Don't include libbfd.h outside of bfd, part 2
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2016 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfd_stdint.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31 #if BFD_SUPPORTS_PLUGINS
32 #include "plugin.h"
33 #endif
34
35 /* This struct is used to pass information to routines called via
36 elf_link_hash_traverse which must return failure. */
37
38 struct elf_info_failed
39 {
40 struct bfd_link_info *info;
41 bfd_boolean failed;
42 };
43
44 /* This structure is used to pass information to
45 _bfd_elf_link_find_version_dependencies. */
46
47 struct elf_find_verdep_info
48 {
49 /* General link information. */
50 struct bfd_link_info *info;
51 /* The number of dependencies. */
52 unsigned int vers;
53 /* Whether we had a failure. */
54 bfd_boolean failed;
55 };
56
57 static bfd_boolean _bfd_elf_fix_symbol_flags
58 (struct elf_link_hash_entry *, struct elf_info_failed *);
59
60 asection *
61 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
62 unsigned long r_symndx,
63 bfd_boolean discard)
64 {
65 if (r_symndx >= cookie->locsymcount
66 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
67 {
68 struct elf_link_hash_entry *h;
69
70 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
71
72 while (h->root.type == bfd_link_hash_indirect
73 || h->root.type == bfd_link_hash_warning)
74 h = (struct elf_link_hash_entry *) h->root.u.i.link;
75
76 if ((h->root.type == bfd_link_hash_defined
77 || h->root.type == bfd_link_hash_defweak)
78 && discarded_section (h->root.u.def.section))
79 return h->root.u.def.section;
80 else
81 return NULL;
82 }
83 else
84 {
85 /* It's not a relocation against a global symbol,
86 but it could be a relocation against a local
87 symbol for a discarded section. */
88 asection *isec;
89 Elf_Internal_Sym *isym;
90
91 /* Need to: get the symbol; get the section. */
92 isym = &cookie->locsyms[r_symndx];
93 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
94 if (isec != NULL
95 && discard ? discarded_section (isec) : 1)
96 return isec;
97 }
98 return NULL;
99 }
100
101 /* Define a symbol in a dynamic linkage section. */
102
103 struct elf_link_hash_entry *
104 _bfd_elf_define_linkage_sym (bfd *abfd,
105 struct bfd_link_info *info,
106 asection *sec,
107 const char *name)
108 {
109 struct elf_link_hash_entry *h;
110 struct bfd_link_hash_entry *bh;
111 const struct elf_backend_data *bed;
112
113 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
114 if (h != NULL)
115 {
116 /* Zap symbol defined in an as-needed lib that wasn't linked.
117 This is a symptom of a larger problem: Absolute symbols
118 defined in shared libraries can't be overridden, because we
119 lose the link to the bfd which is via the symbol section. */
120 h->root.type = bfd_link_hash_new;
121 }
122
123 bh = &h->root;
124 bed = get_elf_backend_data (abfd);
125 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
126 sec, 0, NULL, FALSE, bed->collect,
127 &bh))
128 return NULL;
129 h = (struct elf_link_hash_entry *) bh;
130 h->def_regular = 1;
131 h->non_elf = 0;
132 h->root.linker_def = 1;
133 h->type = STT_OBJECT;
134 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
135 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
136
137 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
138 return h;
139 }
140
141 bfd_boolean
142 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
143 {
144 flagword flags;
145 asection *s;
146 struct elf_link_hash_entry *h;
147 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
148 struct elf_link_hash_table *htab = elf_hash_table (info);
149
150 /* This function may be called more than once. */
151 s = bfd_get_linker_section (abfd, ".got");
152 if (s != NULL)
153 return TRUE;
154
155 flags = bed->dynamic_sec_flags;
156
157 s = bfd_make_section_anyway_with_flags (abfd,
158 (bed->rela_plts_and_copies_p
159 ? ".rela.got" : ".rel.got"),
160 (bed->dynamic_sec_flags
161 | SEC_READONLY));
162 if (s == NULL
163 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
164 return FALSE;
165 htab->srelgot = s;
166
167 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
168 if (s == NULL
169 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
170 return FALSE;
171 htab->sgot = s;
172
173 if (bed->want_got_plt)
174 {
175 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
176 if (s == NULL
177 || !bfd_set_section_alignment (abfd, s,
178 bed->s->log_file_align))
179 return FALSE;
180 htab->sgotplt = s;
181 }
182
183 /* The first bit of the global offset table is the header. */
184 s->size += bed->got_header_size;
185
186 if (bed->want_got_sym)
187 {
188 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
189 (or .got.plt) section. We don't do this in the linker script
190 because we don't want to define the symbol if we are not creating
191 a global offset table. */
192 h = _bfd_elf_define_linkage_sym (abfd, info, s,
193 "_GLOBAL_OFFSET_TABLE_");
194 elf_hash_table (info)->hgot = h;
195 if (h == NULL)
196 return FALSE;
197 }
198
199 return TRUE;
200 }
201 \f
202 /* Create a strtab to hold the dynamic symbol names. */
203 static bfd_boolean
204 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
205 {
206 struct elf_link_hash_table *hash_table;
207
208 hash_table = elf_hash_table (info);
209 if (hash_table->dynobj == NULL)
210 {
211 /* We may not set dynobj, an input file holding linker created
212 dynamic sections to abfd, which may be a dynamic object with
213 its own dynamic sections. We need to find a normal input file
214 to hold linker created sections if possible. */
215 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
216 {
217 bfd *ibfd;
218 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
219 if ((ibfd->flags
220 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0)
221 {
222 abfd = ibfd;
223 break;
224 }
225 }
226 hash_table->dynobj = abfd;
227 }
228
229 if (hash_table->dynstr == NULL)
230 {
231 hash_table->dynstr = _bfd_elf_strtab_init ();
232 if (hash_table->dynstr == NULL)
233 return FALSE;
234 }
235 return TRUE;
236 }
237
238 /* Create some sections which will be filled in with dynamic linking
239 information. ABFD is an input file which requires dynamic sections
240 to be created. The dynamic sections take up virtual memory space
241 when the final executable is run, so we need to create them before
242 addresses are assigned to the output sections. We work out the
243 actual contents and size of these sections later. */
244
245 bfd_boolean
246 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
247 {
248 flagword flags;
249 asection *s;
250 const struct elf_backend_data *bed;
251 struct elf_link_hash_entry *h;
252
253 if (! is_elf_hash_table (info->hash))
254 return FALSE;
255
256 if (elf_hash_table (info)->dynamic_sections_created)
257 return TRUE;
258
259 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
260 return FALSE;
261
262 abfd = elf_hash_table (info)->dynobj;
263 bed = get_elf_backend_data (abfd);
264
265 flags = bed->dynamic_sec_flags;
266
267 /* A dynamically linked executable has a .interp section, but a
268 shared library does not. */
269 if (bfd_link_executable (info) && !info->nointerp)
270 {
271 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
272 flags | SEC_READONLY);
273 if (s == NULL)
274 return FALSE;
275 }
276
277 /* Create sections to hold version informations. These are removed
278 if they are not needed. */
279 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
280 flags | SEC_READONLY);
281 if (s == NULL
282 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
283 return FALSE;
284
285 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
286 flags | SEC_READONLY);
287 if (s == NULL
288 || ! bfd_set_section_alignment (abfd, s, 1))
289 return FALSE;
290
291 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
292 flags | SEC_READONLY);
293 if (s == NULL
294 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
295 return FALSE;
296
297 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
298 flags | SEC_READONLY);
299 if (s == NULL
300 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
301 return FALSE;
302 elf_hash_table (info)->dynsym = s;
303
304 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
305 flags | SEC_READONLY);
306 if (s == NULL)
307 return FALSE;
308
309 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
310 if (s == NULL
311 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
312 return FALSE;
313
314 /* The special symbol _DYNAMIC is always set to the start of the
315 .dynamic section. We could set _DYNAMIC in a linker script, but we
316 only want to define it if we are, in fact, creating a .dynamic
317 section. We don't want to define it if there is no .dynamic
318 section, since on some ELF platforms the start up code examines it
319 to decide how to initialize the process. */
320 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
321 elf_hash_table (info)->hdynamic = h;
322 if (h == NULL)
323 return FALSE;
324
325 if (info->emit_hash)
326 {
327 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
328 flags | SEC_READONLY);
329 if (s == NULL
330 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
331 return FALSE;
332 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
333 }
334
335 if (info->emit_gnu_hash)
336 {
337 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
338 flags | SEC_READONLY);
339 if (s == NULL
340 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
341 return FALSE;
342 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
343 4 32-bit words followed by variable count of 64-bit words, then
344 variable count of 32-bit words. */
345 if (bed->s->arch_size == 64)
346 elf_section_data (s)->this_hdr.sh_entsize = 0;
347 else
348 elf_section_data (s)->this_hdr.sh_entsize = 4;
349 }
350
351 /* Let the backend create the rest of the sections. This lets the
352 backend set the right flags. The backend will normally create
353 the .got and .plt sections. */
354 if (bed->elf_backend_create_dynamic_sections == NULL
355 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
356 return FALSE;
357
358 elf_hash_table (info)->dynamic_sections_created = TRUE;
359
360 return TRUE;
361 }
362
363 /* Create dynamic sections when linking against a dynamic object. */
364
365 bfd_boolean
366 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
367 {
368 flagword flags, pltflags;
369 struct elf_link_hash_entry *h;
370 asection *s;
371 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
372 struct elf_link_hash_table *htab = elf_hash_table (info);
373
374 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
375 .rel[a].bss sections. */
376 flags = bed->dynamic_sec_flags;
377
378 pltflags = flags;
379 if (bed->plt_not_loaded)
380 /* We do not clear SEC_ALLOC here because we still want the OS to
381 allocate space for the section; it's just that there's nothing
382 to read in from the object file. */
383 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
384 else
385 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
386 if (bed->plt_readonly)
387 pltflags |= SEC_READONLY;
388
389 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
390 if (s == NULL
391 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
392 return FALSE;
393 htab->splt = s;
394
395 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
396 .plt section. */
397 if (bed->want_plt_sym)
398 {
399 h = _bfd_elf_define_linkage_sym (abfd, info, s,
400 "_PROCEDURE_LINKAGE_TABLE_");
401 elf_hash_table (info)->hplt = h;
402 if (h == NULL)
403 return FALSE;
404 }
405
406 s = bfd_make_section_anyway_with_flags (abfd,
407 (bed->rela_plts_and_copies_p
408 ? ".rela.plt" : ".rel.plt"),
409 flags | SEC_READONLY);
410 if (s == NULL
411 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
412 return FALSE;
413 htab->srelplt = s;
414
415 if (! _bfd_elf_create_got_section (abfd, info))
416 return FALSE;
417
418 if (bed->want_dynbss)
419 {
420 /* The .dynbss section is a place to put symbols which are defined
421 by dynamic objects, are referenced by regular objects, and are
422 not functions. We must allocate space for them in the process
423 image and use a R_*_COPY reloc to tell the dynamic linker to
424 initialize them at run time. The linker script puts the .dynbss
425 section into the .bss section of the final image. */
426 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
427 (SEC_ALLOC | SEC_LINKER_CREATED));
428 if (s == NULL)
429 return FALSE;
430
431 /* The .rel[a].bss section holds copy relocs. This section is not
432 normally needed. We need to create it here, though, so that the
433 linker will map it to an output section. We can't just create it
434 only if we need it, because we will not know whether we need it
435 until we have seen all the input files, and the first time the
436 main linker code calls BFD after examining all the input files
437 (size_dynamic_sections) the input sections have already been
438 mapped to the output sections. If the section turns out not to
439 be needed, we can discard it later. We will never need this
440 section when generating a shared object, since they do not use
441 copy relocs. */
442 if (! bfd_link_pic (info))
443 {
444 s = bfd_make_section_anyway_with_flags (abfd,
445 (bed->rela_plts_and_copies_p
446 ? ".rela.bss" : ".rel.bss"),
447 flags | SEC_READONLY);
448 if (s == NULL
449 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
450 return FALSE;
451 }
452 }
453
454 return TRUE;
455 }
456 \f
457 /* Record a new dynamic symbol. We record the dynamic symbols as we
458 read the input files, since we need to have a list of all of them
459 before we can determine the final sizes of the output sections.
460 Note that we may actually call this function even though we are not
461 going to output any dynamic symbols; in some cases we know that a
462 symbol should be in the dynamic symbol table, but only if there is
463 one. */
464
465 bfd_boolean
466 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
467 struct elf_link_hash_entry *h)
468 {
469 if (h->dynindx == -1)
470 {
471 struct elf_strtab_hash *dynstr;
472 char *p;
473 const char *name;
474 size_t indx;
475
476 /* XXX: The ABI draft says the linker must turn hidden and
477 internal symbols into STB_LOCAL symbols when producing the
478 DSO. However, if ld.so honors st_other in the dynamic table,
479 this would not be necessary. */
480 switch (ELF_ST_VISIBILITY (h->other))
481 {
482 case STV_INTERNAL:
483 case STV_HIDDEN:
484 if (h->root.type != bfd_link_hash_undefined
485 && h->root.type != bfd_link_hash_undefweak)
486 {
487 h->forced_local = 1;
488 if (!elf_hash_table (info)->is_relocatable_executable)
489 return TRUE;
490 }
491
492 default:
493 break;
494 }
495
496 h->dynindx = elf_hash_table (info)->dynsymcount;
497 ++elf_hash_table (info)->dynsymcount;
498
499 dynstr = elf_hash_table (info)->dynstr;
500 if (dynstr == NULL)
501 {
502 /* Create a strtab to hold the dynamic symbol names. */
503 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
504 if (dynstr == NULL)
505 return FALSE;
506 }
507
508 /* We don't put any version information in the dynamic string
509 table. */
510 name = h->root.root.string;
511 p = strchr (name, ELF_VER_CHR);
512 if (p != NULL)
513 /* We know that the p points into writable memory. In fact,
514 there are only a few symbols that have read-only names, being
515 those like _GLOBAL_OFFSET_TABLE_ that are created specially
516 by the backends. Most symbols will have names pointing into
517 an ELF string table read from a file, or to objalloc memory. */
518 *p = 0;
519
520 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
521
522 if (p != NULL)
523 *p = ELF_VER_CHR;
524
525 if (indx == (size_t) -1)
526 return FALSE;
527 h->dynstr_index = indx;
528 }
529
530 return TRUE;
531 }
532 \f
533 /* Mark a symbol dynamic. */
534
535 static void
536 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
537 struct elf_link_hash_entry *h,
538 Elf_Internal_Sym *sym)
539 {
540 struct bfd_elf_dynamic_list *d = info->dynamic_list;
541
542 /* It may be called more than once on the same H. */
543 if(h->dynamic || bfd_link_relocatable (info))
544 return;
545
546 if ((info->dynamic_data
547 && (h->type == STT_OBJECT
548 || h->type == STT_COMMON
549 || (sym != NULL
550 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
551 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
552 || (d != NULL
553 && h->root.type == bfd_link_hash_new
554 && (*d->match) (&d->head, NULL, h->root.root.string)))
555 h->dynamic = 1;
556 }
557
558 /* Record an assignment to a symbol made by a linker script. We need
559 this in case some dynamic object refers to this symbol. */
560
561 bfd_boolean
562 bfd_elf_record_link_assignment (bfd *output_bfd,
563 struct bfd_link_info *info,
564 const char *name,
565 bfd_boolean provide,
566 bfd_boolean hidden)
567 {
568 struct elf_link_hash_entry *h, *hv;
569 struct elf_link_hash_table *htab;
570 const struct elf_backend_data *bed;
571
572 if (!is_elf_hash_table (info->hash))
573 return TRUE;
574
575 htab = elf_hash_table (info);
576 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
577 if (h == NULL)
578 return provide;
579
580 if (h->versioned == unknown)
581 {
582 /* Set versioned if symbol version is unknown. */
583 char *version = strrchr (name, ELF_VER_CHR);
584 if (version)
585 {
586 if (version > name && version[-1] != ELF_VER_CHR)
587 h->versioned = versioned_hidden;
588 else
589 h->versioned = versioned;
590 }
591 }
592
593 switch (h->root.type)
594 {
595 case bfd_link_hash_defined:
596 case bfd_link_hash_defweak:
597 case bfd_link_hash_common:
598 break;
599 case bfd_link_hash_undefweak:
600 case bfd_link_hash_undefined:
601 /* Since we're defining the symbol, don't let it seem to have not
602 been defined. record_dynamic_symbol and size_dynamic_sections
603 may depend on this. */
604 h->root.type = bfd_link_hash_new;
605 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
606 bfd_link_repair_undef_list (&htab->root);
607 break;
608 case bfd_link_hash_new:
609 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
610 h->non_elf = 0;
611 break;
612 case bfd_link_hash_indirect:
613 /* We had a versioned symbol in a dynamic library. We make the
614 the versioned symbol point to this one. */
615 bed = get_elf_backend_data (output_bfd);
616 hv = h;
617 while (hv->root.type == bfd_link_hash_indirect
618 || hv->root.type == bfd_link_hash_warning)
619 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
620 /* We don't need to update h->root.u since linker will set them
621 later. */
622 h->root.type = bfd_link_hash_undefined;
623 hv->root.type = bfd_link_hash_indirect;
624 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
625 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
626 break;
627 case bfd_link_hash_warning:
628 abort ();
629 break;
630 }
631
632 /* If this symbol is being provided by the linker script, and it is
633 currently defined by a dynamic object, but not by a regular
634 object, then mark it as undefined so that the generic linker will
635 force the correct value. */
636 if (provide
637 && h->def_dynamic
638 && !h->def_regular)
639 h->root.type = bfd_link_hash_undefined;
640
641 /* If this symbol is not being provided by the linker script, and it is
642 currently defined by a dynamic object, but not by a regular object,
643 then clear out any version information because the symbol will not be
644 associated with the dynamic object any more. */
645 if (!provide
646 && h->def_dynamic
647 && !h->def_regular)
648 h->verinfo.verdef = NULL;
649
650 h->def_regular = 1;
651
652 if (hidden)
653 {
654 bed = get_elf_backend_data (output_bfd);
655 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
656 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
657 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
658 }
659
660 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
661 and executables. */
662 if (!bfd_link_relocatable (info)
663 && h->dynindx != -1
664 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
665 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
666 h->forced_local = 1;
667
668 if ((h->def_dynamic
669 || h->ref_dynamic
670 || bfd_link_dll (info)
671 || elf_hash_table (info)->is_relocatable_executable)
672 && h->dynindx == -1)
673 {
674 if (! bfd_elf_link_record_dynamic_symbol (info, h))
675 return FALSE;
676
677 /* If this is a weak defined symbol, and we know a corresponding
678 real symbol from the same dynamic object, make sure the real
679 symbol is also made into a dynamic symbol. */
680 if (h->u.weakdef != NULL
681 && h->u.weakdef->dynindx == -1)
682 {
683 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
684 return FALSE;
685 }
686 }
687
688 return TRUE;
689 }
690
691 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
692 success, and 2 on a failure caused by attempting to record a symbol
693 in a discarded section, eg. a discarded link-once section symbol. */
694
695 int
696 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
697 bfd *input_bfd,
698 long input_indx)
699 {
700 bfd_size_type amt;
701 struct elf_link_local_dynamic_entry *entry;
702 struct elf_link_hash_table *eht;
703 struct elf_strtab_hash *dynstr;
704 size_t dynstr_index;
705 char *name;
706 Elf_External_Sym_Shndx eshndx;
707 char esym[sizeof (Elf64_External_Sym)];
708
709 if (! is_elf_hash_table (info->hash))
710 return 0;
711
712 /* See if the entry exists already. */
713 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
714 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
715 return 1;
716
717 amt = sizeof (*entry);
718 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
719 if (entry == NULL)
720 return 0;
721
722 /* Go find the symbol, so that we can find it's name. */
723 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
724 1, input_indx, &entry->isym, esym, &eshndx))
725 {
726 bfd_release (input_bfd, entry);
727 return 0;
728 }
729
730 if (entry->isym.st_shndx != SHN_UNDEF
731 && entry->isym.st_shndx < SHN_LORESERVE)
732 {
733 asection *s;
734
735 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
736 if (s == NULL || bfd_is_abs_section (s->output_section))
737 {
738 /* We can still bfd_release here as nothing has done another
739 bfd_alloc. We can't do this later in this function. */
740 bfd_release (input_bfd, entry);
741 return 2;
742 }
743 }
744
745 name = (bfd_elf_string_from_elf_section
746 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
747 entry->isym.st_name));
748
749 dynstr = elf_hash_table (info)->dynstr;
750 if (dynstr == NULL)
751 {
752 /* Create a strtab to hold the dynamic symbol names. */
753 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
754 if (dynstr == NULL)
755 return 0;
756 }
757
758 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
759 if (dynstr_index == (size_t) -1)
760 return 0;
761 entry->isym.st_name = dynstr_index;
762
763 eht = elf_hash_table (info);
764
765 entry->next = eht->dynlocal;
766 eht->dynlocal = entry;
767 entry->input_bfd = input_bfd;
768 entry->input_indx = input_indx;
769 eht->dynsymcount++;
770
771 /* Whatever binding the symbol had before, it's now local. */
772 entry->isym.st_info
773 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
774
775 /* The dynindx will be set at the end of size_dynamic_sections. */
776
777 return 1;
778 }
779
780 /* Return the dynindex of a local dynamic symbol. */
781
782 long
783 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
784 bfd *input_bfd,
785 long input_indx)
786 {
787 struct elf_link_local_dynamic_entry *e;
788
789 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
790 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
791 return e->dynindx;
792 return -1;
793 }
794
795 /* This function is used to renumber the dynamic symbols, if some of
796 them are removed because they are marked as local. This is called
797 via elf_link_hash_traverse. */
798
799 static bfd_boolean
800 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
801 void *data)
802 {
803 size_t *count = (size_t *) data;
804
805 if (h->forced_local)
806 return TRUE;
807
808 if (h->dynindx != -1)
809 h->dynindx = ++(*count);
810
811 return TRUE;
812 }
813
814
815 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
816 STB_LOCAL binding. */
817
818 static bfd_boolean
819 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
820 void *data)
821 {
822 size_t *count = (size_t *) data;
823
824 if (!h->forced_local)
825 return TRUE;
826
827 if (h->dynindx != -1)
828 h->dynindx = ++(*count);
829
830 return TRUE;
831 }
832
833 /* Return true if the dynamic symbol for a given section should be
834 omitted when creating a shared library. */
835 bfd_boolean
836 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
837 struct bfd_link_info *info,
838 asection *p)
839 {
840 struct elf_link_hash_table *htab;
841 asection *ip;
842
843 switch (elf_section_data (p)->this_hdr.sh_type)
844 {
845 case SHT_PROGBITS:
846 case SHT_NOBITS:
847 /* If sh_type is yet undecided, assume it could be
848 SHT_PROGBITS/SHT_NOBITS. */
849 case SHT_NULL:
850 htab = elf_hash_table (info);
851 if (p == htab->tls_sec)
852 return FALSE;
853
854 if (htab->text_index_section != NULL)
855 return p != htab->text_index_section && p != htab->data_index_section;
856
857 return (htab->dynobj != NULL
858 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
859 && ip->output_section == p);
860
861 /* There shouldn't be section relative relocations
862 against any other section. */
863 default:
864 return TRUE;
865 }
866 }
867
868 /* Assign dynsym indices. In a shared library we generate a section
869 symbol for each output section, which come first. Next come symbols
870 which have been forced to local binding. Then all of the back-end
871 allocated local dynamic syms, followed by the rest of the global
872 symbols. */
873
874 static unsigned long
875 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
876 struct bfd_link_info *info,
877 unsigned long *section_sym_count)
878 {
879 unsigned long dynsymcount = 0;
880
881 if (bfd_link_pic (info)
882 || elf_hash_table (info)->is_relocatable_executable)
883 {
884 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
885 asection *p;
886 for (p = output_bfd->sections; p ; p = p->next)
887 if ((p->flags & SEC_EXCLUDE) == 0
888 && (p->flags & SEC_ALLOC) != 0
889 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
890 elf_section_data (p)->dynindx = ++dynsymcount;
891 else
892 elf_section_data (p)->dynindx = 0;
893 }
894 *section_sym_count = dynsymcount;
895
896 elf_link_hash_traverse (elf_hash_table (info),
897 elf_link_renumber_local_hash_table_dynsyms,
898 &dynsymcount);
899
900 if (elf_hash_table (info)->dynlocal)
901 {
902 struct elf_link_local_dynamic_entry *p;
903 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
904 p->dynindx = ++dynsymcount;
905 }
906
907 elf_link_hash_traverse (elf_hash_table (info),
908 elf_link_renumber_hash_table_dynsyms,
909 &dynsymcount);
910
911 /* There is an unused NULL entry at the head of the table which we
912 must account for in our count even if the table is empty since it
913 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
914 .dynamic section. */
915 dynsymcount++;
916
917 elf_hash_table (info)->dynsymcount = dynsymcount;
918 return dynsymcount;
919 }
920
921 /* Merge st_other field. */
922
923 static void
924 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
925 const Elf_Internal_Sym *isym, asection *sec,
926 bfd_boolean definition, bfd_boolean dynamic)
927 {
928 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
929
930 /* If st_other has a processor-specific meaning, specific
931 code might be needed here. */
932 if (bed->elf_backend_merge_symbol_attribute)
933 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
934 dynamic);
935
936 if (!dynamic)
937 {
938 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
939 unsigned hvis = ELF_ST_VISIBILITY (h->other);
940
941 /* Keep the most constraining visibility. Leave the remainder
942 of the st_other field to elf_backend_merge_symbol_attribute. */
943 if (symvis - 1 < hvis - 1)
944 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
945 }
946 else if (definition
947 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
948 && (sec->flags & SEC_READONLY) == 0)
949 h->protected_def = 1;
950 }
951
952 /* This function is called when we want to merge a new symbol with an
953 existing symbol. It handles the various cases which arise when we
954 find a definition in a dynamic object, or when there is already a
955 definition in a dynamic object. The new symbol is described by
956 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
957 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
958 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
959 of an old common symbol. We set OVERRIDE if the old symbol is
960 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
961 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
962 to change. By OK to change, we mean that we shouldn't warn if the
963 type or size does change. */
964
965 static bfd_boolean
966 _bfd_elf_merge_symbol (bfd *abfd,
967 struct bfd_link_info *info,
968 const char *name,
969 Elf_Internal_Sym *sym,
970 asection **psec,
971 bfd_vma *pvalue,
972 struct elf_link_hash_entry **sym_hash,
973 bfd **poldbfd,
974 bfd_boolean *pold_weak,
975 unsigned int *pold_alignment,
976 bfd_boolean *skip,
977 bfd_boolean *override,
978 bfd_boolean *type_change_ok,
979 bfd_boolean *size_change_ok,
980 bfd_boolean *matched)
981 {
982 asection *sec, *oldsec;
983 struct elf_link_hash_entry *h;
984 struct elf_link_hash_entry *hi;
985 struct elf_link_hash_entry *flip;
986 int bind;
987 bfd *oldbfd;
988 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
989 bfd_boolean newweak, oldweak, newfunc, oldfunc;
990 const struct elf_backend_data *bed;
991 char *new_version;
992
993 *skip = FALSE;
994 *override = FALSE;
995
996 sec = *psec;
997 bind = ELF_ST_BIND (sym->st_info);
998
999 if (! bfd_is_und_section (sec))
1000 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
1001 else
1002 h = ((struct elf_link_hash_entry *)
1003 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1004 if (h == NULL)
1005 return FALSE;
1006 *sym_hash = h;
1007
1008 bed = get_elf_backend_data (abfd);
1009
1010 /* NEW_VERSION is the symbol version of the new symbol. */
1011 if (h->versioned != unversioned)
1012 {
1013 /* Symbol version is unknown or versioned. */
1014 new_version = strrchr (name, ELF_VER_CHR);
1015 if (new_version)
1016 {
1017 if (h->versioned == unknown)
1018 {
1019 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1020 h->versioned = versioned_hidden;
1021 else
1022 h->versioned = versioned;
1023 }
1024 new_version += 1;
1025 if (new_version[0] == '\0')
1026 new_version = NULL;
1027 }
1028 else
1029 h->versioned = unversioned;
1030 }
1031 else
1032 new_version = NULL;
1033
1034 /* For merging, we only care about real symbols. But we need to make
1035 sure that indirect symbol dynamic flags are updated. */
1036 hi = h;
1037 while (h->root.type == bfd_link_hash_indirect
1038 || h->root.type == bfd_link_hash_warning)
1039 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1040
1041 if (!*matched)
1042 {
1043 if (hi == h || h->root.type == bfd_link_hash_new)
1044 *matched = TRUE;
1045 else
1046 {
1047 /* OLD_HIDDEN is true if the existing symbol is only visible
1048 to the symbol with the same symbol version. NEW_HIDDEN is
1049 true if the new symbol is only visible to the symbol with
1050 the same symbol version. */
1051 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1052 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1053 if (!old_hidden && !new_hidden)
1054 /* The new symbol matches the existing symbol if both
1055 aren't hidden. */
1056 *matched = TRUE;
1057 else
1058 {
1059 /* OLD_VERSION is the symbol version of the existing
1060 symbol. */
1061 char *old_version;
1062
1063 if (h->versioned >= versioned)
1064 old_version = strrchr (h->root.root.string,
1065 ELF_VER_CHR) + 1;
1066 else
1067 old_version = NULL;
1068
1069 /* The new symbol matches the existing symbol if they
1070 have the same symbol version. */
1071 *matched = (old_version == new_version
1072 || (old_version != NULL
1073 && new_version != NULL
1074 && strcmp (old_version, new_version) == 0));
1075 }
1076 }
1077 }
1078
1079 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1080 existing symbol. */
1081
1082 oldbfd = NULL;
1083 oldsec = NULL;
1084 switch (h->root.type)
1085 {
1086 default:
1087 break;
1088
1089 case bfd_link_hash_undefined:
1090 case bfd_link_hash_undefweak:
1091 oldbfd = h->root.u.undef.abfd;
1092 break;
1093
1094 case bfd_link_hash_defined:
1095 case bfd_link_hash_defweak:
1096 oldbfd = h->root.u.def.section->owner;
1097 oldsec = h->root.u.def.section;
1098 break;
1099
1100 case bfd_link_hash_common:
1101 oldbfd = h->root.u.c.p->section->owner;
1102 oldsec = h->root.u.c.p->section;
1103 if (pold_alignment)
1104 *pold_alignment = h->root.u.c.p->alignment_power;
1105 break;
1106 }
1107 if (poldbfd && *poldbfd == NULL)
1108 *poldbfd = oldbfd;
1109
1110 /* Differentiate strong and weak symbols. */
1111 newweak = bind == STB_WEAK;
1112 oldweak = (h->root.type == bfd_link_hash_defweak
1113 || h->root.type == bfd_link_hash_undefweak);
1114 if (pold_weak)
1115 *pold_weak = oldweak;
1116
1117 /* This code is for coping with dynamic objects, and is only useful
1118 if we are doing an ELF link. */
1119 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
1120 return TRUE;
1121
1122 /* We have to check it for every instance since the first few may be
1123 references and not all compilers emit symbol type for undefined
1124 symbols. */
1125 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1126
1127 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1128 respectively, is from a dynamic object. */
1129
1130 newdyn = (abfd->flags & DYNAMIC) != 0;
1131
1132 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1133 syms and defined syms in dynamic libraries respectively.
1134 ref_dynamic on the other hand can be set for a symbol defined in
1135 a dynamic library, and def_dynamic may not be set; When the
1136 definition in a dynamic lib is overridden by a definition in the
1137 executable use of the symbol in the dynamic lib becomes a
1138 reference to the executable symbol. */
1139 if (newdyn)
1140 {
1141 if (bfd_is_und_section (sec))
1142 {
1143 if (bind != STB_WEAK)
1144 {
1145 h->ref_dynamic_nonweak = 1;
1146 hi->ref_dynamic_nonweak = 1;
1147 }
1148 }
1149 else
1150 {
1151 /* Update the existing symbol only if they match. */
1152 if (*matched)
1153 h->dynamic_def = 1;
1154 hi->dynamic_def = 1;
1155 }
1156 }
1157
1158 /* If we just created the symbol, mark it as being an ELF symbol.
1159 Other than that, there is nothing to do--there is no merge issue
1160 with a newly defined symbol--so we just return. */
1161
1162 if (h->root.type == bfd_link_hash_new)
1163 {
1164 h->non_elf = 0;
1165 return TRUE;
1166 }
1167
1168 /* In cases involving weak versioned symbols, we may wind up trying
1169 to merge a symbol with itself. Catch that here, to avoid the
1170 confusion that results if we try to override a symbol with
1171 itself. The additional tests catch cases like
1172 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1173 dynamic object, which we do want to handle here. */
1174 if (abfd == oldbfd
1175 && (newweak || oldweak)
1176 && ((abfd->flags & DYNAMIC) == 0
1177 || !h->def_regular))
1178 return TRUE;
1179
1180 olddyn = FALSE;
1181 if (oldbfd != NULL)
1182 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1183 else if (oldsec != NULL)
1184 {
1185 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1186 indices used by MIPS ELF. */
1187 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1188 }
1189
1190 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1191 respectively, appear to be a definition rather than reference. */
1192
1193 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1194
1195 olddef = (h->root.type != bfd_link_hash_undefined
1196 && h->root.type != bfd_link_hash_undefweak
1197 && h->root.type != bfd_link_hash_common);
1198
1199 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1200 respectively, appear to be a function. */
1201
1202 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1203 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1204
1205 oldfunc = (h->type != STT_NOTYPE
1206 && bed->is_function_type (h->type));
1207
1208 /* If creating a default indirect symbol ("foo" or "foo@") from a
1209 dynamic versioned definition ("foo@@") skip doing so if there is
1210 an existing regular definition with a different type. We don't
1211 want, for example, a "time" variable in the executable overriding
1212 a "time" function in a shared library. */
1213 if (pold_alignment == NULL
1214 && newdyn
1215 && newdef
1216 && !olddyn
1217 && (olddef || h->root.type == bfd_link_hash_common)
1218 && ELF_ST_TYPE (sym->st_info) != h->type
1219 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1220 && h->type != STT_NOTYPE
1221 && !(newfunc && oldfunc))
1222 {
1223 *skip = TRUE;
1224 return TRUE;
1225 }
1226
1227 /* Check TLS symbols. We don't check undefined symbols introduced
1228 by "ld -u" which have no type (and oldbfd NULL), and we don't
1229 check symbols from plugins because they also have no type. */
1230 if (oldbfd != NULL
1231 && (oldbfd->flags & BFD_PLUGIN) == 0
1232 && (abfd->flags & BFD_PLUGIN) == 0
1233 && ELF_ST_TYPE (sym->st_info) != h->type
1234 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1235 {
1236 bfd *ntbfd, *tbfd;
1237 bfd_boolean ntdef, tdef;
1238 asection *ntsec, *tsec;
1239
1240 if (h->type == STT_TLS)
1241 {
1242 ntbfd = abfd;
1243 ntsec = sec;
1244 ntdef = newdef;
1245 tbfd = oldbfd;
1246 tsec = oldsec;
1247 tdef = olddef;
1248 }
1249 else
1250 {
1251 ntbfd = oldbfd;
1252 ntsec = oldsec;
1253 ntdef = olddef;
1254 tbfd = abfd;
1255 tsec = sec;
1256 tdef = newdef;
1257 }
1258
1259 if (tdef && ntdef)
1260 (*_bfd_error_handler)
1261 (_("%s: TLS definition in %B section %A "
1262 "mismatches non-TLS definition in %B section %A"),
1263 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1264 else if (!tdef && !ntdef)
1265 (*_bfd_error_handler)
1266 (_("%s: TLS reference in %B "
1267 "mismatches non-TLS reference in %B"),
1268 tbfd, ntbfd, h->root.root.string);
1269 else if (tdef)
1270 (*_bfd_error_handler)
1271 (_("%s: TLS definition in %B section %A "
1272 "mismatches non-TLS reference in %B"),
1273 tbfd, tsec, ntbfd, h->root.root.string);
1274 else
1275 (*_bfd_error_handler)
1276 (_("%s: TLS reference in %B "
1277 "mismatches non-TLS definition in %B section %A"),
1278 tbfd, ntbfd, ntsec, h->root.root.string);
1279
1280 bfd_set_error (bfd_error_bad_value);
1281 return FALSE;
1282 }
1283
1284 /* If the old symbol has non-default visibility, we ignore the new
1285 definition from a dynamic object. */
1286 if (newdyn
1287 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1288 && !bfd_is_und_section (sec))
1289 {
1290 *skip = TRUE;
1291 /* Make sure this symbol is dynamic. */
1292 h->ref_dynamic = 1;
1293 hi->ref_dynamic = 1;
1294 /* A protected symbol has external availability. Make sure it is
1295 recorded as dynamic.
1296
1297 FIXME: Should we check type and size for protected symbol? */
1298 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1299 return bfd_elf_link_record_dynamic_symbol (info, h);
1300 else
1301 return TRUE;
1302 }
1303 else if (!newdyn
1304 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1305 && h->def_dynamic)
1306 {
1307 /* If the new symbol with non-default visibility comes from a
1308 relocatable file and the old definition comes from a dynamic
1309 object, we remove the old definition. */
1310 if (hi->root.type == bfd_link_hash_indirect)
1311 {
1312 /* Handle the case where the old dynamic definition is
1313 default versioned. We need to copy the symbol info from
1314 the symbol with default version to the normal one if it
1315 was referenced before. */
1316 if (h->ref_regular)
1317 {
1318 hi->root.type = h->root.type;
1319 h->root.type = bfd_link_hash_indirect;
1320 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1321
1322 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1323 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1324 {
1325 /* If the new symbol is hidden or internal, completely undo
1326 any dynamic link state. */
1327 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1328 h->forced_local = 0;
1329 h->ref_dynamic = 0;
1330 }
1331 else
1332 h->ref_dynamic = 1;
1333
1334 h->def_dynamic = 0;
1335 /* FIXME: Should we check type and size for protected symbol? */
1336 h->size = 0;
1337 h->type = 0;
1338
1339 h = hi;
1340 }
1341 else
1342 h = hi;
1343 }
1344
1345 /* If the old symbol was undefined before, then it will still be
1346 on the undefs list. If the new symbol is undefined or
1347 common, we can't make it bfd_link_hash_new here, because new
1348 undefined or common symbols will be added to the undefs list
1349 by _bfd_generic_link_add_one_symbol. Symbols may not be
1350 added twice to the undefs list. Also, if the new symbol is
1351 undefweak then we don't want to lose the strong undef. */
1352 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1353 {
1354 h->root.type = bfd_link_hash_undefined;
1355 h->root.u.undef.abfd = abfd;
1356 }
1357 else
1358 {
1359 h->root.type = bfd_link_hash_new;
1360 h->root.u.undef.abfd = NULL;
1361 }
1362
1363 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1364 {
1365 /* If the new symbol is hidden or internal, completely undo
1366 any dynamic link state. */
1367 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1368 h->forced_local = 0;
1369 h->ref_dynamic = 0;
1370 }
1371 else
1372 h->ref_dynamic = 1;
1373 h->def_dynamic = 0;
1374 /* FIXME: Should we check type and size for protected symbol? */
1375 h->size = 0;
1376 h->type = 0;
1377 return TRUE;
1378 }
1379
1380 /* If a new weak symbol definition comes from a regular file and the
1381 old symbol comes from a dynamic library, we treat the new one as
1382 strong. Similarly, an old weak symbol definition from a regular
1383 file is treated as strong when the new symbol comes from a dynamic
1384 library. Further, an old weak symbol from a dynamic library is
1385 treated as strong if the new symbol is from a dynamic library.
1386 This reflects the way glibc's ld.so works.
1387
1388 Do this before setting *type_change_ok or *size_change_ok so that
1389 we warn properly when dynamic library symbols are overridden. */
1390
1391 if (newdef && !newdyn && olddyn)
1392 newweak = FALSE;
1393 if (olddef && newdyn)
1394 oldweak = FALSE;
1395
1396 /* Allow changes between different types of function symbol. */
1397 if (newfunc && oldfunc)
1398 *type_change_ok = TRUE;
1399
1400 /* It's OK to change the type if either the existing symbol or the
1401 new symbol is weak. A type change is also OK if the old symbol
1402 is undefined and the new symbol is defined. */
1403
1404 if (oldweak
1405 || newweak
1406 || (newdef
1407 && h->root.type == bfd_link_hash_undefined))
1408 *type_change_ok = TRUE;
1409
1410 /* It's OK to change the size if either the existing symbol or the
1411 new symbol is weak, or if the old symbol is undefined. */
1412
1413 if (*type_change_ok
1414 || h->root.type == bfd_link_hash_undefined)
1415 *size_change_ok = TRUE;
1416
1417 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1418 symbol, respectively, appears to be a common symbol in a dynamic
1419 object. If a symbol appears in an uninitialized section, and is
1420 not weak, and is not a function, then it may be a common symbol
1421 which was resolved when the dynamic object was created. We want
1422 to treat such symbols specially, because they raise special
1423 considerations when setting the symbol size: if the symbol
1424 appears as a common symbol in a regular object, and the size in
1425 the regular object is larger, we must make sure that we use the
1426 larger size. This problematic case can always be avoided in C,
1427 but it must be handled correctly when using Fortran shared
1428 libraries.
1429
1430 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1431 likewise for OLDDYNCOMMON and OLDDEF.
1432
1433 Note that this test is just a heuristic, and that it is quite
1434 possible to have an uninitialized symbol in a shared object which
1435 is really a definition, rather than a common symbol. This could
1436 lead to some minor confusion when the symbol really is a common
1437 symbol in some regular object. However, I think it will be
1438 harmless. */
1439
1440 if (newdyn
1441 && newdef
1442 && !newweak
1443 && (sec->flags & SEC_ALLOC) != 0
1444 && (sec->flags & SEC_LOAD) == 0
1445 && sym->st_size > 0
1446 && !newfunc)
1447 newdyncommon = TRUE;
1448 else
1449 newdyncommon = FALSE;
1450
1451 if (olddyn
1452 && olddef
1453 && h->root.type == bfd_link_hash_defined
1454 && h->def_dynamic
1455 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1456 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1457 && h->size > 0
1458 && !oldfunc)
1459 olddyncommon = TRUE;
1460 else
1461 olddyncommon = FALSE;
1462
1463 /* We now know everything about the old and new symbols. We ask the
1464 backend to check if we can merge them. */
1465 if (bed->merge_symbol != NULL)
1466 {
1467 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1468 return FALSE;
1469 sec = *psec;
1470 }
1471
1472 /* If both the old and the new symbols look like common symbols in a
1473 dynamic object, set the size of the symbol to the larger of the
1474 two. */
1475
1476 if (olddyncommon
1477 && newdyncommon
1478 && sym->st_size != h->size)
1479 {
1480 /* Since we think we have two common symbols, issue a multiple
1481 common warning if desired. Note that we only warn if the
1482 size is different. If the size is the same, we simply let
1483 the old symbol override the new one as normally happens with
1484 symbols defined in dynamic objects. */
1485
1486 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1487 bfd_link_hash_common, sym->st_size);
1488 if (sym->st_size > h->size)
1489 h->size = sym->st_size;
1490
1491 *size_change_ok = TRUE;
1492 }
1493
1494 /* If we are looking at a dynamic object, and we have found a
1495 definition, we need to see if the symbol was already defined by
1496 some other object. If so, we want to use the existing
1497 definition, and we do not want to report a multiple symbol
1498 definition error; we do this by clobbering *PSEC to be
1499 bfd_und_section_ptr.
1500
1501 We treat a common symbol as a definition if the symbol in the
1502 shared library is a function, since common symbols always
1503 represent variables; this can cause confusion in principle, but
1504 any such confusion would seem to indicate an erroneous program or
1505 shared library. We also permit a common symbol in a regular
1506 object to override a weak symbol in a shared object. A common
1507 symbol in executable also overrides a symbol in a shared object. */
1508
1509 if (newdyn
1510 && newdef
1511 && (olddef
1512 || (h->root.type == bfd_link_hash_common
1513 && (newweak
1514 || newfunc
1515 || (!olddyn && bfd_link_executable (info))))))
1516 {
1517 *override = TRUE;
1518 newdef = FALSE;
1519 newdyncommon = FALSE;
1520
1521 *psec = sec = bfd_und_section_ptr;
1522 *size_change_ok = TRUE;
1523
1524 /* If we get here when the old symbol is a common symbol, then
1525 we are explicitly letting it override a weak symbol or
1526 function in a dynamic object, and we don't want to warn about
1527 a type change. If the old symbol is a defined symbol, a type
1528 change warning may still be appropriate. */
1529
1530 if (h->root.type == bfd_link_hash_common)
1531 *type_change_ok = TRUE;
1532 }
1533
1534 /* Handle the special case of an old common symbol merging with a
1535 new symbol which looks like a common symbol in a shared object.
1536 We change *PSEC and *PVALUE to make the new symbol look like a
1537 common symbol, and let _bfd_generic_link_add_one_symbol do the
1538 right thing. */
1539
1540 if (newdyncommon
1541 && h->root.type == bfd_link_hash_common)
1542 {
1543 *override = TRUE;
1544 newdef = FALSE;
1545 newdyncommon = FALSE;
1546 *pvalue = sym->st_size;
1547 *psec = sec = bed->common_section (oldsec);
1548 *size_change_ok = TRUE;
1549 }
1550
1551 /* Skip weak definitions of symbols that are already defined. */
1552 if (newdef && olddef && newweak)
1553 {
1554 /* Don't skip new non-IR weak syms. */
1555 if (!(oldbfd != NULL
1556 && (oldbfd->flags & BFD_PLUGIN) != 0
1557 && (abfd->flags & BFD_PLUGIN) == 0))
1558 {
1559 newdef = FALSE;
1560 *skip = TRUE;
1561 }
1562
1563 /* Merge st_other. If the symbol already has a dynamic index,
1564 but visibility says it should not be visible, turn it into a
1565 local symbol. */
1566 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1567 if (h->dynindx != -1)
1568 switch (ELF_ST_VISIBILITY (h->other))
1569 {
1570 case STV_INTERNAL:
1571 case STV_HIDDEN:
1572 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1573 break;
1574 }
1575 }
1576
1577 /* If the old symbol is from a dynamic object, and the new symbol is
1578 a definition which is not from a dynamic object, then the new
1579 symbol overrides the old symbol. Symbols from regular files
1580 always take precedence over symbols from dynamic objects, even if
1581 they are defined after the dynamic object in the link.
1582
1583 As above, we again permit a common symbol in a regular object to
1584 override a definition in a shared object if the shared object
1585 symbol is a function or is weak. */
1586
1587 flip = NULL;
1588 if (!newdyn
1589 && (newdef
1590 || (bfd_is_com_section (sec)
1591 && (oldweak || oldfunc)))
1592 && olddyn
1593 && olddef
1594 && h->def_dynamic)
1595 {
1596 /* Change the hash table entry to undefined, and let
1597 _bfd_generic_link_add_one_symbol do the right thing with the
1598 new definition. */
1599
1600 h->root.type = bfd_link_hash_undefined;
1601 h->root.u.undef.abfd = h->root.u.def.section->owner;
1602 *size_change_ok = TRUE;
1603
1604 olddef = FALSE;
1605 olddyncommon = FALSE;
1606
1607 /* We again permit a type change when a common symbol may be
1608 overriding a function. */
1609
1610 if (bfd_is_com_section (sec))
1611 {
1612 if (oldfunc)
1613 {
1614 /* If a common symbol overrides a function, make sure
1615 that it isn't defined dynamically nor has type
1616 function. */
1617 h->def_dynamic = 0;
1618 h->type = STT_NOTYPE;
1619 }
1620 *type_change_ok = TRUE;
1621 }
1622
1623 if (hi->root.type == bfd_link_hash_indirect)
1624 flip = hi;
1625 else
1626 /* This union may have been set to be non-NULL when this symbol
1627 was seen in a dynamic object. We must force the union to be
1628 NULL, so that it is correct for a regular symbol. */
1629 h->verinfo.vertree = NULL;
1630 }
1631
1632 /* Handle the special case of a new common symbol merging with an
1633 old symbol that looks like it might be a common symbol defined in
1634 a shared object. Note that we have already handled the case in
1635 which a new common symbol should simply override the definition
1636 in the shared library. */
1637
1638 if (! newdyn
1639 && bfd_is_com_section (sec)
1640 && olddyncommon)
1641 {
1642 /* It would be best if we could set the hash table entry to a
1643 common symbol, but we don't know what to use for the section
1644 or the alignment. */
1645 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1646 bfd_link_hash_common, sym->st_size);
1647
1648 /* If the presumed common symbol in the dynamic object is
1649 larger, pretend that the new symbol has its size. */
1650
1651 if (h->size > *pvalue)
1652 *pvalue = h->size;
1653
1654 /* We need to remember the alignment required by the symbol
1655 in the dynamic object. */
1656 BFD_ASSERT (pold_alignment);
1657 *pold_alignment = h->root.u.def.section->alignment_power;
1658
1659 olddef = FALSE;
1660 olddyncommon = FALSE;
1661
1662 h->root.type = bfd_link_hash_undefined;
1663 h->root.u.undef.abfd = h->root.u.def.section->owner;
1664
1665 *size_change_ok = TRUE;
1666 *type_change_ok = TRUE;
1667
1668 if (hi->root.type == bfd_link_hash_indirect)
1669 flip = hi;
1670 else
1671 h->verinfo.vertree = NULL;
1672 }
1673
1674 if (flip != NULL)
1675 {
1676 /* Handle the case where we had a versioned symbol in a dynamic
1677 library and now find a definition in a normal object. In this
1678 case, we make the versioned symbol point to the normal one. */
1679 flip->root.type = h->root.type;
1680 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1681 h->root.type = bfd_link_hash_indirect;
1682 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1683 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1684 if (h->def_dynamic)
1685 {
1686 h->def_dynamic = 0;
1687 flip->ref_dynamic = 1;
1688 }
1689 }
1690
1691 return TRUE;
1692 }
1693
1694 /* This function is called to create an indirect symbol from the
1695 default for the symbol with the default version if needed. The
1696 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1697 set DYNSYM if the new indirect symbol is dynamic. */
1698
1699 static bfd_boolean
1700 _bfd_elf_add_default_symbol (bfd *abfd,
1701 struct bfd_link_info *info,
1702 struct elf_link_hash_entry *h,
1703 const char *name,
1704 Elf_Internal_Sym *sym,
1705 asection *sec,
1706 bfd_vma value,
1707 bfd **poldbfd,
1708 bfd_boolean *dynsym)
1709 {
1710 bfd_boolean type_change_ok;
1711 bfd_boolean size_change_ok;
1712 bfd_boolean skip;
1713 char *shortname;
1714 struct elf_link_hash_entry *hi;
1715 struct bfd_link_hash_entry *bh;
1716 const struct elf_backend_data *bed;
1717 bfd_boolean collect;
1718 bfd_boolean dynamic;
1719 bfd_boolean override;
1720 char *p;
1721 size_t len, shortlen;
1722 asection *tmp_sec;
1723 bfd_boolean matched;
1724
1725 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1726 return TRUE;
1727
1728 /* If this symbol has a version, and it is the default version, we
1729 create an indirect symbol from the default name to the fully
1730 decorated name. This will cause external references which do not
1731 specify a version to be bound to this version of the symbol. */
1732 p = strchr (name, ELF_VER_CHR);
1733 if (h->versioned == unknown)
1734 {
1735 if (p == NULL)
1736 {
1737 h->versioned = unversioned;
1738 return TRUE;
1739 }
1740 else
1741 {
1742 if (p[1] != ELF_VER_CHR)
1743 {
1744 h->versioned = versioned_hidden;
1745 return TRUE;
1746 }
1747 else
1748 h->versioned = versioned;
1749 }
1750 }
1751 else
1752 {
1753 /* PR ld/19073: We may see an unversioned definition after the
1754 default version. */
1755 if (p == NULL)
1756 return TRUE;
1757 }
1758
1759 bed = get_elf_backend_data (abfd);
1760 collect = bed->collect;
1761 dynamic = (abfd->flags & DYNAMIC) != 0;
1762
1763 shortlen = p - name;
1764 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1765 if (shortname == NULL)
1766 return FALSE;
1767 memcpy (shortname, name, shortlen);
1768 shortname[shortlen] = '\0';
1769
1770 /* We are going to create a new symbol. Merge it with any existing
1771 symbol with this name. For the purposes of the merge, act as
1772 though we were defining the symbol we just defined, although we
1773 actually going to define an indirect symbol. */
1774 type_change_ok = FALSE;
1775 size_change_ok = FALSE;
1776 matched = TRUE;
1777 tmp_sec = sec;
1778 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1779 &hi, poldbfd, NULL, NULL, &skip, &override,
1780 &type_change_ok, &size_change_ok, &matched))
1781 return FALSE;
1782
1783 if (skip)
1784 goto nondefault;
1785
1786 if (hi->def_regular)
1787 {
1788 /* If the undecorated symbol will have a version added by a
1789 script different to H, then don't indirect to/from the
1790 undecorated symbol. This isn't ideal because we may not yet
1791 have seen symbol versions, if given by a script on the
1792 command line rather than via --version-script. */
1793 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1794 {
1795 bfd_boolean hide;
1796
1797 hi->verinfo.vertree
1798 = bfd_find_version_for_sym (info->version_info,
1799 hi->root.root.string, &hide);
1800 if (hi->verinfo.vertree != NULL && hide)
1801 {
1802 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1803 goto nondefault;
1804 }
1805 }
1806 if (hi->verinfo.vertree != NULL
1807 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1808 goto nondefault;
1809 }
1810
1811 if (! override)
1812 {
1813 /* Add the default symbol if not performing a relocatable link. */
1814 if (! bfd_link_relocatable (info))
1815 {
1816 bh = &hi->root;
1817 if (! (_bfd_generic_link_add_one_symbol
1818 (info, abfd, shortname, BSF_INDIRECT,
1819 bfd_ind_section_ptr,
1820 0, name, FALSE, collect, &bh)))
1821 return FALSE;
1822 hi = (struct elf_link_hash_entry *) bh;
1823 }
1824 }
1825 else
1826 {
1827 /* In this case the symbol named SHORTNAME is overriding the
1828 indirect symbol we want to add. We were planning on making
1829 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1830 is the name without a version. NAME is the fully versioned
1831 name, and it is the default version.
