bfd: partial revert commit EC1ACAB (prevent all but undef weak symbols to become...
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2017 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfd_stdint.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31 #if BFD_SUPPORTS_PLUGINS
32 #include "plugin-api.h"
33 #include "plugin.h"
34 #endif
35
36 /* This struct is used to pass information to routines called via
37 elf_link_hash_traverse which must return failure. */
38
39 struct elf_info_failed
40 {
41 struct bfd_link_info *info;
42 bfd_boolean failed;
43 };
44
45 /* This structure is used to pass information to
46 _bfd_elf_link_find_version_dependencies. */
47
48 struct elf_find_verdep_info
49 {
50 /* General link information. */
51 struct bfd_link_info *info;
52 /* The number of dependencies. */
53 unsigned int vers;
54 /* Whether we had a failure. */
55 bfd_boolean failed;
56 };
57
58 static bfd_boolean _bfd_elf_fix_symbol_flags
59 (struct elf_link_hash_entry *, struct elf_info_failed *);
60
61 asection *
62 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
63 unsigned long r_symndx,
64 bfd_boolean discard)
65 {
66 if (r_symndx >= cookie->locsymcount
67 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
68 {
69 struct elf_link_hash_entry *h;
70
71 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
72
73 while (h->root.type == bfd_link_hash_indirect
74 || h->root.type == bfd_link_hash_warning)
75 h = (struct elf_link_hash_entry *) h->root.u.i.link;
76
77 if ((h->root.type == bfd_link_hash_defined
78 || h->root.type == bfd_link_hash_defweak)
79 && discarded_section (h->root.u.def.section))
80 return h->root.u.def.section;
81 else
82 return NULL;
83 }
84 else
85 {
86 /* It's not a relocation against a global symbol,
87 but it could be a relocation against a local
88 symbol for a discarded section. */
89 asection *isec;
90 Elf_Internal_Sym *isym;
91
92 /* Need to: get the symbol; get the section. */
93 isym = &cookie->locsyms[r_symndx];
94 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
95 if (isec != NULL
96 && discard ? discarded_section (isec) : 1)
97 return isec;
98 }
99 return NULL;
100 }
101
102 /* Define a symbol in a dynamic linkage section. */
103
104 struct elf_link_hash_entry *
105 _bfd_elf_define_linkage_sym (bfd *abfd,
106 struct bfd_link_info *info,
107 asection *sec,
108 const char *name)
109 {
110 struct elf_link_hash_entry *h;
111 struct bfd_link_hash_entry *bh;
112 const struct elf_backend_data *bed;
113
114 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
115 if (h != NULL)
116 {
117 /* Zap symbol defined in an as-needed lib that wasn't linked.
118 This is a symptom of a larger problem: Absolute symbols
119 defined in shared libraries can't be overridden, because we
120 lose the link to the bfd which is via the symbol section. */
121 h->root.type = bfd_link_hash_new;
122 bh = &h->root;
123 }
124 else
125 bh = NULL;
126
127 bed = get_elf_backend_data (abfd);
128 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
129 sec, 0, NULL, FALSE, bed->collect,
130 &bh))
131 return NULL;
132 h = (struct elf_link_hash_entry *) bh;
133 BFD_ASSERT (h != NULL);
134 h->def_regular = 1;
135 h->non_elf = 0;
136 h->root.linker_def = 1;
137 h->type = STT_OBJECT;
138 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
139 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
140
141 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
142 return h;
143 }
144
145 bfd_boolean
146 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
147 {
148 flagword flags;
149 asection *s;
150 struct elf_link_hash_entry *h;
151 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
152 struct elf_link_hash_table *htab = elf_hash_table (info);
153
154 /* This function may be called more than once. */
155 if (htab->sgot != NULL)
156 return TRUE;
157
158 flags = bed->dynamic_sec_flags;
159
160 s = bfd_make_section_anyway_with_flags (abfd,
161 (bed->rela_plts_and_copies_p
162 ? ".rela.got" : ".rel.got"),
163 (bed->dynamic_sec_flags
164 | SEC_READONLY));
165 if (s == NULL
166 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
167 return FALSE;
168 htab->srelgot = s;
169
170 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
171 if (s == NULL
172 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
173 return FALSE;
174 htab->sgot = s;
175
176 if (bed->want_got_plt)
177 {
178 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
179 if (s == NULL
180 || !bfd_set_section_alignment (abfd, s,
181 bed->s->log_file_align))
182 return FALSE;
183 htab->sgotplt = s;
184 }
185
186 /* The first bit of the global offset table is the header. */
187 s->size += bed->got_header_size;
188
189 if (bed->want_got_sym)
190 {
191 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
192 (or .got.plt) section. We don't do this in the linker script
193 because we don't want to define the symbol if we are not creating
194 a global offset table. */
195 h = _bfd_elf_define_linkage_sym (abfd, info, s,
196 "_GLOBAL_OFFSET_TABLE_");
197 elf_hash_table (info)->hgot = h;
198 if (h == NULL)
199 return FALSE;
200 }
201
202 return TRUE;
203 }
204 \f
205 /* Create a strtab to hold the dynamic symbol names. */
206 static bfd_boolean
207 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
208 {
209 struct elf_link_hash_table *hash_table;
210
211 hash_table = elf_hash_table (info);
212 if (hash_table->dynobj == NULL)
213 {
214 /* We may not set dynobj, an input file holding linker created
215 dynamic sections to abfd, which may be a dynamic object with
216 its own dynamic sections. We need to find a normal input file
217 to hold linker created sections if possible. */
218 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
219 {
220 bfd *ibfd;
221 asection *s;
222 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
223 if ((ibfd->flags
224 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0
225 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
226 && !((s = ibfd->sections) != NULL
227 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS))
228 {
229 abfd = ibfd;
230 break;
231 }
232 }
233 hash_table->dynobj = abfd;
234 }
235
236 if (hash_table->dynstr == NULL)
237 {
238 hash_table->dynstr = _bfd_elf_strtab_init ();
239 if (hash_table->dynstr == NULL)
240 return FALSE;
241 }
242 return TRUE;
243 }
244
245 /* Create some sections which will be filled in with dynamic linking
246 information. ABFD is an input file which requires dynamic sections
247 to be created. The dynamic sections take up virtual memory space
248 when the final executable is run, so we need to create them before
249 addresses are assigned to the output sections. We work out the
250 actual contents and size of these sections later. */
251
252 bfd_boolean
253 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
254 {
255 flagword flags;
256 asection *s;
257 const struct elf_backend_data *bed;
258 struct elf_link_hash_entry *h;
259
260 if (! is_elf_hash_table (info->hash))
261 return FALSE;
262
263 if (elf_hash_table (info)->dynamic_sections_created)
264 return TRUE;
265
266 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
267 return FALSE;
268
269 abfd = elf_hash_table (info)->dynobj;
270 bed = get_elf_backend_data (abfd);
271
272 flags = bed->dynamic_sec_flags;
273
274 /* A dynamically linked executable has a .interp section, but a
275 shared library does not. */
276 if (bfd_link_executable (info) && !info->nointerp)
277 {
278 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
279 flags | SEC_READONLY);
280 if (s == NULL)
281 return FALSE;
282 }
283
284 /* Create sections to hold version informations. These are removed
285 if they are not needed. */
286 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
287 flags | SEC_READONLY);
288 if (s == NULL
289 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
290 return FALSE;
291
292 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
293 flags | SEC_READONLY);
294 if (s == NULL
295 || ! bfd_set_section_alignment (abfd, s, 1))
296 return FALSE;
297
298 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
299 flags | SEC_READONLY);
300 if (s == NULL
301 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
302 return FALSE;
303
304 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
305 flags | SEC_READONLY);
306 if (s == NULL
307 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
308 return FALSE;
309 elf_hash_table (info)->dynsym = s;
310
311 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
312 flags | SEC_READONLY);
313 if (s == NULL)
314 return FALSE;
315
316 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
317 if (s == NULL
318 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
319 return FALSE;
320
321 /* The special symbol _DYNAMIC is always set to the start of the
322 .dynamic section. We could set _DYNAMIC in a linker script, but we
323 only want to define it if we are, in fact, creating a .dynamic
324 section. We don't want to define it if there is no .dynamic
325 section, since on some ELF platforms the start up code examines it
326 to decide how to initialize the process. */
327 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
328 elf_hash_table (info)->hdynamic = h;
329 if (h == NULL)
330 return FALSE;
331
332 if (info->emit_hash)
333 {
334 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
335 flags | SEC_READONLY);
336 if (s == NULL
337 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
338 return FALSE;
339 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
340 }
341
342 if (info->emit_gnu_hash)
343 {
344 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
345 flags | SEC_READONLY);
346 if (s == NULL
347 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
348 return FALSE;
349 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
350 4 32-bit words followed by variable count of 64-bit words, then
351 variable count of 32-bit words. */
352 if (bed->s->arch_size == 64)
353 elf_section_data (s)->this_hdr.sh_entsize = 0;
354 else
355 elf_section_data (s)->this_hdr.sh_entsize = 4;
356 }
357
358 /* Let the backend create the rest of the sections. This lets the
359 backend set the right flags. The backend will normally create
360 the .got and .plt sections. */
361 if (bed->elf_backend_create_dynamic_sections == NULL
362 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
363 return FALSE;
364
365 elf_hash_table (info)->dynamic_sections_created = TRUE;
366
367 return TRUE;
368 }
369
370 /* Create dynamic sections when linking against a dynamic object. */
371
372 bfd_boolean
373 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
374 {
375 flagword flags, pltflags;
376 struct elf_link_hash_entry *h;
377 asection *s;
378 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
379 struct elf_link_hash_table *htab = elf_hash_table (info);
380
381 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
382 .rel[a].bss sections. */
383 flags = bed->dynamic_sec_flags;
384
385 pltflags = flags;
386 if (bed->plt_not_loaded)
387 /* We do not clear SEC_ALLOC here because we still want the OS to
388 allocate space for the section; it's just that there's nothing
389 to read in from the object file. */
390 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
391 else
392 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
393 if (bed->plt_readonly)
394 pltflags |= SEC_READONLY;
395
396 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
397 if (s == NULL
398 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
399 return FALSE;
400 htab->splt = s;
401
402 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
403 .plt section. */
404 if (bed->want_plt_sym)
405 {
406 h = _bfd_elf_define_linkage_sym (abfd, info, s,
407 "_PROCEDURE_LINKAGE_TABLE_");
408 elf_hash_table (info)->hplt = h;
409 if (h == NULL)
410 return FALSE;
411 }
412
413 s = bfd_make_section_anyway_with_flags (abfd,
414 (bed->rela_plts_and_copies_p
415 ? ".rela.plt" : ".rel.plt"),
416 flags | SEC_READONLY);
417 if (s == NULL
418 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
419 return FALSE;
420 htab->srelplt = s;
421
422 if (! _bfd_elf_create_got_section (abfd, info))
423 return FALSE;
424
425 if (bed->want_dynbss)
426 {
427 /* The .dynbss section is a place to put symbols which are defined
428 by dynamic objects, are referenced by regular objects, and are
429 not functions. We must allocate space for them in the process
430 image and use a R_*_COPY reloc to tell the dynamic linker to
431 initialize them at run time. The linker script puts the .dynbss
432 section into the .bss section of the final image. */
433 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
434 SEC_ALLOC | SEC_LINKER_CREATED);
435 if (s == NULL)
436 return FALSE;
437 htab->sdynbss = s;
438
439 if (bed->want_dynrelro)
440 {
441 /* Similarly, but for symbols that were originally in read-only
442 sections. This section doesn't really need to have contents,
443 but make it like other .data.rel.ro sections. */
444 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
445 flags);
446 if (s == NULL)
447 return FALSE;
448 htab->sdynrelro = s;
449 }
450
451 /* The .rel[a].bss section holds copy relocs. This section is not
452 normally needed. We need to create it here, though, so that the
453 linker will map it to an output section. We can't just create it
454 only if we need it, because we will not know whether we need it
455 until we have seen all the input files, and the first time the
456 main linker code calls BFD after examining all the input files
457 (size_dynamic_sections) the input sections have already been
458 mapped to the output sections. If the section turns out not to
459 be needed, we can discard it later. We will never need this
460 section when generating a shared object, since they do not use
461 copy relocs. */
462 if (bfd_link_executable (info))
463 {
464 s = bfd_make_section_anyway_with_flags (abfd,
465 (bed->rela_plts_and_copies_p
466 ? ".rela.bss" : ".rel.bss"),
467 flags | SEC_READONLY);
468 if (s == NULL
469 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
470 return FALSE;
471 htab->srelbss = s;
472
473 if (bed->want_dynrelro)
474 {
475 s = (bfd_make_section_anyway_with_flags
476 (abfd, (bed->rela_plts_and_copies_p
477 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
478 flags | SEC_READONLY));
479 if (s == NULL
480 || ! bfd_set_section_alignment (abfd, s,
481 bed->s->log_file_align))
482 return FALSE;
483 htab->sreldynrelro = s;
484 }
485 }
486 }
487
488 return TRUE;
489 }
490 \f
491 /* Record a new dynamic symbol. We record the dynamic symbols as we
492 read the input files, since we need to have a list of all of them
493 before we can determine the final sizes of the output sections.
494 Note that we may actually call this function even though we are not
495 going to output any dynamic symbols; in some cases we know that a
496 symbol should be in the dynamic symbol table, but only if there is
497 one. */
498
499 bfd_boolean
500 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
501 struct elf_link_hash_entry *h)
502 {
503 if (h->dynindx == -1)
504 {
505 struct elf_strtab_hash *dynstr;
506 char *p;
507 const char *name;
508 size_t indx;
509
510 /* XXX: The ABI draft says the linker must turn hidden and
511 internal symbols into STB_LOCAL symbols when producing the
512 DSO. However, if ld.so honors st_other in the dynamic table,
513 this would not be necessary. */
514 switch (ELF_ST_VISIBILITY (h->other))
515 {
516 case STV_INTERNAL:
517 case STV_HIDDEN:
518 if (h->root.type != bfd_link_hash_undefined
519 && h->root.type != bfd_link_hash_undefweak)
520 {
521 h->forced_local = 1;
522 if (!elf_hash_table (info)->is_relocatable_executable)
523 return TRUE;
524 }
525
526 default:
527 break;
528 }
529
530 h->dynindx = elf_hash_table (info)->dynsymcount;
531 ++elf_hash_table (info)->dynsymcount;
532
533 dynstr = elf_hash_table (info)->dynstr;
534 if (dynstr == NULL)
535 {
536 /* Create a strtab to hold the dynamic symbol names. */
537 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
538 if (dynstr == NULL)
539 return FALSE;
540 }
541
542 /* We don't put any version information in the dynamic string
543 table. */
544 name = h->root.root.string;
545 p = strchr (name, ELF_VER_CHR);
546 if (p != NULL)
547 /* We know that the p points into writable memory. In fact,
548 there are only a few symbols that have read-only names, being
549 those like _GLOBAL_OFFSET_TABLE_ that are created specially
550 by the backends. Most symbols will have names pointing into
551 an ELF string table read from a file, or to objalloc memory. */
552 *p = 0;
553
554 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
555
556 if (p != NULL)
557 *p = ELF_VER_CHR;
558
559 if (indx == (size_t) -1)
560 return FALSE;
561 h->dynstr_index = indx;
562 }
563
564 return TRUE;
565 }
566 \f
567 /* Mark a symbol dynamic. */
568
569 static void
570 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
571 struct elf_link_hash_entry *h,
572 Elf_Internal_Sym *sym)
573 {
574 struct bfd_elf_dynamic_list *d = info->dynamic_list;
575
576 /* It may be called more than once on the same H. */
577 if(h->dynamic || bfd_link_relocatable (info))
578 return;
579
580 if ((info->dynamic_data
581 && (h->type == STT_OBJECT
582 || h->type == STT_COMMON
583 || (sym != NULL
584 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
585 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
586 || (d != NULL
587 && h->non_elf
588 && (*d->match) (&d->head, NULL, h->root.root.string)))
589 h->dynamic = 1;
590 }
591
592 /* Record an assignment to a symbol made by a linker script. We need
593 this in case some dynamic object refers to this symbol. */
594
595 bfd_boolean
596 bfd_elf_record_link_assignment (bfd *output_bfd,
597 struct bfd_link_info *info,
598 const char *name,
599 bfd_boolean provide,
600 bfd_boolean hidden)
601 {
602 struct elf_link_hash_entry *h, *hv;
603 struct elf_link_hash_table *htab;
604 const struct elf_backend_data *bed;
605
606 if (!is_elf_hash_table (info->hash))
607 return TRUE;
608
609 htab = elf_hash_table (info);
610 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
611 if (h == NULL)
612 return provide;
613
614 if (h->root.type == bfd_link_hash_warning)
615 h = (struct elf_link_hash_entry *) h->root.u.i.link;
616
617 if (h->versioned == unknown)
618 {
619 /* Set versioned if symbol version is unknown. */
620 char *version = strrchr (name, ELF_VER_CHR);
621 if (version)
622 {
623 if (version > name && version[-1] != ELF_VER_CHR)
624 h->versioned = versioned_hidden;
625 else
626 h->versioned = versioned;
627 }
628 }
629
630 /* Symbols defined in a linker script but not referenced anywhere
631 else will have non_elf set. */
632 if (h->non_elf)
633 {
634 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
635 h->non_elf = 0;
636 }
637
638 switch (h->root.type)
639 {
640 case bfd_link_hash_defined:
641 case bfd_link_hash_defweak:
642 case bfd_link_hash_common:
643 break;
644 case bfd_link_hash_undefweak:
645 case bfd_link_hash_undefined:
646 /* Since we're defining the symbol, don't let it seem to have not
647 been defined. record_dynamic_symbol and size_dynamic_sections
648 may depend on this. */
649 h->root.type = bfd_link_hash_new;
650 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
651 bfd_link_repair_undef_list (&htab->root);
652 break;
653 case bfd_link_hash_new:
654 break;
655 case bfd_link_hash_indirect:
656 /* We had a versioned symbol in a dynamic library. We make the
657 the versioned symbol point to this one. */
658 bed = get_elf_backend_data (output_bfd);
659 hv = h;
660 while (hv->root.type == bfd_link_hash_indirect
661 || hv->root.type == bfd_link_hash_warning)
662 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
663 /* We don't need to update h->root.u since linker will set them
664 later. */
665 h->root.type = bfd_link_hash_undefined;
666 hv->root.type = bfd_link_hash_indirect;
667 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
668 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
669 break;
670 default:
671 BFD_FAIL ();
672 return FALSE;
673 }
674
675 /* If this symbol is being provided by the linker script, and it is
676 currently defined by a dynamic object, but not by a regular
677 object, then mark it as undefined so that the generic linker will
678 force the correct value. */
679 if (provide
680 && h->def_dynamic
681 && !h->def_regular)
682 h->root.type = bfd_link_hash_undefined;
683
684 /* If this symbol is not being provided by the linker script, and it is
685 currently defined by a dynamic object, but not by a regular object,
686 then clear out any version information because the symbol will not be
687 associated with the dynamic object any more. */
688 if (!provide
689 && h->def_dynamic
690 && !h->def_regular)
691 h->verinfo.verdef = NULL;
692
693 /* Make sure this symbol is not garbage collected. */
694 h->mark = 1;
695
696 h->def_regular = 1;
697
698 if (hidden)
699 {
700 bed = get_elf_backend_data (output_bfd);
701 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
702 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
703 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
704 }
705
706 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
707 and executables. */
708 if (!bfd_link_relocatable (info)
709 && h->dynindx != -1
710 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
711 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
712 h->forced_local = 1;
713
714 if ((h->def_dynamic
715 || h->ref_dynamic
716 || bfd_link_dll (info)
717 || elf_hash_table (info)->is_relocatable_executable)
718 && h->dynindx == -1)
719 {
720 if (! bfd_elf_link_record_dynamic_symbol (info, h))
721 return FALSE;
722
723 /* If this is a weak defined symbol, and we know a corresponding
724 real symbol from the same dynamic object, make sure the real
725 symbol is also made into a dynamic symbol. */
726 if (h->u.weakdef != NULL
727 && h->u.weakdef->dynindx == -1)
728 {
729 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
730 return FALSE;
731 }
732 }
733
734 return TRUE;
735 }
736
737 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
738 success, and 2 on a failure caused by attempting to record a symbol
739 in a discarded section, eg. a discarded link-once section symbol. */
740
741 int
742 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
743 bfd *input_bfd,
744 long input_indx)
745 {
746 bfd_size_type amt;
747 struct elf_link_local_dynamic_entry *entry;
748 struct elf_link_hash_table *eht;
749 struct elf_strtab_hash *dynstr;
750 size_t dynstr_index;
751 char *name;
752 Elf_External_Sym_Shndx eshndx;
753 char esym[sizeof (Elf64_External_Sym)];
754
755 if (! is_elf_hash_table (info->hash))
756 return 0;
757
758 /* See if the entry exists already. */
759 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
760 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
761 return 1;
762
763 amt = sizeof (*entry);
764 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
765 if (entry == NULL)
766 return 0;
767
768 /* Go find the symbol, so that we can find it's name. */
769 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
770 1, input_indx, &entry->isym, esym, &eshndx))
771 {
772 bfd_release (input_bfd, entry);
773 return 0;
774 }
775
776 if (entry->isym.st_shndx != SHN_UNDEF
777 && entry->isym.st_shndx < SHN_LORESERVE)
778 {
779 asection *s;
780
781 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
782 if (s == NULL || bfd_is_abs_section (s->output_section))
783 {
784 /* We can still bfd_release here as nothing has done another
785 bfd_alloc. We can't do this later in this function. */
786 bfd_release (input_bfd, entry);
787 return 2;
788 }
789 }
790
791 name = (bfd_elf_string_from_elf_section
792 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
793 entry->isym.st_name));
794
795 dynstr = elf_hash_table (info)->dynstr;
796 if (dynstr == NULL)
797 {
798 /* Create a strtab to hold the dynamic symbol names. */
799 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
800 if (dynstr == NULL)
801 return 0;
802 }
803
804 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
805 if (dynstr_index == (size_t) -1)
806 return 0;
807 entry->isym.st_name = dynstr_index;
808
809 eht = elf_hash_table (info);
810
811 entry->next = eht->dynlocal;
812 eht->dynlocal = entry;
813 entry->input_bfd = input_bfd;
814 entry->input_indx = input_indx;
815 eht->dynsymcount++;
816
817 /* Whatever binding the symbol had before, it's now local. */
818 entry->isym.st_info
819 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
820
821 /* The dynindx will be set at the end of size_dynamic_sections. */
822
823 return 1;
824 }
825
826 /* Return the dynindex of a local dynamic symbol. */
827
828 long
829 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
830 bfd *input_bfd,
831 long input_indx)
832 {
833 struct elf_link_local_dynamic_entry *e;
834
835 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
836 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
837 return e->dynindx;
838 return -1;
839 }
840
841 /* This function is used to renumber the dynamic symbols, if some of
842 them are removed because they are marked as local. This is called
843 via elf_link_hash_traverse. */
844
845 static bfd_boolean
846 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
847 void *data)
848 {
849 size_t *count = (size_t *) data;
850
851 if (h->forced_local)
852 return TRUE;
853
854 if (h->dynindx != -1)
855 h->dynindx = ++(*count);
856
857 return TRUE;
858 }
859
860
861 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
862 STB_LOCAL binding. */
863
864 static bfd_boolean
865 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
866 void *data)
867 {
868 size_t *count = (size_t *) data;
869
870 if (!h->forced_local)
871 return TRUE;
872
873 if (h->dynindx != -1)
874 h->dynindx = ++(*count);
875
876 return TRUE;
877 }
878
879 /* Return true if the dynamic symbol for a given section should be
880 omitted when creating a shared library. */
881 bfd_boolean
882 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
883 struct bfd_link_info *info,
884 asection *p)
885 {
886 struct elf_link_hash_table *htab;
887 asection *ip;
888
889 switch (elf_section_data (p)->this_hdr.sh_type)
890 {
891 case SHT_PROGBITS:
892 case SHT_NOBITS:
893 /* If sh_type is yet undecided, assume it could be
894 SHT_PROGBITS/SHT_NOBITS. */
895 case SHT_NULL:
896 htab = elf_hash_table (info);
897 if (p == htab->tls_sec)
898 return FALSE;
899
900 if (htab->text_index_section != NULL)
901 return p != htab->text_index_section && p != htab->data_index_section;
902
903 return (htab->dynobj != NULL
904 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
905 && ip->output_section == p);
906
907 /* There shouldn't be section relative relocations
908 against any other section. */
909 default:
910 return TRUE;
911 }
912 }
913
914 /* Assign dynsym indices. In a shared library we generate a section
915 symbol for each output section, which come first. Next come symbols
916 which have been forced to local binding. Then all of the back-end
917 allocated local dynamic syms, followed by the rest of the global
918 symbols. */
919
920 static unsigned long
921 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
922 struct bfd_link_info *info,
923 unsigned long *section_sym_count)
924 {
925 unsigned long dynsymcount = 0;
926
927 if (bfd_link_pic (info)
928 || elf_hash_table (info)->is_relocatable_executable)
929 {
930 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
931 asection *p;
932 for (p = output_bfd->sections; p ; p = p->next)
933 if ((p->flags & SEC_EXCLUDE) == 0
934 && (p->flags & SEC_ALLOC) != 0
935 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
936 elf_section_data (p)->dynindx = ++dynsymcount;
937 else
938 elf_section_data (p)->dynindx = 0;
939 }
940 *section_sym_count = dynsymcount;
941
942 elf_link_hash_traverse (elf_hash_table (info),
943 elf_link_renumber_local_hash_table_dynsyms,
944 &dynsymcount);
945
946 if (elf_hash_table (info)->dynlocal)
947 {
948 struct elf_link_local_dynamic_entry *p;
949 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
950 p->dynindx = ++dynsymcount;
951 }
952 elf_hash_table (info)->local_dynsymcount = dynsymcount;
953
954 elf_link_hash_traverse (elf_hash_table (info),
955 elf_link_renumber_hash_table_dynsyms,
956 &dynsymcount);
957
958 /* There is an unused NULL entry at the head of the table which we
959 must account for in our count even if the table is empty since it
960 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
961 .dynamic section. */
962 dynsymcount++;
963
964 elf_hash_table (info)->dynsymcount = dynsymcount;
965 return dynsymcount;
966 }
967
968 /* Merge st_other field. */
969
970 static void
971 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
972 const Elf_Internal_Sym *isym, asection *sec,
973 bfd_boolean definition, bfd_boolean dynamic)
974 {
975 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
976
977 /* If st_other has a processor-specific meaning, specific
978 code might be needed here. */
979 if (bed->elf_backend_merge_symbol_attribute)
980 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
981 dynamic);
982
983 if (!dynamic)
984 {
985 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
986 unsigned hvis = ELF_ST_VISIBILITY (h->other);
987
988 /* Keep the most constraining visibility. Leave the remainder
989 of the st_other field to elf_backend_merge_symbol_attribute. */
990 if (symvis - 1 < hvis - 1)
991 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
992 }
993 else if (definition
994 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
995 && (sec->flags & SEC_READONLY) == 0)
996 h->protected_def = 1;
997 }
998
999 /* This function is called when we want to merge a new symbol with an
1000 existing symbol. It handles the various cases which arise when we
1001 find a definition in a dynamic object, or when there is already a
1002 definition in a dynamic object. The new symbol is described by
1003 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
1004 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
1005 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
1006 of an old common symbol. We set OVERRIDE if the old symbol is
1007 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
1008 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
1009 to change. By OK to change, we mean that we shouldn't warn if the
1010 type or size does change. */
1011
1012 static bfd_boolean
1013 _bfd_elf_merge_symbol (bfd *abfd,
1014 struct bfd_link_info *info,
1015 const char *name,
1016 Elf_Internal_Sym *sym,
1017 asection **psec,
1018 bfd_vma *pvalue,
1019 struct elf_link_hash_entry **sym_hash,
1020 bfd **poldbfd,
1021 bfd_boolean *pold_weak,
1022 unsigned int *pold_alignment,
1023 bfd_boolean *skip,
1024 bfd_boolean *override,
1025 bfd_boolean *type_change_ok,
1026 bfd_boolean *size_change_ok,
1027 bfd_boolean *matched)
1028 {
1029 asection *sec, *oldsec;
1030 struct elf_link_hash_entry *h;
1031 struct elf_link_hash_entry *hi;
1032 struct elf_link_hash_entry *flip;
1033 int bind;
1034 bfd *oldbfd;
1035 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1036 bfd_boolean newweak, oldweak, newfunc, oldfunc;
1037 const struct elf_backend_data *bed;
1038 char *new_version;
1039
1040 *skip = FALSE;
1041 *override = FALSE;
1042
1043 sec = *psec;
1044 bind = ELF_ST_BIND (sym->st_info);
1045
1046 if (! bfd_is_und_section (sec))
1047 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
1048 else
1049 h = ((struct elf_link_hash_entry *)
1050 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1051 if (h == NULL)
1052 return FALSE;
1053 *sym_hash = h;
1054
1055 bed = get_elf_backend_data (abfd);
1056
1057 /* NEW_VERSION is the symbol version of the new symbol. */
1058 if (h->versioned != unversioned)
1059 {
1060 /* Symbol version is unknown or versioned. */
1061 new_version = strrchr (name, ELF_VER_CHR);
1062 if (new_version)
1063 {
1064 if (h->versioned == unknown)
1065 {
1066 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1067 h->versioned = versioned_hidden;
1068 else
1069 h->versioned = versioned;
1070 }
1071 new_version += 1;
1072 if (new_version[0] == '\0')
1073 new_version = NULL;
1074 }
1075 else
1076 h->versioned = unversioned;
1077 }
1078 else
1079 new_version = NULL;
1080
1081 /* For merging, we only care about real symbols. But we need to make
1082 sure that indirect symbol dynamic flags are updated. */
1083 hi = h;
1084 while (h->root.type == bfd_link_hash_indirect
1085 || h->root.type == bfd_link_hash_warning)
1086 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1087
1088 if (!*matched)
1089 {
1090 if (hi == h || h->root.type == bfd_link_hash_new)
1091 *matched = TRUE;
1092 else
1093 {
1094 /* OLD_HIDDEN is true if the existing symbol is only visible
1095 to the symbol with the same symbol version. NEW_HIDDEN is
1096 true if the new symbol is only visible to the symbol with
1097 the same symbol version. */
1098 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1099 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1100 if (!old_hidden && !new_hidden)
1101 /* The new symbol matches the existing symbol if both
1102 aren't hidden. */
1103 *matched = TRUE;
1104 else
1105 {
1106 /* OLD_VERSION is the symbol version of the existing
1107 symbol. */
1108 char *old_version;
1109
1110 if (h->versioned >= versioned)
1111 old_version = strrchr (h->root.root.string,
1112 ELF_VER_CHR) + 1;
1113 else
1114 old_version = NULL;
1115
1116 /* The new symbol matches the existing symbol if they
1117 have the same symbol version. */
1118 *matched = (old_version == new_version
1119 || (old_version != NULL
1120 && new_version != NULL
1121 && strcmp (old_version, new_version) == 0));
1122 }
1123 }
1124 }
1125
1126 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1127 existing symbol. */
1128
1129 oldbfd = NULL;
1130 oldsec = NULL;
1131 switch (h->root.type)
1132 {
1133 default:
1134 break;
1135
1136 case bfd_link_hash_undefined:
1137 case bfd_link_hash_undefweak:
1138 oldbfd = h->root.u.undef.abfd;
1139 break;
1140
1141 case bfd_link_hash_defined:
1142 case bfd_link_hash_defweak:
1143 oldbfd = h->root.u.def.section->owner;
1144 oldsec = h->root.u.def.section;
1145 break;
1146
1147 case bfd_link_hash_common:
1148 oldbfd = h->root.u.c.p->section->owner;
1149 oldsec = h->root.u.c.p->section;
1150 if (pold_alignment)
1151 *pold_alignment = h->root.u.c.p->alignment_power;
1152 break;
1153 }
1154 if (poldbfd && *poldbfd == NULL)
1155 *poldbfd = oldbfd;
1156
1157 /* Differentiate strong and weak symbols. */
1158 newweak = bind == STB_WEAK;
1159 oldweak = (h->root.type == bfd_link_hash_defweak
1160 || h->root.type == bfd_link_hash_undefweak);
1161 if (pold_weak)
1162 *pold_weak = oldweak;
1163
1164 /* This code is for coping with dynamic objects, and is only useful
1165 if we are doing an ELF link. */
1166 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
1167 return TRUE;
1168
1169 /* We have to check it for every instance since the first few may be
1170 references and not all compilers emit symbol type for undefined
1171 symbols. */
1172 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1173
1174 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1175 respectively, is from a dynamic object. */
1176
1177 newdyn = (abfd->flags & DYNAMIC) != 0;
1178
1179 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1180 syms and defined syms in dynamic libraries respectively.
1181 ref_dynamic on the other hand can be set for a symbol defined in
1182 a dynamic library, and def_dynamic may not be set; When the
1183 definition in a dynamic lib is overridden by a definition in the
1184 executable use of the symbol in the dynamic lib becomes a
1185 reference to the executable symbol. */
1186 if (newdyn)
1187 {
1188 if (bfd_is_und_section (sec))
1189 {
1190 if (bind != STB_WEAK)
1191 {
1192 h->ref_dynamic_nonweak = 1;
1193 hi->ref_dynamic_nonweak = 1;
1194 }
1195 }
1196 else
1197 {
1198 /* Update the existing symbol only if they match. */
1199 if (*matched)
1200 h->dynamic_def = 1;
1201 hi->dynamic_def = 1;
1202 }
1203 }
1204
1205 /* If we just created the symbol, mark it as being an ELF symbol.
1206 Other than that, there is nothing to do--there is no merge issue
1207 with a newly defined symbol--so we just return. */
1208
1209 if (h->root.type == bfd_link_hash_new)
1210 {
1211 h->non_elf = 0;
1212 return TRUE;
1213 }
1214
1215 /* In cases involving weak versioned symbols, we may wind up trying
1216 to merge a symbol with itself. Catch that here, to avoid the
1217 confusion that results if we try to override a symbol with
1218 itself. The additional tests catch cases like
1219 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1220 dynamic object, which we do want to handle here. */
1221 if (abfd == oldbfd
1222 && (newweak || oldweak)
1223 && ((abfd->flags & DYNAMIC) == 0
1224 || !h->def_regular))
1225 return TRUE;
1226
1227 olddyn = FALSE;
1228 if (oldbfd != NULL)
1229 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1230 else if (oldsec != NULL)
1231 {
1232 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1233 indices used by MIPS ELF. */
1234 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1235 }
1236
1237 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1238 respectively, appear to be a definition rather than reference. */
1239
1240 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1241
1242 olddef = (h->root.type != bfd_link_hash_undefined
1243 && h->root.type != bfd_link_hash_undefweak
1244 && h->root.type != bfd_link_hash_common);
1245
1246 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1247 respectively, appear to be a function. */
1248
1249 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1250 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1251
1252 oldfunc = (h->type != STT_NOTYPE
1253 && bed->is_function_type (h->type));
1254
1255 if (!(newfunc && oldfunc)
1256 && ELF_ST_TYPE (sym->st_info) != h->type
1257 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1258 && h->type != STT_NOTYPE
1259 && (newdef || bfd_is_com_section (sec))
1260 && (olddef || h->root.type == bfd_link_hash_common))
1261 {
1262 /* If creating a default indirect symbol ("foo" or "foo@") from
1263 a dynamic versioned definition ("foo@@") skip doing so if
1264 there is an existing regular definition with a different
1265 type. We don't want, for example, a "time" variable in the
1266 executable overriding a "time" function in a shared library. */
1267 if (newdyn
1268 && !olddyn)
1269 {
1270 *skip = TRUE;
1271 return TRUE;
1272 }
1273
1274 /* When adding a symbol from a regular object file after we have
1275 created indirect symbols, undo the indirection and any
1276 dynamic state. */
1277 if (hi != h
1278 && !newdyn
1279 && olddyn)
1280 {
1281 h = hi;
1282 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1283 h->forced_local = 0;
1284 h->ref_dynamic = 0;
1285 h->def_dynamic = 0;
1286 h->dynamic_def = 0;
1287 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1288 {
1289 h->root.type = bfd_link_hash_undefined;
1290 h->root.u.undef.abfd = abfd;
1291 }
1292 else
1293 {
1294 h->root.type = bfd_link_hash_new;
1295 h->root.u.undef.abfd = NULL;
1296 }
1297 return TRUE;
1298 }
1299 }
1300
1301 /* Check TLS symbols. We don't check undefined symbols introduced
1302 by "ld -u" which have no type (and oldbfd NULL), and we don't
1303 check symbols from plugins because they also have no type. */
1304 if (oldbfd != NULL
1305 && (oldbfd->flags & BFD_PLUGIN) == 0
1306 && (abfd->flags & BFD_PLUGIN) == 0
1307 && ELF_ST_TYPE (sym->st_info) != h->type
1308 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1309 {
1310 bfd *ntbfd, *tbfd;
1311 bfd_boolean ntdef, tdef;
1312 asection *ntsec, *tsec;
1313
1314 if (h->type == STT_TLS)
1315 {
1316 ntbfd = abfd;
1317 ntsec = sec;
1318 ntdef = newdef;
1319 tbfd = oldbfd;
1320 tsec = oldsec;
1321 tdef = olddef;
1322 }
1323 else
1324 {
1325 ntbfd = oldbfd;
1326 ntsec = oldsec;
1327 ntdef = olddef;
1328 tbfd = abfd;
1329 tsec = sec;
1330 tdef = newdef;
1331 }
1332
1333 if (tdef && ntdef)
1334 _bfd_error_handler
1335 /* xgettext:c-format */
1336 (_("%s: TLS definition in %B section %A "
1337 "mismatches non-TLS definition in %B section %A"),
1338 h->root.root.string, tbfd, tsec, ntbfd, ntsec);
1339 else if (!tdef && !ntdef)
1340 _bfd_error_handler
1341 /* xgettext:c-format */
1342 (_("%s: TLS reference in %B "
1343 "mismatches non-TLS reference in %B"),
1344 h->root.root.string, tbfd, ntbfd);
1345 else if (tdef)
1346 _bfd_error_handler
1347 /* xgettext:c-format */
1348 (_("%s: TLS definition in %B section %A "
1349 "mismatches non-TLS reference in %B"),
1350 h->root.root.string, tbfd, tsec, ntbfd);
1351 else
1352 _bfd_error_handler
1353 /* xgettext:c-format */
1354 (_("%s: TLS reference in %B "
1355 "mismatches non-TLS definition in %B section %A"),
1356 h->root.root.string, tbfd, ntbfd, ntsec);
1357
1358 bfd_set_error (bfd_error_bad_value);
1359 return FALSE;
1360 }
1361
1362 /* If the old symbol has non-default visibility, we ignore the new
1363 definition from a dynamic object. */
1364 if (newdyn
1365 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1366 && !bfd_is_und_section (sec))
1367 {
1368 *skip = TRUE;
1369 /* Make sure this symbol is dynamic. */
1370 h->ref_dynamic = 1;
1371 hi->ref_dynamic = 1;
1372 /* A protected symbol has external availability. Make sure it is
1373 recorded as dynamic.
1374
1375 FIXME: Should we check type and size for protected symbol? */
1376 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1377 return bfd_elf_link_record_dynamic_symbol (info, h);
1378 else
1379 return TRUE;
1380 }
1381 else if (!newdyn
1382 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1383 && h->def_dynamic)
1384 {
1385 /* If the new symbol with non-default visibility comes from a
1386 relocatable file and the old definition comes from a dynamic
1387 object, we remove the old definition. */
1388 if (hi->root.type == bfd_link_hash_indirect)
1389 {
1390 /* Handle the case where the old dynamic definition is
1391 default versioned. We need to copy the symbol info from
1392 the symbol with default version to the normal one if it
1393 was referenced before. */
1394 if (h->ref_regular)
1395 {
1396 hi->root.type = h->root.type;
1397 h->root.type = bfd_link_hash_indirect;
1398 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1399
1400 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1401 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1402 {
1403 /* If the new symbol is hidden or internal, completely undo
1404 any dynamic link state. */
1405 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1406 h->forced_local = 0;
1407 h->ref_dynamic = 0;
1408 }
1409 else
1410 h->ref_dynamic = 1;
1411
1412 h->def_dynamic = 0;
1413 /* FIXME: Should we check type and size for protected symbol? */
1414 h->size = 0;
1415 h->type = 0;
1416
1417 h = hi;
1418 }
1419 else
1420 h = hi;
1421 }
1422
1423 /* If the old symbol was undefined before, then it will still be
1424 on the undefs list. If the new symbol is undefined or
1425 common, we can't make it bfd_link_hash_new here, because new
1426 undefined or common symbols will be added to the undefs list
1427 by _bfd_generic_link_add_one_symbol. Symbols may not be
1428 added twice to the undefs list. Also, if the new symbol is
1429 undefweak then we don't want to lose the strong undef. */
1430 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1431 {
1432 h->root.type = bfd_link_hash_undefined;
1433 h->root.u.undef.abfd = abfd;
1434 }
1435 else
1436 {
1437 h->root.type = bfd_link_hash_new;
1438 h->root.u.undef.abfd = NULL;
1439 }
1440
1441 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1442 {
1443 /* If the new symbol is hidden or internal, completely undo
1444 any dynamic link state. */
1445 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1446 h->forced_local = 0;
1447 h->ref_dynamic = 0;
1448 }
1449 else
1450 h->ref_dynamic = 1;
1451 h->def_dynamic = 0;
1452 /* FIXME: Should we check type and size for protected symbol? */
1453 h->size = 0;
1454 h->type = 0;
1455 return TRUE;
1456 }
1457
1458 /* If a new weak symbol definition comes from a regular file and the
1459 old symbol comes from a dynamic library, we treat the new one as
1460 strong. Similarly, an old weak symbol definition from a regular
1461 file is treated as strong when the new symbol comes from a dynamic
1462 library. Further, an old weak symbol from a dynamic library is
1463 treated as strong if the new symbol is from a dynamic library.
1464 This reflects the way glibc's ld.so works.
1465
1466 Do this before setting *type_change_ok or *size_change_ok so that
1467 we warn properly when dynamic library symbols are overridden. */
1468
1469 if (newdef && !newdyn && olddyn)
1470 newweak = FALSE;
1471 if (olddef && newdyn)
1472 oldweak = FALSE;
1473
1474 /* Allow changes between different types of function symbol. */
1475 if (newfunc && oldfunc)
1476 *type_change_ok = TRUE;
1477
1478 /* It's OK to change the type if either the existing symbol or the
1479 new symbol is weak. A type change is also OK if the old symbol
1480 is undefined and the new symbol is defined. */
1481
1482 if (oldweak
1483 || newweak
1484 || (newdef
1485 && h->root.type == bfd_link_hash_undefined))
1486 *type_change_ok = TRUE;
1487
1488 /* It's OK to change the size if either the existing symbol or the
1489 new symbol is weak, or if the old symbol is undefined. */
1490
1491 if (*type_change_ok
1492 || h->root.type == bfd_link_hash_undefined)
1493 *size_change_ok = TRUE;
1494
1495 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1496 symbol, respectively, appears to be a common symbol in a dynamic
1497 object. If a symbol appears in an uninitialized section, and is
1498 not weak, and is not a function, then it may be a common symbol
1499 which was resolved when the dynamic object was created. We want
1500 to treat such symbols specially, because they raise special
1501 considerations when setting the symbol size: if the symbol
1502 appears as a common symbol in a regular object, and the size in
1503 the regular object is larger, we must make sure that we use the
1504 larger size. This problematic case can always be avoided in C,
1505 but it must be handled correctly when using Fortran shared
1506 libraries.
1507
1508 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1509 likewise for OLDDYNCOMMON and OLDDEF.
1510
1511 Note that this test is just a heuristic, and that it is quite
1512 possible to have an uninitialized symbol in a shared object which
1513 is really a definition, rather than a common symbol. This could
1514 lead to some minor confusion when the symbol really is a common
1515 symbol in some regular object. However, I think it will be
1516 harmless. */
1517
1518 if (newdyn
1519 && newdef
1520 && !newweak
1521 && (sec->flags & SEC_ALLOC) != 0
1522 && (sec->flags & SEC_LOAD) == 0
1523 && sym->st_size > 0
1524 && !newfunc)
1525 newdyncommon = TRUE;
1526 else
1527 newdyncommon = FALSE;
1528
1529 if (olddyn
1530 && olddef
1531 && h->root.type == bfd_link_hash_defined
1532 && h->def_dynamic
1533 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1534 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1535 && h->size > 0
1536 && !oldfunc)
1537 olddyncommon = TRUE;
1538 else
1539 olddyncommon = FALSE;
1540
1541 /* We now know everything about the old and new symbols. We ask the
1542 backend to check if we can merge them. */
1543 if (bed->merge_symbol != NULL)
1544 {
1545 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1546 return FALSE;
1547 sec = *psec;
1548 }
1549
1550 /* If both the old and the new symbols look like common symbols in a
1551 dynamic object, set the size of the symbol to the larger of the
1552 two. */
1553
1554 if (olddyncommon
1555 && newdyncommon
1556 && sym->st_size != h->size)
1557 {
1558 /* Since we think we have two common symbols, issue a multiple
1559 common warning if desired. Note that we only warn if the
1560 size is different. If the size is the same, we simply let
1561 the old symbol override the new one as normally happens with
1562 symbols defined in dynamic objects. */
1563
1564 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1565 bfd_link_hash_common, sym->st_size);
1566 if (sym->st_size > h->size)
1567 h->size = sym->st_size;
1568
1569 *size_change_ok = TRUE;
1570 }
1571
1572 /* If we are looking at a dynamic object, and we have found a
1573 definition, we need to see if the symbol was already defined by
1574 some other object. If so, we want to use the existing
1575 definition, and we do not want to report a multiple symbol
1576 definition error; we do this by clobbering *PSEC to be
1577 bfd_und_section_ptr.
1578
1579 We treat a common symbol as a definition if the symbol in the
1580 shared library is a function, since common symbols always
1581 represent variables; this can cause confusion in principle, but
1582 any such confusion would seem to indicate an erroneous program or
1583 shared library. We also permit a common symbol in a regular
1584 object to override a weak symbol in a shared object. */
1585
1586 if (newdyn
1587 && newdef
1588 && (olddef
1589 || (h->root.type == bfd_link_hash_common
1590 && (newweak || newfunc))))
1591 {
1592 *override = TRUE;
1593 newdef = FALSE;
1594 newdyncommon = FALSE;
1595
1596 *psec = sec = bfd_und_section_ptr;
1597 *size_change_ok = TRUE;
1598
1599 /* If we get here when the old symbol is a common symbol, then
1600 we are explicitly letting it override a weak symbol or
1601 function in a dynamic object, and we don't want to warn about
1602 a type change. If the old symbol is a defined symbol, a type
1603 change warning may still be appropriate. */
1604
1605 if (h->root.type == bfd_link_hash_common)
1606 *type_change_ok = TRUE;
1607 }
1608
1609 /* Handle the special case of an old common symbol merging with a
1610 new symbol which looks like a common symbol in a shared object.
1611 We change *PSEC and *PVALUE to make the new symbol look like a
1612 common symbol, and let _bfd_generic_link_add_one_symbol do the
1613 right thing. */
1614
1615 if (newdyncommon
1616 && h->root.type == bfd_link_hash_common)
1617 {
1618 *override = TRUE;
1619 newdef = FALSE;
1620 newdyncommon = FALSE;
1621 *pvalue = sym->st_size;
1622 *psec = sec = bed->common_section (oldsec);
1623 *size_change_ok = TRUE;
1624 }
1625
1626 /* Skip weak definitions of symbols that are already defined. */
1627 if (newdef && olddef && newweak)
1628 {
1629 /* Don't skip new non-IR weak syms. */
1630 if (!(oldbfd != NULL
1631 && (oldbfd->flags & BFD_PLUGIN) != 0
1632 && (abfd->flags & BFD_PLUGIN) == 0))
1633 {
1634 newdef = FALSE;
1635 *skip = TRUE;
1636 }
1637
1638 /* Merge st_other. If the symbol already has a dynamic index,
1639 but visibility says it should not be visible, turn it into a
1640 local symbol. */
1641 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1642 if (h->dynindx != -1)
1643 switch (ELF_ST_VISIBILITY (h->other))
1644 {
1645 case STV_INTERNAL:
1646 case STV_HIDDEN:
1647 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1648 break;
1649 }
1650 }
1651
1652 /* If the old symbol is from a dynamic object, and the new symbol is
1653 a definition which is not from a dynamic object, then the new
1654 symbol overrides the old symbol. Symbols from regular files
1655 always take precedence over symbols from dynamic objects, even if
1656 they are defined after the dynamic object in the link.
1657
1658 As above, we again permit a common symbol in a regular object to
1659 override a definition in a shared object if the shared object
1660 symbol is a function or is weak. */
1661
1662 flip = NULL;
1663 if (!newdyn
1664 && (newdef
1665 || (bfd_is_com_section (sec)
1666 && (oldweak || oldfunc)))
1667 && olddyn
1668 && olddef
1669 && h->def_dynamic)
1670 {
1671 /* Change the hash table entry to undefined, and let
1672 _bfd_generic_link_add_one_symbol do the right thing with the
1673 new definition. */
1674
1675 h->root.type = bfd_link_hash_undefined;
1676 h->root.u.undef.abfd = h->root.u.def.section->owner;
1677 *size_change_ok = TRUE;
1678
1679 olddef = FALSE;
1680 olddyncommon = FALSE;
1681
1682 /* We again permit a type change when a common symbol may be
1683 overriding a function. */
1684
1685 if (bfd_is_com_section (sec))
1686 {
1687 if (oldfunc)
1688 {
1689 /* If a common symbol overrides a function, make sure
1690 that it isn't defined dynamically nor has type
1691 function. */
1692 h->def_dynamic = 0;
1693 h->type = STT_NOTYPE;
1694 }
1695 *type_change_ok = TRUE;
1696 }
1697
1698 if (hi->root.type == bfd_link_hash_indirect)
1699 flip = hi;
1700 else
1701 /* This union may have been set to be non-NULL when this symbol
1702 was seen in a dynamic object. We must force the union to be
1703 NULL, so that it is correct for a regular symbol. */
1704 h->verinfo.vertree = NULL;
1705 }
1706
1707 /* Handle the special case of a new common symbol merging with an
1708 old symbol that looks like it might be a common symbol defined in
1709 a shared object. Note that we have already handled the case in
1710 which a new common symbol should simply override the definition
1711 in the shared library. */
1712
1713 if (! newdyn
1714 && bfd_is_com_section (sec)
1715 && olddyncommon)
1716 {
1717 /* It would be best if we could set the hash table entry to a
1718 common symbol, but we don't know what to use for the section
1719 or the alignment. */
1720 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1721 bfd_link_hash_common, sym->st_size);
1722
1723 /* If the presumed common symbol in the dynamic object is
1724 larger, pretend that the new symbol has its size. */
1725
1726 if (h->size > *pvalue)
1727 *pvalue = h->size;
1728
1729 /* We need to remember the alignment required by the symbol
1730 in the dynamic object. */
1731 BFD_ASSERT (pold_alignment);
1732 *pold_alignment = h->root.u.def.section->alignment_power;
1733
1734 olddef = FALSE;
1735 olddyncommon = FALSE;
1736
1737 h->root.type = bfd_link_hash_undefined;
1738 h->root.u.undef.abfd = h->root.u.def.section->owner;
1739
1740 *size_change_ok = TRUE;
1741 *type_change_ok = TRUE;
1742
1743 if (hi->root.type == bfd_link_hash_indirect)
1744 flip = hi;
1745 else
1746 h->verinfo.vertree = NULL;
1747 }
1748
1749 if (flip != NULL)
1750 {
1751 /* Handle the case where we had a versioned symbol in a dynamic
1752 library and now find a definition in a normal object. In this
1753 case, we make the versioned symbol point to the normal one. */
1754 flip->root.type = h->root.type;
1755 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1756 h->root.type = bfd_link_hash_indirect;
1757 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1758 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1759 if (h->def_dynamic)
1760 {
1761 h->def_dynamic = 0;
1762 flip->ref_dynamic = 1;
1763 }
1764 }
1765
1766 return TRUE;
1767 }
1768
1769 /* This function is called to create an indirect symbol from the
1770 default for the symbol with the default version if needed. The
1771 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1772 set DYNSYM if the new indirect symbol is dynamic. */
1773
1774 static bfd_boolean
1775 _bfd_elf_add_default_symbol (bfd *abfd,
1776 struct bfd_link_info *info,
1777 struct elf_link_hash_entry *h,
1778 const char *name,
1779 Elf_Internal_Sym *sym,
1780 asection *sec,
1781 bfd_vma value,
1782 bfd **poldbfd,
1783 bfd_boolean *dynsym)
1784 {
1785 bfd_boolean type_change_ok;
1786 bfd_boolean size_change_ok;
1787 bfd_boolean skip;
1788 char *shortname;
1789 struct elf_link_hash_entry *hi;
1790 struct bfd_link_hash_entry *bh;
1791 const struct elf_backend_data *bed;
1792 bfd_boolean collect;
1793 bfd_boolean dynamic;
1794 bfd_boolean override;
1795 char *p;
1796 size_t len, shortlen;
1797 asection *tmp_sec;
1798 bfd_boolean matched;
1799
1800 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1801 return TRUE;
1802
1803 /* If this symbol has a version, and it is the default version, we
1804 create an indirect symbol from the default name to the fully
1805 decorated name. This will cause external references which do not
1806 specify a version to be bound to this version of the symbol. */
1807 p = strchr (name, ELF_VER_CHR);
1808 if (h->versioned == unknown)
1809 {
1810 if (p == NULL)
1811 {
1812 h->versioned = unversioned;
1813 return TRUE;
1814 }
1815 else
1816 {
1817 if (p[1] != ELF_VER_CHR)
1818 {
1819 h->versioned = versioned_hidden;
1820 return TRUE;
1821 }
1822 else
1823 h->versioned = versioned;
1824 }
1825 }
1826 else
1827 {
1828 /* PR ld/19073: We may see an unversioned definition after the
1829 default version. */
1830 if (p == NULL)
1831 return TRUE;
1832 }
1833
1834 bed = get_elf_backend_data (abfd);
1835 collect = bed->collect;
1836 dynamic = (abfd->flags & DYNAMIC) != 0;
1837
1838 shortlen = p - name;
1839 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1840 if (shortname == NULL)
1841 return FALSE;
1842 memcpy (shortname, name, shortlen);
1843 shortname[shortlen] = '\0';
1844
1845 /* We are going to create a new symbol. Merge it with any existing
1846 symbol with this name. For the purposes of the merge, act as
1847 though we were defining the symbol we just defined, although we
1848 actually going to define an indirect symbol. */
1849 type_change_ok = FALSE;
1850 size_change_ok = FALSE;
1851 matched = TRUE;
1852 tmp_sec = sec;
1853 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1854 &hi, poldbfd, NULL, NULL, &skip, &override,
1855 &type_change_ok, &size_change_ok, &matched))
1856 return FALSE;
1857
1858 if (skip)
1859 goto nondefault;
1860
1861 if (hi->def_regular)
1862 {
1863 /* If the undecorated symbol will have a version added by a
1864 script different to H, then don't indirect to/from the
1865 undecorated symbol. This isn't ideal because we may not yet
1866 have seen symbol versions, if given by a script on the
1867 command line rather than via --version-script. */
1868 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1869 {
1870 bfd_boolean hide;
1871
1872 hi->verinfo.vertree
1873 = bfd_find_version_for_sym (info->version_info,
1874 hi->root.root.string, &hide);
1875 if (hi->verinfo.vertree != NULL && hide)
1876 {
1877 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1878 goto nondefault;
1879 }
1880 }
1881 if (hi->verinfo.vertree != NULL
1882 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1883 goto nondefault;
1884 }
1885
1886 if (! override)
1887 {
1888 /* Add the default symbol if not performing a relocatable link. */
1889 if (! bfd_link_relocatable (info))
1890 {
1891 bh = &hi->root;
1892 if (! (_bfd_generic_link_add_one_symbol
1893 (info, abfd, shortname, BSF_INDIRECT,
1894 bfd_ind_section_ptr,
1895 0, name, FALSE, collect, &bh)))
1896 return FALSE;
1897 hi = (struct elf_link_hash_entry *) bh;
1898 }
1899 }
1900 else
1901 {
1902 /* In this case the symbol named SHORTNAME is overriding the
1903 indirect symbol we want to add. We were planning on making
1904 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1905 is the name without a version. NAME is the fully versioned
1906 name, and it is the default version.
