b6ff6b650a96e897de5ac771175625fae584fbc8
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2016 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfd_stdint.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31
32 /* This struct is used to pass information to routines called via
33 elf_link_hash_traverse which must return failure. */
34
35 struct elf_info_failed
36 {
37 struct bfd_link_info *info;
38 bfd_boolean failed;
39 };
40
41 /* This structure is used to pass information to
42 _bfd_elf_link_find_version_dependencies. */
43
44 struct elf_find_verdep_info
45 {
46 /* General link information. */
47 struct bfd_link_info *info;
48 /* The number of dependencies. */
49 unsigned int vers;
50 /* Whether we had a failure. */
51 bfd_boolean failed;
52 };
53
54 static bfd_boolean _bfd_elf_fix_symbol_flags
55 (struct elf_link_hash_entry *, struct elf_info_failed *);
56
57 asection *
58 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
59 unsigned long r_symndx,
60 bfd_boolean discard)
61 {
62 if (r_symndx >= cookie->locsymcount
63 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
64 {
65 struct elf_link_hash_entry *h;
66
67 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
68
69 while (h->root.type == bfd_link_hash_indirect
70 || h->root.type == bfd_link_hash_warning)
71 h = (struct elf_link_hash_entry *) h->root.u.i.link;
72
73 if ((h->root.type == bfd_link_hash_defined
74 || h->root.type == bfd_link_hash_defweak)
75 && discarded_section (h->root.u.def.section))
76 return h->root.u.def.section;
77 else
78 return NULL;
79 }
80 else
81 {
82 /* It's not a relocation against a global symbol,
83 but it could be a relocation against a local
84 symbol for a discarded section. */
85 asection *isec;
86 Elf_Internal_Sym *isym;
87
88 /* Need to: get the symbol; get the section. */
89 isym = &cookie->locsyms[r_symndx];
90 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
91 if (isec != NULL
92 && discard ? discarded_section (isec) : 1)
93 return isec;
94 }
95 return NULL;
96 }
97
98 /* Define a symbol in a dynamic linkage section. */
99
100 struct elf_link_hash_entry *
101 _bfd_elf_define_linkage_sym (bfd *abfd,
102 struct bfd_link_info *info,
103 asection *sec,
104 const char *name)
105 {
106 struct elf_link_hash_entry *h;
107 struct bfd_link_hash_entry *bh;
108 const struct elf_backend_data *bed;
109
110 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
111 if (h != NULL)
112 {
113 /* Zap symbol defined in an as-needed lib that wasn't linked.
114 This is a symptom of a larger problem: Absolute symbols
115 defined in shared libraries can't be overridden, because we
116 lose the link to the bfd which is via the symbol section. */
117 h->root.type = bfd_link_hash_new;
118 }
119
120 bh = &h->root;
121 bed = get_elf_backend_data (abfd);
122 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
123 sec, 0, NULL, FALSE, bed->collect,
124 &bh))
125 return NULL;
126 h = (struct elf_link_hash_entry *) bh;
127 h->def_regular = 1;
128 h->non_elf = 0;
129 h->root.linker_def = 1;
130 h->type = STT_OBJECT;
131 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
132 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
133
134 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
135 return h;
136 }
137
138 bfd_boolean
139 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
140 {
141 flagword flags;
142 asection *s;
143 struct elf_link_hash_entry *h;
144 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
145 struct elf_link_hash_table *htab = elf_hash_table (info);
146
147 /* This function may be called more than once. */
148 s = bfd_get_linker_section (abfd, ".got");
149 if (s != NULL)
150 return TRUE;
151
152 flags = bed->dynamic_sec_flags;
153
154 s = bfd_make_section_anyway_with_flags (abfd,
155 (bed->rela_plts_and_copies_p
156 ? ".rela.got" : ".rel.got"),
157 (bed->dynamic_sec_flags
158 | SEC_READONLY));
159 if (s == NULL
160 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
161 return FALSE;
162 htab->srelgot = s;
163
164 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
165 if (s == NULL
166 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
167 return FALSE;
168 htab->sgot = s;
169
170 if (bed->want_got_plt)
171 {
172 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
173 if (s == NULL
174 || !bfd_set_section_alignment (abfd, s,
175 bed->s->log_file_align))
176 return FALSE;
177 htab->sgotplt = s;
178 }
179
180 /* The first bit of the global offset table is the header. */
181 s->size += bed->got_header_size;
182
183 if (bed->want_got_sym)
184 {
185 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
186 (or .got.plt) section. We don't do this in the linker script
187 because we don't want to define the symbol if we are not creating
188 a global offset table. */
189 h = _bfd_elf_define_linkage_sym (abfd, info, s,
190 "_GLOBAL_OFFSET_TABLE_");
191 elf_hash_table (info)->hgot = h;
192 if (h == NULL)
193 return FALSE;
194 }
195
196 return TRUE;
197 }
198 \f
199 /* Create a strtab to hold the dynamic symbol names. */
200 static bfd_boolean
201 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
202 {
203 struct elf_link_hash_table *hash_table;
204
205 hash_table = elf_hash_table (info);
206 if (hash_table->dynobj == NULL)
207 {
208 /* We may not set dynobj, an input file holding linker created
209 dynamic sections to abfd, which may be a dynamic object with
210 its own dynamic sections. We need to find a normal input file
211 to hold linker created sections if possible. */
212 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
213 {
214 bfd *ibfd;
215 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
216 if ((ibfd->flags
217 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0)
218 {
219 abfd = ibfd;
220 break;
221 }
222 }
223 hash_table->dynobj = abfd;
224 }
225
226 if (hash_table->dynstr == NULL)
227 {
228 hash_table->dynstr = _bfd_elf_strtab_init ();
229 if (hash_table->dynstr == NULL)
230 return FALSE;
231 }
232 return TRUE;
233 }
234
235 /* Create some sections which will be filled in with dynamic linking
236 information. ABFD is an input file which requires dynamic sections
237 to be created. The dynamic sections take up virtual memory space
238 when the final executable is run, so we need to create them before
239 addresses are assigned to the output sections. We work out the
240 actual contents and size of these sections later. */
241
242 bfd_boolean
243 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
244 {
245 flagword flags;
246 asection *s;
247 const struct elf_backend_data *bed;
248 struct elf_link_hash_entry *h;
249
250 if (! is_elf_hash_table (info->hash))
251 return FALSE;
252
253 if (elf_hash_table (info)->dynamic_sections_created)
254 return TRUE;
255
256 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
257 return FALSE;
258
259 abfd = elf_hash_table (info)->dynobj;
260 bed = get_elf_backend_data (abfd);
261
262 flags = bed->dynamic_sec_flags;
263
264 /* A dynamically linked executable has a .interp section, but a
265 shared library does not. */
266 if (bfd_link_executable (info) && !info->nointerp)
267 {
268 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
269 flags | SEC_READONLY);
270 if (s == NULL)
271 return FALSE;
272 }
273
274 /* Create sections to hold version informations. These are removed
275 if they are not needed. */
276 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
277 flags | SEC_READONLY);
278 if (s == NULL
279 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
280 return FALSE;
281
282 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
283 flags | SEC_READONLY);
284 if (s == NULL
285 || ! bfd_set_section_alignment (abfd, s, 1))
286 return FALSE;
287
288 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
289 flags | SEC_READONLY);
290 if (s == NULL
291 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
292 return FALSE;
293
294 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
295 flags | SEC_READONLY);
296 if (s == NULL
297 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
298 return FALSE;
299 elf_hash_table (info)->dynsym = s;
300
301 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
302 flags | SEC_READONLY);
303 if (s == NULL)
304 return FALSE;
305
306 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
307 if (s == NULL
308 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
309 return FALSE;
310
311 /* The special symbol _DYNAMIC is always set to the start of the
312 .dynamic section. We could set _DYNAMIC in a linker script, but we
313 only want to define it if we are, in fact, creating a .dynamic
314 section. We don't want to define it if there is no .dynamic
315 section, since on some ELF platforms the start up code examines it
316 to decide how to initialize the process. */
317 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
318 elf_hash_table (info)->hdynamic = h;
319 if (h == NULL)
320 return FALSE;
321
322 if (info->emit_hash)
323 {
324 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
325 flags | SEC_READONLY);
326 if (s == NULL
327 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
328 return FALSE;
329 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
330 }
331
332 if (info->emit_gnu_hash)
333 {
334 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
335 flags | SEC_READONLY);
336 if (s == NULL
337 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
338 return FALSE;
339 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
340 4 32-bit words followed by variable count of 64-bit words, then
341 variable count of 32-bit words. */
342 if (bed->s->arch_size == 64)
343 elf_section_data (s)->this_hdr.sh_entsize = 0;
344 else
345 elf_section_data (s)->this_hdr.sh_entsize = 4;
346 }
347
348 /* Let the backend create the rest of the sections. This lets the
349 backend set the right flags. The backend will normally create
350 the .got and .plt sections. */
351 if (bed->elf_backend_create_dynamic_sections == NULL
352 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
353 return FALSE;
354
355 elf_hash_table (info)->dynamic_sections_created = TRUE;
356
357 return TRUE;
358 }
359
360 /* Create dynamic sections when linking against a dynamic object. */
361
362 bfd_boolean
363 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
364 {
365 flagword flags, pltflags;
366 struct elf_link_hash_entry *h;
367 asection *s;
368 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
369 struct elf_link_hash_table *htab = elf_hash_table (info);
370
371 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
372 .rel[a].bss sections. */
373 flags = bed->dynamic_sec_flags;
374
375 pltflags = flags;
376 if (bed->plt_not_loaded)
377 /* We do not clear SEC_ALLOC here because we still want the OS to
378 allocate space for the section; it's just that there's nothing
379 to read in from the object file. */
380 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
381 else
382 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
383 if (bed->plt_readonly)
384 pltflags |= SEC_READONLY;
385
386 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
387 if (s == NULL
388 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
389 return FALSE;
390 htab->splt = s;
391
392 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
393 .plt section. */
394 if (bed->want_plt_sym)
395 {
396 h = _bfd_elf_define_linkage_sym (abfd, info, s,
397 "_PROCEDURE_LINKAGE_TABLE_");
398 elf_hash_table (info)->hplt = h;
399 if (h == NULL)
400 return FALSE;
401 }
402
403 s = bfd_make_section_anyway_with_flags (abfd,
404 (bed->rela_plts_and_copies_p
405 ? ".rela.plt" : ".rel.plt"),
406 flags | SEC_READONLY);
407 if (s == NULL
408 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
409 return FALSE;
410 htab->srelplt = s;
411
412 if (! _bfd_elf_create_got_section (abfd, info))
413 return FALSE;
414
415 if (bed->want_dynbss)
416 {
417 /* The .dynbss section is a place to put symbols which are defined
418 by dynamic objects, are referenced by regular objects, and are
419 not functions. We must allocate space for them in the process
420 image and use a R_*_COPY reloc to tell the dynamic linker to
421 initialize them at run time. The linker script puts the .dynbss
422 section into the .bss section of the final image. */
423 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
424 (SEC_ALLOC | SEC_LINKER_CREATED));
425 if (s == NULL)
426 return FALSE;
427
428 /* The .rel[a].bss section holds copy relocs. This section is not
429 normally needed. We need to create it here, though, so that the
430 linker will map it to an output section. We can't just create it
431 only if we need it, because we will not know whether we need it
432 until we have seen all the input files, and the first time the
433 main linker code calls BFD after examining all the input files
434 (size_dynamic_sections) the input sections have already been
435 mapped to the output sections. If the section turns out not to
436 be needed, we can discard it later. We will never need this
437 section when generating a shared object, since they do not use
438 copy relocs. */
439 if (! bfd_link_pic (info))
440 {
441 s = bfd_make_section_anyway_with_flags (abfd,
442 (bed->rela_plts_and_copies_p
443 ? ".rela.bss" : ".rel.bss"),
444 flags | SEC_READONLY);
445 if (s == NULL
446 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
447 return FALSE;
448 }
449 }
450
451 return TRUE;
452 }
453 \f
454 /* Record a new dynamic symbol. We record the dynamic symbols as we
455 read the input files, since we need to have a list of all of them
456 before we can determine the final sizes of the output sections.
457 Note that we may actually call this function even though we are not
458 going to output any dynamic symbols; in some cases we know that a
459 symbol should be in the dynamic symbol table, but only if there is
460 one. */
461
462 bfd_boolean
463 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
464 struct elf_link_hash_entry *h)
465 {
466 if (h->dynindx == -1)
467 {
468 struct elf_strtab_hash *dynstr;
469 char *p;
470 const char *name;
471 bfd_size_type indx;
472
473 /* XXX: The ABI draft says the linker must turn hidden and
474 internal symbols into STB_LOCAL symbols when producing the
475 DSO. However, if ld.so honors st_other in the dynamic table,
476 this would not be necessary. */
477 switch (ELF_ST_VISIBILITY (h->other))
478 {
479 case STV_INTERNAL:
480 case STV_HIDDEN:
481 if (h->root.type != bfd_link_hash_undefined
482 && h->root.type != bfd_link_hash_undefweak)
483 {
484 h->forced_local = 1;
485 if (!elf_hash_table (info)->is_relocatable_executable)
486 return TRUE;
487 }
488
489 default:
490 break;
491 }
492
493 h->dynindx = elf_hash_table (info)->dynsymcount;
494 ++elf_hash_table (info)->dynsymcount;
495
496 dynstr = elf_hash_table (info)->dynstr;
497 if (dynstr == NULL)
498 {
499 /* Create a strtab to hold the dynamic symbol names. */
500 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
501 if (dynstr == NULL)
502 return FALSE;
503 }
504
505 /* We don't put any version information in the dynamic string
506 table. */
507 name = h->root.root.string;
508 p = strchr (name, ELF_VER_CHR);
509 if (p != NULL)
510 /* We know that the p points into writable memory. In fact,
511 there are only a few symbols that have read-only names, being
512 those like _GLOBAL_OFFSET_TABLE_ that are created specially
513 by the backends. Most symbols will have names pointing into
514 an ELF string table read from a file, or to objalloc memory. */
515 *p = 0;
516
517 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
518
519 if (p != NULL)
520 *p = ELF_VER_CHR;
521
522 if (indx == (bfd_size_type) -1)
523 return FALSE;
524 h->dynstr_index = indx;
525 }
526
527 return TRUE;
528 }
529 \f
530 /* Mark a symbol dynamic. */
531
532 static void
533 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
534 struct elf_link_hash_entry *h,
535 Elf_Internal_Sym *sym)
536 {
537 struct bfd_elf_dynamic_list *d = info->dynamic_list;
538
539 /* It may be called more than once on the same H. */
540 if(h->dynamic || bfd_link_relocatable (info))
541 return;
542
543 if ((info->dynamic_data
544 && (h->type == STT_OBJECT
545 || h->type == STT_COMMON
546 || (sym != NULL
547 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
548 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
549 || (d != NULL
550 && h->root.type == bfd_link_hash_new
551 && (*d->match) (&d->head, NULL, h->root.root.string)))
552 h->dynamic = 1;
553 }
554
555 /* Record an assignment to a symbol made by a linker script. We need
556 this in case some dynamic object refers to this symbol. */
557
558 bfd_boolean
559 bfd_elf_record_link_assignment (bfd *output_bfd,
560 struct bfd_link_info *info,
561 const char *name,
562 bfd_boolean provide,
563 bfd_boolean hidden)
564 {
565 struct elf_link_hash_entry *h, *hv;
566 struct elf_link_hash_table *htab;
567 const struct elf_backend_data *bed;
568
569 if (!is_elf_hash_table (info->hash))
570 return TRUE;
571
572 htab = elf_hash_table (info);
573 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
574 if (h == NULL)
575 return provide;
576
577 if (h->versioned == unknown)
578 {
579 /* Set versioned if symbol version is unknown. */
580 char *version = strrchr (name, ELF_VER_CHR);
581 if (version)
582 {
583 if (version > name && version[-1] != ELF_VER_CHR)
584 h->versioned = versioned_hidden;
585 else
586 h->versioned = versioned;
587 }
588 }
589
590 switch (h->root.type)
591 {
592 case bfd_link_hash_defined:
593 case bfd_link_hash_defweak:
594 case bfd_link_hash_common:
595 break;
596 case bfd_link_hash_undefweak:
597 case bfd_link_hash_undefined:
598 /* Since we're defining the symbol, don't let it seem to have not
599 been defined. record_dynamic_symbol and size_dynamic_sections
600 may depend on this. */
601 h->root.type = bfd_link_hash_new;
602 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
603 bfd_link_repair_undef_list (&htab->root);
604 break;
605 case bfd_link_hash_new:
606 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
607 h->non_elf = 0;
608 break;
609 case bfd_link_hash_indirect:
610 /* We had a versioned symbol in a dynamic library. We make the
611 the versioned symbol point to this one. */
612 bed = get_elf_backend_data (output_bfd);
613 hv = h;
614 while (hv->root.type == bfd_link_hash_indirect
615 || hv->root.type == bfd_link_hash_warning)
616 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
617 /* We don't need to update h->root.u since linker will set them
618 later. */
619 h->root.type = bfd_link_hash_undefined;
620 hv->root.type = bfd_link_hash_indirect;
621 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
622 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
623 break;
624 case bfd_link_hash_warning:
625 abort ();
626 break;
627 }
628
629 /* If this symbol is being provided by the linker script, and it is
630 currently defined by a dynamic object, but not by a regular
631 object, then mark it as undefined so that the generic linker will
632 force the correct value. */
633 if (provide
634 && h->def_dynamic
635 && !h->def_regular)
636 h->root.type = bfd_link_hash_undefined;
637
638 /* If this symbol is not being provided by the linker script, and it is
639 currently defined by a dynamic object, but not by a regular object,
640 then clear out any version information because the symbol will not be
641 associated with the dynamic object any more. */
642 if (!provide
643 && h->def_dynamic
644 && !h->def_regular)
645 h->verinfo.verdef = NULL;
646
647 h->def_regular = 1;
648
649 if (hidden)
650 {
651 bed = get_elf_backend_data (output_bfd);
652 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
653 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
654 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
655 }
656
657 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
658 and executables. */
659 if (!bfd_link_relocatable (info)
660 && h->dynindx != -1
661 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
662 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
663 h->forced_local = 1;
664
665 if ((h->def_dynamic
666 || h->ref_dynamic
667 || bfd_link_dll (info)
668 || elf_hash_table (info)->is_relocatable_executable)
669 && h->dynindx == -1)
670 {
671 if (! bfd_elf_link_record_dynamic_symbol (info, h))
672 return FALSE;
673
674 /* If this is a weak defined symbol, and we know a corresponding
675 real symbol from the same dynamic object, make sure the real
676 symbol is also made into a dynamic symbol. */
677 if (h->u.weakdef != NULL
678 && h->u.weakdef->dynindx == -1)
679 {
680 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
681 return FALSE;
682 }
683 }
684
685 return TRUE;
686 }
687
688 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
689 success, and 2 on a failure caused by attempting to record a symbol
690 in a discarded section, eg. a discarded link-once section symbol. */
691
692 int
693 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
694 bfd *input_bfd,
695 long input_indx)
696 {
697 bfd_size_type amt;
698 struct elf_link_local_dynamic_entry *entry;
699 struct elf_link_hash_table *eht;
700 struct elf_strtab_hash *dynstr;
701 unsigned long dynstr_index;
702 char *name;
703 Elf_External_Sym_Shndx eshndx;
704 char esym[sizeof (Elf64_External_Sym)];
705
706 if (! is_elf_hash_table (info->hash))
707 return 0;
708
709 /* See if the entry exists already. */
710 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
711 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
712 return 1;
713
714 amt = sizeof (*entry);
715 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
716 if (entry == NULL)
717 return 0;
718
719 /* Go find the symbol, so that we can find it's name. */
720 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
721 1, input_indx, &entry->isym, esym, &eshndx))
722 {
723 bfd_release (input_bfd, entry);
724 return 0;
725 }
726
727 if (entry->isym.st_shndx != SHN_UNDEF
728 && entry->isym.st_shndx < SHN_LORESERVE)
729 {
730 asection *s;
731
732 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
733 if (s == NULL || bfd_is_abs_section (s->output_section))
734 {
735 /* We can still bfd_release here as nothing has done another
736 bfd_alloc. We can't do this later in this function. */
737 bfd_release (input_bfd, entry);
738 return 2;
739 }
740 }
741
742 name = (bfd_elf_string_from_elf_section
743 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
744 entry->isym.st_name));
745
746 dynstr = elf_hash_table (info)->dynstr;
747 if (dynstr == NULL)
748 {
749 /* Create a strtab to hold the dynamic symbol names. */
750 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
751 if (dynstr == NULL)
752 return 0;
753 }
754
755 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
756 if (dynstr_index == (unsigned long) -1)
757 return 0;
758 entry->isym.st_name = dynstr_index;
759
760 eht = elf_hash_table (info);
761
762 entry->next = eht->dynlocal;
763 eht->dynlocal = entry;
764 entry->input_bfd = input_bfd;
765 entry->input_indx = input_indx;
766 eht->dynsymcount++;
767
768 /* Whatever binding the symbol had before, it's now local. */
769 entry->isym.st_info
770 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
771
772 /* The dynindx will be set at the end of size_dynamic_sections. */
773
774 return 1;
775 }
776
777 /* Return the dynindex of a local dynamic symbol. */
778
779 long
780 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
781 bfd *input_bfd,
782 long input_indx)
783 {
784 struct elf_link_local_dynamic_entry *e;
785
786 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
787 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
788 return e->dynindx;
789 return -1;
790 }
791
792 /* This function is used to renumber the dynamic symbols, if some of
793 them are removed because they are marked as local. This is called
794 via elf_link_hash_traverse. */
795
796 static bfd_boolean
797 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
798 void *data)
799 {
800 size_t *count = (size_t *) data;
801
802 if (h->forced_local)
803 return TRUE;
804
805 if (h->dynindx != -1)
806 h->dynindx = ++(*count);
807
808 return TRUE;
809 }
810
811
812 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
813 STB_LOCAL binding. */
814
815 static bfd_boolean
816 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
817 void *data)
818 {
819 size_t *count = (size_t *) data;
820
821 if (!h->forced_local)
822 return TRUE;
823
824 if (h->dynindx != -1)
825 h->dynindx = ++(*count);
826
827 return TRUE;
828 }
829
830 /* Return true if the dynamic symbol for a given section should be
831 omitted when creating a shared library. */
832 bfd_boolean
833 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
834 struct bfd_link_info *info,
835 asection *p)
836 {
837 struct elf_link_hash_table *htab;
838 asection *ip;
839
840 switch (elf_section_data (p)->this_hdr.sh_type)
841 {
842 case SHT_PROGBITS:
843 case SHT_NOBITS:
844 /* If sh_type is yet undecided, assume it could be
845 SHT_PROGBITS/SHT_NOBITS. */
846 case SHT_NULL:
847 htab = elf_hash_table (info);
848 if (p == htab->tls_sec)
849 return FALSE;
850
851 if (htab->text_index_section != NULL)
852 return p != htab->text_index_section && p != htab->data_index_section;
853
854 return (htab->dynobj != NULL
855 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
856 && ip->output_section == p);
857
858 /* There shouldn't be section relative relocations
859 against any other section. */
860 default:
861 return TRUE;
862 }
863 }
864
865 /* Assign dynsym indices. In a shared library we generate a section
866 symbol for each output section, which come first. Next come symbols
867 which have been forced to local binding. Then all of the back-end
868 allocated local dynamic syms, followed by the rest of the global
869 symbols. */
870
871 static unsigned long
872 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
873 struct bfd_link_info *info,
874 unsigned long *section_sym_count)
875 {
876 unsigned long dynsymcount = 0;
877
878 if (bfd_link_pic (info)
879 || elf_hash_table (info)->is_relocatable_executable)
880 {
881 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
882 asection *p;
883 for (p = output_bfd->sections; p ; p = p->next)
884 if ((p->flags & SEC_EXCLUDE) == 0
885 && (p->flags & SEC_ALLOC) != 0
886 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
887 elf_section_data (p)->dynindx = ++dynsymcount;
888 else
889 elf_section_data (p)->dynindx = 0;
890 }
891 *section_sym_count = dynsymcount;
892
893 elf_link_hash_traverse (elf_hash_table (info),
894 elf_link_renumber_local_hash_table_dynsyms,
895 &dynsymcount);
896
897 if (elf_hash_table (info)->dynlocal)
898 {
899 struct elf_link_local_dynamic_entry *p;
900 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
901 p->dynindx = ++dynsymcount;
902 }
903
904 elf_link_hash_traverse (elf_hash_table (info),
905 elf_link_renumber_hash_table_dynsyms,
906 &dynsymcount);
907
908 /* There is an unused NULL entry at the head of the table which we
909 must account for in our count even if the table is empty since it
910 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
911 .dynamic section. */
912 dynsymcount++;
913
914 elf_hash_table (info)->dynsymcount = dynsymcount;
915 return dynsymcount;
916 }
917
918 /* Merge st_other field. */
919
920 static void
921 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
922 const Elf_Internal_Sym *isym, asection *sec,
923 bfd_boolean definition, bfd_boolean dynamic)
924 {
925 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
926
927 /* If st_other has a processor-specific meaning, specific
928 code might be needed here. */
929 if (bed->elf_backend_merge_symbol_attribute)
930 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
931 dynamic);
932
933 if (!dynamic)
934 {
935 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
936 unsigned hvis = ELF_ST_VISIBILITY (h->other);
937
938 /* Keep the most constraining visibility. Leave the remainder
939 of the st_other field to elf_backend_merge_symbol_attribute. */
940 if (symvis - 1 < hvis - 1)
941 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
942 }
943 else if (definition
944 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
945 && (sec->flags & SEC_READONLY) == 0)
946 h->protected_def = 1;
947 }
948
949 /* This function is called when we want to merge a new symbol with an
950 existing symbol. It handles the various cases which arise when we
951 find a definition in a dynamic object, or when there is already a
952 definition in a dynamic object. The new symbol is described by
953 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
954 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
955 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
956 of an old common symbol. We set OVERRIDE if the old symbol is
957 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
958 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
959 to change. By OK to change, we mean that we shouldn't warn if the
960 type or size does change. */
961
962 static bfd_boolean
963 _bfd_elf_merge_symbol (bfd *abfd,
964 struct bfd_link_info *info,
965 const char *name,
966 Elf_Internal_Sym *sym,
967 asection **psec,
968 bfd_vma *pvalue,
969 struct elf_link_hash_entry **sym_hash,
970 bfd **poldbfd,
971 bfd_boolean *pold_weak,
972 unsigned int *pold_alignment,
973 bfd_boolean *skip,
974 bfd_boolean *override,
975 bfd_boolean *type_change_ok,
976 bfd_boolean *size_change_ok,
977 bfd_boolean *matched)
978 {
979 asection *sec, *oldsec;
980 struct elf_link_hash_entry *h;
981 struct elf_link_hash_entry *hi;
982 struct elf_link_hash_entry *flip;
983 int bind;
984 bfd *oldbfd;
985 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
986 bfd_boolean newweak, oldweak, newfunc, oldfunc;
987 const struct elf_backend_data *bed;
988 char *new_version;
989
990 *skip = FALSE;
991 *override = FALSE;
992
993 sec = *psec;
994 bind = ELF_ST_BIND (sym->st_info);
995
996 if (! bfd_is_und_section (sec))
997 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
998 else
999 h = ((struct elf_link_hash_entry *)
1000 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1001 if (h == NULL)
1002 return FALSE;
1003 *sym_hash = h;
1004
1005 bed = get_elf_backend_data (abfd);
1006
1007 /* NEW_VERSION is the symbol version of the new symbol. */
1008 if (h->versioned != unversioned)
1009 {
1010 /* Symbol version is unknown or versioned. */
1011 new_version = strrchr (name, ELF_VER_CHR);
1012 if (new_version)
1013 {
1014 if (h->versioned == unknown)
1015 {
1016 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1017 h->versioned = versioned_hidden;
1018 else
1019 h->versioned = versioned;
1020 }
1021 new_version += 1;
1022 if (new_version[0] == '\0')
1023 new_version = NULL;
1024 }
1025 else
1026 h->versioned = unversioned;
1027 }
1028 else
1029 new_version = NULL;
1030
1031 /* For merging, we only care about real symbols. But we need to make
1032 sure that indirect symbol dynamic flags are updated. */
1033 hi = h;
1034 while (h->root.type == bfd_link_hash_indirect
1035 || h->root.type == bfd_link_hash_warning)
1036 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1037
1038 if (!*matched)
1039 {
1040 if (hi == h || h->root.type == bfd_link_hash_new)
1041 *matched = TRUE;
1042 else
1043 {
1044 /* OLD_HIDDEN is true if the existing symbol is only visible
1045 to the symbol with the same symbol version. NEW_HIDDEN is
1046 true if the new symbol is only visible to the symbol with
1047 the same symbol version. */
1048 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1049 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1050 if (!old_hidden && !new_hidden)
1051 /* The new symbol matches the existing symbol if both
1052 aren't hidden. */
1053 *matched = TRUE;
1054 else
1055 {
1056 /* OLD_VERSION is the symbol version of the existing
1057 symbol. */
1058 char *old_version;
1059
1060 if (h->versioned >= versioned)
1061 old_version = strrchr (h->root.root.string,
1062 ELF_VER_CHR) + 1;
1063 else
1064 old_version = NULL;
1065
1066 /* The new symbol matches the existing symbol if they
1067 have the same symbol version. */
1068 *matched = (old_version == new_version
1069 || (old_version != NULL
1070 && new_version != NULL
1071 && strcmp (old_version, new_version) == 0));
1072 }
1073 }
1074 }
1075
1076 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1077 existing symbol. */
1078
1079 oldbfd = NULL;
1080 oldsec = NULL;
1081 switch (h->root.type)
1082 {
1083 default:
1084 break;
1085
1086 case bfd_link_hash_undefined:
1087 case bfd_link_hash_undefweak:
1088 oldbfd = h->root.u.undef.abfd;
1089 break;
1090
1091 case bfd_link_hash_defined:
1092 case bfd_link_hash_defweak:
1093 oldbfd = h->root.u.def.section->owner;
1094 oldsec = h->root.u.def.section;
1095 break;
1096
1097 case bfd_link_hash_common:
1098 oldbfd = h->root.u.c.p->section->owner;
1099 oldsec = h->root.u.c.p->section;
1100 if (pold_alignment)
1101 *pold_alignment = h->root.u.c.p->alignment_power;
1102 break;
1103 }
1104 if (poldbfd && *poldbfd == NULL)
1105 *poldbfd = oldbfd;
1106
1107 /* Differentiate strong and weak symbols. */
1108 newweak = bind == STB_WEAK;
1109 oldweak = (h->root.type == bfd_link_hash_defweak
1110 || h->root.type == bfd_link_hash_undefweak);
1111 if (pold_weak)
1112 *pold_weak = oldweak;
1113
1114 /* This code is for coping with dynamic objects, and is only useful
1115 if we are doing an ELF link. */
1116 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
1117 return TRUE;
1118
1119 /* We have to check it for every instance since the first few may be
1120 references and not all compilers emit symbol type for undefined
1121 symbols. */
1122 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1123
1124 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1125 respectively, is from a dynamic object. */
1126
1127 newdyn = (abfd->flags & DYNAMIC) != 0;
1128
1129 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1130 syms and defined syms in dynamic libraries respectively.
1131 ref_dynamic on the other hand can be set for a symbol defined in
1132 a dynamic library, and def_dynamic may not be set; When the
1133 definition in a dynamic lib is overridden by a definition in the
1134 executable use of the symbol in the dynamic lib becomes a
1135 reference to the executable symbol. */
1136 if (newdyn)
1137 {
1138 if (bfd_is_und_section (sec))
1139 {
1140 if (bind != STB_WEAK)
1141 {
1142 h->ref_dynamic_nonweak = 1;
1143 hi->ref_dynamic_nonweak = 1;
1144 }
1145 }
1146 else
1147 {
1148 /* Update the existing symbol only if they match. */
1149 if (*matched)
1150 h->dynamic_def = 1;
1151 hi->dynamic_def = 1;
1152 }
1153 }
1154
1155 /* If we just created the symbol, mark it as being an ELF symbol.
1156 Other than that, there is nothing to do--there is no merge issue
1157 with a newly defined symbol--so we just return. */
1158
1159 if (h->root.type == bfd_link_hash_new)
1160 {
1161 h->non_elf = 0;
1162 return TRUE;
1163 }
1164
1165 /* In cases involving weak versioned symbols, we may wind up trying
1166 to merge a symbol with itself. Catch that here, to avoid the
1167 confusion that results if we try to override a symbol with
1168 itself. The additional tests catch cases like
1169 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1170 dynamic object, which we do want to handle here. */
1171 if (abfd == oldbfd
1172 && (newweak || oldweak)
1173 && ((abfd->flags & DYNAMIC) == 0
1174 || !h->def_regular))
1175 return TRUE;
1176
1177 olddyn = FALSE;
1178 if (oldbfd != NULL)
1179 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1180 else if (oldsec != NULL)
1181 {
1182 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1183 indices used by MIPS ELF. */
1184 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1185 }
1186
1187 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1188 respectively, appear to be a definition rather than reference. */
1189
1190 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1191
1192 olddef = (h->root.type != bfd_link_hash_undefined
1193 && h->root.type != bfd_link_hash_undefweak
1194 && h->root.type != bfd_link_hash_common);
1195
1196 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1197 respectively, appear to be a function. */
1198
1199 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1200 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1201
1202 oldfunc = (h->type != STT_NOTYPE
1203 && bed->is_function_type (h->type));
1204
1205 /* When we try to create a default indirect symbol from the dynamic
1206 definition with the default version, we skip it if its type and
1207 the type of existing regular definition mismatch. */
1208 if (pold_alignment == NULL
1209 && newdyn
1210 && newdef
1211 && !olddyn
1212 && (((olddef || h->root.type == bfd_link_hash_common)
1213 && ELF_ST_TYPE (sym->st_info) != h->type
1214 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1215 && h->type != STT_NOTYPE
1216 && !(newfunc && oldfunc))
1217 || (olddef
1218 && ((h->type == STT_GNU_IFUNC)
1219 != (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))))
1220 {
1221 *skip = TRUE;
1222 return TRUE;
1223 }
1224
1225 /* Check TLS symbols. We don't check undefined symbols introduced
1226 by "ld -u" which have no type (and oldbfd NULL), and we don't
1227 check symbols from plugins because they also have no type. */
1228 if (oldbfd != NULL
1229 && (oldbfd->flags & BFD_PLUGIN) == 0
1230 && (abfd->flags & BFD_PLUGIN) == 0
1231 && ELF_ST_TYPE (sym->st_info) != h->type
1232 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1233 {
1234 bfd *ntbfd, *tbfd;
1235 bfd_boolean ntdef, tdef;
1236 asection *ntsec, *tsec;
1237
1238 if (h->type == STT_TLS)
1239 {
1240 ntbfd = abfd;
1241 ntsec = sec;
1242 ntdef = newdef;
1243 tbfd = oldbfd;
1244 tsec = oldsec;
1245 tdef = olddef;
1246 }
1247 else
1248 {
1249 ntbfd = oldbfd;
1250 ntsec = oldsec;
1251 ntdef = olddef;
1252 tbfd = abfd;
1253 tsec = sec;
1254 tdef = newdef;
1255 }
1256
1257 if (tdef && ntdef)
1258 (*_bfd_error_handler)
1259 (_("%s: TLS definition in %B section %A "
1260 "mismatches non-TLS definition in %B section %A"),
1261 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1262 else if (!tdef && !ntdef)
1263 (*_bfd_error_handler)
1264 (_("%s: TLS reference in %B "
1265 "mismatches non-TLS reference in %B"),
1266 tbfd, ntbfd, h->root.root.string);
1267 else if (tdef)
1268 (*_bfd_error_handler)
1269 (_("%s: TLS definition in %B section %A "
1270 "mismatches non-TLS reference in %B"),
1271 tbfd, tsec, ntbfd, h->root.root.string);
1272 else
1273 (*_bfd_error_handler)
1274 (_("%s: TLS reference in %B "
1275 "mismatches non-TLS definition in %B section %A"),
1276 tbfd, ntbfd, ntsec, h->root.root.string);
1277
1278 bfd_set_error (bfd_error_bad_value);
1279 return FALSE;
1280 }
1281
1282 /* If the old symbol has non-default visibility, we ignore the new
1283 definition from a dynamic object. */
1284 if (newdyn
1285 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1286 && !bfd_is_und_section (sec))
1287 {
1288 *skip = TRUE;
1289 /* Make sure this symbol is dynamic. */
1290 h->ref_dynamic = 1;
1291 hi->ref_dynamic = 1;
1292 /* A protected symbol has external availability. Make sure it is
1293 recorded as dynamic.
1294
1295 FIXME: Should we check type and size for protected symbol? */
1296 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1297 return bfd_elf_link_record_dynamic_symbol (info, h);
1298 else
1299 return TRUE;
1300 }
1301 else if (!newdyn
1302 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1303 && h->def_dynamic)
1304 {
1305 /* If the new symbol with non-default visibility comes from a
1306 relocatable file and the old definition comes from a dynamic
1307 object, we remove the old definition. */
1308 if (hi->root.type == bfd_link_hash_indirect)
1309 {
1310 /* Handle the case where the old dynamic definition is
1311 default versioned. We need to copy the symbol info from
1312 the symbol with default version to the normal one if it
1313 was referenced before. */
1314 if (h->ref_regular)
1315 {
1316 hi->root.type = h->root.type;
1317 h->root.type = bfd_link_hash_indirect;
1318 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1319
1320 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1321 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1322 {
1323 /* If the new symbol is hidden or internal, completely undo
1324 any dynamic link state. */
1325 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1326 h->forced_local = 0;
1327 h->ref_dynamic = 0;
1328 }
1329 else
1330 h->ref_dynamic = 1;
1331
1332 h->def_dynamic = 0;
1333 /* FIXME: Should we check type and size for protected symbol? */
1334 h->size = 0;
1335 h->type = 0;
1336
1337 h = hi;
1338 }
1339 else
1340 h = hi;
1341 }
1342
1343 /* If the old symbol was undefined before, then it will still be
1344 on the undefs list. If the new symbol is undefined or
1345 common, we can't make it bfd_link_hash_new here, because new
1346 undefined or common symbols will be added to the undefs list
1347 by _bfd_generic_link_add_one_symbol. Symbols may not be
1348 added twice to the undefs list. Also, if the new symbol is
1349 undefweak then we don't want to lose the strong undef. */
1350 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1351 {
1352 h->root.type = bfd_link_hash_undefined;
1353 h->root.u.undef.abfd = abfd;
1354 }
1355 else
1356 {
1357 h->root.type = bfd_link_hash_new;
1358 h->root.u.undef.abfd = NULL;
1359 }
1360
1361 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1362 {
1363 /* If the new symbol is hidden or internal, completely undo
1364 any dynamic link state. */
1365 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1366 h->forced_local = 0;
1367 h->ref_dynamic = 0;
1368 }
1369 else
1370 h->ref_dynamic = 1;
1371 h->def_dynamic = 0;
1372 /* FIXME: Should we check type and size for protected symbol? */
1373 h->size = 0;
1374 h->type = 0;
1375 return TRUE;
1376 }
1377
1378 /* If a new weak symbol definition comes from a regular file and the
1379 old symbol comes from a dynamic library, we treat the new one as
1380 strong. Similarly, an old weak symbol definition from a regular
1381 file is treated as strong when the new symbol comes from a dynamic
1382 library. Further, an old weak symbol from a dynamic library is
1383 treated as strong if the new symbol is from a dynamic library.
1384 This reflects the way glibc's ld.so works.
1385
1386 Do this before setting *type_change_ok or *size_change_ok so that
1387 we warn properly when dynamic library symbols are overridden. */
1388
1389 if (newdef && !newdyn && olddyn)
1390 newweak = FALSE;
1391 if (olddef && newdyn)
1392 oldweak = FALSE;
1393
1394 /* Allow changes between different types of function symbol. */
1395 if (newfunc && oldfunc)
1396 *type_change_ok = TRUE;
1397
1398 /* It's OK to change the type if either the existing symbol or the
1399 new symbol is weak. A type change is also OK if the old symbol
1400 is undefined and the new symbol is defined. */
1401
1402 if (oldweak
1403 || newweak
1404 || (newdef
1405 && h->root.type == bfd_link_hash_undefined))
1406 *type_change_ok = TRUE;
1407
1408 /* It's OK to change the size if either the existing symbol or the
1409 new symbol is weak, or if the old symbol is undefined. */
1410
1411 if (*type_change_ok
1412 || h->root.type == bfd_link_hash_undefined)
1413 *size_change_ok = TRUE;
1414
1415 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1416 symbol, respectively, appears to be a common symbol in a dynamic
1417 object. If a symbol appears in an uninitialized section, and is
1418 not weak, and is not a function, then it may be a common symbol
1419 which was resolved when the dynamic object was created. We want
1420 to treat such symbols specially, because they raise special
1421 considerations when setting the symbol size: if the symbol
1422 appears as a common symbol in a regular object, and the size in
1423 the regular object is larger, we must make sure that we use the
1424 larger size. This problematic case can always be avoided in C,
1425 but it must be handled correctly when using Fortran shared
1426 libraries.
1427
1428 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1429 likewise for OLDDYNCOMMON and OLDDEF.
1430
1431 Note that this test is just a heuristic, and that it is quite
1432 possible to have an uninitialized symbol in a shared object which
1433 is really a definition, rather than a common symbol. This could
1434 lead to some minor confusion when the symbol really is a common
1435 symbol in some regular object. However, I think it will be
1436 harmless. */
1437
1438 if (newdyn
1439 && newdef
1440 && !newweak
1441 && (sec->flags & SEC_ALLOC) != 0
1442 && (sec->flags & SEC_LOAD) == 0
1443 && sym->st_size > 0
1444 && !newfunc)
1445 newdyncommon = TRUE;
1446 else
1447 newdyncommon = FALSE;
1448
1449 if (olddyn
1450 && olddef
1451 && h->root.type == bfd_link_hash_defined
1452 && h->def_dynamic
1453 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1454 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1455 && h->size > 0
1456 && !oldfunc)
1457 olddyncommon = TRUE;
1458 else
1459 olddyncommon = FALSE;
1460
1461 /* We now know everything about the old and new symbols. We ask the
1462 backend to check if we can merge them. */
1463 if (bed->merge_symbol != NULL)
1464 {
1465 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1466 return FALSE;
1467 sec = *psec;
1468 }
1469
1470 /* If both the old and the new symbols look like common symbols in a
1471 dynamic object, set the size of the symbol to the larger of the
1472 two. */
1473
1474 if (olddyncommon
1475 && newdyncommon
1476 && sym->st_size != h->size)
1477 {
1478 /* Since we think we have two common symbols, issue a multiple
1479 common warning if desired. Note that we only warn if the
1480 size is different. If the size is the same, we simply let
1481 the old symbol override the new one as normally happens with
1482 symbols defined in dynamic objects. */
1483
1484 if (! ((*info->callbacks->multiple_common)
1485 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1486 return FALSE;
1487
1488 if (sym->st_size > h->size)
1489 h->size = sym->st_size;
1490
1491 *size_change_ok = TRUE;
1492 }
1493
1494 /* If we are looking at a dynamic object, and we have found a
1495 definition, we need to see if the symbol was already defined by
1496 some other object. If so, we want to use the existing
1497 definition, and we do not want to report a multiple symbol
1498 definition error; we do this by clobbering *PSEC to be
1499 bfd_und_section_ptr.
1500
1501 We treat a common symbol as a definition if the symbol in the
1502 shared library is a function, since common symbols always
1503 represent variables; this can cause confusion in principle, but
1504 any such confusion would seem to indicate an erroneous program or
1505 shared library. We also permit a common symbol in a regular
1506 object to override a weak symbol in a shared object. A common
1507 symbol in executable also overrides a symbol in a shared object. */
1508
1509 if (newdyn
1510 && newdef
1511 && (olddef
1512 || (h->root.type == bfd_link_hash_common
1513 && (newweak
1514 || newfunc
1515 || (!olddyn && bfd_link_executable (info))))))
1516 {
1517 *override = TRUE;
1518 newdef = FALSE;
1519 newdyncommon = FALSE;
1520
1521 *psec = sec = bfd_und_section_ptr;
1522 *size_change_ok = TRUE;
1523
1524 /* If we get here when the old symbol is a common symbol, then
1525 we are explicitly letting it override a weak symbol or
1526 function in a dynamic object, and we don't want to warn about
1527 a type change. If the old symbol is a defined symbol, a type
1528 change warning may still be appropriate. */
1529
1530 if (h->root.type == bfd_link_hash_common)
1531 *type_change_ok = TRUE;
1532 }
1533
1534 /* Handle the special case of an old common symbol merging with a
1535 new symbol which looks like a common symbol in a shared object.
1536 We change *PSEC and *PVALUE to make the new symbol look like a
1537 common symbol, and let _bfd_generic_link_add_one_symbol do the
1538 right thing. */
1539
1540 if (newdyncommon
1541 && h->root.type == bfd_link_hash_common)
1542 {
1543 *override = TRUE;
1544 newdef = FALSE;
1545 newdyncommon = FALSE;
1546 *pvalue = sym->st_size;
1547 *psec = sec = bed->common_section (oldsec);
1548 *size_change_ok = TRUE;
1549 }
1550
1551 /* Skip weak definitions of symbols that are already defined. */
1552 if (newdef && olddef && newweak)
1553 {
1554 /* Don't skip new non-IR weak syms. */
1555 if (!(oldbfd != NULL
1556 && (oldbfd->flags & BFD_PLUGIN) != 0
1557 && (abfd->flags & BFD_PLUGIN) == 0))
1558 {
1559 newdef = FALSE;
1560 *skip = TRUE;
1561 }
1562
1563 /* Merge st_other. If the symbol already has a dynamic index,
1564 but visibility says it should not be visible, turn it into a
1565 local symbol. */
1566 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1567 if (h->dynindx != -1)
1568 switch (ELF_ST_VISIBILITY (h->other))
1569 {
1570 case STV_INTERNAL:
1571 case STV_HIDDEN:
1572 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1573 break;
1574 }
1575 }
1576
1577 /* If the old symbol is from a dynamic object, and the new symbol is
1578 a definition which is not from a dynamic object, then the new
1579 symbol overrides the old symbol. Symbols from regular files
1580 always take precedence over symbols from dynamic objects, even if
1581 they are defined after the dynamic object in the link.
1582
1583 As above, we again permit a common symbol in a regular object to
1584 override a definition in a shared object if the shared object
1585 symbol is a function or is weak. */
1586
1587 flip = NULL;
1588 if (!newdyn
1589 && (newdef
1590 || (bfd_is_com_section (sec)
1591 && (oldweak || oldfunc)))
1592 && olddyn
1593 && olddef
1594 && h->def_dynamic)
1595 {
1596 /* Change the hash table entry to undefined, and let
1597 _bfd_generic_link_add_one_symbol do the right thing with the
1598 new definition. */
1599
1600 h->root.type = bfd_link_hash_undefined;
1601 h->root.u.undef.abfd = h->root.u.def.section->owner;
1602 *size_change_ok = TRUE;
1603
1604 olddef = FALSE;
1605 olddyncommon = FALSE;
1606
1607 /* We again permit a type change when a common symbol may be
1608 overriding a function. */
1609
1610 if (bfd_is_com_section (sec))
1611 {
1612 if (oldfunc)
1613 {
1614 /* If a common symbol overrides a function, make sure
1615 that it isn't defined dynamically nor has type
1616 function. */
1617 h->def_dynamic = 0;
1618 h->type = STT_NOTYPE;
1619 }
1620 *type_change_ok = TRUE;
1621 }
1622
1623 if (hi->root.type == bfd_link_hash_indirect)
1624 flip = hi;
1625 else
1626 /* This union may have been set to be non-NULL when this symbol
1627 was seen in a dynamic object. We must force the union to be
1628 NULL, so that it is correct for a regular symbol. */
1629 h->verinfo.vertree = NULL;
1630 }
1631
1632 /* Handle the special case of a new common symbol merging with an
1633 old symbol that looks like it might be a common symbol defined in
1634 a shared object. Note that we have already handled the case in
1635 which a new common symbol should simply override the definition
1636 in the shared library. */
1637
1638 if (! newdyn
1639 && bfd_is_com_section (sec)
1640 && olddyncommon)
1641 {
1642 /* It would be best if we could set the hash table entry to a
1643 common symbol, but we don't know what to use for the section
1644 or the alignment. */
1645 if (! ((*info->callbacks->multiple_common)
1646 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1647 return FALSE;
1648
1649 /* If the presumed common symbol in the dynamic object is
1650 larger, pretend that the new symbol has its size. */
1651
1652 if (h->size > *pvalue)
1653 *pvalue = h->size;
1654
1655 /* We need to remember the alignment required by the symbol
1656 in the dynamic object. */
1657 BFD_ASSERT (pold_alignment);
1658 *pold_alignment = h->root.u.def.section->alignment_power;
1659
1660 olddef = FALSE;
1661 olddyncommon = FALSE;
1662
1663 h->root.type = bfd_link_hash_undefined;
1664 h->root.u.undef.abfd = h->root.u.def.section->owner;
1665
1666 *size_change_ok = TRUE;
1667 *type_change_ok = TRUE;
1668
1669 if (hi->root.type == bfd_link_hash_indirect)
1670 flip = hi;
1671 else
1672 h->verinfo.vertree = NULL;
1673 }
1674
1675 if (flip != NULL)
1676 {
1677 /* Handle the case where we had a versioned symbol in a dynamic
1678 library and now find a definition in a normal object. In this
1679 case, we make the versioned symbol point to the normal one. */
1680 flip->root.type = h->root.type;
1681 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1682 h->root.type = bfd_link_hash_indirect;
1683 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1684 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1685 if (h->def_dynamic)
1686 {
1687 h->def_dynamic = 0;
1688 flip->ref_dynamic = 1;
1689 }
1690 }
1691
1692 return TRUE;
1693 }
1694
1695 /* This function is called to create an indirect symbol from the
1696 default for the symbol with the default version if needed. The
1697 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1698 set DYNSYM if the new indirect symbol is dynamic. */
1699
1700 static bfd_boolean
1701 _bfd_elf_add_default_symbol (bfd *abfd,
1702 struct bfd_link_info *info,
1703 struct elf_link_hash_entry *h,
1704 const char *name,
1705 Elf_Internal_Sym *sym,
1706 asection *sec,
1707 bfd_vma value,
1708 bfd **poldbfd,
1709 bfd_boolean *dynsym)
1710 {
1711 bfd_boolean type_change_ok;
1712 bfd_boolean size_change_ok;
1713 bfd_boolean skip;
1714 char *shortname;
1715 struct elf_link_hash_entry *hi;
1716 struct bfd_link_hash_entry *bh;
1717 const struct elf_backend_data *bed;
1718 bfd_boolean collect;
1719 bfd_boolean dynamic;
1720 bfd_boolean override;
1721 char *p;
1722 size_t len, shortlen;
1723 asection *tmp_sec;
1724 bfd_boolean matched;
1725
1726 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1727 return TRUE;
1728
1729 /* If this symbol has a version, and it is the default version, we
1730 create an indirect symbol from the default name to the fully
1731 decorated name. This will cause external references which do not
1732 specify a version to be bound to this version of the symbol. */
1733 p = strchr (name, ELF_VER_CHR);
1734 if (h->versioned == unknown)
1735 {
1736 if (p == NULL)
1737 {
1738 h->versioned = unversioned;
1739 return TRUE;
1740 }
1741 else
1742 {
1743 if (p[1] != ELF_VER_CHR)
1744 {
1745 h->versioned = versioned_hidden;
1746 return TRUE;
1747 }
1748 else
1749 h->versioned = versioned;
1750 }
1751 }
1752 else
1753 {
1754 /* PR ld/19073: We may see an unversioned definition after the
1755 default version. */
1756 if (p == NULL)
1757 return TRUE;
1758 }
1759
1760 bed = get_elf_backend_data (abfd);
1761 collect = bed->collect;
1762 dynamic = (abfd->flags & DYNAMIC) != 0;
1763
1764 shortlen = p - name;
1765 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1766 if (shortname == NULL)
1767 return FALSE;
1768 memcpy (shortname, name, shortlen);
1769 shortname[shortlen] = '\0';
1770
1771 /* We are going to create a new symbol. Merge it with any existing
1772 symbol with this name. For the purposes of the merge, act as
1773 though we were defining the symbol we just defined, although we
1774 actually going to define an indirect symbol. */
1775 type_change_ok = FALSE;
1776 size_change_ok = FALSE;
1777 matched = TRUE;
1778 tmp_sec = sec;
1779 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1780 &hi, poldbfd, NULL, NULL, &skip, &override,
1781 &type_change_ok, &size_change_ok, &matched))
1782 return FALSE;
1783
1784 if (skip)
1785 goto nondefault;
1786
1787 if (! override)
1788 {
1789 /* Add the default symbol if not performing a relocatable link. */
1790 if (! bfd_link_relocatable (info))
1791 {
1792 bh = &hi->root;
1793 if (! (_bfd_generic_link_add_one_symbol
1794 (info, abfd, shortname, BSF_INDIRECT,
1795 bfd_ind_section_ptr,
1796 0, name, FALSE, collect, &bh)))
1797 return FALSE;
1798 hi = (struct elf_link_hash_entry *) bh;
1799 }
1800 }
1801 else
1802 {
1803 /* In this case the symbol named SHORTNAME is overriding the
1804 indirect symbol we want to add. We were planning on making
1805 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1806 is the name without a version. NAME is the fully versioned
1807 name, and it is the default version.
