Set STB_GNU_UNIQUE only if symbol is defined in regular object
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
4 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #define ARCH_SIZE 0
28 #include "elf-bfd.h"
29 #include "safe-ctype.h"
30 #include "libiberty.h"
31 #include "objalloc.h"
32
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
35
36 struct elf_info_failed
37 {
38 struct bfd_link_info *info;
39 bfd_boolean failed;
40 };
41
42 /* This structure is used to pass information to
43 _bfd_elf_link_find_version_dependencies. */
44
45 struct elf_find_verdep_info
46 {
47 /* General link information. */
48 struct bfd_link_info *info;
49 /* The number of dependencies. */
50 unsigned int vers;
51 /* Whether we had a failure. */
52 bfd_boolean failed;
53 };
54
55 static bfd_boolean _bfd_elf_fix_symbol_flags
56 (struct elf_link_hash_entry *, struct elf_info_failed *);
57
58 /* Define a symbol in a dynamic linkage section. */
59
60 struct elf_link_hash_entry *
61 _bfd_elf_define_linkage_sym (bfd *abfd,
62 struct bfd_link_info *info,
63 asection *sec,
64 const char *name)
65 {
66 struct elf_link_hash_entry *h;
67 struct bfd_link_hash_entry *bh;
68 const struct elf_backend_data *bed;
69
70 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
71 if (h != NULL)
72 {
73 /* Zap symbol defined in an as-needed lib that wasn't linked.
74 This is a symptom of a larger problem: Absolute symbols
75 defined in shared libraries can't be overridden, because we
76 lose the link to the bfd which is via the symbol section. */
77 h->root.type = bfd_link_hash_new;
78 }
79
80 bh = &h->root;
81 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
82 sec, 0, NULL, FALSE,
83 get_elf_backend_data (abfd)->collect,
84 &bh))
85 return NULL;
86 h = (struct elf_link_hash_entry *) bh;
87 h->def_regular = 1;
88 h->non_elf = 0;
89 h->type = STT_OBJECT;
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
91
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94 return h;
95 }
96
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
99 {
100 flagword flags;
101 asection *s;
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
105
106 /* This function may be called more than once. */
107 s = bfd_get_linker_section (abfd, ".got");
108 if (s != NULL)
109 return TRUE;
110
111 flags = bed->dynamic_sec_flags;
112
113 s = bfd_make_section_anyway_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
117 | SEC_READONLY));
118 if (s == NULL
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
120 return FALSE;
121 htab->srelgot = s;
122
123 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
124 if (s == NULL
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
126 return FALSE;
127 htab->sgot = s;
128
129 if (bed->want_got_plt)
130 {
131 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
132 if (s == NULL
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
135 return FALSE;
136 htab->sgotplt = s;
137 }
138
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
141
142 if (bed->want_got_sym)
143 {
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
151 if (h == NULL)
152 return FALSE;
153 }
154
155 return TRUE;
156 }
157 \f
158 /* Create a strtab to hold the dynamic symbol names. */
159 static bfd_boolean
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
161 {
162 struct elf_link_hash_table *hash_table;
163
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
167
168 if (hash_table->dynstr == NULL)
169 {
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
172 return FALSE;
173 }
174 return TRUE;
175 }
176
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
183
184 bfd_boolean
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
186 {
187 flagword flags;
188 asection *s;
189 const struct elf_backend_data *bed;
190 struct elf_link_hash_entry *h;
191
192 if (! is_elf_hash_table (info->hash))
193 return FALSE;
194
195 if (elf_hash_table (info)->dynamic_sections_created)
196 return TRUE;
197
198 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
199 return FALSE;
200
201 abfd = elf_hash_table (info)->dynobj;
202 bed = get_elf_backend_data (abfd);
203
204 flags = bed->dynamic_sec_flags;
205
206 /* A dynamically linked executable has a .interp section, but a
207 shared library does not. */
208 if (info->executable)
209 {
210 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
211 flags | SEC_READONLY);
212 if (s == NULL)
213 return FALSE;
214 }
215
216 /* Create sections to hold version informations. These are removed
217 if they are not needed. */
218 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
219 flags | SEC_READONLY);
220 if (s == NULL
221 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
222 return FALSE;
223
224 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
225 flags | SEC_READONLY);
226 if (s == NULL
227 || ! bfd_set_section_alignment (abfd, s, 1))
228 return FALSE;
229
230 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
231 flags | SEC_READONLY);
232 if (s == NULL
233 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
234 return FALSE;
235
236 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
237 flags | SEC_READONLY);
238 if (s == NULL
239 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
240 return FALSE;
241
242 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
243 flags | SEC_READONLY);
244 if (s == NULL)
245 return FALSE;
246
247 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
248 if (s == NULL
249 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
250 return FALSE;
251
252 /* The special symbol _DYNAMIC is always set to the start of the
253 .dynamic section. We could set _DYNAMIC in a linker script, but we
254 only want to define it if we are, in fact, creating a .dynamic
255 section. We don't want to define it if there is no .dynamic
256 section, since on some ELF platforms the start up code examines it
257 to decide how to initialize the process. */
258 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
259 elf_hash_table (info)->hdynamic = h;
260 if (h == NULL)
261 return FALSE;
262
263 if (info->emit_hash)
264 {
265 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
266 flags | SEC_READONLY);
267 if (s == NULL
268 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
269 return FALSE;
270 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
271 }
272
273 if (info->emit_gnu_hash)
274 {
275 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
276 flags | SEC_READONLY);
277 if (s == NULL
278 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
279 return FALSE;
280 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
281 4 32-bit words followed by variable count of 64-bit words, then
282 variable count of 32-bit words. */
283 if (bed->s->arch_size == 64)
284 elf_section_data (s)->this_hdr.sh_entsize = 0;
285 else
286 elf_section_data (s)->this_hdr.sh_entsize = 4;
287 }
288
289 /* Let the backend create the rest of the sections. This lets the
290 backend set the right flags. The backend will normally create
291 the .got and .plt sections. */
292 if (bed->elf_backend_create_dynamic_sections == NULL
293 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
294 return FALSE;
295
296 elf_hash_table (info)->dynamic_sections_created = TRUE;
297
298 return TRUE;
299 }
300
301 /* Create dynamic sections when linking against a dynamic object. */
302
303 bfd_boolean
304 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
305 {
306 flagword flags, pltflags;
307 struct elf_link_hash_entry *h;
308 asection *s;
309 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
310 struct elf_link_hash_table *htab = elf_hash_table (info);
311
312 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
313 .rel[a].bss sections. */
314 flags = bed->dynamic_sec_flags;
315
316 pltflags = flags;
317 if (bed->plt_not_loaded)
318 /* We do not clear SEC_ALLOC here because we still want the OS to
319 allocate space for the section; it's just that there's nothing
320 to read in from the object file. */
321 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
322 else
323 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
324 if (bed->plt_readonly)
325 pltflags |= SEC_READONLY;
326
327 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
328 if (s == NULL
329 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
330 return FALSE;
331 htab->splt = s;
332
333 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
334 .plt section. */
335 if (bed->want_plt_sym)
336 {
337 h = _bfd_elf_define_linkage_sym (abfd, info, s,
338 "_PROCEDURE_LINKAGE_TABLE_");
339 elf_hash_table (info)->hplt = h;
340 if (h == NULL)
341 return FALSE;
342 }
343
344 s = bfd_make_section_anyway_with_flags (abfd,
345 (bed->rela_plts_and_copies_p
346 ? ".rela.plt" : ".rel.plt"),
347 flags | SEC_READONLY);
348 if (s == NULL
349 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
350 return FALSE;
351 htab->srelplt = s;
352
353 if (! _bfd_elf_create_got_section (abfd, info))
354 return FALSE;
355
356 if (bed->want_dynbss)
357 {
358 /* The .dynbss section is a place to put symbols which are defined
359 by dynamic objects, are referenced by regular objects, and are
360 not functions. We must allocate space for them in the process
361 image and use a R_*_COPY reloc to tell the dynamic linker to
362 initialize them at run time. The linker script puts the .dynbss
363 section into the .bss section of the final image. */
364 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
365 (SEC_ALLOC | SEC_LINKER_CREATED));
366 if (s == NULL)
367 return FALSE;
368
369 /* The .rel[a].bss section holds copy relocs. This section is not
370 normally needed. We need to create it here, though, so that the
371 linker will map it to an output section. We can't just create it
372 only if we need it, because we will not know whether we need it
373 until we have seen all the input files, and the first time the
374 main linker code calls BFD after examining all the input files
375 (size_dynamic_sections) the input sections have already been
376 mapped to the output sections. If the section turns out not to
377 be needed, we can discard it later. We will never need this
378 section when generating a shared object, since they do not use
379 copy relocs. */
380 if (! info->shared)
381 {
382 s = bfd_make_section_anyway_with_flags (abfd,
383 (bed->rela_plts_and_copies_p
384 ? ".rela.bss" : ".rel.bss"),
385 flags | SEC_READONLY);
386 if (s == NULL
387 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
388 return FALSE;
389 }
390 }
391
392 return TRUE;
393 }
394 \f
395 /* Record a new dynamic symbol. We record the dynamic symbols as we
396 read the input files, since we need to have a list of all of them
397 before we can determine the final sizes of the output sections.
398 Note that we may actually call this function even though we are not
399 going to output any dynamic symbols; in some cases we know that a
400 symbol should be in the dynamic symbol table, but only if there is
401 one. */
402
403 bfd_boolean
404 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
405 struct elf_link_hash_entry *h)
406 {
407 if (h->dynindx == -1)
408 {
409 struct elf_strtab_hash *dynstr;
410 char *p;
411 const char *name;
412 bfd_size_type indx;
413
414 /* XXX: The ABI draft says the linker must turn hidden and
415 internal symbols into STB_LOCAL symbols when producing the
416 DSO. However, if ld.so honors st_other in the dynamic table,
417 this would not be necessary. */
418 switch (ELF_ST_VISIBILITY (h->other))
419 {
420 case STV_INTERNAL:
421 case STV_HIDDEN:
422 if (h->root.type != bfd_link_hash_undefined
423 && h->root.type != bfd_link_hash_undefweak)
424 {
425 h->forced_local = 1;
426 if (!elf_hash_table (info)->is_relocatable_executable)
427 return TRUE;
428 }
429
430 default:
431 break;
432 }
433
434 h->dynindx = elf_hash_table (info)->dynsymcount;
435 ++elf_hash_table (info)->dynsymcount;
436
437 dynstr = elf_hash_table (info)->dynstr;
438 if (dynstr == NULL)
439 {
440 /* Create a strtab to hold the dynamic symbol names. */
441 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
442 if (dynstr == NULL)
443 return FALSE;
444 }
445
446 /* We don't put any version information in the dynamic string
447 table. */
448 name = h->root.root.string;
449 p = strchr (name, ELF_VER_CHR);
450 if (p != NULL)
451 /* We know that the p points into writable memory. In fact,
452 there are only a few symbols that have read-only names, being
453 those like _GLOBAL_OFFSET_TABLE_ that are created specially
454 by the backends. Most symbols will have names pointing into
455 an ELF string table read from a file, or to objalloc memory. */
456 *p = 0;
457
458 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
459
460 if (p != NULL)
461 *p = ELF_VER_CHR;
462
463 if (indx == (bfd_size_type) -1)
464 return FALSE;
465 h->dynstr_index = indx;
466 }
467
468 return TRUE;
469 }
470 \f
471 /* Mark a symbol dynamic. */
472
473 static void
474 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
475 struct elf_link_hash_entry *h,
476 Elf_Internal_Sym *sym)
477 {
478 struct bfd_elf_dynamic_list *d = info->dynamic_list;
479
480 /* It may be called more than once on the same H. */
481 if(h->dynamic || info->relocatable)
482 return;
483
484 if ((info->dynamic_data
485 && (h->type == STT_OBJECT
486 || (sym != NULL
487 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
488 || (d != NULL
489 && h->root.type == bfd_link_hash_new
490 && (*d->match) (&d->head, NULL, h->root.root.string)))
491 h->dynamic = 1;
492 }
493
494 /* Record an assignment to a symbol made by a linker script. We need
495 this in case some dynamic object refers to this symbol. */
496
497 bfd_boolean
498 bfd_elf_record_link_assignment (bfd *output_bfd,
499 struct bfd_link_info *info,
500 const char *name,
501 bfd_boolean provide,
502 bfd_boolean hidden)
503 {
504 struct elf_link_hash_entry *h, *hv;
505 struct elf_link_hash_table *htab;
506 const struct elf_backend_data *bed;
507
508 if (!is_elf_hash_table (info->hash))
509 return TRUE;
510
511 htab = elf_hash_table (info);
512 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
513 if (h == NULL)
514 return provide;
515
516 switch (h->root.type)
517 {
518 case bfd_link_hash_defined:
519 case bfd_link_hash_defweak:
520 case bfd_link_hash_common:
521 break;
522 case bfd_link_hash_undefweak:
523 case bfd_link_hash_undefined:
524 /* Since we're defining the symbol, don't let it seem to have not
525 been defined. record_dynamic_symbol and size_dynamic_sections
526 may depend on this. */
527 h->root.type = bfd_link_hash_new;
528 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
529 bfd_link_repair_undef_list (&htab->root);
530 break;
531 case bfd_link_hash_new:
532 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
533 h->non_elf = 0;
534 break;
535 case bfd_link_hash_indirect:
536 /* We had a versioned symbol in a dynamic library. We make the
537 the versioned symbol point to this one. */
538 bed = get_elf_backend_data (output_bfd);
539 hv = h;
540 while (hv->root.type == bfd_link_hash_indirect
541 || hv->root.type == bfd_link_hash_warning)
542 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
543 /* We don't need to update h->root.u since linker will set them
544 later. */
545 h->root.type = bfd_link_hash_undefined;
546 hv->root.type = bfd_link_hash_indirect;
547 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
548 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
549 break;
550 case bfd_link_hash_warning:
551 abort ();
552 break;
553 }
554
555 /* If this symbol is being provided by the linker script, and it is
556 currently defined by a dynamic object, but not by a regular
557 object, then mark it as undefined so that the generic linker will
558 force the correct value. */
559 if (provide
560 && h->def_dynamic
561 && !h->def_regular)
562 h->root.type = bfd_link_hash_undefined;
563
564 /* If this symbol is not being provided by the linker script, and it is
565 currently defined by a dynamic object, but not by a regular object,
566 then clear out any version information because the symbol will not be
567 associated with the dynamic object any more. */
568 if (!provide
569 && h->def_dynamic
570 && !h->def_regular)
571 h->verinfo.verdef = NULL;
572
573 h->def_regular = 1;
574
575 if (hidden)
576 {
577 bed = get_elf_backend_data (output_bfd);
578 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
579 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
580 }
581
582 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
583 and executables. */
584 if (!info->relocatable
585 && h->dynindx != -1
586 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
587 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
588 h->forced_local = 1;
589
590 if ((h->def_dynamic
591 || h->ref_dynamic
592 || info->shared
593 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
594 && h->dynindx == -1)
595 {
596 if (! bfd_elf_link_record_dynamic_symbol (info, h))
597 return FALSE;
598
599 /* If this is a weak defined symbol, and we know a corresponding
600 real symbol from the same dynamic object, make sure the real
601 symbol is also made into a dynamic symbol. */
602 if (h->u.weakdef != NULL
603 && h->u.weakdef->dynindx == -1)
604 {
605 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
606 return FALSE;
607 }
608 }
609
610 return TRUE;
611 }
612
613 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
614 success, and 2 on a failure caused by attempting to record a symbol
615 in a discarded section, eg. a discarded link-once section symbol. */
616
617 int
618 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
619 bfd *input_bfd,
620 long input_indx)
621 {
622 bfd_size_type amt;
623 struct elf_link_local_dynamic_entry *entry;
624 struct elf_link_hash_table *eht;
625 struct elf_strtab_hash *dynstr;
626 unsigned long dynstr_index;
627 char *name;
628 Elf_External_Sym_Shndx eshndx;
629 char esym[sizeof (Elf64_External_Sym)];
630
631 if (! is_elf_hash_table (info->hash))
632 return 0;
633
634 /* See if the entry exists already. */
635 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
636 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
637 return 1;
638
639 amt = sizeof (*entry);
640 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
641 if (entry == NULL)
642 return 0;
643
644 /* Go find the symbol, so that we can find it's name. */
645 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
646 1, input_indx, &entry->isym, esym, &eshndx))
647 {
648 bfd_release (input_bfd, entry);
649 return 0;
650 }
651
652 if (entry->isym.st_shndx != SHN_UNDEF
653 && entry->isym.st_shndx < SHN_LORESERVE)
654 {
655 asection *s;
656
657 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
658 if (s == NULL || bfd_is_abs_section (s->output_section))
659 {
660 /* We can still bfd_release here as nothing has done another
661 bfd_alloc. We can't do this later in this function. */
662 bfd_release (input_bfd, entry);
663 return 2;
664 }
665 }
666
667 name = (bfd_elf_string_from_elf_section
668 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
669 entry->isym.st_name));
670
671 dynstr = elf_hash_table (info)->dynstr;
672 if (dynstr == NULL)
673 {
674 /* Create a strtab to hold the dynamic symbol names. */
675 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
676 if (dynstr == NULL)
677 return 0;
678 }
679
680 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
681 if (dynstr_index == (unsigned long) -1)
682 return 0;
683 entry->isym.st_name = dynstr_index;
684
685 eht = elf_hash_table (info);
686
687 entry->next = eht->dynlocal;
688 eht->dynlocal = entry;
689 entry->input_bfd = input_bfd;
690 entry->input_indx = input_indx;
691 eht->dynsymcount++;
692
693 /* Whatever binding the symbol had before, it's now local. */
694 entry->isym.st_info
695 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
696
697 /* The dynindx will be set at the end of size_dynamic_sections. */
698
699 return 1;
700 }
701
702 /* Return the dynindex of a local dynamic symbol. */
703
704 long
705 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
706 bfd *input_bfd,
707 long input_indx)
708 {
709 struct elf_link_local_dynamic_entry *e;
710
711 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
712 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
713 return e->dynindx;
714 return -1;
715 }
716
717 /* This function is used to renumber the dynamic symbols, if some of
718 them are removed because they are marked as local. This is called
719 via elf_link_hash_traverse. */
720
721 static bfd_boolean
722 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
723 void *data)
724 {
725 size_t *count = (size_t *) data;
726
727 if (h->forced_local)
728 return TRUE;
729
730 if (h->dynindx != -1)
731 h->dynindx = ++(*count);
732
733 return TRUE;
734 }
735
736
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
739
740 static bfd_boolean
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
742 void *data)
743 {
744 size_t *count = (size_t *) data;
745
746 if (!h->forced_local)
747 return TRUE;
748
749 if (h->dynindx != -1)
750 h->dynindx = ++(*count);
751
752 return TRUE;
753 }
754
755 /* Return true if the dynamic symbol for a given section should be
756 omitted when creating a shared library. */
757 bfd_boolean
758 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
759 struct bfd_link_info *info,
760 asection *p)
761 {
762 struct elf_link_hash_table *htab;
763
764 switch (elf_section_data (p)->this_hdr.sh_type)
765 {
766 case SHT_PROGBITS:
767 case SHT_NOBITS:
768 /* If sh_type is yet undecided, assume it could be
769 SHT_PROGBITS/SHT_NOBITS. */
770 case SHT_NULL:
771 htab = elf_hash_table (info);
772 if (p == htab->tls_sec)
773 return FALSE;
774
775 if (htab->text_index_section != NULL)
776 return p != htab->text_index_section && p != htab->data_index_section;
777
778 if (strcmp (p->name, ".got") == 0
779 || strcmp (p->name, ".got.plt") == 0
780 || strcmp (p->name, ".plt") == 0)
781 {
782 asection *ip;
783
784 if (htab->dynobj != NULL
785 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
786 && ip->output_section == p)
787 return TRUE;
788 }
789 return FALSE;
790
791 /* There shouldn't be section relative relocations
792 against any other section. */
793 default:
794 return TRUE;
795 }
796 }
797
798 /* Assign dynsym indices. In a shared library we generate a section
799 symbol for each output section, which come first. Next come symbols
800 which have been forced to local binding. Then all of the back-end
801 allocated local dynamic syms, followed by the rest of the global
802 symbols. */
803
804 static unsigned long
805 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
806 struct bfd_link_info *info,
807 unsigned long *section_sym_count)
808 {
809 unsigned long dynsymcount = 0;
810
811 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
812 {
813 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
814 asection *p;
815 for (p = output_bfd->sections; p ; p = p->next)
816 if ((p->flags & SEC_EXCLUDE) == 0
817 && (p->flags & SEC_ALLOC) != 0
818 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
819 elf_section_data (p)->dynindx = ++dynsymcount;
820 else
821 elf_section_data (p)->dynindx = 0;
822 }
823 *section_sym_count = dynsymcount;
824
825 elf_link_hash_traverse (elf_hash_table (info),
826 elf_link_renumber_local_hash_table_dynsyms,
827 &dynsymcount);
828
829 if (elf_hash_table (info)->dynlocal)
830 {
831 struct elf_link_local_dynamic_entry *p;
832 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
833 p->dynindx = ++dynsymcount;
834 }
835
836 elf_link_hash_traverse (elf_hash_table (info),
837 elf_link_renumber_hash_table_dynsyms,
838 &dynsymcount);
839
840 /* There is an unused NULL entry at the head of the table which
841 we must account for in our count. Unless there weren't any
842 symbols, which means we'll have no table at all. */
843 if (dynsymcount != 0)
844 ++dynsymcount;
845
846 elf_hash_table (info)->dynsymcount = dynsymcount;
847 return dynsymcount;
848 }
849
850 /* Merge st_other field. */
851
852 static void
853 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
854 Elf_Internal_Sym *isym, bfd_boolean definition,
855 bfd_boolean dynamic)
856 {
857 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
858
859 /* If st_other has a processor-specific meaning, specific
860 code might be needed here. We never merge the visibility
861 attribute with the one from a dynamic object. */
862 if (bed->elf_backend_merge_symbol_attribute)
863 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
864 dynamic);
865
866 /* If this symbol has default visibility and the user has requested
867 we not re-export it, then mark it as hidden. */
868 if (definition
869 && !dynamic
870 && (abfd->no_export
871 || (abfd->my_archive && abfd->my_archive->no_export))
872 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
873 isym->st_other = (STV_HIDDEN
874 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
875
876 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
877 {
878 unsigned char hvis, symvis, other, nvis;
879
880 /* Only merge the visibility. Leave the remainder of the
881 st_other field to elf_backend_merge_symbol_attribute. */
882 other = h->other & ~ELF_ST_VISIBILITY (-1);
883
884 /* Combine visibilities, using the most constraining one. */
885 hvis = ELF_ST_VISIBILITY (h->other);
886 symvis = ELF_ST_VISIBILITY (isym->st_other);
887 if (! hvis)
888 nvis = symvis;
889 else if (! symvis)
890 nvis = hvis;
891 else
892 nvis = hvis < symvis ? hvis : symvis;
893
894 h->other = other | nvis;
895 }
896 }
897
898 /* This function is called when we want to define a new symbol. It
899 handles the various cases which arise when we find a definition in
900 a dynamic object, or when there is already a definition in a
901 dynamic object. The new symbol is described by NAME, SYM, PSEC,
902 and PVALUE. We set SYM_HASH to the hash table entry. We set
903 OVERRIDE if the old symbol is overriding a new definition. We set
904 TYPE_CHANGE_OK if it is OK for the type to change. We set
905 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
906 change, we mean that we shouldn't warn if the type or size does
907 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
908 object is overridden by a regular object. */
909
910 bfd_boolean
911 _bfd_elf_merge_symbol (bfd *abfd,
912 struct bfd_link_info *info,
913 const char *name,
914 Elf_Internal_Sym *sym,
915 asection **psec,
916 bfd_vma *pvalue,
917 bfd_boolean *pold_weak,
918 unsigned int *pold_alignment,
919 struct elf_link_hash_entry **sym_hash,
920 bfd_boolean *skip,
921 bfd_boolean *override,
922 bfd_boolean *type_change_ok,
923 bfd_boolean *size_change_ok)
924 {
925 asection *sec, *oldsec;
926 struct elf_link_hash_entry *h;
927 struct elf_link_hash_entry *hi;
928 struct elf_link_hash_entry *flip;
929 int bind;
930 bfd *oldbfd;
931 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
932 bfd_boolean newweak, oldweak, newfunc, oldfunc;
933 const struct elf_backend_data *bed;
934
935 *skip = FALSE;
936 *override = FALSE;
937
938 sec = *psec;
939 bind = ELF_ST_BIND (sym->st_info);
940
941 /* Silently discard TLS symbols from --just-syms. There's no way to
942 combine a static TLS block with a new TLS block for this executable. */
943 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
944 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
945 {
946 *skip = TRUE;
947 return TRUE;
948 }
949
950 if (! bfd_is_und_section (sec))
951 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
952 else
953 h = ((struct elf_link_hash_entry *)
954 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
955 if (h == NULL)
956 return FALSE;
957 *sym_hash = h;
958
959 bed = get_elf_backend_data (abfd);
960
961 /* This code is for coping with dynamic objects, and is only useful
962 if we are doing an ELF link. */
963 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
964 return TRUE;
965
966 /* For merging, we only care about real symbols. But we need to make
967 sure that indirect symbol dynamic flags are updated. */
968 hi = h;
969 while (h->root.type == bfd_link_hash_indirect
970 || h->root.type == bfd_link_hash_warning)
971 h = (struct elf_link_hash_entry *) h->root.u.i.link;
972
973 /* We have to check it for every instance since the first few may be
974 references and not all compilers emit symbol type for undefined
975 symbols. */
976 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
977
978 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
979 respectively, is from a dynamic object. */
980
981 newdyn = (abfd->flags & DYNAMIC) != 0;
982
983 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
984 syms and defined syms in dynamic libraries respectively.
985 ref_dynamic on the other hand can be set for a symbol defined in
986 a dynamic library, and def_dynamic may not be set; When the
987 definition in a dynamic lib is overridden by a definition in the
988 executable use of the symbol in the dynamic lib becomes a
989 reference to the executable symbol. */
990 if (newdyn)
991 {
992 if (bfd_is_und_section (sec))
993 {
994 if (bind != STB_WEAK)
995 {
996 h->ref_dynamic_nonweak = 1;
997 hi->ref_dynamic_nonweak = 1;
998 }
999 }
1000 else
1001 {
1002 h->dynamic_def = 1;
1003 hi->dynamic_def = 1;
1004 }
1005 }
1006
1007 /* If we just created the symbol, mark it as being an ELF symbol.
1008 Other than that, there is nothing to do--there is no merge issue
1009 with a newly defined symbol--so we just return. */
1010
1011 if (h->root.type == bfd_link_hash_new)
1012 {
1013 h->non_elf = 0;
1014 return TRUE;
1015 }
1016
1017 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1018 existing symbol. */
1019
1020 switch (h->root.type)
1021 {
1022 default:
1023 oldbfd = NULL;
1024 oldsec = NULL;
1025 break;
1026
1027 case bfd_link_hash_undefined:
1028 case bfd_link_hash_undefweak:
1029 oldbfd = h->root.u.undef.abfd;
1030 oldsec = NULL;
1031 break;
1032
1033 case bfd_link_hash_defined:
1034 case bfd_link_hash_defweak:
1035 oldbfd = h->root.u.def.section->owner;
1036 oldsec = h->root.u.def.section;
1037 break;
1038
1039 case bfd_link_hash_common:
1040 oldbfd = h->root.u.c.p->section->owner;
1041 oldsec = h->root.u.c.p->section;
1042 break;
1043 }
1044
1045 /* Differentiate strong and weak symbols. */
1046 newweak = bind == STB_WEAK;
1047 oldweak = (h->root.type == bfd_link_hash_defweak
1048 || h->root.type == bfd_link_hash_undefweak);
1049 if (pold_weak)
1050 *pold_weak = oldweak;
1051
1052 /* In cases involving weak versioned symbols, we may wind up trying
1053 to merge a symbol with itself. Catch that here, to avoid the
1054 confusion that results if we try to override a symbol with
1055 itself. The additional tests catch cases like
1056 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1057 dynamic object, which we do want to handle here. */
1058 if (abfd == oldbfd
1059 && (newweak || oldweak)
1060 && ((abfd->flags & DYNAMIC) == 0
1061 || !h->def_regular))
1062 return TRUE;
1063
1064 olddyn = FALSE;
1065 if (oldbfd != NULL)
1066 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1067 else if (oldsec != NULL)
1068 {
1069 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1070 indices used by MIPS ELF. */
1071 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1072 }
1073
1074 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1075 respectively, appear to be a definition rather than reference. */
1076
1077 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1078
1079 olddef = (h->root.type != bfd_link_hash_undefined
1080 && h->root.type != bfd_link_hash_undefweak
1081 && h->root.type != bfd_link_hash_common);
1082
1083 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1084 respectively, appear to be a function. */
1085
1086 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1087 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1088
1089 oldfunc = (h->type != STT_NOTYPE
1090 && bed->is_function_type (h->type));
1091
1092 /* When we try to create a default indirect symbol from the dynamic
1093 definition with the default version, we skip it if its type and
1094 the type of existing regular definition mismatch. We only do it
1095 if the existing regular definition won't be dynamic. */
1096 if (pold_alignment == NULL
1097 && !info->shared
1098 && !info->export_dynamic
1099 && !h->ref_dynamic
1100 && newdyn
1101 && newdef
1102 && !olddyn
1103 && (olddef || h->root.type == bfd_link_hash_common)
1104 && ELF_ST_TYPE (sym->st_info) != h->type
1105 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1106 && h->type != STT_NOTYPE
1107 && !(newfunc && oldfunc))
1108 {
1109 *skip = TRUE;
1110 return TRUE;
1111 }
1112
1113 /* Plugin symbol type isn't currently set. Stop bogus errors. */
1114 if (oldbfd != NULL && (oldbfd->flags & BFD_PLUGIN) != 0)
1115 *type_change_ok = TRUE;
1116
1117 /* Check TLS symbol. We don't check undefined symbol introduced by
1118 "ld -u". */
1119 else if (oldbfd != NULL
1120 && ELF_ST_TYPE (sym->st_info) != h->type
1121 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1122 {
1123 bfd *ntbfd, *tbfd;
1124 bfd_boolean ntdef, tdef;
1125 asection *ntsec, *tsec;
1126
1127 if (h->type == STT_TLS)
1128 {
1129 ntbfd = abfd;
1130 ntsec = sec;
1131 ntdef = newdef;
1132 tbfd = oldbfd;
1133 tsec = oldsec;
1134 tdef = olddef;
1135 }
1136 else
1137 {
1138 ntbfd = oldbfd;
1139 ntsec = oldsec;
1140 ntdef = olddef;
1141 tbfd = abfd;
1142 tsec = sec;
1143 tdef = newdef;
1144 }
1145
1146 if (tdef && ntdef)
1147 (*_bfd_error_handler)
1148 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1149 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1150 else if (!tdef && !ntdef)
1151 (*_bfd_error_handler)
1152 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1153 tbfd, ntbfd, h->root.root.string);
1154 else if (tdef)
1155 (*_bfd_error_handler)
1156 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1157 tbfd, tsec, ntbfd, h->root.root.string);
1158 else
1159 (*_bfd_error_handler)
1160 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1161 tbfd, ntbfd, ntsec, h->root.root.string);
1162
1163 bfd_set_error (bfd_error_bad_value);
1164 return FALSE;
1165 }
1166
1167 /* If the old symbol has non-default visibility, we ignore the new
1168 definition from a dynamic object. */
1169 if (newdyn
1170 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1171 && !bfd_is_und_section (sec))
1172 {
1173 *skip = TRUE;
1174 /* Make sure this symbol is dynamic. */
1175 h->ref_dynamic = 1;
1176 hi->ref_dynamic = 1;
1177 /* A protected symbol has external availability. Make sure it is
1178 recorded as dynamic.
1179
1180 FIXME: Should we check type and size for protected symbol? */
1181 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1182 return bfd_elf_link_record_dynamic_symbol (info, h);
1183 else
1184 return TRUE;
1185 }
1186 else if (!newdyn
1187 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1188 && h->def_dynamic)
1189 {
1190 /* If the new symbol with non-default visibility comes from a
1191 relocatable file and the old definition comes from a dynamic
1192 object, we remove the old definition. */
1193 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1194 {
1195 /* Handle the case where the old dynamic definition is
1196 default versioned. We need to copy the symbol info from
1197 the symbol with default version to the normal one if it
1198 was referenced before. */
1199 if (h->ref_regular)
1200 {
1201 struct elf_link_hash_entry *vh = *sym_hash;
1202
1203 vh->root.type = h->root.type;
1204 h->root.type = bfd_link_hash_indirect;
1205 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1206
1207 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1208 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1209 {
1210 /* If the new symbol is hidden or internal, completely undo
1211 any dynamic link state. */
1212 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1213 h->forced_local = 0;
1214 h->ref_dynamic = 0;
1215 }
1216 else
1217 h->ref_dynamic = 1;
1218
1219 h->def_dynamic = 0;
1220 /* FIXME: Should we check type and size for protected symbol? */
1221 h->size = 0;
1222 h->type = 0;
1223
1224 h = vh;
1225 }
1226 else
1227 h = *sym_hash;
1228 }
1229
1230 /* If the old symbol was undefined before, then it will still be
1231 on the undefs list. If the new symbol is undefined or
1232 common, we can't make it bfd_link_hash_new here, because new
1233 undefined or common symbols will be added to the undefs list
1234 by _bfd_generic_link_add_one_symbol. Symbols may not be
1235 added twice to the undefs list. Also, if the new symbol is
1236 undefweak then we don't want to lose the strong undef. */
1237 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1238 {
1239 h->root.type = bfd_link_hash_undefined;
1240 h->root.u.undef.abfd = abfd;
1241 }
1242 else
1243 {
1244 h->root.type = bfd_link_hash_new;
1245 h->root.u.undef.abfd = NULL;
1246 }
1247
1248 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1249 {
1250 /* If the new symbol is hidden or internal, completely undo
1251 any dynamic link state. */
1252 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1253 h->forced_local = 0;
1254 h->ref_dynamic = 0;
1255 }
1256 else
1257 h->ref_dynamic = 1;
1258 h->def_dynamic = 0;
1259 /* FIXME: Should we check type and size for protected symbol? */
1260 h->size = 0;
1261 h->type = 0;
1262 return TRUE;
1263 }
1264
1265 if (bind == STB_GNU_UNIQUE)
1266 h->unique_global = 1;
1267
1268 /* If a new weak symbol definition comes from a regular file and the
1269 old symbol comes from a dynamic library, we treat the new one as
1270 strong. Similarly, an old weak symbol definition from a regular
1271 file is treated as strong when the new symbol comes from a dynamic
1272 library. Further, an old weak symbol from a dynamic library is
1273 treated as strong if the new symbol is from a dynamic library.
1274 This reflects the way glibc's ld.so works.
1275
1276 Do this before setting *type_change_ok or *size_change_ok so that
1277 we warn properly when dynamic library symbols are overridden. */
1278
1279 if (newdef && !newdyn && olddyn)
1280 newweak = FALSE;
1281 if (olddef && newdyn)
1282 oldweak = FALSE;
1283
1284 /* Allow changes between different types of function symbol. */
1285 if (newfunc && oldfunc)
1286 *type_change_ok = TRUE;
1287
1288 /* It's OK to change the type if either the existing symbol or the
1289 new symbol is weak. A type change is also OK if the old symbol
1290 is undefined and the new symbol is defined. */
1291
1292 if (oldweak
1293 || newweak
1294 || (newdef
1295 && h->root.type == bfd_link_hash_undefined))
1296 *type_change_ok = TRUE;
1297
1298 /* It's OK to change the size if either the existing symbol or the
1299 new symbol is weak, or if the old symbol is undefined. */
1300
1301 if (*type_change_ok
1302 || h->root.type == bfd_link_hash_undefined)
1303 *size_change_ok = TRUE;
1304
1305 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1306 symbol, respectively, appears to be a common symbol in a dynamic
1307 object. If a symbol appears in an uninitialized section, and is
1308 not weak, and is not a function, then it may be a common symbol
1309 which was resolved when the dynamic object was created. We want
1310 to treat such symbols specially, because they raise special
1311 considerations when setting the symbol size: if the symbol
1312 appears as a common symbol in a regular object, and the size in
1313 the regular object is larger, we must make sure that we use the
1314 larger size. This problematic case can always be avoided in C,
1315 but it must be handled correctly when using Fortran shared
1316 libraries.
1317
1318 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1319 likewise for OLDDYNCOMMON and OLDDEF.
1320
1321 Note that this test is just a heuristic, and that it is quite
1322 possible to have an uninitialized symbol in a shared object which
1323 is really a definition, rather than a common symbol. This could
1324 lead to some minor confusion when the symbol really is a common
1325 symbol in some regular object. However, I think it will be
1326 harmless. */
1327
1328 if (newdyn
1329 && newdef
1330 && !newweak
1331 && (sec->flags & SEC_ALLOC) != 0
1332 && (sec->flags & SEC_LOAD) == 0
1333 && sym->st_size > 0
1334 && !newfunc)
1335 newdyncommon = TRUE;
1336 else
1337 newdyncommon = FALSE;
1338
1339 if (olddyn
1340 && olddef
1341 && h->root.type == bfd_link_hash_defined
1342 && h->def_dynamic
1343 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1344 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1345 && h->size > 0
1346 && !oldfunc)
1347 olddyncommon = TRUE;
1348 else
1349 olddyncommon = FALSE;
1350
1351 /* We now know everything about the old and new symbols. We ask the
1352 backend to check if we can merge them. */
1353 if (bed->merge_symbol
1354 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1355 pold_alignment, skip, override,
1356 type_change_ok, size_change_ok,
1357 &newdyn, &newdef, &newdyncommon, &newweak,
1358 abfd, &sec,
1359 &olddyn, &olddef, &olddyncommon, &oldweak,
1360 oldbfd, &oldsec))
1361 return FALSE;
1362
1363 /* If both the old and the new symbols look like common symbols in a
1364 dynamic object, set the size of the symbol to the larger of the
1365 two. */
1366
1367 if (olddyncommon
1368 && newdyncommon
1369 && sym->st_size != h->size)
1370 {
1371 /* Since we think we have two common symbols, issue a multiple
1372 common warning if desired. Note that we only warn if the
1373 size is different. If the size is the same, we simply let
1374 the old symbol override the new one as normally happens with
1375 symbols defined in dynamic objects. */
1376
1377 if (! ((*info->callbacks->multiple_common)
1378 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1379 return FALSE;
1380
1381 if (sym->st_size > h->size)
1382 h->size = sym->st_size;
1383
1384 *size_change_ok = TRUE;
1385 }
1386
1387 /* If we are looking at a dynamic object, and we have found a
1388 definition, we need to see if the symbol was already defined by
1389 some other object. If so, we want to use the existing
1390 definition, and we do not want to report a multiple symbol
1391 definition error; we do this by clobbering *PSEC to be
1392 bfd_und_section_ptr.
1393
1394 We treat a common symbol as a definition if the symbol in the
1395 shared library is a function, since common symbols always
1396 represent variables; this can cause confusion in principle, but
1397 any such confusion would seem to indicate an erroneous program or
1398 shared library. We also permit a common symbol in a regular
1399 object to override a weak symbol in a shared object. */
1400
1401 if (newdyn
1402 && newdef
1403 && (olddef
1404 || (h->root.type == bfd_link_hash_common
1405 && (newweak || newfunc))))
1406 {
1407 *override = TRUE;
1408 newdef = FALSE;
1409 newdyncommon = FALSE;
1410
1411 *psec = sec = bfd_und_section_ptr;
1412 *size_change_ok = TRUE;
1413
1414 /* If we get here when the old symbol is a common symbol, then
1415 we are explicitly letting it override a weak symbol or
1416 function in a dynamic object, and we don't want to warn about
1417 a type change. If the old symbol is a defined symbol, a type
1418 change warning may still be appropriate. */
1419
1420 if (h->root.type == bfd_link_hash_common)
1421 *type_change_ok = TRUE;
1422 }
1423
1424 /* Handle the special case of an old common symbol merging with a
1425 new symbol which looks like a common symbol in a shared object.
1426 We change *PSEC and *PVALUE to make the new symbol look like a
1427 common symbol, and let _bfd_generic_link_add_one_symbol do the
1428 right thing. */
1429
1430 if (newdyncommon
1431 && h->root.type == bfd_link_hash_common)
1432 {
1433 *override = TRUE;
1434 newdef = FALSE;
1435 newdyncommon = FALSE;
1436 *pvalue = sym->st_size;
1437 *psec = sec = bed->common_section (oldsec);
1438 *size_change_ok = TRUE;
1439 }
1440
1441 /* Skip weak definitions of symbols that are already defined. */
1442 if (newdef && olddef && newweak)
1443 {
1444 /* Don't skip new non-IR weak syms. */
1445 if (!(oldbfd != NULL
1446 && (oldbfd->flags & BFD_PLUGIN) != 0
1447 && (abfd->flags & BFD_PLUGIN) == 0))
1448 *skip = TRUE;
1449
1450 /* Merge st_other. If the symbol already has a dynamic index,
1451 but visibility says it should not be visible, turn it into a
1452 local symbol. */
1453 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1454 if (h->dynindx != -1)
1455 switch (ELF_ST_VISIBILITY (h->other))
1456 {
1457 case STV_INTERNAL:
1458 case STV_HIDDEN:
1459 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1460 break;
1461 }
1462 }
1463
1464 /* If the old symbol is from a dynamic object, and the new symbol is
1465 a definition which is not from a dynamic object, then the new
1466 symbol overrides the old symbol. Symbols from regular files
1467 always take precedence over symbols from dynamic objects, even if
1468 they are defined after the dynamic object in the link.
1469
1470 As above, we again permit a common symbol in a regular object to
1471 override a definition in a shared object if the shared object
1472 symbol is a function or is weak. */
1473
1474 flip = NULL;
1475 if (!newdyn
1476 && (newdef
1477 || (bfd_is_com_section (sec)
1478 && (oldweak || oldfunc)))
1479 && olddyn
1480 && olddef
1481 && h->def_dynamic)
1482 {
1483 /* Change the hash table entry to undefined, and let
1484 _bfd_generic_link_add_one_symbol do the right thing with the
1485 new definition. */
1486
1487 h->root.type = bfd_link_hash_undefined;
1488 h->root.u.undef.abfd = h->root.u.def.section->owner;
1489 *size_change_ok = TRUE;
1490
1491 olddef = FALSE;
1492 olddyncommon = FALSE;
1493
1494 /* We again permit a type change when a common symbol may be
1495 overriding a function. */
1496
1497 if (bfd_is_com_section (sec))
1498 {
1499 if (oldfunc)
1500 {
1501 /* If a common symbol overrides a function, make sure
1502 that it isn't defined dynamically nor has type
1503 function. */
1504 h->def_dynamic = 0;
1505 h->type = STT_NOTYPE;
1506 }
1507 *type_change_ok = TRUE;
1508 }
1509
1510 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1511 flip = *sym_hash;
1512 else
1513 /* This union may have been set to be non-NULL when this symbol
1514 was seen in a dynamic object. We must force the union to be
1515 NULL, so that it is correct for a regular symbol. */
1516 h->verinfo.vertree = NULL;
1517 }
1518
1519 /* Handle the special case of a new common symbol merging with an
1520 old symbol that looks like it might be a common symbol defined in
1521 a shared object. Note that we have already handled the case in
1522 which a new common symbol should simply override the definition
1523 in the shared library. */
1524
1525 if (! newdyn
1526 && bfd_is_com_section (sec)
1527 && olddyncommon)
1528 {
1529 /* It would be best if we could set the hash table entry to a
1530 common symbol, but we don't know what to use for the section
1531 or the alignment. */
1532 if (! ((*info->callbacks->multiple_common)
1533 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1534 return FALSE;
1535
1536 /* If the presumed common symbol in the dynamic object is
1537 larger, pretend that the new symbol has its size. */
1538
1539 if (h->size > *pvalue)
1540 *pvalue = h->size;
1541
1542 /* We need to remember the alignment required by the symbol
1543 in the dynamic object. */
1544 BFD_ASSERT (pold_alignment);
1545 *pold_alignment = h->root.u.def.section->alignment_power;
1546
1547 olddef = FALSE;
1548 olddyncommon = FALSE;
1549
1550 h->root.type = bfd_link_hash_undefined;
1551 h->root.u.undef.abfd = h->root.u.def.section->owner;
1552
1553 *size_change_ok = TRUE;
1554 *type_change_ok = TRUE;
1555
1556 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1557 flip = *sym_hash;
1558 else
1559 h->verinfo.vertree = NULL;
1560 }
1561
1562 if (flip != NULL)
1563 {
1564 /* Handle the case where we had a versioned symbol in a dynamic
1565 library and now find a definition in a normal object. In this
1566 case, we make the versioned symbol point to the normal one. */
1567 flip->root.type = h->root.type;
1568 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1569 h->root.type = bfd_link_hash_indirect;
1570 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1571 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1572 if (h->def_dynamic)
1573 {
1574 h->def_dynamic = 0;
1575 flip->ref_dynamic = 1;
1576 }
1577 }
1578
1579 return TRUE;
1580 }
1581
1582 /* This function is called to create an indirect symbol from the
1583 default for the symbol with the default version if needed. The
1584 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1585 set DYNSYM if the new indirect symbol is dynamic. */
1586
1587 static bfd_boolean
1588 _bfd_elf_add_default_symbol (bfd *abfd,
1589 struct bfd_link_info *info,
1590 struct elf_link_hash_entry *h,
1591 const char *name,
1592 Elf_Internal_Sym *sym,
1593 asection **psec,
1594 bfd_vma *value,
1595 bfd_boolean *dynsym,
1596 bfd_boolean override)
1597 {
1598 bfd_boolean type_change_ok;
1599 bfd_boolean size_change_ok;
1600 bfd_boolean skip;
1601 char *shortname;
1602 struct elf_link_hash_entry *hi;
1603 struct bfd_link_hash_entry *bh;
1604 const struct elf_backend_data *bed;
1605 bfd_boolean collect;
1606 bfd_boolean dynamic;
1607 char *p;
1608 size_t len, shortlen;
1609 asection *sec;
1610
1611 /* If this symbol has a version, and it is the default version, we
1612 create an indirect symbol from the default name to the fully
1613 decorated name. This will cause external references which do not
1614 specify a version to be bound to this version of the symbol. */
1615 p = strchr (name, ELF_VER_CHR);
1616 if (p == NULL || p[1] != ELF_VER_CHR)
1617 return TRUE;
1618
1619 if (override)
1620 {
1621 /* We are overridden by an old definition. We need to check if we
1622 need to create the indirect symbol from the default name. */
1623 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1624 FALSE, FALSE);
1625 BFD_ASSERT (hi != NULL);
1626 if (hi == h)
1627 return TRUE;
1628 while (hi->root.type == bfd_link_hash_indirect
1629 || hi->root.type == bfd_link_hash_warning)
1630 {
1631 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1632 if (hi == h)
1633 return TRUE;
1634 }
1635 }
1636
1637 bed = get_elf_backend_data (abfd);
1638 collect = bed->collect;
1639 dynamic = (abfd->flags & DYNAMIC) != 0;
1640
1641 shortlen = p - name;
1642 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1643 if (shortname == NULL)
1644 return FALSE;
1645 memcpy (shortname, name, shortlen);
1646 shortname[shortlen] = '\0';
1647
1648 /* We are going to create a new symbol. Merge it with any existing
1649 symbol with this name. For the purposes of the merge, act as
1650 though we were defining the symbol we just defined, although we
1651 actually going to define an indirect symbol. */
1652 type_change_ok = FALSE;
1653 size_change_ok = FALSE;
1654 sec = *psec;
1655 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1656 NULL, NULL, &hi, &skip, &override,
1657 &type_change_ok, &size_change_ok))
1658 return FALSE;
1659
1660 if (skip)
1661 goto nondefault;
1662
1663 if (! override)
1664 {
1665 bh = &hi->root;
1666 if (! (_bfd_generic_link_add_one_symbol
1667 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1668 0, name, FALSE, collect, &bh)))
1669 return FALSE;
1670 hi = (struct elf_link_hash_entry *) bh;
1671 }
1672 else
1673 {
1674 /* In this case the symbol named SHORTNAME is overriding the
1675 indirect symbol we want to add. We were planning on making
1676 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1677 is the name without a version. NAME is the fully versioned
1678 name, and it is the default version.
1679
1680 Overriding means that we already saw a definition for the
1681 symbol SHORTNAME in a regular object, and it is overriding
1682 the symbol defined in the dynamic object.