1832
1833 Overriding means that we already saw a definition for the
1834 symbol SHORTNAME in a regular object, and it is overriding
1835 the symbol defined in the dynamic object.
1836
1837 When this happens, we actually want to change NAME, the
1838 symbol we just added, to refer to SHORTNAME. This will cause
1839 references to NAME in the shared object to become references
1840 to SHORTNAME in the regular object. This is what we expect
1841 when we override a function in a shared object: that the
1842 references in the shared object will be mapped to the
1843 definition in the regular object. */
1844
1845 while (hi->root.type == bfd_link_hash_indirect
1846 || hi->root.type == bfd_link_hash_warning)
1847 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1848
1849 h->root.type = bfd_link_hash_indirect;
1850 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1851 if (h->def_dynamic)
1852 {
1853 h->def_dynamic = 0;
1854 hi->ref_dynamic = 1;
1855 if (hi->ref_regular
1856 || hi->def_regular)
1857 {
1858 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1859 return FALSE;
1860 }
1861 }
1862
1863 /* Now set HI to H, so that the following code will set the
1864 other fields correctly. */
1865 hi = h;
1866 }
1867
1868 /* Check if HI is a warning symbol. */
1869 if (hi->root.type == bfd_link_hash_warning)
1870 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1871
1872 /* If there is a duplicate definition somewhere, then HI may not
1873 point to an indirect symbol. We will have reported an error to
1874 the user in that case. */
1875
1876 if (hi->root.type == bfd_link_hash_indirect)
1877 {
1878 struct elf_link_hash_entry *ht;
1879
1880 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1881 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1882
1883 /* A reference to the SHORTNAME symbol from a dynamic library
1884 will be satisfied by the versioned symbol at runtime. In
1885 effect, we have a reference to the versioned symbol. */
1886 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1887 hi->dynamic_def |= ht->dynamic_def;
1888
1889 /* See if the new flags lead us to realize that the symbol must
1890 be dynamic. */
1891 if (! *dynsym)
1892 {
1893 if (! dynamic)
1894 {
1895 if (! bfd_link_executable (info)
1896 || hi->def_dynamic
1897 || hi->ref_dynamic)
1898 *dynsym = TRUE;
1899 }
1900 else
1901 {
1902 if (hi->ref_regular)
1903 *dynsym = TRUE;
1904 }
1905 }
1906 }
1907
1908 /* We also need to define an indirection from the nondefault version
1909 of the symbol. */
1910
1911 nondefault:
1912 len = strlen (name);
1913 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1914 if (shortname == NULL)
1915 return FALSE;
1916 memcpy (shortname, name, shortlen);
1917 memcpy (shortname + shortlen, p + 1, len - shortlen);
1918
1919 /* Once again, merge with any existing symbol. */
1920 type_change_ok = FALSE;
1921 size_change_ok = FALSE;
1922 tmp_sec = sec;
1923 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1924 &hi, poldbfd, NULL, NULL, &skip, &override,
1925 &type_change_ok, &size_change_ok, &matched))
1926 return FALSE;
1927
1928 if (skip)
1929 return TRUE;
1930
1931 if (override)
1932 {
1933 /* Here SHORTNAME is a versioned name, so we don't expect to see
1934 the type of override we do in the case above unless it is
1935 overridden by a versioned definition. */
1936 if (hi->root.type != bfd_link_hash_defined
1937 && hi->root.type != bfd_link_hash_defweak)
1938 (*_bfd_error_handler)
1939 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1940 abfd, shortname);
1941 }
1942 else
1943 {
1944 bh = &hi->root;
1945 if (! (_bfd_generic_link_add_one_symbol
1946 (info, abfd, shortname, BSF_INDIRECT,
1947 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1948 return FALSE;
1949 hi = (struct elf_link_hash_entry *) bh;
1950
1951 /* If there is a duplicate definition somewhere, then HI may not
1952 point to an indirect symbol. We will have reported an error
1953 to the user in that case. */
1954
1955 if (hi->root.type == bfd_link_hash_indirect)
1956 {
1957 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1958 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1959 hi->dynamic_def |= h->dynamic_def;
1960
1961 /* See if the new flags lead us to realize that the symbol
1962 must be dynamic. */
1963 if (! *dynsym)
1964 {
1965 if (! dynamic)
1966 {
1967 if (! bfd_link_executable (info)
1968 || hi->ref_dynamic)
1969 *dynsym = TRUE;
1970 }
1971 else
1972 {
1973 if (hi->ref_regular)
1974 *dynsym = TRUE;
1975 }
1976 }
1977 }
1978 }
1979
1980 return TRUE;
1981 }
1982 \f
1983 /* This routine is used to export all defined symbols into the dynamic
1984 symbol table. It is called via elf_link_hash_traverse. */
1985
1986 static bfd_boolean
1987 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1988 {
1989 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1990
1991 /* Ignore indirect symbols. These are added by the versioning code. */
1992 if (h->root.type == bfd_link_hash_indirect)
1993 return TRUE;
1994
1995 /* Ignore this if we won't export it. */
1996 if (!eif->info->export_dynamic && !h->dynamic)
1997 return TRUE;
1998
1999 if (h->dynindx == -1
2000 && (h->def_regular || h->ref_regular)
2001 && ! bfd_hide_sym_by_version (eif->info->version_info,
2002 h->root.root.string))
2003 {
2004 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2005 {
2006 eif->failed = TRUE;
2007 return FALSE;
2008 }
2009 }
2010
2011 return TRUE;
2012 }
2013 \f
2014 /* Look through the symbols which are defined in other shared
2015 libraries and referenced here. Update the list of version
2016 dependencies. This will be put into the .gnu.version_r section.
2017 This function is called via elf_link_hash_traverse. */
2018
2019 static bfd_boolean
2020 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2021 void *data)
2022 {
2023 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2024 Elf_Internal_Verneed *t;
2025 Elf_Internal_Vernaux *a;
2026 bfd_size_type amt;
2027
2028 /* We only care about symbols defined in shared objects with version
2029 information. */
2030 if (!h->def_dynamic
2031 || h->def_regular
2032 || h->dynindx == -1
2033 || h->verinfo.verdef == NULL
2034 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2035 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2036 return TRUE;
2037
2038 /* See if we already know about this version. */
2039 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2040 t != NULL;
2041 t = t->vn_nextref)
2042 {
2043 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2044 continue;
2045
2046 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2047 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2048 return TRUE;
2049
2050 break;
2051 }
2052
2053 /* This is a new version. Add it to tree we are building. */
2054
2055 if (t == NULL)
2056 {
2057 amt = sizeof *t;
2058 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2059 if (t == NULL)
2060 {
2061 rinfo->failed = TRUE;
2062 return FALSE;
2063 }
2064
2065 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2066 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2067 elf_tdata (rinfo->info->output_bfd)->verref = t;
2068 }
2069
2070 amt = sizeof *a;
2071 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2072 if (a == NULL)
2073 {
2074 rinfo->failed = TRUE;
2075 return FALSE;
2076 }
2077
2078 /* Note that we are copying a string pointer here, and testing it
2079 above. If bfd_elf_string_from_elf_section is ever changed to
2080 discard the string data when low in memory, this will have to be
2081 fixed. */
2082 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2083
2084 a->vna_flags = h->verinfo.verdef->vd_flags;
2085 a->vna_nextptr = t->vn_auxptr;
2086
2087 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2088 ++rinfo->vers;
2089
2090 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2091
2092 t->vn_auxptr = a;
2093
2094 return TRUE;
2095 }
2096
2097 /* Figure out appropriate versions for all the symbols. We may not
2098 have the version number script until we have read all of the input
2099 files, so until that point we don't know which symbols should be
2100 local. This function is called via elf_link_hash_traverse. */
2101
2102 static bfd_boolean
2103 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2104 {
2105 struct elf_info_failed *sinfo;
2106 struct bfd_link_info *info;
2107 const struct elf_backend_data *bed;
2108 struct elf_info_failed eif;
2109 char *p;
2110
2111 sinfo = (struct elf_info_failed *) data;
2112 info = sinfo->info;
2113
2114 /* Fix the symbol flags. */
2115 eif.failed = FALSE;
2116 eif.info = info;
2117 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2118 {
2119 if (eif.failed)
2120 sinfo->failed = TRUE;
2121 return FALSE;
2122 }
2123
2124 /* We only need version numbers for symbols defined in regular
2125 objects. */
2126 if (!h->def_regular)
2127 return TRUE;
2128
2129 bed = get_elf_backend_data (info->output_bfd);
2130 p = strchr (h->root.root.string, ELF_VER_CHR);
2131 if (p != NULL && h->verinfo.vertree == NULL)
2132 {
2133 struct bfd_elf_version_tree *t;
2134
2135 ++p;
2136 if (*p == ELF_VER_CHR)
2137 ++p;
2138
2139 /* If there is no version string, we can just return out. */
2140 if (*p == '\0')
2141 return TRUE;
2142
2143 /* Look for the version. If we find it, it is no longer weak. */
2144 for (t = sinfo->info->version_info; t != NULL; t = t->next)
2145 {
2146 if (strcmp (t->name, p) == 0)
2147 {
2148 size_t len;
2149 char *alc;
2150 struct bfd_elf_version_expr *d;
2151
2152 len = p - h->root.root.string;
2153 alc = (char *) bfd_malloc (len);
2154 if (alc == NULL)
2155 {
2156 sinfo->failed = TRUE;
2157 return FALSE;
2158 }
2159 memcpy (alc, h->root.root.string, len - 1);
2160 alc[len - 1] = '\0';
2161 if (alc[len - 2] == ELF_VER_CHR)
2162 alc[len - 2] = '\0';
2163
2164 h->verinfo.vertree = t;
2165 t->used = TRUE;
2166 d = NULL;
2167
2168 if (t->globals.list != NULL)
2169 d = (*t->match) (&t->globals, NULL, alc);
2170
2171 /* See if there is anything to force this symbol to
2172 local scope. */
2173 if (d == NULL && t->locals.list != NULL)
2174 {
2175 d = (*t->match) (&t->locals, NULL, alc);
2176 if (d != NULL
2177 && h->dynindx != -1
2178 && ! info->export_dynamic)
2179 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2180 }
2181
2182 free (alc);
2183 break;
2184 }
2185 }
2186
2187 /* If we are building an application, we need to create a
2188 version node for this version. */
2189 if (t == NULL && bfd_link_executable (info))
2190 {
2191 struct bfd_elf_version_tree **pp;
2192 int version_index;
2193
2194 /* If we aren't going to export this symbol, we don't need
2195 to worry about it. */
2196 if (h->dynindx == -1)
2197 return TRUE;
2198
2199 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2200 sizeof *t);
2201 if (t == NULL)
2202 {
2203 sinfo->failed = TRUE;
2204 return FALSE;
2205 }
2206
2207 t->name = p;
2208 t->name_indx = (unsigned int) -1;
2209 t->used = TRUE;
2210
2211 version_index = 1;
2212 /* Don't count anonymous version tag. */
2213 if (sinfo->info->version_info != NULL
2214 && sinfo->info->version_info->vernum == 0)
2215 version_index = 0;
2216 for (pp = &sinfo->info->version_info;
2217 *pp != NULL;
2218 pp = &(*pp)->next)
2219 ++version_index;
2220 t->vernum = version_index;
2221
2222 *pp = t;
2223
2224 h->verinfo.vertree = t;
2225 }
2226 else if (t == NULL)
2227 {
2228 /* We could not find the version for a symbol when
2229 generating a shared archive. Return an error. */
2230 (*_bfd_error_handler)
2231 (_("%B: version node not found for symbol %s"),
2232 info->output_bfd, h->root.root.string);
2233 bfd_set_error (bfd_error_bad_value);
2234 sinfo->failed = TRUE;
2235 return FALSE;
2236 }
2237 }
2238
2239 /* If we don't have a version for this symbol, see if we can find
2240 something. */
2241 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2242 {
2243 bfd_boolean hide;
2244
2245 h->verinfo.vertree
2246 = bfd_find_version_for_sym (sinfo->info->version_info,
2247 h->root.root.string, &hide);
2248 if (h->verinfo.vertree != NULL && hide)
2249 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2250 }
2251
2252 return TRUE;
2253 }
2254 \f
2255 /* Read and swap the relocs from the section indicated by SHDR. This
2256 may be either a REL or a RELA section. The relocations are
2257 translated into RELA relocations and stored in INTERNAL_RELOCS,
2258 which should have already been allocated to contain enough space.
2259 The EXTERNAL_RELOCS are a buffer where the external form of the
2260 relocations should be stored.
2261
2262 Returns FALSE if something goes wrong. */
2263
2264 static bfd_boolean
2265 elf_link_read_relocs_from_section (bfd *abfd,
2266 asection *sec,
2267 Elf_Internal_Shdr *shdr,
2268 void *external_relocs,
2269 Elf_Internal_Rela *internal_relocs)
2270 {
2271 const struct elf_backend_data *bed;
2272 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2273 const bfd_byte *erela;
2274 const bfd_byte *erelaend;
2275 Elf_Internal_Rela *irela;
2276 Elf_Internal_Shdr *symtab_hdr;
2277 size_t nsyms;
2278
2279 /* Position ourselves at the start of the section. */
2280 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2281 return FALSE;
2282
2283 /* Read the relocations. */
2284 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2285 return FALSE;
2286
2287 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2288 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2289
2290 bed = get_elf_backend_data (abfd);
2291
2292 /* Convert the external relocations to the internal format. */
2293 if (shdr->sh_entsize == bed->s->sizeof_rel)
2294 swap_in = bed->s->swap_reloc_in;
2295 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2296 swap_in = bed->s->swap_reloca_in;
2297 else
2298 {
2299 bfd_set_error (bfd_error_wrong_format);
2300 return FALSE;
2301 }
2302
2303 erela = (const bfd_byte *) external_relocs;
2304 erelaend = erela + shdr->sh_size;
2305 irela = internal_relocs;
2306 while (erela < erelaend)
2307 {
2308 bfd_vma r_symndx;
2309
2310 (*swap_in) (abfd, erela, irela);
2311 r_symndx = ELF32_R_SYM (irela->r_info);
2312 if (bed->s->arch_size == 64)
2313 r_symndx >>= 24;
2314 if (nsyms > 0)
2315 {
2316 if ((size_t) r_symndx >= nsyms)
2317 {
2318 (*_bfd_error_handler)
2319 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2320 " for offset 0x%lx in section `%A'"),
2321 abfd, sec,
2322 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2323 bfd_set_error (bfd_error_bad_value);
2324 return FALSE;
2325 }
2326 }
2327 else if (r_symndx != STN_UNDEF)
2328 {
2329 (*_bfd_error_handler)
2330 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2331 " when the object file has no symbol table"),
2332 abfd, sec,
2333 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2334 bfd_set_error (bfd_error_bad_value);
2335 return FALSE;
2336 }
2337 irela += bed->s->int_rels_per_ext_rel;
2338 erela += shdr->sh_entsize;
2339 }
2340
2341 return TRUE;
2342 }
2343
2344 /* Read and swap the relocs for a section O. They may have been
2345 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2346 not NULL, they are used as buffers to read into. They are known to
2347 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2348 the return value is allocated using either malloc or bfd_alloc,
2349 according to the KEEP_MEMORY argument. If O has two relocation
2350 sections (both REL and RELA relocations), then the REL_HDR
2351 relocations will appear first in INTERNAL_RELOCS, followed by the
2352 RELA_HDR relocations. */
2353
2354 Elf_Internal_Rela *
2355 _bfd_elf_link_read_relocs (bfd *abfd,
2356 asection *o,
2357 void *external_relocs,
2358 Elf_Internal_Rela *internal_relocs,
2359 bfd_boolean keep_memory)
2360 {
2361 void *alloc1 = NULL;
2362 Elf_Internal_Rela *alloc2 = NULL;
2363 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2364 struct bfd_elf_section_data *esdo = elf_section_data (o);
2365 Elf_Internal_Rela *internal_rela_relocs;
2366
2367 if (esdo->relocs != NULL)
2368 return esdo->relocs;
2369
2370 if (o->reloc_count == 0)
2371 return NULL;
2372
2373 if (internal_relocs == NULL)
2374 {
2375 bfd_size_type size;
2376
2377 size = o->reloc_count;
2378 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2379 if (keep_memory)
2380 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2381 else
2382 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2383 if (internal_relocs == NULL)
2384 goto error_return;
2385 }
2386
2387 if (external_relocs == NULL)
2388 {
2389 bfd_size_type size = 0;
2390
2391 if (esdo->rel.hdr)
2392 size += esdo->rel.hdr->sh_size;
2393 if (esdo->rela.hdr)
2394 size += esdo->rela.hdr->sh_size;
2395
2396 alloc1 = bfd_malloc (size);
2397 if (alloc1 == NULL)
2398 goto error_return;
2399 external_relocs = alloc1;
2400 }
2401
2402 internal_rela_relocs = internal_relocs;
2403 if (esdo->rel.hdr)
2404 {
2405 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2406 external_relocs,
2407 internal_relocs))
2408 goto error_return;
2409 external_relocs = (((bfd_byte *) external_relocs)
2410 + esdo->rel.hdr->sh_size);
2411 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2412 * bed->s->int_rels_per_ext_rel);
2413 }
2414
2415 if (esdo->rela.hdr
2416 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2417 external_relocs,
2418 internal_rela_relocs)))
2419 goto error_return;
2420
2421 /* Cache the results for next time, if we can. */
2422 if (keep_memory)
2423 esdo->relocs = internal_relocs;
2424
2425 if (alloc1 != NULL)
2426 free (alloc1);
2427
2428 /* Don't free alloc2, since if it was allocated we are passing it
2429 back (under the name of internal_relocs). */
2430
2431 return internal_relocs;
2432
2433 error_return:
2434 if (alloc1 != NULL)
2435 free (alloc1);
2436 if (alloc2 != NULL)
2437 {
2438 if (keep_memory)
2439 bfd_release (abfd, alloc2);
2440 else
2441 free (alloc2);
2442 }
2443 return NULL;
2444 }
2445
2446 /* Compute the size of, and allocate space for, REL_HDR which is the
2447 section header for a section containing relocations for O. */
2448
2449 static bfd_boolean
2450 _bfd_elf_link_size_reloc_section (bfd *abfd,
2451 struct bfd_elf_section_reloc_data *reldata)
2452 {
2453 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2454
2455 /* That allows us to calculate the size of the section. */
2456 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2457
2458 /* The contents field must last into write_object_contents, so we
2459 allocate it with bfd_alloc rather than malloc. Also since we
2460 cannot be sure that the contents will actually be filled in,
2461 we zero the allocated space. */
2462 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2463 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2464 return FALSE;
2465
2466 if (reldata->hashes == NULL && reldata->count)
2467 {
2468 struct elf_link_hash_entry **p;
2469
2470 p = ((struct elf_link_hash_entry **)
2471 bfd_zmalloc (reldata->count * sizeof (*p)));
2472 if (p == NULL)
2473 return FALSE;
2474
2475 reldata->hashes = p;
2476 }
2477
2478 return TRUE;
2479 }
2480
2481 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2482 originated from the section given by INPUT_REL_HDR) to the
2483 OUTPUT_BFD. */
2484
2485 bfd_boolean
2486 _bfd_elf_link_output_relocs (bfd *output_bfd,
2487 asection *input_section,
2488 Elf_Internal_Shdr *input_rel_hdr,
2489 Elf_Internal_Rela *internal_relocs,
2490 struct elf_link_hash_entry **rel_hash
2491 ATTRIBUTE_UNUSED)
2492 {
2493 Elf_Internal_Rela *irela;
2494 Elf_Internal_Rela *irelaend;
2495 bfd_byte *erel;
2496 struct bfd_elf_section_reloc_data *output_reldata;
2497 asection *output_section;
2498 const struct elf_backend_data *bed;
2499 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2500 struct bfd_elf_section_data *esdo;
2501
2502 output_section = input_section->output_section;
2503
2504 bed = get_elf_backend_data (output_bfd);
2505 esdo = elf_section_data (output_section);
2506 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2507 {
2508 output_reldata = &esdo->rel;
2509 swap_out = bed->s->swap_reloc_out;
2510 }
2511 else if (esdo->rela.hdr
2512 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2513 {
2514 output_reldata = &esdo->rela;
2515 swap_out = bed->s->swap_reloca_out;
2516 }
2517 else
2518 {
2519 (*_bfd_error_handler)
2520 (_("%B: relocation size mismatch in %B section %A"),
2521 output_bfd, input_section->owner, input_section);
2522 bfd_set_error (bfd_error_wrong_format);
2523 return FALSE;
2524 }
2525
2526 erel = output_reldata->hdr->contents;
2527 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2528 irela = internal_relocs;
2529 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2530 * bed->s->int_rels_per_ext_rel);
2531 while (irela < irelaend)
2532 {
2533 (*swap_out) (output_bfd, irela, erel);
2534 irela += bed->s->int_rels_per_ext_rel;
2535 erel += input_rel_hdr->sh_entsize;
2536 }
2537
2538 /* Bump the counter, so that we know where to add the next set of
2539 relocations. */
2540 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2541
2542 return TRUE;
2543 }
2544 \f
2545 /* Make weak undefined symbols in PIE dynamic. */
2546
2547 bfd_boolean
2548 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2549 struct elf_link_hash_entry *h)
2550 {
2551 if (bfd_link_pie (info)
2552 && h->dynindx == -1
2553 && h->root.type == bfd_link_hash_undefweak)
2554 return bfd_elf_link_record_dynamic_symbol (info, h);
2555
2556 return TRUE;
2557 }
2558
2559 /* Fix up the flags for a symbol. This handles various cases which
2560 can only be fixed after all the input files are seen. This is
2561 currently called by both adjust_dynamic_symbol and
2562 assign_sym_version, which is unnecessary but perhaps more robust in
2563 the face of future changes. */
2564
2565 static bfd_boolean
2566 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2567 struct elf_info_failed *eif)
2568 {
2569 const struct elf_backend_data *bed;
2570
2571 /* If this symbol was mentioned in a non-ELF file, try to set
2572 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2573 permit a non-ELF file to correctly refer to a symbol defined in
2574 an ELF dynamic object. */
2575 if (h->non_elf)
2576 {
2577 while (h->root.type == bfd_link_hash_indirect)
2578 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2579
2580 if (h->root.type != bfd_link_hash_defined
2581 && h->root.type != bfd_link_hash_defweak)
2582 {
2583 h->ref_regular = 1;
2584 h->ref_regular_nonweak = 1;
2585 }
2586 else
2587 {
2588 if (h->root.u.def.section->owner != NULL
2589 && (bfd_get_flavour (h->root.u.def.section->owner)
2590 == bfd_target_elf_flavour))
2591 {
2592 h->ref_regular = 1;
2593 h->ref_regular_nonweak = 1;
2594 }
2595 else
2596 h->def_regular = 1;
2597 }
2598
2599 if (h->dynindx == -1
2600 && (h->def_dynamic
2601 || h->ref_dynamic))
2602 {
2603 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2604 {
2605 eif->failed = TRUE;
2606 return FALSE;
2607 }
2608 }
2609 }
2610 else
2611 {
2612 /* Unfortunately, NON_ELF is only correct if the symbol
2613 was first seen in a non-ELF file. Fortunately, if the symbol
2614 was first seen in an ELF file, we're probably OK unless the
2615 symbol was defined in a non-ELF file. Catch that case here.
2616 FIXME: We're still in trouble if the symbol was first seen in
2617 a dynamic object, and then later in a non-ELF regular object. */
2618 if ((h->root.type == bfd_link_hash_defined
2619 || h->root.type == bfd_link_hash_defweak)
2620 && !h->def_regular
2621 && (h->root.u.def.section->owner != NULL
2622 ? (bfd_get_flavour (h->root.u.def.section->owner)
2623 != bfd_target_elf_flavour)
2624 : (bfd_is_abs_section (h->root.u.def.section)
2625 && !h->def_dynamic)))
2626 h->def_regular = 1;
2627 }
2628
2629 /* Backend specific symbol fixup. */
2630 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2631 if (bed->elf_backend_fixup_symbol
2632 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2633 return FALSE;
2634
2635 /* If this is a final link, and the symbol was defined as a common
2636 symbol in a regular object file, and there was no definition in
2637 any dynamic object, then the linker will have allocated space for
2638 the symbol in a common section but the DEF_REGULAR
2639 flag will not have been set. */
2640 if (h->root.type == bfd_link_hash_defined
2641 && !h->def_regular
2642 && h->ref_regular
2643 && !h->def_dynamic
2644 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2645 h->def_regular = 1;
2646
2647 /* If -Bsymbolic was used (which means to bind references to global
2648 symbols to the definition within the shared object), and this
2649 symbol was defined in a regular object, then it actually doesn't
2650 need a PLT entry. Likewise, if the symbol has non-default
2651 visibility. If the symbol has hidden or internal visibility, we
2652 will force it local. */
2653 if (h->needs_plt
2654 && bfd_link_pic (eif->info)
2655 && is_elf_hash_table (eif->info->hash)
2656 && (SYMBOLIC_BIND (eif->info, h)
2657 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2658 && h->def_regular)
2659 {
2660 bfd_boolean force_local;
2661
2662 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2663 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2664 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2665 }
2666
2667 /* If a weak undefined symbol has non-default visibility, we also
2668 hide it from the dynamic linker. */
2669 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2670 && h->root.type == bfd_link_hash_undefweak)
2671 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2672
2673 /* If this is a weak defined symbol in a dynamic object, and we know
2674 the real definition in the dynamic object, copy interesting flags
2675 over to the real definition. */
2676 if (h->u.weakdef != NULL)
2677 {
2678 /* If the real definition is defined by a regular object file,
2679 don't do anything special. See the longer description in
2680 _bfd_elf_adjust_dynamic_symbol, below. */
2681 if (h->u.weakdef->def_regular)
2682 h->u.weakdef = NULL;
2683 else
2684 {
2685 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2686
2687 while (h->root.type == bfd_link_hash_indirect)
2688 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2689
2690 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2691 || h->root.type == bfd_link_hash_defweak);
2692 BFD_ASSERT (weakdef->def_dynamic);
2693 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2694 || weakdef->root.type == bfd_link_hash_defweak);
2695 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2696 }
2697 }
2698
2699 return TRUE;
2700 }
2701
2702 /* Make the backend pick a good value for a dynamic symbol. This is
2703 called via elf_link_hash_traverse, and also calls itself
2704 recursively. */
2705
2706 static bfd_boolean
2707 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2708 {
2709 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2710 bfd *dynobj;
2711 const struct elf_backend_data *bed;
2712
2713 if (! is_elf_hash_table (eif->info->hash))
2714 return FALSE;
2715
2716 /* Ignore indirect symbols. These are added by the versioning code. */
2717 if (h->root.type == bfd_link_hash_indirect)
2718 return TRUE;
2719
2720 /* Fix the symbol flags. */
2721 if (! _bfd_elf_fix_symbol_flags (h, eif))
2722 return FALSE;
2723
2724 /* If this symbol does not require a PLT entry, and it is not
2725 defined by a dynamic object, or is not referenced by a regular
2726 object, ignore it. We do have to handle a weak defined symbol,
2727 even if no regular object refers to it, if we decided to add it
2728 to the dynamic symbol table. FIXME: Do we normally need to worry
2729 about symbols which are defined by one dynamic object and
2730 referenced by another one? */
2731 if (!h->needs_plt
2732 && h->type != STT_GNU_IFUNC
2733 && (h->def_regular
2734 || !h->def_dynamic
2735 || (!h->ref_regular
2736 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2737 {
2738 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2739 return TRUE;
2740 }
2741
2742 /* If we've already adjusted this symbol, don't do it again. This
2743 can happen via a recursive call. */
2744 if (h->dynamic_adjusted)
2745 return TRUE;
2746
2747 /* Don't look at this symbol again. Note that we must set this
2748 after checking the above conditions, because we may look at a
2749 symbol once, decide not to do anything, and then get called
2750 recursively later after REF_REGULAR is set below. */
2751 h->dynamic_adjusted = 1;
2752
2753 /* If this is a weak definition, and we know a real definition, and
2754 the real symbol is not itself defined by a regular object file,
2755 then get a good value for the real definition. We handle the
2756 real symbol first, for the convenience of the backend routine.
2757
2758 Note that there is a confusing case here. If the real definition
2759 is defined by a regular object file, we don't get the real symbol
2760 from the dynamic object, but we do get the weak symbol. If the
2761 processor backend uses a COPY reloc, then if some routine in the
2762 dynamic object changes the real symbol, we will not see that
2763 change in the corresponding weak symbol. This is the way other
2764 ELF linkers work as well, and seems to be a result of the shared
2765 library model.
2766
2767 I will clarify this issue. Most SVR4 shared libraries define the
2768 variable _timezone and define timezone as a weak synonym. The
2769 tzset call changes _timezone. If you write
2770 extern int timezone;
2771 int _timezone = 5;
2772 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2773 you might expect that, since timezone is a synonym for _timezone,
2774 the same number will print both times. However, if the processor
2775 backend uses a COPY reloc, then actually timezone will be copied
2776 into your process image, and, since you define _timezone
2777 yourself, _timezone will not. Thus timezone and _timezone will
2778 wind up at different memory locations. The tzset call will set
2779 _timezone, leaving timezone unchanged. */
2780
2781 if (h->u.weakdef != NULL)
2782 {
2783 /* If we get to this point, there is an implicit reference to
2784 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2785 h->u.weakdef->ref_regular = 1;
2786
2787 /* Ensure that the backend adjust_dynamic_symbol function sees
2788 H->U.WEAKDEF before H by recursively calling ourselves. */
2789 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2790 return FALSE;
2791 }
2792
2793 /* If a symbol has no type and no size and does not require a PLT
2794 entry, then we are probably about to do the wrong thing here: we
2795 are probably going to create a COPY reloc for an empty object.
2796 This case can arise when a shared object is built with assembly
2797 code, and the assembly code fails to set the symbol type. */
2798 if (h->size == 0
2799 && h->type == STT_NOTYPE
2800 && !h->needs_plt)
2801 (*_bfd_error_handler)
2802 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2803 h->root.root.string);
2804
2805 dynobj = elf_hash_table (eif->info)->dynobj;
2806 bed = get_elf_backend_data (dynobj);
2807
2808 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2809 {
2810 eif->failed = TRUE;
2811 return FALSE;
2812 }
2813
2814 return TRUE;
2815 }
2816
2817 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2818 DYNBSS. */
2819
2820 bfd_boolean
2821 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2822 struct elf_link_hash_entry *h,
2823 asection *dynbss)
2824 {
2825 unsigned int power_of_two;
2826 bfd_vma mask;
2827 asection *sec = h->root.u.def.section;
2828
2829 /* The section aligment of definition is the maximum alignment
2830 requirement of symbols defined in the section. Since we don't
2831 know the symbol alignment requirement, we start with the
2832 maximum alignment and check low bits of the symbol address
2833 for the minimum alignment. */
2834 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2835 mask = ((bfd_vma) 1 << power_of_two) - 1;
2836 while ((h->root.u.def.value & mask) != 0)
2837 {
2838 mask >>= 1;
2839 --power_of_two;
2840 }
2841
2842 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2843 dynbss))
2844 {
2845 /* Adjust the section alignment if needed. */
2846 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2847 power_of_two))
2848 return FALSE;
2849 }
2850
2851 /* We make sure that the symbol will be aligned properly. */
2852 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2853
2854 /* Define the symbol as being at this point in DYNBSS. */
2855 h->root.u.def.section = dynbss;
2856 h->root.u.def.value = dynbss->size;
2857
2858 /* Increment the size of DYNBSS to make room for the symbol. */
2859 dynbss->size += h->size;
2860
2861 /* No error if extern_protected_data is true. */
2862 if (h->protected_def
2863 && (!info->extern_protected_data
2864 || (info->extern_protected_data < 0
2865 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
2866 info->callbacks->einfo
2867 (_("%P: copy reloc against protected `%T' is dangerous\n"),
2868 h->root.root.string);
2869
2870 return TRUE;
2871 }
2872
2873 /* Adjust all external symbols pointing into SEC_MERGE sections
2874 to reflect the object merging within the sections. */
2875
2876 static bfd_boolean
2877 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2878 {
2879 asection *sec;
2880
2881 if ((h->root.type == bfd_link_hash_defined
2882 || h->root.type == bfd_link_hash_defweak)
2883 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2884 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2885 {
2886 bfd *output_bfd = (bfd *) data;
2887
2888 h->root.u.def.value =
2889 _bfd_merged_section_offset (output_bfd,
2890 &h->root.u.def.section,
2891 elf_section_data (sec)->sec_info,
2892 h->root.u.def.value);
2893 }
2894
2895 return TRUE;
2896 }
2897
2898 /* Returns false if the symbol referred to by H should be considered
2899 to resolve local to the current module, and true if it should be
2900 considered to bind dynamically. */
2901
2902 bfd_boolean
2903 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2904 struct bfd_link_info *info,
2905 bfd_boolean not_local_protected)
2906 {
2907 bfd_boolean binding_stays_local_p;
2908 const struct elf_backend_data *bed;
2909 struct elf_link_hash_table *hash_table;
2910
2911 if (h == NULL)
2912 return FALSE;
2913
2914 while (h->root.type == bfd_link_hash_indirect
2915 || h->root.type == bfd_link_hash_warning)
2916 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2917
2918 /* If it was forced local, then clearly it's not dynamic. */
2919 if (h->dynindx == -1)
2920 return FALSE;
2921 if (h->forced_local)
2922 return FALSE;
2923
2924 /* Identify the cases where name binding rules say that a
2925 visible symbol resolves locally. */
2926 binding_stays_local_p = (bfd_link_executable (info)
2927 || SYMBOLIC_BIND (info, h));
2928
2929 switch (ELF_ST_VISIBILITY (h->other))
2930 {
2931 case STV_INTERNAL:
2932 case STV_HIDDEN:
2933 return FALSE;
2934
2935 case STV_PROTECTED:
2936 hash_table = elf_hash_table (info);
2937 if (!is_elf_hash_table (hash_table))
2938 return FALSE;
2939
2940 bed = get_elf_backend_data (hash_table->dynobj);
2941
2942 /* Proper resolution for function pointer equality may require
2943 that these symbols perhaps be resolved dynamically, even though
2944 we should be resolving them to the current module. */
2945 if (!not_local_protected || !bed->is_function_type (h->type))
2946 binding_stays_local_p = TRUE;
2947 break;
2948
2949 default:
2950 break;
2951 }
2952
2953 /* If it isn't defined locally, then clearly it's dynamic. */
2954 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2955 return TRUE;
2956
2957 /* Otherwise, the symbol is dynamic if binding rules don't tell
2958 us that it remains local. */
2959 return !binding_stays_local_p;
2960 }
2961
2962 /* Return true if the symbol referred to by H should be considered
2963 to resolve local to the current module, and false otherwise. Differs
2964 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2965 undefined symbols. The two functions are virtually identical except
2966 for the place where forced_local and dynindx == -1 are tested. If
2967 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2968 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2969 the symbol is local only for defined symbols.
2970 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2971 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2972 treatment of undefined weak symbols. For those that do not make
2973 undefined weak symbols dynamic, both functions may return false. */
2974
2975 bfd_boolean
2976 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2977 struct bfd_link_info *info,
2978 bfd_boolean local_protected)
2979 {
2980 const struct elf_backend_data *bed;
2981 struct elf_link_hash_table *hash_table;
2982
2983 /* If it's a local sym, of course we resolve locally. */
2984 if (h == NULL)
2985 return TRUE;
2986
2987 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2988 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2989 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2990 return TRUE;
2991
2992 /* Common symbols that become definitions don't get the DEF_REGULAR
2993 flag set, so test it first, and don't bail out. */
2994 if (ELF_COMMON_DEF_P (h))
2995 /* Do nothing. */;
2996 /* If we don't have a definition in a regular file, then we can't
2997 resolve locally. The sym is either undefined or dynamic. */
2998 else if (!h->def_regular)
2999 return FALSE;
3000
3001 /* Forced local symbols resolve locally. */
3002 if (h->forced_local)
3003 return TRUE;
3004
3005 /* As do non-dynamic symbols. */
3006 if (h->dynindx == -1)
3007 return TRUE;
3008
3009 /* At this point, we know the symbol is defined and dynamic. In an
3010 executable it must resolve locally, likewise when building symbolic
3011 shared libraries. */
3012 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3013 return TRUE;
3014
3015 /* Now deal with defined dynamic symbols in shared libraries. Ones
3016 with default visibility might not resolve locally. */
3017 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3018 return FALSE;
3019
3020 hash_table = elf_hash_table (info);
3021 if (!is_elf_hash_table (hash_table))
3022 return TRUE;
3023
3024 bed = get_elf_backend_data (hash_table->dynobj);
3025
3026 /* If extern_protected_data is false, STV_PROTECTED non-function
3027 symbols are local. */
3028 if ((!info->extern_protected_data
3029 || (info->extern_protected_data < 0
3030 && !bed->extern_protected_data))
3031 && !bed->is_function_type (h->type))
3032 return TRUE;
3033
3034 /* Function pointer equality tests may require that STV_PROTECTED
3035 symbols be treated as dynamic symbols. If the address of a
3036 function not defined in an executable is set to that function's
3037 plt entry in the executable, then the address of the function in
3038 a shared library must also be the plt entry in the executable. */
3039 return local_protected;
3040 }
3041
3042 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3043 aligned. Returns the first TLS output section. */
3044
3045 struct bfd_section *
3046 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3047 {
3048 struct bfd_section *sec, *tls;
3049 unsigned int align = 0;
3050
3051 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3052 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3053 break;
3054 tls = sec;
3055
3056 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3057 if (sec->alignment_power > align)
3058 align = sec->alignment_power;
3059
3060 elf_hash_table (info)->tls_sec = tls;
3061
3062 /* Ensure the alignment of the first section is the largest alignment,
3063 so that the tls segment starts aligned. */
3064 if (tls != NULL)
3065 tls->alignment_power = align;
3066
3067 return tls;
3068 }
3069
3070 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3071 static bfd_boolean
3072 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3073 Elf_Internal_Sym *sym)
3074 {
3075 const struct elf_backend_data *bed;
3076
3077 /* Local symbols do not count, but target specific ones might. */
3078 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3079 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3080 return FALSE;
3081
3082 bed = get_elf_backend_data (abfd);
3083 /* Function symbols do not count. */
3084 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3085 return FALSE;
3086
3087 /* If the section is undefined, then so is the symbol. */
3088 if (sym->st_shndx == SHN_UNDEF)
3089 return FALSE;
3090
3091 /* If the symbol is defined in the common section, then
3092 it is a common definition and so does not count. */
3093 if (bed->common_definition (sym))
3094 return FALSE;
3095
3096 /* If the symbol is in a target specific section then we
3097 must rely upon the backend to tell us what it is. */
3098 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3099 /* FIXME - this function is not coded yet:
3100
3101 return _bfd_is_global_symbol_definition (abfd, sym);
3102
3103 Instead for now assume that the definition is not global,
3104 Even if this is wrong, at least the linker will behave
3105 in the same way that it used to do. */
3106 return FALSE;
3107
3108 return TRUE;
3109 }
3110
3111 /* Search the symbol table of the archive element of the archive ABFD
3112 whose archive map contains a mention of SYMDEF, and determine if
3113 the symbol is defined in this element. */
3114 static bfd_boolean
3115 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3116 {
3117 Elf_Internal_Shdr * hdr;
3118 size_t symcount;
3119 size_t extsymcount;
3120 size_t extsymoff;
3121 Elf_Internal_Sym *isymbuf;
3122 Elf_Internal_Sym *isym;
3123 Elf_Internal_Sym *isymend;
3124 bfd_boolean result;
3125
3126 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3127 if (abfd == NULL)
3128 return FALSE;
3129
3130 if (! bfd_check_format (abfd, bfd_object))
3131 return FALSE;
3132
3133 /* Select the appropriate symbol table. If we don't know if the
3134 object file is an IR object, give linker LTO plugin a chance to
3135 get the correct symbol table. */
3136 if (abfd->plugin_format == bfd_plugin_yes
3137 #if BFD_SUPPORTS_PLUGINS
3138 || (abfd->plugin_format == bfd_plugin_unknown
3139 && bfd_link_plugin_object_p (abfd))
3140 #endif
3141 )
3142 {
3143 /* Use the IR symbol table if the object has been claimed by
3144 plugin. */
3145 abfd = abfd->plugin_dummy_bfd;
3146 hdr = &elf_tdata (abfd)->symtab_hdr;
3147 }
3148 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3149 hdr = &elf_tdata (abfd)->symtab_hdr;
3150 else
3151 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3152
3153 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3154
3155 /* The sh_info field of the symtab header tells us where the
3156 external symbols start. We don't care about the local symbols. */
3157 if (elf_bad_symtab (abfd))
3158 {
3159 extsymcount = symcount;
3160 extsymoff = 0;
3161 }
3162 else
3163 {
3164 extsymcount = symcount - hdr->sh_info;
3165 extsymoff = hdr->sh_info;
3166 }
3167
3168 if (extsymcount == 0)
3169 return FALSE;
3170
3171 /* Read in the symbol table. */
3172 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3173 NULL, NULL, NULL);
3174 if (isymbuf == NULL)
3175 return FALSE;
3176
3177 /* Scan the symbol table looking for SYMDEF. */
3178 result = FALSE;
3179 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3180 {
3181 const char *name;
3182
3183 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3184 isym->st_name);
3185 if (name == NULL)
3186 break;
3187
3188 if (strcmp (name, symdef->name) == 0)
3189 {
3190 result = is_global_data_symbol_definition (abfd, isym);
3191 break;
3192 }
3193 }
3194
3195 free (isymbuf);
3196
3197 return result;
3198 }
3199 \f
3200 /* Add an entry to the .dynamic table. */
3201
3202 bfd_boolean
3203 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3204 bfd_vma tag,
3205 bfd_vma val)
3206 {
3207 struct elf_link_hash_table *hash_table;
3208 const struct elf_backend_data *bed;
3209 asection *s;
3210 bfd_size_type newsize;
3211 bfd_byte *newcontents;
3212 Elf_Internal_Dyn dyn;
3213
3214 hash_table = elf_hash_table (info);
3215 if (! is_elf_hash_table (hash_table))
3216 return FALSE;
3217
3218 bed = get_elf_backend_data (hash_table->dynobj);
3219 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3220 BFD_ASSERT (s != NULL);
3221
3222 newsize = s->size + bed->s->sizeof_dyn;
3223 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3224 if (newcontents == NULL)
3225 return FALSE;
3226
3227 dyn.d_tag = tag;
3228 dyn.d_un.d_val = val;
3229 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3230
3231 s->size = newsize;
3232 s->contents = newcontents;
3233
3234 return TRUE;
3235 }
3236
3237 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3238 otherwise just check whether one already exists. Returns -1 on error,
3239 1 if a DT_NEEDED tag already exists, and 0 on success. */
3240
3241 static int
3242 elf_add_dt_needed_tag (bfd *abfd,
3243 struct bfd_link_info *info,
3244 const char *soname,
3245 bfd_boolean do_it)
3246 {
3247 struct elf_link_hash_table *hash_table;
3248 size_t strindex;
3249
3250 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3251 return -1;
3252
3253 hash_table = elf_hash_table (info);
3254 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3255 if (strindex == (size_t) -1)
3256 return -1;
3257
3258 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3259 {
3260 asection *sdyn;
3261 const struct elf_backend_data *bed;
3262 bfd_byte *extdyn;
3263
3264 bed = get_elf_backend_data (hash_table->dynobj);
3265 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3266 if (sdyn != NULL)
3267 for (extdyn = sdyn->contents;
3268 extdyn < sdyn->contents + sdyn->size;
3269 extdyn += bed->s->sizeof_dyn)
3270 {
3271 Elf_Internal_Dyn dyn;
3272
3273 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3274 if (dyn.d_tag == DT_NEEDED
3275 && dyn.d_un.d_val == strindex)
3276 {
3277 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3278 return 1;
3279 }
3280 }
3281 }
3282
3283 if (do_it)
3284 {
3285 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3286 return -1;
3287
3288 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3289 return -1;
3290 }
3291 else
3292 /* We were just checking for existence of the tag. */
3293 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3294
3295 return 0;
3296 }
3297
3298 /* Return true if SONAME is on the needed list between NEEDED and STOP
3299 (or the end of list if STOP is NULL), and needed by a library that
3300 will be loaded. */
3301
3302 static bfd_boolean
3303 on_needed_list (const char *soname,
3304 struct bfd_link_needed_list *needed,
3305 struct bfd_link_needed_list *stop)
3306 {
3307 struct bfd_link_needed_list *look;
3308 for (look = needed; look != stop; look = look->next)
3309 if (strcmp (soname, look->name) == 0
3310 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3311 /* If needed by a library that itself is not directly
3312 needed, recursively check whether that library is
3313 indirectly needed. Since we add DT_NEEDED entries to
3314 the end of the list, library dependencies appear after
3315 the library. Therefore search prior to the current
3316 LOOK, preventing possible infinite recursion. */
3317 || on_needed_list (elf_dt_name (look->by), needed, look)))
3318 return TRUE;
3319
3320 return FALSE;
3321 }
3322
3323 /* Sort symbol by value, section, and size. */
3324 static int
3325 elf_sort_symbol (const void *arg1, const void *arg2)
3326 {
3327 const struct elf_link_hash_entry *h1;
3328 const struct elf_link_hash_entry *h2;
3329 bfd_signed_vma vdiff;
3330
3331 h1 = *(const struct elf_link_hash_entry **) arg1;
3332 h2 = *(const struct elf_link_hash_entry **) arg2;
3333 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3334 if (vdiff != 0)
3335 return vdiff > 0 ? 1 : -1;
3336 else
3337 {
3338 int sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3339 if (sdiff != 0)
3340 return sdiff > 0 ? 1 : -1;
3341 }
3342 vdiff = h1->size - h2->size;
3343 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3344 }
3345
3346 /* This function is used to adjust offsets into .dynstr for
3347 dynamic symbols. This is called via elf_link_hash_traverse. */
3348
3349 static bfd_boolean
3350 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3351 {
3352 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3353
3354 if (h->dynindx != -1)
3355 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3356 return TRUE;
3357 }
3358
3359 /* Assign string offsets in .dynstr, update all structures referencing
3360 them. */
3361
3362 static bfd_boolean
3363 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3364 {
3365 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3366 struct elf_link_local_dynamic_entry *entry;
3367 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3368 bfd *dynobj = hash_table->dynobj;
3369 asection *sdyn;
3370 bfd_size_type size;
3371 const struct elf_backend_data *bed;
3372 bfd_byte *extdyn;
3373
3374 _bfd_elf_strtab_finalize (dynstr);
3375 size = _bfd_elf_strtab_size (dynstr);
3376
3377 bed = get_elf_backend_data (dynobj);
3378 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3379 BFD_ASSERT (sdyn != NULL);
3380
3381 /* Update all .dynamic entries referencing .dynstr strings. */
3382 for (extdyn = sdyn->contents;
3383 extdyn < sdyn->contents + sdyn->size;
3384 extdyn += bed->s->sizeof_dyn)
3385 {
3386 Elf_Internal_Dyn dyn;
3387
3388 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3389 switch (dyn.d_tag)
3390 {
3391 case DT_STRSZ:
3392 dyn.d_un.d_val = size;
3393 break;
3394 case DT_NEEDED:
3395 case DT_SONAME:
3396 case DT_RPATH:
3397 case DT_RUNPATH:
3398 case DT_FILTER:
3399 case DT_AUXILIARY:
3400 case DT_AUDIT:
3401 case DT_DEPAUDIT:
3402 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3403 break;
3404 default:
3405 continue;
3406 }
3407 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3408 }
3409
3410 /* Now update local dynamic symbols. */
3411 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3412 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3413 entry->isym.st_name);
3414
3415 /* And the rest of dynamic symbols. */
3416 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3417
3418 /* Adjust version definitions. */
3419 if (elf_tdata (output_bfd)->cverdefs)
3420 {
3421 asection *s;
3422 bfd_byte *p;
3423 size_t i;
3424 Elf_Internal_Verdef def;
3425 Elf_Internal_Verdaux defaux;
3426
3427 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3428 p = s->contents;
3429 do
3430 {
3431 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3432 &def);
3433 p += sizeof (Elf_External_Verdef);
3434 if (def.vd_aux != sizeof (Elf_External_Verdef))
3435 continue;
3436 for (i = 0; i < def.vd_cnt; ++i)
3437 {
3438 _bfd_elf_swap_verdaux_in (output_bfd,
3439 (Elf_External_Verdaux *) p, &defaux);
3440 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3441 defaux.vda_name);
3442 _bfd_elf_swap_verdaux_out (output_bfd,
3443 &defaux, (Elf_External_Verdaux *) p);
3444 p += sizeof (Elf_External_Verdaux);
3445 }
3446 }
3447 while (def.vd_next);
3448 }
3449
3450 /* Adjust version references. */
3451 if (elf_tdata (output_bfd)->verref)
3452 {
3453 asection *s;
3454 bfd_byte *p;
3455 size_t i;
3456 Elf_Internal_Verneed need;
3457 Elf_Internal_Vernaux needaux;
3458
3459 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3460 p = s->contents;
3461 do
3462 {
3463 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3464 &need);
3465 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3466 _bfd_elf_swap_verneed_out (output_bfd, &need,
3467 (Elf_External_Verneed *) p);
3468 p += sizeof (Elf_External_Verneed);
3469 for (i = 0; i < need.vn_cnt; ++i)
3470 {
3471 _bfd_elf_swap_vernaux_in (output_bfd,
3472 (Elf_External_Vernaux *) p, &needaux);
3473 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3474 needaux.vna_name);
3475 _bfd_elf_swap_vernaux_out (output_bfd,
3476 &needaux,
3477 (Elf_External_Vernaux *) p);
3478 p += sizeof (Elf_External_Vernaux);
3479 }
3480 }
3481 while (need.vn_next);
3482 }
3483
3484 return TRUE;
3485 }
3486 \f
3487 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3488 The default is to only match when the INPUT and OUTPUT are exactly
3489 the same target. */
3490
3491 bfd_boolean
3492 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3493 const bfd_target *output)
3494 {
3495 return input == output;
3496 }
3497
3498 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3499 This version is used when different targets for the same architecture
3500 are virtually identical. */
3501
3502 bfd_boolean
3503 _bfd_elf_relocs_compatible (const bfd_target *input,
3504 const bfd_target *output)
3505 {
3506 const struct elf_backend_data *obed, *ibed;
3507
3508 if (input == output)
3509 return TRUE;
3510
3511 ibed = xvec_get_elf_backend_data (input);
3512 obed = xvec_get_elf_backend_data (output);
3513
3514 if (ibed->arch != obed->arch)
3515 return FALSE;
3516
3517 /* If both backends are using this function, deem them compatible. */
3518 return ibed->relocs_compatible == obed->relocs_compatible;
3519 }
3520
3521 /* Make a special call to the linker "notice" function to tell it that
3522 we are about to handle an as-needed lib, or have finished
3523 processing the lib. */
3524
3525 bfd_boolean
3526 _bfd_elf_notice_as_needed (bfd *ibfd,
3527 struct bfd_link_info *info,
3528 enum notice_asneeded_action act)
3529 {
3530 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3531 }
3532
3533 /* Check relocations an ELF object file. */
3534
3535 bfd_boolean
3536 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3537 {
3538 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3539 struct elf_link_hash_table *htab = elf_hash_table (info);
3540
3541 /* If this object is the same format as the output object, and it is
3542 not a shared library, then let the backend look through the
3543 relocs.
3544
3545 This is required to build global offset table entries and to
3546 arrange for dynamic relocs. It is not required for the
3547 particular common case of linking non PIC code, even when linking
3548 against shared libraries, but unfortunately there is no way of
3549 knowing whether an object file has been compiled PIC or not.
