* nto-procfs.c (get_regset): Pass correct pointer.
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #define ARCH_SIZE 0
28 #include "elf-bfd.h"
29 #include "safe-ctype.h"
30 #include "libiberty.h"
31 #include "objalloc.h"
32
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
35
36 struct elf_info_failed
37 {
38 struct bfd_link_info *info;
39 struct bfd_elf_version_tree *verdefs;
40 bfd_boolean failed;
41 };
42
43 /* This structure is used to pass information to
44 _bfd_elf_link_find_version_dependencies. */
45
46 struct elf_find_verdep_info
47 {
48 /* General link information. */
49 struct bfd_link_info *info;
50 /* The number of dependencies. */
51 unsigned int vers;
52 /* Whether we had a failure. */
53 bfd_boolean failed;
54 };
55
56 static bfd_boolean _bfd_elf_fix_symbol_flags
57 (struct elf_link_hash_entry *, struct elf_info_failed *);
58
59 /* Define a symbol in a dynamic linkage section. */
60
61 struct elf_link_hash_entry *
62 _bfd_elf_define_linkage_sym (bfd *abfd,
63 struct bfd_link_info *info,
64 asection *sec,
65 const char *name)
66 {
67 struct elf_link_hash_entry *h;
68 struct bfd_link_hash_entry *bh;
69 const struct elf_backend_data *bed;
70
71 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
72 if (h != NULL)
73 {
74 /* Zap symbol defined in an as-needed lib that wasn't linked.
75 This is a symptom of a larger problem: Absolute symbols
76 defined in shared libraries can't be overridden, because we
77 lose the link to the bfd which is via the symbol section. */
78 h->root.type = bfd_link_hash_new;
79 }
80
81 bh = &h->root;
82 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
83 sec, 0, NULL, FALSE,
84 get_elf_backend_data (abfd)->collect,
85 &bh))
86 return NULL;
87 h = (struct elf_link_hash_entry *) bh;
88 h->def_regular = 1;
89 h->type = STT_OBJECT;
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
91
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94 return h;
95 }
96
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
99 {
100 flagword flags;
101 asection *s;
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 int ptralign;
105
106 /* This function may be called more than once. */
107 s = bfd_get_section_by_name (abfd, ".got");
108 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
109 return TRUE;
110
111 switch (bed->s->arch_size)
112 {
113 case 32:
114 ptralign = 2;
115 break;
116
117 case 64:
118 ptralign = 3;
119 break;
120
121 default:
122 bfd_set_error (bfd_error_bad_value);
123 return FALSE;
124 }
125
126 flags = bed->dynamic_sec_flags;
127
128 s = bfd_make_section_with_flags (abfd, ".got", flags);
129 if (s == NULL
130 || !bfd_set_section_alignment (abfd, s, ptralign))
131 return FALSE;
132
133 if (bed->want_got_plt)
134 {
135 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
136 if (s == NULL
137 || !bfd_set_section_alignment (abfd, s, ptralign))
138 return FALSE;
139 }
140
141 if (bed->want_got_sym)
142 {
143 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
144 (or .got.plt) section. We don't do this in the linker script
145 because we don't want to define the symbol if we are not creating
146 a global offset table. */
147 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_GLOBAL_OFFSET_TABLE_");
148 elf_hash_table (info)->hgot = h;
149 if (h == NULL)
150 return FALSE;
151 }
152
153 /* The first bit of the global offset table is the header. */
154 s->size += bed->got_header_size;
155
156 return TRUE;
157 }
158 \f
159 /* Create a strtab to hold the dynamic symbol names. */
160 static bfd_boolean
161 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
162 {
163 struct elf_link_hash_table *hash_table;
164
165 hash_table = elf_hash_table (info);
166 if (hash_table->dynobj == NULL)
167 hash_table->dynobj = abfd;
168
169 if (hash_table->dynstr == NULL)
170 {
171 hash_table->dynstr = _bfd_elf_strtab_init ();
172 if (hash_table->dynstr == NULL)
173 return FALSE;
174 }
175 return TRUE;
176 }
177
178 /* Create some sections which will be filled in with dynamic linking
179 information. ABFD is an input file which requires dynamic sections
180 to be created. The dynamic sections take up virtual memory space
181 when the final executable is run, so we need to create them before
182 addresses are assigned to the output sections. We work out the
183 actual contents and size of these sections later. */
184
185 bfd_boolean
186 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
187 {
188 flagword flags;
189 register asection *s;
190 const struct elf_backend_data *bed;
191
192 if (! is_elf_hash_table (info->hash))
193 return FALSE;
194
195 if (elf_hash_table (info)->dynamic_sections_created)
196 return TRUE;
197
198 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
199 return FALSE;
200
201 abfd = elf_hash_table (info)->dynobj;
202 bed = get_elf_backend_data (abfd);
203
204 flags = bed->dynamic_sec_flags;
205
206 /* A dynamically linked executable has a .interp section, but a
207 shared library does not. */
208 if (info->executable)
209 {
210 s = bfd_make_section_with_flags (abfd, ".interp",
211 flags | SEC_READONLY);
212 if (s == NULL)
213 return FALSE;
214 }
215
216 /* Create sections to hold version informations. These are removed
217 if they are not needed. */
218 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
219 flags | SEC_READONLY);
220 if (s == NULL
221 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
222 return FALSE;
223
224 s = bfd_make_section_with_flags (abfd, ".gnu.version",
225 flags | SEC_READONLY);
226 if (s == NULL
227 || ! bfd_set_section_alignment (abfd, s, 1))
228 return FALSE;
229
230 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
231 flags | SEC_READONLY);
232 if (s == NULL
233 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
234 return FALSE;
235
236 s = bfd_make_section_with_flags (abfd, ".dynsym",
237 flags | SEC_READONLY);
238 if (s == NULL
239 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
240 return FALSE;
241
242 s = bfd_make_section_with_flags (abfd, ".dynstr",
243 flags | SEC_READONLY);
244 if (s == NULL)
245 return FALSE;
246
247 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
248 if (s == NULL
249 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
250 return FALSE;
251
252 /* The special symbol _DYNAMIC is always set to the start of the
253 .dynamic section. We could set _DYNAMIC in a linker script, but we
254 only want to define it if we are, in fact, creating a .dynamic
255 section. We don't want to define it if there is no .dynamic
256 section, since on some ELF platforms the start up code examines it
257 to decide how to initialize the process. */
258 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
259 return FALSE;
260
261 if (info->emit_hash)
262 {
263 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
264 if (s == NULL
265 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
266 return FALSE;
267 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
268 }
269
270 if (info->emit_gnu_hash)
271 {
272 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
273 flags | SEC_READONLY);
274 if (s == NULL
275 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
276 return FALSE;
277 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
278 4 32-bit words followed by variable count of 64-bit words, then
279 variable count of 32-bit words. */
280 if (bed->s->arch_size == 64)
281 elf_section_data (s)->this_hdr.sh_entsize = 0;
282 else
283 elf_section_data (s)->this_hdr.sh_entsize = 4;
284 }
285
286 /* Let the backend create the rest of the sections. This lets the
287 backend set the right flags. The backend will normally create
288 the .got and .plt sections. */
289 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
290 return FALSE;
291
292 elf_hash_table (info)->dynamic_sections_created = TRUE;
293
294 return TRUE;
295 }
296
297 /* Create dynamic sections when linking against a dynamic object. */
298
299 bfd_boolean
300 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
301 {
302 flagword flags, pltflags;
303 struct elf_link_hash_entry *h;
304 asection *s;
305 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
306
307 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
308 .rel[a].bss sections. */
309 flags = bed->dynamic_sec_flags;
310
311 pltflags = flags;
312 if (bed->plt_not_loaded)
313 /* We do not clear SEC_ALLOC here because we still want the OS to
314 allocate space for the section; it's just that there's nothing
315 to read in from the object file. */
316 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
317 else
318 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
319 if (bed->plt_readonly)
320 pltflags |= SEC_READONLY;
321
322 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
323 if (s == NULL
324 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
325 return FALSE;
326
327 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
328 .plt section. */
329 if (bed->want_plt_sym)
330 {
331 h = _bfd_elf_define_linkage_sym (abfd, info, s,
332 "_PROCEDURE_LINKAGE_TABLE_");
333 elf_hash_table (info)->hplt = h;
334 if (h == NULL)
335 return FALSE;
336 }
337
338 s = bfd_make_section_with_flags (abfd,
339 (bed->rela_plts_and_copies_p
340 ? ".rela.plt" : ".rel.plt"),
341 flags | SEC_READONLY);
342 if (s == NULL
343 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
344 return FALSE;
345
346 if (! _bfd_elf_create_got_section (abfd, info))
347 return FALSE;
348
349 if (bed->want_dynbss)
350 {
351 /* The .dynbss section is a place to put symbols which are defined
352 by dynamic objects, are referenced by regular objects, and are
353 not functions. We must allocate space for them in the process
354 image and use a R_*_COPY reloc to tell the dynamic linker to
355 initialize them at run time. The linker script puts the .dynbss
356 section into the .bss section of the final image. */
357 s = bfd_make_section_with_flags (abfd, ".dynbss",
358 (SEC_ALLOC
359 | SEC_LINKER_CREATED));
360 if (s == NULL)
361 return FALSE;
362
363 /* The .rel[a].bss section holds copy relocs. This section is not
364 normally needed. We need to create it here, though, so that the
365 linker will map it to an output section. We can't just create it
366 only if we need it, because we will not know whether we need it
367 until we have seen all the input files, and the first time the
368 main linker code calls BFD after examining all the input files
369 (size_dynamic_sections) the input sections have already been
370 mapped to the output sections. If the section turns out not to
371 be needed, we can discard it later. We will never need this
372 section when generating a shared object, since they do not use
373 copy relocs. */
374 if (! info->shared)
375 {
376 s = bfd_make_section_with_flags (abfd,
377 (bed->rela_plts_and_copies_p
378 ? ".rela.bss" : ".rel.bss"),
379 flags | SEC_READONLY);
380 if (s == NULL
381 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
382 return FALSE;
383 }
384 }
385
386 return TRUE;
387 }
388 \f
389 /* Record a new dynamic symbol. We record the dynamic symbols as we
390 read the input files, since we need to have a list of all of them
391 before we can determine the final sizes of the output sections.
392 Note that we may actually call this function even though we are not
393 going to output any dynamic symbols; in some cases we know that a
394 symbol should be in the dynamic symbol table, but only if there is
395 one. */
396
397 bfd_boolean
398 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
399 struct elf_link_hash_entry *h)
400 {
401 if (h->dynindx == -1)
402 {
403 struct elf_strtab_hash *dynstr;
404 char *p;
405 const char *name;
406 bfd_size_type indx;
407
408 /* XXX: The ABI draft says the linker must turn hidden and
409 internal symbols into STB_LOCAL symbols when producing the
410 DSO. However, if ld.so honors st_other in the dynamic table,
411 this would not be necessary. */
412 switch (ELF_ST_VISIBILITY (h->other))
413 {
414 case STV_INTERNAL:
415 case STV_HIDDEN:
416 if (h->root.type != bfd_link_hash_undefined
417 && h->root.type != bfd_link_hash_undefweak)
418 {
419 h->forced_local = 1;
420 if (!elf_hash_table (info)->is_relocatable_executable)
421 return TRUE;
422 }
423
424 default:
425 break;
426 }
427
428 h->dynindx = elf_hash_table (info)->dynsymcount;
429 ++elf_hash_table (info)->dynsymcount;
430
431 dynstr = elf_hash_table (info)->dynstr;
432 if (dynstr == NULL)
433 {
434 /* Create a strtab to hold the dynamic symbol names. */
435 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
436 if (dynstr == NULL)
437 return FALSE;
438 }
439
440 /* We don't put any version information in the dynamic string
441 table. */
442 name = h->root.root.string;
443 p = strchr (name, ELF_VER_CHR);
444 if (p != NULL)
445 /* We know that the p points into writable memory. In fact,
446 there are only a few symbols that have read-only names, being
447 those like _GLOBAL_OFFSET_TABLE_ that are created specially
448 by the backends. Most symbols will have names pointing into
449 an ELF string table read from a file, or to objalloc memory. */
450 *p = 0;
451
452 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
453
454 if (p != NULL)
455 *p = ELF_VER_CHR;
456
457 if (indx == (bfd_size_type) -1)
458 return FALSE;
459 h->dynstr_index = indx;
460 }
461
462 return TRUE;
463 }
464 \f
465 /* Mark a symbol dynamic. */
466
467 static void
468 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
469 struct elf_link_hash_entry *h,
470 Elf_Internal_Sym *sym)
471 {
472 struct bfd_elf_dynamic_list *d = info->dynamic_list;
473
474 /* It may be called more than once on the same H. */
475 if(h->dynamic || info->relocatable)
476 return;
477
478 if ((info->dynamic_data
479 && (h->type == STT_OBJECT
480 || (sym != NULL
481 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
482 || (d != NULL
483 && h->root.type == bfd_link_hash_new
484 && (*d->match) (&d->head, NULL, h->root.root.string)))
485 h->dynamic = 1;
486 }
487
488 /* Record an assignment to a symbol made by a linker script. We need
489 this in case some dynamic object refers to this symbol. */
490
491 bfd_boolean
492 bfd_elf_record_link_assignment (bfd *output_bfd,
493 struct bfd_link_info *info,
494 const char *name,
495 bfd_boolean provide,
496 bfd_boolean hidden)
497 {
498 struct elf_link_hash_entry *h, *hv;
499 struct elf_link_hash_table *htab;
500 const struct elf_backend_data *bed;
501
502 if (!is_elf_hash_table (info->hash))
503 return TRUE;
504
505 htab = elf_hash_table (info);
506 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
507 if (h == NULL)
508 return provide;
509
510 switch (h->root.type)
511 {
512 case bfd_link_hash_defined:
513 case bfd_link_hash_defweak:
514 case bfd_link_hash_common:
515 break;
516 case bfd_link_hash_undefweak:
517 case bfd_link_hash_undefined:
518 /* Since we're defining the symbol, don't let it seem to have not
519 been defined. record_dynamic_symbol and size_dynamic_sections
520 may depend on this. */
521 h->root.type = bfd_link_hash_new;
522 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
523 bfd_link_repair_undef_list (&htab->root);
524 break;
525 case bfd_link_hash_new:
526 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
527 h->non_elf = 0;
528 break;
529 case bfd_link_hash_indirect:
530 /* We had a versioned symbol in a dynamic library. We make the
531 the versioned symbol point to this one. */
532 bed = get_elf_backend_data (output_bfd);
533 hv = h;
534 while (hv->root.type == bfd_link_hash_indirect
535 || hv->root.type == bfd_link_hash_warning)
536 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
537 /* We don't need to update h->root.u since linker will set them
538 later. */
539 h->root.type = bfd_link_hash_undefined;
540 hv->root.type = bfd_link_hash_indirect;
541 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
542 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
543 break;
544 case bfd_link_hash_warning:
545 abort ();
546 break;
547 }
548
549 /* If this symbol is being provided by the linker script, and it is
550 currently defined by a dynamic object, but not by a regular
551 object, then mark it as undefined so that the generic linker will
552 force the correct value. */
553 if (provide
554 && h->def_dynamic
555 && !h->def_regular)
556 h->root.type = bfd_link_hash_undefined;
557
558 /* If this symbol is not being provided by the linker script, and it is
559 currently defined by a dynamic object, but not by a regular object,
560 then clear out any version information because the symbol will not be
561 associated with the dynamic object any more. */
562 if (!provide
563 && h->def_dynamic
564 && !h->def_regular)
565 h->verinfo.verdef = NULL;
566
567 h->def_regular = 1;
568
569 if (provide && hidden)
570 {
571 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
572
573 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
574 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
575 }
576
577 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
578 and executables. */
579 if (!info->relocatable
580 && h->dynindx != -1
581 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
582 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
583 h->forced_local = 1;
584
585 if ((h->def_dynamic
586 || h->ref_dynamic
587 || info->shared
588 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
589 && h->dynindx == -1)
590 {
591 if (! bfd_elf_link_record_dynamic_symbol (info, h))
592 return FALSE;
593
594 /* If this is a weak defined symbol, and we know a corresponding
595 real symbol from the same dynamic object, make sure the real
596 symbol is also made into a dynamic symbol. */
597 if (h->u.weakdef != NULL
598 && h->u.weakdef->dynindx == -1)
599 {
600 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
601 return FALSE;
602 }
603 }
604
605 return TRUE;
606 }
607
608 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
609 success, and 2 on a failure caused by attempting to record a symbol
610 in a discarded section, eg. a discarded link-once section symbol. */
611
612 int
613 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
614 bfd *input_bfd,
615 long input_indx)
616 {
617 bfd_size_type amt;
618 struct elf_link_local_dynamic_entry *entry;
619 struct elf_link_hash_table *eht;
620 struct elf_strtab_hash *dynstr;
621 unsigned long dynstr_index;
622 char *name;
623 Elf_External_Sym_Shndx eshndx;
624 char esym[sizeof (Elf64_External_Sym)];
625
626 if (! is_elf_hash_table (info->hash))
627 return 0;
628
629 /* See if the entry exists already. */
630 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
631 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
632 return 1;
633
634 amt = sizeof (*entry);
635 entry = bfd_alloc (input_bfd, amt);
636 if (entry == NULL)
637 return 0;
638
639 /* Go find the symbol, so that we can find it's name. */
640 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
641 1, input_indx, &entry->isym, esym, &eshndx))
642 {
643 bfd_release (input_bfd, entry);
644 return 0;
645 }
646
647 if (entry->isym.st_shndx != SHN_UNDEF
648 && entry->isym.st_shndx < SHN_LORESERVE)
649 {
650 asection *s;
651
652 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
653 if (s == NULL || bfd_is_abs_section (s->output_section))
654 {
655 /* We can still bfd_release here as nothing has done another
656 bfd_alloc. We can't do this later in this function. */
657 bfd_release (input_bfd, entry);
658 return 2;
659 }
660 }
661
662 name = (bfd_elf_string_from_elf_section
663 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
664 entry->isym.st_name));
665
666 dynstr = elf_hash_table (info)->dynstr;
667 if (dynstr == NULL)
668 {
669 /* Create a strtab to hold the dynamic symbol names. */
670 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
671 if (dynstr == NULL)
672 return 0;
673 }
674
675 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
676 if (dynstr_index == (unsigned long) -1)
677 return 0;
678 entry->isym.st_name = dynstr_index;
679
680 eht = elf_hash_table (info);
681
682 entry->next = eht->dynlocal;
683 eht->dynlocal = entry;
684 entry->input_bfd = input_bfd;
685 entry->input_indx = input_indx;
686 eht->dynsymcount++;
687
688 /* Whatever binding the symbol had before, it's now local. */
689 entry->isym.st_info
690 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
691
692 /* The dynindx will be set at the end of size_dynamic_sections. */
693
694 return 1;
695 }
696
697 /* Return the dynindex of a local dynamic symbol. */
698
699 long
700 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
701 bfd *input_bfd,
702 long input_indx)
703 {
704 struct elf_link_local_dynamic_entry *e;
705
706 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
707 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
708 return e->dynindx;
709 return -1;
710 }
711
712 /* This function is used to renumber the dynamic symbols, if some of
713 them are removed because they are marked as local. This is called
714 via elf_link_hash_traverse. */
715
716 static bfd_boolean
717 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
718 void *data)
719 {
720 size_t *count = data;
721
722 if (h->root.type == bfd_link_hash_warning)
723 h = (struct elf_link_hash_entry *) h->root.u.i.link;
724
725 if (h->forced_local)
726 return TRUE;
727
728 if (h->dynindx != -1)
729 h->dynindx = ++(*count);
730
731 return TRUE;
732 }
733
734
735 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
736 STB_LOCAL binding. */
737
738 static bfd_boolean
739 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
740 void *data)
741 {
742 size_t *count = data;
743
744 if (h->root.type == bfd_link_hash_warning)
745 h = (struct elf_link_hash_entry *) h->root.u.i.link;
746
747 if (!h->forced_local)
748 return TRUE;
749
750 if (h->dynindx != -1)
751 h->dynindx = ++(*count);
752
753 return TRUE;
754 }
755
756 /* Return true if the dynamic symbol for a given section should be
757 omitted when creating a shared library. */
758 bfd_boolean
759 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
760 struct bfd_link_info *info,
761 asection *p)
762 {
763 struct elf_link_hash_table *htab;
764
765 switch (elf_section_data (p)->this_hdr.sh_type)
766 {
767 case SHT_PROGBITS:
768 case SHT_NOBITS:
769 /* If sh_type is yet undecided, assume it could be
770 SHT_PROGBITS/SHT_NOBITS. */
771 case SHT_NULL:
772 htab = elf_hash_table (info);
773 if (p == htab->tls_sec)
774 return FALSE;
775
776 if (htab->text_index_section != NULL)
777 return p != htab->text_index_section && p != htab->data_index_section;
778
779 if (strcmp (p->name, ".got") == 0
780 || strcmp (p->name, ".got.plt") == 0
781 || strcmp (p->name, ".plt") == 0)
782 {
783 asection *ip;
784
785 if (htab->dynobj != NULL
786 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
787 && (ip->flags & SEC_LINKER_CREATED)
788 && ip->output_section == p)
789 return TRUE;
790 }
791 return FALSE;
792
793 /* There shouldn't be section relative relocations
794 against any other section. */
795 default:
796 return TRUE;
797 }
798 }
799
800 /* Assign dynsym indices. In a shared library we generate a section
801 symbol for each output section, which come first. Next come symbols
802 which have been forced to local binding. Then all of the back-end
803 allocated local dynamic syms, followed by the rest of the global
804 symbols. */
805
806 static unsigned long
807 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
808 struct bfd_link_info *info,
809 unsigned long *section_sym_count)
810 {
811 unsigned long dynsymcount = 0;
812
813 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
814 {
815 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
816 asection *p;
817 for (p = output_bfd->sections; p ; p = p->next)
818 if ((p->flags & SEC_EXCLUDE) == 0
819 && (p->flags & SEC_ALLOC) != 0
820 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
821 elf_section_data (p)->dynindx = ++dynsymcount;
822 else
823 elf_section_data (p)->dynindx = 0;
824 }
825 *section_sym_count = dynsymcount;
826
827 elf_link_hash_traverse (elf_hash_table (info),
828 elf_link_renumber_local_hash_table_dynsyms,
829 &dynsymcount);
830
831 if (elf_hash_table (info)->dynlocal)
832 {
833 struct elf_link_local_dynamic_entry *p;
834 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
835 p->dynindx = ++dynsymcount;
836 }
837
838 elf_link_hash_traverse (elf_hash_table (info),
839 elf_link_renumber_hash_table_dynsyms,
840 &dynsymcount);
841
842 /* There is an unused NULL entry at the head of the table which
843 we must account for in our count. Unless there weren't any
844 symbols, which means we'll have no table at all. */
845 if (dynsymcount != 0)
846 ++dynsymcount;
847
848 elf_hash_table (info)->dynsymcount = dynsymcount;
849 return dynsymcount;
850 }
851
852 /* Merge st_other field. */
853
854 static void
855 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
856 Elf_Internal_Sym *isym, bfd_boolean definition,
857 bfd_boolean dynamic)
858 {
859 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
860
861 /* If st_other has a processor-specific meaning, specific
862 code might be needed here. We never merge the visibility
863 attribute with the one from a dynamic object. */
864 if (bed->elf_backend_merge_symbol_attribute)
865 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
866 dynamic);
867
868 /* If this symbol has default visibility and the user has requested
869 we not re-export it, then mark it as hidden. */
870 if (definition
871 && !dynamic
872 && (abfd->no_export
873 || (abfd->my_archive && abfd->my_archive->no_export))
874 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
875 isym->st_other = (STV_HIDDEN
876 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
877
878 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
879 {
880 unsigned char hvis, symvis, other, nvis;
881
882 /* Only merge the visibility. Leave the remainder of the
883 st_other field to elf_backend_merge_symbol_attribute. */
884 other = h->other & ~ELF_ST_VISIBILITY (-1);
885
886 /* Combine visibilities, using the most constraining one. */
887 hvis = ELF_ST_VISIBILITY (h->other);
888 symvis = ELF_ST_VISIBILITY (isym->st_other);
889 if (! hvis)
890 nvis = symvis;
891 else if (! symvis)
892 nvis = hvis;
893 else
894 nvis = hvis < symvis ? hvis : symvis;
895
896 h->other = other | nvis;
897 }
898 }
899
900 /* This function is called when we want to define a new symbol. It
901 handles the various cases which arise when we find a definition in
902 a dynamic object, or when there is already a definition in a
903 dynamic object. The new symbol is described by NAME, SYM, PSEC,
904 and PVALUE. We set SYM_HASH to the hash table entry. We set
905 OVERRIDE if the old symbol is overriding a new definition. We set
906 TYPE_CHANGE_OK if it is OK for the type to change. We set
907 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
908 change, we mean that we shouldn't warn if the type or size does
909 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
910 object is overridden by a regular object. */
911
912 bfd_boolean
913 _bfd_elf_merge_symbol (bfd *abfd,
914 struct bfd_link_info *info,
915 const char *name,
916 Elf_Internal_Sym *sym,
917 asection **psec,
918 bfd_vma *pvalue,
919 unsigned int *pold_alignment,
920 struct elf_link_hash_entry **sym_hash,
921 bfd_boolean *skip,
922 bfd_boolean *override,
923 bfd_boolean *type_change_ok,
924 bfd_boolean *size_change_ok)
925 {
926 asection *sec, *oldsec;
927 struct elf_link_hash_entry *h;
928 struct elf_link_hash_entry *flip;
929 int bind;
930 bfd *oldbfd;
931 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
932 bfd_boolean newweak, oldweak, newfunc, oldfunc;
933 const struct elf_backend_data *bed;
934
935 *skip = FALSE;
936 *override = FALSE;
937
938 sec = *psec;
939 bind = ELF_ST_BIND (sym->st_info);
940
941 /* Silently discard TLS symbols from --just-syms. There's no way to
942 combine a static TLS block with a new TLS block for this executable. */
943 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
944 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
945 {
946 *skip = TRUE;
947 return TRUE;
948 }
949
950 if (! bfd_is_und_section (sec))
951 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
952 else
953 h = ((struct elf_link_hash_entry *)
954 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
955 if (h == NULL)
956 return FALSE;
957 *sym_hash = h;
958
959 bed = get_elf_backend_data (abfd);
960
961 /* This code is for coping with dynamic objects, and is only useful
962 if we are doing an ELF link. */
963 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
964 return TRUE;
965
966 /* For merging, we only care about real symbols. */
967
968 while (h->root.type == bfd_link_hash_indirect
969 || h->root.type == bfd_link_hash_warning)
970 h = (struct elf_link_hash_entry *) h->root.u.i.link;
971
972 /* We have to check it for every instance since the first few may be
973 refereences and not all compilers emit symbol type for undefined
974 symbols. */
975 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
976
977 /* If we just created the symbol, mark it as being an ELF symbol.
978 Other than that, there is nothing to do--there is no merge issue
979 with a newly defined symbol--so we just return. */
980
981 if (h->root.type == bfd_link_hash_new)
982 {
983 h->non_elf = 0;
984 return TRUE;
985 }
986
987 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
988 existing symbol. */
989
990 switch (h->root.type)
991 {
992 default:
993 oldbfd = NULL;
994 oldsec = NULL;
995 break;
996
997 case bfd_link_hash_undefined:
998 case bfd_link_hash_undefweak:
999 oldbfd = h->root.u.undef.abfd;
1000 oldsec = NULL;
1001 break;
1002
1003 case bfd_link_hash_defined:
1004 case bfd_link_hash_defweak:
1005 oldbfd = h->root.u.def.section->owner;
1006 oldsec = h->root.u.def.section;
1007 break;
1008
1009 case bfd_link_hash_common:
1010 oldbfd = h->root.u.c.p->section->owner;
1011 oldsec = h->root.u.c.p->section;
1012 break;
1013 }
1014
1015 /* In cases involving weak versioned symbols, we may wind up trying
1016 to merge a symbol with itself. Catch that here, to avoid the
1017 confusion that results if we try to override a symbol with
1018 itself. The additional tests catch cases like
1019 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1020 dynamic object, which we do want to handle here. */
1021 if (abfd == oldbfd
1022 && ((abfd->flags & DYNAMIC) == 0
1023 || !h->def_regular))
1024 return TRUE;
1025
1026 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1027 respectively, is from a dynamic object. */
1028
1029 newdyn = (abfd->flags & DYNAMIC) != 0;
1030
1031 olddyn = FALSE;
1032 if (oldbfd != NULL)
1033 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1034 else if (oldsec != NULL)
1035 {
1036 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1037 indices used by MIPS ELF. */
1038 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1039 }
1040
1041 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1042 respectively, appear to be a definition rather than reference. */
1043
1044 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1045
1046 olddef = (h->root.type != bfd_link_hash_undefined
1047 && h->root.type != bfd_link_hash_undefweak
1048 && h->root.type != bfd_link_hash_common);
1049
1050 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1051 respectively, appear to be a function. */
1052
1053 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1054 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1055
1056 oldfunc = (h->type != STT_NOTYPE
1057 && bed->is_function_type (h->type));
1058
1059 /* When we try to create a default indirect symbol from the dynamic
1060 definition with the default version, we skip it if its type and
1061 the type of existing regular definition mismatch. We only do it
1062 if the existing regular definition won't be dynamic. */
1063 if (pold_alignment == NULL
1064 && !info->shared
1065 && !info->export_dynamic
1066 && !h->ref_dynamic
1067 && newdyn
1068 && newdef
1069 && !olddyn
1070 && (olddef || h->root.type == bfd_link_hash_common)
1071 && ELF_ST_TYPE (sym->st_info) != h->type
1072 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1073 && h->type != STT_NOTYPE
1074 && !(newfunc && oldfunc))
1075 {
1076 *skip = TRUE;
1077 return TRUE;
1078 }
1079
1080 /* Check TLS symbol. We don't check undefined symbol introduced by
1081 "ld -u". */
1082 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
1083 && ELF_ST_TYPE (sym->st_info) != h->type
1084 && oldbfd != NULL)
1085 {
1086 bfd *ntbfd, *tbfd;
1087 bfd_boolean ntdef, tdef;
1088 asection *ntsec, *tsec;
1089
1090 if (h->type == STT_TLS)
1091 {
1092 ntbfd = abfd;
1093 ntsec = sec;
1094 ntdef = newdef;
1095 tbfd = oldbfd;
1096 tsec = oldsec;
1097 tdef = olddef;
1098 }
1099 else
1100 {
1101 ntbfd = oldbfd;
1102 ntsec = oldsec;
1103 ntdef = olddef;
1104 tbfd = abfd;
1105 tsec = sec;
1106 tdef = newdef;
1107 }
1108
1109 if (tdef && ntdef)
1110 (*_bfd_error_handler)
1111 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1112 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1113 else if (!tdef && !ntdef)
1114 (*_bfd_error_handler)
1115 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1116 tbfd, ntbfd, h->root.root.string);
1117 else if (tdef)
1118 (*_bfd_error_handler)
1119 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1120 tbfd, tsec, ntbfd, h->root.root.string);
1121 else
1122 (*_bfd_error_handler)
1123 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1124 tbfd, ntbfd, ntsec, h->root.root.string);
1125
1126 bfd_set_error (bfd_error_bad_value);
1127 return FALSE;
1128 }
1129
1130 /* We need to remember if a symbol has a definition in a dynamic
1131 object or is weak in all dynamic objects. Internal and hidden
1132 visibility will make it unavailable to dynamic objects. */
1133 if (newdyn && !h->dynamic_def)
1134 {
1135 if (!bfd_is_und_section (sec))
1136 h->dynamic_def = 1;
1137 else
1138 {
1139 /* Check if this symbol is weak in all dynamic objects. If it
1140 is the first time we see it in a dynamic object, we mark
1141 if it is weak. Otherwise, we clear it. */
1142 if (!h->ref_dynamic)
1143 {
1144 if (bind == STB_WEAK)
1145 h->dynamic_weak = 1;
1146 }
1147 else if (bind != STB_WEAK)
1148 h->dynamic_weak = 0;
1149 }
1150 }
1151
1152 /* If the old symbol has non-default visibility, we ignore the new
1153 definition from a dynamic object. */
1154 if (newdyn
1155 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1156 && !bfd_is_und_section (sec))
1157 {
1158 *skip = TRUE;
1159 /* Make sure this symbol is dynamic. */
1160 h->ref_dynamic = 1;
1161 /* A protected symbol has external availability. Make sure it is
1162 recorded as dynamic.
1163
1164 FIXME: Should we check type and size for protected symbol? */
1165 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1166 return bfd_elf_link_record_dynamic_symbol (info, h);
1167 else
1168 return TRUE;
1169 }
1170 else if (!newdyn
1171 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1172 && h->def_dynamic)
1173 {
1174 /* If the new symbol with non-default visibility comes from a
1175 relocatable file and the old definition comes from a dynamic
1176 object, we remove the old definition. */
1177 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1178 {
1179 /* Handle the case where the old dynamic definition is
1180 default versioned. We need to copy the symbol info from
1181 the symbol with default version to the normal one if it
1182 was referenced before. */
1183 if (h->ref_regular)
1184 {
1185 const struct elf_backend_data *bed
1186 = get_elf_backend_data (abfd);
1187 struct elf_link_hash_entry *vh = *sym_hash;
1188 vh->root.type = h->root.type;
1189 h->root.type = bfd_link_hash_indirect;
1190 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1191 /* Protected symbols will override the dynamic definition
1192 with default version. */
1193 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1194 {
1195 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1196 vh->dynamic_def = 1;
1197 vh->ref_dynamic = 1;
1198 }
1199 else
1200 {
1201 h->root.type = vh->root.type;
1202 vh->ref_dynamic = 0;
1203 /* We have to hide it here since it was made dynamic
1204 global with extra bits when the symbol info was
1205 copied from the old dynamic definition. */
1206 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1207 }
1208 h = vh;
1209 }
1210 else
1211 h = *sym_hash;
1212 }
1213
1214 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1215 && bfd_is_und_section (sec))
1216 {
1217 /* If the new symbol is undefined and the old symbol was
1218 also undefined before, we need to make sure
1219 _bfd_generic_link_add_one_symbol doesn't mess
1220 up the linker hash table undefs list. Since the old
1221 definition came from a dynamic object, it is still on the
1222 undefs list. */
1223 h->root.type = bfd_link_hash_undefined;
1224 h->root.u.undef.abfd = abfd;
1225 }
1226 else
1227 {
1228 h->root.type = bfd_link_hash_new;
1229 h->root.u.undef.abfd = NULL;
1230 }
1231
1232 if (h->def_dynamic)
1233 {
1234 h->def_dynamic = 0;
1235 h->ref_dynamic = 1;
1236 h->dynamic_def = 1;
1237 }
1238 /* FIXME: Should we check type and size for protected symbol? */
1239 h->size = 0;
1240 h->type = 0;
1241 return TRUE;
1242 }
1243
1244 /* Differentiate strong and weak symbols. */
1245 newweak = bind == STB_WEAK;
1246 oldweak = (h->root.type == bfd_link_hash_defweak
1247 || h->root.type == bfd_link_hash_undefweak);
1248
1249 /* If a new weak symbol definition comes from a regular file and the
1250 old symbol comes from a dynamic library, we treat the new one as
1251 strong. Similarly, an old weak symbol definition from a regular
1252 file is treated as strong when the new symbol comes from a dynamic
1253 library. Further, an old weak symbol from a dynamic library is
1254 treated as strong if the new symbol is from a dynamic library.
1255 This reflects the way glibc's ld.so works.
1256
1257 Do this before setting *type_change_ok or *size_change_ok so that
1258 we warn properly when dynamic library symbols are overridden. */
1259
1260 if (newdef && !newdyn && olddyn)
1261 newweak = FALSE;
1262 if (olddef && newdyn)
1263 oldweak = FALSE;
1264
1265 /* Allow changes between different types of function symbol. */
1266 if (newfunc && oldfunc)
1267 *type_change_ok = TRUE;
1268
1269 /* It's OK to change the type if either the existing symbol or the
1270 new symbol is weak. A type change is also OK if the old symbol
1271 is undefined and the new symbol is defined. */
1272
1273 if (oldweak
1274 || newweak
1275 || (newdef
1276 && h->root.type == bfd_link_hash_undefined))
1277 *type_change_ok = TRUE;
1278
1279 /* It's OK to change the size if either the existing symbol or the
1280 new symbol is weak, or if the old symbol is undefined. */
1281
1282 if (*type_change_ok
1283 || h->root.type == bfd_link_hash_undefined)
1284 *size_change_ok = TRUE;
1285
1286 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1287 symbol, respectively, appears to be a common symbol in a dynamic
1288 object. If a symbol appears in an uninitialized section, and is
1289 not weak, and is not a function, then it may be a common symbol
1290 which was resolved when the dynamic object was created. We want
1291 to treat such symbols specially, because they raise special
1292 considerations when setting the symbol size: if the symbol
1293 appears as a common symbol in a regular object, and the size in
1294 the regular object is larger, we must make sure that we use the
1295 larger size. This problematic case can always be avoided in C,
1296 but it must be handled correctly when using Fortran shared
1297 libraries.
1298
1299 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1300 likewise for OLDDYNCOMMON and OLDDEF.
1301
1302 Note that this test is just a heuristic, and that it is quite
1303 possible to have an uninitialized symbol in a shared object which
1304 is really a definition, rather than a common symbol. This could
1305 lead to some minor confusion when the symbol really is a common
1306 symbol in some regular object. However, I think it will be
1307 harmless. */
1308
1309 if (newdyn
1310 && newdef
1311 && !newweak
1312 && (sec->flags & SEC_ALLOC) != 0
1313 && (sec->flags & SEC_LOAD) == 0
1314 && sym->st_size > 0
1315 && !newfunc)
1316 newdyncommon = TRUE;
1317 else
1318 newdyncommon = FALSE;
1319
1320 if (olddyn
1321 && olddef
1322 && h->root.type == bfd_link_hash_defined
1323 && h->def_dynamic
1324 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1325 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1326 && h->size > 0
1327 && !oldfunc)
1328 olddyncommon = TRUE;
1329 else
1330 olddyncommon = FALSE;
1331
1332 /* We now know everything about the old and new symbols. We ask the
1333 backend to check if we can merge them. */
1334 if (bed->merge_symbol
1335 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1336 pold_alignment, skip, override,
1337 type_change_ok, size_change_ok,
1338 &newdyn, &newdef, &newdyncommon, &newweak,
1339 abfd, &sec,
1340 &olddyn, &olddef, &olddyncommon, &oldweak,
1341 oldbfd, &oldsec))
1342 return FALSE;
1343
1344 /* If both the old and the new symbols look like common symbols in a
1345 dynamic object, set the size of the symbol to the larger of the
1346 two. */
1347
1348 if (olddyncommon
1349 && newdyncommon
1350 && sym->st_size != h->size)
1351 {
1352 /* Since we think we have two common symbols, issue a multiple
1353 common warning if desired. Note that we only warn if the
1354 size is different. If the size is the same, we simply let
1355 the old symbol override the new one as normally happens with
1356 symbols defined in dynamic objects. */
1357
1358 if (! ((*info->callbacks->multiple_common)
1359 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1360 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1361 return FALSE;
1362
1363 if (sym->st_size > h->size)
1364 h->size = sym->st_size;
1365
1366 *size_change_ok = TRUE;
1367 }
1368
1369 /* If we are looking at a dynamic object, and we have found a
1370 definition, we need to see if the symbol was already defined by
1371 some other object. If so, we want to use the existing
1372 definition, and we do not want to report a multiple symbol
1373 definition error; we do this by clobbering *PSEC to be
1374 bfd_und_section_ptr.
1375
1376 We treat a common symbol as a definition if the symbol in the
1377 shared library is a function, since common symbols always
1378 represent variables; this can cause confusion in principle, but
1379 any such confusion would seem to indicate an erroneous program or
1380 shared library. We also permit a common symbol in a regular
1381 object to override a weak symbol in a shared object. */
1382
1383 if (newdyn
1384 && newdef
1385 && (olddef
1386 || (h->root.type == bfd_link_hash_common
1387 && (newweak || newfunc))))
1388 {
1389 *override = TRUE;
1390 newdef = FALSE;
1391 newdyncommon = FALSE;
1392
1393 *psec = sec = bfd_und_section_ptr;
1394 *size_change_ok = TRUE;
1395
1396 /* If we get here when the old symbol is a common symbol, then
1397 we are explicitly letting it override a weak symbol or
1398 function in a dynamic object, and we don't want to warn about
1399 a type change. If the old symbol is a defined symbol, a type
1400 change warning may still be appropriate. */
1401
1402 if (h->root.type == bfd_link_hash_common)
1403 *type_change_ok = TRUE;
1404 }
1405
1406 /* Handle the special case of an old common symbol merging with a
1407 new symbol which looks like a common symbol in a shared object.
1408 We change *PSEC and *PVALUE to make the new symbol look like a
1409 common symbol, and let _bfd_generic_link_add_one_symbol do the
1410 right thing. */
1411
1412 if (newdyncommon
1413 && h->root.type == bfd_link_hash_common)
1414 {
1415 *override = TRUE;
1416 newdef = FALSE;
1417 newdyncommon = FALSE;
1418 *pvalue = sym->st_size;
1419 *psec = sec = bed->common_section (oldsec);
1420 *size_change_ok = TRUE;
1421 }
1422
1423 /* Skip weak definitions of symbols that are already defined. */
1424 if (newdef && olddef && newweak)
1425 {
1426 *skip = TRUE;
1427
1428 /* Merge st_other. If the symbol already has a dynamic index,
1429 but visibility says it should not be visible, turn it into a
1430 local symbol. */
1431 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1432 if (h->dynindx != -1)
1433 switch (ELF_ST_VISIBILITY (h->other))
1434 {
1435 case STV_INTERNAL:
1436 case STV_HIDDEN:
1437 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1438 break;
1439 }
1440 }
1441
1442 /* If the old symbol is from a dynamic object, and the new symbol is
1443 a definition which is not from a dynamic object, then the new
1444 symbol overrides the old symbol. Symbols from regular files
1445 always take precedence over symbols from dynamic objects, even if
1446 they are defined after the dynamic object in the link.
1447
1448 As above, we again permit a common symbol in a regular object to
1449 override a definition in a shared object if the shared object
1450 symbol is a function or is weak. */
1451
1452 flip = NULL;
1453 if (!newdyn
1454 && (newdef
1455 || (bfd_is_com_section (sec)
1456 && (oldweak || oldfunc)))
1457 && olddyn
1458 && olddef
1459 && h->def_dynamic)
1460 {
1461 /* Change the hash table entry to undefined, and let
1462 _bfd_generic_link_add_one_symbol do the right thing with the
1463 new definition. */
1464
1465 h->root.type = bfd_link_hash_undefined;
1466 h->root.u.undef.abfd = h->root.u.def.section->owner;
1467 *size_change_ok = TRUE;
1468
1469 olddef = FALSE;
1470 olddyncommon = FALSE;
1471
1472 /* We again permit a type change when a common symbol may be
1473 overriding a function. */
1474
1475 if (bfd_is_com_section (sec))
1476 {
1477 if (oldfunc)
1478 {
1479 /* If a common symbol overrides a function, make sure
1480 that it isn't defined dynamically nor has type
1481 function. */
1482 h->def_dynamic = 0;
1483 h->type = STT_NOTYPE;
1484 }
1485 *type_change_ok = TRUE;
1486 }
1487
1488 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1489 flip = *sym_hash;
1490 else
1491 /* This union may have been set to be non-NULL when this symbol
1492 was seen in a dynamic object. We must force the union to be
1493 NULL, so that it is correct for a regular symbol. */
1494 h->verinfo.vertree = NULL;
1495 }
1496
1497 /* Handle the special case of a new common symbol merging with an
1498 old symbol that looks like it might be a common symbol defined in
1499 a shared object. Note that we have already handled the case in
1500 which a new common symbol should simply override the definition
1501 in the shared library. */
1502
1503 if (! newdyn
1504 && bfd_is_com_section (sec)
1505 && olddyncommon)
1506 {
1507 /* It would be best if we could set the hash table entry to a
1508 common symbol, but we don't know what to use for the section
1509 or the alignment. */
1510 if (! ((*info->callbacks->multiple_common)
1511 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1512 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1513 return FALSE;
1514
1515 /* If the presumed common symbol in the dynamic object is
1516 larger, pretend that the new symbol has its size. */
1517
1518 if (h->size > *pvalue)
1519 *pvalue = h->size;
1520
1521 /* We need to remember the alignment required by the symbol
1522 in the dynamic object. */
1523 BFD_ASSERT (pold_alignment);
1524 *pold_alignment = h->root.u.def.section->alignment_power;
1525
1526 olddef = FALSE;
1527 olddyncommon = FALSE;
1528
1529 h->root.type = bfd_link_hash_undefined;
1530 h->root.u.undef.abfd = h->root.u.def.section->owner;
1531
1532 *size_change_ok = TRUE;
1533 *type_change_ok = TRUE;
1534
1535 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1536 flip = *sym_hash;
1537 else
1538 h->verinfo.vertree = NULL;
1539 }
1540
1541 if (flip != NULL)
1542 {
1543 /* Handle the case where we had a versioned symbol in a dynamic
1544 library and now find a definition in a normal object. In this
1545 case, we make the versioned symbol point to the normal one. */
1546 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1547 flip->root.type = h->root.type;
1548 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1549 h->root.type = bfd_link_hash_indirect;
1550 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1551 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1552 if (h->def_dynamic)
1553 {
1554 h->def_dynamic = 0;
1555 flip->ref_dynamic = 1;
1556 }
1557 }
1558
1559 return TRUE;
1560 }
1561
1562 /* This function is called to create an indirect symbol from the
1563 default for the symbol with the default version if needed. The
1564 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1565 set DYNSYM if the new indirect symbol is dynamic. */
1566
1567 static bfd_boolean
1568 _bfd_elf_add_default_symbol (bfd *abfd,
1569 struct bfd_link_info *info,
1570 struct elf_link_hash_entry *h,
1571 const char *name,
1572 Elf_Internal_Sym *sym,
1573 asection **psec,
1574 bfd_vma *value,
1575 bfd_boolean *dynsym,
1576 bfd_boolean override)
1577 {
1578 bfd_boolean type_change_ok;
1579 bfd_boolean size_change_ok;
1580 bfd_boolean skip;
1581 char *shortname;
1582 struct elf_link_hash_entry *hi;
1583 struct bfd_link_hash_entry *bh;
1584 const struct elf_backend_data *bed;
1585 bfd_boolean collect;
1586 bfd_boolean dynamic;
1587 char *p;
1588 size_t len, shortlen;
1589 asection *sec;
1590
1591 /* If this symbol has a version, and it is the default version, we
1592 create an indirect symbol from the default name to the fully
1593 decorated name. This will cause external references which do not
1594 specify a version to be bound to this version of the symbol. */
1595 p = strchr (name, ELF_VER_CHR);
1596 if (p == NULL || p[1] != ELF_VER_CHR)
1597 return TRUE;
1598
1599 if (override)
1600 {
1601 /* We are overridden by an old definition. We need to check if we
1602 need to create the indirect symbol from the default name. */
1603 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1604 FALSE, FALSE);
1605 BFD_ASSERT (hi != NULL);
1606 if (hi == h)
1607 return TRUE;
1608 while (hi->root.type == bfd_link_hash_indirect
1609 || hi->root.type == bfd_link_hash_warning)
1610 {
1611 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1612 if (hi == h)
1613 return TRUE;
1614 }
1615 }
1616
1617 bed = get_elf_backend_data (abfd);
1618 collect = bed->collect;
1619 dynamic = (abfd->flags & DYNAMIC) != 0;
1620
1621 shortlen = p - name;
1622 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1623 if (shortname == NULL)
1624 return FALSE;
1625 memcpy (shortname, name, shortlen);
1626 shortname[shortlen] = '\0';
1627
1628 /* We are going to create a new symbol. Merge it with any existing
1629 symbol with this name. For the purposes of the merge, act as
1630 though we were defining the symbol we just defined, although we
1631 actually going to define an indirect symbol. */
1632 type_change_ok = FALSE;
1633 size_change_ok = FALSE;
1634 sec = *psec;
1635 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1636 NULL, &hi, &skip, &override,
1637 &type_change_ok, &size_change_ok))
1638 return FALSE;
1639
1640 if (skip)
1641 goto nondefault;
1642
1643 if (! override)
1644 {
1645 bh = &hi->root;
1646 if (! (_bfd_generic_link_add_one_symbol
1647 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1648 0, name, FALSE, collect, &bh)))
1649 return FALSE;
1650 hi = (struct elf_link_hash_entry *) bh;
1651 }
1652 else
1653 {
1654 /* In this case the symbol named SHORTNAME is overriding the
1655 indirect symbol we want to add. We were planning on making
1656 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1657 is the name without a version. NAME is the fully versioned
1658 name, and it is the default version.