1683
1684 When this happens, we actually want to change NAME, the
1685 symbol we just added, to refer to SHORTNAME. This will cause
1686 references to NAME in the shared object to become references
1687 to SHORTNAME in the regular object. This is what we expect
1688 when we override a function in a shared object: that the
1689 references in the shared object will be mapped to the
1690 definition in the regular object. */
1691
1692 while (hi->root.type == bfd_link_hash_indirect
1693 || hi->root.type == bfd_link_hash_warning)
1694 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1695
1696 h->root.type = bfd_link_hash_indirect;
1697 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1698 if (h->def_dynamic)
1699 {
1700 h->def_dynamic = 0;
1701 hi->ref_dynamic = 1;
1702 if (hi->ref_regular
1703 || hi->def_regular)
1704 {
1705 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1706 return FALSE;
1707 }
1708 }
1709
1710 /* Now set HI to H, so that the following code will set the
1711 other fields correctly. */
1712 hi = h;
1713 }
1714
1715 /* Check if HI is a warning symbol. */
1716 if (hi->root.type == bfd_link_hash_warning)
1717 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1718
1719 /* If there is a duplicate definition somewhere, then HI may not
1720 point to an indirect symbol. We will have reported an error to
1721 the user in that case. */
1722
1723 if (hi->root.type == bfd_link_hash_indirect)
1724 {
1725 struct elf_link_hash_entry *ht;
1726
1727 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1728 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1729
1730 /* See if the new flags lead us to realize that the symbol must
1731 be dynamic. */
1732 if (! *dynsym)
1733 {
1734 if (! dynamic)
1735 {
1736 if (! info->executable
1737 || hi->def_dynamic
1738 || hi->ref_dynamic)
1739 *dynsym = TRUE;
1740 }
1741 else
1742 {
1743 if (hi->ref_regular)
1744 *dynsym = TRUE;
1745 }
1746 }
1747 }
1748
1749 /* We also need to define an indirection from the nondefault version
1750 of the symbol. */
1751
1752 nondefault:
1753 len = strlen (name);
1754 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1755 if (shortname == NULL)
1756 return FALSE;
1757 memcpy (shortname, name, shortlen);
1758 memcpy (shortname + shortlen, p + 1, len - shortlen);
1759
1760 /* Once again, merge with any existing symbol. */
1761 type_change_ok = FALSE;
1762 size_change_ok = FALSE;
1763 sec = *psec;
1764 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1765 NULL, NULL, &hi, &skip, &override,
1766 &type_change_ok, &size_change_ok))
1767 return FALSE;
1768
1769 if (skip)
1770 return TRUE;
1771
1772 if (override)
1773 {
1774 /* Here SHORTNAME is a versioned name, so we don't expect to see
1775 the type of override we do in the case above unless it is
1776 overridden by a versioned definition. */
1777 if (hi->root.type != bfd_link_hash_defined
1778 && hi->root.type != bfd_link_hash_defweak)
1779 (*_bfd_error_handler)
1780 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1781 abfd, shortname);
1782 }
1783 else
1784 {
1785 bh = &hi->root;
1786 if (! (_bfd_generic_link_add_one_symbol
1787 (info, abfd, shortname, BSF_INDIRECT,
1788 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1789 return FALSE;
1790 hi = (struct elf_link_hash_entry *) bh;
1791
1792 /* If there is a duplicate definition somewhere, then HI may not
1793 point to an indirect symbol. We will have reported an error
1794 to the user in that case. */
1795
1796 if (hi->root.type == bfd_link_hash_indirect)
1797 {
1798 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1799
1800 /* See if the new flags lead us to realize that the symbol
1801 must be dynamic. */
1802 if (! *dynsym)
1803 {
1804 if (! dynamic)
1805 {
1806 if (! info->executable
1807 || hi->ref_dynamic)
1808 *dynsym = TRUE;
1809 }
1810 else
1811 {
1812 if (hi->ref_regular)
1813 *dynsym = TRUE;
1814 }
1815 }
1816 }
1817 }
1818
1819 return TRUE;
1820 }
1821 \f
1822 /* This routine is used to export all defined symbols into the dynamic
1823 symbol table. It is called via elf_link_hash_traverse. */
1824
1825 static bfd_boolean
1826 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1827 {
1828 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1829
1830 /* Ignore indirect symbols. These are added by the versioning code. */
1831 if (h->root.type == bfd_link_hash_indirect)
1832 return TRUE;
1833
1834 /* Ignore this if we won't export it. */
1835 if (!eif->info->export_dynamic && !h->dynamic)
1836 return TRUE;
1837
1838 if (h->dynindx == -1
1839 && (h->def_regular || h->ref_regular)
1840 && ! bfd_hide_sym_by_version (eif->info->version_info,
1841 h->root.root.string))
1842 {
1843 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1844 {
1845 eif->failed = TRUE;
1846 return FALSE;
1847 }
1848 }
1849
1850 return TRUE;
1851 }
1852 \f
1853 /* Look through the symbols which are defined in other shared
1854 libraries and referenced here. Update the list of version
1855 dependencies. This will be put into the .gnu.version_r section.
1856 This function is called via elf_link_hash_traverse. */
1857
1858 static bfd_boolean
1859 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1860 void *data)
1861 {
1862 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1863 Elf_Internal_Verneed *t;
1864 Elf_Internal_Vernaux *a;
1865 bfd_size_type amt;
1866
1867 /* We only care about symbols defined in shared objects with version
1868 information. */
1869 if (!h->def_dynamic
1870 || h->def_regular
1871 || h->dynindx == -1
1872 || h->verinfo.verdef == NULL)
1873 return TRUE;
1874
1875 /* See if we already know about this version. */
1876 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1877 t != NULL;
1878 t = t->vn_nextref)
1879 {
1880 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1881 continue;
1882
1883 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1884 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1885 return TRUE;
1886
1887 break;
1888 }
1889
1890 /* This is a new version. Add it to tree we are building. */
1891
1892 if (t == NULL)
1893 {
1894 amt = sizeof *t;
1895 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1896 if (t == NULL)
1897 {
1898 rinfo->failed = TRUE;
1899 return FALSE;
1900 }
1901
1902 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1903 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1904 elf_tdata (rinfo->info->output_bfd)->verref = t;
1905 }
1906
1907 amt = sizeof *a;
1908 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1909 if (a == NULL)
1910 {
1911 rinfo->failed = TRUE;
1912 return FALSE;
1913 }
1914
1915 /* Note that we are copying a string pointer here, and testing it
1916 above. If bfd_elf_string_from_elf_section is ever changed to
1917 discard the string data when low in memory, this will have to be
1918 fixed. */
1919 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1920
1921 a->vna_flags = h->verinfo.verdef->vd_flags;
1922 a->vna_nextptr = t->vn_auxptr;
1923
1924 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1925 ++rinfo->vers;
1926
1927 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1928
1929 t->vn_auxptr = a;
1930
1931 return TRUE;
1932 }
1933
1934 /* Figure out appropriate versions for all the symbols. We may not
1935 have the version number script until we have read all of the input
1936 files, so until that point we don't know which symbols should be
1937 local. This function is called via elf_link_hash_traverse. */
1938
1939 static bfd_boolean
1940 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1941 {
1942 struct elf_info_failed *sinfo;
1943 struct bfd_link_info *info;
1944 const struct elf_backend_data *bed;
1945 struct elf_info_failed eif;
1946 char *p;
1947 bfd_size_type amt;
1948
1949 sinfo = (struct elf_info_failed *) data;
1950 info = sinfo->info;
1951
1952 /* Fix the symbol flags. */
1953 eif.failed = FALSE;
1954 eif.info = info;
1955 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1956 {
1957 if (eif.failed)
1958 sinfo->failed = TRUE;
1959 return FALSE;
1960 }
1961
1962 /* We only need version numbers for symbols defined in regular
1963 objects. */
1964 if (!h->def_regular)
1965 return TRUE;
1966
1967 bed = get_elf_backend_data (info->output_bfd);
1968 p = strchr (h->root.root.string, ELF_VER_CHR);
1969 if (p != NULL && h->verinfo.vertree == NULL)
1970 {
1971 struct bfd_elf_version_tree *t;
1972 bfd_boolean hidden;
1973
1974 hidden = TRUE;
1975
1976 /* There are two consecutive ELF_VER_CHR characters if this is
1977 not a hidden symbol. */
1978 ++p;
1979 if (*p == ELF_VER_CHR)
1980 {
1981 hidden = FALSE;
1982 ++p;
1983 }
1984
1985 /* If there is no version string, we can just return out. */
1986 if (*p == '\0')
1987 {
1988 if (hidden)
1989 h->hidden = 1;
1990 return TRUE;
1991 }
1992
1993 /* Look for the version. If we find it, it is no longer weak. */
1994 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1995 {
1996 if (strcmp (t->name, p) == 0)
1997 {
1998 size_t len;
1999 char *alc;
2000 struct bfd_elf_version_expr *d;
2001
2002 len = p - h->root.root.string;
2003 alc = (char *) bfd_malloc (len);
2004 if (alc == NULL)
2005 {
2006 sinfo->failed = TRUE;
2007 return FALSE;
2008 }
2009 memcpy (alc, h->root.root.string, len - 1);
2010 alc[len - 1] = '\0';
2011 if (alc[len - 2] == ELF_VER_CHR)
2012 alc[len - 2] = '\0';
2013
2014 h->verinfo.vertree = t;
2015 t->used = TRUE;
2016 d = NULL;
2017
2018 if (t->globals.list != NULL)
2019 d = (*t->match) (&t->globals, NULL, alc);
2020
2021 /* See if there is anything to force this symbol to
2022 local scope. */
2023 if (d == NULL && t->locals.list != NULL)
2024 {
2025 d = (*t->match) (&t->locals, NULL, alc);
2026 if (d != NULL
2027 && h->dynindx != -1
2028 && ! info->export_dynamic)
2029 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2030 }
2031
2032 free (alc);
2033 break;
2034 }
2035 }
2036
2037 /* If we are building an application, we need to create a
2038 version node for this version. */
2039 if (t == NULL && info->executable)
2040 {
2041 struct bfd_elf_version_tree **pp;
2042 int version_index;
2043
2044 /* If we aren't going to export this symbol, we don't need
2045 to worry about it. */
2046 if (h->dynindx == -1)
2047 return TRUE;
2048
2049 amt = sizeof *t;
2050 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2051 if (t == NULL)
2052 {
2053 sinfo->failed = TRUE;
2054 return FALSE;
2055 }
2056
2057 t->name = p;
2058 t->name_indx = (unsigned int) -1;
2059 t->used = TRUE;
2060
2061 version_index = 1;
2062 /* Don't count anonymous version tag. */
2063 if (sinfo->info->version_info != NULL
2064 && sinfo->info->version_info->vernum == 0)
2065 version_index = 0;
2066 for (pp = &sinfo->info->version_info;
2067 *pp != NULL;
2068 pp = &(*pp)->next)
2069 ++version_index;
2070 t->vernum = version_index;
2071
2072 *pp = t;
2073
2074 h->verinfo.vertree = t;
2075 }
2076 else if (t == NULL)
2077 {
2078 /* We could not find the version for a symbol when
2079 generating a shared archive. Return an error. */
2080 (*_bfd_error_handler)
2081 (_("%B: version node not found for symbol %s"),
2082 info->output_bfd, h->root.root.string);
2083 bfd_set_error (bfd_error_bad_value);
2084 sinfo->failed = TRUE;
2085 return FALSE;
2086 }
2087
2088 if (hidden)
2089 h->hidden = 1;
2090 }
2091
2092 /* If we don't have a version for this symbol, see if we can find
2093 something. */
2094 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2095 {
2096 bfd_boolean hide;
2097
2098 h->verinfo.vertree
2099 = bfd_find_version_for_sym (sinfo->info->version_info,
2100 h->root.root.string, &hide);
2101 if (h->verinfo.vertree != NULL && hide)
2102 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2103 }
2104
2105 return TRUE;
2106 }
2107 \f
2108 /* Read and swap the relocs from the section indicated by SHDR. This
2109 may be either a REL or a RELA section. The relocations are
2110 translated into RELA relocations and stored in INTERNAL_RELOCS,
2111 which should have already been allocated to contain enough space.
2112 The EXTERNAL_RELOCS are a buffer where the external form of the
2113 relocations should be stored.
2114
2115 Returns FALSE if something goes wrong. */
2116
2117 static bfd_boolean
2118 elf_link_read_relocs_from_section (bfd *abfd,
2119 asection *sec,
2120 Elf_Internal_Shdr *shdr,
2121 void *external_relocs,
2122 Elf_Internal_Rela *internal_relocs)
2123 {
2124 const struct elf_backend_data *bed;
2125 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2126 const bfd_byte *erela;
2127 const bfd_byte *erelaend;
2128 Elf_Internal_Rela *irela;
2129 Elf_Internal_Shdr *symtab_hdr;
2130 size_t nsyms;
2131
2132 /* Position ourselves at the start of the section. */
2133 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2134 return FALSE;
2135
2136 /* Read the relocations. */
2137 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2138 return FALSE;
2139
2140 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2141 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2142
2143 bed = get_elf_backend_data (abfd);
2144
2145 /* Convert the external relocations to the internal format. */
2146 if (shdr->sh_entsize == bed->s->sizeof_rel)
2147 swap_in = bed->s->swap_reloc_in;
2148 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2149 swap_in = bed->s->swap_reloca_in;
2150 else
2151 {
2152 bfd_set_error (bfd_error_wrong_format);
2153 return FALSE;
2154 }
2155
2156 erela = (const bfd_byte *) external_relocs;
2157 erelaend = erela + shdr->sh_size;
2158 irela = internal_relocs;
2159 while (erela < erelaend)
2160 {
2161 bfd_vma r_symndx;
2162
2163 (*swap_in) (abfd, erela, irela);
2164 r_symndx = ELF32_R_SYM (irela->r_info);
2165 if (bed->s->arch_size == 64)
2166 r_symndx >>= 24;
2167 if (nsyms > 0)
2168 {
2169 if ((size_t) r_symndx >= nsyms)
2170 {
2171 (*_bfd_error_handler)
2172 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2173 " for offset 0x%lx in section `%A'"),
2174 abfd, sec,
2175 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2176 bfd_set_error (bfd_error_bad_value);
2177 return FALSE;
2178 }
2179 }
2180 else if (r_symndx != STN_UNDEF)
2181 {
2182 (*_bfd_error_handler)
2183 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2184 " when the object file has no symbol table"),
2185 abfd, sec,
2186 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2187 bfd_set_error (bfd_error_bad_value);
2188 return FALSE;
2189 }
2190 irela += bed->s->int_rels_per_ext_rel;
2191 erela += shdr->sh_entsize;
2192 }
2193
2194 return TRUE;
2195 }
2196
2197 /* Read and swap the relocs for a section O. They may have been
2198 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2199 not NULL, they are used as buffers to read into. They are known to
2200 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2201 the return value is allocated using either malloc or bfd_alloc,
2202 according to the KEEP_MEMORY argument. If O has two relocation
2203 sections (both REL and RELA relocations), then the REL_HDR
2204 relocations will appear first in INTERNAL_RELOCS, followed by the
2205 RELA_HDR relocations. */
2206
2207 Elf_Internal_Rela *
2208 _bfd_elf_link_read_relocs (bfd *abfd,
2209 asection *o,
2210 void *external_relocs,
2211 Elf_Internal_Rela *internal_relocs,
2212 bfd_boolean keep_memory)
2213 {
2214 void *alloc1 = NULL;
2215 Elf_Internal_Rela *alloc2 = NULL;
2216 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2217 struct bfd_elf_section_data *esdo = elf_section_data (o);
2218 Elf_Internal_Rela *internal_rela_relocs;
2219
2220 if (esdo->relocs != NULL)
2221 return esdo->relocs;
2222
2223 if (o->reloc_count == 0)
2224 return NULL;
2225
2226 if (internal_relocs == NULL)
2227 {
2228 bfd_size_type size;
2229
2230 size = o->reloc_count;
2231 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2232 if (keep_memory)
2233 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2234 else
2235 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2236 if (internal_relocs == NULL)
2237 goto error_return;
2238 }
2239
2240 if (external_relocs == NULL)
2241 {
2242 bfd_size_type size = 0;
2243
2244 if (esdo->rel.hdr)
2245 size += esdo->rel.hdr->sh_size;
2246 if (esdo->rela.hdr)
2247 size += esdo->rela.hdr->sh_size;
2248
2249 alloc1 = bfd_malloc (size);
2250 if (alloc1 == NULL)
2251 goto error_return;
2252 external_relocs = alloc1;
2253 }
2254
2255 internal_rela_relocs = internal_relocs;
2256 if (esdo->rel.hdr)
2257 {
2258 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2259 external_relocs,
2260 internal_relocs))
2261 goto error_return;
2262 external_relocs = (((bfd_byte *) external_relocs)
2263 + esdo->rel.hdr->sh_size);
2264 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2265 * bed->s->int_rels_per_ext_rel);
2266 }
2267
2268 if (esdo->rela.hdr
2269 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2270 external_relocs,
2271 internal_rela_relocs)))
2272 goto error_return;
2273
2274 /* Cache the results for next time, if we can. */
2275 if (keep_memory)
2276 esdo->relocs = internal_relocs;
2277
2278 if (alloc1 != NULL)
2279 free (alloc1);
2280
2281 /* Don't free alloc2, since if it was allocated we are passing it
2282 back (under the name of internal_relocs). */
2283
2284 return internal_relocs;
2285
2286 error_return:
2287 if (alloc1 != NULL)
2288 free (alloc1);
2289 if (alloc2 != NULL)
2290 {
2291 if (keep_memory)
2292 bfd_release (abfd, alloc2);
2293 else
2294 free (alloc2);
2295 }
2296 return NULL;
2297 }
2298
2299 /* Compute the size of, and allocate space for, REL_HDR which is the
2300 section header for a section containing relocations for O. */
2301
2302 static bfd_boolean
2303 _bfd_elf_link_size_reloc_section (bfd *abfd,
2304 struct bfd_elf_section_reloc_data *reldata)
2305 {
2306 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2307
2308 /* That allows us to calculate the size of the section. */
2309 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2310
2311 /* The contents field must last into write_object_contents, so we
2312 allocate it with bfd_alloc rather than malloc. Also since we
2313 cannot be sure that the contents will actually be filled in,
2314 we zero the allocated space. */
2315 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2316 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2317 return FALSE;
2318
2319 if (reldata->hashes == NULL && reldata->count)
2320 {
2321 struct elf_link_hash_entry **p;
2322
2323 p = (struct elf_link_hash_entry **)
2324 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2325 if (p == NULL)
2326 return FALSE;
2327
2328 reldata->hashes = p;
2329 }
2330
2331 return TRUE;
2332 }
2333
2334 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2335 originated from the section given by INPUT_REL_HDR) to the
2336 OUTPUT_BFD. */
2337
2338 bfd_boolean
2339 _bfd_elf_link_output_relocs (bfd *output_bfd,
2340 asection *input_section,
2341 Elf_Internal_Shdr *input_rel_hdr,
2342 Elf_Internal_Rela *internal_relocs,
2343 struct elf_link_hash_entry **rel_hash
2344 ATTRIBUTE_UNUSED)
2345 {
2346 Elf_Internal_Rela *irela;
2347 Elf_Internal_Rela *irelaend;
2348 bfd_byte *erel;
2349 struct bfd_elf_section_reloc_data *output_reldata;
2350 asection *output_section;
2351 const struct elf_backend_data *bed;
2352 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2353 struct bfd_elf_section_data *esdo;
2354
2355 output_section = input_section->output_section;
2356
2357 bed = get_elf_backend_data (output_bfd);
2358 esdo = elf_section_data (output_section);
2359 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2360 {
2361 output_reldata = &esdo->rel;
2362 swap_out = bed->s->swap_reloc_out;
2363 }
2364 else if (esdo->rela.hdr
2365 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2366 {
2367 output_reldata = &esdo->rela;
2368 swap_out = bed->s->swap_reloca_out;
2369 }
2370 else
2371 {
2372 (*_bfd_error_handler)
2373 (_("%B: relocation size mismatch in %B section %A"),
2374 output_bfd, input_section->owner, input_section);
2375 bfd_set_error (bfd_error_wrong_format);
2376 return FALSE;
2377 }
2378
2379 erel = output_reldata->hdr->contents;
2380 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2381 irela = internal_relocs;
2382 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2383 * bed->s->int_rels_per_ext_rel);
2384 while (irela < irelaend)
2385 {
2386 (*swap_out) (output_bfd, irela, erel);
2387 irela += bed->s->int_rels_per_ext_rel;
2388 erel += input_rel_hdr->sh_entsize;
2389 }
2390
2391 /* Bump the counter, so that we know where to add the next set of
2392 relocations. */
2393 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2394
2395 return TRUE;
2396 }
2397 \f
2398 /* Make weak undefined symbols in PIE dynamic. */
2399
2400 bfd_boolean
2401 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2402 struct elf_link_hash_entry *h)
2403 {
2404 if (info->pie
2405 && h->dynindx == -1
2406 && h->root.type == bfd_link_hash_undefweak)
2407 return bfd_elf_link_record_dynamic_symbol (info, h);
2408
2409 return TRUE;
2410 }
2411
2412 /* Fix up the flags for a symbol. This handles various cases which
2413 can only be fixed after all the input files are seen. This is
2414 currently called by both adjust_dynamic_symbol and
2415 assign_sym_version, which is unnecessary but perhaps more robust in
2416 the face of future changes. */
2417
2418 static bfd_boolean
2419 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2420 struct elf_info_failed *eif)
2421 {
2422 const struct elf_backend_data *bed;
2423
2424 /* If this symbol was mentioned in a non-ELF file, try to set
2425 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2426 permit a non-ELF file to correctly refer to a symbol defined in
2427 an ELF dynamic object. */
2428 if (h->non_elf)
2429 {
2430 while (h->root.type == bfd_link_hash_indirect)
2431 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2432
2433 if (h->root.type != bfd_link_hash_defined
2434 && h->root.type != bfd_link_hash_defweak)
2435 {
2436 h->ref_regular = 1;
2437 h->ref_regular_nonweak = 1;
2438 }
2439 else
2440 {
2441 if (h->root.u.def.section->owner != NULL
2442 && (bfd_get_flavour (h->root.u.def.section->owner)
2443 == bfd_target_elf_flavour))
2444 {
2445 h->ref_regular = 1;
2446 h->ref_regular_nonweak = 1;
2447 }
2448 else
2449 h->def_regular = 1;
2450 }
2451
2452 if (h->dynindx == -1
2453 && (h->def_dynamic
2454 || h->ref_dynamic))
2455 {
2456 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2457 {
2458 eif->failed = TRUE;
2459 return FALSE;
2460 }
2461 }
2462 }
2463 else
2464 {
2465 /* Unfortunately, NON_ELF is only correct if the symbol
2466 was first seen in a non-ELF file. Fortunately, if the symbol
2467 was first seen in an ELF file, we're probably OK unless the
2468 symbol was defined in a non-ELF file. Catch that case here.
2469 FIXME: We're still in trouble if the symbol was first seen in
2470 a dynamic object, and then later in a non-ELF regular object. */
2471 if ((h->root.type == bfd_link_hash_defined
2472 || h->root.type == bfd_link_hash_defweak)
2473 && !h->def_regular
2474 && (h->root.u.def.section->owner != NULL
2475 ? (bfd_get_flavour (h->root.u.def.section->owner)
2476 != bfd_target_elf_flavour)
2477 : (bfd_is_abs_section (h->root.u.def.section)
2478 && !h->def_dynamic)))
2479 h->def_regular = 1;
2480 }
2481
2482 /* Backend specific symbol fixup. */
2483 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2484 if (bed->elf_backend_fixup_symbol
2485 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2486 return FALSE;
2487
2488 /* If this is a final link, and the symbol was defined as a common
2489 symbol in a regular object file, and there was no definition in
2490 any dynamic object, then the linker will have allocated space for
2491 the symbol in a common section but the DEF_REGULAR
2492 flag will not have been set. */
2493 if (h->root.type == bfd_link_hash_defined
2494 && !h->def_regular
2495 && h->ref_regular
2496 && !h->def_dynamic
2497 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2498 h->def_regular = 1;
2499
2500 /* If -Bsymbolic was used (which means to bind references to global
2501 symbols to the definition within the shared object), and this
2502 symbol was defined in a regular object, then it actually doesn't
2503 need a PLT entry. Likewise, if the symbol has non-default
2504 visibility. If the symbol has hidden or internal visibility, we
2505 will force it local. */
2506 if (h->needs_plt
2507 && eif->info->shared
2508 && is_elf_hash_table (eif->info->hash)
2509 && (SYMBOLIC_BIND (eif->info, h)
2510 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2511 && h->def_regular)
2512 {
2513 bfd_boolean force_local;
2514
2515 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2516 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2517 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2518 }
2519
2520 /* If a weak undefined symbol has non-default visibility, we also
2521 hide it from the dynamic linker. */
2522 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2523 && h->root.type == bfd_link_hash_undefweak)
2524 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2525
2526 /* If this is a weak defined symbol in a dynamic object, and we know
2527 the real definition in the dynamic object, copy interesting flags
2528 over to the real definition. */
2529 if (h->u.weakdef != NULL)
2530 {
2531 /* If the real definition is defined by a regular object file,
2532 don't do anything special. See the longer description in
2533 _bfd_elf_adjust_dynamic_symbol, below. */
2534 if (h->u.weakdef->def_regular)
2535 h->u.weakdef = NULL;
2536 else
2537 {
2538 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2539
2540 while (h->root.type == bfd_link_hash_indirect)
2541 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2542
2543 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2544 || h->root.type == bfd_link_hash_defweak);
2545 BFD_ASSERT (weakdef->def_dynamic);
2546 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2547 || weakdef->root.type == bfd_link_hash_defweak);
2548 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2549 }
2550 }
2551
2552 return TRUE;
2553 }
2554
2555 /* Make the backend pick a good value for a dynamic symbol. This is
2556 called via elf_link_hash_traverse, and also calls itself
2557 recursively. */
2558
2559 static bfd_boolean
2560 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2561 {
2562 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2563 bfd *dynobj;
2564 const struct elf_backend_data *bed;
2565
2566 if (! is_elf_hash_table (eif->info->hash))
2567 return FALSE;
2568
2569 /* Ignore indirect symbols. These are added by the versioning code. */
2570 if (h->root.type == bfd_link_hash_indirect)
2571 return TRUE;
2572
2573 /* Fix the symbol flags. */
2574 if (! _bfd_elf_fix_symbol_flags (h, eif))
2575 return FALSE;
2576
2577 /* If this symbol does not require a PLT entry, and it is not
2578 defined by a dynamic object, or is not referenced by a regular
2579 object, ignore it. We do have to handle a weak defined symbol,
2580 even if no regular object refers to it, if we decided to add it
2581 to the dynamic symbol table. FIXME: Do we normally need to worry
2582 about symbols which are defined by one dynamic object and
2583 referenced by another one? */
2584 if (!h->needs_plt
2585 && h->type != STT_GNU_IFUNC
2586 && (h->def_regular
2587 || !h->def_dynamic
2588 || (!h->ref_regular
2589 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2590 {
2591 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2592 return TRUE;
2593 }
2594
2595 /* If we've already adjusted this symbol, don't do it again. This
2596 can happen via a recursive call. */
2597 if (h->dynamic_adjusted)
2598 return TRUE;
2599
2600 /* Don't look at this symbol again. Note that we must set this
2601 after checking the above conditions, because we may look at a
2602 symbol once, decide not to do anything, and then get called
2603 recursively later after REF_REGULAR is set below. */
2604 h->dynamic_adjusted = 1;
2605
2606 /* If this is a weak definition, and we know a real definition, and
2607 the real symbol is not itself defined by a regular object file,
2608 then get a good value for the real definition. We handle the
2609 real symbol first, for the convenience of the backend routine.
2610
2611 Note that there is a confusing case here. If the real definition
2612 is defined by a regular object file, we don't get the real symbol
2613 from the dynamic object, but we do get the weak symbol. If the
2614 processor backend uses a COPY reloc, then if some routine in the
2615 dynamic object changes the real symbol, we will not see that
2616 change in the corresponding weak symbol. This is the way other
2617 ELF linkers work as well, and seems to be a result of the shared
2618 library model.
2619
2620 I will clarify this issue. Most SVR4 shared libraries define the
2621 variable _timezone and define timezone as a weak synonym. The
2622 tzset call changes _timezone. If you write
2623 extern int timezone;
2624 int _timezone = 5;
2625 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2626 you might expect that, since timezone is a synonym for _timezone,
2627 the same number will print both times. However, if the processor
2628 backend uses a COPY reloc, then actually timezone will be copied
2629 into your process image, and, since you define _timezone
2630 yourself, _timezone will not. Thus timezone and _timezone will
2631 wind up at different memory locations. The tzset call will set
2632 _timezone, leaving timezone unchanged. */
2633
2634 if (h->u.weakdef != NULL)
2635 {
2636 /* If we get to this point, there is an implicit reference to
2637 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2638 h->u.weakdef->ref_regular = 1;
2639
2640 /* Ensure that the backend adjust_dynamic_symbol function sees
2641 H->U.WEAKDEF before H by recursively calling ourselves. */
2642 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2643 return FALSE;
2644 }
2645
2646 /* If a symbol has no type and no size and does not require a PLT
2647 entry, then we are probably about to do the wrong thing here: we
2648 are probably going to create a COPY reloc for an empty object.
2649 This case can arise when a shared object is built with assembly
2650 code, and the assembly code fails to set the symbol type. */
2651 if (h->size == 0
2652 && h->type == STT_NOTYPE
2653 && !h->needs_plt)
2654 (*_bfd_error_handler)
2655 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2656 h->root.root.string);
2657
2658 dynobj = elf_hash_table (eif->info)->dynobj;
2659 bed = get_elf_backend_data (dynobj);
2660
2661 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2662 {
2663 eif->failed = TRUE;
2664 return FALSE;
2665 }
2666
2667 return TRUE;
2668 }
2669
2670 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2671 DYNBSS. */
2672
2673 bfd_boolean
2674 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2675 asection *dynbss)
2676 {
2677 unsigned int power_of_two;
2678 bfd_vma mask;
2679 asection *sec = h->root.u.def.section;
2680
2681 /* The section aligment of definition is the maximum alignment
2682 requirement of symbols defined in the section. Since we don't
2683 know the symbol alignment requirement, we start with the
2684 maximum alignment and check low bits of the symbol address
2685 for the minimum alignment. */
2686 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2687 mask = ((bfd_vma) 1 << power_of_two) - 1;
2688 while ((h->root.u.def.value & mask) != 0)
2689 {
2690 mask >>= 1;
2691 --power_of_two;
2692 }
2693
2694 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2695 dynbss))
2696 {
2697 /* Adjust the section alignment if needed. */
2698 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2699 power_of_two))
2700 return FALSE;
2701 }
2702
2703 /* We make sure that the symbol will be aligned properly. */
2704 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2705
2706 /* Define the symbol as being at this point in DYNBSS. */
2707 h->root.u.def.section = dynbss;
2708 h->root.u.def.value = dynbss->size;
2709
2710 /* Increment the size of DYNBSS to make room for the symbol. */
2711 dynbss->size += h->size;
2712
2713 return TRUE;
2714 }
2715
2716 /* Adjust all external symbols pointing into SEC_MERGE sections
2717 to reflect the object merging within the sections. */
2718
2719 static bfd_boolean
2720 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2721 {
2722 asection *sec;
2723
2724 if ((h->root.type == bfd_link_hash_defined
2725 || h->root.type == bfd_link_hash_defweak)
2726 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2727 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2728 {
2729 bfd *output_bfd = (bfd *) data;
2730
2731 h->root.u.def.value =
2732 _bfd_merged_section_offset (output_bfd,
2733 &h->root.u.def.section,
2734 elf_section_data (sec)->sec_info,
2735 h->root.u.def.value);
2736 }
2737
2738 return TRUE;
2739 }
2740
2741 /* Returns false if the symbol referred to by H should be considered
2742 to resolve local to the current module, and true if it should be
2743 considered to bind dynamically. */
2744
2745 bfd_boolean
2746 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2747 struct bfd_link_info *info,
2748 bfd_boolean not_local_protected)
2749 {
2750 bfd_boolean binding_stays_local_p;
2751 const struct elf_backend_data *bed;
2752 struct elf_link_hash_table *hash_table;
2753
2754 if (h == NULL)
2755 return FALSE;
2756
2757 while (h->root.type == bfd_link_hash_indirect
2758 || h->root.type == bfd_link_hash_warning)
2759 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2760
2761 /* If it was forced local, then clearly it's not dynamic. */
2762 if (h->dynindx == -1)
2763 return FALSE;
2764 if (h->forced_local)
2765 return FALSE;
2766
2767 /* Identify the cases where name binding rules say that a
2768 visible symbol resolves locally. */
2769 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2770
2771 switch (ELF_ST_VISIBILITY (h->other))
2772 {
2773 case STV_INTERNAL:
2774 case STV_HIDDEN:
2775 return FALSE;
2776
2777 case STV_PROTECTED:
2778 hash_table = elf_hash_table (info);
2779 if (!is_elf_hash_table (hash_table))
2780 return FALSE;
2781
2782 bed = get_elf_backend_data (hash_table->dynobj);
2783
2784 /* Proper resolution for function pointer equality may require
2785 that these symbols perhaps be resolved dynamically, even though
2786 we should be resolving them to the current module. */
2787 if (!not_local_protected || !bed->is_function_type (h->type))
2788 binding_stays_local_p = TRUE;
2789 break;
2790
2791 default:
2792 break;
2793 }
2794
2795 /* If it isn't defined locally, then clearly it's dynamic. */
2796 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2797 return TRUE;
2798
2799 /* Otherwise, the symbol is dynamic if binding rules don't tell
2800 us that it remains local. */
2801 return !binding_stays_local_p;
2802 }
2803
2804 /* Return true if the symbol referred to by H should be considered
2805 to resolve local to the current module, and false otherwise. Differs
2806 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2807 undefined symbols. The two functions are virtually identical except
2808 for the place where forced_local and dynindx == -1 are tested. If
2809 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2810 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2811 the symbol is local only for defined symbols.
2812 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2813 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2814 treatment of undefined weak symbols. For those that do not make
2815 undefined weak symbols dynamic, both functions may return false. */
2816
2817 bfd_boolean
2818 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2819 struct bfd_link_info *info,
2820 bfd_boolean local_protected)
2821 {
2822 const struct elf_backend_data *bed;
2823 struct elf_link_hash_table *hash_table;
2824
2825 /* If it's a local sym, of course we resolve locally. */
2826 if (h == NULL)
2827 return TRUE;
2828
2829 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2830 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2831 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2832 return TRUE;
2833
2834 /* Common symbols that become definitions don't get the DEF_REGULAR
2835 flag set, so test it first, and don't bail out. */
2836 if (ELF_COMMON_DEF_P (h))
2837 /* Do nothing. */;
2838 /* If we don't have a definition in a regular file, then we can't
2839 resolve locally. The sym is either undefined or dynamic. */
2840 else if (!h->def_regular)
2841 return FALSE;
2842
2843 /* Forced local symbols resolve locally. */
2844 if (h->forced_local)
2845 return TRUE;
2846
2847 /* As do non-dynamic symbols. */
2848 if (h->dynindx == -1)
2849 return TRUE;
2850
2851 /* At this point, we know the symbol is defined and dynamic. In an
2852 executable it must resolve locally, likewise when building symbolic
2853 shared libraries. */
2854 if (info->executable || SYMBOLIC_BIND (info, h))
2855 return TRUE;
2856
2857 /* Now deal with defined dynamic symbols in shared libraries. Ones
2858 with default visibility might not resolve locally. */
2859 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2860 return FALSE;
2861
2862 hash_table = elf_hash_table (info);
2863 if (!is_elf_hash_table (hash_table))
2864 return TRUE;
2865
2866 bed = get_elf_backend_data (hash_table->dynobj);
2867
2868 /* STV_PROTECTED non-function symbols are local. */
2869 if (!bed->is_function_type (h->type))
2870 return TRUE;
2871
2872 /* Function pointer equality tests may require that STV_PROTECTED
2873 symbols be treated as dynamic symbols. If the address of a
2874 function not defined in an executable is set to that function's
2875 plt entry in the executable, then the address of the function in
2876 a shared library must also be the plt entry in the executable. */
2877 return local_protected;
2878 }
2879
2880 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2881 aligned. Returns the first TLS output section. */
2882
2883 struct bfd_section *
2884 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2885 {
2886 struct bfd_section *sec, *tls;
2887 unsigned int align = 0;
2888
2889 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2890 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2891 break;
2892 tls = sec;
2893
2894 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2895 if (sec->alignment_power > align)
2896 align = sec->alignment_power;
2897
2898 elf_hash_table (info)->tls_sec = tls;
2899
2900 /* Ensure the alignment of the first section is the largest alignment,
2901 so that the tls segment starts aligned. */
2902 if (tls != NULL)
2903 tls->alignment_power = align;
2904
2905 return tls;
2906 }
2907
2908 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2909 static bfd_boolean
2910 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2911 Elf_Internal_Sym *sym)
2912 {
2913 const struct elf_backend_data *bed;
2914
2915 /* Local symbols do not count, but target specific ones might. */
2916 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2917 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2918 return FALSE;
2919
2920 bed = get_elf_backend_data (abfd);
2921 /* Function symbols do not count. */
2922 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2923 return FALSE;
2924
2925 /* If the section is undefined, then so is the symbol. */
2926 if (sym->st_shndx == SHN_UNDEF)
2927 return FALSE;
2928
2929 /* If the symbol is defined in the common section, then
2930 it is a common definition and so does not count. */
2931 if (bed->common_definition (sym))
2932 return FALSE;
2933
2934 /* If the symbol is in a target specific section then we
2935 must rely upon the backend to tell us what it is. */
2936 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2937 /* FIXME - this function is not coded yet:
2938
2939 return _bfd_is_global_symbol_definition (abfd, sym);
2940
2941 Instead for now assume that the definition is not global,
2942 Even if this is wrong, at least the linker will behave
2943 in the same way that it used to do. */
2944 return FALSE;
2945
2946 return TRUE;
2947 }
2948
2949 /* Search the symbol table of the archive element of the archive ABFD
2950 whose archive map contains a mention of SYMDEF, and determine if
2951 the symbol is defined in this element. */
2952 static bfd_boolean
2953 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2954 {
2955 Elf_Internal_Shdr * hdr;
2956 bfd_size_type symcount;
2957 bfd_size_type extsymcount;
2958 bfd_size_type extsymoff;
2959 Elf_Internal_Sym *isymbuf;
2960 Elf_Internal_Sym *isym;
2961 Elf_Internal_Sym *isymend;
2962 bfd_boolean result;
2963
2964 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2965 if (abfd == NULL)
2966 return FALSE;
2967
2968 if (! bfd_check_format (abfd, bfd_object))
2969 return FALSE;
2970
2971 /* If we have already included the element containing this symbol in the
2972 link then we do not need to include it again. Just claim that any symbol
2973 it contains is not a definition, so that our caller will not decide to
2974 (re)include this element. */
2975 if (abfd->archive_pass)
2976 return FALSE;
2977
2978 /* Select the appropriate symbol table. */
2979 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2980 hdr = &elf_tdata (abfd)->symtab_hdr;
2981 else
2982 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2983
2984 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2985
2986 /* The sh_info field of the symtab header tells us where the
2987 external symbols start. We don't care about the local symbols. */
2988 if (elf_bad_symtab (abfd))
2989 {
2990 extsymcount = symcount;
2991 extsymoff = 0;
2992 }
2993 else
2994 {
2995 extsymcount = symcount - hdr->sh_info;
2996 extsymoff = hdr->sh_info;
2997 }
2998
2999 if (extsymcount == 0)
3000 return FALSE;
3001
3002 /* Read in the symbol table. */
3003 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3004 NULL, NULL, NULL);
3005 if (isymbuf == NULL)
3006 return FALSE;
3007
3008 /* Scan the symbol table looking for SYMDEF. */
3009 result = FALSE;
3010 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3011 {
3012 const char *name;
3013
3014 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3015 isym->st_name);
3016 if (name == NULL)
3017 break;
3018
3019 if (strcmp (name, symdef->name) == 0)
3020 {
3021 result = is_global_data_symbol_definition (abfd, isym);
3022 break;
3023 }
3024 }
3025
3026 free (isymbuf);
3027
3028 return result;
3029 }
3030 \f
3031 /* Add an entry to the .dynamic table. */
3032
3033 bfd_boolean
3034 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3035 bfd_vma tag,
3036 bfd_vma val)
3037 {
3038 struct elf_link_hash_table *hash_table;
3039 const struct elf_backend_data *bed;
3040 asection *s;
3041 bfd_size_type newsize;
3042 bfd_byte *newcontents;
3043 Elf_Internal_Dyn dyn;
3044
3045 hash_table = elf_hash_table (info);
3046 if (! is_elf_hash_table (hash_table))
3047 return FALSE;
3048
3049 bed = get_elf_backend_data (hash_table->dynobj);
3050 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3051 BFD_ASSERT (s != NULL);
3052
3053 newsize = s->size + bed->s->sizeof_dyn;
3054 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3055 if (newcontents == NULL)
3056 return FALSE;
3057
3058 dyn.d_tag = tag;
3059 dyn.d_un.d_val = val;
3060 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3061
3062 s->size = newsize;
3063 s->contents = newcontents;
3064
3065 return TRUE;
3066 }
3067
3068 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3069 otherwise just check whether one already exists. Returns -1 on error,
3070 1 if a DT_NEEDED tag already exists, and 0 on success. */
3071
3072 static int
3073 elf_add_dt_needed_tag (bfd *abfd,
3074 struct bfd_link_info *info,
3075 const char *soname,
3076 bfd_boolean do_it)
3077 {
3078 struct elf_link_hash_table *hash_table;
3079 bfd_size_type strindex;
3080
3081 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3082 return -1;
3083
3084 hash_table = elf_hash_table (info);
3085 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3086 if (strindex == (bfd_size_type) -1)
3087 return -1;
3088
3089 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3090 {
3091 asection *sdyn;
3092 const struct elf_backend_data *bed;
3093 bfd_byte *extdyn;
3094
3095 bed = get_elf_backend_data (hash_table->dynobj);
3096 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3097 if (sdyn != NULL)
3098 for (extdyn = sdyn->contents;
3099 extdyn < sdyn->contents + sdyn->size;
3100 extdyn += bed->s->sizeof_dyn)
3101 {
3102 Elf_Internal_Dyn dyn;
3103
3104 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3105 if (dyn.d_tag == DT_NEEDED
3106 && dyn.d_un.d_val == strindex)
3107 {
3108 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3109 return 1;
3110 }
3111 }
3112 }
3113
3114 if (do_it)
3115 {
3116 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3117 return -1;
3118
3119 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3120 return -1;
3121 }
3122 else
3123 /* We were just checking for existence of the tag. */
3124 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3125
3126 return 0;
3127 }
3128
3129 static bfd_boolean
3130 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3131 {
3132 for (; needed != NULL; needed = needed->next)
3133 if (strcmp (soname, needed->name) == 0)
3134 return TRUE;
3135
3136 return FALSE;
3137 }
3138
3139 /* Sort symbol by value, section, and size. */
3140 static int
3141 elf_sort_symbol (const void *arg1, const void *arg2)
3142 {
3143 const struct elf_link_hash_entry *h1;
3144 const struct elf_link_hash_entry *h2;
3145 bfd_signed_vma vdiff;
3146
3147 h1 = *(const struct elf_link_hash_entry **) arg1;
3148 h2 = *(const struct elf_link_hash_entry **) arg2;
3149 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3150 if (vdiff != 0)
3151 return vdiff > 0 ? 1 : -1;
3152 else
3153 {
3154 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3155 if (sdiff != 0)
3156 return sdiff > 0 ? 1 : -1;
3157 }
3158 vdiff = h1->size - h2->size;
3159 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3160 }
3161
3162 /* This function is used to adjust offsets into .dynstr for
3163 dynamic symbols. This is called via elf_link_hash_traverse. */
3164
3165 static bfd_boolean
3166 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3167 {
3168 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3169
3170 if (h->dynindx != -1)
3171 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3172 return TRUE;
3173 }
3174
3175 /* Assign string offsets in .dynstr, update all structures referencing
3176 them. */
3177
3178 static bfd_boolean
3179 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3180 {
3181 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3182 struct elf_link_local_dynamic_entry *entry;
3183 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3184 bfd *dynobj = hash_table->dynobj;
3185 asection *sdyn;
3186 bfd_size_type size;
3187 const struct elf_backend_data *bed;
3188 bfd_byte *extdyn;
3189
3190 _bfd_elf_strtab_finalize (dynstr);
3191 size = _bfd_elf_strtab_size (dynstr);
3192
3193 bed = get_elf_backend_data (dynobj);
3194 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3195 BFD_ASSERT (sdyn != NULL);
3196
3197 /* Update all .dynamic entries referencing .dynstr strings. */
3198 for (extdyn = sdyn->contents;
3199 extdyn < sdyn->contents + sdyn->size;
3200 extdyn += bed->s->sizeof_dyn)
3201 {
3202 Elf_Internal_Dyn dyn;
3203
3204 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3205 switch (dyn.d_tag)
3206 {
3207 case DT_STRSZ:
3208 dyn.d_un.d_val = size;
3209 break;
3210 case DT_NEEDED:
3211 case DT_SONAME:
3212 case DT_RPATH:
3213 case DT_RUNPATH:
3214 case DT_FILTER:
3215 case DT_AUXILIARY:
3216 case DT_AUDIT:
3217 case DT_DEPAUDIT:
3218 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3219 break;
3220 default:
3221 continue;
3222 }
3223 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3224 }
3225
3226 /* Now update local dynamic symbols. */
3227 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3228 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3229 entry->isym.st_name);
3230
3231 /* And the rest of dynamic symbols. */
3232 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3233
3234 /* Adjust version definitions. */
3235 if (elf_tdata (output_bfd)->cverdefs)
3236 {
3237 asection *s;
3238 bfd_byte *p;
3239 bfd_size_type i;
3240 Elf_Internal_Verdef def;
3241 Elf_Internal_Verdaux defaux;
3242
3243 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3244 p = s->contents;
3245 do
3246 {
3247 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3248 &def);
3249 p += sizeof (Elf_External_Verdef);
3250 if (def.vd_aux != sizeof (Elf_External_Verdef))
3251 continue;
3252 for (i = 0; i < def.vd_cnt; ++i)
3253 {
3254 _bfd_elf_swap_verdaux_in (output_bfd,
3255 (Elf_External_Verdaux *) p, &defaux);
3256 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3257 defaux.vda_name);
3258 _bfd_elf_swap_verdaux_out (output_bfd,
3259 &defaux, (Elf_External_Verdaux *) p);
3260 p += sizeof (Elf_External_Verdaux);
3261 }
3262 }
3263 while (def.vd_next);
3264 }
3265
3266 /* Adjust version references. */
3267 if (elf_tdata (output_bfd)->verref)
3268 {
3269 asection *s;
3270 bfd_byte *p;
3271 bfd_size_type i;
3272 Elf_Internal_Verneed need;
3273 Elf_Internal_Vernaux needaux;
3274
3275 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3276 p = s->contents;
3277 do
3278 {
3279 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3280 &need);
3281 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3282 _bfd_elf_swap_verneed_out (output_bfd, &need,
3283 (Elf_External_Verneed *) p);
3284 p += sizeof (Elf_External_Verneed);
3285 for (i = 0; i < need.vn_cnt; ++i)
3286 {
3287 _bfd_elf_swap_vernaux_in (output_bfd,
3288 (Elf_External_Vernaux *) p, &needaux);
3289 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3290 needaux.vna_name);
3291 _bfd_elf_swap_vernaux_out (output_bfd,
3292 &needaux,
3293 (Elf_External_Vernaux *) p);
3294 p += sizeof (Elf_External_Vernaux);
3295 }
3296 }
3297 while (need.vn_next);
3298 }
3299
3300 return TRUE;
3301 }
3302 \f
3303 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3304 The default is to only match when the INPUT and OUTPUT are exactly
3305 the same target. */
3306
3307 bfd_boolean
3308 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3309 const bfd_target *output)
3310 {
3311 return input == output;
3312 }
3313
3314 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3315 This version is used when different targets for the same architecture
3316 are virtually identical. */
3317
3318 bfd_boolean
3319 _bfd_elf_relocs_compatible (const bfd_target *input,
3320 const bfd_target *output)
3321 {
3322 const struct elf_backend_data *obed, *ibed;
3323
3324 if (input == output)
3325 return TRUE;
3326
3327 ibed = xvec_get_elf_backend_data (input);
3328 obed = xvec_get_elf_backend_data (output);
3329
3330 if (ibed->arch != obed->arch)
3331 return FALSE;
3332
3333 /* If both backends are using this function, deem them compatible. */
3334 return ibed->relocs_compatible == obed->relocs_compatible;
3335 }
3336
3337 /* Add symbols from an ELF object file to the linker hash table. */
3338
3339 static bfd_boolean
3340 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3341 {
3342 Elf_Internal_Ehdr *ehdr;
3343 Elf_Internal_Shdr *hdr;
3344 bfd_size_type symcount;
3345 bfd_size_type extsymcount;
3346 bfd_size_type extsymoff;
3347 struct elf_link_hash_entry **sym_hash;
3348 bfd_boolean dynamic;
3349 Elf_External_Versym *extversym = NULL;
3350 Elf_External_Versym *ever;
3351 struct elf_link_hash_entry *weaks;
3352 struct elf_link_hash_entry **nondeflt_vers = NULL;
3353 bfd_size_type nondeflt_vers_cnt = 0;
3354 Elf_Internal_Sym *isymbuf = NULL;
3355 Elf_Internal_Sym *isym;
3356 Elf_Internal_Sym *isymend;
3357 const struct elf_backend_data *bed;
3358 bfd_boolean add_needed;
3359 struct elf_link_hash_table *htab;
3360 bfd_size_type amt;
3361 void *alloc_mark = NULL;
3362 struct bfd_hash_entry **old_table = NULL;
3363 unsigned int old_size = 0;
3364 unsigned int old_count = 0;
3365 void *old_tab = NULL;
3366 void *old_hash;
3367 void *old_ent;
3368 struct bfd_link_hash_entry *old_undefs = NULL;
3369 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3370 long old_dynsymcount = 0;
3371 bfd_size_type old_dynstr_size = 0;
3372 size_t tabsize = 0;
3373 size_t hashsize = 0;
3374
3375 htab = elf_hash_table (info);
3376 bed = get_elf_backend_data (abfd);
3377
3378 if ((abfd->flags & DYNAMIC) == 0)
3379 dynamic = FALSE;
3380 else
3381 {
3382 dynamic = TRUE;
3383
3384 /* You can't use -r against a dynamic object. Also, there's no
3385 hope of using a dynamic object which does not exactly match
3386 the format of the output file. */
3387 if (info->relocatable
3388 || !is_elf_hash_table (htab)
3389 || info->output_bfd->xvec != abfd->xvec)
3390 {
3391 if (info->relocatable)
3392 bfd_set_error (bfd_error_invalid_operation);
3393 else
3394 bfd_set_error (bfd_error_wrong_format);
3395 goto error_return;
3396 }
3397 }
3398
3399 ehdr = elf_elfheader (abfd);
3400 if (info->warn_alternate_em
3401 && bed->elf_machine_code != ehdr->e_machine
3402 && ((bed->elf_machine_alt1 != 0
3403 && ehdr->e_machine == bed->elf_machine_alt1)
3404 || (bed->elf_machine_alt2 != 0
3405 && ehdr->e_machine == bed->elf_machine_alt2)))
3406 info->callbacks->einfo
3407 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3408 ehdr->e_machine, abfd, bed->elf_machine_code);
3409
3410 /* As a GNU extension, any input sections which are named
3411 .gnu.warning.SYMBOL are treated as warning symbols for the given
3412 symbol. This differs from .gnu.warning sections, which generate
3413 warnings when they are included in an output file. */
3414 /* PR 12761: Also generate this warning when building shared libraries. */
3415 if (info->executable || info->shared)
3416 {
3417 asection *s;
3418
3419 for (s = abfd->sections; s != NULL; s = s->next)
3420 {
3421 const char *name;
3422
3423 name = bfd_get_section_name (abfd, s);
3424 if (CONST_STRNEQ (name, ".gnu.warning."))
