daily update
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2014 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #define ARCH_SIZE 0
26 #include "elf-bfd.h"
27 #include "safe-ctype.h"
28 #include "libiberty.h"
29 #include "objalloc.h"
30
31 /* This struct is used to pass information to routines called via
32 elf_link_hash_traverse which must return failure. */
33
34 struct elf_info_failed
35 {
36 struct bfd_link_info *info;
37 bfd_boolean failed;
38 };
39
40 /* This structure is used to pass information to
41 _bfd_elf_link_find_version_dependencies. */
42
43 struct elf_find_verdep_info
44 {
45 /* General link information. */
46 struct bfd_link_info *info;
47 /* The number of dependencies. */
48 unsigned int vers;
49 /* Whether we had a failure. */
50 bfd_boolean failed;
51 };
52
53 static bfd_boolean _bfd_elf_fix_symbol_flags
54 (struct elf_link_hash_entry *, struct elf_info_failed *);
55
56 /* Define a symbol in a dynamic linkage section. */
57
58 struct elf_link_hash_entry *
59 _bfd_elf_define_linkage_sym (bfd *abfd,
60 struct bfd_link_info *info,
61 asection *sec,
62 const char *name)
63 {
64 struct elf_link_hash_entry *h;
65 struct bfd_link_hash_entry *bh;
66 const struct elf_backend_data *bed;
67
68 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
69 if (h != NULL)
70 {
71 /* Zap symbol defined in an as-needed lib that wasn't linked.
72 This is a symptom of a larger problem: Absolute symbols
73 defined in shared libraries can't be overridden, because we
74 lose the link to the bfd which is via the symbol section. */
75 h->root.type = bfd_link_hash_new;
76 }
77
78 bh = &h->root;
79 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
80 sec, 0, NULL, FALSE,
81 get_elf_backend_data (abfd)->collect,
82 &bh))
83 return NULL;
84 h = (struct elf_link_hash_entry *) bh;
85 h->def_regular = 1;
86 h->non_elf = 0;
87 h->type = STT_OBJECT;
88 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
89 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
90
91 bed = get_elf_backend_data (abfd);
92 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
93 return h;
94 }
95
96 bfd_boolean
97 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
98 {
99 flagword flags;
100 asection *s;
101 struct elf_link_hash_entry *h;
102 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
103 struct elf_link_hash_table *htab = elf_hash_table (info);
104
105 /* This function may be called more than once. */
106 s = bfd_get_linker_section (abfd, ".got");
107 if (s != NULL)
108 return TRUE;
109
110 flags = bed->dynamic_sec_flags;
111
112 s = bfd_make_section_anyway_with_flags (abfd,
113 (bed->rela_plts_and_copies_p
114 ? ".rela.got" : ".rel.got"),
115 (bed->dynamic_sec_flags
116 | SEC_READONLY));
117 if (s == NULL
118 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
119 return FALSE;
120 htab->srelgot = s;
121
122 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
123 if (s == NULL
124 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
125 return FALSE;
126 htab->sgot = s;
127
128 if (bed->want_got_plt)
129 {
130 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
131 if (s == NULL
132 || !bfd_set_section_alignment (abfd, s,
133 bed->s->log_file_align))
134 return FALSE;
135 htab->sgotplt = s;
136 }
137
138 /* The first bit of the global offset table is the header. */
139 s->size += bed->got_header_size;
140
141 if (bed->want_got_sym)
142 {
143 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
144 (or .got.plt) section. We don't do this in the linker script
145 because we don't want to define the symbol if we are not creating
146 a global offset table. */
147 h = _bfd_elf_define_linkage_sym (abfd, info, s,
148 "_GLOBAL_OFFSET_TABLE_");
149 elf_hash_table (info)->hgot = h;
150 if (h == NULL)
151 return FALSE;
152 }
153
154 return TRUE;
155 }
156 \f
157 /* Create a strtab to hold the dynamic symbol names. */
158 static bfd_boolean
159 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
160 {
161 struct elf_link_hash_table *hash_table;
162
163 hash_table = elf_hash_table (info);
164 if (hash_table->dynobj == NULL)
165 hash_table->dynobj = abfd;
166
167 if (hash_table->dynstr == NULL)
168 {
169 hash_table->dynstr = _bfd_elf_strtab_init ();
170 if (hash_table->dynstr == NULL)
171 return FALSE;
172 }
173 return TRUE;
174 }
175
176 /* Create some sections which will be filled in with dynamic linking
177 information. ABFD is an input file which requires dynamic sections
178 to be created. The dynamic sections take up virtual memory space
179 when the final executable is run, so we need to create them before
180 addresses are assigned to the output sections. We work out the
181 actual contents and size of these sections later. */
182
183 bfd_boolean
184 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
185 {
186 flagword flags;
187 asection *s;
188 const struct elf_backend_data *bed;
189 struct elf_link_hash_entry *h;
190
191 if (! is_elf_hash_table (info->hash))
192 return FALSE;
193
194 if (elf_hash_table (info)->dynamic_sections_created)
195 return TRUE;
196
197 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
198 return FALSE;
199
200 abfd = elf_hash_table (info)->dynobj;
201 bed = get_elf_backend_data (abfd);
202
203 flags = bed->dynamic_sec_flags;
204
205 /* A dynamically linked executable has a .interp section, but a
206 shared library does not. */
207 if (info->executable)
208 {
209 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
210 flags | SEC_READONLY);
211 if (s == NULL)
212 return FALSE;
213 }
214
215 /* Create sections to hold version informations. These are removed
216 if they are not needed. */
217 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
218 flags | SEC_READONLY);
219 if (s == NULL
220 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
221 return FALSE;
222
223 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
224 flags | SEC_READONLY);
225 if (s == NULL
226 || ! bfd_set_section_alignment (abfd, s, 1))
227 return FALSE;
228
229 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
230 flags | SEC_READONLY);
231 if (s == NULL
232 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
233 return FALSE;
234
235 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
236 flags | SEC_READONLY);
237 if (s == NULL
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
239 return FALSE;
240
241 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
242 flags | SEC_READONLY);
243 if (s == NULL)
244 return FALSE;
245
246 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
247 if (s == NULL
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
249 return FALSE;
250
251 /* The special symbol _DYNAMIC is always set to the start of the
252 .dynamic section. We could set _DYNAMIC in a linker script, but we
253 only want to define it if we are, in fact, creating a .dynamic
254 section. We don't want to define it if there is no .dynamic
255 section, since on some ELF platforms the start up code examines it
256 to decide how to initialize the process. */
257 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
258 elf_hash_table (info)->hdynamic = h;
259 if (h == NULL)
260 return FALSE;
261
262 if (info->emit_hash)
263 {
264 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
265 flags | SEC_READONLY);
266 if (s == NULL
267 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
268 return FALSE;
269 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
270 }
271
272 if (info->emit_gnu_hash)
273 {
274 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
275 flags | SEC_READONLY);
276 if (s == NULL
277 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
278 return FALSE;
279 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
280 4 32-bit words followed by variable count of 64-bit words, then
281 variable count of 32-bit words. */
282 if (bed->s->arch_size == 64)
283 elf_section_data (s)->this_hdr.sh_entsize = 0;
284 else
285 elf_section_data (s)->this_hdr.sh_entsize = 4;
286 }
287
288 /* Let the backend create the rest of the sections. This lets the
289 backend set the right flags. The backend will normally create
290 the .got and .plt sections. */
291 if (bed->elf_backend_create_dynamic_sections == NULL
292 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
293 return FALSE;
294
295 elf_hash_table (info)->dynamic_sections_created = TRUE;
296
297 return TRUE;
298 }
299
300 /* Create dynamic sections when linking against a dynamic object. */
301
302 bfd_boolean
303 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
304 {
305 flagword flags, pltflags;
306 struct elf_link_hash_entry *h;
307 asection *s;
308 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
309 struct elf_link_hash_table *htab = elf_hash_table (info);
310
311 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
312 .rel[a].bss sections. */
313 flags = bed->dynamic_sec_flags;
314
315 pltflags = flags;
316 if (bed->plt_not_loaded)
317 /* We do not clear SEC_ALLOC here because we still want the OS to
318 allocate space for the section; it's just that there's nothing
319 to read in from the object file. */
320 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
321 else
322 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
323 if (bed->plt_readonly)
324 pltflags |= SEC_READONLY;
325
326 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
327 if (s == NULL
328 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
329 return FALSE;
330 htab->splt = s;
331
332 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
333 .plt section. */
334 if (bed->want_plt_sym)
335 {
336 h = _bfd_elf_define_linkage_sym (abfd, info, s,
337 "_PROCEDURE_LINKAGE_TABLE_");
338 elf_hash_table (info)->hplt = h;
339 if (h == NULL)
340 return FALSE;
341 }
342
343 s = bfd_make_section_anyway_with_flags (abfd,
344 (bed->rela_plts_and_copies_p
345 ? ".rela.plt" : ".rel.plt"),
346 flags | SEC_READONLY);
347 if (s == NULL
348 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
349 return FALSE;
350 htab->srelplt = s;
351
352 if (! _bfd_elf_create_got_section (abfd, info))
353 return FALSE;
354
355 if (bed->want_dynbss)
356 {
357 /* The .dynbss section is a place to put symbols which are defined
358 by dynamic objects, are referenced by regular objects, and are
359 not functions. We must allocate space for them in the process
360 image and use a R_*_COPY reloc to tell the dynamic linker to
361 initialize them at run time. The linker script puts the .dynbss
362 section into the .bss section of the final image. */
363 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
364 (SEC_ALLOC | SEC_LINKER_CREATED));
365 if (s == NULL)
366 return FALSE;
367
368 /* The .rel[a].bss section holds copy relocs. This section is not
369 normally needed. We need to create it here, though, so that the
370 linker will map it to an output section. We can't just create it
371 only if we need it, because we will not know whether we need it
372 until we have seen all the input files, and the first time the
373 main linker code calls BFD after examining all the input files
374 (size_dynamic_sections) the input sections have already been
375 mapped to the output sections. If the section turns out not to
376 be needed, we can discard it later. We will never need this
377 section when generating a shared object, since they do not use
378 copy relocs. */
379 if (! info->shared)
380 {
381 s = bfd_make_section_anyway_with_flags (abfd,
382 (bed->rela_plts_and_copies_p
383 ? ".rela.bss" : ".rel.bss"),
384 flags | SEC_READONLY);
385 if (s == NULL
386 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
387 return FALSE;
388 }
389 }
390
391 return TRUE;
392 }
393 \f
394 /* Record a new dynamic symbol. We record the dynamic symbols as we
395 read the input files, since we need to have a list of all of them
396 before we can determine the final sizes of the output sections.
397 Note that we may actually call this function even though we are not
398 going to output any dynamic symbols; in some cases we know that a
399 symbol should be in the dynamic symbol table, but only if there is
400 one. */
401
402 bfd_boolean
403 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
404 struct elf_link_hash_entry *h)
405 {
406 if (h->dynindx == -1)
407 {
408 struct elf_strtab_hash *dynstr;
409 char *p;
410 const char *name;
411 bfd_size_type indx;
412
413 /* XXX: The ABI draft says the linker must turn hidden and
414 internal symbols into STB_LOCAL symbols when producing the
415 DSO. However, if ld.so honors st_other in the dynamic table,
416 this would not be necessary. */
417 switch (ELF_ST_VISIBILITY (h->other))
418 {
419 case STV_INTERNAL:
420 case STV_HIDDEN:
421 if (h->root.type != bfd_link_hash_undefined
422 && h->root.type != bfd_link_hash_undefweak)
423 {
424 h->forced_local = 1;
425 if (!elf_hash_table (info)->is_relocatable_executable)
426 return TRUE;
427 }
428
429 default:
430 break;
431 }
432
433 h->dynindx = elf_hash_table (info)->dynsymcount;
434 ++elf_hash_table (info)->dynsymcount;
435
436 dynstr = elf_hash_table (info)->dynstr;
437 if (dynstr == NULL)
438 {
439 /* Create a strtab to hold the dynamic symbol names. */
440 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
441 if (dynstr == NULL)
442 return FALSE;
443 }
444
445 /* We don't put any version information in the dynamic string
446 table. */
447 name = h->root.root.string;
448 p = strchr (name, ELF_VER_CHR);
449 if (p != NULL)
450 /* We know that the p points into writable memory. In fact,
451 there are only a few symbols that have read-only names, being
452 those like _GLOBAL_OFFSET_TABLE_ that are created specially
453 by the backends. Most symbols will have names pointing into
454 an ELF string table read from a file, or to objalloc memory. */
455 *p = 0;
456
457 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
458
459 if (p != NULL)
460 *p = ELF_VER_CHR;
461
462 if (indx == (bfd_size_type) -1)
463 return FALSE;
464 h->dynstr_index = indx;
465 }
466
467 return TRUE;
468 }
469 \f
470 /* Mark a symbol dynamic. */
471
472 static void
473 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
474 struct elf_link_hash_entry *h,
475 Elf_Internal_Sym *sym)
476 {
477 struct bfd_elf_dynamic_list *d = info->dynamic_list;
478
479 /* It may be called more than once on the same H. */
480 if(h->dynamic || info->relocatable)
481 return;
482
483 if ((info->dynamic_data
484 && (h->type == STT_OBJECT
485 || (sym != NULL
486 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
487 || (d != NULL
488 && h->root.type == bfd_link_hash_new
489 && (*d->match) (&d->head, NULL, h->root.root.string)))
490 h->dynamic = 1;
491 }
492
493 /* Record an assignment to a symbol made by a linker script. We need
494 this in case some dynamic object refers to this symbol. */
495
496 bfd_boolean
497 bfd_elf_record_link_assignment (bfd *output_bfd,
498 struct bfd_link_info *info,
499 const char *name,
500 bfd_boolean provide,
501 bfd_boolean hidden)
502 {
503 struct elf_link_hash_entry *h, *hv;
504 struct elf_link_hash_table *htab;
505 const struct elf_backend_data *bed;
506
507 if (!is_elf_hash_table (info->hash))
508 return TRUE;
509
510 htab = elf_hash_table (info);
511 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
512 if (h == NULL)
513 return provide;
514
515 switch (h->root.type)
516 {
517 case bfd_link_hash_defined:
518 case bfd_link_hash_defweak:
519 case bfd_link_hash_common:
520 break;
521 case bfd_link_hash_undefweak:
522 case bfd_link_hash_undefined:
523 /* Since we're defining the symbol, don't let it seem to have not
524 been defined. record_dynamic_symbol and size_dynamic_sections
525 may depend on this. */
526 h->root.type = bfd_link_hash_new;
527 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
528 bfd_link_repair_undef_list (&htab->root);
529 break;
530 case bfd_link_hash_new:
531 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
532 h->non_elf = 0;
533 break;
534 case bfd_link_hash_indirect:
535 /* We had a versioned symbol in a dynamic library. We make the
536 the versioned symbol point to this one. */
537 bed = get_elf_backend_data (output_bfd);
538 hv = h;
539 while (hv->root.type == bfd_link_hash_indirect
540 || hv->root.type == bfd_link_hash_warning)
541 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
542 /* We don't need to update h->root.u since linker will set them
543 later. */
544 h->root.type = bfd_link_hash_undefined;
545 hv->root.type = bfd_link_hash_indirect;
546 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
547 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
548 break;
549 case bfd_link_hash_warning:
550 abort ();
551 break;
552 }
553
554 /* If this symbol is being provided by the linker script, and it is
555 currently defined by a dynamic object, but not by a regular
556 object, then mark it as undefined so that the generic linker will
557 force the correct value. */
558 if (provide
559 && h->def_dynamic
560 && !h->def_regular)
561 h->root.type = bfd_link_hash_undefined;
562
563 /* If this symbol is not being provided by the linker script, and it is
564 currently defined by a dynamic object, but not by a regular object,
565 then clear out any version information because the symbol will not be
566 associated with the dynamic object any more. */
567 if (!provide
568 && h->def_dynamic
569 && !h->def_regular)
570 h->verinfo.verdef = NULL;
571
572 h->def_regular = 1;
573
574 if (hidden)
575 {
576 bed = get_elf_backend_data (output_bfd);
577 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
578 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
579 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
580 }
581
582 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
583 and executables. */
584 if (!info->relocatable
585 && h->dynindx != -1
586 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
587 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
588 h->forced_local = 1;
589
590 if ((h->def_dynamic
591 || h->ref_dynamic
592 || info->shared
593 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
594 && h->dynindx == -1)
595 {
596 if (! bfd_elf_link_record_dynamic_symbol (info, h))
597 return FALSE;
598
599 /* If this is a weak defined symbol, and we know a corresponding
600 real symbol from the same dynamic object, make sure the real
601 symbol is also made into a dynamic symbol. */
602 if (h->u.weakdef != NULL
603 && h->u.weakdef->dynindx == -1)
604 {
605 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
606 return FALSE;
607 }
608 }
609
610 return TRUE;
611 }
612
613 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
614 success, and 2 on a failure caused by attempting to record a symbol
615 in a discarded section, eg. a discarded link-once section symbol. */
616
617 int
618 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
619 bfd *input_bfd,
620 long input_indx)
621 {
622 bfd_size_type amt;
623 struct elf_link_local_dynamic_entry *entry;
624 struct elf_link_hash_table *eht;
625 struct elf_strtab_hash *dynstr;
626 unsigned long dynstr_index;
627 char *name;
628 Elf_External_Sym_Shndx eshndx;
629 char esym[sizeof (Elf64_External_Sym)];
630
631 if (! is_elf_hash_table (info->hash))
632 return 0;
633
634 /* See if the entry exists already. */
635 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
636 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
637 return 1;
638
639 amt = sizeof (*entry);
640 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
641 if (entry == NULL)
642 return 0;
643
644 /* Go find the symbol, so that we can find it's name. */
645 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
646 1, input_indx, &entry->isym, esym, &eshndx))
647 {
648 bfd_release (input_bfd, entry);
649 return 0;
650 }
651
652 if (entry->isym.st_shndx != SHN_UNDEF
653 && entry->isym.st_shndx < SHN_LORESERVE)
654 {
655 asection *s;
656
657 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
658 if (s == NULL || bfd_is_abs_section (s->output_section))
659 {
660 /* We can still bfd_release here as nothing has done another
661 bfd_alloc. We can't do this later in this function. */
662 bfd_release (input_bfd, entry);
663 return 2;
664 }
665 }
666
667 name = (bfd_elf_string_from_elf_section
668 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
669 entry->isym.st_name));
670
671 dynstr = elf_hash_table (info)->dynstr;
672 if (dynstr == NULL)
673 {
674 /* Create a strtab to hold the dynamic symbol names. */
675 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
676 if (dynstr == NULL)
677 return 0;
678 }
679
680 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
681 if (dynstr_index == (unsigned long) -1)
682 return 0;
683 entry->isym.st_name = dynstr_index;
684
685 eht = elf_hash_table (info);
686
687 entry->next = eht->dynlocal;
688 eht->dynlocal = entry;
689 entry->input_bfd = input_bfd;
690 entry->input_indx = input_indx;
691 eht->dynsymcount++;
692
693 /* Whatever binding the symbol had before, it's now local. */
694 entry->isym.st_info
695 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
696
697 /* The dynindx will be set at the end of size_dynamic_sections. */
698
699 return 1;
700 }
701
702 /* Return the dynindex of a local dynamic symbol. */
703
704 long
705 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
706 bfd *input_bfd,
707 long input_indx)
708 {
709 struct elf_link_local_dynamic_entry *e;
710
711 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
712 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
713 return e->dynindx;
714 return -1;
715 }
716
717 /* This function is used to renumber the dynamic symbols, if some of
718 them are removed because they are marked as local. This is called
719 via elf_link_hash_traverse. */
720
721 static bfd_boolean
722 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
723 void *data)
724 {
725 size_t *count = (size_t *) data;
726
727 if (h->forced_local)
728 return TRUE;
729
730 if (h->dynindx != -1)
731 h->dynindx = ++(*count);
732
733 return TRUE;
734 }
735
736
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
739
740 static bfd_boolean
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
742 void *data)
743 {
744 size_t *count = (size_t *) data;
745
746 if (!h->forced_local)
747 return TRUE;
748
749 if (h->dynindx != -1)
750 h->dynindx = ++(*count);
751
752 return TRUE;
753 }
754
755 /* Return true if the dynamic symbol for a given section should be
756 omitted when creating a shared library. */
757 bfd_boolean
758 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
759 struct bfd_link_info *info,
760 asection *p)
761 {
762 struct elf_link_hash_table *htab;
763
764 switch (elf_section_data (p)->this_hdr.sh_type)
765 {
766 case SHT_PROGBITS:
767 case SHT_NOBITS:
768 /* If sh_type is yet undecided, assume it could be
769 SHT_PROGBITS/SHT_NOBITS. */
770 case SHT_NULL:
771 htab = elf_hash_table (info);
772 if (p == htab->tls_sec)
773 return FALSE;
774
775 if (htab->text_index_section != NULL)
776 return p != htab->text_index_section && p != htab->data_index_section;
777
778 if (strcmp (p->name, ".got") == 0
779 || strcmp (p->name, ".got.plt") == 0
780 || strcmp (p->name, ".plt") == 0)
781 {
782 asection *ip;
783
784 if (htab->dynobj != NULL
785 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
786 && ip->output_section == p)
787 return TRUE;
788 }
789 return FALSE;
790
791 /* There shouldn't be section relative relocations
792 against any other section. */
793 default:
794 return TRUE;
795 }
796 }
797
798 /* Assign dynsym indices. In a shared library we generate a section
799 symbol for each output section, which come first. Next come symbols
800 which have been forced to local binding. Then all of the back-end
801 allocated local dynamic syms, followed by the rest of the global
802 symbols. */
803
804 static unsigned long
805 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
806 struct bfd_link_info *info,
807 unsigned long *section_sym_count)
808 {
809 unsigned long dynsymcount = 0;
810
811 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
812 {
813 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
814 asection *p;
815 for (p = output_bfd->sections; p ; p = p->next)
816 if ((p->flags & SEC_EXCLUDE) == 0
817 && (p->flags & SEC_ALLOC) != 0
818 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
819 elf_section_data (p)->dynindx = ++dynsymcount;
820 else
821 elf_section_data (p)->dynindx = 0;
822 }
823 *section_sym_count = dynsymcount;
824
825 elf_link_hash_traverse (elf_hash_table (info),
826 elf_link_renumber_local_hash_table_dynsyms,
827 &dynsymcount);
828
829 if (elf_hash_table (info)->dynlocal)
830 {
831 struct elf_link_local_dynamic_entry *p;
832 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
833 p->dynindx = ++dynsymcount;
834 }
835
836 elf_link_hash_traverse (elf_hash_table (info),
837 elf_link_renumber_hash_table_dynsyms,
838 &dynsymcount);
839
840 /* There is an unused NULL entry at the head of the table which
841 we must account for in our count. Unless there weren't any
842 symbols, which means we'll have no table at all. */
843 if (dynsymcount != 0)
844 ++dynsymcount;
845
846 elf_hash_table (info)->dynsymcount = dynsymcount;
847 return dynsymcount;
848 }
849
850 /* Merge st_other field. */
851
852 static void
853 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
854 Elf_Internal_Sym *isym, bfd_boolean definition,
855 bfd_boolean dynamic)
856 {
857 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
858
859 /* If st_other has a processor-specific meaning, specific
860 code might be needed here. We never merge the visibility
861 attribute with the one from a dynamic object. */
862 if (bed->elf_backend_merge_symbol_attribute)
863 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
864 dynamic);
865
866 /* If this symbol has default visibility and the user has requested
867 we not re-export it, then mark it as hidden. */
868 if (definition
869 && !dynamic
870 && (abfd->no_export
871 || (abfd->my_archive && abfd->my_archive->no_export))
872 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
873 isym->st_other = (STV_HIDDEN
874 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
875
876 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
877 {
878 unsigned char hvis, symvis, other, nvis;
879
880 /* Only merge the visibility. Leave the remainder of the
881 st_other field to elf_backend_merge_symbol_attribute. */
882 other = h->other & ~ELF_ST_VISIBILITY (-1);
883
884 /* Combine visibilities, using the most constraining one. */
885 hvis = ELF_ST_VISIBILITY (h->other);
886 symvis = ELF_ST_VISIBILITY (isym->st_other);
887 if (! hvis)
888 nvis = symvis;
889 else if (! symvis)
890 nvis = hvis;
891 else
892 nvis = hvis < symvis ? hvis : symvis;
893
894 h->other = other | nvis;
895 }
896 }
897
898 /* This function is called when we want to merge a new symbol with an
899 existing symbol. It handles the various cases which arise when we
900 find a definition in a dynamic object, or when there is already a
901 definition in a dynamic object. The new symbol is described by
902 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
903 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
904 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
905 of an old common symbol. We set OVERRIDE if the old symbol is
906 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
907 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
908 to change. By OK to change, we mean that we shouldn't warn if the
909 type or size does change. */
910
911 static bfd_boolean
912 _bfd_elf_merge_symbol (bfd *abfd,
913 struct bfd_link_info *info,
914 const char *name,
915 Elf_Internal_Sym *sym,
916 asection **psec,
917 bfd_vma *pvalue,
918 struct elf_link_hash_entry **sym_hash,
919 bfd **poldbfd,
920 bfd_boolean *pold_weak,
921 unsigned int *pold_alignment,
922 bfd_boolean *skip,
923 bfd_boolean *override,
924 bfd_boolean *type_change_ok,
925 bfd_boolean *size_change_ok)
926 {
927 asection *sec, *oldsec;
928 struct elf_link_hash_entry *h;
929 struct elf_link_hash_entry *hi;
930 struct elf_link_hash_entry *flip;
931 int bind;
932 bfd *oldbfd;
933 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
934 bfd_boolean newweak, oldweak, newfunc, oldfunc;
935 const struct elf_backend_data *bed;
936
937 *skip = FALSE;
938 *override = FALSE;
939
940 sec = *psec;
941 bind = ELF_ST_BIND (sym->st_info);
942
943 if (! bfd_is_und_section (sec))
944 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
945 else
946 h = ((struct elf_link_hash_entry *)
947 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
948 if (h == NULL)
949 return FALSE;
950 *sym_hash = h;
951
952 bed = get_elf_backend_data (abfd);
953
954 /* For merging, we only care about real symbols. But we need to make
955 sure that indirect symbol dynamic flags are updated. */
956 hi = h;
957 while (h->root.type == bfd_link_hash_indirect
958 || h->root.type == bfd_link_hash_warning)
959 h = (struct elf_link_hash_entry *) h->root.u.i.link;
960
961 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
962 existing symbol. */
963
964 oldbfd = NULL;
965 oldsec = NULL;
966 switch (h->root.type)
967 {
968 default:
969 break;
970
971 case bfd_link_hash_undefined:
972 case bfd_link_hash_undefweak:
973 oldbfd = h->root.u.undef.abfd;
974 break;
975
976 case bfd_link_hash_defined:
977 case bfd_link_hash_defweak:
978 oldbfd = h->root.u.def.section->owner;
979 oldsec = h->root.u.def.section;
980 break;
981
982 case bfd_link_hash_common:
983 oldbfd = h->root.u.c.p->section->owner;
984 oldsec = h->root.u.c.p->section;
985 if (pold_alignment)
986 *pold_alignment = h->root.u.c.p->alignment_power;
987 break;
988 }
989 if (poldbfd && *poldbfd == NULL)
990 *poldbfd = oldbfd;
991
992 /* Differentiate strong and weak symbols. */
993 newweak = bind == STB_WEAK;
994 oldweak = (h->root.type == bfd_link_hash_defweak
995 || h->root.type == bfd_link_hash_undefweak);
996 if (pold_weak)
997 *pold_weak = oldweak;
998
999 /* This code is for coping with dynamic objects, and is only useful
1000 if we are doing an ELF link. */
1001 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
1002 return TRUE;
1003
1004 /* We have to check it for every instance since the first few may be
1005 references and not all compilers emit symbol type for undefined
1006 symbols. */
1007 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1008
1009 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1010 respectively, is from a dynamic object. */
1011
1012 newdyn = (abfd->flags & DYNAMIC) != 0;
1013
1014 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1015 syms and defined syms in dynamic libraries respectively.
1016 ref_dynamic on the other hand can be set for a symbol defined in
1017 a dynamic library, and def_dynamic may not be set; When the
1018 definition in a dynamic lib is overridden by a definition in the
1019 executable use of the symbol in the dynamic lib becomes a
1020 reference to the executable symbol. */
1021 if (newdyn)
1022 {
1023 if (bfd_is_und_section (sec))
1024 {
1025 if (bind != STB_WEAK)
1026 {
1027 h->ref_dynamic_nonweak = 1;
1028 hi->ref_dynamic_nonweak = 1;
1029 }
1030 }
1031 else
1032 {
1033 h->dynamic_def = 1;
1034 hi->dynamic_def = 1;
1035 }
1036 }
1037
1038 /* If we just created the symbol, mark it as being an ELF symbol.
1039 Other than that, there is nothing to do--there is no merge issue
1040 with a newly defined symbol--so we just return. */
1041
1042 if (h->root.type == bfd_link_hash_new)
1043 {
1044 h->non_elf = 0;
1045 return TRUE;
1046 }
1047
1048 /* In cases involving weak versioned symbols, we may wind up trying
1049 to merge a symbol with itself. Catch that here, to avoid the
1050 confusion that results if we try to override a symbol with
1051 itself. The additional tests catch cases like
1052 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1053 dynamic object, which we do want to handle here. */
1054 if (abfd == oldbfd
1055 && (newweak || oldweak)
1056 && ((abfd->flags & DYNAMIC) == 0
1057 || !h->def_regular))
1058 return TRUE;
1059
1060 olddyn = FALSE;
1061 if (oldbfd != NULL)
1062 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1063 else if (oldsec != NULL)
1064 {
1065 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1066 indices used by MIPS ELF. */
1067 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1068 }
1069
1070 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1071 respectively, appear to be a definition rather than reference. */
1072
1073 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1074
1075 olddef = (h->root.type != bfd_link_hash_undefined
1076 && h->root.type != bfd_link_hash_undefweak
1077 && h->root.type != bfd_link_hash_common);
1078
1079 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1080 respectively, appear to be a function. */
1081
1082 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1083 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1084
1085 oldfunc = (h->type != STT_NOTYPE
1086 && bed->is_function_type (h->type));
1087
1088 /* When we try to create a default indirect symbol from the dynamic
1089 definition with the default version, we skip it if its type and
1090 the type of existing regular definition mismatch. */
1091 if (pold_alignment == NULL
1092 && newdyn
1093 && newdef
1094 && !olddyn
1095 && (((olddef || h->root.type == bfd_link_hash_common)
1096 && ELF_ST_TYPE (sym->st_info) != h->type
1097 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1098 && h->type != STT_NOTYPE
1099 && !(newfunc && oldfunc))
1100 || (olddef
1101 && ((h->type == STT_GNU_IFUNC)
1102 != (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))))
1103 {
1104 *skip = TRUE;
1105 return TRUE;
1106 }
1107
1108 /* Check TLS symbols. We don't check undefined symbols introduced
1109 by "ld -u" which have no type (and oldbfd NULL), and we don't
1110 check symbols from plugins because they also have no type. */
1111 if (oldbfd != NULL
1112 && (oldbfd->flags & BFD_PLUGIN) == 0
1113 && (abfd->flags & BFD_PLUGIN) == 0
1114 && ELF_ST_TYPE (sym->st_info) != h->type
1115 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1116 {
1117 bfd *ntbfd, *tbfd;
1118 bfd_boolean ntdef, tdef;
1119 asection *ntsec, *tsec;
1120
1121 if (h->type == STT_TLS)
1122 {
1123 ntbfd = abfd;
1124 ntsec = sec;
1125 ntdef = newdef;
1126 tbfd = oldbfd;
1127 tsec = oldsec;
1128 tdef = olddef;
1129 }
1130 else
1131 {
1132 ntbfd = oldbfd;
1133 ntsec = oldsec;
1134 ntdef = olddef;
1135 tbfd = abfd;
1136 tsec = sec;
1137 tdef = newdef;
1138 }
1139
1140 if (tdef && ntdef)
1141 (*_bfd_error_handler)
1142 (_("%s: TLS definition in %B section %A "
1143 "mismatches non-TLS definition in %B section %A"),
1144 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1145 else if (!tdef && !ntdef)
1146 (*_bfd_error_handler)
1147 (_("%s: TLS reference in %B "
1148 "mismatches non-TLS reference in %B"),
1149 tbfd, ntbfd, h->root.root.string);
1150 else if (tdef)
1151 (*_bfd_error_handler)
1152 (_("%s: TLS definition in %B section %A "
1153 "mismatches non-TLS reference in %B"),
1154 tbfd, tsec, ntbfd, h->root.root.string);
1155 else
1156 (*_bfd_error_handler)
1157 (_("%s: TLS reference in %B "
1158 "mismatches non-TLS definition in %B section %A"),
1159 tbfd, ntbfd, ntsec, h->root.root.string);
1160
1161 bfd_set_error (bfd_error_bad_value);
1162 return FALSE;
1163 }
1164
1165 /* If the old symbol has non-default visibility, we ignore the new
1166 definition from a dynamic object. */
1167 if (newdyn
1168 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1169 && !bfd_is_und_section (sec))
1170 {
1171 *skip = TRUE;
1172 /* Make sure this symbol is dynamic. */
1173 h->ref_dynamic = 1;
1174 hi->ref_dynamic = 1;
1175 /* A protected symbol has external availability. Make sure it is
1176 recorded as dynamic.
1177
1178 FIXME: Should we check type and size for protected symbol? */
1179 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1180 return bfd_elf_link_record_dynamic_symbol (info, h);
1181 else
1182 return TRUE;
1183 }
1184 else if (!newdyn
1185 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1186 && h->def_dynamic)
1187 {
1188 /* If the new symbol with non-default visibility comes from a
1189 relocatable file and the old definition comes from a dynamic
1190 object, we remove the old definition. */
1191 if (hi->root.type == bfd_link_hash_indirect)
1192 {
1193 /* Handle the case where the old dynamic definition is
1194 default versioned. We need to copy the symbol info from
1195 the symbol with default version to the normal one if it
1196 was referenced before. */
1197 if (h->ref_regular)
1198 {
1199 hi->root.type = h->root.type;
1200 h->root.type = bfd_link_hash_indirect;
1201 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1202
1203 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1204 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1205 {
1206 /* If the new symbol is hidden or internal, completely undo
1207 any dynamic link state. */
1208 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1209 h->forced_local = 0;
1210 h->ref_dynamic = 0;
1211 }
1212 else
1213 h->ref_dynamic = 1;
1214
1215 h->def_dynamic = 0;
1216 /* FIXME: Should we check type and size for protected symbol? */
1217 h->size = 0;
1218 h->type = 0;
1219
1220 h = hi;
1221 }
1222 else
1223 h = hi;
1224 }
1225
1226 /* If the old symbol was undefined before, then it will still be
1227 on the undefs list. If the new symbol is undefined or
1228 common, we can't make it bfd_link_hash_new here, because new
1229 undefined or common symbols will be added to the undefs list
1230 by _bfd_generic_link_add_one_symbol. Symbols may not be
1231 added twice to the undefs list. Also, if the new symbol is
1232 undefweak then we don't want to lose the strong undef. */
1233 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1234 {
1235 h->root.type = bfd_link_hash_undefined;
1236 h->root.u.undef.abfd = abfd;
1237 }
1238 else
1239 {
1240 h->root.type = bfd_link_hash_new;
1241 h->root.u.undef.abfd = NULL;
1242 }
1243
1244 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1245 {
1246 /* If the new symbol is hidden or internal, completely undo
1247 any dynamic link state. */
1248 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1249 h->forced_local = 0;
1250 h->ref_dynamic = 0;
1251 }
1252 else
1253 h->ref_dynamic = 1;
1254 h->def_dynamic = 0;
1255 /* FIXME: Should we check type and size for protected symbol? */
1256 h->size = 0;
1257 h->type = 0;
1258 return TRUE;
1259 }
1260
1261 /* If a new weak symbol definition comes from a regular file and the
1262 old symbol comes from a dynamic library, we treat the new one as
1263 strong. Similarly, an old weak symbol definition from a regular
1264 file is treated as strong when the new symbol comes from a dynamic
1265 library. Further, an old weak symbol from a dynamic library is
1266 treated as strong if the new symbol is from a dynamic library.
1267 This reflects the way glibc's ld.so works.
1268
1269 Do this before setting *type_change_ok or *size_change_ok so that
1270 we warn properly when dynamic library symbols are overridden. */
1271
1272 if (newdef && !newdyn && olddyn)
1273 newweak = FALSE;
1274 if (olddef && newdyn)
1275 oldweak = FALSE;
1276
1277 /* Allow changes between different types of function symbol. */
1278 if (newfunc && oldfunc)
1279 *type_change_ok = TRUE;
1280
1281 /* It's OK to change the type if either the existing symbol or the
1282 new symbol is weak. A type change is also OK if the old symbol
1283 is undefined and the new symbol is defined. */
1284
1285 if (oldweak
1286 || newweak
1287 || (newdef
1288 && h->root.type == bfd_link_hash_undefined))
1289 *type_change_ok = TRUE;
1290
1291 /* It's OK to change the size if either the existing symbol or the
1292 new symbol is weak, or if the old symbol is undefined. */
1293
1294 if (*type_change_ok
1295 || h->root.type == bfd_link_hash_undefined)
1296 *size_change_ok = TRUE;
1297
1298 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1299 symbol, respectively, appears to be a common symbol in a dynamic
1300 object. If a symbol appears in an uninitialized section, and is
1301 not weak, and is not a function, then it may be a common symbol
1302 which was resolved when the dynamic object was created. We want
1303 to treat such symbols specially, because they raise special
1304 considerations when setting the symbol size: if the symbol
1305 appears as a common symbol in a regular object, and the size in
1306 the regular object is larger, we must make sure that we use the
1307 larger size. This problematic case can always be avoided in C,
1308 but it must be handled correctly when using Fortran shared
1309 libraries.
1310
1311 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1312 likewise for OLDDYNCOMMON and OLDDEF.
1313
1314 Note that this test is just a heuristic, and that it is quite
1315 possible to have an uninitialized symbol in a shared object which
1316 is really a definition, rather than a common symbol. This could
1317 lead to some minor confusion when the symbol really is a common
1318 symbol in some regular object. However, I think it will be
1319 harmless. */
1320
1321 if (newdyn
1322 && newdef
1323 && !newweak
1324 && (sec->flags & SEC_ALLOC) != 0
1325 && (sec->flags & SEC_LOAD) == 0
1326 && sym->st_size > 0
1327 && !newfunc)
1328 newdyncommon = TRUE;
1329 else
1330 newdyncommon = FALSE;
1331
1332 if (olddyn
1333 && olddef
1334 && h->root.type == bfd_link_hash_defined
1335 && h->def_dynamic
1336 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1337 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1338 && h->size > 0
1339 && !oldfunc)
1340 olddyncommon = TRUE;
1341 else
1342 olddyncommon = FALSE;
1343
1344 /* We now know everything about the old and new symbols. We ask the
1345 backend to check if we can merge them. */
1346 if (bed->merge_symbol != NULL)
1347 {
1348 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1349 return FALSE;
1350 sec = *psec;
1351 }
1352
1353 /* If both the old and the new symbols look like common symbols in a
1354 dynamic object, set the size of the symbol to the larger of the
1355 two. */
1356
1357 if (olddyncommon
1358 && newdyncommon
1359 && sym->st_size != h->size)
1360 {
1361 /* Since we think we have two common symbols, issue a multiple
1362 common warning if desired. Note that we only warn if the
1363 size is different. If the size is the same, we simply let
1364 the old symbol override the new one as normally happens with
1365 symbols defined in dynamic objects. */
1366
1367 if (! ((*info->callbacks->multiple_common)
1368 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1369 return FALSE;
1370
1371 if (sym->st_size > h->size)
1372 h->size = sym->st_size;
1373
1374 *size_change_ok = TRUE;
1375 }
1376
1377 /* If we are looking at a dynamic object, and we have found a
1378 definition, we need to see if the symbol was already defined by
1379 some other object. If so, we want to use the existing
1380 definition, and we do not want to report a multiple symbol
1381 definition error; we do this by clobbering *PSEC to be
1382 bfd_und_section_ptr.
1383
1384 We treat a common symbol as a definition if the symbol in the
1385 shared library is a function, since common symbols always
1386 represent variables; this can cause confusion in principle, but
1387 any such confusion would seem to indicate an erroneous program or
1388 shared library. We also permit a common symbol in a regular
1389 object to override a weak symbol in a shared object. */
1390
1391 if (newdyn
1392 && newdef
1393 && (olddef
1394 || (h->root.type == bfd_link_hash_common
1395 && (newweak || newfunc))))
1396 {
1397 *override = TRUE;
1398 newdef = FALSE;
1399 newdyncommon = FALSE;
1400
1401 *psec = sec = bfd_und_section_ptr;
1402 *size_change_ok = TRUE;
1403
1404 /* If we get here when the old symbol is a common symbol, then
1405 we are explicitly letting it override a weak symbol or
1406 function in a dynamic object, and we don't want to warn about
1407 a type change. If the old symbol is a defined symbol, a type
1408 change warning may still be appropriate. */
1409
1410 if (h->root.type == bfd_link_hash_common)
1411 *type_change_ok = TRUE;
1412 }
1413
1414 /* Handle the special case of an old common symbol merging with a
1415 new symbol which looks like a common symbol in a shared object.
1416 We change *PSEC and *PVALUE to make the new symbol look like a
1417 common symbol, and let _bfd_generic_link_add_one_symbol do the
1418 right thing. */
1419
1420 if (newdyncommon
1421 && h->root.type == bfd_link_hash_common)
1422 {
1423 *override = TRUE;
1424 newdef = FALSE;
1425 newdyncommon = FALSE;
1426 *pvalue = sym->st_size;
1427 *psec = sec = bed->common_section (oldsec);
1428 *size_change_ok = TRUE;
1429 }
1430
1431 /* Skip weak definitions of symbols that are already defined. */
1432 if (newdef && olddef && newweak)
1433 {
1434 /* Don't skip new non-IR weak syms. */
1435 if (!(oldbfd != NULL
1436 && (oldbfd->flags & BFD_PLUGIN) != 0
1437 && (abfd->flags & BFD_PLUGIN) == 0))
1438 {
1439 newdef = FALSE;
1440 *skip = TRUE;
1441 }
1442
1443 /* Merge st_other. If the symbol already has a dynamic index,
1444 but visibility says it should not be visible, turn it into a
1445 local symbol. */
1446 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1447 if (h->dynindx != -1)
1448 switch (ELF_ST_VISIBILITY (h->other))
1449 {
1450 case STV_INTERNAL:
1451 case STV_HIDDEN:
1452 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1453 break;
1454 }
1455 }
1456
1457 /* If the old symbol is from a dynamic object, and the new symbol is
1458 a definition which is not from a dynamic object, then the new
1459 symbol overrides the old symbol. Symbols from regular files
1460 always take precedence over symbols from dynamic objects, even if
1461 they are defined after the dynamic object in the link.
1462
1463 As above, we again permit a common symbol in a regular object to
1464 override a definition in a shared object if the shared object
1465 symbol is a function or is weak. */
1466
1467 flip = NULL;
1468 if (!newdyn
1469 && (newdef
1470 || (bfd_is_com_section (sec)
1471 && (oldweak || oldfunc)))
1472 && olddyn
1473 && olddef
1474 && h->def_dynamic)
1475 {
1476 /* Change the hash table entry to undefined, and let
1477 _bfd_generic_link_add_one_symbol do the right thing with the
1478 new definition. */
1479
1480 h->root.type = bfd_link_hash_undefined;
1481 h->root.u.undef.abfd = h->root.u.def.section->owner;
1482 *size_change_ok = TRUE;
1483
1484 olddef = FALSE;
1485 olddyncommon = FALSE;
1486
1487 /* We again permit a type change when a common symbol may be
1488 overriding a function. */
1489
1490 if (bfd_is_com_section (sec))
1491 {
1492 if (oldfunc)
1493 {
1494 /* If a common symbol overrides a function, make sure
1495 that it isn't defined dynamically nor has type
1496 function. */
1497 h->def_dynamic = 0;
1498 h->type = STT_NOTYPE;
1499 }
1500 *type_change_ok = TRUE;
1501 }
1502
1503 if (hi->root.type == bfd_link_hash_indirect)
1504 flip = hi;
1505 else
1506 /* This union may have been set to be non-NULL when this symbol
1507 was seen in a dynamic object. We must force the union to be
1508 NULL, so that it is correct for a regular symbol. */
1509 h->verinfo.vertree = NULL;
1510 }
1511
1512 /* Handle the special case of a new common symbol merging with an
1513 old symbol that looks like it might be a common symbol defined in
1514 a shared object. Note that we have already handled the case in
1515 which a new common symbol should simply override the definition
1516 in the shared library. */
1517
1518 if (! newdyn
1519 && bfd_is_com_section (sec)
1520 && olddyncommon)
1521 {
1522 /* It would be best if we could set the hash table entry to a
1523 common symbol, but we don't know what to use for the section
1524 or the alignment. */
1525 if (! ((*info->callbacks->multiple_common)
1526 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1527 return FALSE;
1528
1529 /* If the presumed common symbol in the dynamic object is
1530 larger, pretend that the new symbol has its size. */
1531
1532 if (h->size > *pvalue)
1533 *pvalue = h->size;
1534
1535 /* We need to remember the alignment required by the symbol
1536 in the dynamic object. */
1537 BFD_ASSERT (pold_alignment);
1538 *pold_alignment = h->root.u.def.section->alignment_power;
1539
1540 olddef = FALSE;
1541 olddyncommon = FALSE;
1542
1543 h->root.type = bfd_link_hash_undefined;
1544 h->root.u.undef.abfd = h->root.u.def.section->owner;
1545
1546 *size_change_ok = TRUE;
1547 *type_change_ok = TRUE;
1548
1549 if (hi->root.type == bfd_link_hash_indirect)
1550 flip = hi;
1551 else
1552 h->verinfo.vertree = NULL;
1553 }
1554
1555 if (flip != NULL)
1556 {
1557 /* Handle the case where we had a versioned symbol in a dynamic
1558 library and now find a definition in a normal object. In this
1559 case, we make the versioned symbol point to the normal one. */
1560 flip->root.type = h->root.type;
1561 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1562 h->root.type = bfd_link_hash_indirect;
1563 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1564 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1565 if (h->def_dynamic)
1566 {
1567 h->def_dynamic = 0;
1568 flip->ref_dynamic = 1;
1569 }
1570 }
1571
1572 return TRUE;
1573 }
1574
1575 /* This function is called to create an indirect symbol from the
1576 default for the symbol with the default version if needed. The
1577 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1578 set DYNSYM if the new indirect symbol is dynamic. */
1579
1580 static bfd_boolean
1581 _bfd_elf_add_default_symbol (bfd *abfd,
1582 struct bfd_link_info *info,
1583 struct elf_link_hash_entry *h,
1584 const char *name,
1585 Elf_Internal_Sym *sym,
1586 asection *sec,
1587 bfd_vma value,
1588 bfd **poldbfd,
1589 bfd_boolean *dynsym)
1590 {
1591 bfd_boolean type_change_ok;
1592 bfd_boolean size_change_ok;
1593 bfd_boolean skip;
1594 char *shortname;
1595 struct elf_link_hash_entry *hi;
1596 struct bfd_link_hash_entry *bh;
1597 const struct elf_backend_data *bed;
1598 bfd_boolean collect;
1599 bfd_boolean dynamic;
1600 bfd_boolean override;
1601 char *p;
1602 size_t len, shortlen;
1603 asection *tmp_sec;
1604
1605 /* If this symbol has a version, and it is the default version, we
1606 create an indirect symbol from the default name to the fully
1607 decorated name. This will cause external references which do not
1608 specify a version to be bound to this version of the symbol. */
1609 p = strchr (name, ELF_VER_CHR);
1610 if (p == NULL || p[1] != ELF_VER_CHR)
1611 return TRUE;
1612
1613 bed = get_elf_backend_data (abfd);
1614 collect = bed->collect;
1615 dynamic = (abfd->flags & DYNAMIC) != 0;
1616
1617 shortlen = p - name;
1618 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1619 if (shortname == NULL)
1620 return FALSE;
1621 memcpy (shortname, name, shortlen);
1622 shortname[shortlen] = '\0';
1623
1624 /* We are going to create a new symbol. Merge it with any existing
1625 symbol with this name. For the purposes of the merge, act as
1626 though we were defining the symbol we just defined, although we
1627 actually going to define an indirect symbol. */
1628 type_change_ok = FALSE;
1629 size_change_ok = FALSE;
1630 tmp_sec = sec;
1631 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1632 &hi, poldbfd, NULL, NULL, &skip, &override,
1633 &type_change_ok, &size_change_ok))
1634 return FALSE;
1635
1636 if (skip)
1637 goto nondefault;
1638
1639 if (! override)
1640 {
1641 bh = &hi->root;
1642 if (! (_bfd_generic_link_add_one_symbol
1643 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1644 0, name, FALSE, collect, &bh)))
1645 return FALSE;
1646 hi = (struct elf_link_hash_entry *) bh;
1647 }
1648 else
1649 {
1650 /* In this case the symbol named SHORTNAME is overriding the
1651 indirect symbol we want to add. We were planning on making
1652 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1653 is the name without a version. NAME is the fully versioned
1654 name, and it is the default version.