3550 Looking through the relocs is not particularly time consuming.
3551 The problem is that we must either (1) keep the relocs in memory,
3552 which causes the linker to require additional runtime memory or
3553 (2) read the relocs twice from the input file, which wastes time.
3554 This would be a good case for using mmap.
3555
3556 I have no idea how to handle linking PIC code into a file of a
3557 different format. It probably can't be done. */
3558 if ((abfd->flags & DYNAMIC) == 0
3559 && is_elf_hash_table (htab)
3560 && bed->check_relocs != NULL
3561 && elf_object_id (abfd) == elf_hash_table_id (htab)
3562 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3563 {
3564 asection *o;
3565
3566 for (o = abfd->sections; o != NULL; o = o->next)
3567 {
3568 Elf_Internal_Rela *internal_relocs;
3569 bfd_boolean ok;
3570
3571 /* Don't check relocations in excluded sections. */
3572 if ((o->flags & SEC_RELOC) == 0
3573 || (o->flags & SEC_EXCLUDE) != 0
3574 || o->reloc_count == 0
3575 || ((info->strip == strip_all || info->strip == strip_debugger)
3576 && (o->flags & SEC_DEBUGGING) != 0)
3577 || bfd_is_abs_section (o->output_section))
3578 continue;
3579
3580 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3581 info->keep_memory);
3582 if (internal_relocs == NULL)
3583 return FALSE;
3584
3585 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3586
3587 if (elf_section_data (o)->relocs != internal_relocs)
3588 free (internal_relocs);
3589
3590 if (! ok)
3591 return FALSE;
3592 }
3593 }
3594
3595 return TRUE;
3596 }
3597
3598 /* Add symbols from an ELF object file to the linker hash table. */
3599
3600 static bfd_boolean
3601 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3602 {
3603 Elf_Internal_Ehdr *ehdr;
3604 Elf_Internal_Shdr *hdr;
3605 size_t symcount;
3606 size_t extsymcount;
3607 size_t extsymoff;
3608 struct elf_link_hash_entry **sym_hash;
3609 bfd_boolean dynamic;
3610 Elf_External_Versym *extversym = NULL;
3611 Elf_External_Versym *ever;
3612 struct elf_link_hash_entry *weaks;
3613 struct elf_link_hash_entry **nondeflt_vers = NULL;
3614 size_t nondeflt_vers_cnt = 0;
3615 Elf_Internal_Sym *isymbuf = NULL;
3616 Elf_Internal_Sym *isym;
3617 Elf_Internal_Sym *isymend;
3618 const struct elf_backend_data *bed;
3619 bfd_boolean add_needed;
3620 struct elf_link_hash_table *htab;
3621 bfd_size_type amt;
3622 void *alloc_mark = NULL;
3623 struct bfd_hash_entry **old_table = NULL;
3624 unsigned int old_size = 0;
3625 unsigned int old_count = 0;
3626 void *old_tab = NULL;
3627 void *old_ent;
3628 struct bfd_link_hash_entry *old_undefs = NULL;
3629 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3630 void *old_strtab = NULL;
3631 size_t tabsize = 0;
3632 asection *s;
3633 bfd_boolean just_syms;
3634
3635 htab = elf_hash_table (info);
3636 bed = get_elf_backend_data (abfd);
3637
3638 if ((abfd->flags & DYNAMIC) == 0)
3639 dynamic = FALSE;
3640 else
3641 {
3642 dynamic = TRUE;
3643
3644 /* You can't use -r against a dynamic object. Also, there's no
3645 hope of using a dynamic object which does not exactly match
3646 the format of the output file. */
3647 if (bfd_link_relocatable (info)
3648 || !is_elf_hash_table (htab)
3649 || info->output_bfd->xvec != abfd->xvec)
3650 {
3651 if (bfd_link_relocatable (info))
3652 bfd_set_error (bfd_error_invalid_operation);
3653 else
3654 bfd_set_error (bfd_error_wrong_format);
3655 goto error_return;
3656 }
3657 }
3658
3659 ehdr = elf_elfheader (abfd);
3660 if (info->warn_alternate_em
3661 && bed->elf_machine_code != ehdr->e_machine
3662 && ((bed->elf_machine_alt1 != 0
3663 && ehdr->e_machine == bed->elf_machine_alt1)
3664 || (bed->elf_machine_alt2 != 0
3665 && ehdr->e_machine == bed->elf_machine_alt2)))
3666 info->callbacks->einfo
3667 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3668 ehdr->e_machine, abfd, bed->elf_machine_code);
3669
3670 /* As a GNU extension, any input sections which are named
3671 .gnu.warning.SYMBOL are treated as warning symbols for the given
3672 symbol. This differs from .gnu.warning sections, which generate
3673 warnings when they are included in an output file. */
3674 /* PR 12761: Also generate this warning when building shared libraries. */
3675 for (s = abfd->sections; s != NULL; s = s->next)
3676 {
3677 const char *name;
3678
3679 name = bfd_get_section_name (abfd, s);
3680 if (CONST_STRNEQ (name, ".gnu.warning."))
3681 {
3682 char *msg;
3683 bfd_size_type sz;
3684
3685 name += sizeof ".gnu.warning." - 1;
3686
3687 /* If this is a shared object, then look up the symbol
3688 in the hash table. If it is there, and it is already
3689 been defined, then we will not be using the entry
3690 from this shared object, so we don't need to warn.
3691 FIXME: If we see the definition in a regular object
3692 later on, we will warn, but we shouldn't. The only
3693 fix is to keep track of what warnings we are supposed
3694 to emit, and then handle them all at the end of the
3695 link. */
3696 if (dynamic)
3697 {
3698 struct elf_link_hash_entry *h;
3699
3700 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3701
3702 /* FIXME: What about bfd_link_hash_common? */
3703 if (h != NULL
3704 && (h->root.type == bfd_link_hash_defined
3705 || h->root.type == bfd_link_hash_defweak))
3706 continue;
3707 }
3708
3709 sz = s->size;
3710 msg = (char *) bfd_alloc (abfd, sz + 1);
3711 if (msg == NULL)
3712 goto error_return;
3713
3714 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3715 goto error_return;
3716
3717 msg[sz] = '\0';
3718
3719 if (! (_bfd_generic_link_add_one_symbol
3720 (info, abfd, name, BSF_WARNING, s, 0, msg,
3721 FALSE, bed->collect, NULL)))
3722 goto error_return;
3723
3724 if (bfd_link_executable (info))
3725 {
3726 /* Clobber the section size so that the warning does
3727 not get copied into the output file. */
3728 s->size = 0;
3729
3730 /* Also set SEC_EXCLUDE, so that symbols defined in
3731 the warning section don't get copied to the output. */
3732 s->flags |= SEC_EXCLUDE;
3733 }
3734 }
3735 }
3736
3737 just_syms = ((s = abfd->sections) != NULL
3738 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3739
3740 add_needed = TRUE;
3741 if (! dynamic)
3742 {
3743 /* If we are creating a shared library, create all the dynamic
3744 sections immediately. We need to attach them to something,
3745 so we attach them to this BFD, provided it is the right
3746 format and is not from ld --just-symbols. Always create the
3747 dynamic sections for -E/--dynamic-list. FIXME: If there
3748 are no input BFD's of the same format as the output, we can't
3749 make a shared library. */
3750 if (!just_syms
3751 && (bfd_link_pic (info)
3752 || (!bfd_link_relocatable (info)
3753 && (info->export_dynamic || info->dynamic)))
3754 && is_elf_hash_table (htab)
3755 && info->output_bfd->xvec == abfd->xvec
3756 && !htab->dynamic_sections_created)
3757 {
3758 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3759 goto error_return;
3760 }
3761 }
3762 else if (!is_elf_hash_table (htab))
3763 goto error_return;
3764 else
3765 {
3766 const char *soname = NULL;
3767 char *audit = NULL;
3768 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3769 int ret;
3770
3771 /* ld --just-symbols and dynamic objects don't mix very well.
3772 ld shouldn't allow it. */
3773 if (just_syms)
3774 abort ();
3775
3776 /* If this dynamic lib was specified on the command line with
3777 --as-needed in effect, then we don't want to add a DT_NEEDED
3778 tag unless the lib is actually used. Similary for libs brought
3779 in by another lib's DT_NEEDED. When --no-add-needed is used
3780 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3781 any dynamic library in DT_NEEDED tags in the dynamic lib at
3782 all. */
3783 add_needed = (elf_dyn_lib_class (abfd)
3784 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3785 | DYN_NO_NEEDED)) == 0;
3786
3787 s = bfd_get_section_by_name (abfd, ".dynamic");
3788 if (s != NULL)
3789 {
3790 bfd_byte *dynbuf;
3791 bfd_byte *extdyn;
3792 unsigned int elfsec;
3793 unsigned long shlink;
3794
3795 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3796 {
3797 error_free_dyn:
3798 free (dynbuf);
3799 goto error_return;
3800 }
3801
3802 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3803 if (elfsec == SHN_BAD)
3804 goto error_free_dyn;
3805 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3806
3807 for (extdyn = dynbuf;
3808 extdyn < dynbuf + s->size;
3809 extdyn += bed->s->sizeof_dyn)
3810 {
3811 Elf_Internal_Dyn dyn;
3812
3813 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3814 if (dyn.d_tag == DT_SONAME)
3815 {
3816 unsigned int tagv = dyn.d_un.d_val;
3817 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3818 if (soname == NULL)
3819 goto error_free_dyn;
3820 }
3821 if (dyn.d_tag == DT_NEEDED)
3822 {
3823 struct bfd_link_needed_list *n, **pn;
3824 char *fnm, *anm;
3825 unsigned int tagv = dyn.d_un.d_val;
3826
3827 amt = sizeof (struct bfd_link_needed_list);
3828 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3829 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3830 if (n == NULL || fnm == NULL)
3831 goto error_free_dyn;
3832 amt = strlen (fnm) + 1;
3833 anm = (char *) bfd_alloc (abfd, amt);
3834 if (anm == NULL)
3835 goto error_free_dyn;
3836 memcpy (anm, fnm, amt);
3837 n->name = anm;
3838 n->by = abfd;
3839 n->next = NULL;
3840 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3841 ;
3842 *pn = n;
3843 }
3844 if (dyn.d_tag == DT_RUNPATH)
3845 {
3846 struct bfd_link_needed_list *n, **pn;
3847 char *fnm, *anm;
3848 unsigned int tagv = dyn.d_un.d_val;
3849
3850 amt = sizeof (struct bfd_link_needed_list);
3851 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3852 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3853 if (n == NULL || fnm == NULL)
3854 goto error_free_dyn;
3855 amt = strlen (fnm) + 1;
3856 anm = (char *) bfd_alloc (abfd, amt);
3857 if (anm == NULL)
3858 goto error_free_dyn;
3859 memcpy (anm, fnm, amt);
3860 n->name = anm;
3861 n->by = abfd;
3862 n->next = NULL;
3863 for (pn = & runpath;
3864 *pn != NULL;
3865 pn = &(*pn)->next)
3866 ;
3867 *pn = n;
3868 }
3869 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3870 if (!runpath && dyn.d_tag == DT_RPATH)
3871 {
3872 struct bfd_link_needed_list *n, **pn;
3873 char *fnm, *anm;
3874 unsigned int tagv = dyn.d_un.d_val;
3875
3876 amt = sizeof (struct bfd_link_needed_list);
3877 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3878 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3879 if (n == NULL || fnm == NULL)
3880 goto error_free_dyn;
3881 amt = strlen (fnm) + 1;
3882 anm = (char *) bfd_alloc (abfd, amt);
3883 if (anm == NULL)
3884 goto error_free_dyn;
3885 memcpy (anm, fnm, amt);
3886 n->name = anm;
3887 n->by = abfd;
3888 n->next = NULL;
3889 for (pn = & rpath;
3890 *pn != NULL;
3891 pn = &(*pn)->next)
3892 ;
3893 *pn = n;
3894 }
3895 if (dyn.d_tag == DT_AUDIT)
3896 {
3897 unsigned int tagv = dyn.d_un.d_val;
3898 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3899 }
3900 }
3901
3902 free (dynbuf);
3903 }
3904
3905 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3906 frees all more recently bfd_alloc'd blocks as well. */
3907 if (runpath)
3908 rpath = runpath;
3909
3910 if (rpath)
3911 {
3912 struct bfd_link_needed_list **pn;
3913 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3914 ;
3915 *pn = rpath;
3916 }
3917
3918 /* We do not want to include any of the sections in a dynamic
3919 object in the output file. We hack by simply clobbering the
3920 list of sections in the BFD. This could be handled more
3921 cleanly by, say, a new section flag; the existing
3922 SEC_NEVER_LOAD flag is not the one we want, because that one
3923 still implies that the section takes up space in the output
3924 file. */
3925 bfd_section_list_clear (abfd);
3926
3927 /* Find the name to use in a DT_NEEDED entry that refers to this
3928 object. If the object has a DT_SONAME entry, we use it.
3929 Otherwise, if the generic linker stuck something in
3930 elf_dt_name, we use that. Otherwise, we just use the file
3931 name. */
3932 if (soname == NULL || *soname == '\0')
3933 {
3934 soname = elf_dt_name (abfd);
3935 if (soname == NULL || *soname == '\0')
3936 soname = bfd_get_filename (abfd);
3937 }
3938
3939 /* Save the SONAME because sometimes the linker emulation code
3940 will need to know it. */
3941 elf_dt_name (abfd) = soname;
3942
3943 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3944 if (ret < 0)
3945 goto error_return;
3946
3947 /* If we have already included this dynamic object in the
3948 link, just ignore it. There is no reason to include a
3949 particular dynamic object more than once. */
3950 if (ret > 0)
3951 return TRUE;
3952
3953 /* Save the DT_AUDIT entry for the linker emulation code. */
3954 elf_dt_audit (abfd) = audit;
3955 }
3956
3957 /* If this is a dynamic object, we always link against the .dynsym
3958 symbol table, not the .symtab symbol table. The dynamic linker
3959 will only see the .dynsym symbol table, so there is no reason to
3960 look at .symtab for a dynamic object. */
3961
3962 if (! dynamic || elf_dynsymtab (abfd) == 0)
3963 hdr = &elf_tdata (abfd)->symtab_hdr;
3964 else
3965 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3966
3967 symcount = hdr->sh_size / bed->s->sizeof_sym;
3968
3969 /* The sh_info field of the symtab header tells us where the
3970 external symbols start. We don't care about the local symbols at
3971 this point. */
3972 if (elf_bad_symtab (abfd))
3973 {
3974 extsymcount = symcount;
3975 extsymoff = 0;
3976 }
3977 else
3978 {
3979 extsymcount = symcount - hdr->sh_info;
3980 extsymoff = hdr->sh_info;
3981 }
3982
3983 sym_hash = elf_sym_hashes (abfd);
3984 if (extsymcount != 0)
3985 {
3986 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3987 NULL, NULL, NULL);
3988 if (isymbuf == NULL)
3989 goto error_return;
3990
3991 if (sym_hash == NULL)
3992 {
3993 /* We store a pointer to the hash table entry for each
3994 external symbol. */
3995 amt = extsymcount;
3996 amt *= sizeof (struct elf_link_hash_entry *);
3997 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
3998 if (sym_hash == NULL)
3999 goto error_free_sym;
4000 elf_sym_hashes (abfd) = sym_hash;
4001 }
4002 }
4003
4004 if (dynamic)
4005 {
4006 /* Read in any version definitions. */
4007 if (!_bfd_elf_slurp_version_tables (abfd,
4008 info->default_imported_symver))
4009 goto error_free_sym;
4010
4011 /* Read in the symbol versions, but don't bother to convert them
4012 to internal format. */
4013 if (elf_dynversym (abfd) != 0)
4014 {
4015 Elf_Internal_Shdr *versymhdr;
4016
4017 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4018 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
4019 if (extversym == NULL)
4020 goto error_free_sym;
4021 amt = versymhdr->sh_size;
4022 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
4023 || bfd_bread (extversym, amt, abfd) != amt)
4024 goto error_free_vers;
4025 }
4026 }
4027
4028 /* If we are loading an as-needed shared lib, save the symbol table
4029 state before we start adding symbols. If the lib turns out
4030 to be unneeded, restore the state. */
4031 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4032 {
4033 unsigned int i;
4034 size_t entsize;
4035
4036 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4037 {
4038 struct bfd_hash_entry *p;
4039 struct elf_link_hash_entry *h;
4040
4041 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4042 {
4043 h = (struct elf_link_hash_entry *) p;
4044 entsize += htab->root.table.entsize;
4045 if (h->root.type == bfd_link_hash_warning)
4046 entsize += htab->root.table.entsize;
4047 }
4048 }
4049
4050 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4051 old_tab = bfd_malloc (tabsize + entsize);
4052 if (old_tab == NULL)
4053 goto error_free_vers;
4054
4055 /* Remember the current objalloc pointer, so that all mem for
4056 symbols added can later be reclaimed. */
4057 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4058 if (alloc_mark == NULL)
4059 goto error_free_vers;
4060
4061 /* Make a special call to the linker "notice" function to
4062 tell it that we are about to handle an as-needed lib. */
4063 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4064 goto error_free_vers;
4065
4066 /* Clone the symbol table. Remember some pointers into the
4067 symbol table, and dynamic symbol count. */
4068 old_ent = (char *) old_tab + tabsize;
4069 memcpy (old_tab, htab->root.table.table, tabsize);
4070 old_undefs = htab->root.undefs;
4071 old_undefs_tail = htab->root.undefs_tail;
4072 old_table = htab->root.table.table;
4073 old_size = htab->root.table.size;
4074 old_count = htab->root.table.count;
4075 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4076 if (old_strtab == NULL)
4077 goto error_free_vers;
4078
4079 for (i = 0; i < htab->root.table.size; i++)
4080 {
4081 struct bfd_hash_entry *p;
4082 struct elf_link_hash_entry *h;
4083
4084 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4085 {
4086 memcpy (old_ent, p, htab->root.table.entsize);
4087 old_ent = (char *) old_ent + htab->root.table.entsize;
4088 h = (struct elf_link_hash_entry *) p;
4089 if (h->root.type == bfd_link_hash_warning)
4090 {
4091 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4092 old_ent = (char *) old_ent + htab->root.table.entsize;
4093 }
4094 }
4095 }
4096 }
4097
4098 weaks = NULL;
4099 ever = extversym != NULL ? extversym + extsymoff : NULL;
4100 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4101 isym < isymend;
4102 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4103 {
4104 int bind;
4105 bfd_vma value;
4106 asection *sec, *new_sec;
4107 flagword flags;
4108 const char *name;
4109 struct elf_link_hash_entry *h;
4110 struct elf_link_hash_entry *hi;
4111 bfd_boolean definition;
4112 bfd_boolean size_change_ok;
4113 bfd_boolean type_change_ok;
4114 bfd_boolean new_weakdef;
4115 bfd_boolean new_weak;
4116 bfd_boolean old_weak;
4117 bfd_boolean override;
4118 bfd_boolean common;
4119 bfd_boolean discarded;
4120 unsigned int old_alignment;
4121 bfd *old_bfd;
4122 bfd_boolean matched;
4123
4124 override = FALSE;
4125
4126 flags = BSF_NO_FLAGS;
4127 sec = NULL;
4128 value = isym->st_value;
4129 common = bed->common_definition (isym);
4130 discarded = FALSE;
4131
4132 bind = ELF_ST_BIND (isym->st_info);
4133 switch (bind)
4134 {
4135 case STB_LOCAL:
4136 /* This should be impossible, since ELF requires that all
4137 global symbols follow all local symbols, and that sh_info
4138 point to the first global symbol. Unfortunately, Irix 5
4139 screws this up. */
4140 continue;
4141
4142 case STB_GLOBAL:
4143 if (isym->st_shndx != SHN_UNDEF && !common)
4144 flags = BSF_GLOBAL;
4145 break;
4146
4147 case STB_WEAK:
4148 flags = BSF_WEAK;
4149 break;
4150
4151 case STB_GNU_UNIQUE:
4152 flags = BSF_GNU_UNIQUE;
4153 break;
4154
4155 default:
4156 /* Leave it up to the processor backend. */
4157 break;
4158 }
4159
4160 if (isym->st_shndx == SHN_UNDEF)
4161 sec = bfd_und_section_ptr;
4162 else if (isym->st_shndx == SHN_ABS)
4163 sec = bfd_abs_section_ptr;
4164 else if (isym->st_shndx == SHN_COMMON)
4165 {
4166 sec = bfd_com_section_ptr;
4167 /* What ELF calls the size we call the value. What ELF
4168 calls the value we call the alignment. */
4169 value = isym->st_size;
4170 }
4171 else
4172 {
4173 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4174 if (sec == NULL)
4175 sec = bfd_abs_section_ptr;
4176 else if (discarded_section (sec))
4177 {
4178 /* Symbols from discarded section are undefined. We keep
4179 its visibility. */
4180 sec = bfd_und_section_ptr;
4181 discarded = TRUE;
4182 isym->st_shndx = SHN_UNDEF;
4183 }
4184 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4185 value -= sec->vma;
4186 }
4187
4188 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4189 isym->st_name);
4190 if (name == NULL)
4191 goto error_free_vers;
4192
4193 if (isym->st_shndx == SHN_COMMON
4194 && (abfd->flags & BFD_PLUGIN) != 0)
4195 {
4196 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4197
4198 if (xc == NULL)
4199 {
4200 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4201 | SEC_EXCLUDE);
4202 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4203 if (xc == NULL)
4204 goto error_free_vers;
4205 }
4206 sec = xc;
4207 }
4208 else if (isym->st_shndx == SHN_COMMON
4209 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4210 && !bfd_link_relocatable (info))
4211 {
4212 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4213
4214 if (tcomm == NULL)
4215 {
4216 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4217 | SEC_LINKER_CREATED);
4218 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4219 if (tcomm == NULL)
4220 goto error_free_vers;
4221 }
4222 sec = tcomm;
4223 }
4224 else if (bed->elf_add_symbol_hook)
4225 {
4226 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4227 &sec, &value))
4228 goto error_free_vers;
4229
4230 /* The hook function sets the name to NULL if this symbol
4231 should be skipped for some reason. */
4232 if (name == NULL)
4233 continue;
4234 }
4235
4236 /* Sanity check that all possibilities were handled. */
4237 if (sec == NULL)
4238 {
4239 bfd_set_error (bfd_error_bad_value);
4240 goto error_free_vers;
4241 }
4242
4243 /* Silently discard TLS symbols from --just-syms. There's
4244 no way to combine a static TLS block with a new TLS block
4245 for this executable. */
4246 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4247 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4248 continue;
4249
4250 if (bfd_is_und_section (sec)
4251 || bfd_is_com_section (sec))
4252 definition = FALSE;
4253 else
4254 definition = TRUE;
4255
4256 size_change_ok = FALSE;
4257 type_change_ok = bed->type_change_ok;
4258 old_weak = FALSE;
4259 matched = FALSE;
4260 old_alignment = 0;
4261 old_bfd = NULL;
4262 new_sec = sec;
4263
4264 if (is_elf_hash_table (htab))
4265 {
4266 Elf_Internal_Versym iver;
4267 unsigned int vernum = 0;
4268 bfd_boolean skip;
4269
4270 if (ever == NULL)
4271 {
4272 if (info->default_imported_symver)
4273 /* Use the default symbol version created earlier. */
4274 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4275 else
4276 iver.vs_vers = 0;
4277 }
4278 else
4279 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4280
4281 vernum = iver.vs_vers & VERSYM_VERSION;
4282
4283 /* If this is a hidden symbol, or if it is not version
4284 1, we append the version name to the symbol name.
4285 However, we do not modify a non-hidden absolute symbol
4286 if it is not a function, because it might be the version
4287 symbol itself. FIXME: What if it isn't? */
4288 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4289 || (vernum > 1
4290 && (!bfd_is_abs_section (sec)
4291 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4292 {
4293 const char *verstr;
4294 size_t namelen, verlen, newlen;
4295 char *newname, *p;
4296
4297 if (isym->st_shndx != SHN_UNDEF)
4298 {
4299 if (vernum > elf_tdata (abfd)->cverdefs)
4300 verstr = NULL;
4301 else if (vernum > 1)
4302 verstr =
4303 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4304 else
4305 verstr = "";
4306
4307 if (verstr == NULL)
4308 {
4309 (*_bfd_error_handler)
4310 (_("%B: %s: invalid version %u (max %d)"),
4311 abfd, name, vernum,
4312 elf_tdata (abfd)->cverdefs);
4313 bfd_set_error (bfd_error_bad_value);
4314 goto error_free_vers;
4315 }
4316 }
4317 else
4318 {
4319 /* We cannot simply test for the number of
4320 entries in the VERNEED section since the
4321 numbers for the needed versions do not start
4322 at 0. */
4323 Elf_Internal_Verneed *t;
4324
4325 verstr = NULL;
4326 for (t = elf_tdata (abfd)->verref;
4327 t != NULL;
4328 t = t->vn_nextref)
4329 {
4330 Elf_Internal_Vernaux *a;
4331
4332 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4333 {
4334 if (a->vna_other == vernum)
4335 {
4336 verstr = a->vna_nodename;
4337 break;
4338 }
4339 }
4340 if (a != NULL)
4341 break;
4342 }
4343 if (verstr == NULL)
4344 {
4345 (*_bfd_error_handler)
4346 (_("%B: %s: invalid needed version %d"),
4347 abfd, name, vernum);
4348 bfd_set_error (bfd_error_bad_value);
4349 goto error_free_vers;
4350 }
4351 }
4352
4353 namelen = strlen (name);
4354 verlen = strlen (verstr);
4355 newlen = namelen + verlen + 2;
4356 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4357 && isym->st_shndx != SHN_UNDEF)
4358 ++newlen;
4359
4360 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4361 if (newname == NULL)
4362 goto error_free_vers;
4363 memcpy (newname, name, namelen);
4364 p = newname + namelen;
4365 *p++ = ELF_VER_CHR;
4366 /* If this is a defined non-hidden version symbol,
4367 we add another @ to the name. This indicates the
4368 default version of the symbol. */
4369 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4370 && isym->st_shndx != SHN_UNDEF)
4371 *p++ = ELF_VER_CHR;
4372 memcpy (p, verstr, verlen + 1);
4373
4374 name = newname;
4375 }
4376
4377 /* If this symbol has default visibility and the user has
4378 requested we not re-export it, then mark it as hidden. */
4379 if (!bfd_is_und_section (sec)
4380 && !dynamic
4381 && abfd->no_export
4382 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4383 isym->st_other = (STV_HIDDEN
4384 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4385
4386 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4387 sym_hash, &old_bfd, &old_weak,
4388 &old_alignment, &skip, &override,
4389 &type_change_ok, &size_change_ok,
4390 &matched))
4391 goto error_free_vers;
4392
4393 if (skip)
4394 continue;
4395
4396 /* Override a definition only if the new symbol matches the
4397 existing one. */
4398 if (override && matched)
4399 definition = FALSE;
4400
4401 h = *sym_hash;
4402 while (h->root.type == bfd_link_hash_indirect
4403 || h->root.type == bfd_link_hash_warning)
4404 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4405
4406 if (elf_tdata (abfd)->verdef != NULL
4407 && vernum > 1
4408 && definition)
4409 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4410 }
4411
4412 if (! (_bfd_generic_link_add_one_symbol
4413 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4414 (struct bfd_link_hash_entry **) sym_hash)))
4415 goto error_free_vers;
4416
4417 if ((flags & BSF_GNU_UNIQUE)
4418 && (abfd->flags & DYNAMIC) == 0
4419 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
4420 elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_unique;
4421
4422 h = *sym_hash;
4423 /* We need to make sure that indirect symbol dynamic flags are
4424 updated. */
4425 hi = h;
4426 while (h->root.type == bfd_link_hash_indirect
4427 || h->root.type == bfd_link_hash_warning)
4428 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4429
4430 /* Setting the index to -3 tells elf_link_output_extsym that
4431 this symbol is defined in a discarded section. */
4432 if (discarded)
4433 h->indx = -3;
4434
4435 *sym_hash = h;
4436
4437 new_weak = (flags & BSF_WEAK) != 0;
4438 new_weakdef = FALSE;
4439 if (dynamic
4440 && definition
4441 && new_weak
4442 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4443 && is_elf_hash_table (htab)
4444 && h->u.weakdef == NULL)
4445 {
4446 /* Keep a list of all weak defined non function symbols from
4447 a dynamic object, using the weakdef field. Later in this
4448 function we will set the weakdef field to the correct
4449 value. We only put non-function symbols from dynamic
4450 objects on this list, because that happens to be the only
4451 time we need to know the normal symbol corresponding to a
4452 weak symbol, and the information is time consuming to
4453 figure out. If the weakdef field is not already NULL,
4454 then this symbol was already defined by some previous
4455 dynamic object, and we will be using that previous
4456 definition anyhow. */
4457
4458 h->u.weakdef = weaks;
4459 weaks = h;
4460 new_weakdef = TRUE;
4461 }
4462
4463 /* Set the alignment of a common symbol. */
4464 if ((common || bfd_is_com_section (sec))
4465 && h->root.type == bfd_link_hash_common)
4466 {
4467 unsigned int align;
4468
4469 if (common)
4470 align = bfd_log2 (isym->st_value);
4471 else
4472 {
4473 /* The new symbol is a common symbol in a shared object.
4474 We need to get the alignment from the section. */
4475 align = new_sec->alignment_power;
4476 }
4477 if (align > old_alignment)
4478 h->root.u.c.p->alignment_power = align;
4479 else
4480 h->root.u.c.p->alignment_power = old_alignment;
4481 }
4482
4483 if (is_elf_hash_table (htab))
4484 {
4485 /* Set a flag in the hash table entry indicating the type of
4486 reference or definition we just found. A dynamic symbol
4487 is one which is referenced or defined by both a regular
4488 object and a shared object. */
4489 bfd_boolean dynsym = FALSE;
4490
4491 /* Plugin symbols aren't normal. Don't set def_regular or
4492 ref_regular for them, or make them dynamic. */
4493 if ((abfd->flags & BFD_PLUGIN) != 0)
4494 ;
4495 else if (! dynamic)
4496 {
4497 if (! definition)
4498 {
4499 h->ref_regular = 1;
4500 if (bind != STB_WEAK)
4501 h->ref_regular_nonweak = 1;
4502 }
4503 else
4504 {
4505 h->def_regular = 1;
4506 if (h->def_dynamic)
4507 {
4508 h->def_dynamic = 0;
4509 h->ref_dynamic = 1;
4510 }
4511 }
4512
4513 /* If the indirect symbol has been forced local, don't
4514 make the real symbol dynamic. */
4515 if ((h == hi || !hi->forced_local)
4516 && (bfd_link_dll (info)
4517 || h->def_dynamic
4518 || h->ref_dynamic))
4519 dynsym = TRUE;
4520 }
4521 else
4522 {
4523 if (! definition)
4524 {
4525 h->ref_dynamic = 1;
4526 hi->ref_dynamic = 1;
4527 }
4528 else
4529 {
4530 h->def_dynamic = 1;
4531 hi->def_dynamic = 1;
4532 }
4533
4534 /* If the indirect symbol has been forced local, don't
4535 make the real symbol dynamic. */
4536 if ((h == hi || !hi->forced_local)
4537 && (h->def_regular
4538 || h->ref_regular
4539 || (h->u.weakdef != NULL
4540 && ! new_weakdef
4541 && h->u.weakdef->dynindx != -1)))
4542 dynsym = TRUE;
4543 }
4544
4545 /* Check to see if we need to add an indirect symbol for
4546 the default name. */
4547 if (definition
4548 || (!override && h->root.type == bfd_link_hash_common))
4549 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4550 sec, value, &old_bfd, &dynsym))
4551 goto error_free_vers;
4552
4553 /* Check the alignment when a common symbol is involved. This
4554 can change when a common symbol is overridden by a normal
4555 definition or a common symbol is ignored due to the old
4556 normal definition. We need to make sure the maximum
4557 alignment is maintained. */
4558 if ((old_alignment || common)
4559 && h->root.type != bfd_link_hash_common)
4560 {
4561 unsigned int common_align;
4562 unsigned int normal_align;
4563 unsigned int symbol_align;
4564 bfd *normal_bfd;
4565 bfd *common_bfd;
4566
4567 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4568 || h->root.type == bfd_link_hash_defweak);
4569
4570 symbol_align = ffs (h->root.u.def.value) - 1;
4571 if (h->root.u.def.section->owner != NULL
4572 && (h->root.u.def.section->owner->flags
4573 & (DYNAMIC | BFD_PLUGIN)) == 0)
4574 {
4575 normal_align = h->root.u.def.section->alignment_power;
4576 if (normal_align > symbol_align)
4577 normal_align = symbol_align;
4578 }
4579 else
4580 normal_align = symbol_align;
4581
4582 if (old_alignment)
4583 {
4584 common_align = old_alignment;
4585 common_bfd = old_bfd;
4586 normal_bfd = abfd;
4587 }
4588 else
4589 {
4590 common_align = bfd_log2 (isym->st_value);
4591 common_bfd = abfd;
4592 normal_bfd = old_bfd;
4593 }
4594
4595 if (normal_align < common_align)
4596 {
4597 /* PR binutils/2735 */
4598 if (normal_bfd == NULL)
4599 (*_bfd_error_handler)
4600 (_("Warning: alignment %u of common symbol `%s' in %B is"
4601 " greater than the alignment (%u) of its section %A"),
4602 common_bfd, h->root.u.def.section,
4603 1 << common_align, name, 1 << normal_align);
4604 else
4605 (*_bfd_error_handler)
4606 (_("Warning: alignment %u of symbol `%s' in %B"
4607 " is smaller than %u in %B"),
4608 normal_bfd, common_bfd,
4609 1 << normal_align, name, 1 << common_align);
4610 }
4611 }
4612
4613 /* Remember the symbol size if it isn't undefined. */
4614 if (isym->st_size != 0
4615 && isym->st_shndx != SHN_UNDEF
4616 && (definition || h->size == 0))
4617 {
4618 if (h->size != 0
4619 && h->size != isym->st_size
4620 && ! size_change_ok)
4621 (*_bfd_error_handler)
4622 (_("Warning: size of symbol `%s' changed"
4623 " from %lu in %B to %lu in %B"),
4624 old_bfd, abfd,
4625 name, (unsigned long) h->size,
4626 (unsigned long) isym->st_size);
4627
4628 h->size = isym->st_size;
4629 }
4630
4631 /* If this is a common symbol, then we always want H->SIZE
4632 to be the size of the common symbol. The code just above
4633 won't fix the size if a common symbol becomes larger. We
4634 don't warn about a size change here, because that is
4635 covered by --warn-common. Allow changes between different
4636 function types. */
4637 if (h->root.type == bfd_link_hash_common)
4638 h->size = h->root.u.c.size;
4639
4640 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4641 && ((definition && !new_weak)
4642 || (old_weak && h->root.type == bfd_link_hash_common)
4643 || h->type == STT_NOTYPE))
4644 {
4645 unsigned int type = ELF_ST_TYPE (isym->st_info);
4646
4647 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4648 symbol. */
4649 if (type == STT_GNU_IFUNC
4650 && (abfd->flags & DYNAMIC) != 0)
4651 type = STT_FUNC;
4652
4653 if (h->type != type)
4654 {
4655 if (h->type != STT_NOTYPE && ! type_change_ok)
4656 (*_bfd_error_handler)
4657 (_("Warning: type of symbol `%s' changed"
4658 " from %d to %d in %B"),
4659 abfd, name, h->type, type);
4660
4661 h->type = type;
4662 }
4663 }
4664
4665 /* Merge st_other field. */
4666 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4667
4668 /* We don't want to make debug symbol dynamic. */
4669 if (definition
4670 && (sec->flags & SEC_DEBUGGING)
4671 && !bfd_link_relocatable (info))
4672 dynsym = FALSE;
4673
4674 /* Nor should we make plugin symbols dynamic. */
4675 if ((abfd->flags & BFD_PLUGIN) != 0)
4676 dynsym = FALSE;
4677
4678 if (definition)
4679 {
4680 h->target_internal = isym->st_target_internal;
4681 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4682 }
4683
4684 if (definition && !dynamic)
4685 {
4686 char *p = strchr (name, ELF_VER_CHR);
4687 if (p != NULL && p[1] != ELF_VER_CHR)
4688 {
4689 /* Queue non-default versions so that .symver x, x@FOO
4690 aliases can be checked. */
4691 if (!nondeflt_vers)
4692 {
4693 amt = ((isymend - isym + 1)
4694 * sizeof (struct elf_link_hash_entry *));
4695 nondeflt_vers
4696 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4697 if (!nondeflt_vers)
4698 goto error_free_vers;
4699 }
4700 nondeflt_vers[nondeflt_vers_cnt++] = h;
4701 }
4702 }
4703
4704 if (dynsym && h->dynindx == -1)
4705 {
4706 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4707 goto error_free_vers;
4708 if (h->u.weakdef != NULL
4709 && ! new_weakdef
4710 && h->u.weakdef->dynindx == -1)
4711 {
4712 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4713 goto error_free_vers;
4714 }
4715 }
4716 else if (h->dynindx != -1)
4717 /* If the symbol already has a dynamic index, but
4718 visibility says it should not be visible, turn it into
4719 a local symbol. */
4720 switch (ELF_ST_VISIBILITY (h->other))
4721 {
4722 case STV_INTERNAL:
4723 case STV_HIDDEN:
4724 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4725 dynsym = FALSE;
4726 break;
4727 }
4728
4729 /* Don't add DT_NEEDED for references from the dummy bfd nor
4730 for unmatched symbol. */
4731 if (!add_needed
4732 && matched
4733 && definition
4734 && ((dynsym
4735 && h->ref_regular_nonweak
4736 && (old_bfd == NULL
4737 || (old_bfd->flags & BFD_PLUGIN) == 0))
4738 || (h->ref_dynamic_nonweak
4739 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4740 && !on_needed_list (elf_dt_name (abfd),
4741 htab->needed, NULL))))
4742 {
4743 int ret;
4744 const char *soname = elf_dt_name (abfd);
4745
4746 info->callbacks->minfo ("%!", soname, old_bfd,
4747 h->root.root.string);
4748
4749 /* A symbol from a library loaded via DT_NEEDED of some
4750 other library is referenced by a regular object.
4751 Add a DT_NEEDED entry for it. Issue an error if
4752 --no-add-needed is used and the reference was not
4753 a weak one. */
4754 if (old_bfd != NULL
4755 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4756 {
4757 (*_bfd_error_handler)
4758 (_("%B: undefined reference to symbol '%s'"),
4759 old_bfd, name);
4760 bfd_set_error (bfd_error_missing_dso);
4761 goto error_free_vers;
4762 }
4763
4764 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4765 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4766
4767 add_needed = TRUE;
4768 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4769 if (ret < 0)
4770 goto error_free_vers;
4771
4772 BFD_ASSERT (ret == 0);
4773 }
4774 }
4775 }
4776
4777 if (extversym != NULL)
4778 {
4779 free (extversym);
4780 extversym = NULL;
4781 }
4782
4783 if (isymbuf != NULL)
4784 {
4785 free (isymbuf);
4786 isymbuf = NULL;
4787 }
4788
4789 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4790 {
4791 unsigned int i;
4792
4793 /* Restore the symbol table. */
4794 old_ent = (char *) old_tab + tabsize;
4795 memset (elf_sym_hashes (abfd), 0,
4796 extsymcount * sizeof (struct elf_link_hash_entry *));
4797 htab->root.table.table = old_table;
4798 htab->root.table.size = old_size;
4799 htab->root.table.count = old_count;
4800 memcpy (htab->root.table.table, old_tab, tabsize);
4801 htab->root.undefs = old_undefs;
4802 htab->root.undefs_tail = old_undefs_tail;
4803 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
4804 free (old_strtab);
4805 old_strtab = NULL;
4806 for (i = 0; i < htab->root.table.size; i++)
4807 {
4808 struct bfd_hash_entry *p;
4809 struct elf_link_hash_entry *h;
4810 bfd_size_type size;
4811 unsigned int alignment_power;
4812
4813 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4814 {
4815 h = (struct elf_link_hash_entry *) p;
4816 if (h->root.type == bfd_link_hash_warning)
4817 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4818
4819 /* Preserve the maximum alignment and size for common
4820 symbols even if this dynamic lib isn't on DT_NEEDED
4821 since it can still be loaded at run time by another
4822 dynamic lib. */
4823 if (h->root.type == bfd_link_hash_common)
4824 {
4825 size = h->root.u.c.size;
4826 alignment_power = h->root.u.c.p->alignment_power;
4827 }
4828 else
4829 {
4830 size = 0;
4831 alignment_power = 0;
4832 }
4833 memcpy (p, old_ent, htab->root.table.entsize);
4834 old_ent = (char *) old_ent + htab->root.table.entsize;
4835 h = (struct elf_link_hash_entry *) p;
4836 if (h->root.type == bfd_link_hash_warning)
4837 {
4838 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4839 old_ent = (char *) old_ent + htab->root.table.entsize;
4840 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4841 }
4842 if (h->root.type == bfd_link_hash_common)
4843 {
4844 if (size > h->root.u.c.size)
4845 h->root.u.c.size = size;
4846 if (alignment_power > h->root.u.c.p->alignment_power)
4847 h->root.u.c.p->alignment_power = alignment_power;
4848 }
4849 }
4850 }
4851
4852 /* Make a special call to the linker "notice" function to
4853 tell it that symbols added for crefs may need to be removed. */
4854 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4855 goto error_free_vers;
4856
4857 free (old_tab);
4858 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4859 alloc_mark);
4860 if (nondeflt_vers != NULL)
4861 free (nondeflt_vers);
4862 return TRUE;
4863 }
4864
4865 if (old_tab != NULL)
4866 {
4867 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4868 goto error_free_vers;
4869 free (old_tab);
4870 old_tab = NULL;
4871 }
4872
4873 /* Now that all the symbols from this input file are created, if
4874 not performing a relocatable link, handle .symver foo, foo@BAR
4875 such that any relocs against foo become foo@BAR. */
4876 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
4877 {
4878 size_t cnt, symidx;
4879
4880 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4881 {
4882 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4883 char *shortname, *p;
4884
4885 p = strchr (h->root.root.string, ELF_VER_CHR);
4886 if (p == NULL
4887 || (h->root.type != bfd_link_hash_defined
4888 && h->root.type != bfd_link_hash_defweak))
4889 continue;
4890
4891 amt = p - h->root.root.string;
4892 shortname = (char *) bfd_malloc (amt + 1);
4893 if (!shortname)
4894 goto error_free_vers;
4895 memcpy (shortname, h->root.root.string, amt);
4896 shortname[amt] = '\0';
4897
4898 hi = (struct elf_link_hash_entry *)
4899 bfd_link_hash_lookup (&htab->root, shortname,
4900 FALSE, FALSE, FALSE);
4901 if (hi != NULL
4902 && hi->root.type == h->root.type
4903 && hi->root.u.def.value == h->root.u.def.value
4904 && hi->root.u.def.section == h->root.u.def.section)
4905 {
4906 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4907 hi->root.type = bfd_link_hash_indirect;
4908 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4909 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4910 sym_hash = elf_sym_hashes (abfd);
4911 if (sym_hash)
4912 for (symidx = 0; symidx < extsymcount; ++symidx)
4913 if (sym_hash[symidx] == hi)
4914 {
4915 sym_hash[symidx] = h;
4916 break;
4917 }
4918 }
4919 free (shortname);
4920 }
4921 free (nondeflt_vers);
4922 nondeflt_vers = NULL;
4923 }
4924
4925 /* Now set the weakdefs field correctly for all the weak defined
4926 symbols we found. The only way to do this is to search all the
4927 symbols. Since we only need the information for non functions in
4928 dynamic objects, that's the only time we actually put anything on
4929 the list WEAKS. We need this information so that if a regular
4930 object refers to a symbol defined weakly in a dynamic object, the
4931 real symbol in the dynamic object is also put in the dynamic
4932 symbols; we also must arrange for both symbols to point to the
4933 same memory location. We could handle the general case of symbol
4934 aliasing, but a general symbol alias can only be generated in
4935 assembler code, handling it correctly would be very time
4936 consuming, and other ELF linkers don't handle general aliasing
4937 either. */
4938 if (weaks != NULL)
4939 {
4940 struct elf_link_hash_entry **hpp;
4941 struct elf_link_hash_entry **hppend;
4942 struct elf_link_hash_entry **sorted_sym_hash;
4943 struct elf_link_hash_entry *h;
4944 size_t sym_count;
4945
4946 /* Since we have to search the whole symbol list for each weak
4947 defined symbol, search time for N weak defined symbols will be
4948 O(N^2). Binary search will cut it down to O(NlogN). */
4949 amt = extsymcount;
4950 amt *= sizeof (struct elf_link_hash_entry *);
4951 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4952 if (sorted_sym_hash == NULL)
4953 goto error_return;
4954 sym_hash = sorted_sym_hash;
4955 hpp = elf_sym_hashes (abfd);
4956 hppend = hpp + extsymcount;
4957 sym_count = 0;
4958 for (; hpp < hppend; hpp++)
4959 {
4960 h = *hpp;
4961 if (h != NULL
4962 && h->root.type == bfd_link_hash_defined
4963 && !bed->is_function_type (h->type))
4964 {
4965 *sym_hash = h;
4966 sym_hash++;
4967 sym_count++;
4968 }
4969 }
4970
4971 qsort (sorted_sym_hash, sym_count,
4972 sizeof (struct elf_link_hash_entry *),
4973 elf_sort_symbol);
4974
4975 while (weaks != NULL)
4976 {
4977 struct elf_link_hash_entry *hlook;
4978 asection *slook;
4979 bfd_vma vlook;
4980 size_t i, j, idx = 0;
4981
4982 hlook = weaks;
4983 weaks = hlook->u.weakdef;
4984 hlook->u.weakdef = NULL;
4985
4986 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4987 || hlook->root.type == bfd_link_hash_defweak
4988 || hlook->root.type == bfd_link_hash_common
4989 || hlook->root.type == bfd_link_hash_indirect);
4990 slook = hlook->root.u.def.section;
4991 vlook = hlook->root.u.def.value;
4992
4993 i = 0;
4994 j = sym_count;
4995 while (i != j)
4996 {
4997 bfd_signed_vma vdiff;
4998 idx = (i + j) / 2;
4999 h = sorted_sym_hash[idx];
5000 vdiff = vlook - h->root.u.def.value;
5001 if (vdiff < 0)
5002 j = idx;
5003 else if (vdiff > 0)
5004 i = idx + 1;
5005 else
5006 {
5007 int sdiff = slook->id - h->root.u.def.section->id;
5008 if (sdiff < 0)
5009 j = idx;
5010 else if (sdiff > 0)
5011 i = idx + 1;
5012 else
5013 break;
5014 }
5015 }
5016
5017 /* We didn't find a value/section match. */
5018 if (i == j)
5019 continue;
5020
5021 /* With multiple aliases, or when the weak symbol is already
5022 strongly defined, we have multiple matching symbols and
5023 the binary search above may land on any of them. Step
5024 one past the matching symbol(s). */
5025 while (++idx != j)
5026 {
5027 h = sorted_sym_hash[idx];
5028 if (h->root.u.def.section != slook
5029 || h->root.u.def.value != vlook)
5030 break;
5031 }
5032
5033 /* Now look back over the aliases. Since we sorted by size
5034 as well as value and section, we'll choose the one with
5035 the largest size. */
5036 while (idx-- != i)
5037 {
5038 h = sorted_sym_hash[idx];
5039
5040 /* Stop if value or section doesn't match. */
5041 if (h->root.u.def.section != slook
5042 || h->root.u.def.value != vlook)
5043 break;
5044 else if (h != hlook)
5045 {
5046 hlook->u.weakdef = h;
5047
5048 /* If the weak definition is in the list of dynamic
5049 symbols, make sure the real definition is put
5050 there as well. */
5051 if (hlook->dynindx != -1 && h->dynindx == -1)
5052 {
5053 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5054 {
5055 err_free_sym_hash:
5056 free (sorted_sym_hash);
5057 goto error_return;
5058 }
5059 }
5060
5061 /* If the real definition is in the list of dynamic
5062 symbols, make sure the weak definition is put
5063 there as well. If we don't do this, then the
5064 dynamic loader might not merge the entries for the
5065 real definition and the weak definition. */
5066 if (h->dynindx != -1 && hlook->dynindx == -1)
5067 {
5068 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5069 goto err_free_sym_hash;
5070 }
5071 break;
5072 }
5073 }
5074 }
5075
5076 free (sorted_sym_hash);
5077 }
5078
5079 if (bed->check_directives
5080 && !(*bed->check_directives) (abfd, info))
5081 return FALSE;
5082
5083 if (!info->check_relocs_after_open_input
5084 && !_bfd_elf_link_check_relocs (abfd, info))
5085 return FALSE;
5086
5087 /* If this is a non-traditional link, try to optimize the handling
5088 of the .stab/.stabstr sections. */
5089 if (! dynamic
5090 && ! info->traditional_format
5091 && is_elf_hash_table (htab)
5092 && (info->strip != strip_all && info->strip != strip_debugger))
5093 {
5094 asection *stabstr;
5095
5096 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5097 if (stabstr != NULL)
5098 {
5099 bfd_size_type string_offset = 0;
5100 asection *stab;
5101
5102 for (stab = abfd->sections; stab; stab = stab->next)
5103 if (CONST_STRNEQ (stab->name, ".stab")
5104 && (!stab->name[5] ||
5105 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5106 && (stab->flags & SEC_MERGE) == 0
5107 && !bfd_is_abs_section (stab->output_section))
5108 {
5109 struct bfd_elf_section_data *secdata;
5110
5111 secdata = elf_section_data (stab);
5112 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5113 stabstr, &secdata->sec_info,
5114 &string_offset))
5115 goto error_return;
5116 if (secdata->sec_info)
5117 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5118 }
5119 }
5120 }
5121
5122 if (is_elf_hash_table (htab) && add_needed)
5123 {
5124 /* Add this bfd to the loaded list. */
5125 struct elf_link_loaded_list *n;
5126
5127 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5128 if (n == NULL)
5129 goto error_return;
5130 n->abfd = abfd;
5131 n->next = htab->loaded;
5132 htab->loaded = n;
5133 }
5134
5135 return TRUE;
5136
5137 error_free_vers:
5138 if (old_tab != NULL)
5139 free (old_tab);
5140 if (old_strtab != NULL)
5141 free (old_strtab);
5142 if (nondeflt_vers != NULL)
5143 free (nondeflt_vers);
5144 if (extversym != NULL)
5145 free (extversym);
5146 error_free_sym:
5147 if (isymbuf != NULL)
5148 free (isymbuf);
5149 error_return:
5150 return FALSE;
5151 }
5152
5153 /* Return the linker hash table entry of a symbol that might be
5154 satisfied by an archive symbol. Return -1 on error. */
5155
5156 struct elf_link_hash_entry *
5157 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5158 struct bfd_link_info *info,
5159 const char *name)
5160 {
5161 struct elf_link_hash_entry *h;
5162 char *p, *copy;
5163 size_t len, first;
5164
5165 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5166 if (h != NULL)
5167 return h;
5168
5169 /* If this is a default version (the name contains @@), look up the
5170 symbol again with only one `@' as well as without the version.
5171 The effect is that references to the symbol with and without the
5172 version will be matched by the default symbol in the archive. */
5173
5174 p = strchr (name, ELF_VER_CHR);
5175 if (p == NULL || p[1] != ELF_VER_CHR)
5176 return h;
5177
5178 /* First check with only one `@'. */
5179 len = strlen (name);
5180 copy = (char *) bfd_alloc (abfd, len);
5181 if (copy == NULL)
5182 return (struct elf_link_hash_entry *) 0 - 1;
5183
5184 first = p - name + 1;
5185 memcpy (copy, name, first);
5186 memcpy (copy + first, name + first + 1, len - first);
5187
5188 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5189 if (h == NULL)
5190 {
5191 /* We also need to check references to the symbol without the
5192 version. */
5193 copy[first - 1] = '\0';
5194 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5195 FALSE, FALSE, TRUE);
5196 }
5197
5198 bfd_release (abfd, copy);
5199 return h;
5200 }
5201
5202 /* Add symbols from an ELF archive file to the linker hash table. We
5203 don't use _bfd_generic_link_add_archive_symbols because we need to
5204 handle versioned symbols.
5205
5206 Fortunately, ELF archive handling is simpler than that done by
5207 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5208 oddities. In ELF, if we find a symbol in the archive map, and the
5209 symbol is currently undefined, we know that we must pull in that
5210 object file.