3425 {
3426 char *msg;
3427 bfd_size_type sz;
3428
3429 name += sizeof ".gnu.warning." - 1;
3430
3431 /* If this is a shared object, then look up the symbol
3432 in the hash table. If it is there, and it is already
3433 been defined, then we will not be using the entry
3434 from this shared object, so we don't need to warn.
3435 FIXME: If we see the definition in a regular object
3436 later on, we will warn, but we shouldn't. The only
3437 fix is to keep track of what warnings we are supposed
3438 to emit, and then handle them all at the end of the
3439 link. */
3440 if (dynamic)
3441 {
3442 struct elf_link_hash_entry *h;
3443
3444 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3445
3446 /* FIXME: What about bfd_link_hash_common? */
3447 if (h != NULL
3448 && (h->root.type == bfd_link_hash_defined
3449 || h->root.type == bfd_link_hash_defweak))
3450 {
3451 /* We don't want to issue this warning. Clobber
3452 the section size so that the warning does not
3453 get copied into the output file. */
3454 s->size = 0;
3455 continue;
3456 }
3457 }
3458
3459 sz = s->size;
3460 msg = (char *) bfd_alloc (abfd, sz + 1);
3461 if (msg == NULL)
3462 goto error_return;
3463
3464 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3465 goto error_return;
3466
3467 msg[sz] = '\0';
3468
3469 if (! (_bfd_generic_link_add_one_symbol
3470 (info, abfd, name, BSF_WARNING, s, 0, msg,
3471 FALSE, bed->collect, NULL)))
3472 goto error_return;
3473
3474 if (! info->relocatable)
3475 {
3476 /* Clobber the section size so that the warning does
3477 not get copied into the output file. */
3478 s->size = 0;
3479
3480 /* Also set SEC_EXCLUDE, so that symbols defined in
3481 the warning section don't get copied to the output. */
3482 s->flags |= SEC_EXCLUDE;
3483 }
3484 }
3485 }
3486 }
3487
3488 add_needed = TRUE;
3489 if (! dynamic)
3490 {
3491 /* If we are creating a shared library, create all the dynamic
3492 sections immediately. We need to attach them to something,
3493 so we attach them to this BFD, provided it is the right
3494 format. FIXME: If there are no input BFD's of the same
3495 format as the output, we can't make a shared library. */
3496 if (info->shared
3497 && is_elf_hash_table (htab)
3498 && info->output_bfd->xvec == abfd->xvec
3499 && !htab->dynamic_sections_created)
3500 {
3501 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3502 goto error_return;
3503 }
3504 }
3505 else if (!is_elf_hash_table (htab))
3506 goto error_return;
3507 else
3508 {
3509 asection *s;
3510 const char *soname = NULL;
3511 char *audit = NULL;
3512 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3513 int ret;
3514
3515 /* ld --just-symbols and dynamic objects don't mix very well.
3516 ld shouldn't allow it. */
3517 if ((s = abfd->sections) != NULL
3518 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3519 abort ();
3520
3521 /* If this dynamic lib was specified on the command line with
3522 --as-needed in effect, then we don't want to add a DT_NEEDED
3523 tag unless the lib is actually used. Similary for libs brought
3524 in by another lib's DT_NEEDED. When --no-add-needed is used
3525 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3526 any dynamic library in DT_NEEDED tags in the dynamic lib at
3527 all. */
3528 add_needed = (elf_dyn_lib_class (abfd)
3529 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3530 | DYN_NO_NEEDED)) == 0;
3531
3532 s = bfd_get_section_by_name (abfd, ".dynamic");
3533 if (s != NULL)
3534 {
3535 bfd_byte *dynbuf;
3536 bfd_byte *extdyn;
3537 unsigned int elfsec;
3538 unsigned long shlink;
3539
3540 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3541 {
3542 error_free_dyn:
3543 free (dynbuf);
3544 goto error_return;
3545 }
3546
3547 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3548 if (elfsec == SHN_BAD)
3549 goto error_free_dyn;
3550 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3551
3552 for (extdyn = dynbuf;
3553 extdyn < dynbuf + s->size;
3554 extdyn += bed->s->sizeof_dyn)
3555 {
3556 Elf_Internal_Dyn dyn;
3557
3558 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3559 if (dyn.d_tag == DT_SONAME)
3560 {
3561 unsigned int tagv = dyn.d_un.d_val;
3562 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3563 if (soname == NULL)
3564 goto error_free_dyn;
3565 }
3566 if (dyn.d_tag == DT_NEEDED)
3567 {
3568 struct bfd_link_needed_list *n, **pn;
3569 char *fnm, *anm;
3570 unsigned int tagv = dyn.d_un.d_val;
3571
3572 amt = sizeof (struct bfd_link_needed_list);
3573 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3574 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3575 if (n == NULL || fnm == NULL)
3576 goto error_free_dyn;
3577 amt = strlen (fnm) + 1;
3578 anm = (char *) bfd_alloc (abfd, amt);
3579 if (anm == NULL)
3580 goto error_free_dyn;
3581 memcpy (anm, fnm, amt);
3582 n->name = anm;
3583 n->by = abfd;
3584 n->next = NULL;
3585 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3586 ;
3587 *pn = n;
3588 }
3589 if (dyn.d_tag == DT_RUNPATH)
3590 {
3591 struct bfd_link_needed_list *n, **pn;
3592 char *fnm, *anm;
3593 unsigned int tagv = dyn.d_un.d_val;
3594
3595 amt = sizeof (struct bfd_link_needed_list);
3596 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3597 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3598 if (n == NULL || fnm == NULL)
3599 goto error_free_dyn;
3600 amt = strlen (fnm) + 1;
3601 anm = (char *) bfd_alloc (abfd, amt);
3602 if (anm == NULL)
3603 goto error_free_dyn;
3604 memcpy (anm, fnm, amt);
3605 n->name = anm;
3606 n->by = abfd;
3607 n->next = NULL;
3608 for (pn = & runpath;
3609 *pn != NULL;
3610 pn = &(*pn)->next)
3611 ;
3612 *pn = n;
3613 }
3614 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3615 if (!runpath && dyn.d_tag == DT_RPATH)
3616 {
3617 struct bfd_link_needed_list *n, **pn;
3618 char *fnm, *anm;
3619 unsigned int tagv = dyn.d_un.d_val;
3620
3621 amt = sizeof (struct bfd_link_needed_list);
3622 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3623 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3624 if (n == NULL || fnm == NULL)
3625 goto error_free_dyn;
3626 amt = strlen (fnm) + 1;
3627 anm = (char *) bfd_alloc (abfd, amt);
3628 if (anm == NULL)
3629 goto error_free_dyn;
3630 memcpy (anm, fnm, amt);
3631 n->name = anm;
3632 n->by = abfd;
3633 n->next = NULL;
3634 for (pn = & rpath;
3635 *pn != NULL;
3636 pn = &(*pn)->next)
3637 ;
3638 *pn = n;
3639 }
3640 if (dyn.d_tag == DT_AUDIT)
3641 {
3642 unsigned int tagv = dyn.d_un.d_val;
3643 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3644 }
3645 }
3646
3647 free (dynbuf);
3648 }
3649
3650 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3651 frees all more recently bfd_alloc'd blocks as well. */
3652 if (runpath)
3653 rpath = runpath;
3654
3655 if (rpath)
3656 {
3657 struct bfd_link_needed_list **pn;
3658 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3659 ;
3660 *pn = rpath;
3661 }
3662
3663 /* We do not want to include any of the sections in a dynamic
3664 object in the output file. We hack by simply clobbering the
3665 list of sections in the BFD. This could be handled more
3666 cleanly by, say, a new section flag; the existing
3667 SEC_NEVER_LOAD flag is not the one we want, because that one
3668 still implies that the section takes up space in the output
3669 file. */
3670 bfd_section_list_clear (abfd);
3671
3672 /* Find the name to use in a DT_NEEDED entry that refers to this
3673 object. If the object has a DT_SONAME entry, we use it.
3674 Otherwise, if the generic linker stuck something in
3675 elf_dt_name, we use that. Otherwise, we just use the file
3676 name. */
3677 if (soname == NULL || *soname == '\0')
3678 {
3679 soname = elf_dt_name (abfd);
3680 if (soname == NULL || *soname == '\0')
3681 soname = bfd_get_filename (abfd);
3682 }
3683
3684 /* Save the SONAME because sometimes the linker emulation code
3685 will need to know it. */
3686 elf_dt_name (abfd) = soname;
3687
3688 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3689 if (ret < 0)
3690 goto error_return;
3691
3692 /* If we have already included this dynamic object in the
3693 link, just ignore it. There is no reason to include a
3694 particular dynamic object more than once. */
3695 if (ret > 0)
3696 return TRUE;
3697
3698 /* Save the DT_AUDIT entry for the linker emulation code. */
3699 elf_dt_audit (abfd) = audit;
3700 }
3701
3702 /* If this is a dynamic object, we always link against the .dynsym
3703 symbol table, not the .symtab symbol table. The dynamic linker
3704 will only see the .dynsym symbol table, so there is no reason to
3705 look at .symtab for a dynamic object. */
3706
3707 if (! dynamic || elf_dynsymtab (abfd) == 0)
3708 hdr = &elf_tdata (abfd)->symtab_hdr;
3709 else
3710 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3711
3712 symcount = hdr->sh_size / bed->s->sizeof_sym;
3713
3714 /* The sh_info field of the symtab header tells us where the
3715 external symbols start. We don't care about the local symbols at
3716 this point. */
3717 if (elf_bad_symtab (abfd))
3718 {
3719 extsymcount = symcount;
3720 extsymoff = 0;
3721 }
3722 else
3723 {
3724 extsymcount = symcount - hdr->sh_info;
3725 extsymoff = hdr->sh_info;
3726 }
3727
3728 sym_hash = NULL;
3729 if (extsymcount != 0)
3730 {
3731 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3732 NULL, NULL, NULL);
3733 if (isymbuf == NULL)
3734 goto error_return;
3735
3736 /* We store a pointer to the hash table entry for each external
3737 symbol. */
3738 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3739 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3740 if (sym_hash == NULL)
3741 goto error_free_sym;
3742 elf_sym_hashes (abfd) = sym_hash;
3743 }
3744
3745 if (dynamic)
3746 {
3747 /* Read in any version definitions. */
3748 if (!_bfd_elf_slurp_version_tables (abfd,
3749 info->default_imported_symver))
3750 goto error_free_sym;
3751
3752 /* Read in the symbol versions, but don't bother to convert them
3753 to internal format. */
3754 if (elf_dynversym (abfd) != 0)
3755 {
3756 Elf_Internal_Shdr *versymhdr;
3757
3758 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3759 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3760 if (extversym == NULL)
3761 goto error_free_sym;
3762 amt = versymhdr->sh_size;
3763 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3764 || bfd_bread (extversym, amt, abfd) != amt)
3765 goto error_free_vers;
3766 }
3767 }
3768
3769 /* If we are loading an as-needed shared lib, save the symbol table
3770 state before we start adding symbols. If the lib turns out
3771 to be unneeded, restore the state. */
3772 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3773 {
3774 unsigned int i;
3775 size_t entsize;
3776
3777 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3778 {
3779 struct bfd_hash_entry *p;
3780 struct elf_link_hash_entry *h;
3781
3782 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3783 {
3784 h = (struct elf_link_hash_entry *) p;
3785 entsize += htab->root.table.entsize;
3786 if (h->root.type == bfd_link_hash_warning)
3787 entsize += htab->root.table.entsize;
3788 }
3789 }
3790
3791 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3792 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3793 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3794 if (old_tab == NULL)
3795 goto error_free_vers;
3796
3797 /* Remember the current objalloc pointer, so that all mem for
3798 symbols added can later be reclaimed. */
3799 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3800 if (alloc_mark == NULL)
3801 goto error_free_vers;
3802
3803 /* Make a special call to the linker "notice" function to
3804 tell it that we are about to handle an as-needed lib. */
3805 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3806 notice_as_needed, 0, NULL))
3807 goto error_free_vers;
3808
3809 /* Clone the symbol table and sym hashes. Remember some
3810 pointers into the symbol table, and dynamic symbol count. */
3811 old_hash = (char *) old_tab + tabsize;
3812 old_ent = (char *) old_hash + hashsize;
3813 memcpy (old_tab, htab->root.table.table, tabsize);
3814 memcpy (old_hash, sym_hash, hashsize);
3815 old_undefs = htab->root.undefs;
3816 old_undefs_tail = htab->root.undefs_tail;
3817 old_table = htab->root.table.table;
3818 old_size = htab->root.table.size;
3819 old_count = htab->root.table.count;
3820 old_dynsymcount = htab->dynsymcount;
3821 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3822
3823 for (i = 0; i < htab->root.table.size; i++)
3824 {
3825 struct bfd_hash_entry *p;
3826 struct elf_link_hash_entry *h;
3827
3828 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3829 {
3830 memcpy (old_ent, p, htab->root.table.entsize);
3831 old_ent = (char *) old_ent + htab->root.table.entsize;
3832 h = (struct elf_link_hash_entry *) p;
3833 if (h->root.type == bfd_link_hash_warning)
3834 {
3835 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3836 old_ent = (char *) old_ent + htab->root.table.entsize;
3837 }
3838 }
3839 }
3840 }
3841
3842 weaks = NULL;
3843 ever = extversym != NULL ? extversym + extsymoff : NULL;
3844 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3845 isym < isymend;
3846 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3847 {
3848 int bind;
3849 bfd_vma value;
3850 asection *sec, *new_sec;
3851 flagword flags;
3852 const char *name;
3853 struct elf_link_hash_entry *h;
3854 struct elf_link_hash_entry *hi;
3855 bfd_boolean definition;
3856 bfd_boolean size_change_ok;
3857 bfd_boolean type_change_ok;
3858 bfd_boolean new_weakdef;
3859 bfd_boolean new_weak;
3860 bfd_boolean old_weak;
3861 bfd_boolean override;
3862 bfd_boolean common;
3863 unsigned int old_alignment;
3864 bfd *old_bfd;
3865 bfd * undef_bfd = NULL;
3866
3867 override = FALSE;
3868
3869 flags = BSF_NO_FLAGS;
3870 sec = NULL;
3871 value = isym->st_value;
3872 *sym_hash = NULL;
3873 common = bed->common_definition (isym);
3874
3875 bind = ELF_ST_BIND (isym->st_info);
3876 switch (bind)
3877 {
3878 case STB_LOCAL:
3879 /* This should be impossible, since ELF requires that all
3880 global symbols follow all local symbols, and that sh_info
3881 point to the first global symbol. Unfortunately, Irix 5
3882 screws this up. */
3883 continue;
3884
3885 case STB_GLOBAL:
3886 if (isym->st_shndx != SHN_UNDEF && !common)
3887 flags = BSF_GLOBAL;
3888 break;
3889
3890 case STB_WEAK:
3891 flags = BSF_WEAK;
3892 break;
3893
3894 case STB_GNU_UNIQUE:
3895 flags = BSF_GNU_UNIQUE;
3896 break;
3897
3898 default:
3899 /* Leave it up to the processor backend. */
3900 break;
3901 }
3902
3903 if (isym->st_shndx == SHN_UNDEF)
3904 sec = bfd_und_section_ptr;
3905 else if (isym->st_shndx == SHN_ABS)
3906 sec = bfd_abs_section_ptr;
3907 else if (isym->st_shndx == SHN_COMMON)
3908 {
3909 sec = bfd_com_section_ptr;
3910 /* What ELF calls the size we call the value. What ELF
3911 calls the value we call the alignment. */
3912 value = isym->st_size;
3913 }
3914 else
3915 {
3916 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3917 if (sec == NULL)
3918 sec = bfd_abs_section_ptr;
3919 else if (discarded_section (sec))
3920 {
3921 /* Symbols from discarded section are undefined. We keep
3922 its visibility. */
3923 sec = bfd_und_section_ptr;
3924 isym->st_shndx = SHN_UNDEF;
3925 }
3926 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3927 value -= sec->vma;
3928 }
3929
3930 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3931 isym->st_name);
3932 if (name == NULL)
3933 goto error_free_vers;
3934
3935 if (isym->st_shndx == SHN_COMMON
3936 && (abfd->flags & BFD_PLUGIN) != 0)
3937 {
3938 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3939
3940 if (xc == NULL)
3941 {
3942 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3943 | SEC_EXCLUDE);
3944 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3945 if (xc == NULL)
3946 goto error_free_vers;
3947 }
3948 sec = xc;
3949 }
3950 else if (isym->st_shndx == SHN_COMMON
3951 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3952 && !info->relocatable)
3953 {
3954 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3955
3956 if (tcomm == NULL)
3957 {
3958 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3959 | SEC_LINKER_CREATED);
3960 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3961 if (tcomm == NULL)
3962 goto error_free_vers;
3963 }
3964 sec = tcomm;
3965 }
3966 else if (bed->elf_add_symbol_hook)
3967 {
3968 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3969 &sec, &value))
3970 goto error_free_vers;
3971
3972 /* The hook function sets the name to NULL if this symbol
3973 should be skipped for some reason. */
3974 if (name == NULL)
3975 continue;
3976 }
3977
3978 /* Sanity check that all possibilities were handled. */
3979 if (sec == NULL)
3980 {
3981 bfd_set_error (bfd_error_bad_value);
3982 goto error_free_vers;
3983 }
3984
3985 if (bfd_is_und_section (sec)
3986 || bfd_is_com_section (sec))
3987 definition = FALSE;
3988 else
3989 definition = TRUE;
3990
3991 size_change_ok = FALSE;
3992 type_change_ok = bed->type_change_ok;
3993 old_weak = FALSE;
3994 old_alignment = 0;
3995 old_bfd = NULL;
3996 new_sec = sec;
3997
3998 if (is_elf_hash_table (htab))
3999 {
4000 Elf_Internal_Versym iver;
4001 unsigned int vernum = 0;
4002 bfd_boolean skip;
4003
4004 /* If this is a definition of a symbol which was previously
4005 referenced in a non-weak manner then make a note of the bfd
4006 that contained the reference. This is used if we need to
4007 refer to the source of the reference later on. */
4008 if (! bfd_is_und_section (sec))
4009 {
4010 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4011
4012 if (h != NULL
4013 && h->root.type == bfd_link_hash_undefined
4014 && h->root.u.undef.abfd)
4015 undef_bfd = h->root.u.undef.abfd;
4016 }
4017
4018 if (ever == NULL)
4019 {
4020 if (info->default_imported_symver)
4021 /* Use the default symbol version created earlier. */
4022 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4023 else
4024 iver.vs_vers = 0;
4025 }
4026 else
4027 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4028
4029 vernum = iver.vs_vers & VERSYM_VERSION;
4030
4031 /* If this is a hidden symbol, or if it is not version
4032 1, we append the version name to the symbol name.
4033 However, we do not modify a non-hidden absolute symbol
4034 if it is not a function, because it might be the version
4035 symbol itself. FIXME: What if it isn't? */
4036 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4037 || (vernum > 1
4038 && (!bfd_is_abs_section (sec)
4039 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4040 {
4041 const char *verstr;
4042 size_t namelen, verlen, newlen;
4043 char *newname, *p;
4044
4045 if (isym->st_shndx != SHN_UNDEF)
4046 {
4047 if (vernum > elf_tdata (abfd)->cverdefs)
4048 verstr = NULL;
4049 else if (vernum > 1)
4050 verstr =
4051 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4052 else
4053 verstr = "";
4054
4055 if (verstr == NULL)
4056 {
4057 (*_bfd_error_handler)
4058 (_("%B: %s: invalid version %u (max %d)"),
4059 abfd, name, vernum,
4060 elf_tdata (abfd)->cverdefs);
4061 bfd_set_error (bfd_error_bad_value);
4062 goto error_free_vers;
4063 }
4064 }
4065 else
4066 {
4067 /* We cannot simply test for the number of
4068 entries in the VERNEED section since the
4069 numbers for the needed versions do not start
4070 at 0. */
4071 Elf_Internal_Verneed *t;
4072
4073 verstr = NULL;
4074 for (t = elf_tdata (abfd)->verref;
4075 t != NULL;
4076 t = t->vn_nextref)
4077 {
4078 Elf_Internal_Vernaux *a;
4079
4080 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4081 {
4082 if (a->vna_other == vernum)
4083 {
4084 verstr = a->vna_nodename;
4085 break;
4086 }
4087 }
4088 if (a != NULL)
4089 break;
4090 }
4091 if (verstr == NULL)
4092 {
4093 (*_bfd_error_handler)
4094 (_("%B: %s: invalid needed version %d"),
4095 abfd, name, vernum);
4096 bfd_set_error (bfd_error_bad_value);
4097 goto error_free_vers;
4098 }
4099 }
4100
4101 namelen = strlen (name);
4102 verlen = strlen (verstr);
4103 newlen = namelen + verlen + 2;
4104 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4105 && isym->st_shndx != SHN_UNDEF)
4106 ++newlen;
4107
4108 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4109 if (newname == NULL)
4110 goto error_free_vers;
4111 memcpy (newname, name, namelen);
4112 p = newname + namelen;
4113 *p++ = ELF_VER_CHR;
4114 /* If this is a defined non-hidden version symbol,
4115 we add another @ to the name. This indicates the
4116 default version of the symbol. */
4117 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4118 && isym->st_shndx != SHN_UNDEF)
4119 *p++ = ELF_VER_CHR;
4120 memcpy (p, verstr, verlen + 1);
4121
4122 name = newname;
4123 }
4124
4125 /* If necessary, make a second attempt to locate the bfd
4126 containing an unresolved, non-weak reference to the
4127 current symbol. */
4128 if (! bfd_is_und_section (sec) && undef_bfd == NULL)
4129 {
4130 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4131
4132 if (h != NULL
4133 && h->root.type == bfd_link_hash_undefined
4134 && h->root.u.undef.abfd)
4135 undef_bfd = h->root.u.undef.abfd;
4136 }
4137
4138 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4139 &value, &old_weak, &old_alignment,
4140 sym_hash, &skip, &override,
4141 &type_change_ok, &size_change_ok))
4142 goto error_free_vers;
4143
4144 if (skip)
4145 continue;
4146
4147 if (override)
4148 definition = FALSE;
4149
4150 h = *sym_hash;
4151 while (h->root.type == bfd_link_hash_indirect
4152 || h->root.type == bfd_link_hash_warning)
4153 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4154
4155 /* Remember the old alignment if this is a common symbol, so
4156 that we don't reduce the alignment later on. We can't
4157 check later, because _bfd_generic_link_add_one_symbol
4158 will set a default for the alignment which we want to
4159 override. We also remember the old bfd where the existing
4160 definition comes from. */
4161 switch (h->root.type)
4162 {
4163 default:
4164 break;
4165
4166 case bfd_link_hash_defined:
4167 case bfd_link_hash_defweak:
4168 old_bfd = h->root.u.def.section->owner;
4169 break;
4170
4171 case bfd_link_hash_common:
4172 old_bfd = h->root.u.c.p->section->owner;
4173 old_alignment = h->root.u.c.p->alignment_power;
4174 break;
4175 }
4176
4177 if (elf_tdata (abfd)->verdef != NULL
4178 && vernum > 1
4179 && definition)
4180 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4181 }
4182
4183 if (! (_bfd_generic_link_add_one_symbol
4184 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4185 (struct bfd_link_hash_entry **) sym_hash)))
4186 goto error_free_vers;
4187
4188 h = *sym_hash;
4189 /* We need to make sure that indirect symbol dynamic flags are
4190 updated. */
4191 hi = h;
4192 while (h->root.type == bfd_link_hash_indirect
4193 || h->root.type == bfd_link_hash_warning)
4194 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4195
4196 *sym_hash = h;
4197 if (is_elf_hash_table (htab))
4198 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4199
4200 new_weak = (flags & BSF_WEAK) != 0;
4201 new_weakdef = FALSE;
4202 if (dynamic
4203 && definition
4204 && new_weak
4205 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4206 && is_elf_hash_table (htab)
4207 && h->u.weakdef == NULL)
4208 {
4209 /* Keep a list of all weak defined non function symbols from
4210 a dynamic object, using the weakdef field. Later in this
4211 function we will set the weakdef field to the correct
4212 value. We only put non-function symbols from dynamic
4213 objects on this list, because that happens to be the only
4214 time we need to know the normal symbol corresponding to a
4215 weak symbol, and the information is time consuming to
4216 figure out. If the weakdef field is not already NULL,
4217 then this symbol was already defined by some previous
4218 dynamic object, and we will be using that previous
4219 definition anyhow. */
4220
4221 h->u.weakdef = weaks;
4222 weaks = h;
4223 new_weakdef = TRUE;
4224 }
4225
4226 /* Set the alignment of a common symbol. */
4227 if ((common || bfd_is_com_section (sec))
4228 && h->root.type == bfd_link_hash_common)
4229 {
4230 unsigned int align;
4231
4232 if (common)
4233 align = bfd_log2 (isym->st_value);
4234 else
4235 {
4236 /* The new symbol is a common symbol in a shared object.
4237 We need to get the alignment from the section. */
4238 align = new_sec->alignment_power;
4239 }
4240 if (align > old_alignment)
4241 h->root.u.c.p->alignment_power = align;
4242 else
4243 h->root.u.c.p->alignment_power = old_alignment;
4244 }
4245
4246 if (is_elf_hash_table (htab))
4247 {
4248 bfd_boolean dynsym;
4249
4250 /* Check the alignment when a common symbol is involved. This
4251 can change when a common symbol is overridden by a normal
4252 definition or a common symbol is ignored due to the old
4253 normal definition. We need to make sure the maximum
4254 alignment is maintained. */
4255 if ((old_alignment || common)
4256 && h->root.type != bfd_link_hash_common)
4257 {
4258 unsigned int common_align;
4259 unsigned int normal_align;
4260 unsigned int symbol_align;
4261 bfd *normal_bfd;
4262 bfd *common_bfd;
4263
4264 symbol_align = ffs (h->root.u.def.value) - 1;
4265 if (h->root.u.def.section->owner != NULL
4266 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4267 {
4268 normal_align = h->root.u.def.section->alignment_power;
4269 if (normal_align > symbol_align)
4270 normal_align = symbol_align;
4271 }
4272 else
4273 normal_align = symbol_align;
4274
4275 if (old_alignment)
4276 {
4277 common_align = old_alignment;
4278 common_bfd = old_bfd;
4279 normal_bfd = abfd;
4280 }
4281 else
4282 {
4283 common_align = bfd_log2 (isym->st_value);
4284 common_bfd = abfd;
4285 normal_bfd = old_bfd;
4286 }
4287
4288 if (normal_align < common_align)
4289 {
4290 /* PR binutils/2735 */
4291 if (normal_bfd == NULL)
4292 (*_bfd_error_handler)
4293 (_("Warning: alignment %u of common symbol `%s' in %B"
4294 " is greater than the alignment (%u) of its section %A"),
4295 common_bfd, h->root.u.def.section,
4296 1 << common_align, name, 1 << normal_align);
4297 else
4298 (*_bfd_error_handler)
4299 (_("Warning: alignment %u of symbol `%s' in %B"
4300 " is smaller than %u in %B"),
4301 normal_bfd, common_bfd,
4302 1 << normal_align, name, 1 << common_align);
4303 }
4304 }
4305
4306 /* Remember the symbol size if it isn't undefined. */
4307 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4308 && (definition || h->size == 0))
4309 {
4310 if (h->size != 0
4311 && h->size != isym->st_size
4312 && ! size_change_ok)
4313 (*_bfd_error_handler)
4314 (_("Warning: size of symbol `%s' changed"
4315 " from %lu in %B to %lu in %B"),
4316 old_bfd, abfd,
4317 name, (unsigned long) h->size,
4318 (unsigned long) isym->st_size);
4319
4320 h->size = isym->st_size;
4321 }
4322
4323 /* If this is a common symbol, then we always want H->SIZE
4324 to be the size of the common symbol. The code just above
4325 won't fix the size if a common symbol becomes larger. We
4326 don't warn about a size change here, because that is
4327 covered by --warn-common. Allow changed between different
4328 function types. */
4329 if (h->root.type == bfd_link_hash_common)
4330 h->size = h->root.u.c.size;
4331
4332 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4333 && ((definition && !new_weak)
4334 || (old_weak && h->root.type == bfd_link_hash_common)
4335 || h->type == STT_NOTYPE))
4336 {
4337 unsigned int type = ELF_ST_TYPE (isym->st_info);
4338
4339 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4340 symbol. */
4341 if (type == STT_GNU_IFUNC
4342 && (abfd->flags & DYNAMIC) != 0)
4343 type = STT_FUNC;
4344
4345 if (h->type != type)
4346 {
4347 if (h->type != STT_NOTYPE && ! type_change_ok)
4348 (*_bfd_error_handler)
4349 (_("Warning: type of symbol `%s' changed"
4350 " from %d to %d in %B"),
4351 abfd, name, h->type, type);
4352
4353 h->type = type;
4354 }
4355 }
4356
4357 /* Merge st_other field. */
4358 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4359
4360 /* Set a flag in the hash table entry indicating the type of
4361 reference or definition we just found. Keep a count of
4362 the number of dynamic symbols we find. A dynamic symbol
4363 is one which is referenced or defined by both a regular
4364 object and a shared object. */
4365 dynsym = FALSE;
4366 if (! dynamic)
4367 {
4368 if (! definition)
4369 {
4370 h->ref_regular = 1;
4371 if (bind != STB_WEAK)
4372 h->ref_regular_nonweak = 1;
4373 }
4374 else
4375 {
4376 h->def_regular = 1;
4377 if (h->def_dynamic)
4378 {
4379 h->def_dynamic = 0;
4380 h->ref_dynamic = 1;
4381 }
4382 }
4383
4384 /* If the indirect symbol has been forced local, don't
4385 make the real symbol dynamic. */
4386 if ((h == hi || !hi->forced_local)
4387 && (! info->executable
4388 || h->def_dynamic
4389 || h->ref_dynamic))
4390 dynsym = TRUE;
4391 }
4392 else
4393 {
4394 if (! definition)
4395 {
4396 h->ref_dynamic = 1;
4397 hi->ref_dynamic = 1;
4398 }
4399 else
4400 {
4401 h->def_dynamic = 1;
4402 hi->def_dynamic = 1;
4403 }
4404
4405 /* If the indirect symbol has been forced local, don't
4406 make the real symbol dynamic. */
4407 if ((h == hi || !hi->forced_local)
4408 && (h->def_regular
4409 || h->ref_regular
4410 || (h->u.weakdef != NULL
4411 && ! new_weakdef
4412 && h->u.weakdef->dynindx != -1)))
4413 dynsym = TRUE;
4414 }
4415
4416 /* We don't want to make debug symbol dynamic. */
4417 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4418 dynsym = FALSE;
4419
4420 /* Nor should we make plugin symbols dynamic. */
4421 if ((abfd->flags & BFD_PLUGIN) != 0)
4422 dynsym = FALSE;
4423
4424 if (definition)
4425 h->target_internal = isym->st_target_internal;
4426
4427 /* Check to see if we need to add an indirect symbol for
4428 the default name. */
4429 if (definition || h->root.type == bfd_link_hash_common)
4430 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4431 &sec, &value, &dynsym,
4432 override))
4433 goto error_free_vers;
4434
4435 if (definition && !dynamic)
4436 {
4437 char *p = strchr (name, ELF_VER_CHR);
4438 if (p != NULL && p[1] != ELF_VER_CHR)
4439 {
4440 /* Queue non-default versions so that .symver x, x@FOO
4441 aliases can be checked. */
4442 if (!nondeflt_vers)
4443 {
4444 amt = ((isymend - isym + 1)
4445 * sizeof (struct elf_link_hash_entry *));
4446 nondeflt_vers =
4447 (struct elf_link_hash_entry **) bfd_malloc (amt);
4448 if (!nondeflt_vers)
4449 goto error_free_vers;
4450 }
4451 nondeflt_vers[nondeflt_vers_cnt++] = h;
4452 }
4453 }
4454
4455 if (dynsym && h->dynindx == -1)
4456 {
4457 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4458 goto error_free_vers;
4459 if (h->u.weakdef != NULL
4460 && ! new_weakdef
4461 && h->u.weakdef->dynindx == -1)
4462 {
4463 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4464 goto error_free_vers;
4465 }
4466 }
4467 else if (dynsym && h->dynindx != -1)
4468 /* If the symbol already has a dynamic index, but
4469 visibility says it should not be visible, turn it into
4470 a local symbol. */
4471 switch (ELF_ST_VISIBILITY (h->other))
4472 {
4473 case STV_INTERNAL:
4474 case STV_HIDDEN:
4475 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4476 dynsym = FALSE;
4477 break;
4478 }
4479
4480 if (!add_needed
4481 && definition
4482 && ((dynsym
4483 && h->ref_regular)
4484 || (h->ref_dynamic
4485 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4486 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4487 {
4488 int ret;
4489 const char *soname = elf_dt_name (abfd);
4490
4491 /* A symbol from a library loaded via DT_NEEDED of some
4492 other library is referenced by a regular object.
4493 Add a DT_NEEDED entry for it. Issue an error if
4494 --no-add-needed is used and the reference was not
4495 a weak one. */
4496 if (undef_bfd != NULL
4497 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4498 {
4499 (*_bfd_error_handler)
4500 (_("%B: undefined reference to symbol '%s'"),
4501 undef_bfd, name);
4502 (*_bfd_error_handler)
4503 (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4504 abfd, name);
4505 bfd_set_error (bfd_error_invalid_operation);
4506 goto error_free_vers;
4507 }
4508
4509 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4510 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4511
4512 add_needed = TRUE;
4513 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4514 if (ret < 0)
4515 goto error_free_vers;
4516
4517 BFD_ASSERT (ret == 0);
4518 }
4519 }
4520 }
4521
4522 if (extversym != NULL)
4523 {
4524 free (extversym);
4525 extversym = NULL;
4526 }
4527
4528 if (isymbuf != NULL)
4529 {
4530 free (isymbuf);
4531 isymbuf = NULL;
4532 }
4533
4534 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4535 {
4536 unsigned int i;
4537
4538 /* Restore the symbol table. */
4539 if (bed->as_needed_cleanup)
4540 (*bed->as_needed_cleanup) (abfd, info);
4541 old_hash = (char *) old_tab + tabsize;
4542 old_ent = (char *) old_hash + hashsize;
4543 sym_hash = elf_sym_hashes (abfd);
4544 htab->root.table.table = old_table;
4545 htab->root.table.size = old_size;
4546 htab->root.table.count = old_count;
4547 memcpy (htab->root.table.table, old_tab, tabsize);
4548 memcpy (sym_hash, old_hash, hashsize);
4549 htab->root.undefs = old_undefs;
4550 htab->root.undefs_tail = old_undefs_tail;
4551 _bfd_elf_strtab_clear_refs (htab->dynstr, old_dynstr_size);
4552 for (i = 0; i < htab->root.table.size; i++)
4553 {
4554 struct bfd_hash_entry *p;
4555 struct elf_link_hash_entry *h;
4556 bfd_size_type size;
4557 unsigned int alignment_power;
4558
4559 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4560 {
4561 h = (struct elf_link_hash_entry *) p;
4562 if (h->root.type == bfd_link_hash_warning)
4563 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4564 if (h->dynindx >= old_dynsymcount
4565 && h->dynstr_index < old_dynstr_size)
4566 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4567
4568 /* Preserve the maximum alignment and size for common
4569 symbols even if this dynamic lib isn't on DT_NEEDED
4570 since it can still be loaded at run time by another
4571 dynamic lib. */
4572 if (h->root.type == bfd_link_hash_common)
4573 {
4574 size = h->root.u.c.size;
4575 alignment_power = h->root.u.c.p->alignment_power;
4576 }
4577 else
4578 {
4579 size = 0;
4580 alignment_power = 0;
4581 }
4582 memcpy (p, old_ent, htab->root.table.entsize);
4583 old_ent = (char *) old_ent + htab->root.table.entsize;
4584 h = (struct elf_link_hash_entry *) p;
4585 if (h->root.type == bfd_link_hash_warning)
4586 {
4587 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4588 old_ent = (char *) old_ent + htab->root.table.entsize;
4589 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4590 }
4591 if (h->root.type == bfd_link_hash_common)
4592 {
4593 if (size > h->root.u.c.size)
4594 h->root.u.c.size = size;
4595 if (alignment_power > h->root.u.c.p->alignment_power)
4596 h->root.u.c.p->alignment_power = alignment_power;
4597 }
4598 }
4599 }
4600
4601 /* Make a special call to the linker "notice" function to
4602 tell it that symbols added for crefs may need to be removed. */
4603 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4604 notice_not_needed, 0, NULL))
4605 goto error_free_vers;
4606
4607 free (old_tab);
4608 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4609 alloc_mark);
4610 if (nondeflt_vers != NULL)
4611 free (nondeflt_vers);
4612 return TRUE;
4613 }
4614
4615 if (old_tab != NULL)
4616 {
4617 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4618 notice_needed, 0, NULL))
4619 goto error_free_vers;
4620 free (old_tab);
4621 old_tab = NULL;
4622 }
4623
4624 /* Now that all the symbols from this input file are created, handle
4625 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4626 if (nondeflt_vers != NULL)
4627 {
4628 bfd_size_type cnt, symidx;
4629
4630 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4631 {
4632 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4633 char *shortname, *p;
4634
4635 p = strchr (h->root.root.string, ELF_VER_CHR);
4636 if (p == NULL
4637 || (h->root.type != bfd_link_hash_defined
4638 && h->root.type != bfd_link_hash_defweak))
4639 continue;
4640
4641 amt = p - h->root.root.string;
4642 shortname = (char *) bfd_malloc (amt + 1);
4643 if (!shortname)
4644 goto error_free_vers;
4645 memcpy (shortname, h->root.root.string, amt);
4646 shortname[amt] = '\0';
4647
4648 hi = (struct elf_link_hash_entry *)
4649 bfd_link_hash_lookup (&htab->root, shortname,
4650 FALSE, FALSE, FALSE);
4651 if (hi != NULL
4652 && hi->root.type == h->root.type
4653 && hi->root.u.def.value == h->root.u.def.value
4654 && hi->root.u.def.section == h->root.u.def.section)
4655 {
4656 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4657 hi->root.type = bfd_link_hash_indirect;
4658 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4659 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4660 sym_hash = elf_sym_hashes (abfd);
4661 if (sym_hash)
4662 for (symidx = 0; symidx < extsymcount; ++symidx)
4663 if (sym_hash[symidx] == hi)
4664 {
4665 sym_hash[symidx] = h;
4666 break;
4667 }
4668 }
4669 free (shortname);
4670 }
4671 free (nondeflt_vers);
4672 nondeflt_vers = NULL;
4673 }
4674
4675 /* Now set the weakdefs field correctly for all the weak defined
4676 symbols we found. The only way to do this is to search all the
4677 symbols. Since we only need the information for non functions in
4678 dynamic objects, that's the only time we actually put anything on
4679 the list WEAKS. We need this information so that if a regular
4680 object refers to a symbol defined weakly in a dynamic object, the
4681 real symbol in the dynamic object is also put in the dynamic
4682 symbols; we also must arrange for both symbols to point to the
4683 same memory location. We could handle the general case of symbol
4684 aliasing, but a general symbol alias can only be generated in
4685 assembler code, handling it correctly would be very time
4686 consuming, and other ELF linkers don't handle general aliasing
4687 either. */
4688 if (weaks != NULL)
4689 {
4690 struct elf_link_hash_entry **hpp;
4691 struct elf_link_hash_entry **hppend;
4692 struct elf_link_hash_entry **sorted_sym_hash;
4693 struct elf_link_hash_entry *h;
4694 size_t sym_count;
4695
4696 /* Since we have to search the whole symbol list for each weak
4697 defined symbol, search time for N weak defined symbols will be
4698 O(N^2). Binary search will cut it down to O(NlogN). */
4699 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4700 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4701 if (sorted_sym_hash == NULL)
4702 goto error_return;
4703 sym_hash = sorted_sym_hash;
4704 hpp = elf_sym_hashes (abfd);
4705 hppend = hpp + extsymcount;
4706 sym_count = 0;
4707 for (; hpp < hppend; hpp++)
4708 {
4709 h = *hpp;
4710 if (h != NULL
4711 && h->root.type == bfd_link_hash_defined
4712 && !bed->is_function_type (h->type))
4713 {
4714 *sym_hash = h;
4715 sym_hash++;
4716 sym_count++;
4717 }
4718 }
4719
4720 qsort (sorted_sym_hash, sym_count,
4721 sizeof (struct elf_link_hash_entry *),
4722 elf_sort_symbol);
4723
4724 while (weaks != NULL)
4725 {
4726 struct elf_link_hash_entry *hlook;
4727 asection *slook;
4728 bfd_vma vlook;
4729 size_t i, j, idx;
4730
4731 hlook = weaks;
4732 weaks = hlook->u.weakdef;
4733 hlook->u.weakdef = NULL;
4734
4735 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4736 || hlook->root.type == bfd_link_hash_defweak
4737 || hlook->root.type == bfd_link_hash_common
4738 || hlook->root.type == bfd_link_hash_indirect);
4739 slook = hlook->root.u.def.section;
4740 vlook = hlook->root.u.def.value;
4741
4742 i = 0;
4743 j = sym_count;
4744 while (i != j)
4745 {
4746 bfd_signed_vma vdiff;
4747 idx = (i + j) / 2;
4748 h = sorted_sym_hash[idx];
4749 vdiff = vlook - h->root.u.def.value;
4750 if (vdiff < 0)
4751 j = idx;
4752 else if (vdiff > 0)
4753 i = idx + 1;
4754 else
4755 {
4756 long sdiff = slook->id - h->root.u.def.section->id;
4757 if (sdiff < 0)
4758 j = idx;
4759 else if (sdiff > 0)
4760 i = idx + 1;
4761 else
4762 break;
4763 }
4764 }
4765
4766 /* We didn't find a value/section match. */
4767 if (i == j)
4768 continue;
4769
4770 /* With multiple aliases, or when the weak symbol is already
4771 strongly defined, we have multiple matching symbols and
4772 the binary search above may land on any of them. Step
4773 one past the matching symbol(s). */
4774 while (++idx != j)
4775 {
4776 h = sorted_sym_hash[idx];
4777 if (h->root.u.def.section != slook
4778 || h->root.u.def.value != vlook)
4779 break;
4780 }
4781
4782 /* Now look back over the aliases. Since we sorted by size
4783 as well as value and section, we'll choose the one with
4784 the largest size. */
4785 while (idx-- != i)
4786 {
4787 h = sorted_sym_hash[idx];
4788
4789 /* Stop if value or section doesn't match. */
4790 if (h->root.u.def.section != slook
4791 || h->root.u.def.value != vlook)
4792 break;
4793 else if (h != hlook)
4794 {
4795 hlook->u.weakdef = h;
4796
4797 /* If the weak definition is in the list of dynamic
4798 symbols, make sure the real definition is put
4799 there as well. */
4800 if (hlook->dynindx != -1 && h->dynindx == -1)
4801 {
4802 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4803 {
4804 err_free_sym_hash:
4805 free (sorted_sym_hash);
4806 goto error_return;
4807 }
4808 }
4809
4810 /* If the real definition is in the list of dynamic
4811 symbols, make sure the weak definition is put
4812 there as well. If we don't do this, then the
4813 dynamic loader might not merge the entries for the
4814 real definition and the weak definition. */
4815 if (h->dynindx != -1 && hlook->dynindx == -1)
4816 {
4817 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4818 goto err_free_sym_hash;
4819 }
4820 break;
4821 }
4822 }
4823 }
4824
4825 free (sorted_sym_hash);
4826 }
4827
4828 if (bed->check_directives
4829 && !(*bed->check_directives) (abfd, info))
4830 return FALSE;
4831
4832 /* If this object is the same format as the output object, and it is
4833 not a shared library, then let the backend look through the
4834 relocs.
4835
4836 This is required to build global offset table entries and to
4837 arrange for dynamic relocs. It is not required for the
4838 particular common case of linking non PIC code, even when linking
4839 against shared libraries, but unfortunately there is no way of
4840 knowing whether an object file has been compiled PIC or not.
4841 Looking through the relocs is not particularly time consuming.
4842 The problem is that we must either (1) keep the relocs in memory,
4843 which causes the linker to require additional runtime memory or
4844 (2) read the relocs twice from the input file, which wastes time.
4845 This would be a good case for using mmap.
4846
4847 I have no idea how to handle linking PIC code into a file of a
4848 different format. It probably can't be done. */
4849 if (! dynamic
4850 && is_elf_hash_table (htab)
4851 && bed->check_relocs != NULL
4852 && elf_object_id (abfd) == elf_hash_table_id (htab)
4853 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4854 {
4855 asection *o;
4856
4857 for (o = abfd->sections; o != NULL; o = o->next)
4858 {
4859 Elf_Internal_Rela *internal_relocs;
4860 bfd_boolean ok;
4861
4862 if ((o->flags & SEC_RELOC) == 0
4863 || o->reloc_count == 0
4864 || ((info->strip == strip_all || info->strip == strip_debugger)
4865 && (o->flags & SEC_DEBUGGING) != 0)
4866 || bfd_is_abs_section (o->output_section))
4867 continue;
4868
4869 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4870 info->keep_memory);
4871 if (internal_relocs == NULL)
4872 goto error_return;
4873
4874 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4875
4876 if (elf_section_data (o)->relocs != internal_relocs)
4877 free (internal_relocs);
4878
4879 if (! ok)
4880 goto error_return;
4881 }
4882 }
4883
4884 /* If this is a non-traditional link, try to optimize the handling
4885 of the .stab/.stabstr sections. */
4886 if (! dynamic
4887 && ! info->traditional_format
4888 && is_elf_hash_table (htab)
4889 && (info->strip != strip_all && info->strip != strip_debugger))
4890 {
4891 asection *stabstr;
4892
4893 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4894 if (stabstr != NULL)
4895 {
4896 bfd_size_type string_offset = 0;
4897 asection *stab;
4898
4899 for (stab = abfd->sections; stab; stab = stab->next)
4900 if (CONST_STRNEQ (stab->name, ".stab")
4901 && (!stab->name[5] ||
4902 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4903 && (stab->flags & SEC_MERGE) == 0
4904 && !bfd_is_abs_section (stab->output_section))
4905 {
4906 struct bfd_elf_section_data *secdata;
4907
4908 secdata = elf_section_data (stab);
4909 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4910 stabstr, &secdata->sec_info,
4911 &string_offset))
4912 goto error_return;
4913 if (secdata->sec_info)
4914 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4915 }
4916 }
4917 }
4918
4919 if (is_elf_hash_table (htab) && add_needed)
4920 {
4921 /* Add this bfd to the loaded list. */
4922 struct elf_link_loaded_list *n;
4923
4924 n = (struct elf_link_loaded_list *)
4925 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4926 if (n == NULL)
4927 goto error_return;
4928 n->abfd = abfd;
4929 n->next = htab->loaded;
4930 htab->loaded = n;
4931 }
4932
4933 return TRUE;
4934
4935 error_free_vers:
4936 if (old_tab != NULL)
4937 free (old_tab);
4938 if (nondeflt_vers != NULL)
4939 free (nondeflt_vers);
4940 if (extversym != NULL)
4941 free (extversym);
4942 error_free_sym:
4943 if (isymbuf != NULL)
4944 free (isymbuf);
4945 error_return:
4946 return FALSE;
4947 }
4948
4949 /* Return the linker hash table entry of a symbol that might be
4950 satisfied by an archive symbol. Return -1 on error. */
4951
4952 struct elf_link_hash_entry *
4953 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4954 struct bfd_link_info *info,
4955 const char *name)
4956 {
4957 struct elf_link_hash_entry *h;
4958 char *p, *copy;
4959 size_t len, first;
4960
4961 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4962 if (h != NULL)
4963 return h;
4964
4965 /* If this is a default version (the name contains @@), look up the
4966 symbol again with only one `@' as well as without the version.