1655
1656 Overriding means that we already saw a definition for the
1657 symbol SHORTNAME in a regular object, and it is overriding
1658 the symbol defined in the dynamic object.
1659
1660 When this happens, we actually want to change NAME, the
1661 symbol we just added, to refer to SHORTNAME. This will cause
1662 references to NAME in the shared object to become references
1663 to SHORTNAME in the regular object. This is what we expect
1664 when we override a function in a shared object: that the
1665 references in the shared object will be mapped to the
1666 definition in the regular object. */
1667
1668 while (hi->root.type == bfd_link_hash_indirect
1669 || hi->root.type == bfd_link_hash_warning)
1670 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1671
1672 h->root.type = bfd_link_hash_indirect;
1673 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1674 if (h->def_dynamic)
1675 {
1676 h->def_dynamic = 0;
1677 hi->ref_dynamic = 1;
1678 if (hi->ref_regular
1679 || hi->def_regular)
1680 {
1681 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1682 return FALSE;
1683 }
1684 }
1685
1686 /* Now set HI to H, so that the following code will set the
1687 other fields correctly. */
1688 hi = h;
1689 }
1690
1691 /* Check if HI is a warning symbol. */
1692 if (hi->root.type == bfd_link_hash_warning)
1693 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1694
1695 /* If there is a duplicate definition somewhere, then HI may not
1696 point to an indirect symbol. We will have reported an error to
1697 the user in that case. */
1698
1699 if (hi->root.type == bfd_link_hash_indirect)
1700 {
1701 struct elf_link_hash_entry *ht;
1702
1703 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1704 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1705
1706 /* A reference to the SHORTNAME symbol from a dynamic library
1707 will be satisfied by the versioned symbol at runtime. In
1708 effect, we have a reference to the versioned symbol. */
1709 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1710 hi->dynamic_def |= ht->dynamic_def;
1711
1712 /* See if the new flags lead us to realize that the symbol must
1713 be dynamic. */
1714 if (! *dynsym)
1715 {
1716 if (! dynamic)
1717 {
1718 if (! info->executable
1719 || hi->def_dynamic
1720 || hi->ref_dynamic)
1721 *dynsym = TRUE;
1722 }
1723 else
1724 {
1725 if (hi->ref_regular)
1726 *dynsym = TRUE;
1727 }
1728 }
1729 }
1730
1731 /* We also need to define an indirection from the nondefault version
1732 of the symbol. */
1733
1734 nondefault:
1735 len = strlen (name);
1736 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1737 if (shortname == NULL)
1738 return FALSE;
1739 memcpy (shortname, name, shortlen);
1740 memcpy (shortname + shortlen, p + 1, len - shortlen);
1741
1742 /* Once again, merge with any existing symbol. */
1743 type_change_ok = FALSE;
1744 size_change_ok = FALSE;
1745 tmp_sec = sec;
1746 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1747 &hi, poldbfd, NULL, NULL, &skip, &override,
1748 &type_change_ok, &size_change_ok))
1749 return FALSE;
1750
1751 if (skip)
1752 return TRUE;
1753
1754 if (override)
1755 {
1756 /* Here SHORTNAME is a versioned name, so we don't expect to see
1757 the type of override we do in the case above unless it is
1758 overridden by a versioned definition. */
1759 if (hi->root.type != bfd_link_hash_defined
1760 && hi->root.type != bfd_link_hash_defweak)
1761 (*_bfd_error_handler)
1762 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1763 abfd, shortname);
1764 }
1765 else
1766 {
1767 bh = &hi->root;
1768 if (! (_bfd_generic_link_add_one_symbol
1769 (info, abfd, shortname, BSF_INDIRECT,
1770 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1771 return FALSE;
1772 hi = (struct elf_link_hash_entry *) bh;
1773
1774 /* If there is a duplicate definition somewhere, then HI may not
1775 point to an indirect symbol. We will have reported an error
1776 to the user in that case. */
1777
1778 if (hi->root.type == bfd_link_hash_indirect)
1779 {
1780 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1781 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1782 hi->dynamic_def |= h->dynamic_def;
1783
1784 /* See if the new flags lead us to realize that the symbol
1785 must be dynamic. */
1786 if (! *dynsym)
1787 {
1788 if (! dynamic)
1789 {
1790 if (! info->executable
1791 || hi->ref_dynamic)
1792 *dynsym = TRUE;
1793 }
1794 else
1795 {
1796 if (hi->ref_regular)
1797 *dynsym = TRUE;
1798 }
1799 }
1800 }
1801 }
1802
1803 return TRUE;
1804 }
1805 \f
1806 /* This routine is used to export all defined symbols into the dynamic
1807 symbol table. It is called via elf_link_hash_traverse. */
1808
1809 static bfd_boolean
1810 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1811 {
1812 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1813
1814 /* Ignore indirect symbols. These are added by the versioning code. */
1815 if (h->root.type == bfd_link_hash_indirect)
1816 return TRUE;
1817
1818 /* Ignore this if we won't export it. */
1819 if (!eif->info->export_dynamic && !h->dynamic)
1820 return TRUE;
1821
1822 if (h->dynindx == -1
1823 && (h->def_regular || h->ref_regular)
1824 && ! bfd_hide_sym_by_version (eif->info->version_info,
1825 h->root.root.string))
1826 {
1827 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1828 {
1829 eif->failed = TRUE;
1830 return FALSE;
1831 }
1832 }
1833
1834 return TRUE;
1835 }
1836 \f
1837 /* Look through the symbols which are defined in other shared
1838 libraries and referenced here. Update the list of version
1839 dependencies. This will be put into the .gnu.version_r section.
1840 This function is called via elf_link_hash_traverse. */
1841
1842 static bfd_boolean
1843 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1844 void *data)
1845 {
1846 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1847 Elf_Internal_Verneed *t;
1848 Elf_Internal_Vernaux *a;
1849 bfd_size_type amt;
1850
1851 /* We only care about symbols defined in shared objects with version
1852 information. */
1853 if (!h->def_dynamic
1854 || h->def_regular
1855 || h->dynindx == -1
1856 || h->verinfo.verdef == NULL)
1857 return TRUE;
1858
1859 /* See if we already know about this version. */
1860 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1861 t != NULL;
1862 t = t->vn_nextref)
1863 {
1864 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1865 continue;
1866
1867 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1868 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1869 return TRUE;
1870
1871 break;
1872 }
1873
1874 /* This is a new version. Add it to tree we are building. */
1875
1876 if (t == NULL)
1877 {
1878 amt = sizeof *t;
1879 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1880 if (t == NULL)
1881 {
1882 rinfo->failed = TRUE;
1883 return FALSE;
1884 }
1885
1886 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1887 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1888 elf_tdata (rinfo->info->output_bfd)->verref = t;
1889 }
1890
1891 amt = sizeof *a;
1892 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1893 if (a == NULL)
1894 {
1895 rinfo->failed = TRUE;
1896 return FALSE;
1897 }
1898
1899 /* Note that we are copying a string pointer here, and testing it
1900 above. If bfd_elf_string_from_elf_section is ever changed to
1901 discard the string data when low in memory, this will have to be
1902 fixed. */
1903 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1904
1905 a->vna_flags = h->verinfo.verdef->vd_flags;
1906 a->vna_nextptr = t->vn_auxptr;
1907
1908 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1909 ++rinfo->vers;
1910
1911 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1912
1913 t->vn_auxptr = a;
1914
1915 return TRUE;
1916 }
1917
1918 /* Figure out appropriate versions for all the symbols. We may not
1919 have the version number script until we have read all of the input
1920 files, so until that point we don't know which symbols should be
1921 local. This function is called via elf_link_hash_traverse. */
1922
1923 static bfd_boolean
1924 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1925 {
1926 struct elf_info_failed *sinfo;
1927 struct bfd_link_info *info;
1928 const struct elf_backend_data *bed;
1929 struct elf_info_failed eif;
1930 char *p;
1931 bfd_size_type amt;
1932
1933 sinfo = (struct elf_info_failed *) data;
1934 info = sinfo->info;
1935
1936 /* Fix the symbol flags. */
1937 eif.failed = FALSE;
1938 eif.info = info;
1939 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1940 {
1941 if (eif.failed)
1942 sinfo->failed = TRUE;
1943 return FALSE;
1944 }
1945
1946 /* We only need version numbers for symbols defined in regular
1947 objects. */
1948 if (!h->def_regular)
1949 return TRUE;
1950
1951 bed = get_elf_backend_data (info->output_bfd);
1952 p = strchr (h->root.root.string, ELF_VER_CHR);
1953 if (p != NULL && h->verinfo.vertree == NULL)
1954 {
1955 struct bfd_elf_version_tree *t;
1956 bfd_boolean hidden;
1957
1958 hidden = TRUE;
1959
1960 /* There are two consecutive ELF_VER_CHR characters if this is
1961 not a hidden symbol. */
1962 ++p;
1963 if (*p == ELF_VER_CHR)
1964 {
1965 hidden = FALSE;
1966 ++p;
1967 }
1968
1969 /* If there is no version string, we can just return out. */
1970 if (*p == '\0')
1971 {
1972 if (hidden)
1973 h->hidden = 1;
1974 return TRUE;
1975 }
1976
1977 /* Look for the version. If we find it, it is no longer weak. */
1978 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1979 {
1980 if (strcmp (t->name, p) == 0)
1981 {
1982 size_t len;
1983 char *alc;
1984 struct bfd_elf_version_expr *d;
1985
1986 len = p - h->root.root.string;
1987 alc = (char *) bfd_malloc (len);
1988 if (alc == NULL)
1989 {
1990 sinfo->failed = TRUE;
1991 return FALSE;
1992 }
1993 memcpy (alc, h->root.root.string, len - 1);
1994 alc[len - 1] = '\0';
1995 if (alc[len - 2] == ELF_VER_CHR)
1996 alc[len - 2] = '\0';
1997
1998 h->verinfo.vertree = t;
1999 t->used = TRUE;
2000 d = NULL;
2001
2002 if (t->globals.list != NULL)
2003 d = (*t->match) (&t->globals, NULL, alc);
2004
2005 /* See if there is anything to force this symbol to
2006 local scope. */
2007 if (d == NULL && t->locals.list != NULL)
2008 {
2009 d = (*t->match) (&t->locals, NULL, alc);
2010 if (d != NULL
2011 && h->dynindx != -1
2012 && ! info->export_dynamic)
2013 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2014 }
2015
2016 free (alc);
2017 break;
2018 }
2019 }
2020
2021 /* If we are building an application, we need to create a
2022 version node for this version. */
2023 if (t == NULL && info->executable)
2024 {
2025 struct bfd_elf_version_tree **pp;
2026 int version_index;
2027
2028 /* If we aren't going to export this symbol, we don't need
2029 to worry about it. */
2030 if (h->dynindx == -1)
2031 return TRUE;
2032
2033 amt = sizeof *t;
2034 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2035 if (t == NULL)
2036 {
2037 sinfo->failed = TRUE;
2038 return FALSE;
2039 }
2040
2041 t->name = p;
2042 t->name_indx = (unsigned int) -1;
2043 t->used = TRUE;
2044
2045 version_index = 1;
2046 /* Don't count anonymous version tag. */
2047 if (sinfo->info->version_info != NULL
2048 && sinfo->info->version_info->vernum == 0)
2049 version_index = 0;
2050 for (pp = &sinfo->info->version_info;
2051 *pp != NULL;
2052 pp = &(*pp)->next)
2053 ++version_index;
2054 t->vernum = version_index;
2055
2056 *pp = t;
2057
2058 h->verinfo.vertree = t;
2059 }
2060 else if (t == NULL)
2061 {
2062 /* We could not find the version for a symbol when
2063 generating a shared archive. Return an error. */
2064 (*_bfd_error_handler)
2065 (_("%B: version node not found for symbol %s"),
2066 info->output_bfd, h->root.root.string);
2067 bfd_set_error (bfd_error_bad_value);
2068 sinfo->failed = TRUE;
2069 return FALSE;
2070 }
2071
2072 if (hidden)
2073 h->hidden = 1;
2074 }
2075
2076 /* If we don't have a version for this symbol, see if we can find
2077 something. */
2078 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2079 {
2080 bfd_boolean hide;
2081
2082 h->verinfo.vertree
2083 = bfd_find_version_for_sym (sinfo->info->version_info,
2084 h->root.root.string, &hide);
2085 if (h->verinfo.vertree != NULL && hide)
2086 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2087 }
2088
2089 return TRUE;
2090 }
2091 \f
2092 /* Read and swap the relocs from the section indicated by SHDR. This
2093 may be either a REL or a RELA section. The relocations are
2094 translated into RELA relocations and stored in INTERNAL_RELOCS,
2095 which should have already been allocated to contain enough space.
2096 The EXTERNAL_RELOCS are a buffer where the external form of the
2097 relocations should be stored.
2098
2099 Returns FALSE if something goes wrong. */
2100
2101 static bfd_boolean
2102 elf_link_read_relocs_from_section (bfd *abfd,
2103 asection *sec,
2104 Elf_Internal_Shdr *shdr,
2105 void *external_relocs,
2106 Elf_Internal_Rela *internal_relocs)
2107 {
2108 const struct elf_backend_data *bed;
2109 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2110 const bfd_byte *erela;
2111 const bfd_byte *erelaend;
2112 Elf_Internal_Rela *irela;
2113 Elf_Internal_Shdr *symtab_hdr;
2114 size_t nsyms;
2115
2116 /* Position ourselves at the start of the section. */
2117 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2118 return FALSE;
2119
2120 /* Read the relocations. */
2121 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2122 return FALSE;
2123
2124 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2125 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2126
2127 bed = get_elf_backend_data (abfd);
2128
2129 /* Convert the external relocations to the internal format. */
2130 if (shdr->sh_entsize == bed->s->sizeof_rel)
2131 swap_in = bed->s->swap_reloc_in;
2132 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2133 swap_in = bed->s->swap_reloca_in;
2134 else
2135 {
2136 bfd_set_error (bfd_error_wrong_format);
2137 return FALSE;
2138 }
2139
2140 erela = (const bfd_byte *) external_relocs;
2141 erelaend = erela + shdr->sh_size;
2142 irela = internal_relocs;
2143 while (erela < erelaend)
2144 {
2145 bfd_vma r_symndx;
2146
2147 (*swap_in) (abfd, erela, irela);
2148 r_symndx = ELF32_R_SYM (irela->r_info);
2149 if (bed->s->arch_size == 64)
2150 r_symndx >>= 24;
2151 if (nsyms > 0)
2152 {
2153 if ((size_t) r_symndx >= nsyms)
2154 {
2155 (*_bfd_error_handler)
2156 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2157 " for offset 0x%lx in section `%A'"),
2158 abfd, sec,
2159 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2160 bfd_set_error (bfd_error_bad_value);
2161 return FALSE;
2162 }
2163 }
2164 else if (r_symndx != STN_UNDEF)
2165 {
2166 (*_bfd_error_handler)
2167 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2168 " when the object file has no symbol table"),
2169 abfd, sec,
2170 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2171 bfd_set_error (bfd_error_bad_value);
2172 return FALSE;
2173 }
2174 irela += bed->s->int_rels_per_ext_rel;
2175 erela += shdr->sh_entsize;
2176 }
2177
2178 return TRUE;
2179 }
2180
2181 /* Read and swap the relocs for a section O. They may have been
2182 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2183 not NULL, they are used as buffers to read into. They are known to
2184 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2185 the return value is allocated using either malloc or bfd_alloc,
2186 according to the KEEP_MEMORY argument. If O has two relocation
2187 sections (both REL and RELA relocations), then the REL_HDR
2188 relocations will appear first in INTERNAL_RELOCS, followed by the
2189 RELA_HDR relocations. */
2190
2191 Elf_Internal_Rela *
2192 _bfd_elf_link_read_relocs (bfd *abfd,
2193 asection *o,
2194 void *external_relocs,
2195 Elf_Internal_Rela *internal_relocs,
2196 bfd_boolean keep_memory)
2197 {
2198 void *alloc1 = NULL;
2199 Elf_Internal_Rela *alloc2 = NULL;
2200 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2201 struct bfd_elf_section_data *esdo = elf_section_data (o);
2202 Elf_Internal_Rela *internal_rela_relocs;
2203
2204 if (esdo->relocs != NULL)
2205 return esdo->relocs;
2206
2207 if (o->reloc_count == 0)
2208 return NULL;
2209
2210 if (internal_relocs == NULL)
2211 {
2212 bfd_size_type size;
2213
2214 size = o->reloc_count;
2215 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2216 if (keep_memory)
2217 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2218 else
2219 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2220 if (internal_relocs == NULL)
2221 goto error_return;
2222 }
2223
2224 if (external_relocs == NULL)
2225 {
2226 bfd_size_type size = 0;
2227
2228 if (esdo->rel.hdr)
2229 size += esdo->rel.hdr->sh_size;
2230 if (esdo->rela.hdr)
2231 size += esdo->rela.hdr->sh_size;
2232
2233 alloc1 = bfd_malloc (size);
2234 if (alloc1 == NULL)
2235 goto error_return;
2236 external_relocs = alloc1;
2237 }
2238
2239 internal_rela_relocs = internal_relocs;
2240 if (esdo->rel.hdr)
2241 {
2242 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2243 external_relocs,
2244 internal_relocs))
2245 goto error_return;
2246 external_relocs = (((bfd_byte *) external_relocs)
2247 + esdo->rel.hdr->sh_size);
2248 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2249 * bed->s->int_rels_per_ext_rel);
2250 }
2251
2252 if (esdo->rela.hdr
2253 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2254 external_relocs,
2255 internal_rela_relocs)))
2256 goto error_return;
2257
2258 /* Cache the results for next time, if we can. */
2259 if (keep_memory)
2260 esdo->relocs = internal_relocs;
2261
2262 if (alloc1 != NULL)
2263 free (alloc1);
2264
2265 /* Don't free alloc2, since if it was allocated we are passing it
2266 back (under the name of internal_relocs). */
2267
2268 return internal_relocs;
2269
2270 error_return:
2271 if (alloc1 != NULL)
2272 free (alloc1);
2273 if (alloc2 != NULL)
2274 {
2275 if (keep_memory)
2276 bfd_release (abfd, alloc2);
2277 else
2278 free (alloc2);
2279 }
2280 return NULL;
2281 }
2282
2283 /* Compute the size of, and allocate space for, REL_HDR which is the
2284 section header for a section containing relocations for O. */
2285
2286 static bfd_boolean
2287 _bfd_elf_link_size_reloc_section (bfd *abfd,
2288 struct bfd_elf_section_reloc_data *reldata)
2289 {
2290 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2291
2292 /* That allows us to calculate the size of the section. */
2293 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2294
2295 /* The contents field must last into write_object_contents, so we
2296 allocate it with bfd_alloc rather than malloc. Also since we
2297 cannot be sure that the contents will actually be filled in,
2298 we zero the allocated space. */
2299 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2300 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2301 return FALSE;
2302
2303 if (reldata->hashes == NULL && reldata->count)
2304 {
2305 struct elf_link_hash_entry **p;
2306
2307 p = (struct elf_link_hash_entry **)
2308 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2309 if (p == NULL)
2310 return FALSE;
2311
2312 reldata->hashes = p;
2313 }
2314
2315 return TRUE;
2316 }
2317
2318 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2319 originated from the section given by INPUT_REL_HDR) to the
2320 OUTPUT_BFD. */
2321
2322 bfd_boolean
2323 _bfd_elf_link_output_relocs (bfd *output_bfd,
2324 asection *input_section,
2325 Elf_Internal_Shdr *input_rel_hdr,
2326 Elf_Internal_Rela *internal_relocs,
2327 struct elf_link_hash_entry **rel_hash
2328 ATTRIBUTE_UNUSED)
2329 {
2330 Elf_Internal_Rela *irela;
2331 Elf_Internal_Rela *irelaend;
2332 bfd_byte *erel;
2333 struct bfd_elf_section_reloc_data *output_reldata;
2334 asection *output_section;
2335 const struct elf_backend_data *bed;
2336 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2337 struct bfd_elf_section_data *esdo;
2338
2339 output_section = input_section->output_section;
2340
2341 bed = get_elf_backend_data (output_bfd);
2342 esdo = elf_section_data (output_section);
2343 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2344 {
2345 output_reldata = &esdo->rel;
2346 swap_out = bed->s->swap_reloc_out;
2347 }
2348 else if (esdo->rela.hdr
2349 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2350 {
2351 output_reldata = &esdo->rela;
2352 swap_out = bed->s->swap_reloca_out;
2353 }
2354 else
2355 {
2356 (*_bfd_error_handler)
2357 (_("%B: relocation size mismatch in %B section %A"),
2358 output_bfd, input_section->owner, input_section);
2359 bfd_set_error (bfd_error_wrong_format);
2360 return FALSE;
2361 }
2362
2363 erel = output_reldata->hdr->contents;
2364 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2365 irela = internal_relocs;
2366 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2367 * bed->s->int_rels_per_ext_rel);
2368 while (irela < irelaend)
2369 {
2370 (*swap_out) (output_bfd, irela, erel);
2371 irela += bed->s->int_rels_per_ext_rel;
2372 erel += input_rel_hdr->sh_entsize;
2373 }
2374
2375 /* Bump the counter, so that we know where to add the next set of
2376 relocations. */
2377 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2378
2379 return TRUE;
2380 }
2381 \f
2382 /* Make weak undefined symbols in PIE dynamic. */
2383
2384 bfd_boolean
2385 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2386 struct elf_link_hash_entry *h)
2387 {
2388 if (info->pie
2389 && h->dynindx == -1
2390 && h->root.type == bfd_link_hash_undefweak)
2391 return bfd_elf_link_record_dynamic_symbol (info, h);
2392
2393 return TRUE;
2394 }
2395
2396 /* Fix up the flags for a symbol. This handles various cases which
2397 can only be fixed after all the input files are seen. This is
2398 currently called by both adjust_dynamic_symbol and
2399 assign_sym_version, which is unnecessary but perhaps more robust in
2400 the face of future changes. */
2401
2402 static bfd_boolean
2403 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2404 struct elf_info_failed *eif)
2405 {
2406 const struct elf_backend_data *bed;
2407
2408 /* If this symbol was mentioned in a non-ELF file, try to set
2409 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2410 permit a non-ELF file to correctly refer to a symbol defined in
2411 an ELF dynamic object. */
2412 if (h->non_elf)
2413 {
2414 while (h->root.type == bfd_link_hash_indirect)
2415 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2416
2417 if (h->root.type != bfd_link_hash_defined
2418 && h->root.type != bfd_link_hash_defweak)
2419 {
2420 h->ref_regular = 1;
2421 h->ref_regular_nonweak = 1;
2422 }
2423 else
2424 {
2425 if (h->root.u.def.section->owner != NULL
2426 && (bfd_get_flavour (h->root.u.def.section->owner)
2427 == bfd_target_elf_flavour))
2428 {
2429 h->ref_regular = 1;
2430 h->ref_regular_nonweak = 1;
2431 }
2432 else
2433 h->def_regular = 1;
2434 }
2435
2436 if (h->dynindx == -1
2437 && (h->def_dynamic
2438 || h->ref_dynamic))
2439 {
2440 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2441 {
2442 eif->failed = TRUE;
2443 return FALSE;
2444 }
2445 }
2446 }
2447 else
2448 {
2449 /* Unfortunately, NON_ELF is only correct if the symbol
2450 was first seen in a non-ELF file. Fortunately, if the symbol
2451 was first seen in an ELF file, we're probably OK unless the
2452 symbol was defined in a non-ELF file. Catch that case here.
2453 FIXME: We're still in trouble if the symbol was first seen in
2454 a dynamic object, and then later in a non-ELF regular object. */
2455 if ((h->root.type == bfd_link_hash_defined
2456 || h->root.type == bfd_link_hash_defweak)
2457 && !h->def_regular
2458 && (h->root.u.def.section->owner != NULL
2459 ? (bfd_get_flavour (h->root.u.def.section->owner)
2460 != bfd_target_elf_flavour)
2461 : (bfd_is_abs_section (h->root.u.def.section)
2462 && !h->def_dynamic)))
2463 h->def_regular = 1;
2464 }
2465
2466 /* Backend specific symbol fixup. */
2467 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2468 if (bed->elf_backend_fixup_symbol
2469 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2470 return FALSE;
2471
2472 /* If this is a final link, and the symbol was defined as a common
2473 symbol in a regular object file, and there was no definition in
2474 any dynamic object, then the linker will have allocated space for
2475 the symbol in a common section but the DEF_REGULAR
2476 flag will not have been set. */
2477 if (h->root.type == bfd_link_hash_defined
2478 && !h->def_regular
2479 && h->ref_regular
2480 && !h->def_dynamic
2481 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2482 h->def_regular = 1;
2483
2484 /* If -Bsymbolic was used (which means to bind references to global
2485 symbols to the definition within the shared object), and this
2486 symbol was defined in a regular object, then it actually doesn't
2487 need a PLT entry. Likewise, if the symbol has non-default
2488 visibility. If the symbol has hidden or internal visibility, we
2489 will force it local. */
2490 if (h->needs_plt
2491 && eif->info->shared
2492 && is_elf_hash_table (eif->info->hash)
2493 && (SYMBOLIC_BIND (eif->info, h)
2494 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2495 && h->def_regular)
2496 {
2497 bfd_boolean force_local;
2498
2499 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2500 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2501 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2502 }
2503
2504 /* If a weak undefined symbol has non-default visibility, we also
2505 hide it from the dynamic linker. */
2506 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2507 && h->root.type == bfd_link_hash_undefweak)
2508 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2509
2510 /* If this is a weak defined symbol in a dynamic object, and we know
2511 the real definition in the dynamic object, copy interesting flags
2512 over to the real definition. */
2513 if (h->u.weakdef != NULL)
2514 {
2515 /* If the real definition is defined by a regular object file,
2516 don't do anything special. See the longer description in
2517 _bfd_elf_adjust_dynamic_symbol, below. */
2518 if (h->u.weakdef->def_regular)
2519 h->u.weakdef = NULL;
2520 else
2521 {
2522 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2523
2524 while (h->root.type == bfd_link_hash_indirect)
2525 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2526
2527 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2528 || h->root.type == bfd_link_hash_defweak);
2529 BFD_ASSERT (weakdef->def_dynamic);
2530 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2531 || weakdef->root.type == bfd_link_hash_defweak);
2532 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2533 }
2534 }
2535
2536 return TRUE;
2537 }
2538
2539 /* Make the backend pick a good value for a dynamic symbol. This is
2540 called via elf_link_hash_traverse, and also calls itself
2541 recursively. */
2542
2543 static bfd_boolean
2544 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2545 {
2546 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2547 bfd *dynobj;
2548 const struct elf_backend_data *bed;
2549
2550 if (! is_elf_hash_table (eif->info->hash))
2551 return FALSE;
2552
2553 /* Ignore indirect symbols. These are added by the versioning code. */
2554 if (h->root.type == bfd_link_hash_indirect)
2555 return TRUE;
2556
2557 /* Fix the symbol flags. */
2558 if (! _bfd_elf_fix_symbol_flags (h, eif))
2559 return FALSE;
2560
2561 /* If this symbol does not require a PLT entry, and it is not
2562 defined by a dynamic object, or is not referenced by a regular
2563 object, ignore it. We do have to handle a weak defined symbol,
2564 even if no regular object refers to it, if we decided to add it
2565 to the dynamic symbol table. FIXME: Do we normally need to worry
2566 about symbols which are defined by one dynamic object and
2567 referenced by another one? */
2568 if (!h->needs_plt
2569 && h->type != STT_GNU_IFUNC
2570 && (h->def_regular
2571 || !h->def_dynamic
2572 || (!h->ref_regular
2573 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2574 {
2575 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2576 return TRUE;
2577 }
2578
2579 /* If we've already adjusted this symbol, don't do it again. This
2580 can happen via a recursive call. */
2581 if (h->dynamic_adjusted)
2582 return TRUE;
2583
2584 /* Don't look at this symbol again. Note that we must set this
2585 after checking the above conditions, because we may look at a
2586 symbol once, decide not to do anything, and then get called
2587 recursively later after REF_REGULAR is set below. */
2588 h->dynamic_adjusted = 1;
2589
2590 /* If this is a weak definition, and we know a real definition, and
2591 the real symbol is not itself defined by a regular object file,
2592 then get a good value for the real definition. We handle the
2593 real symbol first, for the convenience of the backend routine.
2594
2595 Note that there is a confusing case here. If the real definition
2596 is defined by a regular object file, we don't get the real symbol
2597 from the dynamic object, but we do get the weak symbol. If the
2598 processor backend uses a COPY reloc, then if some routine in the
2599 dynamic object changes the real symbol, we will not see that
2600 change in the corresponding weak symbol. This is the way other
2601 ELF linkers work as well, and seems to be a result of the shared
2602 library model.
2603
2604 I will clarify this issue. Most SVR4 shared libraries define the
2605 variable _timezone and define timezone as a weak synonym. The
2606 tzset call changes _timezone. If you write
2607 extern int timezone;
2608 int _timezone = 5;
2609 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2610 you might expect that, since timezone is a synonym for _timezone,
2611 the same number will print both times. However, if the processor
2612 backend uses a COPY reloc, then actually timezone will be copied
2613 into your process image, and, since you define _timezone
2614 yourself, _timezone will not. Thus timezone and _timezone will
2615 wind up at different memory locations. The tzset call will set
2616 _timezone, leaving timezone unchanged. */
2617
2618 if (h->u.weakdef != NULL)
2619 {
2620 /* If we get to this point, there is an implicit reference to
2621 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2622 h->u.weakdef->ref_regular = 1;
2623
2624 /* Ensure that the backend adjust_dynamic_symbol function sees
2625 H->U.WEAKDEF before H by recursively calling ourselves. */
2626 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2627 return FALSE;
2628 }
2629
2630 /* If a symbol has no type and no size and does not require a PLT
2631 entry, then we are probably about to do the wrong thing here: we
2632 are probably going to create a COPY reloc for an empty object.
2633 This case can arise when a shared object is built with assembly
2634 code, and the assembly code fails to set the symbol type. */
2635 if (h->size == 0
2636 && h->type == STT_NOTYPE
2637 && !h->needs_plt)
2638 (*_bfd_error_handler)
2639 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2640 h->root.root.string);
2641
2642 dynobj = elf_hash_table (eif->info)->dynobj;
2643 bed = get_elf_backend_data (dynobj);
2644
2645 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2646 {
2647 eif->failed = TRUE;
2648 return FALSE;
2649 }
2650
2651 return TRUE;
2652 }
2653
2654 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2655 DYNBSS. */
2656
2657 bfd_boolean
2658 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2659 asection *dynbss)
2660 {
2661 unsigned int power_of_two;
2662 bfd_vma mask;
2663 asection *sec = h->root.u.def.section;
2664
2665 /* The section aligment of definition is the maximum alignment
2666 requirement of symbols defined in the section. Since we don't
2667 know the symbol alignment requirement, we start with the
2668 maximum alignment and check low bits of the symbol address
2669 for the minimum alignment. */
2670 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2671 mask = ((bfd_vma) 1 << power_of_two) - 1;
2672 while ((h->root.u.def.value & mask) != 0)
2673 {
2674 mask >>= 1;
2675 --power_of_two;
2676 }
2677
2678 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2679 dynbss))
2680 {
2681 /* Adjust the section alignment if needed. */
2682 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2683 power_of_two))
2684 return FALSE;
2685 }
2686
2687 /* We make sure that the symbol will be aligned properly. */
2688 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2689
2690 /* Define the symbol as being at this point in DYNBSS. */
2691 h->root.u.def.section = dynbss;
2692 h->root.u.def.value = dynbss->size;
2693
2694 /* Increment the size of DYNBSS to make room for the symbol. */
2695 dynbss->size += h->size;
2696
2697 return TRUE;
2698 }
2699
2700 /* Adjust all external symbols pointing into SEC_MERGE sections
2701 to reflect the object merging within the sections. */
2702
2703 static bfd_boolean
2704 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2705 {
2706 asection *sec;
2707
2708 if ((h->root.type == bfd_link_hash_defined
2709 || h->root.type == bfd_link_hash_defweak)
2710 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2711 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2712 {
2713 bfd *output_bfd = (bfd *) data;
2714
2715 h->root.u.def.value =
2716 _bfd_merged_section_offset (output_bfd,
2717 &h->root.u.def.section,
2718 elf_section_data (sec)->sec_info,
2719 h->root.u.def.value);
2720 }
2721
2722 return TRUE;
2723 }
2724
2725 /* Returns false if the symbol referred to by H should be considered
2726 to resolve local to the current module, and true if it should be
2727 considered to bind dynamically. */
2728
2729 bfd_boolean
2730 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2731 struct bfd_link_info *info,
2732 bfd_boolean not_local_protected)
2733 {
2734 bfd_boolean binding_stays_local_p;
2735 const struct elf_backend_data *bed;
2736 struct elf_link_hash_table *hash_table;
2737
2738 if (h == NULL)
2739 return FALSE;
2740
2741 while (h->root.type == bfd_link_hash_indirect
2742 || h->root.type == bfd_link_hash_warning)
2743 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2744
2745 /* If it was forced local, then clearly it's not dynamic. */
2746 if (h->dynindx == -1)
2747 return FALSE;
2748 if (h->forced_local)
2749 return FALSE;
2750
2751 /* Identify the cases where name binding rules say that a
2752 visible symbol resolves locally. */
2753 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2754
2755 switch (ELF_ST_VISIBILITY (h->other))
2756 {
2757 case STV_INTERNAL:
2758 case STV_HIDDEN:
2759 return FALSE;
2760
2761 case STV_PROTECTED:
2762 hash_table = elf_hash_table (info);
2763 if (!is_elf_hash_table (hash_table))
2764 return FALSE;
2765
2766 bed = get_elf_backend_data (hash_table->dynobj);
2767
2768 /* Proper resolution for function pointer equality may require
2769 that these symbols perhaps be resolved dynamically, even though
2770 we should be resolving them to the current module. */
2771 if (!not_local_protected || !bed->is_function_type (h->type))
2772 binding_stays_local_p = TRUE;
2773 break;
2774
2775 default:
2776 break;
2777 }
2778
2779 /* If it isn't defined locally, then clearly it's dynamic. */
2780 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2781 return TRUE;
2782
2783 /* Otherwise, the symbol is dynamic if binding rules don't tell
2784 us that it remains local. */
2785 return !binding_stays_local_p;
2786 }
2787
2788 /* Return true if the symbol referred to by H should be considered
2789 to resolve local to the current module, and false otherwise. Differs
2790 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2791 undefined symbols. The two functions are virtually identical except
2792 for the place where forced_local and dynindx == -1 are tested. If
2793 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2794 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2795 the symbol is local only for defined symbols.
2796 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2797 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2798 treatment of undefined weak symbols. For those that do not make
2799 undefined weak symbols dynamic, both functions may return false. */
2800
2801 bfd_boolean
2802 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2803 struct bfd_link_info *info,
2804 bfd_boolean local_protected)
2805 {
2806 const struct elf_backend_data *bed;
2807 struct elf_link_hash_table *hash_table;
2808
2809 /* If it's a local sym, of course we resolve locally. */
2810 if (h == NULL)
2811 return TRUE;
2812
2813 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2814 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2815 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2816 return TRUE;
2817
2818 /* Common symbols that become definitions don't get the DEF_REGULAR
2819 flag set, so test it first, and don't bail out. */
2820 if (ELF_COMMON_DEF_P (h))
2821 /* Do nothing. */;
2822 /* If we don't have a definition in a regular file, then we can't
2823 resolve locally. The sym is either undefined or dynamic. */
2824 else if (!h->def_regular)
2825 return FALSE;
2826
2827 /* Forced local symbols resolve locally. */
2828 if (h->forced_local)
2829 return TRUE;
2830
2831 /* As do non-dynamic symbols. */
2832 if (h->dynindx == -1)
2833 return TRUE;
2834
2835 /* At this point, we know the symbol is defined and dynamic. In an
2836 executable it must resolve locally, likewise when building symbolic
2837 shared libraries. */
2838 if (info->executable || SYMBOLIC_BIND (info, h))
2839 return TRUE;
2840
2841 /* Now deal with defined dynamic symbols in shared libraries. Ones
2842 with default visibility might not resolve locally. */
2843 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2844 return FALSE;
2845
2846 hash_table = elf_hash_table (info);
2847 if (!is_elf_hash_table (hash_table))
2848 return TRUE;
2849
2850 bed = get_elf_backend_data (hash_table->dynobj);
2851
2852 /* STV_PROTECTED non-function symbols are local. */
2853 if (!bed->is_function_type (h->type))
2854 return TRUE;
2855
2856 /* Function pointer equality tests may require that STV_PROTECTED
2857 symbols be treated as dynamic symbols. If the address of a
2858 function not defined in an executable is set to that function's
2859 plt entry in the executable, then the address of the function in
2860 a shared library must also be the plt entry in the executable. */
2861 return local_protected;
2862 }
2863
2864 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2865 aligned. Returns the first TLS output section. */
2866
2867 struct bfd_section *
2868 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2869 {
2870 struct bfd_section *sec, *tls;
2871 unsigned int align = 0;
2872
2873 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2874 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2875 break;
2876 tls = sec;
2877
2878 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2879 if (sec->alignment_power > align)
2880 align = sec->alignment_power;
2881
2882 elf_hash_table (info)->tls_sec = tls;
2883
2884 /* Ensure the alignment of the first section is the largest alignment,
2885 so that the tls segment starts aligned. */
2886 if (tls != NULL)
2887 tls->alignment_power = align;
2888
2889 return tls;
2890 }
2891
2892 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2893 static bfd_boolean
2894 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2895 Elf_Internal_Sym *sym)
2896 {
2897 const struct elf_backend_data *bed;
2898
2899 /* Local symbols do not count, but target specific ones might. */
2900 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2901 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2902 return FALSE;
2903
2904 bed = get_elf_backend_data (abfd);
2905 /* Function symbols do not count. */
2906 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2907 return FALSE;
2908
2909 /* If the section is undefined, then so is the symbol. */
2910 if (sym->st_shndx == SHN_UNDEF)
2911 return FALSE;
2912
2913 /* If the symbol is defined in the common section, then
2914 it is a common definition and so does not count. */
2915 if (bed->common_definition (sym))
2916 return FALSE;
2917
2918 /* If the symbol is in a target specific section then we
2919 must rely upon the backend to tell us what it is. */
2920 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2921 /* FIXME - this function is not coded yet:
2922
2923 return _bfd_is_global_symbol_definition (abfd, sym);
2924
2925 Instead for now assume that the definition is not global,
2926 Even if this is wrong, at least the linker will behave
2927 in the same way that it used to do. */
2928 return FALSE;
2929
2930 return TRUE;
2931 }
2932
2933 /* Search the symbol table of the archive element of the archive ABFD
2934 whose archive map contains a mention of SYMDEF, and determine if
2935 the symbol is defined in this element. */
2936 static bfd_boolean
2937 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2938 {
2939 Elf_Internal_Shdr * hdr;
2940 bfd_size_type symcount;
2941 bfd_size_type extsymcount;
2942 bfd_size_type extsymoff;
2943 Elf_Internal_Sym *isymbuf;
2944 Elf_Internal_Sym *isym;
2945 Elf_Internal_Sym *isymend;
2946 bfd_boolean result;
2947
2948 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2949 if (abfd == NULL)
2950 return FALSE;
2951
2952 if (! bfd_check_format (abfd, bfd_object))
2953 return FALSE;
2954
2955 /* If we have already included the element containing this symbol in the
2956 link then we do not need to include it again. Just claim that any symbol
2957 it contains is not a definition, so that our caller will not decide to
2958 (re)include this element. */
2959 if (abfd->archive_pass)
2960 return FALSE;
2961
2962 /* Select the appropriate symbol table. */
2963 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2964 hdr = &elf_tdata (abfd)->symtab_hdr;
2965 else
2966 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2967
2968 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2969
2970 /* The sh_info field of the symtab header tells us where the
2971 external symbols start. We don't care about the local symbols. */
2972 if (elf_bad_symtab (abfd))
2973 {
2974 extsymcount = symcount;
2975 extsymoff = 0;
2976 }
2977 else
2978 {
2979 extsymcount = symcount - hdr->sh_info;
2980 extsymoff = hdr->sh_info;
2981 }
2982
2983 if (extsymcount == 0)
2984 return FALSE;
2985
2986 /* Read in the symbol table. */
2987 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2988 NULL, NULL, NULL);
2989 if (isymbuf == NULL)
2990 return FALSE;
2991
2992 /* Scan the symbol table looking for SYMDEF. */
2993 result = FALSE;
2994 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2995 {
2996 const char *name;
2997
2998 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2999 isym->st_name);
3000 if (name == NULL)
3001 break;
3002
3003 if (strcmp (name, symdef->name) == 0)
3004 {
3005 result = is_global_data_symbol_definition (abfd, isym);
3006 break;
3007 }
3008 }
3009
3010 free (isymbuf);
3011
3012 return result;
3013 }
3014 \f
3015 /* Add an entry to the .dynamic table. */
3016
3017 bfd_boolean
3018 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3019 bfd_vma tag,
3020 bfd_vma val)
3021 {
3022 struct elf_link_hash_table *hash_table;
3023 const struct elf_backend_data *bed;
3024 asection *s;
3025 bfd_size_type newsize;
3026 bfd_byte *newcontents;
3027 Elf_Internal_Dyn dyn;
3028
3029 hash_table = elf_hash_table (info);
3030 if (! is_elf_hash_table (hash_table))
3031 return FALSE;
3032
3033 bed = get_elf_backend_data (hash_table->dynobj);
3034 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3035 BFD_ASSERT (s != NULL);
3036
3037 newsize = s->size + bed->s->sizeof_dyn;
3038 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3039 if (newcontents == NULL)
3040 return FALSE;
3041
3042 dyn.d_tag = tag;
3043 dyn.d_un.d_val = val;
3044 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3045
3046 s->size = newsize;
3047 s->contents = newcontents;
3048
3049 return TRUE;
3050 }
3051
3052 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3053 otherwise just check whether one already exists. Returns -1 on error,
3054 1 if a DT_NEEDED tag already exists, and 0 on success. */
3055
3056 static int
3057 elf_add_dt_needed_tag (bfd *abfd,
3058 struct bfd_link_info *info,
3059 const char *soname,
3060 bfd_boolean do_it)
3061 {
3062 struct elf_link_hash_table *hash_table;
3063 bfd_size_type strindex;
3064
3065 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3066 return -1;
3067
3068 hash_table = elf_hash_table (info);
3069 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3070 if (strindex == (bfd_size_type) -1)
3071 return -1;
3072
3073 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3074 {
3075 asection *sdyn;
3076 const struct elf_backend_data *bed;
3077 bfd_byte *extdyn;
3078
3079 bed = get_elf_backend_data (hash_table->dynobj);
3080 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3081 if (sdyn != NULL)
3082 for (extdyn = sdyn->contents;
3083 extdyn < sdyn->contents + sdyn->size;
3084 extdyn += bed->s->sizeof_dyn)
3085 {
3086 Elf_Internal_Dyn dyn;
3087
3088 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3089 if (dyn.d_tag == DT_NEEDED
3090 && dyn.d_un.d_val == strindex)
3091 {
3092 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3093 return 1;
3094 }
3095 }
3096 }
3097
3098 if (do_it)
3099 {
3100 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3101 return -1;
3102
3103 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3104 return -1;
3105 }
3106 else
3107 /* We were just checking for existence of the tag. */
3108 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3109
3110 return 0;
3111 }
3112
3113 static bfd_boolean
3114 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3115 {
3116 for (; needed != NULL; needed = needed->next)
3117 if (strcmp (soname, needed->name) == 0)
3118 return TRUE;
3119
3120 return FALSE;
3121 }
3122
3123 /* Sort symbol by value, section, and size. */
3124 static int
3125 elf_sort_symbol (const void *arg1, const void *arg2)
3126 {
3127 const struct elf_link_hash_entry *h1;
3128 const struct elf_link_hash_entry *h2;
3129 bfd_signed_vma vdiff;
3130
3131 h1 = *(const struct elf_link_hash_entry **) arg1;
3132 h2 = *(const struct elf_link_hash_entry **) arg2;
3133 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3134 if (vdiff != 0)
3135 return vdiff > 0 ? 1 : -1;
3136 else
3137 {
3138 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3139 if (sdiff != 0)
3140 return sdiff > 0 ? 1 : -1;
3141 }
3142 vdiff = h1->size - h2->size;
3143 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3144 }
3145
3146 /* This function is used to adjust offsets into .dynstr for
3147 dynamic symbols. This is called via elf_link_hash_traverse. */
3148
3149 static bfd_boolean
3150 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3151 {
3152 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3153
3154 if (h->dynindx != -1)
3155 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3156 return TRUE;
3157 }
3158
3159 /* Assign string offsets in .dynstr, update all structures referencing
3160 them. */
3161
3162 static bfd_boolean
3163 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3164 {
3165 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3166 struct elf_link_local_dynamic_entry *entry;
3167 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3168 bfd *dynobj = hash_table->dynobj;
3169 asection *sdyn;
3170 bfd_size_type size;
3171 const struct elf_backend_data *bed;
3172 bfd_byte *extdyn;
3173
3174 _bfd_elf_strtab_finalize (dynstr);
3175 size = _bfd_elf_strtab_size (dynstr);
3176
3177 bed = get_elf_backend_data (dynobj);
3178 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3179 BFD_ASSERT (sdyn != NULL);
3180
3181 /* Update all .dynamic entries referencing .dynstr strings. */
3182 for (extdyn = sdyn->contents;
3183 extdyn < sdyn->contents + sdyn->size;
3184 extdyn += bed->s->sizeof_dyn)
3185 {
3186 Elf_Internal_Dyn dyn;
3187
3188 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3189 switch (dyn.d_tag)
3190 {
3191 case DT_STRSZ:
3192 dyn.d_un.d_val = size;
3193 break;
3194 case DT_NEEDED:
3195 case DT_SONAME:
3196 case DT_RPATH:
3197 case DT_RUNPATH:
3198 case DT_FILTER:
3199 case DT_AUXILIARY:
3200 case DT_AUDIT:
3201 case DT_DEPAUDIT:
3202 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3203 break;
3204 default:
3205 continue;
3206 }
3207 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3208 }
3209
3210 /* Now update local dynamic symbols. */
3211 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3212 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3213 entry->isym.st_name);
3214
3215 /* And the rest of dynamic symbols. */
3216 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3217
3218 /* Adjust version definitions. */
3219 if (elf_tdata (output_bfd)->cverdefs)
3220 {
3221 asection *s;
3222 bfd_byte *p;
3223 bfd_size_type i;
3224 Elf_Internal_Verdef def;
3225 Elf_Internal_Verdaux defaux;
3226
3227 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3228 p = s->contents;
3229 do
3230 {
3231 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3232 &def);
3233 p += sizeof (Elf_External_Verdef);
3234 if (def.vd_aux != sizeof (Elf_External_Verdef))
3235 continue;
3236 for (i = 0; i < def.vd_cnt; ++i)
3237 {
3238 _bfd_elf_swap_verdaux_in (output_bfd,
3239 (Elf_External_Verdaux *) p, &defaux);
3240 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3241 defaux.vda_name);
3242 _bfd_elf_swap_verdaux_out (output_bfd,
3243 &defaux, (Elf_External_Verdaux *) p);
3244 p += sizeof (Elf_External_Verdaux);
3245 }
3246 }
3247 while (def.vd_next);
3248 }
3249
3250 /* Adjust version references. */
3251 if (elf_tdata (output_bfd)->verref)
3252 {
3253 asection *s;
3254 bfd_byte *p;
3255 bfd_size_type i;
3256 Elf_Internal_Verneed need;
3257 Elf_Internal_Vernaux needaux;
3258
3259 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3260 p = s->contents;
3261 do
3262 {
3263 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3264 &need);
3265 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3266 _bfd_elf_swap_verneed_out (output_bfd, &need,
3267 (Elf_External_Verneed *) p);
3268 p += sizeof (Elf_External_Verneed);
3269 for (i = 0; i < need.vn_cnt; ++i)
3270 {
3271 _bfd_elf_swap_vernaux_in (output_bfd,
3272 (Elf_External_Vernaux *) p, &needaux);
3273 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3274 needaux.vna_name);
3275 _bfd_elf_swap_vernaux_out (output_bfd,
3276 &needaux,
3277 (Elf_External_Vernaux *) p);
3278 p += sizeof (Elf_External_Vernaux);
3279 }
3280 }
3281 while (need.vn_next);
3282 }
3283
3284 return TRUE;
3285 }
3286 \f
3287 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3288 The default is to only match when the INPUT and OUTPUT are exactly
3289 the same target. */
3290
3291 bfd_boolean
3292 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3293 const bfd_target *output)
3294 {
3295 return input == output;
3296 }
3297
3298 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3299 This version is used when different targets for the same architecture
3300 are virtually identical. */
3301
3302 bfd_boolean
3303 _bfd_elf_relocs_compatible (const bfd_target *input,
3304 const bfd_target *output)
3305 {
3306 const struct elf_backend_data *obed, *ibed;
3307
3308 if (input == output)
3309 return TRUE;
3310
3311 ibed = xvec_get_elf_backend_data (input);
3312 obed = xvec_get_elf_backend_data (output);
3313
3314 if (ibed->arch != obed->arch)
3315 return FALSE;
3316
3317 /* If both backends are using this function, deem them compatible. */
3318 return ibed->relocs_compatible == obed->relocs_compatible;
3319 }
3320
3321 /* Make a special call to the linker "notice" function to tell it that
3322 we are about to handle an as-needed lib, or have finished
3323 processing the lib. */
3324
3325 bfd_boolean
3326 _bfd_elf_notice_as_needed (bfd *ibfd,
3327 struct bfd_link_info *info,
3328 enum notice_asneeded_action act)
3329 {
3330 return (*info->callbacks->notice) (info, NULL, ibfd, NULL, act, 0, NULL);
3331 }
3332
3333 /* Add symbols from an ELF object file to the linker hash table. */
3334
3335 static bfd_boolean
3336 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3337 {
3338 Elf_Internal_Ehdr *ehdr;
3339 Elf_Internal_Shdr *hdr;
3340 bfd_size_type symcount;
3341 bfd_size_type extsymcount;
3342 bfd_size_type extsymoff;
3343 struct elf_link_hash_entry **sym_hash;
3344 bfd_boolean dynamic;
3345 Elf_External_Versym *extversym = NULL;
3346 Elf_External_Versym *ever;
3347 struct elf_link_hash_entry *weaks;
3348 struct elf_link_hash_entry **nondeflt_vers = NULL;
3349 bfd_size_type nondeflt_vers_cnt = 0;
3350 Elf_Internal_Sym *isymbuf = NULL;
3351 Elf_Internal_Sym *isym;
3352 Elf_Internal_Sym *isymend;
3353 const struct elf_backend_data *bed;
3354 bfd_boolean add_needed;
3355 struct elf_link_hash_table *htab;
3356 bfd_size_type amt;
3357 void *alloc_mark = NULL;
3358 struct bfd_hash_entry **old_table = NULL;
3359 unsigned int old_size = 0;
3360 unsigned int old_count = 0;
3361 void *old_tab = NULL;
3362 void *old_ent;
3363 struct bfd_link_hash_entry *old_undefs = NULL;
3364 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3365 long old_dynsymcount = 0;
3366 bfd_size_type old_dynstr_size = 0;
3367 size_t tabsize = 0;
3368 asection *s;
3369
3370 htab = elf_hash_table (info);
3371 bed = get_elf_backend_data (abfd);
3372
3373 if ((abfd->flags & DYNAMIC) == 0)
3374 dynamic = FALSE;
3375 else
3376 {
3377 dynamic = TRUE;
3378
3379 /* You can't use -r against a dynamic object. Also, there's no
3380 hope of using a dynamic object which does not exactly match
3381 the format of the output file. */
3382 if (info->relocatable
3383 || !is_elf_hash_table (htab)
3384 || info->output_bfd->xvec != abfd->xvec)
3385 {
3386 if (info->relocatable)
3387 bfd_set_error (bfd_error_invalid_operation);
3388 else
3389 bfd_set_error (bfd_error_wrong_format);
3390 goto error_return;
3391 }
3392 }
3393
3394 ehdr = elf_elfheader (abfd);
3395 if (info->warn_alternate_em
3396 && bed->elf_machine_code != ehdr->e_machine
3397 && ((bed->elf_machine_alt1 != 0
3398 && ehdr->e_machine == bed->elf_machine_alt1)
3399 || (bed->elf_machine_alt2 != 0
3400 && ehdr->e_machine == bed->elf_machine_alt2)))
3401 info->callbacks->einfo
3402 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3403 ehdr->e_machine, abfd, bed->elf_machine_code);
3404
3405 /* As a GNU extension, any input sections which are named
3406 .gnu.warning.SYMBOL are treated as warning symbols for the given
3407 symbol. This differs from .gnu.warning sections, which generate
3408 warnings when they are included in an output file. */
3409 /* PR 12761: Also generate this warning when building shared libraries. */
3410 for (s = abfd->sections; s != NULL; s = s->next)
3411 {
3412 const char *name;
3413
3414 name = bfd_get_section_name (abfd, s);
3415 if (CONST_STRNEQ (name, ".gnu.warning."))
