requested by the linker, and does not come from any input file. This
11248 is used to build constructor and destructor tables when linking
11249 with -Ur. */
11250
11251 static bfd_boolean
11252 elf_reloc_link_order (bfd *output_bfd,
11253 struct bfd_link_info *info,
11254 asection *output_section,
11255 struct bfd_link_order *link_order)
11256 {
11257 reloc_howto_type *howto;
11258 long indx;
11259 bfd_vma offset;
11260 bfd_vma addend;
11261 struct bfd_elf_section_reloc_data *reldata;
11262 struct elf_link_hash_entry **rel_hash_ptr;
11263 Elf_Internal_Shdr *rel_hdr;
11264 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
11265 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
11266 bfd_byte *erel;
11267 unsigned int i;
11268 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
11269
11270 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
11271 if (howto == NULL)
11272 {
11273 bfd_set_error (bfd_error_bad_value);
11274 return FALSE;
11275 }
11276
11277 addend = link_order->u.reloc.p->addend;
11278
11279 if (esdo->rel.hdr)
11280 reldata = &esdo->rel;
11281 else if (esdo->rela.hdr)
11282 reldata = &esdo->rela;
11283 else
11284 {
11285 reldata = NULL;
11286 BFD_ASSERT (0);
11287 }
11288
11289 /* Figure out the symbol index. */
11290 rel_hash_ptr = reldata->hashes + reldata->count;
11291 if (link_order->type == bfd_section_reloc_link_order)
11292 {
11293 indx = link_order->u.reloc.p->u.section->target_index;
11294 BFD_ASSERT (indx != 0);
11295 *rel_hash_ptr = NULL;
11296 }
11297 else
11298 {
11299 struct elf_link_hash_entry *h;
11300
11301 /* Treat a reloc against a defined symbol as though it were
11302 actually against the section. */
11303 h = ((struct elf_link_hash_entry *)
11304 bfd_wrapped_link_hash_lookup (output_bfd, info,
11305 link_order->u.reloc.p->u.name,
11306 FALSE, FALSE, TRUE));
11307 if (h != NULL
11308 && (h->root.type == bfd_link_hash_defined
11309 || h->root.type == bfd_link_hash_defweak))
11310 {
11311 asection *section;
11312
11313 section = h->root.u.def.section;
11314 indx = section->output_section->target_index;
11315 *rel_hash_ptr = NULL;
11316 /* It seems that we ought to add the symbol value to the
11317 addend here, but in practice it has already been added
11318 because it was passed to constructor_callback. */
11319 addend += section->output_section->vma + section->output_offset;
11320 }
11321 else if (h != NULL)
11322 {
11323 /* Setting the index to -2 tells elf_link_output_extsym that
11324 this symbol is used by a reloc. */
11325 h->indx = -2;
11326 *rel_hash_ptr = h;
11327 indx = 0;
11328 }
11329 else
11330 {
11331 (*info->callbacks->unattached_reloc)
11332 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
11333 indx = 0;
11334 }
11335 }
11336
11337 /* If this is an inplace reloc, we must write the addend into the
11338 object file. */
11339 if (howto->partial_inplace && addend != 0)
11340 {
11341 bfd_size_type size;
11342 bfd_reloc_status_type rstat;
11343 bfd_byte *buf;
11344 bfd_boolean ok;
11345 const char *sym_name;
11346
11347 size = (bfd_size_type) bfd_get_reloc_size (howto);
11348 buf = (bfd_byte *) bfd_zmalloc (size);
11349 if (buf == NULL && size != 0)
11350 return FALSE;
11351 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
11352 switch (rstat)
11353 {
11354 case bfd_reloc_ok:
11355 break;
11356
11357 default:
11358 case bfd_reloc_outofrange:
11359 abort ();
11360
11361 case bfd_reloc_overflow:
11362 if (link_order->type == bfd_section_reloc_link_order)
11363 sym_name = bfd_section_name (output_bfd,
11364 link_order->u.reloc.p->u.section);
11365 else
11366 sym_name = link_order->u.reloc.p->u.name;
11367 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
11368 howto->name, addend, NULL, NULL,
11369 (bfd_vma) 0);
11370 break;
11371 }
11372
11373 ok = bfd_set_section_contents (output_bfd, output_section, buf,
11374 link_order->offset
11375 * bfd_octets_per_byte (output_bfd),
11376 size);
11377 free (buf);
11378 if (! ok)
11379 return FALSE;
11380 }
11381
11382 /* The address of a reloc is relative to the section in a
11383 relocatable file, and is a virtual address in an executable
11384 file. */
11385 offset = link_order->offset;
11386 if (! bfd_link_relocatable (info))
11387 offset += output_section->vma;
11388
11389 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
11390 {
11391 irel[i].r_offset = offset;
11392 irel[i].r_info = 0;
11393 irel[i].r_addend = 0;
11394 }
11395 if (bed->s->arch_size == 32)
11396 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
11397 else
11398 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
11399
11400 rel_hdr = reldata->hdr;
11401 erel = rel_hdr->contents;
11402 if (rel_hdr->sh_type == SHT_REL)
11403 {
11404 erel += reldata->count * bed->s->sizeof_rel;
11405 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
11406 }
11407 else
11408 {
11409 irel[0].r_addend = addend;
11410 erel += reldata->count * bed->s->sizeof_rela;
11411 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
11412 }
11413
11414 ++reldata->count;
11415
11416 return TRUE;
11417 }
11418
11419
11420 /* Get the output vma of the section pointed to by the sh_link field. */
11421
11422 static bfd_vma
11423 elf_get_linked_section_vma (struct bfd_link_order *p)
11424 {
11425 Elf_Internal_Shdr **elf_shdrp;
11426 asection *s;
11427 int elfsec;
11428
11429 s = p->u.indirect.section;
11430 elf_shdrp = elf_elfsections (s->owner);
11431 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
11432 elfsec = elf_shdrp[elfsec]->sh_link;
11433 /* PR 290:
11434 The Intel C compiler generates SHT_IA_64_UNWIND with
11435 SHF_LINK_ORDER. But it doesn't set the sh_link or
11436 sh_info fields. Hence we could get the situation
11437 where elfsec is 0. */
11438 if (elfsec == 0)
11439 {
11440 const struct elf_backend_data *bed
11441 = get_elf_backend_data (s->owner);
11442 if (bed->link_order_error_handler)
11443 bed->link_order_error_handler
11444 /* xgettext:c-format */
11445 (_("%pB: warning: sh_link not set for section `%pA'"), s->owner, s);
11446 return 0;
11447 }
11448 else
11449 {
11450 s = elf_shdrp[elfsec]->bfd_section;
11451 return s->output_section->vma + s->output_offset;
11452 }
11453 }
11454
11455
11456 /* Compare two sections based on the locations of the sections they are
11457 linked to. Used by elf_fixup_link_order. */
11458
11459 static int
11460 compare_link_order (const void * a, const void * b)
11461 {
11462 bfd_vma apos;
11463 bfd_vma bpos;
11464
11465 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
11466 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
11467 if (apos < bpos)
11468 return -1;
11469 return apos > bpos;
11470 }
11471
11472
11473 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
11474 order as their linked sections. Returns false if this could not be done
11475 because an output section includes both ordered and unordered
11476 sections. Ideally we'd do this in the linker proper. */
11477
11478 static bfd_boolean
11479 elf_fixup_link_order (bfd *abfd, asection *o)
11480 {
11481 int seen_linkorder;
11482 int seen_other;
11483 int n;
11484 struct bfd_link_order *p;
11485 bfd *sub;
11486 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11487 unsigned elfsec;
11488 struct bfd_link_order **sections;
11489 asection *s, *other_sec, *linkorder_sec;
11490 bfd_vma offset;
11491
11492 other_sec = NULL;
11493 linkorder_sec = NULL;
11494 seen_other = 0;
11495 seen_linkorder = 0;
11496 for (p = o->map_head.link_order; p != NULL; p = p->next)
11497 {
11498 if (p->type == bfd_indirect_link_order)
11499 {
11500 s = p->u.indirect.section;
11501 sub = s->owner;
11502 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11503 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
11504 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
11505 && elfsec < elf_numsections (sub)
11506 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
11507 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
11508 {
11509 seen_linkorder++;
11510 linkorder_sec = s;
11511 }
11512 else
11513 {
11514 seen_other++;
11515 other_sec = s;
11516 }
11517 }
11518 else
11519 seen_other++;
11520
11521 if (seen_other && seen_linkorder)
11522 {
11523 if (other_sec && linkorder_sec)
11524 _bfd_error_handler
11525 /* xgettext:c-format */
11526 (_("%pA has both ordered [`%pA' in %pB] "
11527 "and unordered [`%pA' in %pB] sections"),
11528 o, linkorder_sec, linkorder_sec->owner,
11529 other_sec, other_sec->owner);
11530 else
11531 _bfd_error_handler
11532 (_("%pA has both ordered and unordered sections"), o);
11533 bfd_set_error (bfd_error_bad_value);
11534 return FALSE;
11535 }
11536 }
11537
11538 if (!seen_linkorder)
11539 return TRUE;
11540
11541 sections = (struct bfd_link_order **)
11542 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
11543 if (sections == NULL)
11544 return FALSE;
11545 seen_linkorder = 0;
11546
11547 for (p = o->map_head.link_order; p != NULL; p = p->next)
11548 {
11549 sections[seen_linkorder++] = p;
11550 }
11551 /* Sort the input sections in the order of their linked section. */
11552 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
11553 compare_link_order);
11554
11555 /* Change the offsets of the sections. */
11556 offset = 0;
11557 for (n = 0; n < seen_linkorder; n++)
11558 {
11559 s = sections[n]->u.indirect.section;
11560 offset &= ~(bfd_vma) 0 << s->alignment_power;
11561 s->output_offset = offset / bfd_octets_per_byte (abfd);
11562 sections[n]->offset = offset;
11563 offset += sections[n]->size;
11564 }
11565
11566 free (sections);
11567 return TRUE;
11568 }
11569
11570 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11571 Returns TRUE upon success, FALSE otherwise. */
11572
11573 static bfd_boolean
11574 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11575 {
11576 bfd_boolean ret = FALSE;
11577 bfd *implib_bfd;
11578 const struct elf_backend_data *bed;
11579 flagword flags;
11580 enum bfd_architecture arch;
11581 unsigned int mach;
11582 asymbol **sympp = NULL;
11583 long symsize;
11584 long symcount;
11585 long src_count;
11586 elf_symbol_type *osymbuf;
11587
11588 implib_bfd = info->out_implib_bfd;
11589 bed = get_elf_backend_data (abfd);
11590
11591 if (!bfd_set_format (implib_bfd, bfd_object))
11592 return FALSE;
11593
11594 /* Use flag from executable but make it a relocatable object. */
11595 flags = bfd_get_file_flags (abfd);
11596 flags &= ~HAS_RELOC;
11597 if (!bfd_set_start_address (implib_bfd, 0)
11598 || !bfd_set_file_flags (implib_bfd, flags & ~EXEC_P))
11599 return FALSE;
11600
11601 /* Copy architecture of output file to import library file. */
11602 arch = bfd_get_arch (abfd);
11603 mach = bfd_get_mach (abfd);
11604 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11605 && (abfd->target_defaulted
11606 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11607 return FALSE;
11608
11609 /* Get symbol table size. */
11610 symsize = bfd_get_symtab_upper_bound (abfd);
11611 if (symsize < 0)
11612 return FALSE;
11613
11614 /* Read in the symbol table. */
11615 sympp = (asymbol **) xmalloc (symsize);
11616 symcount = bfd_canonicalize_symtab (abfd, sympp);
11617 if (symcount < 0)
11618 goto free_sym_buf;
11619
11620 /* Allow the BFD backend to copy any private header data it
11621 understands from the output BFD to the import library BFD. */
11622 if (! bfd_copy_private_header_data (abfd, implib_bfd))
11623 goto free_sym_buf;
11624
11625 /* Filter symbols to appear in the import library. */
11626 if (bed->elf_backend_filter_implib_symbols)
11627 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11628 symcount);
11629 else
11630 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11631 if (symcount == 0)
11632 {
11633 bfd_set_error (bfd_error_no_symbols);
11634 _bfd_error_handler (_("%pB: no symbol found for import library"),
11635 implib_bfd);
11636 goto free_sym_buf;
11637 }
11638
11639
11640 /* Make symbols absolute. */
11641 osymbuf = (elf_symbol_type *) bfd_alloc2 (implib_bfd, symcount,
11642 sizeof (*osymbuf));
11643 for (src_count = 0; src_count < symcount; src_count++)
11644 {
11645 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11646 sizeof (*osymbuf));
11647 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
11648 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
11649 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
11650 osymbuf[src_count].internal_elf_sym.st_value =
11651 osymbuf[src_count].symbol.value;
11652 sympp[src_count] = &osymbuf[src_count].symbol;
11653 }
11654
11655 bfd_set_symtab (implib_bfd, sympp, symcount);
11656
11657 /* Allow the BFD backend to copy any private data it understands
11658 from the output BFD to the import library BFD. This is done last
11659 to permit the routine to look at the filtered symbol table. */
11660 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
11661 goto free_sym_buf;
11662
