PR binutils/22875: IQ2000/ELF: Prevent an out-of-bounds howto table access
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2018 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfd_stdint.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31 #if BFD_SUPPORTS_PLUGINS
32 #include "plugin-api.h"
33 #include "plugin.h"
34 #endif
35
36 /* This struct is used to pass information to routines called via
37 elf_link_hash_traverse which must return failure. */
38
39 struct elf_info_failed
40 {
41 struct bfd_link_info *info;
42 bfd_boolean failed;
43 };
44
45 /* This structure is used to pass information to
46 _bfd_elf_link_find_version_dependencies. */
47
48 struct elf_find_verdep_info
49 {
50 /* General link information. */
51 struct bfd_link_info *info;
52 /* The number of dependencies. */
53 unsigned int vers;
54 /* Whether we had a failure. */
55 bfd_boolean failed;
56 };
57
58 static bfd_boolean _bfd_elf_fix_symbol_flags
59 (struct elf_link_hash_entry *, struct elf_info_failed *);
60
61 asection *
62 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
63 unsigned long r_symndx,
64 bfd_boolean discard)
65 {
66 if (r_symndx >= cookie->locsymcount
67 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
68 {
69 struct elf_link_hash_entry *h;
70
71 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
72
73 while (h->root.type == bfd_link_hash_indirect
74 || h->root.type == bfd_link_hash_warning)
75 h = (struct elf_link_hash_entry *) h->root.u.i.link;
76
77 if ((h->root.type == bfd_link_hash_defined
78 || h->root.type == bfd_link_hash_defweak)
79 && discarded_section (h->root.u.def.section))
80 return h->root.u.def.section;
81 else
82 return NULL;
83 }
84 else
85 {
86 /* It's not a relocation against a global symbol,
87 but it could be a relocation against a local
88 symbol for a discarded section. */
89 asection *isec;
90 Elf_Internal_Sym *isym;
91
92 /* Need to: get the symbol; get the section. */
93 isym = &cookie->locsyms[r_symndx];
94 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
95 if (isec != NULL
96 && discard ? discarded_section (isec) : 1)
97 return isec;
98 }
99 return NULL;
100 }
101
102 /* Define a symbol in a dynamic linkage section. */
103
104 struct elf_link_hash_entry *
105 _bfd_elf_define_linkage_sym (bfd *abfd,
106 struct bfd_link_info *info,
107 asection *sec,
108 const char *name)
109 {
110 struct elf_link_hash_entry *h;
111 struct bfd_link_hash_entry *bh;
112 const struct elf_backend_data *bed;
113
114 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
115 if (h != NULL)
116 {
117 /* Zap symbol defined in an as-needed lib that wasn't linked.
118 This is a symptom of a larger problem: Absolute symbols
119 defined in shared libraries can't be overridden, because we
120 lose the link to the bfd which is via the symbol section. */
121 h->root.type = bfd_link_hash_new;
122 bh = &h->root;
123 }
124 else
125 bh = NULL;
126
127 bed = get_elf_backend_data (abfd);
128 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
129 sec, 0, NULL, FALSE, bed->collect,
130 &bh))
131 return NULL;
132 h = (struct elf_link_hash_entry *) bh;
133 BFD_ASSERT (h != NULL);
134 h->def_regular = 1;
135 h->non_elf = 0;
136 h->root.linker_def = 1;
137 h->type = STT_OBJECT;
138 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
139 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
140
141 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
142 return h;
143 }
144
145 bfd_boolean
146 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
147 {
148 flagword flags;
149 asection *s;
150 struct elf_link_hash_entry *h;
151 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
152 struct elf_link_hash_table *htab = elf_hash_table (info);
153
154 /* This function may be called more than once. */
155 if (htab->sgot != NULL)
156 return TRUE;
157
158 flags = bed->dynamic_sec_flags;
159
160 s = bfd_make_section_anyway_with_flags (abfd,
161 (bed->rela_plts_and_copies_p
162 ? ".rela.got" : ".rel.got"),
163 (bed->dynamic_sec_flags
164 | SEC_READONLY));
165 if (s == NULL
166 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
167 return FALSE;
168 htab->srelgot = s;
169
170 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
171 if (s == NULL
172 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
173 return FALSE;
174 htab->sgot = s;
175
176 if (bed->want_got_plt)
177 {
178 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
179 if (s == NULL
180 || !bfd_set_section_alignment (abfd, s,
181 bed->s->log_file_align))
182 return FALSE;
183 htab->sgotplt = s;
184 }
185
186 /* The first bit of the global offset table is the header. */
187 s->size += bed->got_header_size;
188
189 if (bed->want_got_sym)
190 {
191 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
192 (or .got.plt) section. We don't do this in the linker script
193 because we don't want to define the symbol if we are not creating
194 a global offset table. */
195 h = _bfd_elf_define_linkage_sym (abfd, info, s,
196 "_GLOBAL_OFFSET_TABLE_");
197 elf_hash_table (info)->hgot = h;
198 if (h == NULL)
199 return FALSE;
200 }
201
202 return TRUE;
203 }
204 \f
205 /* Create a strtab to hold the dynamic symbol names. */
206 static bfd_boolean
207 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
208 {
209 struct elf_link_hash_table *hash_table;
210
211 hash_table = elf_hash_table (info);
212 if (hash_table->dynobj == NULL)
213 {
214 /* We may not set dynobj, an input file holding linker created
215 dynamic sections to abfd, which may be a dynamic object with
216 its own dynamic sections. We need to find a normal input file
217 to hold linker created sections if possible. */
218 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
219 {
220 bfd *ibfd;
221 asection *s;
222 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
223 if ((ibfd->flags
224 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0
225 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
226 && !((s = ibfd->sections) != NULL
227 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS))
228 {
229 abfd = ibfd;
230 break;
231 }
232 }
233 hash_table->dynobj = abfd;
234 }
235
236 if (hash_table->dynstr == NULL)
237 {
238 hash_table->dynstr = _bfd_elf_strtab_init ();
239 if (hash_table->dynstr == NULL)
240 return FALSE;
241 }
242 return TRUE;
243 }
244
245 /* Create some sections which will be filled in with dynamic linking
246 information. ABFD is an input file which requires dynamic sections
247 to be created. The dynamic sections take up virtual memory space
248 when the final executable is run, so we need to create them before
249 addresses are assigned to the output sections. We work out the
250 actual contents and size of these sections later. */
251
252 bfd_boolean
253 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
254 {
255 flagword flags;
256 asection *s;
257 const struct elf_backend_data *bed;
258 struct elf_link_hash_entry *h;
259
260 if (! is_elf_hash_table (info->hash))
261 return FALSE;
262
263 if (elf_hash_table (info)->dynamic_sections_created)
264 return TRUE;
265
266 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
267 return FALSE;
268
269 abfd = elf_hash_table (info)->dynobj;
270 bed = get_elf_backend_data (abfd);
271
272 flags = bed->dynamic_sec_flags;
273
274 /* A dynamically linked executable has a .interp section, but a
275 shared library does not. */
276 if (bfd_link_executable (info) && !info->nointerp)
277 {
278 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
279 flags | SEC_READONLY);
280 if (s == NULL)
281 return FALSE;
282 }
283
284 /* Create sections to hold version informations. These are removed
285 if they are not needed. */
286 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
287 flags | SEC_READONLY);
288 if (s == NULL
289 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
290 return FALSE;
291
292 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
293 flags | SEC_READONLY);
294 if (s == NULL
295 || ! bfd_set_section_alignment (abfd, s, 1))
296 return FALSE;
297
298 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
299 flags | SEC_READONLY);
300 if (s == NULL
301 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
302 return FALSE;
303
304 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
305 flags | SEC_READONLY);
306 if (s == NULL
307 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
308 return FALSE;
309 elf_hash_table (info)->dynsym = s;
310
311 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
312 flags | SEC_READONLY);
313 if (s == NULL)
314 return FALSE;
315
316 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
317 if (s == NULL
318 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
319 return FALSE;
320
321 /* The special symbol _DYNAMIC is always set to the start of the
322 .dynamic section. We could set _DYNAMIC in a linker script, but we
323 only want to define it if we are, in fact, creating a .dynamic
324 section. We don't want to define it if there is no .dynamic
325 section, since on some ELF platforms the start up code examines it
326 to decide how to initialize the process. */
327 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
328 elf_hash_table (info)->hdynamic = h;
329 if (h == NULL)
330 return FALSE;
331
332 if (info->emit_hash)
333 {
334 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
335 flags | SEC_READONLY);
336 if (s == NULL
337 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
338 return FALSE;
339 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
340 }
341
342 if (info->emit_gnu_hash)
343 {
344 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
345 flags | SEC_READONLY);
346 if (s == NULL
347 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
348 return FALSE;
349 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
350 4 32-bit words followed by variable count of 64-bit words, then
351 variable count of 32-bit words. */
352 if (bed->s->arch_size == 64)
353 elf_section_data (s)->this_hdr.sh_entsize = 0;
354 else
355 elf_section_data (s)->this_hdr.sh_entsize = 4;
356 }
357
358 /* Let the backend create the rest of the sections. This lets the
359 backend set the right flags. The backend will normally create
360 the .got and .plt sections. */
361 if (bed->elf_backend_create_dynamic_sections == NULL
362 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
363 return FALSE;
364
365 elf_hash_table (info)->dynamic_sections_created = TRUE;
366
367 return TRUE;
368 }
369
370 /* Create dynamic sections when linking against a dynamic object. */
371
372 bfd_boolean
373 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
374 {
375 flagword flags, pltflags;
376 struct elf_link_hash_entry *h;
377 asection *s;
378 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
379 struct elf_link_hash_table *htab = elf_hash_table (info);
380
381 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
382 .rel[a].bss sections. */
383 flags = bed->dynamic_sec_flags;
384
385 pltflags = flags;
386 if (bed->plt_not_loaded)
387 /* We do not clear SEC_ALLOC here because we still want the OS to
388 allocate space for the section; it's just that there's nothing
389 to read in from the object file. */
390 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
391 else
392 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
393 if (bed->plt_readonly)
394 pltflags |= SEC_READONLY;
395
396 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
397 if (s == NULL
398 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
399 return FALSE;
400 htab->splt = s;
401
402 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
403 .plt section. */
404 if (bed->want_plt_sym)
405 {
406 h = _bfd_elf_define_linkage_sym (abfd, info, s,
407 "_PROCEDURE_LINKAGE_TABLE_");
408 elf_hash_table (info)->hplt = h;
409 if (h == NULL)
410 return FALSE;
411 }
412
413 s = bfd_make_section_anyway_with_flags (abfd,
414 (bed->rela_plts_and_copies_p
415 ? ".rela.plt" : ".rel.plt"),
416 flags | SEC_READONLY);
417 if (s == NULL
418 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
419 return FALSE;
420 htab->srelplt = s;
421
422 if (! _bfd_elf_create_got_section (abfd, info))
423 return FALSE;
424
425 if (bed->want_dynbss)
426 {
427 /* The .dynbss section is a place to put symbols which are defined
428 by dynamic objects, are referenced by regular objects, and are
429 not functions. We must allocate space for them in the process
430 image and use a R_*_COPY reloc to tell the dynamic linker to
431 initialize them at run time. The linker script puts the .dynbss
432 section into the .bss section of the final image. */
433 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
434 SEC_ALLOC | SEC_LINKER_CREATED);
435 if (s == NULL)
436 return FALSE;
437 htab->sdynbss = s;
438
439 if (bed->want_dynrelro)
440 {
441 /* Similarly, but for symbols that were originally in read-only
442 sections. This section doesn't really need to have contents,
443 but make it like other .data.rel.ro sections. */
444 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
445 flags);
446 if (s == NULL)
447 return FALSE;
448 htab->sdynrelro = s;
449 }
450
451 /* The .rel[a].bss section holds copy relocs. This section is not
452 normally needed. We need to create it here, though, so that the
453 linker will map it to an output section. We can't just create it
454 only if we need it, because we will not know whether we need it
455 until we have seen all the input files, and the first time the
456 main linker code calls BFD after examining all the input files
457 (size_dynamic_sections) the input sections have already been
458 mapped to the output sections. If the section turns out not to
459 be needed, we can discard it later. We will never need this
460 section when generating a shared object, since they do not use
461 copy relocs. */
462 if (bfd_link_executable (info))
463 {
464 s = bfd_make_section_anyway_with_flags (abfd,
465 (bed->rela_plts_and_copies_p
466 ? ".rela.bss" : ".rel.bss"),
467 flags | SEC_READONLY);
468 if (s == NULL
469 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
470 return FALSE;
471 htab->srelbss = s;
472
473 if (bed->want_dynrelro)
474 {
475 s = (bfd_make_section_anyway_with_flags
476 (abfd, (bed->rela_plts_and_copies_p
477 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
478 flags | SEC_READONLY));
479 if (s == NULL
480 || ! bfd_set_section_alignment (abfd, s,
481 bed->s->log_file_align))
482 return FALSE;
483 htab->sreldynrelro = s;
484 }
485 }
486 }
487
488 return TRUE;
489 }
490 \f
491 /* Record a new dynamic symbol. We record the dynamic symbols as we
492 read the input files, since we need to have a list of all of them
493 before we can determine the final sizes of the output sections.
494 Note that we may actually call this function even though we are not
495 going to output any dynamic symbols; in some cases we know that a
496 symbol should be in the dynamic symbol table, but only if there is
497 one. */
498
499 bfd_boolean
500 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
501 struct elf_link_hash_entry *h)
502 {
503 if (h->dynindx == -1)
504 {
505 struct elf_strtab_hash *dynstr;
506 char *p;
507 const char *name;
508 size_t indx;
509
510 /* XXX: The ABI draft says the linker must turn hidden and
511 internal symbols into STB_LOCAL symbols when producing the
512 DSO. However, if ld.so honors st_other in the dynamic table,
513 this would not be necessary. */
514 switch (ELF_ST_VISIBILITY (h->other))
515 {
516 case STV_INTERNAL:
517 case STV_HIDDEN:
518 if (h->root.type != bfd_link_hash_undefined
519 && h->root.type != bfd_link_hash_undefweak)
520 {
521 h->forced_local = 1;
522 if (!elf_hash_table (info)->is_relocatable_executable)
523 return TRUE;
524 }
525
526 default:
527 break;
528 }
529
530 h->dynindx = elf_hash_table (info)->dynsymcount;
531 ++elf_hash_table (info)->dynsymcount;
532
533 dynstr = elf_hash_table (info)->dynstr;
534 if (dynstr == NULL)
535 {
536 /* Create a strtab to hold the dynamic symbol names. */
537 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
538 if (dynstr == NULL)
539 return FALSE;
540 }
541
542 /* We don't put any version information in the dynamic string
543 table. */
544 name = h->root.root.string;
545 p = strchr (name, ELF_VER_CHR);
546 if (p != NULL)
547 /* We know that the p points into writable memory. In fact,
548 there are only a few symbols that have read-only names, being
549 those like _GLOBAL_OFFSET_TABLE_ that are created specially
550 by the backends. Most symbols will have names pointing into
551 an ELF string table read from a file, or to objalloc memory. */
552 *p = 0;
553
554 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
555
556 if (p != NULL)
557 *p = ELF_VER_CHR;
558
559 if (indx == (size_t) -1)
560 return FALSE;
561 h->dynstr_index = indx;
562 }
563
564 return TRUE;
565 }
566 \f
567 /* Mark a symbol dynamic. */
568
569 static void
570 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
571 struct elf_link_hash_entry *h,
572 Elf_Internal_Sym *sym)
573 {
574 struct bfd_elf_dynamic_list *d = info->dynamic_list;
575
576 /* It may be called more than once on the same H. */
577 if(h->dynamic || bfd_link_relocatable (info))
578 return;
579
580 if ((info->dynamic_data
581 && (h->type == STT_OBJECT
582 || h->type == STT_COMMON
583 || (sym != NULL
584 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
585 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
586 || (d != NULL
587 && h->non_elf
588 && (*d->match) (&d->head, NULL, h->root.root.string)))
589 {
590 h->dynamic = 1;
591 /* NB: If a symbol is made dynamic by --dynamic-list, it has
592 non-IR reference. */
593 h->root.non_ir_ref_dynamic = 1;
594 }
595 }
596
597 /* Record an assignment to a symbol made by a linker script. We need
598 this in case some dynamic object refers to this symbol. */
599
600 bfd_boolean
601 bfd_elf_record_link_assignment (bfd *output_bfd,
602 struct bfd_link_info *info,
603 const char *name,
604 bfd_boolean provide,
605 bfd_boolean hidden)
606 {
607 struct elf_link_hash_entry *h, *hv;
608 struct elf_link_hash_table *htab;
609 const struct elf_backend_data *bed;
610
611 if (!is_elf_hash_table (info->hash))
612 return TRUE;
613
614 htab = elf_hash_table (info);
615 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
616 if (h == NULL)
617 return provide;
618
619 if (h->root.type == bfd_link_hash_warning)
620 h = (struct elf_link_hash_entry *) h->root.u.i.link;
621
622 if (h->versioned == unknown)
623 {
624 /* Set versioned if symbol version is unknown. */
625 char *version = strrchr (name, ELF_VER_CHR);
626 if (version)
627 {
628 if (version > name && version[-1] != ELF_VER_CHR)
629 h->versioned = versioned_hidden;
630 else
631 h->versioned = versioned;
632 }
633 }
634
635 /* Symbols defined in a linker script but not referenced anywhere
636 else will have non_elf set. */
637 if (h->non_elf)
638 {
639 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
640 h->non_elf = 0;
641 }
642
643 switch (h->root.type)
644 {
645 case bfd_link_hash_defined:
646 case bfd_link_hash_defweak:
647 case bfd_link_hash_common:
648 break;
649 case bfd_link_hash_undefweak:
650 case bfd_link_hash_undefined:
651 /* Since we're defining the symbol, don't let it seem to have not
652 been defined. record_dynamic_symbol and size_dynamic_sections
653 may depend on this. */
654 h->root.type = bfd_link_hash_new;
655 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
656 bfd_link_repair_undef_list (&htab->root);
657 break;
658 case bfd_link_hash_new:
659 break;
660 case bfd_link_hash_indirect:
661 /* We had a versioned symbol in a dynamic library. We make the
662 the versioned symbol point to this one. */
663 bed = get_elf_backend_data (output_bfd);
664 hv = h;
665 while (hv->root.type == bfd_link_hash_indirect
666 || hv->root.type == bfd_link_hash_warning)
667 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
668 /* We don't need to update h->root.u since linker will set them
669 later. */
670 h->root.type = bfd_link_hash_undefined;
671 hv->root.type = bfd_link_hash_indirect;
672 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
673 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
674 break;
675 default:
676 BFD_FAIL ();
677 return FALSE;
678 }
679
680 /* If this symbol is being provided by the linker script, and it is
681 currently defined by a dynamic object, but not by a regular
682 object, then mark it as undefined so that the generic linker will
683 force the correct value. */
684 if (provide
685 && h->def_dynamic
686 && !h->def_regular)
687 h->root.type = bfd_link_hash_undefined;
688
689 /* If this symbol is not being provided by the linker script, and it is
690 currently defined by a dynamic object, but not by a regular object,
691 then clear out any version information because the symbol will not be
692 associated with the dynamic object any more. */
693 if (!provide
694 && h->def_dynamic
695 && !h->def_regular)
696 h->verinfo.verdef = NULL;
697
698 /* Make sure this symbol is not garbage collected. */
699 h->mark = 1;
700
701 h->def_regular = 1;
702
703 if (hidden)
704 {
705 bed = get_elf_backend_data (output_bfd);
706 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
707 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
708 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
709 }
710
711 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
712 and executables. */
713 if (!bfd_link_relocatable (info)
714 && h->dynindx != -1
715 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
716 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
717 h->forced_local = 1;
718
719 if ((h->def_dynamic
720 || h->ref_dynamic
721 || bfd_link_dll (info)
722 || elf_hash_table (info)->is_relocatable_executable)
723 && h->dynindx == -1)
724 {
725 if (! bfd_elf_link_record_dynamic_symbol (info, h))
726 return FALSE;
727
728 /* If this is a weak defined symbol, and we know a corresponding
729 real symbol from the same dynamic object, make sure the real
730 symbol is also made into a dynamic symbol. */
731 if (h->is_weakalias)
732 {
733 struct elf_link_hash_entry *def = weakdef (h);
734
735 if (def->dynindx == -1
736 && !bfd_elf_link_record_dynamic_symbol (info, def))
737 return FALSE;
738 }
739 }
740
741 return TRUE;
742 }
743
744 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
745 success, and 2 on a failure caused by attempting to record a symbol
746 in a discarded section, eg. a discarded link-once section symbol. */
747
748 int
749 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
750 bfd *input_bfd,
751 long input_indx)
752 {
753 bfd_size_type amt;
754 struct elf_link_local_dynamic_entry *entry;
755 struct elf_link_hash_table *eht;
756 struct elf_strtab_hash *dynstr;
757 size_t dynstr_index;
758 char *name;
759 Elf_External_Sym_Shndx eshndx;
760 char esym[sizeof (Elf64_External_Sym)];
761
762 if (! is_elf_hash_table (info->hash))
763 return 0;
764
765 /* See if the entry exists already. */
766 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
767 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
768 return 1;
769
770 amt = sizeof (*entry);
771 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
772 if (entry == NULL)
773 return 0;
774
775 /* Go find the symbol, so that we can find it's name. */
776 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
777 1, input_indx, &entry->isym, esym, &eshndx))
778 {
779 bfd_release (input_bfd, entry);
780 return 0;
781 }
782
783 if (entry->isym.st_shndx != SHN_UNDEF
784 && entry->isym.st_shndx < SHN_LORESERVE)
785 {
786 asection *s;
787
788 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
789 if (s == NULL || bfd_is_abs_section (s->output_section))
790 {
791 /* We can still bfd_release here as nothing has done another
792 bfd_alloc. We can't do this later in this function. */
793 bfd_release (input_bfd, entry);
794 return 2;
795 }
796 }
797
798 name = (bfd_elf_string_from_elf_section
799 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
800 entry->isym.st_name));
801
802 dynstr = elf_hash_table (info)->dynstr;
803 if (dynstr == NULL)
804 {
805 /* Create a strtab to hold the dynamic symbol names. */
806 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
807 if (dynstr == NULL)
808 return 0;
809 }
810
811 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
812 if (dynstr_index == (size_t) -1)
813 return 0;
814 entry->isym.st_name = dynstr_index;
815
816 eht = elf_hash_table (info);
817
818 entry->next = eht->dynlocal;
819 eht->dynlocal = entry;
820 entry->input_bfd = input_bfd;
821 entry->input_indx = input_indx;
822 eht->dynsymcount++;
823
824 /* Whatever binding the symbol had before, it's now local. */
825 entry->isym.st_info
826 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
827
828 /* The dynindx will be set at the end of size_dynamic_sections. */
829
830 return 1;
831 }
832
833 /* Return the dynindex of a local dynamic symbol. */
834
835 long
836 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
837 bfd *input_bfd,
838 long input_indx)
839 {
840 struct elf_link_local_dynamic_entry *e;
841
842 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
843 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
844 return e->dynindx;
845 return -1;
846 }
847
848 /* This function is used to renumber the dynamic symbols, if some of
849 them are removed because they are marked as local. This is called
850 via elf_link_hash_traverse. */
851
852 static bfd_boolean
853 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
854 void *data)
855 {
856 size_t *count = (size_t *) data;
857
858 if (h->forced_local)
859 return TRUE;
860
861 if (h->dynindx != -1)
862 h->dynindx = ++(*count);
863
864 return TRUE;
865 }
866
867
868 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
869 STB_LOCAL binding. */
870
871 static bfd_boolean
872 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
873 void *data)
874 {
875 size_t *count = (size_t *) data;
876
877 if (!h->forced_local)
878 return TRUE;
879
880 if (h->dynindx != -1)
881 h->dynindx = ++(*count);
882
883 return TRUE;
884 }
885
886 /* Return true if the dynamic symbol for a given section should be
887 omitted when creating a shared library. */
888 bfd_boolean
889 _bfd_elf_omit_section_dynsym_default (bfd *output_bfd ATTRIBUTE_UNUSED,
890 struct bfd_link_info *info,
891 asection *p)
892 {
893 struct elf_link_hash_table *htab;
894 asection *ip;
895
896 switch (elf_section_data (p)->this_hdr.sh_type)
897 {
898 case SHT_PROGBITS:
899 case SHT_NOBITS:
900 /* If sh_type is yet undecided, assume it could be
901 SHT_PROGBITS/SHT_NOBITS. */
902 case SHT_NULL:
903 htab = elf_hash_table (info);
904 if (p == htab->tls_sec)
905 return FALSE;
906
907 if (htab->text_index_section != NULL)
908 return p != htab->text_index_section && p != htab->data_index_section;
909
910 return (htab->dynobj != NULL
911 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
912 && ip->output_section == p);
913
914 /* There shouldn't be section relative relocations
915 against any other section. */
916 default:
917 return TRUE;
918 }
919 }
920
921 bfd_boolean
922 _bfd_elf_omit_section_dynsym_all
923 (bfd *output_bfd ATTRIBUTE_UNUSED,
924 struct bfd_link_info *info ATTRIBUTE_UNUSED,
925 asection *p ATTRIBUTE_UNUSED)
926 {
927 return TRUE;
928 }
929
930 /* Assign dynsym indices. In a shared library we generate a section
931 symbol for each output section, which come first. Next come symbols
932 which have been forced to local binding. Then all of the back-end
933 allocated local dynamic syms, followed by the rest of the global
934 symbols. If SECTION_SYM_COUNT is NULL, section dynindx is not set.
935 (This prevents the early call before elf_backend_init_index_section
936 and strip_excluded_output_sections setting dynindx for sections
937 that are stripped.) */
938
939 static unsigned long
940 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
941 struct bfd_link_info *info,
942 unsigned long *section_sym_count)
943 {
944 unsigned long dynsymcount = 0;
945 bfd_boolean do_sec = section_sym_count != NULL;
946
947 if (bfd_link_pic (info)
948 || elf_hash_table (info)->is_relocatable_executable)
949 {
950 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
951 asection *p;
952 for (p = output_bfd->sections; p ; p = p->next)
953 if ((p->flags & SEC_EXCLUDE) == 0
954 && (p->flags & SEC_ALLOC) != 0
955 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
956 {
957 ++dynsymcount;
958 if (do_sec)
959 elf_section_data (p)->dynindx = dynsymcount;
960 }
961 else if (do_sec)
962 elf_section_data (p)->dynindx = 0;
963 }
964 if (do_sec)
965 *section_sym_count = dynsymcount;
966
967 elf_link_hash_traverse (elf_hash_table (info),
968 elf_link_renumber_local_hash_table_dynsyms,
969 &dynsymcount);
970
971 if (elf_hash_table (info)->dynlocal)
972 {
973 struct elf_link_local_dynamic_entry *p;
974 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
975 p->dynindx = ++dynsymcount;
976 }
977 elf_hash_table (info)->local_dynsymcount = dynsymcount;
978
979 elf_link_hash_traverse (elf_hash_table (info),
980 elf_link_renumber_hash_table_dynsyms,
981 &dynsymcount);
982
983 /* There is an unused NULL entry at the head of the table which we
984 must account for in our count even if the table is empty since it
985 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
986 .dynamic section. */
987 dynsymcount++;
988
989 elf_hash_table (info)->dynsymcount = dynsymcount;
990 return dynsymcount;
991 }
992
993 /* Merge st_other field. */
994
995 static void
996 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
997 const Elf_Internal_Sym *isym, asection *sec,
998 bfd_boolean definition, bfd_boolean dynamic)
999 {
1000 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1001
1002 /* If st_other has a processor-specific meaning, specific
1003 code might be needed here. */
1004 if (bed->elf_backend_merge_symbol_attribute)
1005 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
1006 dynamic);
1007
1008 if (!dynamic)
1009 {
1010 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
1011 unsigned hvis = ELF_ST_VISIBILITY (h->other);
1012
1013 /* Keep the most constraining visibility. Leave the remainder
1014 of the st_other field to elf_backend_merge_symbol_attribute. */
1015 if (symvis - 1 < hvis - 1)
1016 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
1017 }
1018 else if (definition
1019 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
1020 && (sec->flags & SEC_READONLY) == 0)
1021 h->protected_def = 1;
1022 }
1023
1024 /* This function is called when we want to merge a new symbol with an
1025 existing symbol. It handles the various cases which arise when we
1026 find a definition in a dynamic object, or when there is already a
1027 definition in a dynamic object. The new symbol is described by
1028 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
1029 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
1030 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
1031 of an old common symbol. We set OVERRIDE if the old symbol is
1032 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
1033 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
1034 to change. By OK to change, we mean that we shouldn't warn if the
1035 type or size does change. */
1036
1037 static bfd_boolean
1038 _bfd_elf_merge_symbol (bfd *abfd,
1039 struct bfd_link_info *info,
1040 const char *name,
1041 Elf_Internal_Sym *sym,
1042 asection **psec,
1043 bfd_vma *pvalue,
1044 struct elf_link_hash_entry **sym_hash,
1045 bfd **poldbfd,
1046 bfd_boolean *pold_weak,
1047 unsigned int *pold_alignment,
1048 bfd_boolean *skip,
1049 bfd_boolean *override,
1050 bfd_boolean *type_change_ok,
1051 bfd_boolean *size_change_ok,
1052 bfd_boolean *matched)
1053 {
1054 asection *sec, *oldsec;
1055 struct elf_link_hash_entry *h;
1056 struct elf_link_hash_entry *hi;
1057 struct elf_link_hash_entry *flip;
1058 int bind;
1059 bfd *oldbfd;
1060 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1061 bfd_boolean newweak, oldweak, newfunc, oldfunc;
1062 const struct elf_backend_data *bed;
1063 char *new_version;
1064 bfd_boolean default_sym = *matched;
1065
1066 *skip = FALSE;
1067 *override = FALSE;
1068
1069 sec = *psec;
1070 bind = ELF_ST_BIND (sym->st_info);
1071
1072 if (! bfd_is_und_section (sec))
1073 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
1074 else
1075 h = ((struct elf_link_hash_entry *)
1076 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1077 if (h == NULL)
1078 return FALSE;
1079 *sym_hash = h;
1080
1081 bed = get_elf_backend_data (abfd);
1082
1083 /* NEW_VERSION is the symbol version of the new symbol. */
1084 if (h->versioned != unversioned)
1085 {
1086 /* Symbol version is unknown or versioned. */
1087 new_version = strrchr (name, ELF_VER_CHR);
1088 if (new_version)
1089 {
1090 if (h->versioned == unknown)
1091 {
1092 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1093 h->versioned = versioned_hidden;
1094 else
1095 h->versioned = versioned;
1096 }
1097 new_version += 1;
1098 if (new_version[0] == '\0')
1099 new_version = NULL;
1100 }
1101 else
1102 h->versioned = unversioned;
1103 }
1104 else
1105 new_version = NULL;
1106
1107 /* For merging, we only care about real symbols. But we need to make
1108 sure that indirect symbol dynamic flags are updated. */
1109 hi = h;
1110 while (h->root.type == bfd_link_hash_indirect
1111 || h->root.type == bfd_link_hash_warning)
1112 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1113
1114 if (!*matched)
1115 {
1116 if (hi == h || h->root.type == bfd_link_hash_new)
1117 *matched = TRUE;
1118 else
1119 {
1120 /* OLD_HIDDEN is true if the existing symbol is only visible
1121 to the symbol with the same symbol version. NEW_HIDDEN is
1122 true if the new symbol is only visible to the symbol with
1123 the same symbol version. */
1124 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1125 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1126 if (!old_hidden && !new_hidden)
1127 /* The new symbol matches the existing symbol if both
1128 aren't hidden. */
1129 *matched = TRUE;
1130 else
1131 {
1132 /* OLD_VERSION is the symbol version of the existing
1133 symbol. */
1134 char *old_version;
1135
1136 if (h->versioned >= versioned)
1137 old_version = strrchr (h->root.root.string,
1138 ELF_VER_CHR) + 1;
1139 else
1140 old_version = NULL;
1141
1142 /* The new symbol matches the existing symbol if they
1143 have the same symbol version. */
1144 *matched = (old_version == new_version
1145 || (old_version != NULL
1146 && new_version != NULL
1147 && strcmp (old_version, new_version) == 0));
1148 }
1149 }
1150 }
1151
1152 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1153 existing symbol. */
1154
1155 oldbfd = NULL;
1156 oldsec = NULL;
1157 switch (h->root.type)
1158 {
1159 default:
1160 break;
1161
1162 case bfd_link_hash_undefined:
1163 case bfd_link_hash_undefweak:
1164 oldbfd = h->root.u.undef.abfd;
1165 break;
1166
1167 case bfd_link_hash_defined:
1168 case bfd_link_hash_defweak:
1169 oldbfd = h->root.u.def.section->owner;
1170 oldsec = h->root.u.def.section;
1171 break;
1172
1173 case bfd_link_hash_common:
1174 oldbfd = h->root.u.c.p->section->owner;
1175 oldsec = h->root.u.c.p->section;
1176 if (pold_alignment)
1177 *pold_alignment = h->root.u.c.p->alignment_power;
1178 break;
1179 }
1180 if (poldbfd && *poldbfd == NULL)
1181 *poldbfd = oldbfd;
1182
1183 /* Differentiate strong and weak symbols. */
1184 newweak = bind == STB_WEAK;
1185 oldweak = (h->root.type == bfd_link_hash_defweak
1186 || h->root.type == bfd_link_hash_undefweak);
1187 if (pold_weak)
1188 *pold_weak = oldweak;
1189
1190 /* We have to check it for every instance since the first few may be
1191 references and not all compilers emit symbol type for undefined
1192 symbols. */
1193 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1194
1195 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1196 respectively, is from a dynamic object. */
1197
1198 newdyn = (abfd->flags & DYNAMIC) != 0;
1199
1200 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1201 syms and defined syms in dynamic libraries respectively.
1202 ref_dynamic on the other hand can be set for a symbol defined in
1203 a dynamic library, and def_dynamic may not be set; When the
1204 definition in a dynamic lib is overridden by a definition in the
1205 executable use of the symbol in the dynamic lib becomes a
1206 reference to the executable symbol. */
1207 if (newdyn)
1208 {
1209 if (bfd_is_und_section (sec))
1210 {
1211 if (bind != STB_WEAK)
1212 {
1213 h->ref_dynamic_nonweak = 1;
1214 hi->ref_dynamic_nonweak = 1;
1215 }
1216 }
1217 else
1218 {
1219 /* Update the existing symbol only if they match. */
1220 if (*matched)
1221 h->dynamic_def = 1;
1222 hi->dynamic_def = 1;
1223 }
1224 }
1225
1226 /* If we just created the symbol, mark it as being an ELF symbol.
1227 Other than that, there is nothing to do--there is no merge issue
1228 with a newly defined symbol--so we just return. */
1229
1230 if (h->root.type == bfd_link_hash_new)
1231 {
1232 h->non_elf = 0;
1233 return TRUE;
1234 }
1235
1236 /* In cases involving weak versioned symbols, we may wind up trying
1237 to merge a symbol with itself. Catch that here, to avoid the
1238 confusion that results if we try to override a symbol with
1239 itself. The additional tests catch cases like
1240 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1241 dynamic object, which we do want to handle here. */
1242 if (abfd == oldbfd
1243 && (newweak || oldweak)
1244 && ((abfd->flags & DYNAMIC) == 0
1245 || !h->def_regular))
1246 return TRUE;
1247
1248 olddyn = FALSE;
1249 if (oldbfd != NULL)
1250 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1251 else if (oldsec != NULL)
1252 {
1253 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1254 indices used by MIPS ELF. */
1255 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1256 }
1257
1258 /* Handle a case where plugin_notice won't be called and thus won't
1259 set the non_ir_ref flags on the first pass over symbols. */
1260 if (oldbfd != NULL
1261 && (oldbfd->flags & BFD_PLUGIN) != (abfd->flags & BFD_PLUGIN)
1262 && newdyn != olddyn)
1263 {
1264 h->root.non_ir_ref_dynamic = TRUE;
1265 hi->root.non_ir_ref_dynamic = TRUE;
1266 }
1267
1268 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1269 respectively, appear to be a definition rather than reference. */
1270
1271 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1272
1273 olddef = (h->root.type != bfd_link_hash_undefined
1274 && h->root.type != bfd_link_hash_undefweak
1275 && h->root.type != bfd_link_hash_common);
1276
1277 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1278 respectively, appear to be a function. */
1279
1280 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1281 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1282
1283 oldfunc = (h->type != STT_NOTYPE
1284 && bed->is_function_type (h->type));
1285
1286 if (!(newfunc && oldfunc)
1287 && ELF_ST_TYPE (sym->st_info) != h->type
1288 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1289 && h->type != STT_NOTYPE
1290 && (newdef || bfd_is_com_section (sec))
1291 && (olddef || h->root.type == bfd_link_hash_common))
1292 {
1293 /* If creating a default indirect symbol ("foo" or "foo@") from
1294 a dynamic versioned definition ("foo@@") skip doing so if
1295 there is an existing regular definition with a different
1296 type. We don't want, for example, a "time" variable in the
1297 executable overriding a "time" function in a shared library. */
1298 if (newdyn
1299 && !olddyn)
1300 {
1301 *skip = TRUE;
1302 return TRUE;
1303 }
1304
1305 /* When adding a symbol from a regular object file after we have
1306 created indirect symbols, undo the indirection and any
1307 dynamic state. */
1308 if (hi != h
1309 && !newdyn
1310 && olddyn)
1311 {
1312 h = hi;
1313 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1314 h->forced_local = 0;
1315 h->ref_dynamic = 0;
1316 h->def_dynamic = 0;
1317 h->dynamic_def = 0;
1318 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1319 {
1320 h->root.type = bfd_link_hash_undefined;
1321 h->root.u.undef.abfd = abfd;
1322 }
1323 else
1324 {
1325 h->root.type = bfd_link_hash_new;
1326 h->root.u.undef.abfd = NULL;
1327 }
1328 return TRUE;
1329 }
1330 }
1331
1332 /* Check TLS symbols. We don't check undefined symbols introduced
1333 by "ld -u" which have no type (and oldbfd NULL), and we don't
1334 check symbols from plugins because they also have no type. */
1335 if (oldbfd != NULL
1336 && (oldbfd->flags & BFD_PLUGIN) == 0
1337 && (abfd->flags & BFD_PLUGIN) == 0
1338 && ELF_ST_TYPE (sym->st_info) != h->type
1339 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1340 {
1341 bfd *ntbfd, *tbfd;
1342 bfd_boolean ntdef, tdef;
1343 asection *ntsec, *tsec;
1344
1345 if (h->type == STT_TLS)
1346 {
1347 ntbfd = abfd;
1348 ntsec = sec;
1349 ntdef = newdef;
1350 tbfd = oldbfd;
1351 tsec = oldsec;
1352 tdef = olddef;
1353 }
1354 else
1355 {
1356 ntbfd = oldbfd;
1357 ntsec = oldsec;
1358 ntdef = olddef;
1359 tbfd = abfd;
1360 tsec = sec;
1361 tdef = newdef;
1362 }
1363
1364 if (tdef && ntdef)
1365 _bfd_error_handler
1366 /* xgettext:c-format */
1367 (_("%s: TLS definition in %pB section %pA "
1368 "mismatches non-TLS definition in %pB section %pA"),
1369 h->root.root.string, tbfd, tsec, ntbfd, ntsec);
1370 else if (!tdef && !ntdef)
1371 _bfd_error_handler
1372 /* xgettext:c-format */
1373 (_("%s: TLS reference in %pB "
1374 "mismatches non-TLS reference in %pB"),
1375 h->root.root.string, tbfd, ntbfd);
1376 else if (tdef)
1377 _bfd_error_handler
1378 /* xgettext:c-format */
1379 (_("%s: TLS definition in %pB section %pA "
1380 "mismatches non-TLS reference in %pB"),
1381 h->root.root.string, tbfd, tsec, ntbfd);
1382 else
1383 _bfd_error_handler
1384 /* xgettext:c-format */
1385 (_("%s: TLS reference in %pB "
1386 "mismatches non-TLS definition in %pB section %pA"),
1387 h->root.root.string, tbfd, ntbfd, ntsec);
1388
1389 bfd_set_error (bfd_error_bad_value);
1390 return FALSE;
1391 }
1392
1393 /* If the old symbol has non-default visibility, we ignore the new
1394 definition from a dynamic object. */
1395 if (newdyn
1396 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1397 && !bfd_is_und_section (sec))
1398 {
1399 *skip = TRUE;
1400 /* Make sure this symbol is dynamic. */
1401 h->ref_dynamic = 1;
1402 hi->ref_dynamic = 1;
1403 /* A protected symbol has external availability. Make sure it is
1404 recorded as dynamic.
1405
1406 FIXME: Should we check type and size for protected symbol? */
1407 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1408 return bfd_elf_link_record_dynamic_symbol (info, h);
1409 else
1410 return TRUE;
1411 }
1412 else if (!newdyn
1413 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1414 && h->def_dynamic)
1415 {
1416 /* If the new symbol with non-default visibility comes from a
1417 relocatable file and the old definition comes from a dynamic
1418 object, we remove the old definition. */
1419 if (hi->root.type == bfd_link_hash_indirect)
1420 {
1421 /* Handle the case where the old dynamic definition is
1422 default versioned. We need to copy the symbol info from
1423 the symbol with default version to the normal one if it
1424 was referenced before. */
1425 if (h->ref_regular)
1426 {
1427 hi->root.type = h->root.type;
1428 h->root.type = bfd_link_hash_indirect;
1429 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1430
1431 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1432 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1433 {
1434 /* If the new symbol is hidden or internal, completely undo
1435 any dynamic link state. */
1436 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1437 h->forced_local = 0;
1438 h->ref_dynamic = 0;
1439 }
1440 else
1441 h->ref_dynamic = 1;
1442
1443 h->def_dynamic = 0;
1444 /* FIXME: Should we check type and size for protected symbol? */
1445 h->size = 0;
1446 h->type = 0;
1447
1448 h = hi;
1449 }
1450 else
1451 h = hi;
1452 }
1453
1454 /* If the old symbol was undefined before, then it will still be
1455 on the undefs list. If the new symbol is undefined or
1456 common, we can't make it bfd_link_hash_new here, because new
1457 undefined or common symbols will be added to the undefs list
1458 by _bfd_generic_link_add_one_symbol. Symbols may not be
1459 added twice to the undefs list. Also, if the new symbol is
1460 undefweak then we don't want to lose the strong undef. */
1461 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1462 {
1463 h->root.type = bfd_link_hash_undefined;
1464 h->root.u.undef.abfd = abfd;
1465 }
1466 else
1467 {
1468 h->root.type = bfd_link_hash_new;
1469 h->root.u.undef.abfd = NULL;
1470 }
1471
1472 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1473 {
1474 /* If the new symbol is hidden or internal, completely undo
1475 any dynamic link state. */
1476 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1477 h->forced_local = 0;
1478 h->ref_dynamic = 0;
1479 }
1480 else
1481 h->ref_dynamic = 1;
1482 h->def_dynamic = 0;
1483 /* FIXME: Should we check type and size for protected symbol? */
1484 h->size = 0;
1485 h->type = 0;
1486 return TRUE;
1487 }
1488
1489 /* If a new weak symbol definition comes from a regular file and the
1490 old symbol comes from a dynamic library, we treat the new one as
1491 strong. Similarly, an old weak symbol definition from a regular
1492 file is treated as strong when the new symbol comes from a dynamic
1493 library. Further, an old weak symbol from a dynamic library is
1494 treated as strong if the new symbol is from a dynamic library.
1495 This reflects the way glibc's ld.so works.
1496
1497 Also allow a weak symbol to override a linker script symbol
1498 defined by an early pass over the script. This is done so the
1499 linker knows the symbol is defined in an object file, for the
1500 DEFINED script function.
1501
1502 Do this before setting *type_change_ok or *size_change_ok so that
1503 we warn properly when dynamic library symbols are overridden. */
1504
1505 if (newdef && !newdyn && (olddyn || h->root.ldscript_def))
1506 newweak = FALSE;
1507 if (olddef && newdyn)
1508 oldweak = FALSE;
1509
1510 /* Allow changes between different types of function symbol. */
1511 if (newfunc && oldfunc)
1512 *type_change_ok = TRUE;
1513
1514 /* It's OK to change the type if either the existing symbol or the
1515 new symbol is weak. A type change is also OK if the old symbol
1516 is undefined and the new symbol is defined. */
1517
1518 if (oldweak
1519 || newweak
1520 || (newdef
1521 && h->root.type == bfd_link_hash_undefined))
1522 *type_change_ok = TRUE;
1523
1524 /* It's OK to change the size if either the existing symbol or the
1525 new symbol is weak, or if the old symbol is undefined. */
1526
1527 if (*type_change_ok
1528 || h->root.type == bfd_link_hash_undefined)
1529 *size_change_ok = TRUE;
1530
1531 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1532 symbol, respectively, appears to be a common symbol in a dynamic
1533 object. If a symbol appears in an uninitialized section, and is
1534 not weak, and is not a function, then it may be a common symbol
1535 which was resolved when the dynamic object was created. We want
1536 to treat such symbols specially, because they raise special
1537 considerations when setting the symbol size: if the symbol
1538 appears as a common symbol in a regular object, and the size in
1539 the regular object is larger, we must make sure that we use the
1540 larger size. This problematic case can always be avoided in C,
1541 but it must be handled correctly when using Fortran shared
1542 libraries.
1543
1544 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1545 likewise for OLDDYNCOMMON and OLDDEF.
1546
1547 Note that this test is just a heuristic, and that it is quite
1548 possible to have an uninitialized symbol in a shared object which
1549 is really a definition, rather than a common symbol. This could
1550 lead to some minor confusion when the symbol really is a common
1551 symbol in some regular object. However, I think it will be
1552 harmless. */
1553
1554 if (newdyn
1555 && newdef
1556 && !newweak
1557 && (sec->flags & SEC_ALLOC) != 0
1558 && (sec->flags & SEC_LOAD) == 0
1559 && sym->st_size > 0
1560 && !newfunc)
1561 newdyncommon = TRUE;
1562 else
1563 newdyncommon = FALSE;
1564
1565 if (olddyn
1566 && olddef
1567 && h->root.type == bfd_link_hash_defined
1568 && h->def_dynamic
1569 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1570 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1571 && h->size > 0
1572 && !oldfunc)
1573 olddyncommon = TRUE;
1574 else
1575 olddyncommon = FALSE;
1576
1577 /* We now know everything about the old and new symbols. We ask the
1578 backend to check if we can merge them. */
1579 if (bed->merge_symbol != NULL)
1580 {
1581 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1582 return FALSE;
1583 sec = *psec;
1584 }
1585
1586 /* There are multiple definitions of a normal symbol. Skip the
1587 default symbol as well as definition from an IR object. */
1588 if (olddef && !olddyn && !oldweak && newdef && !newdyn && !newweak
1589 && !default_sym && h->def_regular
1590 && !(oldbfd != NULL
1591 && (oldbfd->flags & BFD_PLUGIN) != 0
1592 && (abfd->flags & BFD_PLUGIN) == 0))
1593 {
1594 /* Handle a multiple definition. */
1595 (*info->callbacks->multiple_definition) (info, &h->root,
1596 abfd, sec, *pvalue);
1597 *skip = TRUE;
1598 return TRUE;
1599 }
1600
1601 /* If both the old and the new symbols look like common symbols in a
1602 dynamic object, set the size of the symbol to the larger of the
1603 two. */
1604
1605 if (olddyncommon
1606 && newdyncommon
1607 && sym->st_size != h->size)
1608 {
1609 /* Since we think we have two common symbols, issue a multiple
1610 common warning if desired. Note that we only warn if the
1611 size is different. If the size is the same, we simply let
1612 the old symbol override the new one as normally happens with
1613 symbols defined in dynamic objects. */
1614
1615 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1616 bfd_link_hash_common, sym->st_size);
1617 if (sym->st_size > h->size)
1618 h->size = sym->st_size;
1619
1620 *size_change_ok = TRUE;
1621 }
1622
1623 /* If we are looking at a dynamic object, and we have found a
1624 definition, we need to see if the symbol was already defined by
1625 some other object. If so, we want to use the existing
1626 definition, and we do not want to report a multiple symbol
1627 definition error; we do this by clobbering *PSEC to be
1628 bfd_und_section_ptr.
1629
1630 We treat a common symbol as a definition if the symbol in the
1631 shared library is a function, since common symbols always
1632 represent variables; this can cause confusion in principle, but
1633 any such confusion would seem to indicate an erroneous program or
1634 shared library. We also permit a common symbol in a regular
1635 object to override a weak symbol in a shared object. */
1636
1637 if (newdyn
1638 && newdef
1639 && (olddef
1640 || (h->root.type == bfd_link_hash_common
1641 && (newweak || newfunc))))
1642 {
1643 *override = TRUE;
1644 newdef = FALSE;
1645 newdyncommon = FALSE;
1646
1647 *psec = sec = bfd_und_section_ptr;
1648 *size_change_ok = TRUE;
1649
1650 /* If we get here when the old symbol is a common symbol, then
1651 we are explicitly letting it override a weak symbol or
1652 function in a dynamic object, and we don't want to warn about
1653 a type change. If the old symbol is a defined symbol, a type
1654 change warning may still be appropriate. */
1655
1656 if (h->root.type == bfd_link_hash_common)
1657 *type_change_ok = TRUE;
1658 }
1659
1660 /* Handle the special case of an old common symbol merging with a
1661 new symbol which looks like a common symbol in a shared object.
1662 We change *PSEC and *PVALUE to make the new symbol look like a
1663 common symbol, and let _bfd_generic_link_add_one_symbol do the
1664 right thing. */
1665
1666 if (newdyncommon
1667 && h->root.type == bfd_link_hash_common)
1668 {
1669 *override = TRUE;
1670 newdef = FALSE;
1671 newdyncommon = FALSE;
1672 *pvalue = sym->st_size;
1673 *psec = sec = bed->common_section (oldsec);
1674 *size_change_ok = TRUE;
1675 }
1676
1677 /* Skip weak definitions of symbols that are already defined. */
1678 if (newdef && olddef && newweak)
1679 {
1680 /* Don't skip new non-IR weak syms. */
1681 if (!(oldbfd != NULL
1682 && (oldbfd->flags & BFD_PLUGIN) != 0
1683 && (abfd->flags & BFD_PLUGIN) == 0))
1684 {
1685 newdef = FALSE;
1686 *skip = TRUE;
1687 }
1688
1689 /* Merge st_other. If the symbol already has a dynamic index,
1690 but visibility says it should not be visible, turn it into a
1691 local symbol. */
1692 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1693 if (h->dynindx != -1)
1694 switch (ELF_ST_VISIBILITY (h->other))
1695 {
1696 case STV_INTERNAL:
1697 case STV_HIDDEN:
1698 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1699 break;
1700 }
1701 }
1702
1703 /* If the old symbol is from a dynamic object, and the new symbol is
1704 a definition which is not from a dynamic object, then the new
1705 symbol overrides the old symbol. Symbols from regular files
1706 always take precedence over symbols from dynamic objects, even if
1707 they are defined after the dynamic object in the link.
1708
1709 As above, we again permit a common symbol in a regular object to
1710 override a definition in a shared object if the shared object
1711 symbol is a function or is weak. */
1712
1713 flip = NULL;
1714 if (!newdyn
1715 && (newdef
1716 || (bfd_is_com_section (sec)
1717 && (oldweak || oldfunc)))
1718 && olddyn
1719 && olddef
1720 && h->def_dynamic)
1721 {
1722 /* Change the hash table entry to undefined, and let
1723 _bfd_generic_link_add_one_symbol do the right thing with the
1724 new definition. */
1725
1726 h->root.type = bfd_link_hash_undefined;
1727 h->root.u.undef.abfd = h->root.u.def.section->owner;
1728 *size_change_ok = TRUE;
1729
1730 olddef = FALSE;
1731 olddyncommon = FALSE;
1732
1733 /* We again permit a type change when a common symbol may be
1734 overriding a function. */
1735
1736 if (bfd_is_com_section (sec))
1737 {
1738 if (oldfunc)
1739 {
1740 /* If a common symbol overrides a function, make sure
1741 that it isn't defined dynamically nor has type
1742 function. */
1743 h->def_dynamic = 0;
1744 h->type = STT_NOTYPE;
1745 }
1746 *type_change_ok = TRUE;
1747 }
1748
1749 if (hi->root.type == bfd_link_hash_indirect)
1750 flip = hi;
1751 else
1752 /* This union may have been set to be non-NULL when this symbol
1753 was seen in a dynamic object. We must force the union to be
1754 NULL, so that it is correct for a regular symbol. */
1755 h->verinfo.vertree = NULL;
1756 }
1757
1758 /* Handle the special case of a new common symbol merging with an
1759 old symbol that looks like it might be a common symbol defined in
1760 a shared object. Note that we have already handled the case in
1761 which a new common symbol should simply override the definition
1762 in the shared library. */
1763
1764 if (! newdyn
1765 && bfd_is_com_section (sec)
1766 && olddyncommon)
1767 {
1768 /* It would be best if we could set the hash table entry to a
1769 common symbol, but we don't know what to use for the section
1770 or the alignment. */
1771 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1772 bfd_link_hash_common, sym->st_size);
1773
1774 /* If the presumed common symbol in the dynamic object is
1775 larger, pretend that the new symbol has its size. */
1776
1777 if (h->size > *pvalue)
1778 *pvalue = h->size;
1779
1780 /* We need to remember the alignment required by the symbol
1781 in the dynamic object. */
1782 BFD_ASSERT (pold_alignment);
1783 *pold_alignment = h->root.u.def.section->alignment_power;
1784
1785 olddef = FALSE;
1786 olddyncommon = FALSE;
1787
1788 h->root.type = bfd_link_hash_undefined;
1789 h->root.u.undef.abfd = h->root.u.def.section->owner;
1790
1791 *size_change_ok = TRUE;
1792 *type_change_ok = TRUE;
1793
1794 if (hi->root.type == bfd_link_hash_indirect)
1795 flip = hi;
1796 else
1797 h->verinfo.vertree = NULL;
1798 }
1799
1800 if (flip != NULL)
1801 {
1802 /* Handle the case where we had a versioned symbol in a dynamic
1803 library and now find a definition in a normal object. In this
1804 case, we make the versioned symbol point to the normal one. */
1805 flip->root.type = h->root.type;
1806 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1807 h->root.type = bfd_link_hash_indirect;
1808 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1809 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1810 if (h->def_dynamic)
1811 {
1812 h->def_dynamic = 0;
1813 flip->ref_dynamic = 1;
1814 }
1815 }
1816
1817 return TRUE;
1818 }
1819
1820 /* This function is called to create an indirect symbol from the
1821 default for the symbol with the default version if needed. The
1822 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1823 set DYNSYM if the new indirect symbol is dynamic. */
1824
1825 static bfd_boolean
1826 _bfd_elf_add_default_symbol (bfd *abfd,
1827 struct bfd_link_info *info,
1828 struct elf_link_hash_entry *h,
1829 const char *name,
1830 Elf_Internal_Sym *sym,
1831 asection *sec,
1832 bfd_vma value,
1833 bfd **poldbfd,
1834 bfd_boolean *dynsym)
1835 {
1836 bfd_boolean type_change_ok;
1837 bfd_boolean size_change_ok;
1838 bfd_boolean skip;
1839 char *shortname;
1840 struct elf_link_hash_entry *hi;
1841 struct bfd_link_hash_entry *bh;
1842 const struct elf_backend_data *bed;
1843 bfd_boolean collect;
1844 bfd_boolean dynamic;
1845 bfd_boolean override;
1846 char *p;
1847 size_t len, shortlen;
1848 asection *tmp_sec;
1849 bfd_boolean matched;
1850
1851 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1852 return TRUE;
1853
1854 /* If this symbol has a version, and it is the default version, we
1855 create an indirect symbol from the default name to the fully
1856 decorated name. This will cause external references which do not
1857 specify a version to be bound to this version of the symbol. */
1858 p = strchr (name, ELF_VER_CHR);
1859 if (h->versioned == unknown)
1860 {
1861 if (p == NULL)
1862 {
1863 h->versioned = unversioned;
1864 return TRUE;
1865 }
1866 else
1867 {
1868 if (p[1] != ELF_VER_CHR)
1869 {
1870 h->versioned = versioned_hidden;
1871 return TRUE;
1872 }
1873 else
1874 h->versioned = versioned;
1875 }
1876 }
1877 else
1878 {
1879 /* PR ld/19073: We may see an unversioned definition after the
1880 default version. */
1881 if (p == NULL)
1882 return TRUE;
1883 }
1884
1885 bed = get_elf_backend_data (abfd);
1886 collect = bed->collect;
1887 dynamic = (abfd->flags & DYNAMIC) != 0;
1888
1889 shortlen = p - name;
1890 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1891 if (shortname == NULL)
1892 return FALSE;
1893 memcpy (shortname, name, shortlen);
1894 shortname[shortlen] = '\0';
1895
1896 /* We are going to create a new symbol. Merge it with any existing
1897 symbol with this name. For the purposes of the merge, act as
1898 though we were defining the symbol we just defined, although we
1899 actually going to define an indirect symbol. */
1900 type_change_ok = FALSE;
1901 size_change_ok = FALSE;
1902 matched = TRUE;
1903 tmp_sec = sec;
1904 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1905 &hi, poldbfd, NULL, NULL, &skip, &override,
1906 &type_change_ok, &size_change_ok, &matched))
1907 return FALSE;
1908
1909 if (skip)
1910 goto nondefault;
1911
1912 if (hi->def_regular)
1913 {
1914 /* If the undecorated symbol will have a version added by a
1915 script different to H, then don't indirect to/from the
1916 undecorated symbol. This isn't ideal because we may not yet
1917 have seen symbol versions, if given by a script on the
1918 command line rather than via --version-script. */
1919 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1920 {
1921 bfd_boolean hide;
1922
1923 hi->verinfo.vertree
1924 = bfd_find_version_for_sym (info->version_info,
1925 hi->root.root.string, &hide);
1926 if (hi->verinfo.vertree != NULL && hide)
1927 {
1928 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1929 goto nondefault;
1930 }
1931 }
1932 if (hi->verinfo.vertree != NULL
1933 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1934 goto nondefault;
1935 }
1936
1937 if (! override)
1938 {
1939 /* Add the default symbol if not performing a relocatable link. */
1940 if (! bfd_link_relocatable (info))
1941 {
1942 bh = &hi->root;
1943 if (! (_bfd_generic_link_add_one_symbol
1944 (info, abfd, shortname, BSF_INDIRECT,
1945 bfd_ind_section_ptr,
1946 0, name, FALSE, collect, &bh)))
1947 return FALSE;
1948 hi = (struct elf_link_hash_entry *) bh;
1949 }
1950 }
1951 else
1952 {
1953 /* In this case the symbol named SHORTNAME is overriding the
1954 indirect symbol we want to add. We were planning on making
1955 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1956 is the name without a version. NAME is the fully versioned
1957 name, and it is the default version.