1808
1809 Overriding means that we already saw a definition for the
1810 symbol SHORTNAME in a regular object, and it is overriding
1811 the symbol defined in the dynamic object.
1812
1813 When this happens, we actually want to change NAME, the
1814 symbol we just added, to refer to SHORTNAME. This will cause
1815 references to NAME in the shared object to become references
1816 to SHORTNAME in the regular object. This is what we expect
1817 when we override a function in a shared object: that the
1818 references in the shared object will be mapped to the
1819 definition in the regular object. */
1820
1821 while (hi->root.type == bfd_link_hash_indirect
1822 || hi->root.type == bfd_link_hash_warning)
1823 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1824
1825 h->root.type = bfd_link_hash_indirect;
1826 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1827 if (h->def_dynamic)
1828 {
1829 h->def_dynamic = 0;
1830 hi->ref_dynamic = 1;
1831 if (hi->ref_regular
1832 || hi->def_regular)
1833 {
1834 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1835 return FALSE;
1836 }
1837 }
1838
1839 /* Now set HI to H, so that the following code will set the
1840 other fields correctly. */
1841 hi = h;
1842 }
1843
1844 /* Check if HI is a warning symbol. */
1845 if (hi->root.type == bfd_link_hash_warning)
1846 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1847
1848 /* If there is a duplicate definition somewhere, then HI may not
1849 point to an indirect symbol. We will have reported an error to
1850 the user in that case. */
1851
1852 if (hi->root.type == bfd_link_hash_indirect)
1853 {
1854 struct elf_link_hash_entry *ht;
1855
1856 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1857 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1858
1859 /* A reference to the SHORTNAME symbol from a dynamic library
1860 will be satisfied by the versioned symbol at runtime. In
1861 effect, we have a reference to the versioned symbol. */
1862 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1863 hi->dynamic_def |= ht->dynamic_def;
1864
1865 /* See if the new flags lead us to realize that the symbol must
1866 be dynamic. */
1867 if (! *dynsym)
1868 {
1869 if (! dynamic)
1870 {
1871 if (! bfd_link_executable (info)
1872 || hi->def_dynamic
1873 || hi->ref_dynamic)
1874 *dynsym = TRUE;
1875 }
1876 else
1877 {
1878 if (hi->ref_regular)
1879 *dynsym = TRUE;
1880 }
1881 }
1882 }
1883
1884 /* We also need to define an indirection from the nondefault version
1885 of the symbol. */
1886
1887 nondefault:
1888 len = strlen (name);
1889 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1890 if (shortname == NULL)
1891 return FALSE;
1892 memcpy (shortname, name, shortlen);
1893 memcpy (shortname + shortlen, p + 1, len - shortlen);
1894
1895 /* Once again, merge with any existing symbol. */
1896 type_change_ok = FALSE;
1897 size_change_ok = FALSE;
1898 tmp_sec = sec;
1899 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1900 &hi, poldbfd, NULL, NULL, &skip, &override,
1901 &type_change_ok, &size_change_ok, &matched))
1902 return FALSE;
1903
1904 if (skip)
1905 return TRUE;
1906
1907 if (override)
1908 {
1909 /* Here SHORTNAME is a versioned name, so we don't expect to see
1910 the type of override we do in the case above unless it is
1911 overridden by a versioned definition. */
1912 if (hi->root.type != bfd_link_hash_defined
1913 && hi->root.type != bfd_link_hash_defweak)
1914 (*_bfd_error_handler)
1915 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1916 abfd, shortname);
1917 }
1918 else
1919 {
1920 bh = &hi->root;
1921 if (! (_bfd_generic_link_add_one_symbol
1922 (info, abfd, shortname, BSF_INDIRECT,
1923 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1924 return FALSE;
1925 hi = (struct elf_link_hash_entry *) bh;
1926
1927 /* If there is a duplicate definition somewhere, then HI may not
1928 point to an indirect symbol. We will have reported an error
1929 to the user in that case. */
1930
1931 if (hi->root.type == bfd_link_hash_indirect)
1932 {
1933 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1934 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1935 hi->dynamic_def |= h->dynamic_def;
1936
1937 /* See if the new flags lead us to realize that the symbol
1938 must be dynamic. */
1939 if (! *dynsym)
1940 {
1941 if (! dynamic)
1942 {
1943 if (! bfd_link_executable (info)
1944 || hi->ref_dynamic)
1945 *dynsym = TRUE;
1946 }
1947 else
1948 {
1949 if (hi->ref_regular)
1950 *dynsym = TRUE;
1951 }
1952 }
1953 }
1954 }
1955
1956 return TRUE;
1957 }
1958 \f
1959 /* This routine is used to export all defined symbols into the dynamic
1960 symbol table. It is called via elf_link_hash_traverse. */
1961
1962 static bfd_boolean
1963 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1964 {
1965 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1966
1967 /* Ignore indirect symbols. These are added by the versioning code. */
1968 if (h->root.type == bfd_link_hash_indirect)
1969 return TRUE;
1970
1971 /* Ignore this if we won't export it. */
1972 if (!eif->info->export_dynamic && !h->dynamic)
1973 return TRUE;
1974
1975 if (h->dynindx == -1
1976 && (h->def_regular || h->ref_regular)
1977 && ! bfd_hide_sym_by_version (eif->info->version_info,
1978 h->root.root.string))
1979 {
1980 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1981 {
1982 eif->failed = TRUE;
1983 return FALSE;
1984 }
1985 }
1986
1987 return TRUE;
1988 }
1989 \f
1990 /* Look through the symbols which are defined in other shared
1991 libraries and referenced here. Update the list of version
1992 dependencies. This will be put into the .gnu.version_r section.
1993 This function is called via elf_link_hash_traverse. */
1994
1995 static bfd_boolean
1996 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1997 void *data)
1998 {
1999 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2000 Elf_Internal_Verneed *t;
2001 Elf_Internal_Vernaux *a;
2002 bfd_size_type amt;
2003
2004 /* We only care about symbols defined in shared objects with version
2005 information. */
2006 if (!h->def_dynamic
2007 || h->def_regular
2008 || h->dynindx == -1
2009 || h->verinfo.verdef == NULL
2010 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2011 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2012 return TRUE;
2013
2014 /* See if we already know about this version. */
2015 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2016 t != NULL;
2017 t = t->vn_nextref)
2018 {
2019 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2020 continue;
2021
2022 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2023 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2024 return TRUE;
2025
2026 break;
2027 }
2028
2029 /* This is a new version. Add it to tree we are building. */
2030
2031 if (t == NULL)
2032 {
2033 amt = sizeof *t;
2034 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2035 if (t == NULL)
2036 {
2037 rinfo->failed = TRUE;
2038 return FALSE;
2039 }
2040
2041 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2042 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2043 elf_tdata (rinfo->info->output_bfd)->verref = t;
2044 }
2045
2046 amt = sizeof *a;
2047 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2048 if (a == NULL)
2049 {
2050 rinfo->failed = TRUE;
2051 return FALSE;
2052 }
2053
2054 /* Note that we are copying a string pointer here, and testing it
2055 above. If bfd_elf_string_from_elf_section is ever changed to
2056 discard the string data when low in memory, this will have to be
2057 fixed. */
2058 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2059
2060 a->vna_flags = h->verinfo.verdef->vd_flags;
2061 a->vna_nextptr = t->vn_auxptr;
2062
2063 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2064 ++rinfo->vers;
2065
2066 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2067
2068 t->vn_auxptr = a;
2069
2070 return TRUE;
2071 }
2072
2073 /* Figure out appropriate versions for all the symbols. We may not
2074 have the version number script until we have read all of the input
2075 files, so until that point we don't know which symbols should be
2076 local. This function is called via elf_link_hash_traverse. */
2077
2078 static bfd_boolean
2079 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2080 {
2081 struct elf_info_failed *sinfo;
2082 struct bfd_link_info *info;
2083 const struct elf_backend_data *bed;
2084 struct elf_info_failed eif;
2085 char *p;
2086 bfd_size_type amt;
2087
2088 sinfo = (struct elf_info_failed *) data;
2089 info = sinfo->info;
2090
2091 /* Fix the symbol flags. */
2092 eif.failed = FALSE;
2093 eif.info = info;
2094 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2095 {
2096 if (eif.failed)
2097 sinfo->failed = TRUE;
2098 return FALSE;
2099 }
2100
2101 /* We only need version numbers for symbols defined in regular
2102 objects. */
2103 if (!h->def_regular)
2104 return TRUE;
2105
2106 bed = get_elf_backend_data (info->output_bfd);
2107 p = strchr (h->root.root.string, ELF_VER_CHR);
2108 if (p != NULL && h->verinfo.vertree == NULL)
2109 {
2110 struct bfd_elf_version_tree *t;
2111
2112 ++p;
2113 if (*p == ELF_VER_CHR)
2114 ++p;
2115
2116 /* If there is no version string, we can just return out. */
2117 if (*p == '\0')
2118 return TRUE;
2119
2120 /* Look for the version. If we find it, it is no longer weak. */
2121 for (t = sinfo->info->version_info; t != NULL; t = t->next)
2122 {
2123 if (strcmp (t->name, p) == 0)
2124 {
2125 size_t len;
2126 char *alc;
2127 struct bfd_elf_version_expr *d;
2128
2129 len = p - h->root.root.string;
2130 alc = (char *) bfd_malloc (len);
2131 if (alc == NULL)
2132 {
2133 sinfo->failed = TRUE;
2134 return FALSE;
2135 }
2136 memcpy (alc, h->root.root.string, len - 1);
2137 alc[len - 1] = '\0';
2138 if (alc[len - 2] == ELF_VER_CHR)
2139 alc[len - 2] = '\0';
2140
2141 h->verinfo.vertree = t;
2142 t->used = TRUE;
2143 d = NULL;
2144
2145 if (t->globals.list != NULL)
2146 d = (*t->match) (&t->globals, NULL, alc);
2147
2148 /* See if there is anything to force this symbol to
2149 local scope. */
2150 if (d == NULL && t->locals.list != NULL)
2151 {
2152 d = (*t->match) (&t->locals, NULL, alc);
2153 if (d != NULL
2154 && h->dynindx != -1
2155 && ! info->export_dynamic)
2156 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2157 }
2158
2159 free (alc);
2160 break;
2161 }
2162 }
2163
2164 /* If we are building an application, we need to create a
2165 version node for this version. */
2166 if (t == NULL && bfd_link_executable (info))
2167 {
2168 struct bfd_elf_version_tree **pp;
2169 int version_index;
2170
2171 /* If we aren't going to export this symbol, we don't need
2172 to worry about it. */
2173 if (h->dynindx == -1)
2174 return TRUE;
2175
2176 amt = sizeof *t;
2177 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2178 if (t == NULL)
2179 {
2180 sinfo->failed = TRUE;
2181 return FALSE;
2182 }
2183
2184 t->name = p;
2185 t->name_indx = (unsigned int) -1;
2186 t->used = TRUE;
2187
2188 version_index = 1;
2189 /* Don't count anonymous version tag. */
2190 if (sinfo->info->version_info != NULL
2191 && sinfo->info->version_info->vernum == 0)
2192 version_index = 0;
2193 for (pp = &sinfo->info->version_info;
2194 *pp != NULL;
2195 pp = &(*pp)->next)
2196 ++version_index;
2197 t->vernum = version_index;
2198
2199 *pp = t;
2200
2201 h->verinfo.vertree = t;
2202 }
2203 else if (t == NULL)
2204 {
2205 /* We could not find the version for a symbol when
2206 generating a shared archive. Return an error. */
2207 (*_bfd_error_handler)
2208 (_("%B: version node not found for symbol %s"),
2209 info->output_bfd, h->root.root.string);
2210 bfd_set_error (bfd_error_bad_value);
2211 sinfo->failed = TRUE;
2212 return FALSE;
2213 }
2214 }
2215
2216 /* If we don't have a version for this symbol, see if we can find
2217 something. */
2218 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2219 {
2220 bfd_boolean hide;
2221
2222 h->verinfo.vertree
2223 = bfd_find_version_for_sym (sinfo->info->version_info,
2224 h->root.root.string, &hide);
2225 if (h->verinfo.vertree != NULL && hide)
2226 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2227 }
2228
2229 return TRUE;
2230 }
2231 \f
2232 /* Read and swap the relocs from the section indicated by SHDR. This
2233 may be either a REL or a RELA section. The relocations are
2234 translated into RELA relocations and stored in INTERNAL_RELOCS,
2235 which should have already been allocated to contain enough space.
2236 The EXTERNAL_RELOCS are a buffer where the external form of the
2237 relocations should be stored.
2238
2239 Returns FALSE if something goes wrong. */
2240
2241 static bfd_boolean
2242 elf_link_read_relocs_from_section (bfd *abfd,
2243 asection *sec,
2244 Elf_Internal_Shdr *shdr,
2245 void *external_relocs,
2246 Elf_Internal_Rela *internal_relocs)
2247 {
2248 const struct elf_backend_data *bed;
2249 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2250 const bfd_byte *erela;
2251 const bfd_byte *erelaend;
2252 Elf_Internal_Rela *irela;
2253 Elf_Internal_Shdr *symtab_hdr;
2254 size_t nsyms;
2255
2256 /* Position ourselves at the start of the section. */
2257 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2258 return FALSE;
2259
2260 /* Read the relocations. */
2261 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2262 return FALSE;
2263
2264 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2265 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2266
2267 bed = get_elf_backend_data (abfd);
2268
2269 /* Convert the external relocations to the internal format. */
2270 if (shdr->sh_entsize == bed->s->sizeof_rel)
2271 swap_in = bed->s->swap_reloc_in;
2272 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2273 swap_in = bed->s->swap_reloca_in;
2274 else
2275 {
2276 bfd_set_error (bfd_error_wrong_format);
2277 return FALSE;
2278 }
2279
2280 erela = (const bfd_byte *) external_relocs;
2281 erelaend = erela + shdr->sh_size;
2282 irela = internal_relocs;
2283 while (erela < erelaend)
2284 {
2285 bfd_vma r_symndx;
2286
2287 (*swap_in) (abfd, erela, irela);
2288 r_symndx = ELF32_R_SYM (irela->r_info);
2289 if (bed->s->arch_size == 64)
2290 r_symndx >>= 24;
2291 if (nsyms > 0)
2292 {
2293 if ((size_t) r_symndx >= nsyms)
2294 {
2295 (*_bfd_error_handler)
2296 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2297 " for offset 0x%lx in section `%A'"),
2298 abfd, sec,
2299 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2300 bfd_set_error (bfd_error_bad_value);
2301 return FALSE;
2302 }
2303 }
2304 else if (r_symndx != STN_UNDEF)
2305 {
2306 (*_bfd_error_handler)
2307 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2308 " when the object file has no symbol table"),
2309 abfd, sec,
2310 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2311 bfd_set_error (bfd_error_bad_value);
2312 return FALSE;
2313 }
2314 irela += bed->s->int_rels_per_ext_rel;
2315 erela += shdr->sh_entsize;
2316 }
2317
2318 return TRUE;
2319 }
2320
2321 /* Read and swap the relocs for a section O. They may have been
2322 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2323 not NULL, they are used as buffers to read into. They are known to
2324 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2325 the return value is allocated using either malloc or bfd_alloc,
2326 according to the KEEP_MEMORY argument. If O has two relocation
2327 sections (both REL and RELA relocations), then the REL_HDR
2328 relocations will appear first in INTERNAL_RELOCS, followed by the
2329 RELA_HDR relocations. */
2330
2331 Elf_Internal_Rela *
2332 _bfd_elf_link_read_relocs (bfd *abfd,
2333 asection *o,
2334 void *external_relocs,
2335 Elf_Internal_Rela *internal_relocs,
2336 bfd_boolean keep_memory)
2337 {
2338 void *alloc1 = NULL;
2339 Elf_Internal_Rela *alloc2 = NULL;
2340 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2341 struct bfd_elf_section_data *esdo = elf_section_data (o);
2342 Elf_Internal_Rela *internal_rela_relocs;
2343
2344 if (esdo->relocs != NULL)
2345 return esdo->relocs;
2346
2347 if (o->reloc_count == 0)
2348 return NULL;
2349
2350 if (internal_relocs == NULL)
2351 {
2352 bfd_size_type size;
2353
2354 size = o->reloc_count;
2355 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2356 if (keep_memory)
2357 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2358 else
2359 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2360 if (internal_relocs == NULL)
2361 goto error_return;
2362 }
2363
2364 if (external_relocs == NULL)
2365 {
2366 bfd_size_type size = 0;
2367
2368 if (esdo->rel.hdr)
2369 size += esdo->rel.hdr->sh_size;
2370 if (esdo->rela.hdr)
2371 size += esdo->rela.hdr->sh_size;
2372
2373 alloc1 = bfd_malloc (size);
2374 if (alloc1 == NULL)
2375 goto error_return;
2376 external_relocs = alloc1;
2377 }
2378
2379 internal_rela_relocs = internal_relocs;
2380 if (esdo->rel.hdr)
2381 {
2382 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2383 external_relocs,
2384 internal_relocs))
2385 goto error_return;
2386 external_relocs = (((bfd_byte *) external_relocs)
2387 + esdo->rel.hdr->sh_size);
2388 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2389 * bed->s->int_rels_per_ext_rel);
2390 }
2391
2392 if (esdo->rela.hdr
2393 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2394 external_relocs,
2395 internal_rela_relocs)))
2396 goto error_return;
2397
2398 /* Cache the results for next time, if we can. */
2399 if (keep_memory)
2400 esdo->relocs = internal_relocs;
2401
2402 if (alloc1 != NULL)
2403 free (alloc1);
2404
2405 /* Don't free alloc2, since if it was allocated we are passing it
2406 back (under the name of internal_relocs). */
2407
2408 return internal_relocs;
2409
2410 error_return:
2411 if (alloc1 != NULL)
2412 free (alloc1);
2413 if (alloc2 != NULL)
2414 {
2415 if (keep_memory)
2416 bfd_release (abfd, alloc2);
2417 else
2418 free (alloc2);
2419 }
2420 return NULL;
2421 }
2422
2423 /* Compute the size of, and allocate space for, REL_HDR which is the
2424 section header for a section containing relocations for O. */
2425
2426 static bfd_boolean
2427 _bfd_elf_link_size_reloc_section (bfd *abfd,
2428 struct bfd_elf_section_reloc_data *reldata)
2429 {
2430 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2431
2432 /* That allows us to calculate the size of the section. */
2433 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2434
2435 /* The contents field must last into write_object_contents, so we
2436 allocate it with bfd_alloc rather than malloc. Also since we
2437 cannot be sure that the contents will actually be filled in,
2438 we zero the allocated space. */
2439 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2440 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2441 return FALSE;
2442
2443 if (reldata->hashes == NULL && reldata->count)
2444 {
2445 struct elf_link_hash_entry **p;
2446
2447 p = ((struct elf_link_hash_entry **)
2448 bfd_zmalloc (reldata->count * sizeof (*p)));
2449 if (p == NULL)
2450 return FALSE;
2451
2452 reldata->hashes = p;
2453 }
2454
2455 return TRUE;
2456 }
2457
2458 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2459 originated from the section given by INPUT_REL_HDR) to the
2460 OUTPUT_BFD. */
2461
2462 bfd_boolean
2463 _bfd_elf_link_output_relocs (bfd *output_bfd,
2464 asection *input_section,
2465 Elf_Internal_Shdr *input_rel_hdr,
2466 Elf_Internal_Rela *internal_relocs,
2467 struct elf_link_hash_entry **rel_hash
2468 ATTRIBUTE_UNUSED)
2469 {
2470 Elf_Internal_Rela *irela;
2471 Elf_Internal_Rela *irelaend;
2472 bfd_byte *erel;
2473 struct bfd_elf_section_reloc_data *output_reldata;
2474 asection *output_section;
2475 const struct elf_backend_data *bed;
2476 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2477 struct bfd_elf_section_data *esdo;
2478
2479 output_section = input_section->output_section;
2480
2481 bed = get_elf_backend_data (output_bfd);
2482 esdo = elf_section_data (output_section);
2483 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2484 {
2485 output_reldata = &esdo->rel;
2486 swap_out = bed->s->swap_reloc_out;
2487 }
2488 else if (esdo->rela.hdr
2489 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2490 {
2491 output_reldata = &esdo->rela;
2492 swap_out = bed->s->swap_reloca_out;
2493 }
2494 else
2495 {
2496 (*_bfd_error_handler)
2497 (_("%B: relocation size mismatch in %B section %A"),
2498 output_bfd, input_section->owner, input_section);
2499 bfd_set_error (bfd_error_wrong_format);
2500 return FALSE;
2501 }
2502
2503 erel = output_reldata->hdr->contents;
2504 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2505 irela = internal_relocs;
2506 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2507 * bed->s->int_rels_per_ext_rel);
2508 while (irela < irelaend)
2509 {
2510 (*swap_out) (output_bfd, irela, erel);
2511 irela += bed->s->int_rels_per_ext_rel;
2512 erel += input_rel_hdr->sh_entsize;
2513 }
2514
2515 /* Bump the counter, so that we know where to add the next set of
2516 relocations. */
2517 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2518
2519 return TRUE;
2520 }
2521 \f
2522 /* Make weak undefined symbols in PIE dynamic. */
2523
2524 bfd_boolean
2525 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2526 struct elf_link_hash_entry *h)
2527 {
2528 if (bfd_link_pie (info)
2529 && h->dynindx == -1
2530 && h->root.type == bfd_link_hash_undefweak)
2531 return bfd_elf_link_record_dynamic_symbol (info, h);
2532
2533 return TRUE;
2534 }
2535
2536 /* Fix up the flags for a symbol. This handles various cases which
2537 can only be fixed after all the input files are seen. This is
2538 currently called by both adjust_dynamic_symbol and
2539 assign_sym_version, which is unnecessary but perhaps more robust in
2540 the face of future changes. */
2541
2542 static bfd_boolean
2543 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2544 struct elf_info_failed *eif)
2545 {
2546 const struct elf_backend_data *bed;
2547
2548 /* If this symbol was mentioned in a non-ELF file, try to set
2549 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2550 permit a non-ELF file to correctly refer to a symbol defined in
2551 an ELF dynamic object. */
2552 if (h->non_elf)
2553 {
2554 while (h->root.type == bfd_link_hash_indirect)
2555 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2556
2557 if (h->root.type != bfd_link_hash_defined
2558 && h->root.type != bfd_link_hash_defweak)
2559 {
2560 h->ref_regular = 1;
2561 h->ref_regular_nonweak = 1;
2562 }
2563 else
2564 {
2565 if (h->root.u.def.section->owner != NULL
2566 && (bfd_get_flavour (h->root.u.def.section->owner)
2567 == bfd_target_elf_flavour))
2568 {
2569 h->ref_regular = 1;
2570 h->ref_regular_nonweak = 1;
2571 }
2572 else
2573 h->def_regular = 1;
2574 }
2575
2576 if (h->dynindx == -1
2577 && (h->def_dynamic
2578 || h->ref_dynamic))
2579 {
2580 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2581 {
2582 eif->failed = TRUE;
2583 return FALSE;
2584 }
2585 }
2586 }
2587 else
2588 {
2589 /* Unfortunately, NON_ELF is only correct if the symbol
2590 was first seen in a non-ELF file. Fortunately, if the symbol
2591 was first seen in an ELF file, we're probably OK unless the
2592 symbol was defined in a non-ELF file. Catch that case here.
2593 FIXME: We're still in trouble if the symbol was first seen in
2594 a dynamic object, and then later in a non-ELF regular object. */
2595 if ((h->root.type == bfd_link_hash_defined
2596 || h->root.type == bfd_link_hash_defweak)
2597 && !h->def_regular
2598 && (h->root.u.def.section->owner != NULL
2599 ? (bfd_get_flavour (h->root.u.def.section->owner)
2600 != bfd_target_elf_flavour)
2601 : (bfd_is_abs_section (h->root.u.def.section)
2602 && !h->def_dynamic)))
2603 h->def_regular = 1;
2604 }
2605
2606 /* Backend specific symbol fixup. */
2607 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2608 if (bed->elf_backend_fixup_symbol
2609 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2610 return FALSE;
2611
2612 /* If this is a final link, and the symbol was defined as a common
2613 symbol in a regular object file, and there was no definition in
2614 any dynamic object, then the linker will have allocated space for
2615 the symbol in a common section but the DEF_REGULAR
2616 flag will not have been set. */
2617 if (h->root.type == bfd_link_hash_defined
2618 && !h->def_regular
2619 && h->ref_regular
2620 && !h->def_dynamic
2621 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2622 h->def_regular = 1;
2623
2624 /* If -Bsymbolic was used (which means to bind references to global
2625 symbols to the definition within the shared object), and this
2626 symbol was defined in a regular object, then it actually doesn't
2627 need a PLT entry. Likewise, if the symbol has non-default
2628 visibility. If the symbol has hidden or internal visibility, we
2629 will force it local. */
2630 if (h->needs_plt
2631 && bfd_link_pic (eif->info)
2632 && is_elf_hash_table (eif->info->hash)
2633 && (SYMBOLIC_BIND (eif->info, h)
2634 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2635 && h->def_regular)
2636 {
2637 bfd_boolean force_local;
2638
2639 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2640 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2641 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2642 }
2643
2644 /* If a weak undefined symbol has non-default visibility, we also
2645 hide it from the dynamic linker. */
2646 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2647 && h->root.type == bfd_link_hash_undefweak)
2648 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2649
2650 /* If this is a weak defined symbol in a dynamic object, and we know
2651 the real definition in the dynamic object, copy interesting flags
2652 over to the real definition. */
2653 if (h->u.weakdef != NULL)
2654 {
2655 /* If the real definition is defined by a regular object file,
2656 don't do anything special. See the longer description in
2657 _bfd_elf_adjust_dynamic_symbol, below. */
2658 if (h->u.weakdef->def_regular)
2659 h->u.weakdef = NULL;
2660 else
2661 {
2662 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2663
2664 while (h->root.type == bfd_link_hash_indirect)
2665 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2666
2667 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2668 || h->root.type == bfd_link_hash_defweak);
2669 BFD_ASSERT (weakdef->def_dynamic);
2670 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2671 || weakdef->root.type == bfd_link_hash_defweak);
2672 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2673 }
2674 }
2675
2676 return TRUE;
2677 }
2678
2679 /* Make the backend pick a good value for a dynamic symbol. This is
2680 called via elf_link_hash_traverse, and also calls itself
2681 recursively. */
2682
2683 static bfd_boolean
2684 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2685 {
2686 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2687 bfd *dynobj;
2688 const struct elf_backend_data *bed;
2689
2690 if (! is_elf_hash_table (eif->info->hash))
2691 return FALSE;
2692
2693 /* Ignore indirect symbols. These are added by the versioning code. */
2694 if (h->root.type == bfd_link_hash_indirect)
2695 return TRUE;
2696
2697 /* Fix the symbol flags. */
2698 if (! _bfd_elf_fix_symbol_flags (h, eif))
2699 return FALSE;
2700
2701 /* If this symbol does not require a PLT entry, and it is not
2702 defined by a dynamic object, or is not referenced by a regular
2703 object, ignore it. We do have to handle a weak defined symbol,
2704 even if no regular object refers to it, if we decided to add it
2705 to the dynamic symbol table. FIXME: Do we normally need to worry
2706 about symbols which are defined by one dynamic object and
2707 referenced by another one? */
2708 if (!h->needs_plt
2709 && h->type != STT_GNU_IFUNC
2710 && (h->def_regular
2711 || !h->def_dynamic
2712 || (!h->ref_regular
2713 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2714 {
2715 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2716 return TRUE;
2717 }
2718
2719 /* If we've already adjusted this symbol, don't do it again. This
2720 can happen via a recursive call. */
2721 if (h->dynamic_adjusted)
2722 return TRUE;
2723
2724 /* Don't look at this symbol again. Note that we must set this
2725 after checking the above conditions, because we may look at a
2726 symbol once, decide not to do anything, and then get called
2727 recursively later after REF_REGULAR is set below. */
2728 h->dynamic_adjusted = 1;
2729
2730 /* If this is a weak definition, and we know a real definition, and
2731 the real symbol is not itself defined by a regular object file,
2732 then get a good value for the real definition. We handle the
2733 real symbol first, for the convenience of the backend routine.
2734
2735 Note that there is a confusing case here. If the real definition
2736 is defined by a regular object file, we don't get the real symbol
2737 from the dynamic object, but we do get the weak symbol. If the
2738 processor backend uses a COPY reloc, then if some routine in the
2739 dynamic object changes the real symbol, we will not see that
2740 change in the corresponding weak symbol. This is the way other
2741 ELF linkers work as well, and seems to be a result of the shared
2742 library model.
2743
2744 I will clarify this issue. Most SVR4 shared libraries define the
2745 variable _timezone and define timezone as a weak synonym. The
2746 tzset call changes _timezone. If you write
2747 extern int timezone;
2748 int _timezone = 5;
2749 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2750 you might expect that, since timezone is a synonym for _timezone,
2751 the same number will print both times. However, if the processor
2752 backend uses a COPY reloc, then actually timezone will be copied
2753 into your process image, and, since you define _timezone
2754 yourself, _timezone will not. Thus timezone and _timezone will
2755 wind up at different memory locations. The tzset call will set
2756 _timezone, leaving timezone unchanged. */
2757
2758 if (h->u.weakdef != NULL)
2759 {
2760 /* If we get to this point, there is an implicit reference to
2761 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2762 h->u.weakdef->ref_regular = 1;
2763
2764 /* Ensure that the backend adjust_dynamic_symbol function sees
2765 H->U.WEAKDEF before H by recursively calling ourselves. */
2766 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2767 return FALSE;
2768 }
2769
2770 /* If a symbol has no type and no size and does not require a PLT
2771 entry, then we are probably about to do the wrong thing here: we
2772 are probably going to create a COPY reloc for an empty object.
2773 This case can arise when a shared object is built with assembly
2774 code, and the assembly code fails to set the symbol type. */
2775 if (h->size == 0
2776 && h->type == STT_NOTYPE
2777 && !h->needs_plt)
2778 (*_bfd_error_handler)
2779 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2780 h->root.root.string);
2781
2782 dynobj = elf_hash_table (eif->info)->dynobj;
2783 bed = get_elf_backend_data (dynobj);
2784
2785 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2786 {
2787 eif->failed = TRUE;
2788 return FALSE;
2789 }
2790
2791 return TRUE;
2792 }
2793
2794 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2795 DYNBSS. */
2796
2797 bfd_boolean
2798 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2799 struct elf_link_hash_entry *h,
2800 asection *dynbss)
2801 {
2802 unsigned int power_of_two;
2803 bfd_vma mask;
2804 asection *sec = h->root.u.def.section;
2805
2806 /* The section aligment of definition is the maximum alignment
2807 requirement of symbols defined in the section. Since we don't
2808 know the symbol alignment requirement, we start with the
2809 maximum alignment and check low bits of the symbol address
2810 for the minimum alignment. */
2811 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2812 mask = ((bfd_vma) 1 << power_of_two) - 1;
2813 while ((h->root.u.def.value & mask) != 0)
2814 {
2815 mask >>= 1;
2816 --power_of_two;
2817 }
2818
2819 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2820 dynbss))
2821 {
2822 /* Adjust the section alignment if needed. */
2823 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2824 power_of_two))
2825 return FALSE;
2826 }
2827
2828 /* We make sure that the symbol will be aligned properly. */
2829 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2830
2831 /* Define the symbol as being at this point in DYNBSS. */
2832 h->root.u.def.section = dynbss;
2833 h->root.u.def.value = dynbss->size;
2834
2835 /* Increment the size of DYNBSS to make room for the symbol. */
2836 dynbss->size += h->size;
2837
2838 /* No error if extern_protected_data is true. */
2839 if (h->protected_def
2840 && (!info->extern_protected_data
2841 || (info->extern_protected_data < 0
2842 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
2843 info->callbacks->einfo
2844 (_("%P: copy reloc against protected `%T' is dangerous\n"),
2845 h->root.root.string);
2846
2847 return TRUE;
2848 }
2849
2850 /* Adjust all external symbols pointing into SEC_MERGE sections
2851 to reflect the object merging within the sections. */
2852
2853 static bfd_boolean
2854 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2855 {
2856 asection *sec;
2857
2858 if ((h->root.type == bfd_link_hash_defined
2859 || h->root.type == bfd_link_hash_defweak)
2860 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2861 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2862 {
2863 bfd *output_bfd = (bfd *) data;
2864
2865 h->root.u.def.value =
2866 _bfd_merged_section_offset (output_bfd,
2867 &h->root.u.def.section,
2868 elf_section_data (sec)->sec_info,
2869 h->root.u.def.value);
2870 }
2871
2872 return TRUE;
2873 }
2874
2875 /* Returns false if the symbol referred to by H should be considered
2876 to resolve local to the current module, and true if it should be
2877 considered to bind dynamically. */
2878
2879 bfd_boolean
2880 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2881 struct bfd_link_info *info,
2882 bfd_boolean not_local_protected)
2883 {
2884 bfd_boolean binding_stays_local_p;
2885 const struct elf_backend_data *bed;
2886 struct elf_link_hash_table *hash_table;
2887
2888 if (h == NULL)
2889 return FALSE;
2890
2891 while (h->root.type == bfd_link_hash_indirect
2892 || h->root.type == bfd_link_hash_warning)
2893 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2894
2895 /* If it was forced local, then clearly it's not dynamic. */
2896 if (h->dynindx == -1)
2897 return FALSE;
2898 if (h->forced_local)
2899 return FALSE;
2900
2901 /* Identify the cases where name binding rules say that a
2902 visible symbol resolves locally. */
2903 binding_stays_local_p = (bfd_link_executable (info)
2904 || SYMBOLIC_BIND (info, h));
2905
2906 switch (ELF_ST_VISIBILITY (h->other))
2907 {
2908 case STV_INTERNAL:
2909 case STV_HIDDEN:
2910 return FALSE;
2911
2912 case STV_PROTECTED:
2913 hash_table = elf_hash_table (info);
2914 if (!is_elf_hash_table (hash_table))
2915 return FALSE;
2916
2917 bed = get_elf_backend_data (hash_table->dynobj);
2918
2919 /* Proper resolution for function pointer equality may require
2920 that these symbols perhaps be resolved dynamically, even though
2921 we should be resolving them to the current module. */
2922 if (!not_local_protected || !bed->is_function_type (h->type))
2923 binding_stays_local_p = TRUE;
2924 break;
2925
2926 default:
2927 break;
2928 }
2929
2930 /* If it isn't defined locally, then clearly it's dynamic. */
2931 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2932 return TRUE;
2933
2934 /* Otherwise, the symbol is dynamic if binding rules don't tell
2935 us that it remains local. */
2936 return !binding_stays_local_p;
2937 }
2938
2939 /* Return true if the symbol referred to by H should be considered
2940 to resolve local to the current module, and false otherwise. Differs
2941 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2942 undefined symbols. The two functions are virtually identical except
2943 for the place where forced_local and dynindx == -1 are tested. If
2944 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2945 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2946 the symbol is local only for defined symbols.
2947 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2948 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2949 treatment of undefined weak symbols. For those that do not make
2950 undefined weak symbols dynamic, both functions may return false. */
2951
2952 bfd_boolean
2953 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2954 struct bfd_link_info *info,
2955 bfd_boolean local_protected)
2956 {
2957 const struct elf_backend_data *bed;
2958 struct elf_link_hash_table *hash_table;
2959
2960 /* If it's a local sym, of course we resolve locally. */
2961 if (h == NULL)
2962 return TRUE;
2963
2964 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2965 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2966 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2967 return TRUE;
2968
2969 /* Common symbols that become definitions don't get the DEF_REGULAR
2970 flag set, so test it first, and don't bail out. */
2971 if (ELF_COMMON_DEF_P (h))
2972 /* Do nothing. */;
2973 /* If we don't have a definition in a regular file, then we can't
2974 resolve locally. The sym is either undefined or dynamic. */
2975 else if (!h->def_regular)
2976 return FALSE;
2977
2978 /* Forced local symbols resolve locally. */
2979 if (h->forced_local)
2980 return TRUE;
2981
2982 /* As do non-dynamic symbols. */
2983 if (h->dynindx == -1)
2984 return TRUE;
2985
2986 /* At this point, we know the symbol is defined and dynamic. In an
2987 executable it must resolve locally, likewise when building symbolic
2988 shared libraries. */
2989 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
2990 return TRUE;
2991
2992 /* Now deal with defined dynamic symbols in shared libraries. Ones
2993 with default visibility might not resolve locally. */
2994 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2995 return FALSE;
2996
2997 hash_table = elf_hash_table (info);
2998 if (!is_elf_hash_table (hash_table))
2999 return TRUE;
3000
3001 bed = get_elf_backend_data (hash_table->dynobj);
3002
3003 /* If extern_protected_data is false, STV_PROTECTED non-function
3004 symbols are local. */
3005 if ((!info->extern_protected_data
3006 || (info->extern_protected_data < 0
3007 && !bed->extern_protected_data))
3008 && !bed->is_function_type (h->type))
3009 return TRUE;
3010
3011 /* Function pointer equality tests may require that STV_PROTECTED
3012 symbols be treated as dynamic symbols. If the address of a
3013 function not defined in an executable is set to that function's
3014 plt entry in the executable, then the address of the function in
3015 a shared library must also be the plt entry in the executable. */
3016 return local_protected;
3017 }
3018
3019 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3020 aligned. Returns the first TLS output section. */
3021
3022 struct bfd_section *
3023 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3024 {
3025 struct bfd_section *sec, *tls;
3026 unsigned int align = 0;
3027
3028 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3029 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3030 break;
3031 tls = sec;
3032
3033 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3034 if (sec->alignment_power > align)
3035 align = sec->alignment_power;
3036
3037 elf_hash_table (info)->tls_sec = tls;
3038
3039 /* Ensure the alignment of the first section is the largest alignment,
3040 so that the tls segment starts aligned. */
3041 if (tls != NULL)
3042 tls->alignment_power = align;
3043
3044 return tls;
3045 }
3046
3047 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3048 static bfd_boolean
3049 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3050 Elf_Internal_Sym *sym)
3051 {
3052 const struct elf_backend_data *bed;
3053
3054 /* Local symbols do not count, but target specific ones might. */
3055 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3056 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3057 return FALSE;
3058
3059 bed = get_elf_backend_data (abfd);
3060 /* Function symbols do not count. */
3061 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3062 return FALSE;
3063
3064 /* If the section is undefined, then so is the symbol. */
3065 if (sym->st_shndx == SHN_UNDEF)
3066 return FALSE;
3067
3068 /* If the symbol is defined in the common section, then
3069 it is a common definition and so does not count. */
3070 if (bed->common_definition (sym))
3071 return FALSE;
3072
3073 /* If the symbol is in a target specific section then we
3074 must rely upon the backend to tell us what it is. */
3075 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3076 /* FIXME - this function is not coded yet:
3077
3078 return _bfd_is_global_symbol_definition (abfd, sym);
3079
3080 Instead for now assume that the definition is not global,
3081 Even if this is wrong, at least the linker will behave
3082 in the same way that it used to do. */
3083 return FALSE;
3084
3085 return TRUE;
3086 }
3087
3088 /* Search the symbol table of the archive element of the archive ABFD
3089 whose archive map contains a mention of SYMDEF, and determine if
3090 the symbol is defined in this element. */
3091 static bfd_boolean
3092 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3093 {
3094 Elf_Internal_Shdr * hdr;
3095 bfd_size_type symcount;
3096 bfd_size_type extsymcount;
3097 bfd_size_type extsymoff;
3098 Elf_Internal_Sym *isymbuf;
3099 Elf_Internal_Sym *isym;
3100 Elf_Internal_Sym *isymend;
3101 bfd_boolean result;
3102
3103 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3104 if (abfd == NULL)
3105 return FALSE;
3106
3107 /* Return FALSE if the object has been claimed by plugin. */
3108 if (abfd->plugin_format == bfd_plugin_yes)
3109 return FALSE;
3110
3111 if (! bfd_check_format (abfd, bfd_object))
3112 return FALSE;
3113
3114 /* Select the appropriate symbol table. */
3115 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3116 hdr = &elf_tdata (abfd)->symtab_hdr;
3117 else
3118 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3119
3120 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3121
3122 /* The sh_info field of the symtab header tells us where the
3123 external symbols start. We don't care about the local symbols. */
3124 if (elf_bad_symtab (abfd))
3125 {
3126 extsymcount = symcount;
3127 extsymoff = 0;
3128 }
3129 else
3130 {
3131 extsymcount = symcount - hdr->sh_info;
3132 extsymoff = hdr->sh_info;
3133 }
3134
3135 if (extsymcount == 0)
3136 return FALSE;
3137
3138 /* Read in the symbol table. */
3139 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3140 NULL, NULL, NULL);
3141 if (isymbuf == NULL)
3142 return FALSE;
3143
3144 /* Scan the symbol table looking for SYMDEF. */
3145 result = FALSE;
3146 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3147 {
3148 const char *name;
3149
3150 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3151 isym->st_name);
3152 if (name == NULL)
3153 break;
3154
3155 if (strcmp (name, symdef->name) == 0)
3156 {
3157 result = is_global_data_symbol_definition (abfd, isym);
3158 break;
3159 }
3160 }
3161
3162 free (isymbuf);
3163
3164 return result;
3165 }
3166 \f
3167 /* Add an entry to the .dynamic table. */
3168
3169 bfd_boolean
3170 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3171 bfd_vma tag,
3172 bfd_vma val)
3173 {
3174 struct elf_link_hash_table *hash_table;
3175 const struct elf_backend_data *bed;
3176 asection *s;
3177 bfd_size_type newsize;
3178 bfd_byte *newcontents;
3179 Elf_Internal_Dyn dyn;
3180
3181 hash_table = elf_hash_table (info);
3182 if (! is_elf_hash_table (hash_table))
3183 return FALSE;
3184
3185 bed = get_elf_backend_data (hash_table->dynobj);
3186 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3187 BFD_ASSERT (s != NULL);
3188
3189 newsize = s->size + bed->s->sizeof_dyn;
3190 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3191 if (newcontents == NULL)
3192 return FALSE;
3193
3194 dyn.d_tag = tag;
3195 dyn.d_un.d_val = val;
3196 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3197
3198 s->size = newsize;
3199 s->contents = newcontents;
3200
3201 return TRUE;
3202 }
3203
3204 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3205 otherwise just check whether one already exists. Returns -1 on error,
3206 1 if a DT_NEEDED tag already exists, and 0 on success. */
3207
3208 static int
3209 elf_add_dt_needed_tag (bfd *abfd,
3210 struct bfd_link_info *info,
3211 const char *soname,
3212 bfd_boolean do_it)
3213 {
3214 struct elf_link_hash_table *hash_table;
3215 bfd_size_type strindex;
3216
3217 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3218 return -1;
3219
3220 hash_table = elf_hash_table (info);
3221 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3222 if (strindex == (bfd_size_type) -1)
3223 return -1;
3224
3225 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3226 {
3227 asection *sdyn;
3228 const struct elf_backend_data *bed;
3229 bfd_byte *extdyn;
3230
3231 bed = get_elf_backend_data (hash_table->dynobj);
3232 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3233 if (sdyn != NULL)
3234 for (extdyn = sdyn->contents;
3235 extdyn < sdyn->contents + sdyn->size;
3236 extdyn += bed->s->sizeof_dyn)
3237 {
3238 Elf_Internal_Dyn dyn;
3239
3240 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3241 if (dyn.d_tag == DT_NEEDED
3242 && dyn.d_un.d_val == strindex)
3243 {
3244 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3245 return 1;
3246 }
3247 }
3248 }
3249
3250 if (do_it)
3251 {
3252 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3253 return -1;
3254
3255 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3256 return -1;
3257 }
3258 else
3259 /* We were just checking for existence of the tag. */
3260 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3261
3262 return 0;
3263 }
3264
3265 /* Return true if SONAME is on the needed list between NEEDED and STOP
3266 (or the end of list if STOP is NULL), and needed by a library that
3267 will be loaded. */
3268
3269 static bfd_boolean
3270 on_needed_list (const char *soname,
3271 struct bfd_link_needed_list *needed,
3272 struct bfd_link_needed_list *stop)
3273 {
3274 struct bfd_link_needed_list *look;
3275 for (look = needed; look != stop; look = look->next)
3276 if (strcmp (soname, look->name) == 0
3277 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3278 /* If needed by a library that itself is not directly
3279 needed, recursively check whether that library is
3280 indirectly needed. Since we add DT_NEEDED entries to
3281 the end of the list, library dependencies appear after
3282 the library. Therefore search prior to the current
3283 LOOK, preventing possible infinite recursion. */
3284 || on_needed_list (elf_dt_name (look->by), needed, look)))
3285 return TRUE;
3286
3287 return FALSE;
3288 }
3289
3290 /* Sort symbol by value, section, and size. */
3291 static int
3292 elf_sort_symbol (const void *arg1, const void *arg2)
3293 {
3294 const struct elf_link_hash_entry *h1;
3295 const struct elf_link_hash_entry *h2;
3296 bfd_signed_vma vdiff;
3297
3298 h1 = *(const struct elf_link_hash_entry **) arg1;
3299 h2 = *(const struct elf_link_hash_entry **) arg2;
3300 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3301 if (vdiff != 0)
3302 return vdiff > 0 ? 1 : -1;
3303 else
3304 {
3305 int sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3306 if (sdiff != 0)
3307 return sdiff > 0 ? 1 : -1;
3308 }
3309 vdiff = h1->size - h2->size;
3310 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3311 }
3312
3313 /* This function is used to adjust offsets into .dynstr for
3314 dynamic symbols. This is called via elf_link_hash_traverse. */
3315
3316 static bfd_boolean
3317 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3318 {
3319 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3320
3321 if (h->dynindx != -1)
3322 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3323 return TRUE;
3324 }
3325
3326 /* Assign string offsets in .dynstr, update all structures referencing
3327 them. */
3328
3329 static bfd_boolean
3330 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3331 {
3332 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3333 struct elf_link_local_dynamic_entry *entry;
3334 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3335 bfd *dynobj = hash_table->dynobj;
3336 asection *sdyn;
3337 bfd_size_type size;
3338 const struct elf_backend_data *bed;
3339 bfd_byte *extdyn;
3340
3341 _bfd_elf_strtab_finalize (dynstr);
3342 size = _bfd_elf_strtab_size (dynstr);
3343
3344 bed = get_elf_backend_data (dynobj);
3345 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3346 BFD_ASSERT (sdyn != NULL);
3347
3348 /* Update all .dynamic entries referencing .dynstr strings. */
3349 for (extdyn = sdyn->contents;
3350 extdyn < sdyn->contents + sdyn->size;
3351 extdyn += bed->s->sizeof_dyn)
3352 {
3353 Elf_Internal_Dyn dyn;
3354
3355 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3356 switch (dyn.d_tag)
3357 {
3358 case DT_STRSZ:
3359 dyn.d_un.d_val = size;
3360 break;
3361 case DT_NEEDED:
3362 case DT_SONAME:
3363 case DT_RPATH:
3364 case DT_RUNPATH:
3365 case DT_FILTER:
3366 case DT_AUXILIARY:
3367 case DT_AUDIT:
3368 case DT_DEPAUDIT:
3369 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3370 break;
3371 default:
3372 continue;
3373 }
3374 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3375 }
3376
3377 /* Now update local dynamic symbols. */
3378 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3379 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3380 entry->isym.st_name);
3381
3382 /* And the rest of dynamic symbols. */
3383 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3384
3385 /* Adjust version definitions. */
3386 if (elf_tdata (output_bfd)->cverdefs)
3387 {
3388 asection *s;
3389 bfd_byte *p;
3390 bfd_size_type i;
3391 Elf_Internal_Verdef def;
3392 Elf_Internal_Verdaux defaux;
3393
3394 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3395 p = s->contents;
3396 do
3397 {
3398 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3399 &def);
3400 p += sizeof (Elf_External_Verdef);
3401 if (def.vd_aux != sizeof (Elf_External_Verdef))
3402 continue;
3403 for (i = 0; i < def.vd_cnt; ++i)
3404 {
3405 _bfd_elf_swap_verdaux_in (output_bfd,
3406 (Elf_External_Verdaux *) p, &defaux);
3407 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3408 defaux.vda_name);
3409 _bfd_elf_swap_verdaux_out (output_bfd,
3410 &defaux, (Elf_External_Verdaux *) p);
3411 p += sizeof (Elf_External_Verdaux);
3412 }
3413 }
3414 while (def.vd_next);
3415 }
3416
3417 /* Adjust version references. */
3418 if (elf_tdata (output_bfd)->verref)
3419 {
3420 asection *s;
3421 bfd_byte *p;
3422 bfd_size_type i;
3423 Elf_Internal_Verneed need;
3424 Elf_Internal_Vernaux needaux;
3425
3426 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3427 p = s->contents;
3428 do
3429 {
3430 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3431 &need);
3432 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3433 _bfd_elf_swap_verneed_out (output_bfd, &need,
3434 (Elf_External_Verneed *) p);
3435 p += sizeof (Elf_External_Verneed);
3436 for (i = 0; i < need.vn_cnt; ++i)
3437 {
3438 _bfd_elf_swap_vernaux_in (output_bfd,
3439 (Elf_External_Vernaux *) p, &needaux);
3440 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3441 needaux.vna_name);
3442 _bfd_elf_swap_vernaux_out (output_bfd,
3443 &needaux,
3444 (Elf_External_Vernaux *) p);
3445 p += sizeof (Elf_External_Vernaux);
3446 }
3447 }
3448 while (need.vn_next);
3449 }
3450
3451 return TRUE;
3452 }
3453 \f
3454 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3455 The default is to only match when the INPUT and OUTPUT are exactly
3456 the same target. */
3457
3458 bfd_boolean
3459 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3460 const bfd_target *output)
3461 {
3462 return input == output;
3463 }
3464
3465 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3466 This version is used when different targets for the same architecture
3467 are virtually identical. */
3468
3469 bfd_boolean
3470 _bfd_elf_relocs_compatible (const bfd_target *input,
3471 const bfd_target *output)
3472 {
3473 const struct elf_backend_data *obed, *ibed;
3474
3475 if (input == output)
3476 return TRUE;
3477
3478 ibed = xvec_get_elf_backend_data (input);
3479 obed = xvec_get_elf_backend_data (output);
3480
3481 if (ibed->arch != obed->arch)
3482 return FALSE;
3483
3484 /* If both backends are using this function, deem them compatible. */
3485 return ibed->relocs_compatible == obed->relocs_compatible;
3486 }
3487
3488 /* Make a special call to the linker "notice" function to tell it that
3489 we are about to handle an as-needed lib, or have finished
3490 processing the lib. */
3491
3492 bfd_boolean
3493 _bfd_elf_notice_as_needed (bfd *ibfd,
3494 struct bfd_link_info *info,
3495 enum notice_asneeded_action act)
3496 {
3497 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3498 }
3499
3500 /* Check relocations an ELF object file. */
3501
3502 bfd_boolean
3503 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3504 {
3505 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3506 struct elf_link_hash_table *htab = elf_hash_table (info);
3507
3508 /* If this object is the same format as the output object, and it is
3509 not a shared library, then let the backend look through the
3510 relocs.