1907
1908 Overriding means that we already saw a definition for the
1909 symbol SHORTNAME in a regular object, and it is overriding
1910 the symbol defined in the dynamic object.
1911
1912 When this happens, we actually want to change NAME, the
1913 symbol we just added, to refer to SHORTNAME. This will cause
1914 references to NAME in the shared object to become references
1915 to SHORTNAME in the regular object. This is what we expect
1916 when we override a function in a shared object: that the
1917 references in the shared object will be mapped to the
1918 definition in the regular object. */
1919
1920 while (hi->root.type == bfd_link_hash_indirect
1921 || hi->root.type == bfd_link_hash_warning)
1922 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1923
1924 h->root.type = bfd_link_hash_indirect;
1925 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1926 if (h->def_dynamic)
1927 {
1928 h->def_dynamic = 0;
1929 hi->ref_dynamic = 1;
1930 if (hi->ref_regular
1931 || hi->def_regular)
1932 {
1933 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1934 return FALSE;
1935 }
1936 }
1937
1938 /* Now set HI to H, so that the following code will set the
1939 other fields correctly. */
1940 hi = h;
1941 }
1942
1943 /* Check if HI is a warning symbol. */
1944 if (hi->root.type == bfd_link_hash_warning)
1945 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1946
1947 /* If there is a duplicate definition somewhere, then HI may not
1948 point to an indirect symbol. We will have reported an error to
1949 the user in that case. */
1950
1951 if (hi->root.type == bfd_link_hash_indirect)
1952 {
1953 struct elf_link_hash_entry *ht;
1954
1955 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1956 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1957
1958 /* A reference to the SHORTNAME symbol from a dynamic library
1959 will be satisfied by the versioned symbol at runtime. In
1960 effect, we have a reference to the versioned symbol. */
1961 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1962 hi->dynamic_def |= ht->dynamic_def;
1963
1964 /* See if the new flags lead us to realize that the symbol must
1965 be dynamic. */
1966 if (! *dynsym)
1967 {
1968 if (! dynamic)
1969 {
1970 if (! bfd_link_executable (info)
1971 || hi->def_dynamic
1972 || hi->ref_dynamic)
1973 *dynsym = TRUE;
1974 }
1975 else
1976 {
1977 if (hi->ref_regular)
1978 *dynsym = TRUE;
1979 }
1980 }
1981 }
1982
1983 /* We also need to define an indirection from the nondefault version
1984 of the symbol. */
1985
1986 nondefault:
1987 len = strlen (name);
1988 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1989 if (shortname == NULL)
1990 return FALSE;
1991 memcpy (shortname, name, shortlen);
1992 memcpy (shortname + shortlen, p + 1, len - shortlen);
1993
1994 /* Once again, merge with any existing symbol. */
1995 type_change_ok = FALSE;
1996 size_change_ok = FALSE;
1997 tmp_sec = sec;
1998 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1999 &hi, poldbfd, NULL, NULL, &skip, &override,
2000 &type_change_ok, &size_change_ok, &matched))
2001 return FALSE;
2002
2003 if (skip)
2004 return TRUE;
2005
2006 if (override)
2007 {
2008 /* Here SHORTNAME is a versioned name, so we don't expect to see
2009 the type of override we do in the case above unless it is
2010 overridden by a versioned definition. */
2011 if (hi->root.type != bfd_link_hash_defined
2012 && hi->root.type != bfd_link_hash_defweak)
2013 _bfd_error_handler
2014 /* xgettext:c-format */
2015 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
2016 abfd, shortname);
2017 }
2018 else
2019 {
2020 bh = &hi->root;
2021 if (! (_bfd_generic_link_add_one_symbol
2022 (info, abfd, shortname, BSF_INDIRECT,
2023 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
2024 return FALSE;
2025 hi = (struct elf_link_hash_entry *) bh;
2026
2027 /* If there is a duplicate definition somewhere, then HI may not
2028 point to an indirect symbol. We will have reported an error
2029 to the user in that case. */
2030
2031 if (hi->root.type == bfd_link_hash_indirect)
2032 {
2033 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
2034 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2035 hi->dynamic_def |= h->dynamic_def;
2036
2037 /* See if the new flags lead us to realize that the symbol
2038 must be dynamic. */
2039 if (! *dynsym)
2040 {
2041 if (! dynamic)
2042 {
2043 if (! bfd_link_executable (info)
2044 || hi->ref_dynamic)
2045 *dynsym = TRUE;
2046 }
2047 else
2048 {
2049 if (hi->ref_regular)
2050 *dynsym = TRUE;
2051 }
2052 }
2053 }
2054 }
2055
2056 return TRUE;
2057 }
2058 \f
2059 /* This routine is used to export all defined symbols into the dynamic
2060 symbol table. It is called via elf_link_hash_traverse. */
2061
2062 static bfd_boolean
2063 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2064 {
2065 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2066
2067 /* Ignore indirect symbols. These are added by the versioning code. */
2068 if (h->root.type == bfd_link_hash_indirect)
2069 return TRUE;
2070
2071 /* Ignore this if we won't export it. */
2072 if (!eif->info->export_dynamic && !h->dynamic)
2073 return TRUE;
2074
2075 if (h->dynindx == -1
2076 && (h->def_regular || h->ref_regular)
2077 && ! bfd_hide_sym_by_version (eif->info->version_info,
2078 h->root.root.string))
2079 {
2080 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2081 {
2082 eif->failed = TRUE;
2083 return FALSE;
2084 }
2085 }
2086
2087 return TRUE;
2088 }
2089 \f
2090 /* Look through the symbols which are defined in other shared
2091 libraries and referenced here. Update the list of version
2092 dependencies. This will be put into the .gnu.version_r section.
2093 This function is called via elf_link_hash_traverse. */
2094
2095 static bfd_boolean
2096 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2097 void *data)
2098 {
2099 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2100 Elf_Internal_Verneed *t;
2101 Elf_Internal_Vernaux *a;
2102 bfd_size_type amt;
2103
2104 /* We only care about symbols defined in shared objects with version
2105 information. */
2106 if (!h->def_dynamic
2107 || h->def_regular
2108 || h->dynindx == -1
2109 || h->verinfo.verdef == NULL
2110 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2111 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2112 return TRUE;
2113
2114 /* See if we already know about this version. */
2115 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2116 t != NULL;
2117 t = t->vn_nextref)
2118 {
2119 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2120 continue;
2121
2122 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2123 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2124 return TRUE;
2125
2126 break;
2127 }
2128
2129 /* This is a new version. Add it to tree we are building. */
2130
2131 if (t == NULL)
2132 {
2133 amt = sizeof *t;
2134 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2135 if (t == NULL)
2136 {
2137 rinfo->failed = TRUE;
2138 return FALSE;
2139 }
2140
2141 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2142 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2143 elf_tdata (rinfo->info->output_bfd)->verref = t;
2144 }
2145
2146 amt = sizeof *a;
2147 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2148 if (a == NULL)
2149 {
2150 rinfo->failed = TRUE;
2151 return FALSE;
2152 }
2153
2154 /* Note that we are copying a string pointer here, and testing it
2155 above. If bfd_elf_string_from_elf_section is ever changed to
2156 discard the string data when low in memory, this will have to be
2157 fixed. */
2158 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2159
2160 a->vna_flags = h->verinfo.verdef->vd_flags;
2161 a->vna_nextptr = t->vn_auxptr;
2162
2163 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2164 ++rinfo->vers;
2165
2166 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2167
2168 t->vn_auxptr = a;
2169
2170 return TRUE;
2171 }
2172
2173 /* Figure out appropriate versions for all the symbols. We may not
2174 have the version number script until we have read all of the input
2175 files, so until that point we don't know which symbols should be
2176 local. This function is called via elf_link_hash_traverse. */
2177
2178 static bfd_boolean
2179 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2180 {
2181 struct elf_info_failed *sinfo;
2182 struct bfd_link_info *info;
2183 const struct elf_backend_data *bed;
2184 struct elf_info_failed eif;
2185 char *p;
2186
2187 sinfo = (struct elf_info_failed *) data;
2188 info = sinfo->info;
2189
2190 /* Fix the symbol flags. */
2191 eif.failed = FALSE;
2192 eif.info = info;
2193 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2194 {
2195 if (eif.failed)
2196 sinfo->failed = TRUE;
2197 return FALSE;
2198 }
2199
2200 /* We only need version numbers for symbols defined in regular
2201 objects. */
2202 if (!h->def_regular)
2203 return TRUE;
2204
2205 bed = get_elf_backend_data (info->output_bfd);
2206 p = strchr (h->root.root.string, ELF_VER_CHR);
2207 if (p != NULL && h->verinfo.vertree == NULL)
2208 {
2209 struct bfd_elf_version_tree *t;
2210
2211 ++p;
2212 if (*p == ELF_VER_CHR)
2213 ++p;
2214
2215 /* If there is no version string, we can just return out. */
2216 if (*p == '\0')
2217 return TRUE;
2218
2219 /* Look for the version. If we find it, it is no longer weak. */
2220 for (t = sinfo->info->version_info; t != NULL; t = t->next)
2221 {
2222 if (strcmp (t->name, p) == 0)
2223 {
2224 size_t len;
2225 char *alc;
2226 struct bfd_elf_version_expr *d;
2227
2228 len = p - h->root.root.string;
2229 alc = (char *) bfd_malloc (len);
2230 if (alc == NULL)
2231 {
2232 sinfo->failed = TRUE;
2233 return FALSE;
2234 }
2235 memcpy (alc, h->root.root.string, len - 1);
2236 alc[len - 1] = '\0';
2237 if (alc[len - 2] == ELF_VER_CHR)
2238 alc[len - 2] = '\0';
2239
2240 h->verinfo.vertree = t;
2241 t->used = TRUE;
2242 d = NULL;
2243
2244 if (t->globals.list != NULL)
2245 d = (*t->match) (&t->globals, NULL, alc);
2246
2247 /* See if there is anything to force this symbol to
2248 local scope. */
2249 if (d == NULL && t->locals.list != NULL)
2250 {
2251 d = (*t->match) (&t->locals, NULL, alc);
2252 if (d != NULL
2253 && h->dynindx != -1
2254 && ! info->export_dynamic)
2255 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2256 }
2257
2258 free (alc);
2259 break;
2260 }
2261 }
2262
2263 /* If we are building an application, we need to create a
2264 version node for this version. */
2265 if (t == NULL && bfd_link_executable (info))
2266 {
2267 struct bfd_elf_version_tree **pp;
2268 int version_index;
2269
2270 /* If we aren't going to export this symbol, we don't need
2271 to worry about it. */
2272 if (h->dynindx == -1)
2273 return TRUE;
2274
2275 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2276 sizeof *t);
2277 if (t == NULL)
2278 {
2279 sinfo->failed = TRUE;
2280 return FALSE;
2281 }
2282
2283 t->name = p;
2284 t->name_indx = (unsigned int) -1;
2285 t->used = TRUE;
2286
2287 version_index = 1;
2288 /* Don't count anonymous version tag. */
2289 if (sinfo->info->version_info != NULL
2290 && sinfo->info->version_info->vernum == 0)
2291 version_index = 0;
2292 for (pp = &sinfo->info->version_info;
2293 *pp != NULL;
2294 pp = &(*pp)->next)
2295 ++version_index;
2296 t->vernum = version_index;
2297
2298 *pp = t;
2299
2300 h->verinfo.vertree = t;
2301 }
2302 else if (t == NULL)
2303 {
2304 /* We could not find the version for a symbol when
2305 generating a shared archive. Return an error. */
2306 _bfd_error_handler
2307 /* xgettext:c-format */
2308 (_("%B: version node not found for symbol %s"),
2309 info->output_bfd, h->root.root.string);
2310 bfd_set_error (bfd_error_bad_value);
2311 sinfo->failed = TRUE;
2312 return FALSE;
2313 }
2314 }
2315
2316 /* If we don't have a version for this symbol, see if we can find
2317 something. */
2318 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2319 {
2320 bfd_boolean hide;
2321
2322 h->verinfo.vertree
2323 = bfd_find_version_for_sym (sinfo->info->version_info,
2324 h->root.root.string, &hide);
2325 if (h->verinfo.vertree != NULL && hide)
2326 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2327 }
2328
2329 return TRUE;
2330 }
2331 \f
2332 /* Read and swap the relocs from the section indicated by SHDR. This
2333 may be either a REL or a RELA section. The relocations are
2334 translated into RELA relocations and stored in INTERNAL_RELOCS,
2335 which should have already been allocated to contain enough space.
2336 The EXTERNAL_RELOCS are a buffer where the external form of the
2337 relocations should be stored.
2338
2339 Returns FALSE if something goes wrong. */
2340
2341 static bfd_boolean
2342 elf_link_read_relocs_from_section (bfd *abfd,
2343 asection *sec,
2344 Elf_Internal_Shdr *shdr,
2345 void *external_relocs,
2346 Elf_Internal_Rela *internal_relocs)
2347 {
2348 const struct elf_backend_data *bed;
2349 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2350 const bfd_byte *erela;
2351 const bfd_byte *erelaend;
2352 Elf_Internal_Rela *irela;
2353 Elf_Internal_Shdr *symtab_hdr;
2354 size_t nsyms;
2355
2356 /* Position ourselves at the start of the section. */
2357 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2358 return FALSE;
2359
2360 /* Read the relocations. */
2361 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2362 return FALSE;
2363
2364 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2365 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2366
2367 bed = get_elf_backend_data (abfd);
2368
2369 /* Convert the external relocations to the internal format. */
2370 if (shdr->sh_entsize == bed->s->sizeof_rel)
2371 swap_in = bed->s->swap_reloc_in;
2372 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2373 swap_in = bed->s->swap_reloca_in;
2374 else
2375 {
2376 bfd_set_error (bfd_error_wrong_format);
2377 return FALSE;
2378 }
2379
2380 erela = (const bfd_byte *) external_relocs;
2381 erelaend = erela + shdr->sh_size;
2382 irela = internal_relocs;
2383 while (erela < erelaend)
2384 {
2385 bfd_vma r_symndx;
2386
2387 (*swap_in) (abfd, erela, irela);
2388 r_symndx = ELF32_R_SYM (irela->r_info);
2389 if (bed->s->arch_size == 64)
2390 r_symndx >>= 24;
2391 if (nsyms > 0)
2392 {
2393 if ((size_t) r_symndx >= nsyms)
2394 {
2395 _bfd_error_handler
2396 /* xgettext:c-format */
2397 (_("%B: bad reloc symbol index (%#lx >= %#lx)"
2398 " for offset %#Lx in section `%A'"),
2399 abfd, (unsigned long) r_symndx, (unsigned long) nsyms,
2400 irela->r_offset, sec);
2401 bfd_set_error (bfd_error_bad_value);
2402 return FALSE;
2403 }
2404 }
2405 else if (r_symndx != STN_UNDEF)
2406 {
2407 _bfd_error_handler
2408 /* xgettext:c-format */
2409 (_("%B: non-zero symbol index (%#lx)"
2410 " for offset %#Lx in section `%A'"
2411 " when the object file has no symbol table"),
2412 abfd, (unsigned long) r_symndx, (unsigned long) nsyms,
2413 irela->r_offset, sec);
2414 bfd_set_error (bfd_error_bad_value);
2415 return FALSE;
2416 }
2417 irela += bed->s->int_rels_per_ext_rel;
2418 erela += shdr->sh_entsize;
2419 }
2420
2421 return TRUE;
2422 }
2423
2424 /* Read and swap the relocs for a section O. They may have been
2425 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2426 not NULL, they are used as buffers to read into. They are known to
2427 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2428 the return value is allocated using either malloc or bfd_alloc,
2429 according to the KEEP_MEMORY argument. If O has two relocation
2430 sections (both REL and RELA relocations), then the REL_HDR
2431 relocations will appear first in INTERNAL_RELOCS, followed by the
2432 RELA_HDR relocations. */
2433
2434 Elf_Internal_Rela *
2435 _bfd_elf_link_read_relocs (bfd *abfd,
2436 asection *o,
2437 void *external_relocs,
2438 Elf_Internal_Rela *internal_relocs,
2439 bfd_boolean keep_memory)
2440 {
2441 void *alloc1 = NULL;
2442 Elf_Internal_Rela *alloc2 = NULL;
2443 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2444 struct bfd_elf_section_data *esdo = elf_section_data (o);
2445 Elf_Internal_Rela *internal_rela_relocs;
2446
2447 if (esdo->relocs != NULL)
2448 return esdo->relocs;
2449
2450 if (o->reloc_count == 0)
2451 return NULL;
2452
2453 if (internal_relocs == NULL)
2454 {
2455 bfd_size_type size;
2456
2457 size = (bfd_size_type) o->reloc_count * sizeof (Elf_Internal_Rela);
2458 if (keep_memory)
2459 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2460 else
2461 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2462 if (internal_relocs == NULL)
2463 goto error_return;
2464 }
2465
2466 if (external_relocs == NULL)
2467 {
2468 bfd_size_type size = 0;
2469
2470 if (esdo->rel.hdr)
2471 size += esdo->rel.hdr->sh_size;
2472 if (esdo->rela.hdr)
2473 size += esdo->rela.hdr->sh_size;
2474
2475 alloc1 = bfd_malloc (size);
2476 if (alloc1 == NULL)
2477 goto error_return;
2478 external_relocs = alloc1;
2479 }
2480
2481 internal_rela_relocs = internal_relocs;
2482 if (esdo->rel.hdr)
2483 {
2484 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2485 external_relocs,
2486 internal_relocs))
2487 goto error_return;
2488 external_relocs = (((bfd_byte *) external_relocs)
2489 + esdo->rel.hdr->sh_size);
2490 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2491 * bed->s->int_rels_per_ext_rel);
2492 }
2493
2494 if (esdo->rela.hdr
2495 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2496 external_relocs,
2497 internal_rela_relocs)))
2498 goto error_return;
2499
2500 /* Cache the results for next time, if we can. */
2501 if (keep_memory)
2502 esdo->relocs = internal_relocs;
2503
2504 if (alloc1 != NULL)
2505 free (alloc1);
2506
2507 /* Don't free alloc2, since if it was allocated we are passing it
2508 back (under the name of internal_relocs). */
2509
2510 return internal_relocs;
2511
2512 error_return:
2513 if (alloc1 != NULL)
2514 free (alloc1);
2515 if (alloc2 != NULL)
2516 {
2517 if (keep_memory)
2518 bfd_release (abfd, alloc2);
2519 else
2520 free (alloc2);
2521 }
2522 return NULL;
2523 }
2524
2525 /* Compute the size of, and allocate space for, REL_HDR which is the
2526 section header for a section containing relocations for O. */
2527
2528 static bfd_boolean
2529 _bfd_elf_link_size_reloc_section (bfd *abfd,
2530 struct bfd_elf_section_reloc_data *reldata)
2531 {
2532 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2533
2534 /* That allows us to calculate the size of the section. */
2535 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2536
2537 /* The contents field must last into write_object_contents, so we
2538 allocate it with bfd_alloc rather than malloc. Also since we
2539 cannot be sure that the contents will actually be filled in,
2540 we zero the allocated space. */
2541 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2542 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2543 return FALSE;
2544
2545 if (reldata->hashes == NULL && reldata->count)
2546 {
2547 struct elf_link_hash_entry **p;
2548
2549 p = ((struct elf_link_hash_entry **)
2550 bfd_zmalloc (reldata->count * sizeof (*p)));
2551 if (p == NULL)
2552 return FALSE;
2553
2554 reldata->hashes = p;
2555 }
2556
2557 return TRUE;
2558 }
2559
2560 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2561 originated from the section given by INPUT_REL_HDR) to the
2562 OUTPUT_BFD. */
2563
2564 bfd_boolean
2565 _bfd_elf_link_output_relocs (bfd *output_bfd,
2566 asection *input_section,
2567 Elf_Internal_Shdr *input_rel_hdr,
2568 Elf_Internal_Rela *internal_relocs,
2569 struct elf_link_hash_entry **rel_hash
2570 ATTRIBUTE_UNUSED)
2571 {
2572 Elf_Internal_Rela *irela;
2573 Elf_Internal_Rela *irelaend;
2574 bfd_byte *erel;
2575 struct bfd_elf_section_reloc_data *output_reldata;
2576 asection *output_section;
2577 const struct elf_backend_data *bed;
2578 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2579 struct bfd_elf_section_data *esdo;
2580
2581 output_section = input_section->output_section;
2582
2583 bed = get_elf_backend_data (output_bfd);
2584 esdo = elf_section_data (output_section);
2585 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2586 {
2587 output_reldata = &esdo->rel;
2588 swap_out = bed->s->swap_reloc_out;
2589 }
2590 else if (esdo->rela.hdr
2591 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2592 {
2593 output_reldata = &esdo->rela;
2594 swap_out = bed->s->swap_reloca_out;
2595 }
2596 else
2597 {
2598 _bfd_error_handler
2599 /* xgettext:c-format */
2600 (_("%B: relocation size mismatch in %B section %A"),
2601 output_bfd, input_section->owner, input_section);
2602 bfd_set_error (bfd_error_wrong_format);
2603 return FALSE;
2604 }
2605
2606 erel = output_reldata->hdr->contents;
2607 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2608 irela = internal_relocs;
2609 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2610 * bed->s->int_rels_per_ext_rel);
2611 while (irela < irelaend)
2612 {
2613 (*swap_out) (output_bfd, irela, erel);
2614 irela += bed->s->int_rels_per_ext_rel;
2615 erel += input_rel_hdr->sh_entsize;
2616 }
2617
2618 /* Bump the counter, so that we know where to add the next set of
2619 relocations. */
2620 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2621
2622 return TRUE;
2623 }
2624 \f
2625 /* Make weak undefined symbols in PIE dynamic. */
2626
2627 bfd_boolean
2628 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2629 struct elf_link_hash_entry *h)
2630 {
2631 if (bfd_link_pie (info)
2632 && h->dynindx == -1
2633 && h->root.type == bfd_link_hash_undefweak)
2634 return bfd_elf_link_record_dynamic_symbol (info, h);
2635
2636 return TRUE;
2637 }
2638
2639 /* Fix up the flags for a symbol. This handles various cases which
2640 can only be fixed after all the input files are seen. This is
2641 currently called by both adjust_dynamic_symbol and
2642 assign_sym_version, which is unnecessary but perhaps more robust in
2643 the face of future changes. */
2644
2645 static bfd_boolean
2646 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2647 struct elf_info_failed *eif)
2648 {
2649 const struct elf_backend_data *bed;
2650
2651 /* If this symbol was mentioned in a non-ELF file, try to set
2652 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2653 permit a non-ELF file to correctly refer to a symbol defined in
2654 an ELF dynamic object. */
2655 if (h->non_elf)
2656 {
2657 while (h->root.type == bfd_link_hash_indirect)
2658 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2659
2660 if (h->root.type != bfd_link_hash_defined
2661 && h->root.type != bfd_link_hash_defweak)
2662 {
2663 h->ref_regular = 1;
2664 h->ref_regular_nonweak = 1;
2665 }
2666 else
2667 {
2668 if (h->root.u.def.section->owner != NULL
2669 && (bfd_get_flavour (h->root.u.def.section->owner)
2670 == bfd_target_elf_flavour))
2671 {
2672 h->ref_regular = 1;
2673 h->ref_regular_nonweak = 1;
2674 }
2675 else
2676 h->def_regular = 1;
2677 }
2678
2679 if (h->dynindx == -1
2680 && (h->def_dynamic
2681 || h->ref_dynamic))
2682 {
2683 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2684 {
2685 eif->failed = TRUE;
2686 return FALSE;
2687 }
2688 }
2689 }
2690 else
2691 {
2692 /* Unfortunately, NON_ELF is only correct if the symbol
2693 was first seen in a non-ELF file. Fortunately, if the symbol
2694 was first seen in an ELF file, we're probably OK unless the
2695 symbol was defined in a non-ELF file. Catch that case here.
2696 FIXME: We're still in trouble if the symbol was first seen in
2697 a dynamic object, and then later in a non-ELF regular object. */
2698 if ((h->root.type == bfd_link_hash_defined
2699 || h->root.type == bfd_link_hash_defweak)
2700 && !h->def_regular
2701 && (h->root.u.def.section->owner != NULL
2702 ? (bfd_get_flavour (h->root.u.def.section->owner)
2703 != bfd_target_elf_flavour)
2704 : (bfd_is_abs_section (h->root.u.def.section)
2705 && !h->def_dynamic)))
2706 h->def_regular = 1;
2707 }
2708
2709 /* Backend specific symbol fixup. */
2710 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2711 if (bed->elf_backend_fixup_symbol
2712 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2713 return FALSE;
2714
2715 /* If this is a final link, and the symbol was defined as a common
2716 symbol in a regular object file, and there was no definition in
2717 any dynamic object, then the linker will have allocated space for
2718 the symbol in a common section but the DEF_REGULAR
2719 flag will not have been set. */
2720 if (h->root.type == bfd_link_hash_defined
2721 && !h->def_regular
2722 && h->ref_regular
2723 && !h->def_dynamic
2724 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2725 h->def_regular = 1;
2726
2727 /* If a weak undefined symbol has non-default visibility, we also
2728 hide it from the dynamic linker. */
2729 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2730 && h->root.type == bfd_link_hash_undefweak)
2731 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2732
2733 /* A hidden versioned symbol in executable should be forced local if
2734 it is is locally defined, not referenced by shared library and not
2735 exported. */
2736 else if (bfd_link_executable (eif->info)
2737 && h->versioned == versioned_hidden
2738 && !eif->info->export_dynamic
2739 && !h->dynamic
2740 && !h->ref_dynamic
2741 && h->def_regular)
2742 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2743
2744 /* If -Bsymbolic was used (which means to bind references to global
2745 symbols to the definition within the shared object), and this
2746 symbol was defined in a regular object, then it actually doesn't
2747 need a PLT entry. Likewise, if the symbol has non-default
2748 visibility. If the symbol has hidden or internal visibility, we
2749 will force it local. */
2750 else if (h->needs_plt
2751 && bfd_link_pic (eif->info)
2752 && is_elf_hash_table (eif->info->hash)
2753 && (SYMBOLIC_BIND (eif->info, h)
2754 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2755 && h->def_regular)
2756 {
2757 bfd_boolean force_local;
2758
2759 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2760 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2761 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2762 }
2763
2764 /* If this is a weak defined symbol in a dynamic object, and we know
2765 the real definition in the dynamic object, copy interesting flags
2766 over to the real definition. */
2767 if (h->u.weakdef != NULL)
2768 {
2769 /* If the real definition is defined by a regular object file,
2770 don't do anything special. See the longer description in
2771 _bfd_elf_adjust_dynamic_symbol, below. */
2772 if (h->u.weakdef->def_regular)
2773 h->u.weakdef = NULL;
2774 else
2775 {
2776 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2777
2778 while (h->root.type == bfd_link_hash_indirect)
2779 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2780
2781 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2782 || h->root.type == bfd_link_hash_defweak);
2783 BFD_ASSERT (weakdef->def_dynamic);
2784 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2785 || weakdef->root.type == bfd_link_hash_defweak);
2786 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2787 }
2788 }
2789
2790 return TRUE;
2791 }
2792
2793 /* Make the backend pick a good value for a dynamic symbol. This is
2794 called via elf_link_hash_traverse, and also calls itself
2795 recursively. */
2796
2797 static bfd_boolean
2798 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2799 {
2800 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2801 bfd *dynobj;
2802 const struct elf_backend_data *bed;
2803
2804 if (! is_elf_hash_table (eif->info->hash))
2805 return FALSE;
2806
2807 /* Ignore indirect symbols. These are added by the versioning code. */
2808 if (h->root.type == bfd_link_hash_indirect)
2809 return TRUE;
2810
2811 /* Fix the symbol flags. */
2812 if (! _bfd_elf_fix_symbol_flags (h, eif))
2813 return FALSE;
2814
2815 if (h->root.type == bfd_link_hash_undefweak)
2816 {
2817 if (eif->info->dynamic_undefined_weak == 0)
2818 _bfd_elf_link_hash_hide_symbol (eif->info, h, TRUE);
2819 else if (eif->info->dynamic_undefined_weak > 0
2820 && h->ref_regular
2821 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2822 && !bfd_hide_sym_by_version (eif->info->version_info,
2823 h->root.root.string))
2824 {
2825 if (!bfd_elf_link_record_dynamic_symbol (eif->info, h))
2826 {
2827 eif->failed = TRUE;
2828 return FALSE;
2829 }
2830 }
2831 }
2832
2833 /* If this symbol does not require a PLT entry, and it is not
2834 defined by a dynamic object, or is not referenced by a regular
2835 object, ignore it. We do have to handle a weak defined symbol,
2836 even if no regular object refers to it, if we decided to add it
2837 to the dynamic symbol table. FIXME: Do we normally need to worry
2838 about symbols which are defined by one dynamic object and
2839 referenced by another one? */
2840 if (!h->needs_plt
2841 && h->type != STT_GNU_IFUNC
2842 && (h->def_regular
2843 || !h->def_dynamic
2844 || (!h->ref_regular
2845 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2846 {
2847 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2848 return TRUE;
2849 }
2850
2851 /* If we've already adjusted this symbol, don't do it again. This
2852 can happen via a recursive call. */
2853 if (h->dynamic_adjusted)
2854 return TRUE;
2855
2856 /* Don't look at this symbol again. Note that we must set this
2857 after checking the above conditions, because we may look at a
2858 symbol once, decide not to do anything, and then get called
2859 recursively later after REF_REGULAR is set below. */
2860 h->dynamic_adjusted = 1;
2861
2862 /* If this is a weak definition, and we know a real definition, and
2863 the real symbol is not itself defined by a regular object file,
2864 then get a good value for the real definition. We handle the
2865 real symbol first, for the convenience of the backend routine.
2866
2867 Note that there is a confusing case here. If the real definition
2868 is defined by a regular object file, we don't get the real symbol
2869 from the dynamic object, but we do get the weak symbol. If the
2870 processor backend uses a COPY reloc, then if some routine in the
2871 dynamic object changes the real symbol, we will not see that
2872 change in the corresponding weak symbol. This is the way other
2873 ELF linkers work as well, and seems to be a result of the shared
2874 library model.
2875
2876 I will clarify this issue. Most SVR4 shared libraries define the
2877 variable _timezone and define timezone as a weak synonym. The
2878 tzset call changes _timezone. If you write
2879 extern int timezone;
2880 int _timezone = 5;
2881 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2882 you might expect that, since timezone is a synonym for _timezone,
2883 the same number will print both times. However, if the processor
2884 backend uses a COPY reloc, then actually timezone will be copied
2885 into your process image, and, since you define _timezone
2886 yourself, _timezone will not. Thus timezone and _timezone will
2887 wind up at different memory locations. The tzset call will set
2888 _timezone, leaving timezone unchanged. */
2889
2890 if (h->u.weakdef != NULL)
2891 {
2892 /* If we get to this point, there is an implicit reference to
2893 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2894 h->u.weakdef->ref_regular = 1;
2895
2896 /* Ensure that the backend adjust_dynamic_symbol function sees
2897 H->U.WEAKDEF before H by recursively calling ourselves. */
2898 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2899 return FALSE;
2900 }
2901
2902 /* If a symbol has no type and no size and does not require a PLT
2903 entry, then we are probably about to do the wrong thing here: we
2904 are probably going to create a COPY reloc for an empty object.
2905 This case can arise when a shared object is built with assembly
2906 code, and the assembly code fails to set the symbol type. */
2907 if (h->size == 0
2908 && h->type == STT_NOTYPE
2909 && !h->needs_plt)
2910 _bfd_error_handler
2911 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2912 h->root.root.string);
2913
2914 dynobj = elf_hash_table (eif->info)->dynobj;
2915 bed = get_elf_backend_data (dynobj);
2916
2917 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2918 {
2919 eif->failed = TRUE;
2920 return FALSE;
2921 }
2922
2923 return TRUE;
2924 }
2925
2926 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2927 DYNBSS. */
2928
2929 bfd_boolean
2930 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2931 struct elf_link_hash_entry *h,
2932 asection *dynbss)
2933 {
2934 unsigned int power_of_two;
2935 bfd_vma mask;
2936 asection *sec = h->root.u.def.section;
2937
2938 /* The section aligment of definition is the maximum alignment
2939 requirement of symbols defined in the section. Since we don't
2940 know the symbol alignment requirement, we start with the
2941 maximum alignment and check low bits of the symbol address
2942 for the minimum alignment. */
2943 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2944 mask = ((bfd_vma) 1 << power_of_two) - 1;
2945 while ((h->root.u.def.value & mask) != 0)
2946 {
2947 mask >>= 1;
2948 --power_of_two;
2949 }
2950
2951 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2952 dynbss))
2953 {
2954 /* Adjust the section alignment if needed. */
2955 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2956 power_of_two))
2957 return FALSE;
2958 }
2959
2960 /* We make sure that the symbol will be aligned properly. */
2961 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2962
2963 /* Define the symbol as being at this point in DYNBSS. */
2964 h->root.u.def.section = dynbss;
2965 h->root.u.def.value = dynbss->size;
2966
2967 /* Increment the size of DYNBSS to make room for the symbol. */
2968 dynbss->size += h->size;
2969
2970 /* No error if extern_protected_data is true. */
2971 if (h->protected_def
2972 && (!info->extern_protected_data
2973 || (info->extern_protected_data < 0
2974 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
2975 info->callbacks->einfo
2976 (_("%P: copy reloc against protected `%T' is dangerous\n"),
2977 h->root.root.string);
2978
2979 return TRUE;
2980 }
2981
2982 /* Adjust all external symbols pointing into SEC_MERGE sections
2983 to reflect the object merging within the sections. */
2984
2985 static bfd_boolean
2986 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2987 {
2988 asection *sec;
2989
2990 if ((h->root.type == bfd_link_hash_defined
2991 || h->root.type == bfd_link_hash_defweak)
2992 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2993 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2994 {
2995 bfd *output_bfd = (bfd *) data;
2996
2997 h->root.u.def.value =
2998 _bfd_merged_section_offset (output_bfd,
2999 &h->root.u.def.section,
3000 elf_section_data (sec)->sec_info,
3001 h->root.u.def.value);
3002 }
3003
3004 return TRUE;
3005 }
3006
3007 /* Returns false if the symbol referred to by H should be considered
3008 to resolve local to the current module, and true if it should be
3009 considered to bind dynamically. */
3010
3011 bfd_boolean
3012 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
3013 struct bfd_link_info *info,
3014 bfd_boolean not_local_protected)
3015 {
3016 bfd_boolean binding_stays_local_p;
3017 const struct elf_backend_data *bed;
3018 struct elf_link_hash_table *hash_table;
3019
3020 if (h == NULL)
3021 return FALSE;
3022
3023 while (h->root.type == bfd_link_hash_indirect
3024 || h->root.type == bfd_link_hash_warning)
3025 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3026
3027 /* If it was forced local, then clearly it's not dynamic. */
3028 if (h->dynindx == -1)
3029 return FALSE;
3030 if (h->forced_local)
3031 return FALSE;
3032
3033 /* Identify the cases where name binding rules say that a
3034 visible symbol resolves locally. */
3035 binding_stays_local_p = (bfd_link_executable (info)
3036 || SYMBOLIC_BIND (info, h));
3037
3038 switch (ELF_ST_VISIBILITY (h->other))
3039 {
3040 case STV_INTERNAL:
3041 case STV_HIDDEN:
3042 return FALSE;
3043
3044 case STV_PROTECTED:
3045 hash_table = elf_hash_table (info);
3046 if (!is_elf_hash_table (hash_table))
3047 return FALSE;
3048
3049 bed = get_elf_backend_data (hash_table->dynobj);
3050
3051 /* Proper resolution for function pointer equality may require
3052 that these symbols perhaps be resolved dynamically, even though
3053 we should be resolving them to the current module. */
3054 if (!not_local_protected || !bed->is_function_type (h->type))
3055 binding_stays_local_p = TRUE;
3056 break;
3057
3058 default:
3059 break;
3060 }
3061
3062 /* If it isn't defined locally, then clearly it's dynamic. */
3063 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3064 return TRUE;
3065
3066 /* Otherwise, the symbol is dynamic if binding rules don't tell
3067 us that it remains local. */
3068 return !binding_stays_local_p;
3069 }
3070
3071 /* Return true if the symbol referred to by H should be considered
3072 to resolve local to the current module, and false otherwise. Differs
3073 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3074 undefined symbols. The two functions are virtually identical except
3075 for the place where dynindx == -1 is tested. If that test is true,
3076 _bfd_elf_dynamic_symbol_p will say the symbol is local, while
3077 _bfd_elf_symbol_refs_local_p will say the symbol is local only for
3078 defined symbols.
3079 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3080 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3081 treatment of undefined weak symbols. For those that do not make
3082 undefined weak symbols dynamic, both functions may return false. */
3083
3084 bfd_boolean
3085 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3086 struct bfd_link_info *info,
3087 bfd_boolean local_protected)
3088 {
3089 const struct elf_backend_data *bed;
3090 struct elf_link_hash_table *hash_table;
3091
3092 /* If it's a local sym, of course we resolve locally. */
3093 if (h == NULL)
3094 return TRUE;
3095
3096 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
3097 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3098 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3099 return TRUE;
3100
3101 /* Forced local symbols resolve locally. */
3102 if (h->forced_local)
3103 return TRUE;
3104
3105 /* Common symbols that become definitions don't get the DEF_REGULAR
3106 flag set, so test it first, and don't bail out. */
3107 if (ELF_COMMON_DEF_P (h))
3108 /* Do nothing. */;
3109 /* If we don't have a definition in a regular file, then we can't
3110 resolve locally. The sym is either undefined or dynamic. */
3111 else if (!h->def_regular)
3112 return FALSE;
3113
3114 /* Non-dynamic symbols resolve locally. */
3115 if (h->dynindx == -1)
3116 return TRUE;
3117
3118 /* At this point, we know the symbol is defined and dynamic. In an
3119 executable it must resolve locally, likewise when building symbolic
3120 shared libraries. */
3121 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3122 return TRUE;
3123
3124 /* Now deal with defined dynamic symbols in shared libraries. Ones
3125 with default visibility might not resolve locally. */
3126 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3127 return FALSE;
3128
3129 hash_table = elf_hash_table (info);
3130 if (!is_elf_hash_table (hash_table))
3131 return TRUE;
3132
3133 bed = get_elf_backend_data (hash_table->dynobj);
3134
3135 /* If extern_protected_data is false, STV_PROTECTED non-function
3136 symbols are local. */
3137 if ((!info->extern_protected_data
3138 || (info->extern_protected_data < 0
3139 && !bed->extern_protected_data))
3140 && !bed->is_function_type (h->type))
3141 return TRUE;
3142
3143 /* Function pointer equality tests may require that STV_PROTECTED
3144 symbols be treated as dynamic symbols. If the address of a
3145 function not defined in an executable is set to that function's
3146 plt entry in the executable, then the address of the function in
3147 a shared library must also be the plt entry in the executable. */
3148 return local_protected;
3149 }
3150
3151 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3152 aligned. Returns the first TLS output section. */
3153
3154 struct bfd_section *
3155 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3156 {
3157 struct bfd_section *sec, *tls;
3158 unsigned int align = 0;
3159
3160 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3161 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3162 break;
3163 tls = sec;
3164
3165 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3166 if (sec->alignment_power > align)
3167 align = sec->alignment_power;
3168
3169 elf_hash_table (info)->tls_sec = tls;
3170
3171 /* Ensure the alignment of the first section is the largest alignment,
3172 so that the tls segment starts aligned. */
3173 if (tls != NULL)
3174 tls->alignment_power = align;
3175
3176 return tls;
3177 }
3178
3179 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3180 static bfd_boolean
3181 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3182 Elf_Internal_Sym *sym)
3183 {
3184 const struct elf_backend_data *bed;
3185
3186 /* Local symbols do not count, but target specific ones might. */
3187 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3188 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3189 return FALSE;
3190
3191 bed = get_elf_backend_data (abfd);
3192 /* Function symbols do not count. */
3193 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3194 return FALSE;
3195
3196 /* If the section is undefined, then so is the symbol. */
3197 if (sym->st_shndx == SHN_UNDEF)
3198 return FALSE;
3199
3200 /* If the symbol is defined in the common section, then
3201 it is a common definition and so does not count. */
3202 if (bed->common_definition (sym))
3203 return FALSE;
3204
3205 /* If the symbol is in a target specific section then we
3206 must rely upon the backend to tell us what it is. */
3207 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3208 /* FIXME - this function is not coded yet:
3209
3210 return _bfd_is_global_symbol_definition (abfd, sym);
3211
3212 Instead for now assume that the definition is not global,
3213 Even if this is wrong, at least the linker will behave
3214 in the same way that it used to do. */
3215 return FALSE;
3216
3217 return TRUE;
3218 }
3219
3220 /* Search the symbol table of the archive element of the archive ABFD
3221 whose archive map contains a mention of SYMDEF, and determine if
3222 the symbol is defined in this element. */
3223 static bfd_boolean
3224 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3225 {
3226 Elf_Internal_Shdr * hdr;
3227 size_t symcount;
3228 size_t extsymcount;
3229 size_t extsymoff;
3230 Elf_Internal_Sym *isymbuf;
3231 Elf_Internal_Sym *isym;
3232 Elf_Internal_Sym *isymend;
3233 bfd_boolean result;
3234
3235 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3236 if (abfd == NULL)
3237 return FALSE;
3238
3239 if (! bfd_check_format (abfd, bfd_object))
3240 return FALSE;
3241
3242 /* Select the appropriate symbol table. If we don't know if the
3243 object file is an IR object, give linker LTO plugin a chance to
3244 get the correct symbol table. */
3245 if (abfd->plugin_format == bfd_plugin_yes
3246 #if BFD_SUPPORTS_PLUGINS
3247 || (abfd->plugin_format == bfd_plugin_unknown
3248 && bfd_link_plugin_object_p (abfd))
3249 #endif
3250 )
3251 {
3252 /* Use the IR symbol table if the object has been claimed by
3253 plugin. */
3254 abfd = abfd->plugin_dummy_bfd;
3255 hdr = &elf_tdata (abfd)->symtab_hdr;
3256 }
3257 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3258 hdr = &elf_tdata (abfd)->symtab_hdr;
3259 else
3260 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3261
3262 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3263
3264 /* The sh_info field of the symtab header tells us where the
3265 external symbols start. We don't care about the local symbols. */
3266 if (elf_bad_symtab (abfd))
3267 {
3268 extsymcount = symcount;
3269 extsymoff = 0;
3270 }
3271 else
3272 {
3273 extsymcount = symcount - hdr->sh_info;
3274 extsymoff = hdr->sh_info;
3275 }
3276
3277 if (extsymcount == 0)
3278 return FALSE;
3279
3280 /* Read in the symbol table. */
3281 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3282 NULL, NULL, NULL);
3283 if (isymbuf == NULL)
3284 return FALSE;
3285
3286 /* Scan the symbol table looking for SYMDEF. */
3287 result = FALSE;
3288 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3289 {
3290 const char *name;
3291
3292 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3293 isym->st_name);
3294 if (name == NULL)
3295 break;
3296
3297 if (strcmp (name, symdef->name) == 0)
3298 {
3299 result = is_global_data_symbol_definition (abfd, isym);
3300 break;
3301 }
3302 }
3303
3304 free (isymbuf);
3305
3306 return result;
3307 }
3308 \f
3309 /* Add an entry to the .dynamic table. */
3310
3311 bfd_boolean
3312 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3313 bfd_vma tag,
3314 bfd_vma val)
3315 {
3316 struct elf_link_hash_table *hash_table;
3317 const struct elf_backend_data *bed;
3318 asection *s;
3319 bfd_size_type newsize;
3320 bfd_byte *newcontents;
3321 Elf_Internal_Dyn dyn;
3322
3323 hash_table = elf_hash_table (info);
3324 if (! is_elf_hash_table (hash_table))
3325 return FALSE;
3326
3327 bed = get_elf_backend_data (hash_table->dynobj);
3328 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3329 BFD_ASSERT (s != NULL);
3330
3331 newsize = s->size + bed->s->sizeof_dyn;
3332 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3333 if (newcontents == NULL)
3334 return FALSE;
3335
3336 dyn.d_tag = tag;
3337 dyn.d_un.d_val = val;
3338 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3339
3340 s->size = newsize;
3341 s->contents = newcontents;
3342
3343 return TRUE;
3344 }
3345
3346 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3347 otherwise just check whether one already exists. Returns -1 on error,
3348 1 if a DT_NEEDED tag already exists, and 0 on success. */
3349
3350 static int
3351 elf_add_dt_needed_tag (bfd *abfd,
3352 struct bfd_link_info *info,
3353 const char *soname,
3354 bfd_boolean do_it)
3355 {
3356 struct elf_link_hash_table *hash_table;
3357 size_t strindex;
3358
3359 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3360 return -1;
3361
3362 hash_table = elf_hash_table (info);
3363 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3364 if (strindex == (size_t) -1)
3365 return -1;
3366
3367 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3368 {
3369 asection *sdyn;
3370 const struct elf_backend_data *bed;
3371 bfd_byte *extdyn;
3372
3373 bed = get_elf_backend_data (hash_table->dynobj);
3374 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3375 if (sdyn != NULL)
3376 for (extdyn = sdyn->contents;
3377 extdyn < sdyn->contents + sdyn->size;
3378 extdyn += bed->s->sizeof_dyn)
3379 {
3380 Elf_Internal_Dyn dyn;
3381
3382 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3383 if (dyn.d_tag == DT_NEEDED
3384 && dyn.d_un.d_val == strindex)
3385 {
3386 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3387 return 1;
3388 }
3389 }
3390 }
3391
3392 if (do_it)
3393 {
3394 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3395 return -1;
3396
3397 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3398 return -1;
3399 }
3400 else
3401 /* We were just checking for existence of the tag. */
3402 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3403
3404 return 0;
3405 }
3406
3407 /* Return true if SONAME is on the needed list between NEEDED and STOP
3408 (or the end of list if STOP is NULL), and needed by a library that
3409 will be loaded. */
3410
3411 static bfd_boolean
3412 on_needed_list (const char *soname,
3413 struct bfd_link_needed_list *needed,
3414 struct bfd_link_needed_list *stop)
3415 {
3416 struct bfd_link_needed_list *look;
3417 for (look = needed; look != stop; look = look->next)
3418 if (strcmp (soname, look->name) == 0
3419 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3420 /* If needed by a library that itself is not directly
3421 needed, recursively check whether that library is
3422 indirectly needed. Since we add DT_NEEDED entries to
3423 the end of the list, library dependencies appear after
3424 the library. Therefore search prior to the current
3425 LOOK, preventing possible infinite recursion. */
3426 || on_needed_list (elf_dt_name (look->by), needed, look)))
3427 return TRUE;
3428
3429 return FALSE;
3430 }
3431
3432 /* Sort symbol by value, section, and size. */
3433 static int
3434 elf_sort_symbol (const void *arg1, const void *arg2)
3435 {
3436 const struct elf_link_hash_entry *h1;
3437 const struct elf_link_hash_entry *h2;
3438 bfd_signed_vma vdiff;
3439
3440 h1 = *(const struct elf_link_hash_entry **) arg1;
3441 h2 = *(const struct elf_link_hash_entry **) arg2;
3442 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3443 if (vdiff != 0)
3444 return vdiff > 0 ? 1 : -1;
3445 else
3446 {
3447 int sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3448 if (sdiff != 0)
3449 return sdiff > 0 ? 1 : -1;
3450 }
3451 vdiff = h1->size - h2->size;
3452 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3453 }
3454
3455 /* This function is used to adjust offsets into .dynstr for
3456 dynamic symbols. This is called via elf_link_hash_traverse. */
3457
3458 static bfd_boolean
3459 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3460 {
3461 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3462
3463 if (h->dynindx != -1)
3464 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3465 return TRUE;
3466 }
3467
3468 /* Assign string offsets in .dynstr, update all structures referencing
3469 them. */
3470
3471 static bfd_boolean
3472 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3473 {
3474 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3475 struct elf_link_local_dynamic_entry *entry;
3476 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3477 bfd *dynobj = hash_table->dynobj;
3478 asection *sdyn;
3479 bfd_size_type size;
3480 const struct elf_backend_data *bed;
3481 bfd_byte *extdyn;
3482
3483 _bfd_elf_strtab_finalize (dynstr);
3484 size = _bfd_elf_strtab_size (dynstr);
3485
3486 bed = get_elf_backend_data (dynobj);
3487 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3488 BFD_ASSERT (sdyn != NULL);
3489
3490 /* Update all .dynamic entries referencing .dynstr strings. */
3491 for (extdyn = sdyn->contents;
3492 extdyn < sdyn->contents + sdyn->size;
3493 extdyn += bed->s->sizeof_dyn)
3494 {
3495 Elf_Internal_Dyn dyn;
3496
3497 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3498 switch (dyn.d_tag)
3499 {
3500 case DT_STRSZ:
3501 dyn.d_un.d_val = size;
3502 break;
3503 case DT_NEEDED:
3504 case DT_SONAME:
3505 case DT_RPATH:
3506 case DT_RUNPATH:
3507 case DT_FILTER:
3508 case DT_AUXILIARY:
3509 case DT_AUDIT:
3510 case DT_DEPAUDIT:
3511 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3512 break;
3513 default:
3514 continue;
3515 }
3516 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3517 }
3518
3519 /* Now update local dynamic symbols. */
3520 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3521 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3522 entry->isym.st_name);
3523
3524 /* And the rest of dynamic symbols. */
3525 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3526
3527 /* Adjust version definitions. */
3528 if (elf_tdata (output_bfd)->cverdefs)
3529 {
3530 asection *s;
3531 bfd_byte *p;
3532 size_t i;
3533 Elf_Internal_Verdef def;
3534 Elf_Internal_Verdaux defaux;
3535
3536 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3537 p = s->contents;
3538 do
3539 {
3540 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3541 &def);
3542 p += sizeof (Elf_External_Verdef);
3543 if (def.vd_aux != sizeof (Elf_External_Verdef))
3544 continue;
3545 for (i = 0; i < def.vd_cnt; ++i)
3546 {
3547 _bfd_elf_swap_verdaux_in (output_bfd,
3548 (Elf_External_Verdaux *) p, &defaux);
3549 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3550 defaux.vda_name);
3551 _bfd_elf_swap_verdaux_out (output_bfd,
3552 &defaux, (Elf_External_Verdaux *) p);
3553 p += sizeof (Elf_External_Verdaux);
3554 }
3555 }
3556 while (def.vd_next);
3557 }
3558
3559 /* Adjust version references. */
3560 if (elf_tdata (output_bfd)->verref)
3561 {
3562 asection *s;
3563 bfd_byte *p;
3564 size_t i;
3565 Elf_Internal_Verneed need;
3566 Elf_Internal_Vernaux needaux;
3567
3568 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3569 p = s->contents;
3570 do
3571 {
3572 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3573 &need);
3574 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3575 _bfd_elf_swap_verneed_out (output_bfd, &need,
3576 (Elf_External_Verneed *) p);
3577 p += sizeof (Elf_External_Verneed);
3578 for (i = 0; i < need.vn_cnt; ++i)
3579 {
3580 _bfd_elf_swap_vernaux_in (output_bfd,
3581 (Elf_External_Vernaux *) p, &needaux);
3582 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3583 needaux.vna_name);
3584 _bfd_elf_swap_vernaux_out (output_bfd,
3585 &needaux,
3586 (Elf_External_Vernaux *) p);
3587 p += sizeof (Elf_External_Vernaux);
3588 }
3589 }
3590 while (need.vn_next);
3591 }
3592
3593 return TRUE;
3594 }
3595 \f
3596 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3597 The default is to only match when the INPUT and OUTPUT are exactly
3598 the same target. */
3599
3600 bfd_boolean
3601 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3602 const bfd_target *output)
3603 {
3604 return input == output;
3605 }
3606
3607 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3608 This version is used when different targets for the same architecture
3609 are virtually identical. */
3610
3611 bfd_boolean
3612 _bfd_elf_relocs_compatible (const bfd_target *input,
3613 const bfd_target *output)
3614 {
3615 const struct elf_backend_data *obed, *ibed;
3616
3617 if (input == output)
3618 return TRUE;
3619
3620 ibed = xvec_get_elf_backend_data (input);
3621 obed = xvec_get_elf_backend_data (output);
3622
3623 if (ibed->arch != obed->arch)
3624 return FALSE;
3625
3626 /* If both backends are using this function, deem them compatible. */
3627 return ibed->relocs_compatible == obed->relocs_compatible;
3628 }
3629
3630 /* Make a special call to the linker "notice" function to tell it that
3631 we are about to handle an as-needed lib, or have finished
3632 processing the lib. */
3633
3634 bfd_boolean
3635 _bfd_elf_notice_as_needed (bfd *ibfd,
3636 struct bfd_link_info *info,
3637 enum notice_asneeded_action act)
3638 {
3639 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3640 }
3641
3642 /* Check relocations an ELF object file. */
3643
3644 bfd_boolean
3645 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3646 {
3647 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3648 struct elf_link_hash_table *htab = elf_hash_table (info);
3649
3650 /* If this object is the same format as the output object, and it is
3651 not a shared library, then let the backend look through the
3652 relocs.
