* config/obj-elf.c (obj_elf_type): Add code to support a type of
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #define ARCH_SIZE 0
28 #include "elf-bfd.h"
29 #include "safe-ctype.h"
30 #include "libiberty.h"
31 #include "objalloc.h"
32
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
35
36 struct elf_info_failed
37 {
38 struct bfd_link_info *info;
39 struct bfd_elf_version_tree *verdefs;
40 bfd_boolean failed;
41 };
42
43 /* This structure is used to pass information to
44 _bfd_elf_link_find_version_dependencies. */
45
46 struct elf_find_verdep_info
47 {
48 /* General link information. */
49 struct bfd_link_info *info;
50 /* The number of dependencies. */
51 unsigned int vers;
52 /* Whether we had a failure. */
53 bfd_boolean failed;
54 };
55
56 static bfd_boolean _bfd_elf_fix_symbol_flags
57 (struct elf_link_hash_entry *, struct elf_info_failed *);
58
59 /* Define a symbol in a dynamic linkage section. */
60
61 struct elf_link_hash_entry *
62 _bfd_elf_define_linkage_sym (bfd *abfd,
63 struct bfd_link_info *info,
64 asection *sec,
65 const char *name)
66 {
67 struct elf_link_hash_entry *h;
68 struct bfd_link_hash_entry *bh;
69 const struct elf_backend_data *bed;
70
71 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
72 if (h != NULL)
73 {
74 /* Zap symbol defined in an as-needed lib that wasn't linked.
75 This is a symptom of a larger problem: Absolute symbols
76 defined in shared libraries can't be overridden, because we
77 lose the link to the bfd which is via the symbol section. */
78 h->root.type = bfd_link_hash_new;
79 }
80
81 bh = &h->root;
82 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
83 sec, 0, NULL, FALSE,
84 get_elf_backend_data (abfd)->collect,
85 &bh))
86 return NULL;
87 h = (struct elf_link_hash_entry *) bh;
88 h->def_regular = 1;
89 h->type = STT_OBJECT;
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
91
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94 return h;
95 }
96
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
99 {
100 flagword flags;
101 asection *s;
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
105
106 /* This function may be called more than once. */
107 s = bfd_get_section_by_name (abfd, ".got");
108 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
109 return TRUE;
110
111 flags = bed->dynamic_sec_flags;
112
113 s = bfd_make_section_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
117 | SEC_READONLY));
118 if (s == NULL
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
120 return FALSE;
121 htab->srelgot = s;
122
123 s = bfd_make_section_with_flags (abfd, ".got", flags);
124 if (s == NULL
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
126 return FALSE;
127 htab->sgot = s;
128
129 if (bed->want_got_plt)
130 {
131 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
132 if (s == NULL
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
135 return FALSE;
136 htab->sgotplt = s;
137 }
138
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
141
142 if (bed->want_got_sym)
143 {
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
151 if (h == NULL)
152 return FALSE;
153 }
154
155 return TRUE;
156 }
157 \f
158 /* Create a strtab to hold the dynamic symbol names. */
159 static bfd_boolean
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
161 {
162 struct elf_link_hash_table *hash_table;
163
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
167
168 if (hash_table->dynstr == NULL)
169 {
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
172 return FALSE;
173 }
174 return TRUE;
175 }
176
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
183
184 bfd_boolean
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
186 {
187 flagword flags;
188 register asection *s;
189 const struct elf_backend_data *bed;
190
191 if (! is_elf_hash_table (info->hash))
192 return FALSE;
193
194 if (elf_hash_table (info)->dynamic_sections_created)
195 return TRUE;
196
197 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
198 return FALSE;
199
200 abfd = elf_hash_table (info)->dynobj;
201 bed = get_elf_backend_data (abfd);
202
203 flags = bed->dynamic_sec_flags;
204
205 /* A dynamically linked executable has a .interp section, but a
206 shared library does not. */
207 if (info->executable)
208 {
209 s = bfd_make_section_with_flags (abfd, ".interp",
210 flags | SEC_READONLY);
211 if (s == NULL)
212 return FALSE;
213 }
214
215 /* Create sections to hold version informations. These are removed
216 if they are not needed. */
217 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
218 flags | SEC_READONLY);
219 if (s == NULL
220 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
221 return FALSE;
222
223 s = bfd_make_section_with_flags (abfd, ".gnu.version",
224 flags | SEC_READONLY);
225 if (s == NULL
226 || ! bfd_set_section_alignment (abfd, s, 1))
227 return FALSE;
228
229 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
230 flags | SEC_READONLY);
231 if (s == NULL
232 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
233 return FALSE;
234
235 s = bfd_make_section_with_flags (abfd, ".dynsym",
236 flags | SEC_READONLY);
237 if (s == NULL
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
239 return FALSE;
240
241 s = bfd_make_section_with_flags (abfd, ".dynstr",
242 flags | SEC_READONLY);
243 if (s == NULL)
244 return FALSE;
245
246 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
247 if (s == NULL
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
249 return FALSE;
250
251 /* The special symbol _DYNAMIC is always set to the start of the
252 .dynamic section. We could set _DYNAMIC in a linker script, but we
253 only want to define it if we are, in fact, creating a .dynamic
254 section. We don't want to define it if there is no .dynamic
255 section, since on some ELF platforms the start up code examines it
256 to decide how to initialize the process. */
257 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
258 return FALSE;
259
260 if (info->emit_hash)
261 {
262 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
263 if (s == NULL
264 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
265 return FALSE;
266 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
267 }
268
269 if (info->emit_gnu_hash)
270 {
271 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
272 flags | SEC_READONLY);
273 if (s == NULL
274 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
275 return FALSE;
276 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
277 4 32-bit words followed by variable count of 64-bit words, then
278 variable count of 32-bit words. */
279 if (bed->s->arch_size == 64)
280 elf_section_data (s)->this_hdr.sh_entsize = 0;
281 else
282 elf_section_data (s)->this_hdr.sh_entsize = 4;
283 }
284
285 /* Let the backend create the rest of the sections. This lets the
286 backend set the right flags. The backend will normally create
287 the .got and .plt sections. */
288 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
289 return FALSE;
290
291 elf_hash_table (info)->dynamic_sections_created = TRUE;
292
293 return TRUE;
294 }
295
296 /* Create dynamic sections when linking against a dynamic object. */
297
298 bfd_boolean
299 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
300 {
301 flagword flags, pltflags;
302 struct elf_link_hash_entry *h;
303 asection *s;
304 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
305 struct elf_link_hash_table *htab = elf_hash_table (info);
306
307 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
308 .rel[a].bss sections. */
309 flags = bed->dynamic_sec_flags;
310
311 pltflags = flags;
312 if (bed->plt_not_loaded)
313 /* We do not clear SEC_ALLOC here because we still want the OS to
314 allocate space for the section; it's just that there's nothing
315 to read in from the object file. */
316 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
317 else
318 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
319 if (bed->plt_readonly)
320 pltflags |= SEC_READONLY;
321
322 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
323 if (s == NULL
324 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
325 return FALSE;
326 htab->splt = s;
327
328 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
329 .plt section. */
330 if (bed->want_plt_sym)
331 {
332 h = _bfd_elf_define_linkage_sym (abfd, info, s,
333 "_PROCEDURE_LINKAGE_TABLE_");
334 elf_hash_table (info)->hplt = h;
335 if (h == NULL)
336 return FALSE;
337 }
338
339 s = bfd_make_section_with_flags (abfd,
340 (bed->rela_plts_and_copies_p
341 ? ".rela.plt" : ".rel.plt"),
342 flags | SEC_READONLY);
343 if (s == NULL
344 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
345 return FALSE;
346 htab->srelplt = s;
347
348 if (! _bfd_elf_create_got_section (abfd, info))
349 return FALSE;
350
351 if (bed->want_dynbss)
352 {
353 /* The .dynbss section is a place to put symbols which are defined
354 by dynamic objects, are referenced by regular objects, and are
355 not functions. We must allocate space for them in the process
356 image and use a R_*_COPY reloc to tell the dynamic linker to
357 initialize them at run time. The linker script puts the .dynbss
358 section into the .bss section of the final image. */
359 s = bfd_make_section_with_flags (abfd, ".dynbss",
360 (SEC_ALLOC
361 | SEC_LINKER_CREATED));
362 if (s == NULL)
363 return FALSE;
364
365 /* The .rel[a].bss section holds copy relocs. This section is not
366 normally needed. We need to create it here, though, so that the
367 linker will map it to an output section. We can't just create it
368 only if we need it, because we will not know whether we need it
369 until we have seen all the input files, and the first time the
370 main linker code calls BFD after examining all the input files
371 (size_dynamic_sections) the input sections have already been
372 mapped to the output sections. If the section turns out not to
373 be needed, we can discard it later. We will never need this
374 section when generating a shared object, since they do not use
375 copy relocs. */
376 if (! info->shared)
377 {
378 s = bfd_make_section_with_flags (abfd,
379 (bed->rela_plts_and_copies_p
380 ? ".rela.bss" : ".rel.bss"),
381 flags | SEC_READONLY);
382 if (s == NULL
383 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
384 return FALSE;
385 }
386 }
387
388 return TRUE;
389 }
390 \f
391 /* Record a new dynamic symbol. We record the dynamic symbols as we
392 read the input files, since we need to have a list of all of them
393 before we can determine the final sizes of the output sections.
394 Note that we may actually call this function even though we are not
395 going to output any dynamic symbols; in some cases we know that a
396 symbol should be in the dynamic symbol table, but only if there is
397 one. */
398
399 bfd_boolean
400 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
401 struct elf_link_hash_entry *h)
402 {
403 if (h->dynindx == -1)
404 {
405 struct elf_strtab_hash *dynstr;
406 char *p;
407 const char *name;
408 bfd_size_type indx;
409
410 /* XXX: The ABI draft says the linker must turn hidden and
411 internal symbols into STB_LOCAL symbols when producing the
412 DSO. However, if ld.so honors st_other in the dynamic table,
413 this would not be necessary. */
414 switch (ELF_ST_VISIBILITY (h->other))
415 {
416 case STV_INTERNAL:
417 case STV_HIDDEN:
418 if (h->root.type != bfd_link_hash_undefined
419 && h->root.type != bfd_link_hash_undefweak)
420 {
421 h->forced_local = 1;
422 if (!elf_hash_table (info)->is_relocatable_executable)
423 return TRUE;
424 }
425
426 default:
427 break;
428 }
429
430 h->dynindx = elf_hash_table (info)->dynsymcount;
431 ++elf_hash_table (info)->dynsymcount;
432
433 dynstr = elf_hash_table (info)->dynstr;
434 if (dynstr == NULL)
435 {
436 /* Create a strtab to hold the dynamic symbol names. */
437 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
438 if (dynstr == NULL)
439 return FALSE;
440 }
441
442 /* We don't put any version information in the dynamic string
443 table. */
444 name = h->root.root.string;
445 p = strchr (name, ELF_VER_CHR);
446 if (p != NULL)
447 /* We know that the p points into writable memory. In fact,
448 there are only a few symbols that have read-only names, being
449 those like _GLOBAL_OFFSET_TABLE_ that are created specially
450 by the backends. Most symbols will have names pointing into
451 an ELF string table read from a file, or to objalloc memory. */
452 *p = 0;
453
454 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
455
456 if (p != NULL)
457 *p = ELF_VER_CHR;
458
459 if (indx == (bfd_size_type) -1)
460 return FALSE;
461 h->dynstr_index = indx;
462 }
463
464 return TRUE;
465 }
466 \f
467 /* Mark a symbol dynamic. */
468
469 static void
470 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
471 struct elf_link_hash_entry *h,
472 Elf_Internal_Sym *sym)
473 {
474 struct bfd_elf_dynamic_list *d = info->dynamic_list;
475
476 /* It may be called more than once on the same H. */
477 if(h->dynamic || info->relocatable)
478 return;
479
480 if ((info->dynamic_data
481 && (h->type == STT_OBJECT
482 || (sym != NULL
483 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
484 || (d != NULL
485 && h->root.type == bfd_link_hash_new
486 && (*d->match) (&d->head, NULL, h->root.root.string)))
487 h->dynamic = 1;
488 }
489
490 /* Record an assignment to a symbol made by a linker script. We need
491 this in case some dynamic object refers to this symbol. */
492
493 bfd_boolean
494 bfd_elf_record_link_assignment (bfd *output_bfd,
495 struct bfd_link_info *info,
496 const char *name,
497 bfd_boolean provide,
498 bfd_boolean hidden)
499 {
500 struct elf_link_hash_entry *h, *hv;
501 struct elf_link_hash_table *htab;
502 const struct elf_backend_data *bed;
503
504 if (!is_elf_hash_table (info->hash))
505 return TRUE;
506
507 htab = elf_hash_table (info);
508 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
509 if (h == NULL)
510 return provide;
511
512 switch (h->root.type)
513 {
514 case bfd_link_hash_defined:
515 case bfd_link_hash_defweak:
516 case bfd_link_hash_common:
517 break;
518 case bfd_link_hash_undefweak:
519 case bfd_link_hash_undefined:
520 /* Since we're defining the symbol, don't let it seem to have not
521 been defined. record_dynamic_symbol and size_dynamic_sections
522 may depend on this. */
523 h->root.type = bfd_link_hash_new;
524 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
525 bfd_link_repair_undef_list (&htab->root);
526 break;
527 case bfd_link_hash_new:
528 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
529 h->non_elf = 0;
530 break;
531 case bfd_link_hash_indirect:
532 /* We had a versioned symbol in a dynamic library. We make the
533 the versioned symbol point to this one. */
534 bed = get_elf_backend_data (output_bfd);
535 hv = h;
536 while (hv->root.type == bfd_link_hash_indirect
537 || hv->root.type == bfd_link_hash_warning)
538 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
539 /* We don't need to update h->root.u since linker will set them
540 later. */
541 h->root.type = bfd_link_hash_undefined;
542 hv->root.type = bfd_link_hash_indirect;
543 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
544 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
545 break;
546 case bfd_link_hash_warning:
547 abort ();
548 break;
549 }
550
551 /* If this symbol is being provided by the linker script, and it is
552 currently defined by a dynamic object, but not by a regular
553 object, then mark it as undefined so that the generic linker will
554 force the correct value. */
555 if (provide
556 && h->def_dynamic
557 && !h->def_regular)
558 h->root.type = bfd_link_hash_undefined;
559
560 /* If this symbol is not being provided by the linker script, and it is
561 currently defined by a dynamic object, but not by a regular object,
562 then clear out any version information because the symbol will not be
563 associated with the dynamic object any more. */
564 if (!provide
565 && h->def_dynamic
566 && !h->def_regular)
567 h->verinfo.verdef = NULL;
568
569 h->def_regular = 1;
570
571 if (provide && hidden)
572 {
573 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
574
575 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
576 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
577 }
578
579 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
580 and executables. */
581 if (!info->relocatable
582 && h->dynindx != -1
583 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
584 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
585 h->forced_local = 1;
586
587 if ((h->def_dynamic
588 || h->ref_dynamic
589 || info->shared
590 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
591 && h->dynindx == -1)
592 {
593 if (! bfd_elf_link_record_dynamic_symbol (info, h))
594 return FALSE;
595
596 /* If this is a weak defined symbol, and we know a corresponding
597 real symbol from the same dynamic object, make sure the real
598 symbol is also made into a dynamic symbol. */
599 if (h->u.weakdef != NULL
600 && h->u.weakdef->dynindx == -1)
601 {
602 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
603 return FALSE;
604 }
605 }
606
607 return TRUE;
608 }
609
610 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
611 success, and 2 on a failure caused by attempting to record a symbol
612 in a discarded section, eg. a discarded link-once section symbol. */
613
614 int
615 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
616 bfd *input_bfd,
617 long input_indx)
618 {
619 bfd_size_type amt;
620 struct elf_link_local_dynamic_entry *entry;
621 struct elf_link_hash_table *eht;
622 struct elf_strtab_hash *dynstr;
623 unsigned long dynstr_index;
624 char *name;
625 Elf_External_Sym_Shndx eshndx;
626 char esym[sizeof (Elf64_External_Sym)];
627
628 if (! is_elf_hash_table (info->hash))
629 return 0;
630
631 /* See if the entry exists already. */
632 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
633 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
634 return 1;
635
636 amt = sizeof (*entry);
637 entry = bfd_alloc (input_bfd, amt);
638 if (entry == NULL)
639 return 0;
640
641 /* Go find the symbol, so that we can find it's name. */
642 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
643 1, input_indx, &entry->isym, esym, &eshndx))
644 {
645 bfd_release (input_bfd, entry);
646 return 0;
647 }
648
649 if (entry->isym.st_shndx != SHN_UNDEF
650 && entry->isym.st_shndx < SHN_LORESERVE)
651 {
652 asection *s;
653
654 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
655 if (s == NULL || bfd_is_abs_section (s->output_section))
656 {
657 /* We can still bfd_release here as nothing has done another
658 bfd_alloc. We can't do this later in this function. */
659 bfd_release (input_bfd, entry);
660 return 2;
661 }
662 }
663
664 name = (bfd_elf_string_from_elf_section
665 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
666 entry->isym.st_name));
667
668 dynstr = elf_hash_table (info)->dynstr;
669 if (dynstr == NULL)
670 {
671 /* Create a strtab to hold the dynamic symbol names. */
672 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
673 if (dynstr == NULL)
674 return 0;
675 }
676
677 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
678 if (dynstr_index == (unsigned long) -1)
679 return 0;
680 entry->isym.st_name = dynstr_index;
681
682 eht = elf_hash_table (info);
683
684 entry->next = eht->dynlocal;
685 eht->dynlocal = entry;
686 entry->input_bfd = input_bfd;
687 entry->input_indx = input_indx;
688 eht->dynsymcount++;
689
690 /* Whatever binding the symbol had before, it's now local. */
691 entry->isym.st_info
692 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
693
694 /* The dynindx will be set at the end of size_dynamic_sections. */
695
696 return 1;
697 }
698
699 /* Return the dynindex of a local dynamic symbol. */
700
701 long
702 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
703 bfd *input_bfd,
704 long input_indx)
705 {
706 struct elf_link_local_dynamic_entry *e;
707
708 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
709 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
710 return e->dynindx;
711 return -1;
712 }
713
714 /* This function is used to renumber the dynamic symbols, if some of
715 them are removed because they are marked as local. This is called
716 via elf_link_hash_traverse. */
717
718 static bfd_boolean
719 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
720 void *data)
721 {
722 size_t *count = data;
723
724 if (h->root.type == bfd_link_hash_warning)
725 h = (struct elf_link_hash_entry *) h->root.u.i.link;
726
727 if (h->forced_local)
728 return TRUE;
729
730 if (h->dynindx != -1)
731 h->dynindx = ++(*count);
732
733 return TRUE;
734 }
735
736
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
739
740 static bfd_boolean
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
742 void *data)
743 {
744 size_t *count = data;
745
746 if (h->root.type == bfd_link_hash_warning)
747 h = (struct elf_link_hash_entry *) h->root.u.i.link;
748
749 if (!h->forced_local)
750 return TRUE;
751
752 if (h->dynindx != -1)
753 h->dynindx = ++(*count);
754
755 return TRUE;
756 }
757
758 /* Return true if the dynamic symbol for a given section should be
759 omitted when creating a shared library. */
760 bfd_boolean
761 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
762 struct bfd_link_info *info,
763 asection *p)
764 {
765 struct elf_link_hash_table *htab;
766
767 switch (elf_section_data (p)->this_hdr.sh_type)
768 {
769 case SHT_PROGBITS:
770 case SHT_NOBITS:
771 /* If sh_type is yet undecided, assume it could be
772 SHT_PROGBITS/SHT_NOBITS. */
773 case SHT_NULL:
774 htab = elf_hash_table (info);
775 if (p == htab->tls_sec)
776 return FALSE;
777
778 if (htab->text_index_section != NULL)
779 return p != htab->text_index_section && p != htab->data_index_section;
780
781 if (strcmp (p->name, ".got") == 0
782 || strcmp (p->name, ".got.plt") == 0
783 || strcmp (p->name, ".plt") == 0)
784 {
785 asection *ip;
786
787 if (htab->dynobj != NULL
788 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
789 && (ip->flags & SEC_LINKER_CREATED)
790 && ip->output_section == p)
791 return TRUE;
792 }
793 return FALSE;
794
795 /* There shouldn't be section relative relocations
796 against any other section. */
797 default:
798 return TRUE;
799 }
800 }
801
802 /* Assign dynsym indices. In a shared library we generate a section
803 symbol for each output section, which come first. Next come symbols
804 which have been forced to local binding. Then all of the back-end
805 allocated local dynamic syms, followed by the rest of the global
806 symbols. */
807
808 static unsigned long
809 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
810 struct bfd_link_info *info,
811 unsigned long *section_sym_count)
812 {
813 unsigned long dynsymcount = 0;
814
815 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
816 {
817 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
818 asection *p;
819 for (p = output_bfd->sections; p ; p = p->next)
820 if ((p->flags & SEC_EXCLUDE) == 0
821 && (p->flags & SEC_ALLOC) != 0
822 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
823 elf_section_data (p)->dynindx = ++dynsymcount;
824 else
825 elf_section_data (p)->dynindx = 0;
826 }
827 *section_sym_count = dynsymcount;
828
829 elf_link_hash_traverse (elf_hash_table (info),
830 elf_link_renumber_local_hash_table_dynsyms,
831 &dynsymcount);
832
833 if (elf_hash_table (info)->dynlocal)
834 {
835 struct elf_link_local_dynamic_entry *p;
836 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
837 p->dynindx = ++dynsymcount;
838 }
839
840 elf_link_hash_traverse (elf_hash_table (info),
841 elf_link_renumber_hash_table_dynsyms,
842 &dynsymcount);
843
844 /* There is an unused NULL entry at the head of the table which
845 we must account for in our count. Unless there weren't any
846 symbols, which means we'll have no table at all. */
847 if (dynsymcount != 0)
848 ++dynsymcount;
849
850 elf_hash_table (info)->dynsymcount = dynsymcount;
851 return dynsymcount;
852 }
853
854 /* Merge st_other field. */
855
856 static void
857 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
858 Elf_Internal_Sym *isym, bfd_boolean definition,
859 bfd_boolean dynamic)
860 {
861 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
862
863 /* If st_other has a processor-specific meaning, specific
864 code might be needed here. We never merge the visibility
865 attribute with the one from a dynamic object. */
866 if (bed->elf_backend_merge_symbol_attribute)
867 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
868 dynamic);
869
870 /* If this symbol has default visibility and the user has requested
871 we not re-export it, then mark it as hidden. */
872 if (definition
873 && !dynamic
874 && (abfd->no_export
875 || (abfd->my_archive && abfd->my_archive->no_export))
876 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
877 isym->st_other = (STV_HIDDEN
878 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
879
880 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
881 {
882 unsigned char hvis, symvis, other, nvis;
883
884 /* Only merge the visibility. Leave the remainder of the
885 st_other field to elf_backend_merge_symbol_attribute. */
886 other = h->other & ~ELF_ST_VISIBILITY (-1);
887
888 /* Combine visibilities, using the most constraining one. */
889 hvis = ELF_ST_VISIBILITY (h->other);
890 symvis = ELF_ST_VISIBILITY (isym->st_other);
891 if (! hvis)
892 nvis = symvis;
893 else if (! symvis)
894 nvis = hvis;
895 else
896 nvis = hvis < symvis ? hvis : symvis;
897
898 h->other = other | nvis;
899 }
900 }
901
902 /* This function is called when we want to define a new symbol. It
903 handles the various cases which arise when we find a definition in
904 a dynamic object, or when there is already a definition in a
905 dynamic object. The new symbol is described by NAME, SYM, PSEC,
906 and PVALUE. We set SYM_HASH to the hash table entry. We set
907 OVERRIDE if the old symbol is overriding a new definition. We set
908 TYPE_CHANGE_OK if it is OK for the type to change. We set
909 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
910 change, we mean that we shouldn't warn if the type or size does
911 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
912 object is overridden by a regular object. */
913
914 bfd_boolean
915 _bfd_elf_merge_symbol (bfd *abfd,
916 struct bfd_link_info *info,
917 const char *name,
918 Elf_Internal_Sym *sym,
919 asection **psec,
920 bfd_vma *pvalue,
921 unsigned int *pold_alignment,
922 struct elf_link_hash_entry **sym_hash,
923 bfd_boolean *skip,
924 bfd_boolean *override,
925 bfd_boolean *type_change_ok,
926 bfd_boolean *size_change_ok)
927 {
928 asection *sec, *oldsec;
929 struct elf_link_hash_entry *h;
930 struct elf_link_hash_entry *flip;
931 int bind;
932 bfd *oldbfd;
933 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
934 bfd_boolean newweak, oldweak, newfunc, oldfunc;
935 const struct elf_backend_data *bed;
936
937 *skip = FALSE;
938 *override = FALSE;
939
940 sec = *psec;
941 bind = ELF_ST_BIND (sym->st_info);
942
943 /* Silently discard TLS symbols from --just-syms. There's no way to
944 combine a static TLS block with a new TLS block for this executable. */
945 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
946 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
947 {
948 *skip = TRUE;
949 return TRUE;
950 }
951
952 if (! bfd_is_und_section (sec))
953 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
954 else
955 h = ((struct elf_link_hash_entry *)
956 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
957 if (h == NULL)
958 return FALSE;
959 *sym_hash = h;
960
961 bed = get_elf_backend_data (abfd);
962
963 /* This code is for coping with dynamic objects, and is only useful
964 if we are doing an ELF link. */
965 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
966 return TRUE;
967
968 /* For merging, we only care about real symbols. */
969
970 while (h->root.type == bfd_link_hash_indirect
971 || h->root.type == bfd_link_hash_warning)
972 h = (struct elf_link_hash_entry *) h->root.u.i.link;
973
974 /* We have to check it for every instance since the first few may be
975 refereences and not all compilers emit symbol type for undefined
976 symbols. */
977 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
978
979 /* If we just created the symbol, mark it as being an ELF symbol.
980 Other than that, there is nothing to do--there is no merge issue
981 with a newly defined symbol--so we just return. */
982
983 if (h->root.type == bfd_link_hash_new)
984 {
985 h->non_elf = 0;
986 return TRUE;
987 }
988
989 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
990 existing symbol. */
991
992 switch (h->root.type)
993 {
994 default:
995 oldbfd = NULL;
996 oldsec = NULL;
997 break;
998
999 case bfd_link_hash_undefined:
1000 case bfd_link_hash_undefweak:
1001 oldbfd = h->root.u.undef.abfd;
1002 oldsec = NULL;
1003 break;
1004
1005 case bfd_link_hash_defined:
1006 case bfd_link_hash_defweak:
1007 oldbfd = h->root.u.def.section->owner;
1008 oldsec = h->root.u.def.section;
1009 break;
1010
1011 case bfd_link_hash_common:
1012 oldbfd = h->root.u.c.p->section->owner;
1013 oldsec = h->root.u.c.p->section;
1014 break;
1015 }
1016
1017 /* In cases involving weak versioned symbols, we may wind up trying
1018 to merge a symbol with itself. Catch that here, to avoid the
1019 confusion that results if we try to override a symbol with
1020 itself. The additional tests catch cases like
1021 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1022 dynamic object, which we do want to handle here. */
1023 if (abfd == oldbfd
1024 && ((abfd->flags & DYNAMIC) == 0
1025 || !h->def_regular))
1026 return TRUE;
1027
1028 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1029 respectively, is from a dynamic object. */
1030
1031 newdyn = (abfd->flags & DYNAMIC) != 0;
1032
1033 olddyn = FALSE;
1034 if (oldbfd != NULL)
1035 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1036 else if (oldsec != NULL)
1037 {
1038 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1039 indices used by MIPS ELF. */
1040 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1041 }
1042
1043 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1044 respectively, appear to be a definition rather than reference. */
1045
1046 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1047
1048 olddef = (h->root.type != bfd_link_hash_undefined
1049 && h->root.type != bfd_link_hash_undefweak
1050 && h->root.type != bfd_link_hash_common);
1051
1052 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1053 respectively, appear to be a function. */
1054
1055 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1056 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1057
1058 oldfunc = (h->type != STT_NOTYPE
1059 && bed->is_function_type (h->type));
1060
1061 /* When we try to create a default indirect symbol from the dynamic
1062 definition with the default version, we skip it if its type and
1063 the type of existing regular definition mismatch. We only do it
1064 if the existing regular definition won't be dynamic. */
1065 if (pold_alignment == NULL
1066 && !info->shared
1067 && !info->export_dynamic
1068 && !h->ref_dynamic
1069 && newdyn
1070 && newdef
1071 && !olddyn
1072 && (olddef || h->root.type == bfd_link_hash_common)
1073 && ELF_ST_TYPE (sym->st_info) != h->type
1074 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1075 && h->type != STT_NOTYPE
1076 && !(newfunc && oldfunc))
1077 {
1078 *skip = TRUE;
1079 return TRUE;
1080 }
1081
1082 /* Check TLS symbol. We don't check undefined symbol introduced by
1083 "ld -u". */
1084 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
1085 && ELF_ST_TYPE (sym->st_info) != h->type
1086 && oldbfd != NULL)
1087 {
1088 bfd *ntbfd, *tbfd;
1089 bfd_boolean ntdef, tdef;
1090 asection *ntsec, *tsec;
1091
1092 if (h->type == STT_TLS)
1093 {
1094 ntbfd = abfd;
1095 ntsec = sec;
1096 ntdef = newdef;
1097 tbfd = oldbfd;
1098 tsec = oldsec;
1099 tdef = olddef;
1100 }
1101 else
1102 {
1103 ntbfd = oldbfd;
1104 ntsec = oldsec;
1105 ntdef = olddef;
1106 tbfd = abfd;
1107 tsec = sec;
1108 tdef = newdef;
1109 }
1110
1111 if (tdef && ntdef)
1112 (*_bfd_error_handler)
1113 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1114 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1115 else if (!tdef && !ntdef)
1116 (*_bfd_error_handler)
1117 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1118 tbfd, ntbfd, h->root.root.string);
1119 else if (tdef)
1120 (*_bfd_error_handler)
1121 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1122 tbfd, tsec, ntbfd, h->root.root.string);
1123 else
1124 (*_bfd_error_handler)
1125 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1126 tbfd, ntbfd, ntsec, h->root.root.string);
1127
1128 bfd_set_error (bfd_error_bad_value);
1129 return FALSE;
1130 }
1131
1132 /* We need to remember if a symbol has a definition in a dynamic
1133 object or is weak in all dynamic objects. Internal and hidden
1134 visibility will make it unavailable to dynamic objects. */
1135 if (newdyn && !h->dynamic_def)
1136 {
1137 if (!bfd_is_und_section (sec))
1138 h->dynamic_def = 1;
1139 else
1140 {
1141 /* Check if this symbol is weak in all dynamic objects. If it
1142 is the first time we see it in a dynamic object, we mark
1143 if it is weak. Otherwise, we clear it. */
1144 if (!h->ref_dynamic)
1145 {
1146 if (bind == STB_WEAK)
1147 h->dynamic_weak = 1;
1148 }
1149 else if (bind != STB_WEAK)
1150 h->dynamic_weak = 0;
1151 }
1152 }
1153
1154 /* If the old symbol has non-default visibility, we ignore the new
1155 definition from a dynamic object. */
1156 if (newdyn
1157 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1158 && !bfd_is_und_section (sec))
1159 {
1160 *skip = TRUE;
1161 /* Make sure this symbol is dynamic. */
1162 h->ref_dynamic = 1;
1163 /* A protected symbol has external availability. Make sure it is
1164 recorded as dynamic.
1165
1166 FIXME: Should we check type and size for protected symbol? */
1167 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1168 return bfd_elf_link_record_dynamic_symbol (info, h);
1169 else
1170 return TRUE;
1171 }
1172 else if (!newdyn
1173 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1174 && h->def_dynamic)
1175 {
1176 /* If the new symbol with non-default visibility comes from a
1177 relocatable file and the old definition comes from a dynamic
1178 object, we remove the old definition. */
1179 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1180 {
1181 /* Handle the case where the old dynamic definition is
1182 default versioned. We need to copy the symbol info from
1183 the symbol with default version to the normal one if it
1184 was referenced before. */
1185 if (h->ref_regular)
1186 {
1187 const struct elf_backend_data *bed
1188 = get_elf_backend_data (abfd);
1189 struct elf_link_hash_entry *vh = *sym_hash;
1190 vh->root.type = h->root.type;
1191 h->root.type = bfd_link_hash_indirect;
1192 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1193 /* Protected symbols will override the dynamic definition
1194 with default version. */
1195 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1196 {
1197 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1198 vh->dynamic_def = 1;
1199 vh->ref_dynamic = 1;
1200 }
1201 else
1202 {
1203 h->root.type = vh->root.type;
1204 vh->ref_dynamic = 0;
1205 /* We have to hide it here since it was made dynamic
1206 global with extra bits when the symbol info was
1207 copied from the old dynamic definition. */
1208 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1209 }
1210 h = vh;
1211 }
1212 else
1213 h = *sym_hash;
1214 }
1215
1216 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1217 && bfd_is_und_section (sec))
1218 {
1219 /* If the new symbol is undefined and the old symbol was
1220 also undefined before, we need to make sure
1221 _bfd_generic_link_add_one_symbol doesn't mess
1222 up the linker hash table undefs list. Since the old
1223 definition came from a dynamic object, it is still on the
1224 undefs list. */
1225 h->root.type = bfd_link_hash_undefined;
1226 h->root.u.undef.abfd = abfd;
1227 }
1228 else
1229 {
1230 h->root.type = bfd_link_hash_new;
1231 h->root.u.undef.abfd = NULL;
1232 }
1233
1234 if (h->def_dynamic)
1235 {
1236 h->def_dynamic = 0;
1237 h->ref_dynamic = 1;
1238 h->dynamic_def = 1;
1239 }
1240 /* FIXME: Should we check type and size for protected symbol? */
1241 h->size = 0;
1242 h->type = 0;
1243 return TRUE;
1244 }
1245
1246 /* Differentiate strong and weak symbols. */
1247 newweak = bind == STB_WEAK;
1248 oldweak = (h->root.type == bfd_link_hash_defweak
1249 || h->root.type == bfd_link_hash_undefweak);
1250
1251 if (bind == STB_GNU_UNIQUE)
1252 h->unique_global = 1;
1253
1254 /* If a new weak symbol definition comes from a regular file and the
1255 old symbol comes from a dynamic library, we treat the new one as
1256 strong. Similarly, an old weak symbol definition from a regular
1257 file is treated as strong when the new symbol comes from a dynamic
1258 library. Further, an old weak symbol from a dynamic library is
1259 treated as strong if the new symbol is from a dynamic library.
1260 This reflects the way glibc's ld.so works.
1261
1262 Do this before setting *type_change_ok or *size_change_ok so that
1263 we warn properly when dynamic library symbols are overridden. */
1264
1265 if (newdef && !newdyn && olddyn)
1266 newweak = FALSE;
1267 if (olddef && newdyn)
1268 oldweak = FALSE;
1269
1270 /* Allow changes between different types of function symbol. */
1271 if (newfunc && oldfunc)
1272 *type_change_ok = TRUE;
1273
1274 /* It's OK to change the type if either the existing symbol or the
1275 new symbol is weak. A type change is also OK if the old symbol
1276 is undefined and the new symbol is defined. */
1277
1278 if (oldweak
1279 || newweak
1280 || (newdef
1281 && h->root.type == bfd_link_hash_undefined))
1282 *type_change_ok = TRUE;
1283
1284 /* It's OK to change the size if either the existing symbol or the
1285 new symbol is weak, or if the old symbol is undefined. */
1286
1287 if (*type_change_ok
1288 || h->root.type == bfd_link_hash_undefined)
1289 *size_change_ok = TRUE;
1290
1291 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1292 symbol, respectively, appears to be a common symbol in a dynamic
1293 object. If a symbol appears in an uninitialized section, and is
1294 not weak, and is not a function, then it may be a common symbol
1295 which was resolved when the dynamic object was created. We want
1296 to treat such symbols specially, because they raise special
1297 considerations when setting the symbol size: if the symbol
1298 appears as a common symbol in a regular object, and the size in
1299 the regular object is larger, we must make sure that we use the
1300 larger size. This problematic case can always be avoided in C,
1301 but it must be handled correctly when using Fortran shared
1302 libraries.
1303
1304 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1305 likewise for OLDDYNCOMMON and OLDDEF.
1306
1307 Note that this test is just a heuristic, and that it is quite
1308 possible to have an uninitialized symbol in a shared object which
1309 is really a definition, rather than a common symbol. This could
1310 lead to some minor confusion when the symbol really is a common
1311 symbol in some regular object. However, I think it will be
1312 harmless. */
1313
1314 if (newdyn
1315 && newdef
1316 && !newweak
1317 && (sec->flags & SEC_ALLOC) != 0
1318 && (sec->flags & SEC_LOAD) == 0
1319 && sym->st_size > 0
1320 && !newfunc)
1321 newdyncommon = TRUE;
1322 else
1323 newdyncommon = FALSE;
1324
1325 if (olddyn
1326 && olddef
1327 && h->root.type == bfd_link_hash_defined
1328 && h->def_dynamic
1329 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1330 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1331 && h->size > 0
1332 && !oldfunc)
1333 olddyncommon = TRUE;
1334 else
1335 olddyncommon = FALSE;
1336
1337 /* We now know everything about the old and new symbols. We ask the
1338 backend to check if we can merge them. */
1339 if (bed->merge_symbol
1340 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1341 pold_alignment, skip, override,
1342 type_change_ok, size_change_ok,
1343 &newdyn, &newdef, &newdyncommon, &newweak,
1344 abfd, &sec,
1345 &olddyn, &olddef, &olddyncommon, &oldweak,
1346 oldbfd, &oldsec))
1347 return FALSE;
1348
1349 /* If both the old and the new symbols look like common symbols in a
1350 dynamic object, set the size of the symbol to the larger of the
1351 two. */
1352
1353 if (olddyncommon
1354 && newdyncommon
1355 && sym->st_size != h->size)
1356 {
1357 /* Since we think we have two common symbols, issue a multiple
1358 common warning if desired. Note that we only warn if the
1359 size is different. If the size is the same, we simply let
1360 the old symbol override the new one as normally happens with
1361 symbols defined in dynamic objects. */
1362
1363 if (! ((*info->callbacks->multiple_common)
1364 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1365 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1366 return FALSE;
1367
1368 if (sym->st_size > h->size)
1369 h->size = sym->st_size;
1370
1371 *size_change_ok = TRUE;
1372 }
1373
1374 /* If we are looking at a dynamic object, and we have found a
1375 definition, we need to see if the symbol was already defined by
1376 some other object. If so, we want to use the existing
1377 definition, and we do not want to report a multiple symbol
1378 definition error; we do this by clobbering *PSEC to be
1379 bfd_und_section_ptr.
1380
1381 We treat a common symbol as a definition if the symbol in the
1382 shared library is a function, since common symbols always
1383 represent variables; this can cause confusion in principle, but
1384 any such confusion would seem to indicate an erroneous program or
1385 shared library. We also permit a common symbol in a regular
1386 object to override a weak symbol in a shared object. */
1387
1388 if (newdyn
1389 && newdef
1390 && (olddef
1391 || (h->root.type == bfd_link_hash_common
1392 && (newweak || newfunc))))
1393 {
1394 *override = TRUE;
1395 newdef = FALSE;
1396 newdyncommon = FALSE;
1397
1398 *psec = sec = bfd_und_section_ptr;
1399 *size_change_ok = TRUE;
1400
1401 /* If we get here when the old symbol is a common symbol, then
1402 we are explicitly letting it override a weak symbol or
1403 function in a dynamic object, and we don't want to warn about
1404 a type change. If the old symbol is a defined symbol, a type
1405 change warning may still be appropriate. */
1406
1407 if (h->root.type == bfd_link_hash_common)
1408 *type_change_ok = TRUE;
1409 }
1410
1411 /* Handle the special case of an old common symbol merging with a
1412 new symbol which looks like a common symbol in a shared object.
1413 We change *PSEC and *PVALUE to make the new symbol look like a
1414 common symbol, and let _bfd_generic_link_add_one_symbol do the
1415 right thing. */
1416
1417 if (newdyncommon
1418 && h->root.type == bfd_link_hash_common)
1419 {
1420 *override = TRUE;
1421 newdef = FALSE;
1422 newdyncommon = FALSE;
1423 *pvalue = sym->st_size;
1424 *psec = sec = bed->common_section (oldsec);
1425 *size_change_ok = TRUE;
1426 }
1427
1428 /* Skip weak definitions of symbols that are already defined. */
1429 if (newdef && olddef && newweak)
1430 {
1431 *skip = TRUE;
1432
1433 /* Merge st_other. If the symbol already has a dynamic index,
1434 but visibility says it should not be visible, turn it into a
1435 local symbol. */
1436 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1437 if (h->dynindx != -1)
1438 switch (ELF_ST_VISIBILITY (h->other))
1439 {
1440 case STV_INTERNAL:
1441 case STV_HIDDEN:
1442 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1443 break;
1444 }
1445 }
1446
1447 /* If the old symbol is from a dynamic object, and the new symbol is
1448 a definition which is not from a dynamic object, then the new
1449 symbol overrides the old symbol. Symbols from regular files
1450 always take precedence over symbols from dynamic objects, even if
1451 they are defined after the dynamic object in the link.
1452
1453 As above, we again permit a common symbol in a regular object to
1454 override a definition in a shared object if the shared object
1455 symbol is a function or is weak. */
1456
1457 flip = NULL;
1458 if (!newdyn
1459 && (newdef
1460 || (bfd_is_com_section (sec)
1461 && (oldweak || oldfunc)))
1462 && olddyn
1463 && olddef
1464 && h->def_dynamic)
1465 {
1466 /* Change the hash table entry to undefined, and let
1467 _bfd_generic_link_add_one_symbol do the right thing with the
1468 new definition. */
1469
1470 h->root.type = bfd_link_hash_undefined;
1471 h->root.u.undef.abfd = h->root.u.def.section->owner;
1472 *size_change_ok = TRUE;
1473
1474 olddef = FALSE;
1475 olddyncommon = FALSE;
1476
1477 /* We again permit a type change when a common symbol may be
1478 overriding a function. */
1479
1480 if (bfd_is_com_section (sec))
1481 {
1482 if (oldfunc)
1483 {
1484 /* If a common symbol overrides a function, make sure
1485 that it isn't defined dynamically nor has type
1486 function. */
1487 h->def_dynamic = 0;
1488 h->type = STT_NOTYPE;
1489 }
1490 *type_change_ok = TRUE;
1491 }
1492
1493 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1494 flip = *sym_hash;
1495 else
1496 /* This union may have been set to be non-NULL when this symbol
1497 was seen in a dynamic object. We must force the union to be
1498 NULL, so that it is correct for a regular symbol. */
1499 h->verinfo.vertree = NULL;
1500 }
1501
1502 /* Handle the special case of a new common symbol merging with an
1503 old symbol that looks like it might be a common symbol defined in
1504 a shared object. Note that we have already handled the case in
1505 which a new common symbol should simply override the definition
1506 in the shared library. */
1507
1508 if (! newdyn
1509 && bfd_is_com_section (sec)
1510 && olddyncommon)
1511 {
1512 /* It would be best if we could set the hash table entry to a
1513 common symbol, but we don't know what to use for the section
1514 or the alignment. */
1515 if (! ((*info->callbacks->multiple_common)
1516 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1517 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1518 return FALSE;
1519
1520 /* If the presumed common symbol in the dynamic object is
1521 larger, pretend that the new symbol has its size. */
1522
1523 if (h->size > *pvalue)
1524 *pvalue = h->size;
1525
1526 /* We need to remember the alignment required by the symbol
1527 in the dynamic object. */
1528 BFD_ASSERT (pold_alignment);
1529 *pold_alignment = h->root.u.def.section->alignment_power;
1530
1531 olddef = FALSE;
1532 olddyncommon = FALSE;
1533
1534 h->root.type = bfd_link_hash_undefined;
1535 h->root.u.undef.abfd = h->root.u.def.section->owner;
1536
1537 *size_change_ok = TRUE;
1538 *type_change_ok = TRUE;
1539
1540 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1541 flip = *sym_hash;
1542 else
1543 h->verinfo.vertree = NULL;
1544 }
1545
1546 if (flip != NULL)
1547 {
1548 /* Handle the case where we had a versioned symbol in a dynamic
1549 library and now find a definition in a normal object. In this
1550 case, we make the versioned symbol point to the normal one. */
1551 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1552 flip->root.type = h->root.type;
1553 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1554 h->root.type = bfd_link_hash_indirect;
1555 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1556 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1557 if (h->def_dynamic)
1558 {
1559 h->def_dynamic = 0;
1560 flip->ref_dynamic = 1;
1561 }
1562 }
1563
1564 return TRUE;
1565 }
1566
1567 /* This function is called to create an indirect symbol from the
1568 default for the symbol with the default version if needed. The
1569 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1570 set DYNSYM if the new indirect symbol is dynamic. */
1571
1572 static bfd_boolean
1573 _bfd_elf_add_default_symbol (bfd *abfd,
1574 struct bfd_link_info *info,
1575 struct elf_link_hash_entry *h,
1576 const char *name,
1577 Elf_Internal_Sym *sym,
1578 asection **psec,
1579 bfd_vma *value,
1580 bfd_boolean *dynsym,
1581 bfd_boolean override)
1582 {
1583 bfd_boolean type_change_ok;
1584 bfd_boolean size_change_ok;
1585 bfd_boolean skip;
1586 char *shortname;
1587 struct elf_link_hash_entry *hi;
1588 struct bfd_link_hash_entry *bh;
1589 const struct elf_backend_data *bed;
1590 bfd_boolean collect;
1591 bfd_boolean dynamic;
1592 char *p;
1593 size_t len, shortlen;
1594 asection *sec;
1595
1596 /* If this symbol has a version, and it is the default version, we
1597 create an indirect symbol from the default name to the fully
1598 decorated name. This will cause external references which do not
1599 specify a version to be bound to this version of the symbol. */
1600 p = strchr (name, ELF_VER_CHR);
1601 if (p == NULL || p[1] != ELF_VER_CHR)
1602 return TRUE;
1603
1604 if (override)
1605 {
1606 /* We are overridden by an old definition. We need to check if we
1607 need to create the indirect symbol from the default name. */
1608 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1609 FALSE, FALSE);
1610 BFD_ASSERT (hi != NULL);
1611 if (hi == h)
1612 return TRUE;
1613 while (hi->root.type == bfd_link_hash_indirect
1614 || hi->root.type == bfd_link_hash_warning)
1615 {
1616 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1617 if (hi == h)
1618 return TRUE;
1619 }
1620 }
1621
1622 bed = get_elf_backend_data (abfd);
1623 collect = bed->collect;
1624 dynamic = (abfd->flags & DYNAMIC) != 0;
1625
1626 shortlen = p - name;
1627 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1628 if (shortname == NULL)
1629 return FALSE;
1630 memcpy (shortname, name, shortlen);
1631 shortname[shortlen] = '\0';
1632
1633 /* We are going to create a new symbol. Merge it with any existing
1634 symbol with this name. For the purposes of the merge, act as
1635 though we were defining the symbol we just defined, although we
1636 actually going to define an indirect symbol. */
1637 type_change_ok = FALSE;
1638 size_change_ok = FALSE;
1639 sec = *psec;
1640 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1641 NULL, &hi, &skip, &override,
1642 &type_change_ok, &size_change_ok))
1643 return FALSE;
1644
1645 if (skip)
1646 goto nondefault;
1647
1648 if (! override)
1649 {
1650 bh = &hi->root;
1651 if (! (_bfd_generic_link_add_one_symbol
1652 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1653 0, name, FALSE, collect, &bh)))
1654 return FALSE;
1655 hi = (struct elf_link_hash_entry *) bh;
1656 }
1657 else
1658 {
1659 /* In this case the symbol named SHORTNAME is overriding the
1660 indirect symbol we want to add. We were planning on making
1661 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1662 is the name without a version. NAME is the fully versioned
1663 name, and it is the default version.
