xfail pr18223 test for tic6x
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2015 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfd_stdint.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31
32 /* This struct is used to pass information to routines called via
33 elf_link_hash_traverse which must return failure. */
34
35 struct elf_info_failed
36 {
37 struct bfd_link_info *info;
38 bfd_boolean failed;
39 };
40
41 /* This structure is used to pass information to
42 _bfd_elf_link_find_version_dependencies. */
43
44 struct elf_find_verdep_info
45 {
46 /* General link information. */
47 struct bfd_link_info *info;
48 /* The number of dependencies. */
49 unsigned int vers;
50 /* Whether we had a failure. */
51 bfd_boolean failed;
52 };
53
54 static bfd_boolean _bfd_elf_fix_symbol_flags
55 (struct elf_link_hash_entry *, struct elf_info_failed *);
56
57 /* Define a symbol in a dynamic linkage section. */
58
59 struct elf_link_hash_entry *
60 _bfd_elf_define_linkage_sym (bfd *abfd,
61 struct bfd_link_info *info,
62 asection *sec,
63 const char *name)
64 {
65 struct elf_link_hash_entry *h;
66 struct bfd_link_hash_entry *bh;
67 const struct elf_backend_data *bed;
68
69 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
70 if (h != NULL)
71 {
72 /* Zap symbol defined in an as-needed lib that wasn't linked.
73 This is a symptom of a larger problem: Absolute symbols
74 defined in shared libraries can't be overridden, because we
75 lose the link to the bfd which is via the symbol section. */
76 h->root.type = bfd_link_hash_new;
77 }
78
79 bh = &h->root;
80 bed = get_elf_backend_data (abfd);
81 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
82 sec, 0, NULL, FALSE, bed->collect,
83 &bh))
84 return NULL;
85 h = (struct elf_link_hash_entry *) bh;
86 h->def_regular = 1;
87 h->non_elf = 0;
88 h->root.linker_def = 1;
89 h->type = STT_OBJECT;
90 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
91 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
92
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94 return h;
95 }
96
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
99 {
100 flagword flags;
101 asection *s;
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
105
106 /* This function may be called more than once. */
107 s = bfd_get_linker_section (abfd, ".got");
108 if (s != NULL)
109 return TRUE;
110
111 flags = bed->dynamic_sec_flags;
112
113 s = bfd_make_section_anyway_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
117 | SEC_READONLY));
118 if (s == NULL
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
120 return FALSE;
121 htab->srelgot = s;
122
123 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
124 if (s == NULL
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
126 return FALSE;
127 htab->sgot = s;
128
129 if (bed->want_got_plt)
130 {
131 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
132 if (s == NULL
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
135 return FALSE;
136 htab->sgotplt = s;
137 }
138
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
141
142 if (bed->want_got_sym)
143 {
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
151 if (h == NULL)
152 return FALSE;
153 }
154
155 return TRUE;
156 }
157 \f
158 /* Create a strtab to hold the dynamic symbol names. */
159 static bfd_boolean
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
161 {
162 struct elf_link_hash_table *hash_table;
163
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
167
168 if (hash_table->dynstr == NULL)
169 {
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
172 return FALSE;
173 }
174 return TRUE;
175 }
176
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
183
184 bfd_boolean
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
186 {
187 flagword flags;
188 asection *s;
189 const struct elf_backend_data *bed;
190 struct elf_link_hash_entry *h;
191
192 if (! is_elf_hash_table (info->hash))
193 return FALSE;
194
195 if (elf_hash_table (info)->dynamic_sections_created)
196 return TRUE;
197
198 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
199 return FALSE;
200
201 abfd = elf_hash_table (info)->dynobj;
202 bed = get_elf_backend_data (abfd);
203
204 flags = bed->dynamic_sec_flags;
205
206 /* A dynamically linked executable has a .interp section, but a
207 shared library does not. */
208 if (info->executable)
209 {
210 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
211 flags | SEC_READONLY);
212 if (s == NULL)
213 return FALSE;
214 }
215
216 /* Create sections to hold version informations. These are removed
217 if they are not needed. */
218 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
219 flags | SEC_READONLY);
220 if (s == NULL
221 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
222 return FALSE;
223
224 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
225 flags | SEC_READONLY);
226 if (s == NULL
227 || ! bfd_set_section_alignment (abfd, s, 1))
228 return FALSE;
229
230 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
231 flags | SEC_READONLY);
232 if (s == NULL
233 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
234 return FALSE;
235
236 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
237 flags | SEC_READONLY);
238 if (s == NULL
239 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
240 return FALSE;
241
242 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
243 flags | SEC_READONLY);
244 if (s == NULL)
245 return FALSE;
246
247 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
248 if (s == NULL
249 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
250 return FALSE;
251
252 /* The special symbol _DYNAMIC is always set to the start of the
253 .dynamic section. We could set _DYNAMIC in a linker script, but we
254 only want to define it if we are, in fact, creating a .dynamic
255 section. We don't want to define it if there is no .dynamic
256 section, since on some ELF platforms the start up code examines it
257 to decide how to initialize the process. */
258 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
259 elf_hash_table (info)->hdynamic = h;
260 if (h == NULL)
261 return FALSE;
262
263 if (info->emit_hash)
264 {
265 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
266 flags | SEC_READONLY);
267 if (s == NULL
268 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
269 return FALSE;
270 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
271 }
272
273 if (info->emit_gnu_hash)
274 {
275 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
276 flags | SEC_READONLY);
277 if (s == NULL
278 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
279 return FALSE;
280 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
281 4 32-bit words followed by variable count of 64-bit words, then
282 variable count of 32-bit words. */
283 if (bed->s->arch_size == 64)
284 elf_section_data (s)->this_hdr.sh_entsize = 0;
285 else
286 elf_section_data (s)->this_hdr.sh_entsize = 4;
287 }
288
289 /* Let the backend create the rest of the sections. This lets the
290 backend set the right flags. The backend will normally create
291 the .got and .plt sections. */
292 if (bed->elf_backend_create_dynamic_sections == NULL
293 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
294 return FALSE;
295
296 elf_hash_table (info)->dynamic_sections_created = TRUE;
297
298 return TRUE;
299 }
300
301 /* Create dynamic sections when linking against a dynamic object. */
302
303 bfd_boolean
304 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
305 {
306 flagword flags, pltflags;
307 struct elf_link_hash_entry *h;
308 asection *s;
309 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
310 struct elf_link_hash_table *htab = elf_hash_table (info);
311
312 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
313 .rel[a].bss sections. */
314 flags = bed->dynamic_sec_flags;
315
316 pltflags = flags;
317 if (bed->plt_not_loaded)
318 /* We do not clear SEC_ALLOC here because we still want the OS to
319 allocate space for the section; it's just that there's nothing
320 to read in from the object file. */
321 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
322 else
323 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
324 if (bed->plt_readonly)
325 pltflags |= SEC_READONLY;
326
327 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
328 if (s == NULL
329 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
330 return FALSE;
331 htab->splt = s;
332
333 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
334 .plt section. */
335 if (bed->want_plt_sym)
336 {
337 h = _bfd_elf_define_linkage_sym (abfd, info, s,
338 "_PROCEDURE_LINKAGE_TABLE_");
339 elf_hash_table (info)->hplt = h;
340 if (h == NULL)
341 return FALSE;
342 }
343
344 s = bfd_make_section_anyway_with_flags (abfd,
345 (bed->rela_plts_and_copies_p
346 ? ".rela.plt" : ".rel.plt"),
347 flags | SEC_READONLY);
348 if (s == NULL
349 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
350 return FALSE;
351 htab->srelplt = s;
352
353 if (! _bfd_elf_create_got_section (abfd, info))
354 return FALSE;
355
356 if (bed->want_dynbss)
357 {
358 /* The .dynbss section is a place to put symbols which are defined
359 by dynamic objects, are referenced by regular objects, and are
360 not functions. We must allocate space for them in the process
361 image and use a R_*_COPY reloc to tell the dynamic linker to
362 initialize them at run time. The linker script puts the .dynbss
363 section into the .bss section of the final image. */
364 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
365 (SEC_ALLOC | SEC_LINKER_CREATED));
366 if (s == NULL)
367 return FALSE;
368
369 /* The .rel[a].bss section holds copy relocs. This section is not
370 normally needed. We need to create it here, though, so that the
371 linker will map it to an output section. We can't just create it
372 only if we need it, because we will not know whether we need it
373 until we have seen all the input files, and the first time the
374 main linker code calls BFD after examining all the input files
375 (size_dynamic_sections) the input sections have already been
376 mapped to the output sections. If the section turns out not to
377 be needed, we can discard it later. We will never need this
378 section when generating a shared object, since they do not use
379 copy relocs. */
380 if (! info->shared)
381 {
382 s = bfd_make_section_anyway_with_flags (abfd,
383 (bed->rela_plts_and_copies_p
384 ? ".rela.bss" : ".rel.bss"),
385 flags | SEC_READONLY);
386 if (s == NULL
387 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
388 return FALSE;
389 }
390 }
391
392 return TRUE;
393 }
394 \f
395 /* Record a new dynamic symbol. We record the dynamic symbols as we
396 read the input files, since we need to have a list of all of them
397 before we can determine the final sizes of the output sections.
398 Note that we may actually call this function even though we are not
399 going to output any dynamic symbols; in some cases we know that a
400 symbol should be in the dynamic symbol table, but only if there is
401 one. */
402
403 bfd_boolean
404 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
405 struct elf_link_hash_entry *h)
406 {
407 if (h->dynindx == -1)
408 {
409 struct elf_strtab_hash *dynstr;
410 char *p;
411 const char *name;
412 bfd_size_type indx;
413
414 /* XXX: The ABI draft says the linker must turn hidden and
415 internal symbols into STB_LOCAL symbols when producing the
416 DSO. However, if ld.so honors st_other in the dynamic table,
417 this would not be necessary. */
418 switch (ELF_ST_VISIBILITY (h->other))
419 {
420 case STV_INTERNAL:
421 case STV_HIDDEN:
422 if (h->root.type != bfd_link_hash_undefined
423 && h->root.type != bfd_link_hash_undefweak)
424 {
425 h->forced_local = 1;
426 if (!elf_hash_table (info)->is_relocatable_executable)
427 return TRUE;
428 }
429
430 default:
431 break;
432 }
433
434 h->dynindx = elf_hash_table (info)->dynsymcount;
435 ++elf_hash_table (info)->dynsymcount;
436
437 dynstr = elf_hash_table (info)->dynstr;
438 if (dynstr == NULL)
439 {
440 /* Create a strtab to hold the dynamic symbol names. */
441 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
442 if (dynstr == NULL)
443 return FALSE;
444 }
445
446 /* We don't put any version information in the dynamic string
447 table. */
448 name = h->root.root.string;
449 p = strchr (name, ELF_VER_CHR);
450 if (p != NULL)
451 /* We know that the p points into writable memory. In fact,
452 there are only a few symbols that have read-only names, being
453 those like _GLOBAL_OFFSET_TABLE_ that are created specially
454 by the backends. Most symbols will have names pointing into
455 an ELF string table read from a file, or to objalloc memory. */
456 *p = 0;
457
458 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
459
460 if (p != NULL)
461 *p = ELF_VER_CHR;
462
463 if (indx == (bfd_size_type) -1)
464 return FALSE;
465 h->dynstr_index = indx;
466 }
467
468 return TRUE;
469 }
470 \f
471 /* Mark a symbol dynamic. */
472
473 static void
474 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
475 struct elf_link_hash_entry *h,
476 Elf_Internal_Sym *sym)
477 {
478 struct bfd_elf_dynamic_list *d = info->dynamic_list;
479
480 /* It may be called more than once on the same H. */
481 if(h->dynamic || info->relocatable)
482 return;
483
484 if ((info->dynamic_data
485 && (h->type == STT_OBJECT
486 || (sym != NULL
487 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
488 || (d != NULL
489 && h->root.type == bfd_link_hash_new
490 && (*d->match) (&d->head, NULL, h->root.root.string)))
491 h->dynamic = 1;
492 }
493
494 /* Record an assignment to a symbol made by a linker script. We need
495 this in case some dynamic object refers to this symbol. */
496
497 bfd_boolean
498 bfd_elf_record_link_assignment (bfd *output_bfd,
499 struct bfd_link_info *info,
500 const char *name,
501 bfd_boolean provide,
502 bfd_boolean hidden)
503 {
504 struct elf_link_hash_entry *h, *hv;
505 struct elf_link_hash_table *htab;
506 const struct elf_backend_data *bed;
507
508 if (!is_elf_hash_table (info->hash))
509 return TRUE;
510
511 htab = elf_hash_table (info);
512 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
513 if (h == NULL)
514 return provide;
515
516 switch (h->root.type)
517 {
518 case bfd_link_hash_defined:
519 case bfd_link_hash_defweak:
520 case bfd_link_hash_common:
521 break;
522 case bfd_link_hash_undefweak:
523 case bfd_link_hash_undefined:
524 /* Since we're defining the symbol, don't let it seem to have not
525 been defined. record_dynamic_symbol and size_dynamic_sections
526 may depend on this. */
527 h->root.type = bfd_link_hash_new;
528 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
529 bfd_link_repair_undef_list (&htab->root);
530 break;
531 case bfd_link_hash_new:
532 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
533 h->non_elf = 0;
534 break;
535 case bfd_link_hash_indirect:
536 /* We had a versioned symbol in a dynamic library. We make the
537 the versioned symbol point to this one. */
538 bed = get_elf_backend_data (output_bfd);
539 hv = h;
540 while (hv->root.type == bfd_link_hash_indirect
541 || hv->root.type == bfd_link_hash_warning)
542 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
543 /* We don't need to update h->root.u since linker will set them
544 later. */
545 h->root.type = bfd_link_hash_undefined;
546 hv->root.type = bfd_link_hash_indirect;
547 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
548 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
549 break;
550 case bfd_link_hash_warning:
551 abort ();
552 break;
553 }
554
555 /* If this symbol is being provided by the linker script, and it is
556 currently defined by a dynamic object, but not by a regular
557 object, then mark it as undefined so that the generic linker will
558 force the correct value. */
559 if (provide
560 && h->def_dynamic
561 && !h->def_regular)
562 h->root.type = bfd_link_hash_undefined;
563
564 /* If this symbol is not being provided by the linker script, and it is
565 currently defined by a dynamic object, but not by a regular object,
566 then clear out any version information because the symbol will not be
567 associated with the dynamic object any more. */
568 if (!provide
569 && h->def_dynamic
570 && !h->def_regular)
571 h->verinfo.verdef = NULL;
572
573 h->def_regular = 1;
574
575 if (hidden)
576 {
577 bed = get_elf_backend_data (output_bfd);
578 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
579 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
580 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
581 }
582
583 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
584 and executables. */
585 if (!info->relocatable
586 && h->dynindx != -1
587 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
588 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
589 h->forced_local = 1;
590
591 if ((h->def_dynamic
592 || h->ref_dynamic
593 || info->shared
594 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
595 && h->dynindx == -1)
596 {
597 if (! bfd_elf_link_record_dynamic_symbol (info, h))
598 return FALSE;
599
600 /* If this is a weak defined symbol, and we know a corresponding
601 real symbol from the same dynamic object, make sure the real
602 symbol is also made into a dynamic symbol. */
603 if (h->u.weakdef != NULL
604 && h->u.weakdef->dynindx == -1)
605 {
606 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
607 return FALSE;
608 }
609 }
610
611 return TRUE;
612 }
613
614 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
615 success, and 2 on a failure caused by attempting to record a symbol
616 in a discarded section, eg. a discarded link-once section symbol. */
617
618 int
619 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
620 bfd *input_bfd,
621 long input_indx)
622 {
623 bfd_size_type amt;
624 struct elf_link_local_dynamic_entry *entry;
625 struct elf_link_hash_table *eht;
626 struct elf_strtab_hash *dynstr;
627 unsigned long dynstr_index;
628 char *name;
629 Elf_External_Sym_Shndx eshndx;
630 char esym[sizeof (Elf64_External_Sym)];
631
632 if (! is_elf_hash_table (info->hash))
633 return 0;
634
635 /* See if the entry exists already. */
636 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
637 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
638 return 1;
639
640 amt = sizeof (*entry);
641 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
642 if (entry == NULL)
643 return 0;
644
645 /* Go find the symbol, so that we can find it's name. */
646 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
647 1, input_indx, &entry->isym, esym, &eshndx))
648 {
649 bfd_release (input_bfd, entry);
650 return 0;
651 }
652
653 if (entry->isym.st_shndx != SHN_UNDEF
654 && entry->isym.st_shndx < SHN_LORESERVE)
655 {
656 asection *s;
657
658 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
659 if (s == NULL || bfd_is_abs_section (s->output_section))
660 {
661 /* We can still bfd_release here as nothing has done another
662 bfd_alloc. We can't do this later in this function. */
663 bfd_release (input_bfd, entry);
664 return 2;
665 }
666 }
667
668 name = (bfd_elf_string_from_elf_section
669 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
670 entry->isym.st_name));
671
672 dynstr = elf_hash_table (info)->dynstr;
673 if (dynstr == NULL)
674 {
675 /* Create a strtab to hold the dynamic symbol names. */
676 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
677 if (dynstr == NULL)
678 return 0;
679 }
680
681 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
682 if (dynstr_index == (unsigned long) -1)
683 return 0;
684 entry->isym.st_name = dynstr_index;
685
686 eht = elf_hash_table (info);
687
688 entry->next = eht->dynlocal;
689 eht->dynlocal = entry;
690 entry->input_bfd = input_bfd;
691 entry->input_indx = input_indx;
692 eht->dynsymcount++;
693
694 /* Whatever binding the symbol had before, it's now local. */
695 entry->isym.st_info
696 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
697
698 /* The dynindx will be set at the end of size_dynamic_sections. */
699
700 return 1;
701 }
702
703 /* Return the dynindex of a local dynamic symbol. */
704
705 long
706 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
707 bfd *input_bfd,
708 long input_indx)
709 {
710 struct elf_link_local_dynamic_entry *e;
711
712 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
713 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
714 return e->dynindx;
715 return -1;
716 }
717
718 /* This function is used to renumber the dynamic symbols, if some of
719 them are removed because they are marked as local. This is called
720 via elf_link_hash_traverse. */
721
722 static bfd_boolean
723 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
724 void *data)
725 {
726 size_t *count = (size_t *) data;
727
728 if (h->forced_local)
729 return TRUE;
730
731 if (h->dynindx != -1)
732 h->dynindx = ++(*count);
733
734 return TRUE;
735 }
736
737
738 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
739 STB_LOCAL binding. */
740
741 static bfd_boolean
742 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
743 void *data)
744 {
745 size_t *count = (size_t *) data;
746
747 if (!h->forced_local)
748 return TRUE;
749
750 if (h->dynindx != -1)
751 h->dynindx = ++(*count);
752
753 return TRUE;
754 }
755
756 /* Return true if the dynamic symbol for a given section should be
757 omitted when creating a shared library. */
758 bfd_boolean
759 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
760 struct bfd_link_info *info,
761 asection *p)
762 {
763 struct elf_link_hash_table *htab;
764 asection *ip;
765
766 switch (elf_section_data (p)->this_hdr.sh_type)
767 {
768 case SHT_PROGBITS:
769 case SHT_NOBITS:
770 /* If sh_type is yet undecided, assume it could be
771 SHT_PROGBITS/SHT_NOBITS. */
772 case SHT_NULL:
773 htab = elf_hash_table (info);
774 if (p == htab->tls_sec)
775 return FALSE;
776
777 if (htab->text_index_section != NULL)
778 return p != htab->text_index_section && p != htab->data_index_section;
779
780 return (htab->dynobj != NULL
781 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
782 && ip->output_section == p);
783
784 /* There shouldn't be section relative relocations
785 against any other section. */
786 default:
787 return TRUE;
788 }
789 }
790
791 /* Assign dynsym indices. In a shared library we generate a section
792 symbol for each output section, which come first. Next come symbols
793 which have been forced to local binding. Then all of the back-end
794 allocated local dynamic syms, followed by the rest of the global
795 symbols. */
796
797 static unsigned long
798 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
799 struct bfd_link_info *info,
800 unsigned long *section_sym_count)
801 {
802 unsigned long dynsymcount = 0;
803
804 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
805 {
806 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
807 asection *p;
808 for (p = output_bfd->sections; p ; p = p->next)
809 if ((p->flags & SEC_EXCLUDE) == 0
810 && (p->flags & SEC_ALLOC) != 0
811 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
812 elf_section_data (p)->dynindx = ++dynsymcount;
813 else
814 elf_section_data (p)->dynindx = 0;
815 }
816 *section_sym_count = dynsymcount;
817
818 elf_link_hash_traverse (elf_hash_table (info),
819 elf_link_renumber_local_hash_table_dynsyms,
820 &dynsymcount);
821
822 if (elf_hash_table (info)->dynlocal)
823 {
824 struct elf_link_local_dynamic_entry *p;
825 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
826 p->dynindx = ++dynsymcount;
827 }
828
829 elf_link_hash_traverse (elf_hash_table (info),
830 elf_link_renumber_hash_table_dynsyms,
831 &dynsymcount);
832
833 /* There is an unused NULL entry at the head of the table which
834 we must account for in our count. Unless there weren't any
835 symbols, which means we'll have no table at all. */
836 if (dynsymcount != 0)
837 ++dynsymcount;
838
839 elf_hash_table (info)->dynsymcount = dynsymcount;
840 return dynsymcount;
841 }
842
843 /* Merge st_other field. */
844
845 static void
846 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
847 const Elf_Internal_Sym *isym, asection *sec,
848 bfd_boolean definition, bfd_boolean dynamic)
849 {
850 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
851
852 /* If st_other has a processor-specific meaning, specific
853 code might be needed here. */
854 if (bed->elf_backend_merge_symbol_attribute)
855 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
856 dynamic);
857
858 if (!dynamic)
859 {
860 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
861 unsigned hvis = ELF_ST_VISIBILITY (h->other);
862
863 /* Keep the most constraining visibility. Leave the remainder
864 of the st_other field to elf_backend_merge_symbol_attribute. */
865 if (symvis - 1 < hvis - 1)
866 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
867 }
868 else if (definition
869 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
870 && (sec->flags & SEC_READONLY) == 0)
871 h->protected_def = 1;
872 }
873
874 /* This function is called when we want to merge a new symbol with an
875 existing symbol. It handles the various cases which arise when we
876 find a definition in a dynamic object, or when there is already a
877 definition in a dynamic object. The new symbol is described by
878 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
879 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
880 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
881 of an old common symbol. We set OVERRIDE if the old symbol is
882 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
883 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
884 to change. By OK to change, we mean that we shouldn't warn if the
885 type or size does change. */
886
887 static bfd_boolean
888 _bfd_elf_merge_symbol (bfd *abfd,
889 struct bfd_link_info *info,
890 const char *name,
891 Elf_Internal_Sym *sym,
892 asection **psec,
893 bfd_vma *pvalue,
894 struct elf_link_hash_entry **sym_hash,
895 bfd **poldbfd,
896 bfd_boolean *pold_weak,
897 unsigned int *pold_alignment,
898 bfd_boolean *skip,
899 bfd_boolean *override,
900 bfd_boolean *type_change_ok,
901 bfd_boolean *size_change_ok)
902 {
903 asection *sec, *oldsec;
904 struct elf_link_hash_entry *h;
905 struct elf_link_hash_entry *hi;
906 struct elf_link_hash_entry *flip;
907 int bind;
908 bfd *oldbfd;
909 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
910 bfd_boolean newweak, oldweak, newfunc, oldfunc;
911 const struct elf_backend_data *bed;
912
913 *skip = FALSE;
914 *override = FALSE;
915
916 sec = *psec;
917 bind = ELF_ST_BIND (sym->st_info);
918
919 if (! bfd_is_und_section (sec))
920 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
921 else
922 h = ((struct elf_link_hash_entry *)
923 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
924 if (h == NULL)
925 return FALSE;
926 *sym_hash = h;
927
928 bed = get_elf_backend_data (abfd);
929
930 /* For merging, we only care about real symbols. But we need to make
931 sure that indirect symbol dynamic flags are updated. */
932 hi = h;
933 while (h->root.type == bfd_link_hash_indirect
934 || h->root.type == bfd_link_hash_warning)
935 h = (struct elf_link_hash_entry *) h->root.u.i.link;
936
937 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
938 existing symbol. */
939
940 oldbfd = NULL;
941 oldsec = NULL;
942 switch (h->root.type)
943 {
944 default:
945 break;
946
947 case bfd_link_hash_undefined:
948 case bfd_link_hash_undefweak:
949 oldbfd = h->root.u.undef.abfd;
950 break;
951
952 case bfd_link_hash_defined:
953 case bfd_link_hash_defweak:
954 oldbfd = h->root.u.def.section->owner;
955 oldsec = h->root.u.def.section;
956 break;
957
958 case bfd_link_hash_common:
959 oldbfd = h->root.u.c.p->section->owner;
960 oldsec = h->root.u.c.p->section;
961 if (pold_alignment)
962 *pold_alignment = h->root.u.c.p->alignment_power;
963 break;
964 }
965 if (poldbfd && *poldbfd == NULL)
966 *poldbfd = oldbfd;
967
968 /* Differentiate strong and weak symbols. */
969 newweak = bind == STB_WEAK;
970 oldweak = (h->root.type == bfd_link_hash_defweak
971 || h->root.type == bfd_link_hash_undefweak);
972 if (pold_weak)
973 *pold_weak = oldweak;
974
975 /* This code is for coping with dynamic objects, and is only useful
976 if we are doing an ELF link. */
977 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
978 return TRUE;
979
980 /* We have to check it for every instance since the first few may be
981 references and not all compilers emit symbol type for undefined
982 symbols. */
983 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
984
985 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
986 respectively, is from a dynamic object. */
987
988 newdyn = (abfd->flags & DYNAMIC) != 0;
989
990 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
991 syms and defined syms in dynamic libraries respectively.
992 ref_dynamic on the other hand can be set for a symbol defined in
993 a dynamic library, and def_dynamic may not be set; When the
994 definition in a dynamic lib is overridden by a definition in the
995 executable use of the symbol in the dynamic lib becomes a
996 reference to the executable symbol. */
997 if (newdyn)
998 {
999 if (bfd_is_und_section (sec))
1000 {
1001 if (bind != STB_WEAK)
1002 {
1003 h->ref_dynamic_nonweak = 1;
1004 hi->ref_dynamic_nonweak = 1;
1005 }
1006 }
1007 else
1008 {
1009 h->dynamic_def = 1;
1010 hi->dynamic_def = 1;
1011 }
1012 }
1013
1014 /* If we just created the symbol, mark it as being an ELF symbol.
1015 Other than that, there is nothing to do--there is no merge issue
1016 with a newly defined symbol--so we just return. */
1017
1018 if (h->root.type == bfd_link_hash_new)
1019 {
1020 h->non_elf = 0;
1021 return TRUE;
1022 }
1023
1024 /* In cases involving weak versioned symbols, we may wind up trying
1025 to merge a symbol with itself. Catch that here, to avoid the
1026 confusion that results if we try to override a symbol with
1027 itself. The additional tests catch cases like
1028 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1029 dynamic object, which we do want to handle here. */
1030 if (abfd == oldbfd
1031 && (newweak || oldweak)
1032 && ((abfd->flags & DYNAMIC) == 0
1033 || !h->def_regular))
1034 return TRUE;
1035
1036 olddyn = FALSE;
1037 if (oldbfd != NULL)
1038 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1039 else if (oldsec != NULL)
1040 {
1041 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1042 indices used by MIPS ELF. */
1043 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1044 }
1045
1046 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1047 respectively, appear to be a definition rather than reference. */
1048
1049 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1050
1051 olddef = (h->root.type != bfd_link_hash_undefined
1052 && h->root.type != bfd_link_hash_undefweak
1053 && h->root.type != bfd_link_hash_common);
1054
1055 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1056 respectively, appear to be a function. */
1057
1058 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1059 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1060
1061 oldfunc = (h->type != STT_NOTYPE
1062 && bed->is_function_type (h->type));
1063
1064 /* When we try to create a default indirect symbol from the dynamic
1065 definition with the default version, we skip it if its type and
1066 the type of existing regular definition mismatch. */
1067 if (pold_alignment == NULL
1068 && newdyn
1069 && newdef
1070 && !olddyn
1071 && (((olddef || h->root.type == bfd_link_hash_common)
1072 && ELF_ST_TYPE (sym->st_info) != h->type
1073 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1074 && h->type != STT_NOTYPE
1075 && !(newfunc && oldfunc))
1076 || (olddef
1077 && ((h->type == STT_GNU_IFUNC)
1078 != (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))))
1079 {
1080 *skip = TRUE;
1081 return TRUE;
1082 }
1083
1084 /* Check TLS symbols. We don't check undefined symbols introduced
1085 by "ld -u" which have no type (and oldbfd NULL), and we don't
1086 check symbols from plugins because they also have no type. */
1087 if (oldbfd != NULL
1088 && (oldbfd->flags & BFD_PLUGIN) == 0
1089 && (abfd->flags & BFD_PLUGIN) == 0
1090 && ELF_ST_TYPE (sym->st_info) != h->type
1091 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1092 {
1093 bfd *ntbfd, *tbfd;
1094 bfd_boolean ntdef, tdef;
1095 asection *ntsec, *tsec;
1096
1097 if (h->type == STT_TLS)
1098 {
1099 ntbfd = abfd;
1100 ntsec = sec;
1101 ntdef = newdef;
1102 tbfd = oldbfd;
1103 tsec = oldsec;
1104 tdef = olddef;
1105 }
1106 else
1107 {
1108 ntbfd = oldbfd;
1109 ntsec = oldsec;
1110 ntdef = olddef;
1111 tbfd = abfd;
1112 tsec = sec;
1113 tdef = newdef;
1114 }
1115
1116 if (tdef && ntdef)
1117 (*_bfd_error_handler)
1118 (_("%s: TLS definition in %B section %A "
1119 "mismatches non-TLS definition in %B section %A"),
1120 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1121 else if (!tdef && !ntdef)
1122 (*_bfd_error_handler)
1123 (_("%s: TLS reference in %B "
1124 "mismatches non-TLS reference in %B"),
1125 tbfd, ntbfd, h->root.root.string);
1126 else if (tdef)
1127 (*_bfd_error_handler)
1128 (_("%s: TLS definition in %B section %A "
1129 "mismatches non-TLS reference in %B"),
1130 tbfd, tsec, ntbfd, h->root.root.string);
1131 else
1132 (*_bfd_error_handler)
1133 (_("%s: TLS reference in %B "
1134 "mismatches non-TLS definition in %B section %A"),
1135 tbfd, ntbfd, ntsec, h->root.root.string);
1136
1137 bfd_set_error (bfd_error_bad_value);
1138 return FALSE;
1139 }
1140
1141 /* If the old symbol has non-default visibility, we ignore the new
1142 definition from a dynamic object. */
1143 if (newdyn
1144 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1145 && !bfd_is_und_section (sec))
1146 {
1147 *skip = TRUE;
1148 /* Make sure this symbol is dynamic. */
1149 h->ref_dynamic = 1;
1150 hi->ref_dynamic = 1;
1151 /* A protected symbol has external availability. Make sure it is
1152 recorded as dynamic.
1153
1154 FIXME: Should we check type and size for protected symbol? */
1155 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1156 return bfd_elf_link_record_dynamic_symbol (info, h);
1157 else
1158 return TRUE;
1159 }
1160 else if (!newdyn
1161 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1162 && h->def_dynamic)
1163 {
1164 /* If the new symbol with non-default visibility comes from a
1165 relocatable file and the old definition comes from a dynamic
1166 object, we remove the old definition. */
1167 if (hi->root.type == bfd_link_hash_indirect)
1168 {
1169 /* Handle the case where the old dynamic definition is
1170 default versioned. We need to copy the symbol info from
1171 the symbol with default version to the normal one if it
1172 was referenced before. */
1173 if (h->ref_regular)
1174 {
1175 hi->root.type = h->root.type;
1176 h->root.type = bfd_link_hash_indirect;
1177 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1178
1179 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1180 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1181 {
1182 /* If the new symbol is hidden or internal, completely undo
1183 any dynamic link state. */
1184 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1185 h->forced_local = 0;
1186 h->ref_dynamic = 0;
1187 }
1188 else
1189 h->ref_dynamic = 1;
1190
1191 h->def_dynamic = 0;
1192 /* FIXME: Should we check type and size for protected symbol? */
1193 h->size = 0;
1194 h->type = 0;
1195
1196 h = hi;
1197 }
1198 else
1199 h = hi;
1200 }
1201
1202 /* If the old symbol was undefined before, then it will still be
1203 on the undefs list. If the new symbol is undefined or
1204 common, we can't make it bfd_link_hash_new here, because new
1205 undefined or common symbols will be added to the undefs list
1206 by _bfd_generic_link_add_one_symbol. Symbols may not be
1207 added twice to the undefs list. Also, if the new symbol is
1208 undefweak then we don't want to lose the strong undef. */
1209 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1210 {
1211 h->root.type = bfd_link_hash_undefined;
1212 h->root.u.undef.abfd = abfd;
1213 }
1214 else
1215 {
1216 h->root.type = bfd_link_hash_new;
1217 h->root.u.undef.abfd = NULL;
1218 }
1219
1220 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1221 {
1222 /* If the new symbol is hidden or internal, completely undo
1223 any dynamic link state. */
1224 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1225 h->forced_local = 0;
1226 h->ref_dynamic = 0;
1227 }
1228 else
1229 h->ref_dynamic = 1;
1230 h->def_dynamic = 0;
1231 /* FIXME: Should we check type and size for protected symbol? */
1232 h->size = 0;
1233 h->type = 0;
1234 return TRUE;
1235 }
1236
1237 /* If a new weak symbol definition comes from a regular file and the
1238 old symbol comes from a dynamic library, we treat the new one as
1239 strong. Similarly, an old weak symbol definition from a regular
1240 file is treated as strong when the new symbol comes from a dynamic
1241 library. Further, an old weak symbol from a dynamic library is
1242 treated as strong if the new symbol is from a dynamic library.
1243 This reflects the way glibc's ld.so works.
1244
1245 Do this before setting *type_change_ok or *size_change_ok so that
1246 we warn properly when dynamic library symbols are overridden. */
1247
1248 if (newdef && !newdyn && olddyn)
1249 newweak = FALSE;
1250 if (olddef && newdyn)
1251 oldweak = FALSE;
1252
1253 /* Allow changes between different types of function symbol. */
1254 if (newfunc && oldfunc)
1255 *type_change_ok = TRUE;
1256
1257 /* It's OK to change the type if either the existing symbol or the
1258 new symbol is weak. A type change is also OK if the old symbol
1259 is undefined and the new symbol is defined. */
1260
1261 if (oldweak
1262 || newweak
1263 || (newdef
1264 && h->root.type == bfd_link_hash_undefined))
1265 *type_change_ok = TRUE;
1266
1267 /* It's OK to change the size if either the existing symbol or the
1268 new symbol is weak, or if the old symbol is undefined. */
1269
1270 if (*type_change_ok
1271 || h->root.type == bfd_link_hash_undefined)
1272 *size_change_ok = TRUE;
1273
1274 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1275 symbol, respectively, appears to be a common symbol in a dynamic
1276 object. If a symbol appears in an uninitialized section, and is
1277 not weak, and is not a function, then it may be a common symbol
1278 which was resolved when the dynamic object was created. We want
1279 to treat such symbols specially, because they raise special
1280 considerations when setting the symbol size: if the symbol
1281 appears as a common symbol in a regular object, and the size in
1282 the regular object is larger, we must make sure that we use the
1283 larger size. This problematic case can always be avoided in C,
1284 but it must be handled correctly when using Fortran shared
1285 libraries.
1286
1287 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1288 likewise for OLDDYNCOMMON and OLDDEF.
1289
1290 Note that this test is just a heuristic, and that it is quite
1291 possible to have an uninitialized symbol in a shared object which
1292 is really a definition, rather than a common symbol. This could
1293 lead to some minor confusion when the symbol really is a common
1294 symbol in some regular object. However, I think it will be
1295 harmless. */
1296
1297 if (newdyn
1298 && newdef
1299 && !newweak
1300 && (sec->flags & SEC_ALLOC) != 0
1301 && (sec->flags & SEC_LOAD) == 0
1302 && sym->st_size > 0
1303 && !newfunc)
1304 newdyncommon = TRUE;
1305 else
1306 newdyncommon = FALSE;
1307
1308 if (olddyn
1309 && olddef
1310 && h->root.type == bfd_link_hash_defined
1311 && h->def_dynamic
1312 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1313 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1314 && h->size > 0
1315 && !oldfunc)
1316 olddyncommon = TRUE;
1317 else
1318 olddyncommon = FALSE;
1319
1320 /* We now know everything about the old and new symbols. We ask the
1321 backend to check if we can merge them. */
1322 if (bed->merge_symbol != NULL)
1323 {
1324 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1325 return FALSE;
1326 sec = *psec;
1327 }
1328
1329 /* If both the old and the new symbols look like common symbols in a
1330 dynamic object, set the size of the symbol to the larger of the
1331 two. */
1332
1333 if (olddyncommon
1334 && newdyncommon
1335 && sym->st_size != h->size)
1336 {
1337 /* Since we think we have two common symbols, issue a multiple
1338 common warning if desired. Note that we only warn if the
1339 size is different. If the size is the same, we simply let
1340 the old symbol override the new one as normally happens with
1341 symbols defined in dynamic objects. */
1342
1343 if (! ((*info->callbacks->multiple_common)
1344 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1345 return FALSE;
1346
1347 if (sym->st_size > h->size)
1348 h->size = sym->st_size;
1349
1350 *size_change_ok = TRUE;
1351 }
1352
1353 /* If we are looking at a dynamic object, and we have found a
1354 definition, we need to see if the symbol was already defined by
1355 some other object. If so, we want to use the existing
1356 definition, and we do not want to report a multiple symbol
1357 definition error; we do this by clobbering *PSEC to be
1358 bfd_und_section_ptr.
1359
1360 We treat a common symbol as a definition if the symbol in the
1361 shared library is a function, since common symbols always
1362 represent variables; this can cause confusion in principle, but
1363 any such confusion would seem to indicate an erroneous program or
1364 shared library. We also permit a common symbol in a regular
1365 object to override a weak symbol in a shared object. */
1366
1367 if (newdyn
1368 && newdef
1369 && (olddef
1370 || (h->root.type == bfd_link_hash_common
1371 && (newweak || newfunc))))
1372 {
1373 *override = TRUE;
1374 newdef = FALSE;
1375 newdyncommon = FALSE;
1376
1377 *psec = sec = bfd_und_section_ptr;
1378 *size_change_ok = TRUE;
1379
1380 /* If we get here when the old symbol is a common symbol, then
1381 we are explicitly letting it override a weak symbol or
1382 function in a dynamic object, and we don't want to warn about
1383 a type change. If the old symbol is a defined symbol, a type
1384 change warning may still be appropriate. */
1385
1386 if (h->root.type == bfd_link_hash_common)
1387 *type_change_ok = TRUE;
1388 }
1389
1390 /* Handle the special case of an old common symbol merging with a
1391 new symbol which looks like a common symbol in a shared object.
1392 We change *PSEC and *PVALUE to make the new symbol look like a
1393 common symbol, and let _bfd_generic_link_add_one_symbol do the
1394 right thing. */
1395
1396 if (newdyncommon
1397 && h->root.type == bfd_link_hash_common)
1398 {
1399 *override = TRUE;
1400 newdef = FALSE;
1401 newdyncommon = FALSE;
1402 *pvalue = sym->st_size;
1403 *psec = sec = bed->common_section (oldsec);
1404 *size_change_ok = TRUE;
1405 }
1406
1407 /* Skip weak definitions of symbols that are already defined. */
1408 if (newdef && olddef && newweak)
1409 {
1410 /* Don't skip new non-IR weak syms. */
1411 if (!(oldbfd != NULL
1412 && (oldbfd->flags & BFD_PLUGIN) != 0
1413 && (abfd->flags & BFD_PLUGIN) == 0))
1414 {
1415 newdef = FALSE;
1416 *skip = TRUE;
1417 }
1418
1419 /* Merge st_other. If the symbol already has a dynamic index,
1420 but visibility says it should not be visible, turn it into a
1421 local symbol. */
1422 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1423 if (h->dynindx != -1)
1424 switch (ELF_ST_VISIBILITY (h->other))
1425 {
1426 case STV_INTERNAL:
1427 case STV_HIDDEN:
1428 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1429 break;
1430 }
1431 }
1432
1433 /* If the old symbol is from a dynamic object, and the new symbol is
1434 a definition which is not from a dynamic object, then the new
1435 symbol overrides the old symbol. Symbols from regular files
1436 always take precedence over symbols from dynamic objects, even if
1437 they are defined after the dynamic object in the link.
1438
1439 As above, we again permit a common symbol in a regular object to
1440 override a definition in a shared object if the shared object
1441 symbol is a function or is weak. */
1442
1443 flip = NULL;
1444 if (!newdyn
1445 && (newdef
1446 || (bfd_is_com_section (sec)
1447 && (oldweak || oldfunc)))
1448 && olddyn
1449 && olddef
1450 && h->def_dynamic)
1451 {
1452 /* Change the hash table entry to undefined, and let
1453 _bfd_generic_link_add_one_symbol do the right thing with the
1454 new definition. */
1455
1456 h->root.type = bfd_link_hash_undefined;
1457 h->root.u.undef.abfd = h->root.u.def.section->owner;
1458 *size_change_ok = TRUE;
1459
1460 olddef = FALSE;
1461 olddyncommon = FALSE;
1462
1463 /* We again permit a type change when a common symbol may be
1464 overriding a function. */
1465
1466 if (bfd_is_com_section (sec))
1467 {
1468 if (oldfunc)
1469 {
1470 /* If a common symbol overrides a function, make sure
1471 that it isn't defined dynamically nor has type
1472 function. */
1473 h->def_dynamic = 0;
1474 h->type = STT_NOTYPE;
1475 }
1476 *type_change_ok = TRUE;
1477 }
1478
1479 if (hi->root.type == bfd_link_hash_indirect)
1480 flip = hi;
1481 else
1482 /* This union may have been set to be non-NULL when this symbol
1483 was seen in a dynamic object. We must force the union to be
1484 NULL, so that it is correct for a regular symbol. */
1485 h->verinfo.vertree = NULL;
1486 }
1487
1488 /* Handle the special case of a new common symbol merging with an
1489 old symbol that looks like it might be a common symbol defined in
1490 a shared object. Note that we have already handled the case in
1491 which a new common symbol should simply override the definition
1492 in the shared library. */
1493
1494 if (! newdyn
1495 && bfd_is_com_section (sec)
1496 && olddyncommon)
1497 {
1498 /* It would be best if we could set the hash table entry to a
1499 common symbol, but we don't know what to use for the section
1500 or the alignment. */
1501 if (! ((*info->callbacks->multiple_common)
1502 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1503 return FALSE;
1504
1505 /* If the presumed common symbol in the dynamic object is
1506 larger, pretend that the new symbol has its size. */
1507
1508 if (h->size > *pvalue)
1509 *pvalue = h->size;
1510
1511 /* We need to remember the alignment required by the symbol
1512 in the dynamic object. */
1513 BFD_ASSERT (pold_alignment);
1514 *pold_alignment = h->root.u.def.section->alignment_power;
1515
1516 olddef = FALSE;
1517 olddyncommon = FALSE;
1518
1519 h->root.type = bfd_link_hash_undefined;
1520 h->root.u.undef.abfd = h->root.u.def.section->owner;
1521
1522 *size_change_ok = TRUE;
1523 *type_change_ok = TRUE;
1524
1525 if (hi->root.type == bfd_link_hash_indirect)
1526 flip = hi;
1527 else
1528 h->verinfo.vertree = NULL;
1529 }
1530
1531 if (flip != NULL)
1532 {
1533 /* Handle the case where we had a versioned symbol in a dynamic
1534 library and now find a definition in a normal object. In this
1535 case, we make the versioned symbol point to the normal one. */
1536 flip->root.type = h->root.type;
1537 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1538 h->root.type = bfd_link_hash_indirect;
1539 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1540 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1541 if (h->def_dynamic)
1542 {
1543 h->def_dynamic = 0;
1544 flip->ref_dynamic = 1;
1545 }
1546 }
1547
1548 return TRUE;
1549 }
1550
1551 /* This function is called to create an indirect symbol from the
1552 default for the symbol with the default version if needed. The
1553 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1554 set DYNSYM if the new indirect symbol is dynamic. */
1555
1556 static bfd_boolean
1557 _bfd_elf_add_default_symbol (bfd *abfd,
1558 struct bfd_link_info *info,
1559 struct elf_link_hash_entry *h,
1560 const char *name,
1561 Elf_Internal_Sym *sym,
1562 asection *sec,
1563 bfd_vma value,
1564 bfd **poldbfd,
1565 bfd_boolean *dynsym)
1566 {
1567 bfd_boolean type_change_ok;
1568 bfd_boolean size_change_ok;
1569 bfd_boolean skip;
1570 char *shortname;
1571 struct elf_link_hash_entry *hi;
1572 struct bfd_link_hash_entry *bh;
1573 const struct elf_backend_data *bed;
1574 bfd_boolean collect;
1575 bfd_boolean dynamic;
1576 bfd_boolean override;
1577 char *p;
1578 size_t len, shortlen;
1579 asection *tmp_sec;
1580
1581 /* If this symbol has a version, and it is the default version, we
1582 create an indirect symbol from the default name to the fully
1583 decorated name. This will cause external references which do not
1584 specify a version to be bound to this version of the symbol. */
1585 p = strchr (name, ELF_VER_CHR);
1586 if (p == NULL || p[1] != ELF_VER_CHR)
1587 return TRUE;
1588
1589 bed = get_elf_backend_data (abfd);
1590 collect = bed->collect;
1591 dynamic = (abfd->flags & DYNAMIC) != 0;
1592
1593 shortlen = p - name;
1594 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1595 if (shortname == NULL)
1596 return FALSE;
1597 memcpy (shortname, name, shortlen);
1598 shortname[shortlen] = '\0';
1599
1600 /* We are going to create a new symbol. Merge it with any existing
1601 symbol with this name. For the purposes of the merge, act as
1602 though we were defining the symbol we just defined, although we
1603 actually going to define an indirect symbol. */
1604 type_change_ok = FALSE;
1605 size_change_ok = FALSE;
1606 tmp_sec = sec;
1607 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1608 &hi, poldbfd, NULL, NULL, &skip, &override,
1609 &type_change_ok, &size_change_ok))
1610 return FALSE;
1611
1612 if (skip)
1613 goto nondefault;
1614
1615 if (! override)
1616 {
1617 bh = &hi->root;
1618 if (! (_bfd_generic_link_add_one_symbol
1619 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1620 0, name, FALSE, collect, &bh)))
1621 return FALSE;
1622 hi = (struct elf_link_hash_entry *) bh;
1623 }
1624 else
1625 {
1626 /* In this case the symbol named SHORTNAME is overriding the
1627 indirect symbol we want to add. We were planning on making
1628 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1629 is the name without a version. NAME is the fully versioned
1630 name, and it is the default version.
1631
1632 Overriding means that we already saw a definition for the
1633 symbol SHORTNAME in a regular object, and it is overriding
1634 the symbol defined in the dynamic object.
1635
1636 When this happens, we actually want to change NAME, the
1637 symbol we just added, to refer to SHORTNAME. This will cause
1638 references to NAME in the shared object to become references
1639 to SHORTNAME in the regular object. This is what we expect
1640 when we override a function in a shared object: that the
1641 references in the shared object will be mapped to the
1642 definition in the regular object. */
1643
1644 while (hi->root.type == bfd_link_hash_indirect
1645 || hi->root.type == bfd_link_hash_warning)
1646 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1647
1648 h->root.type = bfd_link_hash_indirect;
1649 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1650 if (h->def_dynamic)
1651 {
1652 h->def_dynamic = 0;
1653 hi->ref_dynamic = 1;
1654 if (hi->ref_regular
1655 || hi->def_regular)
1656 {
1657 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1658 return FALSE;
1659 }
1660 }
1661
1662 /* Now set HI to H, so that the following code will set the
1663 other fields correctly. */
1664 hi = h;
1665 }
1666
1667 /* Check if HI is a warning symbol. */
1668 if (hi->root.type == bfd_link_hash_warning)
1669 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1670
1671 /* If there is a duplicate definition somewhere, then HI may not
1672 point to an indirect symbol. We will have reported an error to
1673 the user in that case. */
1674
1675 if (hi->root.type == bfd_link_hash_indirect)
1676 {
1677 struct elf_link_hash_entry *ht;
1678
1679 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1680 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1681
1682 /* A reference to the SHORTNAME symbol from a dynamic library
1683 will be satisfied by the versioned symbol at runtime. In
1684 effect, we have a reference to the versioned symbol. */
1685 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1686 hi->dynamic_def |= ht->dynamic_def;
1687
1688 /* See if the new flags lead us to realize that the symbol must
1689 be dynamic. */
1690 if (! *dynsym)
1691 {
1692 if (! dynamic)
1693 {
1694 if (! info->executable
1695 || hi->def_dynamic
1696 || hi->ref_dynamic)
1697 *dynsym = TRUE;
1698 }
1699 else
1700 {
1701 if (hi->ref_regular)
1702 *dynsym = TRUE;
1703 }
1704 }
1705 }
1706
1707 /* We also need to define an indirection from the nondefault version
1708 of the symbol. */
1709
1710 nondefault:
1711 len = strlen (name);
1712 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1713 if (shortname == NULL)
1714 return FALSE;
1715 memcpy (shortname, name, shortlen);
1716 memcpy (shortname + shortlen, p + 1, len - shortlen);
1717
1718 /* Once again, merge with any existing symbol. */
1719 type_change_ok = FALSE;
1720 size_change_ok = FALSE;
1721 tmp_sec = sec;
1722 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1723 &hi, poldbfd, NULL, NULL, &skip, &override,
1724 &type_change_ok, &size_change_ok))
1725 return FALSE;
1726
1727 if (skip)
1728 return TRUE;
1729
1730 if (override)
1731 {
1732 /* Here SHORTNAME is a versioned name, so we don't expect to see
1733 the type of override we do in the case above unless it is
1734 overridden by a versioned definition. */
1735 if (hi->root.type != bfd_link_hash_defined
1736 && hi->root.type != bfd_link_hash_defweak)
1737 (*_bfd_error_handler)
1738 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1739 abfd, shortname);
1740 }
1741 else
1742 {
1743 bh = &hi->root;
1744 if (! (_bfd_generic_link_add_one_symbol
1745 (info, abfd, shortname, BSF_INDIRECT,
1746 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1747 return FALSE;
1748 hi = (struct elf_link_hash_entry *) bh;
1749
1750 /* If there is a duplicate definition somewhere, then HI may not
1751 point to an indirect symbol. We will have reported an error
1752 to the user in that case. */
1753
1754 if (hi->root.type == bfd_link_hash_indirect)
1755 {
1756 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1757 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1758 hi->dynamic_def |= h->dynamic_def;
1759
1760 /* See if the new flags lead us to realize that the symbol
1761 must be dynamic. */
1762 if (! *dynsym)
1763 {
1764 if (! dynamic)
1765 {
1766 if (! info->executable
1767 || hi->ref_dynamic)
1768 *dynsym = TRUE;
1769 }
1770 else
1771 {
1772 if (hi->ref_regular)
1773 *dynsym = TRUE;
1774 }
1775 }
1776 }
1777 }
1778
1779 return TRUE;
1780 }
1781 \f
1782 /* This routine is used to export all defined symbols into the dynamic
1783 symbol table. It is called via elf_link_hash_traverse. */
1784
1785 static bfd_boolean
1786 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1787 {
1788 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1789
1790 /* Ignore indirect symbols. These are added by the versioning code. */
1791 if (h->root.type == bfd_link_hash_indirect)
1792 return TRUE;
1793
1794 /* Ignore this if we won't export it. */
1795 if (!eif->info->export_dynamic && !h->dynamic)
1796 return TRUE;
1797
1798 if (h->dynindx == -1
1799 && (h->def_regular || h->ref_regular)
1800 && ! bfd_hide_sym_by_version (eif->info->version_info,
1801 h->root.root.string))
1802 {
1803 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1804 {
1805 eif->failed = TRUE;
1806 return FALSE;
1807 }
1808 }
1809
1810 return TRUE;
1811 }
1812 \f
1813 /* Look through the symbols which are defined in other shared
1814 libraries and referenced here. Update the list of version
1815 dependencies. This will be put into the .gnu.version_r section.