1659
1660 Overriding means that we already saw a definition for the
1661 symbol SHORTNAME in a regular object, and it is overriding
1662 the symbol defined in the dynamic object.
1663
1664 When this happens, we actually want to change NAME, the
1665 symbol we just added, to refer to SHORTNAME. This will cause
1666 references to NAME in the shared object to become references
1667 to SHORTNAME in the regular object. This is what we expect
1668 when we override a function in a shared object: that the
1669 references in the shared object will be mapped to the
1670 definition in the regular object. */
1671
1672 while (hi->root.type == bfd_link_hash_indirect
1673 || hi->root.type == bfd_link_hash_warning)
1674 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1675
1676 h->root.type = bfd_link_hash_indirect;
1677 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1678 if (h->def_dynamic)
1679 {
1680 h->def_dynamic = 0;
1681 hi->ref_dynamic = 1;
1682 if (hi->ref_regular
1683 || hi->def_regular)
1684 {
1685 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1686 return FALSE;
1687 }
1688 }
1689
1690 /* Now set HI to H, so that the following code will set the
1691 other fields correctly. */
1692 hi = h;
1693 }
1694
1695 /* Check if HI is a warning symbol. */
1696 if (hi->root.type == bfd_link_hash_warning)
1697 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1698
1699 /* If there is a duplicate definition somewhere, then HI may not
1700 point to an indirect symbol. We will have reported an error to
1701 the user in that case. */
1702
1703 if (hi->root.type == bfd_link_hash_indirect)
1704 {
1705 struct elf_link_hash_entry *ht;
1706
1707 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1708 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1709
1710 /* See if the new flags lead us to realize that the symbol must
1711 be dynamic. */
1712 if (! *dynsym)
1713 {
1714 if (! dynamic)
1715 {
1716 if (info->shared
1717 || hi->ref_dynamic)
1718 *dynsym = TRUE;
1719 }
1720 else
1721 {
1722 if (hi->ref_regular)
1723 *dynsym = TRUE;
1724 }
1725 }
1726 }
1727
1728 /* We also need to define an indirection from the nondefault version
1729 of the symbol. */
1730
1731 nondefault:
1732 len = strlen (name);
1733 shortname = bfd_hash_allocate (&info->hash->table, len);
1734 if (shortname == NULL)
1735 return FALSE;
1736 memcpy (shortname, name, shortlen);
1737 memcpy (shortname + shortlen, p + 1, len - shortlen);
1738
1739 /* Once again, merge with any existing symbol. */
1740 type_change_ok = FALSE;
1741 size_change_ok = FALSE;
1742 sec = *psec;
1743 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1744 NULL, &hi, &skip, &override,
1745 &type_change_ok, &size_change_ok))
1746 return FALSE;
1747
1748 if (skip)
1749 return TRUE;
1750
1751 if (override)
1752 {
1753 /* Here SHORTNAME is a versioned name, so we don't expect to see
1754 the type of override we do in the case above unless it is
1755 overridden by a versioned definition. */
1756 if (hi->root.type != bfd_link_hash_defined
1757 && hi->root.type != bfd_link_hash_defweak)
1758 (*_bfd_error_handler)
1759 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1760 abfd, shortname);
1761 }
1762 else
1763 {
1764 bh = &hi->root;
1765 if (! (_bfd_generic_link_add_one_symbol
1766 (info, abfd, shortname, BSF_INDIRECT,
1767 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1768 return FALSE;
1769 hi = (struct elf_link_hash_entry *) bh;
1770
1771 /* If there is a duplicate definition somewhere, then HI may not
1772 point to an indirect symbol. We will have reported an error
1773 to the user in that case. */
1774
1775 if (hi->root.type == bfd_link_hash_indirect)
1776 {
1777 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1778
1779 /* See if the new flags lead us to realize that the symbol
1780 must be dynamic. */
1781 if (! *dynsym)
1782 {
1783 if (! dynamic)
1784 {
1785 if (info->shared
1786 || hi->ref_dynamic)
1787 *dynsym = TRUE;
1788 }
1789 else
1790 {
1791 if (hi->ref_regular)
1792 *dynsym = TRUE;
1793 }
1794 }
1795 }
1796 }
1797
1798 return TRUE;
1799 }
1800 \f
1801 /* This routine is used to export all defined symbols into the dynamic
1802 symbol table. It is called via elf_link_hash_traverse. */
1803
1804 static bfd_boolean
1805 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1806 {
1807 struct elf_info_failed *eif = data;
1808
1809 /* Ignore this if we won't export it. */
1810 if (!eif->info->export_dynamic && !h->dynamic)
1811 return TRUE;
1812
1813 /* Ignore indirect symbols. These are added by the versioning code. */
1814 if (h->root.type == bfd_link_hash_indirect)
1815 return TRUE;
1816
1817 if (h->root.type == bfd_link_hash_warning)
1818 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1819
1820 if (h->dynindx == -1
1821 && (h->def_regular
1822 || h->ref_regular))
1823 {
1824 bfd_boolean hide;
1825
1826 if (eif->verdefs == NULL
1827 || (bfd_find_version_for_sym (eif->verdefs, h->root.root.string, &hide)
1828 && !hide))
1829 {
1830 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1831 {
1832 eif->failed = TRUE;
1833 return FALSE;
1834 }
1835 }
1836 }
1837
1838 return TRUE;
1839 }
1840 \f
1841 /* Look through the symbols which are defined in other shared
1842 libraries and referenced here. Update the list of version
1843 dependencies. This will be put into the .gnu.version_r section.
1844 This function is called via elf_link_hash_traverse. */
1845
1846 static bfd_boolean
1847 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1848 void *data)
1849 {
1850 struct elf_find_verdep_info *rinfo = data;
1851 Elf_Internal_Verneed *t;
1852 Elf_Internal_Vernaux *a;
1853 bfd_size_type amt;
1854
1855 if (h->root.type == bfd_link_hash_warning)
1856 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1857
1858 /* We only care about symbols defined in shared objects with version
1859 information. */
1860 if (!h->def_dynamic
1861 || h->def_regular
1862 || h->dynindx == -1
1863 || h->verinfo.verdef == NULL)
1864 return TRUE;
1865
1866 /* See if we already know about this version. */
1867 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1868 t != NULL;
1869 t = t->vn_nextref)
1870 {
1871 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1872 continue;
1873
1874 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1875 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1876 return TRUE;
1877
1878 break;
1879 }
1880
1881 /* This is a new version. Add it to tree we are building. */
1882
1883 if (t == NULL)
1884 {
1885 amt = sizeof *t;
1886 t = bfd_zalloc (rinfo->info->output_bfd, amt);
1887 if (t == NULL)
1888 {
1889 rinfo->failed = TRUE;
1890 return FALSE;
1891 }
1892
1893 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1894 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1895 elf_tdata (rinfo->info->output_bfd)->verref = t;
1896 }
1897
1898 amt = sizeof *a;
1899 a = bfd_zalloc (rinfo->info->output_bfd, amt);
1900 if (a == NULL)
1901 {
1902 rinfo->failed = TRUE;
1903 return FALSE;
1904 }
1905
1906 /* Note that we are copying a string pointer here, and testing it
1907 above. If bfd_elf_string_from_elf_section is ever changed to
1908 discard the string data when low in memory, this will have to be
1909 fixed. */
1910 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1911
1912 a->vna_flags = h->verinfo.verdef->vd_flags;
1913 a->vna_nextptr = t->vn_auxptr;
1914
1915 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1916 ++rinfo->vers;
1917
1918 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1919
1920 t->vn_auxptr = a;
1921
1922 return TRUE;
1923 }
1924
1925 /* Figure out appropriate versions for all the symbols. We may not
1926 have the version number script until we have read all of the input
1927 files, so until that point we don't know which symbols should be
1928 local. This function is called via elf_link_hash_traverse. */
1929
1930 static bfd_boolean
1931 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1932 {
1933 struct elf_info_failed *sinfo;
1934 struct bfd_link_info *info;
1935 const struct elf_backend_data *bed;
1936 struct elf_info_failed eif;
1937 char *p;
1938 bfd_size_type amt;
1939
1940 sinfo = data;
1941 info = sinfo->info;
1942
1943 if (h->root.type == bfd_link_hash_warning)
1944 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1945
1946 /* Fix the symbol flags. */
1947 eif.failed = FALSE;
1948 eif.info = info;
1949 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1950 {
1951 if (eif.failed)
1952 sinfo->failed = TRUE;
1953 return FALSE;
1954 }
1955
1956 /* We only need version numbers for symbols defined in regular
1957 objects. */
1958 if (!h->def_regular)
1959 return TRUE;
1960
1961 bed = get_elf_backend_data (info->output_bfd);
1962 p = strchr (h->root.root.string, ELF_VER_CHR);
1963 if (p != NULL && h->verinfo.vertree == NULL)
1964 {
1965 struct bfd_elf_version_tree *t;
1966 bfd_boolean hidden;
1967
1968 hidden = TRUE;
1969
1970 /* There are two consecutive ELF_VER_CHR characters if this is
1971 not a hidden symbol. */
1972 ++p;
1973 if (*p == ELF_VER_CHR)
1974 {
1975 hidden = FALSE;
1976 ++p;
1977 }
1978
1979 /* If there is no version string, we can just return out. */
1980 if (*p == '\0')
1981 {
1982 if (hidden)
1983 h->hidden = 1;
1984 return TRUE;
1985 }
1986
1987 /* Look for the version. If we find it, it is no longer weak. */
1988 for (t = sinfo->verdefs; t != NULL; t = t->next)
1989 {
1990 if (strcmp (t->name, p) == 0)
1991 {
1992 size_t len;
1993 char *alc;
1994 struct bfd_elf_version_expr *d;
1995
1996 len = p - h->root.root.string;
1997 alc = bfd_malloc (len);
1998 if (alc == NULL)
1999 {
2000 sinfo->failed = TRUE;
2001 return FALSE;
2002 }
2003 memcpy (alc, h->root.root.string, len - 1);
2004 alc[len - 1] = '\0';
2005 if (alc[len - 2] == ELF_VER_CHR)
2006 alc[len - 2] = '\0';
2007
2008 h->verinfo.vertree = t;
2009 t->used = TRUE;
2010 d = NULL;
2011
2012 if (t->globals.list != NULL)
2013 d = (*t->match) (&t->globals, NULL, alc);
2014
2015 /* See if there is anything to force this symbol to
2016 local scope. */
2017 if (d == NULL && t->locals.list != NULL)
2018 {
2019 d = (*t->match) (&t->locals, NULL, alc);
2020 if (d != NULL
2021 && h->dynindx != -1
2022 && ! info->export_dynamic)
2023 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2024 }
2025
2026 free (alc);
2027 break;
2028 }
2029 }
2030
2031 /* If we are building an application, we need to create a
2032 version node for this version. */
2033 if (t == NULL && info->executable)
2034 {
2035 struct bfd_elf_version_tree **pp;
2036 int version_index;
2037
2038 /* If we aren't going to export this symbol, we don't need
2039 to worry about it. */
2040 if (h->dynindx == -1)
2041 return TRUE;
2042
2043 amt = sizeof *t;
2044 t = bfd_zalloc (info->output_bfd, amt);
2045 if (t == NULL)
2046 {
2047 sinfo->failed = TRUE;
2048 return FALSE;
2049 }
2050
2051 t->name = p;
2052 t->name_indx = (unsigned int) -1;
2053 t->used = TRUE;
2054
2055 version_index = 1;
2056 /* Don't count anonymous version tag. */
2057 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
2058 version_index = 0;
2059 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
2060 ++version_index;
2061 t->vernum = version_index;
2062
2063 *pp = t;
2064
2065 h->verinfo.vertree = t;
2066 }
2067 else if (t == NULL)
2068 {
2069 /* We could not find the version for a symbol when
2070 generating a shared archive. Return an error. */
2071 (*_bfd_error_handler)
2072 (_("%B: version node not found for symbol %s"),
2073 info->output_bfd, h->root.root.string);
2074 bfd_set_error (bfd_error_bad_value);
2075 sinfo->failed = TRUE;
2076 return FALSE;
2077 }
2078
2079 if (hidden)
2080 h->hidden = 1;
2081 }
2082
2083 /* If we don't have a version for this symbol, see if we can find
2084 something. */
2085 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
2086 {
2087 bfd_boolean hide;
2088
2089 h->verinfo.vertree = bfd_find_version_for_sym (sinfo->verdefs,
2090 h->root.root.string, &hide);
2091 if (h->verinfo.vertree != NULL && hide)
2092 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2093 }
2094
2095 return TRUE;
2096 }
2097 \f
2098 /* Read and swap the relocs from the section indicated by SHDR. This
2099 may be either a REL or a RELA section. The relocations are
2100 translated into RELA relocations and stored in INTERNAL_RELOCS,
2101 which should have already been allocated to contain enough space.
2102 The EXTERNAL_RELOCS are a buffer where the external form of the
2103 relocations should be stored.
2104
2105 Returns FALSE if something goes wrong. */
2106
2107 static bfd_boolean
2108 elf_link_read_relocs_from_section (bfd *abfd,
2109 asection *sec,
2110 Elf_Internal_Shdr *shdr,
2111 void *external_relocs,
2112 Elf_Internal_Rela *internal_relocs)
2113 {
2114 const struct elf_backend_data *bed;
2115 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2116 const bfd_byte *erela;
2117 const bfd_byte *erelaend;
2118 Elf_Internal_Rela *irela;
2119 Elf_Internal_Shdr *symtab_hdr;
2120 size_t nsyms;
2121
2122 /* Position ourselves at the start of the section. */
2123 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2124 return FALSE;
2125
2126 /* Read the relocations. */
2127 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2128 return FALSE;
2129
2130 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2131 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2132
2133 bed = get_elf_backend_data (abfd);
2134
2135 /* Convert the external relocations to the internal format. */
2136 if (shdr->sh_entsize == bed->s->sizeof_rel)
2137 swap_in = bed->s->swap_reloc_in;
2138 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2139 swap_in = bed->s->swap_reloca_in;
2140 else
2141 {
2142 bfd_set_error (bfd_error_wrong_format);
2143 return FALSE;
2144 }
2145
2146 erela = external_relocs;
2147 erelaend = erela + shdr->sh_size;
2148 irela = internal_relocs;
2149 while (erela < erelaend)
2150 {
2151 bfd_vma r_symndx;
2152
2153 (*swap_in) (abfd, erela, irela);
2154 r_symndx = ELF32_R_SYM (irela->r_info);
2155 if (bed->s->arch_size == 64)
2156 r_symndx >>= 24;
2157 if (nsyms > 0)
2158 {
2159 if ((size_t) r_symndx >= nsyms)
2160 {
2161 (*_bfd_error_handler)
2162 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2163 " for offset 0x%lx in section `%A'"),
2164 abfd, sec,
2165 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2166 bfd_set_error (bfd_error_bad_value);
2167 return FALSE;
2168 }
2169 }
2170 else if (r_symndx != 0)
2171 {
2172 (*_bfd_error_handler)
2173 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2174 " when the object file has no symbol table"),
2175 abfd, sec,
2176 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2177 bfd_set_error (bfd_error_bad_value);
2178 return FALSE;
2179 }
2180 irela += bed->s->int_rels_per_ext_rel;
2181 erela += shdr->sh_entsize;
2182 }
2183
2184 return TRUE;
2185 }
2186
2187 /* Read and swap the relocs for a section O. They may have been
2188 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2189 not NULL, they are used as buffers to read into. They are known to
2190 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2191 the return value is allocated using either malloc or bfd_alloc,
2192 according to the KEEP_MEMORY argument. If O has two relocation
2193 sections (both REL and RELA relocations), then the REL_HDR
2194 relocations will appear first in INTERNAL_RELOCS, followed by the
2195 REL_HDR2 relocations. */
2196
2197 Elf_Internal_Rela *
2198 _bfd_elf_link_read_relocs (bfd *abfd,
2199 asection *o,
2200 void *external_relocs,
2201 Elf_Internal_Rela *internal_relocs,
2202 bfd_boolean keep_memory)
2203 {
2204 Elf_Internal_Shdr *rel_hdr;
2205 void *alloc1 = NULL;
2206 Elf_Internal_Rela *alloc2 = NULL;
2207 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2208
2209 if (elf_section_data (o)->relocs != NULL)
2210 return elf_section_data (o)->relocs;
2211
2212 if (o->reloc_count == 0)
2213 return NULL;
2214
2215 rel_hdr = &elf_section_data (o)->rel_hdr;
2216
2217 if (internal_relocs == NULL)
2218 {
2219 bfd_size_type size;
2220
2221 size = o->reloc_count;
2222 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2223 if (keep_memory)
2224 internal_relocs = alloc2 = bfd_alloc (abfd, size);
2225 else
2226 internal_relocs = alloc2 = bfd_malloc (size);
2227 if (internal_relocs == NULL)
2228 goto error_return;
2229 }
2230
2231 if (external_relocs == NULL)
2232 {
2233 bfd_size_type size = rel_hdr->sh_size;
2234
2235 if (elf_section_data (o)->rel_hdr2)
2236 size += elf_section_data (o)->rel_hdr2->sh_size;
2237 alloc1 = bfd_malloc (size);
2238 if (alloc1 == NULL)
2239 goto error_return;
2240 external_relocs = alloc1;
2241 }
2242
2243 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
2244 external_relocs,
2245 internal_relocs))
2246 goto error_return;
2247 if (elf_section_data (o)->rel_hdr2
2248 && (!elf_link_read_relocs_from_section
2249 (abfd, o,
2250 elf_section_data (o)->rel_hdr2,
2251 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2252 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2253 * bed->s->int_rels_per_ext_rel))))
2254 goto error_return;
2255
2256 /* Cache the results for next time, if we can. */
2257 if (keep_memory)
2258 elf_section_data (o)->relocs = internal_relocs;
2259
2260 if (alloc1 != NULL)
2261 free (alloc1);
2262
2263 /* Don't free alloc2, since if it was allocated we are passing it
2264 back (under the name of internal_relocs). */
2265
2266 return internal_relocs;
2267
2268 error_return:
2269 if (alloc1 != NULL)
2270 free (alloc1);
2271 if (alloc2 != NULL)
2272 {
2273 if (keep_memory)
2274 bfd_release (abfd, alloc2);
2275 else
2276 free (alloc2);
2277 }
2278 return NULL;
2279 }
2280
2281 /* Compute the size of, and allocate space for, REL_HDR which is the
2282 section header for a section containing relocations for O. */
2283
2284 static bfd_boolean
2285 _bfd_elf_link_size_reloc_section (bfd *abfd,
2286 Elf_Internal_Shdr *rel_hdr,
2287 asection *o)
2288 {
2289 bfd_size_type reloc_count;
2290 bfd_size_type num_rel_hashes;
2291
2292 /* Figure out how many relocations there will be. */
2293 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2294 reloc_count = elf_section_data (o)->rel_count;
2295 else
2296 reloc_count = elf_section_data (o)->rel_count2;
2297
2298 num_rel_hashes = o->reloc_count;
2299 if (num_rel_hashes < reloc_count)
2300 num_rel_hashes = reloc_count;
2301
2302 /* That allows us to calculate the size of the section. */
2303 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2304
2305 /* The contents field must last into write_object_contents, so we
2306 allocate it with bfd_alloc rather than malloc. Also since we
2307 cannot be sure that the contents will actually be filled in,
2308 we zero the allocated space. */
2309 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
2310 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2311 return FALSE;
2312
2313 /* We only allocate one set of hash entries, so we only do it the
2314 first time we are called. */
2315 if (elf_section_data (o)->rel_hashes == NULL
2316 && num_rel_hashes)
2317 {
2318 struct elf_link_hash_entry **p;
2319
2320 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
2321 if (p == NULL)
2322 return FALSE;
2323
2324 elf_section_data (o)->rel_hashes = p;
2325 }
2326
2327 return TRUE;
2328 }
2329
2330 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2331 originated from the section given by INPUT_REL_HDR) to the
2332 OUTPUT_BFD. */
2333
2334 bfd_boolean
2335 _bfd_elf_link_output_relocs (bfd *output_bfd,
2336 asection *input_section,
2337 Elf_Internal_Shdr *input_rel_hdr,
2338 Elf_Internal_Rela *internal_relocs,
2339 struct elf_link_hash_entry **rel_hash
2340 ATTRIBUTE_UNUSED)
2341 {
2342 Elf_Internal_Rela *irela;
2343 Elf_Internal_Rela *irelaend;
2344 bfd_byte *erel;
2345 Elf_Internal_Shdr *output_rel_hdr;
2346 asection *output_section;
2347 unsigned int *rel_countp = NULL;
2348 const struct elf_backend_data *bed;
2349 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2350
2351 output_section = input_section->output_section;
2352 output_rel_hdr = NULL;
2353
2354 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2355 == input_rel_hdr->sh_entsize)
2356 {
2357 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2358 rel_countp = &elf_section_data (output_section)->rel_count;
2359 }
2360 else if (elf_section_data (output_section)->rel_hdr2
2361 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2362 == input_rel_hdr->sh_entsize))
2363 {
2364 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2365 rel_countp = &elf_section_data (output_section)->rel_count2;
2366 }
2367 else
2368 {
2369 (*_bfd_error_handler)
2370 (_("%B: relocation size mismatch in %B section %A"),
2371 output_bfd, input_section->owner, input_section);
2372 bfd_set_error (bfd_error_wrong_format);
2373 return FALSE;
2374 }
2375
2376 bed = get_elf_backend_data (output_bfd);
2377 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2378 swap_out = bed->s->swap_reloc_out;
2379 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2380 swap_out = bed->s->swap_reloca_out;
2381 else
2382 abort ();
2383
2384 erel = output_rel_hdr->contents;
2385 erel += *rel_countp * input_rel_hdr->sh_entsize;
2386 irela = internal_relocs;
2387 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2388 * bed->s->int_rels_per_ext_rel);
2389 while (irela < irelaend)
2390 {
2391 (*swap_out) (output_bfd, irela, erel);
2392 irela += bed->s->int_rels_per_ext_rel;
2393 erel += input_rel_hdr->sh_entsize;
2394 }
2395
2396 /* Bump the counter, so that we know where to add the next set of
2397 relocations. */
2398 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2399
2400 return TRUE;
2401 }
2402 \f
2403 /* Make weak undefined symbols in PIE dynamic. */
2404
2405 bfd_boolean
2406 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2407 struct elf_link_hash_entry *h)
2408 {
2409 if (info->pie
2410 && h->dynindx == -1
2411 && h->root.type == bfd_link_hash_undefweak)
2412 return bfd_elf_link_record_dynamic_symbol (info, h);
2413
2414 return TRUE;
2415 }
2416
2417 /* Fix up the flags for a symbol. This handles various cases which
2418 can only be fixed after all the input files are seen. This is
2419 currently called by both adjust_dynamic_symbol and
2420 assign_sym_version, which is unnecessary but perhaps more robust in
2421 the face of future changes. */
2422
2423 static bfd_boolean
2424 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2425 struct elf_info_failed *eif)
2426 {
2427 const struct elf_backend_data *bed;
2428
2429 /* If this symbol was mentioned in a non-ELF file, try to set
2430 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2431 permit a non-ELF file to correctly refer to a symbol defined in
2432 an ELF dynamic object. */
2433 if (h->non_elf)
2434 {
2435 while (h->root.type == bfd_link_hash_indirect)
2436 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2437
2438 if (h->root.type != bfd_link_hash_defined
2439 && h->root.type != bfd_link_hash_defweak)
2440 {
2441 h->ref_regular = 1;
2442 h->ref_regular_nonweak = 1;
2443 }
2444 else
2445 {
2446 if (h->root.u.def.section->owner != NULL
2447 && (bfd_get_flavour (h->root.u.def.section->owner)
2448 == bfd_target_elf_flavour))
2449 {
2450 h->ref_regular = 1;
2451 h->ref_regular_nonweak = 1;
2452 }
2453 else
2454 h->def_regular = 1;
2455 }
2456
2457 if (h->dynindx == -1
2458 && (h->def_dynamic
2459 || h->ref_dynamic))
2460 {
2461 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2462 {
2463 eif->failed = TRUE;
2464 return FALSE;
2465 }
2466 }
2467 }
2468 else
2469 {
2470 /* Unfortunately, NON_ELF is only correct if the symbol
2471 was first seen in a non-ELF file. Fortunately, if the symbol
2472 was first seen in an ELF file, we're probably OK unless the
2473 symbol was defined in a non-ELF file. Catch that case here.
2474 FIXME: We're still in trouble if the symbol was first seen in
2475 a dynamic object, and then later in a non-ELF regular object. */
2476 if ((h->root.type == bfd_link_hash_defined
2477 || h->root.type == bfd_link_hash_defweak)
2478 && !h->def_regular
2479 && (h->root.u.def.section->owner != NULL
2480 ? (bfd_get_flavour (h->root.u.def.section->owner)
2481 != bfd_target_elf_flavour)
2482 : (bfd_is_abs_section (h->root.u.def.section)
2483 && !h->def_dynamic)))
2484 h->def_regular = 1;
2485 }
2486
2487 /* Backend specific symbol fixup. */
2488 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2489 if (bed->elf_backend_fixup_symbol
2490 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2491 return FALSE;
2492
2493 /* If this is a final link, and the symbol was defined as a common
2494 symbol in a regular object file, and there was no definition in
2495 any dynamic object, then the linker will have allocated space for
2496 the symbol in a common section but the DEF_REGULAR
2497 flag will not have been set. */
2498 if (h->root.type == bfd_link_hash_defined
2499 && !h->def_regular
2500 && h->ref_regular
2501 && !h->def_dynamic
2502 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2503 h->def_regular = 1;
2504
2505 /* If -Bsymbolic was used (which means to bind references to global
2506 symbols to the definition within the shared object), and this
2507 symbol was defined in a regular object, then it actually doesn't
2508 need a PLT entry. Likewise, if the symbol has non-default
2509 visibility. If the symbol has hidden or internal visibility, we
2510 will force it local. */
2511 if (h->needs_plt
2512 && eif->info->shared
2513 && is_elf_hash_table (eif->info->hash)
2514 && (SYMBOLIC_BIND (eif->info, h)
2515 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2516 && h->def_regular)
2517 {
2518 bfd_boolean force_local;
2519
2520 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2521 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2522 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2523 }
2524
2525 /* If a weak undefined symbol has non-default visibility, we also
2526 hide it from the dynamic linker. */
2527 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2528 && h->root.type == bfd_link_hash_undefweak)
2529 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2530
2531 /* If this is a weak defined symbol in a dynamic object, and we know
2532 the real definition in the dynamic object, copy interesting flags
2533 over to the real definition. */
2534 if (h->u.weakdef != NULL)
2535 {
2536 struct elf_link_hash_entry *weakdef;
2537
2538 weakdef = h->u.weakdef;
2539 if (h->root.type == bfd_link_hash_indirect)
2540 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2541
2542 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2543 || h->root.type == bfd_link_hash_defweak);
2544 BFD_ASSERT (weakdef->def_dynamic);
2545
2546 /* If the real definition is defined by a regular object file,
2547 don't do anything special. See the longer description in
2548 _bfd_elf_adjust_dynamic_symbol, below. */
2549 if (weakdef->def_regular)
2550 h->u.weakdef = NULL;
2551 else
2552 {
2553 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2554 || weakdef->root.type == bfd_link_hash_defweak);
2555 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2556 }
2557 }
2558
2559 return TRUE;
2560 }
2561
2562 /* Make the backend pick a good value for a dynamic symbol. This is
2563 called via elf_link_hash_traverse, and also calls itself
2564 recursively. */
2565
2566 static bfd_boolean
2567 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2568 {
2569 struct elf_info_failed *eif = data;
2570 bfd *dynobj;
2571 const struct elf_backend_data *bed;
2572
2573 if (! is_elf_hash_table (eif->info->hash))
2574 return FALSE;
2575
2576 if (h->root.type == bfd_link_hash_warning)
2577 {
2578 h->got = elf_hash_table (eif->info)->init_got_offset;
2579 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2580
2581 /* When warning symbols are created, they **replace** the "real"
2582 entry in the hash table, thus we never get to see the real
2583 symbol in a hash traversal. So look at it now. */
2584 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2585 }
2586
2587 /* Ignore indirect symbols. These are added by the versioning code. */
2588 if (h->root.type == bfd_link_hash_indirect)
2589 return TRUE;
2590
2591 /* Fix the symbol flags. */
2592 if (! _bfd_elf_fix_symbol_flags (h, eif))
2593 return FALSE;
2594
2595 /* If this symbol does not require a PLT entry, and it is not
2596 defined by a dynamic object, or is not referenced by a regular
2597 object, ignore it. We do have to handle a weak defined symbol,
2598 even if no regular object refers to it, if we decided to add it
2599 to the dynamic symbol table. FIXME: Do we normally need to worry
2600 about symbols which are defined by one dynamic object and
2601 referenced by another one? */
2602 if (!h->needs_plt
2603 && (h->def_regular
2604 || !h->def_dynamic
2605 || (!h->ref_regular
2606 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2607 {
2608 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2609 return TRUE;
2610 }
2611
2612 /* If we've already adjusted this symbol, don't do it again. This
2613 can happen via a recursive call. */
2614 if (h->dynamic_adjusted)
2615 return TRUE;
2616
2617 /* Don't look at this symbol again. Note that we must set this
2618 after checking the above conditions, because we may look at a
2619 symbol once, decide not to do anything, and then get called
2620 recursively later after REF_REGULAR is set below. */
2621 h->dynamic_adjusted = 1;
2622
2623 /* If this is a weak definition, and we know a real definition, and
2624 the real symbol is not itself defined by a regular object file,
2625 then get a good value for the real definition. We handle the
2626 real symbol first, for the convenience of the backend routine.
2627
2628 Note that there is a confusing case here. If the real definition
2629 is defined by a regular object file, we don't get the real symbol
2630 from the dynamic object, but we do get the weak symbol. If the
2631 processor backend uses a COPY reloc, then if some routine in the
2632 dynamic object changes the real symbol, we will not see that
2633 change in the corresponding weak symbol. This is the way other
2634 ELF linkers work as well, and seems to be a result of the shared
2635 library model.
2636
2637 I will clarify this issue. Most SVR4 shared libraries define the
2638 variable _timezone and define timezone as a weak synonym. The
2639 tzset call changes _timezone. If you write
2640 extern int timezone;
2641 int _timezone = 5;
2642 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2643 you might expect that, since timezone is a synonym for _timezone,
2644 the same number will print both times. However, if the processor
2645 backend uses a COPY reloc, then actually timezone will be copied
2646 into your process image, and, since you define _timezone
2647 yourself, _timezone will not. Thus timezone and _timezone will
2648 wind up at different memory locations. The tzset call will set
2649 _timezone, leaving timezone unchanged. */
2650
2651 if (h->u.weakdef != NULL)
2652 {
2653 /* If we get to this point, we know there is an implicit
2654 reference by a regular object file via the weak symbol H.
2655 FIXME: Is this really true? What if the traversal finds
2656 H->U.WEAKDEF before it finds H? */
2657 h->u.weakdef->ref_regular = 1;
2658
2659 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2660 return FALSE;
2661 }
2662
2663 /* If a symbol has no type and no size and does not require a PLT
2664 entry, then we are probably about to do the wrong thing here: we
2665 are probably going to create a COPY reloc for an empty object.
2666 This case can arise when a shared object is built with assembly
2667 code, and the assembly code fails to set the symbol type. */
2668 if (h->size == 0
2669 && h->type == STT_NOTYPE
2670 && !h->needs_plt)
2671 (*_bfd_error_handler)
2672 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2673 h->root.root.string);
2674
2675 dynobj = elf_hash_table (eif->info)->dynobj;
2676 bed = get_elf_backend_data (dynobj);
2677
2678
2679 if (h->type == STT_GNU_IFUNC
2680 && (bed->elf_osabi == ELFOSABI_LINUX
2681 /* GNU/Linux is still using the default value 0. */
2682 || bed->elf_osabi == ELFOSABI_NONE))
2683 h->needs_plt = 1;
2684
2685 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2686 {
2687 eif->failed = TRUE;
2688 return FALSE;
2689 }
2690
2691 return TRUE;
2692 }
2693
2694 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2695 DYNBSS. */
2696
2697 bfd_boolean
2698 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2699 asection *dynbss)
2700 {
2701 unsigned int power_of_two;
2702 bfd_vma mask;
2703 asection *sec = h->root.u.def.section;
2704
2705 /* The section aligment of definition is the maximum alignment
2706 requirement of symbols defined in the section. Since we don't
2707 know the symbol alignment requirement, we start with the
2708 maximum alignment and check low bits of the symbol address
2709 for the minimum alignment. */
2710 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2711 mask = ((bfd_vma) 1 << power_of_two) - 1;
2712 while ((h->root.u.def.value & mask) != 0)
2713 {
2714 mask >>= 1;
2715 --power_of_two;
2716 }
2717
2718 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2719 dynbss))
2720 {
2721 /* Adjust the section alignment if needed. */
2722 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2723 power_of_two))
2724 return FALSE;
2725 }
2726
2727 /* We make sure that the symbol will be aligned properly. */
2728 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2729
2730 /* Define the symbol as being at this point in DYNBSS. */
2731 h->root.u.def.section = dynbss;
2732 h->root.u.def.value = dynbss->size;
2733
2734 /* Increment the size of DYNBSS to make room for the symbol. */
2735 dynbss->size += h->size;
2736
2737 return TRUE;
2738 }
2739
2740 /* Adjust all external symbols pointing into SEC_MERGE sections
2741 to reflect the object merging within the sections. */
2742
2743 static bfd_boolean
2744 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2745 {
2746 asection *sec;
2747
2748 if (h->root.type == bfd_link_hash_warning)
2749 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2750
2751 if ((h->root.type == bfd_link_hash_defined
2752 || h->root.type == bfd_link_hash_defweak)
2753 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2754 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2755 {
2756 bfd *output_bfd = data;
2757
2758 h->root.u.def.value =
2759 _bfd_merged_section_offset (output_bfd,
2760 &h->root.u.def.section,
2761 elf_section_data (sec)->sec_info,
2762 h->root.u.def.value);
2763 }
2764
2765 return TRUE;
2766 }
2767
2768 /* Returns false if the symbol referred to by H should be considered
2769 to resolve local to the current module, and true if it should be
2770 considered to bind dynamically. */
2771
2772 bfd_boolean
2773 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2774 struct bfd_link_info *info,
2775 bfd_boolean ignore_protected)
2776 {
2777 bfd_boolean binding_stays_local_p;
2778 const struct elf_backend_data *bed;
2779 struct elf_link_hash_table *hash_table;
2780
2781 if (h == NULL)
2782 return FALSE;
2783
2784 while (h->root.type == bfd_link_hash_indirect
2785 || h->root.type == bfd_link_hash_warning)
2786 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2787
2788 /* If it was forced local, then clearly it's not dynamic. */
2789 if (h->dynindx == -1)
2790 return FALSE;
2791 if (h->forced_local)
2792 return FALSE;
2793
2794 /* Identify the cases where name binding rules say that a
2795 visible symbol resolves locally. */
2796 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2797
2798 switch (ELF_ST_VISIBILITY (h->other))
2799 {
2800 case STV_INTERNAL:
2801 case STV_HIDDEN:
2802 return FALSE;
2803
2804 case STV_PROTECTED:
2805 hash_table = elf_hash_table (info);
2806 if (!is_elf_hash_table (hash_table))
2807 return FALSE;
2808
2809 bed = get_elf_backend_data (hash_table->dynobj);
2810
2811 /* Proper resolution for function pointer equality may require
2812 that these symbols perhaps be resolved dynamically, even though
2813 we should be resolving them to the current module. */
2814 if (!ignore_protected || !bed->is_function_type (h->type))
2815 binding_stays_local_p = TRUE;
2816 break;
2817
2818 default:
2819 break;
2820 }
2821
2822 /* If it isn't defined locally, then clearly it's dynamic. */
2823 if (!h->def_regular)
2824 return TRUE;
2825
2826 /* Otherwise, the symbol is dynamic if binding rules don't tell
2827 us that it remains local. */
2828 return !binding_stays_local_p;
2829 }
2830
2831 /* Return true if the symbol referred to by H should be considered
2832 to resolve local to the current module, and false otherwise. Differs
2833 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2834 undefined symbols and weak symbols. */
2835
2836 bfd_boolean
2837 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2838 struct bfd_link_info *info,
2839 bfd_boolean local_protected)
2840 {
2841 const struct elf_backend_data *bed;
2842 struct elf_link_hash_table *hash_table;
2843
2844 /* If it's a local sym, of course we resolve locally. */
2845 if (h == NULL)
2846 return TRUE;
2847
2848 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2849 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2850 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2851 return TRUE;
2852
2853 /* Common symbols that become definitions don't get the DEF_REGULAR
2854 flag set, so test it first, and don't bail out. */
2855 if (ELF_COMMON_DEF_P (h))
2856 /* Do nothing. */;
2857 /* If we don't have a definition in a regular file, then we can't
2858 resolve locally. The sym is either undefined or dynamic. */
2859 else if (!h->def_regular)
2860 return FALSE;
2861
2862 /* Forced local symbols resolve locally. */
2863 if (h->forced_local)
2864 return TRUE;
2865
2866 /* As do non-dynamic symbols. */
2867 if (h->dynindx == -1)
2868 return TRUE;
2869
2870 /* At this point, we know the symbol is defined and dynamic. In an
2871 executable it must resolve locally, likewise when building symbolic
2872 shared libraries. */
2873 if (info->executable || SYMBOLIC_BIND (info, h))
2874 return TRUE;
2875
2876 /* Now deal with defined dynamic symbols in shared libraries. Ones
2877 with default visibility might not resolve locally. */
2878 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2879 return FALSE;
2880
2881 hash_table = elf_hash_table (info);
2882 if (!is_elf_hash_table (hash_table))
2883 return TRUE;
2884
2885 bed = get_elf_backend_data (hash_table->dynobj);
2886
2887 /* STV_PROTECTED non-function symbols are local. */
2888 if (!bed->is_function_type (h->type))
2889 return TRUE;
2890
2891 /* Function pointer equality tests may require that STV_PROTECTED
2892 symbols be treated as dynamic symbols, even when we know that the
2893 dynamic linker will resolve them locally. */
2894 return local_protected;
2895 }
2896
2897 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2898 aligned. Returns the first TLS output section. */
2899
2900 struct bfd_section *
2901 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2902 {
2903 struct bfd_section *sec, *tls;
2904 unsigned int align = 0;
2905
2906 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2907 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2908 break;
2909 tls = sec;
2910
2911 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2912 if (sec->alignment_power > align)
2913 align = sec->alignment_power;
2914
2915 elf_hash_table (info)->tls_sec = tls;
2916
2917 /* Ensure the alignment of the first section is the largest alignment,
2918 so that the tls segment starts aligned. */
2919 if (tls != NULL)
2920 tls->alignment_power = align;
2921
2922 return tls;
2923 }
2924
2925 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2926 static bfd_boolean
2927 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2928 Elf_Internal_Sym *sym)
2929 {
2930 const struct elf_backend_data *bed;
2931
2932 /* Local symbols do not count, but target specific ones might. */
2933 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2934 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2935 return FALSE;
2936
2937 bed = get_elf_backend_data (abfd);
2938 /* Function symbols do not count. */
2939 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2940 return FALSE;
2941
2942 /* If the section is undefined, then so is the symbol. */
2943 if (sym->st_shndx == SHN_UNDEF)
2944 return FALSE;
2945
2946 /* If the symbol is defined in the common section, then
2947 it is a common definition and so does not count. */
2948 if (bed->common_definition (sym))
2949 return FALSE;
2950
2951 /* If the symbol is in a target specific section then we
2952 must rely upon the backend to tell us what it is. */
2953 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2954 /* FIXME - this function is not coded yet:
2955
2956 return _bfd_is_global_symbol_definition (abfd, sym);
2957
2958 Instead for now assume that the definition is not global,
2959 Even if this is wrong, at least the linker will behave
2960 in the same way that it used to do. */
2961 return FALSE;
2962
2963 return TRUE;
2964 }
2965
2966 /* Search the symbol table of the archive element of the archive ABFD
2967 whose archive map contains a mention of SYMDEF, and determine if
2968 the symbol is defined in this element. */
2969 static bfd_boolean
2970 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2971 {
2972 Elf_Internal_Shdr * hdr;
2973 bfd_size_type symcount;
2974 bfd_size_type extsymcount;
2975 bfd_size_type extsymoff;
2976 Elf_Internal_Sym *isymbuf;
2977 Elf_Internal_Sym *isym;
2978 Elf_Internal_Sym *isymend;
2979 bfd_boolean result;
2980
2981 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2982 if (abfd == NULL)
2983 return FALSE;
2984
2985 if (! bfd_check_format (abfd, bfd_object))
2986 return FALSE;
2987
2988 /* If we have already included the element containing this symbol in the
2989 link then we do not need to include it again. Just claim that any symbol
2990 it contains is not a definition, so that our caller will not decide to
2991 (re)include this element. */
2992 if (abfd->archive_pass)
2993 return FALSE;
2994
2995 /* Select the appropriate symbol table. */
2996 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2997 hdr = &elf_tdata (abfd)->symtab_hdr;
2998 else
2999 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3000
3001 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3002
3003 /* The sh_info field of the symtab header tells us where the
3004 external symbols start. We don't care about the local symbols. */
3005 if (elf_bad_symtab (abfd))
3006 {
3007 extsymcount = symcount;
3008 extsymoff = 0;
3009 }
3010 else
3011 {
3012 extsymcount = symcount - hdr->sh_info;
3013 extsymoff = hdr->sh_info;
3014 }
3015
3016 if (extsymcount == 0)
3017 return FALSE;
3018
3019 /* Read in the symbol table. */
3020 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3021 NULL, NULL, NULL);
3022 if (isymbuf == NULL)
3023 return FALSE;
3024
3025 /* Scan the symbol table looking for SYMDEF. */
3026 result = FALSE;
3027 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3028 {
3029 const char *name;
3030
3031 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3032 isym->st_name);
3033 if (name == NULL)
3034 break;
3035
3036 if (strcmp (name, symdef->name) == 0)
3037 {
3038 result = is_global_data_symbol_definition (abfd, isym);
3039 break;
3040 }
3041 }
3042
3043 free (isymbuf);
3044
3045 return result;
3046 }
3047 \f
3048 /* Add an entry to the .dynamic table. */
3049
3050 bfd_boolean
3051 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3052 bfd_vma tag,
3053 bfd_vma val)
3054 {
3055 struct elf_link_hash_table *hash_table;
3056 const struct elf_backend_data *bed;
3057 asection *s;
3058 bfd_size_type newsize;
3059 bfd_byte *newcontents;
3060 Elf_Internal_Dyn dyn;
3061
3062 hash_table = elf_hash_table (info);
3063 if (! is_elf_hash_table (hash_table))
3064 return FALSE;
3065
3066 bed = get_elf_backend_data (hash_table->dynobj);
3067 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3068 BFD_ASSERT (s != NULL);
3069
3070 newsize = s->size + bed->s->sizeof_dyn;
3071 newcontents = bfd_realloc (s->contents, newsize);
3072 if (newcontents == NULL)
3073 return FALSE;
3074
3075 dyn.d_tag = tag;
3076 dyn.d_un.d_val = val;
3077 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3078
3079 s->size = newsize;
3080 s->contents = newcontents;
3081
3082 return TRUE;
3083 }
3084
3085 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3086 otherwise just check whether one already exists. Returns -1 on error,
3087 1 if a DT_NEEDED tag already exists, and 0 on success. */
3088
3089 static int
3090 elf_add_dt_needed_tag (bfd *abfd,
3091 struct bfd_link_info *info,
3092 const char *soname,
3093 bfd_boolean do_it)
3094 {
3095 struct elf_link_hash_table *hash_table;
3096 bfd_size_type oldsize;
3097 bfd_size_type strindex;
3098
3099 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3100 return -1;
3101
3102 hash_table = elf_hash_table (info);
3103 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3104 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3105 if (strindex == (bfd_size_type) -1)
3106 return -1;
3107
3108 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3109 {
3110 asection *sdyn;
3111 const struct elf_backend_data *bed;
3112 bfd_byte *extdyn;
3113
3114 bed = get_elf_backend_data (hash_table->dynobj);
3115 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3116 if (sdyn != NULL)
3117 for (extdyn = sdyn->contents;
3118 extdyn < sdyn->contents + sdyn->size;
3119 extdyn += bed->s->sizeof_dyn)
3120 {
3121 Elf_Internal_Dyn dyn;
3122
3123 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3124 if (dyn.d_tag == DT_NEEDED
3125 && dyn.d_un.d_val == strindex)
3126 {
3127 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3128 return 1;
3129 }
3130 }
3131 }
3132
3133 if (do_it)
3134 {
3135 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3136 return -1;
3137
3138 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3139 return -1;
3140 }
3141 else
3142 /* We were just checking for existence of the tag. */
3143 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3144
3145 return 0;
3146 }
3147
3148 static bfd_boolean
3149 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3150 {
3151 for (; needed != NULL; needed = needed->next)
3152 if (strcmp (soname, needed->name) == 0)
3153 return TRUE;
3154
3155 return FALSE;
3156 }
3157
3158 /* Sort symbol by value and section. */
3159 static int
3160 elf_sort_symbol (const void *arg1, const void *arg2)
3161 {
3162 const struct elf_link_hash_entry *h1;
3163 const struct elf_link_hash_entry *h2;
3164 bfd_signed_vma vdiff;
3165
3166 h1 = *(const struct elf_link_hash_entry **) arg1;
3167 h2 = *(const struct elf_link_hash_entry **) arg2;
3168 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3169 if (vdiff != 0)
3170 return vdiff > 0 ? 1 : -1;
3171 else
3172 {
3173 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3174 if (sdiff != 0)
3175 return sdiff > 0 ? 1 : -1;
3176 }
3177 return 0;
3178 }
3179
3180 /* This function is used to adjust offsets into .dynstr for
3181 dynamic symbols. This is called via elf_link_hash_traverse. */
3182
3183 static bfd_boolean
3184 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3185 {
3186 struct elf_strtab_hash *dynstr = data;
3187
3188 if (h->root.type == bfd_link_hash_warning)
3189 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3190
3191 if (h->dynindx != -1)
3192 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3193 return TRUE;
3194 }
3195
3196 /* Assign string offsets in .dynstr, update all structures referencing
3197 them. */
3198
3199 static bfd_boolean
3200 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3201 {
3202 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3203 struct elf_link_local_dynamic_entry *entry;
3204 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3205 bfd *dynobj = hash_table->dynobj;
3206 asection *sdyn;
3207 bfd_size_type size;
3208 const struct elf_backend_data *bed;
3209 bfd_byte *extdyn;
3210
3211 _bfd_elf_strtab_finalize (dynstr);
3212 size = _bfd_elf_strtab_size (dynstr);
3213
3214 bed = get_elf_backend_data (dynobj);
3215 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3216 BFD_ASSERT (sdyn != NULL);
3217
3218 /* Update all .dynamic entries referencing .dynstr strings. */
3219 for (extdyn = sdyn->contents;
3220 extdyn < sdyn->contents + sdyn->size;
3221 extdyn += bed->s->sizeof_dyn)
3222 {
3223 Elf_Internal_Dyn dyn;
3224
3225 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3226 switch (dyn.d_tag)
3227 {
3228 case DT_STRSZ:
3229 dyn.d_un.d_val = size;
3230 break;
3231 case DT_NEEDED:
3232 case DT_SONAME:
3233 case DT_RPATH:
3234 case DT_RUNPATH:
3235 case DT_FILTER:
3236 case DT_AUXILIARY:
3237 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3238 break;
3239 default:
3240 continue;
3241 }
3242 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3243 }
3244
3245 /* Now update local dynamic symbols. */
3246 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3247 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3248 entry->isym.st_name);
3249
3250 /* And the rest of dynamic symbols. */
3251 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3252
3253 /* Adjust version definitions. */
3254 if (elf_tdata (output_bfd)->cverdefs)
3255 {
3256 asection *s;
3257 bfd_byte *p;
3258 bfd_size_type i;
3259 Elf_Internal_Verdef def;
3260 Elf_Internal_Verdaux defaux;
3261
3262 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3263 p = s->contents;
3264 do
3265 {
3266 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3267 &def);
3268 p += sizeof (Elf_External_Verdef);
3269 if (def.vd_aux != sizeof (Elf_External_Verdef))
3270 continue;
3271 for (i = 0; i < def.vd_cnt; ++i)
3272 {
3273 _bfd_elf_swap_verdaux_in (output_bfd,
3274 (Elf_External_Verdaux *) p, &defaux);
3275 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3276 defaux.vda_name);
3277 _bfd_elf_swap_verdaux_out (output_bfd,
3278 &defaux, (Elf_External_Verdaux *) p);
3279 p += sizeof (Elf_External_Verdaux);
3280 }
3281 }
3282 while (def.vd_next);
3283 }
3284
3285 /* Adjust version references. */
3286 if (elf_tdata (output_bfd)->verref)
3287 {
3288 asection *s;
3289 bfd_byte *p;
3290 bfd_size_type i;
3291 Elf_Internal_Verneed need;
3292 Elf_Internal_Vernaux needaux;
3293
3294 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3295 p = s->contents;
3296 do
3297 {
3298 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3299 &need);
3300 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3301 _bfd_elf_swap_verneed_out (output_bfd, &need,
3302 (Elf_External_Verneed *) p);
3303 p += sizeof (Elf_External_Verneed);
3304 for (i = 0; i < need.vn_cnt; ++i)
3305 {
3306 _bfd_elf_swap_vernaux_in (output_bfd,
3307 (Elf_External_Vernaux *) p, &needaux);
3308 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3309 needaux.vna_name);
3310 _bfd_elf_swap_vernaux_out (output_bfd,
3311 &needaux,
3312 (Elf_External_Vernaux *) p);
3313 p += sizeof (Elf_External_Vernaux);
3314 }
3315 }
3316 while (need.vn_next);
3317 }
3318
3319 return TRUE;
3320 }
3321 \f
3322 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3323 The default is to only match when the INPUT and OUTPUT are exactly
3324 the same target. */
3325
3326 bfd_boolean
3327 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3328 const bfd_target *output)
3329 {
3330 return input == output;
3331 }
3332
3333 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3334 This version is used when different targets for the same architecture
3335 are virtually identical. */
3336
3337 bfd_boolean
3338 _bfd_elf_relocs_compatible (const bfd_target *input,
3339 const bfd_target *output)
3340 {
3341 const struct elf_backend_data *obed, *ibed;
3342
3343 if (input == output)
3344 return TRUE;
3345
3346 ibed = xvec_get_elf_backend_data (input);
3347 obed = xvec_get_elf_backend_data (output);
3348
3349 if (ibed->arch != obed->arch)
3350 return FALSE;
3351
3352 /* If both backends are using this function, deem them compatible. */
3353 return ibed->relocs_compatible == obed->relocs_compatible;
3354 }
3355
3356 /* Add symbols from an ELF object file to the linker hash table. */
3357
3358 static bfd_boolean
3359 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3360 {
3361 Elf_Internal_Ehdr *ehdr;
3362 Elf_Internal_Shdr *hdr;
3363 bfd_size_type symcount;
3364 bfd_size_type extsymcount;
3365 bfd_size_type extsymoff;
3366 struct elf_link_hash_entry **sym_hash;
3367 bfd_boolean dynamic;
3368 Elf_External_Versym *extversym = NULL;
3369 Elf_External_Versym *ever;
3370 struct elf_link_hash_entry *weaks;
3371 struct elf_link_hash_entry **nondeflt_vers = NULL;
3372 bfd_size_type nondeflt_vers_cnt = 0;
3373 Elf_Internal_Sym *isymbuf = NULL;
3374 Elf_Internal_Sym *isym;
3375 Elf_Internal_Sym *isymend;
3376 const struct elf_backend_data *bed;
3377 bfd_boolean add_needed;
3378 struct elf_link_hash_table *htab;
3379 bfd_size_type amt;
3380 void *alloc_mark = NULL;
3381 struct bfd_hash_entry **old_table = NULL;
3382 unsigned int old_size = 0;
3383 unsigned int old_count = 0;
3384 void *old_tab = NULL;
3385 void *old_hash;
3386 void *old_ent;
3387 struct bfd_link_hash_entry *old_undefs = NULL;
3388 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3389 long old_dynsymcount = 0;
3390 size_t tabsize = 0;
3391 size_t hashsize = 0;
3392
3393 htab = elf_hash_table (info);
3394 bed = get_elf_backend_data (abfd);
3395
3396 if ((abfd->flags & DYNAMIC) == 0)
3397 dynamic = FALSE;
3398 else
3399 {
3400 dynamic = TRUE;
3401
3402 /* You can't use -r against a dynamic object. Also, there's no
3403 hope of using a dynamic object which does not exactly match
3404 the format of the output file. */
3405 if (info->relocatable
3406 || !is_elf_hash_table (htab)
3407 || info->output_bfd->xvec != abfd->xvec)
3408 {
3409 if (info->relocatable)
3410 bfd_set_error (bfd_error_invalid_operation);
3411 else
3412 bfd_set_error (bfd_error_wrong_format);
3413 goto error_return;
3414 }
3415 }
3416
3417 ehdr = elf_elfheader (abfd);
3418 if (info->warn_alternate_em
3419 && bed->elf_machine_code != ehdr->e_machine
3420 && ((bed->elf_machine_alt1 != 0
3421 && ehdr->e_machine == bed->elf_machine_alt1)
3422 || (bed->elf_machine_alt2 != 0
3423 && ehdr->e_machine == bed->elf_machine_alt2)))
3424 info->callbacks->einfo
3425 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3426 ehdr->e_machine, abfd, bed->elf_machine_code);
3427
3428 /* As a GNU extension, any input sections which are named
3429 .gnu.warning.SYMBOL are treated as warning symbols for the given
3430 symbol. This differs from .gnu.warning sections, which generate
3431 warnings when they are included in an output file. */
3432 if (info->executable)
3433 {
3434 asection *s;
3435
3436 for (s = abfd->sections; s != NULL; s = s->next)
3437 {
3438 const char *name;
3439
3440 name = bfd_get_section_name (abfd, s);
3441 if (CONST_STRNEQ (name, ".gnu.warning."))