3416 {
3417 char *msg;
3418 bfd_size_type sz;
3419
3420 name += sizeof ".gnu.warning." - 1;
3421
3422 /* If this is a shared object, then look up the symbol
3423 in the hash table. If it is there, and it is already
3424 been defined, then we will not be using the entry
3425 from this shared object, so we don't need to warn.
3426 FIXME: If we see the definition in a regular object
3427 later on, we will warn, but we shouldn't. The only
3428 fix is to keep track of what warnings we are supposed
3429 to emit, and then handle them all at the end of the
3430 link. */
3431 if (dynamic)
3432 {
3433 struct elf_link_hash_entry *h;
3434
3435 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3436
3437 /* FIXME: What about bfd_link_hash_common? */
3438 if (h != NULL
3439 && (h->root.type == bfd_link_hash_defined
3440 || h->root.type == bfd_link_hash_defweak))
3441 continue;
3442 }
3443
3444 sz = s->size;
3445 msg = (char *) bfd_alloc (abfd, sz + 1);
3446 if (msg == NULL)
3447 goto error_return;
3448
3449 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3450 goto error_return;
3451
3452 msg[sz] = '\0';
3453
3454 if (! (_bfd_generic_link_add_one_symbol
3455 (info, abfd, name, BSF_WARNING, s, 0, msg,
3456 FALSE, bed->collect, NULL)))
3457 goto error_return;
3458
3459 if (!info->relocatable && info->executable)
3460 {
3461 /* Clobber the section size so that the warning does
3462 not get copied into the output file. */
3463 s->size = 0;
3464
3465 /* Also set SEC_EXCLUDE, so that symbols defined in
3466 the warning section don't get copied to the output. */
3467 s->flags |= SEC_EXCLUDE;
3468 }
3469 }
3470 }
3471
3472 add_needed = TRUE;
3473 if (! dynamic)
3474 {
3475 /* If we are creating a shared library, create all the dynamic
3476 sections immediately. We need to attach them to something,
3477 so we attach them to this BFD, provided it is the right
3478 format. FIXME: If there are no input BFD's of the same
3479 format as the output, we can't make a shared library. */
3480 if (info->shared
3481 && is_elf_hash_table (htab)
3482 && info->output_bfd->xvec == abfd->xvec
3483 && !htab->dynamic_sections_created)
3484 {
3485 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3486 goto error_return;
3487 }
3488 }
3489 else if (!is_elf_hash_table (htab))
3490 goto error_return;
3491 else
3492 {
3493 const char *soname = NULL;
3494 char *audit = NULL;
3495 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3496 int ret;
3497
3498 /* ld --just-symbols and dynamic objects don't mix very well.
3499 ld shouldn't allow it. */
3500 if ((s = abfd->sections) != NULL
3501 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3502 abort ();
3503
3504 /* If this dynamic lib was specified on the command line with
3505 --as-needed in effect, then we don't want to add a DT_NEEDED
3506 tag unless the lib is actually used. Similary for libs brought
3507 in by another lib's DT_NEEDED. When --no-add-needed is used
3508 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3509 any dynamic library in DT_NEEDED tags in the dynamic lib at
3510 all. */
3511 add_needed = (elf_dyn_lib_class (abfd)
3512 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3513 | DYN_NO_NEEDED)) == 0;
3514
3515 s = bfd_get_section_by_name (abfd, ".dynamic");
3516 if (s != NULL)
3517 {
3518 bfd_byte *dynbuf;
3519 bfd_byte *extdyn;
3520 unsigned int elfsec;
3521 unsigned long shlink;
3522
3523 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3524 {
3525 error_free_dyn:
3526 free (dynbuf);
3527 goto error_return;
3528 }
3529
3530 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3531 if (elfsec == SHN_BAD)
3532 goto error_free_dyn;
3533 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3534
3535 for (extdyn = dynbuf;
3536 extdyn < dynbuf + s->size;
3537 extdyn += bed->s->sizeof_dyn)
3538 {
3539 Elf_Internal_Dyn dyn;
3540
3541 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3542 if (dyn.d_tag == DT_SONAME)
3543 {
3544 unsigned int tagv = dyn.d_un.d_val;
3545 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3546 if (soname == NULL)
3547 goto error_free_dyn;
3548 }
3549 if (dyn.d_tag == DT_NEEDED)
3550 {
3551 struct bfd_link_needed_list *n, **pn;
3552 char *fnm, *anm;
3553 unsigned int tagv = dyn.d_un.d_val;
3554
3555 amt = sizeof (struct bfd_link_needed_list);
3556 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3557 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3558 if (n == NULL || fnm == NULL)
3559 goto error_free_dyn;
3560 amt = strlen (fnm) + 1;
3561 anm = (char *) bfd_alloc (abfd, amt);
3562 if (anm == NULL)
3563 goto error_free_dyn;
3564 memcpy (anm, fnm, amt);
3565 n->name = anm;
3566 n->by = abfd;
3567 n->next = NULL;
3568 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3569 ;
3570 *pn = n;
3571 }
3572 if (dyn.d_tag == DT_RUNPATH)
3573 {
3574 struct bfd_link_needed_list *n, **pn;
3575 char *fnm, *anm;
3576 unsigned int tagv = dyn.d_un.d_val;
3577
3578 amt = sizeof (struct bfd_link_needed_list);
3579 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3580 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3581 if (n == NULL || fnm == NULL)
3582 goto error_free_dyn;
3583 amt = strlen (fnm) + 1;
3584 anm = (char *) bfd_alloc (abfd, amt);
3585 if (anm == NULL)
3586 goto error_free_dyn;
3587 memcpy (anm, fnm, amt);
3588 n->name = anm;
3589 n->by = abfd;
3590 n->next = NULL;
3591 for (pn = & runpath;
3592 *pn != NULL;
3593 pn = &(*pn)->next)
3594 ;
3595 *pn = n;
3596 }
3597 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3598 if (!runpath && dyn.d_tag == DT_RPATH)
3599 {
3600 struct bfd_link_needed_list *n, **pn;
3601 char *fnm, *anm;
3602 unsigned int tagv = dyn.d_un.d_val;
3603
3604 amt = sizeof (struct bfd_link_needed_list);
3605 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3606 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3607 if (n == NULL || fnm == NULL)
3608 goto error_free_dyn;
3609 amt = strlen (fnm) + 1;
3610 anm = (char *) bfd_alloc (abfd, amt);
3611 if (anm == NULL)
3612 goto error_free_dyn;
3613 memcpy (anm, fnm, amt);
3614 n->name = anm;
3615 n->by = abfd;
3616 n->next = NULL;
3617 for (pn = & rpath;
3618 *pn != NULL;
3619 pn = &(*pn)->next)
3620 ;
3621 *pn = n;
3622 }
3623 if (dyn.d_tag == DT_AUDIT)
3624 {
3625 unsigned int tagv = dyn.d_un.d_val;
3626 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3627 }
3628 }
3629
3630 free (dynbuf);
3631 }
3632
3633 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3634 frees all more recently bfd_alloc'd blocks as well. */
3635 if (runpath)
3636 rpath = runpath;
3637
3638 if (rpath)
3639 {
3640 struct bfd_link_needed_list **pn;
3641 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3642 ;
3643 *pn = rpath;
3644 }
3645
3646 /* We do not want to include any of the sections in a dynamic
3647 object in the output file. We hack by simply clobbering the
3648 list of sections in the BFD. This could be handled more
3649 cleanly by, say, a new section flag; the existing
3650 SEC_NEVER_LOAD flag is not the one we want, because that one
3651 still implies that the section takes up space in the output
3652 file. */
3653 bfd_section_list_clear (abfd);
3654
3655 /* Find the name to use in a DT_NEEDED entry that refers to this
3656 object. If the object has a DT_SONAME entry, we use it.
3657 Otherwise, if the generic linker stuck something in
3658 elf_dt_name, we use that. Otherwise, we just use the file
3659 name. */
3660 if (soname == NULL || *soname == '\0')
3661 {
3662 soname = elf_dt_name (abfd);
3663 if (soname == NULL || *soname == '\0')
3664 soname = bfd_get_filename (abfd);
3665 }
3666
3667 /* Save the SONAME because sometimes the linker emulation code
3668 will need to know it. */
3669 elf_dt_name (abfd) = soname;
3670
3671 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3672 if (ret < 0)
3673 goto error_return;
3674
3675 /* If we have already included this dynamic object in the
3676 link, just ignore it. There is no reason to include a
3677 particular dynamic object more than once. */
3678 if (ret > 0)
3679 return TRUE;
3680
3681 /* Save the DT_AUDIT entry for the linker emulation code. */
3682 elf_dt_audit (abfd) = audit;
3683 }
3684
3685 /* If this is a dynamic object, we always link against the .dynsym
3686 symbol table, not the .symtab symbol table. The dynamic linker
3687 will only see the .dynsym symbol table, so there is no reason to
3688 look at .symtab for a dynamic object. */
3689
3690 if (! dynamic || elf_dynsymtab (abfd) == 0)
3691 hdr = &elf_tdata (abfd)->symtab_hdr;
3692 else
3693 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3694
3695 symcount = hdr->sh_size / bed->s->sizeof_sym;
3696
3697 /* The sh_info field of the symtab header tells us where the
3698 external symbols start. We don't care about the local symbols at
3699 this point. */
3700 if (elf_bad_symtab (abfd))
3701 {
3702 extsymcount = symcount;
3703 extsymoff = 0;
3704 }
3705 else
3706 {
3707 extsymcount = symcount - hdr->sh_info;
3708 extsymoff = hdr->sh_info;
3709 }
3710
3711 sym_hash = elf_sym_hashes (abfd);
3712 if (extsymcount != 0)
3713 {
3714 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3715 NULL, NULL, NULL);
3716 if (isymbuf == NULL)
3717 goto error_return;
3718
3719 if (sym_hash == NULL)
3720 {
3721 /* We store a pointer to the hash table entry for each
3722 external symbol. */
3723 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3724 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
3725 if (sym_hash == NULL)
3726 goto error_free_sym;
3727 elf_sym_hashes (abfd) = sym_hash;
3728 }
3729 }
3730
3731 if (dynamic)
3732 {
3733 /* Read in any version definitions. */
3734 if (!_bfd_elf_slurp_version_tables (abfd,
3735 info->default_imported_symver))
3736 goto error_free_sym;
3737
3738 /* Read in the symbol versions, but don't bother to convert them
3739 to internal format. */
3740 if (elf_dynversym (abfd) != 0)
3741 {
3742 Elf_Internal_Shdr *versymhdr;
3743
3744 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3745 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3746 if (extversym == NULL)
3747 goto error_free_sym;
3748 amt = versymhdr->sh_size;
3749 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3750 || bfd_bread (extversym, amt, abfd) != amt)
3751 goto error_free_vers;
3752 }
3753 }
3754
3755 /* If we are loading an as-needed shared lib, save the symbol table
3756 state before we start adding symbols. If the lib turns out
3757 to be unneeded, restore the state. */
3758 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3759 {
3760 unsigned int i;
3761 size_t entsize;
3762
3763 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3764 {
3765 struct bfd_hash_entry *p;
3766 struct elf_link_hash_entry *h;
3767
3768 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3769 {
3770 h = (struct elf_link_hash_entry *) p;
3771 entsize += htab->root.table.entsize;
3772 if (h->root.type == bfd_link_hash_warning)
3773 entsize += htab->root.table.entsize;
3774 }
3775 }
3776
3777 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3778 old_tab = bfd_malloc (tabsize + entsize);
3779 if (old_tab == NULL)
3780 goto error_free_vers;
3781
3782 /* Remember the current objalloc pointer, so that all mem for
3783 symbols added can later be reclaimed. */
3784 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3785 if (alloc_mark == NULL)
3786 goto error_free_vers;
3787
3788 /* Make a special call to the linker "notice" function to
3789 tell it that we are about to handle an as-needed lib. */
3790 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
3791 goto error_free_vers;
3792
3793 /* Clone the symbol table. Remember some pointers into the
3794 symbol table, and dynamic symbol count. */
3795 old_ent = (char *) old_tab + tabsize;
3796 memcpy (old_tab, htab->root.table.table, tabsize);
3797 old_undefs = htab->root.undefs;
3798 old_undefs_tail = htab->root.undefs_tail;
3799 old_table = htab->root.table.table;
3800 old_size = htab->root.table.size;
3801 old_count = htab->root.table.count;
3802 old_dynsymcount = htab->dynsymcount;
3803 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3804
3805 for (i = 0; i < htab->root.table.size; i++)
3806 {
3807 struct bfd_hash_entry *p;
3808 struct elf_link_hash_entry *h;
3809
3810 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3811 {
3812 memcpy (old_ent, p, htab->root.table.entsize);
3813 old_ent = (char *) old_ent + htab->root.table.entsize;
3814 h = (struct elf_link_hash_entry *) p;
3815 if (h->root.type == bfd_link_hash_warning)
3816 {
3817 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3818 old_ent = (char *) old_ent + htab->root.table.entsize;
3819 }
3820 }
3821 }
3822 }
3823
3824 weaks = NULL;
3825 ever = extversym != NULL ? extversym + extsymoff : NULL;
3826 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3827 isym < isymend;
3828 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3829 {
3830 int bind;
3831 bfd_vma value;
3832 asection *sec, *new_sec;
3833 flagword flags;
3834 const char *name;
3835 struct elf_link_hash_entry *h;
3836 struct elf_link_hash_entry *hi;
3837 bfd_boolean definition;
3838 bfd_boolean size_change_ok;
3839 bfd_boolean type_change_ok;
3840 bfd_boolean new_weakdef;
3841 bfd_boolean new_weak;
3842 bfd_boolean old_weak;
3843 bfd_boolean override;
3844 bfd_boolean common;
3845 unsigned int old_alignment;
3846 bfd *old_bfd;
3847
3848 override = FALSE;
3849
3850 flags = BSF_NO_FLAGS;
3851 sec = NULL;
3852 value = isym->st_value;
3853 common = bed->common_definition (isym);
3854
3855 bind = ELF_ST_BIND (isym->st_info);
3856 switch (bind)
3857 {
3858 case STB_LOCAL:
3859 /* This should be impossible, since ELF requires that all
3860 global symbols follow all local symbols, and that sh_info
3861 point to the first global symbol. Unfortunately, Irix 5
3862 screws this up. */
3863 continue;
3864
3865 case STB_GLOBAL:
3866 if (isym->st_shndx != SHN_UNDEF && !common)
3867 flags = BSF_GLOBAL;
3868 break;
3869
3870 case STB_WEAK:
3871 flags = BSF_WEAK;
3872 break;
3873
3874 case STB_GNU_UNIQUE:
3875 flags = BSF_GNU_UNIQUE;
3876 break;
3877
3878 default:
3879 /* Leave it up to the processor backend. */
3880 break;
3881 }
3882
3883 if (isym->st_shndx == SHN_UNDEF)
3884 sec = bfd_und_section_ptr;
3885 else if (isym->st_shndx == SHN_ABS)
3886 sec = bfd_abs_section_ptr;
3887 else if (isym->st_shndx == SHN_COMMON)
3888 {
3889 sec = bfd_com_section_ptr;
3890 /* What ELF calls the size we call the value. What ELF
3891 calls the value we call the alignment. */
3892 value = isym->st_size;
3893 }
3894 else
3895 {
3896 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3897 if (sec == NULL)
3898 sec = bfd_abs_section_ptr;
3899 else if (discarded_section (sec))
3900 {
3901 /* Symbols from discarded section are undefined. We keep
3902 its visibility. */
3903 sec = bfd_und_section_ptr;
3904 isym->st_shndx = SHN_UNDEF;
3905 }
3906 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3907 value -= sec->vma;
3908 }
3909
3910 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3911 isym->st_name);
3912 if (name == NULL)
3913 goto error_free_vers;
3914
3915 if (isym->st_shndx == SHN_COMMON
3916 && (abfd->flags & BFD_PLUGIN) != 0)
3917 {
3918 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3919
3920 if (xc == NULL)
3921 {
3922 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3923 | SEC_EXCLUDE);
3924 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3925 if (xc == NULL)
3926 goto error_free_vers;
3927 }
3928 sec = xc;
3929 }
3930 else if (isym->st_shndx == SHN_COMMON
3931 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3932 && !info->relocatable)
3933 {
3934 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3935
3936 if (tcomm == NULL)
3937 {
3938 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3939 | SEC_LINKER_CREATED);
3940 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3941 if (tcomm == NULL)
3942 goto error_free_vers;
3943 }
3944 sec = tcomm;
3945 }
3946 else if (bed->elf_add_symbol_hook)
3947 {
3948 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3949 &sec, &value))
3950 goto error_free_vers;
3951
3952 /* The hook function sets the name to NULL if this symbol
3953 should be skipped for some reason. */
3954 if (name == NULL)
3955 continue;
3956 }
3957
3958 /* Sanity check that all possibilities were handled. */
3959 if (sec == NULL)
3960 {
3961 bfd_set_error (bfd_error_bad_value);
3962 goto error_free_vers;
3963 }
3964
3965 /* Silently discard TLS symbols from --just-syms. There's
3966 no way to combine a static TLS block with a new TLS block
3967 for this executable. */
3968 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
3969 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3970 continue;
3971
3972 if (bfd_is_und_section (sec)
3973 || bfd_is_com_section (sec))
3974 definition = FALSE;
3975 else
3976 definition = TRUE;
3977
3978 size_change_ok = FALSE;
3979 type_change_ok = bed->type_change_ok;
3980 old_weak = FALSE;
3981 old_alignment = 0;
3982 old_bfd = NULL;
3983 new_sec = sec;
3984
3985 if (is_elf_hash_table (htab))
3986 {
3987 Elf_Internal_Versym iver;
3988 unsigned int vernum = 0;
3989 bfd_boolean skip;
3990
3991 if (ever == NULL)
3992 {
3993 if (info->default_imported_symver)
3994 /* Use the default symbol version created earlier. */
3995 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3996 else
3997 iver.vs_vers = 0;
3998 }
3999 else
4000 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4001
4002 vernum = iver.vs_vers & VERSYM_VERSION;
4003
4004 /* If this is a hidden symbol, or if it is not version
4005 1, we append the version name to the symbol name.
4006 However, we do not modify a non-hidden absolute symbol
4007 if it is not a function, because it might be the version
4008 symbol itself. FIXME: What if it isn't? */
4009 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4010 || (vernum > 1
4011 && (!bfd_is_abs_section (sec)
4012 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4013 {
4014 const char *verstr;
4015 size_t namelen, verlen, newlen;
4016 char *newname, *p;
4017
4018 if (isym->st_shndx != SHN_UNDEF)
4019 {
4020 if (vernum > elf_tdata (abfd)->cverdefs)
4021 verstr = NULL;
4022 else if (vernum > 1)
4023 verstr =
4024 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4025 else
4026 verstr = "";
4027
4028 if (verstr == NULL)
4029 {
4030 (*_bfd_error_handler)
4031 (_("%B: %s: invalid version %u (max %d)"),
4032 abfd, name, vernum,
4033 elf_tdata (abfd)->cverdefs);
4034 bfd_set_error (bfd_error_bad_value);
4035 goto error_free_vers;
4036 }
4037 }
4038 else
4039 {
4040 /* We cannot simply test for the number of
4041 entries in the VERNEED section since the
4042 numbers for the needed versions do not start
4043 at 0. */
4044 Elf_Internal_Verneed *t;
4045
4046 verstr = NULL;
4047 for (t = elf_tdata (abfd)->verref;
4048 t != NULL;
4049 t = t->vn_nextref)
4050 {
4051 Elf_Internal_Vernaux *a;
4052
4053 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4054 {
4055 if (a->vna_other == vernum)
4056 {
4057 verstr = a->vna_nodename;
4058 break;
4059 }
4060 }
4061 if (a != NULL)
4062 break;
4063 }
4064 if (verstr == NULL)
4065 {
4066 (*_bfd_error_handler)
4067 (_("%B: %s: invalid needed version %d"),
4068 abfd, name, vernum);
4069 bfd_set_error (bfd_error_bad_value);
4070 goto error_free_vers;
4071 }
4072 }
4073
4074 namelen = strlen (name);
4075 verlen = strlen (verstr);
4076 newlen = namelen + verlen + 2;
4077 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4078 && isym->st_shndx != SHN_UNDEF)
4079 ++newlen;
4080
4081 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4082 if (newname == NULL)
4083 goto error_free_vers;
4084 memcpy (newname, name, namelen);
4085 p = newname + namelen;
4086 *p++ = ELF_VER_CHR;
4087 /* If this is a defined non-hidden version symbol,
4088 we add another @ to the name. This indicates the
4089 default version of the symbol. */
4090 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4091 && isym->st_shndx != SHN_UNDEF)
4092 *p++ = ELF_VER_CHR;
4093 memcpy (p, verstr, verlen + 1);
4094
4095 name = newname;
4096 }
4097
4098 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4099 sym_hash, &old_bfd, &old_weak,
4100 &old_alignment, &skip, &override,
4101 &type_change_ok, &size_change_ok))
4102 goto error_free_vers;
4103
4104 if (skip)
4105 continue;
4106
4107 if (override)
4108 definition = FALSE;
4109
4110 h = *sym_hash;
4111 while (h->root.type == bfd_link_hash_indirect
4112 || h->root.type == bfd_link_hash_warning)
4113 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4114
4115 if (elf_tdata (abfd)->verdef != NULL
4116 && vernum > 1
4117 && definition)
4118 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4119 }
4120
4121 if (! (_bfd_generic_link_add_one_symbol
4122 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4123 (struct bfd_link_hash_entry **) sym_hash)))
4124 goto error_free_vers;
4125
4126 h = *sym_hash;
4127 /* We need to make sure that indirect symbol dynamic flags are
4128 updated. */
4129 hi = h;
4130 while (h->root.type == bfd_link_hash_indirect
4131 || h->root.type == bfd_link_hash_warning)
4132 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4133
4134 *sym_hash = h;
4135
4136 new_weak = (flags & BSF_WEAK) != 0;
4137 new_weakdef = FALSE;
4138 if (dynamic
4139 && definition
4140 && new_weak
4141 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4142 && is_elf_hash_table (htab)
4143 && h->u.weakdef == NULL)
4144 {
4145 /* Keep a list of all weak defined non function symbols from
4146 a dynamic object, using the weakdef field. Later in this
4147 function we will set the weakdef field to the correct
4148 value. We only put non-function symbols from dynamic
4149 objects on this list, because that happens to be the only
4150 time we need to know the normal symbol corresponding to a
4151 weak symbol, and the information is time consuming to
4152 figure out. If the weakdef field is not already NULL,
4153 then this symbol was already defined by some previous
4154 dynamic object, and we will be using that previous
4155 definition anyhow. */
4156
4157 h->u.weakdef = weaks;
4158 weaks = h;
4159 new_weakdef = TRUE;
4160 }
4161
4162 /* Set the alignment of a common symbol. */
4163 if ((common || bfd_is_com_section (sec))
4164 && h->root.type == bfd_link_hash_common)
4165 {
4166 unsigned int align;
4167
4168 if (common)
4169 align = bfd_log2 (isym->st_value);
4170 else
4171 {
4172 /* The new symbol is a common symbol in a shared object.
4173 We need to get the alignment from the section. */
4174 align = new_sec->alignment_power;
4175 }
4176 if (align > old_alignment)
4177 h->root.u.c.p->alignment_power = align;
4178 else
4179 h->root.u.c.p->alignment_power = old_alignment;
4180 }
4181
4182 if (is_elf_hash_table (htab))
4183 {
4184 /* Set a flag in the hash table entry indicating the type of
4185 reference or definition we just found. A dynamic symbol
4186 is one which is referenced or defined by both a regular
4187 object and a shared object. */
4188 bfd_boolean dynsym = FALSE;
4189
4190 /* Plugin symbols aren't normal. Don't set def_regular or
4191 ref_regular for them, or make them dynamic. */
4192 if ((abfd->flags & BFD_PLUGIN) != 0)
4193 ;
4194 else if (! dynamic)
4195 {
4196 if (! definition)
4197 {
4198 h->ref_regular = 1;
4199 if (bind != STB_WEAK)
4200 h->ref_regular_nonweak = 1;
4201 }
4202 else
4203 {
4204 h->def_regular = 1;
4205 if (h->def_dynamic)
4206 {
4207 h->def_dynamic = 0;
4208 h->ref_dynamic = 1;
4209 }
4210 }
4211
4212 /* If the indirect symbol has been forced local, don't
4213 make the real symbol dynamic. */
4214 if ((h == hi || !hi->forced_local)
4215 && (! info->executable
4216 || h->def_dynamic
4217 || h->ref_dynamic))
4218 dynsym = TRUE;
4219 }
4220 else
4221 {
4222 if (! definition)
4223 {
4224 h->ref_dynamic = 1;
4225 hi->ref_dynamic = 1;
4226 }
4227 else
4228 {
4229 h->def_dynamic = 1;
4230 hi->def_dynamic = 1;
4231 }
4232
4233 /* If the indirect symbol has been forced local, don't
4234 make the real symbol dynamic. */
4235 if ((h == hi || !hi->forced_local)
4236 && (h->def_regular
4237 || h->ref_regular
4238 || (h->u.weakdef != NULL
4239 && ! new_weakdef
4240 && h->u.weakdef->dynindx != -1)))
4241 dynsym = TRUE;
4242 }
4243
4244 /* Check to see if we need to add an indirect symbol for
4245 the default name. */
4246 if (definition
4247 || (!override && h->root.type == bfd_link_hash_common))
4248 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4249 sec, value, &old_bfd, &dynsym))
4250 goto error_free_vers;
4251
4252 /* Check the alignment when a common symbol is involved. This
4253 can change when a common symbol is overridden by a normal
4254 definition or a common symbol is ignored due to the old
4255 normal definition. We need to make sure the maximum
4256 alignment is maintained. */
4257 if ((old_alignment || common)
4258 && h->root.type != bfd_link_hash_common)
4259 {
4260 unsigned int common_align;
4261 unsigned int normal_align;
4262 unsigned int symbol_align;
4263 bfd *normal_bfd;
4264 bfd *common_bfd;
4265
4266 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4267 || h->root.type == bfd_link_hash_defweak);
4268
4269 symbol_align = ffs (h->root.u.def.value) - 1;
4270 if (h->root.u.def.section->owner != NULL
4271 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4272 {
4273 normal_align = h->root.u.def.section->alignment_power;
4274 if (normal_align > symbol_align)
4275 normal_align = symbol_align;
4276 }
4277 else
4278 normal_align = symbol_align;
4279
4280 if (old_alignment)
4281 {
4282 common_align = old_alignment;
4283 common_bfd = old_bfd;
4284 normal_bfd = abfd;
4285 }
4286 else
4287 {
4288 common_align = bfd_log2 (isym->st_value);
4289 common_bfd = abfd;
4290 normal_bfd = old_bfd;
4291 }
4292
4293 if (normal_align < common_align)
4294 {
4295 /* PR binutils/2735 */
4296 if (normal_bfd == NULL)
4297 (*_bfd_error_handler)
4298 (_("Warning: alignment %u of common symbol `%s' in %B is"
4299 " greater than the alignment (%u) of its section %A"),
4300 common_bfd, h->root.u.def.section,
4301 1 << common_align, name, 1 << normal_align);
4302 else
4303 (*_bfd_error_handler)
4304 (_("Warning: alignment %u of symbol `%s' in %B"
4305 " is smaller than %u in %B"),
4306 normal_bfd, common_bfd,
4307 1 << normal_align, name, 1 << common_align);
4308 }
4309 }
4310
4311 /* Remember the symbol size if it isn't undefined. */
4312 if (isym->st_size != 0
4313 && isym->st_shndx != SHN_UNDEF
4314 && (definition || h->size == 0))
4315 {
4316 if (h->size != 0
4317 && h->size != isym->st_size
4318 && ! size_change_ok)
4319 (*_bfd_error_handler)
4320 (_("Warning: size of symbol `%s' changed"
4321 " from %lu in %B to %lu in %B"),
4322 old_bfd, abfd,
4323 name, (unsigned long) h->size,
4324 (unsigned long) isym->st_size);
4325
4326 h->size = isym->st_size;
4327 }
4328
4329 /* If this is a common symbol, then we always want H->SIZE
4330 to be the size of the common symbol. The code just above
4331 won't fix the size if a common symbol becomes larger. We
4332 don't warn about a size change here, because that is
4333 covered by --warn-common. Allow changes between different
4334 function types. */
4335 if (h->root.type == bfd_link_hash_common)
4336 h->size = h->root.u.c.size;
4337
4338 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4339 && ((definition && !new_weak)
4340 || (old_weak && h->root.type == bfd_link_hash_common)
4341 || h->type == STT_NOTYPE))
4342 {
4343 unsigned int type = ELF_ST_TYPE (isym->st_info);
4344
4345 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4346 symbol. */
4347 if (type == STT_GNU_IFUNC
4348 && (abfd->flags & DYNAMIC) != 0)
4349 type = STT_FUNC;
4350
4351 if (h->type != type)
4352 {
4353 if (h->type != STT_NOTYPE && ! type_change_ok)
4354 (*_bfd_error_handler)
4355 (_("Warning: type of symbol `%s' changed"
4356 " from %d to %d in %B"),
4357 abfd, name, h->type, type);
4358
4359 h->type = type;
4360 }
4361 }
4362
4363 /* Merge st_other field. */
4364 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4365
4366 /* We don't want to make debug symbol dynamic. */
4367 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4368 dynsym = FALSE;
4369
4370 /* Nor should we make plugin symbols dynamic. */
4371 if ((abfd->flags & BFD_PLUGIN) != 0)
4372 dynsym = FALSE;
4373
4374 if (definition)
4375 {
4376 h->target_internal = isym->st_target_internal;
4377 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4378 }
4379
4380 if (definition && !dynamic)
4381 {
4382 char *p = strchr (name, ELF_VER_CHR);
4383 if (p != NULL && p[1] != ELF_VER_CHR)
4384 {
4385 /* Queue non-default versions so that .symver x, x@FOO
4386 aliases can be checked. */
4387 if (!nondeflt_vers)
4388 {
4389 amt = ((isymend - isym + 1)
4390 * sizeof (struct elf_link_hash_entry *));
4391 nondeflt_vers =
4392 (struct elf_link_hash_entry **) bfd_malloc (amt);
4393 if (!nondeflt_vers)
4394 goto error_free_vers;
4395 }
4396 nondeflt_vers[nondeflt_vers_cnt++] = h;
4397 }
4398 }
4399
4400 if (dynsym && h->dynindx == -1)
4401 {
4402 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4403 goto error_free_vers;
4404 if (h->u.weakdef != NULL
4405 && ! new_weakdef
4406 && h->u.weakdef->dynindx == -1)
4407 {
4408 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4409 goto error_free_vers;
4410 }
4411 }
4412 else if (dynsym && h->dynindx != -1)
4413 /* If the symbol already has a dynamic index, but
4414 visibility says it should not be visible, turn it into
4415 a local symbol. */
4416 switch (ELF_ST_VISIBILITY (h->other))
4417 {
4418 case STV_INTERNAL:
4419 case STV_HIDDEN:
4420 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4421 dynsym = FALSE;
4422 break;
4423 }
4424
4425 /* Don't add DT_NEEDED for references from the dummy bfd. */
4426 if (!add_needed
4427 && definition
4428 && ((dynsym
4429 && h->ref_regular_nonweak
4430 && (old_bfd == NULL
4431 || (old_bfd->flags & BFD_PLUGIN) == 0))
4432 || (h->ref_dynamic_nonweak
4433 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4434 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4435 {
4436 int ret;
4437 const char *soname = elf_dt_name (abfd);
4438
4439 info->callbacks->minfo ("%!", soname, old_bfd,
4440 h->root.root.string);
4441
4442 /* A symbol from a library loaded via DT_NEEDED of some
4443 other library is referenced by a regular object.
4444 Add a DT_NEEDED entry for it. Issue an error if
4445 --no-add-needed is used and the reference was not
4446 a weak one. */
4447 if (old_bfd != NULL
4448 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4449 {
4450 (*_bfd_error_handler)
4451 (_("%B: undefined reference to symbol '%s'"),
4452 old_bfd, name);
4453 bfd_set_error (bfd_error_missing_dso);
4454 goto error_free_vers;
4455 }
4456
4457 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4458 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4459
4460 add_needed = TRUE;
4461 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4462 if (ret < 0)
4463 goto error_free_vers;
4464
4465 BFD_ASSERT (ret == 0);
4466 }
4467 }
4468 }
4469
4470 if (extversym != NULL)
4471 {
4472 free (extversym);
4473 extversym = NULL;
4474 }
4475
4476 if (isymbuf != NULL)
4477 {
4478 free (isymbuf);
4479 isymbuf = NULL;
4480 }
4481
4482 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4483 {
4484 unsigned int i;
4485
4486 /* Restore the symbol table. */
4487 old_ent = (char *) old_tab + tabsize;
4488 memset (elf_sym_hashes (abfd), 0,
4489 extsymcount * sizeof (struct elf_link_hash_entry *));
4490 htab->root.table.table = old_table;
4491 htab->root.table.size = old_size;
4492 htab->root.table.count = old_count;
4493 memcpy (htab->root.table.table, old_tab, tabsize);
4494 htab->root.undefs = old_undefs;
4495 htab->root.undefs_tail = old_undefs_tail;
4496 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4497 for (i = 0; i < htab->root.table.size; i++)
4498 {
4499 struct bfd_hash_entry *p;
4500 struct elf_link_hash_entry *h;
4501 bfd_size_type size;
4502 unsigned int alignment_power;
4503
4504 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4505 {
4506 h = (struct elf_link_hash_entry *) p;
4507 if (h->root.type == bfd_link_hash_warning)
4508 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4509 if (h->dynindx >= old_dynsymcount
4510 && h->dynstr_index < old_dynstr_size)
4511 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4512
4513 /* Preserve the maximum alignment and size for common
4514 symbols even if this dynamic lib isn't on DT_NEEDED
4515 since it can still be loaded at run time by another
4516 dynamic lib. */
4517 if (h->root.type == bfd_link_hash_common)
4518 {
4519 size = h->root.u.c.size;
4520 alignment_power = h->root.u.c.p->alignment_power;
4521 }
4522 else
4523 {
4524 size = 0;
4525 alignment_power = 0;
4526 }
4527 memcpy (p, old_ent, htab->root.table.entsize);
4528 old_ent = (char *) old_ent + htab->root.table.entsize;
4529 h = (struct elf_link_hash_entry *) p;
4530 if (h->root.type == bfd_link_hash_warning)
4531 {
4532 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4533 old_ent = (char *) old_ent + htab->root.table.entsize;
4534 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4535 }
4536 if (h->root.type == bfd_link_hash_common)
4537 {
4538 if (size > h->root.u.c.size)
4539 h->root.u.c.size = size;
4540 if (alignment_power > h->root.u.c.p->alignment_power)
4541 h->root.u.c.p->alignment_power = alignment_power;
4542 }
4543 }
4544 }
4545
4546 /* Make a special call to the linker "notice" function to
4547 tell it that symbols added for crefs may need to be removed. */
4548 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4549 goto error_free_vers;
4550
4551 free (old_tab);
4552 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4553 alloc_mark);
4554 if (nondeflt_vers != NULL)
4555 free (nondeflt_vers);
4556 return TRUE;
4557 }
4558
4559 if (old_tab != NULL)
4560 {
4561 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4562 goto error_free_vers;
4563 free (old_tab);
4564 old_tab = NULL;
4565 }
4566
4567 /* Now that all the symbols from this input file are created, handle
4568 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4569 if (nondeflt_vers != NULL)
4570 {
4571 bfd_size_type cnt, symidx;
4572
4573 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4574 {
4575 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4576 char *shortname, *p;
4577
4578 p = strchr (h->root.root.string, ELF_VER_CHR);
4579 if (p == NULL
4580 || (h->root.type != bfd_link_hash_defined
4581 && h->root.type != bfd_link_hash_defweak))
4582 continue;
4583
4584 amt = p - h->root.root.string;
4585 shortname = (char *) bfd_malloc (amt + 1);
4586 if (!shortname)
4587 goto error_free_vers;
4588 memcpy (shortname, h->root.root.string, amt);
4589 shortname[amt] = '\0';
4590
4591 hi = (struct elf_link_hash_entry *)
4592 bfd_link_hash_lookup (&htab->root, shortname,
4593 FALSE, FALSE, FALSE);
4594 if (hi != NULL
4595 && hi->root.type == h->root.type
4596 && hi->root.u.def.value == h->root.u.def.value
4597 && hi->root.u.def.section == h->root.u.def.section)
4598 {
4599 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4600 hi->root.type = bfd_link_hash_indirect;
4601 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4602 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4603 sym_hash = elf_sym_hashes (abfd);
4604 if (sym_hash)
4605 for (symidx = 0; symidx < extsymcount; ++symidx)
4606 if (sym_hash[symidx] == hi)
4607 {
4608 sym_hash[symidx] = h;
4609 break;
4610 }
4611 }
4612 free (shortname);
4613 }
4614 free (nondeflt_vers);
4615 nondeflt_vers = NULL;
4616 }
4617
4618 /* Now set the weakdefs field correctly for all the weak defined
4619 symbols we found. The only way to do this is to search all the
4620 symbols. Since we only need the information for non functions in
4621 dynamic objects, that's the only time we actually put anything on
4622 the list WEAKS. We need this information so that if a regular
4623 object refers to a symbol defined weakly in a dynamic object, the
4624 real symbol in the dynamic object is also put in the dynamic
4625 symbols; we also must arrange for both symbols to point to the
4626 same memory location. We could handle the general case of symbol
4627 aliasing, but a general symbol alias can only be generated in
4628 assembler code, handling it correctly would be very time
4629 consuming, and other ELF linkers don't handle general aliasing
4630 either. */
4631 if (weaks != NULL)
4632 {
4633 struct elf_link_hash_entry **hpp;
4634 struct elf_link_hash_entry **hppend;
4635 struct elf_link_hash_entry **sorted_sym_hash;
4636 struct elf_link_hash_entry *h;
4637 size_t sym_count;
4638
4639 /* Since we have to search the whole symbol list for each weak
4640 defined symbol, search time for N weak defined symbols will be
4641 O(N^2). Binary search will cut it down to O(NlogN). */
4642 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4643 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4644 if (sorted_sym_hash == NULL)
4645 goto error_return;
4646 sym_hash = sorted_sym_hash;
4647 hpp = elf_sym_hashes (abfd);
4648 hppend = hpp + extsymcount;
4649 sym_count = 0;
4650 for (; hpp < hppend; hpp++)
4651 {
4652 h = *hpp;
4653 if (h != NULL
4654 && h->root.type == bfd_link_hash_defined
4655 && !bed->is_function_type (h->type))
4656 {
4657 *sym_hash = h;
4658 sym_hash++;
4659 sym_count++;
4660 }
4661 }
4662
4663 qsort (sorted_sym_hash, sym_count,
4664 sizeof (struct elf_link_hash_entry *),
4665 elf_sort_symbol);
4666
4667 while (weaks != NULL)
4668 {
4669 struct elf_link_hash_entry *hlook;
4670 asection *slook;
4671 bfd_vma vlook;
4672 size_t i, j, idx = 0;
4673
4674 hlook = weaks;
4675 weaks = hlook->u.weakdef;
4676 hlook->u.weakdef = NULL;
4677
4678 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4679 || hlook->root.type == bfd_link_hash_defweak
4680 || hlook->root.type == bfd_link_hash_common
4681 || hlook->root.type == bfd_link_hash_indirect);
4682 slook = hlook->root.u.def.section;
4683 vlook = hlook->root.u.def.value;
4684
4685 i = 0;
4686 j = sym_count;
4687 while (i != j)
4688 {
4689 bfd_signed_vma vdiff;
4690 idx = (i + j) / 2;
4691 h = sorted_sym_hash[idx];
4692 vdiff = vlook - h->root.u.def.value;
4693 if (vdiff < 0)
4694 j = idx;
4695 else if (vdiff > 0)
4696 i = idx + 1;
4697 else
4698 {
4699 long sdiff = slook->id - h->root.u.def.section->id;
4700 if (sdiff < 0)
4701 j = idx;
4702 else if (sdiff > 0)
4703 i = idx + 1;
4704 else
4705 break;
4706 }
4707 }
4708
4709 /* We didn't find a value/section match. */
4710 if (i == j)
4711 continue;
4712
4713 /* With multiple aliases, or when the weak symbol is already
4714 strongly defined, we have multiple matching symbols and
4715 the binary search above may land on any of them. Step
4716 one past the matching symbol(s). */
4717 while (++idx != j)
4718 {
4719 h = sorted_sym_hash[idx];
4720 if (h->root.u.def.section != slook
4721 || h->root.u.def.value != vlook)
4722 break;
4723 }
4724
4725 /* Now look back over the aliases. Since we sorted by size
4726 as well as value and section, we'll choose the one with
4727 the largest size. */
4728 while (idx-- != i)
4729 {
4730 h = sorted_sym_hash[idx];
4731
4732 /* Stop if value or section doesn't match. */
4733 if (h->root.u.def.section != slook
4734 || h->root.u.def.value != vlook)
4735 break;
4736 else if (h != hlook)
4737 {
4738 hlook->u.weakdef = h;
4739
4740 /* If the weak definition is in the list of dynamic
4741 symbols, make sure the real definition is put
4742 there as well. */
4743 if (hlook->dynindx != -1 && h->dynindx == -1)
4744 {
4745 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4746 {
4747 err_free_sym_hash:
4748 free (sorted_sym_hash);
4749 goto error_return;
4750 }
4751 }
4752
4753 /* If the real definition is in the list of dynamic
4754 symbols, make sure the weak definition is put
4755 there as well. If we don't do this, then the
4756 dynamic loader might not merge the entries for the
4757 real definition and the weak definition. */
4758 if (h->dynindx != -1 && hlook->dynindx == -1)
4759 {
4760 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4761 goto err_free_sym_hash;
4762 }
4763 break;
4764 }
4765 }
4766 }
4767
4768 free (sorted_sym_hash);
4769 }
4770
4771 if (bed->check_directives
4772 && !(*bed->check_directives) (abfd, info))
4773 return FALSE;
4774
4775 /* If this object is the same format as the output object, and it is
4776 not a shared library, then let the backend look through the
4777 relocs.
4778
4779 This is required to build global offset table entries and to
4780 arrange for dynamic relocs. It is not required for the
4781 particular common case of linking non PIC code, even when linking
4782 against shared libraries, but unfortunately there is no way of
4783 knowing whether an object file has been compiled PIC or not.
4784 Looking through the relocs is not particularly time consuming.
4785 The problem is that we must either (1) keep the relocs in memory,
4786 which causes the linker to require additional runtime memory or
4787 (2) read the relocs twice from the input file, which wastes time.
4788 This would be a good case for using mmap.
4789
4790 I have no idea how to handle linking PIC code into a file of a
4791 different format. It probably can't be done. */
4792 if (! dynamic
4793 && is_elf_hash_table (htab)
4794 && bed->check_relocs != NULL
4795 && elf_object_id (abfd) == elf_hash_table_id (htab)
4796 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4797 {
4798 asection *o;
4799
4800 for (o = abfd->sections; o != NULL; o = o->next)
4801 {
4802 Elf_Internal_Rela *internal_relocs;
4803 bfd_boolean ok;
4804
4805 if ((o->flags & SEC_RELOC) == 0
4806 || o->reloc_count == 0
4807 || ((info->strip == strip_all || info->strip == strip_debugger)
4808 && (o->flags & SEC_DEBUGGING) != 0)
4809 || bfd_is_abs_section (o->output_section))
4810 continue;
4811
4812 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4813 info->keep_memory);
4814 if (internal_relocs == NULL)
4815 goto error_return;
4816
4817 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4818
4819 if (elf_section_data (o)->relocs != internal_relocs)
4820 free (internal_relocs);
4821
4822 if (! ok)
4823 goto error_return;
4824 }
4825 }
4826
4827 /* If this is a non-traditional link, try to optimize the handling
4828 of the .stab/.stabstr sections. */
4829 if (! dynamic
4830 && ! info->traditional_format
4831 && is_elf_hash_table (htab)
4832 && (info->strip != strip_all && info->strip != strip_debugger))
4833 {
4834 asection *stabstr;
4835
4836 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4837 if (stabstr != NULL)
4838 {
4839 bfd_size_type string_offset = 0;
4840 asection *stab;
4841
4842 for (stab = abfd->sections; stab; stab = stab->next)
4843 if (CONST_STRNEQ (stab->name, ".stab")
4844 && (!stab->name[5] ||
4845 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4846 && (stab->flags & SEC_MERGE) == 0
4847 && !bfd_is_abs_section (stab->output_section))
4848 {
4849 struct bfd_elf_section_data *secdata;
4850
4851 secdata = elf_section_data (stab);
4852 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4853 stabstr, &secdata->sec_info,
4854 &string_offset))
4855 goto error_return;
4856 if (secdata->sec_info)
4857 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4858 }
4859 }
4860 }
4861
4862 if (is_elf_hash_table (htab) && add_needed)
4863 {
4864 /* Add this bfd to the loaded list. */
4865 struct elf_link_loaded_list *n;
4866
4867 n = (struct elf_link_loaded_list *)
4868 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4869 if (n == NULL)
4870 goto error_return;
4871 n->abfd = abfd;
4872 n->next = htab->loaded;
4873 htab->loaded = n;
4874 }
4875
4876 return TRUE;
4877
4878 error_free_vers:
4879 if (old_tab != NULL)
4880 free (old_tab);
4881 if (nondeflt_vers != NULL)
4882 free (nondeflt_vers);
4883 if (extversym != NULL)
4884 free (extversym);
4885 error_free_sym:
4886 if (isymbuf != NULL)
4887 free (isymbuf);
4888 error_return:
4889 return FALSE;
4890 }
4891
4892 /* Return the linker hash table entry of a symbol that might be
4893 satisfied by an archive symbol. Return -1 on error. */
4894
4895 struct elf_link_hash_entry *
4896 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4897 struct bfd_link_info *info,
4898 const char *name)
4899 {
4900 struct elf_link_hash_entry *h;
4901 char *p, *copy;
4902 size_t len, first;
4903
4904 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4905 if (h != NULL)
4906 return h;
4907
4908 /* If this is a default version (the name contains @@), look up the
4909 symbol again with only one `@' as well as without the version.