3511
3512 This is required to build global offset table entries and to
3513 arrange for dynamic relocs. It is not required for the
3514 particular common case of linking non PIC code, even when linking
3515 against shared libraries, but unfortunately there is no way of
3516 knowing whether an object file has been compiled PIC or not.
3517 Looking through the relocs is not particularly time consuming.
3518 The problem is that we must either (1) keep the relocs in memory,
3519 which causes the linker to require additional runtime memory or
3520 (2) read the relocs twice from the input file, which wastes time.
3521 This would be a good case for using mmap.
3522
3523 I have no idea how to handle linking PIC code into a file of a
3524 different format. It probably can't be done. */
3525 if ((abfd->flags & DYNAMIC) == 0
3526 && is_elf_hash_table (htab)
3527 && bed->check_relocs != NULL
3528 && elf_object_id (abfd) == elf_hash_table_id (htab)
3529 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3530 {
3531 asection *o;
3532
3533 for (o = abfd->sections; o != NULL; o = o->next)
3534 {
3535 Elf_Internal_Rela *internal_relocs;
3536 bfd_boolean ok;
3537
3538 /* Don't check relocations in excluded sections. */
3539 if ((o->flags & SEC_RELOC) == 0
3540 || (o->flags & SEC_EXCLUDE) != 0
3541 || o->reloc_count == 0
3542 || ((info->strip == strip_all || info->strip == strip_debugger)
3543 && (o->flags & SEC_DEBUGGING) != 0)
3544 || bfd_is_abs_section (o->output_section))
3545 continue;
3546
3547 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3548 info->keep_memory);
3549 if (internal_relocs == NULL)
3550 return FALSE;
3551
3552 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3553
3554 if (elf_section_data (o)->relocs != internal_relocs)
3555 free (internal_relocs);
3556
3557 if (! ok)
3558 return FALSE;
3559 }
3560 }
3561
3562 return TRUE;
3563 }
3564
3565 /* Add symbols from an ELF object file to the linker hash table. */
3566
3567 static bfd_boolean
3568 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3569 {
3570 Elf_Internal_Ehdr *ehdr;
3571 Elf_Internal_Shdr *hdr;
3572 bfd_size_type symcount;
3573 bfd_size_type extsymcount;
3574 bfd_size_type extsymoff;
3575 struct elf_link_hash_entry **sym_hash;
3576 bfd_boolean dynamic;
3577 Elf_External_Versym *extversym = NULL;
3578 Elf_External_Versym *ever;
3579 struct elf_link_hash_entry *weaks;
3580 struct elf_link_hash_entry **nondeflt_vers = NULL;
3581 bfd_size_type nondeflt_vers_cnt = 0;
3582 Elf_Internal_Sym *isymbuf = NULL;
3583 Elf_Internal_Sym *isym;
3584 Elf_Internal_Sym *isymend;
3585 const struct elf_backend_data *bed;
3586 bfd_boolean add_needed;
3587 struct elf_link_hash_table *htab;
3588 bfd_size_type amt;
3589 void *alloc_mark = NULL;
3590 struct bfd_hash_entry **old_table = NULL;
3591 unsigned int old_size = 0;
3592 unsigned int old_count = 0;
3593 void *old_tab = NULL;
3594 void *old_ent;
3595 struct bfd_link_hash_entry *old_undefs = NULL;
3596 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3597 long old_dynsymcount = 0;
3598 bfd_size_type old_dynstr_size = 0;
3599 size_t tabsize = 0;
3600 asection *s;
3601 bfd_boolean just_syms;
3602
3603 htab = elf_hash_table (info);
3604 bed = get_elf_backend_data (abfd);
3605
3606 if ((abfd->flags & DYNAMIC) == 0)
3607 dynamic = FALSE;
3608 else
3609 {
3610 dynamic = TRUE;
3611
3612 /* You can't use -r against a dynamic object. Also, there's no
3613 hope of using a dynamic object which does not exactly match
3614 the format of the output file. */
3615 if (bfd_link_relocatable (info)
3616 || !is_elf_hash_table (htab)
3617 || info->output_bfd->xvec != abfd->xvec)
3618 {
3619 if (bfd_link_relocatable (info))
3620 bfd_set_error (bfd_error_invalid_operation);
3621 else
3622 bfd_set_error (bfd_error_wrong_format);
3623 goto error_return;
3624 }
3625 }
3626
3627 ehdr = elf_elfheader (abfd);
3628 if (info->warn_alternate_em
3629 && bed->elf_machine_code != ehdr->e_machine
3630 && ((bed->elf_machine_alt1 != 0
3631 && ehdr->e_machine == bed->elf_machine_alt1)
3632 || (bed->elf_machine_alt2 != 0
3633 && ehdr->e_machine == bed->elf_machine_alt2)))
3634 info->callbacks->einfo
3635 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3636 ehdr->e_machine, abfd, bed->elf_machine_code);
3637
3638 /* As a GNU extension, any input sections which are named
3639 .gnu.warning.SYMBOL are treated as warning symbols for the given
3640 symbol. This differs from .gnu.warning sections, which generate
3641 warnings when they are included in an output file. */
3642 /* PR 12761: Also generate this warning when building shared libraries. */
3643 for (s = abfd->sections; s != NULL; s = s->next)
3644 {
3645 const char *name;
3646
3647 name = bfd_get_section_name (abfd, s);
3648 if (CONST_STRNEQ (name, ".gnu.warning."))
3649 {
3650 char *msg;
3651 bfd_size_type sz;
3652
3653 name += sizeof ".gnu.warning." - 1;
3654
3655 /* If this is a shared object, then look up the symbol
3656 in the hash table. If it is there, and it is already
3657 been defined, then we will not be using the entry
3658 from this shared object, so we don't need to warn.
3659 FIXME: If we see the definition in a regular object
3660 later on, we will warn, but we shouldn't. The only
3661 fix is to keep track of what warnings we are supposed
3662 to emit, and then handle them all at the end of the
3663 link. */
3664 if (dynamic)
3665 {
3666 struct elf_link_hash_entry *h;
3667
3668 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3669
3670 /* FIXME: What about bfd_link_hash_common? */
3671 if (h != NULL
3672 && (h->root.type == bfd_link_hash_defined
3673 || h->root.type == bfd_link_hash_defweak))
3674 continue;
3675 }
3676
3677 sz = s->size;
3678 msg = (char *) bfd_alloc (abfd, sz + 1);
3679 if (msg == NULL)
3680 goto error_return;
3681
3682 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3683 goto error_return;
3684
3685 msg[sz] = '\0';
3686
3687 if (! (_bfd_generic_link_add_one_symbol
3688 (info, abfd, name, BSF_WARNING, s, 0, msg,
3689 FALSE, bed->collect, NULL)))
3690 goto error_return;
3691
3692 if (bfd_link_executable (info))
3693 {
3694 /* Clobber the section size so that the warning does
3695 not get copied into the output file. */
3696 s->size = 0;
3697
3698 /* Also set SEC_EXCLUDE, so that symbols defined in
3699 the warning section don't get copied to the output. */
3700 s->flags |= SEC_EXCLUDE;
3701 }
3702 }
3703 }
3704
3705 just_syms = ((s = abfd->sections) != NULL
3706 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3707
3708 add_needed = TRUE;
3709 if (! dynamic)
3710 {
3711 /* If we are creating a shared library, create all the dynamic
3712 sections immediately. We need to attach them to something,
3713 so we attach them to this BFD, provided it is the right
3714 format and is not from ld --just-symbols. Always create the
3715 dynamic sections for -E/--dynamic-list. FIXME: If there
3716 are no input BFD's of the same format as the output, we can't
3717 make a shared library. */
3718 if (!just_syms
3719 && (bfd_link_pic (info)
3720 || (!bfd_link_relocatable (info)
3721 && (info->export_dynamic || info->dynamic)))
3722 && is_elf_hash_table (htab)
3723 && info->output_bfd->xvec == abfd->xvec
3724 && !htab->dynamic_sections_created)
3725 {
3726 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3727 goto error_return;
3728 }
3729 }
3730 else if (!is_elf_hash_table (htab))
3731 goto error_return;
3732 else
3733 {
3734 const char *soname = NULL;
3735 char *audit = NULL;
3736 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3737 int ret;
3738
3739 /* ld --just-symbols and dynamic objects don't mix very well.
3740 ld shouldn't allow it. */
3741 if (just_syms)
3742 abort ();
3743
3744 /* If this dynamic lib was specified on the command line with
3745 --as-needed in effect, then we don't want to add a DT_NEEDED
3746 tag unless the lib is actually used. Similary for libs brought
3747 in by another lib's DT_NEEDED. When --no-add-needed is used
3748 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3749 any dynamic library in DT_NEEDED tags in the dynamic lib at
3750 all. */
3751 add_needed = (elf_dyn_lib_class (abfd)
3752 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3753 | DYN_NO_NEEDED)) == 0;
3754
3755 s = bfd_get_section_by_name (abfd, ".dynamic");
3756 if (s != NULL)
3757 {
3758 bfd_byte *dynbuf;
3759 bfd_byte *extdyn;
3760 unsigned int elfsec;
3761 unsigned long shlink;
3762
3763 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3764 {
3765 error_free_dyn:
3766 free (dynbuf);
3767 goto error_return;
3768 }
3769
3770 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3771 if (elfsec == SHN_BAD)
3772 goto error_free_dyn;
3773 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3774
3775 for (extdyn = dynbuf;
3776 extdyn < dynbuf + s->size;
3777 extdyn += bed->s->sizeof_dyn)
3778 {
3779 Elf_Internal_Dyn dyn;
3780
3781 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3782 if (dyn.d_tag == DT_SONAME)
3783 {
3784 unsigned int tagv = dyn.d_un.d_val;
3785 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3786 if (soname == NULL)
3787 goto error_free_dyn;
3788 }
3789 if (dyn.d_tag == DT_NEEDED)
3790 {
3791 struct bfd_link_needed_list *n, **pn;
3792 char *fnm, *anm;
3793 unsigned int tagv = dyn.d_un.d_val;
3794
3795 amt = sizeof (struct bfd_link_needed_list);
3796 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3797 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3798 if (n == NULL || fnm == NULL)
3799 goto error_free_dyn;
3800 amt = strlen (fnm) + 1;
3801 anm = (char *) bfd_alloc (abfd, amt);
3802 if (anm == NULL)
3803 goto error_free_dyn;
3804 memcpy (anm, fnm, amt);
3805 n->name = anm;
3806 n->by = abfd;
3807 n->next = NULL;
3808 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3809 ;
3810 *pn = n;
3811 }
3812 if (dyn.d_tag == DT_RUNPATH)
3813 {
3814 struct bfd_link_needed_list *n, **pn;
3815 char *fnm, *anm;
3816 unsigned int tagv = dyn.d_un.d_val;
3817
3818 amt = sizeof (struct bfd_link_needed_list);
3819 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3820 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3821 if (n == NULL || fnm == NULL)
3822 goto error_free_dyn;
3823 amt = strlen (fnm) + 1;
3824 anm = (char *) bfd_alloc (abfd, amt);
3825 if (anm == NULL)
3826 goto error_free_dyn;
3827 memcpy (anm, fnm, amt);
3828 n->name = anm;
3829 n->by = abfd;
3830 n->next = NULL;
3831 for (pn = & runpath;
3832 *pn != NULL;
3833 pn = &(*pn)->next)
3834 ;
3835 *pn = n;
3836 }
3837 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3838 if (!runpath && dyn.d_tag == DT_RPATH)
3839 {
3840 struct bfd_link_needed_list *n, **pn;
3841 char *fnm, *anm;
3842 unsigned int tagv = dyn.d_un.d_val;
3843
3844 amt = sizeof (struct bfd_link_needed_list);
3845 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3846 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3847 if (n == NULL || fnm == NULL)
3848 goto error_free_dyn;
3849 amt = strlen (fnm) + 1;
3850 anm = (char *) bfd_alloc (abfd, amt);
3851 if (anm == NULL)
3852 goto error_free_dyn;
3853 memcpy (anm, fnm, amt);
3854 n->name = anm;
3855 n->by = abfd;
3856 n->next = NULL;
3857 for (pn = & rpath;
3858 *pn != NULL;
3859 pn = &(*pn)->next)
3860 ;
3861 *pn = n;
3862 }
3863 if (dyn.d_tag == DT_AUDIT)
3864 {
3865 unsigned int tagv = dyn.d_un.d_val;
3866 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3867 }
3868 }
3869
3870 free (dynbuf);
3871 }
3872
3873 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3874 frees all more recently bfd_alloc'd blocks as well. */
3875 if (runpath)
3876 rpath = runpath;
3877
3878 if (rpath)
3879 {
3880 struct bfd_link_needed_list **pn;
3881 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3882 ;
3883 *pn = rpath;
3884 }
3885
3886 /* We do not want to include any of the sections in a dynamic
3887 object in the output file. We hack by simply clobbering the
3888 list of sections in the BFD. This could be handled more
3889 cleanly by, say, a new section flag; the existing
3890 SEC_NEVER_LOAD flag is not the one we want, because that one
3891 still implies that the section takes up space in the output
3892 file. */
3893 bfd_section_list_clear (abfd);
3894
3895 /* Find the name to use in a DT_NEEDED entry that refers to this
3896 object. If the object has a DT_SONAME entry, we use it.
3897 Otherwise, if the generic linker stuck something in
3898 elf_dt_name, we use that. Otherwise, we just use the file
3899 name. */
3900 if (soname == NULL || *soname == '\0')
3901 {
3902 soname = elf_dt_name (abfd);
3903 if (soname == NULL || *soname == '\0')
3904 soname = bfd_get_filename (abfd);
3905 }
3906
3907 /* Save the SONAME because sometimes the linker emulation code
3908 will need to know it. */
3909 elf_dt_name (abfd) = soname;
3910
3911 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3912 if (ret < 0)
3913 goto error_return;
3914
3915 /* If we have already included this dynamic object in the
3916 link, just ignore it. There is no reason to include a
3917 particular dynamic object more than once. */
3918 if (ret > 0)
3919 return TRUE;
3920
3921 /* Save the DT_AUDIT entry for the linker emulation code. */
3922 elf_dt_audit (abfd) = audit;
3923 }
3924
3925 /* If this is a dynamic object, we always link against the .dynsym
3926 symbol table, not the .symtab symbol table. The dynamic linker
3927 will only see the .dynsym symbol table, so there is no reason to
3928 look at .symtab for a dynamic object. */
3929
3930 if (! dynamic || elf_dynsymtab (abfd) == 0)
3931 hdr = &elf_tdata (abfd)->symtab_hdr;
3932 else
3933 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3934
3935 symcount = hdr->sh_size / bed->s->sizeof_sym;
3936
3937 /* The sh_info field of the symtab header tells us where the
3938 external symbols start. We don't care about the local symbols at
3939 this point. */
3940 if (elf_bad_symtab (abfd))
3941 {
3942 extsymcount = symcount;
3943 extsymoff = 0;
3944 }
3945 else
3946 {
3947 extsymcount = symcount - hdr->sh_info;
3948 extsymoff = hdr->sh_info;
3949 }
3950
3951 sym_hash = elf_sym_hashes (abfd);
3952 if (extsymcount != 0)
3953 {
3954 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3955 NULL, NULL, NULL);
3956 if (isymbuf == NULL)
3957 goto error_return;
3958
3959 if (sym_hash == NULL)
3960 {
3961 /* We store a pointer to the hash table entry for each
3962 external symbol. */
3963 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3964 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
3965 if (sym_hash == NULL)
3966 goto error_free_sym;
3967 elf_sym_hashes (abfd) = sym_hash;
3968 }
3969 }
3970
3971 if (dynamic)
3972 {
3973 /* Read in any version definitions. */
3974 if (!_bfd_elf_slurp_version_tables (abfd,
3975 info->default_imported_symver))
3976 goto error_free_sym;
3977
3978 /* Read in the symbol versions, but don't bother to convert them
3979 to internal format. */
3980 if (elf_dynversym (abfd) != 0)
3981 {
3982 Elf_Internal_Shdr *versymhdr;
3983
3984 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3985 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3986 if (extversym == NULL)
3987 goto error_free_sym;
3988 amt = versymhdr->sh_size;
3989 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3990 || bfd_bread (extversym, amt, abfd) != amt)
3991 goto error_free_vers;
3992 }
3993 }
3994
3995 /* If we are loading an as-needed shared lib, save the symbol table
3996 state before we start adding symbols. If the lib turns out
3997 to be unneeded, restore the state. */
3998 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3999 {
4000 unsigned int i;
4001 size_t entsize;
4002
4003 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4004 {
4005 struct bfd_hash_entry *p;
4006 struct elf_link_hash_entry *h;
4007
4008 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4009 {
4010 h = (struct elf_link_hash_entry *) p;
4011 entsize += htab->root.table.entsize;
4012 if (h->root.type == bfd_link_hash_warning)
4013 entsize += htab->root.table.entsize;
4014 }
4015 }
4016
4017 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4018 old_tab = bfd_malloc (tabsize + entsize);
4019 if (old_tab == NULL)
4020 goto error_free_vers;
4021
4022 /* Remember the current objalloc pointer, so that all mem for
4023 symbols added can later be reclaimed. */
4024 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4025 if (alloc_mark == NULL)
4026 goto error_free_vers;
4027
4028 /* Make a special call to the linker "notice" function to
4029 tell it that we are about to handle an as-needed lib. */
4030 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4031 goto error_free_vers;
4032
4033 /* Clone the symbol table. Remember some pointers into the
4034 symbol table, and dynamic symbol count. */
4035 old_ent = (char *) old_tab + tabsize;
4036 memcpy (old_tab, htab->root.table.table, tabsize);
4037 old_undefs = htab->root.undefs;
4038 old_undefs_tail = htab->root.undefs_tail;
4039 old_table = htab->root.table.table;
4040 old_size = htab->root.table.size;
4041 old_count = htab->root.table.count;
4042 old_dynsymcount = htab->dynsymcount;
4043 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
4044
4045 for (i = 0; i < htab->root.table.size; i++)
4046 {
4047 struct bfd_hash_entry *p;
4048 struct elf_link_hash_entry *h;
4049
4050 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4051 {
4052 memcpy (old_ent, p, htab->root.table.entsize);
4053 old_ent = (char *) old_ent + htab->root.table.entsize;
4054 h = (struct elf_link_hash_entry *) p;
4055 if (h->root.type == bfd_link_hash_warning)
4056 {
4057 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4058 old_ent = (char *) old_ent + htab->root.table.entsize;
4059 }
4060 }
4061 }
4062 }
4063
4064 weaks = NULL;
4065 ever = extversym != NULL ? extversym + extsymoff : NULL;
4066 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4067 isym < isymend;
4068 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4069 {
4070 int bind;
4071 bfd_vma value;
4072 asection *sec, *new_sec;
4073 flagword flags;
4074 const char *name;
4075 struct elf_link_hash_entry *h;
4076 struct elf_link_hash_entry *hi;
4077 bfd_boolean definition;
4078 bfd_boolean size_change_ok;
4079 bfd_boolean type_change_ok;
4080 bfd_boolean new_weakdef;
4081 bfd_boolean new_weak;
4082 bfd_boolean old_weak;
4083 bfd_boolean override;
4084 bfd_boolean common;
4085 unsigned int old_alignment;
4086 bfd *old_bfd;
4087 bfd_boolean matched;
4088
4089 override = FALSE;
4090
4091 flags = BSF_NO_FLAGS;
4092 sec = NULL;
4093 value = isym->st_value;
4094 common = bed->common_definition (isym);
4095
4096 bind = ELF_ST_BIND (isym->st_info);
4097 switch (bind)
4098 {
4099 case STB_LOCAL:
4100 /* This should be impossible, since ELF requires that all
4101 global symbols follow all local symbols, and that sh_info
4102 point to the first global symbol. Unfortunately, Irix 5
4103 screws this up. */
4104 continue;
4105
4106 case STB_GLOBAL:
4107 if (isym->st_shndx != SHN_UNDEF && !common)
4108 flags = BSF_GLOBAL;
4109 break;
4110
4111 case STB_WEAK:
4112 flags = BSF_WEAK;
4113 break;
4114
4115 case STB_GNU_UNIQUE:
4116 flags = BSF_GNU_UNIQUE;
4117 break;
4118
4119 default:
4120 /* Leave it up to the processor backend. */
4121 break;
4122 }
4123
4124 if (isym->st_shndx == SHN_UNDEF)
4125 sec = bfd_und_section_ptr;
4126 else if (isym->st_shndx == SHN_ABS)
4127 sec = bfd_abs_section_ptr;
4128 else if (isym->st_shndx == SHN_COMMON)
4129 {
4130 sec = bfd_com_section_ptr;
4131 /* What ELF calls the size we call the value. What ELF
4132 calls the value we call the alignment. */
4133 value = isym->st_size;
4134 }
4135 else
4136 {
4137 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4138 if (sec == NULL)
4139 sec = bfd_abs_section_ptr;
4140 else if (discarded_section (sec))
4141 {
4142 /* Symbols from discarded section are undefined. We keep
4143 its visibility. */
4144 sec = bfd_und_section_ptr;
4145 isym->st_shndx = SHN_UNDEF;
4146 }
4147 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4148 value -= sec->vma;
4149 }
4150
4151 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4152 isym->st_name);
4153 if (name == NULL)
4154 goto error_free_vers;
4155
4156 if (isym->st_shndx == SHN_COMMON
4157 && (abfd->flags & BFD_PLUGIN) != 0)
4158 {
4159 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4160
4161 if (xc == NULL)
4162 {
4163 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4164 | SEC_EXCLUDE);
4165 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4166 if (xc == NULL)
4167 goto error_free_vers;
4168 }
4169 sec = xc;
4170 }
4171 else if (isym->st_shndx == SHN_COMMON
4172 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4173 && !bfd_link_relocatable (info))
4174 {
4175 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4176
4177 if (tcomm == NULL)
4178 {
4179 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4180 | SEC_LINKER_CREATED);
4181 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4182 if (tcomm == NULL)
4183 goto error_free_vers;
4184 }
4185 sec = tcomm;
4186 }
4187 else if (bed->elf_add_symbol_hook)
4188 {
4189 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4190 &sec, &value))
4191 goto error_free_vers;
4192
4193 /* The hook function sets the name to NULL if this symbol
4194 should be skipped for some reason. */
4195 if (name == NULL)
4196 continue;
4197 }
4198
4199 /* Sanity check that all possibilities were handled. */
4200 if (sec == NULL)
4201 {
4202 bfd_set_error (bfd_error_bad_value);
4203 goto error_free_vers;
4204 }
4205
4206 /* Silently discard TLS symbols from --just-syms. There's
4207 no way to combine a static TLS block with a new TLS block
4208 for this executable. */
4209 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4210 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4211 continue;
4212
4213 if (bfd_is_und_section (sec)
4214 || bfd_is_com_section (sec))
4215 definition = FALSE;
4216 else
4217 definition = TRUE;
4218
4219 size_change_ok = FALSE;
4220 type_change_ok = bed->type_change_ok;
4221 old_weak = FALSE;
4222 matched = FALSE;
4223 old_alignment = 0;
4224 old_bfd = NULL;
4225 new_sec = sec;
4226
4227 if (is_elf_hash_table (htab))
4228 {
4229 Elf_Internal_Versym iver;
4230 unsigned int vernum = 0;
4231 bfd_boolean skip;
4232
4233 if (ever == NULL)
4234 {
4235 if (info->default_imported_symver)
4236 /* Use the default symbol version created earlier. */
4237 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4238 else
4239 iver.vs_vers = 0;
4240 }
4241 else
4242 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4243
4244 vernum = iver.vs_vers & VERSYM_VERSION;
4245
4246 /* If this is a hidden symbol, or if it is not version
4247 1, we append the version name to the symbol name.
4248 However, we do not modify a non-hidden absolute symbol
4249 if it is not a function, because it might be the version
4250 symbol itself. FIXME: What if it isn't? */
4251 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4252 || (vernum > 1
4253 && (!bfd_is_abs_section (sec)
4254 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4255 {
4256 const char *verstr;
4257 size_t namelen, verlen, newlen;
4258 char *newname, *p;
4259
4260 if (isym->st_shndx != SHN_UNDEF)
4261 {
4262 if (vernum > elf_tdata (abfd)->cverdefs)
4263 verstr = NULL;
4264 else if (vernum > 1)
4265 verstr =
4266 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4267 else
4268 verstr = "";
4269
4270 if (verstr == NULL)
4271 {
4272 (*_bfd_error_handler)
4273 (_("%B: %s: invalid version %u (max %d)"),
4274 abfd, name, vernum,
4275 elf_tdata (abfd)->cverdefs);
4276 bfd_set_error (bfd_error_bad_value);
4277 goto error_free_vers;
4278 }
4279 }
4280 else
4281 {
4282 /* We cannot simply test for the number of
4283 entries in the VERNEED section since the
4284 numbers for the needed versions do not start
4285 at 0. */
4286 Elf_Internal_Verneed *t;
4287
4288 verstr = NULL;
4289 for (t = elf_tdata (abfd)->verref;
4290 t != NULL;
4291 t = t->vn_nextref)
4292 {
4293 Elf_Internal_Vernaux *a;
4294
4295 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4296 {
4297 if (a->vna_other == vernum)
4298 {
4299 verstr = a->vna_nodename;
4300 break;
4301 }
4302 }
4303 if (a != NULL)
4304 break;
4305 }
4306 if (verstr == NULL)
4307 {
4308 (*_bfd_error_handler)
4309 (_("%B: %s: invalid needed version %d"),
4310 abfd, name, vernum);
4311 bfd_set_error (bfd_error_bad_value);
4312 goto error_free_vers;
4313 }
4314 }
4315
4316 namelen = strlen (name);
4317 verlen = strlen (verstr);
4318 newlen = namelen + verlen + 2;
4319 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4320 && isym->st_shndx != SHN_UNDEF)
4321 ++newlen;
4322
4323 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4324 if (newname == NULL)
4325 goto error_free_vers;
4326 memcpy (newname, name, namelen);
4327 p = newname + namelen;
4328 *p++ = ELF_VER_CHR;
4329 /* If this is a defined non-hidden version symbol,
4330 we add another @ to the name. This indicates the
4331 default version of the symbol. */
4332 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4333 && isym->st_shndx != SHN_UNDEF)
4334 *p++ = ELF_VER_CHR;
4335 memcpy (p, verstr, verlen + 1);
4336
4337 name = newname;
4338 }
4339
4340 /* If this symbol has default visibility and the user has
4341 requested we not re-export it, then mark it as hidden. */
4342 if (!bfd_is_und_section (sec)
4343 && !dynamic
4344 && abfd->no_export
4345 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4346 isym->st_other = (STV_HIDDEN
4347 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4348
4349 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4350 sym_hash, &old_bfd, &old_weak,
4351 &old_alignment, &skip, &override,
4352 &type_change_ok, &size_change_ok,
4353 &matched))
4354 goto error_free_vers;
4355
4356 if (skip)
4357 continue;
4358
4359 /* Override a definition only if the new symbol matches the
4360 existing one. */
4361 if (override && matched)
4362 definition = FALSE;
4363
4364 h = *sym_hash;
4365 while (h->root.type == bfd_link_hash_indirect
4366 || h->root.type == bfd_link_hash_warning)
4367 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4368
4369 if (elf_tdata (abfd)->verdef != NULL
4370 && vernum > 1
4371 && definition)
4372 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4373 }
4374
4375 if (! (_bfd_generic_link_add_one_symbol
4376 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4377 (struct bfd_link_hash_entry **) sym_hash)))
4378 goto error_free_vers;
4379
4380 h = *sym_hash;
4381 /* We need to make sure that indirect symbol dynamic flags are
4382 updated. */
4383 hi = h;
4384 while (h->root.type == bfd_link_hash_indirect
4385 || h->root.type == bfd_link_hash_warning)
4386 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4387
4388 *sym_hash = h;
4389
4390 new_weak = (flags & BSF_WEAK) != 0;
4391 new_weakdef = FALSE;
4392 if (dynamic
4393 && definition
4394 && new_weak
4395 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4396 && is_elf_hash_table (htab)
4397 && h->u.weakdef == NULL)
4398 {
4399 /* Keep a list of all weak defined non function symbols from
4400 a dynamic object, using the weakdef field. Later in this
4401 function we will set the weakdef field to the correct
4402 value. We only put non-function symbols from dynamic
4403 objects on this list, because that happens to be the only
4404 time we need to know the normal symbol corresponding to a
4405 weak symbol, and the information is time consuming to
4406 figure out. If the weakdef field is not already NULL,
4407 then this symbol was already defined by some previous
4408 dynamic object, and we will be using that previous
4409 definition anyhow. */
4410
4411 h->u.weakdef = weaks;
4412 weaks = h;
4413 new_weakdef = TRUE;
4414 }
4415
4416 /* Set the alignment of a common symbol. */
4417 if ((common || bfd_is_com_section (sec))
4418 && h->root.type == bfd_link_hash_common)
4419 {
4420 unsigned int align;
4421
4422 if (common)
4423 align = bfd_log2 (isym->st_value);
4424 else
4425 {
4426 /* The new symbol is a common symbol in a shared object.
4427 We need to get the alignment from the section. */
4428 align = new_sec->alignment_power;
4429 }
4430 if (align > old_alignment)
4431 h->root.u.c.p->alignment_power = align;
4432 else
4433 h->root.u.c.p->alignment_power = old_alignment;
4434 }
4435
4436 if (is_elf_hash_table (htab))
4437 {
4438 /* Set a flag in the hash table entry indicating the type of
4439 reference or definition we just found. A dynamic symbol
4440 is one which is referenced or defined by both a regular
4441 object and a shared object. */
4442 bfd_boolean dynsym = FALSE;
4443
4444 /* Plugin symbols aren't normal. Don't set def_regular or
4445 ref_regular for them, or make them dynamic. */
4446 if ((abfd->flags & BFD_PLUGIN) != 0)
4447 ;
4448 else if (! dynamic)
4449 {
4450 if (! definition)
4451 {
4452 h->ref_regular = 1;
4453 if (bind != STB_WEAK)
4454 h->ref_regular_nonweak = 1;
4455 }
4456 else
4457 {
4458 h->def_regular = 1;
4459 if (h->def_dynamic)
4460 {
4461 h->def_dynamic = 0;
4462 h->ref_dynamic = 1;
4463 }
4464 }
4465
4466 /* If the indirect symbol has been forced local, don't
4467 make the real symbol dynamic. */
4468 if ((h == hi || !hi->forced_local)
4469 && (bfd_link_dll (info)
4470 || h->def_dynamic
4471 || h->ref_dynamic))
4472 dynsym = TRUE;
4473 }
4474 else
4475 {
4476 if (! definition)
4477 {
4478 h->ref_dynamic = 1;
4479 hi->ref_dynamic = 1;
4480 }
4481 else
4482 {
4483 h->def_dynamic = 1;
4484 hi->def_dynamic = 1;
4485 }
4486
4487 /* If the indirect symbol has been forced local, don't
4488 make the real symbol dynamic. */
4489 if ((h == hi || !hi->forced_local)
4490 && (h->def_regular
4491 || h->ref_regular
4492 || (h->u.weakdef != NULL
4493 && ! new_weakdef
4494 && h->u.weakdef->dynindx != -1)))
4495 dynsym = TRUE;
4496 }
4497
4498 /* Check to see if we need to add an indirect symbol for
4499 the default name. */
4500 if (definition
4501 || (!override && h->root.type == bfd_link_hash_common))
4502 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4503 sec, value, &old_bfd, &dynsym))
4504 goto error_free_vers;
4505
4506 /* Check the alignment when a common symbol is involved. This
4507 can change when a common symbol is overridden by a normal
4508 definition or a common symbol is ignored due to the old
4509 normal definition. We need to make sure the maximum
4510 alignment is maintained. */
4511 if ((old_alignment || common)
4512 && h->root.type != bfd_link_hash_common)
4513 {
4514 unsigned int common_align;
4515 unsigned int normal_align;
4516 unsigned int symbol_align;
4517 bfd *normal_bfd;
4518 bfd *common_bfd;
4519
4520 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4521 || h->root.type == bfd_link_hash_defweak);
4522
4523 symbol_align = ffs (h->root.u.def.value) - 1;
4524 if (h->root.u.def.section->owner != NULL
4525 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4526 {
4527 normal_align = h->root.u.def.section->alignment_power;
4528 if (normal_align > symbol_align)
4529 normal_align = symbol_align;
4530 }
4531 else
4532 normal_align = symbol_align;
4533
4534 if (old_alignment)
4535 {
4536 common_align = old_alignment;
4537 common_bfd = old_bfd;
4538 normal_bfd = abfd;
4539 }
4540 else
4541 {
4542 common_align = bfd_log2 (isym->st_value);
4543 common_bfd = abfd;
4544 normal_bfd = old_bfd;
4545 }
4546
4547 if (normal_align < common_align)
4548 {
4549 /* PR binutils/2735 */
4550 if (normal_bfd == NULL)
4551 (*_bfd_error_handler)
4552 (_("Warning: alignment %u of common symbol `%s' in %B is"
4553 " greater than the alignment (%u) of its section %A"),
4554 common_bfd, h->root.u.def.section,
4555 1 << common_align, name, 1 << normal_align);
4556 else
4557 (*_bfd_error_handler)
4558 (_("Warning: alignment %u of symbol `%s' in %B"
4559 " is smaller than %u in %B"),
4560 normal_bfd, common_bfd,
4561 1 << normal_align, name, 1 << common_align);
4562 }
4563 }
4564
4565 /* Remember the symbol size if it isn't undefined. */
4566 if (isym->st_size != 0
4567 && isym->st_shndx != SHN_UNDEF
4568 && (definition || h->size == 0))
4569 {
4570 if (h->size != 0
4571 && h->size != isym->st_size
4572 && ! size_change_ok)
4573 (*_bfd_error_handler)
4574 (_("Warning: size of symbol `%s' changed"
4575 " from %lu in %B to %lu in %B"),
4576 old_bfd, abfd,
4577 name, (unsigned long) h->size,
4578 (unsigned long) isym->st_size);
4579
4580 h->size = isym->st_size;
4581 }
4582
4583 /* If this is a common symbol, then we always want H->SIZE
4584 to be the size of the common symbol. The code just above
4585 won't fix the size if a common symbol becomes larger. We
4586 don't warn about a size change here, because that is
4587 covered by --warn-common. Allow changes between different
4588 function types. */
4589 if (h->root.type == bfd_link_hash_common)
4590 h->size = h->root.u.c.size;
4591
4592 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4593 && ((definition && !new_weak)
4594 || (old_weak && h->root.type == bfd_link_hash_common)
4595 || h->type == STT_NOTYPE))
4596 {
4597 unsigned int type = ELF_ST_TYPE (isym->st_info);
4598
4599 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4600 symbol. */
4601 if (type == STT_GNU_IFUNC
4602 && (abfd->flags & DYNAMIC) != 0)
4603 type = STT_FUNC;
4604
4605 if (h->type != type)
4606 {
4607 if (h->type != STT_NOTYPE && ! type_change_ok)
4608 (*_bfd_error_handler)
4609 (_("Warning: type of symbol `%s' changed"
4610 " from %d to %d in %B"),
4611 abfd, name, h->type, type);
4612
4613 h->type = type;
4614 }
4615 }
4616
4617 /* Merge st_other field. */
4618 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4619
4620 /* We don't want to make debug symbol dynamic. */
4621 if (definition
4622 && (sec->flags & SEC_DEBUGGING)
4623 && !bfd_link_relocatable (info))
4624 dynsym = FALSE;
4625
4626 /* Nor should we make plugin symbols dynamic. */
4627 if ((abfd->flags & BFD_PLUGIN) != 0)
4628 dynsym = FALSE;
4629
4630 if (definition)
4631 {
4632 h->target_internal = isym->st_target_internal;
4633 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4634 }
4635
4636 if (definition && !dynamic)
4637 {
4638 char *p = strchr (name, ELF_VER_CHR);
4639 if (p != NULL && p[1] != ELF_VER_CHR)
4640 {
4641 /* Queue non-default versions so that .symver x, x@FOO
4642 aliases can be checked. */
4643 if (!nondeflt_vers)
4644 {
4645 amt = ((isymend - isym + 1)
4646 * sizeof (struct elf_link_hash_entry *));
4647 nondeflt_vers
4648 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4649 if (!nondeflt_vers)
4650 goto error_free_vers;
4651 }
4652 nondeflt_vers[nondeflt_vers_cnt++] = h;
4653 }
4654 }
4655
4656 if (dynsym && h->dynindx == -1)
4657 {
4658 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4659 goto error_free_vers;
4660 if (h->u.weakdef != NULL
4661 && ! new_weakdef
4662 && h->u.weakdef->dynindx == -1)
4663 {
4664 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4665 goto error_free_vers;
4666 }
4667 }
4668 else if (h->dynindx != -1)
4669 /* If the symbol already has a dynamic index, but
4670 visibility says it should not be visible, turn it into
4671 a local symbol. */
4672 switch (ELF_ST_VISIBILITY (h->other))
4673 {
4674 case STV_INTERNAL:
4675 case STV_HIDDEN:
4676 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4677 dynsym = FALSE;
4678 break;
4679 }
4680
4681 /* Don't add DT_NEEDED for references from the dummy bfd nor
4682 for unmatched symbol. */
4683 if (!add_needed
4684 && matched
4685 && definition
4686 && ((dynsym
4687 && h->ref_regular_nonweak
4688 && (old_bfd == NULL
4689 || (old_bfd->flags & BFD_PLUGIN) == 0))
4690 || (h->ref_dynamic_nonweak
4691 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4692 && !on_needed_list (elf_dt_name (abfd),
4693 htab->needed, NULL))))
4694 {
4695 int ret;
4696 const char *soname = elf_dt_name (abfd);
4697
4698 info->callbacks->minfo ("%!", soname, old_bfd,
4699 h->root.root.string);
4700
4701 /* A symbol from a library loaded via DT_NEEDED of some
4702 other library is referenced by a regular object.
4703 Add a DT_NEEDED entry for it. Issue an error if
4704 --no-add-needed is used and the reference was not
4705 a weak one. */
4706 if (old_bfd != NULL
4707 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4708 {
4709 (*_bfd_error_handler)
4710 (_("%B: undefined reference to symbol '%s'"),
4711 old_bfd, name);
4712 bfd_set_error (bfd_error_missing_dso);
4713 goto error_free_vers;
4714 }
4715
4716 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4717 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4718
4719 add_needed = TRUE;
4720 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4721 if (ret < 0)
4722 goto error_free_vers;
4723
4724 BFD_ASSERT (ret == 0);
4725 }
4726 }
4727 }
4728
4729 if (extversym != NULL)
4730 {
4731 free (extversym);
4732 extversym = NULL;
4733 }
4734
4735 if (isymbuf != NULL)
4736 {
4737 free (isymbuf);
4738 isymbuf = NULL;
4739 }
4740
4741 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4742 {
4743 unsigned int i;
4744
4745 /* Restore the symbol table. */
4746 old_ent = (char *) old_tab + tabsize;
4747 memset (elf_sym_hashes (abfd), 0,
4748 extsymcount * sizeof (struct elf_link_hash_entry *));
4749 htab->root.table.table = old_table;
4750 htab->root.table.size = old_size;
4751 htab->root.table.count = old_count;
4752 memcpy (htab->root.table.table, old_tab, tabsize);
4753 htab->root.undefs = old_undefs;
4754 htab->root.undefs_tail = old_undefs_tail;
4755 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4756 for (i = 0; i < htab->root.table.size; i++)
4757 {
4758 struct bfd_hash_entry *p;
4759 struct elf_link_hash_entry *h;
4760 bfd_size_type size;
4761 unsigned int alignment_power;
4762
4763 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4764 {
4765 h = (struct elf_link_hash_entry *) p;
4766 if (h->root.type == bfd_link_hash_warning)
4767 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4768 if (h->dynindx >= old_dynsymcount
4769 && h->dynstr_index < old_dynstr_size)
4770 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4771
4772 /* Preserve the maximum alignment and size for common
4773 symbols even if this dynamic lib isn't on DT_NEEDED
4774 since it can still be loaded at run time by another
4775 dynamic lib. */
4776 if (h->root.type == bfd_link_hash_common)
4777 {
4778 size = h->root.u.c.size;
4779 alignment_power = h->root.u.c.p->alignment_power;
4780 }
4781 else
4782 {
4783 size = 0;
4784 alignment_power = 0;
4785 }
4786 memcpy (p, old_ent, htab->root.table.entsize);
4787 old_ent = (char *) old_ent + htab->root.table.entsize;
4788 h = (struct elf_link_hash_entry *) p;
4789 if (h->root.type == bfd_link_hash_warning)
4790 {
4791 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4792 old_ent = (char *) old_ent + htab->root.table.entsize;
4793 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4794 }
4795 if (h->root.type == bfd_link_hash_common)
4796 {
4797 if (size > h->root.u.c.size)
4798 h->root.u.c.size = size;
4799 if (alignment_power > h->root.u.c.p->alignment_power)
4800 h->root.u.c.p->alignment_power = alignment_power;
4801 }
4802 }
4803 }
4804
4805 /* Make a special call to the linker "notice" function to
4806 tell it that symbols added for crefs may need to be removed. */
4807 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4808 goto error_free_vers;
4809
4810 free (old_tab);
4811 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4812 alloc_mark);
4813 if (nondeflt_vers != NULL)
4814 free (nondeflt_vers);
4815 return TRUE;
4816 }
4817
4818 if (old_tab != NULL)
4819 {
4820 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4821 goto error_free_vers;
4822 free (old_tab);
4823 old_tab = NULL;
4824 }
4825
4826 /* Now that all the symbols from this input file are created, if
4827 not performing a relocatable link, handle .symver foo, foo@BAR
4828 such that any relocs against foo become foo@BAR. */
4829 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
4830 {
4831 bfd_size_type cnt, symidx;
4832
4833 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4834 {
4835 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4836 char *shortname, *p;
4837
4838 p = strchr (h->root.root.string, ELF_VER_CHR);
4839 if (p == NULL
4840 || (h->root.type != bfd_link_hash_defined
4841 && h->root.type != bfd_link_hash_defweak))
4842 continue;
4843
4844 amt = p - h->root.root.string;
4845 shortname = (char *) bfd_malloc (amt + 1);
4846 if (!shortname)
4847 goto error_free_vers;
4848 memcpy (shortname, h->root.root.string, amt);
4849 shortname[amt] = '\0';
4850
4851 hi = (struct elf_link_hash_entry *)
4852 bfd_link_hash_lookup (&htab->root, shortname,
4853 FALSE, FALSE, FALSE);
4854 if (hi != NULL
4855 && hi->root.type == h->root.type
4856 && hi->root.u.def.value == h->root.u.def.value
4857 && hi->root.u.def.section == h->root.u.def.section)
4858 {
4859 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4860 hi->root.type = bfd_link_hash_indirect;
4861 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4862 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4863 sym_hash = elf_sym_hashes (abfd);
4864 if (sym_hash)
4865 for (symidx = 0; symidx < extsymcount; ++symidx)
4866 if (sym_hash[symidx] == hi)
4867 {
4868 sym_hash[symidx] = h;
4869 break;
4870 }
4871 }
4872 free (shortname);
4873 }
4874 free (nondeflt_vers);
4875 nondeflt_vers = NULL;
4876 }
4877
4878 /* Now set the weakdefs field correctly for all the weak defined
4879 symbols we found. The only way to do this is to search all the
4880 symbols. Since we only need the information for non functions in
4881 dynamic objects, that's the only time we actually put anything on
4882 the list WEAKS. We need this information so that if a regular
4883 object refers to a symbol defined weakly in a dynamic object, the
4884 real symbol in the dynamic object is also put in the dynamic
4885 symbols; we also must arrange for both symbols to point to the
4886 same memory location. We could handle the general case of symbol
4887 aliasing, but a general symbol alias can only be generated in
4888 assembler code, handling it correctly would be very time
4889 consuming, and other ELF linkers don't handle general aliasing
4890 either. */
4891 if (weaks != NULL)
4892 {
4893 struct elf_link_hash_entry **hpp;
4894 struct elf_link_hash_entry **hppend;
4895 struct elf_link_hash_entry **sorted_sym_hash;
4896 struct elf_link_hash_entry *h;
4897 size_t sym_count;
4898
4899 /* Since we have to search the whole symbol list for each weak
4900 defined symbol, search time for N weak defined symbols will be
4901 O(N^2). Binary search will cut it down to O(NlogN). */
4902 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4903 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4904 if (sorted_sym_hash == NULL)
4905 goto error_return;
4906 sym_hash = sorted_sym_hash;
4907 hpp = elf_sym_hashes (abfd);
4908 hppend = hpp + extsymcount;
4909 sym_count = 0;
4910 for (; hpp < hppend; hpp++)
4911 {
4912 h = *hpp;
4913 if (h != NULL
4914 && h->root.type == bfd_link_hash_defined
4915 && !bed->is_function_type (h->type))
4916 {
4917 *sym_hash = h;
4918 sym_hash++;
4919 sym_count++;
4920 }
4921 }
4922
4923 qsort (sorted_sym_hash, sym_count,
4924 sizeof (struct elf_link_hash_entry *),
4925 elf_sort_symbol);
4926
4927 while (weaks != NULL)
4928 {
4929 struct elf_link_hash_entry *hlook;
4930 asection *slook;
4931 bfd_vma vlook;
4932 size_t i, j, idx = 0;
4933
4934 hlook = weaks;
4935 weaks = hlook->u.weakdef;
4936 hlook->u.weakdef = NULL;
4937
4938 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4939 || hlook->root.type == bfd_link_hash_defweak
4940 || hlook->root.type == bfd_link_hash_common
4941 || hlook->root.type == bfd_link_hash_indirect);
4942 slook = hlook->root.u.def.section;
4943 vlook = hlook->root.u.def.value;
4944
4945 i = 0;
4946 j = sym_count;
4947 while (i != j)
4948 {
4949 bfd_signed_vma vdiff;
4950 idx = (i + j) / 2;
4951 h = sorted_sym_hash[idx];
4952 vdiff = vlook - h->root.u.def.value;
4953 if (vdiff < 0)
4954 j = idx;
4955 else if (vdiff > 0)
4956 i = idx + 1;
4957 else
4958 {
4959 int sdiff = slook->id - h->root.u.def.section->id;
4960 if (sdiff < 0)
4961 j = idx;
4962 else if (sdiff > 0)
4963 i = idx + 1;
4964 else
4965 break;
4966 }
4967 }
4968
4969 /* We didn't find a value/section match. */
4970 if (i == j)
4971 continue;
4972
4973 /* With multiple aliases, or when the weak symbol is already
4974 strongly defined, we have multiple matching symbols and
4975 the binary search above may land on any of them. Step
4976 one past the matching symbol(s). */
4977 while (++idx != j)
4978 {
4979 h = sorted_sym_hash[idx];
4980 if (h->root.u.def.section != slook
4981 || h->root.u.def.value != vlook)
4982 break;
4983 }
4984
4985 /* Now look back over the aliases. Since we sorted by size
4986 as well as value and section, we'll choose the one with
4987 the largest size. */
4988 while (idx-- != i)
4989 {
4990 h = sorted_sym_hash[idx];
4991
4992 /* Stop if value or section doesn't match. */
4993 if (h->root.u.def.section != slook
4994 || h->root.u.def.value != vlook)
4995 break;
4996 else if (h != hlook)
4997 {
4998 hlook->u.weakdef = h;
4999
5000 /* If the weak definition is in the list of dynamic
5001 symbols, make sure the real definition is put
5002 there as well. */
5003 if (hlook->dynindx != -1 && h->dynindx == -1)
5004 {
5005 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5006 {
5007 err_free_sym_hash:
5008 free (sorted_sym_hash);
5009 goto error_return;
5010 }
5011 }
5012
5013 /* If the real definition is in the list of dynamic
5014 symbols, make sure the weak definition is put
5015 there as well. If we don't do this, then the
5016 dynamic loader might not merge the entries for the
5017 real definition and the weak definition. */
5018 if (h->dynindx != -1 && hlook->dynindx == -1)
5019 {
5020 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5021 goto err_free_sym_hash;
5022 }
5023 break;
5024 }
5025 }
5026 }
5027
5028 free (sorted_sym_hash);
5029 }
5030
5031 if (bed->check_directives
5032 && !(*bed->check_directives) (abfd, info))
5033 return FALSE;
5034
5035 if (!info->check_relocs_after_open_input
5036 && !_bfd_elf_link_check_relocs (abfd, info))
5037 return FALSE;
5038
5039 /* If this is a non-traditional link, try to optimize the handling
5040 of the .stab/.stabstr sections. */
5041 if (! dynamic
5042 && ! info->traditional_format
5043 && is_elf_hash_table (htab)
5044 && (info->strip != strip_all && info->strip != strip_debugger))
5045 {
5046 asection *stabstr;
5047
5048 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5049 if (stabstr != NULL)
5050 {
5051 bfd_size_type string_offset = 0;
5052 asection *stab;
5053
5054 for (stab = abfd->sections; stab; stab = stab->next)
5055 if (CONST_STRNEQ (stab->name, ".stab")
5056 && (!stab->name[5] ||
5057 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5058 && (stab->flags & SEC_MERGE) == 0
5059 && !bfd_is_abs_section (stab->output_section))
5060 {
5061 struct bfd_elf_section_data *secdata;
5062
5063 secdata = elf_section_data (stab);
5064 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5065 stabstr, &secdata->sec_info,
5066 &string_offset))
5067 goto error_return;
5068 if (secdata->sec_info)
5069 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5070 }
5071 }
5072 }
5073
5074 if (is_elf_hash_table (htab) && add_needed)
5075 {
5076 /* Add this bfd to the loaded list. */
5077 struct elf_link_loaded_list *n;
5078
5079 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5080 if (n == NULL)
5081 goto error_return;
5082 n->abfd = abfd;
5083 n->next = htab->loaded;
5084 htab->loaded = n;
5085 }
5086
5087 return TRUE;
5088
5089 error_free_vers:
5090 if (old_tab != NULL)
5091 free (old_tab);
5092 if (nondeflt_vers != NULL)
5093 free (nondeflt_vers);
5094 if (extversym != NULL)
5095 free (extversym);
5096 error_free_sym:
5097 if (isymbuf != NULL)
5098 free (isymbuf);
5099 error_return:
5100 return FALSE;
5101 }
5102
5103 /* Return the linker hash table entry of a symbol that might be
5104 satisfied by an archive symbol. Return -1 on error. */
5105
5106 struct elf_link_hash_entry *
5107 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5108 struct bfd_link_info *info,
5109 const char *name)
5110 {
5111 struct elf_link_hash_entry *h;
5112 char *p, *copy;
5113 size_t len, first;
5114
5115 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5116 if (h != NULL)
5117 return h;
5118
5119 /* If this is a default version (the name contains @@), look up the
5120 symbol again with only one `@' as well as without the version.
5121 The effect is that references to the symbol with and without the
5122 version will be matched by the default symbol in the archive. */
5123
5124 p = strchr (name, ELF_VER_CHR);
5125 if (p == NULL || p[1] != ELF_VER_CHR)
5126 return h;
5127
5128 /* First check with only one `@'. */
5129 len = strlen (name);
5130 copy = (char *) bfd_alloc (abfd, len);
5131 if (copy == NULL)
5132 return (struct elf_link_hash_entry *) 0 - 1;
5133
5134 first = p - name + 1;
5135 memcpy (copy, name, first);
5136 memcpy (copy + first, name + first + 1, len - first);
5137
5138 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5139 if (h == NULL)
5140 {
5141 /* We also need to check references to the symbol without the
5142 version. */
5143 copy[first - 1] = '\0';
5144 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5145 FALSE, FALSE, TRUE);
5146 }
5147
5148 bfd_release (abfd, copy);
5149 return h;
5150 }
5151
5152 /* Add symbols from an ELF archive file to the linker hash table. We
5153 don't use _bfd_generic_link_add_archive_symbols because we need to
5154 handle versioned symbols.