1816 This function is called via elf_link_hash_traverse. */
1817
1818 static bfd_boolean
1819 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1820 void *data)
1821 {
1822 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1823 Elf_Internal_Verneed *t;
1824 Elf_Internal_Vernaux *a;
1825 bfd_size_type amt;
1826
1827 /* We only care about symbols defined in shared objects with version
1828 information. */
1829 if (!h->def_dynamic
1830 || h->def_regular
1831 || h->dynindx == -1
1832 || h->verinfo.verdef == NULL
1833 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
1834 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
1835 return TRUE;
1836
1837 /* See if we already know about this version. */
1838 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1839 t != NULL;
1840 t = t->vn_nextref)
1841 {
1842 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1843 continue;
1844
1845 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1846 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1847 return TRUE;
1848
1849 break;
1850 }
1851
1852 /* This is a new version. Add it to tree we are building. */
1853
1854 if (t == NULL)
1855 {
1856 amt = sizeof *t;
1857 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1858 if (t == NULL)
1859 {
1860 rinfo->failed = TRUE;
1861 return FALSE;
1862 }
1863
1864 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1865 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1866 elf_tdata (rinfo->info->output_bfd)->verref = t;
1867 }
1868
1869 amt = sizeof *a;
1870 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1871 if (a == NULL)
1872 {
1873 rinfo->failed = TRUE;
1874 return FALSE;
1875 }
1876
1877 /* Note that we are copying a string pointer here, and testing it
1878 above. If bfd_elf_string_from_elf_section is ever changed to
1879 discard the string data when low in memory, this will have to be
1880 fixed. */
1881 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1882
1883 a->vna_flags = h->verinfo.verdef->vd_flags;
1884 a->vna_nextptr = t->vn_auxptr;
1885
1886 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1887 ++rinfo->vers;
1888
1889 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1890
1891 t->vn_auxptr = a;
1892
1893 return TRUE;
1894 }
1895
1896 /* Figure out appropriate versions for all the symbols. We may not
1897 have the version number script until we have read all of the input
1898 files, so until that point we don't know which symbols should be
1899 local. This function is called via elf_link_hash_traverse. */
1900
1901 static bfd_boolean
1902 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1903 {
1904 struct elf_info_failed *sinfo;
1905 struct bfd_link_info *info;
1906 const struct elf_backend_data *bed;
1907 struct elf_info_failed eif;
1908 char *p;
1909 bfd_size_type amt;
1910
1911 sinfo = (struct elf_info_failed *) data;
1912 info = sinfo->info;
1913
1914 /* Fix the symbol flags. */
1915 eif.failed = FALSE;
1916 eif.info = info;
1917 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1918 {
1919 if (eif.failed)
1920 sinfo->failed = TRUE;
1921 return FALSE;
1922 }
1923
1924 /* We only need version numbers for symbols defined in regular
1925 objects. */
1926 if (!h->def_regular)
1927 return TRUE;
1928
1929 bed = get_elf_backend_data (info->output_bfd);
1930 p = strchr (h->root.root.string, ELF_VER_CHR);
1931 if (p != NULL && h->verinfo.vertree == NULL)
1932 {
1933 struct bfd_elf_version_tree *t;
1934 bfd_boolean hidden;
1935
1936 hidden = TRUE;
1937
1938 /* There are two consecutive ELF_VER_CHR characters if this is
1939 not a hidden symbol. */
1940 ++p;
1941 if (*p == ELF_VER_CHR)
1942 {
1943 hidden = FALSE;
1944 ++p;
1945 }
1946
1947 /* If there is no version string, we can just return out. */
1948 if (*p == '\0')
1949 {
1950 if (hidden)
1951 h->hidden = 1;
1952 return TRUE;
1953 }
1954
1955 /* Look for the version. If we find it, it is no longer weak. */
1956 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1957 {
1958 if (strcmp (t->name, p) == 0)
1959 {
1960 size_t len;
1961 char *alc;
1962 struct bfd_elf_version_expr *d;
1963
1964 len = p - h->root.root.string;
1965 alc = (char *) bfd_malloc (len);
1966 if (alc == NULL)
1967 {
1968 sinfo->failed = TRUE;
1969 return FALSE;
1970 }
1971 memcpy (alc, h->root.root.string, len - 1);
1972 alc[len - 1] = '\0';
1973 if (alc[len - 2] == ELF_VER_CHR)
1974 alc[len - 2] = '\0';
1975
1976 h->verinfo.vertree = t;
1977 t->used = TRUE;
1978 d = NULL;
1979
1980 if (t->globals.list != NULL)
1981 d = (*t->match) (&t->globals, NULL, alc);
1982
1983 /* See if there is anything to force this symbol to
1984 local scope. */
1985 if (d == NULL && t->locals.list != NULL)
1986 {
1987 d = (*t->match) (&t->locals, NULL, alc);
1988 if (d != NULL
1989 && h->dynindx != -1
1990 && ! info->export_dynamic)
1991 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1992 }
1993
1994 free (alc);
1995 break;
1996 }
1997 }
1998
1999 /* If we are building an application, we need to create a
2000 version node for this version. */
2001 if (t == NULL && info->executable)
2002 {
2003 struct bfd_elf_version_tree **pp;
2004 int version_index;
2005
2006 /* If we aren't going to export this symbol, we don't need
2007 to worry about it. */
2008 if (h->dynindx == -1)
2009 return TRUE;
2010
2011 amt = sizeof *t;
2012 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2013 if (t == NULL)
2014 {
2015 sinfo->failed = TRUE;
2016 return FALSE;
2017 }
2018
2019 t->name = p;
2020 t->name_indx = (unsigned int) -1;
2021 t->used = TRUE;
2022
2023 version_index = 1;
2024 /* Don't count anonymous version tag. */
2025 if (sinfo->info->version_info != NULL
2026 && sinfo->info->version_info->vernum == 0)
2027 version_index = 0;
2028 for (pp = &sinfo->info->version_info;
2029 *pp != NULL;
2030 pp = &(*pp)->next)
2031 ++version_index;
2032 t->vernum = version_index;
2033
2034 *pp = t;
2035
2036 h->verinfo.vertree = t;
2037 }
2038 else if (t == NULL)
2039 {
2040 /* We could not find the version for a symbol when
2041 generating a shared archive. Return an error. */
2042 (*_bfd_error_handler)
2043 (_("%B: version node not found for symbol %s"),
2044 info->output_bfd, h->root.root.string);
2045 bfd_set_error (bfd_error_bad_value);
2046 sinfo->failed = TRUE;
2047 return FALSE;
2048 }
2049
2050 if (hidden)
2051 h->hidden = 1;
2052 }
2053
2054 /* If we don't have a version for this symbol, see if we can find
2055 something. */
2056 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2057 {
2058 bfd_boolean hide;
2059
2060 h->verinfo.vertree
2061 = bfd_find_version_for_sym (sinfo->info->version_info,
2062 h->root.root.string, &hide);
2063 if (h->verinfo.vertree != NULL && hide)
2064 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2065 }
2066
2067 return TRUE;
2068 }
2069 \f
2070 /* Read and swap the relocs from the section indicated by SHDR. This
2071 may be either a REL or a RELA section. The relocations are
2072 translated into RELA relocations and stored in INTERNAL_RELOCS,
2073 which should have already been allocated to contain enough space.
2074 The EXTERNAL_RELOCS are a buffer where the external form of the
2075 relocations should be stored.
2076
2077 Returns FALSE if something goes wrong. */
2078
2079 static bfd_boolean
2080 elf_link_read_relocs_from_section (bfd *abfd,
2081 asection *sec,
2082 Elf_Internal_Shdr *shdr,
2083 void *external_relocs,
2084 Elf_Internal_Rela *internal_relocs)
2085 {
2086 const struct elf_backend_data *bed;
2087 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2088 const bfd_byte *erela;
2089 const bfd_byte *erelaend;
2090 Elf_Internal_Rela *irela;
2091 Elf_Internal_Shdr *symtab_hdr;
2092 size_t nsyms;
2093
2094 /* Position ourselves at the start of the section. */
2095 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2096 return FALSE;
2097
2098 /* Read the relocations. */
2099 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2100 return FALSE;
2101
2102 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2103 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2104
2105 bed = get_elf_backend_data (abfd);
2106
2107 /* Convert the external relocations to the internal format. */
2108 if (shdr->sh_entsize == bed->s->sizeof_rel)
2109 swap_in = bed->s->swap_reloc_in;
2110 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2111 swap_in = bed->s->swap_reloca_in;
2112 else
2113 {
2114 bfd_set_error (bfd_error_wrong_format);
2115 return FALSE;
2116 }
2117
2118 erela = (const bfd_byte *) external_relocs;
2119 erelaend = erela + shdr->sh_size;
2120 irela = internal_relocs;
2121 while (erela < erelaend)
2122 {
2123 bfd_vma r_symndx;
2124
2125 (*swap_in) (abfd, erela, irela);
2126 r_symndx = ELF32_R_SYM (irela->r_info);
2127 if (bed->s->arch_size == 64)
2128 r_symndx >>= 24;
2129 if (nsyms > 0)
2130 {
2131 if ((size_t) r_symndx >= nsyms)
2132 {
2133 (*_bfd_error_handler)
2134 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2135 " for offset 0x%lx in section `%A'"),
2136 abfd, sec,
2137 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2138 bfd_set_error (bfd_error_bad_value);
2139 return FALSE;
2140 }
2141 }
2142 else if (r_symndx != STN_UNDEF)
2143 {
2144 (*_bfd_error_handler)
2145 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2146 " when the object file has no symbol table"),
2147 abfd, sec,
2148 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2149 bfd_set_error (bfd_error_bad_value);
2150 return FALSE;
2151 }
2152 irela += bed->s->int_rels_per_ext_rel;
2153 erela += shdr->sh_entsize;
2154 }
2155
2156 return TRUE;
2157 }
2158
2159 /* Read and swap the relocs for a section O. They may have been
2160 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2161 not NULL, they are used as buffers to read into. They are known to
2162 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2163 the return value is allocated using either malloc or bfd_alloc,
2164 according to the KEEP_MEMORY argument. If O has two relocation
2165 sections (both REL and RELA relocations), then the REL_HDR
2166 relocations will appear first in INTERNAL_RELOCS, followed by the
2167 RELA_HDR relocations. */
2168
2169 Elf_Internal_Rela *
2170 _bfd_elf_link_read_relocs (bfd *abfd,
2171 asection *o,
2172 void *external_relocs,
2173 Elf_Internal_Rela *internal_relocs,
2174 bfd_boolean keep_memory)
2175 {
2176 void *alloc1 = NULL;
2177 Elf_Internal_Rela *alloc2 = NULL;
2178 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2179 struct bfd_elf_section_data *esdo = elf_section_data (o);
2180 Elf_Internal_Rela *internal_rela_relocs;
2181
2182 if (esdo->relocs != NULL)
2183 return esdo->relocs;
2184
2185 if (o->reloc_count == 0)
2186 return NULL;
2187
2188 if (internal_relocs == NULL)
2189 {
2190 bfd_size_type size;
2191
2192 size = o->reloc_count;
2193 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2194 if (keep_memory)
2195 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2196 else
2197 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2198 if (internal_relocs == NULL)
2199 goto error_return;
2200 }
2201
2202 if (external_relocs == NULL)
2203 {
2204 bfd_size_type size = 0;
2205
2206 if (esdo->rel.hdr)
2207 size += esdo->rel.hdr->sh_size;
2208 if (esdo->rela.hdr)
2209 size += esdo->rela.hdr->sh_size;
2210
2211 alloc1 = bfd_malloc (size);
2212 if (alloc1 == NULL)
2213 goto error_return;
2214 external_relocs = alloc1;
2215 }
2216
2217 internal_rela_relocs = internal_relocs;
2218 if (esdo->rel.hdr)
2219 {
2220 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2221 external_relocs,
2222 internal_relocs))
2223 goto error_return;
2224 external_relocs = (((bfd_byte *) external_relocs)
2225 + esdo->rel.hdr->sh_size);
2226 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2227 * bed->s->int_rels_per_ext_rel);
2228 }
2229
2230 if (esdo->rela.hdr
2231 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2232 external_relocs,
2233 internal_rela_relocs)))
2234 goto error_return;
2235
2236 /* Cache the results for next time, if we can. */
2237 if (keep_memory)
2238 esdo->relocs = internal_relocs;
2239
2240 if (alloc1 != NULL)
2241 free (alloc1);
2242
2243 /* Don't free alloc2, since if it was allocated we are passing it
2244 back (under the name of internal_relocs). */
2245
2246 return internal_relocs;
2247
2248 error_return:
2249 if (alloc1 != NULL)
2250 free (alloc1);
2251 if (alloc2 != NULL)
2252 {
2253 if (keep_memory)
2254 bfd_release (abfd, alloc2);
2255 else
2256 free (alloc2);
2257 }
2258 return NULL;
2259 }
2260
2261 /* Compute the size of, and allocate space for, REL_HDR which is the
2262 section header for a section containing relocations for O. */
2263
2264 static bfd_boolean
2265 _bfd_elf_link_size_reloc_section (bfd *abfd,
2266 struct bfd_elf_section_reloc_data *reldata)
2267 {
2268 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2269
2270 /* That allows us to calculate the size of the section. */
2271 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2272
2273 /* The contents field must last into write_object_contents, so we
2274 allocate it with bfd_alloc rather than malloc. Also since we
2275 cannot be sure that the contents will actually be filled in,
2276 we zero the allocated space. */
2277 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2278 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2279 return FALSE;
2280
2281 if (reldata->hashes == NULL && reldata->count)
2282 {
2283 struct elf_link_hash_entry **p;
2284
2285 p = ((struct elf_link_hash_entry **)
2286 bfd_zmalloc (reldata->count * sizeof (*p)));
2287 if (p == NULL)
2288 return FALSE;
2289
2290 reldata->hashes = p;
2291 }
2292
2293 return TRUE;
2294 }
2295
2296 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2297 originated from the section given by INPUT_REL_HDR) to the
2298 OUTPUT_BFD. */
2299
2300 bfd_boolean
2301 _bfd_elf_link_output_relocs (bfd *output_bfd,
2302 asection *input_section,
2303 Elf_Internal_Shdr *input_rel_hdr,
2304 Elf_Internal_Rela *internal_relocs,
2305 struct elf_link_hash_entry **rel_hash
2306 ATTRIBUTE_UNUSED)
2307 {
2308 Elf_Internal_Rela *irela;
2309 Elf_Internal_Rela *irelaend;
2310 bfd_byte *erel;
2311 struct bfd_elf_section_reloc_data *output_reldata;
2312 asection *output_section;
2313 const struct elf_backend_data *bed;
2314 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2315 struct bfd_elf_section_data *esdo;
2316
2317 output_section = input_section->output_section;
2318
2319 bed = get_elf_backend_data (output_bfd);
2320 esdo = elf_section_data (output_section);
2321 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2322 {
2323 output_reldata = &esdo->rel;
2324 swap_out = bed->s->swap_reloc_out;
2325 }
2326 else if (esdo->rela.hdr
2327 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2328 {
2329 output_reldata = &esdo->rela;
2330 swap_out = bed->s->swap_reloca_out;
2331 }
2332 else
2333 {
2334 (*_bfd_error_handler)
2335 (_("%B: relocation size mismatch in %B section %A"),
2336 output_bfd, input_section->owner, input_section);
2337 bfd_set_error (bfd_error_wrong_format);
2338 return FALSE;
2339 }
2340
2341 erel = output_reldata->hdr->contents;
2342 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2343 irela = internal_relocs;
2344 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2345 * bed->s->int_rels_per_ext_rel);
2346 while (irela < irelaend)
2347 {
2348 (*swap_out) (output_bfd, irela, erel);
2349 irela += bed->s->int_rels_per_ext_rel;
2350 erel += input_rel_hdr->sh_entsize;
2351 }
2352
2353 /* Bump the counter, so that we know where to add the next set of
2354 relocations. */
2355 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2356
2357 return TRUE;
2358 }
2359 \f
2360 /* Make weak undefined symbols in PIE dynamic. */
2361
2362 bfd_boolean
2363 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2364 struct elf_link_hash_entry *h)
2365 {
2366 if (info->pie
2367 && h->dynindx == -1
2368 && h->root.type == bfd_link_hash_undefweak)
2369 return bfd_elf_link_record_dynamic_symbol (info, h);
2370
2371 return TRUE;
2372 }
2373
2374 /* Fix up the flags for a symbol. This handles various cases which
2375 can only be fixed after all the input files are seen. This is
2376 currently called by both adjust_dynamic_symbol and
2377 assign_sym_version, which is unnecessary but perhaps more robust in
2378 the face of future changes. */
2379
2380 static bfd_boolean
2381 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2382 struct elf_info_failed *eif)
2383 {
2384 const struct elf_backend_data *bed;
2385
2386 /* If this symbol was mentioned in a non-ELF file, try to set
2387 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2388 permit a non-ELF file to correctly refer to a symbol defined in
2389 an ELF dynamic object. */
2390 if (h->non_elf)
2391 {
2392 while (h->root.type == bfd_link_hash_indirect)
2393 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2394
2395 if (h->root.type != bfd_link_hash_defined
2396 && h->root.type != bfd_link_hash_defweak)
2397 {
2398 h->ref_regular = 1;
2399 h->ref_regular_nonweak = 1;
2400 }
2401 else
2402 {
2403 if (h->root.u.def.section->owner != NULL
2404 && (bfd_get_flavour (h->root.u.def.section->owner)
2405 == bfd_target_elf_flavour))
2406 {
2407 h->ref_regular = 1;
2408 h->ref_regular_nonweak = 1;
2409 }
2410 else
2411 h->def_regular = 1;
2412 }
2413
2414 if (h->dynindx == -1
2415 && (h->def_dynamic
2416 || h->ref_dynamic))
2417 {
2418 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2419 {
2420 eif->failed = TRUE;
2421 return FALSE;
2422 }
2423 }
2424 }
2425 else
2426 {
2427 /* Unfortunately, NON_ELF is only correct if the symbol
2428 was first seen in a non-ELF file. Fortunately, if the symbol
2429 was first seen in an ELF file, we're probably OK unless the
2430 symbol was defined in a non-ELF file. Catch that case here.
2431 FIXME: We're still in trouble if the symbol was first seen in
2432 a dynamic object, and then later in a non-ELF regular object. */
2433 if ((h->root.type == bfd_link_hash_defined
2434 || h->root.type == bfd_link_hash_defweak)
2435 && !h->def_regular
2436 && (h->root.u.def.section->owner != NULL
2437 ? (bfd_get_flavour (h->root.u.def.section->owner)
2438 != bfd_target_elf_flavour)
2439 : (bfd_is_abs_section (h->root.u.def.section)
2440 && !h->def_dynamic)))
2441 h->def_regular = 1;
2442 }
2443
2444 /* Backend specific symbol fixup. */
2445 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2446 if (bed->elf_backend_fixup_symbol
2447 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2448 return FALSE;
2449
2450 /* If this is a final link, and the symbol was defined as a common
2451 symbol in a regular object file, and there was no definition in
2452 any dynamic object, then the linker will have allocated space for
2453 the symbol in a common section but the DEF_REGULAR
2454 flag will not have been set. */
2455 if (h->root.type == bfd_link_hash_defined
2456 && !h->def_regular
2457 && h->ref_regular
2458 && !h->def_dynamic
2459 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2460 h->def_regular = 1;
2461
2462 /* If -Bsymbolic was used (which means to bind references to global
2463 symbols to the definition within the shared object), and this
2464 symbol was defined in a regular object, then it actually doesn't
2465 need a PLT entry. Likewise, if the symbol has non-default
2466 visibility. If the symbol has hidden or internal visibility, we
2467 will force it local. */
2468 if (h->needs_plt
2469 && eif->info->shared
2470 && is_elf_hash_table (eif->info->hash)
2471 && (SYMBOLIC_BIND (eif->info, h)
2472 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2473 && h->def_regular)
2474 {
2475 bfd_boolean force_local;
2476
2477 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2478 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2479 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2480 }
2481
2482 /* If a weak undefined symbol has non-default visibility, we also
2483 hide it from the dynamic linker. */
2484 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2485 && h->root.type == bfd_link_hash_undefweak)
2486 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2487
2488 /* If this is a weak defined symbol in a dynamic object, and we know
2489 the real definition in the dynamic object, copy interesting flags
2490 over to the real definition. */
2491 if (h->u.weakdef != NULL)
2492 {
2493 /* If the real definition is defined by a regular object file,
2494 don't do anything special. See the longer description in
2495 _bfd_elf_adjust_dynamic_symbol, below. */
2496 if (h->u.weakdef->def_regular)
2497 h->u.weakdef = NULL;
2498 else
2499 {
2500 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2501
2502 while (h->root.type == bfd_link_hash_indirect)
2503 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2504
2505 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2506 || h->root.type == bfd_link_hash_defweak);
2507 BFD_ASSERT (weakdef->def_dynamic);
2508 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2509 || weakdef->root.type == bfd_link_hash_defweak);
2510 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2511 }
2512 }
2513
2514 return TRUE;
2515 }
2516
2517 /* Make the backend pick a good value for a dynamic symbol. This is
2518 called via elf_link_hash_traverse, and also calls itself
2519 recursively. */
2520
2521 static bfd_boolean
2522 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2523 {
2524 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2525 bfd *dynobj;
2526 const struct elf_backend_data *bed;
2527
2528 if (! is_elf_hash_table (eif->info->hash))
2529 return FALSE;
2530
2531 /* Ignore indirect symbols. These are added by the versioning code. */
2532 if (h->root.type == bfd_link_hash_indirect)
2533 return TRUE;
2534
2535 /* Fix the symbol flags. */
2536 if (! _bfd_elf_fix_symbol_flags (h, eif))
2537 return FALSE;
2538
2539 /* If this symbol does not require a PLT entry, and it is not
2540 defined by a dynamic object, or is not referenced by a regular
2541 object, ignore it. We do have to handle a weak defined symbol,
2542 even if no regular object refers to it, if we decided to add it
2543 to the dynamic symbol table. FIXME: Do we normally need to worry
2544 about symbols which are defined by one dynamic object and
2545 referenced by another one? */
2546 if (!h->needs_plt
2547 && h->type != STT_GNU_IFUNC
2548 && (h->def_regular
2549 || !h->def_dynamic
2550 || (!h->ref_regular
2551 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2552 {
2553 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2554 return TRUE;
2555 }
2556
2557 /* If we've already adjusted this symbol, don't do it again. This
2558 can happen via a recursive call. */
2559 if (h->dynamic_adjusted)
2560 return TRUE;
2561
2562 /* Don't look at this symbol again. Note that we must set this
2563 after checking the above conditions, because we may look at a
2564 symbol once, decide not to do anything, and then get called
2565 recursively later after REF_REGULAR is set below. */
2566 h->dynamic_adjusted = 1;
2567
2568 /* If this is a weak definition, and we know a real definition, and
2569 the real symbol is not itself defined by a regular object file,
2570 then get a good value for the real definition. We handle the
2571 real symbol first, for the convenience of the backend routine.
2572
2573 Note that there is a confusing case here. If the real definition
2574 is defined by a regular object file, we don't get the real symbol
2575 from the dynamic object, but we do get the weak symbol. If the
2576 processor backend uses a COPY reloc, then if some routine in the
2577 dynamic object changes the real symbol, we will not see that
2578 change in the corresponding weak symbol. This is the way other
2579 ELF linkers work as well, and seems to be a result of the shared
2580 library model.
2581
2582 I will clarify this issue. Most SVR4 shared libraries define the
2583 variable _timezone and define timezone as a weak synonym. The
2584 tzset call changes _timezone. If you write
2585 extern int timezone;
2586 int _timezone = 5;
2587 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2588 you might expect that, since timezone is a synonym for _timezone,
2589 the same number will print both times. However, if the processor
2590 backend uses a COPY reloc, then actually timezone will be copied
2591 into your process image, and, since you define _timezone
2592 yourself, _timezone will not. Thus timezone and _timezone will
2593 wind up at different memory locations. The tzset call will set
2594 _timezone, leaving timezone unchanged. */
2595
2596 if (h->u.weakdef != NULL)
2597 {
2598 /* If we get to this point, there is an implicit reference to
2599 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2600 h->u.weakdef->ref_regular = 1;
2601
2602 /* Ensure that the backend adjust_dynamic_symbol function sees
2603 H->U.WEAKDEF before H by recursively calling ourselves. */
2604 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2605 return FALSE;
2606 }
2607
2608 /* If a symbol has no type and no size and does not require a PLT
2609 entry, then we are probably about to do the wrong thing here: we
2610 are probably going to create a COPY reloc for an empty object.
2611 This case can arise when a shared object is built with assembly
2612 code, and the assembly code fails to set the symbol type. */
2613 if (h->size == 0
2614 && h->type == STT_NOTYPE
2615 && !h->needs_plt)
2616 (*_bfd_error_handler)
2617 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2618 h->root.root.string);
2619
2620 dynobj = elf_hash_table (eif->info)->dynobj;
2621 bed = get_elf_backend_data (dynobj);
2622
2623 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2624 {
2625 eif->failed = TRUE;
2626 return FALSE;
2627 }
2628
2629 return TRUE;
2630 }
2631
2632 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2633 DYNBSS. */
2634
2635 bfd_boolean
2636 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2637 struct elf_link_hash_entry *h,
2638 asection *dynbss)
2639 {
2640 unsigned int power_of_two;
2641 bfd_vma mask;
2642 asection *sec = h->root.u.def.section;
2643
2644 /* The section aligment of definition is the maximum alignment
2645 requirement of symbols defined in the section. Since we don't
2646 know the symbol alignment requirement, we start with the
2647 maximum alignment and check low bits of the symbol address
2648 for the minimum alignment. */
2649 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2650 mask = ((bfd_vma) 1 << power_of_two) - 1;
2651 while ((h->root.u.def.value & mask) != 0)
2652 {
2653 mask >>= 1;
2654 --power_of_two;
2655 }
2656
2657 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2658 dynbss))
2659 {
2660 /* Adjust the section alignment if needed. */
2661 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2662 power_of_two))
2663 return FALSE;
2664 }
2665
2666 /* We make sure that the symbol will be aligned properly. */
2667 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2668
2669 /* Define the symbol as being at this point in DYNBSS. */
2670 h->root.u.def.section = dynbss;
2671 h->root.u.def.value = dynbss->size;
2672
2673 /* Increment the size of DYNBSS to make room for the symbol. */
2674 dynbss->size += h->size;
2675
2676 /* No error if extern_protected_data is true. */
2677 if (h->protected_def
2678 && (!info->extern_protected_data
2679 || (info->extern_protected_data < 0
2680 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
2681 info->callbacks->einfo
2682 (_("%P: copy reloc against protected `%T' is dangerous\n"),
2683 h->root.root.string);
2684
2685 return TRUE;
2686 }
2687
2688 /* Adjust all external symbols pointing into SEC_MERGE sections
2689 to reflect the object merging within the sections. */
2690
2691 static bfd_boolean
2692 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2693 {
2694 asection *sec;
2695
2696 if ((h->root.type == bfd_link_hash_defined
2697 || h->root.type == bfd_link_hash_defweak)
2698 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2699 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2700 {
2701 bfd *output_bfd = (bfd *) data;
2702
2703 h->root.u.def.value =
2704 _bfd_merged_section_offset (output_bfd,
2705 &h->root.u.def.section,
2706 elf_section_data (sec)->sec_info,
2707 h->root.u.def.value);
2708 }
2709
2710 return TRUE;
2711 }
2712
2713 /* Returns false if the symbol referred to by H should be considered
2714 to resolve local to the current module, and true if it should be
2715 considered to bind dynamically. */
2716
2717 bfd_boolean
2718 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2719 struct bfd_link_info *info,
2720 bfd_boolean not_local_protected)
2721 {
2722 bfd_boolean binding_stays_local_p;
2723 const struct elf_backend_data *bed;
2724 struct elf_link_hash_table *hash_table;
2725
2726 if (h == NULL)
2727 return FALSE;
2728
2729 while (h->root.type == bfd_link_hash_indirect
2730 || h->root.type == bfd_link_hash_warning)
2731 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2732
2733 /* If it was forced local, then clearly it's not dynamic. */
2734 if (h->dynindx == -1)
2735 return FALSE;
2736 if (h->forced_local)
2737 return FALSE;
2738
2739 /* Identify the cases where name binding rules say that a
2740 visible symbol resolves locally. */
2741 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2742
2743 switch (ELF_ST_VISIBILITY (h->other))
2744 {
2745 case STV_INTERNAL:
2746 case STV_HIDDEN:
2747 return FALSE;
2748
2749 case STV_PROTECTED:
2750 hash_table = elf_hash_table (info);
2751 if (!is_elf_hash_table (hash_table))
2752 return FALSE;
2753
2754 bed = get_elf_backend_data (hash_table->dynobj);
2755
2756 /* Proper resolution for function pointer equality may require
2757 that these symbols perhaps be resolved dynamically, even though
2758 we should be resolving them to the current module. */
2759 if (!not_local_protected || !bed->is_function_type (h->type))
2760 binding_stays_local_p = TRUE;
2761 break;
2762
2763 default:
2764 break;
2765 }
2766
2767 /* If it isn't defined locally, then clearly it's dynamic. */
2768 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2769 return TRUE;
2770
2771 /* Otherwise, the symbol is dynamic if binding rules don't tell
2772 us that it remains local. */
2773 return !binding_stays_local_p;
2774 }
2775
2776 /* Return true if the symbol referred to by H should be considered
2777 to resolve local to the current module, and false otherwise. Differs
2778 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2779 undefined symbols. The two functions are virtually identical except
2780 for the place where forced_local and dynindx == -1 are tested. If
2781 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2782 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2783 the symbol is local only for defined symbols.
2784 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2785 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2786 treatment of undefined weak symbols. For those that do not make
2787 undefined weak symbols dynamic, both functions may return false. */
2788
2789 bfd_boolean
2790 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2791 struct bfd_link_info *info,
2792 bfd_boolean local_protected)
2793 {
2794 const struct elf_backend_data *bed;
2795 struct elf_link_hash_table *hash_table;
2796
2797 /* If it's a local sym, of course we resolve locally. */
2798 if (h == NULL)
2799 return TRUE;
2800
2801 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2802 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2803 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2804 return TRUE;
2805
2806 /* Common symbols that become definitions don't get the DEF_REGULAR
2807 flag set, so test it first, and don't bail out. */
2808 if (ELF_COMMON_DEF_P (h))
2809 /* Do nothing. */;
2810 /* If we don't have a definition in a regular file, then we can't
2811 resolve locally. The sym is either undefined or dynamic. */
2812 else if (!h->def_regular)
2813 return FALSE;
2814
2815 /* Forced local symbols resolve locally. */
2816 if (h->forced_local)
2817 return TRUE;
2818
2819 /* As do non-dynamic symbols. */
2820 if (h->dynindx == -1)
2821 return TRUE;
2822
2823 /* At this point, we know the symbol is defined and dynamic. In an
2824 executable it must resolve locally, likewise when building symbolic
2825 shared libraries. */
2826 if (info->executable || SYMBOLIC_BIND (info, h))
2827 return TRUE;
2828
2829 /* Now deal with defined dynamic symbols in shared libraries. Ones
2830 with default visibility might not resolve locally. */
2831 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2832 return FALSE;
2833
2834 hash_table = elf_hash_table (info);
2835 if (!is_elf_hash_table (hash_table))
2836 return TRUE;
2837
2838 bed = get_elf_backend_data (hash_table->dynobj);
2839
2840 /* If extern_protected_data is false, STV_PROTECTED non-function
2841 symbols are local. */
2842 if ((!info->extern_protected_data
2843 || (info->extern_protected_data < 0
2844 && !bed->extern_protected_data))
2845 && !bed->is_function_type (h->type))
2846 return TRUE;
2847
2848 /* Function pointer equality tests may require that STV_PROTECTED
2849 symbols be treated as dynamic symbols. If the address of a
2850 function not defined in an executable is set to that function's
2851 plt entry in the executable, then the address of the function in
2852 a shared library must also be the plt entry in the executable. */
2853 return local_protected;
2854 }
2855
2856 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2857 aligned. Returns the first TLS output section. */
2858
2859 struct bfd_section *
2860 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2861 {
2862 struct bfd_section *sec, *tls;
2863 unsigned int align = 0;
2864
2865 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2866 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2867 break;
2868 tls = sec;
2869
2870 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2871 if (sec->alignment_power > align)
2872 align = sec->alignment_power;
2873
2874 elf_hash_table (info)->tls_sec = tls;
2875
2876 /* Ensure the alignment of the first section is the largest alignment,
2877 so that the tls segment starts aligned. */
2878 if (tls != NULL)
2879 tls->alignment_power = align;
2880
2881 return tls;
2882 }
2883
2884 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2885 static bfd_boolean
2886 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2887 Elf_Internal_Sym *sym)
2888 {
2889 const struct elf_backend_data *bed;
2890
2891 /* Local symbols do not count, but target specific ones might. */
2892 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2893 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2894 return FALSE;
2895
2896 bed = get_elf_backend_data (abfd);
2897 /* Function symbols do not count. */
2898 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2899 return FALSE;
2900
2901 /* If the section is undefined, then so is the symbol. */
2902 if (sym->st_shndx == SHN_UNDEF)
2903 return FALSE;
2904
2905 /* If the symbol is defined in the common section, then
2906 it is a common definition and so does not count. */
2907 if (bed->common_definition (sym))
2908 return FALSE;
2909
2910 /* If the symbol is in a target specific section then we
2911 must rely upon the backend to tell us what it is. */
2912 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2913 /* FIXME - this function is not coded yet:
2914
2915 return _bfd_is_global_symbol_definition (abfd, sym);
2916
2917 Instead for now assume that the definition is not global,
2918 Even if this is wrong, at least the linker will behave
2919 in the same way that it used to do. */
2920 return FALSE;
2921
2922 return TRUE;
2923 }
2924
2925 /* Search the symbol table of the archive element of the archive ABFD
2926 whose archive map contains a mention of SYMDEF, and determine if
2927 the symbol is defined in this element. */
2928 static bfd_boolean
2929 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2930 {
2931 Elf_Internal_Shdr * hdr;
2932 bfd_size_type symcount;
2933 bfd_size_type extsymcount;
2934 bfd_size_type extsymoff;
2935 Elf_Internal_Sym *isymbuf;
2936 Elf_Internal_Sym *isym;
2937 Elf_Internal_Sym *isymend;
2938 bfd_boolean result;
2939
2940 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2941 if (abfd == NULL)
2942 return FALSE;
2943
2944 /* Return FALSE if the object has been claimed by plugin. */
2945 if (abfd->plugin_format == bfd_plugin_yes)
2946 return FALSE;
2947
2948 if (! bfd_check_format (abfd, bfd_object))
2949 return FALSE;
2950
2951 /* Select the appropriate symbol table. */
2952 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2953 hdr = &elf_tdata (abfd)->symtab_hdr;
2954 else
2955 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2956
2957 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2958
2959 /* The sh_info field of the symtab header tells us where the
2960 external symbols start. We don't care about the local symbols. */
2961 if (elf_bad_symtab (abfd))
2962 {
2963 extsymcount = symcount;
2964 extsymoff = 0;
2965 }
2966 else
2967 {
2968 extsymcount = symcount - hdr->sh_info;
2969 extsymoff = hdr->sh_info;
2970 }
2971
2972 if (extsymcount == 0)
2973 return FALSE;
2974
2975 /* Read in the symbol table. */
2976 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2977 NULL, NULL, NULL);
2978 if (isymbuf == NULL)
2979 return FALSE;
2980
2981 /* Scan the symbol table looking for SYMDEF. */
2982 result = FALSE;
2983 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2984 {
2985 const char *name;
2986
2987 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2988 isym->st_name);
2989 if (name == NULL)
2990 break;
2991
2992 if (strcmp (name, symdef->name) == 0)
2993 {
2994 result = is_global_data_symbol_definition (abfd, isym);
2995 break;
2996 }
2997 }
2998
2999 free (isymbuf);
3000
3001 return result;
3002 }
3003 \f
3004 /* Add an entry to the .dynamic table. */
3005
3006 bfd_boolean
3007 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3008 bfd_vma tag,
3009 bfd_vma val)
3010 {
3011 struct elf_link_hash_table *hash_table;
3012 const struct elf_backend_data *bed;
3013 asection *s;
3014 bfd_size_type newsize;
3015 bfd_byte *newcontents;
3016 Elf_Internal_Dyn dyn;
3017
3018 hash_table = elf_hash_table (info);
3019 if (! is_elf_hash_table (hash_table))
3020 return FALSE;
3021
3022 bed = get_elf_backend_data (hash_table->dynobj);
3023 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3024 BFD_ASSERT (s != NULL);
3025
3026 newsize = s->size + bed->s->sizeof_dyn;
3027 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3028 if (newcontents == NULL)
3029 return FALSE;
3030
3031 dyn.d_tag = tag;
3032 dyn.d_un.d_val = val;
3033 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3034
3035 s->size = newsize;
3036 s->contents = newcontents;
3037
3038 return TRUE;
3039 }
3040
3041 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3042 otherwise just check whether one already exists. Returns -1 on error,
3043 1 if a DT_NEEDED tag already exists, and 0 on success. */
3044
3045 static int
3046 elf_add_dt_needed_tag (bfd *abfd,
3047 struct bfd_link_info *info,
3048 const char *soname,
3049 bfd_boolean do_it)
3050 {
3051 struct elf_link_hash_table *hash_table;
3052 bfd_size_type strindex;
3053
3054 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3055 return -1;
3056
3057 hash_table = elf_hash_table (info);
3058 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3059 if (strindex == (bfd_size_type) -1)
3060 return -1;
3061
3062 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3063 {
3064 asection *sdyn;
3065 const struct elf_backend_data *bed;
3066 bfd_byte *extdyn;
3067
3068 bed = get_elf_backend_data (hash_table->dynobj);
3069 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3070 if (sdyn != NULL)
3071 for (extdyn = sdyn->contents;
3072 extdyn < sdyn->contents + sdyn->size;
3073 extdyn += bed->s->sizeof_dyn)
3074 {
3075 Elf_Internal_Dyn dyn;
3076
3077 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3078 if (dyn.d_tag == DT_NEEDED
3079 && dyn.d_un.d_val == strindex)
3080 {
3081 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3082 return 1;
3083 }
3084 }
3085 }
3086
3087 if (do_it)
3088 {
3089 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3090 return -1;
3091
3092 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3093 return -1;
3094 }
3095 else
3096 /* We were just checking for existence of the tag. */
3097 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3098
3099 return 0;
3100 }
3101
3102 static bfd_boolean
3103 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3104 {
3105 for (; needed != NULL; needed = needed->next)
3106 if ((elf_dyn_lib_class (needed->by) & DYN_AS_NEEDED) == 0
3107 && strcmp (soname, needed->name) == 0)
3108 return TRUE;
3109
3110 return FALSE;
3111 }
3112
3113 /* Sort symbol by value, section, and size. */
3114 static int
3115 elf_sort_symbol (const void *arg1, const void *arg2)
3116 {
3117 const struct elf_link_hash_entry *h1;
3118 const struct elf_link_hash_entry *h2;
3119 bfd_signed_vma vdiff;
3120
3121 h1 = *(const struct elf_link_hash_entry **) arg1;
3122 h2 = *(const struct elf_link_hash_entry **) arg2;
3123 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3124 if (vdiff != 0)
3125 return vdiff > 0 ? 1 : -1;
3126 else
3127 {
3128 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3129 if (sdiff != 0)
3130 return sdiff > 0 ? 1 : -1;
3131 }
3132 vdiff = h1->size - h2->size;
3133 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3134 }
3135
3136 /* This function is used to adjust offsets into .dynstr for
3137 dynamic symbols. This is called via elf_link_hash_traverse. */
3138
3139 static bfd_boolean
3140 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3141 {
3142 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3143
3144 if (h->dynindx != -1)
3145 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3146 return TRUE;
3147 }
3148
3149 /* Assign string offsets in .dynstr, update all structures referencing
3150 them. */
3151
3152 static bfd_boolean
3153 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3154 {
3155 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3156 struct elf_link_local_dynamic_entry *entry;
3157 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3158 bfd *dynobj = hash_table->dynobj;
3159 asection *sdyn;
3160 bfd_size_type size;
3161 const struct elf_backend_data *bed;
3162 bfd_byte *extdyn;
3163
3164 _bfd_elf_strtab_finalize (dynstr);
3165 size = _bfd_elf_strtab_size (dynstr);
3166
3167 bed = get_elf_backend_data (dynobj);
3168 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3169 BFD_ASSERT (sdyn != NULL);
3170
3171 /* Update all .dynamic entries referencing .dynstr strings. */
3172 for (extdyn = sdyn->contents;
3173 extdyn < sdyn->contents + sdyn->size;
3174 extdyn += bed->s->sizeof_dyn)
3175 {
3176 Elf_Internal_Dyn dyn;
3177
3178 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3179 switch (dyn.d_tag)
3180 {
3181 case DT_STRSZ:
3182 dyn.d_un.d_val = size;
3183 break;
3184 case DT_NEEDED:
3185 case DT_SONAME:
3186 case DT_RPATH:
3187 case DT_RUNPATH:
3188 case DT_FILTER:
3189 case DT_AUXILIARY:
3190 case DT_AUDIT:
3191 case DT_DEPAUDIT:
3192 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3193 break;
3194 default:
3195 continue;
3196 }
3197 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3198 }
3199
3200 /* Now update local dynamic symbols. */
3201 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3202 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3203 entry->isym.st_name);
3204
3205 /* And the rest of dynamic symbols. */
3206 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3207
3208 /* Adjust version definitions. */
3209 if (elf_tdata (output_bfd)->cverdefs)
3210 {
3211 asection *s;
3212 bfd_byte *p;
3213 bfd_size_type i;
3214 Elf_Internal_Verdef def;
3215 Elf_Internal_Verdaux defaux;
3216
3217 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3218 p = s->contents;
3219 do
3220 {
3221 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3222 &def);
3223 p += sizeof (Elf_External_Verdef);
3224 if (def.vd_aux != sizeof (Elf_External_Verdef))
3225 continue;
3226 for (i = 0; i < def.vd_cnt; ++i)
3227 {
3228 _bfd_elf_swap_verdaux_in (output_bfd,
3229 (Elf_External_Verdaux *) p, &defaux);
3230 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3231 defaux.vda_name);
3232 _bfd_elf_swap_verdaux_out (output_bfd,
3233 &defaux, (Elf_External_Verdaux *) p);
3234 p += sizeof (Elf_External_Verdaux);
3235 }
3236 }
3237 while (def.vd_next);
3238 }
3239
3240 /* Adjust version references. */
3241 if (elf_tdata (output_bfd)->verref)
3242 {
3243 asection *s;
3244 bfd_byte *p;
3245 bfd_size_type i;
3246 Elf_Internal_Verneed need;
3247 Elf_Internal_Vernaux needaux;
3248
3249 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3250 p = s->contents;
3251 do
3252 {
3253 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3254 &need);
3255 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3256 _bfd_elf_swap_verneed_out (output_bfd, &need,
3257 (Elf_External_Verneed *) p);
3258 p += sizeof (Elf_External_Verneed);
3259 for (i = 0; i < need.vn_cnt; ++i)
3260 {
3261 _bfd_elf_swap_vernaux_in (output_bfd,
3262 (Elf_External_Vernaux *) p, &needaux);
3263 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3264 needaux.vna_name);
3265 _bfd_elf_swap_vernaux_out (output_bfd,
3266 &needaux,
3267 (Elf_External_Vernaux *) p);
3268 p += sizeof (Elf_External_Vernaux);
3269 }
3270 }
3271 while (need.vn_next);
3272 }
3273
3274 return TRUE;
3275 }
3276 \f
3277 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3278 The default is to only match when the INPUT and OUTPUT are exactly
3279 the same target. */
3280
3281 bfd_boolean
3282 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3283 const bfd_target *output)
3284 {
3285 return input == output;
3286 }
3287
3288 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3289 This version is used when different targets for the same architecture
3290 are virtually identical. */
3291
3292 bfd_boolean
3293 _bfd_elf_relocs_compatible (const bfd_target *input,
3294 const bfd_target *output)
3295 {
3296 const struct elf_backend_data *obed, *ibed;
3297
3298 if (input == output)
3299 return TRUE;
3300
3301 ibed = xvec_get_elf_backend_data (input);
3302 obed = xvec_get_elf_backend_data (output);
3303
3304 if (ibed->arch != obed->arch)
3305 return FALSE;
3306
3307 /* If both backends are using this function, deem them compatible. */
3308 return ibed->relocs_compatible == obed->relocs_compatible;
3309 }
3310
3311 /* Make a special call to the linker "notice" function to tell it that
3312 we are about to handle an as-needed lib, or have finished
3313 processing the lib. */
3314
3315 bfd_boolean
3316 _bfd_elf_notice_as_needed (bfd *ibfd,
3317 struct bfd_link_info *info,
3318 enum notice_asneeded_action act)
3319 {
3320 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3321 }
3322
3323 /* Add symbols from an ELF object file to the linker hash table. */
3324
3325 static bfd_boolean
3326 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3327 {
3328 Elf_Internal_Ehdr *ehdr;
3329 Elf_Internal_Shdr *hdr;
3330 bfd_size_type symcount;
3331 bfd_size_type extsymcount;
3332 bfd_size_type extsymoff;
3333 struct elf_link_hash_entry **sym_hash;
3334 bfd_boolean dynamic;
3335 Elf_External_Versym *extversym = NULL;
3336 Elf_External_Versym *ever;
3337 struct elf_link_hash_entry *weaks;
3338 struct elf_link_hash_entry **nondeflt_vers = NULL;
3339 bfd_size_type nondeflt_vers_cnt = 0;
3340 Elf_Internal_Sym *isymbuf = NULL;
3341 Elf_Internal_Sym *isym;
3342 Elf_Internal_Sym *isymend;
3343 const struct elf_backend_data *bed;
3344 bfd_boolean add_needed;
3345 struct elf_link_hash_table *htab;
3346 bfd_size_type amt;
3347 void *alloc_mark = NULL;
3348 struct bfd_hash_entry **old_table = NULL;
3349 unsigned int old_size = 0;
3350 unsigned int old_count = 0;
3351 void *old_tab = NULL;
3352 void *old_ent;
3353 struct bfd_link_hash_entry *old_undefs = NULL;
3354 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3355 long old_dynsymcount = 0;
3356 bfd_size_type old_dynstr_size = 0;
3357 size_t tabsize = 0;
3358 asection *s;
3359 bfd_boolean just_syms;
3360
3361 htab = elf_hash_table (info);
3362 bed = get_elf_backend_data (abfd);
3363
3364 if ((abfd->flags & DYNAMIC) == 0)
3365 dynamic = FALSE;
3366 else
3367 {
3368 dynamic = TRUE;
3369
3370 /* You can't use -r against a dynamic object. Also, there's no
3371 hope of using a dynamic object which does not exactly match
3372 the format of the output file. */
3373 if (info->relocatable
3374 || !is_elf_hash_table (htab)
3375 || info->output_bfd->xvec != abfd->xvec)
3376 {
3377 if (info->relocatable)
3378 bfd_set_error (bfd_error_invalid_operation);
3379 else
3380 bfd_set_error (bfd_error_wrong_format);
3381 goto error_return;
3382 }
3383 }
3384
3385 ehdr = elf_elfheader (abfd);
3386 if (info->warn_alternate_em
3387 && bed->elf_machine_code != ehdr->e_machine
3388 && ((bed->elf_machine_alt1 != 0
3389 && ehdr->e_machine == bed->elf_machine_alt1)
3390 || (bed->elf_machine_alt2 != 0
3391 && ehdr->e_machine == bed->elf_machine_alt2)))
3392 info->callbacks->einfo
3393 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3394 ehdr->e_machine, abfd, bed->elf_machine_code);
3395
3396 /* As a GNU extension, any input sections which are named
3397 .gnu.warning.SYMBOL are treated as warning symbols for the given
3398 symbol. This differs from .gnu.warning sections, which generate
3399 warnings when they are included in an output file. */
3400 /* PR 12761: Also generate this warning when building shared libraries. */
3401 for (s = abfd->sections; s != NULL; s = s->next)
3402 {
3403 const char *name;
3404
3405 name = bfd_get_section_name (abfd, s);
3406 if (CONST_STRNEQ (name, ".gnu.warning."))