4967 The effect is that references to the symbol with and without the
4968 version will be matched by the default symbol in the archive. */
4969
4970 p = strchr (name, ELF_VER_CHR);
4971 if (p == NULL || p[1] != ELF_VER_CHR)
4972 return h;
4973
4974 /* First check with only one `@'. */
4975 len = strlen (name);
4976 copy = (char *) bfd_alloc (abfd, len);
4977 if (copy == NULL)
4978 return (struct elf_link_hash_entry *) 0 - 1;
4979
4980 first = p - name + 1;
4981 memcpy (copy, name, first);
4982 memcpy (copy + first, name + first + 1, len - first);
4983
4984 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4985 if (h == NULL)
4986 {
4987 /* We also need to check references to the symbol without the
4988 version. */
4989 copy[first - 1] = '\0';
4990 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4991 FALSE, FALSE, TRUE);
4992 }
4993
4994 bfd_release (abfd, copy);
4995 return h;
4996 }
4997
4998 /* Add symbols from an ELF archive file to the linker hash table. We
4999 don't use _bfd_generic_link_add_archive_symbols because of a
5000 problem which arises on UnixWare. The UnixWare libc.so is an
5001 archive which includes an entry libc.so.1 which defines a bunch of
5002 symbols. The libc.so archive also includes a number of other
5003 object files, which also define symbols, some of which are the same
5004 as those defined in libc.so.1. Correct linking requires that we
5005 consider each object file in turn, and include it if it defines any
5006 symbols we need. _bfd_generic_link_add_archive_symbols does not do
5007 this; it looks through the list of undefined symbols, and includes
5008 any object file which defines them. When this algorithm is used on
5009 UnixWare, it winds up pulling in libc.so.1 early and defining a
5010 bunch of symbols. This means that some of the other objects in the
5011 archive are not included in the link, which is incorrect since they
5012 precede libc.so.1 in the archive.
5013
5014 Fortunately, ELF archive handling is simpler than that done by
5015 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5016 oddities. In ELF, if we find a symbol in the archive map, and the
5017 symbol is currently undefined, we know that we must pull in that
5018 object file.
5019
5020 Unfortunately, we do have to make multiple passes over the symbol
5021 table until nothing further is resolved. */
5022
5023 static bfd_boolean
5024 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5025 {
5026 symindex c;
5027 bfd_boolean *defined = NULL;
5028 bfd_boolean *included = NULL;
5029 carsym *symdefs;
5030 bfd_boolean loop;
5031 bfd_size_type amt;
5032 const struct elf_backend_data *bed;
5033 struct elf_link_hash_entry * (*archive_symbol_lookup)
5034 (bfd *, struct bfd_link_info *, const char *);
5035
5036 if (! bfd_has_map (abfd))
5037 {
5038 /* An empty archive is a special case. */
5039 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5040 return TRUE;
5041 bfd_set_error (bfd_error_no_armap);
5042 return FALSE;
5043 }
5044
5045 /* Keep track of all symbols we know to be already defined, and all
5046 files we know to be already included. This is to speed up the
5047 second and subsequent passes. */
5048 c = bfd_ardata (abfd)->symdef_count;
5049 if (c == 0)
5050 return TRUE;
5051 amt = c;
5052 amt *= sizeof (bfd_boolean);
5053 defined = (bfd_boolean *) bfd_zmalloc (amt);
5054 included = (bfd_boolean *) bfd_zmalloc (amt);
5055 if (defined == NULL || included == NULL)
5056 goto error_return;
5057
5058 symdefs = bfd_ardata (abfd)->symdefs;
5059 bed = get_elf_backend_data (abfd);
5060 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5061
5062 do
5063 {
5064 file_ptr last;
5065 symindex i;
5066 carsym *symdef;
5067 carsym *symdefend;
5068
5069 loop = FALSE;
5070 last = -1;
5071
5072 symdef = symdefs;
5073 symdefend = symdef + c;
5074 for (i = 0; symdef < symdefend; symdef++, i++)
5075 {
5076 struct elf_link_hash_entry *h;
5077 bfd *element;
5078 struct bfd_link_hash_entry *undefs_tail;
5079 symindex mark;
5080
5081 if (defined[i] || included[i])
5082 continue;
5083 if (symdef->file_offset == last)
5084 {
5085 included[i] = TRUE;
5086 continue;
5087 }
5088
5089 h = archive_symbol_lookup (abfd, info, symdef->name);
5090 if (h == (struct elf_link_hash_entry *) 0 - 1)
5091 goto error_return;
5092
5093 if (h == NULL)
5094 continue;
5095
5096 if (h->root.type == bfd_link_hash_common)
5097 {
5098 /* We currently have a common symbol. The archive map contains
5099 a reference to this symbol, so we may want to include it. We
5100 only want to include it however, if this archive element
5101 contains a definition of the symbol, not just another common
5102 declaration of it.
5103
5104 Unfortunately some archivers (including GNU ar) will put
5105 declarations of common symbols into their archive maps, as
5106 well as real definitions, so we cannot just go by the archive
5107 map alone. Instead we must read in the element's symbol
5108 table and check that to see what kind of symbol definition
5109 this is. */
5110 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5111 continue;
5112 }
5113 else if (h->root.type != bfd_link_hash_undefined)
5114 {
5115 if (h->root.type != bfd_link_hash_undefweak)
5116 defined[i] = TRUE;
5117 continue;
5118 }
5119
5120 /* We need to include this archive member. */
5121 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5122 if (element == NULL)
5123 goto error_return;
5124
5125 if (! bfd_check_format (element, bfd_object))
5126 goto error_return;
5127
5128 /* Doublecheck that we have not included this object
5129 already--it should be impossible, but there may be
5130 something wrong with the archive. */
5131 if (element->archive_pass != 0)
5132 {
5133 bfd_set_error (bfd_error_bad_value);
5134 goto error_return;
5135 }
5136 element->archive_pass = 1;
5137
5138 undefs_tail = info->hash->undefs_tail;
5139
5140 if (!(*info->callbacks
5141 ->add_archive_element) (info, element, symdef->name, &element))
5142 goto error_return;
5143 if (!bfd_link_add_symbols (element, info))
5144 goto error_return;
5145
5146 /* If there are any new undefined symbols, we need to make
5147 another pass through the archive in order to see whether
5148 they can be defined. FIXME: This isn't perfect, because
5149 common symbols wind up on undefs_tail and because an
5150 undefined symbol which is defined later on in this pass
5151 does not require another pass. This isn't a bug, but it
5152 does make the code less efficient than it could be. */
5153 if (undefs_tail != info->hash->undefs_tail)
5154 loop = TRUE;
5155
5156 /* Look backward to mark all symbols from this object file
5157 which we have already seen in this pass. */
5158 mark = i;
5159 do
5160 {
5161 included[mark] = TRUE;
5162 if (mark == 0)
5163 break;
5164 --mark;
5165 }
5166 while (symdefs[mark].file_offset == symdef->file_offset);
5167
5168 /* We mark subsequent symbols from this object file as we go
5169 on through the loop. */
5170 last = symdef->file_offset;
5171 }
5172 }
5173 while (loop);
5174
5175 free (defined);
5176 free (included);
5177
5178 return TRUE;
5179
5180 error_return:
5181 if (defined != NULL)
5182 free (defined);
5183 if (included != NULL)
5184 free (included);
5185 return FALSE;
5186 }
5187
5188 /* Given an ELF BFD, add symbols to the global hash table as
5189 appropriate. */
5190
5191 bfd_boolean
5192 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5193 {
5194 switch (bfd_get_format (abfd))
5195 {
5196 case bfd_object:
5197 return elf_link_add_object_symbols (abfd, info);
5198 case bfd_archive:
5199 return elf_link_add_archive_symbols (abfd, info);
5200 default:
5201 bfd_set_error (bfd_error_wrong_format);
5202 return FALSE;
5203 }
5204 }
5205 \f
5206 struct hash_codes_info
5207 {
5208 unsigned long *hashcodes;
5209 bfd_boolean error;
5210 };
5211
5212 /* This function will be called though elf_link_hash_traverse to store
5213 all hash value of the exported symbols in an array. */
5214
5215 static bfd_boolean
5216 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5217 {
5218 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5219 const char *name;
5220 char *p;
5221 unsigned long ha;
5222 char *alc = NULL;
5223
5224 /* Ignore indirect symbols. These are added by the versioning code. */
5225 if (h->dynindx == -1)
5226 return TRUE;
5227
5228 name = h->root.root.string;
5229 p = strchr (name, ELF_VER_CHR);
5230 if (p != NULL)
5231 {
5232 alc = (char *) bfd_malloc (p - name + 1);
5233 if (alc == NULL)
5234 {
5235 inf->error = TRUE;
5236 return FALSE;
5237 }
5238 memcpy (alc, name, p - name);
5239 alc[p - name] = '\0';
5240 name = alc;
5241 }
5242
5243 /* Compute the hash value. */
5244 ha = bfd_elf_hash (name);
5245
5246 /* Store the found hash value in the array given as the argument. */
5247 *(inf->hashcodes)++ = ha;
5248
5249 /* And store it in the struct so that we can put it in the hash table
5250 later. */
5251 h->u.elf_hash_value = ha;
5252
5253 if (alc != NULL)
5254 free (alc);
5255
5256 return TRUE;
5257 }
5258
5259 struct collect_gnu_hash_codes
5260 {
5261 bfd *output_bfd;
5262 const struct elf_backend_data *bed;
5263 unsigned long int nsyms;
5264 unsigned long int maskbits;
5265 unsigned long int *hashcodes;
5266 unsigned long int *hashval;
5267 unsigned long int *indx;
5268 unsigned long int *counts;
5269 bfd_vma *bitmask;
5270 bfd_byte *contents;
5271 long int min_dynindx;
5272 unsigned long int bucketcount;
5273 unsigned long int symindx;
5274 long int local_indx;
5275 long int shift1, shift2;
5276 unsigned long int mask;
5277 bfd_boolean error;
5278 };
5279
5280 /* This function will be called though elf_link_hash_traverse to store
5281 all hash value of the exported symbols in an array. */
5282
5283 static bfd_boolean
5284 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5285 {
5286 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5287 const char *name;
5288 char *p;
5289 unsigned long ha;
5290 char *alc = NULL;
5291
5292 /* Ignore indirect symbols. These are added by the versioning code. */
5293 if (h->dynindx == -1)
5294 return TRUE;
5295
5296 /* Ignore also local symbols and undefined symbols. */
5297 if (! (*s->bed->elf_hash_symbol) (h))
5298 return TRUE;
5299
5300 name = h->root.root.string;
5301 p = strchr (name, ELF_VER_CHR);
5302 if (p != NULL)
5303 {
5304 alc = (char *) bfd_malloc (p - name + 1);
5305 if (alc == NULL)
5306 {
5307 s->error = TRUE;
5308 return FALSE;
5309 }
5310 memcpy (alc, name, p - name);
5311 alc[p - name] = '\0';
5312 name = alc;
5313 }
5314
5315 /* Compute the hash value. */
5316 ha = bfd_elf_gnu_hash (name);
5317
5318 /* Store the found hash value in the array for compute_bucket_count,
5319 and also for .dynsym reordering purposes. */
5320 s->hashcodes[s->nsyms] = ha;
5321 s->hashval[h->dynindx] = ha;
5322 ++s->nsyms;
5323 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5324 s->min_dynindx = h->dynindx;
5325
5326 if (alc != NULL)
5327 free (alc);
5328
5329 return TRUE;
5330 }
5331
5332 /* This function will be called though elf_link_hash_traverse to do
5333 final dynaminc symbol renumbering. */
5334
5335 static bfd_boolean
5336 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5337 {
5338 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5339 unsigned long int bucket;
5340 unsigned long int val;
5341
5342 /* Ignore indirect symbols. */
5343 if (h->dynindx == -1)
5344 return TRUE;
5345
5346 /* Ignore also local symbols and undefined symbols. */
5347 if (! (*s->bed->elf_hash_symbol) (h))
5348 {
5349 if (h->dynindx >= s->min_dynindx)
5350 h->dynindx = s->local_indx++;
5351 return TRUE;
5352 }
5353
5354 bucket = s->hashval[h->dynindx] % s->bucketcount;
5355 val = (s->hashval[h->dynindx] >> s->shift1)
5356 & ((s->maskbits >> s->shift1) - 1);
5357 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5358 s->bitmask[val]
5359 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5360 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5361 if (s->counts[bucket] == 1)
5362 /* Last element terminates the chain. */
5363 val |= 1;
5364 bfd_put_32 (s->output_bfd, val,
5365 s->contents + (s->indx[bucket] - s->symindx) * 4);
5366 --s->counts[bucket];
5367 h->dynindx = s->indx[bucket]++;
5368 return TRUE;
5369 }
5370
5371 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5372
5373 bfd_boolean
5374 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5375 {
5376 return !(h->forced_local
5377 || h->root.type == bfd_link_hash_undefined
5378 || h->root.type == bfd_link_hash_undefweak
5379 || ((h->root.type == bfd_link_hash_defined
5380 || h->root.type == bfd_link_hash_defweak)
5381 && h->root.u.def.section->output_section == NULL));
5382 }
5383
5384 /* Array used to determine the number of hash table buckets to use
5385 based on the number of symbols there are. If there are fewer than
5386 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5387 fewer than 37 we use 17 buckets, and so forth. We never use more
5388 than 32771 buckets. */
5389
5390 static const size_t elf_buckets[] =
5391 {
5392 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5393 16411, 32771, 0
5394 };
5395
5396 /* Compute bucket count for hashing table. We do not use a static set
5397 of possible tables sizes anymore. Instead we determine for all
5398 possible reasonable sizes of the table the outcome (i.e., the
5399 number of collisions etc) and choose the best solution. The
5400 weighting functions are not too simple to allow the table to grow
5401 without bounds. Instead one of the weighting factors is the size.
5402 Therefore the result is always a good payoff between few collisions
5403 (= short chain lengths) and table size. */
5404 static size_t
5405 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5406 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5407 unsigned long int nsyms,
5408 int gnu_hash)
5409 {
5410 size_t best_size = 0;
5411 unsigned long int i;
5412
5413 /* We have a problem here. The following code to optimize the table
5414 size requires an integer type with more the 32 bits. If
5415 BFD_HOST_U_64_BIT is set we know about such a type. */
5416 #ifdef BFD_HOST_U_64_BIT
5417 if (info->optimize)
5418 {
5419 size_t minsize;
5420 size_t maxsize;
5421 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5422 bfd *dynobj = elf_hash_table (info)->dynobj;
5423 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5424 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5425 unsigned long int *counts;
5426 bfd_size_type amt;
5427 unsigned int no_improvement_count = 0;
5428
5429 /* Possible optimization parameters: if we have NSYMS symbols we say
5430 that the hashing table must at least have NSYMS/4 and at most
5431 2*NSYMS buckets. */
5432 minsize = nsyms / 4;
5433 if (minsize == 0)
5434 minsize = 1;
5435 best_size = maxsize = nsyms * 2;
5436 if (gnu_hash)
5437 {
5438 if (minsize < 2)
5439 minsize = 2;
5440 if ((best_size & 31) == 0)
5441 ++best_size;
5442 }
5443
5444 /* Create array where we count the collisions in. We must use bfd_malloc
5445 since the size could be large. */
5446 amt = maxsize;
5447 amt *= sizeof (unsigned long int);
5448 counts = (unsigned long int *) bfd_malloc (amt);
5449 if (counts == NULL)
5450 return 0;
5451
5452 /* Compute the "optimal" size for the hash table. The criteria is a
5453 minimal chain length. The minor criteria is (of course) the size
5454 of the table. */
5455 for (i = minsize; i < maxsize; ++i)
5456 {
5457 /* Walk through the array of hashcodes and count the collisions. */
5458 BFD_HOST_U_64_BIT max;
5459 unsigned long int j;
5460 unsigned long int fact;
5461
5462 if (gnu_hash && (i & 31) == 0)
5463 continue;
5464
5465 memset (counts, '\0', i * sizeof (unsigned long int));
5466
5467 /* Determine how often each hash bucket is used. */
5468 for (j = 0; j < nsyms; ++j)
5469 ++counts[hashcodes[j] % i];
5470
5471 /* For the weight function we need some information about the
5472 pagesize on the target. This is information need not be 100%
5473 accurate. Since this information is not available (so far) we
5474 define it here to a reasonable default value. If it is crucial
5475 to have a better value some day simply define this value. */
5476 # ifndef BFD_TARGET_PAGESIZE
5477 # define BFD_TARGET_PAGESIZE (4096)
5478 # endif
5479
5480 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5481 and the chains. */
5482 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5483
5484 # if 1
5485 /* Variant 1: optimize for short chains. We add the squares
5486 of all the chain lengths (which favors many small chain
5487 over a few long chains). */
5488 for (j = 0; j < i; ++j)
5489 max += counts[j] * counts[j];
5490
5491 /* This adds penalties for the overall size of the table. */
5492 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5493 max *= fact * fact;
5494 # else
5495 /* Variant 2: Optimize a lot more for small table. Here we
5496 also add squares of the size but we also add penalties for
5497 empty slots (the +1 term). */
5498 for (j = 0; j < i; ++j)
5499 max += (1 + counts[j]) * (1 + counts[j]);
5500
5501 /* The overall size of the table is considered, but not as
5502 strong as in variant 1, where it is squared. */
5503 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5504 max *= fact;
5505 # endif
5506
5507 /* Compare with current best results. */
5508 if (max < best_chlen)
5509 {
5510 best_chlen = max;
5511 best_size = i;
5512 no_improvement_count = 0;
5513 }
5514 /* PR 11843: Avoid futile long searches for the best bucket size
5515 when there are a large number of symbols. */
5516 else if (++no_improvement_count == 100)
5517 break;
5518 }
5519
5520 free (counts);
5521 }
5522 else
5523 #endif /* defined (BFD_HOST_U_64_BIT) */
5524 {
5525 /* This is the fallback solution if no 64bit type is available or if we
5526 are not supposed to spend much time on optimizations. We select the
5527 bucket count using a fixed set of numbers. */
5528 for (i = 0; elf_buckets[i] != 0; i++)
5529 {
5530 best_size = elf_buckets[i];
5531 if (nsyms < elf_buckets[i + 1])
5532 break;
5533 }
5534 if (gnu_hash && best_size < 2)
5535 best_size = 2;
5536 }
5537
5538 return best_size;
5539 }
5540
5541 /* Size any SHT_GROUP section for ld -r. */
5542
5543 bfd_boolean
5544 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5545 {
5546 bfd *ibfd;
5547
5548 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5549 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5550 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5551 return FALSE;
5552 return TRUE;
5553 }
5554
5555 /* Set a default stack segment size. The value in INFO wins. If it
5556 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5557 undefined it is initialized. */
5558
5559 bfd_boolean
5560 bfd_elf_stack_segment_size (bfd *output_bfd,
5561 struct bfd_link_info *info,
5562 const char *legacy_symbol,
5563 bfd_vma default_size)
5564 {
5565 struct elf_link_hash_entry *h = NULL;
5566
5567 /* Look for legacy symbol. */
5568 if (legacy_symbol)
5569 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5570 FALSE, FALSE, FALSE);
5571 if (h && (h->root.type == bfd_link_hash_defined
5572 || h->root.type == bfd_link_hash_defweak)
5573 && h->def_regular
5574 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5575 {
5576 /* The symbol has no type if specified on the command line. */
5577 h->type = STT_OBJECT;
5578 if (info->stacksize)
5579 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5580 output_bfd, legacy_symbol);
5581 else if (h->root.u.def.section != bfd_abs_section_ptr)
5582 (*_bfd_error_handler) (_("%B: %s not absolute"),
5583 output_bfd, legacy_symbol);
5584 else
5585 info->stacksize = h->root.u.def.value;
5586 }
5587
5588 if (!info->stacksize)
5589 /* If the user didn't set a size, or explicitly inhibit the
5590 size, set it now. */
5591 info->stacksize = default_size;
5592
5593 /* Provide the legacy symbol, if it is referenced. */
5594 if (h && (h->root.type == bfd_link_hash_undefined
5595 || h->root.type == bfd_link_hash_undefweak))
5596 {
5597 struct bfd_link_hash_entry *bh = NULL;
5598
5599 if (!(_bfd_generic_link_add_one_symbol
5600 (info, output_bfd, legacy_symbol,
5601 BSF_GLOBAL, bfd_abs_section_ptr,
5602 info->stacksize >= 0 ? info->stacksize : 0,
5603 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5604 return FALSE;
5605
5606 h = (struct elf_link_hash_entry *) bh;
5607 h->def_regular = 1;
5608 h->type = STT_OBJECT;
5609 }
5610
5611 return TRUE;
5612 }
5613
5614 /* Set up the sizes and contents of the ELF dynamic sections. This is
5615 called by the ELF linker emulation before_allocation routine. We
5616 must set the sizes of the sections before the linker sets the
5617 addresses of the various sections. */
5618
5619 bfd_boolean
5620 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5621 const char *soname,
5622 const char *rpath,
5623 const char *filter_shlib,
5624 const char *audit,
5625 const char *depaudit,
5626 const char * const *auxiliary_filters,
5627 struct bfd_link_info *info,
5628 asection **sinterpptr)
5629 {
5630 bfd_size_type soname_indx;
5631 bfd *dynobj;
5632 const struct elf_backend_data *bed;
5633 struct elf_info_failed asvinfo;
5634
5635 *sinterpptr = NULL;
5636
5637 soname_indx = (bfd_size_type) -1;
5638
5639 if (!is_elf_hash_table (info->hash))
5640 return TRUE;
5641
5642 bed = get_elf_backend_data (output_bfd);
5643
5644 /* Any syms created from now on start with -1 in
5645 got.refcount/offset and plt.refcount/offset. */
5646 elf_hash_table (info)->init_got_refcount
5647 = elf_hash_table (info)->init_got_offset;
5648 elf_hash_table (info)->init_plt_refcount
5649 = elf_hash_table (info)->init_plt_offset;
5650
5651 if (info->relocatable
5652 && !_bfd_elf_size_group_sections (info))
5653 return FALSE;
5654
5655 /* The backend may have to create some sections regardless of whether
5656 we're dynamic or not. */
5657 if (bed->elf_backend_always_size_sections
5658 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5659 return FALSE;
5660
5661 /* Determine any GNU_STACK segment requirements, after the backend
5662 has had a chance to set a default segment size. */
5663 if (info->execstack)
5664 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5665 else if (info->noexecstack)
5666 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5667 else
5668 {
5669 bfd *inputobj;
5670 asection *notesec = NULL;
5671 int exec = 0;
5672
5673 for (inputobj = info->input_bfds;
5674 inputobj;
5675 inputobj = inputobj->link_next)
5676 {
5677 asection *s;
5678
5679 if (inputobj->flags
5680 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5681 continue;
5682 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5683 if (s)
5684 {
5685 if (s->flags & SEC_CODE)
5686 exec = PF_X;
5687 notesec = s;
5688 }
5689 else if (bed->default_execstack)
5690 exec = PF_X;
5691 }
5692 if (notesec || info->stacksize > 0)
5693 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5694 if (notesec && exec && info->relocatable
5695 && notesec->output_section != bfd_abs_section_ptr)
5696 notesec->output_section->flags |= SEC_CODE;
5697 }
5698
5699 dynobj = elf_hash_table (info)->dynobj;
5700
5701 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5702 {
5703 struct elf_info_failed eif;
5704 struct elf_link_hash_entry *h;
5705 asection *dynstr;
5706 struct bfd_elf_version_tree *t;
5707 struct bfd_elf_version_expr *d;
5708 asection *s;
5709 bfd_boolean all_defined;
5710
5711 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5712 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5713
5714 if (soname != NULL)
5715 {
5716 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5717 soname, TRUE);
5718 if (soname_indx == (bfd_size_type) -1
5719 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5720 return FALSE;
5721 }
5722
5723 if (info->symbolic)
5724 {
5725 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5726 return FALSE;
5727 info->flags |= DF_SYMBOLIC;
5728 }
5729
5730 if (rpath != NULL)
5731 {
5732 bfd_size_type indx;
5733 bfd_vma tag;
5734
5735 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5736 TRUE);
5737 if (indx == (bfd_size_type) -1)
5738 return FALSE;
5739
5740 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5741 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5742 return FALSE;
5743 }
5744
5745 if (filter_shlib != NULL)
5746 {
5747 bfd_size_type indx;
5748
5749 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5750 filter_shlib, TRUE);
5751 if (indx == (bfd_size_type) -1
5752 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5753 return FALSE;
5754 }
5755
5756 if (auxiliary_filters != NULL)
5757 {
5758 const char * const *p;
5759
5760 for (p = auxiliary_filters; *p != NULL; p++)
5761 {
5762 bfd_size_type indx;
5763
5764 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5765 *p, TRUE);
5766 if (indx == (bfd_size_type) -1
5767 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5768 return FALSE;
5769 }
5770 }
5771
5772 if (audit != NULL)
5773 {
5774 bfd_size_type indx;
5775
5776 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5777 TRUE);
5778 if (indx == (bfd_size_type) -1
5779 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5780 return FALSE;
5781 }
5782
5783 if (depaudit != NULL)
5784 {
5785 bfd_size_type indx;
5786
5787 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5788 TRUE);
5789 if (indx == (bfd_size_type) -1
5790 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5791 return FALSE;
5792 }
5793
5794 eif.info = info;
5795 eif.failed = FALSE;
5796
5797 /* If we are supposed to export all symbols into the dynamic symbol
5798 table (this is not the normal case), then do so. */
5799 if (info->export_dynamic
5800 || (info->executable && info->dynamic))
5801 {
5802 elf_link_hash_traverse (elf_hash_table (info),
5803 _bfd_elf_export_symbol,
5804 &eif);
5805 if (eif.failed)
5806 return FALSE;
5807 }
5808
5809 /* Make all global versions with definition. */
5810 for (t = info->version_info; t != NULL; t = t->next)
5811 for (d = t->globals.list; d != NULL; d = d->next)
5812 if (!d->symver && d->literal)
5813 {
5814 const char *verstr, *name;
5815 size_t namelen, verlen, newlen;
5816 char *newname, *p, leading_char;
5817 struct elf_link_hash_entry *newh;
5818
5819 leading_char = bfd_get_symbol_leading_char (output_bfd);
5820 name = d->pattern;
5821 namelen = strlen (name) + (leading_char != '\0');
5822 verstr = t->name;
5823 verlen = strlen (verstr);
5824 newlen = namelen + verlen + 3;
5825
5826 newname = (char *) bfd_malloc (newlen);
5827 if (newname == NULL)
5828 return FALSE;
5829 newname[0] = leading_char;
5830 memcpy (newname + (leading_char != '\0'), name, namelen);
5831
5832 /* Check the hidden versioned definition. */
5833 p = newname + namelen;
5834 *p++ = ELF_VER_CHR;
5835 memcpy (p, verstr, verlen + 1);
5836 newh = elf_link_hash_lookup (elf_hash_table (info),
5837 newname, FALSE, FALSE,
5838 FALSE);
5839 if (newh == NULL
5840 || (newh->root.type != bfd_link_hash_defined
5841 && newh->root.type != bfd_link_hash_defweak))
5842 {
5843 /* Check the default versioned definition. */
5844 *p++ = ELF_VER_CHR;
5845 memcpy (p, verstr, verlen + 1);
5846 newh = elf_link_hash_lookup (elf_hash_table (info),
5847 newname, FALSE, FALSE,
5848 FALSE);
5849 }
5850 free (newname);
5851
5852 /* Mark this version if there is a definition and it is
5853 not defined in a shared object. */
5854 if (newh != NULL
5855 && !newh->def_dynamic
5856 && (newh->root.type == bfd_link_hash_defined
5857 || newh->root.type == bfd_link_hash_defweak))
5858 d->symver = 1;
5859 }
5860
5861 /* Attach all the symbols to their version information. */
5862 asvinfo.info = info;
5863 asvinfo.failed = FALSE;
5864
5865 elf_link_hash_traverse (elf_hash_table (info),
5866 _bfd_elf_link_assign_sym_version,
5867 &asvinfo);
5868 if (asvinfo.failed)
5869 return FALSE;
5870
5871 if (!info->allow_undefined_version)
5872 {
5873 /* Check if all global versions have a definition. */
5874 all_defined = TRUE;
5875 for (t = info->version_info; t != NULL; t = t->next)
5876 for (d = t->globals.list; d != NULL; d = d->next)
5877 if (d->literal && !d->symver && !d->script)
5878 {
5879 (*_bfd_error_handler)
5880 (_("%s: undefined version: %s"),
5881 d->pattern, t->name);
5882 all_defined = FALSE;
5883 }
5884
5885 if (!all_defined)
5886 {
5887 bfd_set_error (bfd_error_bad_value);
5888 return FALSE;
5889 }
5890 }
5891
5892 /* Find all symbols which were defined in a dynamic object and make
5893 the backend pick a reasonable value for them. */
5894 elf_link_hash_traverse (elf_hash_table (info),
5895 _bfd_elf_adjust_dynamic_symbol,
5896 &eif);
5897 if (eif.failed)
5898 return FALSE;
5899
5900 /* Add some entries to the .dynamic section. We fill in some of the
5901 values later, in bfd_elf_final_link, but we must add the entries
5902 now so that we know the final size of the .dynamic section. */
5903
5904 /* If there are initialization and/or finalization functions to
5905 call then add the corresponding DT_INIT/DT_FINI entries. */
5906 h = (info->init_function
5907 ? elf_link_hash_lookup (elf_hash_table (info),
5908 info->init_function, FALSE,
5909 FALSE, FALSE)
5910 : NULL);
5911 if (h != NULL
5912 && (h->ref_regular
5913 || h->def_regular))
5914 {
5915 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5916 return FALSE;
5917 }
5918 h = (info->fini_function
5919 ? elf_link_hash_lookup (elf_hash_table (info),
5920 info->fini_function, FALSE,
5921 FALSE, FALSE)
5922 : NULL);
5923 if (h != NULL
5924 && (h->ref_regular
5925 || h->def_regular))
5926 {
5927 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5928 return FALSE;
5929 }
5930
5931 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5932 if (s != NULL && s->linker_has_input)
5933 {
5934 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5935 if (! info->executable)
5936 {
5937 bfd *sub;
5938 asection *o;
5939
5940 for (sub = info->input_bfds; sub != NULL;
5941 sub = sub->link_next)
5942 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5943 for (o = sub->sections; o != NULL; o = o->next)
5944 if (elf_section_data (o)->this_hdr.sh_type
5945 == SHT_PREINIT_ARRAY)
5946 {
5947 (*_bfd_error_handler)
5948 (_("%B: .preinit_array section is not allowed in DSO"),
5949 sub);
5950 break;
5951 }
5952
5953 bfd_set_error (bfd_error_nonrepresentable_section);
5954 return FALSE;
5955 }
5956
5957 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5958 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5959 return FALSE;
5960 }
5961 s = bfd_get_section_by_name (output_bfd, ".init_array");
5962 if (s != NULL && s->linker_has_input)
5963 {
5964 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5965 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5966 return FALSE;
5967 }
5968 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5969 if (s != NULL && s->linker_has_input)
5970 {
5971 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5972 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5973 return FALSE;
5974 }
5975
5976 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5977 /* If .dynstr is excluded from the link, we don't want any of
5978 these tags. Strictly, we should be checking each section
5979 individually; This quick check covers for the case where
5980 someone does a /DISCARD/ : { *(*) }. */
5981 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5982 {
5983 bfd_size_type strsize;
5984
5985 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5986 if ((info->emit_hash
5987 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5988 || (info->emit_gnu_hash
5989 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5990 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5991 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5992 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5993 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5994 bed->s->sizeof_sym))
5995 return FALSE;
5996 }
5997 }
5998
5999 /* The backend must work out the sizes of all the other dynamic
6000 sections. */
6001 if (dynobj != NULL
6002 && bed->elf_backend_size_dynamic_sections != NULL
6003 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6004 return FALSE;
6005
6006 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6007 return FALSE;
6008
6009 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6010 {
6011 unsigned long section_sym_count;
6012 struct bfd_elf_version_tree *verdefs;
6013 asection *s;
6014
6015 /* Set up the version definition section. */
6016 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6017 BFD_ASSERT (s != NULL);
6018
6019 /* We may have created additional version definitions if we are
6020 just linking a regular application. */
6021 verdefs = info->version_info;
6022
6023 /* Skip anonymous version tag. */
6024 if (verdefs != NULL && verdefs->vernum == 0)
6025 verdefs = verdefs->next;
6026
6027 if (verdefs == NULL && !info->create_default_symver)
6028 s->flags |= SEC_EXCLUDE;
6029 else
6030 {
6031 unsigned int cdefs;
6032 bfd_size_type size;
6033 struct bfd_elf_version_tree *t;
6034 bfd_byte *p;
6035 Elf_Internal_Verdef def;
6036 Elf_Internal_Verdaux defaux;
6037 struct bfd_link_hash_entry *bh;
6038 struct elf_link_hash_entry *h;
6039 const char *name;
6040
6041 cdefs = 0;
6042 size = 0;
6043
6044 /* Make space for the base version. */
6045 size += sizeof (Elf_External_Verdef);
6046 size += sizeof (Elf_External_Verdaux);
6047 ++cdefs;
6048
6049 /* Make space for the default version. */
6050 if (info->create_default_symver)
6051 {
6052 size += sizeof (Elf_External_Verdef);
6053 ++cdefs;
6054 }
6055
6056 for (t = verdefs; t != NULL; t = t->next)
6057 {
6058 struct bfd_elf_version_deps *n;
6059
6060 /* Don't emit base version twice. */
6061 if (t->vernum == 0)
6062 continue;
6063
6064 size += sizeof (Elf_External_Verdef);
6065 size += sizeof (Elf_External_Verdaux);
6066 ++cdefs;
6067
6068 for (n = t->deps; n != NULL; n = n->next)
6069 size += sizeof (Elf_External_Verdaux);
6070 }
6071
6072 s->size = size;
6073 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6074 if (s->contents == NULL && s->size != 0)
6075 return FALSE;
6076
6077 /* Fill in the version definition section. */
6078
6079 p = s->contents;
6080
6081 def.vd_version = VER_DEF_CURRENT;
6082 def.vd_flags = VER_FLG_BASE;
6083 def.vd_ndx = 1;
6084 def.vd_cnt = 1;
6085 if (info->create_default_symver)
6086 {
6087 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6088 def.vd_next = sizeof (Elf_External_Verdef);
6089 }
6090 else
6091 {
6092 def.vd_aux = sizeof (Elf_External_Verdef);
6093 def.vd_next = (sizeof (Elf_External_Verdef)
6094 + sizeof (Elf_External_Verdaux));
6095 }
6096
6097 if (soname_indx != (bfd_size_type) -1)
6098 {
6099 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6100 soname_indx);
6101 def.vd_hash = bfd_elf_hash (soname);
6102 defaux.vda_name = soname_indx;
6103 name = soname;
6104 }
6105 else
6106 {
6107 bfd_size_type indx;
6108
6109 name = lbasename (output_bfd->filename);
6110 def.vd_hash = bfd_elf_hash (name);
6111 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6112 name, FALSE);
6113 if (indx == (bfd_size_type) -1)
6114 return FALSE;
6115 defaux.vda_name = indx;
6116 }
6117 defaux.vda_next = 0;
6118
6119 _bfd_elf_swap_verdef_out (output_bfd, &def,
6120 (Elf_External_Verdef *) p);
6121 p += sizeof (Elf_External_Verdef);
6122 if (info->create_default_symver)
6123 {
6124 /* Add a symbol representing this version. */
6125 bh = NULL;
6126 if (! (_bfd_generic_link_add_one_symbol
6127 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6128 0, NULL, FALSE,
6129 get_elf_backend_data (dynobj)->collect, &bh)))
6130 return FALSE;
6131 h = (struct elf_link_hash_entry *) bh;
6132 h->non_elf = 0;
6133 h->def_regular = 1;
6134 h->type = STT_OBJECT;
6135 h->verinfo.vertree = NULL;
6136
6137 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6138 return FALSE;
6139
6140 /* Create a duplicate of the base version with the same
6141 aux block, but different flags. */
6142 def.vd_flags = 0;
6143 def.vd_ndx = 2;
6144 def.vd_aux = sizeof (Elf_External_Verdef);
6145 if (verdefs)
6146 def.vd_next = (sizeof (Elf_External_Verdef)
6147 + sizeof (Elf_External_Verdaux));
6148 else
6149 def.vd_next = 0;
6150 _bfd_elf_swap_verdef_out (output_bfd, &def,
6151 (Elf_External_Verdef *) p);
6152 p += sizeof (Elf_External_Verdef);
6153 }
6154 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6155 (Elf_External_Verdaux *) p);
6156 p += sizeof (Elf_External_Verdaux);
6157
6158 for (t = verdefs; t != NULL; t = t->next)
6159 {
6160 unsigned int cdeps;
6161 struct bfd_elf_version_deps *n;
6162
6163 /* Don't emit the base version twice. */
6164 if (t->vernum == 0)
6165 continue;
6166
6167 cdeps = 0;
6168 for (n = t->deps; n != NULL; n = n->next)
6169 ++cdeps;
6170
6171 /* Add a symbol representing this version. */
6172 bh = NULL;
6173 if (! (_bfd_generic_link_add_one_symbol
6174 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6175 0, NULL, FALSE,
6176 get_elf_backend_data (dynobj)->collect, &bh)))
6177 return FALSE;
6178 h = (struct elf_link_hash_entry *) bh;
6179 h->non_elf = 0;
6180 h->def_regular = 1;
6181 h->type = STT_OBJECT;
6182 h->verinfo.vertree = t;
6183
6184 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6185 return FALSE;
6186
6187 def.vd_version = VER_DEF_CURRENT;
6188 def.vd_flags = 0;
6189 if (t->globals.list == NULL
6190 && t->locals.list == NULL
6191 && ! t->used)
6192 def.vd_flags |= VER_FLG_WEAK;
6193 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6194 def.vd_cnt = cdeps + 1;
6195 def.vd_hash = bfd_elf_hash (t->name);
6196 def.vd_aux = sizeof (Elf_External_Verdef);
6197 def.vd_next = 0;
6198
6199 /* If a basever node is next, it *must* be the last node in
6200 the chain, otherwise Verdef construction breaks. */
6201 if (t->next != NULL && t->next->vernum == 0)
6202 BFD_ASSERT (t->next->next == NULL);
6203
6204 if (t->next != NULL && t->next->vernum != 0)
6205 def.vd_next = (sizeof (Elf_External_Verdef)
6206 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6207
6208 _bfd_elf_swap_verdef_out (output_bfd, &def,
6209 (Elf_External_Verdef *) p);
6210 p += sizeof (Elf_External_Verdef);
6211
6212 defaux.vda_name = h->dynstr_index;
6213 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6214 h->dynstr_index);
6215 defaux.vda_next = 0;
6216 if (t->deps != NULL)
6217 defaux.vda_next = sizeof (Elf_External_Verdaux);
6218 t->name_indx = defaux.vda_name;
6219
6220 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6221 (Elf_External_Verdaux *) p);
6222 p += sizeof (Elf_External_Verdaux);
6223
6224 for (n = t->deps; n != NULL; n = n->next)
6225 {
6226 if (n->version_needed == NULL)
6227 {
6228 /* This can happen if there was an error in the
6229 version script. */
6230 defaux.vda_name = 0;
6231 }
6232 else
6233 {
6234 defaux.vda_name = n->version_needed->name_indx;
6235 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6236 defaux.vda_name);
6237 }
6238 if (n->next == NULL)
6239 defaux.vda_next = 0;
6240 else
6241 defaux.vda_next = sizeof (Elf_External_Verdaux);
6242
6243 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6244 (Elf_External_Verdaux *) p);
6245 p += sizeof (Elf_External_Verdaux);
6246 }
6247 }
6248
6249 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6250 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6251 return FALSE;
6252
6253 elf_tdata (output_bfd)->cverdefs = cdefs;
6254 }
6255
6256 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6257 {
6258 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6259 return FALSE;
6260 }
6261 else if (info->flags & DF_BIND_NOW)
6262 {
6263 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6264 return FALSE;
6265 }
6266
6267 if (info->flags_1)
6268 {
6269 if (info->executable)
6270 info->flags_1 &= ~ (DF_1_INITFIRST
6271 | DF_1_NODELETE
6272 | DF_1_NOOPEN);
6273 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6274 return FALSE;
6275 }
6276
6277 /* Work out the size of the version reference section. */
6278
6279 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6280 BFD_ASSERT (s != NULL);
6281 {
6282 struct elf_find_verdep_info sinfo;
6283
6284 sinfo.info = info;
6285 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6286 if (sinfo.vers == 0)
6287 sinfo.vers = 1;
6288 sinfo.failed = FALSE;
6289
6290 elf_link_hash_traverse (elf_hash_table (info),
6291 _bfd_elf_link_find_version_dependencies,
6292 &sinfo);
6293 if (sinfo.failed)
6294 return FALSE;
6295
6296 if (elf_tdata (output_bfd)->verref == NULL)
6297 s->flags |= SEC_EXCLUDE;
6298 else
6299 {
6300 Elf_Internal_Verneed *t;
6301 unsigned int size;
6302 unsigned int crefs;
6303 bfd_byte *p;
6304
6305 /* Build the version dependency section. */
6306 size = 0;
6307 crefs = 0;
6308 for (t = elf_tdata (output_bfd)->verref;
6309 t != NULL;
6310 t = t->vn_nextref)
6311 {
6312 Elf_Internal_Vernaux *a;
6313
6314 size += sizeof (Elf_External_Verneed);
6315 ++crefs;
6316 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6317 size += sizeof (Elf_External_Vernaux);
6318 }
6319
6320 s->size = size;
6321 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6322 if (s->contents == NULL)
6323 return FALSE;
6324
6325 p = s->contents;
6326 for (t = elf_tdata (output_bfd)->verref;
6327 t != NULL;
6328 t = t->vn_nextref)
6329 {
6330 unsigned int caux;
6331 Elf_Internal_Vernaux *a;
6332 bfd_size_type indx;
6333
6334 caux = 0;
6335 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6336 ++caux;
6337
6338 t->vn_version = VER_NEED_CURRENT;
6339 t->vn_cnt = caux;
6340 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6341 elf_dt_name (t->vn_bfd) != NULL
6342 ? elf_dt_name (t->vn_bfd)
6343 : lbasename (t->vn_bfd->filename),
6344 FALSE);
6345 if (indx == (bfd_size_type) -1)
6346 return FALSE;
6347 t->vn_file = indx;
6348 t->vn_aux = sizeof (Elf_External_Verneed);
6349 if (t->vn_nextref == NULL)
6350 t->vn_next = 0;
6351 else
6352 t->vn_next = (sizeof (Elf_External_Verneed)
6353 + caux * sizeof (Elf_External_Vernaux));
6354
6355 _bfd_elf_swap_verneed_out (output_bfd, t,
6356 (Elf_External_Verneed *) p);
6357 p += sizeof (Elf_External_Verneed);
6358
6359 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6360 {
6361 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6362 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6363 a->vna_nodename, FALSE);
6364 if (indx == (bfd_size_type) -1)
6365 return FALSE;
6366 a->vna_name = indx;
6367 if (a->vna_nextptr == NULL)
6368 a->vna_next = 0;
6369 else
6370 a->vna_next = sizeof (Elf_External_Vernaux);
6371
6372 _bfd_elf_swap_vernaux_out (output_bfd, a,
6373 (Elf_External_Vernaux *) p);
6374 p += sizeof (Elf_External_Vernaux);
6375 }
6376 }
6377
6378 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6379 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6380 return FALSE;
6381
6382 elf_tdata (output_bfd)->cverrefs = crefs;
6383 }
6384 }
6385
6386 if ((elf_tdata (output_bfd)->cverrefs == 0
6387 && elf_tdata (output_bfd)->cverdefs == 0)
6388 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6389 &section_sym_count) == 0)
6390 {
6391 s = bfd_get_linker_section (dynobj, ".gnu.version");
6392 s->flags |= SEC_EXCLUDE;
6393 }
6394 }
6395 return TRUE;
6396 }
6397
6398 /* Find the first non-excluded output section. We'll use its
6399 section symbol for some emitted relocs. */
6400 void
6401 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6402 {
6403 asection *s;
6404
6405 for (s = output_bfd->sections; s != NULL; s = s->next)
6406 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6407 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6408 {
6409 elf_hash_table (info)->text_index_section = s;
6410 break;
6411 }
6412 }
6413
6414 /* Find two non-excluded output sections, one for code, one for data.
6415 We'll use their section symbols for some emitted relocs. */
6416 void
6417 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6418 {
6419 asection *s;
6420
6421 /* Data first, since setting text_index_section changes
6422 _bfd_elf_link_omit_section_dynsym. */
6423 for (s = output_bfd->sections; s != NULL; s = s->next)
6424 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6425 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6426 {
6427 elf_hash_table (info)->data_index_section = s;
6428 break;
6429 }
6430
6431 for (s = output_bfd->sections; s != NULL; s = s->next)
6432 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6433 == (SEC_ALLOC | SEC_READONLY))
6434 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6435 {
6436 elf_hash_table (info)->text_index_section = s;
6437 break;
6438 }
6439
6440 if (elf_hash_table (info)->text_index_section == NULL)
6441 elf_hash_table (info)->text_index_section
6442 = elf_hash_table (info)->data_index_section;
6443 }
6444
6445 bfd_boolean
6446 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6447 {
6448 const struct elf_backend_data *bed;
6449
6450 if (!is_elf_hash_table (info->hash))
6451 return TRUE;
6452
6453 bed = get_elf_backend_data (output_bfd);
6454 (*bed->elf_backend_init_index_section) (output_bfd, info);
6455
6456 if (elf_hash_table (info)->dynamic_sections_created)
6457 {
6458 bfd *dynobj;
6459 asection *s;
6460 bfd_size_type dynsymcount;
6461 unsigned long section_sym_count;
6462 unsigned int dtagcount;
6463
6464 dynobj = elf_hash_table (info)->dynobj;
6465
6466 /* Assign dynsym indicies. In a shared library we generate a
6467 section symbol for each output section, which come first.
6468 Next come all of the back-end allocated local dynamic syms,
6469 followed by the rest of the global symbols. */
6470
6471 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6472 &section_sym_count);
6473
6474 /* Work out the size of the symbol version section. */
6475 s = bfd_get_linker_section (dynobj, ".gnu.version");
6476 BFD_ASSERT (s != NULL);
6477 if (dynsymcount != 0
6478 && (s->flags & SEC_EXCLUDE) == 0)
6479 {
6480 s->size = dynsymcount * sizeof (Elf_External_Versym);
6481 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6482 if (s->contents == NULL)
6483 return FALSE;
6484
6485 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6486 return FALSE;
6487 }
6488
6489 /* Set the size of the .dynsym and .hash sections. We counted
6490 the number of dynamic symbols in elf_link_add_object_symbols.
6491 We will build the contents of .dynsym and .hash when we build
6492 the final symbol table, because until then we do not know the
6493 correct value to give the symbols. We built the .dynstr
6494 section as we went along in elf_link_add_object_symbols. */
6495 s = bfd_get_linker_section (dynobj, ".dynsym");
6496 BFD_ASSERT (s != NULL);
6497 s->size = dynsymcount * bed->s->sizeof_sym;
6498
6499 if (dynsymcount != 0)
6500 {
6501 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6502 if (s->contents == NULL)
6503 return FALSE;
6504
6505 /* The first entry in .dynsym is a dummy symbol.