3653
3654 This is required to build global offset table entries and to
3655 arrange for dynamic relocs. It is not required for the
3656 particular common case of linking non PIC code, even when linking
3657 against shared libraries, but unfortunately there is no way of
3658 knowing whether an object file has been compiled PIC or not.
3659 Looking through the relocs is not particularly time consuming.
3660 The problem is that we must either (1) keep the relocs in memory,
3661 which causes the linker to require additional runtime memory or
3662 (2) read the relocs twice from the input file, which wastes time.
3663 This would be a good case for using mmap.
3664
3665 I have no idea how to handle linking PIC code into a file of a
3666 different format. It probably can't be done. */
3667 if ((abfd->flags & DYNAMIC) == 0
3668 && is_elf_hash_table (htab)
3669 && bed->check_relocs != NULL
3670 && elf_object_id (abfd) == elf_hash_table_id (htab)
3671 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3672 {
3673 asection *o;
3674
3675 for (o = abfd->sections; o != NULL; o = o->next)
3676 {
3677 Elf_Internal_Rela *internal_relocs;
3678 bfd_boolean ok;
3679
3680 /* Don't check relocations in excluded sections. */
3681 if ((o->flags & SEC_RELOC) == 0
3682 || (o->flags & SEC_EXCLUDE) != 0
3683 || o->reloc_count == 0
3684 || ((info->strip == strip_all || info->strip == strip_debugger)
3685 && (o->flags & SEC_DEBUGGING) != 0)
3686 || bfd_is_abs_section (o->output_section))
3687 continue;
3688
3689 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3690 info->keep_memory);
3691 if (internal_relocs == NULL)
3692 return FALSE;
3693
3694 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3695
3696 if (elf_section_data (o)->relocs != internal_relocs)
3697 free (internal_relocs);
3698
3699 if (! ok)
3700 return FALSE;
3701 }
3702 }
3703
3704 return TRUE;
3705 }
3706
3707 /* Add symbols from an ELF object file to the linker hash table. */
3708
3709 static bfd_boolean
3710 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3711 {
3712 Elf_Internal_Ehdr *ehdr;
3713 Elf_Internal_Shdr *hdr;
3714 size_t symcount;
3715 size_t extsymcount;
3716 size_t extsymoff;
3717 struct elf_link_hash_entry **sym_hash;
3718 bfd_boolean dynamic;
3719 Elf_External_Versym *extversym = NULL;
3720 Elf_External_Versym *ever;
3721 struct elf_link_hash_entry *weaks;
3722 struct elf_link_hash_entry **nondeflt_vers = NULL;
3723 size_t nondeflt_vers_cnt = 0;
3724 Elf_Internal_Sym *isymbuf = NULL;
3725 Elf_Internal_Sym *isym;
3726 Elf_Internal_Sym *isymend;
3727 const struct elf_backend_data *bed;
3728 bfd_boolean add_needed;
3729 struct elf_link_hash_table *htab;
3730 bfd_size_type amt;
3731 void *alloc_mark = NULL;
3732 struct bfd_hash_entry **old_table = NULL;
3733 unsigned int old_size = 0;
3734 unsigned int old_count = 0;
3735 void *old_tab = NULL;
3736 void *old_ent;
3737 struct bfd_link_hash_entry *old_undefs = NULL;
3738 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3739 void *old_strtab = NULL;
3740 size_t tabsize = 0;
3741 asection *s;
3742 bfd_boolean just_syms;
3743
3744 htab = elf_hash_table (info);
3745 bed = get_elf_backend_data (abfd);
3746
3747 if ((abfd->flags & DYNAMIC) == 0)
3748 dynamic = FALSE;
3749 else
3750 {
3751 dynamic = TRUE;
3752
3753 /* You can't use -r against a dynamic object. Also, there's no
3754 hope of using a dynamic object which does not exactly match
3755 the format of the output file. */
3756 if (bfd_link_relocatable (info)
3757 || !is_elf_hash_table (htab)
3758 || info->output_bfd->xvec != abfd->xvec)
3759 {
3760 if (bfd_link_relocatable (info))
3761 bfd_set_error (bfd_error_invalid_operation);
3762 else
3763 bfd_set_error (bfd_error_wrong_format);
3764 goto error_return;
3765 }
3766 }
3767
3768 ehdr = elf_elfheader (abfd);
3769 if (info->warn_alternate_em
3770 && bed->elf_machine_code != ehdr->e_machine
3771 && ((bed->elf_machine_alt1 != 0
3772 && ehdr->e_machine == bed->elf_machine_alt1)
3773 || (bed->elf_machine_alt2 != 0
3774 && ehdr->e_machine == bed->elf_machine_alt2)))
3775 info->callbacks->einfo
3776 /* xgettext:c-format */
3777 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3778 ehdr->e_machine, abfd, bed->elf_machine_code);
3779
3780 /* As a GNU extension, any input sections which are named
3781 .gnu.warning.SYMBOL are treated as warning symbols for the given
3782 symbol. This differs from .gnu.warning sections, which generate
3783 warnings when they are included in an output file. */
3784 /* PR 12761: Also generate this warning when building shared libraries. */
3785 for (s = abfd->sections; s != NULL; s = s->next)
3786 {
3787 const char *name;
3788
3789 name = bfd_get_section_name (abfd, s);
3790 if (CONST_STRNEQ (name, ".gnu.warning."))
3791 {
3792 char *msg;
3793 bfd_size_type sz;
3794
3795 name += sizeof ".gnu.warning." - 1;
3796
3797 /* If this is a shared object, then look up the symbol
3798 in the hash table. If it is there, and it is already
3799 been defined, then we will not be using the entry
3800 from this shared object, so we don't need to warn.
3801 FIXME: If we see the definition in a regular object
3802 later on, we will warn, but we shouldn't. The only
3803 fix is to keep track of what warnings we are supposed
3804 to emit, and then handle them all at the end of the
3805 link. */
3806 if (dynamic)
3807 {
3808 struct elf_link_hash_entry *h;
3809
3810 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3811
3812 /* FIXME: What about bfd_link_hash_common? */
3813 if (h != NULL
3814 && (h->root.type == bfd_link_hash_defined
3815 || h->root.type == bfd_link_hash_defweak))
3816 continue;
3817 }
3818
3819 sz = s->size;
3820 msg = (char *) bfd_alloc (abfd, sz + 1);
3821 if (msg == NULL)
3822 goto error_return;
3823
3824 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3825 goto error_return;
3826
3827 msg[sz] = '\0';
3828
3829 if (! (_bfd_generic_link_add_one_symbol
3830 (info, abfd, name, BSF_WARNING, s, 0, msg,
3831 FALSE, bed->collect, NULL)))
3832 goto error_return;
3833
3834 if (bfd_link_executable (info))
3835 {
3836 /* Clobber the section size so that the warning does
3837 not get copied into the output file. */
3838 s->size = 0;
3839
3840 /* Also set SEC_EXCLUDE, so that symbols defined in
3841 the warning section don't get copied to the output. */
3842 s->flags |= SEC_EXCLUDE;
3843 }
3844 }
3845 }
3846
3847 just_syms = ((s = abfd->sections) != NULL
3848 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3849
3850 add_needed = TRUE;
3851 if (! dynamic)
3852 {
3853 /* If we are creating a shared library, create all the dynamic
3854 sections immediately. We need to attach them to something,
3855 so we attach them to this BFD, provided it is the right
3856 format and is not from ld --just-symbols. Always create the
3857 dynamic sections for -E/--dynamic-list. FIXME: If there
3858 are no input BFD's of the same format as the output, we can't
3859 make a shared library. */
3860 if (!just_syms
3861 && (bfd_link_pic (info)
3862 || (!bfd_link_relocatable (info)
3863 && info->nointerp
3864 && (info->export_dynamic || info->dynamic)))
3865 && is_elf_hash_table (htab)
3866 && info->output_bfd->xvec == abfd->xvec
3867 && !htab->dynamic_sections_created)
3868 {
3869 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3870 goto error_return;
3871 }
3872 }
3873 else if (!is_elf_hash_table (htab))
3874 goto error_return;
3875 else
3876 {
3877 const char *soname = NULL;
3878 char *audit = NULL;
3879 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3880 const Elf_Internal_Phdr *phdr;
3881 int ret;
3882
3883 /* ld --just-symbols and dynamic objects don't mix very well.
3884 ld shouldn't allow it. */
3885 if (just_syms)
3886 abort ();
3887
3888 /* If this dynamic lib was specified on the command line with
3889 --as-needed in effect, then we don't want to add a DT_NEEDED
3890 tag unless the lib is actually used. Similary for libs brought
3891 in by another lib's DT_NEEDED. When --no-add-needed is used
3892 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3893 any dynamic library in DT_NEEDED tags in the dynamic lib at
3894 all. */
3895 add_needed = (elf_dyn_lib_class (abfd)
3896 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3897 | DYN_NO_NEEDED)) == 0;
3898
3899 s = bfd_get_section_by_name (abfd, ".dynamic");
3900 if (s != NULL)
3901 {
3902 bfd_byte *dynbuf;
3903 bfd_byte *extdyn;
3904 unsigned int elfsec;
3905 unsigned long shlink;
3906
3907 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3908 {
3909 error_free_dyn:
3910 free (dynbuf);
3911 goto error_return;
3912 }
3913
3914 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3915 if (elfsec == SHN_BAD)
3916 goto error_free_dyn;
3917 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3918
3919 for (extdyn = dynbuf;
3920 extdyn < dynbuf + s->size;
3921 extdyn += bed->s->sizeof_dyn)
3922 {
3923 Elf_Internal_Dyn dyn;
3924
3925 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3926 if (dyn.d_tag == DT_SONAME)
3927 {
3928 unsigned int tagv = dyn.d_un.d_val;
3929 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3930 if (soname == NULL)
3931 goto error_free_dyn;
3932 }
3933 if (dyn.d_tag == DT_NEEDED)
3934 {
3935 struct bfd_link_needed_list *n, **pn;
3936 char *fnm, *anm;
3937 unsigned int tagv = dyn.d_un.d_val;
3938
3939 amt = sizeof (struct bfd_link_needed_list);
3940 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3941 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3942 if (n == NULL || fnm == NULL)
3943 goto error_free_dyn;
3944 amt = strlen (fnm) + 1;
3945 anm = (char *) bfd_alloc (abfd, amt);
3946 if (anm == NULL)
3947 goto error_free_dyn;
3948 memcpy (anm, fnm, amt);
3949 n->name = anm;
3950 n->by = abfd;
3951 n->next = NULL;
3952 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3953 ;
3954 *pn = n;
3955 }
3956 if (dyn.d_tag == DT_RUNPATH)
3957 {
3958 struct bfd_link_needed_list *n, **pn;
3959 char *fnm, *anm;
3960 unsigned int tagv = dyn.d_un.d_val;
3961
3962 amt = sizeof (struct bfd_link_needed_list);
3963 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3964 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3965 if (n == NULL || fnm == NULL)
3966 goto error_free_dyn;
3967 amt = strlen (fnm) + 1;
3968 anm = (char *) bfd_alloc (abfd, amt);
3969 if (anm == NULL)
3970 goto error_free_dyn;
3971 memcpy (anm, fnm, amt);
3972 n->name = anm;
3973 n->by = abfd;
3974 n->next = NULL;
3975 for (pn = & runpath;
3976 *pn != NULL;
3977 pn = &(*pn)->next)
3978 ;
3979 *pn = n;
3980 }
3981 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3982 if (!runpath && dyn.d_tag == DT_RPATH)
3983 {
3984 struct bfd_link_needed_list *n, **pn;
3985 char *fnm, *anm;
3986 unsigned int tagv = dyn.d_un.d_val;
3987
3988 amt = sizeof (struct bfd_link_needed_list);
3989 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3990 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3991 if (n == NULL || fnm == NULL)
3992 goto error_free_dyn;
3993 amt = strlen (fnm) + 1;
3994 anm = (char *) bfd_alloc (abfd, amt);
3995 if (anm == NULL)
3996 goto error_free_dyn;
3997 memcpy (anm, fnm, amt);
3998 n->name = anm;
3999 n->by = abfd;
4000 n->next = NULL;
4001 for (pn = & rpath;
4002 *pn != NULL;
4003 pn = &(*pn)->next)
4004 ;
4005 *pn = n;
4006 }
4007 if (dyn.d_tag == DT_AUDIT)
4008 {
4009 unsigned int tagv = dyn.d_un.d_val;
4010 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4011 }
4012 }
4013
4014 free (dynbuf);
4015 }
4016
4017 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
4018 frees all more recently bfd_alloc'd blocks as well. */
4019 if (runpath)
4020 rpath = runpath;
4021
4022 if (rpath)
4023 {
4024 struct bfd_link_needed_list **pn;
4025 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
4026 ;
4027 *pn = rpath;
4028 }
4029
4030 /* If we have a PT_GNU_RELRO program header, mark as read-only
4031 all sections contained fully therein. This makes relro
4032 shared library sections appear as they will at run-time. */
4033 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
4034 while (--phdr >= elf_tdata (abfd)->phdr)
4035 if (phdr->p_type == PT_GNU_RELRO)
4036 {
4037 for (s = abfd->sections; s != NULL; s = s->next)
4038 if ((s->flags & SEC_ALLOC) != 0
4039 && s->vma >= phdr->p_vaddr
4040 && s->vma + s->size <= phdr->p_vaddr + phdr->p_memsz)
4041 s->flags |= SEC_READONLY;
4042 break;
4043 }
4044
4045 /* We do not want to include any of the sections in a dynamic
4046 object in the output file. We hack by simply clobbering the
4047 list of sections in the BFD. This could be handled more
4048 cleanly by, say, a new section flag; the existing
4049 SEC_NEVER_LOAD flag is not the one we want, because that one
4050 still implies that the section takes up space in the output
4051 file. */
4052 bfd_section_list_clear (abfd);
4053
4054 /* Find the name to use in a DT_NEEDED entry that refers to this
4055 object. If the object has a DT_SONAME entry, we use it.
4056 Otherwise, if the generic linker stuck something in
4057 elf_dt_name, we use that. Otherwise, we just use the file
4058 name. */
4059 if (soname == NULL || *soname == '\0')
4060 {
4061 soname = elf_dt_name (abfd);
4062 if (soname == NULL || *soname == '\0')
4063 soname = bfd_get_filename (abfd);
4064 }
4065
4066 /* Save the SONAME because sometimes the linker emulation code
4067 will need to know it. */
4068 elf_dt_name (abfd) = soname;
4069
4070 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4071 if (ret < 0)
4072 goto error_return;
4073
4074 /* If we have already included this dynamic object in the
4075 link, just ignore it. There is no reason to include a
4076 particular dynamic object more than once. */
4077 if (ret > 0)
4078 return TRUE;
4079
4080 /* Save the DT_AUDIT entry for the linker emulation code. */
4081 elf_dt_audit (abfd) = audit;
4082 }
4083
4084 /* If this is a dynamic object, we always link against the .dynsym
4085 symbol table, not the .symtab symbol table. The dynamic linker
4086 will only see the .dynsym symbol table, so there is no reason to
4087 look at .symtab for a dynamic object. */
4088
4089 if (! dynamic || elf_dynsymtab (abfd) == 0)
4090 hdr = &elf_tdata (abfd)->symtab_hdr;
4091 else
4092 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4093
4094 symcount = hdr->sh_size / bed->s->sizeof_sym;
4095
4096 /* The sh_info field of the symtab header tells us where the
4097 external symbols start. We don't care about the local symbols at
4098 this point. */
4099 if (elf_bad_symtab (abfd))
4100 {
4101 extsymcount = symcount;
4102 extsymoff = 0;
4103 }
4104 else
4105 {
4106 extsymcount = symcount - hdr->sh_info;
4107 extsymoff = hdr->sh_info;
4108 }
4109
4110 sym_hash = elf_sym_hashes (abfd);
4111 if (extsymcount != 0)
4112 {
4113 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4114 NULL, NULL, NULL);
4115 if (isymbuf == NULL)
4116 goto error_return;
4117
4118 if (sym_hash == NULL)
4119 {
4120 /* We store a pointer to the hash table entry for each
4121 external symbol. */
4122 amt = extsymcount;
4123 amt *= sizeof (struct elf_link_hash_entry *);
4124 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4125 if (sym_hash == NULL)
4126 goto error_free_sym;
4127 elf_sym_hashes (abfd) = sym_hash;
4128 }
4129 }
4130
4131 if (dynamic)
4132 {
4133 /* Read in any version definitions. */
4134 if (!_bfd_elf_slurp_version_tables (abfd,
4135 info->default_imported_symver))
4136 goto error_free_sym;
4137
4138 /* Read in the symbol versions, but don't bother to convert them
4139 to internal format. */
4140 if (elf_dynversym (abfd) != 0)
4141 {
4142 Elf_Internal_Shdr *versymhdr;
4143
4144 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4145 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
4146 if (extversym == NULL)
4147 goto error_free_sym;
4148 amt = versymhdr->sh_size;
4149 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
4150 || bfd_bread (extversym, amt, abfd) != amt)
4151 goto error_free_vers;
4152 }
4153 }
4154
4155 /* If we are loading an as-needed shared lib, save the symbol table
4156 state before we start adding symbols. If the lib turns out
4157 to be unneeded, restore the state. */
4158 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4159 {
4160 unsigned int i;
4161 size_t entsize;
4162
4163 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4164 {
4165 struct bfd_hash_entry *p;
4166 struct elf_link_hash_entry *h;
4167
4168 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4169 {
4170 h = (struct elf_link_hash_entry *) p;
4171 entsize += htab->root.table.entsize;
4172 if (h->root.type == bfd_link_hash_warning)
4173 entsize += htab->root.table.entsize;
4174 }
4175 }
4176
4177 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4178 old_tab = bfd_malloc (tabsize + entsize);
4179 if (old_tab == NULL)
4180 goto error_free_vers;
4181
4182 /* Remember the current objalloc pointer, so that all mem for
4183 symbols added can later be reclaimed. */
4184 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4185 if (alloc_mark == NULL)
4186 goto error_free_vers;
4187
4188 /* Make a special call to the linker "notice" function to
4189 tell it that we are about to handle an as-needed lib. */
4190 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4191 goto error_free_vers;
4192
4193 /* Clone the symbol table. Remember some pointers into the
4194 symbol table, and dynamic symbol count. */
4195 old_ent = (char *) old_tab + tabsize;
4196 memcpy (old_tab, htab->root.table.table, tabsize);
4197 old_undefs = htab->root.undefs;
4198 old_undefs_tail = htab->root.undefs_tail;
4199 old_table = htab->root.table.table;
4200 old_size = htab->root.table.size;
4201 old_count = htab->root.table.count;
4202 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4203 if (old_strtab == NULL)
4204 goto error_free_vers;
4205
4206 for (i = 0; i < htab->root.table.size; i++)
4207 {
4208 struct bfd_hash_entry *p;
4209 struct elf_link_hash_entry *h;
4210
4211 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4212 {
4213 memcpy (old_ent, p, htab->root.table.entsize);
4214 old_ent = (char *) old_ent + htab->root.table.entsize;
4215 h = (struct elf_link_hash_entry *) p;
4216 if (h->root.type == bfd_link_hash_warning)
4217 {
4218 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4219 old_ent = (char *) old_ent + htab->root.table.entsize;
4220 }
4221 }
4222 }
4223 }
4224
4225 weaks = NULL;
4226 ever = extversym != NULL ? extversym + extsymoff : NULL;
4227 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4228 isym < isymend;
4229 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4230 {
4231 int bind;
4232 bfd_vma value;
4233 asection *sec, *new_sec;
4234 flagword flags;
4235 const char *name;
4236 struct elf_link_hash_entry *h;
4237 struct elf_link_hash_entry *hi;
4238 bfd_boolean definition;
4239 bfd_boolean size_change_ok;
4240 bfd_boolean type_change_ok;
4241 bfd_boolean new_weakdef;
4242 bfd_boolean new_weak;
4243 bfd_boolean old_weak;
4244 bfd_boolean override;
4245 bfd_boolean common;
4246 bfd_boolean discarded;
4247 unsigned int old_alignment;
4248 bfd *old_bfd;
4249 bfd_boolean matched;
4250
4251 override = FALSE;
4252
4253 flags = BSF_NO_FLAGS;
4254 sec = NULL;
4255 value = isym->st_value;
4256 common = bed->common_definition (isym);
4257 discarded = FALSE;
4258
4259 bind = ELF_ST_BIND (isym->st_info);
4260 switch (bind)
4261 {
4262 case STB_LOCAL:
4263 /* This should be impossible, since ELF requires that all
4264 global symbols follow all local symbols, and that sh_info
4265 point to the first global symbol. Unfortunately, Irix 5
4266 screws this up. */
4267 continue;
4268
4269 case STB_GLOBAL:
4270 if (isym->st_shndx != SHN_UNDEF && !common)
4271 flags = BSF_GLOBAL;
4272 break;
4273
4274 case STB_WEAK:
4275 flags = BSF_WEAK;
4276 break;
4277
4278 case STB_GNU_UNIQUE:
4279 flags = BSF_GNU_UNIQUE;
4280 break;
4281
4282 default:
4283 /* Leave it up to the processor backend. */
4284 break;
4285 }
4286
4287 if (isym->st_shndx == SHN_UNDEF)
4288 sec = bfd_und_section_ptr;
4289 else if (isym->st_shndx == SHN_ABS)
4290 sec = bfd_abs_section_ptr;
4291 else if (isym->st_shndx == SHN_COMMON)
4292 {
4293 sec = bfd_com_section_ptr;
4294 /* What ELF calls the size we call the value. What ELF
4295 calls the value we call the alignment. */
4296 value = isym->st_size;
4297 }
4298 else
4299 {
4300 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4301 if (sec == NULL)
4302 sec = bfd_abs_section_ptr;
4303 else if (discarded_section (sec))
4304 {
4305 /* Symbols from discarded section are undefined. We keep
4306 its visibility. */
4307 sec = bfd_und_section_ptr;
4308 discarded = TRUE;
4309 isym->st_shndx = SHN_UNDEF;
4310 }
4311 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4312 value -= sec->vma;
4313 }
4314
4315 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4316 isym->st_name);
4317 if (name == NULL)
4318 goto error_free_vers;
4319
4320 if (isym->st_shndx == SHN_COMMON
4321 && (abfd->flags & BFD_PLUGIN) != 0)
4322 {
4323 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4324
4325 if (xc == NULL)
4326 {
4327 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4328 | SEC_EXCLUDE);
4329 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4330 if (xc == NULL)
4331 goto error_free_vers;
4332 }
4333 sec = xc;
4334 }
4335 else if (isym->st_shndx == SHN_COMMON
4336 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4337 && !bfd_link_relocatable (info))
4338 {
4339 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4340
4341 if (tcomm == NULL)
4342 {
4343 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4344 | SEC_LINKER_CREATED);
4345 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4346 if (tcomm == NULL)
4347 goto error_free_vers;
4348 }
4349 sec = tcomm;
4350 }
4351 else if (bed->elf_add_symbol_hook)
4352 {
4353 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4354 &sec, &value))
4355 goto error_free_vers;
4356
4357 /* The hook function sets the name to NULL if this symbol
4358 should be skipped for some reason. */
4359 if (name == NULL)
4360 continue;
4361 }
4362
4363 /* Sanity check that all possibilities were handled. */
4364 if (sec == NULL)
4365 {
4366 bfd_set_error (bfd_error_bad_value);
4367 goto error_free_vers;
4368 }
4369
4370 /* Silently discard TLS symbols from --just-syms. There's
4371 no way to combine a static TLS block with a new TLS block
4372 for this executable. */
4373 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4374 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4375 continue;
4376
4377 if (bfd_is_und_section (sec)
4378 || bfd_is_com_section (sec))
4379 definition = FALSE;
4380 else
4381 definition = TRUE;
4382
4383 size_change_ok = FALSE;
4384 type_change_ok = bed->type_change_ok;
4385 old_weak = FALSE;
4386 matched = FALSE;
4387 old_alignment = 0;
4388 old_bfd = NULL;
4389 new_sec = sec;
4390
4391 if (is_elf_hash_table (htab))
4392 {
4393 Elf_Internal_Versym iver;
4394 unsigned int vernum = 0;
4395 bfd_boolean skip;
4396
4397 if (ever == NULL)
4398 {
4399 if (info->default_imported_symver)
4400 /* Use the default symbol version created earlier. */
4401 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4402 else
4403 iver.vs_vers = 0;
4404 }
4405 else
4406 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4407
4408 vernum = iver.vs_vers & VERSYM_VERSION;
4409
4410 /* If this is a hidden symbol, or if it is not version
4411 1, we append the version name to the symbol name.
4412 However, we do not modify a non-hidden absolute symbol
4413 if it is not a function, because it might be the version
4414 symbol itself. FIXME: What if it isn't? */
4415 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4416 || (vernum > 1
4417 && (!bfd_is_abs_section (sec)
4418 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4419 {
4420 const char *verstr;
4421 size_t namelen, verlen, newlen;
4422 char *newname, *p;
4423
4424 if (isym->st_shndx != SHN_UNDEF)
4425 {
4426 if (vernum > elf_tdata (abfd)->cverdefs)
4427 verstr = NULL;
4428 else if (vernum > 1)
4429 verstr =
4430 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4431 else
4432 verstr = "";
4433
4434 if (verstr == NULL)
4435 {
4436 _bfd_error_handler
4437 /* xgettext:c-format */
4438 (_("%B: %s: invalid version %u (max %d)"),
4439 abfd, name, vernum,
4440 elf_tdata (abfd)->cverdefs);
4441 bfd_set_error (bfd_error_bad_value);
4442 goto error_free_vers;
4443 }
4444 }
4445 else
4446 {
4447 /* We cannot simply test for the number of
4448 entries in the VERNEED section since the
4449 numbers for the needed versions do not start
4450 at 0. */
4451 Elf_Internal_Verneed *t;
4452
4453 verstr = NULL;
4454 for (t = elf_tdata (abfd)->verref;
4455 t != NULL;
4456 t = t->vn_nextref)
4457 {
4458 Elf_Internal_Vernaux *a;
4459
4460 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4461 {
4462 if (a->vna_other == vernum)
4463 {
4464 verstr = a->vna_nodename;
4465 break;
4466 }
4467 }
4468 if (a != NULL)
4469 break;
4470 }
4471 if (verstr == NULL)
4472 {
4473 _bfd_error_handler
4474 /* xgettext:c-format */
4475 (_("%B: %s: invalid needed version %d"),
4476 abfd, name, vernum);
4477 bfd_set_error (bfd_error_bad_value);
4478 goto error_free_vers;
4479 }
4480 }
4481
4482 namelen = strlen (name);
4483 verlen = strlen (verstr);
4484 newlen = namelen + verlen + 2;
4485 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4486 && isym->st_shndx != SHN_UNDEF)
4487 ++newlen;
4488
4489 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4490 if (newname == NULL)
4491 goto error_free_vers;
4492 memcpy (newname, name, namelen);
4493 p = newname + namelen;
4494 *p++ = ELF_VER_CHR;
4495 /* If this is a defined non-hidden version symbol,
4496 we add another @ to the name. This indicates the
4497 default version of the symbol. */
4498 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4499 && isym->st_shndx != SHN_UNDEF)
4500 *p++ = ELF_VER_CHR;
4501 memcpy (p, verstr, verlen + 1);
4502
4503 name = newname;
4504 }
4505
4506 /* If this symbol has default visibility and the user has
4507 requested we not re-export it, then mark it as hidden. */
4508 if (!bfd_is_und_section (sec)
4509 && !dynamic
4510 && abfd->no_export
4511 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4512 isym->st_other = (STV_HIDDEN
4513 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4514
4515 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4516 sym_hash, &old_bfd, &old_weak,
4517 &old_alignment, &skip, &override,
4518 &type_change_ok, &size_change_ok,
4519 &matched))
4520 goto error_free_vers;
4521
4522 if (skip)
4523 continue;
4524
4525 /* Override a definition only if the new symbol matches the
4526 existing one. */
4527 if (override && matched)
4528 definition = FALSE;
4529
4530 h = *sym_hash;
4531 while (h->root.type == bfd_link_hash_indirect
4532 || h->root.type == bfd_link_hash_warning)
4533 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4534
4535 if (elf_tdata (abfd)->verdef != NULL
4536 && vernum > 1
4537 && definition)
4538 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4539 }
4540
4541 if (! (_bfd_generic_link_add_one_symbol
4542 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4543 (struct bfd_link_hash_entry **) sym_hash)))
4544 goto error_free_vers;
4545
4546 if ((flags & BSF_GNU_UNIQUE)
4547 && (abfd->flags & DYNAMIC) == 0
4548 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
4549 elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_unique;
4550
4551 h = *sym_hash;
4552 /* We need to make sure that indirect symbol dynamic flags are
4553 updated. */
4554 hi = h;
4555 while (h->root.type == bfd_link_hash_indirect
4556 || h->root.type == bfd_link_hash_warning)
4557 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4558
4559 /* Setting the index to -3 tells elf_link_output_extsym that
4560 this symbol is defined in a discarded section. */
4561 if (discarded)
4562 h->indx = -3;
4563
4564 *sym_hash = h;
4565
4566 new_weak = (flags & BSF_WEAK) != 0;
4567 new_weakdef = FALSE;
4568 if (dynamic
4569 && definition
4570 && new_weak
4571 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4572 && is_elf_hash_table (htab)
4573 && h->u.weakdef == NULL)
4574 {
4575 /* Keep a list of all weak defined non function symbols from
4576 a dynamic object, using the weakdef field. Later in this
4577 function we will set the weakdef field to the correct
4578 value. We only put non-function symbols from dynamic
4579 objects on this list, because that happens to be the only
4580 time we need to know the normal symbol corresponding to a
4581 weak symbol, and the information is time consuming to
4582 figure out. If the weakdef field is not already NULL,
4583 then this symbol was already defined by some previous
4584 dynamic object, and we will be using that previous
4585 definition anyhow. */
4586
4587 h->u.weakdef = weaks;
4588 weaks = h;
4589 new_weakdef = TRUE;
4590 }
4591
4592 /* Set the alignment of a common symbol. */
4593 if ((common || bfd_is_com_section (sec))
4594 && h->root.type == bfd_link_hash_common)
4595 {
4596 unsigned int align;
4597
4598 if (common)
4599 align = bfd_log2 (isym->st_value);
4600 else
4601 {
4602 /* The new symbol is a common symbol in a shared object.
4603 We need to get the alignment from the section. */
4604 align = new_sec->alignment_power;
4605 }
4606 if (align > old_alignment)
4607 h->root.u.c.p->alignment_power = align;
4608 else
4609 h->root.u.c.p->alignment_power = old_alignment;
4610 }
4611
4612 if (is_elf_hash_table (htab))
4613 {
4614 /* Set a flag in the hash table entry indicating the type of
4615 reference or definition we just found. A dynamic symbol
4616 is one which is referenced or defined by both a regular
4617 object and a shared object. */
4618 bfd_boolean dynsym = FALSE;
4619
4620 /* Plugin symbols aren't normal. Don't set def_regular or
4621 ref_regular for them, or make them dynamic. */
4622 if ((abfd->flags & BFD_PLUGIN) != 0)
4623 ;
4624 else if (! dynamic)
4625 {
4626 if (! definition)
4627 {
4628 h->ref_regular = 1;
4629 if (bind != STB_WEAK)
4630 h->ref_regular_nonweak = 1;
4631 }
4632 else
4633 {
4634 h->def_regular = 1;
4635 if (h->def_dynamic)
4636 {
4637 h->def_dynamic = 0;
4638 h->ref_dynamic = 1;
4639 }
4640 }
4641
4642 /* If the indirect symbol has been forced local, don't
4643 make the real symbol dynamic. */
4644 if ((h == hi || !hi->forced_local)
4645 && (bfd_link_dll (info)
4646 || h->def_dynamic
4647 || h->ref_dynamic))
4648 dynsym = TRUE;
4649 }
4650 else
4651 {
4652 if (! definition)
4653 {
4654 h->ref_dynamic = 1;
4655 hi->ref_dynamic = 1;
4656 }
4657 else
4658 {
4659 h->def_dynamic = 1;
4660 hi->def_dynamic = 1;
4661 }
4662
4663 /* If the indirect symbol has been forced local, don't
4664 make the real symbol dynamic. */
4665 if ((h == hi || !hi->forced_local)
4666 && (h->def_regular
4667 || h->ref_regular
4668 || (h->u.weakdef != NULL
4669 && ! new_weakdef
4670 && h->u.weakdef->dynindx != -1)))
4671 dynsym = TRUE;
4672 }
4673
4674 /* Check to see if we need to add an indirect symbol for
4675 the default name. */
4676 if (definition
4677 || (!override && h->root.type == bfd_link_hash_common))
4678 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4679 sec, value, &old_bfd, &dynsym))
4680 goto error_free_vers;
4681
4682 /* Check the alignment when a common symbol is involved. This
4683 can change when a common symbol is overridden by a normal
4684 definition or a common symbol is ignored due to the old
4685 normal definition. We need to make sure the maximum
4686 alignment is maintained. */
4687 if ((old_alignment || common)
4688 && h->root.type != bfd_link_hash_common)
4689 {
4690 unsigned int common_align;
4691 unsigned int normal_align;
4692 unsigned int symbol_align;
4693 bfd *normal_bfd;
4694 bfd *common_bfd;
4695
4696 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4697 || h->root.type == bfd_link_hash_defweak);
4698
4699 symbol_align = ffs (h->root.u.def.value) - 1;
4700 if (h->root.u.def.section->owner != NULL
4701 && (h->root.u.def.section->owner->flags
4702 & (DYNAMIC | BFD_PLUGIN)) == 0)
4703 {
4704 normal_align = h->root.u.def.section->alignment_power;
4705 if (normal_align > symbol_align)
4706 normal_align = symbol_align;
4707 }
4708 else
4709 normal_align = symbol_align;
4710
4711 if (old_alignment)
4712 {
4713 common_align = old_alignment;
4714 common_bfd = old_bfd;
4715 normal_bfd = abfd;
4716 }
4717 else
4718 {
4719 common_align = bfd_log2 (isym->st_value);
4720 common_bfd = abfd;
4721 normal_bfd = old_bfd;
4722 }
4723
4724 if (normal_align < common_align)
4725 {
4726 /* PR binutils/2735 */
4727 if (normal_bfd == NULL)
4728 _bfd_error_handler
4729 /* xgettext:c-format */
4730 (_("Warning: alignment %u of common symbol `%s' in %B is"
4731 " greater than the alignment (%u) of its section %A"),
4732 1 << common_align, name, common_bfd,
4733 1 << normal_align, h->root.u.def.section);
4734 else
4735 _bfd_error_handler
4736 /* xgettext:c-format */
4737 (_("Warning: alignment %u of symbol `%s' in %B"
4738 " is smaller than %u in %B"),
4739 1 << normal_align, name, normal_bfd,
4740 1 << common_align, common_bfd);
4741 }
4742 }
4743
4744 /* Remember the symbol size if it isn't undefined. */
4745 if (isym->st_size != 0
4746 && isym->st_shndx != SHN_UNDEF
4747 && (definition || h->size == 0))
4748 {
4749 if (h->size != 0
4750 && h->size != isym->st_size
4751 && ! size_change_ok)
4752 _bfd_error_handler
4753 /* xgettext:c-format */
4754 (_("Warning: size of symbol `%s' changed"
4755 " from %Lu in %B to %Lu in %B"),
4756 name, h->size, old_bfd, isym->st_size, abfd);
4757
4758 h->size = isym->st_size;
4759 }
4760
4761 /* If this is a common symbol, then we always want H->SIZE
4762 to be the size of the common symbol. The code just above
4763 won't fix the size if a common symbol becomes larger. We
4764 don't warn about a size change here, because that is
4765 covered by --warn-common. Allow changes between different
4766 function types. */
4767 if (h->root.type == bfd_link_hash_common)
4768 h->size = h->root.u.c.size;
4769
4770 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4771 && ((definition && !new_weak)
4772 || (old_weak && h->root.type == bfd_link_hash_common)
4773 || h->type == STT_NOTYPE))
4774 {
4775 unsigned int type = ELF_ST_TYPE (isym->st_info);
4776
4777 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4778 symbol. */
4779 if (type == STT_GNU_IFUNC
4780 && (abfd->flags & DYNAMIC) != 0)
4781 type = STT_FUNC;
4782
4783 if (h->type != type)
4784 {
4785 if (h->type != STT_NOTYPE && ! type_change_ok)
4786 /* xgettext:c-format */
4787 _bfd_error_handler
4788 (_("Warning: type of symbol `%s' changed"
4789 " from %d to %d in %B"),
4790 name, h->type, type, abfd);
4791
4792 h->type = type;
4793 }
4794 }
4795
4796 /* Merge st_other field. */
4797 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4798
4799 /* We don't want to make debug symbol dynamic. */
4800 if (definition
4801 && (sec->flags & SEC_DEBUGGING)
4802 && !bfd_link_relocatable (info))
4803 dynsym = FALSE;
4804
4805 /* Nor should we make plugin symbols dynamic. */
4806 if ((abfd->flags & BFD_PLUGIN) != 0)
4807 dynsym = FALSE;
4808
4809 if (definition)
4810 {
4811 h->target_internal = isym->st_target_internal;
4812 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4813 }
4814
4815 if (definition && !dynamic)
4816 {
4817 char *p = strchr (name, ELF_VER_CHR);
4818 if (p != NULL && p[1] != ELF_VER_CHR)
4819 {
4820 /* Queue non-default versions so that .symver x, x@FOO
4821 aliases can be checked. */
4822 if (!nondeflt_vers)
4823 {
4824 amt = ((isymend - isym + 1)
4825 * sizeof (struct elf_link_hash_entry *));
4826 nondeflt_vers
4827 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4828 if (!nondeflt_vers)
4829 goto error_free_vers;
4830 }
4831 nondeflt_vers[nondeflt_vers_cnt++] = h;
4832 }
4833 }
4834
4835 if (dynsym && h->dynindx == -1)
4836 {
4837 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4838 goto error_free_vers;
4839 if (h->u.weakdef != NULL
4840 && ! new_weakdef
4841 && h->u.weakdef->dynindx == -1)
4842 {
4843 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4844 goto error_free_vers;
4845 }
4846 }
4847 else if (h->dynindx != -1)
4848 /* If the symbol already has a dynamic index, but
4849 visibility says it should not be visible, turn it into
4850 a local symbol. */
4851 switch (ELF_ST_VISIBILITY (h->other))
4852 {
4853 case STV_INTERNAL:
4854 case STV_HIDDEN:
4855 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4856 dynsym = FALSE;
4857 break;
4858 }
4859
4860 /* Don't add DT_NEEDED for references from the dummy bfd nor
4861 for unmatched symbol. */
4862 if (!add_needed
4863 && matched
4864 && definition
4865 && ((dynsym
4866 && h->ref_regular_nonweak
4867 && (old_bfd == NULL
4868 || (old_bfd->flags & BFD_PLUGIN) == 0))
4869 || (h->ref_dynamic_nonweak
4870 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4871 && !on_needed_list (elf_dt_name (abfd),
4872 htab->needed, NULL))))
4873 {
4874 int ret;
4875 const char *soname = elf_dt_name (abfd);
4876
4877 info->callbacks->minfo ("%!", soname, old_bfd,
4878 h->root.root.string);
4879
4880 /* A symbol from a library loaded via DT_NEEDED of some
4881 other library is referenced by a regular object.
4882 Add a DT_NEEDED entry for it. Issue an error if
4883 --no-add-needed is used and the reference was not
4884 a weak one. */
4885 if (old_bfd != NULL
4886 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4887 {
4888 _bfd_error_handler
4889 /* xgettext:c-format */
4890 (_("%B: undefined reference to symbol '%s'"),
4891 old_bfd, name);
4892 bfd_set_error (bfd_error_missing_dso);
4893 goto error_free_vers;
4894 }
4895
4896 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4897 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4898
4899 add_needed = TRUE;
4900 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4901 if (ret < 0)
4902 goto error_free_vers;
4903
4904 BFD_ASSERT (ret == 0);
4905 }
4906 }
4907 }
4908
4909 if (extversym != NULL)
4910 {
4911 free (extversym);
4912 extversym = NULL;
4913 }
4914
4915 if (isymbuf != NULL)
4916 {
4917 free (isymbuf);
4918 isymbuf = NULL;
4919 }
4920
4921 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4922 {
4923 unsigned int i;
4924
4925 /* Restore the symbol table. */
4926 old_ent = (char *) old_tab + tabsize;
4927 memset (elf_sym_hashes (abfd), 0,
4928 extsymcount * sizeof (struct elf_link_hash_entry *));
4929 htab->root.table.table = old_table;
4930 htab->root.table.size = old_size;
4931 htab->root.table.count = old_count;
4932 memcpy (htab->root.table.table, old_tab, tabsize);
4933 htab->root.undefs = old_undefs;
4934 htab->root.undefs_tail = old_undefs_tail;
4935 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
4936 free (old_strtab);
4937 old_strtab = NULL;
4938 for (i = 0; i < htab->root.table.size; i++)
4939 {
4940 struct bfd_hash_entry *p;
4941 struct elf_link_hash_entry *h;
4942 bfd_size_type size;
4943 unsigned int alignment_power;
4944 unsigned int non_ir_ref_dynamic;
4945
4946 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4947 {
4948 h = (struct elf_link_hash_entry *) p;
4949 if (h->root.type == bfd_link_hash_warning)
4950 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4951
4952 /* Preserve the maximum alignment and size for common
4953 symbols even if this dynamic lib isn't on DT_NEEDED
4954 since it can still be loaded at run time by another
4955 dynamic lib. */
4956 if (h->root.type == bfd_link_hash_common)
4957 {
4958 size = h->root.u.c.size;
4959 alignment_power = h->root.u.c.p->alignment_power;
4960 }
4961 else
4962 {
4963 size = 0;
4964 alignment_power = 0;
4965 }
4966 /* Preserve non_ir_ref_dynamic so that this symbol
4967 will be exported when the dynamic lib becomes needed
4968 in the second pass. */
4969 non_ir_ref_dynamic = h->root.non_ir_ref_dynamic;
4970 memcpy (p, old_ent, htab->root.table.entsize);
4971 old_ent = (char *) old_ent + htab->root.table.entsize;
4972 h = (struct elf_link_hash_entry *) p;
4973 if (h->root.type == bfd_link_hash_warning)
4974 {
4975 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4976 old_ent = (char *) old_ent + htab->root.table.entsize;
4977 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4978 }
4979 if (h->root.type == bfd_link_hash_common)
4980 {
4981 if (size > h->root.u.c.size)
4982 h->root.u.c.size = size;
4983 if (alignment_power > h->root.u.c.p->alignment_power)
4984 h->root.u.c.p->alignment_power = alignment_power;
4985 }
4986 h->root.non_ir_ref_dynamic = non_ir_ref_dynamic;
4987 }
4988 }
4989
4990 /* Make a special call to the linker "notice" function to
4991 tell it that symbols added for crefs may need to be removed. */
4992 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4993 goto error_free_vers;
4994
4995 free (old_tab);
4996 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4997 alloc_mark);
4998 if (nondeflt_vers != NULL)
4999 free (nondeflt_vers);
5000 return TRUE;
5001 }
5002
5003 if (old_tab != NULL)
5004 {
5005 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
5006 goto error_free_vers;
5007 free (old_tab);
5008 old_tab = NULL;
5009 }
5010
5011 /* Now that all the symbols from this input file are created, if
5012 not performing a relocatable link, handle .symver foo, foo@BAR
5013 such that any relocs against foo become foo@BAR. */
5014 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
5015 {
5016 size_t cnt, symidx;
5017
5018 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
5019 {
5020 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
5021 char *shortname, *p;
5022
5023 p = strchr (h->root.root.string, ELF_VER_CHR);
5024 if (p == NULL
5025 || (h->root.type != bfd_link_hash_defined
5026 && h->root.type != bfd_link_hash_defweak))
5027 continue;
5028
5029 amt = p - h->root.root.string;
5030 shortname = (char *) bfd_malloc (amt + 1);
5031 if (!shortname)
5032 goto error_free_vers;
5033 memcpy (shortname, h->root.root.string, amt);
5034 shortname[amt] = '\0';
5035
5036 hi = (struct elf_link_hash_entry *)
5037 bfd_link_hash_lookup (&htab->root, shortname,
5038 FALSE, FALSE, FALSE);
5039 if (hi != NULL
5040 && hi->root.type == h->root.type
5041 && hi->root.u.def.value == h->root.u.def.value
5042 && hi->root.u.def.section == h->root.u.def.section)
5043 {
5044 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
5045 hi->root.type = bfd_link_hash_indirect;
5046 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
5047 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
5048 sym_hash = elf_sym_hashes (abfd);
5049 if (sym_hash)
5050 for (symidx = 0; symidx < extsymcount; ++symidx)
5051 if (sym_hash[symidx] == hi)
5052 {
5053 sym_hash[symidx] = h;
5054 break;
5055 }
5056 }
5057 free (shortname);
5058 }
5059 free (nondeflt_vers);
5060 nondeflt_vers = NULL;
5061 }
5062
5063 /* Now set the weakdefs field correctly for all the weak defined
5064 symbols we found. The only way to do this is to search all the
5065 symbols. Since we only need the information for non functions in
5066 dynamic objects, that's the only time we actually put anything on
5067 the list WEAKS. We need this information so that if a regular
5068 object refers to a symbol defined weakly in a dynamic object, the
5069 real symbol in the dynamic object is also put in the dynamic
5070 symbols; we also must arrange for both symbols to point to the
5071 same memory location. We could handle the general case of symbol
5072 aliasing, but a general symbol alias can only be generated in
5073 assembler code, handling it correctly would be very time
5074 consuming, and other ELF linkers don't handle general aliasing
5075 either. */
5076 if (weaks != NULL)
5077 {
5078 struct elf_link_hash_entry **hpp;
5079 struct elf_link_hash_entry **hppend;
5080 struct elf_link_hash_entry **sorted_sym_hash;
5081 struct elf_link_hash_entry *h;
5082 size_t sym_count;
5083
5084 /* Since we have to search the whole symbol list for each weak
5085 defined symbol, search time for N weak defined symbols will be
5086 O(N^2). Binary search will cut it down to O(NlogN). */
5087 amt = extsymcount;
5088 amt *= sizeof (struct elf_link_hash_entry *);
5089 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
5090 if (sorted_sym_hash == NULL)
5091 goto error_return;
5092 sym_hash = sorted_sym_hash;
5093 hpp = elf_sym_hashes (abfd);
5094 hppend = hpp + extsymcount;
5095 sym_count = 0;
5096 for (; hpp < hppend; hpp++)
5097 {
5098 h = *hpp;
5099 if (h != NULL
5100 && h->root.type == bfd_link_hash_defined
5101 && !bed->is_function_type (h->type))
5102 {
5103 *sym_hash = h;
5104 sym_hash++;
5105 sym_count++;
5106 }
5107 }
5108
5109 qsort (sorted_sym_hash, sym_count,
5110 sizeof (struct elf_link_hash_entry *),
5111 elf_sort_symbol);
5112
5113 while (weaks != NULL)
5114 {
5115 struct elf_link_hash_entry *hlook;
5116 asection *slook;
5117 bfd_vma vlook;
5118 size_t i, j, idx = 0;
5119
5120 hlook = weaks;
5121 weaks = hlook->u.weakdef;
5122 hlook->u.weakdef = NULL;
5123
5124 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
5125 || hlook->root.type == bfd_link_hash_defweak
5126 || hlook->root.type == bfd_link_hash_common
5127 || hlook->root.type == bfd_link_hash_indirect);
5128 slook = hlook->root.u.def.section;
5129 vlook = hlook->root.u.def.value;
5130
5131 i = 0;
5132 j = sym_count;
5133 while (i != j)
5134 {
5135 bfd_signed_vma vdiff;
5136 idx = (i + j) / 2;
5137 h = sorted_sym_hash[idx];
5138 vdiff = vlook - h->root.u.def.value;
5139 if (vdiff < 0)
5140 j = idx;
5141 else if (vdiff > 0)
5142 i = idx + 1;
5143 else
5144 {
5145 int sdiff = slook->id - h->root.u.def.section->id;
5146 if (sdiff < 0)
5147 j = idx;
5148 else if (sdiff > 0)
5149 i = idx + 1;
5150 else
5151 break;
5152 }
5153 }
5154
5155 /* We didn't find a value/section match. */
5156 if (i == j)
5157 continue;
5158
5159 /* With multiple aliases, or when the weak symbol is already
5160 strongly defined, we have multiple matching symbols and
5161 the binary search above may land on any of them. Step
5162 one past the matching symbol(s). */
5163 while (++idx != j)
5164 {
5165 h = sorted_sym_hash[idx];
5166 if (h->root.u.def.section != slook
5167 || h->root.u.def.value != vlook)
5168 break;
5169 }
5170
5171 /* Now look back over the aliases. Since we sorted by size
5172 as well as value and section, we'll choose the one with
5173 the largest size. */
5174 while (idx-- != i)
5175 {
5176 h = sorted_sym_hash[idx];
5177
5178 /* Stop if value or section doesn't match. */
5179 if (h->root.u.def.section != slook
5180 || h->root.u.def.value != vlook)
5181 break;
5182 else if (h != hlook)
5183 {
5184 hlook->u.weakdef = h;
5185
5186 /* If the weak definition is in the list of dynamic
5187 symbols, make sure the real definition is put
5188 there as well. */
5189 if (hlook->dynindx != -1 && h->dynindx == -1)
5190 {
5191 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5192 {
5193 err_free_sym_hash:
5194 free (sorted_sym_hash);
5195 goto error_return;
5196 }
5197 }
5198
5199 /* If the real definition is in the list of dynamic
5200 symbols, make sure the weak definition is put
5201 there as well. If we don't do this, then the
5202 dynamic loader might not merge the entries for the
5203 real definition and the weak definition. */
5204 if (h->dynindx != -1 && hlook->dynindx == -1)
5205 {
5206 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5207 goto err_free_sym_hash;
5208 }
5209 break;
5210 }
5211 }
5212 }
5213
5214 free (sorted_sym_hash);
5215 }
5216
5217 if (bed->check_directives
5218 && !(*bed->check_directives) (abfd, info))
5219 return FALSE;
5220
5221 if (!info->check_relocs_after_open_input
5222 && !_bfd_elf_link_check_relocs (abfd, info))
5223 return FALSE;
5224
5225 /* If this is a non-traditional link, try to optimize the handling
5226 of the .stab/.stabstr sections. */
5227 if (! dynamic
5228 && ! info->traditional_format
5229 && is_elf_hash_table (htab)
5230 && (info->strip != strip_all && info->strip != strip_debugger))
5231 {
5232 asection *stabstr;
5233
5234 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5235 if (stabstr != NULL)
5236 {
5237 bfd_size_type string_offset = 0;
5238 asection *stab;
5239
5240 for (stab = abfd->sections; stab; stab = stab->next)
5241 if (CONST_STRNEQ (stab->name, ".stab")
5242 && (!stab->name[5] ||
5243 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5244 && (stab->flags & SEC_MERGE) == 0
5245 && !bfd_is_abs_section (stab->output_section))
5246 {
5247 struct bfd_elf_section_data *secdata;
5248
5249 secdata = elf_section_data (stab);
5250 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5251 stabstr, &secdata->sec_info,
5252 &string_offset))
5253 goto error_return;
5254 if (secdata->sec_info)
5255 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5256 }
5257 }
5258 }
5259
5260 if (is_elf_hash_table (htab) && add_needed)
5261 {
5262 /* Add this bfd to the loaded list. */
5263 struct elf_link_loaded_list *n;
5264
5265 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5266 if (n == NULL)
5267 goto error_return;
5268 n->abfd = abfd;
5269 n->next = htab->loaded;
5270 htab->loaded = n;
5271 }
5272
5273 return TRUE;
5274
5275 error_free_vers:
5276 if (old_tab != NULL)
5277 free (old_tab);
5278 if (old_strtab != NULL)
5279 free (old_strtab);
5280 if (nondeflt_vers != NULL)
5281 free (nondeflt_vers);
5282 if (extversym != NULL)
5283 free (extversym);
5284 error_free_sym:
5285 if (isymbuf != NULL)
5286 free (isymbuf);
5287 error_return:
5288 return FALSE;
5289 }
5290
5291 /* Return the linker hash table entry of a symbol that might be
5292 satisfied by an archive symbol. Return -1 on error. */
5293
5294 struct elf_link_hash_entry *
5295 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5296 struct bfd_link_info *info,
5297 const char *name)
5298 {
5299 struct elf_link_hash_entry *h;
5300 char *p, *copy;
5301 size_t len, first;
5302
5303 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5304 if (h != NULL)
5305 return h;
5306
5307 /* If this is a default version (the name contains @@), look up the
5308 symbol again with only one `@' as well as without the version.
5309 The effect is that references to the symbol with and without the
5310 version will be matched by the default symbol in the archive. */
5311
5312 p = strchr (name, ELF_VER_CHR);
5313 if (p == NULL || p[1] != ELF_VER_CHR)
5314 return h;
5315
5316 /* First check with only one `@'. */
5317 len = strlen (name);
5318 copy = (char *) bfd_alloc (abfd, len);
5319 if (copy == NULL)
5320 return (struct elf_link_hash_entry *) 0 - 1;
5321
5322 first = p - name + 1;
5323 memcpy (copy, name, first);
5324 memcpy (copy + first, name + first + 1, len - first);
5325
5326 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5327 if (h == NULL)
5328 {
5329 /* We also need to check references to the symbol without the
5330 version. */
5331 copy[first - 1] = '\0';
5332 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5333 FALSE, FALSE, TRUE);
5334 }
5335
5336 bfd_release (abfd, copy);
5337 return h;
5338 }
5339
5340 /* Add symbols from an ELF archive file to the linker hash table. We
5341 don't use _bfd_generic_link_add_archive_symbols because we need to
5342 handle versioned symbols.