3442 {
3443 char *msg;
3444 bfd_size_type sz;
3445
3446 name += sizeof ".gnu.warning." - 1;
3447
3448 /* If this is a shared object, then look up the symbol
3449 in the hash table. If it is there, and it is already
3450 been defined, then we will not be using the entry
3451 from this shared object, so we don't need to warn.
3452 FIXME: If we see the definition in a regular object
3453 later on, we will warn, but we shouldn't. The only
3454 fix is to keep track of what warnings we are supposed
3455 to emit, and then handle them all at the end of the
3456 link. */
3457 if (dynamic)
3458 {
3459 struct elf_link_hash_entry *h;
3460
3461 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3462
3463 /* FIXME: What about bfd_link_hash_common? */
3464 if (h != NULL
3465 && (h->root.type == bfd_link_hash_defined
3466 || h->root.type == bfd_link_hash_defweak))
3467 {
3468 /* We don't want to issue this warning. Clobber
3469 the section size so that the warning does not
3470 get copied into the output file. */
3471 s->size = 0;
3472 continue;
3473 }
3474 }
3475
3476 sz = s->size;
3477 msg = bfd_alloc (abfd, sz + 1);
3478 if (msg == NULL)
3479 goto error_return;
3480
3481 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3482 goto error_return;
3483
3484 msg[sz] = '\0';
3485
3486 if (! (_bfd_generic_link_add_one_symbol
3487 (info, abfd, name, BSF_WARNING, s, 0, msg,
3488 FALSE, bed->collect, NULL)))
3489 goto error_return;
3490
3491 if (! info->relocatable)
3492 {
3493 /* Clobber the section size so that the warning does
3494 not get copied into the output file. */
3495 s->size = 0;
3496
3497 /* Also set SEC_EXCLUDE, so that symbols defined in
3498 the warning section don't get copied to the output. */
3499 s->flags |= SEC_EXCLUDE;
3500 }
3501 }
3502 }
3503 }
3504
3505 add_needed = TRUE;
3506 if (! dynamic)
3507 {
3508 /* If we are creating a shared library, create all the dynamic
3509 sections immediately. We need to attach them to something,
3510 so we attach them to this BFD, provided it is the right
3511 format. FIXME: If there are no input BFD's of the same
3512 format as the output, we can't make a shared library. */
3513 if (info->shared
3514 && is_elf_hash_table (htab)
3515 && info->output_bfd->xvec == abfd->xvec
3516 && !htab->dynamic_sections_created)
3517 {
3518 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3519 goto error_return;
3520 }
3521 }
3522 else if (!is_elf_hash_table (htab))
3523 goto error_return;
3524 else
3525 {
3526 asection *s;
3527 const char *soname = NULL;
3528 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3529 int ret;
3530
3531 /* ld --just-symbols and dynamic objects don't mix very well.
3532 ld shouldn't allow it. */
3533 if ((s = abfd->sections) != NULL
3534 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3535 abort ();
3536
3537 /* If this dynamic lib was specified on the command line with
3538 --as-needed in effect, then we don't want to add a DT_NEEDED
3539 tag unless the lib is actually used. Similary for libs brought
3540 in by another lib's DT_NEEDED. When --no-add-needed is used
3541 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3542 any dynamic library in DT_NEEDED tags in the dynamic lib at
3543 all. */
3544 add_needed = (elf_dyn_lib_class (abfd)
3545 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3546 | DYN_NO_NEEDED)) == 0;
3547
3548 s = bfd_get_section_by_name (abfd, ".dynamic");
3549 if (s != NULL)
3550 {
3551 bfd_byte *dynbuf;
3552 bfd_byte *extdyn;
3553 unsigned int elfsec;
3554 unsigned long shlink;
3555
3556 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3557 goto error_free_dyn;
3558
3559 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3560 if (elfsec == SHN_BAD)
3561 goto error_free_dyn;
3562 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3563
3564 for (extdyn = dynbuf;
3565 extdyn < dynbuf + s->size;
3566 extdyn += bed->s->sizeof_dyn)
3567 {
3568 Elf_Internal_Dyn dyn;
3569
3570 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3571 if (dyn.d_tag == DT_SONAME)
3572 {
3573 unsigned int tagv = dyn.d_un.d_val;
3574 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3575 if (soname == NULL)
3576 goto error_free_dyn;
3577 }
3578 if (dyn.d_tag == DT_NEEDED)
3579 {
3580 struct bfd_link_needed_list *n, **pn;
3581 char *fnm, *anm;
3582 unsigned int tagv = dyn.d_un.d_val;
3583
3584 amt = sizeof (struct bfd_link_needed_list);
3585 n = bfd_alloc (abfd, amt);
3586 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3587 if (n == NULL || fnm == NULL)
3588 goto error_free_dyn;
3589 amt = strlen (fnm) + 1;
3590 anm = bfd_alloc (abfd, amt);
3591 if (anm == NULL)
3592 goto error_free_dyn;
3593 memcpy (anm, fnm, amt);
3594 n->name = anm;
3595 n->by = abfd;
3596 n->next = NULL;
3597 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3598 ;
3599 *pn = n;
3600 }
3601 if (dyn.d_tag == DT_RUNPATH)
3602 {
3603 struct bfd_link_needed_list *n, **pn;
3604 char *fnm, *anm;
3605 unsigned int tagv = dyn.d_un.d_val;
3606
3607 amt = sizeof (struct bfd_link_needed_list);
3608 n = bfd_alloc (abfd, amt);
3609 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3610 if (n == NULL || fnm == NULL)
3611 goto error_free_dyn;
3612 amt = strlen (fnm) + 1;
3613 anm = bfd_alloc (abfd, amt);
3614 if (anm == NULL)
3615 goto error_free_dyn;
3616 memcpy (anm, fnm, amt);
3617 n->name = anm;
3618 n->by = abfd;
3619 n->next = NULL;
3620 for (pn = & runpath;
3621 *pn != NULL;
3622 pn = &(*pn)->next)
3623 ;
3624 *pn = n;
3625 }
3626 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3627 if (!runpath && dyn.d_tag == DT_RPATH)
3628 {
3629 struct bfd_link_needed_list *n, **pn;
3630 char *fnm, *anm;
3631 unsigned int tagv = dyn.d_un.d_val;
3632
3633 amt = sizeof (struct bfd_link_needed_list);
3634 n = bfd_alloc (abfd, amt);
3635 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3636 if (n == NULL || fnm == NULL)
3637 goto error_free_dyn;
3638 amt = strlen (fnm) + 1;
3639 anm = bfd_alloc (abfd, amt);
3640 if (anm == NULL)
3641 {
3642 error_free_dyn:
3643 free (dynbuf);
3644 goto error_return;
3645 }
3646 memcpy (anm, fnm, amt);
3647 n->name = anm;
3648 n->by = abfd;
3649 n->next = NULL;
3650 for (pn = & rpath;
3651 *pn != NULL;
3652 pn = &(*pn)->next)
3653 ;
3654 *pn = n;
3655 }
3656 }
3657
3658 free (dynbuf);
3659 }
3660
3661 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3662 frees all more recently bfd_alloc'd blocks as well. */
3663 if (runpath)
3664 rpath = runpath;
3665
3666 if (rpath)
3667 {
3668 struct bfd_link_needed_list **pn;
3669 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3670 ;
3671 *pn = rpath;
3672 }
3673
3674 /* We do not want to include any of the sections in a dynamic
3675 object in the output file. We hack by simply clobbering the
3676 list of sections in the BFD. This could be handled more
3677 cleanly by, say, a new section flag; the existing
3678 SEC_NEVER_LOAD flag is not the one we want, because that one
3679 still implies that the section takes up space in the output
3680 file. */
3681 bfd_section_list_clear (abfd);
3682
3683 /* Find the name to use in a DT_NEEDED entry that refers to this
3684 object. If the object has a DT_SONAME entry, we use it.
3685 Otherwise, if the generic linker stuck something in
3686 elf_dt_name, we use that. Otherwise, we just use the file
3687 name. */
3688 if (soname == NULL || *soname == '\0')
3689 {
3690 soname = elf_dt_name (abfd);
3691 if (soname == NULL || *soname == '\0')
3692 soname = bfd_get_filename (abfd);
3693 }
3694
3695 /* Save the SONAME because sometimes the linker emulation code
3696 will need to know it. */
3697 elf_dt_name (abfd) = soname;
3698
3699 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3700 if (ret < 0)
3701 goto error_return;
3702
3703 /* If we have already included this dynamic object in the
3704 link, just ignore it. There is no reason to include a
3705 particular dynamic object more than once. */
3706 if (ret > 0)
3707 return TRUE;
3708 }
3709
3710 /* If this is a dynamic object, we always link against the .dynsym
3711 symbol table, not the .symtab symbol table. The dynamic linker
3712 will only see the .dynsym symbol table, so there is no reason to
3713 look at .symtab for a dynamic object. */
3714
3715 if (! dynamic || elf_dynsymtab (abfd) == 0)
3716 hdr = &elf_tdata (abfd)->symtab_hdr;
3717 else
3718 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3719
3720 symcount = hdr->sh_size / bed->s->sizeof_sym;
3721
3722 /* The sh_info field of the symtab header tells us where the
3723 external symbols start. We don't care about the local symbols at
3724 this point. */
3725 if (elf_bad_symtab (abfd))
3726 {
3727 extsymcount = symcount;
3728 extsymoff = 0;
3729 }
3730 else
3731 {
3732 extsymcount = symcount - hdr->sh_info;
3733 extsymoff = hdr->sh_info;
3734 }
3735
3736 sym_hash = NULL;
3737 if (extsymcount != 0)
3738 {
3739 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3740 NULL, NULL, NULL);
3741 if (isymbuf == NULL)
3742 goto error_return;
3743
3744 /* We store a pointer to the hash table entry for each external
3745 symbol. */
3746 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3747 sym_hash = bfd_alloc (abfd, amt);
3748 if (sym_hash == NULL)
3749 goto error_free_sym;
3750 elf_sym_hashes (abfd) = sym_hash;
3751 }
3752
3753 if (dynamic)
3754 {
3755 /* Read in any version definitions. */
3756 if (!_bfd_elf_slurp_version_tables (abfd,
3757 info->default_imported_symver))
3758 goto error_free_sym;
3759
3760 /* Read in the symbol versions, but don't bother to convert them
3761 to internal format. */
3762 if (elf_dynversym (abfd) != 0)
3763 {
3764 Elf_Internal_Shdr *versymhdr;
3765
3766 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3767 extversym = bfd_malloc (versymhdr->sh_size);
3768 if (extversym == NULL)
3769 goto error_free_sym;
3770 amt = versymhdr->sh_size;
3771 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3772 || bfd_bread (extversym, amt, abfd) != amt)
3773 goto error_free_vers;
3774 }
3775 }
3776
3777 /* If we are loading an as-needed shared lib, save the symbol table
3778 state before we start adding symbols. If the lib turns out
3779 to be unneeded, restore the state. */
3780 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3781 {
3782 unsigned int i;
3783 size_t entsize;
3784
3785 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3786 {
3787 struct bfd_hash_entry *p;
3788 struct elf_link_hash_entry *h;
3789
3790 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3791 {
3792 h = (struct elf_link_hash_entry *) p;
3793 entsize += htab->root.table.entsize;
3794 if (h->root.type == bfd_link_hash_warning)
3795 entsize += htab->root.table.entsize;
3796 }
3797 }
3798
3799 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3800 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3801 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3802 if (old_tab == NULL)
3803 goto error_free_vers;
3804
3805 /* Remember the current objalloc pointer, so that all mem for
3806 symbols added can later be reclaimed. */
3807 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3808 if (alloc_mark == NULL)
3809 goto error_free_vers;
3810
3811 /* Make a special call to the linker "notice" function to
3812 tell it that we are about to handle an as-needed lib. */
3813 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3814 notice_as_needed))
3815 goto error_free_vers;
3816
3817 /* Clone the symbol table and sym hashes. Remember some
3818 pointers into the symbol table, and dynamic symbol count. */
3819 old_hash = (char *) old_tab + tabsize;
3820 old_ent = (char *) old_hash + hashsize;
3821 memcpy (old_tab, htab->root.table.table, tabsize);
3822 memcpy (old_hash, sym_hash, hashsize);
3823 old_undefs = htab->root.undefs;
3824 old_undefs_tail = htab->root.undefs_tail;
3825 old_table = htab->root.table.table;
3826 old_size = htab->root.table.size;
3827 old_count = htab->root.table.count;
3828 old_dynsymcount = htab->dynsymcount;
3829
3830 for (i = 0; i < htab->root.table.size; i++)
3831 {
3832 struct bfd_hash_entry *p;
3833 struct elf_link_hash_entry *h;
3834
3835 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3836 {
3837 memcpy (old_ent, p, htab->root.table.entsize);
3838 old_ent = (char *) old_ent + htab->root.table.entsize;
3839 h = (struct elf_link_hash_entry *) p;
3840 if (h->root.type == bfd_link_hash_warning)
3841 {
3842 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3843 old_ent = (char *) old_ent + htab->root.table.entsize;
3844 }
3845 }
3846 }
3847 }
3848
3849 weaks = NULL;
3850 ever = extversym != NULL ? extversym + extsymoff : NULL;
3851 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3852 isym < isymend;
3853 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3854 {
3855 int bind;
3856 bfd_vma value;
3857 asection *sec, *new_sec;
3858 flagword flags;
3859 const char *name;
3860 struct elf_link_hash_entry *h;
3861 bfd_boolean definition;
3862 bfd_boolean size_change_ok;
3863 bfd_boolean type_change_ok;
3864 bfd_boolean new_weakdef;
3865 bfd_boolean override;
3866 bfd_boolean common;
3867 unsigned int old_alignment;
3868 bfd *old_bfd;
3869
3870 override = FALSE;
3871
3872 flags = BSF_NO_FLAGS;
3873 sec = NULL;
3874 value = isym->st_value;
3875 *sym_hash = NULL;
3876 common = bed->common_definition (isym);
3877
3878 bind = ELF_ST_BIND (isym->st_info);
3879 if (bind == STB_LOCAL)
3880 {
3881 /* This should be impossible, since ELF requires that all
3882 global symbols follow all local symbols, and that sh_info
3883 point to the first global symbol. Unfortunately, Irix 5
3884 screws this up. */
3885 continue;
3886 }
3887 else if (bind == STB_GLOBAL)
3888 {
3889 if (isym->st_shndx != SHN_UNDEF && !common)
3890 flags = BSF_GLOBAL;
3891 }
3892 else if (bind == STB_WEAK)
3893 flags = BSF_WEAK;
3894 else
3895 {
3896 /* Leave it up to the processor backend. */
3897 }
3898
3899 if (isym->st_shndx == SHN_UNDEF)
3900 sec = bfd_und_section_ptr;
3901 else if (isym->st_shndx == SHN_ABS)
3902 sec = bfd_abs_section_ptr;
3903 else if (isym->st_shndx == SHN_COMMON)
3904 {
3905 sec = bfd_com_section_ptr;
3906 /* What ELF calls the size we call the value. What ELF
3907 calls the value we call the alignment. */
3908 value = isym->st_size;
3909 }
3910 else
3911 {
3912 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3913 if (sec == NULL)
3914 sec = bfd_abs_section_ptr;
3915 else if (sec->kept_section)
3916 {
3917 /* Symbols from discarded section are undefined. We keep
3918 its visibility. */
3919 sec = bfd_und_section_ptr;
3920 isym->st_shndx = SHN_UNDEF;
3921 }
3922 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3923 value -= sec->vma;
3924 }
3925
3926 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3927 isym->st_name);
3928 if (name == NULL)
3929 goto error_free_vers;
3930
3931 if (isym->st_shndx == SHN_COMMON
3932 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3933 && !info->relocatable)
3934 {
3935 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3936
3937 if (tcomm == NULL)
3938 {
3939 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3940 (SEC_ALLOC
3941 | SEC_IS_COMMON
3942 | SEC_LINKER_CREATED
3943 | SEC_THREAD_LOCAL));
3944 if (tcomm == NULL)
3945 goto error_free_vers;
3946 }
3947 sec = tcomm;
3948 }
3949 else if (bed->elf_add_symbol_hook)
3950 {
3951 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3952 &sec, &value))
3953 goto error_free_vers;
3954
3955 /* The hook function sets the name to NULL if this symbol
3956 should be skipped for some reason. */
3957 if (name == NULL)
3958 continue;
3959 }
3960
3961 /* Sanity check that all possibilities were handled. */
3962 if (sec == NULL)
3963 {
3964 bfd_set_error (bfd_error_bad_value);
3965 goto error_free_vers;
3966 }
3967
3968 if (bfd_is_und_section (sec)
3969 || bfd_is_com_section (sec))
3970 definition = FALSE;
3971 else
3972 definition = TRUE;
3973
3974 size_change_ok = FALSE;
3975 type_change_ok = bed->type_change_ok;
3976 old_alignment = 0;
3977 old_bfd = NULL;
3978 new_sec = sec;
3979
3980 if (is_elf_hash_table (htab))
3981 {
3982 Elf_Internal_Versym iver;
3983 unsigned int vernum = 0;
3984 bfd_boolean skip;
3985
3986 if (ever == NULL)
3987 {
3988 if (info->default_imported_symver)
3989 /* Use the default symbol version created earlier. */
3990 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3991 else
3992 iver.vs_vers = 0;
3993 }
3994 else
3995 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3996
3997 vernum = iver.vs_vers & VERSYM_VERSION;
3998
3999 /* If this is a hidden symbol, or if it is not version
4000 1, we append the version name to the symbol name.
4001 However, we do not modify a non-hidden absolute symbol
4002 if it is not a function, because it might be the version
4003 symbol itself. FIXME: What if it isn't? */
4004 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4005 || (vernum > 1
4006 && (!bfd_is_abs_section (sec)
4007 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4008 {
4009 const char *verstr;
4010 size_t namelen, verlen, newlen;
4011 char *newname, *p;
4012
4013 if (isym->st_shndx != SHN_UNDEF)
4014 {
4015 if (vernum > elf_tdata (abfd)->cverdefs)
4016 verstr = NULL;
4017 else if (vernum > 1)
4018 verstr =
4019 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4020 else
4021 verstr = "";
4022
4023 if (verstr == NULL)
4024 {
4025 (*_bfd_error_handler)
4026 (_("%B: %s: invalid version %u (max %d)"),
4027 abfd, name, vernum,
4028 elf_tdata (abfd)->cverdefs);
4029 bfd_set_error (bfd_error_bad_value);
4030 goto error_free_vers;
4031 }
4032 }
4033 else
4034 {
4035 /* We cannot simply test for the number of
4036 entries in the VERNEED section since the
4037 numbers for the needed versions do not start
4038 at 0. */
4039 Elf_Internal_Verneed *t;
4040
4041 verstr = NULL;
4042 for (t = elf_tdata (abfd)->verref;
4043 t != NULL;
4044 t = t->vn_nextref)
4045 {
4046 Elf_Internal_Vernaux *a;
4047
4048 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4049 {
4050 if (a->vna_other == vernum)
4051 {
4052 verstr = a->vna_nodename;
4053 break;
4054 }
4055 }
4056 if (a != NULL)
4057 break;
4058 }
4059 if (verstr == NULL)
4060 {
4061 (*_bfd_error_handler)
4062 (_("%B: %s: invalid needed version %d"),
4063 abfd, name, vernum);
4064 bfd_set_error (bfd_error_bad_value);
4065 goto error_free_vers;
4066 }
4067 }
4068
4069 namelen = strlen (name);
4070 verlen = strlen (verstr);
4071 newlen = namelen + verlen + 2;
4072 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4073 && isym->st_shndx != SHN_UNDEF)
4074 ++newlen;
4075
4076 newname = bfd_hash_allocate (&htab->root.table, newlen);
4077 if (newname == NULL)
4078 goto error_free_vers;
4079 memcpy (newname, name, namelen);
4080 p = newname + namelen;
4081 *p++ = ELF_VER_CHR;
4082 /* If this is a defined non-hidden version symbol,
4083 we add another @ to the name. This indicates the
4084 default version of the symbol. */
4085 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4086 && isym->st_shndx != SHN_UNDEF)
4087 *p++ = ELF_VER_CHR;
4088 memcpy (p, verstr, verlen + 1);
4089
4090 name = newname;
4091 }
4092
4093 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4094 &value, &old_alignment,
4095 sym_hash, &skip, &override,
4096 &type_change_ok, &size_change_ok))
4097 goto error_free_vers;
4098
4099 if (skip)
4100 continue;
4101
4102 if (override)
4103 definition = FALSE;
4104
4105 h = *sym_hash;
4106 while (h->root.type == bfd_link_hash_indirect
4107 || h->root.type == bfd_link_hash_warning)
4108 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4109
4110 /* Remember the old alignment if this is a common symbol, so
4111 that we don't reduce the alignment later on. We can't
4112 check later, because _bfd_generic_link_add_one_symbol
4113 will set a default for the alignment which we want to
4114 override. We also remember the old bfd where the existing
4115 definition comes from. */
4116 switch (h->root.type)
4117 {
4118 default:
4119 break;
4120
4121 case bfd_link_hash_defined:
4122 case bfd_link_hash_defweak:
4123 old_bfd = h->root.u.def.section->owner;
4124 break;
4125
4126 case bfd_link_hash_common:
4127 old_bfd = h->root.u.c.p->section->owner;
4128 old_alignment = h->root.u.c.p->alignment_power;
4129 break;
4130 }
4131
4132 if (elf_tdata (abfd)->verdef != NULL
4133 && ! override
4134 && vernum > 1
4135 && definition)
4136 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4137 }
4138
4139 if (! (_bfd_generic_link_add_one_symbol
4140 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4141 (struct bfd_link_hash_entry **) sym_hash)))
4142 goto error_free_vers;
4143
4144 h = *sym_hash;
4145 while (h->root.type == bfd_link_hash_indirect
4146 || h->root.type == bfd_link_hash_warning)
4147 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4148 *sym_hash = h;
4149
4150 new_weakdef = FALSE;
4151 if (dynamic
4152 && definition
4153 && (flags & BSF_WEAK) != 0
4154 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4155 && is_elf_hash_table (htab)
4156 && h->u.weakdef == NULL)
4157 {
4158 /* Keep a list of all weak defined non function symbols from
4159 a dynamic object, using the weakdef field. Later in this
4160 function we will set the weakdef field to the correct
4161 value. We only put non-function symbols from dynamic
4162 objects on this list, because that happens to be the only
4163 time we need to know the normal symbol corresponding to a
4164 weak symbol, and the information is time consuming to
4165 figure out. If the weakdef field is not already NULL,
4166 then this symbol was already defined by some previous
4167 dynamic object, and we will be using that previous
4168 definition anyhow. */
4169
4170 h->u.weakdef = weaks;
4171 weaks = h;
4172 new_weakdef = TRUE;
4173 }
4174
4175 /* Set the alignment of a common symbol. */
4176 if ((common || bfd_is_com_section (sec))
4177 && h->root.type == bfd_link_hash_common)
4178 {
4179 unsigned int align;
4180
4181 if (common)
4182 align = bfd_log2 (isym->st_value);
4183 else
4184 {
4185 /* The new symbol is a common symbol in a shared object.
4186 We need to get the alignment from the section. */
4187 align = new_sec->alignment_power;
4188 }
4189 if (align > old_alignment
4190 /* Permit an alignment power of zero if an alignment of one
4191 is specified and no other alignments have been specified. */
4192 || (isym->st_value == 1 && old_alignment == 0))
4193 h->root.u.c.p->alignment_power = align;
4194 else
4195 h->root.u.c.p->alignment_power = old_alignment;
4196 }
4197
4198 if (is_elf_hash_table (htab))
4199 {
4200 bfd_boolean dynsym;
4201
4202 /* Check the alignment when a common symbol is involved. This
4203 can change when a common symbol is overridden by a normal
4204 definition or a common symbol is ignored due to the old
4205 normal definition. We need to make sure the maximum
4206 alignment is maintained. */
4207 if ((old_alignment || common)
4208 && h->root.type != bfd_link_hash_common)
4209 {
4210 unsigned int common_align;
4211 unsigned int normal_align;
4212 unsigned int symbol_align;
4213 bfd *normal_bfd;
4214 bfd *common_bfd;
4215
4216 symbol_align = ffs (h->root.u.def.value) - 1;
4217 if (h->root.u.def.section->owner != NULL
4218 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4219 {
4220 normal_align = h->root.u.def.section->alignment_power;
4221 if (normal_align > symbol_align)
4222 normal_align = symbol_align;
4223 }
4224 else
4225 normal_align = symbol_align;
4226
4227 if (old_alignment)
4228 {
4229 common_align = old_alignment;
4230 common_bfd = old_bfd;
4231 normal_bfd = abfd;
4232 }
4233 else
4234 {
4235 common_align = bfd_log2 (isym->st_value);
4236 common_bfd = abfd;
4237 normal_bfd = old_bfd;
4238 }
4239
4240 if (normal_align < common_align)
4241 {
4242 /* PR binutils/2735 */
4243 if (normal_bfd == NULL)
4244 (*_bfd_error_handler)
4245 (_("Warning: alignment %u of common symbol `%s' in %B"
4246 " is greater than the alignment (%u) of its section %A"),
4247 common_bfd, h->root.u.def.section,
4248 1 << common_align, name, 1 << normal_align);
4249 else
4250 (*_bfd_error_handler)
4251 (_("Warning: alignment %u of symbol `%s' in %B"
4252 " is smaller than %u in %B"),
4253 normal_bfd, common_bfd,
4254 1 << normal_align, name, 1 << common_align);
4255 }
4256 }
4257
4258 /* Remember the symbol size if it isn't undefined. */
4259 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4260 && (definition || h->size == 0))
4261 {
4262 if (h->size != 0
4263 && h->size != isym->st_size
4264 && ! size_change_ok)
4265 (*_bfd_error_handler)
4266 (_("Warning: size of symbol `%s' changed"
4267 " from %lu in %B to %lu in %B"),
4268 old_bfd, abfd,
4269 name, (unsigned long) h->size,
4270 (unsigned long) isym->st_size);
4271
4272 h->size = isym->st_size;
4273 }
4274
4275 /* If this is a common symbol, then we always want H->SIZE
4276 to be the size of the common symbol. The code just above
4277 won't fix the size if a common symbol becomes larger. We
4278 don't warn about a size change here, because that is
4279 covered by --warn-common. Allow changed between different
4280 function types. */
4281 if (h->root.type == bfd_link_hash_common)
4282 h->size = h->root.u.c.size;
4283
4284 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4285 && (definition || h->type == STT_NOTYPE))
4286 {
4287 if (h->type != STT_NOTYPE
4288 && h->type != ELF_ST_TYPE (isym->st_info)
4289 && ! type_change_ok)
4290 (*_bfd_error_handler)
4291 (_("Warning: type of symbol `%s' changed"
4292 " from %d to %d in %B"),
4293 abfd, name, h->type, ELF_ST_TYPE (isym->st_info));
4294
4295 h->type = ELF_ST_TYPE (isym->st_info);
4296 }
4297
4298 /* Merge st_other field. */
4299 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4300
4301 /* Set a flag in the hash table entry indicating the type of
4302 reference or definition we just found. Keep a count of
4303 the number of dynamic symbols we find. A dynamic symbol
4304 is one which is referenced or defined by both a regular
4305 object and a shared object. */
4306 dynsym = FALSE;
4307 if (! dynamic)
4308 {
4309 if (! definition)
4310 {
4311 h->ref_regular = 1;
4312 if (bind != STB_WEAK)
4313 h->ref_regular_nonweak = 1;
4314 }
4315 else
4316 {
4317 h->def_regular = 1;
4318 if (h->def_dynamic)
4319 {
4320 h->def_dynamic = 0;
4321 h->ref_dynamic = 1;
4322 h->dynamic_def = 1;
4323 }
4324 }
4325 if (! info->executable
4326 || h->def_dynamic
4327 || h->ref_dynamic)
4328 dynsym = TRUE;
4329 }
4330 else
4331 {
4332 if (! definition)
4333 h->ref_dynamic = 1;
4334 else
4335 h->def_dynamic = 1;
4336 if (h->def_regular
4337 || h->ref_regular
4338 || (h->u.weakdef != NULL
4339 && ! new_weakdef
4340 && h->u.weakdef->dynindx != -1))
4341 dynsym = TRUE;
4342 }
4343
4344 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4345 {
4346 /* We don't want to make debug symbol dynamic. */
4347 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4348 dynsym = FALSE;
4349 }
4350
4351 /* Check to see if we need to add an indirect symbol for
4352 the default name. */
4353 if (definition || h->root.type == bfd_link_hash_common)
4354 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4355 &sec, &value, &dynsym,
4356 override))
4357 goto error_free_vers;
4358
4359 if (definition && !dynamic)
4360 {
4361 char *p = strchr (name, ELF_VER_CHR);
4362 if (p != NULL && p[1] != ELF_VER_CHR)
4363 {
4364 /* Queue non-default versions so that .symver x, x@FOO
4365 aliases can be checked. */
4366 if (!nondeflt_vers)
4367 {
4368 amt = ((isymend - isym + 1)
4369 * sizeof (struct elf_link_hash_entry *));
4370 nondeflt_vers = bfd_malloc (amt);
4371 if (!nondeflt_vers)
4372 goto error_free_vers;
4373 }
4374 nondeflt_vers[nondeflt_vers_cnt++] = h;
4375 }
4376 }
4377
4378 if (dynsym && h->dynindx == -1)
4379 {
4380 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4381 goto error_free_vers;
4382 if (h->u.weakdef != NULL
4383 && ! new_weakdef
4384 && h->u.weakdef->dynindx == -1)
4385 {
4386 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4387 goto error_free_vers;
4388 }
4389 }
4390 else if (dynsym && h->dynindx != -1)
4391 /* If the symbol already has a dynamic index, but
4392 visibility says it should not be visible, turn it into
4393 a local symbol. */
4394 switch (ELF_ST_VISIBILITY (h->other))
4395 {
4396 case STV_INTERNAL:
4397 case STV_HIDDEN:
4398 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4399 dynsym = FALSE;
4400 break;
4401 }
4402
4403 if (!add_needed
4404 && definition
4405 && ((dynsym
4406 && h->ref_regular)
4407 || (h->ref_dynamic
4408 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4409 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4410 {
4411 int ret;
4412 const char *soname = elf_dt_name (abfd);
4413
4414 /* A symbol from a library loaded via DT_NEEDED of some
4415 other library is referenced by a regular object.
4416 Add a DT_NEEDED entry for it. Issue an error if
4417 --no-add-needed is used. */
4418 if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4419 {
4420 (*_bfd_error_handler)
4421 (_("%s: invalid DSO for symbol `%s' definition"),
4422 abfd, name);
4423 bfd_set_error (bfd_error_bad_value);
4424 goto error_free_vers;
4425 }
4426
4427 elf_dyn_lib_class (abfd) &= ~DYN_AS_NEEDED;
4428
4429 add_needed = TRUE;
4430 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4431 if (ret < 0)
4432 goto error_free_vers;
4433
4434 BFD_ASSERT (ret == 0);
4435 }
4436 }
4437 }
4438
4439 if (extversym != NULL)
4440 {
4441 free (extversym);
4442 extversym = NULL;
4443 }
4444
4445 if (isymbuf != NULL)
4446 {
4447 free (isymbuf);
4448 isymbuf = NULL;
4449 }
4450
4451 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4452 {
4453 unsigned int i;
4454
4455 /* Restore the symbol table. */
4456 if (bed->as_needed_cleanup)
4457 (*bed->as_needed_cleanup) (abfd, info);
4458 old_hash = (char *) old_tab + tabsize;
4459 old_ent = (char *) old_hash + hashsize;
4460 sym_hash = elf_sym_hashes (abfd);
4461 htab->root.table.table = old_table;
4462 htab->root.table.size = old_size;
4463 htab->root.table.count = old_count;
4464 memcpy (htab->root.table.table, old_tab, tabsize);
4465 memcpy (sym_hash, old_hash, hashsize);
4466 htab->root.undefs = old_undefs;
4467 htab->root.undefs_tail = old_undefs_tail;
4468 for (i = 0; i < htab->root.table.size; i++)
4469 {
4470 struct bfd_hash_entry *p;
4471 struct elf_link_hash_entry *h;
4472
4473 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4474 {
4475 h = (struct elf_link_hash_entry *) p;
4476 if (h->root.type == bfd_link_hash_warning)
4477 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4478 if (h->dynindx >= old_dynsymcount)
4479 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4480
4481 memcpy (p, old_ent, htab->root.table.entsize);
4482 old_ent = (char *) old_ent + htab->root.table.entsize;
4483 h = (struct elf_link_hash_entry *) p;
4484 if (h->root.type == bfd_link_hash_warning)
4485 {
4486 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4487 old_ent = (char *) old_ent + htab->root.table.entsize;
4488 }
4489 }
4490 }
4491
4492 /* Make a special call to the linker "notice" function to
4493 tell it that symbols added for crefs may need to be removed. */
4494 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4495 notice_not_needed))
4496 goto error_free_vers;
4497
4498 free (old_tab);
4499 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4500 alloc_mark);
4501 if (nondeflt_vers != NULL)
4502 free (nondeflt_vers);
4503 return TRUE;
4504 }
4505
4506 if (old_tab != NULL)
4507 {
4508 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4509 notice_needed))
4510 goto error_free_vers;
4511 free (old_tab);
4512 old_tab = NULL;
4513 }
4514
4515 /* Now that all the symbols from this input file are created, handle
4516 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4517 if (nondeflt_vers != NULL)
4518 {
4519 bfd_size_type cnt, symidx;
4520
4521 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4522 {
4523 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4524 char *shortname, *p;
4525
4526 p = strchr (h->root.root.string, ELF_VER_CHR);
4527 if (p == NULL
4528 || (h->root.type != bfd_link_hash_defined
4529 && h->root.type != bfd_link_hash_defweak))
4530 continue;
4531
4532 amt = p - h->root.root.string;
4533 shortname = bfd_malloc (amt + 1);
4534 if (!shortname)
4535 goto error_free_vers;
4536 memcpy (shortname, h->root.root.string, amt);
4537 shortname[amt] = '\0';
4538
4539 hi = (struct elf_link_hash_entry *)
4540 bfd_link_hash_lookup (&htab->root, shortname,
4541 FALSE, FALSE, FALSE);
4542 if (hi != NULL
4543 && hi->root.type == h->root.type
4544 && hi->root.u.def.value == h->root.u.def.value
4545 && hi->root.u.def.section == h->root.u.def.section)
4546 {
4547 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4548 hi->root.type = bfd_link_hash_indirect;
4549 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4550 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4551 sym_hash = elf_sym_hashes (abfd);
4552 if (sym_hash)
4553 for (symidx = 0; symidx < extsymcount; ++symidx)
4554 if (sym_hash[symidx] == hi)
4555 {
4556 sym_hash[symidx] = h;
4557 break;
4558 }
4559 }
4560 free (shortname);
4561 }
4562 free (nondeflt_vers);
4563 nondeflt_vers = NULL;
4564 }
4565
4566 /* Now set the weakdefs field correctly for all the weak defined
4567 symbols we found. The only way to do this is to search all the
4568 symbols. Since we only need the information for non functions in
4569 dynamic objects, that's the only time we actually put anything on
4570 the list WEAKS. We need this information so that if a regular
4571 object refers to a symbol defined weakly in a dynamic object, the
4572 real symbol in the dynamic object is also put in the dynamic
4573 symbols; we also must arrange for both symbols to point to the
4574 same memory location. We could handle the general case of symbol
4575 aliasing, but a general symbol alias can only be generated in
4576 assembler code, handling it correctly would be very time
4577 consuming, and other ELF linkers don't handle general aliasing
4578 either. */
4579 if (weaks != NULL)
4580 {
4581 struct elf_link_hash_entry **hpp;
4582 struct elf_link_hash_entry **hppend;
4583 struct elf_link_hash_entry **sorted_sym_hash;
4584 struct elf_link_hash_entry *h;
4585 size_t sym_count;
4586
4587 /* Since we have to search the whole symbol list for each weak
4588 defined symbol, search time for N weak defined symbols will be
4589 O(N^2). Binary search will cut it down to O(NlogN). */
4590 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4591 sorted_sym_hash = bfd_malloc (amt);
4592 if (sorted_sym_hash == NULL)
4593 goto error_return;
4594 sym_hash = sorted_sym_hash;
4595 hpp = elf_sym_hashes (abfd);
4596 hppend = hpp + extsymcount;
4597 sym_count = 0;
4598 for (; hpp < hppend; hpp++)
4599 {
4600 h = *hpp;
4601 if (h != NULL
4602 && h->root.type == bfd_link_hash_defined
4603 && !bed->is_function_type (h->type))
4604 {
4605 *sym_hash = h;
4606 sym_hash++;
4607 sym_count++;
4608 }
4609 }
4610
4611 qsort (sorted_sym_hash, sym_count,
4612 sizeof (struct elf_link_hash_entry *),
4613 elf_sort_symbol);
4614
4615 while (weaks != NULL)
4616 {
4617 struct elf_link_hash_entry *hlook;
4618 asection *slook;
4619 bfd_vma vlook;
4620 long ilook;
4621 size_t i, j, idx;
4622
4623 hlook = weaks;
4624 weaks = hlook->u.weakdef;
4625 hlook->u.weakdef = NULL;
4626
4627 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4628 || hlook->root.type == bfd_link_hash_defweak
4629 || hlook->root.type == bfd_link_hash_common
4630 || hlook->root.type == bfd_link_hash_indirect);
4631 slook = hlook->root.u.def.section;
4632 vlook = hlook->root.u.def.value;
4633
4634 ilook = -1;
4635 i = 0;
4636 j = sym_count;
4637 while (i < j)
4638 {
4639 bfd_signed_vma vdiff;
4640 idx = (i + j) / 2;
4641 h = sorted_sym_hash [idx];
4642 vdiff = vlook - h->root.u.def.value;
4643 if (vdiff < 0)
4644 j = idx;
4645 else if (vdiff > 0)
4646 i = idx + 1;
4647 else
4648 {
4649 long sdiff = slook->id - h->root.u.def.section->id;
4650 if (sdiff < 0)
4651 j = idx;
4652 else if (sdiff > 0)
4653 i = idx + 1;
4654 else
4655 {
4656 ilook = idx;
4657 break;
4658 }
4659 }
4660 }
4661
4662 /* We didn't find a value/section match. */
4663 if (ilook == -1)
4664 continue;
4665
4666 for (i = ilook; i < sym_count; i++)
4667 {
4668 h = sorted_sym_hash [i];
4669
4670 /* Stop if value or section doesn't match. */
4671 if (h->root.u.def.value != vlook
4672 || h->root.u.def.section != slook)
4673 break;
4674 else if (h != hlook)
4675 {
4676 hlook->u.weakdef = h;
4677
4678 /* If the weak definition is in the list of dynamic
4679 symbols, make sure the real definition is put
4680 there as well. */
4681 if (hlook->dynindx != -1 && h->dynindx == -1)
4682 {
4683 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4684 {
4685 err_free_sym_hash:
4686 free (sorted_sym_hash);
4687 goto error_return;
4688 }
4689 }
4690
4691 /* If the real definition is in the list of dynamic
4692 symbols, make sure the weak definition is put
4693 there as well. If we don't do this, then the
4694 dynamic loader might not merge the entries for the
4695 real definition and the weak definition. */
4696 if (h->dynindx != -1 && hlook->dynindx == -1)
4697 {
4698 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4699 goto err_free_sym_hash;
4700 }
4701 break;
4702 }
4703 }
4704 }
4705
4706 free (sorted_sym_hash);
4707 }
4708
4709 if (bed->check_directives
4710 && !(*bed->check_directives) (abfd, info))
4711 return FALSE;
4712
4713 /* If this object is the same format as the output object, and it is
4714 not a shared library, then let the backend look through the
4715 relocs.