6506 Clear all the section syms, in case we don't output them all. */
6507 ++section_sym_count;
6508 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6509 }
6510
6511 elf_hash_table (info)->bucketcount = 0;
6512
6513 /* Compute the size of the hashing table. As a side effect this
6514 computes the hash values for all the names we export. */
6515 if (info->emit_hash)
6516 {
6517 unsigned long int *hashcodes;
6518 struct hash_codes_info hashinf;
6519 bfd_size_type amt;
6520 unsigned long int nsyms;
6521 size_t bucketcount;
6522 size_t hash_entry_size;
6523
6524 /* Compute the hash values for all exported symbols. At the same
6525 time store the values in an array so that we could use them for
6526 optimizations. */
6527 amt = dynsymcount * sizeof (unsigned long int);
6528 hashcodes = (unsigned long int *) bfd_malloc (amt);
6529 if (hashcodes == NULL)
6530 return FALSE;
6531 hashinf.hashcodes = hashcodes;
6532 hashinf.error = FALSE;
6533
6534 /* Put all hash values in HASHCODES. */
6535 elf_link_hash_traverse (elf_hash_table (info),
6536 elf_collect_hash_codes, &hashinf);
6537 if (hashinf.error)
6538 {
6539 free (hashcodes);
6540 return FALSE;
6541 }
6542
6543 nsyms = hashinf.hashcodes - hashcodes;
6544 bucketcount
6545 = compute_bucket_count (info, hashcodes, nsyms, 0);
6546 free (hashcodes);
6547
6548 if (bucketcount == 0)
6549 return FALSE;
6550
6551 elf_hash_table (info)->bucketcount = bucketcount;
6552
6553 s = bfd_get_linker_section (dynobj, ".hash");
6554 BFD_ASSERT (s != NULL);
6555 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6556 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6557 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6558 if (s->contents == NULL)
6559 return FALSE;
6560
6561 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6562 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6563 s->contents + hash_entry_size);
6564 }
6565
6566 if (info->emit_gnu_hash)
6567 {
6568 size_t i, cnt;
6569 unsigned char *contents;
6570 struct collect_gnu_hash_codes cinfo;
6571 bfd_size_type amt;
6572 size_t bucketcount;
6573
6574 memset (&cinfo, 0, sizeof (cinfo));
6575
6576 /* Compute the hash values for all exported symbols. At the same
6577 time store the values in an array so that we could use them for
6578 optimizations. */
6579 amt = dynsymcount * 2 * sizeof (unsigned long int);
6580 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6581 if (cinfo.hashcodes == NULL)
6582 return FALSE;
6583
6584 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6585 cinfo.min_dynindx = -1;
6586 cinfo.output_bfd = output_bfd;
6587 cinfo.bed = bed;
6588
6589 /* Put all hash values in HASHCODES. */
6590 elf_link_hash_traverse (elf_hash_table (info),
6591 elf_collect_gnu_hash_codes, &cinfo);
6592 if (cinfo.error)
6593 {
6594 free (cinfo.hashcodes);
6595 return FALSE;
6596 }
6597
6598 bucketcount
6599 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6600
6601 if (bucketcount == 0)
6602 {
6603 free (cinfo.hashcodes);
6604 return FALSE;
6605 }
6606
6607 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6608 BFD_ASSERT (s != NULL);
6609
6610 if (cinfo.nsyms == 0)
6611 {
6612 /* Empty .gnu.hash section is special. */
6613 BFD_ASSERT (cinfo.min_dynindx == -1);
6614 free (cinfo.hashcodes);
6615 s->size = 5 * 4 + bed->s->arch_size / 8;
6616 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6617 if (contents == NULL)
6618 return FALSE;
6619 s->contents = contents;
6620 /* 1 empty bucket. */
6621 bfd_put_32 (output_bfd, 1, contents);
6622 /* SYMIDX above the special symbol 0. */
6623 bfd_put_32 (output_bfd, 1, contents + 4);
6624 /* Just one word for bitmask. */
6625 bfd_put_32 (output_bfd, 1, contents + 8);
6626 /* Only hash fn bloom filter. */
6627 bfd_put_32 (output_bfd, 0, contents + 12);
6628 /* No hashes are valid - empty bitmask. */
6629 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6630 /* No hashes in the only bucket. */
6631 bfd_put_32 (output_bfd, 0,
6632 contents + 16 + bed->s->arch_size / 8);
6633 }
6634 else
6635 {
6636 unsigned long int maskwords, maskbitslog2, x;
6637 BFD_ASSERT (cinfo.min_dynindx != -1);
6638
6639 x = cinfo.nsyms;
6640 maskbitslog2 = 1;
6641 while ((x >>= 1) != 0)
6642 ++maskbitslog2;
6643 if (maskbitslog2 < 3)
6644 maskbitslog2 = 5;
6645 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6646 maskbitslog2 = maskbitslog2 + 3;
6647 else
6648 maskbitslog2 = maskbitslog2 + 2;
6649 if (bed->s->arch_size == 64)
6650 {
6651 if (maskbitslog2 == 5)
6652 maskbitslog2 = 6;
6653 cinfo.shift1 = 6;
6654 }
6655 else
6656 cinfo.shift1 = 5;
6657 cinfo.mask = (1 << cinfo.shift1) - 1;
6658 cinfo.shift2 = maskbitslog2;
6659 cinfo.maskbits = 1 << maskbitslog2;
6660 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6661 amt = bucketcount * sizeof (unsigned long int) * 2;
6662 amt += maskwords * sizeof (bfd_vma);
6663 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6664 if (cinfo.bitmask == NULL)
6665 {
6666 free (cinfo.hashcodes);
6667 return FALSE;
6668 }
6669
6670 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6671 cinfo.indx = cinfo.counts + bucketcount;
6672 cinfo.symindx = dynsymcount - cinfo.nsyms;
6673 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6674
6675 /* Determine how often each hash bucket is used. */
6676 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6677 for (i = 0; i < cinfo.nsyms; ++i)
6678 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6679
6680 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6681 if (cinfo.counts[i] != 0)
6682 {
6683 cinfo.indx[i] = cnt;
6684 cnt += cinfo.counts[i];
6685 }
6686 BFD_ASSERT (cnt == dynsymcount);
6687 cinfo.bucketcount = bucketcount;
6688 cinfo.local_indx = cinfo.min_dynindx;
6689
6690 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6691 s->size += cinfo.maskbits / 8;
6692 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6693 if (contents == NULL)
6694 {
6695 free (cinfo.bitmask);
6696 free (cinfo.hashcodes);
6697 return FALSE;
6698 }
6699
6700 s->contents = contents;
6701 bfd_put_32 (output_bfd, bucketcount, contents);
6702 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6703 bfd_put_32 (output_bfd, maskwords, contents + 8);
6704 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6705 contents += 16 + cinfo.maskbits / 8;
6706
6707 for (i = 0; i < bucketcount; ++i)
6708 {
6709 if (cinfo.counts[i] == 0)
6710 bfd_put_32 (output_bfd, 0, contents);
6711 else
6712 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6713 contents += 4;
6714 }
6715
6716 cinfo.contents = contents;
6717
6718 /* Renumber dynamic symbols, populate .gnu.hash section. */
6719 elf_link_hash_traverse (elf_hash_table (info),
6720 elf_renumber_gnu_hash_syms, &cinfo);
6721
6722 contents = s->contents + 16;
6723 for (i = 0; i < maskwords; ++i)
6724 {
6725 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6726 contents);
6727 contents += bed->s->arch_size / 8;
6728 }
6729
6730 free (cinfo.bitmask);
6731 free (cinfo.hashcodes);
6732 }
6733 }
6734
6735 s = bfd_get_linker_section (dynobj, ".dynstr");
6736 BFD_ASSERT (s != NULL);
6737
6738 elf_finalize_dynstr (output_bfd, info);
6739
6740 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6741
6742 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6743 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6744 return FALSE;
6745 }
6746
6747 return TRUE;
6748 }
6749 \f
6750 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6751
6752 static void
6753 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6754 asection *sec)
6755 {
6756 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6757 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6758 }
6759
6760 /* Finish SHF_MERGE section merging. */
6761
6762 bfd_boolean
6763 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6764 {
6765 bfd *ibfd;
6766 asection *sec;
6767
6768 if (!is_elf_hash_table (info->hash))
6769 return FALSE;
6770
6771 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6772 if ((ibfd->flags & DYNAMIC) == 0)
6773 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6774 if ((sec->flags & SEC_MERGE) != 0
6775 && !bfd_is_abs_section (sec->output_section))
6776 {
6777 struct bfd_elf_section_data *secdata;
6778
6779 secdata = elf_section_data (sec);
6780 if (! _bfd_add_merge_section (abfd,
6781 &elf_hash_table (info)->merge_info,
6782 sec, &secdata->sec_info))
6783 return FALSE;
6784 else if (secdata->sec_info)
6785 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6786 }
6787
6788 if (elf_hash_table (info)->merge_info != NULL)
6789 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6790 merge_sections_remove_hook);
6791 return TRUE;
6792 }
6793
6794 /* Create an entry in an ELF linker hash table. */
6795
6796 struct bfd_hash_entry *
6797 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6798 struct bfd_hash_table *table,
6799 const char *string)
6800 {
6801 /* Allocate the structure if it has not already been allocated by a
6802 subclass. */
6803 if (entry == NULL)
6804 {
6805 entry = (struct bfd_hash_entry *)
6806 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6807 if (entry == NULL)
6808 return entry;
6809 }
6810
6811 /* Call the allocation method of the superclass. */
6812 entry = _bfd_link_hash_newfunc (entry, table, string);
6813 if (entry != NULL)
6814 {
6815 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6816 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6817
6818 /* Set local fields. */
6819 ret->indx = -1;
6820 ret->dynindx = -1;
6821 ret->got = htab->init_got_refcount;
6822 ret->plt = htab->init_plt_refcount;
6823 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6824 - offsetof (struct elf_link_hash_entry, size)));
6825 /* Assume that we have been called by a non-ELF symbol reader.
6826 This flag is then reset by the code which reads an ELF input
6827 file. This ensures that a symbol created by a non-ELF symbol
6828 reader will have the flag set correctly. */
6829 ret->non_elf = 1;
6830 }
6831
6832 return entry;
6833 }
6834
6835 /* Copy data from an indirect symbol to its direct symbol, hiding the
6836 old indirect symbol. Also used for copying flags to a weakdef. */
6837
6838 void
6839 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6840 struct elf_link_hash_entry *dir,
6841 struct elf_link_hash_entry *ind)
6842 {
6843 struct elf_link_hash_table *htab;
6844
6845 /* Copy down any references that we may have already seen to the
6846 symbol which just became indirect. */
6847
6848 dir->ref_dynamic |= ind->ref_dynamic;
6849 dir->ref_regular |= ind->ref_regular;
6850 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6851 dir->non_got_ref |= ind->non_got_ref;
6852 dir->needs_plt |= ind->needs_plt;
6853 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6854
6855 if (ind->root.type != bfd_link_hash_indirect)
6856 return;
6857
6858 /* Copy over the global and procedure linkage table refcount entries.
6859 These may have been already set up by a check_relocs routine. */
6860 htab = elf_hash_table (info);
6861 if (ind->got.refcount > htab->init_got_refcount.refcount)
6862 {
6863 if (dir->got.refcount < 0)
6864 dir->got.refcount = 0;
6865 dir->got.refcount += ind->got.refcount;
6866 ind->got.refcount = htab->init_got_refcount.refcount;
6867 }
6868
6869 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6870 {
6871 if (dir->plt.refcount < 0)
6872 dir->plt.refcount = 0;
6873 dir->plt.refcount += ind->plt.refcount;
6874 ind->plt.refcount = htab->init_plt_refcount.refcount;
6875 }
6876
6877 if (ind->dynindx != -1)
6878 {
6879 if (dir->dynindx != -1)
6880 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6881 dir->dynindx = ind->dynindx;
6882 dir->dynstr_index = ind->dynstr_index;
6883 ind->dynindx = -1;
6884 ind->dynstr_index = 0;
6885 }
6886 }
6887
6888 void
6889 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6890 struct elf_link_hash_entry *h,
6891 bfd_boolean force_local)
6892 {
6893 /* STT_GNU_IFUNC symbol must go through PLT. */
6894 if (h->type != STT_GNU_IFUNC)
6895 {
6896 h->plt = elf_hash_table (info)->init_plt_offset;
6897 h->needs_plt = 0;
6898 }
6899 if (force_local)
6900 {
6901 h->forced_local = 1;
6902 if (h->dynindx != -1)
6903 {
6904 h->dynindx = -1;
6905 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6906 h->dynstr_index);
6907 }
6908 }
6909 }
6910
6911 /* Initialize an ELF linker hash table. */
6912
6913 bfd_boolean
6914 _bfd_elf_link_hash_table_init
6915 (struct elf_link_hash_table *table,
6916 bfd *abfd,
6917 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6918 struct bfd_hash_table *,
6919 const char *),
6920 unsigned int entsize,
6921 enum elf_target_id target_id)
6922 {
6923 bfd_boolean ret;
6924 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6925
6926 memset (table, 0, sizeof * table);
6927 table->init_got_refcount.refcount = can_refcount - 1;
6928 table->init_plt_refcount.refcount = can_refcount - 1;
6929 table->init_got_offset.offset = -(bfd_vma) 1;
6930 table->init_plt_offset.offset = -(bfd_vma) 1;
6931 /* The first dynamic symbol is a dummy. */
6932 table->dynsymcount = 1;
6933
6934 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6935
6936 table->root.type = bfd_link_elf_hash_table;
6937 table->hash_table_id = target_id;
6938
6939 return ret;
6940 }
6941
6942 /* Create an ELF linker hash table. */
6943
6944 struct bfd_link_hash_table *
6945 _bfd_elf_link_hash_table_create (bfd *abfd)
6946 {
6947 struct elf_link_hash_table *ret;
6948 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6949
6950 ret = (struct elf_link_hash_table *) bfd_malloc (amt);
6951 if (ret == NULL)
6952 return NULL;
6953
6954 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6955 sizeof (struct elf_link_hash_entry),
6956 GENERIC_ELF_DATA))
6957 {
6958 free (ret);
6959 return NULL;
6960 }
6961
6962 return &ret->root;
6963 }
6964
6965 /* This is a hook for the ELF emulation code in the generic linker to
6966 tell the backend linker what file name to use for the DT_NEEDED
6967 entry for a dynamic object. */
6968
6969 void
6970 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6971 {
6972 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6973 && bfd_get_format (abfd) == bfd_object)
6974 elf_dt_name (abfd) = name;
6975 }
6976
6977 int
6978 bfd_elf_get_dyn_lib_class (bfd *abfd)
6979 {
6980 int lib_class;
6981 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6982 && bfd_get_format (abfd) == bfd_object)
6983 lib_class = elf_dyn_lib_class (abfd);
6984 else
6985 lib_class = 0;
6986 return lib_class;
6987 }
6988
6989 void
6990 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6991 {
6992 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6993 && bfd_get_format (abfd) == bfd_object)
6994 elf_dyn_lib_class (abfd) = lib_class;
6995 }
6996
6997 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6998 the linker ELF emulation code. */
6999
7000 struct bfd_link_needed_list *
7001 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7002 struct bfd_link_info *info)
7003 {
7004 if (! is_elf_hash_table (info->hash))
7005 return NULL;
7006 return elf_hash_table (info)->needed;
7007 }
7008
7009 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7010 hook for the linker ELF emulation code. */
7011
7012 struct bfd_link_needed_list *
7013 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7014 struct bfd_link_info *info)
7015 {
7016 if (! is_elf_hash_table (info->hash))
7017 return NULL;
7018 return elf_hash_table (info)->runpath;
7019 }
7020
7021 /* Get the name actually used for a dynamic object for a link. This
7022 is the SONAME entry if there is one. Otherwise, it is the string
7023 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7024
7025 const char *
7026 bfd_elf_get_dt_soname (bfd *abfd)
7027 {
7028 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7029 && bfd_get_format (abfd) == bfd_object)
7030 return elf_dt_name (abfd);
7031 return NULL;
7032 }
7033
7034 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7035 the ELF linker emulation code. */
7036
7037 bfd_boolean
7038 bfd_elf_get_bfd_needed_list (bfd *abfd,
7039 struct bfd_link_needed_list **pneeded)
7040 {
7041 asection *s;
7042 bfd_byte *dynbuf = NULL;
7043 unsigned int elfsec;
7044 unsigned long shlink;
7045 bfd_byte *extdyn, *extdynend;
7046 size_t extdynsize;
7047 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7048
7049 *pneeded = NULL;
7050
7051 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7052 || bfd_get_format (abfd) != bfd_object)
7053 return TRUE;
7054
7055 s = bfd_get_section_by_name (abfd, ".dynamic");
7056 if (s == NULL || s->size == 0)
7057 return TRUE;
7058
7059 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7060 goto error_return;
7061
7062 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7063 if (elfsec == SHN_BAD)
7064 goto error_return;
7065
7066 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7067
7068 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7069 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7070
7071 extdyn = dynbuf;
7072 extdynend = extdyn + s->size;
7073 for (; extdyn < extdynend; extdyn += extdynsize)
7074 {
7075 Elf_Internal_Dyn dyn;
7076
7077 (*swap_dyn_in) (abfd, extdyn, &dyn);
7078
7079 if (dyn.d_tag == DT_NULL)
7080 break;
7081
7082 if (dyn.d_tag == DT_NEEDED)
7083 {
7084 const char *string;
7085 struct bfd_link_needed_list *l;
7086 unsigned int tagv = dyn.d_un.d_val;
7087 bfd_size_type amt;
7088
7089 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7090 if (string == NULL)
7091 goto error_return;
7092
7093 amt = sizeof *l;
7094 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7095 if (l == NULL)
7096 goto error_return;
7097
7098 l->by = abfd;
7099 l->name = string;
7100 l->next = *pneeded;
7101 *pneeded = l;
7102 }
7103 }
7104
7105 free (dynbuf);
7106
7107 return TRUE;
7108
7109 error_return:
7110 if (dynbuf != NULL)
7111 free (dynbuf);
7112 return FALSE;
7113 }
7114
7115 struct elf_symbuf_symbol
7116 {
7117 unsigned long st_name; /* Symbol name, index in string tbl */
7118 unsigned char st_info; /* Type and binding attributes */
7119 unsigned char st_other; /* Visibilty, and target specific */
7120 };
7121
7122 struct elf_symbuf_head
7123 {
7124 struct elf_symbuf_symbol *ssym;
7125 bfd_size_type count;
7126 unsigned int st_shndx;
7127 };
7128
7129 struct elf_symbol
7130 {
7131 union
7132 {
7133 Elf_Internal_Sym *isym;
7134 struct elf_symbuf_symbol *ssym;
7135 } u;
7136 const char *name;
7137 };
7138
7139 /* Sort references to symbols by ascending section number. */
7140
7141 static int
7142 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7143 {
7144 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7145 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7146
7147 return s1->st_shndx - s2->st_shndx;
7148 }
7149
7150 static int
7151 elf_sym_name_compare (const void *arg1, const void *arg2)
7152 {
7153 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7154 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7155 return strcmp (s1->name, s2->name);
7156 }
7157
7158 static struct elf_symbuf_head *
7159 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7160 {
7161 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7162 struct elf_symbuf_symbol *ssym;
7163 struct elf_symbuf_head *ssymbuf, *ssymhead;
7164 bfd_size_type i, shndx_count, total_size;
7165
7166 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7167 if (indbuf == NULL)
7168 return NULL;
7169
7170 for (ind = indbuf, i = 0; i < symcount; i++)
7171 if (isymbuf[i].st_shndx != SHN_UNDEF)
7172 *ind++ = &isymbuf[i];
7173 indbufend = ind;
7174
7175 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7176 elf_sort_elf_symbol);
7177
7178 shndx_count = 0;
7179 if (indbufend > indbuf)
7180 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7181 if (ind[0]->st_shndx != ind[1]->st_shndx)
7182 shndx_count++;
7183
7184 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7185 + (indbufend - indbuf) * sizeof (*ssym));
7186 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7187 if (ssymbuf == NULL)
7188 {
7189 free (indbuf);
7190 return NULL;
7191 }
7192
7193 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7194 ssymbuf->ssym = NULL;
7195 ssymbuf->count = shndx_count;
7196 ssymbuf->st_shndx = 0;
7197 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7198 {
7199 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7200 {
7201 ssymhead++;
7202 ssymhead->ssym = ssym;
7203 ssymhead->count = 0;
7204 ssymhead->st_shndx = (*ind)->st_shndx;
7205 }
7206 ssym->st_name = (*ind)->st_name;
7207 ssym->st_info = (*ind)->st_info;
7208 ssym->st_other = (*ind)->st_other;
7209 ssymhead->count++;
7210 }
7211 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7212 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7213 == total_size));
7214
7215 free (indbuf);
7216 return ssymbuf;
7217 }
7218
7219 /* Check if 2 sections define the same set of local and global
7220 symbols. */
7221
7222 static bfd_boolean
7223 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7224 struct bfd_link_info *info)
7225 {
7226 bfd *bfd1, *bfd2;
7227 const struct elf_backend_data *bed1, *bed2;
7228 Elf_Internal_Shdr *hdr1, *hdr2;
7229 bfd_size_type symcount1, symcount2;
7230 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7231 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7232 Elf_Internal_Sym *isym, *isymend;
7233 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7234 bfd_size_type count1, count2, i;
7235 unsigned int shndx1, shndx2;
7236 bfd_boolean result;
7237
7238 bfd1 = sec1->owner;
7239 bfd2 = sec2->owner;
7240
7241 /* Both sections have to be in ELF. */
7242 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7243 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7244 return FALSE;
7245
7246 if (elf_section_type (sec1) != elf_section_type (sec2))
7247 return FALSE;
7248
7249 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7250 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7251 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7252 return FALSE;
7253
7254 bed1 = get_elf_backend_data (bfd1);
7255 bed2 = get_elf_backend_data (bfd2);
7256 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7257 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7258 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7259 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7260
7261 if (symcount1 == 0 || symcount2 == 0)
7262 return FALSE;
7263
7264 result = FALSE;
7265 isymbuf1 = NULL;
7266 isymbuf2 = NULL;
7267 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7268 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7269
7270 if (ssymbuf1 == NULL)
7271 {
7272 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7273 NULL, NULL, NULL);
7274 if (isymbuf1 == NULL)
7275 goto done;
7276
7277 if (!info->reduce_memory_overheads)
7278 elf_tdata (bfd1)->symbuf = ssymbuf1
7279 = elf_create_symbuf (symcount1, isymbuf1);
7280 }
7281
7282 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7283 {
7284 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7285 NULL, NULL, NULL);
7286 if (isymbuf2 == NULL)
7287 goto done;
7288
7289 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7290 elf_tdata (bfd2)->symbuf = ssymbuf2
7291 = elf_create_symbuf (symcount2, isymbuf2);
7292 }
7293
7294 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7295 {
7296 /* Optimized faster version. */
7297 bfd_size_type lo, hi, mid;
7298 struct elf_symbol *symp;
7299 struct elf_symbuf_symbol *ssym, *ssymend;
7300
7301 lo = 0;
7302 hi = ssymbuf1->count;
7303 ssymbuf1++;
7304 count1 = 0;
7305 while (lo < hi)
7306 {
7307 mid = (lo + hi) / 2;
7308 if (shndx1 < ssymbuf1[mid].st_shndx)
7309 hi = mid;
7310 else if (shndx1 > ssymbuf1[mid].st_shndx)
7311 lo = mid + 1;
7312 else
7313 {
7314 count1 = ssymbuf1[mid].count;
7315 ssymbuf1 += mid;
7316 break;
7317 }
7318 }
7319
7320 lo = 0;
7321 hi = ssymbuf2->count;
7322 ssymbuf2++;
7323 count2 = 0;
7324 while (lo < hi)
7325 {
7326 mid = (lo + hi) / 2;
7327 if (shndx2 < ssymbuf2[mid].st_shndx)
7328 hi = mid;
7329 else if (shndx2 > ssymbuf2[mid].st_shndx)
7330 lo = mid + 1;
7331 else
7332 {
7333 count2 = ssymbuf2[mid].count;
7334 ssymbuf2 += mid;
7335 break;
7336 }
7337 }
7338
7339 if (count1 == 0 || count2 == 0 || count1 != count2)
7340 goto done;
7341
7342 symtable1 = (struct elf_symbol *)
7343 bfd_malloc (count1 * sizeof (struct elf_symbol));
7344 symtable2 = (struct elf_symbol *)
7345 bfd_malloc (count2 * sizeof (struct elf_symbol));
7346 if (symtable1 == NULL || symtable2 == NULL)
7347 goto done;
7348
7349 symp = symtable1;
7350 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7351 ssym < ssymend; ssym++, symp++)
7352 {
7353 symp->u.ssym = ssym;
7354 symp->name = bfd_elf_string_from_elf_section (bfd1,
7355 hdr1->sh_link,
7356 ssym->st_name);
7357 }
7358
7359 symp = symtable2;
7360 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7361 ssym < ssymend; ssym++, symp++)
7362 {
7363 symp->u.ssym = ssym;
7364 symp->name = bfd_elf_string_from_elf_section (bfd2,
7365 hdr2->sh_link,
7366 ssym->st_name);
7367 }
7368
7369 /* Sort symbol by name. */
7370 qsort (symtable1, count1, sizeof (struct elf_symbol),
7371 elf_sym_name_compare);
7372 qsort (symtable2, count1, sizeof (struct elf_symbol),
7373 elf_sym_name_compare);
7374
7375 for (i = 0; i < count1; i++)
7376 /* Two symbols must have the same binding, type and name. */
7377 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7378 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7379 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7380 goto done;
7381
7382 result = TRUE;
7383 goto done;
7384 }
7385
7386 symtable1 = (struct elf_symbol *)
7387 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7388 symtable2 = (struct elf_symbol *)
7389 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7390 if (symtable1 == NULL || symtable2 == NULL)
7391 goto done;
7392
7393 /* Count definitions in the section. */
7394 count1 = 0;
7395 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7396 if (isym->st_shndx == shndx1)
7397 symtable1[count1++].u.isym = isym;
7398
7399 count2 = 0;
7400 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7401 if (isym->st_shndx == shndx2)
7402 symtable2[count2++].u.isym = isym;
7403
7404 if (count1 == 0 || count2 == 0 || count1 != count2)
7405 goto done;
7406
7407 for (i = 0; i < count1; i++)
7408 symtable1[i].name
7409 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7410 symtable1[i].u.isym->st_name);
7411
7412 for (i = 0; i < count2; i++)
7413 symtable2[i].name
7414 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7415 symtable2[i].u.isym->st_name);
7416
7417 /* Sort symbol by name. */
7418 qsort (symtable1, count1, sizeof (struct elf_symbol),
7419 elf_sym_name_compare);
7420 qsort (symtable2, count1, sizeof (struct elf_symbol),
7421 elf_sym_name_compare);
7422
7423 for (i = 0; i < count1; i++)
7424 /* Two symbols must have the same binding, type and name. */
7425 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7426 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7427 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7428 goto done;
7429
7430 result = TRUE;
7431
7432 done:
7433 if (symtable1)
7434 free (symtable1);
7435 if (symtable2)
7436 free (symtable2);
7437 if (isymbuf1)
7438 free (isymbuf1);
7439 if (isymbuf2)
7440 free (isymbuf2);
7441
7442 return result;
7443 }
7444
7445 /* Return TRUE if 2 section types are compatible. */
7446
7447 bfd_boolean
7448 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7449 bfd *bbfd, const asection *bsec)
7450 {
7451 if (asec == NULL
7452 || bsec == NULL
7453 || abfd->xvec->flavour != bfd_target_elf_flavour
7454 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7455 return TRUE;
7456
7457 return elf_section_type (asec) == elf_section_type (bsec);
7458 }
7459 \f
7460 /* Final phase of ELF linker. */
7461
7462 /* A structure we use to avoid passing large numbers of arguments. */
7463
7464 struct elf_final_link_info
7465 {
7466 /* General link information. */
7467 struct bfd_link_info *info;
7468 /* Output BFD. */
7469 bfd *output_bfd;
7470 /* Symbol string table. */
7471 struct bfd_strtab_hash *symstrtab;
7472 /* .dynsym section. */
7473 asection *dynsym_sec;
7474 /* .hash section. */
7475 asection *hash_sec;
7476 /* symbol version section (.gnu.version). */
7477 asection *symver_sec;
7478 /* Buffer large enough to hold contents of any section. */
7479 bfd_byte *contents;
7480 /* Buffer large enough to hold external relocs of any section. */
7481 void *external_relocs;
7482 /* Buffer large enough to hold internal relocs of any section. */
7483 Elf_Internal_Rela *internal_relocs;
7484 /* Buffer large enough to hold external local symbols of any input
7485 BFD. */
7486 bfd_byte *external_syms;
7487 /* And a buffer for symbol section indices. */
7488 Elf_External_Sym_Shndx *locsym_shndx;
7489 /* Buffer large enough to hold internal local symbols of any input
7490 BFD. */
7491 Elf_Internal_Sym *internal_syms;
7492 /* Array large enough to hold a symbol index for each local symbol
7493 of any input BFD. */
7494 long *indices;
7495 /* Array large enough to hold a section pointer for each local
7496 symbol of any input BFD. */
7497 asection **sections;
7498 /* Buffer to hold swapped out symbols. */
7499 bfd_byte *symbuf;
7500 /* And one for symbol section indices. */
7501 Elf_External_Sym_Shndx *symshndxbuf;
7502 /* Number of swapped out symbols in buffer. */
7503 size_t symbuf_count;
7504 /* Number of symbols which fit in symbuf. */
7505 size_t symbuf_size;
7506 /* And same for symshndxbuf. */
7507 size_t shndxbuf_size;
7508 /* Number of STT_FILE syms seen. */
7509 size_t filesym_count;
7510 };
7511
7512 /* This struct is used to pass information to elf_link_output_extsym. */
7513
7514 struct elf_outext_info
7515 {
7516 bfd_boolean failed;
7517 bfd_boolean localsyms;
7518 bfd_boolean need_second_pass;
7519 bfd_boolean second_pass;
7520 struct elf_final_link_info *flinfo;
7521 };
7522
7523
7524 /* Support for evaluating a complex relocation.
7525
7526 Complex relocations are generalized, self-describing relocations. The
7527 implementation of them consists of two parts: complex symbols, and the
7528 relocations themselves.
7529
7530 The relocations are use a reserved elf-wide relocation type code (R_RELC
7531 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7532 information (start bit, end bit, word width, etc) into the addend. This
7533 information is extracted from CGEN-generated operand tables within gas.
7534
7535 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7536 internal) representing prefix-notation expressions, including but not
7537 limited to those sorts of expressions normally encoded as addends in the
7538 addend field. The symbol mangling format is:
7539
7540 <node> := <literal>
7541 | <unary-operator> ':' <node>
7542 | <binary-operator> ':' <node> ':' <node>
7543 ;
7544
7545 <literal> := 's' <digits=N> ':' <N character symbol name>
7546 | 'S' <digits=N> ':' <N character section name>
7547 | '#' <hexdigits>
7548 ;
7549
7550 <binary-operator> := as in C
7551 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7552
7553 static void
7554 set_symbol_value (bfd *bfd_with_globals,
7555 Elf_Internal_Sym *isymbuf,
7556 size_t locsymcount,
7557 size_t symidx,
7558 bfd_vma val)
7559 {
7560 struct elf_link_hash_entry **sym_hashes;
7561 struct elf_link_hash_entry *h;
7562 size_t extsymoff = locsymcount;
7563
7564 if (symidx < locsymcount)
7565 {
7566 Elf_Internal_Sym *sym;
7567
7568 sym = isymbuf + symidx;
7569 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7570 {
7571 /* It is a local symbol: move it to the
7572 "absolute" section and give it a value. */
7573 sym->st_shndx = SHN_ABS;
7574 sym->st_value = val;
7575 return;
7576 }
7577 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7578 extsymoff = 0;
7579 }
7580
7581 /* It is a global symbol: set its link type
7582 to "defined" and give it a value. */
7583
7584 sym_hashes = elf_sym_hashes (bfd_with_globals);
7585 h = sym_hashes [symidx - extsymoff];
7586 while (h->root.type == bfd_link_hash_indirect
7587 || h->root.type == bfd_link_hash_warning)
7588 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7589 h->root.type = bfd_link_hash_defined;
7590 h->root.u.def.value = val;
7591 h->root.u.def.section = bfd_abs_section_ptr;
7592 }
7593
7594 static bfd_boolean
7595 resolve_symbol (const char *name,
7596 bfd *input_bfd,
7597 struct elf_final_link_info *flinfo,
7598 bfd_vma *result,
7599 Elf_Internal_Sym *isymbuf,
7600 size_t locsymcount)
7601 {
7602 Elf_Internal_Sym *sym;
7603 struct bfd_link_hash_entry *global_entry;
7604 const char *candidate = NULL;
7605 Elf_Internal_Shdr *symtab_hdr;
7606 size_t i;
7607
7608 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7609
7610 for (i = 0; i < locsymcount; ++ i)
7611 {
7612 sym = isymbuf + i;
7613
7614 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7615 continue;
7616
7617 candidate = bfd_elf_string_from_elf_section (input_bfd,
7618 symtab_hdr->sh_link,
7619 sym->st_name);
7620 #ifdef DEBUG
7621 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7622 name, candidate, (unsigned long) sym->st_value);
7623 #endif
7624 if (candidate && strcmp (candidate, name) == 0)
7625 {
7626 asection *sec = flinfo->sections [i];
7627
7628 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7629 *result += sec->output_offset + sec->output_section->vma;
7630 #ifdef DEBUG
7631 printf ("Found symbol with value %8.8lx\n",
7632 (unsigned long) *result);
7633 #endif
7634 return TRUE;
7635 }
7636 }
7637
7638 /* Hmm, haven't found it yet. perhaps it is a global. */
7639 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7640 FALSE, FALSE, TRUE);
7641 if (!global_entry)
7642 return FALSE;
7643
7644 if (global_entry->type == bfd_link_hash_defined
7645 || global_entry->type == bfd_link_hash_defweak)
7646 {
7647 *result = (global_entry->u.def.value
7648 + global_entry->u.def.section->output_section->vma
7649 + global_entry->u.def.section->output_offset);
7650 #ifdef DEBUG
7651 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7652 global_entry->root.string, (unsigned long) *result);
7653 #endif
7654 return TRUE;
7655 }
7656
7657 return FALSE;
7658 }
7659
7660 static bfd_boolean
7661 resolve_section (const char *name,
7662 asection *sections,
7663 bfd_vma *result)
7664 {
7665 asection *curr;
7666 unsigned int len;
7667
7668 for (curr = sections; curr; curr = curr->next)
7669 if (strcmp (curr->name, name) == 0)
7670 {
7671 *result = curr->vma;
7672 return TRUE;
7673 }
7674
7675 /* Hmm. still haven't found it. try pseudo-section names. */
7676 for (curr = sections; curr; curr = curr->next)
7677 {
7678 len = strlen (curr->name);
7679 if (len > strlen (name))
7680 continue;
7681
7682 if (strncmp (curr->name, name, len) == 0)
7683 {
7684 if (strncmp (".end", name + len, 4) == 0)
7685 {
7686 *result = curr->vma + curr->size;
7687 return TRUE;
7688 }
7689
7690 /* Insert more pseudo-section names here, if you like. */
7691 }
7692 }
7693
7694 return FALSE;
7695 }
7696
7697 static void
7698 undefined_reference (const char *reftype, const char *name)
7699 {
7700 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7701 reftype, name);
7702 }
7703
7704 static bfd_boolean
7705 eval_symbol (bfd_vma *result,
7706 const char **symp,
7707 bfd *input_bfd,
7708 struct elf_final_link_info *flinfo,
7709 bfd_vma dot,
7710 Elf_Internal_Sym *isymbuf,
7711 size_t locsymcount,
7712 int signed_p)
7713 {
7714 size_t len;
7715 size_t symlen;
7716 bfd_vma a;
7717 bfd_vma b;
7718 char symbuf[4096];
7719 const char *sym = *symp;
7720 const char *symend;
7721 bfd_boolean symbol_is_section = FALSE;
7722
7723 len = strlen (sym);
7724 symend = sym + len;
7725
7726 if (len < 1 || len > sizeof (symbuf))
7727 {
7728 bfd_set_error (bfd_error_invalid_operation);
7729 return FALSE;
7730 }
7731
7732 switch (* sym)
7733 {
7734 case '.':
7735 *result = dot;
7736 *symp = sym + 1;
7737 return TRUE;
7738
7739 case '#':
7740 ++sym;
7741 *result = strtoul (sym, (char **) symp, 16);
7742 return TRUE;
7743
7744 case 'S':
7745 symbol_is_section = TRUE;
7746 case 's':
7747 ++sym;
7748 symlen = strtol (sym, (char **) symp, 10);
7749 sym = *symp + 1; /* Skip the trailing ':'. */
7750
7751 if (symend < sym || symlen + 1 > sizeof (symbuf))
7752 {
7753 bfd_set_error (bfd_error_invalid_operation);
7754 return FALSE;
7755 }
7756
7757 memcpy (symbuf, sym, symlen);
7758 symbuf[symlen] = '\0';
7759 *symp = sym + symlen;
7760
7761 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7762 the symbol as a section, or vice-versa. so we're pretty liberal in our
7763 interpretation here; section means "try section first", not "must be a
7764 section", and likewise with symbol. */
7765
7766 if (symbol_is_section)
7767 {
7768 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7769 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7770 isymbuf, locsymcount))
7771 {
7772 undefined_reference ("section", symbuf);
7773 return FALSE;
7774 }
7775 }
7776 else
7777 {
7778 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7779 isymbuf, locsymcount)
7780 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7781 result))
7782 {
7783 undefined_reference ("symbol", symbuf);
7784 return FALSE;
7785 }
7786 }
7787
7788 return TRUE;
7789
7790 /* All that remains are operators. */
7791
7792 #define UNARY_OP(op) \
7793 if (strncmp (sym, #op, strlen (#op)) == 0) \
7794 { \
7795 sym += strlen (#op); \
7796 if (*sym == ':') \
7797 ++sym; \
7798 *symp = sym; \
7799 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7800 isymbuf, locsymcount, signed_p)) \
7801 return FALSE; \
7802 if (signed_p) \
7803 *result = op ((bfd_signed_vma) a); \
7804 else \
7805 *result = op a; \
7806 return TRUE; \
7807 }
7808
7809 #define BINARY_OP(op) \
7810 if (strncmp (sym, #op, strlen (#op)) == 0) \
7811 { \
7812 sym += strlen (#op); \
7813 if (*sym == ':') \
7814 ++sym; \
7815 *symp = sym; \
7816 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7817 isymbuf, locsymcount, signed_p)) \
7818 return FALSE; \
7819 ++*symp; \
7820 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7821 isymbuf, locsymcount, signed_p)) \
7822 return FALSE; \
7823 if (signed_p) \
7824 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7825 else \
7826 *result = a op b; \
7827 return TRUE; \
7828 }
7829
7830 default:
7831 UNARY_OP (0-);
7832 BINARY_OP (<<);
7833 BINARY_OP (>>);
7834 BINARY_OP (==);
7835 BINARY_OP (!=);
7836 BINARY_OP (<=);
7837 BINARY_OP (>=);
7838 BINARY_OP (&&);
7839 BINARY_OP (||);
7840 UNARY_OP (~);
7841 UNARY_OP (!);
7842 BINARY_OP (*);
7843 BINARY_OP (/);
7844 BINARY_OP (%);
7845 BINARY_OP (^);
7846 BINARY_OP (|);
7847 BINARY_OP (&);
7848 BINARY_OP (+);
7849 BINARY_OP (-);
7850 BINARY_OP (<);
7851 BINARY_OP (>);
7852 #undef UNARY_OP
7853 #undef BINARY_OP
7854 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7855 bfd_set_error (bfd_error_invalid_operation);
7856 return FALSE;
7857 }
7858 }
7859
7860 static void
7861 put_value (bfd_vma size,
7862 unsigned long chunksz,
7863 bfd *input_bfd,
7864 bfd_vma x,
7865 bfd_byte *location)
7866 {
7867 location += (size - chunksz);
7868
7869 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7870 {
7871 switch (chunksz)
7872 {
7873 default:
7874 case 0:
7875 abort ();
7876 case 1:
7877 bfd_put_8 (input_bfd, x, location);
7878 break;
7879 case 2:
7880 bfd_put_16 (input_bfd, x, location);
7881 break;
7882 case 4:
7883 bfd_put_32 (input_bfd, x, location);
7884 break;
7885 case 8:
7886 #ifdef BFD64
7887 bfd_put_64 (input_bfd, x, location);
7888 #else
7889 abort ();
7890 #endif
7891 break;
7892 }
7893 }
7894 }
7895
7896 static bfd_vma
7897 get_value (bfd_vma size,
7898 unsigned long chunksz,
7899 bfd *input_bfd,
7900 bfd_byte *location)
7901 {
7902 int shift;
7903 bfd_vma x = 0;
7904
7905 /* Sanity checks. */
7906 BFD_ASSERT (chunksz <= sizeof (x)
7907 && size >= chunksz
7908 && chunksz != 0
7909 && (size % chunksz) == 0
7910 && input_bfd != NULL
7911 && location != NULL);
7912
7913 if (chunksz == sizeof (x))
7914 {
7915 BFD_ASSERT (size == chunksz);
7916
7917 /* Make sure that we do not perform an undefined shift operation.
7918 We know that size == chunksz so there will only be one iteration
7919 of the loop below. */
7920 shift = 0;
7921 }
7922 else
7923 shift = 8 * chunksz;
7924
7925 for (; size; size -= chunksz, location += chunksz)
7926 {
7927 switch (chunksz)
7928 {
7929 case 1:
7930 x = (x << shift) | bfd_get_8 (input_bfd, location);
7931 break;
7932 case 2:
7933 x = (x << shift) | bfd_get_16 (input_bfd, location);
7934 break;
7935 case 4:
7936 x = (x << shift) | bfd_get_32 (input_bfd, location);
7937 break;
7938 #ifdef BFD64
7939 case 8:
7940 x = (x << shift) | bfd_get_64 (input_bfd, location);
7941 break;
7942 #endif
7943 default:
7944 abort ();
7945 }
7946 }
7947 return x;
7948 }
7949
7950 static void
7951 decode_complex_addend (unsigned long *start, /* in bits */
7952 unsigned long *oplen, /* in bits */
7953 unsigned long *len, /* in bits */
7954 unsigned long *wordsz, /* in bytes */
7955 unsigned long *chunksz, /* in bytes */
7956 unsigned long *lsb0_p,
7957 unsigned long *signed_p,
7958 unsigned long *trunc_p,
7959 unsigned long encoded)
7960 {
7961 * start = encoded & 0x3F;
7962 * len = (encoded >> 6) & 0x3F;
7963 * oplen = (encoded >> 12) & 0x3F;
7964 * wordsz = (encoded >> 18) & 0xF;
7965 * chunksz = (encoded >> 22) & 0xF;
7966 * lsb0_p = (encoded >> 27) & 1;
7967 * signed_p = (encoded >> 28) & 1;
7968 * trunc_p = (encoded >> 29) & 1;
7969 }
7970
7971 bfd_reloc_status_type
7972 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7973 asection *input_section ATTRIBUTE_UNUSED,
7974 bfd_byte *contents,
7975 Elf_Internal_Rela *rel,
7976 bfd_vma relocation)
7977 {
7978 bfd_vma shift, x, mask;
7979 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7980 bfd_reloc_status_type r;
7981
7982 /* Perform this reloc, since it is complex.
7983 (this is not to say that it necessarily refers to a complex
7984 symbol; merely that it is a self-describing CGEN based reloc.
7985 i.e. the addend has the complete reloc information (bit start, end,
7986 word size, etc) encoded within it.). */
7987
7988 decode_complex_addend (&start, &oplen, &len, &wordsz,
7989 &chunksz, &lsb0_p, &signed_p,
7990 &trunc_p, rel->r_addend);
7991
7992 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7993
7994 if (lsb0_p)
7995 shift = (start + 1) - len;
7996 else
7997 shift = (8 * wordsz) - (start + len);
7998
7999 /* FIXME: octets_per_byte. */
8000 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
8001
8002 #ifdef DEBUG
8003 printf ("Doing complex reloc: "
8004 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8005 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8006 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8007 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8008 oplen, (unsigned long) x, (unsigned long) mask,
8009 (unsigned long) relocation);
8010 #endif
8011
8012 r = bfd_reloc_ok;
8013 if (! trunc_p)
8014 /* Now do an overflow check. */
8015 r = bfd_check_overflow ((signed_p
8016 ? complain_overflow_signed
8017 : complain_overflow_unsigned),
8018 len, 0, (8 * wordsz),
8019 relocation);
8020
8021 /* Do the deed. */
8022 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8023
8024 #ifdef DEBUG
8025 printf (" relocation: %8.8lx\n"
8026 " shifted mask: %8.8lx\n"
8027 " shifted/masked reloc: %8.8lx\n"
8028 " result: %8.8lx\n",
8029 (unsigned long) relocation, (unsigned long) (mask << shift),
8030 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8031 #endif
8032 /* FIXME: octets_per_byte. */
8033 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
8034 return r;
8035 }
8036
8037 /* When performing a relocatable link, the input relocations are
8038 preserved. But, if they reference global symbols, the indices
8039 referenced must be updated. Update all the relocations found in
8040 RELDATA. */
8041
8042 static void
8043 elf_link_adjust_relocs (bfd *abfd,
8044 struct bfd_elf_section_reloc_data *reldata)
8045 {
8046 unsigned int i;
8047 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8048 bfd_byte *erela;
8049 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8050 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8051 bfd_vma r_type_mask;
8052 int r_sym_shift;
8053 unsigned int count = reldata->count;
8054 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8055
8056 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8057 {
8058 swap_in = bed->s->swap_reloc_in;
8059 swap_out = bed->s->swap_reloc_out;
8060 }
8061 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8062 {
8063 swap_in = bed->s->swap_reloca_in;
8064 swap_out = bed->s->swap_reloca_out;
8065 }
8066 else
8067 abort ();
8068
8069 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8070 abort ();
8071
8072 if (bed->s->arch_size == 32)
8073 {
8074 r_type_mask = 0xff;
8075 r_sym_shift = 8;
8076 }
8077 else
8078 {
8079 r_type_mask = 0xffffffff;
8080 r_sym_shift = 32;
8081 }
8082
8083 erela = reldata->hdr->contents;
8084 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8085 {
8086 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8087 unsigned int j;
8088
8089 if (*rel_hash == NULL)
8090 continue;
8091
8092 BFD_ASSERT ((*rel_hash)->indx >= 0);
8093
8094 (*swap_in) (abfd, erela, irela);
8095 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8096 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8097 | (irela[j].r_info & r_type_mask));
8098 (*swap_out) (abfd, irela, erela);
8099 }
8100 }
8101
8102 struct elf_link_sort_rela
8103 {
8104 union {
8105 bfd_vma offset;
8106 bfd_vma sym_mask;
8107 } u;
8108 enum elf_reloc_type_class type;
8109 /* We use this as an array of size int_rels_per_ext_rel. */
8110 Elf_Internal_Rela rela[1];
8111 };
8112
8113 static int
8114 elf_link_sort_cmp1 (const void *A, const void *B)
8115 {
8116 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8117 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8118 int relativea, relativeb;
8119
8120 relativea = a->type == reloc_class_relative;
8121 relativeb = b->type == reloc_class_relative;
8122
8123 if (relativea < relativeb)
8124 return 1;
8125 if (relativea > relativeb)
8126 return -1;
8127 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8128 return -1;
8129 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8130 return 1;
8131 if (a->rela->r_offset < b->rela->r_offset)
8132 return -1;
8133 if (a->rela->r_offset > b->rela->r_offset)
8134 return 1;
8135 return 0;
8136 }
8137
8138 static int
8139 elf_link_sort_cmp2 (const void *A, const void *B)
8140 {
8141 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8142 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8143 int copya, copyb;
8144
8145 if (a->u.offset < b->u.offset)
8146 return -1;
8147 if (a->u.offset > b->u.offset)
8148 return 1;
8149 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
8150 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
8151 if (copya < copyb)
8152 return -1;
8153 if (copya > copyb)
8154 return 1;
8155 if (a->rela->r_offset < b->rela->r_offset)
8156 return -1;
8157 if (a->rela->r_offset > b->rela->r_offset)
8158 return 1;
8159 return 0;
8160 }
8161
8162 static size_t
8163 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8164 {
8165 asection *dynamic_relocs;
8166 asection *rela_dyn;
8167 asection *rel_dyn;
8168 bfd_size_type count, size;
8169 size_t i, ret, sort_elt, ext_size;
8170 bfd_byte *sort, *s_non_relative, *p;
8171 struct elf_link_sort_rela *sq;
8172 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8173 int i2e = bed->s->int_rels_per_ext_rel;
8174 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8175 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8176 struct bfd_link_order *lo;
8177 bfd_vma r_sym_mask;
8178 bfd_boolean use_rela;
8179
8180 /* Find a dynamic reloc section. */
8181 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8182 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8183 if (rela_dyn != NULL && rela_dyn->size > 0
8184 && rel_dyn != NULL && rel_dyn->size > 0)
8185 {
8186 bfd_boolean use_rela_initialised = FALSE;
8187
8188 /* This is just here to stop gcc from complaining.
