Fix a potentially undefined right shift by replacing it with two smaller right shifts.
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2015 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfd_stdint.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31
32 /* This struct is used to pass information to routines called via
33 elf_link_hash_traverse which must return failure. */
34
35 struct elf_info_failed
36 {
37 struct bfd_link_info *info;
38 bfd_boolean failed;
39 };
40
41 /* This structure is used to pass information to
42 _bfd_elf_link_find_version_dependencies. */
43
44 struct elf_find_verdep_info
45 {
46 /* General link information. */
47 struct bfd_link_info *info;
48 /* The number of dependencies. */
49 unsigned int vers;
50 /* Whether we had a failure. */
51 bfd_boolean failed;
52 };
53
54 static bfd_boolean _bfd_elf_fix_symbol_flags
55 (struct elf_link_hash_entry *, struct elf_info_failed *);
56
57 /* Define a symbol in a dynamic linkage section. */
58
59 struct elf_link_hash_entry *
60 _bfd_elf_define_linkage_sym (bfd *abfd,
61 struct bfd_link_info *info,
62 asection *sec,
63 const char *name)
64 {
65 struct elf_link_hash_entry *h;
66 struct bfd_link_hash_entry *bh;
67 const struct elf_backend_data *bed;
68
69 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
70 if (h != NULL)
71 {
72 /* Zap symbol defined in an as-needed lib that wasn't linked.
73 This is a symptom of a larger problem: Absolute symbols
74 defined in shared libraries can't be overridden, because we
75 lose the link to the bfd which is via the symbol section. */
76 h->root.type = bfd_link_hash_new;
77 }
78
79 bh = &h->root;
80 bed = get_elf_backend_data (abfd);
81 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
82 sec, 0, NULL, FALSE, bed->collect,
83 &bh))
84 return NULL;
85 h = (struct elf_link_hash_entry *) bh;
86 h->def_regular = 1;
87 h->non_elf = 0;
88 h->root.linker_def = 1;
89 h->type = STT_OBJECT;
90 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
91 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
92
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94 return h;
95 }
96
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
99 {
100 flagword flags;
101 asection *s;
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
105
106 /* This function may be called more than once. */
107 s = bfd_get_linker_section (abfd, ".got");
108 if (s != NULL)
109 return TRUE;
110
111 flags = bed->dynamic_sec_flags;
112
113 s = bfd_make_section_anyway_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
117 | SEC_READONLY));
118 if (s == NULL
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
120 return FALSE;
121 htab->srelgot = s;
122
123 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
124 if (s == NULL
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
126 return FALSE;
127 htab->sgot = s;
128
129 if (bed->want_got_plt)
130 {
131 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
132 if (s == NULL
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
135 return FALSE;
136 htab->sgotplt = s;
137 }
138
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
141
142 if (bed->want_got_sym)
143 {
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
151 if (h == NULL)
152 return FALSE;
153 }
154
155 return TRUE;
156 }
157 \f
158 /* Create a strtab to hold the dynamic symbol names. */
159 static bfd_boolean
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
161 {
162 struct elf_link_hash_table *hash_table;
163
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
167
168 if (hash_table->dynstr == NULL)
169 {
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
172 return FALSE;
173 }
174 return TRUE;
175 }
176
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
183
184 bfd_boolean
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
186 {
187 flagword flags;
188 asection *s;
189 const struct elf_backend_data *bed;
190 struct elf_link_hash_entry *h;
191
192 if (! is_elf_hash_table (info->hash))
193 return FALSE;
194
195 if (elf_hash_table (info)->dynamic_sections_created)
196 return TRUE;
197
198 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
199 return FALSE;
200
201 abfd = elf_hash_table (info)->dynobj;
202 bed = get_elf_backend_data (abfd);
203
204 flags = bed->dynamic_sec_flags;
205
206 /* A dynamically linked executable has a .interp section, but a
207 shared library does not. */
208 if (info->executable)
209 {
210 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
211 flags | SEC_READONLY);
212 if (s == NULL)
213 return FALSE;
214 }
215
216 /* Create sections to hold version informations. These are removed
217 if they are not needed. */
218 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
219 flags | SEC_READONLY);
220 if (s == NULL
221 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
222 return FALSE;
223
224 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
225 flags | SEC_READONLY);
226 if (s == NULL
227 || ! bfd_set_section_alignment (abfd, s, 1))
228 return FALSE;
229
230 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
231 flags | SEC_READONLY);
232 if (s == NULL
233 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
234 return FALSE;
235
236 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
237 flags | SEC_READONLY);
238 if (s == NULL
239 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
240 return FALSE;
241
242 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
243 flags | SEC_READONLY);
244 if (s == NULL)
245 return FALSE;
246
247 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
248 if (s == NULL
249 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
250 return FALSE;
251
252 /* The special symbol _DYNAMIC is always set to the start of the
253 .dynamic section. We could set _DYNAMIC in a linker script, but we
254 only want to define it if we are, in fact, creating a .dynamic
255 section. We don't want to define it if there is no .dynamic
256 section, since on some ELF platforms the start up code examines it
257 to decide how to initialize the process. */
258 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
259 elf_hash_table (info)->hdynamic = h;
260 if (h == NULL)
261 return FALSE;
262
263 if (info->emit_hash)
264 {
265 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
266 flags | SEC_READONLY);
267 if (s == NULL
268 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
269 return FALSE;
270 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
271 }
272
273 if (info->emit_gnu_hash)
274 {
275 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
276 flags | SEC_READONLY);
277 if (s == NULL
278 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
279 return FALSE;
280 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
281 4 32-bit words followed by variable count of 64-bit words, then
282 variable count of 32-bit words. */
283 if (bed->s->arch_size == 64)
284 elf_section_data (s)->this_hdr.sh_entsize = 0;
285 else
286 elf_section_data (s)->this_hdr.sh_entsize = 4;
287 }
288
289 /* Let the backend create the rest of the sections. This lets the
290 backend set the right flags. The backend will normally create
291 the .got and .plt sections. */
292 if (bed->elf_backend_create_dynamic_sections == NULL
293 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
294 return FALSE;
295
296 elf_hash_table (info)->dynamic_sections_created = TRUE;
297
298 return TRUE;
299 }
300
301 /* Create dynamic sections when linking against a dynamic object. */
302
303 bfd_boolean
304 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
305 {
306 flagword flags, pltflags;
307 struct elf_link_hash_entry *h;
308 asection *s;
309 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
310 struct elf_link_hash_table *htab = elf_hash_table (info);
311
312 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
313 .rel[a].bss sections. */
314 flags = bed->dynamic_sec_flags;
315
316 pltflags = flags;
317 if (bed->plt_not_loaded)
318 /* We do not clear SEC_ALLOC here because we still want the OS to
319 allocate space for the section; it's just that there's nothing
320 to read in from the object file. */
321 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
322 else
323 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
324 if (bed->plt_readonly)
325 pltflags |= SEC_READONLY;
326
327 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
328 if (s == NULL
329 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
330 return FALSE;
331 htab->splt = s;
332
333 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
334 .plt section. */
335 if (bed->want_plt_sym)
336 {
337 h = _bfd_elf_define_linkage_sym (abfd, info, s,
338 "_PROCEDURE_LINKAGE_TABLE_");
339 elf_hash_table (info)->hplt = h;
340 if (h == NULL)
341 return FALSE;
342 }
343
344 s = bfd_make_section_anyway_with_flags (abfd,
345 (bed->rela_plts_and_copies_p
346 ? ".rela.plt" : ".rel.plt"),
347 flags | SEC_READONLY);
348 if (s == NULL
349 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
350 return FALSE;
351 htab->srelplt = s;
352
353 if (! _bfd_elf_create_got_section (abfd, info))
354 return FALSE;
355
356 if (bed->want_dynbss)
357 {
358 /* The .dynbss section is a place to put symbols which are defined
359 by dynamic objects, are referenced by regular objects, and are
360 not functions. We must allocate space for them in the process
361 image and use a R_*_COPY reloc to tell the dynamic linker to
362 initialize them at run time. The linker script puts the .dynbss
363 section into the .bss section of the final image. */
364 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
365 (SEC_ALLOC | SEC_LINKER_CREATED));
366 if (s == NULL)
367 return FALSE;
368
369 /* The .rel[a].bss section holds copy relocs. This section is not
370 normally needed. We need to create it here, though, so that the
371 linker will map it to an output section. We can't just create it
372 only if we need it, because we will not know whether we need it
373 until we have seen all the input files, and the first time the
374 main linker code calls BFD after examining all the input files
375 (size_dynamic_sections) the input sections have already been
376 mapped to the output sections. If the section turns out not to
377 be needed, we can discard it later. We will never need this
378 section when generating a shared object, since they do not use
379 copy relocs. */
380 if (! info->shared)
381 {
382 s = bfd_make_section_anyway_with_flags (abfd,
383 (bed->rela_plts_and_copies_p
384 ? ".rela.bss" : ".rel.bss"),
385 flags | SEC_READONLY);
386 if (s == NULL
387 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
388 return FALSE;
389 }
390 }
391
392 return TRUE;
393 }
394 \f
395 /* Record a new dynamic symbol. We record the dynamic symbols as we
396 read the input files, since we need to have a list of all of them
397 before we can determine the final sizes of the output sections.
398 Note that we may actually call this function even though we are not
399 going to output any dynamic symbols; in some cases we know that a
400 symbol should be in the dynamic symbol table, but only if there is
401 one. */
402
403 bfd_boolean
404 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
405 struct elf_link_hash_entry *h)
406 {
407 if (h->dynindx == -1)
408 {
409 struct elf_strtab_hash *dynstr;
410 char *p;
411 const char *name;
412 bfd_size_type indx;
413
414 /* XXX: The ABI draft says the linker must turn hidden and
415 internal symbols into STB_LOCAL symbols when producing the
416 DSO. However, if ld.so honors st_other in the dynamic table,
417 this would not be necessary. */
418 switch (ELF_ST_VISIBILITY (h->other))
419 {
420 case STV_INTERNAL:
421 case STV_HIDDEN:
422 if (h->root.type != bfd_link_hash_undefined
423 && h->root.type != bfd_link_hash_undefweak)
424 {
425 h->forced_local = 1;
426 if (!elf_hash_table (info)->is_relocatable_executable)
427 return TRUE;
428 }
429
430 default:
431 break;
432 }
433
434 h->dynindx = elf_hash_table (info)->dynsymcount;
435 ++elf_hash_table (info)->dynsymcount;
436
437 dynstr = elf_hash_table (info)->dynstr;
438 if (dynstr == NULL)
439 {
440 /* Create a strtab to hold the dynamic symbol names. */
441 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
442 if (dynstr == NULL)
443 return FALSE;
444 }
445
446 /* We don't put any version information in the dynamic string
447 table. */
448 name = h->root.root.string;
449 p = strchr (name, ELF_VER_CHR);
450 if (p != NULL)
451 /* We know that the p points into writable memory. In fact,
452 there are only a few symbols that have read-only names, being
453 those like _GLOBAL_OFFSET_TABLE_ that are created specially
454 by the backends. Most symbols will have names pointing into
455 an ELF string table read from a file, or to objalloc memory. */
456 *p = 0;
457
458 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
459
460 if (p != NULL)
461 *p = ELF_VER_CHR;
462
463 if (indx == (bfd_size_type) -1)
464 return FALSE;
465 h->dynstr_index = indx;
466 }
467
468 return TRUE;
469 }
470 \f
471 /* Mark a symbol dynamic. */
472
473 static void
474 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
475 struct elf_link_hash_entry *h,
476 Elf_Internal_Sym *sym)
477 {
478 struct bfd_elf_dynamic_list *d = info->dynamic_list;
479
480 /* It may be called more than once on the same H. */
481 if(h->dynamic || info->relocatable)
482 return;
483
484 if ((info->dynamic_data
485 && (h->type == STT_OBJECT
486 || (sym != NULL
487 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
488 || (d != NULL
489 && h->root.type == bfd_link_hash_new
490 && (*d->match) (&d->head, NULL, h->root.root.string)))
491 h->dynamic = 1;
492 }
493
494 /* Record an assignment to a symbol made by a linker script. We need
495 this in case some dynamic object refers to this symbol. */
496
497 bfd_boolean
498 bfd_elf_record_link_assignment (bfd *output_bfd,
499 struct bfd_link_info *info,
500 const char *name,
501 bfd_boolean provide,
502 bfd_boolean hidden)
503 {
504 struct elf_link_hash_entry *h, *hv;
505 struct elf_link_hash_table *htab;
506 const struct elf_backend_data *bed;
507
508 if (!is_elf_hash_table (info->hash))
509 return TRUE;
510
511 htab = elf_hash_table (info);
512 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
513 if (h == NULL)
514 return provide;
515
516 switch (h->root.type)
517 {
518 case bfd_link_hash_defined:
519 case bfd_link_hash_defweak:
520 case bfd_link_hash_common:
521 break;
522 case bfd_link_hash_undefweak:
523 case bfd_link_hash_undefined:
524 /* Since we're defining the symbol, don't let it seem to have not
525 been defined. record_dynamic_symbol and size_dynamic_sections
526 may depend on this. */
527 h->root.type = bfd_link_hash_new;
528 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
529 bfd_link_repair_undef_list (&htab->root);
530 break;
531 case bfd_link_hash_new:
532 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
533 h->non_elf = 0;
534 break;
535 case bfd_link_hash_indirect:
536 /* We had a versioned symbol in a dynamic library. We make the
537 the versioned symbol point to this one. */
538 bed = get_elf_backend_data (output_bfd);
539 hv = h;
540 while (hv->root.type == bfd_link_hash_indirect
541 || hv->root.type == bfd_link_hash_warning)
542 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
543 /* We don't need to update h->root.u since linker will set them
544 later. */
545 h->root.type = bfd_link_hash_undefined;
546 hv->root.type = bfd_link_hash_indirect;
547 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
548 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
549 break;
550 case bfd_link_hash_warning:
551 abort ();
552 break;
553 }
554
555 /* If this symbol is being provided by the linker script, and it is
556 currently defined by a dynamic object, but not by a regular
557 object, then mark it as undefined so that the generic linker will
558 force the correct value. */
559 if (provide
560 && h->def_dynamic
561 && !h->def_regular)
562 h->root.type = bfd_link_hash_undefined;
563
564 /* If this symbol is not being provided by the linker script, and it is
565 currently defined by a dynamic object, but not by a regular object,
566 then clear out any version information because the symbol will not be
567 associated with the dynamic object any more. */
568 if (!provide
569 && h->def_dynamic
570 && !h->def_regular)
571 h->verinfo.verdef = NULL;
572
573 h->def_regular = 1;
574
575 if (hidden)
576 {
577 bed = get_elf_backend_data (output_bfd);
578 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
579 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
580 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
581 }
582
583 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
584 and executables. */
585 if (!info->relocatable
586 && h->dynindx != -1
587 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
588 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
589 h->forced_local = 1;
590
591 if ((h->def_dynamic
592 || h->ref_dynamic
593 || info->shared
594 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
595 && h->dynindx == -1)
596 {
597 if (! bfd_elf_link_record_dynamic_symbol (info, h))
598 return FALSE;
599
600 /* If this is a weak defined symbol, and we know a corresponding
601 real symbol from the same dynamic object, make sure the real
602 symbol is also made into a dynamic symbol. */
603 if (h->u.weakdef != NULL
604 && h->u.weakdef->dynindx == -1)
605 {
606 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
607 return FALSE;
608 }
609 }
610
611 return TRUE;
612 }
613
614 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
615 success, and 2 on a failure caused by attempting to record a symbol
616 in a discarded section, eg. a discarded link-once section symbol. */
617
618 int
619 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
620 bfd *input_bfd,
621 long input_indx)
622 {
623 bfd_size_type amt;
624 struct elf_link_local_dynamic_entry *entry;
625 struct elf_link_hash_table *eht;
626 struct elf_strtab_hash *dynstr;
627 unsigned long dynstr_index;
628 char *name;
629 Elf_External_Sym_Shndx eshndx;
630 char esym[sizeof (Elf64_External_Sym)];
631
632 if (! is_elf_hash_table (info->hash))
633 return 0;
634
635 /* See if the entry exists already. */
636 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
637 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
638 return 1;
639
640 amt = sizeof (*entry);
641 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
642 if (entry == NULL)
643 return 0;
644
645 /* Go find the symbol, so that we can find it's name. */
646 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
647 1, input_indx, &entry->isym, esym, &eshndx))
648 {
649 bfd_release (input_bfd, entry);
650 return 0;
651 }
652
653 if (entry->isym.st_shndx != SHN_UNDEF
654 && entry->isym.st_shndx < SHN_LORESERVE)
655 {
656 asection *s;
657
658 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
659 if (s == NULL || bfd_is_abs_section (s->output_section))
660 {
661 /* We can still bfd_release here as nothing has done another
662 bfd_alloc. We can't do this later in this function. */
663 bfd_release (input_bfd, entry);
664 return 2;
665 }
666 }
667
668 name = (bfd_elf_string_from_elf_section
669 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
670 entry->isym.st_name));
671
672 dynstr = elf_hash_table (info)->dynstr;
673 if (dynstr == NULL)
674 {
675 /* Create a strtab to hold the dynamic symbol names. */
676 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
677 if (dynstr == NULL)
678 return 0;
679 }
680
681 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
682 if (dynstr_index == (unsigned long) -1)
683 return 0;
684 entry->isym.st_name = dynstr_index;
685
686 eht = elf_hash_table (info);
687
688 entry->next = eht->dynlocal;
689 eht->dynlocal = entry;
690 entry->input_bfd = input_bfd;
691 entry->input_indx = input_indx;
692 eht->dynsymcount++;
693
694 /* Whatever binding the symbol had before, it's now local. */
695 entry->isym.st_info
696 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
697
698 /* The dynindx will be set at the end of size_dynamic_sections. */
699
700 return 1;
701 }
702
703 /* Return the dynindex of a local dynamic symbol. */
704
705 long
706 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
707 bfd *input_bfd,
708 long input_indx)
709 {
710 struct elf_link_local_dynamic_entry *e;
711
712 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
713 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
714 return e->dynindx;
715 return -1;
716 }
717
718 /* This function is used to renumber the dynamic symbols, if some of
719 them are removed because they are marked as local. This is called
720 via elf_link_hash_traverse. */
721
722 static bfd_boolean
723 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
724 void *data)
725 {
726 size_t *count = (size_t *) data;
727
728 if (h->forced_local)
729 return TRUE;
730
731 if (h->dynindx != -1)
732 h->dynindx = ++(*count);
733
734 return TRUE;
735 }
736
737
738 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
739 STB_LOCAL binding. */
740
741 static bfd_boolean
742 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
743 void *data)
744 {
745 size_t *count = (size_t *) data;
746
747 if (!h->forced_local)
748 return TRUE;
749
750 if (h->dynindx != -1)
751 h->dynindx = ++(*count);
752
753 return TRUE;
754 }
755
756 /* Return true if the dynamic symbol for a given section should be
757 omitted when creating a shared library. */
758 bfd_boolean
759 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
760 struct bfd_link_info *info,
761 asection *p)
762 {
763 struct elf_link_hash_table *htab;
764 asection *ip;
765
766 switch (elf_section_data (p)->this_hdr.sh_type)
767 {
768 case SHT_PROGBITS:
769 case SHT_NOBITS:
770 /* If sh_type is yet undecided, assume it could be
771 SHT_PROGBITS/SHT_NOBITS. */
772 case SHT_NULL:
773 htab = elf_hash_table (info);
774 if (p == htab->tls_sec)
775 return FALSE;
776
777 if (htab->text_index_section != NULL)
778 return p != htab->text_index_section && p != htab->data_index_section;
779
780 return (htab->dynobj != NULL
781 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
782 && ip->output_section == p);
783
784 /* There shouldn't be section relative relocations
785 against any other section. */
786 default:
787 return TRUE;
788 }
789 }
790
791 /* Assign dynsym indices. In a shared library we generate a section
792 symbol for each output section, which come first. Next come symbols
793 which have been forced to local binding. Then all of the back-end
794 allocated local dynamic syms, followed by the rest of the global
795 symbols. */
796
797 static unsigned long
798 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
799 struct bfd_link_info *info,
800 unsigned long *section_sym_count)
801 {
802 unsigned long dynsymcount = 0;
803
804 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
805 {
806 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
807 asection *p;
808 for (p = output_bfd->sections; p ; p = p->next)
809 if ((p->flags & SEC_EXCLUDE) == 0
810 && (p->flags & SEC_ALLOC) != 0
811 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
812 elf_section_data (p)->dynindx = ++dynsymcount;
813 else
814 elf_section_data (p)->dynindx = 0;
815 }
816 *section_sym_count = dynsymcount;
817
818 elf_link_hash_traverse (elf_hash_table (info),
819 elf_link_renumber_local_hash_table_dynsyms,
820 &dynsymcount);
821
822 if (elf_hash_table (info)->dynlocal)
823 {
824 struct elf_link_local_dynamic_entry *p;
825 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
826 p->dynindx = ++dynsymcount;
827 }
828
829 elf_link_hash_traverse (elf_hash_table (info),
830 elf_link_renumber_hash_table_dynsyms,
831 &dynsymcount);
832
833 /* There is an unused NULL entry at the head of the table which
834 we must account for in our count. Unless there weren't any
835 symbols, which means we'll have no table at all. */
836 if (dynsymcount != 0)
837 ++dynsymcount;
838
839 elf_hash_table (info)->dynsymcount = dynsymcount;
840 return dynsymcount;
841 }
842
843 /* Merge st_other field. */
844
845 static void
846 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
847 const Elf_Internal_Sym *isym,
848 bfd_boolean definition, bfd_boolean dynamic)
849 {
850 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
851
852 /* If st_other has a processor-specific meaning, specific
853 code might be needed here. */
854 if (bed->elf_backend_merge_symbol_attribute)
855 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
856 dynamic);
857
858 if (!dynamic)
859 {
860 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
861 unsigned hvis = ELF_ST_VISIBILITY (h->other);
862
863 /* Keep the most constraining visibility. Leave the remainder
864 of the st_other field to elf_backend_merge_symbol_attribute. */
865 if (symvis - 1 < hvis - 1)
866 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
867 }
868 else if (definition && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT)
869 h->protected_def = 1;
870 }
871
872 /* This function is called when we want to merge a new symbol with an
873 existing symbol. It handles the various cases which arise when we
874 find a definition in a dynamic object, or when there is already a
875 definition in a dynamic object. The new symbol is described by
876 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
877 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
878 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
879 of an old common symbol. We set OVERRIDE if the old symbol is
880 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
881 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
882 to change. By OK to change, we mean that we shouldn't warn if the
883 type or size does change. */
884
885 static bfd_boolean
886 _bfd_elf_merge_symbol (bfd *abfd,
887 struct bfd_link_info *info,
888 const char *name,
889 Elf_Internal_Sym *sym,
890 asection **psec,
891 bfd_vma *pvalue,
892 struct elf_link_hash_entry **sym_hash,
893 bfd **poldbfd,
894 bfd_boolean *pold_weak,
895 unsigned int *pold_alignment,
896 bfd_boolean *skip,
897 bfd_boolean *override,
898 bfd_boolean *type_change_ok,
899 bfd_boolean *size_change_ok)
900 {
901 asection *sec, *oldsec;
902 struct elf_link_hash_entry *h;
903 struct elf_link_hash_entry *hi;
904 struct elf_link_hash_entry *flip;
905 int bind;
906 bfd *oldbfd;
907 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
908 bfd_boolean newweak, oldweak, newfunc, oldfunc;
909 const struct elf_backend_data *bed;
910
911 *skip = FALSE;
912 *override = FALSE;
913
914 sec = *psec;
915 bind = ELF_ST_BIND (sym->st_info);
916
917 if (! bfd_is_und_section (sec))
918 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
919 else
920 h = ((struct elf_link_hash_entry *)
921 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
922 if (h == NULL)
923 return FALSE;
924 *sym_hash = h;
925
926 bed = get_elf_backend_data (abfd);
927
928 /* For merging, we only care about real symbols. But we need to make
929 sure that indirect symbol dynamic flags are updated. */
930 hi = h;
931 while (h->root.type == bfd_link_hash_indirect
932 || h->root.type == bfd_link_hash_warning)
933 h = (struct elf_link_hash_entry *) h->root.u.i.link;
934
935 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
936 existing symbol. */
937
938 oldbfd = NULL;
939 oldsec = NULL;
940 switch (h->root.type)
941 {
942 default:
943 break;
944
945 case bfd_link_hash_undefined:
946 case bfd_link_hash_undefweak:
947 oldbfd = h->root.u.undef.abfd;
948 break;
949
950 case bfd_link_hash_defined:
951 case bfd_link_hash_defweak:
952 oldbfd = h->root.u.def.section->owner;
953 oldsec = h->root.u.def.section;
954 break;
955
956 case bfd_link_hash_common:
957 oldbfd = h->root.u.c.p->section->owner;
958 oldsec = h->root.u.c.p->section;
959 if (pold_alignment)
960 *pold_alignment = h->root.u.c.p->alignment_power;
961 break;
962 }
963 if (poldbfd && *poldbfd == NULL)
964 *poldbfd = oldbfd;
965
966 /* Differentiate strong and weak symbols. */
967 newweak = bind == STB_WEAK;
968 oldweak = (h->root.type == bfd_link_hash_defweak
969 || h->root.type == bfd_link_hash_undefweak);
970 if (pold_weak)
971 *pold_weak = oldweak;
972
973 /* This code is for coping with dynamic objects, and is only useful
974 if we are doing an ELF link. */
975 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
976 return TRUE;
977
978 /* We have to check it for every instance since the first few may be
979 references and not all compilers emit symbol type for undefined
980 symbols. */
981 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
982
983 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
984 respectively, is from a dynamic object. */
985
986 newdyn = (abfd->flags & DYNAMIC) != 0;
987
988 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
989 syms and defined syms in dynamic libraries respectively.
990 ref_dynamic on the other hand can be set for a symbol defined in
991 a dynamic library, and def_dynamic may not be set; When the
992 definition in a dynamic lib is overridden by a definition in the
993 executable use of the symbol in the dynamic lib becomes a
994 reference to the executable symbol. */
995 if (newdyn)
996 {
997 if (bfd_is_und_section (sec))
998 {
999 if (bind != STB_WEAK)
1000 {
1001 h->ref_dynamic_nonweak = 1;
1002 hi->ref_dynamic_nonweak = 1;
1003 }
1004 }
1005 else
1006 {
1007 h->dynamic_def = 1;
1008 hi->dynamic_def = 1;
1009 }
1010 }
1011
1012 /* If we just created the symbol, mark it as being an ELF symbol.
1013 Other than that, there is nothing to do--there is no merge issue
1014 with a newly defined symbol--so we just return. */
1015
1016 if (h->root.type == bfd_link_hash_new)
1017 {
1018 h->non_elf = 0;
1019 return TRUE;
1020 }
1021
1022 /* In cases involving weak versioned symbols, we may wind up trying
1023 to merge a symbol with itself. Catch that here, to avoid the
1024 confusion that results if we try to override a symbol with
1025 itself. The additional tests catch cases like
1026 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1027 dynamic object, which we do want to handle here. */
1028 if (abfd == oldbfd
1029 && (newweak || oldweak)
1030 && ((abfd->flags & DYNAMIC) == 0
1031 || !h->def_regular))
1032 return TRUE;
1033
1034 olddyn = FALSE;
1035 if (oldbfd != NULL)
1036 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1037 else if (oldsec != NULL)
1038 {
1039 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1040 indices used by MIPS ELF. */
1041 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1042 }
1043
1044 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1045 respectively, appear to be a definition rather than reference. */
1046
1047 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1048
1049 olddef = (h->root.type != bfd_link_hash_undefined
1050 && h->root.type != bfd_link_hash_undefweak
1051 && h->root.type != bfd_link_hash_common);
1052
1053 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1054 respectively, appear to be a function. */
1055
1056 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1057 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1058
1059 oldfunc = (h->type != STT_NOTYPE
1060 && bed->is_function_type (h->type));
1061
1062 /* When we try to create a default indirect symbol from the dynamic
1063 definition with the default version, we skip it if its type and
1064 the type of existing regular definition mismatch. */
1065 if (pold_alignment == NULL
1066 && newdyn
1067 && newdef
1068 && !olddyn
1069 && (((olddef || h->root.type == bfd_link_hash_common)
1070 && ELF_ST_TYPE (sym->st_info) != h->type
1071 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1072 && h->type != STT_NOTYPE
1073 && !(newfunc && oldfunc))
1074 || (olddef
1075 && ((h->type == STT_GNU_IFUNC)
1076 != (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))))
1077 {
1078 *skip = TRUE;
1079 return TRUE;
1080 }
1081
1082 /* Check TLS symbols. We don't check undefined symbols introduced
1083 by "ld -u" which have no type (and oldbfd NULL), and we don't
1084 check symbols from plugins because they also have no type. */
1085 if (oldbfd != NULL
1086 && (oldbfd->flags & BFD_PLUGIN) == 0
1087 && (abfd->flags & BFD_PLUGIN) == 0
1088 && ELF_ST_TYPE (sym->st_info) != h->type
1089 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1090 {
1091 bfd *ntbfd, *tbfd;
1092 bfd_boolean ntdef, tdef;
1093 asection *ntsec, *tsec;
1094
1095 if (h->type == STT_TLS)
1096 {
1097 ntbfd = abfd;
1098 ntsec = sec;
1099 ntdef = newdef;
1100 tbfd = oldbfd;
1101 tsec = oldsec;
1102 tdef = olddef;
1103 }
1104 else
1105 {
1106 ntbfd = oldbfd;
1107 ntsec = oldsec;
1108 ntdef = olddef;
1109 tbfd = abfd;
1110 tsec = sec;
1111 tdef = newdef;
1112 }
1113
1114 if (tdef && ntdef)
1115 (*_bfd_error_handler)
1116 (_("%s: TLS definition in %B section %A "
1117 "mismatches non-TLS definition in %B section %A"),
1118 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1119 else if (!tdef && !ntdef)
1120 (*_bfd_error_handler)
1121 (_("%s: TLS reference in %B "
1122 "mismatches non-TLS reference in %B"),
1123 tbfd, ntbfd, h->root.root.string);
1124 else if (tdef)
1125 (*_bfd_error_handler)
1126 (_("%s: TLS definition in %B section %A "
1127 "mismatches non-TLS reference in %B"),
1128 tbfd, tsec, ntbfd, h->root.root.string);
1129 else
1130 (*_bfd_error_handler)
1131 (_("%s: TLS reference in %B "
1132 "mismatches non-TLS definition in %B section %A"),
1133 tbfd, ntbfd, ntsec, h->root.root.string);
1134
1135 bfd_set_error (bfd_error_bad_value);
1136 return FALSE;
1137 }
1138
1139 /* If the old symbol has non-default visibility, we ignore the new
1140 definition from a dynamic object. */
1141 if (newdyn
1142 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1143 && !bfd_is_und_section (sec))
1144 {
1145 *skip = TRUE;
1146 /* Make sure this symbol is dynamic. */
1147 h->ref_dynamic = 1;
1148 hi->ref_dynamic = 1;
1149 /* A protected symbol has external availability. Make sure it is
1150 recorded as dynamic.