3407 {
3408 char *msg;
3409 bfd_size_type sz;
3410
3411 name += sizeof ".gnu.warning." - 1;
3412
3413 /* If this is a shared object, then look up the symbol
3414 in the hash table. If it is there, and it is already
3415 been defined, then we will not be using the entry
3416 from this shared object, so we don't need to warn.
3417 FIXME: If we see the definition in a regular object
3418 later on, we will warn, but we shouldn't. The only
3419 fix is to keep track of what warnings we are supposed
3420 to emit, and then handle them all at the end of the
3421 link. */
3422 if (dynamic)
3423 {
3424 struct elf_link_hash_entry *h;
3425
3426 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3427
3428 /* FIXME: What about bfd_link_hash_common? */
3429 if (h != NULL
3430 && (h->root.type == bfd_link_hash_defined
3431 || h->root.type == bfd_link_hash_defweak))
3432 continue;
3433 }
3434
3435 sz = s->size;
3436 msg = (char *) bfd_alloc (abfd, sz + 1);
3437 if (msg == NULL)
3438 goto error_return;
3439
3440 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3441 goto error_return;
3442
3443 msg[sz] = '\0';
3444
3445 if (! (_bfd_generic_link_add_one_symbol
3446 (info, abfd, name, BSF_WARNING, s, 0, msg,
3447 FALSE, bed->collect, NULL)))
3448 goto error_return;
3449
3450 if (!info->relocatable && info->executable)
3451 {
3452 /* Clobber the section size so that the warning does
3453 not get copied into the output file. */
3454 s->size = 0;
3455
3456 /* Also set SEC_EXCLUDE, so that symbols defined in
3457 the warning section don't get copied to the output. */
3458 s->flags |= SEC_EXCLUDE;
3459 }
3460 }
3461 }
3462
3463 just_syms = ((s = abfd->sections) != NULL
3464 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3465
3466 add_needed = TRUE;
3467 if (! dynamic)
3468 {
3469 /* If we are creating a shared library, create all the dynamic
3470 sections immediately. We need to attach them to something,
3471 so we attach them to this BFD, provided it is the right
3472 format and is not from ld --just-symbols. FIXME: If there
3473 are no input BFD's of the same format as the output, we can't
3474 make a shared library. */
3475 if (!just_syms
3476 && info->shared
3477 && is_elf_hash_table (htab)
3478 && info->output_bfd->xvec == abfd->xvec
3479 && !htab->dynamic_sections_created)
3480 {
3481 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3482 goto error_return;
3483 }
3484 }
3485 else if (!is_elf_hash_table (htab))
3486 goto error_return;
3487 else
3488 {
3489 const char *soname = NULL;
3490 char *audit = NULL;
3491 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3492 int ret;
3493
3494 /* ld --just-symbols and dynamic objects don't mix very well.
3495 ld shouldn't allow it. */
3496 if (just_syms)
3497 abort ();
3498
3499 /* If this dynamic lib was specified on the command line with
3500 --as-needed in effect, then we don't want to add a DT_NEEDED
3501 tag unless the lib is actually used. Similary for libs brought
3502 in by another lib's DT_NEEDED. When --no-add-needed is used
3503 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3504 any dynamic library in DT_NEEDED tags in the dynamic lib at
3505 all. */
3506 add_needed = (elf_dyn_lib_class (abfd)
3507 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3508 | DYN_NO_NEEDED)) == 0;
3509
3510 s = bfd_get_section_by_name (abfd, ".dynamic");
3511 if (s != NULL)
3512 {
3513 bfd_byte *dynbuf;
3514 bfd_byte *extdyn;
3515 unsigned int elfsec;
3516 unsigned long shlink;
3517
3518 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3519 {
3520 error_free_dyn:
3521 free (dynbuf);
3522 goto error_return;
3523 }
3524
3525 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3526 if (elfsec == SHN_BAD)
3527 goto error_free_dyn;
3528 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3529
3530 for (extdyn = dynbuf;
3531 extdyn < dynbuf + s->size;
3532 extdyn += bed->s->sizeof_dyn)
3533 {
3534 Elf_Internal_Dyn dyn;
3535
3536 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3537 if (dyn.d_tag == DT_SONAME)
3538 {
3539 unsigned int tagv = dyn.d_un.d_val;
3540 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3541 if (soname == NULL)
3542 goto error_free_dyn;
3543 }
3544 if (dyn.d_tag == DT_NEEDED)
3545 {
3546 struct bfd_link_needed_list *n, **pn;
3547 char *fnm, *anm;
3548 unsigned int tagv = dyn.d_un.d_val;
3549
3550 amt = sizeof (struct bfd_link_needed_list);
3551 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3552 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3553 if (n == NULL || fnm == NULL)
3554 goto error_free_dyn;
3555 amt = strlen (fnm) + 1;
3556 anm = (char *) bfd_alloc (abfd, amt);
3557 if (anm == NULL)
3558 goto error_free_dyn;
3559 memcpy (anm, fnm, amt);
3560 n->name = anm;
3561 n->by = abfd;
3562 n->next = NULL;
3563 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3564 ;
3565 *pn = n;
3566 }
3567 if (dyn.d_tag == DT_RUNPATH)
3568 {
3569 struct bfd_link_needed_list *n, **pn;
3570 char *fnm, *anm;
3571 unsigned int tagv = dyn.d_un.d_val;
3572
3573 amt = sizeof (struct bfd_link_needed_list);
3574 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3575 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3576 if (n == NULL || fnm == NULL)
3577 goto error_free_dyn;
3578 amt = strlen (fnm) + 1;
3579 anm = (char *) bfd_alloc (abfd, amt);
3580 if (anm == NULL)
3581 goto error_free_dyn;
3582 memcpy (anm, fnm, amt);
3583 n->name = anm;
3584 n->by = abfd;
3585 n->next = NULL;
3586 for (pn = & runpath;
3587 *pn != NULL;
3588 pn = &(*pn)->next)
3589 ;
3590 *pn = n;
3591 }
3592 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3593 if (!runpath && dyn.d_tag == DT_RPATH)
3594 {
3595 struct bfd_link_needed_list *n, **pn;
3596 char *fnm, *anm;
3597 unsigned int tagv = dyn.d_un.d_val;
3598
3599 amt = sizeof (struct bfd_link_needed_list);
3600 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3601 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3602 if (n == NULL || fnm == NULL)
3603 goto error_free_dyn;
3604 amt = strlen (fnm) + 1;
3605 anm = (char *) bfd_alloc (abfd, amt);
3606 if (anm == NULL)
3607 goto error_free_dyn;
3608 memcpy (anm, fnm, amt);
3609 n->name = anm;
3610 n->by = abfd;
3611 n->next = NULL;
3612 for (pn = & rpath;
3613 *pn != NULL;
3614 pn = &(*pn)->next)
3615 ;
3616 *pn = n;
3617 }
3618 if (dyn.d_tag == DT_AUDIT)
3619 {
3620 unsigned int tagv = dyn.d_un.d_val;
3621 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3622 }
3623 }
3624
3625 free (dynbuf);
3626 }
3627
3628 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3629 frees all more recently bfd_alloc'd blocks as well. */
3630 if (runpath)
3631 rpath = runpath;
3632
3633 if (rpath)
3634 {
3635 struct bfd_link_needed_list **pn;
3636 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3637 ;
3638 *pn = rpath;
3639 }
3640
3641 /* We do not want to include any of the sections in a dynamic
3642 object in the output file. We hack by simply clobbering the
3643 list of sections in the BFD. This could be handled more
3644 cleanly by, say, a new section flag; the existing
3645 SEC_NEVER_LOAD flag is not the one we want, because that one
3646 still implies that the section takes up space in the output
3647 file. */
3648 bfd_section_list_clear (abfd);
3649
3650 /* Find the name to use in a DT_NEEDED entry that refers to this
3651 object. If the object has a DT_SONAME entry, we use it.
3652 Otherwise, if the generic linker stuck something in
3653 elf_dt_name, we use that. Otherwise, we just use the file
3654 name. */
3655 if (soname == NULL || *soname == '\0')
3656 {
3657 soname = elf_dt_name (abfd);
3658 if (soname == NULL || *soname == '\0')
3659 soname = bfd_get_filename (abfd);
3660 }
3661
3662 /* Save the SONAME because sometimes the linker emulation code
3663 will need to know it. */
3664 elf_dt_name (abfd) = soname;
3665
3666 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3667 if (ret < 0)
3668 goto error_return;
3669
3670 /* If we have already included this dynamic object in the
3671 link, just ignore it. There is no reason to include a
3672 particular dynamic object more than once. */
3673 if (ret > 0)
3674 return TRUE;
3675
3676 /* Save the DT_AUDIT entry for the linker emulation code. */
3677 elf_dt_audit (abfd) = audit;
3678 }
3679
3680 /* If this is a dynamic object, we always link against the .dynsym
3681 symbol table, not the .symtab symbol table. The dynamic linker
3682 will only see the .dynsym symbol table, so there is no reason to
3683 look at .symtab for a dynamic object. */
3684
3685 if (! dynamic || elf_dynsymtab (abfd) == 0)
3686 hdr = &elf_tdata (abfd)->symtab_hdr;
3687 else
3688 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3689
3690 symcount = hdr->sh_size / bed->s->sizeof_sym;
3691
3692 /* The sh_info field of the symtab header tells us where the
3693 external symbols start. We don't care about the local symbols at
3694 this point. */
3695 if (elf_bad_symtab (abfd))
3696 {
3697 extsymcount = symcount;
3698 extsymoff = 0;
3699 }
3700 else
3701 {
3702 extsymcount = symcount - hdr->sh_info;
3703 extsymoff = hdr->sh_info;
3704 }
3705
3706 sym_hash = elf_sym_hashes (abfd);
3707 if (extsymcount != 0)
3708 {
3709 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3710 NULL, NULL, NULL);
3711 if (isymbuf == NULL)
3712 goto error_return;
3713
3714 if (sym_hash == NULL)
3715 {
3716 /* We store a pointer to the hash table entry for each
3717 external symbol. */
3718 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3719 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
3720 if (sym_hash == NULL)
3721 goto error_free_sym;
3722 elf_sym_hashes (abfd) = sym_hash;
3723 }
3724 }
3725
3726 if (dynamic)
3727 {
3728 /* Read in any version definitions. */
3729 if (!_bfd_elf_slurp_version_tables (abfd,
3730 info->default_imported_symver))
3731 goto error_free_sym;
3732
3733 /* Read in the symbol versions, but don't bother to convert them
3734 to internal format. */
3735 if (elf_dynversym (abfd) != 0)
3736 {
3737 Elf_Internal_Shdr *versymhdr;
3738
3739 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3740 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3741 if (extversym == NULL)
3742 goto error_free_sym;
3743 amt = versymhdr->sh_size;
3744 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3745 || bfd_bread (extversym, amt, abfd) != amt)
3746 goto error_free_vers;
3747 }
3748 }
3749
3750 /* If we are loading an as-needed shared lib, save the symbol table
3751 state before we start adding symbols. If the lib turns out
3752 to be unneeded, restore the state. */
3753 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3754 {
3755 unsigned int i;
3756 size_t entsize;
3757
3758 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3759 {
3760 struct bfd_hash_entry *p;
3761 struct elf_link_hash_entry *h;
3762
3763 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3764 {
3765 h = (struct elf_link_hash_entry *) p;
3766 entsize += htab->root.table.entsize;
3767 if (h->root.type == bfd_link_hash_warning)
3768 entsize += htab->root.table.entsize;
3769 }
3770 }
3771
3772 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3773 old_tab = bfd_malloc (tabsize + entsize);
3774 if (old_tab == NULL)
3775 goto error_free_vers;
3776
3777 /* Remember the current objalloc pointer, so that all mem for
3778 symbols added can later be reclaimed. */
3779 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3780 if (alloc_mark == NULL)
3781 goto error_free_vers;
3782
3783 /* Make a special call to the linker "notice" function to
3784 tell it that we are about to handle an as-needed lib. */
3785 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
3786 goto error_free_vers;
3787
3788 /* Clone the symbol table. Remember some pointers into the
3789 symbol table, and dynamic symbol count. */
3790 old_ent = (char *) old_tab + tabsize;
3791 memcpy (old_tab, htab->root.table.table, tabsize);
3792 old_undefs = htab->root.undefs;
3793 old_undefs_tail = htab->root.undefs_tail;
3794 old_table = htab->root.table.table;
3795 old_size = htab->root.table.size;
3796 old_count = htab->root.table.count;
3797 old_dynsymcount = htab->dynsymcount;
3798 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3799
3800 for (i = 0; i < htab->root.table.size; i++)
3801 {
3802 struct bfd_hash_entry *p;
3803 struct elf_link_hash_entry *h;
3804
3805 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3806 {
3807 memcpy (old_ent, p, htab->root.table.entsize);
3808 old_ent = (char *) old_ent + htab->root.table.entsize;
3809 h = (struct elf_link_hash_entry *) p;
3810 if (h->root.type == bfd_link_hash_warning)
3811 {
3812 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3813 old_ent = (char *) old_ent + htab->root.table.entsize;
3814 }
3815 }
3816 }
3817 }
3818
3819 weaks = NULL;
3820 ever = extversym != NULL ? extversym + extsymoff : NULL;
3821 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3822 isym < isymend;
3823 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3824 {
3825 int bind;
3826 bfd_vma value;
3827 asection *sec, *new_sec;
3828 flagword flags;
3829 const char *name;
3830 struct elf_link_hash_entry *h;
3831 struct elf_link_hash_entry *hi;
3832 bfd_boolean definition;
3833 bfd_boolean size_change_ok;
3834 bfd_boolean type_change_ok;
3835 bfd_boolean new_weakdef;
3836 bfd_boolean new_weak;
3837 bfd_boolean old_weak;
3838 bfd_boolean override;
3839 bfd_boolean common;
3840 unsigned int old_alignment;
3841 bfd *old_bfd;
3842
3843 override = FALSE;
3844
3845 flags = BSF_NO_FLAGS;
3846 sec = NULL;
3847 value = isym->st_value;
3848 common = bed->common_definition (isym);
3849
3850 bind = ELF_ST_BIND (isym->st_info);
3851 switch (bind)
3852 {
3853 case STB_LOCAL:
3854 /* This should be impossible, since ELF requires that all
3855 global symbols follow all local symbols, and that sh_info
3856 point to the first global symbol. Unfortunately, Irix 5
3857 screws this up. */
3858 continue;
3859
3860 case STB_GLOBAL:
3861 if (isym->st_shndx != SHN_UNDEF && !common)
3862 flags = BSF_GLOBAL;
3863 break;
3864
3865 case STB_WEAK:
3866 flags = BSF_WEAK;
3867 break;
3868
3869 case STB_GNU_UNIQUE:
3870 flags = BSF_GNU_UNIQUE;
3871 break;
3872
3873 default:
3874 /* Leave it up to the processor backend. */
3875 break;
3876 }
3877
3878 if (isym->st_shndx == SHN_UNDEF)
3879 sec = bfd_und_section_ptr;
3880 else if (isym->st_shndx == SHN_ABS)
3881 sec = bfd_abs_section_ptr;
3882 else if (isym->st_shndx == SHN_COMMON)
3883 {
3884 sec = bfd_com_section_ptr;
3885 /* What ELF calls the size we call the value. What ELF
3886 calls the value we call the alignment. */
3887 value = isym->st_size;
3888 }
3889 else
3890 {
3891 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3892 if (sec == NULL)
3893 sec = bfd_abs_section_ptr;
3894 else if (discarded_section (sec))
3895 {
3896 /* Symbols from discarded section are undefined. We keep
3897 its visibility. */
3898 sec = bfd_und_section_ptr;
3899 isym->st_shndx = SHN_UNDEF;
3900 }
3901 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3902 value -= sec->vma;
3903 }
3904
3905 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3906 isym->st_name);
3907 if (name == NULL)
3908 goto error_free_vers;
3909
3910 if (isym->st_shndx == SHN_COMMON
3911 && (abfd->flags & BFD_PLUGIN) != 0)
3912 {
3913 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3914
3915 if (xc == NULL)
3916 {
3917 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3918 | SEC_EXCLUDE);
3919 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3920 if (xc == NULL)
3921 goto error_free_vers;
3922 }
3923 sec = xc;
3924 }
3925 else if (isym->st_shndx == SHN_COMMON
3926 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3927 && !info->relocatable)
3928 {
3929 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3930
3931 if (tcomm == NULL)
3932 {
3933 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3934 | SEC_LINKER_CREATED);
3935 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3936 if (tcomm == NULL)
3937 goto error_free_vers;
3938 }
3939 sec = tcomm;
3940 }
3941 else if (bed->elf_add_symbol_hook)
3942 {
3943 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3944 &sec, &value))
3945 goto error_free_vers;
3946
3947 /* The hook function sets the name to NULL if this symbol
3948 should be skipped for some reason. */
3949 if (name == NULL)
3950 continue;
3951 }
3952
3953 /* Sanity check that all possibilities were handled. */
3954 if (sec == NULL)
3955 {
3956 bfd_set_error (bfd_error_bad_value);
3957 goto error_free_vers;
3958 }
3959
3960 /* Silently discard TLS symbols from --just-syms. There's
3961 no way to combine a static TLS block with a new TLS block
3962 for this executable. */
3963 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
3964 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3965 continue;
3966
3967 if (bfd_is_und_section (sec)
3968 || bfd_is_com_section (sec))
3969 definition = FALSE;
3970 else
3971 definition = TRUE;
3972
3973 size_change_ok = FALSE;
3974 type_change_ok = bed->type_change_ok;
3975 old_weak = FALSE;
3976 old_alignment = 0;
3977 old_bfd = NULL;
3978 new_sec = sec;
3979
3980 if (is_elf_hash_table (htab))
3981 {
3982 Elf_Internal_Versym iver;
3983 unsigned int vernum = 0;
3984 bfd_boolean skip;
3985
3986 if (ever == NULL)
3987 {
3988 if (info->default_imported_symver)
3989 /* Use the default symbol version created earlier. */
3990 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3991 else
3992 iver.vs_vers = 0;
3993 }
3994 else
3995 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3996
3997 vernum = iver.vs_vers & VERSYM_VERSION;
3998
3999 /* If this is a hidden symbol, or if it is not version
4000 1, we append the version name to the symbol name.
4001 However, we do not modify a non-hidden absolute symbol
4002 if it is not a function, because it might be the version
4003 symbol itself. FIXME: What if it isn't? */
4004 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4005 || (vernum > 1
4006 && (!bfd_is_abs_section (sec)
4007 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4008 {
4009 const char *verstr;
4010 size_t namelen, verlen, newlen;
4011 char *newname, *p;
4012
4013 if (isym->st_shndx != SHN_UNDEF)
4014 {
4015 if (vernum > elf_tdata (abfd)->cverdefs)
4016 verstr = NULL;
4017 else if (vernum > 1)
4018 verstr =
4019 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4020 else
4021 verstr = "";
4022
4023 if (verstr == NULL)
4024 {
4025 (*_bfd_error_handler)
4026 (_("%B: %s: invalid version %u (max %d)"),
4027 abfd, name, vernum,
4028 elf_tdata (abfd)->cverdefs);
4029 bfd_set_error (bfd_error_bad_value);
4030 goto error_free_vers;
4031 }
4032 }
4033 else
4034 {
4035 /* We cannot simply test for the number of
4036 entries in the VERNEED section since the
4037 numbers for the needed versions do not start
4038 at 0. */
4039 Elf_Internal_Verneed *t;
4040
4041 verstr = NULL;
4042 for (t = elf_tdata (abfd)->verref;
4043 t != NULL;
4044 t = t->vn_nextref)
4045 {
4046 Elf_Internal_Vernaux *a;
4047
4048 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4049 {
4050 if (a->vna_other == vernum)
4051 {
4052 verstr = a->vna_nodename;
4053 break;
4054 }
4055 }
4056 if (a != NULL)
4057 break;
4058 }
4059 if (verstr == NULL)
4060 {
4061 (*_bfd_error_handler)
4062 (_("%B: %s: invalid needed version %d"),
4063 abfd, name, vernum);
4064 bfd_set_error (bfd_error_bad_value);
4065 goto error_free_vers;
4066 }
4067 }
4068
4069 namelen = strlen (name);
4070 verlen = strlen (verstr);
4071 newlen = namelen + verlen + 2;
4072 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4073 && isym->st_shndx != SHN_UNDEF)
4074 ++newlen;
4075
4076 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4077 if (newname == NULL)
4078 goto error_free_vers;
4079 memcpy (newname, name, namelen);
4080 p = newname + namelen;
4081 *p++ = ELF_VER_CHR;
4082 /* If this is a defined non-hidden version symbol,
4083 we add another @ to the name. This indicates the
4084 default version of the symbol. */
4085 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4086 && isym->st_shndx != SHN_UNDEF)
4087 *p++ = ELF_VER_CHR;
4088 memcpy (p, verstr, verlen + 1);
4089
4090 name = newname;
4091 }
4092
4093 /* If this symbol has default visibility and the user has
4094 requested we not re-export it, then mark it as hidden. */
4095 if (definition
4096 && !dynamic
4097 && abfd->no_export
4098 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4099 isym->st_other = (STV_HIDDEN
4100 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4101
4102 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4103 sym_hash, &old_bfd, &old_weak,
4104 &old_alignment, &skip, &override,
4105 &type_change_ok, &size_change_ok))
4106 goto error_free_vers;
4107
4108 if (skip)
4109 continue;
4110
4111 if (override)
4112 definition = FALSE;
4113
4114 h = *sym_hash;
4115 while (h->root.type == bfd_link_hash_indirect
4116 || h->root.type == bfd_link_hash_warning)
4117 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4118
4119 if (elf_tdata (abfd)->verdef != NULL
4120 && vernum > 1
4121 && definition)
4122 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4123 }
4124
4125 if (! (_bfd_generic_link_add_one_symbol
4126 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4127 (struct bfd_link_hash_entry **) sym_hash)))
4128 goto error_free_vers;
4129
4130 h = *sym_hash;
4131 /* We need to make sure that indirect symbol dynamic flags are
4132 updated. */
4133 hi = h;
4134 while (h->root.type == bfd_link_hash_indirect
4135 || h->root.type == bfd_link_hash_warning)
4136 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4137
4138 *sym_hash = h;
4139
4140 new_weak = (flags & BSF_WEAK) != 0;
4141 new_weakdef = FALSE;
4142 if (dynamic
4143 && definition
4144 && new_weak
4145 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4146 && is_elf_hash_table (htab)
4147 && h->u.weakdef == NULL)
4148 {
4149 /* Keep a list of all weak defined non function symbols from
4150 a dynamic object, using the weakdef field. Later in this
4151 function we will set the weakdef field to the correct
4152 value. We only put non-function symbols from dynamic
4153 objects on this list, because that happens to be the only
4154 time we need to know the normal symbol corresponding to a
4155 weak symbol, and the information is time consuming to
4156 figure out. If the weakdef field is not already NULL,
4157 then this symbol was already defined by some previous
4158 dynamic object, and we will be using that previous
4159 definition anyhow. */
4160
4161 h->u.weakdef = weaks;
4162 weaks = h;
4163 new_weakdef = TRUE;
4164 }
4165
4166 /* Set the alignment of a common symbol. */
4167 if ((common || bfd_is_com_section (sec))
4168 && h->root.type == bfd_link_hash_common)
4169 {
4170 unsigned int align;
4171
4172 if (common)
4173 align = bfd_log2 (isym->st_value);
4174 else
4175 {
4176 /* The new symbol is a common symbol in a shared object.
4177 We need to get the alignment from the section. */
4178 align = new_sec->alignment_power;
4179 }
4180 if (align > old_alignment)
4181 h->root.u.c.p->alignment_power = align;
4182 else
4183 h->root.u.c.p->alignment_power = old_alignment;
4184 }
4185
4186 if (is_elf_hash_table (htab))
4187 {
4188 /* Set a flag in the hash table entry indicating the type of
4189 reference or definition we just found. A dynamic symbol
4190 is one which is referenced or defined by both a regular
4191 object and a shared object. */
4192 bfd_boolean dynsym = FALSE;
4193
4194 /* Plugin symbols aren't normal. Don't set def_regular or
4195 ref_regular for them, or make them dynamic. */
4196 if ((abfd->flags & BFD_PLUGIN) != 0)
4197 ;
4198 else if (! dynamic)
4199 {
4200 if (! definition)
4201 {
4202 h->ref_regular = 1;
4203 if (bind != STB_WEAK)
4204 h->ref_regular_nonweak = 1;
4205 }
4206 else
4207 {
4208 h->def_regular = 1;
4209 if (h->def_dynamic)
4210 {
4211 h->def_dynamic = 0;
4212 h->ref_dynamic = 1;
4213 }
4214 }
4215
4216 /* If the indirect symbol has been forced local, don't
4217 make the real symbol dynamic. */
4218 if ((h == hi || !hi->forced_local)
4219 && (! info->executable
4220 || h->def_dynamic
4221 || h->ref_dynamic))
4222 dynsym = TRUE;
4223 }
4224 else
4225 {
4226 if (! definition)
4227 {
4228 h->ref_dynamic = 1;
4229 hi->ref_dynamic = 1;
4230 }
4231 else
4232 {
4233 h->def_dynamic = 1;
4234 hi->def_dynamic = 1;
4235 }
4236
4237 /* If the indirect symbol has been forced local, don't
4238 make the real symbol dynamic. */
4239 if ((h == hi || !hi->forced_local)
4240 && (h->def_regular
4241 || h->ref_regular
4242 || (h->u.weakdef != NULL
4243 && ! new_weakdef
4244 && h->u.weakdef->dynindx != -1)))
4245 dynsym = TRUE;
4246 }
4247
4248 /* Check to see if we need to add an indirect symbol for
4249 the default name. */
4250 if (definition
4251 || (!override && h->root.type == bfd_link_hash_common))
4252 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4253 sec, value, &old_bfd, &dynsym))
4254 goto error_free_vers;
4255
4256 /* Check the alignment when a common symbol is involved. This
4257 can change when a common symbol is overridden by a normal
4258 definition or a common symbol is ignored due to the old
4259 normal definition. We need to make sure the maximum
4260 alignment is maintained. */
4261 if ((old_alignment || common)
4262 && h->root.type != bfd_link_hash_common)
4263 {
4264 unsigned int common_align;
4265 unsigned int normal_align;
4266 unsigned int symbol_align;
4267 bfd *normal_bfd;
4268 bfd *common_bfd;
4269
4270 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4271 || h->root.type == bfd_link_hash_defweak);
4272
4273 symbol_align = ffs (h->root.u.def.value) - 1;
4274 if (h->root.u.def.section->owner != NULL
4275 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4276 {
4277 normal_align = h->root.u.def.section->alignment_power;
4278 if (normal_align > symbol_align)
4279 normal_align = symbol_align;
4280 }
4281 else
4282 normal_align = symbol_align;
4283
4284 if (old_alignment)
4285 {
4286 common_align = old_alignment;
4287 common_bfd = old_bfd;
4288 normal_bfd = abfd;
4289 }
4290 else
4291 {
4292 common_align = bfd_log2 (isym->st_value);
4293 common_bfd = abfd;
4294 normal_bfd = old_bfd;
4295 }
4296
4297 if (normal_align < common_align)
4298 {
4299 /* PR binutils/2735 */
4300 if (normal_bfd == NULL)
4301 (*_bfd_error_handler)
4302 (_("Warning: alignment %u of common symbol `%s' in %B is"
4303 " greater than the alignment (%u) of its section %A"),
4304 common_bfd, h->root.u.def.section,
4305 1 << common_align, name, 1 << normal_align);
4306 else
4307 (*_bfd_error_handler)
4308 (_("Warning: alignment %u of symbol `%s' in %B"
4309 " is smaller than %u in %B"),
4310 normal_bfd, common_bfd,
4311 1 << normal_align, name, 1 << common_align);
4312 }
4313 }
4314
4315 /* Remember the symbol size if it isn't undefined. */
4316 if (isym->st_size != 0
4317 && isym->st_shndx != SHN_UNDEF
4318 && (definition || h->size == 0))
4319 {
4320 if (h->size != 0
4321 && h->size != isym->st_size
4322 && ! size_change_ok)
4323 (*_bfd_error_handler)
4324 (_("Warning: size of symbol `%s' changed"
4325 " from %lu in %B to %lu in %B"),
4326 old_bfd, abfd,
4327 name, (unsigned long) h->size,
4328 (unsigned long) isym->st_size);
4329
4330 h->size = isym->st_size;
4331 }
4332
4333 /* If this is a common symbol, then we always want H->SIZE
4334 to be the size of the common symbol. The code just above
4335 won't fix the size if a common symbol becomes larger. We
4336 don't warn about a size change here, because that is
4337 covered by --warn-common. Allow changes between different
4338 function types. */
4339 if (h->root.type == bfd_link_hash_common)
4340 h->size = h->root.u.c.size;
4341
4342 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4343 && ((definition && !new_weak)
4344 || (old_weak && h->root.type == bfd_link_hash_common)
4345 || h->type == STT_NOTYPE))
4346 {
4347 unsigned int type = ELF_ST_TYPE (isym->st_info);
4348
4349 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4350 symbol. */
4351 if (type == STT_GNU_IFUNC
4352 && (abfd->flags & DYNAMIC) != 0)
4353 type = STT_FUNC;
4354
4355 if (h->type != type)
4356 {
4357 if (h->type != STT_NOTYPE && ! type_change_ok)
4358 (*_bfd_error_handler)
4359 (_("Warning: type of symbol `%s' changed"
4360 " from %d to %d in %B"),
4361 abfd, name, h->type, type);
4362
4363 h->type = type;
4364 }
4365 }
4366
4367 /* Merge st_other field. */
4368 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4369
4370 /* We don't want to make debug symbol dynamic. */
4371 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4372 dynsym = FALSE;
4373
4374 /* Nor should we make plugin symbols dynamic. */
4375 if ((abfd->flags & BFD_PLUGIN) != 0)
4376 dynsym = FALSE;
4377
4378 if (definition)
4379 {
4380 h->target_internal = isym->st_target_internal;
4381 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4382 }
4383
4384 if (definition && !dynamic)
4385 {
4386 char *p = strchr (name, ELF_VER_CHR);
4387 if (p != NULL && p[1] != ELF_VER_CHR)
4388 {
4389 /* Queue non-default versions so that .symver x, x@FOO
4390 aliases can be checked. */
4391 if (!nondeflt_vers)
4392 {
4393 amt = ((isymend - isym + 1)
4394 * sizeof (struct elf_link_hash_entry *));
4395 nondeflt_vers
4396 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4397 if (!nondeflt_vers)
4398 goto error_free_vers;
4399 }
4400 nondeflt_vers[nondeflt_vers_cnt++] = h;
4401 }
4402 }
4403
4404 if (dynsym && h->dynindx == -1)
4405 {
4406 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4407 goto error_free_vers;
4408 if (h->u.weakdef != NULL
4409 && ! new_weakdef
4410 && h->u.weakdef->dynindx == -1)
4411 {
4412 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4413 goto error_free_vers;
4414 }
4415 }
4416 else if (dynsym && h->dynindx != -1)
4417 /* If the symbol already has a dynamic index, but
4418 visibility says it should not be visible, turn it into
4419 a local symbol. */
4420 switch (ELF_ST_VISIBILITY (h->other))
4421 {
4422 case STV_INTERNAL:
4423 case STV_HIDDEN:
4424 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4425 dynsym = FALSE;
4426 break;
4427 }
4428
4429 /* Don't add DT_NEEDED for references from the dummy bfd. */
4430 if (!add_needed
4431 && definition
4432 && ((dynsym
4433 && h->ref_regular_nonweak
4434 && (old_bfd == NULL
4435 || (old_bfd->flags & BFD_PLUGIN) == 0))
4436 || (h->ref_dynamic_nonweak
4437 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4438 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4439 {
4440 int ret;
4441 const char *soname = elf_dt_name (abfd);
4442
4443 info->callbacks->minfo ("%!", soname, old_bfd,
4444 h->root.root.string);
4445
4446 /* A symbol from a library loaded via DT_NEEDED of some
4447 other library is referenced by a regular object.
4448 Add a DT_NEEDED entry for it. Issue an error if
4449 --no-add-needed is used and the reference was not
4450 a weak one. */
4451 if (old_bfd != NULL
4452 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4453 {
4454 (*_bfd_error_handler)
4455 (_("%B: undefined reference to symbol '%s'"),
4456 old_bfd, name);
4457 bfd_set_error (bfd_error_missing_dso);
4458 goto error_free_vers;
4459 }
4460
4461 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4462 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4463
4464 add_needed = TRUE;
4465 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4466 if (ret < 0)
4467 goto error_free_vers;
4468
4469 BFD_ASSERT (ret == 0);
4470 }
4471 }
4472 }
4473
4474 if (extversym != NULL)
4475 {
4476 free (extversym);
4477 extversym = NULL;
4478 }
4479
4480 if (isymbuf != NULL)
4481 {
4482 free (isymbuf);
4483 isymbuf = NULL;
4484 }
4485
4486 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4487 {
4488 unsigned int i;
4489
4490 /* Restore the symbol table. */
4491 old_ent = (char *) old_tab + tabsize;
4492 memset (elf_sym_hashes (abfd), 0,
4493 extsymcount * sizeof (struct elf_link_hash_entry *));
4494 htab->root.table.table = old_table;
4495 htab->root.table.size = old_size;
4496 htab->root.table.count = old_count;
4497 memcpy (htab->root.table.table, old_tab, tabsize);
4498 htab->root.undefs = old_undefs;
4499 htab->root.undefs_tail = old_undefs_tail;
4500 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4501 for (i = 0; i < htab->root.table.size; i++)
4502 {
4503 struct bfd_hash_entry *p;
4504 struct elf_link_hash_entry *h;
4505 bfd_size_type size;
4506 unsigned int alignment_power;
4507
4508 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4509 {
4510 h = (struct elf_link_hash_entry *) p;
4511 if (h->root.type == bfd_link_hash_warning)
4512 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4513 if (h->dynindx >= old_dynsymcount
4514 && h->dynstr_index < old_dynstr_size)
4515 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4516
4517 /* Preserve the maximum alignment and size for common
4518 symbols even if this dynamic lib isn't on DT_NEEDED
4519 since it can still be loaded at run time by another
4520 dynamic lib. */
4521 if (h->root.type == bfd_link_hash_common)
4522 {
4523 size = h->root.u.c.size;
4524 alignment_power = h->root.u.c.p->alignment_power;
4525 }
4526 else
4527 {
4528 size = 0;
4529 alignment_power = 0;
4530 }
4531 memcpy (p, old_ent, htab->root.table.entsize);
4532 old_ent = (char *) old_ent + htab->root.table.entsize;
4533 h = (struct elf_link_hash_entry *) p;
4534 if (h->root.type == bfd_link_hash_warning)
4535 {
4536 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4537 old_ent = (char *) old_ent + htab->root.table.entsize;
4538 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4539 }
4540 if (h->root.type == bfd_link_hash_common)
4541 {
4542 if (size > h->root.u.c.size)
4543 h->root.u.c.size = size;
4544 if (alignment_power > h->root.u.c.p->alignment_power)
4545 h->root.u.c.p->alignment_power = alignment_power;
4546 }
4547 }
4548 }
4549
4550 /* Make a special call to the linker "notice" function to
4551 tell it that symbols added for crefs may need to be removed. */
4552 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4553 goto error_free_vers;
4554
4555 free (old_tab);
4556 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4557 alloc_mark);
4558 if (nondeflt_vers != NULL)
4559 free (nondeflt_vers);
4560 return TRUE;
4561 }
4562
4563 if (old_tab != NULL)
4564 {
4565 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4566 goto error_free_vers;
4567 free (old_tab);
4568 old_tab = NULL;
4569 }
4570
4571 /* Now that all the symbols from this input file are created, handle
4572 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4573 if (nondeflt_vers != NULL)
4574 {
4575 bfd_size_type cnt, symidx;
4576
4577 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4578 {
4579 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4580 char *shortname, *p;
4581
4582 p = strchr (h->root.root.string, ELF_VER_CHR);
4583 if (p == NULL
4584 || (h->root.type != bfd_link_hash_defined
4585 && h->root.type != bfd_link_hash_defweak))
4586 continue;
4587
4588 amt = p - h->root.root.string;
4589 shortname = (char *) bfd_malloc (amt + 1);
4590 if (!shortname)
4591 goto error_free_vers;
4592 memcpy (shortname, h->root.root.string, amt);
4593 shortname[amt] = '\0';
4594
4595 hi = (struct elf_link_hash_entry *)
4596 bfd_link_hash_lookup (&htab->root, shortname,
4597 FALSE, FALSE, FALSE);
4598 if (hi != NULL
4599 && hi->root.type == h->root.type
4600 && hi->root.u.def.value == h->root.u.def.value
4601 && hi->root.u.def.section == h->root.u.def.section)
4602 {
4603 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4604 hi->root.type = bfd_link_hash_indirect;
4605 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4606 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4607 sym_hash = elf_sym_hashes (abfd);
4608 if (sym_hash)
4609 for (symidx = 0; symidx < extsymcount; ++symidx)
4610 if (sym_hash[symidx] == hi)
4611 {
4612 sym_hash[symidx] = h;
4613 break;
4614 }
4615 }
4616 free (shortname);
4617 }
4618 free (nondeflt_vers);
4619 nondeflt_vers = NULL;
4620 }
4621
4622 /* Now set the weakdefs field correctly for all the weak defined
4623 symbols we found. The only way to do this is to search all the
4624 symbols. Since we only need the information for non functions in
4625 dynamic objects, that's the only time we actually put anything on
4626 the list WEAKS. We need this information so that if a regular
4627 object refers to a symbol defined weakly in a dynamic object, the
4628 real symbol in the dynamic object is also put in the dynamic
4629 symbols; we also must arrange for both symbols to point to the
4630 same memory location. We could handle the general case of symbol
4631 aliasing, but a general symbol alias can only be generated in
4632 assembler code, handling it correctly would be very time
4633 consuming, and other ELF linkers don't handle general aliasing
4634 either. */
4635 if (weaks != NULL)
4636 {
4637 struct elf_link_hash_entry **hpp;
4638 struct elf_link_hash_entry **hppend;
4639 struct elf_link_hash_entry **sorted_sym_hash;
4640 struct elf_link_hash_entry *h;
4641 size_t sym_count;
4642
4643 /* Since we have to search the whole symbol list for each weak
4644 defined symbol, search time for N weak defined symbols will be
4645 O(N^2). Binary search will cut it down to O(NlogN). */
4646 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4647 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4648 if (sorted_sym_hash == NULL)
4649 goto error_return;
4650 sym_hash = sorted_sym_hash;
4651 hpp = elf_sym_hashes (abfd);
4652 hppend = hpp + extsymcount;
4653 sym_count = 0;
4654 for (; hpp < hppend; hpp++)
4655 {
4656 h = *hpp;
4657 if (h != NULL
4658 && h->root.type == bfd_link_hash_defined
4659 && !bed->is_function_type (h->type))
4660 {
4661 *sym_hash = h;
4662 sym_hash++;
4663 sym_count++;
4664 }
4665 }
4666
4667 qsort (sorted_sym_hash, sym_count,
4668 sizeof (struct elf_link_hash_entry *),
4669 elf_sort_symbol);
4670
4671 while (weaks != NULL)
4672 {
4673 struct elf_link_hash_entry *hlook;
4674 asection *slook;
4675 bfd_vma vlook;
4676 size_t i, j, idx = 0;
4677
4678 hlook = weaks;
4679 weaks = hlook->u.weakdef;
4680 hlook->u.weakdef = NULL;
4681
4682 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4683 || hlook->root.type == bfd_link_hash_defweak
4684 || hlook->root.type == bfd_link_hash_common
4685 || hlook->root.type == bfd_link_hash_indirect);
4686 slook = hlook->root.u.def.section;
4687 vlook = hlook->root.u.def.value;
4688
4689 i = 0;
4690 j = sym_count;
4691 while (i != j)
4692 {
4693 bfd_signed_vma vdiff;
4694 idx = (i + j) / 2;
4695 h = sorted_sym_hash[idx];
4696 vdiff = vlook - h->root.u.def.value;
4697 if (vdiff < 0)
4698 j = idx;
4699 else if (vdiff > 0)
4700 i = idx + 1;
4701 else
4702 {
4703 long sdiff = slook->id - h->root.u.def.section->id;
4704 if (sdiff < 0)
4705 j = idx;
4706 else if (sdiff > 0)
4707 i = idx + 1;
4708 else
4709 break;
4710 }
4711 }
4712
4713 /* We didn't find a value/section match. */
4714 if (i == j)
4715 continue;
4716
4717 /* With multiple aliases, or when the weak symbol is already
4718 strongly defined, we have multiple matching symbols and
4719 the binary search above may land on any of them. Step
4720 one past the matching symbol(s). */
4721 while (++idx != j)
4722 {
4723 h = sorted_sym_hash[idx];
4724 if (h->root.u.def.section != slook
4725 || h->root.u.def.value != vlook)
4726 break;
4727 }
4728
4729 /* Now look back over the aliases. Since we sorted by size
4730 as well as value and section, we'll choose the one with
4731 the largest size. */
4732 while (idx-- != i)
4733 {
4734 h = sorted_sym_hash[idx];
4735
4736 /* Stop if value or section doesn't match. */
4737 if (h->root.u.def.section != slook
4738 || h->root.u.def.value != vlook)
4739 break;
4740 else if (h != hlook)
4741 {
4742 hlook->u.weakdef = h;
4743
4744 /* If the weak definition is in the list of dynamic
4745 symbols, make sure the real definition is put
4746 there as well. */
4747 if (hlook->dynindx != -1 && h->dynindx == -1)
4748 {
4749 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4750 {
4751 err_free_sym_hash:
4752 free (sorted_sym_hash);
4753 goto error_return;
4754 }
4755 }
4756
4757 /* If the real definition is in the list of dynamic
4758 symbols, make sure the weak definition is put
4759 there as well. If we don't do this, then the
4760 dynamic loader might not merge the entries for the
4761 real definition and the weak definition. */
4762 if (h->dynindx != -1 && hlook->dynindx == -1)
4763 {
4764 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4765 goto err_free_sym_hash;
4766 }
4767 break;
4768 }
4769 }
4770 }
4771
4772 free (sorted_sym_hash);
4773 }
4774
4775 if (bed->check_directives
4776 && !(*bed->check_directives) (abfd, info))
4777 return FALSE;
4778
4779 /* If this object is the same format as the output object, and it is
4780 not a shared library, then let the backend look through the
4781 relocs.
4782
4783 This is required to build global offset table entries and to
4784 arrange for dynamic relocs. It is not required for the
4785 particular common case of linking non PIC code, even when linking
4786 against shared libraries, but unfortunately there is no way of
4787 knowing whether an object file has been compiled PIC or not.
4788 Looking through the relocs is not particularly time consuming.
4789 The problem is that we must either (1) keep the relocs in memory,
4790 which causes the linker to require additional runtime memory or
4791 (2) read the relocs twice from the input file, which wastes time.
4792 This would be a good case for using mmap.
4793
4794 I have no idea how to handle linking PIC code into a file of a
4795 different format. It probably can't be done. */
4796 if (! dynamic
4797 && is_elf_hash_table (htab)
4798 && bed->check_relocs != NULL
4799 && elf_object_id (abfd) == elf_hash_table_id (htab)
4800 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4801 {
4802 asection *o;
4803
4804 for (o = abfd->sections; o != NULL; o = o->next)
4805 {
4806 Elf_Internal_Rela *internal_relocs;
4807 bfd_boolean ok;
4808
4809 if ((o->flags & SEC_RELOC) == 0
4810 || o->reloc_count == 0
4811 || ((info->strip == strip_all || info->strip == strip_debugger)
4812 && (o->flags & SEC_DEBUGGING) != 0)
4813 || bfd_is_abs_section (o->output_section))
4814 continue;
4815
4816 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4817 info->keep_memory);
4818 if (internal_relocs == NULL)
4819 goto error_return;
4820
4821 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4822
4823 if (elf_section_data (o)->relocs != internal_relocs)
4824 free (internal_relocs);
4825
4826 if (! ok)
4827 goto error_return;
4828 }
4829 }
4830
4831 /* If this is a non-traditional link, try to optimize the handling
4832 of the .stab/.stabstr sections. */
4833 if (! dynamic
4834 && ! info->traditional_format
4835 && is_elf_hash_table (htab)
4836 && (info->strip != strip_all && info->strip != strip_debugger))
4837 {
4838 asection *stabstr;
4839
4840 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4841 if (stabstr != NULL)
4842 {
4843 bfd_size_type string_offset = 0;
4844 asection *stab;
4845
4846 for (stab = abfd->sections; stab; stab = stab->next)
4847 if (CONST_STRNEQ (stab->name, ".stab")
4848 && (!stab->name[5] ||
4849 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4850 && (stab->flags & SEC_MERGE) == 0
4851 && !bfd_is_abs_section (stab->output_section))
4852 {
4853 struct bfd_elf_section_data *secdata;
4854
4855 secdata = elf_section_data (stab);
4856 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4857 stabstr, &secdata->sec_info,
4858 &string_offset))
4859 goto error_return;
4860 if (secdata->sec_info)
4861 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4862 }
4863 }
4864 }
4865
4866 if (is_elf_hash_table (htab) && add_needed)
4867 {
4868 /* Add this bfd to the loaded list. */
4869 struct elf_link_loaded_list *n;
4870
4871 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
4872 if (n == NULL)
4873 goto error_return;
4874 n->abfd = abfd;
4875 n->next = htab->loaded;
4876 htab->loaded = n;
4877 }
4878
4879 return TRUE;
4880
4881 error_free_vers:
4882 if (old_tab != NULL)
4883 free (old_tab);
4884 if (nondeflt_vers != NULL)
4885 free (nondeflt_vers);
4886 if (extversym != NULL)
4887 free (extversym);
4888 error_free_sym:
4889 if (isymbuf != NULL)
4890 free (isymbuf);
4891 error_return:
4892 return FALSE;
4893 }
4894
4895 /* Return the linker hash table entry of a symbol that might be
4896 satisfied by an archive symbol. Return -1 on error. */
4897
4898 struct elf_link_hash_entry *
4899 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4900 struct bfd_link_info *info,
4901 const char *name)
4902 {
4903 struct elf_link_hash_entry *h;
4904 char *p, *copy;
4905 size_t len, first;
4906
4907 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4908 if (h != NULL)
4909 return h;
4910
4911 /* If this is a default version (the name contains @@), look up the
4912 symbol again with only one `@' as well as without the version.
4913 The effect is that references to the symbol with and without the
4914 version will be matched by the default symbol in the archive. */
4915
4916 p = strchr (name, ELF_VER_CHR);
4917 if (p == NULL || p[1] != ELF_VER_CHR)
4918 return h;
4919
4920 /* First check with only one `@'. */
4921 len = strlen (name);
4922 copy = (char *) bfd_alloc (abfd, len);
4923 if (copy == NULL)
4924 return (struct elf_link_hash_entry *) 0 - 1;
4925
4926 first = p - name + 1;
4927 memcpy (copy, name, first);
4928 memcpy (copy + first, name + first + 1, len - first);
4929
4930 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4931 if (h == NULL)
4932 {
4933 /* We also need to check references to the symbol without the
4934 version. */
4935 copy[first - 1] = '\0';
4936 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4937 FALSE, FALSE, TRUE);
4938 }
4939
4940 bfd_release (abfd, copy);
4941 return h;
4942 }
4943
4944 /* Add symbols from an ELF archive file to the linker hash table. We
4945 don't use _bfd_generic_link_add_archive_symbols because we need to
4946 handle versioned symbols.
4947
4948 Fortunately, ELF archive handling is simpler than that done by
4949 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4950 oddities. In ELF, if we find a symbol in the archive map, and the
4951 symbol is currently undefined, we know that we must pull in that
4952 object file.