5343
5344 Fortunately, ELF archive handling is simpler than that done by
5345 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5346 oddities. In ELF, if we find a symbol in the archive map, and the
5347 symbol is currently undefined, we know that we must pull in that
5348 object file.
5349
5350 Unfortunately, we do have to make multiple passes over the symbol
5351 table until nothing further is resolved. */
5352
5353 static bfd_boolean
5354 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5355 {
5356 symindex c;
5357 unsigned char *included = NULL;
5358 carsym *symdefs;
5359 bfd_boolean loop;
5360 bfd_size_type amt;
5361 const struct elf_backend_data *bed;
5362 struct elf_link_hash_entry * (*archive_symbol_lookup)
5363 (bfd *, struct bfd_link_info *, const char *);
5364
5365 if (! bfd_has_map (abfd))
5366 {
5367 /* An empty archive is a special case. */
5368 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5369 return TRUE;
5370 bfd_set_error (bfd_error_no_armap);
5371 return FALSE;
5372 }
5373
5374 /* Keep track of all symbols we know to be already defined, and all
5375 files we know to be already included. This is to speed up the
5376 second and subsequent passes. */
5377 c = bfd_ardata (abfd)->symdef_count;
5378 if (c == 0)
5379 return TRUE;
5380 amt = c;
5381 amt *= sizeof (*included);
5382 included = (unsigned char *) bfd_zmalloc (amt);
5383 if (included == NULL)
5384 return FALSE;
5385
5386 symdefs = bfd_ardata (abfd)->symdefs;
5387 bed = get_elf_backend_data (abfd);
5388 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5389
5390 do
5391 {
5392 file_ptr last;
5393 symindex i;
5394 carsym *symdef;
5395 carsym *symdefend;
5396
5397 loop = FALSE;
5398 last = -1;
5399
5400 symdef = symdefs;
5401 symdefend = symdef + c;
5402 for (i = 0; symdef < symdefend; symdef++, i++)
5403 {
5404 struct elf_link_hash_entry *h;
5405 bfd *element;
5406 struct bfd_link_hash_entry *undefs_tail;
5407 symindex mark;
5408
5409 if (included[i])
5410 continue;
5411 if (symdef->file_offset == last)
5412 {
5413 included[i] = TRUE;
5414 continue;
5415 }
5416
5417 h = archive_symbol_lookup (abfd, info, symdef->name);
5418 if (h == (struct elf_link_hash_entry *) 0 - 1)
5419 goto error_return;
5420
5421 if (h == NULL)
5422 continue;
5423
5424 if (h->root.type == bfd_link_hash_common)
5425 {
5426 /* We currently have a common symbol. The archive map contains
5427 a reference to this symbol, so we may want to include it. We
5428 only want to include it however, if this archive element
5429 contains a definition of the symbol, not just another common
5430 declaration of it.
5431
5432 Unfortunately some archivers (including GNU ar) will put
5433 declarations of common symbols into their archive maps, as
5434 well as real definitions, so we cannot just go by the archive
5435 map alone. Instead we must read in the element's symbol
5436 table and check that to see what kind of symbol definition
5437 this is. */
5438 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5439 continue;
5440 }
5441 else if (h->root.type != bfd_link_hash_undefined)
5442 {
5443 if (h->root.type != bfd_link_hash_undefweak)
5444 /* Symbol must be defined. Don't check it again. */
5445 included[i] = TRUE;
5446 continue;
5447 }
5448
5449 /* We need to include this archive member. */
5450 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5451 if (element == NULL)
5452 goto error_return;
5453
5454 if (! bfd_check_format (element, bfd_object))
5455 goto error_return;
5456
5457 undefs_tail = info->hash->undefs_tail;
5458
5459 if (!(*info->callbacks
5460 ->add_archive_element) (info, element, symdef->name, &element))
5461 continue;
5462 if (!bfd_link_add_symbols (element, info))
5463 goto error_return;
5464
5465 /* If there are any new undefined symbols, we need to make
5466 another pass through the archive in order to see whether
5467 they can be defined. FIXME: This isn't perfect, because
5468 common symbols wind up on undefs_tail and because an
5469 undefined symbol which is defined later on in this pass
5470 does not require another pass. This isn't a bug, but it
5471 does make the code less efficient than it could be. */
5472 if (undefs_tail != info->hash->undefs_tail)
5473 loop = TRUE;
5474
5475 /* Look backward to mark all symbols from this object file
5476 which we have already seen in this pass. */
5477 mark = i;
5478 do
5479 {
5480 included[mark] = TRUE;
5481 if (mark == 0)
5482 break;
5483 --mark;
5484 }
5485 while (symdefs[mark].file_offset == symdef->file_offset);
5486
5487 /* We mark subsequent symbols from this object file as we go
5488 on through the loop. */
5489 last = symdef->file_offset;
5490 }
5491 }
5492 while (loop);
5493
5494 free (included);
5495
5496 return TRUE;
5497
5498 error_return:
5499 if (included != NULL)
5500 free (included);
5501 return FALSE;
5502 }
5503
5504 /* Given an ELF BFD, add symbols to the global hash table as
5505 appropriate. */
5506
5507 bfd_boolean
5508 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5509 {
5510 switch (bfd_get_format (abfd))
5511 {
5512 case bfd_object:
5513 return elf_link_add_object_symbols (abfd, info);
5514 case bfd_archive:
5515 return elf_link_add_archive_symbols (abfd, info);
5516 default:
5517 bfd_set_error (bfd_error_wrong_format);
5518 return FALSE;
5519 }
5520 }
5521 \f
5522 struct hash_codes_info
5523 {
5524 unsigned long *hashcodes;
5525 bfd_boolean error;
5526 };
5527
5528 /* This function will be called though elf_link_hash_traverse to store
5529 all hash value of the exported symbols in an array. */
5530
5531 static bfd_boolean
5532 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5533 {
5534 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5535 const char *name;
5536 unsigned long ha;
5537 char *alc = NULL;
5538
5539 /* Ignore indirect symbols. These are added by the versioning code. */
5540 if (h->dynindx == -1)
5541 return TRUE;
5542
5543 name = h->root.root.string;
5544 if (h->versioned >= versioned)
5545 {
5546 char *p = strchr (name, ELF_VER_CHR);
5547 if (p != NULL)
5548 {
5549 alc = (char *) bfd_malloc (p - name + 1);
5550 if (alc == NULL)
5551 {
5552 inf->error = TRUE;
5553 return FALSE;
5554 }
5555 memcpy (alc, name, p - name);
5556 alc[p - name] = '\0';
5557 name = alc;
5558 }
5559 }
5560
5561 /* Compute the hash value. */
5562 ha = bfd_elf_hash (name);
5563
5564 /* Store the found hash value in the array given as the argument. */
5565 *(inf->hashcodes)++ = ha;
5566
5567 /* And store it in the struct so that we can put it in the hash table
5568 later. */
5569 h->u.elf_hash_value = ha;
5570
5571 if (alc != NULL)
5572 free (alc);
5573
5574 return TRUE;
5575 }
5576
5577 struct collect_gnu_hash_codes
5578 {
5579 bfd *output_bfd;
5580 const struct elf_backend_data *bed;
5581 unsigned long int nsyms;
5582 unsigned long int maskbits;
5583 unsigned long int *hashcodes;
5584 unsigned long int *hashval;
5585 unsigned long int *indx;
5586 unsigned long int *counts;
5587 bfd_vma *bitmask;
5588 bfd_byte *contents;
5589 long int min_dynindx;
5590 unsigned long int bucketcount;
5591 unsigned long int symindx;
5592 long int local_indx;
5593 long int shift1, shift2;
5594 unsigned long int mask;
5595 bfd_boolean error;
5596 };
5597
5598 /* This function will be called though elf_link_hash_traverse to store
5599 all hash value of the exported symbols in an array. */
5600
5601 static bfd_boolean
5602 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5603 {
5604 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5605 const char *name;
5606 unsigned long ha;
5607 char *alc = NULL;
5608
5609 /* Ignore indirect symbols. These are added by the versioning code. */
5610 if (h->dynindx == -1)
5611 return TRUE;
5612
5613 /* Ignore also local symbols and undefined symbols. */
5614 if (! (*s->bed->elf_hash_symbol) (h))
5615 return TRUE;
5616
5617 name = h->root.root.string;
5618 if (h->versioned >= versioned)
5619 {
5620 char *p = strchr (name, ELF_VER_CHR);
5621 if (p != NULL)
5622 {
5623 alc = (char *) bfd_malloc (p - name + 1);
5624 if (alc == NULL)
5625 {
5626 s->error = TRUE;
5627 return FALSE;
5628 }
5629 memcpy (alc, name, p - name);
5630 alc[p - name] = '\0';
5631 name = alc;
5632 }
5633 }
5634
5635 /* Compute the hash value. */
5636 ha = bfd_elf_gnu_hash (name);
5637
5638 /* Store the found hash value in the array for compute_bucket_count,
5639 and also for .dynsym reordering purposes. */
5640 s->hashcodes[s->nsyms] = ha;
5641 s->hashval[h->dynindx] = ha;
5642 ++s->nsyms;
5643 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5644 s->min_dynindx = h->dynindx;
5645
5646 if (alc != NULL)
5647 free (alc);
5648
5649 return TRUE;
5650 }
5651
5652 /* This function will be called though elf_link_hash_traverse to do
5653 final dynaminc symbol renumbering. */
5654
5655 static bfd_boolean
5656 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5657 {
5658 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5659 unsigned long int bucket;
5660 unsigned long int val;
5661
5662 /* Ignore indirect symbols. */
5663 if (h->dynindx == -1)
5664 return TRUE;
5665
5666 /* Ignore also local symbols and undefined symbols. */
5667 if (! (*s->bed->elf_hash_symbol) (h))
5668 {
5669 if (h->dynindx >= s->min_dynindx)
5670 h->dynindx = s->local_indx++;
5671 return TRUE;
5672 }
5673
5674 bucket = s->hashval[h->dynindx] % s->bucketcount;
5675 val = (s->hashval[h->dynindx] >> s->shift1)
5676 & ((s->maskbits >> s->shift1) - 1);
5677 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5678 s->bitmask[val]
5679 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5680 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5681 if (s->counts[bucket] == 1)
5682 /* Last element terminates the chain. */
5683 val |= 1;
5684 bfd_put_32 (s->output_bfd, val,
5685 s->contents + (s->indx[bucket] - s->symindx) * 4);
5686 --s->counts[bucket];
5687 h->dynindx = s->indx[bucket]++;
5688 return TRUE;
5689 }
5690
5691 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5692
5693 bfd_boolean
5694 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5695 {
5696 return !(h->forced_local
5697 || h->root.type == bfd_link_hash_undefined
5698 || h->root.type == bfd_link_hash_undefweak
5699 || ((h->root.type == bfd_link_hash_defined
5700 || h->root.type == bfd_link_hash_defweak)
5701 && h->root.u.def.section->output_section == NULL));
5702 }
5703
5704 /* Array used to determine the number of hash table buckets to use
5705 based on the number of symbols there are. If there are fewer than
5706 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5707 fewer than 37 we use 17 buckets, and so forth. We never use more
5708 than 32771 buckets. */
5709
5710 static const size_t elf_buckets[] =
5711 {
5712 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5713 16411, 32771, 0
5714 };
5715
5716 /* Compute bucket count for hashing table. We do not use a static set
5717 of possible tables sizes anymore. Instead we determine for all
5718 possible reasonable sizes of the table the outcome (i.e., the
5719 number of collisions etc) and choose the best solution. The
5720 weighting functions are not too simple to allow the table to grow
5721 without bounds. Instead one of the weighting factors is the size.
5722 Therefore the result is always a good payoff between few collisions
5723 (= short chain lengths) and table size. */
5724 static size_t
5725 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5726 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5727 unsigned long int nsyms,
5728 int gnu_hash)
5729 {
5730 size_t best_size = 0;
5731 unsigned long int i;
5732
5733 /* We have a problem here. The following code to optimize the table
5734 size requires an integer type with more the 32 bits. If
5735 BFD_HOST_U_64_BIT is set we know about such a type. */
5736 #ifdef BFD_HOST_U_64_BIT
5737 if (info->optimize)
5738 {
5739 size_t minsize;
5740 size_t maxsize;
5741 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5742 bfd *dynobj = elf_hash_table (info)->dynobj;
5743 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5744 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5745 unsigned long int *counts;
5746 bfd_size_type amt;
5747 unsigned int no_improvement_count = 0;
5748
5749 /* Possible optimization parameters: if we have NSYMS symbols we say
5750 that the hashing table must at least have NSYMS/4 and at most
5751 2*NSYMS buckets. */
5752 minsize = nsyms / 4;
5753 if (minsize == 0)
5754 minsize = 1;
5755 best_size = maxsize = nsyms * 2;
5756 if (gnu_hash)
5757 {
5758 if (minsize < 2)
5759 minsize = 2;
5760 if ((best_size & 31) == 0)
5761 ++best_size;
5762 }
5763
5764 /* Create array where we count the collisions in. We must use bfd_malloc
5765 since the size could be large. */
5766 amt = maxsize;
5767 amt *= sizeof (unsigned long int);
5768 counts = (unsigned long int *) bfd_malloc (amt);
5769 if (counts == NULL)
5770 return 0;
5771
5772 /* Compute the "optimal" size for the hash table. The criteria is a
5773 minimal chain length. The minor criteria is (of course) the size
5774 of the table. */
5775 for (i = minsize; i < maxsize; ++i)
5776 {
5777 /* Walk through the array of hashcodes and count the collisions. */
5778 BFD_HOST_U_64_BIT max;
5779 unsigned long int j;
5780 unsigned long int fact;
5781
5782 if (gnu_hash && (i & 31) == 0)
5783 continue;
5784
5785 memset (counts, '\0', i * sizeof (unsigned long int));
5786
5787 /* Determine how often each hash bucket is used. */
5788 for (j = 0; j < nsyms; ++j)
5789 ++counts[hashcodes[j] % i];
5790
5791 /* For the weight function we need some information about the
5792 pagesize on the target. This is information need not be 100%
5793 accurate. Since this information is not available (so far) we
5794 define it here to a reasonable default value. If it is crucial
5795 to have a better value some day simply define this value. */
5796 # ifndef BFD_TARGET_PAGESIZE
5797 # define BFD_TARGET_PAGESIZE (4096)
5798 # endif
5799
5800 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5801 and the chains. */
5802 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5803
5804 # if 1
5805 /* Variant 1: optimize for short chains. We add the squares
5806 of all the chain lengths (which favors many small chain
5807 over a few long chains). */
5808 for (j = 0; j < i; ++j)
5809 max += counts[j] * counts[j];
5810
5811 /* This adds penalties for the overall size of the table. */
5812 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5813 max *= fact * fact;
5814 # else
5815 /* Variant 2: Optimize a lot more for small table. Here we
5816 also add squares of the size but we also add penalties for
5817 empty slots (the +1 term). */
5818 for (j = 0; j < i; ++j)
5819 max += (1 + counts[j]) * (1 + counts[j]);
5820
5821 /* The overall size of the table is considered, but not as
5822 strong as in variant 1, where it is squared. */
5823 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5824 max *= fact;
5825 # endif
5826
5827 /* Compare with current best results. */
5828 if (max < best_chlen)
5829 {
5830 best_chlen = max;
5831 best_size = i;
5832 no_improvement_count = 0;
5833 }
5834 /* PR 11843: Avoid futile long searches for the best bucket size
5835 when there are a large number of symbols. */
5836 else if (++no_improvement_count == 100)
5837 break;
5838 }
5839
5840 free (counts);
5841 }
5842 else
5843 #endif /* defined (BFD_HOST_U_64_BIT) */
5844 {
5845 /* This is the fallback solution if no 64bit type is available or if we
5846 are not supposed to spend much time on optimizations. We select the
5847 bucket count using a fixed set of numbers. */
5848 for (i = 0; elf_buckets[i] != 0; i++)
5849 {
5850 best_size = elf_buckets[i];
5851 if (nsyms < elf_buckets[i + 1])
5852 break;
5853 }
5854 if (gnu_hash && best_size < 2)
5855 best_size = 2;
5856 }
5857
5858 return best_size;
5859 }
5860
5861 /* Size any SHT_GROUP section for ld -r. */
5862
5863 bfd_boolean
5864 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5865 {
5866 bfd *ibfd;
5867 asection *s;
5868
5869 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5870 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5871 && (s = ibfd->sections) != NULL
5872 && s->sec_info_type != SEC_INFO_TYPE_JUST_SYMS
5873 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5874 return FALSE;
5875 return TRUE;
5876 }
5877
5878 /* Set a default stack segment size. The value in INFO wins. If it
5879 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5880 undefined it is initialized. */
5881
5882 bfd_boolean
5883 bfd_elf_stack_segment_size (bfd *output_bfd,
5884 struct bfd_link_info *info,
5885 const char *legacy_symbol,
5886 bfd_vma default_size)
5887 {
5888 struct elf_link_hash_entry *h = NULL;
5889
5890 /* Look for legacy symbol. */
5891 if (legacy_symbol)
5892 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5893 FALSE, FALSE, FALSE);
5894 if (h && (h->root.type == bfd_link_hash_defined
5895 || h->root.type == bfd_link_hash_defweak)
5896 && h->def_regular
5897 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5898 {
5899 /* The symbol has no type if specified on the command line. */
5900 h->type = STT_OBJECT;
5901 if (info->stacksize)
5902 /* xgettext:c-format */
5903 _bfd_error_handler (_("%B: stack size specified and %s set"),
5904 output_bfd, legacy_symbol);
5905 else if (h->root.u.def.section != bfd_abs_section_ptr)
5906 /* xgettext:c-format */
5907 _bfd_error_handler (_("%B: %s not absolute"),
5908 output_bfd, legacy_symbol);
5909 else
5910 info->stacksize = h->root.u.def.value;
5911 }
5912
5913 if (!info->stacksize)
5914 /* If the user didn't set a size, or explicitly inhibit the
5915 size, set it now. */
5916 info->stacksize = default_size;
5917
5918 /* Provide the legacy symbol, if it is referenced. */
5919 if (h && (h->root.type == bfd_link_hash_undefined
5920 || h->root.type == bfd_link_hash_undefweak))
5921 {
5922 struct bfd_link_hash_entry *bh = NULL;
5923
5924 if (!(_bfd_generic_link_add_one_symbol
5925 (info, output_bfd, legacy_symbol,
5926 BSF_GLOBAL, bfd_abs_section_ptr,
5927 info->stacksize >= 0 ? info->stacksize : 0,
5928 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5929 return FALSE;
5930
5931 h = (struct elf_link_hash_entry *) bh;
5932 h->def_regular = 1;
5933 h->type = STT_OBJECT;
5934 }
5935
5936 return TRUE;
5937 }
5938
5939 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
5940
5941 struct elf_gc_sweep_symbol_info
5942 {
5943 struct bfd_link_info *info;
5944 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
5945 bfd_boolean);
5946 };
5947
5948 static bfd_boolean
5949 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
5950 {
5951 if (!h->mark
5952 && (((h->root.type == bfd_link_hash_defined
5953 || h->root.type == bfd_link_hash_defweak)
5954 && !((h->def_regular || ELF_COMMON_DEF_P (h))
5955 && h->root.u.def.section->gc_mark))
5956 || h->root.type == bfd_link_hash_undefined
5957 || h->root.type == bfd_link_hash_undefweak))
5958 {
5959 struct elf_gc_sweep_symbol_info *inf;
5960
5961 inf = (struct elf_gc_sweep_symbol_info *) data;
5962 (*inf->hide_symbol) (inf->info, h, TRUE);
5963 h->def_regular = 0;
5964 h->ref_regular = 0;
5965 h->ref_regular_nonweak = 0;
5966 }
5967
5968 return TRUE;
5969 }
5970
5971 /* Set up the sizes and contents of the ELF dynamic sections. This is
5972 called by the ELF linker emulation before_allocation routine. We
5973 must set the sizes of the sections before the linker sets the
5974 addresses of the various sections. */
5975
5976 bfd_boolean
5977 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5978 const char *soname,
5979 const char *rpath,
5980 const char *filter_shlib,
5981 const char *audit,
5982 const char *depaudit,
5983 const char * const *auxiliary_filters,
5984 struct bfd_link_info *info,
5985 asection **sinterpptr)
5986 {
5987 bfd *dynobj;
5988 const struct elf_backend_data *bed;
5989
5990 *sinterpptr = NULL;
5991
5992 if (!is_elf_hash_table (info->hash))
5993 return TRUE;
5994
5995 dynobj = elf_hash_table (info)->dynobj;
5996
5997 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5998 {
5999 struct bfd_elf_version_tree *verdefs;
6000 struct elf_info_failed asvinfo;
6001 struct bfd_elf_version_tree *t;
6002 struct bfd_elf_version_expr *d;
6003 struct elf_info_failed eif;
6004 bfd_boolean all_defined;
6005 asection *s;
6006 size_t soname_indx;
6007
6008 eif.info = info;
6009 eif.failed = FALSE;
6010
6011 /* If we are supposed to export all symbols into the dynamic symbol
6012 table (this is not the normal case), then do so. */
6013 if (info->export_dynamic
6014 || (bfd_link_executable (info) && info->dynamic))
6015 {
6016 elf_link_hash_traverse (elf_hash_table (info),
6017 _bfd_elf_export_symbol,
6018 &eif);
6019 if (eif.failed)
6020 return FALSE;
6021 }
6022
6023 if (soname != NULL)
6024 {
6025 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6026 soname, TRUE);
6027 if (soname_indx == (size_t) -1
6028 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
6029 return FALSE;
6030 }
6031 else
6032 soname_indx = (size_t) -1;
6033
6034 /* Make all global versions with definition. */
6035 for (t = info->version_info; t != NULL; t = t->next)
6036 for (d = t->globals.list; d != NULL; d = d->next)
6037 if (!d->symver && d->literal)
6038 {
6039 const char *verstr, *name;
6040 size_t namelen, verlen, newlen;
6041 char *newname, *p, leading_char;
6042 struct elf_link_hash_entry *newh;
6043
6044 leading_char = bfd_get_symbol_leading_char (output_bfd);
6045 name = d->pattern;
6046 namelen = strlen (name) + (leading_char != '\0');
6047 verstr = t->name;
6048 verlen = strlen (verstr);
6049 newlen = namelen + verlen + 3;
6050
6051 newname = (char *) bfd_malloc (newlen);
6052 if (newname == NULL)
6053 return FALSE;
6054 newname[0] = leading_char;
6055 memcpy (newname + (leading_char != '\0'), name, namelen);
6056
6057 /* Check the hidden versioned definition. */
6058 p = newname + namelen;
6059 *p++ = ELF_VER_CHR;
6060 memcpy (p, verstr, verlen + 1);
6061 newh = elf_link_hash_lookup (elf_hash_table (info),
6062 newname, FALSE, FALSE,
6063 FALSE);
6064 if (newh == NULL
6065 || (newh->root.type != bfd_link_hash_defined
6066 && newh->root.type != bfd_link_hash_defweak))
6067 {
6068 /* Check the default versioned definition. */
6069 *p++ = ELF_VER_CHR;
6070 memcpy (p, verstr, verlen + 1);
6071 newh = elf_link_hash_lookup (elf_hash_table (info),
6072 newname, FALSE, FALSE,
6073 FALSE);
6074 }
6075 free (newname);
6076
6077 /* Mark this version if there is a definition and it is
6078 not defined in a shared object. */
6079 if (newh != NULL
6080 && !newh->def_dynamic
6081 && (newh->root.type == bfd_link_hash_defined
6082 || newh->root.type == bfd_link_hash_defweak))
6083 d->symver = 1;
6084 }
6085
6086 /* Attach all the symbols to their version information. */
6087 asvinfo.info = info;
6088 asvinfo.failed = FALSE;
6089
6090 elf_link_hash_traverse (elf_hash_table (info),
6091 _bfd_elf_link_assign_sym_version,
6092 &asvinfo);
6093 if (asvinfo.failed)
6094 return FALSE;
6095
6096 if (!info->allow_undefined_version)
6097 {
6098 /* Check if all global versions have a definition. */
6099 all_defined = TRUE;
6100 for (t = info->version_info; t != NULL; t = t->next)
6101 for (d = t->globals.list; d != NULL; d = d->next)
6102 if (d->literal && !d->symver && !d->script)
6103 {
6104 _bfd_error_handler
6105 (_("%s: undefined version: %s"),
6106 d->pattern, t->name);
6107 all_defined = FALSE;
6108 }
6109
6110 if (!all_defined)
6111 {
6112 bfd_set_error (bfd_error_bad_value);
6113 return FALSE;
6114 }
6115 }
6116
6117 /* Set up the version definition section. */
6118 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6119 BFD_ASSERT (s != NULL);
6120
6121 /* We may have created additional version definitions if we are
6122 just linking a regular application. */
6123 verdefs = info->version_info;
6124
6125 /* Skip anonymous version tag. */
6126 if (verdefs != NULL && verdefs->vernum == 0)
6127 verdefs = verdefs->next;
6128
6129 if (verdefs == NULL && !info->create_default_symver)
6130 s->flags |= SEC_EXCLUDE;
6131 else
6132 {
6133 unsigned int cdefs;
6134 bfd_size_type size;
6135 bfd_byte *p;
6136 Elf_Internal_Verdef def;
6137 Elf_Internal_Verdaux defaux;
6138 struct bfd_link_hash_entry *bh;
6139 struct elf_link_hash_entry *h;
6140 const char *name;
6141
6142 cdefs = 0;
6143 size = 0;
6144
6145 /* Make space for the base version. */
6146 size += sizeof (Elf_External_Verdef);
6147 size += sizeof (Elf_External_Verdaux);
6148 ++cdefs;
6149
6150 /* Make space for the default version. */
6151 if (info->create_default_symver)
6152 {
6153 size += sizeof (Elf_External_Verdef);
6154 ++cdefs;
6155 }
6156
6157 for (t = verdefs; t != NULL; t = t->next)
6158 {
6159 struct bfd_elf_version_deps *n;
6160
6161 /* Don't emit base version twice. */
6162 if (t->vernum == 0)
6163 continue;
6164
6165 size += sizeof (Elf_External_Verdef);
6166 size += sizeof (Elf_External_Verdaux);
6167 ++cdefs;
6168
6169 for (n = t->deps; n != NULL; n = n->next)
6170 size += sizeof (Elf_External_Verdaux);
6171 }
6172
6173 s->size = size;
6174 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6175 if (s->contents == NULL && s->size != 0)
6176 return FALSE;
6177
6178 /* Fill in the version definition section. */
6179
6180 p = s->contents;
6181
6182 def.vd_version = VER_DEF_CURRENT;
6183 def.vd_flags = VER_FLG_BASE;
6184 def.vd_ndx = 1;
6185 def.vd_cnt = 1;
6186 if (info->create_default_symver)
6187 {
6188 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6189 def.vd_next = sizeof (Elf_External_Verdef);
6190 }
6191 else
6192 {
6193 def.vd_aux = sizeof (Elf_External_Verdef);
6194 def.vd_next = (sizeof (Elf_External_Verdef)
6195 + sizeof (Elf_External_Verdaux));
6196 }
6197
6198 if (soname_indx != (size_t) -1)
6199 {
6200 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6201 soname_indx);
6202 def.vd_hash = bfd_elf_hash (soname);
6203 defaux.vda_name = soname_indx;
6204 name = soname;
6205 }
6206 else
6207 {
6208 size_t indx;
6209
6210 name = lbasename (output_bfd->filename);
6211 def.vd_hash = bfd_elf_hash (name);
6212 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6213 name, FALSE);
6214 if (indx == (size_t) -1)
6215 return FALSE;
6216 defaux.vda_name = indx;
6217 }
6218 defaux.vda_next = 0;
6219
6220 _bfd_elf_swap_verdef_out (output_bfd, &def,
6221 (Elf_External_Verdef *) p);
6222 p += sizeof (Elf_External_Verdef);
6223 if (info->create_default_symver)
6224 {
6225 /* Add a symbol representing this version. */
6226 bh = NULL;
6227 if (! (_bfd_generic_link_add_one_symbol
6228 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6229 0, NULL, FALSE,
6230 get_elf_backend_data (dynobj)->collect, &bh)))
6231 return FALSE;
6232 h = (struct elf_link_hash_entry *) bh;
6233 h->non_elf = 0;
6234 h->def_regular = 1;
6235 h->type = STT_OBJECT;
6236 h->verinfo.vertree = NULL;
6237
6238 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6239 return FALSE;
6240
6241 /* Create a duplicate of the base version with the same
6242 aux block, but different flags. */
6243 def.vd_flags = 0;
6244 def.vd_ndx = 2;
6245 def.vd_aux = sizeof (Elf_External_Verdef);
6246 if (verdefs)
6247 def.vd_next = (sizeof (Elf_External_Verdef)
6248 + sizeof (Elf_External_Verdaux));
6249 else
6250 def.vd_next = 0;
6251 _bfd_elf_swap_verdef_out (output_bfd, &def,
6252 (Elf_External_Verdef *) p);
6253 p += sizeof (Elf_External_Verdef);
6254 }
6255 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6256 (Elf_External_Verdaux *) p);
6257 p += sizeof (Elf_External_Verdaux);
6258
6259 for (t = verdefs; t != NULL; t = t->next)
6260 {
6261 unsigned int cdeps;
6262 struct bfd_elf_version_deps *n;
6263
6264 /* Don't emit the base version twice. */
6265 if (t->vernum == 0)
6266 continue;
6267
6268 cdeps = 0;
6269 for (n = t->deps; n != NULL; n = n->next)
6270 ++cdeps;
6271
6272 /* Add a symbol representing this version. */
6273 bh = NULL;
6274 if (! (_bfd_generic_link_add_one_symbol
6275 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6276 0, NULL, FALSE,
6277 get_elf_backend_data (dynobj)->collect, &bh)))
6278 return FALSE;
6279 h = (struct elf_link_hash_entry *) bh;
6280 h->non_elf = 0;
6281 h->def_regular = 1;
6282 h->type = STT_OBJECT;
6283 h->verinfo.vertree = t;
6284
6285 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6286 return FALSE;
6287
6288 def.vd_version = VER_DEF_CURRENT;
6289 def.vd_flags = 0;
6290 if (t->globals.list == NULL
6291 && t->locals.list == NULL
6292 && ! t->used)
6293 def.vd_flags |= VER_FLG_WEAK;
6294 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6295 def.vd_cnt = cdeps + 1;
6296 def.vd_hash = bfd_elf_hash (t->name);
6297 def.vd_aux = sizeof (Elf_External_Verdef);
6298 def.vd_next = 0;
6299
6300 /* If a basever node is next, it *must* be the last node in
6301 the chain, otherwise Verdef construction breaks. */
6302 if (t->next != NULL && t->next->vernum == 0)
6303 BFD_ASSERT (t->next->next == NULL);
6304
6305 if (t->next != NULL && t->next->vernum != 0)
6306 def.vd_next = (sizeof (Elf_External_Verdef)
6307 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6308
6309 _bfd_elf_swap_verdef_out (output_bfd, &def,
6310 (Elf_External_Verdef *) p);
6311 p += sizeof (Elf_External_Verdef);
6312
6313 defaux.vda_name = h->dynstr_index;
6314 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6315 h->dynstr_index);
6316 defaux.vda_next = 0;
6317 if (t->deps != NULL)
6318 defaux.vda_next = sizeof (Elf_External_Verdaux);
6319 t->name_indx = defaux.vda_name;
6320
6321 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6322 (Elf_External_Verdaux *) p);
6323 p += sizeof (Elf_External_Verdaux);
6324
6325 for (n = t->deps; n != NULL; n = n->next)
6326 {
6327 if (n->version_needed == NULL)
6328 {
6329 /* This can happen if there was an error in the
6330 version script. */
6331 defaux.vda_name = 0;
6332 }
6333 else
6334 {
6335 defaux.vda_name = n->version_needed->name_indx;
6336 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6337 defaux.vda_name);
6338 }
6339 if (n->next == NULL)
6340 defaux.vda_next = 0;
6341 else
6342 defaux.vda_next = sizeof (Elf_External_Verdaux);
6343
6344 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6345 (Elf_External_Verdaux *) p);
6346 p += sizeof (Elf_External_Verdaux);
6347 }
6348 }
6349
6350 elf_tdata (output_bfd)->cverdefs = cdefs;
6351 }
6352
6353 /* Work out the size of the version reference section. */
6354
6355 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6356 BFD_ASSERT (s != NULL);
6357 {
6358 struct elf_find_verdep_info sinfo;
6359
6360 sinfo.info = info;
6361 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6362 if (sinfo.vers == 0)
6363 sinfo.vers = 1;
6364 sinfo.failed = FALSE;
6365
6366 elf_link_hash_traverse (elf_hash_table (info),
6367 _bfd_elf_link_find_version_dependencies,
6368 &sinfo);
6369 if (sinfo.failed)
6370 return FALSE;
6371
6372 if (elf_tdata (output_bfd)->verref == NULL)
6373 s->flags |= SEC_EXCLUDE;
6374 else
6375 {
6376 Elf_Internal_Verneed *vn;
6377 unsigned int size;
6378 unsigned int crefs;
6379 bfd_byte *p;
6380
6381 /* Build the version dependency section. */
6382 size = 0;
6383 crefs = 0;
6384 for (vn = elf_tdata (output_bfd)->verref;
6385 vn != NULL;
6386 vn = vn->vn_nextref)
6387 {
6388 Elf_Internal_Vernaux *a;
6389
6390 size += sizeof (Elf_External_Verneed);
6391 ++crefs;
6392 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6393 size += sizeof (Elf_External_Vernaux);
6394 }
6395
6396 s->size = size;
6397 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6398 if (s->contents == NULL)
6399 return FALSE;
6400
6401 p = s->contents;
6402 for (vn = elf_tdata (output_bfd)->verref;
6403 vn != NULL;
6404 vn = vn->vn_nextref)
6405 {
6406 unsigned int caux;
6407 Elf_Internal_Vernaux *a;
6408 size_t indx;
6409
6410 caux = 0;
6411 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6412 ++caux;
6413
6414 vn->vn_version = VER_NEED_CURRENT;
6415 vn->vn_cnt = caux;
6416 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6417 elf_dt_name (vn->vn_bfd) != NULL
6418 ? elf_dt_name (vn->vn_bfd)
6419 : lbasename (vn->vn_bfd->filename),
6420 FALSE);
6421 if (indx == (size_t) -1)
6422 return FALSE;
6423 vn->vn_file = indx;
6424 vn->vn_aux = sizeof (Elf_External_Verneed);
6425 if (vn->vn_nextref == NULL)
6426 vn->vn_next = 0;
6427 else
6428 vn->vn_next = (sizeof (Elf_External_Verneed)
6429 + caux * sizeof (Elf_External_Vernaux));
6430
6431 _bfd_elf_swap_verneed_out (output_bfd, vn,
6432 (Elf_External_Verneed *) p);
6433 p += sizeof (Elf_External_Verneed);
6434
6435 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6436 {
6437 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6438 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6439 a->vna_nodename, FALSE);
6440 if (indx == (size_t) -1)
6441 return FALSE;
6442 a->vna_name = indx;
6443 if (a->vna_nextptr == NULL)
6444 a->vna_next = 0;
6445 else
6446 a->vna_next = sizeof (Elf_External_Vernaux);
6447
6448 _bfd_elf_swap_vernaux_out (output_bfd, a,
6449 (Elf_External_Vernaux *) p);
6450 p += sizeof (Elf_External_Vernaux);
6451 }
6452 }
6453
6454 elf_tdata (output_bfd)->cverrefs = crefs;
6455 }
6456 }
6457 }
6458
6459 bed = get_elf_backend_data (output_bfd);
6460
6461 if (info->gc_sections && bed->can_gc_sections)
6462 {
6463 struct elf_gc_sweep_symbol_info sweep_info;
6464 unsigned long section_sym_count;
6465
6466 /* Remove the symbols that were in the swept sections from the
6467 dynamic symbol table. GCFIXME: Anyone know how to get them
6468 out of the static symbol table as well? */
6469 sweep_info.info = info;
6470 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
6471 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
6472 &sweep_info);
6473
6474 /* We need to reassign dynsym indices now that symbols may have
6475 been removed. See the call in `bfd_elf_size_dynsym_hash_dynstr'
6476 for the details of the conditions used here. */
6477 if (elf_hash_table (info)->dynamic_sections_created
6478 || bed->always_renumber_dynsyms)
6479 _bfd_elf_link_renumber_dynsyms (output_bfd, info, &section_sym_count);
6480 }
6481
6482 /* Any syms created from now on start with -1 in
6483 got.refcount/offset and plt.refcount/offset. */
6484 elf_hash_table (info)->init_got_refcount
6485 = elf_hash_table (info)->init_got_offset;
6486 elf_hash_table (info)->init_plt_refcount
6487 = elf_hash_table (info)->init_plt_offset;
6488
6489 if (bfd_link_relocatable (info)
6490 && !_bfd_elf_size_group_sections (info))
6491 return FALSE;
6492
6493 /* The backend may have to create some sections regardless of whether
6494 we're dynamic or not. */
6495 if (bed->elf_backend_always_size_sections
6496 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
6497 return FALSE;
6498
6499 /* Determine any GNU_STACK segment requirements, after the backend
6500 has had a chance to set a default segment size. */
6501 if (info->execstack)
6502 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
6503 else if (info->noexecstack)
6504 elf_stack_flags (output_bfd) = PF_R | PF_W;
6505 else
6506 {
6507 bfd *inputobj;
6508 asection *notesec = NULL;
6509 int exec = 0;
6510
6511 for (inputobj = info->input_bfds;
6512 inputobj;
6513 inputobj = inputobj->link.next)
6514 {
6515 asection *s;
6516
6517 if (inputobj->flags
6518 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
6519 continue;
6520 s = inputobj->sections;
6521 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
6522 continue;
6523
6524 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
6525 if (s)
6526 {
6527 if (s->flags & SEC_CODE)
6528 exec = PF_X;
6529 notesec = s;
6530 }
6531 else if (bed->default_execstack)
6532 exec = PF_X;
6533 }
6534 if (notesec || info->stacksize > 0)
6535 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
6536 if (notesec && exec && bfd_link_relocatable (info)
6537 && notesec->output_section != bfd_abs_section_ptr)
6538 notesec->output_section->flags |= SEC_CODE;
6539 }
6540
6541 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6542 {
6543 struct elf_info_failed eif;
6544 struct elf_link_hash_entry *h;
6545 asection *dynstr;
6546 asection *s;
6547
6548 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
6549 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
6550
6551 if (info->symbolic)
6552 {
6553 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
6554 return FALSE;
6555 info->flags |= DF_SYMBOLIC;
6556 }
6557
6558 if (rpath != NULL)
6559 {
6560 size_t indx;
6561 bfd_vma tag;
6562
6563 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
6564 TRUE);
6565 if (indx == (size_t) -1)
6566 return FALSE;
6567
6568 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
6569 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
6570 return FALSE;
6571 }
6572
6573 if (filter_shlib != NULL)
6574 {
6575 size_t indx;
6576
6577 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6578 filter_shlib, TRUE);
6579 if (indx == (size_t) -1
6580 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
6581 return FALSE;
6582 }
6583
6584 if (auxiliary_filters != NULL)
6585 {
6586 const char * const *p;
6587
6588 for (p = auxiliary_filters; *p != NULL; p++)
6589 {
6590 size_t indx;
6591
6592 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6593 *p, TRUE);
6594 if (indx == (size_t) -1
6595 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
6596 return FALSE;
6597 }
6598 }
6599
6600 if (audit != NULL)
6601 {
6602 size_t indx;
6603
6604 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
6605 TRUE);
6606 if (indx == (size_t) -1
6607 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
6608 return FALSE;
6609 }
6610
6611 if (depaudit != NULL)
6612 {
6613 size_t indx;
6614
6615 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
6616 TRUE);
6617 if (indx == (size_t) -1
6618 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
6619 return FALSE;
6620 }
6621
6622 eif.info = info;
6623 eif.failed = FALSE;
6624
6625 /* Find all symbols which were defined in a dynamic object and make
6626 the backend pick a reasonable value for them. */
6627 elf_link_hash_traverse (elf_hash_table (info),
6628 _bfd_elf_adjust_dynamic_symbol,
6629 &eif);
6630 if (eif.failed)
6631 return FALSE;
6632
6633 /* Add some entries to the .dynamic section. We fill in some of the
6634 values later, in bfd_elf_final_link, but we must add the entries
6635 now so that we know the final size of the .dynamic section. */
6636
6637 /* If there are initialization and/or finalization functions to
6638 call then add the corresponding DT_INIT/DT_FINI entries. */
6639 h = (info->init_function
6640 ? elf_link_hash_lookup (elf_hash_table (info),
6641 info->init_function, FALSE,
6642 FALSE, FALSE)
6643 : NULL);
6644 if (h != NULL
6645 && (h->ref_regular
6646 || h->def_regular))
6647 {
6648 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
6649 return FALSE;
6650 }
6651 h = (info->fini_function
6652 ? elf_link_hash_lookup (elf_hash_table (info),
6653 info->fini_function, FALSE,
6654 FALSE, FALSE)
6655 : NULL);
6656 if (h != NULL
6657 && (h->ref_regular
6658 || h->def_regular))
6659 {
6660 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
6661 return FALSE;
6662 }
6663
6664 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
6665 if (s != NULL && s->linker_has_input)
6666 {
6667 /* DT_PREINIT_ARRAY is not allowed in shared library. */
6668 if (! bfd_link_executable (info))
6669 {
6670 bfd *sub;
6671 asection *o;
6672
6673 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
6674 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
6675 && (o = sub->sections) != NULL
6676 && o->sec_info_type != SEC_INFO_TYPE_JUST_SYMS)
6677 for (o = sub->sections; o != NULL; o = o->next)
6678 if (elf_section_data (o)->this_hdr.sh_type
6679 == SHT_PREINIT_ARRAY)
6680 {
6681 _bfd_error_handler
6682 (_("%B: .preinit_array section is not allowed in DSO"),
6683 sub);
6684 break;
6685 }
6686
6687 bfd_set_error (bfd_error_nonrepresentable_section);
6688 return FALSE;
6689 }
6690
6691 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6692 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
6693 return FALSE;
6694 }
6695 s = bfd_get_section_by_name (output_bfd, ".init_array");
6696 if (s != NULL && s->linker_has_input)
6697 {
6698 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
6699 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
6700 return FALSE;
6701 }
6702 s = bfd_get_section_by_name (output_bfd, ".fini_array");
6703 if (s != NULL && s->linker_has_input)
6704 {
6705 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
6706 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
6707 return FALSE;
6708 }
6709
6710 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
6711 /* If .dynstr is excluded from the link, we don't want any of
6712 these tags. Strictly, we should be checking each section
6713 individually; This quick check covers for the case where
6714 someone does a /DISCARD/ : { *(*) }. */
6715 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6716 {
6717 bfd_size_type strsize;
6718
6719 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6720 if ((info->emit_hash
6721 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6722 || (info->emit_gnu_hash
6723 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6724 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6725 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6726 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6727 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6728 bed->s->sizeof_sym))
6729 return FALSE;
6730 }
6731 }
6732
6733 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6734 return FALSE;
6735
6736 /* The backend must work out the sizes of all the other dynamic
6737 sections. */
6738 if (dynobj != NULL
6739 && bed->elf_backend_size_dynamic_sections != NULL
6740 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6741 return FALSE;
6742
6743 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6744 {
6745 unsigned long section_sym_count;
6746
6747 if (elf_tdata (output_bfd)->cverdefs)
6748 {
6749 unsigned int crefs = elf_tdata (output_bfd)->cverdefs;
6750
6751 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6752 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs))
6753 return FALSE;
6754 }
6755
6756 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6757 {
6758 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6759 return FALSE;
6760 }
6761 else if (info->flags & DF_BIND_NOW)
6762 {
6763 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6764 return FALSE;
6765 }
6766
6767 if (info->flags_1)
6768 {
6769 if (bfd_link_executable (info))
6770 info->flags_1 &= ~ (DF_1_INITFIRST
6771 | DF_1_NODELETE
6772 | DF_1_NOOPEN);
6773 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6774 return FALSE;
6775 }
6776
6777 if (elf_tdata (output_bfd)->cverrefs)
6778 {
6779 unsigned int crefs = elf_tdata (output_bfd)->cverrefs;
6780
6781 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6782 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6783 return FALSE;
6784 }
6785
6786 if ((elf_tdata (output_bfd)->cverrefs == 0
6787 && elf_tdata (output_bfd)->cverdefs == 0)
6788 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6789 &section_sym_count) == 0)
6790 {
6791 asection *s;
6792
6793 s = bfd_get_linker_section (dynobj, ".gnu.version");
6794 s->flags |= SEC_EXCLUDE;
6795 }
6796 }
6797 return TRUE;
6798 }
6799
6800 /* Find the first non-excluded output section. We'll use its
6801 section symbol for some emitted relocs. */
6802 void
6803 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6804 {
6805 asection *s;
6806
6807 for (s = output_bfd->sections; s != NULL; s = s->next)
6808 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6809 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6810 {
6811 elf_hash_table (info)->text_index_section = s;
6812 break;
6813 }
6814 }
6815
6816 /* Find two non-excluded output sections, one for code, one for data.
6817 We'll use their section symbols for some emitted relocs. */
6818 void
6819 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6820 {
6821 asection *s;
6822
6823 /* Data first, since setting text_index_section changes
6824 _bfd_elf_link_omit_section_dynsym. */
6825 for (s = output_bfd->sections; s != NULL; s = s->next)
6826 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6827 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6828 {
6829 elf_hash_table (info)->data_index_section = s;
6830 break;
6831 }
6832
6833 for (s = output_bfd->sections; s != NULL; s = s->next)
6834 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6835 == (SEC_ALLOC | SEC_READONLY))
6836 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6837 {
6838 elf_hash_table (info)->text_index_section = s;
6839 break;
6840 }
6841
6842 if (elf_hash_table (info)->text_index_section == NULL)
6843 elf_hash_table (info)->text_index_section
6844 = elf_hash_table (info)->data_index_section;
6845 }
6846
6847 bfd_boolean
6848 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6849 {
6850 const struct elf_backend_data *bed;
6851 unsigned long section_sym_count;
6852 bfd_size_type dynsymcount;
6853
6854 if (!is_elf_hash_table (info->hash))
6855 return TRUE;
6856
6857 bed = get_elf_backend_data (output_bfd);
6858 (*bed->elf_backend_init_index_section) (output_bfd, info);
6859
6860 /* Assign dynsym indices. In a shared library we generate a section
6861 symbol for each output section, which come first. Next come all
6862 of the back-end allocated local dynamic syms, followed by the rest
6863 of the global symbols.
6864
6865 This is usually not needed for static binaries, however backends
6866 can request to always do it, e.g. the MIPS backend uses dynamic
6867 symbol counts to lay out GOT, which will be produced in the
6868 presence of GOT relocations even in static binaries (holding fixed
6869 data in that case, to satisfy those relocations). */
6870
6871 if (elf_hash_table (info)->dynamic_sections_created
6872 || bed->always_renumber_dynsyms)
6873 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6874 &section_sym_count);
6875
6876 if (elf_hash_table (info)->dynamic_sections_created)
6877 {
6878 bfd *dynobj;
6879 asection *s;
6880 unsigned int dtagcount;
6881
6882 dynobj = elf_hash_table (info)->dynobj;
6883
6884 /* Work out the size of the symbol version section. */
6885 s = bfd_get_linker_section (dynobj, ".gnu.version");
6886 BFD_ASSERT (s != NULL);
6887 if ((s->flags & SEC_EXCLUDE) == 0)
6888 {
6889 s->size = dynsymcount * sizeof (Elf_External_Versym);
6890 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6891 if (s->contents == NULL)
6892 return FALSE;
6893
6894 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6895 return FALSE;
6896 }
6897
6898 /* Set the size of the .dynsym and .hash sections. We counted
6899 the number of dynamic symbols in elf_link_add_object_symbols.
6900 We will build the contents of .dynsym and .hash when we build
6901 the final symbol table, because until then we do not know the
6902 correct value to give the symbols. We built the .dynstr
6903 section as we went along in elf_link_add_object_symbols. */
6904 s = elf_hash_table (info)->dynsym;
6905 BFD_ASSERT (s != NULL);
6906 s->size = dynsymcount * bed->s->sizeof_sym;
6907
6908 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6909 if (s->contents == NULL)
6910 return FALSE;
6911
6912 /* The first entry in .dynsym is a dummy symbol. Clear all the
6913 section syms, in case we don't output them all. */
6914 ++section_sym_count;
6915 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6916
6917 elf_hash_table (info)->bucketcount = 0;
6918
6919 /* Compute the size of the hashing table. As a side effect this
6920 computes the hash values for all the names we export. */
6921 if (info->emit_hash)
6922 {
6923 unsigned long int *hashcodes;
6924 struct hash_codes_info hashinf;
6925 bfd_size_type amt;
6926 unsigned long int nsyms;
6927 size_t bucketcount;
6928 size_t hash_entry_size;
6929
6930 /* Compute the hash values for all exported symbols. At the same
6931 time store the values in an array so that we could use them for
6932 optimizations. */
6933 amt = dynsymcount * sizeof (unsigned long int);
6934 hashcodes = (unsigned long int *) bfd_malloc (amt);
6935 if (hashcodes == NULL)
6936 return FALSE;
6937 hashinf.hashcodes = hashcodes;
6938 hashinf.error = FALSE;
6939
6940 /* Put all hash values in HASHCODES. */
6941 elf_link_hash_traverse (elf_hash_table (info),
6942 elf_collect_hash_codes, &hashinf);
6943 if (hashinf.error)
6944 {
6945 free (hashcodes);
6946 return FALSE;
6947 }
6948
6949 nsyms = hashinf.hashcodes - hashcodes;
6950 bucketcount
6951 = compute_bucket_count (info, hashcodes, nsyms, 0);
6952 free (hashcodes);
6953
6954 if (bucketcount == 0 && nsyms > 0)
6955 return FALSE;
6956
6957 elf_hash_table (info)->bucketcount = bucketcount;
6958
6959 s = bfd_get_linker_section (dynobj, ".hash");
6960 BFD_ASSERT (s != NULL);
6961 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6962 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6963 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6964 if (s->contents == NULL)
6965 return FALSE;
6966
6967 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6968 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6969 s->contents + hash_entry_size);
6970 }
6971
6972 if (info->emit_gnu_hash)
6973 {
6974 size_t i, cnt;
6975 unsigned char *contents;
6976 struct collect_gnu_hash_codes cinfo;
6977 bfd_size_type amt;
6978 size_t bucketcount;
6979
6980 memset (&cinfo, 0, sizeof (cinfo));
6981
6982 /* Compute the hash values for all exported symbols. At the same
6983 time store the values in an array so that we could use them for
6984 optimizations. */
6985 amt = dynsymcount * 2 * sizeof (unsigned long int);
6986 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6987 if (cinfo.hashcodes == NULL)
6988 return FALSE;
6989
6990 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6991 cinfo.min_dynindx = -1;
6992 cinfo.output_bfd = output_bfd;
6993 cinfo.bed = bed;
6994
6995 /* Put all hash values in HASHCODES. */
6996 elf_link_hash_traverse (elf_hash_table (info),
6997 elf_collect_gnu_hash_codes, &cinfo);
6998 if (cinfo.error)
6999 {
7000 free (cinfo.hashcodes);
7001 return FALSE;
7002 }
7003
7004 bucketcount
7005 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
7006
7007 if (bucketcount == 0)
7008 {
7009 free (cinfo.hashcodes);
7010 return FALSE;
7011 }
7012
7013 s = bfd_get_linker_section (dynobj, ".gnu.hash");
7014 BFD_ASSERT (s != NULL);
7015
7016 if (cinfo.nsyms == 0)
7017 {
7018 /* Empty .gnu.hash section is special. */
7019 BFD_ASSERT (cinfo.min_dynindx == -1);
7020 free (cinfo.hashcodes);
7021 s->size = 5 * 4 + bed->s->arch_size / 8;
7022 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7023 if (contents == NULL)
7024 return FALSE;
7025 s->contents = contents;
7026 /* 1 empty bucket. */
7027 bfd_put_32 (output_bfd, 1, contents);
7028 /* SYMIDX above the special symbol 0. */
7029 bfd_put_32 (output_bfd, 1, contents + 4);
7030 /* Just one word for bitmask. */
7031 bfd_put_32 (output_bfd, 1, contents + 8);
7032 /* Only hash fn bloom filter. */
7033 bfd_put_32 (output_bfd, 0, contents + 12);
7034 /* No hashes are valid - empty bitmask. */
7035 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
7036 /* No hashes in the only bucket. */
7037 bfd_put_32 (output_bfd, 0,
7038 contents + 16 + bed->s->arch_size / 8);
7039 }
7040 else
7041 {
7042 unsigned long int maskwords, maskbitslog2, x;
7043 BFD_ASSERT (cinfo.min_dynindx != -1);
7044
7045 x = cinfo.nsyms;
7046 maskbitslog2 = 1;
7047 while ((x >>= 1) != 0)
7048 ++maskbitslog2;
7049 if (maskbitslog2 < 3)
7050 maskbitslog2 = 5;
7051 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
7052 maskbitslog2 = maskbitslog2 + 3;
7053 else
7054 maskbitslog2 = maskbitslog2 + 2;
7055 if (bed->s->arch_size == 64)
7056 {
7057 if (maskbitslog2 == 5)
7058 maskbitslog2 = 6;
7059 cinfo.shift1 = 6;
7060 }
7061 else
7062 cinfo.shift1 = 5;
7063 cinfo.mask = (1 << cinfo.shift1) - 1;
7064 cinfo.shift2 = maskbitslog2;
7065 cinfo.maskbits = 1 << maskbitslog2;
7066 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
7067 amt = bucketcount * sizeof (unsigned long int) * 2;
7068 amt += maskwords * sizeof (bfd_vma);
7069 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
7070 if (cinfo.bitmask == NULL)
7071 {
7072 free (cinfo.hashcodes);
7073 return FALSE;
7074 }
7075
7076 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
7077 cinfo.indx = cinfo.counts + bucketcount;
7078 cinfo.symindx = dynsymcount - cinfo.nsyms;
7079 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
7080
7081 /* Determine how often each hash bucket is used. */
7082 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
7083 for (i = 0; i < cinfo.nsyms; ++i)
7084 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
7085
7086 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
7087 if (cinfo.counts[i] != 0)
7088 {
7089 cinfo.indx[i] = cnt;
7090 cnt += cinfo.counts[i];
7091 }
7092 BFD_ASSERT (cnt == dynsymcount);
7093 cinfo.bucketcount = bucketcount;
7094 cinfo.local_indx = cinfo.min_dynindx;
7095
7096 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
7097 s->size += cinfo.maskbits / 8;
7098 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7099 if (contents == NULL)
7100 {
7101 free (cinfo.bitmask);
7102 free (cinfo.hashcodes);
7103 return FALSE;
7104 }
7105
7106 s->contents = contents;
7107 bfd_put_32 (output_bfd, bucketcount, contents);
7108 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
7109 bfd_put_32 (output_bfd, maskwords, contents + 8);
7110 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
7111 contents += 16 + cinfo.maskbits / 8;
7112
7113 for (i = 0; i < bucketcount; ++i)
7114 {
7115 if (cinfo.counts[i] == 0)
7116 bfd_put_32 (output_bfd, 0, contents);
7117 else
7118 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
7119 contents += 4;
7120 }
7121
7122 cinfo.contents = contents;
7123
7124 /* Renumber dynamic symbols, populate .gnu.hash section. */
7125 elf_link_hash_traverse (elf_hash_table (info),
7126 elf_renumber_gnu_hash_syms, &cinfo);
7127
7128 contents = s->contents + 16;
7129 for (i = 0; i < maskwords; ++i)
7130 {
7131 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
7132 contents);
7133 contents += bed->s->arch_size / 8;
7134 }
7135
7136 free (cinfo.bitmask);
7137 free (cinfo.hashcodes);
7138 }
7139 }
7140
7141 s = bfd_get_linker_section (dynobj, ".dynstr");
7142 BFD_ASSERT (s != NULL);
7143
7144 elf_finalize_dynstr (output_bfd, info);
7145
7146 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7147
7148 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
7149 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7150 return FALSE;
7151 }
7152
7153 return TRUE;
7154 }
7155 \f
7156 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
7157
7158 static void
7159 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7160 asection *sec)
7161 {
7162 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7163 sec->sec_info_type = SEC_INFO_TYPE_NONE;
7164 }
7165
7166 /* Finish SHF_MERGE section merging. */
7167
7168 bfd_boolean
7169 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7170 {
7171 bfd *ibfd;
7172 asection *sec;
7173
7174 if (!is_elf_hash_table (info->hash))
7175 return FALSE;
7176
7177 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7178 if ((ibfd->flags & DYNAMIC) == 0
7179 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7180 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7181 == get_elf_backend_data (obfd)->s->elfclass))
7182 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7183 if ((sec->flags & SEC_MERGE) != 0
7184 && !bfd_is_abs_section (sec->output_section))
7185 {
7186 struct bfd_elf_section_data *secdata;
7187
7188 secdata = elf_section_data (sec);
7189 if (! _bfd_add_merge_section (obfd,
7190 &elf_hash_table (info)->merge_info,
7191 sec, &secdata->sec_info))
7192 return FALSE;
7193 else if (secdata->sec_info)
7194 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7195 }
7196
7197 if (elf_hash_table (info)->merge_info != NULL)
7198 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7199 merge_sections_remove_hook);
7200 return TRUE;
7201 }
7202
7203 /* Create an entry in an ELF linker hash table. */
7204
7205 struct bfd_hash_entry *
7206 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7207 struct bfd_hash_table *table,
7208 const char *string)
7209 {
7210 /* Allocate the structure if it has not already been allocated by a
7211 subclass. */
7212 if (entry == NULL)
7213 {
7214 entry = (struct bfd_hash_entry *)
7215 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7216 if (entry == NULL)
7217 return entry;
7218 }
7219
7220 /* Call the allocation method of the superclass. */
7221 entry = _bfd_link_hash_newfunc (entry, table, string);
7222 if (entry != NULL)
7223 {
7224 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7225 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7226
7227 /* Set local fields. */
7228 ret->indx = -1;
7229 ret->dynindx = -1;
7230 ret->got = htab->init_got_refcount;
7231 ret->plt = htab->init_plt_refcount;
7232 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7233 - offsetof (struct elf_link_hash_entry, size)));
7234 /* Assume that we have been called by a non-ELF symbol reader.