5155
5156 Fortunately, ELF archive handling is simpler than that done by
5157 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5158 oddities. In ELF, if we find a symbol in the archive map, and the
5159 symbol is currently undefined, we know that we must pull in that
5160 object file.
5161
5162 Unfortunately, we do have to make multiple passes over the symbol
5163 table until nothing further is resolved. */
5164
5165 static bfd_boolean
5166 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5167 {
5168 symindex c;
5169 unsigned char *included = NULL;
5170 carsym *symdefs;
5171 bfd_boolean loop;
5172 bfd_size_type amt;
5173 const struct elf_backend_data *bed;
5174 struct elf_link_hash_entry * (*archive_symbol_lookup)
5175 (bfd *, struct bfd_link_info *, const char *);
5176
5177 if (! bfd_has_map (abfd))
5178 {
5179 /* An empty archive is a special case. */
5180 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5181 return TRUE;
5182 bfd_set_error (bfd_error_no_armap);
5183 return FALSE;
5184 }
5185
5186 /* Keep track of all symbols we know to be already defined, and all
5187 files we know to be already included. This is to speed up the
5188 second and subsequent passes. */
5189 c = bfd_ardata (abfd)->symdef_count;
5190 if (c == 0)
5191 return TRUE;
5192 amt = c;
5193 amt *= sizeof (*included);
5194 included = (unsigned char *) bfd_zmalloc (amt);
5195 if (included == NULL)
5196 return FALSE;
5197
5198 symdefs = bfd_ardata (abfd)->symdefs;
5199 bed = get_elf_backend_data (abfd);
5200 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5201
5202 do
5203 {
5204 file_ptr last;
5205 symindex i;
5206 carsym *symdef;
5207 carsym *symdefend;
5208
5209 loop = FALSE;
5210 last = -1;
5211
5212 symdef = symdefs;
5213 symdefend = symdef + c;
5214 for (i = 0; symdef < symdefend; symdef++, i++)
5215 {
5216 struct elf_link_hash_entry *h;
5217 bfd *element;
5218 struct bfd_link_hash_entry *undefs_tail;
5219 symindex mark;
5220
5221 if (included[i])
5222 continue;
5223 if (symdef->file_offset == last)
5224 {
5225 included[i] = TRUE;
5226 continue;
5227 }
5228
5229 h = archive_symbol_lookup (abfd, info, symdef->name);
5230 if (h == (struct elf_link_hash_entry *) 0 - 1)
5231 goto error_return;
5232
5233 if (h == NULL)
5234 continue;
5235
5236 if (h->root.type == bfd_link_hash_common)
5237 {
5238 /* We currently have a common symbol. The archive map contains
5239 a reference to this symbol, so we may want to include it. We
5240 only want to include it however, if this archive element
5241 contains a definition of the symbol, not just another common
5242 declaration of it.
5243
5244 Unfortunately some archivers (including GNU ar) will put
5245 declarations of common symbols into their archive maps, as
5246 well as real definitions, so we cannot just go by the archive
5247 map alone. Instead we must read in the element's symbol
5248 table and check that to see what kind of symbol definition
5249 this is. */
5250 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5251 continue;
5252 }
5253 else if (h->root.type != bfd_link_hash_undefined)
5254 {
5255 if (h->root.type != bfd_link_hash_undefweak)
5256 /* Symbol must be defined. Don't check it again. */
5257 included[i] = TRUE;
5258 continue;
5259 }
5260
5261 /* We need to include this archive member. */
5262 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5263 if (element == NULL)
5264 goto error_return;
5265
5266 if (! bfd_check_format (element, bfd_object))
5267 goto error_return;
5268
5269 undefs_tail = info->hash->undefs_tail;
5270
5271 if (!(*info->callbacks
5272 ->add_archive_element) (info, element, symdef->name, &element))
5273 goto error_return;
5274 if (!bfd_link_add_symbols (element, info))
5275 goto error_return;
5276
5277 /* If there are any new undefined symbols, we need to make
5278 another pass through the archive in order to see whether
5279 they can be defined. FIXME: This isn't perfect, because
5280 common symbols wind up on undefs_tail and because an
5281 undefined symbol which is defined later on in this pass
5282 does not require another pass. This isn't a bug, but it
5283 does make the code less efficient than it could be. */
5284 if (undefs_tail != info->hash->undefs_tail)
5285 loop = TRUE;
5286
5287 /* Look backward to mark all symbols from this object file
5288 which we have already seen in this pass. */
5289 mark = i;
5290 do
5291 {
5292 included[mark] = TRUE;
5293 if (mark == 0)
5294 break;
5295 --mark;
5296 }
5297 while (symdefs[mark].file_offset == symdef->file_offset);
5298
5299 /* We mark subsequent symbols from this object file as we go
5300 on through the loop. */
5301 last = symdef->file_offset;
5302 }
5303 }
5304 while (loop);
5305
5306 free (included);
5307
5308 return TRUE;
5309
5310 error_return:
5311 if (included != NULL)
5312 free (included);
5313 return FALSE;
5314 }
5315
5316 /* Given an ELF BFD, add symbols to the global hash table as
5317 appropriate. */
5318
5319 bfd_boolean
5320 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5321 {
5322 switch (bfd_get_format (abfd))
5323 {
5324 case bfd_object:
5325 return elf_link_add_object_symbols (abfd, info);
5326 case bfd_archive:
5327 return elf_link_add_archive_symbols (abfd, info);
5328 default:
5329 bfd_set_error (bfd_error_wrong_format);
5330 return FALSE;
5331 }
5332 }
5333 \f
5334 struct hash_codes_info
5335 {
5336 unsigned long *hashcodes;
5337 bfd_boolean error;
5338 };
5339
5340 /* This function will be called though elf_link_hash_traverse to store
5341 all hash value of the exported symbols in an array. */
5342
5343 static bfd_boolean
5344 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5345 {
5346 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5347 const char *name;
5348 unsigned long ha;
5349 char *alc = NULL;
5350
5351 /* Ignore indirect symbols. These are added by the versioning code. */
5352 if (h->dynindx == -1)
5353 return TRUE;
5354
5355 name = h->root.root.string;
5356 if (h->versioned >= versioned)
5357 {
5358 char *p = strchr (name, ELF_VER_CHR);
5359 if (p != NULL)
5360 {
5361 alc = (char *) bfd_malloc (p - name + 1);
5362 if (alc == NULL)
5363 {
5364 inf->error = TRUE;
5365 return FALSE;
5366 }
5367 memcpy (alc, name, p - name);
5368 alc[p - name] = '\0';
5369 name = alc;
5370 }
5371 }
5372
5373 /* Compute the hash value. */
5374 ha = bfd_elf_hash (name);
5375
5376 /* Store the found hash value in the array given as the argument. */
5377 *(inf->hashcodes)++ = ha;
5378
5379 /* And store it in the struct so that we can put it in the hash table
5380 later. */
5381 h->u.elf_hash_value = ha;
5382
5383 if (alc != NULL)
5384 free (alc);
5385
5386 return TRUE;
5387 }
5388
5389 struct collect_gnu_hash_codes
5390 {
5391 bfd *output_bfd;
5392 const struct elf_backend_data *bed;
5393 unsigned long int nsyms;
5394 unsigned long int maskbits;
5395 unsigned long int *hashcodes;
5396 unsigned long int *hashval;
5397 unsigned long int *indx;
5398 unsigned long int *counts;
5399 bfd_vma *bitmask;
5400 bfd_byte *contents;
5401 long int min_dynindx;
5402 unsigned long int bucketcount;
5403 unsigned long int symindx;
5404 long int local_indx;
5405 long int shift1, shift2;
5406 unsigned long int mask;
5407 bfd_boolean error;
5408 };
5409
5410 /* This function will be called though elf_link_hash_traverse to store
5411 all hash value of the exported symbols in an array. */
5412
5413 static bfd_boolean
5414 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5415 {
5416 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5417 const char *name;
5418 unsigned long ha;
5419 char *alc = NULL;
5420
5421 /* Ignore indirect symbols. These are added by the versioning code. */
5422 if (h->dynindx == -1)
5423 return TRUE;
5424
5425 /* Ignore also local symbols and undefined symbols. */
5426 if (! (*s->bed->elf_hash_symbol) (h))
5427 return TRUE;
5428
5429 name = h->root.root.string;
5430 if (h->versioned >= versioned)
5431 {
5432 char *p = strchr (name, ELF_VER_CHR);
5433 if (p != NULL)
5434 {
5435 alc = (char *) bfd_malloc (p - name + 1);
5436 if (alc == NULL)
5437 {
5438 s->error = TRUE;
5439 return FALSE;
5440 }
5441 memcpy (alc, name, p - name);
5442 alc[p - name] = '\0';
5443 name = alc;
5444 }
5445 }
5446
5447 /* Compute the hash value. */
5448 ha = bfd_elf_gnu_hash (name);
5449
5450 /* Store the found hash value in the array for compute_bucket_count,
5451 and also for .dynsym reordering purposes. */
5452 s->hashcodes[s->nsyms] = ha;
5453 s->hashval[h->dynindx] = ha;
5454 ++s->nsyms;
5455 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5456 s->min_dynindx = h->dynindx;
5457
5458 if (alc != NULL)
5459 free (alc);
5460
5461 return TRUE;
5462 }
5463
5464 /* This function will be called though elf_link_hash_traverse to do
5465 final dynaminc symbol renumbering. */
5466
5467 static bfd_boolean
5468 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5469 {
5470 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5471 unsigned long int bucket;
5472 unsigned long int val;
5473
5474 /* Ignore indirect symbols. */
5475 if (h->dynindx == -1)
5476 return TRUE;
5477
5478 /* Ignore also local symbols and undefined symbols. */
5479 if (! (*s->bed->elf_hash_symbol) (h))
5480 {
5481 if (h->dynindx >= s->min_dynindx)
5482 h->dynindx = s->local_indx++;
5483 return TRUE;
5484 }
5485
5486 bucket = s->hashval[h->dynindx] % s->bucketcount;
5487 val = (s->hashval[h->dynindx] >> s->shift1)
5488 & ((s->maskbits >> s->shift1) - 1);
5489 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5490 s->bitmask[val]
5491 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5492 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5493 if (s->counts[bucket] == 1)
5494 /* Last element terminates the chain. */
5495 val |= 1;
5496 bfd_put_32 (s->output_bfd, val,
5497 s->contents + (s->indx[bucket] - s->symindx) * 4);
5498 --s->counts[bucket];
5499 h->dynindx = s->indx[bucket]++;
5500 return TRUE;
5501 }
5502
5503 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5504
5505 bfd_boolean
5506 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5507 {
5508 return !(h->forced_local
5509 || h->root.type == bfd_link_hash_undefined
5510 || h->root.type == bfd_link_hash_undefweak
5511 || ((h->root.type == bfd_link_hash_defined
5512 || h->root.type == bfd_link_hash_defweak)
5513 && h->root.u.def.section->output_section == NULL));
5514 }
5515
5516 /* Array used to determine the number of hash table buckets to use
5517 based on the number of symbols there are. If there are fewer than
5518 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5519 fewer than 37 we use 17 buckets, and so forth. We never use more
5520 than 32771 buckets. */
5521
5522 static const size_t elf_buckets[] =
5523 {
5524 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5525 16411, 32771, 0
5526 };
5527
5528 /* Compute bucket count for hashing table. We do not use a static set
5529 of possible tables sizes anymore. Instead we determine for all
5530 possible reasonable sizes of the table the outcome (i.e., the
5531 number of collisions etc) and choose the best solution. The
5532 weighting functions are not too simple to allow the table to grow
5533 without bounds. Instead one of the weighting factors is the size.
5534 Therefore the result is always a good payoff between few collisions
5535 (= short chain lengths) and table size. */
5536 static size_t
5537 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5538 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5539 unsigned long int nsyms,
5540 int gnu_hash)
5541 {
5542 size_t best_size = 0;
5543 unsigned long int i;
5544
5545 /* We have a problem here. The following code to optimize the table
5546 size requires an integer type with more the 32 bits. If
5547 BFD_HOST_U_64_BIT is set we know about such a type. */
5548 #ifdef BFD_HOST_U_64_BIT
5549 if (info->optimize)
5550 {
5551 size_t minsize;
5552 size_t maxsize;
5553 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5554 bfd *dynobj = elf_hash_table (info)->dynobj;
5555 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5556 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5557 unsigned long int *counts;
5558 bfd_size_type amt;
5559 unsigned int no_improvement_count = 0;
5560
5561 /* Possible optimization parameters: if we have NSYMS symbols we say
5562 that the hashing table must at least have NSYMS/4 and at most
5563 2*NSYMS buckets. */
5564 minsize = nsyms / 4;
5565 if (minsize == 0)
5566 minsize = 1;
5567 best_size = maxsize = nsyms * 2;
5568 if (gnu_hash)
5569 {
5570 if (minsize < 2)
5571 minsize = 2;
5572 if ((best_size & 31) == 0)
5573 ++best_size;
5574 }
5575
5576 /* Create array where we count the collisions in. We must use bfd_malloc
5577 since the size could be large. */
5578 amt = maxsize;
5579 amt *= sizeof (unsigned long int);
5580 counts = (unsigned long int *) bfd_malloc (amt);
5581 if (counts == NULL)
5582 return 0;
5583
5584 /* Compute the "optimal" size for the hash table. The criteria is a
5585 minimal chain length. The minor criteria is (of course) the size
5586 of the table. */
5587 for (i = minsize; i < maxsize; ++i)
5588 {
5589 /* Walk through the array of hashcodes and count the collisions. */
5590 BFD_HOST_U_64_BIT max;
5591 unsigned long int j;
5592 unsigned long int fact;
5593
5594 if (gnu_hash && (i & 31) == 0)
5595 continue;
5596
5597 memset (counts, '\0', i * sizeof (unsigned long int));
5598
5599 /* Determine how often each hash bucket is used. */
5600 for (j = 0; j < nsyms; ++j)
5601 ++counts[hashcodes[j] % i];
5602
5603 /* For the weight function we need some information about the
5604 pagesize on the target. This is information need not be 100%
5605 accurate. Since this information is not available (so far) we
5606 define it here to a reasonable default value. If it is crucial
5607 to have a better value some day simply define this value. */
5608 # ifndef BFD_TARGET_PAGESIZE
5609 # define BFD_TARGET_PAGESIZE (4096)
5610 # endif
5611
5612 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5613 and the chains. */
5614 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5615
5616 # if 1
5617 /* Variant 1: optimize for short chains. We add the squares
5618 of all the chain lengths (which favors many small chain
5619 over a few long chains). */
5620 for (j = 0; j < i; ++j)
5621 max += counts[j] * counts[j];
5622
5623 /* This adds penalties for the overall size of the table. */
5624 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5625 max *= fact * fact;
5626 # else
5627 /* Variant 2: Optimize a lot more for small table. Here we
5628 also add squares of the size but we also add penalties for
5629 empty slots (the +1 term). */
5630 for (j = 0; j < i; ++j)
5631 max += (1 + counts[j]) * (1 + counts[j]);
5632
5633 /* The overall size of the table is considered, but not as
5634 strong as in variant 1, where it is squared. */
5635 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5636 max *= fact;
5637 # endif
5638
5639 /* Compare with current best results. */
5640 if (max < best_chlen)
5641 {
5642 best_chlen = max;
5643 best_size = i;
5644 no_improvement_count = 0;
5645 }
5646 /* PR 11843: Avoid futile long searches for the best bucket size
5647 when there are a large number of symbols. */
5648 else if (++no_improvement_count == 100)
5649 break;
5650 }
5651
5652 free (counts);
5653 }
5654 else
5655 #endif /* defined (BFD_HOST_U_64_BIT) */
5656 {
5657 /* This is the fallback solution if no 64bit type is available or if we
5658 are not supposed to spend much time on optimizations. We select the
5659 bucket count using a fixed set of numbers. */
5660 for (i = 0; elf_buckets[i] != 0; i++)
5661 {
5662 best_size = elf_buckets[i];
5663 if (nsyms < elf_buckets[i + 1])
5664 break;
5665 }
5666 if (gnu_hash && best_size < 2)
5667 best_size = 2;
5668 }
5669
5670 return best_size;
5671 }
5672
5673 /* Size any SHT_GROUP section for ld -r. */
5674
5675 bfd_boolean
5676 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5677 {
5678 bfd *ibfd;
5679
5680 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5681 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5682 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5683 return FALSE;
5684 return TRUE;
5685 }
5686
5687 /* Set a default stack segment size. The value in INFO wins. If it
5688 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5689 undefined it is initialized. */
5690
5691 bfd_boolean
5692 bfd_elf_stack_segment_size (bfd *output_bfd,
5693 struct bfd_link_info *info,
5694 const char *legacy_symbol,
5695 bfd_vma default_size)
5696 {
5697 struct elf_link_hash_entry *h = NULL;
5698
5699 /* Look for legacy symbol. */
5700 if (legacy_symbol)
5701 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5702 FALSE, FALSE, FALSE);
5703 if (h && (h->root.type == bfd_link_hash_defined
5704 || h->root.type == bfd_link_hash_defweak)
5705 && h->def_regular
5706 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5707 {
5708 /* The symbol has no type if specified on the command line. */
5709 h->type = STT_OBJECT;
5710 if (info->stacksize)
5711 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5712 output_bfd, legacy_symbol);
5713 else if (h->root.u.def.section != bfd_abs_section_ptr)
5714 (*_bfd_error_handler) (_("%B: %s not absolute"),
5715 output_bfd, legacy_symbol);
5716 else
5717 info->stacksize = h->root.u.def.value;
5718 }
5719
5720 if (!info->stacksize)
5721 /* If the user didn't set a size, or explicitly inhibit the
5722 size, set it now. */
5723 info->stacksize = default_size;
5724
5725 /* Provide the legacy symbol, if it is referenced. */
5726 if (h && (h->root.type == bfd_link_hash_undefined
5727 || h->root.type == bfd_link_hash_undefweak))
5728 {
5729 struct bfd_link_hash_entry *bh = NULL;
5730
5731 if (!(_bfd_generic_link_add_one_symbol
5732 (info, output_bfd, legacy_symbol,
5733 BSF_GLOBAL, bfd_abs_section_ptr,
5734 info->stacksize >= 0 ? info->stacksize : 0,
5735 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5736 return FALSE;
5737
5738 h = (struct elf_link_hash_entry *) bh;
5739 h->def_regular = 1;
5740 h->type = STT_OBJECT;
5741 }
5742
5743 return TRUE;
5744 }
5745
5746 /* Set up the sizes and contents of the ELF dynamic sections. This is
5747 called by the ELF linker emulation before_allocation routine. We
5748 must set the sizes of the sections before the linker sets the
5749 addresses of the various sections. */
5750
5751 bfd_boolean
5752 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5753 const char *soname,
5754 const char *rpath,
5755 const char *filter_shlib,
5756 const char *audit,
5757 const char *depaudit,
5758 const char * const *auxiliary_filters,
5759 struct bfd_link_info *info,
5760 asection **sinterpptr)
5761 {
5762 bfd_size_type soname_indx;
5763 bfd *dynobj;
5764 const struct elf_backend_data *bed;
5765 struct elf_info_failed asvinfo;
5766
5767 *sinterpptr = NULL;
5768
5769 soname_indx = (bfd_size_type) -1;
5770
5771 if (!is_elf_hash_table (info->hash))
5772 return TRUE;
5773
5774 bed = get_elf_backend_data (output_bfd);
5775
5776 /* Any syms created from now on start with -1 in
5777 got.refcount/offset and plt.refcount/offset. */
5778 elf_hash_table (info)->init_got_refcount
5779 = elf_hash_table (info)->init_got_offset;
5780 elf_hash_table (info)->init_plt_refcount
5781 = elf_hash_table (info)->init_plt_offset;
5782
5783 if (bfd_link_relocatable (info)
5784 && !_bfd_elf_size_group_sections (info))
5785 return FALSE;
5786
5787 /* The backend may have to create some sections regardless of whether
5788 we're dynamic or not. */
5789 if (bed->elf_backend_always_size_sections
5790 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5791 return FALSE;
5792
5793 /* Determine any GNU_STACK segment requirements, after the backend
5794 has had a chance to set a default segment size. */
5795 if (info->execstack)
5796 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5797 else if (info->noexecstack)
5798 elf_stack_flags (output_bfd) = PF_R | PF_W;
5799 else
5800 {
5801 bfd *inputobj;
5802 asection *notesec = NULL;
5803 int exec = 0;
5804
5805 for (inputobj = info->input_bfds;
5806 inputobj;
5807 inputobj = inputobj->link.next)
5808 {
5809 asection *s;
5810
5811 if (inputobj->flags
5812 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5813 continue;
5814 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5815 if (s)
5816 {
5817 if (s->flags & SEC_CODE)
5818 exec = PF_X;
5819 notesec = s;
5820 }
5821 else if (bed->default_execstack)
5822 exec = PF_X;
5823 }
5824 if (notesec || info->stacksize > 0)
5825 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5826 if (notesec && exec && bfd_link_relocatable (info)
5827 && notesec->output_section != bfd_abs_section_ptr)
5828 notesec->output_section->flags |= SEC_CODE;
5829 }
5830
5831 dynobj = elf_hash_table (info)->dynobj;
5832
5833 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5834 {
5835 struct elf_info_failed eif;
5836 struct elf_link_hash_entry *h;
5837 asection *dynstr;
5838 struct bfd_elf_version_tree *t;
5839 struct bfd_elf_version_expr *d;
5840 asection *s;
5841 bfd_boolean all_defined;
5842
5843 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5844 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
5845
5846 if (soname != NULL)
5847 {
5848 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5849 soname, TRUE);
5850 if (soname_indx == (bfd_size_type) -1
5851 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5852 return FALSE;
5853 }
5854
5855 if (info->symbolic)
5856 {
5857 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5858 return FALSE;
5859 info->flags |= DF_SYMBOLIC;
5860 }
5861
5862 if (rpath != NULL)
5863 {
5864 bfd_size_type indx;
5865 bfd_vma tag;
5866
5867 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5868 TRUE);
5869 if (indx == (bfd_size_type) -1)
5870 return FALSE;
5871
5872 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5873 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5874 return FALSE;
5875 }
5876
5877 if (filter_shlib != NULL)
5878 {
5879 bfd_size_type indx;
5880
5881 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5882 filter_shlib, TRUE);
5883 if (indx == (bfd_size_type) -1
5884 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5885 return FALSE;
5886 }
5887
5888 if (auxiliary_filters != NULL)
5889 {
5890 const char * const *p;
5891
5892 for (p = auxiliary_filters; *p != NULL; p++)
5893 {
5894 bfd_size_type indx;
5895
5896 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5897 *p, TRUE);
5898 if (indx == (bfd_size_type) -1
5899 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5900 return FALSE;
5901 }
5902 }
5903
5904 if (audit != NULL)
5905 {
5906 bfd_size_type indx;
5907
5908 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5909 TRUE);
5910 if (indx == (bfd_size_type) -1
5911 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5912 return FALSE;
5913 }
5914
5915 if (depaudit != NULL)
5916 {
5917 bfd_size_type indx;
5918
5919 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5920 TRUE);
5921 if (indx == (bfd_size_type) -1
5922 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5923 return FALSE;
5924 }
5925
5926 eif.info = info;
5927 eif.failed = FALSE;
5928
5929 /* If we are supposed to export all symbols into the dynamic symbol
5930 table (this is not the normal case), then do so. */
5931 if (info->export_dynamic
5932 || (bfd_link_executable (info) && info->dynamic))
5933 {
5934 elf_link_hash_traverse (elf_hash_table (info),
5935 _bfd_elf_export_symbol,
5936 &eif);
5937 if (eif.failed)
5938 return FALSE;
5939 }
5940
5941 /* Make all global versions with definition. */
5942 for (t = info->version_info; t != NULL; t = t->next)
5943 for (d = t->globals.list; d != NULL; d = d->next)
5944 if (!d->symver && d->literal)
5945 {
5946 const char *verstr, *name;
5947 size_t namelen, verlen, newlen;
5948 char *newname, *p, leading_char;
5949 struct elf_link_hash_entry *newh;
5950
5951 leading_char = bfd_get_symbol_leading_char (output_bfd);
5952 name = d->pattern;
5953 namelen = strlen (name) + (leading_char != '\0');
5954 verstr = t->name;
5955 verlen = strlen (verstr);
5956 newlen = namelen + verlen + 3;
5957
5958 newname = (char *) bfd_malloc (newlen);
5959 if (newname == NULL)
5960 return FALSE;
5961 newname[0] = leading_char;
5962 memcpy (newname + (leading_char != '\0'), name, namelen);
5963
5964 /* Check the hidden versioned definition. */
5965 p = newname + namelen;
5966 *p++ = ELF_VER_CHR;
5967 memcpy (p, verstr, verlen + 1);
5968 newh = elf_link_hash_lookup (elf_hash_table (info),
5969 newname, FALSE, FALSE,
5970 FALSE);
5971 if (newh == NULL
5972 || (newh->root.type != bfd_link_hash_defined
5973 && newh->root.type != bfd_link_hash_defweak))
5974 {
5975 /* Check the default versioned definition. */
5976 *p++ = ELF_VER_CHR;
5977 memcpy (p, verstr, verlen + 1);
5978 newh = elf_link_hash_lookup (elf_hash_table (info),
5979 newname, FALSE, FALSE,
5980 FALSE);
5981 }
5982 free (newname);
5983
5984 /* Mark this version if there is a definition and it is
5985 not defined in a shared object. */
5986 if (newh != NULL
5987 && !newh->def_dynamic
5988 && (newh->root.type == bfd_link_hash_defined
5989 || newh->root.type == bfd_link_hash_defweak))
5990 d->symver = 1;
5991 }
5992
5993 /* Attach all the symbols to their version information. */
5994 asvinfo.info = info;
5995 asvinfo.failed = FALSE;
5996
5997 elf_link_hash_traverse (elf_hash_table (info),
5998 _bfd_elf_link_assign_sym_version,
5999 &asvinfo);
6000 if (asvinfo.failed)
6001 return FALSE;
6002
6003 if (!info->allow_undefined_version)
6004 {
6005 /* Check if all global versions have a definition. */
6006 all_defined = TRUE;
6007 for (t = info->version_info; t != NULL; t = t->next)
6008 for (d = t->globals.list; d != NULL; d = d->next)
6009 if (d->literal && !d->symver && !d->script)
6010 {
6011 (*_bfd_error_handler)
6012 (_("%s: undefined version: %s"),
6013 d->pattern, t->name);
6014 all_defined = FALSE;
6015 }
6016
6017 if (!all_defined)
6018 {
6019 bfd_set_error (bfd_error_bad_value);
6020 return FALSE;
6021 }
6022 }
6023
6024 /* Find all symbols which were defined in a dynamic object and make
6025 the backend pick a reasonable value for them. */
6026 elf_link_hash_traverse (elf_hash_table (info),
6027 _bfd_elf_adjust_dynamic_symbol,
6028 &eif);
6029 if (eif.failed)
6030 return FALSE;
6031
6032 /* Add some entries to the .dynamic section. We fill in some of the
6033 values later, in bfd_elf_final_link, but we must add the entries
6034 now so that we know the final size of the .dynamic section. */
6035
6036 /* If there are initialization and/or finalization functions to
6037 call then add the corresponding DT_INIT/DT_FINI entries. */
6038 h = (info->init_function
6039 ? elf_link_hash_lookup (elf_hash_table (info),
6040 info->init_function, FALSE,
6041 FALSE, FALSE)
6042 : NULL);
6043 if (h != NULL
6044 && (h->ref_regular
6045 || h->def_regular))
6046 {
6047 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
6048 return FALSE;
6049 }
6050 h = (info->fini_function
6051 ? elf_link_hash_lookup (elf_hash_table (info),
6052 info->fini_function, FALSE,
6053 FALSE, FALSE)
6054 : NULL);
6055 if (h != NULL
6056 && (h->ref_regular
6057 || h->def_regular))
6058 {
6059 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
6060 return FALSE;
6061 }
6062
6063 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
6064 if (s != NULL && s->linker_has_input)
6065 {
6066 /* DT_PREINIT_ARRAY is not allowed in shared library. */
6067 if (! bfd_link_executable (info))
6068 {
6069 bfd *sub;
6070 asection *o;
6071
6072 for (sub = info->input_bfds; sub != NULL;
6073 sub = sub->link.next)
6074 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
6075 for (o = sub->sections; o != NULL; o = o->next)
6076 if (elf_section_data (o)->this_hdr.sh_type
6077 == SHT_PREINIT_ARRAY)
6078 {
6079 (*_bfd_error_handler)
6080 (_("%B: .preinit_array section is not allowed in DSO"),
6081 sub);
6082 break;
6083 }
6084
6085 bfd_set_error (bfd_error_nonrepresentable_section);
6086 return FALSE;
6087 }
6088
6089 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6090 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
6091 return FALSE;
6092 }
6093 s = bfd_get_section_by_name (output_bfd, ".init_array");
6094 if (s != NULL && s->linker_has_input)
6095 {
6096 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
6097 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
6098 return FALSE;
6099 }
6100 s = bfd_get_section_by_name (output_bfd, ".fini_array");
6101 if (s != NULL && s->linker_has_input)
6102 {
6103 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
6104 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
6105 return FALSE;
6106 }
6107
6108 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
6109 /* If .dynstr is excluded from the link, we don't want any of
6110 these tags. Strictly, we should be checking each section
6111 individually; This quick check covers for the case where
6112 someone does a /DISCARD/ : { *(*) }. */
6113 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6114 {
6115 bfd_size_type strsize;
6116
6117 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6118 if ((info->emit_hash
6119 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6120 || (info->emit_gnu_hash
6121 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6122 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6123 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6124 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6125 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6126 bed->s->sizeof_sym))
6127 return FALSE;
6128 }
6129 }
6130
6131 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6132 return FALSE;
6133
6134 /* The backend must work out the sizes of all the other dynamic
6135 sections. */
6136 if (dynobj != NULL
6137 && bed->elf_backend_size_dynamic_sections != NULL
6138 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6139 return FALSE;
6140
6141 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6142 {
6143 unsigned long section_sym_count;
6144 struct bfd_elf_version_tree *verdefs;
6145 asection *s;
6146
6147 /* Set up the version definition section. */
6148 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6149 BFD_ASSERT (s != NULL);
6150
6151 /* We may have created additional version definitions if we are
6152 just linking a regular application. */
6153 verdefs = info->version_info;
6154
6155 /* Skip anonymous version tag. */
6156 if (verdefs != NULL && verdefs->vernum == 0)
6157 verdefs = verdefs->next;
6158
6159 if (verdefs == NULL && !info->create_default_symver)
6160 s->flags |= SEC_EXCLUDE;
6161 else
6162 {
6163 unsigned int cdefs;
6164 bfd_size_type size;
6165 struct bfd_elf_version_tree *t;
6166 bfd_byte *p;
6167 Elf_Internal_Verdef def;
6168 Elf_Internal_Verdaux defaux;
6169 struct bfd_link_hash_entry *bh;
6170 struct elf_link_hash_entry *h;
6171 const char *name;
6172
6173 cdefs = 0;
6174 size = 0;
6175
6176 /* Make space for the base version. */
6177 size += sizeof (Elf_External_Verdef);
6178 size += sizeof (Elf_External_Verdaux);
6179 ++cdefs;
6180
6181 /* Make space for the default version. */
6182 if (info->create_default_symver)
6183 {
6184 size += sizeof (Elf_External_Verdef);
6185 ++cdefs;
6186 }
6187
6188 for (t = verdefs; t != NULL; t = t->next)
6189 {
6190 struct bfd_elf_version_deps *n;
6191
6192 /* Don't emit base version twice. */
6193 if (t->vernum == 0)
6194 continue;
6195
6196 size += sizeof (Elf_External_Verdef);
6197 size += sizeof (Elf_External_Verdaux);
6198 ++cdefs;
6199
6200 for (n = t->deps; n != NULL; n = n->next)
6201 size += sizeof (Elf_External_Verdaux);
6202 }
6203
6204 s->size = size;
6205 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6206 if (s->contents == NULL && s->size != 0)
6207 return FALSE;
6208
6209 /* Fill in the version definition section. */
6210
6211 p = s->contents;
6212
6213 def.vd_version = VER_DEF_CURRENT;
6214 def.vd_flags = VER_FLG_BASE;
6215 def.vd_ndx = 1;
6216 def.vd_cnt = 1;
6217 if (info->create_default_symver)
6218 {
6219 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6220 def.vd_next = sizeof (Elf_External_Verdef);
6221 }
6222 else
6223 {
6224 def.vd_aux = sizeof (Elf_External_Verdef);
6225 def.vd_next = (sizeof (Elf_External_Verdef)
6226 + sizeof (Elf_External_Verdaux));
6227 }
6228
6229 if (soname_indx != (bfd_size_type) -1)
6230 {
6231 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6232 soname_indx);
6233 def.vd_hash = bfd_elf_hash (soname);
6234 defaux.vda_name = soname_indx;
6235 name = soname;
6236 }
6237 else
6238 {
6239 bfd_size_type indx;
6240
6241 name = lbasename (output_bfd->filename);
6242 def.vd_hash = bfd_elf_hash (name);
6243 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6244 name, FALSE);
6245 if (indx == (bfd_size_type) -1)
6246 return FALSE;
6247 defaux.vda_name = indx;
6248 }
6249 defaux.vda_next = 0;
6250
6251 _bfd_elf_swap_verdef_out (output_bfd, &def,
6252 (Elf_External_Verdef *) p);
6253 p += sizeof (Elf_External_Verdef);
6254 if (info->create_default_symver)
6255 {
6256 /* Add a symbol representing this version. */
6257 bh = NULL;
6258 if (! (_bfd_generic_link_add_one_symbol
6259 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6260 0, NULL, FALSE,
6261 get_elf_backend_data (dynobj)->collect, &bh)))
6262 return FALSE;
6263 h = (struct elf_link_hash_entry *) bh;
6264 h->non_elf = 0;
6265 h->def_regular = 1;
6266 h->type = STT_OBJECT;
6267 h->verinfo.vertree = NULL;
6268
6269 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6270 return FALSE;
6271
6272 /* Create a duplicate of the base version with the same
6273 aux block, but different flags. */
6274 def.vd_flags = 0;
6275 def.vd_ndx = 2;
6276 def.vd_aux = sizeof (Elf_External_Verdef);
6277 if (verdefs)
6278 def.vd_next = (sizeof (Elf_External_Verdef)
6279 + sizeof (Elf_External_Verdaux));
6280 else
6281 def.vd_next = 0;
6282 _bfd_elf_swap_verdef_out (output_bfd, &def,
6283 (Elf_External_Verdef *) p);
6284 p += sizeof (Elf_External_Verdef);
6285 }
6286 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6287 (Elf_External_Verdaux *) p);
6288 p += sizeof (Elf_External_Verdaux);
6289
6290 for (t = verdefs; t != NULL; t = t->next)
6291 {
6292 unsigned int cdeps;
6293 struct bfd_elf_version_deps *n;
6294
6295 /* Don't emit the base version twice. */
6296 if (t->vernum == 0)
6297 continue;
6298
6299 cdeps = 0;
6300 for (n = t->deps; n != NULL; n = n->next)
6301 ++cdeps;
6302
6303 /* Add a symbol representing this version. */
6304 bh = NULL;
6305 if (! (_bfd_generic_link_add_one_symbol
6306 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6307 0, NULL, FALSE,
6308 get_elf_backend_data (dynobj)->collect, &bh)))
6309 return FALSE;
6310 h = (struct elf_link_hash_entry *) bh;
6311 h->non_elf = 0;
6312 h->def_regular = 1;
6313 h->type = STT_OBJECT;
6314 h->verinfo.vertree = t;
6315
6316 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6317 return FALSE;
6318
6319 def.vd_version = VER_DEF_CURRENT;
6320 def.vd_flags = 0;
6321 if (t->globals.list == NULL
6322 && t->locals.list == NULL
6323 && ! t->used)
6324 def.vd_flags |= VER_FLG_WEAK;
6325 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6326 def.vd_cnt = cdeps + 1;
6327 def.vd_hash = bfd_elf_hash (t->name);
6328 def.vd_aux = sizeof (Elf_External_Verdef);
6329 def.vd_next = 0;
6330
6331 /* If a basever node is next, it *must* be the last node in
6332 the chain, otherwise Verdef construction breaks. */
6333 if (t->next != NULL && t->next->vernum == 0)
6334 BFD_ASSERT (t->next->next == NULL);
6335
6336 if (t->next != NULL && t->next->vernum != 0)
6337 def.vd_next = (sizeof (Elf_External_Verdef)
6338 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6339
6340 _bfd_elf_swap_verdef_out (output_bfd, &def,
6341 (Elf_External_Verdef *) p);
6342 p += sizeof (Elf_External_Verdef);
6343
6344 defaux.vda_name = h->dynstr_index;
6345 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6346 h->dynstr_index);
6347 defaux.vda_next = 0;
6348 if (t->deps != NULL)
6349 defaux.vda_next = sizeof (Elf_External_Verdaux);
6350 t->name_indx = defaux.vda_name;
6351
6352 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6353 (Elf_External_Verdaux *) p);
6354 p += sizeof (Elf_External_Verdaux);
6355
6356 for (n = t->deps; n != NULL; n = n->next)
6357 {
6358 if (n->version_needed == NULL)
6359 {
6360 /* This can happen if there was an error in the
6361 version script. */
6362 defaux.vda_name = 0;
6363 }
6364 else
6365 {
6366 defaux.vda_name = n->version_needed->name_indx;
6367 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6368 defaux.vda_name);
6369 }
6370 if (n->next == NULL)
6371 defaux.vda_next = 0;
6372 else
6373 defaux.vda_next = sizeof (Elf_External_Verdaux);
6374
6375 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6376 (Elf_External_Verdaux *) p);
6377 p += sizeof (Elf_External_Verdaux);
6378 }
6379 }
6380
6381 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6382 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6383 return FALSE;
6384
6385 elf_tdata (output_bfd)->cverdefs = cdefs;
6386 }
6387
6388 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6389 {
6390 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6391 return FALSE;
6392 }
6393 else if (info->flags & DF_BIND_NOW)
6394 {
6395 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6396 return FALSE;
6397 }
6398
6399 if (info->flags_1)
6400 {
6401 if (bfd_link_executable (info))
6402 info->flags_1 &= ~ (DF_1_INITFIRST
6403 | DF_1_NODELETE
6404 | DF_1_NOOPEN);
6405 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6406 return FALSE;
6407 }
6408
6409 /* Work out the size of the version reference section. */
6410
6411 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6412 BFD_ASSERT (s != NULL);
6413 {
6414 struct elf_find_verdep_info sinfo;
6415
6416 sinfo.info = info;
6417 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6418 if (sinfo.vers == 0)
6419 sinfo.vers = 1;
6420 sinfo.failed = FALSE;
6421
6422 elf_link_hash_traverse (elf_hash_table (info),
6423 _bfd_elf_link_find_version_dependencies,
6424 &sinfo);
6425 if (sinfo.failed)
6426 return FALSE;
6427
6428 if (elf_tdata (output_bfd)->verref == NULL)
6429 s->flags |= SEC_EXCLUDE;
6430 else
6431 {
6432 Elf_Internal_Verneed *t;
6433 unsigned int size;
6434 unsigned int crefs;
6435 bfd_byte *p;
6436
6437 /* Build the version dependency section. */
6438 size = 0;
6439 crefs = 0;
6440 for (t = elf_tdata (output_bfd)->verref;
6441 t != NULL;
6442 t = t->vn_nextref)
6443 {
6444 Elf_Internal_Vernaux *a;
6445
6446 size += sizeof (Elf_External_Verneed);
6447 ++crefs;
6448 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6449 size += sizeof (Elf_External_Vernaux);
6450 }
6451
6452 s->size = size;
6453 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6454 if (s->contents == NULL)
6455 return FALSE;
6456
6457 p = s->contents;
6458 for (t = elf_tdata (output_bfd)->verref;
6459 t != NULL;
6460 t = t->vn_nextref)
6461 {
6462 unsigned int caux;
6463 Elf_Internal_Vernaux *a;
6464 bfd_size_type indx;
6465
6466 caux = 0;
6467 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6468 ++caux;
6469
6470 t->vn_version = VER_NEED_CURRENT;
6471 t->vn_cnt = caux;
6472 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6473 elf_dt_name (t->vn_bfd) != NULL
6474 ? elf_dt_name (t->vn_bfd)
6475 : lbasename (t->vn_bfd->filename),
6476 FALSE);
6477 if (indx == (bfd_size_type) -1)
6478 return FALSE;
6479 t->vn_file = indx;
6480 t->vn_aux = sizeof (Elf_External_Verneed);
6481 if (t->vn_nextref == NULL)
6482 t->vn_next = 0;
6483 else
6484 t->vn_next = (sizeof (Elf_External_Verneed)
6485 + caux * sizeof (Elf_External_Vernaux));
6486
6487 _bfd_elf_swap_verneed_out (output_bfd, t,
6488 (Elf_External_Verneed *) p);
6489 p += sizeof (Elf_External_Verneed);
6490
6491 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6492 {
6493 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6494 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6495 a->vna_nodename, FALSE);
6496 if (indx == (bfd_size_type) -1)
6497 return FALSE;
6498 a->vna_name = indx;
6499 if (a->vna_nextptr == NULL)
6500 a->vna_next = 0;
6501 else
6502 a->vna_next = sizeof (Elf_External_Vernaux);
6503
6504 _bfd_elf_swap_vernaux_out (output_bfd, a,
6505 (Elf_External_Vernaux *) p);
6506 p += sizeof (Elf_External_Vernaux);
6507 }
6508 }
6509
6510 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6511 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6512 return FALSE;
6513
6514 elf_tdata (output_bfd)->cverrefs = crefs;
6515 }
6516 }
6517
6518 if ((elf_tdata (output_bfd)->cverrefs == 0
6519 && elf_tdata (output_bfd)->cverdefs == 0)
6520 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6521 &section_sym_count) == 0)
6522 {
6523 s = bfd_get_linker_section (dynobj, ".gnu.version");
6524 s->flags |= SEC_EXCLUDE;
6525 }
6526 }
6527 return TRUE;
6528 }
6529
6530 /* Find the first non-excluded output section. We'll use its
6531 section symbol for some emitted relocs. */
6532 void
6533 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6534 {
6535 asection *s;
6536
6537 for (s = output_bfd->sections; s != NULL; s = s->next)
6538 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6539 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6540 {
6541 elf_hash_table (info)->text_index_section = s;
6542 break;
6543 }
6544 }
6545
6546 /* Find two non-excluded output sections, one for code, one for data.
6547 We'll use their section symbols for some emitted relocs. */
6548 void
6549 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6550 {
6551 asection *s;
6552
6553 /* Data first, since setting text_index_section changes
6554 _bfd_elf_link_omit_section_dynsym. */
6555 for (s = output_bfd->sections; s != NULL; s = s->next)
6556 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6557 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6558 {
6559 elf_hash_table (info)->data_index_section = s;
6560 break;
6561 }
6562
6563 for (s = output_bfd->sections; s != NULL; s = s->next)
6564 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6565 == (SEC_ALLOC | SEC_READONLY))
6566 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6567 {
6568 elf_hash_table (info)->text_index_section = s;
6569 break;
6570 }
6571
6572 if (elf_hash_table (info)->text_index_section == NULL)
6573 elf_hash_table (info)->text_index_section
6574 = elf_hash_table (info)->data_index_section;
6575 }
6576
6577 bfd_boolean
6578 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6579 {
6580 const struct elf_backend_data *bed;
6581
6582 if (!is_elf_hash_table (info->hash))
6583 return TRUE;
6584
6585 bed = get_elf_backend_data (output_bfd);
6586 (*bed->elf_backend_init_index_section) (output_bfd, info);
6587
6588 if (elf_hash_table (info)->dynamic_sections_created)
6589 {
6590 bfd *dynobj;
6591 asection *s;
6592 bfd_size_type dynsymcount;
6593 unsigned long section_sym_count;
6594 unsigned int dtagcount;
6595
6596 dynobj = elf_hash_table (info)->dynobj;
6597
6598 /* Assign dynsym indicies. In a shared library we generate a
6599 section symbol for each output section, which come first.
6600 Next come all of the back-end allocated local dynamic syms,
6601 followed by the rest of the global symbols. */
6602
6603 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6604 &section_sym_count);
6605
6606 /* Work out the size of the symbol version section. */
6607 s = bfd_get_linker_section (dynobj, ".gnu.version");
6608 BFD_ASSERT (s != NULL);
6609 if ((s->flags & SEC_EXCLUDE) == 0)
6610 {
6611 s->size = dynsymcount * sizeof (Elf_External_Versym);
6612 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6613 if (s->contents == NULL)
6614 return FALSE;
6615
6616 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6617 return FALSE;
6618 }
6619
6620 /* Set the size of the .dynsym and .hash sections. We counted
6621 the number of dynamic symbols in elf_link_add_object_symbols.
6622 We will build the contents of .dynsym and .hash when we build
6623 the final symbol table, because until then we do not know the
6624 correct value to give the symbols. We built the .dynstr
6625 section as we went along in elf_link_add_object_symbols. */
6626 s = elf_hash_table (info)->dynsym;
6627 BFD_ASSERT (s != NULL);
6628 s->size = dynsymcount * bed->s->sizeof_sym;
6629
6630 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6631 if (s->contents == NULL)
6632 return FALSE;
6633
6634 /* The first entry in .dynsym is a dummy symbol. Clear all the
6635 section syms, in case we don't output them all. */
6636 ++section_sym_count;
6637 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6638
6639 elf_hash_table (info)->bucketcount = 0;
6640
6641 /* Compute the size of the hashing table. As a side effect this
6642 computes the hash values for all the names we export. */
6643 if (info->emit_hash)
6644 {
6645 unsigned long int *hashcodes;
6646 struct hash_codes_info hashinf;
6647 bfd_size_type amt;
6648 unsigned long int nsyms;
6649 size_t bucketcount;
6650 size_t hash_entry_size;
6651
6652 /* Compute the hash values for all exported symbols. At the same
6653 time store the values in an array so that we could use them for
6654 optimizations. */
6655 amt = dynsymcount * sizeof (unsigned long int);
6656 hashcodes = (unsigned long int *) bfd_malloc (amt);
6657 if (hashcodes == NULL)
6658 return FALSE;
6659 hashinf.hashcodes = hashcodes;
6660 hashinf.error = FALSE;
6661
6662 /* Put all hash values in HASHCODES. */
6663 elf_link_hash_traverse (elf_hash_table (info),
6664 elf_collect_hash_codes, &hashinf);
6665 if (hashinf.error)
6666 {
6667 free (hashcodes);
6668 return FALSE;
6669 }
6670
6671 nsyms = hashinf.hashcodes - hashcodes;
6672 bucketcount
6673 = compute_bucket_count (info, hashcodes, nsyms, 0);
6674 free (hashcodes);
6675
6676 if (bucketcount == 0)
6677 return FALSE;
6678
6679 elf_hash_table (info)->bucketcount = bucketcount;
6680
6681 s = bfd_get_linker_section (dynobj, ".hash");
6682 BFD_ASSERT (s != NULL);
6683 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6684 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6685 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6686 if (s->contents == NULL)
6687 return FALSE;
6688
6689 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6690 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6691 s->contents + hash_entry_size);
6692 }
6693
6694 if (info->emit_gnu_hash)
6695 {
6696 size_t i, cnt;
6697 unsigned char *contents;
6698 struct collect_gnu_hash_codes cinfo;
6699 bfd_size_type amt;
6700 size_t bucketcount;
6701
6702 memset (&cinfo, 0, sizeof (cinfo));
6703
6704 /* Compute the hash values for all exported symbols. At the same
6705 time store the values in an array so that we could use them for
6706 optimizations. */
6707 amt = dynsymcount * 2 * sizeof (unsigned long int);
6708 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6709 if (cinfo.hashcodes == NULL)
6710 return FALSE;
6711
6712 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6713 cinfo.min_dynindx = -1;
6714 cinfo.output_bfd = output_bfd;
6715 cinfo.bed = bed;
6716
6717 /* Put all hash values in HASHCODES. */
6718 elf_link_hash_traverse (elf_hash_table (info),
6719 elf_collect_gnu_hash_codes, &cinfo);
6720 if (cinfo.error)
6721 {
6722 free (cinfo.hashcodes);
6723 return FALSE;
6724 }
6725
6726 bucketcount
6727 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6728
6729 if (bucketcount == 0)
6730 {
6731 free (cinfo.hashcodes);
6732 return FALSE;
6733 }
6734
6735 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6736 BFD_ASSERT (s != NULL);
6737
6738 if (cinfo.nsyms == 0)
6739 {
6740 /* Empty .gnu.hash section is special. */
6741 BFD_ASSERT (cinfo.min_dynindx == -1);
6742 free (cinfo.hashcodes);
6743 s->size = 5 * 4 + bed->s->arch_size / 8;
6744 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6745 if (contents == NULL)
6746 return FALSE;
6747 s->contents = contents;
6748 /* 1 empty bucket. */
6749 bfd_put_32 (output_bfd, 1, contents);
6750 /* SYMIDX above the special symbol 0. */
6751 bfd_put_32 (output_bfd, 1, contents + 4);
6752 /* Just one word for bitmask. */
6753 bfd_put_32 (output_bfd, 1, contents + 8);
6754 /* Only hash fn bloom filter. */
6755 bfd_put_32 (output_bfd, 0, contents + 12);
6756 /* No hashes are valid - empty bitmask. */
6757 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6758 /* No hashes in the only bucket. */
6759 bfd_put_32 (output_bfd, 0,
6760 contents + 16 + bed->s->arch_size / 8);
6761 }
6762 else
6763 {
6764 unsigned long int maskwords, maskbitslog2, x;
6765 BFD_ASSERT (cinfo.min_dynindx != -1);
6766
6767 x = cinfo.nsyms;
6768 maskbitslog2 = 1;
6769 while ((x >>= 1) != 0)
6770 ++maskbitslog2;
6771 if (maskbitslog2 < 3)
6772 maskbitslog2 = 5;
6773 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6774 maskbitslog2 = maskbitslog2 + 3;
6775 else
6776 maskbitslog2 = maskbitslog2 + 2;
6777 if (bed->s->arch_size == 64)
6778 {
6779 if (maskbitslog2 == 5)
6780 maskbitslog2 = 6;
6781 cinfo.shift1 = 6;
6782 }
6783 else
6784 cinfo.shift1 = 5;
6785 cinfo.mask = (1 << cinfo.shift1) - 1;
6786 cinfo.shift2 = maskbitslog2;
6787 cinfo.maskbits = 1 << maskbitslog2;
6788 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6789 amt = bucketcount * sizeof (unsigned long int) * 2;
6790 amt += maskwords * sizeof (bfd_vma);
6791 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6792 if (cinfo.bitmask == NULL)
6793 {
6794 free (cinfo.hashcodes);
6795 return FALSE;
6796 }
6797
6798 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6799 cinfo.indx = cinfo.counts + bucketcount;
6800 cinfo.symindx = dynsymcount - cinfo.nsyms;
6801 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6802
6803 /* Determine how often each hash bucket is used. */
6804 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6805 for (i = 0; i < cinfo.nsyms; ++i)
6806 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6807
6808 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6809 if (cinfo.counts[i] != 0)
6810 {
6811 cinfo.indx[i] = cnt;
6812 cnt += cinfo.counts[i];
6813 }
6814 BFD_ASSERT (cnt == dynsymcount);
6815 cinfo.bucketcount = bucketcount;
6816 cinfo.local_indx = cinfo.min_dynindx;
6817
6818 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6819 s->size += cinfo.maskbits / 8;
6820 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6821 if (contents == NULL)
6822 {
6823 free (cinfo.bitmask);
6824 free (cinfo.hashcodes);
6825 return FALSE;
6826 }
6827
6828 s->contents = contents;
6829 bfd_put_32 (output_bfd, bucketcount, contents);
6830 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6831 bfd_put_32 (output_bfd, maskwords, contents + 8);
6832 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6833 contents += 16 + cinfo.maskbits / 8;
6834
6835 for (i = 0; i < bucketcount; ++i)
6836 {
6837 if (cinfo.counts[i] == 0)
6838 bfd_put_32 (output_bfd, 0, contents);
6839 else
6840 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6841 contents += 4;
6842 }
6843
6844 cinfo.contents = contents;
6845
6846 /* Renumber dynamic symbols, populate .gnu.hash section. */
6847 elf_link_hash_traverse (elf_hash_table (info),
6848 elf_renumber_gnu_hash_syms, &cinfo);
6849
6850 contents = s->contents + 16;
6851 for (i = 0; i < maskwords; ++i)
6852 {
6853 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6854 contents);
6855 contents += bed->s->arch_size / 8;
6856 }
6857
6858 free (cinfo.bitmask);
6859 free (cinfo.hashcodes);
6860 }
6861 }
6862
6863 s = bfd_get_linker_section (dynobj, ".dynstr");
6864 BFD_ASSERT (s != NULL);
6865
6866 elf_finalize_dynstr (output_bfd, info);
6867
6868 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6869
6870 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6871 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6872 return FALSE;
6873 }
6874
6875 return TRUE;
6876 }
6877 \f
6878 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6879
6880 static void
6881 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6882 asection *sec)
6883 {
6884 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6885 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6886 }
6887
6888 /* Finish SHF_MERGE section merging. */
6889
6890 bfd_boolean
6891 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
6892 {
6893 bfd *ibfd;
6894 asection *sec;
6895
6896 if (!is_elf_hash_table (info->hash))
6897 return FALSE;
6898
6899 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6900 if ((ibfd->flags & DYNAMIC) == 0
6901 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
6902 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
6903 == get_elf_backend_data (obfd)->s->elfclass))
6904 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6905 if ((sec->flags & SEC_MERGE) != 0
6906 && !bfd_is_abs_section (sec->output_section))
6907 {
6908 struct bfd_elf_section_data *secdata;
6909
6910 secdata = elf_section_data (sec);
6911 if (! _bfd_add_merge_section (obfd,
6912 &elf_hash_table (info)->merge_info,
6913 sec, &secdata->sec_info))
6914 return FALSE;
6915 else if (secdata->sec_info)
6916 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6917 }
6918
6919 if (elf_hash_table (info)->merge_info != NULL)
6920 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
6921 merge_sections_remove_hook);
6922 return TRUE;
6923 }
6924
6925 /* Create an entry in an ELF linker hash table. */
6926
6927 struct bfd_hash_entry *
6928 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6929 struct bfd_hash_table *table,
6930 const char *string)
6931 {
6932 /* Allocate the structure if it has not already been allocated by a
6933 subclass. */
6934 if (entry == NULL)
6935 {
6936 entry = (struct bfd_hash_entry *)
6937 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6938 if (entry == NULL)
6939 return entry;
6940 }
6941
6942 /* Call the allocation method of the superclass. */
6943 entry = _bfd_link_hash_newfunc (entry, table, string);
6944 if (entry != NULL)
6945 {
6946 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6947 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6948
6949 /* Set local fields. */
6950 ret->indx = -1;
6951 ret->dynindx = -1;
6952 ret->got = htab->init_got_refcount;
6953 ret->plt = htab->init_plt_refcount;
6954 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6955 - offsetof (struct elf_link_hash_entry, size)));
6956 /* Assume that we have been called by a non-ELF symbol reader.
