Change ld "notice" interface for better handling of indirect symbols
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2014 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #define ARCH_SIZE 0
26 #include "elf-bfd.h"
27 #include "safe-ctype.h"
28 #include "libiberty.h"
29 #include "objalloc.h"
30
31 /* This struct is used to pass information to routines called via
32 elf_link_hash_traverse which must return failure. */
33
34 struct elf_info_failed
35 {
36 struct bfd_link_info *info;
37 bfd_boolean failed;
38 };
39
40 /* This structure is used to pass information to
41 _bfd_elf_link_find_version_dependencies. */
42
43 struct elf_find_verdep_info
44 {
45 /* General link information. */
46 struct bfd_link_info *info;
47 /* The number of dependencies. */
48 unsigned int vers;
49 /* Whether we had a failure. */
50 bfd_boolean failed;
51 };
52
53 static bfd_boolean _bfd_elf_fix_symbol_flags
54 (struct elf_link_hash_entry *, struct elf_info_failed *);
55
56 /* Define a symbol in a dynamic linkage section. */
57
58 struct elf_link_hash_entry *
59 _bfd_elf_define_linkage_sym (bfd *abfd,
60 struct bfd_link_info *info,
61 asection *sec,
62 const char *name)
63 {
64 struct elf_link_hash_entry *h;
65 struct bfd_link_hash_entry *bh;
66 const struct elf_backend_data *bed;
67
68 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
69 if (h != NULL)
70 {
71 /* Zap symbol defined in an as-needed lib that wasn't linked.
72 This is a symptom of a larger problem: Absolute symbols
73 defined in shared libraries can't be overridden, because we
74 lose the link to the bfd which is via the symbol section. */
75 h->root.type = bfd_link_hash_new;
76 }
77
78 bh = &h->root;
79 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
80 sec, 0, NULL, FALSE,
81 get_elf_backend_data (abfd)->collect,
82 &bh))
83 return NULL;
84 h = (struct elf_link_hash_entry *) bh;
85 h->def_regular = 1;
86 h->non_elf = 0;
87 h->type = STT_OBJECT;
88 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
89 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
90
91 bed = get_elf_backend_data (abfd);
92 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
93 return h;
94 }
95
96 bfd_boolean
97 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
98 {
99 flagword flags;
100 asection *s;
101 struct elf_link_hash_entry *h;
102 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
103 struct elf_link_hash_table *htab = elf_hash_table (info);
104
105 /* This function may be called more than once. */
106 s = bfd_get_linker_section (abfd, ".got");
107 if (s != NULL)
108 return TRUE;
109
110 flags = bed->dynamic_sec_flags;
111
112 s = bfd_make_section_anyway_with_flags (abfd,
113 (bed->rela_plts_and_copies_p
114 ? ".rela.got" : ".rel.got"),
115 (bed->dynamic_sec_flags
116 | SEC_READONLY));
117 if (s == NULL
118 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
119 return FALSE;
120 htab->srelgot = s;
121
122 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
123 if (s == NULL
124 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
125 return FALSE;
126 htab->sgot = s;
127
128 if (bed->want_got_plt)
129 {
130 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
131 if (s == NULL
132 || !bfd_set_section_alignment (abfd, s,
133 bed->s->log_file_align))
134 return FALSE;
135 htab->sgotplt = s;
136 }
137
138 /* The first bit of the global offset table is the header. */
139 s->size += bed->got_header_size;
140
141 if (bed->want_got_sym)
142 {
143 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
144 (or .got.plt) section. We don't do this in the linker script
145 because we don't want to define the symbol if we are not creating
146 a global offset table. */
147 h = _bfd_elf_define_linkage_sym (abfd, info, s,
148 "_GLOBAL_OFFSET_TABLE_");
149 elf_hash_table (info)->hgot = h;
150 if (h == NULL)
151 return FALSE;
152 }
153
154 return TRUE;
155 }
156 \f
157 /* Create a strtab to hold the dynamic symbol names. */
158 static bfd_boolean
159 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
160 {
161 struct elf_link_hash_table *hash_table;
162
163 hash_table = elf_hash_table (info);
164 if (hash_table->dynobj == NULL)
165 hash_table->dynobj = abfd;
166
167 if (hash_table->dynstr == NULL)
168 {
169 hash_table->dynstr = _bfd_elf_strtab_init ();
170 if (hash_table->dynstr == NULL)
171 return FALSE;
172 }
173 return TRUE;
174 }
175
176 /* Create some sections which will be filled in with dynamic linking
177 information. ABFD is an input file which requires dynamic sections
178 to be created. The dynamic sections take up virtual memory space
179 when the final executable is run, so we need to create them before
180 addresses are assigned to the output sections. We work out the
181 actual contents and size of these sections later. */
182
183 bfd_boolean
184 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
185 {
186 flagword flags;
187 asection *s;
188 const struct elf_backend_data *bed;
189 struct elf_link_hash_entry *h;
190
191 if (! is_elf_hash_table (info->hash))
192 return FALSE;
193
194 if (elf_hash_table (info)->dynamic_sections_created)
195 return TRUE;
196
197 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
198 return FALSE;
199
200 abfd = elf_hash_table (info)->dynobj;
201 bed = get_elf_backend_data (abfd);
202
203 flags = bed->dynamic_sec_flags;
204
205 /* A dynamically linked executable has a .interp section, but a
206 shared library does not. */
207 if (info->executable)
208 {
209 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
210 flags | SEC_READONLY);
211 if (s == NULL)
212 return FALSE;
213 }
214
215 /* Create sections to hold version informations. These are removed
216 if they are not needed. */
217 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
218 flags | SEC_READONLY);
219 if (s == NULL
220 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
221 return FALSE;
222
223 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
224 flags | SEC_READONLY);
225 if (s == NULL
226 || ! bfd_set_section_alignment (abfd, s, 1))
227 return FALSE;
228
229 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
230 flags | SEC_READONLY);
231 if (s == NULL
232 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
233 return FALSE;
234
235 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
236 flags | SEC_READONLY);
237 if (s == NULL
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
239 return FALSE;
240
241 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
242 flags | SEC_READONLY);
243 if (s == NULL)
244 return FALSE;
245
246 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
247 if (s == NULL
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
249 return FALSE;
250
251 /* The special symbol _DYNAMIC is always set to the start of the
252 .dynamic section. We could set _DYNAMIC in a linker script, but we
253 only want to define it if we are, in fact, creating a .dynamic
254 section. We don't want to define it if there is no .dynamic
255 section, since on some ELF platforms the start up code examines it
256 to decide how to initialize the process. */
257 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
258 elf_hash_table (info)->hdynamic = h;
259 if (h == NULL)
260 return FALSE;
261
262 if (info->emit_hash)
263 {
264 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
265 flags | SEC_READONLY);
266 if (s == NULL
267 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
268 return FALSE;
269 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
270 }
271
272 if (info->emit_gnu_hash)
273 {
274 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
275 flags | SEC_READONLY);
276 if (s == NULL
277 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
278 return FALSE;
279 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
280 4 32-bit words followed by variable count of 64-bit words, then
281 variable count of 32-bit words. */
282 if (bed->s->arch_size == 64)
283 elf_section_data (s)->this_hdr.sh_entsize = 0;
284 else
285 elf_section_data (s)->this_hdr.sh_entsize = 4;
286 }
287
288 /* Let the backend create the rest of the sections. This lets the
289 backend set the right flags. The backend will normally create
290 the .got and .plt sections. */
291 if (bed->elf_backend_create_dynamic_sections == NULL
292 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
293 return FALSE;
294
295 elf_hash_table (info)->dynamic_sections_created = TRUE;
296
297 return TRUE;
298 }
299
300 /* Create dynamic sections when linking against a dynamic object. */
301
302 bfd_boolean
303 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
304 {
305 flagword flags, pltflags;
306 struct elf_link_hash_entry *h;
307 asection *s;
308 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
309 struct elf_link_hash_table *htab = elf_hash_table (info);
310
311 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
312 .rel[a].bss sections. */
313 flags = bed->dynamic_sec_flags;
314
315 pltflags = flags;
316 if (bed->plt_not_loaded)
317 /* We do not clear SEC_ALLOC here because we still want the OS to
318 allocate space for the section; it's just that there's nothing
319 to read in from the object file. */
320 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
321 else
322 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
323 if (bed->plt_readonly)
324 pltflags |= SEC_READONLY;
325
326 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
327 if (s == NULL
328 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
329 return FALSE;
330 htab->splt = s;
331
332 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
333 .plt section. */
334 if (bed->want_plt_sym)
335 {
336 h = _bfd_elf_define_linkage_sym (abfd, info, s,
337 "_PROCEDURE_LINKAGE_TABLE_");
338 elf_hash_table (info)->hplt = h;
339 if (h == NULL)
340 return FALSE;
341 }
342
343 s = bfd_make_section_anyway_with_flags (abfd,
344 (bed->rela_plts_and_copies_p
345 ? ".rela.plt" : ".rel.plt"),
346 flags | SEC_READONLY);
347 if (s == NULL
348 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
349 return FALSE;
350 htab->srelplt = s;
351
352 if (! _bfd_elf_create_got_section (abfd, info))
353 return FALSE;
354
355 if (bed->want_dynbss)
356 {
357 /* The .dynbss section is a place to put symbols which are defined
358 by dynamic objects, are referenced by regular objects, and are
359 not functions. We must allocate space for them in the process
360 image and use a R_*_COPY reloc to tell the dynamic linker to
361 initialize them at run time. The linker script puts the .dynbss
362 section into the .bss section of the final image. */
363 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
364 (SEC_ALLOC | SEC_LINKER_CREATED));
365 if (s == NULL)
366 return FALSE;
367
368 /* The .rel[a].bss section holds copy relocs. This section is not
369 normally needed. We need to create it here, though, so that the
370 linker will map it to an output section. We can't just create it
371 only if we need it, because we will not know whether we need it
372 until we have seen all the input files, and the first time the
373 main linker code calls BFD after examining all the input files
374 (size_dynamic_sections) the input sections have already been
375 mapped to the output sections. If the section turns out not to
376 be needed, we can discard it later. We will never need this
377 section when generating a shared object, since they do not use
378 copy relocs. */
379 if (! info->shared)
380 {
381 s = bfd_make_section_anyway_with_flags (abfd,
382 (bed->rela_plts_and_copies_p
383 ? ".rela.bss" : ".rel.bss"),
384 flags | SEC_READONLY);
385 if (s == NULL
386 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
387 return FALSE;
388 }
389 }
390
391 return TRUE;
392 }
393 \f
394 /* Record a new dynamic symbol. We record the dynamic symbols as we
395 read the input files, since we need to have a list of all of them
396 before we can determine the final sizes of the output sections.
397 Note that we may actually call this function even though we are not
398 going to output any dynamic symbols; in some cases we know that a
399 symbol should be in the dynamic symbol table, but only if there is
400 one. */
401
402 bfd_boolean
403 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
404 struct elf_link_hash_entry *h)
405 {
406 if (h->dynindx == -1)
407 {
408 struct elf_strtab_hash *dynstr;
409 char *p;
410 const char *name;
411 bfd_size_type indx;
412
413 /* XXX: The ABI draft says the linker must turn hidden and
414 internal symbols into STB_LOCAL symbols when producing the
415 DSO. However, if ld.so honors st_other in the dynamic table,
416 this would not be necessary. */
417 switch (ELF_ST_VISIBILITY (h->other))
418 {
419 case STV_INTERNAL:
420 case STV_HIDDEN:
421 if (h->root.type != bfd_link_hash_undefined
422 && h->root.type != bfd_link_hash_undefweak)
423 {
424 h->forced_local = 1;
425 if (!elf_hash_table (info)->is_relocatable_executable)
426 return TRUE;
427 }
428
429 default:
430 break;
431 }
432
433 h->dynindx = elf_hash_table (info)->dynsymcount;
434 ++elf_hash_table (info)->dynsymcount;
435
436 dynstr = elf_hash_table (info)->dynstr;
437 if (dynstr == NULL)
438 {
439 /* Create a strtab to hold the dynamic symbol names. */
440 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
441 if (dynstr == NULL)
442 return FALSE;
443 }
444
445 /* We don't put any version information in the dynamic string
446 table. */
447 name = h->root.root.string;
448 p = strchr (name, ELF_VER_CHR);
449 if (p != NULL)
450 /* We know that the p points into writable memory. In fact,
451 there are only a few symbols that have read-only names, being
452 those like _GLOBAL_OFFSET_TABLE_ that are created specially
453 by the backends. Most symbols will have names pointing into
454 an ELF string table read from a file, or to objalloc memory. */
455 *p = 0;
456
457 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
458
459 if (p != NULL)
460 *p = ELF_VER_CHR;
461
462 if (indx == (bfd_size_type) -1)
463 return FALSE;
464 h->dynstr_index = indx;
465 }
466
467 return TRUE;
468 }
469 \f
470 /* Mark a symbol dynamic. */
471
472 static void
473 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
474 struct elf_link_hash_entry *h,
475 Elf_Internal_Sym *sym)
476 {
477 struct bfd_elf_dynamic_list *d = info->dynamic_list;
478
479 /* It may be called more than once on the same H. */
480 if(h->dynamic || info->relocatable)
481 return;
482
483 if ((info->dynamic_data
484 && (h->type == STT_OBJECT
485 || (sym != NULL
486 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
487 || (d != NULL
488 && h->root.type == bfd_link_hash_new
489 && (*d->match) (&d->head, NULL, h->root.root.string)))
490 h->dynamic = 1;
491 }
492
493 /* Record an assignment to a symbol made by a linker script. We need
494 this in case some dynamic object refers to this symbol. */
495
496 bfd_boolean
497 bfd_elf_record_link_assignment (bfd *output_bfd,
498 struct bfd_link_info *info,
499 const char *name,
500 bfd_boolean provide,
501 bfd_boolean hidden)
502 {
503 struct elf_link_hash_entry *h, *hv;
504 struct elf_link_hash_table *htab;
505 const struct elf_backend_data *bed;
506
507 if (!is_elf_hash_table (info->hash))
508 return TRUE;
509
510 htab = elf_hash_table (info);
511 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
512 if (h == NULL)
513 return provide;
514
515 switch (h->root.type)
516 {
517 case bfd_link_hash_defined:
518 case bfd_link_hash_defweak:
519 case bfd_link_hash_common:
520 break;
521 case bfd_link_hash_undefweak:
522 case bfd_link_hash_undefined:
523 /* Since we're defining the symbol, don't let it seem to have not
524 been defined. record_dynamic_symbol and size_dynamic_sections
525 may depend on this. */
526 h->root.type = bfd_link_hash_new;
527 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
528 bfd_link_repair_undef_list (&htab->root);
529 break;
530 case bfd_link_hash_new:
531 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
532 h->non_elf = 0;
533 break;
534 case bfd_link_hash_indirect:
535 /* We had a versioned symbol in a dynamic library. We make the
536 the versioned symbol point to this one. */
537 bed = get_elf_backend_data (output_bfd);
538 hv = h;
539 while (hv->root.type == bfd_link_hash_indirect
540 || hv->root.type == bfd_link_hash_warning)
541 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
542 /* We don't need to update h->root.u since linker will set them
543 later. */
544 h->root.type = bfd_link_hash_undefined;
545 hv->root.type = bfd_link_hash_indirect;
546 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
547 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
548 break;
549 case bfd_link_hash_warning:
550 abort ();
551 break;
552 }
553
554 /* If this symbol is being provided by the linker script, and it is
555 currently defined by a dynamic object, but not by a regular
556 object, then mark it as undefined so that the generic linker will
557 force the correct value. */
558 if (provide
559 && h->def_dynamic
560 && !h->def_regular)
561 h->root.type = bfd_link_hash_undefined;
562
563 /* If this symbol is not being provided by the linker script, and it is
564 currently defined by a dynamic object, but not by a regular object,
565 then clear out any version information because the symbol will not be
566 associated with the dynamic object any more. */
567 if (!provide
568 && h->def_dynamic
569 && !h->def_regular)
570 h->verinfo.verdef = NULL;
571
572 h->def_regular = 1;
573
574 if (hidden)
575 {
576 bed = get_elf_backend_data (output_bfd);
577 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
578 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
579 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
580 }
581
582 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
583 and executables. */
584 if (!info->relocatable
585 && h->dynindx != -1
586 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
587 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
588 h->forced_local = 1;
589
590 if ((h->def_dynamic
591 || h->ref_dynamic
592 || info->shared
593 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
594 && h->dynindx == -1)
595 {
596 if (! bfd_elf_link_record_dynamic_symbol (info, h))
597 return FALSE;
598
599 /* If this is a weak defined symbol, and we know a corresponding
600 real symbol from the same dynamic object, make sure the real
601 symbol is also made into a dynamic symbol. */
602 if (h->u.weakdef != NULL
603 && h->u.weakdef->dynindx == -1)
604 {
605 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
606 return FALSE;
607 }
608 }
609
610 return TRUE;
611 }
612
613 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
614 success, and 2 on a failure caused by attempting to record a symbol
615 in a discarded section, eg. a discarded link-once section symbol. */
616
617 int
618 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
619 bfd *input_bfd,
620 long input_indx)
621 {
622 bfd_size_type amt;
623 struct elf_link_local_dynamic_entry *entry;
624 struct elf_link_hash_table *eht;
625 struct elf_strtab_hash *dynstr;
626 unsigned long dynstr_index;
627 char *name;
628 Elf_External_Sym_Shndx eshndx;
629 char esym[sizeof (Elf64_External_Sym)];
630
631 if (! is_elf_hash_table (info->hash))
632 return 0;
633
634 /* See if the entry exists already. */
635 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
636 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
637 return 1;
638
639 amt = sizeof (*entry);
640 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
641 if (entry == NULL)
642 return 0;
643
644 /* Go find the symbol, so that we can find it's name. */
645 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
646 1, input_indx, &entry->isym, esym, &eshndx))
647 {
648 bfd_release (input_bfd, entry);
649 return 0;
650 }
651
652 if (entry->isym.st_shndx != SHN_UNDEF
653 && entry->isym.st_shndx < SHN_LORESERVE)
654 {
655 asection *s;
656
657 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
658 if (s == NULL || bfd_is_abs_section (s->output_section))
659 {
660 /* We can still bfd_release here as nothing has done another
661 bfd_alloc. We can't do this later in this function. */
662 bfd_release (input_bfd, entry);
663 return 2;
664 }
665 }
666
667 name = (bfd_elf_string_from_elf_section
668 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
669 entry->isym.st_name));
670
671 dynstr = elf_hash_table (info)->dynstr;
672 if (dynstr == NULL)
673 {
674 /* Create a strtab to hold the dynamic symbol names. */
675 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
676 if (dynstr == NULL)
677 return 0;
678 }
679
680 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
681 if (dynstr_index == (unsigned long) -1)
682 return 0;
683 entry->isym.st_name = dynstr_index;
684
685 eht = elf_hash_table (info);
686
687 entry->next = eht->dynlocal;
688 eht->dynlocal = entry;
689 entry->input_bfd = input_bfd;
690 entry->input_indx = input_indx;
691 eht->dynsymcount++;
692
693 /* Whatever binding the symbol had before, it's now local. */
694 entry->isym.st_info
695 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
696
697 /* The dynindx will be set at the end of size_dynamic_sections. */
698
699 return 1;
700 }
701
702 /* Return the dynindex of a local dynamic symbol. */
703
704 long
705 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
706 bfd *input_bfd,
707 long input_indx)
708 {
709 struct elf_link_local_dynamic_entry *e;
710
711 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
712 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
713 return e->dynindx;
714 return -1;
715 }
716
717 /* This function is used to renumber the dynamic symbols, if some of
718 them are removed because they are marked as local. This is called
719 via elf_link_hash_traverse. */
720
721 static bfd_boolean
722 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
723 void *data)
724 {
725 size_t *count = (size_t *) data;
726
727 if (h->forced_local)
728 return TRUE;
729
730 if (h->dynindx != -1)
731 h->dynindx = ++(*count);
732
733 return TRUE;
734 }
735
736
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
739
740 static bfd_boolean
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
742 void *data)
743 {
744 size_t *count = (size_t *) data;
745
746 if (!h->forced_local)
747 return TRUE;
748
749 if (h->dynindx != -1)
750 h->dynindx = ++(*count);
751
752 return TRUE;
753 }
754
755 /* Return true if the dynamic symbol for a given section should be
756 omitted when creating a shared library. */
757 bfd_boolean
758 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
759 struct bfd_link_info *info,
760 asection *p)
761 {
762 struct elf_link_hash_table *htab;
763
764 switch (elf_section_data (p)->this_hdr.sh_type)
765 {
766 case SHT_PROGBITS:
767 case SHT_NOBITS:
768 /* If sh_type is yet undecided, assume it could be
769 SHT_PROGBITS/SHT_NOBITS. */
770 case SHT_NULL:
771 htab = elf_hash_table (info);
772 if (p == htab->tls_sec)
773 return FALSE;
774
775 if (htab->text_index_section != NULL)
776 return p != htab->text_index_section && p != htab->data_index_section;
777
778 if (strcmp (p->name, ".got") == 0
779 || strcmp (p->name, ".got.plt") == 0
780 || strcmp (p->name, ".plt") == 0)
781 {
782 asection *ip;
783
784 if (htab->dynobj != NULL
785 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
786 && ip->output_section == p)
787 return TRUE;
788 }
789 return FALSE;
790
791 /* There shouldn't be section relative relocations
792 against any other section. */
793 default:
794 return TRUE;
795 }
796 }
797
798 /* Assign dynsym indices. In a shared library we generate a section
799 symbol for each output section, which come first. Next come symbols
800 which have been forced to local binding. Then all of the back-end
801 allocated local dynamic syms, followed by the rest of the global
802 symbols. */
803
804 static unsigned long
805 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
806 struct bfd_link_info *info,
807 unsigned long *section_sym_count)
808 {
809 unsigned long dynsymcount = 0;
810
811 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
812 {
813 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
814 asection *p;
815 for (p = output_bfd->sections; p ; p = p->next)
816 if ((p->flags & SEC_EXCLUDE) == 0
817 && (p->flags & SEC_ALLOC) != 0
818 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
819 elf_section_data (p)->dynindx = ++dynsymcount;
820 else
821 elf_section_data (p)->dynindx = 0;
822 }
823 *section_sym_count = dynsymcount;
824
825 elf_link_hash_traverse (elf_hash_table (info),
826 elf_link_renumber_local_hash_table_dynsyms,
827 &dynsymcount);
828
829 if (elf_hash_table (info)->dynlocal)
830 {
831 struct elf_link_local_dynamic_entry *p;
832 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
833 p->dynindx = ++dynsymcount;
834 }
835
836 elf_link_hash_traverse (elf_hash_table (info),
837 elf_link_renumber_hash_table_dynsyms,
838 &dynsymcount);
839
840 /* There is an unused NULL entry at the head of the table which
841 we must account for in our count. Unless there weren't any
842 symbols, which means we'll have no table at all. */
843 if (dynsymcount != 0)
844 ++dynsymcount;
845
846 elf_hash_table (info)->dynsymcount = dynsymcount;
847 return dynsymcount;
848 }
849
850 /* Merge st_other field. */
851
852 static void
853 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
854 const Elf_Internal_Sym *isym,
855 bfd_boolean definition, bfd_boolean dynamic)
856 {
857 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
858
859 /* If st_other has a processor-specific meaning, specific
860 code might be needed here. */
861 if (bed->elf_backend_merge_symbol_attribute)
862 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
863 dynamic);
864
865 if (!dynamic)
866 {
867 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
868 unsigned hvis = ELF_ST_VISIBILITY (h->other);
869
870 /* Keep the most constraining visibility. Leave the remainder
871 of the st_other field to elf_backend_merge_symbol_attribute. */
872 if (symvis - 1 < hvis - 1)
873 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
874 }
875 }
876
877 /* This function is called when we want to merge a new symbol with an
878 existing symbol. It handles the various cases which arise when we
879 find a definition in a dynamic object, or when there is already a
880 definition in a dynamic object. The new symbol is described by
881 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
882 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
883 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
884 of an old common symbol. We set OVERRIDE if the old symbol is
885 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
886 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
887 to change. By OK to change, we mean that we shouldn't warn if the
888 type or size does change. */
889
890 static bfd_boolean
891 _bfd_elf_merge_symbol (bfd *abfd,
892 struct bfd_link_info *info,
893 const char *name,
894 Elf_Internal_Sym *sym,
895 asection **psec,
896 bfd_vma *pvalue,
897 struct elf_link_hash_entry **sym_hash,
898 bfd **poldbfd,
899 bfd_boolean *pold_weak,
900 unsigned int *pold_alignment,
901 bfd_boolean *skip,
902 bfd_boolean *override,
903 bfd_boolean *type_change_ok,
904 bfd_boolean *size_change_ok)
905 {
906 asection *sec, *oldsec;
907 struct elf_link_hash_entry *h;
908 struct elf_link_hash_entry *hi;
909 struct elf_link_hash_entry *flip;
910 int bind;
911 bfd *oldbfd;
912 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
913 bfd_boolean newweak, oldweak, newfunc, oldfunc;
914 const struct elf_backend_data *bed;
915
916 *skip = FALSE;
917 *override = FALSE;
918
919 sec = *psec;
920 bind = ELF_ST_BIND (sym->st_info);
921
922 if (! bfd_is_und_section (sec))
923 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
924 else
925 h = ((struct elf_link_hash_entry *)
926 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
927 if (h == NULL)
928 return FALSE;
929 *sym_hash = h;
930
931 bed = get_elf_backend_data (abfd);
932
933 /* For merging, we only care about real symbols. But we need to make
934 sure that indirect symbol dynamic flags are updated. */
935 hi = h;
936 while (h->root.type == bfd_link_hash_indirect
937 || h->root.type == bfd_link_hash_warning)
938 h = (struct elf_link_hash_entry *) h->root.u.i.link;
939
940 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
941 existing symbol. */
942
943 oldbfd = NULL;
944 oldsec = NULL;
945 switch (h->root.type)
946 {
947 default:
948 break;
949
950 case bfd_link_hash_undefined:
951 case bfd_link_hash_undefweak:
952 oldbfd = h->root.u.undef.abfd;
953 break;
954
955 case bfd_link_hash_defined:
956 case bfd_link_hash_defweak:
957 oldbfd = h->root.u.def.section->owner;
958 oldsec = h->root.u.def.section;
959 break;
960
961 case bfd_link_hash_common:
962 oldbfd = h->root.u.c.p->section->owner;
963 oldsec = h->root.u.c.p->section;
964 if (pold_alignment)
965 *pold_alignment = h->root.u.c.p->alignment_power;
966 break;
967 }
968 if (poldbfd && *poldbfd == NULL)
969 *poldbfd = oldbfd;
970
971 /* Differentiate strong and weak symbols. */
972 newweak = bind == STB_WEAK;
973 oldweak = (h->root.type == bfd_link_hash_defweak
974 || h->root.type == bfd_link_hash_undefweak);
975 if (pold_weak)
976 *pold_weak = oldweak;
977
978 /* This code is for coping with dynamic objects, and is only useful
979 if we are doing an ELF link. */
980 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
981 return TRUE;
982
983 /* We have to check it for every instance since the first few may be
984 references and not all compilers emit symbol type for undefined
985 symbols. */
986 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
987
988 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
989 respectively, is from a dynamic object. */
990
991 newdyn = (abfd->flags & DYNAMIC) != 0;
992
993 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
994 syms and defined syms in dynamic libraries respectively.
995 ref_dynamic on the other hand can be set for a symbol defined in
996 a dynamic library, and def_dynamic may not be set; When the
997 definition in a dynamic lib is overridden by a definition in the
998 executable use of the symbol in the dynamic lib becomes a
999 reference to the executable symbol. */
1000 if (newdyn)
1001 {
1002 if (bfd_is_und_section (sec))
1003 {
1004 if (bind != STB_WEAK)
1005 {
1006 h->ref_dynamic_nonweak = 1;
1007 hi->ref_dynamic_nonweak = 1;
1008 }
1009 }
1010 else
1011 {
1012 h->dynamic_def = 1;
1013 hi->dynamic_def = 1;
1014 }
1015 }
1016
1017 /* If we just created the symbol, mark it as being an ELF symbol.
1018 Other than that, there is nothing to do--there is no merge issue
1019 with a newly defined symbol--so we just return. */
1020
1021 if (h->root.type == bfd_link_hash_new)
1022 {
1023 h->non_elf = 0;
1024 return TRUE;
1025 }
1026
1027 /* In cases involving weak versioned symbols, we may wind up trying
1028 to merge a symbol with itself. Catch that here, to avoid the
1029 confusion that results if we try to override a symbol with
1030 itself. The additional tests catch cases like
1031 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1032 dynamic object, which we do want to handle here. */
1033 if (abfd == oldbfd
1034 && (newweak || oldweak)
1035 && ((abfd->flags & DYNAMIC) == 0
1036 || !h->def_regular))
1037 return TRUE;
1038
1039 olddyn = FALSE;
1040 if (oldbfd != NULL)
1041 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1042 else if (oldsec != NULL)
1043 {
1044 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1045 indices used by MIPS ELF. */
1046 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1047 }
1048
1049 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1050 respectively, appear to be a definition rather than reference. */
1051
1052 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1053
1054 olddef = (h->root.type != bfd_link_hash_undefined
1055 && h->root.type != bfd_link_hash_undefweak
1056 && h->root.type != bfd_link_hash_common);
1057
1058 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1059 respectively, appear to be a function. */
1060
1061 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1062 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1063
1064 oldfunc = (h->type != STT_NOTYPE
1065 && bed->is_function_type (h->type));
1066
1067 /* When we try to create a default indirect symbol from the dynamic
1068 definition with the default version, we skip it if its type and
1069 the type of existing regular definition mismatch. */
1070 if (pold_alignment == NULL
1071 && newdyn
1072 && newdef
1073 && !olddyn
1074 && (((olddef || h->root.type == bfd_link_hash_common)
1075 && ELF_ST_TYPE (sym->st_info) != h->type
1076 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1077 && h->type != STT_NOTYPE
1078 && !(newfunc && oldfunc))
1079 || (olddef
1080 && ((h->type == STT_GNU_IFUNC)
1081 != (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))))
1082 {
1083 *skip = TRUE;
1084 return TRUE;
1085 }
1086
1087 /* Check TLS symbols. We don't check undefined symbols introduced
1088 by "ld -u" which have no type (and oldbfd NULL), and we don't
1089 check symbols from plugins because they also have no type. */
1090 if (oldbfd != NULL
1091 && (oldbfd->flags & BFD_PLUGIN) == 0
1092 && (abfd->flags & BFD_PLUGIN) == 0
1093 && ELF_ST_TYPE (sym->st_info) != h->type
1094 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1095 {
1096 bfd *ntbfd, *tbfd;
1097 bfd_boolean ntdef, tdef;
1098 asection *ntsec, *tsec;
1099
1100 if (h->type == STT_TLS)
1101 {
1102 ntbfd = abfd;
1103 ntsec = sec;
1104 ntdef = newdef;
1105 tbfd = oldbfd;
1106 tsec = oldsec;
1107 tdef = olddef;
1108 }
1109 else
1110 {
1111 ntbfd = oldbfd;
1112 ntsec = oldsec;
1113 ntdef = olddef;
1114 tbfd = abfd;
1115 tsec = sec;
1116 tdef = newdef;
1117 }
1118
1119 if (tdef && ntdef)
1120 (*_bfd_error_handler)
1121 (_("%s: TLS definition in %B section %A "
1122 "mismatches non-TLS definition in %B section %A"),
1123 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1124 else if (!tdef && !ntdef)
1125 (*_bfd_error_handler)
1126 (_("%s: TLS reference in %B "
1127 "mismatches non-TLS reference in %B"),
1128 tbfd, ntbfd, h->root.root.string);
1129 else if (tdef)
1130 (*_bfd_error_handler)
1131 (_("%s: TLS definition in %B section %A "
1132 "mismatches non-TLS reference in %B"),
1133 tbfd, tsec, ntbfd, h->root.root.string);
1134 else
1135 (*_bfd_error_handler)
1136 (_("%s: TLS reference in %B "
1137 "mismatches non-TLS definition in %B section %A"),
1138 tbfd, ntbfd, ntsec, h->root.root.string);
1139
1140 bfd_set_error (bfd_error_bad_value);
1141 return FALSE;
1142 }
1143
1144 /* If the old symbol has non-default visibility, we ignore the new
1145 definition from a dynamic object. */
1146 if (newdyn
1147 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1148 && !bfd_is_und_section (sec))
1149 {
1150 *skip = TRUE;
1151 /* Make sure this symbol is dynamic. */
1152 h->ref_dynamic = 1;
1153 hi->ref_dynamic = 1;
1154 /* A protected symbol has external availability. Make sure it is
1155 recorded as dynamic.
1156
1157 FIXME: Should we check type and size for protected symbol? */
1158 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1159 return bfd_elf_link_record_dynamic_symbol (info, h);
1160 else
1161 return TRUE;
1162 }
1163 else if (!newdyn
1164 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1165 && h->def_dynamic)
1166 {
1167 /* If the new symbol with non-default visibility comes from a
1168 relocatable file and the old definition comes from a dynamic
1169 object, we remove the old definition. */
1170 if (hi->root.type == bfd_link_hash_indirect)
1171 {
1172 /* Handle the case where the old dynamic definition is
1173 default versioned. We need to copy the symbol info from
1174 the symbol with default version to the normal one if it
1175 was referenced before. */
1176 if (h->ref_regular)
1177 {
1178 hi->root.type = h->root.type;
1179 h->root.type = bfd_link_hash_indirect;
1180 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1181
1182 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1183 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1184 {
1185 /* If the new symbol is hidden or internal, completely undo
1186 any dynamic link state. */
1187 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1188 h->forced_local = 0;
1189 h->ref_dynamic = 0;
1190 }
1191 else
1192 h->ref_dynamic = 1;
1193
1194 h->def_dynamic = 0;
1195 /* FIXME: Should we check type and size for protected symbol? */
1196 h->size = 0;
1197 h->type = 0;
1198
1199 h = hi;
1200 }
1201 else
1202 h = hi;
1203 }
1204
1205 /* If the old symbol was undefined before, then it will still be
1206 on the undefs list. If the new symbol is undefined or
1207 common, we can't make it bfd_link_hash_new here, because new
1208 undefined or common symbols will be added to the undefs list
1209 by _bfd_generic_link_add_one_symbol. Symbols may not be
1210 added twice to the undefs list. Also, if the new symbol is
1211 undefweak then we don't want to lose the strong undef. */
1212 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1213 {
1214 h->root.type = bfd_link_hash_undefined;
1215 h->root.u.undef.abfd = abfd;
1216 }
1217 else
1218 {
1219 h->root.type = bfd_link_hash_new;
1220 h->root.u.undef.abfd = NULL;
1221 }
1222
1223 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1224 {
1225 /* If the new symbol is hidden or internal, completely undo
1226 any dynamic link state. */
1227 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1228 h->forced_local = 0;
1229 h->ref_dynamic = 0;
1230 }
1231 else
1232 h->ref_dynamic = 1;
1233 h->def_dynamic = 0;
1234 /* FIXME: Should we check type and size for protected symbol? */
1235 h->size = 0;
1236 h->type = 0;
1237 return TRUE;
1238 }
1239
1240 /* If a new weak symbol definition comes from a regular file and the
1241 old symbol comes from a dynamic library, we treat the new one as
1242 strong. Similarly, an old weak symbol definition from a regular
1243 file is treated as strong when the new symbol comes from a dynamic
1244 library. Further, an old weak symbol from a dynamic library is
1245 treated as strong if the new symbol is from a dynamic library.
1246 This reflects the way glibc's ld.so works.
1247
1248 Do this before setting *type_change_ok or *size_change_ok so that
1249 we warn properly when dynamic library symbols are overridden. */
1250
1251 if (newdef && !newdyn && olddyn)
1252 newweak = FALSE;
1253 if (olddef && newdyn)
1254 oldweak = FALSE;
1255
1256 /* Allow changes between different types of function symbol. */
1257 if (newfunc && oldfunc)
1258 *type_change_ok = TRUE;
1259
1260 /* It's OK to change the type if either the existing symbol or the
1261 new symbol is weak. A type change is also OK if the old symbol
1262 is undefined and the new symbol is defined. */
1263
1264 if (oldweak
1265 || newweak
1266 || (newdef
1267 && h->root.type == bfd_link_hash_undefined))
1268 *type_change_ok = TRUE;
1269
1270 /* It's OK to change the size if either the existing symbol or the
1271 new symbol is weak, or if the old symbol is undefined. */
1272
1273 if (*type_change_ok
1274 || h->root.type == bfd_link_hash_undefined)
1275 *size_change_ok = TRUE;
1276
1277 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1278 symbol, respectively, appears to be a common symbol in a dynamic
1279 object. If a symbol appears in an uninitialized section, and is
1280 not weak, and is not a function, then it may be a common symbol
1281 which was resolved when the dynamic object was created. We want
1282 to treat such symbols specially, because they raise special
1283 considerations when setting the symbol size: if the symbol
1284 appears as a common symbol in a regular object, and the size in
1285 the regular object is larger, we must make sure that we use the
1286 larger size. This problematic case can always be avoided in C,
1287 but it must be handled correctly when using Fortran shared
1288 libraries.
1289
1290 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1291 likewise for OLDDYNCOMMON and OLDDEF.
1292
1293 Note that this test is just a heuristic, and that it is quite
1294 possible to have an uninitialized symbol in a shared object which
1295 is really a definition, rather than a common symbol. This could
1296 lead to some minor confusion when the symbol really is a common
1297 symbol in some regular object. However, I think it will be
1298 harmless. */
1299
1300 if (newdyn
1301 && newdef
1302 && !newweak
1303 && (sec->flags & SEC_ALLOC) != 0
1304 && (sec->flags & SEC_LOAD) == 0
1305 && sym->st_size > 0
1306 && !newfunc)
1307 newdyncommon = TRUE;
1308 else
1309 newdyncommon = FALSE;
1310
1311 if (olddyn
1312 && olddef
1313 && h->root.type == bfd_link_hash_defined
1314 && h->def_dynamic
1315 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1316 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1317 && h->size > 0
1318 && !oldfunc)
1319 olddyncommon = TRUE;
1320 else
1321 olddyncommon = FALSE;
1322
1323 /* We now know everything about the old and new symbols. We ask the
1324 backend to check if we can merge them. */
1325 if (bed->merge_symbol != NULL)
1326 {
1327 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1328 return FALSE;
1329 sec = *psec;
1330 }
1331
1332 /* If both the old and the new symbols look like common symbols in a
1333 dynamic object, set the size of the symbol to the larger of the
1334 two. */
1335
1336 if (olddyncommon
1337 && newdyncommon
1338 && sym->st_size != h->size)
1339 {
1340 /* Since we think we have two common symbols, issue a multiple
1341 common warning if desired. Note that we only warn if the
1342 size is different. If the size is the same, we simply let
1343 the old symbol override the new one as normally happens with
1344 symbols defined in dynamic objects. */
1345
1346 if (! ((*info->callbacks->multiple_common)
1347 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1348 return FALSE;
1349
1350 if (sym->st_size > h->size)
1351 h->size = sym->st_size;
1352
1353 *size_change_ok = TRUE;
1354 }
1355
1356 /* If we are looking at a dynamic object, and we have found a
1357 definition, we need to see if the symbol was already defined by
1358 some other object. If so, we want to use the existing
1359 definition, and we do not want to report a multiple symbol
1360 definition error; we do this by clobbering *PSEC to be
1361 bfd_und_section_ptr.
1362
1363 We treat a common symbol as a definition if the symbol in the
1364 shared library is a function, since common symbols always
1365 represent variables; this can cause confusion in principle, but
1366 any such confusion would seem to indicate an erroneous program or
1367 shared library. We also permit a common symbol in a regular
1368 object to override a weak symbol in a shared object. */
1369
1370 if (newdyn
1371 && newdef
1372 && (olddef
1373 || (h->root.type == bfd_link_hash_common
1374 && (newweak || newfunc))))
1375 {
1376 *override = TRUE;
1377 newdef = FALSE;
1378 newdyncommon = FALSE;
1379
1380 *psec = sec = bfd_und_section_ptr;
1381 *size_change_ok = TRUE;
1382
1383 /* If we get here when the old symbol is a common symbol, then
1384 we are explicitly letting it override a weak symbol or
1385 function in a dynamic object, and we don't want to warn about
1386 a type change. If the old symbol is a defined symbol, a type
1387 change warning may still be appropriate. */
1388
1389 if (h->root.type == bfd_link_hash_common)
1390 *type_change_ok = TRUE;
1391 }
1392
1393 /* Handle the special case of an old common symbol merging with a
1394 new symbol which looks like a common symbol in a shared object.
1395 We change *PSEC and *PVALUE to make the new symbol look like a
1396 common symbol, and let _bfd_generic_link_add_one_symbol do the
1397 right thing. */
1398
1399 if (newdyncommon
1400 && h->root.type == bfd_link_hash_common)
1401 {
1402 *override = TRUE;
1403 newdef = FALSE;
1404 newdyncommon = FALSE;
1405 *pvalue = sym->st_size;
1406 *psec = sec = bed->common_section (oldsec);
1407 *size_change_ok = TRUE;
1408 }
1409
1410 /* Skip weak definitions of symbols that are already defined. */
1411 if (newdef && olddef && newweak)
1412 {
1413 /* Don't skip new non-IR weak syms. */
1414 if (!(oldbfd != NULL
1415 && (oldbfd->flags & BFD_PLUGIN) != 0
1416 && (abfd->flags & BFD_PLUGIN) == 0))
1417 {
1418 newdef = FALSE;
1419 *skip = TRUE;
1420 }
1421
1422 /* Merge st_other. If the symbol already has a dynamic index,
1423 but visibility says it should not be visible, turn it into a
1424 local symbol. */
1425 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1426 if (h->dynindx != -1)
1427 switch (ELF_ST_VISIBILITY (h->other))
1428 {
1429 case STV_INTERNAL:
1430 case STV_HIDDEN:
1431 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1432 break;
1433 }
1434 }
1435
1436 /* If the old symbol is from a dynamic object, and the new symbol is
1437 a definition which is not from a dynamic object, then the new
1438 symbol overrides the old symbol. Symbols from regular files
1439 always take precedence over symbols from dynamic objects, even if
1440 they are defined after the dynamic object in the link.
1441
1442 As above, we again permit a common symbol in a regular object to
1443 override a definition in a shared object if the shared object
1444 symbol is a function or is weak. */
1445
1446 flip = NULL;
1447 if (!newdyn
1448 && (newdef
1449 || (bfd_is_com_section (sec)
1450 && (oldweak || oldfunc)))
1451 && olddyn
1452 && olddef
1453 && h->def_dynamic)
1454 {
1455 /* Change the hash table entry to undefined, and let
1456 _bfd_generic_link_add_one_symbol do the right thing with the
1457 new definition. */
1458
1459 h->root.type = bfd_link_hash_undefined;
1460 h->root.u.undef.abfd = h->root.u.def.section->owner;
1461 *size_change_ok = TRUE;
1462
1463 olddef = FALSE;
1464 olddyncommon = FALSE;
1465
1466 /* We again permit a type change when a common symbol may be
1467 overriding a function. */
1468
1469 if (bfd_is_com_section (sec))
1470 {
1471 if (oldfunc)
1472 {
1473 /* If a common symbol overrides a function, make sure
1474 that it isn't defined dynamically nor has type
1475 function. */
1476 h->def_dynamic = 0;
1477 h->type = STT_NOTYPE;
1478 }
1479 *type_change_ok = TRUE;
1480 }
1481
1482 if (hi->root.type == bfd_link_hash_indirect)
1483 flip = hi;
1484 else
1485 /* This union may have been set to be non-NULL when this symbol
1486 was seen in a dynamic object. We must force the union to be
1487 NULL, so that it is correct for a regular symbol. */
1488 h->verinfo.vertree = NULL;
1489 }
1490
1491 /* Handle the special case of a new common symbol merging with an
1492 old symbol that looks like it might be a common symbol defined in
1493 a shared object. Note that we have already handled the case in
1494 which a new common symbol should simply override the definition
1495 in the shared library. */
1496
1497 if (! newdyn
1498 && bfd_is_com_section (sec)
1499 && olddyncommon)
1500 {
1501 /* It would be best if we could set the hash table entry to a
1502 common symbol, but we don't know what to use for the section
1503 or the alignment. */
1504 if (! ((*info->callbacks->multiple_common)
1505 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1506 return FALSE;
1507
1508 /* If the presumed common symbol in the dynamic object is
1509 larger, pretend that the new symbol has its size. */
1510
1511 if (h->size > *pvalue)
1512 *pvalue = h->size;
1513
1514 /* We need to remember the alignment required by the symbol
1515 in the dynamic object. */
1516 BFD_ASSERT (pold_alignment);
1517 *pold_alignment = h->root.u.def.section->alignment_power;
1518
1519 olddef = FALSE;
1520 olddyncommon = FALSE;
1521
1522 h->root.type = bfd_link_hash_undefined;
1523 h->root.u.undef.abfd = h->root.u.def.section->owner;
1524
1525 *size_change_ok = TRUE;
1526 *type_change_ok = TRUE;
1527
1528 if (hi->root.type == bfd_link_hash_indirect)
1529 flip = hi;
1530 else
1531 h->verinfo.vertree = NULL;
1532 }
1533
1534 if (flip != NULL)
1535 {
1536 /* Handle the case where we had a versioned symbol in a dynamic
1537 library and now find a definition in a normal object. In this
1538 case, we make the versioned symbol point to the normal one. */
1539 flip->root.type = h->root.type;
1540 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1541 h->root.type = bfd_link_hash_indirect;
1542 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1543 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1544 if (h->def_dynamic)
1545 {
1546 h->def_dynamic = 0;
1547 flip->ref_dynamic = 1;
1548 }
1549 }
1550
1551 return TRUE;
1552 }
1553
1554 /* This function is called to create an indirect symbol from the
1555 default for the symbol with the default version if needed. The
1556 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1557 set DYNSYM if the new indirect symbol is dynamic. */
1558
1559 static bfd_boolean
1560 _bfd_elf_add_default_symbol (bfd *abfd,
1561 struct bfd_link_info *info,
1562 struct elf_link_hash_entry *h,
1563 const char *name,
1564 Elf_Internal_Sym *sym,
1565 asection *sec,
1566 bfd_vma value,
1567 bfd **poldbfd,
1568 bfd_boolean *dynsym)
1569 {
1570 bfd_boolean type_change_ok;
1571 bfd_boolean size_change_ok;
1572 bfd_boolean skip;
1573 char *shortname;
1574 struct elf_link_hash_entry *hi;
1575 struct bfd_link_hash_entry *bh;
1576 const struct elf_backend_data *bed;
1577 bfd_boolean collect;
1578 bfd_boolean dynamic;
1579 bfd_boolean override;
1580 char *p;
1581 size_t len, shortlen;
1582 asection *tmp_sec;
1583
1584 /* If this symbol has a version, and it is the default version, we
1585 create an indirect symbol from the default name to the fully
1586 decorated name. This will cause external references which do not
1587 specify a version to be bound to this version of the symbol. */
1588 p = strchr (name, ELF_VER_CHR);
1589 if (p == NULL || p[1] != ELF_VER_CHR)
1590 return TRUE;
1591
1592 bed = get_elf_backend_data (abfd);
1593 collect = bed->collect;
1594 dynamic = (abfd->flags & DYNAMIC) != 0;
1595
1596 shortlen = p - name;
1597 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1598 if (shortname == NULL)
1599 return FALSE;
1600 memcpy (shortname, name, shortlen);
1601 shortname[shortlen] = '\0';
1602
1603 /* We are going to create a new symbol. Merge it with any existing
1604 symbol with this name. For the purposes of the merge, act as
1605 though we were defining the symbol we just defined, although we
1606 actually going to define an indirect symbol. */
1607 type_change_ok = FALSE;
1608 size_change_ok = FALSE;
1609 tmp_sec = sec;
1610 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1611 &hi, poldbfd, NULL, NULL, &skip, &override,
1612 &type_change_ok, &size_change_ok))
1613 return FALSE;
1614
1615 if (skip)
1616 goto nondefault;
1617
1618 if (! override)
1619 {
1620 bh = &hi->root;
1621 if (! (_bfd_generic_link_add_one_symbol
1622 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1623 0, name, FALSE, collect, &bh)))
1624 return FALSE;
1625 hi = (struct elf_link_hash_entry *) bh;
1626 }
1627 else
1628 {
1629 /* In this case the symbol named SHORTNAME is overriding the
1630 indirect symbol we want to add. We were planning on making
1631 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1632 is the name without a version. NAME is the fully versioned
1633 name, and it is the default version.
1634
1635 Overriding means that we already saw a definition for the
1636 symbol SHORTNAME in a regular object, and it is overriding
1637 the symbol defined in the dynamic object.