1958
1959 Overriding means that we already saw a definition for the
1960 symbol SHORTNAME in a regular object, and it is overriding
1961 the symbol defined in the dynamic object.
1962
1963 When this happens, we actually want to change NAME, the
1964 symbol we just added, to refer to SHORTNAME. This will cause
1965 references to NAME in the shared object to become references
1966 to SHORTNAME in the regular object. This is what we expect
1967 when we override a function in a shared object: that the
1968 references in the shared object will be mapped to the
1969 definition in the regular object. */
1970
1971 while (hi->root.type == bfd_link_hash_indirect
1972 || hi->root.type == bfd_link_hash_warning)
1973 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1974
1975 h->root.type = bfd_link_hash_indirect;
1976 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1977 if (h->def_dynamic)
1978 {
1979 h->def_dynamic = 0;
1980 hi->ref_dynamic = 1;
1981 if (hi->ref_regular
1982 || hi->def_regular)
1983 {
1984 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1985 return FALSE;
1986 }
1987 }
1988
1989 /* Now set HI to H, so that the following code will set the
1990 other fields correctly. */
1991 hi = h;
1992 }
1993
1994 /* Check if HI is a warning symbol. */
1995 if (hi->root.type == bfd_link_hash_warning)
1996 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1997
1998 /* If there is a duplicate definition somewhere, then HI may not
1999 point to an indirect symbol. We will have reported an error to
2000 the user in that case. */
2001
2002 if (hi->root.type == bfd_link_hash_indirect)
2003 {
2004 struct elf_link_hash_entry *ht;
2005
2006 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
2007 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
2008
2009 /* A reference to the SHORTNAME symbol from a dynamic library
2010 will be satisfied by the versioned symbol at runtime. In
2011 effect, we have a reference to the versioned symbol. */
2012 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2013 hi->dynamic_def |= ht->dynamic_def;
2014
2015 /* See if the new flags lead us to realize that the symbol must
2016 be dynamic. */
2017 if (! *dynsym)
2018 {
2019 if (! dynamic)
2020 {
2021 if (! bfd_link_executable (info)
2022 || hi->def_dynamic
2023 || hi->ref_dynamic)
2024 *dynsym = TRUE;
2025 }
2026 else
2027 {
2028 if (hi->ref_regular)
2029 *dynsym = TRUE;
2030 }
2031 }
2032 }
2033
2034 /* We also need to define an indirection from the nondefault version
2035 of the symbol. */
2036
2037 nondefault:
2038 len = strlen (name);
2039 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
2040 if (shortname == NULL)
2041 return FALSE;
2042 memcpy (shortname, name, shortlen);
2043 memcpy (shortname + shortlen, p + 1, len - shortlen);
2044
2045 /* Once again, merge with any existing symbol. */
2046 type_change_ok = FALSE;
2047 size_change_ok = FALSE;
2048 tmp_sec = sec;
2049 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
2050 &hi, poldbfd, NULL, NULL, &skip, &override,
2051 &type_change_ok, &size_change_ok, &matched))
2052 return FALSE;
2053
2054 if (skip)
2055 return TRUE;
2056
2057 if (override)
2058 {
2059 /* Here SHORTNAME is a versioned name, so we don't expect to see
2060 the type of override we do in the case above unless it is
2061 overridden by a versioned definition. */
2062 if (hi->root.type != bfd_link_hash_defined
2063 && hi->root.type != bfd_link_hash_defweak)
2064 _bfd_error_handler
2065 /* xgettext:c-format */
2066 (_("%pB: unexpected redefinition of indirect versioned symbol `%s'"),
2067 abfd, shortname);
2068 }
2069 else
2070 {
2071 bh = &hi->root;
2072 if (! (_bfd_generic_link_add_one_symbol
2073 (info, abfd, shortname, BSF_INDIRECT,
2074 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
2075 return FALSE;
2076 hi = (struct elf_link_hash_entry *) bh;
2077
2078 /* If there is a duplicate definition somewhere, then HI may not
2079 point to an indirect symbol. We will have reported an error
2080 to the user in that case. */
2081
2082 if (hi->root.type == bfd_link_hash_indirect)
2083 {
2084 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
2085 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2086 hi->dynamic_def |= h->dynamic_def;
2087
2088 /* See if the new flags lead us to realize that the symbol
2089 must be dynamic. */
2090 if (! *dynsym)
2091 {
2092 if (! dynamic)
2093 {
2094 if (! bfd_link_executable (info)
2095 || hi->ref_dynamic)
2096 *dynsym = TRUE;
2097 }
2098 else
2099 {
2100 if (hi->ref_regular)
2101 *dynsym = TRUE;
2102 }
2103 }
2104 }
2105 }
2106
2107 return TRUE;
2108 }
2109 \f
2110 /* This routine is used to export all defined symbols into the dynamic
2111 symbol table. It is called via elf_link_hash_traverse. */
2112
2113 static bfd_boolean
2114 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2115 {
2116 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2117
2118 /* Ignore indirect symbols. These are added by the versioning code. */
2119 if (h->root.type == bfd_link_hash_indirect)
2120 return TRUE;
2121
2122 /* Ignore this if we won't export it. */
2123 if (!eif->info->export_dynamic && !h->dynamic)
2124 return TRUE;
2125
2126 if (h->dynindx == -1
2127 && (h->def_regular || h->ref_regular)
2128 && ! bfd_hide_sym_by_version (eif->info->version_info,
2129 h->root.root.string))
2130 {
2131 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2132 {
2133 eif->failed = TRUE;
2134 return FALSE;
2135 }
2136 }
2137
2138 return TRUE;
2139 }
2140 \f
2141 /* Look through the symbols which are defined in other shared
2142 libraries and referenced here. Update the list of version
2143 dependencies. This will be put into the .gnu.version_r section.
2144 This function is called via elf_link_hash_traverse. */
2145
2146 static bfd_boolean
2147 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2148 void *data)
2149 {
2150 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2151 Elf_Internal_Verneed *t;
2152 Elf_Internal_Vernaux *a;
2153 bfd_size_type amt;
2154
2155 /* We only care about symbols defined in shared objects with version
2156 information. */
2157 if (!h->def_dynamic
2158 || h->def_regular
2159 || h->dynindx == -1
2160 || h->verinfo.verdef == NULL
2161 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2162 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2163 return TRUE;
2164
2165 /* See if we already know about this version. */
2166 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2167 t != NULL;
2168 t = t->vn_nextref)
2169 {
2170 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2171 continue;
2172
2173 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2174 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2175 return TRUE;
2176
2177 break;
2178 }
2179
2180 /* This is a new version. Add it to tree we are building. */
2181
2182 if (t == NULL)
2183 {
2184 amt = sizeof *t;
2185 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2186 if (t == NULL)
2187 {
2188 rinfo->failed = TRUE;
2189 return FALSE;
2190 }
2191
2192 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2193 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2194 elf_tdata (rinfo->info->output_bfd)->verref = t;
2195 }
2196
2197 amt = sizeof *a;
2198 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2199 if (a == NULL)
2200 {
2201 rinfo->failed = TRUE;
2202 return FALSE;
2203 }
2204
2205 /* Note that we are copying a string pointer here, and testing it
2206 above. If bfd_elf_string_from_elf_section is ever changed to
2207 discard the string data when low in memory, this will have to be
2208 fixed. */
2209 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2210
2211 a->vna_flags = h->verinfo.verdef->vd_flags;
2212 a->vna_nextptr = t->vn_auxptr;
2213
2214 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2215 ++rinfo->vers;
2216
2217 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2218
2219 t->vn_auxptr = a;
2220
2221 return TRUE;
2222 }
2223
2224 /* Figure out appropriate versions for all the symbols. We may not
2225 have the version number script until we have read all of the input
2226 files, so until that point we don't know which symbols should be
2227 local. This function is called via elf_link_hash_traverse. */
2228
2229 static bfd_boolean
2230 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2231 {
2232 struct elf_info_failed *sinfo;
2233 struct bfd_link_info *info;
2234 const struct elf_backend_data *bed;
2235 struct elf_info_failed eif;
2236 char *p;
2237
2238 sinfo = (struct elf_info_failed *) data;
2239 info = sinfo->info;
2240
2241 /* Fix the symbol flags. */
2242 eif.failed = FALSE;
2243 eif.info = info;
2244 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2245 {
2246 if (eif.failed)
2247 sinfo->failed = TRUE;
2248 return FALSE;
2249 }
2250
2251 /* We only need version numbers for symbols defined in regular
2252 objects. */
2253 if (!h->def_regular)
2254 return TRUE;
2255
2256 bed = get_elf_backend_data (info->output_bfd);
2257 p = strchr (h->root.root.string, ELF_VER_CHR);
2258 if (p != NULL && h->verinfo.vertree == NULL)
2259 {
2260 struct bfd_elf_version_tree *t;
2261
2262 ++p;
2263 if (*p == ELF_VER_CHR)
2264 ++p;
2265
2266 /* If there is no version string, we can just return out. */
2267 if (*p == '\0')
2268 return TRUE;
2269
2270 /* Look for the version. If we find it, it is no longer weak. */
2271 for (t = sinfo->info->version_info; t != NULL; t = t->next)
2272 {
2273 if (strcmp (t->name, p) == 0)
2274 {
2275 size_t len;
2276 char *alc;
2277 struct bfd_elf_version_expr *d;
2278
2279 len = p - h->root.root.string;
2280 alc = (char *) bfd_malloc (len);
2281 if (alc == NULL)
2282 {
2283 sinfo->failed = TRUE;
2284 return FALSE;
2285 }
2286 memcpy (alc, h->root.root.string, len - 1);
2287 alc[len - 1] = '\0';
2288 if (alc[len - 2] == ELF_VER_CHR)
2289 alc[len - 2] = '\0';
2290
2291 h->verinfo.vertree = t;
2292 t->used = TRUE;
2293 d = NULL;
2294
2295 if (t->globals.list != NULL)
2296 d = (*t->match) (&t->globals, NULL, alc);
2297
2298 /* See if there is anything to force this symbol to
2299 local scope. */
2300 if (d == NULL && t->locals.list != NULL)
2301 {
2302 d = (*t->match) (&t->locals, NULL, alc);
2303 if (d != NULL
2304 && h->dynindx != -1
2305 && ! info->export_dynamic)
2306 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2307 }
2308
2309 free (alc);
2310 break;
2311 }
2312 }
2313
2314 /* If we are building an application, we need to create a
2315 version node for this version. */
2316 if (t == NULL && bfd_link_executable (info))
2317 {
2318 struct bfd_elf_version_tree **pp;
2319 int version_index;
2320
2321 /* If we aren't going to export this symbol, we don't need
2322 to worry about it. */
2323 if (h->dynindx == -1)
2324 return TRUE;
2325
2326 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2327 sizeof *t);
2328 if (t == NULL)
2329 {
2330 sinfo->failed = TRUE;
2331 return FALSE;
2332 }
2333
2334 t->name = p;
2335 t->name_indx = (unsigned int) -1;
2336 t->used = TRUE;
2337
2338 version_index = 1;
2339 /* Don't count anonymous version tag. */
2340 if (sinfo->info->version_info != NULL
2341 && sinfo->info->version_info->vernum == 0)
2342 version_index = 0;
2343 for (pp = &sinfo->info->version_info;
2344 *pp != NULL;
2345 pp = &(*pp)->next)
2346 ++version_index;
2347 t->vernum = version_index;
2348
2349 *pp = t;
2350
2351 h->verinfo.vertree = t;
2352 }
2353 else if (t == NULL)
2354 {
2355 /* We could not find the version for a symbol when
2356 generating a shared archive. Return an error. */
2357 _bfd_error_handler
2358 /* xgettext:c-format */
2359 (_("%pB: version node not found for symbol %s"),
2360 info->output_bfd, h->root.root.string);
2361 bfd_set_error (bfd_error_bad_value);
2362 sinfo->failed = TRUE;
2363 return FALSE;
2364 }
2365 }
2366
2367 /* If we don't have a version for this symbol, see if we can find
2368 something. */
2369 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2370 {
2371 bfd_boolean hide;
2372
2373 h->verinfo.vertree
2374 = bfd_find_version_for_sym (sinfo->info->version_info,
2375 h->root.root.string, &hide);
2376 if (h->verinfo.vertree != NULL && hide)
2377 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2378 }
2379
2380 return TRUE;
2381 }
2382 \f
2383 /* Read and swap the relocs from the section indicated by SHDR. This
2384 may be either a REL or a RELA section. The relocations are
2385 translated into RELA relocations and stored in INTERNAL_RELOCS,
2386 which should have already been allocated to contain enough space.
2387 The EXTERNAL_RELOCS are a buffer where the external form of the
2388 relocations should be stored.
2389
2390 Returns FALSE if something goes wrong. */
2391
2392 static bfd_boolean
2393 elf_link_read_relocs_from_section (bfd *abfd,
2394 asection *sec,
2395 Elf_Internal_Shdr *shdr,
2396 void *external_relocs,
2397 Elf_Internal_Rela *internal_relocs)
2398 {
2399 const struct elf_backend_data *bed;
2400 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2401 const bfd_byte *erela;
2402 const bfd_byte *erelaend;
2403 Elf_Internal_Rela *irela;
2404 Elf_Internal_Shdr *symtab_hdr;
2405 size_t nsyms;
2406
2407 /* Position ourselves at the start of the section. */
2408 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2409 return FALSE;
2410
2411 /* Read the relocations. */
2412 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2413 return FALSE;
2414
2415 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2416 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2417
2418 bed = get_elf_backend_data (abfd);
2419
2420 /* Convert the external relocations to the internal format. */
2421 if (shdr->sh_entsize == bed->s->sizeof_rel)
2422 swap_in = bed->s->swap_reloc_in;
2423 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2424 swap_in = bed->s->swap_reloca_in;
2425 else
2426 {
2427 bfd_set_error (bfd_error_wrong_format);
2428 return FALSE;
2429 }
2430
2431 erela = (const bfd_byte *) external_relocs;
2432 erelaend = erela + shdr->sh_size;
2433 irela = internal_relocs;
2434 while (erela < erelaend)
2435 {
2436 bfd_vma r_symndx;
2437
2438 (*swap_in) (abfd, erela, irela);
2439 r_symndx = ELF32_R_SYM (irela->r_info);
2440 if (bed->s->arch_size == 64)
2441 r_symndx >>= 24;
2442 if (nsyms > 0)
2443 {
2444 if ((size_t) r_symndx >= nsyms)
2445 {
2446 _bfd_error_handler
2447 /* xgettext:c-format */
2448 (_("%pB: bad reloc symbol index (%#" PRIx64 " >= %#lx)"
2449 " for offset %#" PRIx64 " in section `%pA'"),
2450 abfd, (uint64_t) r_symndx, (unsigned long) nsyms,
2451 (uint64_t) irela->r_offset, sec);
2452 bfd_set_error (bfd_error_bad_value);
2453 return FALSE;
2454 }
2455 }
2456 else if (r_symndx != STN_UNDEF)
2457 {
2458 _bfd_error_handler
2459 /* xgettext:c-format */
2460 (_("%pB: non-zero symbol index (%#" PRIx64 ")"
2461 " for offset %#" PRIx64 " in section `%pA'"
2462 " when the object file has no symbol table"),
2463 abfd, (uint64_t) r_symndx,
2464 (uint64_t) irela->r_offset, sec);
2465 bfd_set_error (bfd_error_bad_value);
2466 return FALSE;
2467 }
2468 irela += bed->s->int_rels_per_ext_rel;
2469 erela += shdr->sh_entsize;
2470 }
2471
2472 return TRUE;
2473 }
2474
2475 /* Read and swap the relocs for a section O. They may have been
2476 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2477 not NULL, they are used as buffers to read into. They are known to
2478 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2479 the return value is allocated using either malloc or bfd_alloc,
2480 according to the KEEP_MEMORY argument. If O has two relocation
2481 sections (both REL and RELA relocations), then the REL_HDR
2482 relocations will appear first in INTERNAL_RELOCS, followed by the
2483 RELA_HDR relocations. */
2484
2485 Elf_Internal_Rela *
2486 _bfd_elf_link_read_relocs (bfd *abfd,
2487 asection *o,
2488 void *external_relocs,
2489 Elf_Internal_Rela *internal_relocs,
2490 bfd_boolean keep_memory)
2491 {
2492 void *alloc1 = NULL;
2493 Elf_Internal_Rela *alloc2 = NULL;
2494 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2495 struct bfd_elf_section_data *esdo = elf_section_data (o);
2496 Elf_Internal_Rela *internal_rela_relocs;
2497
2498 if (esdo->relocs != NULL)
2499 return esdo->relocs;
2500
2501 if (o->reloc_count == 0)
2502 return NULL;
2503
2504 if (internal_relocs == NULL)
2505 {
2506 bfd_size_type size;
2507
2508 size = (bfd_size_type) o->reloc_count * sizeof (Elf_Internal_Rela);
2509 if (keep_memory)
2510 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2511 else
2512 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2513 if (internal_relocs == NULL)
2514 goto error_return;
2515 }
2516
2517 if (external_relocs == NULL)
2518 {
2519 bfd_size_type size = 0;
2520
2521 if (esdo->rel.hdr)
2522 size += esdo->rel.hdr->sh_size;
2523 if (esdo->rela.hdr)
2524 size += esdo->rela.hdr->sh_size;
2525
2526 alloc1 = bfd_malloc (size);
2527 if (alloc1 == NULL)
2528 goto error_return;
2529 external_relocs = alloc1;
2530 }
2531
2532 internal_rela_relocs = internal_relocs;
2533 if (esdo->rel.hdr)
2534 {
2535 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2536 external_relocs,
2537 internal_relocs))
2538 goto error_return;
2539 external_relocs = (((bfd_byte *) external_relocs)
2540 + esdo->rel.hdr->sh_size);
2541 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2542 * bed->s->int_rels_per_ext_rel);
2543 }
2544
2545 if (esdo->rela.hdr
2546 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2547 external_relocs,
2548 internal_rela_relocs)))
2549 goto error_return;
2550
2551 /* Cache the results for next time, if we can. */
2552 if (keep_memory)
2553 esdo->relocs = internal_relocs;
2554
2555 if (alloc1 != NULL)
2556 free (alloc1);
2557
2558 /* Don't free alloc2, since if it was allocated we are passing it
2559 back (under the name of internal_relocs). */
2560
2561 return internal_relocs;
2562
2563 error_return:
2564 if (alloc1 != NULL)
2565 free (alloc1);
2566 if (alloc2 != NULL)
2567 {
2568 if (keep_memory)
2569 bfd_release (abfd, alloc2);
2570 else
2571 free (alloc2);
2572 }
2573 return NULL;
2574 }
2575
2576 /* Compute the size of, and allocate space for, REL_HDR which is the
2577 section header for a section containing relocations for O. */
2578
2579 static bfd_boolean
2580 _bfd_elf_link_size_reloc_section (bfd *abfd,
2581 struct bfd_elf_section_reloc_data *reldata)
2582 {
2583 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2584
2585 /* That allows us to calculate the size of the section. */
2586 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2587
2588 /* The contents field must last into write_object_contents, so we
2589 allocate it with bfd_alloc rather than malloc. Also since we
2590 cannot be sure that the contents will actually be filled in,
2591 we zero the allocated space. */
2592 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2593 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2594 return FALSE;
2595
2596 if (reldata->hashes == NULL && reldata->count)
2597 {
2598 struct elf_link_hash_entry **p;
2599
2600 p = ((struct elf_link_hash_entry **)
2601 bfd_zmalloc (reldata->count * sizeof (*p)));
2602 if (p == NULL)
2603 return FALSE;
2604
2605 reldata->hashes = p;
2606 }
2607
2608 return TRUE;
2609 }
2610
2611 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2612 originated from the section given by INPUT_REL_HDR) to the
2613 OUTPUT_BFD. */
2614
2615 bfd_boolean
2616 _bfd_elf_link_output_relocs (bfd *output_bfd,
2617 asection *input_section,
2618 Elf_Internal_Shdr *input_rel_hdr,
2619 Elf_Internal_Rela *internal_relocs,
2620 struct elf_link_hash_entry **rel_hash
2621 ATTRIBUTE_UNUSED)
2622 {
2623 Elf_Internal_Rela *irela;
2624 Elf_Internal_Rela *irelaend;
2625 bfd_byte *erel;
2626 struct bfd_elf_section_reloc_data *output_reldata;
2627 asection *output_section;
2628 const struct elf_backend_data *bed;
2629 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2630 struct bfd_elf_section_data *esdo;
2631
2632 output_section = input_section->output_section;
2633
2634 bed = get_elf_backend_data (output_bfd);
2635 esdo = elf_section_data (output_section);
2636 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2637 {
2638 output_reldata = &esdo->rel;
2639 swap_out = bed->s->swap_reloc_out;
2640 }
2641 else if (esdo->rela.hdr
2642 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2643 {
2644 output_reldata = &esdo->rela;
2645 swap_out = bed->s->swap_reloca_out;
2646 }
2647 else
2648 {
2649 _bfd_error_handler
2650 /* xgettext:c-format */
2651 (_("%pB: relocation size mismatch in %pB section %pA"),
2652 output_bfd, input_section->owner, input_section);
2653 bfd_set_error (bfd_error_wrong_format);
2654 return FALSE;
2655 }
2656
2657 erel = output_reldata->hdr->contents;
2658 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2659 irela = internal_relocs;
2660 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2661 * bed->s->int_rels_per_ext_rel);
2662 while (irela < irelaend)
2663 {
2664 (*swap_out) (output_bfd, irela, erel);
2665 irela += bed->s->int_rels_per_ext_rel;
2666 erel += input_rel_hdr->sh_entsize;
2667 }
2668
2669 /* Bump the counter, so that we know where to add the next set of
2670 relocations. */
2671 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2672
2673 return TRUE;
2674 }
2675 \f
2676 /* Make weak undefined symbols in PIE dynamic. */
2677
2678 bfd_boolean
2679 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2680 struct elf_link_hash_entry *h)
2681 {
2682 if (bfd_link_pie (info)
2683 && h->dynindx == -1
2684 && h->root.type == bfd_link_hash_undefweak)
2685 return bfd_elf_link_record_dynamic_symbol (info, h);
2686
2687 return TRUE;
2688 }
2689
2690 /* Fix up the flags for a symbol. This handles various cases which
2691 can only be fixed after all the input files are seen. This is
2692 currently called by both adjust_dynamic_symbol and
2693 assign_sym_version, which is unnecessary but perhaps more robust in
2694 the face of future changes. */
2695
2696 static bfd_boolean
2697 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2698 struct elf_info_failed *eif)
2699 {
2700 const struct elf_backend_data *bed;
2701
2702 /* If this symbol was mentioned in a non-ELF file, try to set
2703 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2704 permit a non-ELF file to correctly refer to a symbol defined in
2705 an ELF dynamic object. */
2706 if (h->non_elf)
2707 {
2708 while (h->root.type == bfd_link_hash_indirect)
2709 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2710
2711 if (h->root.type != bfd_link_hash_defined
2712 && h->root.type != bfd_link_hash_defweak)
2713 {
2714 h->ref_regular = 1;
2715 h->ref_regular_nonweak = 1;
2716 }
2717 else
2718 {
2719 if (h->root.u.def.section->owner != NULL
2720 && (bfd_get_flavour (h->root.u.def.section->owner)
2721 == bfd_target_elf_flavour))
2722 {
2723 h->ref_regular = 1;
2724 h->ref_regular_nonweak = 1;
2725 }
2726 else
2727 h->def_regular = 1;
2728 }
2729
2730 if (h->dynindx == -1
2731 && (h->def_dynamic
2732 || h->ref_dynamic))
2733 {
2734 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2735 {
2736 eif->failed = TRUE;
2737 return FALSE;
2738 }
2739 }
2740 }
2741 else
2742 {
2743 /* Unfortunately, NON_ELF is only correct if the symbol
2744 was first seen in a non-ELF file. Fortunately, if the symbol
2745 was first seen in an ELF file, we're probably OK unless the
2746 symbol was defined in a non-ELF file. Catch that case here.
2747 FIXME: We're still in trouble if the symbol was first seen in
2748 a dynamic object, and then later in a non-ELF regular object. */
2749 if ((h->root.type == bfd_link_hash_defined
2750 || h->root.type == bfd_link_hash_defweak)
2751 && !h->def_regular
2752 && (h->root.u.def.section->owner != NULL
2753 ? (bfd_get_flavour (h->root.u.def.section->owner)
2754 != bfd_target_elf_flavour)
2755 : (bfd_is_abs_section (h->root.u.def.section)
2756 && !h->def_dynamic)))
2757 h->def_regular = 1;
2758 }
2759
2760 /* Backend specific symbol fixup. */
2761 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2762 if (bed->elf_backend_fixup_symbol
2763 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2764 return FALSE;
2765
2766 /* If this is a final link, and the symbol was defined as a common
2767 symbol in a regular object file, and there was no definition in
2768 any dynamic object, then the linker will have allocated space for
2769 the symbol in a common section but the DEF_REGULAR
2770 flag will not have been set. */
2771 if (h->root.type == bfd_link_hash_defined
2772 && !h->def_regular
2773 && h->ref_regular
2774 && !h->def_dynamic
2775 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2776 h->def_regular = 1;
2777
2778 /* If a weak undefined symbol has non-default visibility, we also
2779 hide it from the dynamic linker. */
2780 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2781 && h->root.type == bfd_link_hash_undefweak)
2782 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2783
2784 /* A hidden versioned symbol in executable should be forced local if
2785 it is is locally defined, not referenced by shared library and not
2786 exported. */
2787 else if (bfd_link_executable (eif->info)
2788 && h->versioned == versioned_hidden
2789 && !eif->info->export_dynamic
2790 && !h->dynamic
2791 && !h->ref_dynamic
2792 && h->def_regular)
2793 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2794
2795 /* If -Bsymbolic was used (which means to bind references to global
2796 symbols to the definition within the shared object), and this
2797 symbol was defined in a regular object, then it actually doesn't
2798 need a PLT entry. Likewise, if the symbol has non-default
2799 visibility. If the symbol has hidden or internal visibility, we
2800 will force it local. */
2801 else if (h->needs_plt
2802 && bfd_link_pic (eif->info)
2803 && is_elf_hash_table (eif->info->hash)
2804 && (SYMBOLIC_BIND (eif->info, h)
2805 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2806 && h->def_regular)
2807 {
2808 bfd_boolean force_local;
2809
2810 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2811 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2812 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2813 }
2814
2815 /* If this is a weak defined symbol in a dynamic object, and we know
2816 the real definition in the dynamic object, copy interesting flags
2817 over to the real definition. */
2818 if (h->is_weakalias)
2819 {
2820 struct elf_link_hash_entry *def = weakdef (h);
2821
2822 /* If the real definition is defined by a regular object file,
2823 don't do anything special. See the longer description in
2824 _bfd_elf_adjust_dynamic_symbol, below. */
2825 if (def->def_regular)
2826 {
2827 h = def;
2828 while ((h = h->u.alias) != def)
2829 h->is_weakalias = 0;
2830 }
2831 else
2832 {
2833 while (h->root.type == bfd_link_hash_indirect)
2834 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2835 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2836 || h->root.type == bfd_link_hash_defweak);
2837 BFD_ASSERT (def->def_dynamic);
2838 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
2839 (*bed->elf_backend_copy_indirect_symbol) (eif->info, def, h);
2840 }
2841 }
2842
2843 return TRUE;
2844 }
2845
2846 /* Make the backend pick a good value for a dynamic symbol. This is
2847 called via elf_link_hash_traverse, and also calls itself
2848 recursively. */
2849
2850 static bfd_boolean
2851 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2852 {
2853 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2854 struct elf_link_hash_table *htab;
2855 const struct elf_backend_data *bed;
2856
2857 if (! is_elf_hash_table (eif->info->hash))
2858 return FALSE;
2859
2860 /* Ignore indirect symbols. These are added by the versioning code. */
2861 if (h->root.type == bfd_link_hash_indirect)
2862 return TRUE;
2863
2864 /* Fix the symbol flags. */
2865 if (! _bfd_elf_fix_symbol_flags (h, eif))
2866 return FALSE;
2867
2868 htab = elf_hash_table (eif->info);
2869 bed = get_elf_backend_data (htab->dynobj);
2870
2871 if (h->root.type == bfd_link_hash_undefweak)
2872 {
2873 if (eif->info->dynamic_undefined_weak == 0)
2874 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2875 else if (eif->info->dynamic_undefined_weak > 0
2876 && h->ref_regular
2877 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2878 && !bfd_hide_sym_by_version (eif->info->version_info,
2879 h->root.root.string))
2880 {
2881 if (!bfd_elf_link_record_dynamic_symbol (eif->info, h))
2882 {
2883 eif->failed = TRUE;
2884 return FALSE;
2885 }
2886 }
2887 }
2888
2889 /* If this symbol does not require a PLT entry, and it is not
2890 defined by a dynamic object, or is not referenced by a regular
2891 object, ignore it. We do have to handle a weak defined symbol,
2892 even if no regular object refers to it, if we decided to add it
2893 to the dynamic symbol table. FIXME: Do we normally need to worry
2894 about symbols which are defined by one dynamic object and
2895 referenced by another one? */
2896 if (!h->needs_plt
2897 && h->type != STT_GNU_IFUNC
2898 && (h->def_regular
2899 || !h->def_dynamic
2900 || (!h->ref_regular
2901 && (!h->is_weakalias || weakdef (h)->dynindx == -1))))
2902 {
2903 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2904 return TRUE;
2905 }
2906
2907 /* If we've already adjusted this symbol, don't do it again. This
2908 can happen via a recursive call. */
2909 if (h->dynamic_adjusted)
2910 return TRUE;
2911
2912 /* Don't look at this symbol again. Note that we must set this
2913 after checking the above conditions, because we may look at a
2914 symbol once, decide not to do anything, and then get called
2915 recursively later after REF_REGULAR is set below. */
2916 h->dynamic_adjusted = 1;
2917
2918 /* If this is a weak definition, and we know a real definition, and
2919 the real symbol is not itself defined by a regular object file,
2920 then get a good value for the real definition. We handle the
2921 real symbol first, for the convenience of the backend routine.
2922
2923 Note that there is a confusing case here. If the real definition
2924 is defined by a regular object file, we don't get the real symbol
2925 from the dynamic object, but we do get the weak symbol. If the
2926 processor backend uses a COPY reloc, then if some routine in the
2927 dynamic object changes the real symbol, we will not see that
2928 change in the corresponding weak symbol. This is the way other
2929 ELF linkers work as well, and seems to be a result of the shared
2930 library model.
2931
2932 I will clarify this issue. Most SVR4 shared libraries define the
2933 variable _timezone and define timezone as a weak synonym. The
2934 tzset call changes _timezone. If you write
2935 extern int timezone;
2936 int _timezone = 5;
2937 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2938 you might expect that, since timezone is a synonym for _timezone,
2939 the same number will print both times. However, if the processor
2940 backend uses a COPY reloc, then actually timezone will be copied
2941 into your process image, and, since you define _timezone
2942 yourself, _timezone will not. Thus timezone and _timezone will
2943 wind up at different memory locations. The tzset call will set
2944 _timezone, leaving timezone unchanged. */
2945
2946 if (h->is_weakalias)
2947 {
2948 struct elf_link_hash_entry *def = weakdef (h);
2949
2950 /* If we get to this point, there is an implicit reference to
2951 the alias by a regular object file via the weak symbol H. */
2952 def->ref_regular = 1;
2953
2954 /* Ensure that the backend adjust_dynamic_symbol function sees
2955 the strong alias before H by recursively calling ourselves. */
2956 if (!_bfd_elf_adjust_dynamic_symbol (def, eif))
2957 return FALSE;
2958 }
2959
2960 /* If a symbol has no type and no size and does not require a PLT
2961 entry, then we are probably about to do the wrong thing here: we
2962 are probably going to create a COPY reloc for an empty object.
2963 This case can arise when a shared object is built with assembly
2964 code, and the assembly code fails to set the symbol type. */
2965 if (h->size == 0
2966 && h->type == STT_NOTYPE
2967 && !h->needs_plt)
2968 _bfd_error_handler
2969 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2970 h->root.root.string);
2971
2972 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2973 {
2974 eif->failed = TRUE;
2975 return FALSE;
2976 }
2977
2978 return TRUE;
2979 }
2980
2981 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2982 DYNBSS. */
2983
2984 bfd_boolean
2985 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2986 struct elf_link_hash_entry *h,
2987 asection *dynbss)
2988 {
2989 unsigned int power_of_two;
2990 bfd_vma mask;
2991 asection *sec = h->root.u.def.section;
2992
2993 /* The section alignment of the definition is the maximum alignment
2994 requirement of symbols defined in the section. Since we don't
2995 know the symbol alignment requirement, we start with the
2996 maximum alignment and check low bits of the symbol address
2997 for the minimum alignment. */
2998 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2999 mask = ((bfd_vma) 1 << power_of_two) - 1;
3000 while ((h->root.u.def.value & mask) != 0)
3001 {
3002 mask >>= 1;
3003 --power_of_two;
3004 }
3005
3006 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
3007 dynbss))
3008 {
3009 /* Adjust the section alignment if needed. */
3010 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
3011 power_of_two))
3012 return FALSE;
3013 }
3014
3015 /* We make sure that the symbol will be aligned properly. */
3016 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
3017
3018 /* Define the symbol as being at this point in DYNBSS. */
3019 h->root.u.def.section = dynbss;
3020 h->root.u.def.value = dynbss->size;
3021
3022 /* Increment the size of DYNBSS to make room for the symbol. */
3023 dynbss->size += h->size;
3024
3025 /* No error if extern_protected_data is true. */
3026 if (h->protected_def
3027 && (!info->extern_protected_data
3028 || (info->extern_protected_data < 0
3029 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
3030 info->callbacks->einfo
3031 (_("%P: copy reloc against protected `%pT' is dangerous\n"),
3032 h->root.root.string);
3033
3034 return TRUE;
3035 }
3036
3037 /* Adjust all external symbols pointing into SEC_MERGE sections
3038 to reflect the object merging within the sections. */
3039
3040 static bfd_boolean
3041 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
3042 {
3043 asection *sec;
3044
3045 if ((h->root.type == bfd_link_hash_defined
3046 || h->root.type == bfd_link_hash_defweak)
3047 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
3048 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
3049 {
3050 bfd *output_bfd = (bfd *) data;
3051
3052 h->root.u.def.value =
3053 _bfd_merged_section_offset (output_bfd,
3054 &h->root.u.def.section,
3055 elf_section_data (sec)->sec_info,
3056 h->root.u.def.value);
3057 }
3058
3059 return TRUE;
3060 }
3061
3062 /* Returns false if the symbol referred to by H should be considered
3063 to resolve local to the current module, and true if it should be
3064 considered to bind dynamically. */
3065
3066 bfd_boolean
3067 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
3068 struct bfd_link_info *info,
3069 bfd_boolean not_local_protected)
3070 {
3071 bfd_boolean binding_stays_local_p;
3072 const struct elf_backend_data *bed;
3073 struct elf_link_hash_table *hash_table;
3074
3075 if (h == NULL)
3076 return FALSE;
3077
3078 while (h->root.type == bfd_link_hash_indirect
3079 || h->root.type == bfd_link_hash_warning)
3080 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3081
3082 /* If it was forced local, then clearly it's not dynamic. */
3083 if (h->dynindx == -1)
3084 return FALSE;
3085 if (h->forced_local)
3086 return FALSE;
3087
3088 /* Identify the cases where name binding rules say that a
3089 visible symbol resolves locally. */
3090 binding_stays_local_p = (bfd_link_executable (info)
3091 || SYMBOLIC_BIND (info, h));
3092
3093 switch (ELF_ST_VISIBILITY (h->other))
3094 {
3095 case STV_INTERNAL:
3096 case STV_HIDDEN:
3097 return FALSE;
3098
3099 case STV_PROTECTED:
3100 hash_table = elf_hash_table (info);
3101 if (!is_elf_hash_table (hash_table))
3102 return FALSE;
3103
3104 bed = get_elf_backend_data (hash_table->dynobj);
3105
3106 /* Proper resolution for function pointer equality may require
3107 that these symbols perhaps be resolved dynamically, even though
3108 we should be resolving them to the current module. */
3109 if (!not_local_protected || !bed->is_function_type (h->type))
3110 binding_stays_local_p = TRUE;
3111 break;
3112
3113 default:
3114 break;
3115 }
3116
3117 /* If it isn't defined locally, then clearly it's dynamic. */
3118 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3119 return TRUE;
3120
3121 /* Otherwise, the symbol is dynamic if binding rules don't tell
3122 us that it remains local. */
3123 return !binding_stays_local_p;
3124 }
3125
3126 /* Return true if the symbol referred to by H should be considered
3127 to resolve local to the current module, and false otherwise. Differs
3128 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3129 undefined symbols. The two functions are virtually identical except
3130 for the place where dynindx == -1 is tested. If that test is true,
3131 _bfd_elf_dynamic_symbol_p will say the symbol is local, while
3132 _bfd_elf_symbol_refs_local_p will say the symbol is local only for
3133 defined symbols.
3134 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3135 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3136 treatment of undefined weak symbols. For those that do not make
3137 undefined weak symbols dynamic, both functions may return false. */
3138
3139 bfd_boolean
3140 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3141 struct bfd_link_info *info,
3142 bfd_boolean local_protected)
3143 {
3144 const struct elf_backend_data *bed;
3145 struct elf_link_hash_table *hash_table;
3146
3147 /* If it's a local sym, of course we resolve locally. */
3148 if (h == NULL)
3149 return TRUE;
3150
3151 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
3152 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3153 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3154 return TRUE;
3155
3156 /* Forced local symbols resolve locally. */
3157 if (h->forced_local)
3158 return TRUE;
3159
3160 /* Common symbols that become definitions don't get the DEF_REGULAR
3161 flag set, so test it first, and don't bail out. */
3162 if (ELF_COMMON_DEF_P (h))
3163 /* Do nothing. */;
3164 /* If we don't have a definition in a regular file, then we can't
3165 resolve locally. The sym is either undefined or dynamic. */
3166 else if (!h->def_regular)
3167 return FALSE;
3168
3169 /* Non-dynamic symbols resolve locally. */
3170 if (h->dynindx == -1)
3171 return TRUE;
3172
3173 /* At this point, we know the symbol is defined and dynamic. In an
3174 executable it must resolve locally, likewise when building symbolic
3175 shared libraries. */
3176 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3177 return TRUE;
3178
3179 /* Now deal with defined dynamic symbols in shared libraries. Ones
3180 with default visibility might not resolve locally. */
3181 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3182 return FALSE;
3183
3184 hash_table = elf_hash_table (info);
3185 if (!is_elf_hash_table (hash_table))
3186 return TRUE;
3187
3188 bed = get_elf_backend_data (hash_table->dynobj);
3189
3190 /* If extern_protected_data is false, STV_PROTECTED non-function
3191 symbols are local. */
3192 if ((!info->extern_protected_data
3193 || (info->extern_protected_data < 0
3194 && !bed->extern_protected_data))
3195 && !bed->is_function_type (h->type))
3196 return TRUE;
3197
3198 /* Function pointer equality tests may require that STV_PROTECTED
3199 symbols be treated as dynamic symbols. If the address of a
3200 function not defined in an executable is set to that function's
3201 plt entry in the executable, then the address of the function in
3202 a shared library must also be the plt entry in the executable. */
3203 return local_protected;
3204 }
3205
3206 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3207 aligned. Returns the first TLS output section. */
3208
3209 struct bfd_section *
3210 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3211 {
3212 struct bfd_section *sec, *tls;
3213 unsigned int align = 0;
3214
3215 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3216 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3217 break;
3218 tls = sec;
3219
3220 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3221 if (sec->alignment_power > align)
3222 align = sec->alignment_power;
3223
3224 elf_hash_table (info)->tls_sec = tls;
3225
3226 /* Ensure the alignment of the first section is the largest alignment,
3227 so that the tls segment starts aligned. */
3228 if (tls != NULL)
3229 tls->alignment_power = align;
3230
3231 return tls;
3232 }
3233
3234 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3235 static bfd_boolean
3236 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3237 Elf_Internal_Sym *sym)
3238 {
3239 const struct elf_backend_data *bed;
3240
3241 /* Local symbols do not count, but target specific ones might. */
3242 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3243 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3244 return FALSE;
3245
3246 bed = get_elf_backend_data (abfd);
3247 /* Function symbols do not count. */
3248 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3249 return FALSE;
3250
3251 /* If the section is undefined, then so is the symbol. */
3252 if (sym->st_shndx == SHN_UNDEF)
3253 return FALSE;
3254
3255 /* If the symbol is defined in the common section, then
3256 it is a common definition and so does not count. */
3257 if (bed->common_definition (sym))
3258 return FALSE;
3259
3260 /* If the symbol is in a target specific section then we
3261 must rely upon the backend to tell us what it is. */
3262 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3263 /* FIXME - this function is not coded yet:
3264
3265 return _bfd_is_global_symbol_definition (abfd, sym);
3266
3267 Instead for now assume that the definition is not global,
3268 Even if this is wrong, at least the linker will behave
3269 in the same way that it used to do. */
3270 return FALSE;
3271
3272 return TRUE;
3273 }
3274
3275 /* Search the symbol table of the archive element of the archive ABFD
3276 whose archive map contains a mention of SYMDEF, and determine if
3277 the symbol is defined in this element. */
3278 static bfd_boolean
3279 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3280 {
3281 Elf_Internal_Shdr * hdr;
3282 size_t symcount;
3283 size_t extsymcount;
3284 size_t extsymoff;
3285 Elf_Internal_Sym *isymbuf;
3286 Elf_Internal_Sym *isym;
3287 Elf_Internal_Sym *isymend;
3288 bfd_boolean result;
3289
3290 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3291 if (abfd == NULL)
3292 return FALSE;
3293
3294 if (! bfd_check_format (abfd, bfd_object))
3295 return FALSE;
3296
3297 /* Select the appropriate symbol table. If we don't know if the
3298 object file is an IR object, give linker LTO plugin a chance to
3299 get the correct symbol table. */
3300 if (abfd->plugin_format == bfd_plugin_yes
3301 #if BFD_SUPPORTS_PLUGINS
3302 || (abfd->plugin_format == bfd_plugin_unknown
3303 && bfd_link_plugin_object_p (abfd))
3304 #endif
3305 )
3306 {
3307 /* Use the IR symbol table if the object has been claimed by
3308 plugin. */
3309 abfd = abfd->plugin_dummy_bfd;
3310 hdr = &elf_tdata (abfd)->symtab_hdr;
3311 }
3312 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3313 hdr = &elf_tdata (abfd)->symtab_hdr;
3314 else
3315 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3316
3317 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3318
3319 /* The sh_info field of the symtab header tells us where the
3320 external symbols start. We don't care about the local symbols. */
3321 if (elf_bad_symtab (abfd))
3322 {
3323 extsymcount = symcount;
3324 extsymoff = 0;
3325 }
3326 else
3327 {
3328 extsymcount = symcount - hdr->sh_info;
3329 extsymoff = hdr->sh_info;
3330 }
3331
3332 if (extsymcount == 0)
3333 return FALSE;
3334
3335 /* Read in the symbol table. */
3336 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3337 NULL, NULL, NULL);
3338 if (isymbuf == NULL)
3339 return FALSE;
3340
3341 /* Scan the symbol table looking for SYMDEF. */
3342 result = FALSE;
3343 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3344 {
3345 const char *name;
3346
3347 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3348 isym->st_name);
3349 if (name == NULL)
3350 break;
3351
3352 if (strcmp (name, symdef->name) == 0)
3353 {
3354 result = is_global_data_symbol_definition (abfd, isym);
3355 break;
3356 }
3357 }
3358
3359 free (isymbuf);
3360
3361 return result;
3362 }
3363 \f
3364 /* Add an entry to the .dynamic table. */
3365
3366 bfd_boolean
3367 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3368 bfd_vma tag,
3369 bfd_vma val)
3370 {
3371 struct elf_link_hash_table *hash_table;
3372 const struct elf_backend_data *bed;
3373 asection *s;
3374 bfd_size_type newsize;
3375 bfd_byte *newcontents;
3376 Elf_Internal_Dyn dyn;
3377
3378 hash_table = elf_hash_table (info);
3379 if (! is_elf_hash_table (hash_table))
3380 return FALSE;
3381
3382 bed = get_elf_backend_data (hash_table->dynobj);
3383 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3384 BFD_ASSERT (s != NULL);
3385
3386 newsize = s->size + bed->s->sizeof_dyn;
3387 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3388 if (newcontents == NULL)
3389 return FALSE;
3390
3391 dyn.d_tag = tag;
3392 dyn.d_un.d_val = val;
3393 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3394
3395 s->size = newsize;
3396 s->contents = newcontents;
3397
3398 return TRUE;
3399 }
3400
3401 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3402 otherwise just check whether one already exists. Returns -1 on error,
3403 1 if a DT_NEEDED tag already exists, and 0 on success. */
3404
3405 static int
3406 elf_add_dt_needed_tag (bfd *abfd,
3407 struct bfd_link_info *info,
3408 const char *soname,
3409 bfd_boolean do_it)
3410 {
3411 struct elf_link_hash_table *hash_table;
3412 size_t strindex;
3413
3414 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3415 return -1;
3416
3417 hash_table = elf_hash_table (info);
3418 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3419 if (strindex == (size_t) -1)
3420 return -1;
3421
3422 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3423 {
3424 asection *sdyn;
3425 const struct elf_backend_data *bed;
3426 bfd_byte *extdyn;
3427
3428 bed = get_elf_backend_data (hash_table->dynobj);
3429 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3430 if (sdyn != NULL)
3431 for (extdyn = sdyn->contents;
3432 extdyn < sdyn->contents + sdyn->size;
3433 extdyn += bed->s->sizeof_dyn)
3434 {
3435 Elf_Internal_Dyn dyn;
3436
3437 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3438 if (dyn.d_tag == DT_NEEDED
3439 && dyn.d_un.d_val == strindex)
3440 {
3441 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3442 return 1;
3443 }
3444 }
3445 }
3446
3447 if (do_it)
3448 {
3449 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3450 return -1;
3451
3452 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3453 return -1;
3454 }
3455 else
3456 /* We were just checking for existence of the tag. */
3457 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3458
3459 return 0;
3460 }
3461
3462 /* Return true if SONAME is on the needed list between NEEDED and STOP
3463 (or the end of list if STOP is NULL), and needed by a library that
3464 will be loaded. */
3465
3466 static bfd_boolean
3467 on_needed_list (const char *soname,
3468 struct bfd_link_needed_list *needed,
3469 struct bfd_link_needed_list *stop)
3470 {
3471 struct bfd_link_needed_list *look;
3472 for (look = needed; look != stop; look = look->next)
3473 if (strcmp (soname, look->name) == 0
3474 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3475 /* If needed by a library that itself is not directly
3476 needed, recursively check whether that library is
3477 indirectly needed. Since we add DT_NEEDED entries to
3478 the end of the list, library dependencies appear after
3479 the library. Therefore search prior to the current
3480 LOOK, preventing possible infinite recursion. */
3481 || on_needed_list (elf_dt_name (look->by), needed, look)))
3482 return TRUE;
3483
3484 return FALSE;
3485 }
3486
3487 /* Sort symbol by value, section, and size. */
3488 static int
3489 elf_sort_symbol (const void *arg1, const void *arg2)
3490 {
3491 const struct elf_link_hash_entry *h1;
3492 const struct elf_link_hash_entry *h2;
3493 bfd_signed_vma vdiff;
3494
3495 h1 = *(const struct elf_link_hash_entry **) arg1;
3496 h2 = *(const struct elf_link_hash_entry **) arg2;
3497 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3498 if (vdiff != 0)
3499 return vdiff > 0 ? 1 : -1;
3500 else
3501 {
3502 int sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3503 if (sdiff != 0)
3504 return sdiff > 0 ? 1 : -1;
3505 }
3506 vdiff = h1->size - h2->size;
3507 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3508 }
3509
3510 /* This function is used to adjust offsets into .dynstr for
3511 dynamic symbols. This is called via elf_link_hash_traverse. */
3512
3513 static bfd_boolean
3514 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3515 {
3516 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3517
3518 if (h->dynindx != -1)
3519 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3520 return TRUE;
3521 }
3522
3523 /* Assign string offsets in .dynstr, update all structures referencing
3524 them. */
3525
3526 static bfd_boolean
3527 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3528 {
3529 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3530 struct elf_link_local_dynamic_entry *entry;
3531 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3532 bfd *dynobj = hash_table->dynobj;
3533 asection *sdyn;
3534 bfd_size_type size;
3535 const struct elf_backend_data *bed;
3536 bfd_byte *extdyn;
3537
3538 _bfd_elf_strtab_finalize (dynstr);
3539 size = _bfd_elf_strtab_size (dynstr);
3540
3541 bed = get_elf_backend_data (dynobj);
3542 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3543 BFD_ASSERT (sdyn != NULL);
3544
3545 /* Update all .dynamic entries referencing .dynstr strings. */
3546 for (extdyn = sdyn->contents;
3547 extdyn < sdyn->contents + sdyn->size;
3548 extdyn += bed->s->sizeof_dyn)
3549 {
3550 Elf_Internal_Dyn dyn;
3551
3552 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3553 switch (dyn.d_tag)
3554 {
3555 case DT_STRSZ:
3556 dyn.d_un.d_val = size;
3557 break;
3558 case DT_NEEDED:
3559 case DT_SONAME:
3560 case DT_RPATH:
3561 case DT_RUNPATH:
3562 case DT_FILTER:
3563 case DT_AUXILIARY:
3564 case DT_AUDIT:
3565 case DT_DEPAUDIT:
3566 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3567 break;
3568 default:
3569 continue;
3570 }
3571 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3572 }
3573
3574 /* Now update local dynamic symbols. */
3575 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3576 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3577 entry->isym.st_name);
3578
3579 /* And the rest of dynamic symbols. */
3580 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3581
3582 /* Adjust version definitions. */
3583 if (elf_tdata (output_bfd)->cverdefs)
3584 {
3585 asection *s;
3586 bfd_byte *p;
3587 size_t i;
3588 Elf_Internal_Verdef def;
3589 Elf_Internal_Verdaux defaux;
3590
3591 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3592 p = s->contents;
3593 do
3594 {
3595 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3596 &def);
3597 p += sizeof (Elf_External_Verdef);
3598 if (def.vd_aux != sizeof (Elf_External_Verdef))
3599 continue;
3600 for (i = 0; i < def.vd_cnt; ++i)
3601 {
3602 _bfd_elf_swap_verdaux_in (output_bfd,
3603 (Elf_External_Verdaux *) p, &defaux);
3604 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3605 defaux.vda_name);
3606 _bfd_elf_swap_verdaux_out (output_bfd,
3607 &defaux, (Elf_External_Verdaux *) p);
3608 p += sizeof (Elf_External_Verdaux);
3609 }
3610 }
3611 while (def.vd_next);
3612 }
3613
3614 /* Adjust version references. */
3615 if (elf_tdata (output_bfd)->verref)
3616 {
3617 asection *s;
3618 bfd_byte *p;
3619 size_t i;
3620 Elf_Internal_Verneed need;
3621 Elf_Internal_Vernaux needaux;
3622
3623 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3624 p = s->contents;
3625 do
3626 {
3627 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3628 &need);
3629 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3630 _bfd_elf_swap_verneed_out (output_bfd, &need,
3631 (Elf_External_Verneed *) p);
3632 p += sizeof (Elf_External_Verneed);
3633 for (i = 0; i < need.vn_cnt; ++i)
3634 {
3635 _bfd_elf_swap_vernaux_in (output_bfd,
3636 (Elf_External_Vernaux *) p, &needaux);
3637 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3638 needaux.vna_name);
3639 _bfd_elf_swap_vernaux_out (output_bfd,
3640 &needaux,
3641 (Elf_External_Vernaux *) p);
3642 p += sizeof (Elf_External_Vernaux);
3643 }
3644 }
3645 while (need.vn_next);
3646 }
3647
3648 return TRUE;
3649 }
3650 \f
3651 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3652 The default is to only match when the INPUT and OUTPUT are exactly
3653 the same target. */
3654
3655 bfd_boolean
3656 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3657 const bfd_target *output)
3658 {
3659 return input == output;
3660 }
3661
3662 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3663 This version is used when different targets for the same architecture
3664 are virtually identical. */
3665
3666 bfd_boolean
3667 _bfd_elf_relocs_compatible (const bfd_target *input,
3668 const bfd_target *output)
3669 {
3670 const struct elf_backend_data *obed, *ibed;
3671
3672 if (input == output)
3673 return TRUE;
3674
3675 ibed = xvec_get_elf_backend_data (input);
3676 obed = xvec_get_elf_backend_data (output);
3677
3678 if (ibed->arch != obed->arch)
3679 return FALSE;
3680
3681 /* If both backends are using this function, deem them compatible. */
3682 return ibed->relocs_compatible == obed->relocs_compatible;
3683 }
3684
3685 /* Make a special call to the linker "notice" function to tell it that
3686 we are about to handle an as-needed lib, or have finished
3687 processing the lib. */
3688
3689 bfd_boolean
3690 _bfd_elf_notice_as_needed (bfd *ibfd,
3691 struct bfd_link_info *info,
3692 enum notice_asneeded_action act)
3693 {
3694 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3695 }
3696
3697 /* Check relocations an ELF object file. */
3698
3699 bfd_boolean
3700 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3701 {
3702 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3703 struct elf_link_hash_table *htab = elf_hash_table (info);
3704
3705 /* If this object is the same format as the output object, and it is
3706 not a shared library, then let the backend look through the
3707 relocs.