4716
4717 This is required to build global offset table entries and to
4718 arrange for dynamic relocs. It is not required for the
4719 particular common case of linking non PIC code, even when linking
4720 against shared libraries, but unfortunately there is no way of
4721 knowing whether an object file has been compiled PIC or not.
4722 Looking through the relocs is not particularly time consuming.
4723 The problem is that we must either (1) keep the relocs in memory,
4724 which causes the linker to require additional runtime memory or
4725 (2) read the relocs twice from the input file, which wastes time.
4726 This would be a good case for using mmap.
4727
4728 I have no idea how to handle linking PIC code into a file of a
4729 different format. It probably can't be done. */
4730 if (! dynamic
4731 && is_elf_hash_table (htab)
4732 && bed->check_relocs != NULL
4733 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4734 {
4735 asection *o;
4736
4737 for (o = abfd->sections; o != NULL; o = o->next)
4738 {
4739 Elf_Internal_Rela *internal_relocs;
4740 bfd_boolean ok;
4741
4742 if ((o->flags & SEC_RELOC) == 0
4743 || o->reloc_count == 0
4744 || ((info->strip == strip_all || info->strip == strip_debugger)
4745 && (o->flags & SEC_DEBUGGING) != 0)
4746 || bfd_is_abs_section (o->output_section))
4747 continue;
4748
4749 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4750 info->keep_memory);
4751 if (internal_relocs == NULL)
4752 goto error_return;
4753
4754 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4755
4756 if (elf_section_data (o)->relocs != internal_relocs)
4757 free (internal_relocs);
4758
4759 if (! ok)
4760 goto error_return;
4761 }
4762 }
4763
4764 /* If this is a non-traditional link, try to optimize the handling
4765 of the .stab/.stabstr sections. */
4766 if (! dynamic
4767 && ! info->traditional_format
4768 && is_elf_hash_table (htab)
4769 && (info->strip != strip_all && info->strip != strip_debugger))
4770 {
4771 asection *stabstr;
4772
4773 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4774 if (stabstr != NULL)
4775 {
4776 bfd_size_type string_offset = 0;
4777 asection *stab;
4778
4779 for (stab = abfd->sections; stab; stab = stab->next)
4780 if (CONST_STRNEQ (stab->name, ".stab")
4781 && (!stab->name[5] ||
4782 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4783 && (stab->flags & SEC_MERGE) == 0
4784 && !bfd_is_abs_section (stab->output_section))
4785 {
4786 struct bfd_elf_section_data *secdata;
4787
4788 secdata = elf_section_data (stab);
4789 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4790 stabstr, &secdata->sec_info,
4791 &string_offset))
4792 goto error_return;
4793 if (secdata->sec_info)
4794 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4795 }
4796 }
4797 }
4798
4799 if (is_elf_hash_table (htab) && add_needed)
4800 {
4801 /* Add this bfd to the loaded list. */
4802 struct elf_link_loaded_list *n;
4803
4804 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4805 if (n == NULL)
4806 goto error_return;
4807 n->abfd = abfd;
4808 n->next = htab->loaded;
4809 htab->loaded = n;
4810 }
4811
4812 return TRUE;
4813
4814 error_free_vers:
4815 if (old_tab != NULL)
4816 free (old_tab);
4817 if (nondeflt_vers != NULL)
4818 free (nondeflt_vers);
4819 if (extversym != NULL)
4820 free (extversym);
4821 error_free_sym:
4822 if (isymbuf != NULL)
4823 free (isymbuf);
4824 error_return:
4825 return FALSE;
4826 }
4827
4828 /* Return the linker hash table entry of a symbol that might be
4829 satisfied by an archive symbol. Return -1 on error. */
4830
4831 struct elf_link_hash_entry *
4832 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4833 struct bfd_link_info *info,
4834 const char *name)
4835 {
4836 struct elf_link_hash_entry *h;
4837 char *p, *copy;
4838 size_t len, first;
4839
4840 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4841 if (h != NULL)
4842 return h;
4843
4844 /* If this is a default version (the name contains @@), look up the
4845 symbol again with only one `@' as well as without the version.
4846 The effect is that references to the symbol with and without the
4847 version will be matched by the default symbol in the archive. */
4848
4849 p = strchr (name, ELF_VER_CHR);
4850 if (p == NULL || p[1] != ELF_VER_CHR)
4851 return h;
4852
4853 /* First check with only one `@'. */
4854 len = strlen (name);
4855 copy = bfd_alloc (abfd, len);
4856 if (copy == NULL)
4857 return (struct elf_link_hash_entry *) 0 - 1;
4858
4859 first = p - name + 1;
4860 memcpy (copy, name, first);
4861 memcpy (copy + first, name + first + 1, len - first);
4862
4863 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4864 if (h == NULL)
4865 {
4866 /* We also need to check references to the symbol without the
4867 version. */
4868 copy[first - 1] = '\0';
4869 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4870 FALSE, FALSE, FALSE);
4871 }
4872
4873 bfd_release (abfd, copy);
4874 return h;
4875 }
4876
4877 /* Add symbols from an ELF archive file to the linker hash table. We
4878 don't use _bfd_generic_link_add_archive_symbols because of a
4879 problem which arises on UnixWare. The UnixWare libc.so is an
4880 archive which includes an entry libc.so.1 which defines a bunch of
4881 symbols. The libc.so archive also includes a number of other
4882 object files, which also define symbols, some of which are the same
4883 as those defined in libc.so.1. Correct linking requires that we
4884 consider each object file in turn, and include it if it defines any
4885 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4886 this; it looks through the list of undefined symbols, and includes
4887 any object file which defines them. When this algorithm is used on
4888 UnixWare, it winds up pulling in libc.so.1 early and defining a
4889 bunch of symbols. This means that some of the other objects in the
4890 archive are not included in the link, which is incorrect since they
4891 precede libc.so.1 in the archive.
4892
4893 Fortunately, ELF archive handling is simpler than that done by
4894 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4895 oddities. In ELF, if we find a symbol in the archive map, and the
4896 symbol is currently undefined, we know that we must pull in that
4897 object file.
4898
4899 Unfortunately, we do have to make multiple passes over the symbol
4900 table until nothing further is resolved. */
4901
4902 static bfd_boolean
4903 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4904 {
4905 symindex c;
4906 bfd_boolean *defined = NULL;
4907 bfd_boolean *included = NULL;
4908 carsym *symdefs;
4909 bfd_boolean loop;
4910 bfd_size_type amt;
4911 const struct elf_backend_data *bed;
4912 struct elf_link_hash_entry * (*archive_symbol_lookup)
4913 (bfd *, struct bfd_link_info *, const char *);
4914
4915 if (! bfd_has_map (abfd))
4916 {
4917 /* An empty archive is a special case. */
4918 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4919 return TRUE;
4920 bfd_set_error (bfd_error_no_armap);
4921 return FALSE;
4922 }
4923
4924 /* Keep track of all symbols we know to be already defined, and all
4925 files we know to be already included. This is to speed up the
4926 second and subsequent passes. */
4927 c = bfd_ardata (abfd)->symdef_count;
4928 if (c == 0)
4929 return TRUE;
4930 amt = c;
4931 amt *= sizeof (bfd_boolean);
4932 defined = bfd_zmalloc (amt);
4933 included = bfd_zmalloc (amt);
4934 if (defined == NULL || included == NULL)
4935 goto error_return;
4936
4937 symdefs = bfd_ardata (abfd)->symdefs;
4938 bed = get_elf_backend_data (abfd);
4939 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4940
4941 do
4942 {
4943 file_ptr last;
4944 symindex i;
4945 carsym *symdef;
4946 carsym *symdefend;
4947
4948 loop = FALSE;
4949 last = -1;
4950
4951 symdef = symdefs;
4952 symdefend = symdef + c;
4953 for (i = 0; symdef < symdefend; symdef++, i++)
4954 {
4955 struct elf_link_hash_entry *h;
4956 bfd *element;
4957 struct bfd_link_hash_entry *undefs_tail;
4958 symindex mark;
4959
4960 if (defined[i] || included[i])
4961 continue;
4962 if (symdef->file_offset == last)
4963 {
4964 included[i] = TRUE;
4965 continue;
4966 }
4967
4968 h = archive_symbol_lookup (abfd, info, symdef->name);
4969 if (h == (struct elf_link_hash_entry *) 0 - 1)
4970 goto error_return;
4971
4972 if (h == NULL)
4973 continue;
4974
4975 if (h->root.type == bfd_link_hash_common)
4976 {
4977 /* We currently have a common symbol. The archive map contains
4978 a reference to this symbol, so we may want to include it. We
4979 only want to include it however, if this archive element
4980 contains a definition of the symbol, not just another common
4981 declaration of it.
4982
4983 Unfortunately some archivers (including GNU ar) will put
4984 declarations of common symbols into their archive maps, as
4985 well as real definitions, so we cannot just go by the archive
4986 map alone. Instead we must read in the element's symbol
4987 table and check that to see what kind of symbol definition
4988 this is. */
4989 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
4990 continue;
4991 }
4992 else if (h->root.type != bfd_link_hash_undefined)
4993 {
4994 if (h->root.type != bfd_link_hash_undefweak)
4995 defined[i] = TRUE;
4996 continue;
4997 }
4998
4999 /* We need to include this archive member. */
5000 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5001 if (element == NULL)
5002 goto error_return;
5003
5004 if (! bfd_check_format (element, bfd_object))
5005 goto error_return;
5006
5007 /* Doublecheck that we have not included this object
5008 already--it should be impossible, but there may be
5009 something wrong with the archive. */
5010 if (element->archive_pass != 0)
5011 {
5012 bfd_set_error (bfd_error_bad_value);
5013 goto error_return;
5014 }
5015 element->archive_pass = 1;
5016
5017 undefs_tail = info->hash->undefs_tail;
5018
5019 if (! (*info->callbacks->add_archive_element) (info, element,
5020 symdef->name))
5021 goto error_return;
5022 if (! bfd_link_add_symbols (element, info))
5023 goto error_return;
5024
5025 /* If there are any new undefined symbols, we need to make
5026 another pass through the archive in order to see whether
5027 they can be defined. FIXME: This isn't perfect, because
5028 common symbols wind up on undefs_tail and because an
5029 undefined symbol which is defined later on in this pass
5030 does not require another pass. This isn't a bug, but it
5031 does make the code less efficient than it could be. */
5032 if (undefs_tail != info->hash->undefs_tail)
5033 loop = TRUE;
5034
5035 /* Look backward to mark all symbols from this object file
5036 which we have already seen in this pass. */
5037 mark = i;
5038 do
5039 {
5040 included[mark] = TRUE;
5041 if (mark == 0)
5042 break;
5043 --mark;
5044 }
5045 while (symdefs[mark].file_offset == symdef->file_offset);
5046
5047 /* We mark subsequent symbols from this object file as we go
5048 on through the loop. */
5049 last = symdef->file_offset;
5050 }
5051 }
5052 while (loop);
5053
5054 free (defined);
5055 free (included);
5056
5057 return TRUE;
5058
5059 error_return:
5060 if (defined != NULL)
5061 free (defined);
5062 if (included != NULL)
5063 free (included);
5064 return FALSE;
5065 }
5066
5067 /* Given an ELF BFD, add symbols to the global hash table as
5068 appropriate. */
5069
5070 bfd_boolean
5071 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5072 {
5073 switch (bfd_get_format (abfd))
5074 {
5075 case bfd_object:
5076 return elf_link_add_object_symbols (abfd, info);
5077 case bfd_archive:
5078 return elf_link_add_archive_symbols (abfd, info);
5079 default:
5080 bfd_set_error (bfd_error_wrong_format);
5081 return FALSE;
5082 }
5083 }
5084 \f
5085 struct hash_codes_info
5086 {
5087 unsigned long *hashcodes;
5088 bfd_boolean error;
5089 };
5090
5091 /* This function will be called though elf_link_hash_traverse to store
5092 all hash value of the exported symbols in an array. */
5093
5094 static bfd_boolean
5095 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5096 {
5097 struct hash_codes_info *inf = data;
5098 const char *name;
5099 char *p;
5100 unsigned long ha;
5101 char *alc = NULL;
5102
5103 if (h->root.type == bfd_link_hash_warning)
5104 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5105
5106 /* Ignore indirect symbols. These are added by the versioning code. */
5107 if (h->dynindx == -1)
5108 return TRUE;
5109
5110 name = h->root.root.string;
5111 p = strchr (name, ELF_VER_CHR);
5112 if (p != NULL)
5113 {
5114 alc = bfd_malloc (p - name + 1);
5115 if (alc == NULL)
5116 {
5117 inf->error = TRUE;
5118 return FALSE;
5119 }
5120 memcpy (alc, name, p - name);
5121 alc[p - name] = '\0';
5122 name = alc;
5123 }
5124
5125 /* Compute the hash value. */
5126 ha = bfd_elf_hash (name);
5127
5128 /* Store the found hash value in the array given as the argument. */
5129 *(inf->hashcodes)++ = ha;
5130
5131 /* And store it in the struct so that we can put it in the hash table
5132 later. */
5133 h->u.elf_hash_value = ha;
5134
5135 if (alc != NULL)
5136 free (alc);
5137
5138 return TRUE;
5139 }
5140
5141 struct collect_gnu_hash_codes
5142 {
5143 bfd *output_bfd;
5144 const struct elf_backend_data *bed;
5145 unsigned long int nsyms;
5146 unsigned long int maskbits;
5147 unsigned long int *hashcodes;
5148 unsigned long int *hashval;
5149 unsigned long int *indx;
5150 unsigned long int *counts;
5151 bfd_vma *bitmask;
5152 bfd_byte *contents;
5153 long int min_dynindx;
5154 unsigned long int bucketcount;
5155 unsigned long int symindx;
5156 long int local_indx;
5157 long int shift1, shift2;
5158 unsigned long int mask;
5159 bfd_boolean error;
5160 };
5161
5162 /* This function will be called though elf_link_hash_traverse to store
5163 all hash value of the exported symbols in an array. */
5164
5165 static bfd_boolean
5166 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5167 {
5168 struct collect_gnu_hash_codes *s = data;
5169 const char *name;
5170 char *p;
5171 unsigned long ha;
5172 char *alc = NULL;
5173
5174 if (h->root.type == bfd_link_hash_warning)
5175 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5176
5177 /* Ignore indirect symbols. These are added by the versioning code. */
5178 if (h->dynindx == -1)
5179 return TRUE;
5180
5181 /* Ignore also local symbols and undefined symbols. */
5182 if (! (*s->bed->elf_hash_symbol) (h))
5183 return TRUE;
5184
5185 name = h->root.root.string;
5186 p = strchr (name, ELF_VER_CHR);
5187 if (p != NULL)
5188 {
5189 alc = bfd_malloc (p - name + 1);
5190 if (alc == NULL)
5191 {
5192 s->error = TRUE;
5193 return FALSE;
5194 }
5195 memcpy (alc, name, p - name);
5196 alc[p - name] = '\0';
5197 name = alc;
5198 }
5199
5200 /* Compute the hash value. */
5201 ha = bfd_elf_gnu_hash (name);
5202
5203 /* Store the found hash value in the array for compute_bucket_count,
5204 and also for .dynsym reordering purposes. */
5205 s->hashcodes[s->nsyms] = ha;
5206 s->hashval[h->dynindx] = ha;
5207 ++s->nsyms;
5208 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5209 s->min_dynindx = h->dynindx;
5210
5211 if (alc != NULL)
5212 free (alc);
5213
5214 return TRUE;
5215 }
5216
5217 /* This function will be called though elf_link_hash_traverse to do
5218 final dynaminc symbol renumbering. */
5219
5220 static bfd_boolean
5221 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5222 {
5223 struct collect_gnu_hash_codes *s = data;
5224 unsigned long int bucket;
5225 unsigned long int val;
5226
5227 if (h->root.type == bfd_link_hash_warning)
5228 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5229
5230 /* Ignore indirect symbols. */
5231 if (h->dynindx == -1)
5232 return TRUE;
5233
5234 /* Ignore also local symbols and undefined symbols. */
5235 if (! (*s->bed->elf_hash_symbol) (h))
5236 {
5237 if (h->dynindx >= s->min_dynindx)
5238 h->dynindx = s->local_indx++;
5239 return TRUE;
5240 }
5241
5242 bucket = s->hashval[h->dynindx] % s->bucketcount;
5243 val = (s->hashval[h->dynindx] >> s->shift1)
5244 & ((s->maskbits >> s->shift1) - 1);
5245 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5246 s->bitmask[val]
5247 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5248 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5249 if (s->counts[bucket] == 1)
5250 /* Last element terminates the chain. */
5251 val |= 1;
5252 bfd_put_32 (s->output_bfd, val,
5253 s->contents + (s->indx[bucket] - s->symindx) * 4);
5254 --s->counts[bucket];
5255 h->dynindx = s->indx[bucket]++;
5256 return TRUE;
5257 }
5258
5259 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5260
5261 bfd_boolean
5262 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5263 {
5264 return !(h->forced_local
5265 || h->root.type == bfd_link_hash_undefined
5266 || h->root.type == bfd_link_hash_undefweak
5267 || ((h->root.type == bfd_link_hash_defined
5268 || h->root.type == bfd_link_hash_defweak)
5269 && h->root.u.def.section->output_section == NULL));
5270 }
5271
5272 /* Array used to determine the number of hash table buckets to use
5273 based on the number of symbols there are. If there are fewer than
5274 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5275 fewer than 37 we use 17 buckets, and so forth. We never use more
5276 than 32771 buckets. */
5277
5278 static const size_t elf_buckets[] =
5279 {
5280 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5281 16411, 32771, 0
5282 };
5283
5284 /* Compute bucket count for hashing table. We do not use a static set
5285 of possible tables sizes anymore. Instead we determine for all
5286 possible reasonable sizes of the table the outcome (i.e., the
5287 number of collisions etc) and choose the best solution. The
5288 weighting functions are not too simple to allow the table to grow
5289 without bounds. Instead one of the weighting factors is the size.
5290 Therefore the result is always a good payoff between few collisions
5291 (= short chain lengths) and table size. */
5292 static size_t
5293 compute_bucket_count (struct bfd_link_info *info,
5294 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5295 unsigned long int nsyms,
5296 int gnu_hash)
5297 {
5298 size_t best_size = 0;
5299 unsigned long int i;
5300
5301 /* We have a problem here. The following code to optimize the table
5302 size requires an integer type with more the 32 bits. If
5303 BFD_HOST_U_64_BIT is set we know about such a type. */
5304 #ifdef BFD_HOST_U_64_BIT
5305 if (info->optimize)
5306 {
5307 size_t minsize;
5308 size_t maxsize;
5309 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5310 bfd *dynobj = elf_hash_table (info)->dynobj;
5311 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5312 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5313 unsigned long int *counts;
5314 bfd_size_type amt;
5315
5316 /* Possible optimization parameters: if we have NSYMS symbols we say
5317 that the hashing table must at least have NSYMS/4 and at most
5318 2*NSYMS buckets. */
5319 minsize = nsyms / 4;
5320 if (minsize == 0)
5321 minsize = 1;
5322 best_size = maxsize = nsyms * 2;
5323 if (gnu_hash)
5324 {
5325 if (minsize < 2)
5326 minsize = 2;
5327 if ((best_size & 31) == 0)
5328 ++best_size;
5329 }
5330
5331 /* Create array where we count the collisions in. We must use bfd_malloc
5332 since the size could be large. */
5333 amt = maxsize;
5334 amt *= sizeof (unsigned long int);
5335 counts = bfd_malloc (amt);
5336 if (counts == NULL)
5337 return 0;
5338
5339 /* Compute the "optimal" size for the hash table. The criteria is a
5340 minimal chain length. The minor criteria is (of course) the size
5341 of the table. */
5342 for (i = minsize; i < maxsize; ++i)
5343 {
5344 /* Walk through the array of hashcodes and count the collisions. */
5345 BFD_HOST_U_64_BIT max;
5346 unsigned long int j;
5347 unsigned long int fact;
5348
5349 if (gnu_hash && (i & 31) == 0)
5350 continue;
5351
5352 memset (counts, '\0', i * sizeof (unsigned long int));
5353
5354 /* Determine how often each hash bucket is used. */
5355 for (j = 0; j < nsyms; ++j)
5356 ++counts[hashcodes[j] % i];
5357
5358 /* For the weight function we need some information about the
5359 pagesize on the target. This is information need not be 100%
5360 accurate. Since this information is not available (so far) we
5361 define it here to a reasonable default value. If it is crucial
5362 to have a better value some day simply define this value. */
5363 # ifndef BFD_TARGET_PAGESIZE
5364 # define BFD_TARGET_PAGESIZE (4096)
5365 # endif
5366
5367 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5368 and the chains. */
5369 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5370
5371 # if 1
5372 /* Variant 1: optimize for short chains. We add the squares
5373 of all the chain lengths (which favors many small chain
5374 over a few long chains). */
5375 for (j = 0; j < i; ++j)
5376 max += counts[j] * counts[j];
5377
5378 /* This adds penalties for the overall size of the table. */
5379 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5380 max *= fact * fact;
5381 # else
5382 /* Variant 2: Optimize a lot more for small table. Here we
5383 also add squares of the size but we also add penalties for
5384 empty slots (the +1 term). */
5385 for (j = 0; j < i; ++j)
5386 max += (1 + counts[j]) * (1 + counts[j]);
5387
5388 /* The overall size of the table is considered, but not as
5389 strong as in variant 1, where it is squared. */
5390 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5391 max *= fact;
5392 # endif
5393
5394 /* Compare with current best results. */
5395 if (max < best_chlen)
5396 {
5397 best_chlen = max;
5398 best_size = i;
5399 }
5400 }
5401
5402 free (counts);
5403 }
5404 else
5405 #endif /* defined (BFD_HOST_U_64_BIT) */
5406 {
5407 /* This is the fallback solution if no 64bit type is available or if we
5408 are not supposed to spend much time on optimizations. We select the
5409 bucket count using a fixed set of numbers. */
5410 for (i = 0; elf_buckets[i] != 0; i++)
5411 {
5412 best_size = elf_buckets[i];
5413 if (nsyms < elf_buckets[i + 1])
5414 break;
5415 }
5416 if (gnu_hash && best_size < 2)
5417 best_size = 2;
5418 }
5419
5420 return best_size;
5421 }
5422
5423 /* Set up the sizes and contents of the ELF dynamic sections. This is
5424 called by the ELF linker emulation before_allocation routine. We
5425 must set the sizes of the sections before the linker sets the
5426 addresses of the various sections. */
5427
5428 bfd_boolean
5429 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5430 const char *soname,
5431 const char *rpath,
5432 const char *filter_shlib,
5433 const char * const *auxiliary_filters,
5434 struct bfd_link_info *info,
5435 asection **sinterpptr,
5436 struct bfd_elf_version_tree *verdefs)
5437 {
5438 bfd_size_type soname_indx;
5439 bfd *dynobj;
5440 const struct elf_backend_data *bed;
5441 struct elf_info_failed asvinfo;
5442
5443 *sinterpptr = NULL;
5444
5445 soname_indx = (bfd_size_type) -1;
5446
5447 if (!is_elf_hash_table (info->hash))
5448 return TRUE;
5449
5450 bed = get_elf_backend_data (output_bfd);
5451 if (info->execstack)
5452 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5453 else if (info->noexecstack)
5454 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5455 else
5456 {
5457 bfd *inputobj;
5458 asection *notesec = NULL;
5459 int exec = 0;
5460
5461 for (inputobj = info->input_bfds;
5462 inputobj;
5463 inputobj = inputobj->link_next)
5464 {
5465 asection *s;
5466
5467 if (inputobj->flags & (DYNAMIC | EXEC_P | BFD_LINKER_CREATED))
5468 continue;
5469 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5470 if (s)
5471 {
5472 if (s->flags & SEC_CODE)
5473 exec = PF_X;
5474 notesec = s;
5475 }
5476 else if (bed->default_execstack)
5477 exec = PF_X;
5478 }
5479 if (notesec)
5480 {
5481 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5482 if (exec && info->relocatable
5483 && notesec->output_section != bfd_abs_section_ptr)
5484 notesec->output_section->flags |= SEC_CODE;
5485 }
5486 }
5487
5488 /* Any syms created from now on start with -1 in
5489 got.refcount/offset and plt.refcount/offset. */
5490 elf_hash_table (info)->init_got_refcount
5491 = elf_hash_table (info)->init_got_offset;
5492 elf_hash_table (info)->init_plt_refcount
5493 = elf_hash_table (info)->init_plt_offset;
5494
5495 /* The backend may have to create some sections regardless of whether
5496 we're dynamic or not. */
5497 if (bed->elf_backend_always_size_sections
5498 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5499 return FALSE;
5500
5501 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5502 return FALSE;
5503
5504 dynobj = elf_hash_table (info)->dynobj;
5505
5506 /* If there were no dynamic objects in the link, there is nothing to
5507 do here. */
5508 if (dynobj == NULL)
5509 return TRUE;
5510
5511 if (elf_hash_table (info)->dynamic_sections_created)
5512 {
5513 struct elf_info_failed eif;
5514 struct elf_link_hash_entry *h;
5515 asection *dynstr;
5516 struct bfd_elf_version_tree *t;
5517 struct bfd_elf_version_expr *d;
5518 asection *s;
5519 bfd_boolean all_defined;
5520
5521 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5522 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5523
5524 if (soname != NULL)
5525 {
5526 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5527 soname, TRUE);
5528 if (soname_indx == (bfd_size_type) -1
5529 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5530 return FALSE;
5531 }
5532
5533 if (info->symbolic)
5534 {
5535 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5536 return FALSE;
5537 info->flags |= DF_SYMBOLIC;
5538 }
5539
5540 if (rpath != NULL)
5541 {
5542 bfd_size_type indx;
5543
5544 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5545 TRUE);
5546 if (indx == (bfd_size_type) -1
5547 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5548 return FALSE;
5549
5550 if (info->new_dtags)
5551 {
5552 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5553 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5554 return FALSE;
5555 }
5556 }
5557
5558 if (filter_shlib != NULL)
5559 {
5560 bfd_size_type indx;
5561
5562 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5563 filter_shlib, TRUE);
5564 if (indx == (bfd_size_type) -1
5565 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5566 return FALSE;
5567 }
5568
5569 if (auxiliary_filters != NULL)
5570 {
5571 const char * const *p;
5572
5573 for (p = auxiliary_filters; *p != NULL; p++)
5574 {
5575 bfd_size_type indx;
5576
5577 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5578 *p, TRUE);
5579 if (indx == (bfd_size_type) -1
5580 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5581 return FALSE;
5582 }
5583 }
5584
5585 eif.info = info;
5586 eif.verdefs = verdefs;
5587 eif.failed = FALSE;
5588
5589 /* If we are supposed to export all symbols into the dynamic symbol
5590 table (this is not the normal case), then do so. */
5591 if (info->export_dynamic
5592 || (info->executable && info->dynamic))
5593 {
5594 elf_link_hash_traverse (elf_hash_table (info),
5595 _bfd_elf_export_symbol,
5596 &eif);
5597 if (eif.failed)
5598 return FALSE;
5599 }
5600
5601 /* Make all global versions with definition. */
5602 for (t = verdefs; t != NULL; t = t->next)
5603 for (d = t->globals.list; d != NULL; d = d->next)
5604 if (!d->symver && d->literal)
5605 {
5606 const char *verstr, *name;
5607 size_t namelen, verlen, newlen;
5608 char *newname, *p;
5609 struct elf_link_hash_entry *newh;
5610
5611 name = d->pattern;
5612 namelen = strlen (name);
5613 verstr = t->name;
5614 verlen = strlen (verstr);
5615 newlen = namelen + verlen + 3;
5616
5617 newname = bfd_malloc (newlen);
5618 if (newname == NULL)
5619 return FALSE;
5620 memcpy (newname, name, namelen);
5621
5622 /* Check the hidden versioned definition. */
5623 p = newname + namelen;
5624 *p++ = ELF_VER_CHR;
5625 memcpy (p, verstr, verlen + 1);
5626 newh = elf_link_hash_lookup (elf_hash_table (info),
5627 newname, FALSE, FALSE,
5628 FALSE);
5629 if (newh == NULL
5630 || (newh->root.type != bfd_link_hash_defined
5631 && newh->root.type != bfd_link_hash_defweak))
5632 {
5633 /* Check the default versioned definition. */
5634 *p++ = ELF_VER_CHR;
5635 memcpy (p, verstr, verlen + 1);
5636 newh = elf_link_hash_lookup (elf_hash_table (info),
5637 newname, FALSE, FALSE,
5638 FALSE);
5639 }
5640 free (newname);
5641
5642 /* Mark this version if there is a definition and it is
5643 not defined in a shared object. */
5644 if (newh != NULL
5645 && !newh->def_dynamic
5646 && (newh->root.type == bfd_link_hash_defined
5647 || newh->root.type == bfd_link_hash_defweak))
5648 d->symver = 1;
5649 }
5650
5651 /* Attach all the symbols to their version information. */
5652 asvinfo.info = info;
5653 asvinfo.verdefs = verdefs;
5654 asvinfo.failed = FALSE;
5655
5656 elf_link_hash_traverse (elf_hash_table (info),
5657 _bfd_elf_link_assign_sym_version,
5658 &asvinfo);
5659 if (asvinfo.failed)
5660 return FALSE;
5661
5662 if (!info->allow_undefined_version)
5663 {
5664 /* Check if all global versions have a definition. */
5665 all_defined = TRUE;
5666 for (t = verdefs; t != NULL; t = t->next)
5667 for (d = t->globals.list; d != NULL; d = d->next)
5668 if (d->literal && !d->symver && !d->script)
5669 {
5670 (*_bfd_error_handler)
5671 (_("%s: undefined version: %s"),
5672 d->pattern, t->name);
5673 all_defined = FALSE;
5674 }
5675
5676 if (!all_defined)
5677 {
5678 bfd_set_error (bfd_error_bad_value);
5679 return FALSE;
5680 }
5681 }
5682
5683 /* Find all symbols which were defined in a dynamic object and make
5684 the backend pick a reasonable value for them. */
5685 elf_link_hash_traverse (elf_hash_table (info),
5686 _bfd_elf_adjust_dynamic_symbol,
5687 &eif);
5688 if (eif.failed)
5689 return FALSE;
5690
5691 /* Add some entries to the .dynamic section. We fill in some of the
5692 values later, in bfd_elf_final_link, but we must add the entries
5693 now so that we know the final size of the .dynamic section. */
5694
5695 /* If there are initialization and/or finalization functions to
5696 call then add the corresponding DT_INIT/DT_FINI entries. */
5697 h = (info->init_function
5698 ? elf_link_hash_lookup (elf_hash_table (info),
5699 info->init_function, FALSE,
5700 FALSE, FALSE)
5701 : NULL);
5702 if (h != NULL
5703 && (h->ref_regular
5704 || h->def_regular))
5705 {
5706 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5707 return FALSE;
5708 }
5709 h = (info->fini_function
5710 ? elf_link_hash_lookup (elf_hash_table (info),
5711 info->fini_function, FALSE,
5712 FALSE, FALSE)
5713 : NULL);
5714 if (h != NULL
5715 && (h->ref_regular
5716 || h->def_regular))
5717 {
5718 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5719 return FALSE;
5720 }
5721
5722 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5723 if (s != NULL && s->linker_has_input)
5724 {
5725 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5726 if (! info->executable)
5727 {
5728 bfd *sub;
5729 asection *o;
5730
5731 for (sub = info->input_bfds; sub != NULL;
5732 sub = sub->link_next)
5733 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5734 for (o = sub->sections; o != NULL; o = o->next)
5735 if (elf_section_data (o)->this_hdr.sh_type
5736 == SHT_PREINIT_ARRAY)
5737 {
5738 (*_bfd_error_handler)
5739 (_("%B: .preinit_array section is not allowed in DSO"),
5740 sub);
5741 break;
5742 }
5743
5744 bfd_set_error (bfd_error_nonrepresentable_section);
5745 return FALSE;
5746 }
5747
5748 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5749 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5750 return FALSE;
5751 }
5752 s = bfd_get_section_by_name (output_bfd, ".init_array");
5753 if (s != NULL && s->linker_has_input)
5754 {
5755 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5756 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5757 return FALSE;
5758 }
5759 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5760 if (s != NULL && s->linker_has_input)
5761 {
5762 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5763 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5764 return FALSE;
5765 }
5766
5767 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5768 /* If .dynstr is excluded from the link, we don't want any of
5769 these tags. Strictly, we should be checking each section
5770 individually; This quick check covers for the case where
5771 someone does a /DISCARD/ : { *(*) }. */
5772 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5773 {
5774 bfd_size_type strsize;
5775
5776 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5777 if ((info->emit_hash
5778 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5779 || (info->emit_gnu_hash
5780 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5781 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5782 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5783 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5784 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5785 bed->s->sizeof_sym))
5786 return FALSE;
5787 }
5788 }
5789
5790 /* The backend must work out the sizes of all the other dynamic
5791 sections. */
5792 if (bed->elf_backend_size_dynamic_sections
5793 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5794 return FALSE;
5795
5796 if (elf_hash_table (info)->dynamic_sections_created)
5797 {
5798 unsigned long section_sym_count;
5799 asection *s;
5800
5801 /* Set up the version definition section. */
5802 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5803 BFD_ASSERT (s != NULL);
5804
5805 /* We may have created additional version definitions if we are
5806 just linking a regular application. */
5807 verdefs = asvinfo.verdefs;
5808
5809 /* Skip anonymous version tag. */
5810 if (verdefs != NULL && verdefs->vernum == 0)
5811 verdefs = verdefs->next;
5812
5813 if (verdefs == NULL && !info->create_default_symver)
5814 s->flags |= SEC_EXCLUDE;
5815 else
5816 {
5817 unsigned int cdefs;
5818 bfd_size_type size;
5819 struct bfd_elf_version_tree *t;
5820 bfd_byte *p;
5821 Elf_Internal_Verdef def;
5822 Elf_Internal_Verdaux defaux;
5823 struct bfd_link_hash_entry *bh;
5824 struct elf_link_hash_entry *h;
5825 const char *name;
5826
5827 cdefs = 0;
5828 size = 0;
5829
5830 /* Make space for the base version. */
5831 size += sizeof (Elf_External_Verdef);
5832 size += sizeof (Elf_External_Verdaux);
5833 ++cdefs;
5834
5835 /* Make space for the default version. */
5836 if (info->create_default_symver)
5837 {
5838 size += sizeof (Elf_External_Verdef);
5839 ++cdefs;
5840 }
5841
5842 for (t = verdefs; t != NULL; t = t->next)
5843 {
5844 struct bfd_elf_version_deps *n;
5845
5846 size += sizeof (Elf_External_Verdef);
5847 size += sizeof (Elf_External_Verdaux);
5848 ++cdefs;
5849
5850 for (n = t->deps; n != NULL; n = n->next)
5851 size += sizeof (Elf_External_Verdaux);
5852 }
5853
5854 s->size = size;
5855 s->contents = bfd_alloc (output_bfd, s->size);
5856 if (s->contents == NULL && s->size != 0)
5857 return FALSE;
5858
5859 /* Fill in the version definition section. */
5860
5861 p = s->contents;
5862
5863 def.vd_version = VER_DEF_CURRENT;
5864 def.vd_flags = VER_FLG_BASE;
5865 def.vd_ndx = 1;
5866 def.vd_cnt = 1;
5867 if (info->create_default_symver)
5868 {
5869 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5870 def.vd_next = sizeof (Elf_External_Verdef);
5871 }
5872 else
5873 {
5874 def.vd_aux = sizeof (Elf_External_Verdef);
5875 def.vd_next = (sizeof (Elf_External_Verdef)
5876 + sizeof (Elf_External_Verdaux));
5877 }
5878
5879 if (soname_indx != (bfd_size_type) -1)
5880 {
5881 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5882 soname_indx);
5883 def.vd_hash = bfd_elf_hash (soname);
5884 defaux.vda_name = soname_indx;
5885 name = soname;
5886 }
5887 else
5888 {
5889 bfd_size_type indx;
5890
5891 name = lbasename (output_bfd->filename);
5892 def.vd_hash = bfd_elf_hash (name);
5893 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5894 name, FALSE);
5895 if (indx == (bfd_size_type) -1)
5896 return FALSE;
5897 defaux.vda_name = indx;
5898 }
5899 defaux.vda_next = 0;
5900
5901 _bfd_elf_swap_verdef_out (output_bfd, &def,
5902 (Elf_External_Verdef *) p);
5903 p += sizeof (Elf_External_Verdef);
5904 if (info->create_default_symver)
5905 {
5906 /* Add a symbol representing this version. */
5907 bh = NULL;
5908 if (! (_bfd_generic_link_add_one_symbol
5909 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
5910 0, NULL, FALSE,
5911 get_elf_backend_data (dynobj)->collect, &bh)))
5912 return FALSE;
5913 h = (struct elf_link_hash_entry *) bh;
5914 h->non_elf = 0;
5915 h->def_regular = 1;
5916 h->type = STT_OBJECT;
5917 h->verinfo.vertree = NULL;
5918
5919 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5920 return FALSE;
5921
5922 /* Create a duplicate of the base version with the same
5923 aux block, but different flags. */
5924 def.vd_flags = 0;
5925 def.vd_ndx = 2;
5926 def.vd_aux = sizeof (Elf_External_Verdef);
5927 if (verdefs)
5928 def.vd_next = (sizeof (Elf_External_Verdef)
5929 + sizeof (Elf_External_Verdaux));
5930 else
5931 def.vd_next = 0;
5932 _bfd_elf_swap_verdef_out (output_bfd, &def,
5933 (Elf_External_Verdef *) p);
5934 p += sizeof (Elf_External_Verdef);
5935 }
5936 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5937 (Elf_External_Verdaux *) p);
5938 p += sizeof (Elf_External_Verdaux);
5939
5940 for (t = verdefs; t != NULL; t = t->next)
5941 {
5942 unsigned int cdeps;
5943 struct bfd_elf_version_deps *n;
5944
5945 cdeps = 0;
5946 for (n = t->deps; n != NULL; n = n->next)
5947 ++cdeps;
5948
5949 /* Add a symbol representing this version. */
5950 bh = NULL;
5951 if (! (_bfd_generic_link_add_one_symbol
5952 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
5953 0, NULL, FALSE,
5954 get_elf_backend_data (dynobj)->collect, &bh)))
5955 return FALSE;
5956 h = (struct elf_link_hash_entry *) bh;
5957 h->non_elf = 0;
5958 h->def_regular = 1;
5959 h->type = STT_OBJECT;
5960 h->verinfo.vertree = t;
5961
5962 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5963 return FALSE;
5964
5965 def.vd_version = VER_DEF_CURRENT;
5966 def.vd_flags = 0;
5967 if (t->globals.list == NULL
5968 && t->locals.list == NULL
5969 && ! t->used)
5970 def.vd_flags |= VER_FLG_WEAK;
5971 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
5972 def.vd_cnt = cdeps + 1;
5973 def.vd_hash = bfd_elf_hash (t->name);
5974 def.vd_aux = sizeof (Elf_External_Verdef);
5975 def.vd_next = 0;
5976 if (t->next != NULL)
5977 def.vd_next = (sizeof (Elf_External_Verdef)
5978 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
5979
5980 _bfd_elf_swap_verdef_out (output_bfd, &def,
5981 (Elf_External_Verdef *) p);
5982 p += sizeof (Elf_External_Verdef);
5983
5984 defaux.vda_name = h->dynstr_index;
5985 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5986 h->dynstr_index);
5987 defaux.vda_next = 0;
5988 if (t->deps != NULL)
5989 defaux.vda_next = sizeof (Elf_External_Verdaux);
5990 t->name_indx = defaux.vda_name;
5991
5992 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5993 (Elf_External_Verdaux *) p);
5994 p += sizeof (Elf_External_Verdaux);
5995
5996 for (n = t->deps; n != NULL; n = n->next)
5997 {
5998 if (n->version_needed == NULL)
5999 {
6000 /* This can happen if there was an error in the
6001 version script. */
6002 defaux.vda_name = 0;
6003 }
6004 else
6005 {
6006 defaux.vda_name = n->version_needed->name_indx;
6007 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6008 defaux.vda_name);
6009 }
6010 if (n->next == NULL)
6011 defaux.vda_next = 0;
6012 else
6013 defaux.vda_next = sizeof (Elf_External_Verdaux);
6014
6015 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6016 (Elf_External_Verdaux *) p);
6017 p += sizeof (Elf_External_Verdaux);
6018 }
6019 }
6020
6021 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6022 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6023 return FALSE;
6024
6025 elf_tdata (output_bfd)->cverdefs = cdefs;
6026 }
6027
6028 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6029 {
6030 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6031 return FALSE;
6032 }
6033 else if (info->flags & DF_BIND_NOW)
6034 {
6035 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6036 return FALSE;
6037 }
6038
6039 if (info->flags_1)
6040 {
6041 if (info->executable)
6042 info->flags_1 &= ~ (DF_1_INITFIRST
6043 | DF_1_NODELETE
6044 | DF_1_NOOPEN);
6045 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6046 return FALSE;
6047 }
6048
6049 /* Work out the size of the version reference section. */
6050
6051 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
6052 BFD_ASSERT (s != NULL);
6053 {
6054 struct elf_find_verdep_info sinfo;
6055
6056 sinfo.info = info;
6057 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6058 if (sinfo.vers == 0)
6059 sinfo.vers = 1;
6060 sinfo.failed = FALSE;
6061
6062 elf_link_hash_traverse (elf_hash_table (info),
6063 _bfd_elf_link_find_version_dependencies,
6064 &sinfo);
6065 if (sinfo.failed)
6066 return FALSE;
6067
6068 if (elf_tdata (output_bfd)->verref == NULL)
6069 s->flags |= SEC_EXCLUDE;
6070 else
6071 {
6072 Elf_Internal_Verneed *t;
6073 unsigned int size;
6074 unsigned int crefs;
6075 bfd_byte *p;
6076
6077 /* Build the version definition section. */
6078 size = 0;
6079 crefs = 0;
6080 for (t = elf_tdata (output_bfd)->verref;
6081 t != NULL;
6082 t = t->vn_nextref)
6083 {
6084 Elf_Internal_Vernaux *a;
6085
6086 size += sizeof (Elf_External_Verneed);
6087 ++crefs;
6088 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6089 size += sizeof (Elf_External_Vernaux);
6090 }
6091
6092 s->size = size;
6093 s->contents = bfd_alloc (output_bfd, s->size);
6094 if (s->contents == NULL)
6095 return FALSE;
6096
6097 p = s->contents;
6098 for (t = elf_tdata (output_bfd)->verref;
6099 t != NULL;
6100 t = t->vn_nextref)
6101 {
6102 unsigned int caux;
6103 Elf_Internal_Vernaux *a;
6104 bfd_size_type indx;
6105
6106 caux = 0;
6107 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6108 ++caux;
6109
6110 t->vn_version = VER_NEED_CURRENT;
6111 t->vn_cnt = caux;
6112 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6113 elf_dt_name (t->vn_bfd) != NULL
6114 ? elf_dt_name (t->vn_bfd)
6115 : lbasename (t->vn_bfd->filename),
6116 FALSE);
6117 if (indx == (bfd_size_type) -1)
6118 return FALSE;
6119 t->vn_file = indx;
6120 t->vn_aux = sizeof (Elf_External_Verneed);
6121 if (t->vn_nextref == NULL)
6122 t->vn_next = 0;
6123 else
6124 t->vn_next = (sizeof (Elf_External_Verneed)
6125 + caux * sizeof (Elf_External_Vernaux));
6126
6127 _bfd_elf_swap_verneed_out (output_bfd, t,
6128 (Elf_External_Verneed *) p);
6129 p += sizeof (Elf_External_Verneed);
6130
6131 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6132 {
6133 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6134 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6135 a->vna_nodename, FALSE);
6136 if (indx == (bfd_size_type) -1)
6137 return FALSE;
6138 a->vna_name = indx;
6139 if (a->vna_nextptr == NULL)
6140 a->vna_next = 0;
6141 else
6142 a->vna_next = sizeof (Elf_External_Vernaux);
6143
6144 _bfd_elf_swap_vernaux_out (output_bfd, a,
6145 (Elf_External_Vernaux *) p);
6146 p += sizeof (Elf_External_Vernaux);
6147 }
6148 }
6149
6150 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6151 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6152 return FALSE;
6153
6154 elf_tdata (output_bfd)->cverrefs = crefs;
6155 }
6156 }
6157
6158 if ((elf_tdata (output_bfd)->cverrefs == 0
6159 && elf_tdata (output_bfd)->cverdefs == 0)
6160 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6161 &section_sym_count) == 0)
6162 {
6163 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6164 s->flags |= SEC_EXCLUDE;
6165 }
6166 }
6167 return TRUE;
6168 }
6169
6170 /* Find the first non-excluded output section. We'll use its
6171 section symbol for some emitted relocs. */
6172 void
6173 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6174 {
6175 asection *s;
6176
6177 for (s = output_bfd->sections; s != NULL; s = s->next)
6178 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6179 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6180 {
6181 elf_hash_table (info)->text_index_section = s;
6182 break;
6183 }
6184 }
6185
6186 /* Find two non-excluded output sections, one for code, one for data.
6187 We'll use their section symbols for some emitted relocs. */
6188 void
6189 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6190 {
6191 asection *s;
6192
6193 /* Data first, since setting text_index_section changes
6194 _bfd_elf_link_omit_section_dynsym. */
6195 for (s = output_bfd->sections; s != NULL; s = s->next)
6196 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6197 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6198 {
6199 elf_hash_table (info)->data_index_section = s;
6200 break;
6201 }
6202
6203 for (s = output_bfd->sections; s != NULL; s = s->next)
6204 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6205 == (SEC_ALLOC | SEC_READONLY))
6206 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6207 {
6208 elf_hash_table (info)->text_index_section = s;
6209 break;
6210 }
6211
6212 if (elf_hash_table (info)->text_index_section == NULL)
6213 elf_hash_table (info)->text_index_section
6214 = elf_hash_table (info)->data_index_section;
6215 }
6216
6217 bfd_boolean
6218 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6219 {
6220 const struct elf_backend_data *bed;
6221
6222 if (!is_elf_hash_table (info->hash))
6223 return TRUE;
6224
6225 bed = get_elf_backend_data (output_bfd);
6226 (*bed->elf_backend_init_index_section) (output_bfd, info);
6227
6228 if (elf_hash_table (info)->dynamic_sections_created)
6229 {
6230 bfd *dynobj;
6231 asection *s;
6232 bfd_size_type dynsymcount;
6233 unsigned long section_sym_count;
6234 unsigned int dtagcount;
6235
6236 dynobj = elf_hash_table (info)->dynobj;
6237
6238 /* Assign dynsym indicies. In a shared library we generate a
6239 section symbol for each output section, which come first.
6240 Next come all of the back-end allocated local dynamic syms,
6241 followed by the rest of the global symbols. */
6242
6243 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6244 &section_sym_count);
6245
6246 /* Work out the size of the symbol version section. */
6247 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6248 BFD_ASSERT (s != NULL);
6249 if (dynsymcount != 0
6250 && (s->flags & SEC_EXCLUDE) == 0)
6251 {
6252 s->size = dynsymcount * sizeof (Elf_External_Versym);
6253 s->contents = bfd_zalloc (output_bfd, s->size);
6254 if (s->contents == NULL)
6255 return FALSE;
6256
6257 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6258 return FALSE;
6259 }
6260
6261 /* Set the size of the .dynsym and .hash sections. We counted
6262 the number of dynamic symbols in elf_link_add_object_symbols.