1638
1639 When this happens, we actually want to change NAME, the
1640 symbol we just added, to refer to SHORTNAME. This will cause
1641 references to NAME in the shared object to become references
1642 to SHORTNAME in the regular object. This is what we expect
1643 when we override a function in a shared object: that the
1644 references in the shared object will be mapped to the
1645 definition in the regular object. */
1646
1647 while (hi->root.type == bfd_link_hash_indirect
1648 || hi->root.type == bfd_link_hash_warning)
1649 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1650
1651 h->root.type = bfd_link_hash_indirect;
1652 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1653 if (h->def_dynamic)
1654 {
1655 h->def_dynamic = 0;
1656 hi->ref_dynamic = 1;
1657 if (hi->ref_regular
1658 || hi->def_regular)
1659 {
1660 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1661 return FALSE;
1662 }
1663 }
1664
1665 /* Now set HI to H, so that the following code will set the
1666 other fields correctly. */
1667 hi = h;
1668 }
1669
1670 /* Check if HI is a warning symbol. */
1671 if (hi->root.type == bfd_link_hash_warning)
1672 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1673
1674 /* If there is a duplicate definition somewhere, then HI may not
1675 point to an indirect symbol. We will have reported an error to
1676 the user in that case. */
1677
1678 if (hi->root.type == bfd_link_hash_indirect)
1679 {
1680 struct elf_link_hash_entry *ht;
1681
1682 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1683 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1684
1685 /* A reference to the SHORTNAME symbol from a dynamic library
1686 will be satisfied by the versioned symbol at runtime. In
1687 effect, we have a reference to the versioned symbol. */
1688 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1689 hi->dynamic_def |= ht->dynamic_def;
1690
1691 /* See if the new flags lead us to realize that the symbol must
1692 be dynamic. */
1693 if (! *dynsym)
1694 {
1695 if (! dynamic)
1696 {
1697 if (! info->executable
1698 || hi->def_dynamic
1699 || hi->ref_dynamic)
1700 *dynsym = TRUE;
1701 }
1702 else
1703 {
1704 if (hi->ref_regular)
1705 *dynsym = TRUE;
1706 }
1707 }
1708 }
1709
1710 /* We also need to define an indirection from the nondefault version
1711 of the symbol. */
1712
1713 nondefault:
1714 len = strlen (name);
1715 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1716 if (shortname == NULL)
1717 return FALSE;
1718 memcpy (shortname, name, shortlen);
1719 memcpy (shortname + shortlen, p + 1, len - shortlen);
1720
1721 /* Once again, merge with any existing symbol. */
1722 type_change_ok = FALSE;
1723 size_change_ok = FALSE;
1724 tmp_sec = sec;
1725 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1726 &hi, poldbfd, NULL, NULL, &skip, &override,
1727 &type_change_ok, &size_change_ok))
1728 return FALSE;
1729
1730 if (skip)
1731 return TRUE;
1732
1733 if (override)
1734 {
1735 /* Here SHORTNAME is a versioned name, so we don't expect to see
1736 the type of override we do in the case above unless it is
1737 overridden by a versioned definition. */
1738 if (hi->root.type != bfd_link_hash_defined
1739 && hi->root.type != bfd_link_hash_defweak)
1740 (*_bfd_error_handler)
1741 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1742 abfd, shortname);
1743 }
1744 else
1745 {
1746 bh = &hi->root;
1747 if (! (_bfd_generic_link_add_one_symbol
1748 (info, abfd, shortname, BSF_INDIRECT,
1749 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1750 return FALSE;
1751 hi = (struct elf_link_hash_entry *) bh;
1752
1753 /* If there is a duplicate definition somewhere, then HI may not
1754 point to an indirect symbol. We will have reported an error
1755 to the user in that case. */
1756
1757 if (hi->root.type == bfd_link_hash_indirect)
1758 {
1759 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1760 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1761 hi->dynamic_def |= h->dynamic_def;
1762
1763 /* See if the new flags lead us to realize that the symbol
1764 must be dynamic. */
1765 if (! *dynsym)
1766 {
1767 if (! dynamic)
1768 {
1769 if (! info->executable
1770 || hi->ref_dynamic)
1771 *dynsym = TRUE;
1772 }
1773 else
1774 {
1775 if (hi->ref_regular)
1776 *dynsym = TRUE;
1777 }
1778 }
1779 }
1780 }
1781
1782 return TRUE;
1783 }
1784 \f
1785 /* This routine is used to export all defined symbols into the dynamic
1786 symbol table. It is called via elf_link_hash_traverse. */
1787
1788 static bfd_boolean
1789 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1790 {
1791 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1792
1793 /* Ignore indirect symbols. These are added by the versioning code. */
1794 if (h->root.type == bfd_link_hash_indirect)
1795 return TRUE;
1796
1797 /* Ignore this if we won't export it. */
1798 if (!eif->info->export_dynamic && !h->dynamic)
1799 return TRUE;
1800
1801 if (h->dynindx == -1
1802 && (h->def_regular || h->ref_regular)
1803 && ! bfd_hide_sym_by_version (eif->info->version_info,
1804 h->root.root.string))
1805 {
1806 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1807 {
1808 eif->failed = TRUE;
1809 return FALSE;
1810 }
1811 }
1812
1813 return TRUE;
1814 }
1815 \f
1816 /* Look through the symbols which are defined in other shared
1817 libraries and referenced here. Update the list of version
1818 dependencies. This will be put into the .gnu.version_r section.
1819 This function is called via elf_link_hash_traverse. */
1820
1821 static bfd_boolean
1822 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1823 void *data)
1824 {
1825 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1826 Elf_Internal_Verneed *t;
1827 Elf_Internal_Vernaux *a;
1828 bfd_size_type amt;
1829
1830 /* We only care about symbols defined in shared objects with version
1831 information. */
1832 if (!h->def_dynamic
1833 || h->def_regular
1834 || h->dynindx == -1
1835 || h->verinfo.verdef == NULL)
1836 return TRUE;
1837
1838 /* See if we already know about this version. */
1839 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1840 t != NULL;
1841 t = t->vn_nextref)
1842 {
1843 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1844 continue;
1845
1846 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1847 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1848 return TRUE;
1849
1850 break;
1851 }
1852
1853 /* This is a new version. Add it to tree we are building. */
1854
1855 if (t == NULL)
1856 {
1857 amt = sizeof *t;
1858 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1859 if (t == NULL)
1860 {
1861 rinfo->failed = TRUE;
1862 return FALSE;
1863 }
1864
1865 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1866 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1867 elf_tdata (rinfo->info->output_bfd)->verref = t;
1868 }
1869
1870 amt = sizeof *a;
1871 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1872 if (a == NULL)
1873 {
1874 rinfo->failed = TRUE;
1875 return FALSE;
1876 }
1877
1878 /* Note that we are copying a string pointer here, and testing it
1879 above. If bfd_elf_string_from_elf_section is ever changed to
1880 discard the string data when low in memory, this will have to be
1881 fixed. */
1882 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1883
1884 a->vna_flags = h->verinfo.verdef->vd_flags;
1885 a->vna_nextptr = t->vn_auxptr;
1886
1887 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1888 ++rinfo->vers;
1889
1890 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1891
1892 t->vn_auxptr = a;
1893
1894 return TRUE;
1895 }
1896
1897 /* Figure out appropriate versions for all the symbols. We may not
1898 have the version number script until we have read all of the input
1899 files, so until that point we don't know which symbols should be
1900 local. This function is called via elf_link_hash_traverse. */
1901
1902 static bfd_boolean
1903 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1904 {
1905 struct elf_info_failed *sinfo;
1906 struct bfd_link_info *info;
1907 const struct elf_backend_data *bed;
1908 struct elf_info_failed eif;
1909 char *p;
1910 bfd_size_type amt;
1911
1912 sinfo = (struct elf_info_failed *) data;
1913 info = sinfo->info;
1914
1915 /* Fix the symbol flags. */
1916 eif.failed = FALSE;
1917 eif.info = info;
1918 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1919 {
1920 if (eif.failed)
1921 sinfo->failed = TRUE;
1922 return FALSE;
1923 }
1924
1925 /* We only need version numbers for symbols defined in regular
1926 objects. */
1927 if (!h->def_regular)
1928 return TRUE;
1929
1930 bed = get_elf_backend_data (info->output_bfd);
1931 p = strchr (h->root.root.string, ELF_VER_CHR);
1932 if (p != NULL && h->verinfo.vertree == NULL)
1933 {
1934 struct bfd_elf_version_tree *t;
1935 bfd_boolean hidden;
1936
1937 hidden = TRUE;
1938
1939 /* There are two consecutive ELF_VER_CHR characters if this is
1940 not a hidden symbol. */
1941 ++p;
1942 if (*p == ELF_VER_CHR)
1943 {
1944 hidden = FALSE;
1945 ++p;
1946 }
1947
1948 /* If there is no version string, we can just return out. */
1949 if (*p == '\0')
1950 {
1951 if (hidden)
1952 h->hidden = 1;
1953 return TRUE;
1954 }
1955
1956 /* Look for the version. If we find it, it is no longer weak. */
1957 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1958 {
1959 if (strcmp (t->name, p) == 0)
1960 {
1961 size_t len;
1962 char *alc;
1963 struct bfd_elf_version_expr *d;
1964
1965 len = p - h->root.root.string;
1966 alc = (char *) bfd_malloc (len);
1967 if (alc == NULL)
1968 {
1969 sinfo->failed = TRUE;
1970 return FALSE;
1971 }
1972 memcpy (alc, h->root.root.string, len - 1);
1973 alc[len - 1] = '\0';
1974 if (alc[len - 2] == ELF_VER_CHR)
1975 alc[len - 2] = '\0';
1976
1977 h->verinfo.vertree = t;
1978 t->used = TRUE;
1979 d = NULL;
1980
1981 if (t->globals.list != NULL)
1982 d = (*t->match) (&t->globals, NULL, alc);
1983
1984 /* See if there is anything to force this symbol to
1985 local scope. */
1986 if (d == NULL && t->locals.list != NULL)
1987 {
1988 d = (*t->match) (&t->locals, NULL, alc);
1989 if (d != NULL
1990 && h->dynindx != -1
1991 && ! info->export_dynamic)
1992 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1993 }
1994
1995 free (alc);
1996 break;
1997 }
1998 }
1999
2000 /* If we are building an application, we need to create a
2001 version node for this version. */
2002 if (t == NULL && info->executable)
2003 {
2004 struct bfd_elf_version_tree **pp;
2005 int version_index;
2006
2007 /* If we aren't going to export this symbol, we don't need
2008 to worry about it. */
2009 if (h->dynindx == -1)
2010 return TRUE;
2011
2012 amt = sizeof *t;
2013 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2014 if (t == NULL)
2015 {
2016 sinfo->failed = TRUE;
2017 return FALSE;
2018 }
2019
2020 t->name = p;
2021 t->name_indx = (unsigned int) -1;
2022 t->used = TRUE;
2023
2024 version_index = 1;
2025 /* Don't count anonymous version tag. */
2026 if (sinfo->info->version_info != NULL
2027 && sinfo->info->version_info->vernum == 0)
2028 version_index = 0;
2029 for (pp = &sinfo->info->version_info;
2030 *pp != NULL;
2031 pp = &(*pp)->next)
2032 ++version_index;
2033 t->vernum = version_index;
2034
2035 *pp = t;
2036
2037 h->verinfo.vertree = t;
2038 }
2039 else if (t == NULL)
2040 {
2041 /* We could not find the version for a symbol when
2042 generating a shared archive. Return an error. */
2043 (*_bfd_error_handler)
2044 (_("%B: version node not found for symbol %s"),
2045 info->output_bfd, h->root.root.string);
2046 bfd_set_error (bfd_error_bad_value);
2047 sinfo->failed = TRUE;
2048 return FALSE;
2049 }
2050
2051 if (hidden)
2052 h->hidden = 1;
2053 }
2054
2055 /* If we don't have a version for this symbol, see if we can find
2056 something. */
2057 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2058 {
2059 bfd_boolean hide;
2060
2061 h->verinfo.vertree
2062 = bfd_find_version_for_sym (sinfo->info->version_info,
2063 h->root.root.string, &hide);
2064 if (h->verinfo.vertree != NULL && hide)
2065 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2066 }
2067
2068 return TRUE;
2069 }
2070 \f
2071 /* Read and swap the relocs from the section indicated by SHDR. This
2072 may be either a REL or a RELA section. The relocations are
2073 translated into RELA relocations and stored in INTERNAL_RELOCS,
2074 which should have already been allocated to contain enough space.
2075 The EXTERNAL_RELOCS are a buffer where the external form of the
2076 relocations should be stored.
2077
2078 Returns FALSE if something goes wrong. */
2079
2080 static bfd_boolean
2081 elf_link_read_relocs_from_section (bfd *abfd,
2082 asection *sec,
2083 Elf_Internal_Shdr *shdr,
2084 void *external_relocs,
2085 Elf_Internal_Rela *internal_relocs)
2086 {
2087 const struct elf_backend_data *bed;
2088 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2089 const bfd_byte *erela;
2090 const bfd_byte *erelaend;
2091 Elf_Internal_Rela *irela;
2092 Elf_Internal_Shdr *symtab_hdr;
2093 size_t nsyms;
2094
2095 /* Position ourselves at the start of the section. */
2096 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2097 return FALSE;
2098
2099 /* Read the relocations. */
2100 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2101 return FALSE;
2102
2103 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2104 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2105
2106 bed = get_elf_backend_data (abfd);
2107
2108 /* Convert the external relocations to the internal format. */
2109 if (shdr->sh_entsize == bed->s->sizeof_rel)
2110 swap_in = bed->s->swap_reloc_in;
2111 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2112 swap_in = bed->s->swap_reloca_in;
2113 else
2114 {
2115 bfd_set_error (bfd_error_wrong_format);
2116 return FALSE;
2117 }
2118
2119 erela = (const bfd_byte *) external_relocs;
2120 erelaend = erela + shdr->sh_size;
2121 irela = internal_relocs;
2122 while (erela < erelaend)
2123 {
2124 bfd_vma r_symndx;
2125
2126 (*swap_in) (abfd, erela, irela);
2127 r_symndx = ELF32_R_SYM (irela->r_info);
2128 if (bed->s->arch_size == 64)
2129 r_symndx >>= 24;
2130 if (nsyms > 0)
2131 {
2132 if ((size_t) r_symndx >= nsyms)
2133 {
2134 (*_bfd_error_handler)
2135 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2136 " for offset 0x%lx in section `%A'"),
2137 abfd, sec,
2138 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2139 bfd_set_error (bfd_error_bad_value);
2140 return FALSE;
2141 }
2142 }
2143 else if (r_symndx != STN_UNDEF)
2144 {
2145 (*_bfd_error_handler)
2146 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2147 " when the object file has no symbol table"),
2148 abfd, sec,
2149 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2150 bfd_set_error (bfd_error_bad_value);
2151 return FALSE;
2152 }
2153 irela += bed->s->int_rels_per_ext_rel;
2154 erela += shdr->sh_entsize;
2155 }
2156
2157 return TRUE;
2158 }
2159
2160 /* Read and swap the relocs for a section O. They may have been
2161 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2162 not NULL, they are used as buffers to read into. They are known to
2163 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2164 the return value is allocated using either malloc or bfd_alloc,
2165 according to the KEEP_MEMORY argument. If O has two relocation
2166 sections (both REL and RELA relocations), then the REL_HDR
2167 relocations will appear first in INTERNAL_RELOCS, followed by the
2168 RELA_HDR relocations. */
2169
2170 Elf_Internal_Rela *
2171 _bfd_elf_link_read_relocs (bfd *abfd,
2172 asection *o,
2173 void *external_relocs,
2174 Elf_Internal_Rela *internal_relocs,
2175 bfd_boolean keep_memory)
2176 {
2177 void *alloc1 = NULL;
2178 Elf_Internal_Rela *alloc2 = NULL;
2179 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2180 struct bfd_elf_section_data *esdo = elf_section_data (o);
2181 Elf_Internal_Rela *internal_rela_relocs;
2182
2183 if (esdo->relocs != NULL)
2184 return esdo->relocs;
2185
2186 if (o->reloc_count == 0)
2187 return NULL;
2188
2189 if (internal_relocs == NULL)
2190 {
2191 bfd_size_type size;
2192
2193 size = o->reloc_count;
2194 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2195 if (keep_memory)
2196 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2197 else
2198 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2199 if (internal_relocs == NULL)
2200 goto error_return;
2201 }
2202
2203 if (external_relocs == NULL)
2204 {
2205 bfd_size_type size = 0;
2206
2207 if (esdo->rel.hdr)
2208 size += esdo->rel.hdr->sh_size;
2209 if (esdo->rela.hdr)
2210 size += esdo->rela.hdr->sh_size;
2211
2212 alloc1 = bfd_malloc (size);
2213 if (alloc1 == NULL)
2214 goto error_return;
2215 external_relocs = alloc1;
2216 }
2217
2218 internal_rela_relocs = internal_relocs;
2219 if (esdo->rel.hdr)
2220 {
2221 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2222 external_relocs,
2223 internal_relocs))
2224 goto error_return;
2225 external_relocs = (((bfd_byte *) external_relocs)
2226 + esdo->rel.hdr->sh_size);
2227 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2228 * bed->s->int_rels_per_ext_rel);
2229 }
2230
2231 if (esdo->rela.hdr
2232 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2233 external_relocs,
2234 internal_rela_relocs)))
2235 goto error_return;
2236
2237 /* Cache the results for next time, if we can. */
2238 if (keep_memory)
2239 esdo->relocs = internal_relocs;
2240
2241 if (alloc1 != NULL)
2242 free (alloc1);
2243
2244 /* Don't free alloc2, since if it was allocated we are passing it
2245 back (under the name of internal_relocs). */
2246
2247 return internal_relocs;
2248
2249 error_return:
2250 if (alloc1 != NULL)
2251 free (alloc1);
2252 if (alloc2 != NULL)
2253 {
2254 if (keep_memory)
2255 bfd_release (abfd, alloc2);
2256 else
2257 free (alloc2);
2258 }
2259 return NULL;
2260 }
2261
2262 /* Compute the size of, and allocate space for, REL_HDR which is the
2263 section header for a section containing relocations for O. */
2264
2265 static bfd_boolean
2266 _bfd_elf_link_size_reloc_section (bfd *abfd,
2267 struct bfd_elf_section_reloc_data *reldata)
2268 {
2269 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2270
2271 /* That allows us to calculate the size of the section. */
2272 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2273
2274 /* The contents field must last into write_object_contents, so we
2275 allocate it with bfd_alloc rather than malloc. Also since we
2276 cannot be sure that the contents will actually be filled in,
2277 we zero the allocated space. */
2278 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2279 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2280 return FALSE;
2281
2282 if (reldata->hashes == NULL && reldata->count)
2283 {
2284 struct elf_link_hash_entry **p;
2285
2286 p = (struct elf_link_hash_entry **)
2287 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2288 if (p == NULL)
2289 return FALSE;
2290
2291 reldata->hashes = p;
2292 }
2293
2294 return TRUE;
2295 }
2296
2297 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2298 originated from the section given by INPUT_REL_HDR) to the
2299 OUTPUT_BFD. */
2300
2301 bfd_boolean
2302 _bfd_elf_link_output_relocs (bfd *output_bfd,
2303 asection *input_section,
2304 Elf_Internal_Shdr *input_rel_hdr,
2305 Elf_Internal_Rela *internal_relocs,
2306 struct elf_link_hash_entry **rel_hash
2307 ATTRIBUTE_UNUSED)
2308 {
2309 Elf_Internal_Rela *irela;
2310 Elf_Internal_Rela *irelaend;
2311 bfd_byte *erel;
2312 struct bfd_elf_section_reloc_data *output_reldata;
2313 asection *output_section;
2314 const struct elf_backend_data *bed;
2315 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2316 struct bfd_elf_section_data *esdo;
2317
2318 output_section = input_section->output_section;
2319
2320 bed = get_elf_backend_data (output_bfd);
2321 esdo = elf_section_data (output_section);
2322 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2323 {
2324 output_reldata = &esdo->rel;
2325 swap_out = bed->s->swap_reloc_out;
2326 }
2327 else if (esdo->rela.hdr
2328 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2329 {
2330 output_reldata = &esdo->rela;
2331 swap_out = bed->s->swap_reloca_out;
2332 }
2333 else
2334 {
2335 (*_bfd_error_handler)
2336 (_("%B: relocation size mismatch in %B section %A"),
2337 output_bfd, input_section->owner, input_section);
2338 bfd_set_error (bfd_error_wrong_format);
2339 return FALSE;
2340 }
2341
2342 erel = output_reldata->hdr->contents;
2343 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2344 irela = internal_relocs;
2345 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2346 * bed->s->int_rels_per_ext_rel);
2347 while (irela < irelaend)
2348 {
2349 (*swap_out) (output_bfd, irela, erel);
2350 irela += bed->s->int_rels_per_ext_rel;
2351 erel += input_rel_hdr->sh_entsize;
2352 }
2353
2354 /* Bump the counter, so that we know where to add the next set of
2355 relocations. */
2356 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2357
2358 return TRUE;
2359 }
2360 \f
2361 /* Make weak undefined symbols in PIE dynamic. */
2362
2363 bfd_boolean
2364 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2365 struct elf_link_hash_entry *h)
2366 {
2367 if (info->pie
2368 && h->dynindx == -1
2369 && h->root.type == bfd_link_hash_undefweak)
2370 return bfd_elf_link_record_dynamic_symbol (info, h);
2371
2372 return TRUE;
2373 }
2374
2375 /* Fix up the flags for a symbol. This handles various cases which
2376 can only be fixed after all the input files are seen. This is
2377 currently called by both adjust_dynamic_symbol and
2378 assign_sym_version, which is unnecessary but perhaps more robust in
2379 the face of future changes. */
2380
2381 static bfd_boolean
2382 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2383 struct elf_info_failed *eif)
2384 {
2385 const struct elf_backend_data *bed;
2386
2387 /* If this symbol was mentioned in a non-ELF file, try to set
2388 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2389 permit a non-ELF file to correctly refer to a symbol defined in
2390 an ELF dynamic object. */
2391 if (h->non_elf)
2392 {
2393 while (h->root.type == bfd_link_hash_indirect)
2394 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2395
2396 if (h->root.type != bfd_link_hash_defined
2397 && h->root.type != bfd_link_hash_defweak)
2398 {
2399 h->ref_regular = 1;
2400 h->ref_regular_nonweak = 1;
2401 }
2402 else
2403 {
2404 if (h->root.u.def.section->owner != NULL
2405 && (bfd_get_flavour (h->root.u.def.section->owner)
2406 == bfd_target_elf_flavour))
2407 {
2408 h->ref_regular = 1;
2409 h->ref_regular_nonweak = 1;
2410 }
2411 else
2412 h->def_regular = 1;
2413 }
2414
2415 if (h->dynindx == -1
2416 && (h->def_dynamic
2417 || h->ref_dynamic))
2418 {
2419 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2420 {
2421 eif->failed = TRUE;
2422 return FALSE;
2423 }
2424 }
2425 }
2426 else
2427 {
2428 /* Unfortunately, NON_ELF is only correct if the symbol
2429 was first seen in a non-ELF file. Fortunately, if the symbol
2430 was first seen in an ELF file, we're probably OK unless the
2431 symbol was defined in a non-ELF file. Catch that case here.
2432 FIXME: We're still in trouble if the symbol was first seen in
2433 a dynamic object, and then later in a non-ELF regular object. */
2434 if ((h->root.type == bfd_link_hash_defined
2435 || h->root.type == bfd_link_hash_defweak)
2436 && !h->def_regular
2437 && (h->root.u.def.section->owner != NULL
2438 ? (bfd_get_flavour (h->root.u.def.section->owner)
2439 != bfd_target_elf_flavour)
2440 : (bfd_is_abs_section (h->root.u.def.section)
2441 && !h->def_dynamic)))
2442 h->def_regular = 1;
2443 }
2444
2445 /* Backend specific symbol fixup. */
2446 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2447 if (bed->elf_backend_fixup_symbol
2448 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2449 return FALSE;
2450
2451 /* If this is a final link, and the symbol was defined as a common
2452 symbol in a regular object file, and there was no definition in
2453 any dynamic object, then the linker will have allocated space for
2454 the symbol in a common section but the DEF_REGULAR
2455 flag will not have been set. */
2456 if (h->root.type == bfd_link_hash_defined
2457 && !h->def_regular
2458 && h->ref_regular
2459 && !h->def_dynamic
2460 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2461 h->def_regular = 1;
2462
2463 /* If -Bsymbolic was used (which means to bind references to global
2464 symbols to the definition within the shared object), and this
2465 symbol was defined in a regular object, then it actually doesn't
2466 need a PLT entry. Likewise, if the symbol has non-default
2467 visibility. If the symbol has hidden or internal visibility, we
2468 will force it local. */
2469 if (h->needs_plt
2470 && eif->info->shared
2471 && is_elf_hash_table (eif->info->hash)
2472 && (SYMBOLIC_BIND (eif->info, h)
2473 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2474 && h->def_regular)
2475 {
2476 bfd_boolean force_local;
2477
2478 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2479 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2480 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2481 }
2482
2483 /* If a weak undefined symbol has non-default visibility, we also
2484 hide it from the dynamic linker. */
2485 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2486 && h->root.type == bfd_link_hash_undefweak)
2487 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2488
2489 /* If this is a weak defined symbol in a dynamic object, and we know
2490 the real definition in the dynamic object, copy interesting flags
2491 over to the real definition. */
2492 if (h->u.weakdef != NULL)
2493 {
2494 /* If the real definition is defined by a regular object file,
2495 don't do anything special. See the longer description in
2496 _bfd_elf_adjust_dynamic_symbol, below. */
2497 if (h->u.weakdef->def_regular)
2498 h->u.weakdef = NULL;
2499 else
2500 {
2501 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2502
2503 while (h->root.type == bfd_link_hash_indirect)
2504 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2505
2506 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2507 || h->root.type == bfd_link_hash_defweak);
2508 BFD_ASSERT (weakdef->def_dynamic);
2509 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2510 || weakdef->root.type == bfd_link_hash_defweak);
2511 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2512 }
2513 }
2514
2515 return TRUE;
2516 }
2517
2518 /* Make the backend pick a good value for a dynamic symbol. This is
2519 called via elf_link_hash_traverse, and also calls itself
2520 recursively. */
2521
2522 static bfd_boolean
2523 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2524 {
2525 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2526 bfd *dynobj;
2527 const struct elf_backend_data *bed;
2528
2529 if (! is_elf_hash_table (eif->info->hash))
2530 return FALSE;
2531
2532 /* Ignore indirect symbols. These are added by the versioning code. */
2533 if (h->root.type == bfd_link_hash_indirect)
2534 return TRUE;
2535
2536 /* Fix the symbol flags. */
2537 if (! _bfd_elf_fix_symbol_flags (h, eif))
2538 return FALSE;
2539
2540 /* If this symbol does not require a PLT entry, and it is not
2541 defined by a dynamic object, or is not referenced by a regular
2542 object, ignore it. We do have to handle a weak defined symbol,
2543 even if no regular object refers to it, if we decided to add it
2544 to the dynamic symbol table. FIXME: Do we normally need to worry
2545 about symbols which are defined by one dynamic object and
2546 referenced by another one? */
2547 if (!h->needs_plt
2548 && h->type != STT_GNU_IFUNC
2549 && (h->def_regular
2550 || !h->def_dynamic
2551 || (!h->ref_regular
2552 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2553 {
2554 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2555 return TRUE;
2556 }
2557
2558 /* If we've already adjusted this symbol, don't do it again. This
2559 can happen via a recursive call. */
2560 if (h->dynamic_adjusted)
2561 return TRUE;
2562
2563 /* Don't look at this symbol again. Note that we must set this
2564 after checking the above conditions, because we may look at a
2565 symbol once, decide not to do anything, and then get called
2566 recursively later after REF_REGULAR is set below. */
2567 h->dynamic_adjusted = 1;
2568
2569 /* If this is a weak definition, and we know a real definition, and
2570 the real symbol is not itself defined by a regular object file,
2571 then get a good value for the real definition. We handle the
2572 real symbol first, for the convenience of the backend routine.
2573
2574 Note that there is a confusing case here. If the real definition
2575 is defined by a regular object file, we don't get the real symbol
2576 from the dynamic object, but we do get the weak symbol. If the
2577 processor backend uses a COPY reloc, then if some routine in the
2578 dynamic object changes the real symbol, we will not see that
2579 change in the corresponding weak symbol. This is the way other
2580 ELF linkers work as well, and seems to be a result of the shared
2581 library model.
2582
2583 I will clarify this issue. Most SVR4 shared libraries define the
2584 variable _timezone and define timezone as a weak synonym. The
2585 tzset call changes _timezone. If you write
2586 extern int timezone;
2587 int _timezone = 5;
2588 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2589 you might expect that, since timezone is a synonym for _timezone,
2590 the same number will print both times. However, if the processor
2591 backend uses a COPY reloc, then actually timezone will be copied
2592 into your process image, and, since you define _timezone
2593 yourself, _timezone will not. Thus timezone and _timezone will
2594 wind up at different memory locations. The tzset call will set
2595 _timezone, leaving timezone unchanged. */
2596
2597 if (h->u.weakdef != NULL)
2598 {
2599 /* If we get to this point, there is an implicit reference to
2600 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2601 h->u.weakdef->ref_regular = 1;
2602
2603 /* Ensure that the backend adjust_dynamic_symbol function sees
2604 H->U.WEAKDEF before H by recursively calling ourselves. */
2605 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2606 return FALSE;
2607 }
2608
2609 /* If a symbol has no type and no size and does not require a PLT
2610 entry, then we are probably about to do the wrong thing here: we
2611 are probably going to create a COPY reloc for an empty object.
2612 This case can arise when a shared object is built with assembly
2613 code, and the assembly code fails to set the symbol type. */
2614 if (h->size == 0
2615 && h->type == STT_NOTYPE
2616 && !h->needs_plt)
2617 (*_bfd_error_handler)
2618 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2619 h->root.root.string);
2620
2621 dynobj = elf_hash_table (eif->info)->dynobj;
2622 bed = get_elf_backend_data (dynobj);
2623
2624 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2625 {
2626 eif->failed = TRUE;
2627 return FALSE;
2628 }
2629
2630 return TRUE;
2631 }
2632
2633 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2634 DYNBSS. */
2635
2636 bfd_boolean
2637 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2638 asection *dynbss)
2639 {
2640 unsigned int power_of_two;
2641 bfd_vma mask;
2642 asection *sec = h->root.u.def.section;
2643
2644 /* The section aligment of definition is the maximum alignment
2645 requirement of symbols defined in the section. Since we don't
2646 know the symbol alignment requirement, we start with the
2647 maximum alignment and check low bits of the symbol address
2648 for the minimum alignment. */
2649 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2650 mask = ((bfd_vma) 1 << power_of_two) - 1;
2651 while ((h->root.u.def.value & mask) != 0)
2652 {
2653 mask >>= 1;
2654 --power_of_two;
2655 }
2656
2657 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2658 dynbss))
2659 {
2660 /* Adjust the section alignment if needed. */
2661 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2662 power_of_two))
2663 return FALSE;
2664 }
2665
2666 /* We make sure that the symbol will be aligned properly. */
2667 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2668
2669 /* Define the symbol as being at this point in DYNBSS. */
2670 h->root.u.def.section = dynbss;
2671 h->root.u.def.value = dynbss->size;
2672
2673 /* Increment the size of DYNBSS to make room for the symbol. */
2674 dynbss->size += h->size;
2675
2676 return TRUE;
2677 }
2678
2679 /* Adjust all external symbols pointing into SEC_MERGE sections
2680 to reflect the object merging within the sections. */
2681
2682 static bfd_boolean
2683 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2684 {
2685 asection *sec;
2686
2687 if ((h->root.type == bfd_link_hash_defined
2688 || h->root.type == bfd_link_hash_defweak)
2689 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2690 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2691 {
2692 bfd *output_bfd = (bfd *) data;
2693
2694 h->root.u.def.value =
2695 _bfd_merged_section_offset (output_bfd,
2696 &h->root.u.def.section,
2697 elf_section_data (sec)->sec_info,
2698 h->root.u.def.value);
2699 }
2700
2701 return TRUE;
2702 }
2703
2704 /* Returns false if the symbol referred to by H should be considered
2705 to resolve local to the current module, and true if it should be
2706 considered to bind dynamically. */
2707
2708 bfd_boolean
2709 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2710 struct bfd_link_info *info,
2711 bfd_boolean not_local_protected)
2712 {
2713 bfd_boolean binding_stays_local_p;
2714 const struct elf_backend_data *bed;
2715 struct elf_link_hash_table *hash_table;
2716
2717 if (h == NULL)
2718 return FALSE;
2719
2720 while (h->root.type == bfd_link_hash_indirect
2721 || h->root.type == bfd_link_hash_warning)
2722 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2723
2724 /* If it was forced local, then clearly it's not dynamic. */
2725 if (h->dynindx == -1)
2726 return FALSE;
2727 if (h->forced_local)
2728 return FALSE;
2729
2730 /* Identify the cases where name binding rules say that a
2731 visible symbol resolves locally. */
2732 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2733
2734 switch (ELF_ST_VISIBILITY (h->other))
2735 {
2736 case STV_INTERNAL:
2737 case STV_HIDDEN:
2738 return FALSE;
2739
2740 case STV_PROTECTED:
2741 hash_table = elf_hash_table (info);
2742 if (!is_elf_hash_table (hash_table))
2743 return FALSE;
2744
2745 bed = get_elf_backend_data (hash_table->dynobj);
2746
2747 /* Proper resolution for function pointer equality may require
2748 that these symbols perhaps be resolved dynamically, even though
2749 we should be resolving them to the current module. */
2750 if (!not_local_protected || !bed->is_function_type (h->type))
2751 binding_stays_local_p = TRUE;
2752 break;
2753
2754 default:
2755 break;
2756 }
2757
2758 /* If it isn't defined locally, then clearly it's dynamic. */
2759 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2760 return TRUE;
2761
2762 /* Otherwise, the symbol is dynamic if binding rules don't tell
2763 us that it remains local. */
2764 return !binding_stays_local_p;
2765 }
2766
2767 /* Return true if the symbol referred to by H should be considered
2768 to resolve local to the current module, and false otherwise. Differs
2769 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2770 undefined symbols. The two functions are virtually identical except
2771 for the place where forced_local and dynindx == -1 are tested. If
2772 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2773 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2774 the symbol is local only for defined symbols.
2775 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2776 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2777 treatment of undefined weak symbols. For those that do not make
2778 undefined weak symbols dynamic, both functions may return false. */
2779
2780 bfd_boolean
2781 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2782 struct bfd_link_info *info,
2783 bfd_boolean local_protected)
2784 {
2785 const struct elf_backend_data *bed;
2786 struct elf_link_hash_table *hash_table;
2787
2788 /* If it's a local sym, of course we resolve locally. */
2789 if (h == NULL)
2790 return TRUE;
2791
2792 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2793 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2794 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2795 return TRUE;
2796
2797 /* Common symbols that become definitions don't get the DEF_REGULAR
2798 flag set, so test it first, and don't bail out. */
2799 if (ELF_COMMON_DEF_P (h))
2800 /* Do nothing. */;
2801 /* If we don't have a definition in a regular file, then we can't
2802 resolve locally. The sym is either undefined or dynamic. */
2803 else if (!h->def_regular)
2804 return FALSE;
2805
2806 /* Forced local symbols resolve locally. */
2807 if (h->forced_local)
2808 return TRUE;
2809
2810 /* As do non-dynamic symbols. */
2811 if (h->dynindx == -1)
2812 return TRUE;
2813
2814 /* At this point, we know the symbol is defined and dynamic. In an
2815 executable it must resolve locally, likewise when building symbolic
2816 shared libraries. */
2817 if (info->executable || SYMBOLIC_BIND (info, h))
2818 return TRUE;
2819
2820 /* Now deal with defined dynamic symbols in shared libraries. Ones
2821 with default visibility might not resolve locally. */
2822 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2823 return FALSE;
2824
2825 hash_table = elf_hash_table (info);
2826 if (!is_elf_hash_table (hash_table))
2827 return TRUE;
2828
2829 bed = get_elf_backend_data (hash_table->dynobj);
2830
2831 /* STV_PROTECTED non-function symbols are local. */
2832 if (!bed->is_function_type (h->type))
2833 return TRUE;
2834
2835 /* Function pointer equality tests may require that STV_PROTECTED
2836 symbols be treated as dynamic symbols. If the address of a
2837 function not defined in an executable is set to that function's
2838 plt entry in the executable, then the address of the function in
2839 a shared library must also be the plt entry in the executable. */
2840 return local_protected;
2841 }
2842
2843 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2844 aligned. Returns the first TLS output section. */
2845
2846 struct bfd_section *
2847 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2848 {
2849 struct bfd_section *sec, *tls;
2850 unsigned int align = 0;
2851
2852 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2853 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2854 break;
2855 tls = sec;
2856
2857 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2858 if (sec->alignment_power > align)
2859 align = sec->alignment_power;
2860
2861 elf_hash_table (info)->tls_sec = tls;
2862
2863 /* Ensure the alignment of the first section is the largest alignment,
2864 so that the tls segment starts aligned. */
2865 if (tls != NULL)
2866 tls->alignment_power = align;
2867
2868 return tls;
2869 }
2870
2871 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2872 static bfd_boolean
2873 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2874 Elf_Internal_Sym *sym)
2875 {
2876 const struct elf_backend_data *bed;
2877
2878 /* Local symbols do not count, but target specific ones might. */
2879 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2880 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2881 return FALSE;
2882
2883 bed = get_elf_backend_data (abfd);
2884 /* Function symbols do not count. */
2885 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2886 return FALSE;
2887
2888 /* If the section is undefined, then so is the symbol. */
2889 if (sym->st_shndx == SHN_UNDEF)
2890 return FALSE;
2891
2892 /* If the symbol is defined in the common section, then
2893 it is a common definition and so does not count. */
2894 if (bed->common_definition (sym))
2895 return FALSE;
2896
2897 /* If the symbol is in a target specific section then we
2898 must rely upon the backend to tell us what it is. */
2899 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2900 /* FIXME - this function is not coded yet:
2901
2902 return _bfd_is_global_symbol_definition (abfd, sym);
2903
2904 Instead for now assume that the definition is not global,
2905 Even if this is wrong, at least the linker will behave
2906 in the same way that it used to do. */
2907 return FALSE;
2908
2909 return TRUE;
2910 }
2911
2912 /* Search the symbol table of the archive element of the archive ABFD
2913 whose archive map contains a mention of SYMDEF, and determine if
2914 the symbol is defined in this element. */
2915 static bfd_boolean
2916 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2917 {
2918 Elf_Internal_Shdr * hdr;
2919 bfd_size_type symcount;
2920 bfd_size_type extsymcount;
2921 bfd_size_type extsymoff;
2922 Elf_Internal_Sym *isymbuf;
2923 Elf_Internal_Sym *isym;
2924 Elf_Internal_Sym *isymend;
2925 bfd_boolean result;
2926
2927 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2928 if (abfd == NULL)
2929 return FALSE;
2930
2931 if (! bfd_check_format (abfd, bfd_object))
2932 return FALSE;
2933
2934 /* Select the appropriate symbol table. */
2935 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2936 hdr = &elf_tdata (abfd)->symtab_hdr;
2937 else
2938 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2939
2940 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2941
2942 /* The sh_info field of the symtab header tells us where the
2943 external symbols start. We don't care about the local symbols. */
2944 if (elf_bad_symtab (abfd))
2945 {
2946 extsymcount = symcount;
2947 extsymoff = 0;
2948 }
2949 else
2950 {
2951 extsymcount = symcount - hdr->sh_info;
2952 extsymoff = hdr->sh_info;
2953 }
2954
2955 if (extsymcount == 0)
2956 return FALSE;
2957
2958 /* Read in the symbol table. */
2959 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2960 NULL, NULL, NULL);
2961 if (isymbuf == NULL)
2962 return FALSE;
2963
2964 /* Scan the symbol table looking for SYMDEF. */
2965 result = FALSE;
2966 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2967 {
2968 const char *name;
2969
2970 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2971 isym->st_name);
2972 if (name == NULL)
2973 break;
2974
2975 if (strcmp (name, symdef->name) == 0)
2976 {
2977 result = is_global_data_symbol_definition (abfd, isym);
2978 break;
2979 }
2980 }
2981
2982 free (isymbuf);
2983
2984 return result;
2985 }
2986 \f
2987 /* Add an entry to the .dynamic table. */
2988
2989 bfd_boolean
2990 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
2991 bfd_vma tag,
2992 bfd_vma val)
2993 {
2994 struct elf_link_hash_table *hash_table;
2995 const struct elf_backend_data *bed;
2996 asection *s;
2997 bfd_size_type newsize;
2998 bfd_byte *newcontents;
2999 Elf_Internal_Dyn dyn;
3000
3001 hash_table = elf_hash_table (info);
3002 if (! is_elf_hash_table (hash_table))
3003 return FALSE;
3004
3005 bed = get_elf_backend_data (hash_table->dynobj);
3006 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3007 BFD_ASSERT (s != NULL);
3008
3009 newsize = s->size + bed->s->sizeof_dyn;
3010 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3011 if (newcontents == NULL)
3012 return FALSE;
3013
3014 dyn.d_tag = tag;
3015 dyn.d_un.d_val = val;
3016 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3017
3018 s->size = newsize;
3019 s->contents = newcontents;
3020
3021 return TRUE;
3022 }
3023
3024 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3025 otherwise just check whether one already exists. Returns -1 on error,
3026 1 if a DT_NEEDED tag already exists, and 0 on success. */
3027
3028 static int
3029 elf_add_dt_needed_tag (bfd *abfd,
3030 struct bfd_link_info *info,
3031 const char *soname,
3032 bfd_boolean do_it)
3033 {
3034 struct elf_link_hash_table *hash_table;
3035 bfd_size_type strindex;
3036
3037 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3038 return -1;
3039
3040 hash_table = elf_hash_table (info);
3041 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3042 if (strindex == (bfd_size_type) -1)
3043 return -1;
3044
3045 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3046 {
3047 asection *sdyn;
3048 const struct elf_backend_data *bed;
3049 bfd_byte *extdyn;
3050
3051 bed = get_elf_backend_data (hash_table->dynobj);
3052 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3053 if (sdyn != NULL)
3054 for (extdyn = sdyn->contents;
3055 extdyn < sdyn->contents + sdyn->size;
3056 extdyn += bed->s->sizeof_dyn)
3057 {
3058 Elf_Internal_Dyn dyn;
3059
3060 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3061 if (dyn.d_tag == DT_NEEDED
3062 && dyn.d_un.d_val == strindex)
3063 {
3064 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3065 return 1;
3066 }
3067 }
3068 }
3069
3070 if (do_it)
3071 {
3072 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3073 return -1;
3074
3075 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3076 return -1;
3077 }
3078 else
3079 /* We were just checking for existence of the tag. */
3080 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3081
3082 return 0;
3083 }
3084
3085 static bfd_boolean
3086 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3087 {
3088 for (; needed != NULL; needed = needed->next)
3089 if (strcmp (soname, needed->name) == 0)
3090 return TRUE;
3091
3092 return FALSE;
3093 }
3094
3095 /* Sort symbol by value, section, and size. */
3096 static int
3097 elf_sort_symbol (const void *arg1, const void *arg2)
3098 {
3099 const struct elf_link_hash_entry *h1;
3100 const struct elf_link_hash_entry *h2;
3101 bfd_signed_vma vdiff;
3102
3103 h1 = *(const struct elf_link_hash_entry **) arg1;
3104 h2 = *(const struct elf_link_hash_entry **) arg2;
3105 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3106 if (vdiff != 0)
3107 return vdiff > 0 ? 1 : -1;
3108 else
3109 {
3110 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3111 if (sdiff != 0)
3112 return sdiff > 0 ? 1 : -1;
3113 }
3114 vdiff = h1->size - h2->size;
3115 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3116 }
3117
3118 /* This function is used to adjust offsets into .dynstr for
3119 dynamic symbols. This is called via elf_link_hash_traverse. */
3120
3121 static bfd_boolean
3122 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3123 {
3124 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3125
3126 if (h->dynindx != -1)
3127 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3128 return TRUE;
3129 }
3130
3131 /* Assign string offsets in .dynstr, update all structures referencing
3132 them. */
3133
3134 static bfd_boolean
3135 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3136 {
3137 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3138 struct elf_link_local_dynamic_entry *entry;
3139 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3140 bfd *dynobj = hash_table->dynobj;
3141 asection *sdyn;
3142 bfd_size_type size;
3143 const struct elf_backend_data *bed;
3144 bfd_byte *extdyn;
3145
3146 _bfd_elf_strtab_finalize (dynstr);
3147 size = _bfd_elf_strtab_size (dynstr);
3148
3149 bed = get_elf_backend_data (dynobj);
3150 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3151 BFD_ASSERT (sdyn != NULL);
3152
3153 /* Update all .dynamic entries referencing .dynstr strings. */
3154 for (extdyn = sdyn->contents;
3155 extdyn < sdyn->contents + sdyn->size;
3156 extdyn += bed->s->sizeof_dyn)
3157 {
3158 Elf_Internal_Dyn dyn;
3159
3160 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3161 switch (dyn.d_tag)
3162 {
3163 case DT_STRSZ:
3164 dyn.d_un.d_val = size;
3165 break;
3166 case DT_NEEDED:
3167 case DT_SONAME:
3168 case DT_RPATH:
3169 case DT_RUNPATH:
3170 case DT_FILTER:
3171 case DT_AUXILIARY:
3172 case DT_AUDIT:
3173 case DT_DEPAUDIT:
3174 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3175 break;
3176 default:
3177 continue;
3178 }
3179 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3180 }
3181
3182 /* Now update local dynamic symbols. */
3183 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3184 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3185 entry->isym.st_name);
3186
3187 /* And the rest of dynamic symbols. */
3188 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3189
3190 /* Adjust version definitions. */
3191 if (elf_tdata (output_bfd)->cverdefs)
3192 {
3193 asection *s;
3194 bfd_byte *p;
3195 bfd_size_type i;
3196 Elf_Internal_Verdef def;
3197 Elf_Internal_Verdaux defaux;
3198
3199 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3200 p = s->contents;
3201 do
3202 {
3203 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3204 &def);
3205 p += sizeof (Elf_External_Verdef);
3206 if (def.vd_aux != sizeof (Elf_External_Verdef))
3207 continue;
3208 for (i = 0; i < def.vd_cnt; ++i)
3209 {
3210 _bfd_elf_swap_verdaux_in (output_bfd,
3211 (Elf_External_Verdaux *) p, &defaux);
3212 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3213 defaux.vda_name);
3214 _bfd_elf_swap_verdaux_out (output_bfd,
3215 &defaux, (Elf_External_Verdaux *) p);
3216 p += sizeof (Elf_External_Verdaux);
3217 }
3218 }
3219 while (def.vd_next);
3220 }
3221
3222 /* Adjust version references. */
3223 if (elf_tdata (output_bfd)->verref)
3224 {
3225 asection *s;
3226 bfd_byte *p;
3227 bfd_size_type i;
3228 Elf_Internal_Verneed need;
3229 Elf_Internal_Vernaux needaux;
3230
3231 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3232 p = s->contents;
3233 do
3234 {
3235 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3236 &need);
3237 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3238 _bfd_elf_swap_verneed_out (output_bfd, &need,
3239 (Elf_External_Verneed *) p);
3240 p += sizeof (Elf_External_Verneed);
3241 for (i = 0; i < need.vn_cnt; ++i)
3242 {
3243 _bfd_elf_swap_vernaux_in (output_bfd,
3244 (Elf_External_Vernaux *) p, &needaux);
3245 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3246 needaux.vna_name);
3247 _bfd_elf_swap_vernaux_out (output_bfd,
3248 &needaux,
3249 (Elf_External_Vernaux *) p);
3250 p += sizeof (Elf_External_Vernaux);
3251 }
3252 }
3253 while (need.vn_next);
3254 }
3255
3256 return TRUE;
3257 }
3258 \f
3259 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3260 The default is to only match when the INPUT and OUTPUT are exactly
3261 the same target. */
3262
3263 bfd_boolean
3264 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3265 const bfd_target *output)
3266 {
3267 return input == output;
3268 }
3269
3270 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3271 This version is used when different targets for the same architecture
3272 are virtually identical. */
3273
3274 bfd_boolean
3275 _bfd_elf_relocs_compatible (const bfd_target *input,
3276 const bfd_target *output)
3277 {
3278 const struct elf_backend_data *obed, *ibed;
3279
3280 if (input == output)
3281 return TRUE;
3282
3283 ibed = xvec_get_elf_backend_data (input);
3284 obed = xvec_get_elf_backend_data (output);
3285
3286 if (ibed->arch != obed->arch)
3287 return FALSE;
3288
3289 /* If both backends are using this function, deem them compatible. */
3290 return ibed->relocs_compatible == obed->relocs_compatible;
3291 }
3292
3293 /* Make a special call to the linker "notice" function to tell it that
3294 we are about to handle an as-needed lib, or have finished
3295 processing the lib. */
3296
3297 bfd_boolean
3298 _bfd_elf_notice_as_needed (bfd *ibfd,
3299 struct bfd_link_info *info,
3300 enum notice_asneeded_action act)
3301 {
3302 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3303 }
3304
3305 /* Add symbols from an ELF object file to the linker hash table. */
3306
3307 static bfd_boolean
3308 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3309 {
3310 Elf_Internal_Ehdr *ehdr;
3311 Elf_Internal_Shdr *hdr;
3312 bfd_size_type symcount;
3313 bfd_size_type extsymcount;
3314 bfd_size_type extsymoff;
3315 struct elf_link_hash_entry **sym_hash;
3316 bfd_boolean dynamic;
3317 Elf_External_Versym *extversym = NULL;
3318 Elf_External_Versym *ever;
3319 struct elf_link_hash_entry *weaks;
3320 struct elf_link_hash_entry **nondeflt_vers = NULL;
3321 bfd_size_type nondeflt_vers_cnt = 0;
3322 Elf_Internal_Sym *isymbuf = NULL;
3323 Elf_Internal_Sym *isym;
3324 Elf_Internal_Sym *isymend;
3325 const struct elf_backend_data *bed;
3326 bfd_boolean add_needed;
3327 struct elf_link_hash_table *htab;
3328 bfd_size_type amt;
3329 void *alloc_mark = NULL;
3330 struct bfd_hash_entry **old_table = NULL;
3331 unsigned int old_size = 0;
3332 unsigned int old_count = 0;
3333 void *old_tab = NULL;
3334 void *old_ent;
3335 struct bfd_link_hash_entry *old_undefs = NULL;
3336 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3337 long old_dynsymcount = 0;
3338 bfd_size_type old_dynstr_size = 0;
3339 size_t tabsize = 0;
3340 asection *s;
3341
3342 htab = elf_hash_table (info);
3343 bed = get_elf_backend_data (abfd);
3344
3345 if ((abfd->flags & DYNAMIC) == 0)
3346 dynamic = FALSE;
3347 else
3348 {
3349 dynamic = TRUE;
3350
3351 /* You can't use -r against a dynamic object. Also, there's no
3352 hope of using a dynamic object which does not exactly match
3353 the format of the output file. */
3354 if (info->relocatable
3355 || !is_elf_hash_table (htab)
3356 || info->output_bfd->xvec != abfd->xvec)
3357 {
3358 if (info->relocatable)
3359 bfd_set_error (bfd_error_invalid_operation);
3360 else
3361 bfd_set_error (bfd_error_wrong_format);
3362 goto error_return;
3363 }
3364 }
3365
3366 ehdr = elf_elfheader (abfd);
3367 if (info->warn_alternate_em
3368 && bed->elf_machine_code != ehdr->e_machine
3369 && ((bed->elf_machine_alt1 != 0
3370 && ehdr->e_machine == bed->elf_machine_alt1)
3371 || (bed->elf_machine_alt2 != 0
3372 && ehdr->e_machine == bed->elf_machine_alt2)))
3373 info->callbacks->einfo
3374 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3375 ehdr->e_machine, abfd, bed->elf_machine_code);
3376
3377 /* As a GNU extension, any input sections which are named
3378 .gnu.warning.SYMBOL are treated as warning symbols for the given
3379 symbol. This differs from .gnu.warning sections, which generate
3380 warnings when they are included in an output file. */
3381 /* PR 12761: Also generate this warning when building shared libraries. */
3382 for (s = abfd->sections; s != NULL; s = s->next)
3383 {
3384 const char *name;
3385
3386 name = bfd_get_section_name (abfd, s);
3387 if (CONST_STRNEQ (name, ".gnu.warning."))