8189 It's initialization checking code is not perfect. */
8190 use_rela = TRUE;
8191
8192 /* Both sections are present. Examine the sizes
8193 of the indirect sections to help us choose. */
8194 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8195 if (lo->type == bfd_indirect_link_order)
8196 {
8197 asection *o = lo->u.indirect.section;
8198
8199 if ((o->size % bed->s->sizeof_rela) == 0)
8200 {
8201 if ((o->size % bed->s->sizeof_rel) == 0)
8202 /* Section size is divisible by both rel and rela sizes.
8203 It is of no help to us. */
8204 ;
8205 else
8206 {
8207 /* Section size is only divisible by rela. */
8208 if (use_rela_initialised && (use_rela == FALSE))
8209 {
8210 _bfd_error_handler
8211 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8212 bfd_set_error (bfd_error_invalid_operation);
8213 return 0;
8214 }
8215 else
8216 {
8217 use_rela = TRUE;
8218 use_rela_initialised = TRUE;
8219 }
8220 }
8221 }
8222 else if ((o->size % bed->s->sizeof_rel) == 0)
8223 {
8224 /* Section size is only divisible by rel. */
8225 if (use_rela_initialised && (use_rela == TRUE))
8226 {
8227 _bfd_error_handler
8228 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8229 bfd_set_error (bfd_error_invalid_operation);
8230 return 0;
8231 }
8232 else
8233 {
8234 use_rela = FALSE;
8235 use_rela_initialised = TRUE;
8236 }
8237 }
8238 else
8239 {
8240 /* The section size is not divisible by either - something is wrong. */
8241 _bfd_error_handler
8242 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8243 bfd_set_error (bfd_error_invalid_operation);
8244 return 0;
8245 }
8246 }
8247
8248 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8249 if (lo->type == bfd_indirect_link_order)
8250 {
8251 asection *o = lo->u.indirect.section;
8252
8253 if ((o->size % bed->s->sizeof_rela) == 0)
8254 {
8255 if ((o->size % bed->s->sizeof_rel) == 0)
8256 /* Section size is divisible by both rel and rela sizes.
8257 It is of no help to us. */
8258 ;
8259 else
8260 {
8261 /* Section size is only divisible by rela. */
8262 if (use_rela_initialised && (use_rela == FALSE))
8263 {
8264 _bfd_error_handler
8265 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8266 bfd_set_error (bfd_error_invalid_operation);
8267 return 0;
8268 }
8269 else
8270 {
8271 use_rela = TRUE;
8272 use_rela_initialised = TRUE;
8273 }
8274 }
8275 }
8276 else if ((o->size % bed->s->sizeof_rel) == 0)
8277 {
8278 /* Section size is only divisible by rel. */
8279 if (use_rela_initialised && (use_rela == TRUE))
8280 {
8281 _bfd_error_handler
8282 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8283 bfd_set_error (bfd_error_invalid_operation);
8284 return 0;
8285 }
8286 else
8287 {
8288 use_rela = FALSE;
8289 use_rela_initialised = TRUE;
8290 }
8291 }
8292 else
8293 {
8294 /* The section size is not divisible by either - something is wrong. */
8295 _bfd_error_handler
8296 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8297 bfd_set_error (bfd_error_invalid_operation);
8298 return 0;
8299 }
8300 }
8301
8302 if (! use_rela_initialised)
8303 /* Make a guess. */
8304 use_rela = TRUE;
8305 }
8306 else if (rela_dyn != NULL && rela_dyn->size > 0)
8307 use_rela = TRUE;
8308 else if (rel_dyn != NULL && rel_dyn->size > 0)
8309 use_rela = FALSE;
8310 else
8311 return 0;
8312
8313 if (use_rela)
8314 {
8315 dynamic_relocs = rela_dyn;
8316 ext_size = bed->s->sizeof_rela;
8317 swap_in = bed->s->swap_reloca_in;
8318 swap_out = bed->s->swap_reloca_out;
8319 }
8320 else
8321 {
8322 dynamic_relocs = rel_dyn;
8323 ext_size = bed->s->sizeof_rel;
8324 swap_in = bed->s->swap_reloc_in;
8325 swap_out = bed->s->swap_reloc_out;
8326 }
8327
8328 size = 0;
8329 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8330 if (lo->type == bfd_indirect_link_order)
8331 size += lo->u.indirect.section->size;
8332
8333 if (size != dynamic_relocs->size)
8334 return 0;
8335
8336 sort_elt = (sizeof (struct elf_link_sort_rela)
8337 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8338
8339 count = dynamic_relocs->size / ext_size;
8340 if (count == 0)
8341 return 0;
8342 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8343
8344 if (sort == NULL)
8345 {
8346 (*info->callbacks->warning)
8347 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8348 return 0;
8349 }
8350
8351 if (bed->s->arch_size == 32)
8352 r_sym_mask = ~(bfd_vma) 0xff;
8353 else
8354 r_sym_mask = ~(bfd_vma) 0xffffffff;
8355
8356 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8357 if (lo->type == bfd_indirect_link_order)
8358 {
8359 bfd_byte *erel, *erelend;
8360 asection *o = lo->u.indirect.section;
8361
8362 if (o->contents == NULL && o->size != 0)
8363 {
8364 /* This is a reloc section that is being handled as a normal
8365 section. See bfd_section_from_shdr. We can't combine
8366 relocs in this case. */
8367 free (sort);
8368 return 0;
8369 }
8370 erel = o->contents;
8371 erelend = o->contents + o->size;
8372 /* FIXME: octets_per_byte. */
8373 p = sort + o->output_offset / ext_size * sort_elt;
8374
8375 while (erel < erelend)
8376 {
8377 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8378
8379 (*swap_in) (abfd, erel, s->rela);
8380 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8381 s->u.sym_mask = r_sym_mask;
8382 p += sort_elt;
8383 erel += ext_size;
8384 }
8385 }
8386
8387 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8388
8389 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8390 {
8391 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8392 if (s->type != reloc_class_relative)
8393 break;
8394 }
8395 ret = i;
8396 s_non_relative = p;
8397
8398 sq = (struct elf_link_sort_rela *) s_non_relative;
8399 for (; i < count; i++, p += sort_elt)
8400 {
8401 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8402 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8403 sq = sp;
8404 sp->u.offset = sq->rela->r_offset;
8405 }
8406
8407 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8408
8409 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8410 if (lo->type == bfd_indirect_link_order)
8411 {
8412 bfd_byte *erel, *erelend;
8413 asection *o = lo->u.indirect.section;
8414
8415 erel = o->contents;
8416 erelend = o->contents + o->size;
8417 /* FIXME: octets_per_byte. */
8418 p = sort + o->output_offset / ext_size * sort_elt;
8419 while (erel < erelend)
8420 {
8421 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8422 (*swap_out) (abfd, s->rela, erel);
8423 p += sort_elt;
8424 erel += ext_size;
8425 }
8426 }
8427
8428 free (sort);
8429 *psec = dynamic_relocs;
8430 return ret;
8431 }
8432
8433 /* Flush the output symbols to the file. */
8434
8435 static bfd_boolean
8436 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8437 const struct elf_backend_data *bed)
8438 {
8439 if (flinfo->symbuf_count > 0)
8440 {
8441 Elf_Internal_Shdr *hdr;
8442 file_ptr pos;
8443 bfd_size_type amt;
8444
8445 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8446 pos = hdr->sh_offset + hdr->sh_size;
8447 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8448 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8449 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8450 return FALSE;
8451
8452 hdr->sh_size += amt;
8453 flinfo->symbuf_count = 0;
8454 }
8455
8456 return TRUE;
8457 }
8458
8459 /* Add a symbol to the output symbol table. */
8460
8461 static int
8462 elf_link_output_sym (struct elf_final_link_info *flinfo,
8463 const char *name,
8464 Elf_Internal_Sym *elfsym,
8465 asection *input_sec,
8466 struct elf_link_hash_entry *h)
8467 {
8468 bfd_byte *dest;
8469 Elf_External_Sym_Shndx *destshndx;
8470 int (*output_symbol_hook)
8471 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8472 struct elf_link_hash_entry *);
8473 const struct elf_backend_data *bed;
8474
8475 bed = get_elf_backend_data (flinfo->output_bfd);
8476 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8477 if (output_symbol_hook != NULL)
8478 {
8479 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8480 if (ret != 1)
8481 return ret;
8482 }
8483
8484 if (name == NULL || *name == '\0')
8485 elfsym->st_name = 0;
8486 else if (input_sec->flags & SEC_EXCLUDE)
8487 elfsym->st_name = 0;
8488 else
8489 {
8490 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8491 name, TRUE, FALSE);
8492 if (elfsym->st_name == (unsigned long) -1)
8493 return 0;
8494 }
8495
8496 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8497 {
8498 if (! elf_link_flush_output_syms (flinfo, bed))
8499 return 0;
8500 }
8501
8502 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8503 destshndx = flinfo->symshndxbuf;
8504 if (destshndx != NULL)
8505 {
8506 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8507 {
8508 bfd_size_type amt;
8509
8510 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8511 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8512 amt * 2);
8513 if (destshndx == NULL)
8514 return 0;
8515 flinfo->symshndxbuf = destshndx;
8516 memset ((char *) destshndx + amt, 0, amt);
8517 flinfo->shndxbuf_size *= 2;
8518 }
8519 destshndx += bfd_get_symcount (flinfo->output_bfd);
8520 }
8521
8522 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8523 flinfo->symbuf_count += 1;
8524 bfd_get_symcount (flinfo->output_bfd) += 1;
8525
8526 return 1;
8527 }
8528
8529 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8530
8531 static bfd_boolean
8532 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8533 {
8534 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8535 && sym->st_shndx < SHN_LORESERVE)
8536 {
8537 /* The gABI doesn't support dynamic symbols in output sections
8538 beyond 64k. */
8539 (*_bfd_error_handler)
8540 (_("%B: Too many sections: %d (>= %d)"),
8541 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8542 bfd_set_error (bfd_error_nonrepresentable_section);
8543 return FALSE;
8544 }
8545 return TRUE;
8546 }
8547
8548 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8549 allowing an unsatisfied unversioned symbol in the DSO to match a
8550 versioned symbol that would normally require an explicit version.
8551 We also handle the case that a DSO references a hidden symbol
8552 which may be satisfied by a versioned symbol in another DSO. */
8553
8554 static bfd_boolean
8555 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8556 const struct elf_backend_data *bed,
8557 struct elf_link_hash_entry *h)
8558 {
8559 bfd *abfd;
8560 struct elf_link_loaded_list *loaded;
8561
8562 if (!is_elf_hash_table (info->hash))
8563 return FALSE;
8564
8565 /* Check indirect symbol. */
8566 while (h->root.type == bfd_link_hash_indirect)
8567 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8568
8569 switch (h->root.type)
8570 {
8571 default:
8572 abfd = NULL;
8573 break;
8574
8575 case bfd_link_hash_undefined:
8576 case bfd_link_hash_undefweak:
8577 abfd = h->root.u.undef.abfd;
8578 if ((abfd->flags & DYNAMIC) == 0
8579 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8580 return FALSE;
8581 break;
8582
8583 case bfd_link_hash_defined:
8584 case bfd_link_hash_defweak:
8585 abfd = h->root.u.def.section->owner;
8586 break;
8587
8588 case bfd_link_hash_common:
8589 abfd = h->root.u.c.p->section->owner;
8590 break;
8591 }
8592 BFD_ASSERT (abfd != NULL);
8593
8594 for (loaded = elf_hash_table (info)->loaded;
8595 loaded != NULL;
8596 loaded = loaded->next)
8597 {
8598 bfd *input;
8599 Elf_Internal_Shdr *hdr;
8600 bfd_size_type symcount;
8601 bfd_size_type extsymcount;
8602 bfd_size_type extsymoff;
8603 Elf_Internal_Shdr *versymhdr;
8604 Elf_Internal_Sym *isym;
8605 Elf_Internal_Sym *isymend;
8606 Elf_Internal_Sym *isymbuf;
8607 Elf_External_Versym *ever;
8608 Elf_External_Versym *extversym;
8609
8610 input = loaded->abfd;
8611
8612 /* We check each DSO for a possible hidden versioned definition. */
8613 if (input == abfd
8614 || (input->flags & DYNAMIC) == 0
8615 || elf_dynversym (input) == 0)
8616 continue;
8617
8618 hdr = &elf_tdata (input)->dynsymtab_hdr;
8619
8620 symcount = hdr->sh_size / bed->s->sizeof_sym;
8621 if (elf_bad_symtab (input))
8622 {
8623 extsymcount = symcount;
8624 extsymoff = 0;
8625 }
8626 else
8627 {
8628 extsymcount = symcount - hdr->sh_info;
8629 extsymoff = hdr->sh_info;
8630 }
8631
8632 if (extsymcount == 0)
8633 continue;
8634
8635 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8636 NULL, NULL, NULL);
8637 if (isymbuf == NULL)
8638 return FALSE;
8639
8640 /* Read in any version definitions. */
8641 versymhdr = &elf_tdata (input)->dynversym_hdr;
8642 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8643 if (extversym == NULL)
8644 goto error_ret;
8645
8646 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8647 || (bfd_bread (extversym, versymhdr->sh_size, input)
8648 != versymhdr->sh_size))
8649 {
8650 free (extversym);
8651 error_ret:
8652 free (isymbuf);
8653 return FALSE;
8654 }
8655
8656 ever = extversym + extsymoff;
8657 isymend = isymbuf + extsymcount;
8658 for (isym = isymbuf; isym < isymend; isym++, ever++)
8659 {
8660 const char *name;
8661 Elf_Internal_Versym iver;
8662 unsigned short version_index;
8663
8664 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8665 || isym->st_shndx == SHN_UNDEF)
8666 continue;
8667
8668 name = bfd_elf_string_from_elf_section (input,
8669 hdr->sh_link,
8670 isym->st_name);
8671 if (strcmp (name, h->root.root.string) != 0)
8672 continue;
8673
8674 _bfd_elf_swap_versym_in (input, ever, &iver);
8675
8676 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8677 && !(h->def_regular
8678 && h->forced_local))
8679 {
8680 /* If we have a non-hidden versioned sym, then it should
8681 have provided a definition for the undefined sym unless
8682 it is defined in a non-shared object and forced local.
8683 */
8684 abort ();
8685 }
8686
8687 version_index = iver.vs_vers & VERSYM_VERSION;
8688 if (version_index == 1 || version_index == 2)
8689 {
8690 /* This is the base or first version. We can use it. */
8691 free (extversym);
8692 free (isymbuf);
8693 return TRUE;
8694 }
8695 }
8696
8697 free (extversym);
8698 free (isymbuf);
8699 }
8700
8701 return FALSE;
8702 }
8703
8704 /* Add an external symbol to the symbol table. This is called from
8705 the hash table traversal routine. When generating a shared object,
8706 we go through the symbol table twice. The first time we output
8707 anything that might have been forced to local scope in a version
8708 script. The second time we output the symbols that are still
8709 global symbols. */
8710
8711 static bfd_boolean
8712 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8713 {
8714 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8715 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8716 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8717 bfd_boolean strip;
8718 Elf_Internal_Sym sym;
8719 asection *input_sec;
8720 const struct elf_backend_data *bed;
8721 long indx;
8722 int ret;
8723
8724 if (h->root.type == bfd_link_hash_warning)
8725 {
8726 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8727 if (h->root.type == bfd_link_hash_new)
8728 return TRUE;
8729 }
8730
8731 /* Decide whether to output this symbol in this pass. */
8732 if (eoinfo->localsyms)
8733 {
8734 if (!h->forced_local)
8735 return TRUE;
8736 if (eoinfo->second_pass
8737 && !((h->root.type == bfd_link_hash_defined
8738 || h->root.type == bfd_link_hash_defweak)
8739 && h->root.u.def.section->output_section != NULL))
8740 return TRUE;
8741 }
8742 else
8743 {
8744 if (h->forced_local)
8745 return TRUE;
8746 }
8747
8748 bed = get_elf_backend_data (flinfo->output_bfd);
8749
8750 if (h->root.type == bfd_link_hash_undefined)
8751 {
8752 /* If we have an undefined symbol reference here then it must have
8753 come from a shared library that is being linked in. (Undefined
8754 references in regular files have already been handled unless
8755 they are in unreferenced sections which are removed by garbage
8756 collection). */
8757 bfd_boolean ignore_undef = FALSE;
8758
8759 /* Some symbols may be special in that the fact that they're
8760 undefined can be safely ignored - let backend determine that. */
8761 if (bed->elf_backend_ignore_undef_symbol)
8762 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8763
8764 /* If we are reporting errors for this situation then do so now. */
8765 if (!ignore_undef
8766 && h->ref_dynamic
8767 && (!h->ref_regular || flinfo->info->gc_sections)
8768 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8769 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8770 {
8771 if (!(flinfo->info->callbacks->undefined_symbol
8772 (flinfo->info, h->root.root.string,
8773 h->ref_regular ? NULL : h->root.u.undef.abfd,
8774 NULL, 0,
8775 (flinfo->info->unresolved_syms_in_shared_libs
8776 == RM_GENERATE_ERROR))))
8777 {
8778 bfd_set_error (bfd_error_bad_value);
8779 eoinfo->failed = TRUE;
8780 return FALSE;
8781 }
8782 }
8783 }
8784
8785 /* We should also warn if a forced local symbol is referenced from
8786 shared libraries. */
8787 if (!flinfo->info->relocatable
8788 && flinfo->info->executable
8789 && h->forced_local
8790 && h->ref_dynamic
8791 && h->def_regular
8792 && !h->dynamic_def
8793 && h->ref_dynamic_nonweak
8794 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8795 {
8796 bfd *def_bfd;
8797 const char *msg;
8798 struct elf_link_hash_entry *hi = h;
8799
8800 /* Check indirect symbol. */
8801 while (hi->root.type == bfd_link_hash_indirect)
8802 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8803
8804 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8805 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8806 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8807 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8808 else
8809 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8810 def_bfd = flinfo->output_bfd;
8811 if (hi->root.u.def.section != bfd_abs_section_ptr)
8812 def_bfd = hi->root.u.def.section->owner;
8813 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8814 h->root.root.string);
8815 bfd_set_error (bfd_error_bad_value);
8816 eoinfo->failed = TRUE;
8817 return FALSE;
8818 }
8819
8820 /* We don't want to output symbols that have never been mentioned by
8821 a regular file, or that we have been told to strip. However, if
8822 h->indx is set to -2, the symbol is used by a reloc and we must
8823 output it. */
8824 if (h->indx == -2)
8825 strip = FALSE;
8826 else if ((h->def_dynamic
8827 || h->ref_dynamic
8828 || h->root.type == bfd_link_hash_new)
8829 && !h->def_regular
8830 && !h->ref_regular)
8831 strip = TRUE;
8832 else if (flinfo->info->strip == strip_all)
8833 strip = TRUE;
8834 else if (flinfo->info->strip == strip_some
8835 && bfd_hash_lookup (flinfo->info->keep_hash,
8836 h->root.root.string, FALSE, FALSE) == NULL)
8837 strip = TRUE;
8838 else if ((h->root.type == bfd_link_hash_defined
8839 || h->root.type == bfd_link_hash_defweak)
8840 && ((flinfo->info->strip_discarded
8841 && discarded_section (h->root.u.def.section))
8842 || (h->root.u.def.section->owner != NULL
8843 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8844 strip = TRUE;
8845 else if ((h->root.type == bfd_link_hash_undefined
8846 || h->root.type == bfd_link_hash_undefweak)
8847 && h->root.u.undef.abfd != NULL
8848 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8849 strip = TRUE;
8850 else
8851 strip = FALSE;
8852
8853 /* If we're stripping it, and it's not a dynamic symbol, there's
8854 nothing else to do unless it is a forced local symbol or a
8855 STT_GNU_IFUNC symbol. */
8856 if (strip
8857 && h->dynindx == -1
8858 && h->type != STT_GNU_IFUNC
8859 && !h->forced_local)
8860 return TRUE;
8861
8862 sym.st_value = 0;
8863 sym.st_size = h->size;
8864 sym.st_other = h->other;
8865 if (h->forced_local)
8866 {
8867 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8868 /* Turn off visibility on local symbol. */
8869 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8870 }
8871 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
8872 else if (h->unique_global && h->def_regular)
8873 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8874 else if (h->root.type == bfd_link_hash_undefweak
8875 || h->root.type == bfd_link_hash_defweak)
8876 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8877 else
8878 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8879 sym.st_target_internal = h->target_internal;
8880
8881 switch (h->root.type)
8882 {
8883 default:
8884 case bfd_link_hash_new:
8885 case bfd_link_hash_warning:
8886 abort ();
8887 return FALSE;
8888
8889 case bfd_link_hash_undefined:
8890 case bfd_link_hash_undefweak:
8891 input_sec = bfd_und_section_ptr;
8892 sym.st_shndx = SHN_UNDEF;
8893 break;
8894
8895 case bfd_link_hash_defined:
8896 case bfd_link_hash_defweak:
8897 {
8898 input_sec = h->root.u.def.section;
8899 if (input_sec->output_section != NULL)
8900 {
8901 if (eoinfo->localsyms && flinfo->filesym_count == 1)
8902 {
8903 bfd_boolean second_pass_sym
8904 = (input_sec->owner == flinfo->output_bfd
8905 || input_sec->owner == NULL
8906 || (input_sec->flags & SEC_LINKER_CREATED) != 0
8907 || (input_sec->owner->flags & BFD_LINKER_CREATED) != 0);
8908
8909 eoinfo->need_second_pass |= second_pass_sym;
8910 if (eoinfo->second_pass != second_pass_sym)
8911 return TRUE;
8912 }
8913
8914 sym.st_shndx =
8915 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
8916 input_sec->output_section);
8917 if (sym.st_shndx == SHN_BAD)
8918 {
8919 (*_bfd_error_handler)
8920 (_("%B: could not find output section %A for input section %A"),
8921 flinfo->output_bfd, input_sec->output_section, input_sec);
8922 bfd_set_error (bfd_error_nonrepresentable_section);
8923 eoinfo->failed = TRUE;
8924 return FALSE;
8925 }
8926
8927 /* ELF symbols in relocatable files are section relative,
8928 but in nonrelocatable files they are virtual
8929 addresses. */
8930 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8931 if (!flinfo->info->relocatable)
8932 {
8933 sym.st_value += input_sec->output_section->vma;
8934 if (h->type == STT_TLS)
8935 {
8936 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
8937 if (tls_sec != NULL)
8938 sym.st_value -= tls_sec->vma;
8939 else
8940 {
8941 /* The TLS section may have been garbage collected. */
8942 BFD_ASSERT (flinfo->info->gc_sections
8943 && !input_sec->gc_mark);
8944 }
8945 }
8946 }
8947 }
8948 else
8949 {
8950 BFD_ASSERT (input_sec->owner == NULL
8951 || (input_sec->owner->flags & DYNAMIC) != 0);
8952 sym.st_shndx = SHN_UNDEF;
8953 input_sec = bfd_und_section_ptr;
8954 }
8955 }
8956 break;
8957
8958 case bfd_link_hash_common:
8959 input_sec = h->root.u.c.p->section;
8960 sym.st_shndx = bed->common_section_index (input_sec);
8961 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8962 break;
8963
8964 case bfd_link_hash_indirect:
8965 /* These symbols are created by symbol versioning. They point
8966 to the decorated version of the name. For example, if the
8967 symbol foo@@GNU_1.2 is the default, which should be used when
8968 foo is used with no version, then we add an indirect symbol
8969 foo which points to foo@@GNU_1.2. We ignore these symbols,
8970 since the indirected symbol is already in the hash table. */
8971 return TRUE;
8972 }
8973
8974 /* Give the processor backend a chance to tweak the symbol value,
8975 and also to finish up anything that needs to be done for this
8976 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8977 forced local syms when non-shared is due to a historical quirk.
8978 STT_GNU_IFUNC symbol must go through PLT. */
8979 if ((h->type == STT_GNU_IFUNC
8980 && h->def_regular
8981 && !flinfo->info->relocatable)
8982 || ((h->dynindx != -1
8983 || h->forced_local)
8984 && ((flinfo->info->shared
8985 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8986 || h->root.type != bfd_link_hash_undefweak))
8987 || !h->forced_local)
8988 && elf_hash_table (flinfo->info)->dynamic_sections_created))
8989 {
8990 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8991 (flinfo->output_bfd, flinfo->info, h, &sym)))
8992 {
8993 eoinfo->failed = TRUE;
8994 return FALSE;
8995 }
8996 }
8997
8998 /* If we are marking the symbol as undefined, and there are no
8999 non-weak references to this symbol from a regular object, then
9000 mark the symbol as weak undefined; if there are non-weak
9001 references, mark the symbol as strong. We can't do this earlier,
9002 because it might not be marked as undefined until the
9003 finish_dynamic_symbol routine gets through with it. */
9004 if (sym.st_shndx == SHN_UNDEF
9005 && h->ref_regular
9006 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9007 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9008 {
9009 int bindtype;
9010 unsigned int type = ELF_ST_TYPE (sym.st_info);
9011
9012 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9013 if (type == STT_GNU_IFUNC)
9014 type = STT_FUNC;
9015
9016 if (h->ref_regular_nonweak)
9017 bindtype = STB_GLOBAL;
9018 else
9019 bindtype = STB_WEAK;
9020 sym.st_info = ELF_ST_INFO (bindtype, type);
9021 }
9022
9023 /* If this is a symbol defined in a dynamic library, don't use the
9024 symbol size from the dynamic library. Relinking an executable
9025 against a new library may introduce gratuitous changes in the
9026 executable's symbols if we keep the size. */
9027 if (sym.st_shndx == SHN_UNDEF
9028 && !h->def_regular
9029 && h->def_dynamic)
9030 sym.st_size = 0;
9031
9032 /* If a non-weak symbol with non-default visibility is not defined
9033 locally, it is a fatal error. */
9034 if (!flinfo->info->relocatable
9035 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9036 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9037 && h->root.type == bfd_link_hash_undefined
9038 && !h->def_regular)
9039 {
9040 const char *msg;
9041
9042 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9043 msg = _("%B: protected symbol `%s' isn't defined");
9044 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9045 msg = _("%B: internal symbol `%s' isn't defined");
9046 else
9047 msg = _("%B: hidden symbol `%s' isn't defined");
9048 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9049 bfd_set_error (bfd_error_bad_value);
9050 eoinfo->failed = TRUE;
9051 return FALSE;
9052 }
9053
9054 /* If this symbol should be put in the .dynsym section, then put it
9055 there now. We already know the symbol index. We also fill in
9056 the entry in the .hash section. */
9057 if (flinfo->dynsym_sec != NULL
9058 && h->dynindx != -1
9059 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9060 {
9061 bfd_byte *esym;
9062
9063 /* Since there is no version information in the dynamic string,
9064 if there is no version info in symbol version section, we will
9065 have a run-time problem. */
9066 if (h->verinfo.verdef == NULL)
9067 {
9068 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9069
9070 if (p && p [1] != '\0')
9071 {
9072 (*_bfd_error_handler)
9073 (_("%B: No symbol version section for versioned symbol `%s'"),
9074 flinfo->output_bfd, h->root.root.string);
9075 eoinfo->failed = TRUE;
9076 return FALSE;
9077 }
9078 }
9079
9080 sym.st_name = h->dynstr_index;
9081 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9082 if (!check_dynsym (flinfo->output_bfd, &sym))
9083 {
9084 eoinfo->failed = TRUE;
9085 return FALSE;
9086 }
9087 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9088
9089 if (flinfo->hash_sec != NULL)
9090 {
9091 size_t hash_entry_size;
9092 bfd_byte *bucketpos;
9093 bfd_vma chain;
9094 size_t bucketcount;
9095 size_t bucket;
9096
9097 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9098 bucket = h->u.elf_hash_value % bucketcount;
9099
9100 hash_entry_size
9101 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9102 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9103 + (bucket + 2) * hash_entry_size);
9104 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9105 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9106 bucketpos);
9107 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9108 ((bfd_byte *) flinfo->hash_sec->contents
9109 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9110 }
9111
9112 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9113 {
9114 Elf_Internal_Versym iversym;
9115 Elf_External_Versym *eversym;
9116
9117 if (!h->def_regular)
9118 {
9119 if (h->verinfo.verdef == NULL)
9120 iversym.vs_vers = 0;
9121 else
9122 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9123 }
9124 else
9125 {
9126 if (h->verinfo.vertree == NULL)
9127 iversym.vs_vers = 1;
9128 else
9129 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9130 if (flinfo->info->create_default_symver)
9131 iversym.vs_vers++;
9132 }
9133
9134 if (h->hidden)
9135 iversym.vs_vers |= VERSYM_HIDDEN;
9136
9137 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9138 eversym += h->dynindx;
9139 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9140 }
9141 }
9142
9143 /* If we're stripping it, then it was just a dynamic symbol, and
9144 there's nothing else to do. */
9145 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
9146 return TRUE;
9147
9148 indx = bfd_get_symcount (flinfo->output_bfd);
9149 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9150 if (ret == 0)
9151 {
9152 eoinfo->failed = TRUE;
9153 return FALSE;
9154 }
9155 else if (ret == 1)
9156 h->indx = indx;
9157 else if (h->indx == -2)
9158 abort();
9159
9160 return TRUE;
9161 }
9162
9163 /* Return TRUE if special handling is done for relocs in SEC against
9164 symbols defined in discarded sections. */
9165
9166 static bfd_boolean
9167 elf_section_ignore_discarded_relocs (asection *sec)
9168 {
9169 const struct elf_backend_data *bed;
9170
9171 switch (sec->sec_info_type)
9172 {
9173 case SEC_INFO_TYPE_STABS:
9174 case SEC_INFO_TYPE_EH_FRAME:
9175 return TRUE;
9176 default:
9177 break;
9178 }
9179
9180 bed = get_elf_backend_data (sec->owner);
9181 if (bed->elf_backend_ignore_discarded_relocs != NULL
9182 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9183 return TRUE;
9184
9185 return FALSE;
9186 }
9187
9188 /* Return a mask saying how ld should treat relocations in SEC against
9189 symbols defined in discarded sections. If this function returns
9190 COMPLAIN set, ld will issue a warning message. If this function
9191 returns PRETEND set, and the discarded section was link-once and the
9192 same size as the kept link-once section, ld will pretend that the
9193 symbol was actually defined in the kept section. Otherwise ld will
9194 zero the reloc (at least that is the intent, but some cooperation by
9195 the target dependent code is needed, particularly for REL targets). */
9196
9197 unsigned int
9198 _bfd_elf_default_action_discarded (asection *sec)
9199 {
9200 if (sec->flags & SEC_DEBUGGING)
9201 return PRETEND;
9202
9203 if (strcmp (".eh_frame", sec->name) == 0)
9204 return 0;
9205
9206 if (strcmp (".gcc_except_table", sec->name) == 0)
9207 return 0;
9208
9209 return COMPLAIN | PRETEND;
9210 }
9211
9212 /* Find a match between a section and a member of a section group. */
9213
9214 static asection *
9215 match_group_member (asection *sec, asection *group,
9216 struct bfd_link_info *info)
9217 {
9218 asection *first = elf_next_in_group (group);
9219 asection *s = first;
9220
9221 while (s != NULL)
9222 {
9223 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9224 return s;
9225
9226 s = elf_next_in_group (s);
9227 if (s == first)
9228 break;
9229 }
9230
9231 return NULL;
9232 }
9233
9234 /* Check if the kept section of a discarded section SEC can be used
9235 to replace it. Return the replacement if it is OK. Otherwise return
9236 NULL. */
9237
9238 asection *
9239 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9240 {
9241 asection *kept;
9242
9243 kept = sec->kept_section;
9244 if (kept != NULL)
9245 {
9246 if ((kept->flags & SEC_GROUP) != 0)
9247 kept = match_group_member (sec, kept, info);
9248 if (kept != NULL
9249 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9250 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9251 kept = NULL;
9252 sec->kept_section = kept;
9253 }
9254 return kept;
9255 }
9256
9257 /* Link an input file into the linker output file. This function
9258 handles all the sections and relocations of the input file at once.
9259 This is so that we only have to read the local symbols once, and
9260 don't have to keep them in memory. */
9261
9262 static bfd_boolean
9263 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9264 {
9265 int (*relocate_section)
9266 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9267 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9268 bfd *output_bfd;
9269 Elf_Internal_Shdr *symtab_hdr;
9270 size_t locsymcount;
9271 size_t extsymoff;
9272 Elf_Internal_Sym *isymbuf;
9273 Elf_Internal_Sym *isym;
9274 Elf_Internal_Sym *isymend;
9275 long *pindex;
9276 asection **ppsection;
9277 asection *o;
9278 const struct elf_backend_data *bed;
9279 struct elf_link_hash_entry **sym_hashes;
9280 bfd_size_type address_size;
9281 bfd_vma r_type_mask;
9282 int r_sym_shift;
9283 bfd_boolean have_file_sym = FALSE;
9284
9285 output_bfd = flinfo->output_bfd;
9286 bed = get_elf_backend_data (output_bfd);
9287 relocate_section = bed->elf_backend_relocate_section;
9288
9289 /* If this is a dynamic object, we don't want to do anything here:
9290 we don't want the local symbols, and we don't want the section
9291 contents. */
9292 if ((input_bfd->flags & DYNAMIC) != 0)
9293 return TRUE;
9294
9295 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9296 if (elf_bad_symtab (input_bfd))
9297 {
9298 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9299 extsymoff = 0;
9300 }
9301 else
9302 {
9303 locsymcount = symtab_hdr->sh_info;
9304 extsymoff = symtab_hdr->sh_info;
9305 }
9306
9307 /* Read the local symbols. */
9308 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9309 if (isymbuf == NULL && locsymcount != 0)
9310 {
9311 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9312 flinfo->internal_syms,
9313 flinfo->external_syms,
9314 flinfo->locsym_shndx);
9315 if (isymbuf == NULL)
9316 return FALSE;
9317 }
9318
9319 /* Find local symbol sections and adjust values of symbols in
9320 SEC_MERGE sections. Write out those local symbols we know are
9321 going into the output file. */
9322 isymend = isymbuf + locsymcount;
9323 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9324 isym < isymend;
9325 isym++, pindex++, ppsection++)
9326 {
9327 asection *isec;
9328 const char *name;
9329 Elf_Internal_Sym osym;
9330 long indx;
9331 int ret;
9332
9333 *pindex = -1;
9334
9335 if (elf_bad_symtab (input_bfd))
9336 {
9337 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9338 {
9339 *ppsection = NULL;
9340 continue;
9341 }
9342 }
9343
9344 if (isym->st_shndx == SHN_UNDEF)
9345 isec = bfd_und_section_ptr;
9346 else if (isym->st_shndx == SHN_ABS)
9347 isec = bfd_abs_section_ptr;
9348 else if (isym->st_shndx == SHN_COMMON)
9349 isec = bfd_com_section_ptr;
9350 else
9351 {
9352 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9353 if (isec == NULL)
9354 {
9355 /* Don't attempt to output symbols with st_shnx in the
9356 reserved range other than SHN_ABS and SHN_COMMON. */
9357 *ppsection = NULL;
9358 continue;
9359 }
9360 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9361 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9362 isym->st_value =
9363 _bfd_merged_section_offset (output_bfd, &isec,
9364 elf_section_data (isec)->sec_info,
9365 isym->st_value);
9366 }
9367
9368 *ppsection = isec;
9369
9370 /* Don't output the first, undefined, symbol. */
9371 if (ppsection == flinfo->sections)
9372 continue;
9373
9374 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9375 {
9376 /* We never output section symbols. Instead, we use the
9377 section symbol of the corresponding section in the output
9378 file. */
9379 continue;
9380 }
9381
9382 /* If we are stripping all symbols, we don't want to output this
9383 one. */
9384 if (flinfo->info->strip == strip_all)
9385 continue;
9386
9387 /* If we are discarding all local symbols, we don't want to
9388 output this one. If we are generating a relocatable output
9389 file, then some of the local symbols may be required by
9390 relocs; we output them below as we discover that they are
9391 needed. */
9392 if (flinfo->info->discard == discard_all)
9393 continue;
9394
9395 /* If this symbol is defined in a section which we are
9396 discarding, we don't need to keep it. */
9397 if (isym->st_shndx != SHN_UNDEF
9398 && isym->st_shndx < SHN_LORESERVE
9399 && bfd_section_removed_from_list (output_bfd,
9400 isec->output_section))
9401 continue;
9402
9403 /* Get the name of the symbol. */
9404 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9405 isym->st_name);
9406 if (name == NULL)
9407 return FALSE;
9408
9409 /* See if we are discarding symbols with this name. */
9410 if ((flinfo->info->strip == strip_some
9411 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9412 == NULL))
9413 || (((flinfo->info->discard == discard_sec_merge
9414 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9415 || flinfo->info->discard == discard_l)
9416 && bfd_is_local_label_name (input_bfd, name)))
9417 continue;
9418
9419 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9420 {
9421 have_file_sym = TRUE;
9422 flinfo->filesym_count += 1;
9423 }
9424 if (!have_file_sym)
9425 {
9426 /* In the absence of debug info, bfd_find_nearest_line uses
9427 FILE symbols to determine the source file for local
9428 function symbols. Provide a FILE symbol here if input
9429 files lack such, so that their symbols won't be
9430 associated with a previous input file. It's not the
9431 source file, but the best we can do. */
9432 have_file_sym = TRUE;
9433 flinfo->filesym_count += 1;
9434 memset (&osym, 0, sizeof (osym));
9435 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9436 osym.st_shndx = SHN_ABS;
9437 if (!elf_link_output_sym (flinfo, input_bfd->filename, &osym,
9438 bfd_abs_section_ptr, NULL))
9439 return FALSE;
9440 }
9441
9442 osym = *isym;
9443
9444 /* Adjust the section index for the output file. */
9445 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9446 isec->output_section);
9447 if (osym.st_shndx == SHN_BAD)
9448 return FALSE;
9449
9450 /* ELF symbols in relocatable files are section relative, but
9451 in executable files they are virtual addresses. Note that
9452 this code assumes that all ELF sections have an associated
9453 BFD section with a reasonable value for output_offset; below
9454 we assume that they also have a reasonable value for
9455 output_section. Any special sections must be set up to meet
9456 these requirements. */
9457 osym.st_value += isec->output_offset;
9458 if (!flinfo->info->relocatable)
9459 {
9460 osym.st_value += isec->output_section->vma;
9461 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9462 {
9463 /* STT_TLS symbols are relative to PT_TLS segment base. */
9464 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9465 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9466 }
9467 }
9468
9469 indx = bfd_get_symcount (output_bfd);
9470 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9471 if (ret == 0)
9472 return FALSE;
9473 else if (ret == 1)
9474 *pindex = indx;
9475 }
9476
9477 if (bed->s->arch_size == 32)
9478 {
9479 r_type_mask = 0xff;
9480 r_sym_shift = 8;
9481 address_size = 4;
9482 }
9483 else
9484 {
9485 r_type_mask = 0xffffffff;
9486 r_sym_shift = 32;
9487 address_size = 8;
9488 }
9489
9490 /* Relocate the contents of each section. */
9491 sym_hashes = elf_sym_hashes (input_bfd);
9492 for (o = input_bfd->sections; o != NULL; o = o->next)
9493 {
9494 bfd_byte *contents;
9495
9496 if (! o->linker_mark)
9497 {
9498 /* This section was omitted from the link. */
9499 continue;
9500 }
9501
9502 if (flinfo->info->relocatable
9503 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9504 {
9505 /* Deal with the group signature symbol. */
9506 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9507 unsigned long symndx = sec_data->this_hdr.sh_info;
9508 asection *osec = o->output_section;
9509
9510 if (symndx >= locsymcount
9511 || (elf_bad_symtab (input_bfd)
9512 && flinfo->sections[symndx] == NULL))
9513 {
9514 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9515 while (h->root.type == bfd_link_hash_indirect
9516 || h->root.type == bfd_link_hash_warning)
9517 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9518 /* Arrange for symbol to be output. */
9519 h->indx = -2;
9520 elf_section_data (osec)->this_hdr.sh_info = -2;
9521 }
9522 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9523 {
9524 /* We'll use the output section target_index. */
9525 asection *sec = flinfo->sections[symndx]->output_section;
9526 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9527 }
9528 else
9529 {
9530 if (flinfo->indices[symndx] == -1)
9531 {
9532 /* Otherwise output the local symbol now. */
9533 Elf_Internal_Sym sym = isymbuf[symndx];
9534 asection *sec = flinfo->sections[symndx]->output_section;
9535 const char *name;
9536 long indx;
9537 int ret;
9538
9539 name = bfd_elf_string_from_elf_section (input_bfd,
9540 symtab_hdr->sh_link,
9541 sym.st_name);
9542 if (name == NULL)
9543 return FALSE;
9544
9545 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9546 sec);
9547 if (sym.st_shndx == SHN_BAD)
9548 return FALSE;
9549
9550 sym.st_value += o->output_offset;
9551
9552 indx = bfd_get_symcount (output_bfd);
9553 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9554 if (ret == 0)
9555 return FALSE;
9556 else if (ret == 1)
9557 flinfo->indices[symndx] = indx;
9558 else
9559 abort ();
9560 }
9561 elf_section_data (osec)->this_hdr.sh_info
9562 = flinfo->indices[symndx];
9563 }
9564 }
9565
9566 if ((o->flags & SEC_HAS_CONTENTS) == 0
9567 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9568 continue;
9569
9570 if ((o->flags & SEC_LINKER_CREATED) != 0)
9571 {
9572 /* Section was created by _bfd_elf_link_create_dynamic_sections
9573 or somesuch. */
9574 continue;
9575 }
9576
9577 /* Get the contents of the section. They have been cached by a
9578 relaxation routine. Note that o is a section in an input
9579 file, so the contents field will not have been set by any of
9580 the routines which work on output files. */
9581 if (elf_section_data (o)->this_hdr.contents != NULL)
9582 contents = elf_section_data (o)->this_hdr.contents;
9583 else
9584 {
9585 contents = flinfo->contents;
9586 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9587 return FALSE;
9588 }
9589
9590 if ((o->flags & SEC_RELOC) != 0)
9591 {
9592 Elf_Internal_Rela *internal_relocs;
9593 Elf_Internal_Rela *rel, *relend;
9594 int action_discarded;
9595 int ret;
9596
9597 /* Get the swapped relocs. */
9598 internal_relocs
9599 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9600 flinfo->internal_relocs, FALSE);
9601 if (internal_relocs == NULL
9602 && o->reloc_count > 0)
9603 return FALSE;
9604
9605 /* We need to reverse-copy input .ctors/.dtors sections if
9606 they are placed in .init_array/.finit_array for output. */
9607 if (o->size > address_size
9608 && ((strncmp (o->name, ".ctors", 6) == 0
9609 && strcmp (o->output_section->name,
9610 ".init_array") == 0)
9611 || (strncmp (o->name, ".dtors", 6) == 0
9612 && strcmp (o->output_section->name,
9613 ".fini_array") == 0))
9614 && (o->name[6] == 0 || o->name[6] == '.'))
9615 {
9616 if (o->size != o->reloc_count * address_size)
9617 {
9618 (*_bfd_error_handler)
9619 (_("error: %B: size of section %A is not "
9620 "multiple of address size"),
9621 input_bfd, o);
9622 bfd_set_error (bfd_error_on_input);
9623 return FALSE;
9624 }
9625 o->flags |= SEC_ELF_REVERSE_COPY;
9626 }
9627
9628 action_discarded = -1;
9629 if (!elf_section_ignore_discarded_relocs (o))
9630 action_discarded = (*bed->action_discarded) (o);
9631
9632 /* Run through the relocs evaluating complex reloc symbols and
9633 looking for relocs against symbols from discarded sections
9634 or section symbols from removed link-once sections.
9635 Complain about relocs against discarded sections. Zero
9636 relocs against removed link-once sections. */
9637
9638 rel = internal_relocs;
9639 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9640 for ( ; rel < relend; rel++)
9641 {
9642 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9643 unsigned int s_type;
9644 asection **ps, *sec;
9645 struct elf_link_hash_entry *h = NULL;
9646 const char *sym_name;
9647
9648 if (r_symndx == STN_UNDEF)
9649 continue;
9650
9651 if (r_symndx >= locsymcount
9652 || (elf_bad_symtab (input_bfd)
9653 && flinfo->sections[r_symndx] == NULL))
9654 {
9655 h = sym_hashes[r_symndx - extsymoff];
9656
9657 /* Badly formatted input files can contain relocs that
9658 reference non-existant symbols. Check here so that
9659 we do not seg fault. */
9660 if (h == NULL)
9661 {
9662 char buffer [32];
9663
9664 sprintf_vma (buffer, rel->r_info);
9665 (*_bfd_error_handler)
9666 (_("error: %B contains a reloc (0x%s) for section %A "
9667 "that references a non-existent global symbol"),
9668 input_bfd, o, buffer);
9669 bfd_set_error (bfd_error_bad_value);
9670 return FALSE;
9671 }
9672
9673 while (h->root.type == bfd_link_hash_indirect
9674 || h->root.type == bfd_link_hash_warning)
9675 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9676
9677 s_type = h->type;
9678
9679 ps = NULL;
9680 if (h->root.type == bfd_link_hash_defined
9681 || h->root.type == bfd_link_hash_defweak)
9682 ps = &h->root.u.def.section;
9683
9684 sym_name = h->root.root.string;
9685 }
9686 else
9687 {
9688 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9689
9690 s_type = ELF_ST_TYPE (sym->st_info);
9691 ps = &flinfo->sections[r_symndx];
9692 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9693 sym, *ps);
9694 }
9695
9696 if ((s_type == STT_RELC || s_type == STT_SRELC)
9697 && !flinfo->info->relocatable)
9698 {
9699 bfd_vma val;
9700 bfd_vma dot = (rel->r_offset
9701 + o->output_offset + o->output_section->vma);
9702 #ifdef DEBUG
9703 printf ("Encountered a complex symbol!");
9704 printf (" (input_bfd %s, section %s, reloc %ld\n",
9705 input_bfd->filename, o->name,
9706 (long) (rel - internal_relocs));
9707 printf (" symbol: idx %8.8lx, name %s\n",
9708 r_symndx, sym_name);
9709 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9710 (unsigned long) rel->r_info,
9711 (unsigned long) rel->r_offset);
9712 #endif
9713 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9714 isymbuf, locsymcount, s_type == STT_SRELC))
9715 return FALSE;
9716
9717 /* Symbol evaluated OK. Update to absolute value. */
9718 set_symbol_value (input_bfd, isymbuf, locsymcount,
9719 r_symndx, val);
9720 continue;
9721 }
9722
9723 if (action_discarded != -1 && ps != NULL)
9724 {
9725 /* Complain if the definition comes from a
9726 discarded section. */
9727 if ((sec = *ps) != NULL && discarded_section (sec))
9728 {
9729 BFD_ASSERT (r_symndx != STN_UNDEF);
9730 if (action_discarded & COMPLAIN)
9731 (*flinfo->info->callbacks->einfo)
9732 (_("%X`%s' referenced in section `%A' of %B: "
9733 "defined in discarded section `%A' of %B\n"),
9734 sym_name, o, input_bfd, sec, sec->owner);
9735
9736 /* Try to do the best we can to support buggy old
9737 versions of gcc. Pretend that the symbol is
9738 really defined in the kept linkonce section.
9739 FIXME: This is quite broken. Modifying the
9740 symbol here means we will be changing all later
9741 uses of the symbol, not just in this section. */
9742 if (action_discarded & PRETEND)
9743 {
9744 asection *kept;
9745
9746 kept = _bfd_elf_check_kept_section (sec,
9747 flinfo->info);
9748 if (kept != NULL)
9749 {
9750 *ps = kept;
9751 continue;
9752 }
9753 }
9754 }
9755 }
9756 }
9757
9758 /* Relocate the section by invoking a back end routine.
9759
9760 The back end routine is responsible for adjusting the
9761 section contents as necessary, and (if using Rela relocs
9762 and generating a relocatable output file) adjusting the
9763 reloc addend as necessary.
9764
9765 The back end routine does not have to worry about setting
9766 the reloc address or the reloc symbol index.
9767
9768 The back end routine is given a pointer to the swapped in
9769 internal symbols, and can access the hash table entries
9770 for the external symbols via elf_sym_hashes (input_bfd).