1664
1665 Overriding means that we already saw a definition for the
1666 symbol SHORTNAME in a regular object, and it is overriding
1667 the symbol defined in the dynamic object.
1668
1669 When this happens, we actually want to change NAME, the
1670 symbol we just added, to refer to SHORTNAME. This will cause
1671 references to NAME in the shared object to become references
1672 to SHORTNAME in the regular object. This is what we expect
1673 when we override a function in a shared object: that the
1674 references in the shared object will be mapped to the
1675 definition in the regular object. */
1676
1677 while (hi->root.type == bfd_link_hash_indirect
1678 || hi->root.type == bfd_link_hash_warning)
1679 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1680
1681 h->root.type = bfd_link_hash_indirect;
1682 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1683 if (h->def_dynamic)
1684 {
1685 h->def_dynamic = 0;
1686 hi->ref_dynamic = 1;
1687 if (hi->ref_regular
1688 || hi->def_regular)
1689 {
1690 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1691 return FALSE;
1692 }
1693 }
1694
1695 /* Now set HI to H, so that the following code will set the
1696 other fields correctly. */
1697 hi = h;
1698 }
1699
1700 /* Check if HI is a warning symbol. */
1701 if (hi->root.type == bfd_link_hash_warning)
1702 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1703
1704 /* If there is a duplicate definition somewhere, then HI may not
1705 point to an indirect symbol. We will have reported an error to
1706 the user in that case. */
1707
1708 if (hi->root.type == bfd_link_hash_indirect)
1709 {
1710 struct elf_link_hash_entry *ht;
1711
1712 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1713 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1714
1715 /* See if the new flags lead us to realize that the symbol must
1716 be dynamic. */
1717 if (! *dynsym)
1718 {
1719 if (! dynamic)
1720 {
1721 if (info->shared
1722 || hi->ref_dynamic)
1723 *dynsym = TRUE;
1724 }
1725 else
1726 {
1727 if (hi->ref_regular)
1728 *dynsym = TRUE;
1729 }
1730 }
1731 }
1732
1733 /* We also need to define an indirection from the nondefault version
1734 of the symbol. */
1735
1736 nondefault:
1737 len = strlen (name);
1738 shortname = bfd_hash_allocate (&info->hash->table, len);
1739 if (shortname == NULL)
1740 return FALSE;
1741 memcpy (shortname, name, shortlen);
1742 memcpy (shortname + shortlen, p + 1, len - shortlen);
1743
1744 /* Once again, merge with any existing symbol. */
1745 type_change_ok = FALSE;
1746 size_change_ok = FALSE;
1747 sec = *psec;
1748 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1749 NULL, &hi, &skip, &override,
1750 &type_change_ok, &size_change_ok))
1751 return FALSE;
1752
1753 if (skip)
1754 return TRUE;
1755
1756 if (override)
1757 {
1758 /* Here SHORTNAME is a versioned name, so we don't expect to see
1759 the type of override we do in the case above unless it is
1760 overridden by a versioned definition. */
1761 if (hi->root.type != bfd_link_hash_defined
1762 && hi->root.type != bfd_link_hash_defweak)
1763 (*_bfd_error_handler)
1764 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1765 abfd, shortname);
1766 }
1767 else
1768 {
1769 bh = &hi->root;
1770 if (! (_bfd_generic_link_add_one_symbol
1771 (info, abfd, shortname, BSF_INDIRECT,
1772 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1773 return FALSE;
1774 hi = (struct elf_link_hash_entry *) bh;
1775
1776 /* If there is a duplicate definition somewhere, then HI may not
1777 point to an indirect symbol. We will have reported an error
1778 to the user in that case. */
1779
1780 if (hi->root.type == bfd_link_hash_indirect)
1781 {
1782 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1783
1784 /* See if the new flags lead us to realize that the symbol
1785 must be dynamic. */
1786 if (! *dynsym)
1787 {
1788 if (! dynamic)
1789 {
1790 if (info->shared
1791 || hi->ref_dynamic)
1792 *dynsym = TRUE;
1793 }
1794 else
1795 {
1796 if (hi->ref_regular)
1797 *dynsym = TRUE;
1798 }
1799 }
1800 }
1801 }
1802
1803 return TRUE;
1804 }
1805 \f
1806 /* This routine is used to export all defined symbols into the dynamic
1807 symbol table. It is called via elf_link_hash_traverse. */
1808
1809 static bfd_boolean
1810 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1811 {
1812 struct elf_info_failed *eif = data;
1813
1814 /* Ignore this if we won't export it. */
1815 if (!eif->info->export_dynamic && !h->dynamic)
1816 return TRUE;
1817
1818 /* Ignore indirect symbols. These are added by the versioning code. */
1819 if (h->root.type == bfd_link_hash_indirect)
1820 return TRUE;
1821
1822 if (h->root.type == bfd_link_hash_warning)
1823 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1824
1825 if (h->dynindx == -1
1826 && (h->def_regular
1827 || h->ref_regular))
1828 {
1829 bfd_boolean hide;
1830
1831 if (eif->verdefs == NULL
1832 || (bfd_find_version_for_sym (eif->verdefs, h->root.root.string, &hide)
1833 && !hide))
1834 {
1835 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1836 {
1837 eif->failed = TRUE;
1838 return FALSE;
1839 }
1840 }
1841 }
1842
1843 return TRUE;
1844 }
1845 \f
1846 /* Look through the symbols which are defined in other shared
1847 libraries and referenced here. Update the list of version
1848 dependencies. This will be put into the .gnu.version_r section.
1849 This function is called via elf_link_hash_traverse. */
1850
1851 static bfd_boolean
1852 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1853 void *data)
1854 {
1855 struct elf_find_verdep_info *rinfo = data;
1856 Elf_Internal_Verneed *t;
1857 Elf_Internal_Vernaux *a;
1858 bfd_size_type amt;
1859
1860 if (h->root.type == bfd_link_hash_warning)
1861 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1862
1863 /* We only care about symbols defined in shared objects with version
1864 information. */
1865 if (!h->def_dynamic
1866 || h->def_regular
1867 || h->dynindx == -1
1868 || h->verinfo.verdef == NULL)
1869 return TRUE;
1870
1871 /* See if we already know about this version. */
1872 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1873 t != NULL;
1874 t = t->vn_nextref)
1875 {
1876 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1877 continue;
1878
1879 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1880 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1881 return TRUE;
1882
1883 break;
1884 }
1885
1886 /* This is a new version. Add it to tree we are building. */
1887
1888 if (t == NULL)
1889 {
1890 amt = sizeof *t;
1891 t = bfd_zalloc (rinfo->info->output_bfd, amt);
1892 if (t == NULL)
1893 {
1894 rinfo->failed = TRUE;
1895 return FALSE;
1896 }
1897
1898 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1899 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1900 elf_tdata (rinfo->info->output_bfd)->verref = t;
1901 }
1902
1903 amt = sizeof *a;
1904 a = bfd_zalloc (rinfo->info->output_bfd, amt);
1905 if (a == NULL)
1906 {
1907 rinfo->failed = TRUE;
1908 return FALSE;
1909 }
1910
1911 /* Note that we are copying a string pointer here, and testing it
1912 above. If bfd_elf_string_from_elf_section is ever changed to
1913 discard the string data when low in memory, this will have to be
1914 fixed. */
1915 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1916
1917 a->vna_flags = h->verinfo.verdef->vd_flags;
1918 a->vna_nextptr = t->vn_auxptr;
1919
1920 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1921 ++rinfo->vers;
1922
1923 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1924
1925 t->vn_auxptr = a;
1926
1927 return TRUE;
1928 }
1929
1930 /* Figure out appropriate versions for all the symbols. We may not
1931 have the version number script until we have read all of the input
1932 files, so until that point we don't know which symbols should be
1933 local. This function is called via elf_link_hash_traverse. */
1934
1935 static bfd_boolean
1936 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1937 {
1938 struct elf_info_failed *sinfo;
1939 struct bfd_link_info *info;
1940 const struct elf_backend_data *bed;
1941 struct elf_info_failed eif;
1942 char *p;
1943 bfd_size_type amt;
1944
1945 sinfo = data;
1946 info = sinfo->info;
1947
1948 if (h->root.type == bfd_link_hash_warning)
1949 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1950
1951 /* Fix the symbol flags. */
1952 eif.failed = FALSE;
1953 eif.info = info;
1954 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1955 {
1956 if (eif.failed)
1957 sinfo->failed = TRUE;
1958 return FALSE;
1959 }
1960
1961 /* We only need version numbers for symbols defined in regular
1962 objects. */
1963 if (!h->def_regular)
1964 return TRUE;
1965
1966 bed = get_elf_backend_data (info->output_bfd);
1967 p = strchr (h->root.root.string, ELF_VER_CHR);
1968 if (p != NULL && h->verinfo.vertree == NULL)
1969 {
1970 struct bfd_elf_version_tree *t;
1971 bfd_boolean hidden;
1972
1973 hidden = TRUE;
1974
1975 /* There are two consecutive ELF_VER_CHR characters if this is
1976 not a hidden symbol. */
1977 ++p;
1978 if (*p == ELF_VER_CHR)
1979 {
1980 hidden = FALSE;
1981 ++p;
1982 }
1983
1984 /* If there is no version string, we can just return out. */
1985 if (*p == '\0')
1986 {
1987 if (hidden)
1988 h->hidden = 1;
1989 return TRUE;
1990 }
1991
1992 /* Look for the version. If we find it, it is no longer weak. */
1993 for (t = sinfo->verdefs; t != NULL; t = t->next)
1994 {
1995 if (strcmp (t->name, p) == 0)
1996 {
1997 size_t len;
1998 char *alc;
1999 struct bfd_elf_version_expr *d;
2000
2001 len = p - h->root.root.string;
2002 alc = bfd_malloc (len);
2003 if (alc == NULL)
2004 {
2005 sinfo->failed = TRUE;
2006 return FALSE;
2007 }
2008 memcpy (alc, h->root.root.string, len - 1);
2009 alc[len - 1] = '\0';
2010 if (alc[len - 2] == ELF_VER_CHR)
2011 alc[len - 2] = '\0';
2012
2013 h->verinfo.vertree = t;
2014 t->used = TRUE;
2015 d = NULL;
2016
2017 if (t->globals.list != NULL)
2018 d = (*t->match) (&t->globals, NULL, alc);
2019
2020 /* See if there is anything to force this symbol to
2021 local scope. */
2022 if (d == NULL && t->locals.list != NULL)
2023 {
2024 d = (*t->match) (&t->locals, NULL, alc);
2025 if (d != NULL
2026 && h->dynindx != -1
2027 && ! info->export_dynamic)
2028 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2029 }
2030
2031 free (alc);
2032 break;
2033 }
2034 }
2035
2036 /* If we are building an application, we need to create a
2037 version node for this version. */
2038 if (t == NULL && info->executable)
2039 {
2040 struct bfd_elf_version_tree **pp;
2041 int version_index;
2042
2043 /* If we aren't going to export this symbol, we don't need
2044 to worry about it. */
2045 if (h->dynindx == -1)
2046 return TRUE;
2047
2048 amt = sizeof *t;
2049 t = bfd_zalloc (info->output_bfd, amt);
2050 if (t == NULL)
2051 {
2052 sinfo->failed = TRUE;
2053 return FALSE;
2054 }
2055
2056 t->name = p;
2057 t->name_indx = (unsigned int) -1;
2058 t->used = TRUE;
2059
2060 version_index = 1;
2061 /* Don't count anonymous version tag. */
2062 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
2063 version_index = 0;
2064 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
2065 ++version_index;
2066 t->vernum = version_index;
2067
2068 *pp = t;
2069
2070 h->verinfo.vertree = t;
2071 }
2072 else if (t == NULL)
2073 {
2074 /* We could not find the version for a symbol when
2075 generating a shared archive. Return an error. */
2076 (*_bfd_error_handler)
2077 (_("%B: version node not found for symbol %s"),
2078 info->output_bfd, h->root.root.string);
2079 bfd_set_error (bfd_error_bad_value);
2080 sinfo->failed = TRUE;
2081 return FALSE;
2082 }
2083
2084 if (hidden)
2085 h->hidden = 1;
2086 }
2087
2088 /* If we don't have a version for this symbol, see if we can find
2089 something. */
2090 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
2091 {
2092 bfd_boolean hide;
2093
2094 h->verinfo.vertree = bfd_find_version_for_sym (sinfo->verdefs,
2095 h->root.root.string, &hide);
2096 if (h->verinfo.vertree != NULL && hide)
2097 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2098 }
2099
2100 return TRUE;
2101 }
2102 \f
2103 /* Read and swap the relocs from the section indicated by SHDR. This
2104 may be either a REL or a RELA section. The relocations are
2105 translated into RELA relocations and stored in INTERNAL_RELOCS,
2106 which should have already been allocated to contain enough space.
2107 The EXTERNAL_RELOCS are a buffer where the external form of the
2108 relocations should be stored.
2109
2110 Returns FALSE if something goes wrong. */
2111
2112 static bfd_boolean
2113 elf_link_read_relocs_from_section (bfd *abfd,
2114 asection *sec,
2115 Elf_Internal_Shdr *shdr,
2116 void *external_relocs,
2117 Elf_Internal_Rela *internal_relocs)
2118 {
2119 const struct elf_backend_data *bed;
2120 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2121 const bfd_byte *erela;
2122 const bfd_byte *erelaend;
2123 Elf_Internal_Rela *irela;
2124 Elf_Internal_Shdr *symtab_hdr;
2125 size_t nsyms;
2126
2127 /* Position ourselves at the start of the section. */
2128 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2129 return FALSE;
2130
2131 /* Read the relocations. */
2132 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2133 return FALSE;
2134
2135 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2136 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2137
2138 bed = get_elf_backend_data (abfd);
2139
2140 /* Convert the external relocations to the internal format. */
2141 if (shdr->sh_entsize == bed->s->sizeof_rel)
2142 swap_in = bed->s->swap_reloc_in;
2143 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2144 swap_in = bed->s->swap_reloca_in;
2145 else
2146 {
2147 bfd_set_error (bfd_error_wrong_format);
2148 return FALSE;
2149 }
2150
2151 erela = external_relocs;
2152 erelaend = erela + shdr->sh_size;
2153 irela = internal_relocs;
2154 while (erela < erelaend)
2155 {
2156 bfd_vma r_symndx;
2157
2158 (*swap_in) (abfd, erela, irela);
2159 r_symndx = ELF32_R_SYM (irela->r_info);
2160 if (bed->s->arch_size == 64)
2161 r_symndx >>= 24;
2162 if (nsyms > 0)
2163 {
2164 if ((size_t) r_symndx >= nsyms)
2165 {
2166 (*_bfd_error_handler)
2167 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2168 " for offset 0x%lx in section `%A'"),
2169 abfd, sec,
2170 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2171 bfd_set_error (bfd_error_bad_value);
2172 return FALSE;
2173 }
2174 }
2175 else if (r_symndx != 0)
2176 {
2177 (*_bfd_error_handler)
2178 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2179 " when the object file has no symbol table"),
2180 abfd, sec,
2181 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2182 bfd_set_error (bfd_error_bad_value);
2183 return FALSE;
2184 }
2185 irela += bed->s->int_rels_per_ext_rel;
2186 erela += shdr->sh_entsize;
2187 }
2188
2189 return TRUE;
2190 }
2191
2192 /* Read and swap the relocs for a section O. They may have been
2193 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2194 not NULL, they are used as buffers to read into. They are known to
2195 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2196 the return value is allocated using either malloc or bfd_alloc,
2197 according to the KEEP_MEMORY argument. If O has two relocation
2198 sections (both REL and RELA relocations), then the REL_HDR
2199 relocations will appear first in INTERNAL_RELOCS, followed by the
2200 REL_HDR2 relocations. */
2201
2202 Elf_Internal_Rela *
2203 _bfd_elf_link_read_relocs (bfd *abfd,
2204 asection *o,
2205 void *external_relocs,
2206 Elf_Internal_Rela *internal_relocs,
2207 bfd_boolean keep_memory)
2208 {
2209 Elf_Internal_Shdr *rel_hdr;
2210 void *alloc1 = NULL;
2211 Elf_Internal_Rela *alloc2 = NULL;
2212 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2213
2214 if (elf_section_data (o)->relocs != NULL)
2215 return elf_section_data (o)->relocs;
2216
2217 if (o->reloc_count == 0)
2218 return NULL;
2219
2220 rel_hdr = &elf_section_data (o)->rel_hdr;
2221
2222 if (internal_relocs == NULL)
2223 {
2224 bfd_size_type size;
2225
2226 size = o->reloc_count;
2227 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2228 if (keep_memory)
2229 internal_relocs = alloc2 = bfd_alloc (abfd, size);
2230 else
2231 internal_relocs = alloc2 = bfd_malloc (size);
2232 if (internal_relocs == NULL)
2233 goto error_return;
2234 }
2235
2236 if (external_relocs == NULL)
2237 {
2238 bfd_size_type size = rel_hdr->sh_size;
2239
2240 if (elf_section_data (o)->rel_hdr2)
2241 size += elf_section_data (o)->rel_hdr2->sh_size;
2242 alloc1 = bfd_malloc (size);
2243 if (alloc1 == NULL)
2244 goto error_return;
2245 external_relocs = alloc1;
2246 }
2247
2248 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
2249 external_relocs,
2250 internal_relocs))
2251 goto error_return;
2252 if (elf_section_data (o)->rel_hdr2
2253 && (!elf_link_read_relocs_from_section
2254 (abfd, o,
2255 elf_section_data (o)->rel_hdr2,
2256 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2257 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2258 * bed->s->int_rels_per_ext_rel))))
2259 goto error_return;
2260
2261 /* Cache the results for next time, if we can. */
2262 if (keep_memory)
2263 elf_section_data (o)->relocs = internal_relocs;
2264
2265 if (alloc1 != NULL)
2266 free (alloc1);
2267
2268 /* Don't free alloc2, since if it was allocated we are passing it
2269 back (under the name of internal_relocs). */
2270
2271 return internal_relocs;
2272
2273 error_return:
2274 if (alloc1 != NULL)
2275 free (alloc1);
2276 if (alloc2 != NULL)
2277 {
2278 if (keep_memory)
2279 bfd_release (abfd, alloc2);
2280 else
2281 free (alloc2);
2282 }
2283 return NULL;
2284 }
2285
2286 /* Compute the size of, and allocate space for, REL_HDR which is the
2287 section header for a section containing relocations for O. */
2288
2289 static bfd_boolean
2290 _bfd_elf_link_size_reloc_section (bfd *abfd,
2291 Elf_Internal_Shdr *rel_hdr,
2292 asection *o)
2293 {
2294 bfd_size_type reloc_count;
2295 bfd_size_type num_rel_hashes;
2296
2297 /* Figure out how many relocations there will be. */
2298 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2299 reloc_count = elf_section_data (o)->rel_count;
2300 else
2301 reloc_count = elf_section_data (o)->rel_count2;
2302
2303 num_rel_hashes = o->reloc_count;
2304 if (num_rel_hashes < reloc_count)
2305 num_rel_hashes = reloc_count;
2306
2307 /* That allows us to calculate the size of the section. */
2308 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2309
2310 /* The contents field must last into write_object_contents, so we
2311 allocate it with bfd_alloc rather than malloc. Also since we
2312 cannot be sure that the contents will actually be filled in,
2313 we zero the allocated space. */
2314 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
2315 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2316 return FALSE;
2317
2318 /* We only allocate one set of hash entries, so we only do it the
2319 first time we are called. */
2320 if (elf_section_data (o)->rel_hashes == NULL
2321 && num_rel_hashes)
2322 {
2323 struct elf_link_hash_entry **p;
2324
2325 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
2326 if (p == NULL)
2327 return FALSE;
2328
2329 elf_section_data (o)->rel_hashes = p;
2330 }
2331
2332 return TRUE;
2333 }
2334
2335 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2336 originated from the section given by INPUT_REL_HDR) to the
2337 OUTPUT_BFD. */
2338
2339 bfd_boolean
2340 _bfd_elf_link_output_relocs (bfd *output_bfd,
2341 asection *input_section,
2342 Elf_Internal_Shdr *input_rel_hdr,
2343 Elf_Internal_Rela *internal_relocs,
2344 struct elf_link_hash_entry **rel_hash
2345 ATTRIBUTE_UNUSED)
2346 {
2347 Elf_Internal_Rela *irela;
2348 Elf_Internal_Rela *irelaend;
2349 bfd_byte *erel;
2350 Elf_Internal_Shdr *output_rel_hdr;
2351 asection *output_section;
2352 unsigned int *rel_countp = NULL;
2353 const struct elf_backend_data *bed;
2354 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2355
2356 output_section = input_section->output_section;
2357 output_rel_hdr = NULL;
2358
2359 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2360 == input_rel_hdr->sh_entsize)
2361 {
2362 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2363 rel_countp = &elf_section_data (output_section)->rel_count;
2364 }
2365 else if (elf_section_data (output_section)->rel_hdr2
2366 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2367 == input_rel_hdr->sh_entsize))
2368 {
2369 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2370 rel_countp = &elf_section_data (output_section)->rel_count2;
2371 }
2372 else
2373 {
2374 (*_bfd_error_handler)
2375 (_("%B: relocation size mismatch in %B section %A"),
2376 output_bfd, input_section->owner, input_section);
2377 bfd_set_error (bfd_error_wrong_format);
2378 return FALSE;
2379 }
2380
2381 bed = get_elf_backend_data (output_bfd);
2382 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2383 swap_out = bed->s->swap_reloc_out;
2384 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2385 swap_out = bed->s->swap_reloca_out;
2386 else
2387 abort ();
2388
2389 erel = output_rel_hdr->contents;
2390 erel += *rel_countp * input_rel_hdr->sh_entsize;
2391 irela = internal_relocs;
2392 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2393 * bed->s->int_rels_per_ext_rel);
2394 while (irela < irelaend)
2395 {
2396 (*swap_out) (output_bfd, irela, erel);
2397 irela += bed->s->int_rels_per_ext_rel;
2398 erel += input_rel_hdr->sh_entsize;
2399 }
2400
2401 /* Bump the counter, so that we know where to add the next set of
2402 relocations. */
2403 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2404
2405 return TRUE;
2406 }
2407 \f
2408 /* Make weak undefined symbols in PIE dynamic. */
2409
2410 bfd_boolean
2411 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2412 struct elf_link_hash_entry *h)
2413 {
2414 if (info->pie
2415 && h->dynindx == -1
2416 && h->root.type == bfd_link_hash_undefweak)
2417 return bfd_elf_link_record_dynamic_symbol (info, h);
2418
2419 return TRUE;
2420 }
2421
2422 /* Fix up the flags for a symbol. This handles various cases which
2423 can only be fixed after all the input files are seen. This is
2424 currently called by both adjust_dynamic_symbol and
2425 assign_sym_version, which is unnecessary but perhaps more robust in
2426 the face of future changes. */
2427
2428 static bfd_boolean
2429 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2430 struct elf_info_failed *eif)
2431 {
2432 const struct elf_backend_data *bed;
2433
2434 /* If this symbol was mentioned in a non-ELF file, try to set
2435 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2436 permit a non-ELF file to correctly refer to a symbol defined in
2437 an ELF dynamic object. */
2438 if (h->non_elf)
2439 {
2440 while (h->root.type == bfd_link_hash_indirect)
2441 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2442
2443 if (h->root.type != bfd_link_hash_defined
2444 && h->root.type != bfd_link_hash_defweak)
2445 {
2446 h->ref_regular = 1;
2447 h->ref_regular_nonweak = 1;
2448 }
2449 else
2450 {
2451 if (h->root.u.def.section->owner != NULL
2452 && (bfd_get_flavour (h->root.u.def.section->owner)
2453 == bfd_target_elf_flavour))
2454 {
2455 h->ref_regular = 1;
2456 h->ref_regular_nonweak = 1;
2457 }
2458 else
2459 h->def_regular = 1;
2460 }
2461
2462 if (h->dynindx == -1
2463 && (h->def_dynamic
2464 || h->ref_dynamic))
2465 {
2466 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2467 {
2468 eif->failed = TRUE;
2469 return FALSE;
2470 }
2471 }
2472 }
2473 else
2474 {
2475 /* Unfortunately, NON_ELF is only correct if the symbol
2476 was first seen in a non-ELF file. Fortunately, if the symbol
2477 was first seen in an ELF file, we're probably OK unless the
2478 symbol was defined in a non-ELF file. Catch that case here.
2479 FIXME: We're still in trouble if the symbol was first seen in
2480 a dynamic object, and then later in a non-ELF regular object. */
2481 if ((h->root.type == bfd_link_hash_defined
2482 || h->root.type == bfd_link_hash_defweak)
2483 && !h->def_regular
2484 && (h->root.u.def.section->owner != NULL
2485 ? (bfd_get_flavour (h->root.u.def.section->owner)
2486 != bfd_target_elf_flavour)
2487 : (bfd_is_abs_section (h->root.u.def.section)
2488 && !h->def_dynamic)))
2489 h->def_regular = 1;
2490 }
2491
2492 /* Backend specific symbol fixup. */
2493 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2494 if (bed->elf_backend_fixup_symbol
2495 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2496 return FALSE;
2497
2498 /* If this is a final link, and the symbol was defined as a common
2499 symbol in a regular object file, and there was no definition in
2500 any dynamic object, then the linker will have allocated space for
2501 the symbol in a common section but the DEF_REGULAR
2502 flag will not have been set. */
2503 if (h->root.type == bfd_link_hash_defined
2504 && !h->def_regular
2505 && h->ref_regular
2506 && !h->def_dynamic
2507 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2508 h->def_regular = 1;
2509
2510 /* If -Bsymbolic was used (which means to bind references to global
2511 symbols to the definition within the shared object), and this
2512 symbol was defined in a regular object, then it actually doesn't
2513 need a PLT entry. Likewise, if the symbol has non-default
2514 visibility. If the symbol has hidden or internal visibility, we
2515 will force it local. */
2516 if (h->needs_plt
2517 && eif->info->shared
2518 && is_elf_hash_table (eif->info->hash)
2519 && (SYMBOLIC_BIND (eif->info, h)
2520 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2521 && h->def_regular)
2522 {
2523 bfd_boolean force_local;
2524
2525 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2526 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2527 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2528 }
2529
2530 /* If a weak undefined symbol has non-default visibility, we also
2531 hide it from the dynamic linker. */
2532 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2533 && h->root.type == bfd_link_hash_undefweak)
2534 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2535
2536 /* If this is a weak defined symbol in a dynamic object, and we know
2537 the real definition in the dynamic object, copy interesting flags
2538 over to the real definition. */
2539 if (h->u.weakdef != NULL)
2540 {
2541 struct elf_link_hash_entry *weakdef;
2542
2543 weakdef = h->u.weakdef;
2544 if (h->root.type == bfd_link_hash_indirect)
2545 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2546
2547 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2548 || h->root.type == bfd_link_hash_defweak);
2549 BFD_ASSERT (weakdef->def_dynamic);
2550
2551 /* If the real definition is defined by a regular object file,
2552 don't do anything special. See the longer description in
2553 _bfd_elf_adjust_dynamic_symbol, below. */
2554 if (weakdef->def_regular)
2555 h->u.weakdef = NULL;
2556 else
2557 {
2558 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2559 || weakdef->root.type == bfd_link_hash_defweak);
2560 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2561 }
2562 }
2563
2564 return TRUE;
2565 }
2566
2567 /* Make the backend pick a good value for a dynamic symbol. This is
2568 called via elf_link_hash_traverse, and also calls itself
2569 recursively. */
2570
2571 static bfd_boolean
2572 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2573 {
2574 struct elf_info_failed *eif = data;
2575 bfd *dynobj;
2576 const struct elf_backend_data *bed;
2577
2578 if (! is_elf_hash_table (eif->info->hash))
2579 return FALSE;
2580
2581 if (h->root.type == bfd_link_hash_warning)
2582 {
2583 h->got = elf_hash_table (eif->info)->init_got_offset;
2584 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2585
2586 /* When warning symbols are created, they **replace** the "real"
2587 entry in the hash table, thus we never get to see the real
2588 symbol in a hash traversal. So look at it now. */
2589 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2590 }
2591
2592 /* Ignore indirect symbols. These are added by the versioning code. */
2593 if (h->root.type == bfd_link_hash_indirect)
2594 return TRUE;
2595
2596 /* Fix the symbol flags. */
2597 if (! _bfd_elf_fix_symbol_flags (h, eif))
2598 return FALSE;
2599
2600 /* If this symbol does not require a PLT entry, and it is not
2601 defined by a dynamic object, or is not referenced by a regular
2602 object, ignore it. We do have to handle a weak defined symbol,
2603 even if no regular object refers to it, if we decided to add it
2604 to the dynamic symbol table. FIXME: Do we normally need to worry
2605 about symbols which are defined by one dynamic object and
2606 referenced by another one? */
2607 if (!h->needs_plt
2608 && (h->def_regular
2609 || !h->def_dynamic
2610 || (!h->ref_regular
2611 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2612 {
2613 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2614 return TRUE;
2615 }
2616
2617 /* If we've already adjusted this symbol, don't do it again. This
2618 can happen via a recursive call. */
2619 if (h->dynamic_adjusted)
2620 return TRUE;
2621
2622 /* Don't look at this symbol again. Note that we must set this
2623 after checking the above conditions, because we may look at a
2624 symbol once, decide not to do anything, and then get called
2625 recursively later after REF_REGULAR is set below. */
2626 h->dynamic_adjusted = 1;
2627
2628 /* If this is a weak definition, and we know a real definition, and
2629 the real symbol is not itself defined by a regular object file,
2630 then get a good value for the real definition. We handle the
2631 real symbol first, for the convenience of the backend routine.
2632
2633 Note that there is a confusing case here. If the real definition
2634 is defined by a regular object file, we don't get the real symbol
2635 from the dynamic object, but we do get the weak symbol. If the
2636 processor backend uses a COPY reloc, then if some routine in the
2637 dynamic object changes the real symbol, we will not see that
2638 change in the corresponding weak symbol. This is the way other
2639 ELF linkers work as well, and seems to be a result of the shared
2640 library model.
2641
2642 I will clarify this issue. Most SVR4 shared libraries define the
2643 variable _timezone and define timezone as a weak synonym. The
2644 tzset call changes _timezone. If you write
2645 extern int timezone;
2646 int _timezone = 5;
2647 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2648 you might expect that, since timezone is a synonym for _timezone,
2649 the same number will print both times. However, if the processor
2650 backend uses a COPY reloc, then actually timezone will be copied
2651 into your process image, and, since you define _timezone
2652 yourself, _timezone will not. Thus timezone and _timezone will
2653 wind up at different memory locations. The tzset call will set
2654 _timezone, leaving timezone unchanged. */
2655
2656 if (h->u.weakdef != NULL)
2657 {
2658 /* If we get to this point, we know there is an implicit
2659 reference by a regular object file via the weak symbol H.
2660 FIXME: Is this really true? What if the traversal finds
2661 H->U.WEAKDEF before it finds H? */
2662 h->u.weakdef->ref_regular = 1;
2663
2664 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2665 return FALSE;
2666 }
2667
2668 /* If a symbol has no type and no size and does not require a PLT
2669 entry, then we are probably about to do the wrong thing here: we
2670 are probably going to create a COPY reloc for an empty object.
2671 This case can arise when a shared object is built with assembly
2672 code, and the assembly code fails to set the symbol type. */
2673 if (h->size == 0
2674 && h->type == STT_NOTYPE
2675 && !h->needs_plt)
2676 (*_bfd_error_handler)
2677 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2678 h->root.root.string);
2679
2680 dynobj = elf_hash_table (eif->info)->dynobj;
2681 bed = get_elf_backend_data (dynobj);
2682
2683 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2684 {
2685 eif->failed = TRUE;
2686 return FALSE;
2687 }
2688
2689 return TRUE;
2690 }
2691
2692 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2693 DYNBSS. */
2694
2695 bfd_boolean
2696 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2697 asection *dynbss)
2698 {
2699 unsigned int power_of_two;
2700 bfd_vma mask;
2701 asection *sec = h->root.u.def.section;
2702
2703 /* The section aligment of definition is the maximum alignment
2704 requirement of symbols defined in the section. Since we don't
2705 know the symbol alignment requirement, we start with the
2706 maximum alignment and check low bits of the symbol address
2707 for the minimum alignment. */
2708 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2709 mask = ((bfd_vma) 1 << power_of_two) - 1;
2710 while ((h->root.u.def.value & mask) != 0)
2711 {
2712 mask >>= 1;
2713 --power_of_two;
2714 }
2715
2716 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2717 dynbss))
2718 {
2719 /* Adjust the section alignment if needed. */
2720 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2721 power_of_two))
2722 return FALSE;
2723 }
2724
2725 /* We make sure that the symbol will be aligned properly. */
2726 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2727
2728 /* Define the symbol as being at this point in DYNBSS. */
2729 h->root.u.def.section = dynbss;
2730 h->root.u.def.value = dynbss->size;
2731
2732 /* Increment the size of DYNBSS to make room for the symbol. */
2733 dynbss->size += h->size;
2734
2735 return TRUE;
2736 }
2737
2738 /* Adjust all external symbols pointing into SEC_MERGE sections
2739 to reflect the object merging within the sections. */
2740
2741 static bfd_boolean
2742 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2743 {
2744 asection *sec;
2745
2746 if (h->root.type == bfd_link_hash_warning)
2747 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2748
2749 if ((h->root.type == bfd_link_hash_defined
2750 || h->root.type == bfd_link_hash_defweak)
2751 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2752 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2753 {
2754 bfd *output_bfd = data;
2755
2756 h->root.u.def.value =
2757 _bfd_merged_section_offset (output_bfd,
2758 &h->root.u.def.section,
2759 elf_section_data (sec)->sec_info,
2760 h->root.u.def.value);
2761 }
2762
2763 return TRUE;
2764 }
2765
2766 /* Returns false if the symbol referred to by H should be considered
2767 to resolve local to the current module, and true if it should be
2768 considered to bind dynamically. */
2769
2770 bfd_boolean
2771 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2772 struct bfd_link_info *info,
2773 bfd_boolean ignore_protected)
2774 {
2775 bfd_boolean binding_stays_local_p;
2776 const struct elf_backend_data *bed;
2777 struct elf_link_hash_table *hash_table;
2778
2779 if (h == NULL)
2780 return FALSE;
2781
2782 while (h->root.type == bfd_link_hash_indirect
2783 || h->root.type == bfd_link_hash_warning)
2784 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2785
2786 /* If it was forced local, then clearly it's not dynamic. */
2787 if (h->dynindx == -1)
2788 return FALSE;
2789 if (h->forced_local)
2790 return FALSE;
2791
2792 /* Identify the cases where name binding rules say that a
2793 visible symbol resolves locally. */
2794 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2795
2796 switch (ELF_ST_VISIBILITY (h->other))
2797 {
2798 case STV_INTERNAL:
2799 case STV_HIDDEN:
2800 return FALSE;
2801
2802 case STV_PROTECTED:
2803 hash_table = elf_hash_table (info);
2804 if (!is_elf_hash_table (hash_table))
2805 return FALSE;
2806
2807 bed = get_elf_backend_data (hash_table->dynobj);
2808
2809 /* Proper resolution for function pointer equality may require
2810 that these symbols perhaps be resolved dynamically, even though
2811 we should be resolving them to the current module. */
2812 if (!ignore_protected || !bed->is_function_type (h->type))
2813 binding_stays_local_p = TRUE;
2814 break;
2815
2816 default:
2817 break;
2818 }
2819
2820 /* If it isn't defined locally, then clearly it's dynamic. */
2821 if (!h->def_regular)
2822 return TRUE;
2823
2824 /* Otherwise, the symbol is dynamic if binding rules don't tell
2825 us that it remains local. */
2826 return !binding_stays_local_p;
2827 }
2828
2829 /* Return true if the symbol referred to by H should be considered
2830 to resolve local to the current module, and false otherwise. Differs
2831 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2832 undefined symbols and weak symbols. */
2833
2834 bfd_boolean
2835 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2836 struct bfd_link_info *info,
2837 bfd_boolean local_protected)
2838 {
2839 const struct elf_backend_data *bed;
2840 struct elf_link_hash_table *hash_table;
2841
2842 /* If it's a local sym, of course we resolve locally. */
2843 if (h == NULL)
2844 return TRUE;
2845
2846 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2847 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2848 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2849 return TRUE;
2850
2851 /* Common symbols that become definitions don't get the DEF_REGULAR
2852 flag set, so test it first, and don't bail out. */
2853 if (ELF_COMMON_DEF_P (h))
2854 /* Do nothing. */;
2855 /* If we don't have a definition in a regular file, then we can't
2856 resolve locally. The sym is either undefined or dynamic. */
2857 else if (!h->def_regular)
2858 return FALSE;
2859
2860 /* Forced local symbols resolve locally. */
2861 if (h->forced_local)
2862 return TRUE;
2863
2864 /* As do non-dynamic symbols. */
2865 if (h->dynindx == -1)
2866 return TRUE;
2867
2868 /* At this point, we know the symbol is defined and dynamic. In an
2869 executable it must resolve locally, likewise when building symbolic
2870 shared libraries. */
2871 if (info->executable || SYMBOLIC_BIND (info, h))
2872 return TRUE;
2873
2874 /* Now deal with defined dynamic symbols in shared libraries. Ones
2875 with default visibility might not resolve locally. */
2876 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2877 return FALSE;
2878
2879 hash_table = elf_hash_table (info);
2880 if (!is_elf_hash_table (hash_table))
2881 return TRUE;
2882
2883 bed = get_elf_backend_data (hash_table->dynobj);
2884
2885 /* STV_PROTECTED non-function symbols are local. */
2886 if (!bed->is_function_type (h->type))
2887 return TRUE;
2888
2889 /* Function pointer equality tests may require that STV_PROTECTED
2890 symbols be treated as dynamic symbols, even when we know that the
2891 dynamic linker will resolve them locally. */
2892 return local_protected;
2893 }
2894
2895 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2896 aligned. Returns the first TLS output section. */
2897
2898 struct bfd_section *
2899 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2900 {
2901 struct bfd_section *sec, *tls;
2902 unsigned int align = 0;
2903
2904 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2905 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2906 break;
2907 tls = sec;
2908
2909 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2910 if (sec->alignment_power > align)
2911 align = sec->alignment_power;
2912
2913 elf_hash_table (info)->tls_sec = tls;
2914
2915 /* Ensure the alignment of the first section is the largest alignment,
2916 so that the tls segment starts aligned. */
2917 if (tls != NULL)
2918 tls->alignment_power = align;
2919
2920 return tls;
2921 }
2922
2923 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2924 static bfd_boolean
2925 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2926 Elf_Internal_Sym *sym)
2927 {
2928 const struct elf_backend_data *bed;
2929
2930 /* Local symbols do not count, but target specific ones might. */
2931 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2932 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2933 return FALSE;
2934
2935 bed = get_elf_backend_data (abfd);
2936 /* Function symbols do not count. */
2937 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2938 return FALSE;
2939
2940 /* If the section is undefined, then so is the symbol. */
2941 if (sym->st_shndx == SHN_UNDEF)
2942 return FALSE;
2943
2944 /* If the symbol is defined in the common section, then
2945 it is a common definition and so does not count. */
2946 if (bed->common_definition (sym))
2947 return FALSE;
2948
2949 /* If the symbol is in a target specific section then we
2950 must rely upon the backend to tell us what it is. */
2951 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2952 /* FIXME - this function is not coded yet:
2953
2954 return _bfd_is_global_symbol_definition (abfd, sym);
2955
2956 Instead for now assume that the definition is not global,
2957 Even if this is wrong, at least the linker will behave
2958 in the same way that it used to do. */
2959 return FALSE;
2960
2961 return TRUE;
2962 }
2963
2964 /* Search the symbol table of the archive element of the archive ABFD
2965 whose archive map contains a mention of SYMDEF, and determine if
2966 the symbol is defined in this element. */
2967 static bfd_boolean
2968 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2969 {
2970 Elf_Internal_Shdr * hdr;
2971 bfd_size_type symcount;
2972 bfd_size_type extsymcount;
2973 bfd_size_type extsymoff;
2974 Elf_Internal_Sym *isymbuf;
2975 Elf_Internal_Sym *isym;
2976 Elf_Internal_Sym *isymend;
2977 bfd_boolean result;
2978
2979 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2980 if (abfd == NULL)
2981 return FALSE;
2982
2983 if (! bfd_check_format (abfd, bfd_object))
2984 return FALSE;
2985
2986 /* If we have already included the element containing this symbol in the
2987 link then we do not need to include it again. Just claim that any symbol
2988 it contains is not a definition, so that our caller will not decide to
2989 (re)include this element. */
2990 if (abfd->archive_pass)
2991 return FALSE;
2992
2993 /* Select the appropriate symbol table. */
2994 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2995 hdr = &elf_tdata (abfd)->symtab_hdr;
2996 else
2997 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2998
2999 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3000
3001 /* The sh_info field of the symtab header tells us where the
3002 external symbols start. We don't care about the local symbols. */
3003 if (elf_bad_symtab (abfd))
3004 {
3005 extsymcount = symcount;
3006 extsymoff = 0;
3007 }
3008 else
3009 {
3010 extsymcount = symcount - hdr->sh_info;
3011 extsymoff = hdr->sh_info;
3012 }
3013
3014 if (extsymcount == 0)
3015 return FALSE;
3016
3017 /* Read in the symbol table. */
3018 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3019 NULL, NULL, NULL);
3020 if (isymbuf == NULL)
3021 return FALSE;
3022
3023 /* Scan the symbol table looking for SYMDEF. */
3024 result = FALSE;
3025 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3026 {
3027 const char *name;
3028
3029 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3030 isym->st_name);
3031 if (name == NULL)
3032 break;
3033
3034 if (strcmp (name, symdef->name) == 0)
3035 {
3036 result = is_global_data_symbol_definition (abfd, isym);
3037 break;
3038 }
3039 }
3040
3041 free (isymbuf);
3042
3043 return result;
3044 }
3045 \f
3046 /* Add an entry to the .dynamic table. */
3047
3048 bfd_boolean
3049 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3050 bfd_vma tag,
3051 bfd_vma val)
3052 {
3053 struct elf_link_hash_table *hash_table;
3054 const struct elf_backend_data *bed;
3055 asection *s;
3056 bfd_size_type newsize;
3057 bfd_byte *newcontents;
3058 Elf_Internal_Dyn dyn;
3059
3060 hash_table = elf_hash_table (info);
3061 if (! is_elf_hash_table (hash_table))
3062 return FALSE;
3063
3064 bed = get_elf_backend_data (hash_table->dynobj);
3065 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3066 BFD_ASSERT (s != NULL);
3067
3068 newsize = s->size + bed->s->sizeof_dyn;
3069 newcontents = bfd_realloc (s->contents, newsize);
3070 if (newcontents == NULL)
3071 return FALSE;
3072
3073 dyn.d_tag = tag;
3074 dyn.d_un.d_val = val;
3075 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3076
3077 s->size = newsize;
3078 s->contents = newcontents;
3079
3080 return TRUE;
3081 }
3082
3083 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3084 otherwise just check whether one already exists. Returns -1 on error,
3085 1 if a DT_NEEDED tag already exists, and 0 on success. */
3086
3087 static int
3088 elf_add_dt_needed_tag (bfd *abfd,
3089 struct bfd_link_info *info,
3090 const char *soname,
3091 bfd_boolean do_it)
3092 {
3093 struct elf_link_hash_table *hash_table;
3094 bfd_size_type oldsize;
3095 bfd_size_type strindex;
3096
3097 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3098 return -1;
3099
3100 hash_table = elf_hash_table (info);
3101 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3102 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3103 if (strindex == (bfd_size_type) -1)
3104 return -1;
3105
3106 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3107 {
3108 asection *sdyn;
3109 const struct elf_backend_data *bed;
3110 bfd_byte *extdyn;
3111
3112 bed = get_elf_backend_data (hash_table->dynobj);
3113 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3114 if (sdyn != NULL)
3115 for (extdyn = sdyn->contents;
3116 extdyn < sdyn->contents + sdyn->size;
3117 extdyn += bed->s->sizeof_dyn)
3118 {
3119 Elf_Internal_Dyn dyn;
3120
3121 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3122 if (dyn.d_tag == DT_NEEDED
3123 && dyn.d_un.d_val == strindex)
3124 {
3125 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3126 return 1;
3127 }
3128 }
3129 }
3130
3131 if (do_it)
3132 {
3133 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3134 return -1;
3135
3136 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3137 return -1;
3138 }
3139 else
3140 /* We were just checking for existence of the tag. */
3141 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3142
3143 return 0;
3144 }
3145
3146 static bfd_boolean
3147 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3148 {
3149 for (; needed != NULL; needed = needed->next)
3150 if (strcmp (soname, needed->name) == 0)
3151 return TRUE;
3152
3153 return FALSE;
3154 }
3155
3156 /* Sort symbol by value and section. */
3157 static int
3158 elf_sort_symbol (const void *arg1, const void *arg2)
3159 {
3160 const struct elf_link_hash_entry *h1;
3161 const struct elf_link_hash_entry *h2;
3162 bfd_signed_vma vdiff;
3163
3164 h1 = *(const struct elf_link_hash_entry **) arg1;
3165 h2 = *(const struct elf_link_hash_entry **) arg2;
3166 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3167 if (vdiff != 0)
3168 return vdiff > 0 ? 1 : -1;
3169 else
3170 {
3171 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3172 if (sdiff != 0)
3173 return sdiff > 0 ? 1 : -1;
3174 }
3175 return 0;
3176 }
3177
3178 /* This function is used to adjust offsets into .dynstr for
3179 dynamic symbols. This is called via elf_link_hash_traverse. */
3180
3181 static bfd_boolean
3182 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3183 {
3184 struct elf_strtab_hash *dynstr = data;
3185
3186 if (h->root.type == bfd_link_hash_warning)
3187 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3188
3189 if (h->dynindx != -1)
3190 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3191 return TRUE;
3192 }
3193
3194 /* Assign string offsets in .dynstr, update all structures referencing
3195 them. */
3196
3197 static bfd_boolean
3198 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3199 {
3200 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3201 struct elf_link_local_dynamic_entry *entry;
3202 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3203 bfd *dynobj = hash_table->dynobj;
3204 asection *sdyn;
3205 bfd_size_type size;
3206 const struct elf_backend_data *bed;
3207 bfd_byte *extdyn;
3208
3209 _bfd_elf_strtab_finalize (dynstr);
3210 size = _bfd_elf_strtab_size (dynstr);
3211
3212 bed = get_elf_backend_data (dynobj);
3213 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3214 BFD_ASSERT (sdyn != NULL);
3215
3216 /* Update all .dynamic entries referencing .dynstr strings. */
3217 for (extdyn = sdyn->contents;
3218 extdyn < sdyn->contents + sdyn->size;
3219 extdyn += bed->s->sizeof_dyn)
3220 {
3221 Elf_Internal_Dyn dyn;
3222
3223 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3224 switch (dyn.d_tag)
3225 {
3226 case DT_STRSZ:
3227 dyn.d_un.d_val = size;
3228 break;
3229 case DT_NEEDED:
3230 case DT_SONAME:
3231 case DT_RPATH:
3232 case DT_RUNPATH:
3233 case DT_FILTER:
3234 case DT_AUXILIARY:
3235 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3236 break;
3237 default:
3238 continue;
3239 }
3240 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3241 }
3242
3243 /* Now update local dynamic symbols. */
3244 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3245 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3246 entry->isym.st_name);
3247
3248 /* And the rest of dynamic symbols. */
3249 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3250
3251 /* Adjust version definitions. */
3252 if (elf_tdata (output_bfd)->cverdefs)
3253 {
3254 asection *s;
3255 bfd_byte *p;
3256 bfd_size_type i;
3257 Elf_Internal_Verdef def;
3258 Elf_Internal_Verdaux defaux;
3259
3260 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3261 p = s->contents;
3262 do
3263 {
3264 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3265 &def);
3266 p += sizeof (Elf_External_Verdef);
3267 if (def.vd_aux != sizeof (Elf_External_Verdef))
3268 continue;
3269 for (i = 0; i < def.vd_cnt; ++i)
3270 {
3271 _bfd_elf_swap_verdaux_in (output_bfd,
3272 (Elf_External_Verdaux *) p, &defaux);
3273 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3274 defaux.vda_name);
3275 _bfd_elf_swap_verdaux_out (output_bfd,
3276 &defaux, (Elf_External_Verdaux *) p);
3277 p += sizeof (Elf_External_Verdaux);
3278 }
3279 }
3280 while (def.vd_next);
3281 }
3282
3283 /* Adjust version references. */
3284 if (elf_tdata (output_bfd)->verref)
3285 {
3286 asection *s;
3287 bfd_byte *p;
3288 bfd_size_type i;
3289 Elf_Internal_Verneed need;
3290 Elf_Internal_Vernaux needaux;
3291
3292 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3293 p = s->contents;
3294 do
3295 {
3296 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3297 &need);
3298 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3299 _bfd_elf_swap_verneed_out (output_bfd, &need,
3300 (Elf_External_Verneed *) p);
3301 p += sizeof (Elf_External_Verneed);
3302 for (i = 0; i < need.vn_cnt; ++i)
3303 {
3304 _bfd_elf_swap_vernaux_in (output_bfd,
3305 (Elf_External_Vernaux *) p, &needaux);
3306 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3307 needaux.vna_name);
3308 _bfd_elf_swap_vernaux_out (output_bfd,
3309 &needaux,
3310 (Elf_External_Vernaux *) p);
3311 p += sizeof (Elf_External_Vernaux);
3312 }
3313 }
3314 while (need.vn_next);
3315 }
3316
3317 return TRUE;
3318 }
3319 \f
3320 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3321 The default is to only match when the INPUT and OUTPUT are exactly
3322 the same target. */
3323
3324 bfd_boolean
3325 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3326 const bfd_target *output)
3327 {
3328 return input == output;
3329 }
3330
3331 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3332 This version is used when different targets for the same architecture
3333 are virtually identical. */
3334
3335 bfd_boolean
3336 _bfd_elf_relocs_compatible (const bfd_target *input,
3337 const bfd_target *output)
3338 {
3339 const struct elf_backend_data *obed, *ibed;
3340
3341 if (input == output)
3342 return TRUE;
3343
3344 ibed = xvec_get_elf_backend_data (input);
3345 obed = xvec_get_elf_backend_data (output);
3346
3347 if (ibed->arch != obed->arch)
3348 return FALSE;
3349
3350 /* If both backends are using this function, deem them compatible. */
3351 return ibed->relocs_compatible == obed->relocs_compatible;
3352 }
3353
3354 /* Add symbols from an ELF object file to the linker hash table. */
3355
3356 static bfd_boolean
3357 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3358 {
3359 Elf_Internal_Ehdr *ehdr;
3360 Elf_Internal_Shdr *hdr;
3361 bfd_size_type symcount;
3362 bfd_size_type extsymcount;
3363 bfd_size_type extsymoff;
3364 struct elf_link_hash_entry **sym_hash;
3365 bfd_boolean dynamic;
3366 Elf_External_Versym *extversym = NULL;
3367 Elf_External_Versym *ever;
3368 struct elf_link_hash_entry *weaks;
3369 struct elf_link_hash_entry **nondeflt_vers = NULL;
3370 bfd_size_type nondeflt_vers_cnt = 0;
3371 Elf_Internal_Sym *isymbuf = NULL;
3372 Elf_Internal_Sym *isym;
3373 Elf_Internal_Sym *isymend;
3374 const struct elf_backend_data *bed;
3375 bfd_boolean add_needed;
3376 struct elf_link_hash_table *htab;
3377 bfd_size_type amt;
3378 void *alloc_mark = NULL;
3379 struct bfd_hash_entry **old_table = NULL;
3380 unsigned int old_size = 0;
3381 unsigned int old_count = 0;
3382 void *old_tab = NULL;
3383 void *old_hash;
3384 void *old_ent;
3385 struct bfd_link_hash_entry *old_undefs = NULL;
3386 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3387 long old_dynsymcount = 0;
3388 size_t tabsize = 0;
3389 size_t hashsize = 0;
3390
3391 htab = elf_hash_table (info);
3392 bed = get_elf_backend_data (abfd);
3393
3394 if ((abfd->flags & DYNAMIC) == 0)
3395 dynamic = FALSE;
3396 else
3397 {
3398 dynamic = TRUE;
3399
3400 /* You can't use -r against a dynamic object. Also, there's no
3401 hope of using a dynamic object which does not exactly match
3402 the format of the output file. */
3403 if (info->relocatable
3404 || !is_elf_hash_table (htab)
3405 || info->output_bfd->xvec != abfd->xvec)
3406 {
3407 if (info->relocatable)
3408 bfd_set_error (bfd_error_invalid_operation);
3409 else
3410 bfd_set_error (bfd_error_wrong_format);
3411 goto error_return;
3412 }
3413 }
3414
3415 ehdr = elf_elfheader (abfd);
3416 if (info->warn_alternate_em
3417 && bed->elf_machine_code != ehdr->e_machine
3418 && ((bed->elf_machine_alt1 != 0
3419 && ehdr->e_machine == bed->elf_machine_alt1)
3420 || (bed->elf_machine_alt2 != 0
3421 && ehdr->e_machine == bed->elf_machine_alt2)))
3422 info->callbacks->einfo
3423 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3424 ehdr->e_machine, abfd, bed->elf_machine_code);
3425
3426 /* As a GNU extension, any input sections which are named
3427 .gnu.warning.SYMBOL are treated as warning symbols for the given
3428 symbol. This differs from .gnu.warning sections, which generate
3429 warnings when they are included in an output file. */
3430 if (info->executable)
3431 {
3432 asection *s;
3433
3434 for (s = abfd->sections; s != NULL; s = s->next)
3435 {
3436 const char *name;
3437
3438 name = bfd_get_section_name (abfd, s);
3439 if (CONST_STRNEQ (name, ".gnu.warning."))