11663 if (!bfd_close (implib_bfd))
11664 goto free_sym_buf;
11665
11666 ret = TRUE;
11667
11668 free_sym_buf:
11669 free (sympp);
11670 return ret;
11671 }
11672
11673 static void
11674 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11675 {
11676 asection *o;
11677
11678 if (flinfo->symstrtab != NULL)
11679 _bfd_elf_strtab_free (flinfo->symstrtab);
11680 if (flinfo->contents != NULL)
11681 free (flinfo->contents);
11682 if (flinfo->external_relocs != NULL)
11683 free (flinfo->external_relocs);
11684 if (flinfo->internal_relocs != NULL)
11685 free (flinfo->internal_relocs);
11686 if (flinfo->external_syms != NULL)
11687 free (flinfo->external_syms);
11688 if (flinfo->locsym_shndx != NULL)
11689 free (flinfo->locsym_shndx);
11690 if (flinfo->internal_syms != NULL)
11691 free (flinfo->internal_syms);
11692 if (flinfo->indices != NULL)
11693 free (flinfo->indices);
11694 if (flinfo->sections != NULL)
11695 free (flinfo->sections);
11696 if (flinfo->symshndxbuf != NULL
11697 && flinfo->symshndxbuf != (Elf_External_Sym_Shndx *) -1)
11698 free (flinfo->symshndxbuf);
11699 for (o = obfd->sections; o != NULL; o = o->next)
11700 {
11701 struct bfd_elf_section_data *esdo = elf_section_data (o);
11702 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11703 free (esdo->rel.hashes);
11704 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11705 free (esdo->rela.hashes);
11706 }
11707 }
11708
11709 /* Do the final step of an ELF link. */
11710
11711 bfd_boolean
11712 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11713 {
11714 bfd_boolean dynamic;
11715 bfd_boolean emit_relocs;
11716 bfd *dynobj;
11717 struct elf_final_link_info flinfo;
11718 asection *o;
11719 struct bfd_link_order *p;
11720 bfd *sub;
11721 bfd_size_type max_contents_size;
11722 bfd_size_type max_external_reloc_size;
11723 bfd_size_type max_internal_reloc_count;
11724 bfd_size_type max_sym_count;
11725 bfd_size_type max_sym_shndx_count;
11726 Elf_Internal_Sym elfsym;
11727 unsigned int i;
11728 Elf_Internal_Shdr *symtab_hdr;
11729 Elf_Internal_Shdr *symtab_shndx_hdr;
11730 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11731 struct elf_outext_info eoinfo;
11732 bfd_boolean merged;
11733 size_t relativecount = 0;
11734 asection *reldyn = 0;
11735 bfd_size_type amt;
11736 asection *attr_section = NULL;
11737 bfd_vma attr_size = 0;
11738 const char *std_attrs_section;
11739 struct elf_link_hash_table *htab = elf_hash_table (info);
11740
11741 if (!is_elf_hash_table (htab))
11742 return FALSE;
11743
11744 if (bfd_link_pic (info))
11745 abfd->flags |= DYNAMIC;
11746
11747 dynamic = htab->dynamic_sections_created;
11748 dynobj = htab->dynobj;
11749
11750 emit_relocs = (bfd_link_relocatable (info)
11751 || info->emitrelocations);
11752
11753 flinfo.info = info;
11754 flinfo.output_bfd = abfd;
11755 flinfo.symstrtab = _bfd_elf_strtab_init ();
11756 if (flinfo.symstrtab == NULL)
11757 return FALSE;
11758
11759 if (! dynamic)
11760 {
11761 flinfo.hash_sec = NULL;
11762 flinfo.symver_sec = NULL;
11763 }
11764 else
11765 {
11766 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11767 /* Note that dynsym_sec can be NULL (on VMS). */
11768 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11769 /* Note that it is OK if symver_sec is NULL. */
11770 }
11771
11772 flinfo.contents = NULL;
11773 flinfo.external_relocs = NULL;
11774 flinfo.internal_relocs = NULL;
11775 flinfo.external_syms = NULL;
11776 flinfo.locsym_shndx = NULL;
11777 flinfo.internal_syms = NULL;
11778 flinfo.indices = NULL;
11779 flinfo.sections = NULL;
11780 flinfo.symshndxbuf = NULL;
11781 flinfo.filesym_count = 0;
11782
11783 /* The object attributes have been merged. Remove the input
11784 sections from the link, and set the contents of the output
11785 secton. */
11786 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11787 for (o = abfd->sections; o != NULL; o = o->next)
11788 {
11789 bfd_boolean remove_section = FALSE;
11790
11791 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11792 || strcmp (o->name, ".gnu.attributes") == 0)
11793 {
11794 for (p = o->map_head.link_order; p != NULL; p = p->next)
11795 {
11796 asection *input_section;
11797
11798 if (p->type != bfd_indirect_link_order)
11799 continue;
11800 input_section = p->u.indirect.section;
11801 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11802 elf_link_input_bfd ignores this section. */
11803 input_section->flags &= ~SEC_HAS_CONTENTS;
11804 }
11805
11806 attr_size = bfd_elf_obj_attr_size (abfd);
11807 bfd_set_section_size (abfd, o, attr_size);
11808 /* Skip this section later on. */
11809 o->map_head.link_order = NULL;
11810 if (attr_size)
11811 attr_section = o;
11812 else
11813 remove_section = TRUE;
11814 }
11815 else if ((o->flags & SEC_GROUP) != 0 && o->size == 0)
11816 {
11817 /* Remove empty group section from linker output. */
11818 remove_section = TRUE;
11819 }
11820 if (remove_section)
11821 {
11822 o->flags |= SEC_EXCLUDE;
11823 bfd_section_list_remove (abfd, o);
11824 abfd->section_count--;
11825 }
11826 }
11827
11828 /* Count up the number of relocations we will output for each output
11829 section, so that we know the sizes of the reloc sections. We
11830 also figure out some maximum sizes. */
11831 max_contents_size = 0;
11832 max_external_reloc_size = 0;
11833 max_internal_reloc_count = 0;
11834 max_sym_count = 0;
11835 max_sym_shndx_count = 0;
11836 merged = FALSE;
11837 for (o = abfd->sections; o != NULL; o = o->next)
11838 {
11839 struct bfd_elf_section_data *esdo = elf_section_data (o);
11840 o->reloc_count = 0;
11841
11842 for (p = o->map_head.link_order; p != NULL; p = p->next)
11843 {
11844 unsigned int reloc_count = 0;
11845 unsigned int additional_reloc_count = 0;
11846 struct bfd_elf_section_data *esdi = NULL;
11847
11848 if (p->type == bfd_section_reloc_link_order
11849 || p->type == bfd_symbol_reloc_link_order)
11850 reloc_count = 1;
11851 else if (p->type == bfd_indirect_link_order)
11852 {
11853 asection *sec;
11854
11855 sec = p->u.indirect.section;
11856
11857 /* Mark all sections which are to be included in the
11858 link. This will normally be every section. We need
11859 to do this so that we can identify any sections which
11860 the linker has decided to not include. */
11861 sec->linker_mark = TRUE;
11862
11863 if (sec->flags & SEC_MERGE)
11864 merged = TRUE;
11865
11866 if (sec->rawsize > max_contents_size)
11867 max_contents_size = sec->rawsize;
11868 if (sec->size > max_contents_size)
11869 max_contents_size = sec->size;
11870
11871 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11872 && (sec->owner->flags & DYNAMIC) == 0)
11873 {
11874 size_t sym_count;
11875
11876 /* We are interested in just local symbols, not all
11877 symbols. */
11878 if (elf_bad_symtab (sec->owner))
11879 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11880 / bed->s->sizeof_sym);
11881 else
11882 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11883
11884 if (sym_count > max_sym_count)
11885 max_sym_count = sym_count;
11886
11887 if (sym_count > max_sym_shndx_count
11888 && elf_symtab_shndx_list (sec->owner) != NULL)
11889 max_sym_shndx_count = sym_count;
11890
11891 if (esdo->this_hdr.sh_type == SHT_REL
11892 || esdo->this_hdr.sh_type == SHT_RELA)
11893 /* Some backends use reloc_count in relocation sections
11894 to count particular types of relocs. Of course,
11895 reloc sections themselves can't have relocations. */
11896 ;
11897 else if (emit_relocs)
11898 {
11899 reloc_count = sec->reloc_count;
11900 if (bed->elf_backend_count_additional_relocs)
11901 {
11902 int c;
11903 c = (*bed->elf_backend_count_additional_relocs) (sec);
11904 additional_reloc_count += c;
11905 }
11906 }
11907 else if (bed->elf_backend_count_relocs)
11908 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11909
11910 esdi = elf_section_data (sec);
11911
11912 if ((sec->flags & SEC_RELOC) != 0)
11913 {
11914 size_t ext_size = 0;
11915
11916 if (esdi->rel.hdr != NULL)
11917 ext_size = esdi->rel.hdr->sh_size;
11918 if (esdi->rela.hdr != NULL)
11919 ext_size += esdi->rela.hdr->sh_size;
11920
11921 if (ext_size > max_external_reloc_size)
11922 max_external_reloc_size = ext_size;
11923 if (sec->reloc_count > max_internal_reloc_count)
11924 max_internal_reloc_count = sec->reloc_count;
11925 }
11926 }
11927 }
11928
11929 if (reloc_count == 0)
11930 continue;
11931
11932 reloc_count += additional_reloc_count;
11933 o->reloc_count += reloc_count;
11934
11935 if (p->type == bfd_indirect_link_order && emit_relocs)
11936 {
11937 if (esdi->rel.hdr)
11938 {
11939 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
11940 esdo->rel.count += additional_reloc_count;
11941 }
11942 if (esdi->rela.hdr)
11943 {
11944 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
11945 esdo->rela.count += additional_reloc_count;
11946 }
11947 }
11948 else
11949 {
11950 if (o->use_rela_p)
11951 esdo->rela.count += reloc_count;
11952 else
11953 esdo->rel.count += reloc_count;
11954 }
11955 }
11956
11957 if (o->reloc_count > 0)
11958 o->flags |= SEC_RELOC;
11959 else
11960 {
11961 /* Explicitly clear the SEC_RELOC flag. The linker tends to
11962 set it (this is probably a bug) and if it is set
11963 assign_section_numbers will create a reloc section. */
11964 o->flags &=~ SEC_RELOC;
11965 }
11966
11967 /* If the SEC_ALLOC flag is not set, force the section VMA to
11968 zero. This is done in elf_fake_sections as well, but forcing
11969 the VMA to 0 here will ensure that relocs against these
11970 sections are handled correctly. */
11971 if ((o->flags & SEC_ALLOC) == 0
11972 && ! o->user_set_vma)
11973 o->vma = 0;
11974 }
11975
11976 if (! bfd_link_relocatable (info) && merged)
11977 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
11978
11979 /* Figure out the file positions for everything but the symbol table
11980 and the relocs. We set symcount to force assign_section_numbers
11981 to create a symbol table. */
11982 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
11983 BFD_ASSERT (! abfd->output_has_begun);
11984 if (! _bfd_elf_compute_section_file_positions (abfd, info))
11985 goto error_return;
11986
11987 /* Set sizes, and assign file positions for reloc sections. */
11988 for (o = abfd->sections; o != NULL; o = o->next)
11989 {
11990 struct bfd_elf_section_data *esdo = elf_section_data (o);
11991 if ((o->flags & SEC_RELOC) != 0)
11992 {
11993 if (esdo->rel.hdr
11994 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
11995 goto error_return;
11996
11997 if (esdo->rela.hdr
11998 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
11999 goto error_return;
12000 }
12001
12002 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
12003 to count upwards while actually outputting the relocations. */
12004 esdo->rel.count = 0;
12005 esdo->rela.count = 0;
12006
12007 if (esdo->this_hdr.sh_offset == (file_ptr) -1)
12008 {
12009 /* Cache the section contents so that they can be compressed
12010 later. Use bfd_malloc since it will be freed by
12011 bfd_compress_section_contents. */
12012 unsigned char *contents = esdo->this_hdr.contents;
12013 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
12014 abort ();
12015 contents
12016 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
12017 if (contents == NULL)
12018 goto error_return;
12019 esdo->this_hdr.contents = contents;
12020 }
12021 }
12022
12023 /* We have now assigned file positions for all the sections except
12024 .symtab, .strtab, and non-loaded reloc sections. We start the
12025 .symtab section at the current file position, and write directly
12026 to it. We build the .strtab section in memory. */
12027 bfd_get_symcount (abfd) = 0;
12028 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12029 /* sh_name is set in prep_headers. */
12030 symtab_hdr->sh_type = SHT_SYMTAB;
12031 /* sh_flags, sh_addr and sh_size all start off zero. */
12032 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
12033 /* sh_link is set in assign_section_numbers. */
12034 /* sh_info is set below. */
12035 /* sh_offset is set just below. */
12036 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
12037
12038 if (max_sym_count < 20)
12039 max_sym_count = 20;
12040 htab->strtabsize = max_sym_count;
12041 amt = max_sym_count * sizeof (struct elf_sym_strtab);
12042 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
12043 if (htab->strtab == NULL)
12044 goto error_return;
12045 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
12046 flinfo.symshndxbuf
12047 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
12048 ? (Elf_External_Sym_Shndx *) -1 : NULL);
12049
12050 if (info->strip != strip_all || emit_relocs)
12051 {
12052 file_ptr off = elf_next_file_pos (abfd);
12053
12054 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
12055
12056 /* Note that at this point elf_next_file_pos (abfd) is
12057 incorrect. We do not yet know the size of the .symtab section.