7235 This flag is then reset by the code which reads an ELF input
7236 file. This ensures that a symbol created by a non-ELF symbol
7237 reader will have the flag set correctly. */
7238 ret->non_elf = 1;
7239 }
7240
7241 return entry;
7242 }
7243
7244 /* Copy data from an indirect symbol to its direct symbol, hiding the
7245 old indirect symbol. Also used for copying flags to a weakdef. */
7246
7247 void
7248 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7249 struct elf_link_hash_entry *dir,
7250 struct elf_link_hash_entry *ind)
7251 {
7252 struct elf_link_hash_table *htab;
7253
7254 /* Copy down any references that we may have already seen to the
7255 symbol which just became indirect. */
7256
7257 if (dir->versioned != versioned_hidden)
7258 dir->ref_dynamic |= ind->ref_dynamic;
7259 dir->ref_regular |= ind->ref_regular;
7260 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7261 dir->non_got_ref |= ind->non_got_ref;
7262 dir->needs_plt |= ind->needs_plt;
7263 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7264
7265 if (ind->root.type != bfd_link_hash_indirect)
7266 return;
7267
7268 /* Copy over the global and procedure linkage table refcount entries.
7269 These may have been already set up by a check_relocs routine. */
7270 htab = elf_hash_table (info);
7271 if (ind->got.refcount > htab->init_got_refcount.refcount)
7272 {
7273 if (dir->got.refcount < 0)
7274 dir->got.refcount = 0;
7275 dir->got.refcount += ind->got.refcount;
7276 ind->got.refcount = htab->init_got_refcount.refcount;
7277 }
7278
7279 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7280 {
7281 if (dir->plt.refcount < 0)
7282 dir->plt.refcount = 0;
7283 dir->plt.refcount += ind->plt.refcount;
7284 ind->plt.refcount = htab->init_plt_refcount.refcount;
7285 }
7286
7287 if (ind->dynindx != -1)
7288 {
7289 if (dir->dynindx != -1)
7290 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7291 dir->dynindx = ind->dynindx;
7292 dir->dynstr_index = ind->dynstr_index;
7293 ind->dynindx = -1;
7294 ind->dynstr_index = 0;
7295 }
7296 }
7297
7298 void
7299 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7300 struct elf_link_hash_entry *h,
7301 bfd_boolean force_local)
7302 {
7303 /* STT_GNU_IFUNC symbol must go through PLT. */
7304 if (h->type != STT_GNU_IFUNC)
7305 {
7306 h->plt = elf_hash_table (info)->init_plt_offset;
7307 h->needs_plt = 0;
7308 }
7309 if (force_local)
7310 {
7311 h->forced_local = 1;
7312 if (h->dynindx != -1)
7313 {
7314 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7315 h->dynstr_index);
7316 h->dynindx = -1;
7317 h->dynstr_index = 0;
7318 }
7319 }
7320 }
7321
7322 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7323 caller. */
7324
7325 bfd_boolean
7326 _bfd_elf_link_hash_table_init
7327 (struct elf_link_hash_table *table,
7328 bfd *abfd,
7329 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7330 struct bfd_hash_table *,
7331 const char *),
7332 unsigned int entsize,
7333 enum elf_target_id target_id)
7334 {
7335 bfd_boolean ret;
7336 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7337
7338 table->init_got_refcount.refcount = can_refcount - 1;
7339 table->init_plt_refcount.refcount = can_refcount - 1;
7340 table->init_got_offset.offset = -(bfd_vma) 1;
7341 table->init_plt_offset.offset = -(bfd_vma) 1;
7342 /* The first dynamic symbol is a dummy. */
7343 table->dynsymcount = 1;
7344
7345 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7346
7347 table->root.type = bfd_link_elf_hash_table;
7348 table->hash_table_id = target_id;
7349
7350 return ret;
7351 }
7352
7353 /* Create an ELF linker hash table. */
7354
7355 struct bfd_link_hash_table *
7356 _bfd_elf_link_hash_table_create (bfd *abfd)
7357 {
7358 struct elf_link_hash_table *ret;
7359 bfd_size_type amt = sizeof (struct elf_link_hash_table);
7360
7361 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7362 if (ret == NULL)
7363 return NULL;
7364
7365 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7366 sizeof (struct elf_link_hash_entry),
7367 GENERIC_ELF_DATA))
7368 {
7369 free (ret);
7370 return NULL;
7371 }
7372 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7373
7374 return &ret->root;
7375 }
7376
7377 /* Destroy an ELF linker hash table. */
7378
7379 void
7380 _bfd_elf_link_hash_table_free (bfd *obfd)
7381 {
7382 struct elf_link_hash_table *htab;
7383
7384 htab = (struct elf_link_hash_table *) obfd->link.hash;
7385 if (htab->dynstr != NULL)
7386 _bfd_elf_strtab_free (htab->dynstr);
7387 _bfd_merge_sections_free (htab->merge_info);
7388 _bfd_generic_link_hash_table_free (obfd);
7389 }
7390
7391 /* This is a hook for the ELF emulation code in the generic linker to
7392 tell the backend linker what file name to use for the DT_NEEDED
7393 entry for a dynamic object. */
7394
7395 void
7396 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7397 {
7398 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7399 && bfd_get_format (abfd) == bfd_object)
7400 elf_dt_name (abfd) = name;
7401 }
7402
7403 int
7404 bfd_elf_get_dyn_lib_class (bfd *abfd)
7405 {
7406 int lib_class;
7407 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7408 && bfd_get_format (abfd) == bfd_object)
7409 lib_class = elf_dyn_lib_class (abfd);
7410 else
7411 lib_class = 0;
7412 return lib_class;
7413 }
7414
7415 void
7416 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7417 {
7418 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7419 && bfd_get_format (abfd) == bfd_object)
7420 elf_dyn_lib_class (abfd) = lib_class;
7421 }
7422
7423 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7424 the linker ELF emulation code. */
7425
7426 struct bfd_link_needed_list *
7427 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7428 struct bfd_link_info *info)
7429 {
7430 if (! is_elf_hash_table (info->hash))
7431 return NULL;
7432 return elf_hash_table (info)->needed;
7433 }
7434
7435 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7436 hook for the linker ELF emulation code. */
7437
7438 struct bfd_link_needed_list *
7439 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7440 struct bfd_link_info *info)
7441 {
7442 if (! is_elf_hash_table (info->hash))
7443 return NULL;
7444 return elf_hash_table (info)->runpath;
7445 }
7446
7447 /* Get the name actually used for a dynamic object for a link. This
7448 is the SONAME entry if there is one. Otherwise, it is the string
7449 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7450
7451 const char *
7452 bfd_elf_get_dt_soname (bfd *abfd)
7453 {
7454 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7455 && bfd_get_format (abfd) == bfd_object)
7456 return elf_dt_name (abfd);
7457 return NULL;
7458 }
7459
7460 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7461 the ELF linker emulation code. */
7462
7463 bfd_boolean
7464 bfd_elf_get_bfd_needed_list (bfd *abfd,
7465 struct bfd_link_needed_list **pneeded)
7466 {
7467 asection *s;
7468 bfd_byte *dynbuf = NULL;
7469 unsigned int elfsec;
7470 unsigned long shlink;
7471 bfd_byte *extdyn, *extdynend;
7472 size_t extdynsize;
7473 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7474
7475 *pneeded = NULL;
7476
7477 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7478 || bfd_get_format (abfd) != bfd_object)
7479 return TRUE;
7480
7481 s = bfd_get_section_by_name (abfd, ".dynamic");
7482 if (s == NULL || s->size == 0)
7483 return TRUE;
7484
7485 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7486 goto error_return;
7487
7488 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7489 if (elfsec == SHN_BAD)
7490 goto error_return;
7491
7492 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7493
7494 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7495 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7496
7497 extdyn = dynbuf;
7498 extdynend = extdyn + s->size;
7499 for (; extdyn < extdynend; extdyn += extdynsize)
7500 {
7501 Elf_Internal_Dyn dyn;
7502
7503 (*swap_dyn_in) (abfd, extdyn, &dyn);
7504
7505 if (dyn.d_tag == DT_NULL)
7506 break;
7507
7508 if (dyn.d_tag == DT_NEEDED)
7509 {
7510 const char *string;
7511 struct bfd_link_needed_list *l;
7512 unsigned int tagv = dyn.d_un.d_val;
7513 bfd_size_type amt;
7514
7515 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7516 if (string == NULL)
7517 goto error_return;
7518
7519 amt = sizeof *l;
7520 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7521 if (l == NULL)
7522 goto error_return;
7523
7524 l->by = abfd;
7525 l->name = string;
7526 l->next = *pneeded;
7527 *pneeded = l;
7528 }
7529 }
7530
7531 free (dynbuf);
7532
7533 return TRUE;
7534
7535 error_return:
7536 if (dynbuf != NULL)
7537 free (dynbuf);
7538 return FALSE;
7539 }
7540
7541 struct elf_symbuf_symbol
7542 {
7543 unsigned long st_name; /* Symbol name, index in string tbl */
7544 unsigned char st_info; /* Type and binding attributes */
7545 unsigned char st_other; /* Visibilty, and target specific */
7546 };
7547
7548 struct elf_symbuf_head
7549 {
7550 struct elf_symbuf_symbol *ssym;
7551 size_t count;
7552 unsigned int st_shndx;
7553 };
7554
7555 struct elf_symbol
7556 {
7557 union
7558 {
7559 Elf_Internal_Sym *isym;
7560 struct elf_symbuf_symbol *ssym;
7561 } u;
7562 const char *name;
7563 };
7564
7565 /* Sort references to symbols by ascending section number. */
7566
7567 static int
7568 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7569 {
7570 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7571 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7572
7573 return s1->st_shndx - s2->st_shndx;
7574 }
7575
7576 static int
7577 elf_sym_name_compare (const void *arg1, const void *arg2)
7578 {
7579 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7580 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7581 return strcmp (s1->name, s2->name);
7582 }
7583
7584 static struct elf_symbuf_head *
7585 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
7586 {
7587 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7588 struct elf_symbuf_symbol *ssym;
7589 struct elf_symbuf_head *ssymbuf, *ssymhead;
7590 size_t i, shndx_count, total_size;
7591
7592 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7593 if (indbuf == NULL)
7594 return NULL;
7595
7596 for (ind = indbuf, i = 0; i < symcount; i++)
7597 if (isymbuf[i].st_shndx != SHN_UNDEF)
7598 *ind++ = &isymbuf[i];
7599 indbufend = ind;
7600
7601 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7602 elf_sort_elf_symbol);
7603
7604 shndx_count = 0;
7605 if (indbufend > indbuf)
7606 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7607 if (ind[0]->st_shndx != ind[1]->st_shndx)
7608 shndx_count++;
7609
7610 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7611 + (indbufend - indbuf) * sizeof (*ssym));
7612 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7613 if (ssymbuf == NULL)
7614 {
7615 free (indbuf);
7616 return NULL;
7617 }
7618
7619 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7620 ssymbuf->ssym = NULL;
7621 ssymbuf->count = shndx_count;
7622 ssymbuf->st_shndx = 0;
7623 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7624 {
7625 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7626 {
7627 ssymhead++;
7628 ssymhead->ssym = ssym;
7629 ssymhead->count = 0;
7630 ssymhead->st_shndx = (*ind)->st_shndx;
7631 }
7632 ssym->st_name = (*ind)->st_name;
7633 ssym->st_info = (*ind)->st_info;
7634 ssym->st_other = (*ind)->st_other;
7635 ssymhead->count++;
7636 }
7637 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
7638 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7639 == total_size));
7640
7641 free (indbuf);
7642 return ssymbuf;
7643 }
7644
7645 /* Check if 2 sections define the same set of local and global
7646 symbols. */
7647
7648 static bfd_boolean
7649 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7650 struct bfd_link_info *info)
7651 {
7652 bfd *bfd1, *bfd2;
7653 const struct elf_backend_data *bed1, *bed2;
7654 Elf_Internal_Shdr *hdr1, *hdr2;
7655 size_t symcount1, symcount2;
7656 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7657 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7658 Elf_Internal_Sym *isym, *isymend;
7659 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7660 size_t count1, count2, i;
7661 unsigned int shndx1, shndx2;
7662 bfd_boolean result;
7663
7664 bfd1 = sec1->owner;
7665 bfd2 = sec2->owner;
7666
7667 /* Both sections have to be in ELF. */
7668 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7669 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7670 return FALSE;
7671
7672 if (elf_section_type (sec1) != elf_section_type (sec2))
7673 return FALSE;
7674
7675 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7676 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7677 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7678 return FALSE;
7679
7680 bed1 = get_elf_backend_data (bfd1);
7681 bed2 = get_elf_backend_data (bfd2);
7682 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7683 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7684 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7685 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7686
7687 if (symcount1 == 0 || symcount2 == 0)
7688 return FALSE;
7689
7690 result = FALSE;
7691 isymbuf1 = NULL;
7692 isymbuf2 = NULL;
7693 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7694 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7695
7696 if (ssymbuf1 == NULL)
7697 {
7698 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7699 NULL, NULL, NULL);
7700 if (isymbuf1 == NULL)
7701 goto done;
7702
7703 if (!info->reduce_memory_overheads)
7704 elf_tdata (bfd1)->symbuf = ssymbuf1
7705 = elf_create_symbuf (symcount1, isymbuf1);
7706 }
7707
7708 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7709 {
7710 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7711 NULL, NULL, NULL);
7712 if (isymbuf2 == NULL)
7713 goto done;
7714
7715 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7716 elf_tdata (bfd2)->symbuf = ssymbuf2
7717 = elf_create_symbuf (symcount2, isymbuf2);
7718 }
7719
7720 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7721 {
7722 /* Optimized faster version. */
7723 size_t lo, hi, mid;
7724 struct elf_symbol *symp;
7725 struct elf_symbuf_symbol *ssym, *ssymend;
7726
7727 lo = 0;
7728 hi = ssymbuf1->count;
7729 ssymbuf1++;
7730 count1 = 0;
7731 while (lo < hi)
7732 {
7733 mid = (lo + hi) / 2;
7734 if (shndx1 < ssymbuf1[mid].st_shndx)
7735 hi = mid;
7736 else if (shndx1 > ssymbuf1[mid].st_shndx)
7737 lo = mid + 1;
7738 else
7739 {
7740 count1 = ssymbuf1[mid].count;
7741 ssymbuf1 += mid;
7742 break;
7743 }
7744 }
7745
7746 lo = 0;
7747 hi = ssymbuf2->count;
7748 ssymbuf2++;
7749 count2 = 0;
7750 while (lo < hi)
7751 {
7752 mid = (lo + hi) / 2;
7753 if (shndx2 < ssymbuf2[mid].st_shndx)
7754 hi = mid;
7755 else if (shndx2 > ssymbuf2[mid].st_shndx)
7756 lo = mid + 1;
7757 else
7758 {
7759 count2 = ssymbuf2[mid].count;
7760 ssymbuf2 += mid;
7761 break;
7762 }
7763 }
7764
7765 if (count1 == 0 || count2 == 0 || count1 != count2)
7766 goto done;
7767
7768 symtable1
7769 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7770 symtable2
7771 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7772 if (symtable1 == NULL || symtable2 == NULL)
7773 goto done;
7774
7775 symp = symtable1;
7776 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7777 ssym < ssymend; ssym++, symp++)
7778 {
7779 symp->u.ssym = ssym;
7780 symp->name = bfd_elf_string_from_elf_section (bfd1,
7781 hdr1->sh_link,
7782 ssym->st_name);
7783 }
7784
7785 symp = symtable2;
7786 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7787 ssym < ssymend; ssym++, symp++)
7788 {
7789 symp->u.ssym = ssym;
7790 symp->name = bfd_elf_string_from_elf_section (bfd2,
7791 hdr2->sh_link,
7792 ssym->st_name);
7793 }
7794
7795 /* Sort symbol by name. */
7796 qsort (symtable1, count1, sizeof (struct elf_symbol),
7797 elf_sym_name_compare);
7798 qsort (symtable2, count1, sizeof (struct elf_symbol),
7799 elf_sym_name_compare);
7800
7801 for (i = 0; i < count1; i++)
7802 /* Two symbols must have the same binding, type and name. */
7803 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7804 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7805 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7806 goto done;
7807
7808 result = TRUE;
7809 goto done;
7810 }
7811
7812 symtable1 = (struct elf_symbol *)
7813 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7814 symtable2 = (struct elf_symbol *)
7815 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7816 if (symtable1 == NULL || symtable2 == NULL)
7817 goto done;
7818
7819 /* Count definitions in the section. */
7820 count1 = 0;
7821 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7822 if (isym->st_shndx == shndx1)
7823 symtable1[count1++].u.isym = isym;
7824
7825 count2 = 0;
7826 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7827 if (isym->st_shndx == shndx2)
7828 symtable2[count2++].u.isym = isym;
7829
7830 if (count1 == 0 || count2 == 0 || count1 != count2)
7831 goto done;
7832
7833 for (i = 0; i < count1; i++)
7834 symtable1[i].name
7835 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7836 symtable1[i].u.isym->st_name);
7837
7838 for (i = 0; i < count2; i++)
7839 symtable2[i].name
7840 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7841 symtable2[i].u.isym->st_name);
7842
7843 /* Sort symbol by name. */
7844 qsort (symtable1, count1, sizeof (struct elf_symbol),
7845 elf_sym_name_compare);
7846 qsort (symtable2, count1, sizeof (struct elf_symbol),
7847 elf_sym_name_compare);
7848
7849 for (i = 0; i < count1; i++)
7850 /* Two symbols must have the same binding, type and name. */
7851 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7852 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7853 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7854 goto done;
7855
7856 result = TRUE;
7857
7858 done:
7859 if (symtable1)
7860 free (symtable1);
7861 if (symtable2)
7862 free (symtable2);
7863 if (isymbuf1)
7864 free (isymbuf1);
7865 if (isymbuf2)
7866 free (isymbuf2);
7867
7868 return result;
7869 }
7870
7871 /* Return TRUE if 2 section types are compatible. */
7872
7873 bfd_boolean
7874 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7875 bfd *bbfd, const asection *bsec)
7876 {
7877 if (asec == NULL
7878 || bsec == NULL
7879 || abfd->xvec->flavour != bfd_target_elf_flavour
7880 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7881 return TRUE;
7882
7883 return elf_section_type (asec) == elf_section_type (bsec);
7884 }
7885 \f
7886 /* Final phase of ELF linker. */
7887
7888 /* A structure we use to avoid passing large numbers of arguments. */
7889
7890 struct elf_final_link_info
7891 {
7892 /* General link information. */
7893 struct bfd_link_info *info;
7894 /* Output BFD. */
7895 bfd *output_bfd;
7896 /* Symbol string table. */
7897 struct elf_strtab_hash *symstrtab;
7898 /* .hash section. */
7899 asection *hash_sec;
7900 /* symbol version section (.gnu.version). */
7901 asection *symver_sec;
7902 /* Buffer large enough to hold contents of any section. */
7903 bfd_byte *contents;
7904 /* Buffer large enough to hold external relocs of any section. */
7905 void *external_relocs;
7906 /* Buffer large enough to hold internal relocs of any section. */
7907 Elf_Internal_Rela *internal_relocs;
7908 /* Buffer large enough to hold external local symbols of any input
7909 BFD. */
7910 bfd_byte *external_syms;
7911 /* And a buffer for symbol section indices. */
7912 Elf_External_Sym_Shndx *locsym_shndx;
7913 /* Buffer large enough to hold internal local symbols of any input
7914 BFD. */
7915 Elf_Internal_Sym *internal_syms;
7916 /* Array large enough to hold a symbol index for each local symbol
7917 of any input BFD. */
7918 long *indices;
7919 /* Array large enough to hold a section pointer for each local
7920 symbol of any input BFD. */
7921 asection **sections;
7922 /* Buffer for SHT_SYMTAB_SHNDX section. */
7923 Elf_External_Sym_Shndx *symshndxbuf;
7924 /* Number of STT_FILE syms seen. */
7925 size_t filesym_count;
7926 };
7927
7928 /* This struct is used to pass information to elf_link_output_extsym. */
7929
7930 struct elf_outext_info
7931 {
7932 bfd_boolean failed;
7933 bfd_boolean localsyms;
7934 bfd_boolean file_sym_done;
7935 struct elf_final_link_info *flinfo;
7936 };
7937
7938
7939 /* Support for evaluating a complex relocation.
7940
7941 Complex relocations are generalized, self-describing relocations. The
7942 implementation of them consists of two parts: complex symbols, and the
7943 relocations themselves.
7944
7945 The relocations are use a reserved elf-wide relocation type code (R_RELC
7946 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7947 information (start bit, end bit, word width, etc) into the addend. This
7948 information is extracted from CGEN-generated operand tables within gas.
7949
7950 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7951 internal) representing prefix-notation expressions, including but not
7952 limited to those sorts of expressions normally encoded as addends in the
7953 addend field. The symbol mangling format is:
7954
7955 <node> := <literal>
7956 | <unary-operator> ':' <node>
7957 | <binary-operator> ':' <node> ':' <node>
7958 ;
7959
7960 <literal> := 's' <digits=N> ':' <N character symbol name>
7961 | 'S' <digits=N> ':' <N character section name>
7962 | '#' <hexdigits>
7963 ;
7964
7965 <binary-operator> := as in C
7966 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7967
7968 static void
7969 set_symbol_value (bfd *bfd_with_globals,
7970 Elf_Internal_Sym *isymbuf,
7971 size_t locsymcount,
7972 size_t symidx,
7973 bfd_vma val)
7974 {
7975 struct elf_link_hash_entry **sym_hashes;
7976 struct elf_link_hash_entry *h;
7977 size_t extsymoff = locsymcount;
7978
7979 if (symidx < locsymcount)
7980 {
7981 Elf_Internal_Sym *sym;
7982
7983 sym = isymbuf + symidx;
7984 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7985 {
7986 /* It is a local symbol: move it to the
7987 "absolute" section and give it a value. */
7988 sym->st_shndx = SHN_ABS;
7989 sym->st_value = val;
7990 return;
7991 }
7992 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7993 extsymoff = 0;
7994 }
7995
7996 /* It is a global symbol: set its link type
7997 to "defined" and give it a value. */
7998
7999 sym_hashes = elf_sym_hashes (bfd_with_globals);
8000 h = sym_hashes [symidx - extsymoff];
8001 while (h->root.type == bfd_link_hash_indirect
8002 || h->root.type == bfd_link_hash_warning)
8003 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8004 h->root.type = bfd_link_hash_defined;
8005 h->root.u.def.value = val;
8006 h->root.u.def.section = bfd_abs_section_ptr;
8007 }
8008
8009 static bfd_boolean
8010 resolve_symbol (const char *name,
8011 bfd *input_bfd,
8012 struct elf_final_link_info *flinfo,
8013 bfd_vma *result,
8014 Elf_Internal_Sym *isymbuf,
8015 size_t locsymcount)
8016 {
8017 Elf_Internal_Sym *sym;
8018 struct bfd_link_hash_entry *global_entry;
8019 const char *candidate = NULL;
8020 Elf_Internal_Shdr *symtab_hdr;
8021 size_t i;
8022
8023 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
8024
8025 for (i = 0; i < locsymcount; ++ i)
8026 {
8027 sym = isymbuf + i;
8028
8029 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
8030 continue;
8031
8032 candidate = bfd_elf_string_from_elf_section (input_bfd,
8033 symtab_hdr->sh_link,
8034 sym->st_name);
8035 #ifdef DEBUG
8036 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
8037 name, candidate, (unsigned long) sym->st_value);
8038 #endif
8039 if (candidate && strcmp (candidate, name) == 0)
8040 {
8041 asection *sec = flinfo->sections [i];
8042
8043 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
8044 *result += sec->output_offset + sec->output_section->vma;
8045 #ifdef DEBUG
8046 printf ("Found symbol with value %8.8lx\n",
8047 (unsigned long) *result);
8048 #endif
8049 return TRUE;
8050 }
8051 }
8052
8053 /* Hmm, haven't found it yet. perhaps it is a global. */
8054 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
8055 FALSE, FALSE, TRUE);
8056 if (!global_entry)
8057 return FALSE;
8058
8059 if (global_entry->type == bfd_link_hash_defined
8060 || global_entry->type == bfd_link_hash_defweak)
8061 {
8062 *result = (global_entry->u.def.value
8063 + global_entry->u.def.section->output_section->vma
8064 + global_entry->u.def.section->output_offset);
8065 #ifdef DEBUG
8066 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
8067 global_entry->root.string, (unsigned long) *result);
8068 #endif
8069 return TRUE;
8070 }
8071
8072 return FALSE;
8073 }
8074
8075 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
8076 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
8077 names like "foo.end" which is the end address of section "foo". */
8078
8079 static bfd_boolean
8080 resolve_section (const char *name,
8081 asection *sections,
8082 bfd_vma *result,
8083 bfd * abfd)
8084 {
8085 asection *curr;
8086 unsigned int len;
8087
8088 for (curr = sections; curr; curr = curr->next)
8089 if (strcmp (curr->name, name) == 0)
8090 {
8091 *result = curr->vma;
8092 return TRUE;
8093 }
8094
8095 /* Hmm. still haven't found it. try pseudo-section names. */
8096 /* FIXME: This could be coded more efficiently... */
8097 for (curr = sections; curr; curr = curr->next)
8098 {
8099 len = strlen (curr->name);
8100 if (len > strlen (name))
8101 continue;
8102
8103 if (strncmp (curr->name, name, len) == 0)
8104 {
8105 if (strncmp (".end", name + len, 4) == 0)
8106 {
8107 *result = curr->vma + curr->size / bfd_octets_per_byte (abfd);
8108 return TRUE;
8109 }
8110
8111 /* Insert more pseudo-section names here, if you like. */
8112 }
8113 }
8114
8115 return FALSE;
8116 }
8117
8118 static void
8119 undefined_reference (const char *reftype, const char *name)
8120 {
8121 /* xgettext:c-format */
8122 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8123 reftype, name);
8124 }
8125
8126 static bfd_boolean
8127 eval_symbol (bfd_vma *result,
8128 const char **symp,
8129 bfd *input_bfd,
8130 struct elf_final_link_info *flinfo,
8131 bfd_vma dot,
8132 Elf_Internal_Sym *isymbuf,
8133 size_t locsymcount,
8134 int signed_p)
8135 {
8136 size_t len;
8137 size_t symlen;
8138 bfd_vma a;
8139 bfd_vma b;
8140 char symbuf[4096];
8141 const char *sym = *symp;
8142 const char *symend;
8143 bfd_boolean symbol_is_section = FALSE;
8144
8145 len = strlen (sym);
8146 symend = sym + len;
8147
8148 if (len < 1 || len > sizeof (symbuf))
8149 {
8150 bfd_set_error (bfd_error_invalid_operation);
8151 return FALSE;
8152 }
8153
8154 switch (* sym)
8155 {
8156 case '.':
8157 *result = dot;
8158 *symp = sym + 1;
8159 return TRUE;
8160
8161 case '#':
8162 ++sym;
8163 *result = strtoul (sym, (char **) symp, 16);
8164 return TRUE;
8165
8166 case 'S':
8167 symbol_is_section = TRUE;
8168 /* Fall through. */
8169 case 's':
8170 ++sym;
8171 symlen = strtol (sym, (char **) symp, 10);
8172 sym = *symp + 1; /* Skip the trailing ':'. */
8173
8174 if (symend < sym || symlen + 1 > sizeof (symbuf))
8175 {
8176 bfd_set_error (bfd_error_invalid_operation);
8177 return FALSE;
8178 }
8179
8180 memcpy (symbuf, sym, symlen);
8181 symbuf[symlen] = '\0';
8182 *symp = sym + symlen;
8183
8184 /* Is it always possible, with complex symbols, that gas "mis-guessed"
8185 the symbol as a section, or vice-versa. so we're pretty liberal in our
8186 interpretation here; section means "try section first", not "must be a
8187 section", and likewise with symbol. */
8188
8189 if (symbol_is_section)
8190 {
8191 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
8192 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
8193 isymbuf, locsymcount))
8194 {
8195 undefined_reference ("section", symbuf);
8196 return FALSE;
8197 }
8198 }
8199 else
8200 {
8201 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
8202 isymbuf, locsymcount)
8203 && !resolve_section (symbuf, flinfo->output_bfd->sections,
8204 result, input_bfd))
8205 {
8206 undefined_reference ("symbol", symbuf);
8207 return FALSE;
8208 }
8209 }
8210
8211 return TRUE;
8212
8213 /* All that remains are operators. */
8214
8215 #define UNARY_OP(op) \
8216 if (strncmp (sym, #op, strlen (#op)) == 0) \
8217 { \
8218 sym += strlen (#op); \
8219 if (*sym == ':') \
8220 ++sym; \
8221 *symp = sym; \
8222 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8223 isymbuf, locsymcount, signed_p)) \
8224 return FALSE; \
8225 if (signed_p) \
8226 *result = op ((bfd_signed_vma) a); \
8227 else \
8228 *result = op a; \
8229 return TRUE; \
8230 }
8231
8232 #define BINARY_OP(op) \
8233 if (strncmp (sym, #op, strlen (#op)) == 0) \
8234 { \
8235 sym += strlen (#op); \
8236 if (*sym == ':') \
8237 ++sym; \
8238 *symp = sym; \
8239 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8240 isymbuf, locsymcount, signed_p)) \
8241 return FALSE; \
8242 ++*symp; \
8243 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8244 isymbuf, locsymcount, signed_p)) \
8245 return FALSE; \
8246 if (signed_p) \
8247 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8248 else \
8249 *result = a op b; \
8250 return TRUE; \
8251 }
8252
8253 default:
8254 UNARY_OP (0-);
8255 BINARY_OP (<<);
8256 BINARY_OP (>>);
8257 BINARY_OP (==);
8258 BINARY_OP (!=);
8259 BINARY_OP (<=);
8260 BINARY_OP (>=);
8261 BINARY_OP (&&);
8262 BINARY_OP (||);
8263 UNARY_OP (~);
8264 UNARY_OP (!);
8265 BINARY_OP (*);
8266 BINARY_OP (/);
8267 BINARY_OP (%);
8268 BINARY_OP (^);
8269 BINARY_OP (|);
8270 BINARY_OP (&);
8271 BINARY_OP (+);
8272 BINARY_OP (-);
8273 BINARY_OP (<);
8274 BINARY_OP (>);
8275 #undef UNARY_OP
8276 #undef BINARY_OP
8277 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8278 bfd_set_error (bfd_error_invalid_operation);
8279 return FALSE;
8280 }
8281 }
8282
8283 static void
8284 put_value (bfd_vma size,
8285 unsigned long chunksz,
8286 bfd *input_bfd,
8287 bfd_vma x,
8288 bfd_byte *location)
8289 {
8290 location += (size - chunksz);
8291
8292 for (; size; size -= chunksz, location -= chunksz)
8293 {
8294 switch (chunksz)
8295 {
8296 case 1:
8297 bfd_put_8 (input_bfd, x, location);
8298 x >>= 8;
8299 break;
8300 case 2:
8301 bfd_put_16 (input_bfd, x, location);
8302 x >>= 16;
8303 break;
8304 case 4:
8305 bfd_put_32 (input_bfd, x, location);
8306 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8307 x >>= 16;
8308 x >>= 16;
8309 break;
8310 #ifdef BFD64
8311 case 8:
8312 bfd_put_64 (input_bfd, x, location);
8313 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8314 x >>= 32;
8315 x >>= 32;
8316 break;
8317 #endif
8318 default:
8319 abort ();
8320 break;
8321 }
8322 }
8323 }
8324
8325 static bfd_vma
8326 get_value (bfd_vma size,
8327 unsigned long chunksz,
8328 bfd *input_bfd,
8329 bfd_byte *location)
8330 {
8331 int shift;
8332 bfd_vma x = 0;
8333
8334 /* Sanity checks. */
8335 BFD_ASSERT (chunksz <= sizeof (x)
8336 && size >= chunksz
8337 && chunksz != 0
8338 && (size % chunksz) == 0
8339 && input_bfd != NULL
8340 && location != NULL);
8341
8342 if (chunksz == sizeof (x))
8343 {
8344 BFD_ASSERT (size == chunksz);
8345
8346 /* Make sure that we do not perform an undefined shift operation.
8347 We know that size == chunksz so there will only be one iteration
8348 of the loop below. */
8349 shift = 0;
8350 }
8351 else
8352 shift = 8 * chunksz;
8353
8354 for (; size; size -= chunksz, location += chunksz)
8355 {
8356 switch (chunksz)
8357 {
8358 case 1:
8359 x = (x << shift) | bfd_get_8 (input_bfd, location);
8360 break;
8361 case 2:
8362 x = (x << shift) | bfd_get_16 (input_bfd, location);
8363 break;
8364 case 4:
8365 x = (x << shift) | bfd_get_32 (input_bfd, location);
8366 break;
8367 #ifdef BFD64
8368 case 8:
8369 x = (x << shift) | bfd_get_64 (input_bfd, location);
8370 break;
8371 #endif
8372 default:
8373 abort ();
8374 }
8375 }
8376 return x;
8377 }
8378
8379 static void
8380 decode_complex_addend (unsigned long *start, /* in bits */
8381 unsigned long *oplen, /* in bits */
8382 unsigned long *len, /* in bits */
8383 unsigned long *wordsz, /* in bytes */
8384 unsigned long *chunksz, /* in bytes */
8385 unsigned long *lsb0_p,
8386 unsigned long *signed_p,
8387 unsigned long *trunc_p,
8388 unsigned long encoded)
8389 {
8390 * start = encoded & 0x3F;
8391 * len = (encoded >> 6) & 0x3F;
8392 * oplen = (encoded >> 12) & 0x3F;
8393 * wordsz = (encoded >> 18) & 0xF;
8394 * chunksz = (encoded >> 22) & 0xF;
8395 * lsb0_p = (encoded >> 27) & 1;
8396 * signed_p = (encoded >> 28) & 1;
8397 * trunc_p = (encoded >> 29) & 1;
8398 }
8399
8400 bfd_reloc_status_type
8401 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8402 asection *input_section ATTRIBUTE_UNUSED,
8403 bfd_byte *contents,
8404 Elf_Internal_Rela *rel,
8405 bfd_vma relocation)
8406 {
8407 bfd_vma shift, x, mask;
8408 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8409 bfd_reloc_status_type r;
8410
8411 /* Perform this reloc, since it is complex.
8412 (this is not to say that it necessarily refers to a complex
8413 symbol; merely that it is a self-describing CGEN based reloc.
8414 i.e. the addend has the complete reloc information (bit start, end,
8415 word size, etc) encoded within it.). */
8416
8417 decode_complex_addend (&start, &oplen, &len, &wordsz,
8418 &chunksz, &lsb0_p, &signed_p,
8419 &trunc_p, rel->r_addend);
8420
8421 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8422
8423 if (lsb0_p)
8424 shift = (start + 1) - len;
8425 else
8426 shift = (8 * wordsz) - (start + len);
8427
8428 x = get_value (wordsz, chunksz, input_bfd,
8429 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8430
8431 #ifdef DEBUG
8432 printf ("Doing complex reloc: "
8433 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8434 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8435 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8436 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8437 oplen, (unsigned long) x, (unsigned long) mask,
8438 (unsigned long) relocation);
8439 #endif
8440
8441 r = bfd_reloc_ok;
8442 if (! trunc_p)
8443 /* Now do an overflow check. */
8444 r = bfd_check_overflow ((signed_p
8445 ? complain_overflow_signed
8446 : complain_overflow_unsigned),
8447 len, 0, (8 * wordsz),
8448 relocation);
8449
8450 /* Do the deed. */
8451 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8452
8453 #ifdef DEBUG
8454 printf (" relocation: %8.8lx\n"
8455 " shifted mask: %8.8lx\n"
8456 " shifted/masked reloc: %8.8lx\n"
8457 " result: %8.8lx\n",
8458 (unsigned long) relocation, (unsigned long) (mask << shift),
8459 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8460 #endif
8461 put_value (wordsz, chunksz, input_bfd, x,
8462 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8463 return r;
8464 }
8465
8466 /* Functions to read r_offset from external (target order) reloc
8467 entry. Faster than bfd_getl32 et al, because we let the compiler
8468 know the value is aligned. */
8469
8470 static bfd_vma
8471 ext32l_r_offset (const void *p)
8472 {
8473 union aligned32
8474 {
8475 uint32_t v;
8476 unsigned char c[4];
8477 };
8478 const union aligned32 *a
8479 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8480
8481 uint32_t aval = ( (uint32_t) a->c[0]
8482 | (uint32_t) a->c[1] << 8
8483 | (uint32_t) a->c[2] << 16
8484 | (uint32_t) a->c[3] << 24);
8485 return aval;
8486 }
8487
8488 static bfd_vma
8489 ext32b_r_offset (const void *p)
8490 {
8491 union aligned32
8492 {
8493 uint32_t v;
8494 unsigned char c[4];
8495 };
8496 const union aligned32 *a
8497 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8498
8499 uint32_t aval = ( (uint32_t) a->c[0] << 24
8500 | (uint32_t) a->c[1] << 16
8501 | (uint32_t) a->c[2] << 8
8502 | (uint32_t) a->c[3]);
8503 return aval;
8504 }
8505
8506 #ifdef BFD_HOST_64_BIT
8507 static bfd_vma
8508 ext64l_r_offset (const void *p)
8509 {
8510 union aligned64
8511 {
8512 uint64_t v;
8513 unsigned char c[8];
8514 };
8515 const union aligned64 *a
8516 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8517
8518 uint64_t aval = ( (uint64_t) a->c[0]
8519 | (uint64_t) a->c[1] << 8
8520 | (uint64_t) a->c[2] << 16
8521 | (uint64_t) a->c[3] << 24
8522 | (uint64_t) a->c[4] << 32
8523 | (uint64_t) a->c[5] << 40
8524 | (uint64_t) a->c[6] << 48
8525 | (uint64_t) a->c[7] << 56);
8526 return aval;
8527 }
8528
8529 static bfd_vma
8530 ext64b_r_offset (const void *p)
8531 {
8532 union aligned64
8533 {
8534 uint64_t v;
8535 unsigned char c[8];
8536 };
8537 const union aligned64 *a
8538 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8539
8540 uint64_t aval = ( (uint64_t) a->c[0] << 56
8541 | (uint64_t) a->c[1] << 48
8542 | (uint64_t) a->c[2] << 40
8543 | (uint64_t) a->c[3] << 32
8544 | (uint64_t) a->c[4] << 24
8545 | (uint64_t) a->c[5] << 16
8546 | (uint64_t) a->c[6] << 8
8547 | (uint64_t) a->c[7]);
8548 return aval;
8549 }
8550 #endif
8551
8552 /* When performing a relocatable link, the input relocations are
8553 preserved. But, if they reference global symbols, the indices
8554 referenced must be updated. Update all the relocations found in
8555 RELDATA. */
8556
8557 static bfd_boolean
8558 elf_link_adjust_relocs (bfd *abfd,
8559 asection *sec,
8560 struct bfd_elf_section_reloc_data *reldata,
8561 bfd_boolean sort,
8562 struct bfd_link_info *info)
8563 {
8564 unsigned int i;
8565 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8566 bfd_byte *erela;
8567 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8568 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8569 bfd_vma r_type_mask;
8570 int r_sym_shift;
8571 unsigned int count = reldata->count;
8572 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8573
8574 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8575 {
8576 swap_in = bed->s->swap_reloc_in;
8577 swap_out = bed->s->swap_reloc_out;
8578 }
8579 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8580 {
8581 swap_in = bed->s->swap_reloca_in;
8582 swap_out = bed->s->swap_reloca_out;
8583 }
8584 else
8585 abort ();
8586
8587 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8588 abort ();
8589
8590 if (bed->s->arch_size == 32)
8591 {
8592 r_type_mask = 0xff;
8593 r_sym_shift = 8;
8594 }
8595 else
8596 {
8597 r_type_mask = 0xffffffff;
8598 r_sym_shift = 32;
8599 }
8600
8601 erela = reldata->hdr->contents;
8602 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8603 {
8604 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8605 unsigned int j;
8606
8607 if (*rel_hash == NULL)
8608 continue;
8609
8610 if ((*rel_hash)->indx == -2
8611 && info->gc_sections
8612 && ! info->gc_keep_exported)
8613 {
8614 /* PR 21524: Let the user know if a symbol was removed by garbage collection. */
8615 _bfd_error_handler (_("%B:%A: error: relocation references symbol %s which was removed by garbage collection."),
8616 abfd, sec,
8617 (*rel_hash)->root.root.string);
8618 _bfd_error_handler (_("%B:%A: error: try relinking with --gc-keep-exported enabled."),
8619 abfd, sec,
8620 (*rel_hash)->root.root.string);
8621 bfd_set_error (bfd_error_invalid_operation);
8622 return FALSE;
8623 }
8624 BFD_ASSERT ((*rel_hash)->indx >= 0);
8625
8626 (*swap_in) (abfd, erela, irela);
8627 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8628 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8629 | (irela[j].r_info & r_type_mask));
8630 (*swap_out) (abfd, irela, erela);
8631 }
8632
8633 if (bed->elf_backend_update_relocs)
8634 (*bed->elf_backend_update_relocs) (sec, reldata);
8635
8636 if (sort && count != 0)
8637 {
8638 bfd_vma (*ext_r_off) (const void *);
8639 bfd_vma r_off;
8640 size_t elt_size;
8641 bfd_byte *base, *end, *p, *loc;
8642 bfd_byte *buf = NULL;
8643
8644 if (bed->s->arch_size == 32)
8645 {
8646 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8647 ext_r_off = ext32l_r_offset;
8648 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8649 ext_r_off = ext32b_r_offset;
8650 else
8651 abort ();
8652 }
8653 else
8654 {
8655 #ifdef BFD_HOST_64_BIT
8656 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8657 ext_r_off = ext64l_r_offset;
8658 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8659 ext_r_off = ext64b_r_offset;
8660 else
8661 #endif
8662 abort ();
8663 }
8664
8665 /* Must use a stable sort here. A modified insertion sort,
8666 since the relocs are mostly sorted already. */
8667 elt_size = reldata->hdr->sh_entsize;
8668 base = reldata->hdr->contents;
8669 end = base + count * elt_size;
8670 if (elt_size > sizeof (Elf64_External_Rela))
8671 abort ();
8672
8673 /* Ensure the first element is lowest. This acts as a sentinel,
8674 speeding the main loop below. */
8675 r_off = (*ext_r_off) (base);
8676 for (p = loc = base; (p += elt_size) < end; )
8677 {
8678 bfd_vma r_off2 = (*ext_r_off) (p);
8679 if (r_off > r_off2)
8680 {
8681 r_off = r_off2;
8682 loc = p;
8683 }
8684 }
8685 if (loc != base)
8686 {
8687 /* Don't just swap *base and *loc as that changes the order
8688 of the original base[0] and base[1] if they happen to
8689 have the same r_offset. */
8690 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
8691 memcpy (onebuf, loc, elt_size);
8692 memmove (base + elt_size, base, loc - base);
8693 memcpy (base, onebuf, elt_size);
8694 }
8695
8696 for (p = base + elt_size; (p += elt_size) < end; )
8697 {
8698 /* base to p is sorted, *p is next to insert. */
8699 r_off = (*ext_r_off) (p);
8700 /* Search the sorted region for location to insert. */
8701 loc = p - elt_size;
8702 while (r_off < (*ext_r_off) (loc))
8703 loc -= elt_size;
8704 loc += elt_size;
8705 if (loc != p)
8706 {
8707 /* Chances are there is a run of relocs to insert here,
8708 from one of more input files. Files are not always
8709 linked in order due to the way elf_link_input_bfd is
8710 called. See pr17666. */
8711 size_t sortlen = p - loc;
8712 bfd_vma r_off2 = (*ext_r_off) (loc);
8713 size_t runlen = elt_size;
8714 size_t buf_size = 96 * 1024;
8715 while (p + runlen < end
8716 && (sortlen <= buf_size
8717 || runlen + elt_size <= buf_size)
8718 && r_off2 > (*ext_r_off) (p + runlen))
8719 runlen += elt_size;
8720 if (buf == NULL)
8721 {
8722 buf = bfd_malloc (buf_size);
8723 if (buf == NULL)
8724 return FALSE;
8725 }
8726 if (runlen < sortlen)
8727 {
8728 memcpy (buf, p, runlen);
8729 memmove (loc + runlen, loc, sortlen);
8730 memcpy (loc, buf, runlen);
8731 }
8732 else
8733 {
8734 memcpy (buf, loc, sortlen);
8735 memmove (loc, p, runlen);
8736 memcpy (loc + runlen, buf, sortlen);
8737 }
8738 p += runlen - elt_size;
8739 }
8740 }
8741 /* Hashes are no longer valid. */
8742 free (reldata->hashes);
8743 reldata->hashes = NULL;
8744 free (buf);
8745 }
8746 return TRUE;
8747 }
8748
8749 struct elf_link_sort_rela
8750 {
8751 union {
8752 bfd_vma offset;
8753 bfd_vma sym_mask;
8754 } u;
8755 enum elf_reloc_type_class type;
8756 /* We use this as an array of size int_rels_per_ext_rel. */
8757 Elf_Internal_Rela rela[1];
8758 };
8759
8760 static int
8761 elf_link_sort_cmp1 (const void *A, const void *B)
8762 {
8763 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8764 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8765 int relativea, relativeb;
8766
8767 relativea = a->type == reloc_class_relative;
8768 relativeb = b->type == reloc_class_relative;
8769
8770 if (relativea < relativeb)
8771 return 1;
8772 if (relativea > relativeb)
8773 return -1;
8774 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8775 return -1;
8776 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8777 return 1;
8778 if (a->rela->r_offset < b->rela->r_offset)
8779 return -1;
8780 if (a->rela->r_offset > b->rela->r_offset)
8781 return 1;
8782 return 0;
8783 }
8784
8785 static int
8786 elf_link_sort_cmp2 (const void *A, const void *B)
8787 {
8788 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8789 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8790
8791 if (a->type < b->type)
8792 return -1;
8793 if (a->type > b->type)
8794 return 1;
8795 if (a->u.offset < b->u.offset)
8796 return -1;
8797 if (a->u.offset > b->u.offset)
8798 return 1;
8799 if (a->rela->r_offset < b->rela->r_offset)
8800 return -1;
8801 if (a->rela->r_offset > b->rela->r_offset)
8802 return 1;
8803 return 0;
8804 }
8805
8806 static size_t
8807 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8808 {
8809 asection *dynamic_relocs;
8810 asection *rela_dyn;
8811 asection *rel_dyn;
8812 bfd_size_type count, size;
8813 size_t i, ret, sort_elt, ext_size;
8814 bfd_byte *sort, *s_non_relative, *p;
8815 struct elf_link_sort_rela *sq;
8816 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8817 int i2e = bed->s->int_rels_per_ext_rel;
8818 unsigned int opb = bfd_octets_per_byte (abfd);
8819 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8820 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8821 struct bfd_link_order *lo;
8822 bfd_vma r_sym_mask;
8823 bfd_boolean use_rela;
8824
8825 /* Find a dynamic reloc section. */
8826 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8827 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8828 if (rela_dyn != NULL && rela_dyn->size > 0
8829 && rel_dyn != NULL && rel_dyn->size > 0)
8830 {
8831 bfd_boolean use_rela_initialised = FALSE;
8832
8833 /* This is just here to stop gcc from complaining.
8834 Its initialization checking code is not perfect. */
8835 use_rela = TRUE;
8836
8837 /* Both sections are present. Examine the sizes
8838 of the indirect sections to help us choose. */
8839 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8840 if (lo->type == bfd_indirect_link_order)
8841 {
8842 asection *o = lo->u.indirect.section;
8843
8844 if ((o->size % bed->s->sizeof_rela) == 0)
8845 {
8846 if ((o->size % bed->s->sizeof_rel) == 0)
8847 /* Section size is divisible by both rel and rela sizes.
8848 It is of no help to us. */
8849 ;
8850 else
8851 {
8852 /* Section size is only divisible by rela. */
8853 if (use_rela_initialised && !use_rela)
8854 {
8855 _bfd_error_handler (_("%B: Unable to sort relocs - "
8856 "they are in more than one size"),
8857 abfd);
8858 bfd_set_error (bfd_error_invalid_operation);
8859 return 0;
8860 }
8861 else
8862 {
8863 use_rela = TRUE;
8864 use_rela_initialised = TRUE;
8865 }
8866 }
8867 }
8868 else if ((o->size % bed->s->sizeof_rel) == 0)
8869 {
8870 /* Section size is only divisible by rel. */
8871 if (use_rela_initialised && use_rela)
8872 {
8873 _bfd_error_handler (_("%B: Unable to sort relocs - "
8874 "they are in more than one size"),
8875 abfd);
8876 bfd_set_error (bfd_error_invalid_operation);
8877 return 0;
8878 }
8879 else
8880 {
8881 use_rela = FALSE;
8882 use_rela_initialised = TRUE;
8883 }
8884 }
8885 else
8886 {
8887 /* The section size is not divisible by either -
8888 something is wrong. */
8889 _bfd_error_handler (_("%B: Unable to sort relocs - "
8890 "they are of an unknown size"), abfd);
8891 bfd_set_error (bfd_error_invalid_operation);
8892 return 0;
8893 }
8894 }
8895
8896 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8897 if (lo->type == bfd_indirect_link_order)
8898 {
8899 asection *o = lo->u.indirect.section;
8900
8901 if ((o->size % bed->s->sizeof_rela) == 0)
8902 {
8903 if ((o->size % bed->s->sizeof_rel) == 0)
8904 /* Section size is divisible by both rel and rela sizes.