3440 {
3441 char *msg;
3442 bfd_size_type sz;
3443
3444 name += sizeof ".gnu.warning." - 1;
3445
3446 /* If this is a shared object, then look up the symbol
3447 in the hash table. If it is there, and it is already
3448 been defined, then we will not be using the entry
3449 from this shared object, so we don't need to warn.
3450 FIXME: If we see the definition in a regular object
3451 later on, we will warn, but we shouldn't. The only
3452 fix is to keep track of what warnings we are supposed
3453 to emit, and then handle them all at the end of the
3454 link. */
3455 if (dynamic)
3456 {
3457 struct elf_link_hash_entry *h;
3458
3459 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3460
3461 /* FIXME: What about bfd_link_hash_common? */
3462 if (h != NULL
3463 && (h->root.type == bfd_link_hash_defined
3464 || h->root.type == bfd_link_hash_defweak))
3465 {
3466 /* We don't want to issue this warning. Clobber
3467 the section size so that the warning does not
3468 get copied into the output file. */
3469 s->size = 0;
3470 continue;
3471 }
3472 }
3473
3474 sz = s->size;
3475 msg = bfd_alloc (abfd, sz + 1);
3476 if (msg == NULL)
3477 goto error_return;
3478
3479 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3480 goto error_return;
3481
3482 msg[sz] = '\0';
3483
3484 if (! (_bfd_generic_link_add_one_symbol
3485 (info, abfd, name, BSF_WARNING, s, 0, msg,
3486 FALSE, bed->collect, NULL)))
3487 goto error_return;
3488
3489 if (! info->relocatable)
3490 {
3491 /* Clobber the section size so that the warning does
3492 not get copied into the output file. */
3493 s->size = 0;
3494
3495 /* Also set SEC_EXCLUDE, so that symbols defined in
3496 the warning section don't get copied to the output. */
3497 s->flags |= SEC_EXCLUDE;
3498 }
3499 }
3500 }
3501 }
3502
3503 add_needed = TRUE;
3504 if (! dynamic)
3505 {
3506 /* If we are creating a shared library, create all the dynamic
3507 sections immediately. We need to attach them to something,
3508 so we attach them to this BFD, provided it is the right
3509 format. FIXME: If there are no input BFD's of the same
3510 format as the output, we can't make a shared library. */
3511 if (info->shared
3512 && is_elf_hash_table (htab)
3513 && info->output_bfd->xvec == abfd->xvec
3514 && !htab->dynamic_sections_created)
3515 {
3516 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3517 goto error_return;
3518 }
3519 }
3520 else if (!is_elf_hash_table (htab))
3521 goto error_return;
3522 else
3523 {
3524 asection *s;
3525 const char *soname = NULL;
3526 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3527 int ret;
3528
3529 /* ld --just-symbols and dynamic objects don't mix very well.
3530 ld shouldn't allow it. */
3531 if ((s = abfd->sections) != NULL
3532 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3533 abort ();
3534
3535 /* If this dynamic lib was specified on the command line with
3536 --as-needed in effect, then we don't want to add a DT_NEEDED
3537 tag unless the lib is actually used. Similary for libs brought
3538 in by another lib's DT_NEEDED. When --no-add-needed is used
3539 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3540 any dynamic library in DT_NEEDED tags in the dynamic lib at
3541 all. */
3542 add_needed = (elf_dyn_lib_class (abfd)
3543 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3544 | DYN_NO_NEEDED)) == 0;
3545
3546 s = bfd_get_section_by_name (abfd, ".dynamic");
3547 if (s != NULL)
3548 {
3549 bfd_byte *dynbuf;
3550 bfd_byte *extdyn;
3551 unsigned int elfsec;
3552 unsigned long shlink;
3553
3554 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3555 {
3556 error_free_dyn:
3557 free (dynbuf);
3558 goto error_return;
3559 }
3560
3561 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3562 if (elfsec == SHN_BAD)
3563 goto error_free_dyn;
3564 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3565
3566 for (extdyn = dynbuf;
3567 extdyn < dynbuf + s->size;
3568 extdyn += bed->s->sizeof_dyn)
3569 {
3570 Elf_Internal_Dyn dyn;
3571
3572 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3573 if (dyn.d_tag == DT_SONAME)
3574 {
3575 unsigned int tagv = dyn.d_un.d_val;
3576 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3577 if (soname == NULL)
3578 goto error_free_dyn;
3579 }
3580 if (dyn.d_tag == DT_NEEDED)
3581 {
3582 struct bfd_link_needed_list *n, **pn;
3583 char *fnm, *anm;
3584 unsigned int tagv = dyn.d_un.d_val;
3585
3586 amt = sizeof (struct bfd_link_needed_list);
3587 n = bfd_alloc (abfd, amt);
3588 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3589 if (n == NULL || fnm == NULL)
3590 goto error_free_dyn;
3591 amt = strlen (fnm) + 1;
3592 anm = bfd_alloc (abfd, amt);
3593 if (anm == NULL)
3594 goto error_free_dyn;
3595 memcpy (anm, fnm, amt);
3596 n->name = anm;
3597 n->by = abfd;
3598 n->next = NULL;
3599 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3600 ;
3601 *pn = n;
3602 }
3603 if (dyn.d_tag == DT_RUNPATH)
3604 {
3605 struct bfd_link_needed_list *n, **pn;
3606 char *fnm, *anm;
3607 unsigned int tagv = dyn.d_un.d_val;
3608
3609 amt = sizeof (struct bfd_link_needed_list);
3610 n = bfd_alloc (abfd, amt);
3611 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3612 if (n == NULL || fnm == NULL)
3613 goto error_free_dyn;
3614 amt = strlen (fnm) + 1;
3615 anm = bfd_alloc (abfd, amt);
3616 if (anm == NULL)
3617 goto error_free_dyn;
3618 memcpy (anm, fnm, amt);
3619 n->name = anm;
3620 n->by = abfd;
3621 n->next = NULL;
3622 for (pn = & runpath;
3623 *pn != NULL;
3624 pn = &(*pn)->next)
3625 ;
3626 *pn = n;
3627 }
3628 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3629 if (!runpath && dyn.d_tag == DT_RPATH)
3630 {
3631 struct bfd_link_needed_list *n, **pn;
3632 char *fnm, *anm;
3633 unsigned int tagv = dyn.d_un.d_val;
3634
3635 amt = sizeof (struct bfd_link_needed_list);
3636 n = bfd_alloc (abfd, amt);
3637 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3638 if (n == NULL || fnm == NULL)
3639 goto error_free_dyn;
3640 amt = strlen (fnm) + 1;
3641 anm = bfd_alloc (abfd, amt);
3642 if (anm == NULL)
3643 goto error_free_dyn;
3644 memcpy (anm, fnm, amt);
3645 n->name = anm;
3646 n->by = abfd;
3647 n->next = NULL;
3648 for (pn = & rpath;
3649 *pn != NULL;
3650 pn = &(*pn)->next)
3651 ;
3652 *pn = n;
3653 }
3654 }
3655
3656 free (dynbuf);
3657 }
3658
3659 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3660 frees all more recently bfd_alloc'd blocks as well. */
3661 if (runpath)
3662 rpath = runpath;
3663
3664 if (rpath)
3665 {
3666 struct bfd_link_needed_list **pn;
3667 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3668 ;
3669 *pn = rpath;
3670 }
3671
3672 /* We do not want to include any of the sections in a dynamic
3673 object in the output file. We hack by simply clobbering the
3674 list of sections in the BFD. This could be handled more
3675 cleanly by, say, a new section flag; the existing
3676 SEC_NEVER_LOAD flag is not the one we want, because that one
3677 still implies that the section takes up space in the output
3678 file. */
3679 bfd_section_list_clear (abfd);
3680
3681 /* Find the name to use in a DT_NEEDED entry that refers to this
3682 object. If the object has a DT_SONAME entry, we use it.
3683 Otherwise, if the generic linker stuck something in
3684 elf_dt_name, we use that. Otherwise, we just use the file
3685 name. */
3686 if (soname == NULL || *soname == '\0')
3687 {
3688 soname = elf_dt_name (abfd);
3689 if (soname == NULL || *soname == '\0')
3690 soname = bfd_get_filename (abfd);
3691 }
3692
3693 /* Save the SONAME because sometimes the linker emulation code
3694 will need to know it. */
3695 elf_dt_name (abfd) = soname;
3696
3697 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3698 if (ret < 0)
3699 goto error_return;
3700
3701 /* If we have already included this dynamic object in the
3702 link, just ignore it. There is no reason to include a
3703 particular dynamic object more than once. */
3704 if (ret > 0)
3705 return TRUE;
3706 }
3707
3708 /* If this is a dynamic object, we always link against the .dynsym
3709 symbol table, not the .symtab symbol table. The dynamic linker
3710 will only see the .dynsym symbol table, so there is no reason to
3711 look at .symtab for a dynamic object. */
3712
3713 if (! dynamic || elf_dynsymtab (abfd) == 0)
3714 hdr = &elf_tdata (abfd)->symtab_hdr;
3715 else
3716 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3717
3718 symcount = hdr->sh_size / bed->s->sizeof_sym;
3719
3720 /* The sh_info field of the symtab header tells us where the
3721 external symbols start. We don't care about the local symbols at
3722 this point. */
3723 if (elf_bad_symtab (abfd))
3724 {
3725 extsymcount = symcount;
3726 extsymoff = 0;
3727 }
3728 else
3729 {
3730 extsymcount = symcount - hdr->sh_info;
3731 extsymoff = hdr->sh_info;
3732 }
3733
3734 sym_hash = NULL;
3735 if (extsymcount != 0)
3736 {
3737 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3738 NULL, NULL, NULL);
3739 if (isymbuf == NULL)
3740 goto error_return;
3741
3742 /* We store a pointer to the hash table entry for each external
3743 symbol. */
3744 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3745 sym_hash = bfd_alloc (abfd, amt);
3746 if (sym_hash == NULL)
3747 goto error_free_sym;
3748 elf_sym_hashes (abfd) = sym_hash;
3749 }
3750
3751 if (dynamic)
3752 {
3753 /* Read in any version definitions. */
3754 if (!_bfd_elf_slurp_version_tables (abfd,
3755 info->default_imported_symver))
3756 goto error_free_sym;
3757
3758 /* Read in the symbol versions, but don't bother to convert them
3759 to internal format. */
3760 if (elf_dynversym (abfd) != 0)
3761 {
3762 Elf_Internal_Shdr *versymhdr;
3763
3764 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3765 extversym = bfd_malloc (versymhdr->sh_size);
3766 if (extversym == NULL)
3767 goto error_free_sym;
3768 amt = versymhdr->sh_size;
3769 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3770 || bfd_bread (extversym, amt, abfd) != amt)
3771 goto error_free_vers;
3772 }
3773 }
3774
3775 /* If we are loading an as-needed shared lib, save the symbol table
3776 state before we start adding symbols. If the lib turns out
3777 to be unneeded, restore the state. */
3778 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3779 {
3780 unsigned int i;
3781 size_t entsize;
3782
3783 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3784 {
3785 struct bfd_hash_entry *p;
3786 struct elf_link_hash_entry *h;
3787
3788 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3789 {
3790 h = (struct elf_link_hash_entry *) p;
3791 entsize += htab->root.table.entsize;
3792 if (h->root.type == bfd_link_hash_warning)
3793 entsize += htab->root.table.entsize;
3794 }
3795 }
3796
3797 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3798 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3799 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3800 if (old_tab == NULL)
3801 goto error_free_vers;
3802
3803 /* Remember the current objalloc pointer, so that all mem for
3804 symbols added can later be reclaimed. */
3805 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3806 if (alloc_mark == NULL)
3807 goto error_free_vers;
3808
3809 /* Make a special call to the linker "notice" function to
3810 tell it that we are about to handle an as-needed lib. */
3811 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3812 notice_as_needed))
3813 goto error_free_vers;
3814
3815 /* Clone the symbol table and sym hashes. Remember some
3816 pointers into the symbol table, and dynamic symbol count. */
3817 old_hash = (char *) old_tab + tabsize;
3818 old_ent = (char *) old_hash + hashsize;
3819 memcpy (old_tab, htab->root.table.table, tabsize);
3820 memcpy (old_hash, sym_hash, hashsize);
3821 old_undefs = htab->root.undefs;
3822 old_undefs_tail = htab->root.undefs_tail;
3823 old_table = htab->root.table.table;
3824 old_size = htab->root.table.size;
3825 old_count = htab->root.table.count;
3826 old_dynsymcount = htab->dynsymcount;
3827
3828 for (i = 0; i < htab->root.table.size; i++)
3829 {
3830 struct bfd_hash_entry *p;
3831 struct elf_link_hash_entry *h;
3832
3833 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3834 {
3835 memcpy (old_ent, p, htab->root.table.entsize);
3836 old_ent = (char *) old_ent + htab->root.table.entsize;
3837 h = (struct elf_link_hash_entry *) p;
3838 if (h->root.type == bfd_link_hash_warning)
3839 {
3840 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3841 old_ent = (char *) old_ent + htab->root.table.entsize;
3842 }
3843 }
3844 }
3845 }
3846
3847 weaks = NULL;
3848 ever = extversym != NULL ? extversym + extsymoff : NULL;
3849 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3850 isym < isymend;
3851 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3852 {
3853 int bind;
3854 bfd_vma value;
3855 asection *sec, *new_sec;
3856 flagword flags;
3857 const char *name;
3858 struct elf_link_hash_entry *h;
3859 bfd_boolean definition;
3860 bfd_boolean size_change_ok;
3861 bfd_boolean type_change_ok;
3862 bfd_boolean new_weakdef;
3863 bfd_boolean override;
3864 bfd_boolean common;
3865 unsigned int old_alignment;
3866 bfd *old_bfd;
3867
3868 override = FALSE;
3869
3870 flags = BSF_NO_FLAGS;
3871 sec = NULL;
3872 value = isym->st_value;
3873 *sym_hash = NULL;
3874 common = bed->common_definition (isym);
3875
3876 bind = ELF_ST_BIND (isym->st_info);
3877 switch (bind)
3878 {
3879 case STB_LOCAL:
3880 /* This should be impossible, since ELF requires that all
3881 global symbols follow all local symbols, and that sh_info
3882 point to the first global symbol. Unfortunately, Irix 5
3883 screws this up. */
3884 continue;
3885
3886 case STB_GLOBAL:
3887 if (isym->st_shndx != SHN_UNDEF && !common)
3888 flags = BSF_GLOBAL;
3889 break;
3890
3891 case STB_WEAK:
3892 flags = BSF_WEAK;
3893 break;
3894
3895 case STB_GNU_UNIQUE:
3896 flags = BSF_GNU_UNIQUE;
3897 break;
3898
3899 default:
3900 /* Leave it up to the processor backend. */
3901 break;
3902 }
3903
3904 if (isym->st_shndx == SHN_UNDEF)
3905 sec = bfd_und_section_ptr;
3906 else if (isym->st_shndx == SHN_ABS)
3907 sec = bfd_abs_section_ptr;
3908 else if (isym->st_shndx == SHN_COMMON)
3909 {
3910 sec = bfd_com_section_ptr;
3911 /* What ELF calls the size we call the value. What ELF
3912 calls the value we call the alignment. */
3913 value = isym->st_size;
3914 }
3915 else
3916 {
3917 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3918 if (sec == NULL)
3919 sec = bfd_abs_section_ptr;
3920 else if (sec->kept_section)
3921 {
3922 /* Symbols from discarded section are undefined. We keep
3923 its visibility. */
3924 sec = bfd_und_section_ptr;
3925 isym->st_shndx = SHN_UNDEF;
3926 }
3927 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3928 value -= sec->vma;
3929 }
3930
3931 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3932 isym->st_name);
3933 if (name == NULL)
3934 goto error_free_vers;
3935
3936 if (isym->st_shndx == SHN_COMMON
3937 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3938 && !info->relocatable)
3939 {
3940 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3941
3942 if (tcomm == NULL)
3943 {
3944 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3945 (SEC_ALLOC
3946 | SEC_IS_COMMON
3947 | SEC_LINKER_CREATED
3948 | SEC_THREAD_LOCAL));
3949 if (tcomm == NULL)
3950 goto error_free_vers;
3951 }
3952 sec = tcomm;
3953 }
3954 else if (bed->elf_add_symbol_hook)
3955 {
3956 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3957 &sec, &value))
3958 goto error_free_vers;
3959
3960 /* The hook function sets the name to NULL if this symbol
3961 should be skipped for some reason. */
3962 if (name == NULL)
3963 continue;
3964 }
3965
3966 /* Sanity check that all possibilities were handled. */
3967 if (sec == NULL)
3968 {
3969 bfd_set_error (bfd_error_bad_value);
3970 goto error_free_vers;
3971 }
3972
3973 if (bfd_is_und_section (sec)
3974 || bfd_is_com_section (sec))
3975 definition = FALSE;
3976 else
3977 definition = TRUE;
3978
3979 size_change_ok = FALSE;
3980 type_change_ok = bed->type_change_ok;
3981 old_alignment = 0;
3982 old_bfd = NULL;
3983 new_sec = sec;
3984
3985 if (is_elf_hash_table (htab))
3986 {
3987 Elf_Internal_Versym iver;
3988 unsigned int vernum = 0;
3989 bfd_boolean skip;
3990
3991 if (ever == NULL)
3992 {
3993 if (info->default_imported_symver)
3994 /* Use the default symbol version created earlier. */
3995 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3996 else
3997 iver.vs_vers = 0;
3998 }
3999 else
4000 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4001
4002 vernum = iver.vs_vers & VERSYM_VERSION;
4003
4004 /* If this is a hidden symbol, or if it is not version
4005 1, we append the version name to the symbol name.
4006 However, we do not modify a non-hidden absolute symbol
4007 if it is not a function, because it might be the version
4008 symbol itself. FIXME: What if it isn't? */
4009 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4010 || (vernum > 1
4011 && (!bfd_is_abs_section (sec)
4012 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4013 {
4014 const char *verstr;
4015 size_t namelen, verlen, newlen;
4016 char *newname, *p;
4017
4018 if (isym->st_shndx != SHN_UNDEF)
4019 {
4020 if (vernum > elf_tdata (abfd)->cverdefs)
4021 verstr = NULL;
4022 else if (vernum > 1)
4023 verstr =
4024 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4025 else
4026 verstr = "";
4027
4028 if (verstr == NULL)
4029 {
4030 (*_bfd_error_handler)
4031 (_("%B: %s: invalid version %u (max %d)"),
4032 abfd, name, vernum,
4033 elf_tdata (abfd)->cverdefs);
4034 bfd_set_error (bfd_error_bad_value);
4035 goto error_free_vers;
4036 }
4037 }
4038 else
4039 {
4040 /* We cannot simply test for the number of
4041 entries in the VERNEED section since the
4042 numbers for the needed versions do not start
4043 at 0. */
4044 Elf_Internal_Verneed *t;
4045
4046 verstr = NULL;
4047 for (t = elf_tdata (abfd)->verref;
4048 t != NULL;
4049 t = t->vn_nextref)
4050 {
4051 Elf_Internal_Vernaux *a;
4052
4053 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4054 {
4055 if (a->vna_other == vernum)
4056 {
4057 verstr = a->vna_nodename;
4058 break;
4059 }
4060 }
4061 if (a != NULL)
4062 break;
4063 }
4064 if (verstr == NULL)
4065 {
4066 (*_bfd_error_handler)
4067 (_("%B: %s: invalid needed version %d"),
4068 abfd, name, vernum);
4069 bfd_set_error (bfd_error_bad_value);
4070 goto error_free_vers;
4071 }
4072 }
4073
4074 namelen = strlen (name);
4075 verlen = strlen (verstr);
4076 newlen = namelen + verlen + 2;
4077 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4078 && isym->st_shndx != SHN_UNDEF)
4079 ++newlen;
4080
4081 newname = bfd_hash_allocate (&htab->root.table, newlen);
4082 if (newname == NULL)
4083 goto error_free_vers;
4084 memcpy (newname, name, namelen);
4085 p = newname + namelen;
4086 *p++ = ELF_VER_CHR;
4087 /* If this is a defined non-hidden version symbol,
4088 we add another @ to the name. This indicates the
4089 default version of the symbol. */
4090 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4091 && isym->st_shndx != SHN_UNDEF)
4092 *p++ = ELF_VER_CHR;
4093 memcpy (p, verstr, verlen + 1);
4094
4095 name = newname;
4096 }
4097
4098 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4099 &value, &old_alignment,
4100 sym_hash, &skip, &override,
4101 &type_change_ok, &size_change_ok))
4102 goto error_free_vers;
4103
4104 if (skip)
4105 continue;
4106
4107 if (override)
4108 definition = FALSE;
4109
4110 h = *sym_hash;
4111 while (h->root.type == bfd_link_hash_indirect
4112 || h->root.type == bfd_link_hash_warning)
4113 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4114
4115 /* Remember the old alignment if this is a common symbol, so
4116 that we don't reduce the alignment later on. We can't
4117 check later, because _bfd_generic_link_add_one_symbol
4118 will set a default for the alignment which we want to
4119 override. We also remember the old bfd where the existing
4120 definition comes from. */
4121 switch (h->root.type)
4122 {
4123 default:
4124 break;
4125
4126 case bfd_link_hash_defined:
4127 case bfd_link_hash_defweak:
4128 old_bfd = h->root.u.def.section->owner;
4129 break;
4130
4131 case bfd_link_hash_common:
4132 old_bfd = h->root.u.c.p->section->owner;
4133 old_alignment = h->root.u.c.p->alignment_power;
4134 break;
4135 }
4136
4137 if (elf_tdata (abfd)->verdef != NULL
4138 && ! override
4139 && vernum > 1
4140 && definition)
4141 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4142 }
4143
4144 if (! (_bfd_generic_link_add_one_symbol
4145 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4146 (struct bfd_link_hash_entry **) sym_hash)))
4147 goto error_free_vers;
4148
4149 h = *sym_hash;
4150 while (h->root.type == bfd_link_hash_indirect
4151 || h->root.type == bfd_link_hash_warning)
4152 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4153
4154 *sym_hash = h;
4155 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4156
4157 new_weakdef = FALSE;
4158 if (dynamic
4159 && definition
4160 && (flags & BSF_WEAK) != 0
4161 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4162 && is_elf_hash_table (htab)
4163 && h->u.weakdef == NULL)
4164 {
4165 /* Keep a list of all weak defined non function symbols from
4166 a dynamic object, using the weakdef field. Later in this
4167 function we will set the weakdef field to the correct
4168 value. We only put non-function symbols from dynamic
4169 objects on this list, because that happens to be the only
4170 time we need to know the normal symbol corresponding to a
4171 weak symbol, and the information is time consuming to
4172 figure out. If the weakdef field is not already NULL,
4173 then this symbol was already defined by some previous
4174 dynamic object, and we will be using that previous
4175 definition anyhow. */
4176
4177 h->u.weakdef = weaks;
4178 weaks = h;
4179 new_weakdef = TRUE;
4180 }
4181
4182 /* Set the alignment of a common symbol. */
4183 if ((common || bfd_is_com_section (sec))
4184 && h->root.type == bfd_link_hash_common)
4185 {
4186 unsigned int align;
4187
4188 if (common)
4189 align = bfd_log2 (isym->st_value);
4190 else
4191 {
4192 /* The new symbol is a common symbol in a shared object.
4193 We need to get the alignment from the section. */
4194 align = new_sec->alignment_power;
4195 }
4196 if (align > old_alignment
4197 /* Permit an alignment power of zero if an alignment of one
4198 is specified and no other alignments have been specified. */
4199 || (isym->st_value == 1 && old_alignment == 0))
4200 h->root.u.c.p->alignment_power = align;
4201 else
4202 h->root.u.c.p->alignment_power = old_alignment;
4203 }
4204
4205 if (is_elf_hash_table (htab))
4206 {
4207 bfd_boolean dynsym;
4208
4209 /* Check the alignment when a common symbol is involved. This
4210 can change when a common symbol is overridden by a normal
4211 definition or a common symbol is ignored due to the old
4212 normal definition. We need to make sure the maximum
4213 alignment is maintained. */
4214 if ((old_alignment || common)
4215 && h->root.type != bfd_link_hash_common)
4216 {
4217 unsigned int common_align;
4218 unsigned int normal_align;
4219 unsigned int symbol_align;
4220 bfd *normal_bfd;
4221 bfd *common_bfd;
4222
4223 symbol_align = ffs (h->root.u.def.value) - 1;
4224 if (h->root.u.def.section->owner != NULL
4225 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4226 {
4227 normal_align = h->root.u.def.section->alignment_power;
4228 if (normal_align > symbol_align)
4229 normal_align = symbol_align;
4230 }
4231 else
4232 normal_align = symbol_align;
4233
4234 if (old_alignment)
4235 {
4236 common_align = old_alignment;
4237 common_bfd = old_bfd;
4238 normal_bfd = abfd;
4239 }
4240 else
4241 {
4242 common_align = bfd_log2 (isym->st_value);
4243 common_bfd = abfd;
4244 normal_bfd = old_bfd;
4245 }
4246
4247 if (normal_align < common_align)
4248 {
4249 /* PR binutils/2735 */
4250 if (normal_bfd == NULL)
4251 (*_bfd_error_handler)
4252 (_("Warning: alignment %u of common symbol `%s' in %B"
4253 " is greater than the alignment (%u) of its section %A"),
4254 common_bfd, h->root.u.def.section,
4255 1 << common_align, name, 1 << normal_align);
4256 else
4257 (*_bfd_error_handler)
4258 (_("Warning: alignment %u of symbol `%s' in %B"
4259 " is smaller than %u in %B"),
4260 normal_bfd, common_bfd,
4261 1 << normal_align, name, 1 << common_align);
4262 }
4263 }
4264
4265 /* Remember the symbol size if it isn't undefined. */
4266 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4267 && (definition || h->size == 0))
4268 {
4269 if (h->size != 0
4270 && h->size != isym->st_size
4271 && ! size_change_ok)
4272 (*_bfd_error_handler)
4273 (_("Warning: size of symbol `%s' changed"
4274 " from %lu in %B to %lu in %B"),
4275 old_bfd, abfd,
4276 name, (unsigned long) h->size,
4277 (unsigned long) isym->st_size);
4278
4279 h->size = isym->st_size;
4280 }
4281
4282 /* If this is a common symbol, then we always want H->SIZE
4283 to be the size of the common symbol. The code just above
4284 won't fix the size if a common symbol becomes larger. We
4285 don't warn about a size change here, because that is
4286 covered by --warn-common. Allow changed between different
4287 function types. */
4288 if (h->root.type == bfd_link_hash_common)
4289 h->size = h->root.u.c.size;
4290
4291 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4292 && (definition || h->type == STT_NOTYPE))
4293 {
4294 unsigned int type = ELF_ST_TYPE (isym->st_info);
4295
4296 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4297 symbol. */
4298 if (type == STT_GNU_IFUNC
4299 && (abfd->flags & DYNAMIC) != 0)
4300 type = STT_FUNC;
4301
4302 if (h->type != type)
4303 {
4304 if (h->type != STT_NOTYPE && ! type_change_ok)
4305 (*_bfd_error_handler)
4306 (_("Warning: type of symbol `%s' changed"
4307 " from %d to %d in %B"),
4308 abfd, name, h->type, type);
4309
4310 h->type = type;
4311 }
4312 }
4313
4314 /* Merge st_other field. */
4315 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4316
4317 /* Set a flag in the hash table entry indicating the type of
4318 reference or definition we just found. Keep a count of
4319 the number of dynamic symbols we find. A dynamic symbol
4320 is one which is referenced or defined by both a regular
4321 object and a shared object. */
4322 dynsym = FALSE;
4323 if (! dynamic)
4324 {
4325 if (! definition)
4326 {
4327 h->ref_regular = 1;
4328 if (bind != STB_WEAK)
4329 h->ref_regular_nonweak = 1;
4330 }
4331 else
4332 {
4333 h->def_regular = 1;
4334 if (h->def_dynamic)
4335 {
4336 h->def_dynamic = 0;
4337 h->ref_dynamic = 1;
4338 h->dynamic_def = 1;
4339 }
4340 }
4341 if (! info->executable
4342 || h->def_dynamic
4343 || h->ref_dynamic)
4344 dynsym = TRUE;
4345 }
4346 else
4347 {
4348 if (! definition)
4349 h->ref_dynamic = 1;
4350 else
4351 h->def_dynamic = 1;
4352 if (h->def_regular
4353 || h->ref_regular
4354 || (h->u.weakdef != NULL
4355 && ! new_weakdef
4356 && h->u.weakdef->dynindx != -1))
4357 dynsym = TRUE;
4358 }
4359
4360 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4361 {
4362 /* We don't want to make debug symbol dynamic. */
4363 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4364 dynsym = FALSE;
4365 }
4366
4367 /* Check to see if we need to add an indirect symbol for
4368 the default name. */
4369 if (definition || h->root.type == bfd_link_hash_common)
4370 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4371 &sec, &value, &dynsym,
4372 override))
4373 goto error_free_vers;
4374
4375 if (definition && !dynamic)
4376 {
4377 char *p = strchr (name, ELF_VER_CHR);
4378 if (p != NULL && p[1] != ELF_VER_CHR)
4379 {
4380 /* Queue non-default versions so that .symver x, x@FOO
4381 aliases can be checked. */
4382 if (!nondeflt_vers)
4383 {
4384 amt = ((isymend - isym + 1)
4385 * sizeof (struct elf_link_hash_entry *));
4386 nondeflt_vers = bfd_malloc (amt);
4387 if (!nondeflt_vers)
4388 goto error_free_vers;
4389 }
4390 nondeflt_vers[nondeflt_vers_cnt++] = h;
4391 }
4392 }
4393
4394 if (dynsym && h->dynindx == -1)
4395 {
4396 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4397 goto error_free_vers;
4398 if (h->u.weakdef != NULL
4399 && ! new_weakdef
4400 && h->u.weakdef->dynindx == -1)
4401 {
4402 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4403 goto error_free_vers;
4404 }
4405 }
4406 else if (dynsym && h->dynindx != -1)
4407 /* If the symbol already has a dynamic index, but
4408 visibility says it should not be visible, turn it into
4409 a local symbol. */
4410 switch (ELF_ST_VISIBILITY (h->other))
4411 {
4412 case STV_INTERNAL:
4413 case STV_HIDDEN:
4414 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4415 dynsym = FALSE;
4416 break;
4417 }
4418
4419 if (!add_needed
4420 && definition
4421 && ((dynsym
4422 && h->ref_regular)
4423 || (h->ref_dynamic
4424 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4425 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4426 {
4427 int ret;
4428 const char *soname = elf_dt_name (abfd);
4429
4430 /* A symbol from a library loaded via DT_NEEDED of some
4431 other library is referenced by a regular object.
4432 Add a DT_NEEDED entry for it. Issue an error if
4433 --no-add-needed is used. */
4434 if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4435 {
4436 (*_bfd_error_handler)
4437 (_("%s: invalid DSO for symbol `%s' definition"),
4438 abfd, name);
4439 bfd_set_error (bfd_error_bad_value);
4440 goto error_free_vers;
4441 }
4442
4443 elf_dyn_lib_class (abfd) &= ~DYN_AS_NEEDED;
4444
4445 add_needed = TRUE;
4446 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4447 if (ret < 0)
4448 goto error_free_vers;
4449
4450 BFD_ASSERT (ret == 0);
4451 }
4452 }
4453 }
4454
4455 if (extversym != NULL)
4456 {
4457 free (extversym);
4458 extversym = NULL;
4459 }
4460
4461 if (isymbuf != NULL)
4462 {
4463 free (isymbuf);
4464 isymbuf = NULL;
4465 }
4466
4467 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4468 {
4469 unsigned int i;
4470
4471 /* Restore the symbol table. */
4472 if (bed->as_needed_cleanup)
4473 (*bed->as_needed_cleanup) (abfd, info);
4474 old_hash = (char *) old_tab + tabsize;
4475 old_ent = (char *) old_hash + hashsize;
4476 sym_hash = elf_sym_hashes (abfd);
4477 htab->root.table.table = old_table;
4478 htab->root.table.size = old_size;
4479 htab->root.table.count = old_count;
4480 memcpy (htab->root.table.table, old_tab, tabsize);
4481 memcpy (sym_hash, old_hash, hashsize);
4482 htab->root.undefs = old_undefs;
4483 htab->root.undefs_tail = old_undefs_tail;
4484 for (i = 0; i < htab->root.table.size; i++)
4485 {
4486 struct bfd_hash_entry *p;
4487 struct elf_link_hash_entry *h;
4488
4489 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4490 {
4491 h = (struct elf_link_hash_entry *) p;
4492 if (h->root.type == bfd_link_hash_warning)
4493 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4494 if (h->dynindx >= old_dynsymcount)
4495 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4496
4497 memcpy (p, old_ent, htab->root.table.entsize);
4498 old_ent = (char *) old_ent + htab->root.table.entsize;
4499 h = (struct elf_link_hash_entry *) p;
4500 if (h->root.type == bfd_link_hash_warning)
4501 {
4502 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4503 old_ent = (char *) old_ent + htab->root.table.entsize;
4504 }
4505 }
4506 }
4507
4508 /* Make a special call to the linker "notice" function to
4509 tell it that symbols added for crefs may need to be removed. */
4510 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4511 notice_not_needed))
4512 goto error_free_vers;
4513
4514 free (old_tab);
4515 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4516 alloc_mark);
4517 if (nondeflt_vers != NULL)
4518 free (nondeflt_vers);
4519 return TRUE;
4520 }
4521
4522 if (old_tab != NULL)
4523 {
4524 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4525 notice_needed))
4526 goto error_free_vers;
4527 free (old_tab);
4528 old_tab = NULL;
4529 }
4530
4531 /* Now that all the symbols from this input file are created, handle
4532 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4533 if (nondeflt_vers != NULL)
4534 {
4535 bfd_size_type cnt, symidx;
4536
4537 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4538 {
4539 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4540 char *shortname, *p;
4541
4542 p = strchr (h->root.root.string, ELF_VER_CHR);
4543 if (p == NULL
4544 || (h->root.type != bfd_link_hash_defined
4545 && h->root.type != bfd_link_hash_defweak))
4546 continue;
4547
4548 amt = p - h->root.root.string;
4549 shortname = bfd_malloc (amt + 1);
4550 if (!shortname)
4551 goto error_free_vers;
4552 memcpy (shortname, h->root.root.string, amt);
4553 shortname[amt] = '\0';
4554
4555 hi = (struct elf_link_hash_entry *)
4556 bfd_link_hash_lookup (&htab->root, shortname,
4557 FALSE, FALSE, FALSE);
4558 if (hi != NULL
4559 && hi->root.type == h->root.type
4560 && hi->root.u.def.value == h->root.u.def.value
4561 && hi->root.u.def.section == h->root.u.def.section)
4562 {
4563 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4564 hi->root.type = bfd_link_hash_indirect;
4565 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4566 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4567 sym_hash = elf_sym_hashes (abfd);
4568 if (sym_hash)
4569 for (symidx = 0; symidx < extsymcount; ++symidx)
4570 if (sym_hash[symidx] == hi)
4571 {
4572 sym_hash[symidx] = h;
4573 break;
4574 }
4575 }
4576 free (shortname);
4577 }
4578 free (nondeflt_vers);
4579 nondeflt_vers = NULL;
4580 }
4581
4582 /* Now set the weakdefs field correctly for all the weak defined
4583 symbols we found. The only way to do this is to search all the
4584 symbols. Since we only need the information for non functions in
4585 dynamic objects, that's the only time we actually put anything on
4586 the list WEAKS. We need this information so that if a regular
4587 object refers to a symbol defined weakly in a dynamic object, the
4588 real symbol in the dynamic object is also put in the dynamic
4589 symbols; we also must arrange for both symbols to point to the
4590 same memory location. We could handle the general case of symbol
4591 aliasing, but a general symbol alias can only be generated in
4592 assembler code, handling it correctly would be very time
4593 consuming, and other ELF linkers don't handle general aliasing
4594 either. */
4595 if (weaks != NULL)
4596 {
4597 struct elf_link_hash_entry **hpp;
4598 struct elf_link_hash_entry **hppend;
4599 struct elf_link_hash_entry **sorted_sym_hash;
4600 struct elf_link_hash_entry *h;
4601 size_t sym_count;
4602
4603 /* Since we have to search the whole symbol list for each weak
4604 defined symbol, search time for N weak defined symbols will be
4605 O(N^2). Binary search will cut it down to O(NlogN). */
4606 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4607 sorted_sym_hash = bfd_malloc (amt);
4608 if (sorted_sym_hash == NULL)
4609 goto error_return;
4610 sym_hash = sorted_sym_hash;
4611 hpp = elf_sym_hashes (abfd);
4612 hppend = hpp + extsymcount;
4613 sym_count = 0;
4614 for (; hpp < hppend; hpp++)
4615 {
4616 h = *hpp;
4617 if (h != NULL
4618 && h->root.type == bfd_link_hash_defined
4619 && !bed->is_function_type (h->type))
4620 {
4621 *sym_hash = h;
4622 sym_hash++;
4623 sym_count++;
4624 }
4625 }
4626
4627 qsort (sorted_sym_hash, sym_count,
4628 sizeof (struct elf_link_hash_entry *),
4629 elf_sort_symbol);
4630
4631 while (weaks != NULL)
4632 {
4633 struct elf_link_hash_entry *hlook;
4634 asection *slook;
4635 bfd_vma vlook;
4636 long ilook;
4637 size_t i, j, idx;
4638
4639 hlook = weaks;
4640 weaks = hlook->u.weakdef;
4641 hlook->u.weakdef = NULL;
4642
4643 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4644 || hlook->root.type == bfd_link_hash_defweak
4645 || hlook->root.type == bfd_link_hash_common
4646 || hlook->root.type == bfd_link_hash_indirect);
4647 slook = hlook->root.u.def.section;
4648 vlook = hlook->root.u.def.value;
4649
4650 ilook = -1;
4651 i = 0;
4652 j = sym_count;
4653 while (i < j)
4654 {
4655 bfd_signed_vma vdiff;
4656 idx = (i + j) / 2;
4657 h = sorted_sym_hash [idx];
4658 vdiff = vlook - h->root.u.def.value;
4659 if (vdiff < 0)
4660 j = idx;
4661 else if (vdiff > 0)
4662 i = idx + 1;
4663 else
4664 {
4665 long sdiff = slook->id - h->root.u.def.section->id;
4666 if (sdiff < 0)
4667 j = idx;
4668 else if (sdiff > 0)
4669 i = idx + 1;
4670 else
4671 {
4672 ilook = idx;
4673 break;
4674 }
4675 }
4676 }
4677
4678 /* We didn't find a value/section match. */
4679 if (ilook == -1)
4680 continue;
4681
4682 for (i = ilook; i < sym_count; i++)
4683 {
4684 h = sorted_sym_hash [i];
4685
4686 /* Stop if value or section doesn't match. */
4687 if (h->root.u.def.value != vlook
4688 || h->root.u.def.section != slook)
4689 break;
4690 else if (h != hlook)
4691 {
4692 hlook->u.weakdef = h;
4693
4694 /* If the weak definition is in the list of dynamic
4695 symbols, make sure the real definition is put
4696 there as well. */
4697 if (hlook->dynindx != -1 && h->dynindx == -1)
4698 {
4699 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4700 {
4701 err_free_sym_hash:
4702 free (sorted_sym_hash);
4703 goto error_return;
4704 }
4705 }
4706
4707 /* If the real definition is in the list of dynamic
4708 symbols, make sure the weak definition is put
4709 there as well. If we don't do this, then the
4710 dynamic loader might not merge the entries for the
4711 real definition and the weak definition. */
4712 if (h->dynindx != -1 && hlook->dynindx == -1)
4713 {
4714 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4715 goto err_free_sym_hash;
4716 }
4717 break;
4718 }
4719 }
4720 }
4721
4722 free (sorted_sym_hash);
4723 }
4724
4725 if (bed->check_directives
4726 && !(*bed->check_directives) (abfd, info))
4727 return FALSE;
4728
4729 /* If this object is the same format as the output object, and it is
4730 not a shared library, then let the backend look through the
4731 relocs.