3708
3709 This is required to build global offset table entries and to
3710 arrange for dynamic relocs. It is not required for the
3711 particular common case of linking non PIC code, even when linking
3712 against shared libraries, but unfortunately there is no way of
3713 knowing whether an object file has been compiled PIC or not.
3714 Looking through the relocs is not particularly time consuming.
3715 The problem is that we must either (1) keep the relocs in memory,
3716 which causes the linker to require additional runtime memory or
3717 (2) read the relocs twice from the input file, which wastes time.
3718 This would be a good case for using mmap.
3719
3720 I have no idea how to handle linking PIC code into a file of a
3721 different format. It probably can't be done. */
3722 if ((abfd->flags & DYNAMIC) == 0
3723 && is_elf_hash_table (htab)
3724 && bed->check_relocs != NULL
3725 && elf_object_id (abfd) == elf_hash_table_id (htab)
3726 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3727 {
3728 asection *o;
3729
3730 for (o = abfd->sections; o != NULL; o = o->next)
3731 {
3732 Elf_Internal_Rela *internal_relocs;
3733 bfd_boolean ok;
3734
3735 /* Don't check relocations in excluded sections. */
3736 if ((o->flags & SEC_RELOC) == 0
3737 || (o->flags & SEC_EXCLUDE) != 0
3738 || o->reloc_count == 0
3739 || ((info->strip == strip_all || info->strip == strip_debugger)
3740 && (o->flags & SEC_DEBUGGING) != 0)
3741 || bfd_is_abs_section (o->output_section))
3742 continue;
3743
3744 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3745 info->keep_memory);
3746 if (internal_relocs == NULL)
3747 return FALSE;
3748
3749 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3750
3751 if (elf_section_data (o)->relocs != internal_relocs)
3752 free (internal_relocs);
3753
3754 if (! ok)
3755 return FALSE;
3756 }
3757 }
3758
3759 return TRUE;
3760 }
3761
3762 /* Add symbols from an ELF object file to the linker hash table. */
3763
3764 static bfd_boolean
3765 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3766 {
3767 Elf_Internal_Ehdr *ehdr;
3768 Elf_Internal_Shdr *hdr;
3769 size_t symcount;
3770 size_t extsymcount;
3771 size_t extsymoff;
3772 struct elf_link_hash_entry **sym_hash;
3773 bfd_boolean dynamic;
3774 Elf_External_Versym *extversym = NULL;
3775 Elf_External_Versym *ever;
3776 struct elf_link_hash_entry *weaks;
3777 struct elf_link_hash_entry **nondeflt_vers = NULL;
3778 size_t nondeflt_vers_cnt = 0;
3779 Elf_Internal_Sym *isymbuf = NULL;
3780 Elf_Internal_Sym *isym;
3781 Elf_Internal_Sym *isymend;
3782 const struct elf_backend_data *bed;
3783 bfd_boolean add_needed;
3784 struct elf_link_hash_table *htab;
3785 bfd_size_type amt;
3786 void *alloc_mark = NULL;
3787 struct bfd_hash_entry **old_table = NULL;
3788 unsigned int old_size = 0;
3789 unsigned int old_count = 0;
3790 void *old_tab = NULL;
3791 void *old_ent;
3792 struct bfd_link_hash_entry *old_undefs = NULL;
3793 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3794 void *old_strtab = NULL;
3795 size_t tabsize = 0;
3796 asection *s;
3797 bfd_boolean just_syms;
3798
3799 htab = elf_hash_table (info);
3800 bed = get_elf_backend_data (abfd);
3801
3802 if ((abfd->flags & DYNAMIC) == 0)
3803 dynamic = FALSE;
3804 else
3805 {
3806 dynamic = TRUE;
3807
3808 /* You can't use -r against a dynamic object. Also, there's no
3809 hope of using a dynamic object which does not exactly match
3810 the format of the output file. */
3811 if (bfd_link_relocatable (info)
3812 || !is_elf_hash_table (htab)
3813 || info->output_bfd->xvec != abfd->xvec)
3814 {
3815 if (bfd_link_relocatable (info))
3816 bfd_set_error (bfd_error_invalid_operation);
3817 else
3818 bfd_set_error (bfd_error_wrong_format);
3819 goto error_return;
3820 }
3821 }
3822
3823 ehdr = elf_elfheader (abfd);
3824 if (info->warn_alternate_em
3825 && bed->elf_machine_code != ehdr->e_machine
3826 && ((bed->elf_machine_alt1 != 0
3827 && ehdr->e_machine == bed->elf_machine_alt1)
3828 || (bed->elf_machine_alt2 != 0
3829 && ehdr->e_machine == bed->elf_machine_alt2)))
3830 _bfd_error_handler
3831 /* xgettext:c-format */
3832 (_("alternate ELF machine code found (%d) in %pB, expecting %d"),
3833 ehdr->e_machine, abfd, bed->elf_machine_code);
3834
3835 /* As a GNU extension, any input sections which are named
3836 .gnu.warning.SYMBOL are treated as warning symbols for the given
3837 symbol. This differs from .gnu.warning sections, which generate
3838 warnings when they are included in an output file. */
3839 /* PR 12761: Also generate this warning when building shared libraries. */
3840 for (s = abfd->sections; s != NULL; s = s->next)
3841 {
3842 const char *name;
3843
3844 name = bfd_get_section_name (abfd, s);
3845 if (CONST_STRNEQ (name, ".gnu.warning."))
3846 {
3847 char *msg;
3848 bfd_size_type sz;
3849
3850 name += sizeof ".gnu.warning." - 1;
3851
3852 /* If this is a shared object, then look up the symbol
3853 in the hash table. If it is there, and it is already
3854 been defined, then we will not be using the entry
3855 from this shared object, so we don't need to warn.
3856 FIXME: If we see the definition in a regular object
3857 later on, we will warn, but we shouldn't. The only
3858 fix is to keep track of what warnings we are supposed
3859 to emit, and then handle them all at the end of the
3860 link. */
3861 if (dynamic)
3862 {
3863 struct elf_link_hash_entry *h;
3864
3865 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3866
3867 /* FIXME: What about bfd_link_hash_common? */
3868 if (h != NULL
3869 && (h->root.type == bfd_link_hash_defined
3870 || h->root.type == bfd_link_hash_defweak))
3871 continue;
3872 }
3873
3874 sz = s->size;
3875 msg = (char *) bfd_alloc (abfd, sz + 1);
3876 if (msg == NULL)
3877 goto error_return;
3878
3879 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3880 goto error_return;
3881
3882 msg[sz] = '\0';
3883
3884 if (! (_bfd_generic_link_add_one_symbol
3885 (info, abfd, name, BSF_WARNING, s, 0, msg,
3886 FALSE, bed->collect, NULL)))
3887 goto error_return;
3888
3889 if (bfd_link_executable (info))
3890 {
3891 /* Clobber the section size so that the warning does
3892 not get copied into the output file. */
3893 s->size = 0;
3894
3895 /* Also set SEC_EXCLUDE, so that symbols defined in
3896 the warning section don't get copied to the output. */
3897 s->flags |= SEC_EXCLUDE;
3898 }
3899 }
3900 }
3901
3902 just_syms = ((s = abfd->sections) != NULL
3903 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3904
3905 add_needed = TRUE;
3906 if (! dynamic)
3907 {
3908 /* If we are creating a shared library, create all the dynamic
3909 sections immediately. We need to attach them to something,
3910 so we attach them to this BFD, provided it is the right
3911 format and is not from ld --just-symbols. Always create the
3912 dynamic sections for -E/--dynamic-list. FIXME: If there
3913 are no input BFD's of the same format as the output, we can't
3914 make a shared library. */
3915 if (!just_syms
3916 && (bfd_link_pic (info)
3917 || (!bfd_link_relocatable (info)
3918 && info->nointerp
3919 && (info->export_dynamic || info->dynamic)))
3920 && is_elf_hash_table (htab)
3921 && info->output_bfd->xvec == abfd->xvec
3922 && !htab->dynamic_sections_created)
3923 {
3924 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3925 goto error_return;
3926 }
3927 }
3928 else if (!is_elf_hash_table (htab))
3929 goto error_return;
3930 else
3931 {
3932 const char *soname = NULL;
3933 char *audit = NULL;
3934 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3935 const Elf_Internal_Phdr *phdr;
3936 int ret;
3937
3938 /* ld --just-symbols and dynamic objects don't mix very well.
3939 ld shouldn't allow it. */
3940 if (just_syms)
3941 abort ();
3942
3943 /* If this dynamic lib was specified on the command line with
3944 --as-needed in effect, then we don't want to add a DT_NEEDED
3945 tag unless the lib is actually used. Similary for libs brought
3946 in by another lib's DT_NEEDED. When --no-add-needed is used
3947 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3948 any dynamic library in DT_NEEDED tags in the dynamic lib at
3949 all. */
3950 add_needed = (elf_dyn_lib_class (abfd)
3951 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3952 | DYN_NO_NEEDED)) == 0;
3953
3954 s = bfd_get_section_by_name (abfd, ".dynamic");
3955 if (s != NULL)
3956 {
3957 bfd_byte *dynbuf;
3958 bfd_byte *extdyn;
3959 unsigned int elfsec;
3960 unsigned long shlink;
3961
3962 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3963 {
3964 error_free_dyn:
3965 free (dynbuf);
3966 goto error_return;
3967 }
3968
3969 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3970 if (elfsec == SHN_BAD)
3971 goto error_free_dyn;
3972 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3973
3974 for (extdyn = dynbuf;
3975 extdyn < dynbuf + s->size;
3976 extdyn += bed->s->sizeof_dyn)
3977 {
3978 Elf_Internal_Dyn dyn;
3979
3980 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3981 if (dyn.d_tag == DT_SONAME)
3982 {
3983 unsigned int tagv = dyn.d_un.d_val;
3984 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3985 if (soname == NULL)
3986 goto error_free_dyn;
3987 }
3988 if (dyn.d_tag == DT_NEEDED)
3989 {
3990 struct bfd_link_needed_list *n, **pn;
3991 char *fnm, *anm;
3992 unsigned int tagv = dyn.d_un.d_val;
3993
3994 amt = sizeof (struct bfd_link_needed_list);
3995 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3996 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3997 if (n == NULL || fnm == NULL)
3998 goto error_free_dyn;
3999 amt = strlen (fnm) + 1;
4000 anm = (char *) bfd_alloc (abfd, amt);
4001 if (anm == NULL)
4002 goto error_free_dyn;
4003 memcpy (anm, fnm, amt);
4004 n->name = anm;
4005 n->by = abfd;
4006 n->next = NULL;
4007 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
4008 ;
4009 *pn = n;
4010 }
4011 if (dyn.d_tag == DT_RUNPATH)
4012 {
4013 struct bfd_link_needed_list *n, **pn;
4014 char *fnm, *anm;
4015 unsigned int tagv = dyn.d_un.d_val;
4016
4017 amt = sizeof (struct bfd_link_needed_list);
4018 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4019 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4020 if (n == NULL || fnm == NULL)
4021 goto error_free_dyn;
4022 amt = strlen (fnm) + 1;
4023 anm = (char *) bfd_alloc (abfd, amt);
4024 if (anm == NULL)
4025 goto error_free_dyn;
4026 memcpy (anm, fnm, amt);
4027 n->name = anm;
4028 n->by = abfd;
4029 n->next = NULL;
4030 for (pn = & runpath;
4031 *pn != NULL;
4032 pn = &(*pn)->next)
4033 ;
4034 *pn = n;
4035 }
4036 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
4037 if (!runpath && dyn.d_tag == DT_RPATH)
4038 {
4039 struct bfd_link_needed_list *n, **pn;
4040 char *fnm, *anm;
4041 unsigned int tagv = dyn.d_un.d_val;
4042
4043 amt = sizeof (struct bfd_link_needed_list);
4044 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4045 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4046 if (n == NULL || fnm == NULL)
4047 goto error_free_dyn;
4048 amt = strlen (fnm) + 1;
4049 anm = (char *) bfd_alloc (abfd, amt);
4050 if (anm == NULL)
4051 goto error_free_dyn;
4052 memcpy (anm, fnm, amt);
4053 n->name = anm;
4054 n->by = abfd;
4055 n->next = NULL;
4056 for (pn = & rpath;
4057 *pn != NULL;
4058 pn = &(*pn)->next)
4059 ;
4060 *pn = n;
4061 }
4062 if (dyn.d_tag == DT_AUDIT)
4063 {
4064 unsigned int tagv = dyn.d_un.d_val;
4065 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4066 }
4067 }
4068
4069 free (dynbuf);
4070 }
4071
4072 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
4073 frees all more recently bfd_alloc'd blocks as well. */
4074 if (runpath)
4075 rpath = runpath;
4076
4077 if (rpath)
4078 {
4079 struct bfd_link_needed_list **pn;
4080 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
4081 ;
4082 *pn = rpath;
4083 }
4084
4085 /* If we have a PT_GNU_RELRO program header, mark as read-only
4086 all sections contained fully therein. This makes relro
4087 shared library sections appear as they will at run-time. */
4088 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
4089 while (--phdr >= elf_tdata (abfd)->phdr)
4090 if (phdr->p_type == PT_GNU_RELRO)
4091 {
4092 for (s = abfd->sections; s != NULL; s = s->next)
4093 if ((s->flags & SEC_ALLOC) != 0
4094 && s->vma >= phdr->p_vaddr
4095 && s->vma + s->size <= phdr->p_vaddr + phdr->p_memsz)
4096 s->flags |= SEC_READONLY;
4097 break;
4098 }
4099
4100 /* We do not want to include any of the sections in a dynamic
4101 object in the output file. We hack by simply clobbering the
4102 list of sections in the BFD. This could be handled more
4103 cleanly by, say, a new section flag; the existing
4104 SEC_NEVER_LOAD flag is not the one we want, because that one
4105 still implies that the section takes up space in the output
4106 file. */
4107 bfd_section_list_clear (abfd);
4108
4109 /* Find the name to use in a DT_NEEDED entry that refers to this
4110 object. If the object has a DT_SONAME entry, we use it.
4111 Otherwise, if the generic linker stuck something in
4112 elf_dt_name, we use that. Otherwise, we just use the file
4113 name. */
4114 if (soname == NULL || *soname == '\0')
4115 {
4116 soname = elf_dt_name (abfd);
4117 if (soname == NULL || *soname == '\0')
4118 soname = bfd_get_filename (abfd);
4119 }
4120
4121 /* Save the SONAME because sometimes the linker emulation code
4122 will need to know it. */
4123 elf_dt_name (abfd) = soname;
4124
4125 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4126 if (ret < 0)
4127 goto error_return;
4128
4129 /* If we have already included this dynamic object in the
4130 link, just ignore it. There is no reason to include a
4131 particular dynamic object more than once. */
4132 if (ret > 0)
4133 return TRUE;
4134
4135 /* Save the DT_AUDIT entry for the linker emulation code. */
4136 elf_dt_audit (abfd) = audit;
4137 }
4138
4139 /* If this is a dynamic object, we always link against the .dynsym
4140 symbol table, not the .symtab symbol table. The dynamic linker
4141 will only see the .dynsym symbol table, so there is no reason to
4142 look at .symtab for a dynamic object. */
4143
4144 if (! dynamic || elf_dynsymtab (abfd) == 0)
4145 hdr = &elf_tdata (abfd)->symtab_hdr;
4146 else
4147 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4148
4149 symcount = hdr->sh_size / bed->s->sizeof_sym;
4150
4151 /* The sh_info field of the symtab header tells us where the
4152 external symbols start. We don't care about the local symbols at
4153 this point. */
4154 if (elf_bad_symtab (abfd))
4155 {
4156 extsymcount = symcount;
4157 extsymoff = 0;
4158 }
4159 else
4160 {
4161 extsymcount = symcount - hdr->sh_info;
4162 extsymoff = hdr->sh_info;
4163 }
4164
4165 sym_hash = elf_sym_hashes (abfd);
4166 if (extsymcount != 0)
4167 {
4168 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4169 NULL, NULL, NULL);
4170 if (isymbuf == NULL)
4171 goto error_return;
4172
4173 if (sym_hash == NULL)
4174 {
4175 /* We store a pointer to the hash table entry for each
4176 external symbol. */
4177 amt = extsymcount;
4178 amt *= sizeof (struct elf_link_hash_entry *);
4179 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4180 if (sym_hash == NULL)
4181 goto error_free_sym;
4182 elf_sym_hashes (abfd) = sym_hash;
4183 }
4184 }
4185
4186 if (dynamic)
4187 {
4188 /* Read in any version definitions. */
4189 if (!_bfd_elf_slurp_version_tables (abfd,
4190 info->default_imported_symver))
4191 goto error_free_sym;
4192
4193 /* Read in the symbol versions, but don't bother to convert them
4194 to internal format. */
4195 if (elf_dynversym (abfd) != 0)
4196 {
4197 Elf_Internal_Shdr *versymhdr;
4198
4199 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4200 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
4201 if (extversym == NULL)
4202 goto error_free_sym;
4203 amt = versymhdr->sh_size;
4204 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
4205 || bfd_bread (extversym, amt, abfd) != amt)
4206 goto error_free_vers;
4207 }
4208 }
4209
4210 /* If we are loading an as-needed shared lib, save the symbol table
4211 state before we start adding symbols. If the lib turns out
4212 to be unneeded, restore the state. */
4213 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4214 {
4215 unsigned int i;
4216 size_t entsize;
4217
4218 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4219 {
4220 struct bfd_hash_entry *p;
4221 struct elf_link_hash_entry *h;
4222
4223 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4224 {
4225 h = (struct elf_link_hash_entry *) p;
4226 entsize += htab->root.table.entsize;
4227 if (h->root.type == bfd_link_hash_warning)
4228 entsize += htab->root.table.entsize;
4229 }
4230 }
4231
4232 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4233 old_tab = bfd_malloc (tabsize + entsize);
4234 if (old_tab == NULL)
4235 goto error_free_vers;
4236
4237 /* Remember the current objalloc pointer, so that all mem for
4238 symbols added can later be reclaimed. */
4239 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4240 if (alloc_mark == NULL)
4241 goto error_free_vers;
4242
4243 /* Make a special call to the linker "notice" function to
4244 tell it that we are about to handle an as-needed lib. */
4245 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4246 goto error_free_vers;
4247
4248 /* Clone the symbol table. Remember some pointers into the
4249 symbol table, and dynamic symbol count. */
4250 old_ent = (char *) old_tab + tabsize;
4251 memcpy (old_tab, htab->root.table.table, tabsize);
4252 old_undefs = htab->root.undefs;
4253 old_undefs_tail = htab->root.undefs_tail;
4254 old_table = htab->root.table.table;
4255 old_size = htab->root.table.size;
4256 old_count = htab->root.table.count;
4257 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4258 if (old_strtab == NULL)
4259 goto error_free_vers;
4260
4261 for (i = 0; i < htab->root.table.size; i++)
4262 {
4263 struct bfd_hash_entry *p;
4264 struct elf_link_hash_entry *h;
4265
4266 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4267 {
4268 memcpy (old_ent, p, htab->root.table.entsize);
4269 old_ent = (char *) old_ent + htab->root.table.entsize;
4270 h = (struct elf_link_hash_entry *) p;
4271 if (h->root.type == bfd_link_hash_warning)
4272 {
4273 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4274 old_ent = (char *) old_ent + htab->root.table.entsize;
4275 }
4276 }
4277 }
4278 }
4279
4280 weaks = NULL;
4281 ever = extversym != NULL ? extversym + extsymoff : NULL;
4282 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4283 isym < isymend;
4284 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4285 {
4286 int bind;
4287 bfd_vma value;
4288 asection *sec, *new_sec;
4289 flagword flags;
4290 const char *name;
4291 struct elf_link_hash_entry *h;
4292 struct elf_link_hash_entry *hi;
4293 bfd_boolean definition;
4294 bfd_boolean size_change_ok;
4295 bfd_boolean type_change_ok;
4296 bfd_boolean new_weak;
4297 bfd_boolean old_weak;
4298 bfd_boolean override;
4299 bfd_boolean common;
4300 bfd_boolean discarded;
4301 unsigned int old_alignment;
4302 bfd *old_bfd;
4303 bfd_boolean matched;
4304
4305 override = FALSE;
4306
4307 flags = BSF_NO_FLAGS;
4308 sec = NULL;
4309 value = isym->st_value;
4310 common = bed->common_definition (isym);
4311 if (common && info->inhibit_common_definition)
4312 {
4313 /* Treat common symbol as undefined for --no-define-common. */
4314 isym->st_shndx = SHN_UNDEF;
4315 common = FALSE;
4316 }
4317 discarded = FALSE;
4318
4319 bind = ELF_ST_BIND (isym->st_info);
4320 switch (bind)
4321 {
4322 case STB_LOCAL:
4323 /* This should be impossible, since ELF requires that all
4324 global symbols follow all local symbols, and that sh_info
4325 point to the first global symbol. Unfortunately, Irix 5
4326 screws this up. */
4327 continue;
4328
4329 case STB_GLOBAL:
4330 if (isym->st_shndx != SHN_UNDEF && !common)
4331 flags = BSF_GLOBAL;
4332 break;
4333
4334 case STB_WEAK:
4335 flags = BSF_WEAK;
4336 break;
4337
4338 case STB_GNU_UNIQUE:
4339 flags = BSF_GNU_UNIQUE;
4340 break;
4341
4342 default:
4343 /* Leave it up to the processor backend. */
4344 break;
4345 }
4346
4347 if (isym->st_shndx == SHN_UNDEF)
4348 sec = bfd_und_section_ptr;
4349 else if (isym->st_shndx == SHN_ABS)
4350 sec = bfd_abs_section_ptr;
4351 else if (isym->st_shndx == SHN_COMMON)
4352 {
4353 sec = bfd_com_section_ptr;
4354 /* What ELF calls the size we call the value. What ELF
4355 calls the value we call the alignment. */
4356 value = isym->st_size;
4357 }
4358 else
4359 {
4360 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4361 if (sec == NULL)
4362 sec = bfd_abs_section_ptr;
4363 else if (discarded_section (sec))
4364 {
4365 /* Symbols from discarded section are undefined. We keep
4366 its visibility. */
4367 sec = bfd_und_section_ptr;
4368 discarded = TRUE;
4369 isym->st_shndx = SHN_UNDEF;
4370 }
4371 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4372 value -= sec->vma;
4373 }
4374
4375 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4376 isym->st_name);
4377 if (name == NULL)
4378 goto error_free_vers;
4379
4380 if (isym->st_shndx == SHN_COMMON
4381 && (abfd->flags & BFD_PLUGIN) != 0)
4382 {
4383 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4384
4385 if (xc == NULL)
4386 {
4387 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4388 | SEC_EXCLUDE);
4389 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4390 if (xc == NULL)
4391 goto error_free_vers;
4392 }
4393 sec = xc;
4394 }
4395 else if (isym->st_shndx == SHN_COMMON
4396 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4397 && !bfd_link_relocatable (info))
4398 {
4399 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4400
4401 if (tcomm == NULL)
4402 {
4403 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4404 | SEC_LINKER_CREATED);
4405 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4406 if (tcomm == NULL)
4407 goto error_free_vers;
4408 }
4409 sec = tcomm;
4410 }
4411 else if (bed->elf_add_symbol_hook)
4412 {
4413 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4414 &sec, &value))
4415 goto error_free_vers;
4416
4417 /* The hook function sets the name to NULL if this symbol
4418 should be skipped for some reason. */
4419 if (name == NULL)
4420 continue;
4421 }
4422
4423 /* Sanity check that all possibilities were handled. */
4424 if (sec == NULL)
4425 {
4426 bfd_set_error (bfd_error_bad_value);
4427 goto error_free_vers;
4428 }
4429
4430 /* Silently discard TLS symbols from --just-syms. There's
4431 no way to combine a static TLS block with a new TLS block
4432 for this executable. */
4433 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4434 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4435 continue;
4436
4437 if (bfd_is_und_section (sec)
4438 || bfd_is_com_section (sec))
4439 definition = FALSE;
4440 else
4441 definition = TRUE;
4442
4443 size_change_ok = FALSE;
4444 type_change_ok = bed->type_change_ok;
4445 old_weak = FALSE;
4446 matched = FALSE;
4447 old_alignment = 0;
4448 old_bfd = NULL;
4449 new_sec = sec;
4450
4451 if (is_elf_hash_table (htab))
4452 {
4453 Elf_Internal_Versym iver;
4454 unsigned int vernum = 0;
4455 bfd_boolean skip;
4456
4457 if (ever == NULL)
4458 {
4459 if (info->default_imported_symver)
4460 /* Use the default symbol version created earlier. */
4461 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4462 else
4463 iver.vs_vers = 0;
4464 }
4465 else
4466 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4467
4468 vernum = iver.vs_vers & VERSYM_VERSION;
4469
4470 /* If this is a hidden symbol, or if it is not version
4471 1, we append the version name to the symbol name.
4472 However, we do not modify a non-hidden absolute symbol
4473 if it is not a function, because it might be the version
4474 symbol itself. FIXME: What if it isn't? */
4475 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4476 || (vernum > 1
4477 && (!bfd_is_abs_section (sec)
4478 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4479 {
4480 const char *verstr;
4481 size_t namelen, verlen, newlen;
4482 char *newname, *p;
4483
4484 if (isym->st_shndx != SHN_UNDEF)
4485 {
4486 if (vernum > elf_tdata (abfd)->cverdefs)
4487 verstr = NULL;
4488 else if (vernum > 1)
4489 verstr =
4490 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4491 else
4492 verstr = "";
4493
4494 if (verstr == NULL)
4495 {
4496 _bfd_error_handler
4497 /* xgettext:c-format */
4498 (_("%pB: %s: invalid version %u (max %d)"),
4499 abfd, name, vernum,
4500 elf_tdata (abfd)->cverdefs);
4501 bfd_set_error (bfd_error_bad_value);
4502 goto error_free_vers;
4503 }
4504 }
4505 else
4506 {
4507 /* We cannot simply test for the number of
4508 entries in the VERNEED section since the
4509 numbers for the needed versions do not start
4510 at 0. */
4511 Elf_Internal_Verneed *t;
4512
4513 verstr = NULL;
4514 for (t = elf_tdata (abfd)->verref;
4515 t != NULL;
4516 t = t->vn_nextref)
4517 {
4518 Elf_Internal_Vernaux *a;
4519
4520 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4521 {
4522 if (a->vna_other == vernum)
4523 {
4524 verstr = a->vna_nodename;
4525 break;
4526 }
4527 }
4528 if (a != NULL)
4529 break;
4530 }
4531 if (verstr == NULL)
4532 {
4533 _bfd_error_handler
4534 /* xgettext:c-format */
4535 (_("%pB: %s: invalid needed version %d"),
4536 abfd, name, vernum);
4537 bfd_set_error (bfd_error_bad_value);
4538 goto error_free_vers;
4539 }
4540 }
4541
4542 namelen = strlen (name);
4543 verlen = strlen (verstr);
4544 newlen = namelen + verlen + 2;
4545 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4546 && isym->st_shndx != SHN_UNDEF)
4547 ++newlen;
4548
4549 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4550 if (newname == NULL)
4551 goto error_free_vers;
4552 memcpy (newname, name, namelen);
4553 p = newname + namelen;
4554 *p++ = ELF_VER_CHR;
4555 /* If this is a defined non-hidden version symbol,
4556 we add another @ to the name. This indicates the
4557 default version of the symbol. */
4558 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4559 && isym->st_shndx != SHN_UNDEF)
4560 *p++ = ELF_VER_CHR;
4561 memcpy (p, verstr, verlen + 1);
4562
4563 name = newname;
4564 }
4565
4566 /* If this symbol has default visibility and the user has
4567 requested we not re-export it, then mark it as hidden. */
4568 if (!bfd_is_und_section (sec)
4569 && !dynamic
4570 && abfd->no_export
4571 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4572 isym->st_other = (STV_HIDDEN
4573 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4574
4575 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4576 sym_hash, &old_bfd, &old_weak,
4577 &old_alignment, &skip, &override,
4578 &type_change_ok, &size_change_ok,
4579 &matched))
4580 goto error_free_vers;
4581
4582 if (skip)
4583 continue;
4584
4585 /* Override a definition only if the new symbol matches the
4586 existing one. */
4587 if (override && matched)
4588 definition = FALSE;
4589
4590 h = *sym_hash;
4591 while (h->root.type == bfd_link_hash_indirect
4592 || h->root.type == bfd_link_hash_warning)
4593 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4594
4595 if (elf_tdata (abfd)->verdef != NULL
4596 && vernum > 1
4597 && definition)
4598 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4599 }
4600
4601 if (! (_bfd_generic_link_add_one_symbol
4602 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4603 (struct bfd_link_hash_entry **) sym_hash)))
4604 goto error_free_vers;
4605
4606 if ((flags & BSF_GNU_UNIQUE)
4607 && (abfd->flags & DYNAMIC) == 0
4608 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
4609 elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_unique;
4610
4611 h = *sym_hash;
4612 /* We need to make sure that indirect symbol dynamic flags are
4613 updated. */
4614 hi = h;
4615 while (h->root.type == bfd_link_hash_indirect
4616 || h->root.type == bfd_link_hash_warning)
4617 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4618
4619 /* Setting the index to -3 tells elf_link_output_extsym that
4620 this symbol is defined in a discarded section. */
4621 if (discarded)
4622 h->indx = -3;
4623
4624 *sym_hash = h;
4625
4626 new_weak = (flags & BSF_WEAK) != 0;
4627 if (dynamic
4628 && definition
4629 && new_weak
4630 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4631 && is_elf_hash_table (htab)
4632 && h->u.alias == NULL)
4633 {
4634 /* Keep a list of all weak defined non function symbols from
4635 a dynamic object, using the alias field. Later in this
4636 function we will set the alias field to the correct
4637 value. We only put non-function symbols from dynamic
4638 objects on this list, because that happens to be the only
4639 time we need to know the normal symbol corresponding to a
4640 weak symbol, and the information is time consuming to
4641 figure out. If the alias field is not already NULL,
4642 then this symbol was already defined by some previous
4643 dynamic object, and we will be using that previous
4644 definition anyhow. */
4645
4646 h->u.alias = weaks;
4647 weaks = h;
4648 }
4649
4650 /* Set the alignment of a common symbol. */
4651 if ((common || bfd_is_com_section (sec))
4652 && h->root.type == bfd_link_hash_common)
4653 {
4654 unsigned int align;
4655
4656 if (common)
4657 align = bfd_log2 (isym->st_value);
4658 else
4659 {
4660 /* The new symbol is a common symbol in a shared object.
4661 We need to get the alignment from the section. */
4662 align = new_sec->alignment_power;
4663 }
4664 if (align > old_alignment)
4665 h->root.u.c.p->alignment_power = align;
4666 else
4667 h->root.u.c.p->alignment_power = old_alignment;
4668 }
4669
4670 if (is_elf_hash_table (htab))
4671 {
4672 /* Set a flag in the hash table entry indicating the type of
4673 reference or definition we just found. A dynamic symbol
4674 is one which is referenced or defined by both a regular
4675 object and a shared object. */
4676 bfd_boolean dynsym = FALSE;
4677
4678 /* Plugin symbols aren't normal. Don't set def_regular or
4679 ref_regular for them, or make them dynamic. */
4680 if ((abfd->flags & BFD_PLUGIN) != 0)
4681 ;
4682 else if (! dynamic)
4683 {
4684 if (! definition)
4685 {
4686 h->ref_regular = 1;
4687 if (bind != STB_WEAK)
4688 h->ref_regular_nonweak = 1;
4689 }
4690 else
4691 {
4692 h->def_regular = 1;
4693 if (h->def_dynamic)
4694 {
4695 h->def_dynamic = 0;
4696 h->ref_dynamic = 1;
4697 }
4698 }
4699
4700 /* If the indirect symbol has been forced local, don't
4701 make the real symbol dynamic. */
4702 if ((h == hi || !hi->forced_local)
4703 && (bfd_link_dll (info)
4704 || h->def_dynamic
4705 || h->ref_dynamic))
4706 dynsym = TRUE;
4707 }
4708 else
4709 {
4710 if (! definition)
4711 {
4712 h->ref_dynamic = 1;
4713 hi->ref_dynamic = 1;
4714 }
4715 else
4716 {
4717 h->def_dynamic = 1;
4718 hi->def_dynamic = 1;
4719 }
4720
4721 /* If the indirect symbol has been forced local, don't
4722 make the real symbol dynamic. */
4723 if ((h == hi || !hi->forced_local)
4724 && (h->def_regular
4725 || h->ref_regular
4726 || (h->is_weakalias
4727 && weakdef (h)->dynindx != -1)))
4728 dynsym = TRUE;
4729 }
4730
4731 /* Check to see if we need to add an indirect symbol for
4732 the default name. */
4733 if (definition
4734 || (!override && h->root.type == bfd_link_hash_common))
4735 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4736 sec, value, &old_bfd, &dynsym))
4737 goto error_free_vers;
4738
4739 /* Check the alignment when a common symbol is involved. This
4740 can change when a common symbol is overridden by a normal
4741 definition or a common symbol is ignored due to the old
4742 normal definition. We need to make sure the maximum
4743 alignment is maintained. */
4744 if ((old_alignment || common)
4745 && h->root.type != bfd_link_hash_common)
4746 {
4747 unsigned int common_align;
4748 unsigned int normal_align;
4749 unsigned int symbol_align;
4750 bfd *normal_bfd;
4751 bfd *common_bfd;
4752
4753 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4754 || h->root.type == bfd_link_hash_defweak);
4755
4756 symbol_align = ffs (h->root.u.def.value) - 1;
4757 if (h->root.u.def.section->owner != NULL
4758 && (h->root.u.def.section->owner->flags
4759 & (DYNAMIC | BFD_PLUGIN)) == 0)
4760 {
4761 normal_align = h->root.u.def.section->alignment_power;
4762 if (normal_align > symbol_align)
4763 normal_align = symbol_align;
4764 }
4765 else
4766 normal_align = symbol_align;
4767
4768 if (old_alignment)
4769 {
4770 common_align = old_alignment;
4771 common_bfd = old_bfd;
4772 normal_bfd = abfd;
4773 }
4774 else
4775 {
4776 common_align = bfd_log2 (isym->st_value);
4777 common_bfd = abfd;
4778 normal_bfd = old_bfd;
4779 }
4780
4781 if (normal_align < common_align)
4782 {
4783 /* PR binutils/2735 */
4784 if (normal_bfd == NULL)
4785 _bfd_error_handler
4786 /* xgettext:c-format */
4787 (_("warning: alignment %u of common symbol `%s' in %pB is"
4788 " greater than the alignment (%u) of its section %pA"),
4789 1 << common_align, name, common_bfd,
4790 1 << normal_align, h->root.u.def.section);
4791 else
4792 _bfd_error_handler
4793 /* xgettext:c-format */
4794 (_("warning: alignment %u of symbol `%s' in %pB"
4795 " is smaller than %u in %pB"),
4796 1 << normal_align, name, normal_bfd,
4797 1 << common_align, common_bfd);
4798 }
4799 }
4800
4801 /* Remember the symbol size if it isn't undefined. */
4802 if (isym->st_size != 0
4803 && isym->st_shndx != SHN_UNDEF
4804 && (definition || h->size == 0))
4805 {
4806 if (h->size != 0
4807 && h->size != isym->st_size
4808 && ! size_change_ok)
4809 _bfd_error_handler
4810 /* xgettext:c-format */
4811 (_("warning: size of symbol `%s' changed"
4812 " from %" PRIu64 " in %pB to %" PRIu64 " in %pB"),
4813 name, (uint64_t) h->size, old_bfd,
4814 (uint64_t) isym->st_size, abfd);
4815
4816 h->size = isym->st_size;
4817 }
4818
4819 /* If this is a common symbol, then we always want H->SIZE
4820 to be the size of the common symbol. The code just above
4821 won't fix the size if a common symbol becomes larger. We
4822 don't warn about a size change here, because that is
4823 covered by --warn-common. Allow changes between different
4824 function types. */
4825 if (h->root.type == bfd_link_hash_common)
4826 h->size = h->root.u.c.size;
4827
4828 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4829 && ((definition && !new_weak)
4830 || (old_weak && h->root.type == bfd_link_hash_common)
4831 || h->type == STT_NOTYPE))
4832 {
4833 unsigned int type = ELF_ST_TYPE (isym->st_info);
4834
4835 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4836 symbol. */
4837 if (type == STT_GNU_IFUNC
4838 && (abfd->flags & DYNAMIC) != 0)
4839 type = STT_FUNC;
4840
4841 if (h->type != type)
4842 {
4843 if (h->type != STT_NOTYPE && ! type_change_ok)
4844 /* xgettext:c-format */
4845 _bfd_error_handler
4846 (_("warning: type of symbol `%s' changed"
4847 " from %d to %d in %pB"),
4848 name, h->type, type, abfd);
4849
4850 h->type = type;
4851 }
4852 }
4853
4854 /* Merge st_other field. */
4855 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4856
4857 /* We don't want to make debug symbol dynamic. */
4858 if (definition
4859 && (sec->flags & SEC_DEBUGGING)
4860 && !bfd_link_relocatable (info))
4861 dynsym = FALSE;
4862
4863 /* Nor should we make plugin symbols dynamic. */
4864 if ((abfd->flags & BFD_PLUGIN) != 0)
4865 dynsym = FALSE;
4866
4867 if (definition)
4868 {
4869 h->target_internal = isym->st_target_internal;
4870 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4871 }
4872
4873 if (definition && !dynamic)
4874 {
4875 char *p = strchr (name, ELF_VER_CHR);
4876 if (p != NULL && p[1] != ELF_VER_CHR)
4877 {
4878 /* Queue non-default versions so that .symver x, x@FOO
4879 aliases can be checked. */
4880 if (!nondeflt_vers)
4881 {
4882 amt = ((isymend - isym + 1)
4883 * sizeof (struct elf_link_hash_entry *));
4884 nondeflt_vers
4885 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4886 if (!nondeflt_vers)
4887 goto error_free_vers;
4888 }
4889 nondeflt_vers[nondeflt_vers_cnt++] = h;
4890 }
4891 }
4892
4893 if (dynsym && h->dynindx == -1)
4894 {
4895 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4896 goto error_free_vers;
4897 if (h->is_weakalias
4898 && weakdef (h)->dynindx == -1)
4899 {
4900 if (!bfd_elf_link_record_dynamic_symbol (info, weakdef (h)))
4901 goto error_free_vers;
4902 }
4903 }
4904 else if (h->dynindx != -1)
4905 /* If the symbol already has a dynamic index, but
4906 visibility says it should not be visible, turn it into
4907 a local symbol. */
4908 switch (ELF_ST_VISIBILITY (h->other))
4909 {
4910 case STV_INTERNAL:
4911 case STV_HIDDEN:
4912 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4913 dynsym = FALSE;
4914 break;
4915 }
4916
4917 /* Don't add DT_NEEDED for references from the dummy bfd nor
4918 for unmatched symbol. */
4919 if (!add_needed
4920 && matched
4921 && definition
4922 && ((dynsym
4923 && h->ref_regular_nonweak
4924 && (old_bfd == NULL
4925 || (old_bfd->flags & BFD_PLUGIN) == 0))
4926 || (h->ref_dynamic_nonweak
4927 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4928 && !on_needed_list (elf_dt_name (abfd),
4929 htab->needed, NULL))))
4930 {
4931 int ret;
4932 const char *soname = elf_dt_name (abfd);
4933
4934 info->callbacks->minfo ("%!", soname, old_bfd,
4935 h->root.root.string);
4936
4937 /* A symbol from a library loaded via DT_NEEDED of some
4938 other library is referenced by a regular object.
4939 Add a DT_NEEDED entry for it. Issue an error if
4940 --no-add-needed is used and the reference was not
4941 a weak one. */
4942 if (old_bfd != NULL
4943 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4944 {
4945 _bfd_error_handler
4946 /* xgettext:c-format */
4947 (_("%pB: undefined reference to symbol '%s'"),
4948 old_bfd, name);
4949 bfd_set_error (bfd_error_missing_dso);
4950 goto error_free_vers;
4951 }
4952
4953 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4954 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4955
4956 add_needed = TRUE;
4957 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4958 if (ret < 0)
4959 goto error_free_vers;
4960
4961 BFD_ASSERT (ret == 0);
4962 }
4963 }
4964 }
4965
4966 if (info->lto_plugin_active
4967 && !bfd_link_relocatable (info)
4968 && (abfd->flags & BFD_PLUGIN) == 0
4969 && !just_syms
4970 && extsymcount)
4971 {
4972 int r_sym_shift;
4973
4974 if (bed->s->arch_size == 32)
4975 r_sym_shift = 8;
4976 else
4977 r_sym_shift = 32;
4978
4979 /* If linker plugin is enabled, set non_ir_ref_regular on symbols
4980 referenced in regular objects so that linker plugin will get
4981 the correct symbol resolution. */
4982
4983 sym_hash = elf_sym_hashes (abfd);
4984 for (s = abfd->sections; s != NULL; s = s->next)
4985 {
4986 Elf_Internal_Rela *internal_relocs;
4987 Elf_Internal_Rela *rel, *relend;
4988
4989 /* Don't check relocations in excluded sections. */
4990 if ((s->flags & SEC_RELOC) == 0
4991 || s->reloc_count == 0
4992 || (s->flags & SEC_EXCLUDE) != 0
4993 || ((info->strip == strip_all
4994 || info->strip == strip_debugger)
4995 && (s->flags & SEC_DEBUGGING) != 0))
4996 continue;
4997
4998 internal_relocs = _bfd_elf_link_read_relocs (abfd, s, NULL,
4999 NULL,
5000 info->keep_memory);
5001 if (internal_relocs == NULL)
5002 goto error_free_vers;
5003
5004 rel = internal_relocs;
5005 relend = rel + s->reloc_count;
5006 for ( ; rel < relend; rel++)
5007 {
5008 unsigned long r_symndx = rel->r_info >> r_sym_shift;
5009 struct elf_link_hash_entry *h;
5010
5011 /* Skip local symbols. */
5012 if (r_symndx < extsymoff)
5013 continue;
5014
5015 h = sym_hash[r_symndx - extsymoff];
5016 if (h != NULL)
5017 h->root.non_ir_ref_regular = 1;
5018 }
5019
5020 if (elf_section_data (s)->relocs != internal_relocs)
5021 free (internal_relocs);
5022 }
5023 }
5024
5025 if (extversym != NULL)
5026 {
5027 free (extversym);
5028 extversym = NULL;
5029 }
5030
5031 if (isymbuf != NULL)
5032 {
5033 free (isymbuf);
5034 isymbuf = NULL;
5035 }
5036
5037 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
5038 {
5039 unsigned int i;
5040
5041 /* Restore the symbol table. */
5042 old_ent = (char *) old_tab + tabsize;
5043 memset (elf_sym_hashes (abfd), 0,
5044 extsymcount * sizeof (struct elf_link_hash_entry *));
5045 htab->root.table.table = old_table;
5046 htab->root.table.size = old_size;
5047 htab->root.table.count = old_count;
5048 memcpy (htab->root.table.table, old_tab, tabsize);
5049 htab->root.undefs = old_undefs;
5050 htab->root.undefs_tail = old_undefs_tail;
5051 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
5052 free (old_strtab);
5053 old_strtab = NULL;
5054 for (i = 0; i < htab->root.table.size; i++)
5055 {
5056 struct bfd_hash_entry *p;
5057 struct elf_link_hash_entry *h;
5058 bfd_size_type size;
5059 unsigned int alignment_power;
5060 unsigned int non_ir_ref_dynamic;
5061
5062 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
5063 {
5064 h = (struct elf_link_hash_entry *) p;
5065 if (h->root.type == bfd_link_hash_warning)
5066 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5067
5068 /* Preserve the maximum alignment and size for common
5069 symbols even if this dynamic lib isn't on DT_NEEDED
5070 since it can still be loaded at run time by another
5071 dynamic lib. */
5072 if (h->root.type == bfd_link_hash_common)
5073 {
5074 size = h->root.u.c.size;
5075 alignment_power = h->root.u.c.p->alignment_power;
5076 }
5077 else
5078 {
5079 size = 0;
5080 alignment_power = 0;
5081 }
5082 /* Preserve non_ir_ref_dynamic so that this symbol
5083 will be exported when the dynamic lib becomes needed
5084 in the second pass. */
5085 non_ir_ref_dynamic = h->root.non_ir_ref_dynamic;
5086 memcpy (p, old_ent, htab->root.table.entsize);
5087 old_ent = (char *) old_ent + htab->root.table.entsize;
5088 h = (struct elf_link_hash_entry *) p;
5089 if (h->root.type == bfd_link_hash_warning)
5090 {
5091 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
5092 old_ent = (char *) old_ent + htab->root.table.entsize;
5093 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5094 }
5095 if (h->root.type == bfd_link_hash_common)
5096 {
5097 if (size > h->root.u.c.size)
5098 h->root.u.c.size = size;
5099 if (alignment_power > h->root.u.c.p->alignment_power)
5100 h->root.u.c.p->alignment_power = alignment_power;
5101 }
5102 h->root.non_ir_ref_dynamic = non_ir_ref_dynamic;
5103 }
5104 }
5105
5106 /* Make a special call to the linker "notice" function to
5107 tell it that symbols added for crefs may need to be removed. */
5108 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
5109 goto error_free_vers;
5110
5111 free (old_tab);
5112 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
5113 alloc_mark);
5114 if (nondeflt_vers != NULL)
5115 free (nondeflt_vers);
5116 return TRUE;
5117 }
5118
5119 if (old_tab != NULL)
5120 {
5121 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
5122 goto error_free_vers;
5123 free (old_tab);
5124 old_tab = NULL;
5125 }
5126
5127 /* Now that all the symbols from this input file are created, if
5128 not performing a relocatable link, handle .symver foo, foo@BAR
5129 such that any relocs against foo become foo@BAR. */
5130 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
5131 {
5132 size_t cnt, symidx;
5133
5134 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
5135 {
5136 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
5137 char *shortname, *p;
5138
5139 p = strchr (h->root.root.string, ELF_VER_CHR);
5140 if (p == NULL
5141 || (h->root.type != bfd_link_hash_defined
5142 && h->root.type != bfd_link_hash_defweak))
5143 continue;
5144
5145 amt = p - h->root.root.string;
5146 shortname = (char *) bfd_malloc (amt + 1);
5147 if (!shortname)
5148 goto error_free_vers;
5149 memcpy (shortname, h->root.root.string, amt);
5150 shortname[amt] = '\0';
5151
5152 hi = (struct elf_link_hash_entry *)
5153 bfd_link_hash_lookup (&htab->root, shortname,
5154 FALSE, FALSE, FALSE);
5155 if (hi != NULL
5156 && hi->root.type == h->root.type
5157 && hi->root.u.def.value == h->root.u.def.value
5158 && hi->root.u.def.section == h->root.u.def.section)
5159 {
5160 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
5161 hi->root.type = bfd_link_hash_indirect;
5162 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
5163 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
5164 sym_hash = elf_sym_hashes (abfd);
5165 if (sym_hash)
5166 for (symidx = 0; symidx < extsymcount; ++symidx)
5167 if (sym_hash[symidx] == hi)
5168 {
5169 sym_hash[symidx] = h;
5170 break;
5171 }
5172 }
5173 free (shortname);
5174 }
5175 free (nondeflt_vers);
5176 nondeflt_vers = NULL;
5177 }
5178
5179 /* Now set the alias field correctly for all the weak defined
5180 symbols we found. The only way to do this is to search all the
5181 symbols. Since we only need the information for non functions in
5182 dynamic objects, that's the only time we actually put anything on
5183 the list WEAKS. We need this information so that if a regular
5184 object refers to a symbol defined weakly in a dynamic object, the
5185 real symbol in the dynamic object is also put in the dynamic
5186 symbols; we also must arrange for both symbols to point to the
5187 same memory location. We could handle the general case of symbol
5188 aliasing, but a general symbol alias can only be generated in
5189 assembler code, handling it correctly would be very time
5190 consuming, and other ELF linkers don't handle general aliasing
5191 either. */
5192 if (weaks != NULL)
5193 {
5194 struct elf_link_hash_entry **hpp;
5195 struct elf_link_hash_entry **hppend;
5196 struct elf_link_hash_entry **sorted_sym_hash;
5197 struct elf_link_hash_entry *h;
5198 size_t sym_count;
5199
5200 /* Since we have to search the whole symbol list for each weak
5201 defined symbol, search time for N weak defined symbols will be
5202 O(N^2). Binary search will cut it down to O(NlogN). */
5203 amt = extsymcount;
5204 amt *= sizeof (struct elf_link_hash_entry *);
5205 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
5206 if (sorted_sym_hash == NULL)
5207 goto error_return;
5208 sym_hash = sorted_sym_hash;
5209 hpp = elf_sym_hashes (abfd);
5210 hppend = hpp + extsymcount;
5211 sym_count = 0;
5212 for (; hpp < hppend; hpp++)
5213 {
5214 h = *hpp;
5215 if (h != NULL
5216 && h->root.type == bfd_link_hash_defined
5217 && !bed->is_function_type (h->type))
5218 {
5219 *sym_hash = h;
5220 sym_hash++;
5221 sym_count++;
5222 }
5223 }
5224
5225 qsort (sorted_sym_hash, sym_count,
5226 sizeof (struct elf_link_hash_entry *),
5227 elf_sort_symbol);
5228
5229 while (weaks != NULL)
5230 {
5231 struct elf_link_hash_entry *hlook;
5232 asection *slook;
5233 bfd_vma vlook;
5234 size_t i, j, idx = 0;
5235
5236 hlook = weaks;
5237 weaks = hlook->u.alias;
5238 hlook->u.alias = NULL;
5239
5240 if (hlook->root.type != bfd_link_hash_defined
5241 && hlook->root.type != bfd_link_hash_defweak)
5242 continue;
5243
5244 slook = hlook->root.u.def.section;
5245 vlook = hlook->root.u.def.value;
5246
5247 i = 0;
5248 j = sym_count;
5249 while (i != j)
5250 {
5251 bfd_signed_vma vdiff;
5252 idx = (i + j) / 2;
5253 h = sorted_sym_hash[idx];
5254 vdiff = vlook - h->root.u.def.value;
5255 if (vdiff < 0)
5256 j = idx;
5257 else if (vdiff > 0)
5258 i = idx + 1;
5259 else
5260 {
5261 int sdiff = slook->id - h->root.u.def.section->id;
5262 if (sdiff < 0)
5263 j = idx;
5264 else if (sdiff > 0)
5265 i = idx + 1;
5266 else
5267 break;
5268 }
5269 }
5270
5271 /* We didn't find a value/section match. */
5272 if (i == j)
5273 continue;
5274
5275 /* With multiple aliases, or when the weak symbol is already
5276 strongly defined, we have multiple matching symbols and
5277 the binary search above may land on any of them. Step
5278 one past the matching symbol(s). */
5279 while (++idx != j)
5280 {
5281 h = sorted_sym_hash[idx];
5282 if (h->root.u.def.section != slook
5283 || h->root.u.def.value != vlook)
5284 break;
5285 }
5286
5287 /* Now look back over the aliases. Since we sorted by size
5288 as well as value and section, we'll choose the one with
5289 the largest size. */
5290 while (idx-- != i)
5291 {
5292 h = sorted_sym_hash[idx];
5293
5294 /* Stop if value or section doesn't match. */
5295 if (h->root.u.def.section != slook
5296 || h->root.u.def.value != vlook)
5297 break;
5298 else if (h != hlook)
5299 {
5300 struct elf_link_hash_entry *t;
5301
5302 hlook->u.alias = h;
5303 hlook->is_weakalias = 1;
5304 t = h;
5305 if (t->u.alias != NULL)
5306 while (t->u.alias != h)
5307 t = t->u.alias;
5308 t->u.alias = hlook;
5309
5310 /* If the weak definition is in the list of dynamic
5311 symbols, make sure the real definition is put
5312 there as well. */
5313 if (hlook->dynindx != -1 && h->dynindx == -1)
5314 {
5315 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5316 {
5317 err_free_sym_hash:
5318 free (sorted_sym_hash);
5319 goto error_return;
5320 }
5321 }
5322
5323 /* If the real definition is in the list of dynamic
5324 symbols, make sure the weak definition is put
5325 there as well. If we don't do this, then the
5326 dynamic loader might not merge the entries for the
5327 real definition and the weak definition. */
5328 if (h->dynindx != -1 && hlook->dynindx == -1)
5329 {
5330 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5331 goto err_free_sym_hash;
5332 }
5333 break;
5334 }
5335 }
5336 }
5337
5338 free (sorted_sym_hash);
5339 }
5340
5341 if (bed->check_directives
5342 && !(*bed->check_directives) (abfd, info))
5343 return FALSE;
5344
5345 /* If this is a non-traditional link, try to optimize the handling
5346 of the .stab/.stabstr sections. */
5347 if (! dynamic
5348 && ! info->traditional_format
5349 && is_elf_hash_table (htab)
5350 && (info->strip != strip_all && info->strip != strip_debugger))
5351 {
5352 asection *stabstr;
5353
5354 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5355 if (stabstr != NULL)
5356 {
5357 bfd_size_type string_offset = 0;
5358 asection *stab;
5359
5360 for (stab = abfd->sections; stab; stab = stab->next)
5361 if (CONST_STRNEQ (stab->name, ".stab")
5362 && (!stab->name[5] ||
5363 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5364 && (stab->flags & SEC_MERGE) == 0
5365 && !bfd_is_abs_section (stab->output_section))
5366 {
5367 struct bfd_elf_section_data *secdata;
5368
5369 secdata = elf_section_data (stab);
5370 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5371 stabstr, &secdata->sec_info,
5372 &string_offset))
5373 goto error_return;
5374 if (secdata->sec_info)
5375 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5376 }
5377 }
5378 }
5379
5380 if (is_elf_hash_table (htab) && add_needed)
5381 {
5382 /* Add this bfd to the loaded list. */
5383 struct elf_link_loaded_list *n;
5384
5385 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5386 if (n == NULL)
5387 goto error_return;
5388 n->abfd = abfd;
5389 n->next = htab->loaded;
5390 htab->loaded = n;
5391 }
5392
5393 return TRUE;
5394
5395 error_free_vers:
5396 if (old_tab != NULL)
5397 free (old_tab);
5398 if (old_strtab != NULL)
5399 free (old_strtab);
5400 if (nondeflt_vers != NULL)
5401 free (nondeflt_vers);
5402 if (extversym != NULL)
5403 free (extversym);
5404 error_free_sym:
5405 if (isymbuf != NULL)
5406 free (isymbuf);
5407 error_return:
5408 return FALSE;
5409 }
5410
5411 /* Return the linker hash table entry of a symbol that might be
5412 satisfied by an archive symbol. Return -1 on error. */
5413
5414 struct elf_link_hash_entry *
5415 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5416 struct bfd_link_info *info,
5417 const char *name)
5418 {
5419 struct elf_link_hash_entry *h;
5420 char *p, *copy;
5421 size_t len, first;
5422
5423 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5424 if (h != NULL)
5425 return h;
5426
5427 /* If this is a default version (the name contains @@), look up the
5428 symbol again with only one `@' as well as without the version.