4910 The effect is that references to the symbol with and without the
4911 version will be matched by the default symbol in the archive. */
4912
4913 p = strchr (name, ELF_VER_CHR);
4914 if (p == NULL || p[1] != ELF_VER_CHR)
4915 return h;
4916
4917 /* First check with only one `@'. */
4918 len = strlen (name);
4919 copy = (char *) bfd_alloc (abfd, len);
4920 if (copy == NULL)
4921 return (struct elf_link_hash_entry *) 0 - 1;
4922
4923 first = p - name + 1;
4924 memcpy (copy, name, first);
4925 memcpy (copy + first, name + first + 1, len - first);
4926
4927 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4928 if (h == NULL)
4929 {
4930 /* We also need to check references to the symbol without the
4931 version. */
4932 copy[first - 1] = '\0';
4933 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4934 FALSE, FALSE, TRUE);
4935 }
4936
4937 bfd_release (abfd, copy);
4938 return h;
4939 }
4940
4941 /* Add symbols from an ELF archive file to the linker hash table. We
4942 don't use _bfd_generic_link_add_archive_symbols because of a
4943 problem which arises on UnixWare. The UnixWare libc.so is an
4944 archive which includes an entry libc.so.1 which defines a bunch of
4945 symbols. The libc.so archive also includes a number of other
4946 object files, which also define symbols, some of which are the same
4947 as those defined in libc.so.1. Correct linking requires that we
4948 consider each object file in turn, and include it if it defines any
4949 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4950 this; it looks through the list of undefined symbols, and includes
4951 any object file which defines them. When this algorithm is used on
4952 UnixWare, it winds up pulling in libc.so.1 early and defining a
4953 bunch of symbols. This means that some of the other objects in the
4954 archive are not included in the link, which is incorrect since they
4955 precede libc.so.1 in the archive.
4956
4957 Fortunately, ELF archive handling is simpler than that done by
4958 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4959 oddities. In ELF, if we find a symbol in the archive map, and the
4960 symbol is currently undefined, we know that we must pull in that
4961 object file.
4962
4963 Unfortunately, we do have to make multiple passes over the symbol
4964 table until nothing further is resolved. */
4965
4966 static bfd_boolean
4967 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4968 {
4969 symindex c;
4970 bfd_boolean *defined = NULL;
4971 bfd_boolean *included = NULL;
4972 carsym *symdefs;
4973 bfd_boolean loop;
4974 bfd_size_type amt;
4975 const struct elf_backend_data *bed;
4976 struct elf_link_hash_entry * (*archive_symbol_lookup)
4977 (bfd *, struct bfd_link_info *, const char *);
4978
4979 if (! bfd_has_map (abfd))
4980 {
4981 /* An empty archive is a special case. */
4982 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4983 return TRUE;
4984 bfd_set_error (bfd_error_no_armap);
4985 return FALSE;
4986 }
4987
4988 /* Keep track of all symbols we know to be already defined, and all
4989 files we know to be already included. This is to speed up the
4990 second and subsequent passes. */
4991 c = bfd_ardata (abfd)->symdef_count;
4992 if (c == 0)
4993 return TRUE;
4994 amt = c;
4995 amt *= sizeof (bfd_boolean);
4996 defined = (bfd_boolean *) bfd_zmalloc (amt);
4997 included = (bfd_boolean *) bfd_zmalloc (amt);
4998 if (defined == NULL || included == NULL)
4999 goto error_return;
5000
5001 symdefs = bfd_ardata (abfd)->symdefs;
5002 bed = get_elf_backend_data (abfd);
5003 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5004
5005 do
5006 {
5007 file_ptr last;
5008 symindex i;
5009 carsym *symdef;
5010 carsym *symdefend;
5011
5012 loop = FALSE;
5013 last = -1;
5014
5015 symdef = symdefs;
5016 symdefend = symdef + c;
5017 for (i = 0; symdef < symdefend; symdef++, i++)
5018 {
5019 struct elf_link_hash_entry *h;
5020 bfd *element;
5021 struct bfd_link_hash_entry *undefs_tail;
5022 symindex mark;
5023
5024 if (defined[i] || included[i])
5025 continue;
5026 if (symdef->file_offset == last)
5027 {
5028 included[i] = TRUE;
5029 continue;
5030 }
5031
5032 h = archive_symbol_lookup (abfd, info, symdef->name);
5033 if (h == (struct elf_link_hash_entry *) 0 - 1)
5034 goto error_return;
5035
5036 if (h == NULL)
5037 continue;
5038
5039 if (h->root.type == bfd_link_hash_common)
5040 {
5041 /* We currently have a common symbol. The archive map contains
5042 a reference to this symbol, so we may want to include it. We
5043 only want to include it however, if this archive element
5044 contains a definition of the symbol, not just another common
5045 declaration of it.
5046
5047 Unfortunately some archivers (including GNU ar) will put
5048 declarations of common symbols into their archive maps, as
5049 well as real definitions, so we cannot just go by the archive
5050 map alone. Instead we must read in the element's symbol
5051 table and check that to see what kind of symbol definition
5052 this is. */
5053 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5054 continue;
5055 }
5056 else if (h->root.type != bfd_link_hash_undefined)
5057 {
5058 if (h->root.type != bfd_link_hash_undefweak)
5059 defined[i] = TRUE;
5060 continue;
5061 }
5062
5063 /* We need to include this archive member. */
5064 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5065 if (element == NULL)
5066 goto error_return;
5067
5068 if (! bfd_check_format (element, bfd_object))
5069 goto error_return;
5070
5071 /* Doublecheck that we have not included this object
5072 already--it should be impossible, but there may be
5073 something wrong with the archive. */
5074 if (element->archive_pass != 0)
5075 {
5076 bfd_set_error (bfd_error_bad_value);
5077 goto error_return;
5078 }
5079 element->archive_pass = 1;
5080
5081 undefs_tail = info->hash->undefs_tail;
5082
5083 if (!(*info->callbacks
5084 ->add_archive_element) (info, element, symdef->name, &element))
5085 goto error_return;
5086 if (!bfd_link_add_symbols (element, info))
5087 goto error_return;
5088
5089 /* If there are any new undefined symbols, we need to make
5090 another pass through the archive in order to see whether
5091 they can be defined. FIXME: This isn't perfect, because
5092 common symbols wind up on undefs_tail and because an
5093 undefined symbol which is defined later on in this pass
5094 does not require another pass. This isn't a bug, but it
5095 does make the code less efficient than it could be. */
5096 if (undefs_tail != info->hash->undefs_tail)
5097 loop = TRUE;
5098
5099 /* Look backward to mark all symbols from this object file
5100 which we have already seen in this pass. */
5101 mark = i;
5102 do
5103 {
5104 included[mark] = TRUE;
5105 if (mark == 0)
5106 break;
5107 --mark;
5108 }
5109 while (symdefs[mark].file_offset == symdef->file_offset);
5110
5111 /* We mark subsequent symbols from this object file as we go
5112 on through the loop. */
5113 last = symdef->file_offset;
5114 }
5115 }
5116 while (loop);
5117
5118 free (defined);
5119 free (included);
5120
5121 return TRUE;
5122
5123 error_return:
5124 if (defined != NULL)
5125 free (defined);
5126 if (included != NULL)
5127 free (included);
5128 return FALSE;
5129 }
5130
5131 /* Given an ELF BFD, add symbols to the global hash table as
5132 appropriate. */
5133
5134 bfd_boolean
5135 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5136 {
5137 switch (bfd_get_format (abfd))
5138 {
5139 case bfd_object:
5140 return elf_link_add_object_symbols (abfd, info);
5141 case bfd_archive:
5142 return elf_link_add_archive_symbols (abfd, info);
5143 default:
5144 bfd_set_error (bfd_error_wrong_format);
5145 return FALSE;
5146 }
5147 }
5148 \f
5149 struct hash_codes_info
5150 {
5151 unsigned long *hashcodes;
5152 bfd_boolean error;
5153 };
5154
5155 /* This function will be called though elf_link_hash_traverse to store
5156 all hash value of the exported symbols in an array. */
5157
5158 static bfd_boolean
5159 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5160 {
5161 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5162 const char *name;
5163 char *p;
5164 unsigned long ha;
5165 char *alc = NULL;
5166
5167 /* Ignore indirect symbols. These are added by the versioning code. */
5168 if (h->dynindx == -1)
5169 return TRUE;
5170
5171 name = h->root.root.string;
5172 p = strchr (name, ELF_VER_CHR);
5173 if (p != NULL)
5174 {
5175 alc = (char *) bfd_malloc (p - name + 1);
5176 if (alc == NULL)
5177 {
5178 inf->error = TRUE;
5179 return FALSE;
5180 }
5181 memcpy (alc, name, p - name);
5182 alc[p - name] = '\0';
5183 name = alc;
5184 }
5185
5186 /* Compute the hash value. */
5187 ha = bfd_elf_hash (name);
5188
5189 /* Store the found hash value in the array given as the argument. */
5190 *(inf->hashcodes)++ = ha;
5191
5192 /* And store it in the struct so that we can put it in the hash table
5193 later. */
5194 h->u.elf_hash_value = ha;
5195
5196 if (alc != NULL)
5197 free (alc);
5198
5199 return TRUE;
5200 }
5201
5202 struct collect_gnu_hash_codes
5203 {
5204 bfd *output_bfd;
5205 const struct elf_backend_data *bed;
5206 unsigned long int nsyms;
5207 unsigned long int maskbits;
5208 unsigned long int *hashcodes;
5209 unsigned long int *hashval;
5210 unsigned long int *indx;
5211 unsigned long int *counts;
5212 bfd_vma *bitmask;
5213 bfd_byte *contents;
5214 long int min_dynindx;
5215 unsigned long int bucketcount;
5216 unsigned long int symindx;
5217 long int local_indx;
5218 long int shift1, shift2;
5219 unsigned long int mask;
5220 bfd_boolean error;
5221 };
5222
5223 /* This function will be called though elf_link_hash_traverse to store
5224 all hash value of the exported symbols in an array. */
5225
5226 static bfd_boolean
5227 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5228 {
5229 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5230 const char *name;
5231 char *p;
5232 unsigned long ha;
5233 char *alc = NULL;
5234
5235 /* Ignore indirect symbols. These are added by the versioning code. */
5236 if (h->dynindx == -1)
5237 return TRUE;
5238
5239 /* Ignore also local symbols and undefined symbols. */
5240 if (! (*s->bed->elf_hash_symbol) (h))
5241 return TRUE;
5242
5243 name = h->root.root.string;
5244 p = strchr (name, ELF_VER_CHR);
5245 if (p != NULL)
5246 {
5247 alc = (char *) bfd_malloc (p - name + 1);
5248 if (alc == NULL)
5249 {
5250 s->error = TRUE;
5251 return FALSE;
5252 }
5253 memcpy (alc, name, p - name);
5254 alc[p - name] = '\0';
5255 name = alc;
5256 }
5257
5258 /* Compute the hash value. */
5259 ha = bfd_elf_gnu_hash (name);
5260
5261 /* Store the found hash value in the array for compute_bucket_count,
5262 and also for .dynsym reordering purposes. */
5263 s->hashcodes[s->nsyms] = ha;
5264 s->hashval[h->dynindx] = ha;
5265 ++s->nsyms;
5266 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5267 s->min_dynindx = h->dynindx;
5268
5269 if (alc != NULL)
5270 free (alc);
5271
5272 return TRUE;
5273 }
5274
5275 /* This function will be called though elf_link_hash_traverse to do
5276 final dynaminc symbol renumbering. */
5277
5278 static bfd_boolean
5279 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5280 {
5281 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5282 unsigned long int bucket;
5283 unsigned long int val;
5284
5285 /* Ignore indirect symbols. */
5286 if (h->dynindx == -1)
5287 return TRUE;
5288
5289 /* Ignore also local symbols and undefined symbols. */
5290 if (! (*s->bed->elf_hash_symbol) (h))
5291 {
5292 if (h->dynindx >= s->min_dynindx)
5293 h->dynindx = s->local_indx++;
5294 return TRUE;
5295 }
5296
5297 bucket = s->hashval[h->dynindx] % s->bucketcount;
5298 val = (s->hashval[h->dynindx] >> s->shift1)
5299 & ((s->maskbits >> s->shift1) - 1);
5300 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5301 s->bitmask[val]
5302 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5303 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5304 if (s->counts[bucket] == 1)
5305 /* Last element terminates the chain. */
5306 val |= 1;
5307 bfd_put_32 (s->output_bfd, val,
5308 s->contents + (s->indx[bucket] - s->symindx) * 4);
5309 --s->counts[bucket];
5310 h->dynindx = s->indx[bucket]++;
5311 return TRUE;
5312 }
5313
5314 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5315
5316 bfd_boolean
5317 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5318 {
5319 return !(h->forced_local
5320 || h->root.type == bfd_link_hash_undefined
5321 || h->root.type == bfd_link_hash_undefweak
5322 || ((h->root.type == bfd_link_hash_defined
5323 || h->root.type == bfd_link_hash_defweak)
5324 && h->root.u.def.section->output_section == NULL));
5325 }
5326
5327 /* Array used to determine the number of hash table buckets to use
5328 based on the number of symbols there are. If there are fewer than
5329 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5330 fewer than 37 we use 17 buckets, and so forth. We never use more
5331 than 32771 buckets. */
5332
5333 static const size_t elf_buckets[] =
5334 {
5335 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5336 16411, 32771, 0
5337 };
5338
5339 /* Compute bucket count for hashing table. We do not use a static set
5340 of possible tables sizes anymore. Instead we determine for all
5341 possible reasonable sizes of the table the outcome (i.e., the
5342 number of collisions etc) and choose the best solution. The
5343 weighting functions are not too simple to allow the table to grow
5344 without bounds. Instead one of the weighting factors is the size.
5345 Therefore the result is always a good payoff between few collisions
5346 (= short chain lengths) and table size. */
5347 static size_t
5348 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5349 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5350 unsigned long int nsyms,
5351 int gnu_hash)
5352 {
5353 size_t best_size = 0;
5354 unsigned long int i;
5355
5356 /* We have a problem here. The following code to optimize the table
5357 size requires an integer type with more the 32 bits. If
5358 BFD_HOST_U_64_BIT is set we know about such a type. */
5359 #ifdef BFD_HOST_U_64_BIT
5360 if (info->optimize)
5361 {
5362 size_t minsize;
5363 size_t maxsize;
5364 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5365 bfd *dynobj = elf_hash_table (info)->dynobj;
5366 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5367 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5368 unsigned long int *counts;
5369 bfd_size_type amt;
5370 unsigned int no_improvement_count = 0;
5371
5372 /* Possible optimization parameters: if we have NSYMS symbols we say
5373 that the hashing table must at least have NSYMS/4 and at most
5374 2*NSYMS buckets. */
5375 minsize = nsyms / 4;
5376 if (minsize == 0)
5377 minsize = 1;
5378 best_size = maxsize = nsyms * 2;
5379 if (gnu_hash)
5380 {
5381 if (minsize < 2)
5382 minsize = 2;
5383 if ((best_size & 31) == 0)
5384 ++best_size;
5385 }
5386
5387 /* Create array where we count the collisions in. We must use bfd_malloc
5388 since the size could be large. */
5389 amt = maxsize;
5390 amt *= sizeof (unsigned long int);
5391 counts = (unsigned long int *) bfd_malloc (amt);
5392 if (counts == NULL)
5393 return 0;
5394
5395 /* Compute the "optimal" size for the hash table. The criteria is a
5396 minimal chain length. The minor criteria is (of course) the size
5397 of the table. */
5398 for (i = minsize; i < maxsize; ++i)
5399 {
5400 /* Walk through the array of hashcodes and count the collisions. */
5401 BFD_HOST_U_64_BIT max;
5402 unsigned long int j;
5403 unsigned long int fact;
5404
5405 if (gnu_hash && (i & 31) == 0)
5406 continue;
5407
5408 memset (counts, '\0', i * sizeof (unsigned long int));
5409
5410 /* Determine how often each hash bucket is used. */
5411 for (j = 0; j < nsyms; ++j)
5412 ++counts[hashcodes[j] % i];
5413
5414 /* For the weight function we need some information about the
5415 pagesize on the target. This is information need not be 100%
5416 accurate. Since this information is not available (so far) we
5417 define it here to a reasonable default value. If it is crucial
5418 to have a better value some day simply define this value. */
5419 # ifndef BFD_TARGET_PAGESIZE
5420 # define BFD_TARGET_PAGESIZE (4096)
5421 # endif
5422
5423 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5424 and the chains. */
5425 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5426
5427 # if 1
5428 /* Variant 1: optimize for short chains. We add the squares
5429 of all the chain lengths (which favors many small chain
5430 over a few long chains). */
5431 for (j = 0; j < i; ++j)
5432 max += counts[j] * counts[j];
5433
5434 /* This adds penalties for the overall size of the table. */
5435 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5436 max *= fact * fact;
5437 # else
5438 /* Variant 2: Optimize a lot more for small table. Here we
5439 also add squares of the size but we also add penalties for
5440 empty slots (the +1 term). */
5441 for (j = 0; j < i; ++j)
5442 max += (1 + counts[j]) * (1 + counts[j]);
5443
5444 /* The overall size of the table is considered, but not as
5445 strong as in variant 1, where it is squared. */
5446 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5447 max *= fact;
5448 # endif
5449
5450 /* Compare with current best results. */
5451 if (max < best_chlen)
5452 {
5453 best_chlen = max;
5454 best_size = i;
5455 no_improvement_count = 0;
5456 }
5457 /* PR 11843: Avoid futile long searches for the best bucket size
5458 when there are a large number of symbols. */
5459 else if (++no_improvement_count == 100)
5460 break;
5461 }
5462
5463 free (counts);
5464 }
5465 else
5466 #endif /* defined (BFD_HOST_U_64_BIT) */
5467 {
5468 /* This is the fallback solution if no 64bit type is available or if we
5469 are not supposed to spend much time on optimizations. We select the
5470 bucket count using a fixed set of numbers. */
5471 for (i = 0; elf_buckets[i] != 0; i++)
5472 {
5473 best_size = elf_buckets[i];
5474 if (nsyms < elf_buckets[i + 1])
5475 break;
5476 }
5477 if (gnu_hash && best_size < 2)
5478 best_size = 2;
5479 }
5480
5481 return best_size;
5482 }
5483
5484 /* Size any SHT_GROUP section for ld -r. */
5485
5486 bfd_boolean
5487 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5488 {
5489 bfd *ibfd;
5490
5491 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5492 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5493 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5494 return FALSE;
5495 return TRUE;
5496 }
5497
5498 /* Set a default stack segment size. The value in INFO wins. If it
5499 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5500 undefined it is initialized. */
5501
5502 bfd_boolean
5503 bfd_elf_stack_segment_size (bfd *output_bfd,
5504 struct bfd_link_info *info,
5505 const char *legacy_symbol,
5506 bfd_vma default_size)
5507 {
5508 struct elf_link_hash_entry *h = NULL;
5509
5510 /* Look for legacy symbol. */
5511 if (legacy_symbol)
5512 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5513 FALSE, FALSE, FALSE);
5514 if (h && (h->root.type == bfd_link_hash_defined
5515 || h->root.type == bfd_link_hash_defweak)
5516 && h->def_regular
5517 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5518 {
5519 /* The symbol has no type if specified on the command line. */
5520 h->type = STT_OBJECT;
5521 if (info->stacksize)
5522 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5523 output_bfd, legacy_symbol);
5524 else if (h->root.u.def.section != bfd_abs_section_ptr)
5525 (*_bfd_error_handler) (_("%B: %s not absolute"),
5526 output_bfd, legacy_symbol);
5527 else
5528 info->stacksize = h->root.u.def.value;
5529 }
5530
5531 if (!info->stacksize)
5532 /* If the user didn't set a size, or explicitly inhibit the
5533 size, set it now. */
5534 info->stacksize = default_size;
5535
5536 /* Provide the legacy symbol, if it is referenced. */
5537 if (h && (h->root.type == bfd_link_hash_undefined
5538 || h->root.type == bfd_link_hash_undefweak))
5539 {
5540 struct bfd_link_hash_entry *bh = NULL;
5541
5542 if (!(_bfd_generic_link_add_one_symbol
5543 (info, output_bfd, legacy_symbol,
5544 BSF_GLOBAL, bfd_abs_section_ptr,
5545 info->stacksize >= 0 ? info->stacksize : 0,
5546 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5547 return FALSE;
5548
5549 h = (struct elf_link_hash_entry *) bh;
5550 h->def_regular = 1;
5551 h->type = STT_OBJECT;
5552 }
5553
5554 return TRUE;
5555 }
5556
5557 /* Set up the sizes and contents of the ELF dynamic sections. This is
5558 called by the ELF linker emulation before_allocation routine. We
5559 must set the sizes of the sections before the linker sets the
5560 addresses of the various sections. */
5561
5562 bfd_boolean
5563 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5564 const char *soname,
5565 const char *rpath,
5566 const char *filter_shlib,
5567 const char *audit,
5568 const char *depaudit,
5569 const char * const *auxiliary_filters,
5570 struct bfd_link_info *info,
5571 asection **sinterpptr)
5572 {
5573 bfd_size_type soname_indx;
5574 bfd *dynobj;
5575 const struct elf_backend_data *bed;
5576 struct elf_info_failed asvinfo;
5577
5578 *sinterpptr = NULL;
5579
5580 soname_indx = (bfd_size_type) -1;
5581
5582 if (!is_elf_hash_table (info->hash))
5583 return TRUE;
5584
5585 bed = get_elf_backend_data (output_bfd);
5586
5587 /* Any syms created from now on start with -1 in
5588 got.refcount/offset and plt.refcount/offset. */
5589 elf_hash_table (info)->init_got_refcount
5590 = elf_hash_table (info)->init_got_offset;
5591 elf_hash_table (info)->init_plt_refcount
5592 = elf_hash_table (info)->init_plt_offset;
5593
5594 if (info->relocatable
5595 && !_bfd_elf_size_group_sections (info))
5596 return FALSE;
5597
5598 /* The backend may have to create some sections regardless of whether
5599 we're dynamic or not. */
5600 if (bed->elf_backend_always_size_sections
5601 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5602 return FALSE;
5603
5604 /* Determine any GNU_STACK segment requirements, after the backend
5605 has had a chance to set a default segment size. */
5606 if (info->execstack)
5607 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5608 else if (info->noexecstack)
5609 elf_stack_flags (output_bfd) = PF_R | PF_W;
5610 else
5611 {
5612 bfd *inputobj;
5613 asection *notesec = NULL;
5614 int exec = 0;
5615
5616 for (inputobj = info->input_bfds;
5617 inputobj;
5618 inputobj = inputobj->link.next)
5619 {
5620 asection *s;
5621
5622 if (inputobj->flags
5623 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5624 continue;
5625 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5626 if (s)
5627 {
5628 if (s->flags & SEC_CODE)
5629 exec = PF_X;
5630 notesec = s;
5631 }
5632 else if (bed->default_execstack)
5633 exec = PF_X;
5634 }
5635 if (notesec || info->stacksize > 0)
5636 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5637 if (notesec && exec && info->relocatable
5638 && notesec->output_section != bfd_abs_section_ptr)
5639 notesec->output_section->flags |= SEC_CODE;
5640 }
5641
5642 dynobj = elf_hash_table (info)->dynobj;
5643
5644 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5645 {
5646 struct elf_info_failed eif;
5647 struct elf_link_hash_entry *h;
5648 asection *dynstr;
5649 struct bfd_elf_version_tree *t;
5650 struct bfd_elf_version_expr *d;
5651 asection *s;
5652 bfd_boolean all_defined;
5653
5654 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5655 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5656
5657 if (soname != NULL)
5658 {
5659 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5660 soname, TRUE);
5661 if (soname_indx == (bfd_size_type) -1
5662 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5663 return FALSE;
5664 }
5665
5666 if (info->symbolic)
5667 {
5668 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5669 return FALSE;
5670 info->flags |= DF_SYMBOLIC;
5671 }
5672
5673 if (rpath != NULL)
5674 {
5675 bfd_size_type indx;
5676 bfd_vma tag;
5677
5678 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5679 TRUE);
5680 if (indx == (bfd_size_type) -1)
5681 return FALSE;
5682
5683 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5684 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5685 return FALSE;
5686 }
5687
5688 if (filter_shlib != NULL)
5689 {
5690 bfd_size_type indx;
5691
5692 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5693 filter_shlib, TRUE);
5694 if (indx == (bfd_size_type) -1
5695 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5696 return FALSE;
5697 }
5698
5699 if (auxiliary_filters != NULL)
5700 {
5701 const char * const *p;
5702
5703 for (p = auxiliary_filters; *p != NULL; p++)
5704 {
5705 bfd_size_type indx;
5706
5707 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5708 *p, TRUE);
5709 if (indx == (bfd_size_type) -1
5710 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5711 return FALSE;
5712 }
5713 }
5714
5715 if (audit != NULL)
5716 {
5717 bfd_size_type indx;
5718
5719 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5720 TRUE);
5721 if (indx == (bfd_size_type) -1
5722 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5723 return FALSE;
5724 }
5725
5726 if (depaudit != NULL)
5727 {
5728 bfd_size_type indx;
5729
5730 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5731 TRUE);
5732 if (indx == (bfd_size_type) -1
5733 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5734 return FALSE;
5735 }
5736
5737 eif.info = info;
5738 eif.failed = FALSE;
5739
5740 /* If we are supposed to export all symbols into the dynamic symbol
5741 table (this is not the normal case), then do so. */
5742 if (info->export_dynamic
5743 || (info->executable && info->dynamic))
5744 {
5745 elf_link_hash_traverse (elf_hash_table (info),
5746 _bfd_elf_export_symbol,
5747 &eif);
5748 if (eif.failed)
5749 return FALSE;
5750 }
5751
5752 /* Make all global versions with definition. */
5753 for (t = info->version_info; t != NULL; t = t->next)
5754 for (d = t->globals.list; d != NULL; d = d->next)
5755 if (!d->symver && d->literal)
5756 {
5757 const char *verstr, *name;
5758 size_t namelen, verlen, newlen;
5759 char *newname, *p, leading_char;
5760 struct elf_link_hash_entry *newh;
5761
5762 leading_char = bfd_get_symbol_leading_char (output_bfd);
5763 name = d->pattern;
5764 namelen = strlen (name) + (leading_char != '\0');
5765 verstr = t->name;
5766 verlen = strlen (verstr);
5767 newlen = namelen + verlen + 3;
5768
5769 newname = (char *) bfd_malloc (newlen);
5770 if (newname == NULL)
5771 return FALSE;
5772 newname[0] = leading_char;
5773 memcpy (newname + (leading_char != '\0'), name, namelen);
5774
5775 /* Check the hidden versioned definition. */
5776 p = newname + namelen;
5777 *p++ = ELF_VER_CHR;
5778 memcpy (p, verstr, verlen + 1);
5779 newh = elf_link_hash_lookup (elf_hash_table (info),
5780 newname, FALSE, FALSE,
5781 FALSE);
5782 if (newh == NULL
5783 || (newh->root.type != bfd_link_hash_defined
5784 && newh->root.type != bfd_link_hash_defweak))
5785 {
5786 /* Check the default versioned definition. */
5787 *p++ = ELF_VER_CHR;
5788 memcpy (p, verstr, verlen + 1);
5789 newh = elf_link_hash_lookup (elf_hash_table (info),
5790 newname, FALSE, FALSE,
5791 FALSE);
5792 }
5793 free (newname);
5794
5795 /* Mark this version if there is a definition and it is
5796 not defined in a shared object. */
5797 if (newh != NULL
5798 && !newh->def_dynamic
5799 && (newh->root.type == bfd_link_hash_defined
5800 || newh->root.type == bfd_link_hash_defweak))
5801 d->symver = 1;
5802 }
5803
5804 /* Attach all the symbols to their version information. */
5805 asvinfo.info = info;
5806 asvinfo.failed = FALSE;
5807
5808 elf_link_hash_traverse (elf_hash_table (info),
5809 _bfd_elf_link_assign_sym_version,
5810 &asvinfo);
5811 if (asvinfo.failed)
5812 return FALSE;
5813
5814 if (!info->allow_undefined_version)
5815 {
5816 /* Check if all global versions have a definition. */
5817 all_defined = TRUE;
5818 for (t = info->version_info; t != NULL; t = t->next)
5819 for (d = t->globals.list; d != NULL; d = d->next)
5820 if (d->literal && !d->symver && !d->script)
5821 {
5822 (*_bfd_error_handler)
5823 (_("%s: undefined version: %s"),
5824 d->pattern, t->name);
5825 all_defined = FALSE;
5826 }
5827
5828 if (!all_defined)
5829 {
5830 bfd_set_error (bfd_error_bad_value);
5831 return FALSE;
5832 }
5833 }
5834
5835 /* Find all symbols which were defined in a dynamic object and make
5836 the backend pick a reasonable value for them. */
5837 elf_link_hash_traverse (elf_hash_table (info),
5838 _bfd_elf_adjust_dynamic_symbol,
5839 &eif);
5840 if (eif.failed)
5841 return FALSE;
5842
5843 /* Add some entries to the .dynamic section. We fill in some of the
5844 values later, in bfd_elf_final_link, but we must add the entries
5845 now so that we know the final size of the .dynamic section. */
5846
5847 /* If there are initialization and/or finalization functions to
5848 call then add the corresponding DT_INIT/DT_FINI entries. */
5849 h = (info->init_function
5850 ? elf_link_hash_lookup (elf_hash_table (info),
5851 info->init_function, FALSE,
5852 FALSE, FALSE)
5853 : NULL);
5854 if (h != NULL
5855 && (h->ref_regular
5856 || h->def_regular))
5857 {
5858 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5859 return FALSE;
5860 }
5861 h = (info->fini_function
5862 ? elf_link_hash_lookup (elf_hash_table (info),
5863 info->fini_function, FALSE,
5864 FALSE, FALSE)
5865 : NULL);
5866 if (h != NULL
5867 && (h->ref_regular
5868 || h->def_regular))
5869 {
5870 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5871 return FALSE;
5872 }
5873
5874 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5875 if (s != NULL && s->linker_has_input)
5876 {
5877 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5878 if (! info->executable)
5879 {
5880 bfd *sub;
5881 asection *o;
5882
5883 for (sub = info->input_bfds; sub != NULL;
5884 sub = sub->link.next)
5885 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5886 for (o = sub->sections; o != NULL; o = o->next)
5887 if (elf_section_data (o)->this_hdr.sh_type
5888 == SHT_PREINIT_ARRAY)
5889 {
5890 (*_bfd_error_handler)
5891 (_("%B: .preinit_array section is not allowed in DSO"),
5892 sub);
5893 break;
5894 }
5895
5896 bfd_set_error (bfd_error_nonrepresentable_section);
5897 return FALSE;
5898 }
5899
5900 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5901 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5902 return FALSE;
5903 }
5904 s = bfd_get_section_by_name (output_bfd, ".init_array");
5905 if (s != NULL && s->linker_has_input)
5906 {
5907 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5908 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5909 return FALSE;
5910 }
5911 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5912 if (s != NULL && s->linker_has_input)
5913 {
5914 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5915 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5916 return FALSE;
5917 }
5918
5919 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5920 /* If .dynstr is excluded from the link, we don't want any of
5921 these tags. Strictly, we should be checking each section
5922 individually; This quick check covers for the case where
5923 someone does a /DISCARD/ : { *(*) }. */
5924 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5925 {
5926 bfd_size_type strsize;
5927
5928 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5929 if ((info->emit_hash
5930 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5931 || (info->emit_gnu_hash
5932 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5933 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5934 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5935 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5936 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5937 bed->s->sizeof_sym))
5938 return FALSE;
5939 }
5940 }
5941
5942 /* The backend must work out the sizes of all the other dynamic
5943 sections. */
5944 if (dynobj != NULL
5945 && bed->elf_backend_size_dynamic_sections != NULL
5946 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5947 return FALSE;
5948
5949 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5950 return FALSE;
5951
5952 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5953 {
5954 unsigned long section_sym_count;
5955 struct bfd_elf_version_tree *verdefs;
5956 asection *s;
5957
5958 /* Set up the version definition section. */
5959 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
5960 BFD_ASSERT (s != NULL);
5961
5962 /* We may have created additional version definitions if we are
5963 just linking a regular application. */
5964 verdefs = info->version_info;
5965
5966 /* Skip anonymous version tag. */
5967 if (verdefs != NULL && verdefs->vernum == 0)
5968 verdefs = verdefs->next;
5969
5970 if (verdefs == NULL && !info->create_default_symver)
5971 s->flags |= SEC_EXCLUDE;
5972 else
5973 {
5974 unsigned int cdefs;
5975 bfd_size_type size;
5976 struct bfd_elf_version_tree *t;
5977 bfd_byte *p;
5978 Elf_Internal_Verdef def;
5979 Elf_Internal_Verdaux defaux;
5980 struct bfd_link_hash_entry *bh;
5981 struct elf_link_hash_entry *h;
5982 const char *name;
5983
5984 cdefs = 0;
5985 size = 0;
5986
5987 /* Make space for the base version. */
5988 size += sizeof (Elf_External_Verdef);
5989 size += sizeof (Elf_External_Verdaux);
5990 ++cdefs;
5991
5992 /* Make space for the default version. */
5993 if (info->create_default_symver)
5994 {
5995 size += sizeof (Elf_External_Verdef);
5996 ++cdefs;
5997 }
5998
5999 for (t = verdefs; t != NULL; t = t->next)
6000 {
6001 struct bfd_elf_version_deps *n;
6002
6003 /* Don't emit base version twice. */
6004 if (t->vernum == 0)
6005 continue;
6006
6007 size += sizeof (Elf_External_Verdef);
6008 size += sizeof (Elf_External_Verdaux);
6009 ++cdefs;
6010
6011 for (n = t->deps; n != NULL; n = n->next)
6012 size += sizeof (Elf_External_Verdaux);
6013 }
6014
6015 s->size = size;
6016 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6017 if (s->contents == NULL && s->size != 0)
6018 return FALSE;
6019
6020 /* Fill in the version definition section. */
6021
6022 p = s->contents;
6023
6024 def.vd_version = VER_DEF_CURRENT;
6025 def.vd_flags = VER_FLG_BASE;
6026 def.vd_ndx = 1;
6027 def.vd_cnt = 1;
6028 if (info->create_default_symver)
6029 {
6030 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6031 def.vd_next = sizeof (Elf_External_Verdef);
6032 }
6033 else
6034 {
6035 def.vd_aux = sizeof (Elf_External_Verdef);
6036 def.vd_next = (sizeof (Elf_External_Verdef)
6037 + sizeof (Elf_External_Verdaux));
6038 }
6039
6040 if (soname_indx != (bfd_size_type) -1)
6041 {
6042 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6043 soname_indx);
6044 def.vd_hash = bfd_elf_hash (soname);
6045 defaux.vda_name = soname_indx;
6046 name = soname;
6047 }
6048 else
6049 {
6050 bfd_size_type indx;
6051
6052 name = lbasename (output_bfd->filename);
6053 def.vd_hash = bfd_elf_hash (name);
6054 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6055 name, FALSE);
6056 if (indx == (bfd_size_type) -1)
6057 return FALSE;
6058 defaux.vda_name = indx;
6059 }
6060 defaux.vda_next = 0;
6061
6062 _bfd_elf_swap_verdef_out (output_bfd, &def,
6063 (Elf_External_Verdef *) p);
6064 p += sizeof (Elf_External_Verdef);
6065 if (info->create_default_symver)
6066 {
6067 /* Add a symbol representing this version. */
6068 bh = NULL;
6069 if (! (_bfd_generic_link_add_one_symbol
6070 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6071 0, NULL, FALSE,
6072 get_elf_backend_data (dynobj)->collect, &bh)))
6073 return FALSE;
6074 h = (struct elf_link_hash_entry *) bh;
6075 h->non_elf = 0;
6076 h->def_regular = 1;
6077 h->type = STT_OBJECT;
6078 h->verinfo.vertree = NULL;
6079
6080 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6081 return FALSE;
6082
6083 /* Create a duplicate of the base version with the same
6084 aux block, but different flags. */
6085 def.vd_flags = 0;
6086 def.vd_ndx = 2;
6087 def.vd_aux = sizeof (Elf_External_Verdef);
6088 if (verdefs)
6089 def.vd_next = (sizeof (Elf_External_Verdef)
6090 + sizeof (Elf_External_Verdaux));
6091 else
6092 def.vd_next = 0;
6093 _bfd_elf_swap_verdef_out (output_bfd, &def,
6094 (Elf_External_Verdef *) p);
6095 p += sizeof (Elf_External_Verdef);
6096 }
6097 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6098 (Elf_External_Verdaux *) p);
6099 p += sizeof (Elf_External_Verdaux);
6100
6101 for (t = verdefs; t != NULL; t = t->next)
6102 {
6103 unsigned int cdeps;
6104 struct bfd_elf_version_deps *n;
6105
6106 /* Don't emit the base version twice. */
6107 if (t->vernum == 0)
6108 continue;
6109
6110 cdeps = 0;
6111 for (n = t->deps; n != NULL; n = n->next)
6112 ++cdeps;
6113
6114 /* Add a symbol representing this version. */
6115 bh = NULL;
6116 if (! (_bfd_generic_link_add_one_symbol
6117 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6118 0, NULL, FALSE,
6119 get_elf_backend_data (dynobj)->collect, &bh)))
6120 return FALSE;
6121 h = (struct elf_link_hash_entry *) bh;
6122 h->non_elf = 0;
6123 h->def_regular = 1;
6124 h->type = STT_OBJECT;
6125 h->verinfo.vertree = t;
6126
6127 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6128 return FALSE;
6129
6130 def.vd_version = VER_DEF_CURRENT;
6131 def.vd_flags = 0;
6132 if (t->globals.list == NULL
6133 && t->locals.list == NULL
6134 && ! t->used)
6135 def.vd_flags |= VER_FLG_WEAK;
6136 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6137 def.vd_cnt = cdeps + 1;
6138 def.vd_hash = bfd_elf_hash (t->name);
6139 def.vd_aux = sizeof (Elf_External_Verdef);
6140 def.vd_next = 0;
6141
6142 /* If a basever node is next, it *must* be the last node in
6143 the chain, otherwise Verdef construction breaks. */
6144 if (t->next != NULL && t->next->vernum == 0)
6145 BFD_ASSERT (t->next->next == NULL);
6146
6147 if (t->next != NULL && t->next->vernum != 0)
6148 def.vd_next = (sizeof (Elf_External_Verdef)
6149 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6150
6151 _bfd_elf_swap_verdef_out (output_bfd, &def,
6152 (Elf_External_Verdef *) p);
6153 p += sizeof (Elf_External_Verdef);
6154
6155 defaux.vda_name = h->dynstr_index;
6156 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6157 h->dynstr_index);
6158 defaux.vda_next = 0;
6159 if (t->deps != NULL)
6160 defaux.vda_next = sizeof (Elf_External_Verdaux);
6161 t->name_indx = defaux.vda_name;
6162
6163 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6164 (Elf_External_Verdaux *) p);
6165 p += sizeof (Elf_External_Verdaux);
6166
6167 for (n = t->deps; n != NULL; n = n->next)
6168 {
6169 if (n->version_needed == NULL)
6170 {
6171 /* This can happen if there was an error in the
6172 version script. */
6173 defaux.vda_name = 0;
6174 }
6175 else
6176 {
6177 defaux.vda_name = n->version_needed->name_indx;
6178 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6179 defaux.vda_name);
6180 }
6181 if (n->next == NULL)
6182 defaux.vda_next = 0;
6183 else
6184 defaux.vda_next = sizeof (Elf_External_Verdaux);
6185
6186 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6187 (Elf_External_Verdaux *) p);
6188 p += sizeof (Elf_External_Verdaux);
6189 }
6190 }
6191
6192 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6193 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6194 return FALSE;
6195
6196 elf_tdata (output_bfd)->cverdefs = cdefs;
6197 }
6198
6199 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6200 {
6201 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6202 return FALSE;
6203 }
6204 else if (info->flags & DF_BIND_NOW)
6205 {
6206 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6207 return FALSE;
6208 }
6209
6210 if (info->flags_1)
6211 {
6212 if (info->executable)
6213 info->flags_1 &= ~ (DF_1_INITFIRST
6214 | DF_1_NODELETE
6215 | DF_1_NOOPEN);
6216 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6217 return FALSE;
6218 }
6219
6220 /* Work out the size of the version reference section. */
6221
6222 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6223 BFD_ASSERT (s != NULL);
6224 {
6225 struct elf_find_verdep_info sinfo;
6226
6227 sinfo.info = info;
6228 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6229 if (sinfo.vers == 0)
6230 sinfo.vers = 1;
6231 sinfo.failed = FALSE;
6232
6233 elf_link_hash_traverse (elf_hash_table (info),
6234 _bfd_elf_link_find_version_dependencies,
6235 &sinfo);
6236 if (sinfo.failed)
6237 return FALSE;
6238
6239 if (elf_tdata (output_bfd)->verref == NULL)
6240 s->flags |= SEC_EXCLUDE;
6241 else
6242 {
6243 Elf_Internal_Verneed *t;
6244 unsigned int size;
6245 unsigned int crefs;
6246 bfd_byte *p;
6247
6248 /* Build the version dependency section. */
6249 size = 0;
6250 crefs = 0;
6251 for (t = elf_tdata (output_bfd)->verref;
6252 t != NULL;
6253 t = t->vn_nextref)
6254 {
6255 Elf_Internal_Vernaux *a;
6256
6257 size += sizeof (Elf_External_Verneed);
6258 ++crefs;
6259 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6260 size += sizeof (Elf_External_Vernaux);
6261 }
6262
6263 s->size = size;
6264 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6265 if (s->contents == NULL)
6266 return FALSE;
6267
6268 p = s->contents;
6269 for (t = elf_tdata (output_bfd)->verref;
6270 t != NULL;
6271 t = t->vn_nextref)
6272 {
6273 unsigned int caux;
6274 Elf_Internal_Vernaux *a;
6275 bfd_size_type indx;
6276
6277 caux = 0;
6278 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6279 ++caux;
6280
6281 t->vn_version = VER_NEED_CURRENT;
6282 t->vn_cnt = caux;
6283 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6284 elf_dt_name (t->vn_bfd) != NULL
6285 ? elf_dt_name (t->vn_bfd)
6286 : lbasename (t->vn_bfd->filename),
6287 FALSE);
6288 if (indx == (bfd_size_type) -1)
6289 return FALSE;
6290 t->vn_file = indx;
6291 t->vn_aux = sizeof (Elf_External_Verneed);
6292 if (t->vn_nextref == NULL)
6293 t->vn_next = 0;
6294 else
6295 t->vn_next = (sizeof (Elf_External_Verneed)
6296 + caux * sizeof (Elf_External_Vernaux));
6297
6298 _bfd_elf_swap_verneed_out (output_bfd, t,
6299 (Elf_External_Verneed *) p);
6300 p += sizeof (Elf_External_Verneed);
6301
6302 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6303 {
6304 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6305 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6306 a->vna_nodename, FALSE);
6307 if (indx == (bfd_size_type) -1)
6308 return FALSE;
6309 a->vna_name = indx;
6310 if (a->vna_nextptr == NULL)
6311 a->vna_next = 0;
6312 else
6313 a->vna_next = sizeof (Elf_External_Vernaux);
6314
6315 _bfd_elf_swap_vernaux_out (output_bfd, a,
6316 (Elf_External_Vernaux *) p);
6317 p += sizeof (Elf_External_Vernaux);
6318 }
6319 }
6320
6321 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6322 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6323 return FALSE;
6324
6325 elf_tdata (output_bfd)->cverrefs = crefs;
6326 }
6327 }
6328
6329 if ((elf_tdata (output_bfd)->cverrefs == 0
6330 && elf_tdata (output_bfd)->cverdefs == 0)
6331 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6332 &section_sym_count) == 0)
6333 {
6334 s = bfd_get_linker_section (dynobj, ".gnu.version");
6335 s->flags |= SEC_EXCLUDE;
6336 }
6337 }
6338 return TRUE;
6339 }
6340
6341 /* Find the first non-excluded output section. We'll use its
6342 section symbol for some emitted relocs. */
6343 void
6344 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6345 {
6346 asection *s;
6347
6348 for (s = output_bfd->sections; s != NULL; s = s->next)
6349 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6350 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6351 {
6352 elf_hash_table (info)->text_index_section = s;
6353 break;
6354 }
6355 }
6356
6357 /* Find two non-excluded output sections, one for code, one for data.
6358 We'll use their section symbols for some emitted relocs. */
6359 void
6360 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6361 {
6362 asection *s;
6363
6364 /* Data first, since setting text_index_section changes
6365 _bfd_elf_link_omit_section_dynsym. */
6366 for (s = output_bfd->sections; s != NULL; s = s->next)
6367 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6368 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6369 {
6370 elf_hash_table (info)->data_index_section = s;
6371 break;
6372 }
6373
6374 for (s = output_bfd->sections; s != NULL; s = s->next)
6375 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6376 == (SEC_ALLOC | SEC_READONLY))
6377 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6378 {
6379 elf_hash_table (info)->text_index_section = s;
6380 break;
6381 }
6382
6383 if (elf_hash_table (info)->text_index_section == NULL)
6384 elf_hash_table (info)->text_index_section
6385 = elf_hash_table (info)->data_index_section;
6386 }
6387
6388 bfd_boolean
6389 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6390 {
6391 const struct elf_backend_data *bed;
6392
6393 if (!is_elf_hash_table (info->hash))
6394 return TRUE;
6395
6396 bed = get_elf_backend_data (output_bfd);
6397 (*bed->elf_backend_init_index_section) (output_bfd, info);
6398
6399 if (elf_hash_table (info)->dynamic_sections_created)
6400 {
6401 bfd *dynobj;
6402 asection *s;
6403 bfd_size_type dynsymcount;
6404 unsigned long section_sym_count;
6405 unsigned int dtagcount;
6406
6407 dynobj = elf_hash_table (info)->dynobj;
6408
6409 /* Assign dynsym indicies. In a shared library we generate a
6410 section symbol for each output section, which come first.
6411 Next come all of the back-end allocated local dynamic syms,
6412 followed by the rest of the global symbols. */
6413
6414 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6415 &section_sym_count);
6416
6417 /* Work out the size of the symbol version section. */
6418 s = bfd_get_linker_section (dynobj, ".gnu.version");
6419 BFD_ASSERT (s != NULL);
6420 if (dynsymcount != 0
6421 && (s->flags & SEC_EXCLUDE) == 0)
6422 {
6423 s->size = dynsymcount * sizeof (Elf_External_Versym);
6424 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6425 if (s->contents == NULL)
6426 return FALSE;
6427
6428 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6429 return FALSE;
6430 }
6431
6432 /* Set the size of the .dynsym and .hash sections. We counted
6433 the number of dynamic symbols in elf_link_add_object_symbols.
6434 We will build the contents of .dynsym and .hash when we build
6435 the final symbol table, because until then we do not know the
6436 correct value to give the symbols. We built the .dynstr
6437 section as we went along in elf_link_add_object_symbols. */
6438 s = bfd_get_linker_section (dynobj, ".dynsym");
6439 BFD_ASSERT (s != NULL);
6440 s->size = dynsymcount * bed->s->sizeof_sym;
6441
6442 if (dynsymcount != 0)
6443 {
6444 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6445 if (s->contents == NULL)
6446 return FALSE;
6447
6448 /* The first entry in .dynsym is a dummy symbol.