4732
4733 This is required to build global offset table entries and to
4734 arrange for dynamic relocs. It is not required for the
4735 particular common case of linking non PIC code, even when linking
4736 against shared libraries, but unfortunately there is no way of
4737 knowing whether an object file has been compiled PIC or not.
4738 Looking through the relocs is not particularly time consuming.
4739 The problem is that we must either (1) keep the relocs in memory,
4740 which causes the linker to require additional runtime memory or
4741 (2) read the relocs twice from the input file, which wastes time.
4742 This would be a good case for using mmap.
4743
4744 I have no idea how to handle linking PIC code into a file of a
4745 different format. It probably can't be done. */
4746 if (! dynamic
4747 && is_elf_hash_table (htab)
4748 && bed->check_relocs != NULL
4749 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4750 {
4751 asection *o;
4752
4753 for (o = abfd->sections; o != NULL; o = o->next)
4754 {
4755 Elf_Internal_Rela *internal_relocs;
4756 bfd_boolean ok;
4757
4758 if ((o->flags & SEC_RELOC) == 0
4759 || o->reloc_count == 0
4760 || ((info->strip == strip_all || info->strip == strip_debugger)
4761 && (o->flags & SEC_DEBUGGING) != 0)
4762 || bfd_is_abs_section (o->output_section))
4763 continue;
4764
4765 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4766 info->keep_memory);
4767 if (internal_relocs == NULL)
4768 goto error_return;
4769
4770 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4771
4772 if (elf_section_data (o)->relocs != internal_relocs)
4773 free (internal_relocs);
4774
4775 if (! ok)
4776 goto error_return;
4777 }
4778 }
4779
4780 /* If this is a non-traditional link, try to optimize the handling
4781 of the .stab/.stabstr sections. */
4782 if (! dynamic
4783 && ! info->traditional_format
4784 && is_elf_hash_table (htab)
4785 && (info->strip != strip_all && info->strip != strip_debugger))
4786 {
4787 asection *stabstr;
4788
4789 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4790 if (stabstr != NULL)
4791 {
4792 bfd_size_type string_offset = 0;
4793 asection *stab;
4794
4795 for (stab = abfd->sections; stab; stab = stab->next)
4796 if (CONST_STRNEQ (stab->name, ".stab")
4797 && (!stab->name[5] ||
4798 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4799 && (stab->flags & SEC_MERGE) == 0
4800 && !bfd_is_abs_section (stab->output_section))
4801 {
4802 struct bfd_elf_section_data *secdata;
4803
4804 secdata = elf_section_data (stab);
4805 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4806 stabstr, &secdata->sec_info,
4807 &string_offset))
4808 goto error_return;
4809 if (secdata->sec_info)
4810 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4811 }
4812 }
4813 }
4814
4815 if (is_elf_hash_table (htab) && add_needed)
4816 {
4817 /* Add this bfd to the loaded list. */
4818 struct elf_link_loaded_list *n;
4819
4820 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4821 if (n == NULL)
4822 goto error_return;
4823 n->abfd = abfd;
4824 n->next = htab->loaded;
4825 htab->loaded = n;
4826 }
4827
4828 return TRUE;
4829
4830 error_free_vers:
4831 if (old_tab != NULL)
4832 free (old_tab);
4833 if (nondeflt_vers != NULL)
4834 free (nondeflt_vers);
4835 if (extversym != NULL)
4836 free (extversym);
4837 error_free_sym:
4838 if (isymbuf != NULL)
4839 free (isymbuf);
4840 error_return:
4841 return FALSE;
4842 }
4843
4844 /* Return the linker hash table entry of a symbol that might be
4845 satisfied by an archive symbol. Return -1 on error. */
4846
4847 struct elf_link_hash_entry *
4848 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4849 struct bfd_link_info *info,
4850 const char *name)
4851 {
4852 struct elf_link_hash_entry *h;
4853 char *p, *copy;
4854 size_t len, first;
4855
4856 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4857 if (h != NULL)
4858 return h;
4859
4860 /* If this is a default version (the name contains @@), look up the
4861 symbol again with only one `@' as well as without the version.
4862 The effect is that references to the symbol with and without the
4863 version will be matched by the default symbol in the archive. */
4864
4865 p = strchr (name, ELF_VER_CHR);
4866 if (p == NULL || p[1] != ELF_VER_CHR)
4867 return h;
4868
4869 /* First check with only one `@'. */
4870 len = strlen (name);
4871 copy = bfd_alloc (abfd, len);
4872 if (copy == NULL)
4873 return (struct elf_link_hash_entry *) 0 - 1;
4874
4875 first = p - name + 1;
4876 memcpy (copy, name, first);
4877 memcpy (copy + first, name + first + 1, len - first);
4878
4879 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4880 if (h == NULL)
4881 {
4882 /* We also need to check references to the symbol without the
4883 version. */
4884 copy[first - 1] = '\0';
4885 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4886 FALSE, FALSE, FALSE);
4887 }
4888
4889 bfd_release (abfd, copy);
4890 return h;
4891 }
4892
4893 /* Add symbols from an ELF archive file to the linker hash table. We
4894 don't use _bfd_generic_link_add_archive_symbols because of a
4895 problem which arises on UnixWare. The UnixWare libc.so is an
4896 archive which includes an entry libc.so.1 which defines a bunch of
4897 symbols. The libc.so archive also includes a number of other
4898 object files, which also define symbols, some of which are the same
4899 as those defined in libc.so.1. Correct linking requires that we
4900 consider each object file in turn, and include it if it defines any
4901 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4902 this; it looks through the list of undefined symbols, and includes
4903 any object file which defines them. When this algorithm is used on
4904 UnixWare, it winds up pulling in libc.so.1 early and defining a
4905 bunch of symbols. This means that some of the other objects in the
4906 archive are not included in the link, which is incorrect since they
4907 precede libc.so.1 in the archive.
4908
4909 Fortunately, ELF archive handling is simpler than that done by
4910 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4911 oddities. In ELF, if we find a symbol in the archive map, and the
4912 symbol is currently undefined, we know that we must pull in that
4913 object file.
4914
4915 Unfortunately, we do have to make multiple passes over the symbol
4916 table until nothing further is resolved. */
4917
4918 static bfd_boolean
4919 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4920 {
4921 symindex c;
4922 bfd_boolean *defined = NULL;
4923 bfd_boolean *included = NULL;
4924 carsym *symdefs;
4925 bfd_boolean loop;
4926 bfd_size_type amt;
4927 const struct elf_backend_data *bed;
4928 struct elf_link_hash_entry * (*archive_symbol_lookup)
4929 (bfd *, struct bfd_link_info *, const char *);
4930
4931 if (! bfd_has_map (abfd))
4932 {
4933 /* An empty archive is a special case. */
4934 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4935 return TRUE;
4936 bfd_set_error (bfd_error_no_armap);
4937 return FALSE;
4938 }
4939
4940 /* Keep track of all symbols we know to be already defined, and all
4941 files we know to be already included. This is to speed up the
4942 second and subsequent passes. */
4943 c = bfd_ardata (abfd)->symdef_count;
4944 if (c == 0)
4945 return TRUE;
4946 amt = c;
4947 amt *= sizeof (bfd_boolean);
4948 defined = bfd_zmalloc (amt);
4949 included = bfd_zmalloc (amt);
4950 if (defined == NULL || included == NULL)
4951 goto error_return;
4952
4953 symdefs = bfd_ardata (abfd)->symdefs;
4954 bed = get_elf_backend_data (abfd);
4955 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4956
4957 do
4958 {
4959 file_ptr last;
4960 symindex i;
4961 carsym *symdef;
4962 carsym *symdefend;
4963
4964 loop = FALSE;
4965 last = -1;
4966
4967 symdef = symdefs;
4968 symdefend = symdef + c;
4969 for (i = 0; symdef < symdefend; symdef++, i++)
4970 {
4971 struct elf_link_hash_entry *h;
4972 bfd *element;
4973 struct bfd_link_hash_entry *undefs_tail;
4974 symindex mark;
4975
4976 if (defined[i] || included[i])
4977 continue;
4978 if (symdef->file_offset == last)
4979 {
4980 included[i] = TRUE;
4981 continue;
4982 }
4983
4984 h = archive_symbol_lookup (abfd, info, symdef->name);
4985 if (h == (struct elf_link_hash_entry *) 0 - 1)
4986 goto error_return;
4987
4988 if (h == NULL)
4989 continue;
4990
4991 if (h->root.type == bfd_link_hash_common)
4992 {
4993 /* We currently have a common symbol. The archive map contains
4994 a reference to this symbol, so we may want to include it. We
4995 only want to include it however, if this archive element
4996 contains a definition of the symbol, not just another common
4997 declaration of it.
4998
4999 Unfortunately some archivers (including GNU ar) will put
5000 declarations of common symbols into their archive maps, as
5001 well as real definitions, so we cannot just go by the archive
5002 map alone. Instead we must read in the element's symbol
5003 table and check that to see what kind of symbol definition
5004 this is. */
5005 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5006 continue;
5007 }
5008 else if (h->root.type != bfd_link_hash_undefined)
5009 {
5010 if (h->root.type != bfd_link_hash_undefweak)
5011 defined[i] = TRUE;
5012 continue;
5013 }
5014
5015 /* We need to include this archive member. */
5016 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5017 if (element == NULL)
5018 goto error_return;
5019
5020 if (! bfd_check_format (element, bfd_object))
5021 goto error_return;
5022
5023 /* Doublecheck that we have not included this object
5024 already--it should be impossible, but there may be
5025 something wrong with the archive. */
5026 if (element->archive_pass != 0)
5027 {
5028 bfd_set_error (bfd_error_bad_value);
5029 goto error_return;
5030 }
5031 element->archive_pass = 1;
5032
5033 undefs_tail = info->hash->undefs_tail;
5034
5035 if (! (*info->callbacks->add_archive_element) (info, element,
5036 symdef->name))
5037 goto error_return;
5038 if (! bfd_link_add_symbols (element, info))
5039 goto error_return;
5040
5041 /* If there are any new undefined symbols, we need to make
5042 another pass through the archive in order to see whether
5043 they can be defined. FIXME: This isn't perfect, because
5044 common symbols wind up on undefs_tail and because an
5045 undefined symbol which is defined later on in this pass
5046 does not require another pass. This isn't a bug, but it
5047 does make the code less efficient than it could be. */
5048 if (undefs_tail != info->hash->undefs_tail)
5049 loop = TRUE;
5050
5051 /* Look backward to mark all symbols from this object file
5052 which we have already seen in this pass. */
5053 mark = i;
5054 do
5055 {
5056 included[mark] = TRUE;
5057 if (mark == 0)
5058 break;
5059 --mark;
5060 }
5061 while (symdefs[mark].file_offset == symdef->file_offset);
5062
5063 /* We mark subsequent symbols from this object file as we go
5064 on through the loop. */
5065 last = symdef->file_offset;
5066 }
5067 }
5068 while (loop);
5069
5070 free (defined);
5071 free (included);
5072
5073 return TRUE;
5074
5075 error_return:
5076 if (defined != NULL)
5077 free (defined);
5078 if (included != NULL)
5079 free (included);
5080 return FALSE;
5081 }
5082
5083 /* Given an ELF BFD, add symbols to the global hash table as
5084 appropriate. */
5085
5086 bfd_boolean
5087 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5088 {
5089 switch (bfd_get_format (abfd))
5090 {
5091 case bfd_object:
5092 return elf_link_add_object_symbols (abfd, info);
5093 case bfd_archive:
5094 return elf_link_add_archive_symbols (abfd, info);
5095 default:
5096 bfd_set_error (bfd_error_wrong_format);
5097 return FALSE;
5098 }
5099 }
5100 \f
5101 struct hash_codes_info
5102 {
5103 unsigned long *hashcodes;
5104 bfd_boolean error;
5105 };
5106
5107 /* This function will be called though elf_link_hash_traverse to store
5108 all hash value of the exported symbols in an array. */
5109
5110 static bfd_boolean
5111 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5112 {
5113 struct hash_codes_info *inf = data;
5114 const char *name;
5115 char *p;
5116 unsigned long ha;
5117 char *alc = NULL;
5118
5119 if (h->root.type == bfd_link_hash_warning)
5120 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5121
5122 /* Ignore indirect symbols. These are added by the versioning code. */
5123 if (h->dynindx == -1)
5124 return TRUE;
5125
5126 name = h->root.root.string;
5127 p = strchr (name, ELF_VER_CHR);
5128 if (p != NULL)
5129 {
5130 alc = bfd_malloc (p - name + 1);
5131 if (alc == NULL)
5132 {
5133 inf->error = TRUE;
5134 return FALSE;
5135 }
5136 memcpy (alc, name, p - name);
5137 alc[p - name] = '\0';
5138 name = alc;
5139 }
5140
5141 /* Compute the hash value. */
5142 ha = bfd_elf_hash (name);
5143
5144 /* Store the found hash value in the array given as the argument. */
5145 *(inf->hashcodes)++ = ha;
5146
5147 /* And store it in the struct so that we can put it in the hash table
5148 later. */
5149 h->u.elf_hash_value = ha;
5150
5151 if (alc != NULL)
5152 free (alc);
5153
5154 return TRUE;
5155 }
5156
5157 struct collect_gnu_hash_codes
5158 {
5159 bfd *output_bfd;
5160 const struct elf_backend_data *bed;
5161 unsigned long int nsyms;
5162 unsigned long int maskbits;
5163 unsigned long int *hashcodes;
5164 unsigned long int *hashval;
5165 unsigned long int *indx;
5166 unsigned long int *counts;
5167 bfd_vma *bitmask;
5168 bfd_byte *contents;
5169 long int min_dynindx;
5170 unsigned long int bucketcount;
5171 unsigned long int symindx;
5172 long int local_indx;
5173 long int shift1, shift2;
5174 unsigned long int mask;
5175 bfd_boolean error;
5176 };
5177
5178 /* This function will be called though elf_link_hash_traverse to store
5179 all hash value of the exported symbols in an array. */
5180
5181 static bfd_boolean
5182 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5183 {
5184 struct collect_gnu_hash_codes *s = data;
5185 const char *name;
5186 char *p;
5187 unsigned long ha;
5188 char *alc = NULL;
5189
5190 if (h->root.type == bfd_link_hash_warning)
5191 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5192
5193 /* Ignore indirect symbols. These are added by the versioning code. */
5194 if (h->dynindx == -1)
5195 return TRUE;
5196
5197 /* Ignore also local symbols and undefined symbols. */
5198 if (! (*s->bed->elf_hash_symbol) (h))
5199 return TRUE;
5200
5201 name = h->root.root.string;
5202 p = strchr (name, ELF_VER_CHR);
5203 if (p != NULL)
5204 {
5205 alc = bfd_malloc (p - name + 1);
5206 if (alc == NULL)
5207 {
5208 s->error = TRUE;
5209 return FALSE;
5210 }
5211 memcpy (alc, name, p - name);
5212 alc[p - name] = '\0';
5213 name = alc;
5214 }
5215
5216 /* Compute the hash value. */
5217 ha = bfd_elf_gnu_hash (name);
5218
5219 /* Store the found hash value in the array for compute_bucket_count,
5220 and also for .dynsym reordering purposes. */
5221 s->hashcodes[s->nsyms] = ha;
5222 s->hashval[h->dynindx] = ha;
5223 ++s->nsyms;
5224 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5225 s->min_dynindx = h->dynindx;
5226
5227 if (alc != NULL)
5228 free (alc);
5229
5230 return TRUE;
5231 }
5232
5233 /* This function will be called though elf_link_hash_traverse to do
5234 final dynaminc symbol renumbering. */
5235
5236 static bfd_boolean
5237 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5238 {
5239 struct collect_gnu_hash_codes *s = data;
5240 unsigned long int bucket;
5241 unsigned long int val;
5242
5243 if (h->root.type == bfd_link_hash_warning)
5244 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5245
5246 /* Ignore indirect symbols. */
5247 if (h->dynindx == -1)
5248 return TRUE;
5249
5250 /* Ignore also local symbols and undefined symbols. */
5251 if (! (*s->bed->elf_hash_symbol) (h))
5252 {
5253 if (h->dynindx >= s->min_dynindx)
5254 h->dynindx = s->local_indx++;
5255 return TRUE;
5256 }
5257
5258 bucket = s->hashval[h->dynindx] % s->bucketcount;
5259 val = (s->hashval[h->dynindx] >> s->shift1)
5260 & ((s->maskbits >> s->shift1) - 1);
5261 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5262 s->bitmask[val]
5263 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5264 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5265 if (s->counts[bucket] == 1)
5266 /* Last element terminates the chain. */
5267 val |= 1;
5268 bfd_put_32 (s->output_bfd, val,
5269 s->contents + (s->indx[bucket] - s->symindx) * 4);
5270 --s->counts[bucket];
5271 h->dynindx = s->indx[bucket]++;
5272 return TRUE;
5273 }
5274
5275 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5276
5277 bfd_boolean
5278 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5279 {
5280 return !(h->forced_local
5281 || h->root.type == bfd_link_hash_undefined
5282 || h->root.type == bfd_link_hash_undefweak
5283 || ((h->root.type == bfd_link_hash_defined
5284 || h->root.type == bfd_link_hash_defweak)
5285 && h->root.u.def.section->output_section == NULL));
5286 }
5287
5288 /* Array used to determine the number of hash table buckets to use
5289 based on the number of symbols there are. If there are fewer than
5290 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5291 fewer than 37 we use 17 buckets, and so forth. We never use more
5292 than 32771 buckets. */
5293
5294 static const size_t elf_buckets[] =
5295 {
5296 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5297 16411, 32771, 0
5298 };
5299
5300 /* Compute bucket count for hashing table. We do not use a static set
5301 of possible tables sizes anymore. Instead we determine for all
5302 possible reasonable sizes of the table the outcome (i.e., the
5303 number of collisions etc) and choose the best solution. The
5304 weighting functions are not too simple to allow the table to grow
5305 without bounds. Instead one of the weighting factors is the size.
5306 Therefore the result is always a good payoff between few collisions
5307 (= short chain lengths) and table size. */
5308 static size_t
5309 compute_bucket_count (struct bfd_link_info *info,
5310 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5311 unsigned long int nsyms,
5312 int gnu_hash)
5313 {
5314 size_t best_size = 0;
5315 unsigned long int i;
5316
5317 /* We have a problem here. The following code to optimize the table
5318 size requires an integer type with more the 32 bits. If
5319 BFD_HOST_U_64_BIT is set we know about such a type. */
5320 #ifdef BFD_HOST_U_64_BIT
5321 if (info->optimize)
5322 {
5323 size_t minsize;
5324 size_t maxsize;
5325 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5326 bfd *dynobj = elf_hash_table (info)->dynobj;
5327 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5328 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5329 unsigned long int *counts;
5330 bfd_size_type amt;
5331
5332 /* Possible optimization parameters: if we have NSYMS symbols we say
5333 that the hashing table must at least have NSYMS/4 and at most
5334 2*NSYMS buckets. */
5335 minsize = nsyms / 4;
5336 if (minsize == 0)
5337 minsize = 1;
5338 best_size = maxsize = nsyms * 2;
5339 if (gnu_hash)
5340 {
5341 if (minsize < 2)
5342 minsize = 2;
5343 if ((best_size & 31) == 0)
5344 ++best_size;
5345 }
5346
5347 /* Create array where we count the collisions in. We must use bfd_malloc
5348 since the size could be large. */
5349 amt = maxsize;
5350 amt *= sizeof (unsigned long int);
5351 counts = bfd_malloc (amt);
5352 if (counts == NULL)
5353 return 0;
5354
5355 /* Compute the "optimal" size for the hash table. The criteria is a
5356 minimal chain length. The minor criteria is (of course) the size
5357 of the table. */
5358 for (i = minsize; i < maxsize; ++i)
5359 {
5360 /* Walk through the array of hashcodes and count the collisions. */
5361 BFD_HOST_U_64_BIT max;
5362 unsigned long int j;
5363 unsigned long int fact;
5364
5365 if (gnu_hash && (i & 31) == 0)
5366 continue;
5367
5368 memset (counts, '\0', i * sizeof (unsigned long int));
5369
5370 /* Determine how often each hash bucket is used. */
5371 for (j = 0; j < nsyms; ++j)
5372 ++counts[hashcodes[j] % i];
5373
5374 /* For the weight function we need some information about the
5375 pagesize on the target. This is information need not be 100%
5376 accurate. Since this information is not available (so far) we
5377 define it here to a reasonable default value. If it is crucial
5378 to have a better value some day simply define this value. */
5379 # ifndef BFD_TARGET_PAGESIZE
5380 # define BFD_TARGET_PAGESIZE (4096)
5381 # endif
5382
5383 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5384 and the chains. */
5385 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5386
5387 # if 1
5388 /* Variant 1: optimize for short chains. We add the squares
5389 of all the chain lengths (which favors many small chain
5390 over a few long chains). */
5391 for (j = 0; j < i; ++j)
5392 max += counts[j] * counts[j];
5393
5394 /* This adds penalties for the overall size of the table. */
5395 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5396 max *= fact * fact;
5397 # else
5398 /* Variant 2: Optimize a lot more for small table. Here we
5399 also add squares of the size but we also add penalties for
5400 empty slots (the +1 term). */
5401 for (j = 0; j < i; ++j)
5402 max += (1 + counts[j]) * (1 + counts[j]);
5403
5404 /* The overall size of the table is considered, but not as
5405 strong as in variant 1, where it is squared. */
5406 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5407 max *= fact;
5408 # endif
5409
5410 /* Compare with current best results. */
5411 if (max < best_chlen)
5412 {
5413 best_chlen = max;
5414 best_size = i;
5415 }
5416 }
5417
5418 free (counts);
5419 }
5420 else
5421 #endif /* defined (BFD_HOST_U_64_BIT) */
5422 {
5423 /* This is the fallback solution if no 64bit type is available or if we
5424 are not supposed to spend much time on optimizations. We select the
5425 bucket count using a fixed set of numbers. */
5426 for (i = 0; elf_buckets[i] != 0; i++)
5427 {
5428 best_size = elf_buckets[i];
5429 if (nsyms < elf_buckets[i + 1])
5430 break;
5431 }
5432 if (gnu_hash && best_size < 2)
5433 best_size = 2;
5434 }
5435
5436 return best_size;
5437 }
5438
5439 /* Set up the sizes and contents of the ELF dynamic sections. This is
5440 called by the ELF linker emulation before_allocation routine. We
5441 must set the sizes of the sections before the linker sets the
5442 addresses of the various sections. */
5443
5444 bfd_boolean
5445 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5446 const char *soname,
5447 const char *rpath,
5448 const char *filter_shlib,
5449 const char * const *auxiliary_filters,
5450 struct bfd_link_info *info,
5451 asection **sinterpptr,
5452 struct bfd_elf_version_tree *verdefs)
5453 {
5454 bfd_size_type soname_indx;
5455 bfd *dynobj;
5456 const struct elf_backend_data *bed;
5457 struct elf_info_failed asvinfo;
5458
5459 *sinterpptr = NULL;
5460
5461 soname_indx = (bfd_size_type) -1;
5462
5463 if (!is_elf_hash_table (info->hash))
5464 return TRUE;
5465
5466 bed = get_elf_backend_data (output_bfd);
5467 if (info->execstack)
5468 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5469 else if (info->noexecstack)
5470 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5471 else
5472 {
5473 bfd *inputobj;
5474 asection *notesec = NULL;
5475 int exec = 0;
5476
5477 for (inputobj = info->input_bfds;
5478 inputobj;
5479 inputobj = inputobj->link_next)
5480 {
5481 asection *s;
5482
5483 if (inputobj->flags & (DYNAMIC | EXEC_P | BFD_LINKER_CREATED))
5484 continue;
5485 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5486 if (s)
5487 {
5488 if (s->flags & SEC_CODE)
5489 exec = PF_X;
5490 notesec = s;
5491 }
5492 else if (bed->default_execstack)
5493 exec = PF_X;
5494 }
5495 if (notesec)
5496 {
5497 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5498 if (exec && info->relocatable
5499 && notesec->output_section != bfd_abs_section_ptr)
5500 notesec->output_section->flags |= SEC_CODE;
5501 }
5502 }
5503
5504 /* Any syms created from now on start with -1 in
5505 got.refcount/offset and plt.refcount/offset. */
5506 elf_hash_table (info)->init_got_refcount
5507 = elf_hash_table (info)->init_got_offset;
5508 elf_hash_table (info)->init_plt_refcount
5509 = elf_hash_table (info)->init_plt_offset;
5510
5511 /* The backend may have to create some sections regardless of whether
5512 we're dynamic or not. */
5513 if (bed->elf_backend_always_size_sections
5514 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5515 return FALSE;
5516
5517 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5518 return FALSE;
5519
5520 dynobj = elf_hash_table (info)->dynobj;
5521
5522 /* If there were no dynamic objects in the link, there is nothing to
5523 do here. */
5524 if (dynobj == NULL)
5525 return TRUE;
5526
5527 if (elf_hash_table (info)->dynamic_sections_created)
5528 {
5529 struct elf_info_failed eif;
5530 struct elf_link_hash_entry *h;
5531 asection *dynstr;
5532 struct bfd_elf_version_tree *t;
5533 struct bfd_elf_version_expr *d;
5534 asection *s;
5535 bfd_boolean all_defined;
5536
5537 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5538 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5539
5540 if (soname != NULL)
5541 {
5542 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5543 soname, TRUE);
5544 if (soname_indx == (bfd_size_type) -1
5545 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5546 return FALSE;
5547 }
5548
5549 if (info->symbolic)
5550 {
5551 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5552 return FALSE;
5553 info->flags |= DF_SYMBOLIC;
5554 }
5555
5556 if (rpath != NULL)
5557 {
5558 bfd_size_type indx;
5559
5560 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5561 TRUE);
5562 if (indx == (bfd_size_type) -1
5563 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5564 return FALSE;
5565
5566 if (info->new_dtags)
5567 {
5568 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5569 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5570 return FALSE;
5571 }
5572 }
5573
5574 if (filter_shlib != NULL)
5575 {
5576 bfd_size_type indx;
5577
5578 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5579 filter_shlib, TRUE);
5580 if (indx == (bfd_size_type) -1
5581 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5582 return FALSE;
5583 }
5584
5585 if (auxiliary_filters != NULL)
5586 {
5587 const char * const *p;
5588
5589 for (p = auxiliary_filters; *p != NULL; p++)
5590 {
5591 bfd_size_type indx;
5592
5593 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5594 *p, TRUE);
5595 if (indx == (bfd_size_type) -1
5596 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5597 return FALSE;
5598 }
5599 }
5600
5601 eif.info = info;
5602 eif.verdefs = verdefs;
5603 eif.failed = FALSE;
5604
5605 /* If we are supposed to export all symbols into the dynamic symbol
5606 table (this is not the normal case), then do so. */
5607 if (info->export_dynamic
5608 || (info->executable && info->dynamic))
5609 {
5610 elf_link_hash_traverse (elf_hash_table (info),
5611 _bfd_elf_export_symbol,
5612 &eif);
5613 if (eif.failed)
5614 return FALSE;
5615 }
5616
5617 /* Make all global versions with definition. */
5618 for (t = verdefs; t != NULL; t = t->next)
5619 for (d = t->globals.list; d != NULL; d = d->next)
5620 if (!d->symver && d->literal)
5621 {
5622 const char *verstr, *name;
5623 size_t namelen, verlen, newlen;
5624 char *newname, *p;
5625 struct elf_link_hash_entry *newh;
5626
5627 name = d->pattern;
5628 namelen = strlen (name);
5629 verstr = t->name;
5630 verlen = strlen (verstr);
5631 newlen = namelen + verlen + 3;
5632
5633 newname = bfd_malloc (newlen);
5634 if (newname == NULL)
5635 return FALSE;
5636 memcpy (newname, name, namelen);
5637
5638 /* Check the hidden versioned definition. */
5639 p = newname + namelen;
5640 *p++ = ELF_VER_CHR;
5641 memcpy (p, verstr, verlen + 1);
5642 newh = elf_link_hash_lookup (elf_hash_table (info),
5643 newname, FALSE, FALSE,
5644 FALSE);
5645 if (newh == NULL
5646 || (newh->root.type != bfd_link_hash_defined
5647 && newh->root.type != bfd_link_hash_defweak))
5648 {
5649 /* Check the default versioned definition. */
5650 *p++ = ELF_VER_CHR;
5651 memcpy (p, verstr, verlen + 1);
5652 newh = elf_link_hash_lookup (elf_hash_table (info),
5653 newname, FALSE, FALSE,
5654 FALSE);
5655 }
5656 free (newname);
5657
5658 /* Mark this version if there is a definition and it is
5659 not defined in a shared object. */
5660 if (newh != NULL
5661 && !newh->def_dynamic
5662 && (newh->root.type == bfd_link_hash_defined
5663 || newh->root.type == bfd_link_hash_defweak))
5664 d->symver = 1;
5665 }
5666
5667 /* Attach all the symbols to their version information. */
5668 asvinfo.info = info;
5669 asvinfo.verdefs = verdefs;
5670 asvinfo.failed = FALSE;
5671
5672 elf_link_hash_traverse (elf_hash_table (info),
5673 _bfd_elf_link_assign_sym_version,
5674 &asvinfo);
5675 if (asvinfo.failed)
5676 return FALSE;
5677
5678 if (!info->allow_undefined_version)
5679 {
5680 /* Check if all global versions have a definition. */
5681 all_defined = TRUE;
5682 for (t = verdefs; t != NULL; t = t->next)
5683 for (d = t->globals.list; d != NULL; d = d->next)
5684 if (d->literal && !d->symver && !d->script)
5685 {
5686 (*_bfd_error_handler)
5687 (_("%s: undefined version: %s"),
5688 d->pattern, t->name);
5689 all_defined = FALSE;
5690 }
5691
5692 if (!all_defined)
5693 {
5694 bfd_set_error (bfd_error_bad_value);
5695 return FALSE;
5696 }
5697 }
5698
5699 /* Find all symbols which were defined in a dynamic object and make
5700 the backend pick a reasonable value for them. */
5701 elf_link_hash_traverse (elf_hash_table (info),
5702 _bfd_elf_adjust_dynamic_symbol,
5703 &eif);
5704 if (eif.failed)
5705 return FALSE;
5706
5707 /* Add some entries to the .dynamic section. We fill in some of the
5708 values later, in bfd_elf_final_link, but we must add the entries
5709 now so that we know the final size of the .dynamic section. */
5710
5711 /* If there are initialization and/or finalization functions to
5712 call then add the corresponding DT_INIT/DT_FINI entries. */
5713 h = (info->init_function
5714 ? elf_link_hash_lookup (elf_hash_table (info),
5715 info->init_function, FALSE,
5716 FALSE, FALSE)
5717 : NULL);
5718 if (h != NULL
5719 && (h->ref_regular
5720 || h->def_regular))
5721 {
5722 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5723 return FALSE;
5724 }
5725 h = (info->fini_function
5726 ? elf_link_hash_lookup (elf_hash_table (info),
5727 info->fini_function, FALSE,
5728 FALSE, FALSE)
5729 : NULL);
5730 if (h != NULL
5731 && (h->ref_regular
5732 || h->def_regular))
5733 {
5734 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5735 return FALSE;
5736 }
5737
5738 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5739 if (s != NULL && s->linker_has_input)
5740 {
5741 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5742 if (! info->executable)
5743 {
5744 bfd *sub;
5745 asection *o;
5746
5747 for (sub = info->input_bfds; sub != NULL;
5748 sub = sub->link_next)
5749 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5750 for (o = sub->sections; o != NULL; o = o->next)
5751 if (elf_section_data (o)->this_hdr.sh_type
5752 == SHT_PREINIT_ARRAY)
5753 {
5754 (*_bfd_error_handler)
5755 (_("%B: .preinit_array section is not allowed in DSO"),
5756 sub);
5757 break;
5758 }
5759
5760 bfd_set_error (bfd_error_nonrepresentable_section);
5761 return FALSE;
5762 }
5763
5764 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5765 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5766 return FALSE;
5767 }
5768 s = bfd_get_section_by_name (output_bfd, ".init_array");
5769 if (s != NULL && s->linker_has_input)
5770 {
5771 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5772 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5773 return FALSE;
5774 }
5775 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5776 if (s != NULL && s->linker_has_input)
5777 {
5778 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5779 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5780 return FALSE;
5781 }
5782
5783 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5784 /* If .dynstr is excluded from the link, we don't want any of
5785 these tags. Strictly, we should be checking each section
5786 individually; This quick check covers for the case where
5787 someone does a /DISCARD/ : { *(*) }. */
5788 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5789 {
5790 bfd_size_type strsize;
5791
5792 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5793 if ((info->emit_hash
5794 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5795 || (info->emit_gnu_hash
5796 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5797 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5798 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5799 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5800 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5801 bed->s->sizeof_sym))
5802 return FALSE;
5803 }
5804 }
5805
5806 /* The backend must work out the sizes of all the other dynamic
5807 sections. */
5808 if (bed->elf_backend_size_dynamic_sections
5809 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5810 return FALSE;
5811
5812 if (elf_hash_table (info)->dynamic_sections_created)
5813 {
5814 unsigned long section_sym_count;
5815 asection *s;
5816
5817 /* Set up the version definition section. */
5818 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5819 BFD_ASSERT (s != NULL);
5820
5821 /* We may have created additional version definitions if we are
5822 just linking a regular application. */
5823 verdefs = asvinfo.verdefs;
5824
5825 /* Skip anonymous version tag. */
5826 if (verdefs != NULL && verdefs->vernum == 0)
5827 verdefs = verdefs->next;
5828
5829 if (verdefs == NULL && !info->create_default_symver)
5830 s->flags |= SEC_EXCLUDE;
5831 else
5832 {
5833 unsigned int cdefs;
5834 bfd_size_type size;
5835 struct bfd_elf_version_tree *t;
5836 bfd_byte *p;
5837 Elf_Internal_Verdef def;
5838 Elf_Internal_Verdaux defaux;
5839 struct bfd_link_hash_entry *bh;
5840 struct elf_link_hash_entry *h;
5841 const char *name;
5842
5843 cdefs = 0;
5844 size = 0;
5845
5846 /* Make space for the base version. */
5847 size += sizeof (Elf_External_Verdef);
5848 size += sizeof (Elf_External_Verdaux);
5849 ++cdefs;
5850
5851 /* Make space for the default version. */
5852 if (info->create_default_symver)
5853 {
5854 size += sizeof (Elf_External_Verdef);
5855 ++cdefs;
5856 }
5857
5858 for (t = verdefs; t != NULL; t = t->next)
5859 {
5860 struct bfd_elf_version_deps *n;
5861
5862 size += sizeof (Elf_External_Verdef);
5863 size += sizeof (Elf_External_Verdaux);
5864 ++cdefs;
5865
5866 for (n = t->deps; n != NULL; n = n->next)
5867 size += sizeof (Elf_External_Verdaux);
5868 }
5869
5870 s->size = size;
5871 s->contents = bfd_alloc (output_bfd, s->size);
5872 if (s->contents == NULL && s->size != 0)
5873 return FALSE;
5874
5875 /* Fill in the version definition section. */
5876
5877 p = s->contents;
5878
5879 def.vd_version = VER_DEF_CURRENT;
5880 def.vd_flags = VER_FLG_BASE;
5881 def.vd_ndx = 1;
5882 def.vd_cnt = 1;
5883 if (info->create_default_symver)
5884 {
5885 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5886 def.vd_next = sizeof (Elf_External_Verdef);
5887 }
5888 else
5889 {
5890 def.vd_aux = sizeof (Elf_External_Verdef);
5891 def.vd_next = (sizeof (Elf_External_Verdef)
5892 + sizeof (Elf_External_Verdaux));
5893 }
5894
5895 if (soname_indx != (bfd_size_type) -1)
5896 {
5897 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5898 soname_indx);
5899 def.vd_hash = bfd_elf_hash (soname);
5900 defaux.vda_name = soname_indx;
5901 name = soname;
5902 }
5903 else
5904 {
5905 bfd_size_type indx;
5906
5907 name = lbasename (output_bfd->filename);
5908 def.vd_hash = bfd_elf_hash (name);
5909 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5910 name, FALSE);
5911 if (indx == (bfd_size_type) -1)
5912 return FALSE;
5913 defaux.vda_name = indx;
5914 }
5915 defaux.vda_next = 0;
5916
5917 _bfd_elf_swap_verdef_out (output_bfd, &def,
5918 (Elf_External_Verdef *) p);
5919 p += sizeof (Elf_External_Verdef);
5920 if (info->create_default_symver)
5921 {
5922 /* Add a symbol representing this version. */
5923 bh = NULL;
5924 if (! (_bfd_generic_link_add_one_symbol
5925 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
5926 0, NULL, FALSE,
5927 get_elf_backend_data (dynobj)->collect, &bh)))
5928 return FALSE;
5929 h = (struct elf_link_hash_entry *) bh;
5930 h->non_elf = 0;
5931 h->def_regular = 1;
5932 h->type = STT_OBJECT;
5933 h->verinfo.vertree = NULL;
5934
5935 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5936 return FALSE;
5937
5938 /* Create a duplicate of the base version with the same
5939 aux block, but different flags. */
5940 def.vd_flags = 0;
5941 def.vd_ndx = 2;
5942 def.vd_aux = sizeof (Elf_External_Verdef);
5943 if (verdefs)
5944 def.vd_next = (sizeof (Elf_External_Verdef)
5945 + sizeof (Elf_External_Verdaux));
5946 else
5947 def.vd_next = 0;
5948 _bfd_elf_swap_verdef_out (output_bfd, &def,
5949 (Elf_External_Verdef *) p);
5950 p += sizeof (Elf_External_Verdef);
5951 }
5952 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5953 (Elf_External_Verdaux *) p);
5954 p += sizeof (Elf_External_Verdaux);
5955
5956 for (t = verdefs; t != NULL; t = t->next)
5957 {
5958 unsigned int cdeps;
5959 struct bfd_elf_version_deps *n;
5960
5961 cdeps = 0;
5962 for (n = t->deps; n != NULL; n = n->next)
5963 ++cdeps;
5964
5965 /* Add a symbol representing this version. */
5966 bh = NULL;
5967 if (! (_bfd_generic_link_add_one_symbol
5968 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
5969 0, NULL, FALSE,
5970 get_elf_backend_data (dynobj)->collect, &bh)))
5971 return FALSE;
5972 h = (struct elf_link_hash_entry *) bh;
5973 h->non_elf = 0;
5974 h->def_regular = 1;
5975 h->type = STT_OBJECT;
5976 h->verinfo.vertree = t;
5977
5978 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5979 return FALSE;
5980
5981 def.vd_version = VER_DEF_CURRENT;
5982 def.vd_flags = 0;
5983 if (t->globals.list == NULL
5984 && t->locals.list == NULL
5985 && ! t->used)
5986 def.vd_flags |= VER_FLG_WEAK;
5987 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
5988 def.vd_cnt = cdeps + 1;
5989 def.vd_hash = bfd_elf_hash (t->name);
5990 def.vd_aux = sizeof (Elf_External_Verdef);
5991 def.vd_next = 0;
5992 if (t->next != NULL)
5993 def.vd_next = (sizeof (Elf_External_Verdef)
5994 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
5995
5996 _bfd_elf_swap_verdef_out (output_bfd, &def,
5997 (Elf_External_Verdef *) p);
5998 p += sizeof (Elf_External_Verdef);
5999
6000 defaux.vda_name = h->dynstr_index;
6001 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6002 h->dynstr_index);
6003 defaux.vda_next = 0;
6004 if (t->deps != NULL)
6005 defaux.vda_next = sizeof (Elf_External_Verdaux);
6006 t->name_indx = defaux.vda_name;
6007
6008 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6009 (Elf_External_Verdaux *) p);
6010 p += sizeof (Elf_External_Verdaux);
6011
6012 for (n = t->deps; n != NULL; n = n->next)
6013 {
6014 if (n->version_needed == NULL)
6015 {
6016 /* This can happen if there was an error in the
6017 version script. */
6018 defaux.vda_name = 0;
6019 }
6020 else
6021 {
6022 defaux.vda_name = n->version_needed->name_indx;
6023 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6024 defaux.vda_name);
6025 }
6026 if (n->next == NULL)
6027 defaux.vda_next = 0;
6028 else
6029 defaux.vda_next = sizeof (Elf_External_Verdaux);
6030
6031 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6032 (Elf_External_Verdaux *) p);
6033 p += sizeof (Elf_External_Verdaux);
6034 }
6035 }
6036
6037 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6038 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6039 return FALSE;
6040
6041 elf_tdata (output_bfd)->cverdefs = cdefs;
6042 }
6043
6044 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6045 {
6046 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6047 return FALSE;
6048 }
6049 else if (info->flags & DF_BIND_NOW)
6050 {
6051 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6052 return FALSE;
6053 }
6054
6055 if (info->flags_1)
6056 {
6057 if (info->executable)
6058 info->flags_1 &= ~ (DF_1_INITFIRST
6059 | DF_1_NODELETE
6060 | DF_1_NOOPEN);
6061 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6062 return FALSE;
6063 }
6064
6065 /* Work out the size of the version reference section. */
6066
6067 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
6068 BFD_ASSERT (s != NULL);
6069 {
6070 struct elf_find_verdep_info sinfo;
6071
6072 sinfo.info = info;
6073 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6074 if (sinfo.vers == 0)
6075 sinfo.vers = 1;
6076 sinfo.failed = FALSE;
6077
6078 elf_link_hash_traverse (elf_hash_table (info),
6079 _bfd_elf_link_find_version_dependencies,
6080 &sinfo);
6081 if (sinfo.failed)
6082 return FALSE;
6083
6084 if (elf_tdata (output_bfd)->verref == NULL)
6085 s->flags |= SEC_EXCLUDE;
6086 else
6087 {
6088 Elf_Internal_Verneed *t;
6089 unsigned int size;
6090 unsigned int crefs;
6091 bfd_byte *p;
6092
6093 /* Build the version definition section. */
6094 size = 0;
6095 crefs = 0;
6096 for (t = elf_tdata (output_bfd)->verref;
6097 t != NULL;
6098 t = t->vn_nextref)
6099 {
6100 Elf_Internal_Vernaux *a;
6101
6102 size += sizeof (Elf_External_Verneed);
6103 ++crefs;
6104 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6105 size += sizeof (Elf_External_Vernaux);
6106 }
6107
6108 s->size = size;
6109 s->contents = bfd_alloc (output_bfd, s->size);
6110 if (s->contents == NULL)
6111 return FALSE;
6112
6113 p = s->contents;
6114 for (t = elf_tdata (output_bfd)->verref;
6115 t != NULL;
6116 t = t->vn_nextref)
6117 {
6118 unsigned int caux;
6119 Elf_Internal_Vernaux *a;
6120 bfd_size_type indx;
6121
6122 caux = 0;
6123 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6124 ++caux;
6125
6126 t->vn_version = VER_NEED_CURRENT;
6127 t->vn_cnt = caux;
6128 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6129 elf_dt_name (t->vn_bfd) != NULL
6130 ? elf_dt_name (t->vn_bfd)
6131 : lbasename (t->vn_bfd->filename),
6132 FALSE);
6133 if (indx == (bfd_size_type) -1)
6134 return FALSE;
6135 t->vn_file = indx;
6136 t->vn_aux = sizeof (Elf_External_Verneed);
6137 if (t->vn_nextref == NULL)
6138 t->vn_next = 0;
6139 else
6140 t->vn_next = (sizeof (Elf_External_Verneed)
6141 + caux * sizeof (Elf_External_Vernaux));
6142
6143 _bfd_elf_swap_verneed_out (output_bfd, t,
6144 (Elf_External_Verneed *) p);
6145 p += sizeof (Elf_External_Verneed);
6146
6147 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6148 {
6149 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6150 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6151 a->vna_nodename, FALSE);
6152 if (indx == (bfd_size_type) -1)
6153 return FALSE;
6154 a->vna_name = indx;
6155 if (a->vna_nextptr == NULL)
6156 a->vna_next = 0;
6157 else
6158 a->vna_next = sizeof (Elf_External_Vernaux);
6159
6160 _bfd_elf_swap_vernaux_out (output_bfd, a,
6161 (Elf_External_Vernaux *) p);
6162 p += sizeof (Elf_External_Vernaux);
6163 }
6164 }
6165
6166 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6167 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6168 return FALSE;
6169
6170 elf_tdata (output_bfd)->cverrefs = crefs;
6171 }
6172 }
6173
6174 if ((elf_tdata (output_bfd)->cverrefs == 0
6175 && elf_tdata (output_bfd)->cverdefs == 0)
6176 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6177 &section_sym_count) == 0)
6178 {
6179 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6180 s->flags |= SEC_EXCLUDE;
6181 }
6182 }
6183 return TRUE;
6184 }
6185
6186 /* Find the first non-excluded output section. We'll use its
6187 section symbol for some emitted relocs. */
6188 void
6189 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6190 {
6191 asection *s;
6192
6193 for (s = output_bfd->sections; s != NULL; s = s->next)
6194 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6195 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6196 {
6197 elf_hash_table (info)->text_index_section = s;
6198 break;
6199 }
6200 }
6201
6202 /* Find two non-excluded output sections, one for code, one for data.
6203 We'll use their section symbols for some emitted relocs. */
6204 void
6205 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6206 {
6207 asection *s;
6208
6209 /* Data first, since setting text_index_section changes
6210 _bfd_elf_link_omit_section_dynsym. */
6211 for (s = output_bfd->sections; s != NULL; s = s->next)
6212 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6213 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6214 {
6215 elf_hash_table (info)->data_index_section = s;
6216 break;
6217 }
6218
6219 for (s = output_bfd->sections; s != NULL; s = s->next)
6220 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6221 == (SEC_ALLOC | SEC_READONLY))
6222 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6223 {
6224 elf_hash_table (info)->text_index_section = s;
6225 break;
6226 }
6227
6228 if (elf_hash_table (info)->text_index_section == NULL)
6229 elf_hash_table (info)->text_index_section
6230 = elf_hash_table (info)->data_index_section;
6231 }
6232
6233 bfd_boolean
6234 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6235 {
6236 const struct elf_backend_data *bed;
6237
6238 if (!is_elf_hash_table (info->hash))
6239 return TRUE;
6240
6241 bed = get_elf_backend_data (output_bfd);
6242 (*bed->elf_backend_init_index_section) (output_bfd, info);
6243
6244 if (elf_hash_table (info)->dynamic_sections_created)
6245 {
6246 bfd *dynobj;
6247 asection *s;
6248 bfd_size_type dynsymcount;
6249 unsigned long section_sym_count;
6250 unsigned int dtagcount;
6251
6252 dynobj = elf_hash_table (info)->dynobj;
6253
6254 /* Assign dynsym indicies. In a shared library we generate a
6255 section symbol for each output section, which come first.