4953
4954 Unfortunately, we do have to make multiple passes over the symbol
4955 table until nothing further is resolved. */
4956
4957 static bfd_boolean
4958 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4959 {
4960 symindex c;
4961 unsigned char *included = NULL;
4962 carsym *symdefs;
4963 bfd_boolean loop;
4964 bfd_size_type amt;
4965 const struct elf_backend_data *bed;
4966 struct elf_link_hash_entry * (*archive_symbol_lookup)
4967 (bfd *, struct bfd_link_info *, const char *);
4968
4969 if (! bfd_has_map (abfd))
4970 {
4971 /* An empty archive is a special case. */
4972 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4973 return TRUE;
4974 bfd_set_error (bfd_error_no_armap);
4975 return FALSE;
4976 }
4977
4978 /* Keep track of all symbols we know to be already defined, and all
4979 files we know to be already included. This is to speed up the
4980 second and subsequent passes. */
4981 c = bfd_ardata (abfd)->symdef_count;
4982 if (c == 0)
4983 return TRUE;
4984 amt = c;
4985 amt *= sizeof (*included);
4986 included = (unsigned char *) bfd_zmalloc (amt);
4987 if (included == NULL)
4988 return FALSE;
4989
4990 symdefs = bfd_ardata (abfd)->symdefs;
4991 bed = get_elf_backend_data (abfd);
4992 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4993
4994 do
4995 {
4996 file_ptr last;
4997 symindex i;
4998 carsym *symdef;
4999 carsym *symdefend;
5000
5001 loop = FALSE;
5002 last = -1;
5003
5004 symdef = symdefs;
5005 symdefend = symdef + c;
5006 for (i = 0; symdef < symdefend; symdef++, i++)
5007 {
5008 struct elf_link_hash_entry *h;
5009 bfd *element;
5010 struct bfd_link_hash_entry *undefs_tail;
5011 symindex mark;
5012
5013 if (included[i])
5014 continue;
5015 if (symdef->file_offset == last)
5016 {
5017 included[i] = TRUE;
5018 continue;
5019 }
5020
5021 h = archive_symbol_lookup (abfd, info, symdef->name);
5022 if (h == (struct elf_link_hash_entry *) 0 - 1)
5023 goto error_return;
5024
5025 if (h == NULL)
5026 continue;
5027
5028 if (h->root.type == bfd_link_hash_common)
5029 {
5030 /* We currently have a common symbol. The archive map contains
5031 a reference to this symbol, so we may want to include it. We
5032 only want to include it however, if this archive element
5033 contains a definition of the symbol, not just another common
5034 declaration of it.
5035
5036 Unfortunately some archivers (including GNU ar) will put
5037 declarations of common symbols into their archive maps, as
5038 well as real definitions, so we cannot just go by the archive
5039 map alone. Instead we must read in the element's symbol
5040 table and check that to see what kind of symbol definition
5041 this is. */
5042 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5043 continue;
5044 }
5045 else if (h->root.type != bfd_link_hash_undefined)
5046 {
5047 if (h->root.type != bfd_link_hash_undefweak)
5048 /* Symbol must be defined. Don't check it again. */
5049 included[i] = TRUE;
5050 continue;
5051 }
5052
5053 /* We need to include this archive member. */
5054 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5055 if (element == NULL)
5056 goto error_return;
5057
5058 if (! bfd_check_format (element, bfd_object))
5059 goto error_return;
5060
5061 undefs_tail = info->hash->undefs_tail;
5062
5063 if (!(*info->callbacks
5064 ->add_archive_element) (info, element, symdef->name, &element))
5065 goto error_return;
5066 if (!bfd_link_add_symbols (element, info))
5067 goto error_return;
5068
5069 /* If there are any new undefined symbols, we need to make
5070 another pass through the archive in order to see whether
5071 they can be defined. FIXME: This isn't perfect, because
5072 common symbols wind up on undefs_tail and because an
5073 undefined symbol which is defined later on in this pass
5074 does not require another pass. This isn't a bug, but it
5075 does make the code less efficient than it could be. */
5076 if (undefs_tail != info->hash->undefs_tail)
5077 loop = TRUE;
5078
5079 /* Look backward to mark all symbols from this object file
5080 which we have already seen in this pass. */
5081 mark = i;
5082 do
5083 {
5084 included[mark] = TRUE;
5085 if (mark == 0)
5086 break;
5087 --mark;
5088 }
5089 while (symdefs[mark].file_offset == symdef->file_offset);
5090
5091 /* We mark subsequent symbols from this object file as we go
5092 on through the loop. */
5093 last = symdef->file_offset;
5094 }
5095 }
5096 while (loop);
5097
5098 free (included);
5099
5100 return TRUE;
5101
5102 error_return:
5103 if (included != NULL)
5104 free (included);
5105 return FALSE;
5106 }
5107
5108 /* Given an ELF BFD, add symbols to the global hash table as
5109 appropriate. */
5110
5111 bfd_boolean
5112 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5113 {
5114 switch (bfd_get_format (abfd))
5115 {
5116 case bfd_object:
5117 return elf_link_add_object_symbols (abfd, info);
5118 case bfd_archive:
5119 return elf_link_add_archive_symbols (abfd, info);
5120 default:
5121 bfd_set_error (bfd_error_wrong_format);
5122 return FALSE;
5123 }
5124 }
5125 \f
5126 struct hash_codes_info
5127 {
5128 unsigned long *hashcodes;
5129 bfd_boolean error;
5130 };
5131
5132 /* This function will be called though elf_link_hash_traverse to store
5133 all hash value of the exported symbols in an array. */
5134
5135 static bfd_boolean
5136 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5137 {
5138 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5139 const char *name;
5140 char *p;
5141 unsigned long ha;
5142 char *alc = NULL;
5143
5144 /* Ignore indirect symbols. These are added by the versioning code. */
5145 if (h->dynindx == -1)
5146 return TRUE;
5147
5148 name = h->root.root.string;
5149 p = strchr (name, ELF_VER_CHR);
5150 if (p != NULL)
5151 {
5152 alc = (char *) bfd_malloc (p - name + 1);
5153 if (alc == NULL)
5154 {
5155 inf->error = TRUE;
5156 return FALSE;
5157 }
5158 memcpy (alc, name, p - name);
5159 alc[p - name] = '\0';
5160 name = alc;
5161 }
5162
5163 /* Compute the hash value. */
5164 ha = bfd_elf_hash (name);
5165
5166 /* Store the found hash value in the array given as the argument. */
5167 *(inf->hashcodes)++ = ha;
5168
5169 /* And store it in the struct so that we can put it in the hash table
5170 later. */
5171 h->u.elf_hash_value = ha;
5172
5173 if (alc != NULL)
5174 free (alc);
5175
5176 return TRUE;
5177 }
5178
5179 struct collect_gnu_hash_codes
5180 {
5181 bfd *output_bfd;
5182 const struct elf_backend_data *bed;
5183 unsigned long int nsyms;
5184 unsigned long int maskbits;
5185 unsigned long int *hashcodes;
5186 unsigned long int *hashval;
5187 unsigned long int *indx;
5188 unsigned long int *counts;
5189 bfd_vma *bitmask;
5190 bfd_byte *contents;
5191 long int min_dynindx;
5192 unsigned long int bucketcount;
5193 unsigned long int symindx;
5194 long int local_indx;
5195 long int shift1, shift2;
5196 unsigned long int mask;
5197 bfd_boolean error;
5198 };
5199
5200 /* This function will be called though elf_link_hash_traverse to store
5201 all hash value of the exported symbols in an array. */
5202
5203 static bfd_boolean
5204 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5205 {
5206 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5207 const char *name;
5208 char *p;
5209 unsigned long ha;
5210 char *alc = NULL;
5211
5212 /* Ignore indirect symbols. These are added by the versioning code. */
5213 if (h->dynindx == -1)
5214 return TRUE;
5215
5216 /* Ignore also local symbols and undefined symbols. */
5217 if (! (*s->bed->elf_hash_symbol) (h))
5218 return TRUE;
5219
5220 name = h->root.root.string;
5221 p = strchr (name, ELF_VER_CHR);
5222 if (p != NULL)
5223 {
5224 alc = (char *) bfd_malloc (p - name + 1);
5225 if (alc == NULL)
5226 {
5227 s->error = TRUE;
5228 return FALSE;
5229 }
5230 memcpy (alc, name, p - name);
5231 alc[p - name] = '\0';
5232 name = alc;
5233 }
5234
5235 /* Compute the hash value. */
5236 ha = bfd_elf_gnu_hash (name);
5237
5238 /* Store the found hash value in the array for compute_bucket_count,
5239 and also for .dynsym reordering purposes. */
5240 s->hashcodes[s->nsyms] = ha;
5241 s->hashval[h->dynindx] = ha;
5242 ++s->nsyms;
5243 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5244 s->min_dynindx = h->dynindx;
5245
5246 if (alc != NULL)
5247 free (alc);
5248
5249 return TRUE;
5250 }
5251
5252 /* This function will be called though elf_link_hash_traverse to do
5253 final dynaminc symbol renumbering. */
5254
5255 static bfd_boolean
5256 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5257 {
5258 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5259 unsigned long int bucket;
5260 unsigned long int val;
5261
5262 /* Ignore indirect symbols. */
5263 if (h->dynindx == -1)
5264 return TRUE;
5265
5266 /* Ignore also local symbols and undefined symbols. */
5267 if (! (*s->bed->elf_hash_symbol) (h))
5268 {
5269 if (h->dynindx >= s->min_dynindx)
5270 h->dynindx = s->local_indx++;
5271 return TRUE;
5272 }
5273
5274 bucket = s->hashval[h->dynindx] % s->bucketcount;
5275 val = (s->hashval[h->dynindx] >> s->shift1)
5276 & ((s->maskbits >> s->shift1) - 1);
5277 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5278 s->bitmask[val]
5279 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5280 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5281 if (s->counts[bucket] == 1)
5282 /* Last element terminates the chain. */
5283 val |= 1;
5284 bfd_put_32 (s->output_bfd, val,
5285 s->contents + (s->indx[bucket] - s->symindx) * 4);
5286 --s->counts[bucket];
5287 h->dynindx = s->indx[bucket]++;
5288 return TRUE;
5289 }
5290
5291 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5292
5293 bfd_boolean
5294 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5295 {
5296 return !(h->forced_local
5297 || h->root.type == bfd_link_hash_undefined
5298 || h->root.type == bfd_link_hash_undefweak
5299 || ((h->root.type == bfd_link_hash_defined
5300 || h->root.type == bfd_link_hash_defweak)
5301 && h->root.u.def.section->output_section == NULL));
5302 }
5303
5304 /* Array used to determine the number of hash table buckets to use
5305 based on the number of symbols there are. If there are fewer than
5306 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5307 fewer than 37 we use 17 buckets, and so forth. We never use more
5308 than 32771 buckets. */
5309
5310 static const size_t elf_buckets[] =
5311 {
5312 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5313 16411, 32771, 0
5314 };
5315
5316 /* Compute bucket count for hashing table. We do not use a static set
5317 of possible tables sizes anymore. Instead we determine for all
5318 possible reasonable sizes of the table the outcome (i.e., the
5319 number of collisions etc) and choose the best solution. The
5320 weighting functions are not too simple to allow the table to grow
5321 without bounds. Instead one of the weighting factors is the size.
5322 Therefore the result is always a good payoff between few collisions
5323 (= short chain lengths) and table size. */
5324 static size_t
5325 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5326 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5327 unsigned long int nsyms,
5328 int gnu_hash)
5329 {
5330 size_t best_size = 0;
5331 unsigned long int i;
5332
5333 /* We have a problem here. The following code to optimize the table
5334 size requires an integer type with more the 32 bits. If
5335 BFD_HOST_U_64_BIT is set we know about such a type. */
5336 #ifdef BFD_HOST_U_64_BIT
5337 if (info->optimize)
5338 {
5339 size_t minsize;
5340 size_t maxsize;
5341 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5342 bfd *dynobj = elf_hash_table (info)->dynobj;
5343 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5344 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5345 unsigned long int *counts;
5346 bfd_size_type amt;
5347 unsigned int no_improvement_count = 0;
5348
5349 /* Possible optimization parameters: if we have NSYMS symbols we say
5350 that the hashing table must at least have NSYMS/4 and at most
5351 2*NSYMS buckets. */
5352 minsize = nsyms / 4;
5353 if (minsize == 0)
5354 minsize = 1;
5355 best_size = maxsize = nsyms * 2;
5356 if (gnu_hash)
5357 {
5358 if (minsize < 2)
5359 minsize = 2;
5360 if ((best_size & 31) == 0)
5361 ++best_size;
5362 }
5363
5364 /* Create array where we count the collisions in. We must use bfd_malloc
5365 since the size could be large. */
5366 amt = maxsize;
5367 amt *= sizeof (unsigned long int);
5368 counts = (unsigned long int *) bfd_malloc (amt);
5369 if (counts == NULL)
5370 return 0;
5371
5372 /* Compute the "optimal" size for the hash table. The criteria is a
5373 minimal chain length. The minor criteria is (of course) the size
5374 of the table. */
5375 for (i = minsize; i < maxsize; ++i)
5376 {
5377 /* Walk through the array of hashcodes and count the collisions. */
5378 BFD_HOST_U_64_BIT max;
5379 unsigned long int j;
5380 unsigned long int fact;
5381
5382 if (gnu_hash && (i & 31) == 0)
5383 continue;
5384
5385 memset (counts, '\0', i * sizeof (unsigned long int));
5386
5387 /* Determine how often each hash bucket is used. */
5388 for (j = 0; j < nsyms; ++j)
5389 ++counts[hashcodes[j] % i];
5390
5391 /* For the weight function we need some information about the
5392 pagesize on the target. This is information need not be 100%
5393 accurate. Since this information is not available (so far) we
5394 define it here to a reasonable default value. If it is crucial
5395 to have a better value some day simply define this value. */
5396 # ifndef BFD_TARGET_PAGESIZE
5397 # define BFD_TARGET_PAGESIZE (4096)
5398 # endif
5399
5400 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5401 and the chains. */
5402 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5403
5404 # if 1
5405 /* Variant 1: optimize for short chains. We add the squares
5406 of all the chain lengths (which favors many small chain
5407 over a few long chains). */
5408 for (j = 0; j < i; ++j)
5409 max += counts[j] * counts[j];
5410
5411 /* This adds penalties for the overall size of the table. */
5412 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5413 max *= fact * fact;
5414 # else
5415 /* Variant 2: Optimize a lot more for small table. Here we
5416 also add squares of the size but we also add penalties for
5417 empty slots (the +1 term). */
5418 for (j = 0; j < i; ++j)
5419 max += (1 + counts[j]) * (1 + counts[j]);
5420
5421 /* The overall size of the table is considered, but not as
5422 strong as in variant 1, where it is squared. */
5423 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5424 max *= fact;
5425 # endif
5426
5427 /* Compare with current best results. */
5428 if (max < best_chlen)
5429 {
5430 best_chlen = max;
5431 best_size = i;
5432 no_improvement_count = 0;
5433 }
5434 /* PR 11843: Avoid futile long searches for the best bucket size
5435 when there are a large number of symbols. */
5436 else if (++no_improvement_count == 100)
5437 break;
5438 }
5439
5440 free (counts);
5441 }
5442 else
5443 #endif /* defined (BFD_HOST_U_64_BIT) */
5444 {
5445 /* This is the fallback solution if no 64bit type is available or if we
5446 are not supposed to spend much time on optimizations. We select the
5447 bucket count using a fixed set of numbers. */
5448 for (i = 0; elf_buckets[i] != 0; i++)
5449 {
5450 best_size = elf_buckets[i];
5451 if (nsyms < elf_buckets[i + 1])
5452 break;
5453 }
5454 if (gnu_hash && best_size < 2)
5455 best_size = 2;
5456 }
5457
5458 return best_size;
5459 }
5460
5461 /* Size any SHT_GROUP section for ld -r. */
5462
5463 bfd_boolean
5464 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5465 {
5466 bfd *ibfd;
5467
5468 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5469 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5470 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5471 return FALSE;
5472 return TRUE;
5473 }
5474
5475 /* Set a default stack segment size. The value in INFO wins. If it
5476 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5477 undefined it is initialized. */
5478
5479 bfd_boolean
5480 bfd_elf_stack_segment_size (bfd *output_bfd,
5481 struct bfd_link_info *info,
5482 const char *legacy_symbol,
5483 bfd_vma default_size)
5484 {
5485 struct elf_link_hash_entry *h = NULL;
5486
5487 /* Look for legacy symbol. */
5488 if (legacy_symbol)
5489 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5490 FALSE, FALSE, FALSE);
5491 if (h && (h->root.type == bfd_link_hash_defined
5492 || h->root.type == bfd_link_hash_defweak)
5493 && h->def_regular
5494 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5495 {
5496 /* The symbol has no type if specified on the command line. */
5497 h->type = STT_OBJECT;
5498 if (info->stacksize)
5499 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5500 output_bfd, legacy_symbol);
5501 else if (h->root.u.def.section != bfd_abs_section_ptr)
5502 (*_bfd_error_handler) (_("%B: %s not absolute"),
5503 output_bfd, legacy_symbol);
5504 else
5505 info->stacksize = h->root.u.def.value;
5506 }
5507
5508 if (!info->stacksize)
5509 /* If the user didn't set a size, or explicitly inhibit the
5510 size, set it now. */
5511 info->stacksize = default_size;
5512
5513 /* Provide the legacy symbol, if it is referenced. */
5514 if (h && (h->root.type == bfd_link_hash_undefined
5515 || h->root.type == bfd_link_hash_undefweak))
5516 {
5517 struct bfd_link_hash_entry *bh = NULL;
5518
5519 if (!(_bfd_generic_link_add_one_symbol
5520 (info, output_bfd, legacy_symbol,
5521 BSF_GLOBAL, bfd_abs_section_ptr,
5522 info->stacksize >= 0 ? info->stacksize : 0,
5523 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5524 return FALSE;
5525
5526 h = (struct elf_link_hash_entry *) bh;
5527 h->def_regular = 1;
5528 h->type = STT_OBJECT;
5529 }
5530
5531 return TRUE;
5532 }
5533
5534 /* Set up the sizes and contents of the ELF dynamic sections. This is
5535 called by the ELF linker emulation before_allocation routine. We
5536 must set the sizes of the sections before the linker sets the
5537 addresses of the various sections. */
5538
5539 bfd_boolean
5540 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5541 const char *soname,
5542 const char *rpath,
5543 const char *filter_shlib,
5544 const char *audit,
5545 const char *depaudit,
5546 const char * const *auxiliary_filters,
5547 struct bfd_link_info *info,
5548 asection **sinterpptr)
5549 {
5550 bfd_size_type soname_indx;
5551 bfd *dynobj;
5552 const struct elf_backend_data *bed;
5553 struct elf_info_failed asvinfo;
5554
5555 *sinterpptr = NULL;
5556
5557 soname_indx = (bfd_size_type) -1;
5558
5559 if (!is_elf_hash_table (info->hash))
5560 return TRUE;
5561
5562 bed = get_elf_backend_data (output_bfd);
5563
5564 /* Any syms created from now on start with -1 in
5565 got.refcount/offset and plt.refcount/offset. */
5566 elf_hash_table (info)->init_got_refcount
5567 = elf_hash_table (info)->init_got_offset;
5568 elf_hash_table (info)->init_plt_refcount
5569 = elf_hash_table (info)->init_plt_offset;
5570
5571 if (info->relocatable
5572 && !_bfd_elf_size_group_sections (info))
5573 return FALSE;
5574
5575 /* The backend may have to create some sections regardless of whether
5576 we're dynamic or not. */
5577 if (bed->elf_backend_always_size_sections
5578 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5579 return FALSE;
5580
5581 /* Determine any GNU_STACK segment requirements, after the backend
5582 has had a chance to set a default segment size. */
5583 if (info->execstack)
5584 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5585 else if (info->noexecstack)
5586 elf_stack_flags (output_bfd) = PF_R | PF_W;
5587 else
5588 {
5589 bfd *inputobj;
5590 asection *notesec = NULL;
5591 int exec = 0;
5592
5593 for (inputobj = info->input_bfds;
5594 inputobj;
5595 inputobj = inputobj->link.next)
5596 {
5597 asection *s;
5598
5599 if (inputobj->flags
5600 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5601 continue;
5602 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5603 if (s)
5604 {
5605 if (s->flags & SEC_CODE)
5606 exec = PF_X;
5607 notesec = s;
5608 }
5609 else if (bed->default_execstack)
5610 exec = PF_X;
5611 }
5612 if (notesec || info->stacksize > 0)
5613 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5614 if (notesec && exec && info->relocatable
5615 && notesec->output_section != bfd_abs_section_ptr)
5616 notesec->output_section->flags |= SEC_CODE;
5617 }
5618
5619 dynobj = elf_hash_table (info)->dynobj;
5620
5621 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5622 {
5623 struct elf_info_failed eif;
5624 struct elf_link_hash_entry *h;
5625 asection *dynstr;
5626 struct bfd_elf_version_tree *t;
5627 struct bfd_elf_version_expr *d;
5628 asection *s;
5629 bfd_boolean all_defined;
5630
5631 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5632 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5633
5634 if (soname != NULL)
5635 {
5636 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5637 soname, TRUE);
5638 if (soname_indx == (bfd_size_type) -1
5639 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5640 return FALSE;
5641 }
5642
5643 if (info->symbolic)
5644 {
5645 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5646 return FALSE;
5647 info->flags |= DF_SYMBOLIC;
5648 }
5649
5650 if (rpath != NULL)
5651 {
5652 bfd_size_type indx;
5653 bfd_vma tag;
5654
5655 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5656 TRUE);
5657 if (indx == (bfd_size_type) -1)
5658 return FALSE;
5659
5660 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5661 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5662 return FALSE;
5663 }
5664
5665 if (filter_shlib != NULL)
5666 {
5667 bfd_size_type indx;
5668
5669 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5670 filter_shlib, TRUE);
5671 if (indx == (bfd_size_type) -1
5672 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5673 return FALSE;
5674 }
5675
5676 if (auxiliary_filters != NULL)
5677 {
5678 const char * const *p;
5679
5680 for (p = auxiliary_filters; *p != NULL; p++)
5681 {
5682 bfd_size_type indx;
5683
5684 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5685 *p, TRUE);
5686 if (indx == (bfd_size_type) -1
5687 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5688 return FALSE;
5689 }
5690 }
5691
5692 if (audit != NULL)
5693 {
5694 bfd_size_type indx;
5695
5696 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5697 TRUE);
5698 if (indx == (bfd_size_type) -1
5699 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5700 return FALSE;
5701 }
5702
5703 if (depaudit != NULL)
5704 {
5705 bfd_size_type indx;
5706
5707 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5708 TRUE);
5709 if (indx == (bfd_size_type) -1
5710 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5711 return FALSE;
5712 }
5713
5714 eif.info = info;
5715 eif.failed = FALSE;
5716
5717 /* If we are supposed to export all symbols into the dynamic symbol
5718 table (this is not the normal case), then do so. */
5719 if (info->export_dynamic
5720 || (info->executable && info->dynamic))
5721 {
5722 elf_link_hash_traverse (elf_hash_table (info),
5723 _bfd_elf_export_symbol,
5724 &eif);
5725 if (eif.failed)
5726 return FALSE;
5727 }
5728
5729 /* Make all global versions with definition. */
5730 for (t = info->version_info; t != NULL; t = t->next)
5731 for (d = t->globals.list; d != NULL; d = d->next)
5732 if (!d->symver && d->literal)
5733 {
5734 const char *verstr, *name;
5735 size_t namelen, verlen, newlen;
5736 char *newname, *p, leading_char;
5737 struct elf_link_hash_entry *newh;
5738
5739 leading_char = bfd_get_symbol_leading_char (output_bfd);
5740 name = d->pattern;
5741 namelen = strlen (name) + (leading_char != '\0');
5742 verstr = t->name;
5743 verlen = strlen (verstr);
5744 newlen = namelen + verlen + 3;
5745
5746 newname = (char *) bfd_malloc (newlen);
5747 if (newname == NULL)
5748 return FALSE;
5749 newname[0] = leading_char;
5750 memcpy (newname + (leading_char != '\0'), name, namelen);
5751
5752 /* Check the hidden versioned definition. */
5753 p = newname + namelen;
5754 *p++ = ELF_VER_CHR;
5755 memcpy (p, verstr, verlen + 1);
5756 newh = elf_link_hash_lookup (elf_hash_table (info),
5757 newname, FALSE, FALSE,
5758 FALSE);
5759 if (newh == NULL
5760 || (newh->root.type != bfd_link_hash_defined
5761 && newh->root.type != bfd_link_hash_defweak))
5762 {
5763 /* Check the default versioned definition. */
5764 *p++ = ELF_VER_CHR;
5765 memcpy (p, verstr, verlen + 1);
5766 newh = elf_link_hash_lookup (elf_hash_table (info),
5767 newname, FALSE, FALSE,
5768 FALSE);
5769 }
5770 free (newname);
5771
5772 /* Mark this version if there is a definition and it is
5773 not defined in a shared object. */
5774 if (newh != NULL
5775 && !newh->def_dynamic
5776 && (newh->root.type == bfd_link_hash_defined
5777 || newh->root.type == bfd_link_hash_defweak))
5778 d->symver = 1;
5779 }
5780
5781 /* Attach all the symbols to their version information. */
5782 asvinfo.info = info;
5783 asvinfo.failed = FALSE;
5784
5785 elf_link_hash_traverse (elf_hash_table (info),
5786 _bfd_elf_link_assign_sym_version,
5787 &asvinfo);
5788 if (asvinfo.failed)
5789 return FALSE;
5790
5791 if (!info->allow_undefined_version)
5792 {
5793 /* Check if all global versions have a definition. */
5794 all_defined = TRUE;
5795 for (t = info->version_info; t != NULL; t = t->next)
5796 for (d = t->globals.list; d != NULL; d = d->next)
5797 if (d->literal && !d->symver && !d->script)
5798 {
5799 (*_bfd_error_handler)
5800 (_("%s: undefined version: %s"),
5801 d->pattern, t->name);
5802 all_defined = FALSE;
5803 }
5804
5805 if (!all_defined)
5806 {
5807 bfd_set_error (bfd_error_bad_value);
5808 return FALSE;
5809 }
5810 }
5811
5812 /* Find all symbols which were defined in a dynamic object and make
5813 the backend pick a reasonable value for them. */
5814 elf_link_hash_traverse (elf_hash_table (info),
5815 _bfd_elf_adjust_dynamic_symbol,
5816 &eif);
5817 if (eif.failed)
5818 return FALSE;
5819
5820 /* Add some entries to the .dynamic section. We fill in some of the
5821 values later, in bfd_elf_final_link, but we must add the entries
5822 now so that we know the final size of the .dynamic section. */
5823
5824 /* If there are initialization and/or finalization functions to
5825 call then add the corresponding DT_INIT/DT_FINI entries. */
5826 h = (info->init_function
5827 ? elf_link_hash_lookup (elf_hash_table (info),
5828 info->init_function, FALSE,
5829 FALSE, FALSE)
5830 : NULL);
5831 if (h != NULL
5832 && (h->ref_regular
5833 || h->def_regular))
5834 {
5835 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5836 return FALSE;
5837 }
5838 h = (info->fini_function
5839 ? elf_link_hash_lookup (elf_hash_table (info),
5840 info->fini_function, FALSE,
5841 FALSE, FALSE)
5842 : NULL);
5843 if (h != NULL
5844 && (h->ref_regular
5845 || h->def_regular))
5846 {
5847 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5848 return FALSE;
5849 }
5850
5851 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5852 if (s != NULL && s->linker_has_input)
5853 {
5854 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5855 if (! info->executable)
5856 {
5857 bfd *sub;
5858 asection *o;
5859
5860 for (sub = info->input_bfds; sub != NULL;
5861 sub = sub->link.next)
5862 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5863 for (o = sub->sections; o != NULL; o = o->next)
5864 if (elf_section_data (o)->this_hdr.sh_type
5865 == SHT_PREINIT_ARRAY)
5866 {
5867 (*_bfd_error_handler)
5868 (_("%B: .preinit_array section is not allowed in DSO"),
5869 sub);
5870 break;
5871 }
5872
5873 bfd_set_error (bfd_error_nonrepresentable_section);
5874 return FALSE;
5875 }
5876
5877 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5878 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5879 return FALSE;
5880 }
5881 s = bfd_get_section_by_name (output_bfd, ".init_array");
5882 if (s != NULL && s->linker_has_input)
5883 {
5884 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5885 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5886 return FALSE;
5887 }
5888 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5889 if (s != NULL && s->linker_has_input)
5890 {
5891 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5892 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5893 return FALSE;
5894 }
5895
5896 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5897 /* If .dynstr is excluded from the link, we don't want any of
5898 these tags. Strictly, we should be checking each section
5899 individually; This quick check covers for the case where
5900 someone does a /DISCARD/ : { *(*) }. */
5901 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5902 {
5903 bfd_size_type strsize;
5904
5905 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5906 if ((info->emit_hash
5907 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5908 || (info->emit_gnu_hash
5909 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5910 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5911 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5912 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5913 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5914 bed->s->sizeof_sym))
5915 return FALSE;
5916 }
5917 }
5918
5919 /* The backend must work out the sizes of all the other dynamic
5920 sections. */
5921 if (dynobj != NULL
5922 && bed->elf_backend_size_dynamic_sections != NULL
5923 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5924 return FALSE;
5925
5926 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5927 return FALSE;
5928
5929 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5930 {
5931 unsigned long section_sym_count;
5932 struct bfd_elf_version_tree *verdefs;
5933 asection *s;
5934
5935 /* Set up the version definition section. */
5936 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
5937 BFD_ASSERT (s != NULL);
5938
5939 /* We may have created additional version definitions if we are
5940 just linking a regular application. */
5941 verdefs = info->version_info;
5942
5943 /* Skip anonymous version tag. */
5944 if (verdefs != NULL && verdefs->vernum == 0)
5945 verdefs = verdefs->next;
5946
5947 if (verdefs == NULL && !info->create_default_symver)
5948 s->flags |= SEC_EXCLUDE;
5949 else
5950 {
5951 unsigned int cdefs;
5952 bfd_size_type size;
5953 struct bfd_elf_version_tree *t;
5954 bfd_byte *p;
5955 Elf_Internal_Verdef def;
5956 Elf_Internal_Verdaux defaux;
5957 struct bfd_link_hash_entry *bh;
5958 struct elf_link_hash_entry *h;
5959 const char *name;
5960
5961 cdefs = 0;
5962 size = 0;
5963
5964 /* Make space for the base version. */
5965 size += sizeof (Elf_External_Verdef);
5966 size += sizeof (Elf_External_Verdaux);
5967 ++cdefs;
5968
5969 /* Make space for the default version. */
5970 if (info->create_default_symver)
5971 {
5972 size += sizeof (Elf_External_Verdef);
5973 ++cdefs;
5974 }
5975
5976 for (t = verdefs; t != NULL; t = t->next)
5977 {
5978 struct bfd_elf_version_deps *n;
5979
5980 /* Don't emit base version twice. */
5981 if (t->vernum == 0)
5982 continue;
5983
5984 size += sizeof (Elf_External_Verdef);
5985 size += sizeof (Elf_External_Verdaux);
5986 ++cdefs;
5987
5988 for (n = t->deps; n != NULL; n = n->next)
5989 size += sizeof (Elf_External_Verdaux);
5990 }
5991
5992 s->size = size;
5993 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5994 if (s->contents == NULL && s->size != 0)
5995 return FALSE;
5996
5997 /* Fill in the version definition section. */
5998
5999 p = s->contents;
6000
6001 def.vd_version = VER_DEF_CURRENT;
6002 def.vd_flags = VER_FLG_BASE;
6003 def.vd_ndx = 1;
6004 def.vd_cnt = 1;
6005 if (info->create_default_symver)
6006 {
6007 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6008 def.vd_next = sizeof (Elf_External_Verdef);
6009 }
6010 else
6011 {
6012 def.vd_aux = sizeof (Elf_External_Verdef);
6013 def.vd_next = (sizeof (Elf_External_Verdef)
6014 + sizeof (Elf_External_Verdaux));
6015 }
6016
6017 if (soname_indx != (bfd_size_type) -1)
6018 {
6019 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6020 soname_indx);
6021 def.vd_hash = bfd_elf_hash (soname);
6022 defaux.vda_name = soname_indx;
6023 name = soname;
6024 }
6025 else
6026 {
6027 bfd_size_type indx;
6028
6029 name = lbasename (output_bfd->filename);
6030 def.vd_hash = bfd_elf_hash (name);
6031 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6032 name, FALSE);
6033 if (indx == (bfd_size_type) -1)
6034 return FALSE;
6035 defaux.vda_name = indx;
6036 }
6037 defaux.vda_next = 0;
6038
6039 _bfd_elf_swap_verdef_out (output_bfd, &def,
6040 (Elf_External_Verdef *) p);
6041 p += sizeof (Elf_External_Verdef);
6042 if (info->create_default_symver)
6043 {
6044 /* Add a symbol representing this version. */
6045 bh = NULL;
6046 if (! (_bfd_generic_link_add_one_symbol
6047 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6048 0, NULL, FALSE,
6049 get_elf_backend_data (dynobj)->collect, &bh)))
6050 return FALSE;
6051 h = (struct elf_link_hash_entry *) bh;
6052 h->non_elf = 0;
6053 h->def_regular = 1;
6054 h->type = STT_OBJECT;
6055 h->verinfo.vertree = NULL;
6056
6057 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6058 return FALSE;
6059
6060 /* Create a duplicate of the base version with the same
6061 aux block, but different flags. */
6062 def.vd_flags = 0;
6063 def.vd_ndx = 2;
6064 def.vd_aux = sizeof (Elf_External_Verdef);
6065 if (verdefs)
6066 def.vd_next = (sizeof (Elf_External_Verdef)
6067 + sizeof (Elf_External_Verdaux));
6068 else
6069 def.vd_next = 0;
6070 _bfd_elf_swap_verdef_out (output_bfd, &def,
6071 (Elf_External_Verdef *) p);
6072 p += sizeof (Elf_External_Verdef);
6073 }
6074 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6075 (Elf_External_Verdaux *) p);
6076 p += sizeof (Elf_External_Verdaux);
6077
6078 for (t = verdefs; t != NULL; t = t->next)
6079 {
6080 unsigned int cdeps;
6081 struct bfd_elf_version_deps *n;
6082
6083 /* Don't emit the base version twice. */
6084 if (t->vernum == 0)
6085 continue;
6086
6087 cdeps = 0;
6088 for (n = t->deps; n != NULL; n = n->next)
6089 ++cdeps;
6090
6091 /* Add a symbol representing this version. */
6092 bh = NULL;
6093 if (! (_bfd_generic_link_add_one_symbol
6094 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6095 0, NULL, FALSE,
6096 get_elf_backend_data (dynobj)->collect, &bh)))
6097 return FALSE;
6098 h = (struct elf_link_hash_entry *) bh;
6099 h->non_elf = 0;
6100 h->def_regular = 1;
6101 h->type = STT_OBJECT;
6102 h->verinfo.vertree = t;
6103
6104 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6105 return FALSE;
6106
6107 def.vd_version = VER_DEF_CURRENT;
6108 def.vd_flags = 0;
6109 if (t->globals.list == NULL
6110 && t->locals.list == NULL
6111 && ! t->used)
6112 def.vd_flags |= VER_FLG_WEAK;
6113 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6114 def.vd_cnt = cdeps + 1;
6115 def.vd_hash = bfd_elf_hash (t->name);
6116 def.vd_aux = sizeof (Elf_External_Verdef);
6117 def.vd_next = 0;
6118
6119 /* If a basever node is next, it *must* be the last node in
6120 the chain, otherwise Verdef construction breaks. */
6121 if (t->next != NULL && t->next->vernum == 0)
6122 BFD_ASSERT (t->next->next == NULL);
6123
6124 if (t->next != NULL && t->next->vernum != 0)
6125 def.vd_next = (sizeof (Elf_External_Verdef)
6126 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6127
6128 _bfd_elf_swap_verdef_out (output_bfd, &def,
6129 (Elf_External_Verdef *) p);
6130 p += sizeof (Elf_External_Verdef);
6131
6132 defaux.vda_name = h->dynstr_index;
6133 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6134 h->dynstr_index);
6135 defaux.vda_next = 0;
6136 if (t->deps != NULL)
6137 defaux.vda_next = sizeof (Elf_External_Verdaux);
6138 t->name_indx = defaux.vda_name;
6139
6140 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6141 (Elf_External_Verdaux *) p);
6142 p += sizeof (Elf_External_Verdaux);
6143
6144 for (n = t->deps; n != NULL; n = n->next)
6145 {
6146 if (n->version_needed == NULL)
6147 {
6148 /* This can happen if there was an error in the
6149 version script. */
6150 defaux.vda_name = 0;
6151 }
6152 else
6153 {
6154 defaux.vda_name = n->version_needed->name_indx;
6155 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6156 defaux.vda_name);
6157 }
6158 if (n->next == NULL)
6159 defaux.vda_next = 0;
6160 else
6161 defaux.vda_next = sizeof (Elf_External_Verdaux);
6162
6163 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6164 (Elf_External_Verdaux *) p);
6165 p += sizeof (Elf_External_Verdaux);
6166 }
6167 }
6168
6169 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6170 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6171 return FALSE;
6172
6173 elf_tdata (output_bfd)->cverdefs = cdefs;
6174 }
6175
6176 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6177 {
6178 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6179 return FALSE;
6180 }
6181 else if (info->flags & DF_BIND_NOW)
6182 {
6183 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6184 return FALSE;
6185 }
6186
6187 if (info->flags_1)
6188 {
6189 if (info->executable)
6190 info->flags_1 &= ~ (DF_1_INITFIRST
6191 | DF_1_NODELETE
6192 | DF_1_NOOPEN);
6193 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6194 return FALSE;
6195 }
6196
6197 /* Work out the size of the version reference section. */
6198
6199 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6200 BFD_ASSERT (s != NULL);
6201 {
6202 struct elf_find_verdep_info sinfo;
6203
6204 sinfo.info = info;
6205 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6206 if (sinfo.vers == 0)
6207 sinfo.vers = 1;
6208 sinfo.failed = FALSE;
6209
6210 elf_link_hash_traverse (elf_hash_table (info),
6211 _bfd_elf_link_find_version_dependencies,
6212 &sinfo);
6213 if (sinfo.failed)
6214 return FALSE;
6215
6216 if (elf_tdata (output_bfd)->verref == NULL)
6217 s->flags |= SEC_EXCLUDE;
6218 else
6219 {
6220 Elf_Internal_Verneed *t;
6221 unsigned int size;
6222 unsigned int crefs;
6223 bfd_byte *p;
6224
6225 /* Build the version dependency section. */
6226 size = 0;
6227 crefs = 0;
6228 for (t = elf_tdata (output_bfd)->verref;
6229 t != NULL;
6230 t = t->vn_nextref)
6231 {
6232 Elf_Internal_Vernaux *a;
6233
6234 size += sizeof (Elf_External_Verneed);
6235 ++crefs;
6236 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6237 size += sizeof (Elf_External_Vernaux);
6238 }
6239
6240 s->size = size;
6241 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6242 if (s->contents == NULL)
6243 return FALSE;
6244
6245 p = s->contents;
6246 for (t = elf_tdata (output_bfd)->verref;
6247 t != NULL;
6248 t = t->vn_nextref)
6249 {
6250 unsigned int caux;
6251 Elf_Internal_Vernaux *a;
6252 bfd_size_type indx;
6253
6254 caux = 0;
6255 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6256 ++caux;
6257
6258 t->vn_version = VER_NEED_CURRENT;
6259 t->vn_cnt = caux;
6260 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6261 elf_dt_name (t->vn_bfd) != NULL
6262 ? elf_dt_name (t->vn_bfd)
6263 : lbasename (t->vn_bfd->filename),
6264 FALSE);
6265 if (indx == (bfd_size_type) -1)
6266 return FALSE;
6267 t->vn_file = indx;
6268 t->vn_aux = sizeof (Elf_External_Verneed);
6269 if (t->vn_nextref == NULL)
6270 t->vn_next = 0;
6271 else
6272 t->vn_next = (sizeof (Elf_External_Verneed)
6273 + caux * sizeof (Elf_External_Vernaux));
6274
6275 _bfd_elf_swap_verneed_out (output_bfd, t,
6276 (Elf_External_Verneed *) p);
6277 p += sizeof (Elf_External_Verneed);
6278
6279 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6280 {
6281 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6282 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6283 a->vna_nodename, FALSE);
6284 if (indx == (bfd_size_type) -1)
6285 return FALSE;
6286 a->vna_name = indx;
6287 if (a->vna_nextptr == NULL)
6288 a->vna_next = 0;
6289 else
6290 a->vna_next = sizeof (Elf_External_Vernaux);
6291
6292 _bfd_elf_swap_vernaux_out (output_bfd, a,
6293 (Elf_External_Vernaux *) p);
6294 p += sizeof (Elf_External_Vernaux);
6295 }
6296 }
6297
6298 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6299 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6300 return FALSE;
6301
6302 elf_tdata (output_bfd)->cverrefs = crefs;
6303 }
6304 }
6305
6306 if ((elf_tdata (output_bfd)->cverrefs == 0
6307 && elf_tdata (output_bfd)->cverdefs == 0)
6308 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6309 &section_sym_count) == 0)
6310 {
6311 s = bfd_get_linker_section (dynobj, ".gnu.version");
6312 s->flags |= SEC_EXCLUDE;
6313 }
6314 }
6315 return TRUE;
6316 }
6317
6318 /* Find the first non-excluded output section. We'll use its
6319 section symbol for some emitted relocs. */
6320 void
6321 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6322 {
6323 asection *s;
6324
6325 for (s = output_bfd->sections; s != NULL; s = s->next)
6326 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6327 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6328 {
6329 elf_hash_table (info)->text_index_section = s;
6330 break;
6331 }
6332 }
6333
6334 /* Find two non-excluded output sections, one for code, one for data.
6335 We'll use their section symbols for some emitted relocs. */
6336 void
6337 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6338 {
6339 asection *s;
6340
6341 /* Data first, since setting text_index_section changes
6342 _bfd_elf_link_omit_section_dynsym. */
6343 for (s = output_bfd->sections; s != NULL; s = s->next)
6344 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6345 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6346 {
6347 elf_hash_table (info)->data_index_section = s;
6348 break;
6349 }
6350
6351 for (s = output_bfd->sections; s != NULL; s = s->next)
6352 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6353 == (SEC_ALLOC | SEC_READONLY))
6354 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6355 {
6356 elf_hash_table (info)->text_index_section = s;
6357 break;
6358 }
6359
6360 if (elf_hash_table (info)->text_index_section == NULL)
6361 elf_hash_table (info)->text_index_section
6362 = elf_hash_table (info)->data_index_section;
6363 }
6364
6365 bfd_boolean
6366 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6367 {
6368 const struct elf_backend_data *bed;
6369
6370 if (!is_elf_hash_table (info->hash))
6371 return TRUE;
6372
6373 bed = get_elf_backend_data (output_bfd);
6374 (*bed->elf_backend_init_index_section) (output_bfd, info);
6375
6376 if (elf_hash_table (info)->dynamic_sections_created)
6377 {
6378 bfd *dynobj;
6379 asection *s;
6380 bfd_size_type dynsymcount;
6381 unsigned long section_sym_count;
6382 unsigned int dtagcount;
6383
6384 dynobj = elf_hash_table (info)->dynobj;
6385
6386 /* Assign dynsym indicies. In a shared library we generate a
6387 section symbol for each output section, which come first.
6388 Next come all of the back-end allocated local dynamic syms,
6389 followed by the rest of the global symbols. */
6390
6391 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6392 &section_sym_count);
6393
6394 /* Work out the size of the symbol version section. */
6395 s = bfd_get_linker_section (dynobj, ".gnu.version");
6396 BFD_ASSERT (s != NULL);
6397 if (dynsymcount != 0
6398 && (s->flags & SEC_EXCLUDE) == 0)
6399 {
6400 s->size = dynsymcount * sizeof (Elf_External_Versym);
6401 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6402 if (s->contents == NULL)
6403 return FALSE;
6404
6405 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6406 return FALSE;
6407 }
6408
6409 /* Set the size of the .dynsym and .hash sections. We counted
6410 the number of dynamic symbols in elf_link_add_object_symbols.
6411 We will build the contents of .dynsym and .hash when we build
6412 the final symbol table, because until then we do not know the
6413 correct value to give the symbols. We built the .dynstr
6414 section as we went along in elf_link_add_object_symbols. */
6415 s = bfd_get_linker_section (dynobj, ".dynsym");
6416 BFD_ASSERT (s != NULL);
6417 s->size = dynsymcount * bed->s->sizeof_sym;
6418
6419 if (dynsymcount != 0)
6420 {
6421 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6422 if (s->contents == NULL)
6423 return FALSE;
6424
6425 /* The first entry in .dynsym is a dummy symbol.
6426 Clear all the section syms, in case we don't output them all. */
6427 ++section_sym_count;
6428 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6429 }
6430
6431 elf_hash_table (info)->bucketcount = 0;
6432
6433 /* Compute the size of the hashing table. As a side effect this
6434 computes the hash values for all the names we export. */
6435 if (info->emit_hash)
6436 {
6437 unsigned long int *hashcodes;
6438 struct hash_codes_info hashinf;
6439 bfd_size_type amt;
6440 unsigned long int nsyms;
6441 size_t bucketcount;
6442 size_t hash_entry_size;
6443
6444 /* Compute the hash values for all exported symbols. At the same
6445 time store the values in an array so that we could use them for
6446 optimizations. */
6447 amt = dynsymcount * sizeof (unsigned long int);
6448 hashcodes = (unsigned long int *) bfd_malloc (amt);
6449 if (hashcodes == NULL)
6450 return FALSE;
6451 hashinf.hashcodes = hashcodes;
6452 hashinf.error = FALSE;
6453
6454 /* Put all hash values in HASHCODES. */
6455 elf_link_hash_traverse (elf_hash_table (info),
6456 elf_collect_hash_codes, &hashinf);
6457 if (hashinf.error)
6458 {
6459 free (hashcodes);
6460 return FALSE;
6461 }
6462
6463 nsyms = hashinf.hashcodes - hashcodes;
6464 bucketcount
6465 = compute_bucket_count (info, hashcodes, nsyms, 0);
6466 free (hashcodes);
6467
6468 if (bucketcount == 0)
6469 return FALSE;
6470
6471 elf_hash_table (info)->bucketcount = bucketcount;
6472
6473 s = bfd_get_linker_section (dynobj, ".hash");
6474 BFD_ASSERT (s != NULL);
6475 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6476 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6477 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6478 if (s->contents == NULL)
6479 return FALSE;
6480
6481 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6482 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6483 s->contents + hash_entry_size);
6484 }
6485
6486 if (info->emit_gnu_hash)
6487 {
6488 size_t i, cnt;
6489 unsigned char *contents;
6490 struct collect_gnu_hash_codes cinfo;
6491 bfd_size_type amt;
6492 size_t bucketcount;
6493
6494 memset (&cinfo, 0, sizeof (cinfo));
6495
6496 /* Compute the hash values for all exported symbols. At the same
6497 time store the values in an array so that we could use them for
6498 optimizations. */
6499 amt = dynsymcount * 2 * sizeof (unsigned long int);
6500 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6501 if (cinfo.hashcodes == NULL)
6502 return FALSE;
6503
6504 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6505 cinfo.min_dynindx = -1;
6506 cinfo.output_bfd = output_bfd;
6507 cinfo.bed = bed;
6508
6509 /* Put all hash values in HASHCODES. */
6510 elf_link_hash_traverse (elf_hash_table (info),
6511 elf_collect_gnu_hash_codes, &cinfo);
6512 if (cinfo.error)
6513 {
6514 free (cinfo.hashcodes);
6515 return FALSE;
6516 }
6517
6518 bucketcount
6519 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6520
6521 if (bucketcount == 0)
6522 {
6523 free (cinfo.hashcodes);
6524 return FALSE;
6525 }
6526
6527 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6528 BFD_ASSERT (s != NULL);
6529
6530 if (cinfo.nsyms == 0)
6531 {
6532 /* Empty .gnu.hash section is special. */
6533 BFD_ASSERT (cinfo.min_dynindx == -1);
6534 free (cinfo.hashcodes);
6535 s->size = 5 * 4 + bed->s->arch_size / 8;
6536 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6537 if (contents == NULL)
6538 return FALSE;
6539 s->contents = contents;
6540 /* 1 empty bucket. */
6541 bfd_put_32 (output_bfd, 1, contents);
6542 /* SYMIDX above the special symbol 0. */
6543 bfd_put_32 (output_bfd, 1, contents + 4);
6544 /* Just one word for bitmask. */
6545 bfd_put_32 (output_bfd, 1, contents + 8);
6546 /* Only hash fn bloom filter. */
6547 bfd_put_32 (output_bfd, 0, contents + 12);
6548 /* No hashes are valid - empty bitmask. */
6549 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6550 /* No hashes in the only bucket. */
6551 bfd_put_32 (output_bfd, 0,
6552 contents + 16 + bed->s->arch_size / 8);
6553 }
6554 else
6555 {
6556 unsigned long int maskwords, maskbitslog2, x;
6557 BFD_ASSERT (cinfo.min_dynindx != -1);
6558
6559 x = cinfo.nsyms;
6560 maskbitslog2 = 1;
6561 while ((x >>= 1) != 0)
6562 ++maskbitslog2;
6563 if (maskbitslog2 < 3)
6564 maskbitslog2 = 5;
6565 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6566 maskbitslog2 = maskbitslog2 + 3;
6567 else
6568 maskbitslog2 = maskbitslog2 + 2;
6569 if (bed->s->arch_size == 64)
6570 {
6571 if (maskbitslog2 == 5)
6572 maskbitslog2 = 6;
6573 cinfo.shift1 = 6;
6574 }
6575 else
6576 cinfo.shift1 = 5;
6577 cinfo.mask = (1 << cinfo.shift1) - 1;
6578 cinfo.shift2 = maskbitslog2;
6579 cinfo.maskbits = 1 << maskbitslog2;
6580 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6581 amt = bucketcount * sizeof (unsigned long int) * 2;
6582 amt += maskwords * sizeof (bfd_vma);
6583 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6584 if (cinfo.bitmask == NULL)
6585 {
6586 free (cinfo.hashcodes);
6587 return FALSE;
6588 }
6589
6590 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6591 cinfo.indx = cinfo.counts + bucketcount;
6592 cinfo.symindx = dynsymcount - cinfo.nsyms;
6593 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6594
6595 /* Determine how often each hash bucket is used. */
6596 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6597 for (i = 0; i < cinfo.nsyms; ++i)
6598 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6599
6600 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6601 if (cinfo.counts[i] != 0)
6602 {
6603 cinfo.indx[i] = cnt;
6604 cnt += cinfo.counts[i];
6605 }
6606 BFD_ASSERT (cnt == dynsymcount);
6607 cinfo.bucketcount = bucketcount;
6608 cinfo.local_indx = cinfo.min_dynindx;
6609
6610 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6611 s->size += cinfo.maskbits / 8;
6612 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6613 if (contents == NULL)
6614 {
6615 free (cinfo.bitmask);
6616 free (cinfo.hashcodes);
6617 return FALSE;
6618 }
6619
6620 s->contents = contents;
6621 bfd_put_32 (output_bfd, bucketcount, contents);
6622 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6623 bfd_put_32 (output_bfd, maskwords, contents + 8);
6624 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6625 contents += 16 + cinfo.maskbits / 8;
6626
6627 for (i = 0; i < bucketcount; ++i)
6628 {
6629 if (cinfo.counts[i] == 0)
6630 bfd_put_32 (output_bfd, 0, contents);
6631 else
6632 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6633 contents += 4;
6634 }
6635
6636 cinfo.contents = contents;
6637
6638 /* Renumber dynamic symbols, populate .gnu.hash section. */
6639 elf_link_hash_traverse (elf_hash_table (info),
6640 elf_renumber_gnu_hash_syms, &cinfo);
6641
6642 contents = s->contents + 16;
6643 for (i = 0; i < maskwords; ++i)
6644 {
6645 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6646 contents);
6647 contents += bed->s->arch_size / 8;
6648 }
6649
6650 free (cinfo.bitmask);
6651 free (cinfo.hashcodes);
6652 }
6653 }
6654
6655 s = bfd_get_linker_section (dynobj, ".dynstr");
6656 BFD_ASSERT (s != NULL);
6657
6658 elf_finalize_dynstr (output_bfd, info);
6659
6660 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6661
6662 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6663 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6664 return FALSE;
6665 }
6666
6667 return TRUE;
6668 }
6669 \f
6670 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6671
6672 static void
6673 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6674 asection *sec)
6675 {
6676 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6677 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6678 }
6679
6680 /* Finish SHF_MERGE section merging. */
6681
6682 bfd_boolean
6683 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6684 {
6685 bfd *ibfd;
6686 asection *sec;
6687
6688 if (!is_elf_hash_table (info->hash))
6689 return FALSE;
6690
6691 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6692 if ((ibfd->flags & DYNAMIC) == 0)
6693 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6694 if ((sec->flags & SEC_MERGE) != 0
6695 && !bfd_is_abs_section (sec->output_section))
6696 {
6697 struct bfd_elf_section_data *secdata;
6698
6699 secdata = elf_section_data (sec);
6700 if (! _bfd_add_merge_section (abfd,
6701 &elf_hash_table (info)->merge_info,
6702 sec, &secdata->sec_info))
6703 return FALSE;
6704 else if (secdata->sec_info)
6705 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6706 }
6707
6708 if (elf_hash_table (info)->merge_info != NULL)
6709 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6710 merge_sections_remove_hook);
6711 return TRUE;
6712 }
6713
6714 /* Create an entry in an ELF linker hash table. */
6715
6716 struct bfd_hash_entry *
6717 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6718 struct bfd_hash_table *table,
6719 const char *string)
6720 {
6721 /* Allocate the structure if it has not already been allocated by a
6722 subclass. */
6723 if (entry == NULL)
6724 {
6725 entry = (struct bfd_hash_entry *)
6726 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6727 if (entry == NULL)
6728 return entry;
6729 }
6730
6731 /* Call the allocation method of the superclass. */
6732 entry = _bfd_link_hash_newfunc (entry, table, string);
6733 if (entry != NULL)
6734 {
6735 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6736 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6737
6738 /* Set local fields. */
6739 ret->indx = -1;
6740 ret->dynindx = -1;
6741 ret->got = htab->init_got_refcount;
6742 ret->plt = htab->init_plt_refcount;
6743 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6744 - offsetof (struct elf_link_hash_entry, size)));
6745 /* Assume that we have been called by a non-ELF symbol reader.