12058 We correct next_file_pos below, after we do know the size. */
12059
12060 /* Start writing out the symbol table. The first symbol is always a
12061 dummy symbol. */
12062 elfsym.st_value = 0;
12063 elfsym.st_size = 0;
12064 elfsym.st_info = 0;
12065 elfsym.st_other = 0;
12066 elfsym.st_shndx = SHN_UNDEF;
12067 elfsym.st_target_internal = 0;
12068 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
12069 bfd_und_section_ptr, NULL) != 1)
12070 goto error_return;
12071
12072 /* Output a symbol for each section. We output these even if we are
12073 discarding local symbols, since they are used for relocs. These
12074 symbols have no names. We store the index of each one in the
12075 index field of the section, so that we can find it again when
12076 outputting relocs. */
12077
12078 elfsym.st_size = 0;
12079 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12080 elfsym.st_other = 0;
12081 elfsym.st_value = 0;
12082 elfsym.st_target_internal = 0;
12083 for (i = 1; i < elf_numsections (abfd); i++)
12084 {
12085 o = bfd_section_from_elf_index (abfd, i);
12086 if (o != NULL)
12087 {
12088 o->target_index = bfd_get_symcount (abfd);
12089 elfsym.st_shndx = i;
12090 if (!bfd_link_relocatable (info))
12091 elfsym.st_value = o->vma;
12092 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
12093 NULL) != 1)
12094 goto error_return;
12095 }
12096 }
12097 }
12098
12099 /* Allocate some memory to hold information read in from the input
12100 files. */
12101 if (max_contents_size != 0)
12102 {
12103 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
12104 if (flinfo.contents == NULL)
12105 goto error_return;
12106 }
12107
12108 if (max_external_reloc_size != 0)
12109 {
12110 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
12111 if (flinfo.external_relocs == NULL)
12112 goto error_return;
12113 }
12114
12115 if (max_internal_reloc_count != 0)
12116 {
12117 amt = max_internal_reloc_count * sizeof (Elf_Internal_Rela);
12118 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
12119 if (flinfo.internal_relocs == NULL)
12120 goto error_return;
12121 }
12122
12123 if (max_sym_count != 0)
12124 {
12125 amt = max_sym_count * bed->s->sizeof_sym;
12126 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
12127 if (flinfo.external_syms == NULL)
12128 goto error_return;
12129
12130 amt = max_sym_count * sizeof (Elf_Internal_Sym);
12131 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
12132 if (flinfo.internal_syms == NULL)
12133 goto error_return;
12134
12135 amt = max_sym_count * sizeof (long);
12136 flinfo.indices = (long int *) bfd_malloc (amt);
12137 if (flinfo.indices == NULL)
12138 goto error_return;
12139
12140 amt = max_sym_count * sizeof (asection *);
12141 flinfo.sections = (asection **) bfd_malloc (amt);
12142 if (flinfo.sections == NULL)
12143 goto error_return;
12144 }
12145
12146 if (max_sym_shndx_count != 0)
12147 {
12148 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
12149 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
12150 if (flinfo.locsym_shndx == NULL)
12151 goto error_return;
12152 }
12153
12154 if (htab->tls_sec)
12155 {
12156 bfd_vma base, end = 0;
12157 asection *sec;
12158
12159 for (sec = htab->tls_sec;
12160 sec && (sec->flags & SEC_THREAD_LOCAL);
12161 sec = sec->next)
12162 {
12163 bfd_size_type size = sec->size;
12164
12165 if (size == 0
12166 && (sec->flags & SEC_HAS_CONTENTS) == 0)
12167 {
12168 struct bfd_link_order *ord = sec->map_tail.link_order;
12169
12170 if (ord != NULL)
12171 size = ord->offset + ord->size;
12172 }
12173 end = sec->vma + size;
12174 }
12175 base = htab->tls_sec->vma;
12176 /* Only align end of TLS section if static TLS doesn't have special
12177 alignment requirements. */
12178 if (bed->static_tls_alignment == 1)
12179 end = align_power (end, htab->tls_sec->alignment_power);
12180 htab->tls_size = end - base;
12181 }
12182
12183 /* Reorder SHF_LINK_ORDER sections. */
12184 for (o = abfd->sections; o != NULL; o = o->next)
12185 {
12186 if (!elf_fixup_link_order (abfd, o))
12187 return FALSE;
12188 }
12189
12190 if (!_bfd_elf_fixup_eh_frame_hdr (info))
12191 return FALSE;
12192
12193 /* Since ELF permits relocations to be against local symbols, we
12194 must have the local symbols available when we do the relocations.
12195 Since we would rather only read the local symbols once, and we
12196 would rather not keep them in memory, we handle all the
12197 relocations for a single input file at the same time.
12198
12199 Unfortunately, there is no way to know the total number of local
12200 symbols until we have seen all of them, and the local symbol
12201 indices precede the global symbol indices. This means that when
12202 we are generating relocatable output, and we see a reloc against
12203 a global symbol, we can not know the symbol index until we have
12204 finished examining all the local symbols to see which ones we are
12205 going to output. To deal with this, we keep the relocations in
12206 memory, and don't output them until the end of the link. This is
12207 an unfortunate waste of memory, but I don't see a good way around
12208 it. Fortunately, it only happens when performing a relocatable
12209 link, which is not the common case. FIXME: If keep_memory is set
12210 we could write the relocs out and then read them again; I don't
12211 know how bad the memory loss will be. */
12212
12213 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12214 sub->output_has_begun = FALSE;
12215 for (o = abfd->sections; o != NULL; o = o->next)
12216 {
12217 for (p = o->map_head.link_order; p != NULL; p = p->next)
12218 {
12219 if (p->type == bfd_indirect_link_order
12220 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
12221 == bfd_target_elf_flavour)
12222 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
12223 {
12224 if (! sub->output_has_begun)
12225 {
12226 if (! elf_link_input_bfd (&flinfo, sub))
12227 goto error_return;
12228 sub->output_has_begun = TRUE;
12229 }
12230 }
12231 else if (p->type == bfd_section_reloc_link_order
12232 || p->type == bfd_symbol_reloc_link_order)
12233 {
12234 if (! elf_reloc_link_order (abfd, info, o, p))
12235 goto error_return;
12236 }
12237 else
12238 {
12239 if (! _bfd_default_link_order (abfd, info, o, p))
12240 {
12241 if (p->type == bfd_indirect_link_order
12242 && (bfd_get_flavour (sub)
12243 == bfd_target_elf_flavour)
12244 && (elf_elfheader (sub)->e_ident[EI_CLASS]
12245 != bed->s->elfclass))
12246 {
12247 const char *iclass, *oclass;
12248
12249 switch (bed->s->elfclass)
12250 {
12251 case ELFCLASS64: oclass = "ELFCLASS64"; break;
12252 case ELFCLASS32: oclass = "ELFCLASS32"; break;
12253 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
12254 default: abort ();
12255 }
12256
12257 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
12258 {
12259 case ELFCLASS64: iclass = "ELFCLASS64"; break;
12260 case ELFCLASS32: iclass = "ELFCLASS32"; break;
12261 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
12262 default: abort ();
12263 }
12264
12265 bfd_set_error (bfd_error_wrong_format);
12266 _bfd_error_handler
12267 /* xgettext:c-format */
12268 (_("%pB: file class %s incompatible with %s"),
12269 sub, iclass, oclass);
12270 }
12271
12272 goto error_return;
12273 }
12274 }
12275 }
12276 }
12277
12278 /* Free symbol buffer if needed. */
12279 if (!info->reduce_memory_overheads)
12280 {
12281 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12282 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
12283 && elf_tdata (sub)->symbuf)
12284 {
12285 free (elf_tdata (sub)->symbuf);
12286 elf_tdata (sub)->symbuf = NULL;
12287 }
12288 }
12289
12290 /* Output any global symbols that got converted to local in a
12291 version script or due to symbol visibility. We do this in a
12292 separate step since ELF requires all local symbols to appear
12293 prior to any global symbols. FIXME: We should only do this if
12294 some global symbols were, in fact, converted to become local.
12295 FIXME: Will this work correctly with the Irix 5 linker? */
12296 eoinfo.failed = FALSE;
12297 eoinfo.flinfo = &flinfo;
12298 eoinfo.localsyms = TRUE;
12299 eoinfo.file_sym_done = FALSE;
12300 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12301 if (eoinfo.failed)
12302 return FALSE;
12303
12304 /* If backend needs to output some local symbols not present in the hash
12305 table, do it now. */
12306 if (bed->elf_backend_output_arch_local_syms
12307 && (info->strip != strip_all || emit_relocs))
12308 {
12309 typedef int (*out_sym_func)
12310 (void *, const char *, Elf_Internal_Sym *, asection *,
12311 struct elf_link_hash_entry *);
12312
12313 if (! ((*bed->elf_backend_output_arch_local_syms)
12314 (abfd, info, &flinfo,
12315 (out_sym_func) elf_link_output_symstrtab)))
12316 return FALSE;
12317 }
12318
12319 /* That wrote out all the local symbols. Finish up the symbol table
12320 with the global symbols. Even if we want to strip everything we
12321 can, we still need to deal with those global symbols that got
12322 converted to local in a version script. */
12323
12324 /* The sh_info field records the index of the first non local symbol. */
12325 symtab_hdr->sh_info = bfd_get_symcount (abfd);
12326
12327 if (dynamic
12328 && htab->dynsym != NULL
12329 && htab->dynsym->output_section != bfd_abs_section_ptr)
12330 {
12331 Elf_Internal_Sym sym;
12332 bfd_byte *dynsym = htab->dynsym->contents;
12333
12334 o = htab->dynsym->output_section;
12335 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
12336
12337 /* Write out the section symbols for the output sections. */
12338 if (bfd_link_pic (info)
12339 || htab->is_relocatable_executable)
12340 {
12341 asection *s;
12342
12343 sym.st_size = 0;
12344 sym.st_name = 0;
12345 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12346 sym.st_other = 0;
12347 sym.st_target_internal = 0;
12348
12349 for (s = abfd->sections; s != NULL; s = s->next)
12350 {
12351 int indx;
12352 bfd_byte *dest;
12353 long dynindx;
12354
12355 dynindx = elf_section_data (s)->dynindx;
12356 if (dynindx <= 0)
12357 continue;
12358 indx = elf_section_data (s)->this_idx;
12359 BFD_ASSERT (indx > 0);
12360 sym.st_shndx = indx;
12361 if (! check_dynsym (abfd, &sym))
12362 return FALSE;
12363 sym.st_value = s->vma;
12364 dest = dynsym + dynindx * bed->s->sizeof_sym;
12365 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12366 }
12367 }
12368
12369 /* Write out the local dynsyms. */
12370 if (htab->dynlocal)
12371 {
12372 struct elf_link_local_dynamic_entry *e;
12373 for (e = htab->dynlocal; e ; e = e->next)
12374 {
12375 asection *s;
12376 bfd_byte *dest;
12377
12378 /* Copy the internal symbol and turn off visibility.