1151
1152 FIXME: Should we check type and size for protected symbol? */
1153 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1154 return bfd_elf_link_record_dynamic_symbol (info, h);
1155 else
1156 return TRUE;
1157 }
1158 else if (!newdyn
1159 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1160 && h->def_dynamic)
1161 {
1162 /* If the new symbol with non-default visibility comes from a
1163 relocatable file and the old definition comes from a dynamic
1164 object, we remove the old definition. */
1165 if (hi->root.type == bfd_link_hash_indirect)
1166 {
1167 /* Handle the case where the old dynamic definition is
1168 default versioned. We need to copy the symbol info from
1169 the symbol with default version to the normal one if it
1170 was referenced before. */
1171 if (h->ref_regular)
1172 {
1173 hi->root.type = h->root.type;
1174 h->root.type = bfd_link_hash_indirect;
1175 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1176
1177 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1178 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1179 {
1180 /* If the new symbol is hidden or internal, completely undo
1181 any dynamic link state. */
1182 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1183 h->forced_local = 0;
1184 h->ref_dynamic = 0;
1185 }
1186 else
1187 h->ref_dynamic = 1;
1188
1189 h->def_dynamic = 0;
1190 /* FIXME: Should we check type and size for protected symbol? */
1191 h->size = 0;
1192 h->type = 0;
1193
1194 h = hi;
1195 }
1196 else
1197 h = hi;
1198 }
1199
1200 /* If the old symbol was undefined before, then it will still be
1201 on the undefs list. If the new symbol is undefined or
1202 common, we can't make it bfd_link_hash_new here, because new
1203 undefined or common symbols will be added to the undefs list
1204 by _bfd_generic_link_add_one_symbol. Symbols may not be
1205 added twice to the undefs list. Also, if the new symbol is
1206 undefweak then we don't want to lose the strong undef. */
1207 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1208 {
1209 h->root.type = bfd_link_hash_undefined;
1210 h->root.u.undef.abfd = abfd;
1211 }
1212 else
1213 {
1214 h->root.type = bfd_link_hash_new;
1215 h->root.u.undef.abfd = NULL;
1216 }
1217
1218 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1219 {
1220 /* If the new symbol is hidden or internal, completely undo
1221 any dynamic link state. */
1222 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1223 h->forced_local = 0;
1224 h->ref_dynamic = 0;
1225 }
1226 else
1227 h->ref_dynamic = 1;
1228 h->def_dynamic = 0;
1229 /* FIXME: Should we check type and size for protected symbol? */
1230 h->size = 0;
1231 h->type = 0;
1232 return TRUE;
1233 }
1234
1235 /* If a new weak symbol definition comes from a regular file and the
1236 old symbol comes from a dynamic library, we treat the new one as
1237 strong. Similarly, an old weak symbol definition from a regular
1238 file is treated as strong when the new symbol comes from a dynamic
1239 library. Further, an old weak symbol from a dynamic library is
1240 treated as strong if the new symbol is from a dynamic library.
1241 This reflects the way glibc's ld.so works.
1242
1243 Do this before setting *type_change_ok or *size_change_ok so that
1244 we warn properly when dynamic library symbols are overridden. */
1245
1246 if (newdef && !newdyn && olddyn)
1247 newweak = FALSE;
1248 if (olddef && newdyn)
1249 oldweak = FALSE;
1250
1251 /* Allow changes between different types of function symbol. */
1252 if (newfunc && oldfunc)
1253 *type_change_ok = TRUE;
1254
1255 /* It's OK to change the type if either the existing symbol or the
1256 new symbol is weak. A type change is also OK if the old symbol
1257 is undefined and the new symbol is defined. */
1258
1259 if (oldweak
1260 || newweak
1261 || (newdef
1262 && h->root.type == bfd_link_hash_undefined))
1263 *type_change_ok = TRUE;
1264
1265 /* It's OK to change the size if either the existing symbol or the
1266 new symbol is weak, or if the old symbol is undefined. */
1267
1268 if (*type_change_ok
1269 || h->root.type == bfd_link_hash_undefined)
1270 *size_change_ok = TRUE;
1271
1272 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1273 symbol, respectively, appears to be a common symbol in a dynamic
1274 object. If a symbol appears in an uninitialized section, and is
1275 not weak, and is not a function, then it may be a common symbol
1276 which was resolved when the dynamic object was created. We want
1277 to treat such symbols specially, because they raise special
1278 considerations when setting the symbol size: if the symbol
1279 appears as a common symbol in a regular object, and the size in
1280 the regular object is larger, we must make sure that we use the
1281 larger size. This problematic case can always be avoided in C,
1282 but it must be handled correctly when using Fortran shared
1283 libraries.
1284
1285 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1286 likewise for OLDDYNCOMMON and OLDDEF.
1287
1288 Note that this test is just a heuristic, and that it is quite
1289 possible to have an uninitialized symbol in a shared object which
1290 is really a definition, rather than a common symbol. This could
1291 lead to some minor confusion when the symbol really is a common
1292 symbol in some regular object. However, I think it will be
1293 harmless. */
1294
1295 if (newdyn
1296 && newdef
1297 && !newweak
1298 && (sec->flags & SEC_ALLOC) != 0
1299 && (sec->flags & SEC_LOAD) == 0
1300 && sym->st_size > 0
1301 && !newfunc)
1302 newdyncommon = TRUE;
1303 else
1304 newdyncommon = FALSE;
1305
1306 if (olddyn
1307 && olddef
1308 && h->root.type == bfd_link_hash_defined
1309 && h->def_dynamic
1310 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1311 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1312 && h->size > 0
1313 && !oldfunc)
1314 olddyncommon = TRUE;
1315 else
1316 olddyncommon = FALSE;
1317
1318 /* We now know everything about the old and new symbols. We ask the
1319 backend to check if we can merge them. */
1320 if (bed->merge_symbol != NULL)
1321 {
1322 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1323 return FALSE;
1324 sec = *psec;
1325 }
1326
1327 /* If both the old and the new symbols look like common symbols in a
1328 dynamic object, set the size of the symbol to the larger of the
1329 two. */
1330
1331 if (olddyncommon
1332 && newdyncommon
1333 && sym->st_size != h->size)
1334 {
1335 /* Since we think we have two common symbols, issue a multiple
1336 common warning if desired. Note that we only warn if the
1337 size is different. If the size is the same, we simply let
1338 the old symbol override the new one as normally happens with
1339 symbols defined in dynamic objects. */
1340
1341 if (! ((*info->callbacks->multiple_common)
1342 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1343 return FALSE;
1344
1345 if (sym->st_size > h->size)
1346 h->size = sym->st_size;
1347
1348 *size_change_ok = TRUE;
1349 }
1350
1351 /* If we are looking at a dynamic object, and we have found a
1352 definition, we need to see if the symbol was already defined by
1353 some other object. If so, we want to use the existing
1354 definition, and we do not want to report a multiple symbol
1355 definition error; we do this by clobbering *PSEC to be
1356 bfd_und_section_ptr.
1357
1358 We treat a common symbol as a definition if the symbol in the
1359 shared library is a function, since common symbols always
1360 represent variables; this can cause confusion in principle, but
1361 any such confusion would seem to indicate an erroneous program or
1362 shared library. We also permit a common symbol in a regular
1363 object to override a weak symbol in a shared object. */
1364
1365 if (newdyn
1366 && newdef
1367 && (olddef
1368 || (h->root.type == bfd_link_hash_common
1369 && (newweak || newfunc))))
1370 {
1371 *override = TRUE;
1372 newdef = FALSE;
1373 newdyncommon = FALSE;
1374
1375 *psec = sec = bfd_und_section_ptr;
1376 *size_change_ok = TRUE;
1377
1378 /* If we get here when the old symbol is a common symbol, then
1379 we are explicitly letting it override a weak symbol or
1380 function in a dynamic object, and we don't want to warn about
1381 a type change. If the old symbol is a defined symbol, a type
1382 change warning may still be appropriate. */
1383
1384 if (h->root.type == bfd_link_hash_common)
1385 *type_change_ok = TRUE;
1386 }
1387
1388 /* Handle the special case of an old common symbol merging with a
1389 new symbol which looks like a common symbol in a shared object.
1390 We change *PSEC and *PVALUE to make the new symbol look like a
1391 common symbol, and let _bfd_generic_link_add_one_symbol do the
1392 right thing. */
1393
1394 if (newdyncommon
1395 && h->root.type == bfd_link_hash_common)
1396 {
1397 *override = TRUE;
1398 newdef = FALSE;
1399 newdyncommon = FALSE;
1400 *pvalue = sym->st_size;
1401 *psec = sec = bed->common_section (oldsec);
1402 *size_change_ok = TRUE;
1403 }
1404
1405 /* Skip weak definitions of symbols that are already defined. */
1406 if (newdef && olddef && newweak)
1407 {
1408 /* Don't skip new non-IR weak syms. */
1409 if (!(oldbfd != NULL
1410 && (oldbfd->flags & BFD_PLUGIN) != 0
1411 && (abfd->flags & BFD_PLUGIN) == 0))
1412 {
1413 newdef = FALSE;
1414 *skip = TRUE;
1415 }
1416
1417 /* Merge st_other. If the symbol already has a dynamic index,
1418 but visibility says it should not be visible, turn it into a
1419 local symbol. */
1420 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1421 if (h->dynindx != -1)
1422 switch (ELF_ST_VISIBILITY (h->other))
1423 {
1424 case STV_INTERNAL:
1425 case STV_HIDDEN:
1426 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1427 break;
1428 }
1429 }
1430
1431 /* If the old symbol is from a dynamic object, and the new symbol is
1432 a definition which is not from a dynamic object, then the new
1433 symbol overrides the old symbol. Symbols from regular files
1434 always take precedence over symbols from dynamic objects, even if
1435 they are defined after the dynamic object in the link.
1436
1437 As above, we again permit a common symbol in a regular object to
1438 override a definition in a shared object if the shared object
1439 symbol is a function or is weak. */
1440
1441 flip = NULL;
1442 if (!newdyn
1443 && (newdef
1444 || (bfd_is_com_section (sec)
1445 && (oldweak || oldfunc)))
1446 && olddyn
1447 && olddef
1448 && h->def_dynamic)
1449 {
1450 /* Change the hash table entry to undefined, and let
1451 _bfd_generic_link_add_one_symbol do the right thing with the
1452 new definition. */
1453
1454 h->root.type = bfd_link_hash_undefined;
1455 h->root.u.undef.abfd = h->root.u.def.section->owner;
1456 *size_change_ok = TRUE;
1457
1458 olddef = FALSE;
1459 olddyncommon = FALSE;
1460
1461 /* We again permit a type change when a common symbol may be
1462 overriding a function. */
1463
1464 if (bfd_is_com_section (sec))
1465 {
1466 if (oldfunc)
1467 {
1468 /* If a common symbol overrides a function, make sure
1469 that it isn't defined dynamically nor has type
1470 function. */
1471 h->def_dynamic = 0;
1472 h->type = STT_NOTYPE;
1473 }
1474 *type_change_ok = TRUE;
1475 }
1476
1477 if (hi->root.type == bfd_link_hash_indirect)
1478 flip = hi;
1479 else
1480 /* This union may have been set to be non-NULL when this symbol
1481 was seen in a dynamic object. We must force the union to be
1482 NULL, so that it is correct for a regular symbol. */
1483 h->verinfo.vertree = NULL;
1484 }
1485
1486 /* Handle the special case of a new common symbol merging with an
1487 old symbol that looks like it might be a common symbol defined in
1488 a shared object. Note that we have already handled the case in
1489 which a new common symbol should simply override the definition
1490 in the shared library. */
1491
1492 if (! newdyn
1493 && bfd_is_com_section (sec)
1494 && olddyncommon)
1495 {
1496 /* It would be best if we could set the hash table entry to a
1497 common symbol, but we don't know what to use for the section
1498 or the alignment. */
1499 if (! ((*info->callbacks->multiple_common)
1500 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1501 return FALSE;
1502
1503 /* If the presumed common symbol in the dynamic object is
1504 larger, pretend that the new symbol has its size. */
1505
1506 if (h->size > *pvalue)
1507 *pvalue = h->size;
1508
1509 /* We need to remember the alignment required by the symbol
1510 in the dynamic object. */
1511 BFD_ASSERT (pold_alignment);
1512 *pold_alignment = h->root.u.def.section->alignment_power;
1513
1514 olddef = FALSE;
1515 olddyncommon = FALSE;
1516
1517 h->root.type = bfd_link_hash_undefined;
1518 h->root.u.undef.abfd = h->root.u.def.section->owner;
1519
1520 *size_change_ok = TRUE;
1521 *type_change_ok = TRUE;
1522
1523 if (hi->root.type == bfd_link_hash_indirect)
1524 flip = hi;
1525 else
1526 h->verinfo.vertree = NULL;
1527 }
1528
1529 if (flip != NULL)
1530 {
1531 /* Handle the case where we had a versioned symbol in a dynamic
1532 library and now find a definition in a normal object. In this
1533 case, we make the versioned symbol point to the normal one. */
1534 flip->root.type = h->root.type;
1535 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1536 h->root.type = bfd_link_hash_indirect;
1537 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1538 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1539 if (h->def_dynamic)
1540 {
1541 h->def_dynamic = 0;
1542 flip->ref_dynamic = 1;
1543 }
1544 }
1545
1546 return TRUE;
1547 }
1548
1549 /* This function is called to create an indirect symbol from the
1550 default for the symbol with the default version if needed. The
1551 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1552 set DYNSYM if the new indirect symbol is dynamic. */
1553
1554 static bfd_boolean
1555 _bfd_elf_add_default_symbol (bfd *abfd,
1556 struct bfd_link_info *info,
1557 struct elf_link_hash_entry *h,
1558 const char *name,
1559 Elf_Internal_Sym *sym,
1560 asection *sec,
1561 bfd_vma value,
1562 bfd **poldbfd,
1563 bfd_boolean *dynsym)
1564 {
1565 bfd_boolean type_change_ok;
1566 bfd_boolean size_change_ok;
1567 bfd_boolean skip;
1568 char *shortname;
1569 struct elf_link_hash_entry *hi;
1570 struct bfd_link_hash_entry *bh;
1571 const struct elf_backend_data *bed;
1572 bfd_boolean collect;
1573 bfd_boolean dynamic;
1574 bfd_boolean override;
1575 char *p;
1576 size_t len, shortlen;
1577 asection *tmp_sec;
1578
1579 /* If this symbol has a version, and it is the default version, we
1580 create an indirect symbol from the default name to the fully
1581 decorated name. This will cause external references which do not
1582 specify a version to be bound to this version of the symbol. */
1583 p = strchr (name, ELF_VER_CHR);
1584 if (p == NULL || p[1] != ELF_VER_CHR)
1585 return TRUE;
1586
1587 bed = get_elf_backend_data (abfd);
1588 collect = bed->collect;
1589 dynamic = (abfd->flags & DYNAMIC) != 0;
1590
1591 shortlen = p - name;
1592 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1593 if (shortname == NULL)
1594 return FALSE;
1595 memcpy (shortname, name, shortlen);
1596 shortname[shortlen] = '\0';
1597
1598 /* We are going to create a new symbol. Merge it with any existing
1599 symbol with this name. For the purposes of the merge, act as
1600 though we were defining the symbol we just defined, although we
1601 actually going to define an indirect symbol. */
1602 type_change_ok = FALSE;
1603 size_change_ok = FALSE;
1604 tmp_sec = sec;
1605 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1606 &hi, poldbfd, NULL, NULL, &skip, &override,
1607 &type_change_ok, &size_change_ok))
1608 return FALSE;
1609
1610 if (skip)
1611 goto nondefault;
1612
1613 if (! override)
1614 {
1615 bh = &hi->root;
1616 if (! (_bfd_generic_link_add_one_symbol
1617 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1618 0, name, FALSE, collect, &bh)))
1619 return FALSE;
1620 hi = (struct elf_link_hash_entry *) bh;
1621 }
1622 else
1623 {
1624 /* In this case the symbol named SHORTNAME is overriding the
1625 indirect symbol we want to add. We were planning on making
1626 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1627 is the name without a version. NAME is the fully versioned
1628 name, and it is the default version.
1629
1630 Overriding means that we already saw a definition for the
1631 symbol SHORTNAME in a regular object, and it is overriding
1632 the symbol defined in the dynamic object.
1633
1634 When this happens, we actually want to change NAME, the
1635 symbol we just added, to refer to SHORTNAME. This will cause
1636 references to NAME in the shared object to become references
1637 to SHORTNAME in the regular object. This is what we expect
1638 when we override a function in a shared object: that the
1639 references in the shared object will be mapped to the
1640 definition in the regular object. */
1641
1642 while (hi->root.type == bfd_link_hash_indirect
1643 || hi->root.type == bfd_link_hash_warning)
1644 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1645
1646 h->root.type = bfd_link_hash_indirect;
1647 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1648 if (h->def_dynamic)
1649 {
1650 h->def_dynamic = 0;
1651 hi->ref_dynamic = 1;
1652 if (hi->ref_regular
1653 || hi->def_regular)
1654 {
1655 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1656 return FALSE;
1657 }
1658 }
1659
1660 /* Now set HI to H, so that the following code will set the
1661 other fields correctly. */
1662 hi = h;
1663 }
1664
1665 /* Check if HI is a warning symbol. */
1666 if (hi->root.type == bfd_link_hash_warning)
1667 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1668
1669 /* If there is a duplicate definition somewhere, then HI may not
1670 point to an indirect symbol. We will have reported an error to
1671 the user in that case. */
1672
1673 if (hi->root.type == bfd_link_hash_indirect)
1674 {
1675 struct elf_link_hash_entry *ht;
1676
1677 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1678 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1679
1680 /* A reference to the SHORTNAME symbol from a dynamic library
1681 will be satisfied by the versioned symbol at runtime. In
1682 effect, we have a reference to the versioned symbol. */
1683 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1684 hi->dynamic_def |= ht->dynamic_def;
1685
1686 /* See if the new flags lead us to realize that the symbol must
1687 be dynamic. */
1688 if (! *dynsym)
1689 {
1690 if (! dynamic)
1691 {
1692 if (! info->executable
1693 || hi->def_dynamic
1694 || hi->ref_dynamic)
1695 *dynsym = TRUE;
1696 }
1697 else
1698 {
1699 if (hi->ref_regular)
1700 *dynsym = TRUE;
1701 }
1702 }
1703 }
1704
1705 /* We also need to define an indirection from the nondefault version
1706 of the symbol. */
1707
1708 nondefault:
1709 len = strlen (name);
1710 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1711 if (shortname == NULL)
1712 return FALSE;
1713 memcpy (shortname, name, shortlen);
1714 memcpy (shortname + shortlen, p + 1, len - shortlen);
1715
1716 /* Once again, merge with any existing symbol. */
1717 type_change_ok = FALSE;
1718 size_change_ok = FALSE;
1719 tmp_sec = sec;
1720 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1721 &hi, poldbfd, NULL, NULL, &skip, &override,
1722 &type_change_ok, &size_change_ok))
1723 return FALSE;
1724
1725 if (skip)
1726 return TRUE;
1727
1728 if (override)
1729 {
1730 /* Here SHORTNAME is a versioned name, so we don't expect to see
1731 the type of override we do in the case above unless it is
1732 overridden by a versioned definition. */
1733 if (hi->root.type != bfd_link_hash_defined
1734 && hi->root.type != bfd_link_hash_defweak)
1735 (*_bfd_error_handler)
1736 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1737 abfd, shortname);
1738 }
1739 else
1740 {
1741 bh = &hi->root;
1742 if (! (_bfd_generic_link_add_one_symbol
1743 (info, abfd, shortname, BSF_INDIRECT,
1744 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1745 return FALSE;
1746 hi = (struct elf_link_hash_entry *) bh;
1747
1748 /* If there is a duplicate definition somewhere, then HI may not
1749 point to an indirect symbol. We will have reported an error
1750 to the user in that case. */
1751
1752 if (hi->root.type == bfd_link_hash_indirect)
1753 {
1754 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1755 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1756 hi->dynamic_def |= h->dynamic_def;
1757
1758 /* See if the new flags lead us to realize that the symbol
1759 must be dynamic. */
1760 if (! *dynsym)
1761 {
1762 if (! dynamic)
1763 {
1764 if (! info->executable
1765 || hi->ref_dynamic)
1766 *dynsym = TRUE;
1767 }
1768 else
1769 {
1770 if (hi->ref_regular)
1771 *dynsym = TRUE;
1772 }
1773 }
1774 }
1775 }
1776
1777 return TRUE;
1778 }
1779 \f
1780 /* This routine is used to export all defined symbols into the dynamic
1781 symbol table. It is called via elf_link_hash_traverse. */
1782
1783 static bfd_boolean
1784 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1785 {
1786 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1787
1788 /* Ignore indirect symbols. These are added by the versioning code. */
1789 if (h->root.type == bfd_link_hash_indirect)
1790 return TRUE;
1791
1792 /* Ignore this if we won't export it. */
1793 if (!eif->info->export_dynamic && !h->dynamic)
1794 return TRUE;
1795
1796 if (h->dynindx == -1
1797 && (h->def_regular || h->ref_regular)
1798 && ! bfd_hide_sym_by_version (eif->info->version_info,
1799 h->root.root.string))
1800 {
1801 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1802 {
1803 eif->failed = TRUE;
1804 return FALSE;
1805 }
1806 }
1807
1808 return TRUE;
1809 }
1810 \f
1811 /* Look through the symbols which are defined in other shared
1812 libraries and referenced here. Update the list of version
1813 dependencies. This will be put into the .gnu.version_r section.
1814 This function is called via elf_link_hash_traverse. */
1815
1816 static bfd_boolean
1817 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1818 void *data)
1819 {
1820 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1821 Elf_Internal_Verneed *t;
1822 Elf_Internal_Vernaux *a;
1823 bfd_size_type amt;
1824
1825 /* We only care about symbols defined in shared objects with version
1826 information. */
1827 if (!h->def_dynamic
1828 || h->def_regular
1829 || h->dynindx == -1
1830 || h->verinfo.verdef == NULL
1831 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
1832 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
1833 return TRUE;
1834
1835 /* See if we already know about this version. */
1836 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1837 t != NULL;
1838 t = t->vn_nextref)
1839 {
1840 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1841 continue;
1842
1843 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1844 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1845 return TRUE;
1846
1847 break;
1848 }
1849
1850 /* This is a new version. Add it to tree we are building. */
1851
1852 if (t == NULL)
1853 {
1854 amt = sizeof *t;
1855 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1856 if (t == NULL)
1857 {
1858 rinfo->failed = TRUE;
1859 return FALSE;
1860 }
1861
1862 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1863 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1864 elf_tdata (rinfo->info->output_bfd)->verref = t;
1865 }
1866
1867 amt = sizeof *a;
1868 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1869 if (a == NULL)
1870 {
1871 rinfo->failed = TRUE;
1872 return FALSE;
1873 }
1874
1875 /* Note that we are copying a string pointer here, and testing it
1876 above. If bfd_elf_string_from_elf_section is ever changed to
1877 discard the string data when low in memory, this will have to be
1878 fixed. */
1879 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1880
1881 a->vna_flags = h->verinfo.verdef->vd_flags;
1882 a->vna_nextptr = t->vn_auxptr;
1883
1884 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1885 ++rinfo->vers;
1886
1887 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1888
1889 t->vn_auxptr = a;
1890
1891 return TRUE;
1892 }
1893
1894 /* Figure out appropriate versions for all the symbols. We may not
1895 have the version number script until we have read all of the input
1896 files, so until that point we don't know which symbols should be
1897 local. This function is called via elf_link_hash_traverse. */
1898
1899 static bfd_boolean
1900 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1901 {
1902 struct elf_info_failed *sinfo;
1903 struct bfd_link_info *info;
1904 const struct elf_backend_data *bed;
1905 struct elf_info_failed eif;
1906 char *p;
1907 bfd_size_type amt;
1908
1909 sinfo = (struct elf_info_failed *) data;
1910 info = sinfo->info;
1911
1912 /* Fix the symbol flags. */
1913 eif.failed = FALSE;
1914 eif.info = info;
1915 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1916 {
1917 if (eif.failed)
1918 sinfo->failed = TRUE;
1919 return FALSE;
1920 }
1921
1922 /* We only need version numbers for symbols defined in regular
1923 objects. */
1924 if (!h->def_regular)
1925 return TRUE;
1926
1927 bed = get_elf_backend_data (info->output_bfd);
1928 p = strchr (h->root.root.string, ELF_VER_CHR);
1929 if (p != NULL && h->verinfo.vertree == NULL)
1930 {
1931 struct bfd_elf_version_tree *t;
1932 bfd_boolean hidden;
1933
1934 hidden = TRUE;
1935
1936 /* There are two consecutive ELF_VER_CHR characters if this is
1937 not a hidden symbol. */
1938 ++p;
1939 if (*p == ELF_VER_CHR)
1940 {
1941 hidden = FALSE;
1942 ++p;
1943 }
1944
1945 /* If there is no version string, we can just return out. */
1946 if (*p == '\0')
1947 {
1948 if (hidden)
1949 h->hidden = 1;
1950 return TRUE;
1951 }
1952
1953 /* Look for the version. If we find it, it is no longer weak. */
1954 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1955 {
1956 if (strcmp (t->name, p) == 0)
1957 {
1958 size_t len;
1959 char *alc;
1960 struct bfd_elf_version_expr *d;
1961
1962 len = p - h->root.root.string;
1963 alc = (char *) bfd_malloc (len);
1964 if (alc == NULL)
1965 {
1966 sinfo->failed = TRUE;
1967 return FALSE;
1968 }
1969 memcpy (alc, h->root.root.string, len - 1);
1970 alc[len - 1] = '\0';
1971 if (alc[len - 2] == ELF_VER_CHR)
1972 alc[len - 2] = '\0';
1973
1974 h->verinfo.vertree = t;
1975 t->used = TRUE;
1976 d = NULL;
1977
1978 if (t->globals.list != NULL)
1979 d = (*t->match) (&t->globals, NULL, alc);
1980
1981 /* See if there is anything to force this symbol to
1982 local scope. */
1983 if (d == NULL && t->locals.list != NULL)
1984 {
1985 d = (*t->match) (&t->locals, NULL, alc);
1986 if (d != NULL
1987 && h->dynindx != -1
1988 && ! info->export_dynamic)
1989 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1990 }
1991
1992 free (alc);
1993 break;
1994 }
1995 }
1996
1997 /* If we are building an application, we need to create a
1998 version node for this version. */
1999 if (t == NULL && info->executable)
2000 {
2001 struct bfd_elf_version_tree **pp;
2002 int version_index;
2003
2004 /* If we aren't going to export this symbol, we don't need
2005 to worry about it. */
2006 if (h->dynindx == -1)
2007 return TRUE;
2008
2009 amt = sizeof *t;
2010 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2011 if (t == NULL)
2012 {
2013 sinfo->failed = TRUE;
2014 return FALSE;
2015 }
2016
2017 t->name = p;
2018 t->name_indx = (unsigned int) -1;
2019 t->used = TRUE;
2020
2021 version_index = 1;
2022 /* Don't count anonymous version tag. */
2023 if (sinfo->info->version_info != NULL
2024 && sinfo->info->version_info->vernum == 0)
2025 version_index = 0;
2026 for (pp = &sinfo->info->version_info;
2027 *pp != NULL;
2028 pp = &(*pp)->next)
2029 ++version_index;
2030 t->vernum = version_index;
2031
2032 *pp = t;
2033
2034 h->verinfo.vertree = t;
2035 }
2036 else if (t == NULL)
2037 {
2038 /* We could not find the version for a symbol when
2039 generating a shared archive. Return an error. */
2040 (*_bfd_error_handler)
2041 (_("%B: version node not found for symbol %s"),
2042 info->output_bfd, h->root.root.string);
2043 bfd_set_error (bfd_error_bad_value);
2044 sinfo->failed = TRUE;
2045 return FALSE;
2046 }
2047
2048 if (hidden)
2049 h->hidden = 1;
2050 }
2051
2052 /* If we don't have a version for this symbol, see if we can find
2053 something. */
2054 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2055 {
2056 bfd_boolean hide;
2057
2058 h->verinfo.vertree
2059 = bfd_find_version_for_sym (sinfo->info->version_info,
2060 h->root.root.string, &hide);
2061 if (h->verinfo.vertree != NULL && hide)
2062 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2063 }
2064
2065 return TRUE;
2066 }
2067 \f
2068 /* Read and swap the relocs from the section indicated by SHDR. This
2069 may be either a REL or a RELA section. The relocations are
2070 translated into RELA relocations and stored in INTERNAL_RELOCS,
2071 which should have already been allocated to contain enough space.
2072 The EXTERNAL_RELOCS are a buffer where the external form of the
2073 relocations should be stored.
