ELF: Call check_relocs after opening all inputs
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2017 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfd_stdint.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31 #if BFD_SUPPORTS_PLUGINS
32 #include "plugin-api.h"
33 #include "plugin.h"
34 #endif
35
36 /* This struct is used to pass information to routines called via
37 elf_link_hash_traverse which must return failure. */
38
39 struct elf_info_failed
40 {
41 struct bfd_link_info *info;
42 bfd_boolean failed;
43 };
44
45 /* This structure is used to pass information to
46 _bfd_elf_link_find_version_dependencies. */
47
48 struct elf_find_verdep_info
49 {
50 /* General link information. */
51 struct bfd_link_info *info;
52 /* The number of dependencies. */
53 unsigned int vers;
54 /* Whether we had a failure. */
55 bfd_boolean failed;
56 };
57
58 static bfd_boolean _bfd_elf_fix_symbol_flags
59 (struct elf_link_hash_entry *, struct elf_info_failed *);
60
61 asection *
62 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
63 unsigned long r_symndx,
64 bfd_boolean discard)
65 {
66 if (r_symndx >= cookie->locsymcount
67 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
68 {
69 struct elf_link_hash_entry *h;
70
71 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
72
73 while (h->root.type == bfd_link_hash_indirect
74 || h->root.type == bfd_link_hash_warning)
75 h = (struct elf_link_hash_entry *) h->root.u.i.link;
76
77 if ((h->root.type == bfd_link_hash_defined
78 || h->root.type == bfd_link_hash_defweak)
79 && discarded_section (h->root.u.def.section))
80 return h->root.u.def.section;
81 else
82 return NULL;
83 }
84 else
85 {
86 /* It's not a relocation against a global symbol,
87 but it could be a relocation against a local
88 symbol for a discarded section. */
89 asection *isec;
90 Elf_Internal_Sym *isym;
91
92 /* Need to: get the symbol; get the section. */
93 isym = &cookie->locsyms[r_symndx];
94 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
95 if (isec != NULL
96 && discard ? discarded_section (isec) : 1)
97 return isec;
98 }
99 return NULL;
100 }
101
102 /* Define a symbol in a dynamic linkage section. */
103
104 struct elf_link_hash_entry *
105 _bfd_elf_define_linkage_sym (bfd *abfd,
106 struct bfd_link_info *info,
107 asection *sec,
108 const char *name)
109 {
110 struct elf_link_hash_entry *h;
111 struct bfd_link_hash_entry *bh;
112 const struct elf_backend_data *bed;
113
114 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
115 if (h != NULL)
116 {
117 /* Zap symbol defined in an as-needed lib that wasn't linked.
118 This is a symptom of a larger problem: Absolute symbols
119 defined in shared libraries can't be overridden, because we
120 lose the link to the bfd which is via the symbol section. */
121 h->root.type = bfd_link_hash_new;
122 bh = &h->root;
123 }
124 else
125 bh = NULL;
126
127 bed = get_elf_backend_data (abfd);
128 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
129 sec, 0, NULL, FALSE, bed->collect,
130 &bh))
131 return NULL;
132 h = (struct elf_link_hash_entry *) bh;
133 BFD_ASSERT (h != NULL);
134 h->def_regular = 1;
135 h->non_elf = 0;
136 h->root.linker_def = 1;
137 h->type = STT_OBJECT;
138 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
139 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
140
141 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
142 return h;
143 }
144
145 bfd_boolean
146 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
147 {
148 flagword flags;
149 asection *s;
150 struct elf_link_hash_entry *h;
151 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
152 struct elf_link_hash_table *htab = elf_hash_table (info);
153
154 /* This function may be called more than once. */
155 if (htab->sgot != NULL)
156 return TRUE;
157
158 flags = bed->dynamic_sec_flags;
159
160 s = bfd_make_section_anyway_with_flags (abfd,
161 (bed->rela_plts_and_copies_p
162 ? ".rela.got" : ".rel.got"),
163 (bed->dynamic_sec_flags
164 | SEC_READONLY));
165 if (s == NULL
166 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
167 return FALSE;
168 htab->srelgot = s;
169
170 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
171 if (s == NULL
172 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
173 return FALSE;
174 htab->sgot = s;
175
176 if (bed->want_got_plt)
177 {
178 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
179 if (s == NULL
180 || !bfd_set_section_alignment (abfd, s,
181 bed->s->log_file_align))
182 return FALSE;
183 htab->sgotplt = s;
184 }
185
186 /* The first bit of the global offset table is the header. */
187 s->size += bed->got_header_size;
188
189 if (bed->want_got_sym)
190 {
191 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
192 (or .got.plt) section. We don't do this in the linker script
193 because we don't want to define the symbol if we are not creating
194 a global offset table. */
195 h = _bfd_elf_define_linkage_sym (abfd, info, s,
196 "_GLOBAL_OFFSET_TABLE_");
197 elf_hash_table (info)->hgot = h;
198 if (h == NULL)
199 return FALSE;
200 }
201
202 return TRUE;
203 }
204 \f
205 /* Create a strtab to hold the dynamic symbol names. */
206 static bfd_boolean
207 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
208 {
209 struct elf_link_hash_table *hash_table;
210
211 hash_table = elf_hash_table (info);
212 if (hash_table->dynobj == NULL)
213 {
214 /* We may not set dynobj, an input file holding linker created
215 dynamic sections to abfd, which may be a dynamic object with
216 its own dynamic sections. We need to find a normal input file
217 to hold linker created sections if possible. */
218 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
219 {
220 bfd *ibfd;
221 asection *s;
222 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
223 if ((ibfd->flags
224 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0
225 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
226 && !((s = ibfd->sections) != NULL
227 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS))
228 {
229 abfd = ibfd;
230 break;
231 }
232 }
233 hash_table->dynobj = abfd;
234 }
235
236 if (hash_table->dynstr == NULL)
237 {
238 hash_table->dynstr = _bfd_elf_strtab_init ();
239 if (hash_table->dynstr == NULL)
240 return FALSE;
241 }
242 return TRUE;
243 }
244
245 /* Create some sections which will be filled in with dynamic linking
246 information. ABFD is an input file which requires dynamic sections
247 to be created. The dynamic sections take up virtual memory space
248 when the final executable is run, so we need to create them before
249 addresses are assigned to the output sections. We work out the
250 actual contents and size of these sections later. */
251
252 bfd_boolean
253 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
254 {
255 flagword flags;
256 asection *s;
257 const struct elf_backend_data *bed;
258 struct elf_link_hash_entry *h;
259
260 if (! is_elf_hash_table (info->hash))
261 return FALSE;
262
263 if (elf_hash_table (info)->dynamic_sections_created)
264 return TRUE;
265
266 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
267 return FALSE;
268
269 abfd = elf_hash_table (info)->dynobj;
270 bed = get_elf_backend_data (abfd);
271
272 flags = bed->dynamic_sec_flags;
273
274 /* A dynamically linked executable has a .interp section, but a
275 shared library does not. */
276 if (bfd_link_executable (info) && !info->nointerp)
277 {
278 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
279 flags | SEC_READONLY);
280 if (s == NULL)
281 return FALSE;
282 }
283
284 /* Create sections to hold version informations. These are removed
285 if they are not needed. */
286 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
287 flags | SEC_READONLY);
288 if (s == NULL
289 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
290 return FALSE;
291
292 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
293 flags | SEC_READONLY);
294 if (s == NULL
295 || ! bfd_set_section_alignment (abfd, s, 1))
296 return FALSE;
297
298 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
299 flags | SEC_READONLY);
300 if (s == NULL
301 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
302 return FALSE;
303
304 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
305 flags | SEC_READONLY);
306 if (s == NULL
307 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
308 return FALSE;
309 elf_hash_table (info)->dynsym = s;
310
311 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
312 flags | SEC_READONLY);
313 if (s == NULL)
314 return FALSE;
315
316 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
317 if (s == NULL
318 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
319 return FALSE;
320
321 /* The special symbol _DYNAMIC is always set to the start of the
322 .dynamic section. We could set _DYNAMIC in a linker script, but we
323 only want to define it if we are, in fact, creating a .dynamic
324 section. We don't want to define it if there is no .dynamic
325 section, since on some ELF platforms the start up code examines it
326 to decide how to initialize the process. */
327 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
328 elf_hash_table (info)->hdynamic = h;
329 if (h == NULL)
330 return FALSE;
331
332 if (info->emit_hash)
333 {
334 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
335 flags | SEC_READONLY);
336 if (s == NULL
337 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
338 return FALSE;
339 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
340 }
341
342 if (info->emit_gnu_hash)
343 {
344 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
345 flags | SEC_READONLY);
346 if (s == NULL
347 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
348 return FALSE;
349 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
350 4 32-bit words followed by variable count of 64-bit words, then
351 variable count of 32-bit words. */
352 if (bed->s->arch_size == 64)
353 elf_section_data (s)->this_hdr.sh_entsize = 0;
354 else
355 elf_section_data (s)->this_hdr.sh_entsize = 4;
356 }
357
358 /* Let the backend create the rest of the sections. This lets the
359 backend set the right flags. The backend will normally create
360 the .got and .plt sections. */
361 if (bed->elf_backend_create_dynamic_sections == NULL
362 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
363 return FALSE;
364
365 elf_hash_table (info)->dynamic_sections_created = TRUE;
366
367 return TRUE;
368 }
369
370 /* Create dynamic sections when linking against a dynamic object. */
371
372 bfd_boolean
373 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
374 {
375 flagword flags, pltflags;
376 struct elf_link_hash_entry *h;
377 asection *s;
378 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
379 struct elf_link_hash_table *htab = elf_hash_table (info);
380
381 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
382 .rel[a].bss sections. */
383 flags = bed->dynamic_sec_flags;
384
385 pltflags = flags;
386 if (bed->plt_not_loaded)
387 /* We do not clear SEC_ALLOC here because we still want the OS to
388 allocate space for the section; it's just that there's nothing
389 to read in from the object file. */
390 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
391 else
392 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
393 if (bed->plt_readonly)
394 pltflags |= SEC_READONLY;
395
396 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
397 if (s == NULL
398 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
399 return FALSE;
400 htab->splt = s;
401
402 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
403 .plt section. */
404 if (bed->want_plt_sym)
405 {
406 h = _bfd_elf_define_linkage_sym (abfd, info, s,
407 "_PROCEDURE_LINKAGE_TABLE_");
408 elf_hash_table (info)->hplt = h;
409 if (h == NULL)
410 return FALSE;
411 }
412
413 s = bfd_make_section_anyway_with_flags (abfd,
414 (bed->rela_plts_and_copies_p
415 ? ".rela.plt" : ".rel.plt"),
416 flags | SEC_READONLY);
417 if (s == NULL
418 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
419 return FALSE;
420 htab->srelplt = s;
421
422 if (! _bfd_elf_create_got_section (abfd, info))
423 return FALSE;
424
425 if (bed->want_dynbss)
426 {
427 /* The .dynbss section is a place to put symbols which are defined
428 by dynamic objects, are referenced by regular objects, and are
429 not functions. We must allocate space for them in the process
430 image and use a R_*_COPY reloc to tell the dynamic linker to
431 initialize them at run time. The linker script puts the .dynbss
432 section into the .bss section of the final image. */
433 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
434 SEC_ALLOC | SEC_LINKER_CREATED);
435 if (s == NULL)
436 return FALSE;
437 htab->sdynbss = s;
438
439 if (bed->want_dynrelro)
440 {
441 /* Similarly, but for symbols that were originally in read-only
442 sections. This section doesn't really need to have contents,
443 but make it like other .data.rel.ro sections. */
444 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
445 flags);
446 if (s == NULL)
447 return FALSE;
448 htab->sdynrelro = s;
449 }
450
451 /* The .rel[a].bss section holds copy relocs. This section is not
452 normally needed. We need to create it here, though, so that the
453 linker will map it to an output section. We can't just create it
454 only if we need it, because we will not know whether we need it
455 until we have seen all the input files, and the first time the
456 main linker code calls BFD after examining all the input files
457 (size_dynamic_sections) the input sections have already been
458 mapped to the output sections. If the section turns out not to
459 be needed, we can discard it later. We will never need this
460 section when generating a shared object, since they do not use
461 copy relocs. */
462 if (bfd_link_executable (info))
463 {
464 s = bfd_make_section_anyway_with_flags (abfd,
465 (bed->rela_plts_and_copies_p
466 ? ".rela.bss" : ".rel.bss"),
467 flags | SEC_READONLY);
468 if (s == NULL
469 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
470 return FALSE;
471 htab->srelbss = s;
472
473 if (bed->want_dynrelro)
474 {
475 s = (bfd_make_section_anyway_with_flags
476 (abfd, (bed->rela_plts_and_copies_p
477 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
478 flags | SEC_READONLY));
479 if (s == NULL
480 || ! bfd_set_section_alignment (abfd, s,
481 bed->s->log_file_align))
482 return FALSE;
483 htab->sreldynrelro = s;
484 }
485 }
486 }
487
488 return TRUE;
489 }
490 \f
491 /* Record a new dynamic symbol. We record the dynamic symbols as we
492 read the input files, since we need to have a list of all of them
493 before we can determine the final sizes of the output sections.
494 Note that we may actually call this function even though we are not
495 going to output any dynamic symbols; in some cases we know that a
496 symbol should be in the dynamic symbol table, but only if there is
497 one. */
498
499 bfd_boolean
500 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
501 struct elf_link_hash_entry *h)
502 {
503 if (h->dynindx == -1)
504 {
505 struct elf_strtab_hash *dynstr;
506 char *p;
507 const char *name;
508 size_t indx;
509
510 /* XXX: The ABI draft says the linker must turn hidden and
511 internal symbols into STB_LOCAL symbols when producing the
512 DSO. However, if ld.so honors st_other in the dynamic table,
513 this would not be necessary. */
514 switch (ELF_ST_VISIBILITY (h->other))
515 {
516 case STV_INTERNAL:
517 case STV_HIDDEN:
518 if (h->root.type != bfd_link_hash_undefined
519 && h->root.type != bfd_link_hash_undefweak)
520 {
521 h->forced_local = 1;
522 if (!elf_hash_table (info)->is_relocatable_executable)
523 return TRUE;
524 }
525
526 default:
527 break;
528 }
529
530 h->dynindx = elf_hash_table (info)->dynsymcount;
531 ++elf_hash_table (info)->dynsymcount;
532
533 dynstr = elf_hash_table (info)->dynstr;
534 if (dynstr == NULL)
535 {
536 /* Create a strtab to hold the dynamic symbol names. */
537 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
538 if (dynstr == NULL)
539 return FALSE;
540 }
541
542 /* We don't put any version information in the dynamic string
543 table. */
544 name = h->root.root.string;
545 p = strchr (name, ELF_VER_CHR);
546 if (p != NULL)
547 /* We know that the p points into writable memory. In fact,
548 there are only a few symbols that have read-only names, being
549 those like _GLOBAL_OFFSET_TABLE_ that are created specially
550 by the backends. Most symbols will have names pointing into
551 an ELF string table read from a file, or to objalloc memory. */
552 *p = 0;
553
554 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
555
556 if (p != NULL)
557 *p = ELF_VER_CHR;
558
559 if (indx == (size_t) -1)
560 return FALSE;
561 h->dynstr_index = indx;
562 }
563
564 return TRUE;
565 }
566 \f
567 /* Mark a symbol dynamic. */
568
569 static void
570 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
571 struct elf_link_hash_entry *h,
572 Elf_Internal_Sym *sym)
573 {
574 struct bfd_elf_dynamic_list *d = info->dynamic_list;
575
576 /* It may be called more than once on the same H. */
577 if(h->dynamic || bfd_link_relocatable (info))
578 return;
579
580 if ((info->dynamic_data
581 && (h->type == STT_OBJECT
582 || h->type == STT_COMMON
583 || (sym != NULL
584 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
585 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
586 || (d != NULL
587 && h->non_elf
588 && (*d->match) (&d->head, NULL, h->root.root.string)))
589 h->dynamic = 1;
590 }
591
592 /* Record an assignment to a symbol made by a linker script. We need
593 this in case some dynamic object refers to this symbol. */
594
595 bfd_boolean
596 bfd_elf_record_link_assignment (bfd *output_bfd,
597 struct bfd_link_info *info,
598 const char *name,
599 bfd_boolean provide,
600 bfd_boolean hidden)
601 {
602 struct elf_link_hash_entry *h, *hv;
603 struct elf_link_hash_table *htab;
604 const struct elf_backend_data *bed;
605
606 if (!is_elf_hash_table (info->hash))
607 return TRUE;
608
609 htab = elf_hash_table (info);
610 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
611 if (h == NULL)
612 return provide;
613
614 if (h->root.type == bfd_link_hash_warning)
615 h = (struct elf_link_hash_entry *) h->root.u.i.link;
616
617 if (h->versioned == unknown)
618 {
619 /* Set versioned if symbol version is unknown. */
620 char *version = strrchr (name, ELF_VER_CHR);
621 if (version)
622 {
623 if (version > name && version[-1] != ELF_VER_CHR)
624 h->versioned = versioned_hidden;
625 else
626 h->versioned = versioned;
627 }
628 }
629
630 /* Symbols defined in a linker script but not referenced anywhere
631 else will have non_elf set. */
632 if (h->non_elf)
633 {
634 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
635 h->non_elf = 0;
636 }
637
638 switch (h->root.type)
639 {
640 case bfd_link_hash_defined:
641 case bfd_link_hash_defweak:
642 case bfd_link_hash_common:
643 break;
644 case bfd_link_hash_undefweak:
645 case bfd_link_hash_undefined:
646 /* Since we're defining the symbol, don't let it seem to have not
647 been defined. record_dynamic_symbol and size_dynamic_sections
648 may depend on this. */
649 h->root.type = bfd_link_hash_new;
650 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
651 bfd_link_repair_undef_list (&htab->root);
652 break;
653 case bfd_link_hash_new:
654 break;
655 case bfd_link_hash_indirect:
656 /* We had a versioned symbol in a dynamic library. We make the
657 the versioned symbol point to this one. */
658 bed = get_elf_backend_data (output_bfd);
659 hv = h;
660 while (hv->root.type == bfd_link_hash_indirect
661 || hv->root.type == bfd_link_hash_warning)
662 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
663 /* We don't need to update h->root.u since linker will set them
664 later. */
665 h->root.type = bfd_link_hash_undefined;
666 hv->root.type = bfd_link_hash_indirect;
667 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
668 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
669 break;
670 default:
671 BFD_FAIL ();
672 return FALSE;
673 }
674
675 /* If this symbol is being provided by the linker script, and it is
676 currently defined by a dynamic object, but not by a regular
677 object, then mark it as undefined so that the generic linker will
678 force the correct value. */
679 if (provide
680 && h->def_dynamic
681 && !h->def_regular)
682 h->root.type = bfd_link_hash_undefined;
683
684 /* If this symbol is not being provided by the linker script, and it is
685 currently defined by a dynamic object, but not by a regular object,
686 then clear out any version information because the symbol will not be
687 associated with the dynamic object any more. */
688 if (!provide
689 && h->def_dynamic
690 && !h->def_regular)
691 h->verinfo.verdef = NULL;
692
693 /* Make sure this symbol is not garbage collected. */
694 h->mark = 1;
695
696 h->def_regular = 1;
697
698 if (hidden)
699 {
700 bed = get_elf_backend_data (output_bfd);
701 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
702 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
703 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
704 }
705
706 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
707 and executables. */
708 if (!bfd_link_relocatable (info)
709 && h->dynindx != -1
710 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
711 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
712 h->forced_local = 1;
713
714 if ((h->def_dynamic
715 || h->ref_dynamic
716 || bfd_link_dll (info)
717 || elf_hash_table (info)->is_relocatable_executable)
718 && h->dynindx == -1)
719 {
720 if (! bfd_elf_link_record_dynamic_symbol (info, h))
721 return FALSE;
722
723 /* If this is a weak defined symbol, and we know a corresponding
724 real symbol from the same dynamic object, make sure the real
725 symbol is also made into a dynamic symbol. */
726 if (h->u.weakdef != NULL
727 && h->u.weakdef->dynindx == -1)
728 {
729 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
730 return FALSE;
731 }
732 }
733
734 return TRUE;
735 }
736
737 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
738 success, and 2 on a failure caused by attempting to record a symbol
739 in a discarded section, eg. a discarded link-once section symbol. */
740
741 int
742 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
743 bfd *input_bfd,
744 long input_indx)
745 {
746 bfd_size_type amt;
747 struct elf_link_local_dynamic_entry *entry;
748 struct elf_link_hash_table *eht;
749 struct elf_strtab_hash *dynstr;
750 size_t dynstr_index;
751 char *name;
752 Elf_External_Sym_Shndx eshndx;
753 char esym[sizeof (Elf64_External_Sym)];
754
755 if (! is_elf_hash_table (info->hash))
756 return 0;
757
758 /* See if the entry exists already. */
759 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
760 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
761 return 1;
762
763 amt = sizeof (*entry);
764 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
765 if (entry == NULL)
766 return 0;
767
768 /* Go find the symbol, so that we can find it's name. */
769 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
770 1, input_indx, &entry->isym, esym, &eshndx))
771 {
772 bfd_release (input_bfd, entry);
773 return 0;
774 }
775
776 if (entry->isym.st_shndx != SHN_UNDEF
777 && entry->isym.st_shndx < SHN_LORESERVE)
778 {
779 asection *s;
780
781 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
782 if (s == NULL || bfd_is_abs_section (s->output_section))
783 {
784 /* We can still bfd_release here as nothing has done another
785 bfd_alloc. We can't do this later in this function. */
786 bfd_release (input_bfd, entry);
787 return 2;
788 }
789 }
790
791 name = (bfd_elf_string_from_elf_section
792 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
793 entry->isym.st_name));
794
795 dynstr = elf_hash_table (info)->dynstr;
796 if (dynstr == NULL)
797 {
798 /* Create a strtab to hold the dynamic symbol names. */
799 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
800 if (dynstr == NULL)
801 return 0;
802 }
803
804 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
805 if (dynstr_index == (size_t) -1)
806 return 0;
807 entry->isym.st_name = dynstr_index;
808
809 eht = elf_hash_table (info);
810
811 entry->next = eht->dynlocal;
812 eht->dynlocal = entry;
813 entry->input_bfd = input_bfd;
814 entry->input_indx = input_indx;
815 eht->dynsymcount++;
816
817 /* Whatever binding the symbol had before, it's now local. */
818 entry->isym.st_info
819 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
820
821 /* The dynindx will be set at the end of size_dynamic_sections. */
822
823 return 1;
824 }
825
826 /* Return the dynindex of a local dynamic symbol. */
827
828 long
829 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
830 bfd *input_bfd,
831 long input_indx)
832 {
833 struct elf_link_local_dynamic_entry *e;
834
835 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
836 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
837 return e->dynindx;
838 return -1;
839 }
840
841 /* This function is used to renumber the dynamic symbols, if some of
842 them are removed because they are marked as local. This is called
843 via elf_link_hash_traverse. */
844
845 static bfd_boolean
846 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
847 void *data)
848 {
849 size_t *count = (size_t *) data;
850
851 if (h->forced_local)
852 return TRUE;
853
854 if (h->dynindx != -1)
855 h->dynindx = ++(*count);
856
857 return TRUE;
858 }
859
860
861 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
862 STB_LOCAL binding. */
863
864 static bfd_boolean
865 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
866 void *data)
867 {
868 size_t *count = (size_t *) data;
869
870 if (!h->forced_local)
871 return TRUE;
872
873 if (h->dynindx != -1)
874 h->dynindx = ++(*count);
875
876 return TRUE;
877 }
878
879 /* Return true if the dynamic symbol for a given section should be
880 omitted when creating a shared library. */
881 bfd_boolean
882 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
883 struct bfd_link_info *info,
884 asection *p)
885 {
886 struct elf_link_hash_table *htab;
887 asection *ip;
888
889 switch (elf_section_data (p)->this_hdr.sh_type)
890 {
891 case SHT_PROGBITS:
892 case SHT_NOBITS:
893 /* If sh_type is yet undecided, assume it could be
894 SHT_PROGBITS/SHT_NOBITS. */
895 case SHT_NULL:
896 htab = elf_hash_table (info);
897 if (p == htab->tls_sec)
898 return FALSE;
899
900 if (htab->text_index_section != NULL)
901 return p != htab->text_index_section && p != htab->data_index_section;
902
903 return (htab->dynobj != NULL
904 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
905 && ip->output_section == p);
906
907 /* There shouldn't be section relative relocations
908 against any other section. */
909 default:
910 return TRUE;
911 }
912 }
913
914 /* Assign dynsym indices. In a shared library we generate a section
915 symbol for each output section, which come first. Next come symbols
916 which have been forced to local binding. Then all of the back-end
917 allocated local dynamic syms, followed by the rest of the global
918 symbols. */
919
920 static unsigned long
921 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
922 struct bfd_link_info *info,
923 unsigned long *section_sym_count)
924 {
925 unsigned long dynsymcount = 0;
926
927 if (bfd_link_pic (info)
928 || elf_hash_table (info)->is_relocatable_executable)
929 {
930 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
931 asection *p;
932 for (p = output_bfd->sections; p ; p = p->next)
933 if ((p->flags & SEC_EXCLUDE) == 0
934 && (p->flags & SEC_ALLOC) != 0
935 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
936 elf_section_data (p)->dynindx = ++dynsymcount;
937 else
938 elf_section_data (p)->dynindx = 0;
939 }
940 *section_sym_count = dynsymcount;
941
942 elf_link_hash_traverse (elf_hash_table (info),
943 elf_link_renumber_local_hash_table_dynsyms,
944 &dynsymcount);
945
946 if (elf_hash_table (info)->dynlocal)
947 {
948 struct elf_link_local_dynamic_entry *p;
949 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
950 p->dynindx = ++dynsymcount;
951 }
952 elf_hash_table (info)->local_dynsymcount = dynsymcount;
953
954 elf_link_hash_traverse (elf_hash_table (info),
955 elf_link_renumber_hash_table_dynsyms,
956 &dynsymcount);
957
958 /* There is an unused NULL entry at the head of the table which we
959 must account for in our count even if the table is empty since it
960 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
961 .dynamic section. */
962 dynsymcount++;
963
964 elf_hash_table (info)->dynsymcount = dynsymcount;
965 return dynsymcount;
966 }
967
968 /* Merge st_other field. */
969
970 static void
971 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
972 const Elf_Internal_Sym *isym, asection *sec,
973 bfd_boolean definition, bfd_boolean dynamic)
974 {
975 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
976
977 /* If st_other has a processor-specific meaning, specific
978 code might be needed here. */
979 if (bed->elf_backend_merge_symbol_attribute)
980 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
981 dynamic);
982
983 if (!dynamic)
984 {
985 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
986 unsigned hvis = ELF_ST_VISIBILITY (h->other);
987
988 /* Keep the most constraining visibility. Leave the remainder
989 of the st_other field to elf_backend_merge_symbol_attribute. */
990 if (symvis - 1 < hvis - 1)
991 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
992 }
993 else if (definition
994 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
995 && (sec->flags & SEC_READONLY) == 0)
996 h->protected_def = 1;
997 }
998
999 /* This function is called when we want to merge a new symbol with an
1000 existing symbol. It handles the various cases which arise when we
1001 find a definition in a dynamic object, or when there is already a
1002 definition in a dynamic object. The new symbol is described by
1003 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
1004 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
1005 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
1006 of an old common symbol. We set OVERRIDE if the old symbol is
1007 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
1008 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
1009 to change. By OK to change, we mean that we shouldn't warn if the
1010 type or size does change. */
1011
1012 static bfd_boolean
1013 _bfd_elf_merge_symbol (bfd *abfd,
1014 struct bfd_link_info *info,
1015 const char *name,
1016 Elf_Internal_Sym *sym,
1017 asection **psec,
1018 bfd_vma *pvalue,
1019 struct elf_link_hash_entry **sym_hash,
1020 bfd **poldbfd,
1021 bfd_boolean *pold_weak,
1022 unsigned int *pold_alignment,
1023 bfd_boolean *skip,
1024 bfd_boolean *override,
1025 bfd_boolean *type_change_ok,
1026 bfd_boolean *size_change_ok,
1027 bfd_boolean *matched)
1028 {
1029 asection *sec, *oldsec;
1030 struct elf_link_hash_entry *h;
1031 struct elf_link_hash_entry *hi;
1032 struct elf_link_hash_entry *flip;
1033 int bind;
1034 bfd *oldbfd;
1035 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1036 bfd_boolean newweak, oldweak, newfunc, oldfunc;
1037 const struct elf_backend_data *bed;
1038 char *new_version;
1039
1040 *skip = FALSE;
1041 *override = FALSE;
1042
1043 sec = *psec;
1044 bind = ELF_ST_BIND (sym->st_info);
1045
1046 if (! bfd_is_und_section (sec))
1047 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
1048 else
1049 h = ((struct elf_link_hash_entry *)
1050 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1051 if (h == NULL)
1052 return FALSE;
1053 *sym_hash = h;
1054
1055 bed = get_elf_backend_data (abfd);
1056
1057 /* NEW_VERSION is the symbol version of the new symbol. */
1058 if (h->versioned != unversioned)
1059 {
1060 /* Symbol version is unknown or versioned. */
1061 new_version = strrchr (name, ELF_VER_CHR);
1062 if (new_version)
1063 {
1064 if (h->versioned == unknown)
1065 {
1066 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1067 h->versioned = versioned_hidden;
1068 else
1069 h->versioned = versioned;
1070 }
1071 new_version += 1;
1072 if (new_version[0] == '\0')
1073 new_version = NULL;
1074 }
1075 else
1076 h->versioned = unversioned;
1077 }
1078 else
1079 new_version = NULL;
1080
1081 /* For merging, we only care about real symbols. But we need to make
1082 sure that indirect symbol dynamic flags are updated. */
1083 hi = h;
1084 while (h->root.type == bfd_link_hash_indirect
1085 || h->root.type == bfd_link_hash_warning)
1086 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1087
1088 if (!*matched)
1089 {
1090 if (hi == h || h->root.type == bfd_link_hash_new)
1091 *matched = TRUE;
1092 else
1093 {
1094 /* OLD_HIDDEN is true if the existing symbol is only visible
1095 to the symbol with the same symbol version. NEW_HIDDEN is
1096 true if the new symbol is only visible to the symbol with
1097 the same symbol version. */
1098 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1099 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1100 if (!old_hidden && !new_hidden)
1101 /* The new symbol matches the existing symbol if both
1102 aren't hidden. */
1103 *matched = TRUE;
1104 else
1105 {
1106 /* OLD_VERSION is the symbol version of the existing
1107 symbol. */
1108 char *old_version;
1109
1110 if (h->versioned >= versioned)
1111 old_version = strrchr (h->root.root.string,
1112 ELF_VER_CHR) + 1;
1113 else
1114 old_version = NULL;
1115
1116 /* The new symbol matches the existing symbol if they
1117 have the same symbol version. */
1118 *matched = (old_version == new_version
1119 || (old_version != NULL
1120 && new_version != NULL
1121 && strcmp (old_version, new_version) == 0));
1122 }
1123 }
1124 }
1125
1126 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1127 existing symbol. */
1128
1129 oldbfd = NULL;
1130 oldsec = NULL;
1131 switch (h->root.type)
1132 {
1133 default:
1134 break;
1135
1136 case bfd_link_hash_undefined:
1137 case bfd_link_hash_undefweak:
1138 oldbfd = h->root.u.undef.abfd;
1139 break;
1140
1141 case bfd_link_hash_defined:
1142 case bfd_link_hash_defweak:
1143 oldbfd = h->root.u.def.section->owner;
1144 oldsec = h->root.u.def.section;
1145 break;
1146
1147 case bfd_link_hash_common:
1148 oldbfd = h->root.u.c.p->section->owner;
1149 oldsec = h->root.u.c.p->section;
1150 if (pold_alignment)
1151 *pold_alignment = h->root.u.c.p->alignment_power;
1152 break;
1153 }
1154 if (poldbfd && *poldbfd == NULL)
1155 *poldbfd = oldbfd;
1156
1157 /* Differentiate strong and weak symbols. */
1158 newweak = bind == STB_WEAK;
1159 oldweak = (h->root.type == bfd_link_hash_defweak
1160 || h->root.type == bfd_link_hash_undefweak);
1161 if (pold_weak)
1162 *pold_weak = oldweak;
1163
1164 /* This code is for coping with dynamic objects, and is only useful
1165 if we are doing an ELF link. */
1166 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
1167 return TRUE;
1168
1169 /* We have to check it for every instance since the first few may be
1170 references and not all compilers emit symbol type for undefined
1171 symbols. */
1172 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1173
1174 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1175 respectively, is from a dynamic object. */
1176
1177 newdyn = (abfd->flags & DYNAMIC) != 0;
1178
1179 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1180 syms and defined syms in dynamic libraries respectively.
1181 ref_dynamic on the other hand can be set for a symbol defined in
1182 a dynamic library, and def_dynamic may not be set; When the
1183 definition in a dynamic lib is overridden by a definition in the
1184 executable use of the symbol in the dynamic lib becomes a
1185 reference to the executable symbol. */
1186 if (newdyn)
1187 {
1188 if (bfd_is_und_section (sec))
1189 {
1190 if (bind != STB_WEAK)
1191 {
1192 h->ref_dynamic_nonweak = 1;
1193 hi->ref_dynamic_nonweak = 1;
1194 }
1195 }
1196 else
1197 {
1198 /* Update the existing symbol only if they match. */
1199 if (*matched)
1200 h->dynamic_def = 1;
1201 hi->dynamic_def = 1;
1202 }
1203 }
1204
1205 /* If we just created the symbol, mark it as being an ELF symbol.
1206 Other than that, there is nothing to do--there is no merge issue
1207 with a newly defined symbol--so we just return. */
1208
1209 if (h->root.type == bfd_link_hash_new)
1210 {
1211 h->non_elf = 0;
1212 return TRUE;
1213 }
1214
1215 /* In cases involving weak versioned symbols, we may wind up trying
1216 to merge a symbol with itself. Catch that here, to avoid the
1217 confusion that results if we try to override a symbol with
1218 itself. The additional tests catch cases like
1219 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1220 dynamic object, which we do want to handle here. */
1221 if (abfd == oldbfd
1222 && (newweak || oldweak)
1223 && ((abfd->flags & DYNAMIC) == 0
1224 || !h->def_regular))
1225 return TRUE;
1226
1227 olddyn = FALSE;
1228 if (oldbfd != NULL)
1229 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1230 else if (oldsec != NULL)
1231 {
1232 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1233 indices used by MIPS ELF. */
1234 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1235 }
1236
1237 /* Handle a case where plugin_notice won't be called and thus won't
1238 set the non_ir_ref flags on the first pass over symbols. */
1239 if (oldbfd != NULL
1240 && (oldbfd->flags & BFD_PLUGIN) != (abfd->flags & BFD_PLUGIN)
1241 && newdyn != olddyn)
1242 {
1243 h->root.non_ir_ref_dynamic = TRUE;
1244 hi->root.non_ir_ref_dynamic = TRUE;
1245 }
1246
1247 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1248 respectively, appear to be a definition rather than reference. */
1249
1250 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1251
1252 olddef = (h->root.type != bfd_link_hash_undefined
1253 && h->root.type != bfd_link_hash_undefweak
1254 && h->root.type != bfd_link_hash_common);
1255
1256 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1257 respectively, appear to be a function. */
1258
1259 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1260 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1261
1262 oldfunc = (h->type != STT_NOTYPE
1263 && bed->is_function_type (h->type));
1264
1265 if (!(newfunc && oldfunc)
1266 && ELF_ST_TYPE (sym->st_info) != h->type
1267 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1268 && h->type != STT_NOTYPE
1269 && (newdef || bfd_is_com_section (sec))
1270 && (olddef || h->root.type == bfd_link_hash_common))
1271 {
1272 /* If creating a default indirect symbol ("foo" or "foo@") from
1273 a dynamic versioned definition ("foo@@") skip doing so if
1274 there is an existing regular definition with a different
1275 type. We don't want, for example, a "time" variable in the
1276 executable overriding a "time" function in a shared library. */
1277 if (newdyn
1278 && !olddyn)
1279 {
1280 *skip = TRUE;
1281 return TRUE;
1282 }
1283
1284 /* When adding a symbol from a regular object file after we have
1285 created indirect symbols, undo the indirection and any
1286 dynamic state. */
1287 if (hi != h
1288 && !newdyn
1289 && olddyn)
1290 {
1291 h = hi;
1292 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1293 h->forced_local = 0;
1294 h->ref_dynamic = 0;
1295 h->def_dynamic = 0;
1296 h->dynamic_def = 0;
1297 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1298 {
1299 h->root.type = bfd_link_hash_undefined;
1300 h->root.u.undef.abfd = abfd;
1301 }
1302 else
1303 {
1304 h->root.type = bfd_link_hash_new;
1305 h->root.u.undef.abfd = NULL;
1306 }
1307 return TRUE;
1308 }
1309 }
1310
1311 /* Check TLS symbols. We don't check undefined symbols introduced
1312 by "ld -u" which have no type (and oldbfd NULL), and we don't
1313 check symbols from plugins because they also have no type. */
1314 if (oldbfd != NULL
1315 && (oldbfd->flags & BFD_PLUGIN) == 0
1316 && (abfd->flags & BFD_PLUGIN) == 0
1317 && ELF_ST_TYPE (sym->st_info) != h->type
1318 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1319 {
1320 bfd *ntbfd, *tbfd;
1321 bfd_boolean ntdef, tdef;
1322 asection *ntsec, *tsec;
1323
1324 if (h->type == STT_TLS)
1325 {
1326 ntbfd = abfd;
1327 ntsec = sec;
1328 ntdef = newdef;
1329 tbfd = oldbfd;
1330 tsec = oldsec;
1331 tdef = olddef;
1332 }
1333 else
1334 {
1335 ntbfd = oldbfd;
1336 ntsec = oldsec;
1337 ntdef = olddef;
1338 tbfd = abfd;
1339 tsec = sec;
1340 tdef = newdef;
1341 }
1342
1343 if (tdef && ntdef)
1344 _bfd_error_handler
1345 /* xgettext:c-format */
1346 (_("%s: TLS definition in %B section %A "
1347 "mismatches non-TLS definition in %B section %A"),
1348 h->root.root.string, tbfd, tsec, ntbfd, ntsec);
1349 else if (!tdef && !ntdef)
1350 _bfd_error_handler
1351 /* xgettext:c-format */
1352 (_("%s: TLS reference in %B "
1353 "mismatches non-TLS reference in %B"),
1354 h->root.root.string, tbfd, ntbfd);
1355 else if (tdef)
1356 _bfd_error_handler
1357 /* xgettext:c-format */
1358 (_("%s: TLS definition in %B section %A "
1359 "mismatches non-TLS reference in %B"),
1360 h->root.root.string, tbfd, tsec, ntbfd);
1361 else
1362 _bfd_error_handler
1363 /* xgettext:c-format */
1364 (_("%s: TLS reference in %B "
1365 "mismatches non-TLS definition in %B section %A"),
1366 h->root.root.string, tbfd, ntbfd, ntsec);
1367
1368 bfd_set_error (bfd_error_bad_value);
1369 return FALSE;
1370 }
1371
1372 /* If the old symbol has non-default visibility, we ignore the new
1373 definition from a dynamic object. */
1374 if (newdyn
1375 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1376 && !bfd_is_und_section (sec))
1377 {
1378 *skip = TRUE;
1379 /* Make sure this symbol is dynamic. */
1380 h->ref_dynamic = 1;
1381 hi->ref_dynamic = 1;
1382 /* A protected symbol has external availability. Make sure it is
1383 recorded as dynamic.
1384
1385 FIXME: Should we check type and size for protected symbol? */
1386 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1387 return bfd_elf_link_record_dynamic_symbol (info, h);
1388 else
1389 return TRUE;
1390 }
1391 else if (!newdyn
1392 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1393 && h->def_dynamic)
1394 {
1395 /* If the new symbol with non-default visibility comes from a
1396 relocatable file and the old definition comes from a dynamic
1397 object, we remove the old definition. */
1398 if (hi->root.type == bfd_link_hash_indirect)
1399 {
1400 /* Handle the case where the old dynamic definition is
1401 default versioned. We need to copy the symbol info from
1402 the symbol with default version to the normal one if it
1403 was referenced before. */
1404 if (h->ref_regular)
1405 {
1406 hi->root.type = h->root.type;
1407 h->root.type = bfd_link_hash_indirect;
1408 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1409
1410 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1411 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1412 {
1413 /* If the new symbol is hidden or internal, completely undo
1414 any dynamic link state. */
1415 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1416 h->forced_local = 0;
1417 h->ref_dynamic = 0;
1418 }
1419 else
1420 h->ref_dynamic = 1;
1421
1422 h->def_dynamic = 0;
1423 /* FIXME: Should we check type and size for protected symbol? */
1424 h->size = 0;
1425 h->type = 0;
1426
1427 h = hi;
1428 }
1429 else
1430 h = hi;
1431 }
1432
1433 /* If the old symbol was undefined before, then it will still be
1434 on the undefs list. If the new symbol is undefined or
1435 common, we can't make it bfd_link_hash_new here, because new
1436 undefined or common symbols will be added to the undefs list
1437 by _bfd_generic_link_add_one_symbol. Symbols may not be
1438 added twice to the undefs list. Also, if the new symbol is
1439 undefweak then we don't want to lose the strong undef. */
1440 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1441 {
1442 h->root.type = bfd_link_hash_undefined;
1443 h->root.u.undef.abfd = abfd;
1444 }
1445 else
1446 {
1447 h->root.type = bfd_link_hash_new;
1448 h->root.u.undef.abfd = NULL;
1449 }
1450
1451 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1452 {
1453 /* If the new symbol is hidden or internal, completely undo
1454 any dynamic link state. */
1455 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1456 h->forced_local = 0;
1457 h->ref_dynamic = 0;
1458 }
1459 else
1460 h->ref_dynamic = 1;
1461 h->def_dynamic = 0;
1462 /* FIXME: Should we check type and size for protected symbol? */
1463 h->size = 0;
1464 h->type = 0;
1465 return TRUE;
1466 }
1467
1468 /* If a new weak symbol definition comes from a regular file and the
1469 old symbol comes from a dynamic library, we treat the new one as
1470 strong. Similarly, an old weak symbol definition from a regular
1471 file is treated as strong when the new symbol comes from a dynamic
1472 library. Further, an old weak symbol from a dynamic library is
1473 treated as strong if the new symbol is from a dynamic library.
1474 This reflects the way glibc's ld.so works.
1475
1476 Do this before setting *type_change_ok or *size_change_ok so that
1477 we warn properly when dynamic library symbols are overridden. */
1478
1479 if (newdef && !newdyn && olddyn)
1480 newweak = FALSE;
1481 if (olddef && newdyn)
1482 oldweak = FALSE;
1483
1484 /* Allow changes between different types of function symbol. */
1485 if (newfunc && oldfunc)
1486 *type_change_ok = TRUE;
1487
1488 /* It's OK to change the type if either the existing symbol or the
1489 new symbol is weak. A type change is also OK if the old symbol
1490 is undefined and the new symbol is defined. */
1491
1492 if (oldweak
1493 || newweak
1494 || (newdef
1495 && h->root.type == bfd_link_hash_undefined))
1496 *type_change_ok = TRUE;
1497
1498 /* It's OK to change the size if either the existing symbol or the
1499 new symbol is weak, or if the old symbol is undefined. */
1500
1501 if (*type_change_ok
1502 || h->root.type == bfd_link_hash_undefined)
1503 *size_change_ok = TRUE;
1504
1505 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1506 symbol, respectively, appears to be a common symbol in a dynamic
1507 object. If a symbol appears in an uninitialized section, and is
1508 not weak, and is not a function, then it may be a common symbol
1509 which was resolved when the dynamic object was created. We want
1510 to treat such symbols specially, because they raise special
1511 considerations when setting the symbol size: if the symbol
1512 appears as a common symbol in a regular object, and the size in
1513 the regular object is larger, we must make sure that we use the
1514 larger size. This problematic case can always be avoided in C,
1515 but it must be handled correctly when using Fortran shared
1516 libraries.
1517
1518 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1519 likewise for OLDDYNCOMMON and OLDDEF.
1520
1521 Note that this test is just a heuristic, and that it is quite
1522 possible to have an uninitialized symbol in a shared object which
1523 is really a definition, rather than a common symbol. This could
1524 lead to some minor confusion when the symbol really is a common
1525 symbol in some regular object. However, I think it will be
1526 harmless. */
1527
1528 if (newdyn
1529 && newdef
1530 && !newweak
1531 && (sec->flags & SEC_ALLOC) != 0
1532 && (sec->flags & SEC_LOAD) == 0
1533 && sym->st_size > 0
1534 && !newfunc)
1535 newdyncommon = TRUE;
1536 else
1537 newdyncommon = FALSE;
1538
1539 if (olddyn
1540 && olddef
1541 && h->root.type == bfd_link_hash_defined
1542 && h->def_dynamic
1543 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1544 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1545 && h->size > 0
1546 && !oldfunc)
1547 olddyncommon = TRUE;
1548 else
1549 olddyncommon = FALSE;
1550
1551 /* We now know everything about the old and new symbols. We ask the
1552 backend to check if we can merge them. */
1553 if (bed->merge_symbol != NULL)
1554 {
1555 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1556 return FALSE;
1557 sec = *psec;
1558 }
1559
1560 /* If both the old and the new symbols look like common symbols in a
1561 dynamic object, set the size of the symbol to the larger of the
1562 two. */
1563
1564 if (olddyncommon
1565 && newdyncommon
1566 && sym->st_size != h->size)
1567 {
1568 /* Since we think we have two common symbols, issue a multiple
1569 common warning if desired. Note that we only warn if the
1570 size is different. If the size is the same, we simply let
1571 the old symbol override the new one as normally happens with
1572 symbols defined in dynamic objects. */
1573
1574 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1575 bfd_link_hash_common, sym->st_size);
1576 if (sym->st_size > h->size)
1577 h->size = sym->st_size;
1578
1579 *size_change_ok = TRUE;
1580 }
1581
1582 /* If we are looking at a dynamic object, and we have found a
1583 definition, we need to see if the symbol was already defined by
1584 some other object. If so, we want to use the existing
1585 definition, and we do not want to report a multiple symbol
1586 definition error; we do this by clobbering *PSEC to be
1587 bfd_und_section_ptr.
1588
1589 We treat a common symbol as a definition if the symbol in the
1590 shared library is a function, since common symbols always
1591 represent variables; this can cause confusion in principle, but
1592 any such confusion would seem to indicate an erroneous program or
1593 shared library. We also permit a common symbol in a regular
1594 object to override a weak symbol in a shared object. */
1595
1596 if (newdyn
1597 && newdef
1598 && (olddef
1599 || (h->root.type == bfd_link_hash_common
1600 && (newweak || newfunc))))
1601 {
1602 *override = TRUE;
1603 newdef = FALSE;
1604 newdyncommon = FALSE;
1605
1606 *psec = sec = bfd_und_section_ptr;
1607 *size_change_ok = TRUE;
1608
1609 /* If we get here when the old symbol is a common symbol, then
1610 we are explicitly letting it override a weak symbol or
1611 function in a dynamic object, and we don't want to warn about
1612 a type change. If the old symbol is a defined symbol, a type
1613 change warning may still be appropriate. */
1614
1615 if (h->root.type == bfd_link_hash_common)
1616 *type_change_ok = TRUE;
1617 }
1618
1619 /* Handle the special case of an old common symbol merging with a
1620 new symbol which looks like a common symbol in a shared object.
1621 We change *PSEC and *PVALUE to make the new symbol look like a
1622 common symbol, and let _bfd_generic_link_add_one_symbol do the
1623 right thing. */
1624
1625 if (newdyncommon
1626 && h->root.type == bfd_link_hash_common)
1627 {
1628 *override = TRUE;
1629 newdef = FALSE;
1630 newdyncommon = FALSE;
1631 *pvalue = sym->st_size;
1632 *psec = sec = bed->common_section (oldsec);
1633 *size_change_ok = TRUE;
1634 }
1635
1636 /* Skip weak definitions of symbols that are already defined. */
1637 if (newdef && olddef && newweak)
1638 {
1639 /* Don't skip new non-IR weak syms. */
1640 if (!(oldbfd != NULL
1641 && (oldbfd->flags & BFD_PLUGIN) != 0
1642 && (abfd->flags & BFD_PLUGIN) == 0))
1643 {
1644 newdef = FALSE;
1645 *skip = TRUE;
1646 }
1647
1648 /* Merge st_other. If the symbol already has a dynamic index,
1649 but visibility says it should not be visible, turn it into a
1650 local symbol. */
1651 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1652 if (h->dynindx != -1)
1653 switch (ELF_ST_VISIBILITY (h->other))
1654 {
1655 case STV_INTERNAL:
1656 case STV_HIDDEN:
1657 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1658 break;
1659 }
1660 }
1661
1662 /* If the old symbol is from a dynamic object, and the new symbol is
1663 a definition which is not from a dynamic object, then the new
1664 symbol overrides the old symbol. Symbols from regular files
1665 always take precedence over symbols from dynamic objects, even if
1666 they are defined after the dynamic object in the link.
1667
1668 As above, we again permit a common symbol in a regular object to
1669 override a definition in a shared object if the shared object
1670 symbol is a function or is weak. */
1671
1672 flip = NULL;
1673 if (!newdyn
1674 && (newdef
1675 || (bfd_is_com_section (sec)
1676 && (oldweak || oldfunc)))
1677 && olddyn
1678 && olddef
1679 && h->def_dynamic)
1680 {
1681 /* Change the hash table entry to undefined, and let
1682 _bfd_generic_link_add_one_symbol do the right thing with the
1683 new definition. */
1684
1685 h->root.type = bfd_link_hash_undefined;
1686 h->root.u.undef.abfd = h->root.u.def.section->owner;
1687 *size_change_ok = TRUE;
1688
1689 olddef = FALSE;
1690 olddyncommon = FALSE;
1691
1692 /* We again permit a type change when a common symbol may be
1693 overriding a function. */
1694
1695 if (bfd_is_com_section (sec))
1696 {
1697 if (oldfunc)
1698 {
1699 /* If a common symbol overrides a function, make sure
1700 that it isn't defined dynamically nor has type
1701 function. */
1702 h->def_dynamic = 0;
1703 h->type = STT_NOTYPE;
1704 }
1705 *type_change_ok = TRUE;
1706 }
1707
1708 if (hi->root.type == bfd_link_hash_indirect)
1709 flip = hi;
1710 else
1711 /* This union may have been set to be non-NULL when this symbol
1712 was seen in a dynamic object. We must force the union to be
1713 NULL, so that it is correct for a regular symbol. */
1714 h->verinfo.vertree = NULL;
1715 }
1716
1717 /* Handle the special case of a new common symbol merging with an
1718 old symbol that looks like it might be a common symbol defined in
1719 a shared object. Note that we have already handled the case in
1720 which a new common symbol should simply override the definition
1721 in the shared library. */
1722
1723 if (! newdyn
1724 && bfd_is_com_section (sec)
1725 && olddyncommon)
1726 {
1727 /* It would be best if we could set the hash table entry to a
1728 common symbol, but we don't know what to use for the section
1729 or the alignment. */
1730 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1731 bfd_link_hash_common, sym->st_size);
1732
1733 /* If the presumed common symbol in the dynamic object is
1734 larger, pretend that the new symbol has its size. */
1735
1736 if (h->size > *pvalue)
1737 *pvalue = h->size;
1738
1739 /* We need to remember the alignment required by the symbol
1740 in the dynamic object. */
1741 BFD_ASSERT (pold_alignment);
1742 *pold_alignment = h->root.u.def.section->alignment_power;
1743
1744 olddef = FALSE;
1745 olddyncommon = FALSE;
1746
1747 h->root.type = bfd_link_hash_undefined;
1748 h->root.u.undef.abfd = h->root.u.def.section->owner;
1749
1750 *size_change_ok = TRUE;
1751 *type_change_ok = TRUE;
1752
1753 if (hi->root.type == bfd_link_hash_indirect)
1754 flip = hi;
1755 else
1756 h->verinfo.vertree = NULL;
1757 }
1758
1759 if (flip != NULL)
1760 {
1761 /* Handle the case where we had a versioned symbol in a dynamic
1762 library and now find a definition in a normal object. In this
1763 case, we make the versioned symbol point to the normal one. */
1764 flip->root.type = h->root.type;
1765 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1766 h->root.type = bfd_link_hash_indirect;
1767 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1768 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1769 if (h->def_dynamic)
1770 {
1771 h->def_dynamic = 0;
1772 flip->ref_dynamic = 1;
1773 }
1774 }
1775
1776 return TRUE;
1777 }
1778
1779 /* This function is called to create an indirect symbol from the
1780 default for the symbol with the default version if needed. The
1781 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1782 set DYNSYM if the new indirect symbol is dynamic. */
1783
1784 static bfd_boolean
1785 _bfd_elf_add_default_symbol (bfd *abfd,
1786 struct bfd_link_info *info,
1787 struct elf_link_hash_entry *h,
1788 const char *name,
1789 Elf_Internal_Sym *sym,
1790 asection *sec,
1791 bfd_vma value,
1792 bfd **poldbfd,
1793 bfd_boolean *dynsym)
1794 {
1795 bfd_boolean type_change_ok;
1796 bfd_boolean size_change_ok;
1797 bfd_boolean skip;
1798 char *shortname;
1799 struct elf_link_hash_entry *hi;
1800 struct bfd_link_hash_entry *bh;
1801 const struct elf_backend_data *bed;
1802 bfd_boolean collect;
1803 bfd_boolean dynamic;
1804 bfd_boolean override;
1805 char *p;
1806 size_t len, shortlen;
1807 asection *tmp_sec;
1808 bfd_boolean matched;
1809
1810 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1811 return TRUE;
1812
1813 /* If this symbol has a version, and it is the default version, we
1814 create an indirect symbol from the default name to the fully
1815 decorated name. This will cause external references which do not
1816 specify a version to be bound to this version of the symbol. */
1817 p = strchr (name, ELF_VER_CHR);
1818 if (h->versioned == unknown)
1819 {
1820 if (p == NULL)
1821 {
1822 h->versioned = unversioned;
1823 return TRUE;
1824 }
1825 else
1826 {
1827 if (p[1] != ELF_VER_CHR)
1828 {
1829 h->versioned = versioned_hidden;
1830 return TRUE;
1831 }
1832 else
1833 h->versioned = versioned;
1834 }
1835 }
1836 else
1837 {
1838 /* PR ld/19073: We may see an unversioned definition after the
1839 default version. */
1840 if (p == NULL)
1841 return TRUE;
1842 }
1843
1844 bed = get_elf_backend_data (abfd);
1845 collect = bed->collect;
1846 dynamic = (abfd->flags & DYNAMIC) != 0;
1847
1848 shortlen = p - name;
1849 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1850 if (shortname == NULL)
1851 return FALSE;
1852 memcpy (shortname, name, shortlen);
1853 shortname[shortlen] = '\0';
1854
1855 /* We are going to create a new symbol. Merge it with any existing
1856 symbol with this name. For the purposes of the merge, act as
1857 though we were defining the symbol we just defined, although we
1858 actually going to define an indirect symbol. */
1859 type_change_ok = FALSE;
1860 size_change_ok = FALSE;
1861 matched = TRUE;
1862 tmp_sec = sec;
1863 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1864 &hi, poldbfd, NULL, NULL, &skip, &override,
1865 &type_change_ok, &size_change_ok, &matched))
1866 return FALSE;
1867
1868 if (skip)
1869 goto nondefault;
1870
1871 if (hi->def_regular)
1872 {
1873 /* If the undecorated symbol will have a version added by a
1874 script different to H, then don't indirect to/from the
1875 undecorated symbol. This isn't ideal because we may not yet
1876 have seen symbol versions, if given by a script on the
1877 command line rather than via --version-script. */
1878 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1879 {
1880 bfd_boolean hide;
1881
1882 hi->verinfo.vertree
1883 = bfd_find_version_for_sym (info->version_info,
1884 hi->root.root.string, &hide);
1885 if (hi->verinfo.vertree != NULL && hide)
1886 {
1887 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1888 goto nondefault;
1889 }
1890 }
1891 if (hi->verinfo.vertree != NULL
1892 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1893 goto nondefault;
1894 }
1895
1896 if (! override)
1897 {
1898 /* Add the default symbol if not performing a relocatable link. */
1899 if (! bfd_link_relocatable (info))
1900 {
1901 bh = &hi->root;
1902 if (! (_bfd_generic_link_add_one_symbol
1903 (info, abfd, shortname, BSF_INDIRECT,
1904 bfd_ind_section_ptr,
1905 0, name, FALSE, collect, &bh)))
1906 return FALSE;
1907 hi = (struct elf_link_hash_entry *) bh;
1908 }
1909 }
1910 else
1911 {
1912 /* In this case the symbol named SHORTNAME is overriding the
1913 indirect symbol we want to add. We were planning on making
1914 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1915 is the name without a version. NAME is the fully versioned
1916 name, and it is the default version.