6256 Next come all of the back-end allocated local dynamic syms,
6257 followed by the rest of the global symbols. */
6258
6259 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6260 &section_sym_count);
6261
6262 /* Work out the size of the symbol version section. */
6263 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6264 BFD_ASSERT (s != NULL);
6265 if (dynsymcount != 0
6266 && (s->flags & SEC_EXCLUDE) == 0)
6267 {
6268 s->size = dynsymcount * sizeof (Elf_External_Versym);
6269 s->contents = bfd_zalloc (output_bfd, s->size);
6270 if (s->contents == NULL)
6271 return FALSE;
6272
6273 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6274 return FALSE;
6275 }
6276
6277 /* Set the size of the .dynsym and .hash sections. We counted
6278 the number of dynamic symbols in elf_link_add_object_symbols.
6279 We will build the contents of .dynsym and .hash when we build
6280 the final symbol table, because until then we do not know the
6281 correct value to give the symbols. We built the .dynstr
6282 section as we went along in elf_link_add_object_symbols. */
6283 s = bfd_get_section_by_name (dynobj, ".dynsym");
6284 BFD_ASSERT (s != NULL);
6285 s->size = dynsymcount * bed->s->sizeof_sym;
6286
6287 if (dynsymcount != 0)
6288 {
6289 s->contents = bfd_alloc (output_bfd, s->size);
6290 if (s->contents == NULL)
6291 return FALSE;
6292
6293 /* The first entry in .dynsym is a dummy symbol.
6294 Clear all the section syms, in case we don't output them all. */
6295 ++section_sym_count;
6296 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6297 }
6298
6299 elf_hash_table (info)->bucketcount = 0;
6300
6301 /* Compute the size of the hashing table. As a side effect this
6302 computes the hash values for all the names we export. */
6303 if (info->emit_hash)
6304 {
6305 unsigned long int *hashcodes;
6306 struct hash_codes_info hashinf;
6307 bfd_size_type amt;
6308 unsigned long int nsyms;
6309 size_t bucketcount;
6310 size_t hash_entry_size;
6311
6312 /* Compute the hash values for all exported symbols. At the same
6313 time store the values in an array so that we could use them for
6314 optimizations. */
6315 amt = dynsymcount * sizeof (unsigned long int);
6316 hashcodes = bfd_malloc (amt);
6317 if (hashcodes == NULL)
6318 return FALSE;
6319 hashinf.hashcodes = hashcodes;
6320 hashinf.error = FALSE;
6321
6322 /* Put all hash values in HASHCODES. */
6323 elf_link_hash_traverse (elf_hash_table (info),
6324 elf_collect_hash_codes, &hashinf);
6325 if (hashinf.error)
6326 {
6327 free (hashcodes);
6328 return FALSE;
6329 }
6330
6331 nsyms = hashinf.hashcodes - hashcodes;
6332 bucketcount
6333 = compute_bucket_count (info, hashcodes, nsyms, 0);
6334 free (hashcodes);
6335
6336 if (bucketcount == 0)
6337 return FALSE;
6338
6339 elf_hash_table (info)->bucketcount = bucketcount;
6340
6341 s = bfd_get_section_by_name (dynobj, ".hash");
6342 BFD_ASSERT (s != NULL);
6343 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6344 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6345 s->contents = bfd_zalloc (output_bfd, s->size);
6346 if (s->contents == NULL)
6347 return FALSE;
6348
6349 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6350 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6351 s->contents + hash_entry_size);
6352 }
6353
6354 if (info->emit_gnu_hash)
6355 {
6356 size_t i, cnt;
6357 unsigned char *contents;
6358 struct collect_gnu_hash_codes cinfo;
6359 bfd_size_type amt;
6360 size_t bucketcount;
6361
6362 memset (&cinfo, 0, sizeof (cinfo));
6363
6364 /* Compute the hash values for all exported symbols. At the same
6365 time store the values in an array so that we could use them for
6366 optimizations. */
6367 amt = dynsymcount * 2 * sizeof (unsigned long int);
6368 cinfo.hashcodes = bfd_malloc (amt);
6369 if (cinfo.hashcodes == NULL)
6370 return FALSE;
6371
6372 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6373 cinfo.min_dynindx = -1;
6374 cinfo.output_bfd = output_bfd;
6375 cinfo.bed = bed;
6376
6377 /* Put all hash values in HASHCODES. */
6378 elf_link_hash_traverse (elf_hash_table (info),
6379 elf_collect_gnu_hash_codes, &cinfo);
6380 if (cinfo.error)
6381 {
6382 free (cinfo.hashcodes);
6383 return FALSE;
6384 }
6385
6386 bucketcount
6387 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6388
6389 if (bucketcount == 0)
6390 {
6391 free (cinfo.hashcodes);
6392 return FALSE;
6393 }
6394
6395 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6396 BFD_ASSERT (s != NULL);
6397
6398 if (cinfo.nsyms == 0)
6399 {
6400 /* Empty .gnu.hash section is special. */
6401 BFD_ASSERT (cinfo.min_dynindx == -1);
6402 free (cinfo.hashcodes);
6403 s->size = 5 * 4 + bed->s->arch_size / 8;
6404 contents = bfd_zalloc (output_bfd, s->size);
6405 if (contents == NULL)
6406 return FALSE;
6407 s->contents = contents;
6408 /* 1 empty bucket. */
6409 bfd_put_32 (output_bfd, 1, contents);
6410 /* SYMIDX above the special symbol 0. */
6411 bfd_put_32 (output_bfd, 1, contents + 4);
6412 /* Just one word for bitmask. */
6413 bfd_put_32 (output_bfd, 1, contents + 8);
6414 /* Only hash fn bloom filter. */
6415 bfd_put_32 (output_bfd, 0, contents + 12);
6416 /* No hashes are valid - empty bitmask. */
6417 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6418 /* No hashes in the only bucket. */
6419 bfd_put_32 (output_bfd, 0,
6420 contents + 16 + bed->s->arch_size / 8);
6421 }
6422 else
6423 {
6424 unsigned long int maskwords, maskbitslog2;
6425 BFD_ASSERT (cinfo.min_dynindx != -1);
6426
6427 maskbitslog2 = bfd_log2 (cinfo.nsyms) + 1;
6428 if (maskbitslog2 < 3)
6429 maskbitslog2 = 5;
6430 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6431 maskbitslog2 = maskbitslog2 + 3;
6432 else
6433 maskbitslog2 = maskbitslog2 + 2;
6434 if (bed->s->arch_size == 64)
6435 {
6436 if (maskbitslog2 == 5)
6437 maskbitslog2 = 6;
6438 cinfo.shift1 = 6;
6439 }
6440 else
6441 cinfo.shift1 = 5;
6442 cinfo.mask = (1 << cinfo.shift1) - 1;
6443 cinfo.shift2 = maskbitslog2;
6444 cinfo.maskbits = 1 << maskbitslog2;
6445 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6446 amt = bucketcount * sizeof (unsigned long int) * 2;
6447 amt += maskwords * sizeof (bfd_vma);
6448 cinfo.bitmask = bfd_malloc (amt);
6449 if (cinfo.bitmask == NULL)
6450 {
6451 free (cinfo.hashcodes);
6452 return FALSE;
6453 }
6454
6455 cinfo.counts = (void *) (cinfo.bitmask + maskwords);
6456 cinfo.indx = cinfo.counts + bucketcount;
6457 cinfo.symindx = dynsymcount - cinfo.nsyms;
6458 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6459
6460 /* Determine how often each hash bucket is used. */
6461 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6462 for (i = 0; i < cinfo.nsyms; ++i)
6463 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6464
6465 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6466 if (cinfo.counts[i] != 0)
6467 {
6468 cinfo.indx[i] = cnt;
6469 cnt += cinfo.counts[i];
6470 }
6471 BFD_ASSERT (cnt == dynsymcount);
6472 cinfo.bucketcount = bucketcount;
6473 cinfo.local_indx = cinfo.min_dynindx;
6474
6475 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6476 s->size += cinfo.maskbits / 8;
6477 contents = bfd_zalloc (output_bfd, s->size);
6478 if (contents == NULL)
6479 {
6480 free (cinfo.bitmask);
6481 free (cinfo.hashcodes);
6482 return FALSE;
6483 }
6484
6485 s->contents = contents;
6486 bfd_put_32 (output_bfd, bucketcount, contents);
6487 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6488 bfd_put_32 (output_bfd, maskwords, contents + 8);
6489 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6490 contents += 16 + cinfo.maskbits / 8;
6491
6492 for (i = 0; i < bucketcount; ++i)
6493 {
6494 if (cinfo.counts[i] == 0)
6495 bfd_put_32 (output_bfd, 0, contents);
6496 else
6497 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6498 contents += 4;
6499 }
6500
6501 cinfo.contents = contents;
6502
6503 /* Renumber dynamic symbols, populate .gnu.hash section. */
6504 elf_link_hash_traverse (elf_hash_table (info),
6505 elf_renumber_gnu_hash_syms, &cinfo);
6506
6507 contents = s->contents + 16;
6508 for (i = 0; i < maskwords; ++i)
6509 {
6510 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6511 contents);
6512 contents += bed->s->arch_size / 8;
6513 }
6514
6515 free (cinfo.bitmask);
6516 free (cinfo.hashcodes);
6517 }
6518 }
6519
6520 s = bfd_get_section_by_name (dynobj, ".dynstr");
6521 BFD_ASSERT (s != NULL);
6522
6523 elf_finalize_dynstr (output_bfd, info);
6524
6525 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6526
6527 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6528 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6529 return FALSE;
6530 }
6531
6532 return TRUE;
6533 }
6534 \f
6535 /* Indicate that we are only retrieving symbol values from this
6536 section. */
6537
6538 void
6539 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6540 {
6541 if (is_elf_hash_table (info->hash))
6542 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6543 _bfd_generic_link_just_syms (sec, info);
6544 }
6545
6546 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6547
6548 static void
6549 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6550 asection *sec)
6551 {
6552 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6553 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6554 }
6555
6556 /* Finish SHF_MERGE section merging. */
6557
6558 bfd_boolean
6559 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6560 {
6561 bfd *ibfd;
6562 asection *sec;
6563
6564 if (!is_elf_hash_table (info->hash))
6565 return FALSE;
6566
6567 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6568 if ((ibfd->flags & DYNAMIC) == 0)
6569 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6570 if ((sec->flags & SEC_MERGE) != 0
6571 && !bfd_is_abs_section (sec->output_section))
6572 {
6573 struct bfd_elf_section_data *secdata;
6574
6575 secdata = elf_section_data (sec);
6576 if (! _bfd_add_merge_section (abfd,
6577 &elf_hash_table (info)->merge_info,
6578 sec, &secdata->sec_info))
6579 return FALSE;
6580 else if (secdata->sec_info)
6581 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6582 }
6583
6584 if (elf_hash_table (info)->merge_info != NULL)
6585 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6586 merge_sections_remove_hook);
6587 return TRUE;
6588 }
6589
6590 /* Create an entry in an ELF linker hash table. */
6591
6592 struct bfd_hash_entry *
6593 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6594 struct bfd_hash_table *table,
6595 const char *string)
6596 {
6597 /* Allocate the structure if it has not already been allocated by a
6598 subclass. */
6599 if (entry == NULL)
6600 {
6601 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6602 if (entry == NULL)
6603 return entry;
6604 }
6605
6606 /* Call the allocation method of the superclass. */
6607 entry = _bfd_link_hash_newfunc (entry, table, string);
6608 if (entry != NULL)
6609 {
6610 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6611 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6612
6613 /* Set local fields. */
6614 ret->indx = -1;
6615 ret->dynindx = -1;
6616 ret->got = htab->init_got_refcount;
6617 ret->plt = htab->init_plt_refcount;
6618 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6619 - offsetof (struct elf_link_hash_entry, size)));
6620 /* Assume that we have been called by a non-ELF symbol reader.
6621 This flag is then reset by the code which reads an ELF input
6622 file. This ensures that a symbol created by a non-ELF symbol
6623 reader will have the flag set correctly. */
6624 ret->non_elf = 1;
6625 }
6626
6627 return entry;
6628 }
6629
6630 /* Copy data from an indirect symbol to its direct symbol, hiding the
6631 old indirect symbol. Also used for copying flags to a weakdef. */
6632
6633 void
6634 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6635 struct elf_link_hash_entry *dir,
6636 struct elf_link_hash_entry *ind)
6637 {
6638 struct elf_link_hash_table *htab;
6639
6640 /* Copy down any references that we may have already seen to the
6641 symbol which just became indirect. */
6642
6643 dir->ref_dynamic |= ind->ref_dynamic;
6644 dir->ref_regular |= ind->ref_regular;
6645 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6646 dir->non_got_ref |= ind->non_got_ref;
6647 dir->needs_plt |= ind->needs_plt;
6648 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6649
6650 if (ind->root.type != bfd_link_hash_indirect)
6651 return;
6652
6653 /* Copy over the global and procedure linkage table refcount entries.
6654 These may have been already set up by a check_relocs routine. */
6655 htab = elf_hash_table (info);
6656 if (ind->got.refcount > htab->init_got_refcount.refcount)
6657 {
6658 if (dir->got.refcount < 0)
6659 dir->got.refcount = 0;
6660 dir->got.refcount += ind->got.refcount;
6661 ind->got.refcount = htab->init_got_refcount.refcount;
6662 }
6663
6664 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6665 {
6666 if (dir->plt.refcount < 0)
6667 dir->plt.refcount = 0;
6668 dir->plt.refcount += ind->plt.refcount;
6669 ind->plt.refcount = htab->init_plt_refcount.refcount;
6670 }
6671
6672 if (ind->dynindx != -1)
6673 {
6674 if (dir->dynindx != -1)
6675 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6676 dir->dynindx = ind->dynindx;
6677 dir->dynstr_index = ind->dynstr_index;
6678 ind->dynindx = -1;
6679 ind->dynstr_index = 0;
6680 }
6681 }
6682
6683 void
6684 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6685 struct elf_link_hash_entry *h,
6686 bfd_boolean force_local)
6687 {
6688 /* STT_GNU_IFUNC symbol must go through PLT. */
6689 if (h->type != STT_GNU_IFUNC)
6690 {
6691 h->plt = elf_hash_table (info)->init_plt_offset;
6692 h->needs_plt = 0;
6693 }
6694 if (force_local)
6695 {
6696 h->forced_local = 1;
6697 if (h->dynindx != -1)
6698 {
6699 h->dynindx = -1;
6700 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6701 h->dynstr_index);
6702 }
6703 }
6704 }
6705
6706 /* Initialize an ELF linker hash table. */
6707
6708 bfd_boolean
6709 _bfd_elf_link_hash_table_init
6710 (struct elf_link_hash_table *table,
6711 bfd *abfd,
6712 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6713 struct bfd_hash_table *,
6714 const char *),
6715 unsigned int entsize)
6716 {
6717 bfd_boolean ret;
6718 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6719
6720 memset (table, 0, sizeof * table);
6721 table->init_got_refcount.refcount = can_refcount - 1;
6722 table->init_plt_refcount.refcount = can_refcount - 1;
6723 table->init_got_offset.offset = -(bfd_vma) 1;
6724 table->init_plt_offset.offset = -(bfd_vma) 1;
6725 /* The first dynamic symbol is a dummy. */
6726 table->dynsymcount = 1;
6727
6728 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6729 table->root.type = bfd_link_elf_hash_table;
6730
6731 return ret;
6732 }
6733
6734 /* Create an ELF linker hash table. */
6735
6736 struct bfd_link_hash_table *
6737 _bfd_elf_link_hash_table_create (bfd *abfd)
6738 {
6739 struct elf_link_hash_table *ret;
6740 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6741
6742 ret = bfd_malloc (amt);
6743 if (ret == NULL)
6744 return NULL;
6745
6746 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6747 sizeof (struct elf_link_hash_entry)))
6748 {
6749 free (ret);
6750 return NULL;
6751 }
6752
6753 return &ret->root;
6754 }
6755
6756 /* This is a hook for the ELF emulation code in the generic linker to
6757 tell the backend linker what file name to use for the DT_NEEDED
6758 entry for a dynamic object. */
6759
6760 void
6761 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6762 {
6763 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6764 && bfd_get_format (abfd) == bfd_object)
6765 elf_dt_name (abfd) = name;
6766 }
6767
6768 int
6769 bfd_elf_get_dyn_lib_class (bfd *abfd)
6770 {
6771 int lib_class;
6772 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6773 && bfd_get_format (abfd) == bfd_object)
6774 lib_class = elf_dyn_lib_class (abfd);
6775 else
6776 lib_class = 0;
6777 return lib_class;
6778 }
6779
6780 void
6781 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6782 {
6783 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6784 && bfd_get_format (abfd) == bfd_object)
6785 elf_dyn_lib_class (abfd) = lib_class;
6786 }
6787
6788 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6789 the linker ELF emulation code. */
6790
6791 struct bfd_link_needed_list *
6792 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6793 struct bfd_link_info *info)
6794 {
6795 if (! is_elf_hash_table (info->hash))
6796 return NULL;
6797 return elf_hash_table (info)->needed;
6798 }
6799
6800 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6801 hook for the linker ELF emulation code. */
6802
6803 struct bfd_link_needed_list *
6804 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6805 struct bfd_link_info *info)
6806 {
6807 if (! is_elf_hash_table (info->hash))
6808 return NULL;
6809 return elf_hash_table (info)->runpath;
6810 }
6811
6812 /* Get the name actually used for a dynamic object for a link. This
6813 is the SONAME entry if there is one. Otherwise, it is the string
6814 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6815
6816 const char *
6817 bfd_elf_get_dt_soname (bfd *abfd)
6818 {
6819 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6820 && bfd_get_format (abfd) == bfd_object)
6821 return elf_dt_name (abfd);
6822 return NULL;
6823 }
6824
6825 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6826 the ELF linker emulation code. */
6827
6828 bfd_boolean
6829 bfd_elf_get_bfd_needed_list (bfd *abfd,
6830 struct bfd_link_needed_list **pneeded)
6831 {
6832 asection *s;
6833 bfd_byte *dynbuf = NULL;
6834 unsigned int elfsec;
6835 unsigned long shlink;
6836 bfd_byte *extdyn, *extdynend;
6837 size_t extdynsize;
6838 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6839
6840 *pneeded = NULL;
6841
6842 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6843 || bfd_get_format (abfd) != bfd_object)
6844 return TRUE;
6845
6846 s = bfd_get_section_by_name (abfd, ".dynamic");
6847 if (s == NULL || s->size == 0)
6848 return TRUE;
6849
6850 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6851 goto error_return;
6852
6853 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6854 if (elfsec == SHN_BAD)
6855 goto error_return;
6856
6857 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6858
6859 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6860 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6861
6862 extdyn = dynbuf;
6863 extdynend = extdyn + s->size;
6864 for (; extdyn < extdynend; extdyn += extdynsize)
6865 {
6866 Elf_Internal_Dyn dyn;
6867
6868 (*swap_dyn_in) (abfd, extdyn, &dyn);
6869
6870 if (dyn.d_tag == DT_NULL)
6871 break;
6872
6873 if (dyn.d_tag == DT_NEEDED)
6874 {
6875 const char *string;
6876 struct bfd_link_needed_list *l;
6877 unsigned int tagv = dyn.d_un.d_val;
6878 bfd_size_type amt;
6879
6880 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6881 if (string == NULL)
6882 goto error_return;
6883
6884 amt = sizeof *l;
6885 l = bfd_alloc (abfd, amt);
6886 if (l == NULL)
6887 goto error_return;
6888
6889 l->by = abfd;
6890 l->name = string;
6891 l->next = *pneeded;
6892 *pneeded = l;
6893 }
6894 }
6895
6896 free (dynbuf);
6897
6898 return TRUE;
6899
6900 error_return:
6901 if (dynbuf != NULL)
6902 free (dynbuf);
6903 return FALSE;
6904 }
6905
6906 struct elf_symbuf_symbol
6907 {
6908 unsigned long st_name; /* Symbol name, index in string tbl */
6909 unsigned char st_info; /* Type and binding attributes */
6910 unsigned char st_other; /* Visibilty, and target specific */
6911 };
6912
6913 struct elf_symbuf_head
6914 {
6915 struct elf_symbuf_symbol *ssym;
6916 bfd_size_type count;
6917 unsigned int st_shndx;
6918 };
6919
6920 struct elf_symbol
6921 {
6922 union
6923 {
6924 Elf_Internal_Sym *isym;
6925 struct elf_symbuf_symbol *ssym;
6926 } u;
6927 const char *name;
6928 };
6929
6930 /* Sort references to symbols by ascending section number. */
6931
6932 static int
6933 elf_sort_elf_symbol (const void *arg1, const void *arg2)
6934 {
6935 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
6936 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
6937
6938 return s1->st_shndx - s2->st_shndx;
6939 }
6940
6941 static int
6942 elf_sym_name_compare (const void *arg1, const void *arg2)
6943 {
6944 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
6945 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
6946 return strcmp (s1->name, s2->name);
6947 }
6948
6949 static struct elf_symbuf_head *
6950 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
6951 {
6952 Elf_Internal_Sym **ind, **indbufend, **indbuf;
6953 struct elf_symbuf_symbol *ssym;
6954 struct elf_symbuf_head *ssymbuf, *ssymhead;
6955 bfd_size_type i, shndx_count, total_size;
6956
6957 indbuf = bfd_malloc2 (symcount, sizeof (*indbuf));
6958 if (indbuf == NULL)
6959 return NULL;
6960
6961 for (ind = indbuf, i = 0; i < symcount; i++)
6962 if (isymbuf[i].st_shndx != SHN_UNDEF)
6963 *ind++ = &isymbuf[i];
6964 indbufend = ind;
6965
6966 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
6967 elf_sort_elf_symbol);
6968
6969 shndx_count = 0;
6970 if (indbufend > indbuf)
6971 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
6972 if (ind[0]->st_shndx != ind[1]->st_shndx)
6973 shndx_count++;
6974
6975 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
6976 + (indbufend - indbuf) * sizeof (*ssym));
6977 ssymbuf = bfd_malloc (total_size);
6978 if (ssymbuf == NULL)
6979 {
6980 free (indbuf);
6981 return NULL;
6982 }
6983
6984 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
6985 ssymbuf->ssym = NULL;
6986 ssymbuf->count = shndx_count;
6987 ssymbuf->st_shndx = 0;
6988 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
6989 {
6990 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
6991 {
6992 ssymhead++;
6993 ssymhead->ssym = ssym;
6994 ssymhead->count = 0;
6995 ssymhead->st_shndx = (*ind)->st_shndx;
6996 }
6997 ssym->st_name = (*ind)->st_name;
6998 ssym->st_info = (*ind)->st_info;
6999 ssym->st_other = (*ind)->st_other;
7000 ssymhead->count++;
7001 }
7002 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7003 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7004 == total_size));
7005
7006 free (indbuf);
7007 return ssymbuf;
7008 }
7009
7010 /* Check if 2 sections define the same set of local and global
7011 symbols. */
7012
7013 static bfd_boolean
7014 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7015 struct bfd_link_info *info)
7016 {
7017 bfd *bfd1, *bfd2;
7018 const struct elf_backend_data *bed1, *bed2;
7019 Elf_Internal_Shdr *hdr1, *hdr2;
7020 bfd_size_type symcount1, symcount2;
7021 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7022 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7023 Elf_Internal_Sym *isym, *isymend;
7024 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7025 bfd_size_type count1, count2, i;
7026 unsigned int shndx1, shndx2;
7027 bfd_boolean result;
7028
7029 bfd1 = sec1->owner;
7030 bfd2 = sec2->owner;
7031
7032 /* Both sections have to be in ELF. */
7033 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7034 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7035 return FALSE;
7036
7037 if (elf_section_type (sec1) != elf_section_type (sec2))
7038 return FALSE;
7039
7040 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7041 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7042 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7043 return FALSE;
7044
7045 bed1 = get_elf_backend_data (bfd1);
7046 bed2 = get_elf_backend_data (bfd2);
7047 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7048 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7049 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7050 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7051
7052 if (symcount1 == 0 || symcount2 == 0)
7053 return FALSE;
7054
7055 result = FALSE;
7056 isymbuf1 = NULL;
7057 isymbuf2 = NULL;
7058 ssymbuf1 = elf_tdata (bfd1)->symbuf;
7059 ssymbuf2 = elf_tdata (bfd2)->symbuf;
7060
7061 if (ssymbuf1 == NULL)
7062 {
7063 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7064 NULL, NULL, NULL);
7065 if (isymbuf1 == NULL)
7066 goto done;
7067
7068 if (!info->reduce_memory_overheads)
7069 elf_tdata (bfd1)->symbuf = ssymbuf1
7070 = elf_create_symbuf (symcount1, isymbuf1);
7071 }
7072
7073 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7074 {
7075 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7076 NULL, NULL, NULL);
7077 if (isymbuf2 == NULL)
7078 goto done;
7079
7080 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7081 elf_tdata (bfd2)->symbuf = ssymbuf2
7082 = elf_create_symbuf (symcount2, isymbuf2);
7083 }
7084
7085 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7086 {
7087 /* Optimized faster version. */
7088 bfd_size_type lo, hi, mid;
7089 struct elf_symbol *symp;
7090 struct elf_symbuf_symbol *ssym, *ssymend;
7091
7092 lo = 0;
7093 hi = ssymbuf1->count;
7094 ssymbuf1++;
7095 count1 = 0;
7096 while (lo < hi)
7097 {
7098 mid = (lo + hi) / 2;
7099 if (shndx1 < ssymbuf1[mid].st_shndx)
7100 hi = mid;
7101 else if (shndx1 > ssymbuf1[mid].st_shndx)
7102 lo = mid + 1;
7103 else
7104 {
7105 count1 = ssymbuf1[mid].count;
7106 ssymbuf1 += mid;
7107 break;
7108 }
7109 }
7110
7111 lo = 0;
7112 hi = ssymbuf2->count;
7113 ssymbuf2++;
7114 count2 = 0;
7115 while (lo < hi)
7116 {
7117 mid = (lo + hi) / 2;
7118 if (shndx2 < ssymbuf2[mid].st_shndx)
7119 hi = mid;
7120 else if (shndx2 > ssymbuf2[mid].st_shndx)
7121 lo = mid + 1;
7122 else
7123 {
7124 count2 = ssymbuf2[mid].count;
7125 ssymbuf2 += mid;
7126 break;
7127 }
7128 }
7129
7130 if (count1 == 0 || count2 == 0 || count1 != count2)
7131 goto done;
7132
7133 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
7134 symtable2 = bfd_malloc (count2 * sizeof (struct elf_symbol));
7135 if (symtable1 == NULL || symtable2 == NULL)
7136 goto done;
7137
7138 symp = symtable1;
7139 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7140 ssym < ssymend; ssym++, symp++)
7141 {
7142 symp->u.ssym = ssym;
7143 symp->name = bfd_elf_string_from_elf_section (bfd1,
7144 hdr1->sh_link,
7145 ssym->st_name);
7146 }
7147
7148 symp = symtable2;
7149 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7150 ssym < ssymend; ssym++, symp++)
7151 {
7152 symp->u.ssym = ssym;
7153 symp->name = bfd_elf_string_from_elf_section (bfd2,
7154 hdr2->sh_link,
7155 ssym->st_name);
7156 }
7157
7158 /* Sort symbol by name. */
7159 qsort (symtable1, count1, sizeof (struct elf_symbol),
7160 elf_sym_name_compare);
7161 qsort (symtable2, count1, sizeof (struct elf_symbol),
7162 elf_sym_name_compare);
7163
7164 for (i = 0; i < count1; i++)
7165 /* Two symbols must have the same binding, type and name. */
7166 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7167 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7168 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7169 goto done;
7170
7171 result = TRUE;
7172 goto done;
7173 }
7174
7175 symtable1 = bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7176 symtable2 = bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7177 if (symtable1 == NULL || symtable2 == NULL)
7178 goto done;
7179
7180 /* Count definitions in the section. */
7181 count1 = 0;
7182 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7183 if (isym->st_shndx == shndx1)
7184 symtable1[count1++].u.isym = isym;
7185
7186 count2 = 0;
7187 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7188 if (isym->st_shndx == shndx2)
7189 symtable2[count2++].u.isym = isym;
7190
7191 if (count1 == 0 || count2 == 0 || count1 != count2)
7192 goto done;
7193
7194 for (i = 0; i < count1; i++)
7195 symtable1[i].name
7196 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7197 symtable1[i].u.isym->st_name);
7198
7199 for (i = 0; i < count2; i++)
7200 symtable2[i].name
7201 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7202 symtable2[i].u.isym->st_name);
7203
7204 /* Sort symbol by name. */
7205 qsort (symtable1, count1, sizeof (struct elf_symbol),
7206 elf_sym_name_compare);
7207 qsort (symtable2, count1, sizeof (struct elf_symbol),
7208 elf_sym_name_compare);
7209
7210 for (i = 0; i < count1; i++)
7211 /* Two symbols must have the same binding, type and name. */
7212 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7213 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7214 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7215 goto done;
7216
7217 result = TRUE;
7218
7219 done:
7220 if (symtable1)
7221 free (symtable1);
7222 if (symtable2)
7223 free (symtable2);
7224 if (isymbuf1)
7225 free (isymbuf1);
7226 if (isymbuf2)
7227 free (isymbuf2);
7228
7229 return result;
7230 }
7231
7232 /* Return TRUE if 2 section types are compatible. */
7233
7234 bfd_boolean
7235 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7236 bfd *bbfd, const asection *bsec)
7237 {
7238 if (asec == NULL
7239 || bsec == NULL
7240 || abfd->xvec->flavour != bfd_target_elf_flavour
7241 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7242 return TRUE;
7243
7244 return elf_section_type (asec) == elf_section_type (bsec);
7245 }
7246 \f
7247 /* Final phase of ELF linker. */
7248
7249 /* A structure we use to avoid passing large numbers of arguments. */
7250
7251 struct elf_final_link_info
7252 {
7253 /* General link information. */
7254 struct bfd_link_info *info;
7255 /* Output BFD. */
7256 bfd *output_bfd;
7257 /* Symbol string table. */
7258 struct bfd_strtab_hash *symstrtab;
7259 /* .dynsym section. */
7260 asection *dynsym_sec;
7261 /* .hash section. */
7262 asection *hash_sec;
7263 /* symbol version section (.gnu.version). */
7264 asection *symver_sec;
7265 /* Buffer large enough to hold contents of any section. */
7266 bfd_byte *contents;
7267 /* Buffer large enough to hold external relocs of any section. */
7268 void *external_relocs;
7269 /* Buffer large enough to hold internal relocs of any section. */
7270 Elf_Internal_Rela *internal_relocs;
7271 /* Buffer large enough to hold external local symbols of any input
7272 BFD. */
7273 bfd_byte *external_syms;
7274 /* And a buffer for symbol section indices. */
7275 Elf_External_Sym_Shndx *locsym_shndx;
7276 /* Buffer large enough to hold internal local symbols of any input
7277 BFD. */
7278 Elf_Internal_Sym *internal_syms;
7279 /* Array large enough to hold a symbol index for each local symbol
7280 of any input BFD. */
7281 long *indices;
7282 /* Array large enough to hold a section pointer for each local
7283 symbol of any input BFD. */
7284 asection **sections;
7285 /* Buffer to hold swapped out symbols. */
7286 bfd_byte *symbuf;
7287 /* And one for symbol section indices. */
7288 Elf_External_Sym_Shndx *symshndxbuf;
7289 /* Number of swapped out symbols in buffer. */
7290 size_t symbuf_count;
7291 /* Number of symbols which fit in symbuf. */
7292 size_t symbuf_size;
7293 /* And same for symshndxbuf. */
7294 size_t shndxbuf_size;
7295 };
7296
7297 /* This struct is used to pass information to elf_link_output_extsym. */
7298
7299 struct elf_outext_info
7300 {
7301 bfd_boolean failed;
7302 bfd_boolean localsyms;
7303 struct elf_final_link_info *finfo;
7304 };
7305
7306
7307 /* Support for evaluating a complex relocation.
7308
7309 Complex relocations are generalized, self-describing relocations. The
7310 implementation of them consists of two parts: complex symbols, and the
7311 relocations themselves.
7312
7313 The relocations are use a reserved elf-wide relocation type code (R_RELC
7314 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7315 information (start bit, end bit, word width, etc) into the addend. This
7316 information is extracted from CGEN-generated operand tables within gas.
7317
7318 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7319 internal) representing prefix-notation expressions, including but not
7320 limited to those sorts of expressions normally encoded as addends in the
7321 addend field. The symbol mangling format is:
7322
7323 <node> := <literal>
7324 | <unary-operator> ':' <node>
7325 | <binary-operator> ':' <node> ':' <node>
7326 ;
7327
7328 <literal> := 's' <digits=N> ':' <N character symbol name>
7329 | 'S' <digits=N> ':' <N character section name>
7330 | '#' <hexdigits>
7331 ;
7332
7333 <binary-operator> := as in C
7334 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7335
7336 static void
7337 set_symbol_value (bfd *bfd_with_globals,
7338 Elf_Internal_Sym *isymbuf,
7339 size_t locsymcount,
7340 size_t symidx,
7341 bfd_vma val)
7342 {
7343 struct elf_link_hash_entry **sym_hashes;
7344 struct elf_link_hash_entry *h;
7345 size_t extsymoff = locsymcount;
7346
7347 if (symidx < locsymcount)
7348 {
7349 Elf_Internal_Sym *sym;
7350
7351 sym = isymbuf + symidx;
7352 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7353 {
7354 /* It is a local symbol: move it to the
7355 "absolute" section and give it a value. */
7356 sym->st_shndx = SHN_ABS;
7357 sym->st_value = val;
7358 return;
7359 }
7360 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7361 extsymoff = 0;
7362 }
7363
7364 /* It is a global symbol: set its link type
7365 to "defined" and give it a value. */
7366
7367 sym_hashes = elf_sym_hashes (bfd_with_globals);
7368 h = sym_hashes [symidx - extsymoff];
7369 while (h->root.type == bfd_link_hash_indirect
7370 || h->root.type == bfd_link_hash_warning)
7371 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7372 h->root.type = bfd_link_hash_defined;
7373 h->root.u.def.value = val;
7374 h->root.u.def.section = bfd_abs_section_ptr;
7375 }
7376
7377 static bfd_boolean
7378 resolve_symbol (const char *name,
7379 bfd *input_bfd,
7380 struct elf_final_link_info *finfo,
7381 bfd_vma *result,
7382 Elf_Internal_Sym *isymbuf,
7383 size_t locsymcount)
7384 {
7385 Elf_Internal_Sym *sym;
7386 struct bfd_link_hash_entry *global_entry;
7387 const char *candidate = NULL;
7388 Elf_Internal_Shdr *symtab_hdr;
7389 size_t i;
7390
7391 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7392
7393 for (i = 0; i < locsymcount; ++ i)
7394 {
7395 sym = isymbuf + i;
7396
7397 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7398 continue;
7399
7400 candidate = bfd_elf_string_from_elf_section (input_bfd,
7401 symtab_hdr->sh_link,
7402 sym->st_name);
7403 #ifdef DEBUG
7404 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7405 name, candidate, (unsigned long) sym->st_value);
7406 #endif
7407 if (candidate && strcmp (candidate, name) == 0)
7408 {
7409 asection *sec = finfo->sections [i];
7410
7411 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7412 *result += sec->output_offset + sec->output_section->vma;
7413 #ifdef DEBUG
7414 printf ("Found symbol with value %8.8lx\n",
7415 (unsigned long) *result);
7416 #endif
7417 return TRUE;
7418 }
7419 }
7420
7421 /* Hmm, haven't found it yet. perhaps it is a global. */
7422 global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7423 FALSE, FALSE, TRUE);
7424 if (!global_entry)
7425 return FALSE;
7426
7427 if (global_entry->type == bfd_link_hash_defined
7428 || global_entry->type == bfd_link_hash_defweak)
7429 {
7430 *result = (global_entry->u.def.value
7431 + global_entry->u.def.section->output_section->vma
7432 + global_entry->u.def.section->output_offset);
7433 #ifdef DEBUG
7434 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7435 global_entry->root.string, (unsigned long) *result);
7436 #endif
7437 return TRUE;
7438 }
7439
7440 return FALSE;
7441 }
7442
7443 static bfd_boolean
7444 resolve_section (const char *name,
7445 asection *sections,
7446 bfd_vma *result)
7447 {
7448 asection *curr;
7449 unsigned int len;
7450
7451 for (curr = sections; curr; curr = curr->next)
7452 if (strcmp (curr->name, name) == 0)
7453 {
7454 *result = curr->vma;
7455 return TRUE;
7456 }
7457
7458 /* Hmm. still haven't found it. try pseudo-section names. */
7459 for (curr = sections; curr; curr = curr->next)
7460 {
7461 len = strlen (curr->name);
7462 if (len > strlen (name))
7463 continue;
7464
7465 if (strncmp (curr->name, name, len) == 0)
7466 {
7467 if (strncmp (".end", name + len, 4) == 0)
7468 {
7469 *result = curr->vma + curr->size;
7470 return TRUE;
7471 }
7472
7473 /* Insert more pseudo-section names here, if you like. */
7474 }
7475 }
7476
7477 return FALSE;
7478 }
7479
7480 static void
7481 undefined_reference (const char *reftype, const char *name)
7482 {
7483 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7484 reftype, name);
7485 }
7486
7487 static bfd_boolean
7488 eval_symbol (bfd_vma *result,
7489 const char **symp,
7490 bfd *input_bfd,
7491 struct elf_final_link_info *finfo,
7492 bfd_vma dot,
7493 Elf_Internal_Sym *isymbuf,
7494 size_t locsymcount,
7495 int signed_p)
7496 {
7497 size_t len;
7498 size_t symlen;
7499 bfd_vma a;
7500 bfd_vma b;
7501 char symbuf[4096];
7502 const char *sym = *symp;
7503 const char *symend;
7504 bfd_boolean symbol_is_section = FALSE;
7505
7506 len = strlen (sym);
7507 symend = sym + len;
7508
7509 if (len < 1 || len > sizeof (symbuf))
7510 {
7511 bfd_set_error (bfd_error_invalid_operation);
7512 return FALSE;
7513 }
7514
7515 switch (* sym)
7516 {
7517 case '.':
7518 *result = dot;
7519 *symp = sym + 1;
7520 return TRUE;
7521
7522 case '#':
7523 ++sym;
7524 *result = strtoul (sym, (char **) symp, 16);
7525 return TRUE;
7526
7527 case 'S':
7528 symbol_is_section = TRUE;
7529 case 's':
7530 ++sym;
7531 symlen = strtol (sym, (char **) symp, 10);
7532 sym = *symp + 1; /* Skip the trailing ':'. */
7533
7534 if (symend < sym || symlen + 1 > sizeof (symbuf))
7535 {
7536 bfd_set_error (bfd_error_invalid_operation);
7537 return FALSE;
7538 }
7539
7540 memcpy (symbuf, sym, symlen);
7541 symbuf[symlen] = '\0';
7542 *symp = sym + symlen;
7543
7544 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7545 the symbol as a section, or vice-versa. so we're pretty liberal in our
7546 interpretation here; section means "try section first", not "must be a
7547 section", and likewise with symbol. */
7548
7549 if (symbol_is_section)
7550 {
7551 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7552 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7553 isymbuf, locsymcount))
7554 {
7555 undefined_reference ("section", symbuf);
7556 return FALSE;
7557 }
7558 }
7559 else
7560 {
7561 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7562 isymbuf, locsymcount)
7563 && !resolve_section (symbuf, finfo->output_bfd->sections,
7564 result))
7565 {
7566 undefined_reference ("symbol", symbuf);
7567 return FALSE;
7568 }
7569 }
7570
7571 return TRUE;
7572
7573 /* All that remains are operators. */
7574
7575 #define UNARY_OP(op) \
7576 if (strncmp (sym, #op, strlen (#op)) == 0) \
7577 { \
7578 sym += strlen (#op); \
7579 if (*sym == ':') \
7580 ++sym; \
7581 *symp = sym; \
7582 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7583 isymbuf, locsymcount, signed_p)) \
7584 return FALSE; \
7585 if (signed_p) \
7586 *result = op ((bfd_signed_vma) a); \
7587 else \
7588 *result = op a; \
7589 return TRUE; \
7590 }
7591
7592 #define BINARY_OP(op) \
7593 if (strncmp (sym, #op, strlen (#op)) == 0) \
7594 { \
7595 sym += strlen (#op); \
7596 if (*sym == ':') \
7597 ++sym; \
7598 *symp = sym; \
7599 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7600 isymbuf, locsymcount, signed_p)) \
7601 return FALSE; \
7602 ++*symp; \
7603 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7604 isymbuf, locsymcount, signed_p)) \
7605 return FALSE; \
7606 if (signed_p) \
7607 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7608 else \
7609 *result = a op b; \
7610 return TRUE; \
7611 }
7612
7613 default:
7614 UNARY_OP (0-);
7615 BINARY_OP (<<);
7616 BINARY_OP (>>);
7617 BINARY_OP (==);
7618 BINARY_OP (!=);
7619 BINARY_OP (<=);
7620 BINARY_OP (>=);
7621 BINARY_OP (&&);
7622 BINARY_OP (||);
7623 UNARY_OP (~);
7624 UNARY_OP (!);
7625 BINARY_OP (*);
7626 BINARY_OP (/);
7627 BINARY_OP (%);
7628 BINARY_OP (^);
7629 BINARY_OP (|);
7630 BINARY_OP (&);
7631 BINARY_OP (+);
7632 BINARY_OP (-);
7633 BINARY_OP (<);
7634 BINARY_OP (>);
7635 #undef UNARY_OP
7636 #undef BINARY_OP
7637 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7638 bfd_set_error (bfd_error_invalid_operation);
7639 return FALSE;
7640 }
7641 }
7642
7643 static void
7644 put_value (bfd_vma size,
7645 unsigned long chunksz,
7646 bfd *input_bfd,
7647 bfd_vma x,
7648 bfd_byte *location)
7649 {
7650 location += (size - chunksz);
7651
7652 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7653 {
7654 switch (chunksz)
7655 {
7656 default:
7657 case 0:
7658 abort ();
7659 case 1:
7660 bfd_put_8 (input_bfd, x, location);
7661 break;
7662 case 2:
7663 bfd_put_16 (input_bfd, x, location);
7664 break;
7665 case 4:
7666 bfd_put_32 (input_bfd, x, location);
7667 break;
7668 case 8:
7669 #ifdef BFD64
7670 bfd_put_64 (input_bfd, x, location);
7671 #else
7672 abort ();
7673 #endif
7674 break;
7675 }
7676 }
7677 }
7678
7679 static bfd_vma
7680 get_value (bfd_vma size,
7681 unsigned long chunksz,
7682 bfd *input_bfd,
7683 bfd_byte *location)
7684 {
7685 bfd_vma x = 0;
7686
7687 for (; size; size -= chunksz, location += chunksz)
7688 {
7689 switch (chunksz)
7690 {
7691 default:
7692 case 0:
7693 abort ();
7694 case 1:
7695 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7696 break;
7697 case 2:
7698 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7699 break;
7700 case 4:
7701 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7702 break;
7703 case 8:
7704 #ifdef BFD64
7705 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7706 #else
7707 abort ();
7708 #endif
7709 break;
7710 }
7711 }
7712 return x;
7713 }
7714
7715 static void
7716 decode_complex_addend (unsigned long *start, /* in bits */
7717 unsigned long *oplen, /* in bits */
7718 unsigned long *len, /* in bits */
7719 unsigned long *wordsz, /* in bytes */
7720 unsigned long *chunksz, /* in bytes */
7721 unsigned long *lsb0_p,
7722 unsigned long *signed_p,
7723 unsigned long *trunc_p,
7724 unsigned long encoded)
7725 {
7726 * start = encoded & 0x3F;
7727 * len = (encoded >> 6) & 0x3F;
7728 * oplen = (encoded >> 12) & 0x3F;
7729 * wordsz = (encoded >> 18) & 0xF;
7730 * chunksz = (encoded >> 22) & 0xF;
7731 * lsb0_p = (encoded >> 27) & 1;
7732 * signed_p = (encoded >> 28) & 1;
7733 * trunc_p = (encoded >> 29) & 1;
7734 }
7735
7736 bfd_reloc_status_type
7737 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7738 asection *input_section ATTRIBUTE_UNUSED,
7739 bfd_byte *contents,
7740 Elf_Internal_Rela *rel,
7741 bfd_vma relocation)
7742 {
7743 bfd_vma shift, x, mask;
7744 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7745 bfd_reloc_status_type r;
7746
7747 /* Perform this reloc, since it is complex.
7748 (this is not to say that it necessarily refers to a complex
7749 symbol; merely that it is a self-describing CGEN based reloc.