6263 We will build the contents of .dynsym and .hash when we build
6264 the final symbol table, because until then we do not know the
6265 correct value to give the symbols. We built the .dynstr
6266 section as we went along in elf_link_add_object_symbols. */
6267 s = bfd_get_section_by_name (dynobj, ".dynsym");
6268 BFD_ASSERT (s != NULL);
6269 s->size = dynsymcount * bed->s->sizeof_sym;
6270
6271 if (dynsymcount != 0)
6272 {
6273 s->contents = bfd_alloc (output_bfd, s->size);
6274 if (s->contents == NULL)
6275 return FALSE;
6276
6277 /* The first entry in .dynsym is a dummy symbol.
6278 Clear all the section syms, in case we don't output them all. */
6279 ++section_sym_count;
6280 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6281 }
6282
6283 elf_hash_table (info)->bucketcount = 0;
6284
6285 /* Compute the size of the hashing table. As a side effect this
6286 computes the hash values for all the names we export. */
6287 if (info->emit_hash)
6288 {
6289 unsigned long int *hashcodes;
6290 struct hash_codes_info hashinf;
6291 bfd_size_type amt;
6292 unsigned long int nsyms;
6293 size_t bucketcount;
6294 size_t hash_entry_size;
6295
6296 /* Compute the hash values for all exported symbols. At the same
6297 time store the values in an array so that we could use them for
6298 optimizations. */
6299 amt = dynsymcount * sizeof (unsigned long int);
6300 hashcodes = bfd_malloc (amt);
6301 if (hashcodes == NULL)
6302 return FALSE;
6303 hashinf.hashcodes = hashcodes;
6304 hashinf.error = FALSE;
6305
6306 /* Put all hash values in HASHCODES. */
6307 elf_link_hash_traverse (elf_hash_table (info),
6308 elf_collect_hash_codes, &hashinf);
6309 if (hashinf.error)
6310 {
6311 free (hashcodes);
6312 return FALSE;
6313 }
6314
6315 nsyms = hashinf.hashcodes - hashcodes;
6316 bucketcount
6317 = compute_bucket_count (info, hashcodes, nsyms, 0);
6318 free (hashcodes);
6319
6320 if (bucketcount == 0)
6321 return FALSE;
6322
6323 elf_hash_table (info)->bucketcount = bucketcount;
6324
6325 s = bfd_get_section_by_name (dynobj, ".hash");
6326 BFD_ASSERT (s != NULL);
6327 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6328 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6329 s->contents = bfd_zalloc (output_bfd, s->size);
6330 if (s->contents == NULL)
6331 return FALSE;
6332
6333 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6334 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6335 s->contents + hash_entry_size);
6336 }
6337
6338 if (info->emit_gnu_hash)
6339 {
6340 size_t i, cnt;
6341 unsigned char *contents;
6342 struct collect_gnu_hash_codes cinfo;
6343 bfd_size_type amt;
6344 size_t bucketcount;
6345
6346 memset (&cinfo, 0, sizeof (cinfo));
6347
6348 /* Compute the hash values for all exported symbols. At the same
6349 time store the values in an array so that we could use them for
6350 optimizations. */
6351 amt = dynsymcount * 2 * sizeof (unsigned long int);
6352 cinfo.hashcodes = bfd_malloc (amt);
6353 if (cinfo.hashcodes == NULL)
6354 return FALSE;
6355
6356 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6357 cinfo.min_dynindx = -1;
6358 cinfo.output_bfd = output_bfd;
6359 cinfo.bed = bed;
6360
6361 /* Put all hash values in HASHCODES. */
6362 elf_link_hash_traverse (elf_hash_table (info),
6363 elf_collect_gnu_hash_codes, &cinfo);
6364 if (cinfo.error)
6365 {
6366 free (cinfo.hashcodes);
6367 return FALSE;
6368 }
6369
6370 bucketcount
6371 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6372
6373 if (bucketcount == 0)
6374 {
6375 free (cinfo.hashcodes);
6376 return FALSE;
6377 }
6378
6379 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6380 BFD_ASSERT (s != NULL);
6381
6382 if (cinfo.nsyms == 0)
6383 {
6384 /* Empty .gnu.hash section is special. */
6385 BFD_ASSERT (cinfo.min_dynindx == -1);
6386 free (cinfo.hashcodes);
6387 s->size = 5 * 4 + bed->s->arch_size / 8;
6388 contents = bfd_zalloc (output_bfd, s->size);
6389 if (contents == NULL)
6390 return FALSE;
6391 s->contents = contents;
6392 /* 1 empty bucket. */
6393 bfd_put_32 (output_bfd, 1, contents);
6394 /* SYMIDX above the special symbol 0. */
6395 bfd_put_32 (output_bfd, 1, contents + 4);
6396 /* Just one word for bitmask. */
6397 bfd_put_32 (output_bfd, 1, contents + 8);
6398 /* Only hash fn bloom filter. */
6399 bfd_put_32 (output_bfd, 0, contents + 12);
6400 /* No hashes are valid - empty bitmask. */
6401 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6402 /* No hashes in the only bucket. */
6403 bfd_put_32 (output_bfd, 0,
6404 contents + 16 + bed->s->arch_size / 8);
6405 }
6406 else
6407 {
6408 unsigned long int maskwords, maskbitslog2;
6409 BFD_ASSERT (cinfo.min_dynindx != -1);
6410
6411 maskbitslog2 = bfd_log2 (cinfo.nsyms) + 1;
6412 if (maskbitslog2 < 3)
6413 maskbitslog2 = 5;
6414 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6415 maskbitslog2 = maskbitslog2 + 3;
6416 else
6417 maskbitslog2 = maskbitslog2 + 2;
6418 if (bed->s->arch_size == 64)
6419 {
6420 if (maskbitslog2 == 5)
6421 maskbitslog2 = 6;
6422 cinfo.shift1 = 6;
6423 }
6424 else
6425 cinfo.shift1 = 5;
6426 cinfo.mask = (1 << cinfo.shift1) - 1;
6427 cinfo.shift2 = maskbitslog2;
6428 cinfo.maskbits = 1 << maskbitslog2;
6429 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6430 amt = bucketcount * sizeof (unsigned long int) * 2;
6431 amt += maskwords * sizeof (bfd_vma);
6432 cinfo.bitmask = bfd_malloc (amt);
6433 if (cinfo.bitmask == NULL)
6434 {
6435 free (cinfo.hashcodes);
6436 return FALSE;
6437 }
6438
6439 cinfo.counts = (void *) (cinfo.bitmask + maskwords);
6440 cinfo.indx = cinfo.counts + bucketcount;
6441 cinfo.symindx = dynsymcount - cinfo.nsyms;
6442 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6443
6444 /* Determine how often each hash bucket is used. */
6445 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6446 for (i = 0; i < cinfo.nsyms; ++i)
6447 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6448
6449 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6450 if (cinfo.counts[i] != 0)
6451 {
6452 cinfo.indx[i] = cnt;
6453 cnt += cinfo.counts[i];
6454 }
6455 BFD_ASSERT (cnt == dynsymcount);
6456 cinfo.bucketcount = bucketcount;
6457 cinfo.local_indx = cinfo.min_dynindx;
6458
6459 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6460 s->size += cinfo.maskbits / 8;
6461 contents = bfd_zalloc (output_bfd, s->size);
6462 if (contents == NULL)
6463 {
6464 free (cinfo.bitmask);
6465 free (cinfo.hashcodes);
6466 return FALSE;
6467 }
6468
6469 s->contents = contents;
6470 bfd_put_32 (output_bfd, bucketcount, contents);
6471 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6472 bfd_put_32 (output_bfd, maskwords, contents + 8);
6473 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6474 contents += 16 + cinfo.maskbits / 8;
6475
6476 for (i = 0; i < bucketcount; ++i)
6477 {
6478 if (cinfo.counts[i] == 0)
6479 bfd_put_32 (output_bfd, 0, contents);
6480 else
6481 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6482 contents += 4;
6483 }
6484
6485 cinfo.contents = contents;
6486
6487 /* Renumber dynamic symbols, populate .gnu.hash section. */
6488 elf_link_hash_traverse (elf_hash_table (info),
6489 elf_renumber_gnu_hash_syms, &cinfo);
6490
6491 contents = s->contents + 16;
6492 for (i = 0; i < maskwords; ++i)
6493 {
6494 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6495 contents);
6496 contents += bed->s->arch_size / 8;
6497 }
6498
6499 free (cinfo.bitmask);
6500 free (cinfo.hashcodes);
6501 }
6502 }
6503
6504 s = bfd_get_section_by_name (dynobj, ".dynstr");
6505 BFD_ASSERT (s != NULL);
6506
6507 elf_finalize_dynstr (output_bfd, info);
6508
6509 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6510
6511 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6512 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6513 return FALSE;
6514 }
6515
6516 return TRUE;
6517 }
6518 \f
6519 /* Indicate that we are only retrieving symbol values from this
6520 section. */
6521
6522 void
6523 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6524 {
6525 if (is_elf_hash_table (info->hash))
6526 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6527 _bfd_generic_link_just_syms (sec, info);
6528 }
6529
6530 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6531
6532 static void
6533 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6534 asection *sec)
6535 {
6536 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6537 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6538 }
6539
6540 /* Finish SHF_MERGE section merging. */
6541
6542 bfd_boolean
6543 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6544 {
6545 bfd *ibfd;
6546 asection *sec;
6547
6548 if (!is_elf_hash_table (info->hash))
6549 return FALSE;
6550
6551 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6552 if ((ibfd->flags & DYNAMIC) == 0)
6553 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6554 if ((sec->flags & SEC_MERGE) != 0
6555 && !bfd_is_abs_section (sec->output_section))
6556 {
6557 struct bfd_elf_section_data *secdata;
6558
6559 secdata = elf_section_data (sec);
6560 if (! _bfd_add_merge_section (abfd,
6561 &elf_hash_table (info)->merge_info,
6562 sec, &secdata->sec_info))
6563 return FALSE;
6564 else if (secdata->sec_info)
6565 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6566 }
6567
6568 if (elf_hash_table (info)->merge_info != NULL)
6569 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6570 merge_sections_remove_hook);
6571 return TRUE;
6572 }
6573
6574 /* Create an entry in an ELF linker hash table. */
6575
6576 struct bfd_hash_entry *
6577 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6578 struct bfd_hash_table *table,
6579 const char *string)
6580 {
6581 /* Allocate the structure if it has not already been allocated by a
6582 subclass. */
6583 if (entry == NULL)
6584 {
6585 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6586 if (entry == NULL)
6587 return entry;
6588 }
6589
6590 /* Call the allocation method of the superclass. */
6591 entry = _bfd_link_hash_newfunc (entry, table, string);
6592 if (entry != NULL)
6593 {
6594 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6595 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6596
6597 /* Set local fields. */
6598 ret->indx = -1;
6599 ret->dynindx = -1;
6600 ret->got = htab->init_got_refcount;
6601 ret->plt = htab->init_plt_refcount;
6602 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6603 - offsetof (struct elf_link_hash_entry, size)));
6604 /* Assume that we have been called by a non-ELF symbol reader.
6605 This flag is then reset by the code which reads an ELF input
6606 file. This ensures that a symbol created by a non-ELF symbol
6607 reader will have the flag set correctly. */
6608 ret->non_elf = 1;
6609 }
6610
6611 return entry;
6612 }
6613
6614 /* Copy data from an indirect symbol to its direct symbol, hiding the
6615 old indirect symbol. Also used for copying flags to a weakdef. */
6616
6617 void
6618 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6619 struct elf_link_hash_entry *dir,
6620 struct elf_link_hash_entry *ind)
6621 {
6622 struct elf_link_hash_table *htab;
6623
6624 /* Copy down any references that we may have already seen to the
6625 symbol which just became indirect. */
6626
6627 dir->ref_dynamic |= ind->ref_dynamic;
6628 dir->ref_regular |= ind->ref_regular;
6629 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6630 dir->non_got_ref |= ind->non_got_ref;
6631 dir->needs_plt |= ind->needs_plt;
6632 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6633
6634 if (ind->root.type != bfd_link_hash_indirect)
6635 return;
6636
6637 /* Copy over the global and procedure linkage table refcount entries.
6638 These may have been already set up by a check_relocs routine. */
6639 htab = elf_hash_table (info);
6640 if (ind->got.refcount > htab->init_got_refcount.refcount)
6641 {
6642 if (dir->got.refcount < 0)
6643 dir->got.refcount = 0;
6644 dir->got.refcount += ind->got.refcount;
6645 ind->got.refcount = htab->init_got_refcount.refcount;
6646 }
6647
6648 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6649 {
6650 if (dir->plt.refcount < 0)
6651 dir->plt.refcount = 0;
6652 dir->plt.refcount += ind->plt.refcount;
6653 ind->plt.refcount = htab->init_plt_refcount.refcount;
6654 }
6655
6656 if (ind->dynindx != -1)
6657 {
6658 if (dir->dynindx != -1)
6659 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6660 dir->dynindx = ind->dynindx;
6661 dir->dynstr_index = ind->dynstr_index;
6662 ind->dynindx = -1;
6663 ind->dynstr_index = 0;
6664 }
6665 }
6666
6667 void
6668 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6669 struct elf_link_hash_entry *h,
6670 bfd_boolean force_local)
6671 {
6672 h->plt = elf_hash_table (info)->init_plt_offset;
6673 h->needs_plt = 0;
6674 if (force_local)
6675 {
6676 h->forced_local = 1;
6677 if (h->dynindx != -1)
6678 {
6679 h->dynindx = -1;
6680 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6681 h->dynstr_index);
6682 }
6683 }
6684 }
6685
6686 /* Initialize an ELF linker hash table. */
6687
6688 bfd_boolean
6689 _bfd_elf_link_hash_table_init
6690 (struct elf_link_hash_table *table,
6691 bfd *abfd,
6692 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6693 struct bfd_hash_table *,
6694 const char *),
6695 unsigned int entsize)
6696 {
6697 bfd_boolean ret;
6698 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6699
6700 memset (table, 0, sizeof * table);
6701 table->init_got_refcount.refcount = can_refcount - 1;
6702 table->init_plt_refcount.refcount = can_refcount - 1;
6703 table->init_got_offset.offset = -(bfd_vma) 1;
6704 table->init_plt_offset.offset = -(bfd_vma) 1;
6705 /* The first dynamic symbol is a dummy. */
6706 table->dynsymcount = 1;
6707
6708 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6709 table->root.type = bfd_link_elf_hash_table;
6710
6711 return ret;
6712 }
6713
6714 /* Create an ELF linker hash table. */
6715
6716 struct bfd_link_hash_table *
6717 _bfd_elf_link_hash_table_create (bfd *abfd)
6718 {
6719 struct elf_link_hash_table *ret;
6720 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6721
6722 ret = bfd_malloc (amt);
6723 if (ret == NULL)
6724 return NULL;
6725
6726 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6727 sizeof (struct elf_link_hash_entry)))
6728 {
6729 free (ret);
6730 return NULL;
6731 }
6732
6733 return &ret->root;
6734 }
6735
6736 /* This is a hook for the ELF emulation code in the generic linker to
6737 tell the backend linker what file name to use for the DT_NEEDED
6738 entry for a dynamic object. */
6739
6740 void
6741 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6742 {
6743 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6744 && bfd_get_format (abfd) == bfd_object)
6745 elf_dt_name (abfd) = name;
6746 }
6747
6748 int
6749 bfd_elf_get_dyn_lib_class (bfd *abfd)
6750 {
6751 int lib_class;
6752 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6753 && bfd_get_format (abfd) == bfd_object)
6754 lib_class = elf_dyn_lib_class (abfd);
6755 else
6756 lib_class = 0;
6757 return lib_class;
6758 }
6759
6760 void
6761 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6762 {
6763 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6764 && bfd_get_format (abfd) == bfd_object)
6765 elf_dyn_lib_class (abfd) = lib_class;
6766 }
6767
6768 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6769 the linker ELF emulation code. */
6770
6771 struct bfd_link_needed_list *
6772 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6773 struct bfd_link_info *info)
6774 {
6775 if (! is_elf_hash_table (info->hash))
6776 return NULL;
6777 return elf_hash_table (info)->needed;
6778 }
6779
6780 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6781 hook for the linker ELF emulation code. */
6782
6783 struct bfd_link_needed_list *
6784 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6785 struct bfd_link_info *info)
6786 {
6787 if (! is_elf_hash_table (info->hash))
6788 return NULL;
6789 return elf_hash_table (info)->runpath;
6790 }
6791
6792 /* Get the name actually used for a dynamic object for a link. This
6793 is the SONAME entry if there is one. Otherwise, it is the string
6794 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6795
6796 const char *
6797 bfd_elf_get_dt_soname (bfd *abfd)
6798 {
6799 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6800 && bfd_get_format (abfd) == bfd_object)
6801 return elf_dt_name (abfd);
6802 return NULL;
6803 }
6804
6805 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6806 the ELF linker emulation code. */
6807
6808 bfd_boolean
6809 bfd_elf_get_bfd_needed_list (bfd *abfd,
6810 struct bfd_link_needed_list **pneeded)
6811 {
6812 asection *s;
6813 bfd_byte *dynbuf = NULL;
6814 unsigned int elfsec;
6815 unsigned long shlink;
6816 bfd_byte *extdyn, *extdynend;
6817 size_t extdynsize;
6818 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6819
6820 *pneeded = NULL;
6821
6822 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6823 || bfd_get_format (abfd) != bfd_object)
6824 return TRUE;
6825
6826 s = bfd_get_section_by_name (abfd, ".dynamic");
6827 if (s == NULL || s->size == 0)
6828 return TRUE;
6829
6830 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6831 goto error_return;
6832
6833 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6834 if (elfsec == SHN_BAD)
6835 goto error_return;
6836
6837 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6838
6839 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6840 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6841
6842 extdyn = dynbuf;
6843 extdynend = extdyn + s->size;
6844 for (; extdyn < extdynend; extdyn += extdynsize)
6845 {
6846 Elf_Internal_Dyn dyn;
6847
6848 (*swap_dyn_in) (abfd, extdyn, &dyn);
6849
6850 if (dyn.d_tag == DT_NULL)
6851 break;
6852
6853 if (dyn.d_tag == DT_NEEDED)
6854 {
6855 const char *string;
6856 struct bfd_link_needed_list *l;
6857 unsigned int tagv = dyn.d_un.d_val;
6858 bfd_size_type amt;
6859
6860 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6861 if (string == NULL)
6862 goto error_return;
6863
6864 amt = sizeof *l;
6865 l = bfd_alloc (abfd, amt);
6866 if (l == NULL)
6867 goto error_return;
6868
6869 l->by = abfd;
6870 l->name = string;
6871 l->next = *pneeded;
6872 *pneeded = l;
6873 }
6874 }
6875
6876 free (dynbuf);
6877
6878 return TRUE;
6879
6880 error_return:
6881 if (dynbuf != NULL)
6882 free (dynbuf);
6883 return FALSE;
6884 }
6885
6886 struct elf_symbuf_symbol
6887 {
6888 unsigned long st_name; /* Symbol name, index in string tbl */
6889 unsigned char st_info; /* Type and binding attributes */
6890 unsigned char st_other; /* Visibilty, and target specific */
6891 };
6892
6893 struct elf_symbuf_head
6894 {
6895 struct elf_symbuf_symbol *ssym;
6896 bfd_size_type count;
6897 unsigned int st_shndx;
6898 };
6899
6900 struct elf_symbol
6901 {
6902 union
6903 {
6904 Elf_Internal_Sym *isym;
6905 struct elf_symbuf_symbol *ssym;
6906 } u;
6907 const char *name;
6908 };
6909
6910 /* Sort references to symbols by ascending section number. */
6911
6912 static int
6913 elf_sort_elf_symbol (const void *arg1, const void *arg2)
6914 {
6915 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
6916 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
6917
6918 return s1->st_shndx - s2->st_shndx;
6919 }
6920
6921 static int
6922 elf_sym_name_compare (const void *arg1, const void *arg2)
6923 {
6924 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
6925 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
6926 return strcmp (s1->name, s2->name);
6927 }
6928
6929 static struct elf_symbuf_head *
6930 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
6931 {
6932 Elf_Internal_Sym **ind, **indbufend, **indbuf;
6933 struct elf_symbuf_symbol *ssym;
6934 struct elf_symbuf_head *ssymbuf, *ssymhead;
6935 bfd_size_type i, shndx_count, total_size;
6936
6937 indbuf = bfd_malloc2 (symcount, sizeof (*indbuf));
6938 if (indbuf == NULL)
6939 return NULL;
6940
6941 for (ind = indbuf, i = 0; i < symcount; i++)
6942 if (isymbuf[i].st_shndx != SHN_UNDEF)
6943 *ind++ = &isymbuf[i];
6944 indbufend = ind;
6945
6946 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
6947 elf_sort_elf_symbol);
6948
6949 shndx_count = 0;
6950 if (indbufend > indbuf)
6951 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
6952 if (ind[0]->st_shndx != ind[1]->st_shndx)
6953 shndx_count++;
6954
6955 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
6956 + (indbufend - indbuf) * sizeof (*ssym));
6957 ssymbuf = bfd_malloc (total_size);
6958 if (ssymbuf == NULL)
6959 {
6960 free (indbuf);
6961 return NULL;
6962 }
6963
6964 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
6965 ssymbuf->ssym = NULL;
6966 ssymbuf->count = shndx_count;
6967 ssymbuf->st_shndx = 0;
6968 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
6969 {
6970 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
6971 {
6972 ssymhead++;
6973 ssymhead->ssym = ssym;
6974 ssymhead->count = 0;
6975 ssymhead->st_shndx = (*ind)->st_shndx;
6976 }
6977 ssym->st_name = (*ind)->st_name;
6978 ssym->st_info = (*ind)->st_info;
6979 ssym->st_other = (*ind)->st_other;
6980 ssymhead->count++;
6981 }
6982 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
6983 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
6984 == total_size));
6985
6986 free (indbuf);
6987 return ssymbuf;
6988 }
6989
6990 /* Check if 2 sections define the same set of local and global
6991 symbols. */
6992
6993 static bfd_boolean
6994 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
6995 struct bfd_link_info *info)
6996 {
6997 bfd *bfd1, *bfd2;
6998 const struct elf_backend_data *bed1, *bed2;
6999 Elf_Internal_Shdr *hdr1, *hdr2;
7000 bfd_size_type symcount1, symcount2;
7001 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7002 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7003 Elf_Internal_Sym *isym, *isymend;
7004 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7005 bfd_size_type count1, count2, i;
7006 unsigned int shndx1, shndx2;
7007 bfd_boolean result;
7008
7009 bfd1 = sec1->owner;
7010 bfd2 = sec2->owner;
7011
7012 /* Both sections have to be in ELF. */
7013 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7014 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7015 return FALSE;
7016
7017 if (elf_section_type (sec1) != elf_section_type (sec2))
7018 return FALSE;
7019
7020 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7021 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7022 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7023 return FALSE;
7024
7025 bed1 = get_elf_backend_data (bfd1);
7026 bed2 = get_elf_backend_data (bfd2);
7027 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7028 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7029 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7030 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7031
7032 if (symcount1 == 0 || symcount2 == 0)
7033 return FALSE;
7034
7035 result = FALSE;
7036 isymbuf1 = NULL;
7037 isymbuf2 = NULL;
7038 ssymbuf1 = elf_tdata (bfd1)->symbuf;
7039 ssymbuf2 = elf_tdata (bfd2)->symbuf;
7040
7041 if (ssymbuf1 == NULL)
7042 {
7043 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7044 NULL, NULL, NULL);
7045 if (isymbuf1 == NULL)
7046 goto done;
7047
7048 if (!info->reduce_memory_overheads)
7049 elf_tdata (bfd1)->symbuf = ssymbuf1
7050 = elf_create_symbuf (symcount1, isymbuf1);
7051 }
7052
7053 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7054 {
7055 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7056 NULL, NULL, NULL);
7057 if (isymbuf2 == NULL)
7058 goto done;
7059
7060 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7061 elf_tdata (bfd2)->symbuf = ssymbuf2
7062 = elf_create_symbuf (symcount2, isymbuf2);
7063 }
7064
7065 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7066 {
7067 /* Optimized faster version. */
7068 bfd_size_type lo, hi, mid;
7069 struct elf_symbol *symp;
7070 struct elf_symbuf_symbol *ssym, *ssymend;
7071
7072 lo = 0;
7073 hi = ssymbuf1->count;
7074 ssymbuf1++;
7075 count1 = 0;
7076 while (lo < hi)
7077 {
7078 mid = (lo + hi) / 2;
7079 if (shndx1 < ssymbuf1[mid].st_shndx)
7080 hi = mid;
7081 else if (shndx1 > ssymbuf1[mid].st_shndx)
7082 lo = mid + 1;
7083 else
7084 {
7085 count1 = ssymbuf1[mid].count;
7086 ssymbuf1 += mid;
7087 break;
7088 }
7089 }
7090
7091 lo = 0;
7092 hi = ssymbuf2->count;
7093 ssymbuf2++;
7094 count2 = 0;
7095 while (lo < hi)
7096 {
7097 mid = (lo + hi) / 2;
7098 if (shndx2 < ssymbuf2[mid].st_shndx)
7099 hi = mid;
7100 else if (shndx2 > ssymbuf2[mid].st_shndx)
7101 lo = mid + 1;
7102 else
7103 {
7104 count2 = ssymbuf2[mid].count;
7105 ssymbuf2 += mid;
7106 break;
7107 }
7108 }
7109
7110 if (count1 == 0 || count2 == 0 || count1 != count2)
7111 goto done;
7112
7113 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
7114 symtable2 = bfd_malloc (count2 * sizeof (struct elf_symbol));
7115 if (symtable1 == NULL || symtable2 == NULL)
7116 goto done;
7117
7118 symp = symtable1;
7119 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7120 ssym < ssymend; ssym++, symp++)
7121 {
7122 symp->u.ssym = ssym;
7123 symp->name = bfd_elf_string_from_elf_section (bfd1,
7124 hdr1->sh_link,
7125 ssym->st_name);
7126 }
7127
7128 symp = symtable2;
7129 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7130 ssym < ssymend; ssym++, symp++)
7131 {
7132 symp->u.ssym = ssym;
7133 symp->name = bfd_elf_string_from_elf_section (bfd2,
7134 hdr2->sh_link,
7135 ssym->st_name);
7136 }
7137
7138 /* Sort symbol by name. */
7139 qsort (symtable1, count1, sizeof (struct elf_symbol),
7140 elf_sym_name_compare);
7141 qsort (symtable2, count1, sizeof (struct elf_symbol),
7142 elf_sym_name_compare);
7143
7144 for (i = 0; i < count1; i++)
7145 /* Two symbols must have the same binding, type and name. */
7146 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7147 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7148 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7149 goto done;
7150
7151 result = TRUE;
7152 goto done;
7153 }
7154
7155 symtable1 = bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7156 symtable2 = bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7157 if (symtable1 == NULL || symtable2 == NULL)
7158 goto done;
7159
7160 /* Count definitions in the section. */
7161 count1 = 0;
7162 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7163 if (isym->st_shndx == shndx1)
7164 symtable1[count1++].u.isym = isym;
7165
7166 count2 = 0;
7167 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7168 if (isym->st_shndx == shndx2)
7169 symtable2[count2++].u.isym = isym;
7170
7171 if (count1 == 0 || count2 == 0 || count1 != count2)
7172 goto done;
7173
7174 for (i = 0; i < count1; i++)
7175 symtable1[i].name
7176 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7177 symtable1[i].u.isym->st_name);
7178
7179 for (i = 0; i < count2; i++)
7180 symtable2[i].name
7181 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7182 symtable2[i].u.isym->st_name);
7183
7184 /* Sort symbol by name. */
7185 qsort (symtable1, count1, sizeof (struct elf_symbol),
7186 elf_sym_name_compare);
7187 qsort (symtable2, count1, sizeof (struct elf_symbol),
7188 elf_sym_name_compare);
7189
7190 for (i = 0; i < count1; i++)
7191 /* Two symbols must have the same binding, type and name. */
7192 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7193 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7194 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7195 goto done;
7196
7197 result = TRUE;
7198
7199 done:
7200 if (symtable1)
7201 free (symtable1);
7202 if (symtable2)
7203 free (symtable2);
7204 if (isymbuf1)
7205 free (isymbuf1);
7206 if (isymbuf2)
7207 free (isymbuf2);
7208
7209 return result;
7210 }
7211
7212 /* Return TRUE if 2 section types are compatible. */
7213
7214 bfd_boolean
7215 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7216 bfd *bbfd, const asection *bsec)
7217 {
7218 if (asec == NULL
7219 || bsec == NULL
7220 || abfd->xvec->flavour != bfd_target_elf_flavour
7221 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7222 return TRUE;
7223
7224 return elf_section_type (asec) == elf_section_type (bsec);
7225 }
7226 \f
7227 /* Final phase of ELF linker. */
7228
7229 /* A structure we use to avoid passing large numbers of arguments. */
7230
7231 struct elf_final_link_info
7232 {
7233 /* General link information. */
7234 struct bfd_link_info *info;
7235 /* Output BFD. */
7236 bfd *output_bfd;
7237 /* Symbol string table. */
7238 struct bfd_strtab_hash *symstrtab;
7239 /* .dynsym section. */
7240 asection *dynsym_sec;
7241 /* .hash section. */
7242 asection *hash_sec;
7243 /* symbol version section (.gnu.version). */
7244 asection *symver_sec;
7245 /* Buffer large enough to hold contents of any section. */
7246 bfd_byte *contents;
7247 /* Buffer large enough to hold external relocs of any section. */
7248 void *external_relocs;
7249 /* Buffer large enough to hold internal relocs of any section. */
7250 Elf_Internal_Rela *internal_relocs;
7251 /* Buffer large enough to hold external local symbols of any input
7252 BFD. */
7253 bfd_byte *external_syms;
7254 /* And a buffer for symbol section indices. */
7255 Elf_External_Sym_Shndx *locsym_shndx;
7256 /* Buffer large enough to hold internal local symbols of any input
7257 BFD. */
7258 Elf_Internal_Sym *internal_syms;
7259 /* Array large enough to hold a symbol index for each local symbol
7260 of any input BFD. */
7261 long *indices;
7262 /* Array large enough to hold a section pointer for each local
7263 symbol of any input BFD. */
7264 asection **sections;
7265 /* Buffer to hold swapped out symbols. */
7266 bfd_byte *symbuf;
7267 /* And one for symbol section indices. */
7268 Elf_External_Sym_Shndx *symshndxbuf;
7269 /* Number of swapped out symbols in buffer. */
7270 size_t symbuf_count;
7271 /* Number of symbols which fit in symbuf. */
7272 size_t symbuf_size;
7273 /* And same for symshndxbuf. */
7274 size_t shndxbuf_size;
7275 };
7276
7277 /* This struct is used to pass information to elf_link_output_extsym. */
7278
7279 struct elf_outext_info
7280 {
7281 bfd_boolean failed;
7282 bfd_boolean localsyms;
7283 struct elf_final_link_info *finfo;
7284 };
7285
7286
7287 /* Support for evaluating a complex relocation.
7288
7289 Complex relocations are generalized, self-describing relocations. The
7290 implementation of them consists of two parts: complex symbols, and the
7291 relocations themselves.
7292
7293 The relocations are use a reserved elf-wide relocation type code (R_RELC
7294 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7295 information (start bit, end bit, word width, etc) into the addend. This
7296 information is extracted from CGEN-generated operand tables within gas.
7297
7298 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7299 internal) representing prefix-notation expressions, including but not
7300 limited to those sorts of expressions normally encoded as addends in the
7301 addend field. The symbol mangling format is:
7302
7303 <node> := <literal>
7304 | <unary-operator> ':' <node>
7305 | <binary-operator> ':' <node> ':' <node>
7306 ;
7307
7308 <literal> := 's' <digits=N> ':' <N character symbol name>
7309 | 'S' <digits=N> ':' <N character section name>
7310 | '#' <hexdigits>
7311 ;
7312
7313 <binary-operator> := as in C
7314 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7315
7316 static void
7317 set_symbol_value (bfd *bfd_with_globals,
7318 Elf_Internal_Sym *isymbuf,
7319 size_t locsymcount,
7320 size_t symidx,
7321 bfd_vma val)
7322 {
7323 struct elf_link_hash_entry **sym_hashes;
7324 struct elf_link_hash_entry *h;
7325 size_t extsymoff = locsymcount;
7326
7327 if (symidx < locsymcount)
7328 {
7329 Elf_Internal_Sym *sym;
7330
7331 sym = isymbuf + symidx;
7332 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7333 {
7334 /* It is a local symbol: move it to the
7335 "absolute" section and give it a value. */
7336 sym->st_shndx = SHN_ABS;
7337 sym->st_value = val;
7338 return;
7339 }
7340 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7341 extsymoff = 0;
7342 }
7343
7344 /* It is a global symbol: set its link type
7345 to "defined" and give it a value. */
7346
7347 sym_hashes = elf_sym_hashes (bfd_with_globals);
7348 h = sym_hashes [symidx - extsymoff];
7349 while (h->root.type == bfd_link_hash_indirect
7350 || h->root.type == bfd_link_hash_warning)
7351 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7352 h->root.type = bfd_link_hash_defined;
7353 h->root.u.def.value = val;
7354 h->root.u.def.section = bfd_abs_section_ptr;
7355 }
7356
7357 static bfd_boolean
7358 resolve_symbol (const char *name,
7359 bfd *input_bfd,
7360 struct elf_final_link_info *finfo,
7361 bfd_vma *result,
7362 Elf_Internal_Sym *isymbuf,
7363 size_t locsymcount)
7364 {
7365 Elf_Internal_Sym *sym;
7366 struct bfd_link_hash_entry *global_entry;
7367 const char *candidate = NULL;
7368 Elf_Internal_Shdr *symtab_hdr;
7369 size_t i;
7370
7371 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7372
7373 for (i = 0; i < locsymcount; ++ i)
7374 {
7375 sym = isymbuf + i;
7376
7377 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7378 continue;
7379
7380 candidate = bfd_elf_string_from_elf_section (input_bfd,
7381 symtab_hdr->sh_link,
7382 sym->st_name);
7383 #ifdef DEBUG
7384 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7385 name, candidate, (unsigned long) sym->st_value);
7386 #endif
7387 if (candidate && strcmp (candidate, name) == 0)
7388 {
7389 asection *sec = finfo->sections [i];
7390
7391 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7392 *result += sec->output_offset + sec->output_section->vma;
7393 #ifdef DEBUG
7394 printf ("Found symbol with value %8.8lx\n",
7395 (unsigned long) *result);
7396 #endif
7397 return TRUE;
7398 }
7399 }
7400
7401 /* Hmm, haven't found it yet. perhaps it is a global. */
7402 global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7403 FALSE, FALSE, TRUE);
7404 if (!global_entry)
7405 return FALSE;
7406
7407 if (global_entry->type == bfd_link_hash_defined
7408 || global_entry->type == bfd_link_hash_defweak)
7409 {
7410 *result = (global_entry->u.def.value
7411 + global_entry->u.def.section->output_section->vma
7412 + global_entry->u.def.section->output_offset);
7413 #ifdef DEBUG
7414 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7415 global_entry->root.string, (unsigned long) *result);
7416 #endif
7417 return TRUE;
7418 }
7419
7420 return FALSE;
7421 }
7422
7423 static bfd_boolean
7424 resolve_section (const char *name,
7425 asection *sections,
7426 bfd_vma *result)
7427 {
7428 asection *curr;
7429 unsigned int len;
7430
7431 for (curr = sections; curr; curr = curr->next)
7432 if (strcmp (curr->name, name) == 0)
7433 {
7434 *result = curr->vma;
7435 return TRUE;
7436 }
7437
7438 /* Hmm. still haven't found it. try pseudo-section names. */
7439 for (curr = sections; curr; curr = curr->next)
7440 {
7441 len = strlen (curr->name);
7442 if (len > strlen (name))
7443 continue;
7444
7445 if (strncmp (curr->name, name, len) == 0)
7446 {
7447 if (strncmp (".end", name + len, 4) == 0)
7448 {
7449 *result = curr->vma + curr->size;
7450 return TRUE;
7451 }
7452
7453 /* Insert more pseudo-section names here, if you like. */
7454 }
7455 }
7456
7457 return FALSE;
7458 }
7459
7460 static void
7461 undefined_reference (const char *reftype, const char *name)
7462 {
7463 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7464 reftype, name);
7465 }
7466
7467 static bfd_boolean
7468 eval_symbol (bfd_vma *result,
7469 const char **symp,
7470 bfd *input_bfd,
7471 struct elf_final_link_info *finfo,
7472 bfd_vma dot,
7473 Elf_Internal_Sym *isymbuf,
7474 size_t locsymcount,
7475 int signed_p)
7476 {
7477 size_t len;
7478 size_t symlen;
7479 bfd_vma a;
7480 bfd_vma b;
7481 char symbuf[4096];
7482 const char *sym = *symp;
7483 const char *symend;
7484 bfd_boolean symbol_is_section = FALSE;
7485
7486 len = strlen (sym);
7487 symend = sym + len;
7488
7489 if (len < 1 || len > sizeof (symbuf))
7490 {
7491 bfd_set_error (bfd_error_invalid_operation);
7492 return FALSE;
7493 }
7494
7495 switch (* sym)
7496 {
7497 case '.':
7498 *result = dot;
7499 *symp = sym + 1;
7500 return TRUE;
7501
7502 case '#':
7503 ++sym;
7504 *result = strtoul (sym, (char **) symp, 16);
7505 return TRUE;
7506
7507 case 'S':
7508 symbol_is_section = TRUE;
7509 case 's':
7510 ++sym;
7511 symlen = strtol (sym, (char **) symp, 10);
7512 sym = *symp + 1; /* Skip the trailing ':'. */
7513
7514 if (symend < sym || symlen + 1 > sizeof (symbuf))
7515 {
7516 bfd_set_error (bfd_error_invalid_operation);
7517 return FALSE;
7518 }
7519
7520 memcpy (symbuf, sym, symlen);
7521 symbuf[symlen] = '\0';
7522 *symp = sym + symlen;
7523
7524 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7525 the symbol as a section, or vice-versa. so we're pretty liberal in our
7526 interpretation here; section means "try section first", not "must be a
7527 section", and likewise with symbol. */
7528
7529 if (symbol_is_section)
7530 {
7531 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7532 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7533 isymbuf, locsymcount))
7534 {
7535 undefined_reference ("section", symbuf);
7536 return FALSE;
7537 }
7538 }
7539 else
7540 {
7541 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7542 isymbuf, locsymcount)
7543 && !resolve_section (symbuf, finfo->output_bfd->sections,
7544 result))
7545 {
7546 undefined_reference ("symbol", symbuf);
7547 return FALSE;
7548 }
7549 }
7550
7551 return TRUE;
7552
7553 /* All that remains are operators. */
7554
7555 #define UNARY_OP(op) \
7556 if (strncmp (sym, #op, strlen (#op)) == 0) \
7557 { \
7558 sym += strlen (#op); \
7559 if (*sym == ':') \
7560 ++sym; \
7561 *symp = sym; \
7562 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7563 isymbuf, locsymcount, signed_p)) \
7564 return FALSE; \
7565 if (signed_p) \
7566 *result = op ((bfd_signed_vma) a); \
7567 else \
7568 *result = op a; \
7569 return TRUE; \
7570 }
7571
7572 #define BINARY_OP(op) \
7573 if (strncmp (sym, #op, strlen (#op)) == 0) \
7574 { \
7575 sym += strlen (#op); \
7576 if (*sym == ':') \
7577 ++sym; \
7578 *symp = sym; \
7579 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7580 isymbuf, locsymcount, signed_p)) \
7581 return FALSE; \
7582 ++*symp; \
7583 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7584 isymbuf, locsymcount, signed_p)) \
7585 return FALSE; \
7586 if (signed_p) \
7587 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7588 else \
7589 *result = a op b; \
7590 return TRUE; \
7591 }
7592
7593 default:
7594 UNARY_OP (0-);
7595 BINARY_OP (<<);
7596 BINARY_OP (>>);
7597 BINARY_OP (==);
7598 BINARY_OP (!=);
7599 BINARY_OP (<=);
7600 BINARY_OP (>=);
7601 BINARY_OP (&&);
7602 BINARY_OP (||);
7603 UNARY_OP (~);
7604 UNARY_OP (!);
7605 BINARY_OP (*);
7606 BINARY_OP (/);
7607 BINARY_OP (%);
7608 BINARY_OP (^);
7609 BINARY_OP (|);
7610 BINARY_OP (&);
7611 BINARY_OP (+);
7612 BINARY_OP (-);
7613 BINARY_OP (<);
7614 BINARY_OP (>);
7615 #undef UNARY_OP
7616 #undef BINARY_OP
7617 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7618 bfd_set_error (bfd_error_invalid_operation);
7619 return FALSE;
7620 }
7621 }
7622
7623 static void
7624 put_value (bfd_vma size,
7625 unsigned long chunksz,
7626 bfd *input_bfd,
7627 bfd_vma x,
7628 bfd_byte *location)
7629 {
7630 location += (size - chunksz);
7631
7632 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7633 {
7634 switch (chunksz)
7635 {
7636 default:
7637 case 0:
7638 abort ();
7639 case 1:
7640 bfd_put_8 (input_bfd, x, location);
7641 break;
7642 case 2:
7643 bfd_put_16 (input_bfd, x, location);
7644 break;
7645 case 4:
7646 bfd_put_32 (input_bfd, x, location);
7647 break;
7648 case 8:
7649 #ifdef BFD64
7650 bfd_put_64 (input_bfd, x, location);
7651 #else
7652 abort ();
7653 #endif
7654 break;
7655 }
7656 }
7657 }
7658
7659 static bfd_vma
7660 get_value (bfd_vma size,
7661 unsigned long chunksz,
7662 bfd *input_bfd,
7663 bfd_byte *location)
7664 {
7665 bfd_vma x = 0;
7666
7667 for (; size; size -= chunksz, location += chunksz)
7668 {
7669 switch (chunksz)
7670 {
7671 default:
7672 case 0:
7673 abort ();
7674 case 1:
7675 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7676 break;
7677 case 2:
7678 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7679 break;
7680 case 4:
7681 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7682 break;
7683 case 8:
7684 #ifdef BFD64
7685 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7686 #else
7687 abort ();
7688 #endif
7689 break;
7690 }
7691 }
7692 return x;
7693 }
7694
7695 static void
7696 decode_complex_addend (unsigned long *start, /* in bits */
7697 unsigned long *oplen, /* in bits */
7698 unsigned long *len, /* in bits */
7699 unsigned long *wordsz, /* in bytes */
7700 unsigned long *chunksz, /* in bytes */
7701 unsigned long *lsb0_p,
7702 unsigned long *signed_p,
7703 unsigned long *trunc_p,
7704 unsigned long encoded)
7705 {
7706 * start = encoded & 0x3F;
7707 * len = (encoded >> 6) & 0x3F;
7708 * oplen = (encoded >> 12) & 0x3F;
7709 * wordsz = (encoded >> 18) & 0xF;
7710 * chunksz = (encoded >> 22) & 0xF;
7711 * lsb0_p = (encoded >> 27) & 1;
7712 * signed_p = (encoded >> 28) & 1;
7713 * trunc_p = (encoded >> 29) & 1;
7714 }
7715
7716 bfd_reloc_status_type
7717 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7718 asection *input_section ATTRIBUTE_UNUSED,
7719 bfd_byte *contents,
7720 Elf_Internal_Rela *rel,
7721 bfd_vma relocation)
7722 {
7723 bfd_vma shift, x, mask;
7724 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7725 bfd_reloc_status_type r;
7726
7727 /* Perform this reloc, since it is complex.
7728 (this is not to say that it necessarily refers to a complex
7729 symbol; merely that it is a self-describing CGEN based reloc.
7730 i.e. the addend has the complete reloc information (bit start, end,
7731 word size, etc) encoded within it.). */
7732
7733 decode_complex_addend (&start, &oplen, &len, &wordsz,
7734 &chunksz, &lsb0_p, &signed_p,
7735 &trunc_p, rel->r_addend);
7736
7737 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7738
7739 if (lsb0_p)
7740 shift = (start + 1) - len;
7741 else
7742 shift = (8 * wordsz) - (start + len);
7743
7744 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7745
7746 #ifdef DEBUG
7747 printf ("Doing complex reloc: "
7748 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7749 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7750 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7751 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7752 oplen, x, mask, relocation);
7753 #endif
7754
7755 r = bfd_reloc_ok;
7756 if (! trunc_p)
7757 /* Now do an overflow check. */
7758 r = bfd_check_overflow ((signed_p
7759 ? complain_overflow_signed
7760 : complain_overflow_unsigned),
7761 len, 0, (8 * wordsz),
7762 relocation);
7763
7764 /* Do the deed. */
7765 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7766
7767 #ifdef DEBUG
7768 printf (" relocation: %8.8lx\n"
7769 " shifted mask: %8.8lx\n"
7770 " shifted/masked reloc: %8.8lx\n"
7771 " result: %8.8lx\n",
7772 relocation, (mask << shift),
7773 ((relocation & mask) << shift), x);
7774 #endif
7775 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7776 return r;
7777 }
7778
7779 /* When performing a relocatable link, the input relocations are
7780 preserved. But, if they reference global symbols, the indices
7781 referenced must be updated. Update all the relocations in
7782 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
7783
7784 static void
7785 elf_link_adjust_relocs (bfd *abfd,
7786 Elf_Internal_Shdr *rel_hdr,
7787 unsigned int count,
7788 struct elf_link_hash_entry **rel_hash)
7789 {
7790 unsigned int i;
7791 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7792 bfd_byte *erela;
7793 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7794 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7795 bfd_vma r_type_mask;
7796 int r_sym_shift;
7797
7798 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
7799 {
7800 swap_in = bed->s->swap_reloc_in;
7801 swap_out = bed->s->swap_reloc_out;
7802 }
7803 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
7804 {
7805 swap_in = bed->s->swap_reloca_in;
7806 swap_out = bed->s->swap_reloca_out;
7807 }
7808 else
7809 abort ();
7810
7811 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7812 abort ();
7813
7814 if (bed->s->arch_size == 32)
7815 {
7816 r_type_mask = 0xff;
7817 r_sym_shift = 8;
7818 }
7819 else
7820 {
7821 r_type_mask = 0xffffffff;
7822 r_sym_shift = 32;
7823 }
7824
7825 erela = rel_hdr->contents;
7826 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
7827 {
7828 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7829 unsigned int j;
7830
7831 if (*rel_hash == NULL)
7832 continue;
7833
7834 BFD_ASSERT ((*rel_hash)->indx >= 0);
7835
7836 (*swap_in) (abfd, erela, irela);
7837 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7838 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7839 | (irela[j].r_info & r_type_mask));
7840 (*swap_out) (abfd, irela, erela);
7841 }
7842 }
7843
7844 struct elf_link_sort_rela
7845 {
7846 union {
7847 bfd_vma offset;
7848 bfd_vma sym_mask;
7849 } u;
7850 enum elf_reloc_type_class type;
7851 /* We use this as an array of size int_rels_per_ext_rel. */
7852 Elf_Internal_Rela rela[1];
7853 };
7854
7855 static int
7856 elf_link_sort_cmp1 (const void *A, const void *B)
7857 {
7858 const struct elf_link_sort_rela *a = A;
7859 const struct elf_link_sort_rela *b = B;
7860 int relativea, relativeb;
7861
7862 relativea = a->type == reloc_class_relative;
7863 relativeb = b->type == reloc_class_relative;
7864
7865 if (relativea < relativeb)
7866 return 1;
7867 if (relativea > relativeb)
7868 return -1;
7869 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
7870 return -1;
7871 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
7872 return 1;
7873 if (a->rela->r_offset < b->rela->r_offset)
7874 return -1;
7875 if (a->rela->r_offset > b->rela->r_offset)
7876 return 1;
7877 return 0;
7878 }
7879
7880 static int
7881 elf_link_sort_cmp2 (const void *A, const void *B)
7882 {
7883 const struct elf_link_sort_rela *a = A;
7884 const struct elf_link_sort_rela *b = B;
7885 int copya, copyb;
7886
7887 if (a->u.offset < b->u.offset)
7888 return -1;
7889 if (a->u.offset > b->u.offset)
7890 return 1;
7891 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
7892 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
7893 if (copya < copyb)
7894 return -1;
7895 if (copya > copyb)
7896 return 1;
7897 if (a->rela->r_offset < b->rela->r_offset)
7898 return -1;
7899 if (a->rela->r_offset > b->rela->r_offset)
7900 return 1;
7901 return 0;
7902 }
7903
7904 static size_t
7905 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
7906 {
7907 asection *dynamic_relocs;
7908 asection *rela_dyn;
7909 asection *rel_dyn;
7910 bfd_size_type count, size;
7911 size_t i, ret, sort_elt, ext_size;
7912 bfd_byte *sort, *s_non_relative, *p;
7913 struct elf_link_sort_rela *sq;
7914 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7915 int i2e = bed->s->int_rels_per_ext_rel;
7916 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7917 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7918 struct bfd_link_order *lo;
7919 bfd_vma r_sym_mask;
7920 bfd_boolean use_rela;
7921
7922 /* Find a dynamic reloc section. */
7923 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
7924 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
7925 if (rela_dyn != NULL && rela_dyn->size > 0
7926 && rel_dyn != NULL && rel_dyn->size > 0)
7927 {
7928 bfd_boolean use_rela_initialised = FALSE;
7929
7930 /* This is just here to stop gcc from complaining.