1917
1918 Overriding means that we already saw a definition for the
1919 symbol SHORTNAME in a regular object, and it is overriding
1920 the symbol defined in the dynamic object.
1921
1922 When this happens, we actually want to change NAME, the
1923 symbol we just added, to refer to SHORTNAME. This will cause
1924 references to NAME in the shared object to become references
1925 to SHORTNAME in the regular object. This is what we expect
1926 when we override a function in a shared object: that the
1927 references in the shared object will be mapped to the
1928 definition in the regular object. */
1929
1930 while (hi->root.type == bfd_link_hash_indirect
1931 || hi->root.type == bfd_link_hash_warning)
1932 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1933
1934 h->root.type = bfd_link_hash_indirect;
1935 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1936 if (h->def_dynamic)
1937 {
1938 h->def_dynamic = 0;
1939 hi->ref_dynamic = 1;
1940 if (hi->ref_regular
1941 || hi->def_regular)
1942 {
1943 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1944 return FALSE;
1945 }
1946 }
1947
1948 /* Now set HI to H, so that the following code will set the
1949 other fields correctly. */
1950 hi = h;
1951 }
1952
1953 /* Check if HI is a warning symbol. */
1954 if (hi->root.type == bfd_link_hash_warning)
1955 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1956
1957 /* If there is a duplicate definition somewhere, then HI may not
1958 point to an indirect symbol. We will have reported an error to
1959 the user in that case. */
1960
1961 if (hi->root.type == bfd_link_hash_indirect)
1962 {
1963 struct elf_link_hash_entry *ht;
1964
1965 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1966 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1967
1968 /* A reference to the SHORTNAME symbol from a dynamic library
1969 will be satisfied by the versioned symbol at runtime. In
1970 effect, we have a reference to the versioned symbol. */
1971 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1972 hi->dynamic_def |= ht->dynamic_def;
1973
1974 /* See if the new flags lead us to realize that the symbol must
1975 be dynamic. */
1976 if (! *dynsym)
1977 {
1978 if (! dynamic)
1979 {
1980 if (! bfd_link_executable (info)
1981 || hi->def_dynamic
1982 || hi->ref_dynamic)
1983 *dynsym = TRUE;
1984 }
1985 else
1986 {
1987 if (hi->ref_regular)
1988 *dynsym = TRUE;
1989 }
1990 }
1991 }
1992
1993 /* We also need to define an indirection from the nondefault version
1994 of the symbol. */
1995
1996 nondefault:
1997 len = strlen (name);
1998 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1999 if (shortname == NULL)
2000 return FALSE;
2001 memcpy (shortname, name, shortlen);
2002 memcpy (shortname + shortlen, p + 1, len - shortlen);
2003
2004 /* Once again, merge with any existing symbol. */
2005 type_change_ok = FALSE;
2006 size_change_ok = FALSE;
2007 tmp_sec = sec;
2008 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
2009 &hi, poldbfd, NULL, NULL, &skip, &override,
2010 &type_change_ok, &size_change_ok, &matched))
2011 return FALSE;
2012
2013 if (skip)
2014 return TRUE;
2015
2016 if (override)
2017 {
2018 /* Here SHORTNAME is a versioned name, so we don't expect to see
2019 the type of override we do in the case above unless it is
2020 overridden by a versioned definition. */
2021 if (hi->root.type != bfd_link_hash_defined
2022 && hi->root.type != bfd_link_hash_defweak)
2023 _bfd_error_handler
2024 /* xgettext:c-format */
2025 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
2026 abfd, shortname);
2027 }
2028 else
2029 {
2030 bh = &hi->root;
2031 if (! (_bfd_generic_link_add_one_symbol
2032 (info, abfd, shortname, BSF_INDIRECT,
2033 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
2034 return FALSE;
2035 hi = (struct elf_link_hash_entry *) bh;
2036
2037 /* If there is a duplicate definition somewhere, then HI may not
2038 point to an indirect symbol. We will have reported an error
2039 to the user in that case. */
2040
2041 if (hi->root.type == bfd_link_hash_indirect)
2042 {
2043 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
2044 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2045 hi->dynamic_def |= h->dynamic_def;
2046
2047 /* See if the new flags lead us to realize that the symbol
2048 must be dynamic. */
2049 if (! *dynsym)
2050 {
2051 if (! dynamic)
2052 {
2053 if (! bfd_link_executable (info)
2054 || hi->ref_dynamic)
2055 *dynsym = TRUE;
2056 }
2057 else
2058 {
2059 if (hi->ref_regular)
2060 *dynsym = TRUE;
2061 }
2062 }
2063 }
2064 }
2065
2066 return TRUE;
2067 }
2068 \f
2069 /* This routine is used to export all defined symbols into the dynamic
2070 symbol table. It is called via elf_link_hash_traverse. */
2071
2072 static bfd_boolean
2073 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2074 {
2075 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2076
2077 /* Ignore indirect symbols. These are added by the versioning code. */
2078 if (h->root.type == bfd_link_hash_indirect)
2079 return TRUE;
2080
2081 /* Ignore this if we won't export it. */
2082 if (!eif->info->export_dynamic && !h->dynamic)
2083 return TRUE;
2084
2085 if (h->dynindx == -1
2086 && (h->def_regular || h->ref_regular)
2087 && ! bfd_hide_sym_by_version (eif->info->version_info,
2088 h->root.root.string))
2089 {
2090 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2091 {
2092 eif->failed = TRUE;
2093 return FALSE;
2094 }
2095 }
2096
2097 return TRUE;
2098 }
2099 \f
2100 /* Look through the symbols which are defined in other shared
2101 libraries and referenced here. Update the list of version
2102 dependencies. This will be put into the .gnu.version_r section.
2103 This function is called via elf_link_hash_traverse. */
2104
2105 static bfd_boolean
2106 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2107 void *data)
2108 {
2109 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2110 Elf_Internal_Verneed *t;
2111 Elf_Internal_Vernaux *a;
2112 bfd_size_type amt;
2113
2114 /* We only care about symbols defined in shared objects with version
2115 information. */
2116 if (!h->def_dynamic
2117 || h->def_regular
2118 || h->dynindx == -1
2119 || h->verinfo.verdef == NULL
2120 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2121 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2122 return TRUE;
2123
2124 /* See if we already know about this version. */
2125 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2126 t != NULL;
2127 t = t->vn_nextref)
2128 {
2129 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2130 continue;
2131
2132 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2133 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2134 return TRUE;
2135
2136 break;
2137 }
2138
2139 /* This is a new version. Add it to tree we are building. */
2140
2141 if (t == NULL)
2142 {
2143 amt = sizeof *t;
2144 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2145 if (t == NULL)
2146 {
2147 rinfo->failed = TRUE;
2148 return FALSE;
2149 }
2150
2151 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2152 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2153 elf_tdata (rinfo->info->output_bfd)->verref = t;
2154 }
2155
2156 amt = sizeof *a;
2157 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2158 if (a == NULL)
2159 {
2160 rinfo->failed = TRUE;
2161 return FALSE;
2162 }
2163
2164 /* Note that we are copying a string pointer here, and testing it
2165 above. If bfd_elf_string_from_elf_section is ever changed to
2166 discard the string data when low in memory, this will have to be
2167 fixed. */
2168 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2169
2170 a->vna_flags = h->verinfo.verdef->vd_flags;
2171 a->vna_nextptr = t->vn_auxptr;
2172
2173 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2174 ++rinfo->vers;
2175
2176 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2177
2178 t->vn_auxptr = a;
2179
2180 return TRUE;
2181 }
2182
2183 /* Figure out appropriate versions for all the symbols. We may not
2184 have the version number script until we have read all of the input
2185 files, so until that point we don't know which symbols should be
2186 local. This function is called via elf_link_hash_traverse. */
2187
2188 static bfd_boolean
2189 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2190 {
2191 struct elf_info_failed *sinfo;
2192 struct bfd_link_info *info;
2193 const struct elf_backend_data *bed;
2194 struct elf_info_failed eif;
2195 char *p;
2196
2197 sinfo = (struct elf_info_failed *) data;
2198 info = sinfo->info;
2199
2200 /* Fix the symbol flags. */
2201 eif.failed = FALSE;
2202 eif.info = info;
2203 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2204 {
2205 if (eif.failed)
2206 sinfo->failed = TRUE;
2207 return FALSE;
2208 }
2209
2210 /* We only need version numbers for symbols defined in regular
2211 objects. */
2212 if (!h->def_regular)
2213 return TRUE;
2214
2215 bed = get_elf_backend_data (info->output_bfd);
2216 p = strchr (h->root.root.string, ELF_VER_CHR);
2217 if (p != NULL && h->verinfo.vertree == NULL)
2218 {
2219 struct bfd_elf_version_tree *t;
2220
2221 ++p;
2222 if (*p == ELF_VER_CHR)
2223 ++p;
2224
2225 /* If there is no version string, we can just return out. */
2226 if (*p == '\0')
2227 return TRUE;
2228
2229 /* Look for the version. If we find it, it is no longer weak. */
2230 for (t = sinfo->info->version_info; t != NULL; t = t->next)
2231 {
2232 if (strcmp (t->name, p) == 0)
2233 {
2234 size_t len;
2235 char *alc;
2236 struct bfd_elf_version_expr *d;
2237
2238 len = p - h->root.root.string;
2239 alc = (char *) bfd_malloc (len);
2240 if (alc == NULL)
2241 {
2242 sinfo->failed = TRUE;
2243 return FALSE;
2244 }
2245 memcpy (alc, h->root.root.string, len - 1);
2246 alc[len - 1] = '\0';
2247 if (alc[len - 2] == ELF_VER_CHR)
2248 alc[len - 2] = '\0';
2249
2250 h->verinfo.vertree = t;
2251 t->used = TRUE;
2252 d = NULL;
2253
2254 if (t->globals.list != NULL)
2255 d = (*t->match) (&t->globals, NULL, alc);
2256
2257 /* See if there is anything to force this symbol to
2258 local scope. */
2259 if (d == NULL && t->locals.list != NULL)
2260 {
2261 d = (*t->match) (&t->locals, NULL, alc);
2262 if (d != NULL
2263 && h->dynindx != -1
2264 && ! info->export_dynamic)
2265 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2266 }
2267
2268 free (alc);
2269 break;
2270 }
2271 }
2272
2273 /* If we are building an application, we need to create a
2274 version node for this version. */
2275 if (t == NULL && bfd_link_executable (info))
2276 {
2277 struct bfd_elf_version_tree **pp;
2278 int version_index;
2279
2280 /* If we aren't going to export this symbol, we don't need
2281 to worry about it. */
2282 if (h->dynindx == -1)
2283 return TRUE;
2284
2285 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2286 sizeof *t);
2287 if (t == NULL)
2288 {
2289 sinfo->failed = TRUE;
2290 return FALSE;
2291 }
2292
2293 t->name = p;
2294 t->name_indx = (unsigned int) -1;
2295 t->used = TRUE;
2296
2297 version_index = 1;
2298 /* Don't count anonymous version tag. */
2299 if (sinfo->info->version_info != NULL
2300 && sinfo->info->version_info->vernum == 0)
2301 version_index = 0;
2302 for (pp = &sinfo->info->version_info;
2303 *pp != NULL;
2304 pp = &(*pp)->next)
2305 ++version_index;
2306 t->vernum = version_index;
2307
2308 *pp = t;
2309
2310 h->verinfo.vertree = t;
2311 }
2312 else if (t == NULL)
2313 {
2314 /* We could not find the version for a symbol when
2315 generating a shared archive. Return an error. */
2316 _bfd_error_handler
2317 /* xgettext:c-format */
2318 (_("%B: version node not found for symbol %s"),
2319 info->output_bfd, h->root.root.string);
2320 bfd_set_error (bfd_error_bad_value);
2321 sinfo->failed = TRUE;
2322 return FALSE;
2323 }
2324 }
2325
2326 /* If we don't have a version for this symbol, see if we can find
2327 something. */
2328 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2329 {
2330 bfd_boolean hide;
2331
2332 h->verinfo.vertree
2333 = bfd_find_version_for_sym (sinfo->info->version_info,
2334 h->root.root.string, &hide);
2335 if (h->verinfo.vertree != NULL && hide)
2336 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2337 }
2338
2339 return TRUE;
2340 }
2341 \f
2342 /* Read and swap the relocs from the section indicated by SHDR. This
2343 may be either a REL or a RELA section. The relocations are
2344 translated into RELA relocations and stored in INTERNAL_RELOCS,
2345 which should have already been allocated to contain enough space.
2346 The EXTERNAL_RELOCS are a buffer where the external form of the
2347 relocations should be stored.
2348
2349 Returns FALSE if something goes wrong. */
2350
2351 static bfd_boolean
2352 elf_link_read_relocs_from_section (bfd *abfd,
2353 asection *sec,
2354 Elf_Internal_Shdr *shdr,
2355 void *external_relocs,
2356 Elf_Internal_Rela *internal_relocs)
2357 {
2358 const struct elf_backend_data *bed;
2359 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2360 const bfd_byte *erela;
2361 const bfd_byte *erelaend;
2362 Elf_Internal_Rela *irela;
2363 Elf_Internal_Shdr *symtab_hdr;
2364 size_t nsyms;
2365
2366 /* Position ourselves at the start of the section. */
2367 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2368 return FALSE;
2369
2370 /* Read the relocations. */
2371 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2372 return FALSE;
2373
2374 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2375 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2376
2377 bed = get_elf_backend_data (abfd);
2378
2379 /* Convert the external relocations to the internal format. */
2380 if (shdr->sh_entsize == bed->s->sizeof_rel)
2381 swap_in = bed->s->swap_reloc_in;
2382 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2383 swap_in = bed->s->swap_reloca_in;
2384 else
2385 {
2386 bfd_set_error (bfd_error_wrong_format);
2387 return FALSE;
2388 }
2389
2390 erela = (const bfd_byte *) external_relocs;
2391 erelaend = erela + shdr->sh_size;
2392 irela = internal_relocs;
2393 while (erela < erelaend)
2394 {
2395 bfd_vma r_symndx;
2396
2397 (*swap_in) (abfd, erela, irela);
2398 r_symndx = ELF32_R_SYM (irela->r_info);
2399 if (bed->s->arch_size == 64)
2400 r_symndx >>= 24;
2401 if (nsyms > 0)
2402 {
2403 if ((size_t) r_symndx >= nsyms)
2404 {
2405 _bfd_error_handler
2406 /* xgettext:c-format */
2407 (_("%B: bad reloc symbol index (%#Lx >= %#lx)"
2408 " for offset %#Lx in section `%A'"),
2409 abfd, r_symndx, (unsigned long) nsyms,
2410 irela->r_offset, sec);
2411 bfd_set_error (bfd_error_bad_value);
2412 return FALSE;
2413 }
2414 }
2415 else if (r_symndx != STN_UNDEF)
2416 {
2417 _bfd_error_handler
2418 /* xgettext:c-format */
2419 (_("%B: non-zero symbol index (%#Lx)"
2420 " for offset %#Lx in section `%A'"
2421 " when the object file has no symbol table"),
2422 abfd, r_symndx,
2423 irela->r_offset, sec);
2424 bfd_set_error (bfd_error_bad_value);
2425 return FALSE;
2426 }
2427 irela += bed->s->int_rels_per_ext_rel;
2428 erela += shdr->sh_entsize;
2429 }
2430
2431 return TRUE;
2432 }
2433
2434 /* Read and swap the relocs for a section O. They may have been
2435 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2436 not NULL, they are used as buffers to read into. They are known to
2437 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2438 the return value is allocated using either malloc or bfd_alloc,
2439 according to the KEEP_MEMORY argument. If O has two relocation
2440 sections (both REL and RELA relocations), then the REL_HDR
2441 relocations will appear first in INTERNAL_RELOCS, followed by the
2442 RELA_HDR relocations. */
2443
2444 Elf_Internal_Rela *
2445 _bfd_elf_link_read_relocs (bfd *abfd,
2446 asection *o,
2447 void *external_relocs,
2448 Elf_Internal_Rela *internal_relocs,
2449 bfd_boolean keep_memory)
2450 {
2451 void *alloc1 = NULL;
2452 Elf_Internal_Rela *alloc2 = NULL;
2453 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2454 struct bfd_elf_section_data *esdo = elf_section_data (o);
2455 Elf_Internal_Rela *internal_rela_relocs;
2456
2457 if (esdo->relocs != NULL)
2458 return esdo->relocs;
2459
2460 if (o->reloc_count == 0)
2461 return NULL;
2462
2463 if (internal_relocs == NULL)
2464 {
2465 bfd_size_type size;
2466
2467 size = (bfd_size_type) o->reloc_count * sizeof (Elf_Internal_Rela);
2468 if (keep_memory)
2469 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2470 else
2471 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2472 if (internal_relocs == NULL)
2473 goto error_return;
2474 }
2475
2476 if (external_relocs == NULL)
2477 {
2478 bfd_size_type size = 0;
2479
2480 if (esdo->rel.hdr)
2481 size += esdo->rel.hdr->sh_size;
2482 if (esdo->rela.hdr)
2483 size += esdo->rela.hdr->sh_size;
2484
2485 alloc1 = bfd_malloc (size);
2486 if (alloc1 == NULL)
2487 goto error_return;
2488 external_relocs = alloc1;
2489 }
2490
2491 internal_rela_relocs = internal_relocs;
2492 if (esdo->rel.hdr)
2493 {
2494 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2495 external_relocs,
2496 internal_relocs))
2497 goto error_return;
2498 external_relocs = (((bfd_byte *) external_relocs)
2499 + esdo->rel.hdr->sh_size);
2500 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2501 * bed->s->int_rels_per_ext_rel);
2502 }
2503
2504 if (esdo->rela.hdr
2505 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2506 external_relocs,
2507 internal_rela_relocs)))
2508 goto error_return;
2509
2510 /* Cache the results for next time, if we can. */
2511 if (keep_memory)
2512 esdo->relocs = internal_relocs;
2513
2514 if (alloc1 != NULL)
2515 free (alloc1);
2516
2517 /* Don't free alloc2, since if it was allocated we are passing it
2518 back (under the name of internal_relocs). */
2519
2520 return internal_relocs;
2521
2522 error_return:
2523 if (alloc1 != NULL)
2524 free (alloc1);
2525 if (alloc2 != NULL)
2526 {
2527 if (keep_memory)
2528 bfd_release (abfd, alloc2);
2529 else
2530 free (alloc2);
2531 }
2532 return NULL;
2533 }
2534
2535 /* Compute the size of, and allocate space for, REL_HDR which is the
2536 section header for a section containing relocations for O. */
2537
2538 static bfd_boolean
2539 _bfd_elf_link_size_reloc_section (bfd *abfd,
2540 struct bfd_elf_section_reloc_data *reldata)
2541 {
2542 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2543
2544 /* That allows us to calculate the size of the section. */
2545 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2546
2547 /* The contents field must last into write_object_contents, so we
2548 allocate it with bfd_alloc rather than malloc. Also since we
2549 cannot be sure that the contents will actually be filled in,
2550 we zero the allocated space. */
2551 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2552 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2553 return FALSE;
2554
2555 if (reldata->hashes == NULL && reldata->count)
2556 {
2557 struct elf_link_hash_entry **p;
2558
2559 p = ((struct elf_link_hash_entry **)
2560 bfd_zmalloc (reldata->count * sizeof (*p)));
2561 if (p == NULL)
2562 return FALSE;
2563
2564 reldata->hashes = p;
2565 }
2566
2567 return TRUE;
2568 }
2569
2570 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2571 originated from the section given by INPUT_REL_HDR) to the
2572 OUTPUT_BFD. */
2573
2574 bfd_boolean
2575 _bfd_elf_link_output_relocs (bfd *output_bfd,
2576 asection *input_section,
2577 Elf_Internal_Shdr *input_rel_hdr,
2578 Elf_Internal_Rela *internal_relocs,
2579 struct elf_link_hash_entry **rel_hash
2580 ATTRIBUTE_UNUSED)
2581 {
2582 Elf_Internal_Rela *irela;
2583 Elf_Internal_Rela *irelaend;
2584 bfd_byte *erel;
2585 struct bfd_elf_section_reloc_data *output_reldata;
2586 asection *output_section;
2587 const struct elf_backend_data *bed;
2588 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2589 struct bfd_elf_section_data *esdo;
2590
2591 output_section = input_section->output_section;
2592
2593 bed = get_elf_backend_data (output_bfd);
2594 esdo = elf_section_data (output_section);
2595 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2596 {
2597 output_reldata = &esdo->rel;
2598 swap_out = bed->s->swap_reloc_out;
2599 }
2600 else if (esdo->rela.hdr
2601 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2602 {
2603 output_reldata = &esdo->rela;
2604 swap_out = bed->s->swap_reloca_out;
2605 }
2606 else
2607 {
2608 _bfd_error_handler
2609 /* xgettext:c-format */
2610 (_("%B: relocation size mismatch in %B section %A"),
2611 output_bfd, input_section->owner, input_section);
2612 bfd_set_error (bfd_error_wrong_format);
2613 return FALSE;
2614 }
2615
2616 erel = output_reldata->hdr->contents;
2617 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2618 irela = internal_relocs;
2619 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2620 * bed->s->int_rels_per_ext_rel);
2621 while (irela < irelaend)
2622 {
2623 (*swap_out) (output_bfd, irela, erel);
2624 irela += bed->s->int_rels_per_ext_rel;
2625 erel += input_rel_hdr->sh_entsize;
2626 }
2627
2628 /* Bump the counter, so that we know where to add the next set of
2629 relocations. */
2630 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2631
2632 return TRUE;
2633 }
2634 \f
2635 /* Make weak undefined symbols in PIE dynamic. */
2636
2637 bfd_boolean
2638 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2639 struct elf_link_hash_entry *h)
2640 {
2641 if (bfd_link_pie (info)
2642 && h->dynindx == -1
2643 && h->root.type == bfd_link_hash_undefweak)
2644 return bfd_elf_link_record_dynamic_symbol (info, h);
2645
2646 return TRUE;
2647 }
2648
2649 /* Fix up the flags for a symbol. This handles various cases which
2650 can only be fixed after all the input files are seen. This is
2651 currently called by both adjust_dynamic_symbol and
2652 assign_sym_version, which is unnecessary but perhaps more robust in
2653 the face of future changes. */
2654
2655 static bfd_boolean
2656 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2657 struct elf_info_failed *eif)
2658 {
2659 const struct elf_backend_data *bed;
2660
2661 /* If this symbol was mentioned in a non-ELF file, try to set
2662 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2663 permit a non-ELF file to correctly refer to a symbol defined in
2664 an ELF dynamic object. */
2665 if (h->non_elf)
2666 {
2667 while (h->root.type == bfd_link_hash_indirect)
2668 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2669
2670 if (h->root.type != bfd_link_hash_defined
2671 && h->root.type != bfd_link_hash_defweak)
2672 {
2673 h->ref_regular = 1;
2674 h->ref_regular_nonweak = 1;
2675 }
2676 else
2677 {
2678 if (h->root.u.def.section->owner != NULL
2679 && (bfd_get_flavour (h->root.u.def.section->owner)
2680 == bfd_target_elf_flavour))
2681 {
2682 h->ref_regular = 1;
2683 h->ref_regular_nonweak = 1;
2684 }
2685 else
2686 h->def_regular = 1;
2687 }
2688
2689 if (h->dynindx == -1
2690 && (h->def_dynamic
2691 || h->ref_dynamic))
2692 {
2693 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2694 {
2695 eif->failed = TRUE;
2696 return FALSE;
2697 }
2698 }
2699 }
2700 else
2701 {
2702 /* Unfortunately, NON_ELF is only correct if the symbol
2703 was first seen in a non-ELF file. Fortunately, if the symbol
2704 was first seen in an ELF file, we're probably OK unless the
2705 symbol was defined in a non-ELF file. Catch that case here.
2706 FIXME: We're still in trouble if the symbol was first seen in
2707 a dynamic object, and then later in a non-ELF regular object. */
2708 if ((h->root.type == bfd_link_hash_defined
2709 || h->root.type == bfd_link_hash_defweak)
2710 && !h->def_regular
2711 && (h->root.u.def.section->owner != NULL
2712 ? (bfd_get_flavour (h->root.u.def.section->owner)
2713 != bfd_target_elf_flavour)
2714 : (bfd_is_abs_section (h->root.u.def.section)
2715 && !h->def_dynamic)))
2716 h->def_regular = 1;
2717 }
2718
2719 /* Backend specific symbol fixup. */
2720 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2721 if (bed->elf_backend_fixup_symbol
2722 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2723 return FALSE;
2724
2725 /* If this is a final link, and the symbol was defined as a common
2726 symbol in a regular object file, and there was no definition in
2727 any dynamic object, then the linker will have allocated space for
2728 the symbol in a common section but the DEF_REGULAR
2729 flag will not have been set. */
2730 if (h->root.type == bfd_link_hash_defined
2731 && !h->def_regular
2732 && h->ref_regular
2733 && !h->def_dynamic
2734 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2735 h->def_regular = 1;
2736
2737 /* If a weak undefined symbol has non-default visibility, we also
2738 hide it from the dynamic linker. */
2739 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2740 && h->root.type == bfd_link_hash_undefweak)
2741 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2742
2743 /* A hidden versioned symbol in executable should be forced local if
2744 it is is locally defined, not referenced by shared library and not
2745 exported. */
2746 else if (bfd_link_executable (eif->info)
2747 && h->versioned == versioned_hidden
2748 && !eif->info->export_dynamic
2749 && !h->dynamic
2750 && !h->ref_dynamic
2751 && h->def_regular)
2752 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2753
2754 /* If -Bsymbolic was used (which means to bind references to global
2755 symbols to the definition within the shared object), and this
2756 symbol was defined in a regular object, then it actually doesn't
2757 need a PLT entry. Likewise, if the symbol has non-default
2758 visibility. If the symbol has hidden or internal visibility, we
2759 will force it local. */
2760 else if (h->needs_plt
2761 && bfd_link_pic (eif->info)
2762 && is_elf_hash_table (eif->info->hash)
2763 && (SYMBOLIC_BIND (eif->info, h)
2764 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2765 && h->def_regular)
2766 {
2767 bfd_boolean force_local;
2768
2769 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2770 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2771 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2772 }
2773
2774 /* If this is a weak defined symbol in a dynamic object, and we know
2775 the real definition in the dynamic object, copy interesting flags
2776 over to the real definition. */
2777 if (h->u.weakdef != NULL)
2778 {
2779 /* If the real definition is defined by a regular object file,
2780 don't do anything special. See the longer description in
2781 _bfd_elf_adjust_dynamic_symbol, below. */
2782 if (h->u.weakdef->def_regular)
2783 h->u.weakdef = NULL;
2784 else
2785 {
2786 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2787
2788 while (h->root.type == bfd_link_hash_indirect)
2789 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2790
2791 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2792 || h->root.type == bfd_link_hash_defweak);
2793 BFD_ASSERT (weakdef->def_dynamic);
2794 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2795 || weakdef->root.type == bfd_link_hash_defweak);
2796 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2797 }
2798 }
2799
2800 return TRUE;
2801 }
2802
2803 /* Make the backend pick a good value for a dynamic symbol. This is
2804 called via elf_link_hash_traverse, and also calls itself
2805 recursively. */
2806
2807 static bfd_boolean
2808 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2809 {
2810 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2811 struct elf_link_hash_table *htab;
2812 const struct elf_backend_data *bed;
2813
2814 if (! is_elf_hash_table (eif->info->hash))
2815 return FALSE;
2816
2817 /* Ignore indirect symbols. These are added by the versioning code. */
2818 if (h->root.type == bfd_link_hash_indirect)
2819 return TRUE;
2820
2821 /* Fix the symbol flags. */
2822 if (! _bfd_elf_fix_symbol_flags (h, eif))
2823 return FALSE;
2824
2825 htab = elf_hash_table (eif->info);
2826 bed = get_elf_backend_data (htab->dynobj);
2827
2828 if (h->root.type == bfd_link_hash_undefweak)
2829 {
2830 if (eif->info->dynamic_undefined_weak == 0)
2831 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2832 else if (eif->info->dynamic_undefined_weak > 0
2833 && h->ref_regular
2834 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2835 && !bfd_hide_sym_by_version (eif->info->version_info,
2836 h->root.root.string))
2837 {
2838 if (!bfd_elf_link_record_dynamic_symbol (eif->info, h))
2839 {
2840 eif->failed = TRUE;
2841 return FALSE;
2842 }
2843 }
2844 }
2845
2846 /* If this symbol does not require a PLT entry, and it is not
2847 defined by a dynamic object, or is not referenced by a regular
2848 object, ignore it. We do have to handle a weak defined symbol,
2849 even if no regular object refers to it, if we decided to add it
2850 to the dynamic symbol table. FIXME: Do we normally need to worry
2851 about symbols which are defined by one dynamic object and
2852 referenced by another one? */
2853 if (!h->needs_plt
2854 && h->type != STT_GNU_IFUNC
2855 && (h->def_regular
2856 || !h->def_dynamic
2857 || (!h->ref_regular
2858 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2859 {
2860 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2861 return TRUE;
2862 }
2863
2864 /* If we've already adjusted this symbol, don't do it again. This
2865 can happen via a recursive call. */
2866 if (h->dynamic_adjusted)
2867 return TRUE;
2868
2869 /* Don't look at this symbol again. Note that we must set this
2870 after checking the above conditions, because we may look at a
2871 symbol once, decide not to do anything, and then get called
2872 recursively later after REF_REGULAR is set below. */
2873 h->dynamic_adjusted = 1;
2874
2875 /* If this is a weak definition, and we know a real definition, and
2876 the real symbol is not itself defined by a regular object file,
2877 then get a good value for the real definition. We handle the
2878 real symbol first, for the convenience of the backend routine.
2879
2880 Note that there is a confusing case here. If the real definition
2881 is defined by a regular object file, we don't get the real symbol
2882 from the dynamic object, but we do get the weak symbol. If the
2883 processor backend uses a COPY reloc, then if some routine in the
2884 dynamic object changes the real symbol, we will not see that
2885 change in the corresponding weak symbol. This is the way other
2886 ELF linkers work as well, and seems to be a result of the shared
2887 library model.
2888
2889 I will clarify this issue. Most SVR4 shared libraries define the
2890 variable _timezone and define timezone as a weak synonym. The
2891 tzset call changes _timezone. If you write
2892 extern int timezone;
2893 int _timezone = 5;
2894 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2895 you might expect that, since timezone is a synonym for _timezone,
2896 the same number will print both times. However, if the processor
2897 backend uses a COPY reloc, then actually timezone will be copied
2898 into your process image, and, since you define _timezone
2899 yourself, _timezone will not. Thus timezone and _timezone will
2900 wind up at different memory locations. The tzset call will set
2901 _timezone, leaving timezone unchanged. */
2902
2903 if (h->u.weakdef != NULL)
2904 {
2905 /* If we get to this point, there is an implicit reference to
2906 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2907 h->u.weakdef->ref_regular = 1;
2908
2909 /* Ensure that the backend adjust_dynamic_symbol function sees
2910 H->U.WEAKDEF before H by recursively calling ourselves. */
2911 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2912 return FALSE;
2913 }
2914
2915 /* If a symbol has no type and no size and does not require a PLT
2916 entry, then we are probably about to do the wrong thing here: we
2917 are probably going to create a COPY reloc for an empty object.
2918 This case can arise when a shared object is built with assembly
2919 code, and the assembly code fails to set the symbol type. */
2920 if (h->size == 0
2921 && h->type == STT_NOTYPE
2922 && !h->needs_plt)
2923 _bfd_error_handler
2924 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2925 h->root.root.string);
2926
2927 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2928 {
2929 eif->failed = TRUE;
2930 return FALSE;
2931 }
2932
2933 return TRUE;
2934 }
2935
2936 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2937 DYNBSS. */
2938
2939 bfd_boolean
2940 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2941 struct elf_link_hash_entry *h,
2942 asection *dynbss)
2943 {
2944 unsigned int power_of_two;
2945 bfd_vma mask;
2946 asection *sec = h->root.u.def.section;
2947
2948 /* The section alignment of the definition is the maximum alignment
2949 requirement of symbols defined in the section. Since we don't
2950 know the symbol alignment requirement, we start with the
2951 maximum alignment and check low bits of the symbol address
2952 for the minimum alignment. */
2953 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2954 mask = ((bfd_vma) 1 << power_of_two) - 1;
2955 while ((h->root.u.def.value & mask) != 0)
2956 {
2957 mask >>= 1;
2958 --power_of_two;
2959 }
2960
2961 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2962 dynbss))
2963 {
2964 /* Adjust the section alignment if needed. */
2965 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2966 power_of_two))
2967 return FALSE;
2968 }
2969
2970 /* We make sure that the symbol will be aligned properly. */
2971 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2972
2973 /* Define the symbol as being at this point in DYNBSS. */
2974 h->root.u.def.section = dynbss;
2975 h->root.u.def.value = dynbss->size;
2976
2977 /* Increment the size of DYNBSS to make room for the symbol. */
2978 dynbss->size += h->size;
2979
2980 /* No error if extern_protected_data is true. */
2981 if (h->protected_def
2982 && (!info->extern_protected_data
2983 || (info->extern_protected_data < 0
2984 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
2985 info->callbacks->einfo
2986 (_("%P: copy reloc against protected `%T' is dangerous\n"),
2987 h->root.root.string);
2988
2989 return TRUE;
2990 }
2991
2992 /* Adjust all external symbols pointing into SEC_MERGE sections
2993 to reflect the object merging within the sections. */
2994
2995 static bfd_boolean
2996 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2997 {
2998 asection *sec;
2999
3000 if ((h->root.type == bfd_link_hash_defined
3001 || h->root.type == bfd_link_hash_defweak)
3002 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
3003 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
3004 {
3005 bfd *output_bfd = (bfd *) data;
3006
3007 h->root.u.def.value =
3008 _bfd_merged_section_offset (output_bfd,
3009 &h->root.u.def.section,
3010 elf_section_data (sec)->sec_info,
3011 h->root.u.def.value);
3012 }
3013
3014 return TRUE;
3015 }
3016
3017 /* Returns false if the symbol referred to by H should be considered
3018 to resolve local to the current module, and true if it should be
3019 considered to bind dynamically. */
3020
3021 bfd_boolean
3022 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
3023 struct bfd_link_info *info,
3024 bfd_boolean not_local_protected)
3025 {
3026 bfd_boolean binding_stays_local_p;
3027 const struct elf_backend_data *bed;
3028 struct elf_link_hash_table *hash_table;
3029
3030 if (h == NULL)
3031 return FALSE;
3032
3033 while (h->root.type == bfd_link_hash_indirect
3034 || h->root.type == bfd_link_hash_warning)
3035 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3036
3037 /* If it was forced local, then clearly it's not dynamic. */
3038 if (h->dynindx == -1)
3039 return FALSE;
3040 if (h->forced_local)
3041 return FALSE;
3042
3043 /* Identify the cases where name binding rules say that a
3044 visible symbol resolves locally. */
3045 binding_stays_local_p = (bfd_link_executable (info)
3046 || SYMBOLIC_BIND (info, h));
3047
3048 switch (ELF_ST_VISIBILITY (h->other))
3049 {
3050 case STV_INTERNAL:
3051 case STV_HIDDEN:
3052 return FALSE;
3053
3054 case STV_PROTECTED:
3055 hash_table = elf_hash_table (info);
3056 if (!is_elf_hash_table (hash_table))
3057 return FALSE;
3058
3059 bed = get_elf_backend_data (hash_table->dynobj);
3060
3061 /* Proper resolution for function pointer equality may require
3062 that these symbols perhaps be resolved dynamically, even though
3063 we should be resolving them to the current module. */
3064 if (!not_local_protected || !bed->is_function_type (h->type))
3065 binding_stays_local_p = TRUE;
3066 break;
3067
3068 default:
3069 break;
3070 }
3071
3072 /* If it isn't defined locally, then clearly it's dynamic. */
3073 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3074 return TRUE;
3075
3076 /* Otherwise, the symbol is dynamic if binding rules don't tell
3077 us that it remains local. */
3078 return !binding_stays_local_p;
3079 }
3080
3081 /* Return true if the symbol referred to by H should be considered
3082 to resolve local to the current module, and false otherwise. Differs
3083 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3084 undefined symbols. The two functions are virtually identical except
3085 for the place where dynindx == -1 is tested. If that test is true,
3086 _bfd_elf_dynamic_symbol_p will say the symbol is local, while
3087 _bfd_elf_symbol_refs_local_p will say the symbol is local only for
3088 defined symbols.
3089 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3090 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3091 treatment of undefined weak symbols. For those that do not make
3092 undefined weak symbols dynamic, both functions may return false. */
3093
3094 bfd_boolean
3095 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3096 struct bfd_link_info *info,
3097 bfd_boolean local_protected)
3098 {
3099 const struct elf_backend_data *bed;
3100 struct elf_link_hash_table *hash_table;
3101
3102 /* If it's a local sym, of course we resolve locally. */
3103 if (h == NULL)
3104 return TRUE;
3105
3106 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
3107 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3108 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3109 return TRUE;
3110
3111 /* Forced local symbols resolve locally. */
3112 if (h->forced_local)
3113 return TRUE;
3114
3115 /* Common symbols that become definitions don't get the DEF_REGULAR
3116 flag set, so test it first, and don't bail out. */
3117 if (ELF_COMMON_DEF_P (h))
3118 /* Do nothing. */;
3119 /* If we don't have a definition in a regular file, then we can't
3120 resolve locally. The sym is either undefined or dynamic. */
3121 else if (!h->def_regular)
3122 return FALSE;
3123
3124 /* Non-dynamic symbols resolve locally. */
3125 if (h->dynindx == -1)
3126 return TRUE;
3127
3128 /* At this point, we know the symbol is defined and dynamic. In an
3129 executable it must resolve locally, likewise when building symbolic
3130 shared libraries. */
3131 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3132 return TRUE;
3133
3134 /* Now deal with defined dynamic symbols in shared libraries. Ones
3135 with default visibility might not resolve locally. */
3136 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3137 return FALSE;
3138
3139 hash_table = elf_hash_table (info);
3140 if (!is_elf_hash_table (hash_table))
3141 return TRUE;
3142
3143 bed = get_elf_backend_data (hash_table->dynobj);
3144
3145 /* If extern_protected_data is false, STV_PROTECTED non-function
3146 symbols are local. */
3147 if ((!info->extern_protected_data
3148 || (info->extern_protected_data < 0
3149 && !bed->extern_protected_data))
3150 && !bed->is_function_type (h->type))
3151 return TRUE;
3152
3153 /* Function pointer equality tests may require that STV_PROTECTED
3154 symbols be treated as dynamic symbols. If the address of a
3155 function not defined in an executable is set to that function's
3156 plt entry in the executable, then the address of the function in
3157 a shared library must also be the plt entry in the executable. */
3158 return local_protected;
3159 }
3160
3161 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3162 aligned. Returns the first TLS output section. */
3163
3164 struct bfd_section *
3165 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3166 {
3167 struct bfd_section *sec, *tls;
3168 unsigned int align = 0;
3169
3170 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3171 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3172 break;
3173 tls = sec;
3174
3175 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3176 if (sec->alignment_power > align)
3177 align = sec->alignment_power;
3178
3179 elf_hash_table (info)->tls_sec = tls;
3180
3181 /* Ensure the alignment of the first section is the largest alignment,
3182 so that the tls segment starts aligned. */
3183 if (tls != NULL)
3184 tls->alignment_power = align;
3185
3186 return tls;
3187 }
3188
3189 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3190 static bfd_boolean
3191 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3192 Elf_Internal_Sym *sym)
3193 {
3194 const struct elf_backend_data *bed;
3195
3196 /* Local symbols do not count, but target specific ones might. */
3197 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3198 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3199 return FALSE;
3200
3201 bed = get_elf_backend_data (abfd);
3202 /* Function symbols do not count. */
3203 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3204 return FALSE;
3205
3206 /* If the section is undefined, then so is the symbol. */
3207 if (sym->st_shndx == SHN_UNDEF)
3208 return FALSE;
3209
3210 /* If the symbol is defined in the common section, then
3211 it is a common definition and so does not count. */
3212 if (bed->common_definition (sym))
3213 return FALSE;
3214
3215 /* If the symbol is in a target specific section then we
3216 must rely upon the backend to tell us what it is. */
3217 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3218 /* FIXME - this function is not coded yet:
3219
3220 return _bfd_is_global_symbol_definition (abfd, sym);
3221
3222 Instead for now assume that the definition is not global,
3223 Even if this is wrong, at least the linker will behave
3224 in the same way that it used to do. */
3225 return FALSE;
3226
3227 return TRUE;
3228 }
3229
3230 /* Search the symbol table of the archive element of the archive ABFD
3231 whose archive map contains a mention of SYMDEF, and determine if
3232 the symbol is defined in this element. */
3233 static bfd_boolean
3234 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3235 {
3236 Elf_Internal_Shdr * hdr;
3237 size_t symcount;
3238 size_t extsymcount;
3239 size_t extsymoff;
3240 Elf_Internal_Sym *isymbuf;
3241 Elf_Internal_Sym *isym;
3242 Elf_Internal_Sym *isymend;
3243 bfd_boolean result;
3244
3245 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3246 if (abfd == NULL)
3247 return FALSE;
3248
3249 if (! bfd_check_format (abfd, bfd_object))
3250 return FALSE;
3251
3252 /* Select the appropriate symbol table. If we don't know if the
3253 object file is an IR object, give linker LTO plugin a chance to
3254 get the correct symbol table. */
3255 if (abfd->plugin_format == bfd_plugin_yes
3256 #if BFD_SUPPORTS_PLUGINS
3257 || (abfd->plugin_format == bfd_plugin_unknown
3258 && bfd_link_plugin_object_p (abfd))
3259 #endif
3260 )
3261 {
3262 /* Use the IR symbol table if the object has been claimed by
3263 plugin. */
3264 abfd = abfd->plugin_dummy_bfd;
3265 hdr = &elf_tdata (abfd)->symtab_hdr;
3266 }
3267 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3268 hdr = &elf_tdata (abfd)->symtab_hdr;
3269 else
3270 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3271
3272 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3273
3274 /* The sh_info field of the symtab header tells us where the
3275 external symbols start. We don't care about the local symbols. */
3276 if (elf_bad_symtab (abfd))
3277 {
3278 extsymcount = symcount;
3279 extsymoff = 0;
3280 }
3281 else
3282 {
3283 extsymcount = symcount - hdr->sh_info;
3284 extsymoff = hdr->sh_info;
3285 }
3286
3287 if (extsymcount == 0)
3288 return FALSE;
3289
3290 /* Read in the symbol table. */
3291 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3292 NULL, NULL, NULL);
3293 if (isymbuf == NULL)
3294 return FALSE;
3295
3296 /* Scan the symbol table looking for SYMDEF. */
3297 result = FALSE;
3298 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3299 {
3300 const char *name;
3301
3302 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3303 isym->st_name);
3304 if (name == NULL)
3305 break;
3306
3307 if (strcmp (name, symdef->name) == 0)
3308 {
3309 result = is_global_data_symbol_definition (abfd, isym);
3310 break;
3311 }
3312 }
3313
3314 free (isymbuf);
3315
3316 return result;
3317 }
3318 \f
3319 /* Add an entry to the .dynamic table. */
3320
3321 bfd_boolean
3322 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3323 bfd_vma tag,
3324 bfd_vma val)
3325 {
3326 struct elf_link_hash_table *hash_table;
3327 const struct elf_backend_data *bed;
3328 asection *s;
3329 bfd_size_type newsize;
3330 bfd_byte *newcontents;
3331 Elf_Internal_Dyn dyn;
3332
3333 hash_table = elf_hash_table (info);
3334 if (! is_elf_hash_table (hash_table))
3335 return FALSE;
3336
3337 bed = get_elf_backend_data (hash_table->dynobj);
3338 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3339 BFD_ASSERT (s != NULL);
3340
3341 newsize = s->size + bed->s->sizeof_dyn;
3342 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3343 if (newcontents == NULL)
3344 return FALSE;
3345
3346 dyn.d_tag = tag;
3347 dyn.d_un.d_val = val;
3348 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3349
3350 s->size = newsize;
3351 s->contents = newcontents;
3352
3353 return TRUE;
3354 }
3355
3356 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3357 otherwise just check whether one already exists. Returns -1 on error,
3358 1 if a DT_NEEDED tag already exists, and 0 on success. */
3359
3360 static int
3361 elf_add_dt_needed_tag (bfd *abfd,
3362 struct bfd_link_info *info,
3363 const char *soname,
3364 bfd_boolean do_it)
3365 {
3366 struct elf_link_hash_table *hash_table;
3367 size_t strindex;
3368
3369 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3370 return -1;
3371
3372 hash_table = elf_hash_table (info);
3373 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3374 if (strindex == (size_t) -1)
3375 return -1;
3376
3377 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3378 {
3379 asection *sdyn;
3380 const struct elf_backend_data *bed;
3381 bfd_byte *extdyn;
3382
3383 bed = get_elf_backend_data (hash_table->dynobj);
3384 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3385 if (sdyn != NULL)
3386 for (extdyn = sdyn->contents;
3387 extdyn < sdyn->contents + sdyn->size;
3388 extdyn += bed->s->sizeof_dyn)
3389 {
3390 Elf_Internal_Dyn dyn;
3391
3392 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3393 if (dyn.d_tag == DT_NEEDED
3394 && dyn.d_un.d_val == strindex)
3395 {
3396 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3397 return 1;
3398 }
3399 }
3400 }
3401
3402 if (do_it)
3403 {
3404 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3405 return -1;
3406
3407 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3408 return -1;
3409 }
3410 else
3411 /* We were just checking for existence of the tag. */
3412 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3413
3414 return 0;
3415 }
3416
3417 /* Return true if SONAME is on the needed list between NEEDED and STOP
3418 (or the end of list if STOP is NULL), and needed by a library that
3419 will be loaded. */
3420
3421 static bfd_boolean
3422 on_needed_list (const char *soname,
3423 struct bfd_link_needed_list *needed,
3424 struct bfd_link_needed_list *stop)
3425 {
3426 struct bfd_link_needed_list *look;
3427 for (look = needed; look != stop; look = look->next)
3428 if (strcmp (soname, look->name) == 0
3429 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3430 /* If needed by a library that itself is not directly
3431 needed, recursively check whether that library is
3432 indirectly needed. Since we add DT_NEEDED entries to
3433 the end of the list, library dependencies appear after
3434 the library. Therefore search prior to the current
3435 LOOK, preventing possible infinite recursion. */
3436 || on_needed_list (elf_dt_name (look->by), needed, look)))
3437 return TRUE;
3438
3439 return FALSE;
3440 }
3441
3442 /* Sort symbol by value, section, and size. */
3443 static int
3444 elf_sort_symbol (const void *arg1, const void *arg2)
3445 {
3446 const struct elf_link_hash_entry *h1;
3447 const struct elf_link_hash_entry *h2;
3448 bfd_signed_vma vdiff;
3449
3450 h1 = *(const struct elf_link_hash_entry **) arg1;
3451 h2 = *(const struct elf_link_hash_entry **) arg2;
3452 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3453 if (vdiff != 0)
3454 return vdiff > 0 ? 1 : -1;
3455 else
3456 {
3457 int sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3458 if (sdiff != 0)
3459 return sdiff > 0 ? 1 : -1;
3460 }
3461 vdiff = h1->size - h2->size;
3462 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3463 }
3464
3465 /* This function is used to adjust offsets into .dynstr for
3466 dynamic symbols. This is called via elf_link_hash_traverse. */
3467
3468 static bfd_boolean
3469 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3470 {
3471 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3472
3473 if (h->dynindx != -1)
3474 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3475 return TRUE;
3476 }
3477
3478 /* Assign string offsets in .dynstr, update all structures referencing
3479 them. */
3480
3481 static bfd_boolean
3482 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3483 {
3484 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3485 struct elf_link_local_dynamic_entry *entry;
3486 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3487 bfd *dynobj = hash_table->dynobj;
3488 asection *sdyn;
3489 bfd_size_type size;
3490 const struct elf_backend_data *bed;
3491 bfd_byte *extdyn;
3492
3493 _bfd_elf_strtab_finalize (dynstr);
3494 size = _bfd_elf_strtab_size (dynstr);
3495
3496 bed = get_elf_backend_data (dynobj);
3497 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3498 BFD_ASSERT (sdyn != NULL);
3499
3500 /* Update all .dynamic entries referencing .dynstr strings. */
3501 for (extdyn = sdyn->contents;
3502 extdyn < sdyn->contents + sdyn->size;
3503 extdyn += bed->s->sizeof_dyn)
3504 {
3505 Elf_Internal_Dyn dyn;
3506
3507 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3508 switch (dyn.d_tag)
3509 {
3510 case DT_STRSZ:
3511 dyn.d_un.d_val = size;
3512 break;
3513 case DT_NEEDED:
3514 case DT_SONAME:
3515 case DT_RPATH:
3516 case DT_RUNPATH:
3517 case DT_FILTER:
3518 case DT_AUXILIARY:
3519 case DT_AUDIT:
3520 case DT_DEPAUDIT:
3521 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3522 break;
3523 default:
3524 continue;
3525 }
3526 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3527 }
3528
3529 /* Now update local dynamic symbols. */
3530 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3531 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3532 entry->isym.st_name);
3533
3534 /* And the rest of dynamic symbols. */
3535 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3536
3537 /* Adjust version definitions. */
3538 if (elf_tdata (output_bfd)->cverdefs)
3539 {
3540 asection *s;
3541 bfd_byte *p;
3542 size_t i;
3543 Elf_Internal_Verdef def;
3544 Elf_Internal_Verdaux defaux;
3545
3546 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3547 p = s->contents;
3548 do
3549 {
3550 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3551 &def);
3552 p += sizeof (Elf_External_Verdef);
3553 if (def.vd_aux != sizeof (Elf_External_Verdef))
3554 continue;
3555 for (i = 0; i < def.vd_cnt; ++i)
3556 {
3557 _bfd_elf_swap_verdaux_in (output_bfd,
3558 (Elf_External_Verdaux *) p, &defaux);
3559 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3560 defaux.vda_name);
3561 _bfd_elf_swap_verdaux_out (output_bfd,
3562 &defaux, (Elf_External_Verdaux *) p);
3563 p += sizeof (Elf_External_Verdaux);
3564 }
3565 }
3566 while (def.vd_next);
3567 }
3568
3569 /* Adjust version references. */
3570 if (elf_tdata (output_bfd)->verref)
3571 {
3572 asection *s;
3573 bfd_byte *p;
3574 size_t i;
3575 Elf_Internal_Verneed need;
3576 Elf_Internal_Vernaux needaux;
3577
3578 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3579 p = s->contents;
3580 do
3581 {
3582 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3583 &need);
3584 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3585 _bfd_elf_swap_verneed_out (output_bfd, &need,
3586 (Elf_External_Verneed *) p);
3587 p += sizeof (Elf_External_Verneed);
3588 for (i = 0; i < need.vn_cnt; ++i)
3589 {
3590 _bfd_elf_swap_vernaux_in (output_bfd,
3591 (Elf_External_Vernaux *) p, &needaux);
3592 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3593 needaux.vna_name);
3594 _bfd_elf_swap_vernaux_out (output_bfd,
3595 &needaux,
3596 (Elf_External_Vernaux *) p);
3597 p += sizeof (Elf_External_Vernaux);
3598 }
3599 }
3600 while (need.vn_next);
3601 }
3602
3603 return TRUE;
3604 }
3605 \f
3606 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3607 The default is to only match when the INPUT and OUTPUT are exactly
3608 the same target. */
3609
3610 bfd_boolean
3611 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3612 const bfd_target *output)
3613 {
3614 return input == output;
3615 }
3616
3617 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3618 This version is used when different targets for the same architecture
3619 are virtually identical. */
3620
3621 bfd_boolean
3622 _bfd_elf_relocs_compatible (const bfd_target *input,
3623 const bfd_target *output)
3624 {
3625 const struct elf_backend_data *obed, *ibed;
3626
3627 if (input == output)
3628 return TRUE;
3629
3630 ibed = xvec_get_elf_backend_data (input);
3631 obed = xvec_get_elf_backend_data (output);
3632
3633 if (ibed->arch != obed->arch)
3634 return FALSE;
3635
3636 /* If both backends are using this function, deem them compatible. */
3637 return ibed->relocs_compatible == obed->relocs_compatible;
3638 }
3639
3640 /* Make a special call to the linker "notice" function to tell it that
3641 we are about to handle an as-needed lib, or have finished
3642 processing the lib. */
3643
3644 bfd_boolean
3645 _bfd_elf_notice_as_needed (bfd *ibfd,
3646 struct bfd_link_info *info,
3647 enum notice_asneeded_action act)
3648 {
3649 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3650 }
3651
3652 /* Check relocations an ELF object file. */
3653
3654 bfd_boolean
3655 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3656 {
3657 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3658 struct elf_link_hash_table *htab = elf_hash_table (info);
3659
3660 /* If this object is the same format as the output object, and it is
3661 not a shared library, then let the backend look through the
3662 relocs.