6449 Clear all the section syms, in case we don't output them all. */
6450 ++section_sym_count;
6451 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6452 }
6453
6454 elf_hash_table (info)->bucketcount = 0;
6455
6456 /* Compute the size of the hashing table. As a side effect this
6457 computes the hash values for all the names we export. */
6458 if (info->emit_hash)
6459 {
6460 unsigned long int *hashcodes;
6461 struct hash_codes_info hashinf;
6462 bfd_size_type amt;
6463 unsigned long int nsyms;
6464 size_t bucketcount;
6465 size_t hash_entry_size;
6466
6467 /* Compute the hash values for all exported symbols. At the same
6468 time store the values in an array so that we could use them for
6469 optimizations. */
6470 amt = dynsymcount * sizeof (unsigned long int);
6471 hashcodes = (unsigned long int *) bfd_malloc (amt);
6472 if (hashcodes == NULL)
6473 return FALSE;
6474 hashinf.hashcodes = hashcodes;
6475 hashinf.error = FALSE;
6476
6477 /* Put all hash values in HASHCODES. */
6478 elf_link_hash_traverse (elf_hash_table (info),
6479 elf_collect_hash_codes, &hashinf);
6480 if (hashinf.error)
6481 {
6482 free (hashcodes);
6483 return FALSE;
6484 }
6485
6486 nsyms = hashinf.hashcodes - hashcodes;
6487 bucketcount
6488 = compute_bucket_count (info, hashcodes, nsyms, 0);
6489 free (hashcodes);
6490
6491 if (bucketcount == 0)
6492 return FALSE;
6493
6494 elf_hash_table (info)->bucketcount = bucketcount;
6495
6496 s = bfd_get_linker_section (dynobj, ".hash");
6497 BFD_ASSERT (s != NULL);
6498 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6499 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6500 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6501 if (s->contents == NULL)
6502 return FALSE;
6503
6504 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6505 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6506 s->contents + hash_entry_size);
6507 }
6508
6509 if (info->emit_gnu_hash)
6510 {
6511 size_t i, cnt;
6512 unsigned char *contents;
6513 struct collect_gnu_hash_codes cinfo;
6514 bfd_size_type amt;
6515 size_t bucketcount;
6516
6517 memset (&cinfo, 0, sizeof (cinfo));
6518
6519 /* Compute the hash values for all exported symbols. At the same
6520 time store the values in an array so that we could use them for
6521 optimizations. */
6522 amt = dynsymcount * 2 * sizeof (unsigned long int);
6523 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6524 if (cinfo.hashcodes == NULL)
6525 return FALSE;
6526
6527 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6528 cinfo.min_dynindx = -1;
6529 cinfo.output_bfd = output_bfd;
6530 cinfo.bed = bed;
6531
6532 /* Put all hash values in HASHCODES. */
6533 elf_link_hash_traverse (elf_hash_table (info),
6534 elf_collect_gnu_hash_codes, &cinfo);
6535 if (cinfo.error)
6536 {
6537 free (cinfo.hashcodes);
6538 return FALSE;
6539 }
6540
6541 bucketcount
6542 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6543
6544 if (bucketcount == 0)
6545 {
6546 free (cinfo.hashcodes);
6547 return FALSE;
6548 }
6549
6550 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6551 BFD_ASSERT (s != NULL);
6552
6553 if (cinfo.nsyms == 0)
6554 {
6555 /* Empty .gnu.hash section is special. */
6556 BFD_ASSERT (cinfo.min_dynindx == -1);
6557 free (cinfo.hashcodes);
6558 s->size = 5 * 4 + bed->s->arch_size / 8;
6559 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6560 if (contents == NULL)
6561 return FALSE;
6562 s->contents = contents;
6563 /* 1 empty bucket. */
6564 bfd_put_32 (output_bfd, 1, contents);
6565 /* SYMIDX above the special symbol 0. */
6566 bfd_put_32 (output_bfd, 1, contents + 4);
6567 /* Just one word for bitmask. */
6568 bfd_put_32 (output_bfd, 1, contents + 8);
6569 /* Only hash fn bloom filter. */
6570 bfd_put_32 (output_bfd, 0, contents + 12);
6571 /* No hashes are valid - empty bitmask. */
6572 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6573 /* No hashes in the only bucket. */
6574 bfd_put_32 (output_bfd, 0,
6575 contents + 16 + bed->s->arch_size / 8);
6576 }
6577 else
6578 {
6579 unsigned long int maskwords, maskbitslog2, x;
6580 BFD_ASSERT (cinfo.min_dynindx != -1);
6581
6582 x = cinfo.nsyms;
6583 maskbitslog2 = 1;
6584 while ((x >>= 1) != 0)
6585 ++maskbitslog2;
6586 if (maskbitslog2 < 3)
6587 maskbitslog2 = 5;
6588 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6589 maskbitslog2 = maskbitslog2 + 3;
6590 else
6591 maskbitslog2 = maskbitslog2 + 2;
6592 if (bed->s->arch_size == 64)
6593 {
6594 if (maskbitslog2 == 5)
6595 maskbitslog2 = 6;
6596 cinfo.shift1 = 6;
6597 }
6598 else
6599 cinfo.shift1 = 5;
6600 cinfo.mask = (1 << cinfo.shift1) - 1;
6601 cinfo.shift2 = maskbitslog2;
6602 cinfo.maskbits = 1 << maskbitslog2;
6603 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6604 amt = bucketcount * sizeof (unsigned long int) * 2;
6605 amt += maskwords * sizeof (bfd_vma);
6606 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6607 if (cinfo.bitmask == NULL)
6608 {
6609 free (cinfo.hashcodes);
6610 return FALSE;
6611 }
6612
6613 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6614 cinfo.indx = cinfo.counts + bucketcount;
6615 cinfo.symindx = dynsymcount - cinfo.nsyms;
6616 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6617
6618 /* Determine how often each hash bucket is used. */
6619 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6620 for (i = 0; i < cinfo.nsyms; ++i)
6621 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6622
6623 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6624 if (cinfo.counts[i] != 0)
6625 {
6626 cinfo.indx[i] = cnt;
6627 cnt += cinfo.counts[i];
6628 }
6629 BFD_ASSERT (cnt == dynsymcount);
6630 cinfo.bucketcount = bucketcount;
6631 cinfo.local_indx = cinfo.min_dynindx;
6632
6633 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6634 s->size += cinfo.maskbits / 8;
6635 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6636 if (contents == NULL)
6637 {
6638 free (cinfo.bitmask);
6639 free (cinfo.hashcodes);
6640 return FALSE;
6641 }
6642
6643 s->contents = contents;
6644 bfd_put_32 (output_bfd, bucketcount, contents);
6645 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6646 bfd_put_32 (output_bfd, maskwords, contents + 8);
6647 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6648 contents += 16 + cinfo.maskbits / 8;
6649
6650 for (i = 0; i < bucketcount; ++i)
6651 {
6652 if (cinfo.counts[i] == 0)
6653 bfd_put_32 (output_bfd, 0, contents);
6654 else
6655 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6656 contents += 4;
6657 }
6658
6659 cinfo.contents = contents;
6660
6661 /* Renumber dynamic symbols, populate .gnu.hash section. */
6662 elf_link_hash_traverse (elf_hash_table (info),
6663 elf_renumber_gnu_hash_syms, &cinfo);
6664
6665 contents = s->contents + 16;
6666 for (i = 0; i < maskwords; ++i)
6667 {
6668 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6669 contents);
6670 contents += bed->s->arch_size / 8;
6671 }
6672
6673 free (cinfo.bitmask);
6674 free (cinfo.hashcodes);
6675 }
6676 }
6677
6678 s = bfd_get_linker_section (dynobj, ".dynstr");
6679 BFD_ASSERT (s != NULL);
6680
6681 elf_finalize_dynstr (output_bfd, info);
6682
6683 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6684
6685 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6686 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6687 return FALSE;
6688 }
6689
6690 return TRUE;
6691 }
6692 \f
6693 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6694
6695 static void
6696 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6697 asection *sec)
6698 {
6699 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6700 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6701 }
6702
6703 /* Finish SHF_MERGE section merging. */
6704
6705 bfd_boolean
6706 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6707 {
6708 bfd *ibfd;
6709 asection *sec;
6710
6711 if (!is_elf_hash_table (info->hash))
6712 return FALSE;
6713
6714 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6715 if ((ibfd->flags & DYNAMIC) == 0)
6716 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6717 if ((sec->flags & SEC_MERGE) != 0
6718 && !bfd_is_abs_section (sec->output_section))
6719 {
6720 struct bfd_elf_section_data *secdata;
6721
6722 secdata = elf_section_data (sec);
6723 if (! _bfd_add_merge_section (abfd,
6724 &elf_hash_table (info)->merge_info,
6725 sec, &secdata->sec_info))
6726 return FALSE;
6727 else if (secdata->sec_info)
6728 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6729 }
6730
6731 if (elf_hash_table (info)->merge_info != NULL)
6732 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6733 merge_sections_remove_hook);
6734 return TRUE;
6735 }
6736
6737 /* Create an entry in an ELF linker hash table. */
6738
6739 struct bfd_hash_entry *
6740 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6741 struct bfd_hash_table *table,
6742 const char *string)
6743 {
6744 /* Allocate the structure if it has not already been allocated by a
6745 subclass. */
6746 if (entry == NULL)
6747 {
6748 entry = (struct bfd_hash_entry *)
6749 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6750 if (entry == NULL)
6751 return entry;
6752 }
6753
6754 /* Call the allocation method of the superclass. */
6755 entry = _bfd_link_hash_newfunc (entry, table, string);
6756 if (entry != NULL)
6757 {
6758 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6759 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6760
6761 /* Set local fields. */
6762 ret->indx = -1;
6763 ret->dynindx = -1;
6764 ret->got = htab->init_got_refcount;
6765 ret->plt = htab->init_plt_refcount;
6766 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6767 - offsetof (struct elf_link_hash_entry, size)));
6768 /* Assume that we have been called by a non-ELF symbol reader.
6769 This flag is then reset by the code which reads an ELF input
6770 file. This ensures that a symbol created by a non-ELF symbol
6771 reader will have the flag set correctly. */
6772 ret->non_elf = 1;
6773 }
6774
6775 return entry;
6776 }
6777
6778 /* Copy data from an indirect symbol to its direct symbol, hiding the
6779 old indirect symbol. Also used for copying flags to a weakdef. */
6780
6781 void
6782 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6783 struct elf_link_hash_entry *dir,
6784 struct elf_link_hash_entry *ind)
6785 {
6786 struct elf_link_hash_table *htab;
6787
6788 /* Copy down any references that we may have already seen to the
6789 symbol which just became indirect. */
6790
6791 dir->ref_dynamic |= ind->ref_dynamic;
6792 dir->ref_regular |= ind->ref_regular;
6793 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6794 dir->non_got_ref |= ind->non_got_ref;
6795 dir->needs_plt |= ind->needs_plt;
6796 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6797
6798 if (ind->root.type != bfd_link_hash_indirect)
6799 return;
6800
6801 /* Copy over the global and procedure linkage table refcount entries.
6802 These may have been already set up by a check_relocs routine. */
6803 htab = elf_hash_table (info);
6804 if (ind->got.refcount > htab->init_got_refcount.refcount)
6805 {
6806 if (dir->got.refcount < 0)
6807 dir->got.refcount = 0;
6808 dir->got.refcount += ind->got.refcount;
6809 ind->got.refcount = htab->init_got_refcount.refcount;
6810 }
6811
6812 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6813 {
6814 if (dir->plt.refcount < 0)
6815 dir->plt.refcount = 0;
6816 dir->plt.refcount += ind->plt.refcount;
6817 ind->plt.refcount = htab->init_plt_refcount.refcount;
6818 }
6819
6820 if (ind->dynindx != -1)
6821 {
6822 if (dir->dynindx != -1)
6823 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6824 dir->dynindx = ind->dynindx;
6825 dir->dynstr_index = ind->dynstr_index;
6826 ind->dynindx = -1;
6827 ind->dynstr_index = 0;
6828 }
6829 }
6830
6831 void
6832 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6833 struct elf_link_hash_entry *h,
6834 bfd_boolean force_local)
6835 {
6836 /* STT_GNU_IFUNC symbol must go through PLT. */
6837 if (h->type != STT_GNU_IFUNC)
6838 {
6839 h->plt = elf_hash_table (info)->init_plt_offset;
6840 h->needs_plt = 0;
6841 }
6842 if (force_local)
6843 {
6844 h->forced_local = 1;
6845 if (h->dynindx != -1)
6846 {
6847 h->dynindx = -1;
6848 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6849 h->dynstr_index);
6850 }
6851 }
6852 }
6853
6854 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
6855 caller. */
6856
6857 bfd_boolean
6858 _bfd_elf_link_hash_table_init
6859 (struct elf_link_hash_table *table,
6860 bfd *abfd,
6861 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6862 struct bfd_hash_table *,
6863 const char *),
6864 unsigned int entsize,
6865 enum elf_target_id target_id)
6866 {
6867 bfd_boolean ret;
6868 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6869
6870 table->init_got_refcount.refcount = can_refcount - 1;
6871 table->init_plt_refcount.refcount = can_refcount - 1;
6872 table->init_got_offset.offset = -(bfd_vma) 1;
6873 table->init_plt_offset.offset = -(bfd_vma) 1;
6874 /* The first dynamic symbol is a dummy. */
6875 table->dynsymcount = 1;
6876
6877 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6878
6879 table->root.type = bfd_link_elf_hash_table;
6880 table->hash_table_id = target_id;
6881
6882 return ret;
6883 }
6884
6885 /* Create an ELF linker hash table. */
6886
6887 struct bfd_link_hash_table *
6888 _bfd_elf_link_hash_table_create (bfd *abfd)
6889 {
6890 struct elf_link_hash_table *ret;
6891 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6892
6893 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
6894 if (ret == NULL)
6895 return NULL;
6896
6897 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6898 sizeof (struct elf_link_hash_entry),
6899 GENERIC_ELF_DATA))
6900 {
6901 free (ret);
6902 return NULL;
6903 }
6904 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
6905
6906 return &ret->root;
6907 }
6908
6909 /* Destroy an ELF linker hash table. */
6910
6911 void
6912 _bfd_elf_link_hash_table_free (bfd *obfd)
6913 {
6914 struct elf_link_hash_table *htab;
6915
6916 htab = (struct elf_link_hash_table *) obfd->link.hash;
6917 if (htab->dynstr != NULL)
6918 _bfd_elf_strtab_free (htab->dynstr);
6919 _bfd_merge_sections_free (htab->merge_info);
6920 _bfd_generic_link_hash_table_free (obfd);
6921 }
6922
6923 /* This is a hook for the ELF emulation code in the generic linker to
6924 tell the backend linker what file name to use for the DT_NEEDED
6925 entry for a dynamic object. */
6926
6927 void
6928 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6929 {
6930 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6931 && bfd_get_format (abfd) == bfd_object)
6932 elf_dt_name (abfd) = name;
6933 }
6934
6935 int
6936 bfd_elf_get_dyn_lib_class (bfd *abfd)
6937 {
6938 int lib_class;
6939 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6940 && bfd_get_format (abfd) == bfd_object)
6941 lib_class = elf_dyn_lib_class (abfd);
6942 else
6943 lib_class = 0;
6944 return lib_class;
6945 }
6946
6947 void
6948 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6949 {
6950 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6951 && bfd_get_format (abfd) == bfd_object)
6952 elf_dyn_lib_class (abfd) = lib_class;
6953 }
6954
6955 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6956 the linker ELF emulation code. */
6957
6958 struct bfd_link_needed_list *
6959 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6960 struct bfd_link_info *info)
6961 {
6962 if (! is_elf_hash_table (info->hash))
6963 return NULL;
6964 return elf_hash_table (info)->needed;
6965 }
6966
6967 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6968 hook for the linker ELF emulation code. */
6969
6970 struct bfd_link_needed_list *
6971 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6972 struct bfd_link_info *info)
6973 {
6974 if (! is_elf_hash_table (info->hash))
6975 return NULL;
6976 return elf_hash_table (info)->runpath;
6977 }
6978
6979 /* Get the name actually used for a dynamic object for a link. This
6980 is the SONAME entry if there is one. Otherwise, it is the string
6981 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6982
6983 const char *
6984 bfd_elf_get_dt_soname (bfd *abfd)
6985 {
6986 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6987 && bfd_get_format (abfd) == bfd_object)
6988 return elf_dt_name (abfd);
6989 return NULL;
6990 }
6991
6992 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6993 the ELF linker emulation code. */
6994
6995 bfd_boolean
6996 bfd_elf_get_bfd_needed_list (bfd *abfd,
6997 struct bfd_link_needed_list **pneeded)
6998 {
6999 asection *s;
7000 bfd_byte *dynbuf = NULL;
7001 unsigned int elfsec;
7002 unsigned long shlink;
7003 bfd_byte *extdyn, *extdynend;
7004 size_t extdynsize;
7005 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7006
7007 *pneeded = NULL;
7008
7009 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7010 || bfd_get_format (abfd) != bfd_object)
7011 return TRUE;
7012
7013 s = bfd_get_section_by_name (abfd, ".dynamic");
7014 if (s == NULL || s->size == 0)
7015 return TRUE;
7016
7017 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7018 goto error_return;
7019
7020 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7021 if (elfsec == SHN_BAD)
7022 goto error_return;
7023
7024 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7025
7026 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7027 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7028
7029 extdyn = dynbuf;
7030 extdynend = extdyn + s->size;
7031 for (; extdyn < extdynend; extdyn += extdynsize)
7032 {
7033 Elf_Internal_Dyn dyn;
7034
7035 (*swap_dyn_in) (abfd, extdyn, &dyn);
7036
7037 if (dyn.d_tag == DT_NULL)
7038 break;
7039
7040 if (dyn.d_tag == DT_NEEDED)
7041 {
7042 const char *string;
7043 struct bfd_link_needed_list *l;
7044 unsigned int tagv = dyn.d_un.d_val;
7045 bfd_size_type amt;
7046
7047 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7048 if (string == NULL)
7049 goto error_return;
7050
7051 amt = sizeof *l;
7052 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7053 if (l == NULL)
7054 goto error_return;
7055
7056 l->by = abfd;
7057 l->name = string;
7058 l->next = *pneeded;
7059 *pneeded = l;
7060 }
7061 }
7062
7063 free (dynbuf);
7064
7065 return TRUE;
7066
7067 error_return:
7068 if (dynbuf != NULL)
7069 free (dynbuf);
7070 return FALSE;
7071 }
7072
7073 struct elf_symbuf_symbol
7074 {
7075 unsigned long st_name; /* Symbol name, index in string tbl */
7076 unsigned char st_info; /* Type and binding attributes */
7077 unsigned char st_other; /* Visibilty, and target specific */
7078 };
7079
7080 struct elf_symbuf_head
7081 {
7082 struct elf_symbuf_symbol *ssym;
7083 bfd_size_type count;
7084 unsigned int st_shndx;
7085 };
7086
7087 struct elf_symbol
7088 {
7089 union
7090 {
7091 Elf_Internal_Sym *isym;
7092 struct elf_symbuf_symbol *ssym;
7093 } u;
7094 const char *name;
7095 };
7096
7097 /* Sort references to symbols by ascending section number. */
7098
7099 static int
7100 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7101 {
7102 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7103 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7104
7105 return s1->st_shndx - s2->st_shndx;
7106 }
7107
7108 static int
7109 elf_sym_name_compare (const void *arg1, const void *arg2)
7110 {
7111 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7112 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7113 return strcmp (s1->name, s2->name);
7114 }
7115
7116 static struct elf_symbuf_head *
7117 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7118 {
7119 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7120 struct elf_symbuf_symbol *ssym;
7121 struct elf_symbuf_head *ssymbuf, *ssymhead;
7122 bfd_size_type i, shndx_count, total_size;
7123
7124 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7125 if (indbuf == NULL)
7126 return NULL;
7127
7128 for (ind = indbuf, i = 0; i < symcount; i++)
7129 if (isymbuf[i].st_shndx != SHN_UNDEF)
7130 *ind++ = &isymbuf[i];
7131 indbufend = ind;
7132
7133 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7134 elf_sort_elf_symbol);
7135
7136 shndx_count = 0;
7137 if (indbufend > indbuf)
7138 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7139 if (ind[0]->st_shndx != ind[1]->st_shndx)
7140 shndx_count++;
7141
7142 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7143 + (indbufend - indbuf) * sizeof (*ssym));
7144 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7145 if (ssymbuf == NULL)
7146 {
7147 free (indbuf);
7148 return NULL;
7149 }
7150
7151 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7152 ssymbuf->ssym = NULL;
7153 ssymbuf->count = shndx_count;
7154 ssymbuf->st_shndx = 0;
7155 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7156 {
7157 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7158 {
7159 ssymhead++;
7160 ssymhead->ssym = ssym;
7161 ssymhead->count = 0;
7162 ssymhead->st_shndx = (*ind)->st_shndx;
7163 }
7164 ssym->st_name = (*ind)->st_name;
7165 ssym->st_info = (*ind)->st_info;
7166 ssym->st_other = (*ind)->st_other;
7167 ssymhead->count++;
7168 }
7169 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7170 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7171 == total_size));
7172
7173 free (indbuf);
7174 return ssymbuf;
7175 }
7176
7177 /* Check if 2 sections define the same set of local and global
7178 symbols. */
7179
7180 static bfd_boolean
7181 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7182 struct bfd_link_info *info)
7183 {
7184 bfd *bfd1, *bfd2;
7185 const struct elf_backend_data *bed1, *bed2;
7186 Elf_Internal_Shdr *hdr1, *hdr2;
7187 bfd_size_type symcount1, symcount2;
7188 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7189 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7190 Elf_Internal_Sym *isym, *isymend;
7191 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7192 bfd_size_type count1, count2, i;
7193 unsigned int shndx1, shndx2;
7194 bfd_boolean result;
7195
7196 bfd1 = sec1->owner;
7197 bfd2 = sec2->owner;
7198
7199 /* Both sections have to be in ELF. */
7200 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7201 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7202 return FALSE;
7203
7204 if (elf_section_type (sec1) != elf_section_type (sec2))
7205 return FALSE;
7206
7207 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7208 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7209 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7210 return FALSE;
7211
7212 bed1 = get_elf_backend_data (bfd1);
7213 bed2 = get_elf_backend_data (bfd2);
7214 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7215 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7216 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7217 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7218
7219 if (symcount1 == 0 || symcount2 == 0)
7220 return FALSE;
7221
7222 result = FALSE;
7223 isymbuf1 = NULL;
7224 isymbuf2 = NULL;
7225 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7226 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7227
7228 if (ssymbuf1 == NULL)
7229 {
7230 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7231 NULL, NULL, NULL);
7232 if (isymbuf1 == NULL)
7233 goto done;
7234
7235 if (!info->reduce_memory_overheads)
7236 elf_tdata (bfd1)->symbuf = ssymbuf1
7237 = elf_create_symbuf (symcount1, isymbuf1);
7238 }
7239
7240 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7241 {
7242 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7243 NULL, NULL, NULL);
7244 if (isymbuf2 == NULL)
7245 goto done;
7246
7247 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7248 elf_tdata (bfd2)->symbuf = ssymbuf2
7249 = elf_create_symbuf (symcount2, isymbuf2);
7250 }
7251
7252 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7253 {
7254 /* Optimized faster version. */
7255 bfd_size_type lo, hi, mid;
7256 struct elf_symbol *symp;
7257 struct elf_symbuf_symbol *ssym, *ssymend;
7258
7259 lo = 0;
7260 hi = ssymbuf1->count;
7261 ssymbuf1++;
7262 count1 = 0;
7263 while (lo < hi)
7264 {
7265 mid = (lo + hi) / 2;
7266 if (shndx1 < ssymbuf1[mid].st_shndx)
7267 hi = mid;
7268 else if (shndx1 > ssymbuf1[mid].st_shndx)
7269 lo = mid + 1;
7270 else
7271 {
7272 count1 = ssymbuf1[mid].count;
7273 ssymbuf1 += mid;
7274 break;
7275 }
7276 }
7277
7278 lo = 0;
7279 hi = ssymbuf2->count;
7280 ssymbuf2++;
7281 count2 = 0;
7282 while (lo < hi)
7283 {
7284 mid = (lo + hi) / 2;
7285 if (shndx2 < ssymbuf2[mid].st_shndx)
7286 hi = mid;
7287 else if (shndx2 > ssymbuf2[mid].st_shndx)
7288 lo = mid + 1;
7289 else
7290 {
7291 count2 = ssymbuf2[mid].count;
7292 ssymbuf2 += mid;
7293 break;
7294 }
7295 }
7296
7297 if (count1 == 0 || count2 == 0 || count1 != count2)
7298 goto done;
7299
7300 symtable1 = (struct elf_symbol *)
7301 bfd_malloc (count1 * sizeof (struct elf_symbol));
7302 symtable2 = (struct elf_symbol *)
7303 bfd_malloc (count2 * sizeof (struct elf_symbol));
7304 if (symtable1 == NULL || symtable2 == NULL)
7305 goto done;
7306
7307 symp = symtable1;
7308 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7309 ssym < ssymend; ssym++, symp++)
7310 {
7311 symp->u.ssym = ssym;
7312 symp->name = bfd_elf_string_from_elf_section (bfd1,
7313 hdr1->sh_link,
7314 ssym->st_name);
7315 }
7316
7317 symp = symtable2;
7318 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7319 ssym < ssymend; ssym++, symp++)
7320 {
7321 symp->u.ssym = ssym;
7322 symp->name = bfd_elf_string_from_elf_section (bfd2,
7323 hdr2->sh_link,
7324 ssym->st_name);
7325 }
7326
7327 /* Sort symbol by name. */
7328 qsort (symtable1, count1, sizeof (struct elf_symbol),
7329 elf_sym_name_compare);
7330 qsort (symtable2, count1, sizeof (struct elf_symbol),
7331 elf_sym_name_compare);
7332
7333 for (i = 0; i < count1; i++)
7334 /* Two symbols must have the same binding, type and name. */
7335 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7336 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7337 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7338 goto done;
7339
7340 result = TRUE;
7341 goto done;
7342 }
7343
7344 symtable1 = (struct elf_symbol *)
7345 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7346 symtable2 = (struct elf_symbol *)
7347 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7348 if (symtable1 == NULL || symtable2 == NULL)
7349 goto done;
7350
7351 /* Count definitions in the section. */
7352 count1 = 0;
7353 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7354 if (isym->st_shndx == shndx1)
7355 symtable1[count1++].u.isym = isym;
7356
7357 count2 = 0;
7358 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7359 if (isym->st_shndx == shndx2)
7360 symtable2[count2++].u.isym = isym;
7361
7362 if (count1 == 0 || count2 == 0 || count1 != count2)
7363 goto done;
7364
7365 for (i = 0; i < count1; i++)
7366 symtable1[i].name
7367 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7368 symtable1[i].u.isym->st_name);
7369
7370 for (i = 0; i < count2; i++)
7371 symtable2[i].name
7372 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7373 symtable2[i].u.isym->st_name);
7374
7375 /* Sort symbol by name. */
7376 qsort (symtable1, count1, sizeof (struct elf_symbol),
7377 elf_sym_name_compare);
7378 qsort (symtable2, count1, sizeof (struct elf_symbol),
7379 elf_sym_name_compare);
7380
7381 for (i = 0; i < count1; i++)
7382 /* Two symbols must have the same binding, type and name. */
7383 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7384 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7385 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7386 goto done;
7387
7388 result = TRUE;
7389
7390 done:
7391 if (symtable1)
7392 free (symtable1);
7393 if (symtable2)
7394 free (symtable2);
7395 if (isymbuf1)
7396 free (isymbuf1);
7397 if (isymbuf2)
7398 free (isymbuf2);
7399
7400 return result;
7401 }
7402
7403 /* Return TRUE if 2 section types are compatible. */
7404
7405 bfd_boolean
7406 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7407 bfd *bbfd, const asection *bsec)
7408 {
7409 if (asec == NULL
7410 || bsec == NULL
7411 || abfd->xvec->flavour != bfd_target_elf_flavour
7412 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7413 return TRUE;
7414
7415 return elf_section_type (asec) == elf_section_type (bsec);
7416 }
7417 \f
7418 /* Final phase of ELF linker. */
7419
7420 /* A structure we use to avoid passing large numbers of arguments. */
7421
7422 struct elf_final_link_info
7423 {
7424 /* General link information. */
7425 struct bfd_link_info *info;
7426 /* Output BFD. */
7427 bfd *output_bfd;
7428 /* Symbol string table. */
7429 struct bfd_strtab_hash *symstrtab;
7430 /* .dynsym section. */
7431 asection *dynsym_sec;
7432 /* .hash section. */
7433 asection *hash_sec;
7434 /* symbol version section (.gnu.version). */
7435 asection *symver_sec;
7436 /* Buffer large enough to hold contents of any section. */
7437 bfd_byte *contents;
7438 /* Buffer large enough to hold external relocs of any section. */
7439 void *external_relocs;
7440 /* Buffer large enough to hold internal relocs of any section. */
7441 Elf_Internal_Rela *internal_relocs;
7442 /* Buffer large enough to hold external local symbols of any input
7443 BFD. */
7444 bfd_byte *external_syms;
7445 /* And a buffer for symbol section indices. */
7446 Elf_External_Sym_Shndx *locsym_shndx;
7447 /* Buffer large enough to hold internal local symbols of any input
7448 BFD. */
7449 Elf_Internal_Sym *internal_syms;
7450 /* Array large enough to hold a symbol index for each local symbol
7451 of any input BFD. */
7452 long *indices;
7453 /* Array large enough to hold a section pointer for each local
7454 symbol of any input BFD. */
7455 asection **sections;
7456 /* Buffer to hold swapped out symbols. */
7457 bfd_byte *symbuf;
7458 /* And one for symbol section indices. */
7459 Elf_External_Sym_Shndx *symshndxbuf;
7460 /* Number of swapped out symbols in buffer. */
7461 size_t symbuf_count;
7462 /* Number of symbols which fit in symbuf. */
7463 size_t symbuf_size;
7464 /* And same for symshndxbuf. */
7465 size_t shndxbuf_size;
7466 /* Number of STT_FILE syms seen. */
7467 size_t filesym_count;
7468 };
7469
7470 /* This struct is used to pass information to elf_link_output_extsym. */
7471
7472 struct elf_outext_info
7473 {
7474 bfd_boolean failed;
7475 bfd_boolean localsyms;
7476 bfd_boolean need_second_pass;
7477 bfd_boolean second_pass;
7478 bfd_boolean file_sym_done;
7479 struct elf_final_link_info *flinfo;
7480 };
7481
7482
7483 /* Support for evaluating a complex relocation.
7484
7485 Complex relocations are generalized, self-describing relocations. The
7486 implementation of them consists of two parts: complex symbols, and the
7487 relocations themselves.
7488
7489 The relocations are use a reserved elf-wide relocation type code (R_RELC
7490 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7491 information (start bit, end bit, word width, etc) into the addend. This
7492 information is extracted from CGEN-generated operand tables within gas.
7493
7494 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7495 internal) representing prefix-notation expressions, including but not
7496 limited to those sorts of expressions normally encoded as addends in the
7497 addend field. The symbol mangling format is:
7498
7499 <node> := <literal>
7500 | <unary-operator> ':' <node>
7501 | <binary-operator> ':' <node> ':' <node>
7502 ;
7503
7504 <literal> := 's' <digits=N> ':' <N character symbol name>
7505 | 'S' <digits=N> ':' <N character section name>
7506 | '#' <hexdigits>
7507 ;
7508
7509 <binary-operator> := as in C
7510 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7511
7512 static void
7513 set_symbol_value (bfd *bfd_with_globals,
7514 Elf_Internal_Sym *isymbuf,
7515 size_t locsymcount,
7516 size_t symidx,
7517 bfd_vma val)
7518 {
7519 struct elf_link_hash_entry **sym_hashes;
7520 struct elf_link_hash_entry *h;
7521 size_t extsymoff = locsymcount;
7522
7523 if (symidx < locsymcount)
7524 {
7525 Elf_Internal_Sym *sym;
7526
7527 sym = isymbuf + symidx;
7528 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7529 {
7530 /* It is a local symbol: move it to the
7531 "absolute" section and give it a value. */
7532 sym->st_shndx = SHN_ABS;
7533 sym->st_value = val;
7534 return;
7535 }
7536 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7537 extsymoff = 0;
7538 }
7539
7540 /* It is a global symbol: set its link type
7541 to "defined" and give it a value. */
7542
7543 sym_hashes = elf_sym_hashes (bfd_with_globals);
7544 h = sym_hashes [symidx - extsymoff];
7545 while (h->root.type == bfd_link_hash_indirect
7546 || h->root.type == bfd_link_hash_warning)
7547 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7548 h->root.type = bfd_link_hash_defined;
7549 h->root.u.def.value = val;
7550 h->root.u.def.section = bfd_abs_section_ptr;
7551 }
7552
7553 static bfd_boolean
7554 resolve_symbol (const char *name,
7555 bfd *input_bfd,
7556 struct elf_final_link_info *flinfo,
7557 bfd_vma *result,
7558 Elf_Internal_Sym *isymbuf,
7559 size_t locsymcount)
7560 {
7561 Elf_Internal_Sym *sym;
7562 struct bfd_link_hash_entry *global_entry;
7563 const char *candidate = NULL;
7564 Elf_Internal_Shdr *symtab_hdr;
7565 size_t i;
7566
7567 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7568
7569 for (i = 0; i < locsymcount; ++ i)
7570 {
7571 sym = isymbuf + i;
7572
7573 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7574 continue;
7575
7576 candidate = bfd_elf_string_from_elf_section (input_bfd,
7577 symtab_hdr->sh_link,
7578 sym->st_name);
7579 #ifdef DEBUG
7580 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7581 name, candidate, (unsigned long) sym->st_value);
7582 #endif
7583 if (candidate && strcmp (candidate, name) == 0)
7584 {
7585 asection *sec = flinfo->sections [i];
7586
7587 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7588 *result += sec->output_offset + sec->output_section->vma;
7589 #ifdef DEBUG
7590 printf ("Found symbol with value %8.8lx\n",
7591 (unsigned long) *result);
7592 #endif
7593 return TRUE;
7594 }
7595 }
7596
7597 /* Hmm, haven't found it yet. perhaps it is a global. */
7598 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7599 FALSE, FALSE, TRUE);
7600 if (!global_entry)
7601 return FALSE;
7602
7603 if (global_entry->type == bfd_link_hash_defined
7604 || global_entry->type == bfd_link_hash_defweak)
7605 {
7606 *result = (global_entry->u.def.value
7607 + global_entry->u.def.section->output_section->vma
7608 + global_entry->u.def.section->output_offset);
7609 #ifdef DEBUG
7610 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7611 global_entry->root.string, (unsigned long) *result);
7612 #endif
7613 return TRUE;
7614 }
7615
7616 return FALSE;
7617 }
7618
7619 static bfd_boolean
7620 resolve_section (const char *name,
7621 asection *sections,
7622 bfd_vma *result)
7623 {
7624 asection *curr;
7625 unsigned int len;
7626
7627 for (curr = sections; curr; curr = curr->next)
7628 if (strcmp (curr->name, name) == 0)
7629 {
7630 *result = curr->vma;
7631 return TRUE;
7632 }
7633
7634 /* Hmm. still haven't found it. try pseudo-section names. */
7635 for (curr = sections; curr; curr = curr->next)
7636 {
7637 len = strlen (curr->name);
7638 if (len > strlen (name))
7639 continue;
7640
7641 if (strncmp (curr->name, name, len) == 0)
7642 {
7643 if (strncmp (".end", name + len, 4) == 0)
7644 {
7645 *result = curr->vma + curr->size;
7646 return TRUE;
7647 }
7648
7649 /* Insert more pseudo-section names here, if you like. */
7650 }
7651 }
7652
7653 return FALSE;
7654 }
7655
7656 static void
7657 undefined_reference (const char *reftype, const char *name)
7658 {
7659 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7660 reftype, name);
7661 }
7662
7663 static bfd_boolean
7664 eval_symbol (bfd_vma *result,
7665 const char **symp,
7666 bfd *input_bfd,
7667 struct elf_final_link_info *flinfo,
7668 bfd_vma dot,
7669 Elf_Internal_Sym *isymbuf,
7670 size_t locsymcount,
7671 int signed_p)
7672 {
7673 size_t len;
7674 size_t symlen;
7675 bfd_vma a;
7676 bfd_vma b;
7677 char symbuf[4096];
7678 const char *sym = *symp;
7679 const char *symend;
7680 bfd_boolean symbol_is_section = FALSE;
7681
7682 len = strlen (sym);
7683 symend = sym + len;
7684
7685 if (len < 1 || len > sizeof (symbuf))
7686 {
7687 bfd_set_error (bfd_error_invalid_operation);
7688 return FALSE;
7689 }
7690
7691 switch (* sym)
7692 {
7693 case '.':
7694 *result = dot;
7695 *symp = sym + 1;
7696 return TRUE;
7697
7698 case '#':
7699 ++sym;
7700 *result = strtoul (sym, (char **) symp, 16);
7701 return TRUE;
7702
7703 case 'S':
7704 symbol_is_section = TRUE;
7705 case 's':
7706 ++sym;
7707 symlen = strtol (sym, (char **) symp, 10);
7708 sym = *symp + 1; /* Skip the trailing ':'. */
7709
7710 if (symend < sym || symlen + 1 > sizeof (symbuf))
7711 {
7712 bfd_set_error (bfd_error_invalid_operation);
7713 return FALSE;
7714 }
7715
7716 memcpy (symbuf, sym, symlen);
7717 symbuf[symlen] = '\0';
7718 *symp = sym + symlen;
7719
7720 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7721 the symbol as a section, or vice-versa. so we're pretty liberal in our
7722 interpretation here; section means "try section first", not "must be a
7723 section", and likewise with symbol. */
7724
7725 if (symbol_is_section)
7726 {
7727 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7728 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7729 isymbuf, locsymcount))
7730 {
7731 undefined_reference ("section", symbuf);
7732 return FALSE;
7733 }
7734 }
7735 else
7736 {
7737 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7738 isymbuf, locsymcount)
7739 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7740 result))
7741 {
7742 undefined_reference ("symbol", symbuf);
7743 return FALSE;
7744 }
7745 }
7746
7747 return TRUE;
7748
7749 /* All that remains are operators. */
7750
7751 #define UNARY_OP(op) \
7752 if (strncmp (sym, #op, strlen (#op)) == 0) \
7753 { \
7754 sym += strlen (#op); \
7755 if (*sym == ':') \
7756 ++sym; \
7757 *symp = sym; \
7758 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7759 isymbuf, locsymcount, signed_p)) \
7760 return FALSE; \
7761 if (signed_p) \
7762 *result = op ((bfd_signed_vma) a); \
7763 else \
7764 *result = op a; \
7765 return TRUE; \
7766 }
7767
7768 #define BINARY_OP(op) \
7769 if (strncmp (sym, #op, strlen (#op)) == 0) \
7770 { \
7771 sym += strlen (#op); \
7772 if (*sym == ':') \
7773 ++sym; \
7774 *symp = sym; \
7775 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7776 isymbuf, locsymcount, signed_p)) \
7777 return FALSE; \
7778 ++*symp; \
7779 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7780 isymbuf, locsymcount, signed_p)) \
7781 return FALSE; \
7782 if (signed_p) \
7783 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7784 else \
7785 *result = a op b; \
7786 return TRUE; \
7787 }
7788
7789 default:
7790 UNARY_OP (0-);
7791 BINARY_OP (<<);
7792 BINARY_OP (>>);
7793 BINARY_OP (==);
7794 BINARY_OP (!=);
7795 BINARY_OP (<=);
7796 BINARY_OP (>=);
7797 BINARY_OP (&&);
7798 BINARY_OP (||);
7799 UNARY_OP (~);
7800 UNARY_OP (!);
7801 BINARY_OP (*);
7802 BINARY_OP (/);
7803 BINARY_OP (%);
7804 BINARY_OP (^);
7805 BINARY_OP (|);
7806 BINARY_OP (&);
7807 BINARY_OP (+);
7808 BINARY_OP (-);
7809 BINARY_OP (<);
7810 BINARY_OP (>);
7811 #undef UNARY_OP
7812 #undef BINARY_OP
7813 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7814 bfd_set_error (bfd_error_invalid_operation);
7815 return FALSE;
7816 }
7817 }
7818
7819 static void
7820 put_value (bfd_vma size,
7821 unsigned long chunksz,
7822 bfd *input_bfd,
7823 bfd_vma x,
7824 bfd_byte *location)
7825 {
7826 location += (size - chunksz);
7827
7828 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7829 {
7830 switch (chunksz)
7831 {
7832 default:
7833 case 0:
7834 abort ();
7835 case 1:
7836 bfd_put_8 (input_bfd, x, location);
7837 break;
7838 case 2:
7839 bfd_put_16 (input_bfd, x, location);
7840 break;
7841 case 4:
7842 bfd_put_32 (input_bfd, x, location);
7843 break;
7844 case 8:
7845 #ifdef BFD64
7846 bfd_put_64 (input_bfd, x, location);
7847 #else
7848 abort ();
7849 #endif
7850 break;
7851 }
7852 }
7853 }
7854
7855 static bfd_vma
7856 get_value (bfd_vma size,
7857 unsigned long chunksz,
7858 bfd *input_bfd,
7859 bfd_byte *location)
7860 {
7861 int shift;
7862 bfd_vma x = 0;
7863
7864 /* Sanity checks. */
7865 BFD_ASSERT (chunksz <= sizeof (x)
7866 && size >= chunksz
7867 && chunksz != 0
7868 && (size % chunksz) == 0
7869 && input_bfd != NULL
7870 && location != NULL);
7871
7872 if (chunksz == sizeof (x))
7873 {
7874 BFD_ASSERT (size == chunksz);
7875
7876 /* Make sure that we do not perform an undefined shift operation.
7877 We know that size == chunksz so there will only be one iteration
7878 of the loop below. */
7879 shift = 0;
7880 }
7881 else
7882 shift = 8 * chunksz;
7883
7884 for (; size; size -= chunksz, location += chunksz)
7885 {
7886 switch (chunksz)
7887 {
7888 case 1:
7889 x = (x << shift) | bfd_get_8 (input_bfd, location);
7890 break;
7891 case 2:
7892 x = (x << shift) | bfd_get_16 (input_bfd, location);
7893 break;
7894 case 4:
7895 x = (x << shift) | bfd_get_32 (input_bfd, location);
7896 break;
7897 #ifdef BFD64
7898 case 8:
7899 x = (x << shift) | bfd_get_64 (input_bfd, location);
7900 break;
7901 #endif
7902 default:
7903 abort ();
7904 }
7905 }
7906 return x;
7907 }
7908
7909 static void
7910 decode_complex_addend (unsigned long *start, /* in bits */
7911 unsigned long *oplen, /* in bits */
7912 unsigned long *len, /* in bits */
7913 unsigned long *wordsz, /* in bytes */
7914 unsigned long *chunksz, /* in bytes */
7915 unsigned long *lsb0_p,
7916 unsigned long *signed_p,
7917 unsigned long *trunc_p,
7918 unsigned long encoded)
7919 {
7920 * start = encoded & 0x3F;
7921 * len = (encoded >> 6) & 0x3F;
7922 * oplen = (encoded >> 12) & 0x3F;
7923 * wordsz = (encoded >> 18) & 0xF;
7924 * chunksz = (encoded >> 22) & 0xF;
7925 * lsb0_p = (encoded >> 27) & 1;
7926 * signed_p = (encoded >> 28) & 1;
7927 * trunc_p = (encoded >> 29) & 1;
7928 }
7929
7930 bfd_reloc_status_type
7931 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7932 asection *input_section ATTRIBUTE_UNUSED,
7933 bfd_byte *contents,
7934 Elf_Internal_Rela *rel,
7935 bfd_vma relocation)
7936 {
7937 bfd_vma shift, x, mask;
7938 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7939 bfd_reloc_status_type r;
7940
7941 /* Perform this reloc, since it is complex.
7942 (this is not to say that it necessarily refers to a complex
7943 symbol; merely that it is a self-describing CGEN based reloc.
7944 i.e. the addend has the complete reloc information (bit start, end,
7945 word size, etc) encoded within it.). */
7946
7947 decode_complex_addend (&start, &oplen, &len, &wordsz,
7948 &chunksz, &lsb0_p, &signed_p,
7949 &trunc_p, rel->r_addend);
7950
7951 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7952
7953 if (lsb0_p)
7954 shift = (start + 1) - len;
7955 else
7956 shift = (8 * wordsz) - (start + len);
7957
7958 /* FIXME: octets_per_byte. */
7959 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7960
7961 #ifdef DEBUG
7962 printf ("Doing complex reloc: "
7963 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7964 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7965 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7966 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7967 oplen, (unsigned long) x, (unsigned long) mask,
7968 (unsigned long) relocation);
7969 #endif
7970
7971 r = bfd_reloc_ok;
7972 if (! trunc_p)
7973 /* Now do an overflow check. */
7974 r = bfd_check_overflow ((signed_p
7975 ? complain_overflow_signed
7976 : complain_overflow_unsigned),
7977 len, 0, (8 * wordsz),
7978 relocation);
7979
7980 /* Do the deed. */
7981 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7982
7983 #ifdef DEBUG
7984 printf (" relocation: %8.8lx\n"
7985 " shifted mask: %8.8lx\n"
7986 " shifted/masked reloc: %8.8lx\n"
7987 " result: %8.8lx\n",
7988 (unsigned long) relocation, (unsigned long) (mask << shift),
7989 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7990 #endif
7991 /* FIXME: octets_per_byte. */
7992 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7993 return r;
7994 }
7995
7996 /* When performing a relocatable link, the input relocations are
7997 preserved. But, if they reference global symbols, the indices
7998 referenced must be updated. Update all the relocations found in
7999 RELDATA. */
8000
8001 static void
8002 elf_link_adjust_relocs (bfd *abfd,
8003 struct bfd_elf_section_reloc_data *reldata)
8004 {
8005 unsigned int i;
8006 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8007 bfd_byte *erela;
8008 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8009 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8010 bfd_vma r_type_mask;
8011 int r_sym_shift;
8012 unsigned int count = reldata->count;
8013 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8014
8015 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8016 {
8017 swap_in = bed->s->swap_reloc_in;
8018 swap_out = bed->s->swap_reloc_out;
8019 }
8020 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8021 {
8022 swap_in = bed->s->swap_reloca_in;
8023 swap_out = bed->s->swap_reloca_out;
8024 }
8025 else
8026 abort ();
8027
8028 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8029 abort ();
8030
8031 if (bed->s->arch_size == 32)
8032 {
8033 r_type_mask = 0xff;
8034 r_sym_shift = 8;
8035 }
8036 else
8037 {
8038 r_type_mask = 0xffffffff;
8039 r_sym_shift = 32;
8040 }
8041
8042 erela = reldata->hdr->contents;
8043 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8044 {
8045 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8046 unsigned int j;
8047
8048 if (*rel_hash == NULL)
8049 continue;
8050
8051 BFD_ASSERT ((*rel_hash)->indx >= 0);
8052
8053 (*swap_in) (abfd, erela, irela);
8054 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8055 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8056 | (irela[j].r_info & r_type_mask));
8057 (*swap_out) (abfd, irela, erela);
8058 }
8059 }
8060
8061 struct elf_link_sort_rela
8062 {
8063 union {
8064 bfd_vma offset;
8065 bfd_vma sym_mask;
8066 } u;
8067 enum elf_reloc_type_class type;
8068 /* We use this as an array of size int_rels_per_ext_rel. */
8069 Elf_Internal_Rela rela[1];
8070 };
8071
8072 static int
8073 elf_link_sort_cmp1 (const void *A, const void *B)
8074 {
8075 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8076 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8077 int relativea, relativeb;
8078
8079 relativea = a->type == reloc_class_relative;
8080 relativeb = b->type == reloc_class_relative;
8081
8082 if (relativea < relativeb)
8083 return 1;
8084 if (relativea > relativeb)
8085 return -1;
8086 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8087 return -1;
8088 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8089 return 1;
8090 if (a->rela->r_offset < b->rela->r_offset)
8091 return -1;
8092 if (a->rela->r_offset > b->rela->r_offset)
8093 return 1;
8094 return 0;
8095 }
8096
8097 static int
8098 elf_link_sort_cmp2 (const void *A, const void *B)
8099 {
8100 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8101 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8102
8103 if (a->type < b->type)
8104 return -1;
8105 if (a->type > b->type)
8106 return 1;
8107 if (a->u.offset < b->u.offset)
8108 return -1;
8109 if (a->u.offset > b->u.offset)
8110 return 1;
8111 if (a->rela->r_offset < b->rela->r_offset)
8112 return -1;
8113 if (a->rela->r_offset > b->rela->r_offset)
8114 return 1;
8115 return 0;
8116 }
8117
8118 static size_t
8119 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8120 {
8121 asection *dynamic_relocs;
8122 asection *rela_dyn;
8123 asection *rel_dyn;
8124 bfd_size_type count, size;
8125 size_t i, ret, sort_elt, ext_size;
8126 bfd_byte *sort, *s_non_relative, *p;
8127 struct elf_link_sort_rela *sq;
8128 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8129 int i2e = bed->s->int_rels_per_ext_rel;
8130 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8131 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8132 struct bfd_link_order *lo;
8133 bfd_vma r_sym_mask;
8134 bfd_boolean use_rela;
8135
8136 /* Find a dynamic reloc section. */
8137 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8138 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8139 if (rela_dyn != NULL && rela_dyn->size > 0
8140 && rel_dyn != NULL && rel_dyn->size > 0)
8141 {
8142 bfd_boolean use_rela_initialised = FALSE;
8143
8144 /* This is just here to stop gcc from complaining.
8145 It's initialization checking code is not perfect. */
8146 use_rela = TRUE;
8147
8148 /* Both sections are present. Examine the sizes
8149 of the indirect sections to help us choose. */
8150 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8151 if (lo->type == bfd_indirect_link_order)
8152 {
8153 asection *o = lo->u.indirect.section;
8154
8155 if ((o->size % bed->s->sizeof_rela) == 0)
8156 {
8157 if ((o->size % bed->s->sizeof_rel) == 0)
8158 /* Section size is divisible by both rel and rela sizes.