7931 It's initialization checking code is not perfect. */
7932 use_rela = TRUE;
7933
7934 /* Both sections are present. Examine the sizes
7935 of the indirect sections to help us choose. */
7936 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
7937 if (lo->type == bfd_indirect_link_order)
7938 {
7939 asection *o = lo->u.indirect.section;
7940
7941 if ((o->size % bed->s->sizeof_rela) == 0)
7942 {
7943 if ((o->size % bed->s->sizeof_rel) == 0)
7944 /* Section size is divisible by both rel and rela sizes.
7945 It is of no help to us. */
7946 ;
7947 else
7948 {
7949 /* Section size is only divisible by rela. */
7950 if (use_rela_initialised && (use_rela == FALSE))
7951 {
7952 _bfd_error_handler
7953 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7954 bfd_set_error (bfd_error_invalid_operation);
7955 return 0;
7956 }
7957 else
7958 {
7959 use_rela = TRUE;
7960 use_rela_initialised = TRUE;
7961 }
7962 }
7963 }
7964 else if ((o->size % bed->s->sizeof_rel) == 0)
7965 {
7966 /* Section size is only divisible by rel. */
7967 if (use_rela_initialised && (use_rela == TRUE))
7968 {
7969 _bfd_error_handler
7970 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7971 bfd_set_error (bfd_error_invalid_operation);
7972 return 0;
7973 }
7974 else
7975 {
7976 use_rela = FALSE;
7977 use_rela_initialised = TRUE;
7978 }
7979 }
7980 else
7981 {
7982 /* The section size is not divisible by either - something is wrong. */
7983 _bfd_error_handler
7984 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
7985 bfd_set_error (bfd_error_invalid_operation);
7986 return 0;
7987 }
7988 }
7989
7990 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
7991 if (lo->type == bfd_indirect_link_order)
7992 {
7993 asection *o = lo->u.indirect.section;
7994
7995 if ((o->size % bed->s->sizeof_rela) == 0)
7996 {
7997 if ((o->size % bed->s->sizeof_rel) == 0)
7998 /* Section size is divisible by both rel and rela sizes.
7999 It is of no help to us. */
8000 ;
8001 else
8002 {
8003 /* Section size is only divisible by rela. */
8004 if (use_rela_initialised && (use_rela == FALSE))
8005 {
8006 _bfd_error_handler
8007 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8008 bfd_set_error (bfd_error_invalid_operation);
8009 return 0;
8010 }
8011 else
8012 {
8013 use_rela = TRUE;
8014 use_rela_initialised = TRUE;
8015 }
8016 }
8017 }
8018 else if ((o->size % bed->s->sizeof_rel) == 0)
8019 {
8020 /* Section size is only divisible by rel. */
8021 if (use_rela_initialised && (use_rela == TRUE))
8022 {
8023 _bfd_error_handler
8024 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8025 bfd_set_error (bfd_error_invalid_operation);
8026 return 0;
8027 }
8028 else
8029 {
8030 use_rela = FALSE;
8031 use_rela_initialised = TRUE;
8032 }
8033 }
8034 else
8035 {
8036 /* The section size is not divisible by either - something is wrong. */
8037 _bfd_error_handler
8038 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8039 bfd_set_error (bfd_error_invalid_operation);
8040 return 0;
8041 }
8042 }
8043
8044 if (! use_rela_initialised)
8045 /* Make a guess. */
8046 use_rela = TRUE;
8047 }
8048 else if (rela_dyn != NULL && rela_dyn->size > 0)
8049 use_rela = TRUE;
8050 else if (rel_dyn != NULL && rel_dyn->size > 0)
8051 use_rela = FALSE;
8052 else
8053 return 0;
8054
8055 if (use_rela)
8056 {
8057 dynamic_relocs = rela_dyn;
8058 ext_size = bed->s->sizeof_rela;
8059 swap_in = bed->s->swap_reloca_in;
8060 swap_out = bed->s->swap_reloca_out;
8061 }
8062 else
8063 {
8064 dynamic_relocs = rel_dyn;
8065 ext_size = bed->s->sizeof_rel;
8066 swap_in = bed->s->swap_reloc_in;
8067 swap_out = bed->s->swap_reloc_out;
8068 }
8069
8070 size = 0;
8071 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8072 if (lo->type == bfd_indirect_link_order)
8073 size += lo->u.indirect.section->size;
8074
8075 if (size != dynamic_relocs->size)
8076 return 0;
8077
8078 sort_elt = (sizeof (struct elf_link_sort_rela)
8079 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8080
8081 count = dynamic_relocs->size / ext_size;
8082 sort = bfd_zmalloc (sort_elt * count);
8083
8084 if (sort == NULL)
8085 {
8086 (*info->callbacks->warning)
8087 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8088 return 0;
8089 }
8090
8091 if (bed->s->arch_size == 32)
8092 r_sym_mask = ~(bfd_vma) 0xff;
8093 else
8094 r_sym_mask = ~(bfd_vma) 0xffffffff;
8095
8096 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8097 if (lo->type == bfd_indirect_link_order)
8098 {
8099 bfd_byte *erel, *erelend;
8100 asection *o = lo->u.indirect.section;
8101
8102 if (o->contents == NULL && o->size != 0)
8103 {
8104 /* This is a reloc section that is being handled as a normal
8105 section. See bfd_section_from_shdr. We can't combine
8106 relocs in this case. */
8107 free (sort);
8108 return 0;
8109 }
8110 erel = o->contents;
8111 erelend = o->contents + o->size;
8112 p = sort + o->output_offset / ext_size * sort_elt;
8113
8114 while (erel < erelend)
8115 {
8116 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8117
8118 (*swap_in) (abfd, erel, s->rela);
8119 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8120 s->u.sym_mask = r_sym_mask;
8121 p += sort_elt;
8122 erel += ext_size;
8123 }
8124 }
8125
8126 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8127
8128 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8129 {
8130 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8131 if (s->type != reloc_class_relative)
8132 break;
8133 }
8134 ret = i;
8135 s_non_relative = p;
8136
8137 sq = (struct elf_link_sort_rela *) s_non_relative;
8138 for (; i < count; i++, p += sort_elt)
8139 {
8140 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8141 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8142 sq = sp;
8143 sp->u.offset = sq->rela->r_offset;
8144 }
8145
8146 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8147
8148 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8149 if (lo->type == bfd_indirect_link_order)
8150 {
8151 bfd_byte *erel, *erelend;
8152 asection *o = lo->u.indirect.section;
8153
8154 erel = o->contents;
8155 erelend = o->contents + o->size;
8156 p = sort + o->output_offset / ext_size * sort_elt;
8157 while (erel < erelend)
8158 {
8159 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8160 (*swap_out) (abfd, s->rela, erel);
8161 p += sort_elt;
8162 erel += ext_size;
8163 }
8164 }
8165
8166 free (sort);
8167 *psec = dynamic_relocs;
8168 return ret;
8169 }
8170
8171 /* Flush the output symbols to the file. */
8172
8173 static bfd_boolean
8174 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8175 const struct elf_backend_data *bed)
8176 {
8177 if (finfo->symbuf_count > 0)
8178 {
8179 Elf_Internal_Shdr *hdr;
8180 file_ptr pos;
8181 bfd_size_type amt;
8182
8183 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8184 pos = hdr->sh_offset + hdr->sh_size;
8185 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8186 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8187 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8188 return FALSE;
8189
8190 hdr->sh_size += amt;
8191 finfo->symbuf_count = 0;
8192 }
8193
8194 return TRUE;
8195 }
8196
8197 /* Add a symbol to the output symbol table. */
8198
8199 static int
8200 elf_link_output_sym (struct elf_final_link_info *finfo,
8201 const char *name,
8202 Elf_Internal_Sym *elfsym,
8203 asection *input_sec,
8204 struct elf_link_hash_entry *h)
8205 {
8206 bfd_byte *dest;
8207 Elf_External_Sym_Shndx *destshndx;
8208 int (*output_symbol_hook)
8209 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8210 struct elf_link_hash_entry *);
8211 const struct elf_backend_data *bed;
8212
8213 bed = get_elf_backend_data (finfo->output_bfd);
8214 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8215 if (output_symbol_hook != NULL)
8216 {
8217 int ret = (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h);
8218 if (ret != 1)
8219 return ret;
8220 }
8221
8222 if (name == NULL || *name == '\0')
8223 elfsym->st_name = 0;
8224 else if (input_sec->flags & SEC_EXCLUDE)
8225 elfsym->st_name = 0;
8226 else
8227 {
8228 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8229 name, TRUE, FALSE);
8230 if (elfsym->st_name == (unsigned long) -1)
8231 return 0;
8232 }
8233
8234 if (finfo->symbuf_count >= finfo->symbuf_size)
8235 {
8236 if (! elf_link_flush_output_syms (finfo, bed))
8237 return 0;
8238 }
8239
8240 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8241 destshndx = finfo->symshndxbuf;
8242 if (destshndx != NULL)
8243 {
8244 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8245 {
8246 bfd_size_type amt;
8247
8248 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8249 destshndx = bfd_realloc (destshndx, amt * 2);
8250 if (destshndx == NULL)
8251 return 0;
8252 finfo->symshndxbuf = destshndx;
8253 memset ((char *) destshndx + amt, 0, amt);
8254 finfo->shndxbuf_size *= 2;
8255 }
8256 destshndx += bfd_get_symcount (finfo->output_bfd);
8257 }
8258
8259 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8260 finfo->symbuf_count += 1;
8261 bfd_get_symcount (finfo->output_bfd) += 1;
8262
8263 return 1;
8264 }
8265
8266 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8267
8268 static bfd_boolean
8269 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8270 {
8271 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8272 && sym->st_shndx < SHN_LORESERVE)
8273 {
8274 /* The gABI doesn't support dynamic symbols in output sections
8275 beyond 64k. */
8276 (*_bfd_error_handler)
8277 (_("%B: Too many sections: %d (>= %d)"),
8278 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8279 bfd_set_error (bfd_error_nonrepresentable_section);
8280 return FALSE;
8281 }
8282 return TRUE;
8283 }
8284
8285 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8286 allowing an unsatisfied unversioned symbol in the DSO to match a
8287 versioned symbol that would normally require an explicit version.
8288 We also handle the case that a DSO references a hidden symbol
8289 which may be satisfied by a versioned symbol in another DSO. */
8290
8291 static bfd_boolean
8292 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8293 const struct elf_backend_data *bed,
8294 struct elf_link_hash_entry *h)
8295 {
8296 bfd *abfd;
8297 struct elf_link_loaded_list *loaded;
8298
8299 if (!is_elf_hash_table (info->hash))
8300 return FALSE;
8301
8302 switch (h->root.type)
8303 {
8304 default:
8305 abfd = NULL;
8306 break;
8307
8308 case bfd_link_hash_undefined:
8309 case bfd_link_hash_undefweak:
8310 abfd = h->root.u.undef.abfd;
8311 if ((abfd->flags & DYNAMIC) == 0
8312 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8313 return FALSE;
8314 break;
8315
8316 case bfd_link_hash_defined:
8317 case bfd_link_hash_defweak:
8318 abfd = h->root.u.def.section->owner;
8319 break;
8320
8321 case bfd_link_hash_common:
8322 abfd = h->root.u.c.p->section->owner;
8323 break;
8324 }
8325 BFD_ASSERT (abfd != NULL);
8326
8327 for (loaded = elf_hash_table (info)->loaded;
8328 loaded != NULL;
8329 loaded = loaded->next)
8330 {
8331 bfd *input;
8332 Elf_Internal_Shdr *hdr;
8333 bfd_size_type symcount;
8334 bfd_size_type extsymcount;
8335 bfd_size_type extsymoff;
8336 Elf_Internal_Shdr *versymhdr;
8337 Elf_Internal_Sym *isym;
8338 Elf_Internal_Sym *isymend;
8339 Elf_Internal_Sym *isymbuf;
8340 Elf_External_Versym *ever;
8341 Elf_External_Versym *extversym;
8342
8343 input = loaded->abfd;
8344
8345 /* We check each DSO for a possible hidden versioned definition. */
8346 if (input == abfd
8347 || (input->flags & DYNAMIC) == 0
8348 || elf_dynversym (input) == 0)
8349 continue;
8350
8351 hdr = &elf_tdata (input)->dynsymtab_hdr;
8352
8353 symcount = hdr->sh_size / bed->s->sizeof_sym;
8354 if (elf_bad_symtab (input))
8355 {
8356 extsymcount = symcount;
8357 extsymoff = 0;
8358 }
8359 else
8360 {
8361 extsymcount = symcount - hdr->sh_info;
8362 extsymoff = hdr->sh_info;
8363 }
8364
8365 if (extsymcount == 0)
8366 continue;
8367
8368 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8369 NULL, NULL, NULL);
8370 if (isymbuf == NULL)
8371 return FALSE;
8372
8373 /* Read in any version definitions. */
8374 versymhdr = &elf_tdata (input)->dynversym_hdr;
8375 extversym = bfd_malloc (versymhdr->sh_size);
8376 if (extversym == NULL)
8377 goto error_ret;
8378
8379 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8380 || (bfd_bread (extversym, versymhdr->sh_size, input)
8381 != versymhdr->sh_size))
8382 {
8383 free (extversym);
8384 error_ret:
8385 free (isymbuf);
8386 return FALSE;
8387 }
8388
8389 ever = extversym + extsymoff;
8390 isymend = isymbuf + extsymcount;
8391 for (isym = isymbuf; isym < isymend; isym++, ever++)
8392 {
8393 const char *name;
8394 Elf_Internal_Versym iver;
8395 unsigned short version_index;
8396
8397 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8398 || isym->st_shndx == SHN_UNDEF)
8399 continue;
8400
8401 name = bfd_elf_string_from_elf_section (input,
8402 hdr->sh_link,
8403 isym->st_name);
8404 if (strcmp (name, h->root.root.string) != 0)
8405 continue;
8406
8407 _bfd_elf_swap_versym_in (input, ever, &iver);
8408
8409 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
8410 {
8411 /* If we have a non-hidden versioned sym, then it should
8412 have provided a definition for the undefined sym. */
8413 abort ();
8414 }
8415
8416 version_index = iver.vs_vers & VERSYM_VERSION;
8417 if (version_index == 1 || version_index == 2)
8418 {
8419 /* This is the base or first version. We can use it. */
8420 free (extversym);
8421 free (isymbuf);
8422 return TRUE;
8423 }
8424 }
8425
8426 free (extversym);
8427 free (isymbuf);
8428 }
8429
8430 return FALSE;
8431 }
8432
8433 /* Add an external symbol to the symbol table. This is called from
8434 the hash table traversal routine. When generating a shared object,
8435 we go through the symbol table twice. The first time we output
8436 anything that might have been forced to local scope in a version
8437 script. The second time we output the symbols that are still
8438 global symbols. */
8439
8440 static bfd_boolean
8441 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
8442 {
8443 struct elf_outext_info *eoinfo = data;
8444 struct elf_final_link_info *finfo = eoinfo->finfo;
8445 bfd_boolean strip;
8446 Elf_Internal_Sym sym;
8447 asection *input_sec;
8448 const struct elf_backend_data *bed;
8449 long indx;
8450 int ret;
8451
8452 if (h->root.type == bfd_link_hash_warning)
8453 {
8454 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8455 if (h->root.type == bfd_link_hash_new)
8456 return TRUE;
8457 }
8458
8459 /* Decide whether to output this symbol in this pass. */
8460 if (eoinfo->localsyms)
8461 {
8462 if (!h->forced_local)
8463 return TRUE;
8464 }
8465 else
8466 {
8467 if (h->forced_local)
8468 return TRUE;
8469 }
8470
8471 bed = get_elf_backend_data (finfo->output_bfd);
8472
8473 if (h->root.type == bfd_link_hash_undefined)
8474 {
8475 /* If we have an undefined symbol reference here then it must have
8476 come from a shared library that is being linked in. (Undefined
8477 references in regular files have already been handled). */
8478 bfd_boolean ignore_undef = FALSE;
8479
8480 /* Some symbols may be special in that the fact that they're
8481 undefined can be safely ignored - let backend determine that. */
8482 if (bed->elf_backend_ignore_undef_symbol)
8483 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8484
8485 /* If we are reporting errors for this situation then do so now. */
8486 if (ignore_undef == FALSE
8487 && h->ref_dynamic
8488 && ! h->ref_regular
8489 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8490 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8491 {
8492 if (! (finfo->info->callbacks->undefined_symbol
8493 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
8494 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8495 {
8496 eoinfo->failed = TRUE;
8497 return FALSE;
8498 }
8499 }
8500 }
8501
8502 /* We should also warn if a forced local symbol is referenced from
8503 shared libraries. */
8504 if (! finfo->info->relocatable
8505 && (! finfo->info->shared)
8506 && h->forced_local
8507 && h->ref_dynamic
8508 && !h->dynamic_def
8509 && !h->dynamic_weak
8510 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8511 {
8512 (*_bfd_error_handler)
8513 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
8514 finfo->output_bfd,
8515 h->root.u.def.section == bfd_abs_section_ptr
8516 ? finfo->output_bfd : h->root.u.def.section->owner,
8517 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
8518 ? "internal"
8519 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
8520 ? "hidden" : "local",
8521 h->root.root.string);
8522 eoinfo->failed = TRUE;
8523 return FALSE;
8524 }
8525
8526 /* We don't want to output symbols that have never been mentioned by
8527 a regular file, or that we have been told to strip. However, if
8528 h->indx is set to -2, the symbol is used by a reloc and we must
8529 output it. */
8530 if (h->indx == -2)
8531 strip = FALSE;
8532 else if ((h->def_dynamic
8533 || h->ref_dynamic
8534 || h->root.type == bfd_link_hash_new)
8535 && !h->def_regular
8536 && !h->ref_regular)
8537 strip = TRUE;
8538 else if (finfo->info->strip == strip_all)
8539 strip = TRUE;
8540 else if (finfo->info->strip == strip_some
8541 && bfd_hash_lookup (finfo->info->keep_hash,
8542 h->root.root.string, FALSE, FALSE) == NULL)
8543 strip = TRUE;
8544 else if (finfo->info->strip_discarded
8545 && (h->root.type == bfd_link_hash_defined
8546 || h->root.type == bfd_link_hash_defweak)
8547 && elf_discarded_section (h->root.u.def.section))
8548 strip = TRUE;
8549 else
8550 strip = FALSE;
8551
8552 /* If we're stripping it, and it's not a dynamic symbol, there's
8553 nothing else to do unless it is a forced local symbol. */
8554 if (strip
8555 && h->dynindx == -1
8556 && !h->forced_local)
8557 return TRUE;
8558
8559 sym.st_value = 0;
8560 sym.st_size = h->size;
8561 sym.st_other = h->other;
8562 if (h->forced_local)
8563 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8564 else if (h->root.type == bfd_link_hash_undefweak
8565 || h->root.type == bfd_link_hash_defweak)
8566 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8567 else
8568 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8569
8570 switch (h->root.type)
8571 {
8572 default:
8573 case bfd_link_hash_new:
8574 case bfd_link_hash_warning:
8575 abort ();
8576 return FALSE;
8577
8578 case bfd_link_hash_undefined:
8579 case bfd_link_hash_undefweak:
8580 input_sec = bfd_und_section_ptr;
8581 sym.st_shndx = SHN_UNDEF;
8582 break;
8583
8584 case bfd_link_hash_defined:
8585 case bfd_link_hash_defweak:
8586 {
8587 input_sec = h->root.u.def.section;
8588 if (input_sec->output_section != NULL)
8589 {
8590 sym.st_shndx =
8591 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8592 input_sec->output_section);
8593 if (sym.st_shndx == SHN_BAD)
8594 {
8595 (*_bfd_error_handler)
8596 (_("%B: could not find output section %A for input section %A"),
8597 finfo->output_bfd, input_sec->output_section, input_sec);
8598 eoinfo->failed = TRUE;
8599 return FALSE;
8600 }
8601
8602 /* ELF symbols in relocatable files are section relative,
8603 but in nonrelocatable files they are virtual
8604 addresses. */
8605 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8606 if (! finfo->info->relocatable)
8607 {
8608 sym.st_value += input_sec->output_section->vma;
8609 if (h->type == STT_TLS)
8610 {
8611 asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8612 if (tls_sec != NULL)
8613 sym.st_value -= tls_sec->vma;
8614 else
8615 {
8616 /* The TLS section may have been garbage collected. */
8617 BFD_ASSERT (finfo->info->gc_sections
8618 && !input_sec->gc_mark);
8619 }
8620 }
8621 }
8622 }
8623 else
8624 {
8625 BFD_ASSERT (input_sec->owner == NULL
8626 || (input_sec->owner->flags & DYNAMIC) != 0);
8627 sym.st_shndx = SHN_UNDEF;
8628 input_sec = bfd_und_section_ptr;
8629 }
8630 }
8631 break;
8632
8633 case bfd_link_hash_common:
8634 input_sec = h->root.u.c.p->section;
8635 sym.st_shndx = bed->common_section_index (input_sec);
8636 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8637 break;
8638
8639 case bfd_link_hash_indirect:
8640 /* These symbols are created by symbol versioning. They point
8641 to the decorated version of the name. For example, if the
8642 symbol foo@@GNU_1.2 is the default, which should be used when
8643 foo is used with no version, then we add an indirect symbol
8644 foo which points to foo@@GNU_1.2. We ignore these symbols,
8645 since the indirected symbol is already in the hash table. */
8646 return TRUE;
8647 }
8648
8649 /* Give the processor backend a chance to tweak the symbol value,
8650 and also to finish up anything that needs to be done for this
8651 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8652 forced local syms when non-shared is due to a historical quirk. */
8653 if ((h->dynindx != -1
8654 || h->forced_local)
8655 && ((finfo->info->shared
8656 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8657 || h->root.type != bfd_link_hash_undefweak))
8658 || !h->forced_local)
8659 && elf_hash_table (finfo->info)->dynamic_sections_created)
8660 {
8661 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8662 (finfo->output_bfd, finfo->info, h, &sym)))
8663 {
8664 eoinfo->failed = TRUE;
8665 return FALSE;
8666 }
8667 }
8668
8669 /* If we are marking the symbol as undefined, and there are no
8670 non-weak references to this symbol from a regular object, then
8671 mark the symbol as weak undefined; if there are non-weak
8672 references, mark the symbol as strong. We can't do this earlier,
8673 because it might not be marked as undefined until the
8674 finish_dynamic_symbol routine gets through with it. */
8675 if (sym.st_shndx == SHN_UNDEF
8676 && h->ref_regular
8677 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8678 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8679 {
8680 int bindtype;
8681
8682 if (h->ref_regular_nonweak)
8683 bindtype = STB_GLOBAL;
8684 else
8685 bindtype = STB_WEAK;
8686 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
8687 }
8688
8689 /* If this is a symbol defined in a dynamic library, don't use the
8690 symbol size from the dynamic library. Relinking an executable
8691 against a new library may introduce gratuitous changes in the
8692 executable's symbols if we keep the size. */
8693 if (sym.st_shndx == SHN_UNDEF
8694 && !h->def_regular
8695 && h->def_dynamic)
8696 sym.st_size = 0;
8697
8698 /* If a non-weak symbol with non-default visibility is not defined
8699 locally, it is a fatal error. */
8700 if (! finfo->info->relocatable
8701 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8702 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8703 && h->root.type == bfd_link_hash_undefined
8704 && !h->def_regular)
8705 {
8706 (*_bfd_error_handler)
8707 (_("%B: %s symbol `%s' isn't defined"),
8708 finfo->output_bfd,
8709 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
8710 ? "protected"
8711 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
8712 ? "internal" : "hidden",
8713 h->root.root.string);
8714 eoinfo->failed = TRUE;
8715 return FALSE;
8716 }
8717
8718 /* If this symbol should be put in the .dynsym section, then put it
8719 there now. We already know the symbol index. We also fill in
8720 the entry in the .hash section. */
8721 if (h->dynindx != -1
8722 && elf_hash_table (finfo->info)->dynamic_sections_created)
8723 {
8724 bfd_byte *esym;
8725
8726 sym.st_name = h->dynstr_index;
8727 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8728 if (! check_dynsym (finfo->output_bfd, &sym))
8729 {
8730 eoinfo->failed = TRUE;
8731 return FALSE;
8732 }
8733 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8734
8735 if (finfo->hash_sec != NULL)
8736 {
8737 size_t hash_entry_size;
8738 bfd_byte *bucketpos;
8739 bfd_vma chain;
8740 size_t bucketcount;
8741 size_t bucket;
8742
8743 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8744 bucket = h->u.elf_hash_value % bucketcount;
8745
8746 hash_entry_size
8747 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8748 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8749 + (bucket + 2) * hash_entry_size);
8750 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8751 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8752 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8753 ((bfd_byte *) finfo->hash_sec->contents
8754 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8755 }
8756
8757 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8758 {
8759 Elf_Internal_Versym iversym;
8760 Elf_External_Versym *eversym;
8761
8762 if (!h->def_regular)
8763 {
8764 if (h->verinfo.verdef == NULL)
8765 iversym.vs_vers = 0;
8766 else
8767 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8768 }
8769 else
8770 {
8771 if (h->verinfo.vertree == NULL)
8772 iversym.vs_vers = 1;
8773 else
8774 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8775 if (finfo->info->create_default_symver)
8776 iversym.vs_vers++;
8777 }
8778
8779 if (h->hidden)
8780 iversym.vs_vers |= VERSYM_HIDDEN;
8781
8782 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8783 eversym += h->dynindx;
8784 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8785 }
8786 }
8787
8788 /* If we're stripping it, then it was just a dynamic symbol, and
8789 there's nothing else to do. */
8790 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8791 return TRUE;
8792
8793 indx = bfd_get_symcount (finfo->output_bfd);
8794 ret = elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h);
8795 if (ret == 0)
8796 {
8797 eoinfo->failed = TRUE;
8798 return FALSE;
8799 }
8800 else if (ret == 1)
8801 h->indx = indx;
8802 else if (h->indx == -2)
8803 abort();
8804
8805 return TRUE;
8806 }
8807
8808 /* Return TRUE if special handling is done for relocs in SEC against
8809 symbols defined in discarded sections. */
8810
8811 static bfd_boolean
8812 elf_section_ignore_discarded_relocs (asection *sec)
8813 {
8814 const struct elf_backend_data *bed;
8815
8816 switch (sec->sec_info_type)
8817 {
8818 case ELF_INFO_TYPE_STABS:
8819 case ELF_INFO_TYPE_EH_FRAME:
8820 return TRUE;
8821 default:
8822 break;
8823 }
8824
8825 bed = get_elf_backend_data (sec->owner);
8826 if (bed->elf_backend_ignore_discarded_relocs != NULL
8827 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8828 return TRUE;
8829
8830 return FALSE;
8831 }
8832
8833 /* Return a mask saying how ld should treat relocations in SEC against
8834 symbols defined in discarded sections. If this function returns
8835 COMPLAIN set, ld will issue a warning message. If this function
8836 returns PRETEND set, and the discarded section was link-once and the
8837 same size as the kept link-once section, ld will pretend that the
8838 symbol was actually defined in the kept section. Otherwise ld will
8839 zero the reloc (at least that is the intent, but some cooperation by
8840 the target dependent code is needed, particularly for REL targets). */
8841
8842 unsigned int
8843 _bfd_elf_default_action_discarded (asection *sec)
8844 {
8845 if (sec->flags & SEC_DEBUGGING)
8846 return PRETEND;
8847
8848 if (strcmp (".eh_frame", sec->name) == 0)
8849 return 0;
8850
8851 if (strcmp (".gcc_except_table", sec->name) == 0)
8852 return 0;
8853
8854 return COMPLAIN | PRETEND;
8855 }
8856
8857 /* Find a match between a section and a member of a section group. */
8858
8859 static asection *
8860 match_group_member (asection *sec, asection *group,
8861 struct bfd_link_info *info)
8862 {
8863 asection *first = elf_next_in_group (group);
8864 asection *s = first;
8865
8866 while (s != NULL)
8867 {
8868 if (bfd_elf_match_symbols_in_sections (s, sec, info))
8869 return s;
8870
8871 s = elf_next_in_group (s);
8872 if (s == first)
8873 break;
8874 }
8875
8876 return NULL;
8877 }
8878
8879 /* Check if the kept section of a discarded section SEC can be used
8880 to replace it. Return the replacement if it is OK. Otherwise return
8881 NULL. */
8882
8883 asection *
8884 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
8885 {
8886 asection *kept;
8887
8888 kept = sec->kept_section;
8889 if (kept != NULL)
8890 {
8891 if ((kept->flags & SEC_GROUP) != 0)
8892 kept = match_group_member (sec, kept, info);
8893 if (kept != NULL
8894 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
8895 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
8896 kept = NULL;
8897 sec->kept_section = kept;
8898 }
8899 return kept;
8900 }
8901
8902 /* Link an input file into the linker output file. This function
8903 handles all the sections and relocations of the input file at once.
8904 This is so that we only have to read the local symbols once, and
8905 don't have to keep them in memory. */
8906
8907 static bfd_boolean
8908 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
8909 {
8910 int (*relocate_section)
8911 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
8912 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
8913 bfd *output_bfd;
8914 Elf_Internal_Shdr *symtab_hdr;
8915 size_t locsymcount;
8916 size_t extsymoff;
8917 Elf_Internal_Sym *isymbuf;
8918 Elf_Internal_Sym *isym;
8919 Elf_Internal_Sym *isymend;
8920 long *pindex;
8921 asection **ppsection;
8922 asection *o;
8923 const struct elf_backend_data *bed;
8924 struct elf_link_hash_entry **sym_hashes;
8925
8926 output_bfd = finfo->output_bfd;
8927 bed = get_elf_backend_data (output_bfd);
8928 relocate_section = bed->elf_backend_relocate_section;
8929
8930 /* If this is a dynamic object, we don't want to do anything here:
8931 we don't want the local symbols, and we don't want the section
8932 contents. */
8933 if ((input_bfd->flags & DYNAMIC) != 0)
8934 return TRUE;
8935
8936 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8937 if (elf_bad_symtab (input_bfd))
8938 {
8939 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
8940 extsymoff = 0;
8941 }
8942 else
8943 {
8944 locsymcount = symtab_hdr->sh_info;
8945 extsymoff = symtab_hdr->sh_info;
8946 }
8947
8948 /* Read the local symbols. */
8949 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8950 if (isymbuf == NULL && locsymcount != 0)
8951 {
8952 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
8953 finfo->internal_syms,
8954 finfo->external_syms,
8955 finfo->locsym_shndx);
8956 if (isymbuf == NULL)
8957 return FALSE;
8958 }
8959
8960 /* Find local symbol sections and adjust values of symbols in
8961 SEC_MERGE sections. Write out those local symbols we know are
8962 going into the output file. */
8963 isymend = isymbuf + locsymcount;
8964 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
8965 isym < isymend;
8966 isym++, pindex++, ppsection++)
8967 {
8968 asection *isec;
8969 const char *name;
8970 Elf_Internal_Sym osym;
8971 long indx;
8972 int ret;
8973
8974 *pindex = -1;
8975
8976 if (elf_bad_symtab (input_bfd))
8977 {
8978 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
8979 {
8980 *ppsection = NULL;
8981 continue;
8982 }
8983 }
8984
8985 if (isym->st_shndx == SHN_UNDEF)
8986 isec = bfd_und_section_ptr;
8987 else if (isym->st_shndx == SHN_ABS)
8988 isec = bfd_abs_section_ptr;
8989 else if (isym->st_shndx == SHN_COMMON)
8990 isec = bfd_com_section_ptr;
8991 else
8992 {
8993 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
8994 if (isec == NULL)
8995 {
8996 /* Don't attempt to output symbols with st_shnx in the
8997 reserved range other than SHN_ABS and SHN_COMMON. */
8998 *ppsection = NULL;
8999 continue;
9000 }
9001 else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
9002 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9003 isym->st_value =
9004 _bfd_merged_section_offset (output_bfd, &isec,
9005 elf_section_data (isec)->sec_info,
9006 isym->st_value);
9007 }
9008
9009 *ppsection = isec;
9010
9011 /* Don't output the first, undefined, symbol. */
9012 if (ppsection == finfo->sections)
9013 continue;
9014
9015 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9016 {
9017 /* We never output section symbols. Instead, we use the
9018 section symbol of the corresponding section in the output
9019 file. */
9020 continue;
9021 }
9022
9023 /* If we are stripping all symbols, we don't want to output this
9024 one. */
9025 if (finfo->info->strip == strip_all)
9026 continue;
9027
9028 /* If we are discarding all local symbols, we don't want to
9029 output this one. If we are generating a relocatable output
9030 file, then some of the local symbols may be required by
9031 relocs; we output them below as we discover that they are
9032 needed. */
9033 if (finfo->info->discard == discard_all)
9034 continue;
9035
9036 /* If this symbol is defined in a section which we are
9037 discarding, we don't need to keep it. */
9038 if (isym->st_shndx != SHN_UNDEF
9039 && isym->st_shndx < SHN_LORESERVE
9040 && bfd_section_removed_from_list (output_bfd,
9041 isec->output_section))
9042 continue;
9043
9044 /* Get the name of the symbol. */
9045 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9046 isym->st_name);
9047 if (name == NULL)
9048 return FALSE;
9049
9050 /* See if we are discarding symbols with this name. */
9051 if ((finfo->info->strip == strip_some
9052 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
9053 == NULL))
9054 || (((finfo->info->discard == discard_sec_merge
9055 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
9056 || finfo->info->discard == discard_l)
9057 && bfd_is_local_label_name (input_bfd, name)))
9058 continue;
9059
9060 osym = *isym;
9061
9062 /* Adjust the section index for the output file. */
9063 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9064 isec->output_section);
9065 if (osym.st_shndx == SHN_BAD)
9066 return FALSE;
9067
9068 /* ELF symbols in relocatable files are section relative, but
9069 in executable files they are virtual addresses. Note that
9070 this code assumes that all ELF sections have an associated
9071 BFD section with a reasonable value for output_offset; below
9072 we assume that they also have a reasonable value for
9073 output_section. Any special sections must be set up to meet
9074 these requirements. */
9075 osym.st_value += isec->output_offset;
9076 if (! finfo->info->relocatable)
9077 {
9078 osym.st_value += isec->output_section->vma;
9079 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9080 {
9081 /* STT_TLS symbols are relative to PT_TLS segment base. */
9082 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9083 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9084 }
9085 }
9086
9087 indx = bfd_get_symcount (output_bfd);
9088 ret = elf_link_output_sym (finfo, name, &osym, isec, NULL);
9089 if (ret == 0)
9090 return FALSE;
9091 else if (ret == 1)
9092 *pindex = indx;
9093 }
9094
9095 /* Relocate the contents of each section. */
9096 sym_hashes = elf_sym_hashes (input_bfd);
9097 for (o = input_bfd->sections; o != NULL; o = o->next)
9098 {
9099 bfd_byte *contents;
9100
9101 if (! o->linker_mark)
9102 {
9103 /* This section was omitted from the link. */
9104 continue;
9105 }
9106
9107 if (finfo->info->relocatable
9108 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9109 {
9110 /* Deal with the group signature symbol. */
9111 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9112 unsigned long symndx = sec_data->this_hdr.sh_info;
9113 asection *osec = o->output_section;
9114
9115 if (symndx >= locsymcount
9116 || (elf_bad_symtab (input_bfd)
9117 && finfo->sections[symndx] == NULL))
9118 {
9119 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9120 while (h->root.type == bfd_link_hash_indirect
9121 || h->root.type == bfd_link_hash_warning)
9122 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9123 /* Arrange for symbol to be output. */
9124 h->indx = -2;
9125 elf_section_data (osec)->this_hdr.sh_info = -2;
9126 }
9127 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9128 {
9129 /* We'll use the output section target_index. */
9130 asection *sec = finfo->sections[symndx]->output_section;
9131 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9132 }
9133 else
9134 {
9135 if (finfo->indices[symndx] == -1)
9136 {
9137 /* Otherwise output the local symbol now. */
9138 Elf_Internal_Sym sym = isymbuf[symndx];
9139 asection *sec = finfo->sections[symndx]->output_section;
9140 const char *name;
9141 long indx;
9142 int ret;
9143
9144 name = bfd_elf_string_from_elf_section (input_bfd,
9145 symtab_hdr->sh_link,
9146 sym.st_name);
9147 if (name == NULL)
9148 return FALSE;
9149
9150 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9151 sec);
9152 if (sym.st_shndx == SHN_BAD)
9153 return FALSE;
9154
9155 sym.st_value += o->output_offset;
9156
9157 indx = bfd_get_symcount (output_bfd);
9158 ret = elf_link_output_sym (finfo, name, &sym, o, NULL);
9159 if (ret == 0)
9160 return FALSE;
9161 else if (ret == 1)
9162 finfo->indices[symndx] = indx;
9163 else
9164 abort ();
9165 }
9166 elf_section_data (osec)->this_hdr.sh_info
9167 = finfo->indices[symndx];
9168 }
9169 }
9170
9171 if ((o->flags & SEC_HAS_CONTENTS) == 0
9172 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9173 continue;
9174
9175 if ((o->flags & SEC_LINKER_CREATED) != 0)
9176 {
9177 /* Section was created by _bfd_elf_link_create_dynamic_sections
9178 or somesuch. */
9179 continue;
9180 }
9181
9182 /* Get the contents of the section. They have been cached by a
9183 relaxation routine. Note that o is a section in an input
9184 file, so the contents field will not have been set by any of
9185 the routines which work on output files. */
9186 if (elf_section_data (o)->this_hdr.contents != NULL)
9187 contents = elf_section_data (o)->this_hdr.contents;
9188 else
9189 {
9190 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
9191
9192 contents = finfo->contents;
9193 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
9194 return FALSE;
9195 }
9196
9197 if ((o->flags & SEC_RELOC) != 0)
9198 {
9199 Elf_Internal_Rela *internal_relocs;
9200 Elf_Internal_Rela *rel, *relend;
9201 bfd_vma r_type_mask;
9202 int r_sym_shift;
9203 int action_discarded;
9204 int ret;
9205
9206 /* Get the swapped relocs. */
9207 internal_relocs
9208 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9209 finfo->internal_relocs, FALSE);
9210 if (internal_relocs == NULL
9211 && o->reloc_count > 0)
9212 return FALSE;
9213
9214 if (bed->s->arch_size == 32)
9215 {
9216 r_type_mask = 0xff;
9217 r_sym_shift = 8;
9218 }
9219 else
9220 {
9221 r_type_mask = 0xffffffff;
9222 r_sym_shift = 32;
9223 }
9224
9225 action_discarded = -1;
9226 if (!elf_section_ignore_discarded_relocs (o))
9227 action_discarded = (*bed->action_discarded) (o);
9228
9229 /* Run through the relocs evaluating complex reloc symbols and
9230 looking for relocs against symbols from discarded sections
9231 or section symbols from removed link-once sections.
9232 Complain about relocs against discarded sections. Zero
9233 relocs against removed link-once sections. */
9234
9235 rel = internal_relocs;
9236 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9237 for ( ; rel < relend; rel++)
9238 {
9239 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9240 unsigned int s_type;
9241 asection **ps, *sec;
9242 struct elf_link_hash_entry *h = NULL;
9243 const char *sym_name;
9244
9245 if (r_symndx == STN_UNDEF)
9246 continue;
9247
9248 if (r_symndx >= locsymcount
9249 || (elf_bad_symtab (input_bfd)
9250 && finfo->sections[r_symndx] == NULL))
9251 {
9252 h = sym_hashes[r_symndx - extsymoff];
9253
9254 /* Badly formatted input files can contain relocs that
9255 reference non-existant symbols. Check here so that
9256 we do not seg fault. */
9257 if (h == NULL)
9258 {
9259 char buffer [32];
9260
9261 sprintf_vma (buffer, rel->r_info);
9262 (*_bfd_error_handler)
9263 (_("error: %B contains a reloc (0x%s) for section %A "
9264 "that references a non-existent global symbol"),
9265 input_bfd, o, buffer);
9266 bfd_set_error (bfd_error_bad_value);
9267 return FALSE;
9268 }
9269
9270 while (h->root.type == bfd_link_hash_indirect
9271 || h->root.type == bfd_link_hash_warning)
9272 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9273
9274 s_type = h->type;
9275
9276 ps = NULL;
9277 if (h->root.type == bfd_link_hash_defined
9278 || h->root.type == bfd_link_hash_defweak)
9279 ps = &h->root.u.def.section;
9280
9281 sym_name = h->root.root.string;
9282 }
9283 else
9284 {
9285 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9286
9287 s_type = ELF_ST_TYPE (sym->st_info);
9288 ps = &finfo->sections[r_symndx];
9289 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9290 sym, *ps);
9291 }
9292
9293 if ((s_type == STT_RELC || s_type == STT_SRELC)
9294 && !finfo->info->relocatable)
9295 {
9296 bfd_vma val;
9297 bfd_vma dot = (rel->r_offset
9298 + o->output_offset + o->output_section->vma);
9299 #ifdef DEBUG
9300 printf ("Encountered a complex symbol!");
9301 printf (" (input_bfd %s, section %s, reloc %ld\n",
9302 input_bfd->filename, o->name, rel - internal_relocs);
9303 printf (" symbol: idx %8.8lx, name %s\n",
9304 r_symndx, sym_name);
9305 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9306 (unsigned long) rel->r_info,
9307 (unsigned long) rel->r_offset);
9308 #endif
9309 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9310 isymbuf, locsymcount, s_type == STT_SRELC))
9311 return FALSE;
9312
9313 /* Symbol evaluated OK. Update to absolute value. */
9314 set_symbol_value (input_bfd, isymbuf, locsymcount,
9315 r_symndx, val);
9316 continue;
9317 }
9318
9319 if (action_discarded != -1 && ps != NULL)
9320 {
9321 /* Complain if the definition comes from a
9322 discarded section. */
9323 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9324 {
9325 BFD_ASSERT (r_symndx != 0);
9326 if (action_discarded & COMPLAIN)
9327 (*finfo->info->callbacks->einfo)
9328 (_("%X`%s' referenced in section `%A' of %B: "
9329 "defined in discarded section `%A' of %B\n"),
9330 sym_name, o, input_bfd, sec, sec->owner);
9331
9332 /* Try to do the best we can to support buggy old
9333 versions of gcc. Pretend that the symbol is
9334 really defined in the kept linkonce section.
9335 FIXME: This is quite broken. Modifying the
9336 symbol here means we will be changing all later
9337 uses of the symbol, not just in this section. */
9338 if (action_discarded & PRETEND)
9339 {
9340 asection *kept;
9341
9342 kept = _bfd_elf_check_kept_section (sec,
9343 finfo->info);
9344 if (kept != NULL)
9345 {
9346 *ps = kept;
9347 continue;
9348 }
9349 }
9350 }
9351 }
9352 }
9353
9354 /* Relocate the section by invoking a back end routine.
9355
9356 The back end routine is responsible for adjusting the
9357 section contents as necessary, and (if using Rela relocs
9358 and generating a relocatable output file) adjusting the
9359 reloc addend as necessary.
9360
9361 The back end routine does not have to worry about setting
9362 the reloc address or the reloc symbol index.
9363
9364 The back end routine is given a pointer to the swapped in
9365 internal symbols, and can access the hash table entries
9366 for the external symbols via elf_sym_hashes (input_bfd).
9367
9368 When generating relocatable output, the back end routine
9369 must handle STB_LOCAL/STT_SECTION symbols specially. The
9370 output symbol is going to be a section symbol
9371 corresponding to the output section, which will require
9372 the addend to be adjusted. */
9373
9374 ret = (*relocate_section) (output_bfd, finfo->info,
9375 input_bfd, o, contents,
9376 internal_relocs,
9377 isymbuf,
9378 finfo->sections);
9379 if (!ret)
9380 return FALSE;
9381
9382 if (ret == 2
9383 || finfo->info->relocatable
9384 || finfo->info->emitrelocations)
9385 {
9386 Elf_Internal_Rela *irela;
9387 Elf_Internal_Rela *irelaend;
9388 bfd_vma last_offset;
9389 struct elf_link_hash_entry **rel_hash;
9390 struct elf_link_hash_entry **rel_hash_list;
9391 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
9392 unsigned int next_erel;
9393 bfd_boolean rela_normal;
9394
9395 input_rel_hdr = &elf_section_data (o)->rel_hdr;
9396 rela_normal = (bed->rela_normal
9397 && (input_rel_hdr->sh_entsize
9398 == bed->s->sizeof_rela));
9399
9400 /* Adjust the reloc addresses and symbol indices. */
9401
9402 irela = internal_relocs;
9403 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9404 rel_hash = (elf_section_data (o->output_section)->rel_hashes
9405 + elf_section_data (o->output_section)->rel_count
9406 + elf_section_data (o->output_section)->rel_count2);
9407 rel_hash_list = rel_hash;
9408 last_offset = o->output_offset;
9409 if (!finfo->info->relocatable)
9410 last_offset += o->output_section->vma;
9411 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9412 {
9413 unsigned long r_symndx;
9414 asection *sec;
9415 Elf_Internal_Sym sym;
9416
9417 if (next_erel == bed->s->int_rels_per_ext_rel)
9418 {
9419 rel_hash++;
9420 next_erel = 0;
9421 }
9422
9423 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9424 finfo->info, o,
9425 irela->r_offset);
9426 if (irela->r_offset >= (bfd_vma) -2)
9427 {
9428 /* This is a reloc for a deleted entry or somesuch.