3663
3664 This is required to build global offset table entries and to
3665 arrange for dynamic relocs. It is not required for the
3666 particular common case of linking non PIC code, even when linking
3667 against shared libraries, but unfortunately there is no way of
3668 knowing whether an object file has been compiled PIC or not.
3669 Looking through the relocs is not particularly time consuming.
3670 The problem is that we must either (1) keep the relocs in memory,
3671 which causes the linker to require additional runtime memory or
3672 (2) read the relocs twice from the input file, which wastes time.
3673 This would be a good case for using mmap.
3674
3675 I have no idea how to handle linking PIC code into a file of a
3676 different format. It probably can't be done. */
3677 if ((abfd->flags & DYNAMIC) == 0
3678 && is_elf_hash_table (htab)
3679 && bed->check_relocs != NULL
3680 && elf_object_id (abfd) == elf_hash_table_id (htab)
3681 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3682 {
3683 asection *o;
3684
3685 for (o = abfd->sections; o != NULL; o = o->next)
3686 {
3687 Elf_Internal_Rela *internal_relocs;
3688 bfd_boolean ok;
3689
3690 /* Don't check relocations in excluded sections. */
3691 if ((o->flags & SEC_RELOC) == 0
3692 || (o->flags & SEC_EXCLUDE) != 0
3693 || o->reloc_count == 0
3694 || ((info->strip == strip_all || info->strip == strip_debugger)
3695 && (o->flags & SEC_DEBUGGING) != 0)
3696 || bfd_is_abs_section (o->output_section))
3697 continue;
3698
3699 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3700 info->keep_memory);
3701 if (internal_relocs == NULL)
3702 return FALSE;
3703
3704 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3705
3706 if (elf_section_data (o)->relocs != internal_relocs)
3707 free (internal_relocs);
3708
3709 if (! ok)
3710 return FALSE;
3711 }
3712 }
3713
3714 return TRUE;
3715 }
3716
3717 /* Add symbols from an ELF object file to the linker hash table. */
3718
3719 static bfd_boolean
3720 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3721 {
3722 Elf_Internal_Ehdr *ehdr;
3723 Elf_Internal_Shdr *hdr;
3724 size_t symcount;
3725 size_t extsymcount;
3726 size_t extsymoff;
3727 struct elf_link_hash_entry **sym_hash;
3728 bfd_boolean dynamic;
3729 Elf_External_Versym *extversym = NULL;
3730 Elf_External_Versym *ever;
3731 struct elf_link_hash_entry *weaks;
3732 struct elf_link_hash_entry **nondeflt_vers = NULL;
3733 size_t nondeflt_vers_cnt = 0;
3734 Elf_Internal_Sym *isymbuf = NULL;
3735 Elf_Internal_Sym *isym;
3736 Elf_Internal_Sym *isymend;
3737 const struct elf_backend_data *bed;
3738 bfd_boolean add_needed;
3739 struct elf_link_hash_table *htab;
3740 bfd_size_type amt;
3741 void *alloc_mark = NULL;
3742 struct bfd_hash_entry **old_table = NULL;
3743 unsigned int old_size = 0;
3744 unsigned int old_count = 0;
3745 void *old_tab = NULL;
3746 void *old_ent;
3747 struct bfd_link_hash_entry *old_undefs = NULL;
3748 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3749 void *old_strtab = NULL;
3750 size_t tabsize = 0;
3751 asection *s;
3752 bfd_boolean just_syms;
3753
3754 htab = elf_hash_table (info);
3755 bed = get_elf_backend_data (abfd);
3756
3757 if ((abfd->flags & DYNAMIC) == 0)
3758 dynamic = FALSE;
3759 else
3760 {
3761 dynamic = TRUE;
3762
3763 /* You can't use -r against a dynamic object. Also, there's no
3764 hope of using a dynamic object which does not exactly match
3765 the format of the output file. */
3766 if (bfd_link_relocatable (info)
3767 || !is_elf_hash_table (htab)
3768 || info->output_bfd->xvec != abfd->xvec)
3769 {
3770 if (bfd_link_relocatable (info))
3771 bfd_set_error (bfd_error_invalid_operation);
3772 else
3773 bfd_set_error (bfd_error_wrong_format);
3774 goto error_return;
3775 }
3776 }
3777
3778 ehdr = elf_elfheader (abfd);
3779 if (info->warn_alternate_em
3780 && bed->elf_machine_code != ehdr->e_machine
3781 && ((bed->elf_machine_alt1 != 0
3782 && ehdr->e_machine == bed->elf_machine_alt1)
3783 || (bed->elf_machine_alt2 != 0
3784 && ehdr->e_machine == bed->elf_machine_alt2)))
3785 info->callbacks->einfo
3786 /* xgettext:c-format */
3787 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3788 ehdr->e_machine, abfd, bed->elf_machine_code);
3789
3790 /* As a GNU extension, any input sections which are named
3791 .gnu.warning.SYMBOL are treated as warning symbols for the given
3792 symbol. This differs from .gnu.warning sections, which generate
3793 warnings when they are included in an output file. */
3794 /* PR 12761: Also generate this warning when building shared libraries. */
3795 for (s = abfd->sections; s != NULL; s = s->next)
3796 {
3797 const char *name;
3798
3799 name = bfd_get_section_name (abfd, s);
3800 if (CONST_STRNEQ (name, ".gnu.warning."))
3801 {
3802 char *msg;
3803 bfd_size_type sz;
3804
3805 name += sizeof ".gnu.warning." - 1;
3806
3807 /* If this is a shared object, then look up the symbol
3808 in the hash table. If it is there, and it is already
3809 been defined, then we will not be using the entry
3810 from this shared object, so we don't need to warn.
3811 FIXME: If we see the definition in a regular object
3812 later on, we will warn, but we shouldn't. The only
3813 fix is to keep track of what warnings we are supposed
3814 to emit, and then handle them all at the end of the
3815 link. */
3816 if (dynamic)
3817 {
3818 struct elf_link_hash_entry *h;
3819
3820 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3821
3822 /* FIXME: What about bfd_link_hash_common? */
3823 if (h != NULL
3824 && (h->root.type == bfd_link_hash_defined
3825 || h->root.type == bfd_link_hash_defweak))
3826 continue;
3827 }
3828
3829 sz = s->size;
3830 msg = (char *) bfd_alloc (abfd, sz + 1);
3831 if (msg == NULL)
3832 goto error_return;
3833
3834 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3835 goto error_return;
3836
3837 msg[sz] = '\0';
3838
3839 if (! (_bfd_generic_link_add_one_symbol
3840 (info, abfd, name, BSF_WARNING, s, 0, msg,
3841 FALSE, bed->collect, NULL)))
3842 goto error_return;
3843
3844 if (bfd_link_executable (info))
3845 {
3846 /* Clobber the section size so that the warning does
3847 not get copied into the output file. */
3848 s->size = 0;
3849
3850 /* Also set SEC_EXCLUDE, so that symbols defined in
3851 the warning section don't get copied to the output. */
3852 s->flags |= SEC_EXCLUDE;
3853 }
3854 }
3855 }
3856
3857 just_syms = ((s = abfd->sections) != NULL
3858 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3859
3860 add_needed = TRUE;
3861 if (! dynamic)
3862 {
3863 /* If we are creating a shared library, create all the dynamic
3864 sections immediately. We need to attach them to something,
3865 so we attach them to this BFD, provided it is the right
3866 format and is not from ld --just-symbols. Always create the
3867 dynamic sections for -E/--dynamic-list. FIXME: If there
3868 are no input BFD's of the same format as the output, we can't
3869 make a shared library. */
3870 if (!just_syms
3871 && (bfd_link_pic (info)
3872 || (!bfd_link_relocatable (info)
3873 && info->nointerp
3874 && (info->export_dynamic || info->dynamic)))
3875 && is_elf_hash_table (htab)
3876 && info->output_bfd->xvec == abfd->xvec
3877 && !htab->dynamic_sections_created)
3878 {
3879 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3880 goto error_return;
3881 }
3882 }
3883 else if (!is_elf_hash_table (htab))
3884 goto error_return;
3885 else
3886 {
3887 const char *soname = NULL;
3888 char *audit = NULL;
3889 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3890 const Elf_Internal_Phdr *phdr;
3891 int ret;
3892
3893 /* ld --just-symbols and dynamic objects don't mix very well.
3894 ld shouldn't allow it. */
3895 if (just_syms)
3896 abort ();
3897
3898 /* If this dynamic lib was specified on the command line with
3899 --as-needed in effect, then we don't want to add a DT_NEEDED
3900 tag unless the lib is actually used. Similary for libs brought
3901 in by another lib's DT_NEEDED. When --no-add-needed is used
3902 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3903 any dynamic library in DT_NEEDED tags in the dynamic lib at
3904 all. */
3905 add_needed = (elf_dyn_lib_class (abfd)
3906 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3907 | DYN_NO_NEEDED)) == 0;
3908
3909 s = bfd_get_section_by_name (abfd, ".dynamic");
3910 if (s != NULL)
3911 {
3912 bfd_byte *dynbuf;
3913 bfd_byte *extdyn;
3914 unsigned int elfsec;
3915 unsigned long shlink;
3916
3917 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3918 {
3919 error_free_dyn:
3920 free (dynbuf);
3921 goto error_return;
3922 }
3923
3924 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3925 if (elfsec == SHN_BAD)
3926 goto error_free_dyn;
3927 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3928
3929 for (extdyn = dynbuf;
3930 extdyn < dynbuf + s->size;
3931 extdyn += bed->s->sizeof_dyn)
3932 {
3933 Elf_Internal_Dyn dyn;
3934
3935 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3936 if (dyn.d_tag == DT_SONAME)
3937 {
3938 unsigned int tagv = dyn.d_un.d_val;
3939 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3940 if (soname == NULL)
3941 goto error_free_dyn;
3942 }
3943 if (dyn.d_tag == DT_NEEDED)
3944 {
3945 struct bfd_link_needed_list *n, **pn;
3946 char *fnm, *anm;
3947 unsigned int tagv = dyn.d_un.d_val;
3948
3949 amt = sizeof (struct bfd_link_needed_list);
3950 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3951 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3952 if (n == NULL || fnm == NULL)
3953 goto error_free_dyn;
3954 amt = strlen (fnm) + 1;
3955 anm = (char *) bfd_alloc (abfd, amt);
3956 if (anm == NULL)
3957 goto error_free_dyn;
3958 memcpy (anm, fnm, amt);
3959 n->name = anm;
3960 n->by = abfd;
3961 n->next = NULL;
3962 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3963 ;
3964 *pn = n;
3965 }
3966 if (dyn.d_tag == DT_RUNPATH)
3967 {
3968 struct bfd_link_needed_list *n, **pn;
3969 char *fnm, *anm;
3970 unsigned int tagv = dyn.d_un.d_val;
3971
3972 amt = sizeof (struct bfd_link_needed_list);
3973 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3974 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3975 if (n == NULL || fnm == NULL)
3976 goto error_free_dyn;
3977 amt = strlen (fnm) + 1;
3978 anm = (char *) bfd_alloc (abfd, amt);
3979 if (anm == NULL)
3980 goto error_free_dyn;
3981 memcpy (anm, fnm, amt);
3982 n->name = anm;
3983 n->by = abfd;
3984 n->next = NULL;
3985 for (pn = & runpath;
3986 *pn != NULL;
3987 pn = &(*pn)->next)
3988 ;
3989 *pn = n;
3990 }
3991 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3992 if (!runpath && dyn.d_tag == DT_RPATH)
3993 {
3994 struct bfd_link_needed_list *n, **pn;
3995 char *fnm, *anm;
3996 unsigned int tagv = dyn.d_un.d_val;
3997
3998 amt = sizeof (struct bfd_link_needed_list);
3999 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4000 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4001 if (n == NULL || fnm == NULL)
4002 goto error_free_dyn;
4003 amt = strlen (fnm) + 1;
4004 anm = (char *) bfd_alloc (abfd, amt);
4005 if (anm == NULL)
4006 goto error_free_dyn;
4007 memcpy (anm, fnm, amt);
4008 n->name = anm;
4009 n->by = abfd;
4010 n->next = NULL;
4011 for (pn = & rpath;
4012 *pn != NULL;
4013 pn = &(*pn)->next)
4014 ;
4015 *pn = n;
4016 }
4017 if (dyn.d_tag == DT_AUDIT)
4018 {
4019 unsigned int tagv = dyn.d_un.d_val;
4020 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4021 }
4022 }
4023
4024 free (dynbuf);
4025 }
4026
4027 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
4028 frees all more recently bfd_alloc'd blocks as well. */
4029 if (runpath)
4030 rpath = runpath;
4031
4032 if (rpath)
4033 {
4034 struct bfd_link_needed_list **pn;
4035 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
4036 ;
4037 *pn = rpath;
4038 }
4039
4040 /* If we have a PT_GNU_RELRO program header, mark as read-only
4041 all sections contained fully therein. This makes relro
4042 shared library sections appear as they will at run-time. */
4043 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
4044 while (--phdr >= elf_tdata (abfd)->phdr)
4045 if (phdr->p_type == PT_GNU_RELRO)
4046 {
4047 for (s = abfd->sections; s != NULL; s = s->next)
4048 if ((s->flags & SEC_ALLOC) != 0
4049 && s->vma >= phdr->p_vaddr
4050 && s->vma + s->size <= phdr->p_vaddr + phdr->p_memsz)
4051 s->flags |= SEC_READONLY;
4052 break;
4053 }
4054
4055 /* We do not want to include any of the sections in a dynamic
4056 object in the output file. We hack by simply clobbering the
4057 list of sections in the BFD. This could be handled more
4058 cleanly by, say, a new section flag; the existing
4059 SEC_NEVER_LOAD flag is not the one we want, because that one
4060 still implies that the section takes up space in the output
4061 file. */
4062 bfd_section_list_clear (abfd);
4063
4064 /* Find the name to use in a DT_NEEDED entry that refers to this
4065 object. If the object has a DT_SONAME entry, we use it.
4066 Otherwise, if the generic linker stuck something in
4067 elf_dt_name, we use that. Otherwise, we just use the file
4068 name. */
4069 if (soname == NULL || *soname == '\0')
4070 {
4071 soname = elf_dt_name (abfd);
4072 if (soname == NULL || *soname == '\0')
4073 soname = bfd_get_filename (abfd);
4074 }
4075
4076 /* Save the SONAME because sometimes the linker emulation code
4077 will need to know it. */
4078 elf_dt_name (abfd) = soname;
4079
4080 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4081 if (ret < 0)
4082 goto error_return;
4083
4084 /* If we have already included this dynamic object in the
4085 link, just ignore it. There is no reason to include a
4086 particular dynamic object more than once. */
4087 if (ret > 0)
4088 return TRUE;
4089
4090 /* Save the DT_AUDIT entry for the linker emulation code. */
4091 elf_dt_audit (abfd) = audit;
4092 }
4093
4094 /* If this is a dynamic object, we always link against the .dynsym
4095 symbol table, not the .symtab symbol table. The dynamic linker
4096 will only see the .dynsym symbol table, so there is no reason to
4097 look at .symtab for a dynamic object. */
4098
4099 if (! dynamic || elf_dynsymtab (abfd) == 0)
4100 hdr = &elf_tdata (abfd)->symtab_hdr;
4101 else
4102 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4103
4104 symcount = hdr->sh_size / bed->s->sizeof_sym;
4105
4106 /* The sh_info field of the symtab header tells us where the
4107 external symbols start. We don't care about the local symbols at
4108 this point. */
4109 if (elf_bad_symtab (abfd))
4110 {
4111 extsymcount = symcount;
4112 extsymoff = 0;
4113 }
4114 else
4115 {
4116 extsymcount = symcount - hdr->sh_info;
4117 extsymoff = hdr->sh_info;
4118 }
4119
4120 sym_hash = elf_sym_hashes (abfd);
4121 if (extsymcount != 0)
4122 {
4123 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4124 NULL, NULL, NULL);
4125 if (isymbuf == NULL)
4126 goto error_return;
4127
4128 if (sym_hash == NULL)
4129 {
4130 /* We store a pointer to the hash table entry for each
4131 external symbol. */
4132 amt = extsymcount;
4133 amt *= sizeof (struct elf_link_hash_entry *);
4134 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4135 if (sym_hash == NULL)
4136 goto error_free_sym;
4137 elf_sym_hashes (abfd) = sym_hash;
4138 }
4139 }
4140
4141 if (dynamic)
4142 {
4143 /* Read in any version definitions. */
4144 if (!_bfd_elf_slurp_version_tables (abfd,
4145 info->default_imported_symver))
4146 goto error_free_sym;
4147
4148 /* Read in the symbol versions, but don't bother to convert them
4149 to internal format. */
4150 if (elf_dynversym (abfd) != 0)
4151 {
4152 Elf_Internal_Shdr *versymhdr;
4153
4154 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4155 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
4156 if (extversym == NULL)
4157 goto error_free_sym;
4158 amt = versymhdr->sh_size;
4159 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
4160 || bfd_bread (extversym, amt, abfd) != amt)
4161 goto error_free_vers;
4162 }
4163 }
4164
4165 /* If we are loading an as-needed shared lib, save the symbol table
4166 state before we start adding symbols. If the lib turns out
4167 to be unneeded, restore the state. */
4168 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4169 {
4170 unsigned int i;
4171 size_t entsize;
4172
4173 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4174 {
4175 struct bfd_hash_entry *p;
4176 struct elf_link_hash_entry *h;
4177
4178 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4179 {
4180 h = (struct elf_link_hash_entry *) p;
4181 entsize += htab->root.table.entsize;
4182 if (h->root.type == bfd_link_hash_warning)
4183 entsize += htab->root.table.entsize;
4184 }
4185 }
4186
4187 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4188 old_tab = bfd_malloc (tabsize + entsize);
4189 if (old_tab == NULL)
4190 goto error_free_vers;
4191
4192 /* Remember the current objalloc pointer, so that all mem for
4193 symbols added can later be reclaimed. */
4194 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4195 if (alloc_mark == NULL)
4196 goto error_free_vers;
4197
4198 /* Make a special call to the linker "notice" function to
4199 tell it that we are about to handle an as-needed lib. */
4200 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4201 goto error_free_vers;
4202
4203 /* Clone the symbol table. Remember some pointers into the
4204 symbol table, and dynamic symbol count. */
4205 old_ent = (char *) old_tab + tabsize;
4206 memcpy (old_tab, htab->root.table.table, tabsize);
4207 old_undefs = htab->root.undefs;
4208 old_undefs_tail = htab->root.undefs_tail;
4209 old_table = htab->root.table.table;
4210 old_size = htab->root.table.size;
4211 old_count = htab->root.table.count;
4212 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4213 if (old_strtab == NULL)
4214 goto error_free_vers;
4215
4216 for (i = 0; i < htab->root.table.size; i++)
4217 {
4218 struct bfd_hash_entry *p;
4219 struct elf_link_hash_entry *h;
4220
4221 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4222 {
4223 memcpy (old_ent, p, htab->root.table.entsize);
4224 old_ent = (char *) old_ent + htab->root.table.entsize;
4225 h = (struct elf_link_hash_entry *) p;
4226 if (h->root.type == bfd_link_hash_warning)
4227 {
4228 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4229 old_ent = (char *) old_ent + htab->root.table.entsize;
4230 }
4231 }
4232 }
4233 }
4234
4235 weaks = NULL;
4236 ever = extversym != NULL ? extversym + extsymoff : NULL;
4237 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4238 isym < isymend;
4239 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4240 {
4241 int bind;
4242 bfd_vma value;
4243 asection *sec, *new_sec;
4244 flagword flags;
4245 const char *name;
4246 struct elf_link_hash_entry *h;
4247 struct elf_link_hash_entry *hi;
4248 bfd_boolean definition;
4249 bfd_boolean size_change_ok;
4250 bfd_boolean type_change_ok;
4251 bfd_boolean new_weakdef;
4252 bfd_boolean new_weak;
4253 bfd_boolean old_weak;
4254 bfd_boolean override;
4255 bfd_boolean common;
4256 bfd_boolean discarded;
4257 unsigned int old_alignment;
4258 bfd *old_bfd;
4259 bfd_boolean matched;
4260
4261 override = FALSE;
4262
4263 flags = BSF_NO_FLAGS;
4264 sec = NULL;
4265 value = isym->st_value;
4266 common = bed->common_definition (isym);
4267 if (common && info->inhibit_common_definition)
4268 {
4269 /* Treat common symbol as undefined for --no-define-common. */
4270 isym->st_shndx = SHN_UNDEF;
4271 common = FALSE;
4272 }
4273 discarded = FALSE;
4274
4275 bind = ELF_ST_BIND (isym->st_info);
4276 switch (bind)
4277 {
4278 case STB_LOCAL:
4279 /* This should be impossible, since ELF requires that all
4280 global symbols follow all local symbols, and that sh_info
4281 point to the first global symbol. Unfortunately, Irix 5
4282 screws this up. */
4283 continue;
4284
4285 case STB_GLOBAL:
4286 if (isym->st_shndx != SHN_UNDEF && !common)
4287 flags = BSF_GLOBAL;
4288 break;
4289
4290 case STB_WEAK:
4291 flags = BSF_WEAK;
4292 break;
4293
4294 case STB_GNU_UNIQUE:
4295 flags = BSF_GNU_UNIQUE;
4296 break;
4297
4298 default:
4299 /* Leave it up to the processor backend. */
4300 break;
4301 }
4302
4303 if (isym->st_shndx == SHN_UNDEF)
4304 sec = bfd_und_section_ptr;
4305 else if (isym->st_shndx == SHN_ABS)
4306 sec = bfd_abs_section_ptr;
4307 else if (isym->st_shndx == SHN_COMMON)
4308 {
4309 sec = bfd_com_section_ptr;
4310 /* What ELF calls the size we call the value. What ELF
4311 calls the value we call the alignment. */
4312 value = isym->st_size;
4313 }
4314 else
4315 {
4316 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4317 if (sec == NULL)
4318 sec = bfd_abs_section_ptr;
4319 else if (discarded_section (sec))
4320 {
4321 /* Symbols from discarded section are undefined. We keep
4322 its visibility. */
4323 sec = bfd_und_section_ptr;
4324 discarded = TRUE;
4325 isym->st_shndx = SHN_UNDEF;
4326 }
4327 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4328 value -= sec->vma;
4329 }
4330
4331 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4332 isym->st_name);
4333 if (name == NULL)
4334 goto error_free_vers;
4335
4336 if (isym->st_shndx == SHN_COMMON
4337 && (abfd->flags & BFD_PLUGIN) != 0)
4338 {
4339 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4340
4341 if (xc == NULL)
4342 {
4343 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4344 | SEC_EXCLUDE);
4345 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4346 if (xc == NULL)
4347 goto error_free_vers;
4348 }
4349 sec = xc;
4350 }
4351 else if (isym->st_shndx == SHN_COMMON
4352 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4353 && !bfd_link_relocatable (info))
4354 {
4355 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4356
4357 if (tcomm == NULL)
4358 {
4359 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4360 | SEC_LINKER_CREATED);
4361 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4362 if (tcomm == NULL)
4363 goto error_free_vers;
4364 }
4365 sec = tcomm;
4366 }
4367 else if (bed->elf_add_symbol_hook)
4368 {
4369 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4370 &sec, &value))
4371 goto error_free_vers;
4372
4373 /* The hook function sets the name to NULL if this symbol
4374 should be skipped for some reason. */
4375 if (name == NULL)
4376 continue;
4377 }
4378
4379 /* Sanity check that all possibilities were handled. */
4380 if (sec == NULL)
4381 {
4382 bfd_set_error (bfd_error_bad_value);
4383 goto error_free_vers;
4384 }
4385
4386 /* Silently discard TLS symbols from --just-syms. There's
4387 no way to combine a static TLS block with a new TLS block
4388 for this executable. */
4389 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4390 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4391 continue;
4392
4393 if (bfd_is_und_section (sec)
4394 || bfd_is_com_section (sec))
4395 definition = FALSE;
4396 else
4397 definition = TRUE;
4398
4399 size_change_ok = FALSE;
4400 type_change_ok = bed->type_change_ok;
4401 old_weak = FALSE;
4402 matched = FALSE;
4403 old_alignment = 0;
4404 old_bfd = NULL;
4405 new_sec = sec;
4406
4407 if (is_elf_hash_table (htab))
4408 {
4409 Elf_Internal_Versym iver;
4410 unsigned int vernum = 0;
4411 bfd_boolean skip;
4412
4413 if (ever == NULL)
4414 {
4415 if (info->default_imported_symver)
4416 /* Use the default symbol version created earlier. */
4417 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4418 else
4419 iver.vs_vers = 0;
4420 }
4421 else
4422 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4423
4424 vernum = iver.vs_vers & VERSYM_VERSION;
4425
4426 /* If this is a hidden symbol, or if it is not version
4427 1, we append the version name to the symbol name.
4428 However, we do not modify a non-hidden absolute symbol
4429 if it is not a function, because it might be the version
4430 symbol itself. FIXME: What if it isn't? */
4431 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4432 || (vernum > 1
4433 && (!bfd_is_abs_section (sec)
4434 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4435 {
4436 const char *verstr;
4437 size_t namelen, verlen, newlen;
4438 char *newname, *p;
4439
4440 if (isym->st_shndx != SHN_UNDEF)
4441 {
4442 if (vernum > elf_tdata (abfd)->cverdefs)
4443 verstr = NULL;
4444 else if (vernum > 1)
4445 verstr =
4446 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4447 else
4448 verstr = "";
4449
4450 if (verstr == NULL)
4451 {
4452 _bfd_error_handler
4453 /* xgettext:c-format */
4454 (_("%B: %s: invalid version %u (max %d)"),
4455 abfd, name, vernum,
4456 elf_tdata (abfd)->cverdefs);
4457 bfd_set_error (bfd_error_bad_value);
4458 goto error_free_vers;
4459 }
4460 }
4461 else
4462 {
4463 /* We cannot simply test for the number of
4464 entries in the VERNEED section since the
4465 numbers for the needed versions do not start
4466 at 0. */
4467 Elf_Internal_Verneed *t;
4468
4469 verstr = NULL;
4470 for (t = elf_tdata (abfd)->verref;
4471 t != NULL;
4472 t = t->vn_nextref)
4473 {
4474 Elf_Internal_Vernaux *a;
4475
4476 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4477 {
4478 if (a->vna_other == vernum)
4479 {
4480 verstr = a->vna_nodename;
4481 break;
4482 }
4483 }
4484 if (a != NULL)
4485 break;
4486 }
4487 if (verstr == NULL)
4488 {
4489 _bfd_error_handler
4490 /* xgettext:c-format */
4491 (_("%B: %s: invalid needed version %d"),
4492 abfd, name, vernum);
4493 bfd_set_error (bfd_error_bad_value);
4494 goto error_free_vers;
4495 }
4496 }
4497
4498 namelen = strlen (name);
4499 verlen = strlen (verstr);
4500 newlen = namelen + verlen + 2;
4501 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4502 && isym->st_shndx != SHN_UNDEF)
4503 ++newlen;
4504
4505 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4506 if (newname == NULL)
4507 goto error_free_vers;
4508 memcpy (newname, name, namelen);
4509 p = newname + namelen;
4510 *p++ = ELF_VER_CHR;
4511 /* If this is a defined non-hidden version symbol,
4512 we add another @ to the name. This indicates the
4513 default version of the symbol. */
4514 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4515 && isym->st_shndx != SHN_UNDEF)
4516 *p++ = ELF_VER_CHR;
4517 memcpy (p, verstr, verlen + 1);
4518
4519 name = newname;
4520 }
4521
4522 /* If this symbol has default visibility and the user has
4523 requested we not re-export it, then mark it as hidden. */
4524 if (!bfd_is_und_section (sec)
4525 && !dynamic
4526 && abfd->no_export
4527 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4528 isym->st_other = (STV_HIDDEN
4529 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4530
4531 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4532 sym_hash, &old_bfd, &old_weak,
4533 &old_alignment, &skip, &override,
4534 &type_change_ok, &size_change_ok,
4535 &matched))
4536 goto error_free_vers;
4537
4538 if (skip)
4539 continue;
4540
4541 /* Override a definition only if the new symbol matches the
4542 existing one. */
4543 if (override && matched)
4544 definition = FALSE;
4545
4546 h = *sym_hash;
4547 while (h->root.type == bfd_link_hash_indirect
4548 || h->root.type == bfd_link_hash_warning)
4549 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4550
4551 if (elf_tdata (abfd)->verdef != NULL
4552 && vernum > 1
4553 && definition)
4554 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4555 }
4556
4557 if (! (_bfd_generic_link_add_one_symbol
4558 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4559 (struct bfd_link_hash_entry **) sym_hash)))
4560 goto error_free_vers;
4561
4562 if ((flags & BSF_GNU_UNIQUE)
4563 && (abfd->flags & DYNAMIC) == 0
4564 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
4565 elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_unique;
4566
4567 h = *sym_hash;
4568 /* We need to make sure that indirect symbol dynamic flags are
4569 updated. */
4570 hi = h;
4571 while (h->root.type == bfd_link_hash_indirect
4572 || h->root.type == bfd_link_hash_warning)
4573 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4574
4575 /* Setting the index to -3 tells elf_link_output_extsym that
4576 this symbol is defined in a discarded section. */
4577 if (discarded)
4578 h->indx = -3;
4579
4580 *sym_hash = h;
4581
4582 new_weak = (flags & BSF_WEAK) != 0;
4583 new_weakdef = FALSE;
4584 if (dynamic
4585 && definition
4586 && new_weak
4587 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4588 && is_elf_hash_table (htab)
4589 && h->u.weakdef == NULL)
4590 {
4591 /* Keep a list of all weak defined non function symbols from
4592 a dynamic object, using the weakdef field. Later in this
4593 function we will set the weakdef field to the correct
4594 value. We only put non-function symbols from dynamic
4595 objects on this list, because that happens to be the only
4596 time we need to know the normal symbol corresponding to a
4597 weak symbol, and the information is time consuming to
4598 figure out. If the weakdef field is not already NULL,
4599 then this symbol was already defined by some previous
4600 dynamic object, and we will be using that previous
4601 definition anyhow. */
4602
4603 h->u.weakdef = weaks;
4604 weaks = h;
4605 new_weakdef = TRUE;
4606 }
4607
4608 /* Set the alignment of a common symbol. */
4609 if ((common || bfd_is_com_section (sec))
4610 && h->root.type == bfd_link_hash_common)
4611 {
4612 unsigned int align;
4613
4614 if (common)
4615 align = bfd_log2 (isym->st_value);
4616 else
4617 {
4618 /* The new symbol is a common symbol in a shared object.
4619 We need to get the alignment from the section. */
4620 align = new_sec->alignment_power;
4621 }
4622 if (align > old_alignment)
4623 h->root.u.c.p->alignment_power = align;
4624 else
4625 h->root.u.c.p->alignment_power = old_alignment;
4626 }
4627
4628 if (is_elf_hash_table (htab))
4629 {
4630 /* Set a flag in the hash table entry indicating the type of
4631 reference or definition we just found. A dynamic symbol
4632 is one which is referenced or defined by both a regular
4633 object and a shared object. */
4634 bfd_boolean dynsym = FALSE;
4635
4636 /* Plugin symbols aren't normal. Don't set def_regular or
4637 ref_regular for them, or make them dynamic. */
4638 if ((abfd->flags & BFD_PLUGIN) != 0)
4639 ;
4640 else if (! dynamic)
4641 {
4642 if (! definition)
4643 {
4644 h->ref_regular = 1;
4645 if (bind != STB_WEAK)
4646 h->ref_regular_nonweak = 1;
4647 }
4648 else
4649 {
4650 h->def_regular = 1;
4651 if (h->def_dynamic)
4652 {
4653 h->def_dynamic = 0;
4654 h->ref_dynamic = 1;
4655 }
4656 }
4657
4658 /* If the indirect symbol has been forced local, don't
4659 make the real symbol dynamic. */
4660 if ((h == hi || !hi->forced_local)
4661 && (bfd_link_dll (info)
4662 || h->def_dynamic
4663 || h->ref_dynamic))
4664 dynsym = TRUE;
4665 }
4666 else
4667 {
4668 if (! definition)
4669 {
4670 h->ref_dynamic = 1;
4671 hi->ref_dynamic = 1;
4672 }
4673 else
4674 {
4675 h->def_dynamic = 1;
4676 hi->def_dynamic = 1;
4677 }
4678
4679 /* If the indirect symbol has been forced local, don't
4680 make the real symbol dynamic. */
4681 if ((h == hi || !hi->forced_local)
4682 && (h->def_regular
4683 || h->ref_regular
4684 || (h->u.weakdef != NULL
4685 && ! new_weakdef
4686 && h->u.weakdef->dynindx != -1)))
4687 dynsym = TRUE;
4688 }
4689
4690 /* Check to see if we need to add an indirect symbol for
4691 the default name. */
4692 if (definition
4693 || (!override && h->root.type == bfd_link_hash_common))
4694 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4695 sec, value, &old_bfd, &dynsym))
4696 goto error_free_vers;
4697
4698 /* Check the alignment when a common symbol is involved. This
4699 can change when a common symbol is overridden by a normal
4700 definition or a common symbol is ignored due to the old
4701 normal definition. We need to make sure the maximum
4702 alignment is maintained. */
4703 if ((old_alignment || common)
4704 && h->root.type != bfd_link_hash_common)
4705 {
4706 unsigned int common_align;
4707 unsigned int normal_align;
4708 unsigned int symbol_align;
4709 bfd *normal_bfd;
4710 bfd *common_bfd;
4711
4712 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4713 || h->root.type == bfd_link_hash_defweak);
4714
4715 symbol_align = ffs (h->root.u.def.value) - 1;
4716 if (h->root.u.def.section->owner != NULL
4717 && (h->root.u.def.section->owner->flags
4718 & (DYNAMIC | BFD_PLUGIN)) == 0)
4719 {
4720 normal_align = h->root.u.def.section->alignment_power;
4721 if (normal_align > symbol_align)
4722 normal_align = symbol_align;
4723 }
4724 else
4725 normal_align = symbol_align;
4726
4727 if (old_alignment)
4728 {
4729 common_align = old_alignment;
4730 common_bfd = old_bfd;
4731 normal_bfd = abfd;
4732 }
4733 else
4734 {
4735 common_align = bfd_log2 (isym->st_value);
4736 common_bfd = abfd;
4737 normal_bfd = old_bfd;
4738 }
4739
4740 if (normal_align < common_align)
4741 {
4742 /* PR binutils/2735 */
4743 if (normal_bfd == NULL)
4744 _bfd_error_handler
4745 /* xgettext:c-format */
4746 (_("Warning: alignment %u of common symbol `%s' in %B is"
4747 " greater than the alignment (%u) of its section %A"),
4748 1 << common_align, name, common_bfd,
4749 1 << normal_align, h->root.u.def.section);
4750 else
4751 _bfd_error_handler
4752 /* xgettext:c-format */
4753 (_("Warning: alignment %u of symbol `%s' in %B"
4754 " is smaller than %u in %B"),
4755 1 << normal_align, name, normal_bfd,
4756 1 << common_align, common_bfd);
4757 }
4758 }
4759
4760 /* Remember the symbol size if it isn't undefined. */
4761 if (isym->st_size != 0
4762 && isym->st_shndx != SHN_UNDEF
4763 && (definition || h->size == 0))
4764 {
4765 if (h->size != 0
4766 && h->size != isym->st_size
4767 && ! size_change_ok)
4768 _bfd_error_handler
4769 /* xgettext:c-format */
4770 (_("Warning: size of symbol `%s' changed"
4771 " from %Lu in %B to %Lu in %B"),
4772 name, h->size, old_bfd, isym->st_size, abfd);
4773
4774 h->size = isym->st_size;
4775 }
4776
4777 /* If this is a common symbol, then we always want H->SIZE
4778 to be the size of the common symbol. The code just above
4779 won't fix the size if a common symbol becomes larger. We
4780 don't warn about a size change here, because that is
4781 covered by --warn-common. Allow changes between different
4782 function types. */
4783 if (h->root.type == bfd_link_hash_common)
4784 h->size = h->root.u.c.size;
4785
4786 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4787 && ((definition && !new_weak)
4788 || (old_weak && h->root.type == bfd_link_hash_common)
4789 || h->type == STT_NOTYPE))
4790 {
4791 unsigned int type = ELF_ST_TYPE (isym->st_info);
4792
4793 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4794 symbol. */
4795 if (type == STT_GNU_IFUNC
4796 && (abfd->flags & DYNAMIC) != 0)
4797 type = STT_FUNC;
4798
4799 if (h->type != type)
4800 {
4801 if (h->type != STT_NOTYPE && ! type_change_ok)
4802 /* xgettext:c-format */
4803 _bfd_error_handler
4804 (_("Warning: type of symbol `%s' changed"
4805 " from %d to %d in %B"),
4806 name, h->type, type, abfd);
4807
4808 h->type = type;
4809 }
4810 }
4811
4812 /* Merge st_other field. */
4813 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4814
4815 /* We don't want to make debug symbol dynamic. */
4816 if (definition
4817 && (sec->flags & SEC_DEBUGGING)
4818 && !bfd_link_relocatable (info))
4819 dynsym = FALSE;
4820
4821 /* Nor should we make plugin symbols dynamic. */
4822 if ((abfd->flags & BFD_PLUGIN) != 0)
4823 dynsym = FALSE;
4824
4825 if (definition)
4826 {
4827 h->target_internal = isym->st_target_internal;
4828 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4829 }
4830
4831 if (definition && !dynamic)
4832 {
4833 char *p = strchr (name, ELF_VER_CHR);
4834 if (p != NULL && p[1] != ELF_VER_CHR)
4835 {
4836 /* Queue non-default versions so that .symver x, x@FOO
4837 aliases can be checked. */
4838 if (!nondeflt_vers)
4839 {
4840 amt = ((isymend - isym + 1)
4841 * sizeof (struct elf_link_hash_entry *));
4842 nondeflt_vers
4843 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4844 if (!nondeflt_vers)
4845 goto error_free_vers;
4846 }
4847 nondeflt_vers[nondeflt_vers_cnt++] = h;
4848 }
4849 }
4850
4851 if (dynsym && h->dynindx == -1)
4852 {
4853 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4854 goto error_free_vers;
4855 if (h->u.weakdef != NULL
4856 && ! new_weakdef
4857 && h->u.weakdef->dynindx == -1)
4858 {
4859 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4860 goto error_free_vers;
4861 }
4862 }
4863 else if (h->dynindx != -1)
4864 /* If the symbol already has a dynamic index, but
4865 visibility says it should not be visible, turn it into
4866 a local symbol. */
4867 switch (ELF_ST_VISIBILITY (h->other))
4868 {
4869 case STV_INTERNAL:
4870 case STV_HIDDEN:
4871 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4872 dynsym = FALSE;
4873 break;
4874 }
4875
4876 /* Don't add DT_NEEDED for references from the dummy bfd nor
4877 for unmatched symbol. */
4878 if (!add_needed
4879 && matched
4880 && definition
4881 && ((dynsym
4882 && h->ref_regular_nonweak
4883 && (old_bfd == NULL
4884 || (old_bfd->flags & BFD_PLUGIN) == 0))
4885 || (h->ref_dynamic_nonweak
4886 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4887 && !on_needed_list (elf_dt_name (abfd),
4888 htab->needed, NULL))))
4889 {
4890 int ret;
4891 const char *soname = elf_dt_name (abfd);
4892
4893 info->callbacks->minfo ("%!", soname, old_bfd,
4894 h->root.root.string);
4895
4896 /* A symbol from a library loaded via DT_NEEDED of some
4897 other library is referenced by a regular object.
4898 Add a DT_NEEDED entry for it. Issue an error if
4899 --no-add-needed is used and the reference was not
4900 a weak one. */
4901 if (old_bfd != NULL
4902 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4903 {
4904 _bfd_error_handler
4905 /* xgettext:c-format */
4906 (_("%B: undefined reference to symbol '%s'"),
4907 old_bfd, name);
4908 bfd_set_error (bfd_error_missing_dso);
4909 goto error_free_vers;
4910 }
4911
4912 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4913 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4914
4915 add_needed = TRUE;
4916 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4917 if (ret < 0)
4918 goto error_free_vers;
4919
4920 BFD_ASSERT (ret == 0);
4921 }
4922 }
4923 }
4924
4925 if (extversym != NULL)
4926 {
4927 free (extversym);
4928 extversym = NULL;
4929 }
4930
4931 if (isymbuf != NULL)
4932 {
4933 free (isymbuf);
4934 isymbuf = NULL;
4935 }
4936
4937 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4938 {
4939 unsigned int i;
4940
4941 /* Restore the symbol table. */
4942 old_ent = (char *) old_tab + tabsize;
4943 memset (elf_sym_hashes (abfd), 0,
4944 extsymcount * sizeof (struct elf_link_hash_entry *));
4945 htab->root.table.table = old_table;
4946 htab->root.table.size = old_size;
4947 htab->root.table.count = old_count;
4948 memcpy (htab->root.table.table, old_tab, tabsize);
4949 htab->root.undefs = old_undefs;
4950 htab->root.undefs_tail = old_undefs_tail;
4951 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
4952 free (old_strtab);
4953 old_strtab = NULL;
4954 for (i = 0; i < htab->root.table.size; i++)
4955 {
4956 struct bfd_hash_entry *p;
4957 struct elf_link_hash_entry *h;
4958 bfd_size_type size;
4959 unsigned int alignment_power;
4960 unsigned int non_ir_ref_dynamic;
4961
4962 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4963 {
4964 h = (struct elf_link_hash_entry *) p;
4965 if (h->root.type == bfd_link_hash_warning)
4966 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4967
4968 /* Preserve the maximum alignment and size for common
4969 symbols even if this dynamic lib isn't on DT_NEEDED
4970 since it can still be loaded at run time by another
4971 dynamic lib. */
4972 if (h->root.type == bfd_link_hash_common)
4973 {
4974 size = h->root.u.c.size;
4975 alignment_power = h->root.u.c.p->alignment_power;
4976 }
4977 else
4978 {
4979 size = 0;
4980 alignment_power = 0;
4981 }
4982 /* Preserve non_ir_ref_dynamic so that this symbol
4983 will be exported when the dynamic lib becomes needed
4984 in the second pass. */
4985 non_ir_ref_dynamic = h->root.non_ir_ref_dynamic;
4986 memcpy (p, old_ent, htab->root.table.entsize);
4987 old_ent = (char *) old_ent + htab->root.table.entsize;
4988 h = (struct elf_link_hash_entry *) p;
4989 if (h->root.type == bfd_link_hash_warning)
4990 {
4991 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4992 old_ent = (char *) old_ent + htab->root.table.entsize;
4993 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4994 }
4995 if (h->root.type == bfd_link_hash_common)
4996 {
4997 if (size > h->root.u.c.size)
4998 h->root.u.c.size = size;
4999 if (alignment_power > h->root.u.c.p->alignment_power)
5000 h->root.u.c.p->alignment_power = alignment_power;
5001 }
5002 h->root.non_ir_ref_dynamic = non_ir_ref_dynamic;
5003 }
5004 }
5005
5006 /* Make a special call to the linker "notice" function to
5007 tell it that symbols added for crefs may need to be removed. */
5008 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
5009 goto error_free_vers;
5010
5011 free (old_tab);
5012 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
5013 alloc_mark);
5014 if (nondeflt_vers != NULL)
5015 free (nondeflt_vers);
5016 return TRUE;
5017 }
5018
5019 if (old_tab != NULL)
5020 {
5021 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
5022 goto error_free_vers;
5023 free (old_tab);
5024 old_tab = NULL;
5025 }
5026
5027 /* Now that all the symbols from this input file are created, if
5028 not performing a relocatable link, handle .symver foo, foo@BAR
5029 such that any relocs against foo become foo@BAR. */
5030 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
5031 {
5032 size_t cnt, symidx;
5033
5034 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
5035 {
5036 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
5037 char *shortname, *p;
5038
5039 p = strchr (h->root.root.string, ELF_VER_CHR);
5040 if (p == NULL
5041 || (h->root.type != bfd_link_hash_defined
5042 && h->root.type != bfd_link_hash_defweak))
5043 continue;
5044
5045 amt = p - h->root.root.string;
5046 shortname = (char *) bfd_malloc (amt + 1);
5047 if (!shortname)
5048 goto error_free_vers;
5049 memcpy (shortname, h->root.root.string, amt);
5050 shortname[amt] = '\0';
5051
5052 hi = (struct elf_link_hash_entry *)
5053 bfd_link_hash_lookup (&htab->root, shortname,
5054 FALSE, FALSE, FALSE);
5055 if (hi != NULL
5056 && hi->root.type == h->root.type
5057 && hi->root.u.def.value == h->root.u.def.value
5058 && hi->root.u.def.section == h->root.u.def.section)
5059 {
5060 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
5061 hi->root.type = bfd_link_hash_indirect;
5062 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
5063 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
5064 sym_hash = elf_sym_hashes (abfd);
5065 if (sym_hash)
5066 for (symidx = 0; symidx < extsymcount; ++symidx)
5067 if (sym_hash[symidx] == hi)
5068 {
5069 sym_hash[symidx] = h;
5070 break;
5071 }
5072 }
5073 free (shortname);
5074 }
5075 free (nondeflt_vers);
5076 nondeflt_vers = NULL;
5077 }
5078
5079 /* Now set the weakdefs field correctly for all the weak defined
5080 symbols we found. The only way to do this is to search all the
5081 symbols. Since we only need the information for non functions in
5082 dynamic objects, that's the only time we actually put anything on
5083 the list WEAKS. We need this information so that if a regular
5084 object refers to a symbol defined weakly in a dynamic object, the
5085 real symbol in the dynamic object is also put in the dynamic
5086 symbols; we also must arrange for both symbols to point to the
5087 same memory location. We could handle the general case of symbol
5088 aliasing, but a general symbol alias can only be generated in
5089 assembler code, handling it correctly would be very time
5090 consuming, and other ELF linkers don't handle general aliasing
5091 either. */
5092 if (weaks != NULL)
5093 {
5094 struct elf_link_hash_entry **hpp;
5095 struct elf_link_hash_entry **hppend;
5096 struct elf_link_hash_entry **sorted_sym_hash;
5097 struct elf_link_hash_entry *h;
5098 size_t sym_count;
5099
5100 /* Since we have to search the whole symbol list for each weak
5101 defined symbol, search time for N weak defined symbols will be
5102 O(N^2). Binary search will cut it down to O(NlogN). */
5103 amt = extsymcount;
5104 amt *= sizeof (struct elf_link_hash_entry *);
5105 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
5106 if (sorted_sym_hash == NULL)
5107 goto error_return;
5108 sym_hash = sorted_sym_hash;
5109 hpp = elf_sym_hashes (abfd);
5110 hppend = hpp + extsymcount;
5111 sym_count = 0;
5112 for (; hpp < hppend; hpp++)
5113 {
5114 h = *hpp;
5115 if (h != NULL
5116 && h->root.type == bfd_link_hash_defined
5117 && !bed->is_function_type (h->type))
5118 {
5119 *sym_hash = h;
5120 sym_hash++;
5121 sym_count++;
5122 }
5123 }
5124
5125 qsort (sorted_sym_hash, sym_count,
5126 sizeof (struct elf_link_hash_entry *),
5127 elf_sort_symbol);
5128
5129 while (weaks != NULL)
5130 {
5131 struct elf_link_hash_entry *hlook;
5132 asection *slook;
5133 bfd_vma vlook;
5134 size_t i, j, idx = 0;
5135
5136 hlook = weaks;
5137 weaks = hlook->u.weakdef;
5138 hlook->u.weakdef = NULL;
5139
5140 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
5141 || hlook->root.type == bfd_link_hash_defweak
5142 || hlook->root.type == bfd_link_hash_common
5143 || hlook->root.type == bfd_link_hash_indirect);
5144 slook = hlook->root.u.def.section;
5145 vlook = hlook->root.u.def.value;
5146
5147 i = 0;
5148 j = sym_count;
5149 while (i != j)
5150 {
5151 bfd_signed_vma vdiff;
5152 idx = (i + j) / 2;
5153 h = sorted_sym_hash[idx];
5154 vdiff = vlook - h->root.u.def.value;
5155 if (vdiff < 0)
5156 j = idx;
5157 else if (vdiff > 0)
5158 i = idx + 1;
5159 else
5160 {
5161 int sdiff = slook->id - h->root.u.def.section->id;
5162 if (sdiff < 0)
5163 j = idx;
5164 else if (sdiff > 0)
5165 i = idx + 1;
5166 else
5167 break;
5168 }
5169 }
5170
5171 /* We didn't find a value/section match. */
5172 if (i == j)
5173 continue;
5174
5175 /* With multiple aliases, or when the weak symbol is already
5176 strongly defined, we have multiple matching symbols and
5177 the binary search above may land on any of them. Step
5178 one past the matching symbol(s). */
5179 while (++idx != j)
5180 {
5181 h = sorted_sym_hash[idx];
5182 if (h->root.u.def.section != slook
5183 || h->root.u.def.value != vlook)
5184 break;
5185 }
5186
5187 /* Now look back over the aliases. Since we sorted by size
5188 as well as value and section, we'll choose the one with
5189 the largest size. */
5190 while (idx-- != i)
5191 {
5192 h = sorted_sym_hash[idx];
5193
5194 /* Stop if value or section doesn't match. */
5195 if (h->root.u.def.section != slook
5196 || h->root.u.def.value != vlook)
5197 break;
5198 else if (h != hlook)
5199 {
5200 hlook->u.weakdef = h;
5201
5202 /* If the weak definition is in the list of dynamic
5203 symbols, make sure the real definition is put
5204 there as well. */
5205 if (hlook->dynindx != -1 && h->dynindx == -1)
5206 {
5207 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5208 {
5209 err_free_sym_hash:
5210 free (sorted_sym_hash);
5211 goto error_return;
5212 }
5213 }
5214
5215 /* If the real definition is in the list of dynamic
5216 symbols, make sure the weak definition is put
5217 there as well. If we don't do this, then the
5218 dynamic loader might not merge the entries for the
5219 real definition and the weak definition. */
5220 if (h->dynindx != -1 && hlook->dynindx == -1)
5221 {
5222 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5223 goto err_free_sym_hash;
5224 }
5225 break;
5226 }
5227 }
5228 }
5229
5230 free (sorted_sym_hash);
5231 }
5232
5233 if (bed->check_directives
5234 && !(*bed->check_directives) (abfd, info))
5235 return FALSE;
5236
5237 /* If this is a non-traditional link, try to optimize the handling
5238 of the .stab/.stabstr sections. */
5239 if (! dynamic
5240 && ! info->traditional_format
5241 && is_elf_hash_table (htab)
5242 && (info->strip != strip_all && info->strip != strip_debugger))
5243 {
5244 asection *stabstr;
5245
5246 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5247 if (stabstr != NULL)
5248 {
5249 bfd_size_type string_offset = 0;
5250 asection *stab;
5251
5252 for (stab = abfd->sections; stab; stab = stab->next)
5253 if (CONST_STRNEQ (stab->name, ".stab")
5254 && (!stab->name[5] ||
5255 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5256 && (stab->flags & SEC_MERGE) == 0
5257 && !bfd_is_abs_section (stab->output_section))
5258 {
5259 struct bfd_elf_section_data *secdata;
5260
5261 secdata = elf_section_data (stab);
5262 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5263 stabstr, &secdata->sec_info,
5264 &string_offset))
5265 goto error_return;
5266 if (secdata->sec_info)
5267 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5268 }
5269 }
5270 }
5271
5272 if (is_elf_hash_table (htab) && add_needed)
5273 {
5274 /* Add this bfd to the loaded list. */
5275 struct elf_link_loaded_list *n;
5276
5277 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5278 if (n == NULL)
5279 goto error_return;
5280 n->abfd = abfd;
5281 n->next = htab->loaded;
5282 htab->loaded = n;
5283 }
5284
5285 return TRUE;
5286
5287 error_free_vers:
5288 if (old_tab != NULL)
5289 free (old_tab);
5290 if (old_strtab != NULL)
5291 free (old_strtab);
5292 if (nondeflt_vers != NULL)
5293 free (nondeflt_vers);
5294 if (extversym != NULL)
5295 free (extversym);
5296 error_free_sym:
5297 if (isymbuf != NULL)
5298 free (isymbuf);
5299 error_return:
5300 return FALSE;
5301 }
5302
5303 /* Return the linker hash table entry of a symbol that might be
5304 satisfied by an archive symbol. Return -1 on error. */
5305
5306 struct elf_link_hash_entry *
5307 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5308 struct bfd_link_info *info,
5309 const char *name)
5310 {
5311 struct elf_link_hash_entry *h;
5312 char *p, *copy;
5313 size_t len, first;
5314
5315 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5316 if (h != NULL)
5317 return h;
5318
5319 /* If this is a default version (the name contains @@), look up the
5320 symbol again with only one `@' as well as without the version.
5321 The effect is that references to the symbol with and without the
5322 version will be matched by the default symbol in the archive. */
5323
5324 p = strchr (name, ELF_VER_CHR);
5325 if (p == NULL || p[1] != ELF_VER_CHR)
5326 return h;
5327
5328 /* First check with only one `@'. */
5329 len = strlen (name);
5330 copy = (char *) bfd_alloc (abfd, len);
5331 if (copy == NULL)
5332 return (struct elf_link_hash_entry *) 0 - 1;
5333
5334 first = p - name + 1;
5335 memcpy (copy, name, first);
5336 memcpy (copy + first, name + first + 1, len - first);
5337
5338 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5339 if (h == NULL)
5340 {
5341 /* We also need to check references to the symbol without the
5342 version. */
5343 copy[first - 1] = '\0';
5344 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5345 FALSE, FALSE, TRUE);
5346 }
5347
5348 bfd_release (abfd, copy);
5349 return h;
5350 }
5351
5352 /* Add symbols from an ELF archive file to the linker hash table. We
5353 don't use _bfd_generic_link_add_archive_symbols because we need to
5354 handle versioned symbols.