6957 This flag is then reset by the code which reads an ELF input
6958 file. This ensures that a symbol created by a non-ELF symbol
6959 reader will have the flag set correctly. */
6960 ret->non_elf = 1;
6961 }
6962
6963 return entry;
6964 }
6965
6966 /* Copy data from an indirect symbol to its direct symbol, hiding the
6967 old indirect symbol. Also used for copying flags to a weakdef. */
6968
6969 void
6970 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6971 struct elf_link_hash_entry *dir,
6972 struct elf_link_hash_entry *ind)
6973 {
6974 struct elf_link_hash_table *htab;
6975
6976 /* Copy down any references that we may have already seen to the
6977 symbol which just became indirect if DIR isn't a hidden versioned
6978 symbol. */
6979
6980 if (dir->versioned != versioned_hidden)
6981 {
6982 dir->ref_dynamic |= ind->ref_dynamic;
6983 dir->ref_regular |= ind->ref_regular;
6984 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6985 dir->non_got_ref |= ind->non_got_ref;
6986 dir->needs_plt |= ind->needs_plt;
6987 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6988 }
6989
6990 if (ind->root.type != bfd_link_hash_indirect)
6991 return;
6992
6993 /* Copy over the global and procedure linkage table refcount entries.
6994 These may have been already set up by a check_relocs routine. */
6995 htab = elf_hash_table (info);
6996 if (ind->got.refcount > htab->init_got_refcount.refcount)
6997 {
6998 if (dir->got.refcount < 0)
6999 dir->got.refcount = 0;
7000 dir->got.refcount += ind->got.refcount;
7001 ind->got.refcount = htab->init_got_refcount.refcount;
7002 }
7003
7004 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7005 {
7006 if (dir->plt.refcount < 0)
7007 dir->plt.refcount = 0;
7008 dir->plt.refcount += ind->plt.refcount;
7009 ind->plt.refcount = htab->init_plt_refcount.refcount;
7010 }
7011
7012 if (ind->dynindx != -1)
7013 {
7014 if (dir->dynindx != -1)
7015 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7016 dir->dynindx = ind->dynindx;
7017 dir->dynstr_index = ind->dynstr_index;
7018 ind->dynindx = -1;
7019 ind->dynstr_index = 0;
7020 }
7021 }
7022
7023 void
7024 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7025 struct elf_link_hash_entry *h,
7026 bfd_boolean force_local)
7027 {
7028 /* STT_GNU_IFUNC symbol must go through PLT. */
7029 if (h->type != STT_GNU_IFUNC)
7030 {
7031 h->plt = elf_hash_table (info)->init_plt_offset;
7032 h->needs_plt = 0;
7033 }
7034 if (force_local)
7035 {
7036 h->forced_local = 1;
7037 if (h->dynindx != -1)
7038 {
7039 h->dynindx = -1;
7040 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7041 h->dynstr_index);
7042 }
7043 }
7044 }
7045
7046 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7047 caller. */
7048
7049 bfd_boolean
7050 _bfd_elf_link_hash_table_init
7051 (struct elf_link_hash_table *table,
7052 bfd *abfd,
7053 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7054 struct bfd_hash_table *,
7055 const char *),
7056 unsigned int entsize,
7057 enum elf_target_id target_id)
7058 {
7059 bfd_boolean ret;
7060 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7061
7062 table->init_got_refcount.refcount = can_refcount - 1;
7063 table->init_plt_refcount.refcount = can_refcount - 1;
7064 table->init_got_offset.offset = -(bfd_vma) 1;
7065 table->init_plt_offset.offset = -(bfd_vma) 1;
7066 /* The first dynamic symbol is a dummy. */
7067 table->dynsymcount = 1;
7068
7069 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7070
7071 table->root.type = bfd_link_elf_hash_table;
7072 table->hash_table_id = target_id;
7073
7074 return ret;
7075 }
7076
7077 /* Create an ELF linker hash table. */
7078
7079 struct bfd_link_hash_table *
7080 _bfd_elf_link_hash_table_create (bfd *abfd)
7081 {
7082 struct elf_link_hash_table *ret;
7083 bfd_size_type amt = sizeof (struct elf_link_hash_table);
7084
7085 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7086 if (ret == NULL)
7087 return NULL;
7088
7089 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7090 sizeof (struct elf_link_hash_entry),
7091 GENERIC_ELF_DATA))
7092 {
7093 free (ret);
7094 return NULL;
7095 }
7096 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7097
7098 return &ret->root;
7099 }
7100
7101 /* Destroy an ELF linker hash table. */
7102
7103 void
7104 _bfd_elf_link_hash_table_free (bfd *obfd)
7105 {
7106 struct elf_link_hash_table *htab;
7107
7108 htab = (struct elf_link_hash_table *) obfd->link.hash;
7109 if (htab->dynstr != NULL)
7110 _bfd_elf_strtab_free (htab->dynstr);
7111 _bfd_merge_sections_free (htab->merge_info);
7112 _bfd_generic_link_hash_table_free (obfd);
7113 }
7114
7115 /* This is a hook for the ELF emulation code in the generic linker to
7116 tell the backend linker what file name to use for the DT_NEEDED
7117 entry for a dynamic object. */
7118
7119 void
7120 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7121 {
7122 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7123 && bfd_get_format (abfd) == bfd_object)
7124 elf_dt_name (abfd) = name;
7125 }
7126
7127 int
7128 bfd_elf_get_dyn_lib_class (bfd *abfd)
7129 {
7130 int lib_class;
7131 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7132 && bfd_get_format (abfd) == bfd_object)
7133 lib_class = elf_dyn_lib_class (abfd);
7134 else
7135 lib_class = 0;
7136 return lib_class;
7137 }
7138
7139 void
7140 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7141 {
7142 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7143 && bfd_get_format (abfd) == bfd_object)
7144 elf_dyn_lib_class (abfd) = lib_class;
7145 }
7146
7147 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7148 the linker ELF emulation code. */
7149
7150 struct bfd_link_needed_list *
7151 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7152 struct bfd_link_info *info)
7153 {
7154 if (! is_elf_hash_table (info->hash))
7155 return NULL;
7156 return elf_hash_table (info)->needed;
7157 }
7158
7159 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7160 hook for the linker ELF emulation code. */
7161
7162 struct bfd_link_needed_list *
7163 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7164 struct bfd_link_info *info)
7165 {
7166 if (! is_elf_hash_table (info->hash))
7167 return NULL;
7168 return elf_hash_table (info)->runpath;
7169 }
7170
7171 /* Get the name actually used for a dynamic object for a link. This
7172 is the SONAME entry if there is one. Otherwise, it is the string
7173 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7174
7175 const char *
7176 bfd_elf_get_dt_soname (bfd *abfd)
7177 {
7178 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7179 && bfd_get_format (abfd) == bfd_object)
7180 return elf_dt_name (abfd);
7181 return NULL;
7182 }
7183
7184 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7185 the ELF linker emulation code. */
7186
7187 bfd_boolean
7188 bfd_elf_get_bfd_needed_list (bfd *abfd,
7189 struct bfd_link_needed_list **pneeded)
7190 {
7191 asection *s;
7192 bfd_byte *dynbuf = NULL;
7193 unsigned int elfsec;
7194 unsigned long shlink;
7195 bfd_byte *extdyn, *extdynend;
7196 size_t extdynsize;
7197 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7198
7199 *pneeded = NULL;
7200
7201 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7202 || bfd_get_format (abfd) != bfd_object)
7203 return TRUE;
7204
7205 s = bfd_get_section_by_name (abfd, ".dynamic");
7206 if (s == NULL || s->size == 0)
7207 return TRUE;
7208
7209 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7210 goto error_return;
7211
7212 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7213 if (elfsec == SHN_BAD)
7214 goto error_return;
7215
7216 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7217
7218 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7219 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7220
7221 extdyn = dynbuf;
7222 extdynend = extdyn + s->size;
7223 for (; extdyn < extdynend; extdyn += extdynsize)
7224 {
7225 Elf_Internal_Dyn dyn;
7226
7227 (*swap_dyn_in) (abfd, extdyn, &dyn);
7228
7229 if (dyn.d_tag == DT_NULL)
7230 break;
7231
7232 if (dyn.d_tag == DT_NEEDED)
7233 {
7234 const char *string;
7235 struct bfd_link_needed_list *l;
7236 unsigned int tagv = dyn.d_un.d_val;
7237 bfd_size_type amt;
7238
7239 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7240 if (string == NULL)
7241 goto error_return;
7242
7243 amt = sizeof *l;
7244 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7245 if (l == NULL)
7246 goto error_return;
7247
7248 l->by = abfd;
7249 l->name = string;
7250 l->next = *pneeded;
7251 *pneeded = l;
7252 }
7253 }
7254
7255 free (dynbuf);
7256
7257 return TRUE;
7258
7259 error_return:
7260 if (dynbuf != NULL)
7261 free (dynbuf);
7262 return FALSE;
7263 }
7264
7265 struct elf_symbuf_symbol
7266 {
7267 unsigned long st_name; /* Symbol name, index in string tbl */
7268 unsigned char st_info; /* Type and binding attributes */
7269 unsigned char st_other; /* Visibilty, and target specific */
7270 };
7271
7272 struct elf_symbuf_head
7273 {
7274 struct elf_symbuf_symbol *ssym;
7275 bfd_size_type count;
7276 unsigned int st_shndx;
7277 };
7278
7279 struct elf_symbol
7280 {
7281 union
7282 {
7283 Elf_Internal_Sym *isym;
7284 struct elf_symbuf_symbol *ssym;
7285 } u;
7286 const char *name;
7287 };
7288
7289 /* Sort references to symbols by ascending section number. */
7290
7291 static int
7292 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7293 {
7294 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7295 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7296
7297 return s1->st_shndx - s2->st_shndx;
7298 }
7299
7300 static int
7301 elf_sym_name_compare (const void *arg1, const void *arg2)
7302 {
7303 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7304 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7305 return strcmp (s1->name, s2->name);
7306 }
7307
7308 static struct elf_symbuf_head *
7309 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7310 {
7311 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7312 struct elf_symbuf_symbol *ssym;
7313 struct elf_symbuf_head *ssymbuf, *ssymhead;
7314 bfd_size_type i, shndx_count, total_size;
7315
7316 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7317 if (indbuf == NULL)
7318 return NULL;
7319
7320 for (ind = indbuf, i = 0; i < symcount; i++)
7321 if (isymbuf[i].st_shndx != SHN_UNDEF)
7322 *ind++ = &isymbuf[i];
7323 indbufend = ind;
7324
7325 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7326 elf_sort_elf_symbol);
7327
7328 shndx_count = 0;
7329 if (indbufend > indbuf)
7330 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7331 if (ind[0]->st_shndx != ind[1]->st_shndx)
7332 shndx_count++;
7333
7334 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7335 + (indbufend - indbuf) * sizeof (*ssym));
7336 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7337 if (ssymbuf == NULL)
7338 {
7339 free (indbuf);
7340 return NULL;
7341 }
7342
7343 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7344 ssymbuf->ssym = NULL;
7345 ssymbuf->count = shndx_count;
7346 ssymbuf->st_shndx = 0;
7347 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7348 {
7349 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7350 {
7351 ssymhead++;
7352 ssymhead->ssym = ssym;
7353 ssymhead->count = 0;
7354 ssymhead->st_shndx = (*ind)->st_shndx;
7355 }
7356 ssym->st_name = (*ind)->st_name;
7357 ssym->st_info = (*ind)->st_info;
7358 ssym->st_other = (*ind)->st_other;
7359 ssymhead->count++;
7360 }
7361 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7362 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7363 == total_size));
7364
7365 free (indbuf);
7366 return ssymbuf;
7367 }
7368
7369 /* Check if 2 sections define the same set of local and global
7370 symbols. */
7371
7372 static bfd_boolean
7373 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7374 struct bfd_link_info *info)
7375 {
7376 bfd *bfd1, *bfd2;
7377 const struct elf_backend_data *bed1, *bed2;
7378 Elf_Internal_Shdr *hdr1, *hdr2;
7379 bfd_size_type symcount1, symcount2;
7380 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7381 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7382 Elf_Internal_Sym *isym, *isymend;
7383 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7384 bfd_size_type count1, count2, i;
7385 unsigned int shndx1, shndx2;
7386 bfd_boolean result;
7387
7388 bfd1 = sec1->owner;
7389 bfd2 = sec2->owner;
7390
7391 /* Both sections have to be in ELF. */
7392 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7393 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7394 return FALSE;
7395
7396 if (elf_section_type (sec1) != elf_section_type (sec2))
7397 return FALSE;
7398
7399 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7400 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7401 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7402 return FALSE;
7403
7404 bed1 = get_elf_backend_data (bfd1);
7405 bed2 = get_elf_backend_data (bfd2);
7406 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7407 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7408 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7409 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7410
7411 if (symcount1 == 0 || symcount2 == 0)
7412 return FALSE;
7413
7414 result = FALSE;
7415 isymbuf1 = NULL;
7416 isymbuf2 = NULL;
7417 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7418 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7419
7420 if (ssymbuf1 == NULL)
7421 {
7422 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7423 NULL, NULL, NULL);
7424 if (isymbuf1 == NULL)
7425 goto done;
7426
7427 if (!info->reduce_memory_overheads)
7428 elf_tdata (bfd1)->symbuf = ssymbuf1
7429 = elf_create_symbuf (symcount1, isymbuf1);
7430 }
7431
7432 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7433 {
7434 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7435 NULL, NULL, NULL);
7436 if (isymbuf2 == NULL)
7437 goto done;
7438
7439 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7440 elf_tdata (bfd2)->symbuf = ssymbuf2
7441 = elf_create_symbuf (symcount2, isymbuf2);
7442 }
7443
7444 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7445 {
7446 /* Optimized faster version. */
7447 bfd_size_type lo, hi, mid;
7448 struct elf_symbol *symp;
7449 struct elf_symbuf_symbol *ssym, *ssymend;
7450
7451 lo = 0;
7452 hi = ssymbuf1->count;
7453 ssymbuf1++;
7454 count1 = 0;
7455 while (lo < hi)
7456 {
7457 mid = (lo + hi) / 2;
7458 if (shndx1 < ssymbuf1[mid].st_shndx)
7459 hi = mid;
7460 else if (shndx1 > ssymbuf1[mid].st_shndx)
7461 lo = mid + 1;
7462 else
7463 {
7464 count1 = ssymbuf1[mid].count;
7465 ssymbuf1 += mid;
7466 break;
7467 }
7468 }
7469
7470 lo = 0;
7471 hi = ssymbuf2->count;
7472 ssymbuf2++;
7473 count2 = 0;
7474 while (lo < hi)
7475 {
7476 mid = (lo + hi) / 2;
7477 if (shndx2 < ssymbuf2[mid].st_shndx)
7478 hi = mid;
7479 else if (shndx2 > ssymbuf2[mid].st_shndx)
7480 lo = mid + 1;
7481 else
7482 {
7483 count2 = ssymbuf2[mid].count;
7484 ssymbuf2 += mid;
7485 break;
7486 }
7487 }
7488
7489 if (count1 == 0 || count2 == 0 || count1 != count2)
7490 goto done;
7491
7492 symtable1
7493 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7494 symtable2
7495 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7496 if (symtable1 == NULL || symtable2 == NULL)
7497 goto done;
7498
7499 symp = symtable1;
7500 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7501 ssym < ssymend; ssym++, symp++)
7502 {
7503 symp->u.ssym = ssym;
7504 symp->name = bfd_elf_string_from_elf_section (bfd1,
7505 hdr1->sh_link,
7506 ssym->st_name);
7507 }
7508
7509 symp = symtable2;
7510 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7511 ssym < ssymend; ssym++, symp++)
7512 {
7513 symp->u.ssym = ssym;
7514 symp->name = bfd_elf_string_from_elf_section (bfd2,
7515 hdr2->sh_link,
7516 ssym->st_name);
7517 }
7518
7519 /* Sort symbol by name. */
7520 qsort (symtable1, count1, sizeof (struct elf_symbol),
7521 elf_sym_name_compare);
7522 qsort (symtable2, count1, sizeof (struct elf_symbol),
7523 elf_sym_name_compare);
7524
7525 for (i = 0; i < count1; i++)
7526 /* Two symbols must have the same binding, type and name. */
7527 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7528 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7529 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7530 goto done;
7531
7532 result = TRUE;
7533 goto done;
7534 }
7535
7536 symtable1 = (struct elf_symbol *)
7537 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7538 symtable2 = (struct elf_symbol *)
7539 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7540 if (symtable1 == NULL || symtable2 == NULL)
7541 goto done;
7542
7543 /* Count definitions in the section. */
7544 count1 = 0;
7545 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7546 if (isym->st_shndx == shndx1)
7547 symtable1[count1++].u.isym = isym;
7548
7549 count2 = 0;
7550 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7551 if (isym->st_shndx == shndx2)
7552 symtable2[count2++].u.isym = isym;
7553
7554 if (count1 == 0 || count2 == 0 || count1 != count2)
7555 goto done;
7556
7557 for (i = 0; i < count1; i++)
7558 symtable1[i].name
7559 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7560 symtable1[i].u.isym->st_name);
7561
7562 for (i = 0; i < count2; i++)
7563 symtable2[i].name
7564 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7565 symtable2[i].u.isym->st_name);
7566
7567 /* Sort symbol by name. */
7568 qsort (symtable1, count1, sizeof (struct elf_symbol),
7569 elf_sym_name_compare);
7570 qsort (symtable2, count1, sizeof (struct elf_symbol),
7571 elf_sym_name_compare);
7572
7573 for (i = 0; i < count1; i++)
7574 /* Two symbols must have the same binding, type and name. */
7575 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7576 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7577 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7578 goto done;
7579
7580 result = TRUE;
7581
7582 done:
7583 if (symtable1)
7584 free (symtable1);
7585 if (symtable2)
7586 free (symtable2);
7587 if (isymbuf1)
7588 free (isymbuf1);
7589 if (isymbuf2)
7590 free (isymbuf2);
7591
7592 return result;
7593 }
7594
7595 /* Return TRUE if 2 section types are compatible. */
7596
7597 bfd_boolean
7598 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7599 bfd *bbfd, const asection *bsec)
7600 {
7601 if (asec == NULL
7602 || bsec == NULL
7603 || abfd->xvec->flavour != bfd_target_elf_flavour
7604 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7605 return TRUE;
7606
7607 return elf_section_type (asec) == elf_section_type (bsec);
7608 }
7609 \f
7610 /* Final phase of ELF linker. */
7611
7612 /* A structure we use to avoid passing large numbers of arguments. */
7613
7614 struct elf_final_link_info
7615 {
7616 /* General link information. */
7617 struct bfd_link_info *info;
7618 /* Output BFD. */
7619 bfd *output_bfd;
7620 /* Symbol string table. */
7621 struct elf_strtab_hash *symstrtab;
7622 /* .hash section. */
7623 asection *hash_sec;
7624 /* symbol version section (.gnu.version). */
7625 asection *symver_sec;
7626 /* Buffer large enough to hold contents of any section. */
7627 bfd_byte *contents;
7628 /* Buffer large enough to hold external relocs of any section. */
7629 void *external_relocs;
7630 /* Buffer large enough to hold internal relocs of any section. */
7631 Elf_Internal_Rela *internal_relocs;
7632 /* Buffer large enough to hold external local symbols of any input
7633 BFD. */
7634 bfd_byte *external_syms;
7635 /* And a buffer for symbol section indices. */
7636 Elf_External_Sym_Shndx *locsym_shndx;
7637 /* Buffer large enough to hold internal local symbols of any input
7638 BFD. */
7639 Elf_Internal_Sym *internal_syms;
7640 /* Array large enough to hold a symbol index for each local symbol
7641 of any input BFD. */
7642 long *indices;
7643 /* Array large enough to hold a section pointer for each local
7644 symbol of any input BFD. */
7645 asection **sections;
7646 /* Buffer for SHT_SYMTAB_SHNDX section. */
7647 Elf_External_Sym_Shndx *symshndxbuf;
7648 /* Number of STT_FILE syms seen. */
7649 size_t filesym_count;
7650 };
7651
7652 /* This struct is used to pass information to elf_link_output_extsym. */
7653
7654 struct elf_outext_info
7655 {
7656 bfd_boolean failed;
7657 bfd_boolean localsyms;
7658 bfd_boolean file_sym_done;
7659 struct elf_final_link_info *flinfo;
7660 };
7661
7662
7663 /* Support for evaluating a complex relocation.
7664
7665 Complex relocations are generalized, self-describing relocations. The
7666 implementation of them consists of two parts: complex symbols, and the
7667 relocations themselves.
7668
7669 The relocations are use a reserved elf-wide relocation type code (R_RELC
7670 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7671 information (start bit, end bit, word width, etc) into the addend. This
7672 information is extracted from CGEN-generated operand tables within gas.
7673
7674 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7675 internal) representing prefix-notation expressions, including but not
7676 limited to those sorts of expressions normally encoded as addends in the
7677 addend field. The symbol mangling format is:
7678
7679 <node> := <literal>
7680 | <unary-operator> ':' <node>
7681 | <binary-operator> ':' <node> ':' <node>
7682 ;
7683
7684 <literal> := 's' <digits=N> ':' <N character symbol name>
7685 | 'S' <digits=N> ':' <N character section name>
7686 | '#' <hexdigits>
7687 ;
7688
7689 <binary-operator> := as in C
7690 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7691
7692 static void
7693 set_symbol_value (bfd *bfd_with_globals,
7694 Elf_Internal_Sym *isymbuf,
7695 size_t locsymcount,
7696 size_t symidx,
7697 bfd_vma val)
7698 {
7699 struct elf_link_hash_entry **sym_hashes;
7700 struct elf_link_hash_entry *h;
7701 size_t extsymoff = locsymcount;
7702
7703 if (symidx < locsymcount)
7704 {
7705 Elf_Internal_Sym *sym;
7706
7707 sym = isymbuf + symidx;
7708 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7709 {
7710 /* It is a local symbol: move it to the
7711 "absolute" section and give it a value. */
7712 sym->st_shndx = SHN_ABS;
7713 sym->st_value = val;
7714 return;
7715 }
7716 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7717 extsymoff = 0;
7718 }
7719
7720 /* It is a global symbol: set its link type
7721 to "defined" and give it a value. */
7722
7723 sym_hashes = elf_sym_hashes (bfd_with_globals);
7724 h = sym_hashes [symidx - extsymoff];
7725 while (h->root.type == bfd_link_hash_indirect
7726 || h->root.type == bfd_link_hash_warning)
7727 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7728 h->root.type = bfd_link_hash_defined;
7729 h->root.u.def.value = val;
7730 h->root.u.def.section = bfd_abs_section_ptr;
7731 }
7732
7733 static bfd_boolean
7734 resolve_symbol (const char *name,
7735 bfd *input_bfd,
7736 struct elf_final_link_info *flinfo,
7737 bfd_vma *result,
7738 Elf_Internal_Sym *isymbuf,
7739 size_t locsymcount)
7740 {
7741 Elf_Internal_Sym *sym;
7742 struct bfd_link_hash_entry *global_entry;
7743 const char *candidate = NULL;
7744 Elf_Internal_Shdr *symtab_hdr;
7745 size_t i;
7746
7747 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7748
7749 for (i = 0; i < locsymcount; ++ i)
7750 {
7751 sym = isymbuf + i;
7752
7753 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7754 continue;
7755
7756 candidate = bfd_elf_string_from_elf_section (input_bfd,
7757 symtab_hdr->sh_link,
7758 sym->st_name);
7759 #ifdef DEBUG
7760 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7761 name, candidate, (unsigned long) sym->st_value);
7762 #endif
7763 if (candidate && strcmp (candidate, name) == 0)
7764 {
7765 asection *sec = flinfo->sections [i];
7766
7767 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7768 *result += sec->output_offset + sec->output_section->vma;
7769 #ifdef DEBUG
7770 printf ("Found symbol with value %8.8lx\n",
7771 (unsigned long) *result);
7772 #endif
7773 return TRUE;
7774 }
7775 }
7776
7777 /* Hmm, haven't found it yet. perhaps it is a global. */
7778 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7779 FALSE, FALSE, TRUE);
7780 if (!global_entry)
7781 return FALSE;
7782
7783 if (global_entry->type == bfd_link_hash_defined
7784 || global_entry->type == bfd_link_hash_defweak)
7785 {
7786 *result = (global_entry->u.def.value
7787 + global_entry->u.def.section->output_section->vma
7788 + global_entry->u.def.section->output_offset);
7789 #ifdef DEBUG
7790 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7791 global_entry->root.string, (unsigned long) *result);
7792 #endif
7793 return TRUE;
7794 }
7795
7796 return FALSE;
7797 }
7798
7799 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
7800 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
7801 names like "foo.end" which is the end address of section "foo". */
7802
7803 static bfd_boolean
7804 resolve_section (const char *name,
7805 asection *sections,
7806 bfd_vma *result,
7807 bfd * abfd)
7808 {
7809 asection *curr;
7810 unsigned int len;
7811
7812 for (curr = sections; curr; curr = curr->next)
7813 if (strcmp (curr->name, name) == 0)
7814 {
7815 *result = curr->vma;
7816 return TRUE;
7817 }
7818
7819 /* Hmm. still haven't found it. try pseudo-section names. */
7820 /* FIXME: This could be coded more efficiently... */
7821 for (curr = sections; curr; curr = curr->next)
7822 {
7823 len = strlen (curr->name);
7824 if (len > strlen (name))
7825 continue;
7826
7827 if (strncmp (curr->name, name, len) == 0)
7828 {
7829 if (strncmp (".end", name + len, 4) == 0)
7830 {
7831 *result = curr->vma + curr->size / bfd_octets_per_byte (abfd);
7832 return TRUE;
7833 }
7834
7835 /* Insert more pseudo-section names here, if you like. */
7836 }
7837 }
7838
7839 return FALSE;
7840 }
7841
7842 static void
7843 undefined_reference (const char *reftype, const char *name)
7844 {
7845 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7846 reftype, name);
7847 }
7848
7849 static bfd_boolean
7850 eval_symbol (bfd_vma *result,
7851 const char **symp,
7852 bfd *input_bfd,
7853 struct elf_final_link_info *flinfo,
7854 bfd_vma dot,
7855 Elf_Internal_Sym *isymbuf,
7856 size_t locsymcount,
7857 int signed_p)
7858 {
7859 size_t len;
7860 size_t symlen;
7861 bfd_vma a;
7862 bfd_vma b;
7863 char symbuf[4096];
7864 const char *sym = *symp;
7865 const char *symend;
7866 bfd_boolean symbol_is_section = FALSE;
7867
7868 len = strlen (sym);
7869 symend = sym + len;
7870
7871 if (len < 1 || len > sizeof (symbuf))
7872 {
7873 bfd_set_error (bfd_error_invalid_operation);
7874 return FALSE;
7875 }
7876
7877 switch (* sym)
7878 {
7879 case '.':
7880 *result = dot;
7881 *symp = sym + 1;
7882 return TRUE;
7883
7884 case '#':
7885 ++sym;
7886 *result = strtoul (sym, (char **) symp, 16);
7887 return TRUE;
7888
7889 case 'S':
7890 symbol_is_section = TRUE;
7891 case 's':
7892 ++sym;
7893 symlen = strtol (sym, (char **) symp, 10);
7894 sym = *symp + 1; /* Skip the trailing ':'. */
7895
7896 if (symend < sym || symlen + 1 > sizeof (symbuf))
7897 {
7898 bfd_set_error (bfd_error_invalid_operation);
7899 return FALSE;
7900 }
7901
7902 memcpy (symbuf, sym, symlen);
7903 symbuf[symlen] = '\0';
7904 *symp = sym + symlen;
7905
7906 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7907 the symbol as a section, or vice-versa. so we're pretty liberal in our
7908 interpretation here; section means "try section first", not "must be a
7909 section", and likewise with symbol. */
7910
7911 if (symbol_is_section)
7912 {
7913 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
7914 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7915 isymbuf, locsymcount))
7916 {
7917 undefined_reference ("section", symbuf);
7918 return FALSE;
7919 }
7920 }
7921 else
7922 {
7923 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7924 isymbuf, locsymcount)
7925 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7926 result, input_bfd))
7927 {
7928 undefined_reference ("symbol", symbuf);
7929 return FALSE;
7930 }
7931 }
7932
7933 return TRUE;
7934
7935 /* All that remains are operators. */
7936
7937 #define UNARY_OP(op) \
7938 if (strncmp (sym, #op, strlen (#op)) == 0) \
7939 { \
7940 sym += strlen (#op); \
7941 if (*sym == ':') \
7942 ++sym; \
7943 *symp = sym; \
7944 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7945 isymbuf, locsymcount, signed_p)) \
7946 return FALSE; \
7947 if (signed_p) \
7948 *result = op ((bfd_signed_vma) a); \
7949 else \
7950 *result = op a; \
7951 return TRUE; \
7952 }
7953
7954 #define BINARY_OP(op) \
7955 if (strncmp (sym, #op, strlen (#op)) == 0) \
7956 { \
7957 sym += strlen (#op); \
7958 if (*sym == ':') \
7959 ++sym; \
7960 *symp = sym; \
7961 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7962 isymbuf, locsymcount, signed_p)) \
7963 return FALSE; \
7964 ++*symp; \
7965 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7966 isymbuf, locsymcount, signed_p)) \
7967 return FALSE; \
7968 if (signed_p) \
7969 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7970 else \
7971 *result = a op b; \
7972 return TRUE; \
7973 }
7974
7975 default:
7976 UNARY_OP (0-);
7977 BINARY_OP (<<);
7978 BINARY_OP (>>);
7979 BINARY_OP (==);
7980 BINARY_OP (!=);
7981 BINARY_OP (<=);
7982 BINARY_OP (>=);
7983 BINARY_OP (&&);
7984 BINARY_OP (||);
7985 UNARY_OP (~);
7986 UNARY_OP (!);
7987 BINARY_OP (*);
7988 BINARY_OP (/);
7989 BINARY_OP (%);
7990 BINARY_OP (^);
7991 BINARY_OP (|);
7992 BINARY_OP (&);
7993 BINARY_OP (+);
7994 BINARY_OP (-);
7995 BINARY_OP (<);
7996 BINARY_OP (>);
7997 #undef UNARY_OP
7998 #undef BINARY_OP
7999 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8000 bfd_set_error (bfd_error_invalid_operation);
8001 return FALSE;
8002 }
8003 }
8004
8005 static void
8006 put_value (bfd_vma size,
8007 unsigned long chunksz,
8008 bfd *input_bfd,
8009 bfd_vma x,
8010 bfd_byte *location)
8011 {
8012 location += (size - chunksz);
8013
8014 for (; size; size -= chunksz, location -= chunksz)
8015 {
8016 switch (chunksz)
8017 {
8018 case 1:
8019 bfd_put_8 (input_bfd, x, location);
8020 x >>= 8;
8021 break;
8022 case 2:
8023 bfd_put_16 (input_bfd, x, location);
8024 x >>= 16;
8025 break;
8026 case 4:
8027 bfd_put_32 (input_bfd, x, location);
8028 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8029 x >>= 16;
8030 x >>= 16;
8031 break;
8032 #ifdef BFD64
8033 case 8:
8034 bfd_put_64 (input_bfd, x, location);
8035 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8036 x >>= 32;
8037 x >>= 32;
8038 break;
8039 #endif
8040 default:
8041 abort ();
8042 break;
8043 }
8044 }
8045 }
8046
8047 static bfd_vma
8048 get_value (bfd_vma size,
8049 unsigned long chunksz,
8050 bfd *input_bfd,
8051 bfd_byte *location)
8052 {
8053 int shift;
8054 bfd_vma x = 0;
8055
8056 /* Sanity checks. */
8057 BFD_ASSERT (chunksz <= sizeof (x)
8058 && size >= chunksz
8059 && chunksz != 0
8060 && (size % chunksz) == 0
8061 && input_bfd != NULL
8062 && location != NULL);
8063
8064 if (chunksz == sizeof (x))
8065 {
8066 BFD_ASSERT (size == chunksz);
8067
8068 /* Make sure that we do not perform an undefined shift operation.
8069 We know that size == chunksz so there will only be one iteration
8070 of the loop below. */
8071 shift = 0;
8072 }
8073 else
8074 shift = 8 * chunksz;
8075
8076 for (; size; size -= chunksz, location += chunksz)
8077 {
8078 switch (chunksz)
8079 {
8080 case 1:
8081 x = (x << shift) | bfd_get_8 (input_bfd, location);
8082 break;
8083 case 2:
8084 x = (x << shift) | bfd_get_16 (input_bfd, location);
8085 break;
8086 case 4:
8087 x = (x << shift) | bfd_get_32 (input_bfd, location);
8088 break;
8089 #ifdef BFD64
8090 case 8:
8091 x = (x << shift) | bfd_get_64 (input_bfd, location);
8092 break;
8093 #endif
8094 default:
8095 abort ();
8096 }
8097 }
8098 return x;
8099 }
8100
8101 static void
8102 decode_complex_addend (unsigned long *start, /* in bits */
8103 unsigned long *oplen, /* in bits */
8104 unsigned long *len, /* in bits */
8105 unsigned long *wordsz, /* in bytes */
8106 unsigned long *chunksz, /* in bytes */
8107 unsigned long *lsb0_p,
8108 unsigned long *signed_p,
8109 unsigned long *trunc_p,
8110 unsigned long encoded)
8111 {
8112 * start = encoded & 0x3F;
8113 * len = (encoded >> 6) & 0x3F;
8114 * oplen = (encoded >> 12) & 0x3F;
8115 * wordsz = (encoded >> 18) & 0xF;
8116 * chunksz = (encoded >> 22) & 0xF;
8117 * lsb0_p = (encoded >> 27) & 1;
8118 * signed_p = (encoded >> 28) & 1;
8119 * trunc_p = (encoded >> 29) & 1;
8120 }
8121
8122 bfd_reloc_status_type
8123 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8124 asection *input_section ATTRIBUTE_UNUSED,
8125 bfd_byte *contents,
8126 Elf_Internal_Rela *rel,
8127 bfd_vma relocation)
8128 {
8129 bfd_vma shift, x, mask;
8130 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8131 bfd_reloc_status_type r;
8132
8133 /* Perform this reloc, since it is complex.
8134 (this is not to say that it necessarily refers to a complex
8135 symbol; merely that it is a self-describing CGEN based reloc.
8136 i.e. the addend has the complete reloc information (bit start, end,
8137 word size, etc) encoded within it.). */
8138
8139 decode_complex_addend (&start, &oplen, &len, &wordsz,
8140 &chunksz, &lsb0_p, &signed_p,
8141 &trunc_p, rel->r_addend);
8142
8143 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8144
8145 if (lsb0_p)
8146 shift = (start + 1) - len;
8147 else
8148 shift = (8 * wordsz) - (start + len);
8149
8150 x = get_value (wordsz, chunksz, input_bfd,
8151 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8152
8153 #ifdef DEBUG
8154 printf ("Doing complex reloc: "
8155 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8156 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8157 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8158 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8159 oplen, (unsigned long) x, (unsigned long) mask,
8160 (unsigned long) relocation);
8161 #endif
8162
8163 r = bfd_reloc_ok;
8164 if (! trunc_p)
8165 /* Now do an overflow check. */
8166 r = bfd_check_overflow ((signed_p
8167 ? complain_overflow_signed
8168 : complain_overflow_unsigned),
8169 len, 0, (8 * wordsz),
8170 relocation);
8171
8172 /* Do the deed. */
8173 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8174
8175 #ifdef DEBUG
8176 printf (" relocation: %8.8lx\n"
8177 " shifted mask: %8.8lx\n"
8178 " shifted/masked reloc: %8.8lx\n"
8179 " result: %8.8lx\n",
8180 (unsigned long) relocation, (unsigned long) (mask << shift),
8181 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8182 #endif
8183 put_value (wordsz, chunksz, input_bfd, x,
8184 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8185 return r;
8186 }
8187
8188 /* Functions to read r_offset from external (target order) reloc
8189 entry. Faster than bfd_getl32 et al, because we let the compiler
8190 know the value is aligned. */
8191
8192 static bfd_vma
8193 ext32l_r_offset (const void *p)
8194 {
8195 union aligned32
8196 {
8197 uint32_t v;
8198 unsigned char c[4];
8199 };
8200 const union aligned32 *a
8201 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8202
8203 uint32_t aval = ( (uint32_t) a->c[0]
8204 | (uint32_t) a->c[1] << 8
8205 | (uint32_t) a->c[2] << 16
8206 | (uint32_t) a->c[3] << 24);
8207 return aval;
8208 }
8209
8210 static bfd_vma
8211 ext32b_r_offset (const void *p)
8212 {
8213 union aligned32
8214 {
8215 uint32_t v;
8216 unsigned char c[4];
8217 };
8218 const union aligned32 *a
8219 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8220
8221 uint32_t aval = ( (uint32_t) a->c[0] << 24
8222 | (uint32_t) a->c[1] << 16
8223 | (uint32_t) a->c[2] << 8
8224 | (uint32_t) a->c[3]);
8225 return aval;
8226 }
8227
8228 #ifdef BFD_HOST_64_BIT
8229 static bfd_vma
8230 ext64l_r_offset (const void *p)
8231 {
8232 union aligned64
8233 {
8234 uint64_t v;
8235 unsigned char c[8];
8236 };
8237 const union aligned64 *a
8238 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8239
8240 uint64_t aval = ( (uint64_t) a->c[0]
8241 | (uint64_t) a->c[1] << 8
8242 | (uint64_t) a->c[2] << 16
8243 | (uint64_t) a->c[3] << 24
8244 | (uint64_t) a->c[4] << 32
8245 | (uint64_t) a->c[5] << 40
8246 | (uint64_t) a->c[6] << 48
8247 | (uint64_t) a->c[7] << 56);
8248 return aval;
8249 }
8250
8251 static bfd_vma
8252 ext64b_r_offset (const void *p)
8253 {
8254 union aligned64
8255 {
8256 uint64_t v;
8257 unsigned char c[8];
8258 };
8259 const union aligned64 *a
8260 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8261
8262 uint64_t aval = ( (uint64_t) a->c[0] << 56
8263 | (uint64_t) a->c[1] << 48
8264 | (uint64_t) a->c[2] << 40
8265 | (uint64_t) a->c[3] << 32
8266 | (uint64_t) a->c[4] << 24
8267 | (uint64_t) a->c[5] << 16
8268 | (uint64_t) a->c[6] << 8
8269 | (uint64_t) a->c[7]);
8270 return aval;
8271 }
8272 #endif
8273
8274 /* When performing a relocatable link, the input relocations are
8275 preserved. But, if they reference global symbols, the indices
8276 referenced must be updated. Update all the relocations found in
8277 RELDATA. */
8278
8279 static bfd_boolean
8280 elf_link_adjust_relocs (bfd *abfd,
8281 struct bfd_elf_section_reloc_data *reldata,
8282 bfd_boolean sort)
8283 {
8284 unsigned int i;
8285 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8286 bfd_byte *erela;
8287 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8288 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8289 bfd_vma r_type_mask;
8290 int r_sym_shift;
8291 unsigned int count = reldata->count;
8292 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8293
8294 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8295 {
8296 swap_in = bed->s->swap_reloc_in;
8297 swap_out = bed->s->swap_reloc_out;
8298 }
8299 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8300 {
8301 swap_in = bed->s->swap_reloca_in;
8302 swap_out = bed->s->swap_reloca_out;
8303 }
8304 else
8305 abort ();
8306
8307 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8308 abort ();
8309
8310 if (bed->s->arch_size == 32)
8311 {
8312 r_type_mask = 0xff;
8313 r_sym_shift = 8;
8314 }
8315 else
8316 {
8317 r_type_mask = 0xffffffff;
8318 r_sym_shift = 32;
8319 }
8320
8321 erela = reldata->hdr->contents;
8322 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8323 {
8324 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8325 unsigned int j;
8326
8327 if (*rel_hash == NULL)
8328 continue;
8329
8330 BFD_ASSERT ((*rel_hash)->indx >= 0);
8331
8332 (*swap_in) (abfd, erela, irela);
8333 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8334 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8335 | (irela[j].r_info & r_type_mask));
8336 (*swap_out) (abfd, irela, erela);
8337 }
8338
8339 if (sort && count != 0)
8340 {
8341 bfd_vma (*ext_r_off) (const void *);
8342 bfd_vma r_off;
8343 size_t elt_size;
8344 bfd_byte *base, *end, *p, *loc;
8345 bfd_byte *buf = NULL;
8346
8347 if (bed->s->arch_size == 32)
8348 {
8349 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8350 ext_r_off = ext32l_r_offset;
8351 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8352 ext_r_off = ext32b_r_offset;
8353 else
8354 abort ();
8355 }
8356 else
8357 {
8358 #ifdef BFD_HOST_64_BIT
8359 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8360 ext_r_off = ext64l_r_offset;
8361 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8362 ext_r_off = ext64b_r_offset;
8363 else
8364 #endif
8365 abort ();
8366 }
8367
8368 /* Must use a stable sort here. A modified insertion sort,
8369 since the relocs are mostly sorted already. */
8370 elt_size = reldata->hdr->sh_entsize;
8371 base = reldata->hdr->contents;
8372 end = base + count * elt_size;
8373 if (elt_size > sizeof (Elf64_External_Rela))
8374 abort ();
8375
8376 /* Ensure the first element is lowest. This acts as a sentinel,
8377 speeding the main loop below. */
8378 r_off = (*ext_r_off) (base);
8379 for (p = loc = base; (p += elt_size) < end; )
8380 {
8381 bfd_vma r_off2 = (*ext_r_off) (p);
8382 if (r_off > r_off2)
8383 {
8384 r_off = r_off2;
8385 loc = p;
8386 }
8387 }
8388 if (loc != base)
8389 {
8390 /* Don't just swap *base and *loc as that changes the order
8391 of the original base[0] and base[1] if they happen to
8392 have the same r_offset. */
8393 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
8394 memcpy (onebuf, loc, elt_size);
8395 memmove (base + elt_size, base, loc - base);
8396 memcpy (base, onebuf, elt_size);
8397 }
8398
8399 for (p = base + elt_size; (p += elt_size) < end; )
8400 {
8401 /* base to p is sorted, *p is next to insert. */
8402 r_off = (*ext_r_off) (p);
8403 /* Search the sorted region for location to insert. */
8404 loc = p - elt_size;
8405 while (r_off < (*ext_r_off) (loc))
8406 loc -= elt_size;
8407 loc += elt_size;
8408 if (loc != p)
8409 {
8410 /* Chances are there is a run of relocs to insert here,
8411 from one of more input files. Files are not always
8412 linked in order due to the way elf_link_input_bfd is
8413 called. See pr17666. */
8414 size_t sortlen = p - loc;
8415 bfd_vma r_off2 = (*ext_r_off) (loc);
8416 size_t runlen = elt_size;
8417 size_t buf_size = 96 * 1024;
8418 while (p + runlen < end
8419 && (sortlen <= buf_size
8420 || runlen + elt_size <= buf_size)
8421 && r_off2 > (*ext_r_off) (p + runlen))
8422 runlen += elt_size;
8423 if (buf == NULL)
8424 {
8425 buf = bfd_malloc (buf_size);
8426 if (buf == NULL)
8427 return FALSE;
8428 }
8429 if (runlen < sortlen)
8430 {
8431 memcpy (buf, p, runlen);
8432 memmove (loc + runlen, loc, sortlen);
8433 memcpy (loc, buf, runlen);
8434 }
8435 else
8436 {
8437 memcpy (buf, loc, sortlen);
8438 memmove (loc, p, runlen);
8439 memcpy (loc + runlen, buf, sortlen);
8440 }
8441 p += runlen - elt_size;
8442 }
8443 }
8444 /* Hashes are no longer valid. */
8445 free (reldata->hashes);
8446 reldata->hashes = NULL;
8447 free (buf);
8448 }
8449 return TRUE;
8450 }
8451
8452 struct elf_link_sort_rela
8453 {
8454 union {
8455 bfd_vma offset;
8456 bfd_vma sym_mask;
8457 } u;
8458 enum elf_reloc_type_class type;
8459 /* We use this as an array of size int_rels_per_ext_rel. */
8460 Elf_Internal_Rela rela[1];
8461 };
8462
8463 static int
8464 elf_link_sort_cmp1 (const void *A, const void *B)
8465 {
8466 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8467 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8468 int relativea, relativeb;
8469
8470 relativea = a->type == reloc_class_relative;
8471 relativeb = b->type == reloc_class_relative;
8472
8473 if (relativea < relativeb)
8474 return 1;
8475 if (relativea > relativeb)
8476 return -1;
8477 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8478 return -1;
8479 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8480 return 1;
8481 if (a->rela->r_offset < b->rela->r_offset)
8482 return -1;
8483 if (a->rela->r_offset > b->rela->r_offset)
8484 return 1;
8485 return 0;
8486 }
8487
8488 static int
8489 elf_link_sort_cmp2 (const void *A, const void *B)
8490 {
8491 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8492 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8493
8494 if (a->type < b->type)
8495 return -1;
8496 if (a->type > b->type)
8497 return 1;
8498 if (a->u.offset < b->u.offset)
8499 return -1;
8500 if (a->u.offset > b->u.offset)
8501 return 1;
8502 if (a->rela->r_offset < b->rela->r_offset)
8503 return -1;
8504 if (a->rela->r_offset > b->rela->r_offset)
8505 return 1;
8506 return 0;
8507 }
8508
8509 static size_t
8510 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8511 {
8512 asection *dynamic_relocs;
8513 asection *rela_dyn;
8514 asection *rel_dyn;
8515 bfd_size_type count, size;
8516 size_t i, ret, sort_elt, ext_size;
8517 bfd_byte *sort, *s_non_relative, *p;
8518 struct elf_link_sort_rela *sq;
8519 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8520 int i2e = bed->s->int_rels_per_ext_rel;
8521 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8522 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8523 struct bfd_link_order *lo;
8524 bfd_vma r_sym_mask;
8525 bfd_boolean use_rela;
8526
8527 /* Find a dynamic reloc section. */
8528 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8529 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8530 if (rela_dyn != NULL && rela_dyn->size > 0
8531 && rel_dyn != NULL && rel_dyn->size > 0)
8532 {
8533 bfd_boolean use_rela_initialised = FALSE;
8534
8535 /* This is just here to stop gcc from complaining.
8536 It's initialization checking code is not perfect. */
8537 use_rela = TRUE;
8538
8539 /* Both sections are present. Examine the sizes
8540 of the indirect sections to help us choose. */
8541 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8542 if (lo->type == bfd_indirect_link_order)
8543 {
8544 asection *o = lo->u.indirect.section;
8545
8546 if ((o->size % bed->s->sizeof_rela) == 0)
8547 {
8548 if ((o->size % bed->s->sizeof_rel) == 0)
8549 /* Section size is divisible by both rel and rela sizes.
8550 It is of no help to us. */
8551 ;
8552 else
8553 {
8554 /* Section size is only divisible by rela. */
8555 if (use_rela_initialised && (use_rela == FALSE))
8556 {
8557 _bfd_error_handler
8558 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8559 bfd_set_error (bfd_error_invalid_operation);
8560 return 0;
8561 }
8562 else
8563 {
8564 use_rela = TRUE;
8565 use_rela_initialised = TRUE;
8566 }
8567 }
8568 }
8569 else if ((o->size % bed->s->sizeof_rel) == 0)
8570 {
8571 /* Section size is only divisible by rel. */
8572 if (use_rela_initialised && (use_rela == TRUE))
8573 {
8574 _bfd_error_handler
8575 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8576 bfd_set_error (bfd_error_invalid_operation);
8577 return 0;
8578 }
8579 else
8580 {
8581 use_rela = FALSE;
8582 use_rela_initialised = TRUE;
8583 }
8584 }
8585 else
8586 {
8587 /* The section size is not divisible by either - something is wrong. */
8588 _bfd_error_handler
8589 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8590 bfd_set_error (bfd_error_invalid_operation);
8591 return 0;
8592 }
8593 }
8594
8595 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8596 if (lo->type == bfd_indirect_link_order)
8597 {
8598 asection *o = lo->u.indirect.section;
8599
8600 if ((o->size % bed->s->sizeof_rela) == 0)
8601 {
8602 if ((o->size % bed->s->sizeof_rel) == 0)
8603 /* Section size is divisible by both rel and rela sizes.