5429 The effect is that references to the symbol with and without the
5430 version will be matched by the default symbol in the archive. */
5431
5432 p = strchr (name, ELF_VER_CHR);
5433 if (p == NULL || p[1] != ELF_VER_CHR)
5434 return h;
5435
5436 /* First check with only one `@'. */
5437 len = strlen (name);
5438 copy = (char *) bfd_alloc (abfd, len);
5439 if (copy == NULL)
5440 return (struct elf_link_hash_entry *) -1;
5441
5442 first = p - name + 1;
5443 memcpy (copy, name, first);
5444 memcpy (copy + first, name + first + 1, len - first);
5445
5446 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5447 if (h == NULL)
5448 {
5449 /* We also need to check references to the symbol without the
5450 version. */
5451 copy[first - 1] = '\0';
5452 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5453 FALSE, FALSE, TRUE);
5454 }
5455
5456 bfd_release (abfd, copy);
5457 return h;
5458 }
5459
5460 /* Add symbols from an ELF archive file to the linker hash table. We
5461 don't use _bfd_generic_link_add_archive_symbols because we need to
5462 handle versioned symbols.
5463
5464 Fortunately, ELF archive handling is simpler than that done by
5465 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5466 oddities. In ELF, if we find a symbol in the archive map, and the
5467 symbol is currently undefined, we know that we must pull in that
5468 object file.
5469
5470 Unfortunately, we do have to make multiple passes over the symbol
5471 table until nothing further is resolved. */
5472
5473 static bfd_boolean
5474 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5475 {
5476 symindex c;
5477 unsigned char *included = NULL;
5478 carsym *symdefs;
5479 bfd_boolean loop;
5480 bfd_size_type amt;
5481 const struct elf_backend_data *bed;
5482 struct elf_link_hash_entry * (*archive_symbol_lookup)
5483 (bfd *, struct bfd_link_info *, const char *);
5484
5485 if (! bfd_has_map (abfd))
5486 {
5487 /* An empty archive is a special case. */
5488 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5489 return TRUE;
5490 bfd_set_error (bfd_error_no_armap);
5491 return FALSE;
5492 }
5493
5494 /* Keep track of all symbols we know to be already defined, and all
5495 files we know to be already included. This is to speed up the
5496 second and subsequent passes. */
5497 c = bfd_ardata (abfd)->symdef_count;
5498 if (c == 0)
5499 return TRUE;
5500 amt = c;
5501 amt *= sizeof (*included);
5502 included = (unsigned char *) bfd_zmalloc (amt);
5503 if (included == NULL)
5504 return FALSE;
5505
5506 symdefs = bfd_ardata (abfd)->symdefs;
5507 bed = get_elf_backend_data (abfd);
5508 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5509
5510 do
5511 {
5512 file_ptr last;
5513 symindex i;
5514 carsym *symdef;
5515 carsym *symdefend;
5516
5517 loop = FALSE;
5518 last = -1;
5519
5520 symdef = symdefs;
5521 symdefend = symdef + c;
5522 for (i = 0; symdef < symdefend; symdef++, i++)
5523 {
5524 struct elf_link_hash_entry *h;
5525 bfd *element;
5526 struct bfd_link_hash_entry *undefs_tail;
5527 symindex mark;
5528
5529 if (included[i])
5530 continue;
5531 if (symdef->file_offset == last)
5532 {
5533 included[i] = TRUE;
5534 continue;
5535 }
5536
5537 h = archive_symbol_lookup (abfd, info, symdef->name);
5538 if (h == (struct elf_link_hash_entry *) -1)
5539 goto error_return;
5540
5541 if (h == NULL)
5542 continue;
5543
5544 if (h->root.type == bfd_link_hash_common)
5545 {
5546 /* We currently have a common symbol. The archive map contains
5547 a reference to this symbol, so we may want to include it. We
5548 only want to include it however, if this archive element
5549 contains a definition of the symbol, not just another common
5550 declaration of it.
5551
5552 Unfortunately some archivers (including GNU ar) will put
5553 declarations of common symbols into their archive maps, as
5554 well as real definitions, so we cannot just go by the archive
5555 map alone. Instead we must read in the element's symbol
5556 table and check that to see what kind of symbol definition
5557 this is. */
5558 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5559 continue;
5560 }
5561 else if (h->root.type != bfd_link_hash_undefined)
5562 {
5563 if (h->root.type != bfd_link_hash_undefweak)
5564 /* Symbol must be defined. Don't check it again. */
5565 included[i] = TRUE;
5566 continue;
5567 }
5568
5569 /* We need to include this archive member. */
5570 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5571 if (element == NULL)
5572 goto error_return;
5573
5574 if (! bfd_check_format (element, bfd_object))
5575 goto error_return;
5576
5577 undefs_tail = info->hash->undefs_tail;
5578
5579 if (!(*info->callbacks
5580 ->add_archive_element) (info, element, symdef->name, &element))
5581 continue;
5582 if (!bfd_link_add_symbols (element, info))
5583 goto error_return;
5584
5585 /* If there are any new undefined symbols, we need to make
5586 another pass through the archive in order to see whether
5587 they can be defined. FIXME: This isn't perfect, because
5588 common symbols wind up on undefs_tail and because an
5589 undefined symbol which is defined later on in this pass
5590 does not require another pass. This isn't a bug, but it
5591 does make the code less efficient than it could be. */
5592 if (undefs_tail != info->hash->undefs_tail)
5593 loop = TRUE;
5594
5595 /* Look backward to mark all symbols from this object file
5596 which we have already seen in this pass. */
5597 mark = i;
5598 do
5599 {
5600 included[mark] = TRUE;
5601 if (mark == 0)
5602 break;
5603 --mark;
5604 }
5605 while (symdefs[mark].file_offset == symdef->file_offset);
5606
5607 /* We mark subsequent symbols from this object file as we go
5608 on through the loop. */
5609 last = symdef->file_offset;
5610 }
5611 }
5612 while (loop);
5613
5614 free (included);
5615
5616 return TRUE;
5617
5618 error_return:
5619 if (included != NULL)
5620 free (included);
5621 return FALSE;
5622 }
5623
5624 /* Given an ELF BFD, add symbols to the global hash table as
5625 appropriate. */
5626
5627 bfd_boolean
5628 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5629 {
5630 switch (bfd_get_format (abfd))
5631 {
5632 case bfd_object:
5633 return elf_link_add_object_symbols (abfd, info);
5634 case bfd_archive:
5635 return elf_link_add_archive_symbols (abfd, info);
5636 default:
5637 bfd_set_error (bfd_error_wrong_format);
5638 return FALSE;
5639 }
5640 }
5641 \f
5642 struct hash_codes_info
5643 {
5644 unsigned long *hashcodes;
5645 bfd_boolean error;
5646 };
5647
5648 /* This function will be called though elf_link_hash_traverse to store
5649 all hash value of the exported symbols in an array. */
5650
5651 static bfd_boolean
5652 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5653 {
5654 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5655 const char *name;
5656 unsigned long ha;
5657 char *alc = NULL;
5658
5659 /* Ignore indirect symbols. These are added by the versioning code. */
5660 if (h->dynindx == -1)
5661 return TRUE;
5662
5663 name = h->root.root.string;
5664 if (h->versioned >= versioned)
5665 {
5666 char *p = strchr (name, ELF_VER_CHR);
5667 if (p != NULL)
5668 {
5669 alc = (char *) bfd_malloc (p - name + 1);
5670 if (alc == NULL)
5671 {
5672 inf->error = TRUE;
5673 return FALSE;
5674 }
5675 memcpy (alc, name, p - name);
5676 alc[p - name] = '\0';
5677 name = alc;
5678 }
5679 }
5680
5681 /* Compute the hash value. */
5682 ha = bfd_elf_hash (name);
5683
5684 /* Store the found hash value in the array given as the argument. */
5685 *(inf->hashcodes)++ = ha;
5686
5687 /* And store it in the struct so that we can put it in the hash table
5688 later. */
5689 h->u.elf_hash_value = ha;
5690
5691 if (alc != NULL)
5692 free (alc);
5693
5694 return TRUE;
5695 }
5696
5697 struct collect_gnu_hash_codes
5698 {
5699 bfd *output_bfd;
5700 const struct elf_backend_data *bed;
5701 unsigned long int nsyms;
5702 unsigned long int maskbits;
5703 unsigned long int *hashcodes;
5704 unsigned long int *hashval;
5705 unsigned long int *indx;
5706 unsigned long int *counts;
5707 bfd_vma *bitmask;
5708 bfd_byte *contents;
5709 long int min_dynindx;
5710 unsigned long int bucketcount;
5711 unsigned long int symindx;
5712 long int local_indx;
5713 long int shift1, shift2;
5714 unsigned long int mask;
5715 bfd_boolean error;
5716 };
5717
5718 /* This function will be called though elf_link_hash_traverse to store
5719 all hash value of the exported symbols in an array. */
5720
5721 static bfd_boolean
5722 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5723 {
5724 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5725 const char *name;
5726 unsigned long ha;
5727 char *alc = NULL;
5728
5729 /* Ignore indirect symbols. These are added by the versioning code. */
5730 if (h->dynindx == -1)
5731 return TRUE;
5732
5733 /* Ignore also local symbols and undefined symbols. */
5734 if (! (*s->bed->elf_hash_symbol) (h))
5735 return TRUE;
5736
5737 name = h->root.root.string;
5738 if (h->versioned >= versioned)
5739 {
5740 char *p = strchr (name, ELF_VER_CHR);
5741 if (p != NULL)
5742 {
5743 alc = (char *) bfd_malloc (p - name + 1);
5744 if (alc == NULL)
5745 {
5746 s->error = TRUE;
5747 return FALSE;
5748 }
5749 memcpy (alc, name, p - name);
5750 alc[p - name] = '\0';
5751 name = alc;
5752 }
5753 }
5754
5755 /* Compute the hash value. */
5756 ha = bfd_elf_gnu_hash (name);
5757
5758 /* Store the found hash value in the array for compute_bucket_count,
5759 and also for .dynsym reordering purposes. */
5760 s->hashcodes[s->nsyms] = ha;
5761 s->hashval[h->dynindx] = ha;
5762 ++s->nsyms;
5763 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5764 s->min_dynindx = h->dynindx;
5765
5766 if (alc != NULL)
5767 free (alc);
5768
5769 return TRUE;
5770 }
5771
5772 /* This function will be called though elf_link_hash_traverse to do
5773 final dynaminc symbol renumbering. */
5774
5775 static bfd_boolean
5776 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5777 {
5778 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5779 unsigned long int bucket;
5780 unsigned long int val;
5781
5782 /* Ignore indirect symbols. */
5783 if (h->dynindx == -1)
5784 return TRUE;
5785
5786 /* Ignore also local symbols and undefined symbols. */
5787 if (! (*s->bed->elf_hash_symbol) (h))
5788 {
5789 if (h->dynindx >= s->min_dynindx)
5790 h->dynindx = s->local_indx++;
5791 return TRUE;
5792 }
5793
5794 bucket = s->hashval[h->dynindx] % s->bucketcount;
5795 val = (s->hashval[h->dynindx] >> s->shift1)
5796 & ((s->maskbits >> s->shift1) - 1);
5797 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5798 s->bitmask[val]
5799 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5800 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5801 if (s->counts[bucket] == 1)
5802 /* Last element terminates the chain. */
5803 val |= 1;
5804 bfd_put_32 (s->output_bfd, val,
5805 s->contents + (s->indx[bucket] - s->symindx) * 4);
5806 --s->counts[bucket];
5807 h->dynindx = s->indx[bucket]++;
5808 return TRUE;
5809 }
5810
5811 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5812
5813 bfd_boolean
5814 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5815 {
5816 return !(h->forced_local
5817 || h->root.type == bfd_link_hash_undefined
5818 || h->root.type == bfd_link_hash_undefweak
5819 || ((h->root.type == bfd_link_hash_defined
5820 || h->root.type == bfd_link_hash_defweak)
5821 && h->root.u.def.section->output_section == NULL));
5822 }
5823
5824 /* Array used to determine the number of hash table buckets to use
5825 based on the number of symbols there are. If there are fewer than
5826 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5827 fewer than 37 we use 17 buckets, and so forth. We never use more
5828 than 32771 buckets. */
5829
5830 static const size_t elf_buckets[] =
5831 {
5832 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5833 16411, 32771, 0
5834 };
5835
5836 /* Compute bucket count for hashing table. We do not use a static set
5837 of possible tables sizes anymore. Instead we determine for all
5838 possible reasonable sizes of the table the outcome (i.e., the
5839 number of collisions etc) and choose the best solution. The
5840 weighting functions are not too simple to allow the table to grow
5841 without bounds. Instead one of the weighting factors is the size.
5842 Therefore the result is always a good payoff between few collisions
5843 (= short chain lengths) and table size. */
5844 static size_t
5845 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5846 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5847 unsigned long int nsyms,
5848 int gnu_hash)
5849 {
5850 size_t best_size = 0;
5851 unsigned long int i;
5852
5853 /* We have a problem here. The following code to optimize the table
5854 size requires an integer type with more the 32 bits. If
5855 BFD_HOST_U_64_BIT is set we know about such a type. */
5856 #ifdef BFD_HOST_U_64_BIT
5857 if (info->optimize)
5858 {
5859 size_t minsize;
5860 size_t maxsize;
5861 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5862 bfd *dynobj = elf_hash_table (info)->dynobj;
5863 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5864 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5865 unsigned long int *counts;
5866 bfd_size_type amt;
5867 unsigned int no_improvement_count = 0;
5868
5869 /* Possible optimization parameters: if we have NSYMS symbols we say
5870 that the hashing table must at least have NSYMS/4 and at most
5871 2*NSYMS buckets. */
5872 minsize = nsyms / 4;
5873 if (minsize == 0)
5874 minsize = 1;
5875 best_size = maxsize = nsyms * 2;
5876 if (gnu_hash)
5877 {
5878 if (minsize < 2)
5879 minsize = 2;
5880 if ((best_size & 31) == 0)
5881 ++best_size;
5882 }
5883
5884 /* Create array where we count the collisions in. We must use bfd_malloc
5885 since the size could be large. */
5886 amt = maxsize;
5887 amt *= sizeof (unsigned long int);
5888 counts = (unsigned long int *) bfd_malloc (amt);
5889 if (counts == NULL)
5890 return 0;
5891
5892 /* Compute the "optimal" size for the hash table. The criteria is a
5893 minimal chain length. The minor criteria is (of course) the size
5894 of the table. */
5895 for (i = minsize; i < maxsize; ++i)
5896 {
5897 /* Walk through the array of hashcodes and count the collisions. */
5898 BFD_HOST_U_64_BIT max;
5899 unsigned long int j;
5900 unsigned long int fact;
5901
5902 if (gnu_hash && (i & 31) == 0)
5903 continue;
5904
5905 memset (counts, '\0', i * sizeof (unsigned long int));
5906
5907 /* Determine how often each hash bucket is used. */
5908 for (j = 0; j < nsyms; ++j)
5909 ++counts[hashcodes[j] % i];
5910
5911 /* For the weight function we need some information about the
5912 pagesize on the target. This is information need not be 100%
5913 accurate. Since this information is not available (so far) we
5914 define it here to a reasonable default value. If it is crucial
5915 to have a better value some day simply define this value. */
5916 # ifndef BFD_TARGET_PAGESIZE
5917 # define BFD_TARGET_PAGESIZE (4096)
5918 # endif
5919
5920 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5921 and the chains. */
5922 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5923
5924 # if 1
5925 /* Variant 1: optimize for short chains. We add the squares
5926 of all the chain lengths (which favors many small chain
5927 over a few long chains). */
5928 for (j = 0; j < i; ++j)
5929 max += counts[j] * counts[j];
5930
5931 /* This adds penalties for the overall size of the table. */
5932 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5933 max *= fact * fact;
5934 # else
5935 /* Variant 2: Optimize a lot more for small table. Here we
5936 also add squares of the size but we also add penalties for
5937 empty slots (the +1 term). */
5938 for (j = 0; j < i; ++j)
5939 max += (1 + counts[j]) * (1 + counts[j]);
5940
5941 /* The overall size of the table is considered, but not as
5942 strong as in variant 1, where it is squared. */
5943 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5944 max *= fact;
5945 # endif
5946
5947 /* Compare with current best results. */
5948 if (max < best_chlen)
5949 {
5950 best_chlen = max;
5951 best_size = i;
5952 no_improvement_count = 0;
5953 }
5954 /* PR 11843: Avoid futile long searches for the best bucket size
5955 when there are a large number of symbols. */
5956 else if (++no_improvement_count == 100)
5957 break;
5958 }
5959
5960 free (counts);
5961 }
5962 else
5963 #endif /* defined (BFD_HOST_U_64_BIT) */
5964 {
5965 /* This is the fallback solution if no 64bit type is available or if we
5966 are not supposed to spend much time on optimizations. We select the
5967 bucket count using a fixed set of numbers. */
5968 for (i = 0; elf_buckets[i] != 0; i++)
5969 {
5970 best_size = elf_buckets[i];
5971 if (nsyms < elf_buckets[i + 1])
5972 break;
5973 }
5974 if (gnu_hash && best_size < 2)
5975 best_size = 2;
5976 }
5977
5978 return best_size;
5979 }
5980
5981 /* Size any SHT_GROUP section for ld -r. */
5982
5983 bfd_boolean
5984 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5985 {
5986 bfd *ibfd;
5987 asection *s;
5988
5989 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5990 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5991 && (s = ibfd->sections) != NULL
5992 && s->sec_info_type != SEC_INFO_TYPE_JUST_SYMS
5993 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5994 return FALSE;
5995 return TRUE;
5996 }
5997
5998 /* Set a default stack segment size. The value in INFO wins. If it
5999 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
6000 undefined it is initialized. */
6001
6002 bfd_boolean
6003 bfd_elf_stack_segment_size (bfd *output_bfd,
6004 struct bfd_link_info *info,
6005 const char *legacy_symbol,
6006 bfd_vma default_size)
6007 {
6008 struct elf_link_hash_entry *h = NULL;
6009
6010 /* Look for legacy symbol. */
6011 if (legacy_symbol)
6012 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
6013 FALSE, FALSE, FALSE);
6014 if (h && (h->root.type == bfd_link_hash_defined
6015 || h->root.type == bfd_link_hash_defweak)
6016 && h->def_regular
6017 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
6018 {
6019 /* The symbol has no type if specified on the command line. */
6020 h->type = STT_OBJECT;
6021 if (info->stacksize)
6022 /* xgettext:c-format */
6023 _bfd_error_handler (_("%pB: stack size specified and %s set"),
6024 output_bfd, legacy_symbol);
6025 else if (h->root.u.def.section != bfd_abs_section_ptr)
6026 /* xgettext:c-format */
6027 _bfd_error_handler (_("%pB: %s not absolute"),
6028 output_bfd, legacy_symbol);
6029 else
6030 info->stacksize = h->root.u.def.value;
6031 }
6032
6033 if (!info->stacksize)
6034 /* If the user didn't set a size, or explicitly inhibit the
6035 size, set it now. */
6036 info->stacksize = default_size;
6037
6038 /* Provide the legacy symbol, if it is referenced. */
6039 if (h && (h->root.type == bfd_link_hash_undefined
6040 || h->root.type == bfd_link_hash_undefweak))
6041 {
6042 struct bfd_link_hash_entry *bh = NULL;
6043
6044 if (!(_bfd_generic_link_add_one_symbol
6045 (info, output_bfd, legacy_symbol,
6046 BSF_GLOBAL, bfd_abs_section_ptr,
6047 info->stacksize >= 0 ? info->stacksize : 0,
6048 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
6049 return FALSE;
6050
6051 h = (struct elf_link_hash_entry *) bh;
6052 h->def_regular = 1;
6053 h->type = STT_OBJECT;
6054 }
6055
6056 return TRUE;
6057 }
6058
6059 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6060
6061 struct elf_gc_sweep_symbol_info
6062 {
6063 struct bfd_link_info *info;
6064 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
6065 bfd_boolean);
6066 };
6067
6068 static bfd_boolean
6069 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
6070 {
6071 if (!h->mark
6072 && (((h->root.type == bfd_link_hash_defined
6073 || h->root.type == bfd_link_hash_defweak)
6074 && !((h->def_regular || ELF_COMMON_DEF_P (h))
6075 && h->root.u.def.section->gc_mark))
6076 || h->root.type == bfd_link_hash_undefined
6077 || h->root.type == bfd_link_hash_undefweak))
6078 {
6079 struct elf_gc_sweep_symbol_info *inf;
6080
6081 inf = (struct elf_gc_sweep_symbol_info *) data;
6082 (*inf->hide_symbol) (inf->info, h, TRUE);
6083 h->def_regular = 0;
6084 h->ref_regular = 0;
6085 h->ref_regular_nonweak = 0;
6086 }
6087
6088 return TRUE;
6089 }
6090
6091 /* Set up the sizes and contents of the ELF dynamic sections. This is
6092 called by the ELF linker emulation before_allocation routine. We
6093 must set the sizes of the sections before the linker sets the
6094 addresses of the various sections. */
6095
6096 bfd_boolean
6097 bfd_elf_size_dynamic_sections (bfd *output_bfd,
6098 const char *soname,
6099 const char *rpath,
6100 const char *filter_shlib,
6101 const char *audit,
6102 const char *depaudit,
6103 const char * const *auxiliary_filters,
6104 struct bfd_link_info *info,
6105 asection **sinterpptr)
6106 {
6107 bfd *dynobj;
6108 const struct elf_backend_data *bed;
6109
6110 *sinterpptr = NULL;
6111
6112 if (!is_elf_hash_table (info->hash))
6113 return TRUE;
6114
6115 dynobj = elf_hash_table (info)->dynobj;
6116
6117 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6118 {
6119 struct bfd_elf_version_tree *verdefs;
6120 struct elf_info_failed asvinfo;
6121 struct bfd_elf_version_tree *t;
6122 struct bfd_elf_version_expr *d;
6123 asection *s;
6124 size_t soname_indx;
6125
6126 /* If we are supposed to export all symbols into the dynamic symbol
6127 table (this is not the normal case), then do so. */
6128 if (info->export_dynamic
6129 || (bfd_link_executable (info) && info->dynamic))
6130 {
6131 struct elf_info_failed eif;
6132
6133 eif.info = info;
6134 eif.failed = FALSE;
6135 elf_link_hash_traverse (elf_hash_table (info),
6136 _bfd_elf_export_symbol,
6137 &eif);
6138 if (eif.failed)
6139 return FALSE;
6140 }
6141
6142 if (soname != NULL)
6143 {
6144 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6145 soname, TRUE);
6146 if (soname_indx == (size_t) -1
6147 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
6148 return FALSE;
6149 }
6150 else
6151 soname_indx = (size_t) -1;
6152
6153 /* Make all global versions with definition. */
6154 for (t = info->version_info; t != NULL; t = t->next)
6155 for (d = t->globals.list; d != NULL; d = d->next)
6156 if (!d->symver && d->literal)
6157 {
6158 const char *verstr, *name;
6159 size_t namelen, verlen, newlen;
6160 char *newname, *p, leading_char;
6161 struct elf_link_hash_entry *newh;
6162
6163 leading_char = bfd_get_symbol_leading_char (output_bfd);
6164 name = d->pattern;
6165 namelen = strlen (name) + (leading_char != '\0');
6166 verstr = t->name;
6167 verlen = strlen (verstr);
6168 newlen = namelen + verlen + 3;
6169
6170 newname = (char *) bfd_malloc (newlen);
6171 if (newname == NULL)
6172 return FALSE;
6173 newname[0] = leading_char;
6174 memcpy (newname + (leading_char != '\0'), name, namelen);
6175
6176 /* Check the hidden versioned definition. */
6177 p = newname + namelen;
6178 *p++ = ELF_VER_CHR;
6179 memcpy (p, verstr, verlen + 1);
6180 newh = elf_link_hash_lookup (elf_hash_table (info),
6181 newname, FALSE, FALSE,
6182 FALSE);
6183 if (newh == NULL
6184 || (newh->root.type != bfd_link_hash_defined
6185 && newh->root.type != bfd_link_hash_defweak))
6186 {
6187 /* Check the default versioned definition. */
6188 *p++ = ELF_VER_CHR;
6189 memcpy (p, verstr, verlen + 1);
6190 newh = elf_link_hash_lookup (elf_hash_table (info),
6191 newname, FALSE, FALSE,
6192 FALSE);
6193 }
6194 free (newname);
6195
6196 /* Mark this version if there is a definition and it is
6197 not defined in a shared object. */
6198 if (newh != NULL
6199 && !newh->def_dynamic
6200 && (newh->root.type == bfd_link_hash_defined
6201 || newh->root.type == bfd_link_hash_defweak))
6202 d->symver = 1;
6203 }
6204
6205 /* Attach all the symbols to their version information. */
6206 asvinfo.info = info;
6207 asvinfo.failed = FALSE;
6208
6209 elf_link_hash_traverse (elf_hash_table (info),
6210 _bfd_elf_link_assign_sym_version,
6211 &asvinfo);
6212 if (asvinfo.failed)
6213 return FALSE;
6214
6215 if (!info->allow_undefined_version)
6216 {
6217 /* Check if all global versions have a definition. */
6218 bfd_boolean all_defined = TRUE;
6219 for (t = info->version_info; t != NULL; t = t->next)
6220 for (d = t->globals.list; d != NULL; d = d->next)
6221 if (d->literal && !d->symver && !d->script)
6222 {
6223 _bfd_error_handler
6224 (_("%s: undefined version: %s"),
6225 d->pattern, t->name);
6226 all_defined = FALSE;
6227 }
6228
6229 if (!all_defined)
6230 {
6231 bfd_set_error (bfd_error_bad_value);
6232 return FALSE;
6233 }
6234 }
6235
6236 /* Set up the version definition section. */
6237 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6238 BFD_ASSERT (s != NULL);
6239
6240 /* We may have created additional version definitions if we are
6241 just linking a regular application. */
6242 verdefs = info->version_info;
6243
6244 /* Skip anonymous version tag. */
6245 if (verdefs != NULL && verdefs->vernum == 0)
6246 verdefs = verdefs->next;
6247
6248 if (verdefs == NULL && !info->create_default_symver)
6249 s->flags |= SEC_EXCLUDE;
6250 else
6251 {
6252 unsigned int cdefs;
6253 bfd_size_type size;
6254 bfd_byte *p;
6255 Elf_Internal_Verdef def;
6256 Elf_Internal_Verdaux defaux;
6257 struct bfd_link_hash_entry *bh;
6258 struct elf_link_hash_entry *h;
6259 const char *name;
6260
6261 cdefs = 0;
6262 size = 0;
6263
6264 /* Make space for the base version. */
6265 size += sizeof (Elf_External_Verdef);
6266 size += sizeof (Elf_External_Verdaux);
6267 ++cdefs;
6268
6269 /* Make space for the default version. */
6270 if (info->create_default_symver)
6271 {
6272 size += sizeof (Elf_External_Verdef);
6273 ++cdefs;
6274 }
6275
6276 for (t = verdefs; t != NULL; t = t->next)
6277 {
6278 struct bfd_elf_version_deps *n;
6279
6280 /* Don't emit base version twice. */
6281 if (t->vernum == 0)
6282 continue;
6283
6284 size += sizeof (Elf_External_Verdef);
6285 size += sizeof (Elf_External_Verdaux);
6286 ++cdefs;
6287
6288 for (n = t->deps; n != NULL; n = n->next)
6289 size += sizeof (Elf_External_Verdaux);
6290 }
6291
6292 s->size = size;
6293 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6294 if (s->contents == NULL && s->size != 0)
6295 return FALSE;
6296
6297 /* Fill in the version definition section. */
6298
6299 p = s->contents;
6300
6301 def.vd_version = VER_DEF_CURRENT;
6302 def.vd_flags = VER_FLG_BASE;
6303 def.vd_ndx = 1;
6304 def.vd_cnt = 1;
6305 if (info->create_default_symver)
6306 {
6307 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6308 def.vd_next = sizeof (Elf_External_Verdef);
6309 }
6310 else
6311 {
6312 def.vd_aux = sizeof (Elf_External_Verdef);
6313 def.vd_next = (sizeof (Elf_External_Verdef)
6314 + sizeof (Elf_External_Verdaux));
6315 }
6316
6317 if (soname_indx != (size_t) -1)
6318 {
6319 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6320 soname_indx);
6321 def.vd_hash = bfd_elf_hash (soname);
6322 defaux.vda_name = soname_indx;
6323 name = soname;
6324 }
6325 else
6326 {
6327 size_t indx;
6328
6329 name = lbasename (output_bfd->filename);
6330 def.vd_hash = bfd_elf_hash (name);
6331 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6332 name, FALSE);
6333 if (indx == (size_t) -1)
6334 return FALSE;
6335 defaux.vda_name = indx;
6336 }
6337 defaux.vda_next = 0;
6338
6339 _bfd_elf_swap_verdef_out (output_bfd, &def,
6340 (Elf_External_Verdef *) p);
6341 p += sizeof (Elf_External_Verdef);
6342 if (info->create_default_symver)
6343 {
6344 /* Add a symbol representing this version. */
6345 bh = NULL;
6346 if (! (_bfd_generic_link_add_one_symbol
6347 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6348 0, NULL, FALSE,
6349 get_elf_backend_data (dynobj)->collect, &bh)))
6350 return FALSE;
6351 h = (struct elf_link_hash_entry *) bh;
6352 h->non_elf = 0;
6353 h->def_regular = 1;
6354 h->type = STT_OBJECT;
6355 h->verinfo.vertree = NULL;
6356
6357 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6358 return FALSE;
6359
6360 /* Create a duplicate of the base version with the same
6361 aux block, but different flags. */
6362 def.vd_flags = 0;
6363 def.vd_ndx = 2;
6364 def.vd_aux = sizeof (Elf_External_Verdef);
6365 if (verdefs)
6366 def.vd_next = (sizeof (Elf_External_Verdef)
6367 + sizeof (Elf_External_Verdaux));
6368 else
6369 def.vd_next = 0;
6370 _bfd_elf_swap_verdef_out (output_bfd, &def,
6371 (Elf_External_Verdef *) p);
6372 p += sizeof (Elf_External_Verdef);
6373 }
6374 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6375 (Elf_External_Verdaux *) p);
6376 p += sizeof (Elf_External_Verdaux);
6377
6378 for (t = verdefs; t != NULL; t = t->next)
6379 {
6380 unsigned int cdeps;
6381 struct bfd_elf_version_deps *n;
6382
6383 /* Don't emit the base version twice. */
6384 if (t->vernum == 0)
6385 continue;
6386
6387 cdeps = 0;
6388 for (n = t->deps; n != NULL; n = n->next)
6389 ++cdeps;
6390
6391 /* Add a symbol representing this version. */
6392 bh = NULL;
6393 if (! (_bfd_generic_link_add_one_symbol
6394 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6395 0, NULL, FALSE,
6396 get_elf_backend_data (dynobj)->collect, &bh)))
6397 return FALSE;
6398 h = (struct elf_link_hash_entry *) bh;
6399 h->non_elf = 0;
6400 h->def_regular = 1;
6401 h->type = STT_OBJECT;
6402 h->verinfo.vertree = t;
6403
6404 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6405 return FALSE;
6406
6407 def.vd_version = VER_DEF_CURRENT;
6408 def.vd_flags = 0;
6409 if (t->globals.list == NULL
6410 && t->locals.list == NULL
6411 && ! t->used)
6412 def.vd_flags |= VER_FLG_WEAK;
6413 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6414 def.vd_cnt = cdeps + 1;
6415 def.vd_hash = bfd_elf_hash (t->name);
6416 def.vd_aux = sizeof (Elf_External_Verdef);
6417 def.vd_next = 0;
6418
6419 /* If a basever node is next, it *must* be the last node in
6420 the chain, otherwise Verdef construction breaks. */
6421 if (t->next != NULL && t->next->vernum == 0)
6422 BFD_ASSERT (t->next->next == NULL);
6423
6424 if (t->next != NULL && t->next->vernum != 0)
6425 def.vd_next = (sizeof (Elf_External_Verdef)
6426 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6427
6428 _bfd_elf_swap_verdef_out (output_bfd, &def,
6429 (Elf_External_Verdef *) p);
6430 p += sizeof (Elf_External_Verdef);
6431
6432 defaux.vda_name = h->dynstr_index;
6433 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6434 h->dynstr_index);
6435 defaux.vda_next = 0;
6436 if (t->deps != NULL)
6437 defaux.vda_next = sizeof (Elf_External_Verdaux);
6438 t->name_indx = defaux.vda_name;
6439
6440 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6441 (Elf_External_Verdaux *) p);
6442 p += sizeof (Elf_External_Verdaux);
6443
6444 for (n = t->deps; n != NULL; n = n->next)
6445 {
6446 if (n->version_needed == NULL)
6447 {
6448 /* This can happen if there was an error in the
6449 version script. */
6450 defaux.vda_name = 0;
6451 }
6452 else
6453 {
6454 defaux.vda_name = n->version_needed->name_indx;
6455 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6456 defaux.vda_name);
6457 }
6458 if (n->next == NULL)
6459 defaux.vda_next = 0;
6460 else
6461 defaux.vda_next = sizeof (Elf_External_Verdaux);
6462
6463 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6464 (Elf_External_Verdaux *) p);
6465 p += sizeof (Elf_External_Verdaux);
6466 }
6467 }
6468
6469 elf_tdata (output_bfd)->cverdefs = cdefs;
6470 }
6471 }
6472
6473 bed = get_elf_backend_data (output_bfd);
6474
6475 if (info->gc_sections && bed->can_gc_sections)
6476 {
6477 struct elf_gc_sweep_symbol_info sweep_info;
6478
6479 /* Remove the symbols that were in the swept sections from the
6480 dynamic symbol table. */
6481 sweep_info.info = info;
6482 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
6483 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
6484 &sweep_info);
6485 }
6486
6487 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6488 {
6489 asection *s;
6490 struct elf_find_verdep_info sinfo;
6491
6492 /* Work out the size of the version reference section. */
6493
6494 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6495 BFD_ASSERT (s != NULL);
6496
6497 sinfo.info = info;
6498 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6499 if (sinfo.vers == 0)
6500 sinfo.vers = 1;
6501 sinfo.failed = FALSE;
6502
6503 elf_link_hash_traverse (elf_hash_table (info),
6504 _bfd_elf_link_find_version_dependencies,
6505 &sinfo);
6506 if (sinfo.failed)
6507 return FALSE;
6508
6509 if (elf_tdata (output_bfd)->verref == NULL)
6510 s->flags |= SEC_EXCLUDE;
6511 else
6512 {
6513 Elf_Internal_Verneed *vn;
6514 unsigned int size;
6515 unsigned int crefs;
6516 bfd_byte *p;
6517
6518 /* Build the version dependency section. */
6519 size = 0;
6520 crefs = 0;
6521 for (vn = elf_tdata (output_bfd)->verref;
6522 vn != NULL;
6523 vn = vn->vn_nextref)
6524 {
6525 Elf_Internal_Vernaux *a;
6526
6527 size += sizeof (Elf_External_Verneed);
6528 ++crefs;
6529 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6530 size += sizeof (Elf_External_Vernaux);
6531 }
6532
6533 s->size = size;
6534 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6535 if (s->contents == NULL)
6536 return FALSE;
6537
6538 p = s->contents;
6539 for (vn = elf_tdata (output_bfd)->verref;
6540 vn != NULL;
6541 vn = vn->vn_nextref)
6542 {
6543 unsigned int caux;
6544 Elf_Internal_Vernaux *a;
6545 size_t indx;
6546
6547 caux = 0;
6548 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6549 ++caux;
6550
6551 vn->vn_version = VER_NEED_CURRENT;
6552 vn->vn_cnt = caux;
6553 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6554 elf_dt_name (vn->vn_bfd) != NULL
6555 ? elf_dt_name (vn->vn_bfd)
6556 : lbasename (vn->vn_bfd->filename),
6557 FALSE);
6558 if (indx == (size_t) -1)
6559 return FALSE;
6560 vn->vn_file = indx;
6561 vn->vn_aux = sizeof (Elf_External_Verneed);
6562 if (vn->vn_nextref == NULL)
6563 vn->vn_next = 0;
6564 else
6565 vn->vn_next = (sizeof (Elf_External_Verneed)
6566 + caux * sizeof (Elf_External_Vernaux));
6567
6568 _bfd_elf_swap_verneed_out (output_bfd, vn,
6569 (Elf_External_Verneed *) p);
6570 p += sizeof (Elf_External_Verneed);
6571
6572 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6573 {
6574 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6575 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6576 a->vna_nodename, FALSE);
6577 if (indx == (size_t) -1)
6578 return FALSE;
6579 a->vna_name = indx;
6580 if (a->vna_nextptr == NULL)
6581 a->vna_next = 0;
6582 else
6583 a->vna_next = sizeof (Elf_External_Vernaux);
6584
6585 _bfd_elf_swap_vernaux_out (output_bfd, a,
6586 (Elf_External_Vernaux *) p);
6587 p += sizeof (Elf_External_Vernaux);
6588 }
6589 }
6590
6591 elf_tdata (output_bfd)->cverrefs = crefs;
6592 }
6593 }
6594
6595 /* Any syms created from now on start with -1 in
6596 got.refcount/offset and plt.refcount/offset. */
6597 elf_hash_table (info)->init_got_refcount
6598 = elf_hash_table (info)->init_got_offset;
6599 elf_hash_table (info)->init_plt_refcount
6600 = elf_hash_table (info)->init_plt_offset;
6601
6602 if (bfd_link_relocatable (info)
6603 && !_bfd_elf_size_group_sections (info))
6604 return FALSE;
6605
6606 /* The backend may have to create some sections regardless of whether
6607 we're dynamic or not. */
6608 if (bed->elf_backend_always_size_sections
6609 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
6610 return FALSE;
6611
6612 /* Determine any GNU_STACK segment requirements, after the backend
6613 has had a chance to set a default segment size. */
6614 if (info->execstack)
6615 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
6616 else if (info->noexecstack)
6617 elf_stack_flags (output_bfd) = PF_R | PF_W;
6618 else
6619 {
6620 bfd *inputobj;
6621 asection *notesec = NULL;
6622 int exec = 0;
6623
6624 for (inputobj = info->input_bfds;
6625 inputobj;
6626 inputobj = inputobj->link.next)
6627 {
6628 asection *s;
6629
6630 if (inputobj->flags
6631 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
6632 continue;
6633 s = inputobj->sections;
6634 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
6635 continue;
6636
6637 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
6638 if (s)
6639 {
6640 if (s->flags & SEC_CODE)
6641 exec = PF_X;
6642 notesec = s;
6643 }
6644 else if (bed->default_execstack)
6645 exec = PF_X;
6646 }
6647 if (notesec || info->stacksize > 0)
6648 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
6649 if (notesec && exec && bfd_link_relocatable (info)
6650 && notesec->output_section != bfd_abs_section_ptr)
6651 notesec->output_section->flags |= SEC_CODE;
6652 }
6653
6654 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6655 {
6656 struct elf_info_failed eif;
6657 struct elf_link_hash_entry *h;
6658 asection *dynstr;
6659 asection *s;
6660
6661 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
6662 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
6663
6664 if (info->symbolic)
6665 {
6666 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
6667 return FALSE;
6668 info->flags |= DF_SYMBOLIC;
6669 }
6670
6671 if (rpath != NULL)
6672 {
6673 size_t indx;
6674 bfd_vma tag;
6675
6676 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
6677 TRUE);
6678 if (indx == (size_t) -1)
6679 return FALSE;
6680
6681 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
6682 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
6683 return FALSE;
6684 }
6685
6686 if (filter_shlib != NULL)
6687 {
6688 size_t indx;
6689
6690 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6691 filter_shlib, TRUE);
6692 if (indx == (size_t) -1
6693 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
6694 return FALSE;
6695 }
6696
6697 if (auxiliary_filters != NULL)
6698 {
6699 const char * const *p;
6700
6701 for (p = auxiliary_filters; *p != NULL; p++)
6702 {
6703 size_t indx;
6704
6705 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6706 *p, TRUE);
6707 if (indx == (size_t) -1
6708 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
6709 return FALSE;
6710 }
6711 }
6712
6713 if (audit != NULL)
6714 {
6715 size_t indx;
6716
6717 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
6718 TRUE);
6719 if (indx == (size_t) -1
6720 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
6721 return FALSE;
6722 }
6723
6724 if (depaudit != NULL)
6725 {
6726 size_t indx;
6727
6728 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
6729 TRUE);
6730 if (indx == (size_t) -1
6731 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
6732 return FALSE;
6733 }
6734
6735 eif.info = info;
6736 eif.failed = FALSE;
6737
6738 /* Find all symbols which were defined in a dynamic object and make
6739 the backend pick a reasonable value for them. */
6740 elf_link_hash_traverse (elf_hash_table (info),
6741 _bfd_elf_adjust_dynamic_symbol,
6742 &eif);
6743 if (eif.failed)
6744 return FALSE;
6745
6746 /* Add some entries to the .dynamic section. We fill in some of the
6747 values later, in bfd_elf_final_link, but we must add the entries
6748 now so that we know the final size of the .dynamic section. */
6749
6750 /* If there are initialization and/or finalization functions to
6751 call then add the corresponding DT_INIT/DT_FINI entries. */
6752 h = (info->init_function
6753 ? elf_link_hash_lookup (elf_hash_table (info),
6754 info->init_function, FALSE,
6755 FALSE, FALSE)
6756 : NULL);
6757 if (h != NULL
6758 && (h->ref_regular
6759 || h->def_regular))
6760 {
6761 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
6762 return FALSE;
6763 }
6764 h = (info->fini_function
6765 ? elf_link_hash_lookup (elf_hash_table (info),
6766 info->fini_function, FALSE,
6767 FALSE, FALSE)
6768 : NULL);
6769 if (h != NULL
6770 && (h->ref_regular
6771 || h->def_regular))
6772 {
6773 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
6774 return FALSE;
6775 }
6776
6777 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
6778 if (s != NULL && s->linker_has_input)
6779 {
6780 /* DT_PREINIT_ARRAY is not allowed in shared library. */
6781 if (! bfd_link_executable (info))
6782 {
6783 bfd *sub;
6784 asection *o;
6785
6786 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
6787 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
6788 && (o = sub->sections) != NULL
6789 && o->sec_info_type != SEC_INFO_TYPE_JUST_SYMS)
6790 for (o = sub->sections; o != NULL; o = o->next)
6791 if (elf_section_data (o)->this_hdr.sh_type
6792 == SHT_PREINIT_ARRAY)
6793 {
6794 _bfd_error_handler
6795 (_("%pB: .preinit_array section is not allowed in DSO"),
6796 sub);
6797 break;
6798 }
6799
6800 bfd_set_error (bfd_error_nonrepresentable_section);
6801 return FALSE;
6802 }
6803
6804 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6805 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
6806 return FALSE;
6807 }
6808 s = bfd_get_section_by_name (output_bfd, ".init_array");
6809 if (s != NULL && s->linker_has_input)
6810 {
6811 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
6812 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
6813 return FALSE;
6814 }
6815 s = bfd_get_section_by_name (output_bfd, ".fini_array");
6816 if (s != NULL && s->linker_has_input)
6817 {
6818 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
6819 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
6820 return FALSE;
6821 }
6822
6823 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
6824 /* If .dynstr is excluded from the link, we don't want any of
6825 these tags. Strictly, we should be checking each section
6826 individually; This quick check covers for the case where
6827 someone does a /DISCARD/ : { *(*) }. */
6828 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6829 {
6830 bfd_size_type strsize;
6831
6832 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6833 if ((info->emit_hash
6834 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6835 || (info->emit_gnu_hash
6836 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6837 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6838 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6839 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6840 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6841 bed->s->sizeof_sym))
6842 return FALSE;
6843 }
6844 }
6845
6846 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6847 return FALSE;
6848
6849 /* The backend must work out the sizes of all the other dynamic
6850 sections. */
6851 if (dynobj != NULL
6852 && bed->elf_backend_size_dynamic_sections != NULL
6853 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6854 return FALSE;
6855
6856 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6857 {
6858 if (elf_tdata (output_bfd)->cverdefs)
6859 {
6860 unsigned int crefs = elf_tdata (output_bfd)->cverdefs;
6861
6862 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6863 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs))
6864 return FALSE;
6865 }
6866
6867 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6868 {
6869 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6870 return FALSE;
6871 }
6872 else if (info->flags & DF_BIND_NOW)
6873 {
6874 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6875 return FALSE;
6876 }
6877
6878 if (info->flags_1)
6879 {
6880 if (bfd_link_executable (info))
6881 info->flags_1 &= ~ (DF_1_INITFIRST
6882 | DF_1_NODELETE
6883 | DF_1_NOOPEN);
6884 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6885 return FALSE;
6886 }
6887
6888 if (elf_tdata (output_bfd)->cverrefs)
6889 {
6890 unsigned int crefs = elf_tdata (output_bfd)->cverrefs;
6891
6892 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6893 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6894 return FALSE;
6895 }
6896
6897 if ((elf_tdata (output_bfd)->cverrefs == 0
6898 && elf_tdata (output_bfd)->cverdefs == 0)
6899 || _bfd_elf_link_renumber_dynsyms (output_bfd, info, NULL) <= 1)
6900 {
6901 asection *s;
6902
6903 s = bfd_get_linker_section (dynobj, ".gnu.version");
6904 s->flags |= SEC_EXCLUDE;
6905 }
6906 }
6907 return TRUE;
6908 }
6909
6910 /* Find the first non-excluded output section. We'll use its
6911 section symbol for some emitted relocs. */
6912 void
6913 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6914 {
6915 asection *s;
6916
6917 for (s = output_bfd->sections; s != NULL; s = s->next)
6918 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6919 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
6920 {
6921 elf_hash_table (info)->text_index_section = s;
6922 break;
6923 }
6924 }
6925
6926 /* Find two non-excluded output sections, one for code, one for data.
6927 We'll use their section symbols for some emitted relocs. */
6928 void
6929 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6930 {
6931 asection *s;
6932
6933 /* Data first, since setting text_index_section changes
6934 _bfd_elf_link_omit_section_dynsym. */
6935 for (s = output_bfd->sections; s != NULL; s = s->next)
6936 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6937 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
6938 {
6939 elf_hash_table (info)->data_index_section = s;
6940 break;
6941 }
6942
6943 for (s = output_bfd->sections; s != NULL; s = s->next)
6944 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6945 == (SEC_ALLOC | SEC_READONLY))
6946 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
6947 {
6948 elf_hash_table (info)->text_index_section = s;
6949 break;
6950 }
6951
6952 if (elf_hash_table (info)->text_index_section == NULL)
6953 elf_hash_table (info)->text_index_section
6954 = elf_hash_table (info)->data_index_section;
6955 }
6956
6957 bfd_boolean
6958 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6959 {
6960 const struct elf_backend_data *bed;
6961 unsigned long section_sym_count;
6962 bfd_size_type dynsymcount = 0;
6963
6964 if (!is_elf_hash_table (info->hash))
6965 return TRUE;
6966
6967 bed = get_elf_backend_data (output_bfd);
6968 (*bed->elf_backend_init_index_section) (output_bfd, info);
6969
6970 /* Assign dynsym indices. In a shared library we generate a section
6971 symbol for each output section, which come first. Next come all
6972 of the back-end allocated local dynamic syms, followed by the rest
6973 of the global symbols.
6974
6975 This is usually not needed for static binaries, however backends
6976 can request to always do it, e.g. the MIPS backend uses dynamic
6977 symbol counts to lay out GOT, which will be produced in the
6978 presence of GOT relocations even in static binaries (holding fixed
6979 data in that case, to satisfy those relocations). */
6980
6981 if (elf_hash_table (info)->dynamic_sections_created
6982 || bed->always_renumber_dynsyms)
6983 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6984 &section_sym_count);
6985
6986 if (elf_hash_table (info)->dynamic_sections_created)
6987 {
6988 bfd *dynobj;
6989 asection *s;
6990 unsigned int dtagcount;
6991
6992 dynobj = elf_hash_table (info)->dynobj;
6993
6994 /* Work out the size of the symbol version section. */
6995 s = bfd_get_linker_section (dynobj, ".gnu.version");
6996 BFD_ASSERT (s != NULL);
6997 if ((s->flags & SEC_EXCLUDE) == 0)
6998 {
6999 s->size = dynsymcount * sizeof (Elf_External_Versym);
7000 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7001 if (s->contents == NULL)
7002 return FALSE;
7003
7004 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
7005 return FALSE;
7006 }
7007
7008 /* Set the size of the .dynsym and .hash sections. We counted
7009 the number of dynamic symbols in elf_link_add_object_symbols.
7010 We will build the contents of .dynsym and .hash when we build
7011 the final symbol table, because until then we do not know the
7012 correct value to give the symbols. We built the .dynstr
7013 section as we went along in elf_link_add_object_symbols. */
7014 s = elf_hash_table (info)->dynsym;
7015 BFD_ASSERT (s != NULL);
7016 s->size = dynsymcount * bed->s->sizeof_sym;
7017
7018 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
7019 if (s->contents == NULL)
7020 return FALSE;
7021
7022 /* The first entry in .dynsym is a dummy symbol. Clear all the
7023 section syms, in case we don't output them all. */
7024 ++section_sym_count;
7025 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
7026
7027 elf_hash_table (info)->bucketcount = 0;
7028
7029 /* Compute the size of the hashing table. As a side effect this
7030 computes the hash values for all the names we export. */
7031 if (info->emit_hash)
7032 {
7033 unsigned long int *hashcodes;
7034 struct hash_codes_info hashinf;
7035 bfd_size_type amt;
7036 unsigned long int nsyms;
7037 size_t bucketcount;
7038 size_t hash_entry_size;
7039
7040 /* Compute the hash values for all exported symbols. At the same
7041 time store the values in an array so that we could use them for
7042 optimizations. */
7043 amt = dynsymcount * sizeof (unsigned long int);
7044 hashcodes = (unsigned long int *) bfd_malloc (amt);
7045 if (hashcodes == NULL)
7046 return FALSE;
7047 hashinf.hashcodes = hashcodes;
7048 hashinf.error = FALSE;
7049
7050 /* Put all hash values in HASHCODES. */
7051 elf_link_hash_traverse (elf_hash_table (info),
7052 elf_collect_hash_codes, &hashinf);
7053 if (hashinf.error)
7054 {
7055 free (hashcodes);
7056 return FALSE;
7057 }
7058
7059 nsyms = hashinf.hashcodes - hashcodes;
7060 bucketcount
7061 = compute_bucket_count (info, hashcodes, nsyms, 0);
7062 free (hashcodes);
7063
7064 if (bucketcount == 0 && nsyms > 0)
7065 return FALSE;
7066
7067 elf_hash_table (info)->bucketcount = bucketcount;
7068
7069 s = bfd_get_linker_section (dynobj, ".hash");
7070 BFD_ASSERT (s != NULL);
7071 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
7072 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
7073 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7074 if (s->contents == NULL)
7075 return FALSE;
7076
7077 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
7078 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
7079 s->contents + hash_entry_size);
7080 }
7081
7082 if (info->emit_gnu_hash)
7083 {
7084 size_t i, cnt;
7085 unsigned char *contents;
7086 struct collect_gnu_hash_codes cinfo;
7087 bfd_size_type amt;
7088 size_t bucketcount;
7089
7090 memset (&cinfo, 0, sizeof (cinfo));
7091
7092 /* Compute the hash values for all exported symbols. At the same
7093 time store the values in an array so that we could use them for
7094 optimizations. */
7095 amt = dynsymcount * 2 * sizeof (unsigned long int);
7096 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
7097 if (cinfo.hashcodes == NULL)
7098 return FALSE;
7099
7100 cinfo.hashval = cinfo.hashcodes + dynsymcount;
7101 cinfo.min_dynindx = -1;
7102 cinfo.output_bfd = output_bfd;
7103 cinfo.bed = bed;
7104
7105 /* Put all hash values in HASHCODES. */
7106 elf_link_hash_traverse (elf_hash_table (info),
7107 elf_collect_gnu_hash_codes, &cinfo);
7108 if (cinfo.error)
7109 {
7110 free (cinfo.hashcodes);
7111 return FALSE;
7112 }
7113
7114 bucketcount
7115 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
7116
7117 if (bucketcount == 0)
7118 {
7119 free (cinfo.hashcodes);
7120 return FALSE;
7121 }
7122
7123 s = bfd_get_linker_section (dynobj, ".gnu.hash");
7124 BFD_ASSERT (s != NULL);
7125
7126 if (cinfo.nsyms == 0)
7127 {
7128 /* Empty .gnu.hash section is special. */
7129 BFD_ASSERT (cinfo.min_dynindx == -1);
7130 free (cinfo.hashcodes);
7131 s->size = 5 * 4 + bed->s->arch_size / 8;
7132 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7133 if (contents == NULL)
7134 return FALSE;
7135 s->contents = contents;
7136 /* 1 empty bucket. */
7137 bfd_put_32 (output_bfd, 1, contents);
7138 /* SYMIDX above the special symbol 0. */
7139 bfd_put_32 (output_bfd, 1, contents + 4);
7140 /* Just one word for bitmask. */
7141 bfd_put_32 (output_bfd, 1, contents + 8);
7142 /* Only hash fn bloom filter. */
7143 bfd_put_32 (output_bfd, 0, contents + 12);
7144 /* No hashes are valid - empty bitmask. */
7145 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
7146 /* No hashes in the only bucket. */
7147 bfd_put_32 (output_bfd, 0,
7148 contents + 16 + bed->s->arch_size / 8);
7149 }
7150 else
7151 {
7152 unsigned long int maskwords, maskbitslog2, x;
7153 BFD_ASSERT (cinfo.min_dynindx != -1);
7154
7155 x = cinfo.nsyms;
7156 maskbitslog2 = 1;
7157 while ((x >>= 1) != 0)
7158 ++maskbitslog2;
7159 if (maskbitslog2 < 3)
7160 maskbitslog2 = 5;
7161 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
7162 maskbitslog2 = maskbitslog2 + 3;
7163 else
7164 maskbitslog2 = maskbitslog2 + 2;
7165 if (bed->s->arch_size == 64)
7166 {
7167 if (maskbitslog2 == 5)
7168 maskbitslog2 = 6;
7169 cinfo.shift1 = 6;
7170 }
7171 else
7172 cinfo.shift1 = 5;
7173 cinfo.mask = (1 << cinfo.shift1) - 1;
7174 cinfo.shift2 = maskbitslog2;
7175 cinfo.maskbits = 1 << maskbitslog2;
7176 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
7177 amt = bucketcount * sizeof (unsigned long int) * 2;
7178 amt += maskwords * sizeof (bfd_vma);
7179 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
7180 if (cinfo.bitmask == NULL)
7181 {
7182 free (cinfo.hashcodes);
7183 return FALSE;
7184 }
7185
7186 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
7187 cinfo.indx = cinfo.counts + bucketcount;
7188 cinfo.symindx = dynsymcount - cinfo.nsyms;
7189 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
7190
7191 /* Determine how often each hash bucket is used. */
7192 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
7193 for (i = 0; i < cinfo.nsyms; ++i)
7194 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
7195
7196 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
7197 if (cinfo.counts[i] != 0)
7198 {
7199 cinfo.indx[i] = cnt;
7200 cnt += cinfo.counts[i];
7201 }
7202 BFD_ASSERT (cnt == dynsymcount);
7203 cinfo.bucketcount = bucketcount;
7204 cinfo.local_indx = cinfo.min_dynindx;
7205
7206 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
7207 s->size += cinfo.maskbits / 8;
7208 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7209 if (contents == NULL)
7210 {
7211 free (cinfo.bitmask);
7212 free (cinfo.hashcodes);
7213 return FALSE;
7214 }
7215
7216 s->contents = contents;
7217 bfd_put_32 (output_bfd, bucketcount, contents);
7218 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
7219 bfd_put_32 (output_bfd, maskwords, contents + 8);
7220 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
7221 contents += 16 + cinfo.maskbits / 8;
7222
7223 for (i = 0; i < bucketcount; ++i)
7224 {
7225 if (cinfo.counts[i] == 0)
7226 bfd_put_32 (output_bfd, 0, contents);
7227 else
7228 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
7229 contents += 4;
7230 }
7231
7232 cinfo.contents = contents;
7233
7234 /* Renumber dynamic symbols, populate .gnu.hash section. */
7235 elf_link_hash_traverse (elf_hash_table (info),
7236 elf_renumber_gnu_hash_syms, &cinfo);
7237
7238 contents = s->contents + 16;
7239 for (i = 0; i < maskwords; ++i)
7240 {
7241 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
7242 contents);
7243 contents += bed->s->arch_size / 8;
7244 }
7245
7246 free (cinfo.bitmask);
7247 free (cinfo.hashcodes);
7248 }
7249 }
7250
7251 s = bfd_get_linker_section (dynobj, ".dynstr");
7252 BFD_ASSERT (s != NULL);
7253
7254 elf_finalize_dynstr (output_bfd, info);
7255
7256 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7257
7258 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
7259 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7260 return FALSE;
7261 }
7262
7263 return TRUE;
7264 }
7265 \f
7266 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
7267
7268 static void
7269 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7270 asection *sec)
7271 {
7272 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7273 sec->sec_info_type = SEC_INFO_TYPE_NONE;
7274 }
7275
7276 /* Finish SHF_MERGE section merging. */
7277
7278 bfd_boolean
7279 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7280 {
7281 bfd *ibfd;
7282 asection *sec;
7283
7284 if (!is_elf_hash_table (info->hash))
7285 return FALSE;
7286
7287 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7288 if ((ibfd->flags & DYNAMIC) == 0
7289 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7290 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7291 == get_elf_backend_data (obfd)->s->elfclass))
7292 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7293 if ((sec->flags & SEC_MERGE) != 0
7294 && !bfd_is_abs_section (sec->output_section))
7295 {
7296 struct bfd_elf_section_data *secdata;
7297
7298 secdata = elf_section_data (sec);
7299 if (! _bfd_add_merge_section (obfd,
7300 &elf_hash_table (info)->merge_info,
7301 sec, &secdata->sec_info))
7302 return FALSE;
7303 else if (secdata->sec_info)
7304 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7305 }
7306
7307 if (elf_hash_table (info)->merge_info != NULL)
7308 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7309 merge_sections_remove_hook);
7310 return TRUE;
7311 }
7312
7313 /* Create an entry in an ELF linker hash table. */
7314
7315 struct bfd_hash_entry *
7316 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7317 struct bfd_hash_table *table,
7318 const char *string)
7319 {
7320 /* Allocate the structure if it has not already been allocated by a
7321 subclass. */
7322 if (entry == NULL)
7323 {
7324 entry = (struct bfd_hash_entry *)
7325 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7326 if (entry == NULL)
7327 return entry;
7328 }
7329
7330 /* Call the allocation method of the superclass. */
7331 entry = _bfd_link_hash_newfunc (entry, table, string);
7332 if (entry != NULL)
7333 {
7334 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7335 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7336
7337 /* Set local fields. */
7338 ret->indx = -1;
7339 ret->dynindx = -1;
7340 ret->got = htab->init_got_refcount;
7341 ret->plt = htab->init_plt_refcount;
7342 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7343 - offsetof (struct elf_link_hash_entry, size)));
7344 /* Assume that we have been called by a non-ELF symbol reader.