3388 {
3389 char *msg;
3390 bfd_size_type sz;
3391
3392 name += sizeof ".gnu.warning." - 1;
3393
3394 /* If this is a shared object, then look up the symbol
3395 in the hash table. If it is there, and it is already
3396 been defined, then we will not be using the entry
3397 from this shared object, so we don't need to warn.
3398 FIXME: If we see the definition in a regular object
3399 later on, we will warn, but we shouldn't. The only
3400 fix is to keep track of what warnings we are supposed
3401 to emit, and then handle them all at the end of the
3402 link. */
3403 if (dynamic)
3404 {
3405 struct elf_link_hash_entry *h;
3406
3407 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3408
3409 /* FIXME: What about bfd_link_hash_common? */
3410 if (h != NULL
3411 && (h->root.type == bfd_link_hash_defined
3412 || h->root.type == bfd_link_hash_defweak))
3413 continue;
3414 }
3415
3416 sz = s->size;
3417 msg = (char *) bfd_alloc (abfd, sz + 1);
3418 if (msg == NULL)
3419 goto error_return;
3420
3421 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3422 goto error_return;
3423
3424 msg[sz] = '\0';
3425
3426 if (! (_bfd_generic_link_add_one_symbol
3427 (info, abfd, name, BSF_WARNING, s, 0, msg,
3428 FALSE, bed->collect, NULL)))
3429 goto error_return;
3430
3431 if (!info->relocatable && info->executable)
3432 {
3433 /* Clobber the section size so that the warning does
3434 not get copied into the output file. */
3435 s->size = 0;
3436
3437 /* Also set SEC_EXCLUDE, so that symbols defined in
3438 the warning section don't get copied to the output. */
3439 s->flags |= SEC_EXCLUDE;
3440 }
3441 }
3442 }
3443
3444 add_needed = TRUE;
3445 if (! dynamic)
3446 {
3447 /* If we are creating a shared library, create all the dynamic
3448 sections immediately. We need to attach them to something,
3449 so we attach them to this BFD, provided it is the right
3450 format. FIXME: If there are no input BFD's of the same
3451 format as the output, we can't make a shared library. */
3452 if (info->shared
3453 && is_elf_hash_table (htab)
3454 && info->output_bfd->xvec == abfd->xvec
3455 && !htab->dynamic_sections_created)
3456 {
3457 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3458 goto error_return;
3459 }
3460 }
3461 else if (!is_elf_hash_table (htab))
3462 goto error_return;
3463 else
3464 {
3465 const char *soname = NULL;
3466 char *audit = NULL;
3467 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3468 int ret;
3469
3470 /* ld --just-symbols and dynamic objects don't mix very well.
3471 ld shouldn't allow it. */
3472 if ((s = abfd->sections) != NULL
3473 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3474 abort ();
3475
3476 /* If this dynamic lib was specified on the command line with
3477 --as-needed in effect, then we don't want to add a DT_NEEDED
3478 tag unless the lib is actually used. Similary for libs brought
3479 in by another lib's DT_NEEDED. When --no-add-needed is used
3480 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3481 any dynamic library in DT_NEEDED tags in the dynamic lib at
3482 all. */
3483 add_needed = (elf_dyn_lib_class (abfd)
3484 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3485 | DYN_NO_NEEDED)) == 0;
3486
3487 s = bfd_get_section_by_name (abfd, ".dynamic");
3488 if (s != NULL)
3489 {
3490 bfd_byte *dynbuf;
3491 bfd_byte *extdyn;
3492 unsigned int elfsec;
3493 unsigned long shlink;
3494
3495 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3496 {
3497 error_free_dyn:
3498 free (dynbuf);
3499 goto error_return;
3500 }
3501
3502 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3503 if (elfsec == SHN_BAD)
3504 goto error_free_dyn;
3505 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3506
3507 for (extdyn = dynbuf;
3508 extdyn < dynbuf + s->size;
3509 extdyn += bed->s->sizeof_dyn)
3510 {
3511 Elf_Internal_Dyn dyn;
3512
3513 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3514 if (dyn.d_tag == DT_SONAME)
3515 {
3516 unsigned int tagv = dyn.d_un.d_val;
3517 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3518 if (soname == NULL)
3519 goto error_free_dyn;
3520 }
3521 if (dyn.d_tag == DT_NEEDED)
3522 {
3523 struct bfd_link_needed_list *n, **pn;
3524 char *fnm, *anm;
3525 unsigned int tagv = dyn.d_un.d_val;
3526
3527 amt = sizeof (struct bfd_link_needed_list);
3528 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3529 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3530 if (n == NULL || fnm == NULL)
3531 goto error_free_dyn;
3532 amt = strlen (fnm) + 1;
3533 anm = (char *) bfd_alloc (abfd, amt);
3534 if (anm == NULL)
3535 goto error_free_dyn;
3536 memcpy (anm, fnm, amt);
3537 n->name = anm;
3538 n->by = abfd;
3539 n->next = NULL;
3540 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3541 ;
3542 *pn = n;
3543 }
3544 if (dyn.d_tag == DT_RUNPATH)
3545 {
3546 struct bfd_link_needed_list *n, **pn;
3547 char *fnm, *anm;
3548 unsigned int tagv = dyn.d_un.d_val;
3549
3550 amt = sizeof (struct bfd_link_needed_list);
3551 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3552 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3553 if (n == NULL || fnm == NULL)
3554 goto error_free_dyn;
3555 amt = strlen (fnm) + 1;
3556 anm = (char *) bfd_alloc (abfd, amt);
3557 if (anm == NULL)
3558 goto error_free_dyn;
3559 memcpy (anm, fnm, amt);
3560 n->name = anm;
3561 n->by = abfd;
3562 n->next = NULL;
3563 for (pn = & runpath;
3564 *pn != NULL;
3565 pn = &(*pn)->next)
3566 ;
3567 *pn = n;
3568 }
3569 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3570 if (!runpath && dyn.d_tag == DT_RPATH)
3571 {
3572 struct bfd_link_needed_list *n, **pn;
3573 char *fnm, *anm;
3574 unsigned int tagv = dyn.d_un.d_val;
3575
3576 amt = sizeof (struct bfd_link_needed_list);
3577 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3578 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3579 if (n == NULL || fnm == NULL)
3580 goto error_free_dyn;
3581 amt = strlen (fnm) + 1;
3582 anm = (char *) bfd_alloc (abfd, amt);
3583 if (anm == NULL)
3584 goto error_free_dyn;
3585 memcpy (anm, fnm, amt);
3586 n->name = anm;
3587 n->by = abfd;
3588 n->next = NULL;
3589 for (pn = & rpath;
3590 *pn != NULL;
3591 pn = &(*pn)->next)
3592 ;
3593 *pn = n;
3594 }
3595 if (dyn.d_tag == DT_AUDIT)
3596 {
3597 unsigned int tagv = dyn.d_un.d_val;
3598 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3599 }
3600 }
3601
3602 free (dynbuf);
3603 }
3604
3605 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3606 frees all more recently bfd_alloc'd blocks as well. */
3607 if (runpath)
3608 rpath = runpath;
3609
3610 if (rpath)
3611 {
3612 struct bfd_link_needed_list **pn;
3613 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3614 ;
3615 *pn = rpath;
3616 }
3617
3618 /* We do not want to include any of the sections in a dynamic
3619 object in the output file. We hack by simply clobbering the
3620 list of sections in the BFD. This could be handled more
3621 cleanly by, say, a new section flag; the existing
3622 SEC_NEVER_LOAD flag is not the one we want, because that one
3623 still implies that the section takes up space in the output
3624 file. */
3625 bfd_section_list_clear (abfd);
3626
3627 /* Find the name to use in a DT_NEEDED entry that refers to this
3628 object. If the object has a DT_SONAME entry, we use it.
3629 Otherwise, if the generic linker stuck something in
3630 elf_dt_name, we use that. Otherwise, we just use the file
3631 name. */
3632 if (soname == NULL || *soname == '\0')
3633 {
3634 soname = elf_dt_name (abfd);
3635 if (soname == NULL || *soname == '\0')
3636 soname = bfd_get_filename (abfd);
3637 }
3638
3639 /* Save the SONAME because sometimes the linker emulation code
3640 will need to know it. */
3641 elf_dt_name (abfd) = soname;
3642
3643 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3644 if (ret < 0)
3645 goto error_return;
3646
3647 /* If we have already included this dynamic object in the
3648 link, just ignore it. There is no reason to include a
3649 particular dynamic object more than once. */
3650 if (ret > 0)
3651 return TRUE;
3652
3653 /* Save the DT_AUDIT entry for the linker emulation code. */
3654 elf_dt_audit (abfd) = audit;
3655 }
3656
3657 /* If this is a dynamic object, we always link against the .dynsym
3658 symbol table, not the .symtab symbol table. The dynamic linker
3659 will only see the .dynsym symbol table, so there is no reason to
3660 look at .symtab for a dynamic object. */
3661
3662 if (! dynamic || elf_dynsymtab (abfd) == 0)
3663 hdr = &elf_tdata (abfd)->symtab_hdr;
3664 else
3665 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3666
3667 symcount = hdr->sh_size / bed->s->sizeof_sym;
3668
3669 /* The sh_info field of the symtab header tells us where the
3670 external symbols start. We don't care about the local symbols at
3671 this point. */
3672 if (elf_bad_symtab (abfd))
3673 {
3674 extsymcount = symcount;
3675 extsymoff = 0;
3676 }
3677 else
3678 {
3679 extsymcount = symcount - hdr->sh_info;
3680 extsymoff = hdr->sh_info;
3681 }
3682
3683 sym_hash = elf_sym_hashes (abfd);
3684 if (extsymcount != 0)
3685 {
3686 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3687 NULL, NULL, NULL);
3688 if (isymbuf == NULL)
3689 goto error_return;
3690
3691 if (sym_hash == NULL)
3692 {
3693 /* We store a pointer to the hash table entry for each
3694 external symbol. */
3695 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3696 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
3697 if (sym_hash == NULL)
3698 goto error_free_sym;
3699 elf_sym_hashes (abfd) = sym_hash;
3700 }
3701 }
3702
3703 if (dynamic)
3704 {
3705 /* Read in any version definitions. */
3706 if (!_bfd_elf_slurp_version_tables (abfd,
3707 info->default_imported_symver))
3708 goto error_free_sym;
3709
3710 /* Read in the symbol versions, but don't bother to convert them
3711 to internal format. */
3712 if (elf_dynversym (abfd) != 0)
3713 {
3714 Elf_Internal_Shdr *versymhdr;
3715
3716 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3717 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3718 if (extversym == NULL)
3719 goto error_free_sym;
3720 amt = versymhdr->sh_size;
3721 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3722 || bfd_bread (extversym, amt, abfd) != amt)
3723 goto error_free_vers;
3724 }
3725 }
3726
3727 /* If we are loading an as-needed shared lib, save the symbol table
3728 state before we start adding symbols. If the lib turns out
3729 to be unneeded, restore the state. */
3730 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3731 {
3732 unsigned int i;
3733 size_t entsize;
3734
3735 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3736 {
3737 struct bfd_hash_entry *p;
3738 struct elf_link_hash_entry *h;
3739
3740 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3741 {
3742 h = (struct elf_link_hash_entry *) p;
3743 entsize += htab->root.table.entsize;
3744 if (h->root.type == bfd_link_hash_warning)
3745 entsize += htab->root.table.entsize;
3746 }
3747 }
3748
3749 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3750 old_tab = bfd_malloc (tabsize + entsize);
3751 if (old_tab == NULL)
3752 goto error_free_vers;
3753
3754 /* Remember the current objalloc pointer, so that all mem for
3755 symbols added can later be reclaimed. */
3756 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3757 if (alloc_mark == NULL)
3758 goto error_free_vers;
3759
3760 /* Make a special call to the linker "notice" function to
3761 tell it that we are about to handle an as-needed lib. */
3762 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
3763 goto error_free_vers;
3764
3765 /* Clone the symbol table. Remember some pointers into the
3766 symbol table, and dynamic symbol count. */
3767 old_ent = (char *) old_tab + tabsize;
3768 memcpy (old_tab, htab->root.table.table, tabsize);
3769 old_undefs = htab->root.undefs;
3770 old_undefs_tail = htab->root.undefs_tail;
3771 old_table = htab->root.table.table;
3772 old_size = htab->root.table.size;
3773 old_count = htab->root.table.count;
3774 old_dynsymcount = htab->dynsymcount;
3775 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3776
3777 for (i = 0; i < htab->root.table.size; i++)
3778 {
3779 struct bfd_hash_entry *p;
3780 struct elf_link_hash_entry *h;
3781
3782 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3783 {
3784 memcpy (old_ent, p, htab->root.table.entsize);
3785 old_ent = (char *) old_ent + htab->root.table.entsize;
3786 h = (struct elf_link_hash_entry *) p;
3787 if (h->root.type == bfd_link_hash_warning)
3788 {
3789 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3790 old_ent = (char *) old_ent + htab->root.table.entsize;
3791 }
3792 }
3793 }
3794 }
3795
3796 weaks = NULL;
3797 ever = extversym != NULL ? extversym + extsymoff : NULL;
3798 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3799 isym < isymend;
3800 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3801 {
3802 int bind;
3803 bfd_vma value;
3804 asection *sec, *new_sec;
3805 flagword flags;
3806 const char *name;
3807 struct elf_link_hash_entry *h;
3808 struct elf_link_hash_entry *hi;
3809 bfd_boolean definition;
3810 bfd_boolean size_change_ok;
3811 bfd_boolean type_change_ok;
3812 bfd_boolean new_weakdef;
3813 bfd_boolean new_weak;
3814 bfd_boolean old_weak;
3815 bfd_boolean override;
3816 bfd_boolean common;
3817 unsigned int old_alignment;
3818 bfd *old_bfd;
3819
3820 override = FALSE;
3821
3822 flags = BSF_NO_FLAGS;
3823 sec = NULL;
3824 value = isym->st_value;
3825 common = bed->common_definition (isym);
3826
3827 bind = ELF_ST_BIND (isym->st_info);
3828 switch (bind)
3829 {
3830 case STB_LOCAL:
3831 /* This should be impossible, since ELF requires that all
3832 global symbols follow all local symbols, and that sh_info
3833 point to the first global symbol. Unfortunately, Irix 5
3834 screws this up. */
3835 continue;
3836
3837 case STB_GLOBAL:
3838 if (isym->st_shndx != SHN_UNDEF && !common)
3839 flags = BSF_GLOBAL;
3840 break;
3841
3842 case STB_WEAK:
3843 flags = BSF_WEAK;
3844 break;
3845
3846 case STB_GNU_UNIQUE:
3847 flags = BSF_GNU_UNIQUE;
3848 break;
3849
3850 default:
3851 /* Leave it up to the processor backend. */
3852 break;
3853 }
3854
3855 if (isym->st_shndx == SHN_UNDEF)
3856 sec = bfd_und_section_ptr;
3857 else if (isym->st_shndx == SHN_ABS)
3858 sec = bfd_abs_section_ptr;
3859 else if (isym->st_shndx == SHN_COMMON)
3860 {
3861 sec = bfd_com_section_ptr;
3862 /* What ELF calls the size we call the value. What ELF
3863 calls the value we call the alignment. */
3864 value = isym->st_size;
3865 }
3866 else
3867 {
3868 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3869 if (sec == NULL)
3870 sec = bfd_abs_section_ptr;
3871 else if (discarded_section (sec))
3872 {
3873 /* Symbols from discarded section are undefined. We keep
3874 its visibility. */
3875 sec = bfd_und_section_ptr;
3876 isym->st_shndx = SHN_UNDEF;
3877 }
3878 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3879 value -= sec->vma;
3880 }
3881
3882 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3883 isym->st_name);
3884 if (name == NULL)
3885 goto error_free_vers;
3886
3887 if (isym->st_shndx == SHN_COMMON
3888 && (abfd->flags & BFD_PLUGIN) != 0)
3889 {
3890 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3891
3892 if (xc == NULL)
3893 {
3894 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3895 | SEC_EXCLUDE);
3896 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3897 if (xc == NULL)
3898 goto error_free_vers;
3899 }
3900 sec = xc;
3901 }
3902 else if (isym->st_shndx == SHN_COMMON
3903 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3904 && !info->relocatable)
3905 {
3906 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3907
3908 if (tcomm == NULL)
3909 {
3910 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3911 | SEC_LINKER_CREATED);
3912 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3913 if (tcomm == NULL)
3914 goto error_free_vers;
3915 }
3916 sec = tcomm;
3917 }
3918 else if (bed->elf_add_symbol_hook)
3919 {
3920 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3921 &sec, &value))
3922 goto error_free_vers;
3923
3924 /* The hook function sets the name to NULL if this symbol
3925 should be skipped for some reason. */
3926 if (name == NULL)
3927 continue;
3928 }
3929
3930 /* Sanity check that all possibilities were handled. */
3931 if (sec == NULL)
3932 {
3933 bfd_set_error (bfd_error_bad_value);
3934 goto error_free_vers;
3935 }
3936
3937 /* Silently discard TLS symbols from --just-syms. There's
3938 no way to combine a static TLS block with a new TLS block
3939 for this executable. */
3940 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
3941 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3942 continue;
3943
3944 if (bfd_is_und_section (sec)
3945 || bfd_is_com_section (sec))
3946 definition = FALSE;
3947 else
3948 definition = TRUE;
3949
3950 size_change_ok = FALSE;
3951 type_change_ok = bed->type_change_ok;
3952 old_weak = FALSE;
3953 old_alignment = 0;
3954 old_bfd = NULL;
3955 new_sec = sec;
3956
3957 if (is_elf_hash_table (htab))
3958 {
3959 Elf_Internal_Versym iver;
3960 unsigned int vernum = 0;
3961 bfd_boolean skip;
3962
3963 if (ever == NULL)
3964 {
3965 if (info->default_imported_symver)
3966 /* Use the default symbol version created earlier. */
3967 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3968 else
3969 iver.vs_vers = 0;
3970 }
3971 else
3972 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3973
3974 vernum = iver.vs_vers & VERSYM_VERSION;
3975
3976 /* If this is a hidden symbol, or if it is not version
3977 1, we append the version name to the symbol name.
3978 However, we do not modify a non-hidden absolute symbol
3979 if it is not a function, because it might be the version
3980 symbol itself. FIXME: What if it isn't? */
3981 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3982 || (vernum > 1
3983 && (!bfd_is_abs_section (sec)
3984 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
3985 {
3986 const char *verstr;
3987 size_t namelen, verlen, newlen;
3988 char *newname, *p;
3989
3990 if (isym->st_shndx != SHN_UNDEF)
3991 {
3992 if (vernum > elf_tdata (abfd)->cverdefs)
3993 verstr = NULL;
3994 else if (vernum > 1)
3995 verstr =
3996 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
3997 else
3998 verstr = "";
3999
4000 if (verstr == NULL)
4001 {
4002 (*_bfd_error_handler)
4003 (_("%B: %s: invalid version %u (max %d)"),
4004 abfd, name, vernum,
4005 elf_tdata (abfd)->cverdefs);
4006 bfd_set_error (bfd_error_bad_value);
4007 goto error_free_vers;
4008 }
4009 }
4010 else
4011 {
4012 /* We cannot simply test for the number of
4013 entries in the VERNEED section since the
4014 numbers for the needed versions do not start
4015 at 0. */
4016 Elf_Internal_Verneed *t;
4017
4018 verstr = NULL;
4019 for (t = elf_tdata (abfd)->verref;
4020 t != NULL;
4021 t = t->vn_nextref)
4022 {
4023 Elf_Internal_Vernaux *a;
4024
4025 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4026 {
4027 if (a->vna_other == vernum)
4028 {
4029 verstr = a->vna_nodename;
4030 break;
4031 }
4032 }
4033 if (a != NULL)
4034 break;
4035 }
4036 if (verstr == NULL)
4037 {
4038 (*_bfd_error_handler)
4039 (_("%B: %s: invalid needed version %d"),
4040 abfd, name, vernum);
4041 bfd_set_error (bfd_error_bad_value);
4042 goto error_free_vers;
4043 }
4044 }
4045
4046 namelen = strlen (name);
4047 verlen = strlen (verstr);
4048 newlen = namelen + verlen + 2;
4049 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4050 && isym->st_shndx != SHN_UNDEF)
4051 ++newlen;
4052
4053 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4054 if (newname == NULL)
4055 goto error_free_vers;
4056 memcpy (newname, name, namelen);
4057 p = newname + namelen;
4058 *p++ = ELF_VER_CHR;
4059 /* If this is a defined non-hidden version symbol,
4060 we add another @ to the name. This indicates the
4061 default version of the symbol. */
4062 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4063 && isym->st_shndx != SHN_UNDEF)
4064 *p++ = ELF_VER_CHR;
4065 memcpy (p, verstr, verlen + 1);
4066
4067 name = newname;
4068 }
4069
4070 /* If this symbol has default visibility and the user has
4071 requested we not re-export it, then mark it as hidden. */
4072 if (definition
4073 && !dynamic
4074 && (abfd->no_export
4075 || (abfd->my_archive && abfd->my_archive->no_export))
4076 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4077 isym->st_other = (STV_HIDDEN
4078 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4079
4080 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4081 sym_hash, &old_bfd, &old_weak,
4082 &old_alignment, &skip, &override,
4083 &type_change_ok, &size_change_ok))
4084 goto error_free_vers;
4085
4086 if (skip)
4087 continue;
4088
4089 if (override)
4090 definition = FALSE;
4091
4092 h = *sym_hash;
4093 while (h->root.type == bfd_link_hash_indirect
4094 || h->root.type == bfd_link_hash_warning)
4095 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4096
4097 if (elf_tdata (abfd)->verdef != NULL
4098 && vernum > 1
4099 && definition)
4100 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4101 }
4102
4103 if (! (_bfd_generic_link_add_one_symbol
4104 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4105 (struct bfd_link_hash_entry **) sym_hash)))
4106 goto error_free_vers;
4107
4108 h = *sym_hash;
4109 /* We need to make sure that indirect symbol dynamic flags are
4110 updated. */
4111 hi = h;
4112 while (h->root.type == bfd_link_hash_indirect
4113 || h->root.type == bfd_link_hash_warning)
4114 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4115
4116 *sym_hash = h;
4117
4118 new_weak = (flags & BSF_WEAK) != 0;
4119 new_weakdef = FALSE;
4120 if (dynamic
4121 && definition
4122 && new_weak
4123 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4124 && is_elf_hash_table (htab)
4125 && h->u.weakdef == NULL)
4126 {
4127 /* Keep a list of all weak defined non function symbols from
4128 a dynamic object, using the weakdef field. Later in this
4129 function we will set the weakdef field to the correct
4130 value. We only put non-function symbols from dynamic
4131 objects on this list, because that happens to be the only
4132 time we need to know the normal symbol corresponding to a
4133 weak symbol, and the information is time consuming to
4134 figure out. If the weakdef field is not already NULL,
4135 then this symbol was already defined by some previous
4136 dynamic object, and we will be using that previous
4137 definition anyhow. */
4138
4139 h->u.weakdef = weaks;
4140 weaks = h;
4141 new_weakdef = TRUE;
4142 }
4143
4144 /* Set the alignment of a common symbol. */
4145 if ((common || bfd_is_com_section (sec))
4146 && h->root.type == bfd_link_hash_common)
4147 {
4148 unsigned int align;
4149
4150 if (common)
4151 align = bfd_log2 (isym->st_value);
4152 else
4153 {
4154 /* The new symbol is a common symbol in a shared object.
4155 We need to get the alignment from the section. */
4156 align = new_sec->alignment_power;
4157 }
4158 if (align > old_alignment)
4159 h->root.u.c.p->alignment_power = align;
4160 else
4161 h->root.u.c.p->alignment_power = old_alignment;
4162 }
4163
4164 if (is_elf_hash_table (htab))
4165 {
4166 /* Set a flag in the hash table entry indicating the type of
4167 reference or definition we just found. A dynamic symbol
4168 is one which is referenced or defined by both a regular
4169 object and a shared object. */
4170 bfd_boolean dynsym = FALSE;
4171
4172 /* Plugin symbols aren't normal. Don't set def_regular or
4173 ref_regular for them, or make them dynamic. */
4174 if ((abfd->flags & BFD_PLUGIN) != 0)
4175 ;
4176 else if (! dynamic)
4177 {
4178 if (! definition)
4179 {
4180 h->ref_regular = 1;
4181 if (bind != STB_WEAK)
4182 h->ref_regular_nonweak = 1;
4183 }
4184 else
4185 {
4186 h->def_regular = 1;
4187 if (h->def_dynamic)
4188 {
4189 h->def_dynamic = 0;
4190 h->ref_dynamic = 1;
4191 }
4192 }
4193
4194 /* If the indirect symbol has been forced local, don't
4195 make the real symbol dynamic. */
4196 if ((h == hi || !hi->forced_local)
4197 && (! info->executable
4198 || h->def_dynamic
4199 || h->ref_dynamic))
4200 dynsym = TRUE;
4201 }
4202 else
4203 {
4204 if (! definition)
4205 {
4206 h->ref_dynamic = 1;
4207 hi->ref_dynamic = 1;
4208 }
4209 else
4210 {
4211 h->def_dynamic = 1;
4212 hi->def_dynamic = 1;
4213 }
4214
4215 /* If the indirect symbol has been forced local, don't
4216 make the real symbol dynamic. */
4217 if ((h == hi || !hi->forced_local)
4218 && (h->def_regular
4219 || h->ref_regular
4220 || (h->u.weakdef != NULL
4221 && ! new_weakdef
4222 && h->u.weakdef->dynindx != -1)))
4223 dynsym = TRUE;
4224 }
4225
4226 /* Check to see if we need to add an indirect symbol for
4227 the default name. */
4228 if (definition
4229 || (!override && h->root.type == bfd_link_hash_common))
4230 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4231 sec, value, &old_bfd, &dynsym))
4232 goto error_free_vers;
4233
4234 /* Check the alignment when a common symbol is involved. This
4235 can change when a common symbol is overridden by a normal
4236 definition or a common symbol is ignored due to the old
4237 normal definition. We need to make sure the maximum
4238 alignment is maintained. */
4239 if ((old_alignment || common)
4240 && h->root.type != bfd_link_hash_common)
4241 {
4242 unsigned int common_align;
4243 unsigned int normal_align;
4244 unsigned int symbol_align;
4245 bfd *normal_bfd;
4246 bfd *common_bfd;
4247
4248 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4249 || h->root.type == bfd_link_hash_defweak);
4250
4251 symbol_align = ffs (h->root.u.def.value) - 1;
4252 if (h->root.u.def.section->owner != NULL
4253 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4254 {
4255 normal_align = h->root.u.def.section->alignment_power;
4256 if (normal_align > symbol_align)
4257 normal_align = symbol_align;
4258 }
4259 else
4260 normal_align = symbol_align;
4261
4262 if (old_alignment)
4263 {
4264 common_align = old_alignment;
4265 common_bfd = old_bfd;
4266 normal_bfd = abfd;
4267 }
4268 else
4269 {
4270 common_align = bfd_log2 (isym->st_value);
4271 common_bfd = abfd;
4272 normal_bfd = old_bfd;
4273 }
4274
4275 if (normal_align < common_align)
4276 {
4277 /* PR binutils/2735 */
4278 if (normal_bfd == NULL)
4279 (*_bfd_error_handler)
4280 (_("Warning: alignment %u of common symbol `%s' in %B is"
4281 " greater than the alignment (%u) of its section %A"),
4282 common_bfd, h->root.u.def.section,
4283 1 << common_align, name, 1 << normal_align);
4284 else
4285 (*_bfd_error_handler)
4286 (_("Warning: alignment %u of symbol `%s' in %B"
4287 " is smaller than %u in %B"),
4288 normal_bfd, common_bfd,
4289 1 << normal_align, name, 1 << common_align);
4290 }
4291 }
4292
4293 /* Remember the symbol size if it isn't undefined. */
4294 if (isym->st_size != 0
4295 && isym->st_shndx != SHN_UNDEF
4296 && (definition || h->size == 0))
4297 {
4298 if (h->size != 0
4299 && h->size != isym->st_size
4300 && ! size_change_ok)
4301 (*_bfd_error_handler)
4302 (_("Warning: size of symbol `%s' changed"
4303 " from %lu in %B to %lu in %B"),
4304 old_bfd, abfd,
4305 name, (unsigned long) h->size,
4306 (unsigned long) isym->st_size);
4307
4308 h->size = isym->st_size;
4309 }
4310
4311 /* If this is a common symbol, then we always want H->SIZE
4312 to be the size of the common symbol. The code just above
4313 won't fix the size if a common symbol becomes larger. We
4314 don't warn about a size change here, because that is
4315 covered by --warn-common. Allow changes between different
4316 function types. */
4317 if (h->root.type == bfd_link_hash_common)
4318 h->size = h->root.u.c.size;
4319
4320 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4321 && ((definition && !new_weak)
4322 || (old_weak && h->root.type == bfd_link_hash_common)
4323 || h->type == STT_NOTYPE))
4324 {
4325 unsigned int type = ELF_ST_TYPE (isym->st_info);
4326
4327 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4328 symbol. */
4329 if (type == STT_GNU_IFUNC
4330 && (abfd->flags & DYNAMIC) != 0)
4331 type = STT_FUNC;
4332
4333 if (h->type != type)
4334 {
4335 if (h->type != STT_NOTYPE && ! type_change_ok)
4336 (*_bfd_error_handler)
4337 (_("Warning: type of symbol `%s' changed"
4338 " from %d to %d in %B"),
4339 abfd, name, h->type, type);
4340
4341 h->type = type;
4342 }
4343 }
4344
4345 /* Merge st_other field. */
4346 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4347
4348 /* We don't want to make debug symbol dynamic. */
4349 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4350 dynsym = FALSE;
4351
4352 /* Nor should we make plugin symbols dynamic. */
4353 if ((abfd->flags & BFD_PLUGIN) != 0)
4354 dynsym = FALSE;
4355
4356 if (definition)
4357 {
4358 h->target_internal = isym->st_target_internal;
4359 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4360 }
4361
4362 if (definition && !dynamic)
4363 {
4364 char *p = strchr (name, ELF_VER_CHR);
4365 if (p != NULL && p[1] != ELF_VER_CHR)
4366 {
4367 /* Queue non-default versions so that .symver x, x@FOO
4368 aliases can be checked. */
4369 if (!nondeflt_vers)
4370 {
4371 amt = ((isymend - isym + 1)
4372 * sizeof (struct elf_link_hash_entry *));
4373 nondeflt_vers =
4374 (struct elf_link_hash_entry **) bfd_malloc (amt);
4375 if (!nondeflt_vers)
4376 goto error_free_vers;
4377 }
4378 nondeflt_vers[nondeflt_vers_cnt++] = h;
4379 }
4380 }
4381
4382 if (dynsym && h->dynindx == -1)
4383 {
4384 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4385 goto error_free_vers;
4386 if (h->u.weakdef != NULL
4387 && ! new_weakdef
4388 && h->u.weakdef->dynindx == -1)
4389 {
4390 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4391 goto error_free_vers;
4392 }
4393 }
4394 else if (dynsym && h->dynindx != -1)
4395 /* If the symbol already has a dynamic index, but
4396 visibility says it should not be visible, turn it into
4397 a local symbol. */
4398 switch (ELF_ST_VISIBILITY (h->other))
4399 {
4400 case STV_INTERNAL:
4401 case STV_HIDDEN:
4402 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4403 dynsym = FALSE;
4404 break;
4405 }
4406
4407 /* Don't add DT_NEEDED for references from the dummy bfd. */
4408 if (!add_needed
4409 && definition
4410 && ((dynsym
4411 && h->ref_regular_nonweak
4412 && (old_bfd == NULL
4413 || (old_bfd->flags & BFD_PLUGIN) == 0))
4414 || (h->ref_dynamic_nonweak
4415 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4416 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4417 {
4418 int ret;
4419 const char *soname = elf_dt_name (abfd);
4420
4421 info->callbacks->minfo ("%!", soname, old_bfd,
4422 h->root.root.string);
4423
4424 /* A symbol from a library loaded via DT_NEEDED of some
4425 other library is referenced by a regular object.
4426 Add a DT_NEEDED entry for it. Issue an error if
4427 --no-add-needed is used and the reference was not
4428 a weak one. */
4429 if (old_bfd != NULL
4430 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4431 {
4432 (*_bfd_error_handler)
4433 (_("%B: undefined reference to symbol '%s'"),
4434 old_bfd, name);
4435 bfd_set_error (bfd_error_missing_dso);
4436 goto error_free_vers;
4437 }
4438
4439 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4440 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4441
4442 add_needed = TRUE;
4443 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4444 if (ret < 0)
4445 goto error_free_vers;
4446
4447 BFD_ASSERT (ret == 0);
4448 }
4449 }
4450 }
4451
4452 if (extversym != NULL)
4453 {
4454 free (extversym);
4455 extversym = NULL;
4456 }
4457
4458 if (isymbuf != NULL)
4459 {
4460 free (isymbuf);
4461 isymbuf = NULL;
4462 }
4463
4464 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4465 {
4466 unsigned int i;
4467
4468 /* Restore the symbol table. */
4469 old_ent = (char *) old_tab + tabsize;
4470 memset (elf_sym_hashes (abfd), 0,
4471 extsymcount * sizeof (struct elf_link_hash_entry *));
4472 htab->root.table.table = old_table;
4473 htab->root.table.size = old_size;
4474 htab->root.table.count = old_count;
4475 memcpy (htab->root.table.table, old_tab, tabsize);
4476 htab->root.undefs = old_undefs;
4477 htab->root.undefs_tail = old_undefs_tail;
4478 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4479 for (i = 0; i < htab->root.table.size; i++)
4480 {
4481 struct bfd_hash_entry *p;
4482 struct elf_link_hash_entry *h;
4483 bfd_size_type size;
4484 unsigned int alignment_power;
4485
4486 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4487 {
4488 h = (struct elf_link_hash_entry *) p;
4489 if (h->root.type == bfd_link_hash_warning)
4490 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4491 if (h->dynindx >= old_dynsymcount
4492 && h->dynstr_index < old_dynstr_size)
4493 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4494
4495 /* Preserve the maximum alignment and size for common
4496 symbols even if this dynamic lib isn't on DT_NEEDED
4497 since it can still be loaded at run time by another
4498 dynamic lib. */
4499 if (h->root.type == bfd_link_hash_common)
4500 {
4501 size = h->root.u.c.size;
4502 alignment_power = h->root.u.c.p->alignment_power;
4503 }
4504 else
4505 {
4506 size = 0;
4507 alignment_power = 0;
4508 }
4509 memcpy (p, old_ent, htab->root.table.entsize);
4510 old_ent = (char *) old_ent + htab->root.table.entsize;
4511 h = (struct elf_link_hash_entry *) p;
4512 if (h->root.type == bfd_link_hash_warning)
4513 {
4514 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4515 old_ent = (char *) old_ent + htab->root.table.entsize;
4516 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4517 }
4518 if (h->root.type == bfd_link_hash_common)
4519 {
4520 if (size > h->root.u.c.size)
4521 h->root.u.c.size = size;
4522 if (alignment_power > h->root.u.c.p->alignment_power)
4523 h->root.u.c.p->alignment_power = alignment_power;
4524 }
4525 }
4526 }
4527
4528 /* Make a special call to the linker "notice" function to
4529 tell it that symbols added for crefs may need to be removed. */
4530 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4531 goto error_free_vers;
4532
4533 free (old_tab);
4534 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4535 alloc_mark);
4536 if (nondeflt_vers != NULL)
4537 free (nondeflt_vers);
4538 return TRUE;
4539 }
4540
4541 if (old_tab != NULL)
4542 {
4543 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4544 goto error_free_vers;
4545 free (old_tab);
4546 old_tab = NULL;
4547 }
4548
4549 /* Now that all the symbols from this input file are created, handle
4550 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4551 if (nondeflt_vers != NULL)
4552 {
4553 bfd_size_type cnt, symidx;
4554
4555 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4556 {
4557 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4558 char *shortname, *p;
4559
4560 p = strchr (h->root.root.string, ELF_VER_CHR);
4561 if (p == NULL
4562 || (h->root.type != bfd_link_hash_defined
4563 && h->root.type != bfd_link_hash_defweak))
4564 continue;
4565
4566 amt = p - h->root.root.string;
4567 shortname = (char *) bfd_malloc (amt + 1);
4568 if (!shortname)
4569 goto error_free_vers;
4570 memcpy (shortname, h->root.root.string, amt);
4571 shortname[amt] = '\0';
4572
4573 hi = (struct elf_link_hash_entry *)
4574 bfd_link_hash_lookup (&htab->root, shortname,
4575 FALSE, FALSE, FALSE);
4576 if (hi != NULL
4577 && hi->root.type == h->root.type
4578 && hi->root.u.def.value == h->root.u.def.value
4579 && hi->root.u.def.section == h->root.u.def.section)
4580 {
4581 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4582 hi->root.type = bfd_link_hash_indirect;
4583 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4584 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4585 sym_hash = elf_sym_hashes (abfd);
4586 if (sym_hash)
4587 for (symidx = 0; symidx < extsymcount; ++symidx)
4588 if (sym_hash[symidx] == hi)
4589 {
4590 sym_hash[symidx] = h;
4591 break;
4592 }
4593 }
4594 free (shortname);
4595 }
4596 free (nondeflt_vers);
4597 nondeflt_vers = NULL;
4598 }
4599
4600 /* Now set the weakdefs field correctly for all the weak defined
4601 symbols we found. The only way to do this is to search all the
4602 symbols. Since we only need the information for non functions in
4603 dynamic objects, that's the only time we actually put anything on
4604 the list WEAKS. We need this information so that if a regular
4605 object refers to a symbol defined weakly in a dynamic object, the
4606 real symbol in the dynamic object is also put in the dynamic
4607 symbols; we also must arrange for both symbols to point to the
4608 same memory location. We could handle the general case of symbol
4609 aliasing, but a general symbol alias can only be generated in
4610 assembler code, handling it correctly would be very time
4611 consuming, and other ELF linkers don't handle general aliasing
4612 either. */
4613 if (weaks != NULL)
4614 {
4615 struct elf_link_hash_entry **hpp;
4616 struct elf_link_hash_entry **hppend;
4617 struct elf_link_hash_entry **sorted_sym_hash;
4618 struct elf_link_hash_entry *h;
4619 size_t sym_count;
4620
4621 /* Since we have to search the whole symbol list for each weak
4622 defined symbol, search time for N weak defined symbols will be
4623 O(N^2). Binary search will cut it down to O(NlogN). */
4624 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4625 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4626 if (sorted_sym_hash == NULL)
4627 goto error_return;
4628 sym_hash = sorted_sym_hash;
4629 hpp = elf_sym_hashes (abfd);
4630 hppend = hpp + extsymcount;
4631 sym_count = 0;
4632 for (; hpp < hppend; hpp++)
4633 {
4634 h = *hpp;
4635 if (h != NULL
4636 && h->root.type == bfd_link_hash_defined
4637 && !bed->is_function_type (h->type))
4638 {
4639 *sym_hash = h;
4640 sym_hash++;
4641 sym_count++;
4642 }
4643 }
4644
4645 qsort (sorted_sym_hash, sym_count,
4646 sizeof (struct elf_link_hash_entry *),
4647 elf_sort_symbol);
4648
4649 while (weaks != NULL)
4650 {
4651 struct elf_link_hash_entry *hlook;
4652 asection *slook;
4653 bfd_vma vlook;
4654 size_t i, j, idx = 0;
4655
4656 hlook = weaks;
4657 weaks = hlook->u.weakdef;
4658 hlook->u.weakdef = NULL;
4659
4660 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4661 || hlook->root.type == bfd_link_hash_defweak
4662 || hlook->root.type == bfd_link_hash_common
4663 || hlook->root.type == bfd_link_hash_indirect);
4664 slook = hlook->root.u.def.section;
4665 vlook = hlook->root.u.def.value;
4666
4667 i = 0;
4668 j = sym_count;
4669 while (i != j)
4670 {
4671 bfd_signed_vma vdiff;
4672 idx = (i + j) / 2;
4673 h = sorted_sym_hash[idx];
4674 vdiff = vlook - h->root.u.def.value;
4675 if (vdiff < 0)
4676 j = idx;
4677 else if (vdiff > 0)
4678 i = idx + 1;
4679 else
4680 {
4681 long sdiff = slook->id - h->root.u.def.section->id;
4682 if (sdiff < 0)
4683 j = idx;
4684 else if (sdiff > 0)
4685 i = idx + 1;
4686 else
4687 break;
4688 }
4689 }
4690
4691 /* We didn't find a value/section match. */
4692 if (i == j)
4693 continue;
4694
4695 /* With multiple aliases, or when the weak symbol is already
4696 strongly defined, we have multiple matching symbols and
4697 the binary search above may land on any of them. Step
4698 one past the matching symbol(s). */
4699 while (++idx != j)
4700 {
4701 h = sorted_sym_hash[idx];
4702 if (h->root.u.def.section != slook
4703 || h->root.u.def.value != vlook)
4704 break;
4705 }
4706
4707 /* Now look back over the aliases. Since we sorted by size
4708 as well as value and section, we'll choose the one with
4709 the largest size. */
4710 while (idx-- != i)
4711 {
4712 h = sorted_sym_hash[idx];
4713
4714 /* Stop if value or section doesn't match. */
4715 if (h->root.u.def.section != slook
4716 || h->root.u.def.value != vlook)
4717 break;
4718 else if (h != hlook)
4719 {
4720 hlook->u.weakdef = h;
4721
4722 /* If the weak definition is in the list of dynamic
4723 symbols, make sure the real definition is put
4724 there as well. */
4725 if (hlook->dynindx != -1 && h->dynindx == -1)
4726 {
4727 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4728 {
4729 err_free_sym_hash:
4730 free (sorted_sym_hash);
4731 goto error_return;
4732 }
4733 }
4734
4735 /* If the real definition is in the list of dynamic
4736 symbols, make sure the weak definition is put
4737 there as well. If we don't do this, then the
4738 dynamic loader might not merge the entries for the
4739 real definition and the weak definition. */
4740 if (h->dynindx != -1 && hlook->dynindx == -1)
4741 {
4742 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4743 goto err_free_sym_hash;
4744 }
4745 break;
4746 }
4747 }
4748 }
4749
4750 free (sorted_sym_hash);
4751 }
4752
4753 if (bed->check_directives
4754 && !(*bed->check_directives) (abfd, info))
4755 return FALSE;
4756
4757 /* If this object is the same format as the output object, and it is
4758 not a shared library, then let the backend look through the
4759 relocs.
4760
4761 This is required to build global offset table entries and to
4762 arrange for dynamic relocs. It is not required for the
4763 particular common case of linking non PIC code, even when linking
4764 against shared libraries, but unfortunately there is no way of
4765 knowing whether an object file has been compiled PIC or not.
4766 Looking through the relocs is not particularly time consuming.
4767 The problem is that we must either (1) keep the relocs in memory,
4768 which causes the linker to require additional runtime memory or
4769 (2) read the relocs twice from the input file, which wastes time.
4770 This would be a good case for using mmap.
4771
4772 I have no idea how to handle linking PIC code into a file of a
4773 different format. It probably can't be done. */
4774 if (! dynamic
4775 && is_elf_hash_table (htab)
4776 && bed->check_relocs != NULL
4777 && elf_object_id (abfd) == elf_hash_table_id (htab)
4778 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4779 {
4780 asection *o;
4781
4782 for (o = abfd->sections; o != NULL; o = o->next)
4783 {
4784 Elf_Internal_Rela *internal_relocs;
4785 bfd_boolean ok;
4786
4787 if ((o->flags & SEC_RELOC) == 0
4788 || o->reloc_count == 0
4789 || ((info->strip == strip_all || info->strip == strip_debugger)
4790 && (o->flags & SEC_DEBUGGING) != 0)
4791 || bfd_is_abs_section (o->output_section))
4792 continue;
4793
4794 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4795 info->keep_memory);
4796 if (internal_relocs == NULL)
4797 goto error_return;
4798
4799 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4800
4801 if (elf_section_data (o)->relocs != internal_relocs)
4802 free (internal_relocs);
4803
4804 if (! ok)
4805 goto error_return;
4806 }
4807 }
4808
4809 /* If this is a non-traditional link, try to optimize the handling
4810 of the .stab/.stabstr sections. */
4811 if (! dynamic
4812 && ! info->traditional_format
4813 && is_elf_hash_table (htab)
4814 && (info->strip != strip_all && info->strip != strip_debugger))
4815 {
4816 asection *stabstr;
4817
4818 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4819 if (stabstr != NULL)
4820 {
4821 bfd_size_type string_offset = 0;
4822 asection *stab;
4823
4824 for (stab = abfd->sections; stab; stab = stab->next)
4825 if (CONST_STRNEQ (stab->name, ".stab")
4826 && (!stab->name[5] ||
4827 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4828 && (stab->flags & SEC_MERGE) == 0
4829 && !bfd_is_abs_section (stab->output_section))
4830 {
4831 struct bfd_elf_section_data *secdata;
4832
4833 secdata = elf_section_data (stab);
4834 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4835 stabstr, &secdata->sec_info,
4836 &string_offset))
4837 goto error_return;
4838 if (secdata->sec_info)
4839 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4840 }
4841 }
4842 }
4843
4844 if (is_elf_hash_table (htab) && add_needed)
4845 {
4846 /* Add this bfd to the loaded list. */
4847 struct elf_link_loaded_list *n;
4848
4849 n = (struct elf_link_loaded_list *)
4850 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4851 if (n == NULL)
4852 goto error_return;
4853 n->abfd = abfd;
4854 n->next = htab->loaded;
4855 htab->loaded = n;
4856 }
4857
4858 return TRUE;
4859
4860 error_free_vers:
4861 if (old_tab != NULL)
4862 free (old_tab);
4863 if (nondeflt_vers != NULL)
4864 free (nondeflt_vers);
4865 if (extversym != NULL)
4866 free (extversym);
4867 error_free_sym:
4868 if (isymbuf != NULL)
4869 free (isymbuf);
4870 error_return:
4871 return FALSE;
4872 }
4873
4874 /* Return the linker hash table entry of a symbol that might be
4875 satisfied by an archive symbol. Return -1 on error. */
4876
4877 struct elf_link_hash_entry *
4878 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4879 struct bfd_link_info *info,
4880 const char *name)
4881 {
4882 struct elf_link_hash_entry *h;
4883 char *p, *copy;
4884 size_t len, first;
4885
4886 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4887 if (h != NULL)
4888 return h;
4889
4890 /* If this is a default version (the name contains @@), look up the
4891 symbol again with only one `@' as well as without the version.