7750 i.e. the addend has the complete reloc information (bit start, end,
7751 word size, etc) encoded within it.). */
7752
7753 decode_complex_addend (&start, &oplen, &len, &wordsz,
7754 &chunksz, &lsb0_p, &signed_p,
7755 &trunc_p, rel->r_addend);
7756
7757 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7758
7759 if (lsb0_p)
7760 shift = (start + 1) - len;
7761 else
7762 shift = (8 * wordsz) - (start + len);
7763
7764 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7765
7766 #ifdef DEBUG
7767 printf ("Doing complex reloc: "
7768 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7769 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7770 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7771 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7772 oplen, x, mask, relocation);
7773 #endif
7774
7775 r = bfd_reloc_ok;
7776 if (! trunc_p)
7777 /* Now do an overflow check. */
7778 r = bfd_check_overflow ((signed_p
7779 ? complain_overflow_signed
7780 : complain_overflow_unsigned),
7781 len, 0, (8 * wordsz),
7782 relocation);
7783
7784 /* Do the deed. */
7785 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7786
7787 #ifdef DEBUG
7788 printf (" relocation: %8.8lx\n"
7789 " shifted mask: %8.8lx\n"
7790 " shifted/masked reloc: %8.8lx\n"
7791 " result: %8.8lx\n",
7792 relocation, (mask << shift),
7793 ((relocation & mask) << shift), x);
7794 #endif
7795 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7796 return r;
7797 }
7798
7799 /* When performing a relocatable link, the input relocations are
7800 preserved. But, if they reference global symbols, the indices
7801 referenced must be updated. Update all the relocations in
7802 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
7803
7804 static void
7805 elf_link_adjust_relocs (bfd *abfd,
7806 Elf_Internal_Shdr *rel_hdr,
7807 unsigned int count,
7808 struct elf_link_hash_entry **rel_hash)
7809 {
7810 unsigned int i;
7811 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7812 bfd_byte *erela;
7813 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7814 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7815 bfd_vma r_type_mask;
7816 int r_sym_shift;
7817
7818 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
7819 {
7820 swap_in = bed->s->swap_reloc_in;
7821 swap_out = bed->s->swap_reloc_out;
7822 }
7823 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
7824 {
7825 swap_in = bed->s->swap_reloca_in;
7826 swap_out = bed->s->swap_reloca_out;
7827 }
7828 else
7829 abort ();
7830
7831 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7832 abort ();
7833
7834 if (bed->s->arch_size == 32)
7835 {
7836 r_type_mask = 0xff;
7837 r_sym_shift = 8;
7838 }
7839 else
7840 {
7841 r_type_mask = 0xffffffff;
7842 r_sym_shift = 32;
7843 }
7844
7845 erela = rel_hdr->contents;
7846 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
7847 {
7848 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7849 unsigned int j;
7850
7851 if (*rel_hash == NULL)
7852 continue;
7853
7854 BFD_ASSERT ((*rel_hash)->indx >= 0);
7855
7856 (*swap_in) (abfd, erela, irela);
7857 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7858 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7859 | (irela[j].r_info & r_type_mask));
7860 (*swap_out) (abfd, irela, erela);
7861 }
7862 }
7863
7864 struct elf_link_sort_rela
7865 {
7866 union {
7867 bfd_vma offset;
7868 bfd_vma sym_mask;
7869 } u;
7870 enum elf_reloc_type_class type;
7871 /* We use this as an array of size int_rels_per_ext_rel. */
7872 Elf_Internal_Rela rela[1];
7873 };
7874
7875 static int
7876 elf_link_sort_cmp1 (const void *A, const void *B)
7877 {
7878 const struct elf_link_sort_rela *a = A;
7879 const struct elf_link_sort_rela *b = B;
7880 int relativea, relativeb;
7881
7882 relativea = a->type == reloc_class_relative;
7883 relativeb = b->type == reloc_class_relative;
7884
7885 if (relativea < relativeb)
7886 return 1;
7887 if (relativea > relativeb)
7888 return -1;
7889 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
7890 return -1;
7891 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
7892 return 1;
7893 if (a->rela->r_offset < b->rela->r_offset)
7894 return -1;
7895 if (a->rela->r_offset > b->rela->r_offset)
7896 return 1;
7897 return 0;
7898 }
7899
7900 static int
7901 elf_link_sort_cmp2 (const void *A, const void *B)
7902 {
7903 const struct elf_link_sort_rela *a = A;
7904 const struct elf_link_sort_rela *b = B;
7905 int copya, copyb;
7906
7907 if (a->u.offset < b->u.offset)
7908 return -1;
7909 if (a->u.offset > b->u.offset)
7910 return 1;
7911 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
7912 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
7913 if (copya < copyb)
7914 return -1;
7915 if (copya > copyb)
7916 return 1;
7917 if (a->rela->r_offset < b->rela->r_offset)
7918 return -1;
7919 if (a->rela->r_offset > b->rela->r_offset)
7920 return 1;
7921 return 0;
7922 }
7923
7924 static size_t
7925 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
7926 {
7927 asection *dynamic_relocs;
7928 asection *rela_dyn;
7929 asection *rel_dyn;
7930 bfd_size_type count, size;
7931 size_t i, ret, sort_elt, ext_size;
7932 bfd_byte *sort, *s_non_relative, *p;
7933 struct elf_link_sort_rela *sq;
7934 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7935 int i2e = bed->s->int_rels_per_ext_rel;
7936 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7937 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7938 struct bfd_link_order *lo;
7939 bfd_vma r_sym_mask;
7940 bfd_boolean use_rela;
7941
7942 /* Find a dynamic reloc section. */
7943 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
7944 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
7945 if (rela_dyn != NULL && rela_dyn->size > 0
7946 && rel_dyn != NULL && rel_dyn->size > 0)
7947 {
7948 bfd_boolean use_rela_initialised = FALSE;
7949
7950 /* This is just here to stop gcc from complaining.
7951 It's initialization checking code is not perfect. */
7952 use_rela = TRUE;
7953
7954 /* Both sections are present. Examine the sizes
7955 of the indirect sections to help us choose. */
7956 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
7957 if (lo->type == bfd_indirect_link_order)
7958 {
7959 asection *o = lo->u.indirect.section;
7960
7961 if ((o->size % bed->s->sizeof_rela) == 0)
7962 {
7963 if ((o->size % bed->s->sizeof_rel) == 0)
7964 /* Section size is divisible by both rel and rela sizes.
7965 It is of no help to us. */
7966 ;
7967 else
7968 {
7969 /* Section size is only divisible by rela. */
7970 if (use_rela_initialised && (use_rela == FALSE))
7971 {
7972 _bfd_error_handler
7973 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7974 bfd_set_error (bfd_error_invalid_operation);
7975 return 0;
7976 }
7977 else
7978 {
7979 use_rela = TRUE;
7980 use_rela_initialised = TRUE;
7981 }
7982 }
7983 }
7984 else if ((o->size % bed->s->sizeof_rel) == 0)
7985 {
7986 /* Section size is only divisible by rel. */
7987 if (use_rela_initialised && (use_rela == TRUE))
7988 {
7989 _bfd_error_handler
7990 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7991 bfd_set_error (bfd_error_invalid_operation);
7992 return 0;
7993 }
7994 else
7995 {
7996 use_rela = FALSE;
7997 use_rela_initialised = TRUE;
7998 }
7999 }
8000 else
8001 {
8002 /* The section size is not divisible by either - something is wrong. */
8003 _bfd_error_handler
8004 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8005 bfd_set_error (bfd_error_invalid_operation);
8006 return 0;
8007 }
8008 }
8009
8010 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8011 if (lo->type == bfd_indirect_link_order)
8012 {
8013 asection *o = lo->u.indirect.section;
8014
8015 if ((o->size % bed->s->sizeof_rela) == 0)
8016 {
8017 if ((o->size % bed->s->sizeof_rel) == 0)
8018 /* Section size is divisible by both rel and rela sizes.
8019 It is of no help to us. */
8020 ;
8021 else
8022 {
8023 /* Section size is only divisible by rela. */
8024 if (use_rela_initialised && (use_rela == FALSE))
8025 {
8026 _bfd_error_handler
8027 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8028 bfd_set_error (bfd_error_invalid_operation);
8029 return 0;
8030 }
8031 else
8032 {
8033 use_rela = TRUE;
8034 use_rela_initialised = TRUE;
8035 }
8036 }
8037 }
8038 else if ((o->size % bed->s->sizeof_rel) == 0)
8039 {
8040 /* Section size is only divisible by rel. */
8041 if (use_rela_initialised && (use_rela == TRUE))
8042 {
8043 _bfd_error_handler
8044 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8045 bfd_set_error (bfd_error_invalid_operation);
8046 return 0;
8047 }
8048 else
8049 {
8050 use_rela = FALSE;
8051 use_rela_initialised = TRUE;
8052 }
8053 }
8054 else
8055 {
8056 /* The section size is not divisible by either - something is wrong. */
8057 _bfd_error_handler
8058 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8059 bfd_set_error (bfd_error_invalid_operation);
8060 return 0;
8061 }
8062 }
8063
8064 if (! use_rela_initialised)
8065 /* Make a guess. */
8066 use_rela = TRUE;
8067 }
8068 else if (rela_dyn != NULL && rela_dyn->size > 0)
8069 use_rela = TRUE;
8070 else if (rel_dyn != NULL && rel_dyn->size > 0)
8071 use_rela = FALSE;
8072 else
8073 return 0;
8074
8075 if (use_rela)
8076 {
8077 dynamic_relocs = rela_dyn;
8078 ext_size = bed->s->sizeof_rela;
8079 swap_in = bed->s->swap_reloca_in;
8080 swap_out = bed->s->swap_reloca_out;
8081 }
8082 else
8083 {
8084 dynamic_relocs = rel_dyn;
8085 ext_size = bed->s->sizeof_rel;
8086 swap_in = bed->s->swap_reloc_in;
8087 swap_out = bed->s->swap_reloc_out;
8088 }
8089
8090 size = 0;
8091 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8092 if (lo->type == bfd_indirect_link_order)
8093 size += lo->u.indirect.section->size;
8094
8095 if (size != dynamic_relocs->size)
8096 return 0;
8097
8098 sort_elt = (sizeof (struct elf_link_sort_rela)
8099 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8100
8101 count = dynamic_relocs->size / ext_size;
8102 if (count == 0)
8103 return 0;
8104 sort = bfd_zmalloc (sort_elt * count);
8105
8106 if (sort == NULL)
8107 {
8108 (*info->callbacks->warning)
8109 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8110 return 0;
8111 }
8112
8113 if (bed->s->arch_size == 32)
8114 r_sym_mask = ~(bfd_vma) 0xff;
8115 else
8116 r_sym_mask = ~(bfd_vma) 0xffffffff;
8117
8118 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8119 if (lo->type == bfd_indirect_link_order)
8120 {
8121 bfd_byte *erel, *erelend;
8122 asection *o = lo->u.indirect.section;
8123
8124 if (o->contents == NULL && o->size != 0)
8125 {
8126 /* This is a reloc section that is being handled as a normal
8127 section. See bfd_section_from_shdr. We can't combine
8128 relocs in this case. */
8129 free (sort);
8130 return 0;
8131 }
8132 erel = o->contents;
8133 erelend = o->contents + o->size;
8134 p = sort + o->output_offset / ext_size * sort_elt;
8135
8136 while (erel < erelend)
8137 {
8138 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8139
8140 (*swap_in) (abfd, erel, s->rela);
8141 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8142 s->u.sym_mask = r_sym_mask;
8143 p += sort_elt;
8144 erel += ext_size;
8145 }
8146 }
8147
8148 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8149
8150 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8151 {
8152 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8153 if (s->type != reloc_class_relative)
8154 break;
8155 }
8156 ret = i;
8157 s_non_relative = p;
8158
8159 sq = (struct elf_link_sort_rela *) s_non_relative;
8160 for (; i < count; i++, p += sort_elt)
8161 {
8162 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8163 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8164 sq = sp;
8165 sp->u.offset = sq->rela->r_offset;
8166 }
8167
8168 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8169
8170 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8171 if (lo->type == bfd_indirect_link_order)
8172 {
8173 bfd_byte *erel, *erelend;
8174 asection *o = lo->u.indirect.section;
8175
8176 erel = o->contents;
8177 erelend = o->contents + o->size;
8178 p = sort + o->output_offset / ext_size * sort_elt;
8179 while (erel < erelend)
8180 {
8181 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8182 (*swap_out) (abfd, s->rela, erel);
8183 p += sort_elt;
8184 erel += ext_size;
8185 }
8186 }
8187
8188 free (sort);
8189 *psec = dynamic_relocs;
8190 return ret;
8191 }
8192
8193 /* Flush the output symbols to the file. */
8194
8195 static bfd_boolean
8196 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8197 const struct elf_backend_data *bed)
8198 {
8199 if (finfo->symbuf_count > 0)
8200 {
8201 Elf_Internal_Shdr *hdr;
8202 file_ptr pos;
8203 bfd_size_type amt;
8204
8205 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8206 pos = hdr->sh_offset + hdr->sh_size;
8207 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8208 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8209 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8210 return FALSE;
8211
8212 hdr->sh_size += amt;
8213 finfo->symbuf_count = 0;
8214 }
8215
8216 return TRUE;
8217 }
8218
8219 /* Add a symbol to the output symbol table. */
8220
8221 static int
8222 elf_link_output_sym (struct elf_final_link_info *finfo,
8223 const char *name,
8224 Elf_Internal_Sym *elfsym,
8225 asection *input_sec,
8226 struct elf_link_hash_entry *h)
8227 {
8228 bfd_byte *dest;
8229 Elf_External_Sym_Shndx *destshndx;
8230 int (*output_symbol_hook)
8231 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8232 struct elf_link_hash_entry *);
8233 const struct elf_backend_data *bed;
8234
8235 bed = get_elf_backend_data (finfo->output_bfd);
8236 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8237 if (output_symbol_hook != NULL)
8238 {
8239 int ret = (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h);
8240 if (ret != 1)
8241 return ret;
8242 }
8243
8244 if (name == NULL || *name == '\0')
8245 elfsym->st_name = 0;
8246 else if (input_sec->flags & SEC_EXCLUDE)
8247 elfsym->st_name = 0;
8248 else
8249 {
8250 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8251 name, TRUE, FALSE);
8252 if (elfsym->st_name == (unsigned long) -1)
8253 return 0;
8254 }
8255
8256 if (finfo->symbuf_count >= finfo->symbuf_size)
8257 {
8258 if (! elf_link_flush_output_syms (finfo, bed))
8259 return 0;
8260 }
8261
8262 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8263 destshndx = finfo->symshndxbuf;
8264 if (destshndx != NULL)
8265 {
8266 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8267 {
8268 bfd_size_type amt;
8269
8270 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8271 destshndx = bfd_realloc (destshndx, amt * 2);
8272 if (destshndx == NULL)
8273 return 0;
8274 finfo->symshndxbuf = destshndx;
8275 memset ((char *) destshndx + amt, 0, amt);
8276 finfo->shndxbuf_size *= 2;
8277 }
8278 destshndx += bfd_get_symcount (finfo->output_bfd);
8279 }
8280
8281 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8282 finfo->symbuf_count += 1;
8283 bfd_get_symcount (finfo->output_bfd) += 1;
8284
8285 return 1;
8286 }
8287
8288 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8289
8290 static bfd_boolean
8291 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8292 {
8293 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8294 && sym->st_shndx < SHN_LORESERVE)
8295 {
8296 /* The gABI doesn't support dynamic symbols in output sections
8297 beyond 64k. */
8298 (*_bfd_error_handler)
8299 (_("%B: Too many sections: %d (>= %d)"),
8300 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8301 bfd_set_error (bfd_error_nonrepresentable_section);
8302 return FALSE;
8303 }
8304 return TRUE;
8305 }
8306
8307 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8308 allowing an unsatisfied unversioned symbol in the DSO to match a
8309 versioned symbol that would normally require an explicit version.
8310 We also handle the case that a DSO references a hidden symbol
8311 which may be satisfied by a versioned symbol in another DSO. */
8312
8313 static bfd_boolean
8314 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8315 const struct elf_backend_data *bed,
8316 struct elf_link_hash_entry *h)
8317 {
8318 bfd *abfd;
8319 struct elf_link_loaded_list *loaded;
8320
8321 if (!is_elf_hash_table (info->hash))
8322 return FALSE;
8323
8324 switch (h->root.type)
8325 {
8326 default:
8327 abfd = NULL;
8328 break;
8329
8330 case bfd_link_hash_undefined:
8331 case bfd_link_hash_undefweak:
8332 abfd = h->root.u.undef.abfd;
8333 if ((abfd->flags & DYNAMIC) == 0
8334 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8335 return FALSE;
8336 break;
8337
8338 case bfd_link_hash_defined:
8339 case bfd_link_hash_defweak:
8340 abfd = h->root.u.def.section->owner;
8341 break;
8342
8343 case bfd_link_hash_common:
8344 abfd = h->root.u.c.p->section->owner;
8345 break;
8346 }
8347 BFD_ASSERT (abfd != NULL);
8348
8349 for (loaded = elf_hash_table (info)->loaded;
8350 loaded != NULL;
8351 loaded = loaded->next)
8352 {
8353 bfd *input;
8354 Elf_Internal_Shdr *hdr;
8355 bfd_size_type symcount;
8356 bfd_size_type extsymcount;
8357 bfd_size_type extsymoff;
8358 Elf_Internal_Shdr *versymhdr;
8359 Elf_Internal_Sym *isym;
8360 Elf_Internal_Sym *isymend;
8361 Elf_Internal_Sym *isymbuf;
8362 Elf_External_Versym *ever;
8363 Elf_External_Versym *extversym;
8364
8365 input = loaded->abfd;
8366
8367 /* We check each DSO for a possible hidden versioned definition. */
8368 if (input == abfd
8369 || (input->flags & DYNAMIC) == 0
8370 || elf_dynversym (input) == 0)
8371 continue;
8372
8373 hdr = &elf_tdata (input)->dynsymtab_hdr;
8374
8375 symcount = hdr->sh_size / bed->s->sizeof_sym;
8376 if (elf_bad_symtab (input))
8377 {
8378 extsymcount = symcount;
8379 extsymoff = 0;
8380 }
8381 else
8382 {
8383 extsymcount = symcount - hdr->sh_info;
8384 extsymoff = hdr->sh_info;
8385 }
8386
8387 if (extsymcount == 0)
8388 continue;
8389
8390 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8391 NULL, NULL, NULL);
8392 if (isymbuf == NULL)
8393 return FALSE;
8394
8395 /* Read in any version definitions. */
8396 versymhdr = &elf_tdata (input)->dynversym_hdr;
8397 extversym = bfd_malloc (versymhdr->sh_size);
8398 if (extversym == NULL)
8399 goto error_ret;
8400
8401 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8402 || (bfd_bread (extversym, versymhdr->sh_size, input)
8403 != versymhdr->sh_size))
8404 {
8405 free (extversym);
8406 error_ret:
8407 free (isymbuf);
8408 return FALSE;
8409 }
8410
8411 ever = extversym + extsymoff;
8412 isymend = isymbuf + extsymcount;
8413 for (isym = isymbuf; isym < isymend; isym++, ever++)
8414 {
8415 const char *name;
8416 Elf_Internal_Versym iver;
8417 unsigned short version_index;
8418
8419 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8420 || isym->st_shndx == SHN_UNDEF)
8421 continue;
8422
8423 name = bfd_elf_string_from_elf_section (input,
8424 hdr->sh_link,
8425 isym->st_name);
8426 if (strcmp (name, h->root.root.string) != 0)
8427 continue;
8428
8429 _bfd_elf_swap_versym_in (input, ever, &iver);
8430
8431 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
8432 {
8433 /* If we have a non-hidden versioned sym, then it should
8434 have provided a definition for the undefined sym. */
8435 abort ();
8436 }
8437
8438 version_index = iver.vs_vers & VERSYM_VERSION;
8439 if (version_index == 1 || version_index == 2)
8440 {
8441 /* This is the base or first version. We can use it. */
8442 free (extversym);
8443 free (isymbuf);
8444 return TRUE;
8445 }
8446 }
8447
8448 free (extversym);
8449 free (isymbuf);
8450 }
8451
8452 return FALSE;
8453 }
8454
8455 /* Add an external symbol to the symbol table. This is called from
8456 the hash table traversal routine. When generating a shared object,
8457 we go through the symbol table twice. The first time we output
8458 anything that might have been forced to local scope in a version
8459 script. The second time we output the symbols that are still
8460 global symbols. */
8461
8462 static bfd_boolean
8463 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
8464 {
8465 struct elf_outext_info *eoinfo = data;
8466 struct elf_final_link_info *finfo = eoinfo->finfo;
8467 bfd_boolean strip;
8468 Elf_Internal_Sym sym;
8469 asection *input_sec;
8470 const struct elf_backend_data *bed;
8471 long indx;
8472 int ret;
8473
8474 if (h->root.type == bfd_link_hash_warning)
8475 {
8476 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8477 if (h->root.type == bfd_link_hash_new)
8478 return TRUE;
8479 }
8480
8481 /* Decide whether to output this symbol in this pass. */
8482 if (eoinfo->localsyms)
8483 {
8484 if (!h->forced_local)
8485 return TRUE;
8486 }
8487 else
8488 {
8489 if (h->forced_local)
8490 return TRUE;
8491 }
8492
8493 bed = get_elf_backend_data (finfo->output_bfd);
8494
8495 if (h->root.type == bfd_link_hash_undefined)
8496 {
8497 /* If we have an undefined symbol reference here then it must have
8498 come from a shared library that is being linked in. (Undefined
8499 references in regular files have already been handled). */
8500 bfd_boolean ignore_undef = FALSE;
8501
8502 /* Some symbols may be special in that the fact that they're
8503 undefined can be safely ignored - let backend determine that. */
8504 if (bed->elf_backend_ignore_undef_symbol)
8505 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8506
8507 /* If we are reporting errors for this situation then do so now. */
8508 if (ignore_undef == FALSE
8509 && h->ref_dynamic
8510 && ! h->ref_regular
8511 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8512 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8513 {
8514 if (! (finfo->info->callbacks->undefined_symbol
8515 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
8516 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8517 {
8518 eoinfo->failed = TRUE;
8519 return FALSE;
8520 }
8521 }
8522 }
8523
8524 /* We should also warn if a forced local symbol is referenced from
8525 shared libraries. */
8526 if (! finfo->info->relocatable
8527 && (! finfo->info->shared)
8528 && h->forced_local
8529 && h->ref_dynamic
8530 && !h->dynamic_def
8531 && !h->dynamic_weak
8532 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8533 {
8534 (*_bfd_error_handler)
8535 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
8536 finfo->output_bfd,
8537 h->root.u.def.section == bfd_abs_section_ptr
8538 ? finfo->output_bfd : h->root.u.def.section->owner,
8539 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
8540 ? "internal"
8541 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
8542 ? "hidden" : "local",
8543 h->root.root.string);
8544 eoinfo->failed = TRUE;
8545 return FALSE;
8546 }
8547
8548 /* We don't want to output symbols that have never been mentioned by
8549 a regular file, or that we have been told to strip. However, if
8550 h->indx is set to -2, the symbol is used by a reloc and we must
8551 output it. */
8552 if (h->indx == -2)
8553 strip = FALSE;
8554 else if ((h->def_dynamic
8555 || h->ref_dynamic
8556 || h->root.type == bfd_link_hash_new)
8557 && !h->def_regular
8558 && !h->ref_regular)
8559 strip = TRUE;
8560 else if (finfo->info->strip == strip_all)
8561 strip = TRUE;
8562 else if (finfo->info->strip == strip_some
8563 && bfd_hash_lookup (finfo->info->keep_hash,
8564 h->root.root.string, FALSE, FALSE) == NULL)
8565 strip = TRUE;
8566 else if (finfo->info->strip_discarded
8567 && (h->root.type == bfd_link_hash_defined
8568 || h->root.type == bfd_link_hash_defweak)
8569 && elf_discarded_section (h->root.u.def.section))
8570 strip = TRUE;
8571 else
8572 strip = FALSE;
8573
8574 /* If we're stripping it, and it's not a dynamic symbol, there's
8575 nothing else to do unless it is a forced local symbol. */
8576 if (strip
8577 && h->dynindx == -1
8578 && !h->forced_local)
8579 return TRUE;
8580
8581 sym.st_value = 0;
8582 sym.st_size = h->size;
8583 sym.st_other = h->other;
8584 if (h->forced_local)
8585 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8586 else if (h->unique_global)
8587 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8588 else if (h->root.type == bfd_link_hash_undefweak
8589 || h->root.type == bfd_link_hash_defweak)
8590 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8591 else
8592 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8593
8594 switch (h->root.type)
8595 {
8596 default:
8597 case bfd_link_hash_new:
8598 case bfd_link_hash_warning:
8599 abort ();
8600 return FALSE;
8601
8602 case bfd_link_hash_undefined:
8603 case bfd_link_hash_undefweak:
8604 input_sec = bfd_und_section_ptr;
8605 sym.st_shndx = SHN_UNDEF;
8606 break;
8607
8608 case bfd_link_hash_defined:
8609 case bfd_link_hash_defweak:
8610 {
8611 input_sec = h->root.u.def.section;
8612 if (input_sec->output_section != NULL)
8613 {
8614 sym.st_shndx =
8615 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8616 input_sec->output_section);
8617 if (sym.st_shndx == SHN_BAD)
8618 {
8619 (*_bfd_error_handler)
8620 (_("%B: could not find output section %A for input section %A"),
8621 finfo->output_bfd, input_sec->output_section, input_sec);
8622 eoinfo->failed = TRUE;
8623 return FALSE;
8624 }
8625
8626 /* ELF symbols in relocatable files are section relative,
8627 but in nonrelocatable files they are virtual
8628 addresses. */
8629 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8630 if (! finfo->info->relocatable)
8631 {
8632 sym.st_value += input_sec->output_section->vma;
8633 if (h->type == STT_TLS)
8634 {
8635 asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8636 if (tls_sec != NULL)
8637 sym.st_value -= tls_sec->vma;
8638 else
8639 {
8640 /* The TLS section may have been garbage collected. */
8641 BFD_ASSERT (finfo->info->gc_sections
8642 && !input_sec->gc_mark);
8643 }
8644 }
8645 }
8646 }
8647 else
8648 {
8649 BFD_ASSERT (input_sec->owner == NULL
8650 || (input_sec->owner->flags & DYNAMIC) != 0);
8651 sym.st_shndx = SHN_UNDEF;
8652 input_sec = bfd_und_section_ptr;
8653 }
8654 }
8655 break;
8656
8657 case bfd_link_hash_common:
8658 input_sec = h->root.u.c.p->section;
8659 sym.st_shndx = bed->common_section_index (input_sec);
8660 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8661 break;
8662
8663 case bfd_link_hash_indirect:
8664 /* These symbols are created by symbol versioning. They point
8665 to the decorated version of the name. For example, if the
8666 symbol foo@@GNU_1.2 is the default, which should be used when
8667 foo is used with no version, then we add an indirect symbol
8668 foo which points to foo@@GNU_1.2. We ignore these symbols,
8669 since the indirected symbol is already in the hash table. */
8670 return TRUE;
8671 }
8672
8673 /* Give the processor backend a chance to tweak the symbol value,
8674 and also to finish up anything that needs to be done for this
8675 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8676 forced local syms when non-shared is due to a historical quirk.
8677 STT_GNU_IFUNC symbol must go through PLT. */
8678 if ((h->type == STT_GNU_IFUNC
8679 && h->def_regular
8680 && !finfo->info->relocatable)
8681 || ((h->dynindx != -1
8682 || h->forced_local)
8683 && ((finfo->info->shared
8684 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8685 || h->root.type != bfd_link_hash_undefweak))
8686 || !h->forced_local)
8687 && elf_hash_table (finfo->info)->dynamic_sections_created))
8688 {
8689 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8690 (finfo->output_bfd, finfo->info, h, &sym)))
8691 {
8692 eoinfo->failed = TRUE;
8693 return FALSE;
8694 }
8695 }
8696
8697 /* If we are marking the symbol as undefined, and there are no
8698 non-weak references to this symbol from a regular object, then
8699 mark the symbol as weak undefined; if there are non-weak
8700 references, mark the symbol as strong. We can't do this earlier,
8701 because it might not be marked as undefined until the
8702 finish_dynamic_symbol routine gets through with it. */
8703 if (sym.st_shndx == SHN_UNDEF
8704 && h->ref_regular
8705 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8706 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8707 {
8708 int bindtype;
8709 unsigned int type = ELF_ST_TYPE (sym.st_info);
8710
8711 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8712 if (type == STT_GNU_IFUNC)
8713 type = STT_FUNC;
8714
8715 if (h->ref_regular_nonweak)
8716 bindtype = STB_GLOBAL;
8717 else
8718 bindtype = STB_WEAK;
8719 sym.st_info = ELF_ST_INFO (bindtype, type);
8720 }
8721
8722 /* If this is a symbol defined in a dynamic library, don't use the
8723 symbol size from the dynamic library. Relinking an executable
8724 against a new library may introduce gratuitous changes in the
8725 executable's symbols if we keep the size. */
8726 if (sym.st_shndx == SHN_UNDEF
8727 && !h->def_regular
8728 && h->def_dynamic)
8729 sym.st_size = 0;
8730
8731 /* If a non-weak symbol with non-default visibility is not defined
8732 locally, it is a fatal error. */
8733 if (! finfo->info->relocatable
8734 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8735 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8736 && h->root.type == bfd_link_hash_undefined
8737 && !h->def_regular)
8738 {
8739 (*_bfd_error_handler)
8740 (_("%B: %s symbol `%s' isn't defined"),
8741 finfo->output_bfd,
8742 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
8743 ? "protected"
8744 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
8745 ? "internal" : "hidden",
8746 h->root.root.string);
8747 eoinfo->failed = TRUE;
8748 return FALSE;
8749 }
8750
8751 /* If this symbol should be put in the .dynsym section, then put it
8752 there now. We already know the symbol index. We also fill in
8753 the entry in the .hash section. */
8754 if (h->dynindx != -1
8755 && elf_hash_table (finfo->info)->dynamic_sections_created)
8756 {
8757 bfd_byte *esym;
8758
8759 sym.st_name = h->dynstr_index;
8760 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8761 if (! check_dynsym (finfo->output_bfd, &sym))
8762 {
8763 eoinfo->failed = TRUE;
8764 return FALSE;
8765 }
8766 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8767
8768 if (finfo->hash_sec != NULL)
8769 {
8770 size_t hash_entry_size;
8771 bfd_byte *bucketpos;
8772 bfd_vma chain;
8773 size_t bucketcount;
8774 size_t bucket;
8775
8776 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8777 bucket = h->u.elf_hash_value % bucketcount;
8778
8779 hash_entry_size
8780 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8781 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8782 + (bucket + 2) * hash_entry_size);
8783 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8784 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8785 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8786 ((bfd_byte *) finfo->hash_sec->contents
8787 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8788 }
8789
8790 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8791 {
8792 Elf_Internal_Versym iversym;
8793 Elf_External_Versym *eversym;
8794
8795 if (!h->def_regular)
8796 {
8797 if (h->verinfo.verdef == NULL)
8798 iversym.vs_vers = 0;
8799 else
8800 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8801 }
8802 else
8803 {
8804 if (h->verinfo.vertree == NULL)
8805 iversym.vs_vers = 1;
8806 else
8807 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8808 if (finfo->info->create_default_symver)
8809 iversym.vs_vers++;
8810 }
8811
8812 if (h->hidden)
8813 iversym.vs_vers |= VERSYM_HIDDEN;
8814
8815 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8816 eversym += h->dynindx;
8817 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8818 }
8819 }
8820
8821 /* If we're stripping it, then it was just a dynamic symbol, and
8822 there's nothing else to do. */
8823 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8824 return TRUE;
8825
8826 indx = bfd_get_symcount (finfo->output_bfd);
8827 ret = elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h);
8828 if (ret == 0)
8829 {
8830 eoinfo->failed = TRUE;
8831 return FALSE;
8832 }
8833 else if (ret == 1)
8834 h->indx = indx;
8835 else if (h->indx == -2)
8836 abort();
8837
8838 return TRUE;
8839 }
8840
8841 /* Return TRUE if special handling is done for relocs in SEC against
8842 symbols defined in discarded sections. */
8843
8844 static bfd_boolean
8845 elf_section_ignore_discarded_relocs (asection *sec)
8846 {
8847 const struct elf_backend_data *bed;
8848
8849 switch (sec->sec_info_type)
8850 {
8851 case ELF_INFO_TYPE_STABS:
8852 case ELF_INFO_TYPE_EH_FRAME:
8853 return TRUE;
8854 default:
8855 break;
8856 }
8857
8858 bed = get_elf_backend_data (sec->owner);
8859 if (bed->elf_backend_ignore_discarded_relocs != NULL
8860 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8861 return TRUE;
8862
8863 return FALSE;
8864 }
8865
8866 /* Return a mask saying how ld should treat relocations in SEC against
8867 symbols defined in discarded sections. If this function returns
8868 COMPLAIN set, ld will issue a warning message. If this function
8869 returns PRETEND set, and the discarded section was link-once and the
8870 same size as the kept link-once section, ld will pretend that the
8871 symbol was actually defined in the kept section. Otherwise ld will
8872 zero the reloc (at least that is the intent, but some cooperation by
8873 the target dependent code is needed, particularly for REL targets). */
8874
8875 unsigned int
8876 _bfd_elf_default_action_discarded (asection *sec)
8877 {
8878 if (sec->flags & SEC_DEBUGGING)
8879 return PRETEND;
8880
8881 if (strcmp (".eh_frame", sec->name) == 0)
8882 return 0;
8883
8884 if (strcmp (".gcc_except_table", sec->name) == 0)
8885 return 0;
8886
8887 return COMPLAIN | PRETEND;
8888 }
8889
8890 /* Find a match between a section and a member of a section group. */
8891
8892 static asection *
8893 match_group_member (asection *sec, asection *group,
8894 struct bfd_link_info *info)
8895 {
8896 asection *first = elf_next_in_group (group);
8897 asection *s = first;
8898
8899 while (s != NULL)
8900 {
8901 if (bfd_elf_match_symbols_in_sections (s, sec, info))
8902 return s;
8903
8904 s = elf_next_in_group (s);
8905 if (s == first)
8906 break;
8907 }
8908
8909 return NULL;
8910 }
8911
8912 /* Check if the kept section of a discarded section SEC can be used
8913 to replace it. Return the replacement if it is OK. Otherwise return
8914 NULL. */
8915
8916 asection *
8917 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
8918 {
8919 asection *kept;
8920
8921 kept = sec->kept_section;
8922 if (kept != NULL)
8923 {
8924 if ((kept->flags & SEC_GROUP) != 0)
8925 kept = match_group_member (sec, kept, info);
8926 if (kept != NULL
8927 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
8928 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
8929 kept = NULL;
8930 sec->kept_section = kept;
8931 }
8932 return kept;
8933 }
8934
8935 /* Link an input file into the linker output file. This function
8936 handles all the sections and relocations of the input file at once.
8937 This is so that we only have to read the local symbols once, and
8938 don't have to keep them in memory. */
8939
8940 static bfd_boolean
8941 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
8942 {
8943 int (*relocate_section)
8944 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
8945 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
8946 bfd *output_bfd;
8947 Elf_Internal_Shdr *symtab_hdr;
8948 size_t locsymcount;
8949 size_t extsymoff;
8950 Elf_Internal_Sym *isymbuf;
8951 Elf_Internal_Sym *isym;
8952 Elf_Internal_Sym *isymend;
8953 long *pindex;
8954 asection **ppsection;
8955 asection *o;
8956 const struct elf_backend_data *bed;
8957 struct elf_link_hash_entry **sym_hashes;
8958
8959 output_bfd = finfo->output_bfd;
8960 bed = get_elf_backend_data (output_bfd);
8961 relocate_section = bed->elf_backend_relocate_section;
8962
8963 /* If this is a dynamic object, we don't want to do anything here:
8964 we don't want the local symbols, and we don't want the section
8965 contents. */
8966 if ((input_bfd->flags & DYNAMIC) != 0)
8967 return TRUE;
8968
8969 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8970 if (elf_bad_symtab (input_bfd))
8971 {
8972 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
8973 extsymoff = 0;
8974 }
8975 else
8976 {
8977 locsymcount = symtab_hdr->sh_info;
8978 extsymoff = symtab_hdr->sh_info;
8979 }
8980
8981 /* Read the local symbols. */
8982 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8983 if (isymbuf == NULL && locsymcount != 0)
8984 {
8985 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
8986 finfo->internal_syms,
8987 finfo->external_syms,
8988 finfo->locsym_shndx);
8989 if (isymbuf == NULL)
8990 return FALSE;
8991 }
8992
8993 /* Find local symbol sections and adjust values of symbols in
8994 SEC_MERGE sections. Write out those local symbols we know are
8995 going into the output file. */
8996 isymend = isymbuf + locsymcount;
8997 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
8998 isym < isymend;
8999 isym++, pindex++, ppsection++)
9000 {
9001 asection *isec;
9002 const char *name;
9003 Elf_Internal_Sym osym;
9004 long indx;
9005 int ret;
9006
9007 *pindex = -1;
9008
9009 if (elf_bad_symtab (input_bfd))
9010 {
9011 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9012 {
9013 *ppsection = NULL;
9014 continue;
9015 }
9016 }
9017
9018 if (isym->st_shndx == SHN_UNDEF)
9019 isec = bfd_und_section_ptr;
9020 else if (isym->st_shndx == SHN_ABS)
9021 isec = bfd_abs_section_ptr;
9022 else if (isym->st_shndx == SHN_COMMON)
9023 isec = bfd_com_section_ptr;
9024 else
9025 {
9026 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9027 if (isec == NULL)
9028 {
9029 /* Don't attempt to output symbols with st_shnx in the
9030 reserved range other than SHN_ABS and SHN_COMMON. */
9031 *ppsection = NULL;
9032 continue;
9033 }
9034 else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
9035 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9036 isym->st_value =
9037 _bfd_merged_section_offset (output_bfd, &isec,
9038 elf_section_data (isec)->sec_info,
9039 isym->st_value);
9040 }
9041
9042 *ppsection = isec;
9043
9044 /* Don't output the first, undefined, symbol. */
9045 if (ppsection == finfo->sections)
9046 continue;
9047
9048 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9049 {
9050 /* We never output section symbols. Instead, we use the
9051 section symbol of the corresponding section in the output
9052 file. */
9053 continue;
9054 }
9055
9056 /* If we are stripping all symbols, we don't want to output this
9057 one. */
9058 if (finfo->info->strip == strip_all)
9059 continue;
9060
9061 /* If we are discarding all local symbols, we don't want to
9062 output this one. If we are generating a relocatable output
9063 file, then some of the local symbols may be required by
9064 relocs; we output them below as we discover that they are
9065 needed. */
9066 if (finfo->info->discard == discard_all)
9067 continue;
9068
9069 /* If this symbol is defined in a section which we are
9070 discarding, we don't need to keep it. */
9071 if (isym->st_shndx != SHN_UNDEF
9072 && isym->st_shndx < SHN_LORESERVE
9073 && bfd_section_removed_from_list (output_bfd,
9074 isec->output_section))
9075 continue;
9076
9077 /* Get the name of the symbol. */
9078 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9079 isym->st_name);
9080 if (name == NULL)
9081 return FALSE;
9082
9083 /* See if we are discarding symbols with this name. */
9084 if ((finfo->info->strip == strip_some
9085 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
9086 == NULL))
9087 || (((finfo->info->discard == discard_sec_merge
9088 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
9089 || finfo->info->discard == discard_l)
9090 && bfd_is_local_label_name (input_bfd, name)))
9091 continue;
9092
9093 osym = *isym;
9094
9095 /* Adjust the section index for the output file. */
9096 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9097 isec->output_section);
9098 if (osym.st_shndx == SHN_BAD)
9099 return FALSE;
9100
9101 /* ELF symbols in relocatable files are section relative, but
9102 in executable files they are virtual addresses. Note that
9103 this code assumes that all ELF sections have an associated
9104 BFD section with a reasonable value for output_offset; below
9105 we assume that they also have a reasonable value for
9106 output_section. Any special sections must be set up to meet
9107 these requirements. */
9108 osym.st_value += isec->output_offset;
9109 if (! finfo->info->relocatable)
9110 {
9111 osym.st_value += isec->output_section->vma;
9112 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9113 {
9114 /* STT_TLS symbols are relative to PT_TLS segment base. */
9115 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9116 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9117 }
9118 }
9119
9120 indx = bfd_get_symcount (output_bfd);
9121 ret = elf_link_output_sym (finfo, name, &osym, isec, NULL);
9122 if (ret == 0)
9123 return FALSE;
9124 else if (ret == 1)
9125 *pindex = indx;
9126 }
9127
9128 /* Relocate the contents of each section. */
9129 sym_hashes = elf_sym_hashes (input_bfd);
9130 for (o = input_bfd->sections; o != NULL; o = o->next)
9131 {
9132 bfd_byte *contents;
9133
9134 if (! o->linker_mark)
9135 {
9136 /* This section was omitted from the link. */
9137 continue;
9138 }
9139
9140 if (finfo->info->relocatable
9141 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9142 {
9143 /* Deal with the group signature symbol. */
9144 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9145 unsigned long symndx = sec_data->this_hdr.sh_info;
9146 asection *osec = o->output_section;
9147
9148 if (symndx >= locsymcount
9149 || (elf_bad_symtab (input_bfd)
9150 && finfo->sections[symndx] == NULL))
9151 {
9152 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9153 while (h->root.type == bfd_link_hash_indirect
9154 || h->root.type == bfd_link_hash_warning)
9155 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9156 /* Arrange for symbol to be output. */
9157 h->indx = -2;
9158 elf_section_data (osec)->this_hdr.sh_info = -2;
9159 }
9160 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9161 {
9162 /* We'll use the output section target_index. */
9163 asection *sec = finfo->sections[symndx]->output_section;
9164 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9165 }
9166 else
9167 {
9168 if (finfo->indices[symndx] == -1)
9169 {
9170 /* Otherwise output the local symbol now. */
9171 Elf_Internal_Sym sym = isymbuf[symndx];
9172 asection *sec = finfo->sections[symndx]->output_section;
9173 const char *name;
9174 long indx;
9175 int ret;
9176
9177 name = bfd_elf_string_from_elf_section (input_bfd,
9178 symtab_hdr->sh_link,
9179 sym.st_name);
9180 if (name == NULL)
9181 return FALSE;
9182
9183 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9184 sec);
9185 if (sym.st_shndx == SHN_BAD)
9186 return FALSE;
9187
9188 sym.st_value += o->output_offset;
9189
9190 indx = bfd_get_symcount (output_bfd);
9191 ret = elf_link_output_sym (finfo, name, &sym, o, NULL);
9192 if (ret == 0)
9193 return FALSE;
9194 else if (ret == 1)
9195 finfo->indices[symndx] = indx;
9196 else
9197 abort ();
9198 }
9199 elf_section_data (osec)->this_hdr.sh_info
9200 = finfo->indices[symndx];
9201 }
9202 }
9203
9204 if ((o->flags & SEC_HAS_CONTENTS) == 0
9205 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9206 continue;
9207
9208 if ((o->flags & SEC_LINKER_CREATED) != 0)
9209 {
9210 /* Section was created by _bfd_elf_link_create_dynamic_sections
9211 or somesuch. */
9212 continue;
9213 }
9214
9215 /* Get the contents of the section. They have been cached by a
9216 relaxation routine. Note that o is a section in an input
9217 file, so the contents field will not have been set by any of
9218 the routines which work on output files. */
9219 if (elf_section_data (o)->this_hdr.contents != NULL)
9220 contents = elf_section_data (o)->this_hdr.contents;
9221 else
9222 {
9223 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
9224
9225 contents = finfo->contents;
9226 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
9227 return FALSE;
9228 }
9229
9230 if ((o->flags & SEC_RELOC) != 0)
9231 {
9232 Elf_Internal_Rela *internal_relocs;
9233 Elf_Internal_Rela *rel, *relend;
9234 bfd_vma r_type_mask;
9235 int r_sym_shift;
9236 int action_discarded;
9237 int ret;
9238
9239 /* Get the swapped relocs. */
9240 internal_relocs
9241 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9242 finfo->internal_relocs, FALSE);
9243 if (internal_relocs == NULL
9244 && o->reloc_count > 0)
9245 return FALSE;
9246
9247 if (bed->s->arch_size == 32)
9248 {
9249 r_type_mask = 0xff;
9250 r_sym_shift = 8;
9251 }
9252 else
9253 {
9254 r_type_mask = 0xffffffff;
9255 r_sym_shift = 32;
9256 }
9257
9258 action_discarded = -1;
9259 if (!elf_section_ignore_discarded_relocs (o))
9260 action_discarded = (*bed->action_discarded) (o);
9261
9262 /* Run through the relocs evaluating complex reloc symbols and
9263 looking for relocs against symbols from discarded sections
9264 or section symbols from removed link-once sections.
9265 Complain about relocs against discarded sections. Zero
9266 relocs against removed link-once sections. */
9267
9268 rel = internal_relocs;
9269 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9270 for ( ; rel < relend; rel++)
9271 {
9272 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9273 unsigned int s_type;
9274 asection **ps, *sec;
9275 struct elf_link_hash_entry *h = NULL;
9276 const char *sym_name;
9277
9278 if (r_symndx == STN_UNDEF)
9279 continue;
9280
9281 if (r_symndx >= locsymcount
9282 || (elf_bad_symtab (input_bfd)
9283 && finfo->sections[r_symndx] == NULL))
9284 {
9285 h = sym_hashes[r_symndx - extsymoff];
9286
9287 /* Badly formatted input files can contain relocs that
9288 reference non-existant symbols. Check here so that
9289 we do not seg fault. */
9290 if (h == NULL)
9291 {
9292 char buffer [32];
9293
9294 sprintf_vma (buffer, rel->r_info);
9295 (*_bfd_error_handler)
9296 (_("error: %B contains a reloc (0x%s) for section %A "
9297 "that references a non-existent global symbol"),
9298 input_bfd, o, buffer);
9299 bfd_set_error (bfd_error_bad_value);
9300 return FALSE;
9301 }
9302
9303 while (h->root.type == bfd_link_hash_indirect
9304 || h->root.type == bfd_link_hash_warning)
9305 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9306
9307 s_type = h->type;
9308
9309 ps = NULL;
9310 if (h->root.type == bfd_link_hash_defined
9311 || h->root.type == bfd_link_hash_defweak)
9312 ps = &h->root.u.def.section;
9313
9314 sym_name = h->root.root.string;
9315 }
9316 else
9317 {
9318 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9319
9320 s_type = ELF_ST_TYPE (sym->st_info);
9321 ps = &finfo->sections[r_symndx];
9322 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9323 sym, *ps);
9324 }
9325
9326 if ((s_type == STT_RELC || s_type == STT_SRELC)
9327 && !finfo->info->relocatable)
9328 {
9329 bfd_vma val;
9330 bfd_vma dot = (rel->r_offset
9331 + o->output_offset + o->output_section->vma);
9332 #ifdef DEBUG
9333 printf ("Encountered a complex symbol!");
9334 printf (" (input_bfd %s, section %s, reloc %ld\n",
9335 input_bfd->filename, o->name, rel - internal_relocs);
9336 printf (" symbol: idx %8.8lx, name %s\n",
9337 r_symndx, sym_name);
9338 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9339 (unsigned long) rel->r_info,
9340 (unsigned long) rel->r_offset);
9341 #endif
9342 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9343 isymbuf, locsymcount, s_type == STT_SRELC))
9344 return FALSE;
9345
9346 /* Symbol evaluated OK. Update to absolute value. */
9347 set_symbol_value (input_bfd, isymbuf, locsymcount,
9348 r_symndx, val);
9349 continue;
9350 }
9351
9352 if (action_discarded != -1 && ps != NULL)
9353 {
9354 /* Complain if the definition comes from a
9355 discarded section. */
9356 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9357 {
9358 BFD_ASSERT (r_symndx != 0);
9359 if (action_discarded & COMPLAIN)
9360 (*finfo->info->callbacks->einfo)
9361 (_("%X`%s' referenced in section `%A' of %B: "
9362 "defined in discarded section `%A' of %B\n"),
9363 sym_name, o, input_bfd, sec, sec->owner);
9364
9365 /* Try to do the best we can to support buggy old
9366 versions of gcc. Pretend that the symbol is
9367 really defined in the kept linkonce section.
9368 FIXME: This is quite broken. Modifying the
9369 symbol here means we will be changing all later
9370 uses of the symbol, not just in this section. */
9371 if (action_discarded & PRETEND)
9372 {
9373 asection *kept;
9374
9375 kept = _bfd_elf_check_kept_section (sec,
9376 finfo->info);
9377 if (kept != NULL)
9378 {
9379 *ps = kept;
9380 continue;
9381 }
9382 }
9383 }
9384 }
9385 }
9386
9387 /* Relocate the section by invoking a back end routine.
9388
9389 The back end routine is responsible for adjusting the
9390 section contents as necessary, and (if using Rela relocs
9391 and generating a relocatable output file) adjusting the
9392 reloc addend as necessary.
9393
9394 The back end routine does not have to worry about setting
9395 the reloc address or the reloc symbol index.
9396
9397 The back end routine is given a pointer to the swapped in
9398 internal symbols, and can access the hash table entries
9399 for the external symbols via elf_sym_hashes (input_bfd).