8604 It is of no help to us. */
8605 ;
8606 else
8607 {
8608 /* Section size is only divisible by rela. */
8609 if (use_rela_initialised && (use_rela == FALSE))
8610 {
8611 _bfd_error_handler
8612 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8613 bfd_set_error (bfd_error_invalid_operation);
8614 return 0;
8615 }
8616 else
8617 {
8618 use_rela = TRUE;
8619 use_rela_initialised = TRUE;
8620 }
8621 }
8622 }
8623 else if ((o->size % bed->s->sizeof_rel) == 0)
8624 {
8625 /* Section size is only divisible by rel. */
8626 if (use_rela_initialised && (use_rela == TRUE))
8627 {
8628 _bfd_error_handler
8629 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8630 bfd_set_error (bfd_error_invalid_operation);
8631 return 0;
8632 }
8633 else
8634 {
8635 use_rela = FALSE;
8636 use_rela_initialised = TRUE;
8637 }
8638 }
8639 else
8640 {
8641 /* The section size is not divisible by either - something is wrong. */
8642 _bfd_error_handler
8643 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8644 bfd_set_error (bfd_error_invalid_operation);
8645 return 0;
8646 }
8647 }
8648
8649 if (! use_rela_initialised)
8650 /* Make a guess. */
8651 use_rela = TRUE;
8652 }
8653 else if (rela_dyn != NULL && rela_dyn->size > 0)
8654 use_rela = TRUE;
8655 else if (rel_dyn != NULL && rel_dyn->size > 0)
8656 use_rela = FALSE;
8657 else
8658 return 0;
8659
8660 if (use_rela)
8661 {
8662 dynamic_relocs = rela_dyn;
8663 ext_size = bed->s->sizeof_rela;
8664 swap_in = bed->s->swap_reloca_in;
8665 swap_out = bed->s->swap_reloca_out;
8666 }
8667 else
8668 {
8669 dynamic_relocs = rel_dyn;
8670 ext_size = bed->s->sizeof_rel;
8671 swap_in = bed->s->swap_reloc_in;
8672 swap_out = bed->s->swap_reloc_out;
8673 }
8674
8675 size = 0;
8676 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8677 if (lo->type == bfd_indirect_link_order)
8678 size += lo->u.indirect.section->size;
8679
8680 if (size != dynamic_relocs->size)
8681 return 0;
8682
8683 sort_elt = (sizeof (struct elf_link_sort_rela)
8684 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8685
8686 count = dynamic_relocs->size / ext_size;
8687 if (count == 0)
8688 return 0;
8689 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8690
8691 if (sort == NULL)
8692 {
8693 (*info->callbacks->warning)
8694 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8695 return 0;
8696 }
8697
8698 if (bed->s->arch_size == 32)
8699 r_sym_mask = ~(bfd_vma) 0xff;
8700 else
8701 r_sym_mask = ~(bfd_vma) 0xffffffff;
8702
8703 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8704 if (lo->type == bfd_indirect_link_order)
8705 {
8706 bfd_byte *erel, *erelend;
8707 asection *o = lo->u.indirect.section;
8708
8709 if (o->contents == NULL && o->size != 0)
8710 {
8711 /* This is a reloc section that is being handled as a normal
8712 section. See bfd_section_from_shdr. We can't combine
8713 relocs in this case. */
8714 free (sort);
8715 return 0;
8716 }
8717 erel = o->contents;
8718 erelend = o->contents + o->size;
8719 /* FIXME: octets_per_byte. */
8720 p = sort + o->output_offset / ext_size * sort_elt;
8721
8722 while (erel < erelend)
8723 {
8724 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8725
8726 (*swap_in) (abfd, erel, s->rela);
8727 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8728 s->u.sym_mask = r_sym_mask;
8729 p += sort_elt;
8730 erel += ext_size;
8731 }
8732 }
8733
8734 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8735
8736 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8737 {
8738 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8739 if (s->type != reloc_class_relative)
8740 break;
8741 }
8742 ret = i;
8743 s_non_relative = p;
8744
8745 sq = (struct elf_link_sort_rela *) s_non_relative;
8746 for (; i < count; i++, p += sort_elt)
8747 {
8748 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8749 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8750 sq = sp;
8751 sp->u.offset = sq->rela->r_offset;
8752 }
8753
8754 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8755
8756 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8757 if (lo->type == bfd_indirect_link_order)
8758 {
8759 bfd_byte *erel, *erelend;
8760 asection *o = lo->u.indirect.section;
8761
8762 erel = o->contents;
8763 erelend = o->contents + o->size;
8764 /* FIXME: octets_per_byte. */
8765 p = sort + o->output_offset / ext_size * sort_elt;
8766 while (erel < erelend)
8767 {
8768 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8769 (*swap_out) (abfd, s->rela, erel);
8770 p += sort_elt;
8771 erel += ext_size;
8772 }
8773 }
8774
8775 free (sort);
8776 *psec = dynamic_relocs;
8777 return ret;
8778 }
8779
8780 /* Add a symbol to the output symbol string table. */
8781
8782 static int
8783 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
8784 const char *name,
8785 Elf_Internal_Sym *elfsym,
8786 asection *input_sec,
8787 struct elf_link_hash_entry *h)
8788 {
8789 int (*output_symbol_hook)
8790 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8791 struct elf_link_hash_entry *);
8792 struct elf_link_hash_table *hash_table;
8793 const struct elf_backend_data *bed;
8794 bfd_size_type strtabsize;
8795
8796 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8797
8798 bed = get_elf_backend_data (flinfo->output_bfd);
8799 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8800 if (output_symbol_hook != NULL)
8801 {
8802 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8803 if (ret != 1)
8804 return ret;
8805 }
8806
8807 if (name == NULL
8808 || *name == '\0'
8809 || (input_sec->flags & SEC_EXCLUDE))
8810 elfsym->st_name = (unsigned long) -1;
8811 else
8812 {
8813 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
8814 to get the final offset for st_name. */
8815 elfsym->st_name
8816 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
8817 name, FALSE);
8818 if (elfsym->st_name == (unsigned long) -1)
8819 return 0;
8820 }
8821
8822 hash_table = elf_hash_table (flinfo->info);
8823 strtabsize = hash_table->strtabsize;
8824 if (strtabsize <= hash_table->strtabcount)
8825 {
8826 strtabsize += strtabsize;
8827 hash_table->strtabsize = strtabsize;
8828 strtabsize *= sizeof (*hash_table->strtab);
8829 hash_table->strtab
8830 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
8831 strtabsize);
8832 if (hash_table->strtab == NULL)
8833 return 0;
8834 }
8835 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
8836 hash_table->strtab[hash_table->strtabcount].dest_index
8837 = hash_table->strtabcount;
8838 hash_table->strtab[hash_table->strtabcount].destshndx_index
8839 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
8840
8841 bfd_get_symcount (flinfo->output_bfd) += 1;
8842 hash_table->strtabcount += 1;
8843
8844 return 1;
8845 }
8846
8847 /* Swap symbols out to the symbol table and flush the output symbols to
8848 the file. */
8849
8850 static bfd_boolean
8851 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
8852 {
8853 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
8854 bfd_size_type amt, i;
8855 const struct elf_backend_data *bed;
8856 bfd_byte *symbuf;
8857 Elf_Internal_Shdr *hdr;
8858 file_ptr pos;
8859 bfd_boolean ret;
8860
8861 if (!hash_table->strtabcount)
8862 return TRUE;
8863
8864 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8865
8866 bed = get_elf_backend_data (flinfo->output_bfd);
8867
8868 amt = bed->s->sizeof_sym * hash_table->strtabcount;
8869 symbuf = (bfd_byte *) bfd_malloc (amt);
8870 if (symbuf == NULL)
8871 return FALSE;
8872
8873 if (flinfo->symshndxbuf)
8874 {
8875 amt = (sizeof (Elf_External_Sym_Shndx)
8876 * (bfd_get_symcount (flinfo->output_bfd)));
8877 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
8878 if (flinfo->symshndxbuf == NULL)
8879 {
8880 free (symbuf);
8881 return FALSE;
8882 }
8883 }
8884
8885 for (i = 0; i < hash_table->strtabcount; i++)
8886 {
8887 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
8888 if (elfsym->sym.st_name == (unsigned long) -1)
8889 elfsym->sym.st_name = 0;
8890 else
8891 elfsym->sym.st_name
8892 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
8893 elfsym->sym.st_name);
8894 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
8895 ((bfd_byte *) symbuf
8896 + (elfsym->dest_index
8897 * bed->s->sizeof_sym)),
8898 (flinfo->symshndxbuf
8899 + elfsym->destshndx_index));
8900 }
8901
8902 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8903 pos = hdr->sh_offset + hdr->sh_size;
8904 amt = hash_table->strtabcount * bed->s->sizeof_sym;
8905 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
8906 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
8907 {
8908 hdr->sh_size += amt;
8909 ret = TRUE;
8910 }
8911 else
8912 ret = FALSE;
8913
8914 free (symbuf);
8915
8916 free (hash_table->strtab);
8917 hash_table->strtab = NULL;
8918
8919 return ret;
8920 }
8921
8922 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8923
8924 static bfd_boolean
8925 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8926 {
8927 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8928 && sym->st_shndx < SHN_LORESERVE)
8929 {
8930 /* The gABI doesn't support dynamic symbols in output sections
8931 beyond 64k. */
8932 (*_bfd_error_handler)
8933 (_("%B: Too many sections: %d (>= %d)"),
8934 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8935 bfd_set_error (bfd_error_nonrepresentable_section);
8936 return FALSE;
8937 }
8938 return TRUE;
8939 }
8940
8941 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8942 allowing an unsatisfied unversioned symbol in the DSO to match a
8943 versioned symbol that would normally require an explicit version.
8944 We also handle the case that a DSO references a hidden symbol
8945 which may be satisfied by a versioned symbol in another DSO. */
8946
8947 static bfd_boolean
8948 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8949 const struct elf_backend_data *bed,
8950 struct elf_link_hash_entry *h)
8951 {
8952 bfd *abfd;
8953 struct elf_link_loaded_list *loaded;
8954
8955 if (!is_elf_hash_table (info->hash))
8956 return FALSE;
8957
8958 /* Check indirect symbol. */
8959 while (h->root.type == bfd_link_hash_indirect)
8960 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8961
8962 switch (h->root.type)
8963 {
8964 default:
8965 abfd = NULL;
8966 break;
8967
8968 case bfd_link_hash_undefined:
8969 case bfd_link_hash_undefweak:
8970 abfd = h->root.u.undef.abfd;
8971 if ((abfd->flags & DYNAMIC) == 0
8972 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8973 return FALSE;
8974 break;
8975
8976 case bfd_link_hash_defined:
8977 case bfd_link_hash_defweak:
8978 abfd = h->root.u.def.section->owner;
8979 break;
8980
8981 case bfd_link_hash_common:
8982 abfd = h->root.u.c.p->section->owner;
8983 break;
8984 }
8985 BFD_ASSERT (abfd != NULL);
8986
8987 for (loaded = elf_hash_table (info)->loaded;
8988 loaded != NULL;
8989 loaded = loaded->next)
8990 {
8991 bfd *input;
8992 Elf_Internal_Shdr *hdr;
8993 bfd_size_type symcount;
8994 bfd_size_type extsymcount;
8995 bfd_size_type extsymoff;
8996 Elf_Internal_Shdr *versymhdr;
8997 Elf_Internal_Sym *isym;
8998 Elf_Internal_Sym *isymend;
8999 Elf_Internal_Sym *isymbuf;
9000 Elf_External_Versym *ever;
9001 Elf_External_Versym *extversym;
9002
9003 input = loaded->abfd;
9004
9005 /* We check each DSO for a possible hidden versioned definition. */
9006 if (input == abfd
9007 || (input->flags & DYNAMIC) == 0
9008 || elf_dynversym (input) == 0)
9009 continue;
9010
9011 hdr = &elf_tdata (input)->dynsymtab_hdr;
9012
9013 symcount = hdr->sh_size / bed->s->sizeof_sym;
9014 if (elf_bad_symtab (input))
9015 {
9016 extsymcount = symcount;
9017 extsymoff = 0;
9018 }
9019 else
9020 {
9021 extsymcount = symcount - hdr->sh_info;
9022 extsymoff = hdr->sh_info;
9023 }
9024
9025 if (extsymcount == 0)
9026 continue;
9027
9028 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9029 NULL, NULL, NULL);
9030 if (isymbuf == NULL)
9031 return FALSE;
9032
9033 /* Read in any version definitions. */
9034 versymhdr = &elf_tdata (input)->dynversym_hdr;
9035 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
9036 if (extversym == NULL)
9037 goto error_ret;
9038
9039 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9040 || (bfd_bread (extversym, versymhdr->sh_size, input)
9041 != versymhdr->sh_size))
9042 {
9043 free (extversym);
9044 error_ret:
9045 free (isymbuf);
9046 return FALSE;
9047 }
9048
9049 ever = extversym + extsymoff;
9050 isymend = isymbuf + extsymcount;
9051 for (isym = isymbuf; isym < isymend; isym++, ever++)
9052 {
9053 const char *name;
9054 Elf_Internal_Versym iver;
9055 unsigned short version_index;
9056
9057 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9058 || isym->st_shndx == SHN_UNDEF)
9059 continue;
9060
9061 name = bfd_elf_string_from_elf_section (input,
9062 hdr->sh_link,
9063 isym->st_name);
9064 if (strcmp (name, h->root.root.string) != 0)
9065 continue;
9066
9067 _bfd_elf_swap_versym_in (input, ever, &iver);
9068
9069 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9070 && !(h->def_regular
9071 && h->forced_local))
9072 {
9073 /* If we have a non-hidden versioned sym, then it should
9074 have provided a definition for the undefined sym unless
9075 it is defined in a non-shared object and forced local.
9076 */
9077 abort ();
9078 }
9079
9080 version_index = iver.vs_vers & VERSYM_VERSION;
9081 if (version_index == 1 || version_index == 2)
9082 {
9083 /* This is the base or first version. We can use it. */
9084 free (extversym);
9085 free (isymbuf);
9086 return TRUE;
9087 }
9088 }
9089
9090 free (extversym);
9091 free (isymbuf);
9092 }
9093
9094 return FALSE;
9095 }
9096
9097 /* Convert ELF common symbol TYPE. */
9098
9099 static int
9100 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9101 {
9102 /* Commom symbol can only appear in relocatable link. */
9103 if (!bfd_link_relocatable (info))
9104 abort ();
9105 switch (info->elf_stt_common)
9106 {
9107 case unchanged:
9108 break;
9109 case elf_stt_common:
9110 type = STT_COMMON;
9111 break;
9112 case no_elf_stt_common:
9113 type = STT_OBJECT;
9114 break;
9115 }
9116 return type;
9117 }
9118
9119 /* Add an external symbol to the symbol table. This is called from
9120 the hash table traversal routine. When generating a shared object,
9121 we go through the symbol table twice. The first time we output
9122 anything that might have been forced to local scope in a version
9123 script. The second time we output the symbols that are still
9124 global symbols. */
9125
9126 static bfd_boolean
9127 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9128 {
9129 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9130 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9131 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9132 bfd_boolean strip;
9133 Elf_Internal_Sym sym;
9134 asection *input_sec;
9135 const struct elf_backend_data *bed;
9136 long indx;
9137 int ret;
9138 unsigned int type;
9139 /* A symbol is bound locally if it is forced local or it is locally
9140 defined, hidden versioned, not referenced by shared library and
9141 not exported when linking executable. */
9142 bfd_boolean local_bind = (h->forced_local
9143 || (bfd_link_executable (flinfo->info)
9144 && !flinfo->info->export_dynamic
9145 && !h->dynamic
9146 && !h->ref_dynamic
9147 && h->def_regular
9148 && h->versioned == versioned_hidden));
9149
9150 if (h->root.type == bfd_link_hash_warning)
9151 {
9152 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9153 if (h->root.type == bfd_link_hash_new)
9154 return TRUE;
9155 }
9156
9157 /* Decide whether to output this symbol in this pass. */
9158 if (eoinfo->localsyms)
9159 {
9160 if (!local_bind)
9161 return TRUE;
9162 }
9163 else
9164 {
9165 if (local_bind)
9166 return TRUE;
9167 }
9168
9169 bed = get_elf_backend_data (flinfo->output_bfd);
9170
9171 if (h->root.type == bfd_link_hash_undefined)
9172 {
9173 /* If we have an undefined symbol reference here then it must have
9174 come from a shared library that is being linked in. (Undefined
9175 references in regular files have already been handled unless
9176 they are in unreferenced sections which are removed by garbage
9177 collection). */
9178 bfd_boolean ignore_undef = FALSE;
9179
9180 /* Some symbols may be special in that the fact that they're
9181 undefined can be safely ignored - let backend determine that. */
9182 if (bed->elf_backend_ignore_undef_symbol)
9183 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9184
9185 /* If we are reporting errors for this situation then do so now. */
9186 if (!ignore_undef
9187 && h->ref_dynamic
9188 && (!h->ref_regular || flinfo->info->gc_sections)
9189 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9190 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9191 {
9192 if (!(flinfo->info->callbacks->undefined_symbol
9193 (flinfo->info, h->root.root.string,
9194 h->ref_regular ? NULL : h->root.u.undef.abfd,
9195 NULL, 0,
9196 (flinfo->info->unresolved_syms_in_shared_libs
9197 == RM_GENERATE_ERROR))))
9198 {
9199 bfd_set_error (bfd_error_bad_value);
9200 eoinfo->failed = TRUE;
9201 return FALSE;
9202 }
9203 }
9204 }
9205
9206 /* We should also warn if a forced local symbol is referenced from
9207 shared libraries. */
9208 if (bfd_link_executable (flinfo->info)
9209 && h->forced_local
9210 && h->ref_dynamic
9211 && h->def_regular
9212 && !h->dynamic_def
9213 && h->ref_dynamic_nonweak
9214 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9215 {
9216 bfd *def_bfd;
9217 const char *msg;
9218 struct elf_link_hash_entry *hi = h;
9219
9220 /* Check indirect symbol. */
9221 while (hi->root.type == bfd_link_hash_indirect)
9222 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9223
9224 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9225 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
9226 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9227 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
9228 else
9229 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
9230 def_bfd = flinfo->output_bfd;
9231 if (hi->root.u.def.section != bfd_abs_section_ptr)
9232 def_bfd = hi->root.u.def.section->owner;
9233 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
9234 h->root.root.string);
9235 bfd_set_error (bfd_error_bad_value);
9236 eoinfo->failed = TRUE;
9237 return FALSE;
9238 }
9239
9240 /* We don't want to output symbols that have never been mentioned by
9241 a regular file, or that we have been told to strip. However, if
9242 h->indx is set to -2, the symbol is used by a reloc and we must
9243 output it. */
9244 strip = FALSE;
9245 if (h->indx == -2)
9246 ;
9247 else if ((h->def_dynamic
9248 || h->ref_dynamic
9249 || h->root.type == bfd_link_hash_new)
9250 && !h->def_regular
9251 && !h->ref_regular)
9252 strip = TRUE;
9253 else if (flinfo->info->strip == strip_all)
9254 strip = TRUE;
9255 else if (flinfo->info->strip == strip_some
9256 && bfd_hash_lookup (flinfo->info->keep_hash,
9257 h->root.root.string, FALSE, FALSE) == NULL)
9258 strip = TRUE;
9259 else if ((h->root.type == bfd_link_hash_defined
9260 || h->root.type == bfd_link_hash_defweak)
9261 && ((flinfo->info->strip_discarded
9262 && discarded_section (h->root.u.def.section))
9263 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9264 && h->root.u.def.section->owner != NULL
9265 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9266 strip = TRUE;
9267 else if ((h->root.type == bfd_link_hash_undefined
9268 || h->root.type == bfd_link_hash_undefweak)
9269 && h->root.u.undef.abfd != NULL
9270 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9271 strip = TRUE;
9272
9273 type = h->type;
9274
9275 /* If we're stripping it, and it's not a dynamic symbol, there's
9276 nothing else to do. However, if it is a forced local symbol or
9277 an ifunc symbol we need to give the backend finish_dynamic_symbol
9278 function a chance to make it dynamic. */
9279 if (strip
9280 && h->dynindx == -1
9281 && type != STT_GNU_IFUNC
9282 && !h->forced_local)
9283 return TRUE;
9284
9285 sym.st_value = 0;
9286 sym.st_size = h->size;
9287 sym.st_other = h->other;
9288 switch (h->root.type)
9289 {
9290 default:
9291 case bfd_link_hash_new:
9292 case bfd_link_hash_warning:
9293 abort ();
9294 return FALSE;
9295
9296 case bfd_link_hash_undefined:
9297 case bfd_link_hash_undefweak:
9298 input_sec = bfd_und_section_ptr;
9299 sym.st_shndx = SHN_UNDEF;
9300 break;
9301
9302 case bfd_link_hash_defined:
9303 case bfd_link_hash_defweak:
9304 {
9305 input_sec = h->root.u.def.section;
9306 if (input_sec->output_section != NULL)
9307 {
9308 sym.st_shndx =
9309 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9310 input_sec->output_section);
9311 if (sym.st_shndx == SHN_BAD)
9312 {
9313 (*_bfd_error_handler)
9314 (_("%B: could not find output section %A for input section %A"),
9315 flinfo->output_bfd, input_sec->output_section, input_sec);
9316 bfd_set_error (bfd_error_nonrepresentable_section);
9317 eoinfo->failed = TRUE;
9318 return FALSE;
9319 }
9320
9321 /* ELF symbols in relocatable files are section relative,
9322 but in nonrelocatable files they are virtual
9323 addresses. */
9324 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9325 if (!bfd_link_relocatable (flinfo->info))
9326 {
9327 sym.st_value += input_sec->output_section->vma;
9328 if (h->type == STT_TLS)
9329 {
9330 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9331 if (tls_sec != NULL)
9332 sym.st_value -= tls_sec->vma;
9333 }
9334 }
9335 }
9336 else
9337 {
9338 BFD_ASSERT (input_sec->owner == NULL
9339 || (input_sec->owner->flags & DYNAMIC) != 0);
9340 sym.st_shndx = SHN_UNDEF;
9341 input_sec = bfd_und_section_ptr;
9342 }
9343 }
9344 break;
9345
9346 case bfd_link_hash_common:
9347 input_sec = h->root.u.c.p->section;
9348 sym.st_shndx = bed->common_section_index (input_sec);
9349 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9350 break;
9351
9352 case bfd_link_hash_indirect:
9353 /* These symbols are created by symbol versioning. They point
9354 to the decorated version of the name. For example, if the
9355 symbol foo@@GNU_1.2 is the default, which should be used when
9356 foo is used with no version, then we add an indirect symbol
9357 foo which points to foo@@GNU_1.2. We ignore these symbols,
9358 since the indirected symbol is already in the hash table. */
9359 return TRUE;
9360 }
9361
9362 if (type == STT_COMMON || type == STT_OBJECT)
9363 switch (h->root.type)
9364 {
9365 case bfd_link_hash_common:
9366 type = elf_link_convert_common_type (flinfo->info, type);
9367 break;
9368 case bfd_link_hash_defined:
9369 case bfd_link_hash_defweak:
9370 if (bed->common_definition (&sym))
9371 type = elf_link_convert_common_type (flinfo->info, type);
9372 else
9373 type = STT_OBJECT;
9374 break;
9375 case bfd_link_hash_undefined:
9376 case bfd_link_hash_undefweak:
9377 break;
9378 default:
9379 abort ();
9380 }
9381
9382 if (local_bind)
9383 {
9384 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
9385 /* Turn off visibility on local symbol. */
9386 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
9387 }
9388 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
9389 else if (h->unique_global && h->def_regular)
9390 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
9391 else if (h->root.type == bfd_link_hash_undefweak
9392 || h->root.type == bfd_link_hash_defweak)
9393 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
9394 else
9395 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
9396 sym.st_target_internal = h->target_internal;
9397
9398 /* Give the processor backend a chance to tweak the symbol value,
9399 and also to finish up anything that needs to be done for this
9400 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9401 forced local syms when non-shared is due to a historical quirk.
9402 STT_GNU_IFUNC symbol must go through PLT. */
9403 if ((h->type == STT_GNU_IFUNC
9404 && h->def_regular
9405 && !bfd_link_relocatable (flinfo->info))
9406 || ((h->dynindx != -1
9407 || h->forced_local)
9408 && ((bfd_link_pic (flinfo->info)
9409 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9410 || h->root.type != bfd_link_hash_undefweak))
9411 || !h->forced_local)
9412 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9413 {
9414 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9415 (flinfo->output_bfd, flinfo->info, h, &sym)))
9416 {
9417 eoinfo->failed = TRUE;
9418 return FALSE;
9419 }
9420 }
9421
9422 /* If we are marking the symbol as undefined, and there are no
9423 non-weak references to this symbol from a regular object, then
9424 mark the symbol as weak undefined; if there are non-weak
9425 references, mark the symbol as strong. We can't do this earlier,
9426 because it might not be marked as undefined until the
9427 finish_dynamic_symbol routine gets through with it. */
9428 if (sym.st_shndx == SHN_UNDEF
9429 && h->ref_regular
9430 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9431 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9432 {
9433 int bindtype;
9434 type = ELF_ST_TYPE (sym.st_info);
9435
9436 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9437 if (type == STT_GNU_IFUNC)
9438 type = STT_FUNC;
9439
9440 if (h->ref_regular_nonweak)
9441 bindtype = STB_GLOBAL;
9442 else
9443 bindtype = STB_WEAK;
9444 sym.st_info = ELF_ST_INFO (bindtype, type);
9445 }
9446
9447 /* If this is a symbol defined in a dynamic library, don't use the
9448 symbol size from the dynamic library. Relinking an executable
9449 against a new library may introduce gratuitous changes in the
9450 executable's symbols if we keep the size. */
9451 if (sym.st_shndx == SHN_UNDEF
9452 && !h->def_regular
9453 && h->def_dynamic)
9454 sym.st_size = 0;
9455
9456 /* If a non-weak symbol with non-default visibility is not defined
9457 locally, it is a fatal error. */
9458 if (!bfd_link_relocatable (flinfo->info)
9459 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9460 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9461 && h->root.type == bfd_link_hash_undefined
9462 && !h->def_regular)
9463 {
9464 const char *msg;
9465
9466 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9467 msg = _("%B: protected symbol `%s' isn't defined");
9468 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9469 msg = _("%B: internal symbol `%s' isn't defined");
9470 else
9471 msg = _("%B: hidden symbol `%s' isn't defined");
9472 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9473 bfd_set_error (bfd_error_bad_value);
9474 eoinfo->failed = TRUE;
9475 return FALSE;
9476 }
9477
9478 /* If this symbol should be put in the .dynsym section, then put it
9479 there now. We already know the symbol index. We also fill in
9480 the entry in the .hash section. */
9481 if (elf_hash_table (flinfo->info)->dynsym != NULL
9482 && h->dynindx != -1
9483 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9484 {
9485 bfd_byte *esym;
9486
9487 /* Since there is no version information in the dynamic string,
9488 if there is no version info in symbol version section, we will
9489 have a run-time problem if not linking executable, referenced
9490 by shared library, not locally defined, or not bound locally.
9491 */
9492 if (h->verinfo.verdef == NULL
9493 && !local_bind
9494 && (!bfd_link_executable (flinfo->info)
9495 || h->ref_dynamic
9496 || !h->def_regular))
9497 {
9498 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9499
9500 if (p && p [1] != '\0')
9501 {
9502 (*_bfd_error_handler)
9503 (_("%B: No symbol version section for versioned symbol `%s'"),
9504 flinfo->output_bfd, h->root.root.string);
9505 eoinfo->failed = TRUE;
9506 return FALSE;
9507 }
9508 }
9509
9510 sym.st_name = h->dynstr_index;
9511 esym = (elf_hash_table (flinfo->info)->dynsym->contents
9512 + h->dynindx * bed->s->sizeof_sym);
9513 if (!check_dynsym (flinfo->output_bfd, &sym))
9514 {
9515 eoinfo->failed = TRUE;
9516 return FALSE;
9517 }
9518 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9519
9520 if (flinfo->hash_sec != NULL)
9521 {
9522 size_t hash_entry_size;
9523 bfd_byte *bucketpos;
9524 bfd_vma chain;
9525 size_t bucketcount;
9526 size_t bucket;
9527
9528 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9529 bucket = h->u.elf_hash_value % bucketcount;
9530
9531 hash_entry_size
9532 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9533 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9534 + (bucket + 2) * hash_entry_size);
9535 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9536 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9537 bucketpos);
9538 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9539 ((bfd_byte *) flinfo->hash_sec->contents
9540 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9541 }
9542
9543 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9544 {
9545 Elf_Internal_Versym iversym;
9546 Elf_External_Versym *eversym;
9547
9548 if (!h->def_regular)
9549 {
9550 if (h->verinfo.verdef == NULL
9551 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9552 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9553 iversym.vs_vers = 0;
9554 else
9555 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9556 }
9557 else
9558 {
9559 if (h->verinfo.vertree == NULL)
9560 iversym.vs_vers = 1;
9561 else
9562 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9563 if (flinfo->info->create_default_symver)
9564 iversym.vs_vers++;
9565 }
9566
9567 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
9568 defined locally. */
9569 if (h->versioned == versioned_hidden && h->def_regular)
9570 iversym.vs_vers |= VERSYM_HIDDEN;
9571
9572 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9573 eversym += h->dynindx;
9574 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9575 }
9576 }
9577
9578 /* If the symbol is undefined, and we didn't output it to .dynsym,
9579 strip it from .symtab too. Obviously we can't do this for
9580 relocatable output or when needed for --emit-relocs. */
9581 else if (input_sec == bfd_und_section_ptr
9582 && h->indx != -2
9583 && !bfd_link_relocatable (flinfo->info))
9584 return TRUE;
9585 /* Also strip others that we couldn't earlier due to dynamic symbol
9586 processing. */
9587 if (strip)
9588 return TRUE;
9589 if ((input_sec->flags & SEC_EXCLUDE) != 0)
9590 return TRUE;
9591
9592 /* Output a FILE symbol so that following locals are not associated
9593 with the wrong input file. We need one for forced local symbols
9594 if we've seen more than one FILE symbol or when we have exactly
9595 one FILE symbol but global symbols are present in a file other
9596 than the one with the FILE symbol. We also need one if linker
9597 defined symbols are present. In practice these conditions are
9598 always met, so just emit the FILE symbol unconditionally. */
9599 if (eoinfo->localsyms
9600 && !eoinfo->file_sym_done
9601 && eoinfo->flinfo->filesym_count != 0)
9602 {
9603 Elf_Internal_Sym fsym;
9604
9605 memset (&fsym, 0, sizeof (fsym));
9606 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9607 fsym.st_shndx = SHN_ABS;
9608 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
9609 bfd_und_section_ptr, NULL))
9610 return FALSE;
9611
9612 eoinfo->file_sym_done = TRUE;
9613 }
9614
9615 indx = bfd_get_symcount (flinfo->output_bfd);
9616 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
9617 input_sec, h);
9618 if (ret == 0)
9619 {
9620 eoinfo->failed = TRUE;
9621 return FALSE;
9622 }
9623 else if (ret == 1)
9624 h->indx = indx;
9625 else if (h->indx == -2)
9626 abort();
9627
9628 return TRUE;
9629 }
9630
9631 /* Return TRUE if special handling is done for relocs in SEC against
9632 symbols defined in discarded sections. */
9633
9634 static bfd_boolean
9635 elf_section_ignore_discarded_relocs (asection *sec)
9636 {
9637 const struct elf_backend_data *bed;
9638
9639 switch (sec->sec_info_type)
9640 {
9641 case SEC_INFO_TYPE_STABS:
9642 case SEC_INFO_TYPE_EH_FRAME:
9643 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
9644 return TRUE;
9645 default:
9646 break;
9647 }
9648
9649 bed = get_elf_backend_data (sec->owner);
9650 if (bed->elf_backend_ignore_discarded_relocs != NULL
9651 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9652 return TRUE;
9653
9654 return FALSE;
9655 }
9656
9657 /* Return a mask saying how ld should treat relocations in SEC against
9658 symbols defined in discarded sections. If this function returns
9659 COMPLAIN set, ld will issue a warning message. If this function
9660 returns PRETEND set, and the discarded section was link-once and the
9661 same size as the kept link-once section, ld will pretend that the
9662 symbol was actually defined in the kept section. Otherwise ld will
9663 zero the reloc (at least that is the intent, but some cooperation by
9664 the target dependent code is needed, particularly for REL targets). */
9665
9666 unsigned int
9667 _bfd_elf_default_action_discarded (asection *sec)
9668 {
9669 if (sec->flags & SEC_DEBUGGING)
9670 return PRETEND;
9671
9672 if (strcmp (".eh_frame", sec->name) == 0)
9673 return 0;
9674
9675 if (strcmp (".gcc_except_table", sec->name) == 0)
9676 return 0;
9677
9678 return COMPLAIN | PRETEND;
9679 }
9680
9681 /* Find a match between a section and a member of a section group. */
9682
9683 static asection *
9684 match_group_member (asection *sec, asection *group,
9685 struct bfd_link_info *info)
9686 {
9687 asection *first = elf_next_in_group (group);
9688 asection *s = first;
9689
9690 while (s != NULL)
9691 {
9692 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9693 return s;
9694
9695 s = elf_next_in_group (s);
9696 if (s == first)
9697 break;
9698 }
9699
9700 return NULL;
9701 }
9702
9703 /* Check if the kept section of a discarded section SEC can be used
9704 to replace it. Return the replacement if it is OK. Otherwise return
9705 NULL. */
9706
9707 asection *
9708 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9709 {
9710 asection *kept;
9711
9712 kept = sec->kept_section;
9713 if (kept != NULL)
9714 {
9715 if ((kept->flags & SEC_GROUP) != 0)
9716 kept = match_group_member (sec, kept, info);
9717 if (kept != NULL
9718 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9719 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9720 kept = NULL;
9721 sec->kept_section = kept;
9722 }
9723 return kept;
9724 }
9725
9726 /* Link an input file into the linker output file. This function
9727 handles all the sections and relocations of the input file at once.
9728 This is so that we only have to read the local symbols once, and
9729 don't have to keep them in memory. */
9730
9731 static bfd_boolean
9732 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9733 {
9734 int (*relocate_section)
9735 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9736 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9737 bfd *output_bfd;
9738 Elf_Internal_Shdr *symtab_hdr;
9739 size_t locsymcount;
9740 size_t extsymoff;
9741 Elf_Internal_Sym *isymbuf;
9742 Elf_Internal_Sym *isym;
9743 Elf_Internal_Sym *isymend;
9744 long *pindex;
9745 asection **ppsection;
9746 asection *o;
9747 const struct elf_backend_data *bed;
9748 struct elf_link_hash_entry **sym_hashes;
9749 bfd_size_type address_size;
9750 bfd_vma r_type_mask;
9751 int r_sym_shift;
9752 bfd_boolean have_file_sym = FALSE;
9753
9754 output_bfd = flinfo->output_bfd;
9755 bed = get_elf_backend_data (output_bfd);
9756 relocate_section = bed->elf_backend_relocate_section;
9757
9758 /* If this is a dynamic object, we don't want to do anything here:
9759 we don't want the local symbols, and we don't want the section
9760 contents. */
9761 if ((input_bfd->flags & DYNAMIC) != 0)
9762 return TRUE;
9763
9764 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9765 if (elf_bad_symtab (input_bfd))
9766 {
9767 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9768 extsymoff = 0;
9769 }
9770 else
9771 {
9772 locsymcount = symtab_hdr->sh_info;
9773 extsymoff = symtab_hdr->sh_info;
9774 }
9775
9776 /* Read the local symbols. */
9777 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9778 if (isymbuf == NULL && locsymcount != 0)
9779 {
9780 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9781 flinfo->internal_syms,
9782 flinfo->external_syms,
9783 flinfo->locsym_shndx);
9784 if (isymbuf == NULL)
9785 return FALSE;
9786 }
9787
9788 /* Find local symbol sections and adjust values of symbols in
9789 SEC_MERGE sections. Write out those local symbols we know are
9790 going into the output file. */
9791 isymend = isymbuf + locsymcount;
9792 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9793 isym < isymend;
9794 isym++, pindex++, ppsection++)
9795 {
9796 asection *isec;
9797 const char *name;
9798 Elf_Internal_Sym osym;
9799 long indx;
9800 int ret;
9801
9802 *pindex = -1;
9803
9804 if (elf_bad_symtab (input_bfd))
9805 {
9806 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9807 {
9808 *ppsection = NULL;
9809 continue;
9810 }
9811 }
9812
9813 if (isym->st_shndx == SHN_UNDEF)
9814 isec = bfd_und_section_ptr;
9815 else if (isym->st_shndx == SHN_ABS)
9816 isec = bfd_abs_section_ptr;
9817 else if (isym->st_shndx == SHN_COMMON)
9818 isec = bfd_com_section_ptr;
9819 else
9820 {
9821 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9822 if (isec == NULL)
9823 {
9824 /* Don't attempt to output symbols with st_shnx in the
9825 reserved range other than SHN_ABS and SHN_COMMON. */
9826 *ppsection = NULL;
9827 continue;
9828 }
9829 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9830 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9831 isym->st_value =
9832 _bfd_merged_section_offset (output_bfd, &isec,
9833 elf_section_data (isec)->sec_info,
9834 isym->st_value);
9835 }
9836
9837 *ppsection = isec;
9838
9839 /* Don't output the first, undefined, symbol. In fact, don't
9840 output any undefined local symbol. */
9841 if (isec == bfd_und_section_ptr)
9842 continue;
9843
9844 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9845 {
9846 /* We never output section symbols. Instead, we use the
9847 section symbol of the corresponding section in the output
9848 file. */
9849 continue;
9850 }
9851
9852 /* If we are stripping all symbols, we don't want to output this
9853 one. */
9854 if (flinfo->info->strip == strip_all)
9855 continue;
9856
9857 /* If we are discarding all local symbols, we don't want to
9858 output this one. If we are generating a relocatable output
9859 file, then some of the local symbols may be required by
9860 relocs; we output them below as we discover that they are
9861 needed. */
9862 if (flinfo->info->discard == discard_all)
9863 continue;
9864
9865 /* If this symbol is defined in a section which we are
9866 discarding, we don't need to keep it. */
9867 if (isym->st_shndx != SHN_UNDEF
9868 && isym->st_shndx < SHN_LORESERVE
9869 && bfd_section_removed_from_list (output_bfd,
9870 isec->output_section))
9871 continue;
9872
9873 /* Get the name of the symbol. */
9874 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9875 isym->st_name);
9876 if (name == NULL)
9877 return FALSE;
9878
9879 /* See if we are discarding symbols with this name. */
9880 if ((flinfo->info->strip == strip_some
9881 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9882 == NULL))
9883 || (((flinfo->info->discard == discard_sec_merge
9884 && (isec->flags & SEC_MERGE)
9885 && !bfd_link_relocatable (flinfo->info))
9886 || flinfo->info->discard == discard_l)
9887 && bfd_is_local_label_name (input_bfd, name)))
9888 continue;
9889
9890 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9891 {
9892 if (input_bfd->lto_output)
9893 /* -flto puts a temp file name here. This means builds
9894 are not reproducible. Discard the symbol. */
9895 continue;
9896 have_file_sym = TRUE;
9897 flinfo->filesym_count += 1;
9898 }
9899 if (!have_file_sym)
9900 {
9901 /* In the absence of debug info, bfd_find_nearest_line uses
9902 FILE symbols to determine the source file for local
9903 function symbols. Provide a FILE symbol here if input
9904 files lack such, so that their symbols won't be
9905 associated with a previous input file. It's not the
9906 source file, but the best we can do. */
9907 have_file_sym = TRUE;
9908 flinfo->filesym_count += 1;
9909 memset (&osym, 0, sizeof (osym));
9910 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9911 osym.st_shndx = SHN_ABS;
9912 if (!elf_link_output_symstrtab (flinfo,
9913 (input_bfd->lto_output ? NULL
9914 : input_bfd->filename),
9915 &osym, bfd_abs_section_ptr,
9916 NULL))
9917 return FALSE;
9918 }
9919
9920 osym = *isym;
9921
9922 /* Adjust the section index for the output file. */
9923 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9924 isec->output_section);
9925 if (osym.st_shndx == SHN_BAD)
9926 return FALSE;
9927
9928 /* ELF symbols in relocatable files are section relative, but
9929 in executable files they are virtual addresses. Note that
9930 this code assumes that all ELF sections have an associated
9931 BFD section with a reasonable value for output_offset; below
9932 we assume that they also have a reasonable value for
9933 output_section. Any special sections must be set up to meet
9934 these requirements. */
9935 osym.st_value += isec->output_offset;
9936 if (!bfd_link_relocatable (flinfo->info))
9937 {
9938 osym.st_value += isec->output_section->vma;
9939 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9940 {
9941 /* STT_TLS symbols are relative to PT_TLS segment base. */
9942 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9943 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9944 }
9945 }
9946
9947 indx = bfd_get_symcount (output_bfd);
9948 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
9949 if (ret == 0)
9950 return FALSE;
9951 else if (ret == 1)
9952 *pindex = indx;
9953 }
9954
9955 if (bed->s->arch_size == 32)
9956 {
9957 r_type_mask = 0xff;
9958 r_sym_shift = 8;
9959 address_size = 4;
9960 }
9961 else
9962 {
9963 r_type_mask = 0xffffffff;
9964 r_sym_shift = 32;
9965 address_size = 8;
9966 }
9967
9968 /* Relocate the contents of each section. */
9969 sym_hashes = elf_sym_hashes (input_bfd);
9970 for (o = input_bfd->sections; o != NULL; o = o->next)
9971 {
9972 bfd_byte *contents;
9973
9974 if (! o->linker_mark)
9975 {
9976 /* This section was omitted from the link. */
9977 continue;
9978 }
9979
9980 if (bfd_link_relocatable (flinfo->info)
9981 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9982 {
9983 /* Deal with the group signature symbol. */
9984 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9985 unsigned long symndx = sec_data->this_hdr.sh_info;
9986 asection *osec = o->output_section;
9987
9988 if (symndx >= locsymcount
9989 || (elf_bad_symtab (input_bfd)
9990 && flinfo->sections[symndx] == NULL))
9991 {
9992 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9993 while (h->root.type == bfd_link_hash_indirect
9994 || h->root.type == bfd_link_hash_warning)
9995 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9996 /* Arrange for symbol to be output. */
9997 h->indx = -2;
9998 elf_section_data (osec)->this_hdr.sh_info = -2;
9999 }
10000 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10001 {
10002 /* We'll use the output section target_index. */
10003 asection *sec = flinfo->sections[symndx]->output_section;
10004 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10005 }
10006 else
10007 {
10008 if (flinfo->indices[symndx] == -1)
10009 {
10010 /* Otherwise output the local symbol now. */
10011 Elf_Internal_Sym sym = isymbuf[symndx];
10012 asection *sec = flinfo->sections[symndx]->output_section;
10013 const char *name;
10014 long indx;
10015 int ret;
10016
10017 name = bfd_elf_string_from_elf_section (input_bfd,
10018 symtab_hdr->sh_link,
10019 sym.st_name);
10020 if (name == NULL)
10021 return FALSE;
10022
10023 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10024 sec);
10025 if (sym.st_shndx == SHN_BAD)
10026 return FALSE;
10027
10028 sym.st_value += o->output_offset;
10029
10030 indx = bfd_get_symcount (output_bfd);
10031 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10032 NULL);
10033 if (ret == 0)
10034 return FALSE;
10035 else if (ret == 1)
10036 flinfo->indices[symndx] = indx;
10037 else
10038 abort ();
10039 }
10040 elf_section_data (osec)->this_hdr.sh_info
10041 = flinfo->indices[symndx];
10042 }
10043 }
10044
10045 if ((o->flags & SEC_HAS_CONTENTS) == 0
10046 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10047 continue;
10048
10049 if ((o->flags & SEC_LINKER_CREATED) != 0)
10050 {
10051 /* Section was created by _bfd_elf_link_create_dynamic_sections
10052 or somesuch. */
10053 continue;
10054 }
10055
10056 /* Get the contents of the section. They have been cached by a
10057 relaxation routine. Note that o is a section in an input
10058 file, so the contents field will not have been set by any of
10059 the routines which work on output files. */
10060 if (elf_section_data (o)->this_hdr.contents != NULL)
10061 {
10062 contents = elf_section_data (o)->this_hdr.contents;
10063 if (bed->caches_rawsize
10064 && o->rawsize != 0
10065 && o->rawsize < o->size)
10066 {
10067 memcpy (flinfo->contents, contents, o->rawsize);
10068 contents = flinfo->contents;
10069 }
10070 }
10071 else
10072 {
10073 contents = flinfo->contents;
10074 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10075 return FALSE;
10076 }
10077
10078 if ((o->flags & SEC_RELOC) != 0)
10079 {
10080 Elf_Internal_Rela *internal_relocs;
10081 Elf_Internal_Rela *rel, *relend;
10082 int action_discarded;
10083 int ret;
10084
10085 /* Get the swapped relocs. */
10086 internal_relocs
10087 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10088 flinfo->internal_relocs, FALSE);
10089 if (internal_relocs == NULL
10090 && o->reloc_count > 0)
10091 return FALSE;
10092
10093 /* We need to reverse-copy input .ctors/.dtors sections if
10094 they are placed in .init_array/.finit_array for output. */
10095 if (o->size > address_size
10096 && ((strncmp (o->name, ".ctors", 6) == 0
10097 && strcmp (o->output_section->name,
10098 ".init_array") == 0)
10099 || (strncmp (o->name, ".dtors", 6) == 0
10100 && strcmp (o->output_section->name,
10101 ".fini_array") == 0))
10102 && (o->name[6] == 0 || o->name[6] == '.'))
10103 {
10104 if (o->size != o->reloc_count * address_size)
10105 {
10106 (*_bfd_error_handler)
10107 (_("error: %B: size of section %A is not "
10108 "multiple of address size"),
10109 input_bfd, o);
10110 bfd_set_error (bfd_error_on_input);
10111 return FALSE;
10112 }
10113 o->flags |= SEC_ELF_REVERSE_COPY;
10114 }
10115
10116 action_discarded = -1;
10117 if (!elf_section_ignore_discarded_relocs (o))
10118 action_discarded = (*bed->action_discarded) (o);
10119
10120 /* Run through the relocs evaluating complex reloc symbols and
10121 looking for relocs against symbols from discarded sections
10122 or section symbols from removed link-once sections.
10123 Complain about relocs against discarded sections. Zero
10124 relocs against removed link-once sections. */
10125
10126 rel = internal_relocs;
10127 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
10128 for ( ; rel < relend; rel++)
10129 {
10130 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10131 unsigned int s_type;
10132 asection **ps, *sec;
10133 struct elf_link_hash_entry *h = NULL;
10134 const char *sym_name;
10135
10136 if (r_symndx == STN_UNDEF)
10137 continue;
10138
10139 if (r_symndx >= locsymcount
10140 || (elf_bad_symtab (input_bfd)
10141 && flinfo->sections[r_symndx] == NULL))
10142 {
10143 h = sym_hashes[r_symndx - extsymoff];
10144
10145 /* Badly formatted input files can contain relocs that
10146 reference non-existant symbols. Check here so that
10147 we do not seg fault. */
10148 if (h == NULL)
10149 {
10150 char buffer [32];
10151
10152 sprintf_vma (buffer, rel->r_info);
10153 (*_bfd_error_handler)
10154 (_("error: %B contains a reloc (0x%s) for section %A "
10155 "that references a non-existent global symbol"),
10156 input_bfd, o, buffer);
10157 bfd_set_error (bfd_error_bad_value);
10158 return FALSE;
10159 }
10160
10161 while (h->root.type == bfd_link_hash_indirect
10162 || h->root.type == bfd_link_hash_warning)
10163 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10164
10165 s_type = h->type;
10166
10167 /* If a plugin symbol is referenced from a non-IR file,
10168 mark the symbol as undefined. Note that the
10169 linker may attach linker created dynamic sections
10170 to the plugin bfd. Symbols defined in linker
10171 created sections are not plugin symbols. */
10172 if (h->root.non_ir_ref
10173 && (h->root.type == bfd_link_hash_defined
10174 || h->root.type == bfd_link_hash_defweak)
10175 && (h->root.u.def.section->flags
10176 & SEC_LINKER_CREATED) == 0
10177 && h->root.u.def.section->owner != NULL
10178 && (h->root.u.def.section->owner->flags
10179 & BFD_PLUGIN) != 0)
10180 {
10181 h->root.type = bfd_link_hash_undefined;
10182 h->root.u.undef.abfd = h->root.u.def.section->owner;
10183 }
10184
10185 ps = NULL;
10186 if (h->root.type == bfd_link_hash_defined
10187 || h->root.type == bfd_link_hash_defweak)
10188 ps = &h->root.u.def.section;
10189
10190 sym_name = h->root.root.string;
10191 }
10192 else
10193 {
10194 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10195
10196 s_type = ELF_ST_TYPE (sym->st_info);
10197 ps = &flinfo->sections[r_symndx];
10198 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10199 sym, *ps);
10200 }
10201
10202 if ((s_type == STT_RELC || s_type == STT_SRELC)
10203 && !bfd_link_relocatable (flinfo->info))
10204 {
10205 bfd_vma val;
10206 bfd_vma dot = (rel->r_offset
10207 + o->output_offset + o->output_section->vma);
10208 #ifdef DEBUG
10209 printf ("Encountered a complex symbol!");
10210 printf (" (input_bfd %s, section %s, reloc %ld\n",
10211 input_bfd->filename, o->name,
10212 (long) (rel - internal_relocs));
10213 printf (" symbol: idx %8.8lx, name %s\n",
10214 r_symndx, sym_name);
10215 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10216 (unsigned long) rel->r_info,
10217 (unsigned long) rel->r_offset);
10218 #endif
10219 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10220 isymbuf, locsymcount, s_type == STT_SRELC))
10221 return FALSE;
10222
10223 /* Symbol evaluated OK. Update to absolute value. */
10224 set_symbol_value (input_bfd, isymbuf, locsymcount,
10225 r_symndx, val);
10226 continue;
10227 }
10228
10229 if (action_discarded != -1 && ps != NULL)
10230 {
10231 /* Complain if the definition comes from a
10232 discarded section. */
10233 if ((sec = *ps) != NULL && discarded_section (sec))
10234 {
10235 BFD_ASSERT (r_symndx != STN_UNDEF);
10236 if (action_discarded & COMPLAIN)
10237 (*flinfo->info->callbacks->einfo)
10238 (_("%X`%s' referenced in section `%A' of %B: "
10239 "defined in discarded section `%A' of %B\n"),
10240 sym_name, o, input_bfd, sec, sec->owner);
10241
10242 /* Try to do the best we can to support buggy old
10243 versions of gcc. Pretend that the symbol is
10244 really defined in the kept linkonce section.
10245 FIXME: This is quite broken. Modifying the
10246 symbol here means we will be changing all later
10247 uses of the symbol, not just in this section. */
10248 if (action_discarded & PRETEND)
10249 {
10250 asection *kept;
10251
10252 kept = _bfd_elf_check_kept_section (sec,
10253 flinfo->info);
10254 if (kept != NULL)
10255 {
10256 *ps = kept;
10257 continue;
10258 }
10259 }
10260 }
10261 }
10262 }
10263
10264 /* Relocate the section by invoking a back end routine.
10265
10266 The back end routine is responsible for adjusting the
10267 section contents as necessary, and (if using Rela relocs
10268 and generating a relocatable output file) adjusting the
10269 reloc addend as necessary.
10270
10271 The back end routine does not have to worry about setting
10272 the reloc address or the reloc symbol index.
10273
10274 The back end routine is given a pointer to the swapped in
10275 internal symbols, and can access the hash table entries
10276 for the external symbols via elf_sym_hashes (input_bfd).