7345 This flag is then reset by the code which reads an ELF input
7346 file. This ensures that a symbol created by a non-ELF symbol
7347 reader will have the flag set correctly. */
7348 ret->non_elf = 1;
7349 }
7350
7351 return entry;
7352 }
7353
7354 /* Copy data from an indirect symbol to its direct symbol, hiding the
7355 old indirect symbol. Also used for copying flags to a weakdef. */
7356
7357 void
7358 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7359 struct elf_link_hash_entry *dir,
7360 struct elf_link_hash_entry *ind)
7361 {
7362 struct elf_link_hash_table *htab;
7363
7364 /* Copy down any references that we may have already seen to the
7365 symbol which just became indirect. */
7366
7367 if (dir->versioned != versioned_hidden)
7368 dir->ref_dynamic |= ind->ref_dynamic;
7369 dir->ref_regular |= ind->ref_regular;
7370 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7371 dir->non_got_ref |= ind->non_got_ref;
7372 dir->needs_plt |= ind->needs_plt;
7373 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7374
7375 if (ind->root.type != bfd_link_hash_indirect)
7376 return;
7377
7378 /* Copy over the global and procedure linkage table refcount entries.
7379 These may have been already set up by a check_relocs routine. */
7380 htab = elf_hash_table (info);
7381 if (ind->got.refcount > htab->init_got_refcount.refcount)
7382 {
7383 if (dir->got.refcount < 0)
7384 dir->got.refcount = 0;
7385 dir->got.refcount += ind->got.refcount;
7386 ind->got.refcount = htab->init_got_refcount.refcount;
7387 }
7388
7389 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7390 {
7391 if (dir->plt.refcount < 0)
7392 dir->plt.refcount = 0;
7393 dir->plt.refcount += ind->plt.refcount;
7394 ind->plt.refcount = htab->init_plt_refcount.refcount;
7395 }
7396
7397 if (ind->dynindx != -1)
7398 {
7399 if (dir->dynindx != -1)
7400 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7401 dir->dynindx = ind->dynindx;
7402 dir->dynstr_index = ind->dynstr_index;
7403 ind->dynindx = -1;
7404 ind->dynstr_index = 0;
7405 }
7406 }
7407
7408 void
7409 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7410 struct elf_link_hash_entry *h,
7411 bfd_boolean force_local)
7412 {
7413 /* STT_GNU_IFUNC symbol must go through PLT. */
7414 if (h->type != STT_GNU_IFUNC)
7415 {
7416 h->plt = elf_hash_table (info)->init_plt_offset;
7417 h->needs_plt = 0;
7418 }
7419 if (force_local)
7420 {
7421 h->forced_local = 1;
7422 if (h->dynindx != -1)
7423 {
7424 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7425 h->dynstr_index);
7426 h->dynindx = -1;
7427 h->dynstr_index = 0;
7428 }
7429 }
7430 }
7431
7432 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7433 caller. */
7434
7435 bfd_boolean
7436 _bfd_elf_link_hash_table_init
7437 (struct elf_link_hash_table *table,
7438 bfd *abfd,
7439 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7440 struct bfd_hash_table *,
7441 const char *),
7442 unsigned int entsize,
7443 enum elf_target_id target_id)
7444 {
7445 bfd_boolean ret;
7446 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7447
7448 table->init_got_refcount.refcount = can_refcount - 1;
7449 table->init_plt_refcount.refcount = can_refcount - 1;
7450 table->init_got_offset.offset = -(bfd_vma) 1;
7451 table->init_plt_offset.offset = -(bfd_vma) 1;
7452 /* The first dynamic symbol is a dummy. */
7453 table->dynsymcount = 1;
7454
7455 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7456
7457 table->root.type = bfd_link_elf_hash_table;
7458 table->hash_table_id = target_id;
7459
7460 return ret;
7461 }
7462
7463 /* Create an ELF linker hash table. */
7464
7465 struct bfd_link_hash_table *
7466 _bfd_elf_link_hash_table_create (bfd *abfd)
7467 {
7468 struct elf_link_hash_table *ret;
7469 bfd_size_type amt = sizeof (struct elf_link_hash_table);
7470
7471 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7472 if (ret == NULL)
7473 return NULL;
7474
7475 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7476 sizeof (struct elf_link_hash_entry),
7477 GENERIC_ELF_DATA))
7478 {
7479 free (ret);
7480 return NULL;
7481 }
7482 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7483
7484 return &ret->root;
7485 }
7486
7487 /* Destroy an ELF linker hash table. */
7488
7489 void
7490 _bfd_elf_link_hash_table_free (bfd *obfd)
7491 {
7492 struct elf_link_hash_table *htab;
7493
7494 htab = (struct elf_link_hash_table *) obfd->link.hash;
7495 if (htab->dynstr != NULL)
7496 _bfd_elf_strtab_free (htab->dynstr);
7497 _bfd_merge_sections_free (htab->merge_info);
7498 _bfd_generic_link_hash_table_free (obfd);
7499 }
7500
7501 /* This is a hook for the ELF emulation code in the generic linker to
7502 tell the backend linker what file name to use for the DT_NEEDED
7503 entry for a dynamic object. */
7504
7505 void
7506 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7507 {
7508 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7509 && bfd_get_format (abfd) == bfd_object)
7510 elf_dt_name (abfd) = name;
7511 }
7512
7513 int
7514 bfd_elf_get_dyn_lib_class (bfd *abfd)
7515 {
7516 int lib_class;
7517 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7518 && bfd_get_format (abfd) == bfd_object)
7519 lib_class = elf_dyn_lib_class (abfd);
7520 else
7521 lib_class = 0;
7522 return lib_class;
7523 }
7524
7525 void
7526 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7527 {
7528 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7529 && bfd_get_format (abfd) == bfd_object)
7530 elf_dyn_lib_class (abfd) = lib_class;
7531 }
7532
7533 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7534 the linker ELF emulation code. */
7535
7536 struct bfd_link_needed_list *
7537 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7538 struct bfd_link_info *info)
7539 {
7540 if (! is_elf_hash_table (info->hash))
7541 return NULL;
7542 return elf_hash_table (info)->needed;
7543 }
7544
7545 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7546 hook for the linker ELF emulation code. */
7547
7548 struct bfd_link_needed_list *
7549 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7550 struct bfd_link_info *info)
7551 {
7552 if (! is_elf_hash_table (info->hash))
7553 return NULL;
7554 return elf_hash_table (info)->runpath;
7555 }
7556
7557 /* Get the name actually used for a dynamic object for a link. This
7558 is the SONAME entry if there is one. Otherwise, it is the string
7559 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7560
7561 const char *
7562 bfd_elf_get_dt_soname (bfd *abfd)
7563 {
7564 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7565 && bfd_get_format (abfd) == bfd_object)
7566 return elf_dt_name (abfd);
7567 return NULL;
7568 }
7569
7570 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7571 the ELF linker emulation code. */
7572
7573 bfd_boolean
7574 bfd_elf_get_bfd_needed_list (bfd *abfd,
7575 struct bfd_link_needed_list **pneeded)
7576 {
7577 asection *s;
7578 bfd_byte *dynbuf = NULL;
7579 unsigned int elfsec;
7580 unsigned long shlink;
7581 bfd_byte *extdyn, *extdynend;
7582 size_t extdynsize;
7583 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7584
7585 *pneeded = NULL;
7586
7587 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7588 || bfd_get_format (abfd) != bfd_object)
7589 return TRUE;
7590
7591 s = bfd_get_section_by_name (abfd, ".dynamic");
7592 if (s == NULL || s->size == 0)
7593 return TRUE;
7594
7595 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7596 goto error_return;
7597
7598 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7599 if (elfsec == SHN_BAD)
7600 goto error_return;
7601
7602 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7603
7604 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7605 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7606
7607 extdyn = dynbuf;
7608 extdynend = extdyn + s->size;
7609 for (; extdyn < extdynend; extdyn += extdynsize)
7610 {
7611 Elf_Internal_Dyn dyn;
7612
7613 (*swap_dyn_in) (abfd, extdyn, &dyn);
7614
7615 if (dyn.d_tag == DT_NULL)
7616 break;
7617
7618 if (dyn.d_tag == DT_NEEDED)
7619 {
7620 const char *string;
7621 struct bfd_link_needed_list *l;
7622 unsigned int tagv = dyn.d_un.d_val;
7623 bfd_size_type amt;
7624
7625 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7626 if (string == NULL)
7627 goto error_return;
7628
7629 amt = sizeof *l;
7630 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7631 if (l == NULL)
7632 goto error_return;
7633
7634 l->by = abfd;
7635 l->name = string;
7636 l->next = *pneeded;
7637 *pneeded = l;
7638 }
7639 }
7640
7641 free (dynbuf);
7642
7643 return TRUE;
7644
7645 error_return:
7646 if (dynbuf != NULL)
7647 free (dynbuf);
7648 return FALSE;
7649 }
7650
7651 struct elf_symbuf_symbol
7652 {
7653 unsigned long st_name; /* Symbol name, index in string tbl */
7654 unsigned char st_info; /* Type and binding attributes */
7655 unsigned char st_other; /* Visibilty, and target specific */
7656 };
7657
7658 struct elf_symbuf_head
7659 {
7660 struct elf_symbuf_symbol *ssym;
7661 size_t count;
7662 unsigned int st_shndx;
7663 };
7664
7665 struct elf_symbol
7666 {
7667 union
7668 {
7669 Elf_Internal_Sym *isym;
7670 struct elf_symbuf_symbol *ssym;
7671 } u;
7672 const char *name;
7673 };
7674
7675 /* Sort references to symbols by ascending section number. */
7676
7677 static int
7678 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7679 {
7680 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7681 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7682
7683 return s1->st_shndx - s2->st_shndx;
7684 }
7685
7686 static int
7687 elf_sym_name_compare (const void *arg1, const void *arg2)
7688 {
7689 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7690 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7691 return strcmp (s1->name, s2->name);
7692 }
7693
7694 static struct elf_symbuf_head *
7695 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
7696 {
7697 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7698 struct elf_symbuf_symbol *ssym;
7699 struct elf_symbuf_head *ssymbuf, *ssymhead;
7700 size_t i, shndx_count, total_size;
7701
7702 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7703 if (indbuf == NULL)
7704 return NULL;
7705
7706 for (ind = indbuf, i = 0; i < symcount; i++)
7707 if (isymbuf[i].st_shndx != SHN_UNDEF)
7708 *ind++ = &isymbuf[i];
7709 indbufend = ind;
7710
7711 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7712 elf_sort_elf_symbol);
7713
7714 shndx_count = 0;
7715 if (indbufend > indbuf)
7716 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7717 if (ind[0]->st_shndx != ind[1]->st_shndx)
7718 shndx_count++;
7719
7720 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7721 + (indbufend - indbuf) * sizeof (*ssym));
7722 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7723 if (ssymbuf == NULL)
7724 {
7725 free (indbuf);
7726 return NULL;
7727 }
7728
7729 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7730 ssymbuf->ssym = NULL;
7731 ssymbuf->count = shndx_count;
7732 ssymbuf->st_shndx = 0;
7733 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7734 {
7735 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7736 {
7737 ssymhead++;
7738 ssymhead->ssym = ssym;
7739 ssymhead->count = 0;
7740 ssymhead->st_shndx = (*ind)->st_shndx;
7741 }
7742 ssym->st_name = (*ind)->st_name;
7743 ssym->st_info = (*ind)->st_info;
7744 ssym->st_other = (*ind)->st_other;
7745 ssymhead->count++;
7746 }
7747 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
7748 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7749 == total_size));
7750
7751 free (indbuf);
7752 return ssymbuf;
7753 }
7754
7755 /* Check if 2 sections define the same set of local and global
7756 symbols. */
7757
7758 static bfd_boolean
7759 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7760 struct bfd_link_info *info)
7761 {
7762 bfd *bfd1, *bfd2;
7763 const struct elf_backend_data *bed1, *bed2;
7764 Elf_Internal_Shdr *hdr1, *hdr2;
7765 size_t symcount1, symcount2;
7766 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7767 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7768 Elf_Internal_Sym *isym, *isymend;
7769 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7770 size_t count1, count2, i;
7771 unsigned int shndx1, shndx2;
7772 bfd_boolean result;
7773
7774 bfd1 = sec1->owner;
7775 bfd2 = sec2->owner;
7776
7777 /* Both sections have to be in ELF. */
7778 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7779 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7780 return FALSE;
7781
7782 if (elf_section_type (sec1) != elf_section_type (sec2))
7783 return FALSE;
7784
7785 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7786 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7787 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7788 return FALSE;
7789
7790 bed1 = get_elf_backend_data (bfd1);
7791 bed2 = get_elf_backend_data (bfd2);
7792 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7793 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7794 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7795 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7796
7797 if (symcount1 == 0 || symcount2 == 0)
7798 return FALSE;
7799
7800 result = FALSE;
7801 isymbuf1 = NULL;
7802 isymbuf2 = NULL;
7803 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7804 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7805
7806 if (ssymbuf1 == NULL)
7807 {
7808 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7809 NULL, NULL, NULL);
7810 if (isymbuf1 == NULL)
7811 goto done;
7812
7813 if (!info->reduce_memory_overheads)
7814 elf_tdata (bfd1)->symbuf = ssymbuf1
7815 = elf_create_symbuf (symcount1, isymbuf1);
7816 }
7817
7818 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7819 {
7820 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7821 NULL, NULL, NULL);
7822 if (isymbuf2 == NULL)
7823 goto done;
7824
7825 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7826 elf_tdata (bfd2)->symbuf = ssymbuf2
7827 = elf_create_symbuf (symcount2, isymbuf2);
7828 }
7829
7830 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7831 {
7832 /* Optimized faster version. */
7833 size_t lo, hi, mid;
7834 struct elf_symbol *symp;
7835 struct elf_symbuf_symbol *ssym, *ssymend;
7836
7837 lo = 0;
7838 hi = ssymbuf1->count;
7839 ssymbuf1++;
7840 count1 = 0;
7841 while (lo < hi)
7842 {
7843 mid = (lo + hi) / 2;
7844 if (shndx1 < ssymbuf1[mid].st_shndx)
7845 hi = mid;
7846 else if (shndx1 > ssymbuf1[mid].st_shndx)
7847 lo = mid + 1;
7848 else
7849 {
7850 count1 = ssymbuf1[mid].count;
7851 ssymbuf1 += mid;
7852 break;
7853 }
7854 }
7855
7856 lo = 0;
7857 hi = ssymbuf2->count;
7858 ssymbuf2++;
7859 count2 = 0;
7860 while (lo < hi)
7861 {
7862 mid = (lo + hi) / 2;
7863 if (shndx2 < ssymbuf2[mid].st_shndx)
7864 hi = mid;
7865 else if (shndx2 > ssymbuf2[mid].st_shndx)
7866 lo = mid + 1;
7867 else
7868 {
7869 count2 = ssymbuf2[mid].count;
7870 ssymbuf2 += mid;
7871 break;
7872 }
7873 }
7874
7875 if (count1 == 0 || count2 == 0 || count1 != count2)
7876 goto done;
7877
7878 symtable1
7879 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7880 symtable2
7881 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7882 if (symtable1 == NULL || symtable2 == NULL)
7883 goto done;
7884
7885 symp = symtable1;
7886 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7887 ssym < ssymend; ssym++, symp++)
7888 {
7889 symp->u.ssym = ssym;
7890 symp->name = bfd_elf_string_from_elf_section (bfd1,
7891 hdr1->sh_link,
7892 ssym->st_name);
7893 }
7894
7895 symp = symtable2;
7896 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7897 ssym < ssymend; ssym++, symp++)
7898 {
7899 symp->u.ssym = ssym;
7900 symp->name = bfd_elf_string_from_elf_section (bfd2,
7901 hdr2->sh_link,
7902 ssym->st_name);
7903 }
7904
7905 /* Sort symbol by name. */
7906 qsort (symtable1, count1, sizeof (struct elf_symbol),
7907 elf_sym_name_compare);
7908 qsort (symtable2, count1, sizeof (struct elf_symbol),
7909 elf_sym_name_compare);
7910
7911 for (i = 0; i < count1; i++)
7912 /* Two symbols must have the same binding, type and name. */
7913 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7914 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7915 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7916 goto done;
7917
7918 result = TRUE;
7919 goto done;
7920 }
7921
7922 symtable1 = (struct elf_symbol *)
7923 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7924 symtable2 = (struct elf_symbol *)
7925 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7926 if (symtable1 == NULL || symtable2 == NULL)
7927 goto done;
7928
7929 /* Count definitions in the section. */
7930 count1 = 0;
7931 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7932 if (isym->st_shndx == shndx1)
7933 symtable1[count1++].u.isym = isym;
7934
7935 count2 = 0;
7936 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7937 if (isym->st_shndx == shndx2)
7938 symtable2[count2++].u.isym = isym;
7939
7940 if (count1 == 0 || count2 == 0 || count1 != count2)
7941 goto done;
7942
7943 for (i = 0; i < count1; i++)
7944 symtable1[i].name
7945 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7946 symtable1[i].u.isym->st_name);
7947
7948 for (i = 0; i < count2; i++)
7949 symtable2[i].name
7950 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7951 symtable2[i].u.isym->st_name);
7952
7953 /* Sort symbol by name. */
7954 qsort (symtable1, count1, sizeof (struct elf_symbol),
7955 elf_sym_name_compare);
7956 qsort (symtable2, count1, sizeof (struct elf_symbol),
7957 elf_sym_name_compare);
7958
7959 for (i = 0; i < count1; i++)
7960 /* Two symbols must have the same binding, type and name. */
7961 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7962 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7963 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7964 goto done;
7965
7966 result = TRUE;
7967
7968 done:
7969 if (symtable1)
7970 free (symtable1);
7971 if (symtable2)
7972 free (symtable2);
7973 if (isymbuf1)
7974 free (isymbuf1);
7975 if (isymbuf2)
7976 free (isymbuf2);
7977
7978 return result;
7979 }
7980
7981 /* Return TRUE if 2 section types are compatible. */
7982
7983 bfd_boolean
7984 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7985 bfd *bbfd, const asection *bsec)
7986 {
7987 if (asec == NULL
7988 || bsec == NULL
7989 || abfd->xvec->flavour != bfd_target_elf_flavour
7990 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7991 return TRUE;
7992
7993 return elf_section_type (asec) == elf_section_type (bsec);
7994 }
7995 \f
7996 /* Final phase of ELF linker. */
7997
7998 /* A structure we use to avoid passing large numbers of arguments. */
7999
8000 struct elf_final_link_info
8001 {
8002 /* General link information. */
8003 struct bfd_link_info *info;
8004 /* Output BFD. */
8005 bfd *output_bfd;
8006 /* Symbol string table. */
8007 struct elf_strtab_hash *symstrtab;
8008 /* .hash section. */
8009 asection *hash_sec;
8010 /* symbol version section (.gnu.version). */
8011 asection *symver_sec;
8012 /* Buffer large enough to hold contents of any section. */
8013 bfd_byte *contents;
8014 /* Buffer large enough to hold external relocs of any section. */
8015 void *external_relocs;
8016 /* Buffer large enough to hold internal relocs of any section. */
8017 Elf_Internal_Rela *internal_relocs;
8018 /* Buffer large enough to hold external local symbols of any input
8019 BFD. */
8020 bfd_byte *external_syms;
8021 /* And a buffer for symbol section indices. */
8022 Elf_External_Sym_Shndx *locsym_shndx;
8023 /* Buffer large enough to hold internal local symbols of any input
8024 BFD. */
8025 Elf_Internal_Sym *internal_syms;
8026 /* Array large enough to hold a symbol index for each local symbol
8027 of any input BFD. */
8028 long *indices;
8029 /* Array large enough to hold a section pointer for each local
8030 symbol of any input BFD. */
8031 asection **sections;
8032 /* Buffer for SHT_SYMTAB_SHNDX section. */
8033 Elf_External_Sym_Shndx *symshndxbuf;
8034 /* Number of STT_FILE syms seen. */
8035 size_t filesym_count;
8036 };
8037
8038 /* This struct is used to pass information to elf_link_output_extsym. */
8039
8040 struct elf_outext_info
8041 {
8042 bfd_boolean failed;
8043 bfd_boolean localsyms;
8044 bfd_boolean file_sym_done;
8045 struct elf_final_link_info *flinfo;
8046 };
8047
8048
8049 /* Support for evaluating a complex relocation.
8050
8051 Complex relocations are generalized, self-describing relocations. The
8052 implementation of them consists of two parts: complex symbols, and the
8053 relocations themselves.
8054
8055 The relocations are use a reserved elf-wide relocation type code (R_RELC
8056 external / BFD_RELOC_RELC internal) and an encoding of relocation field
8057 information (start bit, end bit, word width, etc) into the addend. This
8058 information is extracted from CGEN-generated operand tables within gas.
8059
8060 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
8061 internal) representing prefix-notation expressions, including but not
8062 limited to those sorts of expressions normally encoded as addends in the
8063 addend field. The symbol mangling format is:
8064
8065 <node> := <literal>
8066 | <unary-operator> ':' <node>
8067 | <binary-operator> ':' <node> ':' <node>
8068 ;
8069
8070 <literal> := 's' <digits=N> ':' <N character symbol name>
8071 | 'S' <digits=N> ':' <N character section name>
8072 | '#' <hexdigits>
8073 ;
8074
8075 <binary-operator> := as in C
8076 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
8077
8078 static void
8079 set_symbol_value (bfd *bfd_with_globals,
8080 Elf_Internal_Sym *isymbuf,
8081 size_t locsymcount,
8082 size_t symidx,
8083 bfd_vma val)
8084 {
8085 struct elf_link_hash_entry **sym_hashes;
8086 struct elf_link_hash_entry *h;
8087 size_t extsymoff = locsymcount;
8088
8089 if (symidx < locsymcount)
8090 {
8091 Elf_Internal_Sym *sym;
8092
8093 sym = isymbuf + symidx;
8094 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
8095 {
8096 /* It is a local symbol: move it to the
8097 "absolute" section and give it a value. */
8098 sym->st_shndx = SHN_ABS;
8099 sym->st_value = val;
8100 return;
8101 }
8102 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
8103 extsymoff = 0;
8104 }
8105
8106 /* It is a global symbol: set its link type
8107 to "defined" and give it a value. */
8108
8109 sym_hashes = elf_sym_hashes (bfd_with_globals);
8110 h = sym_hashes [symidx - extsymoff];
8111 while (h->root.type == bfd_link_hash_indirect
8112 || h->root.type == bfd_link_hash_warning)
8113 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8114 h->root.type = bfd_link_hash_defined;
8115 h->root.u.def.value = val;
8116 h->root.u.def.section = bfd_abs_section_ptr;
8117 }
8118
8119 static bfd_boolean
8120 resolve_symbol (const char *name,
8121 bfd *input_bfd,
8122 struct elf_final_link_info *flinfo,
8123 bfd_vma *result,
8124 Elf_Internal_Sym *isymbuf,
8125 size_t locsymcount)
8126 {
8127 Elf_Internal_Sym *sym;
8128 struct bfd_link_hash_entry *global_entry;
8129 const char *candidate = NULL;
8130 Elf_Internal_Shdr *symtab_hdr;
8131 size_t i;
8132
8133 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
8134
8135 for (i = 0; i < locsymcount; ++ i)
8136 {
8137 sym = isymbuf + i;
8138
8139 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
8140 continue;
8141
8142 candidate = bfd_elf_string_from_elf_section (input_bfd,
8143 symtab_hdr->sh_link,
8144 sym->st_name);
8145 #ifdef DEBUG
8146 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
8147 name, candidate, (unsigned long) sym->st_value);
8148 #endif
8149 if (candidate && strcmp (candidate, name) == 0)
8150 {
8151 asection *sec = flinfo->sections [i];
8152
8153 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
8154 *result += sec->output_offset + sec->output_section->vma;
8155 #ifdef DEBUG
8156 printf ("Found symbol with value %8.8lx\n",
8157 (unsigned long) *result);
8158 #endif
8159 return TRUE;
8160 }
8161 }
8162
8163 /* Hmm, haven't found it yet. perhaps it is a global. */
8164 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
8165 FALSE, FALSE, TRUE);
8166 if (!global_entry)
8167 return FALSE;
8168
8169 if (global_entry->type == bfd_link_hash_defined
8170 || global_entry->type == bfd_link_hash_defweak)
8171 {
8172 *result = (global_entry->u.def.value
8173 + global_entry->u.def.section->output_section->vma
8174 + global_entry->u.def.section->output_offset);
8175 #ifdef DEBUG
8176 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
8177 global_entry->root.string, (unsigned long) *result);
8178 #endif
8179 return TRUE;
8180 }
8181
8182 return FALSE;
8183 }
8184
8185 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
8186 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
8187 names like "foo.end" which is the end address of section "foo". */
8188
8189 static bfd_boolean
8190 resolve_section (const char *name,
8191 asection *sections,
8192 bfd_vma *result,
8193 bfd * abfd)
8194 {
8195 asection *curr;
8196 unsigned int len;
8197
8198 for (curr = sections; curr; curr = curr->next)
8199 if (strcmp (curr->name, name) == 0)
8200 {
8201 *result = curr->vma;
8202 return TRUE;
8203 }
8204
8205 /* Hmm. still haven't found it. try pseudo-section names. */
8206 /* FIXME: This could be coded more efficiently... */
8207 for (curr = sections; curr; curr = curr->next)
8208 {
8209 len = strlen (curr->name);
8210 if (len > strlen (name))
8211 continue;
8212
8213 if (strncmp (curr->name, name, len) == 0)
8214 {
8215 if (strncmp (".end", name + len, 4) == 0)
8216 {
8217 *result = curr->vma + curr->size / bfd_octets_per_byte (abfd);
8218 return TRUE;
8219 }
8220
8221 /* Insert more pseudo-section names here, if you like. */
8222 }
8223 }
8224
8225 return FALSE;
8226 }
8227
8228 static void
8229 undefined_reference (const char *reftype, const char *name)
8230 {
8231 /* xgettext:c-format */
8232 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8233 reftype, name);
8234 }
8235
8236 static bfd_boolean
8237 eval_symbol (bfd_vma *result,
8238 const char **symp,
8239 bfd *input_bfd,
8240 struct elf_final_link_info *flinfo,
8241 bfd_vma dot,
8242 Elf_Internal_Sym *isymbuf,
8243 size_t locsymcount,
8244 int signed_p)
8245 {
8246 size_t len;
8247 size_t symlen;
8248 bfd_vma a;
8249 bfd_vma b;
8250 char symbuf[4096];
8251 const char *sym = *symp;
8252 const char *symend;
8253 bfd_boolean symbol_is_section = FALSE;
8254
8255 len = strlen (sym);
8256 symend = sym + len;
8257
8258 if (len < 1 || len > sizeof (symbuf))
8259 {
8260 bfd_set_error (bfd_error_invalid_operation);
8261 return FALSE;
8262 }
8263
8264 switch (* sym)
8265 {
8266 case '.':
8267 *result = dot;
8268 *symp = sym + 1;
8269 return TRUE;
8270
8271 case '#':
8272 ++sym;
8273 *result = strtoul (sym, (char **) symp, 16);
8274 return TRUE;
8275
8276 case 'S':
8277 symbol_is_section = TRUE;
8278 /* Fall through. */
8279 case 's':
8280 ++sym;
8281 symlen = strtol (sym, (char **) symp, 10);
8282 sym = *symp + 1; /* Skip the trailing ':'. */
8283
8284 if (symend < sym || symlen + 1 > sizeof (symbuf))
8285 {
8286 bfd_set_error (bfd_error_invalid_operation);
8287 return FALSE;
8288 }
8289
8290 memcpy (symbuf, sym, symlen);
8291 symbuf[symlen] = '\0';
8292 *symp = sym + symlen;
8293
8294 /* Is it always possible, with complex symbols, that gas "mis-guessed"
8295 the symbol as a section, or vice-versa. so we're pretty liberal in our
8296 interpretation here; section means "try section first", not "must be a
8297 section", and likewise with symbol. */
8298
8299 if (symbol_is_section)
8300 {
8301 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
8302 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
8303 isymbuf, locsymcount))
8304 {
8305 undefined_reference ("section", symbuf);
8306 return FALSE;
8307 }
8308 }
8309 else
8310 {
8311 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
8312 isymbuf, locsymcount)
8313 && !resolve_section (symbuf, flinfo->output_bfd->sections,
8314 result, input_bfd))
8315 {
8316 undefined_reference ("symbol", symbuf);
8317 return FALSE;
8318 }
8319 }
8320
8321 return TRUE;
8322
8323 /* All that remains are operators. */
8324
8325 #define UNARY_OP(op) \
8326 if (strncmp (sym, #op, strlen (#op)) == 0) \
8327 { \
8328 sym += strlen (#op); \
8329 if (*sym == ':') \
8330 ++sym; \
8331 *symp = sym; \
8332 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8333 isymbuf, locsymcount, signed_p)) \
8334 return FALSE; \
8335 if (signed_p) \
8336 *result = op ((bfd_signed_vma) a); \
8337 else \
8338 *result = op a; \
8339 return TRUE; \
8340 }
8341
8342 #define BINARY_OP(op) \
8343 if (strncmp (sym, #op, strlen (#op)) == 0) \
8344 { \
8345 sym += strlen (#op); \
8346 if (*sym == ':') \
8347 ++sym; \
8348 *symp = sym; \
8349 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8350 isymbuf, locsymcount, signed_p)) \
8351 return FALSE; \
8352 ++*symp; \
8353 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8354 isymbuf, locsymcount, signed_p)) \
8355 return FALSE; \
8356 if (signed_p) \
8357 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8358 else \
8359 *result = a op b; \
8360 return TRUE; \
8361 }
8362
8363 default:
8364 UNARY_OP (0-);
8365 BINARY_OP (<<);
8366 BINARY_OP (>>);
8367 BINARY_OP (==);
8368 BINARY_OP (!=);
8369 BINARY_OP (<=);
8370 BINARY_OP (>=);
8371 BINARY_OP (&&);
8372 BINARY_OP (||);
8373 UNARY_OP (~);
8374 UNARY_OP (!);
8375 BINARY_OP (*);
8376 BINARY_OP (/);
8377 BINARY_OP (%);
8378 BINARY_OP (^);
8379 BINARY_OP (|);
8380 BINARY_OP (&);
8381 BINARY_OP (+);
8382 BINARY_OP (-);
8383 BINARY_OP (<);
8384 BINARY_OP (>);
8385 #undef UNARY_OP
8386 #undef BINARY_OP
8387 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8388 bfd_set_error (bfd_error_invalid_operation);
8389 return FALSE;
8390 }
8391 }
8392
8393 static void
8394 put_value (bfd_vma size,
8395 unsigned long chunksz,
8396 bfd *input_bfd,
8397 bfd_vma x,
8398 bfd_byte *location)
8399 {
8400 location += (size - chunksz);
8401
8402 for (; size; size -= chunksz, location -= chunksz)
8403 {
8404 switch (chunksz)
8405 {
8406 case 1:
8407 bfd_put_8 (input_bfd, x, location);
8408 x >>= 8;
8409 break;
8410 case 2:
8411 bfd_put_16 (input_bfd, x, location);
8412 x >>= 16;
8413 break;
8414 case 4:
8415 bfd_put_32 (input_bfd, x, location);
8416 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8417 x >>= 16;
8418 x >>= 16;
8419 break;
8420 #ifdef BFD64
8421 case 8:
8422 bfd_put_64 (input_bfd, x, location);
8423 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8424 x >>= 32;
8425 x >>= 32;
8426 break;
8427 #endif
8428 default:
8429 abort ();
8430 break;
8431 }
8432 }
8433 }
8434
8435 static bfd_vma
8436 get_value (bfd_vma size,
8437 unsigned long chunksz,
8438 bfd *input_bfd,
8439 bfd_byte *location)
8440 {
8441 int shift;
8442 bfd_vma x = 0;
8443
8444 /* Sanity checks. */
8445 BFD_ASSERT (chunksz <= sizeof (x)
8446 && size >= chunksz
8447 && chunksz != 0
8448 && (size % chunksz) == 0
8449 && input_bfd != NULL
8450 && location != NULL);
8451
8452 if (chunksz == sizeof (x))
8453 {
8454 BFD_ASSERT (size == chunksz);
8455
8456 /* Make sure that we do not perform an undefined shift operation.
8457 We know that size == chunksz so there will only be one iteration
8458 of the loop below. */
8459 shift = 0;
8460 }
8461 else
8462 shift = 8 * chunksz;
8463
8464 for (; size; size -= chunksz, location += chunksz)
8465 {
8466 switch (chunksz)
8467 {
8468 case 1:
8469 x = (x << shift) | bfd_get_8 (input_bfd, location);
8470 break;
8471 case 2:
8472 x = (x << shift) | bfd_get_16 (input_bfd, location);
8473 break;
8474 case 4:
8475 x = (x << shift) | bfd_get_32 (input_bfd, location);
8476 break;
8477 #ifdef BFD64
8478 case 8:
8479 x = (x << shift) | bfd_get_64 (input_bfd, location);
8480 break;
8481 #endif
8482 default:
8483 abort ();
8484 }
8485 }
8486 return x;
8487 }
8488
8489 static void
8490 decode_complex_addend (unsigned long *start, /* in bits */
8491 unsigned long *oplen, /* in bits */
8492 unsigned long *len, /* in bits */
8493 unsigned long *wordsz, /* in bytes */
8494 unsigned long *chunksz, /* in bytes */
8495 unsigned long *lsb0_p,
8496 unsigned long *signed_p,
8497 unsigned long *trunc_p,
8498 unsigned long encoded)
8499 {
8500 * start = encoded & 0x3F;
8501 * len = (encoded >> 6) & 0x3F;
8502 * oplen = (encoded >> 12) & 0x3F;
8503 * wordsz = (encoded >> 18) & 0xF;
8504 * chunksz = (encoded >> 22) & 0xF;
8505 * lsb0_p = (encoded >> 27) & 1;
8506 * signed_p = (encoded >> 28) & 1;
8507 * trunc_p = (encoded >> 29) & 1;
8508 }
8509
8510 bfd_reloc_status_type
8511 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8512 asection *input_section ATTRIBUTE_UNUSED,
8513 bfd_byte *contents,
8514 Elf_Internal_Rela *rel,
8515 bfd_vma relocation)
8516 {
8517 bfd_vma shift, x, mask;
8518 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8519 bfd_reloc_status_type r;
8520
8521 /* Perform this reloc, since it is complex.
8522 (this is not to say that it necessarily refers to a complex
8523 symbol; merely that it is a self-describing CGEN based reloc.
8524 i.e. the addend has the complete reloc information (bit start, end,
8525 word size, etc) encoded within it.). */
8526
8527 decode_complex_addend (&start, &oplen, &len, &wordsz,
8528 &chunksz, &lsb0_p, &signed_p,
8529 &trunc_p, rel->r_addend);
8530
8531 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8532
8533 if (lsb0_p)
8534 shift = (start + 1) - len;
8535 else
8536 shift = (8 * wordsz) - (start + len);
8537
8538 x = get_value (wordsz, chunksz, input_bfd,
8539 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8540
8541 #ifdef DEBUG
8542 printf ("Doing complex reloc: "
8543 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8544 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8545 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8546 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8547 oplen, (unsigned long) x, (unsigned long) mask,
8548 (unsigned long) relocation);
8549 #endif
8550
8551 r = bfd_reloc_ok;
8552 if (! trunc_p)
8553 /* Now do an overflow check. */
8554 r = bfd_check_overflow ((signed_p
8555 ? complain_overflow_signed
8556 : complain_overflow_unsigned),
8557 len, 0, (8 * wordsz),
8558 relocation);
8559
8560 /* Do the deed. */
8561 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8562
8563 #ifdef DEBUG
8564 printf (" relocation: %8.8lx\n"
8565 " shifted mask: %8.8lx\n"
8566 " shifted/masked reloc: %8.8lx\n"
8567 " result: %8.8lx\n",
8568 (unsigned long) relocation, (unsigned long) (mask << shift),
8569 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8570 #endif
8571 put_value (wordsz, chunksz, input_bfd, x,
8572 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8573 return r;
8574 }
8575
8576 /* Functions to read r_offset from external (target order) reloc
8577 entry. Faster than bfd_getl32 et al, because we let the compiler
8578 know the value is aligned. */
8579
8580 static bfd_vma
8581 ext32l_r_offset (const void *p)
8582 {
8583 union aligned32
8584 {
8585 uint32_t v;
8586 unsigned char c[4];
8587 };
8588 const union aligned32 *a
8589 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8590
8591 uint32_t aval = ( (uint32_t) a->c[0]
8592 | (uint32_t) a->c[1] << 8
8593 | (uint32_t) a->c[2] << 16
8594 | (uint32_t) a->c[3] << 24);
8595 return aval;
8596 }
8597
8598 static bfd_vma
8599 ext32b_r_offset (const void *p)
8600 {
8601 union aligned32
8602 {
8603 uint32_t v;
8604 unsigned char c[4];
8605 };
8606 const union aligned32 *a
8607 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8608
8609 uint32_t aval = ( (uint32_t) a->c[0] << 24
8610 | (uint32_t) a->c[1] << 16
8611 | (uint32_t) a->c[2] << 8
8612 | (uint32_t) a->c[3]);
8613 return aval;
8614 }
8615
8616 #ifdef BFD_HOST_64_BIT
8617 static bfd_vma
8618 ext64l_r_offset (const void *p)
8619 {
8620 union aligned64
8621 {
8622 uint64_t v;
8623 unsigned char c[8];
8624 };
8625 const union aligned64 *a
8626 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8627
8628 uint64_t aval = ( (uint64_t) a->c[0]
8629 | (uint64_t) a->c[1] << 8
8630 | (uint64_t) a->c[2] << 16
8631 | (uint64_t) a->c[3] << 24
8632 | (uint64_t) a->c[4] << 32
8633 | (uint64_t) a->c[5] << 40
8634 | (uint64_t) a->c[6] << 48
8635 | (uint64_t) a->c[7] << 56);
8636 return aval;
8637 }
8638
8639 static bfd_vma
8640 ext64b_r_offset (const void *p)
8641 {
8642 union aligned64
8643 {
8644 uint64_t v;
8645 unsigned char c[8];
8646 };
8647 const union aligned64 *a
8648 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8649
8650 uint64_t aval = ( (uint64_t) a->c[0] << 56
8651 | (uint64_t) a->c[1] << 48
8652 | (uint64_t) a->c[2] << 40
8653 | (uint64_t) a->c[3] << 32
8654 | (uint64_t) a->c[4] << 24
8655 | (uint64_t) a->c[5] << 16
8656 | (uint64_t) a->c[6] << 8
8657 | (uint64_t) a->c[7]);
8658 return aval;
8659 }
8660 #endif
8661
8662 /* When performing a relocatable link, the input relocations are
8663 preserved. But, if they reference global symbols, the indices
8664 referenced must be updated. Update all the relocations found in
8665 RELDATA. */
8666
8667 static bfd_boolean
8668 elf_link_adjust_relocs (bfd *abfd,
8669 asection *sec,
8670 struct bfd_elf_section_reloc_data *reldata,
8671 bfd_boolean sort,
8672 struct bfd_link_info *info)
8673 {
8674 unsigned int i;
8675 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8676 bfd_byte *erela;
8677 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8678 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8679 bfd_vma r_type_mask;
8680 int r_sym_shift;
8681 unsigned int count = reldata->count;
8682 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8683
8684 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8685 {
8686 swap_in = bed->s->swap_reloc_in;
8687 swap_out = bed->s->swap_reloc_out;
8688 }
8689 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8690 {
8691 swap_in = bed->s->swap_reloca_in;
8692 swap_out = bed->s->swap_reloca_out;
8693 }
8694 else
8695 abort ();
8696
8697 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8698 abort ();
8699
8700 if (bed->s->arch_size == 32)
8701 {
8702 r_type_mask = 0xff;
8703 r_sym_shift = 8;
8704 }
8705 else
8706 {
8707 r_type_mask = 0xffffffff;
8708 r_sym_shift = 32;
8709 }
8710
8711 erela = reldata->hdr->contents;
8712 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8713 {
8714 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8715 unsigned int j;
8716
8717 if (*rel_hash == NULL)
8718 continue;
8719
8720 if ((*rel_hash)->indx == -2
8721 && info->gc_sections
8722 && ! info->gc_keep_exported)
8723 {
8724 /* PR 21524: Let the user know if a symbol was removed by garbage collection. */
8725 _bfd_error_handler (_("%pB:%pA: error: relocation references symbol %s which was removed by garbage collection"),
8726 abfd, sec,
8727 (*rel_hash)->root.root.string);
8728 _bfd_error_handler (_("%pB:%pA: error: try relinking with --gc-keep-exported enabled"),
8729 abfd, sec);
8730 bfd_set_error (bfd_error_invalid_operation);
8731 return FALSE;
8732 }
8733 BFD_ASSERT ((*rel_hash)->indx >= 0);
8734
8735 (*swap_in) (abfd, erela, irela);
8736 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8737 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8738 | (irela[j].r_info & r_type_mask));
8739 (*swap_out) (abfd, irela, erela);
8740 }
8741
8742 if (bed->elf_backend_update_relocs)
8743 (*bed->elf_backend_update_relocs) (sec, reldata);
8744
8745 if (sort && count != 0)
8746 {
8747 bfd_vma (*ext_r_off) (const void *);
8748 bfd_vma r_off;
8749 size_t elt_size;
8750 bfd_byte *base, *end, *p, *loc;
8751 bfd_byte *buf = NULL;
8752
8753 if (bed->s->arch_size == 32)
8754 {
8755 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8756 ext_r_off = ext32l_r_offset;
8757 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8758 ext_r_off = ext32b_r_offset;
8759 else
8760 abort ();
8761 }
8762 else
8763 {
8764 #ifdef BFD_HOST_64_BIT
8765 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8766 ext_r_off = ext64l_r_offset;
8767 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8768 ext_r_off = ext64b_r_offset;
8769 else
8770 #endif
8771 abort ();
8772 }
8773
8774 /* Must use a stable sort here. A modified insertion sort,
8775 since the relocs are mostly sorted already. */
8776 elt_size = reldata->hdr->sh_entsize;
8777 base = reldata->hdr->contents;
8778 end = base + count * elt_size;
8779 if (elt_size > sizeof (Elf64_External_Rela))
8780 abort ();
8781
8782 /* Ensure the first element is lowest. This acts as a sentinel,
8783 speeding the main loop below. */
8784 r_off = (*ext_r_off) (base);
8785 for (p = loc = base; (p += elt_size) < end; )
8786 {
8787 bfd_vma r_off2 = (*ext_r_off) (p);
8788 if (r_off > r_off2)
8789 {
8790 r_off = r_off2;
8791 loc = p;
8792 }
8793 }
8794 if (loc != base)
8795 {
8796 /* Don't just swap *base and *loc as that changes the order
8797 of the original base[0] and base[1] if they happen to
8798 have the same r_offset. */
8799 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
8800 memcpy (onebuf, loc, elt_size);
8801 memmove (base + elt_size, base, loc - base);
8802 memcpy (base, onebuf, elt_size);
8803 }
8804
8805 for (p = base + elt_size; (p += elt_size) < end; )
8806 {
8807 /* base to p is sorted, *p is next to insert. */
8808 r_off = (*ext_r_off) (p);
8809 /* Search the sorted region for location to insert. */
8810 loc = p - elt_size;
8811 while (r_off < (*ext_r_off) (loc))
8812 loc -= elt_size;
8813 loc += elt_size;
8814 if (loc != p)
8815 {
8816 /* Chances are there is a run of relocs to insert here,
8817 from one of more input files. Files are not always
8818 linked in order due to the way elf_link_input_bfd is
8819 called. See pr17666. */
8820 size_t sortlen = p - loc;
8821 bfd_vma r_off2 = (*ext_r_off) (loc);
8822 size_t runlen = elt_size;
8823 size_t buf_size = 96 * 1024;
8824 while (p + runlen < end
8825 && (sortlen <= buf_size
8826 || runlen + elt_size <= buf_size)
8827 && r_off2 > (*ext_r_off) (p + runlen))
8828 runlen += elt_size;
8829 if (buf == NULL)
8830 {
8831 buf = bfd_malloc (buf_size);
8832 if (buf == NULL)
8833 return FALSE;
8834 }
8835 if (runlen < sortlen)
8836 {
8837 memcpy (buf, p, runlen);
8838 memmove (loc + runlen, loc, sortlen);
8839 memcpy (loc, buf, runlen);
8840 }
8841 else
8842 {
8843 memcpy (buf, loc, sortlen);
8844 memmove (loc, p, runlen);
8845 memcpy (loc + runlen, buf, sortlen);
8846 }
8847 p += runlen - elt_size;
8848 }
8849 }
8850 /* Hashes are no longer valid. */
8851 free (reldata->hashes);
8852 reldata->hashes = NULL;
8853 free (buf);
8854 }
8855 return TRUE;
8856 }
8857
8858 struct elf_link_sort_rela
8859 {
8860 union {
8861 bfd_vma offset;
8862 bfd_vma sym_mask;
8863 } u;
8864 enum elf_reloc_type_class type;
8865 /* We use this as an array of size int_rels_per_ext_rel. */
8866 Elf_Internal_Rela rela[1];
8867 };
8868
8869 static int
8870 elf_link_sort_cmp1 (const void *A, const void *B)
8871 {
8872 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8873 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8874 int relativea, relativeb;
8875
8876 relativea = a->type == reloc_class_relative;
8877 relativeb = b->type == reloc_class_relative;
8878
8879 if (relativea < relativeb)
8880 return 1;
8881 if (relativea > relativeb)
8882 return -1;
8883 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8884 return -1;
8885 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8886 return 1;
8887 if (a->rela->r_offset < b->rela->r_offset)
8888 return -1;
8889 if (a->rela->r_offset > b->rela->r_offset)
8890 return 1;
8891 return 0;
8892 }
8893
8894 static int
8895 elf_link_sort_cmp2 (const void *A, const void *B)
8896 {
8897 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8898 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8899
8900 if (a->type < b->type)
8901 return -1;
8902 if (a->type > b->type)
8903 return 1;
8904 if (a->u.offset < b->u.offset)
8905 return -1;
8906 if (a->u.offset > b->u.offset)
8907 return 1;
8908 if (a->rela->r_offset < b->rela->r_offset)
8909 return -1;
8910 if (a->rela->r_offset > b->rela->r_offset)
8911 return 1;
8912 return 0;
8913 }
8914
8915 static size_t
8916 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8917 {
8918 asection *dynamic_relocs;
8919 asection *rela_dyn;
8920 asection *rel_dyn;
8921 bfd_size_type count, size;
8922 size_t i, ret, sort_elt, ext_size;
8923 bfd_byte *sort, *s_non_relative, *p;
8924 struct elf_link_sort_rela *sq;
8925 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8926 int i2e = bed->s->int_rels_per_ext_rel;
8927 unsigned int opb = bfd_octets_per_byte (abfd);
8928 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8929 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8930 struct bfd_link_order *lo;
8931 bfd_vma r_sym_mask;
8932 bfd_boolean use_rela;
8933
8934 /* Find a dynamic reloc section. */
8935 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8936 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8937 if (rela_dyn != NULL && rela_dyn->size > 0
8938 && rel_dyn != NULL && rel_dyn->size > 0)
8939 {
8940 bfd_boolean use_rela_initialised = FALSE;
8941
8942 /* This is just here to stop gcc from complaining.
8943 Its initialization checking code is not perfect. */
8944 use_rela = TRUE;
8945
8946 /* Both sections are present. Examine the sizes
8947 of the indirect sections to help us choose. */
8948 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8949 if (lo->type == bfd_indirect_link_order)
8950 {
8951 asection *o = lo->u.indirect.section;
8952
8953 if ((o->size % bed->s->sizeof_rela) == 0)
8954 {
8955 if ((o->size % bed->s->sizeof_rel) == 0)
8956 /* Section size is divisible by both rel and rela sizes.
8957 It is of no help to us. */
8958 ;
8959 else
8960 {
8961 /* Section size is only divisible by rela. */
8962 if (use_rela_initialised && !use_rela)
8963 {
8964 _bfd_error_handler (_("%pB: unable to sort relocs - "
8965 "they are in more than one size"),
8966 abfd);
8967 bfd_set_error (bfd_error_invalid_operation);
8968 return 0;
8969 }
8970 else
8971 {
8972 use_rela = TRUE;
8973 use_rela_initialised = TRUE;
8974 }
8975 }
8976 }
8977 else if ((o->size % bed->s->sizeof_rel) == 0)
8978 {
8979 /* Section size is only divisible by rel. */
8980 if (use_rela_initialised && use_rela)
8981 {
8982 _bfd_error_handler (_("%pB: unable to sort relocs - "
8983 "they are in more than one size"),
8984 abfd);
8985 bfd_set_error (bfd_error_invalid_operation);
8986 return 0;
8987 }
8988 else
8989 {
8990 use_rela = FALSE;
8991 use_rela_initialised = TRUE;
8992 }
8993 }
8994 else
8995 {
8996 /* The section size is not divisible by either -
8997 something is wrong. */
8998 _bfd_error_handler (_("%pB: unable to sort relocs - "
8999 "they are of an unknown size"), abfd);
9000 bfd_set_error (bfd_error_invalid_operation);
9001 return 0;
9002 }
9003 }
9004
9005 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9006 if (lo->type == bfd_indirect_link_order)
9007 {
9008 asection *o = lo->u.indirect.section;
9009
9010 if ((o->size % bed->s->sizeof_rela) == 0)
9011 {
9012 if ((o->size % bed->s->sizeof_rel) == 0)
9013 /* Section size is divisible by both rel and rela sizes.