12379 Note that we saved a word of storage and overwrote
12380 the original st_name with the dynstr_index. */
12381 sym = e->isym;
12382 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
12383
12384 s = bfd_section_from_elf_index (e->input_bfd,
12385 e->isym.st_shndx);
12386 if (s != NULL)
12387 {
12388 sym.st_shndx =
12389 elf_section_data (s->output_section)->this_idx;
12390 if (! check_dynsym (abfd, &sym))
12391 return FALSE;
12392 sym.st_value = (s->output_section->vma
12393 + s->output_offset
12394 + e->isym.st_value);
12395 }
12396
12397 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
12398 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12399 }
12400 }
12401 }
12402
12403 /* We get the global symbols from the hash table. */
12404 eoinfo.failed = FALSE;
12405 eoinfo.localsyms = FALSE;
12406 eoinfo.flinfo = &flinfo;
12407 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12408 if (eoinfo.failed)
12409 return FALSE;
12410
12411 /* If backend needs to output some symbols not present in the hash
12412 table, do it now. */
12413 if (bed->elf_backend_output_arch_syms
12414 && (info->strip != strip_all || emit_relocs))
12415 {
12416 typedef int (*out_sym_func)
12417 (void *, const char *, Elf_Internal_Sym *, asection *,
12418 struct elf_link_hash_entry *);
12419
12420 if (! ((*bed->elf_backend_output_arch_syms)
12421 (abfd, info, &flinfo,
12422 (out_sym_func) elf_link_output_symstrtab)))
12423 return FALSE;
12424 }
12425
12426 /* Finalize the .strtab section. */
12427 _bfd_elf_strtab_finalize (flinfo.symstrtab);
12428
12429 /* Swap out the .strtab section. */
12430 if (!elf_link_swap_symbols_out (&flinfo))
12431 return FALSE;
12432
12433 /* Now we know the size of the symtab section. */
12434 if (bfd_get_symcount (abfd) > 0)
12435 {
12436 /* Finish up and write out the symbol string table (.strtab)
12437 section. */
12438 Elf_Internal_Shdr *symstrtab_hdr = NULL;
12439 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
12440
12441 if (elf_symtab_shndx_list (abfd))
12442 {
12443 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
12444
12445 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
12446 {
12447 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
12448 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
12449 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
12450 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
12451 symtab_shndx_hdr->sh_size = amt;
12452
12453 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
12454 off, TRUE);
12455
12456 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
12457 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
12458 return FALSE;
12459 }
12460 }
12461
12462 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
12463 /* sh_name was set in prep_headers. */
12464 symstrtab_hdr->sh_type = SHT_STRTAB;
12465 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
12466 symstrtab_hdr->sh_addr = 0;
12467 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
12468 symstrtab_hdr->sh_entsize = 0;
12469 symstrtab_hdr->sh_link = 0;
12470 symstrtab_hdr->sh_info = 0;
12471 /* sh_offset is set just below. */
12472 symstrtab_hdr->sh_addralign = 1;
12473
12474 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
12475 off, TRUE);
12476 elf_next_file_pos (abfd) = off;
12477
12478 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
12479 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
12480 return FALSE;
12481 }
12482
12483 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
12484 {
12485 _bfd_error_handler (_("%pB: failed to generate import library"),
12486 info->out_implib_bfd);
12487 return FALSE;
12488 }
12489
12490 /* Adjust the relocs to have the correct symbol indices. */
12491 for (o = abfd->sections; o != NULL; o = o->next)
12492 {
12493 struct bfd_elf_section_data *esdo = elf_section_data (o);
12494 bfd_boolean sort;
12495
12496 if ((o->flags & SEC_RELOC) == 0)
12497 continue;
12498
12499 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
12500 if (esdo->rel.hdr != NULL
12501 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort, info))
12502 return FALSE;
12503 if (esdo->rela.hdr != NULL
12504 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort, info))
12505 return FALSE;
12506
12507 /* Set the reloc_count field to 0 to prevent write_relocs from
12508 trying to swap the relocs out itself. */
12509 o->reloc_count = 0;
12510 }
12511
12512 if (dynamic && info->combreloc && dynobj != NULL)
12513 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
12514
12515 /* If we are linking against a dynamic object, or generating a
12516 shared library, finish up the dynamic linking information. */
12517 if (dynamic)
12518 {
12519 bfd_byte *dyncon, *dynconend;
12520
12521 /* Fix up .dynamic entries. */
12522 o = bfd_get_linker_section (dynobj, ".dynamic");
12523 BFD_ASSERT (o != NULL);
12524
12525 dyncon = o->contents;
12526 dynconend = o->contents + o->size;
12527 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12528 {
12529 Elf_Internal_Dyn dyn;
12530 const char *name;
12531 unsigned int type;
12532 bfd_size_type sh_size;
12533 bfd_vma sh_addr;
12534
12535 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12536
12537 switch (dyn.d_tag)
12538 {
12539 default:
12540 continue;
12541 case DT_NULL:
12542 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
12543 {
12544 switch (elf_section_data (reldyn)->this_hdr.sh_type)
12545 {
12546 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
12547 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
12548 default: continue;
12549 }
12550 dyn.d_un.d_val = relativecount;
12551 relativecount = 0;
12552 break;
12553 }
12554 continue;
12555
12556 case DT_INIT:
12557 name = info->init_function;
12558 goto get_sym;
12559 case DT_FINI:
12560 name = info->fini_function;
12561 get_sym:
12562 {
12563 struct elf_link_hash_entry *h;
12564
12565 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
12566 if (h != NULL
12567 && (h->root.type == bfd_link_hash_defined
12568 || h->root.type == bfd_link_hash_defweak))
12569 {
12570 dyn.d_un.d_ptr = h->root.u.def.value;
12571 o = h->root.u.def.section;
12572 if (o->output_section != NULL)
12573 dyn.d_un.d_ptr += (o->output_section->vma
12574 + o->output_offset);
12575 else
12576 {
12577 /* The symbol is imported from another shared
12578 library and does not apply to this one. */
12579 dyn.d_un.d_ptr = 0;
12580 }
12581 break;
12582 }
12583 }
12584 continue;
12585
12586 case DT_PREINIT_ARRAYSZ:
12587 name = ".preinit_array";
12588 goto get_out_size;
12589 case DT_INIT_ARRAYSZ:
12590 name = ".init_array";
12591 goto get_out_size;
12592 case DT_FINI_ARRAYSZ:
12593 name = ".fini_array";
12594 get_out_size:
12595 o = bfd_get_section_by_name (abfd, name);
12596 if (o == NULL)
12597 {
12598 _bfd_error_handler
12599 (_("could not find section %s"), name);
12600 goto error_return;
12601 }
12602 if (o->size == 0)
12603 _bfd_error_handler
12604 (_("warning: %s section has zero size"), name);
12605 dyn.d_un.d_val = o->size;
12606 break;
12607
12608 case DT_PREINIT_ARRAY:
12609 name = ".preinit_array";
12610 goto get_out_vma;
12611 case DT_INIT_ARRAY:
12612 name = ".init_array";
12613 goto get_out_vma;
12614 case DT_FINI_ARRAY:
12615 name = ".fini_array";
12616 get_out_vma:
12617 o = bfd_get_section_by_name (abfd, name);
12618 goto do_vma;
12619
12620 case DT_HASH:
12621 name = ".hash";
12622 goto get_vma;
12623 case DT_GNU_HASH:
12624 name = ".gnu.hash";
12625 goto get_vma;
12626 case DT_STRTAB:
12627 name = ".dynstr";
12628 goto get_vma;
12629 case DT_SYMTAB:
12630 name = ".dynsym";
12631 goto get_vma;
12632 case DT_VERDEF:
12633 name = ".gnu.version_d";
12634 goto get_vma;
12635 case DT_VERNEED:
12636 name = ".gnu.version_r";
12637 goto get_vma;
12638 case DT_VERSYM:
12639 name = ".gnu.version";
12640 get_vma:
12641 o = bfd_get_linker_section (dynobj, name);
12642 do_vma:
12643 if (o == NULL || bfd_is_abs_section (o->output_section))
12644 {
12645 _bfd_error_handler
12646 (_("could not find section %s"), name);
12647 goto error_return;
12648 }
12649 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
12650 {
12651 _bfd_error_handler
12652 (_("warning: section '%s' is being made into a note"), name);
12653 bfd_set_error (bfd_error_nonrepresentable_section);
12654 goto error_return;
12655 }
12656 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
12657 break;
12658
12659 case DT_REL:
12660 case DT_RELA:
12661 case DT_RELSZ:
12662 case DT_RELASZ:
12663 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12664 type = SHT_REL;
12665 else
12666 type = SHT_RELA;
12667 sh_size = 0;
12668 sh_addr = 0;
12669 for (i = 1; i < elf_numsections (abfd); i++)
12670 {
12671 Elf_Internal_Shdr *hdr;
12672
12673 hdr = elf_elfsections (abfd)[i];
12674 if (hdr->sh_type == type
12675 && (hdr->sh_flags & SHF_ALLOC) != 0)
12676 {
12677 sh_size += hdr->sh_size;
12678 if (sh_addr == 0
12679 || sh_addr > hdr->sh_addr)
12680 sh_addr = hdr->sh_addr;
12681 }
12682 }
12683
12684 if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
12685 {
12686 /* Don't count procedure linkage table relocs in the
12687 overall reloc count. */
12688 sh_size -= htab->srelplt->size;
12689 if (sh_size == 0)
12690 /* If the size is zero, make the address zero too.
12691 This is to avoid a glibc bug. If the backend
12692 emits DT_RELA/DT_RELASZ even when DT_RELASZ is
12693 zero, then we'll put DT_RELA at the end of
12694 DT_JMPREL. glibc will interpret the end of
12695 DT_RELA matching the end of DT_JMPREL as the
12696 case where DT_RELA includes DT_JMPREL, and for
12697 LD_BIND_NOW will decide that processing DT_RELA
12698 will process the PLT relocs too. Net result:
12699 No PLT relocs applied. */
12700 sh_addr = 0;
12701
12702 /* If .rela.plt is the first .rela section, exclude
12703 it from DT_RELA. */
12704 else if (sh_addr == (htab->srelplt->output_section->vma
12705 + htab->srelplt->output_offset))
12706 sh_addr += htab->srelplt->size;
12707 }
12708
12709 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
12710 dyn.d_un.d_val = sh_size;
12711 else
12712 dyn.d_un.d_ptr = sh_addr;
12713 break;
12714 }
12715 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
12716 }
12717 }
12718
12719 /* If we have created any dynamic sections, then output them. */
12720 if (dynobj != NULL)
12721 {
12722 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
12723 goto error_return;
12724
12725 /* Check for DT_TEXTREL (late, in case the backend removes it). */
12726 if (((info->warn_shared_textrel && bfd_link_pic (info))
12727 || info->error_textrel)
12728 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
12729 {
12730 bfd_byte *dyncon, *dynconend;
12731
12732 dyncon = o->contents;
12733 dynconend = o->contents + o->size;
12734 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12735 {
12736 Elf_Internal_Dyn dyn;
12737
12738 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12739
12740 if (dyn.d_tag == DT_TEXTREL)
12741 {
12742 if (info->error_textrel)
12743 info->callbacks->einfo
12744 (_("%P%X: read-only segment has dynamic relocations\n"));
12745 else
12746 info->callbacks->einfo
12747 (_("%P: warning: creating a DT_TEXTREL in a shared object\n"));
12748 break;
12749 }
12750 }
12751 }
12752
12753 for (o = dynobj->sections; o != NULL; o = o->next)
12754 {
12755 if ((o->flags & SEC_HAS_CONTENTS) == 0
12756 || o->size == 0
12757 || o->output_section == bfd_abs_section_ptr)
12758 continue;
12759 if ((o->flags & SEC_LINKER_CREATED) == 0)
12760 {
12761 /* At this point, we are only interested in sections
12762 created by _bfd_elf_link_create_dynamic_sections. */
12763 continue;
12764 }
12765 if (htab->stab_info.stabstr == o)
12766 continue;
12767 if (htab->eh_info.hdr_sec == o)
12768 continue;
12769 if (strcmp (o->name, ".dynstr") != 0)
12770 {
12771 if (! bfd_set_section_contents (abfd, o->output_section,
12772 o->contents,
12773 (file_ptr) o->output_offset
12774 * bfd_octets_per_byte (abfd),
12775 o->size))
12776 goto error_return;
12777 }
12778 else
12779 {
12780 /* The contents of the .dynstr section are actually in a
12781 stringtab. */
12782 file_ptr off;
12783
12784 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
12785 if (bfd_seek (abfd, off, SEEK_SET) != 0
12786 || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
12787 goto error_return;
12788 }
12789 }
12790 }
12791
12792 if (!info->resolve_section_groups)
12793 {
12794 bfd_boolean failed = FALSE;
12795
12796 BFD_ASSERT (bfd_link_relocatable (info));
12797 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
12798 if (failed)
12799 goto error_return;
12800 }
12801
12802 /* If we have optimized stabs strings, output them. */
12803 if (htab->stab_info.stabstr != NULL)
12804 {
12805 if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
12806 goto error_return;
12807 }
12808
12809 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