2074
2075 Returns FALSE if something goes wrong. */
2076
2077 static bfd_boolean
2078 elf_link_read_relocs_from_section (bfd *abfd,
2079 asection *sec,
2080 Elf_Internal_Shdr *shdr,
2081 void *external_relocs,
2082 Elf_Internal_Rela *internal_relocs)
2083 {
2084 const struct elf_backend_data *bed;
2085 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2086 const bfd_byte *erela;
2087 const bfd_byte *erelaend;
2088 Elf_Internal_Rela *irela;
2089 Elf_Internal_Shdr *symtab_hdr;
2090 size_t nsyms;
2091
2092 /* Position ourselves at the start of the section. */
2093 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2094 return FALSE;
2095
2096 /* Read the relocations. */
2097 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2098 return FALSE;
2099
2100 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2101 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2102
2103 bed = get_elf_backend_data (abfd);
2104
2105 /* Convert the external relocations to the internal format. */
2106 if (shdr->sh_entsize == bed->s->sizeof_rel)
2107 swap_in = bed->s->swap_reloc_in;
2108 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2109 swap_in = bed->s->swap_reloca_in;
2110 else
2111 {
2112 bfd_set_error (bfd_error_wrong_format);
2113 return FALSE;
2114 }
2115
2116 erela = (const bfd_byte *) external_relocs;
2117 erelaend = erela + shdr->sh_size;
2118 irela = internal_relocs;
2119 while (erela < erelaend)
2120 {
2121 bfd_vma r_symndx;
2122
2123 (*swap_in) (abfd, erela, irela);
2124 r_symndx = ELF32_R_SYM (irela->r_info);
2125 if (bed->s->arch_size == 64)
2126 r_symndx >>= 24;
2127 if (nsyms > 0)
2128 {
2129 if ((size_t) r_symndx >= nsyms)
2130 {
2131 (*_bfd_error_handler)
2132 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2133 " for offset 0x%lx in section `%A'"),
2134 abfd, sec,
2135 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2136 bfd_set_error (bfd_error_bad_value);
2137 return FALSE;
2138 }
2139 }
2140 else if (r_symndx != STN_UNDEF)
2141 {
2142 (*_bfd_error_handler)
2143 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2144 " when the object file has no symbol table"),
2145 abfd, sec,
2146 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2147 bfd_set_error (bfd_error_bad_value);
2148 return FALSE;
2149 }
2150 irela += bed->s->int_rels_per_ext_rel;
2151 erela += shdr->sh_entsize;
2152 }
2153
2154 return TRUE;
2155 }
2156
2157 /* Read and swap the relocs for a section O. They may have been
2158 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2159 not NULL, they are used as buffers to read into. They are known to
2160 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2161 the return value is allocated using either malloc or bfd_alloc,
2162 according to the KEEP_MEMORY argument. If O has two relocation
2163 sections (both REL and RELA relocations), then the REL_HDR
2164 relocations will appear first in INTERNAL_RELOCS, followed by the
2165 RELA_HDR relocations. */
2166
2167 Elf_Internal_Rela *
2168 _bfd_elf_link_read_relocs (bfd *abfd,
2169 asection *o,
2170 void *external_relocs,
2171 Elf_Internal_Rela *internal_relocs,
2172 bfd_boolean keep_memory)
2173 {
2174 void *alloc1 = NULL;
2175 Elf_Internal_Rela *alloc2 = NULL;
2176 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2177 struct bfd_elf_section_data *esdo = elf_section_data (o);
2178 Elf_Internal_Rela *internal_rela_relocs;
2179
2180 if (esdo->relocs != NULL)
2181 return esdo->relocs;
2182
2183 if (o->reloc_count == 0)
2184 return NULL;
2185
2186 if (internal_relocs == NULL)
2187 {
2188 bfd_size_type size;
2189
2190 size = o->reloc_count;
2191 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2192 if (keep_memory)
2193 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2194 else
2195 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2196 if (internal_relocs == NULL)
2197 goto error_return;
2198 }
2199
2200 if (external_relocs == NULL)
2201 {
2202 bfd_size_type size = 0;
2203
2204 if (esdo->rel.hdr)
2205 size += esdo->rel.hdr->sh_size;
2206 if (esdo->rela.hdr)
2207 size += esdo->rela.hdr->sh_size;
2208
2209 alloc1 = bfd_malloc (size);
2210 if (alloc1 == NULL)
2211 goto error_return;
2212 external_relocs = alloc1;
2213 }
2214
2215 internal_rela_relocs = internal_relocs;
2216 if (esdo->rel.hdr)
2217 {
2218 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2219 external_relocs,
2220 internal_relocs))
2221 goto error_return;
2222 external_relocs = (((bfd_byte *) external_relocs)
2223 + esdo->rel.hdr->sh_size);
2224 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2225 * bed->s->int_rels_per_ext_rel);
2226 }
2227
2228 if (esdo->rela.hdr
2229 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2230 external_relocs,
2231 internal_rela_relocs)))
2232 goto error_return;
2233
2234 /* Cache the results for next time, if we can. */
2235 if (keep_memory)
2236 esdo->relocs = internal_relocs;
2237
2238 if (alloc1 != NULL)
2239 free (alloc1);
2240
2241 /* Don't free alloc2, since if it was allocated we are passing it
2242 back (under the name of internal_relocs). */
2243
2244 return internal_relocs;
2245
2246 error_return:
2247 if (alloc1 != NULL)
2248 free (alloc1);
2249 if (alloc2 != NULL)
2250 {
2251 if (keep_memory)
2252 bfd_release (abfd, alloc2);
2253 else
2254 free (alloc2);
2255 }
2256 return NULL;
2257 }
2258
2259 /* Compute the size of, and allocate space for, REL_HDR which is the
2260 section header for a section containing relocations for O. */
2261
2262 static bfd_boolean
2263 _bfd_elf_link_size_reloc_section (bfd *abfd,
2264 struct bfd_elf_section_reloc_data *reldata)
2265 {
2266 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2267
2268 /* That allows us to calculate the size of the section. */
2269 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2270
2271 /* The contents field must last into write_object_contents, so we
2272 allocate it with bfd_alloc rather than malloc. Also since we
2273 cannot be sure that the contents will actually be filled in,
2274 we zero the allocated space. */
2275 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2276 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2277 return FALSE;
2278
2279 if (reldata->hashes == NULL && reldata->count)
2280 {
2281 struct elf_link_hash_entry **p;
2282
2283 p = ((struct elf_link_hash_entry **)
2284 bfd_zmalloc (reldata->count * sizeof (*p)));
2285 if (p == NULL)
2286 return FALSE;
2287
2288 reldata->hashes = p;
2289 }
2290
2291 return TRUE;
2292 }
2293
2294 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2295 originated from the section given by INPUT_REL_HDR) to the
2296 OUTPUT_BFD. */
2297
2298 bfd_boolean
2299 _bfd_elf_link_output_relocs (bfd *output_bfd,
2300 asection *input_section,
2301 Elf_Internal_Shdr *input_rel_hdr,
2302 Elf_Internal_Rela *internal_relocs,
2303 struct elf_link_hash_entry **rel_hash
2304 ATTRIBUTE_UNUSED)
2305 {
2306 Elf_Internal_Rela *irela;
2307 Elf_Internal_Rela *irelaend;
2308 bfd_byte *erel;
2309 struct bfd_elf_section_reloc_data *output_reldata;
2310 asection *output_section;
2311 const struct elf_backend_data *bed;
2312 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2313 struct bfd_elf_section_data *esdo;
2314
2315 output_section = input_section->output_section;
2316
2317 bed = get_elf_backend_data (output_bfd);
2318 esdo = elf_section_data (output_section);
2319 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2320 {
2321 output_reldata = &esdo->rel;
2322 swap_out = bed->s->swap_reloc_out;
2323 }
2324 else if (esdo->rela.hdr
2325 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2326 {
2327 output_reldata = &esdo->rela;
2328 swap_out = bed->s->swap_reloca_out;
2329 }
2330 else
2331 {
2332 (*_bfd_error_handler)
2333 (_("%B: relocation size mismatch in %B section %A"),
2334 output_bfd, input_section->owner, input_section);
2335 bfd_set_error (bfd_error_wrong_format);
2336 return FALSE;
2337 }
2338
2339 erel = output_reldata->hdr->contents;
2340 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2341 irela = internal_relocs;
2342 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2343 * bed->s->int_rels_per_ext_rel);
2344 while (irela < irelaend)
2345 {
2346 (*swap_out) (output_bfd, irela, erel);
2347 irela += bed->s->int_rels_per_ext_rel;
2348 erel += input_rel_hdr->sh_entsize;
2349 }
2350
2351 /* Bump the counter, so that we know where to add the next set of
2352 relocations. */
2353 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2354
2355 return TRUE;
2356 }
2357 \f
2358 /* Make weak undefined symbols in PIE dynamic. */
2359
2360 bfd_boolean
2361 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2362 struct elf_link_hash_entry *h)
2363 {
2364 if (info->pie
2365 && h->dynindx == -1
2366 && h->root.type == bfd_link_hash_undefweak)
2367 return bfd_elf_link_record_dynamic_symbol (info, h);
2368
2369 return TRUE;
2370 }
2371
2372 /* Fix up the flags for a symbol. This handles various cases which
2373 can only be fixed after all the input files are seen. This is
2374 currently called by both adjust_dynamic_symbol and
2375 assign_sym_version, which is unnecessary but perhaps more robust in
2376 the face of future changes. */
2377
2378 static bfd_boolean
2379 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2380 struct elf_info_failed *eif)
2381 {
2382 const struct elf_backend_data *bed;
2383
2384 /* If this symbol was mentioned in a non-ELF file, try to set
2385 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2386 permit a non-ELF file to correctly refer to a symbol defined in
2387 an ELF dynamic object. */
2388 if (h->non_elf)
2389 {
2390 while (h->root.type == bfd_link_hash_indirect)
2391 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2392
2393 if (h->root.type != bfd_link_hash_defined
2394 && h->root.type != bfd_link_hash_defweak)
2395 {
2396 h->ref_regular = 1;
2397 h->ref_regular_nonweak = 1;
2398 }
2399 else
2400 {
2401 if (h->root.u.def.section->owner != NULL
2402 && (bfd_get_flavour (h->root.u.def.section->owner)
2403 == bfd_target_elf_flavour))
2404 {
2405 h->ref_regular = 1;
2406 h->ref_regular_nonweak = 1;
2407 }
2408 else
2409 h->def_regular = 1;
2410 }
2411
2412 if (h->dynindx == -1
2413 && (h->def_dynamic
2414 || h->ref_dynamic))
2415 {
2416 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2417 {
2418 eif->failed = TRUE;
2419 return FALSE;
2420 }
2421 }
2422 }
2423 else
2424 {
2425 /* Unfortunately, NON_ELF is only correct if the symbol
2426 was first seen in a non-ELF file. Fortunately, if the symbol
2427 was first seen in an ELF file, we're probably OK unless the
2428 symbol was defined in a non-ELF file. Catch that case here.
2429 FIXME: We're still in trouble if the symbol was first seen in
2430 a dynamic object, and then later in a non-ELF regular object. */
2431 if ((h->root.type == bfd_link_hash_defined
2432 || h->root.type == bfd_link_hash_defweak)
2433 && !h->def_regular
2434 && (h->root.u.def.section->owner != NULL
2435 ? (bfd_get_flavour (h->root.u.def.section->owner)
2436 != bfd_target_elf_flavour)
2437 : (bfd_is_abs_section (h->root.u.def.section)
2438 && !h->def_dynamic)))
2439 h->def_regular = 1;
2440 }
2441
2442 /* Backend specific symbol fixup. */
2443 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2444 if (bed->elf_backend_fixup_symbol
2445 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2446 return FALSE;
2447
2448 /* If this is a final link, and the symbol was defined as a common
2449 symbol in a regular object file, and there was no definition in
2450 any dynamic object, then the linker will have allocated space for
2451 the symbol in a common section but the DEF_REGULAR
2452 flag will not have been set. */
2453 if (h->root.type == bfd_link_hash_defined
2454 && !h->def_regular
2455 && h->ref_regular
2456 && !h->def_dynamic
2457 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2458 h->def_regular = 1;
2459
2460 /* If -Bsymbolic was used (which means to bind references to global
2461 symbols to the definition within the shared object), and this
2462 symbol was defined in a regular object, then it actually doesn't
2463 need a PLT entry. Likewise, if the symbol has non-default
2464 visibility. If the symbol has hidden or internal visibility, we
2465 will force it local. */
2466 if (h->needs_plt
2467 && eif->info->shared
2468 && is_elf_hash_table (eif->info->hash)
2469 && (SYMBOLIC_BIND (eif->info, h)
2470 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2471 && h->def_regular)
2472 {
2473 bfd_boolean force_local;
2474
2475 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2476 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2477 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2478 }
2479
2480 /* If a weak undefined symbol has non-default visibility, we also
2481 hide it from the dynamic linker. */
2482 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2483 && h->root.type == bfd_link_hash_undefweak)
2484 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2485
2486 /* If this is a weak defined symbol in a dynamic object, and we know
2487 the real definition in the dynamic object, copy interesting flags
2488 over to the real definition. */
2489 if (h->u.weakdef != NULL)
2490 {
2491 /* If the real definition is defined by a regular object file,
2492 don't do anything special. See the longer description in
2493 _bfd_elf_adjust_dynamic_symbol, below. */
2494 if (h->u.weakdef->def_regular)
2495 h->u.weakdef = NULL;
2496 else
2497 {
2498 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2499
2500 while (h->root.type == bfd_link_hash_indirect)
2501 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2502
2503 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2504 || h->root.type == bfd_link_hash_defweak);
2505 BFD_ASSERT (weakdef->def_dynamic);
2506 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2507 || weakdef->root.type == bfd_link_hash_defweak);
2508 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2509 }
2510 }
2511
2512 return TRUE;
2513 }
2514
2515 /* Make the backend pick a good value for a dynamic symbol. This is
2516 called via elf_link_hash_traverse, and also calls itself
2517 recursively. */
2518
2519 static bfd_boolean
2520 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2521 {
2522 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2523 bfd *dynobj;
2524 const struct elf_backend_data *bed;
2525
2526 if (! is_elf_hash_table (eif->info->hash))
2527 return FALSE;
2528
2529 /* Ignore indirect symbols. These are added by the versioning code. */
2530 if (h->root.type == bfd_link_hash_indirect)
2531 return TRUE;
2532
2533 /* Fix the symbol flags. */
2534 if (! _bfd_elf_fix_symbol_flags (h, eif))
2535 return FALSE;
2536
2537 /* If this symbol does not require a PLT entry, and it is not
2538 defined by a dynamic object, or is not referenced by a regular
2539 object, ignore it. We do have to handle a weak defined symbol,
2540 even if no regular object refers to it, if we decided to add it
2541 to the dynamic symbol table. FIXME: Do we normally need to worry
2542 about symbols which are defined by one dynamic object and
2543 referenced by another one? */
2544 if (!h->needs_plt
2545 && h->type != STT_GNU_IFUNC
2546 && (h->def_regular
2547 || !h->def_dynamic
2548 || (!h->ref_regular
2549 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2550 {
2551 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2552 return TRUE;
2553 }
2554
2555 /* If we've already adjusted this symbol, don't do it again. This
2556 can happen via a recursive call. */
2557 if (h->dynamic_adjusted)
2558 return TRUE;
2559
2560 /* Don't look at this symbol again. Note that we must set this
2561 after checking the above conditions, because we may look at a
2562 symbol once, decide not to do anything, and then get called
2563 recursively later after REF_REGULAR is set below. */
2564 h->dynamic_adjusted = 1;
2565
2566 /* If this is a weak definition, and we know a real definition, and
2567 the real symbol is not itself defined by a regular object file,
2568 then get a good value for the real definition. We handle the
2569 real symbol first, for the convenience of the backend routine.
2570
2571 Note that there is a confusing case here. If the real definition
2572 is defined by a regular object file, we don't get the real symbol
2573 from the dynamic object, but we do get the weak symbol. If the
2574 processor backend uses a COPY reloc, then if some routine in the
2575 dynamic object changes the real symbol, we will not see that
2576 change in the corresponding weak symbol. This is the way other
2577 ELF linkers work as well, and seems to be a result of the shared
2578 library model.
2579
2580 I will clarify this issue. Most SVR4 shared libraries define the
2581 variable _timezone and define timezone as a weak synonym. The
2582 tzset call changes _timezone. If you write
2583 extern int timezone;
2584 int _timezone = 5;
2585 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2586 you might expect that, since timezone is a synonym for _timezone,
2587 the same number will print both times. However, if the processor
2588 backend uses a COPY reloc, then actually timezone will be copied
2589 into your process image, and, since you define _timezone
2590 yourself, _timezone will not. Thus timezone and _timezone will
2591 wind up at different memory locations. The tzset call will set
2592 _timezone, leaving timezone unchanged. */
2593
2594 if (h->u.weakdef != NULL)
2595 {
2596 /* If we get to this point, there is an implicit reference to
2597 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2598 h->u.weakdef->ref_regular = 1;
2599
2600 /* Ensure that the backend adjust_dynamic_symbol function sees
2601 H->U.WEAKDEF before H by recursively calling ourselves. */
2602 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2603 return FALSE;
2604 }
2605
2606 /* If a symbol has no type and no size and does not require a PLT
2607 entry, then we are probably about to do the wrong thing here: we
2608 are probably going to create a COPY reloc for an empty object.
2609 This case can arise when a shared object is built with assembly
2610 code, and the assembly code fails to set the symbol type. */
2611 if (h->size == 0
2612 && h->type == STT_NOTYPE
2613 && !h->needs_plt)
2614 (*_bfd_error_handler)
2615 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2616 h->root.root.string);
2617
2618 dynobj = elf_hash_table (eif->info)->dynobj;
2619 bed = get_elf_backend_data (dynobj);
2620
2621 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2622 {
2623 eif->failed = TRUE;
2624 return FALSE;
2625 }
2626
2627 return TRUE;
2628 }
2629
2630 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2631 DYNBSS. */
2632
2633 bfd_boolean
2634 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2635 struct elf_link_hash_entry *h,
2636 asection *dynbss)
2637 {
2638 unsigned int power_of_two;
2639 bfd_vma mask;
2640 asection *sec = h->root.u.def.section;
2641
2642 /* The section aligment of definition is the maximum alignment
2643 requirement of symbols defined in the section. Since we don't
2644 know the symbol alignment requirement, we start with the
2645 maximum alignment and check low bits of the symbol address
2646 for the minimum alignment. */
2647 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2648 mask = ((bfd_vma) 1 << power_of_two) - 1;
2649 while ((h->root.u.def.value & mask) != 0)
2650 {
2651 mask >>= 1;
2652 --power_of_two;
2653 }
2654
2655 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2656 dynbss))
2657 {
2658 /* Adjust the section alignment if needed. */
2659 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2660 power_of_two))
2661 return FALSE;
2662 }
2663
2664 /* We make sure that the symbol will be aligned properly. */
2665 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2666
2667 /* Define the symbol as being at this point in DYNBSS. */
2668 h->root.u.def.section = dynbss;
2669 h->root.u.def.value = dynbss->size;
2670
2671 /* Increment the size of DYNBSS to make room for the symbol. */
2672 dynbss->size += h->size;
2673
2674 /* No error if extern_protected_data is true. */
2675 if (h->protected_def
2676 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)
2677 {
2678 info->callbacks->einfo
2679 (_("%P: copy reloc against protected `%T' is invalid\n"),
2680 h->root.root.string);
2681 bfd_set_error (bfd_error_bad_value);
2682 return FALSE;
2683 }
2684
2685 return TRUE;
2686 }
2687
2688 /* Adjust all external symbols pointing into SEC_MERGE sections
2689 to reflect the object merging within the sections. */
2690
2691 static bfd_boolean
2692 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2693 {
2694 asection *sec;
2695
2696 if ((h->root.type == bfd_link_hash_defined
2697 || h->root.type == bfd_link_hash_defweak)
2698 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2699 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2700 {
2701 bfd *output_bfd = (bfd *) data;
2702
2703 h->root.u.def.value =
2704 _bfd_merged_section_offset (output_bfd,
2705 &h->root.u.def.section,
2706 elf_section_data (sec)->sec_info,
2707 h->root.u.def.value);
2708 }
2709
2710 return TRUE;
2711 }
2712
2713 /* Returns false if the symbol referred to by H should be considered
2714 to resolve local to the current module, and true if it should be
2715 considered to bind dynamically. */
2716
2717 bfd_boolean
2718 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2719 struct bfd_link_info *info,
2720 bfd_boolean not_local_protected)
2721 {
2722 bfd_boolean binding_stays_local_p;
2723 const struct elf_backend_data *bed;
2724 struct elf_link_hash_table *hash_table;
2725
2726 if (h == NULL)
2727 return FALSE;
2728
2729 while (h->root.type == bfd_link_hash_indirect
2730 || h->root.type == bfd_link_hash_warning)
2731 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2732
2733 /* If it was forced local, then clearly it's not dynamic. */
2734 if (h->dynindx == -1)
2735 return FALSE;
2736 if (h->forced_local)
2737 return FALSE;
2738
2739 /* Identify the cases where name binding rules say that a
2740 visible symbol resolves locally. */
2741 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2742
2743 switch (ELF_ST_VISIBILITY (h->other))
2744 {
2745 case STV_INTERNAL:
2746 case STV_HIDDEN:
2747 return FALSE;
2748
2749 case STV_PROTECTED:
2750 hash_table = elf_hash_table (info);
2751 if (!is_elf_hash_table (hash_table))
2752 return FALSE;
2753
2754 bed = get_elf_backend_data (hash_table->dynobj);
2755
2756 /* Proper resolution for function pointer equality may require
2757 that these symbols perhaps be resolved dynamically, even though
2758 we should be resolving them to the current module. */
2759 if (!not_local_protected || !bed->is_function_type (h->type))
2760 binding_stays_local_p = TRUE;
2761 break;
2762
2763 default:
2764 break;
2765 }
2766
2767 /* If it isn't defined locally, then clearly it's dynamic. */
2768 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2769 return TRUE;
2770
2771 /* Otherwise, the symbol is dynamic if binding rules don't tell
2772 us that it remains local. */
2773 return !binding_stays_local_p;
2774 }
2775
2776 /* Return true if the symbol referred to by H should be considered
2777 to resolve local to the current module, and false otherwise. Differs
2778 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2779 undefined symbols. The two functions are virtually identical except
2780 for the place where forced_local and dynindx == -1 are tested. If
2781 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2782 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2783 the symbol is local only for defined symbols.
2784 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2785 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2786 treatment of undefined weak symbols. For those that do not make
2787 undefined weak symbols dynamic, both functions may return false. */
2788
2789 bfd_boolean
2790 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2791 struct bfd_link_info *info,
2792 bfd_boolean local_protected)
2793 {
2794 const struct elf_backend_data *bed;
2795 struct elf_link_hash_table *hash_table;
2796
2797 /* If it's a local sym, of course we resolve locally. */
2798 if (h == NULL)
2799 return TRUE;
2800
2801 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2802 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2803 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2804 return TRUE;
2805
2806 /* Common symbols that become definitions don't get the DEF_REGULAR
2807 flag set, so test it first, and don't bail out. */
2808 if (ELF_COMMON_DEF_P (h))
2809 /* Do nothing. */;
2810 /* If we don't have a definition in a regular file, then we can't
2811 resolve locally. The sym is either undefined or dynamic. */
2812 else if (!h->def_regular)
2813 return FALSE;
2814
2815 /* Forced local symbols resolve locally. */
2816 if (h->forced_local)
2817 return TRUE;
2818
2819 /* As do non-dynamic symbols. */
2820 if (h->dynindx == -1)
2821 return TRUE;
2822
2823 /* At this point, we know the symbol is defined and dynamic. In an
2824 executable it must resolve locally, likewise when building symbolic
2825 shared libraries. */
2826 if (info->executable || SYMBOLIC_BIND (info, h))
2827 return TRUE;
2828
2829 /* Now deal with defined dynamic symbols in shared libraries. Ones
2830 with default visibility might not resolve locally. */
2831 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2832 return FALSE;
2833
2834 hash_table = elf_hash_table (info);
2835 if (!is_elf_hash_table (hash_table))
2836 return TRUE;
2837
2838 bed = get_elf_backend_data (hash_table->dynobj);
2839
2840 /* If extern_protected_data is false, STV_PROTECTED non-function
2841 symbols are local. */
2842 if (!bed->extern_protected_data && !bed->is_function_type (h->type))
2843 return TRUE;
2844
2845 /* Function pointer equality tests may require that STV_PROTECTED
2846 symbols be treated as dynamic symbols. If the address of a
2847 function not defined in an executable is set to that function's
2848 plt entry in the executable, then the address of the function in
2849 a shared library must also be the plt entry in the executable. */
2850 return local_protected;
2851 }
2852
2853 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2854 aligned. Returns the first TLS output section. */
2855
2856 struct bfd_section *
2857 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2858 {
2859 struct bfd_section *sec, *tls;
2860 unsigned int align = 0;
2861
2862 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2863 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2864 break;
2865 tls = sec;
2866
2867 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2868 if (sec->alignment_power > align)
2869 align = sec->alignment_power;
2870
2871 elf_hash_table (info)->tls_sec = tls;
2872
2873 /* Ensure the alignment of the first section is the largest alignment,
2874 so that the tls segment starts aligned. */
2875 if (tls != NULL)
2876 tls->alignment_power = align;
2877
2878 return tls;
2879 }
2880
2881 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2882 static bfd_boolean
2883 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2884 Elf_Internal_Sym *sym)
2885 {
2886 const struct elf_backend_data *bed;
2887
2888 /* Local symbols do not count, but target specific ones might. */
2889 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2890 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2891 return FALSE;
2892
2893 bed = get_elf_backend_data (abfd);
2894 /* Function symbols do not count. */
2895 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2896 return FALSE;
2897
2898 /* If the section is undefined, then so is the symbol. */
2899 if (sym->st_shndx == SHN_UNDEF)
2900 return FALSE;
2901
2902 /* If the symbol is defined in the common section, then
2903 it is a common definition and so does not count. */
2904 if (bed->common_definition (sym))
2905 return FALSE;
2906
2907 /* If the symbol is in a target specific section then we
2908 must rely upon the backend to tell us what it is. */
2909 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2910 /* FIXME - this function is not coded yet:
2911
2912 return _bfd_is_global_symbol_definition (abfd, sym);
2913
2914 Instead for now assume that the definition is not global,
2915 Even if this is wrong, at least the linker will behave
2916 in the same way that it used to do. */
2917 return FALSE;
2918
2919 return TRUE;
2920 }
2921
2922 /* Search the symbol table of the archive element of the archive ABFD
2923 whose archive map contains a mention of SYMDEF, and determine if
2924 the symbol is defined in this element. */
2925 static bfd_boolean
2926 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2927 {
2928 Elf_Internal_Shdr * hdr;
2929 bfd_size_type symcount;
2930 bfd_size_type extsymcount;
2931 bfd_size_type extsymoff;
2932 Elf_Internal_Sym *isymbuf;
2933 Elf_Internal_Sym *isym;
2934 Elf_Internal_Sym *isymend;
2935 bfd_boolean result;
2936
2937 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2938 if (abfd == NULL)
2939 return FALSE;
2940
2941 if (! bfd_check_format (abfd, bfd_object))
2942 return FALSE;
2943
2944 /* Select the appropriate symbol table. */
2945 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2946 hdr = &elf_tdata (abfd)->symtab_hdr;
2947 else
2948 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2949
2950 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2951
2952 /* The sh_info field of the symtab header tells us where the
2953 external symbols start. We don't care about the local symbols. */
2954 if (elf_bad_symtab (abfd))
2955 {
2956 extsymcount = symcount;
2957 extsymoff = 0;
2958 }
2959 else
2960 {
2961 extsymcount = symcount - hdr->sh_info;
2962 extsymoff = hdr->sh_info;
2963 }
2964
2965 if (extsymcount == 0)
2966 return FALSE;
2967
2968 /* Read in the symbol table. */
2969 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2970 NULL, NULL, NULL);
2971 if (isymbuf == NULL)
2972 return FALSE;
2973
2974 /* Scan the symbol table looking for SYMDEF. */
2975 result = FALSE;
2976 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2977 {
2978 const char *name;
2979
2980 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2981 isym->st_name);
2982 if (name == NULL)
2983 break;
2984
2985 if (strcmp (name, symdef->name) == 0)
2986 {
2987 result = is_global_data_symbol_definition (abfd, isym);
2988 break;
2989 }
2990 }
2991
2992 free (isymbuf);
2993
2994 return result;
2995 }
2996 \f
2997 /* Add an entry to the .dynamic table. */
2998
2999 bfd_boolean
3000 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3001 bfd_vma tag,
3002 bfd_vma val)
3003 {
3004 struct elf_link_hash_table *hash_table;
3005 const struct elf_backend_data *bed;
3006 asection *s;
3007 bfd_size_type newsize;
3008 bfd_byte *newcontents;
3009 Elf_Internal_Dyn dyn;
3010
3011 hash_table = elf_hash_table (info);
3012 if (! is_elf_hash_table (hash_table))
3013 return FALSE;
3014
3015 bed = get_elf_backend_data (hash_table->dynobj);
3016 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3017 BFD_ASSERT (s != NULL);
3018
3019 newsize = s->size + bed->s->sizeof_dyn;
3020 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3021 if (newcontents == NULL)
3022 return FALSE;
3023
3024 dyn.d_tag = tag;
3025 dyn.d_un.d_val = val;
3026 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3027
3028 s->size = newsize;
3029 s->contents = newcontents;
3030
3031 return TRUE;
3032 }
3033
3034 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3035 otherwise just check whether one already exists. Returns -1 on error,
3036 1 if a DT_NEEDED tag already exists, and 0 on success. */
3037
3038 static int
3039 elf_add_dt_needed_tag (bfd *abfd,
3040 struct bfd_link_info *info,
3041 const char *soname,
3042 bfd_boolean do_it)
3043 {
3044 struct elf_link_hash_table *hash_table;
3045 bfd_size_type strindex;
3046
3047 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3048 return -1;
3049
3050 hash_table = elf_hash_table (info);
3051 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3052 if (strindex == (bfd_size_type) -1)
3053 return -1;
3054
3055 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3056 {
3057 asection *sdyn;
3058 const struct elf_backend_data *bed;
3059 bfd_byte *extdyn;
3060
3061 bed = get_elf_backend_data (hash_table->dynobj);
3062 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3063 if (sdyn != NULL)
3064 for (extdyn = sdyn->contents;
3065 extdyn < sdyn->contents + sdyn->size;
3066 extdyn += bed->s->sizeof_dyn)
3067 {
3068 Elf_Internal_Dyn dyn;
3069
3070 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3071 if (dyn.d_tag == DT_NEEDED
3072 && dyn.d_un.d_val == strindex)
3073 {
3074 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3075 return 1;
3076 }
3077 }
3078 }
3079
3080 if (do_it)
3081 {
3082 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3083 return -1;
3084
3085 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3086 return -1;
3087 }
3088 else
3089 /* We were just checking for existence of the tag. */
3090 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3091
3092 return 0;
3093 }
3094
3095 static bfd_boolean
3096 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3097 {
3098 for (; needed != NULL; needed = needed->next)
3099 if ((elf_dyn_lib_class (needed->by) & DYN_AS_NEEDED) == 0
3100 && strcmp (soname, needed->name) == 0)
3101 return TRUE;
3102
3103 return FALSE;
3104 }
3105
3106 /* Sort symbol by value, section, and size. */
3107 static int
3108 elf_sort_symbol (const void *arg1, const void *arg2)
3109 {
3110 const struct elf_link_hash_entry *h1;
3111 const struct elf_link_hash_entry *h2;
3112 bfd_signed_vma vdiff;
3113
3114 h1 = *(const struct elf_link_hash_entry **) arg1;
3115 h2 = *(const struct elf_link_hash_entry **) arg2;
3116 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3117 if (vdiff != 0)
3118 return vdiff > 0 ? 1 : -1;
3119 else
3120 {
3121 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3122 if (sdiff != 0)
3123 return sdiff > 0 ? 1 : -1;
3124 }
3125 vdiff = h1->size - h2->size;
3126 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3127 }
3128
3129 /* This function is used to adjust offsets into .dynstr for
3130 dynamic symbols. This is called via elf_link_hash_traverse. */
3131
3132 static bfd_boolean
3133 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3134 {
3135 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3136
3137 if (h->dynindx != -1)
3138 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3139 return TRUE;
3140 }
3141
3142 /* Assign string offsets in .dynstr, update all structures referencing
3143 them. */
3144
3145 static bfd_boolean
3146 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3147 {
3148 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3149 struct elf_link_local_dynamic_entry *entry;
3150 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3151 bfd *dynobj = hash_table->dynobj;
3152 asection *sdyn;
3153 bfd_size_type size;
3154 const struct elf_backend_data *bed;
3155 bfd_byte *extdyn;
3156
3157 _bfd_elf_strtab_finalize (dynstr);
3158 size = _bfd_elf_strtab_size (dynstr);
3159
3160 bed = get_elf_backend_data (dynobj);
3161 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3162 BFD_ASSERT (sdyn != NULL);
3163
3164 /* Update all .dynamic entries referencing .dynstr strings. */
3165 for (extdyn = sdyn->contents;
3166 extdyn < sdyn->contents + sdyn->size;
3167 extdyn += bed->s->sizeof_dyn)
3168 {
3169 Elf_Internal_Dyn dyn;
3170
3171 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3172 switch (dyn.d_tag)
3173 {
3174 case DT_STRSZ:
3175 dyn.d_un.d_val = size;
3176 break;
3177 case DT_NEEDED:
3178 case DT_SONAME:
3179 case DT_RPATH:
3180 case DT_RUNPATH:
3181 case DT_FILTER:
3182 case DT_AUXILIARY:
3183 case DT_AUDIT:
3184 case DT_DEPAUDIT:
3185 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3186 break;
3187 default:
3188 continue;
3189 }
3190 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3191 }
3192
3193 /* Now update local dynamic symbols. */
3194 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3195 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3196 entry->isym.st_name);
3197
3198 /* And the rest of dynamic symbols. */
3199 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3200
3201 /* Adjust version definitions. */
3202 if (elf_tdata (output_bfd)->cverdefs)
3203 {
3204 asection *s;
3205 bfd_byte *p;
3206 bfd_size_type i;
3207 Elf_Internal_Verdef def;
3208 Elf_Internal_Verdaux defaux;
3209
3210 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3211 p = s->contents;
3212 do
3213 {
3214 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3215 &def);
3216 p += sizeof (Elf_External_Verdef);
3217 if (def.vd_aux != sizeof (Elf_External_Verdef))
3218 continue;
3219 for (i = 0; i < def.vd_cnt; ++i)
3220 {
3221 _bfd_elf_swap_verdaux_in (output_bfd,
3222 (Elf_External_Verdaux *) p, &defaux);
3223 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3224 defaux.vda_name);
3225 _bfd_elf_swap_verdaux_out (output_bfd,
3226 &defaux, (Elf_External_Verdaux *) p);
3227 p += sizeof (Elf_External_Verdaux);
3228 }
3229 }
3230 while (def.vd_next);
3231 }
3232
3233 /* Adjust version references. */
3234 if (elf_tdata (output_bfd)->verref)
3235 {
3236 asection *s;
3237 bfd_byte *p;
3238 bfd_size_type i;
3239 Elf_Internal_Verneed need;
3240 Elf_Internal_Vernaux needaux;
3241
3242 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3243 p = s->contents;
3244 do
3245 {
3246 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3247 &need);
3248 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3249 _bfd_elf_swap_verneed_out (output_bfd, &need,
3250 (Elf_External_Verneed *) p);
3251 p += sizeof (Elf_External_Verneed);
3252 for (i = 0; i < need.vn_cnt; ++i)
3253 {
3254 _bfd_elf_swap_vernaux_in (output_bfd,
3255 (Elf_External_Vernaux *) p, &needaux);
3256 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3257 needaux.vna_name);
3258 _bfd_elf_swap_vernaux_out (output_bfd,
3259 &needaux,
3260 (Elf_External_Vernaux *) p);
3261 p += sizeof (Elf_External_Vernaux);
3262 }
3263 }
3264 while (need.vn_next);
3265 }
3266
3267 return TRUE;
3268 }
3269 \f
3270 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3271 The default is to only match when the INPUT and OUTPUT are exactly
3272 the same target. */
3273
3274 bfd_boolean
3275 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3276 const bfd_target *output)
3277 {
3278 return input == output;
3279 }
3280
3281 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3282 This version is used when different targets for the same architecture
3283 are virtually identical. */
3284
3285 bfd_boolean
3286 _bfd_elf_relocs_compatible (const bfd_target *input,
3287 const bfd_target *output)
3288 {
3289 const struct elf_backend_data *obed, *ibed;
3290
3291 if (input == output)
3292 return TRUE;
3293
3294 ibed = xvec_get_elf_backend_data (input);
3295 obed = xvec_get_elf_backend_data (output);
3296
3297 if (ibed->arch != obed->arch)
3298 return FALSE;
3299
3300 /* If both backends are using this function, deem them compatible. */
3301 return ibed->relocs_compatible == obed->relocs_compatible;
3302 }
3303
3304 /* Make a special call to the linker "notice" function to tell it that
3305 we are about to handle an as-needed lib, or have finished
3306 processing the lib. */
3307
3308 bfd_boolean
3309 _bfd_elf_notice_as_needed (bfd *ibfd,
3310 struct bfd_link_info *info,
3311 enum notice_asneeded_action act)
3312 {
3313 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3314 }
3315
3316 /* Add symbols from an ELF object file to the linker hash table. */
3317
3318 static bfd_boolean
3319 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3320 {
3321 Elf_Internal_Ehdr *ehdr;
3322 Elf_Internal_Shdr *hdr;
3323 bfd_size_type symcount;
3324 bfd_size_type extsymcount;
3325 bfd_size_type extsymoff;
3326 struct elf_link_hash_entry **sym_hash;
3327 bfd_boolean dynamic;
3328 Elf_External_Versym *extversym = NULL;
3329 Elf_External_Versym *ever;
3330 struct elf_link_hash_entry *weaks;
3331 struct elf_link_hash_entry **nondeflt_vers = NULL;
3332 bfd_size_type nondeflt_vers_cnt = 0;
3333 Elf_Internal_Sym *isymbuf = NULL;
3334 Elf_Internal_Sym *isym;
3335 Elf_Internal_Sym *isymend;
3336 const struct elf_backend_data *bed;
3337 bfd_boolean add_needed;
3338 struct elf_link_hash_table *htab;
3339 bfd_size_type amt;
3340 void *alloc_mark = NULL;
3341 struct bfd_hash_entry **old_table = NULL;
3342 unsigned int old_size = 0;
3343 unsigned int old_count = 0;
3344 void *old_tab = NULL;
3345 void *old_ent;
3346 struct bfd_link_hash_entry *old_undefs = NULL;
3347 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3348 long old_dynsymcount = 0;
3349 bfd_size_type old_dynstr_size = 0;
3350 size_t tabsize = 0;
3351 asection *s;
3352 bfd_boolean just_syms;
3353
3354 htab = elf_hash_table (info);
3355 bed = get_elf_backend_data (abfd);
3356
3357 if ((abfd->flags & DYNAMIC) == 0)
3358 dynamic = FALSE;
3359 else
3360 {
3361 dynamic = TRUE;
3362
3363 /* You can't use -r against a dynamic object. Also, there's no
3364 hope of using a dynamic object which does not exactly match
3365 the format of the output file. */
3366 if (info->relocatable
3367 || !is_elf_hash_table (htab)
3368 || info->output_bfd->xvec != abfd->xvec)
3369 {
3370 if (info->relocatable)
3371 bfd_set_error (bfd_error_invalid_operation);
3372 else
3373 bfd_set_error (bfd_error_wrong_format);
3374 goto error_return;
3375 }
3376 }
3377
3378 ehdr = elf_elfheader (abfd);
3379 if (info->warn_alternate_em
3380 && bed->elf_machine_code != ehdr->e_machine
3381 && ((bed->elf_machine_alt1 != 0
3382 && ehdr->e_machine == bed->elf_machine_alt1)
3383 || (bed->elf_machine_alt2 != 0
3384 && ehdr->e_machine == bed->elf_machine_alt2)))
3385 info->callbacks->einfo
3386 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3387 ehdr->e_machine, abfd, bed->elf_machine_code);
3388
3389 /* As a GNU extension, any input sections which are named
3390 .gnu.warning.SYMBOL are treated as warning symbols for the given
3391 symbol. This differs from .gnu.warning sections, which generate
3392 warnings when they are included in an output file. */
3393 /* PR 12761: Also generate this warning when building shared libraries. */
3394 for (s = abfd->sections; s != NULL; s = s->next)
3395 {
3396 const char *name;
3397
3398 name = bfd_get_section_name (abfd, s);
3399 if (CONST_STRNEQ (name, ".gnu.warning."))