5355
5356 Fortunately, ELF archive handling is simpler than that done by
5357 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5358 oddities. In ELF, if we find a symbol in the archive map, and the
5359 symbol is currently undefined, we know that we must pull in that
5360 object file.
5361
5362 Unfortunately, we do have to make multiple passes over the symbol
5363 table until nothing further is resolved. */
5364
5365 static bfd_boolean
5366 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5367 {
5368 symindex c;
5369 unsigned char *included = NULL;
5370 carsym *symdefs;
5371 bfd_boolean loop;
5372 bfd_size_type amt;
5373 const struct elf_backend_data *bed;
5374 struct elf_link_hash_entry * (*archive_symbol_lookup)
5375 (bfd *, struct bfd_link_info *, const char *);
5376
5377 if (! bfd_has_map (abfd))
5378 {
5379 /* An empty archive is a special case. */
5380 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5381 return TRUE;
5382 bfd_set_error (bfd_error_no_armap);
5383 return FALSE;
5384 }
5385
5386 /* Keep track of all symbols we know to be already defined, and all
5387 files we know to be already included. This is to speed up the
5388 second and subsequent passes. */
5389 c = bfd_ardata (abfd)->symdef_count;
5390 if (c == 0)
5391 return TRUE;
5392 amt = c;
5393 amt *= sizeof (*included);
5394 included = (unsigned char *) bfd_zmalloc (amt);
5395 if (included == NULL)
5396 return FALSE;
5397
5398 symdefs = bfd_ardata (abfd)->symdefs;
5399 bed = get_elf_backend_data (abfd);
5400 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5401
5402 do
5403 {
5404 file_ptr last;
5405 symindex i;
5406 carsym *symdef;
5407 carsym *symdefend;
5408
5409 loop = FALSE;
5410 last = -1;
5411
5412 symdef = symdefs;
5413 symdefend = symdef + c;
5414 for (i = 0; symdef < symdefend; symdef++, i++)
5415 {
5416 struct elf_link_hash_entry *h;
5417 bfd *element;
5418 struct bfd_link_hash_entry *undefs_tail;
5419 symindex mark;
5420
5421 if (included[i])
5422 continue;
5423 if (symdef->file_offset == last)
5424 {
5425 included[i] = TRUE;
5426 continue;
5427 }
5428
5429 h = archive_symbol_lookup (abfd, info, symdef->name);
5430 if (h == (struct elf_link_hash_entry *) 0 - 1)
5431 goto error_return;
5432
5433 if (h == NULL)
5434 continue;
5435
5436 if (h->root.type == bfd_link_hash_common)
5437 {
5438 /* We currently have a common symbol. The archive map contains
5439 a reference to this symbol, so we may want to include it. We
5440 only want to include it however, if this archive element
5441 contains a definition of the symbol, not just another common
5442 declaration of it.
5443
5444 Unfortunately some archivers (including GNU ar) will put
5445 declarations of common symbols into their archive maps, as
5446 well as real definitions, so we cannot just go by the archive
5447 map alone. Instead we must read in the element's symbol
5448 table and check that to see what kind of symbol definition
5449 this is. */
5450 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5451 continue;
5452 }
5453 else if (h->root.type != bfd_link_hash_undefined)
5454 {
5455 if (h->root.type != bfd_link_hash_undefweak)
5456 /* Symbol must be defined. Don't check it again. */
5457 included[i] = TRUE;
5458 continue;
5459 }
5460
5461 /* We need to include this archive member. */
5462 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5463 if (element == NULL)
5464 goto error_return;
5465
5466 if (! bfd_check_format (element, bfd_object))
5467 goto error_return;
5468
5469 undefs_tail = info->hash->undefs_tail;
5470
5471 if (!(*info->callbacks
5472 ->add_archive_element) (info, element, symdef->name, &element))
5473 continue;
5474 if (!bfd_link_add_symbols (element, info))
5475 goto error_return;
5476
5477 /* If there are any new undefined symbols, we need to make
5478 another pass through the archive in order to see whether
5479 they can be defined. FIXME: This isn't perfect, because
5480 common symbols wind up on undefs_tail and because an
5481 undefined symbol which is defined later on in this pass
5482 does not require another pass. This isn't a bug, but it
5483 does make the code less efficient than it could be. */
5484 if (undefs_tail != info->hash->undefs_tail)
5485 loop = TRUE;
5486
5487 /* Look backward to mark all symbols from this object file
5488 which we have already seen in this pass. */
5489 mark = i;
5490 do
5491 {
5492 included[mark] = TRUE;
5493 if (mark == 0)
5494 break;
5495 --mark;
5496 }
5497 while (symdefs[mark].file_offset == symdef->file_offset);
5498
5499 /* We mark subsequent symbols from this object file as we go
5500 on through the loop. */
5501 last = symdef->file_offset;
5502 }
5503 }
5504 while (loop);
5505
5506 free (included);
5507
5508 return TRUE;
5509
5510 error_return:
5511 if (included != NULL)
5512 free (included);
5513 return FALSE;
5514 }
5515
5516 /* Given an ELF BFD, add symbols to the global hash table as
5517 appropriate. */
5518
5519 bfd_boolean
5520 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5521 {
5522 switch (bfd_get_format (abfd))
5523 {
5524 case bfd_object:
5525 return elf_link_add_object_symbols (abfd, info);
5526 case bfd_archive:
5527 return elf_link_add_archive_symbols (abfd, info);
5528 default:
5529 bfd_set_error (bfd_error_wrong_format);
5530 return FALSE;
5531 }
5532 }
5533 \f
5534 struct hash_codes_info
5535 {
5536 unsigned long *hashcodes;
5537 bfd_boolean error;
5538 };
5539
5540 /* This function will be called though elf_link_hash_traverse to store
5541 all hash value of the exported symbols in an array. */
5542
5543 static bfd_boolean
5544 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5545 {
5546 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5547 const char *name;
5548 unsigned long ha;
5549 char *alc = NULL;
5550
5551 /* Ignore indirect symbols. These are added by the versioning code. */
5552 if (h->dynindx == -1)
5553 return TRUE;
5554
5555 name = h->root.root.string;
5556 if (h->versioned >= versioned)
5557 {
5558 char *p = strchr (name, ELF_VER_CHR);
5559 if (p != NULL)
5560 {
5561 alc = (char *) bfd_malloc (p - name + 1);
5562 if (alc == NULL)
5563 {
5564 inf->error = TRUE;
5565 return FALSE;
5566 }
5567 memcpy (alc, name, p - name);
5568 alc[p - name] = '\0';
5569 name = alc;
5570 }
5571 }
5572
5573 /* Compute the hash value. */
5574 ha = bfd_elf_hash (name);
5575
5576 /* Store the found hash value in the array given as the argument. */
5577 *(inf->hashcodes)++ = ha;
5578
5579 /* And store it in the struct so that we can put it in the hash table
5580 later. */
5581 h->u.elf_hash_value = ha;
5582
5583 if (alc != NULL)
5584 free (alc);
5585
5586 return TRUE;
5587 }
5588
5589 struct collect_gnu_hash_codes
5590 {
5591 bfd *output_bfd;
5592 const struct elf_backend_data *bed;
5593 unsigned long int nsyms;
5594 unsigned long int maskbits;
5595 unsigned long int *hashcodes;
5596 unsigned long int *hashval;
5597 unsigned long int *indx;
5598 unsigned long int *counts;
5599 bfd_vma *bitmask;
5600 bfd_byte *contents;
5601 long int min_dynindx;
5602 unsigned long int bucketcount;
5603 unsigned long int symindx;
5604 long int local_indx;
5605 long int shift1, shift2;
5606 unsigned long int mask;
5607 bfd_boolean error;
5608 };
5609
5610 /* This function will be called though elf_link_hash_traverse to store
5611 all hash value of the exported symbols in an array. */
5612
5613 static bfd_boolean
5614 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5615 {
5616 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5617 const char *name;
5618 unsigned long ha;
5619 char *alc = NULL;
5620
5621 /* Ignore indirect symbols. These are added by the versioning code. */
5622 if (h->dynindx == -1)
5623 return TRUE;
5624
5625 /* Ignore also local symbols and undefined symbols. */
5626 if (! (*s->bed->elf_hash_symbol) (h))
5627 return TRUE;
5628
5629 name = h->root.root.string;
5630 if (h->versioned >= versioned)
5631 {
5632 char *p = strchr (name, ELF_VER_CHR);
5633 if (p != NULL)
5634 {
5635 alc = (char *) bfd_malloc (p - name + 1);
5636 if (alc == NULL)
5637 {
5638 s->error = TRUE;
5639 return FALSE;
5640 }
5641 memcpy (alc, name, p - name);
5642 alc[p - name] = '\0';
5643 name = alc;
5644 }
5645 }
5646
5647 /* Compute the hash value. */
5648 ha = bfd_elf_gnu_hash (name);
5649
5650 /* Store the found hash value in the array for compute_bucket_count,
5651 and also for .dynsym reordering purposes. */
5652 s->hashcodes[s->nsyms] = ha;
5653 s->hashval[h->dynindx] = ha;
5654 ++s->nsyms;
5655 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5656 s->min_dynindx = h->dynindx;
5657
5658 if (alc != NULL)
5659 free (alc);
5660
5661 return TRUE;
5662 }
5663
5664 /* This function will be called though elf_link_hash_traverse to do
5665 final dynaminc symbol renumbering. */
5666
5667 static bfd_boolean
5668 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5669 {
5670 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5671 unsigned long int bucket;
5672 unsigned long int val;
5673
5674 /* Ignore indirect symbols. */
5675 if (h->dynindx == -1)
5676 return TRUE;
5677
5678 /* Ignore also local symbols and undefined symbols. */
5679 if (! (*s->bed->elf_hash_symbol) (h))
5680 {
5681 if (h->dynindx >= s->min_dynindx)
5682 h->dynindx = s->local_indx++;
5683 return TRUE;
5684 }
5685
5686 bucket = s->hashval[h->dynindx] % s->bucketcount;
5687 val = (s->hashval[h->dynindx] >> s->shift1)
5688 & ((s->maskbits >> s->shift1) - 1);
5689 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5690 s->bitmask[val]
5691 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5692 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5693 if (s->counts[bucket] == 1)
5694 /* Last element terminates the chain. */
5695 val |= 1;
5696 bfd_put_32 (s->output_bfd, val,
5697 s->contents + (s->indx[bucket] - s->symindx) * 4);
5698 --s->counts[bucket];
5699 h->dynindx = s->indx[bucket]++;
5700 return TRUE;
5701 }
5702
5703 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5704
5705 bfd_boolean
5706 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5707 {
5708 return !(h->forced_local
5709 || h->root.type == bfd_link_hash_undefined
5710 || h->root.type == bfd_link_hash_undefweak
5711 || ((h->root.type == bfd_link_hash_defined
5712 || h->root.type == bfd_link_hash_defweak)
5713 && h->root.u.def.section->output_section == NULL));
5714 }
5715
5716 /* Array used to determine the number of hash table buckets to use
5717 based on the number of symbols there are. If there are fewer than
5718 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5719 fewer than 37 we use 17 buckets, and so forth. We never use more
5720 than 32771 buckets. */
5721
5722 static const size_t elf_buckets[] =
5723 {
5724 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5725 16411, 32771, 0
5726 };
5727
5728 /* Compute bucket count for hashing table. We do not use a static set
5729 of possible tables sizes anymore. Instead we determine for all
5730 possible reasonable sizes of the table the outcome (i.e., the
5731 number of collisions etc) and choose the best solution. The
5732 weighting functions are not too simple to allow the table to grow
5733 without bounds. Instead one of the weighting factors is the size.
5734 Therefore the result is always a good payoff between few collisions
5735 (= short chain lengths) and table size. */
5736 static size_t
5737 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5738 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5739 unsigned long int nsyms,
5740 int gnu_hash)
5741 {
5742 size_t best_size = 0;
5743 unsigned long int i;
5744
5745 /* We have a problem here. The following code to optimize the table
5746 size requires an integer type with more the 32 bits. If
5747 BFD_HOST_U_64_BIT is set we know about such a type. */
5748 #ifdef BFD_HOST_U_64_BIT
5749 if (info->optimize)
5750 {
5751 size_t minsize;
5752 size_t maxsize;
5753 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5754 bfd *dynobj = elf_hash_table (info)->dynobj;
5755 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5756 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5757 unsigned long int *counts;
5758 bfd_size_type amt;
5759 unsigned int no_improvement_count = 0;
5760
5761 /* Possible optimization parameters: if we have NSYMS symbols we say
5762 that the hashing table must at least have NSYMS/4 and at most
5763 2*NSYMS buckets. */
5764 minsize = nsyms / 4;
5765 if (minsize == 0)
5766 minsize = 1;
5767 best_size = maxsize = nsyms * 2;
5768 if (gnu_hash)
5769 {
5770 if (minsize < 2)
5771 minsize = 2;
5772 if ((best_size & 31) == 0)
5773 ++best_size;
5774 }
5775
5776 /* Create array where we count the collisions in. We must use bfd_malloc
5777 since the size could be large. */
5778 amt = maxsize;
5779 amt *= sizeof (unsigned long int);
5780 counts = (unsigned long int *) bfd_malloc (amt);
5781 if (counts == NULL)
5782 return 0;
5783
5784 /* Compute the "optimal" size for the hash table. The criteria is a
5785 minimal chain length. The minor criteria is (of course) the size
5786 of the table. */
5787 for (i = minsize; i < maxsize; ++i)
5788 {
5789 /* Walk through the array of hashcodes and count the collisions. */
5790 BFD_HOST_U_64_BIT max;
5791 unsigned long int j;
5792 unsigned long int fact;
5793
5794 if (gnu_hash && (i & 31) == 0)
5795 continue;
5796
5797 memset (counts, '\0', i * sizeof (unsigned long int));
5798
5799 /* Determine how often each hash bucket is used. */
5800 for (j = 0; j < nsyms; ++j)
5801 ++counts[hashcodes[j] % i];
5802
5803 /* For the weight function we need some information about the
5804 pagesize on the target. This is information need not be 100%
5805 accurate. Since this information is not available (so far) we
5806 define it here to a reasonable default value. If it is crucial
5807 to have a better value some day simply define this value. */
5808 # ifndef BFD_TARGET_PAGESIZE
5809 # define BFD_TARGET_PAGESIZE (4096)
5810 # endif
5811
5812 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5813 and the chains. */
5814 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5815
5816 # if 1
5817 /* Variant 1: optimize for short chains. We add the squares
5818 of all the chain lengths (which favors many small chain
5819 over a few long chains). */
5820 for (j = 0; j < i; ++j)
5821 max += counts[j] * counts[j];
5822
5823 /* This adds penalties for the overall size of the table. */
5824 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5825 max *= fact * fact;
5826 # else
5827 /* Variant 2: Optimize a lot more for small table. Here we
5828 also add squares of the size but we also add penalties for
5829 empty slots (the +1 term). */
5830 for (j = 0; j < i; ++j)
5831 max += (1 + counts[j]) * (1 + counts[j]);
5832
5833 /* The overall size of the table is considered, but not as
5834 strong as in variant 1, where it is squared. */
5835 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5836 max *= fact;
5837 # endif
5838
5839 /* Compare with current best results. */
5840 if (max < best_chlen)
5841 {
5842 best_chlen = max;
5843 best_size = i;
5844 no_improvement_count = 0;
5845 }
5846 /* PR 11843: Avoid futile long searches for the best bucket size
5847 when there are a large number of symbols. */
5848 else if (++no_improvement_count == 100)
5849 break;
5850 }
5851
5852 free (counts);
5853 }
5854 else
5855 #endif /* defined (BFD_HOST_U_64_BIT) */
5856 {
5857 /* This is the fallback solution if no 64bit type is available or if we
5858 are not supposed to spend much time on optimizations. We select the
5859 bucket count using a fixed set of numbers. */
5860 for (i = 0; elf_buckets[i] != 0; i++)
5861 {
5862 best_size = elf_buckets[i];
5863 if (nsyms < elf_buckets[i + 1])
5864 break;
5865 }
5866 if (gnu_hash && best_size < 2)
5867 best_size = 2;
5868 }
5869
5870 return best_size;
5871 }
5872
5873 /* Size any SHT_GROUP section for ld -r. */
5874
5875 bfd_boolean
5876 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5877 {
5878 bfd *ibfd;
5879 asection *s;
5880
5881 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5882 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5883 && (s = ibfd->sections) != NULL
5884 && s->sec_info_type != SEC_INFO_TYPE_JUST_SYMS
5885 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5886 return FALSE;
5887 return TRUE;
5888 }
5889
5890 /* Set a default stack segment size. The value in INFO wins. If it
5891 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5892 undefined it is initialized. */
5893
5894 bfd_boolean
5895 bfd_elf_stack_segment_size (bfd *output_bfd,
5896 struct bfd_link_info *info,
5897 const char *legacy_symbol,
5898 bfd_vma default_size)
5899 {
5900 struct elf_link_hash_entry *h = NULL;
5901
5902 /* Look for legacy symbol. */
5903 if (legacy_symbol)
5904 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5905 FALSE, FALSE, FALSE);
5906 if (h && (h->root.type == bfd_link_hash_defined
5907 || h->root.type == bfd_link_hash_defweak)
5908 && h->def_regular
5909 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5910 {
5911 /* The symbol has no type if specified on the command line. */
5912 h->type = STT_OBJECT;
5913 if (info->stacksize)
5914 /* xgettext:c-format */
5915 _bfd_error_handler (_("%B: stack size specified and %s set"),
5916 output_bfd, legacy_symbol);
5917 else if (h->root.u.def.section != bfd_abs_section_ptr)
5918 /* xgettext:c-format */
5919 _bfd_error_handler (_("%B: %s not absolute"),
5920 output_bfd, legacy_symbol);
5921 else
5922 info->stacksize = h->root.u.def.value;
5923 }
5924
5925 if (!info->stacksize)
5926 /* If the user didn't set a size, or explicitly inhibit the
5927 size, set it now. */
5928 info->stacksize = default_size;
5929
5930 /* Provide the legacy symbol, if it is referenced. */
5931 if (h && (h->root.type == bfd_link_hash_undefined
5932 || h->root.type == bfd_link_hash_undefweak))
5933 {
5934 struct bfd_link_hash_entry *bh = NULL;
5935
5936 if (!(_bfd_generic_link_add_one_symbol
5937 (info, output_bfd, legacy_symbol,
5938 BSF_GLOBAL, bfd_abs_section_ptr,
5939 info->stacksize >= 0 ? info->stacksize : 0,
5940 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5941 return FALSE;
5942
5943 h = (struct elf_link_hash_entry *) bh;
5944 h->def_regular = 1;
5945 h->type = STT_OBJECT;
5946 }
5947
5948 return TRUE;
5949 }
5950
5951 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
5952
5953 struct elf_gc_sweep_symbol_info
5954 {
5955 struct bfd_link_info *info;
5956 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
5957 bfd_boolean);
5958 };
5959
5960 static bfd_boolean
5961 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
5962 {
5963 if (!h->mark
5964 && (((h->root.type == bfd_link_hash_defined
5965 || h->root.type == bfd_link_hash_defweak)
5966 && !((h->def_regular || ELF_COMMON_DEF_P (h))
5967 && h->root.u.def.section->gc_mark))
5968 || h->root.type == bfd_link_hash_undefined
5969 || h->root.type == bfd_link_hash_undefweak))
5970 {
5971 struct elf_gc_sweep_symbol_info *inf;
5972
5973 inf = (struct elf_gc_sweep_symbol_info *) data;
5974 (*inf->hide_symbol) (inf->info, h, TRUE);
5975 h->def_regular = 0;
5976 h->ref_regular = 0;
5977 h->ref_regular_nonweak = 0;
5978 }
5979
5980 return TRUE;
5981 }
5982
5983 /* Set up the sizes and contents of the ELF dynamic sections. This is
5984 called by the ELF linker emulation before_allocation routine. We
5985 must set the sizes of the sections before the linker sets the
5986 addresses of the various sections. */
5987
5988 bfd_boolean
5989 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5990 const char *soname,
5991 const char *rpath,
5992 const char *filter_shlib,
5993 const char *audit,
5994 const char *depaudit,
5995 const char * const *auxiliary_filters,
5996 struct bfd_link_info *info,
5997 asection **sinterpptr)
5998 {
5999 bfd *dynobj;
6000 const struct elf_backend_data *bed;
6001
6002 *sinterpptr = NULL;
6003
6004 if (!is_elf_hash_table (info->hash))
6005 return TRUE;
6006
6007 dynobj = elf_hash_table (info)->dynobj;
6008
6009 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6010 {
6011 struct bfd_elf_version_tree *verdefs;
6012 struct elf_info_failed asvinfo;
6013 struct bfd_elf_version_tree *t;
6014 struct bfd_elf_version_expr *d;
6015 asection *s;
6016 size_t soname_indx;
6017
6018 /* If we are supposed to export all symbols into the dynamic symbol
6019 table (this is not the normal case), then do so. */
6020 if (info->export_dynamic
6021 || (bfd_link_executable (info) && info->dynamic))
6022 {
6023 struct elf_info_failed eif;
6024
6025 eif.info = info;
6026 eif.failed = FALSE;
6027 elf_link_hash_traverse (elf_hash_table (info),
6028 _bfd_elf_export_symbol,
6029 &eif);
6030 if (eif.failed)
6031 return FALSE;
6032 }
6033
6034 if (soname != NULL)
6035 {
6036 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6037 soname, TRUE);
6038 if (soname_indx == (size_t) -1
6039 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
6040 return FALSE;
6041 }
6042 else
6043 soname_indx = (size_t) -1;
6044
6045 /* Make all global versions with definition. */
6046 for (t = info->version_info; t != NULL; t = t->next)
6047 for (d = t->globals.list; d != NULL; d = d->next)
6048 if (!d->symver && d->literal)
6049 {
6050 const char *verstr, *name;
6051 size_t namelen, verlen, newlen;
6052 char *newname, *p, leading_char;
6053 struct elf_link_hash_entry *newh;
6054
6055 leading_char = bfd_get_symbol_leading_char (output_bfd);
6056 name = d->pattern;
6057 namelen = strlen (name) + (leading_char != '\0');
6058 verstr = t->name;
6059 verlen = strlen (verstr);
6060 newlen = namelen + verlen + 3;
6061
6062 newname = (char *) bfd_malloc (newlen);
6063 if (newname == NULL)
6064 return FALSE;
6065 newname[0] = leading_char;
6066 memcpy (newname + (leading_char != '\0'), name, namelen);
6067
6068 /* Check the hidden versioned definition. */
6069 p = newname + namelen;
6070 *p++ = ELF_VER_CHR;
6071 memcpy (p, verstr, verlen + 1);
6072 newh = elf_link_hash_lookup (elf_hash_table (info),
6073 newname, FALSE, FALSE,
6074 FALSE);
6075 if (newh == NULL
6076 || (newh->root.type != bfd_link_hash_defined
6077 && newh->root.type != bfd_link_hash_defweak))
6078 {
6079 /* Check the default versioned definition. */
6080 *p++ = ELF_VER_CHR;
6081 memcpy (p, verstr, verlen + 1);
6082 newh = elf_link_hash_lookup (elf_hash_table (info),
6083 newname, FALSE, FALSE,
6084 FALSE);
6085 }
6086 free (newname);
6087
6088 /* Mark this version if there is a definition and it is
6089 not defined in a shared object. */
6090 if (newh != NULL
6091 && !newh->def_dynamic
6092 && (newh->root.type == bfd_link_hash_defined
6093 || newh->root.type == bfd_link_hash_defweak))
6094 d->symver = 1;
6095 }
6096
6097 /* Attach all the symbols to their version information. */
6098 asvinfo.info = info;
6099 asvinfo.failed = FALSE;
6100
6101 elf_link_hash_traverse (elf_hash_table (info),
6102 _bfd_elf_link_assign_sym_version,
6103 &asvinfo);
6104 if (asvinfo.failed)
6105 return FALSE;
6106
6107 if (!info->allow_undefined_version)
6108 {
6109 /* Check if all global versions have a definition. */
6110 bfd_boolean all_defined = TRUE;
6111 for (t = info->version_info; t != NULL; t = t->next)
6112 for (d = t->globals.list; d != NULL; d = d->next)
6113 if (d->literal && !d->symver && !d->script)
6114 {
6115 _bfd_error_handler
6116 (_("%s: undefined version: %s"),
6117 d->pattern, t->name);
6118 all_defined = FALSE;
6119 }
6120
6121 if (!all_defined)
6122 {
6123 bfd_set_error (bfd_error_bad_value);
6124 return FALSE;
6125 }
6126 }
6127
6128 /* Set up the version definition section. */
6129 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6130 BFD_ASSERT (s != NULL);
6131
6132 /* We may have created additional version definitions if we are
6133 just linking a regular application. */
6134 verdefs = info->version_info;
6135
6136 /* Skip anonymous version tag. */
6137 if (verdefs != NULL && verdefs->vernum == 0)
6138 verdefs = verdefs->next;
6139
6140 if (verdefs == NULL && !info->create_default_symver)
6141 s->flags |= SEC_EXCLUDE;
6142 else
6143 {
6144 unsigned int cdefs;
6145 bfd_size_type size;
6146 bfd_byte *p;
6147 Elf_Internal_Verdef def;
6148 Elf_Internal_Verdaux defaux;
6149 struct bfd_link_hash_entry *bh;
6150 struct elf_link_hash_entry *h;
6151 const char *name;
6152
6153 cdefs = 0;
6154 size = 0;
6155
6156 /* Make space for the base version. */
6157 size += sizeof (Elf_External_Verdef);
6158 size += sizeof (Elf_External_Verdaux);
6159 ++cdefs;
6160
6161 /* Make space for the default version. */
6162 if (info->create_default_symver)
6163 {
6164 size += sizeof (Elf_External_Verdef);
6165 ++cdefs;
6166 }
6167
6168 for (t = verdefs; t != NULL; t = t->next)
6169 {
6170 struct bfd_elf_version_deps *n;
6171
6172 /* Don't emit base version twice. */
6173 if (t->vernum == 0)
6174 continue;
6175
6176 size += sizeof (Elf_External_Verdef);
6177 size += sizeof (Elf_External_Verdaux);
6178 ++cdefs;
6179
6180 for (n = t->deps; n != NULL; n = n->next)
6181 size += sizeof (Elf_External_Verdaux);
6182 }
6183
6184 s->size = size;
6185 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6186 if (s->contents == NULL && s->size != 0)
6187 return FALSE;
6188
6189 /* Fill in the version definition section. */
6190
6191 p = s->contents;
6192
6193 def.vd_version = VER_DEF_CURRENT;
6194 def.vd_flags = VER_FLG_BASE;
6195 def.vd_ndx = 1;
6196 def.vd_cnt = 1;
6197 if (info->create_default_symver)
6198 {
6199 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6200 def.vd_next = sizeof (Elf_External_Verdef);
6201 }
6202 else
6203 {
6204 def.vd_aux = sizeof (Elf_External_Verdef);
6205 def.vd_next = (sizeof (Elf_External_Verdef)
6206 + sizeof (Elf_External_Verdaux));
6207 }
6208
6209 if (soname_indx != (size_t) -1)
6210 {
6211 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6212 soname_indx);
6213 def.vd_hash = bfd_elf_hash (soname);
6214 defaux.vda_name = soname_indx;
6215 name = soname;
6216 }
6217 else
6218 {
6219 size_t indx;
6220
6221 name = lbasename (output_bfd->filename);
6222 def.vd_hash = bfd_elf_hash (name);
6223 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6224 name, FALSE);
6225 if (indx == (size_t) -1)
6226 return FALSE;
6227 defaux.vda_name = indx;
6228 }
6229 defaux.vda_next = 0;
6230
6231 _bfd_elf_swap_verdef_out (output_bfd, &def,
6232 (Elf_External_Verdef *) p);
6233 p += sizeof (Elf_External_Verdef);
6234 if (info->create_default_symver)
6235 {
6236 /* Add a symbol representing this version. */
6237 bh = NULL;
6238 if (! (_bfd_generic_link_add_one_symbol
6239 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6240 0, NULL, FALSE,
6241 get_elf_backend_data (dynobj)->collect, &bh)))
6242 return FALSE;
6243 h = (struct elf_link_hash_entry *) bh;
6244 h->non_elf = 0;
6245 h->def_regular = 1;
6246 h->type = STT_OBJECT;
6247 h->verinfo.vertree = NULL;
6248
6249 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6250 return FALSE;
6251
6252 /* Create a duplicate of the base version with the same
6253 aux block, but different flags. */
6254 def.vd_flags = 0;
6255 def.vd_ndx = 2;
6256 def.vd_aux = sizeof (Elf_External_Verdef);
6257 if (verdefs)
6258 def.vd_next = (sizeof (Elf_External_Verdef)
6259 + sizeof (Elf_External_Verdaux));
6260 else
6261 def.vd_next = 0;
6262 _bfd_elf_swap_verdef_out (output_bfd, &def,
6263 (Elf_External_Verdef *) p);
6264 p += sizeof (Elf_External_Verdef);
6265 }
6266 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6267 (Elf_External_Verdaux *) p);
6268 p += sizeof (Elf_External_Verdaux);
6269
6270 for (t = verdefs; t != NULL; t = t->next)
6271 {
6272 unsigned int cdeps;
6273 struct bfd_elf_version_deps *n;
6274
6275 /* Don't emit the base version twice. */
6276 if (t->vernum == 0)
6277 continue;
6278
6279 cdeps = 0;
6280 for (n = t->deps; n != NULL; n = n->next)
6281 ++cdeps;
6282
6283 /* Add a symbol representing this version. */
6284 bh = NULL;
6285 if (! (_bfd_generic_link_add_one_symbol
6286 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6287 0, NULL, FALSE,
6288 get_elf_backend_data (dynobj)->collect, &bh)))
6289 return FALSE;
6290 h = (struct elf_link_hash_entry *) bh;
6291 h->non_elf = 0;
6292 h->def_regular = 1;
6293 h->type = STT_OBJECT;
6294 h->verinfo.vertree = t;
6295
6296 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6297 return FALSE;
6298
6299 def.vd_version = VER_DEF_CURRENT;
6300 def.vd_flags = 0;
6301 if (t->globals.list == NULL
6302 && t->locals.list == NULL
6303 && ! t->used)
6304 def.vd_flags |= VER_FLG_WEAK;
6305 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6306 def.vd_cnt = cdeps + 1;
6307 def.vd_hash = bfd_elf_hash (t->name);
6308 def.vd_aux = sizeof (Elf_External_Verdef);
6309 def.vd_next = 0;
6310
6311 /* If a basever node is next, it *must* be the last node in
6312 the chain, otherwise Verdef construction breaks. */
6313 if (t->next != NULL && t->next->vernum == 0)
6314 BFD_ASSERT (t->next->next == NULL);
6315
6316 if (t->next != NULL && t->next->vernum != 0)
6317 def.vd_next = (sizeof (Elf_External_Verdef)
6318 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6319
6320 _bfd_elf_swap_verdef_out (output_bfd, &def,
6321 (Elf_External_Verdef *) p);
6322 p += sizeof (Elf_External_Verdef);
6323
6324 defaux.vda_name = h->dynstr_index;
6325 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6326 h->dynstr_index);
6327 defaux.vda_next = 0;
6328 if (t->deps != NULL)
6329 defaux.vda_next = sizeof (Elf_External_Verdaux);
6330 t->name_indx = defaux.vda_name;
6331
6332 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6333 (Elf_External_Verdaux *) p);
6334 p += sizeof (Elf_External_Verdaux);
6335
6336 for (n = t->deps; n != NULL; n = n->next)
6337 {
6338 if (n->version_needed == NULL)
6339 {
6340 /* This can happen if there was an error in the
6341 version script. */
6342 defaux.vda_name = 0;
6343 }
6344 else
6345 {
6346 defaux.vda_name = n->version_needed->name_indx;
6347 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6348 defaux.vda_name);
6349 }
6350 if (n->next == NULL)
6351 defaux.vda_next = 0;
6352 else
6353 defaux.vda_next = sizeof (Elf_External_Verdaux);
6354
6355 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6356 (Elf_External_Verdaux *) p);
6357 p += sizeof (Elf_External_Verdaux);
6358 }
6359 }
6360
6361 elf_tdata (output_bfd)->cverdefs = cdefs;
6362 }
6363 }
6364
6365 bed = get_elf_backend_data (output_bfd);
6366
6367 if (info->gc_sections && bed->can_gc_sections)
6368 {
6369 struct elf_gc_sweep_symbol_info sweep_info;
6370
6371 /* Remove the symbols that were in the swept sections from the
6372 dynamic symbol table. */
6373 sweep_info.info = info;
6374 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
6375 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
6376 &sweep_info);
6377 }
6378
6379 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6380 {
6381 asection *s;
6382 struct elf_find_verdep_info sinfo;
6383
6384 /* Work out the size of the version reference section. */
6385
6386 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6387 BFD_ASSERT (s != NULL);
6388
6389 sinfo.info = info;
6390 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6391 if (sinfo.vers == 0)
6392 sinfo.vers = 1;
6393 sinfo.failed = FALSE;
6394
6395 elf_link_hash_traverse (elf_hash_table (info),
6396 _bfd_elf_link_find_version_dependencies,
6397 &sinfo);
6398 if (sinfo.failed)
6399 return FALSE;
6400
6401 if (elf_tdata (output_bfd)->verref == NULL)
6402 s->flags |= SEC_EXCLUDE;
6403 else
6404 {
6405 Elf_Internal_Verneed *vn;
6406 unsigned int size;
6407 unsigned int crefs;
6408 bfd_byte *p;
6409
6410 /* Build the version dependency section. */
6411 size = 0;
6412 crefs = 0;
6413 for (vn = elf_tdata (output_bfd)->verref;
6414 vn != NULL;
6415 vn = vn->vn_nextref)
6416 {
6417 Elf_Internal_Vernaux *a;
6418
6419 size += sizeof (Elf_External_Verneed);
6420 ++crefs;
6421 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6422 size += sizeof (Elf_External_Vernaux);
6423 }
6424
6425 s->size = size;
6426 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6427 if (s->contents == NULL)
6428 return FALSE;
6429
6430 p = s->contents;
6431 for (vn = elf_tdata (output_bfd)->verref;
6432 vn != NULL;
6433 vn = vn->vn_nextref)
6434 {
6435 unsigned int caux;
6436 Elf_Internal_Vernaux *a;
6437 size_t indx;
6438
6439 caux = 0;
6440 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6441 ++caux;
6442
6443 vn->vn_version = VER_NEED_CURRENT;
6444 vn->vn_cnt = caux;
6445 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6446 elf_dt_name (vn->vn_bfd) != NULL
6447 ? elf_dt_name (vn->vn_bfd)
6448 : lbasename (vn->vn_bfd->filename),
6449 FALSE);
6450 if (indx == (size_t) -1)
6451 return FALSE;
6452 vn->vn_file = indx;
6453 vn->vn_aux = sizeof (Elf_External_Verneed);
6454 if (vn->vn_nextref == NULL)
6455 vn->vn_next = 0;
6456 else
6457 vn->vn_next = (sizeof (Elf_External_Verneed)
6458 + caux * sizeof (Elf_External_Vernaux));
6459
6460 _bfd_elf_swap_verneed_out (output_bfd, vn,
6461 (Elf_External_Verneed *) p);
6462 p += sizeof (Elf_External_Verneed);
6463
6464 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6465 {
6466 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6467 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6468 a->vna_nodename, FALSE);
6469 if (indx == (size_t) -1)
6470 return FALSE;
6471 a->vna_name = indx;
6472 if (a->vna_nextptr == NULL)
6473 a->vna_next = 0;
6474 else
6475 a->vna_next = sizeof (Elf_External_Vernaux);
6476
6477 _bfd_elf_swap_vernaux_out (output_bfd, a,
6478 (Elf_External_Vernaux *) p);
6479 p += sizeof (Elf_External_Vernaux);
6480 }
6481 }
6482
6483 elf_tdata (output_bfd)->cverrefs = crefs;
6484 }
6485 }
6486
6487 /* Any syms created from now on start with -1 in
6488 got.refcount/offset and plt.refcount/offset. */
6489 elf_hash_table (info)->init_got_refcount
6490 = elf_hash_table (info)->init_got_offset;
6491 elf_hash_table (info)->init_plt_refcount
6492 = elf_hash_table (info)->init_plt_offset;
6493
6494 if (bfd_link_relocatable (info)
6495 && !_bfd_elf_size_group_sections (info))
6496 return FALSE;
6497
6498 /* The backend may have to create some sections regardless of whether
6499 we're dynamic or not. */
6500 if (bed->elf_backend_always_size_sections
6501 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
6502 return FALSE;
6503
6504 /* Determine any GNU_STACK segment requirements, after the backend
6505 has had a chance to set a default segment size. */
6506 if (info->execstack)
6507 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
6508 else if (info->noexecstack)
6509 elf_stack_flags (output_bfd) = PF_R | PF_W;
6510 else
6511 {
6512 bfd *inputobj;
6513 asection *notesec = NULL;
6514 int exec = 0;
6515
6516 for (inputobj = info->input_bfds;
6517 inputobj;
6518 inputobj = inputobj->link.next)
6519 {
6520 asection *s;
6521
6522 if (inputobj->flags
6523 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
6524 continue;
6525 s = inputobj->sections;
6526 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
6527 continue;
6528
6529 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
6530 if (s)
6531 {
6532 if (s->flags & SEC_CODE)
6533 exec = PF_X;
6534 notesec = s;
6535 }
6536 else if (bed->default_execstack)
6537 exec = PF_X;
6538 }
6539 if (notesec || info->stacksize > 0)
6540 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
6541 if (notesec && exec && bfd_link_relocatable (info)
6542 && notesec->output_section != bfd_abs_section_ptr)
6543 notesec->output_section->flags |= SEC_CODE;
6544 }
6545
6546 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6547 {
6548 struct elf_info_failed eif;
6549 struct elf_link_hash_entry *h;
6550 asection *dynstr;
6551 asection *s;
6552
6553 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
6554 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
6555
6556 if (info->symbolic)
6557 {
6558 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
6559 return FALSE;
6560 info->flags |= DF_SYMBOLIC;
6561 }
6562
6563 if (rpath != NULL)
6564 {
6565 size_t indx;
6566 bfd_vma tag;
6567
6568 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
6569 TRUE);
6570 if (indx == (size_t) -1)
6571 return FALSE;
6572
6573 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
6574 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
6575 return FALSE;
6576 }
6577
6578 if (filter_shlib != NULL)
6579 {
6580 size_t indx;
6581
6582 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6583 filter_shlib, TRUE);
6584 if (indx == (size_t) -1
6585 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
6586 return FALSE;
6587 }
6588
6589 if (auxiliary_filters != NULL)
6590 {
6591 const char * const *p;
6592
6593 for (p = auxiliary_filters; *p != NULL; p++)
6594 {
6595 size_t indx;
6596
6597 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6598 *p, TRUE);
6599 if (indx == (size_t) -1
6600 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
6601 return FALSE;
6602 }
6603 }
6604
6605 if (audit != NULL)
6606 {
6607 size_t indx;
6608
6609 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
6610 TRUE);
6611 if (indx == (size_t) -1
6612 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
6613 return FALSE;
6614 }
6615
6616 if (depaudit != NULL)
6617 {
6618 size_t indx;
6619
6620 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
6621 TRUE);
6622 if (indx == (size_t) -1
6623 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
6624 return FALSE;
6625 }
6626
6627 eif.info = info;
6628 eif.failed = FALSE;
6629
6630 /* Find all symbols which were defined in a dynamic object and make
6631 the backend pick a reasonable value for them. */
6632 elf_link_hash_traverse (elf_hash_table (info),
6633 _bfd_elf_adjust_dynamic_symbol,
6634 &eif);
6635 if (eif.failed)
6636 return FALSE;
6637
6638 /* Add some entries to the .dynamic section. We fill in some of the
6639 values later, in bfd_elf_final_link, but we must add the entries
6640 now so that we know the final size of the .dynamic section. */
6641
6642 /* If there are initialization and/or finalization functions to
6643 call then add the corresponding DT_INIT/DT_FINI entries. */
6644 h = (info->init_function
6645 ? elf_link_hash_lookup (elf_hash_table (info),
6646 info->init_function, FALSE,
6647 FALSE, FALSE)
6648 : NULL);
6649 if (h != NULL
6650 && (h->ref_regular
6651 || h->def_regular))
6652 {
6653 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
6654 return FALSE;
6655 }
6656 h = (info->fini_function
6657 ? elf_link_hash_lookup (elf_hash_table (info),
6658 info->fini_function, FALSE,
6659 FALSE, FALSE)
6660 : NULL);
6661 if (h != NULL
6662 && (h->ref_regular
6663 || h->def_regular))
6664 {
6665 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
6666 return FALSE;
6667 }
6668
6669 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
6670 if (s != NULL && s->linker_has_input)
6671 {
6672 /* DT_PREINIT_ARRAY is not allowed in shared library. */
6673 if (! bfd_link_executable (info))
6674 {
6675 bfd *sub;
6676 asection *o;
6677
6678 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
6679 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
6680 && (o = sub->sections) != NULL
6681 && o->sec_info_type != SEC_INFO_TYPE_JUST_SYMS)
6682 for (o = sub->sections; o != NULL; o = o->next)
6683 if (elf_section_data (o)->this_hdr.sh_type
6684 == SHT_PREINIT_ARRAY)
6685 {
6686 _bfd_error_handler
6687 (_("%B: .preinit_array section is not allowed in DSO"),
6688 sub);
6689 break;
6690 }
6691
6692 bfd_set_error (bfd_error_nonrepresentable_section);
6693 return FALSE;
6694 }
6695
6696 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6697 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
6698 return FALSE;
6699 }
6700 s = bfd_get_section_by_name (output_bfd, ".init_array");
6701 if (s != NULL && s->linker_has_input)
6702 {
6703 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
6704 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
6705 return FALSE;
6706 }
6707 s = bfd_get_section_by_name (output_bfd, ".fini_array");
6708 if (s != NULL && s->linker_has_input)
6709 {
6710 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
6711 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
6712 return FALSE;
6713 }
6714
6715 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
6716 /* If .dynstr is excluded from the link, we don't want any of
6717 these tags. Strictly, we should be checking each section
6718 individually; This quick check covers for the case where
6719 someone does a /DISCARD/ : { *(*) }. */
6720 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6721 {
6722 bfd_size_type strsize;
6723
6724 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6725 if ((info->emit_hash
6726 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6727 || (info->emit_gnu_hash
6728 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6729 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6730 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6731 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6732 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6733 bed->s->sizeof_sym))
6734 return FALSE;
6735 }
6736 }
6737
6738 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6739 return FALSE;
6740
6741 /* The backend must work out the sizes of all the other dynamic
6742 sections. */
6743 if (dynobj != NULL
6744 && bed->elf_backend_size_dynamic_sections != NULL
6745 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6746 return FALSE;
6747
6748 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6749 {
6750 unsigned long section_sym_count;
6751
6752 if (elf_tdata (output_bfd)->cverdefs)
6753 {
6754 unsigned int crefs = elf_tdata (output_bfd)->cverdefs;
6755
6756 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6757 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs))
6758 return FALSE;
6759 }
6760
6761 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6762 {
6763 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6764 return FALSE;
6765 }
6766 else if (info->flags & DF_BIND_NOW)
6767 {
6768 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6769 return FALSE;
6770 }
6771
6772 if (info->flags_1)
6773 {
6774 if (bfd_link_executable (info))
6775 info->flags_1 &= ~ (DF_1_INITFIRST
6776 | DF_1_NODELETE
6777 | DF_1_NOOPEN);
6778 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6779 return FALSE;
6780 }
6781
6782 if (elf_tdata (output_bfd)->cverrefs)
6783 {
6784 unsigned int crefs = elf_tdata (output_bfd)->cverrefs;
6785
6786 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6787 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6788 return FALSE;
6789 }
6790
6791 if ((elf_tdata (output_bfd)->cverrefs == 0
6792 && elf_tdata (output_bfd)->cverdefs == 0)
6793 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6794 &section_sym_count) <= 1)
6795 {
6796 asection *s;
6797
6798 s = bfd_get_linker_section (dynobj, ".gnu.version");
6799 s->flags |= SEC_EXCLUDE;
6800 }
6801 }
6802 return TRUE;
6803 }
6804
6805 /* Find the first non-excluded output section. We'll use its
6806 section symbol for some emitted relocs. */
6807 void
6808 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6809 {
6810 asection *s;
6811
6812 for (s = output_bfd->sections; s != NULL; s = s->next)
6813 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6814 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6815 {
6816 elf_hash_table (info)->text_index_section = s;
6817 break;
6818 }
6819 }
6820
6821 /* Find two non-excluded output sections, one for code, one for data.
6822 We'll use their section symbols for some emitted relocs. */
6823 void
6824 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6825 {
6826 asection *s;
6827
6828 /* Data first, since setting text_index_section changes
6829 _bfd_elf_link_omit_section_dynsym. */
6830 for (s = output_bfd->sections; s != NULL; s = s->next)
6831 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6832 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6833 {
6834 elf_hash_table (info)->data_index_section = s;
6835 break;
6836 }
6837
6838 for (s = output_bfd->sections; s != NULL; s = s->next)
6839 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6840 == (SEC_ALLOC | SEC_READONLY))
6841 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6842 {
6843 elf_hash_table (info)->text_index_section = s;
6844 break;
6845 }
6846
6847 if (elf_hash_table (info)->text_index_section == NULL)
6848 elf_hash_table (info)->text_index_section
6849 = elf_hash_table (info)->data_index_section;
6850 }
6851
6852 bfd_boolean
6853 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6854 {
6855 const struct elf_backend_data *bed;
6856 unsigned long section_sym_count;
6857 bfd_size_type dynsymcount = 0;
6858
6859 if (!is_elf_hash_table (info->hash))
6860 return TRUE;
6861
6862 bed = get_elf_backend_data (output_bfd);
6863 (*bed->elf_backend_init_index_section) (output_bfd, info);
6864
6865 /* Assign dynsym indices. In a shared library we generate a section
6866 symbol for each output section, which come first. Next come all
6867 of the back-end allocated local dynamic syms, followed by the rest
6868 of the global symbols.
6869
6870 This is usually not needed for static binaries, however backends
6871 can request to always do it, e.g. the MIPS backend uses dynamic
6872 symbol counts to lay out GOT, which will be produced in the
6873 presence of GOT relocations even in static binaries (holding fixed
6874 data in that case, to satisfy those relocations). */
6875
6876 if (elf_hash_table (info)->dynamic_sections_created
6877 || bed->always_renumber_dynsyms)
6878 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6879 &section_sym_count);
6880
6881 if (elf_hash_table (info)->dynamic_sections_created)
6882 {
6883 bfd *dynobj;
6884 asection *s;
6885 unsigned int dtagcount;
6886
6887 dynobj = elf_hash_table (info)->dynobj;
6888
6889 /* Work out the size of the symbol version section. */
6890 s = bfd_get_linker_section (dynobj, ".gnu.version");
6891 BFD_ASSERT (s != NULL);
6892 if ((s->flags & SEC_EXCLUDE) == 0)
6893 {
6894 s->size = dynsymcount * sizeof (Elf_External_Versym);
6895 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6896 if (s->contents == NULL)
6897 return FALSE;
6898
6899 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6900 return FALSE;
6901 }
6902
6903 /* Set the size of the .dynsym and .hash sections. We counted
6904 the number of dynamic symbols in elf_link_add_object_symbols.
6905 We will build the contents of .dynsym and .hash when we build
6906 the final symbol table, because until then we do not know the
6907 correct value to give the symbols. We built the .dynstr
6908 section as we went along in elf_link_add_object_symbols. */
6909 s = elf_hash_table (info)->dynsym;
6910 BFD_ASSERT (s != NULL);
6911 s->size = dynsymcount * bed->s->sizeof_sym;
6912
6913 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6914 if (s->contents == NULL)
6915 return FALSE;
6916
6917 /* The first entry in .dynsym is a dummy symbol. Clear all the
6918 section syms, in case we don't output them all. */
6919 ++section_sym_count;
6920 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6921
6922 elf_hash_table (info)->bucketcount = 0;
6923
6924 /* Compute the size of the hashing table. As a side effect this
6925 computes the hash values for all the names we export. */
6926 if (info->emit_hash)
6927 {
6928 unsigned long int *hashcodes;
6929 struct hash_codes_info hashinf;
6930 bfd_size_type amt;
6931 unsigned long int nsyms;
6932 size_t bucketcount;
6933 size_t hash_entry_size;
6934
6935 /* Compute the hash values for all exported symbols. At the same
6936 time store the values in an array so that we could use them for
6937 optimizations. */
6938 amt = dynsymcount * sizeof (unsigned long int);
6939 hashcodes = (unsigned long int *) bfd_malloc (amt);
6940 if (hashcodes == NULL)
6941 return FALSE;
6942 hashinf.hashcodes = hashcodes;
6943 hashinf.error = FALSE;
6944
6945 /* Put all hash values in HASHCODES. */
6946 elf_link_hash_traverse (elf_hash_table (info),
6947 elf_collect_hash_codes, &hashinf);
6948 if (hashinf.error)
6949 {
6950 free (hashcodes);
6951 return FALSE;
6952 }
6953
6954 nsyms = hashinf.hashcodes - hashcodes;
6955 bucketcount
6956 = compute_bucket_count (info, hashcodes, nsyms, 0);
6957 free (hashcodes);
6958
6959 if (bucketcount == 0 && nsyms > 0)
6960 return FALSE;
6961
6962 elf_hash_table (info)->bucketcount = bucketcount;
6963
6964 s = bfd_get_linker_section (dynobj, ".hash");
6965 BFD_ASSERT (s != NULL);
6966 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6967 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6968 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6969 if (s->contents == NULL)
6970 return FALSE;
6971
6972 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6973 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6974 s->contents + hash_entry_size);
6975 }
6976
6977 if (info->emit_gnu_hash)
6978 {
6979 size_t i, cnt;
6980 unsigned char *contents;
6981 struct collect_gnu_hash_codes cinfo;
6982 bfd_size_type amt;
6983 size_t bucketcount;
6984
6985 memset (&cinfo, 0, sizeof (cinfo));
6986
6987 /* Compute the hash values for all exported symbols. At the same
6988 time store the values in an array so that we could use them for
6989 optimizations. */
6990 amt = dynsymcount * 2 * sizeof (unsigned long int);
6991 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6992 if (cinfo.hashcodes == NULL)
6993 return FALSE;
6994
6995 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6996 cinfo.min_dynindx = -1;
6997 cinfo.output_bfd = output_bfd;
6998 cinfo.bed = bed;
6999
7000 /* Put all hash values in HASHCODES. */
7001 elf_link_hash_traverse (elf_hash_table (info),
7002 elf_collect_gnu_hash_codes, &cinfo);
7003 if (cinfo.error)
7004 {
7005 free (cinfo.hashcodes);
7006 return FALSE;
7007 }
7008
7009 bucketcount
7010 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
7011
7012 if (bucketcount == 0)
7013 {
7014 free (cinfo.hashcodes);
7015 return FALSE;
7016 }
7017
7018 s = bfd_get_linker_section (dynobj, ".gnu.hash");
7019 BFD_ASSERT (s != NULL);
7020
7021 if (cinfo.nsyms == 0)
7022 {
7023 /* Empty .gnu.hash section is special. */
7024 BFD_ASSERT (cinfo.min_dynindx == -1);
7025 free (cinfo.hashcodes);
7026 s->size = 5 * 4 + bed->s->arch_size / 8;
7027 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7028 if (contents == NULL)
7029 return FALSE;
7030 s->contents = contents;
7031 /* 1 empty bucket. */
7032 bfd_put_32 (output_bfd, 1, contents);
7033 /* SYMIDX above the special symbol 0. */
7034 bfd_put_32 (output_bfd, 1, contents + 4);
7035 /* Just one word for bitmask. */
7036 bfd_put_32 (output_bfd, 1, contents + 8);
7037 /* Only hash fn bloom filter. */
7038 bfd_put_32 (output_bfd, 0, contents + 12);
7039 /* No hashes are valid - empty bitmask. */
7040 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
7041 /* No hashes in the only bucket. */
7042 bfd_put_32 (output_bfd, 0,
7043 contents + 16 + bed->s->arch_size / 8);
7044 }
7045 else
7046 {
7047 unsigned long int maskwords, maskbitslog2, x;
7048 BFD_ASSERT (cinfo.min_dynindx != -1);
7049
7050 x = cinfo.nsyms;
7051 maskbitslog2 = 1;
7052 while ((x >>= 1) != 0)
7053 ++maskbitslog2;
7054 if (maskbitslog2 < 3)
7055 maskbitslog2 = 5;
7056 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
7057 maskbitslog2 = maskbitslog2 + 3;
7058 else
7059 maskbitslog2 = maskbitslog2 + 2;
7060 if (bed->s->arch_size == 64)
7061 {
7062 if (maskbitslog2 == 5)
7063 maskbitslog2 = 6;
7064 cinfo.shift1 = 6;
7065 }
7066 else
7067 cinfo.shift1 = 5;
7068 cinfo.mask = (1 << cinfo.shift1) - 1;
7069 cinfo.shift2 = maskbitslog2;
7070 cinfo.maskbits = 1 << maskbitslog2;
7071 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
7072 amt = bucketcount * sizeof (unsigned long int) * 2;
7073 amt += maskwords * sizeof (bfd_vma);
7074 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
7075 if (cinfo.bitmask == NULL)
7076 {
7077 free (cinfo.hashcodes);
7078 return FALSE;
7079 }
7080
7081 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
7082 cinfo.indx = cinfo.counts + bucketcount;
7083 cinfo.symindx = dynsymcount - cinfo.nsyms;
7084 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
7085
7086 /* Determine how often each hash bucket is used. */
7087 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
7088 for (i = 0; i < cinfo.nsyms; ++i)
7089 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
7090
7091 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
7092 if (cinfo.counts[i] != 0)
7093 {
7094 cinfo.indx[i] = cnt;
7095 cnt += cinfo.counts[i];
7096 }
7097 BFD_ASSERT (cnt == dynsymcount);
7098 cinfo.bucketcount = bucketcount;
7099 cinfo.local_indx = cinfo.min_dynindx;
7100
7101 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
7102 s->size += cinfo.maskbits / 8;
7103 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7104 if (contents == NULL)
7105 {
7106 free (cinfo.bitmask);
7107 free (cinfo.hashcodes);
7108 return FALSE;
7109 }
7110
7111 s->contents = contents;
7112 bfd_put_32 (output_bfd, bucketcount, contents);
7113 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
7114 bfd_put_32 (output_bfd, maskwords, contents + 8);
7115 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
7116 contents += 16 + cinfo.maskbits / 8;
7117
7118 for (i = 0; i < bucketcount; ++i)
7119 {
7120 if (cinfo.counts[i] == 0)
7121 bfd_put_32 (output_bfd, 0, contents);
7122 else
7123 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
7124 contents += 4;
7125 }
7126
7127 cinfo.contents = contents;
7128
7129 /* Renumber dynamic symbols, populate .gnu.hash section. */
7130 elf_link_hash_traverse (elf_hash_table (info),
7131 elf_renumber_gnu_hash_syms, &cinfo);
7132
7133 contents = s->contents + 16;
7134 for (i = 0; i < maskwords; ++i)
7135 {
7136 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
7137 contents);
7138 contents += bed->s->arch_size / 8;
7139 }
7140
7141 free (cinfo.bitmask);
7142 free (cinfo.hashcodes);
7143 }
7144 }
7145
7146 s = bfd_get_linker_section (dynobj, ".dynstr");
7147 BFD_ASSERT (s != NULL);
7148
7149 elf_finalize_dynstr (output_bfd, info);
7150
7151 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7152
7153 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
7154 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7155 return FALSE;
7156 }
7157
7158 return TRUE;
7159 }
7160 \f
7161 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
7162
7163 static void
7164 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7165 asection *sec)
7166 {
7167 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7168 sec->sec_info_type = SEC_INFO_TYPE_NONE;
7169 }
7170
7171 /* Finish SHF_MERGE section merging. */
7172
7173 bfd_boolean
7174 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7175 {
7176 bfd *ibfd;
7177 asection *sec;
7178
7179 if (!is_elf_hash_table (info->hash))
7180 return FALSE;
7181
7182 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7183 if ((ibfd->flags & DYNAMIC) == 0
7184 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7185 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7186 == get_elf_backend_data (obfd)->s->elfclass))
7187 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7188 if ((sec->flags & SEC_MERGE) != 0
7189 && !bfd_is_abs_section (sec->output_section))
7190 {
7191 struct bfd_elf_section_data *secdata;
7192
7193 secdata = elf_section_data (sec);
7194 if (! _bfd_add_merge_section (obfd,
7195 &elf_hash_table (info)->merge_info,
7196 sec, &secdata->sec_info))
7197 return FALSE;
7198 else if (secdata->sec_info)
7199 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7200 }
7201
7202 if (elf_hash_table (info)->merge_info != NULL)
7203 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7204 merge_sections_remove_hook);
7205 return TRUE;
7206 }
7207
7208 /* Create an entry in an ELF linker hash table. */
7209
7210 struct bfd_hash_entry *
7211 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7212 struct bfd_hash_table *table,
7213 const char *string)
7214 {
7215 /* Allocate the structure if it has not already been allocated by a
7216 subclass. */
7217 if (entry == NULL)
7218 {
7219 entry = (struct bfd_hash_entry *)
7220 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7221 if (entry == NULL)
7222 return entry;
7223 }
7224
7225 /* Call the allocation method of the superclass. */
7226 entry = _bfd_link_hash_newfunc (entry, table, string);
7227 if (entry != NULL)
7228 {
7229 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7230 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7231
7232 /* Set local fields. */
7233 ret->indx = -1;
7234 ret->dynindx = -1;
7235 ret->got = htab->init_got_refcount;
7236 ret->plt = htab->init_plt_refcount;
7237 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7238 - offsetof (struct elf_link_hash_entry, size)));
7239 /* Assume that we have been called by a non-ELF symbol reader.