5211
5212 Unfortunately, we do have to make multiple passes over the symbol
5213 table until nothing further is resolved. */
5214
5215 static bfd_boolean
5216 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5217 {
5218 symindex c;
5219 unsigned char *included = NULL;
5220 carsym *symdefs;
5221 bfd_boolean loop;
5222 bfd_size_type amt;
5223 const struct elf_backend_data *bed;
5224 struct elf_link_hash_entry * (*archive_symbol_lookup)
5225 (bfd *, struct bfd_link_info *, const char *);
5226
5227 if (! bfd_has_map (abfd))
5228 {
5229 /* An empty archive is a special case. */
5230 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5231 return TRUE;
5232 bfd_set_error (bfd_error_no_armap);
5233 return FALSE;
5234 }
5235
5236 /* Keep track of all symbols we know to be already defined, and all
5237 files we know to be already included. This is to speed up the
5238 second and subsequent passes. */
5239 c = bfd_ardata (abfd)->symdef_count;
5240 if (c == 0)
5241 return TRUE;
5242 amt = c;
5243 amt *= sizeof (*included);
5244 included = (unsigned char *) bfd_zmalloc (amt);
5245 if (included == NULL)
5246 return FALSE;
5247
5248 symdefs = bfd_ardata (abfd)->symdefs;
5249 bed = get_elf_backend_data (abfd);
5250 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5251
5252 do
5253 {
5254 file_ptr last;
5255 symindex i;
5256 carsym *symdef;
5257 carsym *symdefend;
5258
5259 loop = FALSE;
5260 last = -1;
5261
5262 symdef = symdefs;
5263 symdefend = symdef + c;
5264 for (i = 0; symdef < symdefend; symdef++, i++)
5265 {
5266 struct elf_link_hash_entry *h;
5267 bfd *element;
5268 struct bfd_link_hash_entry *undefs_tail;
5269 symindex mark;
5270
5271 if (included[i])
5272 continue;
5273 if (symdef->file_offset == last)
5274 {
5275 included[i] = TRUE;
5276 continue;
5277 }
5278
5279 h = archive_symbol_lookup (abfd, info, symdef->name);
5280 if (h == (struct elf_link_hash_entry *) 0 - 1)
5281 goto error_return;
5282
5283 if (h == NULL)
5284 continue;
5285
5286 if (h->root.type == bfd_link_hash_common)
5287 {
5288 /* We currently have a common symbol. The archive map contains
5289 a reference to this symbol, so we may want to include it. We
5290 only want to include it however, if this archive element
5291 contains a definition of the symbol, not just another common
5292 declaration of it.
5293
5294 Unfortunately some archivers (including GNU ar) will put
5295 declarations of common symbols into their archive maps, as
5296 well as real definitions, so we cannot just go by the archive
5297 map alone. Instead we must read in the element's symbol
5298 table and check that to see what kind of symbol definition
5299 this is. */
5300 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5301 continue;
5302 }
5303 else if (h->root.type != bfd_link_hash_undefined)
5304 {
5305 if (h->root.type != bfd_link_hash_undefweak)
5306 /* Symbol must be defined. Don't check it again. */
5307 included[i] = TRUE;
5308 continue;
5309 }
5310
5311 /* We need to include this archive member. */
5312 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5313 if (element == NULL)
5314 goto error_return;
5315
5316 if (! bfd_check_format (element, bfd_object))
5317 goto error_return;
5318
5319 undefs_tail = info->hash->undefs_tail;
5320
5321 if (!(*info->callbacks
5322 ->add_archive_element) (info, element, symdef->name, &element))
5323 continue;
5324 if (!bfd_link_add_symbols (element, info))
5325 goto error_return;
5326
5327 /* If there are any new undefined symbols, we need to make
5328 another pass through the archive in order to see whether
5329 they can be defined. FIXME: This isn't perfect, because
5330 common symbols wind up on undefs_tail and because an
5331 undefined symbol which is defined later on in this pass
5332 does not require another pass. This isn't a bug, but it
5333 does make the code less efficient than it could be. */
5334 if (undefs_tail != info->hash->undefs_tail)
5335 loop = TRUE;
5336
5337 /* Look backward to mark all symbols from this object file
5338 which we have already seen in this pass. */
5339 mark = i;
5340 do
5341 {
5342 included[mark] = TRUE;
5343 if (mark == 0)
5344 break;
5345 --mark;
5346 }
5347 while (symdefs[mark].file_offset == symdef->file_offset);
5348
5349 /* We mark subsequent symbols from this object file as we go
5350 on through the loop. */
5351 last = symdef->file_offset;
5352 }
5353 }
5354 while (loop);
5355
5356 free (included);
5357
5358 return TRUE;
5359
5360 error_return:
5361 if (included != NULL)
5362 free (included);
5363 return FALSE;
5364 }
5365
5366 /* Given an ELF BFD, add symbols to the global hash table as
5367 appropriate. */
5368
5369 bfd_boolean
5370 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5371 {
5372 switch (bfd_get_format (abfd))
5373 {
5374 case bfd_object:
5375 return elf_link_add_object_symbols (abfd, info);
5376 case bfd_archive:
5377 return elf_link_add_archive_symbols (abfd, info);
5378 default:
5379 bfd_set_error (bfd_error_wrong_format);
5380 return FALSE;
5381 }
5382 }
5383 \f
5384 struct hash_codes_info
5385 {
5386 unsigned long *hashcodes;
5387 bfd_boolean error;
5388 };
5389
5390 /* This function will be called though elf_link_hash_traverse to store
5391 all hash value of the exported symbols in an array. */
5392
5393 static bfd_boolean
5394 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5395 {
5396 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5397 const char *name;
5398 unsigned long ha;
5399 char *alc = NULL;
5400
5401 /* Ignore indirect symbols. These are added by the versioning code. */
5402 if (h->dynindx == -1)
5403 return TRUE;
5404
5405 name = h->root.root.string;
5406 if (h->versioned >= versioned)
5407 {
5408 char *p = strchr (name, ELF_VER_CHR);
5409 if (p != NULL)
5410 {
5411 alc = (char *) bfd_malloc (p - name + 1);
5412 if (alc == NULL)
5413 {
5414 inf->error = TRUE;
5415 return FALSE;
5416 }
5417 memcpy (alc, name, p - name);
5418 alc[p - name] = '\0';
5419 name = alc;
5420 }
5421 }
5422
5423 /* Compute the hash value. */
5424 ha = bfd_elf_hash (name);
5425
5426 /* Store the found hash value in the array given as the argument. */
5427 *(inf->hashcodes)++ = ha;
5428
5429 /* And store it in the struct so that we can put it in the hash table
5430 later. */
5431 h->u.elf_hash_value = ha;
5432
5433 if (alc != NULL)
5434 free (alc);
5435
5436 return TRUE;
5437 }
5438
5439 struct collect_gnu_hash_codes
5440 {
5441 bfd *output_bfd;
5442 const struct elf_backend_data *bed;
5443 unsigned long int nsyms;
5444 unsigned long int maskbits;
5445 unsigned long int *hashcodes;
5446 unsigned long int *hashval;
5447 unsigned long int *indx;
5448 unsigned long int *counts;
5449 bfd_vma *bitmask;
5450 bfd_byte *contents;
5451 long int min_dynindx;
5452 unsigned long int bucketcount;
5453 unsigned long int symindx;
5454 long int local_indx;
5455 long int shift1, shift2;
5456 unsigned long int mask;
5457 bfd_boolean error;
5458 };
5459
5460 /* This function will be called though elf_link_hash_traverse to store
5461 all hash value of the exported symbols in an array. */
5462
5463 static bfd_boolean
5464 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5465 {
5466 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5467 const char *name;
5468 unsigned long ha;
5469 char *alc = NULL;
5470
5471 /* Ignore indirect symbols. These are added by the versioning code. */
5472 if (h->dynindx == -1)
5473 return TRUE;
5474
5475 /* Ignore also local symbols and undefined symbols. */
5476 if (! (*s->bed->elf_hash_symbol) (h))
5477 return TRUE;
5478
5479 name = h->root.root.string;
5480 if (h->versioned >= versioned)
5481 {
5482 char *p = strchr (name, ELF_VER_CHR);
5483 if (p != NULL)
5484 {
5485 alc = (char *) bfd_malloc (p - name + 1);
5486 if (alc == NULL)
5487 {
5488 s->error = TRUE;
5489 return FALSE;
5490 }
5491 memcpy (alc, name, p - name);
5492 alc[p - name] = '\0';
5493 name = alc;
5494 }
5495 }
5496
5497 /* Compute the hash value. */
5498 ha = bfd_elf_gnu_hash (name);
5499
5500 /* Store the found hash value in the array for compute_bucket_count,
5501 and also for .dynsym reordering purposes. */
5502 s->hashcodes[s->nsyms] = ha;
5503 s->hashval[h->dynindx] = ha;
5504 ++s->nsyms;
5505 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5506 s->min_dynindx = h->dynindx;
5507
5508 if (alc != NULL)
5509 free (alc);
5510
5511 return TRUE;
5512 }
5513
5514 /* This function will be called though elf_link_hash_traverse to do
5515 final dynaminc symbol renumbering. */
5516
5517 static bfd_boolean
5518 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5519 {
5520 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5521 unsigned long int bucket;
5522 unsigned long int val;
5523
5524 /* Ignore indirect symbols. */
5525 if (h->dynindx == -1)
5526 return TRUE;
5527
5528 /* Ignore also local symbols and undefined symbols. */
5529 if (! (*s->bed->elf_hash_symbol) (h))
5530 {
5531 if (h->dynindx >= s->min_dynindx)
5532 h->dynindx = s->local_indx++;
5533 return TRUE;
5534 }
5535
5536 bucket = s->hashval[h->dynindx] % s->bucketcount;
5537 val = (s->hashval[h->dynindx] >> s->shift1)
5538 & ((s->maskbits >> s->shift1) - 1);
5539 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5540 s->bitmask[val]
5541 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5542 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5543 if (s->counts[bucket] == 1)
5544 /* Last element terminates the chain. */
5545 val |= 1;
5546 bfd_put_32 (s->output_bfd, val,
5547 s->contents + (s->indx[bucket] - s->symindx) * 4);
5548 --s->counts[bucket];
5549 h->dynindx = s->indx[bucket]++;
5550 return TRUE;
5551 }
5552
5553 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5554
5555 bfd_boolean
5556 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5557 {
5558 return !(h->forced_local
5559 || h->root.type == bfd_link_hash_undefined
5560 || h->root.type == bfd_link_hash_undefweak
5561 || ((h->root.type == bfd_link_hash_defined
5562 || h->root.type == bfd_link_hash_defweak)
5563 && h->root.u.def.section->output_section == NULL));
5564 }
5565
5566 /* Array used to determine the number of hash table buckets to use
5567 based on the number of symbols there are. If there are fewer than
5568 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5569 fewer than 37 we use 17 buckets, and so forth. We never use more
5570 than 32771 buckets. */
5571
5572 static const size_t elf_buckets[] =
5573 {
5574 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5575 16411, 32771, 0
5576 };
5577
5578 /* Compute bucket count for hashing table. We do not use a static set
5579 of possible tables sizes anymore. Instead we determine for all
5580 possible reasonable sizes of the table the outcome (i.e., the
5581 number of collisions etc) and choose the best solution. The
5582 weighting functions are not too simple to allow the table to grow
5583 without bounds. Instead one of the weighting factors is the size.
5584 Therefore the result is always a good payoff between few collisions
5585 (= short chain lengths) and table size. */
5586 static size_t
5587 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5588 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5589 unsigned long int nsyms,
5590 int gnu_hash)
5591 {
5592 size_t best_size = 0;
5593 unsigned long int i;
5594
5595 /* We have a problem here. The following code to optimize the table
5596 size requires an integer type with more the 32 bits. If
5597 BFD_HOST_U_64_BIT is set we know about such a type. */
5598 #ifdef BFD_HOST_U_64_BIT
5599 if (info->optimize)
5600 {
5601 size_t minsize;
5602 size_t maxsize;
5603 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5604 bfd *dynobj = elf_hash_table (info)->dynobj;
5605 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5606 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5607 unsigned long int *counts;
5608 bfd_size_type amt;
5609 unsigned int no_improvement_count = 0;
5610
5611 /* Possible optimization parameters: if we have NSYMS symbols we say
5612 that the hashing table must at least have NSYMS/4 and at most
5613 2*NSYMS buckets. */
5614 minsize = nsyms / 4;
5615 if (minsize == 0)
5616 minsize = 1;
5617 best_size = maxsize = nsyms * 2;
5618 if (gnu_hash)
5619 {
5620 if (minsize < 2)
5621 minsize = 2;
5622 if ((best_size & 31) == 0)
5623 ++best_size;
5624 }
5625
5626 /* Create array where we count the collisions in. We must use bfd_malloc
5627 since the size could be large. */
5628 amt = maxsize;
5629 amt *= sizeof (unsigned long int);
5630 counts = (unsigned long int *) bfd_malloc (amt);
5631 if (counts == NULL)
5632 return 0;
5633
5634 /* Compute the "optimal" size for the hash table. The criteria is a
5635 minimal chain length. The minor criteria is (of course) the size
5636 of the table. */
5637 for (i = minsize; i < maxsize; ++i)
5638 {
5639 /* Walk through the array of hashcodes and count the collisions. */
5640 BFD_HOST_U_64_BIT max;
5641 unsigned long int j;
5642 unsigned long int fact;
5643
5644 if (gnu_hash && (i & 31) == 0)
5645 continue;
5646
5647 memset (counts, '\0', i * sizeof (unsigned long int));
5648
5649 /* Determine how often each hash bucket is used. */
5650 for (j = 0; j < nsyms; ++j)
5651 ++counts[hashcodes[j] % i];
5652
5653 /* For the weight function we need some information about the
5654 pagesize on the target. This is information need not be 100%
5655 accurate. Since this information is not available (so far) we
5656 define it here to a reasonable default value. If it is crucial
5657 to have a better value some day simply define this value. */
5658 # ifndef BFD_TARGET_PAGESIZE
5659 # define BFD_TARGET_PAGESIZE (4096)
5660 # endif
5661
5662 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5663 and the chains. */
5664 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5665
5666 # if 1
5667 /* Variant 1: optimize for short chains. We add the squares
5668 of all the chain lengths (which favors many small chain
5669 over a few long chains). */
5670 for (j = 0; j < i; ++j)
5671 max += counts[j] * counts[j];
5672
5673 /* This adds penalties for the overall size of the table. */
5674 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5675 max *= fact * fact;
5676 # else
5677 /* Variant 2: Optimize a lot more for small table. Here we
5678 also add squares of the size but we also add penalties for
5679 empty slots (the +1 term). */
5680 for (j = 0; j < i; ++j)
5681 max += (1 + counts[j]) * (1 + counts[j]);
5682
5683 /* The overall size of the table is considered, but not as
5684 strong as in variant 1, where it is squared. */
5685 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5686 max *= fact;
5687 # endif
5688
5689 /* Compare with current best results. */
5690 if (max < best_chlen)
5691 {
5692 best_chlen = max;
5693 best_size = i;
5694 no_improvement_count = 0;
5695 }
5696 /* PR 11843: Avoid futile long searches for the best bucket size
5697 when there are a large number of symbols. */
5698 else if (++no_improvement_count == 100)
5699 break;
5700 }
5701
5702 free (counts);
5703 }
5704 else
5705 #endif /* defined (BFD_HOST_U_64_BIT) */
5706 {
5707 /* This is the fallback solution if no 64bit type is available or if we
5708 are not supposed to spend much time on optimizations. We select the
5709 bucket count using a fixed set of numbers. */
5710 for (i = 0; elf_buckets[i] != 0; i++)
5711 {
5712 best_size = elf_buckets[i];
5713 if (nsyms < elf_buckets[i + 1])
5714 break;
5715 }
5716 if (gnu_hash && best_size < 2)
5717 best_size = 2;
5718 }
5719
5720 return best_size;
5721 }
5722
5723 /* Size any SHT_GROUP section for ld -r. */
5724
5725 bfd_boolean
5726 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5727 {
5728 bfd *ibfd;
5729
5730 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5731 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5732 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5733 return FALSE;
5734 return TRUE;
5735 }
5736
5737 /* Set a default stack segment size. The value in INFO wins. If it
5738 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5739 undefined it is initialized. */
5740
5741 bfd_boolean
5742 bfd_elf_stack_segment_size (bfd *output_bfd,
5743 struct bfd_link_info *info,
5744 const char *legacy_symbol,
5745 bfd_vma default_size)
5746 {
5747 struct elf_link_hash_entry *h = NULL;
5748
5749 /* Look for legacy symbol. */
5750 if (legacy_symbol)
5751 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5752 FALSE, FALSE, FALSE);
5753 if (h && (h->root.type == bfd_link_hash_defined
5754 || h->root.type == bfd_link_hash_defweak)
5755 && h->def_regular
5756 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5757 {
5758 /* The symbol has no type if specified on the command line. */
5759 h->type = STT_OBJECT;
5760 if (info->stacksize)
5761 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5762 output_bfd, legacy_symbol);
5763 else if (h->root.u.def.section != bfd_abs_section_ptr)
5764 (*_bfd_error_handler) (_("%B: %s not absolute"),
5765 output_bfd, legacy_symbol);
5766 else
5767 info->stacksize = h->root.u.def.value;
5768 }
5769
5770 if (!info->stacksize)
5771 /* If the user didn't set a size, or explicitly inhibit the
5772 size, set it now. */
5773 info->stacksize = default_size;
5774
5775 /* Provide the legacy symbol, if it is referenced. */
5776 if (h && (h->root.type == bfd_link_hash_undefined
5777 || h->root.type == bfd_link_hash_undefweak))
5778 {
5779 struct bfd_link_hash_entry *bh = NULL;
5780
5781 if (!(_bfd_generic_link_add_one_symbol
5782 (info, output_bfd, legacy_symbol,
5783 BSF_GLOBAL, bfd_abs_section_ptr,
5784 info->stacksize >= 0 ? info->stacksize : 0,
5785 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5786 return FALSE;
5787
5788 h = (struct elf_link_hash_entry *) bh;
5789 h->def_regular = 1;
5790 h->type = STT_OBJECT;
5791 }
5792
5793 return TRUE;
5794 }
5795
5796 /* Set up the sizes and contents of the ELF dynamic sections. This is
5797 called by the ELF linker emulation before_allocation routine. We
5798 must set the sizes of the sections before the linker sets the
5799 addresses of the various sections. */
5800
5801 bfd_boolean
5802 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5803 const char *soname,
5804 const char *rpath,
5805 const char *filter_shlib,
5806 const char *audit,
5807 const char *depaudit,
5808 const char * const *auxiliary_filters,
5809 struct bfd_link_info *info,
5810 asection **sinterpptr)
5811 {
5812 size_t soname_indx;
5813 bfd *dynobj;
5814 const struct elf_backend_data *bed;
5815 struct elf_info_failed asvinfo;
5816
5817 *sinterpptr = NULL;
5818
5819 soname_indx = (size_t) -1;
5820
5821 if (!is_elf_hash_table (info->hash))
5822 return TRUE;
5823
5824 bed = get_elf_backend_data (output_bfd);
5825
5826 /* Any syms created from now on start with -1 in
5827 got.refcount/offset and plt.refcount/offset. */
5828 elf_hash_table (info)->init_got_refcount
5829 = elf_hash_table (info)->init_got_offset;
5830 elf_hash_table (info)->init_plt_refcount
5831 = elf_hash_table (info)->init_plt_offset;
5832
5833 if (bfd_link_relocatable (info)
5834 && !_bfd_elf_size_group_sections (info))
5835 return FALSE;
5836
5837 /* The backend may have to create some sections regardless of whether
5838 we're dynamic or not. */
5839 if (bed->elf_backend_always_size_sections
5840 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5841 return FALSE;
5842
5843 /* Determine any GNU_STACK segment requirements, after the backend
5844 has had a chance to set a default segment size. */
5845 if (info->execstack)
5846 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5847 else if (info->noexecstack)
5848 elf_stack_flags (output_bfd) = PF_R | PF_W;
5849 else
5850 {
5851 bfd *inputobj;
5852 asection *notesec = NULL;
5853 int exec = 0;
5854
5855 for (inputobj = info->input_bfds;
5856 inputobj;
5857 inputobj = inputobj->link.next)
5858 {
5859 asection *s;
5860
5861 if (inputobj->flags
5862 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5863 continue;
5864 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5865 if (s)
5866 {
5867 if (s->flags & SEC_CODE)
5868 exec = PF_X;
5869 notesec = s;
5870 }
5871 else if (bed->default_execstack)
5872 exec = PF_X;
5873 }
5874 if (notesec || info->stacksize > 0)
5875 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5876 if (notesec && exec && bfd_link_relocatable (info)
5877 && notesec->output_section != bfd_abs_section_ptr)
5878 notesec->output_section->flags |= SEC_CODE;
5879 }
5880
5881 dynobj = elf_hash_table (info)->dynobj;
5882
5883 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5884 {
5885 struct elf_info_failed eif;
5886 struct elf_link_hash_entry *h;
5887 asection *dynstr;
5888 struct bfd_elf_version_tree *t;
5889 struct bfd_elf_version_expr *d;
5890 asection *s;
5891 bfd_boolean all_defined;
5892
5893 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5894 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
5895
5896 if (soname != NULL)
5897 {
5898 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5899 soname, TRUE);
5900 if (soname_indx == (size_t) -1
5901 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5902 return FALSE;
5903 }
5904
5905 if (info->symbolic)
5906 {
5907 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5908 return FALSE;
5909 info->flags |= DF_SYMBOLIC;
5910 }
5911
5912 if (rpath != NULL)
5913 {
5914 size_t indx;
5915 bfd_vma tag;
5916
5917 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5918 TRUE);
5919 if (indx == (size_t) -1)
5920 return FALSE;
5921
5922 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5923 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5924 return FALSE;
5925 }
5926
5927 if (filter_shlib != NULL)
5928 {
5929 size_t indx;
5930
5931 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5932 filter_shlib, TRUE);
5933 if (indx == (size_t) -1
5934 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5935 return FALSE;
5936 }
5937
5938 if (auxiliary_filters != NULL)
5939 {
5940 const char * const *p;
5941
5942 for (p = auxiliary_filters; *p != NULL; p++)
5943 {
5944 size_t indx;
5945
5946 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5947 *p, TRUE);
5948 if (indx == (size_t) -1
5949 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5950 return FALSE;
5951 }
5952 }
5953
5954 if (audit != NULL)
5955 {
5956 size_t indx;
5957
5958 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5959 TRUE);
5960 if (indx == (size_t) -1
5961 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5962 return FALSE;
5963 }
5964
5965 if (depaudit != NULL)
5966 {
5967 size_t indx;
5968
5969 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5970 TRUE);
5971 if (indx == (size_t) -1
5972 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5973 return FALSE;
5974 }
5975
5976 eif.info = info;
5977 eif.failed = FALSE;
5978
5979 /* If we are supposed to export all symbols into the dynamic symbol
5980 table (this is not the normal case), then do so. */
5981 if (info->export_dynamic
5982 || (bfd_link_executable (info) && info->dynamic))
5983 {
5984 elf_link_hash_traverse (elf_hash_table (info),
5985 _bfd_elf_export_symbol,
5986 &eif);
5987 if (eif.failed)
5988 return FALSE;
5989 }
5990
5991 /* Make all global versions with definition. */
5992 for (t = info->version_info; t != NULL; t = t->next)
5993 for (d = t->globals.list; d != NULL; d = d->next)
5994 if (!d->symver && d->literal)
5995 {
5996 const char *verstr, *name;
5997 size_t namelen, verlen, newlen;
5998 char *newname, *p, leading_char;
5999 struct elf_link_hash_entry *newh;
6000
6001 leading_char = bfd_get_symbol_leading_char (output_bfd);
6002 name = d->pattern;
6003 namelen = strlen (name) + (leading_char != '\0');
6004 verstr = t->name;
6005 verlen = strlen (verstr);
6006 newlen = namelen + verlen + 3;
6007
6008 newname = (char *) bfd_malloc (newlen);
6009 if (newname == NULL)
6010 return FALSE;
6011 newname[0] = leading_char;
6012 memcpy (newname + (leading_char != '\0'), name, namelen);
6013
6014 /* Check the hidden versioned definition. */
6015 p = newname + namelen;
6016 *p++ = ELF_VER_CHR;
6017 memcpy (p, verstr, verlen + 1);
6018 newh = elf_link_hash_lookup (elf_hash_table (info),
6019 newname, FALSE, FALSE,
6020 FALSE);
6021 if (newh == NULL
6022 || (newh->root.type != bfd_link_hash_defined
6023 && newh->root.type != bfd_link_hash_defweak))
6024 {
6025 /* Check the default versioned definition. */
6026 *p++ = ELF_VER_CHR;
6027 memcpy (p, verstr, verlen + 1);
6028 newh = elf_link_hash_lookup (elf_hash_table (info),
6029 newname, FALSE, FALSE,
6030 FALSE);
6031 }
6032 free (newname);
6033
6034 /* Mark this version if there is a definition and it is
6035 not defined in a shared object. */
6036 if (newh != NULL
6037 && !newh->def_dynamic
6038 && (newh->root.type == bfd_link_hash_defined
6039 || newh->root.type == bfd_link_hash_defweak))
6040 d->symver = 1;
6041 }
6042
6043 /* Attach all the symbols to their version information. */
6044 asvinfo.info = info;
6045 asvinfo.failed = FALSE;
6046
6047 elf_link_hash_traverse (elf_hash_table (info),
6048 _bfd_elf_link_assign_sym_version,
6049 &asvinfo);
6050 if (asvinfo.failed)
6051 return FALSE;
6052
6053 if (!info->allow_undefined_version)
6054 {
6055 /* Check if all global versions have a definition. */
6056 all_defined = TRUE;
6057 for (t = info->version_info; t != NULL; t = t->next)
6058 for (d = t->globals.list; d != NULL; d = d->next)
6059 if (d->literal && !d->symver && !d->script)
6060 {
6061 (*_bfd_error_handler)
6062 (_("%s: undefined version: %s"),
6063 d->pattern, t->name);
6064 all_defined = FALSE;
6065 }
6066
6067 if (!all_defined)
6068 {
6069 bfd_set_error (bfd_error_bad_value);
6070 return FALSE;
6071 }
6072 }
6073
6074 /* Find all symbols which were defined in a dynamic object and make
6075 the backend pick a reasonable value for them. */
6076 elf_link_hash_traverse (elf_hash_table (info),
6077 _bfd_elf_adjust_dynamic_symbol,
6078 &eif);
6079 if (eif.failed)
6080 return FALSE;
6081
6082 /* Add some entries to the .dynamic section. We fill in some of the
6083 values later, in bfd_elf_final_link, but we must add the entries
6084 now so that we know the final size of the .dynamic section. */
6085
6086 /* If there are initialization and/or finalization functions to
6087 call then add the corresponding DT_INIT/DT_FINI entries. */
6088 h = (info->init_function
6089 ? elf_link_hash_lookup (elf_hash_table (info),
6090 info->init_function, FALSE,
6091 FALSE, FALSE)
6092 : NULL);
6093 if (h != NULL
6094 && (h->ref_regular
6095 || h->def_regular))
6096 {
6097 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
6098 return FALSE;
6099 }
6100 h = (info->fini_function
6101 ? elf_link_hash_lookup (elf_hash_table (info),
6102 info->fini_function, FALSE,
6103 FALSE, FALSE)
6104 : NULL);
6105 if (h != NULL
6106 && (h->ref_regular
6107 || h->def_regular))
6108 {
6109 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
6110 return FALSE;
6111 }
6112
6113 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
6114 if (s != NULL && s->linker_has_input)
6115 {
6116 /* DT_PREINIT_ARRAY is not allowed in shared library. */
6117 if (! bfd_link_executable (info))
6118 {
6119 bfd *sub;
6120 asection *o;
6121
6122 for (sub = info->input_bfds; sub != NULL;
6123 sub = sub->link.next)
6124 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
6125 for (o = sub->sections; o != NULL; o = o->next)
6126 if (elf_section_data (o)->this_hdr.sh_type
6127 == SHT_PREINIT_ARRAY)
6128 {
6129 (*_bfd_error_handler)
6130 (_("%B: .preinit_array section is not allowed in DSO"),
6131 sub);
6132 break;
6133 }
6134
6135 bfd_set_error (bfd_error_nonrepresentable_section);
6136 return FALSE;
6137 }
6138
6139 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6140 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
6141 return FALSE;
6142 }
6143 s = bfd_get_section_by_name (output_bfd, ".init_array");
6144 if (s != NULL && s->linker_has_input)
6145 {
6146 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
6147 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
6148 return FALSE;
6149 }
6150 s = bfd_get_section_by_name (output_bfd, ".fini_array");
6151 if (s != NULL && s->linker_has_input)
6152 {
6153 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
6154 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
6155 return FALSE;
6156 }
6157
6158 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
6159 /* If .dynstr is excluded from the link, we don't want any of
6160 these tags. Strictly, we should be checking each section
6161 individually; This quick check covers for the case where
6162 someone does a /DISCARD/ : { *(*) }. */
6163 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6164 {
6165 bfd_size_type strsize;
6166
6167 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6168 if ((info->emit_hash
6169 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6170 || (info->emit_gnu_hash
6171 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6172 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6173 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6174 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6175 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6176 bed->s->sizeof_sym))
6177 return FALSE;
6178 }
6179 }
6180
6181 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6182 return FALSE;
6183
6184 /* The backend must work out the sizes of all the other dynamic
6185 sections. */
6186 if (dynobj != NULL
6187 && bed->elf_backend_size_dynamic_sections != NULL
6188 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6189 return FALSE;
6190
6191 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6192 {
6193 unsigned long section_sym_count;
6194 struct bfd_elf_version_tree *verdefs;
6195 asection *s;
6196
6197 /* Set up the version definition section. */
6198 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6199 BFD_ASSERT (s != NULL);
6200
6201 /* We may have created additional version definitions if we are
6202 just linking a regular application. */
6203 verdefs = info->version_info;
6204
6205 /* Skip anonymous version tag. */
6206 if (verdefs != NULL && verdefs->vernum == 0)
6207 verdefs = verdefs->next;
6208
6209 if (verdefs == NULL && !info->create_default_symver)
6210 s->flags |= SEC_EXCLUDE;
6211 else
6212 {
6213 unsigned int cdefs;
6214 bfd_size_type size;
6215 struct bfd_elf_version_tree *t;
6216 bfd_byte *p;
6217 Elf_Internal_Verdef def;
6218 Elf_Internal_Verdaux defaux;
6219 struct bfd_link_hash_entry *bh;
6220 struct elf_link_hash_entry *h;
6221 const char *name;
6222
6223 cdefs = 0;
6224 size = 0;
6225
6226 /* Make space for the base version. */
6227 size += sizeof (Elf_External_Verdef);
6228 size += sizeof (Elf_External_Verdaux);
6229 ++cdefs;
6230
6231 /* Make space for the default version. */
6232 if (info->create_default_symver)
6233 {
6234 size += sizeof (Elf_External_Verdef);
6235 ++cdefs;
6236 }
6237
6238 for (t = verdefs; t != NULL; t = t->next)
6239 {
6240 struct bfd_elf_version_deps *n;
6241
6242 /* Don't emit base version twice. */
6243 if (t->vernum == 0)
6244 continue;
6245
6246 size += sizeof (Elf_External_Verdef);
6247 size += sizeof (Elf_External_Verdaux);
6248 ++cdefs;
6249
6250 for (n = t->deps; n != NULL; n = n->next)
6251 size += sizeof (Elf_External_Verdaux);
6252 }
6253
6254 s->size = size;
6255 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6256 if (s->contents == NULL && s->size != 0)
6257 return FALSE;
6258
6259 /* Fill in the version definition section. */
6260
6261 p = s->contents;
6262
6263 def.vd_version = VER_DEF_CURRENT;
6264 def.vd_flags = VER_FLG_BASE;
6265 def.vd_ndx = 1;
6266 def.vd_cnt = 1;
6267 if (info->create_default_symver)
6268 {
6269 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6270 def.vd_next = sizeof (Elf_External_Verdef);
6271 }
6272 else
6273 {
6274 def.vd_aux = sizeof (Elf_External_Verdef);
6275 def.vd_next = (sizeof (Elf_External_Verdef)
6276 + sizeof (Elf_External_Verdaux));
6277 }
6278
6279 if (soname_indx != (size_t) -1)
6280 {
6281 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6282 soname_indx);
6283 def.vd_hash = bfd_elf_hash (soname);
6284 defaux.vda_name = soname_indx;
6285 name = soname;
6286 }
6287 else
6288 {
6289 size_t indx;
6290
6291 name = lbasename (output_bfd->filename);
6292 def.vd_hash = bfd_elf_hash (name);
6293 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6294 name, FALSE);
6295 if (indx == (size_t) -1)
6296 return FALSE;
6297 defaux.vda_name = indx;
6298 }
6299 defaux.vda_next = 0;
6300
6301 _bfd_elf_swap_verdef_out (output_bfd, &def,
6302 (Elf_External_Verdef *) p);
6303 p += sizeof (Elf_External_Verdef);
6304 if (info->create_default_symver)
6305 {
6306 /* Add a symbol representing this version. */
6307 bh = NULL;
6308 if (! (_bfd_generic_link_add_one_symbol
6309 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6310 0, NULL, FALSE,
6311 get_elf_backend_data (dynobj)->collect, &bh)))
6312 return FALSE;
6313 h = (struct elf_link_hash_entry *) bh;
6314 h->non_elf = 0;
6315 h->def_regular = 1;
6316 h->type = STT_OBJECT;
6317 h->verinfo.vertree = NULL;
6318
6319 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6320 return FALSE;
6321
6322 /* Create a duplicate of the base version with the same
6323 aux block, but different flags. */
6324 def.vd_flags = 0;
6325 def.vd_ndx = 2;
6326 def.vd_aux = sizeof (Elf_External_Verdef);
6327 if (verdefs)
6328 def.vd_next = (sizeof (Elf_External_Verdef)
6329 + sizeof (Elf_External_Verdaux));
6330 else
6331 def.vd_next = 0;
6332 _bfd_elf_swap_verdef_out (output_bfd, &def,
6333 (Elf_External_Verdef *) p);
6334 p += sizeof (Elf_External_Verdef);
6335 }
6336 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6337 (Elf_External_Verdaux *) p);
6338 p += sizeof (Elf_External_Verdaux);
6339
6340 for (t = verdefs; t != NULL; t = t->next)
6341 {
6342 unsigned int cdeps;
6343 struct bfd_elf_version_deps *n;
6344
6345 /* Don't emit the base version twice. */
6346 if (t->vernum == 0)
6347 continue;
6348
6349 cdeps = 0;
6350 for (n = t->deps; n != NULL; n = n->next)
6351 ++cdeps;
6352
6353 /* Add a symbol representing this version. */
6354 bh = NULL;
6355 if (! (_bfd_generic_link_add_one_symbol
6356 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6357 0, NULL, FALSE,
6358 get_elf_backend_data (dynobj)->collect, &bh)))
6359 return FALSE;
6360 h = (struct elf_link_hash_entry *) bh;
6361 h->non_elf = 0;
6362 h->def_regular = 1;
6363 h->type = STT_OBJECT;
6364 h->verinfo.vertree = t;
6365
6366 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6367 return FALSE;
6368
6369 def.vd_version = VER_DEF_CURRENT;
6370 def.vd_flags = 0;
6371 if (t->globals.list == NULL
6372 && t->locals.list == NULL
6373 && ! t->used)
6374 def.vd_flags |= VER_FLG_WEAK;
6375 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6376 def.vd_cnt = cdeps + 1;
6377 def.vd_hash = bfd_elf_hash (t->name);
6378 def.vd_aux = sizeof (Elf_External_Verdef);
6379 def.vd_next = 0;
6380
6381 /* If a basever node is next, it *must* be the last node in
6382 the chain, otherwise Verdef construction breaks. */
6383 if (t->next != NULL && t->next->vernum == 0)
6384 BFD_ASSERT (t->next->next == NULL);
6385
6386 if (t->next != NULL && t->next->vernum != 0)
6387 def.vd_next = (sizeof (Elf_External_Verdef)
6388 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6389
6390 _bfd_elf_swap_verdef_out (output_bfd, &def,
6391 (Elf_External_Verdef *) p);
6392 p += sizeof (Elf_External_Verdef);
6393
6394 defaux.vda_name = h->dynstr_index;
6395 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6396 h->dynstr_index);
6397 defaux.vda_next = 0;
6398 if (t->deps != NULL)
6399 defaux.vda_next = sizeof (Elf_External_Verdaux);
6400 t->name_indx = defaux.vda_name;
6401
6402 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6403 (Elf_External_Verdaux *) p);
6404 p += sizeof (Elf_External_Verdaux);
6405
6406 for (n = t->deps; n != NULL; n = n->next)
6407 {
6408 if (n->version_needed == NULL)
6409 {
6410 /* This can happen if there was an error in the
6411 version script. */
6412 defaux.vda_name = 0;
6413 }
6414 else
6415 {
6416 defaux.vda_name = n->version_needed->name_indx;
6417 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6418 defaux.vda_name);
6419 }
6420 if (n->next == NULL)
6421 defaux.vda_next = 0;
6422 else
6423 defaux.vda_next = sizeof (Elf_External_Verdaux);
6424
6425 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6426 (Elf_External_Verdaux *) p);
6427 p += sizeof (Elf_External_Verdaux);
6428 }
6429 }
6430
6431 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6432 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6433 return FALSE;
6434
6435 elf_tdata (output_bfd)->cverdefs = cdefs;
6436 }
6437
6438 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6439 {
6440 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6441 return FALSE;
6442 }
6443 else if (info->flags & DF_BIND_NOW)
6444 {
6445 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6446 return FALSE;
6447 }
6448
6449 if (info->flags_1)
6450 {
6451 if (bfd_link_executable (info))
6452 info->flags_1 &= ~ (DF_1_INITFIRST
6453 | DF_1_NODELETE
6454 | DF_1_NOOPEN);
6455 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6456 return FALSE;
6457 }
6458
6459 /* Work out the size of the version reference section. */
6460
6461 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6462 BFD_ASSERT (s != NULL);
6463 {
6464 struct elf_find_verdep_info sinfo;
6465
6466 sinfo.info = info;
6467 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6468 if (sinfo.vers == 0)
6469 sinfo.vers = 1;
6470 sinfo.failed = FALSE;
6471
6472 elf_link_hash_traverse (elf_hash_table (info),
6473 _bfd_elf_link_find_version_dependencies,
6474 &sinfo);
6475 if (sinfo.failed)
6476 return FALSE;
6477
6478 if (elf_tdata (output_bfd)->verref == NULL)
6479 s->flags |= SEC_EXCLUDE;
6480 else
6481 {
6482 Elf_Internal_Verneed *t;
6483 unsigned int size;
6484 unsigned int crefs;
6485 bfd_byte *p;
6486
6487 /* Build the version dependency section. */
6488 size = 0;
6489 crefs = 0;
6490 for (t = elf_tdata (output_bfd)->verref;
6491 t != NULL;
6492 t = t->vn_nextref)
6493 {
6494 Elf_Internal_Vernaux *a;
6495
6496 size += sizeof (Elf_External_Verneed);
6497 ++crefs;
6498 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6499 size += sizeof (Elf_External_Vernaux);
6500 }
6501
6502 s->size = size;
6503 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6504 if (s->contents == NULL)
6505 return FALSE;
6506
6507 p = s->contents;
6508 for (t = elf_tdata (output_bfd)->verref;
6509 t != NULL;
6510 t = t->vn_nextref)
6511 {
6512 unsigned int caux;
6513 Elf_Internal_Vernaux *a;
6514 size_t indx;
6515
6516 caux = 0;
6517 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6518 ++caux;
6519
6520 t->vn_version = VER_NEED_CURRENT;
6521 t->vn_cnt = caux;
6522 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6523 elf_dt_name (t->vn_bfd) != NULL
6524 ? elf_dt_name (t->vn_bfd)
6525 : lbasename (t->vn_bfd->filename),
6526 FALSE);
6527 if (indx == (size_t) -1)
6528 return FALSE;
6529 t->vn_file = indx;
6530 t->vn_aux = sizeof (Elf_External_Verneed);
6531 if (t->vn_nextref == NULL)
6532 t->vn_next = 0;
6533 else
6534 t->vn_next = (sizeof (Elf_External_Verneed)
6535 + caux * sizeof (Elf_External_Vernaux));
6536
6537 _bfd_elf_swap_verneed_out (output_bfd, t,
6538 (Elf_External_Verneed *) p);
6539 p += sizeof (Elf_External_Verneed);
6540
6541 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6542 {
6543 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6544 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6545 a->vna_nodename, FALSE);
6546 if (indx == (size_t) -1)
6547 return FALSE;
6548 a->vna_name = indx;
6549 if (a->vna_nextptr == NULL)
6550 a->vna_next = 0;
6551 else
6552 a->vna_next = sizeof (Elf_External_Vernaux);
6553
6554 _bfd_elf_swap_vernaux_out (output_bfd, a,
6555 (Elf_External_Vernaux *) p);
6556 p += sizeof (Elf_External_Vernaux);
6557 }
6558 }
6559
6560 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6561 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6562 return FALSE;
6563
6564 elf_tdata (output_bfd)->cverrefs = crefs;
6565 }
6566 }
6567
6568 if ((elf_tdata (output_bfd)->cverrefs == 0
6569 && elf_tdata (output_bfd)->cverdefs == 0)
6570 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6571 &section_sym_count) == 0)
6572 {
6573 s = bfd_get_linker_section (dynobj, ".gnu.version");
6574 s->flags |= SEC_EXCLUDE;
6575 }
6576 }
6577 return TRUE;
6578 }
6579
6580 /* Find the first non-excluded output section. We'll use its
6581 section symbol for some emitted relocs. */
6582 void
6583 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6584 {
6585 asection *s;
6586
6587 for (s = output_bfd->sections; s != NULL; s = s->next)
6588 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6589 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6590 {
6591 elf_hash_table (info)->text_index_section = s;
6592 break;
6593 }
6594 }
6595
6596 /* Find two non-excluded output sections, one for code, one for data.
6597 We'll use their section symbols for some emitted relocs. */
6598 void
6599 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6600 {
6601 asection *s;
6602
6603 /* Data first, since setting text_index_section changes
6604 _bfd_elf_link_omit_section_dynsym. */
6605 for (s = output_bfd->sections; s != NULL; s = s->next)
6606 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6607 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6608 {
6609 elf_hash_table (info)->data_index_section = s;
6610 break;
6611 }
6612
6613 for (s = output_bfd->sections; s != NULL; s = s->next)
6614 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6615 == (SEC_ALLOC | SEC_READONLY))
6616 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6617 {
6618 elf_hash_table (info)->text_index_section = s;
6619 break;
6620 }
6621
6622 if (elf_hash_table (info)->text_index_section == NULL)
6623 elf_hash_table (info)->text_index_section
6624 = elf_hash_table (info)->data_index_section;
6625 }
6626
6627 bfd_boolean
6628 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6629 {
6630 const struct elf_backend_data *bed;
6631
6632 if (!is_elf_hash_table (info->hash))
6633 return TRUE;
6634
6635 bed = get_elf_backend_data (output_bfd);
6636 (*bed->elf_backend_init_index_section) (output_bfd, info);
6637
6638 if (elf_hash_table (info)->dynamic_sections_created)
6639 {
6640 bfd *dynobj;
6641 asection *s;
6642 bfd_size_type dynsymcount;
6643 unsigned long section_sym_count;
6644 unsigned int dtagcount;
6645
6646 dynobj = elf_hash_table (info)->dynobj;
6647
6648 /* Assign dynsym indicies. In a shared library we generate a
6649 section symbol for each output section, which come first.
6650 Next come all of the back-end allocated local dynamic syms,
6651 followed by the rest of the global symbols. */
6652
6653 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6654 &section_sym_count);
6655
6656 /* Work out the size of the symbol version section. */
6657 s = bfd_get_linker_section (dynobj, ".gnu.version");
6658 BFD_ASSERT (s != NULL);
6659 if ((s->flags & SEC_EXCLUDE) == 0)
6660 {
6661 s->size = dynsymcount * sizeof (Elf_External_Versym);
6662 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6663 if (s->contents == NULL)
6664 return FALSE;
6665
6666 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6667 return FALSE;
6668 }
6669
6670 /* Set the size of the .dynsym and .hash sections. We counted
6671 the number of dynamic symbols in elf_link_add_object_symbols.
6672 We will build the contents of .dynsym and .hash when we build
6673 the final symbol table, because until then we do not know the
6674 correct value to give the symbols. We built the .dynstr
6675 section as we went along in elf_link_add_object_symbols. */
6676 s = elf_hash_table (info)->dynsym;
6677 BFD_ASSERT (s != NULL);
6678 s->size = dynsymcount * bed->s->sizeof_sym;
6679
6680 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6681 if (s->contents == NULL)
6682 return FALSE;
6683
6684 /* The first entry in .dynsym is a dummy symbol. Clear all the
6685 section syms, in case we don't output them all. */
6686 ++section_sym_count;
6687 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6688
6689 elf_hash_table (info)->bucketcount = 0;
6690
6691 /* Compute the size of the hashing table. As a side effect this
6692 computes the hash values for all the names we export. */
6693 if (info->emit_hash)
6694 {
6695 unsigned long int *hashcodes;
6696 struct hash_codes_info hashinf;
6697 bfd_size_type amt;
6698 unsigned long int nsyms;
6699 size_t bucketcount;
6700 size_t hash_entry_size;
6701
6702 /* Compute the hash values for all exported symbols. At the same
6703 time store the values in an array so that we could use them for
6704 optimizations. */
6705 amt = dynsymcount * sizeof (unsigned long int);
6706 hashcodes = (unsigned long int *) bfd_malloc (amt);
6707 if (hashcodes == NULL)
6708 return FALSE;
6709 hashinf.hashcodes = hashcodes;
6710 hashinf.error = FALSE;
6711
6712 /* Put all hash values in HASHCODES. */
6713 elf_link_hash_traverse (elf_hash_table (info),
6714 elf_collect_hash_codes, &hashinf);
6715 if (hashinf.error)
6716 {
6717 free (hashcodes);
6718 return FALSE;
6719 }
6720
6721 nsyms = hashinf.hashcodes - hashcodes;
6722 bucketcount
6723 = compute_bucket_count (info, hashcodes, nsyms, 0);
6724 free (hashcodes);
6725
6726 if (bucketcount == 0)
6727 return FALSE;
6728
6729 elf_hash_table (info)->bucketcount = bucketcount;
6730
6731 s = bfd_get_linker_section (dynobj, ".hash");
6732 BFD_ASSERT (s != NULL);
6733 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6734 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6735 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6736 if (s->contents == NULL)
6737 return FALSE;
6738
6739 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6740 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6741 s->contents + hash_entry_size);
6742 }
6743
6744 if (info->emit_gnu_hash)
6745 {
6746 size_t i, cnt;
6747 unsigned char *contents;
6748 struct collect_gnu_hash_codes cinfo;
6749 bfd_size_type amt;
6750 size_t bucketcount;
6751
6752 memset (&cinfo, 0, sizeof (cinfo));
6753
6754 /* Compute the hash values for all exported symbols. At the same
6755 time store the values in an array so that we could use them for
6756 optimizations. */
6757 amt = dynsymcount * 2 * sizeof (unsigned long int);
6758 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6759 if (cinfo.hashcodes == NULL)
6760 return FALSE;
6761
6762 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6763 cinfo.min_dynindx = -1;
6764 cinfo.output_bfd = output_bfd;
6765 cinfo.bed = bed;
6766
6767 /* Put all hash values in HASHCODES. */
6768 elf_link_hash_traverse (elf_hash_table (info),
6769 elf_collect_gnu_hash_codes, &cinfo);
6770 if (cinfo.error)
6771 {
6772 free (cinfo.hashcodes);
6773 return FALSE;
6774 }
6775
6776 bucketcount
6777 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6778
6779 if (bucketcount == 0)
6780 {
6781 free (cinfo.hashcodes);
6782 return FALSE;
6783 }
6784
6785 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6786 BFD_ASSERT (s != NULL);
6787
6788 if (cinfo.nsyms == 0)
6789 {
6790 /* Empty .gnu.hash section is special. */
6791 BFD_ASSERT (cinfo.min_dynindx == -1);
6792 free (cinfo.hashcodes);
6793 s->size = 5 * 4 + bed->s->arch_size / 8;
6794 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6795 if (contents == NULL)
6796 return FALSE;
6797 s->contents = contents;
6798 /* 1 empty bucket. */
6799 bfd_put_32 (output_bfd, 1, contents);
6800 /* SYMIDX above the special symbol 0. */
6801 bfd_put_32 (output_bfd, 1, contents + 4);
6802 /* Just one word for bitmask. */
6803 bfd_put_32 (output_bfd, 1, contents + 8);
6804 /* Only hash fn bloom filter. */
6805 bfd_put_32 (output_bfd, 0, contents + 12);
6806 /* No hashes are valid - empty bitmask. */
6807 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6808 /* No hashes in the only bucket. */
6809 bfd_put_32 (output_bfd, 0,
6810 contents + 16 + bed->s->arch_size / 8);
6811 }
6812 else
6813 {
6814 unsigned long int maskwords, maskbitslog2, x;
6815 BFD_ASSERT (cinfo.min_dynindx != -1);
6816
6817 x = cinfo.nsyms;
6818 maskbitslog2 = 1;
6819 while ((x >>= 1) != 0)
6820 ++maskbitslog2;
6821 if (maskbitslog2 < 3)
6822 maskbitslog2 = 5;
6823 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6824 maskbitslog2 = maskbitslog2 + 3;
6825 else
6826 maskbitslog2 = maskbitslog2 + 2;
6827 if (bed->s->arch_size == 64)
6828 {
6829 if (maskbitslog2 == 5)
6830 maskbitslog2 = 6;
6831 cinfo.shift1 = 6;
6832 }
6833 else
6834 cinfo.shift1 = 5;
6835 cinfo.mask = (1 << cinfo.shift1) - 1;
6836 cinfo.shift2 = maskbitslog2;
6837 cinfo.maskbits = 1 << maskbitslog2;
6838 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6839 amt = bucketcount * sizeof (unsigned long int) * 2;
6840 amt += maskwords * sizeof (bfd_vma);
6841 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6842 if (cinfo.bitmask == NULL)
6843 {
6844 free (cinfo.hashcodes);
6845 return FALSE;
6846 }
6847
6848 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6849 cinfo.indx = cinfo.counts + bucketcount;
6850 cinfo.symindx = dynsymcount - cinfo.nsyms;
6851 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6852
6853 /* Determine how often each hash bucket is used. */
6854 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6855 for (i = 0; i < cinfo.nsyms; ++i)
6856 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6857
6858 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6859 if (cinfo.counts[i] != 0)
6860 {
6861 cinfo.indx[i] = cnt;
6862 cnt += cinfo.counts[i];
6863 }
6864 BFD_ASSERT (cnt == dynsymcount);
6865 cinfo.bucketcount = bucketcount;
6866 cinfo.local_indx = cinfo.min_dynindx;
6867
6868 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6869 s->size += cinfo.maskbits / 8;
6870 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6871 if (contents == NULL)
6872 {
6873 free (cinfo.bitmask);
6874 free (cinfo.hashcodes);
6875 return FALSE;
6876 }
6877
6878 s->contents = contents;
6879 bfd_put_32 (output_bfd, bucketcount, contents);
6880 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6881 bfd_put_32 (output_bfd, maskwords, contents + 8);
6882 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6883 contents += 16 + cinfo.maskbits / 8;
6884
6885 for (i = 0; i < bucketcount; ++i)
6886 {
6887 if (cinfo.counts[i] == 0)
6888 bfd_put_32 (output_bfd, 0, contents);
6889 else
6890 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6891 contents += 4;
6892 }
6893
6894 cinfo.contents = contents;
6895
6896 /* Renumber dynamic symbols, populate .gnu.hash section. */
6897 elf_link_hash_traverse (elf_hash_table (info),
6898 elf_renumber_gnu_hash_syms, &cinfo);
6899
6900 contents = s->contents + 16;
6901 for (i = 0; i < maskwords; ++i)
6902 {
6903 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6904 contents);
6905 contents += bed->s->arch_size / 8;
6906 }
6907
6908 free (cinfo.bitmask);
6909 free (cinfo.hashcodes);
6910 }
6911 }
6912
6913 s = bfd_get_linker_section (dynobj, ".dynstr");
6914 BFD_ASSERT (s != NULL);
6915
6916 elf_finalize_dynstr (output_bfd, info);
6917
6918 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6919
6920 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6921 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6922 return FALSE;
6923 }
6924
6925 return TRUE;
6926 }
6927 \f
6928 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6929
6930 static void
6931 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6932 asection *sec)
6933 {
6934 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6935 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6936 }
6937
6938 /* Finish SHF_MERGE section merging. */
6939
6940 bfd_boolean
6941 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
6942 {
6943 bfd *ibfd;
6944 asection *sec;
6945
6946 if (!is_elf_hash_table (info->hash))
6947 return FALSE;
6948
6949 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6950 if ((ibfd->flags & DYNAMIC) == 0
6951 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
6952 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
6953 == get_elf_backend_data (obfd)->s->elfclass))
6954 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6955 if ((sec->flags & SEC_MERGE) != 0
6956 && !bfd_is_abs_section (sec->output_section))
6957 {
6958 struct bfd_elf_section_data *secdata;
6959
6960 secdata = elf_section_data (sec);
6961 if (! _bfd_add_merge_section (obfd,
6962 &elf_hash_table (info)->merge_info,
6963 sec, &secdata->sec_info))
6964 return FALSE;
6965 else if (secdata->sec_info)
6966 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6967 }
6968
6969 if (elf_hash_table (info)->merge_info != NULL)
6970 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
6971 merge_sections_remove_hook);
6972 return TRUE;
6973 }
6974
6975 /* Create an entry in an ELF linker hash table. */
6976
6977 struct bfd_hash_entry *
6978 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6979 struct bfd_hash_table *table,
6980 const char *string)
6981 {
6982 /* Allocate the structure if it has not already been allocated by a
6983 subclass. */
6984 if (entry == NULL)
6985 {
6986 entry = (struct bfd_hash_entry *)
6987 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6988 if (entry == NULL)
6989 return entry;
6990 }
6991
6992 /* Call the allocation method of the superclass. */
6993 entry = _bfd_link_hash_newfunc (entry, table, string);
6994 if (entry != NULL)
6995 {
6996 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6997 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6998
6999 /* Set local fields. */
7000 ret->indx = -1;
7001 ret->dynindx = -1;
7002 ret->got = htab->init_got_refcount;
7003 ret->plt = htab->init_plt_refcount;
7004 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7005 - offsetof (struct elf_link_hash_entry, size)));
7006 /* Assume that we have been called by a non-ELF symbol reader.