8905 It is of no help to us. */
8906 ;
8907 else
8908 {
8909 /* Section size is only divisible by rela. */
8910 if (use_rela_initialised && !use_rela)
8911 {
8912 _bfd_error_handler (_("%B: Unable to sort relocs - "
8913 "they are in more than one size"),
8914 abfd);
8915 bfd_set_error (bfd_error_invalid_operation);
8916 return 0;
8917 }
8918 else
8919 {
8920 use_rela = TRUE;
8921 use_rela_initialised = TRUE;
8922 }
8923 }
8924 }
8925 else if ((o->size % bed->s->sizeof_rel) == 0)
8926 {
8927 /* Section size is only divisible by rel. */
8928 if (use_rela_initialised && use_rela)
8929 {
8930 _bfd_error_handler (_("%B: Unable to sort relocs - "
8931 "they are in more than one size"),
8932 abfd);
8933 bfd_set_error (bfd_error_invalid_operation);
8934 return 0;
8935 }
8936 else
8937 {
8938 use_rela = FALSE;
8939 use_rela_initialised = TRUE;
8940 }
8941 }
8942 else
8943 {
8944 /* The section size is not divisible by either -
8945 something is wrong. */
8946 _bfd_error_handler (_("%B: Unable to sort relocs - "
8947 "they are of an unknown size"), abfd);
8948 bfd_set_error (bfd_error_invalid_operation);
8949 return 0;
8950 }
8951 }
8952
8953 if (! use_rela_initialised)
8954 /* Make a guess. */
8955 use_rela = TRUE;
8956 }
8957 else if (rela_dyn != NULL && rela_dyn->size > 0)
8958 use_rela = TRUE;
8959 else if (rel_dyn != NULL && rel_dyn->size > 0)
8960 use_rela = FALSE;
8961 else
8962 return 0;
8963
8964 if (use_rela)
8965 {
8966 dynamic_relocs = rela_dyn;
8967 ext_size = bed->s->sizeof_rela;
8968 swap_in = bed->s->swap_reloca_in;
8969 swap_out = bed->s->swap_reloca_out;
8970 }
8971 else
8972 {
8973 dynamic_relocs = rel_dyn;
8974 ext_size = bed->s->sizeof_rel;
8975 swap_in = bed->s->swap_reloc_in;
8976 swap_out = bed->s->swap_reloc_out;
8977 }
8978
8979 size = 0;
8980 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8981 if (lo->type == bfd_indirect_link_order)
8982 size += lo->u.indirect.section->size;
8983
8984 if (size != dynamic_relocs->size)
8985 return 0;
8986
8987 sort_elt = (sizeof (struct elf_link_sort_rela)
8988 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8989
8990 count = dynamic_relocs->size / ext_size;
8991 if (count == 0)
8992 return 0;
8993 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8994
8995 if (sort == NULL)
8996 {
8997 (*info->callbacks->warning)
8998 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8999 return 0;
9000 }
9001
9002 if (bed->s->arch_size == 32)
9003 r_sym_mask = ~(bfd_vma) 0xff;
9004 else
9005 r_sym_mask = ~(bfd_vma) 0xffffffff;
9006
9007 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9008 if (lo->type == bfd_indirect_link_order)
9009 {
9010 bfd_byte *erel, *erelend;
9011 asection *o = lo->u.indirect.section;
9012
9013 if (o->contents == NULL && o->size != 0)
9014 {
9015 /* This is a reloc section that is being handled as a normal
9016 section. See bfd_section_from_shdr. We can't combine
9017 relocs in this case. */
9018 free (sort);
9019 return 0;
9020 }
9021 erel = o->contents;
9022 erelend = o->contents + o->size;
9023 p = sort + o->output_offset * opb / ext_size * sort_elt;
9024
9025 while (erel < erelend)
9026 {
9027 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9028
9029 (*swap_in) (abfd, erel, s->rela);
9030 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
9031 s->u.sym_mask = r_sym_mask;
9032 p += sort_elt;
9033 erel += ext_size;
9034 }
9035 }
9036
9037 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
9038
9039 for (i = 0, p = sort; i < count; i++, p += sort_elt)
9040 {
9041 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9042 if (s->type != reloc_class_relative)
9043 break;
9044 }
9045 ret = i;
9046 s_non_relative = p;
9047
9048 sq = (struct elf_link_sort_rela *) s_non_relative;
9049 for (; i < count; i++, p += sort_elt)
9050 {
9051 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
9052 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
9053 sq = sp;
9054 sp->u.offset = sq->rela->r_offset;
9055 }
9056
9057 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
9058
9059 struct elf_link_hash_table *htab = elf_hash_table (info);
9060 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
9061 {
9062 /* We have plt relocs in .rela.dyn. */
9063 sq = (struct elf_link_sort_rela *) sort;
9064 for (i = 0; i < count; i++)
9065 if (sq[count - i - 1].type != reloc_class_plt)
9066 break;
9067 if (i != 0 && htab->srelplt->size == i * ext_size)
9068 {
9069 struct bfd_link_order **plo;
9070 /* Put srelplt link_order last. This is so the output_offset
9071 set in the next loop is correct for DT_JMPREL. */
9072 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
9073 if ((*plo)->type == bfd_indirect_link_order
9074 && (*plo)->u.indirect.section == htab->srelplt)
9075 {
9076 lo = *plo;
9077 *plo = lo->next;
9078 }
9079 else
9080 plo = &(*plo)->next;
9081 *plo = lo;
9082 lo->next = NULL;
9083 dynamic_relocs->map_tail.link_order = lo;
9084 }
9085 }
9086
9087 p = sort;
9088 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9089 if (lo->type == bfd_indirect_link_order)
9090 {
9091 bfd_byte *erel, *erelend;
9092 asection *o = lo->u.indirect.section;
9093
9094 erel = o->contents;
9095 erelend = o->contents + o->size;
9096 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
9097 while (erel < erelend)
9098 {
9099 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9100 (*swap_out) (abfd, s->rela, erel);
9101 p += sort_elt;
9102 erel += ext_size;
9103 }
9104 }
9105
9106 free (sort);
9107 *psec = dynamic_relocs;
9108 return ret;
9109 }
9110
9111 /* Add a symbol to the output symbol string table. */
9112
9113 static int
9114 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
9115 const char *name,
9116 Elf_Internal_Sym *elfsym,
9117 asection *input_sec,
9118 struct elf_link_hash_entry *h)
9119 {
9120 int (*output_symbol_hook)
9121 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
9122 struct elf_link_hash_entry *);
9123 struct elf_link_hash_table *hash_table;
9124 const struct elf_backend_data *bed;
9125 bfd_size_type strtabsize;
9126
9127 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9128
9129 bed = get_elf_backend_data (flinfo->output_bfd);
9130 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
9131 if (output_symbol_hook != NULL)
9132 {
9133 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
9134 if (ret != 1)
9135 return ret;
9136 }
9137
9138 if (name == NULL
9139 || *name == '\0'
9140 || (input_sec->flags & SEC_EXCLUDE))
9141 elfsym->st_name = (unsigned long) -1;
9142 else
9143 {
9144 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
9145 to get the final offset for st_name. */
9146 elfsym->st_name
9147 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
9148 name, FALSE);
9149 if (elfsym->st_name == (unsigned long) -1)
9150 return 0;
9151 }
9152
9153 hash_table = elf_hash_table (flinfo->info);
9154 strtabsize = hash_table->strtabsize;
9155 if (strtabsize <= hash_table->strtabcount)
9156 {
9157 strtabsize += strtabsize;
9158 hash_table->strtabsize = strtabsize;
9159 strtabsize *= sizeof (*hash_table->strtab);
9160 hash_table->strtab
9161 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
9162 strtabsize);
9163 if (hash_table->strtab == NULL)
9164 return 0;
9165 }
9166 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
9167 hash_table->strtab[hash_table->strtabcount].dest_index
9168 = hash_table->strtabcount;
9169 hash_table->strtab[hash_table->strtabcount].destshndx_index
9170 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
9171
9172 bfd_get_symcount (flinfo->output_bfd) += 1;
9173 hash_table->strtabcount += 1;
9174
9175 return 1;
9176 }
9177
9178 /* Swap symbols out to the symbol table and flush the output symbols to
9179 the file. */
9180
9181 static bfd_boolean
9182 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
9183 {
9184 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
9185 bfd_size_type amt;
9186 size_t i;
9187 const struct elf_backend_data *bed;
9188 bfd_byte *symbuf;
9189 Elf_Internal_Shdr *hdr;
9190 file_ptr pos;
9191 bfd_boolean ret;
9192
9193 if (!hash_table->strtabcount)
9194 return TRUE;
9195
9196 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9197
9198 bed = get_elf_backend_data (flinfo->output_bfd);
9199
9200 amt = bed->s->sizeof_sym * hash_table->strtabcount;
9201 symbuf = (bfd_byte *) bfd_malloc (amt);
9202 if (symbuf == NULL)
9203 return FALSE;
9204
9205 if (flinfo->symshndxbuf)
9206 {
9207 amt = sizeof (Elf_External_Sym_Shndx);
9208 amt *= bfd_get_symcount (flinfo->output_bfd);
9209 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
9210 if (flinfo->symshndxbuf == NULL)
9211 {
9212 free (symbuf);
9213 return FALSE;
9214 }
9215 }
9216
9217 for (i = 0; i < hash_table->strtabcount; i++)
9218 {
9219 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
9220 if (elfsym->sym.st_name == (unsigned long) -1)
9221 elfsym->sym.st_name = 0;
9222 else
9223 elfsym->sym.st_name
9224 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
9225 elfsym->sym.st_name);
9226 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
9227 ((bfd_byte *) symbuf
9228 + (elfsym->dest_index
9229 * bed->s->sizeof_sym)),
9230 (flinfo->symshndxbuf
9231 + elfsym->destshndx_index));
9232 }
9233
9234 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
9235 pos = hdr->sh_offset + hdr->sh_size;
9236 amt = hash_table->strtabcount * bed->s->sizeof_sym;
9237 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
9238 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
9239 {
9240 hdr->sh_size += amt;
9241 ret = TRUE;
9242 }
9243 else
9244 ret = FALSE;
9245
9246 free (symbuf);
9247
9248 free (hash_table->strtab);
9249 hash_table->strtab = NULL;
9250
9251 return ret;
9252 }
9253
9254 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9255
9256 static bfd_boolean
9257 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9258 {
9259 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9260 && sym->st_shndx < SHN_LORESERVE)
9261 {
9262 /* The gABI doesn't support dynamic symbols in output sections
9263 beyond 64k. */
9264 _bfd_error_handler
9265 /* xgettext:c-format */
9266 (_("%B: Too many sections: %d (>= %d)"),
9267 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9268 bfd_set_error (bfd_error_nonrepresentable_section);
9269 return FALSE;
9270 }
9271 return TRUE;
9272 }
9273
9274 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9275 allowing an unsatisfied unversioned symbol in the DSO to match a
9276 versioned symbol that would normally require an explicit version.
9277 We also handle the case that a DSO references a hidden symbol
9278 which may be satisfied by a versioned symbol in another DSO. */
9279
9280 static bfd_boolean
9281 elf_link_check_versioned_symbol (struct bfd_link_info *info,
9282 const struct elf_backend_data *bed,
9283 struct elf_link_hash_entry *h)
9284 {
9285 bfd *abfd;
9286 struct elf_link_loaded_list *loaded;
9287
9288 if (!is_elf_hash_table (info->hash))
9289 return FALSE;
9290
9291 /* Check indirect symbol. */
9292 while (h->root.type == bfd_link_hash_indirect)
9293 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9294
9295 switch (h->root.type)
9296 {
9297 default:
9298 abfd = NULL;
9299 break;
9300
9301 case bfd_link_hash_undefined:
9302 case bfd_link_hash_undefweak:
9303 abfd = h->root.u.undef.abfd;
9304 if (abfd == NULL
9305 || (abfd->flags & DYNAMIC) == 0
9306 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9307 return FALSE;
9308 break;
9309
9310 case bfd_link_hash_defined:
9311 case bfd_link_hash_defweak:
9312 abfd = h->root.u.def.section->owner;
9313 break;
9314
9315 case bfd_link_hash_common:
9316 abfd = h->root.u.c.p->section->owner;
9317 break;
9318 }
9319 BFD_ASSERT (abfd != NULL);
9320
9321 for (loaded = elf_hash_table (info)->loaded;
9322 loaded != NULL;
9323 loaded = loaded->next)
9324 {
9325 bfd *input;
9326 Elf_Internal_Shdr *hdr;
9327 size_t symcount;
9328 size_t extsymcount;
9329 size_t extsymoff;
9330 Elf_Internal_Shdr *versymhdr;
9331 Elf_Internal_Sym *isym;
9332 Elf_Internal_Sym *isymend;
9333 Elf_Internal_Sym *isymbuf;
9334 Elf_External_Versym *ever;
9335 Elf_External_Versym *extversym;
9336
9337 input = loaded->abfd;
9338
9339 /* We check each DSO for a possible hidden versioned definition. */
9340 if (input == abfd
9341 || (input->flags & DYNAMIC) == 0
9342 || elf_dynversym (input) == 0)
9343 continue;
9344
9345 hdr = &elf_tdata (input)->dynsymtab_hdr;
9346
9347 symcount = hdr->sh_size / bed->s->sizeof_sym;
9348 if (elf_bad_symtab (input))
9349 {
9350 extsymcount = symcount;
9351 extsymoff = 0;
9352 }
9353 else
9354 {
9355 extsymcount = symcount - hdr->sh_info;
9356 extsymoff = hdr->sh_info;
9357 }
9358
9359 if (extsymcount == 0)
9360 continue;
9361
9362 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9363 NULL, NULL, NULL);
9364 if (isymbuf == NULL)
9365 return FALSE;
9366
9367 /* Read in any version definitions. */
9368 versymhdr = &elf_tdata (input)->dynversym_hdr;
9369 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
9370 if (extversym == NULL)
9371 goto error_ret;
9372
9373 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9374 || (bfd_bread (extversym, versymhdr->sh_size, input)
9375 != versymhdr->sh_size))
9376 {
9377 free (extversym);
9378 error_ret:
9379 free (isymbuf);
9380 return FALSE;
9381 }
9382
9383 ever = extversym + extsymoff;
9384 isymend = isymbuf + extsymcount;
9385 for (isym = isymbuf; isym < isymend; isym++, ever++)
9386 {
9387 const char *name;
9388 Elf_Internal_Versym iver;
9389 unsigned short version_index;
9390
9391 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9392 || isym->st_shndx == SHN_UNDEF)
9393 continue;
9394
9395 name = bfd_elf_string_from_elf_section (input,
9396 hdr->sh_link,
9397 isym->st_name);
9398 if (strcmp (name, h->root.root.string) != 0)
9399 continue;
9400
9401 _bfd_elf_swap_versym_in (input, ever, &iver);
9402
9403 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9404 && !(h->def_regular
9405 && h->forced_local))
9406 {
9407 /* If we have a non-hidden versioned sym, then it should
9408 have provided a definition for the undefined sym unless
9409 it is defined in a non-shared object and forced local.
9410 */
9411 abort ();
9412 }
9413
9414 version_index = iver.vs_vers & VERSYM_VERSION;
9415 if (version_index == 1 || version_index == 2)
9416 {
9417 /* This is the base or first version. We can use it. */
9418 free (extversym);
9419 free (isymbuf);
9420 return TRUE;
9421 }
9422 }
9423
9424 free (extversym);
9425 free (isymbuf);
9426 }
9427
9428 return FALSE;
9429 }
9430
9431 /* Convert ELF common symbol TYPE. */
9432
9433 static int
9434 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9435 {
9436 /* Commom symbol can only appear in relocatable link. */
9437 if (!bfd_link_relocatable (info))
9438 abort ();
9439 switch (info->elf_stt_common)
9440 {
9441 case unchanged:
9442 break;
9443 case elf_stt_common:
9444 type = STT_COMMON;
9445 break;
9446 case no_elf_stt_common:
9447 type = STT_OBJECT;
9448 break;
9449 }
9450 return type;
9451 }
9452
9453 /* Add an external symbol to the symbol table. This is called from
9454 the hash table traversal routine. When generating a shared object,
9455 we go through the symbol table twice. The first time we output
9456 anything that might have been forced to local scope in a version
9457 script. The second time we output the symbols that are still
9458 global symbols. */
9459
9460 static bfd_boolean
9461 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9462 {
9463 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9464 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9465 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9466 bfd_boolean strip;
9467 Elf_Internal_Sym sym;
9468 asection *input_sec;
9469 const struct elf_backend_data *bed;
9470 long indx;
9471 int ret;
9472 unsigned int type;
9473
9474 if (h->root.type == bfd_link_hash_warning)
9475 {
9476 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9477 if (h->root.type == bfd_link_hash_new)
9478 return TRUE;
9479 }
9480
9481 /* Decide whether to output this symbol in this pass. */
9482 if (eoinfo->localsyms)
9483 {
9484 if (!h->forced_local)
9485 return TRUE;
9486 }
9487 else
9488 {
9489 if (h->forced_local)
9490 return TRUE;
9491 }
9492
9493 bed = get_elf_backend_data (flinfo->output_bfd);
9494
9495 if (h->root.type == bfd_link_hash_undefined)
9496 {
9497 /* If we have an undefined symbol reference here then it must have
9498 come from a shared library that is being linked in. (Undefined
9499 references in regular files have already been handled unless
9500 they are in unreferenced sections which are removed by garbage
9501 collection). */
9502 bfd_boolean ignore_undef = FALSE;
9503
9504 /* Some symbols may be special in that the fact that they're
9505 undefined can be safely ignored - let backend determine that. */
9506 if (bed->elf_backend_ignore_undef_symbol)
9507 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9508
9509 /* If we are reporting errors for this situation then do so now. */
9510 if (!ignore_undef
9511 && h->ref_dynamic
9512 && (!h->ref_regular || flinfo->info->gc_sections)
9513 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9514 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9515 (*flinfo->info->callbacks->undefined_symbol)
9516 (flinfo->info, h->root.root.string,
9517 h->ref_regular ? NULL : h->root.u.undef.abfd,
9518 NULL, 0,
9519 flinfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR);
9520
9521 /* Strip a global symbol defined in a discarded section. */
9522 if (h->indx == -3)
9523 return TRUE;
9524 }
9525
9526 /* We should also warn if a forced local symbol is referenced from
9527 shared libraries. */
9528 if (bfd_link_executable (flinfo->info)
9529 && h->forced_local
9530 && h->ref_dynamic
9531 && h->def_regular
9532 && !h->dynamic_def
9533 && h->ref_dynamic_nonweak
9534 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9535 {
9536 bfd *def_bfd;
9537 const char *msg;
9538 struct elf_link_hash_entry *hi = h;
9539
9540 /* Check indirect symbol. */
9541 while (hi->root.type == bfd_link_hash_indirect)
9542 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9543
9544 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9545 /* xgettext:c-format */
9546 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
9547 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9548 /* xgettext:c-format */
9549 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
9550 else
9551 /* xgettext:c-format */
9552 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
9553 def_bfd = flinfo->output_bfd;
9554 if (hi->root.u.def.section != bfd_abs_section_ptr)
9555 def_bfd = hi->root.u.def.section->owner;
9556 _bfd_error_handler (msg, flinfo->output_bfd,
9557 h->root.root.string, def_bfd);
9558 bfd_set_error (bfd_error_bad_value);
9559 eoinfo->failed = TRUE;
9560 return FALSE;
9561 }
9562
9563 /* We don't want to output symbols that have never been mentioned by
9564 a regular file, or that we have been told to strip. However, if
9565 h->indx is set to -2, the symbol is used by a reloc and we must
9566 output it. */
9567 strip = FALSE;
9568 if (h->indx == -2)
9569 ;
9570 else if ((h->def_dynamic
9571 || h->ref_dynamic
9572 || h->root.type == bfd_link_hash_new)
9573 && !h->def_regular
9574 && !h->ref_regular)
9575 strip = TRUE;
9576 else if (flinfo->info->strip == strip_all)
9577 strip = TRUE;
9578 else if (flinfo->info->strip == strip_some
9579 && bfd_hash_lookup (flinfo->info->keep_hash,
9580 h->root.root.string, FALSE, FALSE) == NULL)
9581 strip = TRUE;
9582 else if ((h->root.type == bfd_link_hash_defined
9583 || h->root.type == bfd_link_hash_defweak)
9584 && ((flinfo->info->strip_discarded
9585 && discarded_section (h->root.u.def.section))
9586 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9587 && h->root.u.def.section->owner != NULL
9588 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9589 strip = TRUE;
9590 else if ((h->root.type == bfd_link_hash_undefined
9591 || h->root.type == bfd_link_hash_undefweak)
9592 && h->root.u.undef.abfd != NULL
9593 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9594 strip = TRUE;
9595
9596 type = h->type;
9597
9598 /* If we're stripping it, and it's not a dynamic symbol, there's
9599 nothing else to do. However, if it is a forced local symbol or
9600 an ifunc symbol we need to give the backend finish_dynamic_symbol
9601 function a chance to make it dynamic. */
9602 if (strip
9603 && h->dynindx == -1
9604 && type != STT_GNU_IFUNC
9605 && !h->forced_local)
9606 return TRUE;
9607
9608 sym.st_value = 0;
9609 sym.st_size = h->size;
9610 sym.st_other = h->other;
9611 switch (h->root.type)
9612 {
9613 default:
9614 case bfd_link_hash_new:
9615 case bfd_link_hash_warning:
9616 abort ();
9617 return FALSE;
9618
9619 case bfd_link_hash_undefined:
9620 case bfd_link_hash_undefweak:
9621 input_sec = bfd_und_section_ptr;
9622 sym.st_shndx = SHN_UNDEF;
9623 break;
9624
9625 case bfd_link_hash_defined:
9626 case bfd_link_hash_defweak:
9627 {
9628 input_sec = h->root.u.def.section;
9629 if (input_sec->output_section != NULL)
9630 {
9631 sym.st_shndx =
9632 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9633 input_sec->output_section);
9634 if (sym.st_shndx == SHN_BAD)
9635 {
9636 _bfd_error_handler
9637 /* xgettext:c-format */
9638 (_("%B: could not find output section %A for input section %A"),
9639 flinfo->output_bfd, input_sec->output_section, input_sec);
9640 bfd_set_error (bfd_error_nonrepresentable_section);
9641 eoinfo->failed = TRUE;
9642 return FALSE;
9643 }
9644
9645 /* ELF symbols in relocatable files are section relative,
9646 but in nonrelocatable files they are virtual
9647 addresses. */
9648 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9649 if (!bfd_link_relocatable (flinfo->info))
9650 {
9651 sym.st_value += input_sec->output_section->vma;
9652 if (h->type == STT_TLS)
9653 {
9654 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9655 if (tls_sec != NULL)
9656 sym.st_value -= tls_sec->vma;
9657 }
9658 }
9659 }
9660 else
9661 {
9662 BFD_ASSERT (input_sec->owner == NULL
9663 || (input_sec->owner->flags & DYNAMIC) != 0);
9664 sym.st_shndx = SHN_UNDEF;
9665 input_sec = bfd_und_section_ptr;
9666 }
9667 }
9668 break;
9669
9670 case bfd_link_hash_common:
9671 input_sec = h->root.u.c.p->section;
9672 sym.st_shndx = bed->common_section_index (input_sec);
9673 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9674 break;
9675
9676 case bfd_link_hash_indirect:
9677 /* These symbols are created by symbol versioning. They point
9678 to the decorated version of the name. For example, if the
9679 symbol foo@@GNU_1.2 is the default, which should be used when
9680 foo is used with no version, then we add an indirect symbol
9681 foo which points to foo@@GNU_1.2. We ignore these symbols,
9682 since the indirected symbol is already in the hash table. */
9683 return TRUE;
9684 }
9685
9686 if (type == STT_COMMON || type == STT_OBJECT)
9687 switch (h->root.type)
9688 {
9689 case bfd_link_hash_common:
9690 type = elf_link_convert_common_type (flinfo->info, type);
9691 break;
9692 case bfd_link_hash_defined:
9693 case bfd_link_hash_defweak:
9694 if (bed->common_definition (&sym))
9695 type = elf_link_convert_common_type (flinfo->info, type);
9696 else
9697 type = STT_OBJECT;
9698 break;
9699 case bfd_link_hash_undefined:
9700 case bfd_link_hash_undefweak:
9701 break;
9702 default:
9703 abort ();
9704 }
9705
9706 if (h->forced_local)
9707 {
9708 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
9709 /* Turn off visibility on local symbol. */
9710 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
9711 }
9712 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
9713 else if (h->unique_global && h->def_regular)
9714 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
9715 else if (h->root.type == bfd_link_hash_undefweak
9716 || h->root.type == bfd_link_hash_defweak)
9717 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
9718 else
9719 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
9720 sym.st_target_internal = h->target_internal;
9721
9722 /* Give the processor backend a chance to tweak the symbol value,
9723 and also to finish up anything that needs to be done for this
9724 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9725 forced local syms when non-shared is due to a historical quirk.
9726 STT_GNU_IFUNC symbol must go through PLT. */
9727 if ((h->type == STT_GNU_IFUNC
9728 && h->def_regular
9729 && !bfd_link_relocatable (flinfo->info))
9730 || ((h->dynindx != -1
9731 || h->forced_local)
9732 && ((bfd_link_pic (flinfo->info)
9733 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9734 || h->root.type != bfd_link_hash_undefweak))
9735 || !h->forced_local)
9736 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9737 {
9738 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9739 (flinfo->output_bfd, flinfo->info, h, &sym)))
9740 {
9741 eoinfo->failed = TRUE;
9742 return FALSE;
9743 }
9744 }
9745
9746 /* If we are marking the symbol as undefined, and there are no
9747 non-weak references to this symbol from a regular object, then
9748 mark the symbol as weak undefined; if there are non-weak
9749 references, mark the symbol as strong. We can't do this earlier,
9750 because it might not be marked as undefined until the
9751 finish_dynamic_symbol routine gets through with it. */
9752 if (sym.st_shndx == SHN_UNDEF
9753 && h->ref_regular
9754 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9755 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9756 {
9757 int bindtype;
9758 type = ELF_ST_TYPE (sym.st_info);
9759
9760 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9761 if (type == STT_GNU_IFUNC)
9762 type = STT_FUNC;
9763
9764 if (h->ref_regular_nonweak)
9765 bindtype = STB_GLOBAL;
9766 else
9767 bindtype = STB_WEAK;
9768 sym.st_info = ELF_ST_INFO (bindtype, type);
9769 }
9770
9771 /* If this is a symbol defined in a dynamic library, don't use the
9772 symbol size from the dynamic library. Relinking an executable
9773 against a new library may introduce gratuitous changes in the
9774 executable's symbols if we keep the size. */
9775 if (sym.st_shndx == SHN_UNDEF
9776 && !h->def_regular
9777 && h->def_dynamic)
9778 sym.st_size = 0;
9779
9780 /* If a non-weak symbol with non-default visibility is not defined
9781 locally, it is a fatal error. */
9782 if (!bfd_link_relocatable (flinfo->info)
9783 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9784 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9785 && h->root.type == bfd_link_hash_undefined
9786 && !h->def_regular)
9787 {
9788 const char *msg;
9789
9790 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9791 /* xgettext:c-format */
9792 msg = _("%B: protected symbol `%s' isn't defined");
9793 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9794 /* xgettext:c-format */
9795 msg = _("%B: internal symbol `%s' isn't defined");
9796 else
9797 /* xgettext:c-format */
9798 msg = _("%B: hidden symbol `%s' isn't defined");
9799 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
9800 bfd_set_error (bfd_error_bad_value);
9801 eoinfo->failed = TRUE;
9802 return FALSE;
9803 }
9804
9805 /* If this symbol should be put in the .dynsym section, then put it
9806 there now. We already know the symbol index. We also fill in
9807 the entry in the .hash section. */
9808 if (elf_hash_table (flinfo->info)->dynsym != NULL
9809 && h->dynindx != -1
9810 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9811 {
9812 bfd_byte *esym;
9813
9814 /* Since there is no version information in the dynamic string,
9815 if there is no version info in symbol version section, we will
9816 have a run-time problem if not linking executable, referenced
9817 by shared library, or not bound locally. */
9818 if (h->verinfo.verdef == NULL
9819 && (!bfd_link_executable (flinfo->info)
9820 || h->ref_dynamic
9821 || !h->def_regular))
9822 {
9823 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9824
9825 if (p && p [1] != '\0')
9826 {
9827 _bfd_error_handler
9828 /* xgettext:c-format */
9829 (_("%B: No symbol version section for versioned symbol `%s'"),
9830 flinfo->output_bfd, h->root.root.string);
9831 eoinfo->failed = TRUE;
9832 return FALSE;
9833 }
9834 }
9835
9836 sym.st_name = h->dynstr_index;
9837 esym = (elf_hash_table (flinfo->info)->dynsym->contents
9838 + h->dynindx * bed->s->sizeof_sym);
9839 if (!check_dynsym (flinfo->output_bfd, &sym))
9840 {
9841 eoinfo->failed = TRUE;
9842 return FALSE;
9843 }
9844 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9845
9846 if (flinfo->hash_sec != NULL)
9847 {
9848 size_t hash_entry_size;
9849 bfd_byte *bucketpos;
9850 bfd_vma chain;
9851 size_t bucketcount;
9852 size_t bucket;
9853
9854 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9855 bucket = h->u.elf_hash_value % bucketcount;
9856
9857 hash_entry_size
9858 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9859 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9860 + (bucket + 2) * hash_entry_size);
9861 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9862 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9863 bucketpos);
9864 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9865 ((bfd_byte *) flinfo->hash_sec->contents
9866 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9867 }
9868
9869 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9870 {
9871 Elf_Internal_Versym iversym;
9872 Elf_External_Versym *eversym;
9873
9874 if (!h->def_regular)
9875 {
9876 if (h->verinfo.verdef == NULL
9877 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9878 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9879 iversym.vs_vers = 0;
9880 else
9881 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9882 }
9883 else
9884 {
9885 if (h->verinfo.vertree == NULL)
9886 iversym.vs_vers = 1;
9887 else
9888 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9889 if (flinfo->info->create_default_symver)
9890 iversym.vs_vers++;
9891 }
9892
9893 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
9894 defined locally. */
9895 if (h->versioned == versioned_hidden && h->def_regular)
9896 iversym.vs_vers |= VERSYM_HIDDEN;
9897
9898 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9899 eversym += h->dynindx;
9900 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9901 }
9902 }
9903
9904 /* If the symbol is undefined, and we didn't output it to .dynsym,
9905 strip it from .symtab too. Obviously we can't do this for
9906 relocatable output or when needed for --emit-relocs. */
9907 else if (input_sec == bfd_und_section_ptr
9908 && h->indx != -2
9909 && !bfd_link_relocatable (flinfo->info))
9910 return TRUE;
9911 /* Also strip others that we couldn't earlier due to dynamic symbol
9912 processing. */
9913 if (strip)
9914 return TRUE;
9915 if ((input_sec->flags & SEC_EXCLUDE) != 0)
9916 return TRUE;
9917
9918 /* Output a FILE symbol so that following locals are not associated
9919 with the wrong input file. We need one for forced local symbols
9920 if we've seen more than one FILE symbol or when we have exactly
9921 one FILE symbol but global symbols are present in a file other
9922 than the one with the FILE symbol. We also need one if linker
9923 defined symbols are present. In practice these conditions are
9924 always met, so just emit the FILE symbol unconditionally. */
9925 if (eoinfo->localsyms
9926 && !eoinfo->file_sym_done
9927 && eoinfo->flinfo->filesym_count != 0)
9928 {
9929 Elf_Internal_Sym fsym;
9930
9931 memset (&fsym, 0, sizeof (fsym));
9932 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9933 fsym.st_shndx = SHN_ABS;
9934 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
9935 bfd_und_section_ptr, NULL))
9936 return FALSE;
9937
9938 eoinfo->file_sym_done = TRUE;
9939 }
9940
9941 indx = bfd_get_symcount (flinfo->output_bfd);
9942 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
9943 input_sec, h);
9944 if (ret == 0)
9945 {
9946 eoinfo->failed = TRUE;
9947 return FALSE;
9948 }
9949 else if (ret == 1)
9950 h->indx = indx;
9951 else if (h->indx == -2)
9952 abort();
9953
9954 return TRUE;
9955 }
9956
9957 /* Return TRUE if special handling is done for relocs in SEC against
9958 symbols defined in discarded sections. */
9959
9960 static bfd_boolean
9961 elf_section_ignore_discarded_relocs (asection *sec)
9962 {
9963 const struct elf_backend_data *bed;
9964
9965 switch (sec->sec_info_type)
9966 {
9967 case SEC_INFO_TYPE_STABS:
9968 case SEC_INFO_TYPE_EH_FRAME:
9969 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
9970 return TRUE;
9971 default:
9972 break;
9973 }
9974
9975 bed = get_elf_backend_data (sec->owner);
9976 if (bed->elf_backend_ignore_discarded_relocs != NULL
9977 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9978 return TRUE;
9979
9980 return FALSE;
9981 }
9982
9983 /* Return a mask saying how ld should treat relocations in SEC against
9984 symbols defined in discarded sections. If this function returns
9985 COMPLAIN set, ld will issue a warning message. If this function
9986 returns PRETEND set, and the discarded section was link-once and the
9987 same size as the kept link-once section, ld will pretend that the
9988 symbol was actually defined in the kept section. Otherwise ld will
9989 zero the reloc (at least that is the intent, but some cooperation by
9990 the target dependent code is needed, particularly for REL targets). */
9991
9992 unsigned int
9993 _bfd_elf_default_action_discarded (asection *sec)
9994 {
9995 if (sec->flags & SEC_DEBUGGING)
9996 return PRETEND;
9997
9998 if (strcmp (".eh_frame", sec->name) == 0)
9999 return 0;
10000
10001 if (strcmp (".gcc_except_table", sec->name) == 0)
10002 return 0;
10003
10004 return COMPLAIN | PRETEND;
10005 }
10006
10007 /* Find a match between a section and a member of a section group. */
10008
10009 static asection *
10010 match_group_member (asection *sec, asection *group,
10011 struct bfd_link_info *info)
10012 {
10013 asection *first = elf_next_in_group (group);
10014 asection *s = first;
10015
10016 while (s != NULL)
10017 {
10018 if (bfd_elf_match_symbols_in_sections (s, sec, info))
10019 return s;
10020
10021 s = elf_next_in_group (s);
10022 if (s == first)
10023 break;
10024 }
10025
10026 return NULL;
10027 }
10028
10029 /* Check if the kept section of a discarded section SEC can be used
10030 to replace it. Return the replacement if it is OK. Otherwise return
10031 NULL. */
10032
10033 asection *
10034 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
10035 {
10036 asection *kept;
10037
10038 kept = sec->kept_section;
10039 if (kept != NULL)
10040 {
10041 if ((kept->flags & SEC_GROUP) != 0)
10042 kept = match_group_member (sec, kept, info);
10043 if (kept != NULL
10044 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
10045 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
10046 kept = NULL;
10047 sec->kept_section = kept;
10048 }
10049 return kept;
10050 }
10051
10052 /* Link an input file into the linker output file. This function
10053 handles all the sections and relocations of the input file at once.
10054 This is so that we only have to read the local symbols once, and
10055 don't have to keep them in memory. */
10056
10057 static bfd_boolean
10058 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
10059 {
10060 int (*relocate_section)
10061 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
10062 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
10063 bfd *output_bfd;
10064 Elf_Internal_Shdr *symtab_hdr;
10065 size_t locsymcount;
10066 size_t extsymoff;
10067 Elf_Internal_Sym *isymbuf;
10068 Elf_Internal_Sym *isym;
10069 Elf_Internal_Sym *isymend;
10070 long *pindex;
10071 asection **ppsection;
10072 asection *o;
10073 const struct elf_backend_data *bed;
10074 struct elf_link_hash_entry **sym_hashes;
10075 bfd_size_type address_size;
10076 bfd_vma r_type_mask;
10077 int r_sym_shift;
10078 bfd_boolean have_file_sym = FALSE;
10079
10080 output_bfd = flinfo->output_bfd;
10081 bed = get_elf_backend_data (output_bfd);
10082 relocate_section = bed->elf_backend_relocate_section;
10083
10084 /* If this is a dynamic object, we don't want to do anything here:
10085 we don't want the local symbols, and we don't want the section
10086 contents. */
10087 if ((input_bfd->flags & DYNAMIC) != 0)
10088 return TRUE;
10089
10090 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10091 if (elf_bad_symtab (input_bfd))
10092 {
10093 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10094 extsymoff = 0;
10095 }
10096 else
10097 {
10098 locsymcount = symtab_hdr->sh_info;
10099 extsymoff = symtab_hdr->sh_info;
10100 }
10101
10102 /* Read the local symbols. */
10103 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
10104 if (isymbuf == NULL && locsymcount != 0)
10105 {
10106 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
10107 flinfo->internal_syms,
10108 flinfo->external_syms,
10109 flinfo->locsym_shndx);
10110 if (isymbuf == NULL)
10111 return FALSE;
10112 }
10113
10114 /* Find local symbol sections and adjust values of symbols in
10115 SEC_MERGE sections. Write out those local symbols we know are
10116 going into the output file. */
10117 isymend = isymbuf + locsymcount;
10118 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
10119 isym < isymend;
10120 isym++, pindex++, ppsection++)
10121 {
10122 asection *isec;
10123 const char *name;
10124 Elf_Internal_Sym osym;
10125 long indx;
10126 int ret;
10127
10128 *pindex = -1;
10129
10130 if (elf_bad_symtab (input_bfd))
10131 {
10132 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
10133 {
10134 *ppsection = NULL;
10135 continue;
10136 }
10137 }
10138
10139 if (isym->st_shndx == SHN_UNDEF)
10140 isec = bfd_und_section_ptr;
10141 else if (isym->st_shndx == SHN_ABS)
10142 isec = bfd_abs_section_ptr;
10143 else if (isym->st_shndx == SHN_COMMON)
10144 isec = bfd_com_section_ptr;
10145 else
10146 {
10147 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
10148 if (isec == NULL)
10149 {
10150 /* Don't attempt to output symbols with st_shnx in the
10151 reserved range other than SHN_ABS and SHN_COMMON. */
10152 *ppsection = NULL;
10153 continue;
10154 }
10155 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
10156 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
10157 isym->st_value =
10158 _bfd_merged_section_offset (output_bfd, &isec,
10159 elf_section_data (isec)->sec_info,
10160 isym->st_value);
10161 }
10162
10163 *ppsection = isec;
10164
10165 /* Don't output the first, undefined, symbol. In fact, don't
10166 output any undefined local symbol. */
10167 if (isec == bfd_und_section_ptr)
10168 continue;
10169
10170 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
10171 {
10172 /* We never output section symbols. Instead, we use the
10173 section symbol of the corresponding section in the output
10174 file. */
10175 continue;
10176 }
10177
10178 /* If we are stripping all symbols, we don't want to output this
10179 one. */
10180 if (flinfo->info->strip == strip_all)
10181 continue;
10182
10183 /* If we are discarding all local symbols, we don't want to
10184 output this one. If we are generating a relocatable output
10185 file, then some of the local symbols may be required by
10186 relocs; we output them below as we discover that they are
10187 needed. */
10188 if (flinfo->info->discard == discard_all)
10189 continue;
10190
10191 /* If this symbol is defined in a section which we are
10192 discarding, we don't need to keep it. */
10193 if (isym->st_shndx != SHN_UNDEF
10194 && isym->st_shndx < SHN_LORESERVE
10195 && bfd_section_removed_from_list (output_bfd,
10196 isec->output_section))
10197 continue;
10198
10199 /* Get the name of the symbol. */
10200 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
10201 isym->st_name);
10202 if (name == NULL)
10203 return FALSE;
10204
10205 /* See if we are discarding symbols with this name. */
10206 if ((flinfo->info->strip == strip_some
10207 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
10208 == NULL))
10209 || (((flinfo->info->discard == discard_sec_merge
10210 && (isec->flags & SEC_MERGE)
10211 && !bfd_link_relocatable (flinfo->info))
10212 || flinfo->info->discard == discard_l)
10213 && bfd_is_local_label_name (input_bfd, name)))
10214 continue;
10215
10216 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
10217 {
10218 if (input_bfd->lto_output)
10219 /* -flto puts a temp file name here. This means builds
10220 are not reproducible. Discard the symbol. */
10221 continue;
10222 have_file_sym = TRUE;
10223 flinfo->filesym_count += 1;
10224 }
10225 if (!have_file_sym)
10226 {
10227 /* In the absence of debug info, bfd_find_nearest_line uses
10228 FILE symbols to determine the source file for local
10229 function symbols. Provide a FILE symbol here if input
10230 files lack such, so that their symbols won't be
10231 associated with a previous input file. It's not the
10232 source file, but the best we can do. */
10233 have_file_sym = TRUE;
10234 flinfo->filesym_count += 1;
10235 memset (&osym, 0, sizeof (osym));
10236 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10237 osym.st_shndx = SHN_ABS;
10238 if (!elf_link_output_symstrtab (flinfo,
10239 (input_bfd->lto_output ? NULL
10240 : input_bfd->filename),
10241 &osym, bfd_abs_section_ptr,
10242 NULL))
10243 return FALSE;
10244 }
10245
10246 osym = *isym;
10247
10248 /* Adjust the section index for the output file. */
10249 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10250 isec->output_section);
10251 if (osym.st_shndx == SHN_BAD)
10252 return FALSE;
10253
10254 /* ELF symbols in relocatable files are section relative, but
10255 in executable files they are virtual addresses. Note that
10256 this code assumes that all ELF sections have an associated
10257 BFD section with a reasonable value for output_offset; below
10258 we assume that they also have a reasonable value for
10259 output_section. Any special sections must be set up to meet
10260 these requirements. */
10261 osym.st_value += isec->output_offset;
10262 if (!bfd_link_relocatable (flinfo->info))
10263 {
10264 osym.st_value += isec->output_section->vma;
10265 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
10266 {
10267 /* STT_TLS symbols are relative to PT_TLS segment base. */
10268 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
10269 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
10270 }
10271 }
10272
10273 indx = bfd_get_symcount (output_bfd);
10274 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
10275 if (ret == 0)
10276 return FALSE;
10277 else if (ret == 1)
10278 *pindex = indx;
10279 }
10280
10281 if (bed->s->arch_size == 32)
10282 {
10283 r_type_mask = 0xff;
10284 r_sym_shift = 8;
10285 address_size = 4;
10286 }
10287 else
10288 {
10289 r_type_mask = 0xffffffff;
10290 r_sym_shift = 32;
10291 address_size = 8;
10292 }
10293
10294 /* Relocate the contents of each section. */
10295 sym_hashes = elf_sym_hashes (input_bfd);
10296 for (o = input_bfd->sections; o != NULL; o = o->next)
10297 {
10298 bfd_byte *contents;
10299
10300 if (! o->linker_mark)
10301 {
10302 /* This section was omitted from the link. */
10303 continue;
10304 }
10305
10306 if (!flinfo->info->resolve_section_groups
10307 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10308 {
10309 /* Deal with the group signature symbol. */
10310 struct bfd_elf_section_data *sec_data = elf_section_data (o);
10311 unsigned long symndx = sec_data->this_hdr.sh_info;
10312 asection *osec = o->output_section;
10313
10314 BFD_ASSERT (bfd_link_relocatable (flinfo->info));
10315 if (symndx >= locsymcount
10316 || (elf_bad_symtab (input_bfd)
10317 && flinfo->sections[symndx] == NULL))
10318 {
10319 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10320 while (h->root.type == bfd_link_hash_indirect
10321 || h->root.type == bfd_link_hash_warning)
10322 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10323 /* Arrange for symbol to be output. */
10324 h->indx = -2;
10325 elf_section_data (osec)->this_hdr.sh_info = -2;
10326 }
10327 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10328 {
10329 /* We'll use the output section target_index. */
10330 asection *sec = flinfo->sections[symndx]->output_section;
10331 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10332 }
10333 else
10334 {
10335 if (flinfo->indices[symndx] == -1)
10336 {
10337 /* Otherwise output the local symbol now. */
10338 Elf_Internal_Sym sym = isymbuf[symndx];
10339 asection *sec = flinfo->sections[symndx]->output_section;
10340 const char *name;
10341 long indx;
10342 int ret;
10343
10344 name = bfd_elf_string_from_elf_section (input_bfd,
10345 symtab_hdr->sh_link,
10346 sym.st_name);
10347 if (name == NULL)
10348 return FALSE;
10349
10350 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10351 sec);
10352 if (sym.st_shndx == SHN_BAD)
10353 return FALSE;
10354
10355 sym.st_value += o->output_offset;
10356
10357 indx = bfd_get_symcount (output_bfd);
10358 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10359 NULL);
10360 if (ret == 0)
10361 return FALSE;
10362 else if (ret == 1)
10363 flinfo->indices[symndx] = indx;
10364 else
10365 abort ();
10366 }
10367 elf_section_data (osec)->this_hdr.sh_info
10368 = flinfo->indices[symndx];
10369 }
10370 }
10371
10372 if ((o->flags & SEC_HAS_CONTENTS) == 0
10373 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10374 continue;
10375
10376 if ((o->flags & SEC_LINKER_CREATED) != 0)
10377 {
10378 /* Section was created by _bfd_elf_link_create_dynamic_sections
10379 or somesuch. */
10380 continue;
10381 }
10382
10383 /* Get the contents of the section. They have been cached by a
10384 relaxation routine. Note that o is a section in an input
10385 file, so the contents field will not have been set by any of
10386 the routines which work on output files. */
10387 if (elf_section_data (o)->this_hdr.contents != NULL)
10388 {
10389 contents = elf_section_data (o)->this_hdr.contents;
10390 if (bed->caches_rawsize
10391 && o->rawsize != 0
10392 && o->rawsize < o->size)
10393 {
10394 memcpy (flinfo->contents, contents, o->rawsize);
10395 contents = flinfo->contents;
10396 }
10397 }
10398 else
10399 {
10400 contents = flinfo->contents;
10401 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10402 return FALSE;
10403 }
10404
10405 if ((o->flags & SEC_RELOC) != 0)
10406 {
10407 Elf_Internal_Rela *internal_relocs;
10408 Elf_Internal_Rela *rel, *relend;
10409 int action_discarded;
10410 int ret;
10411
10412 /* Get the swapped relocs. */
10413 internal_relocs
10414 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10415 flinfo->internal_relocs, FALSE);
10416 if (internal_relocs == NULL
10417 && o->reloc_count > 0)
10418 return FALSE;
10419
10420 /* We need to reverse-copy input .ctors/.dtors sections if
10421 they are placed in .init_array/.finit_array for output. */
10422 if (o->size > address_size
10423 && ((strncmp (o->name, ".ctors", 6) == 0
10424 && strcmp (o->output_section->name,
10425 ".init_array") == 0)
10426 || (strncmp (o->name, ".dtors", 6) == 0
10427 && strcmp (o->output_section->name,
10428 ".fini_array") == 0))
10429 && (o->name[6] == 0 || o->name[6] == '.'))
10430 {
10431 if (o->size * bed->s->int_rels_per_ext_rel
10432 != o->reloc_count * address_size)
10433 {
10434 _bfd_error_handler
10435 /* xgettext:c-format */
10436 (_("error: %B: size of section %A is not "
10437 "multiple of address size"),
10438 input_bfd, o);
10439 bfd_set_error (bfd_error_on_input);
10440 return FALSE;
10441 }
10442 o->flags |= SEC_ELF_REVERSE_COPY;
10443 }
10444
10445 action_discarded = -1;
10446 if (!elf_section_ignore_discarded_relocs (o))
10447 action_discarded = (*bed->action_discarded) (o);
10448
10449 /* Run through the relocs evaluating complex reloc symbols and
10450 looking for relocs against symbols from discarded sections
10451 or section symbols from removed link-once sections.
10452 Complain about relocs against discarded sections. Zero
10453 relocs against removed link-once sections. */
10454
10455 rel = internal_relocs;
10456 relend = rel + o->reloc_count;
10457 for ( ; rel < relend; rel++)
10458 {
10459 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10460 unsigned int s_type;
10461 asection **ps, *sec;
10462 struct elf_link_hash_entry *h = NULL;
10463 const char *sym_name;
10464
10465 if (r_symndx == STN_UNDEF)
10466 continue;
10467
10468 if (r_symndx >= locsymcount
10469 || (elf_bad_symtab (input_bfd)
10470 && flinfo->sections[r_symndx] == NULL))
10471 {
10472 h = sym_hashes[r_symndx - extsymoff];
10473
10474 /* Badly formatted input files can contain relocs that
10475 reference non-existant symbols. Check here so that
10476 we do not seg fault. */
10477 if (h == NULL)
10478 {
10479 _bfd_error_handler
10480 /* xgettext:c-format */
10481 (_("error: %B contains a reloc (%#Lx) for section %A "
10482 "that references a non-existent global symbol"),
10483 input_bfd, rel->r_info, o);
10484 bfd_set_error (bfd_error_bad_value);
10485 return FALSE;
10486 }
10487
10488 while (h->root.type == bfd_link_hash_indirect
10489 || h->root.type == bfd_link_hash_warning)
10490 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10491
10492 s_type = h->type;
10493
10494 /* If a plugin symbol is referenced from a non-IR file,
10495 mark the symbol as undefined. Note that the
10496 linker may attach linker created dynamic sections
10497 to the plugin bfd. Symbols defined in linker
10498 created sections are not plugin symbols. */
10499 if ((h->root.non_ir_ref_regular
10500 || h->root.non_ir_ref_dynamic)
10501 && (h->root.type == bfd_link_hash_defined
10502 || h->root.type == bfd_link_hash_defweak)
10503 && (h->root.u.def.section->flags
10504 & SEC_LINKER_CREATED) == 0
10505 && h->root.u.def.section->owner != NULL
10506 && (h->root.u.def.section->owner->flags
10507 & BFD_PLUGIN) != 0)
10508 {
10509 h->root.type = bfd_link_hash_undefined;
10510 h->root.u.undef.abfd = h->root.u.def.section->owner;
10511 }
10512
10513 ps = NULL;
10514 if (h->root.type == bfd_link_hash_defined
10515 || h->root.type == bfd_link_hash_defweak)
10516 ps = &h->root.u.def.section;
10517
10518 sym_name = h->root.root.string;
10519 }
10520 else
10521 {
10522 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10523
10524 s_type = ELF_ST_TYPE (sym->st_info);
10525 ps = &flinfo->sections[r_symndx];
10526 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10527 sym, *ps);
10528 }
10529
10530 if ((s_type == STT_RELC || s_type == STT_SRELC)
10531 && !bfd_link_relocatable (flinfo->info))
10532 {
10533 bfd_vma val;
10534 bfd_vma dot = (rel->r_offset
10535 + o->output_offset + o->output_section->vma);
10536 #ifdef DEBUG
10537 printf ("Encountered a complex symbol!");
10538 printf (" (input_bfd %s, section %s, reloc %ld\n",
10539 input_bfd->filename, o->name,
10540 (long) (rel - internal_relocs));
10541 printf (" symbol: idx %8.8lx, name %s\n",
10542 r_symndx, sym_name);
10543 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10544 (unsigned long) rel->r_info,
10545 (unsigned long) rel->r_offset);
10546 #endif
10547 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10548 isymbuf, locsymcount, s_type == STT_SRELC))
10549 return FALSE;
10550
10551 /* Symbol evaluated OK. Update to absolute value. */
10552 set_symbol_value (input_bfd, isymbuf, locsymcount,
10553 r_symndx, val);
10554 continue;
10555 }
10556
10557 if (action_discarded != -1 && ps != NULL)
10558 {
10559 /* Complain if the definition comes from a
10560 discarded section. */
10561 if ((sec = *ps) != NULL && discarded_section (sec))
10562 {
10563 BFD_ASSERT (r_symndx != STN_UNDEF);
10564 if (action_discarded & COMPLAIN)
10565 (*flinfo->info->callbacks->einfo)
10566 /* xgettext:c-format */
10567 (_("%X`%s' referenced in section `%A' of %B: "
10568 "defined in discarded section `%A' of %B\n"),
10569 sym_name, o, input_bfd, sec, sec->owner);
10570
10571 /* Try to do the best we can to support buggy old
10572 versions of gcc. Pretend that the symbol is
10573 really defined in the kept linkonce section.
10574 FIXME: This is quite broken. Modifying the
10575 symbol here means we will be changing all later
10576 uses of the symbol, not just in this section. */
10577 if (action_discarded & PRETEND)
10578 {
10579 asection *kept;
10580
10581 kept = _bfd_elf_check_kept_section (sec,
10582 flinfo->info);
10583 if (kept != NULL)
10584 {
10585 *ps = kept;
10586 continue;
10587 }
10588 }
10589 }
10590 }
10591 }
10592
10593 /* Relocate the section by invoking a back end routine.
10594
10595 The back end routine is responsible for adjusting the
10596 section contents as necessary, and (if using Rela relocs
10597 and generating a relocatable output file) adjusting the
10598 reloc addend as necessary.
10599
10600 The back end routine does not have to worry about setting
10601 the reloc address or the reloc symbol index.
10602
10603 The back end routine is given a pointer to the swapped in
10604 internal symbols, and can access the hash table entries
10605 for the external symbols via elf_sym_hashes (input_bfd).
10606
10607 When generating relocatable output, the back end routine
10608 must handle STB_LOCAL/STT_SECTION symbols specially. The
10609 output symbol is going to be a section symbol
10610 corresponding to the output section, which will require
10611 the addend to be adjusted. */
10612
10613 ret = (*relocate_section) (output_bfd, flinfo->info,
10614 input_bfd, o, contents,
10615 internal_relocs,
10616 isymbuf,
10617 flinfo->sections);
10618 if (!ret)
10619 return FALSE;
10620
10621 if (ret == 2
10622 || bfd_link_relocatable (flinfo->info)
10623 || flinfo->info->emitrelocations)
10624 {
10625 Elf_Internal_Rela *irela;
10626 Elf_Internal_Rela *irelaend, *irelamid;
10627 bfd_vma last_offset;
10628 struct elf_link_hash_entry **rel_hash;
10629 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
10630 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
10631 unsigned int next_erel;
10632 bfd_boolean rela_normal;
10633 struct bfd_elf_section_data *esdi, *esdo;
10634
10635 esdi = elf_section_data (o);
10636 esdo = elf_section_data (o->output_section);
10637 rela_normal = FALSE;
10638
10639 /* Adjust the reloc addresses and symbol indices. */
10640
10641 irela = internal_relocs;
10642 irelaend = irela + o->reloc_count;
10643 rel_hash = esdo->rel.hashes + esdo->rel.count;
10644 /* We start processing the REL relocs, if any. When we reach
10645 IRELAMID in the loop, we switch to the RELA relocs. */
10646 irelamid = irela;
10647 if (esdi->rel.hdr != NULL)
10648 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10649 * bed->s->int_rels_per_ext_rel);
10650 rel_hash_list = rel_hash;
10651 rela_hash_list = NULL;
10652 last_offset = o->output_offset;
10653 if (!bfd_link_relocatable (flinfo->info))
10654 last_offset += o->output_section->vma;
10655 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10656 {
10657 unsigned long r_symndx;
10658 asection *sec;
10659 Elf_Internal_Sym sym;
10660
10661 if (next_erel == bed->s->int_rels_per_ext_rel)
10662 {
10663 rel_hash++;
10664 next_erel = 0;
10665 }
10666
10667 if (irela == irelamid)
10668 {
10669 rel_hash = esdo->rela.hashes + esdo->rela.count;
10670 rela_hash_list = rel_hash;
10671 rela_normal = bed->rela_normal;
10672 }
10673
10674 irela->r_offset = _bfd_elf_section_offset (output_bfd,
10675 flinfo->info, o,
10676 irela->r_offset);
10677 if (irela->r_offset >= (bfd_vma) -2)
10678 {
10679 /* This is a reloc for a deleted entry or somesuch.