7240 This flag is then reset by the code which reads an ELF input
7241 file. This ensures that a symbol created by a non-ELF symbol
7242 reader will have the flag set correctly. */
7243 ret->non_elf = 1;
7244 }
7245
7246 return entry;
7247 }
7248
7249 /* Copy data from an indirect symbol to its direct symbol, hiding the
7250 old indirect symbol. Also used for copying flags to a weakdef. */
7251
7252 void
7253 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7254 struct elf_link_hash_entry *dir,
7255 struct elf_link_hash_entry *ind)
7256 {
7257 struct elf_link_hash_table *htab;
7258
7259 /* Copy down any references that we may have already seen to the
7260 symbol which just became indirect. */
7261
7262 if (dir->versioned != versioned_hidden)
7263 dir->ref_dynamic |= ind->ref_dynamic;
7264 dir->ref_regular |= ind->ref_regular;
7265 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7266 dir->non_got_ref |= ind->non_got_ref;
7267 dir->needs_plt |= ind->needs_plt;
7268 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7269
7270 if (ind->root.type != bfd_link_hash_indirect)
7271 return;
7272
7273 /* Copy over the global and procedure linkage table refcount entries.
7274 These may have been already set up by a check_relocs routine. */
7275 htab = elf_hash_table (info);
7276 if (ind->got.refcount > htab->init_got_refcount.refcount)
7277 {
7278 if (dir->got.refcount < 0)
7279 dir->got.refcount = 0;
7280 dir->got.refcount += ind->got.refcount;
7281 ind->got.refcount = htab->init_got_refcount.refcount;
7282 }
7283
7284 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7285 {
7286 if (dir->plt.refcount < 0)
7287 dir->plt.refcount = 0;
7288 dir->plt.refcount += ind->plt.refcount;
7289 ind->plt.refcount = htab->init_plt_refcount.refcount;
7290 }
7291
7292 if (ind->dynindx != -1)
7293 {
7294 if (dir->dynindx != -1)
7295 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7296 dir->dynindx = ind->dynindx;
7297 dir->dynstr_index = ind->dynstr_index;
7298 ind->dynindx = -1;
7299 ind->dynstr_index = 0;
7300 }
7301 }
7302
7303 void
7304 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7305 struct elf_link_hash_entry *h,
7306 bfd_boolean force_local)
7307 {
7308 /* STT_GNU_IFUNC symbol must go through PLT. */
7309 if (h->type != STT_GNU_IFUNC)
7310 {
7311 h->plt = elf_hash_table (info)->init_plt_offset;
7312 h->needs_plt = 0;
7313 }
7314 if (force_local)
7315 {
7316 h->forced_local = 1;
7317 if (h->dynindx != -1)
7318 {
7319 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7320 h->dynstr_index);
7321 h->dynindx = -1;
7322 h->dynstr_index = 0;
7323 }
7324 }
7325 }
7326
7327 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7328 caller. */
7329
7330 bfd_boolean
7331 _bfd_elf_link_hash_table_init
7332 (struct elf_link_hash_table *table,
7333 bfd *abfd,
7334 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7335 struct bfd_hash_table *,
7336 const char *),
7337 unsigned int entsize,
7338 enum elf_target_id target_id)
7339 {
7340 bfd_boolean ret;
7341 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7342
7343 table->init_got_refcount.refcount = can_refcount - 1;
7344 table->init_plt_refcount.refcount = can_refcount - 1;
7345 table->init_got_offset.offset = -(bfd_vma) 1;
7346 table->init_plt_offset.offset = -(bfd_vma) 1;
7347 /* The first dynamic symbol is a dummy. */
7348 table->dynsymcount = 1;
7349
7350 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7351
7352 table->root.type = bfd_link_elf_hash_table;
7353 table->hash_table_id = target_id;
7354
7355 return ret;
7356 }
7357
7358 /* Create an ELF linker hash table. */
7359
7360 struct bfd_link_hash_table *
7361 _bfd_elf_link_hash_table_create (bfd *abfd)
7362 {
7363 struct elf_link_hash_table *ret;
7364 bfd_size_type amt = sizeof (struct elf_link_hash_table);
7365
7366 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7367 if (ret == NULL)
7368 return NULL;
7369
7370 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7371 sizeof (struct elf_link_hash_entry),
7372 GENERIC_ELF_DATA))
7373 {
7374 free (ret);
7375 return NULL;
7376 }
7377 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7378
7379 return &ret->root;
7380 }
7381
7382 /* Destroy an ELF linker hash table. */
7383
7384 void
7385 _bfd_elf_link_hash_table_free (bfd *obfd)
7386 {
7387 struct elf_link_hash_table *htab;
7388
7389 htab = (struct elf_link_hash_table *) obfd->link.hash;
7390 if (htab->dynstr != NULL)
7391 _bfd_elf_strtab_free (htab->dynstr);
7392 _bfd_merge_sections_free (htab->merge_info);
7393 _bfd_generic_link_hash_table_free (obfd);
7394 }
7395
7396 /* This is a hook for the ELF emulation code in the generic linker to
7397 tell the backend linker what file name to use for the DT_NEEDED
7398 entry for a dynamic object. */
7399
7400 void
7401 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7402 {
7403 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7404 && bfd_get_format (abfd) == bfd_object)
7405 elf_dt_name (abfd) = name;
7406 }
7407
7408 int
7409 bfd_elf_get_dyn_lib_class (bfd *abfd)
7410 {
7411 int lib_class;
7412 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7413 && bfd_get_format (abfd) == bfd_object)
7414 lib_class = elf_dyn_lib_class (abfd);
7415 else
7416 lib_class = 0;
7417 return lib_class;
7418 }
7419
7420 void
7421 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7422 {
7423 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7424 && bfd_get_format (abfd) == bfd_object)
7425 elf_dyn_lib_class (abfd) = lib_class;
7426 }
7427
7428 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7429 the linker ELF emulation code. */
7430
7431 struct bfd_link_needed_list *
7432 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7433 struct bfd_link_info *info)
7434 {
7435 if (! is_elf_hash_table (info->hash))
7436 return NULL;
7437 return elf_hash_table (info)->needed;
7438 }
7439
7440 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7441 hook for the linker ELF emulation code. */
7442
7443 struct bfd_link_needed_list *
7444 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7445 struct bfd_link_info *info)
7446 {
7447 if (! is_elf_hash_table (info->hash))
7448 return NULL;
7449 return elf_hash_table (info)->runpath;
7450 }
7451
7452 /* Get the name actually used for a dynamic object for a link. This
7453 is the SONAME entry if there is one. Otherwise, it is the string
7454 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7455
7456 const char *
7457 bfd_elf_get_dt_soname (bfd *abfd)
7458 {
7459 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7460 && bfd_get_format (abfd) == bfd_object)
7461 return elf_dt_name (abfd);
7462 return NULL;
7463 }
7464
7465 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7466 the ELF linker emulation code. */
7467
7468 bfd_boolean
7469 bfd_elf_get_bfd_needed_list (bfd *abfd,
7470 struct bfd_link_needed_list **pneeded)
7471 {
7472 asection *s;
7473 bfd_byte *dynbuf = NULL;
7474 unsigned int elfsec;
7475 unsigned long shlink;
7476 bfd_byte *extdyn, *extdynend;
7477 size_t extdynsize;
7478 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7479
7480 *pneeded = NULL;
7481
7482 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7483 || bfd_get_format (abfd) != bfd_object)
7484 return TRUE;
7485
7486 s = bfd_get_section_by_name (abfd, ".dynamic");
7487 if (s == NULL || s->size == 0)
7488 return TRUE;
7489
7490 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7491 goto error_return;
7492
7493 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7494 if (elfsec == SHN_BAD)
7495 goto error_return;
7496
7497 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7498
7499 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7500 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7501
7502 extdyn = dynbuf;
7503 extdynend = extdyn + s->size;
7504 for (; extdyn < extdynend; extdyn += extdynsize)
7505 {
7506 Elf_Internal_Dyn dyn;
7507
7508 (*swap_dyn_in) (abfd, extdyn, &dyn);
7509
7510 if (dyn.d_tag == DT_NULL)
7511 break;
7512
7513 if (dyn.d_tag == DT_NEEDED)
7514 {
7515 const char *string;
7516 struct bfd_link_needed_list *l;
7517 unsigned int tagv = dyn.d_un.d_val;
7518 bfd_size_type amt;
7519
7520 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7521 if (string == NULL)
7522 goto error_return;
7523
7524 amt = sizeof *l;
7525 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7526 if (l == NULL)
7527 goto error_return;
7528
7529 l->by = abfd;
7530 l->name = string;
7531 l->next = *pneeded;
7532 *pneeded = l;
7533 }
7534 }
7535
7536 free (dynbuf);
7537
7538 return TRUE;
7539
7540 error_return:
7541 if (dynbuf != NULL)
7542 free (dynbuf);
7543 return FALSE;
7544 }
7545
7546 struct elf_symbuf_symbol
7547 {
7548 unsigned long st_name; /* Symbol name, index in string tbl */
7549 unsigned char st_info; /* Type and binding attributes */
7550 unsigned char st_other; /* Visibilty, and target specific */
7551 };
7552
7553 struct elf_symbuf_head
7554 {
7555 struct elf_symbuf_symbol *ssym;
7556 size_t count;
7557 unsigned int st_shndx;
7558 };
7559
7560 struct elf_symbol
7561 {
7562 union
7563 {
7564 Elf_Internal_Sym *isym;
7565 struct elf_symbuf_symbol *ssym;
7566 } u;
7567 const char *name;
7568 };
7569
7570 /* Sort references to symbols by ascending section number. */
7571
7572 static int
7573 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7574 {
7575 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7576 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7577
7578 return s1->st_shndx - s2->st_shndx;
7579 }
7580
7581 static int
7582 elf_sym_name_compare (const void *arg1, const void *arg2)
7583 {
7584 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7585 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7586 return strcmp (s1->name, s2->name);
7587 }
7588
7589 static struct elf_symbuf_head *
7590 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
7591 {
7592 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7593 struct elf_symbuf_symbol *ssym;
7594 struct elf_symbuf_head *ssymbuf, *ssymhead;
7595 size_t i, shndx_count, total_size;
7596
7597 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7598 if (indbuf == NULL)
7599 return NULL;
7600
7601 for (ind = indbuf, i = 0; i < symcount; i++)
7602 if (isymbuf[i].st_shndx != SHN_UNDEF)
7603 *ind++ = &isymbuf[i];
7604 indbufend = ind;
7605
7606 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7607 elf_sort_elf_symbol);
7608
7609 shndx_count = 0;
7610 if (indbufend > indbuf)
7611 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7612 if (ind[0]->st_shndx != ind[1]->st_shndx)
7613 shndx_count++;
7614
7615 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7616 + (indbufend - indbuf) * sizeof (*ssym));
7617 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7618 if (ssymbuf == NULL)
7619 {
7620 free (indbuf);
7621 return NULL;
7622 }
7623
7624 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7625 ssymbuf->ssym = NULL;
7626 ssymbuf->count = shndx_count;
7627 ssymbuf->st_shndx = 0;
7628 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7629 {
7630 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7631 {
7632 ssymhead++;
7633 ssymhead->ssym = ssym;
7634 ssymhead->count = 0;
7635 ssymhead->st_shndx = (*ind)->st_shndx;
7636 }
7637 ssym->st_name = (*ind)->st_name;
7638 ssym->st_info = (*ind)->st_info;
7639 ssym->st_other = (*ind)->st_other;
7640 ssymhead->count++;
7641 }
7642 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
7643 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7644 == total_size));
7645
7646 free (indbuf);
7647 return ssymbuf;
7648 }
7649
7650 /* Check if 2 sections define the same set of local and global
7651 symbols. */
7652
7653 static bfd_boolean
7654 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7655 struct bfd_link_info *info)
7656 {
7657 bfd *bfd1, *bfd2;
7658 const struct elf_backend_data *bed1, *bed2;
7659 Elf_Internal_Shdr *hdr1, *hdr2;
7660 size_t symcount1, symcount2;
7661 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7662 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7663 Elf_Internal_Sym *isym, *isymend;
7664 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7665 size_t count1, count2, i;
7666 unsigned int shndx1, shndx2;
7667 bfd_boolean result;
7668
7669 bfd1 = sec1->owner;
7670 bfd2 = sec2->owner;
7671
7672 /* Both sections have to be in ELF. */
7673 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7674 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7675 return FALSE;
7676
7677 if (elf_section_type (sec1) != elf_section_type (sec2))
7678 return FALSE;
7679
7680 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7681 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7682 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7683 return FALSE;
7684
7685 bed1 = get_elf_backend_data (bfd1);
7686 bed2 = get_elf_backend_data (bfd2);
7687 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7688 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7689 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7690 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7691
7692 if (symcount1 == 0 || symcount2 == 0)
7693 return FALSE;
7694
7695 result = FALSE;
7696 isymbuf1 = NULL;
7697 isymbuf2 = NULL;
7698 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7699 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7700
7701 if (ssymbuf1 == NULL)
7702 {
7703 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7704 NULL, NULL, NULL);
7705 if (isymbuf1 == NULL)
7706 goto done;
7707
7708 if (!info->reduce_memory_overheads)
7709 elf_tdata (bfd1)->symbuf = ssymbuf1
7710 = elf_create_symbuf (symcount1, isymbuf1);
7711 }
7712
7713 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7714 {
7715 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7716 NULL, NULL, NULL);
7717 if (isymbuf2 == NULL)
7718 goto done;
7719
7720 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7721 elf_tdata (bfd2)->symbuf = ssymbuf2
7722 = elf_create_symbuf (symcount2, isymbuf2);
7723 }
7724
7725 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7726 {
7727 /* Optimized faster version. */
7728 size_t lo, hi, mid;
7729 struct elf_symbol *symp;
7730 struct elf_symbuf_symbol *ssym, *ssymend;
7731
7732 lo = 0;
7733 hi = ssymbuf1->count;
7734 ssymbuf1++;
7735 count1 = 0;
7736 while (lo < hi)
7737 {
7738 mid = (lo + hi) / 2;
7739 if (shndx1 < ssymbuf1[mid].st_shndx)
7740 hi = mid;
7741 else if (shndx1 > ssymbuf1[mid].st_shndx)
7742 lo = mid + 1;
7743 else
7744 {
7745 count1 = ssymbuf1[mid].count;
7746 ssymbuf1 += mid;
7747 break;
7748 }
7749 }
7750
7751 lo = 0;
7752 hi = ssymbuf2->count;
7753 ssymbuf2++;
7754 count2 = 0;
7755 while (lo < hi)
7756 {
7757 mid = (lo + hi) / 2;
7758 if (shndx2 < ssymbuf2[mid].st_shndx)
7759 hi = mid;
7760 else if (shndx2 > ssymbuf2[mid].st_shndx)
7761 lo = mid + 1;
7762 else
7763 {
7764 count2 = ssymbuf2[mid].count;
7765 ssymbuf2 += mid;
7766 break;
7767 }
7768 }
7769
7770 if (count1 == 0 || count2 == 0 || count1 != count2)
7771 goto done;
7772
7773 symtable1
7774 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7775 symtable2
7776 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7777 if (symtable1 == NULL || symtable2 == NULL)
7778 goto done;
7779
7780 symp = symtable1;
7781 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7782 ssym < ssymend; ssym++, symp++)
7783 {
7784 symp->u.ssym = ssym;
7785 symp->name = bfd_elf_string_from_elf_section (bfd1,
7786 hdr1->sh_link,
7787 ssym->st_name);
7788 }
7789
7790 symp = symtable2;
7791 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7792 ssym < ssymend; ssym++, symp++)
7793 {
7794 symp->u.ssym = ssym;
7795 symp->name = bfd_elf_string_from_elf_section (bfd2,
7796 hdr2->sh_link,
7797 ssym->st_name);
7798 }
7799
7800 /* Sort symbol by name. */
7801 qsort (symtable1, count1, sizeof (struct elf_symbol),
7802 elf_sym_name_compare);
7803 qsort (symtable2, count1, sizeof (struct elf_symbol),
7804 elf_sym_name_compare);
7805
7806 for (i = 0; i < count1; i++)
7807 /* Two symbols must have the same binding, type and name. */
7808 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7809 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7810 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7811 goto done;
7812
7813 result = TRUE;
7814 goto done;
7815 }
7816
7817 symtable1 = (struct elf_symbol *)
7818 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7819 symtable2 = (struct elf_symbol *)
7820 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7821 if (symtable1 == NULL || symtable2 == NULL)
7822 goto done;
7823
7824 /* Count definitions in the section. */
7825 count1 = 0;
7826 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7827 if (isym->st_shndx == shndx1)
7828 symtable1[count1++].u.isym = isym;
7829
7830 count2 = 0;
7831 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7832 if (isym->st_shndx == shndx2)
7833 symtable2[count2++].u.isym = isym;
7834
7835 if (count1 == 0 || count2 == 0 || count1 != count2)
7836 goto done;
7837
7838 for (i = 0; i < count1; i++)
7839 symtable1[i].name
7840 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7841 symtable1[i].u.isym->st_name);
7842
7843 for (i = 0; i < count2; i++)
7844 symtable2[i].name
7845 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7846 symtable2[i].u.isym->st_name);
7847
7848 /* Sort symbol by name. */
7849 qsort (symtable1, count1, sizeof (struct elf_symbol),
7850 elf_sym_name_compare);
7851 qsort (symtable2, count1, sizeof (struct elf_symbol),
7852 elf_sym_name_compare);
7853
7854 for (i = 0; i < count1; i++)
7855 /* Two symbols must have the same binding, type and name. */
7856 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7857 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7858 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7859 goto done;
7860
7861 result = TRUE;
7862
7863 done:
7864 if (symtable1)
7865 free (symtable1);
7866 if (symtable2)
7867 free (symtable2);
7868 if (isymbuf1)
7869 free (isymbuf1);
7870 if (isymbuf2)
7871 free (isymbuf2);
7872
7873 return result;
7874 }
7875
7876 /* Return TRUE if 2 section types are compatible. */
7877
7878 bfd_boolean
7879 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7880 bfd *bbfd, const asection *bsec)
7881 {
7882 if (asec == NULL
7883 || bsec == NULL
7884 || abfd->xvec->flavour != bfd_target_elf_flavour
7885 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7886 return TRUE;
7887
7888 return elf_section_type (asec) == elf_section_type (bsec);
7889 }
7890 \f
7891 /* Final phase of ELF linker. */
7892
7893 /* A structure we use to avoid passing large numbers of arguments. */
7894
7895 struct elf_final_link_info
7896 {
7897 /* General link information. */
7898 struct bfd_link_info *info;
7899 /* Output BFD. */
7900 bfd *output_bfd;
7901 /* Symbol string table. */
7902 struct elf_strtab_hash *symstrtab;
7903 /* .hash section. */
7904 asection *hash_sec;
7905 /* symbol version section (.gnu.version). */
7906 asection *symver_sec;
7907 /* Buffer large enough to hold contents of any section. */
7908 bfd_byte *contents;
7909 /* Buffer large enough to hold external relocs of any section. */
7910 void *external_relocs;
7911 /* Buffer large enough to hold internal relocs of any section. */
7912 Elf_Internal_Rela *internal_relocs;
7913 /* Buffer large enough to hold external local symbols of any input
7914 BFD. */
7915 bfd_byte *external_syms;
7916 /* And a buffer for symbol section indices. */
7917 Elf_External_Sym_Shndx *locsym_shndx;
7918 /* Buffer large enough to hold internal local symbols of any input
7919 BFD. */
7920 Elf_Internal_Sym *internal_syms;
7921 /* Array large enough to hold a symbol index for each local symbol
7922 of any input BFD. */
7923 long *indices;
7924 /* Array large enough to hold a section pointer for each local
7925 symbol of any input BFD. */
7926 asection **sections;
7927 /* Buffer for SHT_SYMTAB_SHNDX section. */
7928 Elf_External_Sym_Shndx *symshndxbuf;
7929 /* Number of STT_FILE syms seen. */
7930 size_t filesym_count;
7931 };
7932
7933 /* This struct is used to pass information to elf_link_output_extsym. */
7934
7935 struct elf_outext_info
7936 {
7937 bfd_boolean failed;
7938 bfd_boolean localsyms;
7939 bfd_boolean file_sym_done;
7940 struct elf_final_link_info *flinfo;
7941 };
7942
7943
7944 /* Support for evaluating a complex relocation.
7945
7946 Complex relocations are generalized, self-describing relocations. The
7947 implementation of them consists of two parts: complex symbols, and the
7948 relocations themselves.
7949
7950 The relocations are use a reserved elf-wide relocation type code (R_RELC
7951 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7952 information (start bit, end bit, word width, etc) into the addend. This
7953 information is extracted from CGEN-generated operand tables within gas.
7954
7955 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7956 internal) representing prefix-notation expressions, including but not
7957 limited to those sorts of expressions normally encoded as addends in the
7958 addend field. The symbol mangling format is:
7959
7960 <node> := <literal>
7961 | <unary-operator> ':' <node>
7962 | <binary-operator> ':' <node> ':' <node>
7963 ;
7964
7965 <literal> := 's' <digits=N> ':' <N character symbol name>
7966 | 'S' <digits=N> ':' <N character section name>
7967 | '#' <hexdigits>
7968 ;
7969
7970 <binary-operator> := as in C
7971 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7972
7973 static void
7974 set_symbol_value (bfd *bfd_with_globals,
7975 Elf_Internal_Sym *isymbuf,
7976 size_t locsymcount,
7977 size_t symidx,
7978 bfd_vma val)
7979 {
7980 struct elf_link_hash_entry **sym_hashes;
7981 struct elf_link_hash_entry *h;
7982 size_t extsymoff = locsymcount;
7983
7984 if (symidx < locsymcount)
7985 {
7986 Elf_Internal_Sym *sym;
7987
7988 sym = isymbuf + symidx;
7989 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7990 {
7991 /* It is a local symbol: move it to the
7992 "absolute" section and give it a value. */
7993 sym->st_shndx = SHN_ABS;
7994 sym->st_value = val;
7995 return;
7996 }
7997 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7998 extsymoff = 0;
7999 }
8000
8001 /* It is a global symbol: set its link type
8002 to "defined" and give it a value. */
8003
8004 sym_hashes = elf_sym_hashes (bfd_with_globals);
8005 h = sym_hashes [symidx - extsymoff];
8006 while (h->root.type == bfd_link_hash_indirect
8007 || h->root.type == bfd_link_hash_warning)
8008 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8009 h->root.type = bfd_link_hash_defined;
8010 h->root.u.def.value = val;
8011 h->root.u.def.section = bfd_abs_section_ptr;
8012 }
8013
8014 static bfd_boolean
8015 resolve_symbol (const char *name,
8016 bfd *input_bfd,
8017 struct elf_final_link_info *flinfo,
8018 bfd_vma *result,
8019 Elf_Internal_Sym *isymbuf,
8020 size_t locsymcount)
8021 {
8022 Elf_Internal_Sym *sym;
8023 struct bfd_link_hash_entry *global_entry;
8024 const char *candidate = NULL;
8025 Elf_Internal_Shdr *symtab_hdr;
8026 size_t i;
8027
8028 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
8029
8030 for (i = 0; i < locsymcount; ++ i)
8031 {
8032 sym = isymbuf + i;
8033
8034 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
8035 continue;
8036
8037 candidate = bfd_elf_string_from_elf_section (input_bfd,
8038 symtab_hdr->sh_link,
8039 sym->st_name);
8040 #ifdef DEBUG
8041 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
8042 name, candidate, (unsigned long) sym->st_value);
8043 #endif
8044 if (candidate && strcmp (candidate, name) == 0)
8045 {
8046 asection *sec = flinfo->sections [i];
8047
8048 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
8049 *result += sec->output_offset + sec->output_section->vma;
8050 #ifdef DEBUG
8051 printf ("Found symbol with value %8.8lx\n",
8052 (unsigned long) *result);
8053 #endif
8054 return TRUE;
8055 }
8056 }
8057
8058 /* Hmm, haven't found it yet. perhaps it is a global. */
8059 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
8060 FALSE, FALSE, TRUE);
8061 if (!global_entry)
8062 return FALSE;
8063
8064 if (global_entry->type == bfd_link_hash_defined
8065 || global_entry->type == bfd_link_hash_defweak)
8066 {
8067 *result = (global_entry->u.def.value
8068 + global_entry->u.def.section->output_section->vma
8069 + global_entry->u.def.section->output_offset);
8070 #ifdef DEBUG
8071 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
8072 global_entry->root.string, (unsigned long) *result);
8073 #endif
8074 return TRUE;
8075 }
8076
8077 return FALSE;
8078 }
8079
8080 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
8081 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
8082 names like "foo.end" which is the end address of section "foo". */
8083
8084 static bfd_boolean
8085 resolve_section (const char *name,
8086 asection *sections,
8087 bfd_vma *result,
8088 bfd * abfd)
8089 {
8090 asection *curr;
8091 unsigned int len;
8092
8093 for (curr = sections; curr; curr = curr->next)
8094 if (strcmp (curr->name, name) == 0)
8095 {
8096 *result = curr->vma;
8097 return TRUE;
8098 }
8099
8100 /* Hmm. still haven't found it. try pseudo-section names. */
8101 /* FIXME: This could be coded more efficiently... */
8102 for (curr = sections; curr; curr = curr->next)
8103 {
8104 len = strlen (curr->name);
8105 if (len > strlen (name))
8106 continue;
8107
8108 if (strncmp (curr->name, name, len) == 0)
8109 {
8110 if (strncmp (".end", name + len, 4) == 0)
8111 {
8112 *result = curr->vma + curr->size / bfd_octets_per_byte (abfd);
8113 return TRUE;
8114 }
8115
8116 /* Insert more pseudo-section names here, if you like. */
8117 }
8118 }
8119
8120 return FALSE;
8121 }
8122
8123 static void
8124 undefined_reference (const char *reftype, const char *name)
8125 {
8126 /* xgettext:c-format */
8127 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8128 reftype, name);
8129 }
8130
8131 static bfd_boolean
8132 eval_symbol (bfd_vma *result,
8133 const char **symp,
8134 bfd *input_bfd,
8135 struct elf_final_link_info *flinfo,
8136 bfd_vma dot,
8137 Elf_Internal_Sym *isymbuf,
8138 size_t locsymcount,
8139 int signed_p)
8140 {
8141 size_t len;
8142 size_t symlen;
8143 bfd_vma a;
8144 bfd_vma b;
8145 char symbuf[4096];
8146 const char *sym = *symp;
8147 const char *symend;
8148 bfd_boolean symbol_is_section = FALSE;
8149
8150 len = strlen (sym);
8151 symend = sym + len;
8152
8153 if (len < 1 || len > sizeof (symbuf))
8154 {
8155 bfd_set_error (bfd_error_invalid_operation);
8156 return FALSE;
8157 }
8158
8159 switch (* sym)
8160 {
8161 case '.':
8162 *result = dot;
8163 *symp = sym + 1;
8164 return TRUE;
8165
8166 case '#':
8167 ++sym;
8168 *result = strtoul (sym, (char **) symp, 16);
8169 return TRUE;
8170
8171 case 'S':
8172 symbol_is_section = TRUE;
8173 /* Fall through. */
8174 case 's':
8175 ++sym;
8176 symlen = strtol (sym, (char **) symp, 10);
8177 sym = *symp + 1; /* Skip the trailing ':'. */
8178
8179 if (symend < sym || symlen + 1 > sizeof (symbuf))
8180 {
8181 bfd_set_error (bfd_error_invalid_operation);
8182 return FALSE;
8183 }
8184
8185 memcpy (symbuf, sym, symlen);
8186 symbuf[symlen] = '\0';
8187 *symp = sym + symlen;
8188
8189 /* Is it always possible, with complex symbols, that gas "mis-guessed"
8190 the symbol as a section, or vice-versa. so we're pretty liberal in our
8191 interpretation here; section means "try section first", not "must be a
8192 section", and likewise with symbol. */
8193
8194 if (symbol_is_section)
8195 {
8196 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
8197 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
8198 isymbuf, locsymcount))
8199 {
8200 undefined_reference ("section", symbuf);
8201 return FALSE;
8202 }
8203 }
8204 else
8205 {
8206 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
8207 isymbuf, locsymcount)
8208 && !resolve_section (symbuf, flinfo->output_bfd->sections,
8209 result, input_bfd))
8210 {
8211 undefined_reference ("symbol", symbuf);
8212 return FALSE;
8213 }
8214 }
8215
8216 return TRUE;
8217
8218 /* All that remains are operators. */
8219
8220 #define UNARY_OP(op) \
8221 if (strncmp (sym, #op, strlen (#op)) == 0) \
8222 { \
8223 sym += strlen (#op); \
8224 if (*sym == ':') \
8225 ++sym; \
8226 *symp = sym; \
8227 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8228 isymbuf, locsymcount, signed_p)) \
8229 return FALSE; \
8230 if (signed_p) \
8231 *result = op ((bfd_signed_vma) a); \
8232 else \
8233 *result = op a; \
8234 return TRUE; \
8235 }
8236
8237 #define BINARY_OP(op) \
8238 if (strncmp (sym, #op, strlen (#op)) == 0) \
8239 { \
8240 sym += strlen (#op); \
8241 if (*sym == ':') \
8242 ++sym; \
8243 *symp = sym; \
8244 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8245 isymbuf, locsymcount, signed_p)) \
8246 return FALSE; \
8247 ++*symp; \
8248 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8249 isymbuf, locsymcount, signed_p)) \
8250 return FALSE; \
8251 if (signed_p) \
8252 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8253 else \
8254 *result = a op b; \
8255 return TRUE; \
8256 }
8257
8258 default:
8259 UNARY_OP (0-);
8260 BINARY_OP (<<);
8261 BINARY_OP (>>);
8262 BINARY_OP (==);
8263 BINARY_OP (!=);
8264 BINARY_OP (<=);
8265 BINARY_OP (>=);
8266 BINARY_OP (&&);
8267 BINARY_OP (||);
8268 UNARY_OP (~);
8269 UNARY_OP (!);
8270 BINARY_OP (*);
8271 BINARY_OP (/);
8272 BINARY_OP (%);
8273 BINARY_OP (^);
8274 BINARY_OP (|);
8275 BINARY_OP (&);
8276 BINARY_OP (+);
8277 BINARY_OP (-);
8278 BINARY_OP (<);
8279 BINARY_OP (>);
8280 #undef UNARY_OP
8281 #undef BINARY_OP
8282 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8283 bfd_set_error (bfd_error_invalid_operation);
8284 return FALSE;
8285 }
8286 }
8287
8288 static void
8289 put_value (bfd_vma size,
8290 unsigned long chunksz,
8291 bfd *input_bfd,
8292 bfd_vma x,
8293 bfd_byte *location)
8294 {
8295 location += (size - chunksz);
8296
8297 for (; size; size -= chunksz, location -= chunksz)
8298 {
8299 switch (chunksz)
8300 {
8301 case 1:
8302 bfd_put_8 (input_bfd, x, location);
8303 x >>= 8;
8304 break;
8305 case 2:
8306 bfd_put_16 (input_bfd, x, location);
8307 x >>= 16;
8308 break;
8309 case 4:
8310 bfd_put_32 (input_bfd, x, location);
8311 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8312 x >>= 16;
8313 x >>= 16;
8314 break;
8315 #ifdef BFD64
8316 case 8:
8317 bfd_put_64 (input_bfd, x, location);
8318 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8319 x >>= 32;
8320 x >>= 32;
8321 break;
8322 #endif
8323 default:
8324 abort ();
8325 break;
8326 }
8327 }
8328 }
8329
8330 static bfd_vma
8331 get_value (bfd_vma size,
8332 unsigned long chunksz,
8333 bfd *input_bfd,
8334 bfd_byte *location)
8335 {
8336 int shift;
8337 bfd_vma x = 0;
8338
8339 /* Sanity checks. */
8340 BFD_ASSERT (chunksz <= sizeof (x)
8341 && size >= chunksz
8342 && chunksz != 0
8343 && (size % chunksz) == 0
8344 && input_bfd != NULL
8345 && location != NULL);
8346
8347 if (chunksz == sizeof (x))
8348 {
8349 BFD_ASSERT (size == chunksz);
8350
8351 /* Make sure that we do not perform an undefined shift operation.
8352 We know that size == chunksz so there will only be one iteration
8353 of the loop below. */
8354 shift = 0;
8355 }
8356 else
8357 shift = 8 * chunksz;
8358
8359 for (; size; size -= chunksz, location += chunksz)
8360 {
8361 switch (chunksz)
8362 {
8363 case 1:
8364 x = (x << shift) | bfd_get_8 (input_bfd, location);
8365 break;
8366 case 2:
8367 x = (x << shift) | bfd_get_16 (input_bfd, location);
8368 break;
8369 case 4:
8370 x = (x << shift) | bfd_get_32 (input_bfd, location);
8371 break;
8372 #ifdef BFD64
8373 case 8:
8374 x = (x << shift) | bfd_get_64 (input_bfd, location);
8375 break;
8376 #endif
8377 default:
8378 abort ();
8379 }
8380 }
8381 return x;
8382 }
8383
8384 static void
8385 decode_complex_addend (unsigned long *start, /* in bits */
8386 unsigned long *oplen, /* in bits */
8387 unsigned long *len, /* in bits */
8388 unsigned long *wordsz, /* in bytes */
8389 unsigned long *chunksz, /* in bytes */
8390 unsigned long *lsb0_p,
8391 unsigned long *signed_p,
8392 unsigned long *trunc_p,
8393 unsigned long encoded)
8394 {
8395 * start = encoded & 0x3F;
8396 * len = (encoded >> 6) & 0x3F;
8397 * oplen = (encoded >> 12) & 0x3F;
8398 * wordsz = (encoded >> 18) & 0xF;
8399 * chunksz = (encoded >> 22) & 0xF;
8400 * lsb0_p = (encoded >> 27) & 1;
8401 * signed_p = (encoded >> 28) & 1;
8402 * trunc_p = (encoded >> 29) & 1;
8403 }
8404
8405 bfd_reloc_status_type
8406 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8407 asection *input_section ATTRIBUTE_UNUSED,
8408 bfd_byte *contents,
8409 Elf_Internal_Rela *rel,
8410 bfd_vma relocation)
8411 {
8412 bfd_vma shift, x, mask;
8413 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8414 bfd_reloc_status_type r;
8415
8416 /* Perform this reloc, since it is complex.
8417 (this is not to say that it necessarily refers to a complex
8418 symbol; merely that it is a self-describing CGEN based reloc.
8419 i.e. the addend has the complete reloc information (bit start, end,
8420 word size, etc) encoded within it.). */
8421
8422 decode_complex_addend (&start, &oplen, &len, &wordsz,
8423 &chunksz, &lsb0_p, &signed_p,
8424 &trunc_p, rel->r_addend);
8425
8426 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8427
8428 if (lsb0_p)
8429 shift = (start + 1) - len;
8430 else
8431 shift = (8 * wordsz) - (start + len);
8432
8433 x = get_value (wordsz, chunksz, input_bfd,
8434 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8435
8436 #ifdef DEBUG
8437 printf ("Doing complex reloc: "
8438 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8439 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8440 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8441 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8442 oplen, (unsigned long) x, (unsigned long) mask,
8443 (unsigned long) relocation);
8444 #endif
8445
8446 r = bfd_reloc_ok;
8447 if (! trunc_p)
8448 /* Now do an overflow check. */
8449 r = bfd_check_overflow ((signed_p
8450 ? complain_overflow_signed
8451 : complain_overflow_unsigned),
8452 len, 0, (8 * wordsz),
8453 relocation);
8454
8455 /* Do the deed. */
8456 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8457
8458 #ifdef DEBUG
8459 printf (" relocation: %8.8lx\n"
8460 " shifted mask: %8.8lx\n"
8461 " shifted/masked reloc: %8.8lx\n"
8462 " result: %8.8lx\n",
8463 (unsigned long) relocation, (unsigned long) (mask << shift),
8464 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8465 #endif
8466 put_value (wordsz, chunksz, input_bfd, x,
8467 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8468 return r;
8469 }
8470
8471 /* Functions to read r_offset from external (target order) reloc
8472 entry. Faster than bfd_getl32 et al, because we let the compiler
8473 know the value is aligned. */
8474
8475 static bfd_vma
8476 ext32l_r_offset (const void *p)
8477 {
8478 union aligned32
8479 {
8480 uint32_t v;
8481 unsigned char c[4];
8482 };
8483 const union aligned32 *a
8484 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8485
8486 uint32_t aval = ( (uint32_t) a->c[0]
8487 | (uint32_t) a->c[1] << 8
8488 | (uint32_t) a->c[2] << 16
8489 | (uint32_t) a->c[3] << 24);
8490 return aval;
8491 }
8492
8493 static bfd_vma
8494 ext32b_r_offset (const void *p)
8495 {
8496 union aligned32
8497 {
8498 uint32_t v;
8499 unsigned char c[4];
8500 };
8501 const union aligned32 *a
8502 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8503
8504 uint32_t aval = ( (uint32_t) a->c[0] << 24
8505 | (uint32_t) a->c[1] << 16
8506 | (uint32_t) a->c[2] << 8
8507 | (uint32_t) a->c[3]);
8508 return aval;
8509 }
8510
8511 #ifdef BFD_HOST_64_BIT
8512 static bfd_vma
8513 ext64l_r_offset (const void *p)
8514 {
8515 union aligned64
8516 {
8517 uint64_t v;
8518 unsigned char c[8];
8519 };
8520 const union aligned64 *a
8521 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8522
8523 uint64_t aval = ( (uint64_t) a->c[0]
8524 | (uint64_t) a->c[1] << 8
8525 | (uint64_t) a->c[2] << 16
8526 | (uint64_t) a->c[3] << 24
8527 | (uint64_t) a->c[4] << 32
8528 | (uint64_t) a->c[5] << 40
8529 | (uint64_t) a->c[6] << 48
8530 | (uint64_t) a->c[7] << 56);
8531 return aval;
8532 }
8533
8534 static bfd_vma
8535 ext64b_r_offset (const void *p)
8536 {
8537 union aligned64
8538 {
8539 uint64_t v;
8540 unsigned char c[8];
8541 };
8542 const union aligned64 *a
8543 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8544
8545 uint64_t aval = ( (uint64_t) a->c[0] << 56
8546 | (uint64_t) a->c[1] << 48
8547 | (uint64_t) a->c[2] << 40
8548 | (uint64_t) a->c[3] << 32
8549 | (uint64_t) a->c[4] << 24
8550 | (uint64_t) a->c[5] << 16
8551 | (uint64_t) a->c[6] << 8
8552 | (uint64_t) a->c[7]);
8553 return aval;
8554 }
8555 #endif
8556
8557 /* When performing a relocatable link, the input relocations are
8558 preserved. But, if they reference global symbols, the indices
8559 referenced must be updated. Update all the relocations found in
8560 RELDATA. */
8561
8562 static bfd_boolean
8563 elf_link_adjust_relocs (bfd *abfd,
8564 asection *sec,
8565 struct bfd_elf_section_reloc_data *reldata,
8566 bfd_boolean sort,
8567 struct bfd_link_info *info)
8568 {
8569 unsigned int i;
8570 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8571 bfd_byte *erela;
8572 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8573 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8574 bfd_vma r_type_mask;
8575 int r_sym_shift;
8576 unsigned int count = reldata->count;
8577 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8578
8579 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8580 {
8581 swap_in = bed->s->swap_reloc_in;
8582 swap_out = bed->s->swap_reloc_out;
8583 }
8584 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8585 {
8586 swap_in = bed->s->swap_reloca_in;
8587 swap_out = bed->s->swap_reloca_out;
8588 }
8589 else
8590 abort ();
8591
8592 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8593 abort ();
8594
8595 if (bed->s->arch_size == 32)
8596 {
8597 r_type_mask = 0xff;
8598 r_sym_shift = 8;
8599 }
8600 else
8601 {
8602 r_type_mask = 0xffffffff;
8603 r_sym_shift = 32;
8604 }
8605
8606 erela = reldata->hdr->contents;
8607 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8608 {
8609 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8610 unsigned int j;
8611
8612 if (*rel_hash == NULL)
8613 continue;
8614
8615 if ((*rel_hash)->indx == -2
8616 && info->gc_sections
8617 && ! info->gc_keep_exported)
8618 {
8619 /* PR 21524: Let the user know if a symbol was removed by garbage collection. */
8620 _bfd_error_handler (_("%B:%A: error: relocation references symbol %s which was removed by garbage collection."),
8621 abfd, sec,
8622 (*rel_hash)->root.root.string);
8623 _bfd_error_handler (_("%B:%A: error: try relinking with --gc-keep-exported enabled."),
8624 abfd, sec);
8625 bfd_set_error (bfd_error_invalid_operation);
8626 return FALSE;
8627 }
8628 BFD_ASSERT ((*rel_hash)->indx >= 0);
8629
8630 (*swap_in) (abfd, erela, irela);
8631 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8632 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8633 | (irela[j].r_info & r_type_mask));
8634 (*swap_out) (abfd, irela, erela);
8635 }
8636
8637 if (bed->elf_backend_update_relocs)
8638 (*bed->elf_backend_update_relocs) (sec, reldata);
8639
8640 if (sort && count != 0)
8641 {
8642 bfd_vma (*ext_r_off) (const void *);
8643 bfd_vma r_off;
8644 size_t elt_size;
8645 bfd_byte *base, *end, *p, *loc;
8646 bfd_byte *buf = NULL;
8647
8648 if (bed->s->arch_size == 32)
8649 {
8650 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8651 ext_r_off = ext32l_r_offset;
8652 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8653 ext_r_off = ext32b_r_offset;
8654 else
8655 abort ();
8656 }
8657 else
8658 {
8659 #ifdef BFD_HOST_64_BIT
8660 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8661 ext_r_off = ext64l_r_offset;
8662 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8663 ext_r_off = ext64b_r_offset;
8664 else
8665 #endif
8666 abort ();
8667 }
8668
8669 /* Must use a stable sort here. A modified insertion sort,
8670 since the relocs are mostly sorted already. */
8671 elt_size = reldata->hdr->sh_entsize;
8672 base = reldata->hdr->contents;
8673 end = base + count * elt_size;
8674 if (elt_size > sizeof (Elf64_External_Rela))
8675 abort ();
8676
8677 /* Ensure the first element is lowest. This acts as a sentinel,
8678 speeding the main loop below. */
8679 r_off = (*ext_r_off) (base);
8680 for (p = loc = base; (p += elt_size) < end; )
8681 {
8682 bfd_vma r_off2 = (*ext_r_off) (p);
8683 if (r_off > r_off2)
8684 {
8685 r_off = r_off2;
8686 loc = p;
8687 }
8688 }
8689 if (loc != base)
8690 {
8691 /* Don't just swap *base and *loc as that changes the order
8692 of the original base[0] and base[1] if they happen to
8693 have the same r_offset. */
8694 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
8695 memcpy (onebuf, loc, elt_size);
8696 memmove (base + elt_size, base, loc - base);
8697 memcpy (base, onebuf, elt_size);
8698 }
8699
8700 for (p = base + elt_size; (p += elt_size) < end; )
8701 {
8702 /* base to p is sorted, *p is next to insert. */
8703 r_off = (*ext_r_off) (p);
8704 /* Search the sorted region for location to insert. */
8705 loc = p - elt_size;
8706 while (r_off < (*ext_r_off) (loc))
8707 loc -= elt_size;
8708 loc += elt_size;
8709 if (loc != p)
8710 {
8711 /* Chances are there is a run of relocs to insert here,
8712 from one of more input files. Files are not always
8713 linked in order due to the way elf_link_input_bfd is
8714 called. See pr17666. */
8715 size_t sortlen = p - loc;
8716 bfd_vma r_off2 = (*ext_r_off) (loc);
8717 size_t runlen = elt_size;
8718 size_t buf_size = 96 * 1024;
8719 while (p + runlen < end
8720 && (sortlen <= buf_size
8721 || runlen + elt_size <= buf_size)
8722 && r_off2 > (*ext_r_off) (p + runlen))
8723 runlen += elt_size;
8724 if (buf == NULL)
8725 {
8726 buf = bfd_malloc (buf_size);
8727 if (buf == NULL)
8728 return FALSE;
8729 }
8730 if (runlen < sortlen)
8731 {
8732 memcpy (buf, p, runlen);
8733 memmove (loc + runlen, loc, sortlen);
8734 memcpy (loc, buf, runlen);
8735 }
8736 else
8737 {
8738 memcpy (buf, loc, sortlen);
8739 memmove (loc, p, runlen);
8740 memcpy (loc + runlen, buf, sortlen);
8741 }
8742 p += runlen - elt_size;
8743 }
8744 }
8745 /* Hashes are no longer valid. */
8746 free (reldata->hashes);
8747 reldata->hashes = NULL;
8748 free (buf);
8749 }
8750 return TRUE;
8751 }
8752
8753 struct elf_link_sort_rela
8754 {
8755 union {
8756 bfd_vma offset;
8757 bfd_vma sym_mask;
8758 } u;
8759 enum elf_reloc_type_class type;
8760 /* We use this as an array of size int_rels_per_ext_rel. */
8761 Elf_Internal_Rela rela[1];
8762 };
8763
8764 static int
8765 elf_link_sort_cmp1 (const void *A, const void *B)
8766 {
8767 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8768 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8769 int relativea, relativeb;
8770
8771 relativea = a->type == reloc_class_relative;
8772 relativeb = b->type == reloc_class_relative;
8773
8774 if (relativea < relativeb)
8775 return 1;
8776 if (relativea > relativeb)
8777 return -1;
8778 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8779 return -1;
8780 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8781 return 1;
8782 if (a->rela->r_offset < b->rela->r_offset)
8783 return -1;
8784 if (a->rela->r_offset > b->rela->r_offset)
8785 return 1;
8786 return 0;
8787 }
8788
8789 static int
8790 elf_link_sort_cmp2 (const void *A, const void *B)
8791 {
8792 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8793 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8794
8795 if (a->type < b->type)
8796 return -1;
8797 if (a->type > b->type)
8798 return 1;
8799 if (a->u.offset < b->u.offset)
8800 return -1;
8801 if (a->u.offset > b->u.offset)
8802 return 1;
8803 if (a->rela->r_offset < b->rela->r_offset)
8804 return -1;
8805 if (a->rela->r_offset > b->rela->r_offset)
8806 return 1;
8807 return 0;
8808 }
8809
8810 static size_t
8811 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8812 {
8813 asection *dynamic_relocs;
8814 asection *rela_dyn;
8815 asection *rel_dyn;
8816 bfd_size_type count, size;
8817 size_t i, ret, sort_elt, ext_size;
8818 bfd_byte *sort, *s_non_relative, *p;
8819 struct elf_link_sort_rela *sq;
8820 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8821 int i2e = bed->s->int_rels_per_ext_rel;
8822 unsigned int opb = bfd_octets_per_byte (abfd);
8823 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8824 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8825 struct bfd_link_order *lo;
8826 bfd_vma r_sym_mask;
8827 bfd_boolean use_rela;
8828
8829 /* Find a dynamic reloc section. */
8830 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8831 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8832 if (rela_dyn != NULL && rela_dyn->size > 0
8833 && rel_dyn != NULL && rel_dyn->size > 0)
8834 {
8835 bfd_boolean use_rela_initialised = FALSE;
8836
8837 /* This is just here to stop gcc from complaining.
8838 Its initialization checking code is not perfect. */
8839 use_rela = TRUE;
8840
8841 /* Both sections are present. Examine the sizes
8842 of the indirect sections to help us choose. */
8843 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8844 if (lo->type == bfd_indirect_link_order)
8845 {
8846 asection *o = lo->u.indirect.section;
8847
8848 if ((o->size % bed->s->sizeof_rela) == 0)
8849 {
8850 if ((o->size % bed->s->sizeof_rel) == 0)
8851 /* Section size is divisible by both rel and rela sizes.
8852 It is of no help to us. */
8853 ;
8854 else
8855 {
8856 /* Section size is only divisible by rela. */
8857 if (use_rela_initialised && !use_rela)
8858 {
8859 _bfd_error_handler (_("%B: Unable to sort relocs - "
8860 "they are in more than one size"),
8861 abfd);
8862 bfd_set_error (bfd_error_invalid_operation);
8863 return 0;
8864 }
8865 else
8866 {
8867 use_rela = TRUE;
8868 use_rela_initialised = TRUE;
8869 }
8870 }
8871 }
8872 else if ((o->size % bed->s->sizeof_rel) == 0)
8873 {
8874 /* Section size is only divisible by rel. */
8875 if (use_rela_initialised && use_rela)
8876 {
8877 _bfd_error_handler (_("%B: Unable to sort relocs - "
8878 "they are in more than one size"),
8879 abfd);
8880 bfd_set_error (bfd_error_invalid_operation);
8881 return 0;
8882 }
8883 else
8884 {
8885 use_rela = FALSE;
8886 use_rela_initialised = TRUE;
8887 }
8888 }
8889 else
8890 {
8891 /* The section size is not divisible by either -
8892 something is wrong. */
8893 _bfd_error_handler (_("%B: Unable to sort relocs - "
8894 "they are of an unknown size"), abfd);
8895 bfd_set_error (bfd_error_invalid_operation);
8896 return 0;
8897 }
8898 }
8899
8900 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8901 if (lo->type == bfd_indirect_link_order)
8902 {
8903 asection *o = lo->u.indirect.section;
8904
8905 if ((o->size % bed->s->sizeof_rela) == 0)
8906 {
8907 if ((o->size % bed->s->sizeof_rel) == 0)
8908 /* Section size is divisible by both rel and rela sizes.