7007 This flag is then reset by the code which reads an ELF input
7008 file. This ensures that a symbol created by a non-ELF symbol
7009 reader will have the flag set correctly. */
7010 ret->non_elf = 1;
7011 }
7012
7013 return entry;
7014 }
7015
7016 /* Copy data from an indirect symbol to its direct symbol, hiding the
7017 old indirect symbol. Also used for copying flags to a weakdef. */
7018
7019 void
7020 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7021 struct elf_link_hash_entry *dir,
7022 struct elf_link_hash_entry *ind)
7023 {
7024 struct elf_link_hash_table *htab;
7025
7026 /* Copy down any references that we may have already seen to the
7027 symbol which just became indirect if DIR isn't a hidden versioned
7028 symbol. */
7029
7030 if (dir->versioned != versioned_hidden)
7031 {
7032 dir->ref_dynamic |= ind->ref_dynamic;
7033 dir->ref_regular |= ind->ref_regular;
7034 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7035 dir->non_got_ref |= ind->non_got_ref;
7036 dir->needs_plt |= ind->needs_plt;
7037 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7038 }
7039
7040 if (ind->root.type != bfd_link_hash_indirect)
7041 return;
7042
7043 /* Copy over the global and procedure linkage table refcount entries.
7044 These may have been already set up by a check_relocs routine. */
7045 htab = elf_hash_table (info);
7046 if (ind->got.refcount > htab->init_got_refcount.refcount)
7047 {
7048 if (dir->got.refcount < 0)
7049 dir->got.refcount = 0;
7050 dir->got.refcount += ind->got.refcount;
7051 ind->got.refcount = htab->init_got_refcount.refcount;
7052 }
7053
7054 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7055 {
7056 if (dir->plt.refcount < 0)
7057 dir->plt.refcount = 0;
7058 dir->plt.refcount += ind->plt.refcount;
7059 ind->plt.refcount = htab->init_plt_refcount.refcount;
7060 }
7061
7062 if (ind->dynindx != -1)
7063 {
7064 if (dir->dynindx != -1)
7065 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7066 dir->dynindx = ind->dynindx;
7067 dir->dynstr_index = ind->dynstr_index;
7068 ind->dynindx = -1;
7069 ind->dynstr_index = 0;
7070 }
7071 }
7072
7073 void
7074 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7075 struct elf_link_hash_entry *h,
7076 bfd_boolean force_local)
7077 {
7078 /* STT_GNU_IFUNC symbol must go through PLT. */
7079 if (h->type != STT_GNU_IFUNC)
7080 {
7081 h->plt = elf_hash_table (info)->init_plt_offset;
7082 h->needs_plt = 0;
7083 }
7084 if (force_local)
7085 {
7086 h->forced_local = 1;
7087 if (h->dynindx != -1)
7088 {
7089 h->dynindx = -1;
7090 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7091 h->dynstr_index);
7092 }
7093 }
7094 }
7095
7096 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7097 caller. */
7098
7099 bfd_boolean
7100 _bfd_elf_link_hash_table_init
7101 (struct elf_link_hash_table *table,
7102 bfd *abfd,
7103 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7104 struct bfd_hash_table *,
7105 const char *),
7106 unsigned int entsize,
7107 enum elf_target_id target_id)
7108 {
7109 bfd_boolean ret;
7110 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7111
7112 table->init_got_refcount.refcount = can_refcount - 1;
7113 table->init_plt_refcount.refcount = can_refcount - 1;
7114 table->init_got_offset.offset = -(bfd_vma) 1;
7115 table->init_plt_offset.offset = -(bfd_vma) 1;
7116 /* The first dynamic symbol is a dummy. */
7117 table->dynsymcount = 1;
7118
7119 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7120
7121 table->root.type = bfd_link_elf_hash_table;
7122 table->hash_table_id = target_id;
7123
7124 return ret;
7125 }
7126
7127 /* Create an ELF linker hash table. */
7128
7129 struct bfd_link_hash_table *
7130 _bfd_elf_link_hash_table_create (bfd *abfd)
7131 {
7132 struct elf_link_hash_table *ret;
7133 bfd_size_type amt = sizeof (struct elf_link_hash_table);
7134
7135 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7136 if (ret == NULL)
7137 return NULL;
7138
7139 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7140 sizeof (struct elf_link_hash_entry),
7141 GENERIC_ELF_DATA))
7142 {
7143 free (ret);
7144 return NULL;
7145 }
7146 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7147
7148 return &ret->root;
7149 }
7150
7151 /* Destroy an ELF linker hash table. */
7152
7153 void
7154 _bfd_elf_link_hash_table_free (bfd *obfd)
7155 {
7156 struct elf_link_hash_table *htab;
7157
7158 htab = (struct elf_link_hash_table *) obfd->link.hash;
7159 if (htab->dynstr != NULL)
7160 _bfd_elf_strtab_free (htab->dynstr);
7161 _bfd_merge_sections_free (htab->merge_info);
7162 _bfd_generic_link_hash_table_free (obfd);
7163 }
7164
7165 /* This is a hook for the ELF emulation code in the generic linker to
7166 tell the backend linker what file name to use for the DT_NEEDED
7167 entry for a dynamic object. */
7168
7169 void
7170 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7171 {
7172 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7173 && bfd_get_format (abfd) == bfd_object)
7174 elf_dt_name (abfd) = name;
7175 }
7176
7177 int
7178 bfd_elf_get_dyn_lib_class (bfd *abfd)
7179 {
7180 int lib_class;
7181 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7182 && bfd_get_format (abfd) == bfd_object)
7183 lib_class = elf_dyn_lib_class (abfd);
7184 else
7185 lib_class = 0;
7186 return lib_class;
7187 }
7188
7189 void
7190 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7191 {
7192 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7193 && bfd_get_format (abfd) == bfd_object)
7194 elf_dyn_lib_class (abfd) = lib_class;
7195 }
7196
7197 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7198 the linker ELF emulation code. */
7199
7200 struct bfd_link_needed_list *
7201 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7202 struct bfd_link_info *info)
7203 {
7204 if (! is_elf_hash_table (info->hash))
7205 return NULL;
7206 return elf_hash_table (info)->needed;
7207 }
7208
7209 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7210 hook for the linker ELF emulation code. */
7211
7212 struct bfd_link_needed_list *
7213 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7214 struct bfd_link_info *info)
7215 {
7216 if (! is_elf_hash_table (info->hash))
7217 return NULL;
7218 return elf_hash_table (info)->runpath;
7219 }
7220
7221 /* Get the name actually used for a dynamic object for a link. This
7222 is the SONAME entry if there is one. Otherwise, it is the string
7223 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7224
7225 const char *
7226 bfd_elf_get_dt_soname (bfd *abfd)
7227 {
7228 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7229 && bfd_get_format (abfd) == bfd_object)
7230 return elf_dt_name (abfd);
7231 return NULL;
7232 }
7233
7234 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7235 the ELF linker emulation code. */
7236
7237 bfd_boolean
7238 bfd_elf_get_bfd_needed_list (bfd *abfd,
7239 struct bfd_link_needed_list **pneeded)
7240 {
7241 asection *s;
7242 bfd_byte *dynbuf = NULL;
7243 unsigned int elfsec;
7244 unsigned long shlink;
7245 bfd_byte *extdyn, *extdynend;
7246 size_t extdynsize;
7247 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7248
7249 *pneeded = NULL;
7250
7251 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7252 || bfd_get_format (abfd) != bfd_object)
7253 return TRUE;
7254
7255 s = bfd_get_section_by_name (abfd, ".dynamic");
7256 if (s == NULL || s->size == 0)
7257 return TRUE;
7258
7259 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7260 goto error_return;
7261
7262 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7263 if (elfsec == SHN_BAD)
7264 goto error_return;
7265
7266 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7267
7268 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7269 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7270
7271 extdyn = dynbuf;
7272 extdynend = extdyn + s->size;
7273 for (; extdyn < extdynend; extdyn += extdynsize)
7274 {
7275 Elf_Internal_Dyn dyn;
7276
7277 (*swap_dyn_in) (abfd, extdyn, &dyn);
7278
7279 if (dyn.d_tag == DT_NULL)
7280 break;
7281
7282 if (dyn.d_tag == DT_NEEDED)
7283 {
7284 const char *string;
7285 struct bfd_link_needed_list *l;
7286 unsigned int tagv = dyn.d_un.d_val;
7287 bfd_size_type amt;
7288
7289 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7290 if (string == NULL)
7291 goto error_return;
7292
7293 amt = sizeof *l;
7294 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7295 if (l == NULL)
7296 goto error_return;
7297
7298 l->by = abfd;
7299 l->name = string;
7300 l->next = *pneeded;
7301 *pneeded = l;
7302 }
7303 }
7304
7305 free (dynbuf);
7306
7307 return TRUE;
7308
7309 error_return:
7310 if (dynbuf != NULL)
7311 free (dynbuf);
7312 return FALSE;
7313 }
7314
7315 struct elf_symbuf_symbol
7316 {
7317 unsigned long st_name; /* Symbol name, index in string tbl */
7318 unsigned char st_info; /* Type and binding attributes */
7319 unsigned char st_other; /* Visibilty, and target specific */
7320 };
7321
7322 struct elf_symbuf_head
7323 {
7324 struct elf_symbuf_symbol *ssym;
7325 size_t count;
7326 unsigned int st_shndx;
7327 };
7328
7329 struct elf_symbol
7330 {
7331 union
7332 {
7333 Elf_Internal_Sym *isym;
7334 struct elf_symbuf_symbol *ssym;
7335 } u;
7336 const char *name;
7337 };
7338
7339 /* Sort references to symbols by ascending section number. */
7340
7341 static int
7342 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7343 {
7344 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7345 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7346
7347 return s1->st_shndx - s2->st_shndx;
7348 }
7349
7350 static int
7351 elf_sym_name_compare (const void *arg1, const void *arg2)
7352 {
7353 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7354 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7355 return strcmp (s1->name, s2->name);
7356 }
7357
7358 static struct elf_symbuf_head *
7359 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
7360 {
7361 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7362 struct elf_symbuf_symbol *ssym;
7363 struct elf_symbuf_head *ssymbuf, *ssymhead;
7364 size_t i, shndx_count, total_size;
7365
7366 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7367 if (indbuf == NULL)
7368 return NULL;
7369
7370 for (ind = indbuf, i = 0; i < symcount; i++)
7371 if (isymbuf[i].st_shndx != SHN_UNDEF)
7372 *ind++ = &isymbuf[i];
7373 indbufend = ind;
7374
7375 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7376 elf_sort_elf_symbol);
7377
7378 shndx_count = 0;
7379 if (indbufend > indbuf)
7380 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7381 if (ind[0]->st_shndx != ind[1]->st_shndx)
7382 shndx_count++;
7383
7384 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7385 + (indbufend - indbuf) * sizeof (*ssym));
7386 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7387 if (ssymbuf == NULL)
7388 {
7389 free (indbuf);
7390 return NULL;
7391 }
7392
7393 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7394 ssymbuf->ssym = NULL;
7395 ssymbuf->count = shndx_count;
7396 ssymbuf->st_shndx = 0;
7397 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7398 {
7399 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7400 {
7401 ssymhead++;
7402 ssymhead->ssym = ssym;
7403 ssymhead->count = 0;
7404 ssymhead->st_shndx = (*ind)->st_shndx;
7405 }
7406 ssym->st_name = (*ind)->st_name;
7407 ssym->st_info = (*ind)->st_info;
7408 ssym->st_other = (*ind)->st_other;
7409 ssymhead->count++;
7410 }
7411 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
7412 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7413 == total_size));
7414
7415 free (indbuf);
7416 return ssymbuf;
7417 }
7418
7419 /* Check if 2 sections define the same set of local and global
7420 symbols. */
7421
7422 static bfd_boolean
7423 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7424 struct bfd_link_info *info)
7425 {
7426 bfd *bfd1, *bfd2;
7427 const struct elf_backend_data *bed1, *bed2;
7428 Elf_Internal_Shdr *hdr1, *hdr2;
7429 size_t symcount1, symcount2;
7430 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7431 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7432 Elf_Internal_Sym *isym, *isymend;
7433 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7434 size_t count1, count2, i;
7435 unsigned int shndx1, shndx2;
7436 bfd_boolean result;
7437
7438 bfd1 = sec1->owner;
7439 bfd2 = sec2->owner;
7440
7441 /* Both sections have to be in ELF. */
7442 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7443 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7444 return FALSE;
7445
7446 if (elf_section_type (sec1) != elf_section_type (sec2))
7447 return FALSE;
7448
7449 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7450 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7451 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7452 return FALSE;
7453
7454 bed1 = get_elf_backend_data (bfd1);
7455 bed2 = get_elf_backend_data (bfd2);
7456 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7457 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7458 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7459 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7460
7461 if (symcount1 == 0 || symcount2 == 0)
7462 return FALSE;
7463
7464 result = FALSE;
7465 isymbuf1 = NULL;
7466 isymbuf2 = NULL;
7467 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7468 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7469
7470 if (ssymbuf1 == NULL)
7471 {
7472 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7473 NULL, NULL, NULL);
7474 if (isymbuf1 == NULL)
7475 goto done;
7476
7477 if (!info->reduce_memory_overheads)
7478 elf_tdata (bfd1)->symbuf = ssymbuf1
7479 = elf_create_symbuf (symcount1, isymbuf1);
7480 }
7481
7482 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7483 {
7484 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7485 NULL, NULL, NULL);
7486 if (isymbuf2 == NULL)
7487 goto done;
7488
7489 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7490 elf_tdata (bfd2)->symbuf = ssymbuf2
7491 = elf_create_symbuf (symcount2, isymbuf2);
7492 }
7493
7494 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7495 {
7496 /* Optimized faster version. */
7497 size_t lo, hi, mid;
7498 struct elf_symbol *symp;
7499 struct elf_symbuf_symbol *ssym, *ssymend;
7500
7501 lo = 0;
7502 hi = ssymbuf1->count;
7503 ssymbuf1++;
7504 count1 = 0;
7505 while (lo < hi)
7506 {
7507 mid = (lo + hi) / 2;
7508 if (shndx1 < ssymbuf1[mid].st_shndx)
7509 hi = mid;
7510 else if (shndx1 > ssymbuf1[mid].st_shndx)
7511 lo = mid + 1;
7512 else
7513 {
7514 count1 = ssymbuf1[mid].count;
7515 ssymbuf1 += mid;
7516 break;
7517 }
7518 }
7519
7520 lo = 0;
7521 hi = ssymbuf2->count;
7522 ssymbuf2++;
7523 count2 = 0;
7524 while (lo < hi)
7525 {
7526 mid = (lo + hi) / 2;
7527 if (shndx2 < ssymbuf2[mid].st_shndx)
7528 hi = mid;
7529 else if (shndx2 > ssymbuf2[mid].st_shndx)
7530 lo = mid + 1;
7531 else
7532 {
7533 count2 = ssymbuf2[mid].count;
7534 ssymbuf2 += mid;
7535 break;
7536 }
7537 }
7538
7539 if (count1 == 0 || count2 == 0 || count1 != count2)
7540 goto done;
7541
7542 symtable1
7543 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7544 symtable2
7545 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7546 if (symtable1 == NULL || symtable2 == NULL)
7547 goto done;
7548
7549 symp = symtable1;
7550 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7551 ssym < ssymend; ssym++, symp++)
7552 {
7553 symp->u.ssym = ssym;
7554 symp->name = bfd_elf_string_from_elf_section (bfd1,
7555 hdr1->sh_link,
7556 ssym->st_name);
7557 }
7558
7559 symp = symtable2;
7560 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7561 ssym < ssymend; ssym++, symp++)
7562 {
7563 symp->u.ssym = ssym;
7564 symp->name = bfd_elf_string_from_elf_section (bfd2,
7565 hdr2->sh_link,
7566 ssym->st_name);
7567 }
7568
7569 /* Sort symbol by name. */
7570 qsort (symtable1, count1, sizeof (struct elf_symbol),
7571 elf_sym_name_compare);
7572 qsort (symtable2, count1, sizeof (struct elf_symbol),
7573 elf_sym_name_compare);
7574
7575 for (i = 0; i < count1; i++)
7576 /* Two symbols must have the same binding, type and name. */
7577 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7578 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7579 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7580 goto done;
7581
7582 result = TRUE;
7583 goto done;
7584 }
7585
7586 symtable1 = (struct elf_symbol *)
7587 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7588 symtable2 = (struct elf_symbol *)
7589 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7590 if (symtable1 == NULL || symtable2 == NULL)
7591 goto done;
7592
7593 /* Count definitions in the section. */
7594 count1 = 0;
7595 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7596 if (isym->st_shndx == shndx1)
7597 symtable1[count1++].u.isym = isym;
7598
7599 count2 = 0;
7600 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7601 if (isym->st_shndx == shndx2)
7602 symtable2[count2++].u.isym = isym;
7603
7604 if (count1 == 0 || count2 == 0 || count1 != count2)
7605 goto done;
7606
7607 for (i = 0; i < count1; i++)
7608 symtable1[i].name
7609 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7610 symtable1[i].u.isym->st_name);
7611
7612 for (i = 0; i < count2; i++)
7613 symtable2[i].name
7614 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7615 symtable2[i].u.isym->st_name);
7616
7617 /* Sort symbol by name. */
7618 qsort (symtable1, count1, sizeof (struct elf_symbol),
7619 elf_sym_name_compare);
7620 qsort (symtable2, count1, sizeof (struct elf_symbol),
7621 elf_sym_name_compare);
7622
7623 for (i = 0; i < count1; i++)
7624 /* Two symbols must have the same binding, type and name. */
7625 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7626 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7627 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7628 goto done;
7629
7630 result = TRUE;
7631
7632 done:
7633 if (symtable1)
7634 free (symtable1);
7635 if (symtable2)
7636 free (symtable2);
7637 if (isymbuf1)
7638 free (isymbuf1);
7639 if (isymbuf2)
7640 free (isymbuf2);
7641
7642 return result;
7643 }
7644
7645 /* Return TRUE if 2 section types are compatible. */
7646
7647 bfd_boolean
7648 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7649 bfd *bbfd, const asection *bsec)
7650 {
7651 if (asec == NULL
7652 || bsec == NULL
7653 || abfd->xvec->flavour != bfd_target_elf_flavour
7654 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7655 return TRUE;
7656
7657 return elf_section_type (asec) == elf_section_type (bsec);
7658 }
7659 \f
7660 /* Final phase of ELF linker. */
7661
7662 /* A structure we use to avoid passing large numbers of arguments. */
7663
7664 struct elf_final_link_info
7665 {
7666 /* General link information. */
7667 struct bfd_link_info *info;
7668 /* Output BFD. */
7669 bfd *output_bfd;
7670 /* Symbol string table. */
7671 struct elf_strtab_hash *symstrtab;
7672 /* .hash section. */
7673 asection *hash_sec;
7674 /* symbol version section (.gnu.version). */
7675 asection *symver_sec;
7676 /* Buffer large enough to hold contents of any section. */
7677 bfd_byte *contents;
7678 /* Buffer large enough to hold external relocs of any section. */
7679 void *external_relocs;
7680 /* Buffer large enough to hold internal relocs of any section. */
7681 Elf_Internal_Rela *internal_relocs;
7682 /* Buffer large enough to hold external local symbols of any input
7683 BFD. */
7684 bfd_byte *external_syms;
7685 /* And a buffer for symbol section indices. */
7686 Elf_External_Sym_Shndx *locsym_shndx;
7687 /* Buffer large enough to hold internal local symbols of any input
7688 BFD. */
7689 Elf_Internal_Sym *internal_syms;
7690 /* Array large enough to hold a symbol index for each local symbol
7691 of any input BFD. */
7692 long *indices;
7693 /* Array large enough to hold a section pointer for each local
7694 symbol of any input BFD. */
7695 asection **sections;
7696 /* Buffer for SHT_SYMTAB_SHNDX section. */
7697 Elf_External_Sym_Shndx *symshndxbuf;
7698 /* Number of STT_FILE syms seen. */
7699 size_t filesym_count;
7700 };
7701
7702 /* This struct is used to pass information to elf_link_output_extsym. */
7703
7704 struct elf_outext_info
7705 {
7706 bfd_boolean failed;
7707 bfd_boolean localsyms;
7708 bfd_boolean file_sym_done;
7709 struct elf_final_link_info *flinfo;
7710 };
7711
7712
7713 /* Support for evaluating a complex relocation.
7714
7715 Complex relocations are generalized, self-describing relocations. The
7716 implementation of them consists of two parts: complex symbols, and the
7717 relocations themselves.
7718
7719 The relocations are use a reserved elf-wide relocation type code (R_RELC
7720 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7721 information (start bit, end bit, word width, etc) into the addend. This
7722 information is extracted from CGEN-generated operand tables within gas.
7723
7724 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7725 internal) representing prefix-notation expressions, including but not
7726 limited to those sorts of expressions normally encoded as addends in the
7727 addend field. The symbol mangling format is:
7728
7729 <node> := <literal>
7730 | <unary-operator> ':' <node>
7731 | <binary-operator> ':' <node> ':' <node>
7732 ;
7733
7734 <literal> := 's' <digits=N> ':' <N character symbol name>
7735 | 'S' <digits=N> ':' <N character section name>
7736 | '#' <hexdigits>
7737 ;
7738
7739 <binary-operator> := as in C
7740 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7741
7742 static void
7743 set_symbol_value (bfd *bfd_with_globals,
7744 Elf_Internal_Sym *isymbuf,
7745 size_t locsymcount,
7746 size_t symidx,
7747 bfd_vma val)
7748 {
7749 struct elf_link_hash_entry **sym_hashes;
7750 struct elf_link_hash_entry *h;
7751 size_t extsymoff = locsymcount;
7752
7753 if (symidx < locsymcount)
7754 {
7755 Elf_Internal_Sym *sym;
7756
7757 sym = isymbuf + symidx;
7758 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7759 {
7760 /* It is a local symbol: move it to the
7761 "absolute" section and give it a value. */
7762 sym->st_shndx = SHN_ABS;
7763 sym->st_value = val;
7764 return;
7765 }
7766 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7767 extsymoff = 0;
7768 }
7769
7770 /* It is a global symbol: set its link type
7771 to "defined" and give it a value. */
7772
7773 sym_hashes = elf_sym_hashes (bfd_with_globals);
7774 h = sym_hashes [symidx - extsymoff];
7775 while (h->root.type == bfd_link_hash_indirect
7776 || h->root.type == bfd_link_hash_warning)
7777 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7778 h->root.type = bfd_link_hash_defined;
7779 h->root.u.def.value = val;
7780 h->root.u.def.section = bfd_abs_section_ptr;
7781 }
7782
7783 static bfd_boolean
7784 resolve_symbol (const char *name,
7785 bfd *input_bfd,
7786 struct elf_final_link_info *flinfo,
7787 bfd_vma *result,
7788 Elf_Internal_Sym *isymbuf,
7789 size_t locsymcount)
7790 {
7791 Elf_Internal_Sym *sym;
7792 struct bfd_link_hash_entry *global_entry;
7793 const char *candidate = NULL;
7794 Elf_Internal_Shdr *symtab_hdr;
7795 size_t i;
7796
7797 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7798
7799 for (i = 0; i < locsymcount; ++ i)
7800 {
7801 sym = isymbuf + i;
7802
7803 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7804 continue;
7805
7806 candidate = bfd_elf_string_from_elf_section (input_bfd,
7807 symtab_hdr->sh_link,
7808 sym->st_name);
7809 #ifdef DEBUG
7810 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7811 name, candidate, (unsigned long) sym->st_value);
7812 #endif
7813 if (candidate && strcmp (candidate, name) == 0)
7814 {
7815 asection *sec = flinfo->sections [i];
7816
7817 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7818 *result += sec->output_offset + sec->output_section->vma;
7819 #ifdef DEBUG
7820 printf ("Found symbol with value %8.8lx\n",
7821 (unsigned long) *result);
7822 #endif
7823 return TRUE;
7824 }
7825 }
7826
7827 /* Hmm, haven't found it yet. perhaps it is a global. */
7828 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7829 FALSE, FALSE, TRUE);
7830 if (!global_entry)
7831 return FALSE;
7832
7833 if (global_entry->type == bfd_link_hash_defined
7834 || global_entry->type == bfd_link_hash_defweak)
7835 {
7836 *result = (global_entry->u.def.value
7837 + global_entry->u.def.section->output_section->vma
7838 + global_entry->u.def.section->output_offset);
7839 #ifdef DEBUG
7840 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7841 global_entry->root.string, (unsigned long) *result);
7842 #endif
7843 return TRUE;
7844 }
7845
7846 return FALSE;
7847 }
7848
7849 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
7850 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
7851 names like "foo.end" which is the end address of section "foo". */
7852
7853 static bfd_boolean
7854 resolve_section (const char *name,
7855 asection *sections,
7856 bfd_vma *result,
7857 bfd * abfd)
7858 {
7859 asection *curr;
7860 unsigned int len;
7861
7862 for (curr = sections; curr; curr = curr->next)
7863 if (strcmp (curr->name, name) == 0)
7864 {
7865 *result = curr->vma;
7866 return TRUE;
7867 }
7868
7869 /* Hmm. still haven't found it. try pseudo-section names. */
7870 /* FIXME: This could be coded more efficiently... */
7871 for (curr = sections; curr; curr = curr->next)
7872 {
7873 len = strlen (curr->name);
7874 if (len > strlen (name))
7875 continue;
7876
7877 if (strncmp (curr->name, name, len) == 0)
7878 {
7879 if (strncmp (".end", name + len, 4) == 0)
7880 {
7881 *result = curr->vma + curr->size / bfd_octets_per_byte (abfd);
7882 return TRUE;
7883 }
7884
7885 /* Insert more pseudo-section names here, if you like. */
7886 }
7887 }
7888
7889 return FALSE;
7890 }
7891
7892 static void
7893 undefined_reference (const char *reftype, const char *name)
7894 {
7895 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7896 reftype, name);
7897 }
7898
7899 static bfd_boolean
7900 eval_symbol (bfd_vma *result,
7901 const char **symp,
7902 bfd *input_bfd,
7903 struct elf_final_link_info *flinfo,
7904 bfd_vma dot,
7905 Elf_Internal_Sym *isymbuf,
7906 size_t locsymcount,
7907 int signed_p)
7908 {
7909 size_t len;
7910 size_t symlen;
7911 bfd_vma a;
7912 bfd_vma b;
7913 char symbuf[4096];
7914 const char *sym = *symp;
7915 const char *symend;
7916 bfd_boolean symbol_is_section = FALSE;
7917
7918 len = strlen (sym);
7919 symend = sym + len;
7920
7921 if (len < 1 || len > sizeof (symbuf))
7922 {
7923 bfd_set_error (bfd_error_invalid_operation);
7924 return FALSE;
7925 }
7926
7927 switch (* sym)
7928 {
7929 case '.':
7930 *result = dot;
7931 *symp = sym + 1;
7932 return TRUE;
7933
7934 case '#':
7935 ++sym;
7936 *result = strtoul (sym, (char **) symp, 16);
7937 return TRUE;
7938
7939 case 'S':
7940 symbol_is_section = TRUE;
7941 case 's':
7942 ++sym;
7943 symlen = strtol (sym, (char **) symp, 10);
7944 sym = *symp + 1; /* Skip the trailing ':'. */
7945
7946 if (symend < sym || symlen + 1 > sizeof (symbuf))
7947 {
7948 bfd_set_error (bfd_error_invalid_operation);
7949 return FALSE;
7950 }
7951
7952 memcpy (symbuf, sym, symlen);
7953 symbuf[symlen] = '\0';
7954 *symp = sym + symlen;
7955
7956 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7957 the symbol as a section, or vice-versa. so we're pretty liberal in our
7958 interpretation here; section means "try section first", not "must be a
7959 section", and likewise with symbol. */
7960
7961 if (symbol_is_section)
7962 {
7963 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
7964 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7965 isymbuf, locsymcount))
7966 {
7967 undefined_reference ("section", symbuf);
7968 return FALSE;
7969 }
7970 }
7971 else
7972 {
7973 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7974 isymbuf, locsymcount)
7975 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7976 result, input_bfd))
7977 {
7978 undefined_reference ("symbol", symbuf);
7979 return FALSE;
7980 }
7981 }
7982
7983 return TRUE;
7984
7985 /* All that remains are operators. */
7986
7987 #define UNARY_OP(op) \
7988 if (strncmp (sym, #op, strlen (#op)) == 0) \
7989 { \
7990 sym += strlen (#op); \
7991 if (*sym == ':') \
7992 ++sym; \
7993 *symp = sym; \
7994 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7995 isymbuf, locsymcount, signed_p)) \
7996 return FALSE; \
7997 if (signed_p) \
7998 *result = op ((bfd_signed_vma) a); \
7999 else \
8000 *result = op a; \
8001 return TRUE; \
8002 }
8003
8004 #define BINARY_OP(op) \
8005 if (strncmp (sym, #op, strlen (#op)) == 0) \
8006 { \
8007 sym += strlen (#op); \
8008 if (*sym == ':') \
8009 ++sym; \
8010 *symp = sym; \
8011 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8012 isymbuf, locsymcount, signed_p)) \
8013 return FALSE; \
8014 ++*symp; \
8015 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8016 isymbuf, locsymcount, signed_p)) \
8017 return FALSE; \
8018 if (signed_p) \
8019 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8020 else \
8021 *result = a op b; \
8022 return TRUE; \
8023 }
8024
8025 default:
8026 UNARY_OP (0-);
8027 BINARY_OP (<<);
8028 BINARY_OP (>>);
8029 BINARY_OP (==);
8030 BINARY_OP (!=);
8031 BINARY_OP (<=);
8032 BINARY_OP (>=);
8033 BINARY_OP (&&);
8034 BINARY_OP (||);
8035 UNARY_OP (~);
8036 UNARY_OP (!);
8037 BINARY_OP (*);
8038 BINARY_OP (/);
8039 BINARY_OP (%);
8040 BINARY_OP (^);
8041 BINARY_OP (|);
8042 BINARY_OP (&);
8043 BINARY_OP (+);
8044 BINARY_OP (-);
8045 BINARY_OP (<);
8046 BINARY_OP (>);
8047 #undef UNARY_OP
8048 #undef BINARY_OP
8049 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8050 bfd_set_error (bfd_error_invalid_operation);
8051 return FALSE;
8052 }
8053 }
8054
8055 static void
8056 put_value (bfd_vma size,
8057 unsigned long chunksz,
8058 bfd *input_bfd,
8059 bfd_vma x,
8060 bfd_byte *location)
8061 {
8062 location += (size - chunksz);
8063
8064 for (; size; size -= chunksz, location -= chunksz)
8065 {
8066 switch (chunksz)
8067 {
8068 case 1:
8069 bfd_put_8 (input_bfd, x, location);
8070 x >>= 8;
8071 break;
8072 case 2:
8073 bfd_put_16 (input_bfd, x, location);
8074 x >>= 16;
8075 break;
8076 case 4:
8077 bfd_put_32 (input_bfd, x, location);
8078 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8079 x >>= 16;
8080 x >>= 16;
8081 break;
8082 #ifdef BFD64
8083 case 8:
8084 bfd_put_64 (input_bfd, x, location);
8085 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8086 x >>= 32;
8087 x >>= 32;
8088 break;
8089 #endif
8090 default:
8091 abort ();
8092 break;
8093 }
8094 }
8095 }
8096
8097 static bfd_vma
8098 get_value (bfd_vma size,
8099 unsigned long chunksz,
8100 bfd *input_bfd,
8101 bfd_byte *location)
8102 {
8103 int shift;
8104 bfd_vma x = 0;
8105
8106 /* Sanity checks. */
8107 BFD_ASSERT (chunksz <= sizeof (x)
8108 && size >= chunksz
8109 && chunksz != 0
8110 && (size % chunksz) == 0
8111 && input_bfd != NULL
8112 && location != NULL);
8113
8114 if (chunksz == sizeof (x))
8115 {
8116 BFD_ASSERT (size == chunksz);
8117
8118 /* Make sure that we do not perform an undefined shift operation.
8119 We know that size == chunksz so there will only be one iteration
8120 of the loop below. */
8121 shift = 0;
8122 }
8123 else
8124 shift = 8 * chunksz;
8125
8126 for (; size; size -= chunksz, location += chunksz)
8127 {
8128 switch (chunksz)
8129 {
8130 case 1:
8131 x = (x << shift) | bfd_get_8 (input_bfd, location);
8132 break;
8133 case 2:
8134 x = (x << shift) | bfd_get_16 (input_bfd, location);
8135 break;
8136 case 4:
8137 x = (x << shift) | bfd_get_32 (input_bfd, location);
8138 break;
8139 #ifdef BFD64
8140 case 8:
8141 x = (x << shift) | bfd_get_64 (input_bfd, location);
8142 break;
8143 #endif
8144 default:
8145 abort ();
8146 }
8147 }
8148 return x;
8149 }
8150
8151 static void
8152 decode_complex_addend (unsigned long *start, /* in bits */
8153 unsigned long *oplen, /* in bits */
8154 unsigned long *len, /* in bits */
8155 unsigned long *wordsz, /* in bytes */
8156 unsigned long *chunksz, /* in bytes */
8157 unsigned long *lsb0_p,
8158 unsigned long *signed_p,
8159 unsigned long *trunc_p,
8160 unsigned long encoded)
8161 {
8162 * start = encoded & 0x3F;
8163 * len = (encoded >> 6) & 0x3F;
8164 * oplen = (encoded >> 12) & 0x3F;
8165 * wordsz = (encoded >> 18) & 0xF;
8166 * chunksz = (encoded >> 22) & 0xF;
8167 * lsb0_p = (encoded >> 27) & 1;
8168 * signed_p = (encoded >> 28) & 1;
8169 * trunc_p = (encoded >> 29) & 1;
8170 }
8171
8172 bfd_reloc_status_type
8173 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8174 asection *input_section ATTRIBUTE_UNUSED,
8175 bfd_byte *contents,
8176 Elf_Internal_Rela *rel,
8177 bfd_vma relocation)
8178 {
8179 bfd_vma shift, x, mask;
8180 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8181 bfd_reloc_status_type r;
8182
8183 /* Perform this reloc, since it is complex.
8184 (this is not to say that it necessarily refers to a complex
8185 symbol; merely that it is a self-describing CGEN based reloc.
8186 i.e. the addend has the complete reloc information (bit start, end,
8187 word size, etc) encoded within it.). */
8188
8189 decode_complex_addend (&start, &oplen, &len, &wordsz,
8190 &chunksz, &lsb0_p, &signed_p,
8191 &trunc_p, rel->r_addend);
8192
8193 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8194
8195 if (lsb0_p)
8196 shift = (start + 1) - len;
8197 else
8198 shift = (8 * wordsz) - (start + len);
8199
8200 x = get_value (wordsz, chunksz, input_bfd,
8201 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8202
8203 #ifdef DEBUG
8204 printf ("Doing complex reloc: "
8205 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8206 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8207 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8208 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8209 oplen, (unsigned long) x, (unsigned long) mask,
8210 (unsigned long) relocation);
8211 #endif
8212
8213 r = bfd_reloc_ok;
8214 if (! trunc_p)
8215 /* Now do an overflow check. */
8216 r = bfd_check_overflow ((signed_p
8217 ? complain_overflow_signed
8218 : complain_overflow_unsigned),
8219 len, 0, (8 * wordsz),
8220 relocation);
8221
8222 /* Do the deed. */
8223 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8224
8225 #ifdef DEBUG
8226 printf (" relocation: %8.8lx\n"
8227 " shifted mask: %8.8lx\n"
8228 " shifted/masked reloc: %8.8lx\n"
8229 " result: %8.8lx\n",
8230 (unsigned long) relocation, (unsigned long) (mask << shift),
8231 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8232 #endif
8233 put_value (wordsz, chunksz, input_bfd, x,
8234 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8235 return r;
8236 }
8237
8238 /* Functions to read r_offset from external (target order) reloc
8239 entry. Faster than bfd_getl32 et al, because we let the compiler
8240 know the value is aligned. */
8241
8242 static bfd_vma
8243 ext32l_r_offset (const void *p)
8244 {
8245 union aligned32
8246 {
8247 uint32_t v;
8248 unsigned char c[4];
8249 };
8250 const union aligned32 *a
8251 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8252
8253 uint32_t aval = ( (uint32_t) a->c[0]
8254 | (uint32_t) a->c[1] << 8
8255 | (uint32_t) a->c[2] << 16
8256 | (uint32_t) a->c[3] << 24);
8257 return aval;
8258 }
8259
8260 static bfd_vma
8261 ext32b_r_offset (const void *p)
8262 {
8263 union aligned32
8264 {
8265 uint32_t v;
8266 unsigned char c[4];
8267 };
8268 const union aligned32 *a
8269 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8270
8271 uint32_t aval = ( (uint32_t) a->c[0] << 24
8272 | (uint32_t) a->c[1] << 16
8273 | (uint32_t) a->c[2] << 8
8274 | (uint32_t) a->c[3]);
8275 return aval;
8276 }
8277
8278 #ifdef BFD_HOST_64_BIT
8279 static bfd_vma
8280 ext64l_r_offset (const void *p)
8281 {
8282 union aligned64
8283 {
8284 uint64_t v;
8285 unsigned char c[8];
8286 };
8287 const union aligned64 *a
8288 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8289
8290 uint64_t aval = ( (uint64_t) a->c[0]
8291 | (uint64_t) a->c[1] << 8
8292 | (uint64_t) a->c[2] << 16
8293 | (uint64_t) a->c[3] << 24
8294 | (uint64_t) a->c[4] << 32
8295 | (uint64_t) a->c[5] << 40
8296 | (uint64_t) a->c[6] << 48
8297 | (uint64_t) a->c[7] << 56);
8298 return aval;
8299 }
8300
8301 static bfd_vma
8302 ext64b_r_offset (const void *p)
8303 {
8304 union aligned64
8305 {
8306 uint64_t v;
8307 unsigned char c[8];
8308 };
8309 const union aligned64 *a
8310 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8311
8312 uint64_t aval = ( (uint64_t) a->c[0] << 56
8313 | (uint64_t) a->c[1] << 48
8314 | (uint64_t) a->c[2] << 40
8315 | (uint64_t) a->c[3] << 32
8316 | (uint64_t) a->c[4] << 24
8317 | (uint64_t) a->c[5] << 16
8318 | (uint64_t) a->c[6] << 8
8319 | (uint64_t) a->c[7]);
8320 return aval;
8321 }
8322 #endif
8323
8324 /* When performing a relocatable link, the input relocations are
8325 preserved. But, if they reference global symbols, the indices
8326 referenced must be updated. Update all the relocations found in
8327 RELDATA. */
8328
8329 static bfd_boolean
8330 elf_link_adjust_relocs (bfd *abfd,
8331 struct bfd_elf_section_reloc_data *reldata,
8332 bfd_boolean sort)
8333 {
8334 unsigned int i;
8335 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8336 bfd_byte *erela;
8337 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8338 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8339 bfd_vma r_type_mask;
8340 int r_sym_shift;
8341 unsigned int count = reldata->count;
8342 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8343
8344 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8345 {
8346 swap_in = bed->s->swap_reloc_in;
8347 swap_out = bed->s->swap_reloc_out;
8348 }
8349 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8350 {
8351 swap_in = bed->s->swap_reloca_in;
8352 swap_out = bed->s->swap_reloca_out;
8353 }
8354 else
8355 abort ();
8356
8357 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8358 abort ();
8359
8360 if (bed->s->arch_size == 32)
8361 {
8362 r_type_mask = 0xff;
8363 r_sym_shift = 8;
8364 }
8365 else
8366 {
8367 r_type_mask = 0xffffffff;
8368 r_sym_shift = 32;
8369 }
8370
8371 erela = reldata->hdr->contents;
8372 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8373 {
8374 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8375 unsigned int j;
8376
8377 if (*rel_hash == NULL)
8378 continue;
8379
8380 BFD_ASSERT ((*rel_hash)->indx >= 0);
8381
8382 (*swap_in) (abfd, erela, irela);
8383 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8384 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8385 | (irela[j].r_info & r_type_mask));
8386 (*swap_out) (abfd, irela, erela);
8387 }
8388
8389 if (sort && count != 0)
8390 {
8391 bfd_vma (*ext_r_off) (const void *);
8392 bfd_vma r_off;
8393 size_t elt_size;
8394 bfd_byte *base, *end, *p, *loc;
8395 bfd_byte *buf = NULL;
8396
8397 if (bed->s->arch_size == 32)
8398 {
8399 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8400 ext_r_off = ext32l_r_offset;
8401 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8402 ext_r_off = ext32b_r_offset;
8403 else
8404 abort ();
8405 }
8406 else
8407 {
8408 #ifdef BFD_HOST_64_BIT
8409 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8410 ext_r_off = ext64l_r_offset;
8411 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8412 ext_r_off = ext64b_r_offset;
8413 else
8414 #endif
8415 abort ();
8416 }
8417
8418 /* Must use a stable sort here. A modified insertion sort,
8419 since the relocs are mostly sorted already. */
8420 elt_size = reldata->hdr->sh_entsize;
8421 base = reldata->hdr->contents;
8422 end = base + count * elt_size;
8423 if (elt_size > sizeof (Elf64_External_Rela))
8424 abort ();
8425
8426 /* Ensure the first element is lowest. This acts as a sentinel,
8427 speeding the main loop below. */
8428 r_off = (*ext_r_off) (base);
8429 for (p = loc = base; (p += elt_size) < end; )
8430 {
8431 bfd_vma r_off2 = (*ext_r_off) (p);
8432 if (r_off > r_off2)
8433 {
8434 r_off = r_off2;
8435 loc = p;
8436 }
8437 }
8438 if (loc != base)
8439 {
8440 /* Don't just swap *base and *loc as that changes the order
8441 of the original base[0] and base[1] if they happen to
8442 have the same r_offset. */
8443 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
8444 memcpy (onebuf, loc, elt_size);
8445 memmove (base + elt_size, base, loc - base);
8446 memcpy (base, onebuf, elt_size);
8447 }
8448
8449 for (p = base + elt_size; (p += elt_size) < end; )
8450 {
8451 /* base to p is sorted, *p is next to insert. */
8452 r_off = (*ext_r_off) (p);
8453 /* Search the sorted region for location to insert. */
8454 loc = p - elt_size;
8455 while (r_off < (*ext_r_off) (loc))
8456 loc -= elt_size;
8457 loc += elt_size;
8458 if (loc != p)
8459 {
8460 /* Chances are there is a run of relocs to insert here,
8461 from one of more input files. Files are not always
8462 linked in order due to the way elf_link_input_bfd is
8463 called. See pr17666. */
8464 size_t sortlen = p - loc;
8465 bfd_vma r_off2 = (*ext_r_off) (loc);
8466 size_t runlen = elt_size;
8467 size_t buf_size = 96 * 1024;
8468 while (p + runlen < end
8469 && (sortlen <= buf_size
8470 || runlen + elt_size <= buf_size)
8471 && r_off2 > (*ext_r_off) (p + runlen))
8472 runlen += elt_size;
8473 if (buf == NULL)
8474 {
8475 buf = bfd_malloc (buf_size);
8476 if (buf == NULL)
8477 return FALSE;
8478 }
8479 if (runlen < sortlen)
8480 {
8481 memcpy (buf, p, runlen);
8482 memmove (loc + runlen, loc, sortlen);
8483 memcpy (loc, buf, runlen);
8484 }
8485 else
8486 {
8487 memcpy (buf, loc, sortlen);
8488 memmove (loc, p, runlen);
8489 memcpy (loc + runlen, buf, sortlen);
8490 }
8491 p += runlen - elt_size;
8492 }
8493 }
8494 /* Hashes are no longer valid. */
8495 free (reldata->hashes);
8496 reldata->hashes = NULL;
8497 free (buf);
8498 }
8499 return TRUE;
8500 }
8501
8502 struct elf_link_sort_rela
8503 {
8504 union {
8505 bfd_vma offset;
8506 bfd_vma sym_mask;
8507 } u;
8508 enum elf_reloc_type_class type;
8509 /* We use this as an array of size int_rels_per_ext_rel. */
8510 Elf_Internal_Rela rela[1];
8511 };
8512
8513 static int
8514 elf_link_sort_cmp1 (const void *A, const void *B)
8515 {
8516 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8517 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8518 int relativea, relativeb;
8519
8520 relativea = a->type == reloc_class_relative;
8521 relativeb = b->type == reloc_class_relative;
8522
8523 if (relativea < relativeb)
8524 return 1;
8525 if (relativea > relativeb)
8526 return -1;
8527 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8528 return -1;
8529 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8530 return 1;
8531 if (a->rela->r_offset < b->rela->r_offset)
8532 return -1;
8533 if (a->rela->r_offset > b->rela->r_offset)
8534 return 1;
8535 return 0;
8536 }
8537
8538 static int
8539 elf_link_sort_cmp2 (const void *A, const void *B)
8540 {
8541 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8542 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8543
8544 if (a->type < b->type)
8545 return -1;
8546 if (a->type > b->type)
8547 return 1;
8548 if (a->u.offset < b->u.offset)
8549 return -1;
8550 if (a->u.offset > b->u.offset)
8551 return 1;
8552 if (a->rela->r_offset < b->rela->r_offset)
8553 return -1;
8554 if (a->rela->r_offset > b->rela->r_offset)
8555 return 1;
8556 return 0;
8557 }
8558
8559 static size_t
8560 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8561 {
8562 asection *dynamic_relocs;
8563 asection *rela_dyn;
8564 asection *rel_dyn;
8565 bfd_size_type count, size;
8566 size_t i, ret, sort_elt, ext_size;
8567 bfd_byte *sort, *s_non_relative, *p;
8568 struct elf_link_sort_rela *sq;
8569 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8570 int i2e = bed->s->int_rels_per_ext_rel;
8571 unsigned int opb = bfd_octets_per_byte (abfd);
8572 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8573 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8574 struct bfd_link_order *lo;
8575 bfd_vma r_sym_mask;
8576 bfd_boolean use_rela;
8577
8578 /* Find a dynamic reloc section. */
8579 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8580 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8581 if (rela_dyn != NULL && rela_dyn->size > 0
8582 && rel_dyn != NULL && rel_dyn->size > 0)
8583 {
8584 bfd_boolean use_rela_initialised = FALSE;
8585
8586 /* This is just here to stop gcc from complaining.
8587 Its initialization checking code is not perfect. */
8588 use_rela = TRUE;
8589
8590 /* Both sections are present. Examine the sizes
8591 of the indirect sections to help us choose. */
8592 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8593 if (lo->type == bfd_indirect_link_order)
8594 {
8595 asection *o = lo->u.indirect.section;
8596
8597 if ((o->size % bed->s->sizeof_rela) == 0)
8598 {
8599 if ((o->size % bed->s->sizeof_rel) == 0)
8600 /* Section size is divisible by both rel and rela sizes.
8601 It is of no help to us. */
8602 ;
8603 else
8604 {
8605 /* Section size is only divisible by rela. */
8606 if (use_rela_initialised && (use_rela == FALSE))
8607 {
8608 _bfd_error_handler (_("%B: Unable to sort relocs - "
8609 "they are in more than one size"),
8610 abfd);
8611 bfd_set_error (bfd_error_invalid_operation);
8612 return 0;
8613 }
8614 else
8615 {
8616 use_rela = TRUE;
8617 use_rela_initialised = TRUE;
8618 }
8619 }
8620 }
8621 else if ((o->size % bed->s->sizeof_rel) == 0)
8622 {
8623 /* Section size is only divisible by rel. */
8624 if (use_rela_initialised && (use_rela == TRUE))
8625 {
8626 _bfd_error_handler (_("%B: Unable to sort relocs - "
8627 "they are in more than one size"),
8628 abfd);
8629 bfd_set_error (bfd_error_invalid_operation);
8630 return 0;
8631 }
8632 else
8633 {
8634 use_rela = FALSE;
8635 use_rela_initialised = TRUE;
8636 }
8637 }
8638 else
8639 {
8640 /* The section size is not divisible by either -
8641 something is wrong. */
8642 _bfd_error_handler (_("%B: Unable to sort relocs - "
8643 "they are of an unknown size"), abfd);
8644 bfd_set_error (bfd_error_invalid_operation);
8645 return 0;
8646 }
8647 }
8648
8649 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8650 if (lo->type == bfd_indirect_link_order)
8651 {
8652 asection *o = lo->u.indirect.section;
8653
8654 if ((o->size % bed->s->sizeof_rela) == 0)
8655 {
8656 if ((o->size % bed->s->sizeof_rel) == 0)
8657 /* Section size is divisible by both rel and rela sizes.