3400 {
3401 char *msg;
3402 bfd_size_type sz;
3403
3404 name += sizeof ".gnu.warning." - 1;
3405
3406 /* If this is a shared object, then look up the symbol
3407 in the hash table. If it is there, and it is already
3408 been defined, then we will not be using the entry
3409 from this shared object, so we don't need to warn.
3410 FIXME: If we see the definition in a regular object
3411 later on, we will warn, but we shouldn't. The only
3412 fix is to keep track of what warnings we are supposed
3413 to emit, and then handle them all at the end of the
3414 link. */
3415 if (dynamic)
3416 {
3417 struct elf_link_hash_entry *h;
3418
3419 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3420
3421 /* FIXME: What about bfd_link_hash_common? */
3422 if (h != NULL
3423 && (h->root.type == bfd_link_hash_defined
3424 || h->root.type == bfd_link_hash_defweak))
3425 continue;
3426 }
3427
3428 sz = s->size;
3429 msg = (char *) bfd_alloc (abfd, sz + 1);
3430 if (msg == NULL)
3431 goto error_return;
3432
3433 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3434 goto error_return;
3435
3436 msg[sz] = '\0';
3437
3438 if (! (_bfd_generic_link_add_one_symbol
3439 (info, abfd, name, BSF_WARNING, s, 0, msg,
3440 FALSE, bed->collect, NULL)))
3441 goto error_return;
3442
3443 if (!info->relocatable && info->executable)
3444 {
3445 /* Clobber the section size so that the warning does
3446 not get copied into the output file. */
3447 s->size = 0;
3448
3449 /* Also set SEC_EXCLUDE, so that symbols defined in
3450 the warning section don't get copied to the output. */
3451 s->flags |= SEC_EXCLUDE;
3452 }
3453 }
3454 }
3455
3456 just_syms = ((s = abfd->sections) != NULL
3457 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3458
3459 add_needed = TRUE;
3460 if (! dynamic)
3461 {
3462 /* If we are creating a shared library, create all the dynamic
3463 sections immediately. We need to attach them to something,
3464 so we attach them to this BFD, provided it is the right
3465 format and is not from ld --just-symbols. FIXME: If there
3466 are no input BFD's of the same format as the output, we can't
3467 make a shared library. */
3468 if (!just_syms
3469 && info->shared
3470 && is_elf_hash_table (htab)
3471 && info->output_bfd->xvec == abfd->xvec
3472 && !htab->dynamic_sections_created)
3473 {
3474 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3475 goto error_return;
3476 }
3477 }
3478 else if (!is_elf_hash_table (htab))
3479 goto error_return;
3480 else
3481 {
3482 const char *soname = NULL;
3483 char *audit = NULL;
3484 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3485 int ret;
3486
3487 /* ld --just-symbols and dynamic objects don't mix very well.
3488 ld shouldn't allow it. */
3489 if (just_syms)
3490 abort ();
3491
3492 /* If this dynamic lib was specified on the command line with
3493 --as-needed in effect, then we don't want to add a DT_NEEDED
3494 tag unless the lib is actually used. Similary for libs brought
3495 in by another lib's DT_NEEDED. When --no-add-needed is used
3496 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3497 any dynamic library in DT_NEEDED tags in the dynamic lib at
3498 all. */
3499 add_needed = (elf_dyn_lib_class (abfd)
3500 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3501 | DYN_NO_NEEDED)) == 0;
3502
3503 s = bfd_get_section_by_name (abfd, ".dynamic");
3504 if (s != NULL)
3505 {
3506 bfd_byte *dynbuf;
3507 bfd_byte *extdyn;
3508 unsigned int elfsec;
3509 unsigned long shlink;
3510
3511 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3512 {
3513 error_free_dyn:
3514 free (dynbuf);
3515 goto error_return;
3516 }
3517
3518 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3519 if (elfsec == SHN_BAD)
3520 goto error_free_dyn;
3521 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3522
3523 for (extdyn = dynbuf;
3524 extdyn < dynbuf + s->size;
3525 extdyn += bed->s->sizeof_dyn)
3526 {
3527 Elf_Internal_Dyn dyn;
3528
3529 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3530 if (dyn.d_tag == DT_SONAME)
3531 {
3532 unsigned int tagv = dyn.d_un.d_val;
3533 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3534 if (soname == NULL)
3535 goto error_free_dyn;
3536 }
3537 if (dyn.d_tag == DT_NEEDED)
3538 {
3539 struct bfd_link_needed_list *n, **pn;
3540 char *fnm, *anm;
3541 unsigned int tagv = dyn.d_un.d_val;
3542
3543 amt = sizeof (struct bfd_link_needed_list);
3544 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3545 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3546 if (n == NULL || fnm == NULL)
3547 goto error_free_dyn;
3548 amt = strlen (fnm) + 1;
3549 anm = (char *) bfd_alloc (abfd, amt);
3550 if (anm == NULL)
3551 goto error_free_dyn;
3552 memcpy (anm, fnm, amt);
3553 n->name = anm;
3554 n->by = abfd;
3555 n->next = NULL;
3556 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3557 ;
3558 *pn = n;
3559 }
3560 if (dyn.d_tag == DT_RUNPATH)
3561 {
3562 struct bfd_link_needed_list *n, **pn;
3563 char *fnm, *anm;
3564 unsigned int tagv = dyn.d_un.d_val;
3565
3566 amt = sizeof (struct bfd_link_needed_list);
3567 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3568 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3569 if (n == NULL || fnm == NULL)
3570 goto error_free_dyn;
3571 amt = strlen (fnm) + 1;
3572 anm = (char *) bfd_alloc (abfd, amt);
3573 if (anm == NULL)
3574 goto error_free_dyn;
3575 memcpy (anm, fnm, amt);
3576 n->name = anm;
3577 n->by = abfd;
3578 n->next = NULL;
3579 for (pn = & runpath;
3580 *pn != NULL;
3581 pn = &(*pn)->next)
3582 ;
3583 *pn = n;
3584 }
3585 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3586 if (!runpath && dyn.d_tag == DT_RPATH)
3587 {
3588 struct bfd_link_needed_list *n, **pn;
3589 char *fnm, *anm;
3590 unsigned int tagv = dyn.d_un.d_val;
3591
3592 amt = sizeof (struct bfd_link_needed_list);
3593 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3594 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3595 if (n == NULL || fnm == NULL)
3596 goto error_free_dyn;
3597 amt = strlen (fnm) + 1;
3598 anm = (char *) bfd_alloc (abfd, amt);
3599 if (anm == NULL)
3600 goto error_free_dyn;
3601 memcpy (anm, fnm, amt);
3602 n->name = anm;
3603 n->by = abfd;
3604 n->next = NULL;
3605 for (pn = & rpath;
3606 *pn != NULL;
3607 pn = &(*pn)->next)
3608 ;
3609 *pn = n;
3610 }
3611 if (dyn.d_tag == DT_AUDIT)
3612 {
3613 unsigned int tagv = dyn.d_un.d_val;
3614 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3615 }
3616 }
3617
3618 free (dynbuf);
3619 }
3620
3621 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3622 frees all more recently bfd_alloc'd blocks as well. */
3623 if (runpath)
3624 rpath = runpath;
3625
3626 if (rpath)
3627 {
3628 struct bfd_link_needed_list **pn;
3629 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3630 ;
3631 *pn = rpath;
3632 }
3633
3634 /* We do not want to include any of the sections in a dynamic
3635 object in the output file. We hack by simply clobbering the
3636 list of sections in the BFD. This could be handled more
3637 cleanly by, say, a new section flag; the existing
3638 SEC_NEVER_LOAD flag is not the one we want, because that one
3639 still implies that the section takes up space in the output
3640 file. */
3641 bfd_section_list_clear (abfd);
3642
3643 /* Find the name to use in a DT_NEEDED entry that refers to this
3644 object. If the object has a DT_SONAME entry, we use it.
3645 Otherwise, if the generic linker stuck something in
3646 elf_dt_name, we use that. Otherwise, we just use the file
3647 name. */
3648 if (soname == NULL || *soname == '\0')
3649 {
3650 soname = elf_dt_name (abfd);
3651 if (soname == NULL || *soname == '\0')
3652 soname = bfd_get_filename (abfd);
3653 }
3654
3655 /* Save the SONAME because sometimes the linker emulation code
3656 will need to know it. */
3657 elf_dt_name (abfd) = soname;
3658
3659 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3660 if (ret < 0)
3661 goto error_return;
3662
3663 /* If we have already included this dynamic object in the
3664 link, just ignore it. There is no reason to include a
3665 particular dynamic object more than once. */
3666 if (ret > 0)
3667 return TRUE;
3668
3669 /* Save the DT_AUDIT entry for the linker emulation code. */
3670 elf_dt_audit (abfd) = audit;
3671 }
3672
3673 /* If this is a dynamic object, we always link against the .dynsym
3674 symbol table, not the .symtab symbol table. The dynamic linker
3675 will only see the .dynsym symbol table, so there is no reason to
3676 look at .symtab for a dynamic object. */
3677
3678 if (! dynamic || elf_dynsymtab (abfd) == 0)
3679 hdr = &elf_tdata (abfd)->symtab_hdr;
3680 else
3681 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3682
3683 symcount = hdr->sh_size / bed->s->sizeof_sym;
3684
3685 /* The sh_info field of the symtab header tells us where the
3686 external symbols start. We don't care about the local symbols at
3687 this point. */
3688 if (elf_bad_symtab (abfd))
3689 {
3690 extsymcount = symcount;
3691 extsymoff = 0;
3692 }
3693 else
3694 {
3695 extsymcount = symcount - hdr->sh_info;
3696 extsymoff = hdr->sh_info;
3697 }
3698
3699 sym_hash = elf_sym_hashes (abfd);
3700 if (extsymcount != 0)
3701 {
3702 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3703 NULL, NULL, NULL);
3704 if (isymbuf == NULL)
3705 goto error_return;
3706
3707 if (sym_hash == NULL)
3708 {
3709 /* We store a pointer to the hash table entry for each
3710 external symbol. */
3711 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3712 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
3713 if (sym_hash == NULL)
3714 goto error_free_sym;
3715 elf_sym_hashes (abfd) = sym_hash;
3716 }
3717 }
3718
3719 if (dynamic)
3720 {
3721 /* Read in any version definitions. */
3722 if (!_bfd_elf_slurp_version_tables (abfd,
3723 info->default_imported_symver))
3724 goto error_free_sym;
3725
3726 /* Read in the symbol versions, but don't bother to convert them
3727 to internal format. */
3728 if (elf_dynversym (abfd) != 0)
3729 {
3730 Elf_Internal_Shdr *versymhdr;
3731
3732 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3733 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3734 if (extversym == NULL)
3735 goto error_free_sym;
3736 amt = versymhdr->sh_size;
3737 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3738 || bfd_bread (extversym, amt, abfd) != amt)
3739 goto error_free_vers;
3740 }
3741 }
3742
3743 /* If we are loading an as-needed shared lib, save the symbol table
3744 state before we start adding symbols. If the lib turns out
3745 to be unneeded, restore the state. */
3746 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3747 {
3748 unsigned int i;
3749 size_t entsize;
3750
3751 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3752 {
3753 struct bfd_hash_entry *p;
3754 struct elf_link_hash_entry *h;
3755
3756 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3757 {
3758 h = (struct elf_link_hash_entry *) p;
3759 entsize += htab->root.table.entsize;
3760 if (h->root.type == bfd_link_hash_warning)
3761 entsize += htab->root.table.entsize;
3762 }
3763 }
3764
3765 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3766 old_tab = bfd_malloc (tabsize + entsize);
3767 if (old_tab == NULL)
3768 goto error_free_vers;
3769
3770 /* Remember the current objalloc pointer, so that all mem for
3771 symbols added can later be reclaimed. */
3772 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3773 if (alloc_mark == NULL)
3774 goto error_free_vers;
3775
3776 /* Make a special call to the linker "notice" function to
3777 tell it that we are about to handle an as-needed lib. */
3778 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
3779 goto error_free_vers;
3780
3781 /* Clone the symbol table. Remember some pointers into the
3782 symbol table, and dynamic symbol count. */
3783 old_ent = (char *) old_tab + tabsize;
3784 memcpy (old_tab, htab->root.table.table, tabsize);
3785 old_undefs = htab->root.undefs;
3786 old_undefs_tail = htab->root.undefs_tail;
3787 old_table = htab->root.table.table;
3788 old_size = htab->root.table.size;
3789 old_count = htab->root.table.count;
3790 old_dynsymcount = htab->dynsymcount;
3791 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3792
3793 for (i = 0; i < htab->root.table.size; i++)
3794 {
3795 struct bfd_hash_entry *p;
3796 struct elf_link_hash_entry *h;
3797
3798 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3799 {
3800 memcpy (old_ent, p, htab->root.table.entsize);
3801 old_ent = (char *) old_ent + htab->root.table.entsize;
3802 h = (struct elf_link_hash_entry *) p;
3803 if (h->root.type == bfd_link_hash_warning)
3804 {
3805 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3806 old_ent = (char *) old_ent + htab->root.table.entsize;
3807 }
3808 }
3809 }
3810 }
3811
3812 weaks = NULL;
3813 ever = extversym != NULL ? extversym + extsymoff : NULL;
3814 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3815 isym < isymend;
3816 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3817 {
3818 int bind;
3819 bfd_vma value;
3820 asection *sec, *new_sec;
3821 flagword flags;
3822 const char *name;
3823 struct elf_link_hash_entry *h;
3824 struct elf_link_hash_entry *hi;
3825 bfd_boolean definition;
3826 bfd_boolean size_change_ok;
3827 bfd_boolean type_change_ok;
3828 bfd_boolean new_weakdef;
3829 bfd_boolean new_weak;
3830 bfd_boolean old_weak;
3831 bfd_boolean override;
3832 bfd_boolean common;
3833 unsigned int old_alignment;
3834 bfd *old_bfd;
3835
3836 override = FALSE;
3837
3838 flags = BSF_NO_FLAGS;
3839 sec = NULL;
3840 value = isym->st_value;
3841 common = bed->common_definition (isym);
3842
3843 bind = ELF_ST_BIND (isym->st_info);
3844 switch (bind)
3845 {
3846 case STB_LOCAL:
3847 /* This should be impossible, since ELF requires that all
3848 global symbols follow all local symbols, and that sh_info
3849 point to the first global symbol. Unfortunately, Irix 5
3850 screws this up. */
3851 continue;
3852
3853 case STB_GLOBAL:
3854 if (isym->st_shndx != SHN_UNDEF && !common)
3855 flags = BSF_GLOBAL;
3856 break;
3857
3858 case STB_WEAK:
3859 flags = BSF_WEAK;
3860 break;
3861
3862 case STB_GNU_UNIQUE:
3863 flags = BSF_GNU_UNIQUE;
3864 break;
3865
3866 default:
3867 /* Leave it up to the processor backend. */
3868 break;
3869 }
3870
3871 if (isym->st_shndx == SHN_UNDEF)
3872 sec = bfd_und_section_ptr;
3873 else if (isym->st_shndx == SHN_ABS)
3874 sec = bfd_abs_section_ptr;
3875 else if (isym->st_shndx == SHN_COMMON)
3876 {
3877 sec = bfd_com_section_ptr;
3878 /* What ELF calls the size we call the value. What ELF
3879 calls the value we call the alignment. */
3880 value = isym->st_size;
3881 }
3882 else
3883 {
3884 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3885 if (sec == NULL)
3886 sec = bfd_abs_section_ptr;
3887 else if (discarded_section (sec))
3888 {
3889 /* Symbols from discarded section are undefined. We keep
3890 its visibility. */
3891 sec = bfd_und_section_ptr;
3892 isym->st_shndx = SHN_UNDEF;
3893 }
3894 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3895 value -= sec->vma;
3896 }
3897
3898 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3899 isym->st_name);
3900 if (name == NULL)
3901 goto error_free_vers;
3902
3903 if (isym->st_shndx == SHN_COMMON
3904 && (abfd->flags & BFD_PLUGIN) != 0)
3905 {
3906 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3907
3908 if (xc == NULL)
3909 {
3910 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3911 | SEC_EXCLUDE);
3912 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3913 if (xc == NULL)
3914 goto error_free_vers;
3915 }
3916 sec = xc;
3917 }
3918 else if (isym->st_shndx == SHN_COMMON
3919 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3920 && !info->relocatable)
3921 {
3922 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3923
3924 if (tcomm == NULL)
3925 {
3926 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3927 | SEC_LINKER_CREATED);
3928 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3929 if (tcomm == NULL)
3930 goto error_free_vers;
3931 }
3932 sec = tcomm;
3933 }
3934 else if (bed->elf_add_symbol_hook)
3935 {
3936 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3937 &sec, &value))
3938 goto error_free_vers;
3939
3940 /* The hook function sets the name to NULL if this symbol
3941 should be skipped for some reason. */
3942 if (name == NULL)
3943 continue;
3944 }
3945
3946 /* Sanity check that all possibilities were handled. */
3947 if (sec == NULL)
3948 {
3949 bfd_set_error (bfd_error_bad_value);
3950 goto error_free_vers;
3951 }
3952
3953 /* Silently discard TLS symbols from --just-syms. There's
3954 no way to combine a static TLS block with a new TLS block
3955 for this executable. */
3956 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
3957 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3958 continue;
3959
3960 if (bfd_is_und_section (sec)
3961 || bfd_is_com_section (sec))
3962 definition = FALSE;
3963 else
3964 definition = TRUE;
3965
3966 size_change_ok = FALSE;
3967 type_change_ok = bed->type_change_ok;
3968 old_weak = FALSE;
3969 old_alignment = 0;
3970 old_bfd = NULL;
3971 new_sec = sec;
3972
3973 if (is_elf_hash_table (htab))
3974 {
3975 Elf_Internal_Versym iver;
3976 unsigned int vernum = 0;
3977 bfd_boolean skip;
3978
3979 if (ever == NULL)
3980 {
3981 if (info->default_imported_symver)
3982 /* Use the default symbol version created earlier. */
3983 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3984 else
3985 iver.vs_vers = 0;
3986 }
3987 else
3988 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3989
3990 vernum = iver.vs_vers & VERSYM_VERSION;
3991
3992 /* If this is a hidden symbol, or if it is not version
3993 1, we append the version name to the symbol name.
3994 However, we do not modify a non-hidden absolute symbol
3995 if it is not a function, because it might be the version
3996 symbol itself. FIXME: What if it isn't? */
3997 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3998 || (vernum > 1
3999 && (!bfd_is_abs_section (sec)
4000 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4001 {
4002 const char *verstr;
4003 size_t namelen, verlen, newlen;
4004 char *newname, *p;
4005
4006 if (isym->st_shndx != SHN_UNDEF)
4007 {
4008 if (vernum > elf_tdata (abfd)->cverdefs)
4009 verstr = NULL;
4010 else if (vernum > 1)
4011 verstr =
4012 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4013 else
4014 verstr = "";
4015
4016 if (verstr == NULL)
4017 {
4018 (*_bfd_error_handler)
4019 (_("%B: %s: invalid version %u (max %d)"),
4020 abfd, name, vernum,
4021 elf_tdata (abfd)->cverdefs);
4022 bfd_set_error (bfd_error_bad_value);
4023 goto error_free_vers;
4024 }
4025 }
4026 else
4027 {
4028 /* We cannot simply test for the number of
4029 entries in the VERNEED section since the
4030 numbers for the needed versions do not start
4031 at 0. */
4032 Elf_Internal_Verneed *t;
4033
4034 verstr = NULL;
4035 for (t = elf_tdata (abfd)->verref;
4036 t != NULL;
4037 t = t->vn_nextref)
4038 {
4039 Elf_Internal_Vernaux *a;
4040
4041 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4042 {
4043 if (a->vna_other == vernum)
4044 {
4045 verstr = a->vna_nodename;
4046 break;
4047 }
4048 }
4049 if (a != NULL)
4050 break;
4051 }
4052 if (verstr == NULL)
4053 {
4054 (*_bfd_error_handler)
4055 (_("%B: %s: invalid needed version %d"),
4056 abfd, name, vernum);
4057 bfd_set_error (bfd_error_bad_value);
4058 goto error_free_vers;
4059 }
4060 }
4061
4062 namelen = strlen (name);
4063 verlen = strlen (verstr);
4064 newlen = namelen + verlen + 2;
4065 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4066 && isym->st_shndx != SHN_UNDEF)
4067 ++newlen;
4068
4069 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4070 if (newname == NULL)
4071 goto error_free_vers;
4072 memcpy (newname, name, namelen);
4073 p = newname + namelen;
4074 *p++ = ELF_VER_CHR;
4075 /* If this is a defined non-hidden version symbol,
4076 we add another @ to the name. This indicates the
4077 default version of the symbol. */
4078 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4079 && isym->st_shndx != SHN_UNDEF)
4080 *p++ = ELF_VER_CHR;
4081 memcpy (p, verstr, verlen + 1);
4082
4083 name = newname;
4084 }
4085
4086 /* If this symbol has default visibility and the user has
4087 requested we not re-export it, then mark it as hidden. */
4088 if (definition
4089 && !dynamic
4090 && abfd->no_export
4091 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4092 isym->st_other = (STV_HIDDEN
4093 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4094
4095 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4096 sym_hash, &old_bfd, &old_weak,
4097 &old_alignment, &skip, &override,
4098 &type_change_ok, &size_change_ok))
4099 goto error_free_vers;
4100
4101 if (skip)
4102 continue;
4103
4104 if (override)
4105 definition = FALSE;
4106
4107 h = *sym_hash;
4108 while (h->root.type == bfd_link_hash_indirect
4109 || h->root.type == bfd_link_hash_warning)
4110 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4111
4112 if (elf_tdata (abfd)->verdef != NULL
4113 && vernum > 1
4114 && definition)
4115 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4116 }
4117
4118 if (! (_bfd_generic_link_add_one_symbol
4119 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4120 (struct bfd_link_hash_entry **) sym_hash)))
4121 goto error_free_vers;
4122
4123 h = *sym_hash;
4124 /* We need to make sure that indirect symbol dynamic flags are
4125 updated. */
4126 hi = h;
4127 while (h->root.type == bfd_link_hash_indirect
4128 || h->root.type == bfd_link_hash_warning)
4129 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4130
4131 *sym_hash = h;
4132
4133 new_weak = (flags & BSF_WEAK) != 0;
4134 new_weakdef = FALSE;
4135 if (dynamic
4136 && definition
4137 && new_weak
4138 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4139 && is_elf_hash_table (htab)
4140 && h->u.weakdef == NULL)
4141 {
4142 /* Keep a list of all weak defined non function symbols from
4143 a dynamic object, using the weakdef field. Later in this
4144 function we will set the weakdef field to the correct
4145 value. We only put non-function symbols from dynamic
4146 objects on this list, because that happens to be the only
4147 time we need to know the normal symbol corresponding to a
4148 weak symbol, and the information is time consuming to
4149 figure out. If the weakdef field is not already NULL,
4150 then this symbol was already defined by some previous
4151 dynamic object, and we will be using that previous
4152 definition anyhow. */
4153
4154 h->u.weakdef = weaks;
4155 weaks = h;
4156 new_weakdef = TRUE;
4157 }
4158
4159 /* Set the alignment of a common symbol. */
4160 if ((common || bfd_is_com_section (sec))
4161 && h->root.type == bfd_link_hash_common)
4162 {
4163 unsigned int align;
4164
4165 if (common)
4166 align = bfd_log2 (isym->st_value);
4167 else
4168 {
4169 /* The new symbol is a common symbol in a shared object.