8909 It is of no help to us. */
8910 ;
8911 else
8912 {
8913 /* Section size is only divisible by rela. */
8914 if (use_rela_initialised && !use_rela)
8915 {
8916 _bfd_error_handler (_("%B: Unable to sort relocs - "
8917 "they are in more than one size"),
8918 abfd);
8919 bfd_set_error (bfd_error_invalid_operation);
8920 return 0;
8921 }
8922 else
8923 {
8924 use_rela = TRUE;
8925 use_rela_initialised = TRUE;
8926 }
8927 }
8928 }
8929 else if ((o->size % bed->s->sizeof_rel) == 0)
8930 {
8931 /* Section size is only divisible by rel. */
8932 if (use_rela_initialised && use_rela)
8933 {
8934 _bfd_error_handler (_("%B: Unable to sort relocs - "
8935 "they are in more than one size"),
8936 abfd);
8937 bfd_set_error (bfd_error_invalid_operation);
8938 return 0;
8939 }
8940 else
8941 {
8942 use_rela = FALSE;
8943 use_rela_initialised = TRUE;
8944 }
8945 }
8946 else
8947 {
8948 /* The section size is not divisible by either -
8949 something is wrong. */
8950 _bfd_error_handler (_("%B: Unable to sort relocs - "
8951 "they are of an unknown size"), abfd);
8952 bfd_set_error (bfd_error_invalid_operation);
8953 return 0;
8954 }
8955 }
8956
8957 if (! use_rela_initialised)
8958 /* Make a guess. */
8959 use_rela = TRUE;
8960 }
8961 else if (rela_dyn != NULL && rela_dyn->size > 0)
8962 use_rela = TRUE;
8963 else if (rel_dyn != NULL && rel_dyn->size > 0)
8964 use_rela = FALSE;
8965 else
8966 return 0;
8967
8968 if (use_rela)
8969 {
8970 dynamic_relocs = rela_dyn;
8971 ext_size = bed->s->sizeof_rela;
8972 swap_in = bed->s->swap_reloca_in;
8973 swap_out = bed->s->swap_reloca_out;
8974 }
8975 else
8976 {
8977 dynamic_relocs = rel_dyn;
8978 ext_size = bed->s->sizeof_rel;
8979 swap_in = bed->s->swap_reloc_in;
8980 swap_out = bed->s->swap_reloc_out;
8981 }
8982
8983 size = 0;
8984 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8985 if (lo->type == bfd_indirect_link_order)
8986 size += lo->u.indirect.section->size;
8987
8988 if (size != dynamic_relocs->size)
8989 return 0;
8990
8991 sort_elt = (sizeof (struct elf_link_sort_rela)
8992 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8993
8994 count = dynamic_relocs->size / ext_size;
8995 if (count == 0)
8996 return 0;
8997 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8998
8999 if (sort == NULL)
9000 {
9001 (*info->callbacks->warning)
9002 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
9003 return 0;
9004 }
9005
9006 if (bed->s->arch_size == 32)
9007 r_sym_mask = ~(bfd_vma) 0xff;
9008 else
9009 r_sym_mask = ~(bfd_vma) 0xffffffff;
9010
9011 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9012 if (lo->type == bfd_indirect_link_order)
9013 {
9014 bfd_byte *erel, *erelend;
9015 asection *o = lo->u.indirect.section;
9016
9017 if (o->contents == NULL && o->size != 0)
9018 {
9019 /* This is a reloc section that is being handled as a normal
9020 section. See bfd_section_from_shdr. We can't combine
9021 relocs in this case. */
9022 free (sort);
9023 return 0;
9024 }
9025 erel = o->contents;
9026 erelend = o->contents + o->size;
9027 p = sort + o->output_offset * opb / ext_size * sort_elt;
9028
9029 while (erel < erelend)
9030 {
9031 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9032
9033 (*swap_in) (abfd, erel, s->rela);
9034 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
9035 s->u.sym_mask = r_sym_mask;
9036 p += sort_elt;
9037 erel += ext_size;
9038 }
9039 }
9040
9041 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
9042
9043 for (i = 0, p = sort; i < count; i++, p += sort_elt)
9044 {
9045 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9046 if (s->type != reloc_class_relative)
9047 break;
9048 }
9049 ret = i;
9050 s_non_relative = p;
9051
9052 sq = (struct elf_link_sort_rela *) s_non_relative;
9053 for (; i < count; i++, p += sort_elt)
9054 {
9055 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
9056 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
9057 sq = sp;
9058 sp->u.offset = sq->rela->r_offset;
9059 }
9060
9061 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
9062
9063 struct elf_link_hash_table *htab = elf_hash_table (info);
9064 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
9065 {
9066 /* We have plt relocs in .rela.dyn. */
9067 sq = (struct elf_link_sort_rela *) sort;
9068 for (i = 0; i < count; i++)
9069 if (sq[count - i - 1].type != reloc_class_plt)
9070 break;
9071 if (i != 0 && htab->srelplt->size == i * ext_size)
9072 {
9073 struct bfd_link_order **plo;
9074 /* Put srelplt link_order last. This is so the output_offset
9075 set in the next loop is correct for DT_JMPREL. */
9076 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
9077 if ((*plo)->type == bfd_indirect_link_order
9078 && (*plo)->u.indirect.section == htab->srelplt)
9079 {
9080 lo = *plo;
9081 *plo = lo->next;
9082 }
9083 else
9084 plo = &(*plo)->next;
9085 *plo = lo;
9086 lo->next = NULL;
9087 dynamic_relocs->map_tail.link_order = lo;
9088 }
9089 }
9090
9091 p = sort;
9092 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9093 if (lo->type == bfd_indirect_link_order)
9094 {
9095 bfd_byte *erel, *erelend;
9096 asection *o = lo->u.indirect.section;
9097
9098 erel = o->contents;
9099 erelend = o->contents + o->size;
9100 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
9101 while (erel < erelend)
9102 {
9103 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9104 (*swap_out) (abfd, s->rela, erel);
9105 p += sort_elt;
9106 erel += ext_size;
9107 }
9108 }
9109
9110 free (sort);
9111 *psec = dynamic_relocs;
9112 return ret;
9113 }
9114
9115 /* Add a symbol to the output symbol string table. */
9116
9117 static int
9118 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
9119 const char *name,
9120 Elf_Internal_Sym *elfsym,
9121 asection *input_sec,
9122 struct elf_link_hash_entry *h)
9123 {
9124 int (*output_symbol_hook)
9125 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
9126 struct elf_link_hash_entry *);
9127 struct elf_link_hash_table *hash_table;
9128 const struct elf_backend_data *bed;
9129 bfd_size_type strtabsize;
9130
9131 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9132
9133 bed = get_elf_backend_data (flinfo->output_bfd);
9134 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
9135 if (output_symbol_hook != NULL)
9136 {
9137 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
9138 if (ret != 1)
9139 return ret;
9140 }
9141
9142 if (name == NULL
9143 || *name == '\0'
9144 || (input_sec->flags & SEC_EXCLUDE))
9145 elfsym->st_name = (unsigned long) -1;
9146 else
9147 {
9148 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
9149 to get the final offset for st_name. */
9150 elfsym->st_name
9151 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
9152 name, FALSE);
9153 if (elfsym->st_name == (unsigned long) -1)
9154 return 0;
9155 }
9156
9157 hash_table = elf_hash_table (flinfo->info);
9158 strtabsize = hash_table->strtabsize;
9159 if (strtabsize <= hash_table->strtabcount)
9160 {
9161 strtabsize += strtabsize;
9162 hash_table->strtabsize = strtabsize;
9163 strtabsize *= sizeof (*hash_table->strtab);
9164 hash_table->strtab
9165 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
9166 strtabsize);
9167 if (hash_table->strtab == NULL)
9168 return 0;
9169 }
9170 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
9171 hash_table->strtab[hash_table->strtabcount].dest_index
9172 = hash_table->strtabcount;
9173 hash_table->strtab[hash_table->strtabcount].destshndx_index
9174 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
9175
9176 bfd_get_symcount (flinfo->output_bfd) += 1;
9177 hash_table->strtabcount += 1;
9178
9179 return 1;
9180 }
9181
9182 /* Swap symbols out to the symbol table and flush the output symbols to
9183 the file. */
9184
9185 static bfd_boolean
9186 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
9187 {
9188 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
9189 bfd_size_type amt;
9190 size_t i;
9191 const struct elf_backend_data *bed;
9192 bfd_byte *symbuf;
9193 Elf_Internal_Shdr *hdr;
9194 file_ptr pos;
9195 bfd_boolean ret;
9196
9197 if (!hash_table->strtabcount)
9198 return TRUE;
9199
9200 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9201
9202 bed = get_elf_backend_data (flinfo->output_bfd);
9203
9204 amt = bed->s->sizeof_sym * hash_table->strtabcount;
9205 symbuf = (bfd_byte *) bfd_malloc (amt);
9206 if (symbuf == NULL)
9207 return FALSE;
9208
9209 if (flinfo->symshndxbuf)
9210 {
9211 amt = sizeof (Elf_External_Sym_Shndx);
9212 amt *= bfd_get_symcount (flinfo->output_bfd);
9213 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
9214 if (flinfo->symshndxbuf == NULL)
9215 {
9216 free (symbuf);
9217 return FALSE;
9218 }
9219 }
9220
9221 for (i = 0; i < hash_table->strtabcount; i++)
9222 {
9223 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
9224 if (elfsym->sym.st_name == (unsigned long) -1)
9225 elfsym->sym.st_name = 0;
9226 else
9227 elfsym->sym.st_name
9228 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
9229 elfsym->sym.st_name);
9230 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
9231 ((bfd_byte *) symbuf
9232 + (elfsym->dest_index
9233 * bed->s->sizeof_sym)),
9234 (flinfo->symshndxbuf
9235 + elfsym->destshndx_index));
9236 }
9237
9238 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
9239 pos = hdr->sh_offset + hdr->sh_size;
9240 amt = hash_table->strtabcount * bed->s->sizeof_sym;
9241 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
9242 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
9243 {
9244 hdr->sh_size += amt;
9245 ret = TRUE;
9246 }
9247 else
9248 ret = FALSE;
9249
9250 free (symbuf);
9251
9252 free (hash_table->strtab);
9253 hash_table->strtab = NULL;
9254
9255 return ret;
9256 }
9257
9258 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9259
9260 static bfd_boolean
9261 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9262 {
9263 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9264 && sym->st_shndx < SHN_LORESERVE)
9265 {
9266 /* The gABI doesn't support dynamic symbols in output sections
9267 beyond 64k. */
9268 _bfd_error_handler
9269 /* xgettext:c-format */
9270 (_("%B: Too many sections: %d (>= %d)"),
9271 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9272 bfd_set_error (bfd_error_nonrepresentable_section);
9273 return FALSE;
9274 }
9275 return TRUE;
9276 }
9277
9278 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9279 allowing an unsatisfied unversioned symbol in the DSO to match a
9280 versioned symbol that would normally require an explicit version.
9281 We also handle the case that a DSO references a hidden symbol
9282 which may be satisfied by a versioned symbol in another DSO. */
9283
9284 static bfd_boolean
9285 elf_link_check_versioned_symbol (struct bfd_link_info *info,
9286 const struct elf_backend_data *bed,
9287 struct elf_link_hash_entry *h)
9288 {
9289 bfd *abfd;
9290 struct elf_link_loaded_list *loaded;
9291
9292 if (!is_elf_hash_table (info->hash))
9293 return FALSE;
9294
9295 /* Check indirect symbol. */
9296 while (h->root.type == bfd_link_hash_indirect)
9297 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9298
9299 switch (h->root.type)
9300 {
9301 default:
9302 abfd = NULL;
9303 break;
9304
9305 case bfd_link_hash_undefined:
9306 case bfd_link_hash_undefweak:
9307 abfd = h->root.u.undef.abfd;
9308 if (abfd == NULL
9309 || (abfd->flags & DYNAMIC) == 0
9310 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9311 return FALSE;
9312 break;
9313
9314 case bfd_link_hash_defined:
9315 case bfd_link_hash_defweak:
9316 abfd = h->root.u.def.section->owner;
9317 break;
9318
9319 case bfd_link_hash_common:
9320 abfd = h->root.u.c.p->section->owner;
9321 break;
9322 }
9323 BFD_ASSERT (abfd != NULL);
9324
9325 for (loaded = elf_hash_table (info)->loaded;
9326 loaded != NULL;
9327 loaded = loaded->next)
9328 {
9329 bfd *input;
9330 Elf_Internal_Shdr *hdr;
9331 size_t symcount;
9332 size_t extsymcount;
9333 size_t extsymoff;
9334 Elf_Internal_Shdr *versymhdr;
9335 Elf_Internal_Sym *isym;
9336 Elf_Internal_Sym *isymend;
9337 Elf_Internal_Sym *isymbuf;
9338 Elf_External_Versym *ever;
9339 Elf_External_Versym *extversym;
9340
9341 input = loaded->abfd;
9342
9343 /* We check each DSO for a possible hidden versioned definition. */
9344 if (input == abfd
9345 || (input->flags & DYNAMIC) == 0
9346 || elf_dynversym (input) == 0)
9347 continue;
9348
9349 hdr = &elf_tdata (input)->dynsymtab_hdr;
9350
9351 symcount = hdr->sh_size / bed->s->sizeof_sym;
9352 if (elf_bad_symtab (input))
9353 {
9354 extsymcount = symcount;
9355 extsymoff = 0;
9356 }
9357 else
9358 {
9359 extsymcount = symcount - hdr->sh_info;
9360 extsymoff = hdr->sh_info;
9361 }
9362
9363 if (extsymcount == 0)
9364 continue;
9365
9366 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9367 NULL, NULL, NULL);
9368 if (isymbuf == NULL)
9369 return FALSE;
9370
9371 /* Read in any version definitions. */
9372 versymhdr = &elf_tdata (input)->dynversym_hdr;
9373 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
9374 if (extversym == NULL)
9375 goto error_ret;
9376
9377 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9378 || (bfd_bread (extversym, versymhdr->sh_size, input)
9379 != versymhdr->sh_size))
9380 {
9381 free (extversym);
9382 error_ret:
9383 free (isymbuf);
9384 return FALSE;
9385 }
9386
9387 ever = extversym + extsymoff;
9388 isymend = isymbuf + extsymcount;
9389 for (isym = isymbuf; isym < isymend; isym++, ever++)
9390 {
9391 const char *name;
9392 Elf_Internal_Versym iver;
9393 unsigned short version_index;
9394
9395 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9396 || isym->st_shndx == SHN_UNDEF)
9397 continue;
9398
9399 name = bfd_elf_string_from_elf_section (input,
9400 hdr->sh_link,
9401 isym->st_name);
9402 if (strcmp (name, h->root.root.string) != 0)
9403 continue;
9404
9405 _bfd_elf_swap_versym_in (input, ever, &iver);
9406
9407 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9408 && !(h->def_regular
9409 && h->forced_local))
9410 {
9411 /* If we have a non-hidden versioned sym, then it should
9412 have provided a definition for the undefined sym unless
9413 it is defined in a non-shared object and forced local.
9414 */
9415 abort ();
9416 }
9417
9418 version_index = iver.vs_vers & VERSYM_VERSION;
9419 if (version_index == 1 || version_index == 2)
9420 {
9421 /* This is the base or first version. We can use it. */
9422 free (extversym);
9423 free (isymbuf);
9424 return TRUE;
9425 }
9426 }
9427
9428 free (extversym);
9429 free (isymbuf);
9430 }
9431
9432 return FALSE;
9433 }
9434
9435 /* Convert ELF common symbol TYPE. */
9436
9437 static int
9438 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9439 {
9440 /* Commom symbol can only appear in relocatable link. */
9441 if (!bfd_link_relocatable (info))
9442 abort ();
9443 switch (info->elf_stt_common)
9444 {
9445 case unchanged:
9446 break;
9447 case elf_stt_common:
9448 type = STT_COMMON;
9449 break;
9450 case no_elf_stt_common:
9451 type = STT_OBJECT;
9452 break;
9453 }
9454 return type;
9455 }
9456
9457 /* Add an external symbol to the symbol table. This is called from
9458 the hash table traversal routine. When generating a shared object,
9459 we go through the symbol table twice. The first time we output
9460 anything that might have been forced to local scope in a version
9461 script. The second time we output the symbols that are still
9462 global symbols. */
9463
9464 static bfd_boolean
9465 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9466 {
9467 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9468 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9469 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9470 bfd_boolean strip;
9471 Elf_Internal_Sym sym;
9472 asection *input_sec;
9473 const struct elf_backend_data *bed;
9474 long indx;
9475 int ret;
9476 unsigned int type;
9477
9478 if (h->root.type == bfd_link_hash_warning)
9479 {
9480 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9481 if (h->root.type == bfd_link_hash_new)
9482 return TRUE;
9483 }
9484
9485 /* Decide whether to output this symbol in this pass. */
9486 if (eoinfo->localsyms)
9487 {
9488 if (!h->forced_local)
9489 return TRUE;
9490 }
9491 else
9492 {
9493 if (h->forced_local)
9494 return TRUE;
9495 }
9496
9497 bed = get_elf_backend_data (flinfo->output_bfd);
9498
9499 if (h->root.type == bfd_link_hash_undefined)
9500 {
9501 /* If we have an undefined symbol reference here then it must have
9502 come from a shared library that is being linked in. (Undefined
9503 references in regular files have already been handled unless
9504 they are in unreferenced sections which are removed by garbage
9505 collection). */
9506 bfd_boolean ignore_undef = FALSE;
9507
9508 /* Some symbols may be special in that the fact that they're
9509 undefined can be safely ignored - let backend determine that. */
9510 if (bed->elf_backend_ignore_undef_symbol)
9511 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9512
9513 /* If we are reporting errors for this situation then do so now. */
9514 if (!ignore_undef
9515 && h->ref_dynamic
9516 && (!h->ref_regular || flinfo->info->gc_sections)
9517 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9518 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9519 (*flinfo->info->callbacks->undefined_symbol)
9520 (flinfo->info, h->root.root.string,
9521 h->ref_regular ? NULL : h->root.u.undef.abfd,
9522 NULL, 0,
9523 flinfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR);
9524
9525 /* Strip a global symbol defined in a discarded section. */
9526 if (h->indx == -3)
9527 return TRUE;
9528 }
9529
9530 /* We should also warn if a forced local symbol is referenced from
9531 shared libraries. */
9532 if (bfd_link_executable (flinfo->info)
9533 && h->forced_local
9534 && h->ref_dynamic
9535 && h->def_regular
9536 && !h->dynamic_def
9537 && h->ref_dynamic_nonweak
9538 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9539 {
9540 bfd *def_bfd;
9541 const char *msg;
9542 struct elf_link_hash_entry *hi = h;
9543
9544 /* Check indirect symbol. */
9545 while (hi->root.type == bfd_link_hash_indirect)
9546 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9547
9548 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9549 /* xgettext:c-format */
9550 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
9551 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9552 /* xgettext:c-format */
9553 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
9554 else
9555 /* xgettext:c-format */
9556 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
9557 def_bfd = flinfo->output_bfd;
9558 if (hi->root.u.def.section != bfd_abs_section_ptr)
9559 def_bfd = hi->root.u.def.section->owner;
9560 _bfd_error_handler (msg, flinfo->output_bfd,
9561 h->root.root.string, def_bfd);
9562 bfd_set_error (bfd_error_bad_value);
9563 eoinfo->failed = TRUE;
9564 return FALSE;
9565 }
9566
9567 /* We don't want to output symbols that have never been mentioned by
9568 a regular file, or that we have been told to strip. However, if
9569 h->indx is set to -2, the symbol is used by a reloc and we must
9570 output it. */
9571 strip = FALSE;
9572 if (h->indx == -2)
9573 ;
9574 else if ((h->def_dynamic
9575 || h->ref_dynamic
9576 || h->root.type == bfd_link_hash_new)
9577 && !h->def_regular
9578 && !h->ref_regular)
9579 strip = TRUE;
9580 else if (flinfo->info->strip == strip_all)
9581 strip = TRUE;
9582 else if (flinfo->info->strip == strip_some
9583 && bfd_hash_lookup (flinfo->info->keep_hash,
9584 h->root.root.string, FALSE, FALSE) == NULL)
9585 strip = TRUE;
9586 else if ((h->root.type == bfd_link_hash_defined
9587 || h->root.type == bfd_link_hash_defweak)
9588 && ((flinfo->info->strip_discarded
9589 && discarded_section (h->root.u.def.section))
9590 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9591 && h->root.u.def.section->owner != NULL
9592 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9593 strip = TRUE;
9594 else if ((h->root.type == bfd_link_hash_undefined
9595 || h->root.type == bfd_link_hash_undefweak)
9596 && h->root.u.undef.abfd != NULL
9597 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9598 strip = TRUE;
9599
9600 type = h->type;
9601
9602 /* If we're stripping it, and it's not a dynamic symbol, there's
9603 nothing else to do. However, if it is a forced local symbol or
9604 an ifunc symbol we need to give the backend finish_dynamic_symbol
9605 function a chance to make it dynamic. */
9606 if (strip
9607 && h->dynindx == -1
9608 && type != STT_GNU_IFUNC
9609 && !h->forced_local)
9610 return TRUE;
9611
9612 sym.st_value = 0;
9613 sym.st_size = h->size;
9614 sym.st_other = h->other;
9615 switch (h->root.type)
9616 {
9617 default:
9618 case bfd_link_hash_new:
9619 case bfd_link_hash_warning:
9620 abort ();
9621 return FALSE;
9622
9623 case bfd_link_hash_undefined:
9624 case bfd_link_hash_undefweak:
9625 input_sec = bfd_und_section_ptr;
9626 sym.st_shndx = SHN_UNDEF;
9627 break;
9628
9629 case bfd_link_hash_defined:
9630 case bfd_link_hash_defweak:
9631 {
9632 input_sec = h->root.u.def.section;
9633 if (input_sec->output_section != NULL)
9634 {
9635 sym.st_shndx =
9636 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9637 input_sec->output_section);
9638 if (sym.st_shndx == SHN_BAD)
9639 {
9640 _bfd_error_handler
9641 /* xgettext:c-format */
9642 (_("%B: could not find output section %A for input section %A"),
9643 flinfo->output_bfd, input_sec->output_section, input_sec);
9644 bfd_set_error (bfd_error_nonrepresentable_section);
9645 eoinfo->failed = TRUE;
9646 return FALSE;
9647 }
9648
9649 /* ELF symbols in relocatable files are section relative,
9650 but in nonrelocatable files they are virtual
9651 addresses. */
9652 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9653 if (!bfd_link_relocatable (flinfo->info))
9654 {
9655 sym.st_value += input_sec->output_section->vma;
9656 if (h->type == STT_TLS)
9657 {
9658 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9659 if (tls_sec != NULL)
9660 sym.st_value -= tls_sec->vma;
9661 }
9662 }
9663 }
9664 else
9665 {
9666 BFD_ASSERT (input_sec->owner == NULL
9667 || (input_sec->owner->flags & DYNAMIC) != 0);
9668 sym.st_shndx = SHN_UNDEF;
9669 input_sec = bfd_und_section_ptr;
9670 }
9671 }
9672 break;
9673
9674 case bfd_link_hash_common:
9675 input_sec = h->root.u.c.p->section;
9676 sym.st_shndx = bed->common_section_index (input_sec);
9677 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9678 break;
9679
9680 case bfd_link_hash_indirect:
9681 /* These symbols are created by symbol versioning. They point
9682 to the decorated version of the name. For example, if the
9683 symbol foo@@GNU_1.2 is the default, which should be used when
9684 foo is used with no version, then we add an indirect symbol
9685 foo which points to foo@@GNU_1.2. We ignore these symbols,
9686 since the indirected symbol is already in the hash table. */
9687 return TRUE;
9688 }
9689
9690 if (type == STT_COMMON || type == STT_OBJECT)
9691 switch (h->root.type)
9692 {
9693 case bfd_link_hash_common:
9694 type = elf_link_convert_common_type (flinfo->info, type);
9695 break;
9696 case bfd_link_hash_defined:
9697 case bfd_link_hash_defweak:
9698 if (bed->common_definition (&sym))
9699 type = elf_link_convert_common_type (flinfo->info, type);
9700 else
9701 type = STT_OBJECT;
9702 break;
9703 case bfd_link_hash_undefined:
9704 case bfd_link_hash_undefweak:
9705 break;
9706 default:
9707 abort ();
9708 }
9709
9710 if (h->forced_local)
9711 {
9712 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
9713 /* Turn off visibility on local symbol. */
9714 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
9715 }
9716 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
9717 else if (h->unique_global && h->def_regular)
9718 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
9719 else if (h->root.type == bfd_link_hash_undefweak
9720 || h->root.type == bfd_link_hash_defweak)
9721 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
9722 else
9723 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
9724 sym.st_target_internal = h->target_internal;
9725
9726 /* Give the processor backend a chance to tweak the symbol value,
9727 and also to finish up anything that needs to be done for this
9728 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9729 forced local syms when non-shared is due to a historical quirk.
9730 STT_GNU_IFUNC symbol must go through PLT. */
9731 if ((h->type == STT_GNU_IFUNC
9732 && h->def_regular
9733 && !bfd_link_relocatable (flinfo->info))
9734 || ((h->dynindx != -1
9735 || h->forced_local)
9736 && ((bfd_link_pic (flinfo->info)
9737 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9738 || h->root.type != bfd_link_hash_undefweak))
9739 || !h->forced_local)
9740 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9741 {
9742 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9743 (flinfo->output_bfd, flinfo->info, h, &sym)))
9744 {
9745 eoinfo->failed = TRUE;
9746 return FALSE;
9747 }
9748 }
9749
9750 /* If we are marking the symbol as undefined, and there are no
9751 non-weak references to this symbol from a regular object, then
9752 mark the symbol as weak undefined; if there are non-weak
9753 references, mark the symbol as strong. We can't do this earlier,
9754 because it might not be marked as undefined until the
9755 finish_dynamic_symbol routine gets through with it. */
9756 if (sym.st_shndx == SHN_UNDEF
9757 && h->ref_regular
9758 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9759 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9760 {
9761 int bindtype;
9762 type = ELF_ST_TYPE (sym.st_info);
9763
9764 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9765 if (type == STT_GNU_IFUNC)
9766 type = STT_FUNC;
9767
9768 if (h->ref_regular_nonweak)
9769 bindtype = STB_GLOBAL;
9770 else
9771 bindtype = STB_WEAK;
9772 sym.st_info = ELF_ST_INFO (bindtype, type);
9773 }
9774
9775 /* If this is a symbol defined in a dynamic library, don't use the
9776 symbol size from the dynamic library. Relinking an executable
9777 against a new library may introduce gratuitous changes in the
9778 executable's symbols if we keep the size. */
9779 if (sym.st_shndx == SHN_UNDEF
9780 && !h->def_regular
9781 && h->def_dynamic)
9782 sym.st_size = 0;
9783
9784 /* If a non-weak symbol with non-default visibility is not defined
9785 locally, it is a fatal error. */
9786 if (!bfd_link_relocatable (flinfo->info)
9787 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9788 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9789 && h->root.type == bfd_link_hash_undefined
9790 && !h->def_regular)
9791 {
9792 const char *msg;
9793
9794 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9795 /* xgettext:c-format */
9796 msg = _("%B: protected symbol `%s' isn't defined");
9797 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9798 /* xgettext:c-format */
9799 msg = _("%B: internal symbol `%s' isn't defined");
9800 else
9801 /* xgettext:c-format */
9802 msg = _("%B: hidden symbol `%s' isn't defined");
9803 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
9804 bfd_set_error (bfd_error_bad_value);
9805 eoinfo->failed = TRUE;
9806 return FALSE;
9807 }
9808
9809 /* If this symbol should be put in the .dynsym section, then put it
9810 there now. We already know the symbol index. We also fill in
9811 the entry in the .hash section. */
9812 if (elf_hash_table (flinfo->info)->dynsym != NULL
9813 && h->dynindx != -1
9814 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9815 {
9816 bfd_byte *esym;
9817
9818 /* Since there is no version information in the dynamic string,
9819 if there is no version info in symbol version section, we will
9820 have a run-time problem if not linking executable, referenced
9821 by shared library, or not bound locally. */
9822 if (h->verinfo.verdef == NULL
9823 && (!bfd_link_executable (flinfo->info)
9824 || h->ref_dynamic
9825 || !h->def_regular))
9826 {
9827 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9828
9829 if (p && p [1] != '\0')
9830 {
9831 _bfd_error_handler
9832 /* xgettext:c-format */
9833 (_("%B: No symbol version section for versioned symbol `%s'"),
9834 flinfo->output_bfd, h->root.root.string);
9835 eoinfo->failed = TRUE;
9836 return FALSE;
9837 }
9838 }
9839
9840 sym.st_name = h->dynstr_index;
9841 esym = (elf_hash_table (flinfo->info)->dynsym->contents
9842 + h->dynindx * bed->s->sizeof_sym);
9843 if (!check_dynsym (flinfo->output_bfd, &sym))
9844 {
9845 eoinfo->failed = TRUE;
9846 return FALSE;
9847 }
9848 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9849
9850 if (flinfo->hash_sec != NULL)
9851 {
9852 size_t hash_entry_size;
9853 bfd_byte *bucketpos;
9854 bfd_vma chain;
9855 size_t bucketcount;
9856 size_t bucket;
9857
9858 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9859 bucket = h->u.elf_hash_value % bucketcount;
9860
9861 hash_entry_size
9862 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9863 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9864 + (bucket + 2) * hash_entry_size);
9865 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9866 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9867 bucketpos);
9868 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9869 ((bfd_byte *) flinfo->hash_sec->contents
9870 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9871 }
9872
9873 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9874 {
9875 Elf_Internal_Versym iversym;
9876 Elf_External_Versym *eversym;
9877
9878 if (!h->def_regular)
9879 {
9880 if (h->verinfo.verdef == NULL
9881 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9882 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9883 iversym.vs_vers = 0;
9884 else
9885 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9886 }
9887 else
9888 {
9889 if (h->verinfo.vertree == NULL)
9890 iversym.vs_vers = 1;
9891 else
9892 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9893 if (flinfo->info->create_default_symver)
9894 iversym.vs_vers++;
9895 }
9896
9897 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
9898 defined locally. */
9899 if (h->versioned == versioned_hidden && h->def_regular)
9900 iversym.vs_vers |= VERSYM_HIDDEN;
9901
9902 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9903 eversym += h->dynindx;
9904 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9905 }
9906 }
9907
9908 /* If the symbol is undefined, and we didn't output it to .dynsym,
9909 strip it from .symtab too. Obviously we can't do this for
9910 relocatable output or when needed for --emit-relocs. */
9911 else if (input_sec == bfd_und_section_ptr
9912 && h->indx != -2
9913 && !bfd_link_relocatable (flinfo->info))
9914 return TRUE;
9915 /* Also strip others that we couldn't earlier due to dynamic symbol
9916 processing. */
9917 if (strip)
9918 return TRUE;
9919 if ((input_sec->flags & SEC_EXCLUDE) != 0)
9920 return TRUE;
9921
9922 /* Output a FILE symbol so that following locals are not associated
9923 with the wrong input file. We need one for forced local symbols
9924 if we've seen more than one FILE symbol or when we have exactly
9925 one FILE symbol but global symbols are present in a file other
9926 than the one with the FILE symbol. We also need one if linker
9927 defined symbols are present. In practice these conditions are
9928 always met, so just emit the FILE symbol unconditionally. */
9929 if (eoinfo->localsyms
9930 && !eoinfo->file_sym_done
9931 && eoinfo->flinfo->filesym_count != 0)
9932 {
9933 Elf_Internal_Sym fsym;
9934
9935 memset (&fsym, 0, sizeof (fsym));
9936 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9937 fsym.st_shndx = SHN_ABS;
9938 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
9939 bfd_und_section_ptr, NULL))
9940 return FALSE;
9941
9942 eoinfo->file_sym_done = TRUE;
9943 }
9944
9945 indx = bfd_get_symcount (flinfo->output_bfd);
9946 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
9947 input_sec, h);
9948 if (ret == 0)
9949 {
9950 eoinfo->failed = TRUE;
9951 return FALSE;
9952 }
9953 else if (ret == 1)
9954 h->indx = indx;
9955 else if (h->indx == -2)
9956 abort();
9957
9958 return TRUE;
9959 }
9960
9961 /* Return TRUE if special handling is done for relocs in SEC against
9962 symbols defined in discarded sections. */
9963
9964 static bfd_boolean
9965 elf_section_ignore_discarded_relocs (asection *sec)
9966 {
9967 const struct elf_backend_data *bed;
9968
9969 switch (sec->sec_info_type)
9970 {
9971 case SEC_INFO_TYPE_STABS:
9972 case SEC_INFO_TYPE_EH_FRAME:
9973 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
9974 return TRUE;
9975 default:
9976 break;
9977 }
9978
9979 bed = get_elf_backend_data (sec->owner);
9980 if (bed->elf_backend_ignore_discarded_relocs != NULL
9981 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9982 return TRUE;
9983
9984 return FALSE;
9985 }
9986
9987 /* Return a mask saying how ld should treat relocations in SEC against
9988 symbols defined in discarded sections. If this function returns
9989 COMPLAIN set, ld will issue a warning message. If this function
9990 returns PRETEND set, and the discarded section was link-once and the
9991 same size as the kept link-once section, ld will pretend that the
9992 symbol was actually defined in the kept section. Otherwise ld will
9993 zero the reloc (at least that is the intent, but some cooperation by
9994 the target dependent code is needed, particularly for REL targets). */
9995
9996 unsigned int
9997 _bfd_elf_default_action_discarded (asection *sec)
9998 {
9999 if (sec->flags & SEC_DEBUGGING)
10000 return PRETEND;
10001
10002 if (strcmp (".eh_frame", sec->name) == 0)
10003 return 0;
10004
10005 if (strcmp (".gcc_except_table", sec->name) == 0)
10006 return 0;
10007
10008 return COMPLAIN | PRETEND;
10009 }
10010
10011 /* Find a match between a section and a member of a section group. */
10012
10013 static asection *
10014 match_group_member (asection *sec, asection *group,
10015 struct bfd_link_info *info)
10016 {
10017 asection *first = elf_next_in_group (group);
10018 asection *s = first;
10019
10020 while (s != NULL)
10021 {
10022 if (bfd_elf_match_symbols_in_sections (s, sec, info))
10023 return s;
10024
10025 s = elf_next_in_group (s);
10026 if (s == first)
10027 break;
10028 }
10029
10030 return NULL;
10031 }
10032
10033 /* Check if the kept section of a discarded section SEC can be used
10034 to replace it. Return the replacement if it is OK. Otherwise return
10035 NULL. */
10036
10037 asection *
10038 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
10039 {
10040 asection *kept;
10041
10042 kept = sec->kept_section;
10043 if (kept != NULL)
10044 {
10045 if ((kept->flags & SEC_GROUP) != 0)
10046 kept = match_group_member (sec, kept, info);
10047 if (kept != NULL
10048 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
10049 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
10050 kept = NULL;
10051 sec->kept_section = kept;
10052 }
10053 return kept;
10054 }
10055
10056 /* Link an input file into the linker output file. This function
10057 handles all the sections and relocations of the input file at once.
10058 This is so that we only have to read the local symbols once, and
10059 don't have to keep them in memory. */
10060
10061 static bfd_boolean
10062 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
10063 {
10064 int (*relocate_section)
10065 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
10066 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
10067 bfd *output_bfd;
10068 Elf_Internal_Shdr *symtab_hdr;
10069 size_t locsymcount;
10070 size_t extsymoff;
10071 Elf_Internal_Sym *isymbuf;
10072 Elf_Internal_Sym *isym;
10073 Elf_Internal_Sym *isymend;
10074 long *pindex;
10075 asection **ppsection;
10076 asection *o;
10077 const struct elf_backend_data *bed;
10078 struct elf_link_hash_entry **sym_hashes;
10079 bfd_size_type address_size;
10080 bfd_vma r_type_mask;
10081 int r_sym_shift;
10082 bfd_boolean have_file_sym = FALSE;
10083
10084 output_bfd = flinfo->output_bfd;
10085 bed = get_elf_backend_data (output_bfd);
10086 relocate_section = bed->elf_backend_relocate_section;
10087
10088 /* If this is a dynamic object, we don't want to do anything here:
10089 we don't want the local symbols, and we don't want the section
10090 contents. */
10091 if ((input_bfd->flags & DYNAMIC) != 0)
10092 return TRUE;
10093
10094 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10095 if (elf_bad_symtab (input_bfd))
10096 {
10097 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10098 extsymoff = 0;
10099 }
10100 else
10101 {
10102 locsymcount = symtab_hdr->sh_info;
10103 extsymoff = symtab_hdr->sh_info;
10104 }
10105
10106 /* Read the local symbols. */
10107 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
10108 if (isymbuf == NULL && locsymcount != 0)
10109 {
10110 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
10111 flinfo->internal_syms,
10112 flinfo->external_syms,
10113 flinfo->locsym_shndx);
10114 if (isymbuf == NULL)
10115 return FALSE;
10116 }
10117
10118 /* Find local symbol sections and adjust values of symbols in
10119 SEC_MERGE sections. Write out those local symbols we know are
10120 going into the output file. */
10121 isymend = isymbuf + locsymcount;
10122 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
10123 isym < isymend;
10124 isym++, pindex++, ppsection++)
10125 {
10126 asection *isec;
10127 const char *name;
10128 Elf_Internal_Sym osym;
10129 long indx;
10130 int ret;
10131
10132 *pindex = -1;
10133
10134 if (elf_bad_symtab (input_bfd))
10135 {
10136 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
10137 {
10138 *ppsection = NULL;
10139 continue;
10140 }
10141 }
10142
10143 if (isym->st_shndx == SHN_UNDEF)
10144 isec = bfd_und_section_ptr;
10145 else if (isym->st_shndx == SHN_ABS)
10146 isec = bfd_abs_section_ptr;
10147 else if (isym->st_shndx == SHN_COMMON)
10148 isec = bfd_com_section_ptr;
10149 else
10150 {
10151 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
10152 if (isec == NULL)
10153 {
10154 /* Don't attempt to output symbols with st_shnx in the
10155 reserved range other than SHN_ABS and SHN_COMMON. */
10156 *ppsection = NULL;
10157 continue;
10158 }
10159 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
10160 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
10161 isym->st_value =
10162 _bfd_merged_section_offset (output_bfd, &isec,
10163 elf_section_data (isec)->sec_info,
10164 isym->st_value);
10165 }
10166
10167 *ppsection = isec;
10168
10169 /* Don't output the first, undefined, symbol. In fact, don't
10170 output any undefined local symbol. */
10171 if (isec == bfd_und_section_ptr)
10172 continue;
10173
10174 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
10175 {
10176 /* We never output section symbols. Instead, we use the
10177 section symbol of the corresponding section in the output
10178 file. */
10179 continue;
10180 }
10181
10182 /* If we are stripping all symbols, we don't want to output this
10183 one. */
10184 if (flinfo->info->strip == strip_all)
10185 continue;
10186
10187 /* If we are discarding all local symbols, we don't want to
10188 output this one. If we are generating a relocatable output
10189 file, then some of the local symbols may be required by
10190 relocs; we output them below as we discover that they are
10191 needed. */
10192 if (flinfo->info->discard == discard_all)
10193 continue;
10194
10195 /* If this symbol is defined in a section which we are
10196 discarding, we don't need to keep it. */
10197 if (isym->st_shndx != SHN_UNDEF
10198 && isym->st_shndx < SHN_LORESERVE
10199 && bfd_section_removed_from_list (output_bfd,
10200 isec->output_section))
10201 continue;
10202
10203 /* Get the name of the symbol. */
10204 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
10205 isym->st_name);
10206 if (name == NULL)
10207 return FALSE;
10208
10209 /* See if we are discarding symbols with this name. */
10210 if ((flinfo->info->strip == strip_some
10211 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
10212 == NULL))
10213 || (((flinfo->info->discard == discard_sec_merge
10214 && (isec->flags & SEC_MERGE)
10215 && !bfd_link_relocatable (flinfo->info))
10216 || flinfo->info->discard == discard_l)
10217 && bfd_is_local_label_name (input_bfd, name)))
10218 continue;
10219
10220 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
10221 {
10222 if (input_bfd->lto_output)
10223 /* -flto puts a temp file name here. This means builds
10224 are not reproducible. Discard the symbol. */
10225 continue;
10226 have_file_sym = TRUE;
10227 flinfo->filesym_count += 1;
10228 }
10229 if (!have_file_sym)
10230 {
10231 /* In the absence of debug info, bfd_find_nearest_line uses
10232 FILE symbols to determine the source file for local
10233 function symbols. Provide a FILE symbol here if input
10234 files lack such, so that their symbols won't be
10235 associated with a previous input file. It's not the
10236 source file, but the best we can do. */
10237 have_file_sym = TRUE;
10238 flinfo->filesym_count += 1;
10239 memset (&osym, 0, sizeof (osym));
10240 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10241 osym.st_shndx = SHN_ABS;
10242 if (!elf_link_output_symstrtab (flinfo,
10243 (input_bfd->lto_output ? NULL
10244 : input_bfd->filename),
10245 &osym, bfd_abs_section_ptr,
10246 NULL))
10247 return FALSE;
10248 }
10249
10250 osym = *isym;
10251
10252 /* Adjust the section index for the output file. */
10253 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10254 isec->output_section);
10255 if (osym.st_shndx == SHN_BAD)
10256 return FALSE;
10257
10258 /* ELF symbols in relocatable files are section relative, but
10259 in executable files they are virtual addresses. Note that
10260 this code assumes that all ELF sections have an associated
10261 BFD section with a reasonable value for output_offset; below
10262 we assume that they also have a reasonable value for
10263 output_section. Any special sections must be set up to meet
10264 these requirements. */
10265 osym.st_value += isec->output_offset;
10266 if (!bfd_link_relocatable (flinfo->info))
10267 {
10268 osym.st_value += isec->output_section->vma;
10269 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
10270 {
10271 /* STT_TLS symbols are relative to PT_TLS segment base. */
10272 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
10273 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
10274 }
10275 }
10276
10277 indx = bfd_get_symcount (output_bfd);
10278 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
10279 if (ret == 0)
10280 return FALSE;
10281 else if (ret == 1)
10282 *pindex = indx;
10283 }
10284
10285 if (bed->s->arch_size == 32)
10286 {
10287 r_type_mask = 0xff;
10288 r_sym_shift = 8;
10289 address_size = 4;
10290 }
10291 else
10292 {
10293 r_type_mask = 0xffffffff;
10294 r_sym_shift = 32;
10295 address_size = 8;
10296 }
10297
10298 /* Relocate the contents of each section. */
10299 sym_hashes = elf_sym_hashes (input_bfd);
10300 for (o = input_bfd->sections; o != NULL; o = o->next)
10301 {
10302 bfd_byte *contents;
10303
10304 if (! o->linker_mark)
10305 {
10306 /* This section was omitted from the link. */
10307 continue;
10308 }
10309
10310 if (!flinfo->info->resolve_section_groups
10311 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10312 {
10313 /* Deal with the group signature symbol. */
10314 struct bfd_elf_section_data *sec_data = elf_section_data (o);
10315 unsigned long symndx = sec_data->this_hdr.sh_info;
10316 asection *osec = o->output_section;
10317
10318 BFD_ASSERT (bfd_link_relocatable (flinfo->info));
10319 if (symndx >= locsymcount
10320 || (elf_bad_symtab (input_bfd)
10321 && flinfo->sections[symndx] == NULL))
10322 {
10323 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10324 while (h->root.type == bfd_link_hash_indirect
10325 || h->root.type == bfd_link_hash_warning)
10326 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10327 /* Arrange for symbol to be output. */
10328 h->indx = -2;
10329 elf_section_data (osec)->this_hdr.sh_info = -2;
10330 }
10331 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10332 {
10333 /* We'll use the output section target_index. */
10334 asection *sec = flinfo->sections[symndx]->output_section;
10335 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10336 }
10337 else
10338 {
10339 if (flinfo->indices[symndx] == -1)
10340 {
10341 /* Otherwise output the local symbol now. */
10342 Elf_Internal_Sym sym = isymbuf[symndx];
10343 asection *sec = flinfo->sections[symndx]->output_section;
10344 const char *name;
10345 long indx;
10346 int ret;
10347
10348 name = bfd_elf_string_from_elf_section (input_bfd,
10349 symtab_hdr->sh_link,
10350 sym.st_name);
10351 if (name == NULL)
10352 return FALSE;
10353
10354 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10355 sec);
10356 if (sym.st_shndx == SHN_BAD)
10357 return FALSE;
10358
10359 sym.st_value += o->output_offset;
10360
10361 indx = bfd_get_symcount (output_bfd);
10362 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10363 NULL);
10364 if (ret == 0)
10365 return FALSE;
10366 else if (ret == 1)
10367 flinfo->indices[symndx] = indx;
10368 else
10369 abort ();
10370 }
10371 elf_section_data (osec)->this_hdr.sh_info
10372 = flinfo->indices[symndx];
10373 }
10374 }
10375
10376 if ((o->flags & SEC_HAS_CONTENTS) == 0
10377 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10378 continue;
10379
10380 if ((o->flags & SEC_LINKER_CREATED) != 0)
10381 {
10382 /* Section was created by _bfd_elf_link_create_dynamic_sections
10383 or somesuch. */
10384 continue;
10385 }
10386
10387 /* Get the contents of the section. They have been cached by a
10388 relaxation routine. Note that o is a section in an input
10389 file, so the contents field will not have been set by any of
10390 the routines which work on output files. */
10391 if (elf_section_data (o)->this_hdr.contents != NULL)
10392 {
10393 contents = elf_section_data (o)->this_hdr.contents;
10394 if (bed->caches_rawsize
10395 && o->rawsize != 0
10396 && o->rawsize < o->size)
10397 {
10398 memcpy (flinfo->contents, contents, o->rawsize);
10399 contents = flinfo->contents;
10400 }
10401 }
10402 else
10403 {
10404 contents = flinfo->contents;
10405 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10406 return FALSE;
10407 }
10408
10409 if ((o->flags & SEC_RELOC) != 0)
10410 {
10411 Elf_Internal_Rela *internal_relocs;
10412 Elf_Internal_Rela *rel, *relend;
10413 int action_discarded;
10414 int ret;
10415
10416 /* Get the swapped relocs. */
10417 internal_relocs
10418 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10419 flinfo->internal_relocs, FALSE);
10420 if (internal_relocs == NULL
10421 && o->reloc_count > 0)
10422 return FALSE;
10423
10424 /* We need to reverse-copy input .ctors/.dtors sections if
10425 they are placed in .init_array/.finit_array for output. */
10426 if (o->size > address_size
10427 && ((strncmp (o->name, ".ctors", 6) == 0
10428 && strcmp (o->output_section->name,
10429 ".init_array") == 0)
10430 || (strncmp (o->name, ".dtors", 6) == 0
10431 && strcmp (o->output_section->name,
10432 ".fini_array") == 0))
10433 && (o->name[6] == 0 || o->name[6] == '.'))
10434 {
10435 if (o->size * bed->s->int_rels_per_ext_rel
10436 != o->reloc_count * address_size)
10437 {
10438 _bfd_error_handler
10439 /* xgettext:c-format */
10440 (_("error: %B: size of section %A is not "
10441 "multiple of address size"),
10442 input_bfd, o);
10443 bfd_set_error (bfd_error_bad_value);
10444 return FALSE;
10445 }
10446 o->flags |= SEC_ELF_REVERSE_COPY;
10447 }
10448
10449 action_discarded = -1;
10450 if (!elf_section_ignore_discarded_relocs (o))
10451 action_discarded = (*bed->action_discarded) (o);
10452
10453 /* Run through the relocs evaluating complex reloc symbols and
10454 looking for relocs against symbols from discarded sections
10455 or section symbols from removed link-once sections.
10456 Complain about relocs against discarded sections. Zero
10457 relocs against removed link-once sections. */
10458
10459 rel = internal_relocs;
10460 relend = rel + o->reloc_count;
10461 for ( ; rel < relend; rel++)
10462 {
10463 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10464 unsigned int s_type;
10465 asection **ps, *sec;
10466 struct elf_link_hash_entry *h = NULL;
10467 const char *sym_name;
10468
10469 if (r_symndx == STN_UNDEF)
10470 continue;
10471
10472 if (r_symndx >= locsymcount
10473 || (elf_bad_symtab (input_bfd)
10474 && flinfo->sections[r_symndx] == NULL))
10475 {
10476 h = sym_hashes[r_symndx - extsymoff];
10477
10478 /* Badly formatted input files can contain relocs that
10479 reference non-existant symbols. Check here so that
10480 we do not seg fault. */
10481 if (h == NULL)
10482 {
10483 _bfd_error_handler
10484 /* xgettext:c-format */
10485 (_("error: %B contains a reloc (%#Lx) for section %A "
10486 "that references a non-existent global symbol"),
10487 input_bfd, rel->r_info, o);
10488 bfd_set_error (bfd_error_bad_value);
10489 return FALSE;
10490 }
10491
10492 while (h->root.type == bfd_link_hash_indirect
10493 || h->root.type == bfd_link_hash_warning)
10494 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10495
10496 s_type = h->type;
10497
10498 /* If a plugin symbol is referenced from a non-IR file,
10499 mark the symbol as undefined. Note that the
10500 linker may attach linker created dynamic sections
10501 to the plugin bfd. Symbols defined in linker
10502 created sections are not plugin symbols. */
10503 if ((h->root.non_ir_ref_regular
10504 || h->root.non_ir_ref_dynamic)
10505 && (h->root.type == bfd_link_hash_defined
10506 || h->root.type == bfd_link_hash_defweak)
10507 && (h->root.u.def.section->flags
10508 & SEC_LINKER_CREATED) == 0
10509 && h->root.u.def.section->owner != NULL
10510 && (h->root.u.def.section->owner->flags
10511 & BFD_PLUGIN) != 0)
10512 {
10513 h->root.type = bfd_link_hash_undefined;
10514 h->root.u.undef.abfd = h->root.u.def.section->owner;
10515 }
10516
10517 ps = NULL;
10518 if (h->root.type == bfd_link_hash_defined
10519 || h->root.type == bfd_link_hash_defweak)
10520 ps = &h->root.u.def.section;
10521
10522 sym_name = h->root.root.string;
10523 }
10524 else
10525 {
10526 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10527
10528 s_type = ELF_ST_TYPE (sym->st_info);
10529 ps = &flinfo->sections[r_symndx];
10530 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10531 sym, *ps);
10532 }
10533
10534 if ((s_type == STT_RELC || s_type == STT_SRELC)
10535 && !bfd_link_relocatable (flinfo->info))
10536 {
10537 bfd_vma val;
10538 bfd_vma dot = (rel->r_offset
10539 + o->output_offset + o->output_section->vma);
10540 #ifdef DEBUG
10541 printf ("Encountered a complex symbol!");
10542 printf (" (input_bfd %s, section %s, reloc %ld\n",
10543 input_bfd->filename, o->name,
10544 (long) (rel - internal_relocs));
10545 printf (" symbol: idx %8.8lx, name %s\n",
10546 r_symndx, sym_name);
10547 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10548 (unsigned long) rel->r_info,
10549 (unsigned long) rel->r_offset);
10550 #endif
10551 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10552 isymbuf, locsymcount, s_type == STT_SRELC))
10553 return FALSE;
10554
10555 /* Symbol evaluated OK. Update to absolute value. */
10556 set_symbol_value (input_bfd, isymbuf, locsymcount,
10557 r_symndx, val);
10558 continue;
10559 }
10560
10561 if (action_discarded != -1 && ps != NULL)
10562 {
10563 /* Complain if the definition comes from a
10564 discarded section. */
10565 if ((sec = *ps) != NULL && discarded_section (sec))
10566 {
10567 BFD_ASSERT (r_symndx != STN_UNDEF);
10568 if (action_discarded & COMPLAIN)
10569 (*flinfo->info->callbacks->einfo)
10570 /* xgettext:c-format */
10571 (_("%X`%s' referenced in section `%A' of %B: "
10572 "defined in discarded section `%A' of %B\n"),
10573 sym_name, o, input_bfd, sec, sec->owner);
10574
10575 /* Try to do the best we can to support buggy old
10576 versions of gcc. Pretend that the symbol is
10577 really defined in the kept linkonce section.
10578 FIXME: This is quite broken. Modifying the
10579 symbol here means we will be changing all later
10580 uses of the symbol, not just in this section. */
10581 if (action_discarded & PRETEND)
10582 {
10583 asection *kept;
10584
10585 kept = _bfd_elf_check_kept_section (sec,
10586 flinfo->info);
10587 if (kept != NULL)
10588 {
10589 *ps = kept;
10590 continue;
10591 }
10592 }
10593 }
10594 }
10595 }
10596
10597 /* Relocate the section by invoking a back end routine.
10598
10599 The back end routine is responsible for adjusting the
10600 section contents as necessary, and (if using Rela relocs
10601 and generating a relocatable output file) adjusting the
10602 reloc addend as necessary.
10603
10604 The back end routine does not have to worry about setting
10605 the reloc address or the reloc symbol index.
10606
10607 The back end routine is given a pointer to the swapped in
10608 internal symbols, and can access the hash table entries
10609 for the external symbols via elf_sym_hashes (input_bfd).
10610
10611 When generating relocatable output, the back end routine
10612 must handle STB_LOCAL/STT_SECTION symbols specially. The
10613 output symbol is going to be a section symbol
10614 corresponding to the output section, which will require
10615 the addend to be adjusted. */
10616
10617 ret = (*relocate_section) (output_bfd, flinfo->info,
10618 input_bfd, o, contents,
10619 internal_relocs,
10620 isymbuf,
10621 flinfo->sections);
10622 if (!ret)
10623 return FALSE;
10624
10625 if (ret == 2
10626 || bfd_link_relocatable (flinfo->info)
10627 || flinfo->info->emitrelocations)
10628 {
10629 Elf_Internal_Rela *irela;
10630 Elf_Internal_Rela *irelaend, *irelamid;
10631 bfd_vma last_offset;
10632 struct elf_link_hash_entry **rel_hash;
10633 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
10634 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
10635 unsigned int next_erel;
10636 bfd_boolean rela_normal;
10637 struct bfd_elf_section_data *esdi, *esdo;
10638
10639 esdi = elf_section_data (o);
10640 esdo = elf_section_data (o->output_section);
10641 rela_normal = FALSE;
10642
10643 /* Adjust the reloc addresses and symbol indices. */
10644
10645 irela = internal_relocs;
10646 irelaend = irela + o->reloc_count;
10647 rel_hash = esdo->rel.hashes + esdo->rel.count;
10648 /* We start processing the REL relocs, if any. When we reach
10649 IRELAMID in the loop, we switch to the RELA relocs. */
10650 irelamid = irela;
10651 if (esdi->rel.hdr != NULL)
10652 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10653 * bed->s->int_rels_per_ext_rel);
10654 rel_hash_list = rel_hash;
10655 rela_hash_list = NULL;
10656 last_offset = o->output_offset;
10657 if (!bfd_link_relocatable (flinfo->info))
10658 last_offset += o->output_section->vma;
10659 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10660 {
10661 unsigned long r_symndx;
10662 asection *sec;
10663 Elf_Internal_Sym sym;
10664
10665 if (next_erel == bed->s->int_rels_per_ext_rel)
10666 {
10667 rel_hash++;
10668 next_erel = 0;
10669 }
10670
10671 if (irela == irelamid)
10672 {
10673 rel_hash = esdo->rela.hashes + esdo->rela.count;
10674 rela_hash_list = rel_hash;
10675 rela_normal = bed->rela_normal;
10676 }
10677
10678 irela->r_offset = _bfd_elf_section_offset (output_bfd,
10679 flinfo->info, o,
10680 irela->r_offset);
10681 if (irela->r_offset >= (bfd_vma) -2)
10682 {
10683 /* This is a reloc for a deleted entry or somesuch.