4892 The effect is that references to the symbol with and without the
4893 version will be matched by the default symbol in the archive. */
4894
4895 p = strchr (name, ELF_VER_CHR);
4896 if (p == NULL || p[1] != ELF_VER_CHR)
4897 return h;
4898
4899 /* First check with only one `@'. */
4900 len = strlen (name);
4901 copy = (char *) bfd_alloc (abfd, len);
4902 if (copy == NULL)
4903 return (struct elf_link_hash_entry *) 0 - 1;
4904
4905 first = p - name + 1;
4906 memcpy (copy, name, first);
4907 memcpy (copy + first, name + first + 1, len - first);
4908
4909 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4910 if (h == NULL)
4911 {
4912 /* We also need to check references to the symbol without the
4913 version. */
4914 copy[first - 1] = '\0';
4915 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4916 FALSE, FALSE, TRUE);
4917 }
4918
4919 bfd_release (abfd, copy);
4920 return h;
4921 }
4922
4923 /* Add symbols from an ELF archive file to the linker hash table. We
4924 don't use _bfd_generic_link_add_archive_symbols because we need to
4925 handle versioned symbols.
4926
4927 Fortunately, ELF archive handling is simpler than that done by
4928 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4929 oddities. In ELF, if we find a symbol in the archive map, and the
4930 symbol is currently undefined, we know that we must pull in that
4931 object file.
4932
4933 Unfortunately, we do have to make multiple passes over the symbol
4934 table until nothing further is resolved. */
4935
4936 static bfd_boolean
4937 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4938 {
4939 symindex c;
4940 unsigned char *included = NULL;
4941 carsym *symdefs;
4942 bfd_boolean loop;
4943 bfd_size_type amt;
4944 const struct elf_backend_data *bed;
4945 struct elf_link_hash_entry * (*archive_symbol_lookup)
4946 (bfd *, struct bfd_link_info *, const char *);
4947
4948 if (! bfd_has_map (abfd))
4949 {
4950 /* An empty archive is a special case. */
4951 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4952 return TRUE;
4953 bfd_set_error (bfd_error_no_armap);
4954 return FALSE;
4955 }
4956
4957 /* Keep track of all symbols we know to be already defined, and all
4958 files we know to be already included. This is to speed up the
4959 second and subsequent passes. */
4960 c = bfd_ardata (abfd)->symdef_count;
4961 if (c == 0)
4962 return TRUE;
4963 amt = c;
4964 amt *= sizeof (*included);
4965 included = (unsigned char *) bfd_zmalloc (amt);
4966 if (included == NULL)
4967 return FALSE;
4968
4969 symdefs = bfd_ardata (abfd)->symdefs;
4970 bed = get_elf_backend_data (abfd);
4971 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4972
4973 do
4974 {
4975 file_ptr last;
4976 symindex i;
4977 carsym *symdef;
4978 carsym *symdefend;
4979
4980 loop = FALSE;
4981 last = -1;
4982
4983 symdef = symdefs;
4984 symdefend = symdef + c;
4985 for (i = 0; symdef < symdefend; symdef++, i++)
4986 {
4987 struct elf_link_hash_entry *h;
4988 bfd *element;
4989 struct bfd_link_hash_entry *undefs_tail;
4990 symindex mark;
4991
4992 if (included[i])
4993 continue;
4994 if (symdef->file_offset == last)
4995 {
4996 included[i] = TRUE;
4997 continue;
4998 }
4999
5000 h = archive_symbol_lookup (abfd, info, symdef->name);
5001 if (h == (struct elf_link_hash_entry *) 0 - 1)
5002 goto error_return;
5003
5004 if (h == NULL)
5005 continue;
5006
5007 if (h->root.type == bfd_link_hash_common)
5008 {
5009 /* We currently have a common symbol. The archive map contains
5010 a reference to this symbol, so we may want to include it. We
5011 only want to include it however, if this archive element
5012 contains a definition of the symbol, not just another common
5013 declaration of it.
5014
5015 Unfortunately some archivers (including GNU ar) will put
5016 declarations of common symbols into their archive maps, as
5017 well as real definitions, so we cannot just go by the archive
5018 map alone. Instead we must read in the element's symbol
5019 table and check that to see what kind of symbol definition
5020 this is. */
5021 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5022 continue;
5023 }
5024 else if (h->root.type != bfd_link_hash_undefined)
5025 {
5026 if (h->root.type != bfd_link_hash_undefweak)
5027 /* Symbol must be defined. Don't check it again. */
5028 included[i] = TRUE;
5029 continue;
5030 }
5031
5032 /* We need to include this archive member. */
5033 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5034 if (element == NULL)
5035 goto error_return;
5036
5037 if (! bfd_check_format (element, bfd_object))
5038 goto error_return;
5039
5040 undefs_tail = info->hash->undefs_tail;
5041
5042 if (!(*info->callbacks
5043 ->add_archive_element) (info, element, symdef->name, &element))
5044 goto error_return;
5045 if (!bfd_link_add_symbols (element, info))
5046 goto error_return;
5047
5048 /* If there are any new undefined symbols, we need to make
5049 another pass through the archive in order to see whether
5050 they can be defined. FIXME: This isn't perfect, because
5051 common symbols wind up on undefs_tail and because an
5052 undefined symbol which is defined later on in this pass
5053 does not require another pass. This isn't a bug, but it
5054 does make the code less efficient than it could be. */
5055 if (undefs_tail != info->hash->undefs_tail)
5056 loop = TRUE;
5057
5058 /* Look backward to mark all symbols from this object file
5059 which we have already seen in this pass. */
5060 mark = i;
5061 do
5062 {
5063 included[mark] = TRUE;
5064 if (mark == 0)
5065 break;
5066 --mark;
5067 }
5068 while (symdefs[mark].file_offset == symdef->file_offset);
5069
5070 /* We mark subsequent symbols from this object file as we go
5071 on through the loop. */
5072 last = symdef->file_offset;
5073 }
5074 }
5075 while (loop);
5076
5077 free (included);
5078
5079 return TRUE;
5080
5081 error_return:
5082 if (included != NULL)
5083 free (included);
5084 return FALSE;
5085 }
5086
5087 /* Given an ELF BFD, add symbols to the global hash table as
5088 appropriate. */
5089
5090 bfd_boolean
5091 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5092 {
5093 switch (bfd_get_format (abfd))
5094 {
5095 case bfd_object:
5096 return elf_link_add_object_symbols (abfd, info);
5097 case bfd_archive:
5098 return elf_link_add_archive_symbols (abfd, info);
5099 default:
5100 bfd_set_error (bfd_error_wrong_format);
5101 return FALSE;
5102 }
5103 }
5104 \f
5105 struct hash_codes_info
5106 {
5107 unsigned long *hashcodes;
5108 bfd_boolean error;
5109 };
5110
5111 /* This function will be called though elf_link_hash_traverse to store
5112 all hash value of the exported symbols in an array. */
5113
5114 static bfd_boolean
5115 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5116 {
5117 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5118 const char *name;
5119 char *p;
5120 unsigned long ha;
5121 char *alc = NULL;
5122
5123 /* Ignore indirect symbols. These are added by the versioning code. */
5124 if (h->dynindx == -1)
5125 return TRUE;
5126
5127 name = h->root.root.string;
5128 p = strchr (name, ELF_VER_CHR);
5129 if (p != NULL)
5130 {
5131 alc = (char *) bfd_malloc (p - name + 1);
5132 if (alc == NULL)
5133 {
5134 inf->error = TRUE;
5135 return FALSE;
5136 }
5137 memcpy (alc, name, p - name);
5138 alc[p - name] = '\0';
5139 name = alc;
5140 }
5141
5142 /* Compute the hash value. */
5143 ha = bfd_elf_hash (name);
5144
5145 /* Store the found hash value in the array given as the argument. */
5146 *(inf->hashcodes)++ = ha;
5147
5148 /* And store it in the struct so that we can put it in the hash table
5149 later. */
5150 h->u.elf_hash_value = ha;
5151
5152 if (alc != NULL)
5153 free (alc);
5154
5155 return TRUE;
5156 }
5157
5158 struct collect_gnu_hash_codes
5159 {
5160 bfd *output_bfd;
5161 const struct elf_backend_data *bed;
5162 unsigned long int nsyms;
5163 unsigned long int maskbits;
5164 unsigned long int *hashcodes;
5165 unsigned long int *hashval;
5166 unsigned long int *indx;
5167 unsigned long int *counts;
5168 bfd_vma *bitmask;
5169 bfd_byte *contents;
5170 long int min_dynindx;
5171 unsigned long int bucketcount;
5172 unsigned long int symindx;
5173 long int local_indx;
5174 long int shift1, shift2;
5175 unsigned long int mask;
5176 bfd_boolean error;
5177 };
5178
5179 /* This function will be called though elf_link_hash_traverse to store
5180 all hash value of the exported symbols in an array. */
5181
5182 static bfd_boolean
5183 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5184 {
5185 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5186 const char *name;
5187 char *p;
5188 unsigned long ha;
5189 char *alc = NULL;
5190
5191 /* Ignore indirect symbols. These are added by the versioning code. */
5192 if (h->dynindx == -1)
5193 return TRUE;
5194
5195 /* Ignore also local symbols and undefined symbols. */
5196 if (! (*s->bed->elf_hash_symbol) (h))
5197 return TRUE;
5198
5199 name = h->root.root.string;
5200 p = strchr (name, ELF_VER_CHR);
5201 if (p != NULL)
5202 {
5203 alc = (char *) bfd_malloc (p - name + 1);
5204 if (alc == NULL)
5205 {
5206 s->error = TRUE;
5207 return FALSE;
5208 }
5209 memcpy (alc, name, p - name);
5210 alc[p - name] = '\0';
5211 name = alc;
5212 }
5213
5214 /* Compute the hash value. */
5215 ha = bfd_elf_gnu_hash (name);
5216
5217 /* Store the found hash value in the array for compute_bucket_count,
5218 and also for .dynsym reordering purposes. */
5219 s->hashcodes[s->nsyms] = ha;
5220 s->hashval[h->dynindx] = ha;
5221 ++s->nsyms;
5222 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5223 s->min_dynindx = h->dynindx;
5224
5225 if (alc != NULL)
5226 free (alc);
5227
5228 return TRUE;
5229 }
5230
5231 /* This function will be called though elf_link_hash_traverse to do
5232 final dynaminc symbol renumbering. */
5233
5234 static bfd_boolean
5235 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5236 {
5237 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5238 unsigned long int bucket;
5239 unsigned long int val;
5240
5241 /* Ignore indirect symbols. */
5242 if (h->dynindx == -1)
5243 return TRUE;
5244
5245 /* Ignore also local symbols and undefined symbols. */
5246 if (! (*s->bed->elf_hash_symbol) (h))
5247 {
5248 if (h->dynindx >= s->min_dynindx)
5249 h->dynindx = s->local_indx++;
5250 return TRUE;
5251 }
5252
5253 bucket = s->hashval[h->dynindx] % s->bucketcount;
5254 val = (s->hashval[h->dynindx] >> s->shift1)
5255 & ((s->maskbits >> s->shift1) - 1);
5256 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5257 s->bitmask[val]
5258 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5259 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5260 if (s->counts[bucket] == 1)
5261 /* Last element terminates the chain. */
5262 val |= 1;
5263 bfd_put_32 (s->output_bfd, val,
5264 s->contents + (s->indx[bucket] - s->symindx) * 4);
5265 --s->counts[bucket];
5266 h->dynindx = s->indx[bucket]++;
5267 return TRUE;
5268 }
5269
5270 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5271
5272 bfd_boolean
5273 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5274 {
5275 return !(h->forced_local
5276 || h->root.type == bfd_link_hash_undefined
5277 || h->root.type == bfd_link_hash_undefweak
5278 || ((h->root.type == bfd_link_hash_defined
5279 || h->root.type == bfd_link_hash_defweak)
5280 && h->root.u.def.section->output_section == NULL));
5281 }
5282
5283 /* Array used to determine the number of hash table buckets to use
5284 based on the number of symbols there are. If there are fewer than
5285 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5286 fewer than 37 we use 17 buckets, and so forth. We never use more
5287 than 32771 buckets. */
5288
5289 static const size_t elf_buckets[] =
5290 {
5291 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5292 16411, 32771, 0
5293 };
5294
5295 /* Compute bucket count for hashing table. We do not use a static set
5296 of possible tables sizes anymore. Instead we determine for all
5297 possible reasonable sizes of the table the outcome (i.e., the
5298 number of collisions etc) and choose the best solution. The
5299 weighting functions are not too simple to allow the table to grow
5300 without bounds. Instead one of the weighting factors is the size.
5301 Therefore the result is always a good payoff between few collisions
5302 (= short chain lengths) and table size. */
5303 static size_t
5304 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5305 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5306 unsigned long int nsyms,
5307 int gnu_hash)
5308 {
5309 size_t best_size = 0;
5310 unsigned long int i;
5311
5312 /* We have a problem here. The following code to optimize the table
5313 size requires an integer type with more the 32 bits. If
5314 BFD_HOST_U_64_BIT is set we know about such a type. */
5315 #ifdef BFD_HOST_U_64_BIT
5316 if (info->optimize)
5317 {
5318 size_t minsize;
5319 size_t maxsize;
5320 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5321 bfd *dynobj = elf_hash_table (info)->dynobj;
5322 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5323 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5324 unsigned long int *counts;
5325 bfd_size_type amt;
5326 unsigned int no_improvement_count = 0;
5327
5328 /* Possible optimization parameters: if we have NSYMS symbols we say
5329 that the hashing table must at least have NSYMS/4 and at most
5330 2*NSYMS buckets. */
5331 minsize = nsyms / 4;
5332 if (minsize == 0)
5333 minsize = 1;
5334 best_size = maxsize = nsyms * 2;
5335 if (gnu_hash)
5336 {
5337 if (minsize < 2)
5338 minsize = 2;
5339 if ((best_size & 31) == 0)
5340 ++best_size;
5341 }
5342
5343 /* Create array where we count the collisions in. We must use bfd_malloc
5344 since the size could be large. */
5345 amt = maxsize;
5346 amt *= sizeof (unsigned long int);
5347 counts = (unsigned long int *) bfd_malloc (amt);
5348 if (counts == NULL)
5349 return 0;
5350
5351 /* Compute the "optimal" size for the hash table. The criteria is a
5352 minimal chain length. The minor criteria is (of course) the size
5353 of the table. */
5354 for (i = minsize; i < maxsize; ++i)
5355 {
5356 /* Walk through the array of hashcodes and count the collisions. */
5357 BFD_HOST_U_64_BIT max;
5358 unsigned long int j;
5359 unsigned long int fact;
5360
5361 if (gnu_hash && (i & 31) == 0)
5362 continue;
5363
5364 memset (counts, '\0', i * sizeof (unsigned long int));
5365
5366 /* Determine how often each hash bucket is used. */
5367 for (j = 0; j < nsyms; ++j)
5368 ++counts[hashcodes[j] % i];
5369
5370 /* For the weight function we need some information about the
5371 pagesize on the target. This is information need not be 100%
5372 accurate. Since this information is not available (so far) we
5373 define it here to a reasonable default value. If it is crucial
5374 to have a better value some day simply define this value. */
5375 # ifndef BFD_TARGET_PAGESIZE
5376 # define BFD_TARGET_PAGESIZE (4096)
5377 # endif
5378
5379 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5380 and the chains. */
5381 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5382
5383 # if 1
5384 /* Variant 1: optimize for short chains. We add the squares
5385 of all the chain lengths (which favors many small chain
5386 over a few long chains). */
5387 for (j = 0; j < i; ++j)
5388 max += counts[j] * counts[j];
5389
5390 /* This adds penalties for the overall size of the table. */
5391 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5392 max *= fact * fact;
5393 # else
5394 /* Variant 2: Optimize a lot more for small table. Here we
5395 also add squares of the size but we also add penalties for
5396 empty slots (the +1 term). */
5397 for (j = 0; j < i; ++j)
5398 max += (1 + counts[j]) * (1 + counts[j]);
5399
5400 /* The overall size of the table is considered, but not as
5401 strong as in variant 1, where it is squared. */
5402 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5403 max *= fact;
5404 # endif
5405
5406 /* Compare with current best results. */
5407 if (max < best_chlen)
5408 {
5409 best_chlen = max;
5410 best_size = i;
5411 no_improvement_count = 0;
5412 }
5413 /* PR 11843: Avoid futile long searches for the best bucket size
5414 when there are a large number of symbols. */
5415 else if (++no_improvement_count == 100)
5416 break;
5417 }
5418
5419 free (counts);
5420 }
5421 else
5422 #endif /* defined (BFD_HOST_U_64_BIT) */
5423 {
5424 /* This is the fallback solution if no 64bit type is available or if we
5425 are not supposed to spend much time on optimizations. We select the
5426 bucket count using a fixed set of numbers. */
5427 for (i = 0; elf_buckets[i] != 0; i++)
5428 {
5429 best_size = elf_buckets[i];
5430 if (nsyms < elf_buckets[i + 1])
5431 break;
5432 }
5433 if (gnu_hash && best_size < 2)
5434 best_size = 2;
5435 }
5436
5437 return best_size;
5438 }
5439
5440 /* Size any SHT_GROUP section for ld -r. */
5441
5442 bfd_boolean
5443 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5444 {
5445 bfd *ibfd;
5446
5447 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5448 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5449 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5450 return FALSE;
5451 return TRUE;
5452 }
5453
5454 /* Set a default stack segment size. The value in INFO wins. If it
5455 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5456 undefined it is initialized. */
5457
5458 bfd_boolean
5459 bfd_elf_stack_segment_size (bfd *output_bfd,
5460 struct bfd_link_info *info,
5461 const char *legacy_symbol,
5462 bfd_vma default_size)
5463 {
5464 struct elf_link_hash_entry *h = NULL;
5465
5466 /* Look for legacy symbol. */
5467 if (legacy_symbol)
5468 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5469 FALSE, FALSE, FALSE);
5470 if (h && (h->root.type == bfd_link_hash_defined
5471 || h->root.type == bfd_link_hash_defweak)
5472 && h->def_regular
5473 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5474 {
5475 /* The symbol has no type if specified on the command line. */
5476 h->type = STT_OBJECT;
5477 if (info->stacksize)
5478 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5479 output_bfd, legacy_symbol);
5480 else if (h->root.u.def.section != bfd_abs_section_ptr)
5481 (*_bfd_error_handler) (_("%B: %s not absolute"),
5482 output_bfd, legacy_symbol);
5483 else
5484 info->stacksize = h->root.u.def.value;
5485 }
5486
5487 if (!info->stacksize)
5488 /* If the user didn't set a size, or explicitly inhibit the
5489 size, set it now. */
5490 info->stacksize = default_size;
5491
5492 /* Provide the legacy symbol, if it is referenced. */
5493 if (h && (h->root.type == bfd_link_hash_undefined
5494 || h->root.type == bfd_link_hash_undefweak))
5495 {
5496 struct bfd_link_hash_entry *bh = NULL;
5497
5498 if (!(_bfd_generic_link_add_one_symbol
5499 (info, output_bfd, legacy_symbol,
5500 BSF_GLOBAL, bfd_abs_section_ptr,
5501 info->stacksize >= 0 ? info->stacksize : 0,
5502 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5503 return FALSE;
5504
5505 h = (struct elf_link_hash_entry *) bh;
5506 h->def_regular = 1;
5507 h->type = STT_OBJECT;
5508 }
5509
5510 return TRUE;
5511 }
5512
5513 /* Set up the sizes and contents of the ELF dynamic sections. This is
5514 called by the ELF linker emulation before_allocation routine. We
5515 must set the sizes of the sections before the linker sets the
5516 addresses of the various sections. */
5517
5518 bfd_boolean
5519 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5520 const char *soname,
5521 const char *rpath,
5522 const char *filter_shlib,
5523 const char *audit,
5524 const char *depaudit,
5525 const char * const *auxiliary_filters,
5526 struct bfd_link_info *info,
5527 asection **sinterpptr)
5528 {
5529 bfd_size_type soname_indx;
5530 bfd *dynobj;
5531 const struct elf_backend_data *bed;
5532 struct elf_info_failed asvinfo;
5533
5534 *sinterpptr = NULL;
5535
5536 soname_indx = (bfd_size_type) -1;
5537
5538 if (!is_elf_hash_table (info->hash))
5539 return TRUE;
5540
5541 bed = get_elf_backend_data (output_bfd);
5542
5543 /* Any syms created from now on start with -1 in
5544 got.refcount/offset and plt.refcount/offset. */
5545 elf_hash_table (info)->init_got_refcount
5546 = elf_hash_table (info)->init_got_offset;
5547 elf_hash_table (info)->init_plt_refcount
5548 = elf_hash_table (info)->init_plt_offset;
5549
5550 if (info->relocatable
5551 && !_bfd_elf_size_group_sections (info))
5552 return FALSE;
5553
5554 /* The backend may have to create some sections regardless of whether
5555 we're dynamic or not. */
5556 if (bed->elf_backend_always_size_sections
5557 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5558 return FALSE;
5559
5560 /* Determine any GNU_STACK segment requirements, after the backend
5561 has had a chance to set a default segment size. */
5562 if (info->execstack)
5563 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5564 else if (info->noexecstack)
5565 elf_stack_flags (output_bfd) = PF_R | PF_W;
5566 else
5567 {
5568 bfd *inputobj;
5569 asection *notesec = NULL;
5570 int exec = 0;
5571
5572 for (inputobj = info->input_bfds;
5573 inputobj;
5574 inputobj = inputobj->link.next)
5575 {
5576 asection *s;
5577
5578 if (inputobj->flags
5579 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5580 continue;
5581 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5582 if (s)
5583 {
5584 if (s->flags & SEC_CODE)
5585 exec = PF_X;
5586 notesec = s;
5587 }
5588 else if (bed->default_execstack)
5589 exec = PF_X;
5590 }
5591 if (notesec || info->stacksize > 0)
5592 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5593 if (notesec && exec && info->relocatable
5594 && notesec->output_section != bfd_abs_section_ptr)
5595 notesec->output_section->flags |= SEC_CODE;
5596 }
5597
5598 dynobj = elf_hash_table (info)->dynobj;
5599
5600 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5601 {
5602 struct elf_info_failed eif;
5603 struct elf_link_hash_entry *h;
5604 asection *dynstr;
5605 struct bfd_elf_version_tree *t;
5606 struct bfd_elf_version_expr *d;
5607 asection *s;
5608 bfd_boolean all_defined;
5609
5610 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5611 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5612
5613 if (soname != NULL)
5614 {
5615 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5616 soname, TRUE);
5617 if (soname_indx == (bfd_size_type) -1
5618 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5619 return FALSE;
5620 }
5621
5622 if (info->symbolic)
5623 {
5624 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5625 return FALSE;
5626 info->flags |= DF_SYMBOLIC;
5627 }
5628
5629 if (rpath != NULL)
5630 {
5631 bfd_size_type indx;
5632 bfd_vma tag;
5633
5634 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5635 TRUE);
5636 if (indx == (bfd_size_type) -1)
5637 return FALSE;
5638
5639 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5640 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5641 return FALSE;
5642 }
5643
5644 if (filter_shlib != NULL)
5645 {
5646 bfd_size_type indx;
5647
5648 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5649 filter_shlib, TRUE);
5650 if (indx == (bfd_size_type) -1
5651 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5652 return FALSE;
5653 }
5654
5655 if (auxiliary_filters != NULL)
5656 {
5657 const char * const *p;
5658
5659 for (p = auxiliary_filters; *p != NULL; p++)
5660 {
5661 bfd_size_type indx;
5662
5663 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5664 *p, TRUE);
5665 if (indx == (bfd_size_type) -1
5666 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5667 return FALSE;
5668 }
5669 }
5670
5671 if (audit != NULL)
5672 {
5673 bfd_size_type indx;
5674
5675 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5676 TRUE);
5677 if (indx == (bfd_size_type) -1
5678 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5679 return FALSE;
5680 }
5681
5682 if (depaudit != NULL)
5683 {
5684 bfd_size_type indx;
5685
5686 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5687 TRUE);
5688 if (indx == (bfd_size_type) -1
5689 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5690 return FALSE;
5691 }
5692
5693 eif.info = info;
5694 eif.failed = FALSE;
5695
5696 /* If we are supposed to export all symbols into the dynamic symbol
5697 table (this is not the normal case), then do so. */
5698 if (info->export_dynamic
5699 || (info->executable && info->dynamic))
5700 {
5701 elf_link_hash_traverse (elf_hash_table (info),
5702 _bfd_elf_export_symbol,
5703 &eif);
5704 if (eif.failed)
5705 return FALSE;
5706 }
5707
5708 /* Make all global versions with definition. */
5709 for (t = info->version_info; t != NULL; t = t->next)
5710 for (d = t->globals.list; d != NULL; d = d->next)
5711 if (!d->symver && d->literal)
5712 {
5713 const char *verstr, *name;
5714 size_t namelen, verlen, newlen;
5715 char *newname, *p, leading_char;
5716 struct elf_link_hash_entry *newh;
5717
5718 leading_char = bfd_get_symbol_leading_char (output_bfd);
5719 name = d->pattern;
5720 namelen = strlen (name) + (leading_char != '\0');
5721 verstr = t->name;
5722 verlen = strlen (verstr);
5723 newlen = namelen + verlen + 3;
5724
5725 newname = (char *) bfd_malloc (newlen);
5726 if (newname == NULL)
5727 return FALSE;
5728 newname[0] = leading_char;
5729 memcpy (newname + (leading_char != '\0'), name, namelen);
5730
5731 /* Check the hidden versioned definition. */
5732 p = newname + namelen;
5733 *p++ = ELF_VER_CHR;
5734 memcpy (p, verstr, verlen + 1);
5735 newh = elf_link_hash_lookup (elf_hash_table (info),
5736 newname, FALSE, FALSE,
5737 FALSE);
5738 if (newh == NULL
5739 || (newh->root.type != bfd_link_hash_defined
5740 && newh->root.type != bfd_link_hash_defweak))
5741 {
5742 /* Check the default versioned definition. */
5743 *p++ = ELF_VER_CHR;
5744 memcpy (p, verstr, verlen + 1);
5745 newh = elf_link_hash_lookup (elf_hash_table (info),
5746 newname, FALSE, FALSE,
5747 FALSE);
5748 }
5749 free (newname);
5750
5751 /* Mark this version if there is a definition and it is
5752 not defined in a shared object. */
5753 if (newh != NULL
5754 && !newh->def_dynamic
5755 && (newh->root.type == bfd_link_hash_defined
5756 || newh->root.type == bfd_link_hash_defweak))
5757 d->symver = 1;
5758 }
5759
5760 /* Attach all the symbols to their version information. */
5761 asvinfo.info = info;
5762 asvinfo.failed = FALSE;
5763
5764 elf_link_hash_traverse (elf_hash_table (info),
5765 _bfd_elf_link_assign_sym_version,
5766 &asvinfo);
5767 if (asvinfo.failed)
5768 return FALSE;
5769
5770 if (!info->allow_undefined_version)
5771 {
5772 /* Check if all global versions have a definition. */
5773 all_defined = TRUE;
5774 for (t = info->version_info; t != NULL; t = t->next)
5775 for (d = t->globals.list; d != NULL; d = d->next)
5776 if (d->literal && !d->symver && !d->script)
5777 {
5778 (*_bfd_error_handler)
5779 (_("%s: undefined version: %s"),
5780 d->pattern, t->name);
5781 all_defined = FALSE;
5782 }
5783
5784 if (!all_defined)
5785 {
5786 bfd_set_error (bfd_error_bad_value);
5787 return FALSE;
5788 }
5789 }
5790
5791 /* Find all symbols which were defined in a dynamic object and make
5792 the backend pick a reasonable value for them. */
5793 elf_link_hash_traverse (elf_hash_table (info),
5794 _bfd_elf_adjust_dynamic_symbol,
5795 &eif);
5796 if (eif.failed)
5797 return FALSE;
5798
5799 /* Add some entries to the .dynamic section. We fill in some of the
5800 values later, in bfd_elf_final_link, but we must add the entries
5801 now so that we know the final size of the .dynamic section. */
5802
5803 /* If there are initialization and/or finalization functions to
5804 call then add the corresponding DT_INIT/DT_FINI entries. */
5805 h = (info->init_function
5806 ? elf_link_hash_lookup (elf_hash_table (info),
5807 info->init_function, FALSE,
5808 FALSE, FALSE)
5809 : NULL);
5810 if (h != NULL
5811 && (h->ref_regular
5812 || h->def_regular))
5813 {
5814 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5815 return FALSE;
5816 }
5817 h = (info->fini_function
5818 ? elf_link_hash_lookup (elf_hash_table (info),
5819 info->fini_function, FALSE,
5820 FALSE, FALSE)
5821 : NULL);
5822 if (h != NULL
5823 && (h->ref_regular
5824 || h->def_regular))
5825 {
5826 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5827 return FALSE;
5828 }
5829
5830 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5831 if (s != NULL && s->linker_has_input)
5832 {
5833 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5834 if (! info->executable)
5835 {
5836 bfd *sub;
5837 asection *o;
5838
5839 for (sub = info->input_bfds; sub != NULL;
5840 sub = sub->link.next)
5841 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5842 for (o = sub->sections; o != NULL; o = o->next)
5843 if (elf_section_data (o)->this_hdr.sh_type
5844 == SHT_PREINIT_ARRAY)
5845 {
5846 (*_bfd_error_handler)
5847 (_("%B: .preinit_array section is not allowed in DSO"),
5848 sub);
5849 break;
5850 }
5851
5852 bfd_set_error (bfd_error_nonrepresentable_section);
5853 return FALSE;
5854 }
5855
5856 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5857 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5858 return FALSE;
5859 }
5860 s = bfd_get_section_by_name (output_bfd, ".init_array");
5861 if (s != NULL && s->linker_has_input)
5862 {
5863 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5864 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5865 return FALSE;
5866 }
5867 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5868 if (s != NULL && s->linker_has_input)
5869 {
5870 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5871 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5872 return FALSE;
5873 }
5874
5875 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5876 /* If .dynstr is excluded from the link, we don't want any of
5877 these tags. Strictly, we should be checking each section
5878 individually; This quick check covers for the case where
5879 someone does a /DISCARD/ : { *(*) }. */
5880 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5881 {
5882 bfd_size_type strsize;
5883
5884 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5885 if ((info->emit_hash
5886 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5887 || (info->emit_gnu_hash
5888 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5889 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5890 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5891 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5892 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5893 bed->s->sizeof_sym))
5894 return FALSE;
5895 }
5896 }
5897
5898 /* The backend must work out the sizes of all the other dynamic
5899 sections. */
5900 if (dynobj != NULL
5901 && bed->elf_backend_size_dynamic_sections != NULL
5902 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5903 return FALSE;
5904
5905 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5906 return FALSE;
5907
5908 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5909 {
5910 unsigned long section_sym_count;
5911 struct bfd_elf_version_tree *verdefs;
5912 asection *s;
5913
5914 /* Set up the version definition section. */
5915 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
5916 BFD_ASSERT (s != NULL);
5917
5918 /* We may have created additional version definitions if we are
5919 just linking a regular application. */
5920 verdefs = info->version_info;
5921
5922 /* Skip anonymous version tag. */
5923 if (verdefs != NULL && verdefs->vernum == 0)
5924 verdefs = verdefs->next;
5925
5926 if (verdefs == NULL && !info->create_default_symver)
5927 s->flags |= SEC_EXCLUDE;
5928 else
5929 {
5930 unsigned int cdefs;
5931 bfd_size_type size;
5932 struct bfd_elf_version_tree *t;
5933 bfd_byte *p;
5934 Elf_Internal_Verdef def;
5935 Elf_Internal_Verdaux defaux;
5936 struct bfd_link_hash_entry *bh;
5937 struct elf_link_hash_entry *h;
5938 const char *name;
5939
5940 cdefs = 0;
5941 size = 0;
5942
5943 /* Make space for the base version. */
5944 size += sizeof (Elf_External_Verdef);
5945 size += sizeof (Elf_External_Verdaux);
5946 ++cdefs;
5947
5948 /* Make space for the default version. */
5949 if (info->create_default_symver)
5950 {
5951 size += sizeof (Elf_External_Verdef);
5952 ++cdefs;
5953 }
5954
5955 for (t = verdefs; t != NULL; t = t->next)
5956 {
5957 struct bfd_elf_version_deps *n;
5958
5959 /* Don't emit base version twice. */
5960 if (t->vernum == 0)
5961 continue;
5962
5963 size += sizeof (Elf_External_Verdef);
5964 size += sizeof (Elf_External_Verdaux);
5965 ++cdefs;
5966
5967 for (n = t->deps; n != NULL; n = n->next)
5968 size += sizeof (Elf_External_Verdaux);
5969 }
5970
5971 s->size = size;
5972 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5973 if (s->contents == NULL && s->size != 0)
5974 return FALSE;
5975
5976 /* Fill in the version definition section. */
5977
5978 p = s->contents;
5979
5980 def.vd_version = VER_DEF_CURRENT;
5981 def.vd_flags = VER_FLG_BASE;
5982 def.vd_ndx = 1;
5983 def.vd_cnt = 1;
5984 if (info->create_default_symver)
5985 {
5986 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5987 def.vd_next = sizeof (Elf_External_Verdef);
5988 }
5989 else
5990 {
5991 def.vd_aux = sizeof (Elf_External_Verdef);
5992 def.vd_next = (sizeof (Elf_External_Verdef)
5993 + sizeof (Elf_External_Verdaux));
5994 }
5995
5996 if (soname_indx != (bfd_size_type) -1)
5997 {
5998 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5999 soname_indx);
6000 def.vd_hash = bfd_elf_hash (soname);
6001 defaux.vda_name = soname_indx;
6002 name = soname;
6003 }
6004 else
6005 {
6006 bfd_size_type indx;
6007
6008 name = lbasename (output_bfd->filename);
6009 def.vd_hash = bfd_elf_hash (name);
6010 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6011 name, FALSE);
6012 if (indx == (bfd_size_type) -1)
6013 return FALSE;
6014 defaux.vda_name = indx;
6015 }
6016 defaux.vda_next = 0;
6017
6018 _bfd_elf_swap_verdef_out (output_bfd, &def,
6019 (Elf_External_Verdef *) p);
6020 p += sizeof (Elf_External_Verdef);
6021 if (info->create_default_symver)
6022 {
6023 /* Add a symbol representing this version. */
6024 bh = NULL;
6025 if (! (_bfd_generic_link_add_one_symbol
6026 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6027 0, NULL, FALSE,
6028 get_elf_backend_data (dynobj)->collect, &bh)))
6029 return FALSE;
6030 h = (struct elf_link_hash_entry *) bh;
6031 h->non_elf = 0;
6032 h->def_regular = 1;
6033 h->type = STT_OBJECT;
6034 h->verinfo.vertree = NULL;
6035
6036 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6037 return FALSE;
6038
6039 /* Create a duplicate of the base version with the same
6040 aux block, but different flags. */
6041 def.vd_flags = 0;
6042 def.vd_ndx = 2;
6043 def.vd_aux = sizeof (Elf_External_Verdef);
6044 if (verdefs)
6045 def.vd_next = (sizeof (Elf_External_Verdef)
6046 + sizeof (Elf_External_Verdaux));
6047 else
6048 def.vd_next = 0;
6049 _bfd_elf_swap_verdef_out (output_bfd, &def,
6050 (Elf_External_Verdef *) p);
6051 p += sizeof (Elf_External_Verdef);
6052 }
6053 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6054 (Elf_External_Verdaux *) p);
6055 p += sizeof (Elf_External_Verdaux);
6056
6057 for (t = verdefs; t != NULL; t = t->next)
6058 {
6059 unsigned int cdeps;
6060 struct bfd_elf_version_deps *n;
6061
6062 /* Don't emit the base version twice. */
6063 if (t->vernum == 0)
6064 continue;
6065
6066 cdeps = 0;
6067 for (n = t->deps; n != NULL; n = n->next)
6068 ++cdeps;
6069
6070 /* Add a symbol representing this version. */
6071 bh = NULL;
6072 if (! (_bfd_generic_link_add_one_symbol
6073 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6074 0, NULL, FALSE,
6075 get_elf_backend_data (dynobj)->collect, &bh)))
6076 return FALSE;
6077 h = (struct elf_link_hash_entry *) bh;
6078 h->non_elf = 0;
6079 h->def_regular = 1;
6080 h->type = STT_OBJECT;
6081 h->verinfo.vertree = t;
6082
6083 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6084 return FALSE;
6085
6086 def.vd_version = VER_DEF_CURRENT;
6087 def.vd_flags = 0;
6088 if (t->globals.list == NULL
6089 && t->locals.list == NULL
6090 && ! t->used)
6091 def.vd_flags |= VER_FLG_WEAK;
6092 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6093 def.vd_cnt = cdeps + 1;
6094 def.vd_hash = bfd_elf_hash (t->name);
6095 def.vd_aux = sizeof (Elf_External_Verdef);
6096 def.vd_next = 0;
6097
6098 /* If a basever node is next, it *must* be the last node in
6099 the chain, otherwise Verdef construction breaks. */
6100 if (t->next != NULL && t->next->vernum == 0)
6101 BFD_ASSERT (t->next->next == NULL);
6102
6103 if (t->next != NULL && t->next->vernum != 0)
6104 def.vd_next = (sizeof (Elf_External_Verdef)
6105 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6106
6107 _bfd_elf_swap_verdef_out (output_bfd, &def,
6108 (Elf_External_Verdef *) p);
6109 p += sizeof (Elf_External_Verdef);
6110
6111 defaux.vda_name = h->dynstr_index;
6112 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6113 h->dynstr_index);
6114 defaux.vda_next = 0;
6115 if (t->deps != NULL)
6116 defaux.vda_next = sizeof (Elf_External_Verdaux);
6117 t->name_indx = defaux.vda_name;
6118
6119 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6120 (Elf_External_Verdaux *) p);
6121 p += sizeof (Elf_External_Verdaux);
6122
6123 for (n = t->deps; n != NULL; n = n->next)
6124 {
6125 if (n->version_needed == NULL)
6126 {
6127 /* This can happen if there was an error in the
6128 version script. */
6129 defaux.vda_name = 0;
6130 }
6131 else
6132 {
6133 defaux.vda_name = n->version_needed->name_indx;
6134 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6135 defaux.vda_name);
6136 }
6137 if (n->next == NULL)
6138 defaux.vda_next = 0;
6139 else
6140 defaux.vda_next = sizeof (Elf_External_Verdaux);
6141
6142 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6143 (Elf_External_Verdaux *) p);
6144 p += sizeof (Elf_External_Verdaux);
6145 }
6146 }
6147
6148 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6149 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6150 return FALSE;
6151
6152 elf_tdata (output_bfd)->cverdefs = cdefs;
6153 }
6154
6155 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6156 {
6157 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6158 return FALSE;
6159 }
6160 else if (info->flags & DF_BIND_NOW)
6161 {
6162 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6163 return FALSE;
6164 }
6165
6166 if (info->flags_1)
6167 {
6168 if (info->executable)
6169 info->flags_1 &= ~ (DF_1_INITFIRST
6170 | DF_1_NODELETE
6171 | DF_1_NOOPEN);
6172 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6173 return FALSE;
6174 }
6175
6176 /* Work out the size of the version reference section. */
6177
6178 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6179 BFD_ASSERT (s != NULL);
6180 {
6181 struct elf_find_verdep_info sinfo;
6182
6183 sinfo.info = info;
6184 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6185 if (sinfo.vers == 0)
6186 sinfo.vers = 1;
6187 sinfo.failed = FALSE;
6188
6189 elf_link_hash_traverse (elf_hash_table (info),
6190 _bfd_elf_link_find_version_dependencies,
6191 &sinfo);
6192 if (sinfo.failed)
6193 return FALSE;
6194
6195 if (elf_tdata (output_bfd)->verref == NULL)
6196 s->flags |= SEC_EXCLUDE;
6197 else
6198 {
6199 Elf_Internal_Verneed *t;
6200 unsigned int size;
6201 unsigned int crefs;
6202 bfd_byte *p;
6203
6204 /* Build the version dependency section. */
6205 size = 0;
6206 crefs = 0;
6207 for (t = elf_tdata (output_bfd)->verref;
6208 t != NULL;
6209 t = t->vn_nextref)
6210 {
6211 Elf_Internal_Vernaux *a;
6212
6213 size += sizeof (Elf_External_Verneed);
6214 ++crefs;
6215 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6216 size += sizeof (Elf_External_Vernaux);
6217 }
6218
6219 s->size = size;
6220 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6221 if (s->contents == NULL)
6222 return FALSE;
6223
6224 p = s->contents;
6225 for (t = elf_tdata (output_bfd)->verref;
6226 t != NULL;
6227 t = t->vn_nextref)
6228 {
6229 unsigned int caux;
6230 Elf_Internal_Vernaux *a;
6231 bfd_size_type indx;
6232
6233 caux = 0;
6234 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6235 ++caux;
6236
6237 t->vn_version = VER_NEED_CURRENT;
6238 t->vn_cnt = caux;
6239 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6240 elf_dt_name (t->vn_bfd) != NULL
6241 ? elf_dt_name (t->vn_bfd)
6242 : lbasename (t->vn_bfd->filename),
6243 FALSE);
6244 if (indx == (bfd_size_type) -1)
6245 return FALSE;
6246 t->vn_file = indx;
6247 t->vn_aux = sizeof (Elf_External_Verneed);
6248 if (t->vn_nextref == NULL)
6249 t->vn_next = 0;
6250 else
6251 t->vn_next = (sizeof (Elf_External_Verneed)
6252 + caux * sizeof (Elf_External_Vernaux));
6253
6254 _bfd_elf_swap_verneed_out (output_bfd, t,
6255 (Elf_External_Verneed *) p);
6256 p += sizeof (Elf_External_Verneed);
6257
6258 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6259 {
6260 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6261 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6262 a->vna_nodename, FALSE);
6263 if (indx == (bfd_size_type) -1)
6264 return FALSE;
6265 a->vna_name = indx;
6266 if (a->vna_nextptr == NULL)
6267 a->vna_next = 0;
6268 else
6269 a->vna_next = sizeof (Elf_External_Vernaux);
6270
6271 _bfd_elf_swap_vernaux_out (output_bfd, a,
6272 (Elf_External_Vernaux *) p);
6273 p += sizeof (Elf_External_Vernaux);
6274 }
6275 }
6276
6277 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6278 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6279 return FALSE;
6280
6281 elf_tdata (output_bfd)->cverrefs = crefs;
6282 }
6283 }
6284
6285 if ((elf_tdata (output_bfd)->cverrefs == 0
6286 && elf_tdata (output_bfd)->cverdefs == 0)
6287 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6288 &section_sym_count) == 0)
6289 {
6290 s = bfd_get_linker_section (dynobj, ".gnu.version");
6291 s->flags |= SEC_EXCLUDE;
6292 }
6293 }
6294 return TRUE;
6295 }
6296
6297 /* Find the first non-excluded output section. We'll use its
6298 section symbol for some emitted relocs. */
6299 void
6300 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6301 {
6302 asection *s;
6303
6304 for (s = output_bfd->sections; s != NULL; s = s->next)
6305 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6306 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6307 {
6308 elf_hash_table (info)->text_index_section = s;
6309 break;
6310 }
6311 }
6312
6313 /* Find two non-excluded output sections, one for code, one for data.
6314 We'll use their section symbols for some emitted relocs. */
6315 void
6316 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6317 {
6318 asection *s;
6319
6320 /* Data first, since setting text_index_section changes
6321 _bfd_elf_link_omit_section_dynsym. */
6322 for (s = output_bfd->sections; s != NULL; s = s->next)
6323 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6324 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6325 {
6326 elf_hash_table (info)->data_index_section = s;
6327 break;
6328 }
6329
6330 for (s = output_bfd->sections; s != NULL; s = s->next)
6331 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6332 == (SEC_ALLOC | SEC_READONLY))
6333 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6334 {
6335 elf_hash_table (info)->text_index_section = s;
6336 break;
6337 }
6338
6339 if (elf_hash_table (info)->text_index_section == NULL)
6340 elf_hash_table (info)->text_index_section
6341 = elf_hash_table (info)->data_index_section;
6342 }
6343
6344 bfd_boolean
6345 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6346 {
6347 const struct elf_backend_data *bed;
6348
6349 if (!is_elf_hash_table (info->hash))
6350 return TRUE;
6351
6352 bed = get_elf_backend_data (output_bfd);
6353 (*bed->elf_backend_init_index_section) (output_bfd, info);
6354
6355 if (elf_hash_table (info)->dynamic_sections_created)
6356 {
6357 bfd *dynobj;
6358 asection *s;
6359 bfd_size_type dynsymcount;
6360 unsigned long section_sym_count;
6361 unsigned int dtagcount;
6362
6363 dynobj = elf_hash_table (info)->dynobj;
6364
6365 /* Assign dynsym indicies. In a shared library we generate a
6366 section symbol for each output section, which come first.
6367 Next come all of the back-end allocated local dynamic syms,
6368 followed by the rest of the global symbols. */
6369
6370 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6371 &section_sym_count);
6372
6373 /* Work out the size of the symbol version section. */
6374 s = bfd_get_linker_section (dynobj, ".gnu.version");
6375 BFD_ASSERT (s != NULL);
6376 if (dynsymcount != 0
6377 && (s->flags & SEC_EXCLUDE) == 0)
6378 {
6379 s->size = dynsymcount * sizeof (Elf_External_Versym);
6380 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6381 if (s->contents == NULL)
6382 return FALSE;
6383
6384 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6385 return FALSE;
6386 }
6387
6388 /* Set the size of the .dynsym and .hash sections. We counted
6389 the number of dynamic symbols in elf_link_add_object_symbols.
6390 We will build the contents of .dynsym and .hash when we build
6391 the final symbol table, because until then we do not know the
6392 correct value to give the symbols. We built the .dynstr
6393 section as we went along in elf_link_add_object_symbols. */
6394 s = bfd_get_linker_section (dynobj, ".dynsym");
6395 BFD_ASSERT (s != NULL);
6396 s->size = dynsymcount * bed->s->sizeof_sym;
6397
6398 if (dynsymcount != 0)
6399 {
6400 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6401 if (s->contents == NULL)
6402 return FALSE;
6403
6404 /* The first entry in .dynsym is a dummy symbol.