10277
10278 When generating relocatable output, the back end routine
10279 must handle STB_LOCAL/STT_SECTION symbols specially. The
10280 output symbol is going to be a section symbol
10281 corresponding to the output section, which will require
10282 the addend to be adjusted. */
10283
10284 ret = (*relocate_section) (output_bfd, flinfo->info,
10285 input_bfd, o, contents,
10286 internal_relocs,
10287 isymbuf,
10288 flinfo->sections);
10289 if (!ret)
10290 return FALSE;
10291
10292 if (ret == 2
10293 || bfd_link_relocatable (flinfo->info)
10294 || flinfo->info->emitrelocations)
10295 {
10296 Elf_Internal_Rela *irela;
10297 Elf_Internal_Rela *irelaend, *irelamid;
10298 bfd_vma last_offset;
10299 struct elf_link_hash_entry **rel_hash;
10300 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
10301 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
10302 unsigned int next_erel;
10303 bfd_boolean rela_normal;
10304 struct bfd_elf_section_data *esdi, *esdo;
10305
10306 esdi = elf_section_data (o);
10307 esdo = elf_section_data (o->output_section);
10308 rela_normal = FALSE;
10309
10310 /* Adjust the reloc addresses and symbol indices. */
10311
10312 irela = internal_relocs;
10313 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
10314 rel_hash = esdo->rel.hashes + esdo->rel.count;
10315 /* We start processing the REL relocs, if any. When we reach
10316 IRELAMID in the loop, we switch to the RELA relocs. */
10317 irelamid = irela;
10318 if (esdi->rel.hdr != NULL)
10319 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10320 * bed->s->int_rels_per_ext_rel);
10321 rel_hash_list = rel_hash;
10322 rela_hash_list = NULL;
10323 last_offset = o->output_offset;
10324 if (!bfd_link_relocatable (flinfo->info))
10325 last_offset += o->output_section->vma;
10326 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10327 {
10328 unsigned long r_symndx;
10329 asection *sec;
10330 Elf_Internal_Sym sym;
10331
10332 if (next_erel == bed->s->int_rels_per_ext_rel)
10333 {
10334 rel_hash++;
10335 next_erel = 0;
10336 }
10337
10338 if (irela == irelamid)
10339 {
10340 rel_hash = esdo->rela.hashes + esdo->rela.count;
10341 rela_hash_list = rel_hash;
10342 rela_normal = bed->rela_normal;
10343 }
10344
10345 irela->r_offset = _bfd_elf_section_offset (output_bfd,
10346 flinfo->info, o,
10347 irela->r_offset);
10348 if (irela->r_offset >= (bfd_vma) -2)
10349 {
10350 /* This is a reloc for a deleted entry or somesuch.
10351 Turn it into an R_*_NONE reloc, at the same
10352 offset as the last reloc. elf_eh_frame.c and
10353 bfd_elf_discard_info rely on reloc offsets
10354 being ordered. */
10355 irela->r_offset = last_offset;
10356 irela->r_info = 0;
10357 irela->r_addend = 0;
10358 continue;
10359 }
10360
10361 irela->r_offset += o->output_offset;
10362
10363 /* Relocs in an executable have to be virtual addresses. */
10364 if (!bfd_link_relocatable (flinfo->info))
10365 irela->r_offset += o->output_section->vma;
10366
10367 last_offset = irela->r_offset;
10368
10369 r_symndx = irela->r_info >> r_sym_shift;
10370 if (r_symndx == STN_UNDEF)
10371 continue;
10372
10373 if (r_symndx >= locsymcount
10374 || (elf_bad_symtab (input_bfd)
10375 && flinfo->sections[r_symndx] == NULL))
10376 {
10377 struct elf_link_hash_entry *rh;
10378 unsigned long indx;
10379
10380 /* This is a reloc against a global symbol. We
10381 have not yet output all the local symbols, so
10382 we do not know the symbol index of any global
10383 symbol. We set the rel_hash entry for this
10384 reloc to point to the global hash table entry
10385 for this symbol. The symbol index is then
10386 set at the end of bfd_elf_final_link. */
10387 indx = r_symndx - extsymoff;
10388 rh = elf_sym_hashes (input_bfd)[indx];
10389 while (rh->root.type == bfd_link_hash_indirect
10390 || rh->root.type == bfd_link_hash_warning)
10391 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10392
10393 /* Setting the index to -2 tells
10394 elf_link_output_extsym that this symbol is
10395 used by a reloc. */
10396 BFD_ASSERT (rh->indx < 0);
10397 rh->indx = -2;
10398
10399 *rel_hash = rh;
10400
10401 continue;
10402 }
10403
10404 /* This is a reloc against a local symbol. */
10405
10406 *rel_hash = NULL;
10407 sym = isymbuf[r_symndx];
10408 sec = flinfo->sections[r_symndx];
10409 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10410 {
10411 /* I suppose the backend ought to fill in the
10412 section of any STT_SECTION symbol against a
10413 processor specific section. */
10414 r_symndx = STN_UNDEF;
10415 if (bfd_is_abs_section (sec))
10416 ;
10417 else if (sec == NULL || sec->owner == NULL)
10418 {
10419 bfd_set_error (bfd_error_bad_value);
10420 return FALSE;
10421 }
10422 else
10423 {
10424 asection *osec = sec->output_section;
10425
10426 /* If we have discarded a section, the output
10427 section will be the absolute section. In
10428 case of discarded SEC_MERGE sections, use
10429 the kept section. relocate_section should
10430 have already handled discarded linkonce
10431 sections. */
10432 if (bfd_is_abs_section (osec)
10433 && sec->kept_section != NULL
10434 && sec->kept_section->output_section != NULL)
10435 {
10436 osec = sec->kept_section->output_section;
10437 irela->r_addend -= osec->vma;
10438 }
10439
10440 if (!bfd_is_abs_section (osec))
10441 {
10442 r_symndx = osec->target_index;
10443 if (r_symndx == STN_UNDEF)
10444 {
10445 irela->r_addend += osec->vma;
10446 osec = _bfd_nearby_section (output_bfd, osec,
10447 osec->vma);
10448 irela->r_addend -= osec->vma;
10449 r_symndx = osec->target_index;
10450 }
10451 }
10452 }
10453
10454 /* Adjust the addend according to where the
10455 section winds up in the output section. */
10456 if (rela_normal)
10457 irela->r_addend += sec->output_offset;
10458 }
10459 else
10460 {
10461 if (flinfo->indices[r_symndx] == -1)
10462 {
10463 unsigned long shlink;
10464 const char *name;
10465 asection *osec;
10466 long indx;
10467
10468 if (flinfo->info->strip == strip_all)
10469 {
10470 /* You can't do ld -r -s. */
10471 bfd_set_error (bfd_error_invalid_operation);
10472 return FALSE;
10473 }
10474
10475 /* This symbol was skipped earlier, but
10476 since it is needed by a reloc, we
10477 must output it now. */
10478 shlink = symtab_hdr->sh_link;
10479 name = (bfd_elf_string_from_elf_section
10480 (input_bfd, shlink, sym.st_name));
10481 if (name == NULL)
10482 return FALSE;
10483
10484 osec = sec->output_section;
10485 sym.st_shndx =
10486 _bfd_elf_section_from_bfd_section (output_bfd,
10487 osec);
10488 if (sym.st_shndx == SHN_BAD)
10489 return FALSE;
10490
10491 sym.st_value += sec->output_offset;
10492 if (!bfd_link_relocatable (flinfo->info))
10493 {
10494 sym.st_value += osec->vma;
10495 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10496 {
10497 /* STT_TLS symbols are relative to PT_TLS
10498 segment base. */
10499 BFD_ASSERT (elf_hash_table (flinfo->info)
10500 ->tls_sec != NULL);
10501 sym.st_value -= (elf_hash_table (flinfo->info)
10502 ->tls_sec->vma);
10503 }
10504 }
10505
10506 indx = bfd_get_symcount (output_bfd);
10507 ret = elf_link_output_symstrtab (flinfo, name,
10508 &sym, sec,
10509 NULL);
10510 if (ret == 0)
10511 return FALSE;
10512 else if (ret == 1)
10513 flinfo->indices[r_symndx] = indx;
10514 else
10515 abort ();
10516 }
10517
10518 r_symndx = flinfo->indices[r_symndx];
10519 }
10520
10521 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10522 | (irela->r_info & r_type_mask));
10523 }
10524
10525 /* Swap out the relocs. */
10526 input_rel_hdr = esdi->rel.hdr;
10527 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10528 {
10529 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10530 input_rel_hdr,
10531 internal_relocs,
10532 rel_hash_list))
10533 return FALSE;
10534 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10535 * bed->s->int_rels_per_ext_rel);
10536 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10537 }
10538
10539 input_rela_hdr = esdi->rela.hdr;
10540 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10541 {
10542 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10543 input_rela_hdr,
10544 internal_relocs,
10545 rela_hash_list))
10546 return FALSE;
10547 }
10548 }
10549 }
10550
10551 /* Write out the modified section contents. */
10552 if (bed->elf_backend_write_section
10553 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10554 contents))
10555 {
10556 /* Section written out. */
10557 }
10558 else switch (o->sec_info_type)
10559 {
10560 case SEC_INFO_TYPE_STABS:
10561 if (! (_bfd_write_section_stabs
10562 (output_bfd,
10563 &elf_hash_table (flinfo->info)->stab_info,
10564 o, &elf_section_data (o)->sec_info, contents)))
10565 return FALSE;
10566 break;
10567 case SEC_INFO_TYPE_MERGE:
10568 if (! _bfd_write_merged_section (output_bfd, o,
10569 elf_section_data (o)->sec_info))
10570 return FALSE;
10571 break;
10572 case SEC_INFO_TYPE_EH_FRAME:
10573 {
10574 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10575 o, contents))
10576 return FALSE;
10577 }
10578 break;
10579 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10580 {
10581 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
10582 flinfo->info,
10583 o, contents))
10584 return FALSE;
10585 }
10586 break;
10587 default:
10588 {
10589 if (! (o->flags & SEC_EXCLUDE))
10590 {
10591 file_ptr offset = (file_ptr) o->output_offset;
10592 bfd_size_type todo = o->size;
10593
10594 offset *= bfd_octets_per_byte (output_bfd);
10595
10596 if ((o->flags & SEC_ELF_REVERSE_COPY))
10597 {
10598 /* Reverse-copy input section to output. */
10599 do
10600 {
10601 todo -= address_size;
10602 if (! bfd_set_section_contents (output_bfd,
10603 o->output_section,
10604 contents + todo,
10605 offset,
10606 address_size))
10607 return FALSE;
10608 if (todo == 0)
10609 break;
10610 offset += address_size;
10611 }
10612 while (1);
10613 }
10614 else if (! bfd_set_section_contents (output_bfd,
10615 o->output_section,
10616 contents,
10617 offset, todo))
10618 return FALSE;
10619 }
10620 }
10621 break;
10622 }
10623 }
10624
10625 return TRUE;
10626 }
10627
10628 /* Generate a reloc when linking an ELF file. This is a reloc
10629 requested by the linker, and does not come from any input file. This
10630 is used to build constructor and destructor tables when linking
10631 with -Ur. */
10632
10633 static bfd_boolean
10634 elf_reloc_link_order (bfd *output_bfd,
10635 struct bfd_link_info *info,
10636 asection *output_section,
10637 struct bfd_link_order *link_order)
10638 {
10639 reloc_howto_type *howto;
10640 long indx;
10641 bfd_vma offset;
10642 bfd_vma addend;
10643 struct bfd_elf_section_reloc_data *reldata;
10644 struct elf_link_hash_entry **rel_hash_ptr;
10645 Elf_Internal_Shdr *rel_hdr;
10646 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10647 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10648 bfd_byte *erel;
10649 unsigned int i;
10650 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10651
10652 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10653 if (howto == NULL)
10654 {
10655 bfd_set_error (bfd_error_bad_value);
10656 return FALSE;
10657 }
10658
10659 addend = link_order->u.reloc.p->addend;
10660
10661 if (esdo->rel.hdr)
10662 reldata = &esdo->rel;
10663 else if (esdo->rela.hdr)
10664 reldata = &esdo->rela;
10665 else
10666 {
10667 reldata = NULL;
10668 BFD_ASSERT (0);
10669 }
10670
10671 /* Figure out the symbol index. */
10672 rel_hash_ptr = reldata->hashes + reldata->count;
10673 if (link_order->type == bfd_section_reloc_link_order)
10674 {
10675 indx = link_order->u.reloc.p->u.section->target_index;
10676 BFD_ASSERT (indx != 0);
10677 *rel_hash_ptr = NULL;
10678 }
10679 else
10680 {
10681 struct elf_link_hash_entry *h;
10682
10683 /* Treat a reloc against a defined symbol as though it were
10684 actually against the section. */
10685 h = ((struct elf_link_hash_entry *)
10686 bfd_wrapped_link_hash_lookup (output_bfd, info,
10687 link_order->u.reloc.p->u.name,
10688 FALSE, FALSE, TRUE));
10689 if (h != NULL
10690 && (h->root.type == bfd_link_hash_defined
10691 || h->root.type == bfd_link_hash_defweak))
10692 {
10693 asection *section;
10694
10695 section = h->root.u.def.section;
10696 indx = section->output_section->target_index;
10697 *rel_hash_ptr = NULL;
10698 /* It seems that we ought to add the symbol value to the
10699 addend here, but in practice it has already been added
10700 because it was passed to constructor_callback. */
10701 addend += section->output_section->vma + section->output_offset;
10702 }
10703 else if (h != NULL)
10704 {
10705 /* Setting the index to -2 tells elf_link_output_extsym that
10706 this symbol is used by a reloc. */
10707 h->indx = -2;
10708 *rel_hash_ptr = h;
10709 indx = 0;
10710 }
10711 else
10712 {
10713 if (! ((*info->callbacks->unattached_reloc)
10714 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10715 return FALSE;
10716 indx = 0;
10717 }
10718 }
10719
10720 /* If this is an inplace reloc, we must write the addend into the
10721 object file. */
10722 if (howto->partial_inplace && addend != 0)
10723 {
10724 bfd_size_type size;
10725 bfd_reloc_status_type rstat;
10726 bfd_byte *buf;
10727 bfd_boolean ok;
10728 const char *sym_name;
10729
10730 size = (bfd_size_type) bfd_get_reloc_size (howto);
10731 buf = (bfd_byte *) bfd_zmalloc (size);
10732 if (buf == NULL && size != 0)
10733 return FALSE;
10734 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10735 switch (rstat)
10736 {
10737 case bfd_reloc_ok:
10738 break;
10739
10740 default:
10741 case bfd_reloc_outofrange:
10742 abort ();
10743
10744 case bfd_reloc_overflow:
10745 if (link_order->type == bfd_section_reloc_link_order)
10746 sym_name = bfd_section_name (output_bfd,
10747 link_order->u.reloc.p->u.section);
10748 else
10749 sym_name = link_order->u.reloc.p->u.name;
10750 if (! ((*info->callbacks->reloc_overflow)
10751 (info, NULL, sym_name, howto->name, addend, NULL,
10752 NULL, (bfd_vma) 0)))
10753 {
10754 free (buf);
10755 return FALSE;
10756 }
10757 break;
10758 }
10759
10760 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10761 link_order->offset
10762 * bfd_octets_per_byte (output_bfd),
10763 size);
10764 free (buf);
10765 if (! ok)
10766 return FALSE;
10767 }
10768
10769 /* The address of a reloc is relative to the section in a
10770 relocatable file, and is a virtual address in an executable
10771 file. */
10772 offset = link_order->offset;
10773 if (! bfd_link_relocatable (info))
10774 offset += output_section->vma;
10775
10776 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10777 {
10778 irel[i].r_offset = offset;
10779 irel[i].r_info = 0;
10780 irel[i].r_addend = 0;
10781 }
10782 if (bed->s->arch_size == 32)
10783 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10784 else
10785 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10786
10787 rel_hdr = reldata->hdr;
10788 erel = rel_hdr->contents;
10789 if (rel_hdr->sh_type == SHT_REL)
10790 {
10791 erel += reldata->count * bed->s->sizeof_rel;
10792 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10793 }
10794 else
10795 {
10796 irel[0].r_addend = addend;
10797 erel += reldata->count * bed->s->sizeof_rela;
10798 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10799 }
10800
10801 ++reldata->count;
10802
10803 return TRUE;
10804 }
10805
10806
10807 /* Get the output vma of the section pointed to by the sh_link field. */
10808
10809 static bfd_vma
10810 elf_get_linked_section_vma (struct bfd_link_order *p)
10811 {
10812 Elf_Internal_Shdr **elf_shdrp;
10813 asection *s;
10814 int elfsec;
10815
10816 s = p->u.indirect.section;
10817 elf_shdrp = elf_elfsections (s->owner);
10818 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10819 elfsec = elf_shdrp[elfsec]->sh_link;
10820 /* PR 290:
10821 The Intel C compiler generates SHT_IA_64_UNWIND with
10822 SHF_LINK_ORDER. But it doesn't set the sh_link or
10823 sh_info fields. Hence we could get the situation
10824 where elfsec is 0. */
10825 if (elfsec == 0)
10826 {
10827 const struct elf_backend_data *bed
10828 = get_elf_backend_data (s->owner);
10829 if (bed->link_order_error_handler)
10830 bed->link_order_error_handler
10831 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10832 return 0;
10833 }
10834 else
10835 {
10836 s = elf_shdrp[elfsec]->bfd_section;
10837 return s->output_section->vma + s->output_offset;
10838 }
10839 }
10840
10841
10842 /* Compare two sections based on the locations of the sections they are
10843 linked to. Used by elf_fixup_link_order. */
10844
10845 static int
10846 compare_link_order (const void * a, const void * b)
10847 {
10848 bfd_vma apos;
10849 bfd_vma bpos;
10850
10851 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10852 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10853 if (apos < bpos)
10854 return -1;
10855 return apos > bpos;
10856 }
10857
10858
10859 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10860 order as their linked sections. Returns false if this could not be done
10861 because an output section includes both ordered and unordered
10862 sections. Ideally we'd do this in the linker proper. */
10863
10864 static bfd_boolean
10865 elf_fixup_link_order (bfd *abfd, asection *o)
10866 {
10867 int seen_linkorder;
10868 int seen_other;
10869 int n;
10870 struct bfd_link_order *p;
10871 bfd *sub;
10872 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10873 unsigned elfsec;
10874 struct bfd_link_order **sections;
10875 asection *s, *other_sec, *linkorder_sec;
10876 bfd_vma offset;
10877
10878 other_sec = NULL;
10879 linkorder_sec = NULL;
10880 seen_other = 0;
10881 seen_linkorder = 0;
10882 for (p = o->map_head.link_order; p != NULL; p = p->next)
10883 {
10884 if (p->type == bfd_indirect_link_order)
10885 {
10886 s = p->u.indirect.section;
10887 sub = s->owner;
10888 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10889 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10890 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10891 && elfsec < elf_numsections (sub)
10892 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10893 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10894 {
10895 seen_linkorder++;
10896 linkorder_sec = s;
10897 }
10898 else
10899 {
10900 seen_other++;
10901 other_sec = s;
10902 }
10903 }
10904 else
10905 seen_other++;
10906
10907 if (seen_other && seen_linkorder)
10908 {
10909 if (other_sec && linkorder_sec)
10910 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10911 o, linkorder_sec,
10912 linkorder_sec->owner, other_sec,
10913 other_sec->owner);
10914 else
10915 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10916 o);
10917 bfd_set_error (bfd_error_bad_value);
10918 return FALSE;
10919 }
10920 }
10921
10922 if (!seen_linkorder)
10923 return TRUE;
10924
10925 sections = (struct bfd_link_order **)
10926 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10927 if (sections == NULL)
10928 return FALSE;
10929 seen_linkorder = 0;
10930
10931 for (p = o->map_head.link_order; p != NULL; p = p->next)
10932 {
10933 sections[seen_linkorder++] = p;
10934 }
10935 /* Sort the input sections in the order of their linked section. */
10936 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10937 compare_link_order);
10938
10939 /* Change the offsets of the sections. */
10940 offset = 0;
10941 for (n = 0; n < seen_linkorder; n++)
10942 {
10943 s = sections[n]->u.indirect.section;
10944 offset &= ~(bfd_vma) 0 << s->alignment_power;
10945 s->output_offset = offset / bfd_octets_per_byte (abfd);
10946 sections[n]->offset = offset;
10947 offset += sections[n]->size;
10948 }
10949
10950 free (sections);
10951 return TRUE;
10952 }
10953
10954 static void
10955 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10956 {
10957 asection *o;
10958
10959 if (flinfo->symstrtab != NULL)
10960 _bfd_elf_strtab_free (flinfo->symstrtab);
10961 if (flinfo->contents != NULL)
10962 free (flinfo->contents);
10963 if (flinfo->external_relocs != NULL)
10964 free (flinfo->external_relocs);
10965 if (flinfo->internal_relocs != NULL)
10966 free (flinfo->internal_relocs);
10967 if (flinfo->external_syms != NULL)
10968 free (flinfo->external_syms);
10969 if (flinfo->locsym_shndx != NULL)
10970 free (flinfo->locsym_shndx);
10971 if (flinfo->internal_syms != NULL)
10972 free (flinfo->internal_syms);
10973 if (flinfo->indices != NULL)
10974 free (flinfo->indices);
10975 if (flinfo->sections != NULL)
10976 free (flinfo->sections);
10977 if (flinfo->symshndxbuf != NULL)
10978 free (flinfo->symshndxbuf);
10979 for (o = obfd->sections; o != NULL; o = o->next)
10980 {
10981 struct bfd_elf_section_data *esdo = elf_section_data (o);
10982 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10983 free (esdo->rel.hashes);
10984 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10985 free (esdo->rela.hashes);
10986 }
10987 }
10988
10989 /* Do the final step of an ELF link. */
10990
10991 bfd_boolean
10992 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10993 {
10994 bfd_boolean dynamic;
10995 bfd_boolean emit_relocs;
10996 bfd *dynobj;
10997 struct elf_final_link_info flinfo;
10998 asection *o;
10999 struct bfd_link_order *p;
11000 bfd *sub;
11001 bfd_size_type max_contents_size;
11002 bfd_size_type max_external_reloc_size;
11003 bfd_size_type max_internal_reloc_count;
11004 bfd_size_type max_sym_count;
11005 bfd_size_type max_sym_shndx_count;
11006 Elf_Internal_Sym elfsym;
11007 unsigned int i;
11008 Elf_Internal_Shdr *symtab_hdr;
11009 Elf_Internal_Shdr *symtab_shndx_hdr;
11010 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11011 struct elf_outext_info eoinfo;
11012 bfd_boolean merged;
11013 size_t relativecount = 0;
11014 asection *reldyn = 0;
11015 bfd_size_type amt;
11016 asection *attr_section = NULL;
11017 bfd_vma attr_size = 0;
11018 const char *std_attrs_section;
11019
11020 if (! is_elf_hash_table (info->hash))
11021 return FALSE;
11022
11023 if (bfd_link_pic (info))
11024 abfd->flags |= DYNAMIC;
11025
11026 dynamic = elf_hash_table (info)->dynamic_sections_created;
11027 dynobj = elf_hash_table (info)->dynobj;
11028
11029 emit_relocs = (bfd_link_relocatable (info)
11030 || info->emitrelocations);
11031
11032 flinfo.info = info;
11033 flinfo.output_bfd = abfd;
11034 flinfo.symstrtab = _bfd_elf_strtab_init ();
11035 if (flinfo.symstrtab == NULL)
11036 return FALSE;
11037
11038 if (! dynamic)
11039 {
11040 flinfo.hash_sec = NULL;
11041 flinfo.symver_sec = NULL;
11042 }
11043 else
11044 {
11045 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11046 /* Note that dynsym_sec can be NULL (on VMS). */
11047 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11048 /* Note that it is OK if symver_sec is NULL. */
11049 }
11050
11051 flinfo.contents = NULL;
11052 flinfo.external_relocs = NULL;
11053 flinfo.internal_relocs = NULL;
11054 flinfo.external_syms = NULL;
11055 flinfo.locsym_shndx = NULL;
11056 flinfo.internal_syms = NULL;
11057 flinfo.indices = NULL;
11058 flinfo.sections = NULL;
11059 flinfo.symshndxbuf = NULL;
11060 flinfo.filesym_count = 0;
11061
11062 /* The object attributes have been merged. Remove the input
11063 sections from the link, and set the contents of the output
11064 secton. */
11065 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11066 for (o = abfd->sections; o != NULL; o = o->next)
11067 {
11068 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11069 || strcmp (o->name, ".gnu.attributes") == 0)
11070 {
11071 for (p = o->map_head.link_order; p != NULL; p = p->next)
11072 {
11073 asection *input_section;
11074
11075 if (p->type != bfd_indirect_link_order)
11076 continue;
11077 input_section = p->u.indirect.section;
11078 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11079 elf_link_input_bfd ignores this section. */
11080 input_section->flags &= ~SEC_HAS_CONTENTS;
11081 }
11082
11083 attr_size = bfd_elf_obj_attr_size (abfd);
11084 if (attr_size)
11085 {
11086 bfd_set_section_size (abfd, o, attr_size);
11087 attr_section = o;
11088 /* Skip this section later on. */
11089 o->map_head.link_order = NULL;
11090 }
11091 else
11092 o->flags |= SEC_EXCLUDE;
11093 }
11094 }
11095
11096 /* Count up the number of relocations we will output for each output
11097 section, so that we know the sizes of the reloc sections. We
11098 also figure out some maximum sizes. */
11099 max_contents_size = 0;
11100 max_external_reloc_size = 0;
11101 max_internal_reloc_count = 0;
11102 max_sym_count = 0;
11103 max_sym_shndx_count = 0;
11104 merged = FALSE;
11105 for (o = abfd->sections; o != NULL; o = o->next)
11106 {
11107 struct bfd_elf_section_data *esdo = elf_section_data (o);
11108 o->reloc_count = 0;
11109
11110 for (p = o->map_head.link_order; p != NULL; p = p->next)
11111 {
11112 unsigned int reloc_count = 0;
11113 unsigned int additional_reloc_count = 0;
11114 struct bfd_elf_section_data *esdi = NULL;
11115
11116 if (p->type == bfd_section_reloc_link_order
11117 || p->type == bfd_symbol_reloc_link_order)
11118 reloc_count = 1;
11119 else if (p->type == bfd_indirect_link_order)
11120 {
11121 asection *sec;
11122
11123 sec = p->u.indirect.section;
11124 esdi = elf_section_data (sec);
11125
11126 /* Mark all sections which are to be included in the
11127 link. This will normally be every section. We need
11128 to do this so that we can identify any sections which
11129 the linker has decided to not include. */
11130 sec->linker_mark = TRUE;
11131
11132 if (sec->flags & SEC_MERGE)
11133 merged = TRUE;
11134
11135 if (esdo->this_hdr.sh_type == SHT_REL
11136 || esdo->this_hdr.sh_type == SHT_RELA)
11137 /* Some backends use reloc_count in relocation sections
11138 to count particular types of relocs. Of course,
11139 reloc sections themselves can't have relocations. */
11140 reloc_count = 0;
11141 else if (emit_relocs)
11142 {
11143 reloc_count = sec->reloc_count;
11144 if (bed->elf_backend_count_additional_relocs)
11145 {
11146 int c;
11147 c = (*bed->elf_backend_count_additional_relocs) (sec);
11148 additional_reloc_count += c;
11149 }
11150 }
11151 else if (bed->elf_backend_count_relocs)
11152 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11153
11154 if (sec->rawsize > max_contents_size)
11155 max_contents_size = sec->rawsize;
11156 if (sec->size > max_contents_size)
11157 max_contents_size = sec->size;
11158
11159 /* We are interested in just local symbols, not all
11160 symbols. */
11161 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11162 && (sec->owner->flags & DYNAMIC) == 0)
11163 {
11164 size_t sym_count;
11165
11166 if (elf_bad_symtab (sec->owner))
11167 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11168 / bed->s->sizeof_sym);
11169 else
11170 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11171
11172 if (sym_count > max_sym_count)
11173 max_sym_count = sym_count;
11174
11175 if (sym_count > max_sym_shndx_count
11176 && elf_symtab_shndx_list (sec->owner) != NULL)
11177 max_sym_shndx_count = sym_count;
11178
11179 if ((sec->flags & SEC_RELOC) != 0)
11180 {
11181 size_t ext_size = 0;
11182
11183 if (esdi->rel.hdr != NULL)
11184 ext_size = esdi->rel.hdr->sh_size;
11185 if (esdi->rela.hdr != NULL)
11186 ext_size += esdi->rela.hdr->sh_size;
11187
11188 if (ext_size > max_external_reloc_size)
11189 max_external_reloc_size = ext_size;
11190 if (sec->reloc_count > max_internal_reloc_count)
11191 max_internal_reloc_count = sec->reloc_count;
11192 }
11193 }
11194 }
11195
11196 if (reloc_count == 0)
11197 continue;
11198
11199 reloc_count += additional_reloc_count;
11200 o->reloc_count += reloc_count;
11201
11202 if (p->type == bfd_indirect_link_order && emit_relocs)
11203 {
11204 if (esdi->rel.hdr)
11205 {
11206 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
11207 esdo->rel.count += additional_reloc_count;
11208 }
11209 if (esdi->rela.hdr)
11210 {
11211 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
11212 esdo->rela.count += additional_reloc_count;
11213 }
11214 }
11215 else
11216 {
11217 if (o->use_rela_p)
11218 esdo->rela.count += reloc_count;
11219 else
11220 esdo->rel.count += reloc_count;
11221 }
11222 }
11223
11224 if (o->reloc_count > 0)
11225 o->flags |= SEC_RELOC;
11226 else
11227 {
11228 /* Explicitly clear the SEC_RELOC flag. The linker tends to
11229 set it (this is probably a bug) and if it is set
11230 assign_section_numbers will create a reloc section. */
11231 o->flags &=~ SEC_RELOC;
11232 }
11233
11234 /* If the SEC_ALLOC flag is not set, force the section VMA to
11235 zero. This is done in elf_fake_sections as well, but forcing
11236 the VMA to 0 here will ensure that relocs against these
11237 sections are handled correctly. */
11238 if ((o->flags & SEC_ALLOC) == 0
11239 && ! o->user_set_vma)
11240 o->vma = 0;
11241 }
11242
11243 if (! bfd_link_relocatable (info) && merged)
11244 elf_link_hash_traverse (elf_hash_table (info),
11245 _bfd_elf_link_sec_merge_syms, abfd);
11246
11247 /* Figure out the file positions for everything but the symbol table
11248 and the relocs. We set symcount to force assign_section_numbers
11249 to create a symbol table. */
11250 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
11251 BFD_ASSERT (! abfd->output_has_begun);
11252 if (! _bfd_elf_compute_section_file_positions (abfd, info))
11253 goto error_return;
11254
11255 /* Set sizes, and assign file positions for reloc sections. */
11256 for (o = abfd->sections; o != NULL; o = o->next)
11257 {
11258 struct bfd_elf_section_data *esdo = elf_section_data (o);
11259 if ((o->flags & SEC_RELOC) != 0)
11260 {
11261 if (esdo->rel.hdr
11262 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
11263 goto error_return;
11264
11265 if (esdo->rela.hdr
11266 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
11267 goto error_return;
11268 }
11269
11270 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
11271 to count upwards while actually outputting the relocations. */
11272 esdo->rel.count = 0;
11273 esdo->rela.count = 0;
11274
11275 if (esdo->this_hdr.sh_offset == (file_ptr) -1)
11276 {
11277 /* Cache the section contents so that they can be compressed
11278 later. Use bfd_malloc since it will be freed by
11279 bfd_compress_section_contents. */
11280 unsigned char *contents = esdo->this_hdr.contents;
11281 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
11282 abort ();
11283 contents
11284 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
11285 if (contents == NULL)
11286 goto error_return;
11287 esdo->this_hdr.contents = contents;
11288 }
11289 }
11290
11291 /* We have now assigned file positions for all the sections except
11292 .symtab, .strtab, and non-loaded reloc sections. We start the
11293 .symtab section at the current file position, and write directly
11294 to it. We build the .strtab section in memory. */
11295 bfd_get_symcount (abfd) = 0;
11296 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11297 /* sh_name is set in prep_headers. */
11298 symtab_hdr->sh_type = SHT_SYMTAB;
11299 /* sh_flags, sh_addr and sh_size all start off zero. */
11300 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
11301 /* sh_link is set in assign_section_numbers. */
11302 /* sh_info is set below. */
11303 /* sh_offset is set just below. */
11304 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
11305
11306 if (max_sym_count < 20)
11307 max_sym_count = 20;
11308 elf_hash_table (info)->strtabsize = max_sym_count;
11309 amt = max_sym_count * sizeof (struct elf_sym_strtab);
11310 elf_hash_table (info)->strtab
11311 = (struct elf_sym_strtab *) bfd_malloc (amt);
11312 if (elf_hash_table (info)->strtab == NULL)
11313 goto error_return;
11314 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
11315 flinfo.symshndxbuf
11316 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
11317 ? (Elf_External_Sym_Shndx *) -1 : NULL);
11318
11319 if (info->strip != strip_all || emit_relocs)
11320 {
11321 file_ptr off = elf_next_file_pos (abfd);
11322
11323 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
11324
11325 /* Note that at this point elf_next_file_pos (abfd) is
11326 incorrect. We do not yet know the size of the .symtab section.
11327 We correct next_file_pos below, after we do know the size. */
11328
11329 /* Start writing out the symbol table. The first symbol is always a
11330 dummy symbol. */
11331 elfsym.st_value = 0;
11332 elfsym.st_size = 0;
11333 elfsym.st_info = 0;
11334 elfsym.st_other = 0;
11335 elfsym.st_shndx = SHN_UNDEF;
11336 elfsym.st_target_internal = 0;
11337 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
11338 bfd_und_section_ptr, NULL) != 1)
11339 goto error_return;
11340
11341 /* Output a symbol for each section. We output these even if we are
11342 discarding local symbols, since they are used for relocs. These
11343 symbols have no names. We store the index of each one in the
11344 index field of the section, so that we can find it again when
11345 outputting relocs. */
11346
11347 elfsym.st_size = 0;
11348 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11349 elfsym.st_other = 0;
11350 elfsym.st_value = 0;
11351 elfsym.st_target_internal = 0;
11352 for (i = 1; i < elf_numsections (abfd); i++)
11353 {
11354 o = bfd_section_from_elf_index (abfd, i);
11355 if (o != NULL)
11356 {
11357 o->target_index = bfd_get_symcount (abfd);
11358 elfsym.st_shndx = i;
11359 if (!bfd_link_relocatable (info))
11360 elfsym.st_value = o->vma;
11361 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
11362 NULL) != 1)
11363 goto error_return;
11364 }
11365 }
11366 }
11367
11368 /* Allocate some memory to hold information read in from the input
11369 files. */
11370 if (max_contents_size != 0)
11371 {
11372 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
11373 if (flinfo.contents == NULL)
11374 goto error_return;
11375 }
11376
11377 if (max_external_reloc_size != 0)
11378 {
11379 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
11380 if (flinfo.external_relocs == NULL)
11381 goto error_return;
11382 }
11383
11384 if (max_internal_reloc_count != 0)
11385 {
11386 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
11387 amt *= sizeof (Elf_Internal_Rela);
11388 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
11389 if (flinfo.internal_relocs == NULL)
11390 goto error_return;
11391 }
11392
11393 if (max_sym_count != 0)
11394 {
11395 amt = max_sym_count * bed->s->sizeof_sym;
11396 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
11397 if (flinfo.external_syms == NULL)
11398 goto error_return;
11399
11400 amt = max_sym_count * sizeof (Elf_Internal_Sym);
11401 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
11402 if (flinfo.internal_syms == NULL)
11403 goto error_return;
11404
11405 amt = max_sym_count * sizeof (long);
11406 flinfo.indices = (long int *) bfd_malloc (amt);
11407 if (flinfo.indices == NULL)
11408 goto error_return;
11409
11410 amt = max_sym_count * sizeof (asection *);
11411 flinfo.sections = (asection **) bfd_malloc (amt);
11412 if (flinfo.sections == NULL)
11413 goto error_return;
11414 }
11415
11416 if (max_sym_shndx_count != 0)
11417 {
11418 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11419 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11420 if (flinfo.locsym_shndx == NULL)
11421 goto error_return;
11422 }
11423
11424 if (elf_hash_table (info)->tls_sec)
11425 {
11426 bfd_vma base, end = 0;
11427 asection *sec;
11428
11429 for (sec = elf_hash_table (info)->tls_sec;
11430 sec && (sec->flags & SEC_THREAD_LOCAL);
11431 sec = sec->next)
11432 {
11433 bfd_size_type size = sec->size;
11434
11435 if (size == 0
11436 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11437 {
11438 struct bfd_link_order *ord = sec->map_tail.link_order;
11439
11440 if (ord != NULL)
11441 size = ord->offset + ord->size;
11442 }
11443 end = sec->vma + size;
11444 }
11445 base = elf_hash_table (info)->tls_sec->vma;
11446 /* Only align end of TLS section if static TLS doesn't have special
11447 alignment requirements. */
11448 if (bed->static_tls_alignment == 1)
11449 end = align_power (end,
11450 elf_hash_table (info)->tls_sec->alignment_power);
11451 elf_hash_table (info)->tls_size = end - base;
11452 }
11453
11454 /* Reorder SHF_LINK_ORDER sections. */
11455 for (o = abfd->sections; o != NULL; o = o->next)
11456 {
11457 if (!elf_fixup_link_order (abfd, o))
11458 return FALSE;
11459 }
11460
11461 if (!_bfd_elf_fixup_eh_frame_hdr (info))
11462 return FALSE;
11463
11464 /* Since ELF permits relocations to be against local symbols, we
11465 must have the local symbols available when we do the relocations.
11466 Since we would rather only read the local symbols once, and we
11467 would rather not keep them in memory, we handle all the
11468 relocations for a single input file at the same time.
11469
11470 Unfortunately, there is no way to know the total number of local
11471 symbols until we have seen all of them, and the local symbol
11472 indices precede the global symbol indices. This means that when
11473 we are generating relocatable output, and we see a reloc against
11474 a global symbol, we can not know the symbol index until we have
11475 finished examining all the local symbols to see which ones we are
11476 going to output. To deal with this, we keep the relocations in
11477 memory, and don't output them until the end of the link. This is
11478 an unfortunate waste of memory, but I don't see a good way around
11479 it. Fortunately, it only happens when performing a relocatable
11480 link, which is not the common case. FIXME: If keep_memory is set
11481 we could write the relocs out and then read them again; I don't
11482 know how bad the memory loss will be. */
11483
11484 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11485 sub->output_has_begun = FALSE;
11486 for (o = abfd->sections; o != NULL; o = o->next)
11487 {
11488 for (p = o->map_head.link_order; p != NULL; p = p->next)
11489 {
11490 if (p->type == bfd_indirect_link_order
11491 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11492 == bfd_target_elf_flavour)
11493 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11494 {
11495 if (! sub->output_has_begun)
11496 {
11497 if (! elf_link_input_bfd (&flinfo, sub))
11498 goto error_return;
11499 sub->output_has_begun = TRUE;
11500 }
11501 }
11502 else if (p->type == bfd_section_reloc_link_order
11503 || p->type == bfd_symbol_reloc_link_order)
11504 {
11505 if (! elf_reloc_link_order (abfd, info, o, p))
11506 goto error_return;
11507 }
11508 else
11509 {
11510 if (! _bfd_default_link_order (abfd, info, o, p))
11511 {
11512 if (p->type == bfd_indirect_link_order
11513 && (bfd_get_flavour (sub)
11514 == bfd_target_elf_flavour)
11515 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11516 != bed->s->elfclass))
11517 {
11518 const char *iclass, *oclass;
11519
11520 switch (bed->s->elfclass)
11521 {
11522 case ELFCLASS64: oclass = "ELFCLASS64"; break;
11523 case ELFCLASS32: oclass = "ELFCLASS32"; break;
11524 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
11525 default: abort ();
11526 }
11527
11528 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
11529 {
11530 case ELFCLASS64: iclass = "ELFCLASS64"; break;
11531 case ELFCLASS32: iclass = "ELFCLASS32"; break;
11532 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
11533 default: abort ();
11534 }
11535
11536 bfd_set_error (bfd_error_wrong_format);
11537 (*_bfd_error_handler)
11538 (_("%B: file class %s incompatible with %s"),
11539 sub, iclass, oclass);
11540 }
11541
11542 goto error_return;
11543 }
11544 }
11545 }
11546 }
11547
11548 /* Free symbol buffer if needed. */
11549 if (!info->reduce_memory_overheads)
11550 {
11551 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11552 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11553 && elf_tdata (sub)->symbuf)
11554 {
11555 free (elf_tdata (sub)->symbuf);
11556 elf_tdata (sub)->symbuf = NULL;
11557 }
11558 }
11559
11560 /* Output any global symbols that got converted to local in a
11561 version script or due to symbol visibility. We do this in a
11562 separate step since ELF requires all local symbols to appear
11563 prior to any global symbols. FIXME: We should only do this if
11564 some global symbols were, in fact, converted to become local.
11565 FIXME: Will this work correctly with the Irix 5 linker? */
11566 eoinfo.failed = FALSE;
11567 eoinfo.flinfo = &flinfo;
11568 eoinfo.localsyms = TRUE;
11569 eoinfo.file_sym_done = FALSE;
11570 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11571 if (eoinfo.failed)
11572 return FALSE;
11573
11574 /* If backend needs to output some local symbols not present in the hash
11575 table, do it now. */
11576 if (bed->elf_backend_output_arch_local_syms
11577 && (info->strip != strip_all || emit_relocs))
11578 {
11579 typedef int (*out_sym_func)
11580 (void *, const char *, Elf_Internal_Sym *, asection *,
11581 struct elf_link_hash_entry *);
11582
11583 if (! ((*bed->elf_backend_output_arch_local_syms)
11584 (abfd, info, &flinfo,
11585 (out_sym_func) elf_link_output_symstrtab)))
11586 return FALSE;
11587 }
11588
11589 /* That wrote out all the local symbols. Finish up the symbol table
11590 with the global symbols. Even if we want to strip everything we
11591 can, we still need to deal with those global symbols that got
11592 converted to local in a version script. */
11593
11594 /* The sh_info field records the index of the first non local symbol. */
11595 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11596
11597 if (dynamic
11598 && elf_hash_table (info)->dynsym != NULL
11599 && (elf_hash_table (info)->dynsym->output_section
11600 != bfd_abs_section_ptr))
11601 {
11602 Elf_Internal_Sym sym;
11603 bfd_byte *dynsym = elf_hash_table (info)->dynsym->contents;
11604 long last_local = 0;
11605
11606 /* Write out the section symbols for the output sections. */
11607 if (bfd_link_pic (info)
11608 || elf_hash_table (info)->is_relocatable_executable)
11609 {
11610 asection *s;
11611
11612 sym.st_size = 0;
11613 sym.st_name = 0;
11614 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11615 sym.st_other = 0;
11616 sym.st_target_internal = 0;
11617
11618 for (s = abfd->sections; s != NULL; s = s->next)
11619 {
11620 int indx;
11621 bfd_byte *dest;
11622 long dynindx;
11623
11624 dynindx = elf_section_data (s)->dynindx;
11625 if (dynindx <= 0)
11626 continue;
11627 indx = elf_section_data (s)->this_idx;
11628 BFD_ASSERT (indx > 0);
11629 sym.st_shndx = indx;
11630 if (! check_dynsym (abfd, &sym))
11631 return FALSE;
11632 sym.st_value = s->vma;
11633 dest = dynsym + dynindx * bed->s->sizeof_sym;
11634 if (last_local < dynindx)
11635 last_local = dynindx;
11636 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11637 }
11638 }
11639
11640 /* Write out the local dynsyms. */
11641 if (elf_hash_table (info)->dynlocal)
11642 {
11643 struct elf_link_local_dynamic_entry *e;
11644 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11645 {
11646 asection *s;
11647 bfd_byte *dest;
11648
11649 /* Copy the internal symbol and turn off visibility.