8159 It is of no help to us. */
8160 ;
8161 else
8162 {
8163 /* Section size is only divisible by rela. */
8164 if (use_rela_initialised && (use_rela == FALSE))
8165 {
8166 _bfd_error_handler
8167 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8168 bfd_set_error (bfd_error_invalid_operation);
8169 return 0;
8170 }
8171 else
8172 {
8173 use_rela = TRUE;
8174 use_rela_initialised = TRUE;
8175 }
8176 }
8177 }
8178 else if ((o->size % bed->s->sizeof_rel) == 0)
8179 {
8180 /* Section size is only divisible by rel. */
8181 if (use_rela_initialised && (use_rela == TRUE))
8182 {
8183 _bfd_error_handler
8184 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8185 bfd_set_error (bfd_error_invalid_operation);
8186 return 0;
8187 }
8188 else
8189 {
8190 use_rela = FALSE;
8191 use_rela_initialised = TRUE;
8192 }
8193 }
8194 else
8195 {
8196 /* The section size is not divisible by either - something is wrong. */
8197 _bfd_error_handler
8198 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8199 bfd_set_error (bfd_error_invalid_operation);
8200 return 0;
8201 }
8202 }
8203
8204 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8205 if (lo->type == bfd_indirect_link_order)
8206 {
8207 asection *o = lo->u.indirect.section;
8208
8209 if ((o->size % bed->s->sizeof_rela) == 0)
8210 {
8211 if ((o->size % bed->s->sizeof_rel) == 0)
8212 /* Section size is divisible by both rel and rela sizes.
8213 It is of no help to us. */
8214 ;
8215 else
8216 {
8217 /* Section size is only divisible by rela. */
8218 if (use_rela_initialised && (use_rela == FALSE))
8219 {
8220 _bfd_error_handler
8221 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8222 bfd_set_error (bfd_error_invalid_operation);
8223 return 0;
8224 }
8225 else
8226 {
8227 use_rela = TRUE;
8228 use_rela_initialised = TRUE;
8229 }
8230 }
8231 }
8232 else if ((o->size % bed->s->sizeof_rel) == 0)
8233 {
8234 /* Section size is only divisible by rel. */
8235 if (use_rela_initialised && (use_rela == TRUE))
8236 {
8237 _bfd_error_handler
8238 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8239 bfd_set_error (bfd_error_invalid_operation);
8240 return 0;
8241 }
8242 else
8243 {
8244 use_rela = FALSE;
8245 use_rela_initialised = TRUE;
8246 }
8247 }
8248 else
8249 {
8250 /* The section size is not divisible by either - something is wrong. */
8251 _bfd_error_handler
8252 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8253 bfd_set_error (bfd_error_invalid_operation);
8254 return 0;
8255 }
8256 }
8257
8258 if (! use_rela_initialised)
8259 /* Make a guess. */
8260 use_rela = TRUE;
8261 }
8262 else if (rela_dyn != NULL && rela_dyn->size > 0)
8263 use_rela = TRUE;
8264 else if (rel_dyn != NULL && rel_dyn->size > 0)
8265 use_rela = FALSE;
8266 else
8267 return 0;
8268
8269 if (use_rela)
8270 {
8271 dynamic_relocs = rela_dyn;
8272 ext_size = bed->s->sizeof_rela;
8273 swap_in = bed->s->swap_reloca_in;
8274 swap_out = bed->s->swap_reloca_out;
8275 }
8276 else
8277 {
8278 dynamic_relocs = rel_dyn;
8279 ext_size = bed->s->sizeof_rel;
8280 swap_in = bed->s->swap_reloc_in;
8281 swap_out = bed->s->swap_reloc_out;
8282 }
8283
8284 size = 0;
8285 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8286 if (lo->type == bfd_indirect_link_order)
8287 size += lo->u.indirect.section->size;
8288
8289 if (size != dynamic_relocs->size)
8290 return 0;
8291
8292 sort_elt = (sizeof (struct elf_link_sort_rela)
8293 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8294
8295 count = dynamic_relocs->size / ext_size;
8296 if (count == 0)
8297 return 0;
8298 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8299
8300 if (sort == NULL)
8301 {
8302 (*info->callbacks->warning)
8303 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8304 return 0;
8305 }
8306
8307 if (bed->s->arch_size == 32)
8308 r_sym_mask = ~(bfd_vma) 0xff;
8309 else
8310 r_sym_mask = ~(bfd_vma) 0xffffffff;
8311
8312 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8313 if (lo->type == bfd_indirect_link_order)
8314 {
8315 bfd_byte *erel, *erelend;
8316 asection *o = lo->u.indirect.section;
8317
8318 if (o->contents == NULL && o->size != 0)
8319 {
8320 /* This is a reloc section that is being handled as a normal
8321 section. See bfd_section_from_shdr. We can't combine
8322 relocs in this case. */
8323 free (sort);
8324 return 0;
8325 }
8326 erel = o->contents;
8327 erelend = o->contents + o->size;
8328 /* FIXME: octets_per_byte. */
8329 p = sort + o->output_offset / ext_size * sort_elt;
8330
8331 while (erel < erelend)
8332 {
8333 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8334
8335 (*swap_in) (abfd, erel, s->rela);
8336 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8337 s->u.sym_mask = r_sym_mask;
8338 p += sort_elt;
8339 erel += ext_size;
8340 }
8341 }
8342
8343 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8344
8345 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8346 {
8347 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8348 if (s->type != reloc_class_relative)
8349 break;
8350 }
8351 ret = i;
8352 s_non_relative = p;
8353
8354 sq = (struct elf_link_sort_rela *) s_non_relative;
8355 for (; i < count; i++, p += sort_elt)
8356 {
8357 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8358 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8359 sq = sp;
8360 sp->u.offset = sq->rela->r_offset;
8361 }
8362
8363 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8364
8365 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8366 if (lo->type == bfd_indirect_link_order)
8367 {
8368 bfd_byte *erel, *erelend;
8369 asection *o = lo->u.indirect.section;
8370
8371 erel = o->contents;
8372 erelend = o->contents + o->size;
8373 /* FIXME: octets_per_byte. */
8374 p = sort + o->output_offset / ext_size * sort_elt;
8375 while (erel < erelend)
8376 {
8377 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8378 (*swap_out) (abfd, s->rela, erel);
8379 p += sort_elt;
8380 erel += ext_size;
8381 }
8382 }
8383
8384 free (sort);
8385 *psec = dynamic_relocs;
8386 return ret;
8387 }
8388
8389 /* Flush the output symbols to the file. */
8390
8391 static bfd_boolean
8392 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8393 const struct elf_backend_data *bed)
8394 {
8395 if (flinfo->symbuf_count > 0)
8396 {
8397 Elf_Internal_Shdr *hdr;
8398 file_ptr pos;
8399 bfd_size_type amt;
8400
8401 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8402 pos = hdr->sh_offset + hdr->sh_size;
8403 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8404 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8405 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8406 return FALSE;
8407
8408 hdr->sh_size += amt;
8409 flinfo->symbuf_count = 0;
8410 }
8411
8412 return TRUE;
8413 }
8414
8415 /* Add a symbol to the output symbol table. */
8416
8417 static int
8418 elf_link_output_sym (struct elf_final_link_info *flinfo,
8419 const char *name,
8420 Elf_Internal_Sym *elfsym,
8421 asection *input_sec,
8422 struct elf_link_hash_entry *h)
8423 {
8424 bfd_byte *dest;
8425 Elf_External_Sym_Shndx *destshndx;
8426 int (*output_symbol_hook)
8427 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8428 struct elf_link_hash_entry *);
8429 const struct elf_backend_data *bed;
8430
8431 bed = get_elf_backend_data (flinfo->output_bfd);
8432 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8433 if (output_symbol_hook != NULL)
8434 {
8435 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8436 if (ret != 1)
8437 return ret;
8438 }
8439
8440 if (name == NULL || *name == '\0')
8441 elfsym->st_name = 0;
8442 else if (input_sec->flags & SEC_EXCLUDE)
8443 elfsym->st_name = 0;
8444 else
8445 {
8446 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8447 name, TRUE, FALSE);
8448 if (elfsym->st_name == (unsigned long) -1)
8449 return 0;
8450 }
8451
8452 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8453 {
8454 if (! elf_link_flush_output_syms (flinfo, bed))
8455 return 0;
8456 }
8457
8458 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8459 destshndx = flinfo->symshndxbuf;
8460 if (destshndx != NULL)
8461 {
8462 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8463 {
8464 bfd_size_type amt;
8465
8466 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8467 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8468 amt * 2);
8469 if (destshndx == NULL)
8470 return 0;
8471 flinfo->symshndxbuf = destshndx;
8472 memset ((char *) destshndx + amt, 0, amt);
8473 flinfo->shndxbuf_size *= 2;
8474 }
8475 destshndx += bfd_get_symcount (flinfo->output_bfd);
8476 }
8477
8478 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8479 flinfo->symbuf_count += 1;
8480 bfd_get_symcount (flinfo->output_bfd) += 1;
8481
8482 return 1;
8483 }
8484
8485 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8486
8487 static bfd_boolean
8488 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8489 {
8490 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8491 && sym->st_shndx < SHN_LORESERVE)
8492 {
8493 /* The gABI doesn't support dynamic symbols in output sections
8494 beyond 64k. */
8495 (*_bfd_error_handler)
8496 (_("%B: Too many sections: %d (>= %d)"),
8497 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8498 bfd_set_error (bfd_error_nonrepresentable_section);
8499 return FALSE;
8500 }
8501 return TRUE;
8502 }
8503
8504 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8505 allowing an unsatisfied unversioned symbol in the DSO to match a
8506 versioned symbol that would normally require an explicit version.
8507 We also handle the case that a DSO references a hidden symbol
8508 which may be satisfied by a versioned symbol in another DSO. */
8509
8510 static bfd_boolean
8511 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8512 const struct elf_backend_data *bed,
8513 struct elf_link_hash_entry *h)
8514 {
8515 bfd *abfd;
8516 struct elf_link_loaded_list *loaded;
8517
8518 if (!is_elf_hash_table (info->hash))
8519 return FALSE;
8520
8521 /* Check indirect symbol. */
8522 while (h->root.type == bfd_link_hash_indirect)
8523 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8524
8525 switch (h->root.type)
8526 {
8527 default:
8528 abfd = NULL;
8529 break;
8530
8531 case bfd_link_hash_undefined:
8532 case bfd_link_hash_undefweak:
8533 abfd = h->root.u.undef.abfd;
8534 if ((abfd->flags & DYNAMIC) == 0
8535 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8536 return FALSE;
8537 break;
8538
8539 case bfd_link_hash_defined:
8540 case bfd_link_hash_defweak:
8541 abfd = h->root.u.def.section->owner;
8542 break;
8543
8544 case bfd_link_hash_common:
8545 abfd = h->root.u.c.p->section->owner;
8546 break;
8547 }
8548 BFD_ASSERT (abfd != NULL);
8549
8550 for (loaded = elf_hash_table (info)->loaded;
8551 loaded != NULL;
8552 loaded = loaded->next)
8553 {
8554 bfd *input;
8555 Elf_Internal_Shdr *hdr;
8556 bfd_size_type symcount;
8557 bfd_size_type extsymcount;
8558 bfd_size_type extsymoff;
8559 Elf_Internal_Shdr *versymhdr;
8560 Elf_Internal_Sym *isym;
8561 Elf_Internal_Sym *isymend;
8562 Elf_Internal_Sym *isymbuf;
8563 Elf_External_Versym *ever;
8564 Elf_External_Versym *extversym;
8565
8566 input = loaded->abfd;
8567
8568 /* We check each DSO for a possible hidden versioned definition. */
8569 if (input == abfd
8570 || (input->flags & DYNAMIC) == 0
8571 || elf_dynversym (input) == 0)
8572 continue;
8573
8574 hdr = &elf_tdata (input)->dynsymtab_hdr;
8575
8576 symcount = hdr->sh_size / bed->s->sizeof_sym;
8577 if (elf_bad_symtab (input))
8578 {
8579 extsymcount = symcount;
8580 extsymoff = 0;
8581 }
8582 else
8583 {
8584 extsymcount = symcount - hdr->sh_info;
8585 extsymoff = hdr->sh_info;
8586 }
8587
8588 if (extsymcount == 0)
8589 continue;
8590
8591 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8592 NULL, NULL, NULL);
8593 if (isymbuf == NULL)
8594 return FALSE;
8595
8596 /* Read in any version definitions. */
8597 versymhdr = &elf_tdata (input)->dynversym_hdr;
8598 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8599 if (extversym == NULL)
8600 goto error_ret;
8601
8602 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8603 || (bfd_bread (extversym, versymhdr->sh_size, input)
8604 != versymhdr->sh_size))
8605 {
8606 free (extversym);
8607 error_ret:
8608 free (isymbuf);
8609 return FALSE;
8610 }
8611
8612 ever = extversym + extsymoff;
8613 isymend = isymbuf + extsymcount;
8614 for (isym = isymbuf; isym < isymend; isym++, ever++)
8615 {
8616 const char *name;
8617 Elf_Internal_Versym iver;
8618 unsigned short version_index;
8619
8620 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8621 || isym->st_shndx == SHN_UNDEF)
8622 continue;
8623
8624 name = bfd_elf_string_from_elf_section (input,
8625 hdr->sh_link,
8626 isym->st_name);
8627 if (strcmp (name, h->root.root.string) != 0)
8628 continue;
8629
8630 _bfd_elf_swap_versym_in (input, ever, &iver);
8631
8632 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8633 && !(h->def_regular
8634 && h->forced_local))
8635 {
8636 /* If we have a non-hidden versioned sym, then it should
8637 have provided a definition for the undefined sym unless
8638 it is defined in a non-shared object and forced local.
8639 */
8640 abort ();
8641 }
8642
8643 version_index = iver.vs_vers & VERSYM_VERSION;
8644 if (version_index == 1 || version_index == 2)
8645 {
8646 /* This is the base or first version. We can use it. */
8647 free (extversym);
8648 free (isymbuf);
8649 return TRUE;
8650 }
8651 }
8652
8653 free (extversym);
8654 free (isymbuf);
8655 }
8656
8657 return FALSE;
8658 }
8659
8660 /* Add an external symbol to the symbol table. This is called from
8661 the hash table traversal routine. When generating a shared object,
8662 we go through the symbol table twice. The first time we output
8663 anything that might have been forced to local scope in a version
8664 script. The second time we output the symbols that are still
8665 global symbols. */
8666
8667 static bfd_boolean
8668 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8669 {
8670 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8671 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8672 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8673 bfd_boolean strip;
8674 Elf_Internal_Sym sym;
8675 asection *input_sec;
8676 const struct elf_backend_data *bed;
8677 long indx;
8678 int ret;
8679
8680 if (h->root.type == bfd_link_hash_warning)
8681 {
8682 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8683 if (h->root.type == bfd_link_hash_new)
8684 return TRUE;
8685 }
8686
8687 /* Decide whether to output this symbol in this pass. */
8688 if (eoinfo->localsyms)
8689 {
8690 if (!h->forced_local)
8691 return TRUE;
8692 if (eoinfo->second_pass
8693 && !((h->root.type == bfd_link_hash_defined
8694 || h->root.type == bfd_link_hash_defweak)
8695 && h->root.u.def.section->output_section != NULL))
8696 return TRUE;
8697
8698 if (!eoinfo->file_sym_done
8699 && (eoinfo->second_pass ? eoinfo->flinfo->filesym_count == 1
8700 : eoinfo->flinfo->filesym_count > 1))
8701 {
8702 /* Output a FILE symbol so that following locals are not associated
8703 with the wrong input file. */
8704 memset (&sym, 0, sizeof (sym));
8705 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8706 sym.st_shndx = SHN_ABS;
8707 if (!elf_link_output_sym (eoinfo->flinfo, NULL, &sym,
8708 bfd_und_section_ptr, NULL))
8709 return FALSE;
8710
8711 eoinfo->file_sym_done = TRUE;
8712 }
8713 }
8714 else
8715 {
8716 if (h->forced_local)
8717 return TRUE;
8718 }
8719
8720 bed = get_elf_backend_data (flinfo->output_bfd);
8721
8722 if (h->root.type == bfd_link_hash_undefined)
8723 {
8724 /* If we have an undefined symbol reference here then it must have
8725 come from a shared library that is being linked in. (Undefined
8726 references in regular files have already been handled unless
8727 they are in unreferenced sections which are removed by garbage
8728 collection). */
8729 bfd_boolean ignore_undef = FALSE;
8730
8731 /* Some symbols may be special in that the fact that they're
8732 undefined can be safely ignored - let backend determine that. */
8733 if (bed->elf_backend_ignore_undef_symbol)
8734 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8735
8736 /* If we are reporting errors for this situation then do so now. */
8737 if (!ignore_undef
8738 && h->ref_dynamic
8739 && (!h->ref_regular || flinfo->info->gc_sections)
8740 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8741 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8742 {
8743 if (!(flinfo->info->callbacks->undefined_symbol
8744 (flinfo->info, h->root.root.string,
8745 h->ref_regular ? NULL : h->root.u.undef.abfd,
8746 NULL, 0,
8747 (flinfo->info->unresolved_syms_in_shared_libs
8748 == RM_GENERATE_ERROR))))
8749 {
8750 bfd_set_error (bfd_error_bad_value);
8751 eoinfo->failed = TRUE;
8752 return FALSE;
8753 }
8754 }
8755 }
8756
8757 /* We should also warn if a forced local symbol is referenced from
8758 shared libraries. */
8759 if (!flinfo->info->relocatable
8760 && flinfo->info->executable
8761 && h->forced_local
8762 && h->ref_dynamic
8763 && h->def_regular
8764 && !h->dynamic_def
8765 && h->ref_dynamic_nonweak
8766 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8767 {
8768 bfd *def_bfd;
8769 const char *msg;
8770 struct elf_link_hash_entry *hi = h;
8771
8772 /* Check indirect symbol. */
8773 while (hi->root.type == bfd_link_hash_indirect)
8774 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8775
8776 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8777 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8778 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8779 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8780 else
8781 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8782 def_bfd = flinfo->output_bfd;
8783 if (hi->root.u.def.section != bfd_abs_section_ptr)
8784 def_bfd = hi->root.u.def.section->owner;
8785 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8786 h->root.root.string);
8787 bfd_set_error (bfd_error_bad_value);
8788 eoinfo->failed = TRUE;
8789 return FALSE;
8790 }
8791
8792 /* We don't want to output symbols that have never been mentioned by
8793 a regular file, or that we have been told to strip. However, if
8794 h->indx is set to -2, the symbol is used by a reloc and we must
8795 output it. */
8796 if (h->indx == -2)
8797 strip = FALSE;
8798 else if ((h->def_dynamic
8799 || h->ref_dynamic
8800 || h->root.type == bfd_link_hash_new)
8801 && !h->def_regular
8802 && !h->ref_regular)
8803 strip = TRUE;
8804 else if (flinfo->info->strip == strip_all)
8805 strip = TRUE;
8806 else if (flinfo->info->strip == strip_some
8807 && bfd_hash_lookup (flinfo->info->keep_hash,
8808 h->root.root.string, FALSE, FALSE) == NULL)
8809 strip = TRUE;
8810 else if ((h->root.type == bfd_link_hash_defined
8811 || h->root.type == bfd_link_hash_defweak)
8812 && ((flinfo->info->strip_discarded
8813 && discarded_section (h->root.u.def.section))
8814 || (h->root.u.def.section->owner != NULL
8815 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8816 strip = TRUE;
8817 else if ((h->root.type == bfd_link_hash_undefined
8818 || h->root.type == bfd_link_hash_undefweak)
8819 && h->root.u.undef.abfd != NULL
8820 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8821 strip = TRUE;
8822 else
8823 strip = FALSE;
8824
8825 /* If we're stripping it, and it's not a dynamic symbol, there's
8826 nothing else to do unless it is a forced local symbol or a
8827 STT_GNU_IFUNC symbol. */
8828 if (strip
8829 && h->dynindx == -1
8830 && h->type != STT_GNU_IFUNC
8831 && !h->forced_local)
8832 return TRUE;
8833
8834 sym.st_value = 0;
8835 sym.st_size = h->size;
8836 sym.st_other = h->other;
8837 if (h->forced_local)
8838 {
8839 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8840 /* Turn off visibility on local symbol. */
8841 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8842 }
8843 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
8844 else if (h->unique_global && h->def_regular)
8845 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8846 else if (h->root.type == bfd_link_hash_undefweak
8847 || h->root.type == bfd_link_hash_defweak)
8848 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8849 else
8850 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8851 sym.st_target_internal = h->target_internal;
8852
8853 switch (h->root.type)
8854 {
8855 default:
8856 case bfd_link_hash_new:
8857 case bfd_link_hash_warning:
8858 abort ();
8859 return FALSE;
8860
8861 case bfd_link_hash_undefined:
8862 case bfd_link_hash_undefweak:
8863 input_sec = bfd_und_section_ptr;
8864 sym.st_shndx = SHN_UNDEF;
8865 break;
8866
8867 case bfd_link_hash_defined:
8868 case bfd_link_hash_defweak:
8869 {
8870 input_sec = h->root.u.def.section;
8871 if (input_sec->output_section != NULL)
8872 {
8873 if (eoinfo->localsyms && flinfo->filesym_count == 1)
8874 {
8875 bfd_boolean second_pass_sym
8876 = (input_sec->owner == flinfo->output_bfd
8877 || input_sec->owner == NULL
8878 || (input_sec->flags & SEC_LINKER_CREATED) != 0
8879 || (input_sec->owner->flags & BFD_LINKER_CREATED) != 0);
8880
8881 eoinfo->need_second_pass |= second_pass_sym;
8882 if (eoinfo->second_pass != second_pass_sym)
8883 return TRUE;
8884 }
8885
8886 sym.st_shndx =
8887 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
8888 input_sec->output_section);
8889 if (sym.st_shndx == SHN_BAD)
8890 {
8891 (*_bfd_error_handler)
8892 (_("%B: could not find output section %A for input section %A"),
8893 flinfo->output_bfd, input_sec->output_section, input_sec);
8894 bfd_set_error (bfd_error_nonrepresentable_section);
8895 eoinfo->failed = TRUE;
8896 return FALSE;
8897 }
8898
8899 /* ELF symbols in relocatable files are section relative,
8900 but in nonrelocatable files they are virtual
8901 addresses. */
8902 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8903 if (!flinfo->info->relocatable)
8904 {
8905 sym.st_value += input_sec->output_section->vma;
8906 if (h->type == STT_TLS)
8907 {
8908 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
8909 if (tls_sec != NULL)
8910 sym.st_value -= tls_sec->vma;
8911 else
8912 {
8913 /* The TLS section may have been garbage collected. */
8914 BFD_ASSERT (flinfo->info->gc_sections
8915 && !input_sec->gc_mark);
8916 }
8917 }
8918 }
8919 }
8920 else
8921 {
8922 BFD_ASSERT (input_sec->owner == NULL
8923 || (input_sec->owner->flags & DYNAMIC) != 0);
8924 sym.st_shndx = SHN_UNDEF;
8925 input_sec = bfd_und_section_ptr;
8926 }
8927 }
8928 break;
8929
8930 case bfd_link_hash_common:
8931 input_sec = h->root.u.c.p->section;
8932 sym.st_shndx = bed->common_section_index (input_sec);
8933 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8934 break;
8935
8936 case bfd_link_hash_indirect:
8937 /* These symbols are created by symbol versioning. They point
8938 to the decorated version of the name. For example, if the
8939 symbol foo@@GNU_1.2 is the default, which should be used when
8940 foo is used with no version, then we add an indirect symbol
8941 foo which points to foo@@GNU_1.2. We ignore these symbols,
8942 since the indirected symbol is already in the hash table. */
8943 return TRUE;
8944 }
8945
8946 /* Give the processor backend a chance to tweak the symbol value,
8947 and also to finish up anything that needs to be done for this
8948 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8949 forced local syms when non-shared is due to a historical quirk.
8950 STT_GNU_IFUNC symbol must go through PLT. */
8951 if ((h->type == STT_GNU_IFUNC
8952 && h->def_regular
8953 && !flinfo->info->relocatable)
8954 || ((h->dynindx != -1
8955 || h->forced_local)
8956 && ((flinfo->info->shared
8957 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8958 || h->root.type != bfd_link_hash_undefweak))
8959 || !h->forced_local)
8960 && elf_hash_table (flinfo->info)->dynamic_sections_created))
8961 {
8962 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8963 (flinfo->output_bfd, flinfo->info, h, &sym)))
8964 {
8965 eoinfo->failed = TRUE;
8966 return FALSE;
8967 }
8968 }
8969
8970 /* If we are marking the symbol as undefined, and there are no
8971 non-weak references to this symbol from a regular object, then
8972 mark the symbol as weak undefined; if there are non-weak
8973 references, mark the symbol as strong. We can't do this earlier,
8974 because it might not be marked as undefined until the
8975 finish_dynamic_symbol routine gets through with it. */
8976 if (sym.st_shndx == SHN_UNDEF
8977 && h->ref_regular
8978 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8979 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8980 {
8981 int bindtype;
8982 unsigned int type = ELF_ST_TYPE (sym.st_info);
8983
8984 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8985 if (type == STT_GNU_IFUNC)
8986 type = STT_FUNC;
8987
8988 if (h->ref_regular_nonweak)
8989 bindtype = STB_GLOBAL;
8990 else
8991 bindtype = STB_WEAK;
8992 sym.st_info = ELF_ST_INFO (bindtype, type);
8993 }
8994
8995 /* If this is a symbol defined in a dynamic library, don't use the
8996 symbol size from the dynamic library. Relinking an executable
8997 against a new library may introduce gratuitous changes in the
8998 executable's symbols if we keep the size. */
8999 if (sym.st_shndx == SHN_UNDEF
9000 && !h->def_regular
9001 && h->def_dynamic)
9002 sym.st_size = 0;
9003
9004 /* If a non-weak symbol with non-default visibility is not defined
9005 locally, it is a fatal error. */
9006 if (!flinfo->info->relocatable
9007 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9008 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9009 && h->root.type == bfd_link_hash_undefined
9010 && !h->def_regular)
9011 {
9012 const char *msg;
9013
9014 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9015 msg = _("%B: protected symbol `%s' isn't defined");
9016 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9017 msg = _("%B: internal symbol `%s' isn't defined");
9018 else
9019 msg = _("%B: hidden symbol `%s' isn't defined");
9020 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9021 bfd_set_error (bfd_error_bad_value);
9022 eoinfo->failed = TRUE;
9023 return FALSE;
9024 }
9025
9026 /* If this symbol should be put in the .dynsym section, then put it
9027 there now. We already know the symbol index. We also fill in
9028 the entry in the .hash section. */
9029 if (flinfo->dynsym_sec != NULL
9030 && h->dynindx != -1
9031 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9032 {
9033 bfd_byte *esym;
9034
9035 /* Since there is no version information in the dynamic string,
9036 if there is no version info in symbol version section, we will
9037 have a run-time problem. */
9038 if (h->verinfo.verdef == NULL)
9039 {
9040 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9041
9042 if (p && p [1] != '\0')
9043 {
9044 (*_bfd_error_handler)
9045 (_("%B: No symbol version section for versioned symbol `%s'"),
9046 flinfo->output_bfd, h->root.root.string);
9047 eoinfo->failed = TRUE;
9048 return FALSE;
9049 }
9050 }
9051
9052 sym.st_name = h->dynstr_index;
9053 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9054 if (!check_dynsym (flinfo->output_bfd, &sym))
9055 {
9056 eoinfo->failed = TRUE;
9057 return FALSE;
9058 }
9059 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9060
9061 if (flinfo->hash_sec != NULL)
9062 {
9063 size_t hash_entry_size;
9064 bfd_byte *bucketpos;
9065 bfd_vma chain;
9066 size_t bucketcount;
9067 size_t bucket;
9068
9069 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9070 bucket = h->u.elf_hash_value % bucketcount;
9071
9072 hash_entry_size
9073 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9074 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9075 + (bucket + 2) * hash_entry_size);
9076 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9077 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9078 bucketpos);
9079 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9080 ((bfd_byte *) flinfo->hash_sec->contents
9081 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9082 }
9083
9084 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9085 {
9086 Elf_Internal_Versym iversym;
9087 Elf_External_Versym *eversym;
9088
9089 if (!h->def_regular)
9090 {
9091 if (h->verinfo.verdef == NULL)
9092 iversym.vs_vers = 0;
9093 else
9094 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9095 }
9096 else
9097 {
9098 if (h->verinfo.vertree == NULL)
9099 iversym.vs_vers = 1;
9100 else
9101 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9102 if (flinfo->info->create_default_symver)
9103 iversym.vs_vers++;
9104 }
9105
9106 if (h->hidden)
9107 iversym.vs_vers |= VERSYM_HIDDEN;
9108
9109 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9110 eversym += h->dynindx;
9111 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9112 }
9113 }
9114
9115 /* If we're stripping it, then it was just a dynamic symbol, and
9116 there's nothing else to do. */
9117 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
9118 return TRUE;
9119
9120 indx = bfd_get_symcount (flinfo->output_bfd);
9121 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9122 if (ret == 0)
9123 {
9124 eoinfo->failed = TRUE;
9125 return FALSE;
9126 }
9127 else if (ret == 1)
9128 h->indx = indx;
9129 else if (h->indx == -2)
9130 abort();
9131
9132 return TRUE;
9133 }
9134
9135 /* Return TRUE if special handling is done for relocs in SEC against
9136 symbols defined in discarded sections. */
9137
9138 static bfd_boolean
9139 elf_section_ignore_discarded_relocs (asection *sec)
9140 {
9141 const struct elf_backend_data *bed;
9142
9143 switch (sec->sec_info_type)
9144 {
9145 case SEC_INFO_TYPE_STABS:
9146 case SEC_INFO_TYPE_EH_FRAME:
9147 return TRUE;
9148 default:
9149 break;
9150 }
9151
9152 bed = get_elf_backend_data (sec->owner);
9153 if (bed->elf_backend_ignore_discarded_relocs != NULL
9154 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9155 return TRUE;
9156
9157 return FALSE;
9158 }
9159
9160 /* Return a mask saying how ld should treat relocations in SEC against
9161 symbols defined in discarded sections. If this function returns
9162 COMPLAIN set, ld will issue a warning message. If this function
9163 returns PRETEND set, and the discarded section was link-once and the
9164 same size as the kept link-once section, ld will pretend that the
9165 symbol was actually defined in the kept section. Otherwise ld will
9166 zero the reloc (at least that is the intent, but some cooperation by
9167 the target dependent code is needed, particularly for REL targets). */
9168
9169 unsigned int
9170 _bfd_elf_default_action_discarded (asection *sec)
9171 {
9172 if (sec->flags & SEC_DEBUGGING)
9173 return PRETEND;
9174
9175 if (strcmp (".eh_frame", sec->name) == 0)
9176 return 0;
9177
9178 if (strcmp (".gcc_except_table", sec->name) == 0)
9179 return 0;
9180
9181 return COMPLAIN | PRETEND;
9182 }
9183
9184 /* Find a match between a section and a member of a section group. */
9185
9186 static asection *
9187 match_group_member (asection *sec, asection *group,
9188 struct bfd_link_info *info)
9189 {
9190 asection *first = elf_next_in_group (group);
9191 asection *s = first;
9192
9193 while (s != NULL)
9194 {
9195 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9196 return s;
9197
9198 s = elf_next_in_group (s);
9199 if (s == first)
9200 break;
9201 }
9202
9203 return NULL;
9204 }
9205
9206 /* Check if the kept section of a discarded section SEC can be used
9207 to replace it. Return the replacement if it is OK. Otherwise return
9208 NULL. */
9209
9210 asection *
9211 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9212 {
9213 asection *kept;
9214
9215 kept = sec->kept_section;
9216 if (kept != NULL)
9217 {
9218 if ((kept->flags & SEC_GROUP) != 0)
9219 kept = match_group_member (sec, kept, info);
9220 if (kept != NULL
9221 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9222 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9223 kept = NULL;
9224 sec->kept_section = kept;
9225 }
9226 return kept;
9227 }
9228
9229 /* Link an input file into the linker output file. This function
9230 handles all the sections and relocations of the input file at once.
9231 This is so that we only have to read the local symbols once, and
9232 don't have to keep them in memory. */
9233
9234 static bfd_boolean
9235 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9236 {
9237 int (*relocate_section)
9238 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9239 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9240 bfd *output_bfd;
9241 Elf_Internal_Shdr *symtab_hdr;
9242 size_t locsymcount;
9243 size_t extsymoff;
9244 Elf_Internal_Sym *isymbuf;
9245 Elf_Internal_Sym *isym;
9246 Elf_Internal_Sym *isymend;
9247 long *pindex;
9248 asection **ppsection;
9249 asection *o;
9250 const struct elf_backend_data *bed;
9251 struct elf_link_hash_entry **sym_hashes;
9252 bfd_size_type address_size;
9253 bfd_vma r_type_mask;
9254 int r_sym_shift;
9255 bfd_boolean have_file_sym = FALSE;
9256
9257 output_bfd = flinfo->output_bfd;
9258 bed = get_elf_backend_data (output_bfd);
9259 relocate_section = bed->elf_backend_relocate_section;
9260
9261 /* If this is a dynamic object, we don't want to do anything here:
9262 we don't want the local symbols, and we don't want the section
9263 contents. */
9264 if ((input_bfd->flags & DYNAMIC) != 0)
9265 return TRUE;
9266
9267 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9268 if (elf_bad_symtab (input_bfd))
9269 {
9270 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9271 extsymoff = 0;
9272 }
9273 else
9274 {
9275 locsymcount = symtab_hdr->sh_info;
9276 extsymoff = symtab_hdr->sh_info;
9277 }
9278
9279 /* Read the local symbols. */
9280 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9281 if (isymbuf == NULL && locsymcount != 0)
9282 {
9283 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9284 flinfo->internal_syms,
9285 flinfo->external_syms,
9286 flinfo->locsym_shndx);
9287 if (isymbuf == NULL)
9288 return FALSE;
9289 }
9290
9291 /* Find local symbol sections and adjust values of symbols in
9292 SEC_MERGE sections. Write out those local symbols we know are
9293 going into the output file. */
9294 isymend = isymbuf + locsymcount;
9295 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9296 isym < isymend;
9297 isym++, pindex++, ppsection++)
9298 {
9299 asection *isec;
9300 const char *name;
9301 Elf_Internal_Sym osym;
9302 long indx;
9303 int ret;
9304
9305 *pindex = -1;
9306
9307 if (elf_bad_symtab (input_bfd))
9308 {
9309 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9310 {
9311 *ppsection = NULL;
9312 continue;
9313 }
9314 }
9315
9316 if (isym->st_shndx == SHN_UNDEF)
9317 isec = bfd_und_section_ptr;
9318 else if (isym->st_shndx == SHN_ABS)
9319 isec = bfd_abs_section_ptr;
9320 else if (isym->st_shndx == SHN_COMMON)
9321 isec = bfd_com_section_ptr;
9322 else
9323 {
9324 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9325 if (isec == NULL)
9326 {
9327 /* Don't attempt to output symbols with st_shnx in the
9328 reserved range other than SHN_ABS and SHN_COMMON. */
9329 *ppsection = NULL;
9330 continue;
9331 }
9332 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9333 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9334 isym->st_value =
9335 _bfd_merged_section_offset (output_bfd, &isec,
9336 elf_section_data (isec)->sec_info,
9337 isym->st_value);
9338 }
9339
9340 *ppsection = isec;
9341
9342 /* Don't output the first, undefined, symbol. */
9343 if (ppsection == flinfo->sections)
9344 continue;
9345
9346 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9347 {
9348 /* We never output section symbols. Instead, we use the
9349 section symbol of the corresponding section in the output
9350 file. */
9351 continue;
9352 }
9353
9354 /* If we are stripping all symbols, we don't want to output this
9355 one. */
9356 if (flinfo->info->strip == strip_all)
9357 continue;
9358
9359 /* If we are discarding all local symbols, we don't want to
9360 output this one. If we are generating a relocatable output
9361 file, then some of the local symbols may be required by
9362 relocs; we output them below as we discover that they are
9363 needed. */
9364 if (flinfo->info->discard == discard_all)
9365 continue;
9366
9367 /* If this symbol is defined in a section which we are
9368 discarding, we don't need to keep it. */
9369 if (isym->st_shndx != SHN_UNDEF
9370 && isym->st_shndx < SHN_LORESERVE
9371 && bfd_section_removed_from_list (output_bfd,
9372 isec->output_section))
9373 continue;
9374
9375 /* Get the name of the symbol. */
9376 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9377 isym->st_name);
9378 if (name == NULL)
9379 return FALSE;
9380
9381 /* See if we are discarding symbols with this name. */
9382 if ((flinfo->info->strip == strip_some
9383 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9384 == NULL))
9385 || (((flinfo->info->discard == discard_sec_merge
9386 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9387 || flinfo->info->discard == discard_l)
9388 && bfd_is_local_label_name (input_bfd, name)))
9389 continue;
9390
9391 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9392 {
9393 have_file_sym = TRUE;
9394 flinfo->filesym_count += 1;
9395 }
9396 if (!have_file_sym)
9397 {
9398 /* In the absence of debug info, bfd_find_nearest_line uses
9399 FILE symbols to determine the source file for local
9400 function symbols. Provide a FILE symbol here if input
9401 files lack such, so that their symbols won't be
9402 associated with a previous input file. It's not the
9403 source file, but the best we can do. */
9404 have_file_sym = TRUE;
9405 flinfo->filesym_count += 1;
9406 memset (&osym, 0, sizeof (osym));
9407 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9408 osym.st_shndx = SHN_ABS;
9409 if (!elf_link_output_sym (flinfo, input_bfd->filename, &osym,
9410 bfd_abs_section_ptr, NULL))
9411 return FALSE;
9412 }
9413
9414 osym = *isym;
9415
9416 /* Adjust the section index for the output file. */
9417 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9418 isec->output_section);
9419 if (osym.st_shndx == SHN_BAD)
9420 return FALSE;
9421
9422 /* ELF symbols in relocatable files are section relative, but
9423 in executable files they are virtual addresses. Note that
9424 this code assumes that all ELF sections have an associated
9425 BFD section with a reasonable value for output_offset; below
9426 we assume that they also have a reasonable value for
9427 output_section. Any special sections must be set up to meet
9428 these requirements. */
9429 osym.st_value += isec->output_offset;
9430 if (!flinfo->info->relocatable)
9431 {
9432 osym.st_value += isec->output_section->vma;
9433 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9434 {
9435 /* STT_TLS symbols are relative to PT_TLS segment base. */
9436 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9437 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9438 }
9439 }
9440
9441 indx = bfd_get_symcount (output_bfd);
9442 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9443 if (ret == 0)
9444 return FALSE;
9445 else if (ret == 1)
9446 *pindex = indx;
9447 }
9448
9449 if (bed->s->arch_size == 32)
9450 {
9451 r_type_mask = 0xff;
9452 r_sym_shift = 8;
9453 address_size = 4;
9454 }
9455 else
9456 {
9457 r_type_mask = 0xffffffff;
9458 r_sym_shift = 32;
9459 address_size = 8;
9460 }
9461
9462 /* Relocate the contents of each section. */
9463 sym_hashes = elf_sym_hashes (input_bfd);
9464 for (o = input_bfd->sections; o != NULL; o = o->next)
9465 {
9466 bfd_byte *contents;
9467
9468 if (! o->linker_mark)
9469 {
9470 /* This section was omitted from the link. */
9471 continue;
9472 }
9473
9474 if (flinfo->info->relocatable
9475 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9476 {
9477 /* Deal with the group signature symbol. */
9478 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9479 unsigned long symndx = sec_data->this_hdr.sh_info;
9480 asection *osec = o->output_section;
9481
9482 if (symndx >= locsymcount
9483 || (elf_bad_symtab (input_bfd)
9484 && flinfo->sections[symndx] == NULL))
9485 {
9486 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9487 while (h->root.type == bfd_link_hash_indirect
9488 || h->root.type == bfd_link_hash_warning)
9489 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9490 /* Arrange for symbol to be output. */
9491 h->indx = -2;
9492 elf_section_data (osec)->this_hdr.sh_info = -2;
9493 }
9494 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9495 {
9496 /* We'll use the output section target_index. */
9497 asection *sec = flinfo->sections[symndx]->output_section;
9498 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9499 }
9500 else
9501 {
9502 if (flinfo->indices[symndx] == -1)
9503 {
9504 /* Otherwise output the local symbol now. */
9505 Elf_Internal_Sym sym = isymbuf[symndx];
9506 asection *sec = flinfo->sections[symndx]->output_section;
9507 const char *name;
9508 long indx;
9509 int ret;
9510
9511 name = bfd_elf_string_from_elf_section (input_bfd,
9512 symtab_hdr->sh_link,
9513 sym.st_name);
9514 if (name == NULL)
9515 return FALSE;
9516
9517 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9518 sec);
9519 if (sym.st_shndx == SHN_BAD)
9520 return FALSE;
9521
9522 sym.st_value += o->output_offset;
9523
9524 indx = bfd_get_symcount (output_bfd);
9525 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9526 if (ret == 0)
9527 return FALSE;
9528 else if (ret == 1)
9529 flinfo->indices[symndx] = indx;
9530 else
9531 abort ();
9532 }
9533 elf_section_data (osec)->this_hdr.sh_info
9534 = flinfo->indices[symndx];
9535 }
9536 }
9537
9538 if ((o->flags & SEC_HAS_CONTENTS) == 0
9539 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9540 continue;
9541
9542 if ((o->flags & SEC_LINKER_CREATED) != 0)
9543 {
9544 /* Section was created by _bfd_elf_link_create_dynamic_sections
9545 or somesuch. */
9546 continue;
9547 }
9548
9549 /* Get the contents of the section. They have been cached by a
9550 relaxation routine. Note that o is a section in an input
9551 file, so the contents field will not have been set by any of
9552 the routines which work on output files. */
9553 if (elf_section_data (o)->this_hdr.contents != NULL)
9554 {
9555 contents = elf_section_data (o)->this_hdr.contents;
9556 if (bed->caches_rawsize
9557 && o->rawsize != 0
9558 && o->rawsize < o->size)
9559 {
9560 memcpy (flinfo->contents, contents, o->rawsize);
9561 contents = flinfo->contents;
9562 }
9563 }
9564 else
9565 {
9566 contents = flinfo->contents;
9567 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9568 return FALSE;
9569 }
9570
9571 if ((o->flags & SEC_RELOC) != 0)
9572 {
9573 Elf_Internal_Rela *internal_relocs;
9574 Elf_Internal_Rela *rel, *relend;
9575 int action_discarded;
9576 int ret;
9577
9578 /* Get the swapped relocs. */
9579 internal_relocs
9580 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9581 flinfo->internal_relocs, FALSE);
9582 if (internal_relocs == NULL
9583 && o->reloc_count > 0)
9584 return FALSE;
9585
9586 /* We need to reverse-copy input .ctors/.dtors sections if
9587 they are placed in .init_array/.finit_array for output. */
9588 if (o->size > address_size
9589 && ((strncmp (o->name, ".ctors", 6) == 0
9590 && strcmp (o->output_section->name,
9591 ".init_array") == 0)
9592 || (strncmp (o->name, ".dtors", 6) == 0
9593 && strcmp (o->output_section->name,
9594 ".fini_array") == 0))
9595 && (o->name[6] == 0 || o->name[6] == '.'))
9596 {
9597 if (o->size != o->reloc_count * address_size)
9598 {
9599 (*_bfd_error_handler)
9600 (_("error: %B: size of section %A is not "
9601 "multiple of address size"),
9602 input_bfd, o);
9603 bfd_set_error (bfd_error_on_input);
9604 return FALSE;
9605 }
9606 o->flags |= SEC_ELF_REVERSE_COPY;
9607 }
9608
9609 action_discarded = -1;
9610 if (!elf_section_ignore_discarded_relocs (o))
9611 action_discarded = (*bed->action_discarded) (o);
9612
9613 /* Run through the relocs evaluating complex reloc symbols and
9614 looking for relocs against symbols from discarded sections
9615 or section symbols from removed link-once sections.
9616 Complain about relocs against discarded sections. Zero
9617 relocs against removed link-once sections. */
9618
9619 rel = internal_relocs;
9620 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9621 for ( ; rel < relend; rel++)
9622 {
9623 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9624 unsigned int s_type;
9625 asection **ps, *sec;
9626 struct elf_link_hash_entry *h = NULL;
9627 const char *sym_name;
9628
9629 if (r_symndx == STN_UNDEF)
9630 continue;
9631
9632 if (r_symndx >= locsymcount
9633 || (elf_bad_symtab (input_bfd)
9634 && flinfo->sections[r_symndx] == NULL))
9635 {
9636 h = sym_hashes[r_symndx - extsymoff];
9637
9638 /* Badly formatted input files can contain relocs that
9639 reference non-existant symbols. Check here so that
9640 we do not seg fault. */
9641 if (h == NULL)
9642 {
9643 char buffer [32];
9644
9645 sprintf_vma (buffer, rel->r_info);
9646 (*_bfd_error_handler)
9647 (_("error: %B contains a reloc (0x%s) for section %A "
9648 "that references a non-existent global symbol"),
9649 input_bfd, o, buffer);
9650 bfd_set_error (bfd_error_bad_value);
9651 return FALSE;
9652 }
9653
9654 while (h->root.type == bfd_link_hash_indirect
9655 || h->root.type == bfd_link_hash_warning)
9656 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9657
9658 s_type = h->type;
9659
9660 ps = NULL;
9661 if (h->root.type == bfd_link_hash_defined
9662 || h->root.type == bfd_link_hash_defweak)
9663 ps = &h->root.u.def.section;
9664
9665 sym_name = h->root.root.string;
9666 }
9667 else
9668 {
9669 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9670
9671 s_type = ELF_ST_TYPE (sym->st_info);
9672 ps = &flinfo->sections[r_symndx];
9673 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9674 sym, *ps);
9675 }
9676
9677 if ((s_type == STT_RELC || s_type == STT_SRELC)
9678 && !flinfo->info->relocatable)
9679 {
9680 bfd_vma val;
9681 bfd_vma dot = (rel->r_offset
9682 + o->output_offset + o->output_section->vma);
9683 #ifdef DEBUG
9684 printf ("Encountered a complex symbol!");
9685 printf (" (input_bfd %s, section %s, reloc %ld\n",
9686 input_bfd->filename, o->name,
9687 (long) (rel - internal_relocs));
9688 printf (" symbol: idx %8.8lx, name %s\n",
9689 r_symndx, sym_name);
9690 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9691 (unsigned long) rel->r_info,
9692 (unsigned long) rel->r_offset);
9693 #endif
9694 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9695 isymbuf, locsymcount, s_type == STT_SRELC))
9696 return FALSE;
9697
9698 /* Symbol evaluated OK. Update to absolute value. */
9699 set_symbol_value (input_bfd, isymbuf, locsymcount,
9700 r_symndx, val);
9701 continue;
9702 }
9703
9704 if (action_discarded != -1 && ps != NULL)
9705 {
9706 /* Complain if the definition comes from a
9707 discarded section. */
9708 if ((sec = *ps) != NULL && discarded_section (sec))
9709 {
9710 BFD_ASSERT (r_symndx != STN_UNDEF);
9711 if (action_discarded & COMPLAIN)
9712 (*flinfo->info->callbacks->einfo)
9713 (_("%X`%s' referenced in section `%A' of %B: "
9714 "defined in discarded section `%A' of %B\n"),
9715 sym_name, o, input_bfd, sec, sec->owner);
9716
9717 /* Try to do the best we can to support buggy old
9718 versions of gcc. Pretend that the symbol is
9719 really defined in the kept linkonce section.
9720 FIXME: This is quite broken. Modifying the
9721 symbol here means we will be changing all later
9722 uses of the symbol, not just in this section. */
9723 if (action_discarded & PRETEND)
9724 {
9725 asection *kept;
9726
9727 kept = _bfd_elf_check_kept_section (sec,
9728 flinfo->info);
9729 if (kept != NULL)
9730 {
9731 *ps = kept;
9732 continue;
9733 }
9734 }
9735 }
9736 }
9737 }
9738
9739 /* Relocate the section by invoking a back end routine.
9740
9741 The back end routine is responsible for adjusting the
9742 section contents as necessary, and (if using Rela relocs
9743 and generating a relocatable output file) adjusting the
9744 reloc addend as necessary.
9745
9746 The back end routine does not have to worry about setting
9747 the reloc address or the reloc symbol index.
9748
9749 The back end routine is given a pointer to the swapped in
9750 internal symbols, and can access the hash table entries
9751 for the external symbols via elf_sym_hashes (input_bfd).