6405 Clear all the section syms, in case we don't output them all. */
6406 ++section_sym_count;
6407 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6408 }
6409
6410 elf_hash_table (info)->bucketcount = 0;
6411
6412 /* Compute the size of the hashing table. As a side effect this
6413 computes the hash values for all the names we export. */
6414 if (info->emit_hash)
6415 {
6416 unsigned long int *hashcodes;
6417 struct hash_codes_info hashinf;
6418 bfd_size_type amt;
6419 unsigned long int nsyms;
6420 size_t bucketcount;
6421 size_t hash_entry_size;
6422
6423 /* Compute the hash values for all exported symbols. At the same
6424 time store the values in an array so that we could use them for
6425 optimizations. */
6426 amt = dynsymcount * sizeof (unsigned long int);
6427 hashcodes = (unsigned long int *) bfd_malloc (amt);
6428 if (hashcodes == NULL)
6429 return FALSE;
6430 hashinf.hashcodes = hashcodes;
6431 hashinf.error = FALSE;
6432
6433 /* Put all hash values in HASHCODES. */
6434 elf_link_hash_traverse (elf_hash_table (info),
6435 elf_collect_hash_codes, &hashinf);
6436 if (hashinf.error)
6437 {
6438 free (hashcodes);
6439 return FALSE;
6440 }
6441
6442 nsyms = hashinf.hashcodes - hashcodes;
6443 bucketcount
6444 = compute_bucket_count (info, hashcodes, nsyms, 0);
6445 free (hashcodes);
6446
6447 if (bucketcount == 0)
6448 return FALSE;
6449
6450 elf_hash_table (info)->bucketcount = bucketcount;
6451
6452 s = bfd_get_linker_section (dynobj, ".hash");
6453 BFD_ASSERT (s != NULL);
6454 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6455 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6456 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6457 if (s->contents == NULL)
6458 return FALSE;
6459
6460 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6461 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6462 s->contents + hash_entry_size);
6463 }
6464
6465 if (info->emit_gnu_hash)
6466 {
6467 size_t i, cnt;
6468 unsigned char *contents;
6469 struct collect_gnu_hash_codes cinfo;
6470 bfd_size_type amt;
6471 size_t bucketcount;
6472
6473 memset (&cinfo, 0, sizeof (cinfo));
6474
6475 /* Compute the hash values for all exported symbols. At the same
6476 time store the values in an array so that we could use them for
6477 optimizations. */
6478 amt = dynsymcount * 2 * sizeof (unsigned long int);
6479 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6480 if (cinfo.hashcodes == NULL)
6481 return FALSE;
6482
6483 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6484 cinfo.min_dynindx = -1;
6485 cinfo.output_bfd = output_bfd;
6486 cinfo.bed = bed;
6487
6488 /* Put all hash values in HASHCODES. */
6489 elf_link_hash_traverse (elf_hash_table (info),
6490 elf_collect_gnu_hash_codes, &cinfo);
6491 if (cinfo.error)
6492 {
6493 free (cinfo.hashcodes);
6494 return FALSE;
6495 }
6496
6497 bucketcount
6498 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6499
6500 if (bucketcount == 0)
6501 {
6502 free (cinfo.hashcodes);
6503 return FALSE;
6504 }
6505
6506 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6507 BFD_ASSERT (s != NULL);
6508
6509 if (cinfo.nsyms == 0)
6510 {
6511 /* Empty .gnu.hash section is special. */
6512 BFD_ASSERT (cinfo.min_dynindx == -1);
6513 free (cinfo.hashcodes);
6514 s->size = 5 * 4 + bed->s->arch_size / 8;
6515 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6516 if (contents == NULL)
6517 return FALSE;
6518 s->contents = contents;
6519 /* 1 empty bucket. */
6520 bfd_put_32 (output_bfd, 1, contents);
6521 /* SYMIDX above the special symbol 0. */
6522 bfd_put_32 (output_bfd, 1, contents + 4);
6523 /* Just one word for bitmask. */
6524 bfd_put_32 (output_bfd, 1, contents + 8);
6525 /* Only hash fn bloom filter. */
6526 bfd_put_32 (output_bfd, 0, contents + 12);
6527 /* No hashes are valid - empty bitmask. */
6528 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6529 /* No hashes in the only bucket. */
6530 bfd_put_32 (output_bfd, 0,
6531 contents + 16 + bed->s->arch_size / 8);
6532 }
6533 else
6534 {
6535 unsigned long int maskwords, maskbitslog2, x;
6536 BFD_ASSERT (cinfo.min_dynindx != -1);
6537
6538 x = cinfo.nsyms;
6539 maskbitslog2 = 1;
6540 while ((x >>= 1) != 0)
6541 ++maskbitslog2;
6542 if (maskbitslog2 < 3)
6543 maskbitslog2 = 5;
6544 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6545 maskbitslog2 = maskbitslog2 + 3;
6546 else
6547 maskbitslog2 = maskbitslog2 + 2;
6548 if (bed->s->arch_size == 64)
6549 {
6550 if (maskbitslog2 == 5)
6551 maskbitslog2 = 6;
6552 cinfo.shift1 = 6;
6553 }
6554 else
6555 cinfo.shift1 = 5;
6556 cinfo.mask = (1 << cinfo.shift1) - 1;
6557 cinfo.shift2 = maskbitslog2;
6558 cinfo.maskbits = 1 << maskbitslog2;
6559 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6560 amt = bucketcount * sizeof (unsigned long int) * 2;
6561 amt += maskwords * sizeof (bfd_vma);
6562 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6563 if (cinfo.bitmask == NULL)
6564 {
6565 free (cinfo.hashcodes);
6566 return FALSE;
6567 }
6568
6569 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6570 cinfo.indx = cinfo.counts + bucketcount;
6571 cinfo.symindx = dynsymcount - cinfo.nsyms;
6572 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6573
6574 /* Determine how often each hash bucket is used. */
6575 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6576 for (i = 0; i < cinfo.nsyms; ++i)
6577 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6578
6579 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6580 if (cinfo.counts[i] != 0)
6581 {
6582 cinfo.indx[i] = cnt;
6583 cnt += cinfo.counts[i];
6584 }
6585 BFD_ASSERT (cnt == dynsymcount);
6586 cinfo.bucketcount = bucketcount;
6587 cinfo.local_indx = cinfo.min_dynindx;
6588
6589 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6590 s->size += cinfo.maskbits / 8;
6591 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6592 if (contents == NULL)
6593 {
6594 free (cinfo.bitmask);
6595 free (cinfo.hashcodes);
6596 return FALSE;
6597 }
6598
6599 s->contents = contents;
6600 bfd_put_32 (output_bfd, bucketcount, contents);
6601 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6602 bfd_put_32 (output_bfd, maskwords, contents + 8);
6603 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6604 contents += 16 + cinfo.maskbits / 8;
6605
6606 for (i = 0; i < bucketcount; ++i)
6607 {
6608 if (cinfo.counts[i] == 0)
6609 bfd_put_32 (output_bfd, 0, contents);
6610 else
6611 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6612 contents += 4;
6613 }
6614
6615 cinfo.contents = contents;
6616
6617 /* Renumber dynamic symbols, populate .gnu.hash section. */
6618 elf_link_hash_traverse (elf_hash_table (info),
6619 elf_renumber_gnu_hash_syms, &cinfo);
6620
6621 contents = s->contents + 16;
6622 for (i = 0; i < maskwords; ++i)
6623 {
6624 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6625 contents);
6626 contents += bed->s->arch_size / 8;
6627 }
6628
6629 free (cinfo.bitmask);
6630 free (cinfo.hashcodes);
6631 }
6632 }
6633
6634 s = bfd_get_linker_section (dynobj, ".dynstr");
6635 BFD_ASSERT (s != NULL);
6636
6637 elf_finalize_dynstr (output_bfd, info);
6638
6639 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6640
6641 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6642 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6643 return FALSE;
6644 }
6645
6646 return TRUE;
6647 }
6648 \f
6649 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6650
6651 static void
6652 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6653 asection *sec)
6654 {
6655 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6656 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6657 }
6658
6659 /* Finish SHF_MERGE section merging. */
6660
6661 bfd_boolean
6662 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6663 {
6664 bfd *ibfd;
6665 asection *sec;
6666
6667 if (!is_elf_hash_table (info->hash))
6668 return FALSE;
6669
6670 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6671 if ((ibfd->flags & DYNAMIC) == 0)
6672 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6673 if ((sec->flags & SEC_MERGE) != 0
6674 && !bfd_is_abs_section (sec->output_section))
6675 {
6676 struct bfd_elf_section_data *secdata;
6677
6678 secdata = elf_section_data (sec);
6679 if (! _bfd_add_merge_section (abfd,
6680 &elf_hash_table (info)->merge_info,
6681 sec, &secdata->sec_info))
6682 return FALSE;
6683 else if (secdata->sec_info)
6684 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6685 }
6686
6687 if (elf_hash_table (info)->merge_info != NULL)
6688 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6689 merge_sections_remove_hook);
6690 return TRUE;
6691 }
6692
6693 /* Create an entry in an ELF linker hash table. */
6694
6695 struct bfd_hash_entry *
6696 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6697 struct bfd_hash_table *table,
6698 const char *string)
6699 {
6700 /* Allocate the structure if it has not already been allocated by a
6701 subclass. */
6702 if (entry == NULL)
6703 {
6704 entry = (struct bfd_hash_entry *)
6705 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6706 if (entry == NULL)
6707 return entry;
6708 }
6709
6710 /* Call the allocation method of the superclass. */
6711 entry = _bfd_link_hash_newfunc (entry, table, string);
6712 if (entry != NULL)
6713 {
6714 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6715 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6716
6717 /* Set local fields. */
6718 ret->indx = -1;
6719 ret->dynindx = -1;
6720 ret->got = htab->init_got_refcount;
6721 ret->plt = htab->init_plt_refcount;
6722 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6723 - offsetof (struct elf_link_hash_entry, size)));
6724 /* Assume that we have been called by a non-ELF symbol reader.
6725 This flag is then reset by the code which reads an ELF input
6726 file. This ensures that a symbol created by a non-ELF symbol
6727 reader will have the flag set correctly. */
6728 ret->non_elf = 1;
6729 }
6730
6731 return entry;
6732 }
6733
6734 /* Copy data from an indirect symbol to its direct symbol, hiding the
6735 old indirect symbol. Also used for copying flags to a weakdef. */
6736
6737 void
6738 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6739 struct elf_link_hash_entry *dir,
6740 struct elf_link_hash_entry *ind)
6741 {
6742 struct elf_link_hash_table *htab;
6743
6744 /* Copy down any references that we may have already seen to the
6745 symbol which just became indirect. */
6746
6747 dir->ref_dynamic |= ind->ref_dynamic;
6748 dir->ref_regular |= ind->ref_regular;
6749 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6750 dir->non_got_ref |= ind->non_got_ref;
6751 dir->needs_plt |= ind->needs_plt;
6752 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6753
6754 if (ind->root.type != bfd_link_hash_indirect)
6755 return;
6756
6757 /* Copy over the global and procedure linkage table refcount entries.
6758 These may have been already set up by a check_relocs routine. */
6759 htab = elf_hash_table (info);
6760 if (ind->got.refcount > htab->init_got_refcount.refcount)
6761 {
6762 if (dir->got.refcount < 0)
6763 dir->got.refcount = 0;
6764 dir->got.refcount += ind->got.refcount;
6765 ind->got.refcount = htab->init_got_refcount.refcount;
6766 }
6767
6768 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6769 {
6770 if (dir->plt.refcount < 0)
6771 dir->plt.refcount = 0;
6772 dir->plt.refcount += ind->plt.refcount;
6773 ind->plt.refcount = htab->init_plt_refcount.refcount;
6774 }
6775
6776 if (ind->dynindx != -1)
6777 {
6778 if (dir->dynindx != -1)
6779 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6780 dir->dynindx = ind->dynindx;
6781 dir->dynstr_index = ind->dynstr_index;
6782 ind->dynindx = -1;
6783 ind->dynstr_index = 0;
6784 }
6785 }
6786
6787 void
6788 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6789 struct elf_link_hash_entry *h,
6790 bfd_boolean force_local)
6791 {
6792 /* STT_GNU_IFUNC symbol must go through PLT. */
6793 if (h->type != STT_GNU_IFUNC)
6794 {
6795 h->plt = elf_hash_table (info)->init_plt_offset;
6796 h->needs_plt = 0;
6797 }
6798 if (force_local)
6799 {
6800 h->forced_local = 1;
6801 if (h->dynindx != -1)
6802 {
6803 h->dynindx = -1;
6804 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6805 h->dynstr_index);
6806 }
6807 }
6808 }
6809
6810 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
6811 caller. */
6812
6813 bfd_boolean
6814 _bfd_elf_link_hash_table_init
6815 (struct elf_link_hash_table *table,
6816 bfd *abfd,
6817 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6818 struct bfd_hash_table *,
6819 const char *),
6820 unsigned int entsize,
6821 enum elf_target_id target_id)
6822 {
6823 bfd_boolean ret;
6824 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6825
6826 table->init_got_refcount.refcount = can_refcount - 1;
6827 table->init_plt_refcount.refcount = can_refcount - 1;
6828 table->init_got_offset.offset = -(bfd_vma) 1;
6829 table->init_plt_offset.offset = -(bfd_vma) 1;
6830 /* The first dynamic symbol is a dummy. */
6831 table->dynsymcount = 1;
6832
6833 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6834
6835 table->root.type = bfd_link_elf_hash_table;
6836 table->hash_table_id = target_id;
6837
6838 return ret;
6839 }
6840
6841 /* Create an ELF linker hash table. */
6842
6843 struct bfd_link_hash_table *
6844 _bfd_elf_link_hash_table_create (bfd *abfd)
6845 {
6846 struct elf_link_hash_table *ret;
6847 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6848
6849 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
6850 if (ret == NULL)
6851 return NULL;
6852
6853 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6854 sizeof (struct elf_link_hash_entry),
6855 GENERIC_ELF_DATA))
6856 {
6857 free (ret);
6858 return NULL;
6859 }
6860 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
6861
6862 return &ret->root;
6863 }
6864
6865 /* Destroy an ELF linker hash table. */
6866
6867 void
6868 _bfd_elf_link_hash_table_free (bfd *obfd)
6869 {
6870 struct elf_link_hash_table *htab;
6871
6872 htab = (struct elf_link_hash_table *) obfd->link.hash;
6873 if (htab->dynstr != NULL)
6874 _bfd_elf_strtab_free (htab->dynstr);
6875 _bfd_merge_sections_free (htab->merge_info);
6876 _bfd_generic_link_hash_table_free (obfd);
6877 }
6878
6879 /* This is a hook for the ELF emulation code in the generic linker to
6880 tell the backend linker what file name to use for the DT_NEEDED
6881 entry for a dynamic object. */
6882
6883 void
6884 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6885 {
6886 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6887 && bfd_get_format (abfd) == bfd_object)
6888 elf_dt_name (abfd) = name;
6889 }
6890
6891 int
6892 bfd_elf_get_dyn_lib_class (bfd *abfd)
6893 {
6894 int lib_class;
6895 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6896 && bfd_get_format (abfd) == bfd_object)
6897 lib_class = elf_dyn_lib_class (abfd);
6898 else
6899 lib_class = 0;
6900 return lib_class;
6901 }
6902
6903 void
6904 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6905 {
6906 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6907 && bfd_get_format (abfd) == bfd_object)
6908 elf_dyn_lib_class (abfd) = lib_class;
6909 }
6910
6911 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6912 the linker ELF emulation code. */
6913
6914 struct bfd_link_needed_list *
6915 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6916 struct bfd_link_info *info)
6917 {
6918 if (! is_elf_hash_table (info->hash))
6919 return NULL;
6920 return elf_hash_table (info)->needed;
6921 }
6922
6923 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6924 hook for the linker ELF emulation code. */
6925
6926 struct bfd_link_needed_list *
6927 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6928 struct bfd_link_info *info)
6929 {
6930 if (! is_elf_hash_table (info->hash))
6931 return NULL;
6932 return elf_hash_table (info)->runpath;
6933 }
6934
6935 /* Get the name actually used for a dynamic object for a link. This
6936 is the SONAME entry if there is one. Otherwise, it is the string
6937 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6938
6939 const char *
6940 bfd_elf_get_dt_soname (bfd *abfd)
6941 {
6942 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6943 && bfd_get_format (abfd) == bfd_object)
6944 return elf_dt_name (abfd);
6945 return NULL;
6946 }
6947
6948 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6949 the ELF linker emulation code. */
6950
6951 bfd_boolean
6952 bfd_elf_get_bfd_needed_list (bfd *abfd,
6953 struct bfd_link_needed_list **pneeded)
6954 {
6955 asection *s;
6956 bfd_byte *dynbuf = NULL;
6957 unsigned int elfsec;
6958 unsigned long shlink;
6959 bfd_byte *extdyn, *extdynend;
6960 size_t extdynsize;
6961 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6962
6963 *pneeded = NULL;
6964
6965 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6966 || bfd_get_format (abfd) != bfd_object)
6967 return TRUE;
6968
6969 s = bfd_get_section_by_name (abfd, ".dynamic");
6970 if (s == NULL || s->size == 0)
6971 return TRUE;
6972
6973 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6974 goto error_return;
6975
6976 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6977 if (elfsec == SHN_BAD)
6978 goto error_return;
6979
6980 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6981
6982 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6983 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6984
6985 extdyn = dynbuf;
6986 extdynend = extdyn + s->size;
6987 for (; extdyn < extdynend; extdyn += extdynsize)
6988 {
6989 Elf_Internal_Dyn dyn;
6990
6991 (*swap_dyn_in) (abfd, extdyn, &dyn);
6992
6993 if (dyn.d_tag == DT_NULL)
6994 break;
6995
6996 if (dyn.d_tag == DT_NEEDED)
6997 {
6998 const char *string;
6999 struct bfd_link_needed_list *l;
7000 unsigned int tagv = dyn.d_un.d_val;
7001 bfd_size_type amt;
7002
7003 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7004 if (string == NULL)
7005 goto error_return;
7006
7007 amt = sizeof *l;
7008 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7009 if (l == NULL)
7010 goto error_return;
7011
7012 l->by = abfd;
7013 l->name = string;
7014 l->next = *pneeded;
7015 *pneeded = l;
7016 }
7017 }
7018
7019 free (dynbuf);
7020
7021 return TRUE;
7022
7023 error_return:
7024 if (dynbuf != NULL)
7025 free (dynbuf);
7026 return FALSE;
7027 }
7028
7029 struct elf_symbuf_symbol
7030 {
7031 unsigned long st_name; /* Symbol name, index in string tbl */
7032 unsigned char st_info; /* Type and binding attributes */
7033 unsigned char st_other; /* Visibilty, and target specific */
7034 };
7035
7036 struct elf_symbuf_head
7037 {
7038 struct elf_symbuf_symbol *ssym;
7039 bfd_size_type count;
7040 unsigned int st_shndx;
7041 };
7042
7043 struct elf_symbol
7044 {
7045 union
7046 {
7047 Elf_Internal_Sym *isym;
7048 struct elf_symbuf_symbol *ssym;
7049 } u;
7050 const char *name;
7051 };
7052
7053 /* Sort references to symbols by ascending section number. */
7054
7055 static int
7056 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7057 {
7058 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7059 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7060
7061 return s1->st_shndx - s2->st_shndx;
7062 }
7063
7064 static int
7065 elf_sym_name_compare (const void *arg1, const void *arg2)
7066 {
7067 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7068 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7069 return strcmp (s1->name, s2->name);
7070 }
7071
7072 static struct elf_symbuf_head *
7073 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7074 {
7075 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7076 struct elf_symbuf_symbol *ssym;
7077 struct elf_symbuf_head *ssymbuf, *ssymhead;
7078 bfd_size_type i, shndx_count, total_size;
7079
7080 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7081 if (indbuf == NULL)
7082 return NULL;
7083
7084 for (ind = indbuf, i = 0; i < symcount; i++)
7085 if (isymbuf[i].st_shndx != SHN_UNDEF)
7086 *ind++ = &isymbuf[i];
7087 indbufend = ind;
7088
7089 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7090 elf_sort_elf_symbol);
7091
7092 shndx_count = 0;
7093 if (indbufend > indbuf)
7094 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7095 if (ind[0]->st_shndx != ind[1]->st_shndx)
7096 shndx_count++;
7097
7098 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7099 + (indbufend - indbuf) * sizeof (*ssym));
7100 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7101 if (ssymbuf == NULL)
7102 {
7103 free (indbuf);
7104 return NULL;
7105 }
7106
7107 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7108 ssymbuf->ssym = NULL;
7109 ssymbuf->count = shndx_count;
7110 ssymbuf->st_shndx = 0;
7111 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7112 {
7113 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7114 {
7115 ssymhead++;
7116 ssymhead->ssym = ssym;
7117 ssymhead->count = 0;
7118 ssymhead->st_shndx = (*ind)->st_shndx;
7119 }
7120 ssym->st_name = (*ind)->st_name;
7121 ssym->st_info = (*ind)->st_info;
7122 ssym->st_other = (*ind)->st_other;
7123 ssymhead->count++;
7124 }
7125 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7126 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7127 == total_size));
7128
7129 free (indbuf);
7130 return ssymbuf;
7131 }
7132
7133 /* Check if 2 sections define the same set of local and global
7134 symbols. */
7135
7136 static bfd_boolean
7137 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7138 struct bfd_link_info *info)
7139 {
7140 bfd *bfd1, *bfd2;
7141 const struct elf_backend_data *bed1, *bed2;
7142 Elf_Internal_Shdr *hdr1, *hdr2;
7143 bfd_size_type symcount1, symcount2;
7144 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7145 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7146 Elf_Internal_Sym *isym, *isymend;
7147 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7148 bfd_size_type count1, count2, i;
7149 unsigned int shndx1, shndx2;
7150 bfd_boolean result;
7151
7152 bfd1 = sec1->owner;
7153 bfd2 = sec2->owner;
7154
7155 /* Both sections have to be in ELF. */
7156 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7157 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7158 return FALSE;
7159
7160 if (elf_section_type (sec1) != elf_section_type (sec2))
7161 return FALSE;
7162
7163 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7164 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7165 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7166 return FALSE;
7167
7168 bed1 = get_elf_backend_data (bfd1);
7169 bed2 = get_elf_backend_data (bfd2);
7170 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7171 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7172 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7173 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7174
7175 if (symcount1 == 0 || symcount2 == 0)
7176 return FALSE;
7177
7178 result = FALSE;
7179 isymbuf1 = NULL;
7180 isymbuf2 = NULL;
7181 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7182 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7183
7184 if (ssymbuf1 == NULL)
7185 {
7186 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7187 NULL, NULL, NULL);
7188 if (isymbuf1 == NULL)
7189 goto done;
7190
7191 if (!info->reduce_memory_overheads)
7192 elf_tdata (bfd1)->symbuf = ssymbuf1
7193 = elf_create_symbuf (symcount1, isymbuf1);
7194 }
7195
7196 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7197 {
7198 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7199 NULL, NULL, NULL);
7200 if (isymbuf2 == NULL)
7201 goto done;
7202
7203 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7204 elf_tdata (bfd2)->symbuf = ssymbuf2
7205 = elf_create_symbuf (symcount2, isymbuf2);
7206 }
7207
7208 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7209 {
7210 /* Optimized faster version. */
7211 bfd_size_type lo, hi, mid;
7212 struct elf_symbol *symp;
7213 struct elf_symbuf_symbol *ssym, *ssymend;
7214
7215 lo = 0;
7216 hi = ssymbuf1->count;
7217 ssymbuf1++;
7218 count1 = 0;
7219 while (lo < hi)
7220 {
7221 mid = (lo + hi) / 2;
7222 if (shndx1 < ssymbuf1[mid].st_shndx)
7223 hi = mid;
7224 else if (shndx1 > ssymbuf1[mid].st_shndx)
7225 lo = mid + 1;
7226 else
7227 {
7228 count1 = ssymbuf1[mid].count;
7229 ssymbuf1 += mid;
7230 break;
7231 }
7232 }
7233
7234 lo = 0;
7235 hi = ssymbuf2->count;
7236 ssymbuf2++;
7237 count2 = 0;
7238 while (lo < hi)
7239 {
7240 mid = (lo + hi) / 2;
7241 if (shndx2 < ssymbuf2[mid].st_shndx)
7242 hi = mid;
7243 else if (shndx2 > ssymbuf2[mid].st_shndx)
7244 lo = mid + 1;
7245 else
7246 {
7247 count2 = ssymbuf2[mid].count;
7248 ssymbuf2 += mid;
7249 break;
7250 }
7251 }
7252
7253 if (count1 == 0 || count2 == 0 || count1 != count2)
7254 goto done;
7255
7256 symtable1 = (struct elf_symbol *)
7257 bfd_malloc (count1 * sizeof (struct elf_symbol));
7258 symtable2 = (struct elf_symbol *)
7259 bfd_malloc (count2 * sizeof (struct elf_symbol));
7260 if (symtable1 == NULL || symtable2 == NULL)
7261 goto done;
7262
7263 symp = symtable1;
7264 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7265 ssym < ssymend; ssym++, symp++)
7266 {
7267 symp->u.ssym = ssym;
7268 symp->name = bfd_elf_string_from_elf_section (bfd1,
7269 hdr1->sh_link,
7270 ssym->st_name);
7271 }
7272
7273 symp = symtable2;
7274 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7275 ssym < ssymend; ssym++, symp++)
7276 {
7277 symp->u.ssym = ssym;
7278 symp->name = bfd_elf_string_from_elf_section (bfd2,
7279 hdr2->sh_link,
7280 ssym->st_name);
7281 }
7282
7283 /* Sort symbol by name. */
7284 qsort (symtable1, count1, sizeof (struct elf_symbol),
7285 elf_sym_name_compare);
7286 qsort (symtable2, count1, sizeof (struct elf_symbol),
7287 elf_sym_name_compare);
7288
7289 for (i = 0; i < count1; i++)
7290 /* Two symbols must have the same binding, type and name. */
7291 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7292 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7293 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7294 goto done;
7295
7296 result = TRUE;
7297 goto done;
7298 }
7299
7300 symtable1 = (struct elf_symbol *)
7301 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7302 symtable2 = (struct elf_symbol *)
7303 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7304 if (symtable1 == NULL || symtable2 == NULL)
7305 goto done;
7306
7307 /* Count definitions in the section. */
7308 count1 = 0;
7309 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7310 if (isym->st_shndx == shndx1)
7311 symtable1[count1++].u.isym = isym;
7312
7313 count2 = 0;
7314 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7315 if (isym->st_shndx == shndx2)
7316 symtable2[count2++].u.isym = isym;
7317
7318 if (count1 == 0 || count2 == 0 || count1 != count2)
7319 goto done;
7320
7321 for (i = 0; i < count1; i++)
7322 symtable1[i].name
7323 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7324 symtable1[i].u.isym->st_name);
7325
7326 for (i = 0; i < count2; i++)
7327 symtable2[i].name
7328 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7329 symtable2[i].u.isym->st_name);
7330
7331 /* Sort symbol by name. */
7332 qsort (symtable1, count1, sizeof (struct elf_symbol),
7333 elf_sym_name_compare);
7334 qsort (symtable2, count1, sizeof (struct elf_symbol),
7335 elf_sym_name_compare);
7336
7337 for (i = 0; i < count1; i++)
7338 /* Two symbols must have the same binding, type and name. */
7339 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7340 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7341 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7342 goto done;
7343
7344 result = TRUE;
7345
7346 done:
7347 if (symtable1)
7348 free (symtable1);
7349 if (symtable2)
7350 free (symtable2);
7351 if (isymbuf1)
7352 free (isymbuf1);
7353 if (isymbuf2)
7354 free (isymbuf2);
7355
7356 return result;
7357 }
7358
7359 /* Return TRUE if 2 section types are compatible. */
7360
7361 bfd_boolean
7362 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7363 bfd *bbfd, const asection *bsec)
7364 {
7365 if (asec == NULL
7366 || bsec == NULL
7367 || abfd->xvec->flavour != bfd_target_elf_flavour
7368 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7369 return TRUE;
7370
7371 return elf_section_type (asec) == elf_section_type (bsec);
7372 }
7373 \f
7374 /* Final phase of ELF linker. */
7375
7376 /* A structure we use to avoid passing large numbers of arguments. */
7377
7378 struct elf_final_link_info
7379 {
7380 /* General link information. */
7381 struct bfd_link_info *info;
7382 /* Output BFD. */
7383 bfd *output_bfd;
7384 /* Symbol string table. */
7385 struct bfd_strtab_hash *symstrtab;
7386 /* .dynsym section. */
7387 asection *dynsym_sec;
7388 /* .hash section. */
7389 asection *hash_sec;
7390 /* symbol version section (.gnu.version). */
7391 asection *symver_sec;
7392 /* Buffer large enough to hold contents of any section. */
7393 bfd_byte *contents;
7394 /* Buffer large enough to hold external relocs of any section. */
7395 void *external_relocs;
7396 /* Buffer large enough to hold internal relocs of any section. */
7397 Elf_Internal_Rela *internal_relocs;
7398 /* Buffer large enough to hold external local symbols of any input
7399 BFD. */
7400 bfd_byte *external_syms;
7401 /* And a buffer for symbol section indices. */
7402 Elf_External_Sym_Shndx *locsym_shndx;
7403 /* Buffer large enough to hold internal local symbols of any input
7404 BFD. */
7405 Elf_Internal_Sym *internal_syms;
7406 /* Array large enough to hold a symbol index for each local symbol
7407 of any input BFD. */
7408 long *indices;
7409 /* Array large enough to hold a section pointer for each local
7410 symbol of any input BFD. */
7411 asection **sections;
7412 /* Buffer to hold swapped out symbols. */
7413 bfd_byte *symbuf;
7414 /* And one for symbol section indices. */
7415 Elf_External_Sym_Shndx *symshndxbuf;
7416 /* Number of swapped out symbols in buffer. */
7417 size_t symbuf_count;
7418 /* Number of symbols which fit in symbuf. */
7419 size_t symbuf_size;
7420 /* And same for symshndxbuf. */
7421 size_t shndxbuf_size;
7422 /* Number of STT_FILE syms seen. */
7423 size_t filesym_count;
7424 };
7425
7426 /* This struct is used to pass information to elf_link_output_extsym. */
7427
7428 struct elf_outext_info
7429 {
7430 bfd_boolean failed;
7431 bfd_boolean localsyms;
7432 bfd_boolean need_second_pass;
7433 bfd_boolean second_pass;
7434 bfd_boolean file_sym_done;
7435 struct elf_final_link_info *flinfo;
7436 };
7437
7438
7439 /* Support for evaluating a complex relocation.
7440
7441 Complex relocations are generalized, self-describing relocations. The
7442 implementation of them consists of two parts: complex symbols, and the
7443 relocations themselves.
7444
7445 The relocations are use a reserved elf-wide relocation type code (R_RELC
7446 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7447 information (start bit, end bit, word width, etc) into the addend. This
7448 information is extracted from CGEN-generated operand tables within gas.
7449
7450 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7451 internal) representing prefix-notation expressions, including but not
7452 limited to those sorts of expressions normally encoded as addends in the
7453 addend field. The symbol mangling format is:
7454
7455 <node> := <literal>
7456 | <unary-operator> ':' <node>
7457 | <binary-operator> ':' <node> ':' <node>
7458 ;
7459
7460 <literal> := 's' <digits=N> ':' <N character symbol name>
7461 | 'S' <digits=N> ':' <N character section name>
7462 | '#' <hexdigits>
7463 ;
7464
7465 <binary-operator> := as in C
7466 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7467
7468 static void
7469 set_symbol_value (bfd *bfd_with_globals,
7470 Elf_Internal_Sym *isymbuf,
7471 size_t locsymcount,
7472 size_t symidx,
7473 bfd_vma val)
7474 {
7475 struct elf_link_hash_entry **sym_hashes;
7476 struct elf_link_hash_entry *h;
7477 size_t extsymoff = locsymcount;
7478
7479 if (symidx < locsymcount)
7480 {
7481 Elf_Internal_Sym *sym;
7482
7483 sym = isymbuf + symidx;
7484 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7485 {
7486 /* It is a local symbol: move it to the
7487 "absolute" section and give it a value. */
7488 sym->st_shndx = SHN_ABS;
7489 sym->st_value = val;
7490 return;
7491 }
7492 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7493 extsymoff = 0;
7494 }
7495
7496 /* It is a global symbol: set its link type
7497 to "defined" and give it a value. */
7498
7499 sym_hashes = elf_sym_hashes (bfd_with_globals);
7500 h = sym_hashes [symidx - extsymoff];
7501 while (h->root.type == bfd_link_hash_indirect
7502 || h->root.type == bfd_link_hash_warning)
7503 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7504 h->root.type = bfd_link_hash_defined;
7505 h->root.u.def.value = val;
7506 h->root.u.def.section = bfd_abs_section_ptr;
7507 }
7508
7509 static bfd_boolean
7510 resolve_symbol (const char *name,
7511 bfd *input_bfd,
7512 struct elf_final_link_info *flinfo,
7513 bfd_vma *result,
7514 Elf_Internal_Sym *isymbuf,
7515 size_t locsymcount)
7516 {
7517 Elf_Internal_Sym *sym;
7518 struct bfd_link_hash_entry *global_entry;
7519 const char *candidate = NULL;
7520 Elf_Internal_Shdr *symtab_hdr;
7521 size_t i;
7522
7523 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7524
7525 for (i = 0; i < locsymcount; ++ i)
7526 {
7527 sym = isymbuf + i;
7528
7529 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7530 continue;
7531
7532 candidate = bfd_elf_string_from_elf_section (input_bfd,
7533 symtab_hdr->sh_link,
7534 sym->st_name);
7535 #ifdef DEBUG
7536 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7537 name, candidate, (unsigned long) sym->st_value);
7538 #endif
7539 if (candidate && strcmp (candidate, name) == 0)
7540 {
7541 asection *sec = flinfo->sections [i];
7542
7543 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7544 *result += sec->output_offset + sec->output_section->vma;
7545 #ifdef DEBUG
7546 printf ("Found symbol with value %8.8lx\n",
7547 (unsigned long) *result);
7548 #endif
7549 return TRUE;
7550 }
7551 }
7552
7553 /* Hmm, haven't found it yet. perhaps it is a global. */
7554 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7555 FALSE, FALSE, TRUE);
7556 if (!global_entry)
7557 return FALSE;
7558
7559 if (global_entry->type == bfd_link_hash_defined
7560 || global_entry->type == bfd_link_hash_defweak)
7561 {
7562 *result = (global_entry->u.def.value
7563 + global_entry->u.def.section->output_section->vma
7564 + global_entry->u.def.section->output_offset);
7565 #ifdef DEBUG
7566 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7567 global_entry->root.string, (unsigned long) *result);
7568 #endif
7569 return TRUE;
7570 }
7571
7572 return FALSE;
7573 }
7574
7575 static bfd_boolean
7576 resolve_section (const char *name,
7577 asection *sections,
7578 bfd_vma *result)
7579 {
7580 asection *curr;
7581 unsigned int len;
7582
7583 for (curr = sections; curr; curr = curr->next)
7584 if (strcmp (curr->name, name) == 0)
7585 {
7586 *result = curr->vma;
7587 return TRUE;
7588 }
7589
7590 /* Hmm. still haven't found it. try pseudo-section names. */
7591 for (curr = sections; curr; curr = curr->next)
7592 {
7593 len = strlen (curr->name);
7594 if (len > strlen (name))
7595 continue;
7596
7597 if (strncmp (curr->name, name, len) == 0)
7598 {
7599 if (strncmp (".end", name + len, 4) == 0)
7600 {
7601 *result = curr->vma + curr->size;
7602 return TRUE;
7603 }
7604
7605 /* Insert more pseudo-section names here, if you like. */
7606 }
7607 }
7608
7609 return FALSE;
7610 }
7611
7612 static void
7613 undefined_reference (const char *reftype, const char *name)
7614 {
7615 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7616 reftype, name);
7617 }
7618
7619 static bfd_boolean
7620 eval_symbol (bfd_vma *result,
7621 const char **symp,
7622 bfd *input_bfd,
7623 struct elf_final_link_info *flinfo,
7624 bfd_vma dot,
7625 Elf_Internal_Sym *isymbuf,
7626 size_t locsymcount,
7627 int signed_p)
7628 {
7629 size_t len;
7630 size_t symlen;
7631 bfd_vma a;
7632 bfd_vma b;
7633 char symbuf[4096];
7634 const char *sym = *symp;
7635 const char *symend;
7636 bfd_boolean symbol_is_section = FALSE;
7637
7638 len = strlen (sym);
7639 symend = sym + len;
7640
7641 if (len < 1 || len > sizeof (symbuf))
7642 {
7643 bfd_set_error (bfd_error_invalid_operation);
7644 return FALSE;
7645 }
7646
7647 switch (* sym)
7648 {
7649 case '.':
7650 *result = dot;
7651 *symp = sym + 1;
7652 return TRUE;
7653
7654 case '#':
7655 ++sym;
7656 *result = strtoul (sym, (char **) symp, 16);
7657 return TRUE;
7658
7659 case 'S':
7660 symbol_is_section = TRUE;
7661 case 's':
7662 ++sym;
7663 symlen = strtol (sym, (char **) symp, 10);
7664 sym = *symp + 1; /* Skip the trailing ':'. */
7665
7666 if (symend < sym || symlen + 1 > sizeof (symbuf))
7667 {
7668 bfd_set_error (bfd_error_invalid_operation);
7669 return FALSE;
7670 }
7671
7672 memcpy (symbuf, sym, symlen);
7673 symbuf[symlen] = '\0';
7674 *symp = sym + symlen;
7675
7676 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7677 the symbol as a section, or vice-versa. so we're pretty liberal in our
7678 interpretation here; section means "try section first", not "must be a
7679 section", and likewise with symbol. */
7680
7681 if (symbol_is_section)
7682 {
7683 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7684 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7685 isymbuf, locsymcount))
7686 {
7687 undefined_reference ("section", symbuf);
7688 return FALSE;
7689 }
7690 }
7691 else
7692 {
7693 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7694 isymbuf, locsymcount)
7695 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7696 result))
7697 {
7698 undefined_reference ("symbol", symbuf);
7699 return FALSE;
7700 }
7701 }
7702
7703 return TRUE;
7704
7705 /* All that remains are operators. */
7706
7707 #define UNARY_OP(op) \
7708 if (strncmp (sym, #op, strlen (#op)) == 0) \
7709 { \
7710 sym += strlen (#op); \
7711 if (*sym == ':') \
7712 ++sym; \
7713 *symp = sym; \
7714 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7715 isymbuf, locsymcount, signed_p)) \
7716 return FALSE; \
7717 if (signed_p) \
7718 *result = op ((bfd_signed_vma) a); \
7719 else \
7720 *result = op a; \
7721 return TRUE; \
7722 }
7723
7724 #define BINARY_OP(op) \
7725 if (strncmp (sym, #op, strlen (#op)) == 0) \
7726 { \
7727 sym += strlen (#op); \
7728 if (*sym == ':') \
7729 ++sym; \
7730 *symp = sym; \
7731 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7732 isymbuf, locsymcount, signed_p)) \
7733 return FALSE; \
7734 ++*symp; \
7735 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7736 isymbuf, locsymcount, signed_p)) \
7737 return FALSE; \
7738 if (signed_p) \
7739 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7740 else \
7741 *result = a op b; \
7742 return TRUE; \
7743 }
7744
7745 default:
7746 UNARY_OP (0-);
7747 BINARY_OP (<<);
7748 BINARY_OP (>>);
7749 BINARY_OP (==);
7750 BINARY_OP (!=);
7751 BINARY_OP (<=);
7752 BINARY_OP (>=);
7753 BINARY_OP (&&);
7754 BINARY_OP (||);
7755 UNARY_OP (~);
7756 UNARY_OP (!);
7757 BINARY_OP (*);
7758 BINARY_OP (/);
7759 BINARY_OP (%);
7760 BINARY_OP (^);
7761 BINARY_OP (|);
7762 BINARY_OP (&);
7763 BINARY_OP (+);
7764 BINARY_OP (-);
7765 BINARY_OP (<);
7766 BINARY_OP (>);
7767 #undef UNARY_OP
7768 #undef BINARY_OP
7769 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7770 bfd_set_error (bfd_error_invalid_operation);
7771 return FALSE;
7772 }
7773 }
7774
7775 static void
7776 put_value (bfd_vma size,
7777 unsigned long chunksz,
7778 bfd *input_bfd,
7779 bfd_vma x,
7780 bfd_byte *location)
7781 {
7782 location += (size - chunksz);
7783
7784 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7785 {
7786 switch (chunksz)
7787 {
7788 default:
7789 case 0:
7790 abort ();
7791 case 1:
7792 bfd_put_8 (input_bfd, x, location);
7793 break;
7794 case 2:
7795 bfd_put_16 (input_bfd, x, location);
7796 break;
7797 case 4:
7798 bfd_put_32 (input_bfd, x, location);
7799 break;
7800 case 8:
7801 #ifdef BFD64
7802 bfd_put_64 (input_bfd, x, location);
7803 #else
7804 abort ();
7805 #endif
7806 break;
7807 }
7808 }
7809 }
7810
7811 static bfd_vma
7812 get_value (bfd_vma size,
7813 unsigned long chunksz,
7814 bfd *input_bfd,
7815 bfd_byte *location)
7816 {
7817 int shift;
7818 bfd_vma x = 0;
7819
7820 /* Sanity checks. */
7821 BFD_ASSERT (chunksz <= sizeof (x)
7822 && size >= chunksz
7823 && chunksz != 0
7824 && (size % chunksz) == 0
7825 && input_bfd != NULL
7826 && location != NULL);
7827
7828 if (chunksz == sizeof (x))
7829 {
7830 BFD_ASSERT (size == chunksz);
7831
7832 /* Make sure that we do not perform an undefined shift operation.
7833 We know that size == chunksz so there will only be one iteration
7834 of the loop below. */
7835 shift = 0;
7836 }
7837 else
7838 shift = 8 * chunksz;
7839
7840 for (; size; size -= chunksz, location += chunksz)
7841 {
7842 switch (chunksz)
7843 {
7844 case 1:
7845 x = (x << shift) | bfd_get_8 (input_bfd, location);
7846 break;
7847 case 2:
7848 x = (x << shift) | bfd_get_16 (input_bfd, location);
7849 break;
7850 case 4:
7851 x = (x << shift) | bfd_get_32 (input_bfd, location);
7852 break;
7853 #ifdef BFD64
7854 case 8:
7855 x = (x << shift) | bfd_get_64 (input_bfd, location);
7856 break;
7857 #endif
7858 default:
7859 abort ();
7860 }
7861 }
7862 return x;
7863 }
7864
7865 static void
7866 decode_complex_addend (unsigned long *start, /* in bits */
7867 unsigned long *oplen, /* in bits */
7868 unsigned long *len, /* in bits */
7869 unsigned long *wordsz, /* in bytes */
7870 unsigned long *chunksz, /* in bytes */
7871 unsigned long *lsb0_p,
7872 unsigned long *signed_p,
7873 unsigned long *trunc_p,
7874 unsigned long encoded)
7875 {
7876 * start = encoded & 0x3F;
7877 * len = (encoded >> 6) & 0x3F;
7878 * oplen = (encoded >> 12) & 0x3F;
7879 * wordsz = (encoded >> 18) & 0xF;
7880 * chunksz = (encoded >> 22) & 0xF;
7881 * lsb0_p = (encoded >> 27) & 1;
7882 * signed_p = (encoded >> 28) & 1;
7883 * trunc_p = (encoded >> 29) & 1;
7884 }
7885
7886 bfd_reloc_status_type
7887 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7888 asection *input_section ATTRIBUTE_UNUSED,
7889 bfd_byte *contents,
7890 Elf_Internal_Rela *rel,
7891 bfd_vma relocation)
7892 {
7893 bfd_vma shift, x, mask;
7894 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7895 bfd_reloc_status_type r;
7896
7897 /* Perform this reloc, since it is complex.
7898 (this is not to say that it necessarily refers to a complex
7899 symbol; merely that it is a self-describing CGEN based reloc.
7900 i.e. the addend has the complete reloc information (bit start, end,
7901 word size, etc) encoded within it.). */
7902
7903 decode_complex_addend (&start, &oplen, &len, &wordsz,
7904 &chunksz, &lsb0_p, &signed_p,
7905 &trunc_p, rel->r_addend);
7906
7907 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7908
7909 if (lsb0_p)
7910 shift = (start + 1) - len;
7911 else
7912 shift = (8 * wordsz) - (start + len);
7913
7914 /* FIXME: octets_per_byte. */
7915 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7916
7917 #ifdef DEBUG
7918 printf ("Doing complex reloc: "
7919 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7920 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7921 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7922 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7923 oplen, (unsigned long) x, (unsigned long) mask,
7924 (unsigned long) relocation);
7925 #endif
7926
7927 r = bfd_reloc_ok;
7928 if (! trunc_p)
7929 /* Now do an overflow check. */
7930 r = bfd_check_overflow ((signed_p
7931 ? complain_overflow_signed
7932 : complain_overflow_unsigned),
7933 len, 0, (8 * wordsz),
7934 relocation);
7935
7936 /* Do the deed. */
7937 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7938
7939 #ifdef DEBUG
7940 printf (" relocation: %8.8lx\n"
7941 " shifted mask: %8.8lx\n"
7942 " shifted/masked reloc: %8.8lx\n"
7943 " result: %8.8lx\n",
7944 (unsigned long) relocation, (unsigned long) (mask << shift),
7945 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7946 #endif
7947 /* FIXME: octets_per_byte. */
7948 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7949 return r;
7950 }
7951
7952 /* When performing a relocatable link, the input relocations are
7953 preserved. But, if they reference global symbols, the indices
7954 referenced must be updated. Update all the relocations found in
7955 RELDATA. */
7956
7957 static void
7958 elf_link_adjust_relocs (bfd *abfd,
7959 struct bfd_elf_section_reloc_data *reldata)
7960 {
7961 unsigned int i;
7962 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7963 bfd_byte *erela;
7964 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7965 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7966 bfd_vma r_type_mask;
7967 int r_sym_shift;
7968 unsigned int count = reldata->count;
7969 struct elf_link_hash_entry **rel_hash = reldata->hashes;
7970
7971 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
7972 {
7973 swap_in = bed->s->swap_reloc_in;
7974 swap_out = bed->s->swap_reloc_out;
7975 }
7976 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
7977 {
7978 swap_in = bed->s->swap_reloca_in;
7979 swap_out = bed->s->swap_reloca_out;
7980 }
7981 else
7982 abort ();
7983
7984 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7985 abort ();
7986
7987 if (bed->s->arch_size == 32)
7988 {
7989 r_type_mask = 0xff;
7990 r_sym_shift = 8;
7991 }
7992 else
7993 {
7994 r_type_mask = 0xffffffff;
7995 r_sym_shift = 32;
7996 }
7997
7998 erela = reldata->hdr->contents;
7999 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8000 {
8001 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8002 unsigned int j;
8003
8004 if (*rel_hash == NULL)
8005 continue;
8006
8007 BFD_ASSERT ((*rel_hash)->indx >= 0);
8008
8009 (*swap_in) (abfd, erela, irela);
8010 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8011 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8012 | (irela[j].r_info & r_type_mask));
8013 (*swap_out) (abfd, irela, erela);
8014 }
8015 }
8016
8017 struct elf_link_sort_rela
8018 {
8019 union {
8020 bfd_vma offset;
8021 bfd_vma sym_mask;
8022 } u;
8023 enum elf_reloc_type_class type;
8024 /* We use this as an array of size int_rels_per_ext_rel. */
8025 Elf_Internal_Rela rela[1];
8026 };
8027
8028 static int
8029 elf_link_sort_cmp1 (const void *A, const void *B)
8030 {
8031 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8032 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8033 int relativea, relativeb;
8034
8035 relativea = a->type == reloc_class_relative;
8036 relativeb = b->type == reloc_class_relative;
8037
8038 if (relativea < relativeb)
8039 return 1;
8040 if (relativea > relativeb)
8041 return -1;
8042 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8043 return -1;
8044 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8045 return 1;
8046 if (a->rela->r_offset < b->rela->r_offset)
8047 return -1;
8048 if (a->rela->r_offset > b->rela->r_offset)
8049 return 1;
8050 return 0;
8051 }
8052
8053 static int
8054 elf_link_sort_cmp2 (const void *A, const void *B)
8055 {
8056 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8057 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8058
8059 if (a->type < b->type)
8060 return -1;
8061 if (a->type > b->type)
8062 return 1;
8063 if (a->u.offset < b->u.offset)
8064 return -1;
8065 if (a->u.offset > b->u.offset)
8066 return 1;
8067 if (a->rela->r_offset < b->rela->r_offset)
8068 return -1;
8069 if (a->rela->r_offset > b->rela->r_offset)
8070 return 1;
8071 return 0;
8072 }
8073
8074 static size_t
8075 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8076 {
8077 asection *dynamic_relocs;
8078 asection *rela_dyn;
8079 asection *rel_dyn;
8080 bfd_size_type count, size;
8081 size_t i, ret, sort_elt, ext_size;
8082 bfd_byte *sort, *s_non_relative, *p;
8083 struct elf_link_sort_rela *sq;
8084 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8085 int i2e = bed->s->int_rels_per_ext_rel;
8086 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8087 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8088 struct bfd_link_order *lo;
8089 bfd_vma r_sym_mask;
8090 bfd_boolean use_rela;
8091
8092 /* Find a dynamic reloc section. */
8093 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8094 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8095 if (rela_dyn != NULL && rela_dyn->size > 0
8096 && rel_dyn != NULL && rel_dyn->size > 0)
8097 {
8098 bfd_boolean use_rela_initialised = FALSE;
8099
8100 /* This is just here to stop gcc from complaining.
8101 It's initialization checking code is not perfect. */
8102 use_rela = TRUE;
8103
8104 /* Both sections are present. Examine the sizes
8105 of the indirect sections to help us choose. */
8106 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8107 if (lo->type == bfd_indirect_link_order)
8108 {
8109 asection *o = lo->u.indirect.section;
8110
8111 if ((o->size % bed->s->sizeof_rela) == 0)
8112 {
8113 if ((o->size % bed->s->sizeof_rel) == 0)
8114 /* Section size is divisible by both rel and rela sizes.
8115 It is of no help to us. */
8116 ;
8117 else
8118 {
8119 /* Section size is only divisible by rela. */
8120 if (use_rela_initialised && (use_rela == FALSE))
8121 {
8122 _bfd_error_handler
8123 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8124 bfd_set_error (bfd_error_invalid_operation);
8125 return 0;
8126 }
8127 else
8128 {
8129 use_rela = TRUE;
8130 use_rela_initialised = TRUE;
8131 }
8132 }
8133 }
8134 else if ((o->size % bed->s->sizeof_rel) == 0)
8135 {
8136 /* Section size is only divisible by rel. */
8137 if (use_rela_initialised && (use_rela == TRUE))
8138 {
8139 _bfd_error_handler
8140 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8141 bfd_set_error (bfd_error_invalid_operation);
8142 return 0;
8143 }
8144 else
8145 {
8146 use_rela = FALSE;
8147 use_rela_initialised = TRUE;
8148 }
8149 }
8150 else
8151 {
8152 /* The section size is not divisible by either - something is wrong. */
8153 _bfd_error_handler
8154 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8155 bfd_set_error (bfd_error_invalid_operation);
8156 return 0;
8157 }
8158 }
8159
8160 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8161 if (lo->type == bfd_indirect_link_order)
8162 {
8163 asection *o = lo->u.indirect.section;
8164
8165 if ((o->size % bed->s->sizeof_rela) == 0)
8166 {
8167 if ((o->size % bed->s->sizeof_rel) == 0)
8168 /* Section size is divisible by both rel and rela sizes.