12810 goto error_return;
12811
12812 elf_final_link_free (abfd, &flinfo);
12813
12814 if (attr_section)
12815 {
12816 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
12817 if (contents == NULL)
12818 return FALSE; /* Bail out and fail. */
12819 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
12820 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
12821 free (contents);
12822 }
12823
12824 return TRUE;
12825
12826 error_return:
12827 elf_final_link_free (abfd, &flinfo);
12828 return FALSE;
12829 }
12830 \f
12831 /* Initialize COOKIE for input bfd ABFD. */
12832
12833 static bfd_boolean
12834 init_reloc_cookie (struct elf_reloc_cookie *cookie,
12835 struct bfd_link_info *info, bfd *abfd)
12836 {
12837 Elf_Internal_Shdr *symtab_hdr;
12838 const struct elf_backend_data *bed;
12839
12840 bed = get_elf_backend_data (abfd);
12841 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12842
12843 cookie->abfd = abfd;
12844 cookie->sym_hashes = elf_sym_hashes (abfd);
12845 cookie->bad_symtab = elf_bad_symtab (abfd);
12846 if (cookie->bad_symtab)
12847 {
12848 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12849 cookie->extsymoff = 0;
12850 }
12851 else
12852 {
12853 cookie->locsymcount = symtab_hdr->sh_info;
12854 cookie->extsymoff = symtab_hdr->sh_info;
12855 }
12856
12857 if (bed->s->arch_size == 32)
12858 cookie->r_sym_shift = 8;
12859 else
12860 cookie->r_sym_shift = 32;
12861
12862 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
12863 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
12864 {
12865 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12866 cookie->locsymcount, 0,
12867 NULL, NULL, NULL);
12868 if (cookie->locsyms == NULL)
12869 {
12870 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
12871 return FALSE;
12872 }
12873 if (info->keep_memory)
12874 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
12875 }
12876 return TRUE;
12877 }
12878
12879 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
12880
12881 static void
12882 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
12883 {
12884 Elf_Internal_Shdr *symtab_hdr;
12885
12886 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12887 if (cookie->locsyms != NULL
12888 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
12889 free (cookie->locsyms);
12890 }
12891
12892 /* Initialize the relocation information in COOKIE for input section SEC
12893 of input bfd ABFD. */
12894
12895 static bfd_boolean
12896 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12897 struct bfd_link_info *info, bfd *abfd,
12898 asection *sec)
12899 {
12900 if (sec->reloc_count == 0)
12901 {
12902 cookie->rels = NULL;
12903 cookie->relend = NULL;
12904 }
12905 else
12906 {
12907 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
12908 info->keep_memory);
12909 if (cookie->rels == NULL)
12910 return FALSE;
12911 cookie->rel = cookie->rels;
12912 cookie->relend = cookie->rels + sec->reloc_count;
12913 }
12914 cookie->rel = cookie->rels;
12915 return TRUE;
12916 }
12917
12918 /* Free the memory allocated by init_reloc_cookie_rels,
12919 if appropriate. */
12920
12921 static void
12922 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12923 asection *sec)
12924 {
12925 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
12926 free (cookie->rels);
12927 }
12928
12929 /* Initialize the whole of COOKIE for input section SEC. */
12930
12931 static bfd_boolean
12932 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12933 struct bfd_link_info *info,
12934 asection *sec)
12935 {
12936 if (!init_reloc_cookie (cookie, info, sec->owner))
12937 goto error1;
12938 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
12939 goto error2;
12940 return TRUE;
12941
12942 error2:
12943 fini_reloc_cookie (cookie, sec->owner);
12944 error1:
12945 return FALSE;
12946 }
12947
12948 /* Free the memory allocated by init_reloc_cookie_for_section,
12949 if appropriate. */
12950
12951 static void
12952 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12953 asection *sec)
12954 {
12955 fini_reloc_cookie_rels (cookie, sec);
12956 fini_reloc_cookie (cookie, sec->owner);
12957 }
12958 \f
12959 /* Garbage collect unused sections. */
12960
12961 /* Default gc_mark_hook. */
12962
12963 asection *
12964 _bfd_elf_gc_mark_hook (asection *sec,
12965 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12966 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12967 struct elf_link_hash_entry *h,
12968 Elf_Internal_Sym *sym)
12969 {
12970 if (h != NULL)
12971 {
12972 switch (h->root.type)
12973 {
12974 case bfd_link_hash_defined:
12975 case bfd_link_hash_defweak:
12976 return h->root.u.def.section;
12977
12978 case bfd_link_hash_common:
12979 return h->root.u.c.p->section;
12980
12981 default:
12982 break;
12983 }
12984 }
12985 else
12986 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
12987
12988 return NULL;
12989 }
12990
12991 /* Return the debug definition section. */
12992
12993 static asection *
12994 elf_gc_mark_debug_section (asection *sec ATTRIBUTE_UNUSED,
12995 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12996 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12997 struct elf_link_hash_entry *h,
12998 Elf_Internal_Sym *sym)
12999 {
13000 if (h != NULL)
13001 {
13002 /* Return the global debug definition section. */
13003 if ((h->root.type == bfd_link_hash_defined
13004 || h->root.type == bfd_link_hash_defweak)
13005 && (h->root.u.def.section->flags & SEC_DEBUGGING) != 0)
13006 return h->root.u.def.section;
13007 }
13008 else
13009 {
13010 /* Return the local debug definition section. */
13011 asection *isec = bfd_section_from_elf_index (sec->owner,
13012 sym->st_shndx);
13013 if ((isec->flags & SEC_DEBUGGING) != 0)
13014 return isec;
13015 }
13016
13017 return NULL;
13018 }
13019
13020 /* COOKIE->rel describes a relocation against section SEC, which is
13021 a section we've decided to keep. Return the section that contains
13022 the relocation symbol, or NULL if no section contains it. */
13023
13024 asection *
13025 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
13026 elf_gc_mark_hook_fn gc_mark_hook,
13027 struct elf_reloc_cookie *cookie,
13028 bfd_boolean *start_stop)
13029 {
13030 unsigned long r_symndx;
13031 struct elf_link_hash_entry *h;
13032
13033 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
13034 if (r_symndx == STN_UNDEF)
13035 return NULL;
13036
13037 if (r_symndx >= cookie->locsymcount
13038 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13039 {
13040 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
13041 if (h == NULL)
13042 {
13043 info->callbacks->einfo (_("%F%P: corrupt input: %pB\n"),
13044 sec->owner);
13045 return NULL;
13046 }
13047 while (h->root.type == bfd_link_hash_indirect
13048 || h->root.type == bfd_link_hash_warning)
13049 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13050 h->mark = 1;
13051 /* If this symbol is weak and there is a non-weak definition, we
13052 keep the non-weak definition because many backends put
13053 dynamic reloc info on the non-weak definition for code
13054 handling copy relocs. */
13055 if (h->is_weakalias)
13056 weakdef (h)->mark = 1;
13057
13058 if (start_stop != NULL)
13059 {
13060 /* To work around a glibc bug, mark XXX input sections
13061 when there is a reference to __start_XXX or __stop_XXX
13062 symbols. */
13063 if (h->start_stop)
13064 {
13065 asection *s = h->u2.start_stop_section;
13066 *start_stop = !s->gc_mark;
13067 return s;
13068 }
13069 }
13070
13071 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
13072 }
13073
13074 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
13075 &cookie->locsyms[r_symndx]);
13076 }
13077
13078 /* COOKIE->rel describes a relocation against section SEC, which is
13079 a section we've decided to keep. Mark the section that contains
13080 the relocation symbol. */
13081
13082 bfd_boolean
13083 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
13084 asection *sec,
13085 elf_gc_mark_hook_fn gc_mark_hook,
13086 struct elf_reloc_cookie *cookie)
13087 {
13088 asection *rsec;
13089 bfd_boolean start_stop = FALSE;
13090
13091 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
13092 while (rsec != NULL)
13093 {
13094 if (!rsec->gc_mark)
13095 {
13096 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
13097 || (rsec->owner->flags & DYNAMIC) != 0)
13098 rsec->gc_mark = 1;
13099 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
13100 return FALSE;
13101 }
13102 if (!start_stop)
13103 break;
13104 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
13105 }
13106 return TRUE;
13107 }
13108
13109 /* The mark phase of garbage collection. For a given section, mark
13110 it and any sections in this section's group, and all the sections
13111 which define symbols to which it refers. */
13112
13113 bfd_boolean
13114 _bfd_elf_gc_mark (struct bfd_link_info *info,
13115 asection *sec,
13116 elf_gc_mark_hook_fn gc_mark_hook)
13117 {
13118 bfd_boolean ret;
13119 asection *group_sec, *eh_frame;
13120
13121 sec->gc_mark = 1;
13122
13123 /* Mark all the sections in the group. */
13124 group_sec = elf_section_data (sec)->next_in_group;
13125 if (group_sec && !group_sec->gc_mark)
13126 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
13127 return FALSE;
13128
13129 /* Look through the section relocs. */
13130 ret = TRUE;
13131 eh_frame = elf_eh_frame_section (sec->owner);
13132 if ((sec->flags & SEC_RELOC) != 0
13133 && sec->reloc_count > 0
13134 && sec != eh_frame)
13135 {
13136 struct elf_reloc_cookie cookie;
13137
13138 if (!init_reloc_cookie_for_section (&cookie, info, sec))
13139 ret = FALSE;
13140 else
13141 {
13142 for (; cookie.rel < cookie.relend; cookie.rel++)
13143 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
13144 {
13145 ret = FALSE;
13146 break;
13147 }
13148 fini_reloc_cookie_for_section (&cookie, sec);
13149 }
13150 }
13151
13152 if (ret && eh_frame && elf_fde_list (sec))
13153 {
13154 struct elf_reloc_cookie cookie;
13155
13156 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
13157 ret = FALSE;
13158 else
13159 {
13160 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
13161 gc_mark_hook, &cookie))
13162 ret = FALSE;
13163 fini_reloc_cookie_for_section (&cookie, eh_frame);
13164 }
13165 }
13166
13167 eh_frame = elf_section_eh_frame_entry (sec);
13168 if (ret && eh_frame && !eh_frame->gc_mark)
13169 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
13170 ret = FALSE;
13171
13172 return ret;
13173 }
13174
13175 /* Scan and mark sections in a special or debug section group. */
13176
13177 static void
13178 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
13179 {
13180 /* Point to first section of section group. */
13181 asection *ssec;
13182 /* Used to iterate the section group. */
13183 asection *msec;
13184
13185 bfd_boolean is_special_grp = TRUE;
13186 bfd_boolean is_debug_grp = TRUE;
13187
13188 /* First scan to see if group contains any section other than debug
13189 and special section. */
13190 ssec = msec = elf_next_in_group (grp);
13191 do
13192 {
13193 if ((msec->flags & SEC_DEBUGGING) == 0)
13194 is_debug_grp = FALSE;
13195
13196 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
13197 is_special_grp = FALSE;
13198
13199 msec = elf_next_in_group (msec);
13200 }
13201 while (msec != ssec);
13202
13203 /* If this is a pure debug section group or pure special section group,
13204 keep all sections in this group. */
13205 if (is_debug_grp || is_special_grp)
13206 {
13207 do
13208 {
13209 msec->gc_mark = 1;
13210 msec = elf_next_in_group (msec);
13211 }
13212 while (msec != ssec);
13213 }
13214 }
13215
13216 /* Keep debug and special sections. */
13217
13218 bfd_boolean
13219 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
13220 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
13221 {
13222 bfd *ibfd;
13223
13224 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13225 {
13226 asection *isec;
13227 bfd_boolean some_kept;
13228 bfd_boolean debug_frag_seen;
13229 bfd_boolean has_kept_debug_info;
13230
13231 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13232 continue;
13233 isec = ibfd->sections;
13234 if (isec == NULL || isec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13235 continue;
13236
13237 /* Ensure all linker created sections are kept,
13238 see if any other section is already marked,
13239 and note if we have any fragmented debug sections. */
13240 debug_frag_seen = some_kept = has_kept_debug_info = FALSE;
13241 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13242 {
13243 if ((isec->flags & SEC_LINKER_CREATED) != 0)
13244 isec->gc_mark = 1;
13245 else if (isec->gc_mark
13246 && (isec->flags & SEC_ALLOC) != 0
13247 && elf_section_type (isec) != SHT_NOTE)
13248 some_kept = TRUE;
13249
13250 if (!debug_frag_seen
13251 && (isec->flags & SEC_DEBUGGING)
13252 && CONST_STRNEQ (isec->name, ".debug_line."))