10684 Turn it into an R_*_NONE reloc, at the same
10685 offset as the last reloc. elf_eh_frame.c and
10686 bfd_elf_discard_info rely on reloc offsets
10687 being ordered. */
10688 irela->r_offset = last_offset;
10689 irela->r_info = 0;
10690 irela->r_addend = 0;
10691 continue;
10692 }
10693
10694 irela->r_offset += o->output_offset;
10695
10696 /* Relocs in an executable have to be virtual addresses. */
10697 if (!bfd_link_relocatable (flinfo->info))
10698 irela->r_offset += o->output_section->vma;
10699
10700 last_offset = irela->r_offset;
10701
10702 r_symndx = irela->r_info >> r_sym_shift;
10703 if (r_symndx == STN_UNDEF)
10704 continue;
10705
10706 if (r_symndx >= locsymcount
10707 || (elf_bad_symtab (input_bfd)
10708 && flinfo->sections[r_symndx] == NULL))
10709 {
10710 struct elf_link_hash_entry *rh;
10711 unsigned long indx;
10712
10713 /* This is a reloc against a global symbol. We
10714 have not yet output all the local symbols, so
10715 we do not know the symbol index of any global
10716 symbol. We set the rel_hash entry for this
10717 reloc to point to the global hash table entry
10718 for this symbol. The symbol index is then
10719 set at the end of bfd_elf_final_link. */
10720 indx = r_symndx - extsymoff;
10721 rh = elf_sym_hashes (input_bfd)[indx];
10722 while (rh->root.type == bfd_link_hash_indirect
10723 || rh->root.type == bfd_link_hash_warning)
10724 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10725
10726 /* Setting the index to -2 tells
10727 elf_link_output_extsym that this symbol is
10728 used by a reloc. */
10729 BFD_ASSERT (rh->indx < 0);
10730 rh->indx = -2;
10731 *rel_hash = rh;
10732
10733 continue;
10734 }
10735
10736 /* This is a reloc against a local symbol. */
10737
10738 *rel_hash = NULL;
10739 sym = isymbuf[r_symndx];
10740 sec = flinfo->sections[r_symndx];
10741 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10742 {
10743 /* I suppose the backend ought to fill in the
10744 section of any STT_SECTION symbol against a
10745 processor specific section. */
10746 r_symndx = STN_UNDEF;
10747 if (bfd_is_abs_section (sec))
10748 ;
10749 else if (sec == NULL || sec->owner == NULL)
10750 {
10751 bfd_set_error (bfd_error_bad_value);
10752 return FALSE;
10753 }
10754 else
10755 {
10756 asection *osec = sec->output_section;
10757
10758 /* If we have discarded a section, the output
10759 section will be the absolute section. In
10760 case of discarded SEC_MERGE sections, use
10761 the kept section. relocate_section should
10762 have already handled discarded linkonce
10763 sections. */
10764 if (bfd_is_abs_section (osec)
10765 && sec->kept_section != NULL
10766 && sec->kept_section->output_section != NULL)
10767 {
10768 osec = sec->kept_section->output_section;
10769 irela->r_addend -= osec->vma;
10770 }
10771
10772 if (!bfd_is_abs_section (osec))
10773 {
10774 r_symndx = osec->target_index;
10775 if (r_symndx == STN_UNDEF)
10776 {
10777 irela->r_addend += osec->vma;
10778 osec = _bfd_nearby_section (output_bfd, osec,
10779 osec->vma);
10780 irela->r_addend -= osec->vma;
10781 r_symndx = osec->target_index;
10782 }
10783 }
10784 }
10785
10786 /* Adjust the addend according to where the
10787 section winds up in the output section. */
10788 if (rela_normal)
10789 irela->r_addend += sec->output_offset;
10790 }
10791 else
10792 {
10793 if (flinfo->indices[r_symndx] == -1)
10794 {
10795 unsigned long shlink;
10796 const char *name;
10797 asection *osec;
10798 long indx;
10799
10800 if (flinfo->info->strip == strip_all)
10801 {
10802 /* You can't do ld -r -s. */
10803 bfd_set_error (bfd_error_invalid_operation);
10804 return FALSE;
10805 }
10806
10807 /* This symbol was skipped earlier, but
10808 since it is needed by a reloc, we
10809 must output it now. */
10810 shlink = symtab_hdr->sh_link;
10811 name = (bfd_elf_string_from_elf_section
10812 (input_bfd, shlink, sym.st_name));
10813 if (name == NULL)
10814 return FALSE;
10815
10816 osec = sec->output_section;
10817 sym.st_shndx =
10818 _bfd_elf_section_from_bfd_section (output_bfd,
10819 osec);
10820 if (sym.st_shndx == SHN_BAD)
10821 return FALSE;
10822
10823 sym.st_value += sec->output_offset;
10824 if (!bfd_link_relocatable (flinfo->info))
10825 {
10826 sym.st_value += osec->vma;
10827 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10828 {
10829 /* STT_TLS symbols are relative to PT_TLS
10830 segment base. */
10831 BFD_ASSERT (elf_hash_table (flinfo->info)
10832 ->tls_sec != NULL);
10833 sym.st_value -= (elf_hash_table (flinfo->info)
10834 ->tls_sec->vma);
10835 }
10836 }
10837
10838 indx = bfd_get_symcount (output_bfd);
10839 ret = elf_link_output_symstrtab (flinfo, name,
10840 &sym, sec,
10841 NULL);
10842 if (ret == 0)
10843 return FALSE;
10844 else if (ret == 1)
10845 flinfo->indices[r_symndx] = indx;
10846 else
10847 abort ();
10848 }
10849
10850 r_symndx = flinfo->indices[r_symndx];
10851 }
10852
10853 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10854 | (irela->r_info & r_type_mask));
10855 }
10856
10857 /* Swap out the relocs. */
10858 input_rel_hdr = esdi->rel.hdr;
10859 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10860 {
10861 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10862 input_rel_hdr,
10863 internal_relocs,
10864 rel_hash_list))
10865 return FALSE;
10866 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10867 * bed->s->int_rels_per_ext_rel);
10868 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10869 }
10870
10871 input_rela_hdr = esdi->rela.hdr;
10872 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10873 {
10874 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10875 input_rela_hdr,
10876 internal_relocs,
10877 rela_hash_list))
10878 return FALSE;
10879 }
10880 }
10881 }
10882
10883 /* Write out the modified section contents. */
10884 if (bed->elf_backend_write_section
10885 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10886 contents))
10887 {
10888 /* Section written out. */
10889 }
10890 else switch (o->sec_info_type)
10891 {
10892 case SEC_INFO_TYPE_STABS:
10893 if (! (_bfd_write_section_stabs
10894 (output_bfd,
10895 &elf_hash_table (flinfo->info)->stab_info,
10896 o, &elf_section_data (o)->sec_info, contents)))
10897 return FALSE;
10898 break;
10899 case SEC_INFO_TYPE_MERGE:
10900 if (! _bfd_write_merged_section (output_bfd, o,
10901 elf_section_data (o)->sec_info))
10902 return FALSE;
10903 break;
10904 case SEC_INFO_TYPE_EH_FRAME:
10905 {
10906 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10907 o, contents))
10908 return FALSE;
10909 }
10910 break;
10911 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10912 {
10913 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
10914 flinfo->info,
10915 o, contents))
10916 return FALSE;
10917 }
10918 break;
10919 default:
10920 {
10921 if (! (o->flags & SEC_EXCLUDE))
10922 {
10923 file_ptr offset = (file_ptr) o->output_offset;
10924 bfd_size_type todo = o->size;
10925
10926 offset *= bfd_octets_per_byte (output_bfd);
10927
10928 if ((o->flags & SEC_ELF_REVERSE_COPY))
10929 {
10930 /* Reverse-copy input section to output. */
10931 do
10932 {
10933 todo -= address_size;
10934 if (! bfd_set_section_contents (output_bfd,
10935 o->output_section,
10936 contents + todo,
10937 offset,
10938 address_size))
10939 return FALSE;
10940 if (todo == 0)
10941 break;
10942 offset += address_size;
10943 }
10944 while (1);
10945 }
10946 else if (! bfd_set_section_contents (output_bfd,
10947 o->output_section,
10948 contents,
10949 offset, todo))
10950 return FALSE;
10951 }
10952 }
10953 break;
10954 }
10955 }
10956
10957 return TRUE;
10958 }
10959
10960 /* Generate a reloc when linking an ELF file. This is a reloc
10961 requested by the linker, and does not come from any input file. This
10962 is used to build constructor and destructor tables when linking
10963 with -Ur. */
10964
10965 static bfd_boolean
10966 elf_reloc_link_order (bfd *output_bfd,
10967 struct bfd_link_info *info,
10968 asection *output_section,
10969 struct bfd_link_order *link_order)
10970 {
10971 reloc_howto_type *howto;
10972 long indx;
10973 bfd_vma offset;
10974 bfd_vma addend;
10975 struct bfd_elf_section_reloc_data *reldata;
10976 struct elf_link_hash_entry **rel_hash_ptr;
10977 Elf_Internal_Shdr *rel_hdr;
10978 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10979 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10980 bfd_byte *erel;
10981 unsigned int i;
10982 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10983
10984 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10985 if (howto == NULL)
10986 {
10987 bfd_set_error (bfd_error_bad_value);
10988 return FALSE;
10989 }
10990
10991 addend = link_order->u.reloc.p->addend;
10992
10993 if (esdo->rel.hdr)
10994 reldata = &esdo->rel;
10995 else if (esdo->rela.hdr)
10996 reldata = &esdo->rela;
10997 else
10998 {
10999 reldata = NULL;
11000 BFD_ASSERT (0);
11001 }
11002
11003 /* Figure out the symbol index. */
11004 rel_hash_ptr = reldata->hashes + reldata->count;
11005 if (link_order->type == bfd_section_reloc_link_order)
11006 {
11007 indx = link_order->u.reloc.p->u.section->target_index;
11008 BFD_ASSERT (indx != 0);
11009 *rel_hash_ptr = NULL;
11010 }
11011 else
11012 {
11013 struct elf_link_hash_entry *h;
11014
11015 /* Treat a reloc against a defined symbol as though it were
11016 actually against the section. */
11017 h = ((struct elf_link_hash_entry *)
11018 bfd_wrapped_link_hash_lookup (output_bfd, info,
11019 link_order->u.reloc.p->u.name,
11020 FALSE, FALSE, TRUE));
11021 if (h != NULL
11022 && (h->root.type == bfd_link_hash_defined
11023 || h->root.type == bfd_link_hash_defweak))
11024 {
11025 asection *section;
11026
11027 section = h->root.u.def.section;
11028 indx = section->output_section->target_index;
11029 *rel_hash_ptr = NULL;
11030 /* It seems that we ought to add the symbol value to the
11031 addend here, but in practice it has already been added
11032 because it was passed to constructor_callback. */
11033 addend += section->output_section->vma + section->output_offset;
11034 }
11035 else if (h != NULL)
11036 {
11037 /* Setting the index to -2 tells elf_link_output_extsym that
11038 this symbol is used by a reloc. */
11039 h->indx = -2;
11040 *rel_hash_ptr = h;
11041 indx = 0;
11042 }
11043 else
11044 {
11045 (*info->callbacks->unattached_reloc)
11046 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
11047 indx = 0;
11048 }
11049 }
11050
11051 /* If this is an inplace reloc, we must write the addend into the
11052 object file. */
11053 if (howto->partial_inplace && addend != 0)
11054 {
11055 bfd_size_type size;
11056 bfd_reloc_status_type rstat;
11057 bfd_byte *buf;
11058 bfd_boolean ok;
11059 const char *sym_name;
11060
11061 size = (bfd_size_type) bfd_get_reloc_size (howto);
11062 buf = (bfd_byte *) bfd_zmalloc (size);
11063 if (buf == NULL && size != 0)
11064 return FALSE;
11065 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
11066 switch (rstat)
11067 {
11068 case bfd_reloc_ok:
11069 break;
11070
11071 default:
11072 case bfd_reloc_outofrange:
11073 abort ();
11074
11075 case bfd_reloc_overflow:
11076 if (link_order->type == bfd_section_reloc_link_order)
11077 sym_name = bfd_section_name (output_bfd,
11078 link_order->u.reloc.p->u.section);
11079 else
11080 sym_name = link_order->u.reloc.p->u.name;
11081 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
11082 howto->name, addend, NULL, NULL,
11083 (bfd_vma) 0);
11084 break;
11085 }
11086
11087 ok = bfd_set_section_contents (output_bfd, output_section, buf,
11088 link_order->offset
11089 * bfd_octets_per_byte (output_bfd),
11090 size);
11091 free (buf);
11092 if (! ok)
11093 return FALSE;
11094 }
11095
11096 /* The address of a reloc is relative to the section in a
11097 relocatable file, and is a virtual address in an executable
11098 file. */
11099 offset = link_order->offset;
11100 if (! bfd_link_relocatable (info))
11101 offset += output_section->vma;
11102
11103 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
11104 {
11105 irel[i].r_offset = offset;
11106 irel[i].r_info = 0;
11107 irel[i].r_addend = 0;
11108 }
11109 if (bed->s->arch_size == 32)
11110 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
11111 else
11112 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
11113
11114 rel_hdr = reldata->hdr;
11115 erel = rel_hdr->contents;
11116 if (rel_hdr->sh_type == SHT_REL)
11117 {
11118 erel += reldata->count * bed->s->sizeof_rel;
11119 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
11120 }
11121 else
11122 {
11123 irel[0].r_addend = addend;
11124 erel += reldata->count * bed->s->sizeof_rela;
11125 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
11126 }
11127
11128 ++reldata->count;
11129
11130 return TRUE;
11131 }
11132
11133
11134 /* Get the output vma of the section pointed to by the sh_link field. */
11135
11136 static bfd_vma
11137 elf_get_linked_section_vma (struct bfd_link_order *p)
11138 {
11139 Elf_Internal_Shdr **elf_shdrp;
11140 asection *s;
11141 int elfsec;
11142
11143 s = p->u.indirect.section;
11144 elf_shdrp = elf_elfsections (s->owner);
11145 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
11146 elfsec = elf_shdrp[elfsec]->sh_link;
11147 /* PR 290:
11148 The Intel C compiler generates SHT_IA_64_UNWIND with
11149 SHF_LINK_ORDER. But it doesn't set the sh_link or
11150 sh_info fields. Hence we could get the situation
11151 where elfsec is 0. */
11152 if (elfsec == 0)
11153 {
11154 const struct elf_backend_data *bed
11155 = get_elf_backend_data (s->owner);
11156 if (bed->link_order_error_handler)
11157 bed->link_order_error_handler
11158 /* xgettext:c-format */
11159 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
11160 return 0;
11161 }
11162 else
11163 {
11164 s = elf_shdrp[elfsec]->bfd_section;
11165 return s->output_section->vma + s->output_offset;
11166 }
11167 }
11168
11169
11170 /* Compare two sections based on the locations of the sections they are
11171 linked to. Used by elf_fixup_link_order. */
11172
11173 static int
11174 compare_link_order (const void * a, const void * b)
11175 {
11176 bfd_vma apos;
11177 bfd_vma bpos;
11178
11179 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
11180 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
11181 if (apos < bpos)
11182 return -1;
11183 return apos > bpos;
11184 }
11185
11186
11187 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
11188 order as their linked sections. Returns false if this could not be done
11189 because an output section includes both ordered and unordered
11190 sections. Ideally we'd do this in the linker proper. */
11191
11192 static bfd_boolean
11193 elf_fixup_link_order (bfd *abfd, asection *o)
11194 {
11195 int seen_linkorder;
11196 int seen_other;
11197 int n;
11198 struct bfd_link_order *p;
11199 bfd *sub;
11200 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11201 unsigned elfsec;
11202 struct bfd_link_order **sections;
11203 asection *s, *other_sec, *linkorder_sec;
11204 bfd_vma offset;
11205
11206 other_sec = NULL;
11207 linkorder_sec = NULL;
11208 seen_other = 0;
11209 seen_linkorder = 0;
11210 for (p = o->map_head.link_order; p != NULL; p = p->next)
11211 {
11212 if (p->type == bfd_indirect_link_order)
11213 {
11214 s = p->u.indirect.section;
11215 sub = s->owner;
11216 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11217 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
11218 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
11219 && elfsec < elf_numsections (sub)
11220 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
11221 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
11222 {
11223 seen_linkorder++;
11224 linkorder_sec = s;
11225 }
11226 else
11227 {
11228 seen_other++;
11229 other_sec = s;
11230 }
11231 }
11232 else
11233 seen_other++;
11234
11235 if (seen_other && seen_linkorder)
11236 {
11237 if (other_sec && linkorder_sec)
11238 _bfd_error_handler
11239 /* xgettext:c-format */
11240 (_("%A has both ordered [`%A' in %B] "
11241 "and unordered [`%A' in %B] sections"),
11242 o, linkorder_sec, linkorder_sec->owner,
11243 other_sec, other_sec->owner);
11244 else
11245 _bfd_error_handler
11246 (_("%A has both ordered and unordered sections"), o);
11247 bfd_set_error (bfd_error_bad_value);
11248 return FALSE;
11249 }
11250 }
11251
11252 if (!seen_linkorder)
11253 return TRUE;
11254
11255 sections = (struct bfd_link_order **)
11256 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
11257 if (sections == NULL)
11258 return FALSE;
11259 seen_linkorder = 0;
11260
11261 for (p = o->map_head.link_order; p != NULL; p = p->next)
11262 {
11263 sections[seen_linkorder++] = p;
11264 }
11265 /* Sort the input sections in the order of their linked section. */
11266 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
11267 compare_link_order);
11268
11269 /* Change the offsets of the sections. */
11270 offset = 0;
11271 for (n = 0; n < seen_linkorder; n++)
11272 {
11273 s = sections[n]->u.indirect.section;
11274 offset &= ~(bfd_vma) 0 << s->alignment_power;
11275 s->output_offset = offset / bfd_octets_per_byte (abfd);
11276 sections[n]->offset = offset;
11277 offset += sections[n]->size;
11278 }
11279
11280 free (sections);
11281 return TRUE;
11282 }
11283
11284 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11285 Returns TRUE upon success, FALSE otherwise. */
11286
11287 static bfd_boolean
11288 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11289 {
11290 bfd_boolean ret = FALSE;
11291 bfd *implib_bfd;
11292 const struct elf_backend_data *bed;
11293 flagword flags;
11294 enum bfd_architecture arch;
11295 unsigned int mach;
11296 asymbol **sympp = NULL;
11297 long symsize;
11298 long symcount;
11299 long src_count;
11300 elf_symbol_type *osymbuf;
11301
11302 implib_bfd = info->out_implib_bfd;
11303 bed = get_elf_backend_data (abfd);
11304
11305 if (!bfd_set_format (implib_bfd, bfd_object))
11306 return FALSE;
11307
11308 /* Use flag from executable but make it a relocatable object. */
11309 flags = bfd_get_file_flags (abfd);
11310 flags &= ~HAS_RELOC;
11311 if (!bfd_set_start_address (implib_bfd, 0)
11312 || !bfd_set_file_flags (implib_bfd, flags & ~EXEC_P))
11313 return FALSE;
11314
11315 /* Copy architecture of output file to import library file. */
11316 arch = bfd_get_arch (abfd);
11317 mach = bfd_get_mach (abfd);
11318 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11319 && (abfd->target_defaulted
11320 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11321 return FALSE;
11322
11323 /* Get symbol table size. */
11324 symsize = bfd_get_symtab_upper_bound (abfd);
11325 if (symsize < 0)
11326 return FALSE;
11327
11328 /* Read in the symbol table. */
11329 sympp = (asymbol **) xmalloc (symsize);
11330 symcount = bfd_canonicalize_symtab (abfd, sympp);
11331 if (symcount < 0)
11332 goto free_sym_buf;
11333
11334 /* Allow the BFD backend to copy any private header data it
11335 understands from the output BFD to the import library BFD. */
11336 if (! bfd_copy_private_header_data (abfd, implib_bfd))
11337 goto free_sym_buf;
11338
11339 /* Filter symbols to appear in the import library. */
11340 if (bed->elf_backend_filter_implib_symbols)
11341 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11342 symcount);
11343 else
11344 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11345 if (symcount == 0)
11346 {
11347 bfd_set_error (bfd_error_no_symbols);
11348 _bfd_error_handler (_("%B: no symbol found for import library"),
11349 implib_bfd);
11350 goto free_sym_buf;
11351 }
11352
11353
11354 /* Make symbols absolute. */
11355 osymbuf = (elf_symbol_type *) bfd_alloc2 (implib_bfd, symcount,
11356 sizeof (*osymbuf));
11357 for (src_count = 0; src_count < symcount; src_count++)
11358 {
11359 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11360 sizeof (*osymbuf));
11361 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
11362 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
11363 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
11364 osymbuf[src_count].internal_elf_sym.st_value =
11365 osymbuf[src_count].symbol.value;
11366 sympp[src_count] = &osymbuf[src_count].symbol;
11367 }
11368
11369 bfd_set_symtab (implib_bfd, sympp, symcount);
11370
11371 /* Allow the BFD backend to copy any private data it understands
11372 from the output BFD to the import library BFD. This is done last
11373 to permit the routine to look at the filtered symbol table. */
11374 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
11375 goto free_sym_buf;
11376
11377 if (!bfd_close (implib_bfd))
11378 goto free_sym_buf;
11379
11380 ret = TRUE;
11381
11382 free_sym_buf:
11383 free (sympp);
11384 return ret;
11385 }
11386
11387 static void
11388 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11389 {
11390 asection *o;
11391
11392 if (flinfo->symstrtab != NULL)
11393 _bfd_elf_strtab_free (flinfo->symstrtab);
11394 if (flinfo->contents != NULL)
11395 free (flinfo->contents);
11396 if (flinfo->external_relocs != NULL)
11397 free (flinfo->external_relocs);
11398 if (flinfo->internal_relocs != NULL)
11399 free (flinfo->internal_relocs);
11400 if (flinfo->external_syms != NULL)
11401 free (flinfo->external_syms);
11402 if (flinfo->locsym_shndx != NULL)
11403 free (flinfo->locsym_shndx);
11404 if (flinfo->internal_syms != NULL)
11405 free (flinfo->internal_syms);
11406 if (flinfo->indices != NULL)
11407 free (flinfo->indices);
11408 if (flinfo->sections != NULL)
11409 free (flinfo->sections);
11410 if (flinfo->symshndxbuf != NULL)
11411 free (flinfo->symshndxbuf);
11412 for (o = obfd->sections; o != NULL; o = o->next)
11413 {
11414 struct bfd_elf_section_data *esdo = elf_section_data (o);
11415 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11416 free (esdo->rel.hashes);
11417 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11418 free (esdo->rela.hashes);
11419 }
11420 }
11421
11422 /* Do the final step of an ELF link. */
11423
11424 bfd_boolean
11425 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11426 {
11427 bfd_boolean dynamic;
11428 bfd_boolean emit_relocs;
11429 bfd *dynobj;
11430 struct elf_final_link_info flinfo;
11431 asection *o;
11432 struct bfd_link_order *p;
11433 bfd *sub;
11434 bfd_size_type max_contents_size;
11435 bfd_size_type max_external_reloc_size;
11436 bfd_size_type max_internal_reloc_count;
11437 bfd_size_type max_sym_count;
11438 bfd_size_type max_sym_shndx_count;
11439 Elf_Internal_Sym elfsym;
11440 unsigned int i;
11441 Elf_Internal_Shdr *symtab_hdr;
11442 Elf_Internal_Shdr *symtab_shndx_hdr;
11443 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11444 struct elf_outext_info eoinfo;
11445 bfd_boolean merged;
11446 size_t relativecount = 0;
11447 asection *reldyn = 0;
11448 bfd_size_type amt;
11449 asection *attr_section = NULL;
11450 bfd_vma attr_size = 0;
11451 const char *std_attrs_section;
11452 struct elf_link_hash_table *htab = elf_hash_table (info);
11453
11454 if (!is_elf_hash_table (htab))
11455 return FALSE;
11456
11457 if (bfd_link_pic (info))
11458 abfd->flags |= DYNAMIC;
11459
11460 dynamic = htab->dynamic_sections_created;
11461 dynobj = htab->dynobj;
11462
11463 emit_relocs = (bfd_link_relocatable (info)
11464 || info->emitrelocations);
11465
11466 flinfo.info = info;
11467 flinfo.output_bfd = abfd;
11468 flinfo.symstrtab = _bfd_elf_strtab_init ();
11469 if (flinfo.symstrtab == NULL)
11470 return FALSE;
11471
11472 if (! dynamic)
11473 {
11474 flinfo.hash_sec = NULL;
11475 flinfo.symver_sec = NULL;
11476 }
11477 else
11478 {
11479 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11480 /* Note that dynsym_sec can be NULL (on VMS). */
11481 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11482 /* Note that it is OK if symver_sec is NULL. */
11483 }
11484
11485 flinfo.contents = NULL;
11486 flinfo.external_relocs = NULL;
11487 flinfo.internal_relocs = NULL;
11488 flinfo.external_syms = NULL;
11489 flinfo.locsym_shndx = NULL;
11490 flinfo.internal_syms = NULL;
11491 flinfo.indices = NULL;
11492 flinfo.sections = NULL;
11493 flinfo.symshndxbuf = NULL;
11494 flinfo.filesym_count = 0;
11495
11496 /* The object attributes have been merged. Remove the input
11497 sections from the link, and set the contents of the output
11498 secton. */
11499 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11500 for (o = abfd->sections; o != NULL; o = o->next)
11501 {
11502 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11503 || strcmp (o->name, ".gnu.attributes") == 0)
11504 {
11505 for (p = o->map_head.link_order; p != NULL; p = p->next)
11506 {
11507 asection *input_section;
11508
11509 if (p->type != bfd_indirect_link_order)
11510 continue;
11511 input_section = p->u.indirect.section;
11512 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11513 elf_link_input_bfd ignores this section. */
11514 input_section->flags &= ~SEC_HAS_CONTENTS;
11515 }
11516
11517 attr_size = bfd_elf_obj_attr_size (abfd);
11518 if (attr_size)
11519 {
11520 bfd_set_section_size (abfd, o, attr_size);
11521 attr_section = o;
11522 /* Skip this section later on. */
11523 o->map_head.link_order = NULL;
11524 }
11525 else
11526 o->flags |= SEC_EXCLUDE;
11527 }
11528 }
11529
11530 /* Count up the number of relocations we will output for each output
11531 section, so that we know the sizes of the reloc sections. We
11532 also figure out some maximum sizes. */
11533 max_contents_size = 0;
11534 max_external_reloc_size = 0;
11535 max_internal_reloc_count = 0;
11536 max_sym_count = 0;
11537 max_sym_shndx_count = 0;
11538 merged = FALSE;
11539 for (o = abfd->sections; o != NULL; o = o->next)
11540 {
11541 struct bfd_elf_section_data *esdo = elf_section_data (o);
11542 o->reloc_count = 0;
11543
11544 for (p = o->map_head.link_order; p != NULL; p = p->next)
11545 {
11546 unsigned int reloc_count = 0;
11547 unsigned int additional_reloc_count = 0;
11548 struct bfd_elf_section_data *esdi = NULL;
11549
11550 if (p->type == bfd_section_reloc_link_order
11551 || p->type == bfd_symbol_reloc_link_order)
11552 reloc_count = 1;
11553 else if (p->type == bfd_indirect_link_order)
11554 {
11555 asection *sec;
11556
11557 sec = p->u.indirect.section;
11558
11559 /* Mark all sections which are to be included in the
11560 link. This will normally be every section. We need
11561 to do this so that we can identify any sections which
11562 the linker has decided to not include. */
11563 sec->linker_mark = TRUE;
11564
11565 if (sec->flags & SEC_MERGE)
11566 merged = TRUE;
11567
11568 if (sec->rawsize > max_contents_size)
11569 max_contents_size = sec->rawsize;
11570 if (sec->size > max_contents_size)
11571 max_contents_size = sec->size;
11572
11573 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11574 && (sec->owner->flags & DYNAMIC) == 0)
11575 {
11576 size_t sym_count;
11577
11578 /* We are interested in just local symbols, not all
11579 symbols. */
11580 if (elf_bad_symtab (sec->owner))
11581 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11582 / bed->s->sizeof_sym);
11583 else
11584 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11585
11586 if (sym_count > max_sym_count)
11587 max_sym_count = sym_count;
11588
11589 if (sym_count > max_sym_shndx_count
11590 && elf_symtab_shndx_list (sec->owner) != NULL)
11591 max_sym_shndx_count = sym_count;
11592
11593 if (esdo->this_hdr.sh_type == SHT_REL
11594 || esdo->this_hdr.sh_type == SHT_RELA)
11595 /* Some backends use reloc_count in relocation sections
11596 to count particular types of relocs. Of course,
11597 reloc sections themselves can't have relocations. */
11598 ;
11599 else if (emit_relocs)
11600 {
11601 reloc_count = sec->reloc_count;
11602 if (bed->elf_backend_count_additional_relocs)
11603 {
11604 int c;
11605 c = (*bed->elf_backend_count_additional_relocs) (sec);
11606 additional_reloc_count += c;
11607 }
11608 }
11609 else if (bed->elf_backend_count_relocs)
11610 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11611
11612 esdi = elf_section_data (sec);
11613
11614 if ((sec->flags & SEC_RELOC) != 0)
11615 {
11616 size_t ext_size = 0;
11617
11618 if (esdi->rel.hdr != NULL)
11619 ext_size = esdi->rel.hdr->sh_size;
11620 if (esdi->rela.hdr != NULL)
11621 ext_size += esdi->rela.hdr->sh_size;
11622
11623 if (ext_size > max_external_reloc_size)
11624 max_external_reloc_size = ext_size;
11625 if (sec->reloc_count > max_internal_reloc_count)
11626 max_internal_reloc_count = sec->reloc_count;
11627 }
11628 }
11629 }
11630
11631 if (reloc_count == 0)
11632 continue;
11633
11634 reloc_count += additional_reloc_count;
11635 o->reloc_count += reloc_count;
11636
11637 if (p->type == bfd_indirect_link_order && emit_relocs)
11638 {
11639 if (esdi->rel.hdr)
11640 {
11641 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
11642 esdo->rel.count += additional_reloc_count;
11643 }
11644 if (esdi->rela.hdr)
11645 {
11646 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
11647 esdo->rela.count += additional_reloc_count;
11648 }
11649 }
11650 else
11651 {
11652 if (o->use_rela_p)
11653 esdo->rela.count += reloc_count;
11654 else
11655 esdo->rel.count += reloc_count;
11656 }
11657 }
11658
11659 if (o->reloc_count > 0)
11660 o->flags |= SEC_RELOC;
11661 else
11662 {
11663 /* Explicitly clear the SEC_RELOC flag. The linker tends to
11664 set it (this is probably a bug) and if it is set
11665 assign_section_numbers will create a reloc section. */
11666 o->flags &=~ SEC_RELOC;
11667 }
11668
11669 /* If the SEC_ALLOC flag is not set, force the section VMA to
11670 zero. This is done in elf_fake_sections as well, but forcing
11671 the VMA to 0 here will ensure that relocs against these
11672 sections are handled correctly. */
11673 if ((o->flags & SEC_ALLOC) == 0
11674 && ! o->user_set_vma)
11675 o->vma = 0;
11676 }
11677
11678 if (! bfd_link_relocatable (info) && merged)
11679 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
11680
11681 /* Figure out the file positions for everything but the symbol table
11682 and the relocs. We set symcount to force assign_section_numbers
11683 to create a symbol table. */
11684 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
11685 BFD_ASSERT (! abfd->output_has_begun);
11686 if (! _bfd_elf_compute_section_file_positions (abfd, info))
11687 goto error_return;
11688
11689 /* Set sizes, and assign file positions for reloc sections. */
11690 for (o = abfd->sections; o != NULL; o = o->next)
11691 {
11692 struct bfd_elf_section_data *esdo = elf_section_data (o);
11693 if ((o->flags & SEC_RELOC) != 0)
11694 {
11695 if (esdo->rel.hdr
11696 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
11697 goto error_return;
11698
11699 if (esdo->rela.hdr
11700 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
11701 goto error_return;
11702 }
11703
11704 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
11705 to count upwards while actually outputting the relocations. */
11706 esdo->rel.count = 0;
11707 esdo->rela.count = 0;
11708
11709 if (esdo->this_hdr.sh_offset == (file_ptr) -1)
11710 {
11711 /* Cache the section contents so that they can be compressed
11712 later. Use bfd_malloc since it will be freed by
11713 bfd_compress_section_contents. */
11714 unsigned char *contents = esdo->this_hdr.contents;
11715 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
11716 abort ();
11717 contents
11718 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
11719 if (contents == NULL)
11720 goto error_return;
11721 esdo->this_hdr.contents = contents;
11722 }
11723 }
11724
11725 /* We have now assigned file positions for all the sections except
11726 .symtab, .strtab, and non-loaded reloc sections. We start the
11727 .symtab section at the current file position, and write directly
11728 to it. We build the .strtab section in memory. */
11729 bfd_get_symcount (abfd) = 0;
11730 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11731 /* sh_name is set in prep_headers. */
11732 symtab_hdr->sh_type = SHT_SYMTAB;
11733 /* sh_flags, sh_addr and sh_size all start off zero. */
11734 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
11735 /* sh_link is set in assign_section_numbers. */
11736 /* sh_info is set below. */
11737 /* sh_offset is set just below. */
11738 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
11739
11740 if (max_sym_count < 20)
11741 max_sym_count = 20;
11742 htab->strtabsize = max_sym_count;
11743 amt = max_sym_count * sizeof (struct elf_sym_strtab);
11744 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
11745 if (htab->strtab == NULL)
11746 goto error_return;
11747 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
11748 flinfo.symshndxbuf
11749 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
11750 ? (Elf_External_Sym_Shndx *) -1 : NULL);
11751
11752 if (info->strip != strip_all || emit_relocs)
11753 {
11754 file_ptr off = elf_next_file_pos (abfd);
11755
11756 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
11757
11758 /* Note that at this point elf_next_file_pos (abfd) is
11759 incorrect. We do not yet know the size of the .symtab section.
11760 We correct next_file_pos below, after we do know the size. */
11761
11762 /* Start writing out the symbol table. The first symbol is always a
11763 dummy symbol. */
11764 elfsym.st_value = 0;
11765 elfsym.st_size = 0;
11766 elfsym.st_info = 0;
11767 elfsym.st_other = 0;
11768 elfsym.st_shndx = SHN_UNDEF;
11769 elfsym.st_target_internal = 0;
11770 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
11771 bfd_und_section_ptr, NULL) != 1)
11772 goto error_return;
11773
11774 /* Output a symbol for each section. We output these even if we are
11775 discarding local symbols, since they are used for relocs. These
11776 symbols have no names. We store the index of each one in the
11777 index field of the section, so that we can find it again when
11778 outputting relocs. */
11779
11780 elfsym.st_size = 0;
11781 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11782 elfsym.st_other = 0;
11783 elfsym.st_value = 0;
11784 elfsym.st_target_internal = 0;
11785 for (i = 1; i < elf_numsections (abfd); i++)
11786 {
11787 o = bfd_section_from_elf_index (abfd, i);
11788 if (o != NULL)
11789 {
11790 o->target_index = bfd_get_symcount (abfd);
11791 elfsym.st_shndx = i;
11792 if (!bfd_link_relocatable (info))
11793 elfsym.st_value = o->vma;
11794 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
11795 NULL) != 1)
11796 goto error_return;
11797 }
11798 }
11799 }
11800
11801 /* Allocate some memory to hold information read in from the input
11802 files. */
11803 if (max_contents_size != 0)
11804 {
11805 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
11806 if (flinfo.contents == NULL)
11807 goto error_return;
11808 }
11809
11810 if (max_external_reloc_size != 0)
11811 {
11812 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
11813 if (flinfo.external_relocs == NULL)
11814 goto error_return;
11815 }
11816
11817 if (max_internal_reloc_count != 0)
11818 {
11819 amt = max_internal_reloc_count * sizeof (Elf_Internal_Rela);
11820 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
11821 if (flinfo.internal_relocs == NULL)
11822 goto error_return;
11823 }
11824
11825 if (max_sym_count != 0)
11826 {
11827 amt = max_sym_count * bed->s->sizeof_sym;
11828 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
11829 if (flinfo.external_syms == NULL)
11830 goto error_return;
11831
11832 amt = max_sym_count * sizeof (Elf_Internal_Sym);
11833 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
11834 if (flinfo.internal_syms == NULL)
11835 goto error_return;
11836
11837 amt = max_sym_count * sizeof (long);
11838 flinfo.indices = (long int *) bfd_malloc (amt);
11839 if (flinfo.indices == NULL)
11840 goto error_return;
11841
11842 amt = max_sym_count * sizeof (asection *);
11843 flinfo.sections = (asection **) bfd_malloc (amt);
11844 if (flinfo.sections == NULL)
11845 goto error_return;
11846 }
11847
11848 if (max_sym_shndx_count != 0)
11849 {
11850 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11851 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11852 if (flinfo.locsym_shndx == NULL)
11853 goto error_return;
11854 }
11855
11856 if (htab->tls_sec)
11857 {
11858 bfd_vma base, end = 0;
11859 asection *sec;
11860
11861 for (sec = htab->tls_sec;
11862 sec && (sec->flags & SEC_THREAD_LOCAL);
11863 sec = sec->next)
11864 {
11865 bfd_size_type size = sec->size;
11866
11867 if (size == 0
11868 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11869 {
11870 struct bfd_link_order *ord = sec->map_tail.link_order;
11871
11872 if (ord != NULL)
11873 size = ord->offset + ord->size;
11874 }
11875 end = sec->vma + size;
11876 }
11877 base = htab->tls_sec->vma;
11878 /* Only align end of TLS section if static TLS doesn't have special
11879 alignment requirements. */
11880 if (bed->static_tls_alignment == 1)
11881 end = align_power (end, htab->tls_sec->alignment_power);
11882 htab->tls_size = end - base;
11883 }
11884
11885 /* Reorder SHF_LINK_ORDER sections. */
11886 for (o = abfd->sections; o != NULL; o = o->next)
11887 {
11888 if (!elf_fixup_link_order (abfd, o))
11889 return FALSE;
11890 }
11891
11892 if (!_bfd_elf_fixup_eh_frame_hdr (info))
11893 return FALSE;
11894
11895 /* Since ELF permits relocations to be against local symbols, we
11896 must have the local symbols available when we do the relocations.
11897 Since we would rather only read the local symbols once, and we
11898 would rather not keep them in memory, we handle all the
11899 relocations for a single input file at the same time.
11900
11901 Unfortunately, there is no way to know the total number of local
11902 symbols until we have seen all of them, and the local symbol
11903 indices precede the global symbol indices. This means that when
11904 we are generating relocatable output, and we see a reloc against
11905 a global symbol, we can not know the symbol index until we have
11906 finished examining all the local symbols to see which ones we are
11907 going to output. To deal with this, we keep the relocations in
11908 memory, and don't output them until the end of the link. This is
11909 an unfortunate waste of memory, but I don't see a good way around
11910 it. Fortunately, it only happens when performing a relocatable
11911 link, which is not the common case. FIXME: If keep_memory is set
11912 we could write the relocs out and then read them again; I don't
11913 know how bad the memory loss will be. */
11914
11915 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11916 sub->output_has_begun = FALSE;
11917 for (o = abfd->sections; o != NULL; o = o->next)
11918 {
11919 for (p = o->map_head.link_order; p != NULL; p = p->next)
11920 {
11921 if (p->type == bfd_indirect_link_order
11922 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11923 == bfd_target_elf_flavour)
11924 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11925 {
11926 if (! sub->output_has_begun)
11927 {
11928 if (! elf_link_input_bfd (&flinfo, sub))
11929 goto error_return;
11930 sub->output_has_begun = TRUE;
11931 }
11932 }
11933 else if (p->type == bfd_section_reloc_link_order
11934 || p->type == bfd_symbol_reloc_link_order)
11935 {
11936 if (! elf_reloc_link_order (abfd, info, o, p))
11937 goto error_return;
11938 }
11939 else
11940 {
11941 if (! _bfd_default_link_order (abfd, info, o, p))
11942 {
11943 if (p->type == bfd_indirect_link_order
11944 && (bfd_get_flavour (sub)
11945 == bfd_target_elf_flavour)
11946 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11947 != bed->s->elfclass))
11948 {
11949 const char *iclass, *oclass;
11950
11951 switch (bed->s->elfclass)
11952 {
11953 case ELFCLASS64: oclass = "ELFCLASS64"; break;
11954 case ELFCLASS32: oclass = "ELFCLASS32"; break;
11955 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
11956 default: abort ();
11957 }
11958
11959 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
11960 {
11961 case ELFCLASS64: iclass = "ELFCLASS64"; break;
11962 case ELFCLASS32: iclass = "ELFCLASS32"; break;
11963 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
11964 default: abort ();
11965 }
11966
11967 bfd_set_error (bfd_error_wrong_format);
11968 _bfd_error_handler
11969 /* xgettext:c-format */
11970 (_("%B: file class %s incompatible with %s"),
11971 sub, iclass, oclass);
11972 }
11973
11974 goto error_return;
11975 }
11976 }
11977 }
11978 }
11979
11980 /* Free symbol buffer if needed. */
11981 if (!info->reduce_memory_overheads)
11982 {
11983 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11984 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11985 && elf_tdata (sub)->symbuf)
11986 {
11987 free (elf_tdata (sub)->symbuf);
11988 elf_tdata (sub)->symbuf = NULL;
11989 }
11990 }
11991
11992 /* Output any global symbols that got converted to local in a
11993 version script or due to symbol visibility. We do this in a
11994 separate step since ELF requires all local symbols to appear
11995 prior to any global symbols. FIXME: We should only do this if
11996 some global symbols were, in fact, converted to become local.
11997 FIXME: Will this work correctly with the Irix 5 linker? */
11998 eoinfo.failed = FALSE;
11999 eoinfo.flinfo = &flinfo;
12000 eoinfo.localsyms = TRUE;
12001 eoinfo.file_sym_done = FALSE;
12002 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12003 if (eoinfo.failed)
12004 return FALSE;
12005
12006 /* If backend needs to output some local symbols not present in the hash
12007 table, do it now. */
12008 if (bed->elf_backend_output_arch_local_syms
12009 && (info->strip != strip_all || emit_relocs))
12010 {
12011 typedef int (*out_sym_func)
12012 (void *, const char *, Elf_Internal_Sym *, asection *,
12013 struct elf_link_hash_entry *);
12014
12015 if (! ((*bed->elf_backend_output_arch_local_syms)
12016 (abfd, info, &flinfo,
12017 (out_sym_func) elf_link_output_symstrtab)))
12018 return FALSE;
12019 }
12020
12021 /* That wrote out all the local symbols. Finish up the symbol table
12022 with the global symbols. Even if we want to strip everything we
12023 can, we still need to deal with those global symbols that got
12024 converted to local in a version script. */
12025
12026 /* The sh_info field records the index of the first non local symbol. */
12027 symtab_hdr->sh_info = bfd_get_symcount (abfd);
12028
12029 if (dynamic
12030 && htab->dynsym != NULL
12031 && htab->dynsym->output_section != bfd_abs_section_ptr)
12032 {
12033 Elf_Internal_Sym sym;
12034 bfd_byte *dynsym = htab->dynsym->contents;
12035
12036 o = htab->dynsym->output_section;
12037 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
12038
12039 /* Write out the section symbols for the output sections. */
12040 if (bfd_link_pic (info)
12041 || htab->is_relocatable_executable)
12042 {
12043 asection *s;
12044
12045 sym.st_size = 0;
12046 sym.st_name = 0;
12047 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12048 sym.st_other = 0;
12049 sym.st_target_internal = 0;
12050
12051 for (s = abfd->sections; s != NULL; s = s->next)
12052 {
12053 int indx;
12054 bfd_byte *dest;
12055 long dynindx;
12056
12057 dynindx = elf_section_data (s)->dynindx;
12058 if (dynindx <= 0)
12059 continue;
12060 indx = elf_section_data (s)->this_idx;
12061 BFD_ASSERT (indx > 0);
12062 sym.st_shndx = indx;
12063 if (! check_dynsym (abfd, &sym))
12064 return FALSE;
12065 sym.st_value = s->vma;
12066 dest = dynsym + dynindx * bed->s->sizeof_sym;
12067 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12068 }
12069 }
12070
12071 /* Write out the local dynsyms. */
12072 if (htab->dynlocal)
12073 {
12074 struct elf_link_local_dynamic_entry *e;
12075 for (e = htab->dynlocal; e ; e = e->next)
12076 {
12077 asection *s;
12078 bfd_byte *dest;
12079
12080 /* Copy the internal symbol and turn off visibility.
12081 Note that we saved a word of storage and overwrote
12082 the original st_name with the dynstr_index. */
12083 sym = e->isym;
12084 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
12085
12086 s = bfd_section_from_elf_index (e->input_bfd,
12087 e->isym.st_shndx);
12088 if (s != NULL)
12089 {
12090 sym.st_shndx =
12091 elf_section_data (s->output_section)->this_idx;
12092 if (! check_dynsym (abfd, &sym))
12093 return FALSE;
12094 sym.st_value = (s->output_section->vma
12095 + s->output_offset
12096 + e->isym.st_value);
12097 }
12098
12099 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
12100 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12101 }
12102 }
12103 }
12104
12105 /* We get the global symbols from the hash table. */
12106 eoinfo.failed = FALSE;
12107 eoinfo.localsyms = FALSE;
12108 eoinfo.flinfo = &flinfo;
12109 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12110 if (eoinfo.failed)
12111 return FALSE;
12112
12113 /* If backend needs to output some symbols not present in the hash
12114 table, do it now. */
12115 if (bed->elf_backend_output_arch_syms
12116 && (info->strip != strip_all || emit_relocs))
12117 {
12118 typedef int (*out_sym_func)
12119 (void *, const char *, Elf_Internal_Sym *, asection *,
12120 struct elf_link_hash_entry *);
12121
12122 if (! ((*bed->elf_backend_output_arch_syms)
12123 (abfd, info, &flinfo,
12124 (out_sym_func) elf_link_output_symstrtab)))
12125 return FALSE;
12126 }
12127
12128 /* Finalize the .strtab section. */
12129 _bfd_elf_strtab_finalize (flinfo.symstrtab);
12130
12131 /* Swap out the .strtab section. */
12132 if (!elf_link_swap_symbols_out (&flinfo))
12133 return FALSE;
12134
12135 /* Now we know the size of the symtab section. */
12136 if (bfd_get_symcount (abfd) > 0)
12137 {
12138 /* Finish up and write out the symbol string table (.strtab)
12139 section. */
12140 Elf_Internal_Shdr *symstrtab_hdr = NULL;
12141 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
12142
12143 if (elf_symtab_shndx_list (abfd))
12144 {
12145 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
12146
12147 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
12148 {
12149 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
12150 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
12151 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
12152 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
12153 symtab_shndx_hdr->sh_size = amt;
12154
12155 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
12156 off, TRUE);
12157
12158 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
12159 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
12160 return FALSE;
12161 }
12162 }
12163
12164 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
12165 /* sh_name was set in prep_headers. */
12166 symstrtab_hdr->sh_type = SHT_STRTAB;
12167 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
12168 symstrtab_hdr->sh_addr = 0;
12169 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
12170 symstrtab_hdr->sh_entsize = 0;
12171 symstrtab_hdr->sh_link = 0;
12172 symstrtab_hdr->sh_info = 0;
12173 /* sh_offset is set just below. */
12174 symstrtab_hdr->sh_addralign = 1;
12175
12176 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
12177 off, TRUE);
12178 elf_next_file_pos (abfd) = off;
12179
12180 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
12181 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
12182 return FALSE;
12183 }
12184
12185 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
12186 {
12187 _bfd_error_handler (_("%B: failed to generate import library"),
12188 info->out_implib_bfd);
12189 return FALSE;
12190 }
12191
12192 /* Adjust the relocs to have the correct symbol indices. */
12193 for (o = abfd->sections; o != NULL; o = o->next)
12194 {
12195 struct bfd_elf_section_data *esdo = elf_section_data (o);
12196 bfd_boolean sort;
12197
12198 if ((o->flags & SEC_RELOC) == 0)
12199 continue;
12200
12201 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
12202 if (esdo->rel.hdr != NULL
12203 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort, info))
12204 return FALSE;
12205 if (esdo->rela.hdr != NULL
12206 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort, info))
12207 return FALSE;
12208
12209 /* Set the reloc_count field to 0 to prevent write_relocs from
12210 trying to swap the relocs out itself. */
12211 o->reloc_count = 0;
12212 }
12213
12214 if (dynamic && info->combreloc && dynobj != NULL)
12215 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
12216
12217 /* If we are linking against a dynamic object, or generating a
12218 shared library, finish up the dynamic linking information. */
12219 if (dynamic)
12220 {
12221 bfd_byte *dyncon, *dynconend;
12222
12223 /* Fix up .dynamic entries. */
12224 o = bfd_get_linker_section (dynobj, ".dynamic");
12225 BFD_ASSERT (o != NULL);
12226
12227 dyncon = o->contents;
12228 dynconend = o->contents + o->size;
12229 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12230 {
12231 Elf_Internal_Dyn dyn;
12232 const char *name;
12233 unsigned int type;
12234 bfd_size_type sh_size;
12235 bfd_vma sh_addr;
12236
12237 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12238
12239 switch (dyn.d_tag)
12240 {
12241 default:
12242 continue;
12243 case DT_NULL:
12244 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
12245 {
12246 switch (elf_section_data (reldyn)->this_hdr.sh_type)
12247 {
12248 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
12249 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
12250 default: continue;
12251 }
12252 dyn.d_un.d_val = relativecount;
12253 relativecount = 0;
12254 break;
12255 }
12256 continue;
12257
12258 case DT_INIT:
12259 name = info->init_function;
12260 goto get_sym;
12261 case DT_FINI:
12262 name = info->fini_function;
12263 get_sym:
12264 {
12265 struct elf_link_hash_entry *h;
12266
12267 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
12268 if (h != NULL
12269 && (h->root.type == bfd_link_hash_defined
12270 || h->root.type == bfd_link_hash_defweak))
12271 {
12272 dyn.d_un.d_ptr = h->root.u.def.value;
12273 o = h->root.u.def.section;
12274 if (o->output_section != NULL)
12275 dyn.d_un.d_ptr += (o->output_section->vma
12276 + o->output_offset);
12277 else
12278 {
12279 /* The symbol is imported from another shared
12280 library and does not apply to this one. */
12281 dyn.d_un.d_ptr = 0;
12282 }
12283 break;
12284 }
12285 }
12286 continue;
12287
12288 case DT_PREINIT_ARRAYSZ:
12289 name = ".preinit_array";
12290 goto get_out_size;
12291 case DT_INIT_ARRAYSZ:
12292 name = ".init_array";
12293 goto get_out_size;
12294 case DT_FINI_ARRAYSZ:
12295 name = ".fini_array";
12296 get_out_size:
12297 o = bfd_get_section_by_name (abfd, name);
12298 if (o == NULL)
12299 {
12300 _bfd_error_handler
12301 (_("could not find section %s"), name);
12302 goto error_return;
12303 }
12304 if (o->size == 0)
12305 _bfd_error_handler
12306 (_("warning: %s section has zero size"), name);
12307 dyn.d_un.d_val = o->size;
12308 break;
12309
12310 case DT_PREINIT_ARRAY:
12311 name = ".preinit_array";
12312 goto get_out_vma;
12313 case DT_INIT_ARRAY:
12314 name = ".init_array";
12315 goto get_out_vma;
12316 case DT_FINI_ARRAY:
12317 name = ".fini_array";
12318 get_out_vma:
12319 o = bfd_get_section_by_name (abfd, name);
12320 goto do_vma;
12321
12322 case DT_HASH:
12323 name = ".hash";
12324 goto get_vma;
12325 case DT_GNU_HASH:
12326 name = ".gnu.hash";
12327 goto get_vma;
12328 case DT_STRTAB:
12329 name = ".dynstr";
12330 goto get_vma;
12331 case DT_SYMTAB:
12332 name = ".dynsym";
12333 goto get_vma;
12334 case DT_VERDEF:
12335 name = ".gnu.version_d";
12336 goto get_vma;
12337 case DT_VERNEED:
12338 name = ".gnu.version_r";
12339 goto get_vma;
12340 case DT_VERSYM:
12341 name = ".gnu.version";
12342 get_vma:
12343 o = bfd_get_linker_section (dynobj, name);
12344 do_vma:
12345 if (o == NULL || bfd_is_abs_section (o->output_section))
12346 {
12347 _bfd_error_handler
12348 (_("could not find section %s"), name);
12349 goto error_return;
12350 }
12351 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
12352 {
12353 _bfd_error_handler
12354 (_("warning: section '%s' is being made into a note"), name);
12355 bfd_set_error (bfd_error_nonrepresentable_section);
12356 goto error_return;
12357 }
12358 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
12359 break;
12360
12361 case DT_REL:
12362 case DT_RELA:
12363 case DT_RELSZ:
12364 case DT_RELASZ:
12365 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12366 type = SHT_REL;
12367 else
12368 type = SHT_RELA;
12369 sh_size = 0;
12370 sh_addr = 0;
12371 for (i = 1; i < elf_numsections (abfd); i++)
12372 {
12373 Elf_Internal_Shdr *hdr;
12374
12375 hdr = elf_elfsections (abfd)[i];
12376 if (hdr->sh_type == type
12377 && (hdr->sh_flags & SHF_ALLOC) != 0)
12378 {
12379 sh_size += hdr->sh_size;
12380 if (sh_addr == 0
12381 || sh_addr > hdr->sh_addr)
12382 sh_addr = hdr->sh_addr;
12383 }
12384 }
12385
12386 if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
12387 {
12388 /* Don't count procedure linkage table relocs in the
12389 overall reloc count. */
12390 sh_size -= htab->srelplt->size;
12391 if (sh_size == 0)
12392 /* If the size is zero, make the address zero too.