9429 Turn it into an R_*_NONE reloc, at the same
9430 offset as the last reloc. elf_eh_frame.c and
9431 bfd_elf_discard_info rely on reloc offsets
9432 being ordered. */
9433 irela->r_offset = last_offset;
9434 irela->r_info = 0;
9435 irela->r_addend = 0;
9436 continue;
9437 }
9438
9439 irela->r_offset += o->output_offset;
9440
9441 /* Relocs in an executable have to be virtual addresses. */
9442 if (!finfo->info->relocatable)
9443 irela->r_offset += o->output_section->vma;
9444
9445 last_offset = irela->r_offset;
9446
9447 r_symndx = irela->r_info >> r_sym_shift;
9448 if (r_symndx == STN_UNDEF)
9449 continue;
9450
9451 if (r_symndx >= locsymcount
9452 || (elf_bad_symtab (input_bfd)
9453 && finfo->sections[r_symndx] == NULL))
9454 {
9455 struct elf_link_hash_entry *rh;
9456 unsigned long indx;
9457
9458 /* This is a reloc against a global symbol. We
9459 have not yet output all the local symbols, so
9460 we do not know the symbol index of any global
9461 symbol. We set the rel_hash entry for this
9462 reloc to point to the global hash table entry
9463 for this symbol. The symbol index is then
9464 set at the end of bfd_elf_final_link. */
9465 indx = r_symndx - extsymoff;
9466 rh = elf_sym_hashes (input_bfd)[indx];
9467 while (rh->root.type == bfd_link_hash_indirect
9468 || rh->root.type == bfd_link_hash_warning)
9469 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9470
9471 /* Setting the index to -2 tells
9472 elf_link_output_extsym that this symbol is
9473 used by a reloc. */
9474 BFD_ASSERT (rh->indx < 0);
9475 rh->indx = -2;
9476
9477 *rel_hash = rh;
9478
9479 continue;
9480 }
9481
9482 /* This is a reloc against a local symbol. */
9483
9484 *rel_hash = NULL;
9485 sym = isymbuf[r_symndx];
9486 sec = finfo->sections[r_symndx];
9487 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9488 {
9489 /* I suppose the backend ought to fill in the
9490 section of any STT_SECTION symbol against a
9491 processor specific section. */
9492 r_symndx = 0;
9493 if (bfd_is_abs_section (sec))
9494 ;
9495 else if (sec == NULL || sec->owner == NULL)
9496 {
9497 bfd_set_error (bfd_error_bad_value);
9498 return FALSE;
9499 }
9500 else
9501 {
9502 asection *osec = sec->output_section;
9503
9504 /* If we have discarded a section, the output
9505 section will be the absolute section. In
9506 case of discarded SEC_MERGE sections, use
9507 the kept section. relocate_section should
9508 have already handled discarded linkonce
9509 sections. */
9510 if (bfd_is_abs_section (osec)
9511 && sec->kept_section != NULL
9512 && sec->kept_section->output_section != NULL)
9513 {
9514 osec = sec->kept_section->output_section;
9515 irela->r_addend -= osec->vma;
9516 }
9517
9518 if (!bfd_is_abs_section (osec))
9519 {
9520 r_symndx = osec->target_index;
9521 if (r_symndx == 0)
9522 {
9523 struct elf_link_hash_table *htab;
9524 asection *oi;
9525
9526 htab = elf_hash_table (finfo->info);
9527 oi = htab->text_index_section;
9528 if ((osec->flags & SEC_READONLY) == 0
9529 && htab->data_index_section != NULL)
9530 oi = htab->data_index_section;
9531
9532 if (oi != NULL)
9533 {
9534 irela->r_addend += osec->vma - oi->vma;
9535 r_symndx = oi->target_index;
9536 }
9537 }
9538
9539 BFD_ASSERT (r_symndx != 0);
9540 }
9541 }
9542
9543 /* Adjust the addend according to where the
9544 section winds up in the output section. */
9545 if (rela_normal)
9546 irela->r_addend += sec->output_offset;
9547 }
9548 else
9549 {
9550 if (finfo->indices[r_symndx] == -1)
9551 {
9552 unsigned long shlink;
9553 const char *name;
9554 asection *osec;
9555 long indx;
9556
9557 if (finfo->info->strip == strip_all)
9558 {
9559 /* You can't do ld -r -s. */
9560 bfd_set_error (bfd_error_invalid_operation);
9561 return FALSE;
9562 }
9563
9564 /* This symbol was skipped earlier, but
9565 since it is needed by a reloc, we
9566 must output it now. */
9567 shlink = symtab_hdr->sh_link;
9568 name = (bfd_elf_string_from_elf_section
9569 (input_bfd, shlink, sym.st_name));
9570 if (name == NULL)
9571 return FALSE;
9572
9573 osec = sec->output_section;
9574 sym.st_shndx =
9575 _bfd_elf_section_from_bfd_section (output_bfd,
9576 osec);
9577 if (sym.st_shndx == SHN_BAD)
9578 return FALSE;
9579
9580 sym.st_value += sec->output_offset;
9581 if (! finfo->info->relocatable)
9582 {
9583 sym.st_value += osec->vma;
9584 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9585 {
9586 /* STT_TLS symbols are relative to PT_TLS
9587 segment base. */
9588 BFD_ASSERT (elf_hash_table (finfo->info)
9589 ->tls_sec != NULL);
9590 sym.st_value -= (elf_hash_table (finfo->info)
9591 ->tls_sec->vma);
9592 }
9593 }
9594
9595 indx = bfd_get_symcount (output_bfd);
9596 ret = elf_link_output_sym (finfo, name, &sym, sec,
9597 NULL);
9598 if (ret == 0)
9599 return FALSE;
9600 else if (ret == 1)
9601 finfo->indices[r_symndx] = indx;
9602 else
9603 abort ();
9604 }
9605
9606 r_symndx = finfo->indices[r_symndx];
9607 }
9608
9609 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9610 | (irela->r_info & r_type_mask));
9611 }
9612
9613 /* Swap out the relocs. */
9614 if (input_rel_hdr->sh_size != 0
9615 && !bed->elf_backend_emit_relocs (output_bfd, o,
9616 input_rel_hdr,
9617 internal_relocs,
9618 rel_hash_list))
9619 return FALSE;
9620
9621 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
9622 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
9623 {
9624 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9625 * bed->s->int_rels_per_ext_rel);
9626 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9627 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9628 input_rel_hdr2,
9629 internal_relocs,
9630 rel_hash_list))
9631 return FALSE;
9632 }
9633 }
9634 }
9635
9636 /* Write out the modified section contents. */
9637 if (bed->elf_backend_write_section
9638 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9639 contents))
9640 {
9641 /* Section written out. */
9642 }
9643 else switch (o->sec_info_type)
9644 {
9645 case ELF_INFO_TYPE_STABS:
9646 if (! (_bfd_write_section_stabs
9647 (output_bfd,
9648 &elf_hash_table (finfo->info)->stab_info,
9649 o, &elf_section_data (o)->sec_info, contents)))
9650 return FALSE;
9651 break;
9652 case ELF_INFO_TYPE_MERGE:
9653 if (! _bfd_write_merged_section (output_bfd, o,
9654 elf_section_data (o)->sec_info))
9655 return FALSE;
9656 break;
9657 case ELF_INFO_TYPE_EH_FRAME:
9658 {
9659 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9660 o, contents))
9661 return FALSE;
9662 }
9663 break;
9664 default:
9665 {
9666 if (! (o->flags & SEC_EXCLUDE)
9667 && ! (o->output_section->flags & SEC_NEVER_LOAD)
9668 && ! bfd_set_section_contents (output_bfd, o->output_section,
9669 contents,
9670 (file_ptr) o->output_offset,
9671 o->size))
9672 return FALSE;
9673 }
9674 break;
9675 }
9676 }
9677
9678 return TRUE;
9679 }
9680
9681 /* Generate a reloc when linking an ELF file. This is a reloc
9682 requested by the linker, and does not come from any input file. This
9683 is used to build constructor and destructor tables when linking
9684 with -Ur. */
9685
9686 static bfd_boolean
9687 elf_reloc_link_order (bfd *output_bfd,
9688 struct bfd_link_info *info,
9689 asection *output_section,
9690 struct bfd_link_order *link_order)
9691 {
9692 reloc_howto_type *howto;
9693 long indx;
9694 bfd_vma offset;
9695 bfd_vma addend;
9696 struct elf_link_hash_entry **rel_hash_ptr;
9697 Elf_Internal_Shdr *rel_hdr;
9698 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9699 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9700 bfd_byte *erel;
9701 unsigned int i;
9702
9703 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9704 if (howto == NULL)
9705 {
9706 bfd_set_error (bfd_error_bad_value);
9707 return FALSE;
9708 }
9709
9710 addend = link_order->u.reloc.p->addend;
9711
9712 /* Figure out the symbol index. */
9713 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
9714 + elf_section_data (output_section)->rel_count
9715 + elf_section_data (output_section)->rel_count2);
9716 if (link_order->type == bfd_section_reloc_link_order)
9717 {
9718 indx = link_order->u.reloc.p->u.section->target_index;
9719 BFD_ASSERT (indx != 0);
9720 *rel_hash_ptr = NULL;
9721 }
9722 else
9723 {
9724 struct elf_link_hash_entry *h;
9725
9726 /* Treat a reloc against a defined symbol as though it were
9727 actually against the section. */
9728 h = ((struct elf_link_hash_entry *)
9729 bfd_wrapped_link_hash_lookup (output_bfd, info,
9730 link_order->u.reloc.p->u.name,
9731 FALSE, FALSE, TRUE));
9732 if (h != NULL
9733 && (h->root.type == bfd_link_hash_defined
9734 || h->root.type == bfd_link_hash_defweak))
9735 {
9736 asection *section;
9737
9738 section = h->root.u.def.section;
9739 indx = section->output_section->target_index;
9740 *rel_hash_ptr = NULL;
9741 /* It seems that we ought to add the symbol value to the
9742 addend here, but in practice it has already been added
9743 because it was passed to constructor_callback. */
9744 addend += section->output_section->vma + section->output_offset;
9745 }
9746 else if (h != NULL)
9747 {
9748 /* Setting the index to -2 tells elf_link_output_extsym that
9749 this symbol is used by a reloc. */
9750 h->indx = -2;
9751 *rel_hash_ptr = h;
9752 indx = 0;
9753 }
9754 else
9755 {
9756 if (! ((*info->callbacks->unattached_reloc)
9757 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9758 return FALSE;
9759 indx = 0;
9760 }
9761 }
9762
9763 /* If this is an inplace reloc, we must write the addend into the
9764 object file. */
9765 if (howto->partial_inplace && addend != 0)
9766 {
9767 bfd_size_type size;
9768 bfd_reloc_status_type rstat;
9769 bfd_byte *buf;
9770 bfd_boolean ok;
9771 const char *sym_name;
9772
9773 size = bfd_get_reloc_size (howto);
9774 buf = bfd_zmalloc (size);
9775 if (buf == NULL)
9776 return FALSE;
9777 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
9778 switch (rstat)
9779 {
9780 case bfd_reloc_ok:
9781 break;
9782
9783 default:
9784 case bfd_reloc_outofrange:
9785 abort ();
9786
9787 case bfd_reloc_overflow:
9788 if (link_order->type == bfd_section_reloc_link_order)
9789 sym_name = bfd_section_name (output_bfd,
9790 link_order->u.reloc.p->u.section);
9791 else
9792 sym_name = link_order->u.reloc.p->u.name;
9793 if (! ((*info->callbacks->reloc_overflow)
9794 (info, NULL, sym_name, howto->name, addend, NULL,
9795 NULL, (bfd_vma) 0)))
9796 {
9797 free (buf);
9798 return FALSE;
9799 }
9800 break;
9801 }
9802 ok = bfd_set_section_contents (output_bfd, output_section, buf,
9803 link_order->offset, size);
9804 free (buf);
9805 if (! ok)
9806 return FALSE;
9807 }
9808
9809 /* The address of a reloc is relative to the section in a
9810 relocatable file, and is a virtual address in an executable
9811 file. */
9812 offset = link_order->offset;
9813 if (! info->relocatable)
9814 offset += output_section->vma;
9815
9816 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
9817 {
9818 irel[i].r_offset = offset;
9819 irel[i].r_info = 0;
9820 irel[i].r_addend = 0;
9821 }
9822 if (bed->s->arch_size == 32)
9823 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
9824 else
9825 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
9826
9827 rel_hdr = &elf_section_data (output_section)->rel_hdr;
9828 erel = rel_hdr->contents;
9829 if (rel_hdr->sh_type == SHT_REL)
9830 {
9831 erel += (elf_section_data (output_section)->rel_count
9832 * bed->s->sizeof_rel);
9833 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
9834 }
9835 else
9836 {
9837 irel[0].r_addend = addend;
9838 erel += (elf_section_data (output_section)->rel_count
9839 * bed->s->sizeof_rela);
9840 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
9841 }
9842
9843 ++elf_section_data (output_section)->rel_count;
9844
9845 return TRUE;
9846 }
9847
9848
9849 /* Get the output vma of the section pointed to by the sh_link field. */
9850
9851 static bfd_vma
9852 elf_get_linked_section_vma (struct bfd_link_order *p)
9853 {
9854 Elf_Internal_Shdr **elf_shdrp;
9855 asection *s;
9856 int elfsec;
9857
9858 s = p->u.indirect.section;
9859 elf_shdrp = elf_elfsections (s->owner);
9860 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
9861 elfsec = elf_shdrp[elfsec]->sh_link;
9862 /* PR 290:
9863 The Intel C compiler generates SHT_IA_64_UNWIND with
9864 SHF_LINK_ORDER. But it doesn't set the sh_link or
9865 sh_info fields. Hence we could get the situation
9866 where elfsec is 0. */
9867 if (elfsec == 0)
9868 {
9869 const struct elf_backend_data *bed
9870 = get_elf_backend_data (s->owner);
9871 if (bed->link_order_error_handler)
9872 bed->link_order_error_handler
9873 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
9874 return 0;
9875 }
9876 else
9877 {
9878 s = elf_shdrp[elfsec]->bfd_section;
9879 return s->output_section->vma + s->output_offset;
9880 }
9881 }
9882
9883
9884 /* Compare two sections based on the locations of the sections they are
9885 linked to. Used by elf_fixup_link_order. */
9886
9887 static int
9888 compare_link_order (const void * a, const void * b)
9889 {
9890 bfd_vma apos;
9891 bfd_vma bpos;
9892
9893 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
9894 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
9895 if (apos < bpos)
9896 return -1;
9897 return apos > bpos;
9898 }
9899
9900
9901 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
9902 order as their linked sections. Returns false if this could not be done
9903 because an output section includes both ordered and unordered
9904 sections. Ideally we'd do this in the linker proper. */
9905
9906 static bfd_boolean
9907 elf_fixup_link_order (bfd *abfd, asection *o)
9908 {
9909 int seen_linkorder;
9910 int seen_other;
9911 int n;
9912 struct bfd_link_order *p;
9913 bfd *sub;
9914 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9915 unsigned elfsec;
9916 struct bfd_link_order **sections;
9917 asection *s, *other_sec, *linkorder_sec;
9918 bfd_vma offset;
9919
9920 other_sec = NULL;
9921 linkorder_sec = NULL;
9922 seen_other = 0;
9923 seen_linkorder = 0;
9924 for (p = o->map_head.link_order; p != NULL; p = p->next)
9925 {
9926 if (p->type == bfd_indirect_link_order)
9927 {
9928 s = p->u.indirect.section;
9929 sub = s->owner;
9930 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
9931 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
9932 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
9933 && elfsec < elf_numsections (sub)
9934 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
9935 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
9936 {
9937 seen_linkorder++;
9938 linkorder_sec = s;
9939 }
9940 else
9941 {
9942 seen_other++;
9943 other_sec = s;
9944 }
9945 }
9946 else
9947 seen_other++;
9948
9949 if (seen_other && seen_linkorder)
9950 {
9951 if (other_sec && linkorder_sec)
9952 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
9953 o, linkorder_sec,
9954 linkorder_sec->owner, other_sec,
9955 other_sec->owner);
9956 else
9957 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
9958 o);
9959 bfd_set_error (bfd_error_bad_value);
9960 return FALSE;
9961 }
9962 }
9963
9964 if (!seen_linkorder)
9965 return TRUE;
9966
9967 sections = (struct bfd_link_order **)
9968 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
9969 if (sections == NULL)
9970 return FALSE;
9971 seen_linkorder = 0;
9972
9973 for (p = o->map_head.link_order; p != NULL; p = p->next)
9974 {
9975 sections[seen_linkorder++] = p;
9976 }
9977 /* Sort the input sections in the order of their linked section. */
9978 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
9979 compare_link_order);
9980
9981 /* Change the offsets of the sections. */
9982 offset = 0;
9983 for (n = 0; n < seen_linkorder; n++)
9984 {
9985 s = sections[n]->u.indirect.section;
9986 offset &= ~(bfd_vma) 0 << s->alignment_power;
9987 s->output_offset = offset;
9988 sections[n]->offset = offset;
9989 offset += sections[n]->size;
9990 }
9991
9992 free (sections);
9993 return TRUE;
9994 }
9995
9996
9997 /* Do the final step of an ELF link. */
9998
9999 bfd_boolean
10000 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10001 {
10002 bfd_boolean dynamic;
10003 bfd_boolean emit_relocs;
10004 bfd *dynobj;
10005 struct elf_final_link_info finfo;
10006 register asection *o;
10007 register struct bfd_link_order *p;
10008 register bfd *sub;
10009 bfd_size_type max_contents_size;
10010 bfd_size_type max_external_reloc_size;
10011 bfd_size_type max_internal_reloc_count;
10012 bfd_size_type max_sym_count;
10013 bfd_size_type max_sym_shndx_count;
10014 file_ptr off;
10015 Elf_Internal_Sym elfsym;
10016 unsigned int i;
10017 Elf_Internal_Shdr *symtab_hdr;
10018 Elf_Internal_Shdr *symtab_shndx_hdr;
10019 Elf_Internal_Shdr *symstrtab_hdr;
10020 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10021 struct elf_outext_info eoinfo;
10022 bfd_boolean merged;
10023 size_t relativecount = 0;
10024 asection *reldyn = 0;
10025 bfd_size_type amt;
10026 asection *attr_section = NULL;
10027 bfd_vma attr_size = 0;
10028 const char *std_attrs_section;
10029
10030 if (! is_elf_hash_table (info->hash))
10031 return FALSE;
10032
10033 if (info->shared)
10034 abfd->flags |= DYNAMIC;
10035
10036 dynamic = elf_hash_table (info)->dynamic_sections_created;
10037 dynobj = elf_hash_table (info)->dynobj;
10038
10039 emit_relocs = (info->relocatable
10040 || info->emitrelocations);
10041
10042 finfo.info = info;
10043 finfo.output_bfd = abfd;
10044 finfo.symstrtab = _bfd_elf_stringtab_init ();
10045 if (finfo.symstrtab == NULL)
10046 return FALSE;
10047
10048 if (! dynamic)
10049 {
10050 finfo.dynsym_sec = NULL;
10051 finfo.hash_sec = NULL;
10052 finfo.symver_sec = NULL;
10053 }
10054 else
10055 {
10056 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
10057 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
10058 BFD_ASSERT (finfo.dynsym_sec != NULL);
10059 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
10060 /* Note that it is OK if symver_sec is NULL. */
10061 }
10062
10063 finfo.contents = NULL;
10064 finfo.external_relocs = NULL;
10065 finfo.internal_relocs = NULL;
10066 finfo.external_syms = NULL;
10067 finfo.locsym_shndx = NULL;
10068 finfo.internal_syms = NULL;
10069 finfo.indices = NULL;
10070 finfo.sections = NULL;
10071 finfo.symbuf = NULL;
10072 finfo.symshndxbuf = NULL;
10073 finfo.symbuf_count = 0;
10074 finfo.shndxbuf_size = 0;
10075
10076 /* The object attributes have been merged. Remove the input
10077 sections from the link, and set the contents of the output
10078 secton. */
10079 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10080 for (o = abfd->sections; o != NULL; o = o->next)
10081 {
10082 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10083 || strcmp (o->name, ".gnu.attributes") == 0)
10084 {
10085 for (p = o->map_head.link_order; p != NULL; p = p->next)
10086 {
10087 asection *input_section;
10088
10089 if (p->type != bfd_indirect_link_order)
10090 continue;
10091 input_section = p->u.indirect.section;
10092 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10093 elf_link_input_bfd ignores this section. */
10094 input_section->flags &= ~SEC_HAS_CONTENTS;
10095 }
10096
10097 attr_size = bfd_elf_obj_attr_size (abfd);
10098 if (attr_size)
10099 {
10100 bfd_set_section_size (abfd, o, attr_size);
10101 attr_section = o;
10102 /* Skip this section later on. */
10103 o->map_head.link_order = NULL;
10104 }
10105 else
10106 o->flags |= SEC_EXCLUDE;
10107 }
10108 }
10109
10110 /* Count up the number of relocations we will output for each output
10111 section, so that we know the sizes of the reloc sections. We
10112 also figure out some maximum sizes. */
10113 max_contents_size = 0;
10114 max_external_reloc_size = 0;
10115 max_internal_reloc_count = 0;
10116 max_sym_count = 0;
10117 max_sym_shndx_count = 0;
10118 merged = FALSE;
10119 for (o = abfd->sections; o != NULL; o = o->next)
10120 {
10121 struct bfd_elf_section_data *esdo = elf_section_data (o);
10122 o->reloc_count = 0;
10123
10124 for (p = o->map_head.link_order; p != NULL; p = p->next)
10125 {
10126 unsigned int reloc_count = 0;
10127 struct bfd_elf_section_data *esdi = NULL;
10128 unsigned int *rel_count1;
10129
10130 if (p->type == bfd_section_reloc_link_order
10131 || p->type == bfd_symbol_reloc_link_order)
10132 reloc_count = 1;
10133 else if (p->type == bfd_indirect_link_order)
10134 {
10135 asection *sec;
10136
10137 sec = p->u.indirect.section;
10138 esdi = elf_section_data (sec);
10139
10140 /* Mark all sections which are to be included in the
10141 link. This will normally be every section. We need
10142 to do this so that we can identify any sections which
10143 the linker has decided to not include. */
10144 sec->linker_mark = TRUE;
10145
10146 if (sec->flags & SEC_MERGE)
10147 merged = TRUE;
10148
10149 if (info->relocatable || info->emitrelocations)
10150 reloc_count = sec->reloc_count;
10151 else if (bed->elf_backend_count_relocs)
10152 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10153
10154 if (sec->rawsize > max_contents_size)
10155 max_contents_size = sec->rawsize;
10156 if (sec->size > max_contents_size)
10157 max_contents_size = sec->size;
10158
10159 /* We are interested in just local symbols, not all
10160 symbols. */
10161 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10162 && (sec->owner->flags & DYNAMIC) == 0)
10163 {
10164 size_t sym_count;
10165
10166 if (elf_bad_symtab (sec->owner))
10167 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10168 / bed->s->sizeof_sym);
10169 else
10170 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10171
10172 if (sym_count > max_sym_count)
10173 max_sym_count = sym_count;
10174
10175 if (sym_count > max_sym_shndx_count
10176 && elf_symtab_shndx (sec->owner) != 0)
10177 max_sym_shndx_count = sym_count;
10178
10179 if ((sec->flags & SEC_RELOC) != 0)
10180 {
10181 size_t ext_size;
10182
10183 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
10184 if (ext_size > max_external_reloc_size)
10185 max_external_reloc_size = ext_size;
10186 if (sec->reloc_count > max_internal_reloc_count)
10187 max_internal_reloc_count = sec->reloc_count;
10188 }
10189 }
10190 }
10191
10192 if (reloc_count == 0)
10193 continue;
10194
10195 o->reloc_count += reloc_count;
10196
10197 /* MIPS may have a mix of REL and RELA relocs on sections.
10198 To support this curious ABI we keep reloc counts in
10199 elf_section_data too. We must be careful to add the
10200 relocations from the input section to the right output
10201 count. FIXME: Get rid of one count. We have
10202 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
10203 rel_count1 = &esdo->rel_count;
10204 if (esdi != NULL)
10205 {
10206 bfd_boolean same_size;
10207 bfd_size_type entsize1;
10208
10209 entsize1 = esdi->rel_hdr.sh_entsize;
10210 /* PR 9827: If the header size has not been set yet then
10211 assume that it will match the output section's reloc type. */
10212 if (entsize1 == 0)
10213 entsize1 = o->use_rela_p ? bed->s->sizeof_rela : bed->s->sizeof_rel;
10214 else
10215 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
10216 || entsize1 == bed->s->sizeof_rela);
10217 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
10218
10219 if (!same_size)
10220 rel_count1 = &esdo->rel_count2;
10221
10222 if (esdi->rel_hdr2 != NULL)
10223 {
10224 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
10225 unsigned int alt_count;
10226 unsigned int *rel_count2;
10227
10228 BFD_ASSERT (entsize2 != entsize1
10229 && (entsize2 == bed->s->sizeof_rel
10230 || entsize2 == bed->s->sizeof_rela));
10231
10232 rel_count2 = &esdo->rel_count2;
10233 if (!same_size)
10234 rel_count2 = &esdo->rel_count;
10235
10236 /* The following is probably too simplistic if the
10237 backend counts output relocs unusually. */
10238 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
10239 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
10240 *rel_count2 += alt_count;
10241 reloc_count -= alt_count;
10242 }
10243 }
10244 *rel_count1 += reloc_count;
10245 }
10246
10247 if (o->reloc_count > 0)
10248 o->flags |= SEC_RELOC;
10249 else
10250 {
10251 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10252 set it (this is probably a bug) and if it is set
10253 assign_section_numbers will create a reloc section. */
10254 o->flags &=~ SEC_RELOC;
10255 }
10256
10257 /* If the SEC_ALLOC flag is not set, force the section VMA to
10258 zero. This is done in elf_fake_sections as well, but forcing
10259 the VMA to 0 here will ensure that relocs against these
10260 sections are handled correctly. */
10261 if ((o->flags & SEC_ALLOC) == 0
10262 && ! o->user_set_vma)
10263 o->vma = 0;
10264 }
10265
10266 if (! info->relocatable && merged)
10267 elf_link_hash_traverse (elf_hash_table (info),
10268 _bfd_elf_link_sec_merge_syms, abfd);
10269
10270 /* Figure out the file positions for everything but the symbol table
10271 and the relocs. We set symcount to force assign_section_numbers
10272 to create a symbol table. */
10273 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10274 BFD_ASSERT (! abfd->output_has_begun);
10275 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10276 goto error_return;
10277
10278 /* Set sizes, and assign file positions for reloc sections. */
10279 for (o = abfd->sections; o != NULL; o = o->next)
10280 {
10281 if ((o->flags & SEC_RELOC) != 0)
10282 {
10283 if (!(_bfd_elf_link_size_reloc_section
10284 (abfd, &elf_section_data (o)->rel_hdr, o)))
10285 goto error_return;
10286
10287 if (elf_section_data (o)->rel_hdr2
10288 && !(_bfd_elf_link_size_reloc_section
10289 (abfd, elf_section_data (o)->rel_hdr2, o)))
10290 goto error_return;
10291 }
10292
10293 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10294 to count upwards while actually outputting the relocations. */
10295 elf_section_data (o)->rel_count = 0;
10296 elf_section_data (o)->rel_count2 = 0;
10297 }
10298
10299 _bfd_elf_assign_file_positions_for_relocs (abfd);
10300
10301 /* We have now assigned file positions for all the sections except
10302 .symtab and .strtab. We start the .symtab section at the current
10303 file position, and write directly to it. We build the .strtab
10304 section in memory. */
10305 bfd_get_symcount (abfd) = 0;
10306 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10307 /* sh_name is set in prep_headers. */
10308 symtab_hdr->sh_type = SHT_SYMTAB;
10309 /* sh_flags, sh_addr and sh_size all start off zero. */
10310 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10311 /* sh_link is set in assign_section_numbers. */
10312 /* sh_info is set below. */
10313 /* sh_offset is set just below. */
10314 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10315
10316 off = elf_tdata (abfd)->next_file_pos;
10317 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10318
10319 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10320 incorrect. We do not yet know the size of the .symtab section.
10321 We correct next_file_pos below, after we do know the size. */
10322
10323 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10324 continuously seeking to the right position in the file. */
10325 if (! info->keep_memory || max_sym_count < 20)
10326 finfo.symbuf_size = 20;
10327 else
10328 finfo.symbuf_size = max_sym_count;
10329 amt = finfo.symbuf_size;
10330 amt *= bed->s->sizeof_sym;
10331 finfo.symbuf = bfd_malloc (amt);
10332 if (finfo.symbuf == NULL)
10333 goto error_return;
10334 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10335 {
10336 /* Wild guess at number of output symbols. realloc'd as needed. */
10337 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10338 finfo.shndxbuf_size = amt;
10339 amt *= sizeof (Elf_External_Sym_Shndx);
10340 finfo.symshndxbuf = bfd_zmalloc (amt);
10341 if (finfo.symshndxbuf == NULL)
10342 goto error_return;
10343 }
10344
10345 /* Start writing out the symbol table. The first symbol is always a
10346 dummy symbol. */
10347 if (info->strip != strip_all
10348 || emit_relocs)
10349 {
10350 elfsym.st_value = 0;
10351 elfsym.st_size = 0;
10352 elfsym.st_info = 0;
10353 elfsym.st_other = 0;
10354 elfsym.st_shndx = SHN_UNDEF;
10355 if (elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10356 NULL) != 1)
10357 goto error_return;
10358 }
10359
10360 /* Output a symbol for each section. We output these even if we are
10361 discarding local symbols, since they are used for relocs. These
10362 symbols have no names. We store the index of each one in the
10363 index field of the section, so that we can find it again when
10364 outputting relocs. */
10365 if (info->strip != strip_all
10366 || emit_relocs)
10367 {
10368 elfsym.st_size = 0;
10369 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10370 elfsym.st_other = 0;
10371 elfsym.st_value = 0;
10372 for (i = 1; i < elf_numsections (abfd); i++)
10373 {
10374 o = bfd_section_from_elf_index (abfd, i);
10375 if (o != NULL)
10376 {
10377 o->target_index = bfd_get_symcount (abfd);
10378 elfsym.st_shndx = i;
10379 if (!info->relocatable)
10380 elfsym.st_value = o->vma;
10381 if (elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL) != 1)
10382 goto error_return;
10383 }
10384 }
10385 }
10386
10387 /* Allocate some memory to hold information read in from the input
10388 files. */
10389 if (max_contents_size != 0)
10390 {
10391 finfo.contents = bfd_malloc (max_contents_size);
10392 if (finfo.contents == NULL)
10393 goto error_return;
10394 }
10395
10396 if (max_external_reloc_size != 0)
10397 {
10398 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10399 if (finfo.external_relocs == NULL)
10400 goto error_return;
10401 }
10402
10403 if (max_internal_reloc_count != 0)
10404 {
10405 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10406 amt *= sizeof (Elf_Internal_Rela);
10407 finfo.internal_relocs = bfd_malloc (amt);
10408 if (finfo.internal_relocs == NULL)
10409 goto error_return;
10410 }
10411
10412 if (max_sym_count != 0)
10413 {
10414 amt = max_sym_count * bed->s->sizeof_sym;
10415 finfo.external_syms = bfd_malloc (amt);
10416 if (finfo.external_syms == NULL)
10417 goto error_return;
10418
10419 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10420 finfo.internal_syms = bfd_malloc (amt);
10421 if (finfo.internal_syms == NULL)
10422 goto error_return;
10423
10424 amt = max_sym_count * sizeof (long);
10425 finfo.indices = bfd_malloc (amt);
10426 if (finfo.indices == NULL)
10427 goto error_return;
10428
10429 amt = max_sym_count * sizeof (asection *);
10430 finfo.sections = bfd_malloc (amt);
10431 if (finfo.sections == NULL)
10432 goto error_return;
10433 }
10434
10435 if (max_sym_shndx_count != 0)
10436 {
10437 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10438 finfo.locsym_shndx = bfd_malloc (amt);
10439 if (finfo.locsym_shndx == NULL)
10440 goto error_return;
10441 }
10442
10443 if (elf_hash_table (info)->tls_sec)
10444 {
10445 bfd_vma base, end = 0;
10446 asection *sec;
10447
10448 for (sec = elf_hash_table (info)->tls_sec;
10449 sec && (sec->flags & SEC_THREAD_LOCAL);
10450 sec = sec->next)
10451 {
10452 bfd_size_type size = sec->size;
10453
10454 if (size == 0
10455 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10456 {
10457 struct bfd_link_order *o = sec->map_tail.link_order;
10458 if (o != NULL)
10459 size = o->offset + o->size;
10460 }
10461 end = sec->vma + size;
10462 }
10463 base = elf_hash_table (info)->tls_sec->vma;
10464 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
10465 elf_hash_table (info)->tls_size = end - base;
10466 }
10467
10468 /* Reorder SHF_LINK_ORDER sections. */
10469 for (o = abfd->sections; o != NULL; o = o->next)
10470 {
10471 if (!elf_fixup_link_order (abfd, o))
10472 return FALSE;
10473 }
10474
10475 /* Since ELF permits relocations to be against local symbols, we
10476 must have the local symbols available when we do the relocations.
10477 Since we would rather only read the local symbols once, and we
10478 would rather not keep them in memory, we handle all the
10479 relocations for a single input file at the same time.
10480
10481 Unfortunately, there is no way to know the total number of local
10482 symbols until we have seen all of them, and the local symbol
10483 indices precede the global symbol indices. This means that when
10484 we are generating relocatable output, and we see a reloc against
10485 a global symbol, we can not know the symbol index until we have
10486 finished examining all the local symbols to see which ones we are
10487 going to output. To deal with this, we keep the relocations in
10488 memory, and don't output them until the end of the link. This is
10489 an unfortunate waste of memory, but I don't see a good way around
10490 it. Fortunately, it only happens when performing a relocatable
10491 link, which is not the common case. FIXME: If keep_memory is set
10492 we could write the relocs out and then read them again; I don't
10493 know how bad the memory loss will be. */
10494
10495 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10496 sub->output_has_begun = FALSE;
10497 for (o = abfd->sections; o != NULL; o = o->next)
10498 {
10499 for (p = o->map_head.link_order; p != NULL; p = p->next)
10500 {
10501 if (p->type == bfd_indirect_link_order
10502 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10503 == bfd_target_elf_flavour)
10504 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10505 {
10506 if (! sub->output_has_begun)
10507 {
10508 if (! elf_link_input_bfd (&finfo, sub))
10509 goto error_return;
10510 sub->output_has_begun = TRUE;
10511 }
10512 }
10513 else if (p->type == bfd_section_reloc_link_order
10514 || p->type == bfd_symbol_reloc_link_order)
10515 {
10516 if (! elf_reloc_link_order (abfd, info, o, p))
10517 goto error_return;
10518 }
10519 else
10520 {
10521 if (! _bfd_default_link_order (abfd, info, o, p))
10522 goto error_return;
10523 }
10524 }
10525 }
10526
10527 /* Free symbol buffer if needed. */
10528 if (!info->reduce_memory_overheads)
10529 {
10530 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10531 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10532 && elf_tdata (sub)->symbuf)
10533 {
10534 free (elf_tdata (sub)->symbuf);
10535 elf_tdata (sub)->symbuf = NULL;
10536 }
10537 }
10538
10539 /* Output any global symbols that got converted to local in a
10540 version script or due to symbol visibility. We do this in a
10541 separate step since ELF requires all local symbols to appear
10542 prior to any global symbols. FIXME: We should only do this if
10543 some global symbols were, in fact, converted to become local.
10544 FIXME: Will this work correctly with the Irix 5 linker? */
10545 eoinfo.failed = FALSE;
10546 eoinfo.finfo = &finfo;
10547 eoinfo.localsyms = TRUE;
10548 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10549 &eoinfo);
10550 if (eoinfo.failed)
10551 return FALSE;
10552
10553 /* If backend needs to output some local symbols not present in the hash
10554 table, do it now. */
10555 if (bed->elf_backend_output_arch_local_syms)
10556 {
10557 typedef int (*out_sym_func)
10558 (void *, const char *, Elf_Internal_Sym *, asection *,
10559 struct elf_link_hash_entry *);
10560
10561 if (! ((*bed->elf_backend_output_arch_local_syms)
10562 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10563 return FALSE;
10564 }
10565
10566 /* That wrote out all the local symbols. Finish up the symbol table
10567 with the global symbols. Even if we want to strip everything we
10568 can, we still need to deal with those global symbols that got
10569 converted to local in a version script. */
10570
10571 /* The sh_info field records the index of the first non local symbol. */
10572 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10573
10574 if (dynamic
10575 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10576 {
10577 Elf_Internal_Sym sym;
10578 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10579 long last_local = 0;
10580
10581 /* Write out the section symbols for the output sections. */
10582 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10583 {
10584 asection *s;
10585
10586 sym.st_size = 0;
10587 sym.st_name = 0;
10588 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10589 sym.st_other = 0;
10590
10591 for (s = abfd->sections; s != NULL; s = s->next)
10592 {
10593 int indx;
10594 bfd_byte *dest;
10595 long dynindx;
10596
10597 dynindx = elf_section_data (s)->dynindx;
10598 if (dynindx <= 0)
10599 continue;
10600 indx = elf_section_data (s)->this_idx;
10601 BFD_ASSERT (indx > 0);
10602 sym.st_shndx = indx;
10603 if (! check_dynsym (abfd, &sym))
10604 return FALSE;
10605 sym.st_value = s->vma;
10606 dest = dynsym + dynindx * bed->s->sizeof_sym;
10607 if (last_local < dynindx)
10608 last_local = dynindx;
10609 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10610 }
10611 }
10612
10613 /* Write out the local dynsyms. */
10614 if (elf_hash_table (info)->dynlocal)
10615 {
10616 struct elf_link_local_dynamic_entry *e;
10617 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10618 {
10619 asection *s;
10620 bfd_byte *dest;
10621
10622 sym.st_size = e->isym.st_size;
10623 sym.st_other = e->isym.st_other;
10624
10625 /* Copy the internal symbol as is.