13253 debug_frag_seen = TRUE;
13254 }
13255
13256 /* If no non-note alloc section in this file will be kept, then
13257 we can toss out the debug and special sections. */
13258 if (!some_kept)
13259 continue;
13260
13261 /* Keep debug and special sections like .comment when they are
13262 not part of a group. Also keep section groups that contain
13263 just debug sections or special sections. */
13264 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13265 {
13266 if ((isec->flags & SEC_GROUP) != 0)
13267 _bfd_elf_gc_mark_debug_special_section_group (isec);
13268 else if (((isec->flags & SEC_DEBUGGING) != 0
13269 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
13270 && elf_next_in_group (isec) == NULL)
13271 isec->gc_mark = 1;
13272 if (isec->gc_mark && (isec->flags & SEC_DEBUGGING) != 0)
13273 has_kept_debug_info = TRUE;
13274 }
13275
13276 /* Look for CODE sections which are going to be discarded,
13277 and find and discard any fragmented debug sections which
13278 are associated with that code section. */
13279 if (debug_frag_seen)
13280 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13281 if ((isec->flags & SEC_CODE) != 0
13282 && isec->gc_mark == 0)
13283 {
13284 unsigned int ilen;
13285 asection *dsec;
13286
13287 ilen = strlen (isec->name);
13288
13289 /* Association is determined by the name of the debug
13290 section containing the name of the code section as
13291 a suffix. For example .debug_line.text.foo is a
13292 debug section associated with .text.foo. */
13293 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
13294 {
13295 unsigned int dlen;
13296
13297 if (dsec->gc_mark == 0
13298 || (dsec->flags & SEC_DEBUGGING) == 0)
13299 continue;
13300
13301 dlen = strlen (dsec->name);
13302
13303 if (dlen > ilen
13304 && strncmp (dsec->name + (dlen - ilen),
13305 isec->name, ilen) == 0)
13306 dsec->gc_mark = 0;
13307 }
13308 }
13309
13310 /* Mark debug sections referenced by kept debug sections. */
13311 if (has_kept_debug_info)
13312 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13313 if (isec->gc_mark
13314 && (isec->flags & SEC_DEBUGGING) != 0)
13315 if (!_bfd_elf_gc_mark (info, isec,
13316 elf_gc_mark_debug_section))
13317 return FALSE;
13318 }
13319 return TRUE;
13320 }
13321
13322 static bfd_boolean
13323 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
13324 {
13325 bfd *sub;
13326 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13327
13328 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13329 {
13330 asection *o;
13331
13332 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13333 || elf_object_id (sub) != elf_hash_table_id (elf_hash_table (info))
13334 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13335 continue;
13336 o = sub->sections;
13337 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13338 continue;
13339
13340 for (o = sub->sections; o != NULL; o = o->next)
13341 {
13342 /* When any section in a section group is kept, we keep all
13343 sections in the section group. If the first member of
13344 the section group is excluded, we will also exclude the
13345 group section. */
13346 if (o->flags & SEC_GROUP)
13347 {
13348 asection *first = elf_next_in_group (o);
13349 o->gc_mark = first->gc_mark;
13350 }
13351
13352 if (o->gc_mark)
13353 continue;
13354
13355 /* Skip sweeping sections already excluded. */
13356 if (o->flags & SEC_EXCLUDE)
13357 continue;
13358
13359 /* Since this is early in the link process, it is simple
13360 to remove a section from the output. */
13361 o->flags |= SEC_EXCLUDE;
13362
13363 if (info->print_gc_sections && o->size != 0)
13364 /* xgettext:c-format */
13365 _bfd_error_handler (_("removing unused section '%pA' in file '%pB'"),
13366 o, sub);
13367 }
13368 }
13369
13370 return TRUE;
13371 }
13372
13373 /* Propagate collected vtable information. This is called through
13374 elf_link_hash_traverse. */
13375
13376 static bfd_boolean
13377 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
13378 {
13379 /* Those that are not vtables. */
13380 if (h->start_stop
13381 || h->u2.vtable == NULL
13382 || h->u2.vtable->parent == NULL)
13383 return TRUE;
13384
13385 /* Those vtables that do not have parents, we cannot merge. */
13386 if (h->u2.vtable->parent == (struct elf_link_hash_entry *) -1)
13387 return TRUE;
13388
13389 /* If we've already been done, exit. */
13390 if (h->u2.vtable->used && h->u2.vtable->used[-1])
13391 return TRUE;
13392
13393 /* Make sure the parent's table is up to date. */
13394 elf_gc_propagate_vtable_entries_used (h->u2.vtable->parent, okp);
13395
13396 if (h->u2.vtable->used == NULL)
13397 {
13398 /* None of this table's entries were referenced. Re-use the
13399 parent's table. */
13400 h->u2.vtable->used = h->u2.vtable->parent->u2.vtable->used;
13401 h->u2.vtable->size = h->u2.vtable->parent->u2.vtable->size;
13402 }
13403 else
13404 {
13405 size_t n;
13406 bfd_boolean *cu, *pu;
13407
13408 /* Or the parent's entries into ours. */
13409 cu = h->u2.vtable->used;
13410 cu[-1] = TRUE;
13411 pu = h->u2.vtable->parent->u2.vtable->used;
13412 if (pu != NULL)
13413 {
13414 const struct elf_backend_data *bed;
13415 unsigned int log_file_align;
13416
13417 bed = get_elf_backend_data (h->root.u.def.section->owner);
13418 log_file_align = bed->s->log_file_align;
13419 n = h->u2.vtable->parent->u2.vtable->size >> log_file_align;
13420 while (n--)
13421 {
13422 if (*pu)
13423 *cu = TRUE;
13424 pu++;
13425 cu++;
13426 }
13427 }
13428 }
13429
13430 return TRUE;
13431 }
13432
13433 static bfd_boolean
13434 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
13435 {
13436 asection *sec;
13437 bfd_vma hstart, hend;
13438 Elf_Internal_Rela *relstart, *relend, *rel;
13439 const struct elf_backend_data *bed;
13440 unsigned int log_file_align;
13441
13442 /* Take care of both those symbols that do not describe vtables as
13443 well as those that are not loaded. */
13444 if (h->start_stop
13445 || h->u2.vtable == NULL
13446 || h->u2.vtable->parent == NULL)
13447 return TRUE;
13448
13449 BFD_ASSERT (h->root.type == bfd_link_hash_defined
13450 || h->root.type == bfd_link_hash_defweak);
13451
13452 sec = h->root.u.def.section;
13453 hstart = h->root.u.def.value;
13454 hend = hstart + h->size;
13455
13456 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
13457 if (!relstart)
13458 return *(bfd_boolean *) okp = FALSE;
13459 bed = get_elf_backend_data (sec->owner);
13460 log_file_align = bed->s->log_file_align;
13461
13462 relend = relstart + sec->reloc_count;
13463
13464 for (rel = relstart; rel < relend; ++rel)
13465 if (rel->r_offset >= hstart && rel->r_offset < hend)
13466 {
13467 /* If the entry is in use, do nothing. */
13468 if (h->u2.vtable->used
13469 && (rel->r_offset - hstart) < h->u2.vtable->size)
13470 {
13471 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
13472 if (h->u2.vtable->used[entry])
13473 continue;
13474 }
13475 /* Otherwise, kill it. */
13476 rel->r_offset = rel->r_info = rel->r_addend = 0;
13477 }
13478
13479 return TRUE;
13480 }
13481
13482 /* Mark sections containing dynamically referenced symbols. When
13483 building shared libraries, we must assume that any visible symbol is
13484 referenced. */
13485
13486 bfd_boolean
13487 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
13488 {
13489 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13490 struct bfd_elf_dynamic_list *d = info->dynamic_list;
13491
13492 if ((h->root.type == bfd_link_hash_defined
13493 || h->root.type == bfd_link_hash_defweak)
13494 && ((h->ref_dynamic && !h->forced_local)
13495 || ((h->def_regular || ELF_COMMON_DEF_P (h))
13496 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13497 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13498 && (!bfd_link_executable (info)
13499 || info->gc_keep_exported
13500 || info->export_dynamic
13501 || (h->dynamic
13502 && d != NULL
13503 && (*d->match) (&d->head, NULL, h->root.root.string)))
13504 && (h->versioned >= versioned
13505 || !bfd_hide_sym_by_version (info->version_info,
13506 h->root.root.string)))))
13507 h->root.u.def.section->flags |= SEC_KEEP;
13508
13509 return TRUE;
13510 }
13511
13512 /* Keep all sections containing symbols undefined on the command-line,
13513 and the section containing the entry symbol. */
13514
13515 void
13516 _bfd_elf_gc_keep (struct bfd_link_info *info)
13517 {
13518 struct bfd_sym_chain *sym;
13519
13520 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13521 {
13522 struct elf_link_hash_entry *h;
13523
13524 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13525 FALSE, FALSE, FALSE);
13526
13527 if (h != NULL
13528 && (h->root.type == bfd_link_hash_defined
13529 || h->root.type == bfd_link_hash_defweak)
13530 && !bfd_is_abs_section (h->root.u.def.section)
13531 && !bfd_is_und_section (h->root.u.def.section))
13532 h->root.u.def.section->flags |= SEC_KEEP;
13533 }
13534 }
13535
13536 bfd_boolean
13537 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13538 struct bfd_link_info *info)
13539 {
13540 bfd *ibfd = info->input_bfds;
13541
13542 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13543 {
13544 asection *sec;
13545 struct elf_reloc_cookie cookie;
13546
13547 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13548 continue;
13549 sec = ibfd->sections;
13550 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13551 continue;
13552
13553 if (!init_reloc_cookie (&cookie, info, ibfd))
13554 return FALSE;
13555
13556 for (sec = ibfd->sections; sec; sec = sec->next)
13557 {
13558 if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
13559 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
13560 {
13561 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
13562 fini_reloc_cookie_rels (&cookie, sec);
13563 }
13564 }
13565 }
13566 return TRUE;
13567 }
13568
13569 /* Do mark and sweep of unused sections. */
13570
13571 bfd_boolean
13572 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
13573 {
13574 bfd_boolean ok = TRUE;
13575 bfd *sub;
13576 elf_gc_mark_hook_fn gc_mark_hook;
13577 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13578 struct elf_link_hash_table *htab;
13579
13580 if (!bed->can_gc_sections
13581 || !is_elf_hash_table (info->hash))
13582 {
13583 _bfd_error_handler(_("warning: gc-sections option ignored"));
13584 return TRUE;
13585 }
13586
13587 bed->gc_keep (info);
13588 htab = elf_hash_table (info);
13589
13590 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
13591 at the .eh_frame section if we can mark the FDEs individually. */
13592 for (sub = info->input_bfds;
13593 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
13594 sub = sub->link.next)
13595 {
13596 asection *sec;
13597 struct elf_reloc_cookie cookie;
13598
13599 sec = sub->sections;
13600 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13601 continue;
13602 sec = bfd_get_section_by_name (sub, ".eh_frame");
13603 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
13604 {
13605 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
13606 if (elf_section_data (sec)->sec_info
13607 && (sec->flags & SEC_LINKER_CREATED) == 0)
13608 elf_eh_frame_section (sub) = sec;
13609 fini_reloc_cookie_for_section (&cookie, sec);
13610 sec = bfd_get_next_section_by_name (NULL, sec);
13611 }
13612 }
13613
13614 /* Apply transitive closure to the vtable entry usage info. */
13615 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
13616 if (!ok)
13617 return FALSE;
13618
13619 /* Kill the vtable relocations that were not used. */
13620 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
13621 if (!ok)
13622 return FALSE;
13623
13624 /* Mark dynamically referenced symbols. */
13625 if (htab->dynamic_sections_created || info->gc_keep_exported)
13626 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
13627
13628 /* Grovel through relocs to find out who stays ... */
13629 gc_mark_hook = bed->gc_mark_hook;
13630 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13631 {
13632 asection *o;
13633
13634 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13635 || elf_object_id (sub) != elf_hash_table_id (htab)
13636 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13637 continue;
13638
13639 o = sub->sections;
13640 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13641 continue;
13642
13643 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13644 Also treat note sections as a root, if the section is not part
13645 of a group. We must keep all PREINIT_ARRAY, INIT_ARRAY as
13646 well as FINI_ARRAY sections for ld -r. */
13647 for (o = sub->sections; o != NULL; o = o->next)
13648 if (!o->gc_mark
13649 && (o->flags & SEC_EXCLUDE) == 0
13650 && ((o->flags & SEC_KEEP) != 0
13651 || (bfd_link_relocatable (info)
13652 && ((elf_section_data (o)->this_hdr.sh_type