9752
9753 When generating relocatable output, the back end routine
9754 must handle STB_LOCAL/STT_SECTION symbols specially. The
9755 output symbol is going to be a section symbol
9756 corresponding to the output section, which will require
9757 the addend to be adjusted. */
9758
9759 ret = (*relocate_section) (output_bfd, flinfo->info,
9760 input_bfd, o, contents,
9761 internal_relocs,
9762 isymbuf,
9763 flinfo->sections);
9764 if (!ret)
9765 return FALSE;
9766
9767 if (ret == 2
9768 || flinfo->info->relocatable
9769 || flinfo->info->emitrelocations)
9770 {
9771 Elf_Internal_Rela *irela;
9772 Elf_Internal_Rela *irelaend, *irelamid;
9773 bfd_vma last_offset;
9774 struct elf_link_hash_entry **rel_hash;
9775 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9776 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9777 unsigned int next_erel;
9778 bfd_boolean rela_normal;
9779 struct bfd_elf_section_data *esdi, *esdo;
9780
9781 esdi = elf_section_data (o);
9782 esdo = elf_section_data (o->output_section);
9783 rela_normal = FALSE;
9784
9785 /* Adjust the reloc addresses and symbol indices. */
9786
9787 irela = internal_relocs;
9788 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9789 rel_hash = esdo->rel.hashes + esdo->rel.count;
9790 /* We start processing the REL relocs, if any. When we reach
9791 IRELAMID in the loop, we switch to the RELA relocs. */
9792 irelamid = irela;
9793 if (esdi->rel.hdr != NULL)
9794 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9795 * bed->s->int_rels_per_ext_rel);
9796 rel_hash_list = rel_hash;
9797 rela_hash_list = NULL;
9798 last_offset = o->output_offset;
9799 if (!flinfo->info->relocatable)
9800 last_offset += o->output_section->vma;
9801 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9802 {
9803 unsigned long r_symndx;
9804 asection *sec;
9805 Elf_Internal_Sym sym;
9806
9807 if (next_erel == bed->s->int_rels_per_ext_rel)
9808 {
9809 rel_hash++;
9810 next_erel = 0;
9811 }
9812
9813 if (irela == irelamid)
9814 {
9815 rel_hash = esdo->rela.hashes + esdo->rela.count;
9816 rela_hash_list = rel_hash;
9817 rela_normal = bed->rela_normal;
9818 }
9819
9820 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9821 flinfo->info, o,
9822 irela->r_offset);
9823 if (irela->r_offset >= (bfd_vma) -2)
9824 {
9825 /* This is a reloc for a deleted entry or somesuch.
9826 Turn it into an R_*_NONE reloc, at the same
9827 offset as the last reloc. elf_eh_frame.c and
9828 bfd_elf_discard_info rely on reloc offsets
9829 being ordered. */
9830 irela->r_offset = last_offset;
9831 irela->r_info = 0;
9832 irela->r_addend = 0;
9833 continue;
9834 }
9835
9836 irela->r_offset += o->output_offset;
9837
9838 /* Relocs in an executable have to be virtual addresses. */
9839 if (!flinfo->info->relocatable)
9840 irela->r_offset += o->output_section->vma;
9841
9842 last_offset = irela->r_offset;
9843
9844 r_symndx = irela->r_info >> r_sym_shift;
9845 if (r_symndx == STN_UNDEF)
9846 continue;
9847
9848 if (r_symndx >= locsymcount
9849 || (elf_bad_symtab (input_bfd)
9850 && flinfo->sections[r_symndx] == NULL))
9851 {
9852 struct elf_link_hash_entry *rh;
9853 unsigned long indx;
9854
9855 /* This is a reloc against a global symbol. We
9856 have not yet output all the local symbols, so
9857 we do not know the symbol index of any global
9858 symbol. We set the rel_hash entry for this
9859 reloc to point to the global hash table entry
9860 for this symbol. The symbol index is then
9861 set at the end of bfd_elf_final_link. */
9862 indx = r_symndx - extsymoff;
9863 rh = elf_sym_hashes (input_bfd)[indx];
9864 while (rh->root.type == bfd_link_hash_indirect
9865 || rh->root.type == bfd_link_hash_warning)
9866 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9867
9868 /* Setting the index to -2 tells
9869 elf_link_output_extsym that this symbol is
9870 used by a reloc. */
9871 BFD_ASSERT (rh->indx < 0);
9872 rh->indx = -2;
9873
9874 *rel_hash = rh;
9875
9876 continue;
9877 }
9878
9879 /* This is a reloc against a local symbol. */
9880
9881 *rel_hash = NULL;
9882 sym = isymbuf[r_symndx];
9883 sec = flinfo->sections[r_symndx];
9884 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9885 {
9886 /* I suppose the backend ought to fill in the
9887 section of any STT_SECTION symbol against a
9888 processor specific section. */
9889 r_symndx = STN_UNDEF;
9890 if (bfd_is_abs_section (sec))
9891 ;
9892 else if (sec == NULL || sec->owner == NULL)
9893 {
9894 bfd_set_error (bfd_error_bad_value);
9895 return FALSE;
9896 }
9897 else
9898 {
9899 asection *osec = sec->output_section;
9900
9901 /* If we have discarded a section, the output
9902 section will be the absolute section. In
9903 case of discarded SEC_MERGE sections, use
9904 the kept section. relocate_section should
9905 have already handled discarded linkonce
9906 sections. */
9907 if (bfd_is_abs_section (osec)
9908 && sec->kept_section != NULL
9909 && sec->kept_section->output_section != NULL)
9910 {
9911 osec = sec->kept_section->output_section;
9912 irela->r_addend -= osec->vma;
9913 }
9914
9915 if (!bfd_is_abs_section (osec))
9916 {
9917 r_symndx = osec->target_index;
9918 if (r_symndx == STN_UNDEF)
9919 {
9920 irela->r_addend += osec->vma;
9921 osec = _bfd_nearby_section (output_bfd, osec,
9922 osec->vma);
9923 irela->r_addend -= osec->vma;
9924 r_symndx = osec->target_index;
9925 }
9926 }
9927 }
9928
9929 /* Adjust the addend according to where the
9930 section winds up in the output section. */
9931 if (rela_normal)
9932 irela->r_addend += sec->output_offset;
9933 }
9934 else
9935 {
9936 if (flinfo->indices[r_symndx] == -1)
9937 {
9938 unsigned long shlink;
9939 const char *name;
9940 asection *osec;
9941 long indx;
9942
9943 if (flinfo->info->strip == strip_all)
9944 {
9945 /* You can't do ld -r -s. */
9946 bfd_set_error (bfd_error_invalid_operation);
9947 return FALSE;
9948 }
9949
9950 /* This symbol was skipped earlier, but
9951 since it is needed by a reloc, we
9952 must output it now. */
9953 shlink = symtab_hdr->sh_link;
9954 name = (bfd_elf_string_from_elf_section
9955 (input_bfd, shlink, sym.st_name));
9956 if (name == NULL)
9957 return FALSE;
9958
9959 osec = sec->output_section;
9960 sym.st_shndx =
9961 _bfd_elf_section_from_bfd_section (output_bfd,
9962 osec);
9963 if (sym.st_shndx == SHN_BAD)
9964 return FALSE;
9965
9966 sym.st_value += sec->output_offset;
9967 if (!flinfo->info->relocatable)
9968 {
9969 sym.st_value += osec->vma;
9970 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9971 {
9972 /* STT_TLS symbols are relative to PT_TLS
9973 segment base. */
9974 BFD_ASSERT (elf_hash_table (flinfo->info)
9975 ->tls_sec != NULL);
9976 sym.st_value -= (elf_hash_table (flinfo->info)
9977 ->tls_sec->vma);
9978 }
9979 }
9980
9981 indx = bfd_get_symcount (output_bfd);
9982 ret = elf_link_output_sym (flinfo, name, &sym, sec,
9983 NULL);
9984 if (ret == 0)
9985 return FALSE;
9986 else if (ret == 1)
9987 flinfo->indices[r_symndx] = indx;
9988 else
9989 abort ();
9990 }
9991
9992 r_symndx = flinfo->indices[r_symndx];
9993 }
9994
9995 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9996 | (irela->r_info & r_type_mask));
9997 }
9998
9999 /* Swap out the relocs. */
10000 input_rel_hdr = esdi->rel.hdr;
10001 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10002 {
10003 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10004 input_rel_hdr,
10005 internal_relocs,
10006 rel_hash_list))
10007 return FALSE;
10008 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10009 * bed->s->int_rels_per_ext_rel);
10010 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10011 }
10012
10013 input_rela_hdr = esdi->rela.hdr;
10014 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10015 {
10016 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10017 input_rela_hdr,
10018 internal_relocs,
10019 rela_hash_list))
10020 return FALSE;
10021 }
10022 }
10023 }
10024
10025 /* Write out the modified section contents. */
10026 if (bed->elf_backend_write_section
10027 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10028 contents))
10029 {
10030 /* Section written out. */
10031 }
10032 else switch (o->sec_info_type)
10033 {
10034 case SEC_INFO_TYPE_STABS:
10035 if (! (_bfd_write_section_stabs
10036 (output_bfd,
10037 &elf_hash_table (flinfo->info)->stab_info,
10038 o, &elf_section_data (o)->sec_info, contents)))
10039 return FALSE;
10040 break;
10041 case SEC_INFO_TYPE_MERGE:
10042 if (! _bfd_write_merged_section (output_bfd, o,
10043 elf_section_data (o)->sec_info))
10044 return FALSE;
10045 break;
10046 case SEC_INFO_TYPE_EH_FRAME:
10047 {
10048 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10049 o, contents))
10050 return FALSE;
10051 }
10052 break;
10053 default:
10054 {
10055 /* FIXME: octets_per_byte. */
10056 if (! (o->flags & SEC_EXCLUDE))
10057 {
10058 file_ptr offset = (file_ptr) o->output_offset;
10059 bfd_size_type todo = o->size;
10060 if ((o->flags & SEC_ELF_REVERSE_COPY))
10061 {
10062 /* Reverse-copy input section to output. */
10063 do
10064 {
10065 todo -= address_size;
10066 if (! bfd_set_section_contents (output_bfd,
10067 o->output_section,
10068 contents + todo,
10069 offset,
10070 address_size))
10071 return FALSE;
10072 if (todo == 0)
10073 break;
10074 offset += address_size;
10075 }
10076 while (1);
10077 }
10078 else if (! bfd_set_section_contents (output_bfd,
10079 o->output_section,
10080 contents,
10081 offset, todo))
10082 return FALSE;
10083 }
10084 }
10085 break;
10086 }
10087 }
10088
10089 return TRUE;
10090 }
10091
10092 /* Generate a reloc when linking an ELF file. This is a reloc
10093 requested by the linker, and does not come from any input file. This
10094 is used to build constructor and destructor tables when linking
10095 with -Ur. */
10096
10097 static bfd_boolean
10098 elf_reloc_link_order (bfd *output_bfd,
10099 struct bfd_link_info *info,
10100 asection *output_section,
10101 struct bfd_link_order *link_order)
10102 {
10103 reloc_howto_type *howto;
10104 long indx;
10105 bfd_vma offset;
10106 bfd_vma addend;
10107 struct bfd_elf_section_reloc_data *reldata;
10108 struct elf_link_hash_entry **rel_hash_ptr;
10109 Elf_Internal_Shdr *rel_hdr;
10110 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10111 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10112 bfd_byte *erel;
10113 unsigned int i;
10114 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10115
10116 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10117 if (howto == NULL)
10118 {
10119 bfd_set_error (bfd_error_bad_value);
10120 return FALSE;
10121 }
10122
10123 addend = link_order->u.reloc.p->addend;
10124
10125 if (esdo->rel.hdr)
10126 reldata = &esdo->rel;
10127 else if (esdo->rela.hdr)
10128 reldata = &esdo->rela;
10129 else
10130 {
10131 reldata = NULL;
10132 BFD_ASSERT (0);
10133 }
10134
10135 /* Figure out the symbol index. */
10136 rel_hash_ptr = reldata->hashes + reldata->count;
10137 if (link_order->type == bfd_section_reloc_link_order)
10138 {
10139 indx = link_order->u.reloc.p->u.section->target_index;
10140 BFD_ASSERT (indx != 0);
10141 *rel_hash_ptr = NULL;
10142 }
10143 else
10144 {
10145 struct elf_link_hash_entry *h;
10146
10147 /* Treat a reloc against a defined symbol as though it were
10148 actually against the section. */
10149 h = ((struct elf_link_hash_entry *)
10150 bfd_wrapped_link_hash_lookup (output_bfd, info,
10151 link_order->u.reloc.p->u.name,
10152 FALSE, FALSE, TRUE));
10153 if (h != NULL
10154 && (h->root.type == bfd_link_hash_defined
10155 || h->root.type == bfd_link_hash_defweak))
10156 {
10157 asection *section;
10158
10159 section = h->root.u.def.section;
10160 indx = section->output_section->target_index;
10161 *rel_hash_ptr = NULL;
10162 /* It seems that we ought to add the symbol value to the
10163 addend here, but in practice it has already been added
10164 because it was passed to constructor_callback. */
10165 addend += section->output_section->vma + section->output_offset;
10166 }
10167 else if (h != NULL)
10168 {
10169 /* Setting the index to -2 tells elf_link_output_extsym that
10170 this symbol is used by a reloc. */
10171 h->indx = -2;
10172 *rel_hash_ptr = h;
10173 indx = 0;
10174 }
10175 else
10176 {
10177 if (! ((*info->callbacks->unattached_reloc)
10178 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10179 return FALSE;
10180 indx = 0;
10181 }
10182 }
10183
10184 /* If this is an inplace reloc, we must write the addend into the
10185 object file. */
10186 if (howto->partial_inplace && addend != 0)
10187 {
10188 bfd_size_type size;
10189 bfd_reloc_status_type rstat;
10190 bfd_byte *buf;
10191 bfd_boolean ok;
10192 const char *sym_name;
10193
10194 size = (bfd_size_type) bfd_get_reloc_size (howto);
10195 buf = (bfd_byte *) bfd_zmalloc (size);
10196 if (buf == NULL)
10197 return FALSE;
10198 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10199 switch (rstat)
10200 {
10201 case bfd_reloc_ok:
10202 break;
10203
10204 default:
10205 case bfd_reloc_outofrange:
10206 abort ();
10207
10208 case bfd_reloc_overflow:
10209 if (link_order->type == bfd_section_reloc_link_order)
10210 sym_name = bfd_section_name (output_bfd,
10211 link_order->u.reloc.p->u.section);
10212 else
10213 sym_name = link_order->u.reloc.p->u.name;
10214 if (! ((*info->callbacks->reloc_overflow)
10215 (info, NULL, sym_name, howto->name, addend, NULL,
10216 NULL, (bfd_vma) 0)))
10217 {
10218 free (buf);
10219 return FALSE;
10220 }
10221 break;
10222 }
10223 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10224 link_order->offset, size);
10225 free (buf);
10226 if (! ok)
10227 return FALSE;
10228 }
10229
10230 /* The address of a reloc is relative to the section in a
10231 relocatable file, and is a virtual address in an executable
10232 file. */
10233 offset = link_order->offset;
10234 if (! info->relocatable)
10235 offset += output_section->vma;
10236
10237 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10238 {
10239 irel[i].r_offset = offset;
10240 irel[i].r_info = 0;
10241 irel[i].r_addend = 0;
10242 }
10243 if (bed->s->arch_size == 32)
10244 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10245 else
10246 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10247
10248 rel_hdr = reldata->hdr;
10249 erel = rel_hdr->contents;
10250 if (rel_hdr->sh_type == SHT_REL)
10251 {
10252 erel += reldata->count * bed->s->sizeof_rel;
10253 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10254 }
10255 else
10256 {
10257 irel[0].r_addend = addend;
10258 erel += reldata->count * bed->s->sizeof_rela;
10259 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10260 }
10261
10262 ++reldata->count;
10263
10264 return TRUE;
10265 }
10266
10267
10268 /* Get the output vma of the section pointed to by the sh_link field. */
10269
10270 static bfd_vma
10271 elf_get_linked_section_vma (struct bfd_link_order *p)
10272 {
10273 Elf_Internal_Shdr **elf_shdrp;
10274 asection *s;
10275 int elfsec;
10276
10277 s = p->u.indirect.section;
10278 elf_shdrp = elf_elfsections (s->owner);
10279 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10280 elfsec = elf_shdrp[elfsec]->sh_link;
10281 /* PR 290:
10282 The Intel C compiler generates SHT_IA_64_UNWIND with
10283 SHF_LINK_ORDER. But it doesn't set the sh_link or
10284 sh_info fields. Hence we could get the situation
10285 where elfsec is 0. */
10286 if (elfsec == 0)
10287 {
10288 const struct elf_backend_data *bed
10289 = get_elf_backend_data (s->owner);
10290 if (bed->link_order_error_handler)
10291 bed->link_order_error_handler
10292 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10293 return 0;
10294 }
10295 else
10296 {
10297 s = elf_shdrp[elfsec]->bfd_section;
10298 return s->output_section->vma + s->output_offset;
10299 }
10300 }
10301
10302
10303 /* Compare two sections based on the locations of the sections they are
10304 linked to. Used by elf_fixup_link_order. */
10305
10306 static int
10307 compare_link_order (const void * a, const void * b)
10308 {
10309 bfd_vma apos;
10310 bfd_vma bpos;
10311
10312 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10313 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10314 if (apos < bpos)
10315 return -1;
10316 return apos > bpos;
10317 }
10318
10319
10320 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10321 order as their linked sections. Returns false if this could not be done
10322 because an output section includes both ordered and unordered
10323 sections. Ideally we'd do this in the linker proper. */
10324
10325 static bfd_boolean
10326 elf_fixup_link_order (bfd *abfd, asection *o)
10327 {
10328 int seen_linkorder;
10329 int seen_other;
10330 int n;
10331 struct bfd_link_order *p;
10332 bfd *sub;
10333 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10334 unsigned elfsec;
10335 struct bfd_link_order **sections;
10336 asection *s, *other_sec, *linkorder_sec;
10337 bfd_vma offset;
10338
10339 other_sec = NULL;
10340 linkorder_sec = NULL;
10341 seen_other = 0;
10342 seen_linkorder = 0;
10343 for (p = o->map_head.link_order; p != NULL; p = p->next)
10344 {
10345 if (p->type == bfd_indirect_link_order)
10346 {
10347 s = p->u.indirect.section;
10348 sub = s->owner;
10349 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10350 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10351 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10352 && elfsec < elf_numsections (sub)
10353 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10354 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10355 {
10356 seen_linkorder++;
10357 linkorder_sec = s;
10358 }
10359 else
10360 {
10361 seen_other++;
10362 other_sec = s;
10363 }
10364 }
10365 else
10366 seen_other++;
10367
10368 if (seen_other && seen_linkorder)
10369 {
10370 if (other_sec && linkorder_sec)
10371 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10372 o, linkorder_sec,
10373 linkorder_sec->owner, other_sec,
10374 other_sec->owner);
10375 else
10376 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10377 o);
10378 bfd_set_error (bfd_error_bad_value);
10379 return FALSE;
10380 }
10381 }
10382
10383 if (!seen_linkorder)
10384 return TRUE;
10385
10386 sections = (struct bfd_link_order **)
10387 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10388 if (sections == NULL)
10389 return FALSE;
10390 seen_linkorder = 0;
10391
10392 for (p = o->map_head.link_order; p != NULL; p = p->next)
10393 {
10394 sections[seen_linkorder++] = p;
10395 }
10396 /* Sort the input sections in the order of their linked section. */
10397 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10398 compare_link_order);
10399
10400 /* Change the offsets of the sections. */
10401 offset = 0;
10402 for (n = 0; n < seen_linkorder; n++)
10403 {
10404 s = sections[n]->u.indirect.section;
10405 offset &= ~(bfd_vma) 0 << s->alignment_power;
10406 s->output_offset = offset;
10407 sections[n]->offset = offset;
10408 /* FIXME: octets_per_byte. */
10409 offset += sections[n]->size;
10410 }
10411
10412 free (sections);
10413 return TRUE;
10414 }
10415
10416 static void
10417 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10418 {
10419 asection *o;
10420
10421 if (flinfo->symstrtab != NULL)
10422 _bfd_stringtab_free (flinfo->symstrtab);
10423 if (flinfo->contents != NULL)
10424 free (flinfo->contents);
10425 if (flinfo->external_relocs != NULL)
10426 free (flinfo->external_relocs);
10427 if (flinfo->internal_relocs != NULL)
10428 free (flinfo->internal_relocs);
10429 if (flinfo->external_syms != NULL)
10430 free (flinfo->external_syms);
10431 if (flinfo->locsym_shndx != NULL)
10432 free (flinfo->locsym_shndx);
10433 if (flinfo->internal_syms != NULL)
10434 free (flinfo->internal_syms);
10435 if (flinfo->indices != NULL)
10436 free (flinfo->indices);
10437 if (flinfo->sections != NULL)
10438 free (flinfo->sections);
10439 if (flinfo->symbuf != NULL)
10440 free (flinfo->symbuf);
10441 if (flinfo->symshndxbuf != NULL)
10442 free (flinfo->symshndxbuf);
10443 for (o = obfd->sections; o != NULL; o = o->next)
10444 {
10445 struct bfd_elf_section_data *esdo = elf_section_data (o);
10446 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10447 free (esdo->rel.hashes);
10448 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10449 free (esdo->rela.hashes);
10450 }
10451 }
10452
10453 /* Do the final step of an ELF link. */
10454
10455 bfd_boolean
10456 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10457 {
10458 bfd_boolean dynamic;
10459 bfd_boolean emit_relocs;
10460 bfd *dynobj;
10461 struct elf_final_link_info flinfo;
10462 asection *o;
10463 struct bfd_link_order *p;
10464 bfd *sub;
10465 bfd_size_type max_contents_size;
10466 bfd_size_type max_external_reloc_size;
10467 bfd_size_type max_internal_reloc_count;
10468 bfd_size_type max_sym_count;
10469 bfd_size_type max_sym_shndx_count;
10470 file_ptr off;
10471 Elf_Internal_Sym elfsym;
10472 unsigned int i;
10473 Elf_Internal_Shdr *symtab_hdr;
10474 Elf_Internal_Shdr *symtab_shndx_hdr;
10475 Elf_Internal_Shdr *symstrtab_hdr;
10476 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10477 struct elf_outext_info eoinfo;
10478 bfd_boolean merged;
10479 size_t relativecount = 0;
10480 asection *reldyn = 0;
10481 bfd_size_type amt;
10482 asection *attr_section = NULL;
10483 bfd_vma attr_size = 0;
10484 const char *std_attrs_section;
10485
10486 if (! is_elf_hash_table (info->hash))
10487 return FALSE;
10488
10489 if (info->shared)
10490 abfd->flags |= DYNAMIC;
10491
10492 dynamic = elf_hash_table (info)->dynamic_sections_created;
10493 dynobj = elf_hash_table (info)->dynobj;
10494
10495 emit_relocs = (info->relocatable
10496 || info->emitrelocations);
10497
10498 flinfo.info = info;
10499 flinfo.output_bfd = abfd;
10500 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10501 if (flinfo.symstrtab == NULL)
10502 return FALSE;
10503
10504 if (! dynamic)
10505 {
10506 flinfo.dynsym_sec = NULL;
10507 flinfo.hash_sec = NULL;
10508 flinfo.symver_sec = NULL;
10509 }
10510 else
10511 {
10512 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10513 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10514 /* Note that dynsym_sec can be NULL (on VMS). */
10515 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10516 /* Note that it is OK if symver_sec is NULL. */
10517 }
10518
10519 flinfo.contents = NULL;
10520 flinfo.external_relocs = NULL;
10521 flinfo.internal_relocs = NULL;
10522 flinfo.external_syms = NULL;
10523 flinfo.locsym_shndx = NULL;
10524 flinfo.internal_syms = NULL;
10525 flinfo.indices = NULL;
10526 flinfo.sections = NULL;
10527 flinfo.symbuf = NULL;
10528 flinfo.symshndxbuf = NULL;
10529 flinfo.symbuf_count = 0;
10530 flinfo.shndxbuf_size = 0;
10531 flinfo.filesym_count = 0;
10532
10533 /* The object attributes have been merged. Remove the input
10534 sections from the link, and set the contents of the output
10535 secton. */
10536 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10537 for (o = abfd->sections; o != NULL; o = o->next)
10538 {
10539 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10540 || strcmp (o->name, ".gnu.attributes") == 0)
10541 {
10542 for (p = o->map_head.link_order; p != NULL; p = p->next)
10543 {
10544 asection *input_section;
10545
10546 if (p->type != bfd_indirect_link_order)
10547 continue;
10548 input_section = p->u.indirect.section;
10549 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10550 elf_link_input_bfd ignores this section. */
10551 input_section->flags &= ~SEC_HAS_CONTENTS;
10552 }
10553
10554 attr_size = bfd_elf_obj_attr_size (abfd);
10555 if (attr_size)
10556 {
10557 bfd_set_section_size (abfd, o, attr_size);
10558 attr_section = o;
10559 /* Skip this section later on. */
10560 o->map_head.link_order = NULL;
10561 }
10562 else
10563 o->flags |= SEC_EXCLUDE;
10564 }
10565 }
10566
10567 /* Count up the number of relocations we will output for each output
10568 section, so that we know the sizes of the reloc sections. We
10569 also figure out some maximum sizes. */
10570 max_contents_size = 0;
10571 max_external_reloc_size = 0;
10572 max_internal_reloc_count = 0;
10573 max_sym_count = 0;
10574 max_sym_shndx_count = 0;
10575 merged = FALSE;
10576 for (o = abfd->sections; o != NULL; o = o->next)
10577 {
10578 struct bfd_elf_section_data *esdo = elf_section_data (o);
10579 o->reloc_count = 0;
10580
10581 for (p = o->map_head.link_order; p != NULL; p = p->next)
10582 {
10583 unsigned int reloc_count = 0;
10584 struct bfd_elf_section_data *esdi = NULL;
10585
10586 if (p->type == bfd_section_reloc_link_order
10587 || p->type == bfd_symbol_reloc_link_order)
10588 reloc_count = 1;
10589 else if (p->type == bfd_indirect_link_order)
10590 {
10591 asection *sec;
10592
10593 sec = p->u.indirect.section;
10594 esdi = elf_section_data (sec);
10595
10596 /* Mark all sections which are to be included in the
10597 link. This will normally be every section. We need
10598 to do this so that we can identify any sections which
10599 the linker has decided to not include. */
10600 sec->linker_mark = TRUE;
10601
10602 if (sec->flags & SEC_MERGE)
10603 merged = TRUE;
10604
10605 if (esdo->this_hdr.sh_type == SHT_REL
10606 || esdo->this_hdr.sh_type == SHT_RELA)
10607 /* Some backends use reloc_count in relocation sections
10608 to count particular types of relocs. Of course,
10609 reloc sections themselves can't have relocations. */
10610 reloc_count = 0;
10611 else if (info->relocatable || info->emitrelocations)
10612 reloc_count = sec->reloc_count;
10613 else if (bed->elf_backend_count_relocs)
10614 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10615
10616 if (sec->rawsize > max_contents_size)
10617 max_contents_size = sec->rawsize;
10618 if (sec->size > max_contents_size)
10619 max_contents_size = sec->size;
10620
10621 /* We are interested in just local symbols, not all
10622 symbols. */
10623 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10624 && (sec->owner->flags & DYNAMIC) == 0)
10625 {
10626 size_t sym_count;
10627
10628 if (elf_bad_symtab (sec->owner))
10629 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10630 / bed->s->sizeof_sym);
10631 else
10632 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10633
10634 if (sym_count > max_sym_count)
10635 max_sym_count = sym_count;
10636
10637 if (sym_count > max_sym_shndx_count
10638 && elf_symtab_shndx (sec->owner) != 0)
10639 max_sym_shndx_count = sym_count;
10640
10641 if ((sec->flags & SEC_RELOC) != 0)
10642 {
10643 size_t ext_size = 0;
10644
10645 if (esdi->rel.hdr != NULL)
10646 ext_size = esdi->rel.hdr->sh_size;
10647 if (esdi->rela.hdr != NULL)
10648 ext_size += esdi->rela.hdr->sh_size;
10649
10650 if (ext_size > max_external_reloc_size)
10651 max_external_reloc_size = ext_size;
10652 if (sec->reloc_count > max_internal_reloc_count)
10653 max_internal_reloc_count = sec->reloc_count;
10654 }
10655 }
10656 }
10657
10658 if (reloc_count == 0)
10659 continue;
10660
10661 o->reloc_count += reloc_count;
10662
10663 if (p->type == bfd_indirect_link_order
10664 && (info->relocatable || info->emitrelocations))
10665 {
10666 if (esdi->rel.hdr)
10667 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10668 if (esdi->rela.hdr)
10669 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10670 }
10671 else
10672 {
10673 if (o->use_rela_p)
10674 esdo->rela.count += reloc_count;
10675 else
10676 esdo->rel.count += reloc_count;
10677 }
10678 }
10679
10680 if (o->reloc_count > 0)
10681 o->flags |= SEC_RELOC;
10682 else
10683 {
10684 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10685 set it (this is probably a bug) and if it is set
10686 assign_section_numbers will create a reloc section. */
10687 o->flags &=~ SEC_RELOC;
10688 }
10689
10690 /* If the SEC_ALLOC flag is not set, force the section VMA to
10691 zero. This is done in elf_fake_sections as well, but forcing
10692 the VMA to 0 here will ensure that relocs against these
10693 sections are handled correctly. */
10694 if ((o->flags & SEC_ALLOC) == 0
10695 && ! o->user_set_vma)
10696 o->vma = 0;
10697 }
10698
10699 if (! info->relocatable && merged)
10700 elf_link_hash_traverse (elf_hash_table (info),
10701 _bfd_elf_link_sec_merge_syms, abfd);
10702
10703 /* Figure out the file positions for everything but the symbol table
10704 and the relocs. We set symcount to force assign_section_numbers
10705 to create a symbol table. */
10706 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10707 BFD_ASSERT (! abfd->output_has_begun);
10708 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10709 goto error_return;
10710
10711 /* Set sizes, and assign file positions for reloc sections. */
10712 for (o = abfd->sections; o != NULL; o = o->next)
10713 {
10714 struct bfd_elf_section_data *esdo = elf_section_data (o);
10715 if ((o->flags & SEC_RELOC) != 0)
10716 {
10717 if (esdo->rel.hdr
10718 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10719 goto error_return;
10720
10721 if (esdo->rela.hdr
10722 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10723 goto error_return;
10724 }
10725
10726 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10727 to count upwards while actually outputting the relocations. */
10728 esdo->rel.count = 0;
10729 esdo->rela.count = 0;
10730 }
10731
10732 _bfd_elf_assign_file_positions_for_relocs (abfd);
10733
10734 /* We have now assigned file positions for all the sections except
10735 .symtab and .strtab. We start the .symtab section at the current
10736 file position, and write directly to it. We build the .strtab
10737 section in memory. */
10738 bfd_get_symcount (abfd) = 0;
10739 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10740 /* sh_name is set in prep_headers. */
10741 symtab_hdr->sh_type = SHT_SYMTAB;
10742 /* sh_flags, sh_addr and sh_size all start off zero. */
10743 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10744 /* sh_link is set in assign_section_numbers. */
10745 /* sh_info is set below. */
10746 /* sh_offset is set just below. */
10747 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10748
10749 off = elf_next_file_pos (abfd);
10750 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10751
10752 /* Note that at this point elf_next_file_pos (abfd) is
10753 incorrect. We do not yet know the size of the .symtab section.
10754 We correct next_file_pos below, after we do know the size. */
10755
10756 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10757 continuously seeking to the right position in the file. */
10758 if (! info->keep_memory || max_sym_count < 20)
10759 flinfo.symbuf_size = 20;
10760 else
10761 flinfo.symbuf_size = max_sym_count;
10762 amt = flinfo.symbuf_size;
10763 amt *= bed->s->sizeof_sym;
10764 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10765 if (flinfo.symbuf == NULL)
10766 goto error_return;
10767 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10768 {
10769 /* Wild guess at number of output symbols. realloc'd as needed. */
10770 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10771 flinfo.shndxbuf_size = amt;
10772 amt *= sizeof (Elf_External_Sym_Shndx);
10773 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10774 if (flinfo.symshndxbuf == NULL)
10775 goto error_return;
10776 }
10777
10778 /* Start writing out the symbol table. The first symbol is always a
10779 dummy symbol. */
10780 if (info->strip != strip_all
10781 || emit_relocs)
10782 {
10783 elfsym.st_value = 0;
10784 elfsym.st_size = 0;
10785 elfsym.st_info = 0;
10786 elfsym.st_other = 0;
10787 elfsym.st_shndx = SHN_UNDEF;
10788 elfsym.st_target_internal = 0;
10789 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10790 NULL) != 1)
10791 goto error_return;
10792 }
10793
10794 /* Output a symbol for each section. We output these even if we are
10795 discarding local symbols, since they are used for relocs. These
10796 symbols have no names. We store the index of each one in the
10797 index field of the section, so that we can find it again when
10798 outputting relocs. */
10799 if (info->strip != strip_all
10800 || emit_relocs)
10801 {
10802 elfsym.st_size = 0;
10803 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10804 elfsym.st_other = 0;
10805 elfsym.st_value = 0;
10806 elfsym.st_target_internal = 0;
10807 for (i = 1; i < elf_numsections (abfd); i++)
10808 {
10809 o = bfd_section_from_elf_index (abfd, i);
10810 if (o != NULL)
10811 {
10812 o->target_index = bfd_get_symcount (abfd);
10813 elfsym.st_shndx = i;
10814 if (!info->relocatable)
10815 elfsym.st_value = o->vma;
10816 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10817 goto error_return;
10818 }
10819 }
10820 }
10821
10822 /* Allocate some memory to hold information read in from the input
10823 files. */
10824 if (max_contents_size != 0)
10825 {
10826 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10827 if (flinfo.contents == NULL)
10828 goto error_return;
10829 }
10830
10831 if (max_external_reloc_size != 0)
10832 {
10833 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10834 if (flinfo.external_relocs == NULL)
10835 goto error_return;
10836 }
10837
10838 if (max_internal_reloc_count != 0)
10839 {
10840 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10841 amt *= sizeof (Elf_Internal_Rela);
10842 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10843 if (flinfo.internal_relocs == NULL)
10844 goto error_return;
10845 }
10846
10847 if (max_sym_count != 0)
10848 {
10849 amt = max_sym_count * bed->s->sizeof_sym;
10850 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10851 if (flinfo.external_syms == NULL)
10852 goto error_return;
10853
10854 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10855 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10856 if (flinfo.internal_syms == NULL)
10857 goto error_return;
10858
10859 amt = max_sym_count * sizeof (long);
10860 flinfo.indices = (long int *) bfd_malloc (amt);
10861 if (flinfo.indices == NULL)
10862 goto error_return;
10863
10864 amt = max_sym_count * sizeof (asection *);
10865 flinfo.sections = (asection **) bfd_malloc (amt);
10866 if (flinfo.sections == NULL)
10867 goto error_return;
10868 }
10869
10870 if (max_sym_shndx_count != 0)
10871 {
10872 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10873 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10874 if (flinfo.locsym_shndx == NULL)
10875 goto error_return;
10876 }
10877
10878 if (elf_hash_table (info)->tls_sec)
10879 {
10880 bfd_vma base, end = 0;
10881 asection *sec;
10882
10883 for (sec = elf_hash_table (info)->tls_sec;
10884 sec && (sec->flags & SEC_THREAD_LOCAL);
10885 sec = sec->next)
10886 {
10887 bfd_size_type size = sec->size;
10888
10889 if (size == 0
10890 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10891 {
10892 struct bfd_link_order *ord = sec->map_tail.link_order;
10893
10894 if (ord != NULL)
10895 size = ord->offset + ord->size;
10896 }
10897 end = sec->vma + size;
10898 }
10899 base = elf_hash_table (info)->tls_sec->vma;
10900 /* Only align end of TLS section if static TLS doesn't have special
10901 alignment requirements. */
10902 if (bed->static_tls_alignment == 1)
10903 end = align_power (end,
10904 elf_hash_table (info)->tls_sec->alignment_power);
10905 elf_hash_table (info)->tls_size = end - base;
10906 }
10907
10908 /* Reorder SHF_LINK_ORDER sections. */
10909 for (o = abfd->sections; o != NULL; o = o->next)
10910 {
10911 if (!elf_fixup_link_order (abfd, o))
10912 return FALSE;
10913 }
10914
10915 /* Since ELF permits relocations to be against local symbols, we
10916 must have the local symbols available when we do the relocations.
10917 Since we would rather only read the local symbols once, and we
10918 would rather not keep them in memory, we handle all the
10919 relocations for a single input file at the same time.
10920
10921 Unfortunately, there is no way to know the total number of local
10922 symbols until we have seen all of them, and the local symbol
10923 indices precede the global symbol indices. This means that when
10924 we are generating relocatable output, and we see a reloc against
10925 a global symbol, we can not know the symbol index until we have
10926 finished examining all the local symbols to see which ones we are
10927 going to output. To deal with this, we keep the relocations in
10928 memory, and don't output them until the end of the link. This is
10929 an unfortunate waste of memory, but I don't see a good way around
10930 it. Fortunately, it only happens when performing a relocatable
10931 link, which is not the common case. FIXME: If keep_memory is set
10932 we could write the relocs out and then read them again; I don't
10933 know how bad the memory loss will be. */
10934
10935 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
10936 sub->output_has_begun = FALSE;
10937 for (o = abfd->sections; o != NULL; o = o->next)
10938 {
10939 for (p = o->map_head.link_order; p != NULL; p = p->next)
10940 {
10941 if (p->type == bfd_indirect_link_order
10942 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10943 == bfd_target_elf_flavour)
10944 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10945 {
10946 if (! sub->output_has_begun)
10947 {
10948 if (! elf_link_input_bfd (&flinfo, sub))
10949 goto error_return;
10950 sub->output_has_begun = TRUE;
10951 }
10952 }
10953 else if (p->type == bfd_section_reloc_link_order
10954 || p->type == bfd_symbol_reloc_link_order)
10955 {
10956 if (! elf_reloc_link_order (abfd, info, o, p))
10957 goto error_return;
10958 }
10959 else
10960 {
10961 if (! _bfd_default_link_order (abfd, info, o, p))
10962 {
10963 if (p->type == bfd_indirect_link_order
10964 && (bfd_get_flavour (sub)
10965 == bfd_target_elf_flavour)
10966 && (elf_elfheader (sub)->e_ident[EI_CLASS]
10967 != bed->s->elfclass))
10968 {
10969 const char *iclass, *oclass;
10970
10971 if (bed->s->elfclass == ELFCLASS64)
10972 {
10973 iclass = "ELFCLASS32";
10974 oclass = "ELFCLASS64";
10975 }
10976 else
10977 {
10978 iclass = "ELFCLASS64";
10979 oclass = "ELFCLASS32";
10980 }
10981
10982 bfd_set_error (bfd_error_wrong_format);
10983 (*_bfd_error_handler)
10984 (_("%B: file class %s incompatible with %s"),
10985 sub, iclass, oclass);
10986 }
10987
10988 goto error_return;
10989 }
10990 }
10991 }
10992 }
10993
10994 /* Free symbol buffer if needed. */
10995 if (!info->reduce_memory_overheads)
10996 {
10997 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
10998 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10999 && elf_tdata (sub)->symbuf)
11000 {
11001 free (elf_tdata (sub)->symbuf);
11002 elf_tdata (sub)->symbuf = NULL;
11003 }
11004 }
11005
11006 /* Output any global symbols that got converted to local in a
11007 version script or due to symbol visibility. We do this in a
11008 separate step since ELF requires all local symbols to appear
11009 prior to any global symbols. FIXME: We should only do this if
11010 some global symbols were, in fact, converted to become local.
11011 FIXME: Will this work correctly with the Irix 5 linker? */
11012 eoinfo.failed = FALSE;
11013 eoinfo.flinfo = &flinfo;
11014 eoinfo.localsyms = TRUE;
11015 eoinfo.need_second_pass = FALSE;
11016 eoinfo.second_pass = FALSE;
11017 eoinfo.file_sym_done = FALSE;
11018 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11019 if (eoinfo.failed)
11020 return FALSE;
11021
11022 if (eoinfo.need_second_pass)
11023 {
11024 eoinfo.second_pass = TRUE;
11025 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11026 if (eoinfo.failed)
11027 return FALSE;
11028 }
11029
11030 /* If backend needs to output some local symbols not present in the hash
11031 table, do it now. */
11032 if (bed->elf_backend_output_arch_local_syms)
11033 {
11034 typedef int (*out_sym_func)
11035 (void *, const char *, Elf_Internal_Sym *, asection *,
11036 struct elf_link_hash_entry *);
11037
11038 if (! ((*bed->elf_backend_output_arch_local_syms)
11039 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11040 return FALSE;
11041 }
11042
11043 /* That wrote out all the local symbols. Finish up the symbol table
11044 with the global symbols. Even if we want to strip everything we
11045 can, we still need to deal with those global symbols that got
11046 converted to local in a version script. */
11047
11048 /* The sh_info field records the index of the first non local symbol. */
11049 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11050
11051 if (dynamic
11052 && flinfo.dynsym_sec != NULL
11053 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11054 {
11055 Elf_Internal_Sym sym;
11056 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11057 long last_local = 0;
11058
11059 /* Write out the section symbols for the output sections. */
11060 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11061 {
11062 asection *s;
11063
11064 sym.st_size = 0;
11065 sym.st_name = 0;
11066 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11067 sym.st_other = 0;
11068 sym.st_target_internal = 0;
11069
11070 for (s = abfd->sections; s != NULL; s = s->next)
11071 {
11072 int indx;
11073 bfd_byte *dest;
11074 long dynindx;
11075
11076 dynindx = elf_section_data (s)->dynindx;
11077 if (dynindx <= 0)
11078 continue;
11079 indx = elf_section_data (s)->this_idx;
11080 BFD_ASSERT (indx > 0);
11081 sym.st_shndx = indx;
11082 if (! check_dynsym (abfd, &sym))
11083 return FALSE;
11084 sym.st_value = s->vma;
11085 dest = dynsym + dynindx * bed->s->sizeof_sym;
11086 if (last_local < dynindx)
11087 last_local = dynindx;
11088 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11089 }
11090 }
11091
11092 /* Write out the local dynsyms. */
11093 if (elf_hash_table (info)->dynlocal)
11094 {
11095 struct elf_link_local_dynamic_entry *e;
11096 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11097 {
11098 asection *s;
11099 bfd_byte *dest;
11100
11101 /* Copy the internal symbol and turn off visibility.