8169 It is of no help to us. */
8170 ;
8171 else
8172 {
8173 /* Section size is only divisible by rela. */
8174 if (use_rela_initialised && (use_rela == FALSE))
8175 {
8176 _bfd_error_handler
8177 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8178 bfd_set_error (bfd_error_invalid_operation);
8179 return 0;
8180 }
8181 else
8182 {
8183 use_rela = TRUE;
8184 use_rela_initialised = TRUE;
8185 }
8186 }
8187 }
8188 else if ((o->size % bed->s->sizeof_rel) == 0)
8189 {
8190 /* Section size is only divisible by rel. */
8191 if (use_rela_initialised && (use_rela == TRUE))
8192 {
8193 _bfd_error_handler
8194 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8195 bfd_set_error (bfd_error_invalid_operation);
8196 return 0;
8197 }
8198 else
8199 {
8200 use_rela = FALSE;
8201 use_rela_initialised = TRUE;
8202 }
8203 }
8204 else
8205 {
8206 /* The section size is not divisible by either - something is wrong. */
8207 _bfd_error_handler
8208 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8209 bfd_set_error (bfd_error_invalid_operation);
8210 return 0;
8211 }
8212 }
8213
8214 if (! use_rela_initialised)
8215 /* Make a guess. */
8216 use_rela = TRUE;
8217 }
8218 else if (rela_dyn != NULL && rela_dyn->size > 0)
8219 use_rela = TRUE;
8220 else if (rel_dyn != NULL && rel_dyn->size > 0)
8221 use_rela = FALSE;
8222 else
8223 return 0;
8224
8225 if (use_rela)
8226 {
8227 dynamic_relocs = rela_dyn;
8228 ext_size = bed->s->sizeof_rela;
8229 swap_in = bed->s->swap_reloca_in;
8230 swap_out = bed->s->swap_reloca_out;
8231 }
8232 else
8233 {
8234 dynamic_relocs = rel_dyn;
8235 ext_size = bed->s->sizeof_rel;
8236 swap_in = bed->s->swap_reloc_in;
8237 swap_out = bed->s->swap_reloc_out;
8238 }
8239
8240 size = 0;
8241 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8242 if (lo->type == bfd_indirect_link_order)
8243 size += lo->u.indirect.section->size;
8244
8245 if (size != dynamic_relocs->size)
8246 return 0;
8247
8248 sort_elt = (sizeof (struct elf_link_sort_rela)
8249 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8250
8251 count = dynamic_relocs->size / ext_size;
8252 if (count == 0)
8253 return 0;
8254 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8255
8256 if (sort == NULL)
8257 {
8258 (*info->callbacks->warning)
8259 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8260 return 0;
8261 }
8262
8263 if (bed->s->arch_size == 32)
8264 r_sym_mask = ~(bfd_vma) 0xff;
8265 else
8266 r_sym_mask = ~(bfd_vma) 0xffffffff;
8267
8268 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8269 if (lo->type == bfd_indirect_link_order)
8270 {
8271 bfd_byte *erel, *erelend;
8272 asection *o = lo->u.indirect.section;
8273
8274 if (o->contents == NULL && o->size != 0)
8275 {
8276 /* This is a reloc section that is being handled as a normal
8277 section. See bfd_section_from_shdr. We can't combine
8278 relocs in this case. */
8279 free (sort);
8280 return 0;
8281 }
8282 erel = o->contents;
8283 erelend = o->contents + o->size;
8284 /* FIXME: octets_per_byte. */
8285 p = sort + o->output_offset / ext_size * sort_elt;
8286
8287 while (erel < erelend)
8288 {
8289 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8290
8291 (*swap_in) (abfd, erel, s->rela);
8292 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8293 s->u.sym_mask = r_sym_mask;
8294 p += sort_elt;
8295 erel += ext_size;
8296 }
8297 }
8298
8299 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8300
8301 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8302 {
8303 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8304 if (s->type != reloc_class_relative)
8305 break;
8306 }
8307 ret = i;
8308 s_non_relative = p;
8309
8310 sq = (struct elf_link_sort_rela *) s_non_relative;
8311 for (; i < count; i++, p += sort_elt)
8312 {
8313 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8314 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8315 sq = sp;
8316 sp->u.offset = sq->rela->r_offset;
8317 }
8318
8319 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8320
8321 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8322 if (lo->type == bfd_indirect_link_order)
8323 {
8324 bfd_byte *erel, *erelend;
8325 asection *o = lo->u.indirect.section;
8326
8327 erel = o->contents;
8328 erelend = o->contents + o->size;
8329 /* FIXME: octets_per_byte. */
8330 p = sort + o->output_offset / ext_size * sort_elt;
8331 while (erel < erelend)
8332 {
8333 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8334 (*swap_out) (abfd, s->rela, erel);
8335 p += sort_elt;
8336 erel += ext_size;
8337 }
8338 }
8339
8340 free (sort);
8341 *psec = dynamic_relocs;
8342 return ret;
8343 }
8344
8345 /* Flush the output symbols to the file. */
8346
8347 static bfd_boolean
8348 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8349 const struct elf_backend_data *bed)
8350 {
8351 if (flinfo->symbuf_count > 0)
8352 {
8353 Elf_Internal_Shdr *hdr;
8354 file_ptr pos;
8355 bfd_size_type amt;
8356
8357 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8358 pos = hdr->sh_offset + hdr->sh_size;
8359 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8360 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8361 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8362 return FALSE;
8363
8364 hdr->sh_size += amt;
8365 flinfo->symbuf_count = 0;
8366 }
8367
8368 return TRUE;
8369 }
8370
8371 /* Add a symbol to the output symbol table. */
8372
8373 static int
8374 elf_link_output_sym (struct elf_final_link_info *flinfo,
8375 const char *name,
8376 Elf_Internal_Sym *elfsym,
8377 asection *input_sec,
8378 struct elf_link_hash_entry *h)
8379 {
8380 bfd_byte *dest;
8381 Elf_External_Sym_Shndx *destshndx;
8382 int (*output_symbol_hook)
8383 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8384 struct elf_link_hash_entry *);
8385 const struct elf_backend_data *bed;
8386
8387 bed = get_elf_backend_data (flinfo->output_bfd);
8388 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8389 if (output_symbol_hook != NULL)
8390 {
8391 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8392 if (ret != 1)
8393 return ret;
8394 }
8395
8396 if (name == NULL || *name == '\0')
8397 elfsym->st_name = 0;
8398 else if (input_sec->flags & SEC_EXCLUDE)
8399 elfsym->st_name = 0;
8400 else
8401 {
8402 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8403 name, TRUE, FALSE);
8404 if (elfsym->st_name == (unsigned long) -1)
8405 return 0;
8406 }
8407
8408 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8409 {
8410 if (! elf_link_flush_output_syms (flinfo, bed))
8411 return 0;
8412 }
8413
8414 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8415 destshndx = flinfo->symshndxbuf;
8416 if (destshndx != NULL)
8417 {
8418 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8419 {
8420 bfd_size_type amt;
8421
8422 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8423 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8424 amt * 2);
8425 if (destshndx == NULL)
8426 return 0;
8427 flinfo->symshndxbuf = destshndx;
8428 memset ((char *) destshndx + amt, 0, amt);
8429 flinfo->shndxbuf_size *= 2;
8430 }
8431 destshndx += bfd_get_symcount (flinfo->output_bfd);
8432 }
8433
8434 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8435 flinfo->symbuf_count += 1;
8436 bfd_get_symcount (flinfo->output_bfd) += 1;
8437
8438 return 1;
8439 }
8440
8441 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8442
8443 static bfd_boolean
8444 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8445 {
8446 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8447 && sym->st_shndx < SHN_LORESERVE)
8448 {
8449 /* The gABI doesn't support dynamic symbols in output sections
8450 beyond 64k. */
8451 (*_bfd_error_handler)
8452 (_("%B: Too many sections: %d (>= %d)"),
8453 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8454 bfd_set_error (bfd_error_nonrepresentable_section);
8455 return FALSE;
8456 }
8457 return TRUE;
8458 }
8459
8460 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8461 allowing an unsatisfied unversioned symbol in the DSO to match a
8462 versioned symbol that would normally require an explicit version.
8463 We also handle the case that a DSO references a hidden symbol
8464 which may be satisfied by a versioned symbol in another DSO. */
8465
8466 static bfd_boolean
8467 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8468 const struct elf_backend_data *bed,
8469 struct elf_link_hash_entry *h)
8470 {
8471 bfd *abfd;
8472 struct elf_link_loaded_list *loaded;
8473
8474 if (!is_elf_hash_table (info->hash))
8475 return FALSE;
8476
8477 /* Check indirect symbol. */
8478 while (h->root.type == bfd_link_hash_indirect)
8479 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8480
8481 switch (h->root.type)
8482 {
8483 default:
8484 abfd = NULL;
8485 break;
8486
8487 case bfd_link_hash_undefined:
8488 case bfd_link_hash_undefweak:
8489 abfd = h->root.u.undef.abfd;
8490 if ((abfd->flags & DYNAMIC) == 0
8491 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8492 return FALSE;
8493 break;
8494
8495 case bfd_link_hash_defined:
8496 case bfd_link_hash_defweak:
8497 abfd = h->root.u.def.section->owner;
8498 break;
8499
8500 case bfd_link_hash_common:
8501 abfd = h->root.u.c.p->section->owner;
8502 break;
8503 }
8504 BFD_ASSERT (abfd != NULL);
8505
8506 for (loaded = elf_hash_table (info)->loaded;
8507 loaded != NULL;
8508 loaded = loaded->next)
8509 {
8510 bfd *input;
8511 Elf_Internal_Shdr *hdr;
8512 bfd_size_type symcount;
8513 bfd_size_type extsymcount;
8514 bfd_size_type extsymoff;
8515 Elf_Internal_Shdr *versymhdr;
8516 Elf_Internal_Sym *isym;
8517 Elf_Internal_Sym *isymend;
8518 Elf_Internal_Sym *isymbuf;
8519 Elf_External_Versym *ever;
8520 Elf_External_Versym *extversym;
8521
8522 input = loaded->abfd;
8523
8524 /* We check each DSO for a possible hidden versioned definition. */
8525 if (input == abfd
8526 || (input->flags & DYNAMIC) == 0
8527 || elf_dynversym (input) == 0)
8528 continue;
8529
8530 hdr = &elf_tdata (input)->dynsymtab_hdr;
8531
8532 symcount = hdr->sh_size / bed->s->sizeof_sym;
8533 if (elf_bad_symtab (input))
8534 {
8535 extsymcount = symcount;
8536 extsymoff = 0;
8537 }
8538 else
8539 {
8540 extsymcount = symcount - hdr->sh_info;
8541 extsymoff = hdr->sh_info;
8542 }
8543
8544 if (extsymcount == 0)
8545 continue;
8546
8547 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8548 NULL, NULL, NULL);
8549 if (isymbuf == NULL)
8550 return FALSE;
8551
8552 /* Read in any version definitions. */
8553 versymhdr = &elf_tdata (input)->dynversym_hdr;
8554 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8555 if (extversym == NULL)
8556 goto error_ret;
8557
8558 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8559 || (bfd_bread (extversym, versymhdr->sh_size, input)
8560 != versymhdr->sh_size))
8561 {
8562 free (extversym);
8563 error_ret:
8564 free (isymbuf);
8565 return FALSE;
8566 }
8567
8568 ever = extversym + extsymoff;
8569 isymend = isymbuf + extsymcount;
8570 for (isym = isymbuf; isym < isymend; isym++, ever++)
8571 {
8572 const char *name;
8573 Elf_Internal_Versym iver;
8574 unsigned short version_index;
8575
8576 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8577 || isym->st_shndx == SHN_UNDEF)
8578 continue;
8579
8580 name = bfd_elf_string_from_elf_section (input,
8581 hdr->sh_link,
8582 isym->st_name);
8583 if (strcmp (name, h->root.root.string) != 0)
8584 continue;
8585
8586 _bfd_elf_swap_versym_in (input, ever, &iver);
8587
8588 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8589 && !(h->def_regular
8590 && h->forced_local))
8591 {
8592 /* If we have a non-hidden versioned sym, then it should
8593 have provided a definition for the undefined sym unless
8594 it is defined in a non-shared object and forced local.
8595 */
8596 abort ();
8597 }
8598
8599 version_index = iver.vs_vers & VERSYM_VERSION;
8600 if (version_index == 1 || version_index == 2)
8601 {
8602 /* This is the base or first version. We can use it. */
8603 free (extversym);
8604 free (isymbuf);
8605 return TRUE;
8606 }
8607 }
8608
8609 free (extversym);
8610 free (isymbuf);
8611 }
8612
8613 return FALSE;
8614 }
8615
8616 /* Add an external symbol to the symbol table. This is called from
8617 the hash table traversal routine. When generating a shared object,
8618 we go through the symbol table twice. The first time we output
8619 anything that might have been forced to local scope in a version
8620 script. The second time we output the symbols that are still
8621 global symbols. */
8622
8623 static bfd_boolean
8624 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8625 {
8626 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8627 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8628 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8629 bfd_boolean strip;
8630 Elf_Internal_Sym sym;
8631 asection *input_sec;
8632 const struct elf_backend_data *bed;
8633 long indx;
8634 int ret;
8635
8636 if (h->root.type == bfd_link_hash_warning)
8637 {
8638 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8639 if (h->root.type == bfd_link_hash_new)
8640 return TRUE;
8641 }
8642
8643 /* Decide whether to output this symbol in this pass. */
8644 if (eoinfo->localsyms)
8645 {
8646 if (!h->forced_local)
8647 return TRUE;
8648 if (eoinfo->second_pass
8649 && !((h->root.type == bfd_link_hash_defined
8650 || h->root.type == bfd_link_hash_defweak)
8651 && h->root.u.def.section->output_section != NULL))
8652 return TRUE;
8653
8654 if (!eoinfo->file_sym_done
8655 && (eoinfo->second_pass ? eoinfo->flinfo->filesym_count == 1
8656 : eoinfo->flinfo->filesym_count > 1))
8657 {
8658 /* Output a FILE symbol so that following locals are not associated
8659 with the wrong input file. */
8660 memset (&sym, 0, sizeof (sym));
8661 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8662 sym.st_shndx = SHN_ABS;
8663 if (!elf_link_output_sym (eoinfo->flinfo, NULL, &sym,
8664 bfd_und_section_ptr, NULL))
8665 return FALSE;
8666
8667 eoinfo->file_sym_done = TRUE;
8668 }
8669 }
8670 else
8671 {
8672 if (h->forced_local)
8673 return TRUE;
8674 }
8675
8676 bed = get_elf_backend_data (flinfo->output_bfd);
8677
8678 if (h->root.type == bfd_link_hash_undefined)
8679 {
8680 /* If we have an undefined symbol reference here then it must have
8681 come from a shared library that is being linked in. (Undefined
8682 references in regular files have already been handled unless
8683 they are in unreferenced sections which are removed by garbage
8684 collection). */
8685 bfd_boolean ignore_undef = FALSE;
8686
8687 /* Some symbols may be special in that the fact that they're
8688 undefined can be safely ignored - let backend determine that. */
8689 if (bed->elf_backend_ignore_undef_symbol)
8690 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8691
8692 /* If we are reporting errors for this situation then do so now. */
8693 if (!ignore_undef
8694 && h->ref_dynamic
8695 && (!h->ref_regular || flinfo->info->gc_sections)
8696 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8697 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8698 {
8699 if (!(flinfo->info->callbacks->undefined_symbol
8700 (flinfo->info, h->root.root.string,
8701 h->ref_regular ? NULL : h->root.u.undef.abfd,
8702 NULL, 0,
8703 (flinfo->info->unresolved_syms_in_shared_libs
8704 == RM_GENERATE_ERROR))))
8705 {
8706 bfd_set_error (bfd_error_bad_value);
8707 eoinfo->failed = TRUE;
8708 return FALSE;
8709 }
8710 }
8711 }
8712
8713 /* We should also warn if a forced local symbol is referenced from
8714 shared libraries. */
8715 if (!flinfo->info->relocatable
8716 && flinfo->info->executable
8717 && h->forced_local
8718 && h->ref_dynamic
8719 && h->def_regular
8720 && !h->dynamic_def
8721 && h->ref_dynamic_nonweak
8722 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8723 {
8724 bfd *def_bfd;
8725 const char *msg;
8726 struct elf_link_hash_entry *hi = h;
8727
8728 /* Check indirect symbol. */
8729 while (hi->root.type == bfd_link_hash_indirect)
8730 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8731
8732 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8733 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8734 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8735 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8736 else
8737 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8738 def_bfd = flinfo->output_bfd;
8739 if (hi->root.u.def.section != bfd_abs_section_ptr)
8740 def_bfd = hi->root.u.def.section->owner;
8741 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8742 h->root.root.string);
8743 bfd_set_error (bfd_error_bad_value);
8744 eoinfo->failed = TRUE;
8745 return FALSE;
8746 }
8747
8748 /* We don't want to output symbols that have never been mentioned by
8749 a regular file, or that we have been told to strip. However, if
8750 h->indx is set to -2, the symbol is used by a reloc and we must
8751 output it. */
8752 if (h->indx == -2)
8753 strip = FALSE;
8754 else if ((h->def_dynamic
8755 || h->ref_dynamic
8756 || h->root.type == bfd_link_hash_new)
8757 && !h->def_regular
8758 && !h->ref_regular)
8759 strip = TRUE;
8760 else if (flinfo->info->strip == strip_all)
8761 strip = TRUE;
8762 else if (flinfo->info->strip == strip_some
8763 && bfd_hash_lookup (flinfo->info->keep_hash,
8764 h->root.root.string, FALSE, FALSE) == NULL)
8765 strip = TRUE;
8766 else if ((h->root.type == bfd_link_hash_defined
8767 || h->root.type == bfd_link_hash_defweak)
8768 && ((flinfo->info->strip_discarded
8769 && discarded_section (h->root.u.def.section))
8770 || (h->root.u.def.section->owner != NULL
8771 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8772 strip = TRUE;
8773 else if ((h->root.type == bfd_link_hash_undefined
8774 || h->root.type == bfd_link_hash_undefweak)
8775 && h->root.u.undef.abfd != NULL
8776 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8777 strip = TRUE;
8778 else
8779 strip = FALSE;
8780
8781 /* If we're stripping it, and it's not a dynamic symbol, there's
8782 nothing else to do unless it is a forced local symbol or a
8783 STT_GNU_IFUNC symbol. */
8784 if (strip
8785 && h->dynindx == -1
8786 && h->type != STT_GNU_IFUNC
8787 && !h->forced_local)
8788 return TRUE;
8789
8790 sym.st_value = 0;
8791 sym.st_size = h->size;
8792 sym.st_other = h->other;
8793 if (h->forced_local)
8794 {
8795 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8796 /* Turn off visibility on local symbol. */
8797 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8798 }
8799 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
8800 else if (h->unique_global && h->def_regular)
8801 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8802 else if (h->root.type == bfd_link_hash_undefweak
8803 || h->root.type == bfd_link_hash_defweak)
8804 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8805 else
8806 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8807 sym.st_target_internal = h->target_internal;
8808
8809 switch (h->root.type)
8810 {
8811 default:
8812 case bfd_link_hash_new:
8813 case bfd_link_hash_warning:
8814 abort ();
8815 return FALSE;
8816
8817 case bfd_link_hash_undefined:
8818 case bfd_link_hash_undefweak:
8819 input_sec = bfd_und_section_ptr;
8820 sym.st_shndx = SHN_UNDEF;
8821 break;
8822
8823 case bfd_link_hash_defined:
8824 case bfd_link_hash_defweak:
8825 {
8826 input_sec = h->root.u.def.section;
8827 if (input_sec->output_section != NULL)
8828 {
8829 if (eoinfo->localsyms && flinfo->filesym_count == 1)
8830 {
8831 bfd_boolean second_pass_sym
8832 = (input_sec->owner == flinfo->output_bfd
8833 || input_sec->owner == NULL
8834 || (input_sec->flags & SEC_LINKER_CREATED) != 0
8835 || (input_sec->owner->flags & BFD_LINKER_CREATED) != 0);
8836
8837 eoinfo->need_second_pass |= second_pass_sym;
8838 if (eoinfo->second_pass != second_pass_sym)
8839 return TRUE;
8840 }
8841
8842 sym.st_shndx =
8843 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
8844 input_sec->output_section);
8845 if (sym.st_shndx == SHN_BAD)
8846 {
8847 (*_bfd_error_handler)
8848 (_("%B: could not find output section %A for input section %A"),
8849 flinfo->output_bfd, input_sec->output_section, input_sec);
8850 bfd_set_error (bfd_error_nonrepresentable_section);
8851 eoinfo->failed = TRUE;
8852 return FALSE;
8853 }
8854
8855 /* ELF symbols in relocatable files are section relative,
8856 but in nonrelocatable files they are virtual
8857 addresses. */
8858 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8859 if (!flinfo->info->relocatable)
8860 {
8861 sym.st_value += input_sec->output_section->vma;
8862 if (h->type == STT_TLS)
8863 {
8864 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
8865 if (tls_sec != NULL)
8866 sym.st_value -= tls_sec->vma;
8867 else
8868 {
8869 /* The TLS section may have been garbage collected. */
8870 BFD_ASSERT (flinfo->info->gc_sections
8871 && !input_sec->gc_mark);
8872 }
8873 }
8874 }
8875 }
8876 else
8877 {
8878 BFD_ASSERT (input_sec->owner == NULL
8879 || (input_sec->owner->flags & DYNAMIC) != 0);
8880 sym.st_shndx = SHN_UNDEF;
8881 input_sec = bfd_und_section_ptr;
8882 }
8883 }
8884 break;
8885
8886 case bfd_link_hash_common:
8887 input_sec = h->root.u.c.p->section;
8888 sym.st_shndx = bed->common_section_index (input_sec);
8889 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8890 break;
8891
8892 case bfd_link_hash_indirect:
8893 /* These symbols are created by symbol versioning. They point
8894 to the decorated version of the name. For example, if the
8895 symbol foo@@GNU_1.2 is the default, which should be used when
8896 foo is used with no version, then we add an indirect symbol
8897 foo which points to foo@@GNU_1.2. We ignore these symbols,
8898 since the indirected symbol is already in the hash table. */
8899 return TRUE;
8900 }
8901
8902 /* Give the processor backend a chance to tweak the symbol value,
8903 and also to finish up anything that needs to be done for this
8904 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8905 forced local syms when non-shared is due to a historical quirk.
8906 STT_GNU_IFUNC symbol must go through PLT. */
8907 if ((h->type == STT_GNU_IFUNC
8908 && h->def_regular
8909 && !flinfo->info->relocatable)
8910 || ((h->dynindx != -1
8911 || h->forced_local)
8912 && ((flinfo->info->shared
8913 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8914 || h->root.type != bfd_link_hash_undefweak))
8915 || !h->forced_local)
8916 && elf_hash_table (flinfo->info)->dynamic_sections_created))
8917 {
8918 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8919 (flinfo->output_bfd, flinfo->info, h, &sym)))
8920 {
8921 eoinfo->failed = TRUE;
8922 return FALSE;
8923 }
8924 }
8925
8926 /* If we are marking the symbol as undefined, and there are no
8927 non-weak references to this symbol from a regular object, then
8928 mark the symbol as weak undefined; if there are non-weak
8929 references, mark the symbol as strong. We can't do this earlier,
8930 because it might not be marked as undefined until the
8931 finish_dynamic_symbol routine gets through with it. */
8932 if (sym.st_shndx == SHN_UNDEF
8933 && h->ref_regular
8934 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8935 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8936 {
8937 int bindtype;
8938 unsigned int type = ELF_ST_TYPE (sym.st_info);
8939
8940 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8941 if (type == STT_GNU_IFUNC)
8942 type = STT_FUNC;
8943
8944 if (h->ref_regular_nonweak)
8945 bindtype = STB_GLOBAL;
8946 else
8947 bindtype = STB_WEAK;
8948 sym.st_info = ELF_ST_INFO (bindtype, type);
8949 }
8950
8951 /* If this is a symbol defined in a dynamic library, don't use the
8952 symbol size from the dynamic library. Relinking an executable
8953 against a new library may introduce gratuitous changes in the
8954 executable's symbols if we keep the size. */
8955 if (sym.st_shndx == SHN_UNDEF
8956 && !h->def_regular
8957 && h->def_dynamic)
8958 sym.st_size = 0;
8959
8960 /* If a non-weak symbol with non-default visibility is not defined
8961 locally, it is a fatal error. */
8962 if (!flinfo->info->relocatable
8963 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8964 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8965 && h->root.type == bfd_link_hash_undefined
8966 && !h->def_regular)
8967 {
8968 const char *msg;
8969
8970 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
8971 msg = _("%B: protected symbol `%s' isn't defined");
8972 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
8973 msg = _("%B: internal symbol `%s' isn't defined");
8974 else
8975 msg = _("%B: hidden symbol `%s' isn't defined");
8976 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
8977 bfd_set_error (bfd_error_bad_value);
8978 eoinfo->failed = TRUE;
8979 return FALSE;
8980 }
8981
8982 /* If this symbol should be put in the .dynsym section, then put it
8983 there now. We already know the symbol index. We also fill in
8984 the entry in the .hash section. */
8985 if (flinfo->dynsym_sec != NULL
8986 && h->dynindx != -1
8987 && elf_hash_table (flinfo->info)->dynamic_sections_created)
8988 {
8989 bfd_byte *esym;
8990
8991 /* Since there is no version information in the dynamic string,
8992 if there is no version info in symbol version section, we will
8993 have a run-time problem. */
8994 if (h->verinfo.verdef == NULL)
8995 {
8996 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
8997
8998 if (p && p [1] != '\0')
8999 {
9000 (*_bfd_error_handler)
9001 (_("%B: No symbol version section for versioned symbol `%s'"),
9002 flinfo->output_bfd, h->root.root.string);
9003 eoinfo->failed = TRUE;
9004 return FALSE;
9005 }
9006 }
9007
9008 sym.st_name = h->dynstr_index;
9009 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9010 if (!check_dynsym (flinfo->output_bfd, &sym))
9011 {
9012 eoinfo->failed = TRUE;
9013 return FALSE;
9014 }
9015 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9016
9017 if (flinfo->hash_sec != NULL)
9018 {
9019 size_t hash_entry_size;
9020 bfd_byte *bucketpos;
9021 bfd_vma chain;
9022 size_t bucketcount;
9023 size_t bucket;
9024
9025 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9026 bucket = h->u.elf_hash_value % bucketcount;
9027
9028 hash_entry_size
9029 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9030 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9031 + (bucket + 2) * hash_entry_size);
9032 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9033 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9034 bucketpos);
9035 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9036 ((bfd_byte *) flinfo->hash_sec->contents
9037 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9038 }
9039
9040 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9041 {
9042 Elf_Internal_Versym iversym;
9043 Elf_External_Versym *eversym;
9044
9045 if (!h->def_regular)
9046 {
9047 if (h->verinfo.verdef == NULL)
9048 iversym.vs_vers = 0;
9049 else
9050 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9051 }
9052 else
9053 {
9054 if (h->verinfo.vertree == NULL)
9055 iversym.vs_vers = 1;
9056 else
9057 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9058 if (flinfo->info->create_default_symver)
9059 iversym.vs_vers++;
9060 }
9061
9062 if (h->hidden)
9063 iversym.vs_vers |= VERSYM_HIDDEN;
9064
9065 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9066 eversym += h->dynindx;
9067 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9068 }
9069 }
9070
9071 /* If we're stripping it, then it was just a dynamic symbol, and
9072 there's nothing else to do. */
9073 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
9074 return TRUE;
9075
9076 indx = bfd_get_symcount (flinfo->output_bfd);
9077 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9078 if (ret == 0)
9079 {
9080 eoinfo->failed = TRUE;
9081 return FALSE;
9082 }
9083 else if (ret == 1)
9084 h->indx = indx;
9085 else if (h->indx == -2)
9086 abort();
9087
9088 return TRUE;
9089 }
9090
9091 /* Return TRUE if special handling is done for relocs in SEC against
9092 symbols defined in discarded sections. */
9093
9094 static bfd_boolean
9095 elf_section_ignore_discarded_relocs (asection *sec)
9096 {
9097 const struct elf_backend_data *bed;
9098
9099 switch (sec->sec_info_type)
9100 {
9101 case SEC_INFO_TYPE_STABS:
9102 case SEC_INFO_TYPE_EH_FRAME:
9103 return TRUE;
9104 default:
9105 break;
9106 }
9107
9108 bed = get_elf_backend_data (sec->owner);
9109 if (bed->elf_backend_ignore_discarded_relocs != NULL
9110 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9111 return TRUE;
9112
9113 return FALSE;
9114 }
9115
9116 /* Return a mask saying how ld should treat relocations in SEC against
9117 symbols defined in discarded sections. If this function returns
9118 COMPLAIN set, ld will issue a warning message. If this function
9119 returns PRETEND set, and the discarded section was link-once and the
9120 same size as the kept link-once section, ld will pretend that the
9121 symbol was actually defined in the kept section. Otherwise ld will
9122 zero the reloc (at least that is the intent, but some cooperation by
9123 the target dependent code is needed, particularly for REL targets). */
9124
9125 unsigned int
9126 _bfd_elf_default_action_discarded (asection *sec)
9127 {
9128 if (sec->flags & SEC_DEBUGGING)
9129 return PRETEND;
9130
9131 if (strcmp (".eh_frame", sec->name) == 0)
9132 return 0;
9133
9134 if (strcmp (".gcc_except_table", sec->name) == 0)
9135 return 0;
9136
9137 return COMPLAIN | PRETEND;
9138 }
9139
9140 /* Find a match between a section and a member of a section group. */
9141
9142 static asection *
9143 match_group_member (asection *sec, asection *group,
9144 struct bfd_link_info *info)
9145 {
9146 asection *first = elf_next_in_group (group);
9147 asection *s = first;
9148
9149 while (s != NULL)
9150 {
9151 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9152 return s;
9153
9154 s = elf_next_in_group (s);
9155 if (s == first)
9156 break;
9157 }
9158
9159 return NULL;
9160 }
9161
9162 /* Check if the kept section of a discarded section SEC can be used
9163 to replace it. Return the replacement if it is OK. Otherwise return
9164 NULL. */
9165
9166 asection *
9167 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9168 {
9169 asection *kept;
9170
9171 kept = sec->kept_section;
9172 if (kept != NULL)
9173 {
9174 if ((kept->flags & SEC_GROUP) != 0)
9175 kept = match_group_member (sec, kept, info);
9176 if (kept != NULL
9177 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9178 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9179 kept = NULL;
9180 sec->kept_section = kept;
9181 }
9182 return kept;
9183 }
9184
9185 /* Link an input file into the linker output file. This function
9186 handles all the sections and relocations of the input file at once.
9187 This is so that we only have to read the local symbols once, and
9188 don't have to keep them in memory. */
9189
9190 static bfd_boolean
9191 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9192 {
9193 int (*relocate_section)
9194 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9195 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9196 bfd *output_bfd;
9197 Elf_Internal_Shdr *symtab_hdr;
9198 size_t locsymcount;
9199 size_t extsymoff;
9200 Elf_Internal_Sym *isymbuf;
9201 Elf_Internal_Sym *isym;
9202 Elf_Internal_Sym *isymend;
9203 long *pindex;
9204 asection **ppsection;
9205 asection *o;
9206 const struct elf_backend_data *bed;
9207 struct elf_link_hash_entry **sym_hashes;
9208 bfd_size_type address_size;
9209 bfd_vma r_type_mask;
9210 int r_sym_shift;
9211 bfd_boolean have_file_sym = FALSE;
9212
9213 output_bfd = flinfo->output_bfd;
9214 bed = get_elf_backend_data (output_bfd);
9215 relocate_section = bed->elf_backend_relocate_section;
9216
9217 /* If this is a dynamic object, we don't want to do anything here:
9218 we don't want the local symbols, and we don't want the section
9219 contents. */
9220 if ((input_bfd->flags & DYNAMIC) != 0)
9221 return TRUE;
9222
9223 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9224 if (elf_bad_symtab (input_bfd))
9225 {
9226 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9227 extsymoff = 0;
9228 }
9229 else
9230 {
9231 locsymcount = symtab_hdr->sh_info;
9232 extsymoff = symtab_hdr->sh_info;
9233 }
9234
9235 /* Read the local symbols. */
9236 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9237 if (isymbuf == NULL && locsymcount != 0)
9238 {
9239 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9240 flinfo->internal_syms,
9241 flinfo->external_syms,
9242 flinfo->locsym_shndx);
9243 if (isymbuf == NULL)
9244 return FALSE;
9245 }
9246
9247 /* Find local symbol sections and adjust values of symbols in
9248 SEC_MERGE sections. Write out those local symbols we know are
9249 going into the output file. */
9250 isymend = isymbuf + locsymcount;
9251 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9252 isym < isymend;
9253 isym++, pindex++, ppsection++)
9254 {
9255 asection *isec;
9256 const char *name;
9257 Elf_Internal_Sym osym;
9258 long indx;
9259 int ret;
9260
9261 *pindex = -1;
9262
9263 if (elf_bad_symtab (input_bfd))
9264 {
9265 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9266 {
9267 *ppsection = NULL;
9268 continue;
9269 }
9270 }
9271
9272 if (isym->st_shndx == SHN_UNDEF)
9273 isec = bfd_und_section_ptr;
9274 else if (isym->st_shndx == SHN_ABS)
9275 isec = bfd_abs_section_ptr;
9276 else if (isym->st_shndx == SHN_COMMON)
9277 isec = bfd_com_section_ptr;
9278 else
9279 {
9280 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9281 if (isec == NULL)
9282 {
9283 /* Don't attempt to output symbols with st_shnx in the
9284 reserved range other than SHN_ABS and SHN_COMMON. */
9285 *ppsection = NULL;
9286 continue;
9287 }
9288 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9289 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9290 isym->st_value =
9291 _bfd_merged_section_offset (output_bfd, &isec,
9292 elf_section_data (isec)->sec_info,
9293 isym->st_value);
9294 }
9295
9296 *ppsection = isec;
9297
9298 /* Don't output the first, undefined, symbol. */
9299 if (ppsection == flinfo->sections)
9300 continue;
9301
9302 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9303 {
9304 /* We never output section symbols. Instead, we use the
9305 section symbol of the corresponding section in the output
9306 file. */
9307 continue;
9308 }
9309
9310 /* If we are stripping all symbols, we don't want to output this
9311 one. */
9312 if (flinfo->info->strip == strip_all)
9313 continue;
9314
9315 /* If we are discarding all local symbols, we don't want to
9316 output this one. If we are generating a relocatable output
9317 file, then some of the local symbols may be required by
9318 relocs; we output them below as we discover that they are
9319 needed. */
9320 if (flinfo->info->discard == discard_all)
9321 continue;
9322
9323 /* If this symbol is defined in a section which we are
9324 discarding, we don't need to keep it. */
9325 if (isym->st_shndx != SHN_UNDEF
9326 && isym->st_shndx < SHN_LORESERVE
9327 && bfd_section_removed_from_list (output_bfd,
9328 isec->output_section))
9329 continue;
9330
9331 /* Get the name of the symbol. */
9332 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9333 isym->st_name);
9334 if (name == NULL)
9335 return FALSE;
9336
9337 /* See if we are discarding symbols with this name. */
9338 if ((flinfo->info->strip == strip_some
9339 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9340 == NULL))
9341 || (((flinfo->info->discard == discard_sec_merge
9342 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9343 || flinfo->info->discard == discard_l)
9344 && bfd_is_local_label_name (input_bfd, name)))
9345 continue;
9346
9347 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9348 {
9349 have_file_sym = TRUE;
9350 flinfo->filesym_count += 1;
9351 }
9352 if (!have_file_sym)
9353 {
9354 /* In the absence of debug info, bfd_find_nearest_line uses
9355 FILE symbols to determine the source file for local
9356 function symbols. Provide a FILE symbol here if input
9357 files lack such, so that their symbols won't be
9358 associated with a previous input file. It's not the
9359 source file, but the best we can do. */
9360 have_file_sym = TRUE;
9361 flinfo->filesym_count += 1;
9362 memset (&osym, 0, sizeof (osym));
9363 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9364 osym.st_shndx = SHN_ABS;
9365 if (!elf_link_output_sym (flinfo, input_bfd->filename, &osym,
9366 bfd_abs_section_ptr, NULL))
9367 return FALSE;
9368 }
9369
9370 osym = *isym;
9371
9372 /* Adjust the section index for the output file. */
9373 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9374 isec->output_section);
9375 if (osym.st_shndx == SHN_BAD)
9376 return FALSE;
9377
9378 /* ELF symbols in relocatable files are section relative, but
9379 in executable files they are virtual addresses. Note that
9380 this code assumes that all ELF sections have an associated
9381 BFD section with a reasonable value for output_offset; below
9382 we assume that they also have a reasonable value for
9383 output_section. Any special sections must be set up to meet
9384 these requirements. */
9385 osym.st_value += isec->output_offset;
9386 if (!flinfo->info->relocatable)
9387 {
9388 osym.st_value += isec->output_section->vma;
9389 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9390 {
9391 /* STT_TLS symbols are relative to PT_TLS segment base. */
9392 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9393 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9394 }
9395 }
9396
9397 indx = bfd_get_symcount (output_bfd);
9398 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9399 if (ret == 0)
9400 return FALSE;
9401 else if (ret == 1)
9402 *pindex = indx;
9403 }
9404
9405 if (bed->s->arch_size == 32)
9406 {
9407 r_type_mask = 0xff;
9408 r_sym_shift = 8;
9409 address_size = 4;
9410 }
9411 else
9412 {
9413 r_type_mask = 0xffffffff;
9414 r_sym_shift = 32;
9415 address_size = 8;
9416 }
9417
9418 /* Relocate the contents of each section. */
9419 sym_hashes = elf_sym_hashes (input_bfd);
9420 for (o = input_bfd->sections; o != NULL; o = o->next)
9421 {
9422 bfd_byte *contents;
9423
9424 if (! o->linker_mark)
9425 {
9426 /* This section was omitted from the link. */
9427 continue;
9428 }
9429
9430 if (flinfo->info->relocatable
9431 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9432 {
9433 /* Deal with the group signature symbol. */
9434 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9435 unsigned long symndx = sec_data->this_hdr.sh_info;
9436 asection *osec = o->output_section;
9437
9438 if (symndx >= locsymcount
9439 || (elf_bad_symtab (input_bfd)
9440 && flinfo->sections[symndx] == NULL))
9441 {
9442 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9443 while (h->root.type == bfd_link_hash_indirect
9444 || h->root.type == bfd_link_hash_warning)
9445 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9446 /* Arrange for symbol to be output. */
9447 h->indx = -2;
9448 elf_section_data (osec)->this_hdr.sh_info = -2;
9449 }
9450 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9451 {
9452 /* We'll use the output section target_index. */
9453 asection *sec = flinfo->sections[symndx]->output_section;
9454 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9455 }
9456 else
9457 {
9458 if (flinfo->indices[symndx] == -1)
9459 {
9460 /* Otherwise output the local symbol now. */
9461 Elf_Internal_Sym sym = isymbuf[symndx];
9462 asection *sec = flinfo->sections[symndx]->output_section;
9463 const char *name;
9464 long indx;
9465 int ret;
9466
9467 name = bfd_elf_string_from_elf_section (input_bfd,
9468 symtab_hdr->sh_link,
9469 sym.st_name);
9470 if (name == NULL)
9471 return FALSE;
9472
9473 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9474 sec);
9475 if (sym.st_shndx == SHN_BAD)
9476 return FALSE;
9477
9478 sym.st_value += o->output_offset;
9479
9480 indx = bfd_get_symcount (output_bfd);
9481 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9482 if (ret == 0)
9483 return FALSE;
9484 else if (ret == 1)
9485 flinfo->indices[symndx] = indx;
9486 else
9487 abort ();
9488 }
9489 elf_section_data (osec)->this_hdr.sh_info
9490 = flinfo->indices[symndx];
9491 }
9492 }
9493
9494 if ((o->flags & SEC_HAS_CONTENTS) == 0
9495 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9496 continue;
9497
9498 if ((o->flags & SEC_LINKER_CREATED) != 0)
9499 {
9500 /* Section was created by _bfd_elf_link_create_dynamic_sections
9501 or somesuch. */
9502 continue;
9503 }
9504
9505 /* Get the contents of the section. They have been cached by a
9506 relaxation routine. Note that o is a section in an input
9507 file, so the contents field will not have been set by any of
9508 the routines which work on output files. */
9509 if (elf_section_data (o)->this_hdr.contents != NULL)
9510 {
9511 contents = elf_section_data (o)->this_hdr.contents;
9512 if (bed->caches_rawsize
9513 && o->rawsize != 0
9514 && o->rawsize < o->size)
9515 {
9516 memcpy (flinfo->contents, contents, o->rawsize);
9517 contents = flinfo->contents;
9518 }
9519 }
9520 else
9521 {
9522 contents = flinfo->contents;
9523 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9524 return FALSE;
9525 }
9526
9527 if ((o->flags & SEC_RELOC) != 0)
9528 {
9529 Elf_Internal_Rela *internal_relocs;
9530 Elf_Internal_Rela *rel, *relend;
9531 int action_discarded;
9532 int ret;
9533
9534 /* Get the swapped relocs. */
9535 internal_relocs
9536 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9537 flinfo->internal_relocs, FALSE);
9538 if (internal_relocs == NULL
9539 && o->reloc_count > 0)
9540 return FALSE;
9541
9542 /* We need to reverse-copy input .ctors/.dtors sections if
9543 they are placed in .init_array/.finit_array for output. */
9544 if (o->size > address_size
9545 && ((strncmp (o->name, ".ctors", 6) == 0
9546 && strcmp (o->output_section->name,
9547 ".init_array") == 0)
9548 || (strncmp (o->name, ".dtors", 6) == 0
9549 && strcmp (o->output_section->name,
9550 ".fini_array") == 0))
9551 && (o->name[6] == 0 || o->name[6] == '.'))
9552 {
9553 if (o->size != o->reloc_count * address_size)
9554 {
9555 (*_bfd_error_handler)
9556 (_("error: %B: size of section %A is not "
9557 "multiple of address size"),
9558 input_bfd, o);
9559 bfd_set_error (bfd_error_on_input);
9560 return FALSE;
9561 }
9562 o->flags |= SEC_ELF_REVERSE_COPY;
9563 }
9564
9565 action_discarded = -1;
9566 if (!elf_section_ignore_discarded_relocs (o))
9567 action_discarded = (*bed->action_discarded) (o);
9568
9569 /* Run through the relocs evaluating complex reloc symbols and
9570 looking for relocs against symbols from discarded sections
9571 or section symbols from removed link-once sections.
9572 Complain about relocs against discarded sections. Zero
9573 relocs against removed link-once sections. */
9574
9575 rel = internal_relocs;
9576 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9577 for ( ; rel < relend; rel++)
9578 {
9579 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9580 unsigned int s_type;
9581 asection **ps, *sec;
9582 struct elf_link_hash_entry *h = NULL;
9583 const char *sym_name;
9584
9585 if (r_symndx == STN_UNDEF)
9586 continue;
9587
9588 if (r_symndx >= locsymcount
9589 || (elf_bad_symtab (input_bfd)
9590 && flinfo->sections[r_symndx] == NULL))
9591 {
9592 h = sym_hashes[r_symndx - extsymoff];
9593
9594 /* Badly formatted input files can contain relocs that
9595 reference non-existant symbols. Check here so that
9596 we do not seg fault. */
9597 if (h == NULL)
9598 {
9599 char buffer [32];
9600
9601 sprintf_vma (buffer, rel->r_info);
9602 (*_bfd_error_handler)
9603 (_("error: %B contains a reloc (0x%s) for section %A "
9604 "that references a non-existent global symbol"),
9605 input_bfd, o, buffer);
9606 bfd_set_error (bfd_error_bad_value);
9607 return FALSE;
9608 }
9609
9610 while (h->root.type == bfd_link_hash_indirect
9611 || h->root.type == bfd_link_hash_warning)
9612 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9613
9614 s_type = h->type;
9615
9616 ps = NULL;
9617 if (h->root.type == bfd_link_hash_defined
9618 || h->root.type == bfd_link_hash_defweak)
9619 ps = &h->root.u.def.section;
9620
9621 sym_name = h->root.root.string;
9622 }
9623 else
9624 {
9625 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9626
9627 s_type = ELF_ST_TYPE (sym->st_info);
9628 ps = &flinfo->sections[r_symndx];
9629 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9630 sym, *ps);
9631 }
9632
9633 if ((s_type == STT_RELC || s_type == STT_SRELC)
9634 && !flinfo->info->relocatable)
9635 {
9636 bfd_vma val;
9637 bfd_vma dot = (rel->r_offset
9638 + o->output_offset + o->output_section->vma);
9639 #ifdef DEBUG
9640 printf ("Encountered a complex symbol!");
9641 printf (" (input_bfd %s, section %s, reloc %ld\n",
9642 input_bfd->filename, o->name,
9643 (long) (rel - internal_relocs));
9644 printf (" symbol: idx %8.8lx, name %s\n",
9645 r_symndx, sym_name);
9646 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9647 (unsigned long) rel->r_info,
9648 (unsigned long) rel->r_offset);
9649 #endif
9650 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9651 isymbuf, locsymcount, s_type == STT_SRELC))
9652 return FALSE;
9653
9654 /* Symbol evaluated OK. Update to absolute value. */
9655 set_symbol_value (input_bfd, isymbuf, locsymcount,
9656 r_symndx, val);
9657 continue;
9658 }
9659
9660 if (action_discarded != -1 && ps != NULL)
9661 {
9662 /* Complain if the definition comes from a
9663 discarded section. */
9664 if ((sec = *ps) != NULL && discarded_section (sec))
9665 {
9666 BFD_ASSERT (r_symndx != STN_UNDEF);
9667 if (action_discarded & COMPLAIN)
9668 (*flinfo->info->callbacks->einfo)
9669 (_("%X`%s' referenced in section `%A' of %B: "
9670 "defined in discarded section `%A' of %B\n"),
9671 sym_name, o, input_bfd, sec, sec->owner);
9672
9673 /* Try to do the best we can to support buggy old
9674 versions of gcc. Pretend that the symbol is
9675 really defined in the kept linkonce section.
9676 FIXME: This is quite broken. Modifying the
9677 symbol here means we will be changing all later
9678 uses of the symbol, not just in this section. */
9679 if (action_discarded & PRETEND)
9680 {
9681 asection *kept;
9682
9683 kept = _bfd_elf_check_kept_section (sec,
9684 flinfo->info);
9685 if (kept != NULL)
9686 {
9687 *ps = kept;
9688 continue;
9689 }
9690 }
9691 }
9692 }
9693 }
9694
9695 /* Relocate the section by invoking a back end routine.
9696
9697 The back end routine is responsible for adjusting the
9698 section contents as necessary, and (if using Rela relocs
9699 and generating a relocatable output file) adjusting the
9700 reloc addend as necessary.
9701
9702 The back end routine does not have to worry about setting
9703 the reloc address or the reloc symbol index.
9704
9705 The back end routine is given a pointer to the swapped in
9706 internal symbols, and can access the hash table entries
9707 for the external symbols via elf_sym_hashes (input_bfd).
9708
9709 When generating relocatable output, the back end routine
9710 must handle STB_LOCAL/STT_SECTION symbols specially. The
9711 output symbol is going to be a section symbol
9712 corresponding to the output section, which will require
9713 the addend to be adjusted. */
9714
9715 ret = (*relocate_section) (output_bfd, flinfo->info,
9716 input_bfd, o, contents,
9717 internal_relocs,
9718 isymbuf,
9719 flinfo->sections);
9720 if (!ret)
9721 return FALSE;
9722
9723 if (ret == 2
9724 || flinfo->info->relocatable
9725 || flinfo->info->emitrelocations)
9726 {
9727 Elf_Internal_Rela *irela;
9728 Elf_Internal_Rela *irelaend, *irelamid;
9729 bfd_vma last_offset;
9730 struct elf_link_hash_entry **rel_hash;
9731 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9732 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9733 unsigned int next_erel;
9734 bfd_boolean rela_normal;
9735 struct bfd_elf_section_data *esdi, *esdo;
9736
9737 esdi = elf_section_data (o);
9738 esdo = elf_section_data (o->output_section);
9739 rela_normal = FALSE;
9740
9741 /* Adjust the reloc addresses and symbol indices. */
9742
9743 irela = internal_relocs;
9744 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9745 rel_hash = esdo->rel.hashes + esdo->rel.count;
9746 /* We start processing the REL relocs, if any. When we reach
9747 IRELAMID in the loop, we switch to the RELA relocs. */
9748 irelamid = irela;
9749 if (esdi->rel.hdr != NULL)
9750 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9751 * bed->s->int_rels_per_ext_rel);
9752 rel_hash_list = rel_hash;
9753 rela_hash_list = NULL;
9754 last_offset = o->output_offset;
9755 if (!flinfo->info->relocatable)
9756 last_offset += o->output_section->vma;
9757 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9758 {
9759 unsigned long r_symndx;
9760 asection *sec;
9761 Elf_Internal_Sym sym;
9762
9763 if (next_erel == bed->s->int_rels_per_ext_rel)
9764 {
9765 rel_hash++;
9766 next_erel = 0;
9767 }
9768
9769 if (irela == irelamid)
9770 {
9771 rel_hash = esdo->rela.hashes + esdo->rela.count;
9772 rela_hash_list = rel_hash;
9773 rela_normal = bed->rela_normal;
9774 }
9775
9776 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9777 flinfo->info, o,
9778 irela->r_offset);
9779 if (irela->r_offset >= (bfd_vma) -2)
9780 {
9781 /* This is a reloc for a deleted entry or somesuch.