6746 This flag is then reset by the code which reads an ELF input
6747 file. This ensures that a symbol created by a non-ELF symbol
6748 reader will have the flag set correctly. */
6749 ret->non_elf = 1;
6750 }
6751
6752 return entry;
6753 }
6754
6755 /* Copy data from an indirect symbol to its direct symbol, hiding the
6756 old indirect symbol. Also used for copying flags to a weakdef. */
6757
6758 void
6759 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6760 struct elf_link_hash_entry *dir,
6761 struct elf_link_hash_entry *ind)
6762 {
6763 struct elf_link_hash_table *htab;
6764
6765 /* Copy down any references that we may have already seen to the
6766 symbol which just became indirect. */
6767
6768 dir->ref_dynamic |= ind->ref_dynamic;
6769 dir->ref_regular |= ind->ref_regular;
6770 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6771 dir->non_got_ref |= ind->non_got_ref;
6772 dir->needs_plt |= ind->needs_plt;
6773 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6774
6775 if (ind->root.type != bfd_link_hash_indirect)
6776 return;
6777
6778 /* Copy over the global and procedure linkage table refcount entries.
6779 These may have been already set up by a check_relocs routine. */
6780 htab = elf_hash_table (info);
6781 if (ind->got.refcount > htab->init_got_refcount.refcount)
6782 {
6783 if (dir->got.refcount < 0)
6784 dir->got.refcount = 0;
6785 dir->got.refcount += ind->got.refcount;
6786 ind->got.refcount = htab->init_got_refcount.refcount;
6787 }
6788
6789 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6790 {
6791 if (dir->plt.refcount < 0)
6792 dir->plt.refcount = 0;
6793 dir->plt.refcount += ind->plt.refcount;
6794 ind->plt.refcount = htab->init_plt_refcount.refcount;
6795 }
6796
6797 if (ind->dynindx != -1)
6798 {
6799 if (dir->dynindx != -1)
6800 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6801 dir->dynindx = ind->dynindx;
6802 dir->dynstr_index = ind->dynstr_index;
6803 ind->dynindx = -1;
6804 ind->dynstr_index = 0;
6805 }
6806 }
6807
6808 void
6809 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6810 struct elf_link_hash_entry *h,
6811 bfd_boolean force_local)
6812 {
6813 /* STT_GNU_IFUNC symbol must go through PLT. */
6814 if (h->type != STT_GNU_IFUNC)
6815 {
6816 h->plt = elf_hash_table (info)->init_plt_offset;
6817 h->needs_plt = 0;
6818 }
6819 if (force_local)
6820 {
6821 h->forced_local = 1;
6822 if (h->dynindx != -1)
6823 {
6824 h->dynindx = -1;
6825 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6826 h->dynstr_index);
6827 }
6828 }
6829 }
6830
6831 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
6832 caller. */
6833
6834 bfd_boolean
6835 _bfd_elf_link_hash_table_init
6836 (struct elf_link_hash_table *table,
6837 bfd *abfd,
6838 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6839 struct bfd_hash_table *,
6840 const char *),
6841 unsigned int entsize,
6842 enum elf_target_id target_id)
6843 {
6844 bfd_boolean ret;
6845 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6846
6847 table->init_got_refcount.refcount = can_refcount - 1;
6848 table->init_plt_refcount.refcount = can_refcount - 1;
6849 table->init_got_offset.offset = -(bfd_vma) 1;
6850 table->init_plt_offset.offset = -(bfd_vma) 1;
6851 /* The first dynamic symbol is a dummy. */
6852 table->dynsymcount = 1;
6853
6854 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6855
6856 table->root.type = bfd_link_elf_hash_table;
6857 table->hash_table_id = target_id;
6858
6859 return ret;
6860 }
6861
6862 /* Create an ELF linker hash table. */
6863
6864 struct bfd_link_hash_table *
6865 _bfd_elf_link_hash_table_create (bfd *abfd)
6866 {
6867 struct elf_link_hash_table *ret;
6868 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6869
6870 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
6871 if (ret == NULL)
6872 return NULL;
6873
6874 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6875 sizeof (struct elf_link_hash_entry),
6876 GENERIC_ELF_DATA))
6877 {
6878 free (ret);
6879 return NULL;
6880 }
6881 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
6882
6883 return &ret->root;
6884 }
6885
6886 /* Destroy an ELF linker hash table. */
6887
6888 void
6889 _bfd_elf_link_hash_table_free (bfd *obfd)
6890 {
6891 struct elf_link_hash_table *htab;
6892
6893 htab = (struct elf_link_hash_table *) obfd->link.hash;
6894 if (htab->dynstr != NULL)
6895 _bfd_elf_strtab_free (htab->dynstr);
6896 _bfd_merge_sections_free (htab->merge_info);
6897 _bfd_generic_link_hash_table_free (obfd);
6898 }
6899
6900 /* This is a hook for the ELF emulation code in the generic linker to
6901 tell the backend linker what file name to use for the DT_NEEDED
6902 entry for a dynamic object. */
6903
6904 void
6905 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6906 {
6907 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6908 && bfd_get_format (abfd) == bfd_object)
6909 elf_dt_name (abfd) = name;
6910 }
6911
6912 int
6913 bfd_elf_get_dyn_lib_class (bfd *abfd)
6914 {
6915 int lib_class;
6916 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6917 && bfd_get_format (abfd) == bfd_object)
6918 lib_class = elf_dyn_lib_class (abfd);
6919 else
6920 lib_class = 0;
6921 return lib_class;
6922 }
6923
6924 void
6925 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6926 {
6927 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6928 && bfd_get_format (abfd) == bfd_object)
6929 elf_dyn_lib_class (abfd) = lib_class;
6930 }
6931
6932 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6933 the linker ELF emulation code. */
6934
6935 struct bfd_link_needed_list *
6936 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6937 struct bfd_link_info *info)
6938 {
6939 if (! is_elf_hash_table (info->hash))
6940 return NULL;
6941 return elf_hash_table (info)->needed;
6942 }
6943
6944 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6945 hook for the linker ELF emulation code. */
6946
6947 struct bfd_link_needed_list *
6948 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6949 struct bfd_link_info *info)
6950 {
6951 if (! is_elf_hash_table (info->hash))
6952 return NULL;
6953 return elf_hash_table (info)->runpath;
6954 }
6955
6956 /* Get the name actually used for a dynamic object for a link. This
6957 is the SONAME entry if there is one. Otherwise, it is the string
6958 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6959
6960 const char *
6961 bfd_elf_get_dt_soname (bfd *abfd)
6962 {
6963 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6964 && bfd_get_format (abfd) == bfd_object)
6965 return elf_dt_name (abfd);
6966 return NULL;
6967 }
6968
6969 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6970 the ELF linker emulation code. */
6971
6972 bfd_boolean
6973 bfd_elf_get_bfd_needed_list (bfd *abfd,
6974 struct bfd_link_needed_list **pneeded)
6975 {
6976 asection *s;
6977 bfd_byte *dynbuf = NULL;
6978 unsigned int elfsec;
6979 unsigned long shlink;
6980 bfd_byte *extdyn, *extdynend;
6981 size_t extdynsize;
6982 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6983
6984 *pneeded = NULL;
6985
6986 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6987 || bfd_get_format (abfd) != bfd_object)
6988 return TRUE;
6989
6990 s = bfd_get_section_by_name (abfd, ".dynamic");
6991 if (s == NULL || s->size == 0)
6992 return TRUE;
6993
6994 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6995 goto error_return;
6996
6997 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6998 if (elfsec == SHN_BAD)
6999 goto error_return;
7000
7001 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7002
7003 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7004 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7005
7006 extdyn = dynbuf;
7007 extdynend = extdyn + s->size;
7008 for (; extdyn < extdynend; extdyn += extdynsize)
7009 {
7010 Elf_Internal_Dyn dyn;
7011
7012 (*swap_dyn_in) (abfd, extdyn, &dyn);
7013
7014 if (dyn.d_tag == DT_NULL)
7015 break;
7016
7017 if (dyn.d_tag == DT_NEEDED)
7018 {
7019 const char *string;
7020 struct bfd_link_needed_list *l;
7021 unsigned int tagv = dyn.d_un.d_val;
7022 bfd_size_type amt;
7023
7024 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7025 if (string == NULL)
7026 goto error_return;
7027
7028 amt = sizeof *l;
7029 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7030 if (l == NULL)
7031 goto error_return;
7032
7033 l->by = abfd;
7034 l->name = string;
7035 l->next = *pneeded;
7036 *pneeded = l;
7037 }
7038 }
7039
7040 free (dynbuf);
7041
7042 return TRUE;
7043
7044 error_return:
7045 if (dynbuf != NULL)
7046 free (dynbuf);
7047 return FALSE;
7048 }
7049
7050 struct elf_symbuf_symbol
7051 {
7052 unsigned long st_name; /* Symbol name, index in string tbl */
7053 unsigned char st_info; /* Type and binding attributes */
7054 unsigned char st_other; /* Visibilty, and target specific */
7055 };
7056
7057 struct elf_symbuf_head
7058 {
7059 struct elf_symbuf_symbol *ssym;
7060 bfd_size_type count;
7061 unsigned int st_shndx;
7062 };
7063
7064 struct elf_symbol
7065 {
7066 union
7067 {
7068 Elf_Internal_Sym *isym;
7069 struct elf_symbuf_symbol *ssym;
7070 } u;
7071 const char *name;
7072 };
7073
7074 /* Sort references to symbols by ascending section number. */
7075
7076 static int
7077 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7078 {
7079 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7080 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7081
7082 return s1->st_shndx - s2->st_shndx;
7083 }
7084
7085 static int
7086 elf_sym_name_compare (const void *arg1, const void *arg2)
7087 {
7088 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7089 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7090 return strcmp (s1->name, s2->name);
7091 }
7092
7093 static struct elf_symbuf_head *
7094 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7095 {
7096 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7097 struct elf_symbuf_symbol *ssym;
7098 struct elf_symbuf_head *ssymbuf, *ssymhead;
7099 bfd_size_type i, shndx_count, total_size;
7100
7101 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7102 if (indbuf == NULL)
7103 return NULL;
7104
7105 for (ind = indbuf, i = 0; i < symcount; i++)
7106 if (isymbuf[i].st_shndx != SHN_UNDEF)
7107 *ind++ = &isymbuf[i];
7108 indbufend = ind;
7109
7110 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7111 elf_sort_elf_symbol);
7112
7113 shndx_count = 0;
7114 if (indbufend > indbuf)
7115 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7116 if (ind[0]->st_shndx != ind[1]->st_shndx)
7117 shndx_count++;
7118
7119 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7120 + (indbufend - indbuf) * sizeof (*ssym));
7121 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7122 if (ssymbuf == NULL)
7123 {
7124 free (indbuf);
7125 return NULL;
7126 }
7127
7128 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7129 ssymbuf->ssym = NULL;
7130 ssymbuf->count = shndx_count;
7131 ssymbuf->st_shndx = 0;
7132 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7133 {
7134 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7135 {
7136 ssymhead++;
7137 ssymhead->ssym = ssym;
7138 ssymhead->count = 0;
7139 ssymhead->st_shndx = (*ind)->st_shndx;
7140 }
7141 ssym->st_name = (*ind)->st_name;
7142 ssym->st_info = (*ind)->st_info;
7143 ssym->st_other = (*ind)->st_other;
7144 ssymhead->count++;
7145 }
7146 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7147 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7148 == total_size));
7149
7150 free (indbuf);
7151 return ssymbuf;
7152 }
7153
7154 /* Check if 2 sections define the same set of local and global
7155 symbols. */
7156
7157 static bfd_boolean
7158 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7159 struct bfd_link_info *info)
7160 {
7161 bfd *bfd1, *bfd2;
7162 const struct elf_backend_data *bed1, *bed2;
7163 Elf_Internal_Shdr *hdr1, *hdr2;
7164 bfd_size_type symcount1, symcount2;
7165 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7166 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7167 Elf_Internal_Sym *isym, *isymend;
7168 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7169 bfd_size_type count1, count2, i;
7170 unsigned int shndx1, shndx2;
7171 bfd_boolean result;
7172
7173 bfd1 = sec1->owner;
7174 bfd2 = sec2->owner;
7175
7176 /* Both sections have to be in ELF. */
7177 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7178 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7179 return FALSE;
7180
7181 if (elf_section_type (sec1) != elf_section_type (sec2))
7182 return FALSE;
7183
7184 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7185 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7186 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7187 return FALSE;
7188
7189 bed1 = get_elf_backend_data (bfd1);
7190 bed2 = get_elf_backend_data (bfd2);
7191 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7192 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7193 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7194 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7195
7196 if (symcount1 == 0 || symcount2 == 0)
7197 return FALSE;
7198
7199 result = FALSE;
7200 isymbuf1 = NULL;
7201 isymbuf2 = NULL;
7202 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7203 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7204
7205 if (ssymbuf1 == NULL)
7206 {
7207 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7208 NULL, NULL, NULL);
7209 if (isymbuf1 == NULL)
7210 goto done;
7211
7212 if (!info->reduce_memory_overheads)
7213 elf_tdata (bfd1)->symbuf = ssymbuf1
7214 = elf_create_symbuf (symcount1, isymbuf1);
7215 }
7216
7217 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7218 {
7219 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7220 NULL, NULL, NULL);
7221 if (isymbuf2 == NULL)
7222 goto done;
7223
7224 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7225 elf_tdata (bfd2)->symbuf = ssymbuf2
7226 = elf_create_symbuf (symcount2, isymbuf2);
7227 }
7228
7229 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7230 {
7231 /* Optimized faster version. */
7232 bfd_size_type lo, hi, mid;
7233 struct elf_symbol *symp;
7234 struct elf_symbuf_symbol *ssym, *ssymend;
7235
7236 lo = 0;
7237 hi = ssymbuf1->count;
7238 ssymbuf1++;
7239 count1 = 0;
7240 while (lo < hi)
7241 {
7242 mid = (lo + hi) / 2;
7243 if (shndx1 < ssymbuf1[mid].st_shndx)
7244 hi = mid;
7245 else if (shndx1 > ssymbuf1[mid].st_shndx)
7246 lo = mid + 1;
7247 else
7248 {
7249 count1 = ssymbuf1[mid].count;
7250 ssymbuf1 += mid;
7251 break;
7252 }
7253 }
7254
7255 lo = 0;
7256 hi = ssymbuf2->count;
7257 ssymbuf2++;
7258 count2 = 0;
7259 while (lo < hi)
7260 {
7261 mid = (lo + hi) / 2;
7262 if (shndx2 < ssymbuf2[mid].st_shndx)
7263 hi = mid;
7264 else if (shndx2 > ssymbuf2[mid].st_shndx)
7265 lo = mid + 1;
7266 else
7267 {
7268 count2 = ssymbuf2[mid].count;
7269 ssymbuf2 += mid;
7270 break;
7271 }
7272 }
7273
7274 if (count1 == 0 || count2 == 0 || count1 != count2)
7275 goto done;
7276
7277 symtable1
7278 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7279 symtable2
7280 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7281 if (symtable1 == NULL || symtable2 == NULL)
7282 goto done;
7283
7284 symp = symtable1;
7285 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7286 ssym < ssymend; ssym++, symp++)
7287 {
7288 symp->u.ssym = ssym;
7289 symp->name = bfd_elf_string_from_elf_section (bfd1,
7290 hdr1->sh_link,
7291 ssym->st_name);
7292 }
7293
7294 symp = symtable2;
7295 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7296 ssym < ssymend; ssym++, symp++)
7297 {
7298 symp->u.ssym = ssym;
7299 symp->name = bfd_elf_string_from_elf_section (bfd2,
7300 hdr2->sh_link,
7301 ssym->st_name);
7302 }
7303
7304 /* Sort symbol by name. */
7305 qsort (symtable1, count1, sizeof (struct elf_symbol),
7306 elf_sym_name_compare);
7307 qsort (symtable2, count1, sizeof (struct elf_symbol),
7308 elf_sym_name_compare);
7309
7310 for (i = 0; i < count1; i++)
7311 /* Two symbols must have the same binding, type and name. */
7312 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7313 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7314 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7315 goto done;
7316
7317 result = TRUE;
7318 goto done;
7319 }
7320
7321 symtable1 = (struct elf_symbol *)
7322 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7323 symtable2 = (struct elf_symbol *)
7324 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7325 if (symtable1 == NULL || symtable2 == NULL)
7326 goto done;
7327
7328 /* Count definitions in the section. */
7329 count1 = 0;
7330 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7331 if (isym->st_shndx == shndx1)
7332 symtable1[count1++].u.isym = isym;
7333
7334 count2 = 0;
7335 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7336 if (isym->st_shndx == shndx2)
7337 symtable2[count2++].u.isym = isym;
7338
7339 if (count1 == 0 || count2 == 0 || count1 != count2)
7340 goto done;
7341
7342 for (i = 0; i < count1; i++)
7343 symtable1[i].name
7344 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7345 symtable1[i].u.isym->st_name);
7346
7347 for (i = 0; i < count2; i++)
7348 symtable2[i].name
7349 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7350 symtable2[i].u.isym->st_name);
7351
7352 /* Sort symbol by name. */
7353 qsort (symtable1, count1, sizeof (struct elf_symbol),
7354 elf_sym_name_compare);
7355 qsort (symtable2, count1, sizeof (struct elf_symbol),
7356 elf_sym_name_compare);
7357
7358 for (i = 0; i < count1; i++)
7359 /* Two symbols must have the same binding, type and name. */
7360 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7361 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7362 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7363 goto done;
7364
7365 result = TRUE;
7366
7367 done:
7368 if (symtable1)
7369 free (symtable1);
7370 if (symtable2)
7371 free (symtable2);
7372 if (isymbuf1)
7373 free (isymbuf1);
7374 if (isymbuf2)
7375 free (isymbuf2);
7376
7377 return result;
7378 }
7379
7380 /* Return TRUE if 2 section types are compatible. */
7381
7382 bfd_boolean
7383 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7384 bfd *bbfd, const asection *bsec)
7385 {
7386 if (asec == NULL
7387 || bsec == NULL
7388 || abfd->xvec->flavour != bfd_target_elf_flavour
7389 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7390 return TRUE;
7391
7392 return elf_section_type (asec) == elf_section_type (bsec);
7393 }
7394 \f
7395 /* Final phase of ELF linker. */
7396
7397 /* A structure we use to avoid passing large numbers of arguments. */
7398
7399 struct elf_final_link_info
7400 {
7401 /* General link information. */
7402 struct bfd_link_info *info;
7403 /* Output BFD. */
7404 bfd *output_bfd;
7405 /* Symbol string table. */
7406 struct bfd_strtab_hash *symstrtab;
7407 /* .dynsym section. */
7408 asection *dynsym_sec;
7409 /* .hash section. */
7410 asection *hash_sec;
7411 /* symbol version section (.gnu.version). */
7412 asection *symver_sec;
7413 /* Buffer large enough to hold contents of any section. */
7414 bfd_byte *contents;
7415 /* Buffer large enough to hold external relocs of any section. */
7416 void *external_relocs;
7417 /* Buffer large enough to hold internal relocs of any section. */
7418 Elf_Internal_Rela *internal_relocs;
7419 /* Buffer large enough to hold external local symbols of any input
7420 BFD. */
7421 bfd_byte *external_syms;
7422 /* And a buffer for symbol section indices. */
7423 Elf_External_Sym_Shndx *locsym_shndx;
7424 /* Buffer large enough to hold internal local symbols of any input
7425 BFD. */
7426 Elf_Internal_Sym *internal_syms;
7427 /* Array large enough to hold a symbol index for each local symbol
7428 of any input BFD. */
7429 long *indices;
7430 /* Array large enough to hold a section pointer for each local
7431 symbol of any input BFD. */
7432 asection **sections;
7433 /* Buffer to hold swapped out symbols. */
7434 bfd_byte *symbuf;
7435 /* And one for symbol section indices. */
7436 Elf_External_Sym_Shndx *symshndxbuf;
7437 /* Number of swapped out symbols in buffer. */
7438 size_t symbuf_count;
7439 /* Number of symbols which fit in symbuf. */
7440 size_t symbuf_size;
7441 /* And same for symshndxbuf. */
7442 size_t shndxbuf_size;
7443 /* Number of STT_FILE syms seen. */
7444 size_t filesym_count;
7445 };
7446
7447 /* This struct is used to pass information to elf_link_output_extsym. */
7448
7449 struct elf_outext_info
7450 {
7451 bfd_boolean failed;
7452 bfd_boolean localsyms;
7453 bfd_boolean file_sym_done;
7454 struct elf_final_link_info *flinfo;
7455 };
7456
7457
7458 /* Support for evaluating a complex relocation.
7459
7460 Complex relocations are generalized, self-describing relocations. The
7461 implementation of them consists of two parts: complex symbols, and the
7462 relocations themselves.
7463
7464 The relocations are use a reserved elf-wide relocation type code (R_RELC
7465 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7466 information (start bit, end bit, word width, etc) into the addend. This
7467 information is extracted from CGEN-generated operand tables within gas.
7468
7469 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7470 internal) representing prefix-notation expressions, including but not
7471 limited to those sorts of expressions normally encoded as addends in the
7472 addend field. The symbol mangling format is:
7473
7474 <node> := <literal>
7475 | <unary-operator> ':' <node>
7476 | <binary-operator> ':' <node> ':' <node>
7477 ;
7478
7479 <literal> := 's' <digits=N> ':' <N character symbol name>
7480 | 'S' <digits=N> ':' <N character section name>
7481 | '#' <hexdigits>
7482 ;
7483
7484 <binary-operator> := as in C
7485 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7486
7487 static void
7488 set_symbol_value (bfd *bfd_with_globals,
7489 Elf_Internal_Sym *isymbuf,
7490 size_t locsymcount,
7491 size_t symidx,
7492 bfd_vma val)
7493 {
7494 struct elf_link_hash_entry **sym_hashes;
7495 struct elf_link_hash_entry *h;
7496 size_t extsymoff = locsymcount;
7497
7498 if (symidx < locsymcount)
7499 {
7500 Elf_Internal_Sym *sym;
7501
7502 sym = isymbuf + symidx;
7503 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7504 {
7505 /* It is a local symbol: move it to the
7506 "absolute" section and give it a value. */
7507 sym->st_shndx = SHN_ABS;
7508 sym->st_value = val;
7509 return;
7510 }
7511 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7512 extsymoff = 0;
7513 }
7514
7515 /* It is a global symbol: set its link type
7516 to "defined" and give it a value. */
7517
7518 sym_hashes = elf_sym_hashes (bfd_with_globals);
7519 h = sym_hashes [symidx - extsymoff];
7520 while (h->root.type == bfd_link_hash_indirect
7521 || h->root.type == bfd_link_hash_warning)
7522 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7523 h->root.type = bfd_link_hash_defined;
7524 h->root.u.def.value = val;
7525 h->root.u.def.section = bfd_abs_section_ptr;
7526 }
7527
7528 static bfd_boolean
7529 resolve_symbol (const char *name,
7530 bfd *input_bfd,
7531 struct elf_final_link_info *flinfo,
7532 bfd_vma *result,
7533 Elf_Internal_Sym *isymbuf,
7534 size_t locsymcount)
7535 {
7536 Elf_Internal_Sym *sym;
7537 struct bfd_link_hash_entry *global_entry;
7538 const char *candidate = NULL;
7539 Elf_Internal_Shdr *symtab_hdr;
7540 size_t i;
7541
7542 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7543
7544 for (i = 0; i < locsymcount; ++ i)
7545 {
7546 sym = isymbuf + i;
7547
7548 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7549 continue;
7550
7551 candidate = bfd_elf_string_from_elf_section (input_bfd,
7552 symtab_hdr->sh_link,
7553 sym->st_name);
7554 #ifdef DEBUG
7555 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7556 name, candidate, (unsigned long) sym->st_value);
7557 #endif
7558 if (candidate && strcmp (candidate, name) == 0)
7559 {
7560 asection *sec = flinfo->sections [i];
7561
7562 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7563 *result += sec->output_offset + sec->output_section->vma;
7564 #ifdef DEBUG
7565 printf ("Found symbol with value %8.8lx\n",
7566 (unsigned long) *result);
7567 #endif
7568 return TRUE;
7569 }
7570 }
7571
7572 /* Hmm, haven't found it yet. perhaps it is a global. */
7573 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7574 FALSE, FALSE, TRUE);
7575 if (!global_entry)
7576 return FALSE;
7577
7578 if (global_entry->type == bfd_link_hash_defined
7579 || global_entry->type == bfd_link_hash_defweak)
7580 {
7581 *result = (global_entry->u.def.value
7582 + global_entry->u.def.section->output_section->vma
7583 + global_entry->u.def.section->output_offset);
7584 #ifdef DEBUG
7585 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7586 global_entry->root.string, (unsigned long) *result);
7587 #endif
7588 return TRUE;
7589 }
7590
7591 return FALSE;
7592 }
7593
7594 static bfd_boolean
7595 resolve_section (const char *name,
7596 asection *sections,
7597 bfd_vma *result)
7598 {
7599 asection *curr;
7600 unsigned int len;
7601
7602 for (curr = sections; curr; curr = curr->next)
7603 if (strcmp (curr->name, name) == 0)
7604 {
7605 *result = curr->vma;
7606 return TRUE;
7607 }
7608
7609 /* Hmm. still haven't found it. try pseudo-section names. */
7610 for (curr = sections; curr; curr = curr->next)
7611 {
7612 len = strlen (curr->name);
7613 if (len > strlen (name))
7614 continue;
7615
7616 if (strncmp (curr->name, name, len) == 0)
7617 {
7618 if (strncmp (".end", name + len, 4) == 0)
7619 {
7620 *result = curr->vma + curr->size;
7621 return TRUE;
7622 }
7623
7624 /* Insert more pseudo-section names here, if you like. */
7625 }
7626 }
7627
7628 return FALSE;
7629 }
7630
7631 static void
7632 undefined_reference (const char *reftype, const char *name)
7633 {
7634 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7635 reftype, name);
7636 }
7637
7638 static bfd_boolean
7639 eval_symbol (bfd_vma *result,
7640 const char **symp,
7641 bfd *input_bfd,
7642 struct elf_final_link_info *flinfo,
7643 bfd_vma dot,
7644 Elf_Internal_Sym *isymbuf,
7645 size_t locsymcount,
7646 int signed_p)
7647 {
7648 size_t len;
7649 size_t symlen;
7650 bfd_vma a;
7651 bfd_vma b;
7652 char symbuf[4096];
7653 const char *sym = *symp;
7654 const char *symend;
7655 bfd_boolean symbol_is_section = FALSE;
7656
7657 len = strlen (sym);
7658 symend = sym + len;
7659
7660 if (len < 1 || len > sizeof (symbuf))
7661 {
7662 bfd_set_error (bfd_error_invalid_operation);
7663 return FALSE;
7664 }
7665
7666 switch (* sym)
7667 {
7668 case '.':
7669 *result = dot;
7670 *symp = sym + 1;
7671 return TRUE;
7672
7673 case '#':
7674 ++sym;
7675 *result = strtoul (sym, (char **) symp, 16);
7676 return TRUE;
7677
7678 case 'S':
7679 symbol_is_section = TRUE;
7680 case 's':
7681 ++sym;
7682 symlen = strtol (sym, (char **) symp, 10);
7683 sym = *symp + 1; /* Skip the trailing ':'. */
7684
7685 if (symend < sym || symlen + 1 > sizeof (symbuf))
7686 {
7687 bfd_set_error (bfd_error_invalid_operation);
7688 return FALSE;
7689 }
7690
7691 memcpy (symbuf, sym, symlen);
7692 symbuf[symlen] = '\0';
7693 *symp = sym + symlen;
7694
7695 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7696 the symbol as a section, or vice-versa. so we're pretty liberal in our
7697 interpretation here; section means "try section first", not "must be a
7698 section", and likewise with symbol. */
7699
7700 if (symbol_is_section)
7701 {
7702 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7703 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7704 isymbuf, locsymcount))
7705 {
7706 undefined_reference ("section", symbuf);
7707 return FALSE;
7708 }
7709 }
7710 else
7711 {
7712 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7713 isymbuf, locsymcount)
7714 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7715 result))
7716 {
7717 undefined_reference ("symbol", symbuf);
7718 return FALSE;
7719 }
7720 }
7721
7722 return TRUE;
7723
7724 /* All that remains are operators. */
7725
7726 #define UNARY_OP(op) \
7727 if (strncmp (sym, #op, strlen (#op)) == 0) \
7728 { \
7729 sym += strlen (#op); \
7730 if (*sym == ':') \
7731 ++sym; \
7732 *symp = sym; \
7733 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7734 isymbuf, locsymcount, signed_p)) \
7735 return FALSE; \
7736 if (signed_p) \
7737 *result = op ((bfd_signed_vma) a); \
7738 else \
7739 *result = op a; \
7740 return TRUE; \
7741 }
7742
7743 #define BINARY_OP(op) \
7744 if (strncmp (sym, #op, strlen (#op)) == 0) \
7745 { \
7746 sym += strlen (#op); \
7747 if (*sym == ':') \
7748 ++sym; \
7749 *symp = sym; \
7750 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7751 isymbuf, locsymcount, signed_p)) \
7752 return FALSE; \
7753 ++*symp; \
7754 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7755 isymbuf, locsymcount, signed_p)) \
7756 return FALSE; \
7757 if (signed_p) \
7758 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7759 else \
7760 *result = a op b; \
7761 return TRUE; \
7762 }
7763
7764 default:
7765 UNARY_OP (0-);
7766 BINARY_OP (<<);
7767 BINARY_OP (>>);
7768 BINARY_OP (==);
7769 BINARY_OP (!=);
7770 BINARY_OP (<=);
7771 BINARY_OP (>=);
7772 BINARY_OP (&&);
7773 BINARY_OP (||);
7774 UNARY_OP (~);
7775 UNARY_OP (!);
7776 BINARY_OP (*);
7777 BINARY_OP (/);
7778 BINARY_OP (%);
7779 BINARY_OP (^);
7780 BINARY_OP (|);
7781 BINARY_OP (&);
7782 BINARY_OP (+);
7783 BINARY_OP (-);
7784 BINARY_OP (<);
7785 BINARY_OP (>);
7786 #undef UNARY_OP
7787 #undef BINARY_OP
7788 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7789 bfd_set_error (bfd_error_invalid_operation);
7790 return FALSE;
7791 }
7792 }
7793
7794 static void
7795 put_value (bfd_vma size,
7796 unsigned long chunksz,
7797 bfd *input_bfd,
7798 bfd_vma x,
7799 bfd_byte *location)
7800 {
7801 location += (size - chunksz);
7802
7803 for (; size; size -= chunksz, location -= chunksz)
7804 {
7805 switch (chunksz)
7806 {
7807 case 1:
7808 bfd_put_8 (input_bfd, x, location);
7809 x >>= 8;
7810 break;
7811 case 2:
7812 bfd_put_16 (input_bfd, x, location);
7813 x >>= 16;
7814 break;
7815 case 4:
7816 bfd_put_32 (input_bfd, x, location);
7817 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
7818 x >>= 16;
7819 x >>= 16;
7820 break;
7821 #ifdef BFD64
7822 case 8:
7823 bfd_put_64 (input_bfd, x, location);
7824 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
7825 x >>= 32;
7826 x >>= 32;
7827 break;
7828 #endif
7829 default:
7830 abort ();
7831 break;
7832 }
7833 }
7834 }
7835
7836 static bfd_vma
7837 get_value (bfd_vma size,
7838 unsigned long chunksz,
7839 bfd *input_bfd,
7840 bfd_byte *location)
7841 {
7842 int shift;
7843 bfd_vma x = 0;
7844
7845 /* Sanity checks. */
7846 BFD_ASSERT (chunksz <= sizeof (x)
7847 && size >= chunksz
7848 && chunksz != 0
7849 && (size % chunksz) == 0
7850 && input_bfd != NULL
7851 && location != NULL);
7852
7853 if (chunksz == sizeof (x))
7854 {
7855 BFD_ASSERT (size == chunksz);
7856
7857 /* Make sure that we do not perform an undefined shift operation.
7858 We know that size == chunksz so there will only be one iteration
7859 of the loop below. */
7860 shift = 0;
7861 }
7862 else
7863 shift = 8 * chunksz;
7864
7865 for (; size; size -= chunksz, location += chunksz)
7866 {
7867 switch (chunksz)
7868 {
7869 case 1:
7870 x = (x << shift) | bfd_get_8 (input_bfd, location);
7871 break;
7872 case 2:
7873 x = (x << shift) | bfd_get_16 (input_bfd, location);
7874 break;
7875 case 4:
7876 x = (x << shift) | bfd_get_32 (input_bfd, location);
7877 break;
7878 #ifdef BFD64
7879 case 8:
7880 x = (x << shift) | bfd_get_64 (input_bfd, location);
7881 break;
7882 #endif
7883 default:
7884 abort ();
7885 }
7886 }
7887 return x;
7888 }
7889
7890 static void
7891 decode_complex_addend (unsigned long *start, /* in bits */
7892 unsigned long *oplen, /* in bits */
7893 unsigned long *len, /* in bits */
7894 unsigned long *wordsz, /* in bytes */
7895 unsigned long *chunksz, /* in bytes */
7896 unsigned long *lsb0_p,
7897 unsigned long *signed_p,
7898 unsigned long *trunc_p,
7899 unsigned long encoded)
7900 {
7901 * start = encoded & 0x3F;
7902 * len = (encoded >> 6) & 0x3F;
7903 * oplen = (encoded >> 12) & 0x3F;
7904 * wordsz = (encoded >> 18) & 0xF;
7905 * chunksz = (encoded >> 22) & 0xF;
7906 * lsb0_p = (encoded >> 27) & 1;
7907 * signed_p = (encoded >> 28) & 1;
7908 * trunc_p = (encoded >> 29) & 1;
7909 }
7910
7911 bfd_reloc_status_type
7912 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7913 asection *input_section ATTRIBUTE_UNUSED,
7914 bfd_byte *contents,
7915 Elf_Internal_Rela *rel,
7916 bfd_vma relocation)
7917 {
7918 bfd_vma shift, x, mask;
7919 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7920 bfd_reloc_status_type r;
7921
7922 /* Perform this reloc, since it is complex.
7923 (this is not to say that it necessarily refers to a complex
7924 symbol; merely that it is a self-describing CGEN based reloc.
7925 i.e. the addend has the complete reloc information (bit start, end,
7926 word size, etc) encoded within it.). */
7927
7928 decode_complex_addend (&start, &oplen, &len, &wordsz,
7929 &chunksz, &lsb0_p, &signed_p,
7930 &trunc_p, rel->r_addend);
7931
7932 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7933
7934 if (lsb0_p)
7935 shift = (start + 1) - len;
7936 else
7937 shift = (8 * wordsz) - (start + len);
7938
7939 /* FIXME: octets_per_byte. */
7940 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7941
7942 #ifdef DEBUG
7943 printf ("Doing complex reloc: "
7944 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7945 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7946 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7947 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7948 oplen, (unsigned long) x, (unsigned long) mask,
7949 (unsigned long) relocation);
7950 #endif
7951
7952 r = bfd_reloc_ok;
7953 if (! trunc_p)
7954 /* Now do an overflow check. */
7955 r = bfd_check_overflow ((signed_p
7956 ? complain_overflow_signed
7957 : complain_overflow_unsigned),
7958 len, 0, (8 * wordsz),
7959 relocation);
7960
7961 /* Do the deed. */
7962 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7963
7964 #ifdef DEBUG
7965 printf (" relocation: %8.8lx\n"
7966 " shifted mask: %8.8lx\n"
7967 " shifted/masked reloc: %8.8lx\n"
7968 " result: %8.8lx\n",
7969 (unsigned long) relocation, (unsigned long) (mask << shift),
7970 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7971 #endif
7972 /* FIXME: octets_per_byte. */
7973 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7974 return r;
7975 }
7976
7977 /* qsort comparison functions sorting external relocs by r_offset. */
7978
7979 static int
7980 cmp_ext32l_r_offset (const void *p, const void *q)
7981 {
7982 union aligned32
7983 {
7984 uint32_t v;
7985 unsigned char c[4];
7986 };
7987 const union aligned32 *a
7988 = (const union aligned32 *) ((const Elf32_External_Rel *) p)->r_offset;
7989 const union aligned32 *b
7990 = (const union aligned32 *) ((const Elf32_External_Rel *) q)->r_offset;
7991
7992 uint32_t aval = ( (uint32_t) a->c[0]
7993 | (uint32_t) a->c[1] << 8
7994 | (uint32_t) a->c[2] << 16
7995 | (uint32_t) a->c[3] << 24);
7996 uint32_t bval = ( (uint32_t) b->c[0]
7997 | (uint32_t) b->c[1] << 8
7998 | (uint32_t) b->c[2] << 16
7999 | (uint32_t) b->c[3] << 24);
8000 if (aval < bval)
8001 return -1;
8002 else if (aval > bval)
8003 return 1;
8004 return 0;
8005 }
8006
8007 static int
8008 cmp_ext32b_r_offset (const void *p, const void *q)
8009 {
8010 union aligned32
8011 {
8012 uint32_t v;
8013 unsigned char c[4];
8014 };
8015 const union aligned32 *a
8016 = (const union aligned32 *) ((const Elf32_External_Rel *) p)->r_offset;
8017 const union aligned32 *b
8018 = (const union aligned32 *) ((const Elf32_External_Rel *) q)->r_offset;
8019
8020 uint32_t aval = ( (uint32_t) a->c[0] << 24
8021 | (uint32_t) a->c[1] << 16
8022 | (uint32_t) a->c[2] << 8
8023 | (uint32_t) a->c[3]);
8024 uint32_t bval = ( (uint32_t) b->c[0] << 24
8025 | (uint32_t) b->c[1] << 16
8026 | (uint32_t) b->c[2] << 8
8027 | (uint32_t) b->c[3]);
8028 if (aval < bval)
8029 return -1;
8030 else if (aval > bval)
8031 return 1;
8032 return 0;
8033 }
8034
8035 #ifdef BFD_HOST_64_BIT
8036 static int
8037 cmp_ext64l_r_offset (const void *p, const void *q)
8038 {
8039 union aligned64
8040 {
8041 uint64_t v;
8042 unsigned char c[8];
8043 };
8044 const union aligned64 *a
8045 = (const union aligned64 *) ((const Elf64_External_Rel *) p)->r_offset;
8046 const union aligned64 *b
8047 = (const union aligned64 *) ((const Elf64_External_Rel *) q)->r_offset;
8048
8049 uint64_t aval = ( (uint64_t) a->c[0]
8050 | (uint64_t) a->c[1] << 8
8051 | (uint64_t) a->c[2] << 16
8052 | (uint64_t) a->c[3] << 24
8053 | (uint64_t) a->c[4] << 32
8054 | (uint64_t) a->c[5] << 40
8055 | (uint64_t) a->c[6] << 48
8056 | (uint64_t) a->c[7] << 56);
8057 uint64_t bval = ( (uint64_t) b->c[0]
8058 | (uint64_t) b->c[1] << 8
8059 | (uint64_t) b->c[2] << 16
8060 | (uint64_t) b->c[3] << 24
8061 | (uint64_t) b->c[4] << 32
8062 | (uint64_t) b->c[5] << 40
8063 | (uint64_t) b->c[6] << 48
8064 | (uint64_t) b->c[7] << 56);
8065 if (aval < bval)
8066 return -1;
8067 else if (aval > bval)
8068 return 1;
8069 return 0;
8070 }
8071
8072 static int
8073 cmp_ext64b_r_offset (const void *p, const void *q)
8074 {
8075 union aligned64
8076 {
8077 uint64_t v;
8078 unsigned char c[8];
8079 };
8080 const union aligned64 *a
8081 = (const union aligned64 *) ((const Elf64_External_Rel *) p)->r_offset;
8082 const union aligned64 *b
8083 = (const union aligned64 *) ((const Elf64_External_Rel *) q)->r_offset;
8084
8085 uint64_t aval = ( (uint64_t) a->c[0] << 56
8086 | (uint64_t) a->c[1] << 48
8087 | (uint64_t) a->c[2] << 40
8088 | (uint64_t) a->c[3] << 32
8089 | (uint64_t) a->c[4] << 24
8090 | (uint64_t) a->c[5] << 16
8091 | (uint64_t) a->c[6] << 8
8092 | (uint64_t) a->c[7]);
8093 uint64_t bval = ( (uint64_t) b->c[0] << 56
8094 | (uint64_t) b->c[1] << 48
8095 | (uint64_t) b->c[2] << 40
8096 | (uint64_t) b->c[3] << 32
8097 | (uint64_t) b->c[4] << 24
8098 | (uint64_t) b->c[5] << 16
8099 | (uint64_t) b->c[6] << 8
8100 | (uint64_t) b->c[7]);
8101 if (aval < bval)
8102 return -1;
8103 else if (aval > bval)
8104 return 1;
8105 return 0;
8106 }
8107 #endif
8108
8109 /* When performing a relocatable link, the input relocations are
8110 preserved. But, if they reference global symbols, the indices
8111 referenced must be updated. Update all the relocations found in
8112 RELDATA. */
8113
8114 static void
8115 elf_link_adjust_relocs (bfd *abfd,
8116 struct bfd_elf_section_reloc_data *reldata,
8117 bfd_boolean sort)
8118 {
8119 unsigned int i;
8120 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8121 bfd_byte *erela;
8122 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8123 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8124 bfd_vma r_type_mask;
8125 int r_sym_shift;
8126 unsigned int count = reldata->count;
8127 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8128
8129 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8130 {
8131 swap_in = bed->s->swap_reloc_in;
8132 swap_out = bed->s->swap_reloc_out;
8133 }
8134 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8135 {
8136 swap_in = bed->s->swap_reloca_in;
8137 swap_out = bed->s->swap_reloca_out;
8138 }
8139 else
8140 abort ();
8141
8142 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8143 abort ();
8144
8145 if (bed->s->arch_size == 32)
8146 {
8147 r_type_mask = 0xff;
8148 r_sym_shift = 8;
8149 }
8150 else
8151 {
8152 r_type_mask = 0xffffffff;
8153 r_sym_shift = 32;
8154 }
8155
8156 erela = reldata->hdr->contents;
8157 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8158 {
8159 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8160 unsigned int j;
8161
8162 if (*rel_hash == NULL)
8163 continue;
8164
8165 BFD_ASSERT ((*rel_hash)->indx >= 0);
8166
8167 (*swap_in) (abfd, erela, irela);
8168 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8169 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8170 | (irela[j].r_info & r_type_mask));
8171 (*swap_out) (abfd, irela, erela);
8172 }
8173
8174 if (sort)
8175 {
8176 int (*compare) (const void *, const void *);
8177
8178 if (bed->s->arch_size == 32)
8179 {
8180 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8181 compare = cmp_ext32l_r_offset;
8182 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8183 compare = cmp_ext32b_r_offset;
8184 else
8185 abort ();
8186 }
8187 else
8188 {
8189 #ifdef BFD_HOST_64_BIT
8190 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8191 compare = cmp_ext64l_r_offset;
8192 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8193 compare = cmp_ext64b_r_offset;
8194 else
8195 #endif
8196 abort ();
8197 }
8198 qsort (reldata->hdr->contents, count, reldata->hdr->sh_entsize, compare);
8199 free (reldata->hashes);
8200 reldata->hashes = NULL;
8201 }
8202 }
8203
8204 struct elf_link_sort_rela
8205 {
8206 union {
8207 bfd_vma offset;
8208 bfd_vma sym_mask;
8209 } u;
8210 enum elf_reloc_type_class type;
8211 /* We use this as an array of size int_rels_per_ext_rel. */
8212 Elf_Internal_Rela rela[1];
8213 };
8214
8215 static int
8216 elf_link_sort_cmp1 (const void *A, const void *B)
8217 {
8218 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8219 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8220 int relativea, relativeb;
8221
8222 relativea = a->type == reloc_class_relative;
8223 relativeb = b->type == reloc_class_relative;
8224
8225 if (relativea < relativeb)
8226 return 1;
8227 if (relativea > relativeb)
8228 return -1;
8229 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8230 return -1;
8231 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8232 return 1;
8233 if (a->rela->r_offset < b->rela->r_offset)
8234 return -1;
8235 if (a->rela->r_offset > b->rela->r_offset)
8236 return 1;
8237 return 0;
8238 }
8239
8240 static int
8241 elf_link_sort_cmp2 (const void *A, const void *B)
8242 {
8243 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8244 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8245
8246 if (a->type < b->type)
8247 return -1;
8248 if (a->type > b->type)
8249 return 1;
8250 if (a->u.offset < b->u.offset)
8251 return -1;
8252 if (a->u.offset > b->u.offset)
8253 return 1;
8254 if (a->rela->r_offset < b->rela->r_offset)
8255 return -1;
8256 if (a->rela->r_offset > b->rela->r_offset)
8257 return 1;
8258 return 0;
8259 }
8260
8261 static size_t
8262 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8263 {
8264 asection *dynamic_relocs;
8265 asection *rela_dyn;
8266 asection *rel_dyn;
8267 bfd_size_type count, size;
8268 size_t i, ret, sort_elt, ext_size;
8269 bfd_byte *sort, *s_non_relative, *p;
8270 struct elf_link_sort_rela *sq;
8271 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8272 int i2e = bed->s->int_rels_per_ext_rel;
8273 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8274 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8275 struct bfd_link_order *lo;
8276 bfd_vma r_sym_mask;
8277 bfd_boolean use_rela;
8278
8279 /* Find a dynamic reloc section. */
8280 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8281 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8282 if (rela_dyn != NULL && rela_dyn->size > 0
8283 && rel_dyn != NULL && rel_dyn->size > 0)
8284 {
8285 bfd_boolean use_rela_initialised = FALSE;
8286
8287 /* This is just here to stop gcc from complaining.
8288 It's initialization checking code is not perfect. */
8289 use_rela = TRUE;
8290
8291 /* Both sections are present. Examine the sizes
8292 of the indirect sections to help us choose. */
8293 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8294 if (lo->type == bfd_indirect_link_order)
8295 {
8296 asection *o = lo->u.indirect.section;
8297
8298 if ((o->size % bed->s->sizeof_rela) == 0)
8299 {
8300 if ((o->size % bed->s->sizeof_rel) == 0)
8301 /* Section size is divisible by both rel and rela sizes.