10680 Turn it into an R_*_NONE reloc, at the same
10681 offset as the last reloc. elf_eh_frame.c and
10682 bfd_elf_discard_info rely on reloc offsets
10683 being ordered. */
10684 irela->r_offset = last_offset;
10685 irela->r_info = 0;
10686 irela->r_addend = 0;
10687 continue;
10688 }
10689
10690 irela->r_offset += o->output_offset;
10691
10692 /* Relocs in an executable have to be virtual addresses. */
10693 if (!bfd_link_relocatable (flinfo->info))
10694 irela->r_offset += o->output_section->vma;
10695
10696 last_offset = irela->r_offset;
10697
10698 r_symndx = irela->r_info >> r_sym_shift;
10699 if (r_symndx == STN_UNDEF)
10700 continue;
10701
10702 if (r_symndx >= locsymcount
10703 || (elf_bad_symtab (input_bfd)
10704 && flinfo->sections[r_symndx] == NULL))
10705 {
10706 struct elf_link_hash_entry *rh;
10707 unsigned long indx;
10708
10709 /* This is a reloc against a global symbol. We
10710 have not yet output all the local symbols, so
10711 we do not know the symbol index of any global
10712 symbol. We set the rel_hash entry for this
10713 reloc to point to the global hash table entry
10714 for this symbol. The symbol index is then
10715 set at the end of bfd_elf_final_link. */
10716 indx = r_symndx - extsymoff;
10717 rh = elf_sym_hashes (input_bfd)[indx];
10718 while (rh->root.type == bfd_link_hash_indirect
10719 || rh->root.type == bfd_link_hash_warning)
10720 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10721
10722 /* Setting the index to -2 tells
10723 elf_link_output_extsym that this symbol is
10724 used by a reloc. */
10725 BFD_ASSERT (rh->indx < 0);
10726 rh->indx = -2;
10727 *rel_hash = rh;
10728
10729 continue;
10730 }
10731
10732 /* This is a reloc against a local symbol. */
10733
10734 *rel_hash = NULL;
10735 sym = isymbuf[r_symndx];
10736 sec = flinfo->sections[r_symndx];
10737 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10738 {
10739 /* I suppose the backend ought to fill in the
10740 section of any STT_SECTION symbol against a
10741 processor specific section. */
10742 r_symndx = STN_UNDEF;
10743 if (bfd_is_abs_section (sec))
10744 ;
10745 else if (sec == NULL || sec->owner == NULL)
10746 {
10747 bfd_set_error (bfd_error_bad_value);
10748 return FALSE;
10749 }
10750 else
10751 {
10752 asection *osec = sec->output_section;
10753
10754 /* If we have discarded a section, the output
10755 section will be the absolute section. In
10756 case of discarded SEC_MERGE sections, use
10757 the kept section. relocate_section should
10758 have already handled discarded linkonce
10759 sections. */
10760 if (bfd_is_abs_section (osec)
10761 && sec->kept_section != NULL
10762 && sec->kept_section->output_section != NULL)
10763 {
10764 osec = sec->kept_section->output_section;
10765 irela->r_addend -= osec->vma;
10766 }
10767
10768 if (!bfd_is_abs_section (osec))
10769 {
10770 r_symndx = osec->target_index;
10771 if (r_symndx == STN_UNDEF)
10772 {
10773 irela->r_addend += osec->vma;
10774 osec = _bfd_nearby_section (output_bfd, osec,
10775 osec->vma);
10776 irela->r_addend -= osec->vma;
10777 r_symndx = osec->target_index;
10778 }
10779 }
10780 }
10781
10782 /* Adjust the addend according to where the
10783 section winds up in the output section. */
10784 if (rela_normal)
10785 irela->r_addend += sec->output_offset;
10786 }
10787 else
10788 {
10789 if (flinfo->indices[r_symndx] == -1)
10790 {
10791 unsigned long shlink;
10792 const char *name;
10793 asection *osec;
10794 long indx;
10795
10796 if (flinfo->info->strip == strip_all)
10797 {
10798 /* You can't do ld -r -s. */
10799 bfd_set_error (bfd_error_invalid_operation);
10800 return FALSE;
10801 }
10802
10803 /* This symbol was skipped earlier, but
10804 since it is needed by a reloc, we
10805 must output it now. */
10806 shlink = symtab_hdr->sh_link;
10807 name = (bfd_elf_string_from_elf_section
10808 (input_bfd, shlink, sym.st_name));
10809 if (name == NULL)
10810 return FALSE;
10811
10812 osec = sec->output_section;
10813 sym.st_shndx =
10814 _bfd_elf_section_from_bfd_section (output_bfd,
10815 osec);
10816 if (sym.st_shndx == SHN_BAD)
10817 return FALSE;
10818
10819 sym.st_value += sec->output_offset;
10820 if (!bfd_link_relocatable (flinfo->info))
10821 {
10822 sym.st_value += osec->vma;
10823 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10824 {
10825 /* STT_TLS symbols are relative to PT_TLS
10826 segment base. */
10827 BFD_ASSERT (elf_hash_table (flinfo->info)
10828 ->tls_sec != NULL);
10829 sym.st_value -= (elf_hash_table (flinfo->info)
10830 ->tls_sec->vma);
10831 }
10832 }
10833
10834 indx = bfd_get_symcount (output_bfd);
10835 ret = elf_link_output_symstrtab (flinfo, name,
10836 &sym, sec,
10837 NULL);
10838 if (ret == 0)
10839 return FALSE;
10840 else if (ret == 1)
10841 flinfo->indices[r_symndx] = indx;
10842 else
10843 abort ();
10844 }
10845
10846 r_symndx = flinfo->indices[r_symndx];
10847 }
10848
10849 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10850 | (irela->r_info & r_type_mask));
10851 }
10852
10853 /* Swap out the relocs. */
10854 input_rel_hdr = esdi->rel.hdr;
10855 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10856 {
10857 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10858 input_rel_hdr,
10859 internal_relocs,
10860 rel_hash_list))
10861 return FALSE;
10862 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10863 * bed->s->int_rels_per_ext_rel);
10864 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10865 }
10866
10867 input_rela_hdr = esdi->rela.hdr;
10868 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10869 {
10870 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10871 input_rela_hdr,
10872 internal_relocs,
10873 rela_hash_list))
10874 return FALSE;
10875 }
10876 }
10877 }
10878
10879 /* Write out the modified section contents. */
10880 if (bed->elf_backend_write_section
10881 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10882 contents))
10883 {
10884 /* Section written out. */
10885 }
10886 else switch (o->sec_info_type)
10887 {
10888 case SEC_INFO_TYPE_STABS:
10889 if (! (_bfd_write_section_stabs
10890 (output_bfd,
10891 &elf_hash_table (flinfo->info)->stab_info,
10892 o, &elf_section_data (o)->sec_info, contents)))
10893 return FALSE;
10894 break;
10895 case SEC_INFO_TYPE_MERGE:
10896 if (! _bfd_write_merged_section (output_bfd, o,
10897 elf_section_data (o)->sec_info))
10898 return FALSE;
10899 break;
10900 case SEC_INFO_TYPE_EH_FRAME:
10901 {
10902 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10903 o, contents))
10904 return FALSE;
10905 }
10906 break;
10907 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10908 {
10909 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
10910 flinfo->info,
10911 o, contents))
10912 return FALSE;
10913 }
10914 break;
10915 default:
10916 {
10917 if (! (o->flags & SEC_EXCLUDE))
10918 {
10919 file_ptr offset = (file_ptr) o->output_offset;
10920 bfd_size_type todo = o->size;
10921
10922 offset *= bfd_octets_per_byte (output_bfd);
10923
10924 if ((o->flags & SEC_ELF_REVERSE_COPY))
10925 {
10926 /* Reverse-copy input section to output. */
10927 do
10928 {
10929 todo -= address_size;
10930 if (! bfd_set_section_contents (output_bfd,
10931 o->output_section,
10932 contents + todo,
10933 offset,
10934 address_size))
10935 return FALSE;
10936 if (todo == 0)
10937 break;
10938 offset += address_size;
10939 }
10940 while (1);
10941 }
10942 else if (! bfd_set_section_contents (output_bfd,
10943 o->output_section,
10944 contents,
10945 offset, todo))
10946 return FALSE;
10947 }
10948 }
10949 break;
10950 }
10951 }
10952
10953 return TRUE;
10954 }
10955
10956 /* Generate a reloc when linking an ELF file. This is a reloc
10957 requested by the linker, and does not come from any input file. This
10958 is used to build constructor and destructor tables when linking
10959 with -Ur. */
10960
10961 static bfd_boolean
10962 elf_reloc_link_order (bfd *output_bfd,
10963 struct bfd_link_info *info,
10964 asection *output_section,
10965 struct bfd_link_order *link_order)
10966 {
10967 reloc_howto_type *howto;
10968 long indx;
10969 bfd_vma offset;
10970 bfd_vma addend;
10971 struct bfd_elf_section_reloc_data *reldata;
10972 struct elf_link_hash_entry **rel_hash_ptr;
10973 Elf_Internal_Shdr *rel_hdr;
10974 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10975 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10976 bfd_byte *erel;
10977 unsigned int i;
10978 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10979
10980 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10981 if (howto == NULL)
10982 {
10983 bfd_set_error (bfd_error_bad_value);
10984 return FALSE;
10985 }
10986
10987 addend = link_order->u.reloc.p->addend;
10988
10989 if (esdo->rel.hdr)
10990 reldata = &esdo->rel;
10991 else if (esdo->rela.hdr)
10992 reldata = &esdo->rela;
10993 else
10994 {
10995 reldata = NULL;
10996 BFD_ASSERT (0);
10997 }
10998
10999 /* Figure out the symbol index. */
11000 rel_hash_ptr = reldata->hashes + reldata->count;
11001 if (link_order->type == bfd_section_reloc_link_order)
11002 {
11003 indx = link_order->u.reloc.p->u.section->target_index;
11004 BFD_ASSERT (indx != 0);
11005 *rel_hash_ptr = NULL;
11006 }
11007 else
11008 {
11009 struct elf_link_hash_entry *h;
11010
11011 /* Treat a reloc against a defined symbol as though it were
11012 actually against the section. */
11013 h = ((struct elf_link_hash_entry *)
11014 bfd_wrapped_link_hash_lookup (output_bfd, info,
11015 link_order->u.reloc.p->u.name,
11016 FALSE, FALSE, TRUE));
11017 if (h != NULL
11018 && (h->root.type == bfd_link_hash_defined
11019 || h->root.type == bfd_link_hash_defweak))
11020 {
11021 asection *section;
11022
11023 section = h->root.u.def.section;
11024 indx = section->output_section->target_index;
11025 *rel_hash_ptr = NULL;
11026 /* It seems that we ought to add the symbol value to the
11027 addend here, but in practice it has already been added
11028 because it was passed to constructor_callback. */
11029 addend += section->output_section->vma + section->output_offset;
11030 }
11031 else if (h != NULL)
11032 {
11033 /* Setting the index to -2 tells elf_link_output_extsym that
11034 this symbol is used by a reloc. */
11035 h->indx = -2;
11036 *rel_hash_ptr = h;
11037 indx = 0;
11038 }
11039 else
11040 {
11041 (*info->callbacks->unattached_reloc)
11042 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
11043 indx = 0;
11044 }
11045 }
11046
11047 /* If this is an inplace reloc, we must write the addend into the
11048 object file. */
11049 if (howto->partial_inplace && addend != 0)
11050 {
11051 bfd_size_type size;
11052 bfd_reloc_status_type rstat;
11053 bfd_byte *buf;
11054 bfd_boolean ok;
11055 const char *sym_name;
11056
11057 size = (bfd_size_type) bfd_get_reloc_size (howto);
11058 buf = (bfd_byte *) bfd_zmalloc (size);
11059 if (buf == NULL && size != 0)
11060 return FALSE;
11061 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
11062 switch (rstat)
11063 {
11064 case bfd_reloc_ok:
11065 break;
11066
11067 default:
11068 case bfd_reloc_outofrange:
11069 abort ();
11070
11071 case bfd_reloc_overflow:
11072 if (link_order->type == bfd_section_reloc_link_order)
11073 sym_name = bfd_section_name (output_bfd,
11074 link_order->u.reloc.p->u.section);
11075 else
11076 sym_name = link_order->u.reloc.p->u.name;
11077 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
11078 howto->name, addend, NULL, NULL,
11079 (bfd_vma) 0);
11080 break;
11081 }
11082
11083 ok = bfd_set_section_contents (output_bfd, output_section, buf,
11084 link_order->offset
11085 * bfd_octets_per_byte (output_bfd),
11086 size);
11087 free (buf);
11088 if (! ok)
11089 return FALSE;
11090 }
11091
11092 /* The address of a reloc is relative to the section in a
11093 relocatable file, and is a virtual address in an executable
11094 file. */
11095 offset = link_order->offset;
11096 if (! bfd_link_relocatable (info))
11097 offset += output_section->vma;
11098
11099 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
11100 {
11101 irel[i].r_offset = offset;
11102 irel[i].r_info = 0;
11103 irel[i].r_addend = 0;
11104 }
11105 if (bed->s->arch_size == 32)
11106 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
11107 else
11108 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
11109
11110 rel_hdr = reldata->hdr;
11111 erel = rel_hdr->contents;
11112 if (rel_hdr->sh_type == SHT_REL)
11113 {
11114 erel += reldata->count * bed->s->sizeof_rel;
11115 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
11116 }
11117 else
11118 {
11119 irel[0].r_addend = addend;
11120 erel += reldata->count * bed->s->sizeof_rela;
11121 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
11122 }
11123
11124 ++reldata->count;
11125
11126 return TRUE;
11127 }
11128
11129
11130 /* Get the output vma of the section pointed to by the sh_link field. */
11131
11132 static bfd_vma
11133 elf_get_linked_section_vma (struct bfd_link_order *p)
11134 {
11135 Elf_Internal_Shdr **elf_shdrp;
11136 asection *s;
11137 int elfsec;
11138
11139 s = p->u.indirect.section;
11140 elf_shdrp = elf_elfsections (s->owner);
11141 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
11142 elfsec = elf_shdrp[elfsec]->sh_link;
11143 /* PR 290:
11144 The Intel C compiler generates SHT_IA_64_UNWIND with
11145 SHF_LINK_ORDER. But it doesn't set the sh_link or
11146 sh_info fields. Hence we could get the situation
11147 where elfsec is 0. */
11148 if (elfsec == 0)
11149 {
11150 const struct elf_backend_data *bed
11151 = get_elf_backend_data (s->owner);
11152 if (bed->link_order_error_handler)
11153 bed->link_order_error_handler
11154 /* xgettext:c-format */
11155 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
11156 return 0;
11157 }
11158 else
11159 {
11160 s = elf_shdrp[elfsec]->bfd_section;
11161 return s->output_section->vma + s->output_offset;
11162 }
11163 }
11164
11165
11166 /* Compare two sections based on the locations of the sections they are
11167 linked to. Used by elf_fixup_link_order. */
11168
11169 static int
11170 compare_link_order (const void * a, const void * b)
11171 {
11172 bfd_vma apos;
11173 bfd_vma bpos;
11174
11175 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
11176 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
11177 if (apos < bpos)
11178 return -1;
11179 return apos > bpos;
11180 }
11181
11182
11183 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
11184 order as their linked sections. Returns false if this could not be done
11185 because an output section includes both ordered and unordered
11186 sections. Ideally we'd do this in the linker proper. */
11187
11188 static bfd_boolean
11189 elf_fixup_link_order (bfd *abfd, asection *o)
11190 {
11191 int seen_linkorder;
11192 int seen_other;
11193 int n;
11194 struct bfd_link_order *p;
11195 bfd *sub;
11196 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11197 unsigned elfsec;
11198 struct bfd_link_order **sections;
11199 asection *s, *other_sec, *linkorder_sec;
11200 bfd_vma offset;
11201
11202 other_sec = NULL;
11203 linkorder_sec = NULL;
11204 seen_other = 0;
11205 seen_linkorder = 0;
11206 for (p = o->map_head.link_order; p != NULL; p = p->next)
11207 {
11208 if (p->type == bfd_indirect_link_order)
11209 {
11210 s = p->u.indirect.section;
11211 sub = s->owner;
11212 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11213 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
11214 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
11215 && elfsec < elf_numsections (sub)
11216 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
11217 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
11218 {
11219 seen_linkorder++;
11220 linkorder_sec = s;
11221 }
11222 else
11223 {
11224 seen_other++;
11225 other_sec = s;
11226 }
11227 }
11228 else
11229 seen_other++;
11230
11231 if (seen_other && seen_linkorder)
11232 {
11233 if (other_sec && linkorder_sec)
11234 _bfd_error_handler
11235 /* xgettext:c-format */
11236 (_("%A has both ordered [`%A' in %B] "
11237 "and unordered [`%A' in %B] sections"),
11238 o, linkorder_sec, linkorder_sec->owner,
11239 other_sec, other_sec->owner);
11240 else
11241 _bfd_error_handler
11242 (_("%A has both ordered and unordered sections"), o);
11243 bfd_set_error (bfd_error_bad_value);
11244 return FALSE;
11245 }
11246 }
11247
11248 if (!seen_linkorder)
11249 return TRUE;
11250
11251 sections = (struct bfd_link_order **)
11252 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
11253 if (sections == NULL)
11254 return FALSE;
11255 seen_linkorder = 0;
11256
11257 for (p = o->map_head.link_order; p != NULL; p = p->next)
11258 {
11259 sections[seen_linkorder++] = p;
11260 }
11261 /* Sort the input sections in the order of their linked section. */
11262 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
11263 compare_link_order);
11264
11265 /* Change the offsets of the sections. */
11266 offset = 0;
11267 for (n = 0; n < seen_linkorder; n++)
11268 {
11269 s = sections[n]->u.indirect.section;
11270 offset &= ~(bfd_vma) 0 << s->alignment_power;
11271 s->output_offset = offset / bfd_octets_per_byte (abfd);
11272 sections[n]->offset = offset;
11273 offset += sections[n]->size;
11274 }
11275
11276 free (sections);
11277 return TRUE;
11278 }
11279
11280 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11281 Returns TRUE upon success, FALSE otherwise. */
11282
11283 static bfd_boolean
11284 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11285 {
11286 bfd_boolean ret = FALSE;
11287 bfd *implib_bfd;
11288 const struct elf_backend_data *bed;
11289 flagword flags;
11290 enum bfd_architecture arch;
11291 unsigned int mach;
11292 asymbol **sympp = NULL;
11293 long symsize;
11294 long symcount;
11295 long src_count;
11296 elf_symbol_type *osymbuf;
11297
11298 implib_bfd = info->out_implib_bfd;
11299 bed = get_elf_backend_data (abfd);
11300
11301 if (!bfd_set_format (implib_bfd, bfd_object))
11302 return FALSE;
11303
11304 /* Use flag from executable but make it a relocatable object. */
11305 flags = bfd_get_file_flags (abfd);
11306 flags &= ~HAS_RELOC;
11307 if (!bfd_set_start_address (implib_bfd, 0)
11308 || !bfd_set_file_flags (implib_bfd, flags & ~EXEC_P))
11309 return FALSE;
11310
11311 /* Copy architecture of output file to import library file. */
11312 arch = bfd_get_arch (abfd);
11313 mach = bfd_get_mach (abfd);
11314 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11315 && (abfd->target_defaulted
11316 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11317 return FALSE;
11318
11319 /* Get symbol table size. */
11320 symsize = bfd_get_symtab_upper_bound (abfd);
11321 if (symsize < 0)
11322 return FALSE;
11323
11324 /* Read in the symbol table. */
11325 sympp = (asymbol **) xmalloc (symsize);
11326 symcount = bfd_canonicalize_symtab (abfd, sympp);
11327 if (symcount < 0)
11328 goto free_sym_buf;
11329
11330 /* Allow the BFD backend to copy any private header data it
11331 understands from the output BFD to the import library BFD. */
11332 if (! bfd_copy_private_header_data (abfd, implib_bfd))
11333 goto free_sym_buf;
11334
11335 /* Filter symbols to appear in the import library. */
11336 if (bed->elf_backend_filter_implib_symbols)
11337 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11338 symcount);
11339 else
11340 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11341 if (symcount == 0)
11342 {
11343 bfd_set_error (bfd_error_no_symbols);
11344 _bfd_error_handler (_("%B: no symbol found for import library"),
11345 implib_bfd);
11346 goto free_sym_buf;
11347 }
11348
11349
11350 /* Make symbols absolute. */
11351 osymbuf = (elf_symbol_type *) bfd_alloc2 (implib_bfd, symcount,
11352 sizeof (*osymbuf));
11353 for (src_count = 0; src_count < symcount; src_count++)
11354 {
11355 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11356 sizeof (*osymbuf));
11357 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
11358 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
11359 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
11360 osymbuf[src_count].internal_elf_sym.st_value =
11361 osymbuf[src_count].symbol.value;
11362 sympp[src_count] = &osymbuf[src_count].symbol;
11363 }
11364
11365 bfd_set_symtab (implib_bfd, sympp, symcount);
11366
11367 /* Allow the BFD backend to copy any private data it understands
11368 from the output BFD to the import library BFD. This is done last
11369 to permit the routine to look at the filtered symbol table. */
11370 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
11371 goto free_sym_buf;
11372
11373 if (!bfd_close (implib_bfd))
11374 goto free_sym_buf;
11375
11376 ret = TRUE;
11377
11378 free_sym_buf:
11379 free (sympp);
11380 return ret;
11381 }
11382
11383 static void
11384 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11385 {
11386 asection *o;
11387
11388 if (flinfo->symstrtab != NULL)
11389 _bfd_elf_strtab_free (flinfo->symstrtab);
11390 if (flinfo->contents != NULL)
11391 free (flinfo->contents);
11392 if (flinfo->external_relocs != NULL)
11393 free (flinfo->external_relocs);
11394 if (flinfo->internal_relocs != NULL)
11395 free (flinfo->internal_relocs);
11396 if (flinfo->external_syms != NULL)
11397 free (flinfo->external_syms);
11398 if (flinfo->locsym_shndx != NULL)
11399 free (flinfo->locsym_shndx);
11400 if (flinfo->internal_syms != NULL)
11401 free (flinfo->internal_syms);
11402 if (flinfo->indices != NULL)
11403 free (flinfo->indices);
11404 if (flinfo->sections != NULL)
11405 free (flinfo->sections);
11406 if (flinfo->symshndxbuf != NULL)
11407 free (flinfo->symshndxbuf);
11408 for (o = obfd->sections; o != NULL; o = o->next)
11409 {
11410 struct bfd_elf_section_data *esdo = elf_section_data (o);
11411 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11412 free (esdo->rel.hashes);
11413 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11414 free (esdo->rela.hashes);
11415 }
11416 }
11417
11418 /* Do the final step of an ELF link. */
11419
11420 bfd_boolean
11421 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11422 {
11423 bfd_boolean dynamic;
11424 bfd_boolean emit_relocs;
11425 bfd *dynobj;
11426 struct elf_final_link_info flinfo;
11427 asection *o;
11428 struct bfd_link_order *p;
11429 bfd *sub;
11430 bfd_size_type max_contents_size;
11431 bfd_size_type max_external_reloc_size;
11432 bfd_size_type max_internal_reloc_count;
11433 bfd_size_type max_sym_count;
11434 bfd_size_type max_sym_shndx_count;
11435 Elf_Internal_Sym elfsym;
11436 unsigned int i;
11437 Elf_Internal_Shdr *symtab_hdr;
11438 Elf_Internal_Shdr *symtab_shndx_hdr;
11439 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11440 struct elf_outext_info eoinfo;
11441 bfd_boolean merged;
11442 size_t relativecount = 0;
11443 asection *reldyn = 0;
11444 bfd_size_type amt;
11445 asection *attr_section = NULL;
11446 bfd_vma attr_size = 0;
11447 const char *std_attrs_section;
11448 struct elf_link_hash_table *htab = elf_hash_table (info);
11449
11450 if (!is_elf_hash_table (htab))
11451 return FALSE;
11452
11453 if (bfd_link_pic (info))
11454 abfd->flags |= DYNAMIC;
11455
11456 dynamic = htab->dynamic_sections_created;
11457 dynobj = htab->dynobj;
11458
11459 emit_relocs = (bfd_link_relocatable (info)
11460 || info->emitrelocations);
11461
11462 flinfo.info = info;
11463 flinfo.output_bfd = abfd;
11464 flinfo.symstrtab = _bfd_elf_strtab_init ();
11465 if (flinfo.symstrtab == NULL)
11466 return FALSE;
11467
11468 if (! dynamic)
11469 {
11470 flinfo.hash_sec = NULL;
11471 flinfo.symver_sec = NULL;
11472 }
11473 else
11474 {
11475 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11476 /* Note that dynsym_sec can be NULL (on VMS). */
11477 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11478 /* Note that it is OK if symver_sec is NULL. */
11479 }
11480
11481 flinfo.contents = NULL;
11482 flinfo.external_relocs = NULL;
11483 flinfo.internal_relocs = NULL;
11484 flinfo.external_syms = NULL;
11485 flinfo.locsym_shndx = NULL;
11486 flinfo.internal_syms = NULL;
11487 flinfo.indices = NULL;
11488 flinfo.sections = NULL;
11489 flinfo.symshndxbuf = NULL;
11490 flinfo.filesym_count = 0;
11491
11492 /* The object attributes have been merged. Remove the input
11493 sections from the link, and set the contents of the output
11494 secton. */
11495 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11496 for (o = abfd->sections; o != NULL; o = o->next)
11497 {
11498 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11499 || strcmp (o->name, ".gnu.attributes") == 0)
11500 {
11501 for (p = o->map_head.link_order; p != NULL; p = p->next)
11502 {
11503 asection *input_section;
11504
11505 if (p->type != bfd_indirect_link_order)
11506 continue;
11507 input_section = p->u.indirect.section;
11508 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11509 elf_link_input_bfd ignores this section. */
11510 input_section->flags &= ~SEC_HAS_CONTENTS;
11511 }
11512
11513 attr_size = bfd_elf_obj_attr_size (abfd);
11514 if (attr_size)
11515 {
11516 bfd_set_section_size (abfd, o, attr_size);
11517 attr_section = o;
11518 /* Skip this section later on. */
11519 o->map_head.link_order = NULL;
11520 }
11521 else
11522 o->flags |= SEC_EXCLUDE;
11523 }
11524 }
11525
11526 /* Count up the number of relocations we will output for each output
11527 section, so that we know the sizes of the reloc sections. We
11528 also figure out some maximum sizes. */
11529 max_contents_size = 0;
11530 max_external_reloc_size = 0;
11531 max_internal_reloc_count = 0;
11532 max_sym_count = 0;
11533 max_sym_shndx_count = 0;
11534 merged = FALSE;
11535 for (o = abfd->sections; o != NULL; o = o->next)
11536 {
11537 struct bfd_elf_section_data *esdo = elf_section_data (o);
11538 o->reloc_count = 0;
11539
11540 for (p = o->map_head.link_order; p != NULL; p = p->next)
11541 {
11542 unsigned int reloc_count = 0;
11543 unsigned int additional_reloc_count = 0;
11544 struct bfd_elf_section_data *esdi = NULL;
11545
11546 if (p->type == bfd_section_reloc_link_order
11547 || p->type == bfd_symbol_reloc_link_order)
11548 reloc_count = 1;
11549 else if (p->type == bfd_indirect_link_order)
11550 {
11551 asection *sec;
11552
11553 sec = p->u.indirect.section;
11554
11555 /* Mark all sections which are to be included in the
11556 link. This will normally be every section. We need
11557 to do this so that we can identify any sections which
11558 the linker has decided to not include. */
11559 sec->linker_mark = TRUE;
11560
11561 if (sec->flags & SEC_MERGE)
11562 merged = TRUE;
11563
11564 if (sec->rawsize > max_contents_size)
11565 max_contents_size = sec->rawsize;
11566 if (sec->size > max_contents_size)
11567 max_contents_size = sec->size;
11568
11569 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11570 && (sec->owner->flags & DYNAMIC) == 0)
11571 {
11572 size_t sym_count;
11573
11574 /* We are interested in just local symbols, not all
11575 symbols. */
11576 if (elf_bad_symtab (sec->owner))
11577 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11578 / bed->s->sizeof_sym);
11579 else
11580 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11581
11582 if (sym_count > max_sym_count)
11583 max_sym_count = sym_count;
11584
11585 if (sym_count > max_sym_shndx_count
11586 && elf_symtab_shndx_list (sec->owner) != NULL)
11587 max_sym_shndx_count = sym_count;
11588
11589 if (esdo->this_hdr.sh_type == SHT_REL
11590 || esdo->this_hdr.sh_type == SHT_RELA)
11591 /* Some backends use reloc_count in relocation sections
11592 to count particular types of relocs. Of course,
11593 reloc sections themselves can't have relocations. */
11594 ;
11595 else if (emit_relocs)
11596 {
11597 reloc_count = sec->reloc_count;
11598 if (bed->elf_backend_count_additional_relocs)
11599 {
11600 int c;
11601 c = (*bed->elf_backend_count_additional_relocs) (sec);
11602 additional_reloc_count += c;
11603 }
11604 }
11605 else if (bed->elf_backend_count_relocs)
11606 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11607
11608 esdi = elf_section_data (sec);
11609
11610 if ((sec->flags & SEC_RELOC) != 0)
11611 {
11612 size_t ext_size = 0;
11613
11614 if (esdi->rel.hdr != NULL)
11615 ext_size = esdi->rel.hdr->sh_size;
11616 if (esdi->rela.hdr != NULL)
11617 ext_size += esdi->rela.hdr->sh_size;
11618
11619 if (ext_size > max_external_reloc_size)
11620 max_external_reloc_size = ext_size;
11621 if (sec->reloc_count > max_internal_reloc_count)
11622 max_internal_reloc_count = sec->reloc_count;
11623 }
11624 }
11625 }
11626
11627 if (reloc_count == 0)
11628 continue;
11629
11630 reloc_count += additional_reloc_count;
11631 o->reloc_count += reloc_count;
11632
11633 if (p->type == bfd_indirect_link_order && emit_relocs)
11634 {
11635 if (esdi->rel.hdr)
11636 {
11637 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
11638 esdo->rel.count += additional_reloc_count;
11639 }
11640 if (esdi->rela.hdr)
11641 {
11642 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
11643 esdo->rela.count += additional_reloc_count;
11644 }
11645 }
11646 else
11647 {
11648 if (o->use_rela_p)
11649 esdo->rela.count += reloc_count;
11650 else
11651 esdo->rel.count += reloc_count;
11652 }
11653 }
11654
11655 if (o->reloc_count > 0)
11656 o->flags |= SEC_RELOC;
11657 else
11658 {
11659 /* Explicitly clear the SEC_RELOC flag. The linker tends to
11660 set it (this is probably a bug) and if it is set
11661 assign_section_numbers will create a reloc section. */
11662 o->flags &=~ SEC_RELOC;
11663 }
11664
11665 /* If the SEC_ALLOC flag is not set, force the section VMA to
11666 zero. This is done in elf_fake_sections as well, but forcing
11667 the VMA to 0 here will ensure that relocs against these
11668 sections are handled correctly. */
11669 if ((o->flags & SEC_ALLOC) == 0
11670 && ! o->user_set_vma)
11671 o->vma = 0;
11672 }
11673
11674 if (! bfd_link_relocatable (info) && merged)
11675 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
11676
11677 /* Figure out the file positions for everything but the symbol table
11678 and the relocs. We set symcount to force assign_section_numbers
11679 to create a symbol table. */
11680 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
11681 BFD_ASSERT (! abfd->output_has_begun);
11682 if (! _bfd_elf_compute_section_file_positions (abfd, info))
11683 goto error_return;
11684
11685 /* Set sizes, and assign file positions for reloc sections. */
11686 for (o = abfd->sections; o != NULL; o = o->next)
11687 {
11688 struct bfd_elf_section_data *esdo = elf_section_data (o);
11689 if ((o->flags & SEC_RELOC) != 0)
11690 {
11691 if (esdo->rel.hdr
11692 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
11693 goto error_return;
11694
11695 if (esdo->rela.hdr
11696 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
11697 goto error_return;
11698 }
11699
11700 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
11701 to count upwards while actually outputting the relocations. */
11702 esdo->rel.count = 0;
11703 esdo->rela.count = 0;
11704
11705 if (esdo->this_hdr.sh_offset == (file_ptr) -1)
11706 {
11707 /* Cache the section contents so that they can be compressed
11708 later. Use bfd_malloc since it will be freed by
11709 bfd_compress_section_contents. */
11710 unsigned char *contents = esdo->this_hdr.contents;
11711 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
11712 abort ();
11713 contents
11714 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
11715 if (contents == NULL)
11716 goto error_return;
11717 esdo->this_hdr.contents = contents;
11718 }
11719 }
11720
11721 /* We have now assigned file positions for all the sections except
11722 .symtab, .strtab, and non-loaded reloc sections. We start the
11723 .symtab section at the current file position, and write directly
11724 to it. We build the .strtab section in memory. */
11725 bfd_get_symcount (abfd) = 0;
11726 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11727 /* sh_name is set in prep_headers. */
11728 symtab_hdr->sh_type = SHT_SYMTAB;
11729 /* sh_flags, sh_addr and sh_size all start off zero. */
11730 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
11731 /* sh_link is set in assign_section_numbers. */
11732 /* sh_info is set below. */
11733 /* sh_offset is set just below. */
11734 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
11735
11736 if (max_sym_count < 20)
11737 max_sym_count = 20;
11738 htab->strtabsize = max_sym_count;
11739 amt = max_sym_count * sizeof (struct elf_sym_strtab);
11740 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
11741 if (htab->strtab == NULL)
11742 goto error_return;
11743 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
11744 flinfo.symshndxbuf
11745 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
11746 ? (Elf_External_Sym_Shndx *) -1 : NULL);
11747
11748 if (info->strip != strip_all || emit_relocs)
11749 {
11750 file_ptr off = elf_next_file_pos (abfd);
11751
11752 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
11753
11754 /* Note that at this point elf_next_file_pos (abfd) is
11755 incorrect. We do not yet know the size of the .symtab section.
11756 We correct next_file_pos below, after we do know the size. */
11757
11758 /* Start writing out the symbol table. The first symbol is always a
11759 dummy symbol. */
11760 elfsym.st_value = 0;
11761 elfsym.st_size = 0;
11762 elfsym.st_info = 0;
11763 elfsym.st_other = 0;
11764 elfsym.st_shndx = SHN_UNDEF;
11765 elfsym.st_target_internal = 0;
11766 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
11767 bfd_und_section_ptr, NULL) != 1)
11768 goto error_return;
11769
11770 /* Output a symbol for each section. We output these even if we are
11771 discarding local symbols, since they are used for relocs. These
11772 symbols have no names. We store the index of each one in the
11773 index field of the section, so that we can find it again when
11774 outputting relocs. */
11775
11776 elfsym.st_size = 0;
11777 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11778 elfsym.st_other = 0;
11779 elfsym.st_value = 0;
11780 elfsym.st_target_internal = 0;
11781 for (i = 1; i < elf_numsections (abfd); i++)
11782 {
11783 o = bfd_section_from_elf_index (abfd, i);
11784 if (o != NULL)
11785 {
11786 o->target_index = bfd_get_symcount (abfd);
11787 elfsym.st_shndx = i;
11788 if (!bfd_link_relocatable (info))
11789 elfsym.st_value = o->vma;
11790 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
11791 NULL) != 1)
11792 goto error_return;
11793 }
11794 }
11795 }
11796
11797 /* Allocate some memory to hold information read in from the input
11798 files. */
11799 if (max_contents_size != 0)
11800 {
11801 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
11802 if (flinfo.contents == NULL)
11803 goto error_return;
11804 }
11805
11806 if (max_external_reloc_size != 0)
11807 {
11808 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
11809 if (flinfo.external_relocs == NULL)
11810 goto error_return;
11811 }
11812
11813 if (max_internal_reloc_count != 0)
11814 {
11815 amt = max_internal_reloc_count * sizeof (Elf_Internal_Rela);
11816 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
11817 if (flinfo.internal_relocs == NULL)
11818 goto error_return;
11819 }
11820
11821 if (max_sym_count != 0)
11822 {
11823 amt = max_sym_count * bed->s->sizeof_sym;
11824 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
11825 if (flinfo.external_syms == NULL)
11826 goto error_return;
11827
11828 amt = max_sym_count * sizeof (Elf_Internal_Sym);
11829 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
11830 if (flinfo.internal_syms == NULL)
11831 goto error_return;
11832
11833 amt = max_sym_count * sizeof (long);
11834 flinfo.indices = (long int *) bfd_malloc (amt);
11835 if (flinfo.indices == NULL)
11836 goto error_return;
11837
11838 amt = max_sym_count * sizeof (asection *);
11839 flinfo.sections = (asection **) bfd_malloc (amt);
11840 if (flinfo.sections == NULL)
11841 goto error_return;
11842 }
11843
11844 if (max_sym_shndx_count != 0)
11845 {
11846 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11847 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11848 if (flinfo.locsym_shndx == NULL)
11849 goto error_return;
11850 }
11851
11852 if (htab->tls_sec)
11853 {
11854 bfd_vma base, end = 0;
11855 asection *sec;
11856
11857 for (sec = htab->tls_sec;
11858 sec && (sec->flags & SEC_THREAD_LOCAL);
11859 sec = sec->next)
11860 {
11861 bfd_size_type size = sec->size;
11862
11863 if (size == 0
11864 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11865 {
11866 struct bfd_link_order *ord = sec->map_tail.link_order;
11867
11868 if (ord != NULL)
11869 size = ord->offset + ord->size;
11870 }
11871 end = sec->vma + size;
11872 }
11873 base = htab->tls_sec->vma;
11874 /* Only align end of TLS section if static TLS doesn't have special
11875 alignment requirements. */
11876 if (bed->static_tls_alignment == 1)
11877 end = align_power (end, htab->tls_sec->alignment_power);
11878 htab->tls_size = end - base;
11879 }
11880
11881 /* Reorder SHF_LINK_ORDER sections. */
11882 for (o = abfd->sections; o != NULL; o = o->next)
11883 {
11884 if (!elf_fixup_link_order (abfd, o))
11885 return FALSE;
11886 }
11887
11888 if (!_bfd_elf_fixup_eh_frame_hdr (info))
11889 return FALSE;
11890
11891 /* Since ELF permits relocations to be against local symbols, we
11892 must have the local symbols available when we do the relocations.
11893 Since we would rather only read the local symbols once, and we
11894 would rather not keep them in memory, we handle all the
11895 relocations for a single input file at the same time.
11896
11897 Unfortunately, there is no way to know the total number of local
11898 symbols until we have seen all of them, and the local symbol
11899 indices precede the global symbol indices. This means that when
11900 we are generating relocatable output, and we see a reloc against
11901 a global symbol, we can not know the symbol index until we have
11902 finished examining all the local symbols to see which ones we are
11903 going to output. To deal with this, we keep the relocations in
11904 memory, and don't output them until the end of the link. This is
11905 an unfortunate waste of memory, but I don't see a good way around
11906 it. Fortunately, it only happens when performing a relocatable
11907 link, which is not the common case. FIXME: If keep_memory is set
11908 we could write the relocs out and then read them again; I don't
11909 know how bad the memory loss will be. */
11910
11911 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11912 sub->output_has_begun = FALSE;
11913 for (o = abfd->sections; o != NULL; o = o->next)
11914 {
11915 for (p = o->map_head.link_order; p != NULL; p = p->next)
11916 {
11917 if (p->type == bfd_indirect_link_order
11918 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11919 == bfd_target_elf_flavour)
11920 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11921 {
11922 if (! sub->output_has_begun)
11923 {
11924 if (! elf_link_input_bfd (&flinfo, sub))
11925 goto error_return;
11926 sub->output_has_begun = TRUE;
11927 }
11928 }
11929 else if (p->type == bfd_section_reloc_link_order
11930 || p->type == bfd_symbol_reloc_link_order)
11931 {
11932 if (! elf_reloc_link_order (abfd, info, o, p))
11933 goto error_return;
11934 }
11935 else
11936 {
11937 if (! _bfd_default_link_order (abfd, info, o, p))
11938 {
11939 if (p->type == bfd_indirect_link_order
11940 && (bfd_get_flavour (sub)
11941 == bfd_target_elf_flavour)
11942 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11943 != bed->s->elfclass))
11944 {
11945 const char *iclass, *oclass;
11946
11947 switch (bed->s->elfclass)
11948 {
11949 case ELFCLASS64: oclass = "ELFCLASS64"; break;
11950 case ELFCLASS32: oclass = "ELFCLASS32"; break;
11951 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
11952 default: abort ();
11953 }
11954
11955 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
11956 {
11957 case ELFCLASS64: iclass = "ELFCLASS64"; break;
11958 case ELFCLASS32: iclass = "ELFCLASS32"; break;
11959 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
11960 default: abort ();
11961 }
11962
11963 bfd_set_error (bfd_error_wrong_format);
11964 _bfd_error_handler
11965 /* xgettext:c-format */
11966 (_("%B: file class %s incompatible with %s"),
11967 sub, iclass, oclass);
11968 }
11969
11970 goto error_return;
11971 }
11972 }
11973 }
11974 }
11975
11976 /* Free symbol buffer if needed. */
11977 if (!info->reduce_memory_overheads)
11978 {
11979 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11980 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11981 && elf_tdata (sub)->symbuf)
11982 {
11983 free (elf_tdata (sub)->symbuf);
11984 elf_tdata (sub)->symbuf = NULL;
11985 }
11986 }
11987
11988 /* Output any global symbols that got converted to local in a
11989 version script or due to symbol visibility. We do this in a
11990 separate step since ELF requires all local symbols to appear
11991 prior to any global symbols. FIXME: We should only do this if
11992 some global symbols were, in fact, converted to become local.
11993 FIXME: Will this work correctly with the Irix 5 linker? */
11994 eoinfo.failed = FALSE;
11995 eoinfo.flinfo = &flinfo;
11996 eoinfo.localsyms = TRUE;
11997 eoinfo.file_sym_done = FALSE;
11998 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11999 if (eoinfo.failed)
12000 return FALSE;
12001
12002 /* If backend needs to output some local symbols not present in the hash
12003 table, do it now. */
12004 if (bed->elf_backend_output_arch_local_syms
12005 && (info->strip != strip_all || emit_relocs))
12006 {
12007 typedef int (*out_sym_func)
12008 (void *, const char *, Elf_Internal_Sym *, asection *,
12009 struct elf_link_hash_entry *);
12010
12011 if (! ((*bed->elf_backend_output_arch_local_syms)
12012 (abfd, info, &flinfo,
12013 (out_sym_func) elf_link_output_symstrtab)))
12014 return FALSE;
12015 }
12016
12017 /* That wrote out all the local symbols. Finish up the symbol table
12018 with the global symbols. Even if we want to strip everything we
12019 can, we still need to deal with those global symbols that got
12020 converted to local in a version script. */
12021
12022 /* The sh_info field records the index of the first non local symbol. */
12023 symtab_hdr->sh_info = bfd_get_symcount (abfd);
12024
12025 if (dynamic
12026 && htab->dynsym != NULL
12027 && htab->dynsym->output_section != bfd_abs_section_ptr)
12028 {
12029 Elf_Internal_Sym sym;
12030 bfd_byte *dynsym = htab->dynsym->contents;
12031
12032 o = htab->dynsym->output_section;
12033 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
12034
12035 /* Write out the section symbols for the output sections. */
12036 if (bfd_link_pic (info)
12037 || htab->is_relocatable_executable)
12038 {
12039 asection *s;
12040
12041 sym.st_size = 0;
12042 sym.st_name = 0;
12043 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12044 sym.st_other = 0;
12045 sym.st_target_internal = 0;
12046
12047 for (s = abfd->sections; s != NULL; s = s->next)
12048 {
12049 int indx;
12050 bfd_byte *dest;
12051 long dynindx;
12052
12053 dynindx = elf_section_data (s)->dynindx;
12054 if (dynindx <= 0)
12055 continue;
12056 indx = elf_section_data (s)->this_idx;
12057 BFD_ASSERT (indx > 0);
12058 sym.st_shndx = indx;
12059 if (! check_dynsym (abfd, &sym))
12060 return FALSE;
12061 sym.st_value = s->vma;
12062 dest = dynsym + dynindx * bed->s->sizeof_sym;
12063 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12064 }
12065 }
12066
12067 /* Write out the local dynsyms. */
12068 if (htab->dynlocal)
12069 {
12070 struct elf_link_local_dynamic_entry *e;
12071 for (e = htab->dynlocal; e ; e = e->next)
12072 {
12073 asection *s;
12074 bfd_byte *dest;
12075
12076 /* Copy the internal symbol and turn off visibility.
12077 Note that we saved a word of storage and overwrote
12078 the original st_name with the dynstr_index. */
12079 sym = e->isym;
12080 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
12081
12082 s = bfd_section_from_elf_index (e->input_bfd,
12083 e->isym.st_shndx);
12084 if (s != NULL)
12085 {
12086 sym.st_shndx =
12087 elf_section_data (s->output_section)->this_idx;
12088 if (! check_dynsym (abfd, &sym))
12089 return FALSE;
12090 sym.st_value = (s->output_section->vma
12091 + s->output_offset
12092 + e->isym.st_value);
12093 }
12094
12095 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
12096 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12097 }
12098 }
12099 }
12100
12101 /* We get the global symbols from the hash table. */
12102 eoinfo.failed = FALSE;
12103 eoinfo.localsyms = FALSE;
12104 eoinfo.flinfo = &flinfo;
12105 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12106 if (eoinfo.failed)
12107 return FALSE;
12108
12109 /* If backend needs to output some symbols not present in the hash
12110 table, do it now. */
12111 if (bed->elf_backend_output_arch_syms
12112 && (info->strip != strip_all || emit_relocs))
12113 {
12114 typedef int (*out_sym_func)
12115 (void *, const char *, Elf_Internal_Sym *, asection *,
12116 struct elf_link_hash_entry *);
12117
12118 if (! ((*bed->elf_backend_output_arch_syms)
12119 (abfd, info, &flinfo,
12120 (out_sym_func) elf_link_output_symstrtab)))
12121 return FALSE;
12122 }
12123
12124 /* Finalize the .strtab section. */
12125 _bfd_elf_strtab_finalize (flinfo.symstrtab);
12126
12127 /* Swap out the .strtab section. */
12128 if (!elf_link_swap_symbols_out (&flinfo))
12129 return FALSE;
12130
12131 /* Now we know the size of the symtab section. */
12132 if (bfd_get_symcount (abfd) > 0)
12133 {
12134 /* Finish up and write out the symbol string table (.strtab)
12135 section. */
12136 Elf_Internal_Shdr *symstrtab_hdr = NULL;
12137 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
12138
12139 if (elf_symtab_shndx_list (abfd))
12140 {
12141 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
12142
12143 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
12144 {
12145 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
12146 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
12147 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
12148 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
12149 symtab_shndx_hdr->sh_size = amt;
12150
12151 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
12152 off, TRUE);
12153
12154 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
12155 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
12156 return FALSE;
12157 }
12158 }
12159
12160 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
12161 /* sh_name was set in prep_headers. */
12162 symstrtab_hdr->sh_type = SHT_STRTAB;
12163 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
12164 symstrtab_hdr->sh_addr = 0;
12165 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
12166 symstrtab_hdr->sh_entsize = 0;
12167 symstrtab_hdr->sh_link = 0;
12168 symstrtab_hdr->sh_info = 0;
12169 /* sh_offset is set just below. */
12170 symstrtab_hdr->sh_addralign = 1;
12171
12172 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
12173 off, TRUE);
12174 elf_next_file_pos (abfd) = off;
12175
12176 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
12177 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
12178 return FALSE;
12179 }
12180
12181 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
12182 {
12183 _bfd_error_handler (_("%B: failed to generate import library"),
12184 info->out_implib_bfd);
12185 return FALSE;
12186 }
12187
12188 /* Adjust the relocs to have the correct symbol indices. */
12189 for (o = abfd->sections; o != NULL; o = o->next)
12190 {
12191 struct bfd_elf_section_data *esdo = elf_section_data (o);
12192 bfd_boolean sort;
12193
12194 if ((o->flags & SEC_RELOC) == 0)
12195 continue;
12196
12197 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
12198 if (esdo->rel.hdr != NULL
12199 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort, info))
12200 return FALSE;
12201 if (esdo->rela.hdr != NULL
12202 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort, info))
12203 return FALSE;
12204
12205 /* Set the reloc_count field to 0 to prevent write_relocs from
12206 trying to swap the relocs out itself. */
12207 o->reloc_count = 0;
12208 }
12209
12210 if (dynamic && info->combreloc && dynobj != NULL)
12211 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
12212
12213 /* If we are linking against a dynamic object, or generating a
12214 shared library, finish up the dynamic linking information. */
12215 if (dynamic)
12216 {
12217 bfd_byte *dyncon, *dynconend;
12218
12219 /* Fix up .dynamic entries. */
12220 o = bfd_get_linker_section (dynobj, ".dynamic");
12221 BFD_ASSERT (o != NULL);
12222
12223 dyncon = o->contents;
12224 dynconend = o->contents + o->size;
12225 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12226 {
12227 Elf_Internal_Dyn dyn;
12228 const char *name;
12229 unsigned int type;
12230 bfd_size_type sh_size;
12231 bfd_vma sh_addr;
12232
12233 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12234
12235 switch (dyn.d_tag)
12236 {
12237 default:
12238 continue;
12239 case DT_NULL:
12240 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
12241 {
12242 switch (elf_section_data (reldyn)->this_hdr.sh_type)
12243 {
12244 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
12245 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
12246 default: continue;
12247 }
12248 dyn.d_un.d_val = relativecount;
12249 relativecount = 0;
12250 break;
12251 }
12252 continue;
12253
12254 case DT_INIT:
12255 name = info->init_function;
12256 goto get_sym;
12257 case DT_FINI:
12258 name = info->fini_function;
12259 get_sym:
12260 {
12261 struct elf_link_hash_entry *h;
12262
12263 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
12264 if (h != NULL
12265 && (h->root.type == bfd_link_hash_defined
12266 || h->root.type == bfd_link_hash_defweak))
12267 {
12268 dyn.d_un.d_ptr = h->root.u.def.value;
12269 o = h->root.u.def.section;
12270 if (o->output_section != NULL)
12271 dyn.d_un.d_ptr += (o->output_section->vma
12272 + o->output_offset);
12273 else
12274 {
12275 /* The symbol is imported from another shared
12276 library and does not apply to this one. */
12277 dyn.d_un.d_ptr = 0;
12278 }
12279 break;
12280 }
12281 }
12282 continue;
12283
12284 case DT_PREINIT_ARRAYSZ:
12285 name = ".preinit_array";
12286 goto get_out_size;
12287 case DT_INIT_ARRAYSZ:
12288 name = ".init_array";
12289 goto get_out_size;
12290 case DT_FINI_ARRAYSZ:
12291 name = ".fini_array";
12292 get_out_size:
12293 o = bfd_get_section_by_name (abfd, name);
12294 if (o == NULL)
12295 {
12296 _bfd_error_handler
12297 (_("could not find section %s"), name);
12298 goto error_return;
12299 }
12300 if (o->size == 0)
12301 _bfd_error_handler
12302 (_("warning: %s section has zero size"), name);
12303 dyn.d_un.d_val = o->size;
12304 break;
12305
12306 case DT_PREINIT_ARRAY:
12307 name = ".preinit_array";
12308 goto get_out_vma;
12309 case DT_INIT_ARRAY:
12310 name = ".init_array";
12311 goto get_out_vma;
12312 case DT_FINI_ARRAY:
12313 name = ".fini_array";
12314 get_out_vma:
12315 o = bfd_get_section_by_name (abfd, name);
12316 goto do_vma;
12317
12318 case DT_HASH:
12319 name = ".hash";
12320 goto get_vma;
12321 case DT_GNU_HASH:
12322 name = ".gnu.hash";
12323 goto get_vma;
12324 case DT_STRTAB:
12325 name = ".dynstr";
12326 goto get_vma;
12327 case DT_SYMTAB:
12328 name = ".dynsym";
12329 goto get_vma;
12330 case DT_VERDEF:
12331 name = ".gnu.version_d";
12332 goto get_vma;
12333 case DT_VERNEED:
12334 name = ".gnu.version_r";
12335 goto get_vma;
12336 case DT_VERSYM:
12337 name = ".gnu.version";
12338 get_vma:
12339 o = bfd_get_linker_section (dynobj, name);
12340 do_vma:
12341 if (o == NULL)
12342 {
12343 _bfd_error_handler
12344 (_("could not find section %s"), name);
12345 goto error_return;
12346 }
12347 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
12348 {
12349 _bfd_error_handler
12350 (_("warning: section '%s' is being made into a note"), name);
12351 bfd_set_error (bfd_error_nonrepresentable_section);
12352 goto error_return;
12353 }
12354 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
12355 break;
12356
12357 case DT_REL:
12358 case DT_RELA:
12359 case DT_RELSZ:
12360 case DT_RELASZ:
12361 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12362 type = SHT_REL;
12363 else
12364 type = SHT_RELA;
12365 sh_size = 0;
12366 sh_addr = 0;
12367 for (i = 1; i < elf_numsections (abfd); i++)
12368 {
12369 Elf_Internal_Shdr *hdr;
12370
12371 hdr = elf_elfsections (abfd)[i];
12372 if (hdr->sh_type == type
12373 && (hdr->sh_flags & SHF_ALLOC) != 0)
12374 {
12375 sh_size += hdr->sh_size;
12376 if (sh_addr == 0
12377 || sh_addr > hdr->sh_addr)
12378 sh_addr = hdr->sh_addr;
12379 }
12380 }
12381
12382 if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
12383 {
12384 /* Don't count procedure linkage table relocs in the
12385 overall reloc count. */
12386 sh_size -= htab->srelplt->size;
12387 if (sh_size == 0)
12388 /* If the size is zero, make the address zero too.