9771
9772 When generating relocatable output, the back end routine
9773 must handle STB_LOCAL/STT_SECTION symbols specially. The
9774 output symbol is going to be a section symbol
9775 corresponding to the output section, which will require
9776 the addend to be adjusted. */
9777
9778 ret = (*relocate_section) (output_bfd, flinfo->info,
9779 input_bfd, o, contents,
9780 internal_relocs,
9781 isymbuf,
9782 flinfo->sections);
9783 if (!ret)
9784 return FALSE;
9785
9786 if (ret == 2
9787 || flinfo->info->relocatable
9788 || flinfo->info->emitrelocations)
9789 {
9790 Elf_Internal_Rela *irela;
9791 Elf_Internal_Rela *irelaend, *irelamid;
9792 bfd_vma last_offset;
9793 struct elf_link_hash_entry **rel_hash;
9794 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9795 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9796 unsigned int next_erel;
9797 bfd_boolean rela_normal;
9798 struct bfd_elf_section_data *esdi, *esdo;
9799
9800 esdi = elf_section_data (o);
9801 esdo = elf_section_data (o->output_section);
9802 rela_normal = FALSE;
9803
9804 /* Adjust the reloc addresses and symbol indices. */
9805
9806 irela = internal_relocs;
9807 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9808 rel_hash = esdo->rel.hashes + esdo->rel.count;
9809 /* We start processing the REL relocs, if any. When we reach
9810 IRELAMID in the loop, we switch to the RELA relocs. */
9811 irelamid = irela;
9812 if (esdi->rel.hdr != NULL)
9813 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9814 * bed->s->int_rels_per_ext_rel);
9815 rel_hash_list = rel_hash;
9816 rela_hash_list = NULL;
9817 last_offset = o->output_offset;
9818 if (!flinfo->info->relocatable)
9819 last_offset += o->output_section->vma;
9820 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9821 {
9822 unsigned long r_symndx;
9823 asection *sec;
9824 Elf_Internal_Sym sym;
9825
9826 if (next_erel == bed->s->int_rels_per_ext_rel)
9827 {
9828 rel_hash++;
9829 next_erel = 0;
9830 }
9831
9832 if (irela == irelamid)
9833 {
9834 rel_hash = esdo->rela.hashes + esdo->rela.count;
9835 rela_hash_list = rel_hash;
9836 rela_normal = bed->rela_normal;
9837 }
9838
9839 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9840 flinfo->info, o,
9841 irela->r_offset);
9842 if (irela->r_offset >= (bfd_vma) -2)
9843 {
9844 /* This is a reloc for a deleted entry or somesuch.
9845 Turn it into an R_*_NONE reloc, at the same
9846 offset as the last reloc. elf_eh_frame.c and
9847 bfd_elf_discard_info rely on reloc offsets
9848 being ordered. */
9849 irela->r_offset = last_offset;
9850 irela->r_info = 0;
9851 irela->r_addend = 0;
9852 continue;
9853 }
9854
9855 irela->r_offset += o->output_offset;
9856
9857 /* Relocs in an executable have to be virtual addresses. */
9858 if (!flinfo->info->relocatable)
9859 irela->r_offset += o->output_section->vma;
9860
9861 last_offset = irela->r_offset;
9862
9863 r_symndx = irela->r_info >> r_sym_shift;
9864 if (r_symndx == STN_UNDEF)
9865 continue;
9866
9867 if (r_symndx >= locsymcount
9868 || (elf_bad_symtab (input_bfd)
9869 && flinfo->sections[r_symndx] == NULL))
9870 {
9871 struct elf_link_hash_entry *rh;
9872 unsigned long indx;
9873
9874 /* This is a reloc against a global symbol. We
9875 have not yet output all the local symbols, so
9876 we do not know the symbol index of any global
9877 symbol. We set the rel_hash entry for this
9878 reloc to point to the global hash table entry
9879 for this symbol. The symbol index is then
9880 set at the end of bfd_elf_final_link. */
9881 indx = r_symndx - extsymoff;
9882 rh = elf_sym_hashes (input_bfd)[indx];
9883 while (rh->root.type == bfd_link_hash_indirect
9884 || rh->root.type == bfd_link_hash_warning)
9885 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9886
9887 /* Setting the index to -2 tells
9888 elf_link_output_extsym that this symbol is
9889 used by a reloc. */
9890 BFD_ASSERT (rh->indx < 0);
9891 rh->indx = -2;
9892
9893 *rel_hash = rh;
9894
9895 continue;
9896 }
9897
9898 /* This is a reloc against a local symbol. */
9899
9900 *rel_hash = NULL;
9901 sym = isymbuf[r_symndx];
9902 sec = flinfo->sections[r_symndx];
9903 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9904 {
9905 /* I suppose the backend ought to fill in the
9906 section of any STT_SECTION symbol against a
9907 processor specific section. */
9908 r_symndx = STN_UNDEF;
9909 if (bfd_is_abs_section (sec))
9910 ;
9911 else if (sec == NULL || sec->owner == NULL)
9912 {
9913 bfd_set_error (bfd_error_bad_value);
9914 return FALSE;
9915 }
9916 else
9917 {
9918 asection *osec = sec->output_section;
9919
9920 /* If we have discarded a section, the output
9921 section will be the absolute section. In
9922 case of discarded SEC_MERGE sections, use
9923 the kept section. relocate_section should
9924 have already handled discarded linkonce
9925 sections. */
9926 if (bfd_is_abs_section (osec)
9927 && sec->kept_section != NULL
9928 && sec->kept_section->output_section != NULL)
9929 {
9930 osec = sec->kept_section->output_section;
9931 irela->r_addend -= osec->vma;
9932 }
9933
9934 if (!bfd_is_abs_section (osec))
9935 {
9936 r_symndx = osec->target_index;
9937 if (r_symndx == STN_UNDEF)
9938 {
9939 irela->r_addend += osec->vma;
9940 osec = _bfd_nearby_section (output_bfd, osec,
9941 osec->vma);
9942 irela->r_addend -= osec->vma;
9943 r_symndx = osec->target_index;
9944 }
9945 }
9946 }
9947
9948 /* Adjust the addend according to where the
9949 section winds up in the output section. */
9950 if (rela_normal)
9951 irela->r_addend += sec->output_offset;
9952 }
9953 else
9954 {
9955 if (flinfo->indices[r_symndx] == -1)
9956 {
9957 unsigned long shlink;
9958 const char *name;
9959 asection *osec;
9960 long indx;
9961
9962 if (flinfo->info->strip == strip_all)
9963 {
9964 /* You can't do ld -r -s. */
9965 bfd_set_error (bfd_error_invalid_operation);
9966 return FALSE;
9967 }
9968
9969 /* This symbol was skipped earlier, but
9970 since it is needed by a reloc, we
9971 must output it now. */
9972 shlink = symtab_hdr->sh_link;
9973 name = (bfd_elf_string_from_elf_section
9974 (input_bfd, shlink, sym.st_name));
9975 if (name == NULL)
9976 return FALSE;
9977
9978 osec = sec->output_section;
9979 sym.st_shndx =
9980 _bfd_elf_section_from_bfd_section (output_bfd,
9981 osec);
9982 if (sym.st_shndx == SHN_BAD)
9983 return FALSE;
9984
9985 sym.st_value += sec->output_offset;
9986 if (!flinfo->info->relocatable)
9987 {
9988 sym.st_value += osec->vma;
9989 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9990 {
9991 /* STT_TLS symbols are relative to PT_TLS
9992 segment base. */
9993 BFD_ASSERT (elf_hash_table (flinfo->info)
9994 ->tls_sec != NULL);
9995 sym.st_value -= (elf_hash_table (flinfo->info)
9996 ->tls_sec->vma);
9997 }
9998 }
9999
10000 indx = bfd_get_symcount (output_bfd);
10001 ret = elf_link_output_sym (flinfo, name, &sym, sec,
10002 NULL);
10003 if (ret == 0)
10004 return FALSE;
10005 else if (ret == 1)
10006 flinfo->indices[r_symndx] = indx;
10007 else
10008 abort ();
10009 }
10010
10011 r_symndx = flinfo->indices[r_symndx];
10012 }
10013
10014 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10015 | (irela->r_info & r_type_mask));
10016 }
10017
10018 /* Swap out the relocs. */
10019 input_rel_hdr = esdi->rel.hdr;
10020 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10021 {
10022 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10023 input_rel_hdr,
10024 internal_relocs,
10025 rel_hash_list))
10026 return FALSE;
10027 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10028 * bed->s->int_rels_per_ext_rel);
10029 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10030 }
10031
10032 input_rela_hdr = esdi->rela.hdr;
10033 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10034 {
10035 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10036 input_rela_hdr,
10037 internal_relocs,
10038 rela_hash_list))
10039 return FALSE;
10040 }
10041 }
10042 }
10043
10044 /* Write out the modified section contents. */
10045 if (bed->elf_backend_write_section
10046 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10047 contents))
10048 {
10049 /* Section written out. */
10050 }
10051 else switch (o->sec_info_type)
10052 {
10053 case SEC_INFO_TYPE_STABS:
10054 if (! (_bfd_write_section_stabs
10055 (output_bfd,
10056 &elf_hash_table (flinfo->info)->stab_info,
10057 o, &elf_section_data (o)->sec_info, contents)))
10058 return FALSE;
10059 break;
10060 case SEC_INFO_TYPE_MERGE:
10061 if (! _bfd_write_merged_section (output_bfd, o,
10062 elf_section_data (o)->sec_info))
10063 return FALSE;
10064 break;
10065 case SEC_INFO_TYPE_EH_FRAME:
10066 {
10067 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10068 o, contents))
10069 return FALSE;
10070 }
10071 break;
10072 default:
10073 {
10074 /* FIXME: octets_per_byte. */
10075 if (! (o->flags & SEC_EXCLUDE))
10076 {
10077 file_ptr offset = (file_ptr) o->output_offset;
10078 bfd_size_type todo = o->size;
10079 if ((o->flags & SEC_ELF_REVERSE_COPY))
10080 {
10081 /* Reverse-copy input section to output. */
10082 do
10083 {
10084 todo -= address_size;
10085 if (! bfd_set_section_contents (output_bfd,
10086 o->output_section,
10087 contents + todo,
10088 offset,
10089 address_size))
10090 return FALSE;
10091 if (todo == 0)
10092 break;
10093 offset += address_size;
10094 }
10095 while (1);
10096 }
10097 else if (! bfd_set_section_contents (output_bfd,
10098 o->output_section,
10099 contents,
10100 offset, todo))
10101 return FALSE;
10102 }
10103 }
10104 break;
10105 }
10106 }
10107
10108 return TRUE;
10109 }
10110
10111 /* Generate a reloc when linking an ELF file. This is a reloc
10112 requested by the linker, and does not come from any input file. This
10113 is used to build constructor and destructor tables when linking
10114 with -Ur. */
10115
10116 static bfd_boolean
10117 elf_reloc_link_order (bfd *output_bfd,
10118 struct bfd_link_info *info,
10119 asection *output_section,
10120 struct bfd_link_order *link_order)
10121 {
10122 reloc_howto_type *howto;
10123 long indx;
10124 bfd_vma offset;
10125 bfd_vma addend;
10126 struct bfd_elf_section_reloc_data *reldata;
10127 struct elf_link_hash_entry **rel_hash_ptr;
10128 Elf_Internal_Shdr *rel_hdr;
10129 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10130 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10131 bfd_byte *erel;
10132 unsigned int i;
10133 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10134
10135 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10136 if (howto == NULL)
10137 {
10138 bfd_set_error (bfd_error_bad_value);
10139 return FALSE;
10140 }
10141
10142 addend = link_order->u.reloc.p->addend;
10143
10144 if (esdo->rel.hdr)
10145 reldata = &esdo->rel;
10146 else if (esdo->rela.hdr)
10147 reldata = &esdo->rela;
10148 else
10149 {
10150 reldata = NULL;
10151 BFD_ASSERT (0);
10152 }
10153
10154 /* Figure out the symbol index. */
10155 rel_hash_ptr = reldata->hashes + reldata->count;
10156 if (link_order->type == bfd_section_reloc_link_order)
10157 {
10158 indx = link_order->u.reloc.p->u.section->target_index;
10159 BFD_ASSERT (indx != 0);
10160 *rel_hash_ptr = NULL;
10161 }
10162 else
10163 {
10164 struct elf_link_hash_entry *h;
10165
10166 /* Treat a reloc against a defined symbol as though it were
10167 actually against the section. */
10168 h = ((struct elf_link_hash_entry *)
10169 bfd_wrapped_link_hash_lookup (output_bfd, info,
10170 link_order->u.reloc.p->u.name,
10171 FALSE, FALSE, TRUE));
10172 if (h != NULL
10173 && (h->root.type == bfd_link_hash_defined
10174 || h->root.type == bfd_link_hash_defweak))
10175 {
10176 asection *section;
10177
10178 section = h->root.u.def.section;
10179 indx = section->output_section->target_index;
10180 *rel_hash_ptr = NULL;
10181 /* It seems that we ought to add the symbol value to the
10182 addend here, but in practice it has already been added
10183 because it was passed to constructor_callback. */
10184 addend += section->output_section->vma + section->output_offset;
10185 }
10186 else if (h != NULL)
10187 {
10188 /* Setting the index to -2 tells elf_link_output_extsym that
10189 this symbol is used by a reloc. */
10190 h->indx = -2;
10191 *rel_hash_ptr = h;
10192 indx = 0;
10193 }
10194 else
10195 {
10196 if (! ((*info->callbacks->unattached_reloc)
10197 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10198 return FALSE;
10199 indx = 0;
10200 }
10201 }
10202
10203 /* If this is an inplace reloc, we must write the addend into the
10204 object file. */
10205 if (howto->partial_inplace && addend != 0)
10206 {
10207 bfd_size_type size;
10208 bfd_reloc_status_type rstat;
10209 bfd_byte *buf;
10210 bfd_boolean ok;
10211 const char *sym_name;
10212
10213 size = (bfd_size_type) bfd_get_reloc_size (howto);
10214 buf = (bfd_byte *) bfd_zmalloc (size);
10215 if (buf == NULL)
10216 return FALSE;
10217 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10218 switch (rstat)
10219 {
10220 case bfd_reloc_ok:
10221 break;
10222
10223 default:
10224 case bfd_reloc_outofrange:
10225 abort ();
10226
10227 case bfd_reloc_overflow:
10228 if (link_order->type == bfd_section_reloc_link_order)
10229 sym_name = bfd_section_name (output_bfd,
10230 link_order->u.reloc.p->u.section);
10231 else
10232 sym_name = link_order->u.reloc.p->u.name;
10233 if (! ((*info->callbacks->reloc_overflow)
10234 (info, NULL, sym_name, howto->name, addend, NULL,
10235 NULL, (bfd_vma) 0)))
10236 {
10237 free (buf);
10238 return FALSE;
10239 }
10240 break;
10241 }
10242 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10243 link_order->offset, size);
10244 free (buf);
10245 if (! ok)
10246 return FALSE;
10247 }
10248
10249 /* The address of a reloc is relative to the section in a
10250 relocatable file, and is a virtual address in an executable
10251 file. */
10252 offset = link_order->offset;
10253 if (! info->relocatable)
10254 offset += output_section->vma;
10255
10256 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10257 {
10258 irel[i].r_offset = offset;
10259 irel[i].r_info = 0;
10260 irel[i].r_addend = 0;
10261 }
10262 if (bed->s->arch_size == 32)
10263 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10264 else
10265 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10266
10267 rel_hdr = reldata->hdr;
10268 erel = rel_hdr->contents;
10269 if (rel_hdr->sh_type == SHT_REL)
10270 {
10271 erel += reldata->count * bed->s->sizeof_rel;
10272 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10273 }
10274 else
10275 {
10276 irel[0].r_addend = addend;
10277 erel += reldata->count * bed->s->sizeof_rela;
10278 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10279 }
10280
10281 ++reldata->count;
10282
10283 return TRUE;
10284 }
10285
10286
10287 /* Get the output vma of the section pointed to by the sh_link field. */
10288
10289 static bfd_vma
10290 elf_get_linked_section_vma (struct bfd_link_order *p)
10291 {
10292 Elf_Internal_Shdr **elf_shdrp;
10293 asection *s;
10294 int elfsec;
10295
10296 s = p->u.indirect.section;
10297 elf_shdrp = elf_elfsections (s->owner);
10298 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10299 elfsec = elf_shdrp[elfsec]->sh_link;
10300 /* PR 290:
10301 The Intel C compiler generates SHT_IA_64_UNWIND with
10302 SHF_LINK_ORDER. But it doesn't set the sh_link or
10303 sh_info fields. Hence we could get the situation
10304 where elfsec is 0. */
10305 if (elfsec == 0)
10306 {
10307 const struct elf_backend_data *bed
10308 = get_elf_backend_data (s->owner);
10309 if (bed->link_order_error_handler)
10310 bed->link_order_error_handler
10311 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10312 return 0;
10313 }
10314 else
10315 {
10316 s = elf_shdrp[elfsec]->bfd_section;
10317 return s->output_section->vma + s->output_offset;
10318 }
10319 }
10320
10321
10322 /* Compare two sections based on the locations of the sections they are
10323 linked to. Used by elf_fixup_link_order. */
10324
10325 static int
10326 compare_link_order (const void * a, const void * b)
10327 {
10328 bfd_vma apos;
10329 bfd_vma bpos;
10330
10331 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10332 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10333 if (apos < bpos)
10334 return -1;
10335 return apos > bpos;
10336 }
10337
10338
10339 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10340 order as their linked sections. Returns false if this could not be done
10341 because an output section includes both ordered and unordered
10342 sections. Ideally we'd do this in the linker proper. */
10343
10344 static bfd_boolean
10345 elf_fixup_link_order (bfd *abfd, asection *o)
10346 {
10347 int seen_linkorder;
10348 int seen_other;
10349 int n;
10350 struct bfd_link_order *p;
10351 bfd *sub;
10352 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10353 unsigned elfsec;
10354 struct bfd_link_order **sections;
10355 asection *s, *other_sec, *linkorder_sec;
10356 bfd_vma offset;
10357
10358 other_sec = NULL;
10359 linkorder_sec = NULL;
10360 seen_other = 0;
10361 seen_linkorder = 0;
10362 for (p = o->map_head.link_order; p != NULL; p = p->next)
10363 {
10364 if (p->type == bfd_indirect_link_order)
10365 {
10366 s = p->u.indirect.section;
10367 sub = s->owner;
10368 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10369 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10370 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10371 && elfsec < elf_numsections (sub)
10372 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10373 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10374 {
10375 seen_linkorder++;
10376 linkorder_sec = s;
10377 }
10378 else
10379 {
10380 seen_other++;
10381 other_sec = s;
10382 }
10383 }
10384 else
10385 seen_other++;
10386
10387 if (seen_other && seen_linkorder)
10388 {
10389 if (other_sec && linkorder_sec)
10390 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10391 o, linkorder_sec,
10392 linkorder_sec->owner, other_sec,
10393 other_sec->owner);
10394 else
10395 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10396 o);
10397 bfd_set_error (bfd_error_bad_value);
10398 return FALSE;
10399 }
10400 }
10401
10402 if (!seen_linkorder)
10403 return TRUE;
10404
10405 sections = (struct bfd_link_order **)
10406 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10407 if (sections == NULL)
10408 return FALSE;
10409 seen_linkorder = 0;
10410
10411 for (p = o->map_head.link_order; p != NULL; p = p->next)
10412 {
10413 sections[seen_linkorder++] = p;
10414 }
10415 /* Sort the input sections in the order of their linked section. */
10416 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10417 compare_link_order);
10418
10419 /* Change the offsets of the sections. */
10420 offset = 0;
10421 for (n = 0; n < seen_linkorder; n++)
10422 {
10423 s = sections[n]->u.indirect.section;
10424 offset &= ~(bfd_vma) 0 << s->alignment_power;
10425 s->output_offset = offset;
10426 sections[n]->offset = offset;
10427 /* FIXME: octets_per_byte. */
10428 offset += sections[n]->size;
10429 }
10430
10431 free (sections);
10432 return TRUE;
10433 }
10434
10435
10436 /* Do the final step of an ELF link. */
10437
10438 bfd_boolean
10439 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10440 {
10441 bfd_boolean dynamic;
10442 bfd_boolean emit_relocs;
10443 bfd *dynobj;
10444 struct elf_final_link_info flinfo;
10445 asection *o;
10446 struct bfd_link_order *p;
10447 bfd *sub;
10448 bfd_size_type max_contents_size;
10449 bfd_size_type max_external_reloc_size;
10450 bfd_size_type max_internal_reloc_count;
10451 bfd_size_type max_sym_count;
10452 bfd_size_type max_sym_shndx_count;
10453 file_ptr off;
10454 Elf_Internal_Sym elfsym;
10455 unsigned int i;
10456 Elf_Internal_Shdr *symtab_hdr;
10457 Elf_Internal_Shdr *symtab_shndx_hdr;
10458 Elf_Internal_Shdr *symstrtab_hdr;
10459 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10460 struct elf_outext_info eoinfo;
10461 bfd_boolean merged;
10462 size_t relativecount = 0;
10463 asection *reldyn = 0;
10464 bfd_size_type amt;
10465 asection *attr_section = NULL;
10466 bfd_vma attr_size = 0;
10467 const char *std_attrs_section;
10468
10469 if (! is_elf_hash_table (info->hash))
10470 return FALSE;
10471
10472 if (info->shared)
10473 abfd->flags |= DYNAMIC;
10474
10475 dynamic = elf_hash_table (info)->dynamic_sections_created;
10476 dynobj = elf_hash_table (info)->dynobj;
10477
10478 emit_relocs = (info->relocatable
10479 || info->emitrelocations);
10480
10481 flinfo.info = info;
10482 flinfo.output_bfd = abfd;
10483 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10484 if (flinfo.symstrtab == NULL)
10485 return FALSE;
10486
10487 if (! dynamic)
10488 {
10489 flinfo.dynsym_sec = NULL;
10490 flinfo.hash_sec = NULL;
10491 flinfo.symver_sec = NULL;
10492 }
10493 else
10494 {
10495 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10496 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10497 /* Note that dynsym_sec can be NULL (on VMS). */
10498 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10499 /* Note that it is OK if symver_sec is NULL. */
10500 }
10501
10502 flinfo.contents = NULL;
10503 flinfo.external_relocs = NULL;
10504 flinfo.internal_relocs = NULL;
10505 flinfo.external_syms = NULL;
10506 flinfo.locsym_shndx = NULL;
10507 flinfo.internal_syms = NULL;
10508 flinfo.indices = NULL;
10509 flinfo.sections = NULL;
10510 flinfo.symbuf = NULL;
10511 flinfo.symshndxbuf = NULL;
10512 flinfo.symbuf_count = 0;
10513 flinfo.shndxbuf_size = 0;
10514 flinfo.filesym_count = 0;
10515
10516 /* The object attributes have been merged. Remove the input
10517 sections from the link, and set the contents of the output
10518 secton. */
10519 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10520 for (o = abfd->sections; o != NULL; o = o->next)
10521 {
10522 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10523 || strcmp (o->name, ".gnu.attributes") == 0)
10524 {
10525 for (p = o->map_head.link_order; p != NULL; p = p->next)
10526 {
10527 asection *input_section;
10528
10529 if (p->type != bfd_indirect_link_order)
10530 continue;
10531 input_section = p->u.indirect.section;
10532 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10533 elf_link_input_bfd ignores this section. */
10534 input_section->flags &= ~SEC_HAS_CONTENTS;
10535 }
10536
10537 attr_size = bfd_elf_obj_attr_size (abfd);
10538 if (attr_size)
10539 {
10540 bfd_set_section_size (abfd, o, attr_size);
10541 attr_section = o;
10542 /* Skip this section later on. */
10543 o->map_head.link_order = NULL;
10544 }
10545 else
10546 o->flags |= SEC_EXCLUDE;
10547 }
10548 }
10549
10550 /* Count up the number of relocations we will output for each output
10551 section, so that we know the sizes of the reloc sections. We
10552 also figure out some maximum sizes. */
10553 max_contents_size = 0;
10554 max_external_reloc_size = 0;
10555 max_internal_reloc_count = 0;
10556 max_sym_count = 0;
10557 max_sym_shndx_count = 0;
10558 merged = FALSE;
10559 for (o = abfd->sections; o != NULL; o = o->next)
10560 {
10561 struct bfd_elf_section_data *esdo = elf_section_data (o);
10562 o->reloc_count = 0;
10563
10564 for (p = o->map_head.link_order; p != NULL; p = p->next)
10565 {
10566 unsigned int reloc_count = 0;
10567 struct bfd_elf_section_data *esdi = NULL;
10568
10569 if (p->type == bfd_section_reloc_link_order
10570 || p->type == bfd_symbol_reloc_link_order)
10571 reloc_count = 1;
10572 else if (p->type == bfd_indirect_link_order)
10573 {
10574 asection *sec;
10575
10576 sec = p->u.indirect.section;
10577 esdi = elf_section_data (sec);
10578
10579 /* Mark all sections which are to be included in the
10580 link. This will normally be every section. We need
10581 to do this so that we can identify any sections which
10582 the linker has decided to not include. */
10583 sec->linker_mark = TRUE;
10584
10585 if (sec->flags & SEC_MERGE)
10586 merged = TRUE;
10587
10588 if (esdo->this_hdr.sh_type == SHT_REL
10589 || esdo->this_hdr.sh_type == SHT_RELA)
10590 /* Some backends use reloc_count in relocation sections
10591 to count particular types of relocs. Of course,
10592 reloc sections themselves can't have relocations. */
10593 reloc_count = 0;
10594 else if (info->relocatable || info->emitrelocations)
10595 reloc_count = sec->reloc_count;
10596 else if (bed->elf_backend_count_relocs)
10597 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10598
10599 if (sec->rawsize > max_contents_size)
10600 max_contents_size = sec->rawsize;
10601 if (sec->size > max_contents_size)
10602 max_contents_size = sec->size;
10603
10604 /* We are interested in just local symbols, not all
10605 symbols. */
10606 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10607 && (sec->owner->flags & DYNAMIC) == 0)
10608 {
10609 size_t sym_count;
10610
10611 if (elf_bad_symtab (sec->owner))
10612 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10613 / bed->s->sizeof_sym);
10614 else
10615 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10616
10617 if (sym_count > max_sym_count)
10618 max_sym_count = sym_count;
10619
10620 if (sym_count > max_sym_shndx_count
10621 && elf_symtab_shndx (sec->owner) != 0)
10622 max_sym_shndx_count = sym_count;
10623
10624 if ((sec->flags & SEC_RELOC) != 0)
10625 {
10626 size_t ext_size = 0;
10627
10628 if (esdi->rel.hdr != NULL)
10629 ext_size = esdi->rel.hdr->sh_size;
10630 if (esdi->rela.hdr != NULL)
10631 ext_size += esdi->rela.hdr->sh_size;
10632
10633 if (ext_size > max_external_reloc_size)
10634 max_external_reloc_size = ext_size;
10635 if (sec->reloc_count > max_internal_reloc_count)
10636 max_internal_reloc_count = sec->reloc_count;
10637 }
10638 }
10639 }
10640
10641 if (reloc_count == 0)
10642 continue;
10643
10644 o->reloc_count += reloc_count;
10645
10646 if (p->type == bfd_indirect_link_order
10647 && (info->relocatable || info->emitrelocations))
10648 {
10649 if (esdi->rel.hdr)
10650 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10651 if (esdi->rela.hdr)
10652 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10653 }
10654 else
10655 {
10656 if (o->use_rela_p)
10657 esdo->rela.count += reloc_count;
10658 else
10659 esdo->rel.count += reloc_count;
10660 }
10661 }
10662
10663 if (o->reloc_count > 0)
10664 o->flags |= SEC_RELOC;
10665 else
10666 {
10667 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10668 set it (this is probably a bug) and if it is set
10669 assign_section_numbers will create a reloc section. */
10670 o->flags &=~ SEC_RELOC;
10671 }
10672
10673 /* If the SEC_ALLOC flag is not set, force the section VMA to
10674 zero. This is done in elf_fake_sections as well, but forcing
10675 the VMA to 0 here will ensure that relocs against these
10676 sections are handled correctly. */
10677 if ((o->flags & SEC_ALLOC) == 0
10678 && ! o->user_set_vma)
10679 o->vma = 0;
10680 }
10681
10682 if (! info->relocatable && merged)
10683 elf_link_hash_traverse (elf_hash_table (info),
10684 _bfd_elf_link_sec_merge_syms, abfd);
10685
10686 /* Figure out the file positions for everything but the symbol table
10687 and the relocs. We set symcount to force assign_section_numbers
10688 to create a symbol table. */
10689 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10690 BFD_ASSERT (! abfd->output_has_begun);
10691 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10692 goto error_return;
10693
10694 /* Set sizes, and assign file positions for reloc sections. */
10695 for (o = abfd->sections; o != NULL; o = o->next)
10696 {
10697 struct bfd_elf_section_data *esdo = elf_section_data (o);
10698 if ((o->flags & SEC_RELOC) != 0)
10699 {
10700 if (esdo->rel.hdr
10701 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10702 goto error_return;
10703
10704 if (esdo->rela.hdr
10705 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10706 goto error_return;
10707 }
10708
10709 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10710 to count upwards while actually outputting the relocations. */
10711 esdo->rel.count = 0;
10712 esdo->rela.count = 0;
10713 }
10714
10715 _bfd_elf_assign_file_positions_for_relocs (abfd);
10716
10717 /* We have now assigned file positions for all the sections except
10718 .symtab and .strtab. We start the .symtab section at the current
10719 file position, and write directly to it. We build the .strtab
10720 section in memory. */
10721 bfd_get_symcount (abfd) = 0;
10722 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10723 /* sh_name is set in prep_headers. */
10724 symtab_hdr->sh_type = SHT_SYMTAB;
10725 /* sh_flags, sh_addr and sh_size all start off zero. */
10726 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10727 /* sh_link is set in assign_section_numbers. */
10728 /* sh_info is set below. */
10729 /* sh_offset is set just below. */
10730 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10731
10732 off = elf_tdata (abfd)->next_file_pos;
10733 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10734
10735 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10736 incorrect. We do not yet know the size of the .symtab section.
10737 We correct next_file_pos below, after we do know the size. */
10738
10739 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10740 continuously seeking to the right position in the file. */
10741 if (! info->keep_memory || max_sym_count < 20)
10742 flinfo.symbuf_size = 20;
10743 else
10744 flinfo.symbuf_size = max_sym_count;
10745 amt = flinfo.symbuf_size;
10746 amt *= bed->s->sizeof_sym;
10747 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10748 if (flinfo.symbuf == NULL)
10749 goto error_return;
10750 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10751 {
10752 /* Wild guess at number of output symbols. realloc'd as needed. */
10753 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10754 flinfo.shndxbuf_size = amt;
10755 amt *= sizeof (Elf_External_Sym_Shndx);
10756 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10757 if (flinfo.symshndxbuf == NULL)
10758 goto error_return;
10759 }
10760
10761 /* Start writing out the symbol table. The first symbol is always a
10762 dummy symbol. */
10763 if (info->strip != strip_all
10764 || emit_relocs)
10765 {
10766 elfsym.st_value = 0;
10767 elfsym.st_size = 0;
10768 elfsym.st_info = 0;
10769 elfsym.st_other = 0;
10770 elfsym.st_shndx = SHN_UNDEF;
10771 elfsym.st_target_internal = 0;
10772 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10773 NULL) != 1)
10774 goto error_return;
10775 }
10776
10777 /* Output a symbol for each section. We output these even if we are
10778 discarding local symbols, since they are used for relocs. These
10779 symbols have no names. We store the index of each one in the
10780 index field of the section, so that we can find it again when
10781 outputting relocs. */
10782 if (info->strip != strip_all
10783 || emit_relocs)
10784 {
10785 elfsym.st_size = 0;
10786 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10787 elfsym.st_other = 0;
10788 elfsym.st_value = 0;
10789 elfsym.st_target_internal = 0;
10790 for (i = 1; i < elf_numsections (abfd); i++)
10791 {
10792 o = bfd_section_from_elf_index (abfd, i);
10793 if (o != NULL)
10794 {
10795 o->target_index = bfd_get_symcount (abfd);
10796 elfsym.st_shndx = i;
10797 if (!info->relocatable)
10798 elfsym.st_value = o->vma;
10799 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10800 goto error_return;
10801 }
10802 }
10803 }
10804
10805 /* Allocate some memory to hold information read in from the input
10806 files. */
10807 if (max_contents_size != 0)
10808 {
10809 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10810 if (flinfo.contents == NULL)
10811 goto error_return;
10812 }
10813
10814 if (max_external_reloc_size != 0)
10815 {
10816 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10817 if (flinfo.external_relocs == NULL)
10818 goto error_return;
10819 }
10820
10821 if (max_internal_reloc_count != 0)
10822 {
10823 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10824 amt *= sizeof (Elf_Internal_Rela);
10825 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10826 if (flinfo.internal_relocs == NULL)
10827 goto error_return;
10828 }
10829
10830 if (max_sym_count != 0)
10831 {
10832 amt = max_sym_count * bed->s->sizeof_sym;
10833 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10834 if (flinfo.external_syms == NULL)
10835 goto error_return;
10836
10837 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10838 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10839 if (flinfo.internal_syms == NULL)
10840 goto error_return;
10841
10842 amt = max_sym_count * sizeof (long);
10843 flinfo.indices = (long int *) bfd_malloc (amt);
10844 if (flinfo.indices == NULL)
10845 goto error_return;
10846
10847 amt = max_sym_count * sizeof (asection *);
10848 flinfo.sections = (asection **) bfd_malloc (amt);
10849 if (flinfo.sections == NULL)
10850 goto error_return;
10851 }
10852
10853 if (max_sym_shndx_count != 0)
10854 {
10855 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10856 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10857 if (flinfo.locsym_shndx == NULL)
10858 goto error_return;
10859 }
10860
10861 if (elf_hash_table (info)->tls_sec)
10862 {
10863 bfd_vma base, end = 0;
10864 asection *sec;
10865
10866 for (sec = elf_hash_table (info)->tls_sec;
10867 sec && (sec->flags & SEC_THREAD_LOCAL);
10868 sec = sec->next)
10869 {
10870 bfd_size_type size = sec->size;
10871
10872 if (size == 0
10873 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10874 {
10875 struct bfd_link_order *ord = sec->map_tail.link_order;
10876
10877 if (ord != NULL)
10878 size = ord->offset + ord->size;
10879 }
10880 end = sec->vma + size;
10881 }
10882 base = elf_hash_table (info)->tls_sec->vma;
10883 /* Only align end of TLS section if static TLS doesn't have special
10884 alignment requirements. */
10885 if (bed->static_tls_alignment == 1)
10886 end = align_power (end,
10887 elf_hash_table (info)->tls_sec->alignment_power);
10888 elf_hash_table (info)->tls_size = end - base;
10889 }
10890
10891 /* Reorder SHF_LINK_ORDER sections. */
10892 for (o = abfd->sections; o != NULL; o = o->next)
10893 {
10894 if (!elf_fixup_link_order (abfd, o))
10895 return FALSE;
10896 }
10897
10898 /* Since ELF permits relocations to be against local symbols, we
10899 must have the local symbols available when we do the relocations.
10900 Since we would rather only read the local symbols once, and we
10901 would rather not keep them in memory, we handle all the
10902 relocations for a single input file at the same time.
10903
10904 Unfortunately, there is no way to know the total number of local
10905 symbols until we have seen all of them, and the local symbol
10906 indices precede the global symbol indices. This means that when
10907 we are generating relocatable output, and we see a reloc against
10908 a global symbol, we can not know the symbol index until we have
10909 finished examining all the local symbols to see which ones we are
10910 going to output. To deal with this, we keep the relocations in
10911 memory, and don't output them until the end of the link. This is
10912 an unfortunate waste of memory, but I don't see a good way around
10913 it. Fortunately, it only happens when performing a relocatable
10914 link, which is not the common case. FIXME: If keep_memory is set
10915 we could write the relocs out and then read them again; I don't
10916 know how bad the memory loss will be. */
10917
10918 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10919 sub->output_has_begun = FALSE;
10920 for (o = abfd->sections; o != NULL; o = o->next)
10921 {
10922 for (p = o->map_head.link_order; p != NULL; p = p->next)
10923 {
10924 if (p->type == bfd_indirect_link_order
10925 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10926 == bfd_target_elf_flavour)
10927 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10928 {
10929 if (! sub->output_has_begun)
10930 {
10931 if (! elf_link_input_bfd (&flinfo, sub))
10932 goto error_return;
10933 sub->output_has_begun = TRUE;
10934 }
10935 }
10936 else if (p->type == bfd_section_reloc_link_order
10937 || p->type == bfd_symbol_reloc_link_order)
10938 {
10939 if (! elf_reloc_link_order (abfd, info, o, p))
10940 goto error_return;
10941 }
10942 else
10943 {
10944 if (! _bfd_default_link_order (abfd, info, o, p))
10945 {
10946 if (p->type == bfd_indirect_link_order
10947 && (bfd_get_flavour (sub)
10948 == bfd_target_elf_flavour)
10949 && (elf_elfheader (sub)->e_ident[EI_CLASS]
10950 != bed->s->elfclass))
10951 {
10952 const char *iclass, *oclass;
10953
10954 if (bed->s->elfclass == ELFCLASS64)
10955 {
10956 iclass = "ELFCLASS32";
10957 oclass = "ELFCLASS64";
10958 }
10959 else
10960 {
10961 iclass = "ELFCLASS64";
10962 oclass = "ELFCLASS32";
10963 }
10964
10965 bfd_set_error (bfd_error_wrong_format);
10966 (*_bfd_error_handler)
10967 (_("%B: file class %s incompatible with %s"),
10968 sub, iclass, oclass);
10969 }
10970
10971 goto error_return;
10972 }
10973 }
10974 }
10975 }
10976
10977 /* Free symbol buffer if needed. */
10978 if (!info->reduce_memory_overheads)
10979 {
10980 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10981 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10982 && elf_tdata (sub)->symbuf)
10983 {
10984 free (elf_tdata (sub)->symbuf);
10985 elf_tdata (sub)->symbuf = NULL;
10986 }
10987 }
10988
10989 /* Output a FILE symbol so that following locals are not associated
10990 with the wrong input file. */
10991 memset (&elfsym, 0, sizeof (elfsym));
10992 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10993 elfsym.st_shndx = SHN_ABS;
10994
10995 if (flinfo.filesym_count > 1
10996 && !elf_link_output_sym (&flinfo, NULL, &elfsym,
10997 bfd_und_section_ptr, NULL))
10998 return FALSE;
10999
11000 /* Output any global symbols that got converted to local in a
11001 version script or due to symbol visibility. We do this in a
11002 separate step since ELF requires all local symbols to appear
11003 prior to any global symbols. FIXME: We should only do this if
11004 some global symbols were, in fact, converted to become local.
11005 FIXME: Will this work correctly with the Irix 5 linker? */
11006 eoinfo.failed = FALSE;
11007 eoinfo.flinfo = &flinfo;
11008 eoinfo.localsyms = TRUE;
11009 eoinfo.need_second_pass = FALSE;
11010 eoinfo.second_pass = FALSE;
11011 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11012 if (eoinfo.failed)
11013 return FALSE;
11014
11015 if (flinfo.filesym_count == 1
11016 && !elf_link_output_sym (&flinfo, NULL, &elfsym,
11017 bfd_und_section_ptr, NULL))
11018 return FALSE;
11019
11020 if (eoinfo.need_second_pass)
11021 {
11022 eoinfo.second_pass = TRUE;
11023 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11024 if (eoinfo.failed)
11025 return FALSE;
11026 }
11027
11028 /* If backend needs to output some local symbols not present in the hash
11029 table, do it now. */
11030 if (bed->elf_backend_output_arch_local_syms)
11031 {
11032 typedef int (*out_sym_func)
11033 (void *, const char *, Elf_Internal_Sym *, asection *,
11034 struct elf_link_hash_entry *);
11035
11036 if (! ((*bed->elf_backend_output_arch_local_syms)
11037 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11038 return FALSE;
11039 }
11040
11041 /* That wrote out all the local symbols. Finish up the symbol table
11042 with the global symbols. Even if we want to strip everything we
11043 can, we still need to deal with those global symbols that got
11044 converted to local in a version script. */
11045
11046 /* The sh_info field records the index of the first non local symbol. */
11047 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11048
11049 if (dynamic
11050 && flinfo.dynsym_sec != NULL
11051 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11052 {
11053 Elf_Internal_Sym sym;
11054 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11055 long last_local = 0;
11056
11057 /* Write out the section symbols for the output sections. */
11058 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11059 {
11060 asection *s;
11061
11062 sym.st_size = 0;
11063 sym.st_name = 0;
11064 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11065 sym.st_other = 0;
11066 sym.st_target_internal = 0;
11067
11068 for (s = abfd->sections; s != NULL; s = s->next)
11069 {
11070 int indx;
11071 bfd_byte *dest;
11072 long dynindx;
11073
11074 dynindx = elf_section_data (s)->dynindx;
11075 if (dynindx <= 0)
11076 continue;
11077 indx = elf_section_data (s)->this_idx;
11078 BFD_ASSERT (indx > 0);
11079 sym.st_shndx = indx;
11080 if (! check_dynsym (abfd, &sym))
11081 return FALSE;
11082 sym.st_value = s->vma;
11083 dest = dynsym + dynindx * bed->s->sizeof_sym;
11084 if (last_local < dynindx)
11085 last_local = dynindx;
11086 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11087 }
11088 }
11089
11090 /* Write out the local dynsyms. */
11091 if (elf_hash_table (info)->dynlocal)
11092 {
11093 struct elf_link_local_dynamic_entry *e;
11094 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11095 {
11096 asection *s;
11097 bfd_byte *dest;
11098
11099 /* Copy the internal symbol and turn off visibility.