8302 It is of no help to us. */
8303 ;
8304 else
8305 {
8306 /* Section size is only divisible by rela. */
8307 if (use_rela_initialised && (use_rela == FALSE))
8308 {
8309 _bfd_error_handler
8310 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8311 bfd_set_error (bfd_error_invalid_operation);
8312 return 0;
8313 }
8314 else
8315 {
8316 use_rela = TRUE;
8317 use_rela_initialised = TRUE;
8318 }
8319 }
8320 }
8321 else if ((o->size % bed->s->sizeof_rel) == 0)
8322 {
8323 /* Section size is only divisible by rel. */
8324 if (use_rela_initialised && (use_rela == TRUE))
8325 {
8326 _bfd_error_handler
8327 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8328 bfd_set_error (bfd_error_invalid_operation);
8329 return 0;
8330 }
8331 else
8332 {
8333 use_rela = FALSE;
8334 use_rela_initialised = TRUE;
8335 }
8336 }
8337 else
8338 {
8339 /* The section size is not divisible by either - something is wrong. */
8340 _bfd_error_handler
8341 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8342 bfd_set_error (bfd_error_invalid_operation);
8343 return 0;
8344 }
8345 }
8346
8347 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8348 if (lo->type == bfd_indirect_link_order)
8349 {
8350 asection *o = lo->u.indirect.section;
8351
8352 if ((o->size % bed->s->sizeof_rela) == 0)
8353 {
8354 if ((o->size % bed->s->sizeof_rel) == 0)
8355 /* Section size is divisible by both rel and rela sizes.
8356 It is of no help to us. */
8357 ;
8358 else
8359 {
8360 /* Section size is only divisible by rela. */
8361 if (use_rela_initialised && (use_rela == FALSE))
8362 {
8363 _bfd_error_handler
8364 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8365 bfd_set_error (bfd_error_invalid_operation);
8366 return 0;
8367 }
8368 else
8369 {
8370 use_rela = TRUE;
8371 use_rela_initialised = TRUE;
8372 }
8373 }
8374 }
8375 else if ((o->size % bed->s->sizeof_rel) == 0)
8376 {
8377 /* Section size is only divisible by rel. */
8378 if (use_rela_initialised && (use_rela == TRUE))
8379 {
8380 _bfd_error_handler
8381 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8382 bfd_set_error (bfd_error_invalid_operation);
8383 return 0;
8384 }
8385 else
8386 {
8387 use_rela = FALSE;
8388 use_rela_initialised = TRUE;
8389 }
8390 }
8391 else
8392 {
8393 /* The section size is not divisible by either - something is wrong. */
8394 _bfd_error_handler
8395 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8396 bfd_set_error (bfd_error_invalid_operation);
8397 return 0;
8398 }
8399 }
8400
8401 if (! use_rela_initialised)
8402 /* Make a guess. */
8403 use_rela = TRUE;
8404 }
8405 else if (rela_dyn != NULL && rela_dyn->size > 0)
8406 use_rela = TRUE;
8407 else if (rel_dyn != NULL && rel_dyn->size > 0)
8408 use_rela = FALSE;
8409 else
8410 return 0;
8411
8412 if (use_rela)
8413 {
8414 dynamic_relocs = rela_dyn;
8415 ext_size = bed->s->sizeof_rela;
8416 swap_in = bed->s->swap_reloca_in;
8417 swap_out = bed->s->swap_reloca_out;
8418 }
8419 else
8420 {
8421 dynamic_relocs = rel_dyn;
8422 ext_size = bed->s->sizeof_rel;
8423 swap_in = bed->s->swap_reloc_in;
8424 swap_out = bed->s->swap_reloc_out;
8425 }
8426
8427 size = 0;
8428 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8429 if (lo->type == bfd_indirect_link_order)
8430 size += lo->u.indirect.section->size;
8431
8432 if (size != dynamic_relocs->size)
8433 return 0;
8434
8435 sort_elt = (sizeof (struct elf_link_sort_rela)
8436 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8437
8438 count = dynamic_relocs->size / ext_size;
8439 if (count == 0)
8440 return 0;
8441 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8442
8443 if (sort == NULL)
8444 {
8445 (*info->callbacks->warning)
8446 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8447 return 0;
8448 }
8449
8450 if (bed->s->arch_size == 32)
8451 r_sym_mask = ~(bfd_vma) 0xff;
8452 else
8453 r_sym_mask = ~(bfd_vma) 0xffffffff;
8454
8455 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8456 if (lo->type == bfd_indirect_link_order)
8457 {
8458 bfd_byte *erel, *erelend;
8459 asection *o = lo->u.indirect.section;
8460
8461 if (o->contents == NULL && o->size != 0)
8462 {
8463 /* This is a reloc section that is being handled as a normal
8464 section. See bfd_section_from_shdr. We can't combine
8465 relocs in this case. */
8466 free (sort);
8467 return 0;
8468 }
8469 erel = o->contents;
8470 erelend = o->contents + o->size;
8471 /* FIXME: octets_per_byte. */
8472 p = sort + o->output_offset / ext_size * sort_elt;
8473
8474 while (erel < erelend)
8475 {
8476 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8477
8478 (*swap_in) (abfd, erel, s->rela);
8479 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8480 s->u.sym_mask = r_sym_mask;
8481 p += sort_elt;
8482 erel += ext_size;
8483 }
8484 }
8485
8486 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8487
8488 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8489 {
8490 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8491 if (s->type != reloc_class_relative)
8492 break;
8493 }
8494 ret = i;
8495 s_non_relative = p;
8496
8497 sq = (struct elf_link_sort_rela *) s_non_relative;
8498 for (; i < count; i++, p += sort_elt)
8499 {
8500 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8501 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8502 sq = sp;
8503 sp->u.offset = sq->rela->r_offset;
8504 }
8505
8506 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8507
8508 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8509 if (lo->type == bfd_indirect_link_order)
8510 {
8511 bfd_byte *erel, *erelend;
8512 asection *o = lo->u.indirect.section;
8513
8514 erel = o->contents;
8515 erelend = o->contents + o->size;
8516 /* FIXME: octets_per_byte. */
8517 p = sort + o->output_offset / ext_size * sort_elt;
8518 while (erel < erelend)
8519 {
8520 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8521 (*swap_out) (abfd, s->rela, erel);
8522 p += sort_elt;
8523 erel += ext_size;
8524 }
8525 }
8526
8527 free (sort);
8528 *psec = dynamic_relocs;
8529 return ret;
8530 }
8531
8532 /* Flush the output symbols to the file. */
8533
8534 static bfd_boolean
8535 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8536 const struct elf_backend_data *bed)
8537 {
8538 if (flinfo->symbuf_count > 0)
8539 {
8540 Elf_Internal_Shdr *hdr;
8541 file_ptr pos;
8542 bfd_size_type amt;
8543
8544 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8545 pos = hdr->sh_offset + hdr->sh_size;
8546 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8547 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8548 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8549 return FALSE;
8550
8551 hdr->sh_size += amt;
8552 flinfo->symbuf_count = 0;
8553 }
8554
8555 return TRUE;
8556 }
8557
8558 /* Add a symbol to the output symbol table. */
8559
8560 static int
8561 elf_link_output_sym (struct elf_final_link_info *flinfo,
8562 const char *name,
8563 Elf_Internal_Sym *elfsym,
8564 asection *input_sec,
8565 struct elf_link_hash_entry *h)
8566 {
8567 bfd_byte *dest;
8568 Elf_External_Sym_Shndx *destshndx;
8569 int (*output_symbol_hook)
8570 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8571 struct elf_link_hash_entry *);
8572 const struct elf_backend_data *bed;
8573
8574 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8575
8576 bed = get_elf_backend_data (flinfo->output_bfd);
8577 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8578 if (output_symbol_hook != NULL)
8579 {
8580 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8581 if (ret != 1)
8582 return ret;
8583 }
8584
8585 if (name == NULL || *name == '\0')
8586 elfsym->st_name = 0;
8587 else if (input_sec->flags & SEC_EXCLUDE)
8588 elfsym->st_name = 0;
8589 else
8590 {
8591 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8592 name, TRUE, FALSE);
8593 if (elfsym->st_name == (unsigned long) -1)
8594 return 0;
8595 }
8596
8597 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8598 {
8599 if (! elf_link_flush_output_syms (flinfo, bed))
8600 return 0;
8601 }
8602
8603 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8604 destshndx = flinfo->symshndxbuf;
8605 if (destshndx != NULL)
8606 {
8607 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8608 {
8609 bfd_size_type amt;
8610
8611 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8612 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8613 amt * 2);
8614 if (destshndx == NULL)
8615 return 0;
8616 flinfo->symshndxbuf = destshndx;
8617 memset ((char *) destshndx + amt, 0, amt);
8618 flinfo->shndxbuf_size *= 2;
8619 }
8620 destshndx += bfd_get_symcount (flinfo->output_bfd);
8621 }
8622
8623 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8624 flinfo->symbuf_count += 1;
8625 bfd_get_symcount (flinfo->output_bfd) += 1;
8626
8627 return 1;
8628 }
8629
8630 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8631
8632 static bfd_boolean
8633 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8634 {
8635 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8636 && sym->st_shndx < SHN_LORESERVE)
8637 {
8638 /* The gABI doesn't support dynamic symbols in output sections
8639 beyond 64k. */
8640 (*_bfd_error_handler)
8641 (_("%B: Too many sections: %d (>= %d)"),
8642 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8643 bfd_set_error (bfd_error_nonrepresentable_section);
8644 return FALSE;
8645 }
8646 return TRUE;
8647 }
8648
8649 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8650 allowing an unsatisfied unversioned symbol in the DSO to match a
8651 versioned symbol that would normally require an explicit version.
8652 We also handle the case that a DSO references a hidden symbol
8653 which may be satisfied by a versioned symbol in another DSO. */
8654
8655 static bfd_boolean
8656 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8657 const struct elf_backend_data *bed,
8658 struct elf_link_hash_entry *h)
8659 {
8660 bfd *abfd;
8661 struct elf_link_loaded_list *loaded;
8662
8663 if (!is_elf_hash_table (info->hash))
8664 return FALSE;
8665
8666 /* Check indirect symbol. */
8667 while (h->root.type == bfd_link_hash_indirect)
8668 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8669
8670 switch (h->root.type)
8671 {
8672 default:
8673 abfd = NULL;
8674 break;
8675
8676 case bfd_link_hash_undefined:
8677 case bfd_link_hash_undefweak:
8678 abfd = h->root.u.undef.abfd;
8679 if ((abfd->flags & DYNAMIC) == 0
8680 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8681 return FALSE;
8682 break;
8683
8684 case bfd_link_hash_defined:
8685 case bfd_link_hash_defweak:
8686 abfd = h->root.u.def.section->owner;
8687 break;
8688
8689 case bfd_link_hash_common:
8690 abfd = h->root.u.c.p->section->owner;
8691 break;
8692 }
8693 BFD_ASSERT (abfd != NULL);
8694
8695 for (loaded = elf_hash_table (info)->loaded;
8696 loaded != NULL;
8697 loaded = loaded->next)
8698 {
8699 bfd *input;
8700 Elf_Internal_Shdr *hdr;
8701 bfd_size_type symcount;
8702 bfd_size_type extsymcount;
8703 bfd_size_type extsymoff;
8704 Elf_Internal_Shdr *versymhdr;
8705 Elf_Internal_Sym *isym;
8706 Elf_Internal_Sym *isymend;
8707 Elf_Internal_Sym *isymbuf;
8708 Elf_External_Versym *ever;
8709 Elf_External_Versym *extversym;
8710
8711 input = loaded->abfd;
8712
8713 /* We check each DSO for a possible hidden versioned definition. */
8714 if (input == abfd
8715 || (input->flags & DYNAMIC) == 0
8716 || elf_dynversym (input) == 0)
8717 continue;
8718
8719 hdr = &elf_tdata (input)->dynsymtab_hdr;
8720
8721 symcount = hdr->sh_size / bed->s->sizeof_sym;
8722 if (elf_bad_symtab (input))
8723 {
8724 extsymcount = symcount;
8725 extsymoff = 0;
8726 }
8727 else
8728 {
8729 extsymcount = symcount - hdr->sh_info;
8730 extsymoff = hdr->sh_info;
8731 }
8732
8733 if (extsymcount == 0)
8734 continue;
8735
8736 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8737 NULL, NULL, NULL);
8738 if (isymbuf == NULL)
8739 return FALSE;
8740
8741 /* Read in any version definitions. */
8742 versymhdr = &elf_tdata (input)->dynversym_hdr;
8743 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8744 if (extversym == NULL)
8745 goto error_ret;
8746
8747 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8748 || (bfd_bread (extversym, versymhdr->sh_size, input)
8749 != versymhdr->sh_size))
8750 {
8751 free (extversym);
8752 error_ret:
8753 free (isymbuf);
8754 return FALSE;
8755 }
8756
8757 ever = extversym + extsymoff;
8758 isymend = isymbuf + extsymcount;
8759 for (isym = isymbuf; isym < isymend; isym++, ever++)
8760 {
8761 const char *name;
8762 Elf_Internal_Versym iver;
8763 unsigned short version_index;
8764
8765 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8766 || isym->st_shndx == SHN_UNDEF)
8767 continue;
8768
8769 name = bfd_elf_string_from_elf_section (input,
8770 hdr->sh_link,
8771 isym->st_name);
8772 if (strcmp (name, h->root.root.string) != 0)
8773 continue;
8774
8775 _bfd_elf_swap_versym_in (input, ever, &iver);
8776
8777 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8778 && !(h->def_regular
8779 && h->forced_local))
8780 {
8781 /* If we have a non-hidden versioned sym, then it should
8782 have provided a definition for the undefined sym unless
8783 it is defined in a non-shared object and forced local.
8784 */
8785 abort ();
8786 }
8787
8788 version_index = iver.vs_vers & VERSYM_VERSION;
8789 if (version_index == 1 || version_index == 2)
8790 {
8791 /* This is the base or first version. We can use it. */
8792 free (extversym);
8793 free (isymbuf);
8794 return TRUE;
8795 }
8796 }
8797
8798 free (extversym);
8799 free (isymbuf);
8800 }
8801
8802 return FALSE;
8803 }
8804
8805 /* Add an external symbol to the symbol table. This is called from
8806 the hash table traversal routine. When generating a shared object,
8807 we go through the symbol table twice. The first time we output
8808 anything that might have been forced to local scope in a version
8809 script. The second time we output the symbols that are still
8810 global symbols. */
8811
8812 static bfd_boolean
8813 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8814 {
8815 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8816 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8817 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8818 bfd_boolean strip;
8819 Elf_Internal_Sym sym;
8820 asection *input_sec;
8821 const struct elf_backend_data *bed;
8822 long indx;
8823 int ret;
8824
8825 if (h->root.type == bfd_link_hash_warning)
8826 {
8827 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8828 if (h->root.type == bfd_link_hash_new)
8829 return TRUE;
8830 }
8831
8832 /* Decide whether to output this symbol in this pass. */
8833 if (eoinfo->localsyms)
8834 {
8835 if (!h->forced_local)
8836 return TRUE;
8837 }
8838 else
8839 {
8840 if (h->forced_local)
8841 return TRUE;
8842 }
8843
8844 bed = get_elf_backend_data (flinfo->output_bfd);
8845
8846 if (h->root.type == bfd_link_hash_undefined)
8847 {
8848 /* If we have an undefined symbol reference here then it must have
8849 come from a shared library that is being linked in. (Undefined
8850 references in regular files have already been handled unless
8851 they are in unreferenced sections which are removed by garbage
8852 collection). */
8853 bfd_boolean ignore_undef = FALSE;
8854
8855 /* Some symbols may be special in that the fact that they're
8856 undefined can be safely ignored - let backend determine that. */
8857 if (bed->elf_backend_ignore_undef_symbol)
8858 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8859
8860 /* If we are reporting errors for this situation then do so now. */
8861 if (!ignore_undef
8862 && h->ref_dynamic
8863 && (!h->ref_regular || flinfo->info->gc_sections)
8864 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8865 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8866 {
8867 if (!(flinfo->info->callbacks->undefined_symbol
8868 (flinfo->info, h->root.root.string,
8869 h->ref_regular ? NULL : h->root.u.undef.abfd,
8870 NULL, 0,
8871 (flinfo->info->unresolved_syms_in_shared_libs
8872 == RM_GENERATE_ERROR))))
8873 {
8874 bfd_set_error (bfd_error_bad_value);
8875 eoinfo->failed = TRUE;
8876 return FALSE;
8877 }
8878 }
8879 }
8880
8881 /* We should also warn if a forced local symbol is referenced from
8882 shared libraries. */
8883 if (!flinfo->info->relocatable
8884 && flinfo->info->executable
8885 && h->forced_local
8886 && h->ref_dynamic
8887 && h->def_regular
8888 && !h->dynamic_def
8889 && h->ref_dynamic_nonweak
8890 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8891 {
8892 bfd *def_bfd;
8893 const char *msg;
8894 struct elf_link_hash_entry *hi = h;
8895
8896 /* Check indirect symbol. */
8897 while (hi->root.type == bfd_link_hash_indirect)
8898 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8899
8900 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8901 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8902 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8903 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8904 else
8905 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8906 def_bfd = flinfo->output_bfd;
8907 if (hi->root.u.def.section != bfd_abs_section_ptr)
8908 def_bfd = hi->root.u.def.section->owner;
8909 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8910 h->root.root.string);
8911 bfd_set_error (bfd_error_bad_value);
8912 eoinfo->failed = TRUE;
8913 return FALSE;
8914 }
8915
8916 /* We don't want to output symbols that have never been mentioned by
8917 a regular file, or that we have been told to strip. However, if
8918 h->indx is set to -2, the symbol is used by a reloc and we must
8919 output it. */
8920 strip = FALSE;
8921 if (h->indx == -2)
8922 ;
8923 else if ((h->def_dynamic
8924 || h->ref_dynamic
8925 || h->root.type == bfd_link_hash_new)
8926 && !h->def_regular
8927 && !h->ref_regular)
8928 strip = TRUE;
8929 else if (flinfo->info->strip == strip_all)
8930 strip = TRUE;
8931 else if (flinfo->info->strip == strip_some
8932 && bfd_hash_lookup (flinfo->info->keep_hash,
8933 h->root.root.string, FALSE, FALSE) == NULL)
8934 strip = TRUE;
8935 else if ((h->root.type == bfd_link_hash_defined
8936 || h->root.type == bfd_link_hash_defweak)
8937 && ((flinfo->info->strip_discarded
8938 && discarded_section (h->root.u.def.section))
8939 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
8940 && h->root.u.def.section->owner != NULL
8941 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8942 strip = TRUE;
8943 else if ((h->root.type == bfd_link_hash_undefined
8944 || h->root.type == bfd_link_hash_undefweak)
8945 && h->root.u.undef.abfd != NULL
8946 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8947 strip = TRUE;
8948
8949 /* If we're stripping it, and it's not a dynamic symbol, there's
8950 nothing else to do. However, if it is a forced local symbol or
8951 an ifunc symbol we need to give the backend finish_dynamic_symbol
8952 function a chance to make it dynamic. */
8953 if (strip
8954 && h->dynindx == -1
8955 && h->type != STT_GNU_IFUNC
8956 && !h->forced_local)
8957 return TRUE;
8958
8959 sym.st_value = 0;
8960 sym.st_size = h->size;
8961 sym.st_other = h->other;
8962 if (h->forced_local)
8963 {
8964 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8965 /* Turn off visibility on local symbol. */
8966 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8967 }
8968 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
8969 else if (h->unique_global && h->def_regular)
8970 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8971 else if (h->root.type == bfd_link_hash_undefweak
8972 || h->root.type == bfd_link_hash_defweak)
8973 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8974 else
8975 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8976 sym.st_target_internal = h->target_internal;
8977
8978 switch (h->root.type)
8979 {
8980 default:
8981 case bfd_link_hash_new:
8982 case bfd_link_hash_warning:
8983 abort ();
8984 return FALSE;
8985
8986 case bfd_link_hash_undefined:
8987 case bfd_link_hash_undefweak:
8988 input_sec = bfd_und_section_ptr;
8989 sym.st_shndx = SHN_UNDEF;
8990 break;
8991
8992 case bfd_link_hash_defined:
8993 case bfd_link_hash_defweak:
8994 {
8995 input_sec = h->root.u.def.section;
8996 if (input_sec->output_section != NULL)
8997 {
8998 sym.st_shndx =
8999 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9000 input_sec->output_section);
9001 if (sym.st_shndx == SHN_BAD)
9002 {
9003 (*_bfd_error_handler)
9004 (_("%B: could not find output section %A for input section %A"),
9005 flinfo->output_bfd, input_sec->output_section, input_sec);
9006 bfd_set_error (bfd_error_nonrepresentable_section);
9007 eoinfo->failed = TRUE;
9008 return FALSE;
9009 }
9010
9011 /* ELF symbols in relocatable files are section relative,
9012 but in nonrelocatable files they are virtual
9013 addresses. */
9014 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9015 if (!flinfo->info->relocatable)
9016 {
9017 sym.st_value += input_sec->output_section->vma;
9018 if (h->type == STT_TLS)
9019 {
9020 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9021 if (tls_sec != NULL)
9022 sym.st_value -= tls_sec->vma;
9023 }
9024 }
9025 }
9026 else
9027 {
9028 BFD_ASSERT (input_sec->owner == NULL
9029 || (input_sec->owner->flags & DYNAMIC) != 0);
9030 sym.st_shndx = SHN_UNDEF;
9031 input_sec = bfd_und_section_ptr;
9032 }
9033 }
9034 break;
9035
9036 case bfd_link_hash_common:
9037 input_sec = h->root.u.c.p->section;
9038 sym.st_shndx = bed->common_section_index (input_sec);
9039 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9040 break;
9041
9042 case bfd_link_hash_indirect:
9043 /* These symbols are created by symbol versioning. They point
9044 to the decorated version of the name. For example, if the
9045 symbol foo@@GNU_1.2 is the default, which should be used when
9046 foo is used with no version, then we add an indirect symbol
9047 foo which points to foo@@GNU_1.2. We ignore these symbols,
9048 since the indirected symbol is already in the hash table. */
9049 return TRUE;
9050 }
9051
9052 /* Give the processor backend a chance to tweak the symbol value,
9053 and also to finish up anything that needs to be done for this
9054 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9055 forced local syms when non-shared is due to a historical quirk.
9056 STT_GNU_IFUNC symbol must go through PLT. */
9057 if ((h->type == STT_GNU_IFUNC
9058 && h->def_regular
9059 && !flinfo->info->relocatable)
9060 || ((h->dynindx != -1
9061 || h->forced_local)
9062 && ((flinfo->info->shared
9063 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9064 || h->root.type != bfd_link_hash_undefweak))
9065 || !h->forced_local)
9066 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9067 {
9068 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9069 (flinfo->output_bfd, flinfo->info, h, &sym)))
9070 {
9071 eoinfo->failed = TRUE;
9072 return FALSE;
9073 }
9074 }
9075
9076 /* If we are marking the symbol as undefined, and there are no
9077 non-weak references to this symbol from a regular object, then
9078 mark the symbol as weak undefined; if there are non-weak
9079 references, mark the symbol as strong. We can't do this earlier,
9080 because it might not be marked as undefined until the
9081 finish_dynamic_symbol routine gets through with it. */
9082 if (sym.st_shndx == SHN_UNDEF
9083 && h->ref_regular
9084 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9085 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9086 {
9087 int bindtype;
9088 unsigned int type = ELF_ST_TYPE (sym.st_info);
9089
9090 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9091 if (type == STT_GNU_IFUNC)
9092 type = STT_FUNC;
9093
9094 if (h->ref_regular_nonweak)
9095 bindtype = STB_GLOBAL;
9096 else
9097 bindtype = STB_WEAK;
9098 sym.st_info = ELF_ST_INFO (bindtype, type);
9099 }
9100
9101 /* If this is a symbol defined in a dynamic library, don't use the
9102 symbol size from the dynamic library. Relinking an executable
9103 against a new library may introduce gratuitous changes in the
9104 executable's symbols if we keep the size. */
9105 if (sym.st_shndx == SHN_UNDEF
9106 && !h->def_regular
9107 && h->def_dynamic)
9108 sym.st_size = 0;
9109
9110 /* If a non-weak symbol with non-default visibility is not defined
9111 locally, it is a fatal error. */
9112 if (!flinfo->info->relocatable
9113 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9114 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9115 && h->root.type == bfd_link_hash_undefined
9116 && !h->def_regular)
9117 {
9118 const char *msg;
9119
9120 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9121 msg = _("%B: protected symbol `%s' isn't defined");
9122 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9123 msg = _("%B: internal symbol `%s' isn't defined");
9124 else
9125 msg = _("%B: hidden symbol `%s' isn't defined");
9126 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9127 bfd_set_error (bfd_error_bad_value);
9128 eoinfo->failed = TRUE;
9129 return FALSE;
9130 }
9131
9132 /* If this symbol should be put in the .dynsym section, then put it
9133 there now. We already know the symbol index. We also fill in
9134 the entry in the .hash section. */
9135 if (flinfo->dynsym_sec != NULL
9136 && h->dynindx != -1
9137 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9138 {
9139 bfd_byte *esym;
9140
9141 /* Since there is no version information in the dynamic string,
9142 if there is no version info in symbol version section, we will
9143 have a run-time problem. */
9144 if (h->verinfo.verdef == NULL)
9145 {
9146 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9147
9148 if (p && p [1] != '\0')
9149 {
9150 (*_bfd_error_handler)
9151 (_("%B: No symbol version section for versioned symbol `%s'"),
9152 flinfo->output_bfd, h->root.root.string);
9153 eoinfo->failed = TRUE;
9154 return FALSE;
9155 }
9156 }
9157
9158 sym.st_name = h->dynstr_index;
9159 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9160 if (!check_dynsym (flinfo->output_bfd, &sym))
9161 {
9162 eoinfo->failed = TRUE;
9163 return FALSE;
9164 }
9165 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9166
9167 if (flinfo->hash_sec != NULL)
9168 {
9169 size_t hash_entry_size;
9170 bfd_byte *bucketpos;
9171 bfd_vma chain;
9172 size_t bucketcount;
9173 size_t bucket;
9174
9175 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9176 bucket = h->u.elf_hash_value % bucketcount;
9177
9178 hash_entry_size
9179 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9180 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9181 + (bucket + 2) * hash_entry_size);
9182 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9183 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9184 bucketpos);
9185 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9186 ((bfd_byte *) flinfo->hash_sec->contents
9187 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9188 }
9189
9190 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9191 {
9192 Elf_Internal_Versym iversym;
9193 Elf_External_Versym *eversym;
9194
9195 if (!h->def_regular)
9196 {
9197 if (h->verinfo.verdef == NULL
9198 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9199 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9200 iversym.vs_vers = 0;
9201 else
9202 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9203 }
9204 else
9205 {
9206 if (h->verinfo.vertree == NULL)
9207 iversym.vs_vers = 1;
9208 else
9209 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9210 if (flinfo->info->create_default_symver)
9211 iversym.vs_vers++;
9212 }
9213
9214 if (h->hidden)
9215 iversym.vs_vers |= VERSYM_HIDDEN;
9216
9217 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9218 eversym += h->dynindx;
9219 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9220 }
9221 }
9222
9223 /* If the symbol is undefined, and we didn't output it to .dynsym,
9224 strip it from .symtab too. Obviously we can't do this for
9225 relocatable output or when needed for --emit-relocs. */
9226 else if (input_sec == bfd_und_section_ptr
9227 && h->indx != -2
9228 && !flinfo->info->relocatable)
9229 return TRUE;
9230 /* Also strip others that we couldn't earlier due to dynamic symbol
9231 processing. */
9232 if (strip)
9233 return TRUE;
9234 if ((input_sec->flags & SEC_EXCLUDE) != 0)
9235 return TRUE;
9236
9237 /* Output a FILE symbol so that following locals are not associated
9238 with the wrong input file. We need one for forced local symbols
9239 if we've seen more than one FILE symbol or when we have exactly
9240 one FILE symbol but global symbols are present in a file other
9241 than the one with the FILE symbol. We also need one if linker
9242 defined symbols are present. In practice these conditions are
9243 always met, so just emit the FILE symbol unconditionally. */
9244 if (eoinfo->localsyms
9245 && !eoinfo->file_sym_done
9246 && eoinfo->flinfo->filesym_count != 0)
9247 {
9248 Elf_Internal_Sym fsym;
9249
9250 memset (&fsym, 0, sizeof (fsym));
9251 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9252 fsym.st_shndx = SHN_ABS;
9253 if (!elf_link_output_sym (eoinfo->flinfo, NULL, &fsym,
9254 bfd_und_section_ptr, NULL))
9255 return FALSE;
9256
9257 eoinfo->file_sym_done = TRUE;
9258 }
9259
9260 indx = bfd_get_symcount (flinfo->output_bfd);
9261 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9262 if (ret == 0)
9263 {
9264 eoinfo->failed = TRUE;
9265 return FALSE;
9266 }
9267 else if (ret == 1)
9268 h->indx = indx;
9269 else if (h->indx == -2)
9270 abort();
9271
9272 return TRUE;
9273 }
9274
9275 /* Return TRUE if special handling is done for relocs in SEC against
9276 symbols defined in discarded sections. */
9277
9278 static bfd_boolean
9279 elf_section_ignore_discarded_relocs (asection *sec)
9280 {
9281 const struct elf_backend_data *bed;
9282
9283 switch (sec->sec_info_type)
9284 {
9285 case SEC_INFO_TYPE_STABS:
9286 case SEC_INFO_TYPE_EH_FRAME:
9287 return TRUE;
9288 default:
9289 break;
9290 }
9291
9292 bed = get_elf_backend_data (sec->owner);
9293 if (bed->elf_backend_ignore_discarded_relocs != NULL
9294 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9295 return TRUE;
9296
9297 return FALSE;
9298 }
9299
9300 /* Return a mask saying how ld should treat relocations in SEC against
9301 symbols defined in discarded sections. If this function returns
9302 COMPLAIN set, ld will issue a warning message. If this function
9303 returns PRETEND set, and the discarded section was link-once and the
9304 same size as the kept link-once section, ld will pretend that the
9305 symbol was actually defined in the kept section. Otherwise ld will
9306 zero the reloc (at least that is the intent, but some cooperation by
9307 the target dependent code is needed, particularly for REL targets). */
9308
9309 unsigned int
9310 _bfd_elf_default_action_discarded (asection *sec)
9311 {
9312 if (sec->flags & SEC_DEBUGGING)
9313 return PRETEND;
9314
9315 if (strcmp (".eh_frame", sec->name) == 0)
9316 return 0;
9317
9318 if (strcmp (".gcc_except_table", sec->name) == 0)
9319 return 0;
9320
9321 return COMPLAIN | PRETEND;
9322 }
9323
9324 /* Find a match between a section and a member of a section group. */
9325
9326 static asection *
9327 match_group_member (asection *sec, asection *group,
9328 struct bfd_link_info *info)
9329 {
9330 asection *first = elf_next_in_group (group);
9331 asection *s = first;
9332
9333 while (s != NULL)
9334 {
9335 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9336 return s;
9337
9338 s = elf_next_in_group (s);
9339 if (s == first)
9340 break;
9341 }
9342
9343 return NULL;
9344 }
9345
9346 /* Check if the kept section of a discarded section SEC can be used
9347 to replace it. Return the replacement if it is OK. Otherwise return
9348 NULL. */
9349
9350 asection *
9351 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9352 {
9353 asection *kept;
9354
9355 kept = sec->kept_section;
9356 if (kept != NULL)
9357 {
9358 if ((kept->flags & SEC_GROUP) != 0)
9359 kept = match_group_member (sec, kept, info);
9360 if (kept != NULL
9361 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9362 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9363 kept = NULL;
9364 sec->kept_section = kept;
9365 }
9366 return kept;
9367 }
9368
9369 /* Link an input file into the linker output file. This function
9370 handles all the sections and relocations of the input file at once.
9371 This is so that we only have to read the local symbols once, and
9372 don't have to keep them in memory. */
9373
9374 static bfd_boolean
9375 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9376 {
9377 int (*relocate_section)
9378 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9379 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9380 bfd *output_bfd;
9381 Elf_Internal_Shdr *symtab_hdr;
9382 size_t locsymcount;
9383 size_t extsymoff;
9384 Elf_Internal_Sym *isymbuf;
9385 Elf_Internal_Sym *isym;
9386 Elf_Internal_Sym *isymend;
9387 long *pindex;
9388 asection **ppsection;
9389 asection *o;
9390 const struct elf_backend_data *bed;
9391 struct elf_link_hash_entry **sym_hashes;
9392 bfd_size_type address_size;
9393 bfd_vma r_type_mask;
9394 int r_sym_shift;
9395 bfd_boolean have_file_sym = FALSE;
9396
9397 output_bfd = flinfo->output_bfd;
9398 bed = get_elf_backend_data (output_bfd);
9399 relocate_section = bed->elf_backend_relocate_section;
9400
9401 /* If this is a dynamic object, we don't want to do anything here:
9402 we don't want the local symbols, and we don't want the section
9403 contents. */
9404 if ((input_bfd->flags & DYNAMIC) != 0)
9405 return TRUE;
9406
9407 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9408 if (elf_bad_symtab (input_bfd))
9409 {
9410 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9411 extsymoff = 0;
9412 }
9413 else
9414 {
9415 locsymcount = symtab_hdr->sh_info;
9416 extsymoff = symtab_hdr->sh_info;
9417 }
9418
9419 /* Read the local symbols. */
9420 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9421 if (isymbuf == NULL && locsymcount != 0)
9422 {
9423 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9424 flinfo->internal_syms,
9425 flinfo->external_syms,
9426 flinfo->locsym_shndx);
9427 if (isymbuf == NULL)
9428 return FALSE;
9429 }
9430
9431 /* Find local symbol sections and adjust values of symbols in
9432 SEC_MERGE sections. Write out those local symbols we know are
9433 going into the output file. */
9434 isymend = isymbuf + locsymcount;
9435 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9436 isym < isymend;
9437 isym++, pindex++, ppsection++)
9438 {
9439 asection *isec;
9440 const char *name;
9441 Elf_Internal_Sym osym;
9442 long indx;
9443 int ret;
9444
9445 *pindex = -1;
9446
9447 if (elf_bad_symtab (input_bfd))
9448 {
9449 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9450 {
9451 *ppsection = NULL;
9452 continue;
9453 }
9454 }
9455
9456 if (isym->st_shndx == SHN_UNDEF)
9457 isec = bfd_und_section_ptr;
9458 else if (isym->st_shndx == SHN_ABS)
9459 isec = bfd_abs_section_ptr;
9460 else if (isym->st_shndx == SHN_COMMON)
9461 isec = bfd_com_section_ptr;
9462 else
9463 {
9464 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9465 if (isec == NULL)
9466 {
9467 /* Don't attempt to output symbols with st_shnx in the
9468 reserved range other than SHN_ABS and SHN_COMMON. */
9469 *ppsection = NULL;
9470 continue;
9471 }
9472 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9473 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9474 isym->st_value =
9475 _bfd_merged_section_offset (output_bfd, &isec,
9476 elf_section_data (isec)->sec_info,
9477 isym->st_value);
9478 }
9479
9480 *ppsection = isec;
9481
9482 /* Don't output the first, undefined, symbol. In fact, don't
9483 output any undefined local symbol. */
9484 if (isec == bfd_und_section_ptr)
9485 continue;
9486
9487 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9488 {
9489 /* We never output section symbols. Instead, we use the
9490 section symbol of the corresponding section in the output
9491 file. */
9492 continue;
9493 }
9494
9495 /* If we are stripping all symbols, we don't want to output this
9496 one. */
9497 if (flinfo->info->strip == strip_all)
9498 continue;
9499
9500 /* If we are discarding all local symbols, we don't want to
9501 output this one. If we are generating a relocatable output
9502 file, then some of the local symbols may be required by
9503 relocs; we output them below as we discover that they are
9504 needed. */
9505 if (flinfo->info->discard == discard_all)
9506 continue;
9507
9508 /* If this symbol is defined in a section which we are
9509 discarding, we don't need to keep it. */
9510 if (isym->st_shndx != SHN_UNDEF
9511 && isym->st_shndx < SHN_LORESERVE
9512 && bfd_section_removed_from_list (output_bfd,
9513 isec->output_section))
9514 continue;
9515
9516 /* Get the name of the symbol. */
9517 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9518 isym->st_name);
9519 if (name == NULL)
9520 return FALSE;
9521
9522 /* See if we are discarding symbols with this name. */
9523 if ((flinfo->info->strip == strip_some
9524 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9525 == NULL))
9526 || (((flinfo->info->discard == discard_sec_merge
9527 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9528 || flinfo->info->discard == discard_l)
9529 && bfd_is_local_label_name (input_bfd, name)))
9530 continue;
9531
9532 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9533 {
9534 if (input_bfd->lto_output)
9535 /* -flto puts a temp file name here. This means builds
9536 are not reproducible. Discard the symbol. */
9537 continue;
9538 have_file_sym = TRUE;
9539 flinfo->filesym_count += 1;
9540 }
9541 if (!have_file_sym)
9542 {
9543 /* In the absence of debug info, bfd_find_nearest_line uses
9544 FILE symbols to determine the source file for local
9545 function symbols. Provide a FILE symbol here if input
9546 files lack such, so that their symbols won't be
9547 associated with a previous input file. It's not the
9548 source file, but the best we can do. */
9549 have_file_sym = TRUE;
9550 flinfo->filesym_count += 1;
9551 memset (&osym, 0, sizeof (osym));
9552 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9553 osym.st_shndx = SHN_ABS;
9554 if (!elf_link_output_sym (flinfo,
9555 (input_bfd->lto_output ? NULL
9556 : input_bfd->filename),
9557 &osym, bfd_abs_section_ptr, NULL))
9558 return FALSE;
9559 }
9560
9561 osym = *isym;
9562
9563 /* Adjust the section index for the output file. */
9564 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9565 isec->output_section);
9566 if (osym.st_shndx == SHN_BAD)
9567 return FALSE;
9568
9569 /* ELF symbols in relocatable files are section relative, but
9570 in executable files they are virtual addresses. Note that
9571 this code assumes that all ELF sections have an associated
9572 BFD section with a reasonable value for output_offset; below
9573 we assume that they also have a reasonable value for
9574 output_section. Any special sections must be set up to meet
9575 these requirements. */
9576 osym.st_value += isec->output_offset;
9577 if (!flinfo->info->relocatable)
9578 {
9579 osym.st_value += isec->output_section->vma;
9580 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9581 {
9582 /* STT_TLS symbols are relative to PT_TLS segment base. */
9583 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9584 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9585 }
9586 }
9587
9588 indx = bfd_get_symcount (output_bfd);
9589 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9590 if (ret == 0)
9591 return FALSE;
9592 else if (ret == 1)
9593 *pindex = indx;
9594 }
9595
9596 if (bed->s->arch_size == 32)
9597 {
9598 r_type_mask = 0xff;
9599 r_sym_shift = 8;
9600 address_size = 4;
9601 }
9602 else
9603 {
9604 r_type_mask = 0xffffffff;
9605 r_sym_shift = 32;
9606 address_size = 8;
9607 }
9608
9609 /* Relocate the contents of each section. */
9610 sym_hashes = elf_sym_hashes (input_bfd);
9611 for (o = input_bfd->sections; o != NULL; o = o->next)
9612 {
9613 bfd_byte *contents;
9614
9615 if (! o->linker_mark)
9616 {
9617 /* This section was omitted from the link. */
9618 continue;
9619 }
9620
9621 if (flinfo->info->relocatable
9622 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9623 {
9624 /* Deal with the group signature symbol. */
9625 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9626 unsigned long symndx = sec_data->this_hdr.sh_info;
9627 asection *osec = o->output_section;
9628
9629 if (symndx >= locsymcount
9630 || (elf_bad_symtab (input_bfd)
9631 && flinfo->sections[symndx] == NULL))
9632 {
9633 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9634 while (h->root.type == bfd_link_hash_indirect
9635 || h->root.type == bfd_link_hash_warning)
9636 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9637 /* Arrange for symbol to be output. */
9638 h->indx = -2;
9639 elf_section_data (osec)->this_hdr.sh_info = -2;
9640 }
9641 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9642 {
9643 /* We'll use the output section target_index. */
9644 asection *sec = flinfo->sections[symndx]->output_section;
9645 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9646 }
9647 else
9648 {
9649 if (flinfo->indices[symndx] == -1)
9650 {
9651 /* Otherwise output the local symbol now. */
9652 Elf_Internal_Sym sym = isymbuf[symndx];
9653 asection *sec = flinfo->sections[symndx]->output_section;
9654 const char *name;
9655 long indx;
9656 int ret;
9657
9658 name = bfd_elf_string_from_elf_section (input_bfd,
9659 symtab_hdr->sh_link,
9660 sym.st_name);
9661 if (name == NULL)
9662 return FALSE;
9663
9664 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9665 sec);
9666 if (sym.st_shndx == SHN_BAD)
9667 return FALSE;
9668
9669 sym.st_value += o->output_offset;
9670
9671 indx = bfd_get_symcount (output_bfd);
9672 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9673 if (ret == 0)
9674 return FALSE;
9675 else if (ret == 1)
9676 flinfo->indices[symndx] = indx;
9677 else
9678 abort ();
9679 }
9680 elf_section_data (osec)->this_hdr.sh_info
9681 = flinfo->indices[symndx];
9682 }
9683 }
9684
9685 if ((o->flags & SEC_HAS_CONTENTS) == 0
9686 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9687 continue;
9688
9689 if ((o->flags & SEC_LINKER_CREATED) != 0)
9690 {
9691 /* Section was created by _bfd_elf_link_create_dynamic_sections
9692 or somesuch. */
9693 continue;
9694 }
9695
9696 /* Get the contents of the section. They have been cached by a
9697 relaxation routine. Note that o is a section in an input
9698 file, so the contents field will not have been set by any of
9699 the routines which work on output files. */
9700 if (elf_section_data (o)->this_hdr.contents != NULL)
9701 {
9702 contents = elf_section_data (o)->this_hdr.contents;
9703 if (bed->caches_rawsize
9704 && o->rawsize != 0
9705 && o->rawsize < o->size)
9706 {
9707 memcpy (flinfo->contents, contents, o->rawsize);
9708 contents = flinfo->contents;
9709 }
9710 }
9711 else
9712 {
9713 contents = flinfo->contents;
9714 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9715 return FALSE;
9716 }
9717
9718 if ((o->flags & SEC_RELOC) != 0)
9719 {
9720 Elf_Internal_Rela *internal_relocs;
9721 Elf_Internal_Rela *rel, *relend;
9722 int action_discarded;
9723 int ret;
9724
9725 /* Get the swapped relocs. */
9726 internal_relocs
9727 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9728 flinfo->internal_relocs, FALSE);
9729 if (internal_relocs == NULL
9730 && o->reloc_count > 0)
9731 return FALSE;
9732
9733 /* We need to reverse-copy input .ctors/.dtors sections if
9734 they are placed in .init_array/.finit_array for output. */
9735 if (o->size > address_size
9736 && ((strncmp (o->name, ".ctors", 6) == 0
9737 && strcmp (o->output_section->name,
9738 ".init_array") == 0)
9739 || (strncmp (o->name, ".dtors", 6) == 0
9740 && strcmp (o->output_section->name,
9741 ".fini_array") == 0))
9742 && (o->name[6] == 0 || o->name[6] == '.'))
9743 {
9744 if (o->size != o->reloc_count * address_size)
9745 {
9746 (*_bfd_error_handler)
9747 (_("error: %B: size of section %A is not "
9748 "multiple of address size"),
9749 input_bfd, o);
9750 bfd_set_error (bfd_error_on_input);
9751 return FALSE;
9752 }
9753 o->flags |= SEC_ELF_REVERSE_COPY;
9754 }
9755
9756 action_discarded = -1;
9757 if (!elf_section_ignore_discarded_relocs (o))
9758 action_discarded = (*bed->action_discarded) (o);
9759
9760 /* Run through the relocs evaluating complex reloc symbols and
9761 looking for relocs against symbols from discarded sections
9762 or section symbols from removed link-once sections.
9763 Complain about relocs against discarded sections. Zero
9764 relocs against removed link-once sections. */
9765
9766 rel = internal_relocs;
9767 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9768 for ( ; rel < relend; rel++)
9769 {
9770 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9771 unsigned int s_type;
9772 asection **ps, *sec;
9773 struct elf_link_hash_entry *h = NULL;
9774 const char *sym_name;
9775
9776 if (r_symndx == STN_UNDEF)
9777 continue;
9778
9779 if (r_symndx >= locsymcount
9780 || (elf_bad_symtab (input_bfd)
9781 && flinfo->sections[r_symndx] == NULL))
9782 {
9783 h = sym_hashes[r_symndx - extsymoff];
9784
9785 /* Badly formatted input files can contain relocs that
9786 reference non-existant symbols. Check here so that
9787 we do not seg fault. */
9788 if (h == NULL)
9789 {
9790 char buffer [32];
9791
9792 sprintf_vma (buffer, rel->r_info);
9793 (*_bfd_error_handler)
9794 (_("error: %B contains a reloc (0x%s) for section %A "
9795 "that references a non-existent global symbol"),
9796 input_bfd, o, buffer);
9797 bfd_set_error (bfd_error_bad_value);
9798 return FALSE;
9799 }
9800
9801 while (h->root.type == bfd_link_hash_indirect
9802 || h->root.type == bfd_link_hash_warning)
9803 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9804
9805 s_type = h->type;
9806
9807 /* If a plugin symbol is referenced from a non-IR file,
9808 mark the symbol as undefined. Note that the
9809 linker may attach linker created dynamic sections
9810 to the plugin bfd. Symbols defined in linker
9811 created sections are not plugin symbols. */
9812 if (h->root.non_ir_ref
9813 && (h->root.type == bfd_link_hash_defined
9814 || h->root.type == bfd_link_hash_defweak)
9815 && (h->root.u.def.section->flags
9816 & SEC_LINKER_CREATED) == 0
9817 && h->root.u.def.section->owner != NULL
9818 && (h->root.u.def.section->owner->flags
9819 & BFD_PLUGIN) != 0)
9820 {
9821 h->root.type = bfd_link_hash_undefined;
9822 h->root.u.undef.abfd = h->root.u.def.section->owner;
9823 }
9824
9825 ps = NULL;
9826 if (h->root.type == bfd_link_hash_defined
9827 || h->root.type == bfd_link_hash_defweak)
9828 ps = &h->root.u.def.section;
9829
9830 sym_name = h->root.root.string;
9831 }
9832 else
9833 {
9834 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9835
9836 s_type = ELF_ST_TYPE (sym->st_info);
9837 ps = &flinfo->sections[r_symndx];
9838 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9839 sym, *ps);
9840 }
9841
9842 if ((s_type == STT_RELC || s_type == STT_SRELC)
9843 && !flinfo->info->relocatable)
9844 {
9845 bfd_vma val;
9846 bfd_vma dot = (rel->r_offset
9847 + o->output_offset + o->output_section->vma);
9848 #ifdef DEBUG
9849 printf ("Encountered a complex symbol!");
9850 printf (" (input_bfd %s, section %s, reloc %ld\n",
9851 input_bfd->filename, o->name,
9852 (long) (rel - internal_relocs));
9853 printf (" symbol: idx %8.8lx, name %s\n",
9854 r_symndx, sym_name);
9855 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9856 (unsigned long) rel->r_info,
9857 (unsigned long) rel->r_offset);
9858 #endif
9859 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9860 isymbuf, locsymcount, s_type == STT_SRELC))
9861 return FALSE;
9862
9863 /* Symbol evaluated OK. Update to absolute value. */
9864 set_symbol_value (input_bfd, isymbuf, locsymcount,
9865 r_symndx, val);
9866 continue;
9867 }
9868
9869 if (action_discarded != -1 && ps != NULL)
9870 {
9871 /* Complain if the definition comes from a
9872 discarded section. */
9873 if ((sec = *ps) != NULL && discarded_section (sec))
9874 {
9875 BFD_ASSERT (r_symndx != STN_UNDEF);
9876 if (action_discarded & COMPLAIN)
9877 (*flinfo->info->callbacks->einfo)
9878 (_("%X`%s' referenced in section `%A' of %B: "
9879 "defined in discarded section `%A' of %B\n"),
9880 sym_name, o, input_bfd, sec, sec->owner);
9881
9882 /* Try to do the best we can to support buggy old
9883 versions of gcc. Pretend that the symbol is
9884 really defined in the kept linkonce section.
9885 FIXME: This is quite broken. Modifying the
9886 symbol here means we will be changing all later
9887 uses of the symbol, not just in this section. */
9888 if (action_discarded & PRETEND)
9889 {
9890 asection *kept;
9891
9892 kept = _bfd_elf_check_kept_section (sec,
9893 flinfo->info);
9894 if (kept != NULL)
9895 {
9896 *ps = kept;
9897 continue;
9898 }
9899 }
9900 }
9901 }
9902 }
9903
9904 /* Relocate the section by invoking a back end routine.
9905
9906 The back end routine is responsible for adjusting the
9907 section contents as necessary, and (if using Rela relocs
9908 and generating a relocatable output file) adjusting the
9909 reloc addend as necessary.
9910
9911 The back end routine does not have to worry about setting
9912 the reloc address or the reloc symbol index.
9913
9914 The back end routine is given a pointer to the swapped in
9915 internal symbols, and can access the hash table entries
9916 for the external symbols via elf_sym_hashes (input_bfd).