4170 We need to get the alignment from the section. */
4171 align = new_sec->alignment_power;
4172 }
4173 if (align > old_alignment)
4174 h->root.u.c.p->alignment_power = align;
4175 else
4176 h->root.u.c.p->alignment_power = old_alignment;
4177 }
4178
4179 if (is_elf_hash_table (htab))
4180 {
4181 /* Set a flag in the hash table entry indicating the type of
4182 reference or definition we just found. A dynamic symbol
4183 is one which is referenced or defined by both a regular
4184 object and a shared object. */
4185 bfd_boolean dynsym = FALSE;
4186
4187 /* Plugin symbols aren't normal. Don't set def_regular or
4188 ref_regular for them, or make them dynamic. */
4189 if ((abfd->flags & BFD_PLUGIN) != 0)
4190 ;
4191 else if (! dynamic)
4192 {
4193 if (! definition)
4194 {
4195 h->ref_regular = 1;
4196 if (bind != STB_WEAK)
4197 h->ref_regular_nonweak = 1;
4198 }
4199 else
4200 {
4201 h->def_regular = 1;
4202 if (h->def_dynamic)
4203 {
4204 h->def_dynamic = 0;
4205 h->ref_dynamic = 1;
4206 }
4207 }
4208
4209 /* If the indirect symbol has been forced local, don't
4210 make the real symbol dynamic. */
4211 if ((h == hi || !hi->forced_local)
4212 && (! info->executable
4213 || h->def_dynamic
4214 || h->ref_dynamic))
4215 dynsym = TRUE;
4216 }
4217 else
4218 {
4219 if (! definition)
4220 {
4221 h->ref_dynamic = 1;
4222 hi->ref_dynamic = 1;
4223 }
4224 else
4225 {
4226 h->def_dynamic = 1;
4227 hi->def_dynamic = 1;
4228 }
4229
4230 /* If the indirect symbol has been forced local, don't
4231 make the real symbol dynamic. */
4232 if ((h == hi || !hi->forced_local)
4233 && (h->def_regular
4234 || h->ref_regular
4235 || (h->u.weakdef != NULL
4236 && ! new_weakdef
4237 && h->u.weakdef->dynindx != -1)))
4238 dynsym = TRUE;
4239 }
4240
4241 /* Check to see if we need to add an indirect symbol for
4242 the default name. */
4243 if (definition
4244 || (!override && h->root.type == bfd_link_hash_common))
4245 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4246 sec, value, &old_bfd, &dynsym))
4247 goto error_free_vers;
4248
4249 /* Check the alignment when a common symbol is involved. This
4250 can change when a common symbol is overridden by a normal
4251 definition or a common symbol is ignored due to the old
4252 normal definition. We need to make sure the maximum
4253 alignment is maintained. */
4254 if ((old_alignment || common)
4255 && h->root.type != bfd_link_hash_common)
4256 {
4257 unsigned int common_align;
4258 unsigned int normal_align;
4259 unsigned int symbol_align;
4260 bfd *normal_bfd;
4261 bfd *common_bfd;
4262
4263 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4264 || h->root.type == bfd_link_hash_defweak);
4265
4266 symbol_align = ffs (h->root.u.def.value) - 1;
4267 if (h->root.u.def.section->owner != NULL
4268 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4269 {
4270 normal_align = h->root.u.def.section->alignment_power;
4271 if (normal_align > symbol_align)
4272 normal_align = symbol_align;
4273 }
4274 else
4275 normal_align = symbol_align;
4276
4277 if (old_alignment)
4278 {
4279 common_align = old_alignment;
4280 common_bfd = old_bfd;
4281 normal_bfd = abfd;
4282 }
4283 else
4284 {
4285 common_align = bfd_log2 (isym->st_value);
4286 common_bfd = abfd;
4287 normal_bfd = old_bfd;
4288 }
4289
4290 if (normal_align < common_align)
4291 {
4292 /* PR binutils/2735 */
4293 if (normal_bfd == NULL)
4294 (*_bfd_error_handler)
4295 (_("Warning: alignment %u of common symbol `%s' in %B is"
4296 " greater than the alignment (%u) of its section %A"),
4297 common_bfd, h->root.u.def.section,
4298 1 << common_align, name, 1 << normal_align);
4299 else
4300 (*_bfd_error_handler)
4301 (_("Warning: alignment %u of symbol `%s' in %B"
4302 " is smaller than %u in %B"),
4303 normal_bfd, common_bfd,
4304 1 << normal_align, name, 1 << common_align);
4305 }
4306 }
4307
4308 /* Remember the symbol size if it isn't undefined. */
4309 if (isym->st_size != 0
4310 && isym->st_shndx != SHN_UNDEF
4311 && (definition || h->size == 0))
4312 {
4313 if (h->size != 0
4314 && h->size != isym->st_size
4315 && ! size_change_ok)
4316 (*_bfd_error_handler)
4317 (_("Warning: size of symbol `%s' changed"
4318 " from %lu in %B to %lu in %B"),
4319 old_bfd, abfd,
4320 name, (unsigned long) h->size,
4321 (unsigned long) isym->st_size);
4322
4323 h->size = isym->st_size;
4324 }
4325
4326 /* If this is a common symbol, then we always want H->SIZE
4327 to be the size of the common symbol. The code just above
4328 won't fix the size if a common symbol becomes larger. We
4329 don't warn about a size change here, because that is
4330 covered by --warn-common. Allow changes between different
4331 function types. */
4332 if (h->root.type == bfd_link_hash_common)
4333 h->size = h->root.u.c.size;
4334
4335 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4336 && ((definition && !new_weak)
4337 || (old_weak && h->root.type == bfd_link_hash_common)
4338 || h->type == STT_NOTYPE))
4339 {
4340 unsigned int type = ELF_ST_TYPE (isym->st_info);
4341
4342 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4343 symbol. */
4344 if (type == STT_GNU_IFUNC
4345 && (abfd->flags & DYNAMIC) != 0)
4346 type = STT_FUNC;
4347
4348 if (h->type != type)
4349 {
4350 if (h->type != STT_NOTYPE && ! type_change_ok)
4351 (*_bfd_error_handler)
4352 (_("Warning: type of symbol `%s' changed"
4353 " from %d to %d in %B"),
4354 abfd, name, h->type, type);
4355
4356 h->type = type;
4357 }
4358 }
4359
4360 /* Merge st_other field. */
4361 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4362
4363 /* We don't want to make debug symbol dynamic. */
4364 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4365 dynsym = FALSE;
4366
4367 /* Nor should we make plugin symbols dynamic. */
4368 if ((abfd->flags & BFD_PLUGIN) != 0)
4369 dynsym = FALSE;
4370
4371 if (definition)
4372 {
4373 h->target_internal = isym->st_target_internal;
4374 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4375 }
4376
4377 if (definition && !dynamic)
4378 {
4379 char *p = strchr (name, ELF_VER_CHR);
4380 if (p != NULL && p[1] != ELF_VER_CHR)
4381 {
4382 /* Queue non-default versions so that .symver x, x@FOO
4383 aliases can be checked. */
4384 if (!nondeflt_vers)
4385 {
4386 amt = ((isymend - isym + 1)
4387 * sizeof (struct elf_link_hash_entry *));
4388 nondeflt_vers
4389 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4390 if (!nondeflt_vers)
4391 goto error_free_vers;
4392 }
4393 nondeflt_vers[nondeflt_vers_cnt++] = h;
4394 }
4395 }
4396
4397 if (dynsym && h->dynindx == -1)
4398 {
4399 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4400 goto error_free_vers;
4401 if (h->u.weakdef != NULL
4402 && ! new_weakdef
4403 && h->u.weakdef->dynindx == -1)
4404 {
4405 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4406 goto error_free_vers;
4407 }
4408 }
4409 else if (dynsym && h->dynindx != -1)
4410 /* If the symbol already has a dynamic index, but
4411 visibility says it should not be visible, turn it into
4412 a local symbol. */
4413 switch (ELF_ST_VISIBILITY (h->other))
4414 {
4415 case STV_INTERNAL:
4416 case STV_HIDDEN:
4417 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4418 dynsym = FALSE;
4419 break;
4420 }
4421
4422 /* Don't add DT_NEEDED for references from the dummy bfd. */
4423 if (!add_needed
4424 && definition
4425 && ((dynsym
4426 && h->ref_regular_nonweak
4427 && (old_bfd == NULL
4428 || (old_bfd->flags & BFD_PLUGIN) == 0))
4429 || (h->ref_dynamic_nonweak
4430 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4431 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4432 {
4433 int ret;
4434 const char *soname = elf_dt_name (abfd);
4435
4436 info->callbacks->minfo ("%!", soname, old_bfd,
4437 h->root.root.string);
4438
4439 /* A symbol from a library loaded via DT_NEEDED of some
4440 other library is referenced by a regular object.
4441 Add a DT_NEEDED entry for it. Issue an error if
4442 --no-add-needed is used and the reference was not
4443 a weak one. */
4444 if (old_bfd != NULL
4445 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4446 {
4447 (*_bfd_error_handler)
4448 (_("%B: undefined reference to symbol '%s'"),
4449 old_bfd, name);
4450 bfd_set_error (bfd_error_missing_dso);
4451 goto error_free_vers;
4452 }
4453
4454 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4455 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4456
4457 add_needed = TRUE;
4458 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4459 if (ret < 0)
4460 goto error_free_vers;
4461
4462 BFD_ASSERT (ret == 0);
4463 }
4464 }
4465 }
4466
4467 if (extversym != NULL)
4468 {
4469 free (extversym);
4470 extversym = NULL;
4471 }
4472
4473 if (isymbuf != NULL)
4474 {
4475 free (isymbuf);
4476 isymbuf = NULL;
4477 }
4478
4479 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4480 {
4481 unsigned int i;
4482
4483 /* Restore the symbol table. */
4484 old_ent = (char *) old_tab + tabsize;
4485 memset (elf_sym_hashes (abfd), 0,
4486 extsymcount * sizeof (struct elf_link_hash_entry *));
4487 htab->root.table.table = old_table;
4488 htab->root.table.size = old_size;
4489 htab->root.table.count = old_count;
4490 memcpy (htab->root.table.table, old_tab, tabsize);
4491 htab->root.undefs = old_undefs;
4492 htab->root.undefs_tail = old_undefs_tail;
4493 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4494 for (i = 0; i < htab->root.table.size; i++)
4495 {
4496 struct bfd_hash_entry *p;
4497 struct elf_link_hash_entry *h;
4498 bfd_size_type size;
4499 unsigned int alignment_power;
4500
4501 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4502 {
4503 h = (struct elf_link_hash_entry *) p;
4504 if (h->root.type == bfd_link_hash_warning)
4505 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4506 if (h->dynindx >= old_dynsymcount
4507 && h->dynstr_index < old_dynstr_size)
4508 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4509
4510 /* Preserve the maximum alignment and size for common
4511 symbols even if this dynamic lib isn't on DT_NEEDED
4512 since it can still be loaded at run time by another
4513 dynamic lib. */
4514 if (h->root.type == bfd_link_hash_common)
4515 {
4516 size = h->root.u.c.size;
4517 alignment_power = h->root.u.c.p->alignment_power;
4518 }
4519 else
4520 {
4521 size = 0;
4522 alignment_power = 0;
4523 }
4524 memcpy (p, old_ent, htab->root.table.entsize);
4525 old_ent = (char *) old_ent + htab->root.table.entsize;
4526 h = (struct elf_link_hash_entry *) p;
4527 if (h->root.type == bfd_link_hash_warning)
4528 {
4529 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4530 old_ent = (char *) old_ent + htab->root.table.entsize;
4531 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4532 }
4533 if (h->root.type == bfd_link_hash_common)
4534 {
4535 if (size > h->root.u.c.size)
4536 h->root.u.c.size = size;
4537 if (alignment_power > h->root.u.c.p->alignment_power)
4538 h->root.u.c.p->alignment_power = alignment_power;
4539 }
4540 }
4541 }
4542
4543 /* Make a special call to the linker "notice" function to
4544 tell it that symbols added for crefs may need to be removed. */
4545 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4546 goto error_free_vers;
4547
4548 free (old_tab);
4549 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4550 alloc_mark);
4551 if (nondeflt_vers != NULL)
4552 free (nondeflt_vers);
4553 return TRUE;
4554 }
4555
4556 if (old_tab != NULL)
4557 {
4558 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4559 goto error_free_vers;
4560 free (old_tab);
4561 old_tab = NULL;
4562 }
4563
4564 /* Now that all the symbols from this input file are created, handle
4565 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4566 if (nondeflt_vers != NULL)
4567 {
4568 bfd_size_type cnt, symidx;
4569
4570 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4571 {
4572 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4573 char *shortname, *p;
4574
4575 p = strchr (h->root.root.string, ELF_VER_CHR);
4576 if (p == NULL
4577 || (h->root.type != bfd_link_hash_defined
4578 && h->root.type != bfd_link_hash_defweak))
4579 continue;
4580
4581 amt = p - h->root.root.string;
4582 shortname = (char *) bfd_malloc (amt + 1);
4583 if (!shortname)
4584 goto error_free_vers;
4585 memcpy (shortname, h->root.root.string, amt);
4586 shortname[amt] = '\0';
4587
4588 hi = (struct elf_link_hash_entry *)
4589 bfd_link_hash_lookup (&htab->root, shortname,
4590 FALSE, FALSE, FALSE);
4591 if (hi != NULL
4592 && hi->root.type == h->root.type
4593 && hi->root.u.def.value == h->root.u.def.value
4594 && hi->root.u.def.section == h->root.u.def.section)
4595 {
4596 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4597 hi->root.type = bfd_link_hash_indirect;
4598 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4599 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4600 sym_hash = elf_sym_hashes (abfd);
4601 if (sym_hash)
4602 for (symidx = 0; symidx < extsymcount; ++symidx)
4603 if (sym_hash[symidx] == hi)
4604 {
4605 sym_hash[symidx] = h;
4606 break;
4607 }
4608 }
4609 free (shortname);
4610 }
4611 free (nondeflt_vers);
4612 nondeflt_vers = NULL;
4613 }
4614
4615 /* Now set the weakdefs field correctly for all the weak defined
4616 symbols we found. The only way to do this is to search all the
4617 symbols. Since we only need the information for non functions in
4618 dynamic objects, that's the only time we actually put anything on
4619 the list WEAKS. We need this information so that if a regular
4620 object refers to a symbol defined weakly in a dynamic object, the
4621 real symbol in the dynamic object is also put in the dynamic
4622 symbols; we also must arrange for both symbols to point to the
4623 same memory location. We could handle the general case of symbol
4624 aliasing, but a general symbol alias can only be generated in
4625 assembler code, handling it correctly would be very time
4626 consuming, and other ELF linkers don't handle general aliasing
4627 either. */
4628 if (weaks != NULL)
4629 {
4630 struct elf_link_hash_entry **hpp;
4631 struct elf_link_hash_entry **hppend;
4632 struct elf_link_hash_entry **sorted_sym_hash;
4633 struct elf_link_hash_entry *h;
4634 size_t sym_count;
4635
4636 /* Since we have to search the whole symbol list for each weak
4637 defined symbol, search time for N weak defined symbols will be
4638 O(N^2). Binary search will cut it down to O(NlogN). */
4639 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4640 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4641 if (sorted_sym_hash == NULL)
4642 goto error_return;
4643 sym_hash = sorted_sym_hash;
4644 hpp = elf_sym_hashes (abfd);
4645 hppend = hpp + extsymcount;
4646 sym_count = 0;
4647 for (; hpp < hppend; hpp++)
4648 {
4649 h = *hpp;
4650 if (h != NULL
4651 && h->root.type == bfd_link_hash_defined
4652 && !bed->is_function_type (h->type))
4653 {
4654 *sym_hash = h;
4655 sym_hash++;
4656 sym_count++;
4657 }
4658 }
4659
4660 qsort (sorted_sym_hash, sym_count,
4661 sizeof (struct elf_link_hash_entry *),
4662 elf_sort_symbol);
4663
4664 while (weaks != NULL)
4665 {
4666 struct elf_link_hash_entry *hlook;
4667 asection *slook;
4668 bfd_vma vlook;
4669 size_t i, j, idx = 0;
4670
4671 hlook = weaks;
4672 weaks = hlook->u.weakdef;
4673 hlook->u.weakdef = NULL;
4674
4675 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4676 || hlook->root.type == bfd_link_hash_defweak
4677 || hlook->root.type == bfd_link_hash_common
4678 || hlook->root.type == bfd_link_hash_indirect);
4679 slook = hlook->root.u.def.section;
4680 vlook = hlook->root.u.def.value;
4681
4682 i = 0;
4683 j = sym_count;
4684 while (i != j)
4685 {
4686 bfd_signed_vma vdiff;
4687 idx = (i + j) / 2;
4688 h = sorted_sym_hash[idx];
4689 vdiff = vlook - h->root.u.def.value;
4690 if (vdiff < 0)
4691 j = idx;
4692 else if (vdiff > 0)
4693 i = idx + 1;
4694 else
4695 {
4696 long sdiff = slook->id - h->root.u.def.section->id;
4697 if (sdiff < 0)
4698 j = idx;
4699 else if (sdiff > 0)
4700 i = idx + 1;
4701 else
4702 break;
4703 }
4704 }
4705
4706 /* We didn't find a value/section match. */
4707 if (i == j)
4708 continue;
4709
4710 /* With multiple aliases, or when the weak symbol is already
4711 strongly defined, we have multiple matching symbols and
4712 the binary search above may land on any of them. Step
4713 one past the matching symbol(s). */
4714 while (++idx != j)
4715 {
4716 h = sorted_sym_hash[idx];
4717 if (h->root.u.def.section != slook
4718 || h->root.u.def.value != vlook)
4719 break;
4720 }
4721
4722 /* Now look back over the aliases. Since we sorted by size
4723 as well as value and section, we'll choose the one with
4724 the largest size. */
4725 while (idx-- != i)
4726 {
4727 h = sorted_sym_hash[idx];
4728
4729 /* Stop if value or section doesn't match. */
4730 if (h->root.u.def.section != slook
4731 || h->root.u.def.value != vlook)
4732 break;
4733 else if (h != hlook)
4734 {
4735 hlook->u.weakdef = h;
4736
4737 /* If the weak definition is in the list of dynamic
4738 symbols, make sure the real definition is put
4739 there as well. */
4740 if (hlook->dynindx != -1 && h->dynindx == -1)
4741 {
4742 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4743 {
4744 err_free_sym_hash:
4745 free (sorted_sym_hash);
4746 goto error_return;
4747 }
4748 }
4749
4750 /* If the real definition is in the list of dynamic
4751 symbols, make sure the weak definition is put
4752 there as well. If we don't do this, then the
4753 dynamic loader might not merge the entries for the
4754 real definition and the weak definition. */
4755 if (h->dynindx != -1 && hlook->dynindx == -1)
4756 {
4757 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4758 goto err_free_sym_hash;
4759 }
4760 break;
4761 }
4762 }
4763 }
4764
4765 free (sorted_sym_hash);
4766 }
4767
4768 if (bed->check_directives
4769 && !(*bed->check_directives) (abfd, info))
4770 return FALSE;
4771
4772 /* If this object is the same format as the output object, and it is
4773 not a shared library, then let the backend look through the
4774 relocs.
4775
4776 This is required to build global offset table entries and to
4777 arrange for dynamic relocs. It is not required for the
4778 particular common case of linking non PIC code, even when linking
4779 against shared libraries, but unfortunately there is no way of
4780 knowing whether an object file has been compiled PIC or not.
4781 Looking through the relocs is not particularly time consuming.
4782 The problem is that we must either (1) keep the relocs in memory,
4783 which causes the linker to require additional runtime memory or
4784 (2) read the relocs twice from the input file, which wastes time.
4785 This would be a good case for using mmap.
4786
4787 I have no idea how to handle linking PIC code into a file of a
4788 different format. It probably can't be done. */
4789 if (! dynamic
4790 && is_elf_hash_table (htab)
4791 && bed->check_relocs != NULL
4792 && elf_object_id (abfd) == elf_hash_table_id (htab)
4793 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4794 {
4795 asection *o;
4796
4797 for (o = abfd->sections; o != NULL; o = o->next)
4798 {
4799 Elf_Internal_Rela *internal_relocs;
4800 bfd_boolean ok;
4801
4802 if ((o->flags & SEC_RELOC) == 0
4803 || o->reloc_count == 0
4804 || ((info->strip == strip_all || info->strip == strip_debugger)
4805 && (o->flags & SEC_DEBUGGING) != 0)
4806 || bfd_is_abs_section (o->output_section))
4807 continue;
4808
4809 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4810 info->keep_memory);
4811 if (internal_relocs == NULL)
4812 goto error_return;
4813
4814 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4815
4816 if (elf_section_data (o)->relocs != internal_relocs)
4817 free (internal_relocs);
4818
4819 if (! ok)
4820 goto error_return;
4821 }
4822 }
4823
4824 /* If this is a non-traditional link, try to optimize the handling
4825 of the .stab/.stabstr sections. */
4826 if (! dynamic
4827 && ! info->traditional_format
4828 && is_elf_hash_table (htab)
4829 && (info->strip != strip_all && info->strip != strip_debugger))
4830 {
4831 asection *stabstr;
4832
4833 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4834 if (stabstr != NULL)
4835 {
4836 bfd_size_type string_offset = 0;
4837 asection *stab;
4838
4839 for (stab = abfd->sections; stab; stab = stab->next)
4840 if (CONST_STRNEQ (stab->name, ".stab")
4841 && (!stab->name[5] ||
4842 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4843 && (stab->flags & SEC_MERGE) == 0
4844 && !bfd_is_abs_section (stab->output_section))
4845 {
4846 struct bfd_elf_section_data *secdata;
4847
4848 secdata = elf_section_data (stab);
4849 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4850 stabstr, &secdata->sec_info,
4851 &string_offset))
4852 goto error_return;
4853 if (secdata->sec_info)
4854 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4855 }
4856 }
4857 }
4858
4859 if (is_elf_hash_table (htab) && add_needed)
4860 {
4861 /* Add this bfd to the loaded list. */
4862 struct elf_link_loaded_list *n;
4863
4864 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
4865 if (n == NULL)
4866 goto error_return;
4867 n->abfd = abfd;
4868 n->next = htab->loaded;
4869 htab->loaded = n;
4870 }
4871
4872 return TRUE;
4873
4874 error_free_vers:
4875 if (old_tab != NULL)
4876 free (old_tab);
4877 if (nondeflt_vers != NULL)
4878 free (nondeflt_vers);
4879 if (extversym != NULL)
4880 free (extversym);
4881 error_free_sym:
4882 if (isymbuf != NULL)
4883 free (isymbuf);
4884 error_return:
4885 return FALSE;
4886 }
4887
4888 /* Return the linker hash table entry of a symbol that might be
4889 satisfied by an archive symbol. Return -1 on error. */
4890
4891 struct elf_link_hash_entry *
4892 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4893 struct bfd_link_info *info,
4894 const char *name)
4895 {
4896 struct elf_link_hash_entry *h;
4897 char *p, *copy;
4898 size_t len, first;
4899
4900 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4901 if (h != NULL)
4902 return h;
4903
4904 /* If this is a default version (the name contains @@), look up the
4905 symbol again with only one `@' as well as without the version.
4906 The effect is that references to the symbol with and without the
4907 version will be matched by the default symbol in the archive. */
4908
4909 p = strchr (name, ELF_VER_CHR);
4910 if (p == NULL || p[1] != ELF_VER_CHR)
4911 return h;
4912
4913 /* First check with only one `@'. */
4914 len = strlen (name);
4915 copy = (char *) bfd_alloc (abfd, len);
4916 if (copy == NULL)
4917 return (struct elf_link_hash_entry *) 0 - 1;
4918
4919 first = p - name + 1;
4920 memcpy (copy, name, first);
4921 memcpy (copy + first, name + first + 1, len - first);
4922
4923 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4924 if (h == NULL)
4925 {
4926 /* We also need to check references to the symbol without the
4927 version. */
4928 copy[first - 1] = '\0';
4929 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4930 FALSE, FALSE, TRUE);
4931 }
4932
4933 bfd_release (abfd, copy);
4934 return h;
4935 }
4936
4937 /* Add symbols from an ELF archive file to the linker hash table. We
4938 don't use _bfd_generic_link_add_archive_symbols because we need to
4939 handle versioned symbols.
4940
4941 Fortunately, ELF archive handling is simpler than that done by
4942 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4943 oddities. In ELF, if we find a symbol in the archive map, and the
4944 symbol is currently undefined, we know that we must pull in that
4945 object file.
4946
4947 Unfortunately, we do have to make multiple passes over the symbol
4948 table until nothing further is resolved. */
4949
4950 static bfd_boolean
4951 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4952 {
4953 symindex c;
4954 unsigned char *included = NULL;
4955 carsym *symdefs;
4956 bfd_boolean loop;
4957 bfd_size_type amt;
4958 const struct elf_backend_data *bed;
4959 struct elf_link_hash_entry * (*archive_symbol_lookup)
4960 (bfd *, struct bfd_link_info *, const char *);
4961
4962 if (! bfd_has_map (abfd))
4963 {
4964 /* An empty archive is a special case. */
4965 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4966 return TRUE;
4967 bfd_set_error (bfd_error_no_armap);
4968 return FALSE;
4969 }
4970
4971 /* Keep track of all symbols we know to be already defined, and all
4972 files we know to be already included. This is to speed up the
4973 second and subsequent passes. */
4974 c = bfd_ardata (abfd)->symdef_count;
4975 if (c == 0)
4976 return TRUE;
4977 amt = c;
4978 amt *= sizeof (*included);
4979 included = (unsigned char *) bfd_zmalloc (amt);
4980 if (included == NULL)
4981 return FALSE;
4982
4983 symdefs = bfd_ardata (abfd)->symdefs;
4984 bed = get_elf_backend_data (abfd);
4985 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4986
4987 do
4988 {
4989 file_ptr last;
4990 symindex i;
4991 carsym *symdef;
4992 carsym *symdefend;
4993
4994 loop = FALSE;
4995 last = -1;
4996
4997 symdef = symdefs;
4998 symdefend = symdef + c;
4999 for (i = 0; symdef < symdefend; symdef++, i++)
5000 {
5001 struct elf_link_hash_entry *h;
5002 bfd *element;
5003 struct bfd_link_hash_entry *undefs_tail;
5004 symindex mark;
5005
5006 if (included[i])
5007 continue;
5008 if (symdef->file_offset == last)
5009 {
5010 included[i] = TRUE;
5011 continue;
5012 }
5013
5014 h = archive_symbol_lookup (abfd, info, symdef->name);
5015 if (h == (struct elf_link_hash_entry *) 0 - 1)
5016 goto error_return;
5017
5018 if (h == NULL)
5019 continue;
5020
5021 if (h->root.type == bfd_link_hash_common)
5022 {
5023 /* We currently have a common symbol. The archive map contains
5024 a reference to this symbol, so we may want to include it. We
5025 only want to include it however, if this archive element
5026 contains a definition of the symbol, not just another common
5027 declaration of it.