9400
9401 When generating relocatable output, the back end routine
9402 must handle STB_LOCAL/STT_SECTION symbols specially. The
9403 output symbol is going to be a section symbol
9404 corresponding to the output section, which will require
9405 the addend to be adjusted. */
9406
9407 ret = (*relocate_section) (output_bfd, finfo->info,
9408 input_bfd, o, contents,
9409 internal_relocs,
9410 isymbuf,
9411 finfo->sections);
9412 if (!ret)
9413 return FALSE;
9414
9415 if (ret == 2
9416 || finfo->info->relocatable
9417 || finfo->info->emitrelocations)
9418 {
9419 Elf_Internal_Rela *irela;
9420 Elf_Internal_Rela *irelaend;
9421 bfd_vma last_offset;
9422 struct elf_link_hash_entry **rel_hash;
9423 struct elf_link_hash_entry **rel_hash_list;
9424 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
9425 unsigned int next_erel;
9426 bfd_boolean rela_normal;
9427
9428 input_rel_hdr = &elf_section_data (o)->rel_hdr;
9429 rela_normal = (bed->rela_normal
9430 && (input_rel_hdr->sh_entsize
9431 == bed->s->sizeof_rela));
9432
9433 /* Adjust the reloc addresses and symbol indices. */
9434
9435 irela = internal_relocs;
9436 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9437 rel_hash = (elf_section_data (o->output_section)->rel_hashes
9438 + elf_section_data (o->output_section)->rel_count
9439 + elf_section_data (o->output_section)->rel_count2);
9440 rel_hash_list = rel_hash;
9441 last_offset = o->output_offset;
9442 if (!finfo->info->relocatable)
9443 last_offset += o->output_section->vma;
9444 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9445 {
9446 unsigned long r_symndx;
9447 asection *sec;
9448 Elf_Internal_Sym sym;
9449
9450 if (next_erel == bed->s->int_rels_per_ext_rel)
9451 {
9452 rel_hash++;
9453 next_erel = 0;
9454 }
9455
9456 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9457 finfo->info, o,
9458 irela->r_offset);
9459 if (irela->r_offset >= (bfd_vma) -2)
9460 {
9461 /* This is a reloc for a deleted entry or somesuch.
9462 Turn it into an R_*_NONE reloc, at the same
9463 offset as the last reloc. elf_eh_frame.c and
9464 bfd_elf_discard_info rely on reloc offsets
9465 being ordered. */
9466 irela->r_offset = last_offset;
9467 irela->r_info = 0;
9468 irela->r_addend = 0;
9469 continue;
9470 }
9471
9472 irela->r_offset += o->output_offset;
9473
9474 /* Relocs in an executable have to be virtual addresses. */
9475 if (!finfo->info->relocatable)
9476 irela->r_offset += o->output_section->vma;
9477
9478 last_offset = irela->r_offset;
9479
9480 r_symndx = irela->r_info >> r_sym_shift;
9481 if (r_symndx == STN_UNDEF)
9482 continue;
9483
9484 if (r_symndx >= locsymcount
9485 || (elf_bad_symtab (input_bfd)
9486 && finfo->sections[r_symndx] == NULL))
9487 {
9488 struct elf_link_hash_entry *rh;
9489 unsigned long indx;
9490
9491 /* This is a reloc against a global symbol. We
9492 have not yet output all the local symbols, so
9493 we do not know the symbol index of any global
9494 symbol. We set the rel_hash entry for this
9495 reloc to point to the global hash table entry
9496 for this symbol. The symbol index is then
9497 set at the end of bfd_elf_final_link. */
9498 indx = r_symndx - extsymoff;
9499 rh = elf_sym_hashes (input_bfd)[indx];
9500 while (rh->root.type == bfd_link_hash_indirect
9501 || rh->root.type == bfd_link_hash_warning)
9502 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9503
9504 /* Setting the index to -2 tells
9505 elf_link_output_extsym that this symbol is
9506 used by a reloc. */
9507 BFD_ASSERT (rh->indx < 0);
9508 rh->indx = -2;
9509
9510 *rel_hash = rh;
9511
9512 continue;
9513 }
9514
9515 /* This is a reloc against a local symbol. */
9516
9517 *rel_hash = NULL;
9518 sym = isymbuf[r_symndx];
9519 sec = finfo->sections[r_symndx];
9520 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9521 {
9522 /* I suppose the backend ought to fill in the
9523 section of any STT_SECTION symbol against a
9524 processor specific section. */
9525 r_symndx = 0;
9526 if (bfd_is_abs_section (sec))
9527 ;
9528 else if (sec == NULL || sec->owner == NULL)
9529 {
9530 bfd_set_error (bfd_error_bad_value);
9531 return FALSE;
9532 }
9533 else
9534 {
9535 asection *osec = sec->output_section;
9536
9537 /* If we have discarded a section, the output
9538 section will be the absolute section. In
9539 case of discarded SEC_MERGE sections, use
9540 the kept section. relocate_section should
9541 have already handled discarded linkonce
9542 sections. */
9543 if (bfd_is_abs_section (osec)
9544 && sec->kept_section != NULL
9545 && sec->kept_section->output_section != NULL)
9546 {
9547 osec = sec->kept_section->output_section;
9548 irela->r_addend -= osec->vma;
9549 }
9550
9551 if (!bfd_is_abs_section (osec))
9552 {
9553 r_symndx = osec->target_index;
9554 if (r_symndx == 0)
9555 {
9556 struct elf_link_hash_table *htab;
9557 asection *oi;
9558
9559 htab = elf_hash_table (finfo->info);
9560 oi = htab->text_index_section;
9561 if ((osec->flags & SEC_READONLY) == 0
9562 && htab->data_index_section != NULL)
9563 oi = htab->data_index_section;
9564
9565 if (oi != NULL)
9566 {
9567 irela->r_addend += osec->vma - oi->vma;
9568 r_symndx = oi->target_index;
9569 }
9570 }
9571
9572 BFD_ASSERT (r_symndx != 0);
9573 }
9574 }
9575
9576 /* Adjust the addend according to where the
9577 section winds up in the output section. */
9578 if (rela_normal)
9579 irela->r_addend += sec->output_offset;
9580 }
9581 else
9582 {
9583 if (finfo->indices[r_symndx] == -1)
9584 {
9585 unsigned long shlink;
9586 const char *name;
9587 asection *osec;
9588 long indx;
9589
9590 if (finfo->info->strip == strip_all)
9591 {
9592 /* You can't do ld -r -s. */
9593 bfd_set_error (bfd_error_invalid_operation);
9594 return FALSE;
9595 }
9596
9597 /* This symbol was skipped earlier, but
9598 since it is needed by a reloc, we
9599 must output it now. */
9600 shlink = symtab_hdr->sh_link;
9601 name = (bfd_elf_string_from_elf_section
9602 (input_bfd, shlink, sym.st_name));
9603 if (name == NULL)
9604 return FALSE;
9605
9606 osec = sec->output_section;
9607 sym.st_shndx =
9608 _bfd_elf_section_from_bfd_section (output_bfd,
9609 osec);
9610 if (sym.st_shndx == SHN_BAD)
9611 return FALSE;
9612
9613 sym.st_value += sec->output_offset;
9614 if (! finfo->info->relocatable)
9615 {
9616 sym.st_value += osec->vma;
9617 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9618 {
9619 /* STT_TLS symbols are relative to PT_TLS
9620 segment base. */
9621 BFD_ASSERT (elf_hash_table (finfo->info)
9622 ->tls_sec != NULL);
9623 sym.st_value -= (elf_hash_table (finfo->info)
9624 ->tls_sec->vma);
9625 }
9626 }
9627
9628 indx = bfd_get_symcount (output_bfd);
9629 ret = elf_link_output_sym (finfo, name, &sym, sec,
9630 NULL);
9631 if (ret == 0)
9632 return FALSE;
9633 else if (ret == 1)
9634 finfo->indices[r_symndx] = indx;
9635 else
9636 abort ();
9637 }
9638
9639 r_symndx = finfo->indices[r_symndx];
9640 }
9641
9642 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9643 | (irela->r_info & r_type_mask));
9644 }
9645
9646 /* Swap out the relocs. */
9647 if (input_rel_hdr->sh_size != 0
9648 && !bed->elf_backend_emit_relocs (output_bfd, o,
9649 input_rel_hdr,
9650 internal_relocs,
9651 rel_hash_list))
9652 return FALSE;
9653
9654 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
9655 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
9656 {
9657 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9658 * bed->s->int_rels_per_ext_rel);
9659 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9660 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9661 input_rel_hdr2,
9662 internal_relocs,
9663 rel_hash_list))
9664 return FALSE;
9665 }
9666 }
9667 }
9668
9669 /* Write out the modified section contents. */
9670 if (bed->elf_backend_write_section
9671 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9672 contents))
9673 {
9674 /* Section written out. */
9675 }
9676 else switch (o->sec_info_type)
9677 {
9678 case ELF_INFO_TYPE_STABS:
9679 if (! (_bfd_write_section_stabs
9680 (output_bfd,
9681 &elf_hash_table (finfo->info)->stab_info,
9682 o, &elf_section_data (o)->sec_info, contents)))
9683 return FALSE;
9684 break;
9685 case ELF_INFO_TYPE_MERGE:
9686 if (! _bfd_write_merged_section (output_bfd, o,
9687 elf_section_data (o)->sec_info))
9688 return FALSE;
9689 break;
9690 case ELF_INFO_TYPE_EH_FRAME:
9691 {
9692 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9693 o, contents))
9694 return FALSE;
9695 }
9696 break;
9697 default:
9698 {
9699 if (! (o->flags & SEC_EXCLUDE)
9700 && ! (o->output_section->flags & SEC_NEVER_LOAD)
9701 && ! bfd_set_section_contents (output_bfd, o->output_section,
9702 contents,
9703 (file_ptr) o->output_offset,
9704 o->size))
9705 return FALSE;
9706 }
9707 break;
9708 }
9709 }
9710
9711 return TRUE;
9712 }
9713
9714 /* Generate a reloc when linking an ELF file. This is a reloc
9715 requested by the linker, and does not come from any input file. This
9716 is used to build constructor and destructor tables when linking
9717 with -Ur. */
9718
9719 static bfd_boolean
9720 elf_reloc_link_order (bfd *output_bfd,
9721 struct bfd_link_info *info,
9722 asection *output_section,
9723 struct bfd_link_order *link_order)
9724 {
9725 reloc_howto_type *howto;
9726 long indx;
9727 bfd_vma offset;
9728 bfd_vma addend;
9729 struct elf_link_hash_entry **rel_hash_ptr;
9730 Elf_Internal_Shdr *rel_hdr;
9731 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9732 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9733 bfd_byte *erel;
9734 unsigned int i;
9735
9736 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9737 if (howto == NULL)
9738 {
9739 bfd_set_error (bfd_error_bad_value);
9740 return FALSE;
9741 }
9742
9743 addend = link_order->u.reloc.p->addend;
9744
9745 /* Figure out the symbol index. */
9746 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
9747 + elf_section_data (output_section)->rel_count
9748 + elf_section_data (output_section)->rel_count2);
9749 if (link_order->type == bfd_section_reloc_link_order)
9750 {
9751 indx = link_order->u.reloc.p->u.section->target_index;
9752 BFD_ASSERT (indx != 0);
9753 *rel_hash_ptr = NULL;
9754 }
9755 else
9756 {
9757 struct elf_link_hash_entry *h;
9758
9759 /* Treat a reloc against a defined symbol as though it were
9760 actually against the section. */
9761 h = ((struct elf_link_hash_entry *)
9762 bfd_wrapped_link_hash_lookup (output_bfd, info,
9763 link_order->u.reloc.p->u.name,
9764 FALSE, FALSE, TRUE));
9765 if (h != NULL
9766 && (h->root.type == bfd_link_hash_defined
9767 || h->root.type == bfd_link_hash_defweak))
9768 {
9769 asection *section;
9770
9771 section = h->root.u.def.section;
9772 indx = section->output_section->target_index;
9773 *rel_hash_ptr = NULL;
9774 /* It seems that we ought to add the symbol value to the
9775 addend here, but in practice it has already been added
9776 because it was passed to constructor_callback. */
9777 addend += section->output_section->vma + section->output_offset;
9778 }
9779 else if (h != NULL)
9780 {
9781 /* Setting the index to -2 tells elf_link_output_extsym that
9782 this symbol is used by a reloc. */
9783 h->indx = -2;
9784 *rel_hash_ptr = h;
9785 indx = 0;
9786 }
9787 else
9788 {
9789 if (! ((*info->callbacks->unattached_reloc)
9790 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9791 return FALSE;
9792 indx = 0;
9793 }
9794 }
9795
9796 /* If this is an inplace reloc, we must write the addend into the
9797 object file. */
9798 if (howto->partial_inplace && addend != 0)
9799 {
9800 bfd_size_type size;
9801 bfd_reloc_status_type rstat;
9802 bfd_byte *buf;
9803 bfd_boolean ok;
9804 const char *sym_name;
9805
9806 size = bfd_get_reloc_size (howto);
9807 buf = bfd_zmalloc (size);
9808 if (buf == NULL)
9809 return FALSE;
9810 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
9811 switch (rstat)
9812 {
9813 case bfd_reloc_ok:
9814 break;
9815
9816 default:
9817 case bfd_reloc_outofrange:
9818 abort ();
9819
9820 case bfd_reloc_overflow:
9821 if (link_order->type == bfd_section_reloc_link_order)
9822 sym_name = bfd_section_name (output_bfd,
9823 link_order->u.reloc.p->u.section);
9824 else
9825 sym_name = link_order->u.reloc.p->u.name;
9826 if (! ((*info->callbacks->reloc_overflow)
9827 (info, NULL, sym_name, howto->name, addend, NULL,
9828 NULL, (bfd_vma) 0)))
9829 {
9830 free (buf);
9831 return FALSE;
9832 }
9833 break;
9834 }
9835 ok = bfd_set_section_contents (output_bfd, output_section, buf,
9836 link_order->offset, size);
9837 free (buf);
9838 if (! ok)
9839 return FALSE;
9840 }
9841
9842 /* The address of a reloc is relative to the section in a
9843 relocatable file, and is a virtual address in an executable
9844 file. */
9845 offset = link_order->offset;
9846 if (! info->relocatable)
9847 offset += output_section->vma;
9848
9849 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
9850 {
9851 irel[i].r_offset = offset;
9852 irel[i].r_info = 0;
9853 irel[i].r_addend = 0;
9854 }
9855 if (bed->s->arch_size == 32)
9856 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
9857 else
9858 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
9859
9860 rel_hdr = &elf_section_data (output_section)->rel_hdr;
9861 erel = rel_hdr->contents;
9862 if (rel_hdr->sh_type == SHT_REL)
9863 {
9864 erel += (elf_section_data (output_section)->rel_count
9865 * bed->s->sizeof_rel);
9866 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
9867 }
9868 else
9869 {
9870 irel[0].r_addend = addend;
9871 erel += (elf_section_data (output_section)->rel_count
9872 * bed->s->sizeof_rela);
9873 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
9874 }
9875
9876 ++elf_section_data (output_section)->rel_count;
9877
9878 return TRUE;
9879 }
9880
9881
9882 /* Get the output vma of the section pointed to by the sh_link field. */
9883
9884 static bfd_vma
9885 elf_get_linked_section_vma (struct bfd_link_order *p)
9886 {
9887 Elf_Internal_Shdr **elf_shdrp;
9888 asection *s;
9889 int elfsec;
9890
9891 s = p->u.indirect.section;
9892 elf_shdrp = elf_elfsections (s->owner);
9893 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
9894 elfsec = elf_shdrp[elfsec]->sh_link;
9895 /* PR 290:
9896 The Intel C compiler generates SHT_IA_64_UNWIND with
9897 SHF_LINK_ORDER. But it doesn't set the sh_link or
9898 sh_info fields. Hence we could get the situation
9899 where elfsec is 0. */
9900 if (elfsec == 0)
9901 {
9902 const struct elf_backend_data *bed
9903 = get_elf_backend_data (s->owner);
9904 if (bed->link_order_error_handler)
9905 bed->link_order_error_handler
9906 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
9907 return 0;
9908 }
9909 else
9910 {
9911 s = elf_shdrp[elfsec]->bfd_section;
9912 return s->output_section->vma + s->output_offset;
9913 }
9914 }
9915
9916
9917 /* Compare two sections based on the locations of the sections they are
9918 linked to. Used by elf_fixup_link_order. */
9919
9920 static int
9921 compare_link_order (const void * a, const void * b)
9922 {
9923 bfd_vma apos;
9924 bfd_vma bpos;
9925
9926 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
9927 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
9928 if (apos < bpos)
9929 return -1;
9930 return apos > bpos;
9931 }
9932
9933
9934 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
9935 order as their linked sections. Returns false if this could not be done
9936 because an output section includes both ordered and unordered
9937 sections. Ideally we'd do this in the linker proper. */
9938
9939 static bfd_boolean
9940 elf_fixup_link_order (bfd *abfd, asection *o)
9941 {
9942 int seen_linkorder;
9943 int seen_other;
9944 int n;
9945 struct bfd_link_order *p;
9946 bfd *sub;
9947 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9948 unsigned elfsec;
9949 struct bfd_link_order **sections;
9950 asection *s, *other_sec, *linkorder_sec;
9951 bfd_vma offset;
9952
9953 other_sec = NULL;
9954 linkorder_sec = NULL;
9955 seen_other = 0;
9956 seen_linkorder = 0;
9957 for (p = o->map_head.link_order; p != NULL; p = p->next)
9958 {
9959 if (p->type == bfd_indirect_link_order)
9960 {
9961 s = p->u.indirect.section;
9962 sub = s->owner;
9963 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
9964 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
9965 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
9966 && elfsec < elf_numsections (sub)
9967 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
9968 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
9969 {
9970 seen_linkorder++;
9971 linkorder_sec = s;
9972 }
9973 else
9974 {
9975 seen_other++;
9976 other_sec = s;
9977 }
9978 }
9979 else
9980 seen_other++;
9981
9982 if (seen_other && seen_linkorder)
9983 {
9984 if (other_sec && linkorder_sec)
9985 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
9986 o, linkorder_sec,
9987 linkorder_sec->owner, other_sec,
9988 other_sec->owner);
9989 else
9990 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
9991 o);
9992 bfd_set_error (bfd_error_bad_value);
9993 return FALSE;
9994 }
9995 }
9996
9997 if (!seen_linkorder)
9998 return TRUE;
9999
10000 sections = (struct bfd_link_order **)
10001 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10002 if (sections == NULL)
10003 return FALSE;
10004 seen_linkorder = 0;
10005
10006 for (p = o->map_head.link_order; p != NULL; p = p->next)
10007 {
10008 sections[seen_linkorder++] = p;
10009 }
10010 /* Sort the input sections in the order of their linked section. */
10011 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10012 compare_link_order);
10013
10014 /* Change the offsets of the sections. */
10015 offset = 0;
10016 for (n = 0; n < seen_linkorder; n++)
10017 {
10018 s = sections[n]->u.indirect.section;
10019 offset &= ~(bfd_vma) 0 << s->alignment_power;
10020 s->output_offset = offset;
10021 sections[n]->offset = offset;
10022 offset += sections[n]->size;
10023 }
10024
10025 free (sections);
10026 return TRUE;
10027 }
10028
10029
10030 /* Do the final step of an ELF link. */
10031
10032 bfd_boolean
10033 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10034 {
10035 bfd_boolean dynamic;
10036 bfd_boolean emit_relocs;
10037 bfd *dynobj;
10038 struct elf_final_link_info finfo;
10039 register asection *o;
10040 register struct bfd_link_order *p;
10041 register bfd *sub;
10042 bfd_size_type max_contents_size;
10043 bfd_size_type max_external_reloc_size;
10044 bfd_size_type max_internal_reloc_count;
10045 bfd_size_type max_sym_count;
10046 bfd_size_type max_sym_shndx_count;
10047 file_ptr off;
10048 Elf_Internal_Sym elfsym;
10049 unsigned int i;
10050 Elf_Internal_Shdr *symtab_hdr;
10051 Elf_Internal_Shdr *symtab_shndx_hdr;
10052 Elf_Internal_Shdr *symstrtab_hdr;
10053 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10054 struct elf_outext_info eoinfo;
10055 bfd_boolean merged;
10056 size_t relativecount = 0;
10057 asection *reldyn = 0;
10058 bfd_size_type amt;
10059 asection *attr_section = NULL;
10060 bfd_vma attr_size = 0;
10061 const char *std_attrs_section;
10062
10063 if (! is_elf_hash_table (info->hash))
10064 return FALSE;
10065
10066 if (info->shared)
10067 abfd->flags |= DYNAMIC;
10068
10069 dynamic = elf_hash_table (info)->dynamic_sections_created;
10070 dynobj = elf_hash_table (info)->dynobj;
10071
10072 emit_relocs = (info->relocatable
10073 || info->emitrelocations);
10074
10075 finfo.info = info;
10076 finfo.output_bfd = abfd;
10077 finfo.symstrtab = _bfd_elf_stringtab_init ();
10078 if (finfo.symstrtab == NULL)
10079 return FALSE;
10080
10081 if (! dynamic)
10082 {
10083 finfo.dynsym_sec = NULL;
10084 finfo.hash_sec = NULL;
10085 finfo.symver_sec = NULL;
10086 }
10087 else
10088 {
10089 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
10090 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
10091 BFD_ASSERT (finfo.dynsym_sec != NULL);
10092 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
10093 /* Note that it is OK if symver_sec is NULL. */
10094 }
10095
10096 finfo.contents = NULL;
10097 finfo.external_relocs = NULL;
10098 finfo.internal_relocs = NULL;
10099 finfo.external_syms = NULL;
10100 finfo.locsym_shndx = NULL;
10101 finfo.internal_syms = NULL;
10102 finfo.indices = NULL;
10103 finfo.sections = NULL;
10104 finfo.symbuf = NULL;
10105 finfo.symshndxbuf = NULL;
10106 finfo.symbuf_count = 0;
10107 finfo.shndxbuf_size = 0;
10108
10109 /* The object attributes have been merged. Remove the input
10110 sections from the link, and set the contents of the output
10111 secton. */
10112 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10113 for (o = abfd->sections; o != NULL; o = o->next)
10114 {
10115 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10116 || strcmp (o->name, ".gnu.attributes") == 0)
10117 {
10118 for (p = o->map_head.link_order; p != NULL; p = p->next)
10119 {
10120 asection *input_section;
10121
10122 if (p->type != bfd_indirect_link_order)
10123 continue;
10124 input_section = p->u.indirect.section;
10125 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10126 elf_link_input_bfd ignores this section. */
10127 input_section->flags &= ~SEC_HAS_CONTENTS;
10128 }
10129
10130 attr_size = bfd_elf_obj_attr_size (abfd);
10131 if (attr_size)
10132 {
10133 bfd_set_section_size (abfd, o, attr_size);
10134 attr_section = o;
10135 /* Skip this section later on. */
10136 o->map_head.link_order = NULL;
10137 }
10138 else
10139 o->flags |= SEC_EXCLUDE;
10140 }
10141 }
10142
10143 /* Count up the number of relocations we will output for each output
10144 section, so that we know the sizes of the reloc sections. We
10145 also figure out some maximum sizes. */
10146 max_contents_size = 0;
10147 max_external_reloc_size = 0;
10148 max_internal_reloc_count = 0;
10149 max_sym_count = 0;
10150 max_sym_shndx_count = 0;
10151 merged = FALSE;
10152 for (o = abfd->sections; o != NULL; o = o->next)
10153 {
10154 struct bfd_elf_section_data *esdo = elf_section_data (o);
10155 o->reloc_count = 0;
10156
10157 for (p = o->map_head.link_order; p != NULL; p = p->next)
10158 {
10159 unsigned int reloc_count = 0;
10160 struct bfd_elf_section_data *esdi = NULL;
10161 unsigned int *rel_count1;
10162
10163 if (p->type == bfd_section_reloc_link_order
10164 || p->type == bfd_symbol_reloc_link_order)
10165 reloc_count = 1;
10166 else if (p->type == bfd_indirect_link_order)
10167 {
10168 asection *sec;
10169
10170 sec = p->u.indirect.section;
10171 esdi = elf_section_data (sec);
10172
10173 /* Mark all sections which are to be included in the
10174 link. This will normally be every section. We need
10175 to do this so that we can identify any sections which
10176 the linker has decided to not include. */
10177 sec->linker_mark = TRUE;
10178
10179 if (sec->flags & SEC_MERGE)
10180 merged = TRUE;
10181
10182 if (info->relocatable || info->emitrelocations)
10183 reloc_count = sec->reloc_count;
10184 else if (bed->elf_backend_count_relocs)
10185 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10186
10187 if (sec->rawsize > max_contents_size)
10188 max_contents_size = sec->rawsize;
10189 if (sec->size > max_contents_size)
10190 max_contents_size = sec->size;
10191
10192 /* We are interested in just local symbols, not all
10193 symbols. */
10194 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10195 && (sec->owner->flags & DYNAMIC) == 0)
10196 {
10197 size_t sym_count;
10198
10199 if (elf_bad_symtab (sec->owner))
10200 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10201 / bed->s->sizeof_sym);
10202 else
10203 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10204
10205 if (sym_count > max_sym_count)
10206 max_sym_count = sym_count;
10207
10208 if (sym_count > max_sym_shndx_count
10209 && elf_symtab_shndx (sec->owner) != 0)
10210 max_sym_shndx_count = sym_count;
10211
10212 if ((sec->flags & SEC_RELOC) != 0)
10213 {
10214 size_t ext_size;
10215
10216 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
10217 if (ext_size > max_external_reloc_size)
10218 max_external_reloc_size = ext_size;
10219 if (sec->reloc_count > max_internal_reloc_count)
10220 max_internal_reloc_count = sec->reloc_count;
10221 }
10222 }
10223 }
10224
10225 if (reloc_count == 0)
10226 continue;
10227
10228 o->reloc_count += reloc_count;
10229
10230 /* MIPS may have a mix of REL and RELA relocs on sections.
10231 To support this curious ABI we keep reloc counts in
10232 elf_section_data too. We must be careful to add the
10233 relocations from the input section to the right output
10234 count. FIXME: Get rid of one count. We have
10235 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
10236 rel_count1 = &esdo->rel_count;
10237 if (esdi != NULL)
10238 {
10239 bfd_boolean same_size;
10240 bfd_size_type entsize1;
10241
10242 entsize1 = esdi->rel_hdr.sh_entsize;
10243 /* PR 9827: If the header size has not been set yet then
10244 assume that it will match the output section's reloc type. */
10245 if (entsize1 == 0)
10246 entsize1 = o->use_rela_p ? bed->s->sizeof_rela : bed->s->sizeof_rel;
10247 else
10248 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
10249 || entsize1 == bed->s->sizeof_rela);
10250 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
10251
10252 if (!same_size)
10253 rel_count1 = &esdo->rel_count2;
10254
10255 if (esdi->rel_hdr2 != NULL)
10256 {
10257 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
10258 unsigned int alt_count;
10259 unsigned int *rel_count2;
10260
10261 BFD_ASSERT (entsize2 != entsize1
10262 && (entsize2 == bed->s->sizeof_rel
10263 || entsize2 == bed->s->sizeof_rela));
10264
10265 rel_count2 = &esdo->rel_count2;
10266 if (!same_size)
10267 rel_count2 = &esdo->rel_count;
10268
10269 /* The following is probably too simplistic if the
10270 backend counts output relocs unusually. */
10271 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
10272 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
10273 *rel_count2 += alt_count;
10274 reloc_count -= alt_count;
10275 }
10276 }
10277 *rel_count1 += reloc_count;
10278 }
10279
10280 if (o->reloc_count > 0)
10281 o->flags |= SEC_RELOC;
10282 else
10283 {
10284 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10285 set it (this is probably a bug) and if it is set
10286 assign_section_numbers will create a reloc section. */
10287 o->flags &=~ SEC_RELOC;
10288 }
10289
10290 /* If the SEC_ALLOC flag is not set, force the section VMA to
10291 zero. This is done in elf_fake_sections as well, but forcing
10292 the VMA to 0 here will ensure that relocs against these
10293 sections are handled correctly. */
10294 if ((o->flags & SEC_ALLOC) == 0
10295 && ! o->user_set_vma)
10296 o->vma = 0;
10297 }
10298
10299 if (! info->relocatable && merged)
10300 elf_link_hash_traverse (elf_hash_table (info),
10301 _bfd_elf_link_sec_merge_syms, abfd);
10302
10303 /* Figure out the file positions for everything but the symbol table
10304 and the relocs. We set symcount to force assign_section_numbers
10305 to create a symbol table. */
10306 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10307 BFD_ASSERT (! abfd->output_has_begun);
10308 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10309 goto error_return;
10310
10311 /* Set sizes, and assign file positions for reloc sections. */
10312 for (o = abfd->sections; o != NULL; o = o->next)
10313 {
10314 if ((o->flags & SEC_RELOC) != 0)
10315 {
10316 if (!(_bfd_elf_link_size_reloc_section
10317 (abfd, &elf_section_data (o)->rel_hdr, o)))
10318 goto error_return;
10319
10320 if (elf_section_data (o)->rel_hdr2
10321 && !(_bfd_elf_link_size_reloc_section
10322 (abfd, elf_section_data (o)->rel_hdr2, o)))
10323 goto error_return;
10324 }
10325
10326 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10327 to count upwards while actually outputting the relocations. */
10328 elf_section_data (o)->rel_count = 0;
10329 elf_section_data (o)->rel_count2 = 0;
10330 }
10331
10332 _bfd_elf_assign_file_positions_for_relocs (abfd);
10333
10334 /* We have now assigned file positions for all the sections except
10335 .symtab and .strtab. We start the .symtab section at the current
10336 file position, and write directly to it. We build the .strtab
10337 section in memory. */
10338 bfd_get_symcount (abfd) = 0;
10339 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10340 /* sh_name is set in prep_headers. */
10341 symtab_hdr->sh_type = SHT_SYMTAB;
10342 /* sh_flags, sh_addr and sh_size all start off zero. */
10343 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10344 /* sh_link is set in assign_section_numbers. */
10345 /* sh_info is set below. */
10346 /* sh_offset is set just below. */
10347 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10348
10349 off = elf_tdata (abfd)->next_file_pos;
10350 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10351
10352 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10353 incorrect. We do not yet know the size of the .symtab section.
10354 We correct next_file_pos below, after we do know the size. */
10355
10356 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10357 continuously seeking to the right position in the file. */
10358 if (! info->keep_memory || max_sym_count < 20)
10359 finfo.symbuf_size = 20;
10360 else
10361 finfo.symbuf_size = max_sym_count;
10362 amt = finfo.symbuf_size;
10363 amt *= bed->s->sizeof_sym;
10364 finfo.symbuf = bfd_malloc (amt);
10365 if (finfo.symbuf == NULL)
10366 goto error_return;
10367 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10368 {
10369 /* Wild guess at number of output symbols. realloc'd as needed. */
10370 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10371 finfo.shndxbuf_size = amt;
10372 amt *= sizeof (Elf_External_Sym_Shndx);
10373 finfo.symshndxbuf = bfd_zmalloc (amt);
10374 if (finfo.symshndxbuf == NULL)
10375 goto error_return;
10376 }
10377
10378 /* Start writing out the symbol table. The first symbol is always a
10379 dummy symbol. */
10380 if (info->strip != strip_all
10381 || emit_relocs)
10382 {
10383 elfsym.st_value = 0;
10384 elfsym.st_size = 0;
10385 elfsym.st_info = 0;
10386 elfsym.st_other = 0;
10387 elfsym.st_shndx = SHN_UNDEF;
10388 if (elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10389 NULL) != 1)
10390 goto error_return;
10391 }
10392
10393 /* Output a symbol for each section. We output these even if we are
10394 discarding local symbols, since they are used for relocs. These
10395 symbols have no names. We store the index of each one in the
10396 index field of the section, so that we can find it again when
10397 outputting relocs. */
10398 if (info->strip != strip_all
10399 || emit_relocs)
10400 {
10401 elfsym.st_size = 0;
10402 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10403 elfsym.st_other = 0;
10404 elfsym.st_value = 0;
10405 for (i = 1; i < elf_numsections (abfd); i++)
10406 {
10407 o = bfd_section_from_elf_index (abfd, i);
10408 if (o != NULL)
10409 {
10410 o->target_index = bfd_get_symcount (abfd);
10411 elfsym.st_shndx = i;
10412 if (!info->relocatable)
10413 elfsym.st_value = o->vma;
10414 if (elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL) != 1)
10415 goto error_return;
10416 }
10417 }
10418 }
10419
10420 /* Allocate some memory to hold information read in from the input
10421 files. */
10422 if (max_contents_size != 0)
10423 {
10424 finfo.contents = bfd_malloc (max_contents_size);
10425 if (finfo.contents == NULL)
10426 goto error_return;
10427 }
10428
10429 if (max_external_reloc_size != 0)
10430 {
10431 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10432 if (finfo.external_relocs == NULL)
10433 goto error_return;
10434 }
10435
10436 if (max_internal_reloc_count != 0)
10437 {
10438 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10439 amt *= sizeof (Elf_Internal_Rela);
10440 finfo.internal_relocs = bfd_malloc (amt);
10441 if (finfo.internal_relocs == NULL)
10442 goto error_return;
10443 }
10444
10445 if (max_sym_count != 0)
10446 {
10447 amt = max_sym_count * bed->s->sizeof_sym;
10448 finfo.external_syms = bfd_malloc (amt);
10449 if (finfo.external_syms == NULL)
10450 goto error_return;
10451
10452 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10453 finfo.internal_syms = bfd_malloc (amt);
10454 if (finfo.internal_syms == NULL)
10455 goto error_return;
10456
10457 amt = max_sym_count * sizeof (long);
10458 finfo.indices = bfd_malloc (amt);
10459 if (finfo.indices == NULL)
10460 goto error_return;
10461
10462 amt = max_sym_count * sizeof (asection *);
10463 finfo.sections = bfd_malloc (amt);
10464 if (finfo.sections == NULL)
10465 goto error_return;
10466 }
10467
10468 if (max_sym_shndx_count != 0)
10469 {
10470 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10471 finfo.locsym_shndx = bfd_malloc (amt);
10472 if (finfo.locsym_shndx == NULL)
10473 goto error_return;
10474 }
10475
10476 if (elf_hash_table (info)->tls_sec)
10477 {
10478 bfd_vma base, end = 0;
10479 asection *sec;
10480
10481 for (sec = elf_hash_table (info)->tls_sec;
10482 sec && (sec->flags & SEC_THREAD_LOCAL);
10483 sec = sec->next)
10484 {
10485 bfd_size_type size = sec->size;
10486
10487 if (size == 0
10488 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10489 {
10490 struct bfd_link_order *o = sec->map_tail.link_order;
10491 if (o != NULL)
10492 size = o->offset + o->size;
10493 }
10494 end = sec->vma + size;
10495 }
10496 base = elf_hash_table (info)->tls_sec->vma;
10497 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
10498 elf_hash_table (info)->tls_size = end - base;
10499 }
10500
10501 /* Reorder SHF_LINK_ORDER sections. */
10502 for (o = abfd->sections; o != NULL; o = o->next)
10503 {
10504 if (!elf_fixup_link_order (abfd, o))
10505 return FALSE;
10506 }
10507
10508 /* Since ELF permits relocations to be against local symbols, we
10509 must have the local symbols available when we do the relocations.
10510 Since we would rather only read the local symbols once, and we
10511 would rather not keep them in memory, we handle all the
10512 relocations for a single input file at the same time.
10513
10514 Unfortunately, there is no way to know the total number of local
10515 symbols until we have seen all of them, and the local symbol
10516 indices precede the global symbol indices. This means that when
10517 we are generating relocatable output, and we see a reloc against
10518 a global symbol, we can not know the symbol index until we have
10519 finished examining all the local symbols to see which ones we are
10520 going to output. To deal with this, we keep the relocations in
10521 memory, and don't output them until the end of the link. This is
10522 an unfortunate waste of memory, but I don't see a good way around
10523 it. Fortunately, it only happens when performing a relocatable
10524 link, which is not the common case. FIXME: If keep_memory is set
10525 we could write the relocs out and then read them again; I don't
10526 know how bad the memory loss will be. */
10527
10528 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10529 sub->output_has_begun = FALSE;
10530 for (o = abfd->sections; o != NULL; o = o->next)
10531 {
10532 for (p = o->map_head.link_order; p != NULL; p = p->next)
10533 {
10534 if (p->type == bfd_indirect_link_order
10535 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10536 == bfd_target_elf_flavour)
10537 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10538 {
10539 if (! sub->output_has_begun)
10540 {
10541 if (! elf_link_input_bfd (&finfo, sub))
10542 goto error_return;
10543 sub->output_has_begun = TRUE;
10544 }
10545 }
10546 else if (p->type == bfd_section_reloc_link_order
10547 || p->type == bfd_symbol_reloc_link_order)
10548 {
10549 if (! elf_reloc_link_order (abfd, info, o, p))
10550 goto error_return;
10551 }
10552 else
10553 {
10554 if (! _bfd_default_link_order (abfd, info, o, p))
10555 goto error_return;
10556 }
10557 }
10558 }
10559
10560 /* Free symbol buffer if needed. */
10561 if (!info->reduce_memory_overheads)
10562 {
10563 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10564 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10565 && elf_tdata (sub)->symbuf)
10566 {
10567 free (elf_tdata (sub)->symbuf);
10568 elf_tdata (sub)->symbuf = NULL;
10569 }
10570 }
10571
10572 /* Output any global symbols that got converted to local in a
10573 version script or due to symbol visibility. We do this in a
10574 separate step since ELF requires all local symbols to appear
10575 prior to any global symbols. FIXME: We should only do this if
10576 some global symbols were, in fact, converted to become local.
10577 FIXME: Will this work correctly with the Irix 5 linker? */
10578 eoinfo.failed = FALSE;
10579 eoinfo.finfo = &finfo;
10580 eoinfo.localsyms = TRUE;
10581 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10582 &eoinfo);
10583 if (eoinfo.failed)
10584 return FALSE;
10585
10586 /* If backend needs to output some local symbols not present in the hash
10587 table, do it now. */
10588 if (bed->elf_backend_output_arch_local_syms)
10589 {
10590 typedef int (*out_sym_func)
10591 (void *, const char *, Elf_Internal_Sym *, asection *,
10592 struct elf_link_hash_entry *);
10593
10594 if (! ((*bed->elf_backend_output_arch_local_syms)
10595 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10596 return FALSE;
10597 }
10598
10599 /* That wrote out all the local symbols. Finish up the symbol table
10600 with the global symbols. Even if we want to strip everything we
10601 can, we still need to deal with those global symbols that got
10602 converted to local in a version script. */
10603
10604 /* The sh_info field records the index of the first non local symbol. */
10605 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10606
10607 if (dynamic
10608 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10609 {
10610 Elf_Internal_Sym sym;
10611 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10612 long last_local = 0;
10613
10614 /* Write out the section symbols for the output sections. */
10615 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10616 {
10617 asection *s;
10618
10619 sym.st_size = 0;
10620 sym.st_name = 0;
10621 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10622 sym.st_other = 0;
10623
10624 for (s = abfd->sections; s != NULL; s = s->next)
10625 {
10626 int indx;
10627 bfd_byte *dest;
10628 long dynindx;
10629
10630 dynindx = elf_section_data (s)->dynindx;
10631 if (dynindx <= 0)
10632 continue;
10633 indx = elf_section_data (s)->this_idx;
10634 BFD_ASSERT (indx > 0);
10635 sym.st_shndx = indx;
10636 if (! check_dynsym (abfd, &sym))
10637 return FALSE;
10638 sym.st_value = s->vma;
10639 dest = dynsym + dynindx * bed->s->sizeof_sym;
10640 if (last_local < dynindx)
10641 last_local = dynindx;
10642 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10643 }
10644 }
10645
10646 /* Write out the local dynsyms. */
10647 if (elf_hash_table (info)->dynlocal)
10648 {
10649 struct elf_link_local_dynamic_entry *e;
10650 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10651 {
10652 asection *s;
10653 bfd_byte *dest;
10654
10655 sym.st_size = e->isym.st_size;
10656 sym.st_other = e->isym.st_other;
10657
10658 /* Copy the internal symbol as is.