9014 It is of no help to us. */
9015 ;
9016 else
9017 {
9018 /* Section size is only divisible by rela. */
9019 if (use_rela_initialised && !use_rela)
9020 {
9021 _bfd_error_handler (_("%pB: unable to sort relocs - "
9022 "they are in more than one size"),
9023 abfd);
9024 bfd_set_error (bfd_error_invalid_operation);
9025 return 0;
9026 }
9027 else
9028 {
9029 use_rela = TRUE;
9030 use_rela_initialised = TRUE;
9031 }
9032 }
9033 }
9034 else if ((o->size % bed->s->sizeof_rel) == 0)
9035 {
9036 /* Section size is only divisible by rel. */
9037 if (use_rela_initialised && use_rela)
9038 {
9039 _bfd_error_handler (_("%pB: unable to sort relocs - "
9040 "they are in more than one size"),
9041 abfd);
9042 bfd_set_error (bfd_error_invalid_operation);
9043 return 0;
9044 }
9045 else
9046 {
9047 use_rela = FALSE;
9048 use_rela_initialised = TRUE;
9049 }
9050 }
9051 else
9052 {
9053 /* The section size is not divisible by either -
9054 something is wrong. */
9055 _bfd_error_handler (_("%pB: unable to sort relocs - "
9056 "they are of an unknown size"), abfd);
9057 bfd_set_error (bfd_error_invalid_operation);
9058 return 0;
9059 }
9060 }
9061
9062 if (! use_rela_initialised)
9063 /* Make a guess. */
9064 use_rela = TRUE;
9065 }
9066 else if (rela_dyn != NULL && rela_dyn->size > 0)
9067 use_rela = TRUE;
9068 else if (rel_dyn != NULL && rel_dyn->size > 0)
9069 use_rela = FALSE;
9070 else
9071 return 0;
9072
9073 if (use_rela)
9074 {
9075 dynamic_relocs = rela_dyn;
9076 ext_size = bed->s->sizeof_rela;
9077 swap_in = bed->s->swap_reloca_in;
9078 swap_out = bed->s->swap_reloca_out;
9079 }
9080 else
9081 {
9082 dynamic_relocs = rel_dyn;
9083 ext_size = bed->s->sizeof_rel;
9084 swap_in = bed->s->swap_reloc_in;
9085 swap_out = bed->s->swap_reloc_out;
9086 }
9087
9088 size = 0;
9089 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9090 if (lo->type == bfd_indirect_link_order)
9091 size += lo->u.indirect.section->size;
9092
9093 if (size != dynamic_relocs->size)
9094 return 0;
9095
9096 sort_elt = (sizeof (struct elf_link_sort_rela)
9097 + (i2e - 1) * sizeof (Elf_Internal_Rela));
9098
9099 count = dynamic_relocs->size / ext_size;
9100 if (count == 0)
9101 return 0;
9102 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
9103
9104 if (sort == NULL)
9105 {
9106 (*info->callbacks->warning)
9107 (info, _("not enough memory to sort relocations"), 0, abfd, 0, 0);
9108 return 0;
9109 }
9110
9111 if (bed->s->arch_size == 32)
9112 r_sym_mask = ~(bfd_vma) 0xff;
9113 else
9114 r_sym_mask = ~(bfd_vma) 0xffffffff;
9115
9116 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9117 if (lo->type == bfd_indirect_link_order)
9118 {
9119 bfd_byte *erel, *erelend;
9120 asection *o = lo->u.indirect.section;
9121
9122 if (o->contents == NULL && o->size != 0)
9123 {
9124 /* This is a reloc section that is being handled as a normal
9125 section. See bfd_section_from_shdr. We can't combine
9126 relocs in this case. */
9127 free (sort);
9128 return 0;
9129 }
9130 erel = o->contents;
9131 erelend = o->contents + o->size;
9132 p = sort + o->output_offset * opb / ext_size * sort_elt;
9133
9134 while (erel < erelend)
9135 {
9136 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9137
9138 (*swap_in) (abfd, erel, s->rela);
9139 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
9140 s->u.sym_mask = r_sym_mask;
9141 p += sort_elt;
9142 erel += ext_size;
9143 }
9144 }
9145
9146 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
9147
9148 for (i = 0, p = sort; i < count; i++, p += sort_elt)
9149 {
9150 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9151 if (s->type != reloc_class_relative)
9152 break;
9153 }
9154 ret = i;
9155 s_non_relative = p;
9156
9157 sq = (struct elf_link_sort_rela *) s_non_relative;
9158 for (; i < count; i++, p += sort_elt)
9159 {
9160 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
9161 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
9162 sq = sp;
9163 sp->u.offset = sq->rela->r_offset;
9164 }
9165
9166 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
9167
9168 struct elf_link_hash_table *htab = elf_hash_table (info);
9169 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
9170 {
9171 /* We have plt relocs in .rela.dyn. */
9172 sq = (struct elf_link_sort_rela *) sort;
9173 for (i = 0; i < count; i++)
9174 if (sq[count - i - 1].type != reloc_class_plt)
9175 break;
9176 if (i != 0 && htab->srelplt->size == i * ext_size)
9177 {
9178 struct bfd_link_order **plo;
9179 /* Put srelplt link_order last. This is so the output_offset
9180 set in the next loop is correct for DT_JMPREL. */
9181 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
9182 if ((*plo)->type == bfd_indirect_link_order
9183 && (*plo)->u.indirect.section == htab->srelplt)
9184 {
9185 lo = *plo;
9186 *plo = lo->next;
9187 }
9188 else
9189 plo = &(*plo)->next;
9190 *plo = lo;
9191 lo->next = NULL;
9192 dynamic_relocs->map_tail.link_order = lo;
9193 }
9194 }
9195
9196 p = sort;
9197 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9198 if (lo->type == bfd_indirect_link_order)
9199 {
9200 bfd_byte *erel, *erelend;
9201 asection *o = lo->u.indirect.section;
9202
9203 erel = o->contents;
9204 erelend = o->contents + o->size;
9205 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
9206 while (erel < erelend)
9207 {
9208 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9209 (*swap_out) (abfd, s->rela, erel);
9210 p += sort_elt;
9211 erel += ext_size;
9212 }
9213 }
9214
9215 free (sort);
9216 *psec = dynamic_relocs;
9217 return ret;
9218 }
9219
9220 /* Add a symbol to the output symbol string table. */
9221
9222 static int
9223 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
9224 const char *name,
9225 Elf_Internal_Sym *elfsym,
9226 asection *input_sec,
9227 struct elf_link_hash_entry *h)
9228 {
9229 int (*output_symbol_hook)
9230 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
9231 struct elf_link_hash_entry *);
9232 struct elf_link_hash_table *hash_table;
9233 const struct elf_backend_data *bed;
9234 bfd_size_type strtabsize;
9235
9236 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9237
9238 bed = get_elf_backend_data (flinfo->output_bfd);
9239 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
9240 if (output_symbol_hook != NULL)
9241 {
9242 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
9243 if (ret != 1)
9244 return ret;
9245 }
9246
9247 if (name == NULL
9248 || *name == '\0'
9249 || (input_sec->flags & SEC_EXCLUDE))
9250 elfsym->st_name = (unsigned long) -1;
9251 else
9252 {
9253 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
9254 to get the final offset for st_name. */
9255 elfsym->st_name
9256 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
9257 name, FALSE);
9258 if (elfsym->st_name == (unsigned long) -1)
9259 return 0;
9260 }
9261
9262 hash_table = elf_hash_table (flinfo->info);
9263 strtabsize = hash_table->strtabsize;
9264 if (strtabsize <= hash_table->strtabcount)
9265 {
9266 strtabsize += strtabsize;
9267 hash_table->strtabsize = strtabsize;
9268 strtabsize *= sizeof (*hash_table->strtab);
9269 hash_table->strtab
9270 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
9271 strtabsize);
9272 if (hash_table->strtab == NULL)
9273 return 0;
9274 }
9275 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
9276 hash_table->strtab[hash_table->strtabcount].dest_index
9277 = hash_table->strtabcount;
9278 hash_table->strtab[hash_table->strtabcount].destshndx_index
9279 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
9280
9281 bfd_get_symcount (flinfo->output_bfd) += 1;
9282 hash_table->strtabcount += 1;
9283
9284 return 1;
9285 }
9286
9287 /* Swap symbols out to the symbol table and flush the output symbols to
9288 the file. */
9289
9290 static bfd_boolean
9291 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
9292 {
9293 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
9294 bfd_size_type amt;
9295 size_t i;
9296 const struct elf_backend_data *bed;
9297 bfd_byte *symbuf;
9298 Elf_Internal_Shdr *hdr;
9299 file_ptr pos;
9300 bfd_boolean ret;
9301
9302 if (!hash_table->strtabcount)
9303 return TRUE;
9304
9305 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9306
9307 bed = get_elf_backend_data (flinfo->output_bfd);
9308
9309 amt = bed->s->sizeof_sym * hash_table->strtabcount;
9310 symbuf = (bfd_byte *) bfd_malloc (amt);
9311 if (symbuf == NULL)
9312 return FALSE;
9313
9314 if (flinfo->symshndxbuf)
9315 {
9316 amt = sizeof (Elf_External_Sym_Shndx);
9317 amt *= bfd_get_symcount (flinfo->output_bfd);
9318 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
9319 if (flinfo->symshndxbuf == NULL)
9320 {
9321 free (symbuf);
9322 return FALSE;
9323 }
9324 }
9325
9326 for (i = 0; i < hash_table->strtabcount; i++)
9327 {
9328 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
9329 if (elfsym->sym.st_name == (unsigned long) -1)
9330 elfsym->sym.st_name = 0;
9331 else
9332 elfsym->sym.st_name
9333 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
9334 elfsym->sym.st_name);
9335 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
9336 ((bfd_byte *) symbuf
9337 + (elfsym->dest_index
9338 * bed->s->sizeof_sym)),
9339 (flinfo->symshndxbuf
9340 + elfsym->destshndx_index));
9341 }
9342
9343 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
9344 pos = hdr->sh_offset + hdr->sh_size;
9345 amt = hash_table->strtabcount * bed->s->sizeof_sym;
9346 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
9347 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
9348 {
9349 hdr->sh_size += amt;
9350 ret = TRUE;
9351 }
9352 else
9353 ret = FALSE;
9354
9355 free (symbuf);
9356
9357 free (hash_table->strtab);
9358 hash_table->strtab = NULL;
9359
9360 return ret;
9361 }
9362
9363 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9364
9365 static bfd_boolean
9366 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9367 {
9368 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9369 && sym->st_shndx < SHN_LORESERVE)
9370 {
9371 /* The gABI doesn't support dynamic symbols in output sections
9372 beyond 64k. */
9373 _bfd_error_handler
9374 /* xgettext:c-format */
9375 (_("%pB: too many sections: %d (>= %d)"),
9376 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9377 bfd_set_error (bfd_error_nonrepresentable_section);
9378 return FALSE;
9379 }
9380 return TRUE;
9381 }
9382
9383 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9384 allowing an unsatisfied unversioned symbol in the DSO to match a
9385 versioned symbol that would normally require an explicit version.
9386 We also handle the case that a DSO references a hidden symbol
9387 which may be satisfied by a versioned symbol in another DSO. */
9388
9389 static bfd_boolean
9390 elf_link_check_versioned_symbol (struct bfd_link_info *info,
9391 const struct elf_backend_data *bed,
9392 struct elf_link_hash_entry *h)
9393 {
9394 bfd *abfd;
9395 struct elf_link_loaded_list *loaded;
9396
9397 if (!is_elf_hash_table (info->hash))
9398 return FALSE;
9399
9400 /* Check indirect symbol. */
9401 while (h->root.type == bfd_link_hash_indirect)
9402 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9403
9404 switch (h->root.type)
9405 {
9406 default:
9407 abfd = NULL;
9408 break;
9409
9410 case bfd_link_hash_undefined:
9411 case bfd_link_hash_undefweak:
9412 abfd = h->root.u.undef.abfd;
9413 if (abfd == NULL
9414 || (abfd->flags & DYNAMIC) == 0
9415 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9416 return FALSE;
9417 break;
9418
9419 case bfd_link_hash_defined:
9420 case bfd_link_hash_defweak:
9421 abfd = h->root.u.def.section->owner;
9422 break;
9423
9424 case bfd_link_hash_common:
9425 abfd = h->root.u.c.p->section->owner;
9426 break;
9427 }
9428 BFD_ASSERT (abfd != NULL);
9429
9430 for (loaded = elf_hash_table (info)->loaded;
9431 loaded != NULL;
9432 loaded = loaded->next)
9433 {
9434 bfd *input;
9435 Elf_Internal_Shdr *hdr;
9436 size_t symcount;
9437 size_t extsymcount;
9438 size_t extsymoff;
9439 Elf_Internal_Shdr *versymhdr;
9440 Elf_Internal_Sym *isym;
9441 Elf_Internal_Sym *isymend;
9442 Elf_Internal_Sym *isymbuf;
9443 Elf_External_Versym *ever;
9444 Elf_External_Versym *extversym;
9445
9446 input = loaded->abfd;
9447
9448 /* We check each DSO for a possible hidden versioned definition. */
9449 if (input == abfd
9450 || (input->flags & DYNAMIC) == 0
9451 || elf_dynversym (input) == 0)
9452 continue;
9453
9454 hdr = &elf_tdata (input)->dynsymtab_hdr;
9455
9456 symcount = hdr->sh_size / bed->s->sizeof_sym;
9457 if (elf_bad_symtab (input))
9458 {
9459 extsymcount = symcount;
9460 extsymoff = 0;
9461 }
9462 else
9463 {
9464 extsymcount = symcount - hdr->sh_info;
9465 extsymoff = hdr->sh_info;
9466 }
9467
9468 if (extsymcount == 0)
9469 continue;
9470
9471 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9472 NULL, NULL, NULL);
9473 if (isymbuf == NULL)
9474 return FALSE;
9475
9476 /* Read in any version definitions. */
9477 versymhdr = &elf_tdata (input)->dynversym_hdr;
9478 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
9479 if (extversym == NULL)
9480 goto error_ret;
9481
9482 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9483 || (bfd_bread (extversym, versymhdr->sh_size, input)
9484 != versymhdr->sh_size))
9485 {
9486 free (extversym);
9487 error_ret:
9488 free (isymbuf);
9489 return FALSE;
9490 }
9491
9492 ever = extversym + extsymoff;
9493 isymend = isymbuf + extsymcount;
9494 for (isym = isymbuf; isym < isymend; isym++, ever++)
9495 {
9496 const char *name;
9497 Elf_Internal_Versym iver;
9498 unsigned short version_index;
9499
9500 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9501 || isym->st_shndx == SHN_UNDEF)
9502 continue;
9503
9504 name = bfd_elf_string_from_elf_section (input,
9505 hdr->sh_link,
9506 isym->st_name);
9507 if (strcmp (name, h->root.root.string) != 0)
9508 continue;
9509
9510 _bfd_elf_swap_versym_in (input, ever, &iver);
9511
9512 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9513 && !(h->def_regular
9514 && h->forced_local))
9515 {
9516 /* If we have a non-hidden versioned sym, then it should
9517 have provided a definition for the undefined sym unless
9518 it is defined in a non-shared object and forced local.
9519 */
9520 abort ();
9521 }
9522
9523 version_index = iver.vs_vers & VERSYM_VERSION;
9524 if (version_index == 1 || version_index == 2)
9525 {
9526 /* This is the base or first version. We can use it. */
9527 free (extversym);
9528 free (isymbuf);
9529 return TRUE;
9530 }
9531 }
9532
9533 free (extversym);
9534 free (isymbuf);
9535 }
9536
9537 return FALSE;
9538 }
9539
9540 /* Convert ELF common symbol TYPE. */
9541
9542 static int
9543 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9544 {
9545 /* Commom symbol can only appear in relocatable link. */
9546 if (!bfd_link_relocatable (info))
9547 abort ();
9548 switch (info->elf_stt_common)
9549 {
9550 case unchanged:
9551 break;
9552 case elf_stt_common:
9553 type = STT_COMMON;
9554 break;
9555 case no_elf_stt_common:
9556 type = STT_OBJECT;
9557 break;
9558 }
9559 return type;
9560 }
9561
9562 /* Add an external symbol to the symbol table. This is called from
9563 the hash table traversal routine. When generating a shared object,
9564 we go through the symbol table twice. The first time we output
9565 anything that might have been forced to local scope in a version
9566 script. The second time we output the symbols that are still
9567 global symbols. */
9568
9569 static bfd_boolean
9570 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9571 {
9572 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9573 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9574 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9575 bfd_boolean strip;
9576 Elf_Internal_Sym sym;
9577 asection *input_sec;
9578 const struct elf_backend_data *bed;
9579 long indx;
9580 int ret;
9581 unsigned int type;
9582
9583 if (h->root.type == bfd_link_hash_warning)
9584 {
9585 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9586 if (h->root.type == bfd_link_hash_new)
9587 return TRUE;
9588 }
9589
9590 /* Decide whether to output this symbol in this pass. */
9591 if (eoinfo->localsyms)
9592 {
9593 if (!h->forced_local)
9594 return TRUE;
9595 }
9596 else
9597 {
9598 if (h->forced_local)
9599 return TRUE;
9600 }
9601
9602 bed = get_elf_backend_data (flinfo->output_bfd);
9603
9604 if (h->root.type == bfd_link_hash_undefined)
9605 {
9606 /* If we have an undefined symbol reference here then it must have
9607 come from a shared library that is being linked in. (Undefined
9608 references in regular files have already been handled unless
9609 they are in unreferenced sections which are removed by garbage
9610 collection). */
9611 bfd_boolean ignore_undef = FALSE;
9612
9613 /* Some symbols may be special in that the fact that they're
9614 undefined can be safely ignored - let backend determine that. */
9615 if (bed->elf_backend_ignore_undef_symbol)
9616 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9617
9618 /* If we are reporting errors for this situation then do so now. */
9619 if (!ignore_undef
9620 && h->ref_dynamic
9621 && (!h->ref_regular || flinfo->info->gc_sections)
9622 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9623 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9624 (*flinfo->info->callbacks->undefined_symbol)
9625 (flinfo->info, h->root.root.string,
9626 h->ref_regular ? NULL : h->root.u.undef.abfd,
9627 NULL, 0,
9628 flinfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR);
9629
9630 /* Strip a global symbol defined in a discarded section. */
9631 if (h->indx == -3)
9632 return TRUE;
9633 }
9634
9635 /* We should also warn if a forced local symbol is referenced from
9636 shared libraries. */
9637 if (bfd_link_executable (flinfo->info)
9638 && h->forced_local
9639 && h->ref_dynamic
9640 && h->def_regular
9641 && !h->dynamic_def
9642 && h->ref_dynamic_nonweak
9643 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9644 {
9645 bfd *def_bfd;
9646 const char *msg;
9647 struct elf_link_hash_entry *hi = h;
9648
9649 /* Check indirect symbol. */
9650 while (hi->root.type == bfd_link_hash_indirect)
9651 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9652
9653 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9654 /* xgettext:c-format */
9655 msg = _("%pB: internal symbol `%s' in %pB is referenced by DSO");
9656 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9657 /* xgettext:c-format */
9658 msg = _("%pB: hidden symbol `%s' in %pB is referenced by DSO");
9659 else
9660 /* xgettext:c-format */
9661 msg = _("%pB: local symbol `%s' in %pB is referenced by DSO");
9662 def_bfd = flinfo->output_bfd;
9663 if (hi->root.u.def.section != bfd_abs_section_ptr)
9664 def_bfd = hi->root.u.def.section->owner;
9665 _bfd_error_handler (msg, flinfo->output_bfd,
9666 h->root.root.string, def_bfd);
9667 bfd_set_error (bfd_error_bad_value);
9668 eoinfo->failed = TRUE;
9669 return FALSE;
9670 }
9671
9672 /* We don't want to output symbols that have never been mentioned by
9673 a regular file, or that we have been told to strip. However, if
9674 h->indx is set to -2, the symbol is used by a reloc and we must
9675 output it. */
9676 strip = FALSE;
9677 if (h->indx == -2)
9678 ;
9679 else if ((h->def_dynamic
9680 || h->ref_dynamic
9681 || h->root.type == bfd_link_hash_new)
9682 && !h->def_regular
9683 && !h->ref_regular)
9684 strip = TRUE;
9685 else if (flinfo->info->strip == strip_all)
9686 strip = TRUE;
9687 else if (flinfo->info->strip == strip_some
9688 && bfd_hash_lookup (flinfo->info->keep_hash,
9689 h->root.root.string, FALSE, FALSE) == NULL)
9690 strip = TRUE;
9691 else if ((h->root.type == bfd_link_hash_defined
9692 || h->root.type == bfd_link_hash_defweak)
9693 && ((flinfo->info->strip_discarded
9694 && discarded_section (h->root.u.def.section))
9695 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9696 && h->root.u.def.section->owner != NULL
9697 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9698 strip = TRUE;
9699 else if ((h->root.type == bfd_link_hash_undefined
9700 || h->root.type == bfd_link_hash_undefweak)
9701 && h->root.u.undef.abfd != NULL
9702 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9703 strip = TRUE;
9704
9705 type = h->type;
9706
9707 /* If we're stripping it, and it's not a dynamic symbol, there's
9708 nothing else to do. However, if it is a forced local symbol or
9709 an ifunc symbol we need to give the backend finish_dynamic_symbol
9710 function a chance to make it dynamic. */
9711 if (strip
9712 && h->dynindx == -1
9713 && type != STT_GNU_IFUNC
9714 && !h->forced_local)
9715 return TRUE;
9716
9717 sym.st_value = 0;
9718 sym.st_size = h->size;
9719 sym.st_other = h->other;
9720 switch (h->root.type)
9721 {
9722 default:
9723 case bfd_link_hash_new:
9724 case bfd_link_hash_warning:
9725 abort ();
9726 return FALSE;
9727
9728 case bfd_link_hash_undefined:
9729 case bfd_link_hash_undefweak:
9730 input_sec = bfd_und_section_ptr;
9731 sym.st_shndx = SHN_UNDEF;
9732 break;
9733
9734 case bfd_link_hash_defined:
9735 case bfd_link_hash_defweak:
9736 {
9737 input_sec = h->root.u.def.section;
9738 if (input_sec->output_section != NULL)
9739 {
9740 sym.st_shndx =
9741 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9742 input_sec->output_section);
9743 if (sym.st_shndx == SHN_BAD)
9744 {
9745 _bfd_error_handler
9746 /* xgettext:c-format */
9747 (_("%pB: could not find output section %pA for input section %pA"),
9748 flinfo->output_bfd, input_sec->output_section, input_sec);
9749 bfd_set_error (bfd_error_nonrepresentable_section);
9750 eoinfo->failed = TRUE;
9751 return FALSE;
9752 }
9753
9754 /* ELF symbols in relocatable files are section relative,
9755 but in nonrelocatable files they are virtual
9756 addresses. */
9757 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9758 if (!bfd_link_relocatable (flinfo->info))
9759 {
9760 sym.st_value += input_sec->output_section->vma;
9761 if (h->type == STT_TLS)
9762 {
9763 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9764 if (tls_sec != NULL)
9765 sym.st_value -= tls_sec->vma;
9766 }
9767 }
9768 }
9769 else
9770 {
9771 BFD_ASSERT (input_sec->owner == NULL
9772 || (input_sec->owner->flags & DYNAMIC) != 0);
9773 sym.st_shndx = SHN_UNDEF;
9774 input_sec = bfd_und_section_ptr;
9775 }
9776 }
9777 break;
9778
9779 case bfd_link_hash_common:
9780 input_sec = h->root.u.c.p->section;
9781 sym.st_shndx = bed->common_section_index (input_sec);
9782 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9783 break;
9784
9785 case bfd_link_hash_indirect:
9786 /* These symbols are created by symbol versioning. They point
9787 to the decorated version of the name. For example, if the
9788 symbol foo@@GNU_1.2 is the default, which should be used when
9789 foo is used with no version, then we add an indirect symbol
9790 foo which points to foo@@GNU_1.2. We ignore these symbols,
9791 since the indirected symbol is already in the hash table. */
9792 return TRUE;
9793 }
9794
9795 if (type == STT_COMMON || type == STT_OBJECT)
9796 switch (h->root.type)
9797 {
9798 case bfd_link_hash_common:
9799 type = elf_link_convert_common_type (flinfo->info, type);
9800 break;
9801 case bfd_link_hash_defined:
9802 case bfd_link_hash_defweak:
9803 if (bed->common_definition (&sym))
9804 type = elf_link_convert_common_type (flinfo->info, type);
9805 else
9806 type = STT_OBJECT;
9807 break;
9808 case bfd_link_hash_undefined:
9809 case bfd_link_hash_undefweak:
9810 break;
9811 default:
9812 abort ();
9813 }
9814
9815 if (h->forced_local)
9816 {
9817 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
9818 /* Turn off visibility on local symbol. */
9819 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
9820 }
9821 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
9822 else if (h->unique_global && h->def_regular)
9823 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
9824 else if (h->root.type == bfd_link_hash_undefweak
9825 || h->root.type == bfd_link_hash_defweak)
9826 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
9827 else
9828 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
9829 sym.st_target_internal = h->target_internal;
9830
9831 /* Give the processor backend a chance to tweak the symbol value,
9832 and also to finish up anything that needs to be done for this
9833 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9834 forced local syms when non-shared is due to a historical quirk.
9835 STT_GNU_IFUNC symbol must go through PLT. */
9836 if ((h->type == STT_GNU_IFUNC
9837 && h->def_regular
9838 && !bfd_link_relocatable (flinfo->info))
9839 || ((h->dynindx != -1
9840 || h->forced_local)
9841 && ((bfd_link_pic (flinfo->info)
9842 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9843 || h->root.type != bfd_link_hash_undefweak))
9844 || !h->forced_local)
9845 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9846 {
9847 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9848 (flinfo->output_bfd, flinfo->info, h, &sym)))
9849 {
9850 eoinfo->failed = TRUE;
9851 return FALSE;
9852 }
9853 }
9854
9855 /* If we are marking the symbol as undefined, and there are no
9856 non-weak references to this symbol from a regular object, then
9857 mark the symbol as weak undefined; if there are non-weak
9858 references, mark the symbol as strong. We can't do this earlier,
9859 because it might not be marked as undefined until the
9860 finish_dynamic_symbol routine gets through with it. */
9861 if (sym.st_shndx == SHN_UNDEF
9862 && h->ref_regular
9863 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9864 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9865 {
9866 int bindtype;
9867 type = ELF_ST_TYPE (sym.st_info);
9868
9869 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9870 if (type == STT_GNU_IFUNC)
9871 type = STT_FUNC;
9872
9873 if (h->ref_regular_nonweak)
9874 bindtype = STB_GLOBAL;
9875 else
9876 bindtype = STB_WEAK;
9877 sym.st_info = ELF_ST_INFO (bindtype, type);
9878 }
9879
9880 /* If this is a symbol defined in a dynamic library, don't use the
9881 symbol size from the dynamic library. Relinking an executable
9882 against a new library may introduce gratuitous changes in the
9883 executable's symbols if we keep the size. */
9884 if (sym.st_shndx == SHN_UNDEF
9885 && !h->def_regular
9886 && h->def_dynamic)
9887 sym.st_size = 0;
9888
9889 /* If a non-weak symbol with non-default visibility is not defined
9890 locally, it is a fatal error. */
9891 if (!bfd_link_relocatable (flinfo->info)
9892 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9893 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9894 && h->root.type == bfd_link_hash_undefined
9895 && !h->def_regular)
9896 {
9897 const char *msg;
9898
9899 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9900 /* xgettext:c-format */
9901 msg = _("%pB: protected symbol `%s' isn't defined");
9902 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9903 /* xgettext:c-format */
9904 msg = _("%pB: internal symbol `%s' isn't defined");
9905 else
9906 /* xgettext:c-format */
9907 msg = _("%pB: hidden symbol `%s' isn't defined");
9908 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
9909 bfd_set_error (bfd_error_bad_value);
9910 eoinfo->failed = TRUE;
9911 return FALSE;
9912 }
9913
9914 /* If this symbol should be put in the .dynsym section, then put it
9915 there now. We already know the symbol index. We also fill in
9916 the entry in the .hash section. */
9917 if (elf_hash_table (flinfo->info)->dynsym != NULL
9918 && h->dynindx != -1
9919 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9920 {
9921 bfd_byte *esym;
9922
9923 /* Since there is no version information in the dynamic string,
9924 if there is no version info in symbol version section, we will
9925 have a run-time problem if not linking executable, referenced
9926 by shared library, or not bound locally. */
9927 if (h->verinfo.verdef == NULL
9928 && (!bfd_link_executable (flinfo->info)
9929 || h->ref_dynamic
9930 || !h->def_regular))
9931 {
9932 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9933
9934 if (p && p [1] != '\0')
9935 {
9936 _bfd_error_handler
9937 /* xgettext:c-format */
9938 (_("%pB: no symbol version section for versioned symbol `%s'"),
9939 flinfo->output_bfd, h->root.root.string);
9940 eoinfo->failed = TRUE;
9941 return FALSE;
9942 }
9943 }
9944
9945 sym.st_name = h->dynstr_index;
9946 esym = (elf_hash_table (flinfo->info)->dynsym->contents
9947 + h->dynindx * bed->s->sizeof_sym);
9948 if (!check_dynsym (flinfo->output_bfd, &sym))
9949 {
9950 eoinfo->failed = TRUE;
9951 return FALSE;
9952 }
9953 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9954
9955 if (flinfo->hash_sec != NULL)
9956 {
9957 size_t hash_entry_size;
9958 bfd_byte *bucketpos;
9959 bfd_vma chain;
9960 size_t bucketcount;
9961 size_t bucket;
9962
9963 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9964 bucket = h->u.elf_hash_value % bucketcount;
9965
9966 hash_entry_size
9967 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9968 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9969 + (bucket + 2) * hash_entry_size);
9970 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9971 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9972 bucketpos);
9973 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9974 ((bfd_byte *) flinfo->hash_sec->contents
9975 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9976 }
9977
9978 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9979 {
9980 Elf_Internal_Versym iversym;
9981 Elf_External_Versym *eversym;
9982
9983 if (!h->def_regular)
9984 {
9985 if (h->verinfo.verdef == NULL
9986 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9987 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9988 iversym.vs_vers = 0;
9989 else
9990 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9991 }
9992 else
9993 {
9994 if (h->verinfo.vertree == NULL)
9995 iversym.vs_vers = 1;
9996 else
9997 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9998 if (flinfo->info->create_default_symver)
9999 iversym.vs_vers++;
10000 }
10001
10002 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
10003 defined locally. */
10004 if (h->versioned == versioned_hidden && h->def_regular)
10005 iversym.vs_vers |= VERSYM_HIDDEN;
10006
10007 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
10008 eversym += h->dynindx;
10009 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
10010 }
10011 }
10012
10013 /* If the symbol is undefined, and we didn't output it to .dynsym,
10014 strip it from .symtab too. Obviously we can't do this for
10015 relocatable output or when needed for --emit-relocs. */
10016 else if (input_sec == bfd_und_section_ptr
10017 && h->indx != -2
10018 /* PR 22319 Do not strip global undefined symbols marked as being needed. */
10019 && (h->mark != 1 || ELF_ST_BIND (sym.st_info) != STB_GLOBAL)
10020 && !bfd_link_relocatable (flinfo->info))
10021 return TRUE;
10022
10023 /* Also strip others that we couldn't earlier due to dynamic symbol
10024 processing. */
10025 if (strip)
10026 return TRUE;
10027 if ((input_sec->flags & SEC_EXCLUDE) != 0)
10028 return TRUE;
10029
10030 /* Output a FILE symbol so that following locals are not associated
10031 with the wrong input file. We need one for forced local symbols
10032 if we've seen more than one FILE symbol or when we have exactly
10033 one FILE symbol but global symbols are present in a file other
10034 than the one with the FILE symbol. We also need one if linker
10035 defined symbols are present. In practice these conditions are
10036 always met, so just emit the FILE symbol unconditionally. */
10037 if (eoinfo->localsyms
10038 && !eoinfo->file_sym_done
10039 && eoinfo->flinfo->filesym_count != 0)
10040 {
10041 Elf_Internal_Sym fsym;
10042
10043 memset (&fsym, 0, sizeof (fsym));
10044 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10045 fsym.st_shndx = SHN_ABS;
10046 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
10047 bfd_und_section_ptr, NULL))
10048 return FALSE;
10049
10050 eoinfo->file_sym_done = TRUE;
10051 }
10052
10053 indx = bfd_get_symcount (flinfo->output_bfd);
10054 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
10055 input_sec, h);
10056 if (ret == 0)
10057 {
10058 eoinfo->failed = TRUE;
10059 return FALSE;
10060 }
10061 else if (ret == 1)
10062 h->indx = indx;
10063 else if (h->indx == -2)
10064 abort();
10065
10066 return TRUE;
10067 }
10068
10069 /* Return TRUE if special handling is done for relocs in SEC against
10070 symbols defined in discarded sections. */
10071
10072 static bfd_boolean
10073 elf_section_ignore_discarded_relocs (asection *sec)
10074 {
10075 const struct elf_backend_data *bed;
10076
10077 switch (sec->sec_info_type)
10078 {
10079 case SEC_INFO_TYPE_STABS:
10080 case SEC_INFO_TYPE_EH_FRAME:
10081 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10082 return TRUE;
10083 default:
10084 break;
10085 }
10086
10087 bed = get_elf_backend_data (sec->owner);
10088 if (bed->elf_backend_ignore_discarded_relocs != NULL
10089 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
10090 return TRUE;
10091
10092 return FALSE;
10093 }
10094
10095 /* Return a mask saying how ld should treat relocations in SEC against
10096 symbols defined in discarded sections. If this function returns
10097 COMPLAIN set, ld will issue a warning message. If this function
10098 returns PRETEND set, and the discarded section was link-once and the
10099 same size as the kept link-once section, ld will pretend that the
10100 symbol was actually defined in the kept section. Otherwise ld will
10101 zero the reloc (at least that is the intent, but some cooperation by
10102 the target dependent code is needed, particularly for REL targets). */
10103
10104 unsigned int
10105 _bfd_elf_default_action_discarded (asection *sec)
10106 {
10107 if (sec->flags & SEC_DEBUGGING)
10108 return PRETEND;
10109
10110 if (strcmp (".eh_frame", sec->name) == 0)
10111 return 0;
10112
10113 if (strcmp (".gcc_except_table", sec->name) == 0)
10114 return 0;
10115
10116 return COMPLAIN | PRETEND;
10117 }
10118
10119 /* Find a match between a section and a member of a section group. */
10120
10121 static asection *
10122 match_group_member (asection *sec, asection *group,
10123 struct bfd_link_info *info)
10124 {
10125 asection *first = elf_next_in_group (group);
10126 asection *s = first;
10127
10128 while (s != NULL)
10129 {
10130 if (bfd_elf_match_symbols_in_sections (s, sec, info))
10131 return s;
10132
10133 s = elf_next_in_group (s);
10134 if (s == first)
10135 break;
10136 }
10137
10138 return NULL;
10139 }
10140
10141 /* Check if the kept section of a discarded section SEC can be used
10142 to replace it. Return the replacement if it is OK. Otherwise return
10143 NULL. */
10144
10145 asection *
10146 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
10147 {
10148 asection *kept;
10149
10150 kept = sec->kept_section;
10151 if (kept != NULL)
10152 {
10153 if ((kept->flags & SEC_GROUP) != 0)
10154 kept = match_group_member (sec, kept, info);
10155 if (kept != NULL
10156 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
10157 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
10158 kept = NULL;
10159 sec->kept_section = kept;
10160 }
10161 return kept;
10162 }
10163
10164 /* Link an input file into the linker output file. This function
10165 handles all the sections and relocations of the input file at once.
10166 This is so that we only have to read the local symbols once, and
10167 don't have to keep them in memory. */
10168
10169 static bfd_boolean
10170 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
10171 {
10172 int (*relocate_section)
10173 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
10174 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
10175 bfd *output_bfd;
10176 Elf_Internal_Shdr *symtab_hdr;
10177 size_t locsymcount;
10178 size_t extsymoff;
10179 Elf_Internal_Sym *isymbuf;
10180 Elf_Internal_Sym *isym;
10181 Elf_Internal_Sym *isymend;
10182 long *pindex;
10183 asection **ppsection;
10184 asection *o;
10185 const struct elf_backend_data *bed;
10186 struct elf_link_hash_entry **sym_hashes;
10187 bfd_size_type address_size;
10188 bfd_vma r_type_mask;
10189 int r_sym_shift;
10190 bfd_boolean have_file_sym = FALSE;
10191
10192 output_bfd = flinfo->output_bfd;
10193 bed = get_elf_backend_data (output_bfd);
10194 relocate_section = bed->elf_backend_relocate_section;
10195
10196 /* If this is a dynamic object, we don't want to do anything here:
10197 we don't want the local symbols, and we don't want the section
10198 contents. */
10199 if ((input_bfd->flags & DYNAMIC) != 0)
10200 return TRUE;
10201
10202 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10203 if (elf_bad_symtab (input_bfd))
10204 {
10205 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10206 extsymoff = 0;
10207 }
10208 else
10209 {
10210 locsymcount = symtab_hdr->sh_info;
10211 extsymoff = symtab_hdr->sh_info;
10212 }
10213
10214 /* Read the local symbols. */
10215 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
10216 if (isymbuf == NULL && locsymcount != 0)
10217 {
10218 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
10219 flinfo->internal_syms,
10220 flinfo->external_syms,
10221 flinfo->locsym_shndx);
10222 if (isymbuf == NULL)
10223 return FALSE;
10224 }
10225
10226 /* Find local symbol sections and adjust values of symbols in
10227 SEC_MERGE sections. Write out those local symbols we know are
10228 going into the output file. */
10229 isymend = isymbuf + locsymcount;
10230 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
10231 isym < isymend;
10232 isym++, pindex++, ppsection++)
10233 {
10234 asection *isec;
10235 const char *name;
10236 Elf_Internal_Sym osym;
10237 long indx;
10238 int ret;
10239
10240 *pindex = -1;
10241
10242 if (elf_bad_symtab (input_bfd))
10243 {
10244 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
10245 {
10246 *ppsection = NULL;
10247 continue;
10248 }
10249 }
10250
10251 if (isym->st_shndx == SHN_UNDEF)
10252 isec = bfd_und_section_ptr;
10253 else if (isym->st_shndx == SHN_ABS)
10254 isec = bfd_abs_section_ptr;
10255 else if (isym->st_shndx == SHN_COMMON)
10256 isec = bfd_com_section_ptr;
10257 else
10258 {
10259 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
10260 if (isec == NULL)
10261 {
10262 /* Don't attempt to output symbols with st_shnx in the
10263 reserved range other than SHN_ABS and SHN_COMMON. */
10264 *ppsection = NULL;
10265 continue;
10266 }
10267 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
10268 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
10269 isym->st_value =
10270 _bfd_merged_section_offset (output_bfd, &isec,
10271 elf_section_data (isec)->sec_info,
10272 isym->st_value);
10273 }
10274
10275 *ppsection = isec;
10276
10277 /* Don't output the first, undefined, symbol. In fact, don't
10278 output any undefined local symbol. */
10279 if (isec == bfd_und_section_ptr)
10280 continue;
10281
10282 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
10283 {
10284 /* We never output section symbols. Instead, we use the
10285 section symbol of the corresponding section in the output
10286 file. */
10287 continue;
10288 }
10289
10290 /* If we are stripping all symbols, we don't want to output this
10291 one. */
10292 if (flinfo->info->strip == strip_all)
10293 continue;
10294
10295 /* If we are discarding all local symbols, we don't want to
10296 output this one. If we are generating a relocatable output
10297 file, then some of the local symbols may be required by
10298 relocs; we output them below as we discover that they are
10299 needed. */
10300 if (flinfo->info->discard == discard_all)
10301 continue;
10302
10303 /* If this symbol is defined in a section which we are
10304 discarding, we don't need to keep it. */
10305 if (isym->st_shndx != SHN_UNDEF
10306 && isym->st_shndx < SHN_LORESERVE
10307 && bfd_section_removed_from_list (output_bfd,
10308 isec->output_section))
10309 continue;
10310
10311 /* Get the name of the symbol. */
10312 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
10313 isym->st_name);
10314 if (name == NULL)
10315 return FALSE;
10316
10317 /* See if we are discarding symbols with this name. */
10318 if ((flinfo->info->strip == strip_some
10319 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
10320 == NULL))
10321 || (((flinfo->info->discard == discard_sec_merge
10322 && (isec->flags & SEC_MERGE)
10323 && !bfd_link_relocatable (flinfo->info))
10324 || flinfo->info->discard == discard_l)
10325 && bfd_is_local_label_name (input_bfd, name)))
10326 continue;
10327
10328 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
10329 {
10330 if (input_bfd->lto_output)
10331 /* -flto puts a temp file name here. This means builds
10332 are not reproducible. Discard the symbol. */
10333 continue;
10334 have_file_sym = TRUE;
10335 flinfo->filesym_count += 1;
10336 }
10337 if (!have_file_sym)
10338 {
10339 /* In the absence of debug info, bfd_find_nearest_line uses
10340 FILE symbols to determine the source file for local
10341 function symbols. Provide a FILE symbol here if input
10342 files lack such, so that their symbols won't be
10343 associated with a previous input file. It's not the
10344 source file, but the best we can do. */
10345 have_file_sym = TRUE;
10346 flinfo->filesym_count += 1;
10347 memset (&osym, 0, sizeof (osym));
10348 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10349 osym.st_shndx = SHN_ABS;
10350 if (!elf_link_output_symstrtab (flinfo,
10351 (input_bfd->lto_output ? NULL
10352 : input_bfd->filename),
10353 &osym, bfd_abs_section_ptr,
10354 NULL))
10355 return FALSE;
10356 }
10357
10358 osym = *isym;
10359
10360 /* Adjust the section index for the output file. */
10361 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10362 isec->output_section);
10363 if (osym.st_shndx == SHN_BAD)
10364 return FALSE;
10365
10366 /* ELF symbols in relocatable files are section relative, but
10367 in executable files they are virtual addresses. Note that
10368 this code assumes that all ELF sections have an associated
10369 BFD section with a reasonable value for output_offset; below
10370 we assume that they also have a reasonable value for
10371 output_section. Any special sections must be set up to meet
10372 these requirements. */
10373 osym.st_value += isec->output_offset;
10374 if (!bfd_link_relocatable (flinfo->info))
10375 {
10376 osym.st_value += isec->output_section->vma;
10377 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
10378 {
10379 /* STT_TLS symbols are relative to PT_TLS segment base. */
10380 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
10381 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
10382 }
10383 }
10384
10385 indx = bfd_get_symcount (output_bfd);
10386 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
10387 if (ret == 0)
10388 return FALSE;
10389 else if (ret == 1)
10390 *pindex = indx;
10391 }
10392
10393 if (bed->s->arch_size == 32)
10394 {
10395 r_type_mask = 0xff;
10396 r_sym_shift = 8;
10397 address_size = 4;
10398 }
10399 else
10400 {
10401 r_type_mask = 0xffffffff;
10402 r_sym_shift = 32;
10403 address_size = 8;
10404 }
10405
10406 /* Relocate the contents of each section. */
10407 sym_hashes = elf_sym_hashes (input_bfd);
10408 for (o = input_bfd->sections; o != NULL; o = o->next)
10409 {
10410 bfd_byte *contents;
10411
10412 if (! o->linker_mark)
10413 {
10414 /* This section was omitted from the link. */
10415 continue;
10416 }
10417
10418 if (!flinfo->info->resolve_section_groups
10419 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10420 {
10421 /* Deal with the group signature symbol. */
10422 struct bfd_elf_section_data *sec_data = elf_section_data (o);
10423 unsigned long symndx = sec_data->this_hdr.sh_info;
10424 asection *osec = o->output_section;
10425
10426 BFD_ASSERT (bfd_link_relocatable (flinfo->info));
10427 if (symndx >= locsymcount
10428 || (elf_bad_symtab (input_bfd)
10429 && flinfo->sections[symndx] == NULL))
10430 {
10431 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10432 while (h->root.type == bfd_link_hash_indirect
10433 || h->root.type == bfd_link_hash_warning)
10434 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10435 /* Arrange for symbol to be output. */
10436 h->indx = -2;
10437 elf_section_data (osec)->this_hdr.sh_info = -2;
10438 }
10439 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10440 {
10441 /* We'll use the output section target_index. */
10442 asection *sec = flinfo->sections[symndx]->output_section;
10443 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10444 }
10445 else
10446 {
10447 if (flinfo->indices[symndx] == -1)
10448 {
10449 /* Otherwise output the local symbol now. */
10450 Elf_Internal_Sym sym = isymbuf[symndx];
10451 asection *sec = flinfo->sections[symndx]->output_section;
10452 const char *name;
10453 long indx;
10454 int ret;
10455
10456 name = bfd_elf_string_from_elf_section (input_bfd,
10457 symtab_hdr->sh_link,
10458 sym.st_name);
10459 if (name == NULL)
10460 return FALSE;
10461
10462 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10463 sec);
10464 if (sym.st_shndx == SHN_BAD)
10465 return FALSE;
10466
10467 sym.st_value += o->output_offset;
10468
10469 indx = bfd_get_symcount (output_bfd);
10470 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10471 NULL);
10472 if (ret == 0)
10473 return FALSE;
10474 else if (ret == 1)
10475 flinfo->indices[symndx] = indx;
10476 else
10477 abort ();
10478 }
10479 elf_section_data (osec)->this_hdr.sh_info
10480 = flinfo->indices[symndx];
10481 }
10482 }
10483
10484 if ((o->flags & SEC_HAS_CONTENTS) == 0
10485 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10486 continue;
10487
10488 if ((o->flags & SEC_LINKER_CREATED) != 0)
10489 {
10490 /* Section was created by _bfd_elf_link_create_dynamic_sections
10491 or somesuch. */
10492 continue;
10493 }
10494
10495 /* Get the contents of the section. They have been cached by a
10496 relaxation routine. Note that o is a section in an input
10497 file, so the contents field will not have been set by any of
10498 the routines which work on output files. */
10499 if (elf_section_data (o)->this_hdr.contents != NULL)
10500 {
10501 contents = elf_section_data (o)->this_hdr.contents;
10502 if (bed->caches_rawsize
10503 && o->rawsize != 0
10504 && o->rawsize < o->size)
10505 {
10506 memcpy (flinfo->contents, contents, o->rawsize);
10507 contents = flinfo->contents;
10508 }
10509 }
10510 else
10511 {
10512 contents = flinfo->contents;
10513 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10514 return FALSE;
10515 }
10516
10517 if ((o->flags & SEC_RELOC) != 0)
10518 {
10519 Elf_Internal_Rela *internal_relocs;
10520 Elf_Internal_Rela *rel, *relend;
10521 int action_discarded;
10522 int ret;
10523
10524 /* Get the swapped relocs. */
10525 internal_relocs
10526 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10527 flinfo->internal_relocs, FALSE);
10528 if (internal_relocs == NULL
10529 && o->reloc_count > 0)
10530 return FALSE;
10531
10532 /* We need to reverse-copy input .ctors/.dtors sections if
10533 they are placed in .init_array/.finit_array for output. */
10534 if (o->size > address_size
10535 && ((strncmp (o->name, ".ctors", 6) == 0
10536 && strcmp (o->output_section->name,
10537 ".init_array") == 0)
10538 || (strncmp (o->name, ".dtors", 6) == 0
10539 && strcmp (o->output_section->name,
10540 ".fini_array") == 0))
10541 && (o->name[6] == 0 || o->name[6] == '.'))
10542 {
10543 if (o->size * bed->s->int_rels_per_ext_rel
10544 != o->reloc_count * address_size)
10545 {
10546 _bfd_error_handler
10547 /* xgettext:c-format */
10548 (_("error: %pB: size of section %pA is not "
10549 "multiple of address size"),
10550 input_bfd, o);
10551 bfd_set_error (bfd_error_bad_value);
10552 return FALSE;
10553 }
10554 o->flags |= SEC_ELF_REVERSE_COPY;
10555 }
10556
10557 action_discarded = -1;
10558 if (!elf_section_ignore_discarded_relocs (o))
10559 action_discarded = (*bed->action_discarded) (o);
10560
10561 /* Run through the relocs evaluating complex reloc symbols and
10562 looking for relocs against symbols from discarded sections
10563 or section symbols from removed link-once sections.
10564 Complain about relocs against discarded sections. Zero
10565 relocs against removed link-once sections. */
10566
10567 rel = internal_relocs;
10568 relend = rel + o->reloc_count;
10569 for ( ; rel < relend; rel++)
10570 {
10571 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10572 unsigned int s_type;
10573 asection **ps, *sec;
10574 struct elf_link_hash_entry *h = NULL;
10575 const char *sym_name;
10576
10577 if (r_symndx == STN_UNDEF)
10578 continue;
10579
10580 if (r_symndx >= locsymcount
10581 || (elf_bad_symtab (input_bfd)
10582 && flinfo->sections[r_symndx] == NULL))
10583 {
10584 h = sym_hashes[r_symndx - extsymoff];
10585
10586 /* Badly formatted input files can contain relocs that
10587 reference non-existant symbols. Check here so that
10588 we do not seg fault. */
10589 if (h == NULL)
10590 {
10591 _bfd_error_handler
10592 /* xgettext:c-format */
10593 (_("error: %pB contains a reloc (%#" PRIx64 ") for section %pA "
10594 "that references a non-existent global symbol"),
10595 input_bfd, (uint64_t) rel->r_info, o);
10596 bfd_set_error (bfd_error_bad_value);
10597 return FALSE;
10598 }
10599
10600 while (h->root.type == bfd_link_hash_indirect
10601 || h->root.type == bfd_link_hash_warning)
10602 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10603
10604 s_type = h->type;
10605
10606 /* If a plugin symbol is referenced from a non-IR file,
10607 mark the symbol as undefined. Note that the
10608 linker may attach linker created dynamic sections
10609 to the plugin bfd. Symbols defined in linker
10610 created sections are not plugin symbols. */
10611 if ((h->root.non_ir_ref_regular
10612 || h->root.non_ir_ref_dynamic)
10613 && (h->root.type == bfd_link_hash_defined
10614 || h->root.type == bfd_link_hash_defweak)
10615 && (h->root.u.def.section->flags
10616 & SEC_LINKER_CREATED) == 0
10617 && h->root.u.def.section->owner != NULL
10618 && (h->root.u.def.section->owner->flags
10619 & BFD_PLUGIN) != 0)
10620 {
10621 h->root.type = bfd_link_hash_undefined;
10622 h->root.u.undef.abfd = h->root.u.def.section->owner;
10623 }
10624
10625 ps = NULL;
10626 if (h->root.type == bfd_link_hash_defined
10627 || h->root.type == bfd_link_hash_defweak)
10628 ps = &h->root.u.def.section;
10629
10630 sym_name = h->root.root.string;
10631 }
10632 else
10633 {
10634 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10635
10636 s_type = ELF_ST_TYPE (sym->st_info);
10637 ps = &flinfo->sections[r_symndx];
10638 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10639 sym, *ps);
10640 }
10641
10642 if ((s_type == STT_RELC || s_type == STT_SRELC)
10643 && !bfd_link_relocatable (flinfo->info))
10644 {
10645 bfd_vma val;
10646 bfd_vma dot = (rel->r_offset
10647 + o->output_offset + o->output_section->vma);
10648 #ifdef DEBUG
10649 printf ("Encountered a complex symbol!");
10650 printf (" (input_bfd %s, section %s, reloc %ld\n",
10651 input_bfd->filename, o->name,
10652 (long) (rel - internal_relocs));
10653 printf (" symbol: idx %8.8lx, name %s\n",
10654 r_symndx, sym_name);
10655 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10656 (unsigned long) rel->r_info,
10657 (unsigned long) rel->r_offset);
10658 #endif
10659 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10660 isymbuf, locsymcount, s_type == STT_SRELC))
10661 return FALSE;
10662
10663 /* Symbol evaluated OK. Update to absolute value. */
10664 set_symbol_value (input_bfd, isymbuf, locsymcount,
10665 r_symndx, val);
10666 continue;
10667 }
10668
10669 if (action_discarded != -1 && ps != NULL)
10670 {
10671 /* Complain if the definition comes from a
10672 discarded section. */
10673 if ((sec = *ps) != NULL && discarded_section (sec))
10674 {
10675 BFD_ASSERT (r_symndx != STN_UNDEF);
10676 if (action_discarded & COMPLAIN)
10677 (*flinfo->info->callbacks->einfo)
10678 /* xgettext:c-format */
10679 (_("%X`%s' referenced in section `%pA' of %pB: "
10680 "defined in discarded section `%pA' of %pB\n"),
10681 sym_name, o, input_bfd, sec, sec->owner);
10682
10683 /* Try to do the best we can to support buggy old
10684 versions of gcc. Pretend that the symbol is
10685 really defined in the kept linkonce section.
10686 FIXME: This is quite broken. Modifying the
10687 symbol here means we will be changing all later
10688 uses of the symbol, not just in this section. */
10689 if (action_discarded & PRETEND)
10690 {
10691 asection *kept;
10692
10693 kept = _bfd_elf_check_kept_section (sec,
10694 flinfo->info);
10695 if (kept != NULL)
10696 {
10697 *ps = kept;
10698 continue;
10699 }
10700 }
10701 }
10702 }
10703 }
10704
10705 /* Relocate the section by invoking a back end routine.
10706
10707 The back end routine is responsible for adjusting the
10708 section contents as necessary, and (if using Rela relocs
10709 and generating a relocatable output file) adjusting the
10710 reloc addend as necessary.
10711
10712 The back end routine does not have to worry about setting
10713 the reloc address or the reloc symbol index.
10714
10715 The back end routine is given a pointer to the swapped in
10716 internal symbols, and can access the hash table entries
10717 for the external symbols via elf_sym_hashes (input_bfd).
10718
10719 When generating relocatable output, the back end routine
10720 must handle STB_LOCAL/STT_SECTION symbols specially. The
10721 output symbol is going to be a section symbol
10722 corresponding to the output section, which will require
10723 the addend to be adjusted. */
10724
10725 ret = (*relocate_section) (output_bfd, flinfo->info,
10726 input_bfd, o, contents,
10727 internal_relocs,
10728 isymbuf,
10729 flinfo->sections);
10730 if (!ret)
10731 return FALSE;
10732
10733 if (ret == 2
10734 || bfd_link_relocatable (flinfo->info)
10735 || flinfo->info->emitrelocations)
10736 {
10737 Elf_Internal_Rela *irela;
10738 Elf_Internal_Rela *irelaend, *irelamid;
10739 bfd_vma last_offset;
10740 struct elf_link_hash_entry **rel_hash;
10741 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
10742 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
10743 unsigned int next_erel;
10744 bfd_boolean rela_normal;
10745 struct bfd_elf_section_data *esdi, *esdo;
10746
10747 esdi = elf_section_data (o);
10748 esdo = elf_section_data (o->output_section);
10749 rela_normal = FALSE;
10750
10751 /* Adjust the reloc addresses and symbol indices. */
10752
10753 irela = internal_relocs;
10754 irelaend = irela + o->reloc_count;
10755 rel_hash = esdo->rel.hashes + esdo->rel.count;
10756 /* We start processing the REL relocs, if any. When we reach
10757 IRELAMID in the loop, we switch to the RELA relocs. */
10758 irelamid = irela;
10759 if (esdi->rel.hdr != NULL)
10760 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10761 * bed->s->int_rels_per_ext_rel);
10762 rel_hash_list = rel_hash;
10763 rela_hash_list = NULL;
10764 last_offset = o->output_offset;
10765 if (!bfd_link_relocatable (flinfo->info))
10766 last_offset += o->output_section->vma;
10767 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10768 {
10769 unsigned long r_symndx;
10770 asection *sec;
10771 Elf_Internal_Sym sym;
10772
10773 if (next_erel == bed->s->int_rels_per_ext_rel)
10774 {
10775 rel_hash++;
10776 next_erel = 0;
10777 }
10778
10779 if (irela == irelamid)
10780 {
10781 rel_hash = esdo->rela.hashes + esdo->rela.count;
10782 rela_hash_list = rel_hash;
10783 rela_normal = bed->rela_normal;
10784 }
10785
10786 irela->r_offset = _bfd_elf_section_offset (output_bfd,
10787 flinfo->info, o,
10788 irela->r_offset);
10789 if (irela->r_offset >= (bfd_vma) -2)
10790 {
10791 /* This is a reloc for a deleted entry or somesuch.