5028
5029 Unfortunately some archivers (including GNU ar) will put
5030 declarations of common symbols into their archive maps, as
5031 well as real definitions, so we cannot just go by the archive
5032 map alone. Instead we must read in the element's symbol
5033 table and check that to see what kind of symbol definition
5034 this is. */
5035 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5036 continue;
5037 }
5038 else if (h->root.type != bfd_link_hash_undefined)
5039 {
5040 if (h->root.type != bfd_link_hash_undefweak)
5041 /* Symbol must be defined. Don't check it again. */
5042 included[i] = TRUE;
5043 continue;
5044 }
5045
5046 /* We need to include this archive member. */
5047 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5048 if (element == NULL)
5049 goto error_return;
5050
5051 if (! bfd_check_format (element, bfd_object))
5052 goto error_return;
5053
5054 undefs_tail = info->hash->undefs_tail;
5055
5056 if (!(*info->callbacks
5057 ->add_archive_element) (info, element, symdef->name, &element))
5058 goto error_return;
5059 if (!bfd_link_add_symbols (element, info))
5060 goto error_return;
5061
5062 /* If there are any new undefined symbols, we need to make
5063 another pass through the archive in order to see whether
5064 they can be defined. FIXME: This isn't perfect, because
5065 common symbols wind up on undefs_tail and because an
5066 undefined symbol which is defined later on in this pass
5067 does not require another pass. This isn't a bug, but it
5068 does make the code less efficient than it could be. */
5069 if (undefs_tail != info->hash->undefs_tail)
5070 loop = TRUE;
5071
5072 /* Look backward to mark all symbols from this object file
5073 which we have already seen in this pass. */
5074 mark = i;
5075 do
5076 {
5077 included[mark] = TRUE;
5078 if (mark == 0)
5079 break;
5080 --mark;
5081 }
5082 while (symdefs[mark].file_offset == symdef->file_offset);
5083
5084 /* We mark subsequent symbols from this object file as we go
5085 on through the loop. */
5086 last = symdef->file_offset;
5087 }
5088 }
5089 while (loop);
5090
5091 free (included);
5092
5093 return TRUE;
5094
5095 error_return:
5096 if (included != NULL)
5097 free (included);
5098 return FALSE;
5099 }
5100
5101 /* Given an ELF BFD, add symbols to the global hash table as
5102 appropriate. */
5103
5104 bfd_boolean
5105 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5106 {
5107 switch (bfd_get_format (abfd))
5108 {
5109 case bfd_object:
5110 return elf_link_add_object_symbols (abfd, info);
5111 case bfd_archive:
5112 return elf_link_add_archive_symbols (abfd, info);
5113 default:
5114 bfd_set_error (bfd_error_wrong_format);
5115 return FALSE;
5116 }
5117 }
5118 \f
5119 struct hash_codes_info
5120 {
5121 unsigned long *hashcodes;
5122 bfd_boolean error;
5123 };
5124
5125 /* This function will be called though elf_link_hash_traverse to store
5126 all hash value of the exported symbols in an array. */
5127
5128 static bfd_boolean
5129 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5130 {
5131 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5132 const char *name;
5133 char *p;
5134 unsigned long ha;
5135 char *alc = NULL;
5136
5137 /* Ignore indirect symbols. These are added by the versioning code. */
5138 if (h->dynindx == -1)
5139 return TRUE;
5140
5141 name = h->root.root.string;
5142 p = strchr (name, ELF_VER_CHR);
5143 if (p != NULL)
5144 {
5145 alc = (char *) bfd_malloc (p - name + 1);
5146 if (alc == NULL)
5147 {
5148 inf->error = TRUE;
5149 return FALSE;
5150 }
5151 memcpy (alc, name, p - name);
5152 alc[p - name] = '\0';
5153 name = alc;
5154 }
5155
5156 /* Compute the hash value. */
5157 ha = bfd_elf_hash (name);
5158
5159 /* Store the found hash value in the array given as the argument. */
5160 *(inf->hashcodes)++ = ha;
5161
5162 /* And store it in the struct so that we can put it in the hash table
5163 later. */
5164 h->u.elf_hash_value = ha;
5165
5166 if (alc != NULL)
5167 free (alc);
5168
5169 return TRUE;
5170 }
5171
5172 struct collect_gnu_hash_codes
5173 {
5174 bfd *output_bfd;
5175 const struct elf_backend_data *bed;
5176 unsigned long int nsyms;
5177 unsigned long int maskbits;
5178 unsigned long int *hashcodes;
5179 unsigned long int *hashval;
5180 unsigned long int *indx;
5181 unsigned long int *counts;
5182 bfd_vma *bitmask;
5183 bfd_byte *contents;
5184 long int min_dynindx;
5185 unsigned long int bucketcount;
5186 unsigned long int symindx;
5187 long int local_indx;
5188 long int shift1, shift2;
5189 unsigned long int mask;
5190 bfd_boolean error;
5191 };
5192
5193 /* This function will be called though elf_link_hash_traverse to store
5194 all hash value of the exported symbols in an array. */
5195
5196 static bfd_boolean
5197 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5198 {
5199 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5200 const char *name;
5201 char *p;
5202 unsigned long ha;
5203 char *alc = NULL;
5204
5205 /* Ignore indirect symbols. These are added by the versioning code. */
5206 if (h->dynindx == -1)
5207 return TRUE;
5208
5209 /* Ignore also local symbols and undefined symbols. */
5210 if (! (*s->bed->elf_hash_symbol) (h))
5211 return TRUE;
5212
5213 name = h->root.root.string;
5214 p = strchr (name, ELF_VER_CHR);
5215 if (p != NULL)
5216 {
5217 alc = (char *) bfd_malloc (p - name + 1);
5218 if (alc == NULL)
5219 {
5220 s->error = TRUE;
5221 return FALSE;
5222 }
5223 memcpy (alc, name, p - name);
5224 alc[p - name] = '\0';
5225 name = alc;
5226 }
5227
5228 /* Compute the hash value. */
5229 ha = bfd_elf_gnu_hash (name);
5230
5231 /* Store the found hash value in the array for compute_bucket_count,
5232 and also for .dynsym reordering purposes. */
5233 s->hashcodes[s->nsyms] = ha;
5234 s->hashval[h->dynindx] = ha;
5235 ++s->nsyms;
5236 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5237 s->min_dynindx = h->dynindx;
5238
5239 if (alc != NULL)
5240 free (alc);
5241
5242 return TRUE;
5243 }
5244
5245 /* This function will be called though elf_link_hash_traverse to do
5246 final dynaminc symbol renumbering. */
5247
5248 static bfd_boolean
5249 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5250 {
5251 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5252 unsigned long int bucket;
5253 unsigned long int val;
5254
5255 /* Ignore indirect symbols. */
5256 if (h->dynindx == -1)
5257 return TRUE;
5258
5259 /* Ignore also local symbols and undefined symbols. */
5260 if (! (*s->bed->elf_hash_symbol) (h))
5261 {
5262 if (h->dynindx >= s->min_dynindx)
5263 h->dynindx = s->local_indx++;
5264 return TRUE;
5265 }
5266
5267 bucket = s->hashval[h->dynindx] % s->bucketcount;
5268 val = (s->hashval[h->dynindx] >> s->shift1)
5269 & ((s->maskbits >> s->shift1) - 1);
5270 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5271 s->bitmask[val]
5272 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5273 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5274 if (s->counts[bucket] == 1)
5275 /* Last element terminates the chain. */
5276 val |= 1;
5277 bfd_put_32 (s->output_bfd, val,
5278 s->contents + (s->indx[bucket] - s->symindx) * 4);
5279 --s->counts[bucket];
5280 h->dynindx = s->indx[bucket]++;
5281 return TRUE;
5282 }
5283
5284 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5285
5286 bfd_boolean
5287 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5288 {
5289 return !(h->forced_local
5290 || h->root.type == bfd_link_hash_undefined
5291 || h->root.type == bfd_link_hash_undefweak
5292 || ((h->root.type == bfd_link_hash_defined
5293 || h->root.type == bfd_link_hash_defweak)
5294 && h->root.u.def.section->output_section == NULL));
5295 }
5296
5297 /* Array used to determine the number of hash table buckets to use
5298 based on the number of symbols there are. If there are fewer than
5299 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5300 fewer than 37 we use 17 buckets, and so forth. We never use more
5301 than 32771 buckets. */
5302
5303 static const size_t elf_buckets[] =
5304 {
5305 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5306 16411, 32771, 0
5307 };
5308
5309 /* Compute bucket count for hashing table. We do not use a static set
5310 of possible tables sizes anymore. Instead we determine for all
5311 possible reasonable sizes of the table the outcome (i.e., the
5312 number of collisions etc) and choose the best solution. The
5313 weighting functions are not too simple to allow the table to grow
5314 without bounds. Instead one of the weighting factors is the size.
5315 Therefore the result is always a good payoff between few collisions
5316 (= short chain lengths) and table size. */
5317 static size_t
5318 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5319 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5320 unsigned long int nsyms,
5321 int gnu_hash)
5322 {
5323 size_t best_size = 0;
5324 unsigned long int i;
5325
5326 /* We have a problem here. The following code to optimize the table
5327 size requires an integer type with more the 32 bits. If
5328 BFD_HOST_U_64_BIT is set we know about such a type. */
5329 #ifdef BFD_HOST_U_64_BIT
5330 if (info->optimize)
5331 {
5332 size_t minsize;
5333 size_t maxsize;
5334 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5335 bfd *dynobj = elf_hash_table (info)->dynobj;
5336 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5337 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5338 unsigned long int *counts;
5339 bfd_size_type amt;
5340 unsigned int no_improvement_count = 0;
5341
5342 /* Possible optimization parameters: if we have NSYMS symbols we say
5343 that the hashing table must at least have NSYMS/4 and at most
5344 2*NSYMS buckets. */
5345 minsize = nsyms / 4;
5346 if (minsize == 0)
5347 minsize = 1;
5348 best_size = maxsize = nsyms * 2;
5349 if (gnu_hash)
5350 {
5351 if (minsize < 2)
5352 minsize = 2;
5353 if ((best_size & 31) == 0)
5354 ++best_size;
5355 }
5356
5357 /* Create array where we count the collisions in. We must use bfd_malloc
5358 since the size could be large. */
5359 amt = maxsize;
5360 amt *= sizeof (unsigned long int);
5361 counts = (unsigned long int *) bfd_malloc (amt);
5362 if (counts == NULL)
5363 return 0;
5364
5365 /* Compute the "optimal" size for the hash table. The criteria is a
5366 minimal chain length. The minor criteria is (of course) the size
5367 of the table. */
5368 for (i = minsize; i < maxsize; ++i)
5369 {
5370 /* Walk through the array of hashcodes and count the collisions. */
5371 BFD_HOST_U_64_BIT max;
5372 unsigned long int j;
5373 unsigned long int fact;
5374
5375 if (gnu_hash && (i & 31) == 0)
5376 continue;
5377
5378 memset (counts, '\0', i * sizeof (unsigned long int));
5379
5380 /* Determine how often each hash bucket is used. */
5381 for (j = 0; j < nsyms; ++j)
5382 ++counts[hashcodes[j] % i];
5383
5384 /* For the weight function we need some information about the
5385 pagesize on the target. This is information need not be 100%
5386 accurate. Since this information is not available (so far) we
5387 define it here to a reasonable default value. If it is crucial
5388 to have a better value some day simply define this value. */
5389 # ifndef BFD_TARGET_PAGESIZE
5390 # define BFD_TARGET_PAGESIZE (4096)
5391 # endif
5392
5393 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5394 and the chains. */
5395 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5396
5397 # if 1
5398 /* Variant 1: optimize for short chains. We add the squares
5399 of all the chain lengths (which favors many small chain
5400 over a few long chains). */
5401 for (j = 0; j < i; ++j)
5402 max += counts[j] * counts[j];
5403
5404 /* This adds penalties for the overall size of the table. */
5405 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5406 max *= fact * fact;
5407 # else
5408 /* Variant 2: Optimize a lot more for small table. Here we
5409 also add squares of the size but we also add penalties for
5410 empty slots (the +1 term). */
5411 for (j = 0; j < i; ++j)
5412 max += (1 + counts[j]) * (1 + counts[j]);
5413
5414 /* The overall size of the table is considered, but not as
5415 strong as in variant 1, where it is squared. */
5416 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5417 max *= fact;
5418 # endif
5419
5420 /* Compare with current best results. */
5421 if (max < best_chlen)
5422 {
5423 best_chlen = max;
5424 best_size = i;
5425 no_improvement_count = 0;
5426 }
5427 /* PR 11843: Avoid futile long searches for the best bucket size
5428 when there are a large number of symbols. */
5429 else if (++no_improvement_count == 100)
5430 break;
5431 }
5432
5433 free (counts);
5434 }
5435 else
5436 #endif /* defined (BFD_HOST_U_64_BIT) */
5437 {
5438 /* This is the fallback solution if no 64bit type is available or if we
5439 are not supposed to spend much time on optimizations. We select the
5440 bucket count using a fixed set of numbers. */
5441 for (i = 0; elf_buckets[i] != 0; i++)
5442 {
5443 best_size = elf_buckets[i];
5444 if (nsyms < elf_buckets[i + 1])
5445 break;
5446 }
5447 if (gnu_hash && best_size < 2)
5448 best_size = 2;
5449 }
5450
5451 return best_size;
5452 }
5453
5454 /* Size any SHT_GROUP section for ld -r. */
5455
5456 bfd_boolean
5457 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5458 {
5459 bfd *ibfd;
5460
5461 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5462 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5463 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5464 return FALSE;
5465 return TRUE;
5466 }
5467
5468 /* Set a default stack segment size. The value in INFO wins. If it
5469 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5470 undefined it is initialized. */
5471
5472 bfd_boolean
5473 bfd_elf_stack_segment_size (bfd *output_bfd,
5474 struct bfd_link_info *info,
5475 const char *legacy_symbol,
5476 bfd_vma default_size)
5477 {
5478 struct elf_link_hash_entry *h = NULL;
5479
5480 /* Look for legacy symbol. */
5481 if (legacy_symbol)
5482 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5483 FALSE, FALSE, FALSE);
5484 if (h && (h->root.type == bfd_link_hash_defined
5485 || h->root.type == bfd_link_hash_defweak)
5486 && h->def_regular
5487 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5488 {
5489 /* The symbol has no type if specified on the command line. */
5490 h->type = STT_OBJECT;
5491 if (info->stacksize)
5492 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5493 output_bfd, legacy_symbol);
5494 else if (h->root.u.def.section != bfd_abs_section_ptr)
5495 (*_bfd_error_handler) (_("%B: %s not absolute"),
5496 output_bfd, legacy_symbol);
5497 else
5498 info->stacksize = h->root.u.def.value;
5499 }
5500
5501 if (!info->stacksize)
5502 /* If the user didn't set a size, or explicitly inhibit the
5503 size, set it now. */
5504 info->stacksize = default_size;
5505
5506 /* Provide the legacy symbol, if it is referenced. */
5507 if (h && (h->root.type == bfd_link_hash_undefined
5508 || h->root.type == bfd_link_hash_undefweak))
5509 {
5510 struct bfd_link_hash_entry *bh = NULL;
5511
5512 if (!(_bfd_generic_link_add_one_symbol
5513 (info, output_bfd, legacy_symbol,
5514 BSF_GLOBAL, bfd_abs_section_ptr,
5515 info->stacksize >= 0 ? info->stacksize : 0,
5516 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5517 return FALSE;
5518
5519 h = (struct elf_link_hash_entry *) bh;
5520 h->def_regular = 1;
5521 h->type = STT_OBJECT;
5522 }
5523
5524 return TRUE;
5525 }
5526
5527 /* Set up the sizes and contents of the ELF dynamic sections. This is
5528 called by the ELF linker emulation before_allocation routine. We
5529 must set the sizes of the sections before the linker sets the
5530 addresses of the various sections. */
5531
5532 bfd_boolean
5533 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5534 const char *soname,
5535 const char *rpath,
5536 const char *filter_shlib,
5537 const char *audit,
5538 const char *depaudit,
5539 const char * const *auxiliary_filters,
5540 struct bfd_link_info *info,
5541 asection **sinterpptr)
5542 {
5543 bfd_size_type soname_indx;
5544 bfd *dynobj;
5545 const struct elf_backend_data *bed;
5546 struct elf_info_failed asvinfo;
5547
5548 *sinterpptr = NULL;
5549
5550 soname_indx = (bfd_size_type) -1;
5551
5552 if (!is_elf_hash_table (info->hash))
5553 return TRUE;
5554
5555 bed = get_elf_backend_data (output_bfd);
5556
5557 /* Any syms created from now on start with -1 in
5558 got.refcount/offset and plt.refcount/offset. */
5559 elf_hash_table (info)->init_got_refcount
5560 = elf_hash_table (info)->init_got_offset;
5561 elf_hash_table (info)->init_plt_refcount
5562 = elf_hash_table (info)->init_plt_offset;
5563
5564 if (info->relocatable
5565 && !_bfd_elf_size_group_sections (info))
5566 return FALSE;
5567
5568 /* The backend may have to create some sections regardless of whether
5569 we're dynamic or not. */
5570 if (bed->elf_backend_always_size_sections
5571 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5572 return FALSE;
5573
5574 /* Determine any GNU_STACK segment requirements, after the backend
5575 has had a chance to set a default segment size. */
5576 if (info->execstack)
5577 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5578 else if (info->noexecstack)
5579 elf_stack_flags (output_bfd) = PF_R | PF_W;
5580 else
5581 {
5582 bfd *inputobj;
5583 asection *notesec = NULL;
5584 int exec = 0;
5585
5586 for (inputobj = info->input_bfds;
5587 inputobj;
5588 inputobj = inputobj->link.next)
5589 {
5590 asection *s;
5591
5592 if (inputobj->flags
5593 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5594 continue;
5595 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5596 if (s)
5597 {
5598 if (s->flags & SEC_CODE)
5599 exec = PF_X;
5600 notesec = s;
5601 }
5602 else if (bed->default_execstack)
5603 exec = PF_X;
5604 }
5605 if (notesec || info->stacksize > 0)
5606 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5607 if (notesec && exec && info->relocatable
5608 && notesec->output_section != bfd_abs_section_ptr)
5609 notesec->output_section->flags |= SEC_CODE;
5610 }
5611
5612 dynobj = elf_hash_table (info)->dynobj;
5613
5614 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5615 {
5616 struct elf_info_failed eif;
5617 struct elf_link_hash_entry *h;
5618 asection *dynstr;
5619 struct bfd_elf_version_tree *t;
5620 struct bfd_elf_version_expr *d;
5621 asection *s;
5622 bfd_boolean all_defined;
5623
5624 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5625 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5626
5627 if (soname != NULL)
5628 {
5629 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5630 soname, TRUE);
5631 if (soname_indx == (bfd_size_type) -1
5632 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5633 return FALSE;
5634 }
5635
5636 if (info->symbolic)
5637 {
5638 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5639 return FALSE;
5640 info->flags |= DF_SYMBOLIC;
5641 }
5642
5643 if (rpath != NULL)
5644 {
5645 bfd_size_type indx;
5646 bfd_vma tag;
5647
5648 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5649 TRUE);
5650 if (indx == (bfd_size_type) -1)
5651 return FALSE;
5652
5653 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5654 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5655 return FALSE;
5656 }
5657
5658 if (filter_shlib != NULL)
5659 {
5660 bfd_size_type indx;
5661
5662 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5663 filter_shlib, TRUE);
5664 if (indx == (bfd_size_type) -1
5665 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5666 return FALSE;
5667 }
5668
5669 if (auxiliary_filters != NULL)
5670 {
5671 const char * const *p;
5672
5673 for (p = auxiliary_filters; *p != NULL; p++)
5674 {
5675 bfd_size_type indx;
5676
5677 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5678 *p, TRUE);
5679 if (indx == (bfd_size_type) -1
5680 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5681 return FALSE;
5682 }
5683 }
5684
5685 if (audit != NULL)
5686 {
5687 bfd_size_type indx;
5688
5689 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5690 TRUE);
5691 if (indx == (bfd_size_type) -1
5692 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5693 return FALSE;
5694 }
5695
5696 if (depaudit != NULL)
5697 {
5698 bfd_size_type indx;
5699
5700 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5701 TRUE);
5702 if (indx == (bfd_size_type) -1
5703 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5704 return FALSE;
5705 }
5706
5707 eif.info = info;
5708 eif.failed = FALSE;
5709
5710 /* If we are supposed to export all symbols into the dynamic symbol
5711 table (this is not the normal case), then do so. */
5712 if (info->export_dynamic
5713 || (info->executable && info->dynamic))
5714 {
5715 elf_link_hash_traverse (elf_hash_table (info),
5716 _bfd_elf_export_symbol,
5717 &eif);
5718 if (eif.failed)
5719 return FALSE;
5720 }
5721
5722 /* Make all global versions with definition. */
5723 for (t = info->version_info; t != NULL; t = t->next)
5724 for (d = t->globals.list; d != NULL; d = d->next)
5725 if (!d->symver && d->literal)
5726 {
5727 const char *verstr, *name;
5728 size_t namelen, verlen, newlen;
5729 char *newname, *p, leading_char;
5730 struct elf_link_hash_entry *newh;
5731
5732 leading_char = bfd_get_symbol_leading_char (output_bfd);
5733 name = d->pattern;
5734 namelen = strlen (name) + (leading_char != '\0');
5735 verstr = t->name;
5736 verlen = strlen (verstr);
5737 newlen = namelen + verlen + 3;
5738
5739 newname = (char *) bfd_malloc (newlen);
5740 if (newname == NULL)
5741 return FALSE;
5742 newname[0] = leading_char;
5743 memcpy (newname + (leading_char != '\0'), name, namelen);
5744
5745 /* Check the hidden versioned definition. */
5746 p = newname + namelen;
5747 *p++ = ELF_VER_CHR;
5748 memcpy (p, verstr, verlen + 1);
5749 newh = elf_link_hash_lookup (elf_hash_table (info),
5750 newname, FALSE, FALSE,
5751 FALSE);
5752 if (newh == NULL
5753 || (newh->root.type != bfd_link_hash_defined
5754 && newh->root.type != bfd_link_hash_defweak))
5755 {
5756 /* Check the default versioned definition. */
5757 *p++ = ELF_VER_CHR;
5758 memcpy (p, verstr, verlen + 1);
5759 newh = elf_link_hash_lookup (elf_hash_table (info),
5760 newname, FALSE, FALSE,
5761 FALSE);
5762 }
5763 free (newname);
5764
5765 /* Mark this version if there is a definition and it is
5766 not defined in a shared object. */
5767 if (newh != NULL
5768 && !newh->def_dynamic
5769 && (newh->root.type == bfd_link_hash_defined
5770 || newh->root.type == bfd_link_hash_defweak))
5771 d->symver = 1;
5772 }
5773
5774 /* Attach all the symbols to their version information. */
5775 asvinfo.info = info;
5776 asvinfo.failed = FALSE;
5777
5778 elf_link_hash_traverse (elf_hash_table (info),
5779 _bfd_elf_link_assign_sym_version,
5780 &asvinfo);
5781 if (asvinfo.failed)
5782 return FALSE;
5783
5784 if (!info->allow_undefined_version)
5785 {
5786 /* Check if all global versions have a definition. */
5787 all_defined = TRUE;
5788 for (t = info->version_info; t != NULL; t = t->next)
5789 for (d = t->globals.list; d != NULL; d = d->next)
5790 if (d->literal && !d->symver && !d->script)
5791 {
5792 (*_bfd_error_handler)
5793 (_("%s: undefined version: %s"),
5794 d->pattern, t->name);
5795 all_defined = FALSE;
5796 }
5797
5798 if (!all_defined)
5799 {
5800 bfd_set_error (bfd_error_bad_value);
5801 return FALSE;
5802 }
5803 }
5804
5805 /* Find all symbols which were defined in a dynamic object and make
5806 the backend pick a reasonable value for them. */
5807 elf_link_hash_traverse (elf_hash_table (info),
5808 _bfd_elf_adjust_dynamic_symbol,
5809 &eif);
5810 if (eif.failed)
5811 return FALSE;
5812
5813 /* Add some entries to the .dynamic section. We fill in some of the
5814 values later, in bfd_elf_final_link, but we must add the entries
5815 now so that we know the final size of the .dynamic section. */
5816
5817 /* If there are initialization and/or finalization functions to
5818 call then add the corresponding DT_INIT/DT_FINI entries. */
5819 h = (info->init_function
5820 ? elf_link_hash_lookup (elf_hash_table (info),
5821 info->init_function, FALSE,
5822 FALSE, FALSE)
5823 : NULL);
5824 if (h != NULL
5825 && (h->ref_regular
5826 || h->def_regular))
5827 {
5828 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5829 return FALSE;
5830 }
5831 h = (info->fini_function
5832 ? elf_link_hash_lookup (elf_hash_table (info),
5833 info->fini_function, FALSE,
5834 FALSE, FALSE)
5835 : NULL);
5836 if (h != NULL
5837 && (h->ref_regular
5838 || h->def_regular))
5839 {
5840 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5841 return FALSE;
5842 }
5843
5844 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5845 if (s != NULL && s->linker_has_input)
5846 {
5847 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5848 if (! info->executable)
5849 {
5850 bfd *sub;
5851 asection *o;
5852
5853 for (sub = info->input_bfds; sub != NULL;
5854 sub = sub->link.next)
5855 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5856 for (o = sub->sections; o != NULL; o = o->next)
5857 if (elf_section_data (o)->this_hdr.sh_type
5858 == SHT_PREINIT_ARRAY)
5859 {
5860 (*_bfd_error_handler)
5861 (_("%B: .preinit_array section is not allowed in DSO"),
5862 sub);
5863 break;
5864 }
5865
5866 bfd_set_error (bfd_error_nonrepresentable_section);
5867 return FALSE;
5868 }
5869
5870 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5871 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5872 return FALSE;
5873 }
5874 s = bfd_get_section_by_name (output_bfd, ".init_array");
5875 if (s != NULL && s->linker_has_input)
5876 {
5877 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5878 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5879 return FALSE;
5880 }
5881 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5882 if (s != NULL && s->linker_has_input)
5883 {
5884 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5885 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5886 return FALSE;
5887 }
5888
5889 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5890 /* If .dynstr is excluded from the link, we don't want any of
5891 these tags. Strictly, we should be checking each section
5892 individually; This quick check covers for the case where
5893 someone does a /DISCARD/ : { *(*) }. */
5894 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5895 {
5896 bfd_size_type strsize;
5897
5898 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5899 if ((info->emit_hash
5900 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5901 || (info->emit_gnu_hash
5902 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5903 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5904 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5905 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5906 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5907 bed->s->sizeof_sym))
5908 return FALSE;
5909 }
5910 }
5911
5912 /* The backend must work out the sizes of all the other dynamic
5913 sections. */
5914 if (dynobj != NULL
5915 && bed->elf_backend_size_dynamic_sections != NULL
5916 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5917 return FALSE;
5918
5919 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5920 return FALSE;
5921
5922 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5923 {
5924 unsigned long section_sym_count;
5925 struct bfd_elf_version_tree *verdefs;
5926 asection *s;
5927
5928 /* Set up the version definition section. */
5929 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
5930 BFD_ASSERT (s != NULL);
5931
5932 /* We may have created additional version definitions if we are
5933 just linking a regular application. */
5934 verdefs = info->version_info;
5935
5936 /* Skip anonymous version tag. */
5937 if (verdefs != NULL && verdefs->vernum == 0)
5938 verdefs = verdefs->next;
5939
5940 if (verdefs == NULL && !info->create_default_symver)
5941 s->flags |= SEC_EXCLUDE;
5942 else
5943 {
5944 unsigned int cdefs;
5945 bfd_size_type size;
5946 struct bfd_elf_version_tree *t;
5947 bfd_byte *p;
5948 Elf_Internal_Verdef def;
5949 Elf_Internal_Verdaux defaux;
5950 struct bfd_link_hash_entry *bh;
5951 struct elf_link_hash_entry *h;
5952 const char *name;
5953
5954 cdefs = 0;
5955 size = 0;
5956
5957 /* Make space for the base version. */
5958 size += sizeof (Elf_External_Verdef);
5959 size += sizeof (Elf_External_Verdaux);
5960 ++cdefs;
5961
5962 /* Make space for the default version. */
5963 if (info->create_default_symver)
5964 {
5965 size += sizeof (Elf_External_Verdef);
5966 ++cdefs;
5967 }
5968
5969 for (t = verdefs; t != NULL; t = t->next)
5970 {
5971 struct bfd_elf_version_deps *n;
5972
5973 /* Don't emit base version twice. */
5974 if (t->vernum == 0)
5975 continue;
5976
5977 size += sizeof (Elf_External_Verdef);
5978 size += sizeof (Elf_External_Verdaux);
5979 ++cdefs;
5980
5981 for (n = t->deps; n != NULL; n = n->next)
5982 size += sizeof (Elf_External_Verdaux);
5983 }
5984
5985 s->size = size;
5986 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5987 if (s->contents == NULL && s->size != 0)
5988 return FALSE;
5989
5990 /* Fill in the version definition section. */
5991
5992 p = s->contents;
5993
5994 def.vd_version = VER_DEF_CURRENT;
5995 def.vd_flags = VER_FLG_BASE;
5996 def.vd_ndx = 1;
5997 def.vd_cnt = 1;
5998 if (info->create_default_symver)
5999 {
6000 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6001 def.vd_next = sizeof (Elf_External_Verdef);
6002 }
6003 else
6004 {
6005 def.vd_aux = sizeof (Elf_External_Verdef);
6006 def.vd_next = (sizeof (Elf_External_Verdef)
6007 + sizeof (Elf_External_Verdaux));
6008 }
6009
6010 if (soname_indx != (bfd_size_type) -1)
6011 {
6012 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6013 soname_indx);
6014 def.vd_hash = bfd_elf_hash (soname);
6015 defaux.vda_name = soname_indx;
6016 name = soname;
6017 }
6018 else
6019 {
6020 bfd_size_type indx;
6021
6022 name = lbasename (output_bfd->filename);
6023 def.vd_hash = bfd_elf_hash (name);
6024 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6025 name, FALSE);
6026 if (indx == (bfd_size_type) -1)
6027 return FALSE;
6028 defaux.vda_name = indx;
6029 }
6030 defaux.vda_next = 0;
6031
6032 _bfd_elf_swap_verdef_out (output_bfd, &def,
6033 (Elf_External_Verdef *) p);
6034 p += sizeof (Elf_External_Verdef);
6035 if (info->create_default_symver)
6036 {
6037 /* Add a symbol representing this version. */
6038 bh = NULL;
6039 if (! (_bfd_generic_link_add_one_symbol
6040 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6041 0, NULL, FALSE,
6042 get_elf_backend_data (dynobj)->collect, &bh)))
6043 return FALSE;
6044 h = (struct elf_link_hash_entry *) bh;
6045 h->non_elf = 0;
6046 h->def_regular = 1;
6047 h->type = STT_OBJECT;
6048 h->verinfo.vertree = NULL;
6049
6050 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6051 return FALSE;
6052
6053 /* Create a duplicate of the base version with the same
6054 aux block, but different flags. */
6055 def.vd_flags = 0;
6056 def.vd_ndx = 2;
6057 def.vd_aux = sizeof (Elf_External_Verdef);
6058 if (verdefs)
6059 def.vd_next = (sizeof (Elf_External_Verdef)
6060 + sizeof (Elf_External_Verdaux));
6061 else
6062 def.vd_next = 0;
6063 _bfd_elf_swap_verdef_out (output_bfd, &def,
6064 (Elf_External_Verdef *) p);
6065 p += sizeof (Elf_External_Verdef);
6066 }
6067 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6068 (Elf_External_Verdaux *) p);
6069 p += sizeof (Elf_External_Verdaux);
6070
6071 for (t = verdefs; t != NULL; t = t->next)
6072 {
6073 unsigned int cdeps;
6074 struct bfd_elf_version_deps *n;
6075
6076 /* Don't emit the base version twice. */
6077 if (t->vernum == 0)
6078 continue;
6079
6080 cdeps = 0;
6081 for (n = t->deps; n != NULL; n = n->next)
6082 ++cdeps;
6083
6084 /* Add a symbol representing this version. */
6085 bh = NULL;
6086 if (! (_bfd_generic_link_add_one_symbol
6087 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6088 0, NULL, FALSE,
6089 get_elf_backend_data (dynobj)->collect, &bh)))
6090 return FALSE;
6091 h = (struct elf_link_hash_entry *) bh;
6092 h->non_elf = 0;
6093 h->def_regular = 1;
6094 h->type = STT_OBJECT;
6095 h->verinfo.vertree = t;
6096
6097 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6098 return FALSE;
6099
6100 def.vd_version = VER_DEF_CURRENT;
6101 def.vd_flags = 0;
6102 if (t->globals.list == NULL
6103 && t->locals.list == NULL
6104 && ! t->used)
6105 def.vd_flags |= VER_FLG_WEAK;
6106 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6107 def.vd_cnt = cdeps + 1;
6108 def.vd_hash = bfd_elf_hash (t->name);
6109 def.vd_aux = sizeof (Elf_External_Verdef);
6110 def.vd_next = 0;
6111
6112 /* If a basever node is next, it *must* be the last node in
6113 the chain, otherwise Verdef construction breaks. */
6114 if (t->next != NULL && t->next->vernum == 0)
6115 BFD_ASSERT (t->next->next == NULL);
6116
6117 if (t->next != NULL && t->next->vernum != 0)
6118 def.vd_next = (sizeof (Elf_External_Verdef)
6119 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6120
6121 _bfd_elf_swap_verdef_out (output_bfd, &def,
6122 (Elf_External_Verdef *) p);
6123 p += sizeof (Elf_External_Verdef);
6124
6125 defaux.vda_name = h->dynstr_index;
6126 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6127 h->dynstr_index);
6128 defaux.vda_next = 0;
6129 if (t->deps != NULL)
6130 defaux.vda_next = sizeof (Elf_External_Verdaux);
6131 t->name_indx = defaux.vda_name;
6132
6133 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6134 (Elf_External_Verdaux *) p);
6135 p += sizeof (Elf_External_Verdaux);
6136
6137 for (n = t->deps; n != NULL; n = n->next)
6138 {
6139 if (n->version_needed == NULL)
6140 {
6141 /* This can happen if there was an error in the
6142 version script. */
6143 defaux.vda_name = 0;
6144 }
6145 else
6146 {
6147 defaux.vda_name = n->version_needed->name_indx;
6148 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6149 defaux.vda_name);
6150 }
6151 if (n->next == NULL)
6152 defaux.vda_next = 0;
6153 else
6154 defaux.vda_next = sizeof (Elf_External_Verdaux);
6155
6156 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6157 (Elf_External_Verdaux *) p);
6158 p += sizeof (Elf_External_Verdaux);
6159 }
6160 }
6161
6162 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6163 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6164 return FALSE;
6165
6166 elf_tdata (output_bfd)->cverdefs = cdefs;
6167 }
6168
6169 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6170 {
6171 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6172 return FALSE;
6173 }
6174 else if (info->flags & DF_BIND_NOW)
6175 {
6176 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6177 return FALSE;
6178 }
6179
6180 if (info->flags_1)
6181 {
6182 if (info->executable)
6183 info->flags_1 &= ~ (DF_1_INITFIRST
6184 | DF_1_NODELETE
6185 | DF_1_NOOPEN);
6186 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6187 return FALSE;
6188 }
6189
6190 /* Work out the size of the version reference section. */
6191
6192 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6193 BFD_ASSERT (s != NULL);
6194 {
6195 struct elf_find_verdep_info sinfo;
6196
6197 sinfo.info = info;
6198 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6199 if (sinfo.vers == 0)
6200 sinfo.vers = 1;
6201 sinfo.failed = FALSE;
6202
6203 elf_link_hash_traverse (elf_hash_table (info),
6204 _bfd_elf_link_find_version_dependencies,
6205 &sinfo);
6206 if (sinfo.failed)
6207 return FALSE;
6208
6209 if (elf_tdata (output_bfd)->verref == NULL)
6210 s->flags |= SEC_EXCLUDE;
6211 else
6212 {
6213 Elf_Internal_Verneed *t;
6214 unsigned int size;
6215 unsigned int crefs;
6216 bfd_byte *p;
6217
6218 /* Build the version dependency section. */
6219 size = 0;
6220 crefs = 0;
6221 for (t = elf_tdata (output_bfd)->verref;
6222 t != NULL;
6223 t = t->vn_nextref)
6224 {
6225 Elf_Internal_Vernaux *a;
6226
6227 size += sizeof (Elf_External_Verneed);
6228 ++crefs;
6229 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6230 size += sizeof (Elf_External_Vernaux);
6231 }
6232
6233 s->size = size;
6234 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6235 if (s->contents == NULL)
6236 return FALSE;
6237
6238 p = s->contents;
6239 for (t = elf_tdata (output_bfd)->verref;
6240 t != NULL;
6241 t = t->vn_nextref)
6242 {
6243 unsigned int caux;
6244 Elf_Internal_Vernaux *a;
6245 bfd_size_type indx;
6246
6247 caux = 0;
6248 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6249 ++caux;
6250
6251 t->vn_version = VER_NEED_CURRENT;
6252 t->vn_cnt = caux;
6253 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6254 elf_dt_name (t->vn_bfd) != NULL
6255 ? elf_dt_name (t->vn_bfd)
6256 : lbasename (t->vn_bfd->filename),
6257 FALSE);
6258 if (indx == (bfd_size_type) -1)
6259 return FALSE;
6260 t->vn_file = indx;
6261 t->vn_aux = sizeof (Elf_External_Verneed);
6262 if (t->vn_nextref == NULL)
6263 t->vn_next = 0;
6264 else
6265 t->vn_next = (sizeof (Elf_External_Verneed)
6266 + caux * sizeof (Elf_External_Vernaux));
6267
6268 _bfd_elf_swap_verneed_out (output_bfd, t,
6269 (Elf_External_Verneed *) p);
6270 p += sizeof (Elf_External_Verneed);
6271
6272 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6273 {
6274 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6275 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6276 a->vna_nodename, FALSE);
6277 if (indx == (bfd_size_type) -1)
6278 return FALSE;
6279 a->vna_name = indx;
6280 if (a->vna_nextptr == NULL)
6281 a->vna_next = 0;
6282 else
6283 a->vna_next = sizeof (Elf_External_Vernaux);
6284
6285 _bfd_elf_swap_vernaux_out (output_bfd, a,
6286 (Elf_External_Vernaux *) p);
6287 p += sizeof (Elf_External_Vernaux);
6288 }
6289 }
6290
6291 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6292 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6293 return FALSE;
6294
6295 elf_tdata (output_bfd)->cverrefs = crefs;
6296 }
6297 }
6298
6299 if ((elf_tdata (output_bfd)->cverrefs == 0
6300 && elf_tdata (output_bfd)->cverdefs == 0)
6301 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6302 &section_sym_count) == 0)
6303 {
6304 s = bfd_get_linker_section (dynobj, ".gnu.version");
6305 s->flags |= SEC_EXCLUDE;
6306 }
6307 }
6308 return TRUE;
6309 }
6310
6311 /* Find the first non-excluded output section. We'll use its
6312 section symbol for some emitted relocs. */
6313 void
6314 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6315 {
6316 asection *s;
6317
6318 for (s = output_bfd->sections; s != NULL; s = s->next)
6319 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6320 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6321 {
6322 elf_hash_table (info)->text_index_section = s;
6323 break;
6324 }
6325 }
6326
6327 /* Find two non-excluded output sections, one for code, one for data.