9782 Turn it into an R_*_NONE reloc, at the same
9783 offset as the last reloc. elf_eh_frame.c and
9784 bfd_elf_discard_info rely on reloc offsets
9785 being ordered. */
9786 irela->r_offset = last_offset;
9787 irela->r_info = 0;
9788 irela->r_addend = 0;
9789 continue;
9790 }
9791
9792 irela->r_offset += o->output_offset;
9793
9794 /* Relocs in an executable have to be virtual addresses. */
9795 if (!flinfo->info->relocatable)
9796 irela->r_offset += o->output_section->vma;
9797
9798 last_offset = irela->r_offset;
9799
9800 r_symndx = irela->r_info >> r_sym_shift;
9801 if (r_symndx == STN_UNDEF)
9802 continue;
9803
9804 if (r_symndx >= locsymcount
9805 || (elf_bad_symtab (input_bfd)
9806 && flinfo->sections[r_symndx] == NULL))
9807 {
9808 struct elf_link_hash_entry *rh;
9809 unsigned long indx;
9810
9811 /* This is a reloc against a global symbol. We
9812 have not yet output all the local symbols, so
9813 we do not know the symbol index of any global
9814 symbol. We set the rel_hash entry for this
9815 reloc to point to the global hash table entry
9816 for this symbol. The symbol index is then
9817 set at the end of bfd_elf_final_link. */
9818 indx = r_symndx - extsymoff;
9819 rh = elf_sym_hashes (input_bfd)[indx];
9820 while (rh->root.type == bfd_link_hash_indirect
9821 || rh->root.type == bfd_link_hash_warning)
9822 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9823
9824 /* Setting the index to -2 tells
9825 elf_link_output_extsym that this symbol is
9826 used by a reloc. */
9827 BFD_ASSERT (rh->indx < 0);
9828 rh->indx = -2;
9829
9830 *rel_hash = rh;
9831
9832 continue;
9833 }
9834
9835 /* This is a reloc against a local symbol. */
9836
9837 *rel_hash = NULL;
9838 sym = isymbuf[r_symndx];
9839 sec = flinfo->sections[r_symndx];
9840 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9841 {
9842 /* I suppose the backend ought to fill in the
9843 section of any STT_SECTION symbol against a
9844 processor specific section. */
9845 r_symndx = STN_UNDEF;
9846 if (bfd_is_abs_section (sec))
9847 ;
9848 else if (sec == NULL || sec->owner == NULL)
9849 {
9850 bfd_set_error (bfd_error_bad_value);
9851 return FALSE;
9852 }
9853 else
9854 {
9855 asection *osec = sec->output_section;
9856
9857 /* If we have discarded a section, the output
9858 section will be the absolute section. In
9859 case of discarded SEC_MERGE sections, use
9860 the kept section. relocate_section should
9861 have already handled discarded linkonce
9862 sections. */
9863 if (bfd_is_abs_section (osec)
9864 && sec->kept_section != NULL
9865 && sec->kept_section->output_section != NULL)
9866 {
9867 osec = sec->kept_section->output_section;
9868 irela->r_addend -= osec->vma;
9869 }
9870
9871 if (!bfd_is_abs_section (osec))
9872 {
9873 r_symndx = osec->target_index;
9874 if (r_symndx == STN_UNDEF)
9875 {
9876 irela->r_addend += osec->vma;
9877 osec = _bfd_nearby_section (output_bfd, osec,
9878 osec->vma);
9879 irela->r_addend -= osec->vma;
9880 r_symndx = osec->target_index;
9881 }
9882 }
9883 }
9884
9885 /* Adjust the addend according to where the
9886 section winds up in the output section. */
9887 if (rela_normal)
9888 irela->r_addend += sec->output_offset;
9889 }
9890 else
9891 {
9892 if (flinfo->indices[r_symndx] == -1)
9893 {
9894 unsigned long shlink;
9895 const char *name;
9896 asection *osec;
9897 long indx;
9898
9899 if (flinfo->info->strip == strip_all)
9900 {
9901 /* You can't do ld -r -s. */
9902 bfd_set_error (bfd_error_invalid_operation);
9903 return FALSE;
9904 }
9905
9906 /* This symbol was skipped earlier, but
9907 since it is needed by a reloc, we
9908 must output it now. */
9909 shlink = symtab_hdr->sh_link;
9910 name = (bfd_elf_string_from_elf_section
9911 (input_bfd, shlink, sym.st_name));
9912 if (name == NULL)
9913 return FALSE;
9914
9915 osec = sec->output_section;
9916 sym.st_shndx =
9917 _bfd_elf_section_from_bfd_section (output_bfd,
9918 osec);
9919 if (sym.st_shndx == SHN_BAD)
9920 return FALSE;
9921
9922 sym.st_value += sec->output_offset;
9923 if (!flinfo->info->relocatable)
9924 {
9925 sym.st_value += osec->vma;
9926 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9927 {
9928 /* STT_TLS symbols are relative to PT_TLS
9929 segment base. */
9930 BFD_ASSERT (elf_hash_table (flinfo->info)
9931 ->tls_sec != NULL);
9932 sym.st_value -= (elf_hash_table (flinfo->info)
9933 ->tls_sec->vma);
9934 }
9935 }
9936
9937 indx = bfd_get_symcount (output_bfd);
9938 ret = elf_link_output_sym (flinfo, name, &sym, sec,
9939 NULL);
9940 if (ret == 0)
9941 return FALSE;
9942 else if (ret == 1)
9943 flinfo->indices[r_symndx] = indx;
9944 else
9945 abort ();
9946 }
9947
9948 r_symndx = flinfo->indices[r_symndx];
9949 }
9950
9951 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9952 | (irela->r_info & r_type_mask));
9953 }
9954
9955 /* Swap out the relocs. */
9956 input_rel_hdr = esdi->rel.hdr;
9957 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
9958 {
9959 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9960 input_rel_hdr,
9961 internal_relocs,
9962 rel_hash_list))
9963 return FALSE;
9964 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9965 * bed->s->int_rels_per_ext_rel);
9966 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9967 }
9968
9969 input_rela_hdr = esdi->rela.hdr;
9970 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
9971 {
9972 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9973 input_rela_hdr,
9974 internal_relocs,
9975 rela_hash_list))
9976 return FALSE;
9977 }
9978 }
9979 }
9980
9981 /* Write out the modified section contents. */
9982 if (bed->elf_backend_write_section
9983 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
9984 contents))
9985 {
9986 /* Section written out. */
9987 }
9988 else switch (o->sec_info_type)
9989 {
9990 case SEC_INFO_TYPE_STABS:
9991 if (! (_bfd_write_section_stabs
9992 (output_bfd,
9993 &elf_hash_table (flinfo->info)->stab_info,
9994 o, &elf_section_data (o)->sec_info, contents)))
9995 return FALSE;
9996 break;
9997 case SEC_INFO_TYPE_MERGE:
9998 if (! _bfd_write_merged_section (output_bfd, o,
9999 elf_section_data (o)->sec_info))
10000 return FALSE;
10001 break;
10002 case SEC_INFO_TYPE_EH_FRAME:
10003 {
10004 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10005 o, contents))
10006 return FALSE;
10007 }
10008 break;
10009 default:
10010 {
10011 /* FIXME: octets_per_byte. */
10012 if (! (o->flags & SEC_EXCLUDE))
10013 {
10014 file_ptr offset = (file_ptr) o->output_offset;
10015 bfd_size_type todo = o->size;
10016 if ((o->flags & SEC_ELF_REVERSE_COPY))
10017 {
10018 /* Reverse-copy input section to output. */
10019 do
10020 {
10021 todo -= address_size;
10022 if (! bfd_set_section_contents (output_bfd,
10023 o->output_section,
10024 contents + todo,
10025 offset,
10026 address_size))
10027 return FALSE;
10028 if (todo == 0)
10029 break;
10030 offset += address_size;
10031 }
10032 while (1);
10033 }
10034 else if (! bfd_set_section_contents (output_bfd,
10035 o->output_section,
10036 contents,
10037 offset, todo))
10038 return FALSE;
10039 }
10040 }
10041 break;
10042 }
10043 }
10044
10045 return TRUE;
10046 }
10047
10048 /* Generate a reloc when linking an ELF file. This is a reloc
10049 requested by the linker, and does not come from any input file. This
10050 is used to build constructor and destructor tables when linking
10051 with -Ur. */
10052
10053 static bfd_boolean
10054 elf_reloc_link_order (bfd *output_bfd,
10055 struct bfd_link_info *info,
10056 asection *output_section,
10057 struct bfd_link_order *link_order)
10058 {
10059 reloc_howto_type *howto;
10060 long indx;
10061 bfd_vma offset;
10062 bfd_vma addend;
10063 struct bfd_elf_section_reloc_data *reldata;
10064 struct elf_link_hash_entry **rel_hash_ptr;
10065 Elf_Internal_Shdr *rel_hdr;
10066 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10067 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10068 bfd_byte *erel;
10069 unsigned int i;
10070 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10071
10072 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10073 if (howto == NULL)
10074 {
10075 bfd_set_error (bfd_error_bad_value);
10076 return FALSE;
10077 }
10078
10079 addend = link_order->u.reloc.p->addend;
10080
10081 if (esdo->rel.hdr)
10082 reldata = &esdo->rel;
10083 else if (esdo->rela.hdr)
10084 reldata = &esdo->rela;
10085 else
10086 {
10087 reldata = NULL;
10088 BFD_ASSERT (0);
10089 }
10090
10091 /* Figure out the symbol index. */
10092 rel_hash_ptr = reldata->hashes + reldata->count;
10093 if (link_order->type == bfd_section_reloc_link_order)
10094 {
10095 indx = link_order->u.reloc.p->u.section->target_index;
10096 BFD_ASSERT (indx != 0);
10097 *rel_hash_ptr = NULL;
10098 }
10099 else
10100 {
10101 struct elf_link_hash_entry *h;
10102
10103 /* Treat a reloc against a defined symbol as though it were
10104 actually against the section. */
10105 h = ((struct elf_link_hash_entry *)
10106 bfd_wrapped_link_hash_lookup (output_bfd, info,
10107 link_order->u.reloc.p->u.name,
10108 FALSE, FALSE, TRUE));
10109 if (h != NULL
10110 && (h->root.type == bfd_link_hash_defined
10111 || h->root.type == bfd_link_hash_defweak))
10112 {
10113 asection *section;
10114
10115 section = h->root.u.def.section;
10116 indx = section->output_section->target_index;
10117 *rel_hash_ptr = NULL;
10118 /* It seems that we ought to add the symbol value to the
10119 addend here, but in practice it has already been added
10120 because it was passed to constructor_callback. */
10121 addend += section->output_section->vma + section->output_offset;
10122 }
10123 else if (h != NULL)
10124 {
10125 /* Setting the index to -2 tells elf_link_output_extsym that
10126 this symbol is used by a reloc. */
10127 h->indx = -2;
10128 *rel_hash_ptr = h;
10129 indx = 0;
10130 }
10131 else
10132 {
10133 if (! ((*info->callbacks->unattached_reloc)
10134 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10135 return FALSE;
10136 indx = 0;
10137 }
10138 }
10139
10140 /* If this is an inplace reloc, we must write the addend into the
10141 object file. */
10142 if (howto->partial_inplace && addend != 0)
10143 {
10144 bfd_size_type size;
10145 bfd_reloc_status_type rstat;
10146 bfd_byte *buf;
10147 bfd_boolean ok;
10148 const char *sym_name;
10149
10150 size = (bfd_size_type) bfd_get_reloc_size (howto);
10151 buf = (bfd_byte *) bfd_zmalloc (size);
10152 if (buf == NULL)
10153 return FALSE;
10154 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10155 switch (rstat)
10156 {
10157 case bfd_reloc_ok:
10158 break;
10159
10160 default:
10161 case bfd_reloc_outofrange:
10162 abort ();
10163
10164 case bfd_reloc_overflow:
10165 if (link_order->type == bfd_section_reloc_link_order)
10166 sym_name = bfd_section_name (output_bfd,
10167 link_order->u.reloc.p->u.section);
10168 else
10169 sym_name = link_order->u.reloc.p->u.name;
10170 if (! ((*info->callbacks->reloc_overflow)
10171 (info, NULL, sym_name, howto->name, addend, NULL,
10172 NULL, (bfd_vma) 0)))
10173 {
10174 free (buf);
10175 return FALSE;
10176 }
10177 break;
10178 }
10179 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10180 link_order->offset, size);
10181 free (buf);
10182 if (! ok)
10183 return FALSE;
10184 }
10185
10186 /* The address of a reloc is relative to the section in a
10187 relocatable file, and is a virtual address in an executable
10188 file. */
10189 offset = link_order->offset;
10190 if (! info->relocatable)
10191 offset += output_section->vma;
10192
10193 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10194 {
10195 irel[i].r_offset = offset;
10196 irel[i].r_info = 0;
10197 irel[i].r_addend = 0;
10198 }
10199 if (bed->s->arch_size == 32)
10200 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10201 else
10202 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10203
10204 rel_hdr = reldata->hdr;
10205 erel = rel_hdr->contents;
10206 if (rel_hdr->sh_type == SHT_REL)
10207 {
10208 erel += reldata->count * bed->s->sizeof_rel;
10209 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10210 }
10211 else
10212 {
10213 irel[0].r_addend = addend;
10214 erel += reldata->count * bed->s->sizeof_rela;
10215 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10216 }
10217
10218 ++reldata->count;
10219
10220 return TRUE;
10221 }
10222
10223
10224 /* Get the output vma of the section pointed to by the sh_link field. */
10225
10226 static bfd_vma
10227 elf_get_linked_section_vma (struct bfd_link_order *p)
10228 {
10229 Elf_Internal_Shdr **elf_shdrp;
10230 asection *s;
10231 int elfsec;
10232
10233 s = p->u.indirect.section;
10234 elf_shdrp = elf_elfsections (s->owner);
10235 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10236 elfsec = elf_shdrp[elfsec]->sh_link;
10237 /* PR 290:
10238 The Intel C compiler generates SHT_IA_64_UNWIND with
10239 SHF_LINK_ORDER. But it doesn't set the sh_link or
10240 sh_info fields. Hence we could get the situation
10241 where elfsec is 0. */
10242 if (elfsec == 0)
10243 {
10244 const struct elf_backend_data *bed
10245 = get_elf_backend_data (s->owner);
10246 if (bed->link_order_error_handler)
10247 bed->link_order_error_handler
10248 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10249 return 0;
10250 }
10251 else
10252 {
10253 s = elf_shdrp[elfsec]->bfd_section;
10254 return s->output_section->vma + s->output_offset;
10255 }
10256 }
10257
10258
10259 /* Compare two sections based on the locations of the sections they are
10260 linked to. Used by elf_fixup_link_order. */
10261
10262 static int
10263 compare_link_order (const void * a, const void * b)
10264 {
10265 bfd_vma apos;
10266 bfd_vma bpos;
10267
10268 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10269 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10270 if (apos < bpos)
10271 return -1;
10272 return apos > bpos;
10273 }
10274
10275
10276 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10277 order as their linked sections. Returns false if this could not be done
10278 because an output section includes both ordered and unordered
10279 sections. Ideally we'd do this in the linker proper. */
10280
10281 static bfd_boolean
10282 elf_fixup_link_order (bfd *abfd, asection *o)
10283 {
10284 int seen_linkorder;
10285 int seen_other;
10286 int n;
10287 struct bfd_link_order *p;
10288 bfd *sub;
10289 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10290 unsigned elfsec;
10291 struct bfd_link_order **sections;
10292 asection *s, *other_sec, *linkorder_sec;
10293 bfd_vma offset;
10294
10295 other_sec = NULL;
10296 linkorder_sec = NULL;
10297 seen_other = 0;
10298 seen_linkorder = 0;
10299 for (p = o->map_head.link_order; p != NULL; p = p->next)
10300 {
10301 if (p->type == bfd_indirect_link_order)
10302 {
10303 s = p->u.indirect.section;
10304 sub = s->owner;
10305 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10306 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10307 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10308 && elfsec < elf_numsections (sub)
10309 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10310 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10311 {
10312 seen_linkorder++;
10313 linkorder_sec = s;
10314 }
10315 else
10316 {
10317 seen_other++;
10318 other_sec = s;
10319 }
10320 }
10321 else
10322 seen_other++;
10323
10324 if (seen_other && seen_linkorder)
10325 {
10326 if (other_sec && linkorder_sec)
10327 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10328 o, linkorder_sec,
10329 linkorder_sec->owner, other_sec,
10330 other_sec->owner);
10331 else
10332 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10333 o);
10334 bfd_set_error (bfd_error_bad_value);
10335 return FALSE;
10336 }
10337 }
10338
10339 if (!seen_linkorder)
10340 return TRUE;
10341
10342 sections = (struct bfd_link_order **)
10343 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10344 if (sections == NULL)
10345 return FALSE;
10346 seen_linkorder = 0;
10347
10348 for (p = o->map_head.link_order; p != NULL; p = p->next)
10349 {
10350 sections[seen_linkorder++] = p;
10351 }
10352 /* Sort the input sections in the order of their linked section. */
10353 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10354 compare_link_order);
10355
10356 /* Change the offsets of the sections. */
10357 offset = 0;
10358 for (n = 0; n < seen_linkorder; n++)
10359 {
10360 s = sections[n]->u.indirect.section;
10361 offset &= ~(bfd_vma) 0 << s->alignment_power;
10362 s->output_offset = offset;
10363 sections[n]->offset = offset;
10364 /* FIXME: octets_per_byte. */
10365 offset += sections[n]->size;
10366 }
10367
10368 free (sections);
10369 return TRUE;
10370 }
10371
10372 static void
10373 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10374 {
10375 asection *o;
10376
10377 if (flinfo->symstrtab != NULL)
10378 _bfd_stringtab_free (flinfo->symstrtab);
10379 if (flinfo->contents != NULL)
10380 free (flinfo->contents);
10381 if (flinfo->external_relocs != NULL)
10382 free (flinfo->external_relocs);
10383 if (flinfo->internal_relocs != NULL)
10384 free (flinfo->internal_relocs);
10385 if (flinfo->external_syms != NULL)
10386 free (flinfo->external_syms);
10387 if (flinfo->locsym_shndx != NULL)
10388 free (flinfo->locsym_shndx);
10389 if (flinfo->internal_syms != NULL)
10390 free (flinfo->internal_syms);
10391 if (flinfo->indices != NULL)
10392 free (flinfo->indices);
10393 if (flinfo->sections != NULL)
10394 free (flinfo->sections);
10395 if (flinfo->symbuf != NULL)
10396 free (flinfo->symbuf);
10397 if (flinfo->symshndxbuf != NULL)
10398 free (flinfo->symshndxbuf);
10399 for (o = obfd->sections; o != NULL; o = o->next)
10400 {
10401 struct bfd_elf_section_data *esdo = elf_section_data (o);
10402 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10403 free (esdo->rel.hashes);
10404 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10405 free (esdo->rela.hashes);
10406 }
10407 }
10408
10409 /* Do the final step of an ELF link. */
10410
10411 bfd_boolean
10412 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10413 {
10414 bfd_boolean dynamic;
10415 bfd_boolean emit_relocs;
10416 bfd *dynobj;
10417 struct elf_final_link_info flinfo;
10418 asection *o;
10419 struct bfd_link_order *p;
10420 bfd *sub;
10421 bfd_size_type max_contents_size;
10422 bfd_size_type max_external_reloc_size;
10423 bfd_size_type max_internal_reloc_count;
10424 bfd_size_type max_sym_count;
10425 bfd_size_type max_sym_shndx_count;
10426 file_ptr off;
10427 Elf_Internal_Sym elfsym;
10428 unsigned int i;
10429 Elf_Internal_Shdr *symtab_hdr;
10430 Elf_Internal_Shdr *symtab_shndx_hdr;
10431 Elf_Internal_Shdr *symstrtab_hdr;
10432 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10433 struct elf_outext_info eoinfo;
10434 bfd_boolean merged;
10435 size_t relativecount = 0;
10436 asection *reldyn = 0;
10437 bfd_size_type amt;
10438 asection *attr_section = NULL;
10439 bfd_vma attr_size = 0;
10440 const char *std_attrs_section;
10441
10442 if (! is_elf_hash_table (info->hash))
10443 return FALSE;
10444
10445 if (info->shared)
10446 abfd->flags |= DYNAMIC;
10447
10448 dynamic = elf_hash_table (info)->dynamic_sections_created;
10449 dynobj = elf_hash_table (info)->dynobj;
10450
10451 emit_relocs = (info->relocatable
10452 || info->emitrelocations);
10453
10454 flinfo.info = info;
10455 flinfo.output_bfd = abfd;
10456 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10457 if (flinfo.symstrtab == NULL)
10458 return FALSE;
10459
10460 if (! dynamic)
10461 {
10462 flinfo.dynsym_sec = NULL;
10463 flinfo.hash_sec = NULL;
10464 flinfo.symver_sec = NULL;
10465 }
10466 else
10467 {
10468 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10469 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10470 /* Note that dynsym_sec can be NULL (on VMS). */
10471 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10472 /* Note that it is OK if symver_sec is NULL. */
10473 }
10474
10475 flinfo.contents = NULL;
10476 flinfo.external_relocs = NULL;
10477 flinfo.internal_relocs = NULL;
10478 flinfo.external_syms = NULL;
10479 flinfo.locsym_shndx = NULL;
10480 flinfo.internal_syms = NULL;
10481 flinfo.indices = NULL;
10482 flinfo.sections = NULL;
10483 flinfo.symbuf = NULL;
10484 flinfo.symshndxbuf = NULL;
10485 flinfo.symbuf_count = 0;
10486 flinfo.shndxbuf_size = 0;
10487 flinfo.filesym_count = 0;
10488
10489 /* The object attributes have been merged. Remove the input
10490 sections from the link, and set the contents of the output
10491 secton. */
10492 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10493 for (o = abfd->sections; o != NULL; o = o->next)
10494 {
10495 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10496 || strcmp (o->name, ".gnu.attributes") == 0)
10497 {
10498 for (p = o->map_head.link_order; p != NULL; p = p->next)
10499 {
10500 asection *input_section;
10501
10502 if (p->type != bfd_indirect_link_order)
10503 continue;
10504 input_section = p->u.indirect.section;
10505 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10506 elf_link_input_bfd ignores this section. */
10507 input_section->flags &= ~SEC_HAS_CONTENTS;
10508 }
10509
10510 attr_size = bfd_elf_obj_attr_size (abfd);
10511 if (attr_size)
10512 {
10513 bfd_set_section_size (abfd, o, attr_size);
10514 attr_section = o;
10515 /* Skip this section later on. */
10516 o->map_head.link_order = NULL;
10517 }
10518 else
10519 o->flags |= SEC_EXCLUDE;
10520 }
10521 }
10522
10523 /* Count up the number of relocations we will output for each output
10524 section, so that we know the sizes of the reloc sections. We
10525 also figure out some maximum sizes. */
10526 max_contents_size = 0;
10527 max_external_reloc_size = 0;
10528 max_internal_reloc_count = 0;
10529 max_sym_count = 0;
10530 max_sym_shndx_count = 0;
10531 merged = FALSE;
10532 for (o = abfd->sections; o != NULL; o = o->next)
10533 {
10534 struct bfd_elf_section_data *esdo = elf_section_data (o);
10535 o->reloc_count = 0;
10536
10537 for (p = o->map_head.link_order; p != NULL; p = p->next)
10538 {
10539 unsigned int reloc_count = 0;
10540 struct bfd_elf_section_data *esdi = NULL;
10541
10542 if (p->type == bfd_section_reloc_link_order
10543 || p->type == bfd_symbol_reloc_link_order)
10544 reloc_count = 1;
10545 else if (p->type == bfd_indirect_link_order)
10546 {
10547 asection *sec;
10548
10549 sec = p->u.indirect.section;
10550 esdi = elf_section_data (sec);
10551
10552 /* Mark all sections which are to be included in the
10553 link. This will normally be every section. We need
10554 to do this so that we can identify any sections which
10555 the linker has decided to not include. */
10556 sec->linker_mark = TRUE;
10557
10558 if (sec->flags & SEC_MERGE)
10559 merged = TRUE;
10560
10561 if (esdo->this_hdr.sh_type == SHT_REL
10562 || esdo->this_hdr.sh_type == SHT_RELA)
10563 /* Some backends use reloc_count in relocation sections
10564 to count particular types of relocs. Of course,
10565 reloc sections themselves can't have relocations. */
10566 reloc_count = 0;
10567 else if (info->relocatable || info->emitrelocations)
10568 reloc_count = sec->reloc_count;
10569 else if (bed->elf_backend_count_relocs)
10570 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10571
10572 if (sec->rawsize > max_contents_size)
10573 max_contents_size = sec->rawsize;
10574 if (sec->size > max_contents_size)
10575 max_contents_size = sec->size;
10576
10577 /* We are interested in just local symbols, not all
10578 symbols. */
10579 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10580 && (sec->owner->flags & DYNAMIC) == 0)
10581 {
10582 size_t sym_count;
10583
10584 if (elf_bad_symtab (sec->owner))
10585 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10586 / bed->s->sizeof_sym);
10587 else
10588 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10589
10590 if (sym_count > max_sym_count)
10591 max_sym_count = sym_count;
10592
10593 if (sym_count > max_sym_shndx_count
10594 && elf_symtab_shndx (sec->owner) != 0)
10595 max_sym_shndx_count = sym_count;
10596
10597 if ((sec->flags & SEC_RELOC) != 0)
10598 {
10599 size_t ext_size = 0;
10600
10601 if (esdi->rel.hdr != NULL)
10602 ext_size = esdi->rel.hdr->sh_size;
10603 if (esdi->rela.hdr != NULL)
10604 ext_size += esdi->rela.hdr->sh_size;
10605
10606 if (ext_size > max_external_reloc_size)
10607 max_external_reloc_size = ext_size;
10608 if (sec->reloc_count > max_internal_reloc_count)
10609 max_internal_reloc_count = sec->reloc_count;
10610 }
10611 }
10612 }
10613
10614 if (reloc_count == 0)
10615 continue;
10616
10617 o->reloc_count += reloc_count;
10618
10619 if (p->type == bfd_indirect_link_order
10620 && (info->relocatable || info->emitrelocations))
10621 {
10622 if (esdi->rel.hdr)
10623 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10624 if (esdi->rela.hdr)
10625 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10626 }
10627 else
10628 {
10629 if (o->use_rela_p)
10630 esdo->rela.count += reloc_count;
10631 else
10632 esdo->rel.count += reloc_count;
10633 }
10634 }
10635
10636 if (o->reloc_count > 0)
10637 o->flags |= SEC_RELOC;
10638 else
10639 {
10640 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10641 set it (this is probably a bug) and if it is set
10642 assign_section_numbers will create a reloc section. */
10643 o->flags &=~ SEC_RELOC;
10644 }
10645
10646 /* If the SEC_ALLOC flag is not set, force the section VMA to
10647 zero. This is done in elf_fake_sections as well, but forcing
10648 the VMA to 0 here will ensure that relocs against these
10649 sections are handled correctly. */
10650 if ((o->flags & SEC_ALLOC) == 0
10651 && ! o->user_set_vma)
10652 o->vma = 0;
10653 }
10654
10655 if (! info->relocatable && merged)
10656 elf_link_hash_traverse (elf_hash_table (info),
10657 _bfd_elf_link_sec_merge_syms, abfd);
10658
10659 /* Figure out the file positions for everything but the symbol table
10660 and the relocs. We set symcount to force assign_section_numbers
10661 to create a symbol table. */
10662 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10663 BFD_ASSERT (! abfd->output_has_begun);
10664 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10665 goto error_return;
10666
10667 /* Set sizes, and assign file positions for reloc sections. */
10668 for (o = abfd->sections; o != NULL; o = o->next)
10669 {
10670 struct bfd_elf_section_data *esdo = elf_section_data (o);
10671 if ((o->flags & SEC_RELOC) != 0)
10672 {
10673 if (esdo->rel.hdr
10674 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10675 goto error_return;
10676
10677 if (esdo->rela.hdr
10678 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10679 goto error_return;
10680 }
10681
10682 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10683 to count upwards while actually outputting the relocations. */
10684 esdo->rel.count = 0;
10685 esdo->rela.count = 0;
10686 }
10687
10688 _bfd_elf_assign_file_positions_for_relocs (abfd);
10689
10690 /* We have now assigned file positions for all the sections except
10691 .symtab and .strtab. We start the .symtab section at the current
10692 file position, and write directly to it. We build the .strtab
10693 section in memory. */
10694 bfd_get_symcount (abfd) = 0;
10695 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10696 /* sh_name is set in prep_headers. */
10697 symtab_hdr->sh_type = SHT_SYMTAB;
10698 /* sh_flags, sh_addr and sh_size all start off zero. */
10699 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10700 /* sh_link is set in assign_section_numbers. */
10701 /* sh_info is set below. */
10702 /* sh_offset is set just below. */
10703 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10704
10705 off = elf_next_file_pos (abfd);
10706 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10707
10708 /* Note that at this point elf_next_file_pos (abfd) is
10709 incorrect. We do not yet know the size of the .symtab section.
10710 We correct next_file_pos below, after we do know the size. */
10711
10712 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10713 continuously seeking to the right position in the file. */
10714 if (! info->keep_memory || max_sym_count < 20)
10715 flinfo.symbuf_size = 20;
10716 else
10717 flinfo.symbuf_size = max_sym_count;
10718 amt = flinfo.symbuf_size;
10719 amt *= bed->s->sizeof_sym;
10720 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10721 if (flinfo.symbuf == NULL)
10722 goto error_return;
10723 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10724 {
10725 /* Wild guess at number of output symbols. realloc'd as needed. */
10726 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10727 flinfo.shndxbuf_size = amt;
10728 amt *= sizeof (Elf_External_Sym_Shndx);
10729 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10730 if (flinfo.symshndxbuf == NULL)
10731 goto error_return;
10732 }
10733
10734 /* Start writing out the symbol table. The first symbol is always a
10735 dummy symbol. */
10736 if (info->strip != strip_all
10737 || emit_relocs)
10738 {
10739 elfsym.st_value = 0;
10740 elfsym.st_size = 0;
10741 elfsym.st_info = 0;
10742 elfsym.st_other = 0;
10743 elfsym.st_shndx = SHN_UNDEF;
10744 elfsym.st_target_internal = 0;
10745 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10746 NULL) != 1)
10747 goto error_return;
10748 }
10749
10750 /* Output a symbol for each section. We output these even if we are
10751 discarding local symbols, since they are used for relocs. These
10752 symbols have no names. We store the index of each one in the
10753 index field of the section, so that we can find it again when
10754 outputting relocs. */
10755 if (info->strip != strip_all
10756 || emit_relocs)
10757 {
10758 elfsym.st_size = 0;
10759 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10760 elfsym.st_other = 0;
10761 elfsym.st_value = 0;
10762 elfsym.st_target_internal = 0;
10763 for (i = 1; i < elf_numsections (abfd); i++)
10764 {
10765 o = bfd_section_from_elf_index (abfd, i);
10766 if (o != NULL)
10767 {
10768 o->target_index = bfd_get_symcount (abfd);
10769 elfsym.st_shndx = i;
10770 if (!info->relocatable)
10771 elfsym.st_value = o->vma;
10772 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10773 goto error_return;
10774 }
10775 }
10776 }
10777
10778 /* Allocate some memory to hold information read in from the input
10779 files. */
10780 if (max_contents_size != 0)
10781 {
10782 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10783 if (flinfo.contents == NULL)
10784 goto error_return;
10785 }
10786
10787 if (max_external_reloc_size != 0)
10788 {
10789 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10790 if (flinfo.external_relocs == NULL)
10791 goto error_return;
10792 }
10793
10794 if (max_internal_reloc_count != 0)
10795 {
10796 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10797 amt *= sizeof (Elf_Internal_Rela);
10798 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10799 if (flinfo.internal_relocs == NULL)
10800 goto error_return;
10801 }
10802
10803 if (max_sym_count != 0)
10804 {
10805 amt = max_sym_count * bed->s->sizeof_sym;
10806 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10807 if (flinfo.external_syms == NULL)
10808 goto error_return;
10809
10810 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10811 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10812 if (flinfo.internal_syms == NULL)
10813 goto error_return;
10814
10815 amt = max_sym_count * sizeof (long);
10816 flinfo.indices = (long int *) bfd_malloc (amt);
10817 if (flinfo.indices == NULL)
10818 goto error_return;
10819
10820 amt = max_sym_count * sizeof (asection *);
10821 flinfo.sections = (asection **) bfd_malloc (amt);
10822 if (flinfo.sections == NULL)
10823 goto error_return;
10824 }
10825
10826 if (max_sym_shndx_count != 0)
10827 {
10828 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10829 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10830 if (flinfo.locsym_shndx == NULL)
10831 goto error_return;
10832 }
10833
10834 if (elf_hash_table (info)->tls_sec)
10835 {
10836 bfd_vma base, end = 0;
10837 asection *sec;
10838
10839 for (sec = elf_hash_table (info)->tls_sec;
10840 sec && (sec->flags & SEC_THREAD_LOCAL);
10841 sec = sec->next)
10842 {
10843 bfd_size_type size = sec->size;
10844
10845 if (size == 0
10846 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10847 {
10848 struct bfd_link_order *ord = sec->map_tail.link_order;
10849
10850 if (ord != NULL)
10851 size = ord->offset + ord->size;
10852 }
10853 end = sec->vma + size;
10854 }
10855 base = elf_hash_table (info)->tls_sec->vma;
10856 /* Only align end of TLS section if static TLS doesn't have special
10857 alignment requirements. */
10858 if (bed->static_tls_alignment == 1)
10859 end = align_power (end,
10860 elf_hash_table (info)->tls_sec->alignment_power);
10861 elf_hash_table (info)->tls_size = end - base;
10862 }
10863
10864 /* Reorder SHF_LINK_ORDER sections. */
10865 for (o = abfd->sections; o != NULL; o = o->next)
10866 {
10867 if (!elf_fixup_link_order (abfd, o))
10868 return FALSE;
10869 }
10870
10871 /* Since ELF permits relocations to be against local symbols, we
10872 must have the local symbols available when we do the relocations.
10873 Since we would rather only read the local symbols once, and we
10874 would rather not keep them in memory, we handle all the
10875 relocations for a single input file at the same time.
10876
10877 Unfortunately, there is no way to know the total number of local
10878 symbols until we have seen all of them, and the local symbol
10879 indices precede the global symbol indices. This means that when
10880 we are generating relocatable output, and we see a reloc against
10881 a global symbol, we can not know the symbol index until we have
10882 finished examining all the local symbols to see which ones we are
10883 going to output. To deal with this, we keep the relocations in
10884 memory, and don't output them until the end of the link. This is
10885 an unfortunate waste of memory, but I don't see a good way around
10886 it. Fortunately, it only happens when performing a relocatable
10887 link, which is not the common case. FIXME: If keep_memory is set
10888 we could write the relocs out and then read them again; I don't
10889 know how bad the memory loss will be. */
10890
10891 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
10892 sub->output_has_begun = FALSE;
10893 for (o = abfd->sections; o != NULL; o = o->next)
10894 {
10895 for (p = o->map_head.link_order; p != NULL; p = p->next)
10896 {
10897 if (p->type == bfd_indirect_link_order
10898 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10899 == bfd_target_elf_flavour)
10900 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10901 {
10902 if (! sub->output_has_begun)
10903 {
10904 if (! elf_link_input_bfd (&flinfo, sub))
10905 goto error_return;
10906 sub->output_has_begun = TRUE;
10907 }
10908 }
10909 else if (p->type == bfd_section_reloc_link_order
10910 || p->type == bfd_symbol_reloc_link_order)
10911 {
10912 if (! elf_reloc_link_order (abfd, info, o, p))
10913 goto error_return;
10914 }
10915 else
10916 {
10917 if (! _bfd_default_link_order (abfd, info, o, p))
10918 {
10919 if (p->type == bfd_indirect_link_order
10920 && (bfd_get_flavour (sub)
10921 == bfd_target_elf_flavour)
10922 && (elf_elfheader (sub)->e_ident[EI_CLASS]
10923 != bed->s->elfclass))
10924 {
10925 const char *iclass, *oclass;
10926
10927 if (bed->s->elfclass == ELFCLASS64)
10928 {
10929 iclass = "ELFCLASS32";
10930 oclass = "ELFCLASS64";
10931 }
10932 else
10933 {
10934 iclass = "ELFCLASS64";
10935 oclass = "ELFCLASS32";
10936 }
10937
10938 bfd_set_error (bfd_error_wrong_format);
10939 (*_bfd_error_handler)
10940 (_("%B: file class %s incompatible with %s"),
10941 sub, iclass, oclass);
10942 }
10943
10944 goto error_return;
10945 }
10946 }
10947 }
10948 }
10949
10950 /* Free symbol buffer if needed. */
10951 if (!info->reduce_memory_overheads)
10952 {
10953 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
10954 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10955 && elf_tdata (sub)->symbuf)
10956 {
10957 free (elf_tdata (sub)->symbuf);
10958 elf_tdata (sub)->symbuf = NULL;
10959 }
10960 }
10961
10962 /* Output any global symbols that got converted to local in a
10963 version script or due to symbol visibility. We do this in a
10964 separate step since ELF requires all local symbols to appear
10965 prior to any global symbols. FIXME: We should only do this if
10966 some global symbols were, in fact, converted to become local.
10967 FIXME: Will this work correctly with the Irix 5 linker? */
10968 eoinfo.failed = FALSE;
10969 eoinfo.flinfo = &flinfo;
10970 eoinfo.localsyms = TRUE;
10971 eoinfo.need_second_pass = FALSE;
10972 eoinfo.second_pass = FALSE;
10973 eoinfo.file_sym_done = FALSE;
10974 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
10975 if (eoinfo.failed)
10976 return FALSE;
10977
10978 if (eoinfo.need_second_pass)
10979 {
10980 eoinfo.second_pass = TRUE;
10981 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
10982 if (eoinfo.failed)
10983 return FALSE;
10984 }
10985
10986 /* If backend needs to output some local symbols not present in the hash
10987 table, do it now. */
10988 if (bed->elf_backend_output_arch_local_syms)
10989 {
10990 typedef int (*out_sym_func)
10991 (void *, const char *, Elf_Internal_Sym *, asection *,
10992 struct elf_link_hash_entry *);
10993
10994 if (! ((*bed->elf_backend_output_arch_local_syms)
10995 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
10996 return FALSE;
10997 }
10998
10999 /* That wrote out all the local symbols. Finish up the symbol table
11000 with the global symbols. Even if we want to strip everything we
11001 can, we still need to deal with those global symbols that got
11002 converted to local in a version script. */
11003
11004 /* The sh_info field records the index of the first non local symbol. */
11005 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11006
11007 if (dynamic
11008 && flinfo.dynsym_sec != NULL
11009 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11010 {
11011 Elf_Internal_Sym sym;
11012 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11013 long last_local = 0;
11014
11015 /* Write out the section symbols for the output sections. */
11016 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11017 {
11018 asection *s;
11019
11020 sym.st_size = 0;
11021 sym.st_name = 0;
11022 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11023 sym.st_other = 0;
11024 sym.st_target_internal = 0;
11025
11026 for (s = abfd->sections; s != NULL; s = s->next)
11027 {
11028 int indx;
11029 bfd_byte *dest;
11030 long dynindx;
11031
11032 dynindx = elf_section_data (s)->dynindx;
11033 if (dynindx <= 0)
11034 continue;
11035 indx = elf_section_data (s)->this_idx;
11036 BFD_ASSERT (indx > 0);
11037 sym.st_shndx = indx;
11038 if (! check_dynsym (abfd, &sym))
11039 return FALSE;
11040 sym.st_value = s->vma;
11041 dest = dynsym + dynindx * bed->s->sizeof_sym;
11042 if (last_local < dynindx)
11043 last_local = dynindx;
11044 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11045 }
11046 }
11047
11048 /* Write out the local dynsyms. */
11049 if (elf_hash_table (info)->dynlocal)
11050 {
11051 struct elf_link_local_dynamic_entry *e;
11052 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11053 {
11054 asection *s;
11055 bfd_byte *dest;
11056
11057 /* Copy the internal symbol and turn off visibility.