12393 This is to avoid a glibc bug. If the backend
12394 emits DT_RELA/DT_RELASZ even when DT_RELASZ is
12395 zero, then we'll put DT_RELA at the end of
12396 DT_JMPREL. glibc will interpret the end of
12397 DT_RELA matching the end of DT_JMPREL as the
12398 case where DT_RELA includes DT_JMPREL, and for
12399 LD_BIND_NOW will decide that processing DT_RELA
12400 will process the PLT relocs too. Net result:
12401 No PLT relocs applied. */
12402 sh_addr = 0;
12403
12404 /* If .rela.plt is the first .rela section, exclude
12405 it from DT_RELA. */
12406 else if (sh_addr == (htab->srelplt->output_section->vma
12407 + htab->srelplt->output_offset))
12408 sh_addr += htab->srelplt->size;
12409 }
12410
12411 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
12412 dyn.d_un.d_val = sh_size;
12413 else
12414 dyn.d_un.d_ptr = sh_addr;
12415 break;
12416 }
12417 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
12418 }
12419 }
12420
12421 /* If we have created any dynamic sections, then output them. */
12422 if (dynobj != NULL)
12423 {
12424 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
12425 goto error_return;
12426
12427 /* Check for DT_TEXTREL (late, in case the backend removes it). */
12428 if (((info->warn_shared_textrel && bfd_link_pic (info))
12429 || info->error_textrel)
12430 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
12431 {
12432 bfd_byte *dyncon, *dynconend;
12433
12434 dyncon = o->contents;
12435 dynconend = o->contents + o->size;
12436 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12437 {
12438 Elf_Internal_Dyn dyn;
12439
12440 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12441
12442 if (dyn.d_tag == DT_TEXTREL)
12443 {
12444 if (info->error_textrel)
12445 info->callbacks->einfo
12446 (_("%P%X: read-only segment has dynamic relocations.\n"));
12447 else
12448 info->callbacks->einfo
12449 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
12450 break;
12451 }
12452 }
12453 }
12454
12455 for (o = dynobj->sections; o != NULL; o = o->next)
12456 {
12457 if ((o->flags & SEC_HAS_CONTENTS) == 0
12458 || o->size == 0
12459 || o->output_section == bfd_abs_section_ptr)
12460 continue;
12461 if ((o->flags & SEC_LINKER_CREATED) == 0)
12462 {
12463 /* At this point, we are only interested in sections
12464 created by _bfd_elf_link_create_dynamic_sections. */
12465 continue;
12466 }
12467 if (htab->stab_info.stabstr == o)
12468 continue;
12469 if (htab->eh_info.hdr_sec == o)
12470 continue;
12471 if (strcmp (o->name, ".dynstr") != 0)
12472 {
12473 if (! bfd_set_section_contents (abfd, o->output_section,
12474 o->contents,
12475 (file_ptr) o->output_offset
12476 * bfd_octets_per_byte (abfd),
12477 o->size))
12478 goto error_return;
12479 }
12480 else
12481 {
12482 /* The contents of the .dynstr section are actually in a
12483 stringtab. */
12484 file_ptr off;
12485
12486 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
12487 if (bfd_seek (abfd, off, SEEK_SET) != 0
12488 || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
12489 goto error_return;
12490 }
12491 }
12492 }
12493
12494 if (!info->resolve_section_groups)
12495 {
12496 bfd_boolean failed = FALSE;
12497
12498 BFD_ASSERT (bfd_link_relocatable (info));
12499 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
12500 if (failed)
12501 goto error_return;
12502 }
12503
12504 /* If we have optimized stabs strings, output them. */
12505 if (htab->stab_info.stabstr != NULL)
12506 {
12507 if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
12508 goto error_return;
12509 }
12510
12511 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
12512 goto error_return;
12513
12514 elf_final_link_free (abfd, &flinfo);
12515
12516 elf_linker (abfd) = TRUE;
12517
12518 if (attr_section)
12519 {
12520 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
12521 if (contents == NULL)
12522 return FALSE; /* Bail out and fail. */
12523 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
12524 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
12525 free (contents);
12526 }
12527
12528 return TRUE;
12529
12530 error_return:
12531 elf_final_link_free (abfd, &flinfo);
12532 return FALSE;
12533 }
12534 \f
12535 /* Initialize COOKIE for input bfd ABFD. */
12536
12537 static bfd_boolean
12538 init_reloc_cookie (struct elf_reloc_cookie *cookie,
12539 struct bfd_link_info *info, bfd *abfd)
12540 {
12541 Elf_Internal_Shdr *symtab_hdr;
12542 const struct elf_backend_data *bed;
12543
12544 bed = get_elf_backend_data (abfd);
12545 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12546
12547 cookie->abfd = abfd;
12548 cookie->sym_hashes = elf_sym_hashes (abfd);
12549 cookie->bad_symtab = elf_bad_symtab (abfd);
12550 if (cookie->bad_symtab)
12551 {
12552 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12553 cookie->extsymoff = 0;
12554 }
12555 else
12556 {
12557 cookie->locsymcount = symtab_hdr->sh_info;
12558 cookie->extsymoff = symtab_hdr->sh_info;
12559 }
12560
12561 if (bed->s->arch_size == 32)
12562 cookie->r_sym_shift = 8;
12563 else
12564 cookie->r_sym_shift = 32;
12565
12566 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
12567 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
12568 {
12569 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12570 cookie->locsymcount, 0,
12571 NULL, NULL, NULL);
12572 if (cookie->locsyms == NULL)
12573 {
12574 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
12575 return FALSE;
12576 }
12577 if (info->keep_memory)
12578 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
12579 }
12580 return TRUE;
12581 }
12582
12583 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
12584
12585 static void
12586 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
12587 {
12588 Elf_Internal_Shdr *symtab_hdr;
12589
12590 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12591 if (cookie->locsyms != NULL
12592 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
12593 free (cookie->locsyms);
12594 }
12595
12596 /* Initialize the relocation information in COOKIE for input section SEC
12597 of input bfd ABFD. */
12598
12599 static bfd_boolean
12600 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12601 struct bfd_link_info *info, bfd *abfd,
12602 asection *sec)
12603 {
12604 if (sec->reloc_count == 0)
12605 {
12606 cookie->rels = NULL;
12607 cookie->relend = NULL;
12608 }
12609 else
12610 {
12611 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
12612 info->keep_memory);
12613 if (cookie->rels == NULL)
12614 return FALSE;
12615 cookie->rel = cookie->rels;
12616 cookie->relend = cookie->rels + sec->reloc_count;
12617 }
12618 cookie->rel = cookie->rels;
12619 return TRUE;
12620 }
12621
12622 /* Free the memory allocated by init_reloc_cookie_rels,
12623 if appropriate. */
12624
12625 static void
12626 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12627 asection *sec)
12628 {
12629 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
12630 free (cookie->rels);
12631 }
12632
12633 /* Initialize the whole of COOKIE for input section SEC. */
12634
12635 static bfd_boolean
12636 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12637 struct bfd_link_info *info,
12638 asection *sec)
12639 {
12640 if (!init_reloc_cookie (cookie, info, sec->owner))
12641 goto error1;
12642 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
12643 goto error2;
12644 return TRUE;
12645
12646 error2:
12647 fini_reloc_cookie (cookie, sec->owner);
12648 error1:
12649 return FALSE;
12650 }
12651
12652 /* Free the memory allocated by init_reloc_cookie_for_section,
12653 if appropriate. */
12654
12655 static void
12656 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12657 asection *sec)
12658 {
12659 fini_reloc_cookie_rels (cookie, sec);
12660 fini_reloc_cookie (cookie, sec->owner);
12661 }
12662 \f
12663 /* Garbage collect unused sections. */
12664
12665 /* Default gc_mark_hook. */
12666
12667 asection *
12668 _bfd_elf_gc_mark_hook (asection *sec,
12669 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12670 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12671 struct elf_link_hash_entry *h,
12672 Elf_Internal_Sym *sym)
12673 {
12674 if (h != NULL)
12675 {
12676 switch (h->root.type)
12677 {
12678 case bfd_link_hash_defined:
12679 case bfd_link_hash_defweak:
12680 return h->root.u.def.section;
12681
12682 case bfd_link_hash_common:
12683 return h->root.u.c.p->section;
12684
12685 default:
12686 break;
12687 }
12688 }
12689 else
12690 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
12691
12692 return NULL;
12693 }
12694
12695 /* Return the global debug definition section. */
12696
12697 static asection *
12698 elf_gc_mark_debug_section (asection *sec ATTRIBUTE_UNUSED,
12699 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12700 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12701 struct elf_link_hash_entry *h,
12702 Elf_Internal_Sym *sym ATTRIBUTE_UNUSED)
12703 {
12704 if (h != NULL
12705 && (h->root.type == bfd_link_hash_defined
12706 || h->root.type == bfd_link_hash_defweak)
12707 && (h->root.u.def.section->flags & SEC_DEBUGGING) != 0)
12708 return h->root.u.def.section;
12709
12710 return NULL;
12711 }
12712
12713 /* COOKIE->rel describes a relocation against section SEC, which is
12714 a section we've decided to keep. Return the section that contains
12715 the relocation symbol, or NULL if no section contains it. */
12716
12717 asection *
12718 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
12719 elf_gc_mark_hook_fn gc_mark_hook,
12720 struct elf_reloc_cookie *cookie,
12721 bfd_boolean *start_stop)
12722 {
12723 unsigned long r_symndx;
12724 struct elf_link_hash_entry *h;
12725
12726 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
12727 if (r_symndx == STN_UNDEF)
12728 return NULL;
12729
12730 if (r_symndx >= cookie->locsymcount
12731 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12732 {
12733 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
12734 if (h == NULL)
12735 {
12736 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
12737 sec->owner);
12738 return NULL;
12739 }
12740 while (h->root.type == bfd_link_hash_indirect
12741 || h->root.type == bfd_link_hash_warning)
12742 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12743 h->mark = 1;
12744 /* If this symbol is weak and there is a non-weak definition, we
12745 keep the non-weak definition because many backends put
12746 dynamic reloc info on the non-weak definition for code
12747 handling copy relocs. */
12748 if (h->u.weakdef != NULL)
12749 h->u.weakdef->mark = 1;
12750
12751 if (start_stop != NULL)
12752 {
12753 /* To work around a glibc bug, mark XXX input sections
12754 when there is a reference to __start_XXX or __stop_XXX
12755 symbols. */
12756 if (h->start_stop)
12757 {
12758 asection *s = h->u2.start_stop_section;
12759 *start_stop = !s->gc_mark;
12760 return s;
12761 }
12762 }
12763
12764 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
12765 }
12766
12767 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
12768 &cookie->locsyms[r_symndx]);
12769 }
12770
12771 /* COOKIE->rel describes a relocation against section SEC, which is
12772 a section we've decided to keep. Mark the section that contains
12773 the relocation symbol. */
12774
12775 bfd_boolean
12776 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
12777 asection *sec,
12778 elf_gc_mark_hook_fn gc_mark_hook,
12779 struct elf_reloc_cookie *cookie)
12780 {
12781 asection *rsec;
12782 bfd_boolean start_stop = FALSE;
12783
12784 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
12785 while (rsec != NULL)
12786 {
12787 if (!rsec->gc_mark)
12788 {
12789 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
12790 || (rsec->owner->flags & DYNAMIC) != 0)
12791 rsec->gc_mark = 1;
12792 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
12793 return FALSE;
12794 }
12795 if (!start_stop)
12796 break;
12797 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
12798 }
12799 return TRUE;
12800 }
12801
12802 /* The mark phase of garbage collection. For a given section, mark
12803 it and any sections in this section's group, and all the sections
12804 which define symbols to which it refers. */
12805
12806 bfd_boolean
12807 _bfd_elf_gc_mark (struct bfd_link_info *info,
12808 asection *sec,
12809 elf_gc_mark_hook_fn gc_mark_hook)
12810 {
12811 bfd_boolean ret;
12812 asection *group_sec, *eh_frame;
12813
12814 sec->gc_mark = 1;
12815
12816 /* Mark all the sections in the group. */
12817 group_sec = elf_section_data (sec)->next_in_group;
12818 if (group_sec && !group_sec->gc_mark)
12819 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
12820 return FALSE;
12821
12822 /* Look through the section relocs. */
12823 ret = TRUE;
12824 eh_frame = elf_eh_frame_section (sec->owner);
12825 if ((sec->flags & SEC_RELOC) != 0
12826 && sec->reloc_count > 0
12827 && sec != eh_frame)
12828 {
12829 struct elf_reloc_cookie cookie;
12830
12831 if (!init_reloc_cookie_for_section (&cookie, info, sec))
12832 ret = FALSE;
12833 else
12834 {
12835 for (; cookie.rel < cookie.relend; cookie.rel++)
12836 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
12837 {
12838 ret = FALSE;
12839 break;
12840 }
12841 fini_reloc_cookie_for_section (&cookie, sec);
12842 }
12843 }
12844
12845 if (ret && eh_frame && elf_fde_list (sec))
12846 {
12847 struct elf_reloc_cookie cookie;
12848
12849 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
12850 ret = FALSE;
12851 else
12852 {
12853 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
12854 gc_mark_hook, &cookie))
12855 ret = FALSE;
12856 fini_reloc_cookie_for_section (&cookie, eh_frame);
12857 }
12858 }
12859
12860 eh_frame = elf_section_eh_frame_entry (sec);
12861 if (ret && eh_frame && !eh_frame->gc_mark)
12862 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
12863 ret = FALSE;
12864
12865 return ret;
12866 }
12867
12868 /* Scan and mark sections in a special or debug section group. */
12869
12870 static void
12871 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
12872 {
12873 /* Point to first section of section group. */
12874 asection *ssec;
12875 /* Used to iterate the section group. */
12876 asection *msec;
12877
12878 bfd_boolean is_special_grp = TRUE;
12879 bfd_boolean is_debug_grp = TRUE;
12880
12881 /* First scan to see if group contains any section other than debug
12882 and special section. */
12883 ssec = msec = elf_next_in_group (grp);
12884 do
12885 {
12886 if ((msec->flags & SEC_DEBUGGING) == 0)
12887 is_debug_grp = FALSE;
12888
12889 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
12890 is_special_grp = FALSE;
12891
12892 msec = elf_next_in_group (msec);
12893 }
12894 while (msec != ssec);
12895
12896 /* If this is a pure debug section group or pure special section group,
12897 keep all sections in this group. */
12898 if (is_debug_grp || is_special_grp)
12899 {
12900 do
12901 {
12902 msec->gc_mark = 1;
12903 msec = elf_next_in_group (msec);
12904 }
12905 while (msec != ssec);
12906 }
12907 }
12908
12909 /* Keep debug and special sections. */
12910
12911 bfd_boolean
12912 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12913 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12914 {
12915 bfd *ibfd;
12916
12917 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12918 {
12919 asection *isec;
12920 bfd_boolean some_kept;
12921 bfd_boolean debug_frag_seen;
12922 bfd_boolean has_kept_debug_info;
12923
12924 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12925 continue;
12926 isec = ibfd->sections;
12927 if (isec == NULL || isec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
12928 continue;
12929
12930 /* Ensure all linker created sections are kept,
12931 see if any other section is already marked,
12932 and note if we have any fragmented debug sections. */
12933 debug_frag_seen = some_kept = has_kept_debug_info = FALSE;
12934 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12935 {
12936 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12937 isec->gc_mark = 1;
12938 else if (isec->gc_mark
12939 && (isec->flags & SEC_ALLOC) != 0
12940 && elf_section_type (isec) != SHT_NOTE)
12941 some_kept = TRUE;
12942
12943 if (!debug_frag_seen
12944 && (isec->flags & SEC_DEBUGGING)
12945 && CONST_STRNEQ (isec->name, ".debug_line."))
12946 debug_frag_seen = TRUE;
12947 }
12948
12949 /* If no non-note alloc section in this file will be kept, then
12950 we can toss out the debug and special sections. */
12951 if (!some_kept)
12952 continue;
12953
12954 /* Keep debug and special sections like .comment when they are
12955 not part of a group. Also keep section groups that contain
12956 just debug sections or special sections. */
12957 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12958 {
12959 if ((isec->flags & SEC_GROUP) != 0)
12960 _bfd_elf_gc_mark_debug_special_section_group (isec);
12961 else if (((isec->flags & SEC_DEBUGGING) != 0
12962 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12963 && elf_next_in_group (isec) == NULL)
12964 isec->gc_mark = 1;
12965 if (isec->gc_mark && (isec->flags & SEC_DEBUGGING) != 0)
12966 has_kept_debug_info = TRUE;
12967 }
12968
12969 /* Look for CODE sections which are going to be discarded,
12970 and find and discard any fragmented debug sections which
12971 are associated with that code section. */
12972 if (debug_frag_seen)
12973 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12974 if ((isec->flags & SEC_CODE) != 0
12975 && isec->gc_mark == 0)
12976 {
12977 unsigned int ilen;
12978 asection *dsec;
12979
12980 ilen = strlen (isec->name);
12981
12982 /* Association is determined by the name of the debug
12983 section containing the name of the code section as
12984 a suffix. For example .debug_line.text.foo is a
12985 debug section associated with .text.foo. */
12986 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12987 {
12988 unsigned int dlen;
12989
12990 if (dsec->gc_mark == 0
12991 || (dsec->flags & SEC_DEBUGGING) == 0)
12992 continue;
12993
12994 dlen = strlen (dsec->name);
12995
12996 if (dlen > ilen
12997 && strncmp (dsec->name + (dlen - ilen),
12998 isec->name, ilen) == 0)
12999 dsec->gc_mark = 0;
13000 }
13001 }
13002
13003 /* Mark debug sections referenced by kept debug sections. */
13004 if (has_kept_debug_info)
13005 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13006 if (isec->gc_mark
13007 && (isec->flags & SEC_DEBUGGING) != 0)
13008 if (!_bfd_elf_gc_mark (info, isec,
13009 elf_gc_mark_debug_section))
13010 return FALSE;
13011 }
13012 return TRUE;
13013 }
13014
13015 static bfd_boolean
13016 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
13017 {
13018 bfd *sub;
13019 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13020
13021 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13022 {
13023 asection *o;
13024
13025 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13026 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13027 continue;
13028 o = sub->sections;
13029 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13030 continue;
13031
13032 for (o = sub->sections; o != NULL; o = o->next)
13033 {
13034 /* When any section in a section group is kept, we keep all
13035 sections in the section group. If the first member of
13036 the section group is excluded, we will also exclude the
13037 group section. */
13038 if (o->flags & SEC_GROUP)
13039 {
13040 asection *first = elf_next_in_group (o);
13041 o->gc_mark = first->gc_mark;
13042 }
13043
13044 if (o->gc_mark)
13045 continue;
13046
13047 /* Skip sweeping sections already excluded. */
13048 if (o->flags & SEC_EXCLUDE)
13049 continue;
13050
13051 /* Since this is early in the link process, it is simple
13052 to remove a section from the output. */
13053 o->flags |= SEC_EXCLUDE;
13054
13055 if (info->print_gc_sections && o->size != 0)
13056 /* xgettext:c-format */
13057 _bfd_error_handler (_("Removing unused section '%A' in file '%B'"),
13058 o, sub);
13059 }
13060 }
13061
13062 return TRUE;
13063 }
13064
13065 /* Propagate collected vtable information. This is called through
13066 elf_link_hash_traverse. */
13067
13068 static bfd_boolean
13069 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
13070 {
13071 /* Those that are not vtables. */
13072 if (h->start_stop
13073 || h->u2.vtable == NULL
13074 || h->u2.vtable->parent == NULL)
13075 return TRUE;
13076
13077 /* Those vtables that do not have parents, we cannot merge. */
13078 if (h->u2.vtable->parent == (struct elf_link_hash_entry *) -1)
13079 return TRUE;
13080
13081 /* If we've already been done, exit. */
13082 if (h->u2.vtable->used && h->u2.vtable->used[-1])
13083 return TRUE;
13084
13085 /* Make sure the parent's table is up to date. */
13086 elf_gc_propagate_vtable_entries_used (h->u2.vtable->parent, okp);
13087
13088 if (h->u2.vtable->used == NULL)
13089 {
13090 /* None of this table's entries were referenced. Re-use the
13091 parent's table. */
13092 h->u2.vtable->used = h->u2.vtable->parent->u2.vtable->used;
13093 h->u2.vtable->size = h->u2.vtable->parent->u2.vtable->size;
13094 }
13095 else
13096 {
13097 size_t n;
13098 bfd_boolean *cu, *pu;
13099
13100 /* Or the parent's entries into ours. */
13101 cu = h->u2.vtable->used;
13102 cu[-1] = TRUE;
13103 pu = h->u2.vtable->parent->u2.vtable->used;
13104 if (pu != NULL)
13105 {
13106 const struct elf_backend_data *bed;
13107 unsigned int log_file_align;
13108
13109 bed = get_elf_backend_data (h->root.u.def.section->owner);
13110 log_file_align = bed->s->log_file_align;
13111 n = h->u2.vtable->parent->u2.vtable->size >> log_file_align;
13112 while (n--)
13113 {
13114 if (*pu)
13115 *cu = TRUE;
13116 pu++;
13117 cu++;
13118 }
13119 }
13120 }
13121
13122 return TRUE;
13123 }
13124
13125 static bfd_boolean
13126 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
13127 {
13128 asection *sec;
13129 bfd_vma hstart, hend;
13130 Elf_Internal_Rela *relstart, *relend, *rel;
13131 const struct elf_backend_data *bed;
13132 unsigned int log_file_align;
13133
13134 /* Take care of both those symbols that do not describe vtables as
13135 well as those that are not loaded. */
13136 if (h->start_stop
13137 || h->u2.vtable == NULL
13138 || h->u2.vtable->parent == NULL)
13139 return TRUE;
13140
13141 BFD_ASSERT (h->root.type == bfd_link_hash_defined
13142 || h->root.type == bfd_link_hash_defweak);
13143
13144 sec = h->root.u.def.section;
13145 hstart = h->root.u.def.value;
13146 hend = hstart + h->size;
13147
13148 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
13149 if (!relstart)
13150 return *(bfd_boolean *) okp = FALSE;
13151 bed = get_elf_backend_data (sec->owner);
13152 log_file_align = bed->s->log_file_align;
13153
13154 relend = relstart + sec->reloc_count;
13155
13156 for (rel = relstart; rel < relend; ++rel)
13157 if (rel->r_offset >= hstart && rel->r_offset < hend)
13158 {
13159 /* If the entry is in use, do nothing. */
13160 if (h->u2.vtable->used
13161 && (rel->r_offset - hstart) < h->u2.vtable->size)
13162 {
13163 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
13164 if (h->u2.vtable->used[entry])
13165 continue;
13166 }
13167 /* Otherwise, kill it. */
13168 rel->r_offset = rel->r_info = rel->r_addend = 0;
13169 }
13170
13171 return TRUE;
13172 }
13173
13174 /* Mark sections containing dynamically referenced symbols. When
13175 building shared libraries, we must assume that any visible symbol is
13176 referenced. */
13177
13178 bfd_boolean
13179 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
13180 {
13181 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13182 struct bfd_elf_dynamic_list *d = info->dynamic_list;
13183
13184 if ((h->root.type == bfd_link_hash_defined
13185 || h->root.type == bfd_link_hash_defweak)
13186 && (h->ref_dynamic
13187 || ((h->def_regular || ELF_COMMON_DEF_P (h))
13188 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13189 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13190 && (!bfd_link_executable (info)
13191 || info->gc_keep_exported
13192 || info->export_dynamic
13193 || (h->dynamic
13194 && d != NULL
13195 && (*d->match) (&d->head, NULL, h->root.root.string)))
13196 && (h->versioned >= versioned
13197 || !bfd_hide_sym_by_version (info->version_info,
13198 h->root.root.string)))))
13199 h->root.u.def.section->flags |= SEC_KEEP;
13200
13201 return TRUE;
13202 }
13203
13204 /* Keep all sections containing symbols undefined on the command-line,
13205 and the section containing the entry symbol. */
13206
13207 void
13208 _bfd_elf_gc_keep (struct bfd_link_info *info)
13209 {
13210 struct bfd_sym_chain *sym;
13211
13212 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13213 {
13214 struct elf_link_hash_entry *h;
13215
13216 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13217 FALSE, FALSE, FALSE);
13218
13219 if (h != NULL
13220 && (h->root.type == bfd_link_hash_defined
13221 || h->root.type == bfd_link_hash_defweak)
13222 && !bfd_is_abs_section (h->root.u.def.section)
13223 && !bfd_is_und_section (h->root.u.def.section))
13224 h->root.u.def.section->flags |= SEC_KEEP;
13225 }
13226 }
13227
13228 bfd_boolean
13229 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13230 struct bfd_link_info *info)
13231 {
13232 bfd *ibfd = info->input_bfds;
13233
13234 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13235 {
13236 asection *sec;
13237 struct elf_reloc_cookie cookie;
13238
13239 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13240 continue;
13241 sec = ibfd->sections;
13242 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13243 continue;
13244
13245 if (!init_reloc_cookie (&cookie, info, ibfd))
13246 return FALSE;
13247
13248 for (sec = ibfd->sections; sec; sec = sec->next)
13249 {
13250 if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
13251 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
13252 {
13253 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
13254 fini_reloc_cookie_rels (&cookie, sec);
13255 }
13256 }
13257 }
13258 return TRUE;
13259 }
13260
13261 /* Do mark and sweep of unused sections. */
13262
13263 bfd_boolean
13264 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
13265 {
13266 bfd_boolean ok = TRUE;
13267 bfd *sub;
13268 elf_gc_mark_hook_fn gc_mark_hook;
13269 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13270 struct elf_link_hash_table *htab;
13271
13272 if (!bed->can_gc_sections
13273 || !is_elf_hash_table (info->hash))
13274 {
13275 _bfd_error_handler(_("Warning: gc-sections option ignored"));
13276 return TRUE;
13277 }
13278
13279 bed->gc_keep (info);
13280 htab = elf_hash_table (info);
13281
13282 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
13283 at the .eh_frame section if we can mark the FDEs individually. */
13284 for (sub = info->input_bfds;
13285 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
13286 sub = sub->link.next)
13287 {
13288 asection *sec;
13289 struct elf_reloc_cookie cookie;
13290
13291 sec = sub->sections;
13292 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13293 continue;
13294 sec = bfd_get_section_by_name (sub, ".eh_frame");
13295 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
13296 {
13297 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
13298 if (elf_section_data (sec)->sec_info
13299 && (sec->flags & SEC_LINKER_CREATED) == 0)
13300 elf_eh_frame_section (sub) = sec;
13301 fini_reloc_cookie_for_section (&cookie, sec);
13302 sec = bfd_get_next_section_by_name (NULL, sec);
13303 }
13304 }
13305
13306 /* Apply transitive closure to the vtable entry usage info. */
13307 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
13308 if (!ok)
13309 return FALSE;
13310
13311 /* Kill the vtable relocations that were not used. */
13312 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
13313 if (!ok)
13314 return FALSE;
13315
13316 /* Mark dynamically referenced symbols. */
13317 if (htab->dynamic_sections_created || info->gc_keep_exported)
13318 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
13319
13320 /* Grovel through relocs to find out who stays ... */
13321 gc_mark_hook = bed->gc_mark_hook;
13322 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13323 {
13324 asection *o;
13325
13326 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13327 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13328 continue;
13329
13330 o = sub->sections;
13331 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13332 continue;
13333
13334 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13335 Also treat note sections as a root, if the section is not part
13336 of a group. */
13337 for (o = sub->sections; o != NULL; o = o->next)
13338 if (!o->gc_mark
13339 && (o->flags & SEC_EXCLUDE) == 0
13340 && ((o->flags & SEC_KEEP) != 0
13341 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
13342 && elf_next_in_group (o) == NULL )))
13343 {
13344 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13345 return FALSE;
13346 }
13347 }
13348
13349 /* Allow the backend to mark additional target specific sections. */
13350 bed->gc_mark_extra_sections (info, gc_mark_hook);
13351
13352 /* ... and mark SEC_EXCLUDE for those that go. */
13353 return elf_gc_sweep (abfd, info);
13354 }
13355 \f
13356 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
13357
13358 bfd_boolean
13359 bfd_elf_gc_record_vtinherit (bfd *abfd,
13360 asection *sec,
13361 struct elf_link_hash_entry *h,
13362 bfd_vma offset)
13363 {
13364 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
13365 struct elf_link_hash_entry **search, *child;
13366 size_t extsymcount;
13367 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13368
13369 /* The sh_info field of the symtab header tells us where the
13370 external symbols start. We don't care about the local symbols at
13371 this point. */
13372 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
13373 if (!elf_bad_symtab (abfd))
13374 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
13375
13376 sym_hashes = elf_sym_hashes (abfd);
13377 sym_hashes_end = sym_hashes + extsymcount;
13378
13379 /* Hunt down the child symbol, which is in this section at the same
13380 offset as the relocation. */
13381 for (search = sym_hashes; search != sym_hashes_end; ++search)
13382 {
13383 if ((child = *search) != NULL
13384 && (child->root.type == bfd_link_hash_defined
13385 || child->root.type == bfd_link_hash_defweak)
13386 && child->root.u.def.section == sec
13387 && child->root.u.def.value == offset)
13388 goto win;
13389 }
13390
13391 /* xgettext:c-format */
13392 _bfd_error_handler (_("%B: %A+%#Lx: No symbol found for INHERIT"),
13393 abfd, sec, offset);
13394 bfd_set_error (bfd_error_invalid_operation);
13395 return FALSE;
13396
13397 win:
13398 if (!child->u2.vtable)
13399 {
13400 child->u2.vtable = ((struct elf_link_virtual_table_entry *)
13401 bfd_zalloc (abfd, sizeof (*child->u2.vtable)));
13402 if (!child->u2.vtable)
13403 return FALSE;
13404 }
13405 if (!h)
13406 {
13407 /* This *should* only be the absolute section. It could potentially
13408 be that someone has defined a non-global vtable though, which
13409 would be bad. It isn't worth paging in the local symbols to be
13410 sure though; that case should simply be handled by the assembler. */
13411
13412 child->u2.vtable->parent = (struct elf_link_hash_entry *) -1;
13413 }
13414 else
13415 child->u2.vtable->parent = h;
13416
13417 return TRUE;
13418 }
13419
13420 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
13421
13422 bfd_boolean
13423 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
13424 asection *sec ATTRIBUTE_UNUSED,
13425 struct elf_link_hash_entry *h,
13426 bfd_vma addend)
13427 {
13428 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13429 unsigned int log_file_align = bed->s->log_file_align;
13430
13431 if (!h->u2.vtable)
13432 {
13433 h->u2.vtable = ((struct elf_link_virtual_table_entry *)
13434 bfd_zalloc (abfd, sizeof (*h->u2.vtable)));
13435 if (!h->u2.vtable)
13436 return FALSE;
13437 }
13438
13439 if (addend >= h->u2.vtable->size)
13440 {
13441 size_t size, bytes, file_align;
13442 bfd_boolean *ptr = h->u2.vtable->used;
13443
13444 /* While the symbol is undefined, we have to be prepared to handle
13445 a zero size. */
13446 file_align = 1 << log_file_align;
13447 if (h->root.type == bfd_link_hash_undefined)
13448 size = addend + file_align;
13449 else
13450 {
13451 size = h->size;
13452 if (addend >= size)
13453 {
13454 /* Oops! We've got a reference past the defined end of
13455 the table. This is probably a bug -- shall we warn? */
13456 size = addend + file_align;
13457 }
13458 }
13459 size = (size + file_align - 1) & -file_align;
13460
13461 /* Allocate one extra entry for use as a "done" flag for the
13462 consolidation pass. */
13463 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
13464
13465 if (ptr)
13466 {
13467 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
13468
13469 if (ptr != NULL)
13470 {
13471 size_t oldbytes;
13472
13473 oldbytes = (((h->u2.vtable->size >> log_file_align) + 1)
13474 * sizeof (bfd_boolean));
13475 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
13476 }
13477 }
13478 else
13479 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
13480
13481 if (ptr == NULL)
13482 return FALSE;
13483
13484 /* And arrange for that done flag to be at index -1. */
13485 h->u2.vtable->used = ptr + 1;
13486 h->u2.vtable->size = size;
13487 }
13488
13489 h->u2.vtable->used[addend >> log_file_align] = TRUE;
13490
13491 return TRUE;
13492 }
13493
13494 /* Map an ELF section header flag to its corresponding string. */
13495 typedef struct
13496 {
13497 char *flag_name;
13498 flagword flag_value;
13499 } elf_flags_to_name_table;
13500
13501 static elf_flags_to_name_table elf_flags_to_names [] =
13502 {
13503 { "SHF_WRITE", SHF_WRITE },
13504 { "SHF_ALLOC", SHF_ALLOC },
13505 { "SHF_EXECINSTR", SHF_EXECINSTR },
13506 { "SHF_MERGE", SHF_MERGE },
13507 { "SHF_STRINGS", SHF_STRINGS },
13508 { "SHF_INFO_LINK", SHF_INFO_LINK},
13509 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
13510 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
13511 { "SHF_GROUP", SHF_GROUP },
13512 { "SHF_TLS", SHF_TLS },
13513 { "SHF_MASKOS", SHF_MASKOS },
13514 { "SHF_EXCLUDE", SHF_EXCLUDE },
13515 };
13516
13517 /* Returns TRUE if the section is to be included, otherwise FALSE. */
13518 bfd_boolean
13519 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
13520 struct flag_info *flaginfo,
13521 asection *section)
13522 {
13523 const bfd_vma sh_flags = elf_section_flags (section);
13524
13525 if (!flaginfo->flags_initialized)
13526 {
13527 bfd *obfd = info->output_bfd;
13528 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13529 struct flag_info_list *tf = flaginfo->flag_list;
13530 int with_hex = 0;
13531 int without_hex = 0;
13532
13533 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
13534 {
13535 unsigned i;
13536 flagword (*lookup) (char *);
13537
13538 lookup = bed->elf_backend_lookup_section_flags_hook;
13539 if (lookup != NULL)
13540 {
13541 flagword hexval = (*lookup) ((char *) tf->name);
13542
13543 if (hexval != 0)
13544 {
13545 if (tf->with == with_flags)
13546 with_hex |= hexval;
13547 else if (tf->with == without_flags)
13548 without_hex |= hexval;
13549 tf->valid = TRUE;
13550 continue;
13551 }
13552 }
13553 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
13554 {
13555 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
13556 {
13557 if (tf->with == with_flags)
13558 with_hex |= elf_flags_to_names[i].flag_value;
13559 else if (tf->with == without_flags)
13560 without_hex |= elf_flags_to_names[i].flag_value;
13561 tf->valid = TRUE;
13562 break;
13563 }
13564 }
13565 if (!tf->valid)
13566 {
13567 info->callbacks->einfo
13568 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
13569 return FALSE;
13570 }
13571 }
13572 flaginfo->flags_initialized = TRUE;
13573 flaginfo->only_with_flags |= with_hex;
13574 flaginfo->not_with_flags |= without_hex;
13575 }
13576
13577 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
13578 return FALSE;
13579
13580 if ((flaginfo->not_with_flags & sh_flags) != 0)
13581 return FALSE;
13582
13583 return TRUE;
13584 }
13585
13586 struct alloc_got_off_arg {
13587 bfd_vma gotoff;
13588 struct bfd_link_info *info;
13589 };
13590
13591 /* We need a special top-level link routine to convert got reference counts
13592 to real got offsets. */
13593
13594 static bfd_boolean
13595 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
13596 {
13597 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
13598 bfd *obfd = gofarg->info->output_bfd;
13599 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13600
13601 if (h->got.refcount > 0)
13602 {
13603 h->got.offset = gofarg->gotoff;
13604 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
13605 }
13606 else
13607 h->got.offset = (bfd_vma) -1;
13608
13609 return TRUE;
13610 }
13611
13612 /* And an accompanying bit to work out final got entry offsets once
13613 we're done. Should be called from final_link. */
13614
13615 bfd_boolean
13616 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
13617 struct bfd_link_info *info)
13618 {
13619 bfd *i;
13620 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13621 bfd_vma gotoff;
13622 struct alloc_got_off_arg gofarg;
13623
13624 BFD_ASSERT (abfd == info->output_bfd);
13625
13626 if (! is_elf_hash_table (info->hash))
13627 return FALSE;
13628
13629 /* The GOT offset is relative to the .got section, but the GOT header is
13630 put into the .got.plt section, if the backend uses it. */
13631 if (bed->want_got_plt)
13632 gotoff = 0;
13633 else
13634 gotoff = bed->got_header_size;
13635
13636 /* Do the local .got entries first. */
13637 for (i = info->input_bfds; i; i = i->link.next)
13638 {
13639 bfd_signed_vma *local_got;
13640 size_t j, locsymcount;
13641 Elf_Internal_Shdr *symtab_hdr;
13642
13643 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
13644 continue;
13645
13646 local_got = elf_local_got_refcounts (i);
13647 if (!local_got)
13648 continue;
13649
13650 symtab_hdr = &elf_tdata (i)->symtab_hdr;
13651 if (elf_bad_symtab (i))
13652 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13653 else
13654 locsymcount = symtab_hdr->sh_info;
13655
13656 for (j = 0; j < locsymcount; ++j)
13657 {
13658 if (local_got[j] > 0)
13659 {
13660 local_got[j] = gotoff;
13661 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
13662 }
13663 else
13664 local_got[j] = (bfd_vma) -1;
13665 }
13666 }
13667
13668 /* Then the global .got entries. .plt refcounts are handled by
13669 adjust_dynamic_symbol */
13670 gofarg.gotoff = gotoff;
13671 gofarg.info = info;
13672 elf_link_hash_traverse (elf_hash_table (info),
13673 elf_gc_allocate_got_offsets,
13674 &gofarg);
13675 return TRUE;
13676 }
13677
13678 /* Many folk need no more in the way of final link than this, once
13679 got entry reference counting is enabled. */
13680
13681 bfd_boolean
13682 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
13683 {
13684 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
13685 return FALSE;
13686
13687 /* Invoke the regular ELF backend linker to do all the work. */
13688 return bfd_elf_final_link (abfd, info);
13689 }
13690
13691 bfd_boolean
13692 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
13693 {
13694 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
13695
13696 if (rcookie->bad_symtab)
13697 rcookie->rel = rcookie->rels;
13698
13699 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
13700 {
13701 unsigned long r_symndx;
13702
13703 if (! rcookie->bad_symtab)
13704 if (rcookie->rel->r_offset > offset)
13705 return FALSE;
13706 if (rcookie->rel->r_offset != offset)
13707 continue;
13708
13709 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
13710 if (r_symndx == STN_UNDEF)
13711 return TRUE;
13712
13713 if (r_symndx >= rcookie->locsymcount
13714 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13715 {
13716 struct elf_link_hash_entry *h;
13717
13718 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
13719
13720 while (h->root.type == bfd_link_hash_indirect
13721 || h->root.type == bfd_link_hash_warning)
13722 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13723
13724 if ((h->root.type == bfd_link_hash_defined
13725 || h->root.type == bfd_link_hash_defweak)
13726 && (h->root.u.def.section->owner != rcookie->abfd
13727 || h->root.u.def.section->kept_section != NULL
13728 || discarded_section (h->root.u.def.section)))
13729 return TRUE;
13730 }
13731 else
13732 {
13733 /* It's not a relocation against a global symbol,
13734 but it could be a relocation against a local
13735 symbol for a discarded section. */
13736 asection *isec;
13737 Elf_Internal_Sym *isym;
13738
13739 /* Need to: get the symbol; get the section. */
13740 isym = &rcookie->locsyms[r_symndx];
13741 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
13742 if (isec != NULL
13743 && (isec->kept_section != NULL
13744 || discarded_section (isec)))
13745 return TRUE;
13746 }
13747 return FALSE;
13748 }
13749 return FALSE;
13750 }
13751
13752 /* Discard unneeded references to discarded sections.
13753 Returns -1 on error, 1 if any section's size was changed, 0 if
13754 nothing changed. This function assumes that the relocations are in
13755 sorted order, which is true for all known assemblers. */
13756
13757 int
13758 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
13759 {
13760 struct elf_reloc_cookie cookie;
13761 asection *o;
13762 bfd *abfd;
13763 int changed = 0;
13764
13765 if (info->traditional_format
13766 || !is_elf_hash_table (info->hash))
13767 return 0;
13768
13769 o = bfd_get_section_by_name (output_bfd, ".stab");
13770 if (o != NULL)
13771 {
13772 asection *i;
13773
13774 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13775 {
13776 if (i->size == 0
13777 || i->reloc_count == 0
13778 || i->sec_info_type != SEC_INFO_TYPE_STABS)
13779 continue;
13780
13781 abfd = i->owner;
13782 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13783 continue;
13784
13785 if (!init_reloc_cookie_for_section (&cookie, info, i))
13786 return -1;
13787
13788 if (_bfd_discard_section_stabs (abfd, i,
13789 elf_section_data (i)->sec_info,
13790 bfd_elf_reloc_symbol_deleted_p,
13791 &cookie))
13792 changed = 1;
13793
13794 fini_reloc_cookie_for_section (&cookie, i);
13795 }
13796 }
13797
13798 o = NULL;
13799 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
13800 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
13801 if (o != NULL)
13802 {
13803 asection *i;
13804 int eh_changed = 0;
13805 unsigned int eh_alignment;
13806
13807 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13808 {
13809 if (i->size == 0)
13810 continue;
13811
13812 abfd = i->owner;
13813 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13814 continue;
13815
13816 if (!init_reloc_cookie_for_section (&cookie, info, i))
13817 return -1;
13818
13819 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
13820 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
13821 bfd_elf_reloc_symbol_deleted_p,
13822 &cookie))
13823 {
13824 eh_changed = 1;
13825 if (i->size != i->rawsize)
13826 changed = 1;
13827 }
13828
13829 fini_reloc_cookie_for_section (&cookie, i);
13830 }
13831
13832 eh_alignment = 1 << o->alignment_power;
13833 /* Skip over zero terminator, and prevent empty sections from
13834 adding alignment padding at the end. */
13835 for (i = o->map_tail.s; i != NULL; i = i->map_tail.s)
13836 if (i->size == 0)
13837 i->flags |= SEC_EXCLUDE;
13838 else if (i->size > 4)
13839 break;
13840 /* The last non-empty eh_frame section doesn't need padding. */
13841 if (i != NULL)
13842 i = i->map_tail.s;
13843 /* Any prior sections must pad the last FDE out to the output
13844 section alignment. Otherwise we might have zero padding
13845 between sections, which would be seen as a terminator. */
13846 for (; i != NULL; i = i->map_tail.s)
13847 if (i->size == 4)
13848 /* All but the last zero terminator should have been removed. */
13849 BFD_FAIL ();
13850 else
13851 {
13852 bfd_size_type size
13853 = (i->size + eh_alignment - 1) & -eh_alignment;
13854 if (i->size != size)
13855 {
13856 i->size = size;
13857 changed = 1;
13858 eh_changed = 1;
13859 }
13860 }
13861 if (eh_changed)
13862 elf_link_hash_traverse (elf_hash_table (info),
13863 _bfd_elf_adjust_eh_frame_global_symbol, NULL);
13864 }
13865
13866 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
13867 {
13868 const struct elf_backend_data *bed;
13869 asection *s;
13870
13871 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13872 continue;
13873 s = abfd->sections;
13874 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13875 continue;
13876
13877 bed = get_elf_backend_data (abfd);
13878
13879 if (bed->elf_backend_discard_info != NULL)
13880 {
13881 if (!init_reloc_cookie (&cookie, info, abfd))
13882 return -1;
13883
13884 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
13885 changed = 1;
13886
13887 fini_reloc_cookie (&cookie, abfd);
13888 }
13889 }
13890
13891 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
13892 _bfd_elf_end_eh_frame_parsing (info);
13893
13894 if (info->eh_frame_hdr_type
13895 && !bfd_link_relocatable (info)
13896 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
13897 changed = 1;
13898
13899 return changed;
13900 }
13901
13902 bfd_boolean
13903 _bfd_elf_section_already_linked (bfd *abfd,
13904 asection *sec,
13905 struct bfd_link_info *info)
13906 {
13907 flagword flags;
13908 const char *name, *key;
13909 struct bfd_section_already_linked *l;
13910 struct bfd_section_already_linked_hash_entry *already_linked_list;
13911
13912 if (sec->output_section == bfd_abs_section_ptr)
13913 return FALSE;
13914
13915 flags = sec->flags;
13916
13917 /* Return if it isn't a linkonce section. A comdat group section
13918 also has SEC_LINK_ONCE set. */
13919 if ((flags & SEC_LINK_ONCE) == 0)
13920 return FALSE;
13921
13922 /* Don't put group member sections on our list of already linked
13923 sections. They are handled as a group via their group section. */
13924 if (elf_sec_group (sec) != NULL)
13925 return FALSE;
13926
13927 /* For a SHT_GROUP section, use the group signature as the key. */
13928 name = sec->name;
13929 if ((flags & SEC_GROUP) != 0
13930 && elf_next_in_group (sec) != NULL
13931 && elf_group_name (elf_next_in_group (sec)) != NULL)
13932 key = elf_group_name (elf_next_in_group (sec));
13933 else
13934 {
13935 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
13936 if (CONST_STRNEQ (name, ".gnu.linkonce.")
13937 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
13938 key++;
13939 else
13940 /* Must be a user linkonce section that doesn't follow gcc's
13941 naming convention. In this case we won't be matching
13942 single member groups. */
13943 key = name;
13944 }
13945
13946 already_linked_list = bfd_section_already_linked_table_lookup (key);
13947
13948 for (l = already_linked_list->entry; l != NULL; l = l->next)
13949 {
13950 /* We may have 2 different types of sections on the list: group
13951 sections with a signature of <key> (<key> is some string),
13952 and linkonce sections named .gnu.linkonce.<type>.<key>.
13953 Match like sections. LTO plugin sections are an exception.
13954 They are always named .gnu.linkonce.t.<key> and match either
13955 type of section. */
13956 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13957 && ((flags & SEC_GROUP) != 0
13958 || strcmp (name, l->sec->name) == 0))
13959 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13960 {
13961 /* The section has already been linked. See if we should
13962 issue a warning. */
13963 if (!_bfd_handle_already_linked (sec, l, info))
13964 return FALSE;
13965
13966 if (flags & SEC_GROUP)
13967 {
13968 asection *first = elf_next_in_group (sec);
13969 asection *s = first;
13970
13971 while (s != NULL)
13972 {
13973 s->output_section = bfd_abs_section_ptr;
13974 /* Record which group discards it. */
13975 s->kept_section = l->sec;
13976 s = elf_next_in_group (s);
13977 /* These lists are circular. */
13978 if (s == first)
13979 break;
13980 }
13981 }
13982
13983 return TRUE;
13984 }
13985 }
13986
13987 /* A single member comdat group section may be discarded by a
13988 linkonce section and vice versa. */
13989 if ((flags & SEC_GROUP) != 0)
13990 {
13991 asection *first = elf_next_in_group (sec);
13992
13993 if (first != NULL && elf_next_in_group (first) == first)
13994 /* Check this single member group against linkonce sections. */
13995 for (l = already_linked_list->entry; l != NULL; l = l->next)
13996 if ((l->sec->flags & SEC_GROUP) == 0
13997 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
13998 {
13999 first->output_section = bfd_abs_section_ptr;
14000 first->kept_section = l->sec;
14001 sec->output_section = bfd_abs_section_ptr;
14002 break;
14003 }
14004 }
14005 else
14006 /* Check this linkonce section against single member groups. */
14007 for (l = already_linked_list->entry; l != NULL; l = l->next)
14008 if (l->sec->flags & SEC_GROUP)
14009 {
14010 asection *first = elf_next_in_group (l->sec);
14011
14012 if (first != NULL
14013 && elf_next_in_group (first) == first
14014 && bfd_elf_match_symbols_in_sections (first, sec, info))
14015 {
14016 sec->output_section = bfd_abs_section_ptr;
14017 sec->kept_section = first;
14018 break;
14019 }
14020 }
14021
14022 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
14023 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
14024 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
14025 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
14026 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
14027 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
14028 `.gnu.linkonce.t.F' section from a different bfd not requiring any
14029 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
14030 The reverse order cannot happen as there is never a bfd with only the
14031 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
14032 matter as here were are looking only for cross-bfd sections. */
14033
14034 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
14035 for (l = already_linked_list->entry; l != NULL; l = l->next)
14036 if ((l->sec->flags & SEC_GROUP) == 0
14037 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
14038 {
14039 if (abfd != l->sec->owner)
14040 sec->output_section = bfd_abs_section_ptr;
14041 break;
14042 }
14043
14044 /* This is the first section with this name. Record it. */
14045 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
14046 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
14047 return sec->output_section == bfd_abs_section_ptr;
14048 }
14049
14050 bfd_boolean
14051 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
14052 {
14053 return sym->st_shndx == SHN_COMMON;
14054 }
14055
14056 unsigned int
14057 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
14058 {
14059 return SHN_COMMON;
14060 }
14061
14062 asection *
14063 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
14064 {
14065 return bfd_com_section_ptr;
14066 }
14067
14068 bfd_vma
14069 _bfd_elf_default_got_elt_size (bfd *abfd,
14070 struct bfd_link_info *info ATTRIBUTE_UNUSED,
14071 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
14072 bfd *ibfd ATTRIBUTE_UNUSED,
14073 unsigned long symndx ATTRIBUTE_UNUSED)
14074 {
14075 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14076 return bed->s->arch_size / 8;
14077 }
14078
14079 /* Routines to support the creation of dynamic relocs. */
14080
14081 /* Returns the name of the dynamic reloc section associated with SEC. */
14082
14083 static const char *
14084 get_dynamic_reloc_section_name (bfd * abfd,
14085 asection * sec,
14086 bfd_boolean is_rela)
14087 {
14088 char *name;
14089 const char *old_name = bfd_get_section_name (NULL, sec);
14090 const char *prefix = is_rela ? ".rela" : ".rel";
14091
14092 if (old_name == NULL)
14093 return NULL;
14094
14095 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
14096 sprintf (name, "%s%s", prefix, old_name);
14097
14098 return name;
14099 }
14100
14101 /* Returns the dynamic reloc section associated with SEC.
14102 If necessary compute the name of the dynamic reloc section based
14103 on SEC's name (looked up in ABFD's string table) and the setting
14104 of IS_RELA. */
14105
14106 asection *
14107 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
14108 asection * sec,
14109 bfd_boolean is_rela)
14110 {
14111 asection * reloc_sec = elf_section_data (sec)->sreloc;
14112
14113 if (reloc_sec == NULL)
14114 {
14115 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14116
14117 if (name != NULL)
14118 {
14119 reloc_sec = bfd_get_linker_section (abfd, name);
14120
14121 if (reloc_sec != NULL)
14122 elf_section_data (sec)->sreloc = reloc_sec;
14123 }
14124 }
14125
14126 return reloc_sec;
14127 }
14128
14129 /* Returns the dynamic reloc section associated with SEC. If the
14130 section does not exist it is created and attached to the DYNOBJ
14131 bfd and stored in the SRELOC field of SEC's elf_section_data
14132 structure.
14133
14134 ALIGNMENT is the alignment for the newly created section and
14135 IS_RELA defines whether the name should be .rela.<SEC's name>
14136 or .rel.<SEC's name>. The section name is looked up in the
14137 string table associated with ABFD. */
14138
14139 asection *
14140 _bfd_elf_make_dynamic_reloc_section (asection *sec,
14141 bfd *dynobj,
14142 unsigned int alignment,
14143 bfd *abfd,
14144 bfd_boolean is_rela)
14145 {
14146 asection * reloc_sec = elf_section_data (sec)->sreloc;
14147
14148 if (reloc_sec == NULL)
14149 {
14150 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14151
14152 if (name == NULL)
14153 return NULL;
14154
14155 reloc_sec = bfd_get_linker_section (dynobj, name);
14156
14157 if (reloc_sec == NULL)
14158 {
14159 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
14160 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
14161 if ((sec->flags & SEC_ALLOC) != 0)
14162 flags |= SEC_ALLOC | SEC_LOAD;
14163
14164 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
14165 if (reloc_sec != NULL)
14166 {
14167 /* _bfd_elf_get_sec_type_attr chooses a section type by
14168 name. Override as it may be wrong, eg. for a user
14169 section named "auto" we'll get ".relauto" which is
14170 seen to be a .rela section. */
14171 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
14172 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
14173 reloc_sec = NULL;
14174 }
14175 }
14176
14177 elf_section_data (sec)->sreloc = reloc_sec;
14178 }
14179
14180 return reloc_sec;
14181 }
14182
14183 /* Copy the ELF symbol type and other attributes for a linker script
14184 assignment from HSRC to HDEST. Generally this should be treated as
14185 if we found a strong non-dynamic definition for HDEST (except that
14186 ld ignores multiple definition errors). */
14187 void
14188 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
14189 struct bfd_link_hash_entry *hdest,
14190 struct bfd_link_hash_entry *hsrc)
14191 {
14192 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
14193 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
14194 Elf_Internal_Sym isym;
14195
14196 ehdest->type = ehsrc->type;
14197 ehdest->target_internal = ehsrc->target_internal;
14198
14199 isym.st_other = ehsrc->other;
14200 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
14201 }
14202
14203 /* Append a RELA relocation REL to section S in BFD. */
14204
14205 void
14206 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14207 {
14208 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14209 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
14210 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
14211 bed->s->swap_reloca_out (abfd, rel, loc);
14212 }
14213
14214 /* Append a REL relocation REL to section S in BFD. */
14215
14216 void
14217 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14218 {
14219 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14220 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
14221 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
14222 bed->s->swap_reloc_out (abfd, rel, loc);
14223 }
14224
14225 /* Define __start, __stop, .startof. or .sizeof. symbol. */
14226
14227 struct bfd_link_hash_entry *
14228 bfd_elf_define_start_stop (struct bfd_link_info *info,
14229 const char *symbol, asection *sec)
14230 {
14231 struct elf_link_hash_entry *h;
14232
14233 h = elf_link_hash_lookup (elf_hash_table (info), symbol,
14234 FALSE, FALSE, TRUE);
14235 if (h != NULL
14236 && (h->root.type == bfd_link_hash_undefined
14237 || h->root.type == bfd_link_hash_undefweak
14238 || (h->ref_regular && !h->def_regular)))
14239 {
14240 h->root.type = bfd_link_hash_defined;
14241 h->root.u.def.section = sec;
14242 h->root.u.def.value = 0;
14243 h->def_regular = 1;
14244 h->def_dynamic = 0;
14245 h->start_stop = 1;
14246 h->u2.start_stop_section = sec;
14247 if (symbol[0] == '.')
14248 {
14249 /* .startof. and .sizeof. symbols are local. */
14250 const struct elf_backend_data *bed;
14251 bed = get_elf_backend_data (info->output_bfd);
14252 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
14253 }
14254 else if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
14255 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_PROTECTED;
14256 return &h->root;
14257 }
14258 return NULL;
14259 }
This page took 0.335393 seconds and 4 git commands to generate.