6328 We'll use their section symbols for some emitted relocs. */
6329 void
6330 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6331 {
6332 asection *s;
6333
6334 /* Data first, since setting text_index_section changes
6335 _bfd_elf_link_omit_section_dynsym. */
6336 for (s = output_bfd->sections; s != NULL; s = s->next)
6337 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6338 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6339 {
6340 elf_hash_table (info)->data_index_section = s;
6341 break;
6342 }
6343
6344 for (s = output_bfd->sections; s != NULL; s = s->next)
6345 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6346 == (SEC_ALLOC | SEC_READONLY))
6347 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6348 {
6349 elf_hash_table (info)->text_index_section = s;
6350 break;
6351 }
6352
6353 if (elf_hash_table (info)->text_index_section == NULL)
6354 elf_hash_table (info)->text_index_section
6355 = elf_hash_table (info)->data_index_section;
6356 }
6357
6358 bfd_boolean
6359 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6360 {
6361 const struct elf_backend_data *bed;
6362
6363 if (!is_elf_hash_table (info->hash))
6364 return TRUE;
6365
6366 bed = get_elf_backend_data (output_bfd);
6367 (*bed->elf_backend_init_index_section) (output_bfd, info);
6368
6369 if (elf_hash_table (info)->dynamic_sections_created)
6370 {
6371 bfd *dynobj;
6372 asection *s;
6373 bfd_size_type dynsymcount;
6374 unsigned long section_sym_count;
6375 unsigned int dtagcount;
6376
6377 dynobj = elf_hash_table (info)->dynobj;
6378
6379 /* Assign dynsym indicies. In a shared library we generate a
6380 section symbol for each output section, which come first.
6381 Next come all of the back-end allocated local dynamic syms,
6382 followed by the rest of the global symbols. */
6383
6384 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6385 &section_sym_count);
6386
6387 /* Work out the size of the symbol version section. */
6388 s = bfd_get_linker_section (dynobj, ".gnu.version");
6389 BFD_ASSERT (s != NULL);
6390 if (dynsymcount != 0
6391 && (s->flags & SEC_EXCLUDE) == 0)
6392 {
6393 s->size = dynsymcount * sizeof (Elf_External_Versym);
6394 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6395 if (s->contents == NULL)
6396 return FALSE;
6397
6398 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6399 return FALSE;
6400 }
6401
6402 /* Set the size of the .dynsym and .hash sections. We counted
6403 the number of dynamic symbols in elf_link_add_object_symbols.
6404 We will build the contents of .dynsym and .hash when we build
6405 the final symbol table, because until then we do not know the
6406 correct value to give the symbols. We built the .dynstr
6407 section as we went along in elf_link_add_object_symbols. */
6408 s = bfd_get_linker_section (dynobj, ".dynsym");
6409 BFD_ASSERT (s != NULL);
6410 s->size = dynsymcount * bed->s->sizeof_sym;
6411
6412 if (dynsymcount != 0)
6413 {
6414 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6415 if (s->contents == NULL)
6416 return FALSE;
6417
6418 /* The first entry in .dynsym is a dummy symbol.
6419 Clear all the section syms, in case we don't output them all. */
6420 ++section_sym_count;
6421 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6422 }
6423
6424 elf_hash_table (info)->bucketcount = 0;
6425
6426 /* Compute the size of the hashing table. As a side effect this
6427 computes the hash values for all the names we export. */
6428 if (info->emit_hash)
6429 {
6430 unsigned long int *hashcodes;
6431 struct hash_codes_info hashinf;
6432 bfd_size_type amt;
6433 unsigned long int nsyms;
6434 size_t bucketcount;
6435 size_t hash_entry_size;
6436
6437 /* Compute the hash values for all exported symbols. At the same
6438 time store the values in an array so that we could use them for
6439 optimizations. */
6440 amt = dynsymcount * sizeof (unsigned long int);
6441 hashcodes = (unsigned long int *) bfd_malloc (amt);
6442 if (hashcodes == NULL)
6443 return FALSE;
6444 hashinf.hashcodes = hashcodes;
6445 hashinf.error = FALSE;
6446
6447 /* Put all hash values in HASHCODES. */
6448 elf_link_hash_traverse (elf_hash_table (info),
6449 elf_collect_hash_codes, &hashinf);
6450 if (hashinf.error)
6451 {
6452 free (hashcodes);
6453 return FALSE;
6454 }
6455
6456 nsyms = hashinf.hashcodes - hashcodes;
6457 bucketcount
6458 = compute_bucket_count (info, hashcodes, nsyms, 0);
6459 free (hashcodes);
6460
6461 if (bucketcount == 0)
6462 return FALSE;
6463
6464 elf_hash_table (info)->bucketcount = bucketcount;
6465
6466 s = bfd_get_linker_section (dynobj, ".hash");
6467 BFD_ASSERT (s != NULL);
6468 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6469 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6470 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6471 if (s->contents == NULL)
6472 return FALSE;
6473
6474 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6475 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6476 s->contents + hash_entry_size);
6477 }
6478
6479 if (info->emit_gnu_hash)
6480 {
6481 size_t i, cnt;
6482 unsigned char *contents;
6483 struct collect_gnu_hash_codes cinfo;
6484 bfd_size_type amt;
6485 size_t bucketcount;
6486
6487 memset (&cinfo, 0, sizeof (cinfo));
6488
6489 /* Compute the hash values for all exported symbols. At the same
6490 time store the values in an array so that we could use them for
6491 optimizations. */
6492 amt = dynsymcount * 2 * sizeof (unsigned long int);
6493 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6494 if (cinfo.hashcodes == NULL)
6495 return FALSE;
6496
6497 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6498 cinfo.min_dynindx = -1;
6499 cinfo.output_bfd = output_bfd;
6500 cinfo.bed = bed;
6501
6502 /* Put all hash values in HASHCODES. */
6503 elf_link_hash_traverse (elf_hash_table (info),
6504 elf_collect_gnu_hash_codes, &cinfo);
6505 if (cinfo.error)
6506 {
6507 free (cinfo.hashcodes);
6508 return FALSE;
6509 }
6510
6511 bucketcount
6512 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6513
6514 if (bucketcount == 0)
6515 {
6516 free (cinfo.hashcodes);
6517 return FALSE;
6518 }
6519
6520 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6521 BFD_ASSERT (s != NULL);
6522
6523 if (cinfo.nsyms == 0)
6524 {
6525 /* Empty .gnu.hash section is special. */
6526 BFD_ASSERT (cinfo.min_dynindx == -1);
6527 free (cinfo.hashcodes);
6528 s->size = 5 * 4 + bed->s->arch_size / 8;
6529 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6530 if (contents == NULL)
6531 return FALSE;
6532 s->contents = contents;
6533 /* 1 empty bucket. */
6534 bfd_put_32 (output_bfd, 1, contents);
6535 /* SYMIDX above the special symbol 0. */
6536 bfd_put_32 (output_bfd, 1, contents + 4);
6537 /* Just one word for bitmask. */
6538 bfd_put_32 (output_bfd, 1, contents + 8);
6539 /* Only hash fn bloom filter. */
6540 bfd_put_32 (output_bfd, 0, contents + 12);
6541 /* No hashes are valid - empty bitmask. */
6542 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6543 /* No hashes in the only bucket. */
6544 bfd_put_32 (output_bfd, 0,
6545 contents + 16 + bed->s->arch_size / 8);
6546 }
6547 else
6548 {
6549 unsigned long int maskwords, maskbitslog2, x;
6550 BFD_ASSERT (cinfo.min_dynindx != -1);
6551
6552 x = cinfo.nsyms;
6553 maskbitslog2 = 1;
6554 while ((x >>= 1) != 0)
6555 ++maskbitslog2;
6556 if (maskbitslog2 < 3)
6557 maskbitslog2 = 5;
6558 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6559 maskbitslog2 = maskbitslog2 + 3;
6560 else
6561 maskbitslog2 = maskbitslog2 + 2;
6562 if (bed->s->arch_size == 64)
6563 {
6564 if (maskbitslog2 == 5)
6565 maskbitslog2 = 6;
6566 cinfo.shift1 = 6;
6567 }
6568 else
6569 cinfo.shift1 = 5;
6570 cinfo.mask = (1 << cinfo.shift1) - 1;
6571 cinfo.shift2 = maskbitslog2;
6572 cinfo.maskbits = 1 << maskbitslog2;
6573 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6574 amt = bucketcount * sizeof (unsigned long int) * 2;
6575 amt += maskwords * sizeof (bfd_vma);
6576 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6577 if (cinfo.bitmask == NULL)
6578 {
6579 free (cinfo.hashcodes);
6580 return FALSE;
6581 }
6582
6583 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6584 cinfo.indx = cinfo.counts + bucketcount;
6585 cinfo.symindx = dynsymcount - cinfo.nsyms;
6586 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6587
6588 /* Determine how often each hash bucket is used. */
6589 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6590 for (i = 0; i < cinfo.nsyms; ++i)
6591 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6592
6593 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6594 if (cinfo.counts[i] != 0)
6595 {
6596 cinfo.indx[i] = cnt;
6597 cnt += cinfo.counts[i];
6598 }
6599 BFD_ASSERT (cnt == dynsymcount);
6600 cinfo.bucketcount = bucketcount;
6601 cinfo.local_indx = cinfo.min_dynindx;
6602
6603 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6604 s->size += cinfo.maskbits / 8;
6605 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6606 if (contents == NULL)
6607 {
6608 free (cinfo.bitmask);
6609 free (cinfo.hashcodes);
6610 return FALSE;
6611 }
6612
6613 s->contents = contents;
6614 bfd_put_32 (output_bfd, bucketcount, contents);
6615 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6616 bfd_put_32 (output_bfd, maskwords, contents + 8);
6617 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6618 contents += 16 + cinfo.maskbits / 8;
6619
6620 for (i = 0; i < bucketcount; ++i)
6621 {
6622 if (cinfo.counts[i] == 0)
6623 bfd_put_32 (output_bfd, 0, contents);
6624 else
6625 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6626 contents += 4;
6627 }
6628
6629 cinfo.contents = contents;
6630
6631 /* Renumber dynamic symbols, populate .gnu.hash section. */
6632 elf_link_hash_traverse (elf_hash_table (info),
6633 elf_renumber_gnu_hash_syms, &cinfo);
6634
6635 contents = s->contents + 16;
6636 for (i = 0; i < maskwords; ++i)
6637 {
6638 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6639 contents);
6640 contents += bed->s->arch_size / 8;
6641 }
6642
6643 free (cinfo.bitmask);
6644 free (cinfo.hashcodes);
6645 }
6646 }
6647
6648 s = bfd_get_linker_section (dynobj, ".dynstr");
6649 BFD_ASSERT (s != NULL);
6650
6651 elf_finalize_dynstr (output_bfd, info);
6652
6653 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6654
6655 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6656 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6657 return FALSE;
6658 }
6659
6660 return TRUE;
6661 }
6662 \f
6663 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6664
6665 static void
6666 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6667 asection *sec)
6668 {
6669 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6670 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6671 }
6672
6673 /* Finish SHF_MERGE section merging. */
6674
6675 bfd_boolean
6676 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6677 {
6678 bfd *ibfd;
6679 asection *sec;
6680
6681 if (!is_elf_hash_table (info->hash))
6682 return FALSE;
6683
6684 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6685 if ((ibfd->flags & DYNAMIC) == 0)
6686 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6687 if ((sec->flags & SEC_MERGE) != 0
6688 && !bfd_is_abs_section (sec->output_section))
6689 {
6690 struct bfd_elf_section_data *secdata;
6691
6692 secdata = elf_section_data (sec);
6693 if (! _bfd_add_merge_section (abfd,
6694 &elf_hash_table (info)->merge_info,
6695 sec, &secdata->sec_info))
6696 return FALSE;
6697 else if (secdata->sec_info)
6698 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6699 }
6700
6701 if (elf_hash_table (info)->merge_info != NULL)
6702 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6703 merge_sections_remove_hook);
6704 return TRUE;
6705 }
6706
6707 /* Create an entry in an ELF linker hash table. */
6708
6709 struct bfd_hash_entry *
6710 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6711 struct bfd_hash_table *table,
6712 const char *string)
6713 {
6714 /* Allocate the structure if it has not already been allocated by a
6715 subclass. */
6716 if (entry == NULL)
6717 {
6718 entry = (struct bfd_hash_entry *)
6719 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6720 if (entry == NULL)
6721 return entry;
6722 }
6723
6724 /* Call the allocation method of the superclass. */
6725 entry = _bfd_link_hash_newfunc (entry, table, string);
6726 if (entry != NULL)
6727 {
6728 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6729 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6730
6731 /* Set local fields. */
6732 ret->indx = -1;
6733 ret->dynindx = -1;
6734 ret->got = htab->init_got_refcount;
6735 ret->plt = htab->init_plt_refcount;
6736 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6737 - offsetof (struct elf_link_hash_entry, size)));
6738 /* Assume that we have been called by a non-ELF symbol reader.
6739 This flag is then reset by the code which reads an ELF input
6740 file. This ensures that a symbol created by a non-ELF symbol
6741 reader will have the flag set correctly. */
6742 ret->non_elf = 1;
6743 }
6744
6745 return entry;
6746 }
6747
6748 /* Copy data from an indirect symbol to its direct symbol, hiding the
6749 old indirect symbol. Also used for copying flags to a weakdef. */
6750
6751 void
6752 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6753 struct elf_link_hash_entry *dir,
6754 struct elf_link_hash_entry *ind)
6755 {
6756 struct elf_link_hash_table *htab;
6757
6758 /* Copy down any references that we may have already seen to the
6759 symbol which just became indirect. */
6760
6761 dir->ref_dynamic |= ind->ref_dynamic;
6762 dir->ref_regular |= ind->ref_regular;
6763 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6764 dir->non_got_ref |= ind->non_got_ref;
6765 dir->needs_plt |= ind->needs_plt;
6766 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6767
6768 if (ind->root.type != bfd_link_hash_indirect)
6769 return;
6770
6771 /* Copy over the global and procedure linkage table refcount entries.
6772 These may have been already set up by a check_relocs routine. */
6773 htab = elf_hash_table (info);
6774 if (ind->got.refcount > htab->init_got_refcount.refcount)
6775 {
6776 if (dir->got.refcount < 0)
6777 dir->got.refcount = 0;
6778 dir->got.refcount += ind->got.refcount;
6779 ind->got.refcount = htab->init_got_refcount.refcount;
6780 }
6781
6782 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6783 {
6784 if (dir->plt.refcount < 0)
6785 dir->plt.refcount = 0;
6786 dir->plt.refcount += ind->plt.refcount;
6787 ind->plt.refcount = htab->init_plt_refcount.refcount;
6788 }
6789
6790 if (ind->dynindx != -1)
6791 {
6792 if (dir->dynindx != -1)
6793 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6794 dir->dynindx = ind->dynindx;
6795 dir->dynstr_index = ind->dynstr_index;
6796 ind->dynindx = -1;
6797 ind->dynstr_index = 0;
6798 }
6799 }
6800
6801 void
6802 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6803 struct elf_link_hash_entry *h,
6804 bfd_boolean force_local)
6805 {
6806 /* STT_GNU_IFUNC symbol must go through PLT. */
6807 if (h->type != STT_GNU_IFUNC)
6808 {
6809 h->plt = elf_hash_table (info)->init_plt_offset;
6810 h->needs_plt = 0;
6811 }
6812 if (force_local)
6813 {
6814 h->forced_local = 1;
6815 if (h->dynindx != -1)
6816 {
6817 h->dynindx = -1;
6818 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6819 h->dynstr_index);
6820 }
6821 }
6822 }
6823
6824 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
6825 caller. */
6826
6827 bfd_boolean
6828 _bfd_elf_link_hash_table_init
6829 (struct elf_link_hash_table *table,
6830 bfd *abfd,
6831 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6832 struct bfd_hash_table *,
6833 const char *),
6834 unsigned int entsize,
6835 enum elf_target_id target_id)
6836 {
6837 bfd_boolean ret;
6838 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6839
6840 table->init_got_refcount.refcount = can_refcount - 1;
6841 table->init_plt_refcount.refcount = can_refcount - 1;
6842 table->init_got_offset.offset = -(bfd_vma) 1;
6843 table->init_plt_offset.offset = -(bfd_vma) 1;
6844 /* The first dynamic symbol is a dummy. */
6845 table->dynsymcount = 1;
6846
6847 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6848
6849 table->root.type = bfd_link_elf_hash_table;
6850 table->hash_table_id = target_id;
6851
6852 return ret;
6853 }
6854
6855 /* Create an ELF linker hash table. */
6856
6857 struct bfd_link_hash_table *
6858 _bfd_elf_link_hash_table_create (bfd *abfd)
6859 {
6860 struct elf_link_hash_table *ret;
6861 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6862
6863 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
6864 if (ret == NULL)
6865 return NULL;
6866
6867 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6868 sizeof (struct elf_link_hash_entry),
6869 GENERIC_ELF_DATA))
6870 {
6871 free (ret);
6872 return NULL;
6873 }
6874 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
6875
6876 return &ret->root;
6877 }
6878
6879 /* Destroy an ELF linker hash table. */
6880
6881 void
6882 _bfd_elf_link_hash_table_free (bfd *obfd)
6883 {
6884 struct elf_link_hash_table *htab;
6885
6886 htab = (struct elf_link_hash_table *) obfd->link.hash;
6887 if (htab->dynstr != NULL)
6888 _bfd_elf_strtab_free (htab->dynstr);
6889 _bfd_merge_sections_free (htab->merge_info);
6890 _bfd_generic_link_hash_table_free (obfd);
6891 }
6892
6893 /* This is a hook for the ELF emulation code in the generic linker to
6894 tell the backend linker what file name to use for the DT_NEEDED
6895 entry for a dynamic object. */
6896
6897 void
6898 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6899 {
6900 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6901 && bfd_get_format (abfd) == bfd_object)
6902 elf_dt_name (abfd) = name;
6903 }
6904
6905 int
6906 bfd_elf_get_dyn_lib_class (bfd *abfd)
6907 {
6908 int lib_class;
6909 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6910 && bfd_get_format (abfd) == bfd_object)
6911 lib_class = elf_dyn_lib_class (abfd);
6912 else
6913 lib_class = 0;
6914 return lib_class;
6915 }
6916
6917 void
6918 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6919 {
6920 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6921 && bfd_get_format (abfd) == bfd_object)
6922 elf_dyn_lib_class (abfd) = lib_class;
6923 }
6924
6925 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6926 the linker ELF emulation code. */
6927
6928 struct bfd_link_needed_list *
6929 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6930 struct bfd_link_info *info)
6931 {
6932 if (! is_elf_hash_table (info->hash))
6933 return NULL;
6934 return elf_hash_table (info)->needed;
6935 }
6936
6937 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6938 hook for the linker ELF emulation code. */
6939
6940 struct bfd_link_needed_list *
6941 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6942 struct bfd_link_info *info)
6943 {
6944 if (! is_elf_hash_table (info->hash))
6945 return NULL;
6946 return elf_hash_table (info)->runpath;
6947 }
6948
6949 /* Get the name actually used for a dynamic object for a link. This
6950 is the SONAME entry if there is one. Otherwise, it is the string
6951 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6952
6953 const char *
6954 bfd_elf_get_dt_soname (bfd *abfd)
6955 {
6956 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6957 && bfd_get_format (abfd) == bfd_object)
6958 return elf_dt_name (abfd);
6959 return NULL;
6960 }
6961
6962 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6963 the ELF linker emulation code. */
6964
6965 bfd_boolean
6966 bfd_elf_get_bfd_needed_list (bfd *abfd,
6967 struct bfd_link_needed_list **pneeded)
6968 {
6969 asection *s;
6970 bfd_byte *dynbuf = NULL;
6971 unsigned int elfsec;
6972 unsigned long shlink;
6973 bfd_byte *extdyn, *extdynend;
6974 size_t extdynsize;
6975 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6976
6977 *pneeded = NULL;
6978
6979 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6980 || bfd_get_format (abfd) != bfd_object)
6981 return TRUE;
6982
6983 s = bfd_get_section_by_name (abfd, ".dynamic");
6984 if (s == NULL || s->size == 0)
6985 return TRUE;
6986
6987 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6988 goto error_return;
6989
6990 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6991 if (elfsec == SHN_BAD)
6992 goto error_return;
6993
6994 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6995
6996 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6997 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6998
6999 extdyn = dynbuf;
7000 extdynend = extdyn + s->size;
7001 for (; extdyn < extdynend; extdyn += extdynsize)
7002 {
7003 Elf_Internal_Dyn dyn;
7004
7005 (*swap_dyn_in) (abfd, extdyn, &dyn);
7006
7007 if (dyn.d_tag == DT_NULL)
7008 break;
7009
7010 if (dyn.d_tag == DT_NEEDED)
7011 {
7012 const char *string;
7013 struct bfd_link_needed_list *l;
7014 unsigned int tagv = dyn.d_un.d_val;
7015 bfd_size_type amt;
7016
7017 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7018 if (string == NULL)
7019 goto error_return;
7020
7021 amt = sizeof *l;
7022 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7023 if (l == NULL)
7024 goto error_return;
7025
7026 l->by = abfd;
7027 l->name = string;
7028 l->next = *pneeded;
7029 *pneeded = l;
7030 }
7031 }
7032
7033 free (dynbuf);
7034
7035 return TRUE;
7036
7037 error_return:
7038 if (dynbuf != NULL)
7039 free (dynbuf);
7040 return FALSE;
7041 }
7042
7043 struct elf_symbuf_symbol
7044 {
7045 unsigned long st_name; /* Symbol name, index in string tbl */
7046 unsigned char st_info; /* Type and binding attributes */
7047 unsigned char st_other; /* Visibilty, and target specific */
7048 };
7049
7050 struct elf_symbuf_head
7051 {
7052 struct elf_symbuf_symbol *ssym;
7053 bfd_size_type count;
7054 unsigned int st_shndx;
7055 };
7056
7057 struct elf_symbol
7058 {
7059 union
7060 {
7061 Elf_Internal_Sym *isym;
7062 struct elf_symbuf_symbol *ssym;
7063 } u;
7064 const char *name;
7065 };
7066
7067 /* Sort references to symbols by ascending section number. */
7068
7069 static int
7070 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7071 {
7072 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7073 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7074
7075 return s1->st_shndx - s2->st_shndx;
7076 }
7077
7078 static int
7079 elf_sym_name_compare (const void *arg1, const void *arg2)
7080 {
7081 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7082 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7083 return strcmp (s1->name, s2->name);
7084 }
7085
7086 static struct elf_symbuf_head *
7087 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7088 {
7089 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7090 struct elf_symbuf_symbol *ssym;
7091 struct elf_symbuf_head *ssymbuf, *ssymhead;
7092 bfd_size_type i, shndx_count, total_size;
7093
7094 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7095 if (indbuf == NULL)
7096 return NULL;
7097
7098 for (ind = indbuf, i = 0; i < symcount; i++)
7099 if (isymbuf[i].st_shndx != SHN_UNDEF)
7100 *ind++ = &isymbuf[i];
7101 indbufend = ind;
7102
7103 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7104 elf_sort_elf_symbol);
7105
7106 shndx_count = 0;
7107 if (indbufend > indbuf)
7108 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7109 if (ind[0]->st_shndx != ind[1]->st_shndx)
7110 shndx_count++;
7111
7112 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7113 + (indbufend - indbuf) * sizeof (*ssym));
7114 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7115 if (ssymbuf == NULL)
7116 {
7117 free (indbuf);
7118 return NULL;
7119 }
7120
7121 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7122 ssymbuf->ssym = NULL;
7123 ssymbuf->count = shndx_count;
7124 ssymbuf->st_shndx = 0;
7125 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7126 {
7127 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7128 {
7129 ssymhead++;
7130 ssymhead->ssym = ssym;
7131 ssymhead->count = 0;
7132 ssymhead->st_shndx = (*ind)->st_shndx;
7133 }
7134 ssym->st_name = (*ind)->st_name;
7135 ssym->st_info = (*ind)->st_info;
7136 ssym->st_other = (*ind)->st_other;
7137 ssymhead->count++;
7138 }
7139 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7140 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7141 == total_size));
7142
7143 free (indbuf);
7144 return ssymbuf;
7145 }
7146
7147 /* Check if 2 sections define the same set of local and global
7148 symbols. */
7149
7150 static bfd_boolean
7151 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7152 struct bfd_link_info *info)
7153 {
7154 bfd *bfd1, *bfd2;
7155 const struct elf_backend_data *bed1, *bed2;
7156 Elf_Internal_Shdr *hdr1, *hdr2;
7157 bfd_size_type symcount1, symcount2;
7158 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7159 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7160 Elf_Internal_Sym *isym, *isymend;
7161 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7162 bfd_size_type count1, count2, i;
7163 unsigned int shndx1, shndx2;
7164 bfd_boolean result;
7165
7166 bfd1 = sec1->owner;
7167 bfd2 = sec2->owner;
7168
7169 /* Both sections have to be in ELF. */
7170 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7171 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7172 return FALSE;
7173
7174 if (elf_section_type (sec1) != elf_section_type (sec2))
7175 return FALSE;
7176
7177 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7178 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7179 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7180 return FALSE;
7181
7182 bed1 = get_elf_backend_data (bfd1);
7183 bed2 = get_elf_backend_data (bfd2);
7184 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7185 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7186 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7187 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7188
7189 if (symcount1 == 0 || symcount2 == 0)