11058 Note that we saved a word of storage and overwrote
11059 the original st_name with the dynstr_index. */
11060 sym = e->isym;
11061 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11062
11063 s = bfd_section_from_elf_index (e->input_bfd,
11064 e->isym.st_shndx);
11065 if (s != NULL)
11066 {
11067 sym.st_shndx =
11068 elf_section_data (s->output_section)->this_idx;
11069 if (! check_dynsym (abfd, &sym))
11070 return FALSE;
11071 sym.st_value = (s->output_section->vma
11072 + s->output_offset
11073 + e->isym.st_value);
11074 }
11075
11076 if (last_local < e->dynindx)
11077 last_local = e->dynindx;
11078
11079 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11080 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11081 }
11082 }
11083
11084 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11085 last_local + 1;
11086 }
11087
11088 /* We get the global symbols from the hash table. */
11089 eoinfo.failed = FALSE;
11090 eoinfo.localsyms = FALSE;
11091 eoinfo.flinfo = &flinfo;
11092 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11093 if (eoinfo.failed)
11094 return FALSE;
11095
11096 /* If backend needs to output some symbols not present in the hash
11097 table, do it now. */
11098 if (bed->elf_backend_output_arch_syms)
11099 {
11100 typedef int (*out_sym_func)
11101 (void *, const char *, Elf_Internal_Sym *, asection *,
11102 struct elf_link_hash_entry *);
11103
11104 if (! ((*bed->elf_backend_output_arch_syms)
11105 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11106 return FALSE;
11107 }
11108
11109 /* Flush all symbols to the file. */
11110 if (! elf_link_flush_output_syms (&flinfo, bed))
11111 return FALSE;
11112
11113 /* Now we know the size of the symtab section. */
11114 off += symtab_hdr->sh_size;
11115
11116 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11117 if (symtab_shndx_hdr->sh_name != 0)
11118 {
11119 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11120 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11121 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11122 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11123 symtab_shndx_hdr->sh_size = amt;
11124
11125 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11126 off, TRUE);
11127
11128 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11129 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11130 return FALSE;
11131 }
11132
11133
11134 /* Finish up and write out the symbol string table (.strtab)
11135 section. */
11136 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11137 /* sh_name was set in prep_headers. */
11138 symstrtab_hdr->sh_type = SHT_STRTAB;
11139 symstrtab_hdr->sh_flags = 0;
11140 symstrtab_hdr->sh_addr = 0;
11141 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11142 symstrtab_hdr->sh_entsize = 0;
11143 symstrtab_hdr->sh_link = 0;
11144 symstrtab_hdr->sh_info = 0;
11145 /* sh_offset is set just below. */
11146 symstrtab_hdr->sh_addralign = 1;
11147
11148 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
11149 elf_next_file_pos (abfd) = off;
11150
11151 if (bfd_get_symcount (abfd) > 0)
11152 {
11153 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11154 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11155 return FALSE;
11156 }
11157
11158 /* Adjust the relocs to have the correct symbol indices. */
11159 for (o = abfd->sections; o != NULL; o = o->next)
11160 {
11161 struct bfd_elf_section_data *esdo = elf_section_data (o);
11162 if ((o->flags & SEC_RELOC) == 0)
11163 continue;
11164
11165 if (esdo->rel.hdr != NULL)
11166 elf_link_adjust_relocs (abfd, &esdo->rel);
11167 if (esdo->rela.hdr != NULL)
11168 elf_link_adjust_relocs (abfd, &esdo->rela);
11169
11170 /* Set the reloc_count field to 0 to prevent write_relocs from
11171 trying to swap the relocs out itself. */
11172 o->reloc_count = 0;
11173 }
11174
11175 if (dynamic && info->combreloc && dynobj != NULL)
11176 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11177
11178 /* If we are linking against a dynamic object, or generating a
11179 shared library, finish up the dynamic linking information. */
11180 if (dynamic)
11181 {
11182 bfd_byte *dyncon, *dynconend;
11183
11184 /* Fix up .dynamic entries. */
11185 o = bfd_get_linker_section (dynobj, ".dynamic");
11186 BFD_ASSERT (o != NULL);
11187
11188 dyncon = o->contents;
11189 dynconend = o->contents + o->size;
11190 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11191 {
11192 Elf_Internal_Dyn dyn;
11193 const char *name;
11194 unsigned int type;
11195
11196 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11197
11198 switch (dyn.d_tag)
11199 {
11200 default:
11201 continue;
11202 case DT_NULL:
11203 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11204 {
11205 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11206 {
11207 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11208 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11209 default: continue;
11210 }
11211 dyn.d_un.d_val = relativecount;
11212 relativecount = 0;
11213 break;
11214 }
11215 continue;
11216
11217 case DT_INIT:
11218 name = info->init_function;
11219 goto get_sym;
11220 case DT_FINI:
11221 name = info->fini_function;
11222 get_sym:
11223 {
11224 struct elf_link_hash_entry *h;
11225
11226 h = elf_link_hash_lookup (elf_hash_table (info), name,
11227 FALSE, FALSE, TRUE);
11228 if (h != NULL
11229 && (h->root.type == bfd_link_hash_defined
11230 || h->root.type == bfd_link_hash_defweak))
11231 {
11232 dyn.d_un.d_ptr = h->root.u.def.value;
11233 o = h->root.u.def.section;
11234 if (o->output_section != NULL)
11235 dyn.d_un.d_ptr += (o->output_section->vma
11236 + o->output_offset);
11237 else
11238 {
11239 /* The symbol is imported from another shared
11240 library and does not apply to this one. */
11241 dyn.d_un.d_ptr = 0;
11242 }
11243 break;
11244 }
11245 }
11246 continue;
11247
11248 case DT_PREINIT_ARRAYSZ:
11249 name = ".preinit_array";
11250 goto get_size;
11251 case DT_INIT_ARRAYSZ:
11252 name = ".init_array";
11253 goto get_size;
11254 case DT_FINI_ARRAYSZ:
11255 name = ".fini_array";
11256 get_size:
11257 o = bfd_get_section_by_name (abfd, name);
11258 if (o == NULL)
11259 {
11260 (*_bfd_error_handler)
11261 (_("%B: could not find output section %s"), abfd, name);
11262 goto error_return;
11263 }
11264 if (o->size == 0)
11265 (*_bfd_error_handler)
11266 (_("warning: %s section has zero size"), name);
11267 dyn.d_un.d_val = o->size;
11268 break;
11269
11270 case DT_PREINIT_ARRAY:
11271 name = ".preinit_array";
11272 goto get_vma;
11273 case DT_INIT_ARRAY:
11274 name = ".init_array";
11275 goto get_vma;
11276 case DT_FINI_ARRAY:
11277 name = ".fini_array";
11278 goto get_vma;
11279
11280 case DT_HASH:
11281 name = ".hash";
11282 goto get_vma;
11283 case DT_GNU_HASH:
11284 name = ".gnu.hash";
11285 goto get_vma;
11286 case DT_STRTAB:
11287 name = ".dynstr";
11288 goto get_vma;
11289 case DT_SYMTAB:
11290 name = ".dynsym";
11291 goto get_vma;
11292 case DT_VERDEF:
11293 name = ".gnu.version_d";
11294 goto get_vma;
11295 case DT_VERNEED:
11296 name = ".gnu.version_r";
11297 goto get_vma;
11298 case DT_VERSYM:
11299 name = ".gnu.version";
11300 get_vma:
11301 o = bfd_get_section_by_name (abfd, name);
11302 if (o == NULL)
11303 {
11304 (*_bfd_error_handler)
11305 (_("%B: could not find output section %s"), abfd, name);
11306 goto error_return;
11307 }
11308 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11309 {
11310 (*_bfd_error_handler)
11311 (_("warning: section '%s' is being made into a note"), name);
11312 bfd_set_error (bfd_error_nonrepresentable_section);
11313 goto error_return;
11314 }
11315 dyn.d_un.d_ptr = o->vma;
11316 break;
11317
11318 case DT_REL:
11319 case DT_RELA:
11320 case DT_RELSZ:
11321 case DT_RELASZ:
11322 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11323 type = SHT_REL;
11324 else
11325 type = SHT_RELA;
11326 dyn.d_un.d_val = 0;
11327 dyn.d_un.d_ptr = 0;
11328 for (i = 1; i < elf_numsections (abfd); i++)
11329 {
11330 Elf_Internal_Shdr *hdr;
11331
11332 hdr = elf_elfsections (abfd)[i];
11333 if (hdr->sh_type == type
11334 && (hdr->sh_flags & SHF_ALLOC) != 0)
11335 {
11336 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11337 dyn.d_un.d_val += hdr->sh_size;
11338 else
11339 {
11340 if (dyn.d_un.d_ptr == 0
11341 || hdr->sh_addr < dyn.d_un.d_ptr)
11342 dyn.d_un.d_ptr = hdr->sh_addr;
11343 }
11344 }
11345 }
11346 break;
11347 }
11348 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11349 }
11350 }
11351
11352 /* If we have created any dynamic sections, then output them. */
11353 if (dynobj != NULL)
11354 {
11355 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11356 goto error_return;
11357
11358 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11359 if (((info->warn_shared_textrel && info->shared)
11360 || info->error_textrel)
11361 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11362 {
11363 bfd_byte *dyncon, *dynconend;
11364
11365 dyncon = o->contents;
11366 dynconend = o->contents + o->size;
11367 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11368 {
11369 Elf_Internal_Dyn dyn;
11370
11371 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11372
11373 if (dyn.d_tag == DT_TEXTREL)
11374 {
11375 if (info->error_textrel)
11376 info->callbacks->einfo
11377 (_("%P%X: read-only segment has dynamic relocations.\n"));
11378 else
11379 info->callbacks->einfo
11380 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11381 break;
11382 }
11383 }
11384 }
11385
11386 for (o = dynobj->sections; o != NULL; o = o->next)
11387 {
11388 if ((o->flags & SEC_HAS_CONTENTS) == 0
11389 || o->size == 0
11390 || o->output_section == bfd_abs_section_ptr)
11391 continue;
11392 if ((o->flags & SEC_LINKER_CREATED) == 0)
11393 {
11394 /* At this point, we are only interested in sections
11395 created by _bfd_elf_link_create_dynamic_sections. */
11396 continue;
11397 }
11398 if (elf_hash_table (info)->stab_info.stabstr == o)
11399 continue;
11400 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11401 continue;
11402 if (strcmp (o->name, ".dynstr") != 0)
11403 {
11404 /* FIXME: octets_per_byte. */
11405 if (! bfd_set_section_contents (abfd, o->output_section,
11406 o->contents,
11407 (file_ptr) o->output_offset,
11408 o->size))
11409 goto error_return;
11410 }
11411 else
11412 {
11413 /* The contents of the .dynstr section are actually in a
11414 stringtab. */
11415 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11416 if (bfd_seek (abfd, off, SEEK_SET) != 0
11417 || ! _bfd_elf_strtab_emit (abfd,
11418 elf_hash_table (info)->dynstr))
11419 goto error_return;
11420 }
11421 }
11422 }
11423
11424 if (info->relocatable)
11425 {
11426 bfd_boolean failed = FALSE;
11427
11428 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11429 if (failed)
11430 goto error_return;
11431 }
11432
11433 /* If we have optimized stabs strings, output them. */
11434 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11435 {
11436 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11437 goto error_return;
11438 }
11439
11440 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11441 goto error_return;
11442
11443 elf_final_link_free (abfd, &flinfo);
11444
11445 elf_linker (abfd) = TRUE;
11446
11447 if (attr_section)
11448 {
11449 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11450 if (contents == NULL)
11451 return FALSE; /* Bail out and fail. */
11452 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11453 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11454 free (contents);
11455 }
11456
11457 return TRUE;
11458
11459 error_return:
11460 elf_final_link_free (abfd, &flinfo);
11461 return FALSE;
11462 }
11463 \f
11464 /* Initialize COOKIE for input bfd ABFD. */
11465
11466 static bfd_boolean
11467 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11468 struct bfd_link_info *info, bfd *abfd)
11469 {
11470 Elf_Internal_Shdr *symtab_hdr;
11471 const struct elf_backend_data *bed;
11472
11473 bed = get_elf_backend_data (abfd);
11474 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11475
11476 cookie->abfd = abfd;
11477 cookie->sym_hashes = elf_sym_hashes (abfd);
11478 cookie->bad_symtab = elf_bad_symtab (abfd);
11479 if (cookie->bad_symtab)
11480 {
11481 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11482 cookie->extsymoff = 0;
11483 }
11484 else
11485 {
11486 cookie->locsymcount = symtab_hdr->sh_info;
11487 cookie->extsymoff = symtab_hdr->sh_info;
11488 }
11489
11490 if (bed->s->arch_size == 32)
11491 cookie->r_sym_shift = 8;
11492 else
11493 cookie->r_sym_shift = 32;
11494
11495 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11496 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11497 {
11498 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11499 cookie->locsymcount, 0,
11500 NULL, NULL, NULL);
11501 if (cookie->locsyms == NULL)
11502 {
11503 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11504 return FALSE;
11505 }
11506 if (info->keep_memory)
11507 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11508 }
11509 return TRUE;
11510 }
11511
11512 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11513
11514 static void
11515 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11516 {
11517 Elf_Internal_Shdr *symtab_hdr;
11518
11519 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11520 if (cookie->locsyms != NULL
11521 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11522 free (cookie->locsyms);
11523 }
11524
11525 /* Initialize the relocation information in COOKIE for input section SEC
11526 of input bfd ABFD. */
11527
11528 static bfd_boolean
11529 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11530 struct bfd_link_info *info, bfd *abfd,
11531 asection *sec)
11532 {
11533 const struct elf_backend_data *bed;
11534
11535 if (sec->reloc_count == 0)
11536 {
11537 cookie->rels = NULL;
11538 cookie->relend = NULL;
11539 }
11540 else
11541 {
11542 bed = get_elf_backend_data (abfd);
11543
11544 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11545 info->keep_memory);
11546 if (cookie->rels == NULL)
11547 return FALSE;
11548 cookie->rel = cookie->rels;
11549 cookie->relend = (cookie->rels
11550 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11551 }
11552 cookie->rel = cookie->rels;
11553 return TRUE;
11554 }
11555
11556 /* Free the memory allocated by init_reloc_cookie_rels,
11557 if appropriate. */
11558
11559 static void
11560 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11561 asection *sec)
11562 {
11563 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11564 free (cookie->rels);
11565 }
11566
11567 /* Initialize the whole of COOKIE for input section SEC. */
11568
11569 static bfd_boolean
11570 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11571 struct bfd_link_info *info,
11572 asection *sec)
11573 {
11574 if (!init_reloc_cookie (cookie, info, sec->owner))
11575 goto error1;
11576 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11577 goto error2;
11578 return TRUE;
11579
11580 error2:
11581 fini_reloc_cookie (cookie, sec->owner);
11582 error1:
11583 return FALSE;
11584 }
11585
11586 /* Free the memory allocated by init_reloc_cookie_for_section,
11587 if appropriate. */
11588
11589 static void
11590 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11591 asection *sec)
11592 {
11593 fini_reloc_cookie_rels (cookie, sec);
11594 fini_reloc_cookie (cookie, sec->owner);
11595 }
11596 \f
11597 /* Garbage collect unused sections. */
11598
11599 /* Default gc_mark_hook. */
11600
11601 asection *
11602 _bfd_elf_gc_mark_hook (asection *sec,
11603 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11604 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11605 struct elf_link_hash_entry *h,
11606 Elf_Internal_Sym *sym)
11607 {
11608 const char *sec_name;
11609
11610 if (h != NULL)
11611 {
11612 switch (h->root.type)
11613 {
11614 case bfd_link_hash_defined:
11615 case bfd_link_hash_defweak:
11616 return h->root.u.def.section;
11617
11618 case bfd_link_hash_common:
11619 return h->root.u.c.p->section;
11620
11621 case bfd_link_hash_undefined:
11622 case bfd_link_hash_undefweak:
11623 /* To work around a glibc bug, keep all XXX input sections
11624 when there is an as yet undefined reference to __start_XXX
11625 or __stop_XXX symbols. The linker will later define such
11626 symbols for orphan input sections that have a name
11627 representable as a C identifier. */
11628 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11629 sec_name = h->root.root.string + 8;
11630 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11631 sec_name = h->root.root.string + 7;
11632 else
11633 sec_name = NULL;
11634
11635 if (sec_name && *sec_name != '\0')
11636 {
11637 bfd *i;
11638
11639 for (i = info->input_bfds; i; i = i->link.next)
11640 {
11641 sec = bfd_get_section_by_name (i, sec_name);
11642 if (sec)
11643 sec->flags |= SEC_KEEP;
11644 }
11645 }
11646 break;
11647
11648 default:
11649 break;
11650 }
11651 }
11652 else
11653 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11654
11655 return NULL;
11656 }
11657
11658 /* COOKIE->rel describes a relocation against section SEC, which is
11659 a section we've decided to keep. Return the section that contains
11660 the relocation symbol, or NULL if no section contains it. */
11661
11662 asection *
11663 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11664 elf_gc_mark_hook_fn gc_mark_hook,
11665 struct elf_reloc_cookie *cookie)
11666 {
11667 unsigned long r_symndx;
11668 struct elf_link_hash_entry *h;
11669
11670 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11671 if (r_symndx == STN_UNDEF)
11672 return NULL;
11673
11674 if (r_symndx >= cookie->locsymcount
11675 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11676 {
11677 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11678 while (h->root.type == bfd_link_hash_indirect
11679 || h->root.type == bfd_link_hash_warning)
11680 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11681 h->mark = 1;
11682 /* If this symbol is weak and there is a non-weak definition, we
11683 keep the non-weak definition because many backends put
11684 dynamic reloc info on the non-weak definition for code
11685 handling copy relocs. */
11686 if (h->u.weakdef != NULL)
11687 h->u.weakdef->mark = 1;
11688 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11689 }
11690
11691 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11692 &cookie->locsyms[r_symndx]);
11693 }
11694
11695 /* COOKIE->rel describes a relocation against section SEC, which is
11696 a section we've decided to keep. Mark the section that contains
11697 the relocation symbol. */
11698
11699 bfd_boolean
11700 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11701 asection *sec,
11702 elf_gc_mark_hook_fn gc_mark_hook,
11703 struct elf_reloc_cookie *cookie)
11704 {
11705 asection *rsec;
11706
11707 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11708 if (rsec && !rsec->gc_mark)
11709 {
11710 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11711 || (rsec->owner->flags & DYNAMIC) != 0)
11712 rsec->gc_mark = 1;
11713 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11714 return FALSE;
11715 }
11716 return TRUE;
11717 }
11718
11719 /* The mark phase of garbage collection. For a given section, mark
11720 it and any sections in this section's group, and all the sections
11721 which define symbols to which it refers. */
11722
11723 bfd_boolean
11724 _bfd_elf_gc_mark (struct bfd_link_info *info,
11725 asection *sec,
11726 elf_gc_mark_hook_fn gc_mark_hook)
11727 {
11728 bfd_boolean ret;
11729 asection *group_sec, *eh_frame;
11730
11731 sec->gc_mark = 1;
11732
11733 /* Mark all the sections in the group. */
11734 group_sec = elf_section_data (sec)->next_in_group;
11735 if (group_sec && !group_sec->gc_mark)
11736 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11737 return FALSE;
11738
11739 /* Look through the section relocs. */
11740 ret = TRUE;
11741 eh_frame = elf_eh_frame_section (sec->owner);
11742 if ((sec->flags & SEC_RELOC) != 0
11743 && sec->reloc_count > 0
11744 && sec != eh_frame)
11745 {
11746 struct elf_reloc_cookie cookie;
11747
11748 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11749 ret = FALSE;
11750 else
11751 {
11752 for (; cookie.rel < cookie.relend; cookie.rel++)
11753 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11754 {
11755 ret = FALSE;
11756 break;
11757 }
11758 fini_reloc_cookie_for_section (&cookie, sec);
11759 }
11760 }
11761
11762 if (ret && eh_frame && elf_fde_list (sec))
11763 {
11764 struct elf_reloc_cookie cookie;
11765
11766 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11767 ret = FALSE;
11768 else
11769 {
11770 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11771 gc_mark_hook, &cookie))
11772 ret = FALSE;
11773 fini_reloc_cookie_for_section (&cookie, eh_frame);
11774 }
11775 }
11776
11777 return ret;
11778 }
11779
11780 /* Keep debug and special sections. */
11781
11782 bfd_boolean
11783 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
11784 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
11785 {
11786 bfd *ibfd;
11787
11788 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11789 {
11790 asection *isec;
11791 bfd_boolean some_kept;
11792 bfd_boolean debug_frag_seen;
11793
11794 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
11795 continue;
11796
11797 /* Ensure all linker created sections are kept,
11798 see if any other section is already marked,
11799 and note if we have any fragmented debug sections. */
11800 debug_frag_seen = some_kept = FALSE;
11801 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11802 {
11803 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11804 isec->gc_mark = 1;
11805 else if (isec->gc_mark)
11806 some_kept = TRUE;
11807
11808 if (debug_frag_seen == FALSE
11809 && (isec->flags & SEC_DEBUGGING)
11810 && CONST_STRNEQ (isec->name, ".debug_line."))
11811 debug_frag_seen = TRUE;
11812 }
11813
11814 /* If no section in this file will be kept, then we can
11815 toss out the debug and special sections. */
11816 if (!some_kept)
11817 continue;
11818
11819 /* Keep debug and special sections like .comment when they are
11820 not part of a group, or when we have single-member groups. */
11821 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11822 if ((elf_next_in_group (isec) == NULL
11823 || elf_next_in_group (isec) == isec)
11824 && ((isec->flags & SEC_DEBUGGING) != 0
11825 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
11826 isec->gc_mark = 1;
11827
11828 if (! debug_frag_seen)
11829 continue;
11830
11831 /* Look for CODE sections which are going to be discarded,
11832 and find and discard any fragmented debug sections which
11833 are associated with that code section. */
11834 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11835 if ((isec->flags & SEC_CODE) != 0
11836 && isec->gc_mark == 0)
11837 {
11838 unsigned int ilen;
11839 asection *dsec;
11840
11841 ilen = strlen (isec->name);
11842
11843 /* Association is determined by the name of the debug section
11844 containing the name of the code section as a suffix. For
11845 example .debug_line.text.foo is a debug section associated
11846 with .text.foo. */
11847 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
11848 {
11849 unsigned int dlen;
11850
11851 if (dsec->gc_mark == 0
11852 || (dsec->flags & SEC_DEBUGGING) == 0)
11853 continue;
11854
11855 dlen = strlen (dsec->name);
11856
11857 if (dlen > ilen
11858 && strncmp (dsec->name + (dlen - ilen),
11859 isec->name, ilen) == 0)
11860 {
11861 dsec->gc_mark = 0;
11862 break;
11863 }
11864 }
11865 }
11866 }
11867 return TRUE;
11868 }
11869
11870 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11871
11872 struct elf_gc_sweep_symbol_info
11873 {
11874 struct bfd_link_info *info;
11875 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11876 bfd_boolean);
11877 };
11878
11879 static bfd_boolean
11880 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11881 {
11882 if (!h->mark
11883 && (((h->root.type == bfd_link_hash_defined
11884 || h->root.type == bfd_link_hash_defweak)
11885 && !(h->def_regular
11886 && h->root.u.def.section->gc_mark))
11887 || h->root.type == bfd_link_hash_undefined
11888 || h->root.type == bfd_link_hash_undefweak))
11889 {
11890 struct elf_gc_sweep_symbol_info *inf;
11891
11892 inf = (struct elf_gc_sweep_symbol_info *) data;
11893 (*inf->hide_symbol) (inf->info, h, TRUE);
11894 h->def_regular = 0;
11895 h->ref_regular = 0;
11896 h->ref_regular_nonweak = 0;
11897 }
11898
11899 return TRUE;
11900 }
11901
11902 /* The sweep phase of garbage collection. Remove all garbage sections. */
11903
11904 typedef bfd_boolean (*gc_sweep_hook_fn)
11905 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11906
11907 static bfd_boolean
11908 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11909 {
11910 bfd *sub;
11911 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11912 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11913 unsigned long section_sym_count;
11914 struct elf_gc_sweep_symbol_info sweep_info;
11915
11916 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11917 {
11918 asection *o;
11919
11920 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11921 continue;
11922
11923 for (o = sub->sections; o != NULL; o = o->next)
11924 {
11925 /* When any section in a section group is kept, we keep all
11926 sections in the section group. If the first member of
11927 the section group is excluded, we will also exclude the
11928 group section. */
11929 if (o->flags & SEC_GROUP)
11930 {
11931 asection *first = elf_next_in_group (o);
11932 o->gc_mark = first->gc_mark;
11933 }
11934
11935 if (o->gc_mark)
11936 continue;
11937
11938 /* Skip sweeping sections already excluded. */
11939 if (o->flags & SEC_EXCLUDE)
11940 continue;
11941
11942 /* Since this is early in the link process, it is simple
11943 to remove a section from the output. */
11944 o->flags |= SEC_EXCLUDE;
11945
11946 if (info->print_gc_sections && o->size != 0)
11947 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11948
11949 /* But we also have to update some of the relocation
11950 info we collected before. */
11951 if (gc_sweep_hook
11952 && (o->flags & SEC_RELOC) != 0
11953 && o->reloc_count != 0
11954 && !((info->strip == strip_all || info->strip == strip_debugger)
11955 && (o->flags & SEC_DEBUGGING) != 0)
11956 && !bfd_is_abs_section (o->output_section))
11957 {
11958 Elf_Internal_Rela *internal_relocs;
11959 bfd_boolean r;
11960
11961 internal_relocs
11962 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11963 info->keep_memory);
11964 if (internal_relocs == NULL)
11965 return FALSE;
11966
11967 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11968
11969 if (elf_section_data (o)->relocs != internal_relocs)
11970 free (internal_relocs);
11971
11972 if (!r)
11973 return FALSE;
11974 }
11975 }
11976 }
11977
11978 /* Remove the symbols that were in the swept sections from the dynamic
11979 symbol table. GCFIXME: Anyone know how to get them out of the
11980 static symbol table as well? */
11981 sweep_info.info = info;
11982 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11983 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11984 &sweep_info);
11985
11986 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11987 return TRUE;
11988 }
11989
11990 /* Propagate collected vtable information. This is called through
11991 elf_link_hash_traverse. */
11992
11993 static bfd_boolean
11994 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11995 {
11996 /* Those that are not vtables. */
11997 if (h->vtable == NULL || h->vtable->parent == NULL)
11998 return TRUE;
11999
12000 /* Those vtables that do not have parents, we cannot merge. */
12001 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12002 return TRUE;
12003
12004 /* If we've already been done, exit. */
12005 if (h->vtable->used && h->vtable->used[-1])
12006 return TRUE;
12007
12008 /* Make sure the parent's table is up to date. */
12009 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12010
12011 if (h->vtable->used == NULL)
12012 {
12013 /* None of this table's entries were referenced. Re-use the
12014 parent's table. */
12015 h->vtable->used = h->vtable->parent->vtable->used;
12016 h->vtable->size = h->vtable->parent->vtable->size;
12017 }
12018 else
12019 {
12020 size_t n;
12021 bfd_boolean *cu, *pu;
12022
12023 /* Or the parent's entries into ours. */
12024 cu = h->vtable->used;
12025 cu[-1] = TRUE;
12026 pu = h->vtable->parent->vtable->used;
12027 if (pu != NULL)
12028 {
12029 const struct elf_backend_data *bed;
12030 unsigned int log_file_align;
12031
12032 bed = get_elf_backend_data (h->root.u.def.section->owner);
12033 log_file_align = bed->s->log_file_align;
12034 n = h->vtable->parent->vtable->size >> log_file_align;
12035 while (n--)
12036 {
12037 if (*pu)
12038 *cu = TRUE;
12039 pu++;
12040 cu++;
12041 }
12042 }
12043 }
12044
12045 return TRUE;
12046 }
12047
12048 static bfd_boolean
12049 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12050 {
12051 asection *sec;
12052 bfd_vma hstart, hend;
12053 Elf_Internal_Rela *relstart, *relend, *rel;
12054 const struct elf_backend_data *bed;
12055 unsigned int log_file_align;
12056
12057 /* Take care of both those symbols that do not describe vtables as
12058 well as those that are not loaded. */
12059 if (h->vtable == NULL || h->vtable->parent == NULL)
12060 return TRUE;
12061
12062 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12063 || h->root.type == bfd_link_hash_defweak);
12064
12065 sec = h->root.u.def.section;
12066 hstart = h->root.u.def.value;
12067 hend = hstart + h->size;
12068
12069 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12070 if (!relstart)
12071 return *(bfd_boolean *) okp = FALSE;
12072 bed = get_elf_backend_data (sec->owner);
12073 log_file_align = bed->s->log_file_align;
12074
12075 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12076
12077 for (rel = relstart; rel < relend; ++rel)
12078 if (rel->r_offset >= hstart && rel->r_offset < hend)
12079 {
12080 /* If the entry is in use, do nothing. */
12081 if (h->vtable->used
12082 && (rel->r_offset - hstart) < h->vtable->size)
12083 {
12084 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12085 if (h->vtable->used[entry])
12086 continue;
12087 }
12088 /* Otherwise, kill it. */
12089 rel->r_offset = rel->r_info = rel->r_addend = 0;
12090 }
12091
12092 return TRUE;
12093 }
12094
12095 /* Mark sections containing dynamically referenced symbols. When
12096 building shared libraries, we must assume that any visible symbol is
12097 referenced. */
12098
12099 bfd_boolean
12100 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12101 {
12102 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12103 struct bfd_elf_dynamic_list *d = info->dynamic_list;
12104
12105 if ((h->root.type == bfd_link_hash_defined
12106 || h->root.type == bfd_link_hash_defweak)
12107 && (h->ref_dynamic
12108 || (h->def_regular
12109 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12110 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12111 && (!info->executable
12112 || info->export_dynamic
12113 || (h->dynamic
12114 && d != NULL
12115 && (*d->match) (&d->head, NULL, h->root.root.string)))
12116 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12117 || !bfd_hide_sym_by_version (info->version_info,
12118 h->root.root.string)))))
12119 h->root.u.def.section->flags |= SEC_KEEP;
12120
12121 return TRUE;
12122 }
12123
12124 /* Keep all sections containing symbols undefined on the command-line,
12125 and the section containing the entry symbol. */
12126
12127 void
12128 _bfd_elf_gc_keep (struct bfd_link_info *info)
12129 {
12130 struct bfd_sym_chain *sym;
12131
12132 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12133 {
12134 struct elf_link_hash_entry *h;
12135
12136 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12137 FALSE, FALSE, FALSE);
12138
12139 if (h != NULL
12140 && (h->root.type == bfd_link_hash_defined
12141 || h->root.type == bfd_link_hash_defweak)
12142 && !bfd_is_abs_section (h->root.u.def.section))
12143 h->root.u.def.section->flags |= SEC_KEEP;
12144 }
12145 }
12146
12147 /* Do mark and sweep of unused sections. */
12148
12149 bfd_boolean
12150 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12151 {
12152 bfd_boolean ok = TRUE;
12153 bfd *sub;
12154 elf_gc_mark_hook_fn gc_mark_hook;
12155 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12156
12157 if (!bed->can_gc_sections
12158 || !is_elf_hash_table (info->hash))
12159 {
12160 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12161 return TRUE;
12162 }
12163
12164 bed->gc_keep (info);
12165
12166 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12167 at the .eh_frame section if we can mark the FDEs individually. */
12168 _bfd_elf_begin_eh_frame_parsing (info);
12169 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12170 {
12171 asection *sec;
12172 struct elf_reloc_cookie cookie;
12173
12174 sec = bfd_get_section_by_name (sub, ".eh_frame");
12175 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12176 {
12177 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12178 if (elf_section_data (sec)->sec_info
12179 && (sec->flags & SEC_LINKER_CREATED) == 0)
12180 elf_eh_frame_section (sub) = sec;
12181 fini_reloc_cookie_for_section (&cookie, sec);
12182 sec = bfd_get_next_section_by_name (sec);
12183 }
12184 }
12185 _bfd_elf_end_eh_frame_parsing (info);
12186
12187 /* Apply transitive closure to the vtable entry usage info. */
12188 elf_link_hash_traverse (elf_hash_table (info),
12189 elf_gc_propagate_vtable_entries_used,
12190 &ok);
12191 if (!ok)
12192 return FALSE;
12193
12194 /* Kill the vtable relocations that were not used. */
12195 elf_link_hash_traverse (elf_hash_table (info),
12196 elf_gc_smash_unused_vtentry_relocs,
12197 &ok);
12198 if (!ok)
12199 return FALSE;
12200
12201 /* Mark dynamically referenced symbols. */
12202 if (elf_hash_table (info)->dynamic_sections_created)
12203 elf_link_hash_traverse (elf_hash_table (info),
12204 bed->gc_mark_dynamic_ref,
12205 info);
12206
12207 /* Grovel through relocs to find out who stays ... */
12208 gc_mark_hook = bed->gc_mark_hook;
12209 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12210 {
12211 asection *o;
12212
12213 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12214 continue;
12215
12216 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12217 Also treat note sections as a root, if the section is not part
12218 of a group. */
12219 for (o = sub->sections; o != NULL; o = o->next)
12220 if (!o->gc_mark
12221 && (o->flags & SEC_EXCLUDE) == 0
12222 && ((o->flags & SEC_KEEP) != 0
12223 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12224 && elf_next_in_group (o) == NULL )))
12225 {
12226 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12227 return FALSE;
12228 }
12229 }
12230
12231 /* Allow the backend to mark additional target specific sections. */
12232 bed->gc_mark_extra_sections (info, gc_mark_hook);
12233
12234 /* ... and mark SEC_EXCLUDE for those that go. */
12235 return elf_gc_sweep (abfd, info);
12236 }
12237 \f
12238 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12239
12240 bfd_boolean
12241 bfd_elf_gc_record_vtinherit (bfd *abfd,
12242 asection *sec,
12243 struct elf_link_hash_entry *h,
12244 bfd_vma offset)
12245 {
12246 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12247 struct elf_link_hash_entry **search, *child;
12248 bfd_size_type extsymcount;
12249 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12250
12251 /* The sh_info field of the symtab header tells us where the
12252 external symbols start. We don't care about the local symbols at
12253 this point. */
12254 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12255 if (!elf_bad_symtab (abfd))
12256 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12257
12258 sym_hashes = elf_sym_hashes (abfd);
12259 sym_hashes_end = sym_hashes + extsymcount;
12260
12261 /* Hunt down the child symbol, which is in this section at the same
12262 offset as the relocation. */
12263 for (search = sym_hashes; search != sym_hashes_end; ++search)
12264 {
12265 if ((child = *search) != NULL
12266 && (child->root.type == bfd_link_hash_defined
12267 || child->root.type == bfd_link_hash_defweak)
12268 && child->root.u.def.section == sec
12269 && child->root.u.def.value == offset)
12270 goto win;
12271 }
12272
12273 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12274 abfd, sec, (unsigned long) offset);
12275 bfd_set_error (bfd_error_invalid_operation);
12276 return FALSE;
12277
12278 win:
12279 if (!child->vtable)
12280 {
12281 child->vtable = (struct elf_link_virtual_table_entry *)
12282 bfd_zalloc (abfd, sizeof (*child->vtable));
12283 if (!child->vtable)
12284 return FALSE;
12285 }
12286 if (!h)
12287 {
12288 /* This *should* only be the absolute section. It could potentially
12289 be that someone has defined a non-global vtable though, which
12290 would be bad. It isn't worth paging in the local symbols to be
12291 sure though; that case should simply be handled by the assembler. */
12292
12293 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12294 }
12295 else
12296 child->vtable->parent = h;
12297
12298 return TRUE;
12299 }
12300
12301 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12302
12303 bfd_boolean
12304 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12305 asection *sec ATTRIBUTE_UNUSED,
12306 struct elf_link_hash_entry *h,
12307 bfd_vma addend)
12308 {
12309 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12310 unsigned int log_file_align = bed->s->log_file_align;
12311
12312 if (!h->vtable)
12313 {
12314 h->vtable = (struct elf_link_virtual_table_entry *)
12315 bfd_zalloc (abfd, sizeof (*h->vtable));
12316 if (!h->vtable)
12317 return FALSE;
12318 }
12319
12320 if (addend >= h->vtable->size)
12321 {
12322 size_t size, bytes, file_align;
12323 bfd_boolean *ptr = h->vtable->used;
12324
12325 /* While the symbol is undefined, we have to be prepared to handle
12326 a zero size. */
12327 file_align = 1 << log_file_align;
12328 if (h->root.type == bfd_link_hash_undefined)
12329 size = addend + file_align;
12330 else
12331 {
12332 size = h->size;
12333 if (addend >= size)
12334 {
12335 /* Oops! We've got a reference past the defined end of
12336 the table. This is probably a bug -- shall we warn? */
12337 size = addend + file_align;
12338 }
12339 }
12340 size = (size + file_align - 1) & -file_align;
12341
12342 /* Allocate one extra entry for use as a "done" flag for the
12343 consolidation pass. */
12344 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12345
12346 if (ptr)
12347 {
12348 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12349
12350 if (ptr != NULL)
12351 {
12352 size_t oldbytes;
12353
12354 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12355 * sizeof (bfd_boolean));
12356 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12357 }
12358 }
12359 else
12360 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12361
12362 if (ptr == NULL)
12363 return FALSE;
12364
12365 /* And arrange for that done flag to be at index -1. */
12366 h->vtable->used = ptr + 1;
12367 h->vtable->size = size;
12368 }
12369
12370 h->vtable->used[addend >> log_file_align] = TRUE;
12371
12372 return TRUE;
12373 }
12374
12375 /* Map an ELF section header flag to its corresponding string. */
12376 typedef struct
12377 {
12378 char *flag_name;
12379 flagword flag_value;
12380 } elf_flags_to_name_table;
12381
12382 static elf_flags_to_name_table elf_flags_to_names [] =
12383 {
12384 { "SHF_WRITE", SHF_WRITE },
12385 { "SHF_ALLOC", SHF_ALLOC },
12386 { "SHF_EXECINSTR", SHF_EXECINSTR },
12387 { "SHF_MERGE", SHF_MERGE },
12388 { "SHF_STRINGS", SHF_STRINGS },
12389 { "SHF_INFO_LINK", SHF_INFO_LINK},
12390 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12391 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12392 { "SHF_GROUP", SHF_GROUP },
12393 { "SHF_TLS", SHF_TLS },
12394 { "SHF_MASKOS", SHF_MASKOS },
12395 { "SHF_EXCLUDE", SHF_EXCLUDE },
12396 };
12397
12398 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12399 bfd_boolean
12400 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12401 struct flag_info *flaginfo,
12402 asection *section)
12403 {
12404 const bfd_vma sh_flags = elf_section_flags (section);
12405
12406 if (!flaginfo->flags_initialized)
12407 {
12408 bfd *obfd = info->output_bfd;
12409 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12410 struct flag_info_list *tf = flaginfo->flag_list;
12411 int with_hex = 0;
12412 int without_hex = 0;
12413
12414 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12415 {
12416 unsigned i;
12417 flagword (*lookup) (char *);
12418
12419 lookup = bed->elf_backend_lookup_section_flags_hook;
12420 if (lookup != NULL)
12421 {
12422 flagword hexval = (*lookup) ((char *) tf->name);
12423
12424 if (hexval != 0)
12425 {
12426 if (tf->with == with_flags)
12427 with_hex |= hexval;
12428 else if (tf->with == without_flags)
12429 without_hex |= hexval;
12430 tf->valid = TRUE;
12431 continue;
12432 }
12433 }
12434 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12435 {
12436 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12437 {
12438 if (tf->with == with_flags)
12439 with_hex |= elf_flags_to_names[i].flag_value;
12440 else if (tf->with == without_flags)
12441 without_hex |= elf_flags_to_names[i].flag_value;
12442 tf->valid = TRUE;
12443 break;
12444 }
12445 }
12446 if (!tf->valid)
12447 {
12448 info->callbacks->einfo
12449 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12450 return FALSE;
12451 }
12452 }
12453 flaginfo->flags_initialized = TRUE;
12454 flaginfo->only_with_flags |= with_hex;
12455 flaginfo->not_with_flags |= without_hex;
12456 }
12457
12458 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12459 return FALSE;
12460
12461 if ((flaginfo->not_with_flags & sh_flags) != 0)
12462 return FALSE;
12463
12464 return TRUE;
12465 }
12466
12467 struct alloc_got_off_arg {
12468 bfd_vma gotoff;
12469 struct bfd_link_info *info;
12470 };
12471
12472 /* We need a special top-level link routine to convert got reference counts
12473 to real got offsets. */
12474
12475 static bfd_boolean
12476 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12477 {
12478 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12479 bfd *obfd = gofarg->info->output_bfd;
12480 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12481
12482 if (h->got.refcount > 0)
12483 {
12484 h->got.offset = gofarg->gotoff;
12485 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12486 }
12487 else
12488 h->got.offset = (bfd_vma) -1;
12489
12490 return TRUE;
12491 }
12492
12493 /* And an accompanying bit to work out final got entry offsets once
12494 we're done. Should be called from final_link. */
12495
12496 bfd_boolean
12497 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12498 struct bfd_link_info *info)
12499 {
12500 bfd *i;
12501 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12502 bfd_vma gotoff;
12503 struct alloc_got_off_arg gofarg;
12504
12505 BFD_ASSERT (abfd == info->output_bfd);
12506
12507 if (! is_elf_hash_table (info->hash))
12508 return FALSE;
12509
12510 /* The GOT offset is relative to the .got section, but the GOT header is
12511 put into the .got.plt section, if the backend uses it. */
12512 if (bed->want_got_plt)
12513 gotoff = 0;
12514 else
12515 gotoff = bed->got_header_size;
12516
12517 /* Do the local .got entries first. */
12518 for (i = info->input_bfds; i; i = i->link.next)
12519 {
12520 bfd_signed_vma *local_got;
12521 bfd_size_type j, locsymcount;
12522 Elf_Internal_Shdr *symtab_hdr;
12523
12524 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12525 continue;
12526
12527 local_got = elf_local_got_refcounts (i);
12528 if (!local_got)
12529 continue;
12530
12531 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12532 if (elf_bad_symtab (i))
12533 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12534 else
12535 locsymcount = symtab_hdr->sh_info;
12536
12537 for (j = 0; j < locsymcount; ++j)
12538 {
12539 if (local_got[j] > 0)
12540 {
12541 local_got[j] = gotoff;
12542 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12543 }
12544 else
12545 local_got[j] = (bfd_vma) -1;
12546 }
12547 }
12548
12549 /* Then the global .got entries. .plt refcounts are handled by
12550 adjust_dynamic_symbol */
12551 gofarg.gotoff = gotoff;
12552 gofarg.info = info;
12553 elf_link_hash_traverse (elf_hash_table (info),
12554 elf_gc_allocate_got_offsets,
12555 &gofarg);
12556 return TRUE;
12557 }
12558
12559 /* Many folk need no more in the way of final link than this, once
12560 got entry reference counting is enabled. */
12561
12562 bfd_boolean
12563 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12564 {
12565 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12566 return FALSE;
12567
12568 /* Invoke the regular ELF backend linker to do all the work. */
12569 return bfd_elf_final_link (abfd, info);
12570 }
12571
12572 bfd_boolean
12573 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12574 {
12575 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12576
12577 if (rcookie->bad_symtab)
12578 rcookie->rel = rcookie->rels;
12579
12580 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12581 {
12582 unsigned long r_symndx;
12583
12584 if (! rcookie->bad_symtab)
12585 if (rcookie->rel->r_offset > offset)
12586 return FALSE;
12587 if (rcookie->rel->r_offset != offset)
12588 continue;
12589
12590 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12591 if (r_symndx == STN_UNDEF)
12592 return TRUE;
12593
12594 if (r_symndx >= rcookie->locsymcount
12595 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12596 {
12597 struct elf_link_hash_entry *h;
12598
12599 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12600
12601 while (h->root.type == bfd_link_hash_indirect
12602 || h->root.type == bfd_link_hash_warning)
12603 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12604
12605 if ((h->root.type == bfd_link_hash_defined
12606 || h->root.type == bfd_link_hash_defweak)
12607 && discarded_section (h->root.u.def.section))
12608 return TRUE;
12609 else
12610 return FALSE;
12611 }
12612 else
12613 {
12614 /* It's not a relocation against a global symbol,
12615 but it could be a relocation against a local
12616 symbol for a discarded section. */
12617 asection *isec;
12618 Elf_Internal_Sym *isym;
12619
12620 /* Need to: get the symbol; get the section. */
12621 isym = &rcookie->locsyms[r_symndx];
12622 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12623 if (isec != NULL && discarded_section (isec))
12624 return TRUE;
12625 }
12626 return FALSE;
12627 }
12628 return FALSE;
12629 }
12630
12631 /* Discard unneeded references to discarded sections.
12632 Returns TRUE if any section's size was changed. */
12633 /* This function assumes that the relocations are in sorted order,
12634 which is true for all known assemblers. */
12635
12636 bfd_boolean
12637 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12638 {
12639 struct elf_reloc_cookie cookie;
12640 asection *stab, *eh;
12641 const struct elf_backend_data *bed;
12642 bfd *abfd;
12643 bfd_boolean ret = FALSE;
12644
12645 if (info->traditional_format
12646 || !is_elf_hash_table (info->hash))
12647 return FALSE;
12648
12649 _bfd_elf_begin_eh_frame_parsing (info);
12650 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
12651 {
12652 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12653 continue;
12654
12655 bed = get_elf_backend_data (abfd);
12656
12657 eh = NULL;
12658 if (!info->relocatable)
12659 {
12660 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12661 while (eh != NULL
12662 && (eh->size == 0
12663 || bfd_is_abs_section (eh->output_section)))
12664 eh = bfd_get_next_section_by_name (eh);
12665 }
12666
12667 stab = bfd_get_section_by_name (abfd, ".stab");
12668 if (stab != NULL
12669 && (stab->size == 0
12670 || bfd_is_abs_section (stab->output_section)
12671 || stab->sec_info_type != SEC_INFO_TYPE_STABS))
12672 stab = NULL;
12673
12674 if (stab == NULL
12675 && eh == NULL
12676 && bed->elf_backend_discard_info == NULL)
12677 continue;
12678
12679 if (!init_reloc_cookie (&cookie, info, abfd))
12680 return FALSE;
12681
12682 if (stab != NULL
12683 && stab->reloc_count > 0
12684 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12685 {
12686 if (_bfd_discard_section_stabs (abfd, stab,
12687 elf_section_data (stab)->sec_info,
12688 bfd_elf_reloc_symbol_deleted_p,
12689 &cookie))
12690 ret = TRUE;
12691 fini_reloc_cookie_rels (&cookie, stab);
12692 }
12693
12694 while (eh != NULL
12695 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12696 {
12697 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12698 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12699 bfd_elf_reloc_symbol_deleted_p,
12700 &cookie))
12701 ret = TRUE;
12702 fini_reloc_cookie_rels (&cookie, eh);
12703 eh = bfd_get_next_section_by_name (eh);
12704 }
12705
12706 if (bed->elf_backend_discard_info != NULL
12707 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12708 ret = TRUE;
12709
12710 fini_reloc_cookie (&cookie, abfd);
12711 }
12712 _bfd_elf_end_eh_frame_parsing (info);
12713
12714 if (info->eh_frame_hdr
12715 && !info->relocatable
12716 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12717 ret = TRUE;
12718
12719 return ret;
12720 }
12721
12722 bfd_boolean
12723 _bfd_elf_section_already_linked (bfd *abfd,
12724 asection *sec,
12725 struct bfd_link_info *info)
12726 {
12727 flagword flags;
12728 const char *name, *key;
12729 struct bfd_section_already_linked *l;
12730 struct bfd_section_already_linked_hash_entry *already_linked_list;
12731
12732 if (sec->output_section == bfd_abs_section_ptr)
12733 return FALSE;
12734
12735 flags = sec->flags;
12736
12737 /* Return if it isn't a linkonce section. A comdat group section
12738 also has SEC_LINK_ONCE set. */
12739 if ((flags & SEC_LINK_ONCE) == 0)
12740 return FALSE;
12741
12742 /* Don't put group member sections on our list of already linked
12743 sections. They are handled as a group via their group section. */
12744 if (elf_sec_group (sec) != NULL)
12745 return FALSE;
12746
12747 /* For a SHT_GROUP section, use the group signature as the key. */
12748 name = sec->name;
12749 if ((flags & SEC_GROUP) != 0
12750 && elf_next_in_group (sec) != NULL
12751 && elf_group_name (elf_next_in_group (sec)) != NULL)
12752 key = elf_group_name (elf_next_in_group (sec));
12753 else
12754 {
12755 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
12756 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12757 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12758 key++;
12759 else
12760 /* Must be a user linkonce section that doesn't follow gcc's
12761 naming convention. In this case we won't be matching
12762 single member groups. */
12763 key = name;
12764 }
12765
12766 already_linked_list = bfd_section_already_linked_table_lookup (key);
12767
12768 for (l = already_linked_list->entry; l != NULL; l = l->next)
12769 {
12770 /* We may have 2 different types of sections on the list: group
12771 sections with a signature of <key> (<key> is some string),
12772 and linkonce sections named .gnu.linkonce.<type>.<key>.
12773 Match like sections. LTO plugin sections are an exception.
12774 They are always named .gnu.linkonce.t.<key> and match either
12775 type of section. */
12776 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12777 && ((flags & SEC_GROUP) != 0
12778 || strcmp (name, l->sec->name) == 0))
12779 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
12780 {
12781 /* The section has already been linked. See if we should
12782 issue a warning. */
12783 if (!_bfd_handle_already_linked (sec, l, info))
12784 return FALSE;
12785
12786 if (flags & SEC_GROUP)
12787 {
12788 asection *first = elf_next_in_group (sec);
12789 asection *s = first;
12790
12791 while (s != NULL)
12792 {
12793 s->output_section = bfd_abs_section_ptr;
12794 /* Record which group discards it. */
12795 s->kept_section = l->sec;
12796 s = elf_next_in_group (s);
12797 /* These lists are circular. */
12798 if (s == first)
12799 break;
12800 }
12801 }
12802
12803 return TRUE;
12804 }
12805 }
12806
12807 /* A single member comdat group section may be discarded by a
12808 linkonce section and vice versa. */
12809 if ((flags & SEC_GROUP) != 0)
12810 {
12811 asection *first = elf_next_in_group (sec);
12812
12813 if (first != NULL && elf_next_in_group (first) == first)
12814 /* Check this single member group against linkonce sections. */
12815 for (l = already_linked_list->entry; l != NULL; l = l->next)
12816 if ((l->sec->flags & SEC_GROUP) == 0
12817 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12818 {
12819 first->output_section = bfd_abs_section_ptr;
12820 first->kept_section = l->sec;
12821 sec->output_section = bfd_abs_section_ptr;
12822 break;
12823 }
12824 }
12825 else
12826 /* Check this linkonce section against single member groups. */
12827 for (l = already_linked_list->entry; l != NULL; l = l->next)
12828 if (l->sec->flags & SEC_GROUP)
12829 {
12830 asection *first = elf_next_in_group (l->sec);
12831
12832 if (first != NULL
12833 && elf_next_in_group (first) == first
12834 && bfd_elf_match_symbols_in_sections (first, sec, info))
12835 {
12836 sec->output_section = bfd_abs_section_ptr;
12837 sec->kept_section = first;
12838 break;
12839 }
12840 }
12841
12842 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12843 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12844 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12845 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12846 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12847 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12848 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12849 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12850 The reverse order cannot happen as there is never a bfd with only the
12851 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12852 matter as here were are looking only for cross-bfd sections. */
12853
12854 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12855 for (l = already_linked_list->entry; l != NULL; l = l->next)
12856 if ((l->sec->flags & SEC_GROUP) == 0
12857 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12858 {
12859 if (abfd != l->sec->owner)
12860 sec->output_section = bfd_abs_section_ptr;
12861 break;
12862 }
12863
12864 /* This is the first section with this name. Record it. */
12865 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
12866 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12867 return sec->output_section == bfd_abs_section_ptr;
12868 }
12869
12870 bfd_boolean
12871 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12872 {
12873 return sym->st_shndx == SHN_COMMON;
12874 }
12875
12876 unsigned int
12877 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12878 {
12879 return SHN_COMMON;
12880 }
12881
12882 asection *
12883 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12884 {
12885 return bfd_com_section_ptr;
12886 }
12887
12888 bfd_vma
12889 _bfd_elf_default_got_elt_size (bfd *abfd,
12890 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12891 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12892 bfd *ibfd ATTRIBUTE_UNUSED,
12893 unsigned long symndx ATTRIBUTE_UNUSED)
12894 {
12895 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12896 return bed->s->arch_size / 8;
12897 }
12898
12899 /* Routines to support the creation of dynamic relocs. */
12900
12901 /* Returns the name of the dynamic reloc section associated with SEC. */
12902
12903 static const char *
12904 get_dynamic_reloc_section_name (bfd * abfd,
12905 asection * sec,
12906 bfd_boolean is_rela)
12907 {
12908 char *name;
12909 const char *old_name = bfd_get_section_name (NULL, sec);
12910 const char *prefix = is_rela ? ".rela" : ".rel";
12911
12912 if (old_name == NULL)
12913 return NULL;
12914
12915 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12916 sprintf (name, "%s%s", prefix, old_name);
12917
12918 return name;
12919 }
12920
12921 /* Returns the dynamic reloc section associated with SEC.
12922 If necessary compute the name of the dynamic reloc section based
12923 on SEC's name (looked up in ABFD's string table) and the setting
12924 of IS_RELA. */
12925
12926 asection *
12927 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12928 asection * sec,
12929 bfd_boolean is_rela)
12930 {
12931 asection * reloc_sec = elf_section_data (sec)->sreloc;
12932
12933 if (reloc_sec == NULL)
12934 {
12935 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12936
12937 if (name != NULL)
12938 {
12939 reloc_sec = bfd_get_linker_section (abfd, name);
12940
12941 if (reloc_sec != NULL)
12942 elf_section_data (sec)->sreloc = reloc_sec;
12943 }
12944 }
12945
12946 return reloc_sec;
12947 }
12948
12949 /* Returns the dynamic reloc section associated with SEC. If the
12950 section does not exist it is created and attached to the DYNOBJ
12951 bfd and stored in the SRELOC field of SEC's elf_section_data
12952 structure.
12953
12954 ALIGNMENT is the alignment for the newly created section and
12955 IS_RELA defines whether the name should be .rela.<SEC's name>
12956 or .rel.<SEC's name>. The section name is looked up in the
12957 string table associated with ABFD. */
12958
12959 asection *
12960 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12961 bfd * dynobj,
12962 unsigned int alignment,
12963 bfd * abfd,
12964 bfd_boolean is_rela)
12965 {
12966 asection * reloc_sec = elf_section_data (sec)->sreloc;
12967
12968 if (reloc_sec == NULL)
12969 {
12970 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12971
12972 if (name == NULL)
12973 return NULL;
12974
12975 reloc_sec = bfd_get_linker_section (dynobj, name);
12976
12977 if (reloc_sec == NULL)
12978 {
12979 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
12980 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12981 if ((sec->flags & SEC_ALLOC) != 0)
12982 flags |= SEC_ALLOC | SEC_LOAD;
12983
12984 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
12985 if (reloc_sec != NULL)
12986 {
12987 /* _bfd_elf_get_sec_type_attr chooses a section type by
12988 name. Override as it may be wrong, eg. for a user
12989 section named "auto" we'll get ".relauto" which is
12990 seen to be a .rela section. */
12991 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
12992 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12993 reloc_sec = NULL;
12994 }
12995 }
12996
12997 elf_section_data (sec)->sreloc = reloc_sec;
12998 }
12999
13000 return reloc_sec;
13001 }
13002
13003 /* Copy the ELF symbol type and other attributes for a linker script
13004 assignment from HSRC to HDEST. Generally this should be treated as
13005 if we found a strong non-dynamic definition for HDEST (except that
13006 ld ignores multiple definition errors). */
13007 void
13008 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
13009 struct bfd_link_hash_entry *hdest,
13010 struct bfd_link_hash_entry *hsrc)
13011 {
13012 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
13013 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
13014 Elf_Internal_Sym isym;
13015
13016 ehdest->type = ehsrc->type;
13017 ehdest->target_internal = ehsrc->target_internal;
13018
13019 isym.st_other = ehsrc->other;
13020 elf_merge_st_other (abfd, ehdest, &isym, TRUE, FALSE);
13021 }
13022
13023 /* Append a RELA relocation REL to section S in BFD. */
13024
13025 void
13026 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13027 {
13028 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13029 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13030 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13031 bed->s->swap_reloca_out (abfd, rel, loc);
13032 }
13033
13034 /* Append a REL relocation REL to section S in BFD. */
13035
13036 void
13037 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13038 {
13039 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13040 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13041 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13042 bed->s->swap_reloc_out (abfd, rel, loc);
13043 }
This page took 0.39487 seconds and 4 git commands to generate.