11102 Note that we saved a word of storage and overwrote
11103 the original st_name with the dynstr_index. */
11104 sym = e->isym;
11105 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11106
11107 s = bfd_section_from_elf_index (e->input_bfd,
11108 e->isym.st_shndx);
11109 if (s != NULL)
11110 {
11111 sym.st_shndx =
11112 elf_section_data (s->output_section)->this_idx;
11113 if (! check_dynsym (abfd, &sym))
11114 return FALSE;
11115 sym.st_value = (s->output_section->vma
11116 + s->output_offset
11117 + e->isym.st_value);
11118 }
11119
11120 if (last_local < e->dynindx)
11121 last_local = e->dynindx;
11122
11123 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11124 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11125 }
11126 }
11127
11128 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11129 last_local + 1;
11130 }
11131
11132 /* We get the global symbols from the hash table. */
11133 eoinfo.failed = FALSE;
11134 eoinfo.localsyms = FALSE;
11135 eoinfo.flinfo = &flinfo;
11136 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11137 if (eoinfo.failed)
11138 return FALSE;
11139
11140 /* If backend needs to output some symbols not present in the hash
11141 table, do it now. */
11142 if (bed->elf_backend_output_arch_syms)
11143 {
11144 typedef int (*out_sym_func)
11145 (void *, const char *, Elf_Internal_Sym *, asection *,
11146 struct elf_link_hash_entry *);
11147
11148 if (! ((*bed->elf_backend_output_arch_syms)
11149 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11150 return FALSE;
11151 }
11152
11153 /* Flush all symbols to the file. */
11154 if (! elf_link_flush_output_syms (&flinfo, bed))
11155 return FALSE;
11156
11157 /* Now we know the size of the symtab section. */
11158 off += symtab_hdr->sh_size;
11159
11160 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11161 if (symtab_shndx_hdr->sh_name != 0)
11162 {
11163 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11164 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11165 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11166 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11167 symtab_shndx_hdr->sh_size = amt;
11168
11169 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11170 off, TRUE);
11171
11172 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11173 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11174 return FALSE;
11175 }
11176
11177
11178 /* Finish up and write out the symbol string table (.strtab)
11179 section. */
11180 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11181 /* sh_name was set in prep_headers. */
11182 symstrtab_hdr->sh_type = SHT_STRTAB;
11183 symstrtab_hdr->sh_flags = 0;
11184 symstrtab_hdr->sh_addr = 0;
11185 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11186 symstrtab_hdr->sh_entsize = 0;
11187 symstrtab_hdr->sh_link = 0;
11188 symstrtab_hdr->sh_info = 0;
11189 /* sh_offset is set just below. */
11190 symstrtab_hdr->sh_addralign = 1;
11191
11192 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
11193 elf_next_file_pos (abfd) = off;
11194
11195 if (bfd_get_symcount (abfd) > 0)
11196 {
11197 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11198 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11199 return FALSE;
11200 }
11201
11202 /* Adjust the relocs to have the correct symbol indices. */
11203 for (o = abfd->sections; o != NULL; o = o->next)
11204 {
11205 struct bfd_elf_section_data *esdo = elf_section_data (o);
11206 if ((o->flags & SEC_RELOC) == 0)
11207 continue;
11208
11209 if (esdo->rel.hdr != NULL)
11210 elf_link_adjust_relocs (abfd, &esdo->rel);
11211 if (esdo->rela.hdr != NULL)
11212 elf_link_adjust_relocs (abfd, &esdo->rela);
11213
11214 /* Set the reloc_count field to 0 to prevent write_relocs from
11215 trying to swap the relocs out itself. */
11216 o->reloc_count = 0;
11217 }
11218
11219 if (dynamic && info->combreloc && dynobj != NULL)
11220 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11221
11222 /* If we are linking against a dynamic object, or generating a
11223 shared library, finish up the dynamic linking information. */
11224 if (dynamic)
11225 {
11226 bfd_byte *dyncon, *dynconend;
11227
11228 /* Fix up .dynamic entries. */
11229 o = bfd_get_linker_section (dynobj, ".dynamic");
11230 BFD_ASSERT (o != NULL);
11231
11232 dyncon = o->contents;
11233 dynconend = o->contents + o->size;
11234 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11235 {
11236 Elf_Internal_Dyn dyn;
11237 const char *name;
11238 unsigned int type;
11239
11240 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11241
11242 switch (dyn.d_tag)
11243 {
11244 default:
11245 continue;
11246 case DT_NULL:
11247 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11248 {
11249 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11250 {
11251 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11252 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11253 default: continue;
11254 }
11255 dyn.d_un.d_val = relativecount;
11256 relativecount = 0;
11257 break;
11258 }
11259 continue;
11260
11261 case DT_INIT:
11262 name = info->init_function;
11263 goto get_sym;
11264 case DT_FINI:
11265 name = info->fini_function;
11266 get_sym:
11267 {
11268 struct elf_link_hash_entry *h;
11269
11270 h = elf_link_hash_lookup (elf_hash_table (info), name,
11271 FALSE, FALSE, TRUE);
11272 if (h != NULL
11273 && (h->root.type == bfd_link_hash_defined
11274 || h->root.type == bfd_link_hash_defweak))
11275 {
11276 dyn.d_un.d_ptr = h->root.u.def.value;
11277 o = h->root.u.def.section;
11278 if (o->output_section != NULL)
11279 dyn.d_un.d_ptr += (o->output_section->vma
11280 + o->output_offset);
11281 else
11282 {
11283 /* The symbol is imported from another shared
11284 library and does not apply to this one. */
11285 dyn.d_un.d_ptr = 0;
11286 }
11287 break;
11288 }
11289 }
11290 continue;
11291
11292 case DT_PREINIT_ARRAYSZ:
11293 name = ".preinit_array";
11294 goto get_size;
11295 case DT_INIT_ARRAYSZ:
11296 name = ".init_array";
11297 goto get_size;
11298 case DT_FINI_ARRAYSZ:
11299 name = ".fini_array";
11300 get_size:
11301 o = bfd_get_section_by_name (abfd, name);
11302 if (o == NULL)
11303 {
11304 (*_bfd_error_handler)
11305 (_("%B: could not find output section %s"), abfd, name);
11306 goto error_return;
11307 }
11308 if (o->size == 0)
11309 (*_bfd_error_handler)
11310 (_("warning: %s section has zero size"), name);
11311 dyn.d_un.d_val = o->size;
11312 break;
11313
11314 case DT_PREINIT_ARRAY:
11315 name = ".preinit_array";
11316 goto get_vma;
11317 case DT_INIT_ARRAY:
11318 name = ".init_array";
11319 goto get_vma;
11320 case DT_FINI_ARRAY:
11321 name = ".fini_array";
11322 goto get_vma;
11323
11324 case DT_HASH:
11325 name = ".hash";
11326 goto get_vma;
11327 case DT_GNU_HASH:
11328 name = ".gnu.hash";
11329 goto get_vma;
11330 case DT_STRTAB:
11331 name = ".dynstr";
11332 goto get_vma;
11333 case DT_SYMTAB:
11334 name = ".dynsym";
11335 goto get_vma;
11336 case DT_VERDEF:
11337 name = ".gnu.version_d";
11338 goto get_vma;
11339 case DT_VERNEED:
11340 name = ".gnu.version_r";
11341 goto get_vma;
11342 case DT_VERSYM:
11343 name = ".gnu.version";
11344 get_vma:
11345 o = bfd_get_section_by_name (abfd, name);
11346 if (o == NULL)
11347 {
11348 (*_bfd_error_handler)
11349 (_("%B: could not find output section %s"), abfd, name);
11350 goto error_return;
11351 }
11352 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11353 {
11354 (*_bfd_error_handler)
11355 (_("warning: section '%s' is being made into a note"), name);
11356 bfd_set_error (bfd_error_nonrepresentable_section);
11357 goto error_return;
11358 }
11359 dyn.d_un.d_ptr = o->vma;
11360 break;
11361
11362 case DT_REL:
11363 case DT_RELA:
11364 case DT_RELSZ:
11365 case DT_RELASZ:
11366 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11367 type = SHT_REL;
11368 else
11369 type = SHT_RELA;
11370 dyn.d_un.d_val = 0;
11371 dyn.d_un.d_ptr = 0;
11372 for (i = 1; i < elf_numsections (abfd); i++)
11373 {
11374 Elf_Internal_Shdr *hdr;
11375
11376 hdr = elf_elfsections (abfd)[i];
11377 if (hdr->sh_type == type
11378 && (hdr->sh_flags & SHF_ALLOC) != 0)
11379 {
11380 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11381 dyn.d_un.d_val += hdr->sh_size;
11382 else
11383 {
11384 if (dyn.d_un.d_ptr == 0
11385 || hdr->sh_addr < dyn.d_un.d_ptr)
11386 dyn.d_un.d_ptr = hdr->sh_addr;
11387 }
11388 }
11389 }
11390 break;
11391 }
11392 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11393 }
11394 }
11395
11396 /* If we have created any dynamic sections, then output them. */
11397 if (dynobj != NULL)
11398 {
11399 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11400 goto error_return;
11401
11402 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11403 if (((info->warn_shared_textrel && info->shared)
11404 || info->error_textrel)
11405 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11406 {
11407 bfd_byte *dyncon, *dynconend;
11408
11409 dyncon = o->contents;
11410 dynconend = o->contents + o->size;
11411 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11412 {
11413 Elf_Internal_Dyn dyn;
11414
11415 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11416
11417 if (dyn.d_tag == DT_TEXTREL)
11418 {
11419 if (info->error_textrel)
11420 info->callbacks->einfo
11421 (_("%P%X: read-only segment has dynamic relocations.\n"));
11422 else
11423 info->callbacks->einfo
11424 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11425 break;
11426 }
11427 }
11428 }
11429
11430 for (o = dynobj->sections; o != NULL; o = o->next)
11431 {
11432 if ((o->flags & SEC_HAS_CONTENTS) == 0
11433 || o->size == 0
11434 || o->output_section == bfd_abs_section_ptr)
11435 continue;
11436 if ((o->flags & SEC_LINKER_CREATED) == 0)
11437 {
11438 /* At this point, we are only interested in sections
11439 created by _bfd_elf_link_create_dynamic_sections. */
11440 continue;
11441 }
11442 if (elf_hash_table (info)->stab_info.stabstr == o)
11443 continue;
11444 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11445 continue;
11446 if (strcmp (o->name, ".dynstr") != 0)
11447 {
11448 /* FIXME: octets_per_byte. */
11449 if (! bfd_set_section_contents (abfd, o->output_section,
11450 o->contents,
11451 (file_ptr) o->output_offset,
11452 o->size))
11453 goto error_return;
11454 }
11455 else
11456 {
11457 /* The contents of the .dynstr section are actually in a
11458 stringtab. */
11459 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11460 if (bfd_seek (abfd, off, SEEK_SET) != 0
11461 || ! _bfd_elf_strtab_emit (abfd,
11462 elf_hash_table (info)->dynstr))
11463 goto error_return;
11464 }
11465 }
11466 }
11467
11468 if (info->relocatable)
11469 {
11470 bfd_boolean failed = FALSE;
11471
11472 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11473 if (failed)
11474 goto error_return;
11475 }
11476
11477 /* If we have optimized stabs strings, output them. */
11478 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11479 {
11480 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11481 goto error_return;
11482 }
11483
11484 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11485 goto error_return;
11486
11487 elf_final_link_free (abfd, &flinfo);
11488
11489 elf_linker (abfd) = TRUE;
11490
11491 if (attr_section)
11492 {
11493 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11494 if (contents == NULL)
11495 return FALSE; /* Bail out and fail. */
11496 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11497 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11498 free (contents);
11499 }
11500
11501 return TRUE;
11502
11503 error_return:
11504 elf_final_link_free (abfd, &flinfo);
11505 return FALSE;
11506 }
11507 \f
11508 /* Initialize COOKIE for input bfd ABFD. */
11509
11510 static bfd_boolean
11511 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11512 struct bfd_link_info *info, bfd *abfd)
11513 {
11514 Elf_Internal_Shdr *symtab_hdr;
11515 const struct elf_backend_data *bed;
11516
11517 bed = get_elf_backend_data (abfd);
11518 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11519
11520 cookie->abfd = abfd;
11521 cookie->sym_hashes = elf_sym_hashes (abfd);
11522 cookie->bad_symtab = elf_bad_symtab (abfd);
11523 if (cookie->bad_symtab)
11524 {
11525 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11526 cookie->extsymoff = 0;
11527 }
11528 else
11529 {
11530 cookie->locsymcount = symtab_hdr->sh_info;
11531 cookie->extsymoff = symtab_hdr->sh_info;
11532 }
11533
11534 if (bed->s->arch_size == 32)
11535 cookie->r_sym_shift = 8;
11536 else
11537 cookie->r_sym_shift = 32;
11538
11539 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11540 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11541 {
11542 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11543 cookie->locsymcount, 0,
11544 NULL, NULL, NULL);
11545 if (cookie->locsyms == NULL)
11546 {
11547 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11548 return FALSE;
11549 }
11550 if (info->keep_memory)
11551 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11552 }
11553 return TRUE;
11554 }
11555
11556 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11557
11558 static void
11559 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11560 {
11561 Elf_Internal_Shdr *symtab_hdr;
11562
11563 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11564 if (cookie->locsyms != NULL
11565 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11566 free (cookie->locsyms);
11567 }
11568
11569 /* Initialize the relocation information in COOKIE for input section SEC
11570 of input bfd ABFD. */
11571
11572 static bfd_boolean
11573 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11574 struct bfd_link_info *info, bfd *abfd,
11575 asection *sec)
11576 {
11577 const struct elf_backend_data *bed;
11578
11579 if (sec->reloc_count == 0)
11580 {
11581 cookie->rels = NULL;
11582 cookie->relend = NULL;
11583 }
11584 else
11585 {
11586 bed = get_elf_backend_data (abfd);
11587
11588 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11589 info->keep_memory);
11590 if (cookie->rels == NULL)
11591 return FALSE;
11592 cookie->rel = cookie->rels;
11593 cookie->relend = (cookie->rels
11594 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11595 }
11596 cookie->rel = cookie->rels;
11597 return TRUE;
11598 }
11599
11600 /* Free the memory allocated by init_reloc_cookie_rels,
11601 if appropriate. */
11602
11603 static void
11604 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11605 asection *sec)
11606 {
11607 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11608 free (cookie->rels);
11609 }
11610
11611 /* Initialize the whole of COOKIE for input section SEC. */
11612
11613 static bfd_boolean
11614 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11615 struct bfd_link_info *info,
11616 asection *sec)
11617 {
11618 if (!init_reloc_cookie (cookie, info, sec->owner))
11619 goto error1;
11620 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11621 goto error2;
11622 return TRUE;
11623
11624 error2:
11625 fini_reloc_cookie (cookie, sec->owner);
11626 error1:
11627 return FALSE;
11628 }
11629
11630 /* Free the memory allocated by init_reloc_cookie_for_section,
11631 if appropriate. */
11632
11633 static void
11634 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11635 asection *sec)
11636 {
11637 fini_reloc_cookie_rels (cookie, sec);
11638 fini_reloc_cookie (cookie, sec->owner);
11639 }
11640 \f
11641 /* Garbage collect unused sections. */
11642
11643 /* Default gc_mark_hook. */
11644
11645 asection *
11646 _bfd_elf_gc_mark_hook (asection *sec,
11647 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11648 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11649 struct elf_link_hash_entry *h,
11650 Elf_Internal_Sym *sym)
11651 {
11652 const char *sec_name;
11653
11654 if (h != NULL)
11655 {
11656 switch (h->root.type)
11657 {
11658 case bfd_link_hash_defined:
11659 case bfd_link_hash_defweak:
11660 return h->root.u.def.section;
11661
11662 case bfd_link_hash_common:
11663 return h->root.u.c.p->section;
11664
11665 case bfd_link_hash_undefined:
11666 case bfd_link_hash_undefweak:
11667 /* To work around a glibc bug, keep all XXX input sections
11668 when there is an as yet undefined reference to __start_XXX
11669 or __stop_XXX symbols. The linker will later define such
11670 symbols for orphan input sections that have a name
11671 representable as a C identifier. */
11672 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11673 sec_name = h->root.root.string + 8;
11674 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11675 sec_name = h->root.root.string + 7;
11676 else
11677 sec_name = NULL;
11678
11679 if (sec_name && *sec_name != '\0')
11680 {
11681 bfd *i;
11682
11683 for (i = info->input_bfds; i; i = i->link.next)
11684 {
11685 sec = bfd_get_section_by_name (i, sec_name);
11686 if (sec)
11687 sec->flags |= SEC_KEEP;
11688 }
11689 }
11690 break;
11691
11692 default:
11693 break;
11694 }
11695 }
11696 else
11697 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11698
11699 return NULL;
11700 }
11701
11702 /* COOKIE->rel describes a relocation against section SEC, which is
11703 a section we've decided to keep. Return the section that contains
11704 the relocation symbol, or NULL if no section contains it. */
11705
11706 asection *
11707 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11708 elf_gc_mark_hook_fn gc_mark_hook,
11709 struct elf_reloc_cookie *cookie)
11710 {
11711 unsigned long r_symndx;
11712 struct elf_link_hash_entry *h;
11713
11714 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11715 if (r_symndx == STN_UNDEF)
11716 return NULL;
11717
11718 if (r_symndx >= cookie->locsymcount
11719 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11720 {
11721 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11722 while (h->root.type == bfd_link_hash_indirect
11723 || h->root.type == bfd_link_hash_warning)
11724 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11725 h->mark = 1;
11726 /* If this symbol is weak and there is a non-weak definition, we
11727 keep the non-weak definition because many backends put
11728 dynamic reloc info on the non-weak definition for code
11729 handling copy relocs. */
11730 if (h->u.weakdef != NULL)
11731 h->u.weakdef->mark = 1;
11732 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11733 }
11734
11735 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11736 &cookie->locsyms[r_symndx]);
11737 }
11738
11739 /* COOKIE->rel describes a relocation against section SEC, which is
11740 a section we've decided to keep. Mark the section that contains
11741 the relocation symbol. */
11742
11743 bfd_boolean
11744 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11745 asection *sec,
11746 elf_gc_mark_hook_fn gc_mark_hook,
11747 struct elf_reloc_cookie *cookie)
11748 {
11749 asection *rsec;
11750
11751 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11752 if (rsec && !rsec->gc_mark)
11753 {
11754 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11755 || (rsec->owner->flags & DYNAMIC) != 0)
11756 rsec->gc_mark = 1;
11757 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11758 return FALSE;
11759 }
11760 return TRUE;
11761 }
11762
11763 /* The mark phase of garbage collection. For a given section, mark
11764 it and any sections in this section's group, and all the sections
11765 which define symbols to which it refers. */
11766
11767 bfd_boolean
11768 _bfd_elf_gc_mark (struct bfd_link_info *info,
11769 asection *sec,
11770 elf_gc_mark_hook_fn gc_mark_hook)
11771 {
11772 bfd_boolean ret;
11773 asection *group_sec, *eh_frame;
11774
11775 sec->gc_mark = 1;
11776
11777 /* Mark all the sections in the group. */
11778 group_sec = elf_section_data (sec)->next_in_group;
11779 if (group_sec && !group_sec->gc_mark)
11780 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11781 return FALSE;
11782
11783 /* Look through the section relocs. */
11784 ret = TRUE;
11785 eh_frame = elf_eh_frame_section (sec->owner);
11786 if ((sec->flags & SEC_RELOC) != 0
11787 && sec->reloc_count > 0
11788 && sec != eh_frame)
11789 {
11790 struct elf_reloc_cookie cookie;
11791
11792 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11793 ret = FALSE;
11794 else
11795 {
11796 for (; cookie.rel < cookie.relend; cookie.rel++)
11797 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11798 {
11799 ret = FALSE;
11800 break;
11801 }
11802 fini_reloc_cookie_for_section (&cookie, sec);
11803 }
11804 }
11805
11806 if (ret && eh_frame && elf_fde_list (sec))
11807 {
11808 struct elf_reloc_cookie cookie;
11809
11810 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11811 ret = FALSE;
11812 else
11813 {
11814 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11815 gc_mark_hook, &cookie))
11816 ret = FALSE;
11817 fini_reloc_cookie_for_section (&cookie, eh_frame);
11818 }
11819 }
11820
11821 return ret;
11822 }
11823
11824 /* Keep debug and special sections. */
11825
11826 bfd_boolean
11827 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
11828 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
11829 {
11830 bfd *ibfd;
11831
11832 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11833 {
11834 asection *isec;
11835 bfd_boolean some_kept;
11836 bfd_boolean debug_frag_seen;
11837
11838 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
11839 continue;
11840
11841 /* Ensure all linker created sections are kept,
11842 see if any other section is already marked,
11843 and note if we have any fragmented debug sections. */
11844 debug_frag_seen = some_kept = FALSE;
11845 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11846 {
11847 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11848 isec->gc_mark = 1;
11849 else if (isec->gc_mark)
11850 some_kept = TRUE;
11851
11852 if (debug_frag_seen == FALSE
11853 && (isec->flags & SEC_DEBUGGING)
11854 && CONST_STRNEQ (isec->name, ".debug_line."))
11855 debug_frag_seen = TRUE;
11856 }
11857
11858 /* If no section in this file will be kept, then we can
11859 toss out the debug and special sections. */
11860 if (!some_kept)
11861 continue;
11862
11863 /* Keep debug and special sections like .comment when they are
11864 not part of a group, or when we have single-member groups. */
11865 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11866 if ((elf_next_in_group (isec) == NULL
11867 || elf_next_in_group (isec) == isec)
11868 && ((isec->flags & SEC_DEBUGGING) != 0
11869 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
11870 isec->gc_mark = 1;
11871
11872 if (! debug_frag_seen)
11873 continue;
11874
11875 /* Look for CODE sections which are going to be discarded,
11876 and find and discard any fragmented debug sections which
11877 are associated with that code section. */
11878 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11879 if ((isec->flags & SEC_CODE) != 0
11880 && isec->gc_mark == 0)
11881 {
11882 unsigned int ilen;
11883 asection *dsec;
11884
11885 ilen = strlen (isec->name);
11886
11887 /* Association is determined by the name of the debug section
11888 containing the name of the code section as a suffix. For
11889 example .debug_line.text.foo is a debug section associated
11890 with .text.foo. */
11891 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
11892 {
11893 unsigned int dlen;
11894
11895 if (dsec->gc_mark == 0
11896 || (dsec->flags & SEC_DEBUGGING) == 0)
11897 continue;
11898
11899 dlen = strlen (dsec->name);
11900
11901 if (dlen > ilen
11902 && strncmp (dsec->name + (dlen - ilen),
11903 isec->name, ilen) == 0)
11904 {
11905 dsec->gc_mark = 0;
11906 break;
11907 }
11908 }
11909 }
11910 }
11911 return TRUE;
11912 }
11913
11914 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11915
11916 struct elf_gc_sweep_symbol_info
11917 {
11918 struct bfd_link_info *info;
11919 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11920 bfd_boolean);
11921 };
11922
11923 static bfd_boolean
11924 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11925 {
11926 if (!h->mark
11927 && (((h->root.type == bfd_link_hash_defined
11928 || h->root.type == bfd_link_hash_defweak)
11929 && !(h->def_regular
11930 && h->root.u.def.section->gc_mark))
11931 || h->root.type == bfd_link_hash_undefined
11932 || h->root.type == bfd_link_hash_undefweak))
11933 {
11934 struct elf_gc_sweep_symbol_info *inf;
11935
11936 inf = (struct elf_gc_sweep_symbol_info *) data;
11937 (*inf->hide_symbol) (inf->info, h, TRUE);
11938 h->def_regular = 0;
11939 h->ref_regular = 0;
11940 h->ref_regular_nonweak = 0;
11941 }
11942
11943 return TRUE;
11944 }
11945
11946 /* The sweep phase of garbage collection. Remove all garbage sections. */
11947
11948 typedef bfd_boolean (*gc_sweep_hook_fn)
11949 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11950
11951 static bfd_boolean
11952 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11953 {
11954 bfd *sub;
11955 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11956 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11957 unsigned long section_sym_count;
11958 struct elf_gc_sweep_symbol_info sweep_info;
11959
11960 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11961 {
11962 asection *o;
11963
11964 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11965 continue;
11966
11967 for (o = sub->sections; o != NULL; o = o->next)
11968 {
11969 /* When any section in a section group is kept, we keep all
11970 sections in the section group. If the first member of
11971 the section group is excluded, we will also exclude the
11972 group section. */
11973 if (o->flags & SEC_GROUP)
11974 {
11975 asection *first = elf_next_in_group (o);
11976 o->gc_mark = first->gc_mark;
11977 }
11978
11979 if (o->gc_mark)
11980 continue;
11981
11982 /* Skip sweeping sections already excluded. */
11983 if (o->flags & SEC_EXCLUDE)
11984 continue;
11985
11986 /* Since this is early in the link process, it is simple
11987 to remove a section from the output. */
11988 o->flags |= SEC_EXCLUDE;
11989
11990 if (info->print_gc_sections && o->size != 0)
11991 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11992
11993 /* But we also have to update some of the relocation
11994 info we collected before. */
11995 if (gc_sweep_hook
11996 && (o->flags & SEC_RELOC) != 0
11997 && o->reloc_count != 0
11998 && !((info->strip == strip_all || info->strip == strip_debugger)
11999 && (o->flags & SEC_DEBUGGING) != 0)
12000 && !bfd_is_abs_section (o->output_section))
12001 {
12002 Elf_Internal_Rela *internal_relocs;
12003 bfd_boolean r;
12004
12005 internal_relocs
12006 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12007 info->keep_memory);
12008 if (internal_relocs == NULL)
12009 return FALSE;
12010
12011 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12012
12013 if (elf_section_data (o)->relocs != internal_relocs)
12014 free (internal_relocs);
12015
12016 if (!r)
12017 return FALSE;
12018 }
12019 }
12020 }
12021
12022 /* Remove the symbols that were in the swept sections from the dynamic
12023 symbol table. GCFIXME: Anyone know how to get them out of the
12024 static symbol table as well? */
12025 sweep_info.info = info;
12026 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12027 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12028 &sweep_info);
12029
12030 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12031 return TRUE;
12032 }
12033
12034 /* Propagate collected vtable information. This is called through
12035 elf_link_hash_traverse. */
12036
12037 static bfd_boolean
12038 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12039 {
12040 /* Those that are not vtables. */
12041 if (h->vtable == NULL || h->vtable->parent == NULL)
12042 return TRUE;
12043
12044 /* Those vtables that do not have parents, we cannot merge. */
12045 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12046 return TRUE;
12047
12048 /* If we've already been done, exit. */
12049 if (h->vtable->used && h->vtable->used[-1])
12050 return TRUE;
12051
12052 /* Make sure the parent's table is up to date. */
12053 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12054
12055 if (h->vtable->used == NULL)
12056 {
12057 /* None of this table's entries were referenced. Re-use the
12058 parent's table. */
12059 h->vtable->used = h->vtable->parent->vtable->used;
12060 h->vtable->size = h->vtable->parent->vtable->size;
12061 }
12062 else
12063 {
12064 size_t n;
12065 bfd_boolean *cu, *pu;
12066
12067 /* Or the parent's entries into ours. */
12068 cu = h->vtable->used;
12069 cu[-1] = TRUE;
12070 pu = h->vtable->parent->vtable->used;
12071 if (pu != NULL)
12072 {
12073 const struct elf_backend_data *bed;
12074 unsigned int log_file_align;
12075
12076 bed = get_elf_backend_data (h->root.u.def.section->owner);
12077 log_file_align = bed->s->log_file_align;
12078 n = h->vtable->parent->vtable->size >> log_file_align;
12079 while (n--)
12080 {
12081 if (*pu)
12082 *cu = TRUE;
12083 pu++;
12084 cu++;
12085 }
12086 }
12087 }
12088
12089 return TRUE;
12090 }
12091
12092 static bfd_boolean
12093 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12094 {
12095 asection *sec;
12096 bfd_vma hstart, hend;
12097 Elf_Internal_Rela *relstart, *relend, *rel;
12098 const struct elf_backend_data *bed;
12099 unsigned int log_file_align;
12100
12101 /* Take care of both those symbols that do not describe vtables as
12102 well as those that are not loaded. */
12103 if (h->vtable == NULL || h->vtable->parent == NULL)
12104 return TRUE;
12105
12106 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12107 || h->root.type == bfd_link_hash_defweak);
12108
12109 sec = h->root.u.def.section;
12110 hstart = h->root.u.def.value;
12111 hend = hstart + h->size;
12112
12113 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12114 if (!relstart)
12115 return *(bfd_boolean *) okp = FALSE;
12116 bed = get_elf_backend_data (sec->owner);
12117 log_file_align = bed->s->log_file_align;
12118
12119 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12120
12121 for (rel = relstart; rel < relend; ++rel)
12122 if (rel->r_offset >= hstart && rel->r_offset < hend)
12123 {
12124 /* If the entry is in use, do nothing. */
12125 if (h->vtable->used
12126 && (rel->r_offset - hstart) < h->vtable->size)
12127 {
12128 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12129 if (h->vtable->used[entry])
12130 continue;
12131 }
12132 /* Otherwise, kill it. */
12133 rel->r_offset = rel->r_info = rel->r_addend = 0;
12134 }
12135
12136 return TRUE;
12137 }
12138
12139 /* Mark sections containing dynamically referenced symbols. When
12140 building shared libraries, we must assume that any visible symbol is
12141 referenced. */
12142
12143 bfd_boolean
12144 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12145 {
12146 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12147 struct bfd_elf_dynamic_list *d = info->dynamic_list;
12148
12149 if ((h->root.type == bfd_link_hash_defined
12150 || h->root.type == bfd_link_hash_defweak)
12151 && (h->ref_dynamic
12152 || (h->def_regular
12153 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12154 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12155 && (!info->executable
12156 || info->export_dynamic
12157 || (h->dynamic
12158 && d != NULL
12159 && (*d->match) (&d->head, NULL, h->root.root.string)))
12160 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12161 || !bfd_hide_sym_by_version (info->version_info,
12162 h->root.root.string)))))
12163 h->root.u.def.section->flags |= SEC_KEEP;
12164
12165 return TRUE;
12166 }
12167
12168 /* Keep all sections containing symbols undefined on the command-line,
12169 and the section containing the entry symbol. */
12170
12171 void
12172 _bfd_elf_gc_keep (struct bfd_link_info *info)
12173 {
12174 struct bfd_sym_chain *sym;
12175
12176 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12177 {
12178 struct elf_link_hash_entry *h;
12179
12180 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12181 FALSE, FALSE, FALSE);
12182
12183 if (h != NULL
12184 && (h->root.type == bfd_link_hash_defined
12185 || h->root.type == bfd_link_hash_defweak)
12186 && !bfd_is_abs_section (h->root.u.def.section))
12187 h->root.u.def.section->flags |= SEC_KEEP;
12188 }
12189 }
12190
12191 /* Do mark and sweep of unused sections. */
12192
12193 bfd_boolean
12194 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12195 {
12196 bfd_boolean ok = TRUE;
12197 bfd *sub;
12198 elf_gc_mark_hook_fn gc_mark_hook;
12199 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12200
12201 if (!bed->can_gc_sections
12202 || !is_elf_hash_table (info->hash))
12203 {
12204 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12205 return TRUE;
12206 }
12207
12208 bed->gc_keep (info);
12209
12210 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12211 at the .eh_frame section if we can mark the FDEs individually. */
12212 _bfd_elf_begin_eh_frame_parsing (info);
12213 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12214 {
12215 asection *sec;
12216 struct elf_reloc_cookie cookie;
12217
12218 sec = bfd_get_section_by_name (sub, ".eh_frame");
12219 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12220 {
12221 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12222 if (elf_section_data (sec)->sec_info
12223 && (sec->flags & SEC_LINKER_CREATED) == 0)
12224 elf_eh_frame_section (sub) = sec;
12225 fini_reloc_cookie_for_section (&cookie, sec);
12226 sec = bfd_get_next_section_by_name (sec);
12227 }
12228 }
12229 _bfd_elf_end_eh_frame_parsing (info);
12230
12231 /* Apply transitive closure to the vtable entry usage info. */
12232 elf_link_hash_traverse (elf_hash_table (info),
12233 elf_gc_propagate_vtable_entries_used,
12234 &ok);
12235 if (!ok)
12236 return FALSE;
12237
12238 /* Kill the vtable relocations that were not used. */
12239 elf_link_hash_traverse (elf_hash_table (info),
12240 elf_gc_smash_unused_vtentry_relocs,
12241 &ok);
12242 if (!ok)
12243 return FALSE;
12244
12245 /* Mark dynamically referenced symbols. */
12246 if (elf_hash_table (info)->dynamic_sections_created)
12247 elf_link_hash_traverse (elf_hash_table (info),
12248 bed->gc_mark_dynamic_ref,
12249 info);
12250
12251 /* Grovel through relocs to find out who stays ... */
12252 gc_mark_hook = bed->gc_mark_hook;
12253 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12254 {
12255 asection *o;
12256
12257 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12258 continue;
12259
12260 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12261 Also treat note sections as a root, if the section is not part
12262 of a group. */
12263 for (o = sub->sections; o != NULL; o = o->next)
12264 if (!o->gc_mark
12265 && (o->flags & SEC_EXCLUDE) == 0
12266 && ((o->flags & SEC_KEEP) != 0
12267 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12268 && elf_next_in_group (o) == NULL )))
12269 {
12270 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12271 return FALSE;
12272 }
12273 }
12274
12275 /* Allow the backend to mark additional target specific sections. */
12276 bed->gc_mark_extra_sections (info, gc_mark_hook);
12277
12278 /* ... and mark SEC_EXCLUDE for those that go. */
12279 return elf_gc_sweep (abfd, info);
12280 }
12281 \f
12282 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12283
12284 bfd_boolean
12285 bfd_elf_gc_record_vtinherit (bfd *abfd,
12286 asection *sec,
12287 struct elf_link_hash_entry *h,
12288 bfd_vma offset)
12289 {
12290 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12291 struct elf_link_hash_entry **search, *child;
12292 bfd_size_type extsymcount;
12293 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12294
12295 /* The sh_info field of the symtab header tells us where the
12296 external symbols start. We don't care about the local symbols at
12297 this point. */
12298 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12299 if (!elf_bad_symtab (abfd))
12300 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12301
12302 sym_hashes = elf_sym_hashes (abfd);
12303 sym_hashes_end = sym_hashes + extsymcount;
12304
12305 /* Hunt down the child symbol, which is in this section at the same
12306 offset as the relocation. */
12307 for (search = sym_hashes; search != sym_hashes_end; ++search)
12308 {
12309 if ((child = *search) != NULL
12310 && (child->root.type == bfd_link_hash_defined
12311 || child->root.type == bfd_link_hash_defweak)
12312 && child->root.u.def.section == sec
12313 && child->root.u.def.value == offset)
12314 goto win;
12315 }
12316
12317 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12318 abfd, sec, (unsigned long) offset);
12319 bfd_set_error (bfd_error_invalid_operation);
12320 return FALSE;
12321
12322 win:
12323 if (!child->vtable)
12324 {
12325 child->vtable = (struct elf_link_virtual_table_entry *)
12326 bfd_zalloc (abfd, sizeof (*child->vtable));
12327 if (!child->vtable)
12328 return FALSE;
12329 }
12330 if (!h)
12331 {
12332 /* This *should* only be the absolute section. It could potentially
12333 be that someone has defined a non-global vtable though, which
12334 would be bad. It isn't worth paging in the local symbols to be
12335 sure though; that case should simply be handled by the assembler. */
12336
12337 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12338 }
12339 else
12340 child->vtable->parent = h;
12341
12342 return TRUE;
12343 }
12344
12345 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12346
12347 bfd_boolean
12348 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12349 asection *sec ATTRIBUTE_UNUSED,
12350 struct elf_link_hash_entry *h,
12351 bfd_vma addend)
12352 {
12353 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12354 unsigned int log_file_align = bed->s->log_file_align;
12355
12356 if (!h->vtable)
12357 {
12358 h->vtable = (struct elf_link_virtual_table_entry *)
12359 bfd_zalloc (abfd, sizeof (*h->vtable));
12360 if (!h->vtable)
12361 return FALSE;
12362 }
12363
12364 if (addend >= h->vtable->size)
12365 {
12366 size_t size, bytes, file_align;
12367 bfd_boolean *ptr = h->vtable->used;
12368
12369 /* While the symbol is undefined, we have to be prepared to handle
12370 a zero size. */
12371 file_align = 1 << log_file_align;
12372 if (h->root.type == bfd_link_hash_undefined)
12373 size = addend + file_align;
12374 else
12375 {
12376 size = h->size;
12377 if (addend >= size)
12378 {
12379 /* Oops! We've got a reference past the defined end of
12380 the table. This is probably a bug -- shall we warn? */
12381 size = addend + file_align;
12382 }
12383 }
12384 size = (size + file_align - 1) & -file_align;
12385
12386 /* Allocate one extra entry for use as a "done" flag for the
12387 consolidation pass. */
12388 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12389
12390 if (ptr)
12391 {
12392 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12393
12394 if (ptr != NULL)
12395 {
12396 size_t oldbytes;
12397
12398 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12399 * sizeof (bfd_boolean));
12400 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12401 }
12402 }
12403 else
12404 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12405
12406 if (ptr == NULL)
12407 return FALSE;
12408
12409 /* And arrange for that done flag to be at index -1. */
12410 h->vtable->used = ptr + 1;
12411 h->vtable->size = size;
12412 }
12413
12414 h->vtable->used[addend >> log_file_align] = TRUE;
12415
12416 return TRUE;
12417 }
12418
12419 /* Map an ELF section header flag to its corresponding string. */
12420 typedef struct
12421 {
12422 char *flag_name;
12423 flagword flag_value;
12424 } elf_flags_to_name_table;
12425
12426 static elf_flags_to_name_table elf_flags_to_names [] =
12427 {
12428 { "SHF_WRITE", SHF_WRITE },
12429 { "SHF_ALLOC", SHF_ALLOC },
12430 { "SHF_EXECINSTR", SHF_EXECINSTR },
12431 { "SHF_MERGE", SHF_MERGE },
12432 { "SHF_STRINGS", SHF_STRINGS },
12433 { "SHF_INFO_LINK", SHF_INFO_LINK},
12434 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12435 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12436 { "SHF_GROUP", SHF_GROUP },
12437 { "SHF_TLS", SHF_TLS },
12438 { "SHF_MASKOS", SHF_MASKOS },
12439 { "SHF_EXCLUDE", SHF_EXCLUDE },
12440 };
12441
12442 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12443 bfd_boolean
12444 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12445 struct flag_info *flaginfo,
12446 asection *section)
12447 {
12448 const bfd_vma sh_flags = elf_section_flags (section);
12449
12450 if (!flaginfo->flags_initialized)
12451 {
12452 bfd *obfd = info->output_bfd;
12453 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12454 struct flag_info_list *tf = flaginfo->flag_list;
12455 int with_hex = 0;
12456 int without_hex = 0;
12457
12458 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12459 {
12460 unsigned i;
12461 flagword (*lookup) (char *);
12462
12463 lookup = bed->elf_backend_lookup_section_flags_hook;
12464 if (lookup != NULL)
12465 {
12466 flagword hexval = (*lookup) ((char *) tf->name);
12467
12468 if (hexval != 0)
12469 {
12470 if (tf->with == with_flags)
12471 with_hex |= hexval;
12472 else if (tf->with == without_flags)
12473 without_hex |= hexval;
12474 tf->valid = TRUE;
12475 continue;
12476 }
12477 }
12478 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12479 {
12480 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12481 {
12482 if (tf->with == with_flags)
12483 with_hex |= elf_flags_to_names[i].flag_value;
12484 else if (tf->with == without_flags)
12485 without_hex |= elf_flags_to_names[i].flag_value;
12486 tf->valid = TRUE;
12487 break;
12488 }
12489 }
12490 if (!tf->valid)
12491 {
12492 info->callbacks->einfo
12493 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12494 return FALSE;
12495 }
12496 }
12497 flaginfo->flags_initialized = TRUE;
12498 flaginfo->only_with_flags |= with_hex;
12499 flaginfo->not_with_flags |= without_hex;
12500 }
12501
12502 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12503 return FALSE;
12504
12505 if ((flaginfo->not_with_flags & sh_flags) != 0)
12506 return FALSE;
12507
12508 return TRUE;
12509 }
12510
12511 struct alloc_got_off_arg {
12512 bfd_vma gotoff;
12513 struct bfd_link_info *info;
12514 };
12515
12516 /* We need a special top-level link routine to convert got reference counts
12517 to real got offsets. */
12518
12519 static bfd_boolean
12520 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12521 {
12522 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12523 bfd *obfd = gofarg->info->output_bfd;
12524 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12525
12526 if (h->got.refcount > 0)
12527 {
12528 h->got.offset = gofarg->gotoff;
12529 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12530 }
12531 else
12532 h->got.offset = (bfd_vma) -1;
12533
12534 return TRUE;
12535 }
12536
12537 /* And an accompanying bit to work out final got entry offsets once
12538 we're done. Should be called from final_link. */
12539
12540 bfd_boolean
12541 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12542 struct bfd_link_info *info)
12543 {
12544 bfd *i;
12545 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12546 bfd_vma gotoff;
12547 struct alloc_got_off_arg gofarg;
12548
12549 BFD_ASSERT (abfd == info->output_bfd);
12550
12551 if (! is_elf_hash_table (info->hash))
12552 return FALSE;
12553
12554 /* The GOT offset is relative to the .got section, but the GOT header is
12555 put into the .got.plt section, if the backend uses it. */
12556 if (bed->want_got_plt)
12557 gotoff = 0;
12558 else
12559 gotoff = bed->got_header_size;
12560
12561 /* Do the local .got entries first. */
12562 for (i = info->input_bfds; i; i = i->link.next)
12563 {
12564 bfd_signed_vma *local_got;
12565 bfd_size_type j, locsymcount;
12566 Elf_Internal_Shdr *symtab_hdr;
12567
12568 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12569 continue;
12570
12571 local_got = elf_local_got_refcounts (i);
12572 if (!local_got)
12573 continue;
12574
12575 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12576 if (elf_bad_symtab (i))
12577 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12578 else
12579 locsymcount = symtab_hdr->sh_info;
12580
12581 for (j = 0; j < locsymcount; ++j)
12582 {
12583 if (local_got[j] > 0)
12584 {
12585 local_got[j] = gotoff;
12586 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12587 }
12588 else
12589 local_got[j] = (bfd_vma) -1;
12590 }
12591 }
12592
12593 /* Then the global .got entries. .plt refcounts are handled by
12594 adjust_dynamic_symbol */
12595 gofarg.gotoff = gotoff;
12596 gofarg.info = info;
12597 elf_link_hash_traverse (elf_hash_table (info),
12598 elf_gc_allocate_got_offsets,
12599 &gofarg);
12600 return TRUE;
12601 }
12602
12603 /* Many folk need no more in the way of final link than this, once
12604 got entry reference counting is enabled. */
12605
12606 bfd_boolean
12607 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12608 {
12609 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12610 return FALSE;
12611
12612 /* Invoke the regular ELF backend linker to do all the work. */
12613 return bfd_elf_final_link (abfd, info);
12614 }
12615
12616 bfd_boolean
12617 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12618 {
12619 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12620
12621 if (rcookie->bad_symtab)
12622 rcookie->rel = rcookie->rels;
12623
12624 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12625 {
12626 unsigned long r_symndx;
12627
12628 if (! rcookie->bad_symtab)
12629 if (rcookie->rel->r_offset > offset)
12630 return FALSE;
12631 if (rcookie->rel->r_offset != offset)
12632 continue;
12633
12634 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12635 if (r_symndx == STN_UNDEF)
12636 return TRUE;
12637
12638 if (r_symndx >= rcookie->locsymcount
12639 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12640 {
12641 struct elf_link_hash_entry *h;
12642
12643 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12644
12645 while (h->root.type == bfd_link_hash_indirect
12646 || h->root.type == bfd_link_hash_warning)
12647 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12648
12649 if ((h->root.type == bfd_link_hash_defined
12650 || h->root.type == bfd_link_hash_defweak)
12651 && discarded_section (h->root.u.def.section))
12652 return TRUE;
12653 else
12654 return FALSE;
12655 }
12656 else
12657 {
12658 /* It's not a relocation against a global symbol,
12659 but it could be a relocation against a local
12660 symbol for a discarded section. */
12661 asection *isec;
12662 Elf_Internal_Sym *isym;
12663
12664 /* Need to: get the symbol; get the section. */
12665 isym = &rcookie->locsyms[r_symndx];
12666 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12667 if (isec != NULL && discarded_section (isec))
12668 return TRUE;
12669 }
12670 return FALSE;
12671 }
12672 return FALSE;
12673 }
12674
12675 /* Discard unneeded references to discarded sections.
12676 Returns TRUE if any section's size was changed. */
12677 /* This function assumes that the relocations are in sorted order,
12678 which is true for all known assemblers. */
12679
12680 bfd_boolean
12681 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12682 {
12683 struct elf_reloc_cookie cookie;
12684 asection *stab, *eh;
12685 const struct elf_backend_data *bed;
12686 bfd *abfd;
12687 bfd_boolean ret = FALSE;
12688
12689 if (info->traditional_format
12690 || !is_elf_hash_table (info->hash))
12691 return FALSE;
12692
12693 _bfd_elf_begin_eh_frame_parsing (info);
12694 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
12695 {
12696 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12697 continue;
12698
12699 bed = get_elf_backend_data (abfd);
12700
12701 eh = NULL;
12702 if (!info->relocatable)
12703 {
12704 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12705 while (eh != NULL
12706 && (eh->size == 0
12707 || bfd_is_abs_section (eh->output_section)))
12708 eh = bfd_get_next_section_by_name (eh);
12709 }
12710
12711 stab = bfd_get_section_by_name (abfd, ".stab");
12712 if (stab != NULL
12713 && (stab->size == 0
12714 || bfd_is_abs_section (stab->output_section)
12715 || stab->sec_info_type != SEC_INFO_TYPE_STABS))
12716 stab = NULL;
12717
12718 if (stab == NULL
12719 && eh == NULL
12720 && bed->elf_backend_discard_info == NULL)
12721 continue;
12722
12723 if (!init_reloc_cookie (&cookie, info, abfd))
12724 return FALSE;
12725
12726 if (stab != NULL
12727 && stab->reloc_count > 0
12728 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12729 {
12730 if (_bfd_discard_section_stabs (abfd, stab,
12731 elf_section_data (stab)->sec_info,
12732 bfd_elf_reloc_symbol_deleted_p,
12733 &cookie))
12734 ret = TRUE;
12735 fini_reloc_cookie_rels (&cookie, stab);
12736 }
12737
12738 while (eh != NULL
12739 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12740 {
12741 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12742 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12743 bfd_elf_reloc_symbol_deleted_p,
12744 &cookie))
12745 ret = TRUE;
12746 fini_reloc_cookie_rels (&cookie, eh);
12747 eh = bfd_get_next_section_by_name (eh);
12748 }
12749
12750 if (bed->elf_backend_discard_info != NULL
12751 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12752 ret = TRUE;
12753
12754 fini_reloc_cookie (&cookie, abfd);
12755 }
12756 _bfd_elf_end_eh_frame_parsing (info);
12757
12758 if (info->eh_frame_hdr
12759 && !info->relocatable
12760 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12761 ret = TRUE;
12762
12763 return ret;
12764 }
12765
12766 bfd_boolean
12767 _bfd_elf_section_already_linked (bfd *abfd,
12768 asection *sec,
12769 struct bfd_link_info *info)
12770 {
12771 flagword flags;
12772 const char *name, *key;
12773 struct bfd_section_already_linked *l;
12774 struct bfd_section_already_linked_hash_entry *already_linked_list;
12775
12776 if (sec->output_section == bfd_abs_section_ptr)
12777 return FALSE;
12778
12779 flags = sec->flags;
12780
12781 /* Return if it isn't a linkonce section. A comdat group section
12782 also has SEC_LINK_ONCE set. */
12783 if ((flags & SEC_LINK_ONCE) == 0)
12784 return FALSE;
12785
12786 /* Don't put group member sections on our list of already linked
12787 sections. They are handled as a group via their group section. */
12788 if (elf_sec_group (sec) != NULL)
12789 return FALSE;
12790
12791 /* For a SHT_GROUP section, use the group signature as the key. */
12792 name = sec->name;
12793 if ((flags & SEC_GROUP) != 0
12794 && elf_next_in_group (sec) != NULL
12795 && elf_group_name (elf_next_in_group (sec)) != NULL)
12796 key = elf_group_name (elf_next_in_group (sec));
12797 else
12798 {
12799 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
12800 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12801 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12802 key++;
12803 else
12804 /* Must be a user linkonce section that doesn't follow gcc's
12805 naming convention. In this case we won't be matching
12806 single member groups. */
12807 key = name;
12808 }
12809
12810 already_linked_list = bfd_section_already_linked_table_lookup (key);
12811
12812 for (l = already_linked_list->entry; l != NULL; l = l->next)
12813 {
12814 /* We may have 2 different types of sections on the list: group
12815 sections with a signature of <key> (<key> is some string),
12816 and linkonce sections named .gnu.linkonce.<type>.<key>.
12817 Match like sections. LTO plugin sections are an exception.
12818 They are always named .gnu.linkonce.t.<key> and match either
12819 type of section. */
12820 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12821 && ((flags & SEC_GROUP) != 0
12822 || strcmp (name, l->sec->name) == 0))
12823 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
12824 {
12825 /* The section has already been linked. See if we should
12826 issue a warning. */
12827 if (!_bfd_handle_already_linked (sec, l, info))
12828 return FALSE;
12829
12830 if (flags & SEC_GROUP)
12831 {
12832 asection *first = elf_next_in_group (sec);
12833 asection *s = first;
12834
12835 while (s != NULL)
12836 {
12837 s->output_section = bfd_abs_section_ptr;
12838 /* Record which group discards it. */
12839 s->kept_section = l->sec;
12840 s = elf_next_in_group (s);
12841 /* These lists are circular. */
12842 if (s == first)
12843 break;
12844 }
12845 }
12846
12847 return TRUE;
12848 }
12849 }
12850
12851 /* A single member comdat group section may be discarded by a
12852 linkonce section and vice versa. */
12853 if ((flags & SEC_GROUP) != 0)
12854 {
12855 asection *first = elf_next_in_group (sec);
12856
12857 if (first != NULL && elf_next_in_group (first) == first)
12858 /* Check this single member group against linkonce sections. */
12859 for (l = already_linked_list->entry; l != NULL; l = l->next)
12860 if ((l->sec->flags & SEC_GROUP) == 0
12861 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12862 {
12863 first->output_section = bfd_abs_section_ptr;
12864 first->kept_section = l->sec;
12865 sec->output_section = bfd_abs_section_ptr;
12866 break;
12867 }
12868 }
12869 else
12870 /* Check this linkonce section against single member groups. */
12871 for (l = already_linked_list->entry; l != NULL; l = l->next)
12872 if (l->sec->flags & SEC_GROUP)
12873 {
12874 asection *first = elf_next_in_group (l->sec);
12875
12876 if (first != NULL
12877 && elf_next_in_group (first) == first
12878 && bfd_elf_match_symbols_in_sections (first, sec, info))
12879 {
12880 sec->output_section = bfd_abs_section_ptr;
12881 sec->kept_section = first;
12882 break;
12883 }
12884 }
12885
12886 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12887 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12888 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12889 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12890 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12891 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12892 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12893 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12894 The reverse order cannot happen as there is never a bfd with only the
12895 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12896 matter as here were are looking only for cross-bfd sections. */
12897
12898 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12899 for (l = already_linked_list->entry; l != NULL; l = l->next)
12900 if ((l->sec->flags & SEC_GROUP) == 0
12901 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12902 {
12903 if (abfd != l->sec->owner)
12904 sec->output_section = bfd_abs_section_ptr;
12905 break;
12906 }
12907
12908 /* This is the first section with this name. Record it. */
12909 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
12910 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12911 return sec->output_section == bfd_abs_section_ptr;
12912 }
12913
12914 bfd_boolean
12915 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12916 {
12917 return sym->st_shndx == SHN_COMMON;
12918 }
12919
12920 unsigned int
12921 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12922 {
12923 return SHN_COMMON;
12924 }
12925
12926 asection *
12927 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12928 {
12929 return bfd_com_section_ptr;
12930 }
12931
12932 bfd_vma
12933 _bfd_elf_default_got_elt_size (bfd *abfd,
12934 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12935 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12936 bfd *ibfd ATTRIBUTE_UNUSED,
12937 unsigned long symndx ATTRIBUTE_UNUSED)
12938 {
12939 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12940 return bed->s->arch_size / 8;
12941 }
12942
12943 /* Routines to support the creation of dynamic relocs. */
12944
12945 /* Returns the name of the dynamic reloc section associated with SEC. */
12946
12947 static const char *
12948 get_dynamic_reloc_section_name (bfd * abfd,
12949 asection * sec,
12950 bfd_boolean is_rela)
12951 {
12952 char *name;
12953 const char *old_name = bfd_get_section_name (NULL, sec);
12954 const char *prefix = is_rela ? ".rela" : ".rel";
12955
12956 if (old_name == NULL)
12957 return NULL;
12958
12959 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12960 sprintf (name, "%s%s", prefix, old_name);
12961
12962 return name;
12963 }
12964
12965 /* Returns the dynamic reloc section associated with SEC.
12966 If necessary compute the name of the dynamic reloc section based
12967 on SEC's name (looked up in ABFD's string table) and the setting
12968 of IS_RELA. */
12969
12970 asection *
12971 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12972 asection * sec,
12973 bfd_boolean is_rela)
12974 {
12975 asection * reloc_sec = elf_section_data (sec)->sreloc;
12976
12977 if (reloc_sec == NULL)
12978 {
12979 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12980
12981 if (name != NULL)
12982 {
12983 reloc_sec = bfd_get_linker_section (abfd, name);
12984
12985 if (reloc_sec != NULL)
12986 elf_section_data (sec)->sreloc = reloc_sec;
12987 }
12988 }
12989
12990 return reloc_sec;
12991 }
12992
12993 /* Returns the dynamic reloc section associated with SEC. If the
12994 section does not exist it is created and attached to the DYNOBJ
12995 bfd and stored in the SRELOC field of SEC's elf_section_data
12996 structure.
12997
12998 ALIGNMENT is the alignment for the newly created section and
12999 IS_RELA defines whether the name should be .rela.<SEC's name>
13000 or .rel.<SEC's name>. The section name is looked up in the
13001 string table associated with ABFD. */
13002
13003 asection *
13004 _bfd_elf_make_dynamic_reloc_section (asection * sec,
13005 bfd * dynobj,
13006 unsigned int alignment,
13007 bfd * abfd,
13008 bfd_boolean is_rela)
13009 {
13010 asection * reloc_sec = elf_section_data (sec)->sreloc;
13011
13012 if (reloc_sec == NULL)
13013 {
13014 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13015
13016 if (name == NULL)
13017 return NULL;
13018
13019 reloc_sec = bfd_get_linker_section (dynobj, name);
13020
13021 if (reloc_sec == NULL)
13022 {
13023 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13024 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13025 if ((sec->flags & SEC_ALLOC) != 0)
13026 flags |= SEC_ALLOC | SEC_LOAD;
13027
13028 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13029 if (reloc_sec != NULL)
13030 {
13031 /* _bfd_elf_get_sec_type_attr chooses a section type by
13032 name. Override as it may be wrong, eg. for a user
13033 section named "auto" we'll get ".relauto" which is
13034 seen to be a .rela section. */
13035 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13036 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13037 reloc_sec = NULL;
13038 }
13039 }
13040
13041 elf_section_data (sec)->sreloc = reloc_sec;
13042 }
13043
13044 return reloc_sec;
13045 }
13046
13047 /* Copy the ELF symbol type associated with a linker hash entry. */
13048 void
13049 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
13050 struct bfd_link_hash_entry * hdest,
13051 struct bfd_link_hash_entry * hsrc)
13052 {
13053 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
13054 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
13055
13056 ehdest->type = ehsrc->type;
13057 ehdest->target_internal = ehsrc->target_internal;
13058 }
13059
13060 /* Append a RELA relocation REL to section S in BFD. */
13061
13062 void
13063 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13064 {
13065 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13066 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13067 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13068 bed->s->swap_reloca_out (abfd, rel, loc);
13069 }
13070
13071 /* Append a REL relocation REL to section S in BFD. */
13072
13073 void
13074 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13075 {
13076 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13077 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13078 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13079 bed->s->swap_reloc_out (abfd, rel, loc);
13080 }
This page took 0.304296 seconds and 4 git commands to generate.