8658 It is of no help to us. */
8659 ;
8660 else
8661 {
8662 /* Section size is only divisible by rela. */
8663 if (use_rela_initialised && (use_rela == FALSE))
8664 {
8665 _bfd_error_handler (_("%B: Unable to sort relocs - "
8666 "they are in more than one size"),
8667 abfd);
8668 bfd_set_error (bfd_error_invalid_operation);
8669 return 0;
8670 }
8671 else
8672 {
8673 use_rela = TRUE;
8674 use_rela_initialised = TRUE;
8675 }
8676 }
8677 }
8678 else if ((o->size % bed->s->sizeof_rel) == 0)
8679 {
8680 /* Section size is only divisible by rel. */
8681 if (use_rela_initialised && (use_rela == TRUE))
8682 {
8683 _bfd_error_handler (_("%B: Unable to sort relocs - "
8684 "they are in more than one size"),
8685 abfd);
8686 bfd_set_error (bfd_error_invalid_operation);
8687 return 0;
8688 }
8689 else
8690 {
8691 use_rela = FALSE;
8692 use_rela_initialised = TRUE;
8693 }
8694 }
8695 else
8696 {
8697 /* The section size is not divisible by either -
8698 something is wrong. */
8699 _bfd_error_handler (_("%B: Unable to sort relocs - "
8700 "they are of an unknown size"), abfd);
8701 bfd_set_error (bfd_error_invalid_operation);
8702 return 0;
8703 }
8704 }
8705
8706 if (! use_rela_initialised)
8707 /* Make a guess. */
8708 use_rela = TRUE;
8709 }
8710 else if (rela_dyn != NULL && rela_dyn->size > 0)
8711 use_rela = TRUE;
8712 else if (rel_dyn != NULL && rel_dyn->size > 0)
8713 use_rela = FALSE;
8714 else
8715 return 0;
8716
8717 if (use_rela)
8718 {
8719 dynamic_relocs = rela_dyn;
8720 ext_size = bed->s->sizeof_rela;
8721 swap_in = bed->s->swap_reloca_in;
8722 swap_out = bed->s->swap_reloca_out;
8723 }
8724 else
8725 {
8726 dynamic_relocs = rel_dyn;
8727 ext_size = bed->s->sizeof_rel;
8728 swap_in = bed->s->swap_reloc_in;
8729 swap_out = bed->s->swap_reloc_out;
8730 }
8731
8732 size = 0;
8733 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8734 if (lo->type == bfd_indirect_link_order)
8735 size += lo->u.indirect.section->size;
8736
8737 if (size != dynamic_relocs->size)
8738 return 0;
8739
8740 sort_elt = (sizeof (struct elf_link_sort_rela)
8741 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8742
8743 count = dynamic_relocs->size / ext_size;
8744 if (count == 0)
8745 return 0;
8746 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8747
8748 if (sort == NULL)
8749 {
8750 (*info->callbacks->warning)
8751 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8752 return 0;
8753 }
8754
8755 if (bed->s->arch_size == 32)
8756 r_sym_mask = ~(bfd_vma) 0xff;
8757 else
8758 r_sym_mask = ~(bfd_vma) 0xffffffff;
8759
8760 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8761 if (lo->type == bfd_indirect_link_order)
8762 {
8763 bfd_byte *erel, *erelend;
8764 asection *o = lo->u.indirect.section;
8765
8766 if (o->contents == NULL && o->size != 0)
8767 {
8768 /* This is a reloc section that is being handled as a normal
8769 section. See bfd_section_from_shdr. We can't combine
8770 relocs in this case. */
8771 free (sort);
8772 return 0;
8773 }
8774 erel = o->contents;
8775 erelend = o->contents + o->size;
8776 p = sort + o->output_offset * opb / ext_size * sort_elt;
8777
8778 while (erel < erelend)
8779 {
8780 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8781
8782 (*swap_in) (abfd, erel, s->rela);
8783 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8784 s->u.sym_mask = r_sym_mask;
8785 p += sort_elt;
8786 erel += ext_size;
8787 }
8788 }
8789
8790 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8791
8792 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8793 {
8794 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8795 if (s->type != reloc_class_relative)
8796 break;
8797 }
8798 ret = i;
8799 s_non_relative = p;
8800
8801 sq = (struct elf_link_sort_rela *) s_non_relative;
8802 for (; i < count; i++, p += sort_elt)
8803 {
8804 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8805 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8806 sq = sp;
8807 sp->u.offset = sq->rela->r_offset;
8808 }
8809
8810 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8811
8812 struct elf_link_hash_table *htab = elf_hash_table (info);
8813 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
8814 {
8815 /* We have plt relocs in .rela.dyn. */
8816 sq = (struct elf_link_sort_rela *) sort;
8817 for (i = 0; i < count; i++)
8818 if (sq[count - i - 1].type != reloc_class_plt)
8819 break;
8820 if (i != 0 && htab->srelplt->size == i * ext_size)
8821 {
8822 struct bfd_link_order **plo;
8823 /* Put srelplt link_order last. This is so the output_offset
8824 set in the next loop is correct for DT_JMPREL. */
8825 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
8826 if ((*plo)->type == bfd_indirect_link_order
8827 && (*plo)->u.indirect.section == htab->srelplt)
8828 {
8829 lo = *plo;
8830 *plo = lo->next;
8831 }
8832 else
8833 plo = &(*plo)->next;
8834 *plo = lo;
8835 lo->next = NULL;
8836 dynamic_relocs->map_tail.link_order = lo;
8837 }
8838 }
8839
8840 p = sort;
8841 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8842 if (lo->type == bfd_indirect_link_order)
8843 {
8844 bfd_byte *erel, *erelend;
8845 asection *o = lo->u.indirect.section;
8846
8847 erel = o->contents;
8848 erelend = o->contents + o->size;
8849 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
8850 while (erel < erelend)
8851 {
8852 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8853 (*swap_out) (abfd, s->rela, erel);
8854 p += sort_elt;
8855 erel += ext_size;
8856 }
8857 }
8858
8859 free (sort);
8860 *psec = dynamic_relocs;
8861 return ret;
8862 }
8863
8864 /* Add a symbol to the output symbol string table. */
8865
8866 static int
8867 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
8868 const char *name,
8869 Elf_Internal_Sym *elfsym,
8870 asection *input_sec,
8871 struct elf_link_hash_entry *h)
8872 {
8873 int (*output_symbol_hook)
8874 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8875 struct elf_link_hash_entry *);
8876 struct elf_link_hash_table *hash_table;
8877 const struct elf_backend_data *bed;
8878 bfd_size_type strtabsize;
8879
8880 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8881
8882 bed = get_elf_backend_data (flinfo->output_bfd);
8883 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8884 if (output_symbol_hook != NULL)
8885 {
8886 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8887 if (ret != 1)
8888 return ret;
8889 }
8890
8891 if (name == NULL
8892 || *name == '\0'
8893 || (input_sec->flags & SEC_EXCLUDE))
8894 elfsym->st_name = (unsigned long) -1;
8895 else
8896 {
8897 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
8898 to get the final offset for st_name. */
8899 elfsym->st_name
8900 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
8901 name, FALSE);
8902 if (elfsym->st_name == (unsigned long) -1)
8903 return 0;
8904 }
8905
8906 hash_table = elf_hash_table (flinfo->info);
8907 strtabsize = hash_table->strtabsize;
8908 if (strtabsize <= hash_table->strtabcount)
8909 {
8910 strtabsize += strtabsize;
8911 hash_table->strtabsize = strtabsize;
8912 strtabsize *= sizeof (*hash_table->strtab);
8913 hash_table->strtab
8914 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
8915 strtabsize);
8916 if (hash_table->strtab == NULL)
8917 return 0;
8918 }
8919 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
8920 hash_table->strtab[hash_table->strtabcount].dest_index
8921 = hash_table->strtabcount;
8922 hash_table->strtab[hash_table->strtabcount].destshndx_index
8923 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
8924
8925 bfd_get_symcount (flinfo->output_bfd) += 1;
8926 hash_table->strtabcount += 1;
8927
8928 return 1;
8929 }
8930
8931 /* Swap symbols out to the symbol table and flush the output symbols to
8932 the file. */
8933
8934 static bfd_boolean
8935 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
8936 {
8937 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
8938 bfd_size_type amt;
8939 size_t i;
8940 const struct elf_backend_data *bed;
8941 bfd_byte *symbuf;
8942 Elf_Internal_Shdr *hdr;
8943 file_ptr pos;
8944 bfd_boolean ret;
8945
8946 if (!hash_table->strtabcount)
8947 return TRUE;
8948
8949 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8950
8951 bed = get_elf_backend_data (flinfo->output_bfd);
8952
8953 amt = bed->s->sizeof_sym * hash_table->strtabcount;
8954 symbuf = (bfd_byte *) bfd_malloc (amt);
8955 if (symbuf == NULL)
8956 return FALSE;
8957
8958 if (flinfo->symshndxbuf)
8959 {
8960 amt = sizeof (Elf_External_Sym_Shndx);
8961 amt *= bfd_get_symcount (flinfo->output_bfd);
8962 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
8963 if (flinfo->symshndxbuf == NULL)
8964 {
8965 free (symbuf);
8966 return FALSE;
8967 }
8968 }
8969
8970 for (i = 0; i < hash_table->strtabcount; i++)
8971 {
8972 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
8973 if (elfsym->sym.st_name == (unsigned long) -1)
8974 elfsym->sym.st_name = 0;
8975 else
8976 elfsym->sym.st_name
8977 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
8978 elfsym->sym.st_name);
8979 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
8980 ((bfd_byte *) symbuf
8981 + (elfsym->dest_index
8982 * bed->s->sizeof_sym)),
8983 (flinfo->symshndxbuf
8984 + elfsym->destshndx_index));
8985 }
8986
8987 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8988 pos = hdr->sh_offset + hdr->sh_size;
8989 amt = hash_table->strtabcount * bed->s->sizeof_sym;
8990 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
8991 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
8992 {
8993 hdr->sh_size += amt;
8994 ret = TRUE;
8995 }
8996 else
8997 ret = FALSE;
8998
8999 free (symbuf);
9000
9001 free (hash_table->strtab);
9002 hash_table->strtab = NULL;
9003
9004 return ret;
9005 }
9006
9007 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9008
9009 static bfd_boolean
9010 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9011 {
9012 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9013 && sym->st_shndx < SHN_LORESERVE)
9014 {
9015 /* The gABI doesn't support dynamic symbols in output sections
9016 beyond 64k. */
9017 (*_bfd_error_handler)
9018 (_("%B: Too many sections: %d (>= %d)"),
9019 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9020 bfd_set_error (bfd_error_nonrepresentable_section);
9021 return FALSE;
9022 }
9023 return TRUE;
9024 }
9025
9026 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9027 allowing an unsatisfied unversioned symbol in the DSO to match a
9028 versioned symbol that would normally require an explicit version.
9029 We also handle the case that a DSO references a hidden symbol
9030 which may be satisfied by a versioned symbol in another DSO. */
9031
9032 static bfd_boolean
9033 elf_link_check_versioned_symbol (struct bfd_link_info *info,
9034 const struct elf_backend_data *bed,
9035 struct elf_link_hash_entry *h)
9036 {
9037 bfd *abfd;
9038 struct elf_link_loaded_list *loaded;
9039
9040 if (!is_elf_hash_table (info->hash))
9041 return FALSE;
9042
9043 /* Check indirect symbol. */
9044 while (h->root.type == bfd_link_hash_indirect)
9045 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9046
9047 switch (h->root.type)
9048 {
9049 default:
9050 abfd = NULL;
9051 break;
9052
9053 case bfd_link_hash_undefined:
9054 case bfd_link_hash_undefweak:
9055 abfd = h->root.u.undef.abfd;
9056 if (abfd == NULL
9057 || (abfd->flags & DYNAMIC) == 0
9058 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9059 return FALSE;
9060 break;
9061
9062 case bfd_link_hash_defined:
9063 case bfd_link_hash_defweak:
9064 abfd = h->root.u.def.section->owner;
9065 break;
9066
9067 case bfd_link_hash_common:
9068 abfd = h->root.u.c.p->section->owner;
9069 break;
9070 }
9071 BFD_ASSERT (abfd != NULL);
9072
9073 for (loaded = elf_hash_table (info)->loaded;
9074 loaded != NULL;
9075 loaded = loaded->next)
9076 {
9077 bfd *input;
9078 Elf_Internal_Shdr *hdr;
9079 size_t symcount;
9080 size_t extsymcount;
9081 size_t extsymoff;
9082 Elf_Internal_Shdr *versymhdr;
9083 Elf_Internal_Sym *isym;
9084 Elf_Internal_Sym *isymend;
9085 Elf_Internal_Sym *isymbuf;
9086 Elf_External_Versym *ever;
9087 Elf_External_Versym *extversym;
9088
9089 input = loaded->abfd;
9090
9091 /* We check each DSO for a possible hidden versioned definition. */
9092 if (input == abfd
9093 || (input->flags & DYNAMIC) == 0
9094 || elf_dynversym (input) == 0)
9095 continue;
9096
9097 hdr = &elf_tdata (input)->dynsymtab_hdr;
9098
9099 symcount = hdr->sh_size / bed->s->sizeof_sym;
9100 if (elf_bad_symtab (input))
9101 {
9102 extsymcount = symcount;
9103 extsymoff = 0;
9104 }
9105 else
9106 {
9107 extsymcount = symcount - hdr->sh_info;
9108 extsymoff = hdr->sh_info;
9109 }
9110
9111 if (extsymcount == 0)
9112 continue;
9113
9114 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9115 NULL, NULL, NULL);
9116 if (isymbuf == NULL)
9117 return FALSE;
9118
9119 /* Read in any version definitions. */
9120 versymhdr = &elf_tdata (input)->dynversym_hdr;
9121 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
9122 if (extversym == NULL)
9123 goto error_ret;
9124
9125 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9126 || (bfd_bread (extversym, versymhdr->sh_size, input)
9127 != versymhdr->sh_size))
9128 {
9129 free (extversym);
9130 error_ret:
9131 free (isymbuf);
9132 return FALSE;
9133 }
9134
9135 ever = extversym + extsymoff;
9136 isymend = isymbuf + extsymcount;
9137 for (isym = isymbuf; isym < isymend; isym++, ever++)
9138 {
9139 const char *name;
9140 Elf_Internal_Versym iver;
9141 unsigned short version_index;
9142
9143 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9144 || isym->st_shndx == SHN_UNDEF)
9145 continue;
9146
9147 name = bfd_elf_string_from_elf_section (input,
9148 hdr->sh_link,
9149 isym->st_name);
9150 if (strcmp (name, h->root.root.string) != 0)
9151 continue;
9152
9153 _bfd_elf_swap_versym_in (input, ever, &iver);
9154
9155 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9156 && !(h->def_regular
9157 && h->forced_local))
9158 {
9159 /* If we have a non-hidden versioned sym, then it should
9160 have provided a definition for the undefined sym unless
9161 it is defined in a non-shared object and forced local.
9162 */
9163 abort ();
9164 }
9165
9166 version_index = iver.vs_vers & VERSYM_VERSION;
9167 if (version_index == 1 || version_index == 2)
9168 {
9169 /* This is the base or first version. We can use it. */
9170 free (extversym);
9171 free (isymbuf);
9172 return TRUE;
9173 }
9174 }
9175
9176 free (extversym);
9177 free (isymbuf);
9178 }
9179
9180 return FALSE;
9181 }
9182
9183 /* Convert ELF common symbol TYPE. */
9184
9185 static int
9186 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9187 {
9188 /* Commom symbol can only appear in relocatable link. */
9189 if (!bfd_link_relocatable (info))
9190 abort ();
9191 switch (info->elf_stt_common)
9192 {
9193 case unchanged:
9194 break;
9195 case elf_stt_common:
9196 type = STT_COMMON;
9197 break;
9198 case no_elf_stt_common:
9199 type = STT_OBJECT;
9200 break;
9201 }
9202 return type;
9203 }
9204
9205 /* Add an external symbol to the symbol table. This is called from
9206 the hash table traversal routine. When generating a shared object,
9207 we go through the symbol table twice. The first time we output
9208 anything that might have been forced to local scope in a version
9209 script. The second time we output the symbols that are still
9210 global symbols. */
9211
9212 static bfd_boolean
9213 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9214 {
9215 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9216 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9217 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9218 bfd_boolean strip;
9219 Elf_Internal_Sym sym;
9220 asection *input_sec;
9221 const struct elf_backend_data *bed;
9222 long indx;
9223 int ret;
9224 unsigned int type;
9225 /* A symbol is bound locally if it is forced local or it is locally
9226 defined, hidden versioned, not referenced by shared library and
9227 not exported when linking executable. */
9228 bfd_boolean local_bind = (h->forced_local
9229 || (bfd_link_executable (flinfo->info)
9230 && !flinfo->info->export_dynamic
9231 && !h->dynamic
9232 && !h->ref_dynamic
9233 && h->def_regular
9234 && h->versioned == versioned_hidden));
9235
9236 if (h->root.type == bfd_link_hash_warning)
9237 {
9238 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9239 if (h->root.type == bfd_link_hash_new)
9240 return TRUE;
9241 }
9242
9243 /* Decide whether to output this symbol in this pass. */
9244 if (eoinfo->localsyms)
9245 {
9246 if (!local_bind)
9247 return TRUE;
9248 }
9249 else
9250 {
9251 if (local_bind)
9252 return TRUE;
9253 }
9254
9255 bed = get_elf_backend_data (flinfo->output_bfd);
9256
9257 if (h->root.type == bfd_link_hash_undefined)
9258 {
9259 /* If we have an undefined symbol reference here then it must have
9260 come from a shared library that is being linked in. (Undefined
9261 references in regular files have already been handled unless
9262 they are in unreferenced sections which are removed by garbage
9263 collection). */
9264 bfd_boolean ignore_undef = FALSE;
9265
9266 /* Some symbols may be special in that the fact that they're
9267 undefined can be safely ignored - let backend determine that. */
9268 if (bed->elf_backend_ignore_undef_symbol)
9269 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9270
9271 /* If we are reporting errors for this situation then do so now. */
9272 if (!ignore_undef
9273 && h->ref_dynamic
9274 && (!h->ref_regular || flinfo->info->gc_sections)
9275 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9276 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9277 (*flinfo->info->callbacks->undefined_symbol)
9278 (flinfo->info, h->root.root.string,
9279 h->ref_regular ? NULL : h->root.u.undef.abfd,
9280 NULL, 0,
9281 flinfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR);
9282
9283 /* Strip a global symbol defined in a discarded section. */
9284 if (h->indx == -3)
9285 return TRUE;
9286 }
9287
9288 /* We should also warn if a forced local symbol is referenced from
9289 shared libraries. */
9290 if (bfd_link_executable (flinfo->info)
9291 && h->forced_local
9292 && h->ref_dynamic
9293 && h->def_regular
9294 && !h->dynamic_def
9295 && h->ref_dynamic_nonweak
9296 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9297 {
9298 bfd *def_bfd;
9299 const char *msg;
9300 struct elf_link_hash_entry *hi = h;
9301
9302 /* Check indirect symbol. */
9303 while (hi->root.type == bfd_link_hash_indirect)
9304 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9305
9306 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9307 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
9308 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9309 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
9310 else
9311 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
9312 def_bfd = flinfo->output_bfd;
9313 if (hi->root.u.def.section != bfd_abs_section_ptr)
9314 def_bfd = hi->root.u.def.section->owner;
9315 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
9316 h->root.root.string);
9317 bfd_set_error (bfd_error_bad_value);
9318 eoinfo->failed = TRUE;
9319 return FALSE;
9320 }
9321
9322 /* We don't want to output symbols that have never been mentioned by
9323 a regular file, or that we have been told to strip. However, if
9324 h->indx is set to -2, the symbol is used by a reloc and we must
9325 output it. */
9326 strip = FALSE;
9327 if (h->indx == -2)
9328 ;
9329 else if ((h->def_dynamic
9330 || h->ref_dynamic
9331 || h->root.type == bfd_link_hash_new)
9332 && !h->def_regular
9333 && !h->ref_regular)
9334 strip = TRUE;
9335 else if (flinfo->info->strip == strip_all)
9336 strip = TRUE;
9337 else if (flinfo->info->strip == strip_some
9338 && bfd_hash_lookup (flinfo->info->keep_hash,
9339 h->root.root.string, FALSE, FALSE) == NULL)
9340 strip = TRUE;
9341 else if ((h->root.type == bfd_link_hash_defined
9342 || h->root.type == bfd_link_hash_defweak)
9343 && ((flinfo->info->strip_discarded
9344 && discarded_section (h->root.u.def.section))
9345 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9346 && h->root.u.def.section->owner != NULL
9347 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9348 strip = TRUE;
9349 else if ((h->root.type == bfd_link_hash_undefined
9350 || h->root.type == bfd_link_hash_undefweak)
9351 && h->root.u.undef.abfd != NULL
9352 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9353 strip = TRUE;
9354
9355 type = h->type;
9356
9357 /* If we're stripping it, and it's not a dynamic symbol, there's
9358 nothing else to do. However, if it is a forced local symbol or
9359 an ifunc symbol we need to give the backend finish_dynamic_symbol
9360 function a chance to make it dynamic. */
9361 if (strip
9362 && h->dynindx == -1
9363 && type != STT_GNU_IFUNC
9364 && !h->forced_local)
9365 return TRUE;
9366
9367 sym.st_value = 0;
9368 sym.st_size = h->size;
9369 sym.st_other = h->other;
9370 switch (h->root.type)
9371 {
9372 default:
9373 case bfd_link_hash_new:
9374 case bfd_link_hash_warning:
9375 abort ();
9376 return FALSE;
9377
9378 case bfd_link_hash_undefined:
9379 case bfd_link_hash_undefweak:
9380 input_sec = bfd_und_section_ptr;
9381 sym.st_shndx = SHN_UNDEF;
9382 break;
9383
9384 case bfd_link_hash_defined:
9385 case bfd_link_hash_defweak:
9386 {
9387 input_sec = h->root.u.def.section;
9388 if (input_sec->output_section != NULL)
9389 {
9390 sym.st_shndx =
9391 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9392 input_sec->output_section);
9393 if (sym.st_shndx == SHN_BAD)
9394 {
9395 (*_bfd_error_handler)
9396 (_("%B: could not find output section %A for input section %A"),
9397 flinfo->output_bfd, input_sec->output_section, input_sec);
9398 bfd_set_error (bfd_error_nonrepresentable_section);
9399 eoinfo->failed = TRUE;
9400 return FALSE;
9401 }
9402
9403 /* ELF symbols in relocatable files are section relative,
9404 but in nonrelocatable files they are virtual
9405 addresses. */
9406 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9407 if (!bfd_link_relocatable (flinfo->info))
9408 {
9409 sym.st_value += input_sec->output_section->vma;
9410 if (h->type == STT_TLS)
9411 {
9412 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9413 if (tls_sec != NULL)
9414 sym.st_value -= tls_sec->vma;
9415 }
9416 }
9417 }
9418 else
9419 {
9420 BFD_ASSERT (input_sec->owner == NULL
9421 || (input_sec->owner->flags & DYNAMIC) != 0);
9422 sym.st_shndx = SHN_UNDEF;
9423 input_sec = bfd_und_section_ptr;
9424 }
9425 }
9426 break;
9427
9428 case bfd_link_hash_common:
9429 input_sec = h->root.u.c.p->section;
9430 sym.st_shndx = bed->common_section_index (input_sec);
9431 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9432 break;
9433
9434 case bfd_link_hash_indirect:
9435 /* These symbols are created by symbol versioning. They point
9436 to the decorated version of the name. For example, if the
9437 symbol foo@@GNU_1.2 is the default, which should be used when
9438 foo is used with no version, then we add an indirect symbol
9439 foo which points to foo@@GNU_1.2. We ignore these symbols,
9440 since the indirected symbol is already in the hash table. */
9441 return TRUE;
9442 }
9443
9444 if (type == STT_COMMON || type == STT_OBJECT)
9445 switch (h->root.type)
9446 {
9447 case bfd_link_hash_common:
9448 type = elf_link_convert_common_type (flinfo->info, type);
9449 break;
9450 case bfd_link_hash_defined:
9451 case bfd_link_hash_defweak:
9452 if (bed->common_definition (&sym))
9453 type = elf_link_convert_common_type (flinfo->info, type);
9454 else
9455 type = STT_OBJECT;
9456 break;
9457 case bfd_link_hash_undefined:
9458 case bfd_link_hash_undefweak:
9459 break;
9460 default:
9461 abort ();
9462 }
9463
9464 if (local_bind)
9465 {
9466 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
9467 /* Turn off visibility on local symbol. */
9468 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
9469 }
9470 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
9471 else if (h->unique_global && h->def_regular)
9472 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
9473 else if (h->root.type == bfd_link_hash_undefweak
9474 || h->root.type == bfd_link_hash_defweak)
9475 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
9476 else
9477 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
9478 sym.st_target_internal = h->target_internal;
9479
9480 /* Give the processor backend a chance to tweak the symbol value,
9481 and also to finish up anything that needs to be done for this
9482 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9483 forced local syms when non-shared is due to a historical quirk.
9484 STT_GNU_IFUNC symbol must go through PLT. */
9485 if ((h->type == STT_GNU_IFUNC
9486 && h->def_regular
9487 && !bfd_link_relocatable (flinfo->info))
9488 || ((h->dynindx != -1
9489 || h->forced_local)
9490 && ((bfd_link_pic (flinfo->info)
9491 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9492 || h->root.type != bfd_link_hash_undefweak))
9493 || !h->forced_local)
9494 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9495 {
9496 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9497 (flinfo->output_bfd, flinfo->info, h, &sym)))
9498 {
9499 eoinfo->failed = TRUE;
9500 return FALSE;
9501 }
9502 }
9503
9504 /* If we are marking the symbol as undefined, and there are no
9505 non-weak references to this symbol from a regular object, then
9506 mark the symbol as weak undefined; if there are non-weak
9507 references, mark the symbol as strong. We can't do this earlier,
9508 because it might not be marked as undefined until the
9509 finish_dynamic_symbol routine gets through with it. */
9510 if (sym.st_shndx == SHN_UNDEF
9511 && h->ref_regular
9512 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9513 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9514 {
9515 int bindtype;
9516 type = ELF_ST_TYPE (sym.st_info);
9517
9518 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9519 if (type == STT_GNU_IFUNC)
9520 type = STT_FUNC;
9521
9522 if (h->ref_regular_nonweak)
9523 bindtype = STB_GLOBAL;
9524 else
9525 bindtype = STB_WEAK;
9526 sym.st_info = ELF_ST_INFO (bindtype, type);
9527 }
9528
9529 /* If this is a symbol defined in a dynamic library, don't use the
9530 symbol size from the dynamic library. Relinking an executable
9531 against a new library may introduce gratuitous changes in the
9532 executable's symbols if we keep the size. */
9533 if (sym.st_shndx == SHN_UNDEF
9534 && !h->def_regular
9535 && h->def_dynamic)
9536 sym.st_size = 0;
9537
9538 /* If a non-weak symbol with non-default visibility is not defined
9539 locally, it is a fatal error. */
9540 if (!bfd_link_relocatable (flinfo->info)
9541 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9542 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9543 && h->root.type == bfd_link_hash_undefined
9544 && !h->def_regular)
9545 {
9546 const char *msg;
9547
9548 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9549 msg = _("%B: protected symbol `%s' isn't defined");
9550 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9551 msg = _("%B: internal symbol `%s' isn't defined");
9552 else
9553 msg = _("%B: hidden symbol `%s' isn't defined");
9554 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9555 bfd_set_error (bfd_error_bad_value);
9556 eoinfo->failed = TRUE;
9557 return FALSE;
9558 }
9559
9560 /* If this symbol should be put in the .dynsym section, then put it
9561 there now. We already know the symbol index. We also fill in
9562 the entry in the .hash section. */
9563 if (elf_hash_table (flinfo->info)->dynsym != NULL
9564 && h->dynindx != -1
9565 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9566 {
9567 bfd_byte *esym;
9568
9569 /* Since there is no version information in the dynamic string,
9570 if there is no version info in symbol version section, we will
9571 have a run-time problem if not linking executable, referenced
9572 by shared library, not locally defined, or not bound locally.
9573 */
9574 if (h->verinfo.verdef == NULL
9575 && !local_bind
9576 && (!bfd_link_executable (flinfo->info)
9577 || h->ref_dynamic
9578 || !h->def_regular))
9579 {
9580 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9581
9582 if (p && p [1] != '\0')
9583 {
9584 (*_bfd_error_handler)
9585 (_("%B: No symbol version section for versioned symbol `%s'"),
9586 flinfo->output_bfd, h->root.root.string);
9587 eoinfo->failed = TRUE;
9588 return FALSE;
9589 }
9590 }
9591
9592 sym.st_name = h->dynstr_index;
9593 esym = (elf_hash_table (flinfo->info)->dynsym->contents
9594 + h->dynindx * bed->s->sizeof_sym);
9595 if (!check_dynsym (flinfo->output_bfd, &sym))
9596 {
9597 eoinfo->failed = TRUE;
9598 return FALSE;
9599 }
9600 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9601
9602 if (flinfo->hash_sec != NULL)
9603 {
9604 size_t hash_entry_size;
9605 bfd_byte *bucketpos;
9606 bfd_vma chain;
9607 size_t bucketcount;
9608 size_t bucket;
9609
9610 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9611 bucket = h->u.elf_hash_value % bucketcount;
9612
9613 hash_entry_size
9614 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9615 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9616 + (bucket + 2) * hash_entry_size);
9617 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9618 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9619 bucketpos);
9620 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9621 ((bfd_byte *) flinfo->hash_sec->contents
9622 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9623 }
9624
9625 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9626 {
9627 Elf_Internal_Versym iversym;
9628 Elf_External_Versym *eversym;
9629
9630 if (!h->def_regular)
9631 {
9632 if (h->verinfo.verdef == NULL
9633 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9634 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9635 iversym.vs_vers = 0;
9636 else
9637 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9638 }
9639 else
9640 {
9641 if (h->verinfo.vertree == NULL)
9642 iversym.vs_vers = 1;
9643 else
9644 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9645 if (flinfo->info->create_default_symver)
9646 iversym.vs_vers++;
9647 }
9648
9649 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
9650 defined locally. */
9651 if (h->versioned == versioned_hidden && h->def_regular)
9652 iversym.vs_vers |= VERSYM_HIDDEN;
9653
9654 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9655 eversym += h->dynindx;
9656 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9657 }
9658 }
9659
9660 /* If the symbol is undefined, and we didn't output it to .dynsym,
9661 strip it from .symtab too. Obviously we can't do this for
9662 relocatable output or when needed for --emit-relocs. */
9663 else if (input_sec == bfd_und_section_ptr
9664 && h->indx != -2
9665 && !bfd_link_relocatable (flinfo->info))
9666 return TRUE;
9667 /* Also strip others that we couldn't earlier due to dynamic symbol
9668 processing. */
9669 if (strip)
9670 return TRUE;
9671 if ((input_sec->flags & SEC_EXCLUDE) != 0)
9672 return TRUE;
9673
9674 /* Output a FILE symbol so that following locals are not associated
9675 with the wrong input file. We need one for forced local symbols
9676 if we've seen more than one FILE symbol or when we have exactly
9677 one FILE symbol but global symbols are present in a file other
9678 than the one with the FILE symbol. We also need one if linker
9679 defined symbols are present. In practice these conditions are
9680 always met, so just emit the FILE symbol unconditionally. */
9681 if (eoinfo->localsyms
9682 && !eoinfo->file_sym_done
9683 && eoinfo->flinfo->filesym_count != 0)
9684 {
9685 Elf_Internal_Sym fsym;
9686
9687 memset (&fsym, 0, sizeof (fsym));
9688 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9689 fsym.st_shndx = SHN_ABS;
9690 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
9691 bfd_und_section_ptr, NULL))
9692 return FALSE;
9693
9694 eoinfo->file_sym_done = TRUE;
9695 }
9696
9697 indx = bfd_get_symcount (flinfo->output_bfd);
9698 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
9699 input_sec, h);
9700 if (ret == 0)
9701 {
9702 eoinfo->failed = TRUE;
9703 return FALSE;
9704 }
9705 else if (ret == 1)
9706 h->indx = indx;
9707 else if (h->indx == -2)
9708 abort();
9709
9710 return TRUE;
9711 }
9712
9713 /* Return TRUE if special handling is done for relocs in SEC against
9714 symbols defined in discarded sections. */
9715
9716 static bfd_boolean
9717 elf_section_ignore_discarded_relocs (asection *sec)
9718 {
9719 const struct elf_backend_data *bed;
9720
9721 switch (sec->sec_info_type)
9722 {
9723 case SEC_INFO_TYPE_STABS:
9724 case SEC_INFO_TYPE_EH_FRAME:
9725 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
9726 return TRUE;
9727 default:
9728 break;
9729 }
9730
9731 bed = get_elf_backend_data (sec->owner);
9732 if (bed->elf_backend_ignore_discarded_relocs != NULL
9733 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9734 return TRUE;
9735
9736 return FALSE;
9737 }
9738
9739 /* Return a mask saying how ld should treat relocations in SEC against
9740 symbols defined in discarded sections. If this function returns
9741 COMPLAIN set, ld will issue a warning message. If this function
9742 returns PRETEND set, and the discarded section was link-once and the
9743 same size as the kept link-once section, ld will pretend that the
9744 symbol was actually defined in the kept section. Otherwise ld will
9745 zero the reloc (at least that is the intent, but some cooperation by
9746 the target dependent code is needed, particularly for REL targets). */
9747
9748 unsigned int
9749 _bfd_elf_default_action_discarded (asection *sec)
9750 {
9751 if (sec->flags & SEC_DEBUGGING)
9752 return PRETEND;
9753
9754 if (strcmp (".eh_frame", sec->name) == 0)
9755 return 0;
9756
9757 if (strcmp (".gcc_except_table", sec->name) == 0)
9758 return 0;
9759
9760 return COMPLAIN | PRETEND;
9761 }
9762
9763 /* Find a match between a section and a member of a section group. */
9764
9765 static asection *
9766 match_group_member (asection *sec, asection *group,
9767 struct bfd_link_info *info)
9768 {
9769 asection *first = elf_next_in_group (group);
9770 asection *s = first;
9771
9772 while (s != NULL)
9773 {
9774 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9775 return s;
9776
9777 s = elf_next_in_group (s);
9778 if (s == first)
9779 break;
9780 }
9781
9782 return NULL;
9783 }
9784
9785 /* Check if the kept section of a discarded section SEC can be used
9786 to replace it. Return the replacement if it is OK. Otherwise return
9787 NULL. */
9788
9789 asection *
9790 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9791 {
9792 asection *kept;
9793
9794 kept = sec->kept_section;
9795 if (kept != NULL)
9796 {
9797 if ((kept->flags & SEC_GROUP) != 0)
9798 kept = match_group_member (sec, kept, info);
9799 if (kept != NULL
9800 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9801 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9802 kept = NULL;
9803 sec->kept_section = kept;
9804 }
9805 return kept;
9806 }
9807
9808 /* Link an input file into the linker output file. This function
9809 handles all the sections and relocations of the input file at once.
9810 This is so that we only have to read the local symbols once, and
9811 don't have to keep them in memory. */
9812
9813 static bfd_boolean
9814 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9815 {
9816 int (*relocate_section)
9817 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9818 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9819 bfd *output_bfd;
9820 Elf_Internal_Shdr *symtab_hdr;
9821 size_t locsymcount;
9822 size_t extsymoff;
9823 Elf_Internal_Sym *isymbuf;
9824 Elf_Internal_Sym *isym;
9825 Elf_Internal_Sym *isymend;
9826 long *pindex;
9827 asection **ppsection;
9828 asection *o;
9829 const struct elf_backend_data *bed;
9830 struct elf_link_hash_entry **sym_hashes;
9831 bfd_size_type address_size;
9832 bfd_vma r_type_mask;
9833 int r_sym_shift;
9834 bfd_boolean have_file_sym = FALSE;
9835
9836 output_bfd = flinfo->output_bfd;
9837 bed = get_elf_backend_data (output_bfd);
9838 relocate_section = bed->elf_backend_relocate_section;
9839
9840 /* If this is a dynamic object, we don't want to do anything here:
9841 we don't want the local symbols, and we don't want the section
9842 contents. */
9843 if ((input_bfd->flags & DYNAMIC) != 0)
9844 return TRUE;
9845
9846 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9847 if (elf_bad_symtab (input_bfd))
9848 {
9849 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9850 extsymoff = 0;
9851 }
9852 else
9853 {
9854 locsymcount = symtab_hdr->sh_info;
9855 extsymoff = symtab_hdr->sh_info;
9856 }
9857
9858 /* Read the local symbols. */
9859 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9860 if (isymbuf == NULL && locsymcount != 0)
9861 {
9862 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9863 flinfo->internal_syms,
9864 flinfo->external_syms,
9865 flinfo->locsym_shndx);
9866 if (isymbuf == NULL)
9867 return FALSE;
9868 }
9869
9870 /* Find local symbol sections and adjust values of symbols in
9871 SEC_MERGE sections. Write out those local symbols we know are
9872 going into the output file. */
9873 isymend = isymbuf + locsymcount;
9874 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9875 isym < isymend;
9876 isym++, pindex++, ppsection++)
9877 {
9878 asection *isec;
9879 const char *name;
9880 Elf_Internal_Sym osym;
9881 long indx;
9882 int ret;
9883
9884 *pindex = -1;
9885
9886 if (elf_bad_symtab (input_bfd))
9887 {
9888 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9889 {
9890 *ppsection = NULL;
9891 continue;
9892 }
9893 }
9894
9895 if (isym->st_shndx == SHN_UNDEF)
9896 isec = bfd_und_section_ptr;
9897 else if (isym->st_shndx == SHN_ABS)
9898 isec = bfd_abs_section_ptr;
9899 else if (isym->st_shndx == SHN_COMMON)
9900 isec = bfd_com_section_ptr;
9901 else
9902 {
9903 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9904 if (isec == NULL)
9905 {
9906 /* Don't attempt to output symbols with st_shnx in the
9907 reserved range other than SHN_ABS and SHN_COMMON. */
9908 *ppsection = NULL;
9909 continue;
9910 }
9911 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9912 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9913 isym->st_value =
9914 _bfd_merged_section_offset (output_bfd, &isec,
9915 elf_section_data (isec)->sec_info,
9916 isym->st_value);
9917 }
9918
9919 *ppsection = isec;
9920
9921 /* Don't output the first, undefined, symbol. In fact, don't
9922 output any undefined local symbol. */
9923 if (isec == bfd_und_section_ptr)
9924 continue;
9925
9926 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9927 {
9928 /* We never output section symbols. Instead, we use the
9929 section symbol of the corresponding section in the output
9930 file. */
9931 continue;
9932 }
9933
9934 /* If we are stripping all symbols, we don't want to output this
9935 one. */
9936 if (flinfo->info->strip == strip_all)
9937 continue;
9938
9939 /* If we are discarding all local symbols, we don't want to
9940 output this one. If we are generating a relocatable output
9941 file, then some of the local symbols may be required by
9942 relocs; we output them below as we discover that they are
9943 needed. */
9944 if (flinfo->info->discard == discard_all)
9945 continue;
9946
9947 /* If this symbol is defined in a section which we are
9948 discarding, we don't need to keep it. */
9949 if (isym->st_shndx != SHN_UNDEF
9950 && isym->st_shndx < SHN_LORESERVE
9951 && bfd_section_removed_from_list (output_bfd,
9952 isec->output_section))
9953 continue;
9954
9955 /* Get the name of the symbol. */
9956 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9957 isym->st_name);
9958 if (name == NULL)
9959 return FALSE;
9960
9961 /* See if we are discarding symbols with this name. */
9962 if ((flinfo->info->strip == strip_some
9963 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9964 == NULL))
9965 || (((flinfo->info->discard == discard_sec_merge
9966 && (isec->flags & SEC_MERGE)
9967 && !bfd_link_relocatable (flinfo->info))
9968 || flinfo->info->discard == discard_l)
9969 && bfd_is_local_label_name (input_bfd, name)))
9970 continue;
9971
9972 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9973 {
9974 if (input_bfd->lto_output)
9975 /* -flto puts a temp file name here. This means builds
9976 are not reproducible. Discard the symbol. */
9977 continue;
9978 have_file_sym = TRUE;
9979 flinfo->filesym_count += 1;
9980 }
9981 if (!have_file_sym)
9982 {
9983 /* In the absence of debug info, bfd_find_nearest_line uses
9984 FILE symbols to determine the source file for local
9985 function symbols. Provide a FILE symbol here if input
9986 files lack such, so that their symbols won't be
9987 associated with a previous input file. It's not the
9988 source file, but the best we can do. */
9989 have_file_sym = TRUE;
9990 flinfo->filesym_count += 1;
9991 memset (&osym, 0, sizeof (osym));
9992 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9993 osym.st_shndx = SHN_ABS;
9994 if (!elf_link_output_symstrtab (flinfo,
9995 (input_bfd->lto_output ? NULL
9996 : input_bfd->filename),
9997 &osym, bfd_abs_section_ptr,
9998 NULL))
9999 return FALSE;
10000 }
10001
10002 osym = *isym;
10003
10004 /* Adjust the section index for the output file. */
10005 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10006 isec->output_section);
10007 if (osym.st_shndx == SHN_BAD)
10008 return FALSE;
10009
10010 /* ELF symbols in relocatable files are section relative, but
10011 in executable files they are virtual addresses. Note that
10012 this code assumes that all ELF sections have an associated
10013 BFD section with a reasonable value for output_offset; below
10014 we assume that they also have a reasonable value for
10015 output_section. Any special sections must be set up to meet
10016 these requirements. */
10017 osym.st_value += isec->output_offset;
10018 if (!bfd_link_relocatable (flinfo->info))
10019 {
10020 osym.st_value += isec->output_section->vma;
10021 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
10022 {
10023 /* STT_TLS symbols are relative to PT_TLS segment base. */
10024 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
10025 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
10026 }
10027 }
10028
10029 indx = bfd_get_symcount (output_bfd);
10030 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
10031 if (ret == 0)
10032 return FALSE;
10033 else if (ret == 1)
10034 *pindex = indx;
10035 }
10036
10037 if (bed->s->arch_size == 32)
10038 {
10039 r_type_mask = 0xff;
10040 r_sym_shift = 8;
10041 address_size = 4;
10042 }
10043 else
10044 {
10045 r_type_mask = 0xffffffff;
10046 r_sym_shift = 32;
10047 address_size = 8;
10048 }
10049
10050 /* Relocate the contents of each section. */
10051 sym_hashes = elf_sym_hashes (input_bfd);
10052 for (o = input_bfd->sections; o != NULL; o = o->next)
10053 {
10054 bfd_byte *contents;
10055
10056 if (! o->linker_mark)
10057 {
10058 /* This section was omitted from the link. */
10059 continue;
10060 }
10061
10062 if (bfd_link_relocatable (flinfo->info)
10063 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10064 {
10065 /* Deal with the group signature symbol. */
10066 struct bfd_elf_section_data *sec_data = elf_section_data (o);
10067 unsigned long symndx = sec_data->this_hdr.sh_info;
10068 asection *osec = o->output_section;
10069
10070 if (symndx >= locsymcount
10071 || (elf_bad_symtab (input_bfd)
10072 && flinfo->sections[symndx] == NULL))
10073 {
10074 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10075 while (h->root.type == bfd_link_hash_indirect
10076 || h->root.type == bfd_link_hash_warning)
10077 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10078 /* Arrange for symbol to be output. */
10079 h->indx = -2;
10080 elf_section_data (osec)->this_hdr.sh_info = -2;
10081 }
10082 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10083 {
10084 /* We'll use the output section target_index. */
10085 asection *sec = flinfo->sections[symndx]->output_section;
10086 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10087 }
10088 else
10089 {
10090 if (flinfo->indices[symndx] == -1)
10091 {
10092 /* Otherwise output the local symbol now. */
10093 Elf_Internal_Sym sym = isymbuf[symndx];
10094 asection *sec = flinfo->sections[symndx]->output_section;
10095 const char *name;
10096 long indx;
10097 int ret;
10098
10099 name = bfd_elf_string_from_elf_section (input_bfd,
10100 symtab_hdr->sh_link,
10101 sym.st_name);
10102 if (name == NULL)
10103 return FALSE;
10104
10105 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10106 sec);
10107 if (sym.st_shndx == SHN_BAD)
10108 return FALSE;
10109
10110 sym.st_value += o->output_offset;
10111
10112 indx = bfd_get_symcount (output_bfd);
10113 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10114 NULL);
10115 if (ret == 0)
10116 return FALSE;
10117 else if (ret == 1)
10118 flinfo->indices[symndx] = indx;
10119 else
10120 abort ();
10121 }
10122 elf_section_data (osec)->this_hdr.sh_info
10123 = flinfo->indices[symndx];
10124 }
10125 }
10126
10127 if ((o->flags & SEC_HAS_CONTENTS) == 0
10128 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10129 continue;
10130
10131 if ((o->flags & SEC_LINKER_CREATED) != 0)
10132 {
10133 /* Section was created by _bfd_elf_link_create_dynamic_sections
10134 or somesuch. */
10135 continue;
10136 }
10137
10138 /* Get the contents of the section. They have been cached by a
10139 relaxation routine. Note that o is a section in an input
10140 file, so the contents field will not have been set by any of
10141 the routines which work on output files. */
10142 if (elf_section_data (o)->this_hdr.contents != NULL)
10143 {
10144 contents = elf_section_data (o)->this_hdr.contents;
10145 if (bed->caches_rawsize
10146 && o->rawsize != 0
10147 && o->rawsize < o->size)
10148 {
10149 memcpy (flinfo->contents, contents, o->rawsize);
10150 contents = flinfo->contents;
10151 }
10152 }
10153 else
10154 {
10155 contents = flinfo->contents;
10156 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10157 return FALSE;
10158 }
10159
10160 if ((o->flags & SEC_RELOC) != 0)
10161 {
10162 Elf_Internal_Rela *internal_relocs;
10163 Elf_Internal_Rela *rel, *relend;
10164 int action_discarded;
10165 int ret;
10166
10167 /* Get the swapped relocs. */
10168 internal_relocs
10169 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10170 flinfo->internal_relocs, FALSE);
10171 if (internal_relocs == NULL
10172 && o->reloc_count > 0)
10173 return FALSE;
10174
10175 /* We need to reverse-copy input .ctors/.dtors sections if
10176 they are placed in .init_array/.finit_array for output. */
10177 if (o->size > address_size
10178 && ((strncmp (o->name, ".ctors", 6) == 0
10179 && strcmp (o->output_section->name,
10180 ".init_array") == 0)
10181 || (strncmp (o->name, ".dtors", 6) == 0
10182 && strcmp (o->output_section->name,
10183 ".fini_array") == 0))
10184 && (o->name[6] == 0 || o->name[6] == '.'))
10185 {
10186 if (o->size != o->reloc_count * address_size)
10187 {
10188 (*_bfd_error_handler)
10189 (_("error: %B: size of section %A is not "
10190 "multiple of address size"),
10191 input_bfd, o);
10192 bfd_set_error (bfd_error_on_input);
10193 return FALSE;
10194 }
10195 o->flags |= SEC_ELF_REVERSE_COPY;
10196 }
10197
10198 action_discarded = -1;
10199 if (!elf_section_ignore_discarded_relocs (o))
10200 action_discarded = (*bed->action_discarded) (o);
10201
10202 /* Run through the relocs evaluating complex reloc symbols and
10203 looking for relocs against symbols from discarded sections
10204 or section symbols from removed link-once sections.
10205 Complain about relocs against discarded sections. Zero
10206 relocs against removed link-once sections. */
10207
10208 rel = internal_relocs;
10209 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
10210 for ( ; rel < relend; rel++)
10211 {
10212 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10213 unsigned int s_type;
10214 asection **ps, *sec;
10215 struct elf_link_hash_entry *h = NULL;
10216 const char *sym_name;
10217
10218 if (r_symndx == STN_UNDEF)
10219 continue;
10220
10221 if (r_symndx >= locsymcount
10222 || (elf_bad_symtab (input_bfd)
10223 && flinfo->sections[r_symndx] == NULL))
10224 {
10225 h = sym_hashes[r_symndx - extsymoff];
10226
10227 /* Badly formatted input files can contain relocs that
10228 reference non-existant symbols. Check here so that
10229 we do not seg fault. */
10230 if (h == NULL)
10231 {
10232 char buffer [32];
10233
10234 sprintf_vma (buffer, rel->r_info);
10235 (*_bfd_error_handler)
10236 (_("error: %B contains a reloc (0x%s) for section %A "
10237 "that references a non-existent global symbol"),
10238 input_bfd, o, buffer);
10239 bfd_set_error (bfd_error_bad_value);
10240 return FALSE;
10241 }
10242
10243 while (h->root.type == bfd_link_hash_indirect
10244 || h->root.type == bfd_link_hash_warning)
10245 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10246
10247 s_type = h->type;
10248
10249 /* If a plugin symbol is referenced from a non-IR file,
10250 mark the symbol as undefined. Note that the
10251 linker may attach linker created dynamic sections
10252 to the plugin bfd. Symbols defined in linker
10253 created sections are not plugin symbols. */
10254 if (h->root.non_ir_ref
10255 && (h->root.type == bfd_link_hash_defined
10256 || h->root.type == bfd_link_hash_defweak)
10257 && (h->root.u.def.section->flags
10258 & SEC_LINKER_CREATED) == 0
10259 && h->root.u.def.section->owner != NULL
10260 && (h->root.u.def.section->owner->flags
10261 & BFD_PLUGIN) != 0)
10262 {
10263 h->root.type = bfd_link_hash_undefined;
10264 h->root.u.undef.abfd = h->root.u.def.section->owner;
10265 }
10266
10267 ps = NULL;
10268 if (h->root.type == bfd_link_hash_defined
10269 || h->root.type == bfd_link_hash_defweak)
10270 ps = &h->root.u.def.section;
10271
10272 sym_name = h->root.root.string;
10273 }
10274 else
10275 {
10276 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10277
10278 s_type = ELF_ST_TYPE (sym->st_info);
10279 ps = &flinfo->sections[r_symndx];
10280 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10281 sym, *ps);
10282 }
10283
10284 if ((s_type == STT_RELC || s_type == STT_SRELC)
10285 && !bfd_link_relocatable (flinfo->info))
10286 {
10287 bfd_vma val;
10288 bfd_vma dot = (rel->r_offset
10289 + o->output_offset + o->output_section->vma);
10290 #ifdef DEBUG
10291 printf ("Encountered a complex symbol!");
10292 printf (" (input_bfd %s, section %s, reloc %ld\n",
10293 input_bfd->filename, o->name,
10294 (long) (rel - internal_relocs));
10295 printf (" symbol: idx %8.8lx, name %s\n",
10296 r_symndx, sym_name);
10297 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10298 (unsigned long) rel->r_info,
10299 (unsigned long) rel->r_offset);
10300 #endif
10301 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10302 isymbuf, locsymcount, s_type == STT_SRELC))
10303 return FALSE;
10304
10305 /* Symbol evaluated OK. Update to absolute value. */
10306 set_symbol_value (input_bfd, isymbuf, locsymcount,
10307 r_symndx, val);
10308 continue;
10309 }
10310
10311 if (action_discarded != -1 && ps != NULL)
10312 {
10313 /* Complain if the definition comes from a
10314 discarded section. */
10315 if ((sec = *ps) != NULL && discarded_section (sec))
10316 {
10317 BFD_ASSERT (r_symndx != STN_UNDEF);
10318 if (action_discarded & COMPLAIN)
10319 (*flinfo->info->callbacks->einfo)
10320 (_("%X`%s' referenced in section `%A' of %B: "
10321 "defined in discarded section `%A' of %B\n"),
10322 sym_name, o, input_bfd, sec, sec->owner);
10323
10324 /* Try to do the best we can to support buggy old
10325 versions of gcc. Pretend that the symbol is
10326 really defined in the kept linkonce section.
10327 FIXME: This is quite broken. Modifying the
10328 symbol here means we will be changing all later
10329 uses of the symbol, not just in this section. */
10330 if (action_discarded & PRETEND)
10331 {
10332 asection *kept;
10333
10334 kept = _bfd_elf_check_kept_section (sec,
10335 flinfo->info);
10336 if (kept != NULL)
10337 {
10338 *ps = kept;
10339 continue;
10340 }
10341 }
10342 }
10343 }
10344 }
10345
10346 /* Relocate the section by invoking a back end routine.
10347
10348 The back end routine is responsible for adjusting the
10349 section contents as necessary, and (if using Rela relocs
10350 and generating a relocatable output file) adjusting the
10351 reloc addend as necessary.
10352
10353 The back end routine does not have to worry about setting
10354 the reloc address or the reloc symbol index.
10355
10356 The back end routine is given a pointer to the swapped in
10357 internal symbols, and can access the hash table entries
10358 for the external symbols via elf_sym_hashes (input_bfd).
10359
10360 When generating relocatable output, the back end routine
10361 must handle STB_LOCAL/STT_SECTION symbols specially. The
10362 output symbol is going to be a section symbol
10363 corresponding to the output section, which will require
10364 the addend to be adjusted. */
10365
10366 ret = (*relocate_section) (output_bfd, flinfo->info,
10367 input_bfd, o, contents,
10368 internal_relocs,
10369 isymbuf,
10370 flinfo->sections);
10371 if (!ret)
10372 return FALSE;
10373
10374 if (ret == 2
10375 || bfd_link_relocatable (flinfo->info)
10376 || flinfo->info->emitrelocations)
10377 {
10378 Elf_Internal_Rela *irela;
10379 Elf_Internal_Rela *irelaend, *irelamid;
10380 bfd_vma last_offset;
10381 struct elf_link_hash_entry **rel_hash;
10382 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
10383 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
10384 unsigned int next_erel;
10385 bfd_boolean rela_normal;
10386 struct bfd_elf_section_data *esdi, *esdo;
10387
10388 esdi = elf_section_data (o);
10389 esdo = elf_section_data (o->output_section);
10390 rela_normal = FALSE;
10391
10392 /* Adjust the reloc addresses and symbol indices. */
10393
10394 irela = internal_relocs;
10395 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
10396 rel_hash = esdo->rel.hashes + esdo->rel.count;
10397 /* We start processing the REL relocs, if any. When we reach
10398 IRELAMID in the loop, we switch to the RELA relocs. */
10399 irelamid = irela;
10400 if (esdi->rel.hdr != NULL)
10401 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10402 * bed->s->int_rels_per_ext_rel);
10403 rel_hash_list = rel_hash;
10404 rela_hash_list = NULL;
10405 last_offset = o->output_offset;
10406 if (!bfd_link_relocatable (flinfo->info))
10407 last_offset += o->output_section->vma;
10408 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10409 {
10410 unsigned long r_symndx;
10411 asection *sec;
10412 Elf_Internal_Sym sym;
10413
10414 if (next_erel == bed->s->int_rels_per_ext_rel)
10415 {
10416 rel_hash++;
10417 next_erel = 0;
10418 }
10419
10420 if (irela == irelamid)
10421 {
10422 rel_hash = esdo->rela.hashes + esdo->rela.count;
10423 rela_hash_list = rel_hash;
10424 rela_normal = bed->rela_normal;
10425 }
10426
10427 irela->r_offset = _bfd_elf_section_offset (output_bfd,
10428 flinfo->info, o,
10429 irela->r_offset);
10430 if (irela->r_offset >= (bfd_vma) -2)
10431 {
10432 /* This is a reloc for a deleted entry or somesuch.