10626 Note that we saved a word of storage and overwrote
10627 the original st_name with the dynstr_index. */
10628 sym = e->isym;
10629
10630 s = bfd_section_from_elf_index (e->input_bfd,
10631 e->isym.st_shndx);
10632 if (s != NULL)
10633 {
10634 sym.st_shndx =
10635 elf_section_data (s->output_section)->this_idx;
10636 if (! check_dynsym (abfd, &sym))
10637 return FALSE;
10638 sym.st_value = (s->output_section->vma
10639 + s->output_offset
10640 + e->isym.st_value);
10641 }
10642
10643 if (last_local < e->dynindx)
10644 last_local = e->dynindx;
10645
10646 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10647 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10648 }
10649 }
10650
10651 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10652 last_local + 1;
10653 }
10654
10655 /* We get the global symbols from the hash table. */
10656 eoinfo.failed = FALSE;
10657 eoinfo.localsyms = FALSE;
10658 eoinfo.finfo = &finfo;
10659 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10660 &eoinfo);
10661 if (eoinfo.failed)
10662 return FALSE;
10663
10664 /* If backend needs to output some symbols not present in the hash
10665 table, do it now. */
10666 if (bed->elf_backend_output_arch_syms)
10667 {
10668 typedef int (*out_sym_func)
10669 (void *, const char *, Elf_Internal_Sym *, asection *,
10670 struct elf_link_hash_entry *);
10671
10672 if (! ((*bed->elf_backend_output_arch_syms)
10673 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10674 return FALSE;
10675 }
10676
10677 /* Flush all symbols to the file. */
10678 if (! elf_link_flush_output_syms (&finfo, bed))
10679 return FALSE;
10680
10681 /* Now we know the size of the symtab section. */
10682 off += symtab_hdr->sh_size;
10683
10684 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10685 if (symtab_shndx_hdr->sh_name != 0)
10686 {
10687 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10688 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10689 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10690 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10691 symtab_shndx_hdr->sh_size = amt;
10692
10693 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10694 off, TRUE);
10695
10696 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10697 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10698 return FALSE;
10699 }
10700
10701
10702 /* Finish up and write out the symbol string table (.strtab)
10703 section. */
10704 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10705 /* sh_name was set in prep_headers. */
10706 symstrtab_hdr->sh_type = SHT_STRTAB;
10707 symstrtab_hdr->sh_flags = 0;
10708 symstrtab_hdr->sh_addr = 0;
10709 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10710 symstrtab_hdr->sh_entsize = 0;
10711 symstrtab_hdr->sh_link = 0;
10712 symstrtab_hdr->sh_info = 0;
10713 /* sh_offset is set just below. */
10714 symstrtab_hdr->sh_addralign = 1;
10715
10716 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10717 elf_tdata (abfd)->next_file_pos = off;
10718
10719 if (bfd_get_symcount (abfd) > 0)
10720 {
10721 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10722 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10723 return FALSE;
10724 }
10725
10726 /* Adjust the relocs to have the correct symbol indices. */
10727 for (o = abfd->sections; o != NULL; o = o->next)
10728 {
10729 if ((o->flags & SEC_RELOC) == 0)
10730 continue;
10731
10732 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
10733 elf_section_data (o)->rel_count,
10734 elf_section_data (o)->rel_hashes);
10735 if (elf_section_data (o)->rel_hdr2 != NULL)
10736 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
10737 elf_section_data (o)->rel_count2,
10738 (elf_section_data (o)->rel_hashes
10739 + elf_section_data (o)->rel_count));
10740
10741 /* Set the reloc_count field to 0 to prevent write_relocs from
10742 trying to swap the relocs out itself. */
10743 o->reloc_count = 0;
10744 }
10745
10746 if (dynamic && info->combreloc && dynobj != NULL)
10747 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10748
10749 /* If we are linking against a dynamic object, or generating a
10750 shared library, finish up the dynamic linking information. */
10751 if (dynamic)
10752 {
10753 bfd_byte *dyncon, *dynconend;
10754
10755 /* Fix up .dynamic entries. */
10756 o = bfd_get_section_by_name (dynobj, ".dynamic");
10757 BFD_ASSERT (o != NULL);
10758
10759 dyncon = o->contents;
10760 dynconend = o->contents + o->size;
10761 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10762 {
10763 Elf_Internal_Dyn dyn;
10764 const char *name;
10765 unsigned int type;
10766
10767 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10768
10769 switch (dyn.d_tag)
10770 {
10771 default:
10772 continue;
10773 case DT_NULL:
10774 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
10775 {
10776 switch (elf_section_data (reldyn)->this_hdr.sh_type)
10777 {
10778 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
10779 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
10780 default: continue;
10781 }
10782 dyn.d_un.d_val = relativecount;
10783 relativecount = 0;
10784 break;
10785 }
10786 continue;
10787
10788 case DT_INIT:
10789 name = info->init_function;
10790 goto get_sym;
10791 case DT_FINI:
10792 name = info->fini_function;
10793 get_sym:
10794 {
10795 struct elf_link_hash_entry *h;
10796
10797 h = elf_link_hash_lookup (elf_hash_table (info), name,
10798 FALSE, FALSE, TRUE);
10799 if (h != NULL
10800 && (h->root.type == bfd_link_hash_defined
10801 || h->root.type == bfd_link_hash_defweak))
10802 {
10803 dyn.d_un.d_ptr = h->root.u.def.value;
10804 o = h->root.u.def.section;
10805 if (o->output_section != NULL)
10806 dyn.d_un.d_ptr += (o->output_section->vma
10807 + o->output_offset);
10808 else
10809 {
10810 /* The symbol is imported from another shared
10811 library and does not apply to this one. */
10812 dyn.d_un.d_ptr = 0;
10813 }
10814 break;
10815 }
10816 }
10817 continue;
10818
10819 case DT_PREINIT_ARRAYSZ:
10820 name = ".preinit_array";
10821 goto get_size;
10822 case DT_INIT_ARRAYSZ:
10823 name = ".init_array";
10824 goto get_size;
10825 case DT_FINI_ARRAYSZ:
10826 name = ".fini_array";
10827 get_size:
10828 o = bfd_get_section_by_name (abfd, name);
10829 if (o == NULL)
10830 {
10831 (*_bfd_error_handler)
10832 (_("%B: could not find output section %s"), abfd, name);
10833 goto error_return;
10834 }
10835 if (o->size == 0)
10836 (*_bfd_error_handler)
10837 (_("warning: %s section has zero size"), name);
10838 dyn.d_un.d_val = o->size;
10839 break;
10840
10841 case DT_PREINIT_ARRAY:
10842 name = ".preinit_array";
10843 goto get_vma;
10844 case DT_INIT_ARRAY:
10845 name = ".init_array";
10846 goto get_vma;
10847 case DT_FINI_ARRAY:
10848 name = ".fini_array";
10849 goto get_vma;
10850
10851 case DT_HASH:
10852 name = ".hash";
10853 goto get_vma;
10854 case DT_GNU_HASH:
10855 name = ".gnu.hash";
10856 goto get_vma;
10857 case DT_STRTAB:
10858 name = ".dynstr";
10859 goto get_vma;
10860 case DT_SYMTAB:
10861 name = ".dynsym";
10862 goto get_vma;
10863 case DT_VERDEF:
10864 name = ".gnu.version_d";
10865 goto get_vma;
10866 case DT_VERNEED:
10867 name = ".gnu.version_r";
10868 goto get_vma;
10869 case DT_VERSYM:
10870 name = ".gnu.version";
10871 get_vma:
10872 o = bfd_get_section_by_name (abfd, name);
10873 if (o == NULL)
10874 {
10875 (*_bfd_error_handler)
10876 (_("%B: could not find output section %s"), abfd, name);
10877 goto error_return;
10878 }
10879 dyn.d_un.d_ptr = o->vma;
10880 break;
10881
10882 case DT_REL:
10883 case DT_RELA:
10884 case DT_RELSZ:
10885 case DT_RELASZ:
10886 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
10887 type = SHT_REL;
10888 else
10889 type = SHT_RELA;
10890 dyn.d_un.d_val = 0;
10891 dyn.d_un.d_ptr = 0;
10892 for (i = 1; i < elf_numsections (abfd); i++)
10893 {
10894 Elf_Internal_Shdr *hdr;
10895
10896 hdr = elf_elfsections (abfd)[i];
10897 if (hdr->sh_type == type
10898 && (hdr->sh_flags & SHF_ALLOC) != 0)
10899 {
10900 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
10901 dyn.d_un.d_val += hdr->sh_size;
10902 else
10903 {
10904 if (dyn.d_un.d_ptr == 0
10905 || hdr->sh_addr < dyn.d_un.d_ptr)
10906 dyn.d_un.d_ptr = hdr->sh_addr;
10907 }
10908 }
10909 }
10910 break;
10911 }
10912 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
10913 }
10914 }
10915
10916 /* If we have created any dynamic sections, then output them. */
10917 if (dynobj != NULL)
10918 {
10919 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
10920 goto error_return;
10921
10922 /* Check for DT_TEXTREL (late, in case the backend removes it). */
10923 if (info->warn_shared_textrel && info->shared)
10924 {
10925 bfd_byte *dyncon, *dynconend;
10926
10927 /* Fix up .dynamic entries. */
10928 o = bfd_get_section_by_name (dynobj, ".dynamic");
10929 BFD_ASSERT (o != NULL);
10930
10931 dyncon = o->contents;
10932 dynconend = o->contents + o->size;
10933 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10934 {
10935 Elf_Internal_Dyn dyn;
10936
10937 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10938
10939 if (dyn.d_tag == DT_TEXTREL)
10940 {
10941 info->callbacks->einfo
10942 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
10943 break;
10944 }
10945 }
10946 }
10947
10948 for (o = dynobj->sections; o != NULL; o = o->next)
10949 {
10950 if ((o->flags & SEC_HAS_CONTENTS) == 0
10951 || o->size == 0
10952 || o->output_section == bfd_abs_section_ptr)
10953 continue;
10954 if ((o->flags & SEC_LINKER_CREATED) == 0)
10955 {
10956 /* At this point, we are only interested in sections
10957 created by _bfd_elf_link_create_dynamic_sections. */
10958 continue;
10959 }
10960 if (elf_hash_table (info)->stab_info.stabstr == o)
10961 continue;
10962 if (elf_hash_table (info)->eh_info.hdr_sec == o)
10963 continue;
10964 if ((elf_section_data (o->output_section)->this_hdr.sh_type
10965 != SHT_STRTAB)
10966 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
10967 {
10968 if (! bfd_set_section_contents (abfd, o->output_section,
10969 o->contents,
10970 (file_ptr) o->output_offset,
10971 o->size))
10972 goto error_return;
10973 }
10974 else
10975 {
10976 /* The contents of the .dynstr section are actually in a
10977 stringtab. */
10978 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
10979 if (bfd_seek (abfd, off, SEEK_SET) != 0
10980 || ! _bfd_elf_strtab_emit (abfd,
10981 elf_hash_table (info)->dynstr))
10982 goto error_return;
10983 }
10984 }
10985 }
10986
10987 if (info->relocatable)
10988 {
10989 bfd_boolean failed = FALSE;
10990
10991 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
10992 if (failed)
10993 goto error_return;
10994 }
10995
10996 /* If we have optimized stabs strings, output them. */
10997 if (elf_hash_table (info)->stab_info.stabstr != NULL)
10998 {
10999 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11000 goto error_return;
11001 }
11002
11003 if (info->eh_frame_hdr)
11004 {
11005 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11006 goto error_return;
11007 }
11008
11009 if (finfo.symstrtab != NULL)
11010 _bfd_stringtab_free (finfo.symstrtab);
11011 if (finfo.contents != NULL)
11012 free (finfo.contents);
11013 if (finfo.external_relocs != NULL)
11014 free (finfo.external_relocs);
11015 if (finfo.internal_relocs != NULL)
11016 free (finfo.internal_relocs);
11017 if (finfo.external_syms != NULL)
11018 free (finfo.external_syms);
11019 if (finfo.locsym_shndx != NULL)
11020 free (finfo.locsym_shndx);
11021 if (finfo.internal_syms != NULL)
11022 free (finfo.internal_syms);
11023 if (finfo.indices != NULL)
11024 free (finfo.indices);
11025 if (finfo.sections != NULL)
11026 free (finfo.sections);
11027 if (finfo.symbuf != NULL)
11028 free (finfo.symbuf);
11029 if (finfo.symshndxbuf != NULL)
11030 free (finfo.symshndxbuf);
11031 for (o = abfd->sections; o != NULL; o = o->next)
11032 {
11033 if ((o->flags & SEC_RELOC) != 0
11034 && elf_section_data (o)->rel_hashes != NULL)
11035 free (elf_section_data (o)->rel_hashes);
11036 }
11037
11038 elf_tdata (abfd)->linker = TRUE;
11039
11040 if (attr_section)
11041 {
11042 bfd_byte *contents = bfd_malloc (attr_size);
11043 if (contents == NULL)
11044 return FALSE; /* Bail out and fail. */
11045 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11046 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11047 free (contents);
11048 }
11049
11050 return TRUE;
11051
11052 error_return:
11053 if (finfo.symstrtab != NULL)
11054 _bfd_stringtab_free (finfo.symstrtab);
11055 if (finfo.contents != NULL)
11056 free (finfo.contents);
11057 if (finfo.external_relocs != NULL)
11058 free (finfo.external_relocs);
11059 if (finfo.internal_relocs != NULL)
11060 free (finfo.internal_relocs);
11061 if (finfo.external_syms != NULL)
11062 free (finfo.external_syms);
11063 if (finfo.locsym_shndx != NULL)
11064 free (finfo.locsym_shndx);
11065 if (finfo.internal_syms != NULL)
11066 free (finfo.internal_syms);
11067 if (finfo.indices != NULL)
11068 free (finfo.indices);
11069 if (finfo.sections != NULL)
11070 free (finfo.sections);
11071 if (finfo.symbuf != NULL)
11072 free (finfo.symbuf);
11073 if (finfo.symshndxbuf != NULL)
11074 free (finfo.symshndxbuf);
11075 for (o = abfd->sections; o != NULL; o = o->next)
11076 {
11077 if ((o->flags & SEC_RELOC) != 0
11078 && elf_section_data (o)->rel_hashes != NULL)
11079 free (elf_section_data (o)->rel_hashes);
11080 }
11081
11082 return FALSE;
11083 }
11084 \f
11085 /* Initialize COOKIE for input bfd ABFD. */
11086
11087 static bfd_boolean
11088 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11089 struct bfd_link_info *info, bfd *abfd)
11090 {
11091 Elf_Internal_Shdr *symtab_hdr;
11092 const struct elf_backend_data *bed;
11093
11094 bed = get_elf_backend_data (abfd);
11095 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11096
11097 cookie->abfd = abfd;
11098 cookie->sym_hashes = elf_sym_hashes (abfd);
11099 cookie->bad_symtab = elf_bad_symtab (abfd);
11100 if (cookie->bad_symtab)
11101 {
11102 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11103 cookie->extsymoff = 0;
11104 }
11105 else
11106 {
11107 cookie->locsymcount = symtab_hdr->sh_info;
11108 cookie->extsymoff = symtab_hdr->sh_info;
11109 }
11110
11111 if (bed->s->arch_size == 32)
11112 cookie->r_sym_shift = 8;
11113 else
11114 cookie->r_sym_shift = 32;
11115
11116 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11117 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11118 {
11119 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11120 cookie->locsymcount, 0,
11121 NULL, NULL, NULL);
11122 if (cookie->locsyms == NULL)
11123 {
11124 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11125 return FALSE;
11126 }
11127 if (info->keep_memory)
11128 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11129 }
11130 return TRUE;
11131 }
11132
11133 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11134
11135 static void
11136 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11137 {
11138 Elf_Internal_Shdr *symtab_hdr;
11139
11140 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11141 if (cookie->locsyms != NULL
11142 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11143 free (cookie->locsyms);
11144 }
11145
11146 /* Initialize the relocation information in COOKIE for input section SEC
11147 of input bfd ABFD. */
11148
11149 static bfd_boolean
11150 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11151 struct bfd_link_info *info, bfd *abfd,
11152 asection *sec)
11153 {
11154 const struct elf_backend_data *bed;
11155
11156 if (sec->reloc_count == 0)
11157 {
11158 cookie->rels = NULL;
11159 cookie->relend = NULL;
11160 }
11161 else
11162 {
11163 bed = get_elf_backend_data (abfd);
11164
11165 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11166 info->keep_memory);
11167 if (cookie->rels == NULL)
11168 return FALSE;
11169 cookie->rel = cookie->rels;
11170 cookie->relend = (cookie->rels
11171 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11172 }
11173 cookie->rel = cookie->rels;
11174 return TRUE;
11175 }
11176
11177 /* Free the memory allocated by init_reloc_cookie_rels,
11178 if appropriate. */
11179
11180 static void
11181 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11182 asection *sec)
11183 {
11184 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11185 free (cookie->rels);
11186 }
11187
11188 /* Initialize the whole of COOKIE for input section SEC. */
11189
11190 static bfd_boolean
11191 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11192 struct bfd_link_info *info,
11193 asection *sec)
11194 {
11195 if (!init_reloc_cookie (cookie, info, sec->owner))
11196 goto error1;
11197 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11198 goto error2;
11199 return TRUE;
11200
11201 error2:
11202 fini_reloc_cookie (cookie, sec->owner);
11203 error1:
11204 return FALSE;
11205 }
11206
11207 /* Free the memory allocated by init_reloc_cookie_for_section,
11208 if appropriate. */
11209
11210 static void
11211 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11212 asection *sec)
11213 {
11214 fini_reloc_cookie_rels (cookie, sec);
11215 fini_reloc_cookie (cookie, sec->owner);
11216 }
11217 \f
11218 /* Garbage collect unused sections. */
11219
11220 /* Default gc_mark_hook. */
11221
11222 asection *
11223 _bfd_elf_gc_mark_hook (asection *sec,
11224 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11225 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11226 struct elf_link_hash_entry *h,
11227 Elf_Internal_Sym *sym)
11228 {
11229 if (h != NULL)
11230 {
11231 switch (h->root.type)
11232 {
11233 case bfd_link_hash_defined:
11234 case bfd_link_hash_defweak:
11235 return h->root.u.def.section;
11236
11237 case bfd_link_hash_common:
11238 return h->root.u.c.p->section;
11239
11240 default:
11241 break;
11242 }
11243 }
11244 else
11245 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11246
11247 return NULL;
11248 }
11249
11250 /* COOKIE->rel describes a relocation against section SEC, which is
11251 a section we've decided to keep. Return the section that contains
11252 the relocation symbol, or NULL if no section contains it. */
11253
11254 asection *
11255 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11256 elf_gc_mark_hook_fn gc_mark_hook,
11257 struct elf_reloc_cookie *cookie)
11258 {
11259 unsigned long r_symndx;
11260 struct elf_link_hash_entry *h;
11261
11262 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11263 if (r_symndx == 0)
11264 return NULL;
11265
11266 if (r_symndx >= cookie->locsymcount
11267 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11268 {
11269 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11270 while (h->root.type == bfd_link_hash_indirect
11271 || h->root.type == bfd_link_hash_warning)
11272 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11273 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11274 }
11275
11276 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11277 &cookie->locsyms[r_symndx]);
11278 }
11279
11280 /* COOKIE->rel describes a relocation against section SEC, which is
11281 a section we've decided to keep. Mark the section that contains
11282 the relocation symbol. */
11283
11284 bfd_boolean
11285 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11286 asection *sec,
11287 elf_gc_mark_hook_fn gc_mark_hook,
11288 struct elf_reloc_cookie *cookie)
11289 {
11290 asection *rsec;
11291
11292 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11293 if (rsec && !rsec->gc_mark)
11294 {
11295 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11296 rsec->gc_mark = 1;
11297 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11298 return FALSE;
11299 }
11300 return TRUE;
11301 }
11302
11303 /* The mark phase of garbage collection. For a given section, mark
11304 it and any sections in this section's group, and all the sections
11305 which define symbols to which it refers. */
11306
11307 bfd_boolean
11308 _bfd_elf_gc_mark (struct bfd_link_info *info,
11309 asection *sec,
11310 elf_gc_mark_hook_fn gc_mark_hook)
11311 {
11312 bfd_boolean ret;
11313 asection *group_sec, *eh_frame;
11314
11315 sec->gc_mark = 1;
11316
11317 /* Mark all the sections in the group. */
11318 group_sec = elf_section_data (sec)->next_in_group;
11319 if (group_sec && !group_sec->gc_mark)
11320 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11321 return FALSE;
11322
11323 /* Look through the section relocs. */
11324 ret = TRUE;
11325 eh_frame = elf_eh_frame_section (sec->owner);
11326 if ((sec->flags & SEC_RELOC) != 0
11327 && sec->reloc_count > 0
11328 && sec != eh_frame)
11329 {
11330 struct elf_reloc_cookie cookie;
11331
11332 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11333 ret = FALSE;
11334 else
11335 {
11336 for (; cookie.rel < cookie.relend; cookie.rel++)
11337 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11338 {
11339 ret = FALSE;
11340 break;
11341 }
11342 fini_reloc_cookie_for_section (&cookie, sec);
11343 }
11344 }
11345
11346 if (ret && eh_frame && elf_fde_list (sec))
11347 {
11348 struct elf_reloc_cookie cookie;
11349
11350 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11351 ret = FALSE;
11352 else
11353 {
11354 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11355 gc_mark_hook, &cookie))
11356 ret = FALSE;
11357 fini_reloc_cookie_for_section (&cookie, eh_frame);
11358 }
11359 }
11360
11361 return ret;
11362 }
11363
11364 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11365
11366 struct elf_gc_sweep_symbol_info
11367 {
11368 struct bfd_link_info *info;
11369 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11370 bfd_boolean);
11371 };
11372
11373 static bfd_boolean
11374 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11375 {
11376 if (h->root.type == bfd_link_hash_warning)
11377 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11378
11379 if ((h->root.type == bfd_link_hash_defined
11380 || h->root.type == bfd_link_hash_defweak)
11381 && !h->root.u.def.section->gc_mark
11382 && !(h->root.u.def.section->owner->flags & DYNAMIC))
11383 {
11384 struct elf_gc_sweep_symbol_info *inf = data;
11385 (*inf->hide_symbol) (inf->info, h, TRUE);
11386 }
11387
11388 return TRUE;
11389 }
11390
11391 /* The sweep phase of garbage collection. Remove all garbage sections. */
11392
11393 typedef bfd_boolean (*gc_sweep_hook_fn)
11394 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11395
11396 static bfd_boolean
11397 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11398 {
11399 bfd *sub;
11400 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11401 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11402 unsigned long section_sym_count;
11403 struct elf_gc_sweep_symbol_info sweep_info;
11404
11405 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11406 {
11407 asection *o;
11408
11409 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11410 continue;
11411
11412 for (o = sub->sections; o != NULL; o = o->next)
11413 {
11414 /* When any section in a section group is kept, we keep all
11415 sections in the section group. If the first member of
11416 the section group is excluded, we will also exclude the
11417 group section. */
11418 if (o->flags & SEC_GROUP)
11419 {
11420 asection *first = elf_next_in_group (o);
11421 o->gc_mark = first->gc_mark;
11422 }
11423 else if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
11424 || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
11425 {
11426 /* Keep debug and special sections. */
11427 o->gc_mark = 1;
11428 }
11429
11430 if (o->gc_mark)
11431 continue;
11432
11433 /* Skip sweeping sections already excluded. */
11434 if (o->flags & SEC_EXCLUDE)
11435 continue;
11436
11437 /* Since this is early in the link process, it is simple
11438 to remove a section from the output. */
11439 o->flags |= SEC_EXCLUDE;
11440
11441 if (info->print_gc_sections && o->size != 0)
11442 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11443
11444 /* But we also have to update some of the relocation
11445 info we collected before. */
11446 if (gc_sweep_hook
11447 && (o->flags & SEC_RELOC) != 0
11448 && o->reloc_count > 0
11449 && !bfd_is_abs_section (o->output_section))
11450 {
11451 Elf_Internal_Rela *internal_relocs;
11452 bfd_boolean r;
11453
11454 internal_relocs
11455 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11456 info->keep_memory);
11457 if (internal_relocs == NULL)
11458 return FALSE;
11459
11460 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11461
11462 if (elf_section_data (o)->relocs != internal_relocs)
11463 free (internal_relocs);
11464
11465 if (!r)
11466 return FALSE;
11467 }
11468 }
11469 }
11470
11471 /* Remove the symbols that were in the swept sections from the dynamic
11472 symbol table. GCFIXME: Anyone know how to get them out of the
11473 static symbol table as well? */
11474 sweep_info.info = info;
11475 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11476 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11477 &sweep_info);
11478
11479 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11480 return TRUE;
11481 }
11482
11483 /* Propagate collected vtable information. This is called through
11484 elf_link_hash_traverse. */
11485
11486 static bfd_boolean
11487 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11488 {
11489 if (h->root.type == bfd_link_hash_warning)
11490 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11491
11492 /* Those that are not vtables. */
11493 if (h->vtable == NULL || h->vtable->parent == NULL)
11494 return TRUE;
11495
11496 /* Those vtables that do not have parents, we cannot merge. */
11497 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11498 return TRUE;
11499
11500 /* If we've already been done, exit. */
11501 if (h->vtable->used && h->vtable->used[-1])
11502 return TRUE;
11503
11504 /* Make sure the parent's table is up to date. */
11505 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11506
11507 if (h->vtable->used == NULL)
11508 {
11509 /* None of this table's entries were referenced. Re-use the
11510 parent's table. */
11511 h->vtable->used = h->vtable->parent->vtable->used;
11512 h->vtable->size = h->vtable->parent->vtable->size;
11513 }
11514 else
11515 {
11516 size_t n;
11517 bfd_boolean *cu, *pu;
11518
11519 /* Or the parent's entries into ours. */
11520 cu = h->vtable->used;
11521 cu[-1] = TRUE;
11522 pu = h->vtable->parent->vtable->used;
11523 if (pu != NULL)
11524 {
11525 const struct elf_backend_data *bed;
11526 unsigned int log_file_align;
11527
11528 bed = get_elf_backend_data (h->root.u.def.section->owner);
11529 log_file_align = bed->s->log_file_align;
11530 n = h->vtable->parent->vtable->size >> log_file_align;
11531 while (n--)
11532 {
11533 if (*pu)
11534 *cu = TRUE;
11535 pu++;
11536 cu++;
11537 }
11538 }
11539 }
11540
11541 return TRUE;
11542 }
11543
11544 static bfd_boolean
11545 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11546 {
11547 asection *sec;
11548 bfd_vma hstart, hend;
11549 Elf_Internal_Rela *relstart, *relend, *rel;
11550 const struct elf_backend_data *bed;
11551 unsigned int log_file_align;
11552
11553 if (h->root.type == bfd_link_hash_warning)
11554 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11555
11556 /* Take care of both those symbols that do not describe vtables as
11557 well as those that are not loaded. */
11558 if (h->vtable == NULL || h->vtable->parent == NULL)
11559 return TRUE;
11560
11561 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11562 || h->root.type == bfd_link_hash_defweak);
11563
11564 sec = h->root.u.def.section;
11565 hstart = h->root.u.def.value;
11566 hend = hstart + h->size;
11567
11568 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11569 if (!relstart)
11570 return *(bfd_boolean *) okp = FALSE;
11571 bed = get_elf_backend_data (sec->owner);
11572 log_file_align = bed->s->log_file_align;
11573
11574 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11575
11576 for (rel = relstart; rel < relend; ++rel)
11577 if (rel->r_offset >= hstart && rel->r_offset < hend)
11578 {
11579 /* If the entry is in use, do nothing. */
11580 if (h->vtable->used
11581 && (rel->r_offset - hstart) < h->vtable->size)
11582 {
11583 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11584 if (h->vtable->used[entry])
11585 continue;
11586 }
11587 /* Otherwise, kill it. */
11588 rel->r_offset = rel->r_info = rel->r_addend = 0;
11589 }
11590
11591 return TRUE;
11592 }
11593
11594 /* Mark sections containing dynamically referenced symbols. When
11595 building shared libraries, we must assume that any visible symbol is
11596 referenced. */
11597
11598 bfd_boolean
11599 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11600 {
11601 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11602
11603 if (h->root.type == bfd_link_hash_warning)
11604 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11605
11606 if ((h->root.type == bfd_link_hash_defined
11607 || h->root.type == bfd_link_hash_defweak)
11608 && (h->ref_dynamic
11609 || (!info->executable
11610 && h->def_regular
11611 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11612 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
11613 h->root.u.def.section->flags |= SEC_KEEP;
11614
11615 return TRUE;
11616 }
11617
11618 /* Keep all sections containing symbols undefined on the command-line,
11619 and the section containing the entry symbol. */
11620
11621 void
11622 _bfd_elf_gc_keep (struct bfd_link_info *info)
11623 {
11624 struct bfd_sym_chain *sym;
11625
11626 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11627 {
11628 struct elf_link_hash_entry *h;
11629
11630 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11631 FALSE, FALSE, FALSE);
11632
11633 if (h != NULL
11634 && (h->root.type == bfd_link_hash_defined
11635 || h->root.type == bfd_link_hash_defweak)
11636 && !bfd_is_abs_section (h->root.u.def.section))
11637 h->root.u.def.section->flags |= SEC_KEEP;
11638 }
11639 }
11640
11641 /* Do mark and sweep of unused sections. */
11642
11643 bfd_boolean
11644 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11645 {
11646 bfd_boolean ok = TRUE;
11647 bfd *sub;
11648 elf_gc_mark_hook_fn gc_mark_hook;
11649 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11650
11651 if (!bed->can_gc_sections
11652 || !is_elf_hash_table (info->hash))
11653 {
11654 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11655 return TRUE;
11656 }
11657
11658 bed->gc_keep (info);
11659
11660 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11661 at the .eh_frame section if we can mark the FDEs individually. */
11662 _bfd_elf_begin_eh_frame_parsing (info);
11663 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11664 {
11665 asection *sec;
11666 struct elf_reloc_cookie cookie;
11667
11668 sec = bfd_get_section_by_name (sub, ".eh_frame");
11669 if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
11670 {
11671 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
11672 if (elf_section_data (sec)->sec_info)
11673 elf_eh_frame_section (sub) = sec;
11674 fini_reloc_cookie_for_section (&cookie, sec);
11675 }
11676 }
11677 _bfd_elf_end_eh_frame_parsing (info);
11678
11679 /* Apply transitive closure to the vtable entry usage info. */
11680 elf_link_hash_traverse (elf_hash_table (info),
11681 elf_gc_propagate_vtable_entries_used,
11682 &ok);
11683 if (!ok)
11684 return FALSE;
11685
11686 /* Kill the vtable relocations that were not used. */
11687 elf_link_hash_traverse (elf_hash_table (info),
11688 elf_gc_smash_unused_vtentry_relocs,
11689 &ok);
11690 if (!ok)
11691 return FALSE;
11692
11693 /* Mark dynamically referenced symbols. */
11694 if (elf_hash_table (info)->dynamic_sections_created)
11695 elf_link_hash_traverse (elf_hash_table (info),
11696 bed->gc_mark_dynamic_ref,
11697 info);
11698
11699 /* Grovel through relocs to find out who stays ... */
11700 gc_mark_hook = bed->gc_mark_hook;
11701 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11702 {
11703 asection *o;
11704
11705 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11706 continue;
11707
11708 for (o = sub->sections; o != NULL; o = o->next)
11709 if ((o->flags & (SEC_EXCLUDE | SEC_KEEP)) == SEC_KEEP && !o->gc_mark)
11710 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11711 return FALSE;
11712 }
11713
11714 /* Allow the backend to mark additional target specific sections. */
11715 if (bed->gc_mark_extra_sections)
11716 bed->gc_mark_extra_sections (info, gc_mark_hook);
11717
11718 /* ... and mark SEC_EXCLUDE for those that go. */
11719 return elf_gc_sweep (abfd, info);
11720 }
11721 \f
11722 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11723
11724 bfd_boolean
11725 bfd_elf_gc_record_vtinherit (bfd *abfd,
11726 asection *sec,
11727 struct elf_link_hash_entry *h,
11728 bfd_vma offset)
11729 {
11730 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
11731 struct elf_link_hash_entry **search, *child;
11732 bfd_size_type extsymcount;
11733 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11734
11735 /* The sh_info field of the symtab header tells us where the
11736 external symbols start. We don't care about the local symbols at
11737 this point. */
11738 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
11739 if (!elf_bad_symtab (abfd))
11740 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
11741
11742 sym_hashes = elf_sym_hashes (abfd);
11743 sym_hashes_end = sym_hashes + extsymcount;
11744
11745 /* Hunt down the child symbol, which is in this section at the same
11746 offset as the relocation. */
11747 for (search = sym_hashes; search != sym_hashes_end; ++search)
11748 {
11749 if ((child = *search) != NULL
11750 && (child->root.type == bfd_link_hash_defined
11751 || child->root.type == bfd_link_hash_defweak)
11752 && child->root.u.def.section == sec
11753 && child->root.u.def.value == offset)
11754 goto win;
11755 }
11756
11757 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
11758 abfd, sec, (unsigned long) offset);
11759 bfd_set_error (bfd_error_invalid_operation);
11760 return FALSE;
11761
11762 win:
11763 if (!child->vtable)
11764 {
11765 child->vtable = bfd_zalloc (abfd, sizeof (*child->vtable));
11766 if (!child->vtable)
11767 return FALSE;
11768 }
11769 if (!h)
11770 {
11771 /* This *should* only be the absolute section. It could potentially
11772 be that someone has defined a non-global vtable though, which
11773 would be bad. It isn't worth paging in the local symbols to be
11774 sure though; that case should simply be handled by the assembler. */
11775
11776 child->vtable->parent = (struct elf_link_hash_entry *) -1;
11777 }
11778 else
11779 child->vtable->parent = h;
11780
11781 return TRUE;
11782 }
11783
11784 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
11785
11786 bfd_boolean
11787 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
11788 asection *sec ATTRIBUTE_UNUSED,
11789 struct elf_link_hash_entry *h,
11790 bfd_vma addend)
11791 {
11792 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11793 unsigned int log_file_align = bed->s->log_file_align;
11794
11795 if (!h->vtable)
11796 {
11797 h->vtable = bfd_zalloc (abfd, sizeof (*h->vtable));
11798 if (!h->vtable)
11799 return FALSE;
11800 }
11801
11802 if (addend >= h->vtable->size)
11803 {
11804 size_t size, bytes, file_align;
11805 bfd_boolean *ptr = h->vtable->used;
11806
11807 /* While the symbol is undefined, we have to be prepared to handle
11808 a zero size. */
11809 file_align = 1 << log_file_align;
11810 if (h->root.type == bfd_link_hash_undefined)
11811 size = addend + file_align;
11812 else
11813 {
11814 size = h->size;
11815 if (addend >= size)
11816 {
11817 /* Oops! We've got a reference past the defined end of
11818 the table. This is probably a bug -- shall we warn? */
11819 size = addend + file_align;
11820 }
11821 }
11822 size = (size + file_align - 1) & -file_align;
11823
11824 /* Allocate one extra entry for use as a "done" flag for the
11825 consolidation pass. */
11826 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
11827
11828 if (ptr)
11829 {
11830 ptr = bfd_realloc (ptr - 1, bytes);
11831
11832 if (ptr != NULL)
11833 {
11834 size_t oldbytes;
11835
11836 oldbytes = (((h->vtable->size >> log_file_align) + 1)
11837 * sizeof (bfd_boolean));
11838 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
11839 }
11840 }
11841 else
11842 ptr = bfd_zmalloc (bytes);
11843
11844 if (ptr == NULL)
11845 return FALSE;
11846
11847 /* And arrange for that done flag to be at index -1. */
11848 h->vtable->used = ptr + 1;
11849 h->vtable->size = size;
11850 }
11851
11852 h->vtable->used[addend >> log_file_align] = TRUE;
11853
11854 return TRUE;
11855 }
11856
11857 struct alloc_got_off_arg {
11858 bfd_vma gotoff;
11859 struct bfd_link_info *info;
11860 };
11861
11862 /* We need a special top-level link routine to convert got reference counts
11863 to real got offsets. */
11864
11865 static bfd_boolean
11866 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
11867 {
11868 struct alloc_got_off_arg *gofarg = arg;
11869 bfd *obfd = gofarg->info->output_bfd;
11870 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
11871
11872 if (h->root.type == bfd_link_hash_warning)
11873 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11874
11875 if (h->got.refcount > 0)
11876 {
11877 h->got.offset = gofarg->gotoff;
11878 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
11879 }
11880 else
11881 h->got.offset = (bfd_vma) -1;
11882
11883 return TRUE;
11884 }
11885
11886 /* And an accompanying bit to work out final got entry offsets once
11887 we're done. Should be called from final_link. */
11888
11889 bfd_boolean
11890 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
11891 struct bfd_link_info *info)
11892 {
11893 bfd *i;
11894 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11895 bfd_vma gotoff;
11896 struct alloc_got_off_arg gofarg;
11897
11898 BFD_ASSERT (abfd == info->output_bfd);
11899
11900 if (! is_elf_hash_table (info->hash))
11901 return FALSE;
11902
11903 /* The GOT offset is relative to the .got section, but the GOT header is
11904 put into the .got.plt section, if the backend uses it. */
11905 if (bed->want_got_plt)
11906 gotoff = 0;
11907 else
11908 gotoff = bed->got_header_size;
11909
11910 /* Do the local .got entries first. */
11911 for (i = info->input_bfds; i; i = i->link_next)
11912 {
11913 bfd_signed_vma *local_got;
11914 bfd_size_type j, locsymcount;
11915 Elf_Internal_Shdr *symtab_hdr;
11916
11917 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
11918 continue;
11919
11920 local_got = elf_local_got_refcounts (i);
11921 if (!local_got)
11922 continue;
11923
11924 symtab_hdr = &elf_tdata (i)->symtab_hdr;
11925 if (elf_bad_symtab (i))
11926 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11927 else
11928 locsymcount = symtab_hdr->sh_info;
11929
11930 for (j = 0; j < locsymcount; ++j)
11931 {
11932 if (local_got[j] > 0)
11933 {
11934 local_got[j] = gotoff;
11935 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
11936 }
11937 else
11938 local_got[j] = (bfd_vma) -1;
11939 }
11940 }
11941
11942 /* Then the global .got entries. .plt refcounts are handled by
11943 adjust_dynamic_symbol */
11944 gofarg.gotoff = gotoff;
11945 gofarg.info = info;
11946 elf_link_hash_traverse (elf_hash_table (info),
11947 elf_gc_allocate_got_offsets,
11948 &gofarg);
11949 return TRUE;
11950 }
11951
11952 /* Many folk need no more in the way of final link than this, once
11953 got entry reference counting is enabled. */
11954
11955 bfd_boolean
11956 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
11957 {
11958 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
11959 return FALSE;
11960
11961 /* Invoke the regular ELF backend linker to do all the work. */
11962 return bfd_elf_final_link (abfd, info);
11963 }
11964
11965 bfd_boolean
11966 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
11967 {
11968 struct elf_reloc_cookie *rcookie = cookie;
11969
11970 if (rcookie->bad_symtab)
11971 rcookie->rel = rcookie->rels;
11972
11973 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
11974 {
11975 unsigned long r_symndx;
11976
11977 if (! rcookie->bad_symtab)
11978 if (rcookie->rel->r_offset > offset)
11979 return FALSE;
11980 if (rcookie->rel->r_offset != offset)
11981 continue;
11982
11983 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
11984 if (r_symndx == SHN_UNDEF)
11985 return TRUE;
11986
11987 if (r_symndx >= rcookie->locsymcount
11988 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11989 {
11990 struct elf_link_hash_entry *h;
11991
11992 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
11993
11994 while (h->root.type == bfd_link_hash_indirect
11995 || h->root.type == bfd_link_hash_warning)
11996 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11997
11998 if ((h->root.type == bfd_link_hash_defined
11999 || h->root.type == bfd_link_hash_defweak)
12000 && elf_discarded_section (h->root.u.def.section))
12001 return TRUE;
12002 else
12003 return FALSE;
12004 }
12005 else
12006 {
12007 /* It's not a relocation against a global symbol,
12008 but it could be a relocation against a local
12009 symbol for a discarded section. */
12010 asection *isec;
12011 Elf_Internal_Sym *isym;
12012
12013 /* Need to: get the symbol; get the section. */
12014 isym = &rcookie->locsyms[r_symndx];
12015 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12016 if (isec != NULL && elf_discarded_section (isec))
12017 return TRUE;
12018 }
12019 return FALSE;
12020 }
12021 return FALSE;
12022 }
12023
12024 /* Discard unneeded references to discarded sections.
12025 Returns TRUE if any section's size was changed. */
12026 /* This function assumes that the relocations are in sorted order,
12027 which is true for all known assemblers. */
12028
12029 bfd_boolean
12030 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12031 {
12032 struct elf_reloc_cookie cookie;
12033 asection *stab, *eh;
12034 const struct elf_backend_data *bed;
12035 bfd *abfd;
12036 bfd_boolean ret = FALSE;
12037
12038 if (info->traditional_format
12039 || !is_elf_hash_table (info->hash))
12040 return FALSE;
12041
12042 _bfd_elf_begin_eh_frame_parsing (info);
12043 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12044 {
12045 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12046 continue;
12047
12048 bed = get_elf_backend_data (abfd);
12049
12050 if ((abfd->flags & DYNAMIC) != 0)
12051 continue;
12052
12053 eh = NULL;
12054 if (!info->relocatable)
12055 {
12056 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12057 if (eh != NULL
12058 && (eh->size == 0
12059 || bfd_is_abs_section (eh->output_section)))
12060 eh = NULL;
12061 }
12062
12063 stab = bfd_get_section_by_name (abfd, ".stab");
12064 if (stab != NULL
12065 && (stab->size == 0
12066 || bfd_is_abs_section (stab->output_section)
12067 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
12068 stab = NULL;
12069
12070 if (stab == NULL
12071 && eh == NULL
12072 && bed->elf_backend_discard_info == NULL)
12073 continue;
12074
12075 if (!init_reloc_cookie (&cookie, info, abfd))
12076 return FALSE;
12077
12078 if (stab != NULL
12079 && stab->reloc_count > 0
12080 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12081 {
12082 if (_bfd_discard_section_stabs (abfd, stab,
12083 elf_section_data (stab)->sec_info,
12084 bfd_elf_reloc_symbol_deleted_p,
12085 &cookie))
12086 ret = TRUE;
12087 fini_reloc_cookie_rels (&cookie, stab);
12088 }
12089
12090 if (eh != NULL
12091 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12092 {
12093 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12094 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12095 bfd_elf_reloc_symbol_deleted_p,
12096 &cookie))
12097 ret = TRUE;
12098 fini_reloc_cookie_rels (&cookie, eh);
12099 }
12100
12101 if (bed->elf_backend_discard_info != NULL
12102 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12103 ret = TRUE;
12104
12105 fini_reloc_cookie (&cookie, abfd);
12106 }
12107 _bfd_elf_end_eh_frame_parsing (info);
12108
12109 if (info->eh_frame_hdr
12110 && !info->relocatable
12111 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12112 ret = TRUE;
12113
12114 return ret;
12115 }
12116
12117 /* For a SHT_GROUP section, return the group signature. For other
12118 sections, return the normal section name. */
12119
12120 static const char *
12121 section_signature (asection *sec)
12122 {
12123 if ((sec->flags & SEC_GROUP) != 0
12124 && elf_next_in_group (sec) != NULL
12125 && elf_group_name (elf_next_in_group (sec)) != NULL)
12126 return elf_group_name (elf_next_in_group (sec));
12127 return sec->name;
12128 }
12129
12130 void
12131 _bfd_elf_section_already_linked (bfd *abfd, asection *sec,
12132 struct bfd_link_info *info)
12133 {
12134 flagword flags;
12135 const char *name, *p;
12136 struct bfd_section_already_linked *l;
12137 struct bfd_section_already_linked_hash_entry *already_linked_list;
12138
12139 if (sec->output_section == bfd_abs_section_ptr)
12140 return;
12141
12142 flags = sec->flags;
12143
12144 /* Return if it isn't a linkonce section. A comdat group section
12145 also has SEC_LINK_ONCE set. */
12146 if ((flags & SEC_LINK_ONCE) == 0)
12147 return;
12148
12149 /* Don't put group member sections on our list of already linked
12150 sections. They are handled as a group via their group section. */
12151 if (elf_sec_group (sec) != NULL)
12152 return;
12153
12154 /* FIXME: When doing a relocatable link, we may have trouble
12155 copying relocations in other sections that refer to local symbols
12156 in the section being discarded. Those relocations will have to
12157 be converted somehow; as of this writing I'm not sure that any of
12158 the backends handle that correctly.
12159
12160 It is tempting to instead not discard link once sections when
12161 doing a relocatable link (technically, they should be discarded
12162 whenever we are building constructors). However, that fails,
12163 because the linker winds up combining all the link once sections
12164 into a single large link once section, which defeats the purpose
12165 of having link once sections in the first place.
12166
12167 Also, not merging link once sections in a relocatable link
12168 causes trouble for MIPS ELF, which relies on link once semantics
12169 to handle the .reginfo section correctly. */
12170
12171 name = section_signature (sec);
12172
12173 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12174 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12175 p++;
12176 else
12177 p = name;
12178
12179 already_linked_list = bfd_section_already_linked_table_lookup (p);
12180
12181 for (l = already_linked_list->entry; l != NULL; l = l->next)
12182 {
12183 /* We may have 2 different types of sections on the list: group
12184 sections and linkonce sections. Match like sections. */
12185 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12186 && strcmp (name, section_signature (l->sec)) == 0
12187 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
12188 {
12189 /* The section has already been linked. See if we should
12190 issue a warning. */
12191 switch (flags & SEC_LINK_DUPLICATES)
12192 {
12193 default:
12194 abort ();
12195
12196 case SEC_LINK_DUPLICATES_DISCARD:
12197 break;
12198
12199 case SEC_LINK_DUPLICATES_ONE_ONLY:
12200 (*_bfd_error_handler)
12201 (_("%B: ignoring duplicate section `%A'"),
12202 abfd, sec);
12203 break;
12204
12205 case SEC_LINK_DUPLICATES_SAME_SIZE:
12206 if (sec->size != l->sec->size)
12207 (*_bfd_error_handler)
12208 (_("%B: duplicate section `%A' has different size"),
12209 abfd, sec);
12210 break;
12211
12212 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
12213 if (sec->size != l->sec->size)
12214 (*_bfd_error_handler)
12215 (_("%B: duplicate section `%A' has different size"),
12216 abfd, sec);
12217 else if (sec->size != 0)
12218 {
12219 bfd_byte *sec_contents, *l_sec_contents;
12220
12221 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
12222 (*_bfd_error_handler)
12223 (_("%B: warning: could not read contents of section `%A'"),
12224 abfd, sec);
12225 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
12226 &l_sec_contents))
12227 (*_bfd_error_handler)
12228 (_("%B: warning: could not read contents of section `%A'"),
12229 l->sec->owner, l->sec);
12230 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
12231 (*_bfd_error_handler)
12232 (_("%B: warning: duplicate section `%A' has different contents"),
12233 abfd, sec);
12234
12235 if (sec_contents)
12236 free (sec_contents);
12237 if (l_sec_contents)
12238 free (l_sec_contents);
12239 }
12240 break;
12241 }
12242
12243 /* Set the output_section field so that lang_add_section
12244 does not create a lang_input_section structure for this
12245 section. Since there might be a symbol in the section
12246 being discarded, we must retain a pointer to the section
12247 which we are really going to use. */
12248 sec->output_section = bfd_abs_section_ptr;
12249 sec->kept_section = l->sec;
12250
12251 if (flags & SEC_GROUP)
12252 {
12253 asection *first = elf_next_in_group (sec);
12254 asection *s = first;
12255
12256 while (s != NULL)
12257 {
12258 s->output_section = bfd_abs_section_ptr;
12259 /* Record which group discards it. */
12260 s->kept_section = l->sec;
12261 s = elf_next_in_group (s);
12262 /* These lists are circular. */
12263 if (s == first)
12264 break;
12265 }
12266 }
12267
12268 return;
12269 }
12270 }
12271
12272 /* A single member comdat group section may be discarded by a
12273 linkonce section and vice versa. */
12274
12275 if ((flags & SEC_GROUP) != 0)
12276 {
12277 asection *first = elf_next_in_group (sec);
12278
12279 if (first != NULL && elf_next_in_group (first) == first)
12280 /* Check this single member group against linkonce sections. */
12281 for (l = already_linked_list->entry; l != NULL; l = l->next)
12282 if ((l->sec->flags & SEC_GROUP) == 0
12283 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
12284 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12285 {
12286 first->output_section = bfd_abs_section_ptr;
12287 first->kept_section = l->sec;
12288 sec->output_section = bfd_abs_section_ptr;
12289 break;
12290 }
12291 }
12292 else
12293 /* Check this linkonce section against single member groups. */
12294 for (l = already_linked_list->entry; l != NULL; l = l->next)
12295 if (l->sec->flags & SEC_GROUP)
12296 {
12297 asection *first = elf_next_in_group (l->sec);
12298
12299 if (first != NULL
12300 && elf_next_in_group (first) == first
12301 && bfd_elf_match_symbols_in_sections (first, sec, info))
12302 {
12303 sec->output_section = bfd_abs_section_ptr;
12304 sec->kept_section = first;
12305 break;
12306 }
12307 }
12308
12309 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12310 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12311 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12312 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12313 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12314 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12315 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12316 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12317 The reverse order cannot happen as there is never a bfd with only the
12318 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12319 matter as here were are looking only for cross-bfd sections. */
12320
12321 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12322 for (l = already_linked_list->entry; l != NULL; l = l->next)
12323 if ((l->sec->flags & SEC_GROUP) == 0
12324 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12325 {
12326 if (abfd != l->sec->owner)
12327 sec->output_section = bfd_abs_section_ptr;
12328 break;
12329 }
12330
12331 /* This is the first section with this name. Record it. */
12332 if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
12333 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12334 }
12335
12336 bfd_boolean
12337 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12338 {
12339 return sym->st_shndx == SHN_COMMON;
12340 }
12341
12342 unsigned int
12343 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12344 {
12345 return SHN_COMMON;
12346 }
12347
12348 asection *
12349 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12350 {
12351 return bfd_com_section_ptr;
12352 }
12353
12354 bfd_vma
12355 _bfd_elf_default_got_elt_size (bfd *abfd,
12356 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12357 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12358 bfd *ibfd ATTRIBUTE_UNUSED,
12359 unsigned long symndx ATTRIBUTE_UNUSED)
12360 {
12361 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12362 return bed->s->arch_size / 8;
12363 }
12364
12365 /* Routines to support the creation of dynamic relocs. */
12366
12367 /* Return true if NAME is a name of a relocation
12368 section associated with section S. */
12369
12370 static bfd_boolean
12371 is_reloc_section (bfd_boolean rela, const char * name, asection * s)
12372 {
12373 if (rela)
12374 return CONST_STRNEQ (name, ".rela")
12375 && strcmp (bfd_get_section_name (NULL, s), name + 5) == 0;
12376
12377 return CONST_STRNEQ (name, ".rel")
12378 && strcmp (bfd_get_section_name (NULL, s), name + 4) == 0;
12379 }
12380
12381 /* Returns the name of the dynamic reloc section associated with SEC. */
12382
12383 static const char *
12384 get_dynamic_reloc_section_name (bfd * abfd,
12385 asection * sec,
12386 bfd_boolean is_rela)
12387 {
12388 const char * name;
12389 unsigned int strndx = elf_elfheader (abfd)->e_shstrndx;
12390 unsigned int shnam = elf_section_data (sec)->rel_hdr.sh_name;
12391
12392 name = bfd_elf_string_from_elf_section (abfd, strndx, shnam);
12393 if (name == NULL)
12394 return NULL;
12395
12396 if (! is_reloc_section (is_rela, name, sec))
12397 {
12398 static bfd_boolean complained = FALSE;
12399
12400 if (! complained)
12401 {
12402 (*_bfd_error_handler)
12403 (_("%B: bad relocation section name `%s\'"), abfd, name);
12404 complained = TRUE;
12405 }
12406 name = NULL;
12407 }
12408
12409 return name;
12410 }
12411
12412 /* Returns the dynamic reloc section associated with SEC.
12413 If necessary compute the name of the dynamic reloc section based
12414 on SEC's name (looked up in ABFD's string table) and the setting
12415 of IS_RELA. */
12416
12417 asection *
12418 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12419 asection * sec,
12420 bfd_boolean is_rela)
12421 {
12422 asection * reloc_sec = elf_section_data (sec)->sreloc;
12423
12424 if (reloc_sec == NULL)
12425 {
12426 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12427
12428 if (name != NULL)
12429 {
12430 reloc_sec = bfd_get_section_by_name (abfd, name);
12431
12432 if (reloc_sec != NULL)
12433 elf_section_data (sec)->sreloc = reloc_sec;
12434 }
12435 }
12436
12437 return reloc_sec;
12438 }
12439
12440 /* Returns the dynamic reloc section associated with SEC. If the
12441 section does not exist it is created and attached to the DYNOBJ
12442 bfd and stored in the SRELOC field of SEC's elf_section_data
12443 structure.
12444
12445 ALIGNMENT is the alignment for the newly created section and
12446 IS_RELA defines whether the name should be .rela.<SEC's name>
12447 or .rel.<SEC's name>. The section name is looked up in the
12448 string table associated with ABFD. */
12449
12450 asection *
12451 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12452 bfd * dynobj,
12453 unsigned int alignment,
12454 bfd * abfd,
12455 bfd_boolean is_rela)
12456 {
12457 asection * reloc_sec = elf_section_data (sec)->sreloc;
12458
12459 if (reloc_sec == NULL)
12460 {
12461 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12462
12463 if (name == NULL)
12464 return NULL;
12465
12466 reloc_sec = bfd_get_section_by_name (dynobj, name);
12467
12468 if (reloc_sec == NULL)
12469 {
12470 flagword flags;
12471
12472 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12473 if ((sec->flags & SEC_ALLOC) != 0)
12474 flags |= SEC_ALLOC | SEC_LOAD;
12475
12476 reloc_sec = bfd_make_section_with_flags (dynobj, name, flags);
12477 if (reloc_sec != NULL)
12478 {
12479 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12480 reloc_sec = NULL;
12481 }
12482 }
12483
12484 elf_section_data (sec)->sreloc = reloc_sec;
12485 }
12486
12487 return reloc_sec;
12488 }
12489
12490 /* Returns the name of the ifunc using dynamic reloc section associated with SEC. */
12491 #define IFUNC_INFIX ".ifunc"
12492
12493 static const char *
12494 get_ifunc_reloc_section_name (bfd * abfd,
12495 asection * sec)
12496 {
12497 const char * dot;
12498 char * name;
12499 const char * base_name;
12500 unsigned int strndx = elf_elfheader (abfd)->e_shstrndx;
12501 unsigned int shnam = elf_section_data (sec)->rel_hdr.sh_name;
12502
12503 base_name = bfd_elf_string_from_elf_section (abfd, strndx, shnam);
12504 if (base_name == NULL)
12505 return NULL;
12506
12507 dot = strchr (base_name + 1, '.');
12508 name = bfd_alloc (abfd, strlen (base_name) + strlen (IFUNC_INFIX) + 1);
12509 sprintf (name, "%.*s%s%s", (int)(dot - base_name), base_name, IFUNC_INFIX, dot);
12510
12511 return name;
12512 }
12513
12514 /* Like _bfd_elf_make_dynamic_reloc_section but it creates a
12515 section for holding relocs against symbols with the STT_GNU_IFUNC
12516 type. The section is attached to the OWNER bfd but it is created
12517 with a name based on SEC from ABFD. */
12518
12519 asection *
12520 _bfd_elf_make_ifunc_reloc_section (bfd * abfd,
12521 asection * sec,
12522 bfd * owner,
12523 unsigned int align)
12524 {
12525 asection * reloc_sec = elf_section_data (sec)->indirect_relocs;
12526
12527 if (reloc_sec == NULL)
12528 {
12529 const char * name = get_ifunc_reloc_section_name (abfd, sec);
12530
12531 if (name == NULL)
12532 return NULL;
12533
12534 reloc_sec = bfd_get_section_by_name (owner, name);
12535
12536 if (reloc_sec == NULL)
12537 {
12538 flagword flags;
12539
12540 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12541 if ((sec->flags & SEC_ALLOC) != 0)
12542 flags |= SEC_ALLOC | SEC_LOAD;
12543
12544 reloc_sec = bfd_make_section_with_flags (owner, name, flags);
12545
12546 if (reloc_sec != NULL
12547 && ! bfd_set_section_alignment (owner, reloc_sec, align))
12548 reloc_sec = NULL;
12549 }
12550
12551 elf_section_data (sec)->indirect_relocs = reloc_sec;
12552 }
12553
12554 return reloc_sec;
12555 }
12556
12557 /* Returns true if the hash entry refers to a symbol marked for
12558 indirect handling during reloc processing. */
12559
12560 bfd_boolean
12561 _bfd_elf_is_ifunc_symbol (bfd *abfd, struct elf_link_hash_entry *h)
12562 {
12563 const struct elf_backend_data * bed;
12564
12565 if (abfd == NULL || h == NULL)
12566 return FALSE;
12567
12568 bed = get_elf_backend_data (abfd);
12569
12570 /* GNU/Linux is still using the default value ELFOSABI_NONE. */
12571 return (h->type == STT_GNU_IFUNC
12572 && (bed->elf_osabi == ELFOSABI_LINUX
12573 || bed->elf_osabi == ELFOSABI_NONE));
12574 }
This page took 0.320406 seconds and 4 git commands to generate.