13653 == SHT_PREINIT_ARRAY)
13654 || (elf_section_data (o)->this_hdr.sh_type
13655 == SHT_INIT_ARRAY)
13656 || (elf_section_data (o)->this_hdr.sh_type
13657 == SHT_FINI_ARRAY)))
13658 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
13659 && elf_next_in_group (o) == NULL )))
13660 {
13661 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13662 return FALSE;
13663 }
13664 }
13665
13666 /* Allow the backend to mark additional target specific sections. */
13667 bed->gc_mark_extra_sections (info, gc_mark_hook);
13668
13669 /* ... and mark SEC_EXCLUDE for those that go. */
13670 return elf_gc_sweep (abfd, info);
13671 }
13672 \f
13673 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
13674
13675 bfd_boolean
13676 bfd_elf_gc_record_vtinherit (bfd *abfd,
13677 asection *sec,
13678 struct elf_link_hash_entry *h,
13679 bfd_vma offset)
13680 {
13681 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
13682 struct elf_link_hash_entry **search, *child;
13683 size_t extsymcount;
13684 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13685
13686 /* The sh_info field of the symtab header tells us where the
13687 external symbols start. We don't care about the local symbols at
13688 this point. */
13689 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
13690 if (!elf_bad_symtab (abfd))
13691 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
13692
13693 sym_hashes = elf_sym_hashes (abfd);
13694 sym_hashes_end = sym_hashes + extsymcount;
13695
13696 /* Hunt down the child symbol, which is in this section at the same
13697 offset as the relocation. */
13698 for (search = sym_hashes; search != sym_hashes_end; ++search)
13699 {
13700 if ((child = *search) != NULL
13701 && (child->root.type == bfd_link_hash_defined
13702 || child->root.type == bfd_link_hash_defweak)
13703 && child->root.u.def.section == sec
13704 && child->root.u.def.value == offset)
13705 goto win;
13706 }
13707
13708 /* xgettext:c-format */
13709 _bfd_error_handler (_("%pB: %pA+%#" PRIx64 ": no symbol found for INHERIT"),
13710 abfd, sec, (uint64_t) offset);
13711 bfd_set_error (bfd_error_invalid_operation);
13712 return FALSE;
13713
13714 win:
13715 if (!child->u2.vtable)
13716 {
13717 child->u2.vtable = ((struct elf_link_virtual_table_entry *)
13718 bfd_zalloc (abfd, sizeof (*child->u2.vtable)));
13719 if (!child->u2.vtable)
13720 return FALSE;
13721 }
13722 if (!h)
13723 {
13724 /* This *should* only be the absolute section. It could potentially
13725 be that someone has defined a non-global vtable though, which
13726 would be bad. It isn't worth paging in the local symbols to be
13727 sure though; that case should simply be handled by the assembler. */
13728
13729 child->u2.vtable->parent = (struct elf_link_hash_entry *) -1;
13730 }
13731 else
13732 child->u2.vtable->parent = h;
13733
13734 return TRUE;
13735 }
13736
13737 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
13738
13739 bfd_boolean
13740 bfd_elf_gc_record_vtentry (bfd *abfd, asection *sec,
13741 struct elf_link_hash_entry *h,
13742 bfd_vma addend)
13743 {
13744 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13745 unsigned int log_file_align = bed->s->log_file_align;
13746
13747 if (!h)
13748 {
13749 /* xgettext:c-format */
13750 _bfd_error_handler (_("%pB: section '%pA': corrupt VTENTRY entry"),
13751 abfd, sec);
13752 bfd_set_error (bfd_error_bad_value);
13753 return FALSE;
13754 }
13755
13756 if (!h->u2.vtable)
13757 {
13758 h->u2.vtable = ((struct elf_link_virtual_table_entry *)
13759 bfd_zalloc (abfd, sizeof (*h->u2.vtable)));
13760 if (!h->u2.vtable)
13761 return FALSE;
13762 }
13763
13764 if (addend >= h->u2.vtable->size)
13765 {
13766 size_t size, bytes, file_align;
13767 bfd_boolean *ptr = h->u2.vtable->used;
13768
13769 /* While the symbol is undefined, we have to be prepared to handle
13770 a zero size. */
13771 file_align = 1 << log_file_align;
13772 if (h->root.type == bfd_link_hash_undefined)
13773 size = addend + file_align;
13774 else
13775 {
13776 size = h->size;
13777 if (addend >= size)
13778 {
13779 /* Oops! We've got a reference past the defined end of
13780 the table. This is probably a bug -- shall we warn? */
13781 size = addend + file_align;
13782 }
13783 }
13784 size = (size + file_align - 1) & -file_align;
13785
13786 /* Allocate one extra entry for use as a "done" flag for the
13787 consolidation pass. */
13788 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
13789
13790 if (ptr)
13791 {
13792 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
13793
13794 if (ptr != NULL)
13795 {
13796 size_t oldbytes;
13797
13798 oldbytes = (((h->u2.vtable->size >> log_file_align) + 1)
13799 * sizeof (bfd_boolean));
13800 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
13801 }
13802 }
13803 else
13804 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
13805
13806 if (ptr == NULL)
13807 return FALSE;
13808
13809 /* And arrange for that done flag to be at index -1. */
13810 h->u2.vtable->used = ptr + 1;
13811 h->u2.vtable->size = size;
13812 }
13813
13814 h->u2.vtable->used[addend >> log_file_align] = TRUE;
13815
13816 return TRUE;
13817 }
13818
13819 /* Map an ELF section header flag to its corresponding string. */
13820 typedef struct
13821 {
13822 char *flag_name;
13823 flagword flag_value;
13824 } elf_flags_to_name_table;
13825
13826 static elf_flags_to_name_table elf_flags_to_names [] =
13827 {
13828 { "SHF_WRITE", SHF_WRITE },
13829 { "SHF_ALLOC", SHF_ALLOC },
13830 { "SHF_EXECINSTR", SHF_EXECINSTR },
13831 { "SHF_MERGE", SHF_MERGE },
13832 { "SHF_STRINGS", SHF_STRINGS },
13833 { "SHF_INFO_LINK", SHF_INFO_LINK},
13834 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
13835 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
13836 { "SHF_GROUP", SHF_GROUP },
13837 { "SHF_TLS", SHF_TLS },
13838 { "SHF_MASKOS", SHF_MASKOS },
13839 { "SHF_EXCLUDE", SHF_EXCLUDE },
13840 };
13841
13842 /* Returns TRUE if the section is to be included, otherwise FALSE. */
13843 bfd_boolean
13844 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
13845 struct flag_info *flaginfo,
13846 asection *section)
13847 {
13848 const bfd_vma sh_flags = elf_section_flags (section);
13849
13850 if (!flaginfo->flags_initialized)
13851 {
13852 bfd *obfd = info->output_bfd;
13853 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13854 struct flag_info_list *tf = flaginfo->flag_list;
13855 int with_hex = 0;
13856 int without_hex = 0;
13857
13858 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
13859 {
13860 unsigned i;
13861 flagword (*lookup) (char *);
13862
13863 lookup = bed->elf_backend_lookup_section_flags_hook;
13864 if (lookup != NULL)
13865 {
13866 flagword hexval = (*lookup) ((char *) tf->name);
13867
13868 if (hexval != 0)
13869 {
13870 if (tf->with == with_flags)
13871 with_hex |= hexval;
13872 else if (tf->with == without_flags)
13873 without_hex |= hexval;
13874 tf->valid = TRUE;
13875 continue;
13876 }
13877 }
13878 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
13879 {
13880 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
13881 {
13882 if (tf->with == with_flags)
13883 with_hex |= elf_flags_to_names[i].flag_value;
13884 else if (tf->with == without_flags)
13885 without_hex |= elf_flags_to_names[i].flag_value;
13886 tf->valid = TRUE;
13887 break;
13888 }
13889 }
13890 if (!tf->valid)
13891 {
13892 info->callbacks->einfo
13893 (_("unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
13894 return FALSE;
13895 }
13896 }
13897 flaginfo->flags_initialized = TRUE;
13898 flaginfo->only_with_flags |= with_hex;
13899 flaginfo->not_with_flags |= without_hex;
13900 }
13901
13902 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
13903 return FALSE;
13904
13905 if ((flaginfo->not_with_flags & sh_flags) != 0)
13906 return FALSE;
13907
13908 return TRUE;
13909 }
13910
13911 struct alloc_got_off_arg {
13912 bfd_vma gotoff;
13913 struct bfd_link_info *info;
13914 };
13915
13916 /* We need a special top-level link routine to convert got reference counts
13917 to real got offsets. */
13918
13919 static bfd_boolean
13920 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
13921 {
13922 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
13923 bfd *obfd = gofarg->info->output_bfd;
13924 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13925
13926 if (h->got.refcount > 0)
13927 {
13928 h->got.offset = gofarg->gotoff;
13929 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
13930 }
13931 else
13932 h->got.offset = (bfd_vma) -1;
13933
13934 return TRUE;
13935 }
13936
13937 /* And an accompanying bit to work out final got entry offsets once
13938 we're done. Should be called from final_link. */
13939
13940 bfd_boolean
13941 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
13942 struct bfd_link_info *info)
13943 {
13944 bfd *i;
13945 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13946 bfd_vma gotoff;
13947 struct alloc_got_off_arg gofarg;
13948
13949 BFD_ASSERT (abfd == info->output_bfd);
13950
13951 if (! is_elf_hash_table (info->hash))
13952 return FALSE;
13953
13954 /* The GOT offset is relative to the .got section, but the GOT header is
13955 put into the .got.plt section, if the backend uses it. */
13956 if (bed->want_got_plt)
13957 gotoff = 0;
13958 else
13959 gotoff = bed->got_header_size;
13960
13961 /* Do the local .got entries first. */
13962 for (i = info->input_bfds; i; i = i->link.next)
13963 {
13964 bfd_signed_vma *local_got;
13965 size_t j, locsymcount;
13966 Elf_Internal_Shdr *symtab_hdr;
13967
13968 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
13969 continue;
13970
13971 local_got = elf_local_got_refcounts (i);
13972 if (!local_got)
13973 continue;
13974
13975 symtab_hdr = &elf_tdata (i)->symtab_hdr;
13976 if (elf_bad_symtab (i))
13977 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13978 else
13979 locsymcount = symtab_hdr->sh_info;
13980
13981 for (j = 0; j < locsymcount; ++j)
13982 {
13983 if (local_got[j] > 0)
13984 {
13985 local_got[j] = gotoff;
13986 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
13987 }
13988 else
13989 local_got[j] = (bfd_vma) -1;
13990 }
13991 }
13992
13993 /* Then the global .got entries. .plt refcounts are handled by
13994 adjust_dynamic_symbol */
13995 gofarg.gotoff = gotoff;
13996 gofarg.info = info;
13997 elf_link_hash_traverse (elf_hash_table (info),
13998 elf_gc_allocate_got_offsets,
13999 &gofarg);
14000 return TRUE;
14001 }
14002
14003 /* Many folk need no more in the way of final link than this, once
14004 got entry reference counting is enabled. */
14005
14006 bfd_boolean
14007 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
14008 {
14009 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
14010 return FALSE;
14011
14012 /* Invoke the regular ELF backend linker to do all the work. */
14013 return bfd_elf_final_link (abfd, info);
14014 }
14015
14016 bfd_boolean
14017 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
14018 {
14019 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
14020
14021 if (rcookie->bad_symtab)
14022 rcookie->rel = rcookie->rels;
14023
14024 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
14025 {
14026 unsigned long r_symndx;
14027
14028 if (! rcookie->bad_symtab)
14029 if (rcookie->rel->r_offset > offset)
14030 return FALSE;
14031 if (rcookie->rel->r_offset != offset)
14032 continue;
14033
14034 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
14035 if (r_symndx == STN_UNDEF)
14036 return TRUE;
14037
14038 if (r_symndx >= rcookie->locsymcount
14039 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
14040 {
14041 struct elf_link_hash_entry *h;
14042
14043 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
14044
14045 while (h->root.type == bfd_link_hash_indirect
14046 || h->root.type == bfd_link_hash_warning)
14047 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14048
14049 if ((h->root.type == bfd_link_hash_defined
14050 || h->root.type == bfd_link_hash_defweak)
14051 && (h->root.u.def.section->owner != rcookie->abfd
14052 || h->root.u.def.section->kept_section != NULL
14053 || discarded_section (h->root.u.def.section)))
14054 return TRUE;
14055 }
14056 else
14057 {
14058 /* It's not a relocation against a global symbol,
14059 but it could be a relocation against a local
14060 symbol for a discarded section. */
14061 asection *isec;
14062 Elf_Internal_Sym *isym;
14063
14064 /* Need to: get the symbol; get the section. */
14065 isym = &rcookie->locsyms[r_symndx];
14066 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
14067 if (isec != NULL
14068 && (isec->kept_section != NULL
14069 || discarded_section (isec)))
14070 return TRUE;
14071 }
14072 return FALSE;
14073 }
14074 return FALSE;
14075 }
14076
14077 /* Discard unneeded references to discarded sections.