11100 Note that we saved a word of storage and overwrote
11101 the original st_name with the dynstr_index. */
11102 sym = e->isym;
11103 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11104
11105 s = bfd_section_from_elf_index (e->input_bfd,
11106 e->isym.st_shndx);
11107 if (s != NULL)
11108 {
11109 sym.st_shndx =
11110 elf_section_data (s->output_section)->this_idx;
11111 if (! check_dynsym (abfd, &sym))
11112 return FALSE;
11113 sym.st_value = (s->output_section->vma
11114 + s->output_offset
11115 + e->isym.st_value);
11116 }
11117
11118 if (last_local < e->dynindx)
11119 last_local = e->dynindx;
11120
11121 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11122 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11123 }
11124 }
11125
11126 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11127 last_local + 1;
11128 }
11129
11130 /* We get the global symbols from the hash table. */
11131 eoinfo.failed = FALSE;
11132 eoinfo.localsyms = FALSE;
11133 eoinfo.flinfo = &flinfo;
11134 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11135 if (eoinfo.failed)
11136 return FALSE;
11137
11138 /* If backend needs to output some symbols not present in the hash
11139 table, do it now. */
11140 if (bed->elf_backend_output_arch_syms)
11141 {
11142 typedef int (*out_sym_func)
11143 (void *, const char *, Elf_Internal_Sym *, asection *,
11144 struct elf_link_hash_entry *);
11145
11146 if (! ((*bed->elf_backend_output_arch_syms)
11147 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11148 return FALSE;
11149 }
11150
11151 /* Flush all symbols to the file. */
11152 if (! elf_link_flush_output_syms (&flinfo, bed))
11153 return FALSE;
11154
11155 /* Now we know the size of the symtab section. */
11156 off += symtab_hdr->sh_size;
11157
11158 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11159 if (symtab_shndx_hdr->sh_name != 0)
11160 {
11161 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11162 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11163 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11164 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11165 symtab_shndx_hdr->sh_size = amt;
11166
11167 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11168 off, TRUE);
11169
11170 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11171 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11172 return FALSE;
11173 }
11174
11175
11176 /* Finish up and write out the symbol string table (.strtab)
11177 section. */
11178 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11179 /* sh_name was set in prep_headers. */
11180 symstrtab_hdr->sh_type = SHT_STRTAB;
11181 symstrtab_hdr->sh_flags = 0;
11182 symstrtab_hdr->sh_addr = 0;
11183 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11184 symstrtab_hdr->sh_entsize = 0;
11185 symstrtab_hdr->sh_link = 0;
11186 symstrtab_hdr->sh_info = 0;
11187 /* sh_offset is set just below. */
11188 symstrtab_hdr->sh_addralign = 1;
11189
11190 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
11191 elf_tdata (abfd)->next_file_pos = off;
11192
11193 if (bfd_get_symcount (abfd) > 0)
11194 {
11195 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11196 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11197 return FALSE;
11198 }
11199
11200 /* Adjust the relocs to have the correct symbol indices. */
11201 for (o = abfd->sections; o != NULL; o = o->next)
11202 {
11203 struct bfd_elf_section_data *esdo = elf_section_data (o);
11204 if ((o->flags & SEC_RELOC) == 0)
11205 continue;
11206
11207 if (esdo->rel.hdr != NULL)
11208 elf_link_adjust_relocs (abfd, &esdo->rel);
11209 if (esdo->rela.hdr != NULL)
11210 elf_link_adjust_relocs (abfd, &esdo->rela);
11211
11212 /* Set the reloc_count field to 0 to prevent write_relocs from
11213 trying to swap the relocs out itself. */
11214 o->reloc_count = 0;
11215 }
11216
11217 if (dynamic && info->combreloc && dynobj != NULL)
11218 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11219
11220 /* If we are linking against a dynamic object, or generating a
11221 shared library, finish up the dynamic linking information. */
11222 if (dynamic)
11223 {
11224 bfd_byte *dyncon, *dynconend;
11225
11226 /* Fix up .dynamic entries. */
11227 o = bfd_get_linker_section (dynobj, ".dynamic");
11228 BFD_ASSERT (o != NULL);
11229
11230 dyncon = o->contents;
11231 dynconend = o->contents + o->size;
11232 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11233 {
11234 Elf_Internal_Dyn dyn;
11235 const char *name;
11236 unsigned int type;
11237
11238 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11239
11240 switch (dyn.d_tag)
11241 {
11242 default:
11243 continue;
11244 case DT_NULL:
11245 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11246 {
11247 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11248 {
11249 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11250 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11251 default: continue;
11252 }
11253 dyn.d_un.d_val = relativecount;
11254 relativecount = 0;
11255 break;
11256 }
11257 continue;
11258
11259 case DT_INIT:
11260 name = info->init_function;
11261 goto get_sym;
11262 case DT_FINI:
11263 name = info->fini_function;
11264 get_sym:
11265 {
11266 struct elf_link_hash_entry *h;
11267
11268 h = elf_link_hash_lookup (elf_hash_table (info), name,
11269 FALSE, FALSE, TRUE);
11270 if (h != NULL
11271 && (h->root.type == bfd_link_hash_defined
11272 || h->root.type == bfd_link_hash_defweak))
11273 {
11274 dyn.d_un.d_ptr = h->root.u.def.value;
11275 o = h->root.u.def.section;
11276 if (o->output_section != NULL)
11277 dyn.d_un.d_ptr += (o->output_section->vma
11278 + o->output_offset);
11279 else
11280 {
11281 /* The symbol is imported from another shared
11282 library and does not apply to this one. */
11283 dyn.d_un.d_ptr = 0;
11284 }
11285 break;
11286 }
11287 }
11288 continue;
11289
11290 case DT_PREINIT_ARRAYSZ:
11291 name = ".preinit_array";
11292 goto get_size;
11293 case DT_INIT_ARRAYSZ:
11294 name = ".init_array";
11295 goto get_size;
11296 case DT_FINI_ARRAYSZ:
11297 name = ".fini_array";
11298 get_size:
11299 o = bfd_get_section_by_name (abfd, name);
11300 if (o == NULL)
11301 {
11302 (*_bfd_error_handler)
11303 (_("%B: could not find output section %s"), abfd, name);
11304 goto error_return;
11305 }
11306 if (o->size == 0)
11307 (*_bfd_error_handler)
11308 (_("warning: %s section has zero size"), name);
11309 dyn.d_un.d_val = o->size;
11310 break;
11311
11312 case DT_PREINIT_ARRAY:
11313 name = ".preinit_array";
11314 goto get_vma;
11315 case DT_INIT_ARRAY:
11316 name = ".init_array";
11317 goto get_vma;
11318 case DT_FINI_ARRAY:
11319 name = ".fini_array";
11320 goto get_vma;
11321
11322 case DT_HASH:
11323 name = ".hash";
11324 goto get_vma;
11325 case DT_GNU_HASH:
11326 name = ".gnu.hash";
11327 goto get_vma;
11328 case DT_STRTAB:
11329 name = ".dynstr";
11330 goto get_vma;
11331 case DT_SYMTAB:
11332 name = ".dynsym";
11333 goto get_vma;
11334 case DT_VERDEF:
11335 name = ".gnu.version_d";
11336 goto get_vma;
11337 case DT_VERNEED:
11338 name = ".gnu.version_r";
11339 goto get_vma;
11340 case DT_VERSYM:
11341 name = ".gnu.version";
11342 get_vma:
11343 o = bfd_get_section_by_name (abfd, name);
11344 if (o == NULL)
11345 {
11346 (*_bfd_error_handler)
11347 (_("%B: could not find output section %s"), abfd, name);
11348 goto error_return;
11349 }
11350 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11351 {
11352 (*_bfd_error_handler)
11353 (_("warning: section '%s' is being made into a note"), name);
11354 bfd_set_error (bfd_error_nonrepresentable_section);
11355 goto error_return;
11356 }
11357 dyn.d_un.d_ptr = o->vma;
11358 break;
11359
11360 case DT_REL:
11361 case DT_RELA:
11362 case DT_RELSZ:
11363 case DT_RELASZ:
11364 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11365 type = SHT_REL;
11366 else
11367 type = SHT_RELA;
11368 dyn.d_un.d_val = 0;
11369 dyn.d_un.d_ptr = 0;
11370 for (i = 1; i < elf_numsections (abfd); i++)
11371 {
11372 Elf_Internal_Shdr *hdr;
11373
11374 hdr = elf_elfsections (abfd)[i];
11375 if (hdr->sh_type == type
11376 && (hdr->sh_flags & SHF_ALLOC) != 0)
11377 {
11378 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11379 dyn.d_un.d_val += hdr->sh_size;
11380 else
11381 {
11382 if (dyn.d_un.d_ptr == 0
11383 || hdr->sh_addr < dyn.d_un.d_ptr)
11384 dyn.d_un.d_ptr = hdr->sh_addr;
11385 }
11386 }
11387 }
11388 break;
11389 }
11390 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11391 }
11392 }
11393
11394 /* If we have created any dynamic sections, then output them. */
11395 if (dynobj != NULL)
11396 {
11397 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11398 goto error_return;
11399
11400 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11401 if (((info->warn_shared_textrel && info->shared)
11402 || info->error_textrel)
11403 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11404 {
11405 bfd_byte *dyncon, *dynconend;
11406
11407 dyncon = o->contents;
11408 dynconend = o->contents + o->size;
11409 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11410 {
11411 Elf_Internal_Dyn dyn;
11412
11413 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11414
11415 if (dyn.d_tag == DT_TEXTREL)
11416 {
11417 if (info->error_textrel)
11418 info->callbacks->einfo
11419 (_("%P%X: read-only segment has dynamic relocations.\n"));
11420 else
11421 info->callbacks->einfo
11422 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11423 break;
11424 }
11425 }
11426 }
11427
11428 for (o = dynobj->sections; o != NULL; o = o->next)
11429 {
11430 if ((o->flags & SEC_HAS_CONTENTS) == 0
11431 || o->size == 0
11432 || o->output_section == bfd_abs_section_ptr)
11433 continue;
11434 if ((o->flags & SEC_LINKER_CREATED) == 0)
11435 {
11436 /* At this point, we are only interested in sections
11437 created by _bfd_elf_link_create_dynamic_sections. */
11438 continue;
11439 }
11440 if (elf_hash_table (info)->stab_info.stabstr == o)
11441 continue;
11442 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11443 continue;
11444 if (strcmp (o->name, ".dynstr") != 0)
11445 {
11446 /* FIXME: octets_per_byte. */
11447 if (! bfd_set_section_contents (abfd, o->output_section,
11448 o->contents,
11449 (file_ptr) o->output_offset,
11450 o->size))
11451 goto error_return;
11452 }
11453 else
11454 {
11455 /* The contents of the .dynstr section are actually in a
11456 stringtab. */
11457 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11458 if (bfd_seek (abfd, off, SEEK_SET) != 0
11459 || ! _bfd_elf_strtab_emit (abfd,
11460 elf_hash_table (info)->dynstr))
11461 goto error_return;
11462 }
11463 }
11464 }
11465
11466 if (info->relocatable)
11467 {
11468 bfd_boolean failed = FALSE;
11469
11470 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11471 if (failed)
11472 goto error_return;
11473 }
11474
11475 /* If we have optimized stabs strings, output them. */
11476 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11477 {
11478 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11479 goto error_return;
11480 }
11481
11482 if (info->eh_frame_hdr)
11483 {
11484 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11485 goto error_return;
11486 }
11487
11488 if (flinfo.symstrtab != NULL)
11489 _bfd_stringtab_free (flinfo.symstrtab);
11490 if (flinfo.contents != NULL)
11491 free (flinfo.contents);
11492 if (flinfo.external_relocs != NULL)
11493 free (flinfo.external_relocs);
11494 if (flinfo.internal_relocs != NULL)
11495 free (flinfo.internal_relocs);
11496 if (flinfo.external_syms != NULL)
11497 free (flinfo.external_syms);
11498 if (flinfo.locsym_shndx != NULL)
11499 free (flinfo.locsym_shndx);
11500 if (flinfo.internal_syms != NULL)
11501 free (flinfo.internal_syms);
11502 if (flinfo.indices != NULL)
11503 free (flinfo.indices);
11504 if (flinfo.sections != NULL)
11505 free (flinfo.sections);
11506 if (flinfo.symbuf != NULL)
11507 free (flinfo.symbuf);
11508 if (flinfo.symshndxbuf != NULL)
11509 free (flinfo.symshndxbuf);
11510 for (o = abfd->sections; o != NULL; o = o->next)
11511 {
11512 struct bfd_elf_section_data *esdo = elf_section_data (o);
11513 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11514 free (esdo->rel.hashes);
11515 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11516 free (esdo->rela.hashes);
11517 }
11518
11519 elf_tdata (abfd)->linker = TRUE;
11520
11521 if (attr_section)
11522 {
11523 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11524 if (contents == NULL)
11525 return FALSE; /* Bail out and fail. */
11526 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11527 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11528 free (contents);
11529 }
11530
11531 return TRUE;
11532
11533 error_return:
11534 if (flinfo.symstrtab != NULL)
11535 _bfd_stringtab_free (flinfo.symstrtab);
11536 if (flinfo.contents != NULL)
11537 free (flinfo.contents);
11538 if (flinfo.external_relocs != NULL)
11539 free (flinfo.external_relocs);
11540 if (flinfo.internal_relocs != NULL)
11541 free (flinfo.internal_relocs);
11542 if (flinfo.external_syms != NULL)
11543 free (flinfo.external_syms);
11544 if (flinfo.locsym_shndx != NULL)
11545 free (flinfo.locsym_shndx);
11546 if (flinfo.internal_syms != NULL)
11547 free (flinfo.internal_syms);
11548 if (flinfo.indices != NULL)
11549 free (flinfo.indices);
11550 if (flinfo.sections != NULL)
11551 free (flinfo.sections);
11552 if (flinfo.symbuf != NULL)
11553 free (flinfo.symbuf);
11554 if (flinfo.symshndxbuf != NULL)
11555 free (flinfo.symshndxbuf);
11556 for (o = abfd->sections; o != NULL; o = o->next)
11557 {
11558 struct bfd_elf_section_data *esdo = elf_section_data (o);
11559 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11560 free (esdo->rel.hashes);
11561 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11562 free (esdo->rela.hashes);
11563 }
11564
11565 return FALSE;
11566 }
11567 \f
11568 /* Initialize COOKIE for input bfd ABFD. */
11569
11570 static bfd_boolean
11571 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11572 struct bfd_link_info *info, bfd *abfd)
11573 {
11574 Elf_Internal_Shdr *symtab_hdr;
11575 const struct elf_backend_data *bed;
11576
11577 bed = get_elf_backend_data (abfd);
11578 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11579
11580 cookie->abfd = abfd;
11581 cookie->sym_hashes = elf_sym_hashes (abfd);
11582 cookie->bad_symtab = elf_bad_symtab (abfd);
11583 if (cookie->bad_symtab)
11584 {
11585 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11586 cookie->extsymoff = 0;
11587 }
11588 else
11589 {
11590 cookie->locsymcount = symtab_hdr->sh_info;
11591 cookie->extsymoff = symtab_hdr->sh_info;
11592 }
11593
11594 if (bed->s->arch_size == 32)
11595 cookie->r_sym_shift = 8;
11596 else
11597 cookie->r_sym_shift = 32;
11598
11599 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11600 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11601 {
11602 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11603 cookie->locsymcount, 0,
11604 NULL, NULL, NULL);
11605 if (cookie->locsyms == NULL)
11606 {
11607 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11608 return FALSE;
11609 }
11610 if (info->keep_memory)
11611 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11612 }
11613 return TRUE;
11614 }
11615
11616 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11617
11618 static void
11619 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11620 {
11621 Elf_Internal_Shdr *symtab_hdr;
11622
11623 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11624 if (cookie->locsyms != NULL
11625 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11626 free (cookie->locsyms);
11627 }
11628
11629 /* Initialize the relocation information in COOKIE for input section SEC
11630 of input bfd ABFD. */
11631
11632 static bfd_boolean
11633 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11634 struct bfd_link_info *info, bfd *abfd,
11635 asection *sec)
11636 {
11637 const struct elf_backend_data *bed;
11638
11639 if (sec->reloc_count == 0)
11640 {
11641 cookie->rels = NULL;
11642 cookie->relend = NULL;
11643 }
11644 else
11645 {
11646 bed = get_elf_backend_data (abfd);
11647
11648 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11649 info->keep_memory);
11650 if (cookie->rels == NULL)
11651 return FALSE;
11652 cookie->rel = cookie->rels;
11653 cookie->relend = (cookie->rels
11654 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11655 }
11656 cookie->rel = cookie->rels;
11657 return TRUE;
11658 }
11659
11660 /* Free the memory allocated by init_reloc_cookie_rels,
11661 if appropriate. */
11662
11663 static void
11664 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11665 asection *sec)
11666 {
11667 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11668 free (cookie->rels);
11669 }
11670
11671 /* Initialize the whole of COOKIE for input section SEC. */
11672
11673 static bfd_boolean
11674 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11675 struct bfd_link_info *info,
11676 asection *sec)
11677 {
11678 if (!init_reloc_cookie (cookie, info, sec->owner))
11679 goto error1;
11680 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11681 goto error2;
11682 return TRUE;
11683
11684 error2:
11685 fini_reloc_cookie (cookie, sec->owner);
11686 error1:
11687 return FALSE;
11688 }
11689
11690 /* Free the memory allocated by init_reloc_cookie_for_section,
11691 if appropriate. */
11692
11693 static void
11694 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11695 asection *sec)
11696 {
11697 fini_reloc_cookie_rels (cookie, sec);
11698 fini_reloc_cookie (cookie, sec->owner);
11699 }
11700 \f
11701 /* Garbage collect unused sections. */
11702
11703 /* Default gc_mark_hook. */
11704
11705 asection *
11706 _bfd_elf_gc_mark_hook (asection *sec,
11707 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11708 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11709 struct elf_link_hash_entry *h,
11710 Elf_Internal_Sym *sym)
11711 {
11712 const char *sec_name;
11713
11714 if (h != NULL)
11715 {
11716 switch (h->root.type)
11717 {
11718 case bfd_link_hash_defined:
11719 case bfd_link_hash_defweak:
11720 return h->root.u.def.section;
11721
11722 case bfd_link_hash_common:
11723 return h->root.u.c.p->section;
11724
11725 case bfd_link_hash_undefined:
11726 case bfd_link_hash_undefweak:
11727 /* To work around a glibc bug, keep all XXX input sections
11728 when there is an as yet undefined reference to __start_XXX
11729 or __stop_XXX symbols. The linker will later define such
11730 symbols for orphan input sections that have a name
11731 representable as a C identifier. */
11732 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11733 sec_name = h->root.root.string + 8;
11734 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11735 sec_name = h->root.root.string + 7;
11736 else
11737 sec_name = NULL;
11738
11739 if (sec_name && *sec_name != '\0')
11740 {
11741 bfd *i;
11742
11743 for (i = info->input_bfds; i; i = i->link_next)
11744 {
11745 sec = bfd_get_section_by_name (i, sec_name);
11746 if (sec)
11747 sec->flags |= SEC_KEEP;
11748 }
11749 }
11750 break;
11751
11752 default:
11753 break;
11754 }
11755 }
11756 else
11757 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11758
11759 return NULL;
11760 }
11761
11762 /* COOKIE->rel describes a relocation against section SEC, which is
11763 a section we've decided to keep. Return the section that contains
11764 the relocation symbol, or NULL if no section contains it. */
11765
11766 asection *
11767 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11768 elf_gc_mark_hook_fn gc_mark_hook,
11769 struct elf_reloc_cookie *cookie)
11770 {
11771 unsigned long r_symndx;
11772 struct elf_link_hash_entry *h;
11773
11774 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11775 if (r_symndx == STN_UNDEF)
11776 return NULL;
11777
11778 if (r_symndx >= cookie->locsymcount
11779 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11780 {
11781 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11782 while (h->root.type == bfd_link_hash_indirect
11783 || h->root.type == bfd_link_hash_warning)
11784 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11785 h->mark = 1;
11786 /* If this symbol is weak and there is a non-weak definition, we
11787 keep the non-weak definition because many backends put
11788 dynamic reloc info on the non-weak definition for code
11789 handling copy relocs. */
11790 if (h->u.weakdef != NULL)
11791 h->u.weakdef->mark = 1;
11792 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11793 }
11794
11795 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11796 &cookie->locsyms[r_symndx]);
11797 }
11798
11799 /* COOKIE->rel describes a relocation against section SEC, which is
11800 a section we've decided to keep. Mark the section that contains
11801 the relocation symbol. */
11802
11803 bfd_boolean
11804 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11805 asection *sec,
11806 elf_gc_mark_hook_fn gc_mark_hook,
11807 struct elf_reloc_cookie *cookie)
11808 {
11809 asection *rsec;
11810
11811 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11812 if (rsec && !rsec->gc_mark)
11813 {
11814 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11815 || (rsec->owner->flags & DYNAMIC) != 0)
11816 rsec->gc_mark = 1;
11817 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11818 return FALSE;
11819 }
11820 return TRUE;
11821 }
11822
11823 /* The mark phase of garbage collection. For a given section, mark
11824 it and any sections in this section's group, and all the sections
11825 which define symbols to which it refers. */
11826
11827 bfd_boolean
11828 _bfd_elf_gc_mark (struct bfd_link_info *info,
11829 asection *sec,
11830 elf_gc_mark_hook_fn gc_mark_hook)
11831 {
11832 bfd_boolean ret;
11833 asection *group_sec, *eh_frame;
11834
11835 sec->gc_mark = 1;
11836
11837 /* Mark all the sections in the group. */
11838 group_sec = elf_section_data (sec)->next_in_group;
11839 if (group_sec && !group_sec->gc_mark)
11840 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11841 return FALSE;
11842
11843 /* Look through the section relocs. */
11844 ret = TRUE;
11845 eh_frame = elf_eh_frame_section (sec->owner);
11846 if ((sec->flags & SEC_RELOC) != 0
11847 && sec->reloc_count > 0
11848 && sec != eh_frame)
11849 {
11850 struct elf_reloc_cookie cookie;
11851
11852 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11853 ret = FALSE;
11854 else
11855 {
11856 for (; cookie.rel < cookie.relend; cookie.rel++)
11857 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11858 {
11859 ret = FALSE;
11860 break;
11861 }
11862 fini_reloc_cookie_for_section (&cookie, sec);
11863 }
11864 }
11865
11866 if (ret && eh_frame && elf_fde_list (sec))
11867 {
11868 struct elf_reloc_cookie cookie;
11869
11870 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11871 ret = FALSE;
11872 else
11873 {
11874 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11875 gc_mark_hook, &cookie))
11876 ret = FALSE;
11877 fini_reloc_cookie_for_section (&cookie, eh_frame);
11878 }
11879 }
11880
11881 return ret;
11882 }
11883
11884 /* Keep debug and special sections. */
11885
11886 bfd_boolean
11887 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
11888 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
11889 {
11890 bfd *ibfd;
11891
11892 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11893 {
11894 asection *isec;
11895 bfd_boolean some_kept;
11896
11897 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
11898 continue;
11899
11900 /* Ensure all linker created sections are kept, and see whether
11901 any other section is already marked. */
11902 some_kept = FALSE;
11903 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11904 {
11905 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11906 isec->gc_mark = 1;
11907 else if (isec->gc_mark)
11908 some_kept = TRUE;
11909 }
11910
11911 /* If no section in this file will be kept, then we can
11912 toss out debug sections. */
11913 if (!some_kept)
11914 continue;
11915
11916 /* Keep debug and special sections like .comment when they are
11917 not part of a group, or when we have single-member groups. */
11918 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11919 if ((elf_next_in_group (isec) == NULL
11920 || elf_next_in_group (isec) == isec)
11921 && ((isec->flags & SEC_DEBUGGING) != 0
11922 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
11923 isec->gc_mark = 1;
11924 }
11925 return TRUE;
11926 }
11927
11928 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11929
11930 struct elf_gc_sweep_symbol_info
11931 {
11932 struct bfd_link_info *info;
11933 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11934 bfd_boolean);
11935 };
11936
11937 static bfd_boolean
11938 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11939 {
11940 if (!h->mark
11941 && (((h->root.type == bfd_link_hash_defined
11942 || h->root.type == bfd_link_hash_defweak)
11943 && !(h->def_regular
11944 && h->root.u.def.section->gc_mark))
11945 || h->root.type == bfd_link_hash_undefined
11946 || h->root.type == bfd_link_hash_undefweak))
11947 {
11948 struct elf_gc_sweep_symbol_info *inf;
11949
11950 inf = (struct elf_gc_sweep_symbol_info *) data;
11951 (*inf->hide_symbol) (inf->info, h, TRUE);
11952 h->def_regular = 0;
11953 h->ref_regular = 0;
11954 h->ref_regular_nonweak = 0;
11955 }
11956
11957 return TRUE;
11958 }
11959
11960 /* The sweep phase of garbage collection. Remove all garbage sections. */
11961
11962 typedef bfd_boolean (*gc_sweep_hook_fn)
11963 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11964
11965 static bfd_boolean
11966 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11967 {
11968 bfd *sub;
11969 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11970 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11971 unsigned long section_sym_count;
11972 struct elf_gc_sweep_symbol_info sweep_info;
11973
11974 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11975 {
11976 asection *o;
11977
11978 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11979 continue;
11980
11981 for (o = sub->sections; o != NULL; o = o->next)
11982 {
11983 /* When any section in a section group is kept, we keep all
11984 sections in the section group. If the first member of
11985 the section group is excluded, we will also exclude the
11986 group section. */
11987 if (o->flags & SEC_GROUP)
11988 {
11989 asection *first = elf_next_in_group (o);
11990 o->gc_mark = first->gc_mark;
11991 }
11992
11993 if (o->gc_mark)
11994 continue;
11995
11996 /* Skip sweeping sections already excluded. */
11997 if (o->flags & SEC_EXCLUDE)
11998 continue;
11999
12000 /* Since this is early in the link process, it is simple
12001 to remove a section from the output. */
12002 o->flags |= SEC_EXCLUDE;
12003
12004 if (info->print_gc_sections && o->size != 0)
12005 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
12006
12007 /* But we also have to update some of the relocation
12008 info we collected before. */
12009 if (gc_sweep_hook
12010 && (o->flags & SEC_RELOC) != 0
12011 && o->reloc_count > 0
12012 && !bfd_is_abs_section (o->output_section))
12013 {
12014 Elf_Internal_Rela *internal_relocs;
12015 bfd_boolean r;
12016
12017 internal_relocs
12018 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12019 info->keep_memory);
12020 if (internal_relocs == NULL)
12021 return FALSE;
12022
12023 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12024
12025 if (elf_section_data (o)->relocs != internal_relocs)
12026 free (internal_relocs);
12027
12028 if (!r)
12029 return FALSE;
12030 }
12031 }
12032 }
12033
12034 /* Remove the symbols that were in the swept sections from the dynamic
12035 symbol table. GCFIXME: Anyone know how to get them out of the
12036 static symbol table as well? */
12037 sweep_info.info = info;
12038 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12039 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12040 &sweep_info);
12041
12042 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12043 return TRUE;
12044 }
12045
12046 /* Propagate collected vtable information. This is called through
12047 elf_link_hash_traverse. */
12048
12049 static bfd_boolean
12050 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12051 {
12052 /* Those that are not vtables. */
12053 if (h->vtable == NULL || h->vtable->parent == NULL)
12054 return TRUE;
12055
12056 /* Those vtables that do not have parents, we cannot merge. */
12057 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12058 return TRUE;
12059
12060 /* If we've already been done, exit. */
12061 if (h->vtable->used && h->vtable->used[-1])
12062 return TRUE;
12063
12064 /* Make sure the parent's table is up to date. */
12065 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12066
12067 if (h->vtable->used == NULL)
12068 {
12069 /* None of this table's entries were referenced. Re-use the
12070 parent's table. */
12071 h->vtable->used = h->vtable->parent->vtable->used;
12072 h->vtable->size = h->vtable->parent->vtable->size;
12073 }
12074 else
12075 {
12076 size_t n;
12077 bfd_boolean *cu, *pu;
12078
12079 /* Or the parent's entries into ours. */
12080 cu = h->vtable->used;
12081 cu[-1] = TRUE;
12082 pu = h->vtable->parent->vtable->used;
12083 if (pu != NULL)
12084 {
12085 const struct elf_backend_data *bed;
12086 unsigned int log_file_align;
12087
12088 bed = get_elf_backend_data (h->root.u.def.section->owner);
12089 log_file_align = bed->s->log_file_align;
12090 n = h->vtable->parent->vtable->size >> log_file_align;
12091 while (n--)
12092 {
12093 if (*pu)
12094 *cu = TRUE;
12095 pu++;
12096 cu++;
12097 }
12098 }
12099 }
12100
12101 return TRUE;
12102 }
12103
12104 static bfd_boolean
12105 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12106 {
12107 asection *sec;
12108 bfd_vma hstart, hend;
12109 Elf_Internal_Rela *relstart, *relend, *rel;
12110 const struct elf_backend_data *bed;
12111 unsigned int log_file_align;
12112
12113 /* Take care of both those symbols that do not describe vtables as
12114 well as those that are not loaded. */
12115 if (h->vtable == NULL || h->vtable->parent == NULL)
12116 return TRUE;
12117
12118 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12119 || h->root.type == bfd_link_hash_defweak);
12120
12121 sec = h->root.u.def.section;
12122 hstart = h->root.u.def.value;
12123 hend = hstart + h->size;
12124
12125 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12126 if (!relstart)
12127 return *(bfd_boolean *) okp = FALSE;
12128 bed = get_elf_backend_data (sec->owner);
12129 log_file_align = bed->s->log_file_align;
12130
12131 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12132
12133 for (rel = relstart; rel < relend; ++rel)
12134 if (rel->r_offset >= hstart && rel->r_offset < hend)
12135 {
12136 /* If the entry is in use, do nothing. */
12137 if (h->vtable->used
12138 && (rel->r_offset - hstart) < h->vtable->size)
12139 {
12140 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12141 if (h->vtable->used[entry])
12142 continue;
12143 }
12144 /* Otherwise, kill it. */
12145 rel->r_offset = rel->r_info = rel->r_addend = 0;
12146 }
12147
12148 return TRUE;
12149 }
12150
12151 /* Mark sections containing dynamically referenced symbols. When
12152 building shared libraries, we must assume that any visible symbol is
12153 referenced. */
12154
12155 bfd_boolean
12156 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12157 {
12158 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12159
12160 if ((h->root.type == bfd_link_hash_defined
12161 || h->root.type == bfd_link_hash_defweak)
12162 && (h->ref_dynamic
12163 || ((!info->executable || info->export_dynamic)
12164 && h->def_regular
12165 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12166 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12167 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12168 || !bfd_hide_sym_by_version (info->version_info,
12169 h->root.root.string)))))
12170 h->root.u.def.section->flags |= SEC_KEEP;
12171
12172 return TRUE;
12173 }
12174
12175 /* Keep all sections containing symbols undefined on the command-line,
12176 and the section containing the entry symbol. */
12177
12178 void
12179 _bfd_elf_gc_keep (struct bfd_link_info *info)
12180 {
12181 struct bfd_sym_chain *sym;
12182
12183 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12184 {
12185 struct elf_link_hash_entry *h;
12186
12187 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12188 FALSE, FALSE, FALSE);
12189
12190 if (h != NULL
12191 && (h->root.type == bfd_link_hash_defined
12192 || h->root.type == bfd_link_hash_defweak)
12193 && !bfd_is_abs_section (h->root.u.def.section))
12194 h->root.u.def.section->flags |= SEC_KEEP;
12195 }
12196 }
12197
12198 /* Do mark and sweep of unused sections. */
12199
12200 bfd_boolean
12201 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12202 {
12203 bfd_boolean ok = TRUE;
12204 bfd *sub;
12205 elf_gc_mark_hook_fn gc_mark_hook;
12206 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12207
12208 if (!bed->can_gc_sections
12209 || !is_elf_hash_table (info->hash))
12210 {
12211 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12212 return TRUE;
12213 }
12214
12215 bed->gc_keep (info);
12216
12217 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12218 at the .eh_frame section if we can mark the FDEs individually. */
12219 _bfd_elf_begin_eh_frame_parsing (info);
12220 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12221 {
12222 asection *sec;
12223 struct elf_reloc_cookie cookie;
12224
12225 sec = bfd_get_section_by_name (sub, ".eh_frame");
12226 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12227 {
12228 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12229 if (elf_section_data (sec)->sec_info
12230 && (sec->flags & SEC_LINKER_CREATED) == 0)
12231 elf_eh_frame_section (sub) = sec;
12232 fini_reloc_cookie_for_section (&cookie, sec);
12233 sec = bfd_get_next_section_by_name (sec);
12234 }
12235 }
12236 _bfd_elf_end_eh_frame_parsing (info);
12237
12238 /* Apply transitive closure to the vtable entry usage info. */
12239 elf_link_hash_traverse (elf_hash_table (info),
12240 elf_gc_propagate_vtable_entries_used,
12241 &ok);
12242 if (!ok)
12243 return FALSE;
12244
12245 /* Kill the vtable relocations that were not used. */
12246 elf_link_hash_traverse (elf_hash_table (info),
12247 elf_gc_smash_unused_vtentry_relocs,
12248 &ok);
12249 if (!ok)
12250 return FALSE;
12251
12252 /* Mark dynamically referenced symbols. */
12253 if (elf_hash_table (info)->dynamic_sections_created)
12254 elf_link_hash_traverse (elf_hash_table (info),
12255 bed->gc_mark_dynamic_ref,
12256 info);
12257
12258 /* Grovel through relocs to find out who stays ... */
12259 gc_mark_hook = bed->gc_mark_hook;
12260 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12261 {
12262 asection *o;
12263
12264 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12265 continue;
12266
12267 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12268 Also treat note sections as a root, if the section is not part
12269 of a group. */
12270 for (o = sub->sections; o != NULL; o = o->next)
12271 if (!o->gc_mark
12272 && (o->flags & SEC_EXCLUDE) == 0
12273 && ((o->flags & SEC_KEEP) != 0
12274 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12275 && elf_next_in_group (o) == NULL )))
12276 {
12277 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12278 return FALSE;
12279 }
12280 }
12281
12282 /* Allow the backend to mark additional target specific sections. */
12283 bed->gc_mark_extra_sections (info, gc_mark_hook);
12284
12285 /* ... and mark SEC_EXCLUDE for those that go. */
12286 return elf_gc_sweep (abfd, info);
12287 }
12288 \f
12289 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12290
12291 bfd_boolean
12292 bfd_elf_gc_record_vtinherit (bfd *abfd,
12293 asection *sec,
12294 struct elf_link_hash_entry *h,
12295 bfd_vma offset)
12296 {
12297 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12298 struct elf_link_hash_entry **search, *child;
12299 bfd_size_type extsymcount;
12300 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12301
12302 /* The sh_info field of the symtab header tells us where the
12303 external symbols start. We don't care about the local symbols at
12304 this point. */
12305 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12306 if (!elf_bad_symtab (abfd))
12307 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12308
12309 sym_hashes = elf_sym_hashes (abfd);
12310 sym_hashes_end = sym_hashes + extsymcount;
12311
12312 /* Hunt down the child symbol, which is in this section at the same
12313 offset as the relocation. */
12314 for (search = sym_hashes; search != sym_hashes_end; ++search)
12315 {
12316 if ((child = *search) != NULL
12317 && (child->root.type == bfd_link_hash_defined
12318 || child->root.type == bfd_link_hash_defweak)
12319 && child->root.u.def.section == sec
12320 && child->root.u.def.value == offset)
12321 goto win;
12322 }
12323
12324 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12325 abfd, sec, (unsigned long) offset);
12326 bfd_set_error (bfd_error_invalid_operation);
12327 return FALSE;
12328
12329 win:
12330 if (!child->vtable)
12331 {
12332 child->vtable = (struct elf_link_virtual_table_entry *)
12333 bfd_zalloc (abfd, sizeof (*child->vtable));
12334 if (!child->vtable)
12335 return FALSE;
12336 }
12337 if (!h)
12338 {
12339 /* This *should* only be the absolute section. It could potentially
12340 be that someone has defined a non-global vtable though, which
12341 would be bad. It isn't worth paging in the local symbols to be
12342 sure though; that case should simply be handled by the assembler. */
12343
12344 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12345 }
12346 else
12347 child->vtable->parent = h;
12348
12349 return TRUE;
12350 }
12351
12352 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12353
12354 bfd_boolean
12355 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12356 asection *sec ATTRIBUTE_UNUSED,
12357 struct elf_link_hash_entry *h,
12358 bfd_vma addend)
12359 {
12360 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12361 unsigned int log_file_align = bed->s->log_file_align;
12362
12363 if (!h->vtable)
12364 {
12365 h->vtable = (struct elf_link_virtual_table_entry *)
12366 bfd_zalloc (abfd, sizeof (*h->vtable));
12367 if (!h->vtable)
12368 return FALSE;
12369 }
12370
12371 if (addend >= h->vtable->size)
12372 {
12373 size_t size, bytes, file_align;
12374 bfd_boolean *ptr = h->vtable->used;
12375
12376 /* While the symbol is undefined, we have to be prepared to handle
12377 a zero size. */
12378 file_align = 1 << log_file_align;
12379 if (h->root.type == bfd_link_hash_undefined)
12380 size = addend + file_align;
12381 else
12382 {
12383 size = h->size;
12384 if (addend >= size)
12385 {
12386 /* Oops! We've got a reference past the defined end of
12387 the table. This is probably a bug -- shall we warn? */
12388 size = addend + file_align;
12389 }
12390 }
12391 size = (size + file_align - 1) & -file_align;
12392
12393 /* Allocate one extra entry for use as a "done" flag for the
12394 consolidation pass. */
12395 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12396
12397 if (ptr)
12398 {
12399 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12400
12401 if (ptr != NULL)
12402 {
12403 size_t oldbytes;
12404
12405 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12406 * sizeof (bfd_boolean));
12407 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12408 }
12409 }
12410 else
12411 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12412
12413 if (ptr == NULL)
12414 return FALSE;
12415
12416 /* And arrange for that done flag to be at index -1. */
12417 h->vtable->used = ptr + 1;
12418 h->vtable->size = size;
12419 }
12420
12421 h->vtable->used[addend >> log_file_align] = TRUE;
12422
12423 return TRUE;
12424 }
12425
12426 /* Map an ELF section header flag to its corresponding string. */
12427 typedef struct
12428 {
12429 char *flag_name;
12430 flagword flag_value;
12431 } elf_flags_to_name_table;
12432
12433 static elf_flags_to_name_table elf_flags_to_names [] =
12434 {
12435 { "SHF_WRITE", SHF_WRITE },
12436 { "SHF_ALLOC", SHF_ALLOC },
12437 { "SHF_EXECINSTR", SHF_EXECINSTR },
12438 { "SHF_MERGE", SHF_MERGE },
12439 { "SHF_STRINGS", SHF_STRINGS },
12440 { "SHF_INFO_LINK", SHF_INFO_LINK},
12441 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12442 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12443 { "SHF_GROUP", SHF_GROUP },
12444 { "SHF_TLS", SHF_TLS },
12445 { "SHF_MASKOS", SHF_MASKOS },
12446 { "SHF_EXCLUDE", SHF_EXCLUDE },
12447 };
12448
12449 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12450 bfd_boolean
12451 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12452 struct flag_info *flaginfo,
12453 asection *section)
12454 {
12455 const bfd_vma sh_flags = elf_section_flags (section);
12456
12457 if (!flaginfo->flags_initialized)
12458 {
12459 bfd *obfd = info->output_bfd;
12460 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12461 struct flag_info_list *tf = flaginfo->flag_list;
12462 int with_hex = 0;
12463 int without_hex = 0;
12464
12465 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12466 {
12467 unsigned i;
12468 flagword (*lookup) (char *);
12469
12470 lookup = bed->elf_backend_lookup_section_flags_hook;
12471 if (lookup != NULL)
12472 {
12473 flagword hexval = (*lookup) ((char *) tf->name);
12474
12475 if (hexval != 0)
12476 {
12477 if (tf->with == with_flags)
12478 with_hex |= hexval;
12479 else if (tf->with == without_flags)
12480 without_hex |= hexval;
12481 tf->valid = TRUE;
12482 continue;
12483 }
12484 }
12485 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12486 {
12487 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12488 {
12489 if (tf->with == with_flags)
12490 with_hex |= elf_flags_to_names[i].flag_value;
12491 else if (tf->with == without_flags)
12492 without_hex |= elf_flags_to_names[i].flag_value;
12493 tf->valid = TRUE;
12494 break;
12495 }
12496 }
12497 if (!tf->valid)
12498 {
12499 info->callbacks->einfo
12500 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12501 return FALSE;
12502 }
12503 }
12504 flaginfo->flags_initialized = TRUE;
12505 flaginfo->only_with_flags |= with_hex;
12506 flaginfo->not_with_flags |= without_hex;
12507 }
12508
12509 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12510 return FALSE;
12511
12512 if ((flaginfo->not_with_flags & sh_flags) != 0)
12513 return FALSE;
12514
12515 return TRUE;
12516 }
12517
12518 struct alloc_got_off_arg {
12519 bfd_vma gotoff;
12520 struct bfd_link_info *info;
12521 };
12522
12523 /* We need a special top-level link routine to convert got reference counts
12524 to real got offsets. */
12525
12526 static bfd_boolean
12527 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12528 {
12529 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12530 bfd *obfd = gofarg->info->output_bfd;
12531 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12532
12533 if (h->got.refcount > 0)
12534 {
12535 h->got.offset = gofarg->gotoff;
12536 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12537 }
12538 else
12539 h->got.offset = (bfd_vma) -1;
12540
12541 return TRUE;
12542 }
12543
12544 /* And an accompanying bit to work out final got entry offsets once
12545 we're done. Should be called from final_link. */
12546
12547 bfd_boolean
12548 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12549 struct bfd_link_info *info)
12550 {
12551 bfd *i;
12552 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12553 bfd_vma gotoff;
12554 struct alloc_got_off_arg gofarg;
12555
12556 BFD_ASSERT (abfd == info->output_bfd);
12557
12558 if (! is_elf_hash_table (info->hash))
12559 return FALSE;
12560
12561 /* The GOT offset is relative to the .got section, but the GOT header is
12562 put into the .got.plt section, if the backend uses it. */
12563 if (bed->want_got_plt)
12564 gotoff = 0;
12565 else
12566 gotoff = bed->got_header_size;
12567
12568 /* Do the local .got entries first. */
12569 for (i = info->input_bfds; i; i = i->link_next)
12570 {
12571 bfd_signed_vma *local_got;
12572 bfd_size_type j, locsymcount;
12573 Elf_Internal_Shdr *symtab_hdr;
12574
12575 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12576 continue;
12577
12578 local_got = elf_local_got_refcounts (i);
12579 if (!local_got)
12580 continue;
12581
12582 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12583 if (elf_bad_symtab (i))
12584 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12585 else
12586 locsymcount = symtab_hdr->sh_info;
12587
12588 for (j = 0; j < locsymcount; ++j)
12589 {
12590 if (local_got[j] > 0)
12591 {
12592 local_got[j] = gotoff;
12593 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12594 }
12595 else
12596 local_got[j] = (bfd_vma) -1;
12597 }
12598 }
12599
12600 /* Then the global .got entries. .plt refcounts are handled by
12601 adjust_dynamic_symbol */
12602 gofarg.gotoff = gotoff;
12603 gofarg.info = info;
12604 elf_link_hash_traverse (elf_hash_table (info),
12605 elf_gc_allocate_got_offsets,
12606 &gofarg);
12607 return TRUE;
12608 }
12609
12610 /* Many folk need no more in the way of final link than this, once
12611 got entry reference counting is enabled. */
12612
12613 bfd_boolean
12614 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12615 {
12616 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12617 return FALSE;
12618
12619 /* Invoke the regular ELF backend linker to do all the work. */
12620 return bfd_elf_final_link (abfd, info);
12621 }
12622
12623 bfd_boolean
12624 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12625 {
12626 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12627
12628 if (rcookie->bad_symtab)
12629 rcookie->rel = rcookie->rels;
12630
12631 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12632 {
12633 unsigned long r_symndx;
12634
12635 if (! rcookie->bad_symtab)
12636 if (rcookie->rel->r_offset > offset)
12637 return FALSE;
12638 if (rcookie->rel->r_offset != offset)
12639 continue;
12640
12641 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12642 if (r_symndx == STN_UNDEF)
12643 return TRUE;
12644
12645 if (r_symndx >= rcookie->locsymcount
12646 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12647 {
12648 struct elf_link_hash_entry *h;
12649
12650 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12651
12652 while (h->root.type == bfd_link_hash_indirect
12653 || h->root.type == bfd_link_hash_warning)
12654 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12655
12656 if ((h->root.type == bfd_link_hash_defined
12657 || h->root.type == bfd_link_hash_defweak)
12658 && discarded_section (h->root.u.def.section))
12659 return TRUE;
12660 else
12661 return FALSE;
12662 }
12663 else
12664 {
12665 /* It's not a relocation against a global symbol,
12666 but it could be a relocation against a local
12667 symbol for a discarded section. */
12668 asection *isec;
12669 Elf_Internal_Sym *isym;
12670
12671 /* Need to: get the symbol; get the section. */
12672 isym = &rcookie->locsyms[r_symndx];
12673 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12674 if (isec != NULL && discarded_section (isec))
12675 return TRUE;
12676 }
12677 return FALSE;
12678 }
12679 return FALSE;
12680 }
12681
12682 /* Discard unneeded references to discarded sections.
12683 Returns TRUE if any section's size was changed. */
12684 /* This function assumes that the relocations are in sorted order,
12685 which is true for all known assemblers. */
12686
12687 bfd_boolean
12688 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12689 {
12690 struct elf_reloc_cookie cookie;
12691 asection *stab, *eh;
12692 const struct elf_backend_data *bed;
12693 bfd *abfd;
12694 bfd_boolean ret = FALSE;
12695
12696 if (info->traditional_format
12697 || !is_elf_hash_table (info->hash))
12698 return FALSE;
12699
12700 _bfd_elf_begin_eh_frame_parsing (info);
12701 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12702 {
12703 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12704 continue;
12705
12706 bed = get_elf_backend_data (abfd);
12707
12708 eh = NULL;
12709 if (!info->relocatable)
12710 {
12711 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12712 while (eh != NULL
12713 && (eh->size == 0
12714 || bfd_is_abs_section (eh->output_section)))
12715 eh = bfd_get_next_section_by_name (eh);
12716 }
12717
12718 stab = bfd_get_section_by_name (abfd, ".stab");
12719 if (stab != NULL
12720 && (stab->size == 0
12721 || bfd_is_abs_section (stab->output_section)
12722 || stab->sec_info_type != SEC_INFO_TYPE_STABS))
12723 stab = NULL;
12724
12725 if (stab == NULL
12726 && eh == NULL
12727 && bed->elf_backend_discard_info == NULL)
12728 continue;
12729
12730 if (!init_reloc_cookie (&cookie, info, abfd))
12731 return FALSE;
12732
12733 if (stab != NULL
12734 && stab->reloc_count > 0
12735 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12736 {
12737 if (_bfd_discard_section_stabs (abfd, stab,
12738 elf_section_data (stab)->sec_info,
12739 bfd_elf_reloc_symbol_deleted_p,
12740 &cookie))
12741 ret = TRUE;
12742 fini_reloc_cookie_rels (&cookie, stab);
12743 }
12744
12745 while (eh != NULL
12746 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12747 {
12748 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12749 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12750 bfd_elf_reloc_symbol_deleted_p,
12751 &cookie))
12752 ret = TRUE;
12753 fini_reloc_cookie_rels (&cookie, eh);
12754 eh = bfd_get_next_section_by_name (eh);
12755 }
12756
12757 if (bed->elf_backend_discard_info != NULL
12758 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12759 ret = TRUE;
12760
12761 fini_reloc_cookie (&cookie, abfd);
12762 }
12763 _bfd_elf_end_eh_frame_parsing (info);
12764
12765 if (info->eh_frame_hdr
12766 && !info->relocatable
12767 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12768 ret = TRUE;
12769
12770 return ret;
12771 }
12772
12773 bfd_boolean
12774 _bfd_elf_section_already_linked (bfd *abfd,
12775 asection *sec,
12776 struct bfd_link_info *info)
12777 {
12778 flagword flags;
12779 const char *name, *key;
12780 struct bfd_section_already_linked *l;
12781 struct bfd_section_already_linked_hash_entry *already_linked_list;
12782
12783 if (sec->output_section == bfd_abs_section_ptr)
12784 return FALSE;
12785
12786 flags = sec->flags;
12787
12788 /* Return if it isn't a linkonce section. A comdat group section
12789 also has SEC_LINK_ONCE set. */
12790 if ((flags & SEC_LINK_ONCE) == 0)
12791 return FALSE;
12792
12793 /* Don't put group member sections on our list of already linked
12794 sections. They are handled as a group via their group section. */
12795 if (elf_sec_group (sec) != NULL)
12796 return FALSE;
12797
12798 /* For a SHT_GROUP section, use the group signature as the key. */
12799 name = sec->name;
12800 if ((flags & SEC_GROUP) != 0
12801 && elf_next_in_group (sec) != NULL
12802 && elf_group_name (elf_next_in_group (sec)) != NULL)
12803 key = elf_group_name (elf_next_in_group (sec));
12804 else
12805 {
12806 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
12807 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12808 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12809 key++;
12810 else
12811 /* Must be a user linkonce section that doesn't follow gcc's
12812 naming convention. In this case we won't be matching
12813 single member groups. */
12814 key = name;
12815 }
12816
12817 already_linked_list = bfd_section_already_linked_table_lookup (key);
12818
12819 for (l = already_linked_list->entry; l != NULL; l = l->next)
12820 {
12821 /* We may have 2 different types of sections on the list: group
12822 sections with a signature of <key> (<key> is some string),
12823 and linkonce sections named .gnu.linkonce.<type>.<key>.
12824 Match like sections. LTO plugin sections are an exception.
12825 They are always named .gnu.linkonce.t.<key> and match either
12826 type of section. */
12827 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12828 && ((flags & SEC_GROUP) != 0
12829 || strcmp (name, l->sec->name) == 0))
12830 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
12831 {
12832 /* The section has already been linked. See if we should
12833 issue a warning. */
12834 if (!_bfd_handle_already_linked (sec, l, info))
12835 return FALSE;
12836
12837 if (flags & SEC_GROUP)
12838 {
12839 asection *first = elf_next_in_group (sec);
12840 asection *s = first;
12841
12842 while (s != NULL)
12843 {
12844 s->output_section = bfd_abs_section_ptr;
12845 /* Record which group discards it. */
12846 s->kept_section = l->sec;
12847 s = elf_next_in_group (s);
12848 /* These lists are circular. */
12849 if (s == first)
12850 break;
12851 }
12852 }
12853
12854 return TRUE;
12855 }
12856 }
12857
12858 /* A single member comdat group section may be discarded by a
12859 linkonce section and vice versa. */
12860 if ((flags & SEC_GROUP) != 0)
12861 {
12862 asection *first = elf_next_in_group (sec);
12863
12864 if (first != NULL && elf_next_in_group (first) == first)
12865 /* Check this single member group against linkonce sections. */
12866 for (l = already_linked_list->entry; l != NULL; l = l->next)
12867 if ((l->sec->flags & SEC_GROUP) == 0
12868 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12869 {
12870 first->output_section = bfd_abs_section_ptr;
12871 first->kept_section = l->sec;
12872 sec->output_section = bfd_abs_section_ptr;
12873 break;
12874 }
12875 }
12876 else
12877 /* Check this linkonce section against single member groups. */
12878 for (l = already_linked_list->entry; l != NULL; l = l->next)
12879 if (l->sec->flags & SEC_GROUP)
12880 {
12881 asection *first = elf_next_in_group (l->sec);
12882
12883 if (first != NULL
12884 && elf_next_in_group (first) == first
12885 && bfd_elf_match_symbols_in_sections (first, sec, info))
12886 {
12887 sec->output_section = bfd_abs_section_ptr;
12888 sec->kept_section = first;
12889 break;
12890 }
12891 }
12892
12893 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12894 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12895 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12896 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12897 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12898 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12899 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12900 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12901 The reverse order cannot happen as there is never a bfd with only the
12902 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12903 matter as here were are looking only for cross-bfd sections. */
12904
12905 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12906 for (l = already_linked_list->entry; l != NULL; l = l->next)
12907 if ((l->sec->flags & SEC_GROUP) == 0
12908 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12909 {
12910 if (abfd != l->sec->owner)
12911 sec->output_section = bfd_abs_section_ptr;
12912 break;
12913 }
12914
12915 /* This is the first section with this name. Record it. */
12916 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
12917 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12918 return sec->output_section == bfd_abs_section_ptr;
12919 }
12920
12921 bfd_boolean
12922 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12923 {
12924 return sym->st_shndx == SHN_COMMON;
12925 }
12926
12927 unsigned int
12928 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12929 {
12930 return SHN_COMMON;
12931 }
12932
12933 asection *
12934 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12935 {
12936 return bfd_com_section_ptr;
12937 }
12938
12939 bfd_vma
12940 _bfd_elf_default_got_elt_size (bfd *abfd,
12941 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12942 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12943 bfd *ibfd ATTRIBUTE_UNUSED,
12944 unsigned long symndx ATTRIBUTE_UNUSED)
12945 {
12946 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12947 return bed->s->arch_size / 8;
12948 }
12949
12950 /* Routines to support the creation of dynamic relocs. */
12951
12952 /* Returns the name of the dynamic reloc section associated with SEC. */
12953
12954 static const char *
12955 get_dynamic_reloc_section_name (bfd * abfd,
12956 asection * sec,
12957 bfd_boolean is_rela)
12958 {
12959 char *name;
12960 const char *old_name = bfd_get_section_name (NULL, sec);
12961 const char *prefix = is_rela ? ".rela" : ".rel";
12962
12963 if (old_name == NULL)
12964 return NULL;
12965
12966 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12967 sprintf (name, "%s%s", prefix, old_name);
12968
12969 return name;
12970 }
12971
12972 /* Returns the dynamic reloc section associated with SEC.
12973 If necessary compute the name of the dynamic reloc section based
12974 on SEC's name (looked up in ABFD's string table) and the setting
12975 of IS_RELA. */
12976
12977 asection *
12978 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12979 asection * sec,
12980 bfd_boolean is_rela)
12981 {
12982 asection * reloc_sec = elf_section_data (sec)->sreloc;
12983
12984 if (reloc_sec == NULL)
12985 {
12986 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12987
12988 if (name != NULL)
12989 {
12990 reloc_sec = bfd_get_linker_section (abfd, name);
12991
12992 if (reloc_sec != NULL)
12993 elf_section_data (sec)->sreloc = reloc_sec;
12994 }
12995 }
12996
12997 return reloc_sec;
12998 }
12999
13000 /* Returns the dynamic reloc section associated with SEC. If the
13001 section does not exist it is created and attached to the DYNOBJ
13002 bfd and stored in the SRELOC field of SEC's elf_section_data
13003 structure.
13004
13005 ALIGNMENT is the alignment for the newly created section and
13006 IS_RELA defines whether the name should be .rela.<SEC's name>
13007 or .rel.<SEC's name>. The section name is looked up in the
13008 string table associated with ABFD. */
13009
13010 asection *
13011 _bfd_elf_make_dynamic_reloc_section (asection * sec,
13012 bfd * dynobj,
13013 unsigned int alignment,
13014 bfd * abfd,
13015 bfd_boolean is_rela)
13016 {
13017 asection * reloc_sec = elf_section_data (sec)->sreloc;
13018
13019 if (reloc_sec == NULL)
13020 {
13021 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13022
13023 if (name == NULL)
13024 return NULL;
13025
13026 reloc_sec = bfd_get_linker_section (dynobj, name);
13027
13028 if (reloc_sec == NULL)
13029 {
13030 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13031 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13032 if ((sec->flags & SEC_ALLOC) != 0)
13033 flags |= SEC_ALLOC | SEC_LOAD;
13034
13035 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13036 if (reloc_sec != NULL)
13037 {
13038 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13039 reloc_sec = NULL;
13040 }
13041 }
13042
13043 elf_section_data (sec)->sreloc = reloc_sec;
13044 }
13045
13046 return reloc_sec;
13047 }
13048
13049 /* Copy the ELF symbol type associated with a linker hash entry. */
13050 void
13051 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
13052 struct bfd_link_hash_entry * hdest,
13053 struct bfd_link_hash_entry * hsrc)
13054 {
13055 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
13056 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
13057
13058 ehdest->type = ehsrc->type;
13059 ehdest->target_internal = ehsrc->target_internal;
13060 }
13061
13062 /* Append a RELA relocation REL to section S in BFD. */
13063
13064 void
13065 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13066 {
13067 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13068 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13069 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13070 bed->s->swap_reloca_out (abfd, rel, loc);
13071 }
13072
13073 /* Append a REL relocation REL to section S in BFD. */
13074
13075 void
13076 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13077 {
13078 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13079 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13080 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13081 bed->s->swap_reloc_out (abfd, rel, loc);
13082 }
This page took 0.298376 seconds and 4 git commands to generate.