12389 This is to avoid a glibc bug. If the backend
12390 emits DT_RELA/DT_RELASZ even when DT_RELASZ is
12391 zero, then we'll put DT_RELA at the end of
12392 DT_JMPREL. glibc will interpret the end of
12393 DT_RELA matching the end of DT_JMPREL as the
12394 case where DT_RELA includes DT_JMPREL, and for
12395 LD_BIND_NOW will decide that processing DT_RELA
12396 will process the PLT relocs too. Net result:
12397 No PLT relocs applied. */
12398 sh_addr = 0;
12399
12400 /* If .rela.plt is the first .rela section, exclude
12401 it from DT_RELA. */
12402 else if (sh_addr == (htab->srelplt->output_section->vma
12403 + htab->srelplt->output_offset))
12404 sh_addr += htab->srelplt->size;
12405 }
12406
12407 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
12408 dyn.d_un.d_val = sh_size;
12409 else
12410 dyn.d_un.d_ptr = sh_addr;
12411 break;
12412 }
12413 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
12414 }
12415 }
12416
12417 /* If we have created any dynamic sections, then output them. */
12418 if (dynobj != NULL)
12419 {
12420 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
12421 goto error_return;
12422
12423 /* Check for DT_TEXTREL (late, in case the backend removes it). */
12424 if (((info->warn_shared_textrel && bfd_link_pic (info))
12425 || info->error_textrel)
12426 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
12427 {
12428 bfd_byte *dyncon, *dynconend;
12429
12430 dyncon = o->contents;
12431 dynconend = o->contents + o->size;
12432 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12433 {
12434 Elf_Internal_Dyn dyn;
12435
12436 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12437
12438 if (dyn.d_tag == DT_TEXTREL)
12439 {
12440 if (info->error_textrel)
12441 info->callbacks->einfo
12442 (_("%P%X: read-only segment has dynamic relocations.\n"));
12443 else
12444 info->callbacks->einfo
12445 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
12446 break;
12447 }
12448 }
12449 }
12450
12451 for (o = dynobj->sections; o != NULL; o = o->next)
12452 {
12453 if ((o->flags & SEC_HAS_CONTENTS) == 0
12454 || o->size == 0
12455 || o->output_section == bfd_abs_section_ptr)
12456 continue;
12457 if ((o->flags & SEC_LINKER_CREATED) == 0)
12458 {
12459 /* At this point, we are only interested in sections
12460 created by _bfd_elf_link_create_dynamic_sections. */
12461 continue;
12462 }
12463 if (htab->stab_info.stabstr == o)
12464 continue;
12465 if (htab->eh_info.hdr_sec == o)
12466 continue;
12467 if (strcmp (o->name, ".dynstr") != 0)
12468 {
12469 if (! bfd_set_section_contents (abfd, o->output_section,
12470 o->contents,
12471 (file_ptr) o->output_offset
12472 * bfd_octets_per_byte (abfd),
12473 o->size))
12474 goto error_return;
12475 }
12476 else
12477 {
12478 /* The contents of the .dynstr section are actually in a
12479 stringtab. */
12480 file_ptr off;
12481
12482 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
12483 if (bfd_seek (abfd, off, SEEK_SET) != 0
12484 || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
12485 goto error_return;
12486 }
12487 }
12488 }
12489
12490 if (!info->resolve_section_groups)
12491 {
12492 bfd_boolean failed = FALSE;
12493
12494 BFD_ASSERT (bfd_link_relocatable (info));
12495 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
12496 if (failed)
12497 goto error_return;
12498 }
12499
12500 /* If we have optimized stabs strings, output them. */
12501 if (htab->stab_info.stabstr != NULL)
12502 {
12503 if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
12504 goto error_return;
12505 }
12506
12507 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
12508 goto error_return;
12509
12510 elf_final_link_free (abfd, &flinfo);
12511
12512 elf_linker (abfd) = TRUE;
12513
12514 if (attr_section)
12515 {
12516 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
12517 if (contents == NULL)
12518 return FALSE; /* Bail out and fail. */
12519 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
12520 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
12521 free (contents);
12522 }
12523
12524 return TRUE;
12525
12526 error_return:
12527 elf_final_link_free (abfd, &flinfo);
12528 return FALSE;
12529 }
12530 \f
12531 /* Initialize COOKIE for input bfd ABFD. */
12532
12533 static bfd_boolean
12534 init_reloc_cookie (struct elf_reloc_cookie *cookie,
12535 struct bfd_link_info *info, bfd *abfd)
12536 {
12537 Elf_Internal_Shdr *symtab_hdr;
12538 const struct elf_backend_data *bed;
12539
12540 bed = get_elf_backend_data (abfd);
12541 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12542
12543 cookie->abfd = abfd;
12544 cookie->sym_hashes = elf_sym_hashes (abfd);
12545 cookie->bad_symtab = elf_bad_symtab (abfd);
12546 if (cookie->bad_symtab)
12547 {
12548 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12549 cookie->extsymoff = 0;
12550 }
12551 else
12552 {
12553 cookie->locsymcount = symtab_hdr->sh_info;
12554 cookie->extsymoff = symtab_hdr->sh_info;
12555 }
12556
12557 if (bed->s->arch_size == 32)
12558 cookie->r_sym_shift = 8;
12559 else
12560 cookie->r_sym_shift = 32;
12561
12562 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
12563 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
12564 {
12565 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12566 cookie->locsymcount, 0,
12567 NULL, NULL, NULL);
12568 if (cookie->locsyms == NULL)
12569 {
12570 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
12571 return FALSE;
12572 }
12573 if (info->keep_memory)
12574 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
12575 }
12576 return TRUE;
12577 }
12578
12579 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
12580
12581 static void
12582 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
12583 {
12584 Elf_Internal_Shdr *symtab_hdr;
12585
12586 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12587 if (cookie->locsyms != NULL
12588 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
12589 free (cookie->locsyms);
12590 }
12591
12592 /* Initialize the relocation information in COOKIE for input section SEC
12593 of input bfd ABFD. */
12594
12595 static bfd_boolean
12596 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12597 struct bfd_link_info *info, bfd *abfd,
12598 asection *sec)
12599 {
12600 if (sec->reloc_count == 0)
12601 {
12602 cookie->rels = NULL;
12603 cookie->relend = NULL;
12604 }
12605 else
12606 {
12607 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
12608 info->keep_memory);
12609 if (cookie->rels == NULL)
12610 return FALSE;
12611 cookie->rel = cookie->rels;
12612 cookie->relend = cookie->rels + sec->reloc_count;
12613 }
12614 cookie->rel = cookie->rels;
12615 return TRUE;
12616 }
12617
12618 /* Free the memory allocated by init_reloc_cookie_rels,
12619 if appropriate. */
12620
12621 static void
12622 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12623 asection *sec)
12624 {
12625 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
12626 free (cookie->rels);
12627 }
12628
12629 /* Initialize the whole of COOKIE for input section SEC. */
12630
12631 static bfd_boolean
12632 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12633 struct bfd_link_info *info,
12634 asection *sec)
12635 {
12636 if (!init_reloc_cookie (cookie, info, sec->owner))
12637 goto error1;
12638 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
12639 goto error2;
12640 return TRUE;
12641
12642 error2:
12643 fini_reloc_cookie (cookie, sec->owner);
12644 error1:
12645 return FALSE;
12646 }
12647
12648 /* Free the memory allocated by init_reloc_cookie_for_section,
12649 if appropriate. */
12650
12651 static void
12652 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12653 asection *sec)
12654 {
12655 fini_reloc_cookie_rels (cookie, sec);
12656 fini_reloc_cookie (cookie, sec->owner);
12657 }
12658 \f
12659 /* Garbage collect unused sections. */
12660
12661 /* Default gc_mark_hook. */
12662
12663 asection *
12664 _bfd_elf_gc_mark_hook (asection *sec,
12665 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12666 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12667 struct elf_link_hash_entry *h,
12668 Elf_Internal_Sym *sym)
12669 {
12670 if (h != NULL)
12671 {
12672 switch (h->root.type)
12673 {
12674 case bfd_link_hash_defined:
12675 case bfd_link_hash_defweak:
12676 return h->root.u.def.section;
12677
12678 case bfd_link_hash_common:
12679 return h->root.u.c.p->section;
12680
12681 default:
12682 break;
12683 }
12684 }
12685 else
12686 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
12687
12688 return NULL;
12689 }
12690
12691 /* Return the global debug definition section. */
12692
12693 static asection *
12694 elf_gc_mark_debug_section (asection *sec ATTRIBUTE_UNUSED,
12695 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12696 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12697 struct elf_link_hash_entry *h,
12698 Elf_Internal_Sym *sym ATTRIBUTE_UNUSED)
12699 {
12700 if (h != NULL
12701 && (h->root.type == bfd_link_hash_defined
12702 || h->root.type == bfd_link_hash_defweak)
12703 && (h->root.u.def.section->flags & SEC_DEBUGGING) != 0)
12704 return h->root.u.def.section;
12705
12706 return NULL;
12707 }
12708
12709 /* COOKIE->rel describes a relocation against section SEC, which is
12710 a section we've decided to keep. Return the section that contains
12711 the relocation symbol, or NULL if no section contains it. */
12712
12713 asection *
12714 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
12715 elf_gc_mark_hook_fn gc_mark_hook,
12716 struct elf_reloc_cookie *cookie,
12717 bfd_boolean *start_stop)
12718 {
12719 unsigned long r_symndx;
12720 struct elf_link_hash_entry *h;
12721
12722 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
12723 if (r_symndx == STN_UNDEF)
12724 return NULL;
12725
12726 if (r_symndx >= cookie->locsymcount
12727 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12728 {
12729 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
12730 if (h == NULL)
12731 {
12732 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
12733 sec->owner);
12734 return NULL;
12735 }
12736 while (h->root.type == bfd_link_hash_indirect
12737 || h->root.type == bfd_link_hash_warning)
12738 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12739 h->mark = 1;
12740 /* If this symbol is weak and there is a non-weak definition, we
12741 keep the non-weak definition because many backends put
12742 dynamic reloc info on the non-weak definition for code
12743 handling copy relocs. */
12744 if (h->u.weakdef != NULL)
12745 h->u.weakdef->mark = 1;
12746
12747 if (start_stop != NULL)
12748 {
12749 /* To work around a glibc bug, mark XXX input sections
12750 when there is a reference to __start_XXX or __stop_XXX
12751 symbols. */
12752 if (h->start_stop)
12753 {
12754 asection *s = h->u2.start_stop_section;
12755 *start_stop = !s->gc_mark;
12756 return s;
12757 }
12758 }
12759
12760 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
12761 }
12762
12763 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
12764 &cookie->locsyms[r_symndx]);
12765 }
12766
12767 /* COOKIE->rel describes a relocation against section SEC, which is
12768 a section we've decided to keep. Mark the section that contains
12769 the relocation symbol. */
12770
12771 bfd_boolean
12772 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
12773 asection *sec,
12774 elf_gc_mark_hook_fn gc_mark_hook,
12775 struct elf_reloc_cookie *cookie)
12776 {
12777 asection *rsec;
12778 bfd_boolean start_stop = FALSE;
12779
12780 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
12781 while (rsec != NULL)
12782 {
12783 if (!rsec->gc_mark)
12784 {
12785 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
12786 || (rsec->owner->flags & DYNAMIC) != 0)
12787 rsec->gc_mark = 1;
12788 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
12789 return FALSE;
12790 }
12791 if (!start_stop)
12792 break;
12793 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
12794 }
12795 return TRUE;
12796 }
12797
12798 /* The mark phase of garbage collection. For a given section, mark
12799 it and any sections in this section's group, and all the sections
12800 which define symbols to which it refers. */
12801
12802 bfd_boolean
12803 _bfd_elf_gc_mark (struct bfd_link_info *info,
12804 asection *sec,
12805 elf_gc_mark_hook_fn gc_mark_hook)
12806 {
12807 bfd_boolean ret;
12808 asection *group_sec, *eh_frame;
12809
12810 sec->gc_mark = 1;
12811
12812 /* Mark all the sections in the group. */
12813 group_sec = elf_section_data (sec)->next_in_group;
12814 if (group_sec && !group_sec->gc_mark)
12815 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
12816 return FALSE;
12817
12818 /* Look through the section relocs. */
12819 ret = TRUE;
12820 eh_frame = elf_eh_frame_section (sec->owner);
12821 if ((sec->flags & SEC_RELOC) != 0
12822 && sec->reloc_count > 0
12823 && sec != eh_frame)
12824 {
12825 struct elf_reloc_cookie cookie;
12826
12827 if (!init_reloc_cookie_for_section (&cookie, info, sec))
12828 ret = FALSE;
12829 else
12830 {
12831 for (; cookie.rel < cookie.relend; cookie.rel++)
12832 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
12833 {
12834 ret = FALSE;
12835 break;
12836 }
12837 fini_reloc_cookie_for_section (&cookie, sec);
12838 }
12839 }
12840
12841 if (ret && eh_frame && elf_fde_list (sec))
12842 {
12843 struct elf_reloc_cookie cookie;
12844
12845 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
12846 ret = FALSE;
12847 else
12848 {
12849 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
12850 gc_mark_hook, &cookie))
12851 ret = FALSE;
12852 fini_reloc_cookie_for_section (&cookie, eh_frame);
12853 }
12854 }
12855
12856 eh_frame = elf_section_eh_frame_entry (sec);
12857 if (ret && eh_frame && !eh_frame->gc_mark)
12858 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
12859 ret = FALSE;
12860
12861 return ret;
12862 }
12863
12864 /* Scan and mark sections in a special or debug section group. */
12865
12866 static void
12867 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
12868 {
12869 /* Point to first section of section group. */
12870 asection *ssec;
12871 /* Used to iterate the section group. */
12872 asection *msec;
12873
12874 bfd_boolean is_special_grp = TRUE;
12875 bfd_boolean is_debug_grp = TRUE;
12876
12877 /* First scan to see if group contains any section other than debug
12878 and special section. */
12879 ssec = msec = elf_next_in_group (grp);
12880 do
12881 {
12882 if ((msec->flags & SEC_DEBUGGING) == 0)
12883 is_debug_grp = FALSE;
12884
12885 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
12886 is_special_grp = FALSE;
12887
12888 msec = elf_next_in_group (msec);
12889 }
12890 while (msec != ssec);
12891
12892 /* If this is a pure debug section group or pure special section group,
12893 keep all sections in this group. */
12894 if (is_debug_grp || is_special_grp)
12895 {
12896 do
12897 {
12898 msec->gc_mark = 1;
12899 msec = elf_next_in_group (msec);
12900 }
12901 while (msec != ssec);
12902 }
12903 }
12904
12905 /* Keep debug and special sections. */
12906
12907 bfd_boolean
12908 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12909 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12910 {
12911 bfd *ibfd;
12912
12913 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12914 {
12915 asection *isec;
12916 bfd_boolean some_kept;
12917 bfd_boolean debug_frag_seen;
12918 bfd_boolean has_kept_debug_info;
12919
12920 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12921 continue;
12922 isec = ibfd->sections;
12923 if (isec == NULL || isec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
12924 continue;
12925
12926 /* Ensure all linker created sections are kept,
12927 see if any other section is already marked,
12928 and note if we have any fragmented debug sections. */
12929 debug_frag_seen = some_kept = has_kept_debug_info = FALSE;
12930 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12931 {
12932 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12933 isec->gc_mark = 1;
12934 else if (isec->gc_mark
12935 && (isec->flags & SEC_ALLOC) != 0
12936 && elf_section_type (isec) != SHT_NOTE)
12937 some_kept = TRUE;
12938
12939 if (!debug_frag_seen
12940 && (isec->flags & SEC_DEBUGGING)
12941 && CONST_STRNEQ (isec->name, ".debug_line."))
12942 debug_frag_seen = TRUE;
12943 }
12944
12945 /* If no non-note alloc section in this file will be kept, then
12946 we can toss out the debug and special sections. */
12947 if (!some_kept)
12948 continue;
12949
12950 /* Keep debug and special sections like .comment when they are
12951 not part of a group. Also keep section groups that contain
12952 just debug sections or special sections. */
12953 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12954 {
12955 if ((isec->flags & SEC_GROUP) != 0)
12956 _bfd_elf_gc_mark_debug_special_section_group (isec);
12957 else if (((isec->flags & SEC_DEBUGGING) != 0
12958 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12959 && elf_next_in_group (isec) == NULL)
12960 isec->gc_mark = 1;
12961 if (isec->gc_mark && (isec->flags & SEC_DEBUGGING) != 0)
12962 has_kept_debug_info = TRUE;
12963 }
12964
12965 /* Look for CODE sections which are going to be discarded,
12966 and find and discard any fragmented debug sections which
12967 are associated with that code section. */
12968 if (debug_frag_seen)
12969 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12970 if ((isec->flags & SEC_CODE) != 0
12971 && isec->gc_mark == 0)
12972 {
12973 unsigned int ilen;
12974 asection *dsec;
12975
12976 ilen = strlen (isec->name);
12977
12978 /* Association is determined by the name of the debug
12979 section containing the name of the code section as
12980 a suffix. For example .debug_line.text.foo is a
12981 debug section associated with .text.foo. */
12982 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12983 {
12984 unsigned int dlen;
12985
12986 if (dsec->gc_mark == 0
12987 || (dsec->flags & SEC_DEBUGGING) == 0)
12988 continue;
12989
12990 dlen = strlen (dsec->name);
12991
12992 if (dlen > ilen
12993 && strncmp (dsec->name + (dlen - ilen),
12994 isec->name, ilen) == 0)
12995 dsec->gc_mark = 0;
12996 }
12997 }
12998
12999 /* Mark debug sections referenced by kept debug sections. */
13000 if (has_kept_debug_info)
13001 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13002 if (isec->gc_mark
13003 && (isec->flags & SEC_DEBUGGING) != 0)
13004 if (!_bfd_elf_gc_mark (info, isec,
13005 elf_gc_mark_debug_section))
13006 return FALSE;
13007 }
13008 return TRUE;
13009 }
13010
13011 /* The sweep phase of garbage collection. Remove all garbage sections. */
13012
13013 typedef bfd_boolean (*gc_sweep_hook_fn)
13014 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
13015
13016 static bfd_boolean
13017 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
13018 {
13019 bfd *sub;
13020 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13021 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
13022
13023 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13024 {
13025 asection *o;
13026
13027 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13028 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13029 continue;
13030 o = sub->sections;
13031 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13032 continue;
13033
13034 for (o = sub->sections; o != NULL; o = o->next)
13035 {
13036 /* When any section in a section group is kept, we keep all
13037 sections in the section group. If the first member of
13038 the section group is excluded, we will also exclude the
13039 group section. */
13040 if (o->flags & SEC_GROUP)
13041 {
13042 asection *first = elf_next_in_group (o);
13043 o->gc_mark = first->gc_mark;
13044 }
13045
13046 if (o->gc_mark)
13047 continue;
13048
13049 /* Skip sweeping sections already excluded. */
13050 if (o->flags & SEC_EXCLUDE)
13051 continue;
13052
13053 /* Since this is early in the link process, it is simple
13054 to remove a section from the output. */
13055 o->flags |= SEC_EXCLUDE;
13056
13057 if (info->print_gc_sections && o->size != 0)
13058 /* xgettext:c-format */
13059 _bfd_error_handler (_("Removing unused section '%A' in file '%B'"),
13060 o, sub);
13061
13062 /* But we also have to update some of the relocation
13063 info we collected before. */
13064 if (gc_sweep_hook
13065 && (o->flags & SEC_RELOC) != 0
13066 && o->reloc_count != 0
13067 && !((info->strip == strip_all || info->strip == strip_debugger)
13068 && (o->flags & SEC_DEBUGGING) != 0)
13069 && !bfd_is_abs_section (o->output_section))
13070 {
13071 Elf_Internal_Rela *internal_relocs;
13072 bfd_boolean r;
13073
13074 internal_relocs
13075 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
13076 info->keep_memory);
13077 if (internal_relocs == NULL)
13078 return FALSE;
13079
13080 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
13081
13082 if (elf_section_data (o)->relocs != internal_relocs)
13083 free (internal_relocs);
13084
13085 if (!r)
13086 return FALSE;
13087 }
13088 }
13089 }
13090
13091 return TRUE;
13092 }
13093
13094 /* Propagate collected vtable information. This is called through
13095 elf_link_hash_traverse. */
13096
13097 static bfd_boolean
13098 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
13099 {
13100 /* Those that are not vtables. */
13101 if (h->start_stop
13102 || h->u2.vtable == NULL
13103 || h->u2.vtable->parent == NULL)
13104 return TRUE;
13105
13106 /* Those vtables that do not have parents, we cannot merge. */
13107 if (h->u2.vtable->parent == (struct elf_link_hash_entry *) -1)
13108 return TRUE;
13109
13110 /* If we've already been done, exit. */
13111 if (h->u2.vtable->used && h->u2.vtable->used[-1])
13112 return TRUE;
13113
13114 /* Make sure the parent's table is up to date. */
13115 elf_gc_propagate_vtable_entries_used (h->u2.vtable->parent, okp);
13116
13117 if (h->u2.vtable->used == NULL)
13118 {
13119 /* None of this table's entries were referenced. Re-use the
13120 parent's table. */
13121 h->u2.vtable->used = h->u2.vtable->parent->u2.vtable->used;
13122 h->u2.vtable->size = h->u2.vtable->parent->u2.vtable->size;
13123 }
13124 else
13125 {
13126 size_t n;
13127 bfd_boolean *cu, *pu;
13128
13129 /* Or the parent's entries into ours. */
13130 cu = h->u2.vtable->used;
13131 cu[-1] = TRUE;
13132 pu = h->u2.vtable->parent->u2.vtable->used;
13133 if (pu != NULL)
13134 {
13135 const struct elf_backend_data *bed;
13136 unsigned int log_file_align;
13137
13138 bed = get_elf_backend_data (h->root.u.def.section->owner);
13139 log_file_align = bed->s->log_file_align;
13140 n = h->u2.vtable->parent->u2.vtable->size >> log_file_align;
13141 while (n--)
13142 {
13143 if (*pu)
13144 *cu = TRUE;
13145 pu++;
13146 cu++;
13147 }
13148 }
13149 }
13150
13151 return TRUE;
13152 }
13153
13154 static bfd_boolean
13155 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
13156 {
13157 asection *sec;
13158 bfd_vma hstart, hend;
13159 Elf_Internal_Rela *relstart, *relend, *rel;
13160 const struct elf_backend_data *bed;
13161 unsigned int log_file_align;
13162
13163 /* Take care of both those symbols that do not describe vtables as
13164 well as those that are not loaded. */
13165 if (h->start_stop
13166 || h->u2.vtable == NULL
13167 || h->u2.vtable->parent == NULL)
13168 return TRUE;
13169
13170 BFD_ASSERT (h->root.type == bfd_link_hash_defined
13171 || h->root.type == bfd_link_hash_defweak);
13172
13173 sec = h->root.u.def.section;
13174 hstart = h->root.u.def.value;
13175 hend = hstart + h->size;
13176
13177 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
13178 if (!relstart)
13179 return *(bfd_boolean *) okp = FALSE;
13180 bed = get_elf_backend_data (sec->owner);
13181 log_file_align = bed->s->log_file_align;
13182
13183 relend = relstart + sec->reloc_count;
13184
13185 for (rel = relstart; rel < relend; ++rel)
13186 if (rel->r_offset >= hstart && rel->r_offset < hend)
13187 {
13188 /* If the entry is in use, do nothing. */
13189 if (h->u2.vtable->used
13190 && (rel->r_offset - hstart) < h->u2.vtable->size)
13191 {
13192 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
13193 if (h->u2.vtable->used[entry])
13194 continue;
13195 }
13196 /* Otherwise, kill it. */
13197 rel->r_offset = rel->r_info = rel->r_addend = 0;
13198 }
13199
13200 return TRUE;
13201 }
13202
13203 /* Mark sections containing dynamically referenced symbols. When
13204 building shared libraries, we must assume that any visible symbol is
13205 referenced. */
13206
13207 bfd_boolean
13208 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
13209 {
13210 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13211 struct bfd_elf_dynamic_list *d = info->dynamic_list;
13212
13213 if ((h->root.type == bfd_link_hash_defined
13214 || h->root.type == bfd_link_hash_defweak)
13215 && (h->ref_dynamic
13216 || ((h->def_regular || ELF_COMMON_DEF_P (h))
13217 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13218 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13219 && (!bfd_link_executable (info)
13220 || info->gc_keep_exported
13221 || info->export_dynamic
13222 || (h->dynamic
13223 && d != NULL
13224 && (*d->match) (&d->head, NULL, h->root.root.string)))
13225 && (h->versioned >= versioned
13226 || !bfd_hide_sym_by_version (info->version_info,
13227 h->root.root.string)))))
13228 h->root.u.def.section->flags |= SEC_KEEP;
13229
13230 return TRUE;
13231 }
13232
13233 /* Keep all sections containing symbols undefined on the command-line,
13234 and the section containing the entry symbol. */
13235
13236 void
13237 _bfd_elf_gc_keep (struct bfd_link_info *info)
13238 {
13239 struct bfd_sym_chain *sym;
13240
13241 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13242 {
13243 struct elf_link_hash_entry *h;
13244
13245 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13246 FALSE, FALSE, FALSE);
13247
13248 if (h != NULL
13249 && (h->root.type == bfd_link_hash_defined
13250 || h->root.type == bfd_link_hash_defweak)
13251 && !bfd_is_abs_section (h->root.u.def.section)
13252 && !bfd_is_und_section (h->root.u.def.section))
13253 h->root.u.def.section->flags |= SEC_KEEP;
13254 }
13255 }
13256
13257 bfd_boolean
13258 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13259 struct bfd_link_info *info)
13260 {
13261 bfd *ibfd = info->input_bfds;
13262
13263 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13264 {
13265 asection *sec;
13266 struct elf_reloc_cookie cookie;
13267
13268 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13269 continue;
13270 sec = ibfd->sections;
13271 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13272 continue;
13273
13274 if (!init_reloc_cookie (&cookie, info, ibfd))
13275 return FALSE;
13276
13277 for (sec = ibfd->sections; sec; sec = sec->next)
13278 {
13279 if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
13280 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
13281 {
13282 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
13283 fini_reloc_cookie_rels (&cookie, sec);
13284 }
13285 }
13286 }
13287 return TRUE;
13288 }
13289
13290 /* Do mark and sweep of unused sections. */
13291
13292 bfd_boolean
13293 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
13294 {
13295 bfd_boolean ok = TRUE;
13296 bfd *sub;
13297 elf_gc_mark_hook_fn gc_mark_hook;
13298 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13299 struct elf_link_hash_table *htab;
13300
13301 if (!bed->can_gc_sections
13302 || !is_elf_hash_table (info->hash))
13303 {
13304 _bfd_error_handler(_("Warning: gc-sections option ignored"));
13305 return TRUE;
13306 }
13307
13308 bed->gc_keep (info);
13309 htab = elf_hash_table (info);
13310
13311 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
13312 at the .eh_frame section if we can mark the FDEs individually. */
13313 for (sub = info->input_bfds;
13314 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
13315 sub = sub->link.next)
13316 {
13317 asection *sec;
13318 struct elf_reloc_cookie cookie;
13319
13320 sec = sub->sections;
13321 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13322 continue;
13323 sec = bfd_get_section_by_name (sub, ".eh_frame");
13324 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
13325 {
13326 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
13327 if (elf_section_data (sec)->sec_info
13328 && (sec->flags & SEC_LINKER_CREATED) == 0)
13329 elf_eh_frame_section (sub) = sec;
13330 fini_reloc_cookie_for_section (&cookie, sec);
13331 sec = bfd_get_next_section_by_name (NULL, sec);
13332 }
13333 }
13334
13335 /* Apply transitive closure to the vtable entry usage info. */
13336 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
13337 if (!ok)
13338 return FALSE;
13339
13340 /* Kill the vtable relocations that were not used. */
13341 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
13342 if (!ok)
13343 return FALSE;
13344
13345 /* Mark dynamically referenced symbols. */
13346 if (htab->dynamic_sections_created || info->gc_keep_exported)
13347 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
13348
13349 /* Grovel through relocs to find out who stays ... */
13350 gc_mark_hook = bed->gc_mark_hook;
13351 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13352 {
13353 asection *o;
13354
13355 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13356 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13357 continue;
13358
13359 o = sub->sections;
13360 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13361 continue;
13362
13363 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13364 Also treat note sections as a root, if the section is not part
13365 of a group. */
13366 for (o = sub->sections; o != NULL; o = o->next)
13367 if (!o->gc_mark
13368 && (o->flags & SEC_EXCLUDE) == 0
13369 && ((o->flags & SEC_KEEP) != 0
13370 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
13371 && elf_next_in_group (o) == NULL )))
13372 {
13373 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13374 return FALSE;
13375 }
13376 }
13377
13378 /* Allow the backend to mark additional target specific sections. */
13379 bed->gc_mark_extra_sections (info, gc_mark_hook);
13380
13381 /* ... and mark SEC_EXCLUDE for those that go. */
13382 return elf_gc_sweep (abfd, info);
13383 }
13384 \f
13385 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
13386
13387 bfd_boolean
13388 bfd_elf_gc_record_vtinherit (bfd *abfd,
13389 asection *sec,
13390 struct elf_link_hash_entry *h,
13391 bfd_vma offset)
13392 {
13393 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
13394 struct elf_link_hash_entry **search, *child;
13395 size_t extsymcount;
13396 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13397
13398 /* The sh_info field of the symtab header tells us where the
13399 external symbols start. We don't care about the local symbols at
13400 this point. */
13401 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
13402 if (!elf_bad_symtab (abfd))
13403 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
13404
13405 sym_hashes = elf_sym_hashes (abfd);
13406 sym_hashes_end = sym_hashes + extsymcount;
13407
13408 /* Hunt down the child symbol, which is in this section at the same
13409 offset as the relocation. */
13410 for (search = sym_hashes; search != sym_hashes_end; ++search)
13411 {
13412 if ((child = *search) != NULL
13413 && (child->root.type == bfd_link_hash_defined
13414 || child->root.type == bfd_link_hash_defweak)
13415 && child->root.u.def.section == sec
13416 && child->root.u.def.value == offset)
13417 goto win;
13418 }
13419
13420 /* xgettext:c-format */
13421 _bfd_error_handler (_("%B: %A+%#Lx: No symbol found for INHERIT"),
13422 abfd, sec, offset);
13423 bfd_set_error (bfd_error_invalid_operation);
13424 return FALSE;
13425
13426 win:
13427 if (!child->u2.vtable)
13428 {
13429 child->u2.vtable = ((struct elf_link_virtual_table_entry *)
13430 bfd_zalloc (abfd, sizeof (*child->u2.vtable)));
13431 if (!child->u2.vtable)
13432 return FALSE;
13433 }
13434 if (!h)
13435 {
13436 /* This *should* only be the absolute section. It could potentially
13437 be that someone has defined a non-global vtable though, which
13438 would be bad. It isn't worth paging in the local symbols to be
13439 sure though; that case should simply be handled by the assembler. */
13440
13441 child->u2.vtable->parent = (struct elf_link_hash_entry *) -1;
13442 }
13443 else
13444 child->u2.vtable->parent = h;
13445
13446 return TRUE;
13447 }
13448
13449 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
13450
13451 bfd_boolean
13452 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
13453 asection *sec ATTRIBUTE_UNUSED,
13454 struct elf_link_hash_entry *h,
13455 bfd_vma addend)
13456 {
13457 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13458 unsigned int log_file_align = bed->s->log_file_align;
13459
13460 if (!h->u2.vtable)
13461 {
13462 h->u2.vtable = ((struct elf_link_virtual_table_entry *)
13463 bfd_zalloc (abfd, sizeof (*h->u2.vtable)));
13464 if (!h->u2.vtable)
13465 return FALSE;
13466 }
13467
13468 if (addend >= h->u2.vtable->size)
13469 {
13470 size_t size, bytes, file_align;
13471 bfd_boolean *ptr = h->u2.vtable->used;
13472
13473 /* While the symbol is undefined, we have to be prepared to handle
13474 a zero size. */
13475 file_align = 1 << log_file_align;
13476 if (h->root.type == bfd_link_hash_undefined)
13477 size = addend + file_align;
13478 else
13479 {
13480 size = h->size;
13481 if (addend >= size)
13482 {
13483 /* Oops! We've got a reference past the defined end of
13484 the table. This is probably a bug -- shall we warn? */
13485 size = addend + file_align;
13486 }
13487 }
13488 size = (size + file_align - 1) & -file_align;
13489
13490 /* Allocate one extra entry for use as a "done" flag for the
13491 consolidation pass. */
13492 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
13493
13494 if (ptr)
13495 {
13496 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
13497
13498 if (ptr != NULL)
13499 {
13500 size_t oldbytes;
13501
13502 oldbytes = (((h->u2.vtable->size >> log_file_align) + 1)
13503 * sizeof (bfd_boolean));
13504 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
13505 }
13506 }
13507 else
13508 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
13509
13510 if (ptr == NULL)
13511 return FALSE;
13512
13513 /* And arrange for that done flag to be at index -1. */
13514 h->u2.vtable->used = ptr + 1;
13515 h->u2.vtable->size = size;
13516 }
13517
13518 h->u2.vtable->used[addend >> log_file_align] = TRUE;
13519
13520 return TRUE;
13521 }
13522
13523 /* Map an ELF section header flag to its corresponding string. */
13524 typedef struct
13525 {
13526 char *flag_name;
13527 flagword flag_value;
13528 } elf_flags_to_name_table;
13529
13530 static elf_flags_to_name_table elf_flags_to_names [] =
13531 {
13532 { "SHF_WRITE", SHF_WRITE },
13533 { "SHF_ALLOC", SHF_ALLOC },
13534 { "SHF_EXECINSTR", SHF_EXECINSTR },
13535 { "SHF_MERGE", SHF_MERGE },
13536 { "SHF_STRINGS", SHF_STRINGS },
13537 { "SHF_INFO_LINK", SHF_INFO_LINK},
13538 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
13539 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
13540 { "SHF_GROUP", SHF_GROUP },
13541 { "SHF_TLS", SHF_TLS },
13542 { "SHF_MASKOS", SHF_MASKOS },
13543 { "SHF_EXCLUDE", SHF_EXCLUDE },
13544 };
13545
13546 /* Returns TRUE if the section is to be included, otherwise FALSE. */
13547 bfd_boolean
13548 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
13549 struct flag_info *flaginfo,
13550 asection *section)
13551 {
13552 const bfd_vma sh_flags = elf_section_flags (section);
13553
13554 if (!flaginfo->flags_initialized)
13555 {
13556 bfd *obfd = info->output_bfd;
13557 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13558 struct flag_info_list *tf = flaginfo->flag_list;
13559 int with_hex = 0;
13560 int without_hex = 0;
13561
13562 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
13563 {
13564 unsigned i;
13565 flagword (*lookup) (char *);
13566
13567 lookup = bed->elf_backend_lookup_section_flags_hook;
13568 if (lookup != NULL)
13569 {
13570 flagword hexval = (*lookup) ((char *) tf->name);
13571
13572 if (hexval != 0)
13573 {
13574 if (tf->with == with_flags)
13575 with_hex |= hexval;
13576 else if (tf->with == without_flags)
13577 without_hex |= hexval;
13578 tf->valid = TRUE;
13579 continue;
13580 }
13581 }
13582 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
13583 {
13584 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
13585 {
13586 if (tf->with == with_flags)
13587 with_hex |= elf_flags_to_names[i].flag_value;
13588 else if (tf->with == without_flags)
13589 without_hex |= elf_flags_to_names[i].flag_value;
13590 tf->valid = TRUE;
13591 break;
13592 }
13593 }
13594 if (!tf->valid)
13595 {
13596 info->callbacks->einfo
13597 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
13598 return FALSE;
13599 }
13600 }
13601 flaginfo->flags_initialized = TRUE;
13602 flaginfo->only_with_flags |= with_hex;
13603 flaginfo->not_with_flags |= without_hex;
13604 }
13605
13606 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
13607 return FALSE;
13608
13609 if ((flaginfo->not_with_flags & sh_flags) != 0)
13610 return FALSE;
13611
13612 return TRUE;
13613 }
13614
13615 struct alloc_got_off_arg {
13616 bfd_vma gotoff;
13617 struct bfd_link_info *info;
13618 };
13619
13620 /* We need a special top-level link routine to convert got reference counts
13621 to real got offsets. */
13622
13623 static bfd_boolean
13624 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
13625 {
13626 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
13627 bfd *obfd = gofarg->info->output_bfd;
13628 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13629
13630 if (h->got.refcount > 0)
13631 {
13632 h->got.offset = gofarg->gotoff;
13633 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
13634 }
13635 else
13636 h->got.offset = (bfd_vma) -1;
13637
13638 return TRUE;
13639 }
13640
13641 /* And an accompanying bit to work out final got entry offsets once
13642 we're done. Should be called from final_link. */
13643
13644 bfd_boolean
13645 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
13646 struct bfd_link_info *info)
13647 {
13648 bfd *i;
13649 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13650 bfd_vma gotoff;
13651 struct alloc_got_off_arg gofarg;
13652
13653 BFD_ASSERT (abfd == info->output_bfd);
13654
13655 if (! is_elf_hash_table (info->hash))
13656 return FALSE;
13657
13658 /* The GOT offset is relative to the .got section, but the GOT header is
13659 put into the .got.plt section, if the backend uses it. */
13660 if (bed->want_got_plt)
13661 gotoff = 0;
13662 else
13663 gotoff = bed->got_header_size;
13664
13665 /* Do the local .got entries first. */
13666 for (i = info->input_bfds; i; i = i->link.next)
13667 {
13668 bfd_signed_vma *local_got;
13669 size_t j, locsymcount;
13670 Elf_Internal_Shdr *symtab_hdr;
13671
13672 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
13673 continue;
13674
13675 local_got = elf_local_got_refcounts (i);
13676 if (!local_got)
13677 continue;
13678
13679 symtab_hdr = &elf_tdata (i)->symtab_hdr;
13680 if (elf_bad_symtab (i))
13681 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13682 else
13683 locsymcount = symtab_hdr->sh_info;
13684
13685 for (j = 0; j < locsymcount; ++j)
13686 {
13687 if (local_got[j] > 0)
13688 {
13689 local_got[j] = gotoff;
13690 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
13691 }
13692 else
13693 local_got[j] = (bfd_vma) -1;
13694 }
13695 }
13696
13697 /* Then the global .got entries. .plt refcounts are handled by
13698 adjust_dynamic_symbol */
13699 gofarg.gotoff = gotoff;
13700 gofarg.info = info;
13701 elf_link_hash_traverse (elf_hash_table (info),
13702 elf_gc_allocate_got_offsets,
13703 &gofarg);
13704 return TRUE;
13705 }
13706
13707 /* Many folk need no more in the way of final link than this, once
13708 got entry reference counting is enabled. */
13709
13710 bfd_boolean
13711 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
13712 {
13713 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
13714 return FALSE;
13715
13716 /* Invoke the regular ELF backend linker to do all the work. */
13717 return bfd_elf_final_link (abfd, info);
13718 }
13719
13720 bfd_boolean
13721 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
13722 {
13723 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
13724
13725 if (rcookie->bad_symtab)
13726 rcookie->rel = rcookie->rels;
13727
13728 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
13729 {
13730 unsigned long r_symndx;
13731
13732 if (! rcookie->bad_symtab)
13733 if (rcookie->rel->r_offset > offset)
13734 return FALSE;
13735 if (rcookie->rel->r_offset != offset)
13736 continue;
13737
13738 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
13739 if (r_symndx == STN_UNDEF)
13740 return TRUE;
13741
13742 if (r_symndx >= rcookie->locsymcount
13743 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13744 {
13745 struct elf_link_hash_entry *h;
13746
13747 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
13748
13749 while (h->root.type == bfd_link_hash_indirect
13750 || h->root.type == bfd_link_hash_warning)
13751 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13752
13753 if ((h->root.type == bfd_link_hash_defined
13754 || h->root.type == bfd_link_hash_defweak)
13755 && (h->root.u.def.section->owner != rcookie->abfd
13756 || h->root.u.def.section->kept_section != NULL
13757 || discarded_section (h->root.u.def.section)))
13758 return TRUE;
13759 }
13760 else
13761 {
13762 /* It's not a relocation against a global symbol,
13763 but it could be a relocation against a local
13764 symbol for a discarded section. */
13765 asection *isec;
13766 Elf_Internal_Sym *isym;
13767
13768 /* Need to: get the symbol; get the section. */
13769 isym = &rcookie->locsyms[r_symndx];
13770 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
13771 if (isec != NULL
13772 && (isec->kept_section != NULL
13773 || discarded_section (isec)))
13774 return TRUE;
13775 }
13776 return FALSE;
13777 }
13778 return FALSE;
13779 }
13780
13781 /* Discard unneeded references to discarded sections.
13782 Returns -1 on error, 1 if any section's size was changed, 0 if
13783 nothing changed. This function assumes that the relocations are in
13784 sorted order, which is true for all known assemblers. */
13785
13786 int
13787 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
13788 {
13789 struct elf_reloc_cookie cookie;
13790 asection *o;
13791 bfd *abfd;
13792 int changed = 0;
13793
13794 if (info->traditional_format
13795 || !is_elf_hash_table (info->hash))
13796 return 0;
13797
13798 o = bfd_get_section_by_name (output_bfd, ".stab");
13799 if (o != NULL)
13800 {
13801 asection *i;
13802
13803 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13804 {
13805 if (i->size == 0
13806 || i->reloc_count == 0
13807 || i->sec_info_type != SEC_INFO_TYPE_STABS)
13808 continue;
13809
13810 abfd = i->owner;
13811 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13812 continue;
13813
13814 if (!init_reloc_cookie_for_section (&cookie, info, i))
13815 return -1;
13816
13817 if (_bfd_discard_section_stabs (abfd, i,
13818 elf_section_data (i)->sec_info,
13819 bfd_elf_reloc_symbol_deleted_p,
13820 &cookie))
13821 changed = 1;
13822
13823 fini_reloc_cookie_for_section (&cookie, i);
13824 }
13825 }
13826
13827 o = NULL;
13828 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
13829 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
13830 if (o != NULL)
13831 {
13832 asection *i;
13833 int eh_changed = 0;
13834
13835 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13836 {
13837 if (i->size == 0)
13838 continue;
13839
13840 abfd = i->owner;
13841 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13842 continue;
13843
13844 if (!init_reloc_cookie_for_section (&cookie, info, i))
13845 return -1;
13846
13847 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
13848 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
13849 bfd_elf_reloc_symbol_deleted_p,
13850 &cookie))
13851 {
13852 eh_changed = 1;
13853 if (i->size != i->rawsize)
13854 changed = 1;
13855 }
13856
13857 fini_reloc_cookie_for_section (&cookie, i);
13858 }
13859 if (eh_changed)
13860 elf_link_hash_traverse (elf_hash_table (info),
13861 _bfd_elf_adjust_eh_frame_global_symbol, NULL);
13862 }
13863
13864 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
13865 {
13866 const struct elf_backend_data *bed;
13867 asection *s;
13868
13869 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13870 continue;
13871 s = abfd->sections;
13872 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13873 continue;
13874
13875 bed = get_elf_backend_data (abfd);
13876
13877 if (bed->elf_backend_discard_info != NULL)
13878 {
13879 if (!init_reloc_cookie (&cookie, info, abfd))
13880 return -1;
13881
13882 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
13883 changed = 1;
13884
13885 fini_reloc_cookie (&cookie, abfd);
13886 }
13887 }
13888
13889 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
13890 _bfd_elf_end_eh_frame_parsing (info);
13891
13892 if (info->eh_frame_hdr_type
13893 && !bfd_link_relocatable (info)
13894 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
13895 changed = 1;
13896
13897 return changed;
13898 }
13899
13900 bfd_boolean
13901 _bfd_elf_section_already_linked (bfd *abfd,
13902 asection *sec,
13903 struct bfd_link_info *info)
13904 {
13905 flagword flags;
13906 const char *name, *key;
13907 struct bfd_section_already_linked *l;
13908 struct bfd_section_already_linked_hash_entry *already_linked_list;
13909
13910 if (sec->output_section == bfd_abs_section_ptr)
13911 return FALSE;
13912
13913 flags = sec->flags;
13914
13915 /* Return if it isn't a linkonce section. A comdat group section
13916 also has SEC_LINK_ONCE set. */
13917 if ((flags & SEC_LINK_ONCE) == 0)
13918 return FALSE;
13919
13920 /* Don't put group member sections on our list of already linked
13921 sections. They are handled as a group via their group section. */
13922 if (elf_sec_group (sec) != NULL)
13923 return FALSE;
13924
13925 /* For a SHT_GROUP section, use the group signature as the key. */
13926 name = sec->name;
13927 if ((flags & SEC_GROUP) != 0
13928 && elf_next_in_group (sec) != NULL
13929 && elf_group_name (elf_next_in_group (sec)) != NULL)
13930 key = elf_group_name (elf_next_in_group (sec));
13931 else
13932 {
13933 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
13934 if (CONST_STRNEQ (name, ".gnu.linkonce.")
13935 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
13936 key++;
13937 else
13938 /* Must be a user linkonce section that doesn't follow gcc's
13939 naming convention. In this case we won't be matching
13940 single member groups. */
13941 key = name;
13942 }
13943
13944 already_linked_list = bfd_section_already_linked_table_lookup (key);
13945
13946 for (l = already_linked_list->entry; l != NULL; l = l->next)
13947 {
13948 /* We may have 2 different types of sections on the list: group
13949 sections with a signature of <key> (<key> is some string),
13950 and linkonce sections named .gnu.linkonce.<type>.<key>.
13951 Match like sections. LTO plugin sections are an exception.
13952 They are always named .gnu.linkonce.t.<key> and match either
13953 type of section. */
13954 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13955 && ((flags & SEC_GROUP) != 0
13956 || strcmp (name, l->sec->name) == 0))
13957 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13958 {
13959 /* The section has already been linked. See if we should
13960 issue a warning. */
13961 if (!_bfd_handle_already_linked (sec, l, info))
13962 return FALSE;
13963
13964 if (flags & SEC_GROUP)
13965 {
13966 asection *first = elf_next_in_group (sec);
13967 asection *s = first;
13968
13969 while (s != NULL)
13970 {
13971 s->output_section = bfd_abs_section_ptr;
13972 /* Record which group discards it. */
13973 s->kept_section = l->sec;
13974 s = elf_next_in_group (s);
13975 /* These lists are circular. */
13976 if (s == first)
13977 break;
13978 }
13979 }
13980
13981 return TRUE;
13982 }
13983 }
13984
13985 /* A single member comdat group section may be discarded by a
13986 linkonce section and vice versa. */
13987 if ((flags & SEC_GROUP) != 0)
13988 {
13989 asection *first = elf_next_in_group (sec);
13990
13991 if (first != NULL && elf_next_in_group (first) == first)
13992 /* Check this single member group against linkonce sections. */
13993 for (l = already_linked_list->entry; l != NULL; l = l->next)
13994 if ((l->sec->flags & SEC_GROUP) == 0
13995 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
13996 {
13997 first->output_section = bfd_abs_section_ptr;
13998 first->kept_section = l->sec;
13999 sec->output_section = bfd_abs_section_ptr;
14000 break;
14001 }
14002 }
14003 else
14004 /* Check this linkonce section against single member groups. */
14005 for (l = already_linked_list->entry; l != NULL; l = l->next)
14006 if (l->sec->flags & SEC_GROUP)
14007 {
14008 asection *first = elf_next_in_group (l->sec);
14009
14010 if (first != NULL
14011 && elf_next_in_group (first) == first
14012 && bfd_elf_match_symbols_in_sections (first, sec, info))
14013 {
14014 sec->output_section = bfd_abs_section_ptr;
14015 sec->kept_section = first;
14016 break;
14017 }
14018 }
14019
14020 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
14021 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
14022 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
14023 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
14024 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
14025 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
14026 `.gnu.linkonce.t.F' section from a different bfd not requiring any
14027 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
14028 The reverse order cannot happen as there is never a bfd with only the
14029 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
14030 matter as here were are looking only for cross-bfd sections. */
14031
14032 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
14033 for (l = already_linked_list->entry; l != NULL; l = l->next)
14034 if ((l->sec->flags & SEC_GROUP) == 0
14035 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
14036 {
14037 if (abfd != l->sec->owner)
14038 sec->output_section = bfd_abs_section_ptr;
14039 break;
14040 }
14041
14042 /* This is the first section with this name. Record it. */
14043 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
14044 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
14045 return sec->output_section == bfd_abs_section_ptr;
14046 }
14047
14048 bfd_boolean
14049 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
14050 {
14051 return sym->st_shndx == SHN_COMMON;
14052 }
14053
14054 unsigned int
14055 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
14056 {
14057 return SHN_COMMON;
14058 }
14059
14060 asection *
14061 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
14062 {
14063 return bfd_com_section_ptr;
14064 }
14065
14066 bfd_vma
14067 _bfd_elf_default_got_elt_size (bfd *abfd,
14068 struct bfd_link_info *info ATTRIBUTE_UNUSED,
14069 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
14070 bfd *ibfd ATTRIBUTE_UNUSED,
14071 unsigned long symndx ATTRIBUTE_UNUSED)
14072 {
14073 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14074 return bed->s->arch_size / 8;
14075 }
14076
14077 /* Routines to support the creation of dynamic relocs. */
14078
14079 /* Returns the name of the dynamic reloc section associated with SEC. */
14080
14081 static const char *
14082 get_dynamic_reloc_section_name (bfd * abfd,
14083 asection * sec,
14084 bfd_boolean is_rela)
14085 {
14086 char *name;
14087 const char *old_name = bfd_get_section_name (NULL, sec);
14088 const char *prefix = is_rela ? ".rela" : ".rel";
14089
14090 if (old_name == NULL)
14091 return NULL;
14092
14093 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
14094 sprintf (name, "%s%s", prefix, old_name);
14095
14096 return name;
14097 }
14098
14099 /* Returns the dynamic reloc section associated with SEC.
14100 If necessary compute the name of the dynamic reloc section based
14101 on SEC's name (looked up in ABFD's string table) and the setting
14102 of IS_RELA. */
14103
14104 asection *
14105 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
14106 asection * sec,
14107 bfd_boolean is_rela)
14108 {
14109 asection * reloc_sec = elf_section_data (sec)->sreloc;
14110
14111 if (reloc_sec == NULL)
14112 {
14113 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14114
14115 if (name != NULL)
14116 {
14117 reloc_sec = bfd_get_linker_section (abfd, name);
14118
14119 if (reloc_sec != NULL)
14120 elf_section_data (sec)->sreloc = reloc_sec;
14121 }
14122 }
14123
14124 return reloc_sec;
14125 }
14126
14127 /* Returns the dynamic reloc section associated with SEC. If the
14128 section does not exist it is created and attached to the DYNOBJ
14129 bfd and stored in the SRELOC field of SEC's elf_section_data
14130 structure.
14131
14132 ALIGNMENT is the alignment for the newly created section and
14133 IS_RELA defines whether the name should be .rela.<SEC's name>
14134 or .rel.<SEC's name>. The section name is looked up in the
14135 string table associated with ABFD. */
14136
14137 asection *
14138 _bfd_elf_make_dynamic_reloc_section (asection *sec,
14139 bfd *dynobj,
14140 unsigned int alignment,
14141 bfd *abfd,
14142 bfd_boolean is_rela)
14143 {
14144 asection * reloc_sec = elf_section_data (sec)->sreloc;
14145
14146 if (reloc_sec == NULL)
14147 {
14148 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14149
14150 if (name == NULL)
14151 return NULL;
14152
14153 reloc_sec = bfd_get_linker_section (dynobj, name);
14154
14155 if (reloc_sec == NULL)
14156 {
14157 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
14158 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
14159 if ((sec->flags & SEC_ALLOC) != 0)
14160 flags |= SEC_ALLOC | SEC_LOAD;
14161
14162 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
14163 if (reloc_sec != NULL)
14164 {
14165 /* _bfd_elf_get_sec_type_attr chooses a section type by
14166 name. Override as it may be wrong, eg. for a user
14167 section named "auto" we'll get ".relauto" which is
14168 seen to be a .rela section. */
14169 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
14170 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
14171 reloc_sec = NULL;
14172 }
14173 }
14174
14175 elf_section_data (sec)->sreloc = reloc_sec;
14176 }
14177
14178 return reloc_sec;
14179 }
14180
14181 /* Copy the ELF symbol type and other attributes for a linker script
14182 assignment from HSRC to HDEST. Generally this should be treated as
14183 if we found a strong non-dynamic definition for HDEST (except that
14184 ld ignores multiple definition errors). */
14185 void
14186 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
14187 struct bfd_link_hash_entry *hdest,
14188 struct bfd_link_hash_entry *hsrc)
14189 {
14190 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
14191 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
14192 Elf_Internal_Sym isym;
14193
14194 ehdest->type = ehsrc->type;
14195 ehdest->target_internal = ehsrc->target_internal;
14196
14197 isym.st_other = ehsrc->other;
14198 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
14199 }
14200
14201 /* Append a RELA relocation REL to section S in BFD. */
14202
14203 void
14204 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14205 {
14206 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14207 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
14208 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
14209 bed->s->swap_reloca_out (abfd, rel, loc);
14210 }
14211
14212 /* Append a REL relocation REL to section S in BFD. */
14213
14214 void
14215 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14216 {
14217 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14218 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
14219 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
14220 bed->s->swap_reloc_out (abfd, rel, loc);
14221 }
14222
14223 /* Define __start, __stop, .startof. or .sizeof. symbol. */
14224
14225 struct bfd_link_hash_entry *
14226 bfd_elf_define_start_stop (struct bfd_link_info *info,
14227 const char *symbol, asection *sec)
14228 {
14229 struct bfd_link_hash_entry *h;
14230
14231 h = bfd_generic_define_start_stop (info, symbol, sec);
14232 if (h != NULL)
14233 {
14234 struct elf_link_hash_entry *eh = (struct elf_link_hash_entry *) h;
14235 eh->start_stop = 1;
14236 eh->u2.start_stop_section = sec;
14237 _bfd_elf_link_hash_hide_symbol (info, eh, TRUE);
14238 if (ELF_ST_VISIBILITY (eh->other) != STV_INTERNAL)
14239 eh->other = ((eh->other & ~ELF_ST_VISIBILITY (-1))
14240 | STV_HIDDEN);
14241 }
14242 return h;
14243 }
This page took 0.345509 seconds and 4 git commands to generate.