14078 Returns -1 on error, 1 if any section's size was changed, 0 if
14079 nothing changed. This function assumes that the relocations are in
14080 sorted order, which is true for all known assemblers. */
14081
14082 int
14083 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
14084 {
14085 struct elf_reloc_cookie cookie;
14086 asection *o;
14087 bfd *abfd;
14088 int changed = 0;
14089
14090 if (info->traditional_format
14091 || !is_elf_hash_table (info->hash))
14092 return 0;
14093
14094 o = bfd_get_section_by_name (output_bfd, ".stab");
14095 if (o != NULL)
14096 {
14097 asection *i;
14098
14099 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14100 {
14101 if (i->size == 0
14102 || i->reloc_count == 0
14103 || i->sec_info_type != SEC_INFO_TYPE_STABS)
14104 continue;
14105
14106 abfd = i->owner;
14107 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14108 continue;
14109
14110 if (!init_reloc_cookie_for_section (&cookie, info, i))
14111 return -1;
14112
14113 if (_bfd_discard_section_stabs (abfd, i,
14114 elf_section_data (i)->sec_info,
14115 bfd_elf_reloc_symbol_deleted_p,
14116 &cookie))
14117 changed = 1;
14118
14119 fini_reloc_cookie_for_section (&cookie, i);
14120 }
14121 }
14122
14123 o = NULL;
14124 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
14125 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
14126 if (o != NULL)
14127 {
14128 asection *i;
14129 int eh_changed = 0;
14130 unsigned int eh_alignment;
14131
14132 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14133 {
14134 if (i->size == 0)
14135 continue;
14136
14137 abfd = i->owner;
14138 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14139 continue;
14140
14141 if (!init_reloc_cookie_for_section (&cookie, info, i))
14142 return -1;
14143
14144 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
14145 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
14146 bfd_elf_reloc_symbol_deleted_p,
14147 &cookie))
14148 {
14149 eh_changed = 1;
14150 if (i->size != i->rawsize)
14151 changed = 1;
14152 }
14153
14154 fini_reloc_cookie_for_section (&cookie, i);
14155 }
14156
14157 eh_alignment = 1 << o->alignment_power;
14158 /* Skip over zero terminator, and prevent empty sections from
14159 adding alignment padding at the end. */
14160 for (i = o->map_tail.s; i != NULL; i = i->map_tail.s)
14161 if (i->size == 0)
14162 i->flags |= SEC_EXCLUDE;
14163 else if (i->size > 4)
14164 break;
14165 /* The last non-empty eh_frame section doesn't need padding. */
14166 if (i != NULL)
14167 i = i->map_tail.s;
14168 /* Any prior sections must pad the last FDE out to the output
14169 section alignment. Otherwise we might have zero padding
14170 between sections, which would be seen as a terminator. */
14171 for (; i != NULL; i = i->map_tail.s)
14172 if (i->size == 4)
14173 /* All but the last zero terminator should have been removed. */
14174 BFD_FAIL ();
14175 else
14176 {
14177 bfd_size_type size
14178 = (i->size + eh_alignment - 1) & -eh_alignment;
14179 if (i->size != size)
14180 {
14181 i->size = size;
14182 changed = 1;
14183 eh_changed = 1;
14184 }
14185 }
14186 if (eh_changed)
14187 elf_link_hash_traverse (elf_hash_table (info),
14188 _bfd_elf_adjust_eh_frame_global_symbol, NULL);
14189 }
14190
14191 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
14192 {
14193 const struct elf_backend_data *bed;
14194 asection *s;
14195
14196 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14197 continue;
14198 s = abfd->sections;
14199 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14200 continue;
14201
14202 bed = get_elf_backend_data (abfd);
14203
14204 if (bed->elf_backend_discard_info != NULL)
14205 {
14206 if (!init_reloc_cookie (&cookie, info, abfd))
14207 return -1;
14208
14209 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
14210 changed = 1;
14211
14212 fini_reloc_cookie (&cookie, abfd);
14213 }
14214 }
14215
14216 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
14217 _bfd_elf_end_eh_frame_parsing (info);
14218
14219 if (info->eh_frame_hdr_type
14220 && !bfd_link_relocatable (info)
14221 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
14222 changed = 1;
14223
14224 return changed;
14225 }
14226
14227 bfd_boolean
14228 _bfd_elf_section_already_linked (bfd *abfd,
14229 asection *sec,
14230 struct bfd_link_info *info)
14231 {
14232 flagword flags;
14233 const char *name, *key;
14234 struct bfd_section_already_linked *l;
14235 struct bfd_section_already_linked_hash_entry *already_linked_list;
14236
14237 if (sec->output_section == bfd_abs_section_ptr)
14238 return FALSE;
14239
14240 flags = sec->flags;
14241
14242 /* Return if it isn't a linkonce section. A comdat group section
14243 also has SEC_LINK_ONCE set. */
14244 if ((flags & SEC_LINK_ONCE) == 0)
14245 return FALSE;
14246
14247 /* Don't put group member sections on our list of already linked
14248 sections. They are handled as a group via their group section. */
14249 if (elf_sec_group (sec) != NULL)
14250 return FALSE;
14251
14252 /* For a SHT_GROUP section, use the group signature as the key. */
14253 name = sec->name;
14254 if ((flags & SEC_GROUP) != 0
14255 && elf_next_in_group (sec) != NULL
14256 && elf_group_name (elf_next_in_group (sec)) != NULL)
14257 key = elf_group_name (elf_next_in_group (sec));
14258 else
14259 {
14260 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
14261 if (CONST_STRNEQ (name, ".gnu.linkonce.")
14262 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
14263 key++;
14264 else
14265 /* Must be a user linkonce section that doesn't follow gcc's
14266 naming convention. In this case we won't be matching
14267 single member groups. */
14268 key = name;
14269 }
14270
14271 already_linked_list = bfd_section_already_linked_table_lookup (key);
14272
14273 for (l = already_linked_list->entry; l != NULL; l = l->next)
14274 {
14275 /* We may have 2 different types of sections on the list: group
14276 sections with a signature of <key> (<key> is some string),
14277 and linkonce sections named .gnu.linkonce.<type>.<key>.
14278 Match like sections. LTO plugin sections are an exception.
14279 They are always named .gnu.linkonce.t.<key> and match either
14280 type of section. */
14281 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
14282 && ((flags & SEC_GROUP) != 0
14283 || strcmp (name, l->sec->name) == 0))
14284 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
14285 {
14286 /* The section has already been linked. See if we should
14287 issue a warning. */
14288 if (!_bfd_handle_already_linked (sec, l, info))
14289 return FALSE;
14290
14291 if (flags & SEC_GROUP)
14292 {
14293 asection *first = elf_next_in_group (sec);
14294 asection *s = first;
14295
14296 while (s != NULL)
14297 {
14298 s->output_section = bfd_abs_section_ptr;
14299 /* Record which group discards it. */
14300 s->kept_section = l->sec;
14301 s = elf_next_in_group (s);
14302 /* These lists are circular. */
14303 if (s == first)
14304 break;
14305 }
14306 }
14307
14308 return TRUE;
14309 }
14310 }
14311
14312 /* A single member comdat group section may be discarded by a
14313 linkonce section and vice versa. */
14314 if ((flags & SEC_GROUP) != 0)
14315 {
14316 asection *first = elf_next_in_group (sec);
14317
14318 if (first != NULL && elf_next_in_group (first) == first)
14319 /* Check this single member group against linkonce sections. */
14320 for (l = already_linked_list->entry; l != NULL; l = l->next)
14321 if ((l->sec->flags & SEC_GROUP) == 0
14322 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
14323 {
14324 first->output_section = bfd_abs_section_ptr;
14325 first->kept_section = l->sec;
14326 sec->output_section = bfd_abs_section_ptr;
14327 break;
14328 }
14329 }
14330 else
14331 /* Check this linkonce section against single member groups. */
14332 for (l = already_linked_list->entry; l != NULL; l = l->next)
14333 if (l->sec->flags & SEC_GROUP)
14334 {
14335 asection *first = elf_next_in_group (l->sec);
14336
14337 if (first != NULL
14338 && elf_next_in_group (first) == first
14339 && bfd_elf_match_symbols_in_sections (first, sec, info))
14340 {
14341 sec->output_section = bfd_abs_section_ptr;
14342 sec->kept_section = first;
14343 break;
14344 }
14345 }
14346
14347 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
14348 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
14349 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
14350 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
14351 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
14352 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
14353 `.gnu.linkonce.t.F' section from a different bfd not requiring any
14354 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
14355 The reverse order cannot happen as there is never a bfd with only the
14356 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
14357 matter as here were are looking only for cross-bfd sections. */
14358
14359 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
14360 for (l = already_linked_list->entry; l != NULL; l = l->next)
14361 if ((l->sec->flags & SEC_GROUP) == 0
14362 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
14363 {
14364 if (abfd != l->sec->owner)
14365 sec->output_section = bfd_abs_section_ptr;
14366 break;
14367 }
14368
14369 /* This is the first section with this name. Record it. */
14370 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
14371 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
14372 return sec->output_section == bfd_abs_section_ptr;
14373 }
14374
14375 bfd_boolean
14376 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
14377 {
14378 return sym->st_shndx == SHN_COMMON;
14379 }
14380
14381 unsigned int
14382 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
14383 {
14384 return SHN_COMMON;
14385 }
14386
14387 asection *
14388 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
14389 {
14390 return bfd_com_section_ptr;
14391 }
14392
14393 bfd_vma
14394 _bfd_elf_default_got_elt_size (bfd *abfd,
14395 struct bfd_link_info *info ATTRIBUTE_UNUSED,
14396 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
14397 bfd *ibfd ATTRIBUTE_UNUSED,
14398 unsigned long symndx ATTRIBUTE_UNUSED)
14399 {
14400 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14401 return bed->s->arch_size / 8;
14402 }
14403
14404 /* Routines to support the creation of dynamic relocs. */
14405
14406 /* Returns the name of the dynamic reloc section associated with SEC. */
14407
14408 static const char *
14409 get_dynamic_reloc_section_name (bfd * abfd,
14410 asection * sec,
14411 bfd_boolean is_rela)
14412 {
14413 char *name;
14414 const char *old_name = bfd_get_section_name (NULL, sec);
14415 const char *prefix = is_rela ? ".rela" : ".rel";
14416
14417 if (old_name == NULL)
14418 return NULL;
14419
14420 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
14421 sprintf (name, "%s%s", prefix, old_name);
14422
14423 return name;
14424 }
14425
14426 /* Returns the dynamic reloc section associated with SEC.
14427 If necessary compute the name of the dynamic reloc section based
14428 on SEC's name (looked up in ABFD's string table) and the setting
14429 of IS_RELA. */
14430
14431 asection *
14432 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
14433 asection * sec,
14434 bfd_boolean is_rela)
14435 {
14436 asection * reloc_sec = elf_section_data (sec)->sreloc;
14437
14438 if (reloc_sec == NULL)
14439 {
14440 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14441
14442 if (name != NULL)
14443 {
14444 reloc_sec = bfd_get_linker_section (abfd, name);
14445
14446 if (reloc_sec != NULL)
14447 elf_section_data (sec)->sreloc = reloc_sec;
14448 }
14449 }
14450
14451 return reloc_sec;
14452 }
14453
14454 /* Returns the dynamic reloc section associated with SEC. If the
14455 section does not exist it is created and attached to the DYNOBJ
14456 bfd and stored in the SRELOC field of SEC's elf_section_data
14457 structure.
14458
14459 ALIGNMENT is the alignment for the newly created section and
14460 IS_RELA defines whether the name should be .rela.<SEC's name>
14461 or .rel.<SEC's name>. The section name is looked up in the
14462 string table associated with ABFD. */
14463
14464 asection *
14465 _bfd_elf_make_dynamic_reloc_section (asection *sec,
14466 bfd *dynobj,
14467 unsigned int alignment,
14468 bfd *abfd,
14469 bfd_boolean is_rela)
14470 {
14471 asection * reloc_sec = elf_section_data (sec)->sreloc;
14472
14473 if (reloc_sec == NULL)
14474 {
14475 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14476
14477 if (name == NULL)
14478 return NULL;
14479
14480 reloc_sec = bfd_get_linker_section (dynobj, name);
14481
14482 if (reloc_sec == NULL)
14483 {
14484 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
14485 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
14486 if ((sec->flags & SEC_ALLOC) != 0)
14487 flags |= SEC_ALLOC | SEC_LOAD;
14488
14489 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
14490 if (reloc_sec != NULL)
14491 {
14492 /* _bfd_elf_get_sec_type_attr chooses a section type by
14493 name. Override as it may be wrong, eg. for a user
14494 section named "auto" we'll get ".relauto" which is
14495 seen to be a .rela section. */
14496 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
14497 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
14498 reloc_sec = NULL;
14499 }
14500 }
14501
14502 elf_section_data (sec)->sreloc = reloc_sec;
14503 }
14504
14505 return reloc_sec;
14506 }
14507
14508 /* Copy the ELF symbol type and other attributes for a linker script
14509 assignment from HSRC to HDEST. Generally this should be treated as
14510 if we found a strong non-dynamic definition for HDEST (except that
14511 ld ignores multiple definition errors). */
14512 void
14513 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
14514 struct bfd_link_hash_entry *hdest,
14515 struct bfd_link_hash_entry *hsrc)
14516 {
14517 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
14518 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
14519 Elf_Internal_Sym isym;
14520
14521 ehdest->type = ehsrc->type;
14522 ehdest->target_internal = ehsrc->target_internal;
14523
14524 isym.st_other = ehsrc->other;
14525 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
14526 }
14527
14528 /* Append a RELA relocation REL to section S in BFD. */
14529
14530 void
14531 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14532 {
14533 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14534 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
14535 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
14536 bed->s->swap_reloca_out (abfd, rel, loc);
14537 }
14538
14539 /* Append a REL relocation REL to section S in BFD. */
14540
14541 void
14542 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14543 {
14544 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14545 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
14546 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
14547 bed->s->swap_reloc_out (abfd, rel, loc);
14548 }
14549
14550 /* Define __start, __stop, .startof. or .sizeof. symbol. */
14551
14552 struct bfd_link_hash_entry *
14553 bfd_elf_define_start_stop (struct bfd_link_info *info,
14554 const char *symbol, asection *sec)
14555 {
14556 struct elf_link_hash_entry *h;
14557
14558 h = elf_link_hash_lookup (elf_hash_table (info), symbol,
14559 FALSE, FALSE, TRUE);
14560 if (h != NULL
14561 && (h->root.type == bfd_link_hash_undefined
14562 || h->root.type == bfd_link_hash_undefweak
14563 || ((h->ref_regular || h->def_dynamic) && !h->def_regular)))
14564 {
14565 bfd_boolean was_dynamic = h->ref_dynamic || h->def_dynamic;
14566 h->root.type = bfd_link_hash_defined;
14567 h->root.u.def.section = sec;
14568 h->root.u.def.value = 0;
14569 h->def_regular = 1;
14570 h->def_dynamic = 0;
14571 h->start_stop = 1;
14572 h->u2.start_stop_section = sec;
14573 if (symbol[0] == '.')
14574 {
14575 /* .startof. and .sizeof. symbols are local. */
14576 const struct elf_backend_data *bed;
14577 bed = get_elf_backend_data (info->output_bfd);
14578 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
14579 }
14580 else
14581 {
14582 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
14583 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_PROTECTED;
14584 if (was_dynamic)
14585 bfd_elf_link_record_dynamic_symbol (info, h);
14586 }
14587 return &h->root;
14588 }
14589 return NULL;
14590 }
This page took 0.337027 seconds and 4 git commands to generate.