10792 Turn it into an R_*_NONE reloc, at the same
10793 offset as the last reloc. elf_eh_frame.c and
10794 bfd_elf_discard_info rely on reloc offsets
10795 being ordered. */
10796 irela->r_offset = last_offset;
10797 irela->r_info = 0;
10798 irela->r_addend = 0;
10799 continue;
10800 }
10801
10802 irela->r_offset += o->output_offset;
10803
10804 /* Relocs in an executable have to be virtual addresses. */
10805 if (!bfd_link_relocatable (flinfo->info))
10806 irela->r_offset += o->output_section->vma;
10807
10808 last_offset = irela->r_offset;
10809
10810 r_symndx = irela->r_info >> r_sym_shift;
10811 if (r_symndx == STN_UNDEF)
10812 continue;
10813
10814 if (r_symndx >= locsymcount
10815 || (elf_bad_symtab (input_bfd)
10816 && flinfo->sections[r_symndx] == NULL))
10817 {
10818 struct elf_link_hash_entry *rh;
10819 unsigned long indx;
10820
10821 /* This is a reloc against a global symbol. We
10822 have not yet output all the local symbols, so
10823 we do not know the symbol index of any global
10824 symbol. We set the rel_hash entry for this
10825 reloc to point to the global hash table entry
10826 for this symbol. The symbol index is then
10827 set at the end of bfd_elf_final_link. */
10828 indx = r_symndx - extsymoff;
10829 rh = elf_sym_hashes (input_bfd)[indx];
10830 while (rh->root.type == bfd_link_hash_indirect
10831 || rh->root.type == bfd_link_hash_warning)
10832 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10833
10834 /* Setting the index to -2 tells
10835 elf_link_output_extsym that this symbol is
10836 used by a reloc. */
10837 BFD_ASSERT (rh->indx < 0);
10838 rh->indx = -2;
10839 *rel_hash = rh;
10840
10841 continue;
10842 }
10843
10844 /* This is a reloc against a local symbol. */
10845
10846 *rel_hash = NULL;
10847 sym = isymbuf[r_symndx];
10848 sec = flinfo->sections[r_symndx];
10849 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10850 {
10851 /* I suppose the backend ought to fill in the
10852 section of any STT_SECTION symbol against a
10853 processor specific section. */
10854 r_symndx = STN_UNDEF;
10855 if (bfd_is_abs_section (sec))
10856 ;
10857 else if (sec == NULL || sec->owner == NULL)
10858 {
10859 bfd_set_error (bfd_error_bad_value);
10860 return FALSE;
10861 }
10862 else
10863 {
10864 asection *osec = sec->output_section;
10865
10866 /* If we have discarded a section, the output
10867 section will be the absolute section. In
10868 case of discarded SEC_MERGE sections, use
10869 the kept section. relocate_section should
10870 have already handled discarded linkonce
10871 sections. */
10872 if (bfd_is_abs_section (osec)
10873 && sec->kept_section != NULL
10874 && sec->kept_section->output_section != NULL)
10875 {
10876 osec = sec->kept_section->output_section;
10877 irela->r_addend -= osec->vma;
10878 }
10879
10880 if (!bfd_is_abs_section (osec))
10881 {
10882 r_symndx = osec->target_index;
10883 if (r_symndx == STN_UNDEF)
10884 {
10885 irela->r_addend += osec->vma;
10886 osec = _bfd_nearby_section (output_bfd, osec,
10887 osec->vma);
10888 irela->r_addend -= osec->vma;
10889 r_symndx = osec->target_index;
10890 }
10891 }
10892 }
10893
10894 /* Adjust the addend according to where the
10895 section winds up in the output section. */
10896 if (rela_normal)
10897 irela->r_addend += sec->output_offset;
10898 }
10899 else
10900 {
10901 if (flinfo->indices[r_symndx] == -1)
10902 {
10903 unsigned long shlink;
10904 const char *name;
10905 asection *osec;
10906 long indx;
10907
10908 if (flinfo->info->strip == strip_all)
10909 {
10910 /* You can't do ld -r -s. */
10911 bfd_set_error (bfd_error_invalid_operation);
10912 return FALSE;
10913 }
10914
10915 /* This symbol was skipped earlier, but
10916 since it is needed by a reloc, we
10917 must output it now. */
10918 shlink = symtab_hdr->sh_link;
10919 name = (bfd_elf_string_from_elf_section
10920 (input_bfd, shlink, sym.st_name));
10921 if (name == NULL)
10922 return FALSE;
10923
10924 osec = sec->output_section;
10925 sym.st_shndx =
10926 _bfd_elf_section_from_bfd_section (output_bfd,
10927 osec);
10928 if (sym.st_shndx == SHN_BAD)
10929 return FALSE;
10930
10931 sym.st_value += sec->output_offset;
10932 if (!bfd_link_relocatable (flinfo->info))
10933 {
10934 sym.st_value += osec->vma;
10935 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10936 {
10937 /* STT_TLS symbols are relative to PT_TLS
10938 segment base. */
10939 BFD_ASSERT (elf_hash_table (flinfo->info)
10940 ->tls_sec != NULL);
10941 sym.st_value -= (elf_hash_table (flinfo->info)
10942 ->tls_sec->vma);
10943 }
10944 }
10945
10946 indx = bfd_get_symcount (output_bfd);
10947 ret = elf_link_output_symstrtab (flinfo, name,
10948 &sym, sec,
10949 NULL);
10950 if (ret == 0)
10951 return FALSE;
10952 else if (ret == 1)
10953 flinfo->indices[r_symndx] = indx;
10954 else
10955 abort ();
10956 }
10957
10958 r_symndx = flinfo->indices[r_symndx];
10959 }
10960
10961 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10962 | (irela->r_info & r_type_mask));
10963 }
10964
10965 /* Swap out the relocs. */
10966 input_rel_hdr = esdi->rel.hdr;
10967 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10968 {
10969 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10970 input_rel_hdr,
10971 internal_relocs,
10972 rel_hash_list))
10973 return FALSE;
10974 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10975 * bed->s->int_rels_per_ext_rel);
10976 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10977 }
10978
10979 input_rela_hdr = esdi->rela.hdr;
10980 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10981 {
10982 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10983 input_rela_hdr,
10984 internal_relocs,
10985 rela_hash_list))
10986 return FALSE;
10987 }
10988 }
10989 }
10990
10991 /* Write out the modified section contents. */
10992 if (bed->elf_backend_write_section
10993 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10994 contents))
10995 {
10996 /* Section written out. */
10997 }
10998 else switch (o->sec_info_type)
10999 {
11000 case SEC_INFO_TYPE_STABS:
11001 if (! (_bfd_write_section_stabs
11002 (output_bfd,
11003 &elf_hash_table (flinfo->info)->stab_info,
11004 o, &elf_section_data (o)->sec_info, contents)))
11005 return FALSE;
11006 break;
11007 case SEC_INFO_TYPE_MERGE:
11008 if (! _bfd_write_merged_section (output_bfd, o,
11009 elf_section_data (o)->sec_info))
11010 return FALSE;
11011 break;
11012 case SEC_INFO_TYPE_EH_FRAME:
11013 {
11014 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
11015 o, contents))
11016 return FALSE;
11017 }
11018 break;
11019 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
11020 {
11021 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
11022 flinfo->info,
11023 o, contents))
11024 return FALSE;
11025 }
11026 break;
11027 default:
11028 {
11029 if (! (o->flags & SEC_EXCLUDE))
11030 {
11031 file_ptr offset = (file_ptr) o->output_offset;
11032 bfd_size_type todo = o->size;
11033
11034 offset *= bfd_octets_per_byte (output_bfd);
11035
11036 if ((o->flags & SEC_ELF_REVERSE_COPY))
11037 {
11038 /* Reverse-copy input section to output. */
11039 do
11040 {
11041 todo -= address_size;
11042 if (! bfd_set_section_contents (output_bfd,
11043 o->output_section,
11044 contents + todo,
11045 offset,
11046 address_size))
11047 return FALSE;
11048 if (todo == 0)
11049 break;
11050 offset += address_size;
11051 }
11052 while (1);
11053 }
11054 else if (! bfd_set_section_contents (output_bfd,
11055 o->output_section,
11056 contents,
11057 offset, todo))
11058 return FALSE;
11059 }
11060 }
11061 break;
11062 }
11063 }
11064
11065 return TRUE;
11066 }
11067
11068 /* Generate a reloc when linking an ELF file. This is a reloc
11069 requested by the linker, and does not come from any input file. This
11070 is used to build constructor and destructor tables when linking
11071 with -Ur. */
11072
11073 static bfd_boolean
11074 elf_reloc_link_order (bfd *output_bfd,
11075 struct bfd_link_info *info,
11076 asection *output_section,
11077 struct bfd_link_order *link_order)
11078 {
11079 reloc_howto_type *howto;
11080 long indx;
11081 bfd_vma offset;
11082 bfd_vma addend;
11083 struct bfd_elf_section_reloc_data *reldata;
11084 struct elf_link_hash_entry **rel_hash_ptr;
11085 Elf_Internal_Shdr *rel_hdr;
11086 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
11087 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
11088 bfd_byte *erel;
11089 unsigned int i;
11090 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
11091
11092 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
11093 if (howto == NULL)
11094 {
11095 bfd_set_error (bfd_error_bad_value);
11096 return FALSE;
11097 }
11098
11099 addend = link_order->u.reloc.p->addend;
11100
11101 if (esdo->rel.hdr)
11102 reldata = &esdo->rel;
11103 else if (esdo->rela.hdr)
11104 reldata = &esdo->rela;
11105 else
11106 {
11107 reldata = NULL;
11108 BFD_ASSERT (0);
11109 }
11110
11111 /* Figure out the symbol index. */
11112 rel_hash_ptr = reldata->hashes + reldata->count;
11113 if (link_order->type == bfd_section_reloc_link_order)
11114 {
11115 indx = link_order->u.reloc.p->u.section->target_index;
11116 BFD_ASSERT (indx != 0);
11117 *rel_hash_ptr = NULL;
11118 }
11119 else
11120 {
11121 struct elf_link_hash_entry *h;
11122
11123 /* Treat a reloc against a defined symbol as though it were
11124 actually against the section. */
11125 h = ((struct elf_link_hash_entry *)
11126 bfd_wrapped_link_hash_lookup (output_bfd, info,
11127 link_order->u.reloc.p->u.name,
11128 FALSE, FALSE, TRUE));
11129 if (h != NULL
11130 && (h->root.type == bfd_link_hash_defined
11131 || h->root.type == bfd_link_hash_defweak))
11132 {
11133 asection *section;
11134
11135 section = h->root.u.def.section;
11136 indx = section->output_section->target_index;
11137 *rel_hash_ptr = NULL;
11138 /* It seems that we ought to add the symbol value to the
11139 addend here, but in practice it has already been added
11140 because it was passed to constructor_callback. */
11141 addend += section->output_section->vma + section->output_offset;
11142 }
11143 else if (h != NULL)
11144 {
11145 /* Setting the index to -2 tells elf_link_output_extsym that
11146 this symbol is used by a reloc. */
11147 h->indx = -2;
11148 *rel_hash_ptr = h;
11149 indx = 0;
11150 }
11151 else
11152 {
11153 (*info->callbacks->unattached_reloc)
11154 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
11155 indx = 0;
11156 }
11157 }
11158
11159 /* If this is an inplace reloc, we must write the addend into the
11160 object file. */
11161 if (howto->partial_inplace && addend != 0)
11162 {
11163 bfd_size_type size;
11164 bfd_reloc_status_type rstat;
11165 bfd_byte *buf;
11166 bfd_boolean ok;
11167 const char *sym_name;
11168
11169 size = (bfd_size_type) bfd_get_reloc_size (howto);
11170 buf = (bfd_byte *) bfd_zmalloc (size);
11171 if (buf == NULL && size != 0)
11172 return FALSE;
11173 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
11174 switch (rstat)
11175 {
11176 case bfd_reloc_ok:
11177 break;
11178
11179 default:
11180 case bfd_reloc_outofrange:
11181 abort ();
11182
11183 case bfd_reloc_overflow:
11184 if (link_order->type == bfd_section_reloc_link_order)
11185 sym_name = bfd_section_name (output_bfd,
11186 link_order->u.reloc.p->u.section);
11187 else
11188 sym_name = link_order->u.reloc.p->u.name;
11189 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
11190 howto->name, addend, NULL, NULL,
11191 (bfd_vma) 0);
11192 break;
11193 }
11194
11195 ok = bfd_set_section_contents (output_bfd, output_section, buf,
11196 link_order->offset
11197 * bfd_octets_per_byte (output_bfd),
11198 size);
11199 free (buf);
11200 if (! ok)
11201 return FALSE;
11202 }
11203
11204 /* The address of a reloc is relative to the section in a
11205 relocatable file, and is a virtual address in an executable
11206 file. */
11207 offset = link_order->offset;
11208 if (! bfd_link_relocatable (info))
11209 offset += output_section->vma;
11210
11211 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
11212 {
11213 irel[i].r_offset = offset;
11214 irel[i].r_info = 0;
11215 irel[i].r_addend = 0;
11216 }
11217 if (bed->s->arch_size == 32)
11218 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
11219 else
11220 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
11221
11222 rel_hdr = reldata->hdr;
11223 erel = rel_hdr->contents;
11224 if (rel_hdr->sh_type == SHT_REL)
11225 {
11226 erel += reldata->count * bed->s->sizeof_rel;
11227 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
11228 }
11229 else
11230 {
11231 irel[0].r_addend = addend;
11232 erel += reldata->count * bed->s->sizeof_rela;
11233 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
11234 }
11235
11236 ++reldata->count;
11237
11238 return TRUE;
11239 }
11240
11241
11242 /* Get the output vma of the section pointed to by the sh_link field. */
11243
11244 static bfd_vma
11245 elf_get_linked_section_vma (struct bfd_link_order *p)
11246 {
11247 Elf_Internal_Shdr **elf_shdrp;
11248 asection *s;
11249 int elfsec;
11250
11251 s = p->u.indirect.section;
11252 elf_shdrp = elf_elfsections (s->owner);
11253 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
11254 elfsec = elf_shdrp[elfsec]->sh_link;
11255 /* PR 290:
11256 The Intel C compiler generates SHT_IA_64_UNWIND with
11257 SHF_LINK_ORDER. But it doesn't set the sh_link or
11258 sh_info fields. Hence we could get the situation
11259 where elfsec is 0. */
11260 if (elfsec == 0)
11261 {
11262 const struct elf_backend_data *bed
11263 = get_elf_backend_data (s->owner);
11264 if (bed->link_order_error_handler)
11265 bed->link_order_error_handler
11266 /* xgettext:c-format */
11267 (_("%pB: warning: sh_link not set for section `%pA'"), s->owner, s);
11268 return 0;
11269 }
11270 else
11271 {
11272 s = elf_shdrp[elfsec]->bfd_section;
11273 return s->output_section->vma + s->output_offset;
11274 }
11275 }
11276
11277
11278 /* Compare two sections based on the locations of the sections they are
11279 linked to. Used by elf_fixup_link_order. */
11280
11281 static int
11282 compare_link_order (const void * a, const void * b)
11283 {
11284 bfd_vma apos;
11285 bfd_vma bpos;
11286
11287 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
11288 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
11289 if (apos < bpos)
11290 return -1;
11291 return apos > bpos;
11292 }
11293
11294
11295 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
11296 order as their linked sections. Returns false if this could not be done
11297 because an output section includes both ordered and unordered
11298 sections. Ideally we'd do this in the linker proper. */
11299
11300 static bfd_boolean
11301 elf_fixup_link_order (bfd *abfd, asection *o)
11302 {
11303 int seen_linkorder;
11304 int seen_other;
11305 int n;
11306 struct bfd_link_order *p;
11307 bfd *sub;
11308 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11309 unsigned elfsec;
11310 struct bfd_link_order **sections;
11311 asection *s, *other_sec, *linkorder_sec;
11312 bfd_vma offset;
11313
11314 other_sec = NULL;
11315 linkorder_sec = NULL;
11316 seen_other = 0;
11317 seen_linkorder = 0;
11318 for (p = o->map_head.link_order; p != NULL; p = p->next)
11319 {
11320 if (p->type == bfd_indirect_link_order)
11321 {
11322 s = p->u.indirect.section;
11323 sub = s->owner;
11324 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11325 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
11326 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
11327 && elfsec < elf_numsections (sub)
11328 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
11329 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
11330 {
11331 seen_linkorder++;
11332 linkorder_sec = s;
11333 }
11334 else
11335 {
11336 seen_other++;
11337 other_sec = s;
11338 }
11339 }
11340 else
11341 seen_other++;
11342
11343 if (seen_other && seen_linkorder)
11344 {
11345 if (other_sec && linkorder_sec)
11346 _bfd_error_handler
11347 /* xgettext:c-format */
11348 (_("%pA has both ordered [`%pA' in %pB] "
11349 "and unordered [`%pA' in %pB] sections"),
11350 o, linkorder_sec, linkorder_sec->owner,
11351 other_sec, other_sec->owner);
11352 else
11353 _bfd_error_handler
11354 (_("%pA has both ordered and unordered sections"), o);
11355 bfd_set_error (bfd_error_bad_value);
11356 return FALSE;
11357 }
11358 }
11359
11360 if (!seen_linkorder)
11361 return TRUE;
11362
11363 sections = (struct bfd_link_order **)
11364 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
11365 if (sections == NULL)
11366 return FALSE;
11367 seen_linkorder = 0;
11368
11369 for (p = o->map_head.link_order; p != NULL; p = p->next)
11370 {
11371 sections[seen_linkorder++] = p;
11372 }
11373 /* Sort the input sections in the order of their linked section. */
11374 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
11375 compare_link_order);
11376
11377 /* Change the offsets of the sections. */
11378 offset = 0;
11379 for (n = 0; n < seen_linkorder; n++)
11380 {
11381 s = sections[n]->u.indirect.section;
11382 offset &= ~(bfd_vma) 0 << s->alignment_power;
11383 s->output_offset = offset / bfd_octets_per_byte (abfd);
11384 sections[n]->offset = offset;
11385 offset += sections[n]->size;
11386 }
11387
11388 free (sections);
11389 return TRUE;
11390 }
11391
11392 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11393 Returns TRUE upon success, FALSE otherwise. */
11394
11395 static bfd_boolean
11396 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11397 {
11398 bfd_boolean ret = FALSE;
11399 bfd *implib_bfd;
11400 const struct elf_backend_data *bed;
11401 flagword flags;
11402 enum bfd_architecture arch;
11403 unsigned int mach;
11404 asymbol **sympp = NULL;
11405 long symsize;
11406 long symcount;
11407 long src_count;
11408 elf_symbol_type *osymbuf;
11409
11410 implib_bfd = info->out_implib_bfd;
11411 bed = get_elf_backend_data (abfd);
11412
11413 if (!bfd_set_format (implib_bfd, bfd_object))
11414 return FALSE;
11415
11416 /* Use flag from executable but make it a relocatable object. */
11417 flags = bfd_get_file_flags (abfd);
11418 flags &= ~HAS_RELOC;
11419 if (!bfd_set_start_address (implib_bfd, 0)
11420 || !bfd_set_file_flags (implib_bfd, flags & ~EXEC_P))
11421 return FALSE;
11422
11423 /* Copy architecture of output file to import library file. */
11424 arch = bfd_get_arch (abfd);
11425 mach = bfd_get_mach (abfd);
11426 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11427 && (abfd->target_defaulted
11428 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11429 return FALSE;
11430
11431 /* Get symbol table size. */
11432 symsize = bfd_get_symtab_upper_bound (abfd);
11433 if (symsize < 0)
11434 return FALSE;
11435
11436 /* Read in the symbol table. */
11437 sympp = (asymbol **) xmalloc (symsize);
11438 symcount = bfd_canonicalize_symtab (abfd, sympp);
11439 if (symcount < 0)
11440 goto free_sym_buf;
11441
11442 /* Allow the BFD backend to copy any private header data it
11443 understands from the output BFD to the import library BFD. */
11444 if (! bfd_copy_private_header_data (abfd, implib_bfd))
11445 goto free_sym_buf;
11446
11447 /* Filter symbols to appear in the import library. */
11448 if (bed->elf_backend_filter_implib_symbols)
11449 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11450 symcount);
11451 else
11452 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11453 if (symcount == 0)
11454 {
11455 bfd_set_error (bfd_error_no_symbols);
11456 _bfd_error_handler (_("%pB: no symbol found for import library"),
11457 implib_bfd);
11458 goto free_sym_buf;
11459 }
11460
11461
11462 /* Make symbols absolute. */
11463 osymbuf = (elf_symbol_type *) bfd_alloc2 (implib_bfd, symcount,
11464 sizeof (*osymbuf));
11465 for (src_count = 0; src_count < symcount; src_count++)
11466 {
11467 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11468 sizeof (*osymbuf));
11469 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
11470 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
11471 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
11472 osymbuf[src_count].internal_elf_sym.st_value =
11473 osymbuf[src_count].symbol.value;
11474 sympp[src_count] = &osymbuf[src_count].symbol;
11475 }
11476
11477 bfd_set_symtab (implib_bfd, sympp, symcount);
11478
11479 /* Allow the BFD backend to copy any private data it understands
11480 from the output BFD to the import library BFD. This is done last
11481 to permit the routine to look at the filtered symbol table. */
11482 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
11483 goto free_sym_buf;
11484
11485 if (!bfd_close (implib_bfd))
11486 goto free_sym_buf;
11487
11488 ret = TRUE;
11489
11490 free_sym_buf:
11491 free (sympp);
11492 return ret;
11493 }
11494
11495 static void
11496 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11497 {
11498 asection *o;
11499
11500 if (flinfo->symstrtab != NULL)
11501 _bfd_elf_strtab_free (flinfo->symstrtab);
11502 if (flinfo->contents != NULL)
11503 free (flinfo->contents);
11504 if (flinfo->external_relocs != NULL)
11505 free (flinfo->external_relocs);
11506 if (flinfo->internal_relocs != NULL)
11507 free (flinfo->internal_relocs);
11508 if (flinfo->external_syms != NULL)
11509 free (flinfo->external_syms);
11510 if (flinfo->locsym_shndx != NULL)
11511 free (flinfo->locsym_shndx);
11512 if (flinfo->internal_syms != NULL)
11513 free (flinfo->internal_syms);
11514 if (flinfo->indices != NULL)
11515 free (flinfo->indices);
11516 if (flinfo->sections != NULL)
11517 free (flinfo->sections);
11518 if (flinfo->symshndxbuf != NULL)
11519 free (flinfo->symshndxbuf);
11520 for (o = obfd->sections; o != NULL; o = o->next)
11521 {
11522 struct bfd_elf_section_data *esdo = elf_section_data (o);
11523 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11524 free (esdo->rel.hashes);
11525 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11526 free (esdo->rela.hashes);
11527 }
11528 }
11529
11530 /* Do the final step of an ELF link. */
11531
11532 bfd_boolean
11533 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11534 {
11535 bfd_boolean dynamic;
11536 bfd_boolean emit_relocs;
11537 bfd *dynobj;
11538 struct elf_final_link_info flinfo;
11539 asection *o;
11540 struct bfd_link_order *p;
11541 bfd *sub;
11542 bfd_size_type max_contents_size;
11543 bfd_size_type max_external_reloc_size;
11544 bfd_size_type max_internal_reloc_count;
11545 bfd_size_type max_sym_count;
11546 bfd_size_type max_sym_shndx_count;
11547 Elf_Internal_Sym elfsym;
11548 unsigned int i;
11549 Elf_Internal_Shdr *symtab_hdr;
11550 Elf_Internal_Shdr *symtab_shndx_hdr;
11551 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11552 struct elf_outext_info eoinfo;
11553 bfd_boolean merged;
11554 size_t relativecount = 0;
11555 asection *reldyn = 0;
11556 bfd_size_type amt;
11557 asection *attr_section = NULL;
11558 bfd_vma attr_size = 0;
11559 const char *std_attrs_section;
11560 struct elf_link_hash_table *htab = elf_hash_table (info);
11561
11562 if (!is_elf_hash_table (htab))
11563 return FALSE;
11564
11565 if (bfd_link_pic (info))
11566 abfd->flags |= DYNAMIC;
11567
11568 dynamic = htab->dynamic_sections_created;
11569 dynobj = htab->dynobj;
11570
11571 emit_relocs = (bfd_link_relocatable (info)
11572 || info->emitrelocations);
11573
11574 flinfo.info = info;
11575 flinfo.output_bfd = abfd;
11576 flinfo.symstrtab = _bfd_elf_strtab_init ();
11577 if (flinfo.symstrtab == NULL)
11578 return FALSE;
11579
11580 if (! dynamic)
11581 {
11582 flinfo.hash_sec = NULL;
11583 flinfo.symver_sec = NULL;
11584 }
11585 else
11586 {
11587 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11588 /* Note that dynsym_sec can be NULL (on VMS). */
11589 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11590 /* Note that it is OK if symver_sec is NULL. */
11591 }
11592
11593 flinfo.contents = NULL;
11594 flinfo.external_relocs = NULL;
11595 flinfo.internal_relocs = NULL;
11596 flinfo.external_syms = NULL;
11597 flinfo.locsym_shndx = NULL;
11598 flinfo.internal_syms = NULL;
11599 flinfo.indices = NULL;
11600 flinfo.sections = NULL;
11601 flinfo.symshndxbuf = NULL;
11602 flinfo.filesym_count = 0;
11603
11604 /* The object attributes have been merged. Remove the input
11605 sections from the link, and set the contents of the output
11606 secton. */
11607 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11608 for (o = abfd->sections; o != NULL; o = o->next)
11609 {
11610 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11611 || strcmp (o->name, ".gnu.attributes") == 0)
11612 {
11613 for (p = o->map_head.link_order; p != NULL; p = p->next)
11614 {
11615 asection *input_section;
11616
11617 if (p->type != bfd_indirect_link_order)
11618 continue;
11619 input_section = p->u.indirect.section;
11620 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11621 elf_link_input_bfd ignores this section. */
11622 input_section->flags &= ~SEC_HAS_CONTENTS;
11623 }
11624
11625 attr_size = bfd_elf_obj_attr_size (abfd);
11626 if (attr_size)
11627 {
11628 bfd_set_section_size (abfd, o, attr_size);
11629 attr_section = o;
11630 /* Skip this section later on. */
11631 o->map_head.link_order = NULL;
11632 }
11633 else
11634 o->flags |= SEC_EXCLUDE;
11635 }
11636 else if ((o->flags & SEC_GROUP) != 0 && o->size == 0)
11637 {
11638 /* Remove empty group section from linker output. */
11639 o->flags |= SEC_EXCLUDE;
11640 bfd_section_list_remove (abfd, o);
11641 abfd->section_count--;
11642 }
11643 }
11644
11645 /* Count up the number of relocations we will output for each output
11646 section, so that we know the sizes of the reloc sections. We
11647 also figure out some maximum sizes. */
11648 max_contents_size = 0;
11649 max_external_reloc_size = 0;
11650 max_internal_reloc_count = 0;
11651 max_sym_count = 0;
11652 max_sym_shndx_count = 0;
11653 merged = FALSE;
11654 for (o = abfd->sections; o != NULL; o = o->next)
11655 {
11656 struct bfd_elf_section_data *esdo = elf_section_data (o);
11657 o->reloc_count = 0;
11658
11659 for (p = o->map_head.link_order; p != NULL; p = p->next)
11660 {
11661 unsigned int reloc_count = 0;
11662 unsigned int additional_reloc_count = 0;
11663 struct bfd_elf_section_data *esdi = NULL;
11664
11665 if (p->type == bfd_section_reloc_link_order
11666 || p->type == bfd_symbol_reloc_link_order)
11667 reloc_count = 1;
11668 else if (p->type == bfd_indirect_link_order)
11669 {
11670 asection *sec;
11671
11672 sec = p->u.indirect.section;
11673
11674 /* Mark all sections which are to be included in the
11675 link. This will normally be every section. We need
11676 to do this so that we can identify any sections which
11677 the linker has decided to not include. */
11678 sec->linker_mark = TRUE;
11679
11680 if (sec->flags & SEC_MERGE)
11681 merged = TRUE;
11682
11683 if (sec->rawsize > max_contents_size)
11684 max_contents_size = sec->rawsize;
11685 if (sec->size > max_contents_size)
11686 max_contents_size = sec->size;
11687
11688 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11689 && (sec->owner->flags & DYNAMIC) == 0)
11690 {
11691 size_t sym_count;
11692
11693 /* We are interested in just local symbols, not all
11694 symbols. */
11695 if (elf_bad_symtab (sec->owner))
11696 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11697 / bed->s->sizeof_sym);
11698 else
11699 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11700
11701 if (sym_count > max_sym_count)
11702 max_sym_count = sym_count;
11703
11704 if (sym_count > max_sym_shndx_count
11705 && elf_symtab_shndx_list (sec->owner) != NULL)
11706 max_sym_shndx_count = sym_count;
11707
11708 if (esdo->this_hdr.sh_type == SHT_REL
11709 || esdo->this_hdr.sh_type == SHT_RELA)
11710 /* Some backends use reloc_count in relocation sections
11711 to count particular types of relocs. Of course,
11712 reloc sections themselves can't have relocations. */
11713 ;
11714 else if (emit_relocs)
11715 {
11716 reloc_count = sec->reloc_count;
11717 if (bed->elf_backend_count_additional_relocs)
11718 {
11719 int c;
11720 c = (*bed->elf_backend_count_additional_relocs) (sec);
11721 additional_reloc_count += c;
11722 }
11723 }
11724 else if (bed->elf_backend_count_relocs)
11725 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11726
11727 esdi = elf_section_data (sec);
11728
11729 if ((sec->flags & SEC_RELOC) != 0)
11730 {
11731 size_t ext_size = 0;
11732
11733 if (esdi->rel.hdr != NULL)
11734 ext_size = esdi->rel.hdr->sh_size;
11735 if (esdi->rela.hdr != NULL)
11736 ext_size += esdi->rela.hdr->sh_size;
11737
11738 if (ext_size > max_external_reloc_size)
11739 max_external_reloc_size = ext_size;
11740 if (sec->reloc_count > max_internal_reloc_count)
11741 max_internal_reloc_count = sec->reloc_count;
11742 }
11743 }
11744 }
11745
11746 if (reloc_count == 0)
11747 continue;
11748
11749 reloc_count += additional_reloc_count;
11750 o->reloc_count += reloc_count;
11751
11752 if (p->type == bfd_indirect_link_order && emit_relocs)
11753 {
11754 if (esdi->rel.hdr)
11755 {
11756 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
11757 esdo->rel.count += additional_reloc_count;
11758 }
11759 if (esdi->rela.hdr)
11760 {
11761 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
11762 esdo->rela.count += additional_reloc_count;
11763 }
11764 }
11765 else
11766 {
11767 if (o->use_rela_p)
11768 esdo->rela.count += reloc_count;
11769 else
11770 esdo->rel.count += reloc_count;
11771 }
11772 }
11773
11774 if (o->reloc_count > 0)
11775 o->flags |= SEC_RELOC;
11776 else
11777 {
11778 /* Explicitly clear the SEC_RELOC flag. The linker tends to
11779 set it (this is probably a bug) and if it is set
11780 assign_section_numbers will create a reloc section. */
11781 o->flags &=~ SEC_RELOC;
11782 }
11783
11784 /* If the SEC_ALLOC flag is not set, force the section VMA to
11785 zero. This is done in elf_fake_sections as well, but forcing
11786 the VMA to 0 here will ensure that relocs against these
11787 sections are handled correctly. */
11788 if ((o->flags & SEC_ALLOC) == 0
11789 && ! o->user_set_vma)
11790 o->vma = 0;
11791 }
11792
11793 if (! bfd_link_relocatable (info) && merged)
11794 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
11795
11796 /* Figure out the file positions for everything but the symbol table
11797 and the relocs. We set symcount to force assign_section_numbers
11798 to create a symbol table. */
11799 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
11800 BFD_ASSERT (! abfd->output_has_begun);
11801 if (! _bfd_elf_compute_section_file_positions (abfd, info))
11802 goto error_return;
11803
11804 /* Set sizes, and assign file positions for reloc sections. */
11805 for (o = abfd->sections; o != NULL; o = o->next)
11806 {
11807 struct bfd_elf_section_data *esdo = elf_section_data (o);
11808 if ((o->flags & SEC_RELOC) != 0)
11809 {
11810 if (esdo->rel.hdr
11811 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
11812 goto error_return;
11813
11814 if (esdo->rela.hdr
11815 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
11816 goto error_return;
11817 }
11818
11819 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
11820 to count upwards while actually outputting the relocations. */
11821 esdo->rel.count = 0;
11822 esdo->rela.count = 0;
11823
11824 if (esdo->this_hdr.sh_offset == (file_ptr) -1)
11825 {
11826 /* Cache the section contents so that they can be compressed
11827 later. Use bfd_malloc since it will be freed by
11828 bfd_compress_section_contents. */
11829 unsigned char *contents = esdo->this_hdr.contents;
11830 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
11831 abort ();
11832 contents
11833 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
11834 if (contents == NULL)
11835 goto error_return;
11836 esdo->this_hdr.contents = contents;
11837 }
11838 }
11839
11840 /* We have now assigned file positions for all the sections except
11841 .symtab, .strtab, and non-loaded reloc sections. We start the
11842 .symtab section at the current file position, and write directly
11843 to it. We build the .strtab section in memory. */
11844 bfd_get_symcount (abfd) = 0;
11845 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11846 /* sh_name is set in prep_headers. */
11847 symtab_hdr->sh_type = SHT_SYMTAB;
11848 /* sh_flags, sh_addr and sh_size all start off zero. */
11849 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
11850 /* sh_link is set in assign_section_numbers. */
11851 /* sh_info is set below. */
11852 /* sh_offset is set just below. */
11853 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
11854
11855 if (max_sym_count < 20)
11856 max_sym_count = 20;
11857 htab->strtabsize = max_sym_count;
11858 amt = max_sym_count * sizeof (struct elf_sym_strtab);
11859 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
11860 if (htab->strtab == NULL)
11861 goto error_return;
11862 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
11863 flinfo.symshndxbuf
11864 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
11865 ? (Elf_External_Sym_Shndx *) -1 : NULL);
11866
11867 if (info->strip != strip_all || emit_relocs)
11868 {
11869 file_ptr off = elf_next_file_pos (abfd);
11870
11871 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
11872
11873 /* Note that at this point elf_next_file_pos (abfd) is
11874 incorrect. We do not yet know the size of the .symtab section.
11875 We correct next_file_pos below, after we do know the size. */
11876
11877 /* Start writing out the symbol table. The first symbol is always a
11878 dummy symbol. */
11879 elfsym.st_value = 0;
11880 elfsym.st_size = 0;
11881 elfsym.st_info = 0;
11882 elfsym.st_other = 0;
11883 elfsym.st_shndx = SHN_UNDEF;
11884 elfsym.st_target_internal = 0;
11885 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
11886 bfd_und_section_ptr, NULL) != 1)
11887 goto error_return;
11888
11889 /* Output a symbol for each section. We output these even if we are
11890 discarding local symbols, since they are used for relocs. These
11891 symbols have no names. We store the index of each one in the
11892 index field of the section, so that we can find it again when
11893 outputting relocs. */
11894
11895 elfsym.st_size = 0;
11896 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11897 elfsym.st_other = 0;
11898 elfsym.st_value = 0;
11899 elfsym.st_target_internal = 0;
11900 for (i = 1; i < elf_numsections (abfd); i++)
11901 {
11902 o = bfd_section_from_elf_index (abfd, i);
11903 if (o != NULL)
11904 {
11905 o->target_index = bfd_get_symcount (abfd);
11906 elfsym.st_shndx = i;
11907 if (!bfd_link_relocatable (info))
11908 elfsym.st_value = o->vma;
11909 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
11910 NULL) != 1)
11911 goto error_return;
11912 }
11913 }
11914 }
11915
11916 /* Allocate some memory to hold information read in from the input
11917 files. */
11918 if (max_contents_size != 0)
11919 {
11920 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
11921 if (flinfo.contents == NULL)
11922 goto error_return;
11923 }
11924
11925 if (max_external_reloc_size != 0)
11926 {
11927 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
11928 if (flinfo.external_relocs == NULL)
11929 goto error_return;
11930 }
11931
11932 if (max_internal_reloc_count != 0)
11933 {
11934 amt = max_internal_reloc_count * sizeof (Elf_Internal_Rela);
11935 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
11936 if (flinfo.internal_relocs == NULL)
11937 goto error_return;
11938 }
11939
11940 if (max_sym_count != 0)
11941 {
11942 amt = max_sym_count * bed->s->sizeof_sym;
11943 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
11944 if (flinfo.external_syms == NULL)
11945 goto error_return;
11946
11947 amt = max_sym_count * sizeof (Elf_Internal_Sym);
11948 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
11949 if (flinfo.internal_syms == NULL)
11950 goto error_return;
11951
11952 amt = max_sym_count * sizeof (long);
11953 flinfo.indices = (long int *) bfd_malloc (amt);
11954 if (flinfo.indices == NULL)
11955 goto error_return;
11956
11957 amt = max_sym_count * sizeof (asection *);
11958 flinfo.sections = (asection **) bfd_malloc (amt);
11959 if (flinfo.sections == NULL)
11960 goto error_return;
11961 }
11962
11963 if (max_sym_shndx_count != 0)
11964 {
11965 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11966 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11967 if (flinfo.locsym_shndx == NULL)
11968 goto error_return;
11969 }
11970
11971 if (htab->tls_sec)
11972 {
11973 bfd_vma base, end = 0;
11974 asection *sec;
11975
11976 for (sec = htab->tls_sec;
11977 sec && (sec->flags & SEC_THREAD_LOCAL);
11978 sec = sec->next)
11979 {
11980 bfd_size_type size = sec->size;
11981
11982 if (size == 0
11983 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11984 {
11985 struct bfd_link_order *ord = sec->map_tail.link_order;
11986
11987 if (ord != NULL)
11988 size = ord->offset + ord->size;
11989 }
11990 end = sec->vma + size;
11991 }
11992 base = htab->tls_sec->vma;
11993 /* Only align end of TLS section if static TLS doesn't have special
11994 alignment requirements. */
11995 if (bed->static_tls_alignment == 1)
11996 end = align_power (end, htab->tls_sec->alignment_power);
11997 htab->tls_size = end - base;
11998 }
11999
12000 /* Reorder SHF_LINK_ORDER sections. */
12001 for (o = abfd->sections; o != NULL; o = o->next)
12002 {
12003 if (!elf_fixup_link_order (abfd, o))
12004 return FALSE;
12005 }
12006
12007 if (!_bfd_elf_fixup_eh_frame_hdr (info))
12008 return FALSE;
12009
12010 /* Since ELF permits relocations to be against local symbols, we
12011 must have the local symbols available when we do the relocations.
12012 Since we would rather only read the local symbols once, and we
12013 would rather not keep them in memory, we handle all the
12014 relocations for a single input file at the same time.
12015
12016 Unfortunately, there is no way to know the total number of local
12017 symbols until we have seen all of them, and the local symbol
12018 indices precede the global symbol indices. This means that when
12019 we are generating relocatable output, and we see a reloc against
12020 a global symbol, we can not know the symbol index until we have
12021 finished examining all the local symbols to see which ones we are
12022 going to output. To deal with this, we keep the relocations in
12023 memory, and don't output them until the end of the link. This is
12024 an unfortunate waste of memory, but I don't see a good way around
12025 it. Fortunately, it only happens when performing a relocatable
12026 link, which is not the common case. FIXME: If keep_memory is set
12027 we could write the relocs out and then read them again; I don't
12028 know how bad the memory loss will be. */
12029
12030 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12031 sub->output_has_begun = FALSE;
12032 for (o = abfd->sections; o != NULL; o = o->next)
12033 {
12034 for (p = o->map_head.link_order; p != NULL; p = p->next)
12035 {
12036 if (p->type == bfd_indirect_link_order
12037 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
12038 == bfd_target_elf_flavour)
12039 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
12040 {
12041 if (! sub->output_has_begun)
12042 {
12043 if (! elf_link_input_bfd (&flinfo, sub))
12044 goto error_return;
12045 sub->output_has_begun = TRUE;
12046 }
12047 }
12048 else if (p->type == bfd_section_reloc_link_order
12049 || p->type == bfd_symbol_reloc_link_order)
12050 {
12051 if (! elf_reloc_link_order (abfd, info, o, p))
12052 goto error_return;
12053 }
12054 else
12055 {
12056 if (! _bfd_default_link_order (abfd, info, o, p))
12057 {
12058 if (p->type == bfd_indirect_link_order
12059 && (bfd_get_flavour (sub)
12060 == bfd_target_elf_flavour)
12061 && (elf_elfheader (sub)->e_ident[EI_CLASS]
12062 != bed->s->elfclass))
12063 {
12064 const char *iclass, *oclass;
12065
12066 switch (bed->s->elfclass)
12067 {
12068 case ELFCLASS64: oclass = "ELFCLASS64"; break;
12069 case ELFCLASS32: oclass = "ELFCLASS32"; break;
12070 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
12071 default: abort ();
12072 }
12073
12074 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
12075 {
12076 case ELFCLASS64: iclass = "ELFCLASS64"; break;
12077 case ELFCLASS32: iclass = "ELFCLASS32"; break;
12078 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
12079 default: abort ();
12080 }
12081
12082 bfd_set_error (bfd_error_wrong_format);
12083 _bfd_error_handler
12084 /* xgettext:c-format */
12085 (_("%pB: file class %s incompatible with %s"),
12086 sub, iclass, oclass);
12087 }
12088
12089 goto error_return;
12090 }
12091 }
12092 }
12093 }
12094
12095 /* Free symbol buffer if needed. */
12096 if (!info->reduce_memory_overheads)
12097 {
12098 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12099 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
12100 && elf_tdata (sub)->symbuf)
12101 {
12102 free (elf_tdata (sub)->symbuf);
12103 elf_tdata (sub)->symbuf = NULL;
12104 }
12105 }
12106
12107 /* Output any global symbols that got converted to local in a
12108 version script or due to symbol visibility. We do this in a
12109 separate step since ELF requires all local symbols to appear
12110 prior to any global symbols. FIXME: We should only do this if
12111 some global symbols were, in fact, converted to become local.
12112 FIXME: Will this work correctly with the Irix 5 linker? */
12113 eoinfo.failed = FALSE;
12114 eoinfo.flinfo = &flinfo;
12115 eoinfo.localsyms = TRUE;
12116 eoinfo.file_sym_done = FALSE;
12117 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12118 if (eoinfo.failed)
12119 return FALSE;
12120
12121 /* If backend needs to output some local symbols not present in the hash
12122 table, do it now. */
12123 if (bed->elf_backend_output_arch_local_syms
12124 && (info->strip != strip_all || emit_relocs))
12125 {
12126 typedef int (*out_sym_func)
12127 (void *, const char *, Elf_Internal_Sym *, asection *,
12128 struct elf_link_hash_entry *);
12129
12130 if (! ((*bed->elf_backend_output_arch_local_syms)
12131 (abfd, info, &flinfo,
12132 (out_sym_func) elf_link_output_symstrtab)))
12133 return FALSE;
12134 }
12135
12136 /* That wrote out all the local symbols. Finish up the symbol table
12137 with the global symbols. Even if we want to strip everything we
12138 can, we still need to deal with those global symbols that got
12139 converted to local in a version script. */
12140
12141 /* The sh_info field records the index of the first non local symbol. */
12142 symtab_hdr->sh_info = bfd_get_symcount (abfd);
12143
12144 if (dynamic
12145 && htab->dynsym != NULL
12146 && htab->dynsym->output_section != bfd_abs_section_ptr)
12147 {
12148 Elf_Internal_Sym sym;
12149 bfd_byte *dynsym = htab->dynsym->contents;
12150
12151 o = htab->dynsym->output_section;
12152 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
12153
12154 /* Write out the section symbols for the output sections. */
12155 if (bfd_link_pic (info)
12156 || htab->is_relocatable_executable)
12157 {
12158 asection *s;
12159
12160 sym.st_size = 0;
12161 sym.st_name = 0;
12162 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12163 sym.st_other = 0;
12164 sym.st_target_internal = 0;
12165
12166 for (s = abfd->sections; s != NULL; s = s->next)
12167 {
12168 int indx;
12169 bfd_byte *dest;
12170 long dynindx;
12171
12172 dynindx = elf_section_data (s)->dynindx;
12173 if (dynindx <= 0)
12174 continue;
12175 indx = elf_section_data (s)->this_idx;
12176 BFD_ASSERT (indx > 0);
12177 sym.st_shndx = indx;
12178 if (! check_dynsym (abfd, &sym))
12179 return FALSE;
12180 sym.st_value = s->vma;
12181 dest = dynsym + dynindx * bed->s->sizeof_sym;
12182 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12183 }
12184 }
12185
12186 /* Write out the local dynsyms. */
12187 if (htab->dynlocal)
12188 {
12189 struct elf_link_local_dynamic_entry *e;
12190 for (e = htab->dynlocal; e ; e = e->next)
12191 {
12192 asection *s;
12193 bfd_byte *dest;
12194
12195 /* Copy the internal symbol and turn off visibility.
12196 Note that we saved a word of storage and overwrote
12197 the original st_name with the dynstr_index. */
12198 sym = e->isym;
12199 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
12200
12201 s = bfd_section_from_elf_index (e->input_bfd,
12202 e->isym.st_shndx);
12203 if (s != NULL)
12204 {
12205 sym.st_shndx =
12206 elf_section_data (s->output_section)->this_idx;
12207 if (! check_dynsym (abfd, &sym))
12208 return FALSE;
12209 sym.st_value = (s->output_section->vma
12210 + s->output_offset
12211 + e->isym.st_value);
12212 }
12213
12214 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
12215 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12216 }
12217 }
12218 }
12219
12220 /* We get the global symbols from the hash table. */
12221 eoinfo.failed = FALSE;
12222 eoinfo.localsyms = FALSE;
12223 eoinfo.flinfo = &flinfo;
12224 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12225 if (eoinfo.failed)
12226 return FALSE;
12227
12228 /* If backend needs to output some symbols not present in the hash
12229 table, do it now. */
12230 if (bed->elf_backend_output_arch_syms
12231 && (info->strip != strip_all || emit_relocs))
12232 {
12233 typedef int (*out_sym_func)
12234 (void *, const char *, Elf_Internal_Sym *, asection *,
12235 struct elf_link_hash_entry *);
12236
12237 if (! ((*bed->elf_backend_output_arch_syms)
12238 (abfd, info, &flinfo,
12239 (out_sym_func) elf_link_output_symstrtab)))
12240 return FALSE;
12241 }
12242
12243 /* Finalize the .strtab section. */
12244 _bfd_elf_strtab_finalize (flinfo.symstrtab);
12245
12246 /* Swap out the .strtab section. */
12247 if (!elf_link_swap_symbols_out (&flinfo))
12248 return FALSE;
12249
12250 /* Now we know the size of the symtab section. */
12251 if (bfd_get_symcount (abfd) > 0)
12252 {
12253 /* Finish up and write out the symbol string table (.strtab)
12254 section. */
12255 Elf_Internal_Shdr *symstrtab_hdr = NULL;
12256 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
12257
12258 if (elf_symtab_shndx_list (abfd))
12259 {
12260 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
12261
12262 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
12263 {
12264 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
12265 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
12266 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
12267 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
12268 symtab_shndx_hdr->sh_size = amt;
12269
12270 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
12271 off, TRUE);
12272
12273 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
12274 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
12275 return FALSE;
12276 }
12277 }
12278
12279 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
12280 /* sh_name was set in prep_headers. */
12281 symstrtab_hdr->sh_type = SHT_STRTAB;
12282 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
12283 symstrtab_hdr->sh_addr = 0;
12284 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
12285 symstrtab_hdr->sh_entsize = 0;
12286 symstrtab_hdr->sh_link = 0;
12287 symstrtab_hdr->sh_info = 0;
12288 /* sh_offset is set just below. */
12289 symstrtab_hdr->sh_addralign = 1;
12290
12291 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
12292 off, TRUE);
12293 elf_next_file_pos (abfd) = off;
12294
12295 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
12296 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
12297 return FALSE;
12298 }
12299
12300 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
12301 {
12302 _bfd_error_handler (_("%pB: failed to generate import library"),
12303 info->out_implib_bfd);
12304 return FALSE;
12305 }
12306
12307 /* Adjust the relocs to have the correct symbol indices. */
12308 for (o = abfd->sections; o != NULL; o = o->next)
12309 {
12310 struct bfd_elf_section_data *esdo = elf_section_data (o);
12311 bfd_boolean sort;
12312
12313 if ((o->flags & SEC_RELOC) == 0)
12314 continue;
12315
12316 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
12317 if (esdo->rel.hdr != NULL
12318 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort, info))
12319 return FALSE;
12320 if (esdo->rela.hdr != NULL
12321 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort, info))
12322 return FALSE;
12323
12324 /* Set the reloc_count field to 0 to prevent write_relocs from
12325 trying to swap the relocs out itself. */
12326 o->reloc_count = 0;
12327 }
12328
12329 if (dynamic && info->combreloc && dynobj != NULL)
12330 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
12331
12332 /* If we are linking against a dynamic object, or generating a
12333 shared library, finish up the dynamic linking information. */
12334 if (dynamic)
12335 {
12336 bfd_byte *dyncon, *dynconend;
12337
12338 /* Fix up .dynamic entries. */
12339 o = bfd_get_linker_section (dynobj, ".dynamic");
12340 BFD_ASSERT (o != NULL);
12341
12342 dyncon = o->contents;
12343 dynconend = o->contents + o->size;
12344 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12345 {
12346 Elf_Internal_Dyn dyn;
12347 const char *name;
12348 unsigned int type;
12349 bfd_size_type sh_size;
12350 bfd_vma sh_addr;
12351
12352 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12353
12354 switch (dyn.d_tag)
12355 {
12356 default:
12357 continue;
12358 case DT_NULL:
12359 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
12360 {
12361 switch (elf_section_data (reldyn)->this_hdr.sh_type)
12362 {
12363 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
12364 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
12365 default: continue;
12366 }
12367 dyn.d_un.d_val = relativecount;
12368 relativecount = 0;
12369 break;
12370 }
12371 continue;
12372
12373 case DT_INIT:
12374 name = info->init_function;
12375 goto get_sym;
12376 case DT_FINI:
12377 name = info->fini_function;
12378 get_sym:
12379 {
12380 struct elf_link_hash_entry *h;
12381
12382 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
12383 if (h != NULL
12384 && (h->root.type == bfd_link_hash_defined
12385 || h->root.type == bfd_link_hash_defweak))
12386 {
12387 dyn.d_un.d_ptr = h->root.u.def.value;
12388 o = h->root.u.def.section;
12389 if (o->output_section != NULL)
12390 dyn.d_un.d_ptr += (o->output_section->vma
12391 + o->output_offset);
12392 else
12393 {
12394 /* The symbol is imported from another shared
12395 library and does not apply to this one. */
12396 dyn.d_un.d_ptr = 0;
12397 }
12398 break;
12399 }
12400 }
12401 continue;
12402
12403 case DT_PREINIT_ARRAYSZ:
12404 name = ".preinit_array";
12405 goto get_out_size;
12406 case DT_INIT_ARRAYSZ:
12407 name = ".init_array";
12408 goto get_out_size;
12409 case DT_FINI_ARRAYSZ:
12410 name = ".fini_array";
12411 get_out_size:
12412 o = bfd_get_section_by_name (abfd, name);
12413 if (o == NULL)
12414 {
12415 _bfd_error_handler
12416 (_("could not find section %s"), name);
12417 goto error_return;
12418 }
12419 if (o->size == 0)
12420 _bfd_error_handler
12421 (_("warning: %s section has zero size"), name);
12422 dyn.d_un.d_val = o->size;
12423 break;
12424
12425 case DT_PREINIT_ARRAY:
12426 name = ".preinit_array";
12427 goto get_out_vma;
12428 case DT_INIT_ARRAY:
12429 name = ".init_array";
12430 goto get_out_vma;
12431 case DT_FINI_ARRAY:
12432 name = ".fini_array";
12433 get_out_vma:
12434 o = bfd_get_section_by_name (abfd, name);
12435 goto do_vma;
12436
12437 case DT_HASH:
12438 name = ".hash";
12439 goto get_vma;
12440 case DT_GNU_HASH:
12441 name = ".gnu.hash";
12442 goto get_vma;
12443 case DT_STRTAB:
12444 name = ".dynstr";
12445 goto get_vma;
12446 case DT_SYMTAB:
12447 name = ".dynsym";
12448 goto get_vma;
12449 case DT_VERDEF:
12450 name = ".gnu.version_d";
12451 goto get_vma;
12452 case DT_VERNEED:
12453 name = ".gnu.version_r";
12454 goto get_vma;
12455 case DT_VERSYM:
12456 name = ".gnu.version";
12457 get_vma:
12458 o = bfd_get_linker_section (dynobj, name);
12459 do_vma:
12460 if (o == NULL || bfd_is_abs_section (o->output_section))
12461 {
12462 _bfd_error_handler
12463 (_("could not find section %s"), name);
12464 goto error_return;
12465 }
12466 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
12467 {
12468 _bfd_error_handler
12469 (_("warning: section '%s' is being made into a note"), name);
12470 bfd_set_error (bfd_error_nonrepresentable_section);
12471 goto error_return;
12472 }
12473 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
12474 break;
12475
12476 case DT_REL:
12477 case DT_RELA:
12478 case DT_RELSZ:
12479 case DT_RELASZ:
12480 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12481 type = SHT_REL;
12482 else
12483 type = SHT_RELA;
12484 sh_size = 0;
12485 sh_addr = 0;
12486 for (i = 1; i < elf_numsections (abfd); i++)
12487 {
12488 Elf_Internal_Shdr *hdr;
12489
12490 hdr = elf_elfsections (abfd)[i];
12491 if (hdr->sh_type == type
12492 && (hdr->sh_flags & SHF_ALLOC) != 0)
12493 {
12494 sh_size += hdr->sh_size;
12495 if (sh_addr == 0
12496 || sh_addr > hdr->sh_addr)
12497 sh_addr = hdr->sh_addr;
12498 }
12499 }
12500
12501 if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
12502 {
12503 /* Don't count procedure linkage table relocs in the
12504 overall reloc count. */
12505 sh_size -= htab->srelplt->size;
12506 if (sh_size == 0)
12507 /* If the size is zero, make the address zero too.