11650 Note that we saved a word of storage and overwrote
11651 the original st_name with the dynstr_index. */
11652 sym = e->isym;
11653 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11654
11655 s = bfd_section_from_elf_index (e->input_bfd,
11656 e->isym.st_shndx);
11657 if (s != NULL)
11658 {
11659 sym.st_shndx =
11660 elf_section_data (s->output_section)->this_idx;
11661 if (! check_dynsym (abfd, &sym))
11662 return FALSE;
11663 sym.st_value = (s->output_section->vma
11664 + s->output_offset
11665 + e->isym.st_value);
11666 }
11667
11668 if (last_local < e->dynindx)
11669 last_local = e->dynindx;
11670
11671 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11672 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11673 }
11674 }
11675
11676 elf_section_data (elf_hash_table (info)->dynsym->output_section)->this_hdr.sh_info =
11677 last_local + 1;
11678 }
11679
11680 /* We get the global symbols from the hash table. */
11681 eoinfo.failed = FALSE;
11682 eoinfo.localsyms = FALSE;
11683 eoinfo.flinfo = &flinfo;
11684 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11685 if (eoinfo.failed)
11686 return FALSE;
11687
11688 /* If backend needs to output some symbols not present in the hash
11689 table, do it now. */
11690 if (bed->elf_backend_output_arch_syms
11691 && (info->strip != strip_all || emit_relocs))
11692 {
11693 typedef int (*out_sym_func)
11694 (void *, const char *, Elf_Internal_Sym *, asection *,
11695 struct elf_link_hash_entry *);
11696
11697 if (! ((*bed->elf_backend_output_arch_syms)
11698 (abfd, info, &flinfo,
11699 (out_sym_func) elf_link_output_symstrtab)))
11700 return FALSE;
11701 }
11702
11703 /* Finalize the .strtab section. */
11704 _bfd_elf_strtab_finalize (flinfo.symstrtab);
11705
11706 /* Swap out the .strtab section. */
11707 if (!elf_link_swap_symbols_out (&flinfo))
11708 return FALSE;
11709
11710 /* Now we know the size of the symtab section. */
11711 if (bfd_get_symcount (abfd) > 0)
11712 {
11713 /* Finish up and write out the symbol string table (.strtab)
11714 section. */
11715 Elf_Internal_Shdr *symstrtab_hdr;
11716 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
11717
11718 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
11719 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
11720 {
11721 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11722 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11723 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11724 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11725 symtab_shndx_hdr->sh_size = amt;
11726
11727 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11728 off, TRUE);
11729
11730 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11731 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11732 return FALSE;
11733 }
11734
11735 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11736 /* sh_name was set in prep_headers. */
11737 symstrtab_hdr->sh_type = SHT_STRTAB;
11738 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
11739 symstrtab_hdr->sh_addr = 0;
11740 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
11741 symstrtab_hdr->sh_entsize = 0;
11742 symstrtab_hdr->sh_link = 0;
11743 symstrtab_hdr->sh_info = 0;
11744 /* sh_offset is set just below. */
11745 symstrtab_hdr->sh_addralign = 1;
11746
11747 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
11748 off, TRUE);
11749 elf_next_file_pos (abfd) = off;
11750
11751 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11752 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
11753 return FALSE;
11754 }
11755
11756 /* Adjust the relocs to have the correct symbol indices. */
11757 for (o = abfd->sections; o != NULL; o = o->next)
11758 {
11759 struct bfd_elf_section_data *esdo = elf_section_data (o);
11760 bfd_boolean sort;
11761 if ((o->flags & SEC_RELOC) == 0)
11762 continue;
11763
11764 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
11765 if (esdo->rel.hdr != NULL
11766 && !elf_link_adjust_relocs (abfd, &esdo->rel, sort))
11767 return FALSE;
11768 if (esdo->rela.hdr != NULL
11769 && !elf_link_adjust_relocs (abfd, &esdo->rela, sort))
11770 return FALSE;
11771
11772 /* Set the reloc_count field to 0 to prevent write_relocs from
11773 trying to swap the relocs out itself. */
11774 o->reloc_count = 0;
11775 }
11776
11777 if (dynamic && info->combreloc && dynobj != NULL)
11778 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11779
11780 /* If we are linking against a dynamic object, or generating a
11781 shared library, finish up the dynamic linking information. */
11782 if (dynamic)
11783 {
11784 bfd_byte *dyncon, *dynconend;
11785
11786 /* Fix up .dynamic entries. */
11787 o = bfd_get_linker_section (dynobj, ".dynamic");
11788 BFD_ASSERT (o != NULL);
11789
11790 dyncon = o->contents;
11791 dynconend = o->contents + o->size;
11792 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11793 {
11794 Elf_Internal_Dyn dyn;
11795 const char *name;
11796 unsigned int type;
11797
11798 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11799
11800 switch (dyn.d_tag)
11801 {
11802 default:
11803 continue;
11804 case DT_NULL:
11805 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11806 {
11807 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11808 {
11809 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11810 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11811 default: continue;
11812 }
11813 dyn.d_un.d_val = relativecount;
11814 relativecount = 0;
11815 break;
11816 }
11817 continue;
11818
11819 case DT_INIT:
11820 name = info->init_function;
11821 goto get_sym;
11822 case DT_FINI:
11823 name = info->fini_function;
11824 get_sym:
11825 {
11826 struct elf_link_hash_entry *h;
11827
11828 h = elf_link_hash_lookup (elf_hash_table (info), name,
11829 FALSE, FALSE, TRUE);
11830 if (h != NULL
11831 && (h->root.type == bfd_link_hash_defined
11832 || h->root.type == bfd_link_hash_defweak))
11833 {
11834 dyn.d_un.d_ptr = h->root.u.def.value;
11835 o = h->root.u.def.section;
11836 if (o->output_section != NULL)
11837 dyn.d_un.d_ptr += (o->output_section->vma
11838 + o->output_offset);
11839 else
11840 {
11841 /* The symbol is imported from another shared
11842 library and does not apply to this one. */
11843 dyn.d_un.d_ptr = 0;
11844 }
11845 break;
11846 }
11847 }
11848 continue;
11849
11850 case DT_PREINIT_ARRAYSZ:
11851 name = ".preinit_array";
11852 goto get_size;
11853 case DT_INIT_ARRAYSZ:
11854 name = ".init_array";
11855 goto get_size;
11856 case DT_FINI_ARRAYSZ:
11857 name = ".fini_array";
11858 get_size:
11859 o = bfd_get_section_by_name (abfd, name);
11860 if (o == NULL)
11861 {
11862 (*_bfd_error_handler)
11863 (_("%B: could not find output section %s"), abfd, name);
11864 goto error_return;
11865 }
11866 if (o->size == 0)
11867 (*_bfd_error_handler)
11868 (_("warning: %s section has zero size"), name);
11869 dyn.d_un.d_val = o->size;
11870 break;
11871
11872 case DT_PREINIT_ARRAY:
11873 name = ".preinit_array";
11874 goto get_vma;
11875 case DT_INIT_ARRAY:
11876 name = ".init_array";
11877 goto get_vma;
11878 case DT_FINI_ARRAY:
11879 name = ".fini_array";
11880 goto get_vma;
11881
11882 case DT_HASH:
11883 name = ".hash";
11884 goto get_vma;
11885 case DT_GNU_HASH:
11886 name = ".gnu.hash";
11887 goto get_vma;
11888 case DT_STRTAB:
11889 name = ".dynstr";
11890 goto get_vma;
11891 case DT_SYMTAB:
11892 name = ".dynsym";
11893 goto get_vma;
11894 case DT_VERDEF:
11895 name = ".gnu.version_d";
11896 goto get_vma;
11897 case DT_VERNEED:
11898 name = ".gnu.version_r";
11899 goto get_vma;
11900 case DT_VERSYM:
11901 name = ".gnu.version";
11902 get_vma:
11903 o = bfd_get_section_by_name (abfd, name);
11904 if (o == NULL)
11905 {
11906 (*_bfd_error_handler)
11907 (_("%B: could not find output section %s"), abfd, name);
11908 goto error_return;
11909 }
11910 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11911 {
11912 (*_bfd_error_handler)
11913 (_("warning: section '%s' is being made into a note"), name);
11914 bfd_set_error (bfd_error_nonrepresentable_section);
11915 goto error_return;
11916 }
11917 dyn.d_un.d_ptr = o->vma;
11918 break;
11919
11920 case DT_REL:
11921 case DT_RELA:
11922 case DT_RELSZ:
11923 case DT_RELASZ:
11924 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11925 type = SHT_REL;
11926 else
11927 type = SHT_RELA;
11928 dyn.d_un.d_val = 0;
11929 dyn.d_un.d_ptr = 0;
11930 for (i = 1; i < elf_numsections (abfd); i++)
11931 {
11932 Elf_Internal_Shdr *hdr;
11933
11934 hdr = elf_elfsections (abfd)[i];
11935 if (hdr->sh_type == type
11936 && (hdr->sh_flags & SHF_ALLOC) != 0)
11937 {
11938 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11939 dyn.d_un.d_val += hdr->sh_size;
11940 else
11941 {
11942 if (dyn.d_un.d_ptr == 0
11943 || hdr->sh_addr < dyn.d_un.d_ptr)
11944 dyn.d_un.d_ptr = hdr->sh_addr;
11945 }
11946 }
11947 }
11948 break;
11949 }
11950 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11951 }
11952 }
11953
11954 /* If we have created any dynamic sections, then output them. */
11955 if (dynobj != NULL)
11956 {
11957 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11958 goto error_return;
11959
11960 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11961 if (((info->warn_shared_textrel && bfd_link_pic (info))
11962 || info->error_textrel)
11963 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11964 {
11965 bfd_byte *dyncon, *dynconend;
11966
11967 dyncon = o->contents;
11968 dynconend = o->contents + o->size;
11969 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11970 {
11971 Elf_Internal_Dyn dyn;
11972
11973 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11974
11975 if (dyn.d_tag == DT_TEXTREL)
11976 {
11977 if (info->error_textrel)
11978 info->callbacks->einfo
11979 (_("%P%X: read-only segment has dynamic relocations.\n"));
11980 else
11981 info->callbacks->einfo
11982 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11983 break;
11984 }
11985 }
11986 }
11987
11988 for (o = dynobj->sections; o != NULL; o = o->next)
11989 {
11990 if ((o->flags & SEC_HAS_CONTENTS) == 0
11991 || o->size == 0
11992 || o->output_section == bfd_abs_section_ptr)
11993 continue;
11994 if ((o->flags & SEC_LINKER_CREATED) == 0)
11995 {
11996 /* At this point, we are only interested in sections
11997 created by _bfd_elf_link_create_dynamic_sections. */
11998 continue;
11999 }
12000 if (elf_hash_table (info)->stab_info.stabstr == o)
12001 continue;
12002 if (elf_hash_table (info)->eh_info.hdr_sec == o)
12003 continue;
12004 if (strcmp (o->name, ".dynstr") != 0)
12005 {
12006 if (! bfd_set_section_contents (abfd, o->output_section,
12007 o->contents,
12008 (file_ptr) o->output_offset
12009 * bfd_octets_per_byte (abfd),
12010 o->size))
12011 goto error_return;
12012 }
12013 else
12014 {
12015 /* The contents of the .dynstr section are actually in a
12016 stringtab. */
12017 file_ptr off;
12018
12019 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
12020 if (bfd_seek (abfd, off, SEEK_SET) != 0
12021 || ! _bfd_elf_strtab_emit (abfd,
12022 elf_hash_table (info)->dynstr))
12023 goto error_return;
12024 }
12025 }
12026 }
12027
12028 if (bfd_link_relocatable (info))
12029 {
12030 bfd_boolean failed = FALSE;
12031
12032 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
12033 if (failed)
12034 goto error_return;
12035 }
12036
12037 /* If we have optimized stabs strings, output them. */
12038 if (elf_hash_table (info)->stab_info.stabstr != NULL)
12039 {
12040 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
12041 goto error_return;
12042 }
12043
12044 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
12045 goto error_return;
12046
12047 elf_final_link_free (abfd, &flinfo);
12048
12049 elf_linker (abfd) = TRUE;
12050
12051 if (attr_section)
12052 {
12053 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
12054 if (contents == NULL)
12055 return FALSE; /* Bail out and fail. */
12056 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
12057 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
12058 free (contents);
12059 }
12060
12061 return TRUE;
12062
12063 error_return:
12064 elf_final_link_free (abfd, &flinfo);
12065 return FALSE;
12066 }
12067 \f
12068 /* Initialize COOKIE for input bfd ABFD. */
12069
12070 static bfd_boolean
12071 init_reloc_cookie (struct elf_reloc_cookie *cookie,
12072 struct bfd_link_info *info, bfd *abfd)
12073 {
12074 Elf_Internal_Shdr *symtab_hdr;
12075 const struct elf_backend_data *bed;
12076
12077 bed = get_elf_backend_data (abfd);
12078 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12079
12080 cookie->abfd = abfd;
12081 cookie->sym_hashes = elf_sym_hashes (abfd);
12082 cookie->bad_symtab = elf_bad_symtab (abfd);
12083 if (cookie->bad_symtab)
12084 {
12085 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12086 cookie->extsymoff = 0;
12087 }
12088 else
12089 {
12090 cookie->locsymcount = symtab_hdr->sh_info;
12091 cookie->extsymoff = symtab_hdr->sh_info;
12092 }
12093
12094 if (bed->s->arch_size == 32)
12095 cookie->r_sym_shift = 8;
12096 else
12097 cookie->r_sym_shift = 32;
12098
12099 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
12100 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
12101 {
12102 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12103 cookie->locsymcount, 0,
12104 NULL, NULL, NULL);
12105 if (cookie->locsyms == NULL)
12106 {
12107 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
12108 return FALSE;
12109 }
12110 if (info->keep_memory)
12111 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
12112 }
12113 return TRUE;
12114 }
12115
12116 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
12117
12118 static void
12119 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
12120 {
12121 Elf_Internal_Shdr *symtab_hdr;
12122
12123 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12124 if (cookie->locsyms != NULL
12125 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
12126 free (cookie->locsyms);
12127 }
12128
12129 /* Initialize the relocation information in COOKIE for input section SEC
12130 of input bfd ABFD. */
12131
12132 static bfd_boolean
12133 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12134 struct bfd_link_info *info, bfd *abfd,
12135 asection *sec)
12136 {
12137 const struct elf_backend_data *bed;
12138
12139 if (sec->reloc_count == 0)
12140 {
12141 cookie->rels = NULL;
12142 cookie->relend = NULL;
12143 }
12144 else
12145 {
12146 bed = get_elf_backend_data (abfd);
12147
12148 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
12149 info->keep_memory);
12150 if (cookie->rels == NULL)
12151 return FALSE;
12152 cookie->rel = cookie->rels;
12153 cookie->relend = (cookie->rels
12154 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
12155 }
12156 cookie->rel = cookie->rels;
12157 return TRUE;
12158 }
12159
12160 /* Free the memory allocated by init_reloc_cookie_rels,
12161 if appropriate. */
12162
12163 static void
12164 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12165 asection *sec)
12166 {
12167 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
12168 free (cookie->rels);
12169 }
12170
12171 /* Initialize the whole of COOKIE for input section SEC. */
12172
12173 static bfd_boolean
12174 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12175 struct bfd_link_info *info,
12176 asection *sec)
12177 {
12178 if (!init_reloc_cookie (cookie, info, sec->owner))
12179 goto error1;
12180 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
12181 goto error2;
12182 return TRUE;
12183
12184 error2:
12185 fini_reloc_cookie (cookie, sec->owner);
12186 error1:
12187 return FALSE;
12188 }
12189
12190 /* Free the memory allocated by init_reloc_cookie_for_section,
12191 if appropriate. */
12192
12193 static void
12194 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12195 asection *sec)
12196 {
12197 fini_reloc_cookie_rels (cookie, sec);
12198 fini_reloc_cookie (cookie, sec->owner);
12199 }
12200 \f
12201 /* Garbage collect unused sections. */
12202
12203 /* Default gc_mark_hook. */
12204
12205 asection *
12206 _bfd_elf_gc_mark_hook (asection *sec,
12207 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12208 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12209 struct elf_link_hash_entry *h,
12210 Elf_Internal_Sym *sym)
12211 {
12212 if (h != NULL)
12213 {
12214 switch (h->root.type)
12215 {
12216 case bfd_link_hash_defined:
12217 case bfd_link_hash_defweak:
12218 return h->root.u.def.section;
12219
12220 case bfd_link_hash_common:
12221 return h->root.u.c.p->section;
12222
12223 default:
12224 break;
12225 }
12226 }
12227 else
12228 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
12229
12230 return NULL;
12231 }
12232
12233 /* For undefined __start_<name> and __stop_<name> symbols, return the
12234 first input section matching <name>. Return NULL otherwise. */
12235
12236 asection *
12237 _bfd_elf_is_start_stop (const struct bfd_link_info *info,
12238 struct elf_link_hash_entry *h)
12239 {
12240 asection *s;
12241 const char *sec_name;
12242
12243 if (h->root.type != bfd_link_hash_undefined
12244 && h->root.type != bfd_link_hash_undefweak)
12245 return NULL;
12246
12247 s = h->root.u.undef.section;
12248 if (s != NULL)
12249 {
12250 if (s == (asection *) 0 - 1)
12251 return NULL;
12252 return s;
12253 }
12254
12255 sec_name = NULL;
12256 if (strncmp (h->root.root.string, "__start_", 8) == 0)
12257 sec_name = h->root.root.string + 8;
12258 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
12259 sec_name = h->root.root.string + 7;
12260
12261 if (sec_name != NULL && *sec_name != '\0')
12262 {
12263 bfd *i;
12264
12265 for (i = info->input_bfds; i != NULL; i = i->link.next)
12266 {
12267 s = bfd_get_section_by_name (i, sec_name);
12268 if (s != NULL)
12269 {
12270 h->root.u.undef.section = s;
12271 break;
12272 }
12273 }
12274 }
12275
12276 if (s == NULL)
12277 h->root.u.undef.section = (asection *) 0 - 1;
12278
12279 return s;
12280 }
12281
12282 /* COOKIE->rel describes a relocation against section SEC, which is
12283 a section we've decided to keep. Return the section that contains
12284 the relocation symbol, or NULL if no section contains it. */
12285
12286 asection *
12287 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
12288 elf_gc_mark_hook_fn gc_mark_hook,
12289 struct elf_reloc_cookie *cookie,
12290 bfd_boolean *start_stop)
12291 {
12292 unsigned long r_symndx;
12293 struct elf_link_hash_entry *h;
12294
12295 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
12296 if (r_symndx == STN_UNDEF)
12297 return NULL;
12298
12299 if (r_symndx >= cookie->locsymcount
12300 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12301 {
12302 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
12303 if (h == NULL)
12304 {
12305 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
12306 sec->owner);
12307 return NULL;
12308 }
12309 while (h->root.type == bfd_link_hash_indirect
12310 || h->root.type == bfd_link_hash_warning)
12311 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12312 h->mark = 1;
12313 /* If this symbol is weak and there is a non-weak definition, we
12314 keep the non-weak definition because many backends put
12315 dynamic reloc info on the non-weak definition for code
12316 handling copy relocs. */
12317 if (h->u.weakdef != NULL)
12318 h->u.weakdef->mark = 1;
12319
12320 if (start_stop != NULL)
12321 {
12322 /* To work around a glibc bug, mark all XXX input sections
12323 when there is an as yet undefined reference to __start_XXX
12324 or __stop_XXX symbols. The linker will later define such
12325 symbols for orphan input sections that have a name
12326 representable as a C identifier. */
12327 asection *s = _bfd_elf_is_start_stop (info, h);
12328
12329 if (s != NULL)
12330 {
12331 *start_stop = !s->gc_mark;
12332 return s;
12333 }
12334 }
12335
12336 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
12337 }
12338
12339 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
12340 &cookie->locsyms[r_symndx]);
12341 }
12342
12343 /* COOKIE->rel describes a relocation against section SEC, which is
12344 a section we've decided to keep. Mark the section that contains
12345 the relocation symbol. */
12346
12347 bfd_boolean
12348 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
12349 asection *sec,
12350 elf_gc_mark_hook_fn gc_mark_hook,
12351 struct elf_reloc_cookie *cookie)
12352 {
12353 asection *rsec;
12354 bfd_boolean start_stop = FALSE;
12355
12356 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
12357 while (rsec != NULL)
12358 {
12359 if (!rsec->gc_mark)
12360 {
12361 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
12362 || (rsec->owner->flags & DYNAMIC) != 0)
12363 rsec->gc_mark = 1;
12364 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
12365 return FALSE;
12366 }
12367 if (!start_stop)
12368 break;
12369 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
12370 }
12371 return TRUE;
12372 }
12373
12374 /* The mark phase of garbage collection. For a given section, mark
12375 it and any sections in this section's group, and all the sections
12376 which define symbols to which it refers. */
12377
12378 bfd_boolean
12379 _bfd_elf_gc_mark (struct bfd_link_info *info,
12380 asection *sec,
12381 elf_gc_mark_hook_fn gc_mark_hook)
12382 {
12383 bfd_boolean ret;
12384 asection *group_sec, *eh_frame;
12385
12386 sec->gc_mark = 1;
12387
12388 /* Mark all the sections in the group. */
12389 group_sec = elf_section_data (sec)->next_in_group;
12390 if (group_sec && !group_sec->gc_mark)
12391 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
12392 return FALSE;
12393
12394 /* Look through the section relocs. */
12395 ret = TRUE;
12396 eh_frame = elf_eh_frame_section (sec->owner);
12397 if ((sec->flags & SEC_RELOC) != 0
12398 && sec->reloc_count > 0
12399 && sec != eh_frame)
12400 {
12401 struct elf_reloc_cookie cookie;
12402
12403 if (!init_reloc_cookie_for_section (&cookie, info, sec))
12404 ret = FALSE;
12405 else
12406 {
12407 for (; cookie.rel < cookie.relend; cookie.rel++)
12408 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
12409 {
12410 ret = FALSE;
12411 break;
12412 }
12413 fini_reloc_cookie_for_section (&cookie, sec);
12414 }
12415 }
12416
12417 if (ret && eh_frame && elf_fde_list (sec))
12418 {
12419 struct elf_reloc_cookie cookie;
12420
12421 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
12422 ret = FALSE;
12423 else
12424 {
12425 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
12426 gc_mark_hook, &cookie))
12427 ret = FALSE;
12428 fini_reloc_cookie_for_section (&cookie, eh_frame);
12429 }
12430 }
12431
12432 eh_frame = elf_section_eh_frame_entry (sec);
12433 if (ret && eh_frame && !eh_frame->gc_mark)
12434 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
12435 ret = FALSE;
12436
12437 return ret;
12438 }
12439
12440 /* Scan and mark sections in a special or debug section group. */
12441
12442 static void
12443 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
12444 {
12445 /* Point to first section of section group. */
12446 asection *ssec;
12447 /* Used to iterate the section group. */
12448 asection *msec;
12449
12450 bfd_boolean is_special_grp = TRUE;
12451 bfd_boolean is_debug_grp = TRUE;
12452
12453 /* First scan to see if group contains any section other than debug
12454 and special section. */
12455 ssec = msec = elf_next_in_group (grp);
12456 do
12457 {
12458 if ((msec->flags & SEC_DEBUGGING) == 0)
12459 is_debug_grp = FALSE;
12460
12461 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
12462 is_special_grp = FALSE;
12463
12464 msec = elf_next_in_group (msec);
12465 }
12466 while (msec != ssec);
12467
12468 /* If this is a pure debug section group or pure special section group,
12469 keep all sections in this group. */
12470 if (is_debug_grp || is_special_grp)
12471 {
12472 do
12473 {
12474 msec->gc_mark = 1;
12475 msec = elf_next_in_group (msec);
12476 }
12477 while (msec != ssec);
12478 }
12479 }
12480
12481 /* Keep debug and special sections. */
12482
12483 bfd_boolean
12484 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12485 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12486 {
12487 bfd *ibfd;
12488
12489 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12490 {
12491 asection *isec;
12492 bfd_boolean some_kept;
12493 bfd_boolean debug_frag_seen;
12494
12495 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12496 continue;
12497
12498 /* Ensure all linker created sections are kept,
12499 see if any other section is already marked,
12500 and note if we have any fragmented debug sections. */
12501 debug_frag_seen = some_kept = FALSE;
12502 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12503 {
12504 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12505 isec->gc_mark = 1;
12506 else if (isec->gc_mark)
12507 some_kept = TRUE;
12508
12509 if (debug_frag_seen == FALSE
12510 && (isec->flags & SEC_DEBUGGING)
12511 && CONST_STRNEQ (isec->name, ".debug_line."))
12512 debug_frag_seen = TRUE;
12513 }
12514
12515 /* If no section in this file will be kept, then we can
12516 toss out the debug and special sections. */
12517 if (!some_kept)
12518 continue;
12519
12520 /* Keep debug and special sections like .comment when they are
12521 not part of a group. Also keep section groups that contain
12522 just debug sections or special sections. */
12523 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12524 {
12525 if ((isec->flags & SEC_GROUP) != 0)
12526 _bfd_elf_gc_mark_debug_special_section_group (isec);
12527 else if (((isec->flags & SEC_DEBUGGING) != 0
12528 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12529 && elf_next_in_group (isec) == NULL)
12530 isec->gc_mark = 1;
12531 }
12532
12533 if (! debug_frag_seen)
12534 continue;
12535
12536 /* Look for CODE sections which are going to be discarded,
12537 and find and discard any fragmented debug sections which
12538 are associated with that code section. */
12539 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12540 if ((isec->flags & SEC_CODE) != 0
12541 && isec->gc_mark == 0)
12542 {
12543 unsigned int ilen;
12544 asection *dsec;
12545
12546 ilen = strlen (isec->name);
12547
12548 /* Association is determined by the name of the debug section
12549 containing the name of the code section as a suffix. For
12550 example .debug_line.text.foo is a debug section associated
12551 with .text.foo. */
12552 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12553 {
12554 unsigned int dlen;
12555
12556 if (dsec->gc_mark == 0
12557 || (dsec->flags & SEC_DEBUGGING) == 0)
12558 continue;
12559
12560 dlen = strlen (dsec->name);
12561
12562 if (dlen > ilen
12563 && strncmp (dsec->name + (dlen - ilen),
12564 isec->name, ilen) == 0)
12565 {
12566 dsec->gc_mark = 0;
12567 }
12568 }
12569 }
12570 }
12571 return TRUE;
12572 }
12573
12574 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
12575
12576 struct elf_gc_sweep_symbol_info
12577 {
12578 struct bfd_link_info *info;
12579 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
12580 bfd_boolean);
12581 };
12582
12583 static bfd_boolean
12584 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
12585 {
12586 if (!h->mark
12587 && (((h->root.type == bfd_link_hash_defined
12588 || h->root.type == bfd_link_hash_defweak)
12589 && !((h->def_regular || ELF_COMMON_DEF_P (h))
12590 && h->root.u.def.section->gc_mark))
12591 || h->root.type == bfd_link_hash_undefined
12592 || h->root.type == bfd_link_hash_undefweak))
12593 {
12594 struct elf_gc_sweep_symbol_info *inf;
12595
12596 inf = (struct elf_gc_sweep_symbol_info *) data;
12597 (*inf->hide_symbol) (inf->info, h, TRUE);
12598 h->def_regular = 0;
12599 h->ref_regular = 0;
12600 h->ref_regular_nonweak = 0;
12601 }
12602
12603 return TRUE;
12604 }
12605
12606 /* The sweep phase of garbage collection. Remove all garbage sections. */
12607
12608 typedef bfd_boolean (*gc_sweep_hook_fn)
12609 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
12610
12611 static bfd_boolean
12612 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
12613 {
12614 bfd *sub;
12615 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12616 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
12617 unsigned long section_sym_count;
12618 struct elf_gc_sweep_symbol_info sweep_info;
12619
12620 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12621 {
12622 asection *o;
12623
12624 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12625 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12626 continue;
12627
12628 for (o = sub->sections; o != NULL; o = o->next)
12629 {
12630 /* When any section in a section group is kept, we keep all
12631 sections in the section group. If the first member of
12632 the section group is excluded, we will also exclude the
12633 group section. */
12634 if (o->flags & SEC_GROUP)
12635 {
12636 asection *first = elf_next_in_group (o);
12637 o->gc_mark = first->gc_mark;
12638 }
12639
12640 if (o->gc_mark)
12641 continue;
12642
12643 /* Skip sweeping sections already excluded. */
12644 if (o->flags & SEC_EXCLUDE)
12645 continue;
12646
12647 /* Since this is early in the link process, it is simple
12648 to remove a section from the output. */
12649 o->flags |= SEC_EXCLUDE;
12650
12651 if (info->print_gc_sections && o->size != 0)
12652 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
12653
12654 /* But we also have to update some of the relocation
12655 info we collected before. */
12656 if (gc_sweep_hook
12657 && (o->flags & SEC_RELOC) != 0
12658 && o->reloc_count != 0
12659 && !((info->strip == strip_all || info->strip == strip_debugger)
12660 && (o->flags & SEC_DEBUGGING) != 0)
12661 && !bfd_is_abs_section (o->output_section))
12662 {
12663 Elf_Internal_Rela *internal_relocs;
12664 bfd_boolean r;
12665
12666 internal_relocs
12667 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12668 info->keep_memory);
12669 if (internal_relocs == NULL)
12670 return FALSE;
12671
12672 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12673
12674 if (elf_section_data (o)->relocs != internal_relocs)
12675 free (internal_relocs);
12676
12677 if (!r)
12678 return FALSE;
12679 }
12680 }
12681 }
12682
12683 /* Remove the symbols that were in the swept sections from the dynamic
12684 symbol table. GCFIXME: Anyone know how to get them out of the
12685 static symbol table as well? */
12686 sweep_info.info = info;
12687 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12688 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12689 &sweep_info);
12690
12691 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12692 return TRUE;
12693 }
12694
12695 /* Propagate collected vtable information. This is called through
12696 elf_link_hash_traverse. */
12697
12698 static bfd_boolean
12699 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12700 {
12701 /* Those that are not vtables. */
12702 if (h->vtable == NULL || h->vtable->parent == NULL)
12703 return TRUE;
12704
12705 /* Those vtables that do not have parents, we cannot merge. */
12706 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12707 return TRUE;
12708
12709 /* If we've already been done, exit. */
12710 if (h->vtable->used && h->vtable->used[-1])
12711 return TRUE;
12712
12713 /* Make sure the parent's table is up to date. */
12714 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12715
12716 if (h->vtable->used == NULL)
12717 {
12718 /* None of this table's entries were referenced. Re-use the
12719 parent's table. */
12720 h->vtable->used = h->vtable->parent->vtable->used;
12721 h->vtable->size = h->vtable->parent->vtable->size;
12722 }
12723 else
12724 {
12725 size_t n;
12726 bfd_boolean *cu, *pu;
12727
12728 /* Or the parent's entries into ours. */
12729 cu = h->vtable->used;
12730 cu[-1] = TRUE;
12731 pu = h->vtable->parent->vtable->used;
12732 if (pu != NULL)
12733 {
12734 const struct elf_backend_data *bed;
12735 unsigned int log_file_align;
12736
12737 bed = get_elf_backend_data (h->root.u.def.section->owner);
12738 log_file_align = bed->s->log_file_align;
12739 n = h->vtable->parent->vtable->size >> log_file_align;
12740 while (n--)
12741 {
12742 if (*pu)
12743 *cu = TRUE;
12744 pu++;
12745 cu++;
12746 }
12747 }
12748 }
12749
12750 return TRUE;
12751 }
12752
12753 static bfd_boolean
12754 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12755 {
12756 asection *sec;
12757 bfd_vma hstart, hend;
12758 Elf_Internal_Rela *relstart, *relend, *rel;
12759 const struct elf_backend_data *bed;
12760 unsigned int log_file_align;
12761
12762 /* Take care of both those symbols that do not describe vtables as
12763 well as those that are not loaded. */
12764 if (h->vtable == NULL || h->vtable->parent == NULL)
12765 return TRUE;
12766
12767 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12768 || h->root.type == bfd_link_hash_defweak);
12769
12770 sec = h->root.u.def.section;
12771 hstart = h->root.u.def.value;
12772 hend = hstart + h->size;
12773
12774 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12775 if (!relstart)
12776 return *(bfd_boolean *) okp = FALSE;
12777 bed = get_elf_backend_data (sec->owner);
12778 log_file_align = bed->s->log_file_align;
12779
12780 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12781
12782 for (rel = relstart; rel < relend; ++rel)
12783 if (rel->r_offset >= hstart && rel->r_offset < hend)
12784 {
12785 /* If the entry is in use, do nothing. */
12786 if (h->vtable->used
12787 && (rel->r_offset - hstart) < h->vtable->size)
12788 {
12789 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12790 if (h->vtable->used[entry])
12791 continue;
12792 }
12793 /* Otherwise, kill it. */
12794 rel->r_offset = rel->r_info = rel->r_addend = 0;
12795 }
12796
12797 return TRUE;
12798 }
12799
12800 /* Mark sections containing dynamically referenced symbols. When
12801 building shared libraries, we must assume that any visible symbol is
12802 referenced. */
12803
12804 bfd_boolean
12805 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12806 {
12807 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12808 struct bfd_elf_dynamic_list *d = info->dynamic_list;
12809
12810 if ((h->root.type == bfd_link_hash_defined
12811 || h->root.type == bfd_link_hash_defweak)
12812 && (h->ref_dynamic
12813 || ((h->def_regular || ELF_COMMON_DEF_P (h))
12814 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12815 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12816 && (!bfd_link_executable (info)
12817 || info->export_dynamic
12818 || (h->dynamic
12819 && d != NULL
12820 && (*d->match) (&d->head, NULL, h->root.root.string)))
12821 && (h->versioned >= versioned
12822 || !bfd_hide_sym_by_version (info->version_info,
12823 h->root.root.string)))))
12824 h->root.u.def.section->flags |= SEC_KEEP;
12825
12826 return TRUE;
12827 }
12828
12829 /* Keep all sections containing symbols undefined on the command-line,
12830 and the section containing the entry symbol. */
12831
12832 void
12833 _bfd_elf_gc_keep (struct bfd_link_info *info)
12834 {
12835 struct bfd_sym_chain *sym;
12836
12837 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12838 {
12839 struct elf_link_hash_entry *h;
12840
12841 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12842 FALSE, FALSE, FALSE);
12843
12844 if (h != NULL
12845 && (h->root.type == bfd_link_hash_defined
12846 || h->root.type == bfd_link_hash_defweak)
12847 && !bfd_is_abs_section (h->root.u.def.section))
12848 h->root.u.def.section->flags |= SEC_KEEP;
12849 }
12850 }
12851
12852 bfd_boolean
12853 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
12854 struct bfd_link_info *info)
12855 {
12856 bfd *ibfd = info->input_bfds;
12857
12858 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12859 {
12860 asection *sec;
12861 struct elf_reloc_cookie cookie;
12862
12863 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12864 continue;
12865
12866 if (!init_reloc_cookie (&cookie, info, ibfd))
12867 return FALSE;
12868
12869 for (sec = ibfd->sections; sec; sec = sec->next)
12870 {
12871 if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
12872 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
12873 {
12874 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
12875 fini_reloc_cookie_rels (&cookie, sec);
12876 }
12877 }
12878 }
12879 return TRUE;
12880 }
12881
12882 /* Do mark and sweep of unused sections. */
12883
12884 bfd_boolean
12885 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12886 {
12887 bfd_boolean ok = TRUE;
12888 bfd *sub;
12889 elf_gc_mark_hook_fn gc_mark_hook;
12890 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12891 struct elf_link_hash_table *htab;
12892
12893 if (!bed->can_gc_sections
12894 || !is_elf_hash_table (info->hash))
12895 {
12896 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12897 return TRUE;
12898 }
12899
12900 bed->gc_keep (info);
12901 htab = elf_hash_table (info);
12902
12903 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12904 at the .eh_frame section if we can mark the FDEs individually. */
12905 for (sub = info->input_bfds;
12906 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
12907 sub = sub->link.next)
12908 {
12909 asection *sec;
12910 struct elf_reloc_cookie cookie;
12911
12912 sec = bfd_get_section_by_name (sub, ".eh_frame");
12913 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12914 {
12915 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12916 if (elf_section_data (sec)->sec_info
12917 && (sec->flags & SEC_LINKER_CREATED) == 0)
12918 elf_eh_frame_section (sub) = sec;
12919 fini_reloc_cookie_for_section (&cookie, sec);
12920 sec = bfd_get_next_section_by_name (NULL, sec);
12921 }
12922 }
12923
12924 /* Apply transitive closure to the vtable entry usage info. */
12925 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
12926 if (!ok)
12927 return FALSE;
12928
12929 /* Kill the vtable relocations that were not used. */
12930 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
12931 if (!ok)
12932 return FALSE;
12933
12934 /* Mark dynamically referenced symbols. */
12935 if (htab->dynamic_sections_created)
12936 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
12937
12938 /* Grovel through relocs to find out who stays ... */
12939 gc_mark_hook = bed->gc_mark_hook;
12940 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12941 {
12942 asection *o;
12943
12944 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12945 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12946 continue;
12947
12948 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12949 Also treat note sections as a root, if the section is not part
12950 of a group. */
12951 for (o = sub->sections; o != NULL; o = o->next)
12952 if (!o->gc_mark
12953 && (o->flags & SEC_EXCLUDE) == 0
12954 && ((o->flags & SEC_KEEP) != 0
12955 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12956 && elf_next_in_group (o) == NULL )))
12957 {
12958 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12959 return FALSE;
12960 }
12961 }
12962
12963 /* Allow the backend to mark additional target specific sections. */
12964 bed->gc_mark_extra_sections (info, gc_mark_hook);
12965
12966 /* ... and mark SEC_EXCLUDE for those that go. */
12967 return elf_gc_sweep (abfd, info);
12968 }
12969 \f
12970 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12971
12972 bfd_boolean
12973 bfd_elf_gc_record_vtinherit (bfd *abfd,
12974 asection *sec,
12975 struct elf_link_hash_entry *h,
12976 bfd_vma offset)
12977 {
12978 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12979 struct elf_link_hash_entry **search, *child;
12980 bfd_size_type extsymcount;
12981 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12982
12983 /* The sh_info field of the symtab header tells us where the
12984 external symbols start. We don't care about the local symbols at
12985 this point. */
12986 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12987 if (!elf_bad_symtab (abfd))
12988 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12989
12990 sym_hashes = elf_sym_hashes (abfd);
12991 sym_hashes_end = sym_hashes + extsymcount;
12992
12993 /* Hunt down the child symbol, which is in this section at the same
12994 offset as the relocation. */
12995 for (search = sym_hashes; search != sym_hashes_end; ++search)
12996 {
12997 if ((child = *search) != NULL
12998 && (child->root.type == bfd_link_hash_defined
12999 || child->root.type == bfd_link_hash_defweak)
13000 && child->root.u.def.section == sec
13001 && child->root.u.def.value == offset)
13002 goto win;
13003 }
13004
13005 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
13006 abfd, sec, (unsigned long) offset);
13007 bfd_set_error (bfd_error_invalid_operation);
13008 return FALSE;
13009
13010 win:
13011 if (!child->vtable)
13012 {
13013 child->vtable = ((struct elf_link_virtual_table_entry *)
13014 bfd_zalloc (abfd, sizeof (*child->vtable)));
13015 if (!child->vtable)
13016 return FALSE;
13017 }
13018 if (!h)
13019 {
13020 /* This *should* only be the absolute section. It could potentially
13021 be that someone has defined a non-global vtable though, which
13022 would be bad. It isn't worth paging in the local symbols to be
13023 sure though; that case should simply be handled by the assembler. */
13024
13025 child->vtable->parent = (struct elf_link_hash_entry *) -1;
13026 }
13027 else
13028 child->vtable->parent = h;
13029
13030 return TRUE;
13031 }
13032
13033 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
13034
13035 bfd_boolean
13036 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
13037 asection *sec ATTRIBUTE_UNUSED,
13038 struct elf_link_hash_entry *h,
13039 bfd_vma addend)
13040 {
13041 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13042 unsigned int log_file_align = bed->s->log_file_align;
13043
13044 if (!h->vtable)
13045 {
13046 h->vtable = ((struct elf_link_virtual_table_entry *)
13047 bfd_zalloc (abfd, sizeof (*h->vtable)));
13048 if (!h->vtable)
13049 return FALSE;
13050 }
13051
13052 if (addend >= h->vtable->size)
13053 {
13054 size_t size, bytes, file_align;
13055 bfd_boolean *ptr = h->vtable->used;
13056
13057 /* While the symbol is undefined, we have to be prepared to handle
13058 a zero size. */
13059 file_align = 1 << log_file_align;
13060 if (h->root.type == bfd_link_hash_undefined)
13061 size = addend + file_align;
13062 else
13063 {
13064 size = h->size;
13065 if (addend >= size)
13066 {
13067 /* Oops! We've got a reference past the defined end of
13068 the table. This is probably a bug -- shall we warn? */
13069 size = addend + file_align;
13070 }
13071 }
13072 size = (size + file_align - 1) & -file_align;
13073
13074 /* Allocate one extra entry for use as a "done" flag for the
13075 consolidation pass. */
13076 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
13077
13078 if (ptr)
13079 {
13080 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
13081
13082 if (ptr != NULL)
13083 {
13084 size_t oldbytes;
13085
13086 oldbytes = (((h->vtable->size >> log_file_align) + 1)
13087 * sizeof (bfd_boolean));
13088 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
13089 }
13090 }
13091 else
13092 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
13093
13094 if (ptr == NULL)
13095 return FALSE;
13096
13097 /* And arrange for that done flag to be at index -1. */
13098 h->vtable->used = ptr + 1;
13099 h->vtable->size = size;
13100 }
13101
13102 h->vtable->used[addend >> log_file_align] = TRUE;
13103
13104 return TRUE;
13105 }
13106
13107 /* Map an ELF section header flag to its corresponding string. */
13108 typedef struct
13109 {
13110 char *flag_name;
13111 flagword flag_value;
13112 } elf_flags_to_name_table;
13113
13114 static elf_flags_to_name_table elf_flags_to_names [] =
13115 {
13116 { "SHF_WRITE", SHF_WRITE },
13117 { "SHF_ALLOC", SHF_ALLOC },
13118 { "SHF_EXECINSTR", SHF_EXECINSTR },
13119 { "SHF_MERGE", SHF_MERGE },
13120 { "SHF_STRINGS", SHF_STRINGS },
13121 { "SHF_INFO_LINK", SHF_INFO_LINK},
13122 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
13123 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
13124 { "SHF_GROUP", SHF_GROUP },
13125 { "SHF_TLS", SHF_TLS },
13126 { "SHF_MASKOS", SHF_MASKOS },
13127 { "SHF_EXCLUDE", SHF_EXCLUDE },
13128 };
13129
13130 /* Returns TRUE if the section is to be included, otherwise FALSE. */
13131 bfd_boolean
13132 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
13133 struct flag_info *flaginfo,
13134 asection *section)
13135 {
13136 const bfd_vma sh_flags = elf_section_flags (section);
13137
13138 if (!flaginfo->flags_initialized)
13139 {
13140 bfd *obfd = info->output_bfd;
13141 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13142 struct flag_info_list *tf = flaginfo->flag_list;
13143 int with_hex = 0;
13144 int without_hex = 0;
13145
13146 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
13147 {
13148 unsigned i;
13149 flagword (*lookup) (char *);
13150
13151 lookup = bed->elf_backend_lookup_section_flags_hook;
13152 if (lookup != NULL)
13153 {
13154 flagword hexval = (*lookup) ((char *) tf->name);
13155
13156 if (hexval != 0)
13157 {
13158 if (tf->with == with_flags)
13159 with_hex |= hexval;
13160 else if (tf->with == without_flags)
13161 without_hex |= hexval;
13162 tf->valid = TRUE;
13163 continue;
13164 }
13165 }
13166 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
13167 {
13168 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
13169 {
13170 if (tf->with == with_flags)
13171 with_hex |= elf_flags_to_names[i].flag_value;
13172 else if (tf->with == without_flags)
13173 without_hex |= elf_flags_to_names[i].flag_value;
13174 tf->valid = TRUE;
13175 break;
13176 }
13177 }
13178 if (!tf->valid)
13179 {
13180 info->callbacks->einfo
13181 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
13182 return FALSE;
13183 }
13184 }
13185 flaginfo->flags_initialized = TRUE;
13186 flaginfo->only_with_flags |= with_hex;
13187 flaginfo->not_with_flags |= without_hex;
13188 }
13189
13190 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
13191 return FALSE;
13192
13193 if ((flaginfo->not_with_flags & sh_flags) != 0)
13194 return FALSE;
13195
13196 return TRUE;
13197 }
13198
13199 struct alloc_got_off_arg {
13200 bfd_vma gotoff;
13201 struct bfd_link_info *info;
13202 };
13203
13204 /* We need a special top-level link routine to convert got reference counts
13205 to real got offsets. */
13206
13207 static bfd_boolean
13208 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
13209 {
13210 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
13211 bfd *obfd = gofarg->info->output_bfd;
13212 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13213
13214 if (h->got.refcount > 0)
13215 {
13216 h->got.offset = gofarg->gotoff;
13217 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
13218 }
13219 else
13220 h->got.offset = (bfd_vma) -1;
13221
13222 return TRUE;
13223 }
13224
13225 /* And an accompanying bit to work out final got entry offsets once
13226 we're done. Should be called from final_link. */
13227
13228 bfd_boolean
13229 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
13230 struct bfd_link_info *info)
13231 {
13232 bfd *i;
13233 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13234 bfd_vma gotoff;
13235 struct alloc_got_off_arg gofarg;
13236
13237 BFD_ASSERT (abfd == info->output_bfd);
13238
13239 if (! is_elf_hash_table (info->hash))
13240 return FALSE;
13241
13242 /* The GOT offset is relative to the .got section, but the GOT header is
13243 put into the .got.plt section, if the backend uses it. */
13244 if (bed->want_got_plt)
13245 gotoff = 0;
13246 else
13247 gotoff = bed->got_header_size;
13248
13249 /* Do the local .got entries first. */
13250 for (i = info->input_bfds; i; i = i->link.next)
13251 {
13252 bfd_signed_vma *local_got;
13253 bfd_size_type j, locsymcount;
13254 Elf_Internal_Shdr *symtab_hdr;
13255
13256 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
13257 continue;
13258
13259 local_got = elf_local_got_refcounts (i);
13260 if (!local_got)
13261 continue;
13262
13263 symtab_hdr = &elf_tdata (i)->symtab_hdr;
13264 if (elf_bad_symtab (i))
13265 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13266 else
13267 locsymcount = symtab_hdr->sh_info;
13268
13269 for (j = 0; j < locsymcount; ++j)
13270 {
13271 if (local_got[j] > 0)
13272 {
13273 local_got[j] = gotoff;
13274 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
13275 }
13276 else
13277 local_got[j] = (bfd_vma) -1;
13278 }
13279 }
13280
13281 /* Then the global .got entries. .plt refcounts are handled by
13282 adjust_dynamic_symbol */
13283 gofarg.gotoff = gotoff;
13284 gofarg.info = info;
13285 elf_link_hash_traverse (elf_hash_table (info),
13286 elf_gc_allocate_got_offsets,
13287 &gofarg);
13288 return TRUE;
13289 }
13290
13291 /* Many folk need no more in the way of final link than this, once
13292 got entry reference counting is enabled. */
13293
13294 bfd_boolean
13295 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
13296 {
13297 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
13298 return FALSE;
13299
13300 /* Invoke the regular ELF backend linker to do all the work. */
13301 return bfd_elf_final_link (abfd, info);
13302 }
13303
13304 bfd_boolean
13305 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
13306 {
13307 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
13308
13309 if (rcookie->bad_symtab)
13310 rcookie->rel = rcookie->rels;
13311
13312 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
13313 {
13314 unsigned long r_symndx;
13315
13316 if (! rcookie->bad_symtab)
13317 if (rcookie->rel->r_offset > offset)
13318 return FALSE;
13319 if (rcookie->rel->r_offset != offset)
13320 continue;
13321
13322 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
13323 if (r_symndx == STN_UNDEF)
13324 return TRUE;
13325
13326 if (r_symndx >= rcookie->locsymcount
13327 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13328 {
13329 struct elf_link_hash_entry *h;
13330
13331 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
13332
13333 while (h->root.type == bfd_link_hash_indirect
13334 || h->root.type == bfd_link_hash_warning)
13335 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13336
13337 if ((h->root.type == bfd_link_hash_defined
13338 || h->root.type == bfd_link_hash_defweak)
13339 && (h->root.u.def.section->owner != rcookie->abfd
13340 || h->root.u.def.section->kept_section != NULL
13341 || discarded_section (h->root.u.def.section)))
13342 return TRUE;
13343 }
13344 else
13345 {
13346 /* It's not a relocation against a global symbol,
13347 but it could be a relocation against a local
13348 symbol for a discarded section. */
13349 asection *isec;
13350 Elf_Internal_Sym *isym;
13351
13352 /* Need to: get the symbol; get the section. */
13353 isym = &rcookie->locsyms[r_symndx];
13354 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
13355 if (isec != NULL
13356 && (isec->kept_section != NULL
13357 || discarded_section (isec)))
13358 return TRUE;
13359 }
13360 return FALSE;
13361 }
13362 return FALSE;
13363 }
13364
13365 /* Discard unneeded references to discarded sections.
13366 Returns -1 on error, 1 if any section's size was changed, 0 if
13367 nothing changed. This function assumes that the relocations are in
13368 sorted order, which is true for all known assemblers. */
13369
13370 int
13371 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
13372 {
13373 struct elf_reloc_cookie cookie;
13374 asection *o;
13375 bfd *abfd;
13376 int changed = 0;
13377
13378 if (info->traditional_format
13379 || !is_elf_hash_table (info->hash))
13380 return 0;
13381
13382 o = bfd_get_section_by_name (output_bfd, ".stab");
13383 if (o != NULL)
13384 {
13385 asection *i;
13386
13387 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13388 {
13389 if (i->size == 0
13390 || i->reloc_count == 0
13391 || i->sec_info_type != SEC_INFO_TYPE_STABS)
13392 continue;
13393
13394 abfd = i->owner;
13395 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13396 continue;
13397
13398 if (!init_reloc_cookie_for_section (&cookie, info, i))
13399 return -1;
13400
13401 if (_bfd_discard_section_stabs (abfd, i,
13402 elf_section_data (i)->sec_info,
13403 bfd_elf_reloc_symbol_deleted_p,
13404 &cookie))
13405 changed = 1;
13406
13407 fini_reloc_cookie_for_section (&cookie, i);
13408 }
13409 }
13410
13411 o = NULL;
13412 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
13413 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
13414 if (o != NULL)
13415 {
13416 asection *i;
13417
13418 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13419 {
13420 if (i->size == 0)
13421 continue;
13422
13423 abfd = i->owner;
13424 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13425 continue;
13426
13427 if (!init_reloc_cookie_for_section (&cookie, info, i))
13428 return -1;
13429
13430 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
13431 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
13432 bfd_elf_reloc_symbol_deleted_p,
13433 &cookie))
13434 changed = 1;
13435
13436 fini_reloc_cookie_for_section (&cookie, i);
13437 }
13438 }
13439
13440 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
13441 {
13442 const struct elf_backend_data *bed;
13443
13444 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13445 continue;
13446
13447 bed = get_elf_backend_data (abfd);
13448
13449 if (bed->elf_backend_discard_info != NULL)
13450 {
13451 if (!init_reloc_cookie (&cookie, info, abfd))
13452 return -1;
13453
13454 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
13455 changed = 1;
13456
13457 fini_reloc_cookie (&cookie, abfd);
13458 }
13459 }
13460
13461 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
13462 _bfd_elf_end_eh_frame_parsing (info);
13463
13464 if (info->eh_frame_hdr_type
13465 && !bfd_link_relocatable (info)
13466 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
13467 changed = 1;
13468
13469 return changed;
13470 }
13471
13472 bfd_boolean
13473 _bfd_elf_section_already_linked (bfd *abfd,
13474 asection *sec,
13475 struct bfd_link_info *info)
13476 {
13477 flagword flags;
13478 const char *name, *key;
13479 struct bfd_section_already_linked *l;
13480 struct bfd_section_already_linked_hash_entry *already_linked_list;
13481
13482 if (sec->output_section == bfd_abs_section_ptr)
13483 return FALSE;
13484
13485 flags = sec->flags;
13486
13487 /* Return if it isn't a linkonce section. A comdat group section
13488 also has SEC_LINK_ONCE set. */
13489 if ((flags & SEC_LINK_ONCE) == 0)
13490 return FALSE;
13491
13492 /* Don't put group member sections on our list of already linked
13493 sections. They are handled as a group via their group section. */
13494 if (elf_sec_group (sec) != NULL)
13495 return FALSE;
13496
13497 /* For a SHT_GROUP section, use the group signature as the key. */
13498 name = sec->name;
13499 if ((flags & SEC_GROUP) != 0
13500 && elf_next_in_group (sec) != NULL
13501 && elf_group_name (elf_next_in_group (sec)) != NULL)
13502 key = elf_group_name (elf_next_in_group (sec));
13503 else
13504 {
13505 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
13506 if (CONST_STRNEQ (name, ".gnu.linkonce.")
13507 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
13508 key++;
13509 else
13510 /* Must be a user linkonce section that doesn't follow gcc's
13511 naming convention. In this case we won't be matching
13512 single member groups. */
13513 key = name;
13514 }
13515
13516 already_linked_list = bfd_section_already_linked_table_lookup (key);
13517
13518 for (l = already_linked_list->entry; l != NULL; l = l->next)
13519 {
13520 /* We may have 2 different types of sections on the list: group
13521 sections with a signature of <key> (<key> is some string),
13522 and linkonce sections named .gnu.linkonce.<type>.<key>.
13523 Match like sections. LTO plugin sections are an exception.
13524 They are always named .gnu.linkonce.t.<key> and match either
13525 type of section. */
13526 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13527 && ((flags & SEC_GROUP) != 0
13528 || strcmp (name, l->sec->name) == 0))
13529 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13530 {
13531 /* The section has already been linked. See if we should
13532 issue a warning. */
13533 if (!_bfd_handle_already_linked (sec, l, info))
13534 return FALSE;
13535
13536 if (flags & SEC_GROUP)
13537 {
13538 asection *first = elf_next_in_group (sec);
13539 asection *s = first;
13540
13541 while (s != NULL)
13542 {
13543 s->output_section = bfd_abs_section_ptr;
13544 /* Record which group discards it. */
13545 s->kept_section = l->sec;
13546 s = elf_next_in_group (s);
13547 /* These lists are circular. */
13548 if (s == first)
13549 break;
13550 }
13551 }
13552
13553 return TRUE;
13554 }
13555 }
13556
13557 /* A single member comdat group section may be discarded by a
13558 linkonce section and vice versa. */
13559 if ((flags & SEC_GROUP) != 0)
13560 {
13561 asection *first = elf_next_in_group (sec);
13562
13563 if (first != NULL && elf_next_in_group (first) == first)
13564 /* Check this single member group against linkonce sections. */
13565 for (l = already_linked_list->entry; l != NULL; l = l->next)
13566 if ((l->sec->flags & SEC_GROUP) == 0
13567 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
13568 {
13569 first->output_section = bfd_abs_section_ptr;
13570 first->kept_section = l->sec;
13571 sec->output_section = bfd_abs_section_ptr;
13572 break;
13573 }
13574 }
13575 else
13576 /* Check this linkonce section against single member groups. */
13577 for (l = already_linked_list->entry; l != NULL; l = l->next)
13578 if (l->sec->flags & SEC_GROUP)
13579 {
13580 asection *first = elf_next_in_group (l->sec);
13581
13582 if (first != NULL
13583 && elf_next_in_group (first) == first
13584 && bfd_elf_match_symbols_in_sections (first, sec, info))
13585 {
13586 sec->output_section = bfd_abs_section_ptr;
13587 sec->kept_section = first;
13588 break;
13589 }
13590 }
13591
13592 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
13593 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
13594 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
13595 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
13596 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
13597 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
13598 `.gnu.linkonce.t.F' section from a different bfd not requiring any
13599 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
13600 The reverse order cannot happen as there is never a bfd with only the
13601 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
13602 matter as here were are looking only for cross-bfd sections. */
13603
13604 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
13605 for (l = already_linked_list->entry; l != NULL; l = l->next)
13606 if ((l->sec->flags & SEC_GROUP) == 0
13607 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
13608 {
13609 if (abfd != l->sec->owner)
13610 sec->output_section = bfd_abs_section_ptr;
13611 break;
13612 }
13613
13614 /* This is the first section with this name. Record it. */
13615 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
13616 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
13617 return sec->output_section == bfd_abs_section_ptr;
13618 }
13619
13620 bfd_boolean
13621 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
13622 {
13623 return sym->st_shndx == SHN_COMMON;
13624 }
13625
13626 unsigned int
13627 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
13628 {
13629 return SHN_COMMON;
13630 }
13631
13632 asection *
13633 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
13634 {
13635 return bfd_com_section_ptr;
13636 }
13637
13638 bfd_vma
13639 _bfd_elf_default_got_elt_size (bfd *abfd,
13640 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13641 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
13642 bfd *ibfd ATTRIBUTE_UNUSED,
13643 unsigned long symndx ATTRIBUTE_UNUSED)
13644 {
13645 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13646 return bed->s->arch_size / 8;
13647 }
13648
13649 /* Routines to support the creation of dynamic relocs. */
13650
13651 /* Returns the name of the dynamic reloc section associated with SEC. */
13652
13653 static const char *
13654 get_dynamic_reloc_section_name (bfd * abfd,
13655 asection * sec,
13656 bfd_boolean is_rela)
13657 {
13658 char *name;
13659 const char *old_name = bfd_get_section_name (NULL, sec);
13660 const char *prefix = is_rela ? ".rela" : ".rel";
13661
13662 if (old_name == NULL)
13663 return NULL;
13664
13665 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
13666 sprintf (name, "%s%s", prefix, old_name);
13667
13668 return name;
13669 }
13670
13671 /* Returns the dynamic reloc section associated with SEC.
13672 If necessary compute the name of the dynamic reloc section based
13673 on SEC's name (looked up in ABFD's string table) and the setting
13674 of IS_RELA. */
13675
13676 asection *
13677 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
13678 asection * sec,
13679 bfd_boolean is_rela)
13680 {
13681 asection * reloc_sec = elf_section_data (sec)->sreloc;
13682
13683 if (reloc_sec == NULL)
13684 {
13685 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13686
13687 if (name != NULL)
13688 {
13689 reloc_sec = bfd_get_linker_section (abfd, name);
13690
13691 if (reloc_sec != NULL)
13692 elf_section_data (sec)->sreloc = reloc_sec;
13693 }
13694 }
13695
13696 return reloc_sec;
13697 }
13698
13699 /* Returns the dynamic reloc section associated with SEC. If the
13700 section does not exist it is created and attached to the DYNOBJ
13701 bfd and stored in the SRELOC field of SEC's elf_section_data
13702 structure.
13703
13704 ALIGNMENT is the alignment for the newly created section and
13705 IS_RELA defines whether the name should be .rela.<SEC's name>
13706 or .rel.<SEC's name>. The section name is looked up in the
13707 string table associated with ABFD. */
13708
13709 asection *
13710 _bfd_elf_make_dynamic_reloc_section (asection *sec,
13711 bfd *dynobj,
13712 unsigned int alignment,
13713 bfd *abfd,
13714 bfd_boolean is_rela)
13715 {
13716 asection * reloc_sec = elf_section_data (sec)->sreloc;
13717
13718 if (reloc_sec == NULL)
13719 {
13720 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13721
13722 if (name == NULL)
13723 return NULL;
13724
13725 reloc_sec = bfd_get_linker_section (dynobj, name);
13726
13727 if (reloc_sec == NULL)
13728 {
13729 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13730 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13731 if ((sec->flags & SEC_ALLOC) != 0)
13732 flags |= SEC_ALLOC | SEC_LOAD;
13733
13734 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13735 if (reloc_sec != NULL)
13736 {
13737 /* _bfd_elf_get_sec_type_attr chooses a section type by
13738 name. Override as it may be wrong, eg. for a user
13739 section named "auto" we'll get ".relauto" which is
13740 seen to be a .rela section. */
13741 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13742 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13743 reloc_sec = NULL;
13744 }
13745 }
13746
13747 elf_section_data (sec)->sreloc = reloc_sec;
13748 }
13749
13750 return reloc_sec;
13751 }
13752
13753 /* Copy the ELF symbol type and other attributes for a linker script
13754 assignment from HSRC to HDEST. Generally this should be treated as
13755 if we found a strong non-dynamic definition for HDEST (except that
13756 ld ignores multiple definition errors). */
13757 void
13758 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
13759 struct bfd_link_hash_entry *hdest,
13760 struct bfd_link_hash_entry *hsrc)
13761 {
13762 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
13763 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
13764 Elf_Internal_Sym isym;
13765
13766 ehdest->type = ehsrc->type;
13767 ehdest->target_internal = ehsrc->target_internal;
13768
13769 isym.st_other = ehsrc->other;
13770 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
13771 }
13772
13773 /* Append a RELA relocation REL to section S in BFD. */
13774
13775 void
13776 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13777 {
13778 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13779 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13780 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13781 bed->s->swap_reloca_out (abfd, rel, loc);
13782 }
13783
13784 /* Append a REL relocation REL to section S in BFD. */
13785
13786 void
13787 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13788 {
13789 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13790 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13791 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13792 bed->s->swap_reloc_out (abfd, rel, loc);
13793 }
This page took 0.343469 seconds and 4 git commands to generate.