9917
9918 When generating relocatable output, the back end routine
9919 must handle STB_LOCAL/STT_SECTION symbols specially. The
9920 output symbol is going to be a section symbol
9921 corresponding to the output section, which will require
9922 the addend to be adjusted. */
9923
9924 ret = (*relocate_section) (output_bfd, flinfo->info,
9925 input_bfd, o, contents,
9926 internal_relocs,
9927 isymbuf,
9928 flinfo->sections);
9929 if (!ret)
9930 return FALSE;
9931
9932 if (ret == 2
9933 || flinfo->info->relocatable
9934 || flinfo->info->emitrelocations)
9935 {
9936 Elf_Internal_Rela *irela;
9937 Elf_Internal_Rela *irelaend, *irelamid;
9938 bfd_vma last_offset;
9939 struct elf_link_hash_entry **rel_hash;
9940 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9941 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9942 unsigned int next_erel;
9943 bfd_boolean rela_normal;
9944 struct bfd_elf_section_data *esdi, *esdo;
9945
9946 esdi = elf_section_data (o);
9947 esdo = elf_section_data (o->output_section);
9948 rela_normal = FALSE;
9949
9950 /* Adjust the reloc addresses and symbol indices. */
9951
9952 irela = internal_relocs;
9953 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9954 rel_hash = esdo->rel.hashes + esdo->rel.count;
9955 /* We start processing the REL relocs, if any. When we reach
9956 IRELAMID in the loop, we switch to the RELA relocs. */
9957 irelamid = irela;
9958 if (esdi->rel.hdr != NULL)
9959 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9960 * bed->s->int_rels_per_ext_rel);
9961 rel_hash_list = rel_hash;
9962 rela_hash_list = NULL;
9963 last_offset = o->output_offset;
9964 if (!flinfo->info->relocatable)
9965 last_offset += o->output_section->vma;
9966 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9967 {
9968 unsigned long r_symndx;
9969 asection *sec;
9970 Elf_Internal_Sym sym;
9971
9972 if (next_erel == bed->s->int_rels_per_ext_rel)
9973 {
9974 rel_hash++;
9975 next_erel = 0;
9976 }
9977
9978 if (irela == irelamid)
9979 {
9980 rel_hash = esdo->rela.hashes + esdo->rela.count;
9981 rela_hash_list = rel_hash;
9982 rela_normal = bed->rela_normal;
9983 }
9984
9985 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9986 flinfo->info, o,
9987 irela->r_offset);
9988 if (irela->r_offset >= (bfd_vma) -2)
9989 {
9990 /* This is a reloc for a deleted entry or somesuch.
9991 Turn it into an R_*_NONE reloc, at the same
9992 offset as the last reloc. elf_eh_frame.c and
9993 bfd_elf_discard_info rely on reloc offsets
9994 being ordered. */
9995 irela->r_offset = last_offset;
9996 irela->r_info = 0;
9997 irela->r_addend = 0;
9998 continue;
9999 }
10000
10001 irela->r_offset += o->output_offset;
10002
10003 /* Relocs in an executable have to be virtual addresses. */
10004 if (!flinfo->info->relocatable)
10005 irela->r_offset += o->output_section->vma;
10006
10007 last_offset = irela->r_offset;
10008
10009 r_symndx = irela->r_info >> r_sym_shift;
10010 if (r_symndx == STN_UNDEF)
10011 continue;
10012
10013 if (r_symndx >= locsymcount
10014 || (elf_bad_symtab (input_bfd)
10015 && flinfo->sections[r_symndx] == NULL))
10016 {
10017 struct elf_link_hash_entry *rh;
10018 unsigned long indx;
10019
10020 /* This is a reloc against a global symbol. We
10021 have not yet output all the local symbols, so
10022 we do not know the symbol index of any global
10023 symbol. We set the rel_hash entry for this
10024 reloc to point to the global hash table entry
10025 for this symbol. The symbol index is then
10026 set at the end of bfd_elf_final_link. */
10027 indx = r_symndx - extsymoff;
10028 rh = elf_sym_hashes (input_bfd)[indx];
10029 while (rh->root.type == bfd_link_hash_indirect
10030 || rh->root.type == bfd_link_hash_warning)
10031 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10032
10033 /* Setting the index to -2 tells
10034 elf_link_output_extsym that this symbol is
10035 used by a reloc. */
10036 BFD_ASSERT (rh->indx < 0);
10037 rh->indx = -2;
10038
10039 *rel_hash = rh;
10040
10041 continue;
10042 }
10043
10044 /* This is a reloc against a local symbol. */
10045
10046 *rel_hash = NULL;
10047 sym = isymbuf[r_symndx];
10048 sec = flinfo->sections[r_symndx];
10049 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10050 {
10051 /* I suppose the backend ought to fill in the
10052 section of any STT_SECTION symbol against a
10053 processor specific section. */
10054 r_symndx = STN_UNDEF;
10055 if (bfd_is_abs_section (sec))
10056 ;
10057 else if (sec == NULL || sec->owner == NULL)
10058 {
10059 bfd_set_error (bfd_error_bad_value);
10060 return FALSE;
10061 }
10062 else
10063 {
10064 asection *osec = sec->output_section;
10065
10066 /* If we have discarded a section, the output
10067 section will be the absolute section. In
10068 case of discarded SEC_MERGE sections, use
10069 the kept section. relocate_section should
10070 have already handled discarded linkonce
10071 sections. */
10072 if (bfd_is_abs_section (osec)
10073 && sec->kept_section != NULL
10074 && sec->kept_section->output_section != NULL)
10075 {
10076 osec = sec->kept_section->output_section;
10077 irela->r_addend -= osec->vma;
10078 }
10079
10080 if (!bfd_is_abs_section (osec))
10081 {
10082 r_symndx = osec->target_index;
10083 if (r_symndx == STN_UNDEF)
10084 {
10085 irela->r_addend += osec->vma;
10086 osec = _bfd_nearby_section (output_bfd, osec,
10087 osec->vma);
10088 irela->r_addend -= osec->vma;
10089 r_symndx = osec->target_index;
10090 }
10091 }
10092 }
10093
10094 /* Adjust the addend according to where the
10095 section winds up in the output section. */
10096 if (rela_normal)
10097 irela->r_addend += sec->output_offset;
10098 }
10099 else
10100 {
10101 if (flinfo->indices[r_symndx] == -1)
10102 {
10103 unsigned long shlink;
10104 const char *name;
10105 asection *osec;
10106 long indx;
10107
10108 if (flinfo->info->strip == strip_all)
10109 {
10110 /* You can't do ld -r -s. */
10111 bfd_set_error (bfd_error_invalid_operation);
10112 return FALSE;
10113 }
10114
10115 /* This symbol was skipped earlier, but
10116 since it is needed by a reloc, we
10117 must output it now. */
10118 shlink = symtab_hdr->sh_link;
10119 name = (bfd_elf_string_from_elf_section
10120 (input_bfd, shlink, sym.st_name));
10121 if (name == NULL)
10122 return FALSE;
10123
10124 osec = sec->output_section;
10125 sym.st_shndx =
10126 _bfd_elf_section_from_bfd_section (output_bfd,
10127 osec);
10128 if (sym.st_shndx == SHN_BAD)
10129 return FALSE;
10130
10131 sym.st_value += sec->output_offset;
10132 if (!flinfo->info->relocatable)
10133 {
10134 sym.st_value += osec->vma;
10135 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10136 {
10137 /* STT_TLS symbols are relative to PT_TLS
10138 segment base. */
10139 BFD_ASSERT (elf_hash_table (flinfo->info)
10140 ->tls_sec != NULL);
10141 sym.st_value -= (elf_hash_table (flinfo->info)
10142 ->tls_sec->vma);
10143 }
10144 }
10145
10146 indx = bfd_get_symcount (output_bfd);
10147 ret = elf_link_output_sym (flinfo, name, &sym, sec,
10148 NULL);
10149 if (ret == 0)
10150 return FALSE;
10151 else if (ret == 1)
10152 flinfo->indices[r_symndx] = indx;
10153 else
10154 abort ();
10155 }
10156
10157 r_symndx = flinfo->indices[r_symndx];
10158 }
10159
10160 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10161 | (irela->r_info & r_type_mask));
10162 }
10163
10164 /* Swap out the relocs. */
10165 input_rel_hdr = esdi->rel.hdr;
10166 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10167 {
10168 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10169 input_rel_hdr,
10170 internal_relocs,
10171 rel_hash_list))
10172 return FALSE;
10173 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10174 * bed->s->int_rels_per_ext_rel);
10175 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10176 }
10177
10178 input_rela_hdr = esdi->rela.hdr;
10179 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10180 {
10181 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10182 input_rela_hdr,
10183 internal_relocs,
10184 rela_hash_list))
10185 return FALSE;
10186 }
10187 }
10188 }
10189
10190 /* Write out the modified section contents. */
10191 if (bed->elf_backend_write_section
10192 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10193 contents))
10194 {
10195 /* Section written out. */
10196 }
10197 else switch (o->sec_info_type)
10198 {
10199 case SEC_INFO_TYPE_STABS:
10200 if (! (_bfd_write_section_stabs
10201 (output_bfd,
10202 &elf_hash_table (flinfo->info)->stab_info,
10203 o, &elf_section_data (o)->sec_info, contents)))
10204 return FALSE;
10205 break;
10206 case SEC_INFO_TYPE_MERGE:
10207 if (! _bfd_write_merged_section (output_bfd, o,
10208 elf_section_data (o)->sec_info))
10209 return FALSE;
10210 break;
10211 case SEC_INFO_TYPE_EH_FRAME:
10212 {
10213 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10214 o, contents))
10215 return FALSE;
10216 }
10217 break;
10218 default:
10219 {
10220 /* FIXME: octets_per_byte. */
10221 if (! (o->flags & SEC_EXCLUDE))
10222 {
10223 file_ptr offset = (file_ptr) o->output_offset;
10224 bfd_size_type todo = o->size;
10225 if ((o->flags & SEC_ELF_REVERSE_COPY))
10226 {
10227 /* Reverse-copy input section to output. */
10228 do
10229 {
10230 todo -= address_size;
10231 if (! bfd_set_section_contents (output_bfd,
10232 o->output_section,
10233 contents + todo,
10234 offset,
10235 address_size))
10236 return FALSE;
10237 if (todo == 0)
10238 break;
10239 offset += address_size;
10240 }
10241 while (1);
10242 }
10243 else if (! bfd_set_section_contents (output_bfd,
10244 o->output_section,
10245 contents,
10246 offset, todo))
10247 return FALSE;
10248 }
10249 }
10250 break;
10251 }
10252 }
10253
10254 return TRUE;
10255 }
10256
10257 /* Generate a reloc when linking an ELF file. This is a reloc
10258 requested by the linker, and does not come from any input file. This
10259 is used to build constructor and destructor tables when linking
10260 with -Ur. */
10261
10262 static bfd_boolean
10263 elf_reloc_link_order (bfd *output_bfd,
10264 struct bfd_link_info *info,
10265 asection *output_section,
10266 struct bfd_link_order *link_order)
10267 {
10268 reloc_howto_type *howto;
10269 long indx;
10270 bfd_vma offset;
10271 bfd_vma addend;
10272 struct bfd_elf_section_reloc_data *reldata;
10273 struct elf_link_hash_entry **rel_hash_ptr;
10274 Elf_Internal_Shdr *rel_hdr;
10275 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10276 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10277 bfd_byte *erel;
10278 unsigned int i;
10279 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10280
10281 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10282 if (howto == NULL)
10283 {
10284 bfd_set_error (bfd_error_bad_value);
10285 return FALSE;
10286 }
10287
10288 addend = link_order->u.reloc.p->addend;
10289
10290 if (esdo->rel.hdr)
10291 reldata = &esdo->rel;
10292 else if (esdo->rela.hdr)
10293 reldata = &esdo->rela;
10294 else
10295 {
10296 reldata = NULL;
10297 BFD_ASSERT (0);
10298 }
10299
10300 /* Figure out the symbol index. */
10301 rel_hash_ptr = reldata->hashes + reldata->count;
10302 if (link_order->type == bfd_section_reloc_link_order)
10303 {
10304 indx = link_order->u.reloc.p->u.section->target_index;
10305 BFD_ASSERT (indx != 0);
10306 *rel_hash_ptr = NULL;
10307 }
10308 else
10309 {
10310 struct elf_link_hash_entry *h;
10311
10312 /* Treat a reloc against a defined symbol as though it were
10313 actually against the section. */
10314 h = ((struct elf_link_hash_entry *)
10315 bfd_wrapped_link_hash_lookup (output_bfd, info,
10316 link_order->u.reloc.p->u.name,
10317 FALSE, FALSE, TRUE));
10318 if (h != NULL
10319 && (h->root.type == bfd_link_hash_defined
10320 || h->root.type == bfd_link_hash_defweak))
10321 {
10322 asection *section;
10323
10324 section = h->root.u.def.section;
10325 indx = section->output_section->target_index;
10326 *rel_hash_ptr = NULL;
10327 /* It seems that we ought to add the symbol value to the
10328 addend here, but in practice it has already been added
10329 because it was passed to constructor_callback. */
10330 addend += section->output_section->vma + section->output_offset;
10331 }
10332 else if (h != NULL)
10333 {
10334 /* Setting the index to -2 tells elf_link_output_extsym that
10335 this symbol is used by a reloc. */
10336 h->indx = -2;
10337 *rel_hash_ptr = h;
10338 indx = 0;
10339 }
10340 else
10341 {
10342 if (! ((*info->callbacks->unattached_reloc)
10343 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10344 return FALSE;
10345 indx = 0;
10346 }
10347 }
10348
10349 /* If this is an inplace reloc, we must write the addend into the
10350 object file. */
10351 if (howto->partial_inplace && addend != 0)
10352 {
10353 bfd_size_type size;
10354 bfd_reloc_status_type rstat;
10355 bfd_byte *buf;
10356 bfd_boolean ok;
10357 const char *sym_name;
10358
10359 size = (bfd_size_type) bfd_get_reloc_size (howto);
10360 buf = (bfd_byte *) bfd_zmalloc (size);
10361 if (buf == NULL && size != 0)
10362 return FALSE;
10363 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10364 switch (rstat)
10365 {
10366 case bfd_reloc_ok:
10367 break;
10368
10369 default:
10370 case bfd_reloc_outofrange:
10371 abort ();
10372
10373 case bfd_reloc_overflow:
10374 if (link_order->type == bfd_section_reloc_link_order)
10375 sym_name = bfd_section_name (output_bfd,
10376 link_order->u.reloc.p->u.section);
10377 else
10378 sym_name = link_order->u.reloc.p->u.name;
10379 if (! ((*info->callbacks->reloc_overflow)
10380 (info, NULL, sym_name, howto->name, addend, NULL,
10381 NULL, (bfd_vma) 0)))
10382 {
10383 free (buf);
10384 return FALSE;
10385 }
10386 break;
10387 }
10388 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10389 link_order->offset, size);
10390 free (buf);
10391 if (! ok)
10392 return FALSE;
10393 }
10394
10395 /* The address of a reloc is relative to the section in a
10396 relocatable file, and is a virtual address in an executable
10397 file. */
10398 offset = link_order->offset;
10399 if (! info->relocatable)
10400 offset += output_section->vma;
10401
10402 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10403 {
10404 irel[i].r_offset = offset;
10405 irel[i].r_info = 0;
10406 irel[i].r_addend = 0;
10407 }
10408 if (bed->s->arch_size == 32)
10409 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10410 else
10411 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10412
10413 rel_hdr = reldata->hdr;
10414 erel = rel_hdr->contents;
10415 if (rel_hdr->sh_type == SHT_REL)
10416 {
10417 erel += reldata->count * bed->s->sizeof_rel;
10418 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10419 }
10420 else
10421 {
10422 irel[0].r_addend = addend;
10423 erel += reldata->count * bed->s->sizeof_rela;
10424 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10425 }
10426
10427 ++reldata->count;
10428
10429 return TRUE;
10430 }
10431
10432
10433 /* Get the output vma of the section pointed to by the sh_link field. */
10434
10435 static bfd_vma
10436 elf_get_linked_section_vma (struct bfd_link_order *p)
10437 {
10438 Elf_Internal_Shdr **elf_shdrp;
10439 asection *s;
10440 int elfsec;
10441
10442 s = p->u.indirect.section;
10443 elf_shdrp = elf_elfsections (s->owner);
10444 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10445 elfsec = elf_shdrp[elfsec]->sh_link;
10446 /* PR 290:
10447 The Intel C compiler generates SHT_IA_64_UNWIND with
10448 SHF_LINK_ORDER. But it doesn't set the sh_link or
10449 sh_info fields. Hence we could get the situation
10450 where elfsec is 0. */
10451 if (elfsec == 0)
10452 {
10453 const struct elf_backend_data *bed
10454 = get_elf_backend_data (s->owner);
10455 if (bed->link_order_error_handler)
10456 bed->link_order_error_handler
10457 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10458 return 0;
10459 }
10460 else
10461 {
10462 s = elf_shdrp[elfsec]->bfd_section;
10463 return s->output_section->vma + s->output_offset;
10464 }
10465 }
10466
10467
10468 /* Compare two sections based on the locations of the sections they are
10469 linked to. Used by elf_fixup_link_order. */
10470
10471 static int
10472 compare_link_order (const void * a, const void * b)
10473 {
10474 bfd_vma apos;
10475 bfd_vma bpos;
10476
10477 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10478 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10479 if (apos < bpos)
10480 return -1;
10481 return apos > bpos;
10482 }
10483
10484
10485 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10486 order as their linked sections. Returns false if this could not be done
10487 because an output section includes both ordered and unordered
10488 sections. Ideally we'd do this in the linker proper. */
10489
10490 static bfd_boolean
10491 elf_fixup_link_order (bfd *abfd, asection *o)
10492 {
10493 int seen_linkorder;
10494 int seen_other;
10495 int n;
10496 struct bfd_link_order *p;
10497 bfd *sub;
10498 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10499 unsigned elfsec;
10500 struct bfd_link_order **sections;
10501 asection *s, *other_sec, *linkorder_sec;
10502 bfd_vma offset;
10503
10504 other_sec = NULL;
10505 linkorder_sec = NULL;
10506 seen_other = 0;
10507 seen_linkorder = 0;
10508 for (p = o->map_head.link_order; p != NULL; p = p->next)
10509 {
10510 if (p->type == bfd_indirect_link_order)
10511 {
10512 s = p->u.indirect.section;
10513 sub = s->owner;
10514 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10515 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10516 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10517 && elfsec < elf_numsections (sub)
10518 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10519 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10520 {
10521 seen_linkorder++;
10522 linkorder_sec = s;
10523 }
10524 else
10525 {
10526 seen_other++;
10527 other_sec = s;
10528 }
10529 }
10530 else
10531 seen_other++;
10532
10533 if (seen_other && seen_linkorder)
10534 {
10535 if (other_sec && linkorder_sec)
10536 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10537 o, linkorder_sec,
10538 linkorder_sec->owner, other_sec,
10539 other_sec->owner);
10540 else
10541 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10542 o);
10543 bfd_set_error (bfd_error_bad_value);
10544 return FALSE;
10545 }
10546 }
10547
10548 if (!seen_linkorder)
10549 return TRUE;
10550
10551 sections = (struct bfd_link_order **)
10552 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10553 if (sections == NULL)
10554 return FALSE;
10555 seen_linkorder = 0;
10556
10557 for (p = o->map_head.link_order; p != NULL; p = p->next)
10558 {
10559 sections[seen_linkorder++] = p;
10560 }
10561 /* Sort the input sections in the order of their linked section. */
10562 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10563 compare_link_order);
10564
10565 /* Change the offsets of the sections. */
10566 offset = 0;
10567 for (n = 0; n < seen_linkorder; n++)
10568 {
10569 s = sections[n]->u.indirect.section;
10570 offset &= ~(bfd_vma) 0 << s->alignment_power;
10571 s->output_offset = offset;
10572 sections[n]->offset = offset;
10573 /* FIXME: octets_per_byte. */
10574 offset += sections[n]->size;
10575 }
10576
10577 free (sections);
10578 return TRUE;
10579 }
10580
10581 static void
10582 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10583 {
10584 asection *o;
10585
10586 if (flinfo->symstrtab != NULL)
10587 _bfd_stringtab_free (flinfo->symstrtab);
10588 if (flinfo->contents != NULL)
10589 free (flinfo->contents);
10590 if (flinfo->external_relocs != NULL)
10591 free (flinfo->external_relocs);
10592 if (flinfo->internal_relocs != NULL)
10593 free (flinfo->internal_relocs);
10594 if (flinfo->external_syms != NULL)
10595 free (flinfo->external_syms);
10596 if (flinfo->locsym_shndx != NULL)
10597 free (flinfo->locsym_shndx);
10598 if (flinfo->internal_syms != NULL)
10599 free (flinfo->internal_syms);
10600 if (flinfo->indices != NULL)
10601 free (flinfo->indices);
10602 if (flinfo->sections != NULL)
10603 free (flinfo->sections);
10604 if (flinfo->symbuf != NULL)
10605 free (flinfo->symbuf);
10606 if (flinfo->symshndxbuf != NULL)
10607 free (flinfo->symshndxbuf);
10608 for (o = obfd->sections; o != NULL; o = o->next)
10609 {
10610 struct bfd_elf_section_data *esdo = elf_section_data (o);
10611 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10612 free (esdo->rel.hashes);
10613 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10614 free (esdo->rela.hashes);
10615 }
10616 }
10617
10618 /* Do the final step of an ELF link. */
10619
10620 bfd_boolean
10621 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10622 {
10623 bfd_boolean dynamic;
10624 bfd_boolean emit_relocs;
10625 bfd *dynobj;
10626 struct elf_final_link_info flinfo;
10627 asection *o;
10628 struct bfd_link_order *p;
10629 bfd *sub;
10630 bfd_size_type max_contents_size;
10631 bfd_size_type max_external_reloc_size;
10632 bfd_size_type max_internal_reloc_count;
10633 bfd_size_type max_sym_count;
10634 bfd_size_type max_sym_shndx_count;
10635 Elf_Internal_Sym elfsym;
10636 unsigned int i;
10637 Elf_Internal_Shdr *symtab_hdr;
10638 Elf_Internal_Shdr *symtab_shndx_hdr;
10639 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10640 struct elf_outext_info eoinfo;
10641 bfd_boolean merged;
10642 size_t relativecount = 0;
10643 asection *reldyn = 0;
10644 bfd_size_type amt;
10645 asection *attr_section = NULL;
10646 bfd_vma attr_size = 0;
10647 const char *std_attrs_section;
10648
10649 if (! is_elf_hash_table (info->hash))
10650 return FALSE;
10651
10652 if (info->shared)
10653 abfd->flags |= DYNAMIC;
10654
10655 dynamic = elf_hash_table (info)->dynamic_sections_created;
10656 dynobj = elf_hash_table (info)->dynobj;
10657
10658 emit_relocs = (info->relocatable
10659 || info->emitrelocations);
10660
10661 flinfo.info = info;
10662 flinfo.output_bfd = abfd;
10663 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10664 if (flinfo.symstrtab == NULL)
10665 return FALSE;
10666
10667 if (! dynamic)
10668 {
10669 flinfo.dynsym_sec = NULL;
10670 flinfo.hash_sec = NULL;
10671 flinfo.symver_sec = NULL;
10672 }
10673 else
10674 {
10675 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10676 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10677 /* Note that dynsym_sec can be NULL (on VMS). */
10678 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10679 /* Note that it is OK if symver_sec is NULL. */
10680 }
10681
10682 flinfo.contents = NULL;
10683 flinfo.external_relocs = NULL;
10684 flinfo.internal_relocs = NULL;
10685 flinfo.external_syms = NULL;
10686 flinfo.locsym_shndx = NULL;
10687 flinfo.internal_syms = NULL;
10688 flinfo.indices = NULL;
10689 flinfo.sections = NULL;
10690 flinfo.symbuf = NULL;
10691 flinfo.symshndxbuf = NULL;
10692 flinfo.symbuf_count = 0;
10693 flinfo.shndxbuf_size = 0;
10694 flinfo.filesym_count = 0;
10695
10696 /* The object attributes have been merged. Remove the input
10697 sections from the link, and set the contents of the output
10698 secton. */
10699 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10700 for (o = abfd->sections; o != NULL; o = o->next)
10701 {
10702 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10703 || strcmp (o->name, ".gnu.attributes") == 0)
10704 {
10705 for (p = o->map_head.link_order; p != NULL; p = p->next)
10706 {
10707 asection *input_section;
10708
10709 if (p->type != bfd_indirect_link_order)
10710 continue;
10711 input_section = p->u.indirect.section;
10712 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10713 elf_link_input_bfd ignores this section. */
10714 input_section->flags &= ~SEC_HAS_CONTENTS;
10715 }
10716
10717 attr_size = bfd_elf_obj_attr_size (abfd);
10718 if (attr_size)
10719 {
10720 bfd_set_section_size (abfd, o, attr_size);
10721 attr_section = o;
10722 /* Skip this section later on. */
10723 o->map_head.link_order = NULL;
10724 }
10725 else
10726 o->flags |= SEC_EXCLUDE;
10727 }
10728 }
10729
10730 /* Count up the number of relocations we will output for each output
10731 section, so that we know the sizes of the reloc sections. We
10732 also figure out some maximum sizes. */
10733 max_contents_size = 0;
10734 max_external_reloc_size = 0;
10735 max_internal_reloc_count = 0;
10736 max_sym_count = 0;
10737 max_sym_shndx_count = 0;
10738 merged = FALSE;
10739 for (o = abfd->sections; o != NULL; o = o->next)
10740 {
10741 struct bfd_elf_section_data *esdo = elf_section_data (o);
10742 o->reloc_count = 0;
10743
10744 for (p = o->map_head.link_order; p != NULL; p = p->next)
10745 {
10746 unsigned int reloc_count = 0;
10747 struct bfd_elf_section_data *esdi = NULL;
10748
10749 if (p->type == bfd_section_reloc_link_order
10750 || p->type == bfd_symbol_reloc_link_order)
10751 reloc_count = 1;
10752 else if (p->type == bfd_indirect_link_order)
10753 {
10754 asection *sec;
10755
10756 sec = p->u.indirect.section;
10757 esdi = elf_section_data (sec);
10758
10759 /* Mark all sections which are to be included in the
10760 link. This will normally be every section. We need
10761 to do this so that we can identify any sections which
10762 the linker has decided to not include. */
10763 sec->linker_mark = TRUE;
10764
10765 if (sec->flags & SEC_MERGE)
10766 merged = TRUE;
10767
10768 if (esdo->this_hdr.sh_type == SHT_REL
10769 || esdo->this_hdr.sh_type == SHT_RELA)
10770 /* Some backends use reloc_count in relocation sections
10771 to count particular types of relocs. Of course,
10772 reloc sections themselves can't have relocations. */
10773 reloc_count = 0;
10774 else if (info->relocatable || info->emitrelocations)
10775 reloc_count = sec->reloc_count;
10776 else if (bed->elf_backend_count_relocs)
10777 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10778
10779 if (sec->rawsize > max_contents_size)
10780 max_contents_size = sec->rawsize;
10781 if (sec->size > max_contents_size)
10782 max_contents_size = sec->size;
10783
10784 /* We are interested in just local symbols, not all
10785 symbols. */
10786 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10787 && (sec->owner->flags & DYNAMIC) == 0)
10788 {
10789 size_t sym_count;
10790
10791 if (elf_bad_symtab (sec->owner))
10792 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10793 / bed->s->sizeof_sym);
10794 else
10795 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10796
10797 if (sym_count > max_sym_count)
10798 max_sym_count = sym_count;
10799
10800 if (sym_count > max_sym_shndx_count
10801 && elf_symtab_shndx (sec->owner) != 0)
10802 max_sym_shndx_count = sym_count;
10803
10804 if ((sec->flags & SEC_RELOC) != 0)
10805 {
10806 size_t ext_size = 0;
10807
10808 if (esdi->rel.hdr != NULL)
10809 ext_size = esdi->rel.hdr->sh_size;
10810 if (esdi->rela.hdr != NULL)
10811 ext_size += esdi->rela.hdr->sh_size;
10812
10813 if (ext_size > max_external_reloc_size)
10814 max_external_reloc_size = ext_size;
10815 if (sec->reloc_count > max_internal_reloc_count)
10816 max_internal_reloc_count = sec->reloc_count;
10817 }
10818 }
10819 }
10820
10821 if (reloc_count == 0)
10822 continue;
10823
10824 o->reloc_count += reloc_count;
10825
10826 if (p->type == bfd_indirect_link_order
10827 && (info->relocatable || info->emitrelocations))
10828 {
10829 if (esdi->rel.hdr)
10830 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10831 if (esdi->rela.hdr)
10832 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10833 }
10834 else
10835 {
10836 if (o->use_rela_p)
10837 esdo->rela.count += reloc_count;
10838 else
10839 esdo->rel.count += reloc_count;
10840 }
10841 }
10842
10843 if (o->reloc_count > 0)
10844 o->flags |= SEC_RELOC;
10845 else
10846 {
10847 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10848 set it (this is probably a bug) and if it is set
10849 assign_section_numbers will create a reloc section. */
10850 o->flags &=~ SEC_RELOC;
10851 }
10852
10853 /* If the SEC_ALLOC flag is not set, force the section VMA to
10854 zero. This is done in elf_fake_sections as well, but forcing
10855 the VMA to 0 here will ensure that relocs against these
10856 sections are handled correctly. */
10857 if ((o->flags & SEC_ALLOC) == 0
10858 && ! o->user_set_vma)
10859 o->vma = 0;
10860 }
10861
10862 if (! info->relocatable && merged)
10863 elf_link_hash_traverse (elf_hash_table (info),
10864 _bfd_elf_link_sec_merge_syms, abfd);
10865
10866 /* Figure out the file positions for everything but the symbol table
10867 and the relocs. We set symcount to force assign_section_numbers
10868 to create a symbol table. */
10869 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
10870 BFD_ASSERT (! abfd->output_has_begun);
10871 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10872 goto error_return;
10873
10874 /* Set sizes, and assign file positions for reloc sections. */
10875 for (o = abfd->sections; o != NULL; o = o->next)
10876 {
10877 struct bfd_elf_section_data *esdo = elf_section_data (o);
10878 if ((o->flags & SEC_RELOC) != 0)
10879 {
10880 if (esdo->rel.hdr
10881 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10882 goto error_return;
10883
10884 if (esdo->rela.hdr
10885 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10886 goto error_return;
10887 }
10888
10889 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10890 to count upwards while actually outputting the relocations. */
10891 esdo->rel.count = 0;
10892 esdo->rela.count = 0;
10893 }
10894
10895 /* We have now assigned file positions for all the sections except
10896 .symtab, .strtab, and non-loaded reloc sections. We start the
10897 .symtab section at the current file position, and write directly
10898 to it. We build the .strtab section in memory. */
10899 bfd_get_symcount (abfd) = 0;
10900 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10901 /* sh_name is set in prep_headers. */
10902 symtab_hdr->sh_type = SHT_SYMTAB;
10903 /* sh_flags, sh_addr and sh_size all start off zero. */
10904 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10905 /* sh_link is set in assign_section_numbers. */
10906 /* sh_info is set below. */
10907 /* sh_offset is set just below. */
10908 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10909
10910 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10911 continuously seeking to the right position in the file. */
10912 if (! info->keep_memory || max_sym_count < 20)
10913 flinfo.symbuf_size = 20;
10914 else
10915 flinfo.symbuf_size = max_sym_count;
10916 amt = flinfo.symbuf_size;
10917 amt *= bed->s->sizeof_sym;
10918 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10919 if (flinfo.symbuf == NULL)
10920 goto error_return;
10921 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10922 {
10923 /* Wild guess at number of output symbols. realloc'd as needed. */
10924 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10925 flinfo.shndxbuf_size = amt;
10926 amt *= sizeof (Elf_External_Sym_Shndx);
10927 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10928 if (flinfo.symshndxbuf == NULL)
10929 goto error_return;
10930 }
10931
10932 if (info->strip != strip_all || emit_relocs)
10933 {
10934 file_ptr off = elf_next_file_pos (abfd);
10935
10936 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10937
10938 /* Note that at this point elf_next_file_pos (abfd) is
10939 incorrect. We do not yet know the size of the .symtab section.
10940 We correct next_file_pos below, after we do know the size. */
10941
10942 /* Start writing out the symbol table. The first symbol is always a
10943 dummy symbol. */
10944 elfsym.st_value = 0;
10945 elfsym.st_size = 0;
10946 elfsym.st_info = 0;
10947 elfsym.st_other = 0;
10948 elfsym.st_shndx = SHN_UNDEF;
10949 elfsym.st_target_internal = 0;
10950 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10951 NULL) != 1)
10952 goto error_return;
10953
10954 /* Output a symbol for each section. We output these even if we are
10955 discarding local symbols, since they are used for relocs. These
10956 symbols have no names. We store the index of each one in the
10957 index field of the section, so that we can find it again when
10958 outputting relocs. */
10959
10960 elfsym.st_size = 0;
10961 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10962 elfsym.st_other = 0;
10963 elfsym.st_value = 0;
10964 elfsym.st_target_internal = 0;
10965 for (i = 1; i < elf_numsections (abfd); i++)
10966 {
10967 o = bfd_section_from_elf_index (abfd, i);
10968 if (o != NULL)
10969 {
10970 o->target_index = bfd_get_symcount (abfd);
10971 elfsym.st_shndx = i;
10972 if (!info->relocatable)
10973 elfsym.st_value = o->vma;
10974 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10975 goto error_return;
10976 }
10977 }
10978 }
10979
10980 /* Allocate some memory to hold information read in from the input
10981 files. */
10982 if (max_contents_size != 0)
10983 {
10984 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10985 if (flinfo.contents == NULL)
10986 goto error_return;
10987 }
10988
10989 if (max_external_reloc_size != 0)
10990 {
10991 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10992 if (flinfo.external_relocs == NULL)
10993 goto error_return;
10994 }
10995
10996 if (max_internal_reloc_count != 0)
10997 {
10998 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10999 amt *= sizeof (Elf_Internal_Rela);
11000 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
11001 if (flinfo.internal_relocs == NULL)
11002 goto error_return;
11003 }
11004
11005 if (max_sym_count != 0)
11006 {
11007 amt = max_sym_count * bed->s->sizeof_sym;
11008 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
11009 if (flinfo.external_syms == NULL)
11010 goto error_return;
11011
11012 amt = max_sym_count * sizeof (Elf_Internal_Sym);
11013 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
11014 if (flinfo.internal_syms == NULL)
11015 goto error_return;
11016
11017 amt = max_sym_count * sizeof (long);
11018 flinfo.indices = (long int *) bfd_malloc (amt);
11019 if (flinfo.indices == NULL)
11020 goto error_return;
11021
11022 amt = max_sym_count * sizeof (asection *);
11023 flinfo.sections = (asection **) bfd_malloc (amt);
11024 if (flinfo.sections == NULL)
11025 goto error_return;
11026 }
11027
11028 if (max_sym_shndx_count != 0)
11029 {
11030 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11031 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11032 if (flinfo.locsym_shndx == NULL)
11033 goto error_return;
11034 }
11035
11036 if (elf_hash_table (info)->tls_sec)
11037 {
11038 bfd_vma base, end = 0;
11039 asection *sec;
11040
11041 for (sec = elf_hash_table (info)->tls_sec;
11042 sec && (sec->flags & SEC_THREAD_LOCAL);
11043 sec = sec->next)
11044 {
11045 bfd_size_type size = sec->size;
11046
11047 if (size == 0
11048 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11049 {
11050 struct bfd_link_order *ord = sec->map_tail.link_order;
11051
11052 if (ord != NULL)
11053 size = ord->offset + ord->size;
11054 }
11055 end = sec->vma + size;
11056 }
11057 base = elf_hash_table (info)->tls_sec->vma;
11058 /* Only align end of TLS section if static TLS doesn't have special
11059 alignment requirements. */
11060 if (bed->static_tls_alignment == 1)
11061 end = align_power (end,
11062 elf_hash_table (info)->tls_sec->alignment_power);
11063 elf_hash_table (info)->tls_size = end - base;
11064 }
11065
11066 /* Reorder SHF_LINK_ORDER sections. */
11067 for (o = abfd->sections; o != NULL; o = o->next)
11068 {
11069 if (!elf_fixup_link_order (abfd, o))
11070 return FALSE;
11071 }
11072
11073 /* Since ELF permits relocations to be against local symbols, we
11074 must have the local symbols available when we do the relocations.
11075 Since we would rather only read the local symbols once, and we
11076 would rather not keep them in memory, we handle all the
11077 relocations for a single input file at the same time.
11078
11079 Unfortunately, there is no way to know the total number of local
11080 symbols until we have seen all of them, and the local symbol
11081 indices precede the global symbol indices. This means that when
11082 we are generating relocatable output, and we see a reloc against
11083 a global symbol, we can not know the symbol index until we have
11084 finished examining all the local symbols to see which ones we are
11085 going to output. To deal with this, we keep the relocations in
11086 memory, and don't output them until the end of the link. This is
11087 an unfortunate waste of memory, but I don't see a good way around
11088 it. Fortunately, it only happens when performing a relocatable
11089 link, which is not the common case. FIXME: If keep_memory is set
11090 we could write the relocs out and then read them again; I don't
11091 know how bad the memory loss will be. */
11092
11093 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11094 sub->output_has_begun = FALSE;
11095 for (o = abfd->sections; o != NULL; o = o->next)
11096 {
11097 for (p = o->map_head.link_order; p != NULL; p = p->next)
11098 {
11099 if (p->type == bfd_indirect_link_order
11100 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11101 == bfd_target_elf_flavour)
11102 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11103 {
11104 if (! sub->output_has_begun)
11105 {
11106 if (! elf_link_input_bfd (&flinfo, sub))
11107 goto error_return;
11108 sub->output_has_begun = TRUE;
11109 }
11110 }
11111 else if (p->type == bfd_section_reloc_link_order
11112 || p->type == bfd_symbol_reloc_link_order)
11113 {
11114 if (! elf_reloc_link_order (abfd, info, o, p))
11115 goto error_return;
11116 }
11117 else
11118 {
11119 if (! _bfd_default_link_order (abfd, info, o, p))
11120 {
11121 if (p->type == bfd_indirect_link_order
11122 && (bfd_get_flavour (sub)
11123 == bfd_target_elf_flavour)
11124 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11125 != bed->s->elfclass))
11126 {
11127 const char *iclass, *oclass;
11128
11129 if (bed->s->elfclass == ELFCLASS64)
11130 {
11131 iclass = "ELFCLASS32";
11132 oclass = "ELFCLASS64";
11133 }
11134 else
11135 {
11136 iclass = "ELFCLASS64";
11137 oclass = "ELFCLASS32";
11138 }
11139
11140 bfd_set_error (bfd_error_wrong_format);
11141 (*_bfd_error_handler)
11142 (_("%B: file class %s incompatible with %s"),
11143 sub, iclass, oclass);
11144 }
11145
11146 goto error_return;
11147 }
11148 }
11149 }
11150 }
11151
11152 /* Free symbol buffer if needed. */
11153 if (!info->reduce_memory_overheads)
11154 {
11155 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11156 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11157 && elf_tdata (sub)->symbuf)
11158 {
11159 free (elf_tdata (sub)->symbuf);
11160 elf_tdata (sub)->symbuf = NULL;
11161 }
11162 }
11163
11164 /* Output any global symbols that got converted to local in a
11165 version script or due to symbol visibility. We do this in a
11166 separate step since ELF requires all local symbols to appear
11167 prior to any global symbols. FIXME: We should only do this if
11168 some global symbols were, in fact, converted to become local.
11169 FIXME: Will this work correctly with the Irix 5 linker? */
11170 eoinfo.failed = FALSE;
11171 eoinfo.flinfo = &flinfo;
11172 eoinfo.localsyms = TRUE;
11173 eoinfo.file_sym_done = FALSE;
11174 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11175 if (eoinfo.failed)
11176 return FALSE;
11177
11178 /* If backend needs to output some local symbols not present in the hash
11179 table, do it now. */
11180 if (bed->elf_backend_output_arch_local_syms
11181 && (info->strip != strip_all || emit_relocs))
11182 {
11183 typedef int (*out_sym_func)
11184 (void *, const char *, Elf_Internal_Sym *, asection *,
11185 struct elf_link_hash_entry *);
11186
11187 if (! ((*bed->elf_backend_output_arch_local_syms)
11188 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11189 return FALSE;
11190 }
11191
11192 /* That wrote out all the local symbols. Finish up the symbol table
11193 with the global symbols. Even if we want to strip everything we
11194 can, we still need to deal with those global symbols that got
11195 converted to local in a version script. */
11196
11197 /* The sh_info field records the index of the first non local symbol. */
11198 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11199
11200 if (dynamic
11201 && flinfo.dynsym_sec != NULL
11202 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11203 {
11204 Elf_Internal_Sym sym;
11205 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11206 long last_local = 0;
11207
11208 /* Write out the section symbols for the output sections. */
11209 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11210 {
11211 asection *s;
11212
11213 sym.st_size = 0;
11214 sym.st_name = 0;
11215 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11216 sym.st_other = 0;
11217 sym.st_target_internal = 0;
11218
11219 for (s = abfd->sections; s != NULL; s = s->next)
11220 {
11221 int indx;
11222 bfd_byte *dest;
11223 long dynindx;
11224
11225 dynindx = elf_section_data (s)->dynindx;
11226 if (dynindx <= 0)
11227 continue;
11228 indx = elf_section_data (s)->this_idx;
11229 BFD_ASSERT (indx > 0);
11230 sym.st_shndx = indx;
11231 if (! check_dynsym (abfd, &sym))
11232 return FALSE;
11233 sym.st_value = s->vma;
11234 dest = dynsym + dynindx * bed->s->sizeof_sym;
11235 if (last_local < dynindx)
11236 last_local = dynindx;
11237 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11238 }
11239 }
11240
11241 /* Write out the local dynsyms. */
11242 if (elf_hash_table (info)->dynlocal)
11243 {
11244 struct elf_link_local_dynamic_entry *e;
11245 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11246 {
11247 asection *s;
11248 bfd_byte *dest;
11249
11250 /* Copy the internal symbol and turn off visibility.