10659 Note that we saved a word of storage and overwrote
10660 the original st_name with the dynstr_index. */
10661 sym = e->isym;
10662
10663 s = bfd_section_from_elf_index (e->input_bfd,
10664 e->isym.st_shndx);
10665 if (s != NULL)
10666 {
10667 sym.st_shndx =
10668 elf_section_data (s->output_section)->this_idx;
10669 if (! check_dynsym (abfd, &sym))
10670 return FALSE;
10671 sym.st_value = (s->output_section->vma
10672 + s->output_offset
10673 + e->isym.st_value);
10674 }
10675
10676 if (last_local < e->dynindx)
10677 last_local = e->dynindx;
10678
10679 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10680 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10681 }
10682 }
10683
10684 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10685 last_local + 1;
10686 }
10687
10688 /* We get the global symbols from the hash table. */
10689 eoinfo.failed = FALSE;
10690 eoinfo.localsyms = FALSE;
10691 eoinfo.finfo = &finfo;
10692 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10693 &eoinfo);
10694 if (eoinfo.failed)
10695 return FALSE;
10696
10697 /* If backend needs to output some symbols not present in the hash
10698 table, do it now. */
10699 if (bed->elf_backend_output_arch_syms)
10700 {
10701 typedef int (*out_sym_func)
10702 (void *, const char *, Elf_Internal_Sym *, asection *,
10703 struct elf_link_hash_entry *);
10704
10705 if (! ((*bed->elf_backend_output_arch_syms)
10706 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10707 return FALSE;
10708 }
10709
10710 /* Flush all symbols to the file. */
10711 if (! elf_link_flush_output_syms (&finfo, bed))
10712 return FALSE;
10713
10714 /* Now we know the size of the symtab section. */
10715 off += symtab_hdr->sh_size;
10716
10717 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10718 if (symtab_shndx_hdr->sh_name != 0)
10719 {
10720 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10721 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10722 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10723 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10724 symtab_shndx_hdr->sh_size = amt;
10725
10726 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10727 off, TRUE);
10728
10729 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10730 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10731 return FALSE;
10732 }
10733
10734
10735 /* Finish up and write out the symbol string table (.strtab)
10736 section. */
10737 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10738 /* sh_name was set in prep_headers. */
10739 symstrtab_hdr->sh_type = SHT_STRTAB;
10740 symstrtab_hdr->sh_flags = 0;
10741 symstrtab_hdr->sh_addr = 0;
10742 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10743 symstrtab_hdr->sh_entsize = 0;
10744 symstrtab_hdr->sh_link = 0;
10745 symstrtab_hdr->sh_info = 0;
10746 /* sh_offset is set just below. */
10747 symstrtab_hdr->sh_addralign = 1;
10748
10749 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10750 elf_tdata (abfd)->next_file_pos = off;
10751
10752 if (bfd_get_symcount (abfd) > 0)
10753 {
10754 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10755 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10756 return FALSE;
10757 }
10758
10759 /* Adjust the relocs to have the correct symbol indices. */
10760 for (o = abfd->sections; o != NULL; o = o->next)
10761 {
10762 if ((o->flags & SEC_RELOC) == 0)
10763 continue;
10764
10765 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
10766 elf_section_data (o)->rel_count,
10767 elf_section_data (o)->rel_hashes);
10768 if (elf_section_data (o)->rel_hdr2 != NULL)
10769 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
10770 elf_section_data (o)->rel_count2,
10771 (elf_section_data (o)->rel_hashes
10772 + elf_section_data (o)->rel_count));
10773
10774 /* Set the reloc_count field to 0 to prevent write_relocs from
10775 trying to swap the relocs out itself. */
10776 o->reloc_count = 0;
10777 }
10778
10779 if (dynamic && info->combreloc && dynobj != NULL)
10780 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10781
10782 /* If we are linking against a dynamic object, or generating a
10783 shared library, finish up the dynamic linking information. */
10784 if (dynamic)
10785 {
10786 bfd_byte *dyncon, *dynconend;
10787
10788 /* Fix up .dynamic entries. */
10789 o = bfd_get_section_by_name (dynobj, ".dynamic");
10790 BFD_ASSERT (o != NULL);
10791
10792 dyncon = o->contents;
10793 dynconend = o->contents + o->size;
10794 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10795 {
10796 Elf_Internal_Dyn dyn;
10797 const char *name;
10798 unsigned int type;
10799
10800 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10801
10802 switch (dyn.d_tag)
10803 {
10804 default:
10805 continue;
10806 case DT_NULL:
10807 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
10808 {
10809 switch (elf_section_data (reldyn)->this_hdr.sh_type)
10810 {
10811 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
10812 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
10813 default: continue;
10814 }
10815 dyn.d_un.d_val = relativecount;
10816 relativecount = 0;
10817 break;
10818 }
10819 continue;
10820
10821 case DT_INIT:
10822 name = info->init_function;
10823 goto get_sym;
10824 case DT_FINI:
10825 name = info->fini_function;
10826 get_sym:
10827 {
10828 struct elf_link_hash_entry *h;
10829
10830 h = elf_link_hash_lookup (elf_hash_table (info), name,
10831 FALSE, FALSE, TRUE);
10832 if (h != NULL
10833 && (h->root.type == bfd_link_hash_defined
10834 || h->root.type == bfd_link_hash_defweak))
10835 {
10836 dyn.d_un.d_ptr = h->root.u.def.value;
10837 o = h->root.u.def.section;
10838 if (o->output_section != NULL)
10839 dyn.d_un.d_ptr += (o->output_section->vma
10840 + o->output_offset);
10841 else
10842 {
10843 /* The symbol is imported from another shared
10844 library and does not apply to this one. */
10845 dyn.d_un.d_ptr = 0;
10846 }
10847 break;
10848 }
10849 }
10850 continue;
10851
10852 case DT_PREINIT_ARRAYSZ:
10853 name = ".preinit_array";
10854 goto get_size;
10855 case DT_INIT_ARRAYSZ:
10856 name = ".init_array";
10857 goto get_size;
10858 case DT_FINI_ARRAYSZ:
10859 name = ".fini_array";
10860 get_size:
10861 o = bfd_get_section_by_name (abfd, name);
10862 if (o == NULL)
10863 {
10864 (*_bfd_error_handler)
10865 (_("%B: could not find output section %s"), abfd, name);
10866 goto error_return;
10867 }
10868 if (o->size == 0)
10869 (*_bfd_error_handler)
10870 (_("warning: %s section has zero size"), name);
10871 dyn.d_un.d_val = o->size;
10872 break;
10873
10874 case DT_PREINIT_ARRAY:
10875 name = ".preinit_array";
10876 goto get_vma;
10877 case DT_INIT_ARRAY:
10878 name = ".init_array";
10879 goto get_vma;
10880 case DT_FINI_ARRAY:
10881 name = ".fini_array";
10882 goto get_vma;
10883
10884 case DT_HASH:
10885 name = ".hash";
10886 goto get_vma;
10887 case DT_GNU_HASH:
10888 name = ".gnu.hash";
10889 goto get_vma;
10890 case DT_STRTAB:
10891 name = ".dynstr";
10892 goto get_vma;
10893 case DT_SYMTAB:
10894 name = ".dynsym";
10895 goto get_vma;
10896 case DT_VERDEF:
10897 name = ".gnu.version_d";
10898 goto get_vma;
10899 case DT_VERNEED:
10900 name = ".gnu.version_r";
10901 goto get_vma;
10902 case DT_VERSYM:
10903 name = ".gnu.version";
10904 get_vma:
10905 o = bfd_get_section_by_name (abfd, name);
10906 if (o == NULL)
10907 {
10908 (*_bfd_error_handler)
10909 (_("%B: could not find output section %s"), abfd, name);
10910 goto error_return;
10911 }
10912 dyn.d_un.d_ptr = o->vma;
10913 break;
10914
10915 case DT_REL:
10916 case DT_RELA:
10917 case DT_RELSZ:
10918 case DT_RELASZ:
10919 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
10920 type = SHT_REL;
10921 else
10922 type = SHT_RELA;
10923 dyn.d_un.d_val = 0;
10924 dyn.d_un.d_ptr = 0;
10925 for (i = 1; i < elf_numsections (abfd); i++)
10926 {
10927 Elf_Internal_Shdr *hdr;
10928
10929 hdr = elf_elfsections (abfd)[i];
10930 if (hdr->sh_type == type
10931 && (hdr->sh_flags & SHF_ALLOC) != 0)
10932 {
10933 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
10934 dyn.d_un.d_val += hdr->sh_size;
10935 else
10936 {
10937 if (dyn.d_un.d_ptr == 0
10938 || hdr->sh_addr < dyn.d_un.d_ptr)
10939 dyn.d_un.d_ptr = hdr->sh_addr;
10940 }
10941 }
10942 }
10943 break;
10944 }
10945 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
10946 }
10947 }
10948
10949 /* If we have created any dynamic sections, then output them. */
10950 if (dynobj != NULL)
10951 {
10952 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
10953 goto error_return;
10954
10955 /* Check for DT_TEXTREL (late, in case the backend removes it). */
10956 if (info->warn_shared_textrel && info->shared)
10957 {
10958 bfd_byte *dyncon, *dynconend;
10959
10960 /* Fix up .dynamic entries. */
10961 o = bfd_get_section_by_name (dynobj, ".dynamic");
10962 BFD_ASSERT (o != NULL);
10963
10964 dyncon = o->contents;
10965 dynconend = o->contents + o->size;
10966 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10967 {
10968 Elf_Internal_Dyn dyn;
10969
10970 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10971
10972 if (dyn.d_tag == DT_TEXTREL)
10973 {
10974 info->callbacks->einfo
10975 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
10976 break;
10977 }
10978 }
10979 }
10980
10981 for (o = dynobj->sections; o != NULL; o = o->next)
10982 {
10983 if ((o->flags & SEC_HAS_CONTENTS) == 0
10984 || o->size == 0
10985 || o->output_section == bfd_abs_section_ptr)
10986 continue;
10987 if ((o->flags & SEC_LINKER_CREATED) == 0)
10988 {
10989 /* At this point, we are only interested in sections
10990 created by _bfd_elf_link_create_dynamic_sections. */
10991 continue;
10992 }
10993 if (elf_hash_table (info)->stab_info.stabstr == o)
10994 continue;
10995 if (elf_hash_table (info)->eh_info.hdr_sec == o)
10996 continue;
10997 if ((elf_section_data (o->output_section)->this_hdr.sh_type
10998 != SHT_STRTAB)
10999 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
11000 {
11001 if (! bfd_set_section_contents (abfd, o->output_section,
11002 o->contents,
11003 (file_ptr) o->output_offset,
11004 o->size))
11005 goto error_return;
11006 }
11007 else
11008 {
11009 /* The contents of the .dynstr section are actually in a
11010 stringtab. */
11011 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11012 if (bfd_seek (abfd, off, SEEK_SET) != 0
11013 || ! _bfd_elf_strtab_emit (abfd,
11014 elf_hash_table (info)->dynstr))
11015 goto error_return;
11016 }
11017 }
11018 }
11019
11020 if (info->relocatable)
11021 {
11022 bfd_boolean failed = FALSE;
11023
11024 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11025 if (failed)
11026 goto error_return;
11027 }
11028
11029 /* If we have optimized stabs strings, output them. */
11030 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11031 {
11032 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11033 goto error_return;
11034 }
11035
11036 if (info->eh_frame_hdr)
11037 {
11038 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11039 goto error_return;
11040 }
11041
11042 if (finfo.symstrtab != NULL)
11043 _bfd_stringtab_free (finfo.symstrtab);
11044 if (finfo.contents != NULL)
11045 free (finfo.contents);
11046 if (finfo.external_relocs != NULL)
11047 free (finfo.external_relocs);
11048 if (finfo.internal_relocs != NULL)
11049 free (finfo.internal_relocs);
11050 if (finfo.external_syms != NULL)
11051 free (finfo.external_syms);
11052 if (finfo.locsym_shndx != NULL)
11053 free (finfo.locsym_shndx);
11054 if (finfo.internal_syms != NULL)
11055 free (finfo.internal_syms);
11056 if (finfo.indices != NULL)
11057 free (finfo.indices);
11058 if (finfo.sections != NULL)
11059 free (finfo.sections);
11060 if (finfo.symbuf != NULL)
11061 free (finfo.symbuf);
11062 if (finfo.symshndxbuf != NULL)
11063 free (finfo.symshndxbuf);
11064 for (o = abfd->sections; o != NULL; o = o->next)
11065 {
11066 if ((o->flags & SEC_RELOC) != 0
11067 && elf_section_data (o)->rel_hashes != NULL)
11068 free (elf_section_data (o)->rel_hashes);
11069 }
11070
11071 elf_tdata (abfd)->linker = TRUE;
11072
11073 if (attr_section)
11074 {
11075 bfd_byte *contents = bfd_malloc (attr_size);
11076 if (contents == NULL)
11077 return FALSE; /* Bail out and fail. */
11078 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11079 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11080 free (contents);
11081 }
11082
11083 return TRUE;
11084
11085 error_return:
11086 if (finfo.symstrtab != NULL)
11087 _bfd_stringtab_free (finfo.symstrtab);
11088 if (finfo.contents != NULL)
11089 free (finfo.contents);
11090 if (finfo.external_relocs != NULL)
11091 free (finfo.external_relocs);
11092 if (finfo.internal_relocs != NULL)
11093 free (finfo.internal_relocs);
11094 if (finfo.external_syms != NULL)
11095 free (finfo.external_syms);
11096 if (finfo.locsym_shndx != NULL)
11097 free (finfo.locsym_shndx);
11098 if (finfo.internal_syms != NULL)
11099 free (finfo.internal_syms);
11100 if (finfo.indices != NULL)
11101 free (finfo.indices);
11102 if (finfo.sections != NULL)
11103 free (finfo.sections);
11104 if (finfo.symbuf != NULL)
11105 free (finfo.symbuf);
11106 if (finfo.symshndxbuf != NULL)
11107 free (finfo.symshndxbuf);
11108 for (o = abfd->sections; o != NULL; o = o->next)
11109 {
11110 if ((o->flags & SEC_RELOC) != 0
11111 && elf_section_data (o)->rel_hashes != NULL)
11112 free (elf_section_data (o)->rel_hashes);
11113 }
11114
11115 return FALSE;
11116 }
11117 \f
11118 /* Initialize COOKIE for input bfd ABFD. */
11119
11120 static bfd_boolean
11121 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11122 struct bfd_link_info *info, bfd *abfd)
11123 {
11124 Elf_Internal_Shdr *symtab_hdr;
11125 const struct elf_backend_data *bed;
11126
11127 bed = get_elf_backend_data (abfd);
11128 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11129
11130 cookie->abfd = abfd;
11131 cookie->sym_hashes = elf_sym_hashes (abfd);
11132 cookie->bad_symtab = elf_bad_symtab (abfd);
11133 if (cookie->bad_symtab)
11134 {
11135 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11136 cookie->extsymoff = 0;
11137 }
11138 else
11139 {
11140 cookie->locsymcount = symtab_hdr->sh_info;
11141 cookie->extsymoff = symtab_hdr->sh_info;
11142 }
11143
11144 if (bed->s->arch_size == 32)
11145 cookie->r_sym_shift = 8;
11146 else
11147 cookie->r_sym_shift = 32;
11148
11149 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11150 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11151 {
11152 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11153 cookie->locsymcount, 0,
11154 NULL, NULL, NULL);
11155 if (cookie->locsyms == NULL)
11156 {
11157 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11158 return FALSE;
11159 }
11160 if (info->keep_memory)
11161 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11162 }
11163 return TRUE;
11164 }
11165
11166 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11167
11168 static void
11169 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11170 {
11171 Elf_Internal_Shdr *symtab_hdr;
11172
11173 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11174 if (cookie->locsyms != NULL
11175 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11176 free (cookie->locsyms);
11177 }
11178
11179 /* Initialize the relocation information in COOKIE for input section SEC
11180 of input bfd ABFD. */
11181
11182 static bfd_boolean
11183 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11184 struct bfd_link_info *info, bfd *abfd,
11185 asection *sec)
11186 {
11187 const struct elf_backend_data *bed;
11188
11189 if (sec->reloc_count == 0)
11190 {
11191 cookie->rels = NULL;
11192 cookie->relend = NULL;
11193 }
11194 else
11195 {
11196 bed = get_elf_backend_data (abfd);
11197
11198 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11199 info->keep_memory);
11200 if (cookie->rels == NULL)
11201 return FALSE;
11202 cookie->rel = cookie->rels;
11203 cookie->relend = (cookie->rels
11204 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11205 }
11206 cookie->rel = cookie->rels;
11207 return TRUE;
11208 }
11209
11210 /* Free the memory allocated by init_reloc_cookie_rels,
11211 if appropriate. */
11212
11213 static void
11214 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11215 asection *sec)
11216 {
11217 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11218 free (cookie->rels);
11219 }
11220
11221 /* Initialize the whole of COOKIE for input section SEC. */
11222
11223 static bfd_boolean
11224 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11225 struct bfd_link_info *info,
11226 asection *sec)
11227 {
11228 if (!init_reloc_cookie (cookie, info, sec->owner))
11229 goto error1;
11230 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11231 goto error2;
11232 return TRUE;
11233
11234 error2:
11235 fini_reloc_cookie (cookie, sec->owner);
11236 error1:
11237 return FALSE;
11238 }
11239
11240 /* Free the memory allocated by init_reloc_cookie_for_section,
11241 if appropriate. */
11242
11243 static void
11244 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11245 asection *sec)
11246 {
11247 fini_reloc_cookie_rels (cookie, sec);
11248 fini_reloc_cookie (cookie, sec->owner);
11249 }
11250 \f
11251 /* Garbage collect unused sections. */
11252
11253 /* Default gc_mark_hook. */
11254
11255 asection *
11256 _bfd_elf_gc_mark_hook (asection *sec,
11257 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11258 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11259 struct elf_link_hash_entry *h,
11260 Elf_Internal_Sym *sym)
11261 {
11262 if (h != NULL)
11263 {
11264 switch (h->root.type)
11265 {
11266 case bfd_link_hash_defined:
11267 case bfd_link_hash_defweak:
11268 return h->root.u.def.section;
11269
11270 case bfd_link_hash_common:
11271 return h->root.u.c.p->section;
11272
11273 default:
11274 break;
11275 }
11276 }
11277 else
11278 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11279
11280 return NULL;
11281 }
11282
11283 /* COOKIE->rel describes a relocation against section SEC, which is
11284 a section we've decided to keep. Return the section that contains
11285 the relocation symbol, or NULL if no section contains it. */
11286
11287 asection *
11288 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11289 elf_gc_mark_hook_fn gc_mark_hook,
11290 struct elf_reloc_cookie *cookie)
11291 {
11292 unsigned long r_symndx;
11293 struct elf_link_hash_entry *h;
11294
11295 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11296 if (r_symndx == 0)
11297 return NULL;
11298
11299 if (r_symndx >= cookie->locsymcount
11300 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11301 {
11302 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11303 while (h->root.type == bfd_link_hash_indirect
11304 || h->root.type == bfd_link_hash_warning)
11305 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11306 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11307 }
11308
11309 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11310 &cookie->locsyms[r_symndx]);
11311 }
11312
11313 /* COOKIE->rel describes a relocation against section SEC, which is
11314 a section we've decided to keep. Mark the section that contains
11315 the relocation symbol. */
11316
11317 bfd_boolean
11318 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11319 asection *sec,
11320 elf_gc_mark_hook_fn gc_mark_hook,
11321 struct elf_reloc_cookie *cookie)
11322 {
11323 asection *rsec;
11324
11325 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11326 if (rsec && !rsec->gc_mark)
11327 {
11328 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11329 rsec->gc_mark = 1;
11330 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11331 return FALSE;
11332 }
11333 return TRUE;
11334 }
11335
11336 /* The mark phase of garbage collection. For a given section, mark
11337 it and any sections in this section's group, and all the sections
11338 which define symbols to which it refers. */
11339
11340 bfd_boolean
11341 _bfd_elf_gc_mark (struct bfd_link_info *info,
11342 asection *sec,
11343 elf_gc_mark_hook_fn gc_mark_hook)
11344 {
11345 bfd_boolean ret;
11346 asection *group_sec, *eh_frame;
11347
11348 sec->gc_mark = 1;
11349
11350 /* Mark all the sections in the group. */
11351 group_sec = elf_section_data (sec)->next_in_group;
11352 if (group_sec && !group_sec->gc_mark)
11353 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11354 return FALSE;
11355
11356 /* Look through the section relocs. */
11357 ret = TRUE;
11358 eh_frame = elf_eh_frame_section (sec->owner);
11359 if ((sec->flags & SEC_RELOC) != 0
11360 && sec->reloc_count > 0
11361 && sec != eh_frame)
11362 {
11363 struct elf_reloc_cookie cookie;
11364
11365 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11366 ret = FALSE;
11367 else
11368 {
11369 for (; cookie.rel < cookie.relend; cookie.rel++)
11370 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11371 {
11372 ret = FALSE;
11373 break;
11374 }
11375 fini_reloc_cookie_for_section (&cookie, sec);
11376 }
11377 }
11378
11379 if (ret && eh_frame && elf_fde_list (sec))
11380 {
11381 struct elf_reloc_cookie cookie;
11382
11383 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11384 ret = FALSE;
11385 else
11386 {
11387 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11388 gc_mark_hook, &cookie))
11389 ret = FALSE;
11390 fini_reloc_cookie_for_section (&cookie, eh_frame);
11391 }
11392 }
11393
11394 return ret;
11395 }
11396
11397 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11398
11399 struct elf_gc_sweep_symbol_info
11400 {
11401 struct bfd_link_info *info;
11402 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11403 bfd_boolean);
11404 };
11405
11406 static bfd_boolean
11407 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11408 {
11409 if (h->root.type == bfd_link_hash_warning)
11410 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11411
11412 if ((h->root.type == bfd_link_hash_defined
11413 || h->root.type == bfd_link_hash_defweak)
11414 && !h->root.u.def.section->gc_mark
11415 && !(h->root.u.def.section->owner->flags & DYNAMIC))
11416 {
11417 struct elf_gc_sweep_symbol_info *inf = data;
11418 (*inf->hide_symbol) (inf->info, h, TRUE);
11419 }
11420
11421 return TRUE;
11422 }
11423
11424 /* The sweep phase of garbage collection. Remove all garbage sections. */
11425
11426 typedef bfd_boolean (*gc_sweep_hook_fn)
11427 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11428
11429 static bfd_boolean
11430 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11431 {
11432 bfd *sub;
11433 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11434 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11435 unsigned long section_sym_count;
11436 struct elf_gc_sweep_symbol_info sweep_info;
11437
11438 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11439 {
11440 asection *o;
11441
11442 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11443 continue;
11444
11445 for (o = sub->sections; o != NULL; o = o->next)
11446 {
11447 /* When any section in a section group is kept, we keep all
11448 sections in the section group. If the first member of
11449 the section group is excluded, we will also exclude the
11450 group section. */
11451 if (o->flags & SEC_GROUP)
11452 {
11453 asection *first = elf_next_in_group (o);
11454 o->gc_mark = first->gc_mark;
11455 }
11456 else if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
11457 || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
11458 {
11459 /* Keep debug and special sections. */
11460 o->gc_mark = 1;
11461 }
11462
11463 if (o->gc_mark)
11464 continue;
11465
11466 /* Skip sweeping sections already excluded. */
11467 if (o->flags & SEC_EXCLUDE)
11468 continue;
11469
11470 /* Since this is early in the link process, it is simple
11471 to remove a section from the output. */
11472 o->flags |= SEC_EXCLUDE;
11473
11474 if (info->print_gc_sections && o->size != 0)
11475 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11476
11477 /* But we also have to update some of the relocation
11478 info we collected before. */
11479 if (gc_sweep_hook
11480 && (o->flags & SEC_RELOC) != 0
11481 && o->reloc_count > 0
11482 && !bfd_is_abs_section (o->output_section))
11483 {
11484 Elf_Internal_Rela *internal_relocs;
11485 bfd_boolean r;
11486
11487 internal_relocs
11488 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11489 info->keep_memory);
11490 if (internal_relocs == NULL)
11491 return FALSE;
11492
11493 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11494
11495 if (elf_section_data (o)->relocs != internal_relocs)
11496 free (internal_relocs);
11497
11498 if (!r)
11499 return FALSE;
11500 }
11501 }
11502 }
11503
11504 /* Remove the symbols that were in the swept sections from the dynamic
11505 symbol table. GCFIXME: Anyone know how to get them out of the
11506 static symbol table as well? */
11507 sweep_info.info = info;
11508 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11509 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11510 &sweep_info);
11511
11512 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11513 return TRUE;
11514 }
11515
11516 /* Propagate collected vtable information. This is called through
11517 elf_link_hash_traverse. */
11518
11519 static bfd_boolean
11520 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11521 {
11522 if (h->root.type == bfd_link_hash_warning)
11523 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11524
11525 /* Those that are not vtables. */
11526 if (h->vtable == NULL || h->vtable->parent == NULL)
11527 return TRUE;
11528
11529 /* Those vtables that do not have parents, we cannot merge. */
11530 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11531 return TRUE;
11532
11533 /* If we've already been done, exit. */
11534 if (h->vtable->used && h->vtable->used[-1])
11535 return TRUE;
11536
11537 /* Make sure the parent's table is up to date. */
11538 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11539
11540 if (h->vtable->used == NULL)
11541 {
11542 /* None of this table's entries were referenced. Re-use the
11543 parent's table. */
11544 h->vtable->used = h->vtable->parent->vtable->used;
11545 h->vtable->size = h->vtable->parent->vtable->size;
11546 }
11547 else
11548 {
11549 size_t n;
11550 bfd_boolean *cu, *pu;
11551
11552 /* Or the parent's entries into ours. */
11553 cu = h->vtable->used;
11554 cu[-1] = TRUE;
11555 pu = h->vtable->parent->vtable->used;
11556 if (pu != NULL)
11557 {
11558 const struct elf_backend_data *bed;
11559 unsigned int log_file_align;
11560
11561 bed = get_elf_backend_data (h->root.u.def.section->owner);
11562 log_file_align = bed->s->log_file_align;
11563 n = h->vtable->parent->vtable->size >> log_file_align;
11564 while (n--)
11565 {
11566 if (*pu)
11567 *cu = TRUE;
11568 pu++;
11569 cu++;
11570 }
11571 }
11572 }
11573
11574 return TRUE;
11575 }
11576
11577 static bfd_boolean
11578 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11579 {
11580 asection *sec;
11581 bfd_vma hstart, hend;
11582 Elf_Internal_Rela *relstart, *relend, *rel;
11583 const struct elf_backend_data *bed;
11584 unsigned int log_file_align;
11585
11586 if (h->root.type == bfd_link_hash_warning)
11587 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11588
11589 /* Take care of both those symbols that do not describe vtables as
11590 well as those that are not loaded. */
11591 if (h->vtable == NULL || h->vtable->parent == NULL)
11592 return TRUE;
11593
11594 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11595 || h->root.type == bfd_link_hash_defweak);
11596
11597 sec = h->root.u.def.section;
11598 hstart = h->root.u.def.value;
11599 hend = hstart + h->size;
11600
11601 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11602 if (!relstart)
11603 return *(bfd_boolean *) okp = FALSE;
11604 bed = get_elf_backend_data (sec->owner);
11605 log_file_align = bed->s->log_file_align;
11606
11607 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11608
11609 for (rel = relstart; rel < relend; ++rel)
11610 if (rel->r_offset >= hstart && rel->r_offset < hend)
11611 {
11612 /* If the entry is in use, do nothing. */
11613 if (h->vtable->used
11614 && (rel->r_offset - hstart) < h->vtable->size)
11615 {
11616 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11617 if (h->vtable->used[entry])
11618 continue;
11619 }
11620 /* Otherwise, kill it. */
11621 rel->r_offset = rel->r_info = rel->r_addend = 0;
11622 }
11623
11624 return TRUE;
11625 }
11626
11627 /* Mark sections containing dynamically referenced symbols. When
11628 building shared libraries, we must assume that any visible symbol is
11629 referenced. */
11630
11631 bfd_boolean
11632 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11633 {
11634 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11635
11636 if (h->root.type == bfd_link_hash_warning)
11637 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11638
11639 if ((h->root.type == bfd_link_hash_defined
11640 || h->root.type == bfd_link_hash_defweak)
11641 && (h->ref_dynamic
11642 || (!info->executable
11643 && h->def_regular
11644 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11645 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
11646 h->root.u.def.section->flags |= SEC_KEEP;
11647
11648 return TRUE;
11649 }
11650
11651 /* Keep all sections containing symbols undefined on the command-line,
11652 and the section containing the entry symbol. */
11653
11654 void
11655 _bfd_elf_gc_keep (struct bfd_link_info *info)
11656 {
11657 struct bfd_sym_chain *sym;
11658
11659 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11660 {
11661 struct elf_link_hash_entry *h;
11662
11663 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11664 FALSE, FALSE, FALSE);
11665
11666 if (h != NULL
11667 && (h->root.type == bfd_link_hash_defined
11668 || h->root.type == bfd_link_hash_defweak)
11669 && !bfd_is_abs_section (h->root.u.def.section))
11670 h->root.u.def.section->flags |= SEC_KEEP;
11671 }
11672 }
11673
11674 /* Do mark and sweep of unused sections. */
11675
11676 bfd_boolean
11677 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11678 {
11679 bfd_boolean ok = TRUE;
11680 bfd *sub;
11681 elf_gc_mark_hook_fn gc_mark_hook;
11682 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11683
11684 if (!bed->can_gc_sections
11685 || !is_elf_hash_table (info->hash))
11686 {
11687 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11688 return TRUE;
11689 }
11690
11691 bed->gc_keep (info);
11692
11693 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11694 at the .eh_frame section if we can mark the FDEs individually. */
11695 _bfd_elf_begin_eh_frame_parsing (info);
11696 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11697 {
11698 asection *sec;
11699 struct elf_reloc_cookie cookie;
11700
11701 sec = bfd_get_section_by_name (sub, ".eh_frame");
11702 if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
11703 {
11704 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
11705 if (elf_section_data (sec)->sec_info)
11706 elf_eh_frame_section (sub) = sec;
11707 fini_reloc_cookie_for_section (&cookie, sec);
11708 }
11709 }
11710 _bfd_elf_end_eh_frame_parsing (info);
11711
11712 /* Apply transitive closure to the vtable entry usage info. */
11713 elf_link_hash_traverse (elf_hash_table (info),
11714 elf_gc_propagate_vtable_entries_used,
11715 &ok);
11716 if (!ok)
11717 return FALSE;
11718
11719 /* Kill the vtable relocations that were not used. */
11720 elf_link_hash_traverse (elf_hash_table (info),
11721 elf_gc_smash_unused_vtentry_relocs,
11722 &ok);
11723 if (!ok)
11724 return FALSE;
11725
11726 /* Mark dynamically referenced symbols. */
11727 if (elf_hash_table (info)->dynamic_sections_created)
11728 elf_link_hash_traverse (elf_hash_table (info),
11729 bed->gc_mark_dynamic_ref,
11730 info);
11731
11732 /* Grovel through relocs to find out who stays ... */
11733 gc_mark_hook = bed->gc_mark_hook;
11734 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11735 {
11736 asection *o;
11737
11738 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11739 continue;
11740
11741 for (o = sub->sections; o != NULL; o = o->next)
11742 if ((o->flags & (SEC_EXCLUDE | SEC_KEEP)) == SEC_KEEP && !o->gc_mark)
11743 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11744 return FALSE;
11745 }
11746
11747 /* Allow the backend to mark additional target specific sections. */
11748 if (bed->gc_mark_extra_sections)
11749 bed->gc_mark_extra_sections (info, gc_mark_hook);
11750
11751 /* ... and mark SEC_EXCLUDE for those that go. */
11752 return elf_gc_sweep (abfd, info);
11753 }
11754 \f
11755 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11756
11757 bfd_boolean
11758 bfd_elf_gc_record_vtinherit (bfd *abfd,
11759 asection *sec,
11760 struct elf_link_hash_entry *h,
11761 bfd_vma offset)
11762 {
11763 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
11764 struct elf_link_hash_entry **search, *child;
11765 bfd_size_type extsymcount;
11766 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11767
11768 /* The sh_info field of the symtab header tells us where the
11769 external symbols start. We don't care about the local symbols at
11770 this point. */
11771 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
11772 if (!elf_bad_symtab (abfd))
11773 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
11774
11775 sym_hashes = elf_sym_hashes (abfd);
11776 sym_hashes_end = sym_hashes + extsymcount;
11777
11778 /* Hunt down the child symbol, which is in this section at the same
11779 offset as the relocation. */
11780 for (search = sym_hashes; search != sym_hashes_end; ++search)
11781 {
11782 if ((child = *search) != NULL
11783 && (child->root.type == bfd_link_hash_defined
11784 || child->root.type == bfd_link_hash_defweak)
11785 && child->root.u.def.section == sec
11786 && child->root.u.def.value == offset)
11787 goto win;
11788 }
11789
11790 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
11791 abfd, sec, (unsigned long) offset);
11792 bfd_set_error (bfd_error_invalid_operation);
11793 return FALSE;
11794
11795 win:
11796 if (!child->vtable)
11797 {
11798 child->vtable = bfd_zalloc (abfd, sizeof (*child->vtable));
11799 if (!child->vtable)
11800 return FALSE;
11801 }
11802 if (!h)
11803 {
11804 /* This *should* only be the absolute section. It could potentially
11805 be that someone has defined a non-global vtable though, which
11806 would be bad. It isn't worth paging in the local symbols to be
11807 sure though; that case should simply be handled by the assembler. */
11808
11809 child->vtable->parent = (struct elf_link_hash_entry *) -1;
11810 }
11811 else
11812 child->vtable->parent = h;
11813
11814 return TRUE;
11815 }
11816
11817 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
11818
11819 bfd_boolean
11820 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
11821 asection *sec ATTRIBUTE_UNUSED,
11822 struct elf_link_hash_entry *h,
11823 bfd_vma addend)
11824 {
11825 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11826 unsigned int log_file_align = bed->s->log_file_align;
11827
11828 if (!h->vtable)
11829 {
11830 h->vtable = bfd_zalloc (abfd, sizeof (*h->vtable));
11831 if (!h->vtable)
11832 return FALSE;
11833 }
11834
11835 if (addend >= h->vtable->size)
11836 {
11837 size_t size, bytes, file_align;
11838 bfd_boolean *ptr = h->vtable->used;
11839
11840 /* While the symbol is undefined, we have to be prepared to handle
11841 a zero size. */
11842 file_align = 1 << log_file_align;
11843 if (h->root.type == bfd_link_hash_undefined)
11844 size = addend + file_align;
11845 else
11846 {
11847 size = h->size;
11848 if (addend >= size)
11849 {
11850 /* Oops! We've got a reference past the defined end of
11851 the table. This is probably a bug -- shall we warn? */
11852 size = addend + file_align;
11853 }
11854 }
11855 size = (size + file_align - 1) & -file_align;
11856
11857 /* Allocate one extra entry for use as a "done" flag for the
11858 consolidation pass. */
11859 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
11860
11861 if (ptr)
11862 {
11863 ptr = bfd_realloc (ptr - 1, bytes);
11864
11865 if (ptr != NULL)
11866 {
11867 size_t oldbytes;
11868
11869 oldbytes = (((h->vtable->size >> log_file_align) + 1)
11870 * sizeof (bfd_boolean));
11871 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
11872 }
11873 }
11874 else
11875 ptr = bfd_zmalloc (bytes);
11876
11877 if (ptr == NULL)
11878 return FALSE;
11879
11880 /* And arrange for that done flag to be at index -1. */
11881 h->vtable->used = ptr + 1;
11882 h->vtable->size = size;
11883 }
11884
11885 h->vtable->used[addend >> log_file_align] = TRUE;
11886
11887 return TRUE;
11888 }
11889
11890 struct alloc_got_off_arg {
11891 bfd_vma gotoff;
11892 struct bfd_link_info *info;
11893 };
11894
11895 /* We need a special top-level link routine to convert got reference counts
11896 to real got offsets. */
11897
11898 static bfd_boolean
11899 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
11900 {
11901 struct alloc_got_off_arg *gofarg = arg;
11902 bfd *obfd = gofarg->info->output_bfd;
11903 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
11904
11905 if (h->root.type == bfd_link_hash_warning)
11906 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11907
11908 if (h->got.refcount > 0)
11909 {
11910 h->got.offset = gofarg->gotoff;
11911 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
11912 }
11913 else
11914 h->got.offset = (bfd_vma) -1;
11915
11916 return TRUE;
11917 }
11918
11919 /* And an accompanying bit to work out final got entry offsets once
11920 we're done. Should be called from final_link. */
11921
11922 bfd_boolean
11923 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
11924 struct bfd_link_info *info)
11925 {
11926 bfd *i;
11927 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11928 bfd_vma gotoff;
11929 struct alloc_got_off_arg gofarg;
11930
11931 BFD_ASSERT (abfd == info->output_bfd);
11932
11933 if (! is_elf_hash_table (info->hash))
11934 return FALSE;
11935
11936 /* The GOT offset is relative to the .got section, but the GOT header is
11937 put into the .got.plt section, if the backend uses it. */
11938 if (bed->want_got_plt)
11939 gotoff = 0;
11940 else
11941 gotoff = bed->got_header_size;
11942
11943 /* Do the local .got entries first. */
11944 for (i = info->input_bfds; i; i = i->link_next)
11945 {
11946 bfd_signed_vma *local_got;
11947 bfd_size_type j, locsymcount;
11948 Elf_Internal_Shdr *symtab_hdr;
11949
11950 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
11951 continue;
11952
11953 local_got = elf_local_got_refcounts (i);
11954 if (!local_got)
11955 continue;
11956
11957 symtab_hdr = &elf_tdata (i)->symtab_hdr;
11958 if (elf_bad_symtab (i))
11959 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11960 else
11961 locsymcount = symtab_hdr->sh_info;
11962
11963 for (j = 0; j < locsymcount; ++j)
11964 {
11965 if (local_got[j] > 0)
11966 {
11967 local_got[j] = gotoff;
11968 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
11969 }
11970 else
11971 local_got[j] = (bfd_vma) -1;
11972 }
11973 }
11974
11975 /* Then the global .got entries. .plt refcounts are handled by
11976 adjust_dynamic_symbol */
11977 gofarg.gotoff = gotoff;
11978 gofarg.info = info;
11979 elf_link_hash_traverse (elf_hash_table (info),
11980 elf_gc_allocate_got_offsets,
11981 &gofarg);
11982 return TRUE;
11983 }
11984
11985 /* Many folk need no more in the way of final link than this, once
11986 got entry reference counting is enabled. */
11987
11988 bfd_boolean
11989 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
11990 {
11991 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
11992 return FALSE;
11993
11994 /* Invoke the regular ELF backend linker to do all the work. */
11995 return bfd_elf_final_link (abfd, info);
11996 }
11997
11998 bfd_boolean
11999 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12000 {
12001 struct elf_reloc_cookie *rcookie = cookie;
12002
12003 if (rcookie->bad_symtab)
12004 rcookie->rel = rcookie->rels;
12005
12006 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12007 {
12008 unsigned long r_symndx;
12009
12010 if (! rcookie->bad_symtab)
12011 if (rcookie->rel->r_offset > offset)
12012 return FALSE;
12013 if (rcookie->rel->r_offset != offset)
12014 continue;
12015
12016 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12017 if (r_symndx == SHN_UNDEF)
12018 return TRUE;
12019
12020 if (r_symndx >= rcookie->locsymcount
12021 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12022 {
12023 struct elf_link_hash_entry *h;
12024
12025 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12026
12027 while (h->root.type == bfd_link_hash_indirect
12028 || h->root.type == bfd_link_hash_warning)
12029 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12030
12031 if ((h->root.type == bfd_link_hash_defined
12032 || h->root.type == bfd_link_hash_defweak)
12033 && elf_discarded_section (h->root.u.def.section))
12034 return TRUE;
12035 else
12036 return FALSE;
12037 }
12038 else
12039 {
12040 /* It's not a relocation against a global symbol,
12041 but it could be a relocation against a local
12042 symbol for a discarded section. */
12043 asection *isec;
12044 Elf_Internal_Sym *isym;
12045
12046 /* Need to: get the symbol; get the section. */
12047 isym = &rcookie->locsyms[r_symndx];
12048 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12049 if (isec != NULL && elf_discarded_section (isec))
12050 return TRUE;
12051 }
12052 return FALSE;
12053 }
12054 return FALSE;
12055 }
12056
12057 /* Discard unneeded references to discarded sections.
12058 Returns TRUE if any section's size was changed. */
12059 /* This function assumes that the relocations are in sorted order,
12060 which is true for all known assemblers. */
12061
12062 bfd_boolean
12063 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12064 {
12065 struct elf_reloc_cookie cookie;
12066 asection *stab, *eh;
12067 const struct elf_backend_data *bed;
12068 bfd *abfd;
12069 bfd_boolean ret = FALSE;
12070
12071 if (info->traditional_format
12072 || !is_elf_hash_table (info->hash))
12073 return FALSE;
12074
12075 _bfd_elf_begin_eh_frame_parsing (info);
12076 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12077 {
12078 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12079 continue;
12080
12081 bed = get_elf_backend_data (abfd);
12082
12083 if ((abfd->flags & DYNAMIC) != 0)
12084 continue;
12085
12086 eh = NULL;
12087 if (!info->relocatable)
12088 {
12089 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12090 if (eh != NULL
12091 && (eh->size == 0
12092 || bfd_is_abs_section (eh->output_section)))
12093 eh = NULL;
12094 }
12095
12096 stab = bfd_get_section_by_name (abfd, ".stab");
12097 if (stab != NULL
12098 && (stab->size == 0
12099 || bfd_is_abs_section (stab->output_section)
12100 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
12101 stab = NULL;
12102
12103 if (stab == NULL
12104 && eh == NULL
12105 && bed->elf_backend_discard_info == NULL)
12106 continue;
12107
12108 if (!init_reloc_cookie (&cookie, info, abfd))
12109 return FALSE;
12110
12111 if (stab != NULL
12112 && stab->reloc_count > 0
12113 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12114 {
12115 if (_bfd_discard_section_stabs (abfd, stab,
12116 elf_section_data (stab)->sec_info,
12117 bfd_elf_reloc_symbol_deleted_p,
12118 &cookie))
12119 ret = TRUE;
12120 fini_reloc_cookie_rels (&cookie, stab);
12121 }
12122
12123 if (eh != NULL
12124 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12125 {
12126 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12127 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12128 bfd_elf_reloc_symbol_deleted_p,
12129 &cookie))
12130 ret = TRUE;
12131 fini_reloc_cookie_rels (&cookie, eh);
12132 }
12133
12134 if (bed->elf_backend_discard_info != NULL
12135 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12136 ret = TRUE;
12137
12138 fini_reloc_cookie (&cookie, abfd);
12139 }
12140 _bfd_elf_end_eh_frame_parsing (info);
12141
12142 if (info->eh_frame_hdr
12143 && !info->relocatable
12144 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12145 ret = TRUE;
12146
12147 return ret;
12148 }
12149
12150 /* For a SHT_GROUP section, return the group signature. For other
12151 sections, return the normal section name. */
12152
12153 static const char *
12154 section_signature (asection *sec)
12155 {
12156 if ((sec->flags & SEC_GROUP) != 0
12157 && elf_next_in_group (sec) != NULL
12158 && elf_group_name (elf_next_in_group (sec)) != NULL)
12159 return elf_group_name (elf_next_in_group (sec));
12160 return sec->name;
12161 }
12162
12163 void
12164 _bfd_elf_section_already_linked (bfd *abfd, asection *sec,
12165 struct bfd_link_info *info)
12166 {
12167 flagword flags;
12168 const char *name, *p;
12169 struct bfd_section_already_linked *l;
12170 struct bfd_section_already_linked_hash_entry *already_linked_list;
12171
12172 if (sec->output_section == bfd_abs_section_ptr)
12173 return;
12174
12175 flags = sec->flags;
12176
12177 /* Return if it isn't a linkonce section. A comdat group section
12178 also has SEC_LINK_ONCE set. */
12179 if ((flags & SEC_LINK_ONCE) == 0)
12180 return;
12181
12182 /* Don't put group member sections on our list of already linked
12183 sections. They are handled as a group via their group section. */
12184 if (elf_sec_group (sec) != NULL)
12185 return;
12186
12187 /* FIXME: When doing a relocatable link, we may have trouble
12188 copying relocations in other sections that refer to local symbols
12189 in the section being discarded. Those relocations will have to
12190 be converted somehow; as of this writing I'm not sure that any of
12191 the backends handle that correctly.
12192
12193 It is tempting to instead not discard link once sections when
12194 doing a relocatable link (technically, they should be discarded
12195 whenever we are building constructors). However, that fails,
12196 because the linker winds up combining all the link once sections
12197 into a single large link once section, which defeats the purpose
12198 of having link once sections in the first place.
12199
12200 Also, not merging link once sections in a relocatable link
12201 causes trouble for MIPS ELF, which relies on link once semantics
12202 to handle the .reginfo section correctly. */
12203
12204 name = section_signature (sec);
12205
12206 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12207 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12208 p++;
12209 else
12210 p = name;
12211
12212 already_linked_list = bfd_section_already_linked_table_lookup (p);
12213
12214 for (l = already_linked_list->entry; l != NULL; l = l->next)
12215 {
12216 /* We may have 2 different types of sections on the list: group
12217 sections and linkonce sections. Match like sections. */
12218 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12219 && strcmp (name, section_signature (l->sec)) == 0
12220 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
12221 {
12222 /* The section has already been linked. See if we should
12223 issue a warning. */
12224 switch (flags & SEC_LINK_DUPLICATES)
12225 {
12226 default:
12227 abort ();
12228
12229 case SEC_LINK_DUPLICATES_DISCARD:
12230 break;
12231
12232 case SEC_LINK_DUPLICATES_ONE_ONLY:
12233 (*_bfd_error_handler)
12234 (_("%B: ignoring duplicate section `%A'"),
12235 abfd, sec);
12236 break;
12237
12238 case SEC_LINK_DUPLICATES_SAME_SIZE:
12239 if (sec->size != l->sec->size)
12240 (*_bfd_error_handler)
12241 (_("%B: duplicate section `%A' has different size"),
12242 abfd, sec);
12243 break;
12244
12245 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
12246 if (sec->size != l->sec->size)
12247 (*_bfd_error_handler)
12248 (_("%B: duplicate section `%A' has different size"),
12249 abfd, sec);
12250 else if (sec->size != 0)
12251 {
12252 bfd_byte *sec_contents, *l_sec_contents;
12253
12254 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
12255 (*_bfd_error_handler)
12256 (_("%B: warning: could not read contents of section `%A'"),
12257 abfd, sec);
12258 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
12259 &l_sec_contents))
12260 (*_bfd_error_handler)
12261 (_("%B: warning: could not read contents of section `%A'"),
12262 l->sec->owner, l->sec);
12263 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
12264 (*_bfd_error_handler)
12265 (_("%B: warning: duplicate section `%A' has different contents"),
12266 abfd, sec);
12267
12268 if (sec_contents)
12269 free (sec_contents);
12270 if (l_sec_contents)
12271 free (l_sec_contents);
12272 }
12273 break;
12274 }
12275
12276 /* Set the output_section field so that lang_add_section
12277 does not create a lang_input_section structure for this
12278 section. Since there might be a symbol in the section
12279 being discarded, we must retain a pointer to the section
12280 which we are really going to use. */
12281 sec->output_section = bfd_abs_section_ptr;
12282 sec->kept_section = l->sec;
12283
12284 if (flags & SEC_GROUP)
12285 {
12286 asection *first = elf_next_in_group (sec);
12287 asection *s = first;
12288
12289 while (s != NULL)
12290 {
12291 s->output_section = bfd_abs_section_ptr;
12292 /* Record which group discards it. */
12293 s->kept_section = l->sec;
12294 s = elf_next_in_group (s);
12295 /* These lists are circular. */
12296 if (s == first)
12297 break;
12298 }
12299 }
12300
12301 return;
12302 }
12303 }
12304
12305 /* A single member comdat group section may be discarded by a
12306 linkonce section and vice versa. */
12307
12308 if ((flags & SEC_GROUP) != 0)
12309 {
12310 asection *first = elf_next_in_group (sec);
12311
12312 if (first != NULL && elf_next_in_group (first) == first)
12313 /* Check this single member group against linkonce sections. */
12314 for (l = already_linked_list->entry; l != NULL; l = l->next)
12315 if ((l->sec->flags & SEC_GROUP) == 0
12316 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
12317 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12318 {
12319 first->output_section = bfd_abs_section_ptr;
12320 first->kept_section = l->sec;
12321 sec->output_section = bfd_abs_section_ptr;
12322 break;
12323 }
12324 }
12325 else
12326 /* Check this linkonce section against single member groups. */
12327 for (l = already_linked_list->entry; l != NULL; l = l->next)
12328 if (l->sec->flags & SEC_GROUP)
12329 {
12330 asection *first = elf_next_in_group (l->sec);
12331
12332 if (first != NULL
12333 && elf_next_in_group (first) == first
12334 && bfd_elf_match_symbols_in_sections (first, sec, info))
12335 {
12336 sec->output_section = bfd_abs_section_ptr;
12337 sec->kept_section = first;
12338 break;
12339 }
12340 }
12341
12342 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12343 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12344 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12345 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12346 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12347 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12348 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12349 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12350 The reverse order cannot happen as there is never a bfd with only the
12351 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12352 matter as here were are looking only for cross-bfd sections. */
12353
12354 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12355 for (l = already_linked_list->entry; l != NULL; l = l->next)
12356 if ((l->sec->flags & SEC_GROUP) == 0
12357 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12358 {
12359 if (abfd != l->sec->owner)
12360 sec->output_section = bfd_abs_section_ptr;
12361 break;
12362 }
12363
12364 /* This is the first section with this name. Record it. */
12365 if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
12366 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12367 }
12368
12369 bfd_boolean
12370 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12371 {
12372 return sym->st_shndx == SHN_COMMON;
12373 }
12374
12375 unsigned int
12376 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12377 {
12378 return SHN_COMMON;
12379 }
12380
12381 asection *
12382 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12383 {
12384 return bfd_com_section_ptr;
12385 }
12386
12387 bfd_vma
12388 _bfd_elf_default_got_elt_size (bfd *abfd,
12389 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12390 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12391 bfd *ibfd ATTRIBUTE_UNUSED,
12392 unsigned long symndx ATTRIBUTE_UNUSED)
12393 {
12394 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12395 return bed->s->arch_size / 8;
12396 }
12397
12398 /* Routines to support the creation of dynamic relocs. */
12399
12400 /* Return true if NAME is a name of a relocation
12401 section associated with section S. */
12402
12403 static bfd_boolean
12404 is_reloc_section (bfd_boolean rela, const char * name, asection * s)
12405 {
12406 if (rela)
12407 return CONST_STRNEQ (name, ".rela")
12408 && strcmp (bfd_get_section_name (NULL, s), name + 5) == 0;
12409
12410 return CONST_STRNEQ (name, ".rel")
12411 && strcmp (bfd_get_section_name (NULL, s), name + 4) == 0;
12412 }
12413
12414 /* Returns the name of the dynamic reloc section associated with SEC. */
12415
12416 static const char *
12417 get_dynamic_reloc_section_name (bfd * abfd,
12418 asection * sec,
12419 bfd_boolean is_rela)
12420 {
12421 const char * name;
12422 unsigned int strndx = elf_elfheader (abfd)->e_shstrndx;
12423 unsigned int shnam = elf_section_data (sec)->rel_hdr.sh_name;
12424
12425 name = bfd_elf_string_from_elf_section (abfd, strndx, shnam);
12426 if (name == NULL)
12427 return NULL;
12428
12429 if (! is_reloc_section (is_rela, name, sec))
12430 {
12431 static bfd_boolean complained = FALSE;
12432
12433 if (! complained)
12434 {
12435 (*_bfd_error_handler)
12436 (_("%B: bad relocation section name `%s\'"), abfd, name);
12437 complained = TRUE;
12438 }
12439 name = NULL;
12440 }
12441
12442 return name;
12443 }
12444
12445 /* Returns the dynamic reloc section associated with SEC.
12446 If necessary compute the name of the dynamic reloc section based
12447 on SEC's name (looked up in ABFD's string table) and the setting
12448 of IS_RELA. */
12449
12450 asection *
12451 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12452 asection * sec,
12453 bfd_boolean is_rela)
12454 {
12455 asection * reloc_sec = elf_section_data (sec)->sreloc;
12456
12457 if (reloc_sec == NULL)
12458 {
12459 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12460
12461 if (name != NULL)
12462 {
12463 reloc_sec = bfd_get_section_by_name (abfd, name);
12464
12465 if (reloc_sec != NULL)
12466 elf_section_data (sec)->sreloc = reloc_sec;
12467 }
12468 }
12469
12470 return reloc_sec;
12471 }
12472
12473 /* Returns the dynamic reloc section associated with SEC. If the
12474 section does not exist it is created and attached to the DYNOBJ
12475 bfd and stored in the SRELOC field of SEC's elf_section_data
12476 structure.
12477
12478 ALIGNMENT is the alignment for the newly created section and
12479 IS_RELA defines whether the name should be .rela.<SEC's name>
12480 or .rel.<SEC's name>. The section name is looked up in the
12481 string table associated with ABFD. */
12482
12483 asection *
12484 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12485 bfd * dynobj,
12486 unsigned int alignment,
12487 bfd * abfd,
12488 bfd_boolean is_rela)
12489 {
12490 asection * reloc_sec = elf_section_data (sec)->sreloc;
12491
12492 if (reloc_sec == NULL)
12493 {
12494 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12495
12496 if (name == NULL)
12497 return NULL;
12498
12499 reloc_sec = bfd_get_section_by_name (dynobj, name);
12500
12501 if (reloc_sec == NULL)
12502 {
12503 flagword flags;
12504
12505 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12506 if ((sec->flags & SEC_ALLOC) != 0)
12507 flags |= SEC_ALLOC | SEC_LOAD;
12508
12509 reloc_sec = bfd_make_section_with_flags (dynobj, name, flags);
12510 if (reloc_sec != NULL)
12511 {
12512 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12513 reloc_sec = NULL;
12514 }
12515 }
12516
12517 elf_section_data (sec)->sreloc = reloc_sec;
12518 }
12519
12520 return reloc_sec;
12521 }
This page took 0.285161 seconds and 5 git commands to generate.