12508 This is to avoid a glibc bug. If the backend
12509 emits DT_RELA/DT_RELASZ even when DT_RELASZ is
12510 zero, then we'll put DT_RELA at the end of
12511 DT_JMPREL. glibc will interpret the end of
12512 DT_RELA matching the end of DT_JMPREL as the
12513 case where DT_RELA includes DT_JMPREL, and for
12514 LD_BIND_NOW will decide that processing DT_RELA
12515 will process the PLT relocs too. Net result:
12516 No PLT relocs applied. */
12517 sh_addr = 0;
12518
12519 /* If .rela.plt is the first .rela section, exclude
12520 it from DT_RELA. */
12521 else if (sh_addr == (htab->srelplt->output_section->vma
12522 + htab->srelplt->output_offset))
12523 sh_addr += htab->srelplt->size;
12524 }
12525
12526 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
12527 dyn.d_un.d_val = sh_size;
12528 else
12529 dyn.d_un.d_ptr = sh_addr;
12530 break;
12531 }
12532 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
12533 }
12534 }
12535
12536 /* If we have created any dynamic sections, then output them. */
12537 if (dynobj != NULL)
12538 {
12539 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
12540 goto error_return;
12541
12542 /* Check for DT_TEXTREL (late, in case the backend removes it). */
12543 if (((info->warn_shared_textrel && bfd_link_pic (info))
12544 || info->error_textrel)
12545 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
12546 {
12547 bfd_byte *dyncon, *dynconend;
12548
12549 dyncon = o->contents;
12550 dynconend = o->contents + o->size;
12551 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12552 {
12553 Elf_Internal_Dyn dyn;
12554
12555 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12556
12557 if (dyn.d_tag == DT_TEXTREL)
12558 {
12559 if (info->error_textrel)
12560 info->callbacks->einfo
12561 (_("%P%X: read-only segment has dynamic relocations\n"));
12562 else
12563 info->callbacks->einfo
12564 (_("%P: warning: creating a DT_TEXTREL in a shared object\n"));
12565 break;
12566 }
12567 }
12568 }
12569
12570 for (o = dynobj->sections; o != NULL; o = o->next)
12571 {
12572 if ((o->flags & SEC_HAS_CONTENTS) == 0
12573 || o->size == 0
12574 || o->output_section == bfd_abs_section_ptr)
12575 continue;
12576 if ((o->flags & SEC_LINKER_CREATED) == 0)
12577 {
12578 /* At this point, we are only interested in sections
12579 created by _bfd_elf_link_create_dynamic_sections. */
12580 continue;
12581 }
12582 if (htab->stab_info.stabstr == o)
12583 continue;
12584 if (htab->eh_info.hdr_sec == o)
12585 continue;
12586 if (strcmp (o->name, ".dynstr") != 0)
12587 {
12588 if (! bfd_set_section_contents (abfd, o->output_section,
12589 o->contents,
12590 (file_ptr) o->output_offset
12591 * bfd_octets_per_byte (abfd),
12592 o->size))
12593 goto error_return;
12594 }
12595 else
12596 {
12597 /* The contents of the .dynstr section are actually in a
12598 stringtab. */
12599 file_ptr off;
12600
12601 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
12602 if (bfd_seek (abfd, off, SEEK_SET) != 0
12603 || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
12604 goto error_return;
12605 }
12606 }
12607 }
12608
12609 if (!info->resolve_section_groups)
12610 {
12611 bfd_boolean failed = FALSE;
12612
12613 BFD_ASSERT (bfd_link_relocatable (info));
12614 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
12615 if (failed)
12616 goto error_return;
12617 }
12618
12619 /* If we have optimized stabs strings, output them. */
12620 if (htab->stab_info.stabstr != NULL)
12621 {
12622 if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
12623 goto error_return;
12624 }
12625
12626 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
12627 goto error_return;
12628
12629 elf_final_link_free (abfd, &flinfo);
12630
12631 elf_linker (abfd) = TRUE;
12632
12633 if (attr_section)
12634 {
12635 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
12636 if (contents == NULL)
12637 return FALSE; /* Bail out and fail. */
12638 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
12639 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
12640 free (contents);
12641 }
12642
12643 return TRUE;
12644
12645 error_return:
12646 elf_final_link_free (abfd, &flinfo);
12647 return FALSE;
12648 }
12649 \f
12650 /* Initialize COOKIE for input bfd ABFD. */
12651
12652 static bfd_boolean
12653 init_reloc_cookie (struct elf_reloc_cookie *cookie,
12654 struct bfd_link_info *info, bfd *abfd)
12655 {
12656 Elf_Internal_Shdr *symtab_hdr;
12657 const struct elf_backend_data *bed;
12658
12659 bed = get_elf_backend_data (abfd);
12660 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12661
12662 cookie->abfd = abfd;
12663 cookie->sym_hashes = elf_sym_hashes (abfd);
12664 cookie->bad_symtab = elf_bad_symtab (abfd);
12665 if (cookie->bad_symtab)
12666 {
12667 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12668 cookie->extsymoff = 0;
12669 }
12670 else
12671 {
12672 cookie->locsymcount = symtab_hdr->sh_info;
12673 cookie->extsymoff = symtab_hdr->sh_info;
12674 }
12675
12676 if (bed->s->arch_size == 32)
12677 cookie->r_sym_shift = 8;
12678 else
12679 cookie->r_sym_shift = 32;
12680
12681 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
12682 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
12683 {
12684 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12685 cookie->locsymcount, 0,
12686 NULL, NULL, NULL);
12687 if (cookie->locsyms == NULL)
12688 {
12689 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
12690 return FALSE;
12691 }
12692 if (info->keep_memory)
12693 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
12694 }
12695 return TRUE;
12696 }
12697
12698 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
12699
12700 static void
12701 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
12702 {
12703 Elf_Internal_Shdr *symtab_hdr;
12704
12705 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12706 if (cookie->locsyms != NULL
12707 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
12708 free (cookie->locsyms);
12709 }
12710
12711 /* Initialize the relocation information in COOKIE for input section SEC
12712 of input bfd ABFD. */
12713
12714 static bfd_boolean
12715 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12716 struct bfd_link_info *info, bfd *abfd,
12717 asection *sec)
12718 {
12719 if (sec->reloc_count == 0)
12720 {
12721 cookie->rels = NULL;
12722 cookie->relend = NULL;
12723 }
12724 else
12725 {
12726 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
12727 info->keep_memory);
12728 if (cookie->rels == NULL)
12729 return FALSE;
12730 cookie->rel = cookie->rels;
12731 cookie->relend = cookie->rels + sec->reloc_count;
12732 }
12733 cookie->rel = cookie->rels;
12734 return TRUE;
12735 }
12736
12737 /* Free the memory allocated by init_reloc_cookie_rels,
12738 if appropriate. */
12739
12740 static void
12741 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12742 asection *sec)
12743 {
12744 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
12745 free (cookie->rels);
12746 }
12747
12748 /* Initialize the whole of COOKIE for input section SEC. */
12749
12750 static bfd_boolean
12751 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12752 struct bfd_link_info *info,
12753 asection *sec)
12754 {
12755 if (!init_reloc_cookie (cookie, info, sec->owner))
12756 goto error1;
12757 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
12758 goto error2;
12759 return TRUE;
12760
12761 error2:
12762 fini_reloc_cookie (cookie, sec->owner);
12763 error1:
12764 return FALSE;
12765 }
12766
12767 /* Free the memory allocated by init_reloc_cookie_for_section,
12768 if appropriate. */
12769
12770 static void
12771 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12772 asection *sec)
12773 {
12774 fini_reloc_cookie_rels (cookie, sec);
12775 fini_reloc_cookie (cookie, sec->owner);
12776 }
12777 \f
12778 /* Garbage collect unused sections. */
12779
12780 /* Default gc_mark_hook. */
12781
12782 asection *
12783 _bfd_elf_gc_mark_hook (asection *sec,
12784 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12785 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12786 struct elf_link_hash_entry *h,
12787 Elf_Internal_Sym *sym)
12788 {
12789 if (h != NULL)
12790 {
12791 switch (h->root.type)
12792 {
12793 case bfd_link_hash_defined:
12794 case bfd_link_hash_defweak:
12795 return h->root.u.def.section;
12796
12797 case bfd_link_hash_common:
12798 return h->root.u.c.p->section;
12799
12800 default:
12801 break;
12802 }
12803 }
12804 else
12805 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
12806
12807 return NULL;
12808 }
12809
12810 /* Return the debug definition section. */
12811
12812 static asection *
12813 elf_gc_mark_debug_section (asection *sec ATTRIBUTE_UNUSED,
12814 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12815 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12816 struct elf_link_hash_entry *h,
12817 Elf_Internal_Sym *sym)
12818 {
12819 if (h != NULL)
12820 {
12821 /* Return the global debug definition section. */
12822 if ((h->root.type == bfd_link_hash_defined
12823 || h->root.type == bfd_link_hash_defweak)
12824 && (h->root.u.def.section->flags & SEC_DEBUGGING) != 0)
12825 return h->root.u.def.section;
12826 }
12827 else
12828 {
12829 /* Return the local debug definition section. */
12830 asection *isec = bfd_section_from_elf_index (sec->owner,
12831 sym->st_shndx);
12832 if ((isec->flags & SEC_DEBUGGING) != 0)
12833 return isec;
12834 }
12835
12836 return NULL;
12837 }
12838
12839 /* COOKIE->rel describes a relocation against section SEC, which is
12840 a section we've decided to keep. Return the section that contains
12841 the relocation symbol, or NULL if no section contains it. */
12842
12843 asection *
12844 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
12845 elf_gc_mark_hook_fn gc_mark_hook,
12846 struct elf_reloc_cookie *cookie,
12847 bfd_boolean *start_stop)
12848 {
12849 unsigned long r_symndx;
12850 struct elf_link_hash_entry *h;
12851
12852 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
12853 if (r_symndx == STN_UNDEF)
12854 return NULL;
12855
12856 if (r_symndx >= cookie->locsymcount
12857 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12858 {
12859 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
12860 if (h == NULL)
12861 {
12862 info->callbacks->einfo (_("%F%P: corrupt input: %pB\n"),
12863 sec->owner);
12864 return NULL;
12865 }
12866 while (h->root.type == bfd_link_hash_indirect
12867 || h->root.type == bfd_link_hash_warning)
12868 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12869 h->mark = 1;
12870 /* If this symbol is weak and there is a non-weak definition, we
12871 keep the non-weak definition because many backends put
12872 dynamic reloc info on the non-weak definition for code
12873 handling copy relocs. */
12874 if (h->is_weakalias)
12875 weakdef (h)->mark = 1;
12876
12877 if (start_stop != NULL)
12878 {
12879 /* To work around a glibc bug, mark XXX input sections
12880 when there is a reference to __start_XXX or __stop_XXX
12881 symbols. */
12882 if (h->start_stop)
12883 {
12884 asection *s = h->u2.start_stop_section;
12885 *start_stop = !s->gc_mark;
12886 return s;
12887 }
12888 }
12889
12890 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
12891 }
12892
12893 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
12894 &cookie->locsyms[r_symndx]);
12895 }
12896
12897 /* COOKIE->rel describes a relocation against section SEC, which is
12898 a section we've decided to keep. Mark the section that contains
12899 the relocation symbol. */
12900
12901 bfd_boolean
12902 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
12903 asection *sec,
12904 elf_gc_mark_hook_fn gc_mark_hook,
12905 struct elf_reloc_cookie *cookie)
12906 {
12907 asection *rsec;
12908 bfd_boolean start_stop = FALSE;
12909
12910 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
12911 while (rsec != NULL)
12912 {
12913 if (!rsec->gc_mark)
12914 {
12915 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
12916 || (rsec->owner->flags & DYNAMIC) != 0)
12917 rsec->gc_mark = 1;
12918 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
12919 return FALSE;
12920 }
12921 if (!start_stop)
12922 break;
12923 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
12924 }
12925 return TRUE;
12926 }
12927
12928 /* The mark phase of garbage collection. For a given section, mark
12929 it and any sections in this section's group, and all the sections
12930 which define symbols to which it refers. */
12931
12932 bfd_boolean
12933 _bfd_elf_gc_mark (struct bfd_link_info *info,
12934 asection *sec,
12935 elf_gc_mark_hook_fn gc_mark_hook)
12936 {
12937 bfd_boolean ret;
12938 asection *group_sec, *eh_frame;
12939
12940 sec->gc_mark = 1;
12941
12942 /* Mark all the sections in the group. */
12943 group_sec = elf_section_data (sec)->next_in_group;
12944 if (group_sec && !group_sec->gc_mark)
12945 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
12946 return FALSE;
12947
12948 /* Look through the section relocs. */
12949 ret = TRUE;
12950 eh_frame = elf_eh_frame_section (sec->owner);
12951 if ((sec->flags & SEC_RELOC) != 0
12952 && sec->reloc_count > 0
12953 && sec != eh_frame)
12954 {
12955 struct elf_reloc_cookie cookie;
12956
12957 if (!init_reloc_cookie_for_section (&cookie, info, sec))
12958 ret = FALSE;
12959 else
12960 {
12961 for (; cookie.rel < cookie.relend; cookie.rel++)
12962 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
12963 {
12964 ret = FALSE;
12965 break;
12966 }
12967 fini_reloc_cookie_for_section (&cookie, sec);
12968 }
12969 }
12970
12971 if (ret && eh_frame && elf_fde_list (sec))
12972 {
12973 struct elf_reloc_cookie cookie;
12974
12975 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
12976 ret = FALSE;
12977 else
12978 {
12979 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
12980 gc_mark_hook, &cookie))
12981 ret = FALSE;
12982 fini_reloc_cookie_for_section (&cookie, eh_frame);
12983 }
12984 }
12985
12986 eh_frame = elf_section_eh_frame_entry (sec);
12987 if (ret && eh_frame && !eh_frame->gc_mark)
12988 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
12989 ret = FALSE;
12990
12991 return ret;
12992 }
12993
12994 /* Scan and mark sections in a special or debug section group. */
12995
12996 static void
12997 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
12998 {
12999 /* Point to first section of section group. */
13000 asection *ssec;
13001 /* Used to iterate the section group. */
13002 asection *msec;
13003
13004 bfd_boolean is_special_grp = TRUE;
13005 bfd_boolean is_debug_grp = TRUE;
13006
13007 /* First scan to see if group contains any section other than debug
13008 and special section. */
13009 ssec = msec = elf_next_in_group (grp);
13010 do
13011 {
13012 if ((msec->flags & SEC_DEBUGGING) == 0)
13013 is_debug_grp = FALSE;
13014
13015 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
13016 is_special_grp = FALSE;
13017
13018 msec = elf_next_in_group (msec);
13019 }
13020 while (msec != ssec);
13021
13022 /* If this is a pure debug section group or pure special section group,
13023 keep all sections in this group. */
13024 if (is_debug_grp || is_special_grp)
13025 {
13026 do
13027 {
13028 msec->gc_mark = 1;
13029 msec = elf_next_in_group (msec);
13030 }
13031 while (msec != ssec);
13032 }
13033 }
13034
13035 /* Keep debug and special sections. */
13036
13037 bfd_boolean
13038 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
13039 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
13040 {
13041 bfd *ibfd;
13042
13043 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13044 {
13045 asection *isec;
13046 bfd_boolean some_kept;
13047 bfd_boolean debug_frag_seen;
13048 bfd_boolean has_kept_debug_info;
13049
13050 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13051 continue;
13052 isec = ibfd->sections;
13053 if (isec == NULL || isec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13054 continue;
13055
13056 /* Ensure all linker created sections are kept,
13057 see if any other section is already marked,
13058 and note if we have any fragmented debug sections. */
13059 debug_frag_seen = some_kept = has_kept_debug_info = FALSE;
13060 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13061 {
13062 if ((isec->flags & SEC_LINKER_CREATED) != 0)
13063 isec->gc_mark = 1;
13064 else if (isec->gc_mark
13065 && (isec->flags & SEC_ALLOC) != 0
13066 && elf_section_type (isec) != SHT_NOTE)
13067 some_kept = TRUE;
13068
13069 if (!debug_frag_seen
13070 && (isec->flags & SEC_DEBUGGING)
13071 && CONST_STRNEQ (isec->name, ".debug_line."))
13072 debug_frag_seen = TRUE;
13073 }
13074
13075 /* If no non-note alloc section in this file will be kept, then
13076 we can toss out the debug and special sections. */
13077 if (!some_kept)
13078 continue;
13079
13080 /* Keep debug and special sections like .comment when they are
13081 not part of a group. Also keep section groups that contain
13082 just debug sections or special sections. */
13083 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13084 {
13085 if ((isec->flags & SEC_GROUP) != 0)
13086 _bfd_elf_gc_mark_debug_special_section_group (isec);
13087 else if (((isec->flags & SEC_DEBUGGING) != 0
13088 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
13089 && elf_next_in_group (isec) == NULL)
13090 isec->gc_mark = 1;
13091 if (isec->gc_mark && (isec->flags & SEC_DEBUGGING) != 0)
13092 has_kept_debug_info = TRUE;
13093 }
13094
13095 /* Look for CODE sections which are going to be discarded,
13096 and find and discard any fragmented debug sections which
13097 are associated with that code section. */
13098 if (debug_frag_seen)
13099 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13100 if ((isec->flags & SEC_CODE) != 0
13101 && isec->gc_mark == 0)
13102 {
13103 unsigned int ilen;
13104 asection *dsec;
13105
13106 ilen = strlen (isec->name);
13107
13108 /* Association is determined by the name of the debug
13109 section containing the name of the code section as
13110 a suffix. For example .debug_line.text.foo is a
13111 debug section associated with .text.foo. */
13112 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
13113 {
13114 unsigned int dlen;
13115
13116 if (dsec->gc_mark == 0
13117 || (dsec->flags & SEC_DEBUGGING) == 0)
13118 continue;
13119
13120 dlen = strlen (dsec->name);
13121
13122 if (dlen > ilen
13123 && strncmp (dsec->name + (dlen - ilen),
13124 isec->name, ilen) == 0)
13125 dsec->gc_mark = 0;
13126 }
13127 }
13128
13129 /* Mark debug sections referenced by kept debug sections. */
13130 if (has_kept_debug_info)
13131 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13132 if (isec->gc_mark
13133 && (isec->flags & SEC_DEBUGGING) != 0)
13134 if (!_bfd_elf_gc_mark (info, isec,
13135 elf_gc_mark_debug_section))
13136 return FALSE;
13137 }
13138 return TRUE;
13139 }
13140
13141 static bfd_boolean
13142 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
13143 {
13144 bfd *sub;
13145 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13146
13147 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13148 {
13149 asection *o;
13150
13151 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13152 || elf_object_id (sub) != elf_hash_table_id (elf_hash_table (info))
13153 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13154 continue;
13155 o = sub->sections;
13156 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13157 continue;
13158
13159 for (o = sub->sections; o != NULL; o = o->next)
13160 {
13161 /* When any section in a section group is kept, we keep all
13162 sections in the section group. If the first member of
13163 the section group is excluded, we will also exclude the
13164 group section. */
13165 if (o->flags & SEC_GROUP)
13166 {
13167 asection *first = elf_next_in_group (o);
13168 o->gc_mark = first->gc_mark;
13169 }
13170
13171 if (o->gc_mark)
13172 continue;
13173
13174 /* Skip sweeping sections already excluded. */
13175 if (o->flags & SEC_EXCLUDE)
13176 continue;
13177
13178 /* Since this is early in the link process, it is simple
13179 to remove a section from the output. */
13180 o->flags |= SEC_EXCLUDE;
13181
13182 if (info->print_gc_sections && o->size != 0)
13183 /* xgettext:c-format */
13184 _bfd_error_handler (_("removing unused section '%pA' in file '%pB'"),
13185 o, sub);
13186 }
13187 }
13188
13189 return TRUE;
13190 }
13191
13192 /* Propagate collected vtable information. This is called through
13193 elf_link_hash_traverse. */
13194
13195 static bfd_boolean
13196 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
13197 {
13198 /* Those that are not vtables. */
13199 if (h->start_stop
13200 || h->u2.vtable == NULL
13201 || h->u2.vtable->parent == NULL)
13202 return TRUE;
13203
13204 /* Those vtables that do not have parents, we cannot merge. */
13205 if (h->u2.vtable->parent == (struct elf_link_hash_entry *) -1)
13206 return TRUE;
13207
13208 /* If we've already been done, exit. */
13209 if (h->u2.vtable->used && h->u2.vtable->used[-1])
13210 return TRUE;
13211
13212 /* Make sure the parent's table is up to date. */
13213 elf_gc_propagate_vtable_entries_used (h->u2.vtable->parent, okp);
13214
13215 if (h->u2.vtable->used == NULL)
13216 {
13217 /* None of this table's entries were referenced. Re-use the
13218 parent's table. */
13219 h->u2.vtable->used = h->u2.vtable->parent->u2.vtable->used;
13220 h->u2.vtable->size = h->u2.vtable->parent->u2.vtable->size;
13221 }
13222 else
13223 {
13224 size_t n;
13225 bfd_boolean *cu, *pu;
13226
13227 /* Or the parent's entries into ours. */
13228 cu = h->u2.vtable->used;
13229 cu[-1] = TRUE;
13230 pu = h->u2.vtable->parent->u2.vtable->used;
13231 if (pu != NULL)
13232 {
13233 const struct elf_backend_data *bed;
13234 unsigned int log_file_align;
13235
13236 bed = get_elf_backend_data (h->root.u.def.section->owner);
13237 log_file_align = bed->s->log_file_align;
13238 n = h->u2.vtable->parent->u2.vtable->size >> log_file_align;
13239 while (n--)
13240 {
13241 if (*pu)
13242 *cu = TRUE;
13243 pu++;
13244 cu++;
13245 }
13246 }
13247 }
13248
13249 return TRUE;
13250 }
13251
13252 static bfd_boolean
13253 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
13254 {
13255 asection *sec;
13256 bfd_vma hstart, hend;
13257 Elf_Internal_Rela *relstart, *relend, *rel;
13258 const struct elf_backend_data *bed;
13259 unsigned int log_file_align;
13260
13261 /* Take care of both those symbols that do not describe vtables as
13262 well as those that are not loaded. */
13263 if (h->start_stop
13264 || h->u2.vtable == NULL
13265 || h->u2.vtable->parent == NULL)
13266 return TRUE;
13267
13268 BFD_ASSERT (h->root.type == bfd_link_hash_defined
13269 || h->root.type == bfd_link_hash_defweak);
13270
13271 sec = h->root.u.def.section;
13272 hstart = h->root.u.def.value;
13273 hend = hstart + h->size;
13274
13275 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
13276 if (!relstart)
13277 return *(bfd_boolean *) okp = FALSE;
13278 bed = get_elf_backend_data (sec->owner);
13279 log_file_align = bed->s->log_file_align;
13280
13281 relend = relstart + sec->reloc_count;
13282
13283 for (rel = relstart; rel < relend; ++rel)
13284 if (rel->r_offset >= hstart && rel->r_offset < hend)
13285 {
13286 /* If the entry is in use, do nothing. */
13287 if (h->u2.vtable->used
13288 && (rel->r_offset - hstart) < h->u2.vtable->size)
13289 {
13290 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
13291 if (h->u2.vtable->used[entry])
13292 continue;
13293 }
13294 /* Otherwise, kill it. */
13295 rel->r_offset = rel->r_info = rel->r_addend = 0;
13296 }
13297
13298 return TRUE;
13299 }
13300
13301 /* Mark sections containing dynamically referenced symbols. When
13302 building shared libraries, we must assume that any visible symbol is
13303 referenced. */
13304
13305 bfd_boolean
13306 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
13307 {
13308 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13309 struct bfd_elf_dynamic_list *d = info->dynamic_list;
13310
13311 if ((h->root.type == bfd_link_hash_defined
13312 || h->root.type == bfd_link_hash_defweak)
13313 && ((h->ref_dynamic && !h->forced_local)
13314 || ((h->def_regular || ELF_COMMON_DEF_P (h))
13315 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13316 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13317 && (!bfd_link_executable (info)
13318 || info->gc_keep_exported
13319 || info->export_dynamic
13320 || (h->dynamic
13321 && d != NULL
13322 && (*d->match) (&d->head, NULL, h->root.root.string)))
13323 && (h->versioned >= versioned
13324 || !bfd_hide_sym_by_version (info->version_info,
13325 h->root.root.string)))))
13326 h->root.u.def.section->flags |= SEC_KEEP;
13327
13328 return TRUE;
13329 }
13330
13331 /* Keep all sections containing symbols undefined on the command-line,
13332 and the section containing the entry symbol. */
13333
13334 void
13335 _bfd_elf_gc_keep (struct bfd_link_info *info)
13336 {
13337 struct bfd_sym_chain *sym;
13338
13339 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13340 {
13341 struct elf_link_hash_entry *h;
13342
13343 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13344 FALSE, FALSE, FALSE);
13345
13346 if (h != NULL
13347 && (h->root.type == bfd_link_hash_defined
13348 || h->root.type == bfd_link_hash_defweak)
13349 && !bfd_is_abs_section (h->root.u.def.section)
13350 && !bfd_is_und_section (h->root.u.def.section))
13351 h->root.u.def.section->flags |= SEC_KEEP;
13352 }
13353 }
13354
13355 bfd_boolean
13356 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13357 struct bfd_link_info *info)
13358 {
13359 bfd *ibfd = info->input_bfds;
13360
13361 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13362 {
13363 asection *sec;
13364 struct elf_reloc_cookie cookie;
13365
13366 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13367 continue;
13368 sec = ibfd->sections;
13369 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13370 continue;
13371
13372 if (!init_reloc_cookie (&cookie, info, ibfd))
13373 return FALSE;
13374
13375 for (sec = ibfd->sections; sec; sec = sec->next)
13376 {
13377 if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
13378 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
13379 {
13380 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
13381 fini_reloc_cookie_rels (&cookie, sec);
13382 }
13383 }
13384 }
13385 return TRUE;
13386 }
13387
13388 /* Do mark and sweep of unused sections. */
13389
13390 bfd_boolean
13391 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
13392 {
13393 bfd_boolean ok = TRUE;
13394 bfd *sub;
13395 elf_gc_mark_hook_fn gc_mark_hook;
13396 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13397 struct elf_link_hash_table *htab;
13398
13399 if (!bed->can_gc_sections
13400 || !is_elf_hash_table (info->hash))
13401 {
13402 _bfd_error_handler(_("warning: gc-sections option ignored"));
13403 return TRUE;
13404 }
13405
13406 bed->gc_keep (info);
13407 htab = elf_hash_table (info);
13408
13409 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
13410 at the .eh_frame section if we can mark the FDEs individually. */
13411 for (sub = info->input_bfds;
13412 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
13413 sub = sub->link.next)
13414 {
13415 asection *sec;
13416 struct elf_reloc_cookie cookie;
13417
13418 sec = sub->sections;
13419 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13420 continue;
13421 sec = bfd_get_section_by_name (sub, ".eh_frame");
13422 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
13423 {
13424 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
13425 if (elf_section_data (sec)->sec_info
13426 && (sec->flags & SEC_LINKER_CREATED) == 0)
13427 elf_eh_frame_section (sub) = sec;
13428 fini_reloc_cookie_for_section (&cookie, sec);
13429 sec = bfd_get_next_section_by_name (NULL, sec);
13430 }
13431 }
13432
13433 /* Apply transitive closure to the vtable entry usage info. */
13434 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
13435 if (!ok)
13436 return FALSE;
13437
13438 /* Kill the vtable relocations that were not used. */
13439 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
13440 if (!ok)
13441 return FALSE;
13442
13443 /* Mark dynamically referenced symbols. */
13444 if (htab->dynamic_sections_created || info->gc_keep_exported)
13445 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
13446
13447 /* Grovel through relocs to find out who stays ... */
13448 gc_mark_hook = bed->gc_mark_hook;
13449 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13450 {
13451 asection *o;
13452
13453 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13454 || elf_object_id (sub) != elf_hash_table_id (htab)
13455 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13456 continue;
13457
13458 o = sub->sections;
13459 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13460 continue;
13461
13462 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13463 Also treat note sections as a root, if the section is not part
13464 of a group. We must keep all PREINIT_ARRAY, INIT_ARRAY as
13465 well as FINI_ARRAY sections for ld -r. */
13466 for (o = sub->sections; o != NULL; o = o->next)
13467 if (!o->gc_mark
13468 && (o->flags & SEC_EXCLUDE) == 0
13469 && ((o->flags & SEC_KEEP) != 0
13470 || (bfd_link_relocatable (info)
13471 && ((elf_section_data (o)->this_hdr.sh_type
13472 == SHT_PREINIT_ARRAY)
13473 || (elf_section_data (o)->this_hdr.sh_type
13474 == SHT_INIT_ARRAY)
13475 || (elf_section_data (o)->this_hdr.sh_type
13476 == SHT_FINI_ARRAY)))
13477 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
13478 && elf_next_in_group (o) == NULL )))
13479 {
13480 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13481 return FALSE;
13482 }
13483 }
13484
13485 /* Allow the backend to mark additional target specific sections. */
13486 bed->gc_mark_extra_sections (info, gc_mark_hook);
13487
13488 /* ... and mark SEC_EXCLUDE for those that go. */
13489 return elf_gc_sweep (abfd, info);
13490 }
13491 \f
13492 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
13493
13494 bfd_boolean
13495 bfd_elf_gc_record_vtinherit (bfd *abfd,
13496 asection *sec,
13497 struct elf_link_hash_entry *h,
13498 bfd_vma offset)
13499 {
13500 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
13501 struct elf_link_hash_entry **search, *child;
13502 size_t extsymcount;
13503 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13504
13505 /* The sh_info field of the symtab header tells us where the
13506 external symbols start. We don't care about the local symbols at
13507 this point. */
13508 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
13509 if (!elf_bad_symtab (abfd))
13510 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
13511
13512 sym_hashes = elf_sym_hashes (abfd);
13513 sym_hashes_end = sym_hashes + extsymcount;
13514
13515 /* Hunt down the child symbol, which is in this section at the same
13516 offset as the relocation. */
13517 for (search = sym_hashes; search != sym_hashes_end; ++search)
13518 {
13519 if ((child = *search) != NULL
13520 && (child->root.type == bfd_link_hash_defined
13521 || child->root.type == bfd_link_hash_defweak)
13522 && child->root.u.def.section == sec
13523 && child->root.u.def.value == offset)
13524 goto win;
13525 }
13526
13527 /* xgettext:c-format */
13528 _bfd_error_handler (_("%pB: %pA+%#" PRIx64 ": no symbol found for INHERIT"),
13529 abfd, sec, (uint64_t) offset);
13530 bfd_set_error (bfd_error_invalid_operation);
13531 return FALSE;
13532
13533 win:
13534 if (!child->u2.vtable)
13535 {
13536 child->u2.vtable = ((struct elf_link_virtual_table_entry *)
13537 bfd_zalloc (abfd, sizeof (*child->u2.vtable)));
13538 if (!child->u2.vtable)
13539 return FALSE;
13540 }
13541 if (!h)
13542 {
13543 /* This *should* only be the absolute section. It could potentially
13544 be that someone has defined a non-global vtable though, which
13545 would be bad. It isn't worth paging in the local symbols to be
13546 sure though; that case should simply be handled by the assembler. */
13547
13548 child->u2.vtable->parent = (struct elf_link_hash_entry *) -1;
13549 }
13550 else
13551 child->u2.vtable->parent = h;
13552
13553 return TRUE;
13554 }
13555
13556 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
13557
13558 bfd_boolean
13559 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
13560 asection *sec ATTRIBUTE_UNUSED,
13561 struct elf_link_hash_entry *h,
13562 bfd_vma addend)
13563 {
13564 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13565 unsigned int log_file_align = bed->s->log_file_align;
13566
13567 if (!h->u2.vtable)
13568 {
13569 h->u2.vtable = ((struct elf_link_virtual_table_entry *)
13570 bfd_zalloc (abfd, sizeof (*h->u2.vtable)));
13571 if (!h->u2.vtable)
13572 return FALSE;
13573 }
13574
13575 if (addend >= h->u2.vtable->size)
13576 {
13577 size_t size, bytes, file_align;
13578 bfd_boolean *ptr = h->u2.vtable->used;
13579
13580 /* While the symbol is undefined, we have to be prepared to handle
13581 a zero size. */
13582 file_align = 1 << log_file_align;
13583 if (h->root.type == bfd_link_hash_undefined)
13584 size = addend + file_align;
13585 else
13586 {
13587 size = h->size;
13588 if (addend >= size)
13589 {
13590 /* Oops! We've got a reference past the defined end of
13591 the table. This is probably a bug -- shall we warn? */
13592 size = addend + file_align;
13593 }
13594 }
13595 size = (size + file_align - 1) & -file_align;
13596
13597 /* Allocate one extra entry for use as a "done" flag for the
13598 consolidation pass. */
13599 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
13600
13601 if (ptr)
13602 {
13603 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
13604
13605 if (ptr != NULL)
13606 {
13607 size_t oldbytes;
13608
13609 oldbytes = (((h->u2.vtable->size >> log_file_align) + 1)
13610 * sizeof (bfd_boolean));
13611 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
13612 }
13613 }
13614 else
13615 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
13616
13617 if (ptr == NULL)
13618 return FALSE;
13619
13620 /* And arrange for that done flag to be at index -1. */
13621 h->u2.vtable->used = ptr + 1;
13622 h->u2.vtable->size = size;
13623 }
13624
13625 h->u2.vtable->used[addend >> log_file_align] = TRUE;
13626
13627 return TRUE;
13628 }
13629
13630 /* Map an ELF section header flag to its corresponding string. */
13631 typedef struct
13632 {
13633 char *flag_name;
13634 flagword flag_value;
13635 } elf_flags_to_name_table;
13636
13637 static elf_flags_to_name_table elf_flags_to_names [] =
13638 {
13639 { "SHF_WRITE", SHF_WRITE },
13640 { "SHF_ALLOC", SHF_ALLOC },
13641 { "SHF_EXECINSTR", SHF_EXECINSTR },
13642 { "SHF_MERGE", SHF_MERGE },
13643 { "SHF_STRINGS", SHF_STRINGS },
13644 { "SHF_INFO_LINK", SHF_INFO_LINK},
13645 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
13646 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
13647 { "SHF_GROUP", SHF_GROUP },
13648 { "SHF_TLS", SHF_TLS },
13649 { "SHF_MASKOS", SHF_MASKOS },
13650 { "SHF_EXCLUDE", SHF_EXCLUDE },
13651 };
13652
13653 /* Returns TRUE if the section is to be included, otherwise FALSE. */
13654 bfd_boolean
13655 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
13656 struct flag_info *flaginfo,
13657 asection *section)
13658 {
13659 const bfd_vma sh_flags = elf_section_flags (section);
13660
13661 if (!flaginfo->flags_initialized)
13662 {
13663 bfd *obfd = info->output_bfd;
13664 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13665 struct flag_info_list *tf = flaginfo->flag_list;
13666 int with_hex = 0;
13667 int without_hex = 0;
13668
13669 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
13670 {
13671 unsigned i;
13672 flagword (*lookup) (char *);
13673
13674 lookup = bed->elf_backend_lookup_section_flags_hook;
13675 if (lookup != NULL)
13676 {
13677 flagword hexval = (*lookup) ((char *) tf->name);
13678
13679 if (hexval != 0)
13680 {
13681 if (tf->with == with_flags)
13682 with_hex |= hexval;
13683 else if (tf->with == without_flags)
13684 without_hex |= hexval;
13685 tf->valid = TRUE;
13686 continue;
13687 }
13688 }
13689 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
13690 {
13691 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
13692 {
13693 if (tf->with == with_flags)
13694 with_hex |= elf_flags_to_names[i].flag_value;
13695 else if (tf->with == without_flags)
13696 without_hex |= elf_flags_to_names[i].flag_value;
13697 tf->valid = TRUE;
13698 break;
13699 }
13700 }
13701 if (!tf->valid)
13702 {
13703 info->callbacks->einfo
13704 (_("unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
13705 return FALSE;
13706 }
13707 }
13708 flaginfo->flags_initialized = TRUE;
13709 flaginfo->only_with_flags |= with_hex;
13710 flaginfo->not_with_flags |= without_hex;
13711 }
13712
13713 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
13714 return FALSE;
13715
13716 if ((flaginfo->not_with_flags & sh_flags) != 0)
13717 return FALSE;
13718
13719 return TRUE;
13720 }
13721
13722 struct alloc_got_off_arg {
13723 bfd_vma gotoff;
13724 struct bfd_link_info *info;
13725 };
13726
13727 /* We need a special top-level link routine to convert got reference counts
13728 to real got offsets. */
13729
13730 static bfd_boolean
13731 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
13732 {
13733 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
13734 bfd *obfd = gofarg->info->output_bfd;
13735 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13736
13737 if (h->got.refcount > 0)
13738 {
13739 h->got.offset = gofarg->gotoff;
13740 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
13741 }
13742 else
13743 h->got.offset = (bfd_vma) -1;
13744
13745 return TRUE;
13746 }
13747
13748 /* And an accompanying bit to work out final got entry offsets once
13749 we're done. Should be called from final_link. */
13750
13751 bfd_boolean
13752 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
13753 struct bfd_link_info *info)
13754 {
13755 bfd *i;
13756 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13757 bfd_vma gotoff;
13758 struct alloc_got_off_arg gofarg;
13759
13760 BFD_ASSERT (abfd == info->output_bfd);
13761
13762 if (! is_elf_hash_table (info->hash))
13763 return FALSE;
13764
13765 /* The GOT offset is relative to the .got section, but the GOT header is
13766 put into the .got.plt section, if the backend uses it. */
13767 if (bed->want_got_plt)
13768 gotoff = 0;
13769 else
13770 gotoff = bed->got_header_size;
13771
13772 /* Do the local .got entries first. */
13773 for (i = info->input_bfds; i; i = i->link.next)
13774 {
13775 bfd_signed_vma *local_got;
13776 size_t j, locsymcount;
13777 Elf_Internal_Shdr *symtab_hdr;
13778
13779 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
13780 continue;
13781
13782 local_got = elf_local_got_refcounts (i);
13783 if (!local_got)
13784 continue;
13785
13786 symtab_hdr = &elf_tdata (i)->symtab_hdr;
13787 if (elf_bad_symtab (i))
13788 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13789 else
13790 locsymcount = symtab_hdr->sh_info;
13791
13792 for (j = 0; j < locsymcount; ++j)
13793 {
13794 if (local_got[j] > 0)
13795 {
13796 local_got[j] = gotoff;
13797 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
13798 }
13799 else
13800 local_got[j] = (bfd_vma) -1;
13801 }
13802 }
13803
13804 /* Then the global .got entries. .plt refcounts are handled by
13805 adjust_dynamic_symbol */
13806 gofarg.gotoff = gotoff;
13807 gofarg.info = info;
13808 elf_link_hash_traverse (elf_hash_table (info),
13809 elf_gc_allocate_got_offsets,
13810 &gofarg);
13811 return TRUE;
13812 }
13813
13814 /* Many folk need no more in the way of final link than this, once
13815 got entry reference counting is enabled. */
13816
13817 bfd_boolean
13818 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
13819 {
13820 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
13821 return FALSE;
13822
13823 /* Invoke the regular ELF backend linker to do all the work. */
13824 return bfd_elf_final_link (abfd, info);
13825 }
13826
13827 bfd_boolean
13828 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
13829 {
13830 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
13831
13832 if (rcookie->bad_symtab)
13833 rcookie->rel = rcookie->rels;
13834
13835 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
13836 {
13837 unsigned long r_symndx;
13838
13839 if (! rcookie->bad_symtab)
13840 if (rcookie->rel->r_offset > offset)
13841 return FALSE;
13842 if (rcookie->rel->r_offset != offset)
13843 continue;
13844
13845 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
13846 if (r_symndx == STN_UNDEF)
13847 return TRUE;
13848
13849 if (r_symndx >= rcookie->locsymcount
13850 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13851 {
13852 struct elf_link_hash_entry *h;
13853
13854 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
13855
13856 while (h->root.type == bfd_link_hash_indirect
13857 || h->root.type == bfd_link_hash_warning)
13858 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13859
13860 if ((h->root.type == bfd_link_hash_defined
13861 || h->root.type == bfd_link_hash_defweak)
13862 && (h->root.u.def.section->owner != rcookie->abfd
13863 || h->root.u.def.section->kept_section != NULL
13864 || discarded_section (h->root.u.def.section)))
13865 return TRUE;
13866 }
13867 else
13868 {
13869 /* It's not a relocation against a global symbol,
13870 but it could be a relocation against a local
13871 symbol for a discarded section. */
13872 asection *isec;
13873 Elf_Internal_Sym *isym;
13874
13875 /* Need to: get the symbol; get the section. */
13876 isym = &rcookie->locsyms[r_symndx];
13877 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
13878 if (isec != NULL
13879 && (isec->kept_section != NULL
13880 || discarded_section (isec)))
13881 return TRUE;
13882 }
13883 return FALSE;
13884 }
13885 return FALSE;
13886 }
13887
13888 /* Discard unneeded references to discarded sections.
13889 Returns -1 on error, 1 if any section's size was changed, 0 if
13890 nothing changed. This function assumes that the relocations are in
13891 sorted order, which is true for all known assemblers. */
13892
13893 int
13894 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
13895 {
13896 struct elf_reloc_cookie cookie;
13897 asection *o;
13898 bfd *abfd;
13899 int changed = 0;
13900
13901 if (info->traditional_format
13902 || !is_elf_hash_table (info->hash))
13903 return 0;
13904
13905 o = bfd_get_section_by_name (output_bfd, ".stab");
13906 if (o != NULL)
13907 {
13908 asection *i;
13909
13910 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13911 {
13912 if (i->size == 0
13913 || i->reloc_count == 0
13914 || i->sec_info_type != SEC_INFO_TYPE_STABS)
13915 continue;
13916
13917 abfd = i->owner;
13918 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13919 continue;
13920
13921 if (!init_reloc_cookie_for_section (&cookie, info, i))
13922 return -1;
13923
13924 if (_bfd_discard_section_stabs (abfd, i,
13925 elf_section_data (i)->sec_info,
13926 bfd_elf_reloc_symbol_deleted_p,
13927 &cookie))
13928 changed = 1;
13929
13930 fini_reloc_cookie_for_section (&cookie, i);
13931 }
13932 }
13933
13934 o = NULL;
13935 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
13936 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
13937 if (o != NULL)
13938 {
13939 asection *i;
13940 int eh_changed = 0;
13941 unsigned int eh_alignment;
13942
13943 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13944 {
13945 if (i->size == 0)
13946 continue;
13947
13948 abfd = i->owner;
13949 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13950 continue;
13951
13952 if (!init_reloc_cookie_for_section (&cookie, info, i))
13953 return -1;
13954
13955 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
13956 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
13957 bfd_elf_reloc_symbol_deleted_p,
13958 &cookie))
13959 {
13960 eh_changed = 1;
13961 if (i->size != i->rawsize)
13962 changed = 1;
13963 }
13964
13965 fini_reloc_cookie_for_section (&cookie, i);
13966 }
13967
13968 eh_alignment = 1 << o->alignment_power;
13969 /* Skip over zero terminator, and prevent empty sections from
13970 adding alignment padding at the end. */
13971 for (i = o->map_tail.s; i != NULL; i = i->map_tail.s)
13972 if (i->size == 0)
13973 i->flags |= SEC_EXCLUDE;
13974 else if (i->size > 4)
13975 break;
13976 /* The last non-empty eh_frame section doesn't need padding. */
13977 if (i != NULL)
13978 i = i->map_tail.s;
13979 /* Any prior sections must pad the last FDE out to the output
13980 section alignment. Otherwise we might have zero padding
13981 between sections, which would be seen as a terminator. */
13982 for (; i != NULL; i = i->map_tail.s)
13983 if (i->size == 4)
13984 /* All but the last zero terminator should have been removed. */
13985 BFD_FAIL ();
13986 else
13987 {
13988 bfd_size_type size
13989 = (i->size + eh_alignment - 1) & -eh_alignment;
13990 if (i->size != size)
13991 {
13992 i->size = size;
13993 changed = 1;
13994 eh_changed = 1;
13995 }
13996 }
13997 if (eh_changed)
13998 elf_link_hash_traverse (elf_hash_table (info),
13999 _bfd_elf_adjust_eh_frame_global_symbol, NULL);
14000 }
14001
14002 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
14003 {
14004 const struct elf_backend_data *bed;
14005 asection *s;
14006
14007 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14008 continue;
14009 s = abfd->sections;
14010 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14011 continue;
14012
14013 bed = get_elf_backend_data (abfd);
14014
14015 if (bed->elf_backend_discard_info != NULL)
14016 {
14017 if (!init_reloc_cookie (&cookie, info, abfd))
14018 return -1;
14019
14020 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
14021 changed = 1;
14022
14023 fini_reloc_cookie (&cookie, abfd);
14024 }
14025 }
14026
14027 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
14028 _bfd_elf_end_eh_frame_parsing (info);
14029
14030 if (info->eh_frame_hdr_type
14031 && !bfd_link_relocatable (info)
14032 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
14033 changed = 1;
14034
14035 return changed;
14036 }
14037
14038 bfd_boolean
14039 _bfd_elf_section_already_linked (bfd *abfd,
14040 asection *sec,
14041 struct bfd_link_info *info)
14042 {
14043 flagword flags;
14044 const char *name, *key;
14045 struct bfd_section_already_linked *l;
14046 struct bfd_section_already_linked_hash_entry *already_linked_list;
14047
14048 if (sec->output_section == bfd_abs_section_ptr)
14049 return FALSE;
14050
14051 flags = sec->flags;
14052
14053 /* Return if it isn't a linkonce section. A comdat group section
14054 also has SEC_LINK_ONCE set. */
14055 if ((flags & SEC_LINK_ONCE) == 0)
14056 return FALSE;
14057
14058 /* Don't put group member sections on our list of already linked
14059 sections. They are handled as a group via their group section. */
14060 if (elf_sec_group (sec) != NULL)
14061 return FALSE;
14062
14063 /* For a SHT_GROUP section, use the group signature as the key. */
14064 name = sec->name;
14065 if ((flags & SEC_GROUP) != 0
14066 && elf_next_in_group (sec) != NULL
14067 && elf_group_name (elf_next_in_group (sec)) != NULL)
14068 key = elf_group_name (elf_next_in_group (sec));
14069 else
14070 {
14071 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
14072 if (CONST_STRNEQ (name, ".gnu.linkonce.")
14073 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
14074 key++;
14075 else
14076 /* Must be a user linkonce section that doesn't follow gcc's
14077 naming convention. In this case we won't be matching
14078 single member groups. */
14079 key = name;
14080 }
14081
14082 already_linked_list = bfd_section_already_linked_table_lookup (key);
14083
14084 for (l = already_linked_list->entry; l != NULL; l = l->next)
14085 {
14086 /* We may have 2 different types of sections on the list: group
14087 sections with a signature of <key> (<key> is some string),
14088 and linkonce sections named .gnu.linkonce.<type>.<key>.
14089 Match like sections. LTO plugin sections are an exception.
14090 They are always named .gnu.linkonce.t.<key> and match either
14091 type of section. */
14092 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
14093 && ((flags & SEC_GROUP) != 0
14094 || strcmp (name, l->sec->name) == 0))
14095 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
14096 {
14097 /* The section has already been linked. See if we should
14098 issue a warning. */
14099 if (!_bfd_handle_already_linked (sec, l, info))
14100 return FALSE;
14101
14102 if (flags & SEC_GROUP)
14103 {
14104 asection *first = elf_next_in_group (sec);
14105 asection *s = first;
14106
14107 while (s != NULL)
14108 {
14109 s->output_section = bfd_abs_section_ptr;
14110 /* Record which group discards it. */
14111 s->kept_section = l->sec;
14112 s = elf_next_in_group (s);
14113 /* These lists are circular. */
14114 if (s == first)
14115 break;
14116 }
14117 }
14118
14119 return TRUE;
14120 }
14121 }
14122
14123 /* A single member comdat group section may be discarded by a
14124 linkonce section and vice versa. */
14125 if ((flags & SEC_GROUP) != 0)
14126 {
14127 asection *first = elf_next_in_group (sec);
14128
14129 if (first != NULL && elf_next_in_group (first) == first)
14130 /* Check this single member group against linkonce sections. */
14131 for (l = already_linked_list->entry; l != NULL; l = l->next)
14132 if ((l->sec->flags & SEC_GROUP) == 0
14133 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
14134 {
14135 first->output_section = bfd_abs_section_ptr;
14136 first->kept_section = l->sec;
14137 sec->output_section = bfd_abs_section_ptr;
14138 break;
14139 }
14140 }
14141 else
14142 /* Check this linkonce section against single member groups. */
14143 for (l = already_linked_list->entry; l != NULL; l = l->next)
14144 if (l->sec->flags & SEC_GROUP)
14145 {
14146 asection *first = elf_next_in_group (l->sec);
14147
14148 if (first != NULL
14149 && elf_next_in_group (first) == first
14150 && bfd_elf_match_symbols_in_sections (first, sec, info))
14151 {
14152 sec->output_section = bfd_abs_section_ptr;
14153 sec->kept_section = first;
14154 break;
14155 }
14156 }
14157
14158 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
14159 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
14160 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
14161 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
14162 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
14163 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
14164 `.gnu.linkonce.t.F' section from a different bfd not requiring any
14165 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
14166 The reverse order cannot happen as there is never a bfd with only the
14167 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
14168 matter as here were are looking only for cross-bfd sections. */
14169
14170 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
14171 for (l = already_linked_list->entry; l != NULL; l = l->next)
14172 if ((l->sec->flags & SEC_GROUP) == 0
14173 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
14174 {
14175 if (abfd != l->sec->owner)
14176 sec->output_section = bfd_abs_section_ptr;
14177 break;
14178 }
14179
14180 /* This is the first section with this name. Record it. */
14181 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
14182 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
14183 return sec->output_section == bfd_abs_section_ptr;
14184 }
14185
14186 bfd_boolean
14187 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
14188 {
14189 return sym->st_shndx == SHN_COMMON;
14190 }
14191
14192 unsigned int
14193 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
14194 {
14195 return SHN_COMMON;
14196 }
14197
14198 asection *
14199 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
14200 {
14201 return bfd_com_section_ptr;
14202 }
14203
14204 bfd_vma
14205 _bfd_elf_default_got_elt_size (bfd *abfd,
14206 struct bfd_link_info *info ATTRIBUTE_UNUSED,
14207 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
14208 bfd *ibfd ATTRIBUTE_UNUSED,
14209 unsigned long symndx ATTRIBUTE_UNUSED)
14210 {
14211 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14212 return bed->s->arch_size / 8;
14213 }
14214
14215 /* Routines to support the creation of dynamic relocs. */
14216
14217 /* Returns the name of the dynamic reloc section associated with SEC. */
14218
14219 static const char *
14220 get_dynamic_reloc_section_name (bfd * abfd,
14221 asection * sec,
14222 bfd_boolean is_rela)
14223 {
14224 char *name;
14225 const char *old_name = bfd_get_section_name (NULL, sec);
14226 const char *prefix = is_rela ? ".rela" : ".rel";
14227
14228 if (old_name == NULL)
14229 return NULL;
14230
14231 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
14232 sprintf (name, "%s%s", prefix, old_name);
14233
14234 return name;
14235 }
14236
14237 /* Returns the dynamic reloc section associated with SEC.
14238 If necessary compute the name of the dynamic reloc section based
14239 on SEC's name (looked up in ABFD's string table) and the setting
14240 of IS_RELA. */
14241
14242 asection *
14243 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
14244 asection * sec,
14245 bfd_boolean is_rela)
14246 {
14247 asection * reloc_sec = elf_section_data (sec)->sreloc;
14248
14249 if (reloc_sec == NULL)
14250 {
14251 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14252
14253 if (name != NULL)
14254 {
14255 reloc_sec = bfd_get_linker_section (abfd, name);
14256
14257 if (reloc_sec != NULL)
14258 elf_section_data (sec)->sreloc = reloc_sec;
14259 }
14260 }
14261
14262 return reloc_sec;
14263 }
14264
14265 /* Returns the dynamic reloc section associated with SEC. If the
14266 section does not exist it is created and attached to the DYNOBJ
14267 bfd and stored in the SRELOC field of SEC's elf_section_data
14268 structure.
14269
14270 ALIGNMENT is the alignment for the newly created section and
14271 IS_RELA defines whether the name should be .rela.<SEC's name>
14272 or .rel.<SEC's name>. The section name is looked up in the
14273 string table associated with ABFD. */
14274
14275 asection *
14276 _bfd_elf_make_dynamic_reloc_section (asection *sec,
14277 bfd *dynobj,
14278 unsigned int alignment,
14279 bfd *abfd,
14280 bfd_boolean is_rela)
14281 {
14282 asection * reloc_sec = elf_section_data (sec)->sreloc;
14283
14284 if (reloc_sec == NULL)
14285 {
14286 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14287
14288 if (name == NULL)
14289 return NULL;
14290
14291 reloc_sec = bfd_get_linker_section (dynobj, name);
14292
14293 if (reloc_sec == NULL)
14294 {
14295 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
14296 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
14297 if ((sec->flags & SEC_ALLOC) != 0)
14298 flags |= SEC_ALLOC | SEC_LOAD;
14299
14300 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
14301 if (reloc_sec != NULL)
14302 {
14303 /* _bfd_elf_get_sec_type_attr chooses a section type by
14304 name. Override as it may be wrong, eg. for a user
14305 section named "auto" we'll get ".relauto" which is
14306 seen to be a .rela section. */
14307 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
14308 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
14309 reloc_sec = NULL;
14310 }
14311 }
14312
14313 elf_section_data (sec)->sreloc = reloc_sec;
14314 }
14315
14316 return reloc_sec;
14317 }
14318
14319 /* Copy the ELF symbol type and other attributes for a linker script
14320 assignment from HSRC to HDEST. Generally this should be treated as
14321 if we found a strong non-dynamic definition for HDEST (except that
14322 ld ignores multiple definition errors). */
14323 void
14324 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
14325 struct bfd_link_hash_entry *hdest,
14326 struct bfd_link_hash_entry *hsrc)
14327 {
14328 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
14329 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
14330 Elf_Internal_Sym isym;
14331
14332 ehdest->type = ehsrc->type;
14333 ehdest->target_internal = ehsrc->target_internal;
14334
14335 isym.st_other = ehsrc->other;
14336 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
14337 }
14338
14339 /* Append a RELA relocation REL to section S in BFD. */
14340
14341 void
14342 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14343 {
14344 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14345 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
14346 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
14347 bed->s->swap_reloca_out (abfd, rel, loc);
14348 }
14349
14350 /* Append a REL relocation REL to section S in BFD. */
14351
14352 void
14353 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14354 {
14355 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14356 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
14357 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
14358 bed->s->swap_reloc_out (abfd, rel, loc);
14359 }
14360
14361 /* Define __start, __stop, .startof. or .sizeof. symbol. */
14362
14363 struct bfd_link_hash_entry *
14364 bfd_elf_define_start_stop (struct bfd_link_info *info,
14365 const char *symbol, asection *sec)
14366 {
14367 struct elf_link_hash_entry *h;
14368
14369 h = elf_link_hash_lookup (elf_hash_table (info), symbol,
14370 FALSE, FALSE, TRUE);
14371 if (h != NULL
14372 && (h->root.type == bfd_link_hash_undefined
14373 || h->root.type == bfd_link_hash_undefweak
14374 || ((h->ref_regular || h->def_dynamic) && !h->def_regular)))
14375 {
14376 bfd_boolean was_dynamic = h->ref_dynamic || h->def_dynamic;
14377 h->root.type = bfd_link_hash_defined;
14378 h->root.u.def.section = sec;
14379 h->root.u.def.value = 0;
14380 h->def_regular = 1;
14381 h->def_dynamic = 0;
14382 h->start_stop = 1;
14383 h->u2.start_stop_section = sec;
14384 if (symbol[0] == '.')
14385 {
14386 /* .startof. and .sizeof. symbols are local. */
14387 const struct elf_backend_data *bed;
14388 bed = get_elf_backend_data (info->output_bfd);
14389 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
14390 }
14391 else
14392 {
14393 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
14394 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_PROTECTED;
14395 if (was_dynamic)
14396 bfd_elf_link_record_dynamic_symbol (info, h);
14397 }
14398 return &h->root;
14399 }
14400 return NULL;
14401 }
This page took 0.359686 seconds and 4 git commands to generate.