11251 Note that we saved a word of storage and overwrote
11252 the original st_name with the dynstr_index. */
11253 sym = e->isym;
11254 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11255
11256 s = bfd_section_from_elf_index (e->input_bfd,
11257 e->isym.st_shndx);
11258 if (s != NULL)
11259 {
11260 sym.st_shndx =
11261 elf_section_data (s->output_section)->this_idx;
11262 if (! check_dynsym (abfd, &sym))
11263 return FALSE;
11264 sym.st_value = (s->output_section->vma
11265 + s->output_offset
11266 + e->isym.st_value);
11267 }
11268
11269 if (last_local < e->dynindx)
11270 last_local = e->dynindx;
11271
11272 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11273 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11274 }
11275 }
11276
11277 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11278 last_local + 1;
11279 }
11280
11281 /* We get the global symbols from the hash table. */
11282 eoinfo.failed = FALSE;
11283 eoinfo.localsyms = FALSE;
11284 eoinfo.flinfo = &flinfo;
11285 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11286 if (eoinfo.failed)
11287 return FALSE;
11288
11289 /* If backend needs to output some symbols not present in the hash
11290 table, do it now. */
11291 if (bed->elf_backend_output_arch_syms
11292 && (info->strip != strip_all || emit_relocs))
11293 {
11294 typedef int (*out_sym_func)
11295 (void *, const char *, Elf_Internal_Sym *, asection *,
11296 struct elf_link_hash_entry *);
11297
11298 if (! ((*bed->elf_backend_output_arch_syms)
11299 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11300 return FALSE;
11301 }
11302
11303 /* Flush all symbols to the file. */
11304 if (! elf_link_flush_output_syms (&flinfo, bed))
11305 return FALSE;
11306
11307 /* Now we know the size of the symtab section. */
11308 if (bfd_get_symcount (abfd) > 0)
11309 {
11310 /* Finish up and write out the symbol string table (.strtab)
11311 section. */
11312 Elf_Internal_Shdr *symstrtab_hdr;
11313 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
11314
11315 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11316 if (symtab_shndx_hdr->sh_name != 0)
11317 {
11318 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11319 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11320 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11321 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11322 symtab_shndx_hdr->sh_size = amt;
11323
11324 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11325 off, TRUE);
11326
11327 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11328 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11329 return FALSE;
11330 }
11331
11332 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11333 /* sh_name was set in prep_headers. */
11334 symstrtab_hdr->sh_type = SHT_STRTAB;
11335 symstrtab_hdr->sh_flags = 0;
11336 symstrtab_hdr->sh_addr = 0;
11337 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11338 symstrtab_hdr->sh_entsize = 0;
11339 symstrtab_hdr->sh_link = 0;
11340 symstrtab_hdr->sh_info = 0;
11341 /* sh_offset is set just below. */
11342 symstrtab_hdr->sh_addralign = 1;
11343
11344 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
11345 off, TRUE);
11346 elf_next_file_pos (abfd) = off;
11347
11348 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11349 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11350 return FALSE;
11351 }
11352
11353 /* Adjust the relocs to have the correct symbol indices. */
11354 for (o = abfd->sections; o != NULL; o = o->next)
11355 {
11356 struct bfd_elf_section_data *esdo = elf_section_data (o);
11357 bfd_boolean sort;
11358 if ((o->flags & SEC_RELOC) == 0)
11359 continue;
11360
11361 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
11362 if (esdo->rel.hdr != NULL)
11363 elf_link_adjust_relocs (abfd, &esdo->rel, sort);
11364 if (esdo->rela.hdr != NULL)
11365 elf_link_adjust_relocs (abfd, &esdo->rela, sort);
11366
11367 /* Set the reloc_count field to 0 to prevent write_relocs from
11368 trying to swap the relocs out itself. */
11369 o->reloc_count = 0;
11370 }
11371
11372 if (dynamic && info->combreloc && dynobj != NULL)
11373 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11374
11375 /* If we are linking against a dynamic object, or generating a
11376 shared library, finish up the dynamic linking information. */
11377 if (dynamic)
11378 {
11379 bfd_byte *dyncon, *dynconend;
11380
11381 /* Fix up .dynamic entries. */
11382 o = bfd_get_linker_section (dynobj, ".dynamic");
11383 BFD_ASSERT (o != NULL);
11384
11385 dyncon = o->contents;
11386 dynconend = o->contents + o->size;
11387 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11388 {
11389 Elf_Internal_Dyn dyn;
11390 const char *name;
11391 unsigned int type;
11392
11393 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11394
11395 switch (dyn.d_tag)
11396 {
11397 default:
11398 continue;
11399 case DT_NULL:
11400 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11401 {
11402 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11403 {
11404 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11405 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11406 default: continue;
11407 }
11408 dyn.d_un.d_val = relativecount;
11409 relativecount = 0;
11410 break;
11411 }
11412 continue;
11413
11414 case DT_INIT:
11415 name = info->init_function;
11416 goto get_sym;
11417 case DT_FINI:
11418 name = info->fini_function;
11419 get_sym:
11420 {
11421 struct elf_link_hash_entry *h;
11422
11423 h = elf_link_hash_lookup (elf_hash_table (info), name,
11424 FALSE, FALSE, TRUE);
11425 if (h != NULL
11426 && (h->root.type == bfd_link_hash_defined
11427 || h->root.type == bfd_link_hash_defweak))
11428 {
11429 dyn.d_un.d_ptr = h->root.u.def.value;
11430 o = h->root.u.def.section;
11431 if (o->output_section != NULL)
11432 dyn.d_un.d_ptr += (o->output_section->vma
11433 + o->output_offset);
11434 else
11435 {
11436 /* The symbol is imported from another shared
11437 library and does not apply to this one. */
11438 dyn.d_un.d_ptr = 0;
11439 }
11440 break;
11441 }
11442 }
11443 continue;
11444
11445 case DT_PREINIT_ARRAYSZ:
11446 name = ".preinit_array";
11447 goto get_size;
11448 case DT_INIT_ARRAYSZ:
11449 name = ".init_array";
11450 goto get_size;
11451 case DT_FINI_ARRAYSZ:
11452 name = ".fini_array";
11453 get_size:
11454 o = bfd_get_section_by_name (abfd, name);
11455 if (o == NULL)
11456 {
11457 (*_bfd_error_handler)
11458 (_("%B: could not find output section %s"), abfd, name);
11459 goto error_return;
11460 }
11461 if (o->size == 0)
11462 (*_bfd_error_handler)
11463 (_("warning: %s section has zero size"), name);
11464 dyn.d_un.d_val = o->size;
11465 break;
11466
11467 case DT_PREINIT_ARRAY:
11468 name = ".preinit_array";
11469 goto get_vma;
11470 case DT_INIT_ARRAY:
11471 name = ".init_array";
11472 goto get_vma;
11473 case DT_FINI_ARRAY:
11474 name = ".fini_array";
11475 goto get_vma;
11476
11477 case DT_HASH:
11478 name = ".hash";
11479 goto get_vma;
11480 case DT_GNU_HASH:
11481 name = ".gnu.hash";
11482 goto get_vma;
11483 case DT_STRTAB:
11484 name = ".dynstr";
11485 goto get_vma;
11486 case DT_SYMTAB:
11487 name = ".dynsym";
11488 goto get_vma;
11489 case DT_VERDEF:
11490 name = ".gnu.version_d";
11491 goto get_vma;
11492 case DT_VERNEED:
11493 name = ".gnu.version_r";
11494 goto get_vma;
11495 case DT_VERSYM:
11496 name = ".gnu.version";
11497 get_vma:
11498 o = bfd_get_section_by_name (abfd, name);
11499 if (o == NULL)
11500 {
11501 (*_bfd_error_handler)
11502 (_("%B: could not find output section %s"), abfd, name);
11503 goto error_return;
11504 }
11505 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11506 {
11507 (*_bfd_error_handler)
11508 (_("warning: section '%s' is being made into a note"), name);
11509 bfd_set_error (bfd_error_nonrepresentable_section);
11510 goto error_return;
11511 }
11512 dyn.d_un.d_ptr = o->vma;
11513 break;
11514
11515 case DT_REL:
11516 case DT_RELA:
11517 case DT_RELSZ:
11518 case DT_RELASZ:
11519 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11520 type = SHT_REL;
11521 else
11522 type = SHT_RELA;
11523 dyn.d_un.d_val = 0;
11524 dyn.d_un.d_ptr = 0;
11525 for (i = 1; i < elf_numsections (abfd); i++)
11526 {
11527 Elf_Internal_Shdr *hdr;
11528
11529 hdr = elf_elfsections (abfd)[i];
11530 if (hdr->sh_type == type
11531 && (hdr->sh_flags & SHF_ALLOC) != 0)
11532 {
11533 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11534 dyn.d_un.d_val += hdr->sh_size;
11535 else
11536 {
11537 if (dyn.d_un.d_ptr == 0
11538 || hdr->sh_addr < dyn.d_un.d_ptr)
11539 dyn.d_un.d_ptr = hdr->sh_addr;
11540 }
11541 }
11542 }
11543 break;
11544 }
11545 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11546 }
11547 }
11548
11549 /* If we have created any dynamic sections, then output them. */
11550 if (dynobj != NULL)
11551 {
11552 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11553 goto error_return;
11554
11555 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11556 if (((info->warn_shared_textrel && info->shared)
11557 || info->error_textrel)
11558 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11559 {
11560 bfd_byte *dyncon, *dynconend;
11561
11562 dyncon = o->contents;
11563 dynconend = o->contents + o->size;
11564 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11565 {
11566 Elf_Internal_Dyn dyn;
11567
11568 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11569
11570 if (dyn.d_tag == DT_TEXTREL)
11571 {
11572 if (info->error_textrel)
11573 info->callbacks->einfo
11574 (_("%P%X: read-only segment has dynamic relocations.\n"));
11575 else
11576 info->callbacks->einfo
11577 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11578 break;
11579 }
11580 }
11581 }
11582
11583 for (o = dynobj->sections; o != NULL; o = o->next)
11584 {
11585 if ((o->flags & SEC_HAS_CONTENTS) == 0
11586 || o->size == 0
11587 || o->output_section == bfd_abs_section_ptr)
11588 continue;
11589 if ((o->flags & SEC_LINKER_CREATED) == 0)
11590 {
11591 /* At this point, we are only interested in sections
11592 created by _bfd_elf_link_create_dynamic_sections. */
11593 continue;
11594 }
11595 if (elf_hash_table (info)->stab_info.stabstr == o)
11596 continue;
11597 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11598 continue;
11599 if (strcmp (o->name, ".dynstr") != 0)
11600 {
11601 /* FIXME: octets_per_byte. */
11602 if (! bfd_set_section_contents (abfd, o->output_section,
11603 o->contents,
11604 (file_ptr) o->output_offset,
11605 o->size))
11606 goto error_return;
11607 }
11608 else
11609 {
11610 /* The contents of the .dynstr section are actually in a
11611 stringtab. */
11612 file_ptr off;
11613
11614 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11615 if (bfd_seek (abfd, off, SEEK_SET) != 0
11616 || ! _bfd_elf_strtab_emit (abfd,
11617 elf_hash_table (info)->dynstr))
11618 goto error_return;
11619 }
11620 }
11621 }
11622
11623 if (info->relocatable)
11624 {
11625 bfd_boolean failed = FALSE;
11626
11627 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11628 if (failed)
11629 goto error_return;
11630 }
11631
11632 /* If we have optimized stabs strings, output them. */
11633 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11634 {
11635 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11636 goto error_return;
11637 }
11638
11639 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11640 goto error_return;
11641
11642 elf_final_link_free (abfd, &flinfo);
11643
11644 elf_linker (abfd) = TRUE;
11645
11646 if (attr_section)
11647 {
11648 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11649 if (contents == NULL)
11650 return FALSE; /* Bail out and fail. */
11651 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11652 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11653 free (contents);
11654 }
11655
11656 return TRUE;
11657
11658 error_return:
11659 elf_final_link_free (abfd, &flinfo);
11660 return FALSE;
11661 }
11662 \f
11663 /* Initialize COOKIE for input bfd ABFD. */
11664
11665 static bfd_boolean
11666 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11667 struct bfd_link_info *info, bfd *abfd)
11668 {
11669 Elf_Internal_Shdr *symtab_hdr;
11670 const struct elf_backend_data *bed;
11671
11672 bed = get_elf_backend_data (abfd);
11673 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11674
11675 cookie->abfd = abfd;
11676 cookie->sym_hashes = elf_sym_hashes (abfd);
11677 cookie->bad_symtab = elf_bad_symtab (abfd);
11678 if (cookie->bad_symtab)
11679 {
11680 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11681 cookie->extsymoff = 0;
11682 }
11683 else
11684 {
11685 cookie->locsymcount = symtab_hdr->sh_info;
11686 cookie->extsymoff = symtab_hdr->sh_info;
11687 }
11688
11689 if (bed->s->arch_size == 32)
11690 cookie->r_sym_shift = 8;
11691 else
11692 cookie->r_sym_shift = 32;
11693
11694 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11695 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11696 {
11697 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11698 cookie->locsymcount, 0,
11699 NULL, NULL, NULL);
11700 if (cookie->locsyms == NULL)
11701 {
11702 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11703 return FALSE;
11704 }
11705 if (info->keep_memory)
11706 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11707 }
11708 return TRUE;
11709 }
11710
11711 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11712
11713 static void
11714 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11715 {
11716 Elf_Internal_Shdr *symtab_hdr;
11717
11718 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11719 if (cookie->locsyms != NULL
11720 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11721 free (cookie->locsyms);
11722 }
11723
11724 /* Initialize the relocation information in COOKIE for input section SEC
11725 of input bfd ABFD. */
11726
11727 static bfd_boolean
11728 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11729 struct bfd_link_info *info, bfd *abfd,
11730 asection *sec)
11731 {
11732 const struct elf_backend_data *bed;
11733
11734 if (sec->reloc_count == 0)
11735 {
11736 cookie->rels = NULL;
11737 cookie->relend = NULL;
11738 }
11739 else
11740 {
11741 bed = get_elf_backend_data (abfd);
11742
11743 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11744 info->keep_memory);
11745 if (cookie->rels == NULL)
11746 return FALSE;
11747 cookie->rel = cookie->rels;
11748 cookie->relend = (cookie->rels
11749 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11750 }
11751 cookie->rel = cookie->rels;
11752 return TRUE;
11753 }
11754
11755 /* Free the memory allocated by init_reloc_cookie_rels,
11756 if appropriate. */
11757
11758 static void
11759 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11760 asection *sec)
11761 {
11762 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11763 free (cookie->rels);
11764 }
11765
11766 /* Initialize the whole of COOKIE for input section SEC. */
11767
11768 static bfd_boolean
11769 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11770 struct bfd_link_info *info,
11771 asection *sec)
11772 {
11773 if (!init_reloc_cookie (cookie, info, sec->owner))
11774 goto error1;
11775 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11776 goto error2;
11777 return TRUE;
11778
11779 error2:
11780 fini_reloc_cookie (cookie, sec->owner);
11781 error1:
11782 return FALSE;
11783 }
11784
11785 /* Free the memory allocated by init_reloc_cookie_for_section,
11786 if appropriate. */
11787
11788 static void
11789 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11790 asection *sec)
11791 {
11792 fini_reloc_cookie_rels (cookie, sec);
11793 fini_reloc_cookie (cookie, sec->owner);
11794 }
11795 \f
11796 /* Garbage collect unused sections. */
11797
11798 /* Default gc_mark_hook. */
11799
11800 asection *
11801 _bfd_elf_gc_mark_hook (asection *sec,
11802 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11803 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11804 struct elf_link_hash_entry *h,
11805 Elf_Internal_Sym *sym)
11806 {
11807 const char *sec_name;
11808
11809 if (h != NULL)
11810 {
11811 switch (h->root.type)
11812 {
11813 case bfd_link_hash_defined:
11814 case bfd_link_hash_defweak:
11815 return h->root.u.def.section;
11816
11817 case bfd_link_hash_common:
11818 return h->root.u.c.p->section;
11819
11820 case bfd_link_hash_undefined:
11821 case bfd_link_hash_undefweak:
11822 /* To work around a glibc bug, keep all XXX input sections
11823 when there is an as yet undefined reference to __start_XXX
11824 or __stop_XXX symbols. The linker will later define such
11825 symbols for orphan input sections that have a name
11826 representable as a C identifier. */
11827 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11828 sec_name = h->root.root.string + 8;
11829 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11830 sec_name = h->root.root.string + 7;
11831 else
11832 sec_name = NULL;
11833
11834 if (sec_name && *sec_name != '\0')
11835 {
11836 bfd *i;
11837
11838 for (i = info->input_bfds; i; i = i->link.next)
11839 {
11840 sec = bfd_get_section_by_name (i, sec_name);
11841 if (sec)
11842 sec->flags |= SEC_KEEP;
11843 }
11844 }
11845 break;
11846
11847 default:
11848 break;
11849 }
11850 }
11851 else
11852 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11853
11854 return NULL;
11855 }
11856
11857 /* COOKIE->rel describes a relocation against section SEC, which is
11858 a section we've decided to keep. Return the section that contains
11859 the relocation symbol, or NULL if no section contains it. */
11860
11861 asection *
11862 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11863 elf_gc_mark_hook_fn gc_mark_hook,
11864 struct elf_reloc_cookie *cookie)
11865 {
11866 unsigned long r_symndx;
11867 struct elf_link_hash_entry *h;
11868
11869 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11870 if (r_symndx == STN_UNDEF)
11871 return NULL;
11872
11873 if (r_symndx >= cookie->locsymcount
11874 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11875 {
11876 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11877 if (h == NULL)
11878 {
11879 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
11880 sec->owner);
11881 return NULL;
11882 }
11883 while (h->root.type == bfd_link_hash_indirect
11884 || h->root.type == bfd_link_hash_warning)
11885 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11886 h->mark = 1;
11887 /* If this symbol is weak and there is a non-weak definition, we
11888 keep the non-weak definition because many backends put
11889 dynamic reloc info on the non-weak definition for code
11890 handling copy relocs. */
11891 if (h->u.weakdef != NULL)
11892 h->u.weakdef->mark = 1;
11893 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11894 }
11895
11896 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11897 &cookie->locsyms[r_symndx]);
11898 }
11899
11900 /* COOKIE->rel describes a relocation against section SEC, which is
11901 a section we've decided to keep. Mark the section that contains
11902 the relocation symbol. */
11903
11904 bfd_boolean
11905 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11906 asection *sec,
11907 elf_gc_mark_hook_fn gc_mark_hook,
11908 struct elf_reloc_cookie *cookie)
11909 {
11910 asection *rsec;
11911
11912 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11913 if (rsec && !rsec->gc_mark)
11914 {
11915 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11916 || (rsec->owner->flags & DYNAMIC) != 0)
11917 rsec->gc_mark = 1;
11918 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11919 return FALSE;
11920 }
11921 return TRUE;
11922 }
11923
11924 /* The mark phase of garbage collection. For a given section, mark
11925 it and any sections in this section's group, and all the sections
11926 which define symbols to which it refers. */
11927
11928 bfd_boolean
11929 _bfd_elf_gc_mark (struct bfd_link_info *info,
11930 asection *sec,
11931 elf_gc_mark_hook_fn gc_mark_hook)
11932 {
11933 bfd_boolean ret;
11934 asection *group_sec, *eh_frame;
11935
11936 sec->gc_mark = 1;
11937
11938 /* Mark all the sections in the group. */
11939 group_sec = elf_section_data (sec)->next_in_group;
11940 if (group_sec && !group_sec->gc_mark)
11941 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11942 return FALSE;
11943
11944 /* Look through the section relocs. */
11945 ret = TRUE;
11946 eh_frame = elf_eh_frame_section (sec->owner);
11947 if ((sec->flags & SEC_RELOC) != 0
11948 && sec->reloc_count > 0
11949 && sec != eh_frame)
11950 {
11951 struct elf_reloc_cookie cookie;
11952
11953 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11954 ret = FALSE;
11955 else
11956 {
11957 for (; cookie.rel < cookie.relend; cookie.rel++)
11958 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11959 {
11960 ret = FALSE;
11961 break;
11962 }
11963 fini_reloc_cookie_for_section (&cookie, sec);
11964 }
11965 }
11966
11967 if (ret && eh_frame && elf_fde_list (sec))
11968 {
11969 struct elf_reloc_cookie cookie;
11970
11971 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11972 ret = FALSE;
11973 else
11974 {
11975 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11976 gc_mark_hook, &cookie))
11977 ret = FALSE;
11978 fini_reloc_cookie_for_section (&cookie, eh_frame);
11979 }
11980 }
11981
11982 return ret;
11983 }
11984
11985 /* Scan and mark sections in a special or debug section group. */
11986
11987 static void
11988 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
11989 {
11990 /* Point to first section of section group. */
11991 asection *ssec;
11992 /* Used to iterate the section group. */
11993 asection *msec;
11994
11995 bfd_boolean is_special_grp = TRUE;
11996 bfd_boolean is_debug_grp = TRUE;
11997
11998 /* First scan to see if group contains any section other than debug
11999 and special section. */
12000 ssec = msec = elf_next_in_group (grp);
12001 do
12002 {
12003 if ((msec->flags & SEC_DEBUGGING) == 0)
12004 is_debug_grp = FALSE;
12005
12006 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
12007 is_special_grp = FALSE;
12008
12009 msec = elf_next_in_group (msec);
12010 }
12011 while (msec != ssec);
12012
12013 /* If this is a pure debug section group or pure special section group,
12014 keep all sections in this group. */
12015 if (is_debug_grp || is_special_grp)
12016 {
12017 do
12018 {
12019 msec->gc_mark = 1;
12020 msec = elf_next_in_group (msec);
12021 }
12022 while (msec != ssec);
12023 }
12024 }
12025
12026 /* Keep debug and special sections. */
12027
12028 bfd_boolean
12029 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12030 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12031 {
12032 bfd *ibfd;
12033
12034 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12035 {
12036 asection *isec;
12037 bfd_boolean some_kept;
12038 bfd_boolean debug_frag_seen;
12039
12040 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12041 continue;
12042
12043 /* Ensure all linker created sections are kept,
12044 see if any other section is already marked,
12045 and note if we have any fragmented debug sections. */
12046 debug_frag_seen = some_kept = FALSE;
12047 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12048 {
12049 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12050 isec->gc_mark = 1;
12051 else if (isec->gc_mark)
12052 some_kept = TRUE;
12053
12054 if (debug_frag_seen == FALSE
12055 && (isec->flags & SEC_DEBUGGING)
12056 && CONST_STRNEQ (isec->name, ".debug_line."))
12057 debug_frag_seen = TRUE;
12058 }
12059
12060 /* If no section in this file will be kept, then we can
12061 toss out the debug and special sections. */
12062 if (!some_kept)
12063 continue;
12064
12065 /* Keep debug and special sections like .comment when they are
12066 not part of a group. Also keep section groups that contain
12067 just debug sections or special sections. */
12068 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12069 {
12070 if ((isec->flags & SEC_GROUP) != 0)
12071 _bfd_elf_gc_mark_debug_special_section_group (isec);
12072 else if (((isec->flags & SEC_DEBUGGING) != 0
12073 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12074 && elf_next_in_group (isec) == NULL)
12075 isec->gc_mark = 1;
12076 }
12077
12078 if (! debug_frag_seen)
12079 continue;
12080
12081 /* Look for CODE sections which are going to be discarded,
12082 and find and discard any fragmented debug sections which
12083 are associated with that code section. */
12084 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12085 if ((isec->flags & SEC_CODE) != 0
12086 && isec->gc_mark == 0)
12087 {
12088 unsigned int ilen;
12089 asection *dsec;
12090
12091 ilen = strlen (isec->name);
12092
12093 /* Association is determined by the name of the debug section
12094 containing the name of the code section as a suffix. For
12095 example .debug_line.text.foo is a debug section associated
12096 with .text.foo. */
12097 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12098 {
12099 unsigned int dlen;
12100
12101 if (dsec->gc_mark == 0
12102 || (dsec->flags & SEC_DEBUGGING) == 0)
12103 continue;
12104
12105 dlen = strlen (dsec->name);
12106
12107 if (dlen > ilen
12108 && strncmp (dsec->name + (dlen - ilen),
12109 isec->name, ilen) == 0)
12110 {
12111 dsec->gc_mark = 0;
12112 }
12113 }
12114 }
12115 }
12116 return TRUE;
12117 }
12118
12119 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
12120
12121 struct elf_gc_sweep_symbol_info
12122 {
12123 struct bfd_link_info *info;
12124 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
12125 bfd_boolean);
12126 };
12127
12128 static bfd_boolean
12129 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
12130 {
12131 if (!h->mark
12132 && (((h->root.type == bfd_link_hash_defined
12133 || h->root.type == bfd_link_hash_defweak)
12134 && !((h->def_regular || ELF_COMMON_DEF_P (h))
12135 && h->root.u.def.section->gc_mark))
12136 || h->root.type == bfd_link_hash_undefined
12137 || h->root.type == bfd_link_hash_undefweak))
12138 {
12139 struct elf_gc_sweep_symbol_info *inf;
12140
12141 inf = (struct elf_gc_sweep_symbol_info *) data;
12142 (*inf->hide_symbol) (inf->info, h, TRUE);
12143 h->def_regular = 0;
12144 h->ref_regular = 0;
12145 h->ref_regular_nonweak = 0;
12146 }
12147
12148 return TRUE;
12149 }
12150
12151 /* The sweep phase of garbage collection. Remove all garbage sections. */
12152
12153 typedef bfd_boolean (*gc_sweep_hook_fn)
12154 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
12155
12156 static bfd_boolean
12157 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
12158 {
12159 bfd *sub;
12160 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12161 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
12162 unsigned long section_sym_count;
12163 struct elf_gc_sweep_symbol_info sweep_info;
12164
12165 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12166 {
12167 asection *o;
12168
12169 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12170 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12171 continue;
12172
12173 for (o = sub->sections; o != NULL; o = o->next)
12174 {
12175 /* When any section in a section group is kept, we keep all
12176 sections in the section group. If the first member of
12177 the section group is excluded, we will also exclude the
12178 group section. */
12179 if (o->flags & SEC_GROUP)
12180 {
12181 asection *first = elf_next_in_group (o);
12182 o->gc_mark = first->gc_mark;
12183 }
12184
12185 if (o->gc_mark)
12186 continue;
12187
12188 /* Skip sweeping sections already excluded. */
12189 if (o->flags & SEC_EXCLUDE)
12190 continue;
12191
12192 /* Since this is early in the link process, it is simple
12193 to remove a section from the output. */
12194 o->flags |= SEC_EXCLUDE;
12195
12196 if (info->print_gc_sections && o->size != 0)
12197 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
12198
12199 /* But we also have to update some of the relocation
12200 info we collected before. */
12201 if (gc_sweep_hook
12202 && (o->flags & SEC_RELOC) != 0
12203 && o->reloc_count != 0
12204 && !((info->strip == strip_all || info->strip == strip_debugger)
12205 && (o->flags & SEC_DEBUGGING) != 0)
12206 && !bfd_is_abs_section (o->output_section))
12207 {
12208 Elf_Internal_Rela *internal_relocs;
12209 bfd_boolean r;
12210
12211 internal_relocs
12212 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12213 info->keep_memory);
12214 if (internal_relocs == NULL)
12215 return FALSE;
12216
12217 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12218
12219 if (elf_section_data (o)->relocs != internal_relocs)
12220 free (internal_relocs);
12221
12222 if (!r)
12223 return FALSE;
12224 }
12225 }
12226 }
12227
12228 /* Remove the symbols that were in the swept sections from the dynamic
12229 symbol table. GCFIXME: Anyone know how to get them out of the
12230 static symbol table as well? */
12231 sweep_info.info = info;
12232 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12233 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12234 &sweep_info);
12235
12236 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12237 return TRUE;
12238 }
12239
12240 /* Propagate collected vtable information. This is called through
12241 elf_link_hash_traverse. */
12242
12243 static bfd_boolean
12244 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12245 {
12246 /* Those that are not vtables. */
12247 if (h->vtable == NULL || h->vtable->parent == NULL)
12248 return TRUE;
12249
12250 /* Those vtables that do not have parents, we cannot merge. */
12251 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12252 return TRUE;
12253
12254 /* If we've already been done, exit. */
12255 if (h->vtable->used && h->vtable->used[-1])
12256 return TRUE;
12257
12258 /* Make sure the parent's table is up to date. */
12259 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12260
12261 if (h->vtable->used == NULL)
12262 {
12263 /* None of this table's entries were referenced. Re-use the
12264 parent's table. */
12265 h->vtable->used = h->vtable->parent->vtable->used;
12266 h->vtable->size = h->vtable->parent->vtable->size;
12267 }
12268 else
12269 {
12270 size_t n;
12271 bfd_boolean *cu, *pu;
12272
12273 /* Or the parent's entries into ours. */
12274 cu = h->vtable->used;
12275 cu[-1] = TRUE;
12276 pu = h->vtable->parent->vtable->used;
12277 if (pu != NULL)
12278 {
12279 const struct elf_backend_data *bed;
12280 unsigned int log_file_align;
12281
12282 bed = get_elf_backend_data (h->root.u.def.section->owner);
12283 log_file_align = bed->s->log_file_align;
12284 n = h->vtable->parent->vtable->size >> log_file_align;
12285 while (n--)
12286 {
12287 if (*pu)
12288 *cu = TRUE;
12289 pu++;
12290 cu++;
12291 }
12292 }
12293 }
12294
12295 return TRUE;
12296 }
12297
12298 static bfd_boolean
12299 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12300 {
12301 asection *sec;
12302 bfd_vma hstart, hend;
12303 Elf_Internal_Rela *relstart, *relend, *rel;
12304 const struct elf_backend_data *bed;
12305 unsigned int log_file_align;
12306
12307 /* Take care of both those symbols that do not describe vtables as
12308 well as those that are not loaded. */
12309 if (h->vtable == NULL || h->vtable->parent == NULL)
12310 return TRUE;
12311
12312 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12313 || h->root.type == bfd_link_hash_defweak);
12314
12315 sec = h->root.u.def.section;
12316 hstart = h->root.u.def.value;
12317 hend = hstart + h->size;
12318
12319 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12320 if (!relstart)
12321 return *(bfd_boolean *) okp = FALSE;
12322 bed = get_elf_backend_data (sec->owner);
12323 log_file_align = bed->s->log_file_align;
12324
12325 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12326
12327 for (rel = relstart; rel < relend; ++rel)
12328 if (rel->r_offset >= hstart && rel->r_offset < hend)
12329 {
12330 /* If the entry is in use, do nothing. */
12331 if (h->vtable->used
12332 && (rel->r_offset - hstart) < h->vtable->size)
12333 {
12334 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12335 if (h->vtable->used[entry])
12336 continue;
12337 }
12338 /* Otherwise, kill it. */
12339 rel->r_offset = rel->r_info = rel->r_addend = 0;
12340 }
12341
12342 return TRUE;
12343 }
12344
12345 /* Mark sections containing dynamically referenced symbols. When
12346 building shared libraries, we must assume that any visible symbol is
12347 referenced. */
12348
12349 bfd_boolean
12350 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12351 {
12352 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12353 struct bfd_elf_dynamic_list *d = info->dynamic_list;
12354
12355 if ((h->root.type == bfd_link_hash_defined
12356 || h->root.type == bfd_link_hash_defweak)
12357 && (h->ref_dynamic
12358 || ((h->def_regular || ELF_COMMON_DEF_P (h))
12359 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12360 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12361 && (!info->executable
12362 || info->export_dynamic
12363 || (h->dynamic
12364 && d != NULL
12365 && (*d->match) (&d->head, NULL, h->root.root.string)))
12366 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12367 || !bfd_hide_sym_by_version (info->version_info,
12368 h->root.root.string)))))
12369 h->root.u.def.section->flags |= SEC_KEEP;
12370
12371 return TRUE;
12372 }
12373
12374 /* Keep all sections containing symbols undefined on the command-line,
12375 and the section containing the entry symbol. */
12376
12377 void
12378 _bfd_elf_gc_keep (struct bfd_link_info *info)
12379 {
12380 struct bfd_sym_chain *sym;
12381
12382 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12383 {
12384 struct elf_link_hash_entry *h;
12385
12386 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12387 FALSE, FALSE, FALSE);
12388
12389 if (h != NULL
12390 && (h->root.type == bfd_link_hash_defined
12391 || h->root.type == bfd_link_hash_defweak)
12392 && !bfd_is_abs_section (h->root.u.def.section))
12393 h->root.u.def.section->flags |= SEC_KEEP;
12394 }
12395 }
12396
12397 /* Do mark and sweep of unused sections. */
12398
12399 bfd_boolean
12400 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12401 {
12402 bfd_boolean ok = TRUE;
12403 bfd *sub;
12404 elf_gc_mark_hook_fn gc_mark_hook;
12405 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12406 struct elf_link_hash_table *htab;
12407
12408 if (!bed->can_gc_sections
12409 || !is_elf_hash_table (info->hash))
12410 {
12411 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12412 return TRUE;
12413 }
12414
12415 bed->gc_keep (info);
12416 htab = elf_hash_table (info);
12417
12418 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12419 at the .eh_frame section if we can mark the FDEs individually. */
12420 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12421 {
12422 asection *sec;
12423 struct elf_reloc_cookie cookie;
12424
12425 sec = bfd_get_section_by_name (sub, ".eh_frame");
12426 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12427 {
12428 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12429 if (elf_section_data (sec)->sec_info
12430 && (sec->flags & SEC_LINKER_CREATED) == 0)
12431 elf_eh_frame_section (sub) = sec;
12432 fini_reloc_cookie_for_section (&cookie, sec);
12433 sec = bfd_get_next_section_by_name (sec);
12434 }
12435 }
12436
12437 /* Apply transitive closure to the vtable entry usage info. */
12438 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
12439 if (!ok)
12440 return FALSE;
12441
12442 /* Kill the vtable relocations that were not used. */
12443 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
12444 if (!ok)
12445 return FALSE;
12446
12447 /* Mark dynamically referenced symbols. */
12448 if (htab->dynamic_sections_created)
12449 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
12450
12451 /* Grovel through relocs to find out who stays ... */
12452 gc_mark_hook = bed->gc_mark_hook;
12453 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12454 {
12455 asection *o;
12456
12457 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12458 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12459 continue;
12460
12461 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12462 Also treat note sections as a root, if the section is not part
12463 of a group. */
12464 for (o = sub->sections; o != NULL; o = o->next)
12465 if (!o->gc_mark
12466 && (o->flags & SEC_EXCLUDE) == 0
12467 && ((o->flags & SEC_KEEP) != 0
12468 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12469 && elf_next_in_group (o) == NULL )))
12470 {
12471 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12472 return FALSE;
12473 }
12474 }
12475
12476 /* Allow the backend to mark additional target specific sections. */
12477 bed->gc_mark_extra_sections (info, gc_mark_hook);
12478
12479 /* ... and mark SEC_EXCLUDE for those that go. */
12480 return elf_gc_sweep (abfd, info);
12481 }
12482 \f
12483 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12484
12485 bfd_boolean
12486 bfd_elf_gc_record_vtinherit (bfd *abfd,
12487 asection *sec,
12488 struct elf_link_hash_entry *h,
12489 bfd_vma offset)
12490 {
12491 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12492 struct elf_link_hash_entry **search, *child;
12493 bfd_size_type extsymcount;
12494 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12495
12496 /* The sh_info field of the symtab header tells us where the
12497 external symbols start. We don't care about the local symbols at
12498 this point. */
12499 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12500 if (!elf_bad_symtab (abfd))
12501 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12502
12503 sym_hashes = elf_sym_hashes (abfd);
12504 sym_hashes_end = sym_hashes + extsymcount;
12505
12506 /* Hunt down the child symbol, which is in this section at the same
12507 offset as the relocation. */
12508 for (search = sym_hashes; search != sym_hashes_end; ++search)
12509 {
12510 if ((child = *search) != NULL
12511 && (child->root.type == bfd_link_hash_defined
12512 || child->root.type == bfd_link_hash_defweak)
12513 && child->root.u.def.section == sec
12514 && child->root.u.def.value == offset)
12515 goto win;
12516 }
12517
12518 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12519 abfd, sec, (unsigned long) offset);
12520 bfd_set_error (bfd_error_invalid_operation);
12521 return FALSE;
12522
12523 win:
12524 if (!child->vtable)
12525 {
12526 child->vtable = ((struct elf_link_virtual_table_entry *)
12527 bfd_zalloc (abfd, sizeof (*child->vtable)));
12528 if (!child->vtable)
12529 return FALSE;
12530 }
12531 if (!h)
12532 {
12533 /* This *should* only be the absolute section. It could potentially
12534 be that someone has defined a non-global vtable though, which
12535 would be bad. It isn't worth paging in the local symbols to be
12536 sure though; that case should simply be handled by the assembler. */
12537
12538 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12539 }
12540 else
12541 child->vtable->parent = h;
12542
12543 return TRUE;
12544 }
12545
12546 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12547
12548 bfd_boolean
12549 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12550 asection *sec ATTRIBUTE_UNUSED,
12551 struct elf_link_hash_entry *h,
12552 bfd_vma addend)
12553 {
12554 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12555 unsigned int log_file_align = bed->s->log_file_align;
12556
12557 if (!h->vtable)
12558 {
12559 h->vtable = ((struct elf_link_virtual_table_entry *)
12560 bfd_zalloc (abfd, sizeof (*h->vtable)));
12561 if (!h->vtable)
12562 return FALSE;
12563 }
12564
12565 if (addend >= h->vtable->size)
12566 {
12567 size_t size, bytes, file_align;
12568 bfd_boolean *ptr = h->vtable->used;
12569
12570 /* While the symbol is undefined, we have to be prepared to handle
12571 a zero size. */
12572 file_align = 1 << log_file_align;
12573 if (h->root.type == bfd_link_hash_undefined)
12574 size = addend + file_align;
12575 else
12576 {
12577 size = h->size;
12578 if (addend >= size)
12579 {
12580 /* Oops! We've got a reference past the defined end of
12581 the table. This is probably a bug -- shall we warn? */
12582 size = addend + file_align;
12583 }
12584 }
12585 size = (size + file_align - 1) & -file_align;
12586
12587 /* Allocate one extra entry for use as a "done" flag for the
12588 consolidation pass. */
12589 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12590
12591 if (ptr)
12592 {
12593 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12594
12595 if (ptr != NULL)
12596 {
12597 size_t oldbytes;
12598
12599 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12600 * sizeof (bfd_boolean));
12601 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12602 }
12603 }
12604 else
12605 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12606
12607 if (ptr == NULL)
12608 return FALSE;
12609
12610 /* And arrange for that done flag to be at index -1. */
12611 h->vtable->used = ptr + 1;
12612 h->vtable->size = size;
12613 }
12614
12615 h->vtable->used[addend >> log_file_align] = TRUE;
12616
12617 return TRUE;
12618 }
12619
12620 /* Map an ELF section header flag to its corresponding string. */
12621 typedef struct
12622 {
12623 char *flag_name;
12624 flagword flag_value;
12625 } elf_flags_to_name_table;
12626
12627 static elf_flags_to_name_table elf_flags_to_names [] =
12628 {
12629 { "SHF_WRITE", SHF_WRITE },
12630 { "SHF_ALLOC", SHF_ALLOC },
12631 { "SHF_EXECINSTR", SHF_EXECINSTR },
12632 { "SHF_MERGE", SHF_MERGE },
12633 { "SHF_STRINGS", SHF_STRINGS },
12634 { "SHF_INFO_LINK", SHF_INFO_LINK},
12635 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12636 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12637 { "SHF_GROUP", SHF_GROUP },
12638 { "SHF_TLS", SHF_TLS },
12639 { "SHF_MASKOS", SHF_MASKOS },
12640 { "SHF_EXCLUDE", SHF_EXCLUDE },
12641 };
12642
12643 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12644 bfd_boolean
12645 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12646 struct flag_info *flaginfo,
12647 asection *section)
12648 {
12649 const bfd_vma sh_flags = elf_section_flags (section);
12650
12651 if (!flaginfo->flags_initialized)
12652 {
12653 bfd *obfd = info->output_bfd;
12654 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12655 struct flag_info_list *tf = flaginfo->flag_list;
12656 int with_hex = 0;
12657 int without_hex = 0;
12658
12659 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12660 {
12661 unsigned i;
12662 flagword (*lookup) (char *);
12663
12664 lookup = bed->elf_backend_lookup_section_flags_hook;
12665 if (lookup != NULL)
12666 {
12667 flagword hexval = (*lookup) ((char *) tf->name);
12668
12669 if (hexval != 0)
12670 {
12671 if (tf->with == with_flags)
12672 with_hex |= hexval;
12673 else if (tf->with == without_flags)
12674 without_hex |= hexval;
12675 tf->valid = TRUE;
12676 continue;
12677 }
12678 }
12679 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12680 {
12681 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12682 {
12683 if (tf->with == with_flags)
12684 with_hex |= elf_flags_to_names[i].flag_value;
12685 else if (tf->with == without_flags)
12686 without_hex |= elf_flags_to_names[i].flag_value;
12687 tf->valid = TRUE;
12688 break;
12689 }
12690 }
12691 if (!tf->valid)
12692 {
12693 info->callbacks->einfo
12694 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12695 return FALSE;
12696 }
12697 }
12698 flaginfo->flags_initialized = TRUE;
12699 flaginfo->only_with_flags |= with_hex;
12700 flaginfo->not_with_flags |= without_hex;
12701 }
12702
12703 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12704 return FALSE;
12705
12706 if ((flaginfo->not_with_flags & sh_flags) != 0)
12707 return FALSE;
12708
12709 return TRUE;
12710 }
12711
12712 struct alloc_got_off_arg {
12713 bfd_vma gotoff;
12714 struct bfd_link_info *info;
12715 };
12716
12717 /* We need a special top-level link routine to convert got reference counts
12718 to real got offsets. */
12719
12720 static bfd_boolean
12721 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12722 {
12723 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12724 bfd *obfd = gofarg->info->output_bfd;
12725 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12726
12727 if (h->got.refcount > 0)
12728 {
12729 h->got.offset = gofarg->gotoff;
12730 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12731 }
12732 else
12733 h->got.offset = (bfd_vma) -1;
12734
12735 return TRUE;
12736 }
12737
12738 /* And an accompanying bit to work out final got entry offsets once
12739 we're done. Should be called from final_link. */
12740
12741 bfd_boolean
12742 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12743 struct bfd_link_info *info)
12744 {
12745 bfd *i;
12746 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12747 bfd_vma gotoff;
12748 struct alloc_got_off_arg gofarg;
12749
12750 BFD_ASSERT (abfd == info->output_bfd);
12751
12752 if (! is_elf_hash_table (info->hash))
12753 return FALSE;
12754
12755 /* The GOT offset is relative to the .got section, but the GOT header is
12756 put into the .got.plt section, if the backend uses it. */
12757 if (bed->want_got_plt)
12758 gotoff = 0;
12759 else
12760 gotoff = bed->got_header_size;
12761
12762 /* Do the local .got entries first. */
12763 for (i = info->input_bfds; i; i = i->link.next)
12764 {
12765 bfd_signed_vma *local_got;
12766 bfd_size_type j, locsymcount;
12767 Elf_Internal_Shdr *symtab_hdr;
12768
12769 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12770 continue;
12771
12772 local_got = elf_local_got_refcounts (i);
12773 if (!local_got)
12774 continue;
12775
12776 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12777 if (elf_bad_symtab (i))
12778 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12779 else
12780 locsymcount = symtab_hdr->sh_info;
12781
12782 for (j = 0; j < locsymcount; ++j)
12783 {
12784 if (local_got[j] > 0)
12785 {
12786 local_got[j] = gotoff;
12787 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12788 }
12789 else
12790 local_got[j] = (bfd_vma) -1;
12791 }
12792 }
12793
12794 /* Then the global .got entries. .plt refcounts are handled by
12795 adjust_dynamic_symbol */
12796 gofarg.gotoff = gotoff;
12797 gofarg.info = info;
12798 elf_link_hash_traverse (elf_hash_table (info),
12799 elf_gc_allocate_got_offsets,
12800 &gofarg);
12801 return TRUE;
12802 }
12803
12804 /* Many folk need no more in the way of final link than this, once
12805 got entry reference counting is enabled. */
12806
12807 bfd_boolean
12808 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12809 {
12810 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12811 return FALSE;
12812
12813 /* Invoke the regular ELF backend linker to do all the work. */
12814 return bfd_elf_final_link (abfd, info);
12815 }
12816
12817 bfd_boolean
12818 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12819 {
12820 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12821
12822 if (rcookie->bad_symtab)
12823 rcookie->rel = rcookie->rels;
12824
12825 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12826 {
12827 unsigned long r_symndx;
12828
12829 if (! rcookie->bad_symtab)
12830 if (rcookie->rel->r_offset > offset)
12831 return FALSE;
12832 if (rcookie->rel->r_offset != offset)
12833 continue;
12834
12835 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12836 if (r_symndx == STN_UNDEF)
12837 return TRUE;
12838
12839 if (r_symndx >= rcookie->locsymcount
12840 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12841 {
12842 struct elf_link_hash_entry *h;
12843
12844 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12845
12846 while (h->root.type == bfd_link_hash_indirect
12847 || h->root.type == bfd_link_hash_warning)
12848 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12849
12850 if ((h->root.type == bfd_link_hash_defined
12851 || h->root.type == bfd_link_hash_defweak)
12852 && (h->root.u.def.section->owner != rcookie->abfd
12853 || h->root.u.def.section->kept_section != NULL
12854 || discarded_section (h->root.u.def.section)))
12855 return TRUE;
12856 }
12857 else
12858 {
12859 /* It's not a relocation against a global symbol,
12860 but it could be a relocation against a local
12861 symbol for a discarded section. */
12862 asection *isec;
12863 Elf_Internal_Sym *isym;
12864
12865 /* Need to: get the symbol; get the section. */
12866 isym = &rcookie->locsyms[r_symndx];
12867 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12868 if (isec != NULL
12869 && (isec->kept_section != NULL
12870 || discarded_section (isec)))
12871 return TRUE;
12872 }
12873 return FALSE;
12874 }
12875 return FALSE;
12876 }
12877
12878 /* Discard unneeded references to discarded sections.
12879 Returns -1 on error, 1 if any section's size was changed, 0 if
12880 nothing changed. This function assumes that the relocations are in
12881 sorted order, which is true for all known assemblers. */
12882
12883 int
12884 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12885 {
12886 struct elf_reloc_cookie cookie;
12887 asection *o;
12888 bfd *abfd;
12889 int changed = 0;
12890
12891 if (info->traditional_format
12892 || !is_elf_hash_table (info->hash))
12893 return 0;
12894
12895 o = bfd_get_section_by_name (output_bfd, ".stab");
12896 if (o != NULL)
12897 {
12898 asection *i;
12899
12900 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12901 {
12902 if (i->size == 0
12903 || i->reloc_count == 0
12904 || i->sec_info_type != SEC_INFO_TYPE_STABS)
12905 continue;
12906
12907 abfd = i->owner;
12908 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12909 continue;
12910
12911 if (!init_reloc_cookie_for_section (&cookie, info, i))
12912 return -1;
12913
12914 if (_bfd_discard_section_stabs (abfd, i,
12915 elf_section_data (i)->sec_info,
12916 bfd_elf_reloc_symbol_deleted_p,
12917 &cookie))
12918 changed = 1;
12919
12920 fini_reloc_cookie_for_section (&cookie, i);
12921 }
12922 }
12923
12924 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
12925 if (o != NULL)
12926 {
12927 asection *i;
12928
12929 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12930 {
12931 if (i->size == 0)
12932 continue;
12933
12934 abfd = i->owner;
12935 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12936 continue;
12937
12938 if (!init_reloc_cookie_for_section (&cookie, info, i))
12939 return -1;
12940
12941 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
12942 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
12943 bfd_elf_reloc_symbol_deleted_p,
12944 &cookie))
12945 changed = 1;
12946
12947 fini_reloc_cookie_for_section (&cookie, i);
12948 }
12949 }
12950
12951 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
12952 {
12953 const struct elf_backend_data *bed;
12954
12955 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12956 continue;
12957
12958 bed = get_elf_backend_data (abfd);
12959
12960 if (bed->elf_backend_discard_info != NULL)
12961 {
12962 if (!init_reloc_cookie (&cookie, info, abfd))
12963 return -1;
12964
12965 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
12966 changed = 1;
12967
12968 fini_reloc_cookie (&cookie, abfd);
12969 }
12970 }
12971
12972 if (info->eh_frame_hdr
12973 && !info->relocatable
12974 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12975 changed = 1;
12976
12977 return changed;
12978 }
12979
12980 bfd_boolean
12981 _bfd_elf_section_already_linked (bfd *abfd,
12982 asection *sec,
12983 struct bfd_link_info *info)
12984 {
12985 flagword flags;
12986 const char *name, *key;
12987 struct bfd_section_already_linked *l;
12988 struct bfd_section_already_linked_hash_entry *already_linked_list;
12989
12990 if (sec->output_section == bfd_abs_section_ptr)
12991 return FALSE;
12992
12993 flags = sec->flags;
12994
12995 /* Return if it isn't a linkonce section. A comdat group section
12996 also has SEC_LINK_ONCE set. */
12997 if ((flags & SEC_LINK_ONCE) == 0)
12998 return FALSE;
12999
13000 /* Don't put group member sections on our list of already linked
13001 sections. They are handled as a group via their group section. */
13002 if (elf_sec_group (sec) != NULL)
13003 return FALSE;
13004
13005 /* For a SHT_GROUP section, use the group signature as the key. */
13006 name = sec->name;
13007 if ((flags & SEC_GROUP) != 0
13008 && elf_next_in_group (sec) != NULL
13009 && elf_group_name (elf_next_in_group (sec)) != NULL)
13010 key = elf_group_name (elf_next_in_group (sec));
13011 else
13012 {
13013 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
13014 if (CONST_STRNEQ (name, ".gnu.linkonce.")
13015 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
13016 key++;
13017 else
13018 /* Must be a user linkonce section that doesn't follow gcc's
13019 naming convention. In this case we won't be matching
13020 single member groups. */
13021 key = name;
13022 }
13023
13024 already_linked_list = bfd_section_already_linked_table_lookup (key);
13025
13026 for (l = already_linked_list->entry; l != NULL; l = l->next)
13027 {
13028 /* We may have 2 different types of sections on the list: group
13029 sections with a signature of <key> (<key> is some string),
13030 and linkonce sections named .gnu.linkonce.<type>.<key>.
13031 Match like sections. LTO plugin sections are an exception.
13032 They are always named .gnu.linkonce.t.<key> and match either
13033 type of section. */
13034 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13035 && ((flags & SEC_GROUP) != 0
13036 || strcmp (name, l->sec->name) == 0))
13037 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13038 {
13039 /* The section has already been linked. See if we should
13040 issue a warning. */
13041 if (!_bfd_handle_already_linked (sec, l, info))
13042 return FALSE;
13043
13044 if (flags & SEC_GROUP)
13045 {
13046 asection *first = elf_next_in_group (sec);
13047 asection *s = first;
13048
13049 while (s != NULL)
13050 {
13051 s->output_section = bfd_abs_section_ptr;
13052 /* Record which group discards it. */
13053 s->kept_section = l->sec;
13054 s = elf_next_in_group (s);
13055 /* These lists are circular. */
13056 if (s == first)
13057 break;
13058 }
13059 }
13060
13061 return TRUE;
13062 }
13063 }
13064
13065 /* A single member comdat group section may be discarded by a
13066 linkonce section and vice versa. */
13067 if ((flags & SEC_GROUP) != 0)
13068 {
13069 asection *first = elf_next_in_group (sec);
13070
13071 if (first != NULL && elf_next_in_group (first) == first)
13072 /* Check this single member group against linkonce sections. */
13073 for (l = already_linked_list->entry; l != NULL; l = l->next)
13074 if ((l->sec->flags & SEC_GROUP) == 0
13075 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
13076 {
13077 first->output_section = bfd_abs_section_ptr;
13078 first->kept_section = l->sec;
13079 sec->output_section = bfd_abs_section_ptr;
13080 break;
13081 }
13082 }
13083 else
13084 /* Check this linkonce section against single member groups. */
13085 for (l = already_linked_list->entry; l != NULL; l = l->next)
13086 if (l->sec->flags & SEC_GROUP)
13087 {
13088 asection *first = elf_next_in_group (l->sec);
13089
13090 if (first != NULL
13091 && elf_next_in_group (first) == first
13092 && bfd_elf_match_symbols_in_sections (first, sec, info))
13093 {
13094 sec->output_section = bfd_abs_section_ptr;
13095 sec->kept_section = first;
13096 break;
13097 }
13098 }
13099
13100 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
13101 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
13102 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
13103 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
13104 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
13105 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
13106 `.gnu.linkonce.t.F' section from a different bfd not requiring any
13107 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
13108 The reverse order cannot happen as there is never a bfd with only the
13109 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
13110 matter as here were are looking only for cross-bfd sections. */
13111
13112 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
13113 for (l = already_linked_list->entry; l != NULL; l = l->next)
13114 if ((l->sec->flags & SEC_GROUP) == 0
13115 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
13116 {
13117 if (abfd != l->sec->owner)
13118 sec->output_section = bfd_abs_section_ptr;
13119 break;
13120 }
13121
13122 /* This is the first section with this name. Record it. */
13123 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
13124 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
13125 return sec->output_section == bfd_abs_section_ptr;
13126 }
13127
13128 bfd_boolean
13129 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
13130 {
13131 return sym->st_shndx == SHN_COMMON;
13132 }
13133
13134 unsigned int
13135 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
13136 {
13137 return SHN_COMMON;
13138 }
13139
13140 asection *
13141 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
13142 {
13143 return bfd_com_section_ptr;
13144 }
13145
13146 bfd_vma
13147 _bfd_elf_default_got_elt_size (bfd *abfd,
13148 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13149 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
13150 bfd *ibfd ATTRIBUTE_UNUSED,
13151 unsigned long symndx ATTRIBUTE_UNUSED)
13152 {
13153 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13154 return bed->s->arch_size / 8;
13155 }
13156
13157 /* Routines to support the creation of dynamic relocs. */
13158
13159 /* Returns the name of the dynamic reloc section associated with SEC. */
13160
13161 static const char *
13162 get_dynamic_reloc_section_name (bfd * abfd,
13163 asection * sec,
13164 bfd_boolean is_rela)
13165 {
13166 char *name;
13167 const char *old_name = bfd_get_section_name (NULL, sec);
13168 const char *prefix = is_rela ? ".rela" : ".rel";
13169
13170 if (old_name == NULL)
13171 return NULL;
13172
13173 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
13174 sprintf (name, "%s%s", prefix, old_name);
13175
13176 return name;
13177 }
13178
13179 /* Returns the dynamic reloc section associated with SEC.
13180 If necessary compute the name of the dynamic reloc section based
13181 on SEC's name (looked up in ABFD's string table) and the setting
13182 of IS_RELA. */
13183
13184 asection *
13185 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
13186 asection * sec,
13187 bfd_boolean is_rela)
13188 {
13189 asection * reloc_sec = elf_section_data (sec)->sreloc;
13190
13191 if (reloc_sec == NULL)
13192 {
13193 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13194
13195 if (name != NULL)
13196 {
13197 reloc_sec = bfd_get_linker_section (abfd, name);
13198
13199 if (reloc_sec != NULL)
13200 elf_section_data (sec)->sreloc = reloc_sec;
13201 }
13202 }
13203
13204 return reloc_sec;
13205 }
13206
13207 /* Returns the dynamic reloc section associated with SEC. If the
13208 section does not exist it is created and attached to the DYNOBJ
13209 bfd and stored in the SRELOC field of SEC's elf_section_data
13210 structure.
13211
13212 ALIGNMENT is the alignment for the newly created section and
13213 IS_RELA defines whether the name should be .rela.<SEC's name>
13214 or .rel.<SEC's name>. The section name is looked up in the
13215 string table associated with ABFD. */
13216
13217 asection *
13218 _bfd_elf_make_dynamic_reloc_section (asection *sec,
13219 bfd *dynobj,
13220 unsigned int alignment,
13221 bfd *abfd,
13222 bfd_boolean is_rela)
13223 {
13224 asection * reloc_sec = elf_section_data (sec)->sreloc;
13225
13226 if (reloc_sec == NULL)
13227 {
13228 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13229
13230 if (name == NULL)
13231 return NULL;
13232
13233 reloc_sec = bfd_get_linker_section (dynobj, name);
13234
13235 if (reloc_sec == NULL)
13236 {
13237 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13238 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13239 if ((sec->flags & SEC_ALLOC) != 0)
13240 flags |= SEC_ALLOC | SEC_LOAD;
13241
13242 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13243 if (reloc_sec != NULL)
13244 {
13245 /* _bfd_elf_get_sec_type_attr chooses a section type by
13246 name. Override as it may be wrong, eg. for a user
13247 section named "auto" we'll get ".relauto" which is
13248 seen to be a .rela section. */
13249 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13250 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13251 reloc_sec = NULL;
13252 }
13253 }
13254
13255 elf_section_data (sec)->sreloc = reloc_sec;
13256 }
13257
13258 return reloc_sec;
13259 }
13260
13261 /* Copy the ELF symbol type and other attributes for a linker script
13262 assignment from HSRC to HDEST. Generally this should be treated as
13263 if we found a strong non-dynamic definition for HDEST (except that
13264 ld ignores multiple definition errors). */
13265 void
13266 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
13267 struct bfd_link_hash_entry *hdest,
13268 struct bfd_link_hash_entry *hsrc)
13269 {
13270 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
13271 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
13272 Elf_Internal_Sym isym;
13273
13274 ehdest->type = ehsrc->type;
13275 ehdest->target_internal = ehsrc->target_internal;
13276
13277 isym.st_other = ehsrc->other;
13278 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
13279 }
13280
13281 /* Append a RELA relocation REL to section S in BFD. */
13282
13283 void
13284 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13285 {
13286 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13287 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13288 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13289 bed->s->swap_reloca_out (abfd, rel, loc);
13290 }
13291
13292 /* Append a REL relocation REL to section S in BFD. */
13293
13294 void
13295 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13296 {
13297 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13298 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13299 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13300 bed->s->swap_reloc_out (abfd, rel, loc);
13301 }
This page took 0.406088 seconds and 4 git commands to generate.