10433 Turn it into an R_*_NONE reloc, at the same
10434 offset as the last reloc. elf_eh_frame.c and
10435 bfd_elf_discard_info rely on reloc offsets
10436 being ordered. */
10437 irela->r_offset = last_offset;
10438 irela->r_info = 0;
10439 irela->r_addend = 0;
10440 continue;
10441 }
10442
10443 irela->r_offset += o->output_offset;
10444
10445 /* Relocs in an executable have to be virtual addresses. */
10446 if (!bfd_link_relocatable (flinfo->info))
10447 irela->r_offset += o->output_section->vma;
10448
10449 last_offset = irela->r_offset;
10450
10451 r_symndx = irela->r_info >> r_sym_shift;
10452 if (r_symndx == STN_UNDEF)
10453 continue;
10454
10455 if (r_symndx >= locsymcount
10456 || (elf_bad_symtab (input_bfd)
10457 && flinfo->sections[r_symndx] == NULL))
10458 {
10459 struct elf_link_hash_entry *rh;
10460 unsigned long indx;
10461
10462 /* This is a reloc against a global symbol. We
10463 have not yet output all the local symbols, so
10464 we do not know the symbol index of any global
10465 symbol. We set the rel_hash entry for this
10466 reloc to point to the global hash table entry
10467 for this symbol. The symbol index is then
10468 set at the end of bfd_elf_final_link. */
10469 indx = r_symndx - extsymoff;
10470 rh = elf_sym_hashes (input_bfd)[indx];
10471 while (rh->root.type == bfd_link_hash_indirect
10472 || rh->root.type == bfd_link_hash_warning)
10473 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10474
10475 /* Setting the index to -2 tells
10476 elf_link_output_extsym that this symbol is
10477 used by a reloc. */
10478 BFD_ASSERT (rh->indx < 0);
10479 rh->indx = -2;
10480
10481 *rel_hash = rh;
10482
10483 continue;
10484 }
10485
10486 /* This is a reloc against a local symbol. */
10487
10488 *rel_hash = NULL;
10489 sym = isymbuf[r_symndx];
10490 sec = flinfo->sections[r_symndx];
10491 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10492 {
10493 /* I suppose the backend ought to fill in the
10494 section of any STT_SECTION symbol against a
10495 processor specific section. */
10496 r_symndx = STN_UNDEF;
10497 if (bfd_is_abs_section (sec))
10498 ;
10499 else if (sec == NULL || sec->owner == NULL)
10500 {
10501 bfd_set_error (bfd_error_bad_value);
10502 return FALSE;
10503 }
10504 else
10505 {
10506 asection *osec = sec->output_section;
10507
10508 /* If we have discarded a section, the output
10509 section will be the absolute section. In
10510 case of discarded SEC_MERGE sections, use
10511 the kept section. relocate_section should
10512 have already handled discarded linkonce
10513 sections. */
10514 if (bfd_is_abs_section (osec)
10515 && sec->kept_section != NULL
10516 && sec->kept_section->output_section != NULL)
10517 {
10518 osec = sec->kept_section->output_section;
10519 irela->r_addend -= osec->vma;
10520 }
10521
10522 if (!bfd_is_abs_section (osec))
10523 {
10524 r_symndx = osec->target_index;
10525 if (r_symndx == STN_UNDEF)
10526 {
10527 irela->r_addend += osec->vma;
10528 osec = _bfd_nearby_section (output_bfd, osec,
10529 osec->vma);
10530 irela->r_addend -= osec->vma;
10531 r_symndx = osec->target_index;
10532 }
10533 }
10534 }
10535
10536 /* Adjust the addend according to where the
10537 section winds up in the output section. */
10538 if (rela_normal)
10539 irela->r_addend += sec->output_offset;
10540 }
10541 else
10542 {
10543 if (flinfo->indices[r_symndx] == -1)
10544 {
10545 unsigned long shlink;
10546 const char *name;
10547 asection *osec;
10548 long indx;
10549
10550 if (flinfo->info->strip == strip_all)
10551 {
10552 /* You can't do ld -r -s. */
10553 bfd_set_error (bfd_error_invalid_operation);
10554 return FALSE;
10555 }
10556
10557 /* This symbol was skipped earlier, but
10558 since it is needed by a reloc, we
10559 must output it now. */
10560 shlink = symtab_hdr->sh_link;
10561 name = (bfd_elf_string_from_elf_section
10562 (input_bfd, shlink, sym.st_name));
10563 if (name == NULL)
10564 return FALSE;
10565
10566 osec = sec->output_section;
10567 sym.st_shndx =
10568 _bfd_elf_section_from_bfd_section (output_bfd,
10569 osec);
10570 if (sym.st_shndx == SHN_BAD)
10571 return FALSE;
10572
10573 sym.st_value += sec->output_offset;
10574 if (!bfd_link_relocatable (flinfo->info))
10575 {
10576 sym.st_value += osec->vma;
10577 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10578 {
10579 /* STT_TLS symbols are relative to PT_TLS
10580 segment base. */
10581 BFD_ASSERT (elf_hash_table (flinfo->info)
10582 ->tls_sec != NULL);
10583 sym.st_value -= (elf_hash_table (flinfo->info)
10584 ->tls_sec->vma);
10585 }
10586 }
10587
10588 indx = bfd_get_symcount (output_bfd);
10589 ret = elf_link_output_symstrtab (flinfo, name,
10590 &sym, sec,
10591 NULL);
10592 if (ret == 0)
10593 return FALSE;
10594 else if (ret == 1)
10595 flinfo->indices[r_symndx] = indx;
10596 else
10597 abort ();
10598 }
10599
10600 r_symndx = flinfo->indices[r_symndx];
10601 }
10602
10603 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10604 | (irela->r_info & r_type_mask));
10605 }
10606
10607 /* Swap out the relocs. */
10608 input_rel_hdr = esdi->rel.hdr;
10609 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10610 {
10611 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10612 input_rel_hdr,
10613 internal_relocs,
10614 rel_hash_list))
10615 return FALSE;
10616 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10617 * bed->s->int_rels_per_ext_rel);
10618 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10619 }
10620
10621 input_rela_hdr = esdi->rela.hdr;
10622 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10623 {
10624 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10625 input_rela_hdr,
10626 internal_relocs,
10627 rela_hash_list))
10628 return FALSE;
10629 }
10630 }
10631 }
10632
10633 /* Write out the modified section contents. */
10634 if (bed->elf_backend_write_section
10635 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10636 contents))
10637 {
10638 /* Section written out. */
10639 }
10640 else switch (o->sec_info_type)
10641 {
10642 case SEC_INFO_TYPE_STABS:
10643 if (! (_bfd_write_section_stabs
10644 (output_bfd,
10645 &elf_hash_table (flinfo->info)->stab_info,
10646 o, &elf_section_data (o)->sec_info, contents)))
10647 return FALSE;
10648 break;
10649 case SEC_INFO_TYPE_MERGE:
10650 if (! _bfd_write_merged_section (output_bfd, o,
10651 elf_section_data (o)->sec_info))
10652 return FALSE;
10653 break;
10654 case SEC_INFO_TYPE_EH_FRAME:
10655 {
10656 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10657 o, contents))
10658 return FALSE;
10659 }
10660 break;
10661 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10662 {
10663 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
10664 flinfo->info,
10665 o, contents))
10666 return FALSE;
10667 }
10668 break;
10669 default:
10670 {
10671 if (! (o->flags & SEC_EXCLUDE))
10672 {
10673 file_ptr offset = (file_ptr) o->output_offset;
10674 bfd_size_type todo = o->size;
10675
10676 offset *= bfd_octets_per_byte (output_bfd);
10677
10678 if ((o->flags & SEC_ELF_REVERSE_COPY))
10679 {
10680 /* Reverse-copy input section to output. */
10681 do
10682 {
10683 todo -= address_size;
10684 if (! bfd_set_section_contents (output_bfd,
10685 o->output_section,
10686 contents + todo,
10687 offset,
10688 address_size))
10689 return FALSE;
10690 if (todo == 0)
10691 break;
10692 offset += address_size;
10693 }
10694 while (1);
10695 }
10696 else if (! bfd_set_section_contents (output_bfd,
10697 o->output_section,
10698 contents,
10699 offset, todo))
10700 return FALSE;
10701 }
10702 }
10703 break;
10704 }
10705 }
10706
10707 return TRUE;
10708 }
10709
10710 /* Generate a reloc when linking an ELF file. This is a reloc
10711 requested by the linker, and does not come from any input file. This
10712 is used to build constructor and destructor tables when linking
10713 with -Ur. */
10714
10715 static bfd_boolean
10716 elf_reloc_link_order (bfd *output_bfd,
10717 struct bfd_link_info *info,
10718 asection *output_section,
10719 struct bfd_link_order *link_order)
10720 {
10721 reloc_howto_type *howto;
10722 long indx;
10723 bfd_vma offset;
10724 bfd_vma addend;
10725 struct bfd_elf_section_reloc_data *reldata;
10726 struct elf_link_hash_entry **rel_hash_ptr;
10727 Elf_Internal_Shdr *rel_hdr;
10728 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10729 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10730 bfd_byte *erel;
10731 unsigned int i;
10732 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10733
10734 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10735 if (howto == NULL)
10736 {
10737 bfd_set_error (bfd_error_bad_value);
10738 return FALSE;
10739 }
10740
10741 addend = link_order->u.reloc.p->addend;
10742
10743 if (esdo->rel.hdr)
10744 reldata = &esdo->rel;
10745 else if (esdo->rela.hdr)
10746 reldata = &esdo->rela;
10747 else
10748 {
10749 reldata = NULL;
10750 BFD_ASSERT (0);
10751 }
10752
10753 /* Figure out the symbol index. */
10754 rel_hash_ptr = reldata->hashes + reldata->count;
10755 if (link_order->type == bfd_section_reloc_link_order)
10756 {
10757 indx = link_order->u.reloc.p->u.section->target_index;
10758 BFD_ASSERT (indx != 0);
10759 *rel_hash_ptr = NULL;
10760 }
10761 else
10762 {
10763 struct elf_link_hash_entry *h;
10764
10765 /* Treat a reloc against a defined symbol as though it were
10766 actually against the section. */
10767 h = ((struct elf_link_hash_entry *)
10768 bfd_wrapped_link_hash_lookup (output_bfd, info,
10769 link_order->u.reloc.p->u.name,
10770 FALSE, FALSE, TRUE));
10771 if (h != NULL
10772 && (h->root.type == bfd_link_hash_defined
10773 || h->root.type == bfd_link_hash_defweak))
10774 {
10775 asection *section;
10776
10777 section = h->root.u.def.section;
10778 indx = section->output_section->target_index;
10779 *rel_hash_ptr = NULL;
10780 /* It seems that we ought to add the symbol value to the
10781 addend here, but in practice it has already been added
10782 because it was passed to constructor_callback. */
10783 addend += section->output_section->vma + section->output_offset;
10784 }
10785 else if (h != NULL)
10786 {
10787 /* Setting the index to -2 tells elf_link_output_extsym that
10788 this symbol is used by a reloc. */
10789 h->indx = -2;
10790 *rel_hash_ptr = h;
10791 indx = 0;
10792 }
10793 else
10794 {
10795 (*info->callbacks->unattached_reloc)
10796 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
10797 indx = 0;
10798 }
10799 }
10800
10801 /* If this is an inplace reloc, we must write the addend into the
10802 object file. */
10803 if (howto->partial_inplace && addend != 0)
10804 {
10805 bfd_size_type size;
10806 bfd_reloc_status_type rstat;
10807 bfd_byte *buf;
10808 bfd_boolean ok;
10809 const char *sym_name;
10810
10811 size = (bfd_size_type) bfd_get_reloc_size (howto);
10812 buf = (bfd_byte *) bfd_zmalloc (size);
10813 if (buf == NULL && size != 0)
10814 return FALSE;
10815 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10816 switch (rstat)
10817 {
10818 case bfd_reloc_ok:
10819 break;
10820
10821 default:
10822 case bfd_reloc_outofrange:
10823 abort ();
10824
10825 case bfd_reloc_overflow:
10826 if (link_order->type == bfd_section_reloc_link_order)
10827 sym_name = bfd_section_name (output_bfd,
10828 link_order->u.reloc.p->u.section);
10829 else
10830 sym_name = link_order->u.reloc.p->u.name;
10831 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
10832 howto->name, addend, NULL, NULL,
10833 (bfd_vma) 0);
10834 break;
10835 }
10836
10837 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10838 link_order->offset
10839 * bfd_octets_per_byte (output_bfd),
10840 size);
10841 free (buf);
10842 if (! ok)
10843 return FALSE;
10844 }
10845
10846 /* The address of a reloc is relative to the section in a
10847 relocatable file, and is a virtual address in an executable
10848 file. */
10849 offset = link_order->offset;
10850 if (! bfd_link_relocatable (info))
10851 offset += output_section->vma;
10852
10853 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10854 {
10855 irel[i].r_offset = offset;
10856 irel[i].r_info = 0;
10857 irel[i].r_addend = 0;
10858 }
10859 if (bed->s->arch_size == 32)
10860 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10861 else
10862 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10863
10864 rel_hdr = reldata->hdr;
10865 erel = rel_hdr->contents;
10866 if (rel_hdr->sh_type == SHT_REL)
10867 {
10868 erel += reldata->count * bed->s->sizeof_rel;
10869 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10870 }
10871 else
10872 {
10873 irel[0].r_addend = addend;
10874 erel += reldata->count * bed->s->sizeof_rela;
10875 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10876 }
10877
10878 ++reldata->count;
10879
10880 return TRUE;
10881 }
10882
10883
10884 /* Get the output vma of the section pointed to by the sh_link field. */
10885
10886 static bfd_vma
10887 elf_get_linked_section_vma (struct bfd_link_order *p)
10888 {
10889 Elf_Internal_Shdr **elf_shdrp;
10890 asection *s;
10891 int elfsec;
10892
10893 s = p->u.indirect.section;
10894 elf_shdrp = elf_elfsections (s->owner);
10895 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10896 elfsec = elf_shdrp[elfsec]->sh_link;
10897 /* PR 290:
10898 The Intel C compiler generates SHT_IA_64_UNWIND with
10899 SHF_LINK_ORDER. But it doesn't set the sh_link or
10900 sh_info fields. Hence we could get the situation
10901 where elfsec is 0. */
10902 if (elfsec == 0)
10903 {
10904 const struct elf_backend_data *bed
10905 = get_elf_backend_data (s->owner);
10906 if (bed->link_order_error_handler)
10907 bed->link_order_error_handler
10908 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10909 return 0;
10910 }
10911 else
10912 {
10913 s = elf_shdrp[elfsec]->bfd_section;
10914 return s->output_section->vma + s->output_offset;
10915 }
10916 }
10917
10918
10919 /* Compare two sections based on the locations of the sections they are
10920 linked to. Used by elf_fixup_link_order. */
10921
10922 static int
10923 compare_link_order (const void * a, const void * b)
10924 {
10925 bfd_vma apos;
10926 bfd_vma bpos;
10927
10928 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10929 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10930 if (apos < bpos)
10931 return -1;
10932 return apos > bpos;
10933 }
10934
10935
10936 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10937 order as their linked sections. Returns false if this could not be done
10938 because an output section includes both ordered and unordered
10939 sections. Ideally we'd do this in the linker proper. */
10940
10941 static bfd_boolean
10942 elf_fixup_link_order (bfd *abfd, asection *o)
10943 {
10944 int seen_linkorder;
10945 int seen_other;
10946 int n;
10947 struct bfd_link_order *p;
10948 bfd *sub;
10949 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10950 unsigned elfsec;
10951 struct bfd_link_order **sections;
10952 asection *s, *other_sec, *linkorder_sec;
10953 bfd_vma offset;
10954
10955 other_sec = NULL;
10956 linkorder_sec = NULL;
10957 seen_other = 0;
10958 seen_linkorder = 0;
10959 for (p = o->map_head.link_order; p != NULL; p = p->next)
10960 {
10961 if (p->type == bfd_indirect_link_order)
10962 {
10963 s = p->u.indirect.section;
10964 sub = s->owner;
10965 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10966 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10967 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10968 && elfsec < elf_numsections (sub)
10969 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10970 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10971 {
10972 seen_linkorder++;
10973 linkorder_sec = s;
10974 }
10975 else
10976 {
10977 seen_other++;
10978 other_sec = s;
10979 }
10980 }
10981 else
10982 seen_other++;
10983
10984 if (seen_other && seen_linkorder)
10985 {
10986 if (other_sec && linkorder_sec)
10987 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10988 o, linkorder_sec,
10989 linkorder_sec->owner, other_sec,
10990 other_sec->owner);
10991 else
10992 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10993 o);
10994 bfd_set_error (bfd_error_bad_value);
10995 return FALSE;
10996 }
10997 }
10998
10999 if (!seen_linkorder)
11000 return TRUE;
11001
11002 sections = (struct bfd_link_order **)
11003 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
11004 if (sections == NULL)
11005 return FALSE;
11006 seen_linkorder = 0;
11007
11008 for (p = o->map_head.link_order; p != NULL; p = p->next)
11009 {
11010 sections[seen_linkorder++] = p;
11011 }
11012 /* Sort the input sections in the order of their linked section. */
11013 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
11014 compare_link_order);
11015
11016 /* Change the offsets of the sections. */
11017 offset = 0;
11018 for (n = 0; n < seen_linkorder; n++)
11019 {
11020 s = sections[n]->u.indirect.section;
11021 offset &= ~(bfd_vma) 0 << s->alignment_power;
11022 s->output_offset = offset / bfd_octets_per_byte (abfd);
11023 sections[n]->offset = offset;
11024 offset += sections[n]->size;
11025 }
11026
11027 free (sections);
11028 return TRUE;
11029 }
11030
11031 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11032 Returns TRUE upon success, FALSE otherwise. */
11033
11034 static bfd_boolean
11035 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11036 {
11037 bfd_boolean ret = FALSE;
11038 bfd *implib_bfd;
11039 const struct elf_backend_data *bed;
11040 flagword flags;
11041 enum bfd_architecture arch;
11042 unsigned int mach;
11043 asymbol **sympp = NULL;
11044 long symsize;
11045 long symcount;
11046 long src_count;
11047 elf_symbol_type *osymbuf;
11048
11049 implib_bfd = info->out_implib_bfd;
11050 bed = get_elf_backend_data (abfd);
11051
11052 if (!bfd_set_format (implib_bfd, bfd_object))
11053 return FALSE;
11054
11055 flags = bfd_get_file_flags (abfd);
11056 flags &= ~HAS_RELOC;
11057 if (!bfd_set_start_address (implib_bfd, 0)
11058 || !bfd_set_file_flags (implib_bfd, flags))
11059 return FALSE;
11060
11061 /* Copy architecture of output file to import library file. */
11062 arch = bfd_get_arch (abfd);
11063 mach = bfd_get_mach (abfd);
11064 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11065 && (abfd->target_defaulted
11066 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11067 return FALSE;
11068
11069 /* Get symbol table size. */
11070 symsize = bfd_get_symtab_upper_bound (abfd);
11071 if (symsize < 0)
11072 return FALSE;
11073
11074 /* Read in the symbol table. */
11075 sympp = (asymbol **) xmalloc (symsize);
11076 symcount = bfd_canonicalize_symtab (abfd, sympp);
11077 if (symcount < 0)
11078 goto free_sym_buf;
11079
11080 /* Allow the BFD backend to copy any private header data it
11081 understands from the output BFD to the import library BFD. */
11082 if (! bfd_copy_private_header_data (abfd, implib_bfd))
11083 goto free_sym_buf;
11084
11085 /* Filter symbols to appear in the import library. */
11086 if (bed->elf_backend_filter_implib_symbols)
11087 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11088 symcount);
11089 else
11090 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11091 if (symcount == 0)
11092 {
11093 (*_bfd_error_handler) (_("%B: no symbol found for import library"),
11094 implib_bfd);
11095 goto free_sym_buf;
11096 }
11097
11098
11099 /* Make symbols absolute. */
11100 osymbuf = (elf_symbol_type *) bfd_alloc2 (implib_bfd, symcount,
11101 sizeof (*osymbuf));
11102 for (src_count = 0; src_count < symcount; src_count++)
11103 {
11104 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11105 sizeof (*osymbuf));
11106 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
11107 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
11108 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
11109 osymbuf[src_count].internal_elf_sym.st_value =
11110 osymbuf[src_count].symbol.value;
11111 sympp[src_count] = &osymbuf[src_count].symbol;
11112 }
11113
11114 bfd_set_symtab (implib_bfd, sympp, symcount);
11115
11116 /* Allow the BFD backend to copy any private data it understands
11117 from the output BFD to the import library BFD. This is done last
11118 to permit the routine to look at the filtered symbol table. */
11119 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
11120 goto free_sym_buf;
11121
11122 if (!bfd_close (implib_bfd))
11123 goto free_sym_buf;
11124
11125 ret = TRUE;
11126
11127 free_sym_buf:
11128 free (sympp);
11129 return ret;
11130 }
11131
11132 static void
11133 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11134 {
11135 asection *o;
11136
11137 if (flinfo->symstrtab != NULL)
11138 _bfd_elf_strtab_free (flinfo->symstrtab);
11139 if (flinfo->contents != NULL)
11140 free (flinfo->contents);
11141 if (flinfo->external_relocs != NULL)
11142 free (flinfo->external_relocs);
11143 if (flinfo->internal_relocs != NULL)
11144 free (flinfo->internal_relocs);
11145 if (flinfo->external_syms != NULL)
11146 free (flinfo->external_syms);
11147 if (flinfo->locsym_shndx != NULL)
11148 free (flinfo->locsym_shndx);
11149 if (flinfo->internal_syms != NULL)
11150 free (flinfo->internal_syms);
11151 if (flinfo->indices != NULL)
11152 free (flinfo->indices);
11153 if (flinfo->sections != NULL)
11154 free (flinfo->sections);
11155 if (flinfo->symshndxbuf != NULL)
11156 free (flinfo->symshndxbuf);
11157 for (o = obfd->sections; o != NULL; o = o->next)
11158 {
11159 struct bfd_elf_section_data *esdo = elf_section_data (o);
11160 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11161 free (esdo->rel.hashes);
11162 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11163 free (esdo->rela.hashes);
11164 }
11165 }
11166
11167 /* Do the final step of an ELF link. */
11168
11169 bfd_boolean
11170 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11171 {
11172 bfd_boolean dynamic;
11173 bfd_boolean emit_relocs;
11174 bfd *dynobj;
11175 struct elf_final_link_info flinfo;
11176 asection *o;
11177 struct bfd_link_order *p;
11178 bfd *sub;
11179 bfd_size_type max_contents_size;
11180 bfd_size_type max_external_reloc_size;
11181 bfd_size_type max_internal_reloc_count;
11182 bfd_size_type max_sym_count;
11183 bfd_size_type max_sym_shndx_count;
11184 Elf_Internal_Sym elfsym;
11185 unsigned int i;
11186 Elf_Internal_Shdr *symtab_hdr;
11187 Elf_Internal_Shdr *symtab_shndx_hdr;
11188 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11189 struct elf_outext_info eoinfo;
11190 bfd_boolean merged;
11191 size_t relativecount = 0;
11192 asection *reldyn = 0;
11193 bfd_size_type amt;
11194 asection *attr_section = NULL;
11195 bfd_vma attr_size = 0;
11196 const char *std_attrs_section;
11197
11198 if (! is_elf_hash_table (info->hash))
11199 return FALSE;
11200
11201 if (bfd_link_pic (info))
11202 abfd->flags |= DYNAMIC;
11203
11204 dynamic = elf_hash_table (info)->dynamic_sections_created;
11205 dynobj = elf_hash_table (info)->dynobj;
11206
11207 emit_relocs = (bfd_link_relocatable (info)
11208 || info->emitrelocations);
11209
11210 flinfo.info = info;
11211 flinfo.output_bfd = abfd;
11212 flinfo.symstrtab = _bfd_elf_strtab_init ();
11213 if (flinfo.symstrtab == NULL)
11214 return FALSE;
11215
11216 if (! dynamic)
11217 {
11218 flinfo.hash_sec = NULL;
11219 flinfo.symver_sec = NULL;
11220 }
11221 else
11222 {
11223 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11224 /* Note that dynsym_sec can be NULL (on VMS). */
11225 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11226 /* Note that it is OK if symver_sec is NULL. */
11227 }
11228
11229 flinfo.contents = NULL;
11230 flinfo.external_relocs = NULL;
11231 flinfo.internal_relocs = NULL;
11232 flinfo.external_syms = NULL;
11233 flinfo.locsym_shndx = NULL;
11234 flinfo.internal_syms = NULL;
11235 flinfo.indices = NULL;
11236 flinfo.sections = NULL;
11237 flinfo.symshndxbuf = NULL;
11238 flinfo.filesym_count = 0;
11239
11240 /* The object attributes have been merged. Remove the input
11241 sections from the link, and set the contents of the output
11242 secton. */
11243 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11244 for (o = abfd->sections; o != NULL; o = o->next)
11245 {
11246 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11247 || strcmp (o->name, ".gnu.attributes") == 0)
11248 {
11249 for (p = o->map_head.link_order; p != NULL; p = p->next)
11250 {
11251 asection *input_section;
11252
11253 if (p->type != bfd_indirect_link_order)
11254 continue;
11255 input_section = p->u.indirect.section;
11256 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11257 elf_link_input_bfd ignores this section. */
11258 input_section->flags &= ~SEC_HAS_CONTENTS;
11259 }
11260
11261 attr_size = bfd_elf_obj_attr_size (abfd);
11262 if (attr_size)
11263 {
11264 bfd_set_section_size (abfd, o, attr_size);
11265 attr_section = o;
11266 /* Skip this section later on. */
11267 o->map_head.link_order = NULL;
11268 }
11269 else
11270 o->flags |= SEC_EXCLUDE;
11271 }
11272 }
11273
11274 /* Count up the number of relocations we will output for each output
11275 section, so that we know the sizes of the reloc sections. We
11276 also figure out some maximum sizes. */
11277 max_contents_size = 0;
11278 max_external_reloc_size = 0;
11279 max_internal_reloc_count = 0;
11280 max_sym_count = 0;
11281 max_sym_shndx_count = 0;
11282 merged = FALSE;
11283 for (o = abfd->sections; o != NULL; o = o->next)
11284 {
11285 struct bfd_elf_section_data *esdo = elf_section_data (o);
11286 o->reloc_count = 0;
11287
11288 for (p = o->map_head.link_order; p != NULL; p = p->next)
11289 {
11290 unsigned int reloc_count = 0;
11291 unsigned int additional_reloc_count = 0;
11292 struct bfd_elf_section_data *esdi = NULL;
11293
11294 if (p->type == bfd_section_reloc_link_order
11295 || p->type == bfd_symbol_reloc_link_order)
11296 reloc_count = 1;
11297 else if (p->type == bfd_indirect_link_order)
11298 {
11299 asection *sec;
11300
11301 sec = p->u.indirect.section;
11302 esdi = elf_section_data (sec);
11303
11304 /* Mark all sections which are to be included in the
11305 link. This will normally be every section. We need
11306 to do this so that we can identify any sections which
11307 the linker has decided to not include. */
11308 sec->linker_mark = TRUE;
11309
11310 if (sec->flags & SEC_MERGE)
11311 merged = TRUE;
11312
11313 if (esdo->this_hdr.sh_type == SHT_REL
11314 || esdo->this_hdr.sh_type == SHT_RELA)
11315 /* Some backends use reloc_count in relocation sections
11316 to count particular types of relocs. Of course,
11317 reloc sections themselves can't have relocations. */
11318 reloc_count = 0;
11319 else if (emit_relocs)
11320 {
11321 reloc_count = sec->reloc_count;
11322 if (bed->elf_backend_count_additional_relocs)
11323 {
11324 int c;
11325 c = (*bed->elf_backend_count_additional_relocs) (sec);
11326 additional_reloc_count += c;
11327 }
11328 }
11329 else if (bed->elf_backend_count_relocs)
11330 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11331
11332 if (sec->rawsize > max_contents_size)
11333 max_contents_size = sec->rawsize;
11334 if (sec->size > max_contents_size)
11335 max_contents_size = sec->size;
11336
11337 /* We are interested in just local symbols, not all
11338 symbols. */
11339 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11340 && (sec->owner->flags & DYNAMIC) == 0)
11341 {
11342 size_t sym_count;
11343
11344 if (elf_bad_symtab (sec->owner))
11345 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11346 / bed->s->sizeof_sym);
11347 else
11348 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11349
11350 if (sym_count > max_sym_count)
11351 max_sym_count = sym_count;
11352
11353 if (sym_count > max_sym_shndx_count
11354 && elf_symtab_shndx_list (sec->owner) != NULL)
11355 max_sym_shndx_count = sym_count;
11356
11357 if ((sec->flags & SEC_RELOC) != 0)
11358 {
11359 size_t ext_size = 0;
11360
11361 if (esdi->rel.hdr != NULL)
11362 ext_size = esdi->rel.hdr->sh_size;
11363 if (esdi->rela.hdr != NULL)
11364 ext_size += esdi->rela.hdr->sh_size;
11365
11366 if (ext_size > max_external_reloc_size)
11367 max_external_reloc_size = ext_size;
11368 if (sec->reloc_count > max_internal_reloc_count)
11369 max_internal_reloc_count = sec->reloc_count;
11370 }
11371 }
11372 }
11373
11374 if (reloc_count == 0)
11375 continue;
11376
11377 reloc_count += additional_reloc_count;
11378 o->reloc_count += reloc_count;
11379
11380 if (p->type == bfd_indirect_link_order && emit_relocs)
11381 {
11382 if (esdi->rel.hdr)
11383 {
11384 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
11385 esdo->rel.count += additional_reloc_count;
11386 }
11387 if (esdi->rela.hdr)
11388 {
11389 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
11390 esdo->rela.count += additional_reloc_count;
11391 }
11392 }
11393 else
11394 {
11395 if (o->use_rela_p)
11396 esdo->rela.count += reloc_count;
11397 else
11398 esdo->rel.count += reloc_count;
11399 }
11400 }
11401
11402 if (o->reloc_count > 0)
11403 o->flags |= SEC_RELOC;
11404 else
11405 {
11406 /* Explicitly clear the SEC_RELOC flag. The linker tends to
11407 set it (this is probably a bug) and if it is set
11408 assign_section_numbers will create a reloc section. */
11409 o->flags &=~ SEC_RELOC;
11410 }
11411
11412 /* If the SEC_ALLOC flag is not set, force the section VMA to
11413 zero. This is done in elf_fake_sections as well, but forcing
11414 the VMA to 0 here will ensure that relocs against these
11415 sections are handled correctly. */
11416 if ((o->flags & SEC_ALLOC) == 0
11417 && ! o->user_set_vma)
11418 o->vma = 0;
11419 }
11420
11421 if (! bfd_link_relocatable (info) && merged)
11422 elf_link_hash_traverse (elf_hash_table (info),
11423 _bfd_elf_link_sec_merge_syms, abfd);
11424
11425 /* Figure out the file positions for everything but the symbol table
11426 and the relocs. We set symcount to force assign_section_numbers
11427 to create a symbol table. */
11428 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
11429 BFD_ASSERT (! abfd->output_has_begun);
11430 if (! _bfd_elf_compute_section_file_positions (abfd, info))
11431 goto error_return;
11432
11433 /* Set sizes, and assign file positions for reloc sections. */
11434 for (o = abfd->sections; o != NULL; o = o->next)
11435 {
11436 struct bfd_elf_section_data *esdo = elf_section_data (o);
11437 if ((o->flags & SEC_RELOC) != 0)
11438 {
11439 if (esdo->rel.hdr
11440 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
11441 goto error_return;
11442
11443 if (esdo->rela.hdr
11444 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
11445 goto error_return;
11446 }
11447
11448 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
11449 to count upwards while actually outputting the relocations. */
11450 esdo->rel.count = 0;
11451 esdo->rela.count = 0;
11452
11453 if (esdo->this_hdr.sh_offset == (file_ptr) -1)
11454 {
11455 /* Cache the section contents so that they can be compressed
11456 later. Use bfd_malloc since it will be freed by
11457 bfd_compress_section_contents. */
11458 unsigned char *contents = esdo->this_hdr.contents;
11459 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
11460 abort ();
11461 contents
11462 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
11463 if (contents == NULL)
11464 goto error_return;
11465 esdo->this_hdr.contents = contents;
11466 }
11467 }
11468
11469 /* We have now assigned file positions for all the sections except
11470 .symtab, .strtab, and non-loaded reloc sections. We start the
11471 .symtab section at the current file position, and write directly
11472 to it. We build the .strtab section in memory. */
11473 bfd_get_symcount (abfd) = 0;
11474 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11475 /* sh_name is set in prep_headers. */
11476 symtab_hdr->sh_type = SHT_SYMTAB;
11477 /* sh_flags, sh_addr and sh_size all start off zero. */
11478 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
11479 /* sh_link is set in assign_section_numbers. */
11480 /* sh_info is set below. */
11481 /* sh_offset is set just below. */
11482 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
11483
11484 if (max_sym_count < 20)
11485 max_sym_count = 20;
11486 elf_hash_table (info)->strtabsize = max_sym_count;
11487 amt = max_sym_count * sizeof (struct elf_sym_strtab);
11488 elf_hash_table (info)->strtab
11489 = (struct elf_sym_strtab *) bfd_malloc (amt);
11490 if (elf_hash_table (info)->strtab == NULL)
11491 goto error_return;
11492 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
11493 flinfo.symshndxbuf
11494 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
11495 ? (Elf_External_Sym_Shndx *) -1 : NULL);
11496
11497 if (info->strip != strip_all || emit_relocs)
11498 {
11499 file_ptr off = elf_next_file_pos (abfd);
11500
11501 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
11502
11503 /* Note that at this point elf_next_file_pos (abfd) is
11504 incorrect. We do not yet know the size of the .symtab section.
11505 We correct next_file_pos below, after we do know the size. */
11506
11507 /* Start writing out the symbol table. The first symbol is always a
11508 dummy symbol. */
11509 elfsym.st_value = 0;
11510 elfsym.st_size = 0;
11511 elfsym.st_info = 0;
11512 elfsym.st_other = 0;
11513 elfsym.st_shndx = SHN_UNDEF;
11514 elfsym.st_target_internal = 0;
11515 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
11516 bfd_und_section_ptr, NULL) != 1)
11517 goto error_return;
11518
11519 /* Output a symbol for each section. We output these even if we are
11520 discarding local symbols, since they are used for relocs. These
11521 symbols have no names. We store the index of each one in the
11522 index field of the section, so that we can find it again when
11523 outputting relocs. */
11524
11525 elfsym.st_size = 0;
11526 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11527 elfsym.st_other = 0;
11528 elfsym.st_value = 0;
11529 elfsym.st_target_internal = 0;
11530 for (i = 1; i < elf_numsections (abfd); i++)
11531 {
11532 o = bfd_section_from_elf_index (abfd, i);
11533 if (o != NULL)
11534 {
11535 o->target_index = bfd_get_symcount (abfd);
11536 elfsym.st_shndx = i;
11537 if (!bfd_link_relocatable (info))
11538 elfsym.st_value = o->vma;
11539 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
11540 NULL) != 1)
11541 goto error_return;
11542 }
11543 }
11544 }
11545
11546 /* Allocate some memory to hold information read in from the input
11547 files. */
11548 if (max_contents_size != 0)
11549 {
11550 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
11551 if (flinfo.contents == NULL)
11552 goto error_return;
11553 }
11554
11555 if (max_external_reloc_size != 0)
11556 {
11557 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
11558 if (flinfo.external_relocs == NULL)
11559 goto error_return;
11560 }
11561
11562 if (max_internal_reloc_count != 0)
11563 {
11564 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
11565 amt *= sizeof (Elf_Internal_Rela);
11566 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
11567 if (flinfo.internal_relocs == NULL)
11568 goto error_return;
11569 }
11570
11571 if (max_sym_count != 0)
11572 {
11573 amt = max_sym_count * bed->s->sizeof_sym;
11574 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
11575 if (flinfo.external_syms == NULL)
11576 goto error_return;
11577
11578 amt = max_sym_count * sizeof (Elf_Internal_Sym);
11579 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
11580 if (flinfo.internal_syms == NULL)
11581 goto error_return;
11582
11583 amt = max_sym_count * sizeof (long);
11584 flinfo.indices = (long int *) bfd_malloc (amt);
11585 if (flinfo.indices == NULL)
11586 goto error_return;
11587
11588 amt = max_sym_count * sizeof (asection *);
11589 flinfo.sections = (asection **) bfd_malloc (amt);
11590 if (flinfo.sections == NULL)
11591 goto error_return;
11592 }
11593
11594 if (max_sym_shndx_count != 0)
11595 {
11596 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11597 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11598 if (flinfo.locsym_shndx == NULL)
11599 goto error_return;
11600 }
11601
11602 if (elf_hash_table (info)->tls_sec)
11603 {
11604 bfd_vma base, end = 0;
11605 asection *sec;
11606
11607 for (sec = elf_hash_table (info)->tls_sec;
11608 sec && (sec->flags & SEC_THREAD_LOCAL);
11609 sec = sec->next)
11610 {
11611 bfd_size_type size = sec->size;
11612
11613 if (size == 0
11614 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11615 {
11616 struct bfd_link_order *ord = sec->map_tail.link_order;
11617
11618 if (ord != NULL)
11619 size = ord->offset + ord->size;
11620 }
11621 end = sec->vma + size;
11622 }
11623 base = elf_hash_table (info)->tls_sec->vma;
11624 /* Only align end of TLS section if static TLS doesn't have special
11625 alignment requirements. */
11626 if (bed->static_tls_alignment == 1)
11627 end = align_power (end,
11628 elf_hash_table (info)->tls_sec->alignment_power);
11629 elf_hash_table (info)->tls_size = end - base;
11630 }
11631
11632 /* Reorder SHF_LINK_ORDER sections. */
11633 for (o = abfd->sections; o != NULL; o = o->next)
11634 {
11635 if (!elf_fixup_link_order (abfd, o))
11636 return FALSE;
11637 }
11638
11639 if (!_bfd_elf_fixup_eh_frame_hdr (info))
11640 return FALSE;
11641
11642 /* Since ELF permits relocations to be against local symbols, we
11643 must have the local symbols available when we do the relocations.
11644 Since we would rather only read the local symbols once, and we
11645 would rather not keep them in memory, we handle all the
11646 relocations for a single input file at the same time.
11647
11648 Unfortunately, there is no way to know the total number of local
11649 symbols until we have seen all of them, and the local symbol
11650 indices precede the global symbol indices. This means that when
11651 we are generating relocatable output, and we see a reloc against
11652 a global symbol, we can not know the symbol index until we have
11653 finished examining all the local symbols to see which ones we are
11654 going to output. To deal with this, we keep the relocations in
11655 memory, and don't output them until the end of the link. This is
11656 an unfortunate waste of memory, but I don't see a good way around
11657 it. Fortunately, it only happens when performing a relocatable
11658 link, which is not the common case. FIXME: If keep_memory is set
11659 we could write the relocs out and then read them again; I don't
11660 know how bad the memory loss will be. */
11661
11662 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11663 sub->output_has_begun = FALSE;
11664 for (o = abfd->sections; o != NULL; o = o->next)
11665 {
11666 for (p = o->map_head.link_order; p != NULL; p = p->next)
11667 {
11668 if (p->type == bfd_indirect_link_order
11669 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11670 == bfd_target_elf_flavour)
11671 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11672 {
11673 if (! sub->output_has_begun)
11674 {
11675 if (! elf_link_input_bfd (&flinfo, sub))
11676 goto error_return;
11677 sub->output_has_begun = TRUE;
11678 }
11679 }
11680 else if (p->type == bfd_section_reloc_link_order
11681 || p->type == bfd_symbol_reloc_link_order)
11682 {
11683 if (! elf_reloc_link_order (abfd, info, o, p))
11684 goto error_return;
11685 }
11686 else
11687 {
11688 if (! _bfd_default_link_order (abfd, info, o, p))
11689 {
11690 if (p->type == bfd_indirect_link_order
11691 && (bfd_get_flavour (sub)
11692 == bfd_target_elf_flavour)
11693 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11694 != bed->s->elfclass))
11695 {
11696 const char *iclass, *oclass;
11697
11698 switch (bed->s->elfclass)
11699 {
11700 case ELFCLASS64: oclass = "ELFCLASS64"; break;
11701 case ELFCLASS32: oclass = "ELFCLASS32"; break;
11702 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
11703 default: abort ();
11704 }
11705
11706 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
11707 {
11708 case ELFCLASS64: iclass = "ELFCLASS64"; break;
11709 case ELFCLASS32: iclass = "ELFCLASS32"; break;
11710 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
11711 default: abort ();
11712 }
11713
11714 bfd_set_error (bfd_error_wrong_format);
11715 (*_bfd_error_handler)
11716 (_("%B: file class %s incompatible with %s"),
11717 sub, iclass, oclass);
11718 }
11719
11720 goto error_return;
11721 }
11722 }
11723 }
11724 }
11725
11726 /* Free symbol buffer if needed. */
11727 if (!info->reduce_memory_overheads)
11728 {
11729 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11730 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11731 && elf_tdata (sub)->symbuf)
11732 {
11733 free (elf_tdata (sub)->symbuf);
11734 elf_tdata (sub)->symbuf = NULL;
11735 }
11736 }
11737
11738 /* Output any global symbols that got converted to local in a
11739 version script or due to symbol visibility. We do this in a
11740 separate step since ELF requires all local symbols to appear
11741 prior to any global symbols. FIXME: We should only do this if
11742 some global symbols were, in fact, converted to become local.
11743 FIXME: Will this work correctly with the Irix 5 linker? */
11744 eoinfo.failed = FALSE;
11745 eoinfo.flinfo = &flinfo;
11746 eoinfo.localsyms = TRUE;
11747 eoinfo.file_sym_done = FALSE;
11748 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11749 if (eoinfo.failed)
11750 return FALSE;
11751
11752 /* If backend needs to output some local symbols not present in the hash
11753 table, do it now. */
11754 if (bed->elf_backend_output_arch_local_syms
11755 && (info->strip != strip_all || emit_relocs))
11756 {
11757 typedef int (*out_sym_func)
11758 (void *, const char *, Elf_Internal_Sym *, asection *,
11759 struct elf_link_hash_entry *);
11760
11761 if (! ((*bed->elf_backend_output_arch_local_syms)
11762 (abfd, info, &flinfo,
11763 (out_sym_func) elf_link_output_symstrtab)))
11764 return FALSE;
11765 }
11766
11767 /* That wrote out all the local symbols. Finish up the symbol table
11768 with the global symbols. Even if we want to strip everything we
11769 can, we still need to deal with those global symbols that got
11770 converted to local in a version script. */
11771
11772 /* The sh_info field records the index of the first non local symbol. */
11773 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11774
11775 if (dynamic
11776 && elf_hash_table (info)->dynsym != NULL
11777 && (elf_hash_table (info)->dynsym->output_section
11778 != bfd_abs_section_ptr))
11779 {
11780 Elf_Internal_Sym sym;
11781 bfd_byte *dynsym = elf_hash_table (info)->dynsym->contents;
11782 long last_local = 0;
11783
11784 /* Write out the section symbols for the output sections. */
11785 if (bfd_link_pic (info)
11786 || elf_hash_table (info)->is_relocatable_executable)
11787 {
11788 asection *s;
11789
11790 sym.st_size = 0;
11791 sym.st_name = 0;
11792 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11793 sym.st_other = 0;
11794 sym.st_target_internal = 0;
11795
11796 for (s = abfd->sections; s != NULL; s = s->next)
11797 {
11798 int indx;
11799 bfd_byte *dest;
11800 long dynindx;
11801
11802 dynindx = elf_section_data (s)->dynindx;
11803 if (dynindx <= 0)
11804 continue;
11805 indx = elf_section_data (s)->this_idx;
11806 BFD_ASSERT (indx > 0);
11807 sym.st_shndx = indx;
11808 if (! check_dynsym (abfd, &sym))
11809 return FALSE;
11810 sym.st_value = s->vma;
11811 dest = dynsym + dynindx * bed->s->sizeof_sym;
11812 if (last_local < dynindx)
11813 last_local = dynindx;
11814 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11815 }
11816 }
11817
11818 /* Write out the local dynsyms. */
11819 if (elf_hash_table (info)->dynlocal)
11820 {
11821 struct elf_link_local_dynamic_entry *e;
11822 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11823 {
11824 asection *s;
11825 bfd_byte *dest;
11826
11827 /* Copy the internal symbol and turn off visibility.
11828 Note that we saved a word of storage and overwrote
11829 the original st_name with the dynstr_index. */
11830 sym = e->isym;
11831 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11832
11833 s = bfd_section_from_elf_index (e->input_bfd,
11834 e->isym.st_shndx);
11835 if (s != NULL)
11836 {
11837 sym.st_shndx =
11838 elf_section_data (s->output_section)->this_idx;
11839 if (! check_dynsym (abfd, &sym))
11840 return FALSE;
11841 sym.st_value = (s->output_section->vma
11842 + s->output_offset
11843 + e->isym.st_value);
11844 }
11845
11846 if (last_local < e->dynindx)
11847 last_local = e->dynindx;
11848
11849 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11850 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11851 }
11852 }
11853
11854 elf_section_data (elf_hash_table (info)->dynsym->output_section)->this_hdr.sh_info =
11855 last_local + 1;
11856 }
11857
11858 /* We get the global symbols from the hash table. */
11859 eoinfo.failed = FALSE;
11860 eoinfo.localsyms = FALSE;
11861 eoinfo.flinfo = &flinfo;
11862 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11863 if (eoinfo.failed)
11864 return FALSE;
11865
11866 /* If backend needs to output some symbols not present in the hash
11867 table, do it now. */
11868 if (bed->elf_backend_output_arch_syms
11869 && (info->strip != strip_all || emit_relocs))
11870 {
11871 typedef int (*out_sym_func)
11872 (void *, const char *, Elf_Internal_Sym *, asection *,
11873 struct elf_link_hash_entry *);
11874
11875 if (! ((*bed->elf_backend_output_arch_syms)
11876 (abfd, info, &flinfo,
11877 (out_sym_func) elf_link_output_symstrtab)))
11878 return FALSE;
11879 }
11880
11881 /* Finalize the .strtab section. */
11882 _bfd_elf_strtab_finalize (flinfo.symstrtab);
11883
11884 /* Swap out the .strtab section. */
11885 if (!elf_link_swap_symbols_out (&flinfo))
11886 return FALSE;
11887
11888 /* Now we know the size of the symtab section. */
11889 if (bfd_get_symcount (abfd) > 0)
11890 {
11891 /* Finish up and write out the symbol string table (.strtab)
11892 section. */
11893 Elf_Internal_Shdr *symstrtab_hdr;
11894 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
11895
11896 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
11897 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
11898 {
11899 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11900 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11901 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11902 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11903 symtab_shndx_hdr->sh_size = amt;
11904
11905 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11906 off, TRUE);
11907
11908 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11909 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11910 return FALSE;
11911 }
11912
11913 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11914 /* sh_name was set in prep_headers. */
11915 symstrtab_hdr->sh_type = SHT_STRTAB;
11916 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
11917 symstrtab_hdr->sh_addr = 0;
11918 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
11919 symstrtab_hdr->sh_entsize = 0;
11920 symstrtab_hdr->sh_link = 0;
11921 symstrtab_hdr->sh_info = 0;
11922 /* sh_offset is set just below. */
11923 symstrtab_hdr->sh_addralign = 1;
11924
11925 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
11926 off, TRUE);
11927 elf_next_file_pos (abfd) = off;
11928
11929 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11930 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
11931 return FALSE;
11932 }
11933
11934 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
11935 {
11936 (*_bfd_error_handler) (_("%B: failed to generate import library"),
11937 info->out_implib_bfd);
11938 return FALSE;
11939 }
11940
11941 /* Adjust the relocs to have the correct symbol indices. */
11942 for (o = abfd->sections; o != NULL; o = o->next)
11943 {
11944 struct bfd_elf_section_data *esdo = elf_section_data (o);
11945 bfd_boolean sort;
11946 if ((o->flags & SEC_RELOC) == 0)
11947 continue;
11948
11949 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
11950 if (esdo->rel.hdr != NULL
11951 && !elf_link_adjust_relocs (abfd, &esdo->rel, sort))
11952 return FALSE;
11953 if (esdo->rela.hdr != NULL
11954 && !elf_link_adjust_relocs (abfd, &esdo->rela, sort))
11955 return FALSE;
11956
11957 /* Set the reloc_count field to 0 to prevent write_relocs from
11958 trying to swap the relocs out itself. */
11959 o->reloc_count = 0;
11960 }
11961
11962 if (dynamic && info->combreloc && dynobj != NULL)
11963 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11964
11965 /* If we are linking against a dynamic object, or generating a
11966 shared library, finish up the dynamic linking information. */
11967 if (dynamic)
11968 {
11969 bfd_byte *dyncon, *dynconend;
11970
11971 /* Fix up .dynamic entries. */
11972 o = bfd_get_linker_section (dynobj, ".dynamic");
11973 BFD_ASSERT (o != NULL);
11974
11975 dyncon = o->contents;
11976 dynconend = o->contents + o->size;
11977 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11978 {
11979 Elf_Internal_Dyn dyn;
11980 const char *name;
11981 unsigned int type;
11982
11983 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11984
11985 switch (dyn.d_tag)
11986 {
11987 default:
11988 continue;
11989 case DT_NULL:
11990 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11991 {
11992 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11993 {
11994 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11995 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11996 default: continue;
11997 }
11998 dyn.d_un.d_val = relativecount;
11999 relativecount = 0;
12000 break;
12001 }
12002 continue;
12003
12004 case DT_INIT:
12005 name = info->init_function;
12006 goto get_sym;
12007 case DT_FINI:
12008 name = info->fini_function;
12009 get_sym:
12010 {
12011 struct elf_link_hash_entry *h;
12012
12013 h = elf_link_hash_lookup (elf_hash_table (info), name,
12014 FALSE, FALSE, TRUE);
12015 if (h != NULL
12016 && (h->root.type == bfd_link_hash_defined
12017 || h->root.type == bfd_link_hash_defweak))
12018 {
12019 dyn.d_un.d_ptr = h->root.u.def.value;
12020 o = h->root.u.def.section;
12021 if (o->output_section != NULL)
12022 dyn.d_un.d_ptr += (o->output_section->vma
12023 + o->output_offset);
12024 else
12025 {
12026 /* The symbol is imported from another shared
12027 library and does not apply to this one. */
12028 dyn.d_un.d_ptr = 0;
12029 }
12030 break;
12031 }
12032 }
12033 continue;
12034
12035 case DT_PREINIT_ARRAYSZ:
12036 name = ".preinit_array";
12037 goto get_out_size;
12038 case DT_INIT_ARRAYSZ:
12039 name = ".init_array";
12040 goto get_out_size;
12041 case DT_FINI_ARRAYSZ:
12042 name = ".fini_array";
12043 get_out_size:
12044 o = bfd_get_section_by_name (abfd, name);
12045 if (o == NULL)
12046 {
12047 (*_bfd_error_handler)
12048 (_("could not find section %s"), name);
12049 goto error_return;
12050 }
12051 if (o->size == 0)
12052 (*_bfd_error_handler)
12053 (_("warning: %s section has zero size"), name);
12054 dyn.d_un.d_val = o->size;
12055 break;
12056
12057 case DT_PREINIT_ARRAY:
12058 name = ".preinit_array";
12059 goto get_out_vma;
12060 case DT_INIT_ARRAY:
12061 name = ".init_array";
12062 goto get_out_vma;
12063 case DT_FINI_ARRAY:
12064 name = ".fini_array";
12065 get_out_vma:
12066 o = bfd_get_section_by_name (abfd, name);
12067 goto do_vma;
12068
12069 case DT_HASH:
12070 name = ".hash";
12071 goto get_vma;
12072 case DT_GNU_HASH:
12073 name = ".gnu.hash";
12074 goto get_vma;
12075 case DT_STRTAB:
12076 name = ".dynstr";
12077 goto get_vma;
12078 case DT_SYMTAB:
12079 name = ".dynsym";
12080 goto get_vma;
12081 case DT_VERDEF:
12082 name = ".gnu.version_d";
12083 goto get_vma;
12084 case DT_VERNEED:
12085 name = ".gnu.version_r";
12086 goto get_vma;
12087 case DT_VERSYM:
12088 name = ".gnu.version";
12089 get_vma:
12090 o = bfd_get_linker_section (dynobj, name);
12091 do_vma:
12092 if (o == NULL)
12093 {
12094 (*_bfd_error_handler)
12095 (_("could not find section %s"), name);
12096 goto error_return;
12097 }
12098 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
12099 {
12100 (*_bfd_error_handler)
12101 (_("warning: section '%s' is being made into a note"), name);
12102 bfd_set_error (bfd_error_nonrepresentable_section);
12103 goto error_return;
12104 }
12105 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
12106 break;
12107
12108 case DT_REL:
12109 case DT_RELA:
12110 case DT_RELSZ:
12111 case DT_RELASZ:
12112 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12113 type = SHT_REL;
12114 else
12115 type = SHT_RELA;
12116 dyn.d_un.d_val = 0;
12117 dyn.d_un.d_ptr = 0;
12118 for (i = 1; i < elf_numsections (abfd); i++)
12119 {
12120 Elf_Internal_Shdr *hdr;
12121
12122 hdr = elf_elfsections (abfd)[i];
12123 if (hdr->sh_type == type
12124 && (hdr->sh_flags & SHF_ALLOC) != 0)
12125 {
12126 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
12127 dyn.d_un.d_val += hdr->sh_size;
12128 else
12129 {
12130 if (dyn.d_un.d_ptr == 0
12131 || hdr->sh_addr < dyn.d_un.d_ptr)
12132 dyn.d_un.d_ptr = hdr->sh_addr;
12133 }
12134 }
12135 }
12136 break;
12137 }
12138 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
12139 }
12140 }
12141
12142 /* If we have created any dynamic sections, then output them. */
12143 if (dynobj != NULL)
12144 {
12145 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
12146 goto error_return;
12147
12148 /* Check for DT_TEXTREL (late, in case the backend removes it). */
12149 if (((info->warn_shared_textrel && bfd_link_pic (info))
12150 || info->error_textrel)
12151 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
12152 {
12153 bfd_byte *dyncon, *dynconend;
12154
12155 dyncon = o->contents;
12156 dynconend = o->contents + o->size;
12157 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12158 {
12159 Elf_Internal_Dyn dyn;
12160
12161 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12162
12163 if (dyn.d_tag == DT_TEXTREL)
12164 {
12165 if (info->error_textrel)
12166 info->callbacks->einfo
12167 (_("%P%X: read-only segment has dynamic relocations.\n"));
12168 else
12169 info->callbacks->einfo
12170 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
12171 break;
12172 }
12173 }
12174 }
12175
12176 for (o = dynobj->sections; o != NULL; o = o->next)
12177 {
12178 if ((o->flags & SEC_HAS_CONTENTS) == 0
12179 || o->size == 0
12180 || o->output_section == bfd_abs_section_ptr)
12181 continue;
12182 if ((o->flags & SEC_LINKER_CREATED) == 0)
12183 {
12184 /* At this point, we are only interested in sections
12185 created by _bfd_elf_link_create_dynamic_sections. */
12186 continue;
12187 }
12188 if (elf_hash_table (info)->stab_info.stabstr == o)
12189 continue;
12190 if (elf_hash_table (info)->eh_info.hdr_sec == o)
12191 continue;
12192 if (strcmp (o->name, ".dynstr") != 0)
12193 {
12194 if (! bfd_set_section_contents (abfd, o->output_section,
12195 o->contents,
12196 (file_ptr) o->output_offset
12197 * bfd_octets_per_byte (abfd),
12198 o->size))
12199 goto error_return;
12200 }
12201 else
12202 {
12203 /* The contents of the .dynstr section are actually in a
12204 stringtab. */
12205 file_ptr off;
12206
12207 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
12208 if (bfd_seek (abfd, off, SEEK_SET) != 0
12209 || ! _bfd_elf_strtab_emit (abfd,
12210 elf_hash_table (info)->dynstr))
12211 goto error_return;
12212 }
12213 }
12214 }
12215
12216 if (bfd_link_relocatable (info))
12217 {
12218 bfd_boolean failed = FALSE;
12219
12220 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
12221 if (failed)
12222 goto error_return;
12223 }
12224
12225 /* If we have optimized stabs strings, output them. */
12226 if (elf_hash_table (info)->stab_info.stabstr != NULL)
12227 {
12228 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
12229 goto error_return;
12230 }
12231
12232 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
12233 goto error_return;
12234
12235 elf_final_link_free (abfd, &flinfo);
12236
12237 elf_linker (abfd) = TRUE;
12238
12239 if (attr_section)
12240 {
12241 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
12242 if (contents == NULL)
12243 return FALSE; /* Bail out and fail. */
12244 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
12245 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
12246 free (contents);
12247 }
12248
12249 return TRUE;
12250
12251 error_return:
12252 elf_final_link_free (abfd, &flinfo);
12253 return FALSE;
12254 }
12255 \f
12256 /* Initialize COOKIE for input bfd ABFD. */
12257
12258 static bfd_boolean
12259 init_reloc_cookie (struct elf_reloc_cookie *cookie,
12260 struct bfd_link_info *info, bfd *abfd)
12261 {
12262 Elf_Internal_Shdr *symtab_hdr;
12263 const struct elf_backend_data *bed;
12264
12265 bed = get_elf_backend_data (abfd);
12266 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12267
12268 cookie->abfd = abfd;
12269 cookie->sym_hashes = elf_sym_hashes (abfd);
12270 cookie->bad_symtab = elf_bad_symtab (abfd);
12271 if (cookie->bad_symtab)
12272 {
12273 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12274 cookie->extsymoff = 0;
12275 }
12276 else
12277 {
12278 cookie->locsymcount = symtab_hdr->sh_info;
12279 cookie->extsymoff = symtab_hdr->sh_info;
12280 }
12281
12282 if (bed->s->arch_size == 32)
12283 cookie->r_sym_shift = 8;
12284 else
12285 cookie->r_sym_shift = 32;
12286
12287 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
12288 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
12289 {
12290 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12291 cookie->locsymcount, 0,
12292 NULL, NULL, NULL);
12293 if (cookie->locsyms == NULL)
12294 {
12295 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
12296 return FALSE;
12297 }
12298 if (info->keep_memory)
12299 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
12300 }
12301 return TRUE;
12302 }
12303
12304 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
12305
12306 static void
12307 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
12308 {
12309 Elf_Internal_Shdr *symtab_hdr;
12310
12311 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12312 if (cookie->locsyms != NULL
12313 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
12314 free (cookie->locsyms);
12315 }
12316
12317 /* Initialize the relocation information in COOKIE for input section SEC
12318 of input bfd ABFD. */
12319
12320 static bfd_boolean
12321 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12322 struct bfd_link_info *info, bfd *abfd,
12323 asection *sec)
12324 {
12325 const struct elf_backend_data *bed;
12326
12327 if (sec->reloc_count == 0)
12328 {
12329 cookie->rels = NULL;
12330 cookie->relend = NULL;
12331 }
12332 else
12333 {
12334 bed = get_elf_backend_data (abfd);
12335
12336 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
12337 info->keep_memory);
12338 if (cookie->rels == NULL)
12339 return FALSE;
12340 cookie->rel = cookie->rels;
12341 cookie->relend = (cookie->rels
12342 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
12343 }
12344 cookie->rel = cookie->rels;
12345 return TRUE;
12346 }
12347
12348 /* Free the memory allocated by init_reloc_cookie_rels,
12349 if appropriate. */
12350
12351 static void
12352 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12353 asection *sec)
12354 {
12355 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
12356 free (cookie->rels);
12357 }
12358
12359 /* Initialize the whole of COOKIE for input section SEC. */
12360
12361 static bfd_boolean
12362 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12363 struct bfd_link_info *info,
12364 asection *sec)
12365 {
12366 if (!init_reloc_cookie (cookie, info, sec->owner))
12367 goto error1;
12368 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
12369 goto error2;
12370 return TRUE;
12371
12372 error2:
12373 fini_reloc_cookie (cookie, sec->owner);
12374 error1:
12375 return FALSE;
12376 }
12377
12378 /* Free the memory allocated by init_reloc_cookie_for_section,
12379 if appropriate. */
12380
12381 static void
12382 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12383 asection *sec)
12384 {
12385 fini_reloc_cookie_rels (cookie, sec);
12386 fini_reloc_cookie (cookie, sec->owner);
12387 }
12388 \f
12389 /* Garbage collect unused sections. */
12390
12391 /* Default gc_mark_hook. */
12392
12393 asection *
12394 _bfd_elf_gc_mark_hook (asection *sec,
12395 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12396 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12397 struct elf_link_hash_entry *h,
12398 Elf_Internal_Sym *sym)
12399 {
12400 if (h != NULL)
12401 {
12402 switch (h->root.type)
12403 {
12404 case bfd_link_hash_defined:
12405 case bfd_link_hash_defweak:
12406 return h->root.u.def.section;
12407
12408 case bfd_link_hash_common:
12409 return h->root.u.c.p->section;
12410
12411 default:
12412 break;
12413 }
12414 }
12415 else
12416 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
12417
12418 return NULL;
12419 }
12420
12421 /* For undefined __start_<name> and __stop_<name> symbols, return the
12422 first input section matching <name>. Return NULL otherwise. */
12423
12424 asection *
12425 _bfd_elf_is_start_stop (const struct bfd_link_info *info,
12426 struct elf_link_hash_entry *h)
12427 {
12428 asection *s;
12429 const char *sec_name;
12430
12431 if (h->root.type != bfd_link_hash_undefined
12432 && h->root.type != bfd_link_hash_undefweak)
12433 return NULL;
12434
12435 s = h->root.u.undef.section;
12436 if (s != NULL)
12437 {
12438 if (s == (asection *) 0 - 1)
12439 return NULL;
12440 return s;
12441 }
12442
12443 sec_name = NULL;
12444 if (strncmp (h->root.root.string, "__start_", 8) == 0)
12445 sec_name = h->root.root.string + 8;
12446 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
12447 sec_name = h->root.root.string + 7;
12448
12449 if (sec_name != NULL && *sec_name != '\0')
12450 {
12451 bfd *i;
12452
12453 for (i = info->input_bfds; i != NULL; i = i->link.next)
12454 {
12455 s = bfd_get_section_by_name (i, sec_name);
12456 if (s != NULL)
12457 {
12458 h->root.u.undef.section = s;
12459 break;
12460 }
12461 }
12462 }
12463
12464 if (s == NULL)
12465 h->root.u.undef.section = (asection *) 0 - 1;
12466
12467 return s;
12468 }
12469
12470 /* COOKIE->rel describes a relocation against section SEC, which is
12471 a section we've decided to keep. Return the section that contains
12472 the relocation symbol, or NULL if no section contains it. */
12473
12474 asection *
12475 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
12476 elf_gc_mark_hook_fn gc_mark_hook,
12477 struct elf_reloc_cookie *cookie,
12478 bfd_boolean *start_stop)
12479 {
12480 unsigned long r_symndx;
12481 struct elf_link_hash_entry *h;
12482
12483 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
12484 if (r_symndx == STN_UNDEF)
12485 return NULL;
12486
12487 if (r_symndx >= cookie->locsymcount
12488 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12489 {
12490 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
12491 if (h == NULL)
12492 {
12493 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
12494 sec->owner);
12495 return NULL;
12496 }
12497 while (h->root.type == bfd_link_hash_indirect
12498 || h->root.type == bfd_link_hash_warning)
12499 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12500 h->mark = 1;
12501 /* If this symbol is weak and there is a non-weak definition, we
12502 keep the non-weak definition because many backends put
12503 dynamic reloc info on the non-weak definition for code
12504 handling copy relocs. */
12505 if (h->u.weakdef != NULL)
12506 h->u.weakdef->mark = 1;
12507
12508 if (start_stop != NULL)
12509 {
12510 /* To work around a glibc bug, mark all XXX input sections
12511 when there is an as yet undefined reference to __start_XXX
12512 or __stop_XXX symbols. The linker will later define such
12513 symbols for orphan input sections that have a name
12514 representable as a C identifier. */
12515 asection *s = _bfd_elf_is_start_stop (info, h);
12516
12517 if (s != NULL)
12518 {
12519 *start_stop = !s->gc_mark;
12520 return s;
12521 }
12522 }
12523
12524 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
12525 }
12526
12527 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
12528 &cookie->locsyms[r_symndx]);
12529 }
12530
12531 /* COOKIE->rel describes a relocation against section SEC, which is
12532 a section we've decided to keep. Mark the section that contains
12533 the relocation symbol. */
12534
12535 bfd_boolean
12536 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
12537 asection *sec,
12538 elf_gc_mark_hook_fn gc_mark_hook,
12539 struct elf_reloc_cookie *cookie)
12540 {
12541 asection *rsec;
12542 bfd_boolean start_stop = FALSE;
12543
12544 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
12545 while (rsec != NULL)
12546 {
12547 if (!rsec->gc_mark)
12548 {
12549 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
12550 || (rsec->owner->flags & DYNAMIC) != 0)
12551 rsec->gc_mark = 1;
12552 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
12553 return FALSE;
12554 }
12555 if (!start_stop)
12556 break;
12557 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
12558 }
12559 return TRUE;
12560 }
12561
12562 /* The mark phase of garbage collection. For a given section, mark
12563 it and any sections in this section's group, and all the sections
12564 which define symbols to which it refers. */
12565
12566 bfd_boolean
12567 _bfd_elf_gc_mark (struct bfd_link_info *info,
12568 asection *sec,
12569 elf_gc_mark_hook_fn gc_mark_hook)
12570 {
12571 bfd_boolean ret;
12572 asection *group_sec, *eh_frame;
12573
12574 sec->gc_mark = 1;
12575
12576 /* Mark all the sections in the group. */
12577 group_sec = elf_section_data (sec)->next_in_group;
12578 if (group_sec && !group_sec->gc_mark)
12579 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
12580 return FALSE;
12581
12582 /* Look through the section relocs. */
12583 ret = TRUE;
12584 eh_frame = elf_eh_frame_section (sec->owner);
12585 if ((sec->flags & SEC_RELOC) != 0
12586 && sec->reloc_count > 0
12587 && sec != eh_frame)
12588 {
12589 struct elf_reloc_cookie cookie;
12590
12591 if (!init_reloc_cookie_for_section (&cookie, info, sec))
12592 ret = FALSE;
12593 else
12594 {
12595 for (; cookie.rel < cookie.relend; cookie.rel++)
12596 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
12597 {
12598 ret = FALSE;
12599 break;
12600 }
12601 fini_reloc_cookie_for_section (&cookie, sec);
12602 }
12603 }
12604
12605 if (ret && eh_frame && elf_fde_list (sec))
12606 {
12607 struct elf_reloc_cookie cookie;
12608
12609 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
12610 ret = FALSE;
12611 else
12612 {
12613 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
12614 gc_mark_hook, &cookie))
12615 ret = FALSE;
12616 fini_reloc_cookie_for_section (&cookie, eh_frame);
12617 }
12618 }
12619
12620 eh_frame = elf_section_eh_frame_entry (sec);
12621 if (ret && eh_frame && !eh_frame->gc_mark)
12622 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
12623 ret = FALSE;
12624
12625 return ret;
12626 }
12627
12628 /* Scan and mark sections in a special or debug section group. */
12629
12630 static void
12631 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
12632 {
12633 /* Point to first section of section group. */
12634 asection *ssec;
12635 /* Used to iterate the section group. */
12636 asection *msec;
12637
12638 bfd_boolean is_special_grp = TRUE;
12639 bfd_boolean is_debug_grp = TRUE;
12640
12641 /* First scan to see if group contains any section other than debug
12642 and special section. */
12643 ssec = msec = elf_next_in_group (grp);
12644 do
12645 {
12646 if ((msec->flags & SEC_DEBUGGING) == 0)
12647 is_debug_grp = FALSE;
12648
12649 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
12650 is_special_grp = FALSE;
12651
12652 msec = elf_next_in_group (msec);
12653 }
12654 while (msec != ssec);
12655
12656 /* If this is a pure debug section group or pure special section group,
12657 keep all sections in this group. */
12658 if (is_debug_grp || is_special_grp)
12659 {
12660 do
12661 {
12662 msec->gc_mark = 1;
12663 msec = elf_next_in_group (msec);
12664 }
12665 while (msec != ssec);
12666 }
12667 }
12668
12669 /* Keep debug and special sections. */
12670
12671 bfd_boolean
12672 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12673 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12674 {
12675 bfd *ibfd;
12676
12677 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12678 {
12679 asection *isec;
12680 bfd_boolean some_kept;
12681 bfd_boolean debug_frag_seen;
12682
12683 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12684 continue;
12685
12686 /* Ensure all linker created sections are kept,
12687 see if any other section is already marked,
12688 and note if we have any fragmented debug sections. */
12689 debug_frag_seen = some_kept = FALSE;
12690 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12691 {
12692 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12693 isec->gc_mark = 1;
12694 else if (isec->gc_mark)
12695 some_kept = TRUE;
12696
12697 if (debug_frag_seen == FALSE
12698 && (isec->flags & SEC_DEBUGGING)
12699 && CONST_STRNEQ (isec->name, ".debug_line."))
12700 debug_frag_seen = TRUE;
12701 }
12702
12703 /* If no section in this file will be kept, then we can
12704 toss out the debug and special sections. */
12705 if (!some_kept)
12706 continue;
12707
12708 /* Keep debug and special sections like .comment when they are
12709 not part of a group. Also keep section groups that contain
12710 just debug sections or special sections. */
12711 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12712 {
12713 if ((isec->flags & SEC_GROUP) != 0)
12714 _bfd_elf_gc_mark_debug_special_section_group (isec);
12715 else if (((isec->flags & SEC_DEBUGGING) != 0
12716 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12717 && elf_next_in_group (isec) == NULL)
12718 isec->gc_mark = 1;
12719 }
12720
12721 if (! debug_frag_seen)
12722 continue;
12723
12724 /* Look for CODE sections which are going to be discarded,
12725 and find and discard any fragmented debug sections which
12726 are associated with that code section. */
12727 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12728 if ((isec->flags & SEC_CODE) != 0
12729 && isec->gc_mark == 0)
12730 {
12731 unsigned int ilen;
12732 asection *dsec;
12733
12734 ilen = strlen (isec->name);
12735
12736 /* Association is determined by the name of the debug section
12737 containing the name of the code section as a suffix. For
12738 example .debug_line.text.foo is a debug section associated
12739 with .text.foo. */
12740 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12741 {
12742 unsigned int dlen;
12743
12744 if (dsec->gc_mark == 0
12745 || (dsec->flags & SEC_DEBUGGING) == 0)
12746 continue;
12747
12748 dlen = strlen (dsec->name);
12749
12750 if (dlen > ilen
12751 && strncmp (dsec->name + (dlen - ilen),
12752 isec->name, ilen) == 0)
12753 {
12754 dsec->gc_mark = 0;
12755 }
12756 }
12757 }
12758 }
12759 return TRUE;
12760 }
12761
12762 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
12763
12764 struct elf_gc_sweep_symbol_info
12765 {
12766 struct bfd_link_info *info;
12767 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
12768 bfd_boolean);
12769 };
12770
12771 static bfd_boolean
12772 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
12773 {
12774 if (!h->mark
12775 && (((h->root.type == bfd_link_hash_defined
12776 || h->root.type == bfd_link_hash_defweak)
12777 && !((h->def_regular || ELF_COMMON_DEF_P (h))
12778 && h->root.u.def.section->gc_mark))
12779 || h->root.type == bfd_link_hash_undefined
12780 || h->root.type == bfd_link_hash_undefweak))
12781 {
12782 struct elf_gc_sweep_symbol_info *inf;
12783
12784 inf = (struct elf_gc_sweep_symbol_info *) data;
12785 (*inf->hide_symbol) (inf->info, h, TRUE);
12786 h->def_regular = 0;
12787 h->ref_regular = 0;
12788 h->ref_regular_nonweak = 0;
12789 }
12790
12791 return TRUE;
12792 }
12793
12794 /* The sweep phase of garbage collection. Remove all garbage sections. */
12795
12796 typedef bfd_boolean (*gc_sweep_hook_fn)
12797 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
12798
12799 static bfd_boolean
12800 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
12801 {
12802 bfd *sub;
12803 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12804 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
12805 unsigned long section_sym_count;
12806 struct elf_gc_sweep_symbol_info sweep_info;
12807
12808 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12809 {
12810 asection *o;
12811
12812 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12813 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12814 continue;
12815
12816 for (o = sub->sections; o != NULL; o = o->next)
12817 {
12818 /* When any section in a section group is kept, we keep all
12819 sections in the section group. If the first member of
12820 the section group is excluded, we will also exclude the
12821 group section. */
12822 if (o->flags & SEC_GROUP)
12823 {
12824 asection *first = elf_next_in_group (o);
12825 o->gc_mark = first->gc_mark;
12826 }
12827
12828 if (o->gc_mark)
12829 continue;
12830
12831 /* Skip sweeping sections already excluded. */
12832 if (o->flags & SEC_EXCLUDE)
12833 continue;
12834
12835 /* Since this is early in the link process, it is simple
12836 to remove a section from the output. */
12837 o->flags |= SEC_EXCLUDE;
12838
12839 if (info->print_gc_sections && o->size != 0)
12840 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
12841
12842 /* But we also have to update some of the relocation
12843 info we collected before. */
12844 if (gc_sweep_hook
12845 && (o->flags & SEC_RELOC) != 0
12846 && o->reloc_count != 0
12847 && !((info->strip == strip_all || info->strip == strip_debugger)
12848 && (o->flags & SEC_DEBUGGING) != 0)
12849 && !bfd_is_abs_section (o->output_section))
12850 {
12851 Elf_Internal_Rela *internal_relocs;
12852 bfd_boolean r;
12853
12854 internal_relocs
12855 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12856 info->keep_memory);
12857 if (internal_relocs == NULL)
12858 return FALSE;
12859
12860 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12861
12862 if (elf_section_data (o)->relocs != internal_relocs)
12863 free (internal_relocs);
12864
12865 if (!r)
12866 return FALSE;
12867 }
12868 }
12869 }
12870
12871 /* Remove the symbols that were in the swept sections from the dynamic
12872 symbol table. GCFIXME: Anyone know how to get them out of the
12873 static symbol table as well? */
12874 sweep_info.info = info;
12875 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12876 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12877 &sweep_info);
12878
12879 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12880 return TRUE;
12881 }
12882
12883 /* Propagate collected vtable information. This is called through
12884 elf_link_hash_traverse. */
12885
12886 static bfd_boolean
12887 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12888 {
12889 /* Those that are not vtables. */
12890 if (h->vtable == NULL || h->vtable->parent == NULL)
12891 return TRUE;
12892
12893 /* Those vtables that do not have parents, we cannot merge. */
12894 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12895 return TRUE;
12896
12897 /* If we've already been done, exit. */
12898 if (h->vtable->used && h->vtable->used[-1])
12899 return TRUE;
12900
12901 /* Make sure the parent's table is up to date. */
12902 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12903
12904 if (h->vtable->used == NULL)
12905 {
12906 /* None of this table's entries were referenced. Re-use the
12907 parent's table. */
12908 h->vtable->used = h->vtable->parent->vtable->used;
12909 h->vtable->size = h->vtable->parent->vtable->size;
12910 }
12911 else
12912 {
12913 size_t n;
12914 bfd_boolean *cu, *pu;
12915
12916 /* Or the parent's entries into ours. */
12917 cu = h->vtable->used;
12918 cu[-1] = TRUE;
12919 pu = h->vtable->parent->vtable->used;
12920 if (pu != NULL)
12921 {
12922 const struct elf_backend_data *bed;
12923 unsigned int log_file_align;
12924
12925 bed = get_elf_backend_data (h->root.u.def.section->owner);
12926 log_file_align = bed->s->log_file_align;
12927 n = h->vtable->parent->vtable->size >> log_file_align;
12928 while (n--)
12929 {
12930 if (*pu)
12931 *cu = TRUE;
12932 pu++;
12933 cu++;
12934 }
12935 }
12936 }
12937
12938 return TRUE;
12939 }
12940
12941 static bfd_boolean
12942 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12943 {
12944 asection *sec;
12945 bfd_vma hstart, hend;
12946 Elf_Internal_Rela *relstart, *relend, *rel;
12947 const struct elf_backend_data *bed;
12948 unsigned int log_file_align;
12949
12950 /* Take care of both those symbols that do not describe vtables as
12951 well as those that are not loaded. */
12952 if (h->vtable == NULL || h->vtable->parent == NULL)
12953 return TRUE;
12954
12955 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12956 || h->root.type == bfd_link_hash_defweak);
12957
12958 sec = h->root.u.def.section;
12959 hstart = h->root.u.def.value;
12960 hend = hstart + h->size;
12961
12962 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12963 if (!relstart)
12964 return *(bfd_boolean *) okp = FALSE;
12965 bed = get_elf_backend_data (sec->owner);
12966 log_file_align = bed->s->log_file_align;
12967
12968 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12969
12970 for (rel = relstart; rel < relend; ++rel)
12971 if (rel->r_offset >= hstart && rel->r_offset < hend)
12972 {
12973 /* If the entry is in use, do nothing. */
12974 if (h->vtable->used
12975 && (rel->r_offset - hstart) < h->vtable->size)
12976 {
12977 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12978 if (h->vtable->used[entry])
12979 continue;
12980 }
12981 /* Otherwise, kill it. */
12982 rel->r_offset = rel->r_info = rel->r_addend = 0;
12983 }
12984
12985 return TRUE;
12986 }
12987
12988 /* Mark sections containing dynamically referenced symbols. When
12989 building shared libraries, we must assume that any visible symbol is
12990 referenced. */
12991
12992 bfd_boolean
12993 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12994 {
12995 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12996 struct bfd_elf_dynamic_list *d = info->dynamic_list;
12997
12998 if ((h->root.type == bfd_link_hash_defined
12999 || h->root.type == bfd_link_hash_defweak)
13000 && (h->ref_dynamic
13001 || ((h->def_regular || ELF_COMMON_DEF_P (h))
13002 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13003 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13004 && (!bfd_link_executable (info)
13005 || info->export_dynamic
13006 || (h->dynamic
13007 && d != NULL
13008 && (*d->match) (&d->head, NULL, h->root.root.string)))
13009 && (h->versioned >= versioned
13010 || !bfd_hide_sym_by_version (info->version_info,
13011 h->root.root.string)))))
13012 h->root.u.def.section->flags |= SEC_KEEP;
13013
13014 return TRUE;
13015 }
13016
13017 /* Keep all sections containing symbols undefined on the command-line,
13018 and the section containing the entry symbol. */
13019
13020 void
13021 _bfd_elf_gc_keep (struct bfd_link_info *info)
13022 {
13023 struct bfd_sym_chain *sym;
13024
13025 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13026 {
13027 struct elf_link_hash_entry *h;
13028
13029 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13030 FALSE, FALSE, FALSE);
13031
13032 if (h != NULL
13033 && (h->root.type == bfd_link_hash_defined
13034 || h->root.type == bfd_link_hash_defweak)
13035 && !bfd_is_abs_section (h->root.u.def.section))
13036 h->root.u.def.section->flags |= SEC_KEEP;
13037 }
13038 }
13039
13040 bfd_boolean
13041 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13042 struct bfd_link_info *info)
13043 {
13044 bfd *ibfd = info->input_bfds;
13045
13046 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13047 {
13048 asection *sec;
13049 struct elf_reloc_cookie cookie;
13050
13051 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13052 continue;
13053
13054 if (!init_reloc_cookie (&cookie, info, ibfd))
13055 return FALSE;
13056
13057 for (sec = ibfd->sections; sec; sec = sec->next)
13058 {
13059 if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
13060 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
13061 {
13062 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
13063 fini_reloc_cookie_rels (&cookie, sec);
13064 }
13065 }
13066 }
13067 return TRUE;
13068 }
13069
13070 /* Do mark and sweep of unused sections. */
13071
13072 bfd_boolean
13073 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
13074 {
13075 bfd_boolean ok = TRUE;
13076 bfd *sub;
13077 elf_gc_mark_hook_fn gc_mark_hook;
13078 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13079 struct elf_link_hash_table *htab;
13080
13081 if (!bed->can_gc_sections
13082 || !is_elf_hash_table (info->hash))
13083 {
13084 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
13085 return TRUE;
13086 }
13087
13088 bed->gc_keep (info);
13089 htab = elf_hash_table (info);
13090
13091 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
13092 at the .eh_frame section if we can mark the FDEs individually. */
13093 for (sub = info->input_bfds;
13094 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
13095 sub = sub->link.next)
13096 {
13097 asection *sec;
13098 struct elf_reloc_cookie cookie;
13099
13100 sec = bfd_get_section_by_name (sub, ".eh_frame");
13101 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
13102 {
13103 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
13104 if (elf_section_data (sec)->sec_info
13105 && (sec->flags & SEC_LINKER_CREATED) == 0)
13106 elf_eh_frame_section (sub) = sec;
13107 fini_reloc_cookie_for_section (&cookie, sec);
13108 sec = bfd_get_next_section_by_name (NULL, sec);
13109 }
13110 }
13111
13112 /* Apply transitive closure to the vtable entry usage info. */
13113 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
13114 if (!ok)
13115 return FALSE;
13116
13117 /* Kill the vtable relocations that were not used. */
13118 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
13119 if (!ok)
13120 return FALSE;
13121
13122 /* Mark dynamically referenced symbols. */
13123 if (htab->dynamic_sections_created)
13124 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
13125
13126 /* Grovel through relocs to find out who stays ... */
13127 gc_mark_hook = bed->gc_mark_hook;
13128 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13129 {
13130 asection *o;
13131
13132 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13133 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13134 continue;
13135
13136 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13137 Also treat note sections as a root, if the section is not part
13138 of a group. */
13139 for (o = sub->sections; o != NULL; o = o->next)
13140 if (!o->gc_mark
13141 && (o->flags & SEC_EXCLUDE) == 0
13142 && ((o->flags & SEC_KEEP) != 0
13143 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
13144 && elf_next_in_group (o) == NULL )))
13145 {
13146 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13147 return FALSE;
13148 }
13149 }
13150
13151 /* Allow the backend to mark additional target specific sections. */
13152 bed->gc_mark_extra_sections (info, gc_mark_hook);
13153
13154 /* ... and mark SEC_EXCLUDE for those that go. */
13155 return elf_gc_sweep (abfd, info);
13156 }
13157 \f
13158 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
13159
13160 bfd_boolean
13161 bfd_elf_gc_record_vtinherit (bfd *abfd,
13162 asection *sec,
13163 struct elf_link_hash_entry *h,
13164 bfd_vma offset)
13165 {
13166 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
13167 struct elf_link_hash_entry **search, *child;
13168 size_t extsymcount;
13169 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13170
13171 /* The sh_info field of the symtab header tells us where the
13172 external symbols start. We don't care about the local symbols at
13173 this point. */
13174 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
13175 if (!elf_bad_symtab (abfd))
13176 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
13177
13178 sym_hashes = elf_sym_hashes (abfd);
13179 sym_hashes_end = sym_hashes + extsymcount;
13180
13181 /* Hunt down the child symbol, which is in this section at the same
13182 offset as the relocation. */
13183 for (search = sym_hashes; search != sym_hashes_end; ++search)
13184 {
13185 if ((child = *search) != NULL
13186 && (child->root.type == bfd_link_hash_defined
13187 || child->root.type == bfd_link_hash_defweak)
13188 && child->root.u.def.section == sec
13189 && child->root.u.def.value == offset)
13190 goto win;
13191 }
13192
13193 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
13194 abfd, sec, (unsigned long) offset);
13195 bfd_set_error (bfd_error_invalid_operation);
13196 return FALSE;
13197
13198 win:
13199 if (!child->vtable)
13200 {
13201 child->vtable = ((struct elf_link_virtual_table_entry *)
13202 bfd_zalloc (abfd, sizeof (*child->vtable)));
13203 if (!child->vtable)
13204 return FALSE;
13205 }
13206 if (!h)
13207 {
13208 /* This *should* only be the absolute section. It could potentially
13209 be that someone has defined a non-global vtable though, which
13210 would be bad. It isn't worth paging in the local symbols to be
13211 sure though; that case should simply be handled by the assembler. */
13212
13213 child->vtable->parent = (struct elf_link_hash_entry *) -1;
13214 }
13215 else
13216 child->vtable->parent = h;
13217
13218 return TRUE;
13219 }
13220
13221 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
13222
13223 bfd_boolean
13224 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
13225 asection *sec ATTRIBUTE_UNUSED,
13226 struct elf_link_hash_entry *h,
13227 bfd_vma addend)
13228 {
13229 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13230 unsigned int log_file_align = bed->s->log_file_align;
13231
13232 if (!h->vtable)
13233 {
13234 h->vtable = ((struct elf_link_virtual_table_entry *)
13235 bfd_zalloc (abfd, sizeof (*h->vtable)));
13236 if (!h->vtable)
13237 return FALSE;
13238 }
13239
13240 if (addend >= h->vtable->size)
13241 {
13242 size_t size, bytes, file_align;
13243 bfd_boolean *ptr = h->vtable->used;
13244
13245 /* While the symbol is undefined, we have to be prepared to handle
13246 a zero size. */
13247 file_align = 1 << log_file_align;
13248 if (h->root.type == bfd_link_hash_undefined)
13249 size = addend + file_align;
13250 else
13251 {
13252 size = h->size;
13253 if (addend >= size)
13254 {
13255 /* Oops! We've got a reference past the defined end of
13256 the table. This is probably a bug -- shall we warn? */
13257 size = addend + file_align;
13258 }
13259 }
13260 size = (size + file_align - 1) & -file_align;
13261
13262 /* Allocate one extra entry for use as a "done" flag for the
13263 consolidation pass. */
13264 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
13265
13266 if (ptr)
13267 {
13268 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
13269
13270 if (ptr != NULL)
13271 {
13272 size_t oldbytes;
13273
13274 oldbytes = (((h->vtable->size >> log_file_align) + 1)
13275 * sizeof (bfd_boolean));
13276 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
13277 }
13278 }
13279 else
13280 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
13281
13282 if (ptr == NULL)
13283 return FALSE;
13284
13285 /* And arrange for that done flag to be at index -1. */
13286 h->vtable->used = ptr + 1;
13287 h->vtable->size = size;
13288 }
13289
13290 h->vtable->used[addend >> log_file_align] = TRUE;
13291
13292 return TRUE;
13293 }
13294
13295 /* Map an ELF section header flag to its corresponding string. */
13296 typedef struct
13297 {
13298 char *flag_name;
13299 flagword flag_value;
13300 } elf_flags_to_name_table;
13301
13302 static elf_flags_to_name_table elf_flags_to_names [] =
13303 {
13304 { "SHF_WRITE", SHF_WRITE },
13305 { "SHF_ALLOC", SHF_ALLOC },
13306 { "SHF_EXECINSTR", SHF_EXECINSTR },
13307 { "SHF_MERGE", SHF_MERGE },
13308 { "SHF_STRINGS", SHF_STRINGS },
13309 { "SHF_INFO_LINK", SHF_INFO_LINK},
13310 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
13311 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
13312 { "SHF_GROUP", SHF_GROUP },
13313 { "SHF_TLS", SHF_TLS },
13314 { "SHF_MASKOS", SHF_MASKOS },
13315 { "SHF_EXCLUDE", SHF_EXCLUDE },
13316 };
13317
13318 /* Returns TRUE if the section is to be included, otherwise FALSE. */
13319 bfd_boolean
13320 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
13321 struct flag_info *flaginfo,
13322 asection *section)
13323 {
13324 const bfd_vma sh_flags = elf_section_flags (section);
13325
13326 if (!flaginfo->flags_initialized)
13327 {
13328 bfd *obfd = info->output_bfd;
13329 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13330 struct flag_info_list *tf = flaginfo->flag_list;
13331 int with_hex = 0;
13332 int without_hex = 0;
13333
13334 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
13335 {
13336 unsigned i;
13337 flagword (*lookup) (char *);
13338
13339 lookup = bed->elf_backend_lookup_section_flags_hook;
13340 if (lookup != NULL)
13341 {
13342 flagword hexval = (*lookup) ((char *) tf->name);
13343
13344 if (hexval != 0)
13345 {
13346 if (tf->with == with_flags)
13347 with_hex |= hexval;
13348 else if (tf->with == without_flags)
13349 without_hex |= hexval;
13350 tf->valid = TRUE;
13351 continue;
13352 }
13353 }
13354 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
13355 {
13356 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
13357 {
13358 if (tf->with == with_flags)
13359 with_hex |= elf_flags_to_names[i].flag_value;
13360 else if (tf->with == without_flags)
13361 without_hex |= elf_flags_to_names[i].flag_value;
13362 tf->valid = TRUE;
13363 break;
13364 }
13365 }
13366 if (!tf->valid)
13367 {
13368 info->callbacks->einfo
13369 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
13370 return FALSE;
13371 }
13372 }
13373 flaginfo->flags_initialized = TRUE;
13374 flaginfo->only_with_flags |= with_hex;
13375 flaginfo->not_with_flags |= without_hex;
13376 }
13377
13378 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
13379 return FALSE;
13380
13381 if ((flaginfo->not_with_flags & sh_flags) != 0)
13382 return FALSE;
13383
13384 return TRUE;
13385 }
13386
13387 struct alloc_got_off_arg {
13388 bfd_vma gotoff;
13389 struct bfd_link_info *info;
13390 };
13391
13392 /* We need a special top-level link routine to convert got reference counts
13393 to real got offsets. */
13394
13395 static bfd_boolean
13396 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
13397 {
13398 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
13399 bfd *obfd = gofarg->info->output_bfd;
13400 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13401
13402 if (h->got.refcount > 0)
13403 {
13404 h->got.offset = gofarg->gotoff;
13405 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
13406 }
13407 else
13408 h->got.offset = (bfd_vma) -1;
13409
13410 return TRUE;
13411 }
13412
13413 /* And an accompanying bit to work out final got entry offsets once
13414 we're done. Should be called from final_link. */
13415
13416 bfd_boolean
13417 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
13418 struct bfd_link_info *info)
13419 {
13420 bfd *i;
13421 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13422 bfd_vma gotoff;
13423 struct alloc_got_off_arg gofarg;
13424
13425 BFD_ASSERT (abfd == info->output_bfd);
13426
13427 if (! is_elf_hash_table (info->hash))
13428 return FALSE;
13429
13430 /* The GOT offset is relative to the .got section, but the GOT header is
13431 put into the .got.plt section, if the backend uses it. */
13432 if (bed->want_got_plt)
13433 gotoff = 0;
13434 else
13435 gotoff = bed->got_header_size;
13436
13437 /* Do the local .got entries first. */
13438 for (i = info->input_bfds; i; i = i->link.next)
13439 {
13440 bfd_signed_vma *local_got;
13441 size_t j, locsymcount;
13442 Elf_Internal_Shdr *symtab_hdr;
13443
13444 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
13445 continue;
13446
13447 local_got = elf_local_got_refcounts (i);
13448 if (!local_got)
13449 continue;
13450
13451 symtab_hdr = &elf_tdata (i)->symtab_hdr;
13452 if (elf_bad_symtab (i))
13453 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13454 else
13455 locsymcount = symtab_hdr->sh_info;
13456
13457 for (j = 0; j < locsymcount; ++j)
13458 {
13459 if (local_got[j] > 0)
13460 {
13461 local_got[j] = gotoff;
13462 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
13463 }
13464 else
13465 local_got[j] = (bfd_vma) -1;
13466 }
13467 }
13468
13469 /* Then the global .got entries. .plt refcounts are handled by
13470 adjust_dynamic_symbol */
13471 gofarg.gotoff = gotoff;
13472 gofarg.info = info;
13473 elf_link_hash_traverse (elf_hash_table (info),
13474 elf_gc_allocate_got_offsets,
13475 &gofarg);
13476 return TRUE;
13477 }
13478
13479 /* Many folk need no more in the way of final link than this, once
13480 got entry reference counting is enabled. */
13481
13482 bfd_boolean
13483 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
13484 {
13485 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
13486 return FALSE;
13487
13488 /* Invoke the regular ELF backend linker to do all the work. */
13489 return bfd_elf_final_link (abfd, info);
13490 }
13491
13492 bfd_boolean
13493 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
13494 {
13495 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
13496
13497 if (rcookie->bad_symtab)
13498 rcookie->rel = rcookie->rels;
13499
13500 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
13501 {
13502 unsigned long r_symndx;
13503
13504 if (! rcookie->bad_symtab)
13505 if (rcookie->rel->r_offset > offset)
13506 return FALSE;
13507 if (rcookie->rel->r_offset != offset)
13508 continue;
13509
13510 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
13511 if (r_symndx == STN_UNDEF)
13512 return TRUE;
13513
13514 if (r_symndx >= rcookie->locsymcount
13515 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13516 {
13517 struct elf_link_hash_entry *h;
13518
13519 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
13520
13521 while (h->root.type == bfd_link_hash_indirect
13522 || h->root.type == bfd_link_hash_warning)
13523 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13524
13525 if ((h->root.type == bfd_link_hash_defined
13526 || h->root.type == bfd_link_hash_defweak)
13527 && (h->root.u.def.section->owner != rcookie->abfd
13528 || h->root.u.def.section->kept_section != NULL
13529 || discarded_section (h->root.u.def.section)))
13530 return TRUE;
13531 }
13532 else
13533 {
13534 /* It's not a relocation against a global symbol,
13535 but it could be a relocation against a local
13536 symbol for a discarded section. */
13537 asection *isec;
13538 Elf_Internal_Sym *isym;
13539
13540 /* Need to: get the symbol; get the section. */
13541 isym = &rcookie->locsyms[r_symndx];
13542 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
13543 if (isec != NULL
13544 && (isec->kept_section != NULL
13545 || discarded_section (isec)))
13546 return TRUE;
13547 }
13548 return FALSE;
13549 }
13550 return FALSE;
13551 }
13552
13553 /* Discard unneeded references to discarded sections.
13554 Returns -1 on error, 1 if any section's size was changed, 0 if
13555 nothing changed. This function assumes that the relocations are in
13556 sorted order, which is true for all known assemblers. */
13557
13558 int
13559 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
13560 {
13561 struct elf_reloc_cookie cookie;
13562 asection *o;
13563 bfd *abfd;
13564 int changed = 0;
13565
13566 if (info->traditional_format
13567 || !is_elf_hash_table (info->hash))
13568 return 0;
13569
13570 o = bfd_get_section_by_name (output_bfd, ".stab");
13571 if (o != NULL)
13572 {
13573 asection *i;
13574
13575 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13576 {
13577 if (i->size == 0
13578 || i->reloc_count == 0
13579 || i->sec_info_type != SEC_INFO_TYPE_STABS)
13580 continue;
13581
13582 abfd = i->owner;
13583 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13584 continue;
13585
13586 if (!init_reloc_cookie_for_section (&cookie, info, i))
13587 return -1;
13588
13589 if (_bfd_discard_section_stabs (abfd, i,
13590 elf_section_data (i)->sec_info,
13591 bfd_elf_reloc_symbol_deleted_p,
13592 &cookie))
13593 changed = 1;
13594
13595 fini_reloc_cookie_for_section (&cookie, i);
13596 }
13597 }
13598
13599 o = NULL;
13600 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
13601 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
13602 if (o != NULL)
13603 {
13604 asection *i;
13605
13606 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13607 {
13608 if (i->size == 0)
13609 continue;
13610
13611 abfd = i->owner;
13612 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13613 continue;
13614
13615 if (!init_reloc_cookie_for_section (&cookie, info, i))
13616 return -1;
13617
13618 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
13619 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
13620 bfd_elf_reloc_symbol_deleted_p,
13621 &cookie))
13622 changed = 1;
13623
13624 fini_reloc_cookie_for_section (&cookie, i);
13625 }
13626 }
13627
13628 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
13629 {
13630 const struct elf_backend_data *bed;
13631
13632 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13633 continue;
13634
13635 bed = get_elf_backend_data (abfd);
13636
13637 if (bed->elf_backend_discard_info != NULL)
13638 {
13639 if (!init_reloc_cookie (&cookie, info, abfd))
13640 return -1;
13641
13642 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
13643 changed = 1;
13644
13645 fini_reloc_cookie (&cookie, abfd);
13646 }
13647 }
13648
13649 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
13650 _bfd_elf_end_eh_frame_parsing (info);
13651
13652 if (info->eh_frame_hdr_type
13653 && !bfd_link_relocatable (info)
13654 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
13655 changed = 1;
13656
13657 return changed;
13658 }
13659
13660 bfd_boolean
13661 _bfd_elf_section_already_linked (bfd *abfd,
13662 asection *sec,
13663 struct bfd_link_info *info)
13664 {
13665 flagword flags;
13666 const char *name, *key;
13667 struct bfd_section_already_linked *l;
13668 struct bfd_section_already_linked_hash_entry *already_linked_list;
13669
13670 if (sec->output_section == bfd_abs_section_ptr)
13671 return FALSE;
13672
13673 flags = sec->flags;
13674
13675 /* Return if it isn't a linkonce section. A comdat group section
13676 also has SEC_LINK_ONCE set. */
13677 if ((flags & SEC_LINK_ONCE) == 0)
13678 return FALSE;
13679
13680 /* Don't put group member sections on our list of already linked
13681 sections. They are handled as a group via their group section. */
13682 if (elf_sec_group (sec) != NULL)
13683 return FALSE;
13684
13685 /* For a SHT_GROUP section, use the group signature as the key. */
13686 name = sec->name;
13687 if ((flags & SEC_GROUP) != 0
13688 && elf_next_in_group (sec) != NULL
13689 && elf_group_name (elf_next_in_group (sec)) != NULL)
13690 key = elf_group_name (elf_next_in_group (sec));
13691 else
13692 {
13693 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
13694 if (CONST_STRNEQ (name, ".gnu.linkonce.")
13695 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
13696 key++;
13697 else
13698 /* Must be a user linkonce section that doesn't follow gcc's
13699 naming convention. In this case we won't be matching
13700 single member groups. */
13701 key = name;
13702 }
13703
13704 already_linked_list = bfd_section_already_linked_table_lookup (key);
13705
13706 for (l = already_linked_list->entry; l != NULL; l = l->next)
13707 {
13708 /* We may have 2 different types of sections on the list: group
13709 sections with a signature of <key> (<key> is some string),
13710 and linkonce sections named .gnu.linkonce.<type>.<key>.
13711 Match like sections. LTO plugin sections are an exception.
13712 They are always named .gnu.linkonce.t.<key> and match either
13713 type of section. */
13714 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13715 && ((flags & SEC_GROUP) != 0
13716 || strcmp (name, l->sec->name) == 0))
13717 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13718 {
13719 /* The section has already been linked. See if we should
13720 issue a warning. */
13721 if (!_bfd_handle_already_linked (sec, l, info))
13722 return FALSE;
13723
13724 if (flags & SEC_GROUP)
13725 {
13726 asection *first = elf_next_in_group (sec);
13727 asection *s = first;
13728
13729 while (s != NULL)
13730 {
13731 s->output_section = bfd_abs_section_ptr;
13732 /* Record which group discards it. */
13733 s->kept_section = l->sec;
13734 s = elf_next_in_group (s);
13735 /* These lists are circular. */
13736 if (s == first)
13737 break;
13738 }
13739 }
13740
13741 return TRUE;
13742 }
13743 }
13744
13745 /* A single member comdat group section may be discarded by a
13746 linkonce section and vice versa. */
13747 if ((flags & SEC_GROUP) != 0)
13748 {
13749 asection *first = elf_next_in_group (sec);
13750
13751 if (first != NULL && elf_next_in_group (first) == first)
13752 /* Check this single member group against linkonce sections. */
13753 for (l = already_linked_list->entry; l != NULL; l = l->next)
13754 if ((l->sec->flags & SEC_GROUP) == 0
13755 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
13756 {
13757 first->output_section = bfd_abs_section_ptr;
13758 first->kept_section = l->sec;
13759 sec->output_section = bfd_abs_section_ptr;
13760 break;
13761 }
13762 }
13763 else
13764 /* Check this linkonce section against single member groups. */
13765 for (l = already_linked_list->entry; l != NULL; l = l->next)
13766 if (l->sec->flags & SEC_GROUP)
13767 {
13768 asection *first = elf_next_in_group (l->sec);
13769
13770 if (first != NULL
13771 && elf_next_in_group (first) == first
13772 && bfd_elf_match_symbols_in_sections (first, sec, info))
13773 {
13774 sec->output_section = bfd_abs_section_ptr;
13775 sec->kept_section = first;
13776 break;
13777 }
13778 }
13779
13780 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
13781 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
13782 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
13783 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
13784 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
13785 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
13786 `.gnu.linkonce.t.F' section from a different bfd not requiring any
13787 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
13788 The reverse order cannot happen as there is never a bfd with only the
13789 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
13790 matter as here were are looking only for cross-bfd sections. */
13791
13792 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
13793 for (l = already_linked_list->entry; l != NULL; l = l->next)
13794 if ((l->sec->flags & SEC_GROUP) == 0
13795 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
13796 {
13797 if (abfd != l->sec->owner)
13798 sec->output_section = bfd_abs_section_ptr;
13799 break;
13800 }
13801
13802 /* This is the first section with this name. Record it. */
13803 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
13804 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
13805 return sec->output_section == bfd_abs_section_ptr;
13806 }
13807
13808 bfd_boolean
13809 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
13810 {
13811 return sym->st_shndx == SHN_COMMON;
13812 }
13813
13814 unsigned int
13815 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
13816 {
13817 return SHN_COMMON;
13818 }
13819
13820 asection *
13821 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
13822 {
13823 return bfd_com_section_ptr;
13824 }
13825
13826 bfd_vma
13827 _bfd_elf_default_got_elt_size (bfd *abfd,
13828 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13829 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
13830 bfd *ibfd ATTRIBUTE_UNUSED,
13831 unsigned long symndx ATTRIBUTE_UNUSED)
13832 {
13833 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13834 return bed->s->arch_size / 8;
13835 }
13836
13837 /* Routines to support the creation of dynamic relocs. */
13838
13839 /* Returns the name of the dynamic reloc section associated with SEC. */
13840
13841 static const char *
13842 get_dynamic_reloc_section_name (bfd * abfd,
13843 asection * sec,
13844 bfd_boolean is_rela)
13845 {
13846 char *name;
13847 const char *old_name = bfd_get_section_name (NULL, sec);
13848 const char *prefix = is_rela ? ".rela" : ".rel";
13849
13850 if (old_name == NULL)
13851 return NULL;
13852
13853 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
13854 sprintf (name, "%s%s", prefix, old_name);
13855
13856 return name;
13857 }
13858
13859 /* Returns the dynamic reloc section associated with SEC.
13860 If necessary compute the name of the dynamic reloc section based
13861 on SEC's name (looked up in ABFD's string table) and the setting
13862 of IS_RELA. */
13863
13864 asection *
13865 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
13866 asection * sec,
13867 bfd_boolean is_rela)
13868 {
13869 asection * reloc_sec = elf_section_data (sec)->sreloc;
13870
13871 if (reloc_sec == NULL)
13872 {
13873 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13874
13875 if (name != NULL)
13876 {
13877 reloc_sec = bfd_get_linker_section (abfd, name);
13878
13879 if (reloc_sec != NULL)
13880 elf_section_data (sec)->sreloc = reloc_sec;
13881 }
13882 }
13883
13884 return reloc_sec;
13885 }
13886
13887 /* Returns the dynamic reloc section associated with SEC. If the
13888 section does not exist it is created and attached to the DYNOBJ
13889 bfd and stored in the SRELOC field of SEC's elf_section_data
13890 structure.
13891
13892 ALIGNMENT is the alignment for the newly created section and
13893 IS_RELA defines whether the name should be .rela.<SEC's name>
13894 or .rel.<SEC's name>. The section name is looked up in the
13895 string table associated with ABFD. */
13896
13897 asection *
13898 _bfd_elf_make_dynamic_reloc_section (asection *sec,
13899 bfd *dynobj,
13900 unsigned int alignment,
13901 bfd *abfd,
13902 bfd_boolean is_rela)
13903 {
13904 asection * reloc_sec = elf_section_data (sec)->sreloc;
13905
13906 if (reloc_sec == NULL)
13907 {
13908 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13909
13910 if (name == NULL)
13911 return NULL;
13912
13913 reloc_sec = bfd_get_linker_section (dynobj, name);
13914
13915 if (reloc_sec == NULL)
13916 {
13917 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13918 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13919 if ((sec->flags & SEC_ALLOC) != 0)
13920 flags |= SEC_ALLOC | SEC_LOAD;
13921
13922 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13923 if (reloc_sec != NULL)
13924 {
13925 /* _bfd_elf_get_sec_type_attr chooses a section type by
13926 name. Override as it may be wrong, eg. for a user
13927 section named "auto" we'll get ".relauto" which is
13928 seen to be a .rela section. */
13929 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13930 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13931 reloc_sec = NULL;
13932 }
13933 }
13934
13935 elf_section_data (sec)->sreloc = reloc_sec;
13936 }
13937
13938 return reloc_sec;
13939 }
13940
13941 /* Copy the ELF symbol type and other attributes for a linker script
13942 assignment from HSRC to HDEST. Generally this should be treated as
13943 if we found a strong non-dynamic definition for HDEST (except that
13944 ld ignores multiple definition errors). */
13945 void
13946 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
13947 struct bfd_link_hash_entry *hdest,
13948 struct bfd_link_hash_entry *hsrc)
13949 {
13950 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
13951 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
13952 Elf_Internal_Sym isym;
13953
13954 ehdest->type = ehsrc->type;
13955 ehdest->target_internal = ehsrc->target_internal;
13956
13957 isym.st_other = ehsrc->other;
13958 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
13959 }
13960
13961 /* Append a RELA relocation REL to section S in BFD. */
13962
13963 void
13964 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13965 {
13966 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13967 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13968 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13969 bed->s->swap_reloca_out (abfd, rel, loc);
13970 }
13971
13972 /* Append a REL relocation REL to section S in BFD. */
13973
13974 void
13975 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13976 {
13977 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13978 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13979 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13980 bed->s->swap_reloc_out (abfd, rel, loc);
13981 }
This page took 0.359157 seconds and 4 git commands to generate.