7190 return FALSE;
7191
7192 result = FALSE;
7193 isymbuf1 = NULL;
7194 isymbuf2 = NULL;
7195 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7196 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7197
7198 if (ssymbuf1 == NULL)
7199 {
7200 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7201 NULL, NULL, NULL);
7202 if (isymbuf1 == NULL)
7203 goto done;
7204
7205 if (!info->reduce_memory_overheads)
7206 elf_tdata (bfd1)->symbuf = ssymbuf1
7207 = elf_create_symbuf (symcount1, isymbuf1);
7208 }
7209
7210 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7211 {
7212 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7213 NULL, NULL, NULL);
7214 if (isymbuf2 == NULL)
7215 goto done;
7216
7217 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7218 elf_tdata (bfd2)->symbuf = ssymbuf2
7219 = elf_create_symbuf (symcount2, isymbuf2);
7220 }
7221
7222 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7223 {
7224 /* Optimized faster version. */
7225 bfd_size_type lo, hi, mid;
7226 struct elf_symbol *symp;
7227 struct elf_symbuf_symbol *ssym, *ssymend;
7228
7229 lo = 0;
7230 hi = ssymbuf1->count;
7231 ssymbuf1++;
7232 count1 = 0;
7233 while (lo < hi)
7234 {
7235 mid = (lo + hi) / 2;
7236 if (shndx1 < ssymbuf1[mid].st_shndx)
7237 hi = mid;
7238 else if (shndx1 > ssymbuf1[mid].st_shndx)
7239 lo = mid + 1;
7240 else
7241 {
7242 count1 = ssymbuf1[mid].count;
7243 ssymbuf1 += mid;
7244 break;
7245 }
7246 }
7247
7248 lo = 0;
7249 hi = ssymbuf2->count;
7250 ssymbuf2++;
7251 count2 = 0;
7252 while (lo < hi)
7253 {
7254 mid = (lo + hi) / 2;
7255 if (shndx2 < ssymbuf2[mid].st_shndx)
7256 hi = mid;
7257 else if (shndx2 > ssymbuf2[mid].st_shndx)
7258 lo = mid + 1;
7259 else
7260 {
7261 count2 = ssymbuf2[mid].count;
7262 ssymbuf2 += mid;
7263 break;
7264 }
7265 }
7266
7267 if (count1 == 0 || count2 == 0 || count1 != count2)
7268 goto done;
7269
7270 symtable1
7271 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7272 symtable2
7273 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7274 if (symtable1 == NULL || symtable2 == NULL)
7275 goto done;
7276
7277 symp = symtable1;
7278 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7279 ssym < ssymend; ssym++, symp++)
7280 {
7281 symp->u.ssym = ssym;
7282 symp->name = bfd_elf_string_from_elf_section (bfd1,
7283 hdr1->sh_link,
7284 ssym->st_name);
7285 }
7286
7287 symp = symtable2;
7288 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7289 ssym < ssymend; ssym++, symp++)
7290 {
7291 symp->u.ssym = ssym;
7292 symp->name = bfd_elf_string_from_elf_section (bfd2,
7293 hdr2->sh_link,
7294 ssym->st_name);
7295 }
7296
7297 /* Sort symbol by name. */
7298 qsort (symtable1, count1, sizeof (struct elf_symbol),
7299 elf_sym_name_compare);
7300 qsort (symtable2, count1, sizeof (struct elf_symbol),
7301 elf_sym_name_compare);
7302
7303 for (i = 0; i < count1; i++)
7304 /* Two symbols must have the same binding, type and name. */
7305 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7306 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7307 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7308 goto done;
7309
7310 result = TRUE;
7311 goto done;
7312 }
7313
7314 symtable1 = (struct elf_symbol *)
7315 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7316 symtable2 = (struct elf_symbol *)
7317 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7318 if (symtable1 == NULL || symtable2 == NULL)
7319 goto done;
7320
7321 /* Count definitions in the section. */
7322 count1 = 0;
7323 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7324 if (isym->st_shndx == shndx1)
7325 symtable1[count1++].u.isym = isym;
7326
7327 count2 = 0;
7328 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7329 if (isym->st_shndx == shndx2)
7330 symtable2[count2++].u.isym = isym;
7331
7332 if (count1 == 0 || count2 == 0 || count1 != count2)
7333 goto done;
7334
7335 for (i = 0; i < count1; i++)
7336 symtable1[i].name
7337 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7338 symtable1[i].u.isym->st_name);
7339
7340 for (i = 0; i < count2; i++)
7341 symtable2[i].name
7342 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7343 symtable2[i].u.isym->st_name);
7344
7345 /* Sort symbol by name. */
7346 qsort (symtable1, count1, sizeof (struct elf_symbol),
7347 elf_sym_name_compare);
7348 qsort (symtable2, count1, sizeof (struct elf_symbol),
7349 elf_sym_name_compare);
7350
7351 for (i = 0; i < count1; i++)
7352 /* Two symbols must have the same binding, type and name. */
7353 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7354 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7355 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7356 goto done;
7357
7358 result = TRUE;
7359
7360 done:
7361 if (symtable1)
7362 free (symtable1);
7363 if (symtable2)
7364 free (symtable2);
7365 if (isymbuf1)
7366 free (isymbuf1);
7367 if (isymbuf2)
7368 free (isymbuf2);
7369
7370 return result;
7371 }
7372
7373 /* Return TRUE if 2 section types are compatible. */
7374
7375 bfd_boolean
7376 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7377 bfd *bbfd, const asection *bsec)
7378 {
7379 if (asec == NULL
7380 || bsec == NULL
7381 || abfd->xvec->flavour != bfd_target_elf_flavour
7382 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7383 return TRUE;
7384
7385 return elf_section_type (asec) == elf_section_type (bsec);
7386 }
7387 \f
7388 /* Final phase of ELF linker. */
7389
7390 /* A structure we use to avoid passing large numbers of arguments. */
7391
7392 struct elf_final_link_info
7393 {
7394 /* General link information. */
7395 struct bfd_link_info *info;
7396 /* Output BFD. */
7397 bfd *output_bfd;
7398 /* Symbol string table. */
7399 struct bfd_strtab_hash *symstrtab;
7400 /* .dynsym section. */
7401 asection *dynsym_sec;
7402 /* .hash section. */
7403 asection *hash_sec;
7404 /* symbol version section (.gnu.version). */
7405 asection *symver_sec;
7406 /* Buffer large enough to hold contents of any section. */
7407 bfd_byte *contents;
7408 /* Buffer large enough to hold external relocs of any section. */
7409 void *external_relocs;
7410 /* Buffer large enough to hold internal relocs of any section. */
7411 Elf_Internal_Rela *internal_relocs;
7412 /* Buffer large enough to hold external local symbols of any input
7413 BFD. */
7414 bfd_byte *external_syms;
7415 /* And a buffer for symbol section indices. */
7416 Elf_External_Sym_Shndx *locsym_shndx;
7417 /* Buffer large enough to hold internal local symbols of any input
7418 BFD. */
7419 Elf_Internal_Sym *internal_syms;
7420 /* Array large enough to hold a symbol index for each local symbol
7421 of any input BFD. */
7422 long *indices;
7423 /* Array large enough to hold a section pointer for each local
7424 symbol of any input BFD. */
7425 asection **sections;
7426 /* Buffer to hold swapped out symbols. */
7427 bfd_byte *symbuf;
7428 /* And one for symbol section indices. */
7429 Elf_External_Sym_Shndx *symshndxbuf;
7430 /* Number of swapped out symbols in buffer. */
7431 size_t symbuf_count;
7432 /* Number of symbols which fit in symbuf. */
7433 size_t symbuf_size;
7434 /* And same for symshndxbuf. */
7435 size_t shndxbuf_size;
7436 /* Number of STT_FILE syms seen. */
7437 size_t filesym_count;
7438 };
7439
7440 /* This struct is used to pass information to elf_link_output_extsym. */
7441
7442 struct elf_outext_info
7443 {
7444 bfd_boolean failed;
7445 bfd_boolean localsyms;
7446 bfd_boolean file_sym_done;
7447 struct elf_final_link_info *flinfo;
7448 };
7449
7450
7451 /* Support for evaluating a complex relocation.
7452
7453 Complex relocations are generalized, self-describing relocations. The
7454 implementation of them consists of two parts: complex symbols, and the
7455 relocations themselves.
7456
7457 The relocations are use a reserved elf-wide relocation type code (R_RELC
7458 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7459 information (start bit, end bit, word width, etc) into the addend. This
7460 information is extracted from CGEN-generated operand tables within gas.
7461
7462 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7463 internal) representing prefix-notation expressions, including but not
7464 limited to those sorts of expressions normally encoded as addends in the
7465 addend field. The symbol mangling format is:
7466
7467 <node> := <literal>
7468 | <unary-operator> ':' <node>
7469 | <binary-operator> ':' <node> ':' <node>
7470 ;
7471
7472 <literal> := 's' <digits=N> ':' <N character symbol name>
7473 | 'S' <digits=N> ':' <N character section name>
7474 | '#' <hexdigits>
7475 ;
7476
7477 <binary-operator> := as in C
7478 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7479
7480 static void
7481 set_symbol_value (bfd *bfd_with_globals,
7482 Elf_Internal_Sym *isymbuf,
7483 size_t locsymcount,
7484 size_t symidx,
7485 bfd_vma val)
7486 {
7487 struct elf_link_hash_entry **sym_hashes;
7488 struct elf_link_hash_entry *h;
7489 size_t extsymoff = locsymcount;
7490
7491 if (symidx < locsymcount)
7492 {
7493 Elf_Internal_Sym *sym;
7494
7495 sym = isymbuf + symidx;
7496 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7497 {
7498 /* It is a local symbol: move it to the
7499 "absolute" section and give it a value. */
7500 sym->st_shndx = SHN_ABS;
7501 sym->st_value = val;
7502 return;
7503 }
7504 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7505 extsymoff = 0;
7506 }
7507
7508 /* It is a global symbol: set its link type
7509 to "defined" and give it a value. */
7510
7511 sym_hashes = elf_sym_hashes (bfd_with_globals);
7512 h = sym_hashes [symidx - extsymoff];
7513 while (h->root.type == bfd_link_hash_indirect
7514 || h->root.type == bfd_link_hash_warning)
7515 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7516 h->root.type = bfd_link_hash_defined;
7517 h->root.u.def.value = val;
7518 h->root.u.def.section = bfd_abs_section_ptr;
7519 }
7520
7521 static bfd_boolean
7522 resolve_symbol (const char *name,
7523 bfd *input_bfd,
7524 struct elf_final_link_info *flinfo,
7525 bfd_vma *result,
7526 Elf_Internal_Sym *isymbuf,
7527 size_t locsymcount)
7528 {
7529 Elf_Internal_Sym *sym;
7530 struct bfd_link_hash_entry *global_entry;
7531 const char *candidate = NULL;
7532 Elf_Internal_Shdr *symtab_hdr;
7533 size_t i;
7534
7535 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7536
7537 for (i = 0; i < locsymcount; ++ i)
7538 {
7539 sym = isymbuf + i;
7540
7541 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7542 continue;
7543
7544 candidate = bfd_elf_string_from_elf_section (input_bfd,
7545 symtab_hdr->sh_link,
7546 sym->st_name);
7547 #ifdef DEBUG
7548 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7549 name, candidate, (unsigned long) sym->st_value);
7550 #endif
7551 if (candidate && strcmp (candidate, name) == 0)
7552 {
7553 asection *sec = flinfo->sections [i];
7554
7555 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7556 *result += sec->output_offset + sec->output_section->vma;
7557 #ifdef DEBUG
7558 printf ("Found symbol with value %8.8lx\n",
7559 (unsigned long) *result);
7560 #endif
7561 return TRUE;
7562 }
7563 }
7564
7565 /* Hmm, haven't found it yet. perhaps it is a global. */
7566 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7567 FALSE, FALSE, TRUE);
7568 if (!global_entry)
7569 return FALSE;
7570
7571 if (global_entry->type == bfd_link_hash_defined
7572 || global_entry->type == bfd_link_hash_defweak)
7573 {
7574 *result = (global_entry->u.def.value
7575 + global_entry->u.def.section->output_section->vma
7576 + global_entry->u.def.section->output_offset);
7577 #ifdef DEBUG
7578 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7579 global_entry->root.string, (unsigned long) *result);
7580 #endif
7581 return TRUE;
7582 }
7583
7584 return FALSE;
7585 }
7586
7587 static bfd_boolean
7588 resolve_section (const char *name,
7589 asection *sections,
7590 bfd_vma *result)
7591 {
7592 asection *curr;
7593 unsigned int len;
7594
7595 for (curr = sections; curr; curr = curr->next)
7596 if (strcmp (curr->name, name) == 0)
7597 {
7598 *result = curr->vma;
7599 return TRUE;
7600 }
7601
7602 /* Hmm. still haven't found it. try pseudo-section names. */
7603 for (curr = sections; curr; curr = curr->next)
7604 {
7605 len = strlen (curr->name);
7606 if (len > strlen (name))
7607 continue;
7608
7609 if (strncmp (curr->name, name, len) == 0)
7610 {
7611 if (strncmp (".end", name + len, 4) == 0)
7612 {
7613 *result = curr->vma + curr->size;
7614 return TRUE;
7615 }
7616
7617 /* Insert more pseudo-section names here, if you like. */
7618 }
7619 }
7620
7621 return FALSE;
7622 }
7623
7624 static void
7625 undefined_reference (const char *reftype, const char *name)
7626 {
7627 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7628 reftype, name);
7629 }
7630
7631 static bfd_boolean
7632 eval_symbol (bfd_vma *result,
7633 const char **symp,
7634 bfd *input_bfd,
7635 struct elf_final_link_info *flinfo,
7636 bfd_vma dot,
7637 Elf_Internal_Sym *isymbuf,
7638 size_t locsymcount,
7639 int signed_p)
7640 {
7641 size_t len;
7642 size_t symlen;
7643 bfd_vma a;
7644 bfd_vma b;
7645 char symbuf[4096];
7646 const char *sym = *symp;
7647 const char *symend;
7648 bfd_boolean symbol_is_section = FALSE;
7649
7650 len = strlen (sym);
7651 symend = sym + len;
7652
7653 if (len < 1 || len > sizeof (symbuf))
7654 {
7655 bfd_set_error (bfd_error_invalid_operation);
7656 return FALSE;
7657 }
7658
7659 switch (* sym)
7660 {
7661 case '.':
7662 *result = dot;
7663 *symp = sym + 1;
7664 return TRUE;
7665
7666 case '#':
7667 ++sym;
7668 *result = strtoul (sym, (char **) symp, 16);
7669 return TRUE;
7670
7671 case 'S':
7672 symbol_is_section = TRUE;
7673 case 's':
7674 ++sym;
7675 symlen = strtol (sym, (char **) symp, 10);
7676 sym = *symp + 1; /* Skip the trailing ':'. */
7677
7678 if (symend < sym || symlen + 1 > sizeof (symbuf))
7679 {
7680 bfd_set_error (bfd_error_invalid_operation);
7681 return FALSE;
7682 }
7683
7684 memcpy (symbuf, sym, symlen);
7685 symbuf[symlen] = '\0';
7686 *symp = sym + symlen;
7687
7688 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7689 the symbol as a section, or vice-versa. so we're pretty liberal in our
7690 interpretation here; section means "try section first", not "must be a
7691 section", and likewise with symbol. */
7692
7693 if (symbol_is_section)
7694 {
7695 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7696 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7697 isymbuf, locsymcount))
7698 {
7699 undefined_reference ("section", symbuf);
7700 return FALSE;
7701 }
7702 }
7703 else
7704 {
7705 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7706 isymbuf, locsymcount)
7707 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7708 result))
7709 {
7710 undefined_reference ("symbol", symbuf);
7711 return FALSE;
7712 }
7713 }
7714
7715 return TRUE;
7716
7717 /* All that remains are operators. */
7718
7719 #define UNARY_OP(op) \
7720 if (strncmp (sym, #op, strlen (#op)) == 0) \
7721 { \
7722 sym += strlen (#op); \
7723 if (*sym == ':') \
7724 ++sym; \
7725 *symp = sym; \
7726 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7727 isymbuf, locsymcount, signed_p)) \
7728 return FALSE; \
7729 if (signed_p) \
7730 *result = op ((bfd_signed_vma) a); \
7731 else \
7732 *result = op a; \
7733 return TRUE; \
7734 }
7735
7736 #define BINARY_OP(op) \
7737 if (strncmp (sym, #op, strlen (#op)) == 0) \
7738 { \
7739 sym += strlen (#op); \
7740 if (*sym == ':') \
7741 ++sym; \
7742 *symp = sym; \
7743 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7744 isymbuf, locsymcount, signed_p)) \
7745 return FALSE; \
7746 ++*symp; \
7747 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7748 isymbuf, locsymcount, signed_p)) \
7749 return FALSE; \
7750 if (signed_p) \
7751 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7752 else \
7753 *result = a op b; \
7754 return TRUE; \
7755 }
7756
7757 default:
7758 UNARY_OP (0-);
7759 BINARY_OP (<<);
7760 BINARY_OP (>>);
7761 BINARY_OP (==);
7762 BINARY_OP (!=);
7763 BINARY_OP (<=);
7764 BINARY_OP (>=);
7765 BINARY_OP (&&);
7766 BINARY_OP (||);
7767 UNARY_OP (~);
7768 UNARY_OP (!);
7769 BINARY_OP (*);
7770 BINARY_OP (/);
7771 BINARY_OP (%);
7772 BINARY_OP (^);
7773 BINARY_OP (|);
7774 BINARY_OP (&);
7775 BINARY_OP (+);
7776 BINARY_OP (-);
7777 BINARY_OP (<);
7778 BINARY_OP (>);
7779 #undef UNARY_OP
7780 #undef BINARY_OP
7781 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7782 bfd_set_error (bfd_error_invalid_operation);
7783 return FALSE;
7784 }
7785 }
7786
7787 static void
7788 put_value (bfd_vma size,
7789 unsigned long chunksz,
7790 bfd *input_bfd,
7791 bfd_vma x,
7792 bfd_byte *location)
7793 {
7794 location += (size - chunksz);
7795
7796 for (; size; size -= chunksz, location -= chunksz)
7797 {
7798 switch (chunksz)
7799 {
7800 case 1:
7801 bfd_put_8 (input_bfd, x, location);
7802 x >>= 8;
7803 break;
7804 case 2:
7805 bfd_put_16 (input_bfd, x, location);
7806 x >>= 16;
7807 break;
7808 case 4:
7809 bfd_put_32 (input_bfd, x, location);
7810 x >>= 32;
7811 break;
7812 #ifdef BFD64
7813 case 8:
7814 bfd_put_64 (input_bfd, x, location);
7815 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
7816 x >>= 32;
7817 x >>= 32;
7818 break;
7819 #endif
7820 default:
7821 abort ();
7822 break;
7823 }
7824 }
7825 }
7826
7827 static bfd_vma
7828 get_value (bfd_vma size,
7829 unsigned long chunksz,
7830 bfd *input_bfd,
7831 bfd_byte *location)
7832 {
7833 int shift;
7834 bfd_vma x = 0;
7835
7836 /* Sanity checks. */
7837 BFD_ASSERT (chunksz <= sizeof (x)
7838 && size >= chunksz
7839 && chunksz != 0
7840 && (size % chunksz) == 0
7841 && input_bfd != NULL
7842 && location != NULL);
7843
7844 if (chunksz == sizeof (x))
7845 {
7846 BFD_ASSERT (size == chunksz);
7847
7848 /* Make sure that we do not perform an undefined shift operation.
7849 We know that size == chunksz so there will only be one iteration
7850 of the loop below. */
7851 shift = 0;
7852 }
7853 else
7854 shift = 8 * chunksz;
7855
7856 for (; size; size -= chunksz, location += chunksz)
7857 {
7858 switch (chunksz)
7859 {
7860 case 1:
7861 x = (x << shift) | bfd_get_8 (input_bfd, location);
7862 break;
7863 case 2:
7864 x = (x << shift) | bfd_get_16 (input_bfd, location);
7865 break;
7866 case 4:
7867 x = (x << shift) | bfd_get_32 (input_bfd, location);
7868 break;
7869 #ifdef BFD64
7870 case 8:
7871 x = (x << shift) | bfd_get_64 (input_bfd, location);
7872 break;
7873 #endif
7874 default:
7875 abort ();
7876 }
7877 }
7878 return x;
7879 }
7880
7881 static void
7882 decode_complex_addend (unsigned long *start, /* in bits */
7883 unsigned long *oplen, /* in bits */
7884 unsigned long *len, /* in bits */
7885 unsigned long *wordsz, /* in bytes */
7886 unsigned long *chunksz, /* in bytes */
7887 unsigned long *lsb0_p,
7888 unsigned long *signed_p,
7889 unsigned long *trunc_p,
7890 unsigned long encoded)
7891 {
7892 * start = encoded & 0x3F;
7893 * len = (encoded >> 6) & 0x3F;
7894 * oplen = (encoded >> 12) & 0x3F;
7895 * wordsz = (encoded >> 18) & 0xF;
7896 * chunksz = (encoded >> 22) & 0xF;
7897 * lsb0_p = (encoded >> 27) & 1;
7898 * signed_p = (encoded >> 28) & 1;
7899 * trunc_p = (encoded >> 29) & 1;
7900 }
7901
7902 bfd_reloc_status_type
7903 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7904 asection *input_section ATTRIBUTE_UNUSED,
7905 bfd_byte *contents,
7906 Elf_Internal_Rela *rel,
7907 bfd_vma relocation)
7908 {
7909 bfd_vma shift, x, mask;
7910 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7911 bfd_reloc_status_type r;
7912
7913 /* Perform this reloc, since it is complex.
7914 (this is not to say that it necessarily refers to a complex
7915 symbol; merely that it is a self-describing CGEN based reloc.
7916 i.e. the addend has the complete reloc information (bit start, end,
7917 word size, etc) encoded within it.). */
7918
7919 decode_complex_addend (&start, &oplen, &len, &wordsz,
7920 &chunksz, &lsb0_p, &signed_p,
7921 &trunc_p, rel->r_addend);
7922
7923 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7924
7925 if (lsb0_p)
7926 shift = (start + 1) - len;
7927 else
7928 shift = (8 * wordsz) - (start + len);
7929
7930 /* FIXME: octets_per_byte. */
7931 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7932
7933 #ifdef DEBUG
7934 printf ("Doing complex reloc: "
7935 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7936 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7937 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7938 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7939 oplen, (unsigned long) x, (unsigned long) mask,
7940 (unsigned long) relocation);
7941 #endif
7942
7943 r = bfd_reloc_ok;
7944 if (! trunc_p)
7945 /* Now do an overflow check. */
7946 r = bfd_check_overflow ((signed_p
7947 ? complain_overflow_signed
7948 : complain_overflow_unsigned),
7949 len, 0, (8 * wordsz),
7950 relocation);
7951
7952 /* Do the deed. */
7953 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7954
7955 #ifdef DEBUG
7956 printf (" relocation: %8.8lx\n"
7957 " shifted mask: %8.8lx\n"
7958 " shifted/masked reloc: %8.8lx\n"
7959 " result: %8.8lx\n",
7960 (unsigned long) relocation, (unsigned long) (mask << shift),
7961 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7962 #endif
7963 /* FIXME: octets_per_byte. */
7964 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7965 return r;
7966 }
7967
7968 /* qsort comparison functions sorting external relocs by r_offset. */
7969
7970 static int
7971 cmp_ext32l_r_offset (const void *p, const void *q)
7972 {
7973 union aligned32
7974 {
7975 uint32_t v;
7976 unsigned char c[4];
7977 };
7978 const union aligned32 *a
7979 = (const union aligned32 *) ((const Elf32_External_Rel *) p)->r_offset;
7980 const union aligned32 *b
7981 = (const union aligned32 *) ((const Elf32_External_Rel *) q)->r_offset;
7982
7983 uint32_t aval = ( (uint32_t) a->c[0]
7984 | (uint32_t) a->c[1] << 8
7985 | (uint32_t) a->c[2] << 16
7986 | (uint32_t) a->c[3] << 24);
7987 uint32_t bval = ( (uint32_t) b->c[0]
7988 | (uint32_t) b->c[1] << 8
7989 | (uint32_t) b->c[2] << 16
7990 | (uint32_t) b->c[3] << 24);
7991 if (aval < bval)
7992 return -1;
7993 else if (aval > bval)
7994 return 1;
7995 return 0;
7996 }
7997
7998 static int
7999 cmp_ext32b_r_offset (const void *p, const void *q)
8000 {
8001 union aligned32
8002 {
8003 uint32_t v;
8004 unsigned char c[4];
8005 };
8006 const union aligned32 *a
8007 = (const union aligned32 *) ((const Elf32_External_Rel *) p)->r_offset;
8008 const union aligned32 *b
8009 = (const union aligned32 *) ((const Elf32_External_Rel *) q)->r_offset;
8010
8011 uint32_t aval = ( (uint32_t) a->c[0] << 24
8012 | (uint32_t) a->c[1] << 16
8013 | (uint32_t) a->c[2] << 8
8014 | (uint32_t) a->c[3]);
8015 uint32_t bval = ( (uint32_t) b->c[0] << 24
8016 | (uint32_t) b->c[1] << 16
8017 | (uint32_t) b->c[2] << 8
8018 | (uint32_t) b->c[3]);
8019 if (aval < bval)
8020 return -1;
8021 else if (aval > bval)
8022 return 1;
8023 return 0;
8024 }
8025
8026 #ifdef BFD_HOST_64_BIT
8027 static int
8028 cmp_ext64l_r_offset (const void *p, const void *q)
8029 {
8030 union aligned64
8031 {
8032 uint64_t v;
8033 unsigned char c[8];
8034 };
8035 const union aligned64 *a
8036 = (const union aligned64 *) ((const Elf64_External_Rel *) p)->r_offset;
8037 const union aligned64 *b
8038 = (const union aligned64 *) ((const Elf64_External_Rel *) q)->r_offset;
8039
8040 uint64_t aval = ( (uint64_t) a->c[0]
8041 | (uint64_t) a->c[1] << 8
8042 | (uint64_t) a->c[2] << 16
8043 | (uint64_t) a->c[3] << 24
8044 | (uint64_t) a->c[4] << 32
8045 | (uint64_t) a->c[5] << 40
8046 | (uint64_t) a->c[6] << 48
8047 | (uint64_t) a->c[7] << 56);
8048 uint64_t bval = ( (uint64_t) b->c[0]
8049 | (uint64_t) b->c[1] << 8
8050 | (uint64_t) b->c[2] << 16
8051 | (uint64_t) b->c[3] << 24
8052 | (uint64_t) b->c[4] << 32
8053 | (uint64_t) b->c[5] << 40
8054 | (uint64_t) b->c[6] << 48
8055 | (uint64_t) b->c[7] << 56);
8056 if (aval < bval)
8057 return -1;
8058 else if (aval > bval)
8059 return 1;
8060 return 0;
8061 }
8062
8063 static int
8064 cmp_ext64b_r_offset (const void *p, const void *q)
8065 {
8066 union aligned64
8067 {
8068 uint64_t v;
8069 unsigned char c[8];
8070 };
8071 const union aligned64 *a
8072 = (const union aligned64 *) ((const Elf64_External_Rel *) p)->r_offset;
8073 const union aligned64 *b
8074 = (const union aligned64 *) ((const Elf64_External_Rel *) q)->r_offset;
8075
8076 uint64_t aval = ( (uint64_t) a->c[0] << 56
8077 | (uint64_t) a->c[1] << 48
8078 | (uint64_t) a->c[2] << 40
8079 | (uint64_t) a->c[3] << 32
8080 | (uint64_t) a->c[4] << 24
8081 | (uint64_t) a->c[5] << 16
8082 | (uint64_t) a->c[6] << 8
8083 | (uint64_t) a->c[7]);
8084 uint64_t bval = ( (uint64_t) b->c[0] << 56
8085 | (uint64_t) b->c[1] << 48
8086 | (uint64_t) b->c[2] << 40
8087 | (uint64_t) b->c[3] << 32
8088 | (uint64_t) b->c[4] << 24
8089 | (uint64_t) b->c[5] << 16
8090 | (uint64_t) b->c[6] << 8
8091 | (uint64_t) b->c[7]);
8092 if (aval < bval)
8093 return -1;
8094 else if (aval > bval)
8095 return 1;
8096 return 0;
8097 }
8098 #endif
8099
8100 /* When performing a relocatable link, the input relocations are
8101 preserved. But, if they reference global symbols, the indices
8102 referenced must be updated. Update all the relocations found in
8103 RELDATA. */
8104
8105 static void
8106 elf_link_adjust_relocs (bfd *abfd,
8107 struct bfd_elf_section_reloc_data *reldata,
8108 bfd_boolean sort)
8109 {
8110 unsigned int i;
8111 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8112 bfd_byte *erela;
8113 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8114 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8115 bfd_vma r_type_mask;
8116 int r_sym_shift;
8117 unsigned int count = reldata->count;
8118 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8119
8120 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8121 {
8122 swap_in = bed->s->swap_reloc_in;
8123 swap_out = bed->s->swap_reloc_out;
8124 }
8125 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8126 {
8127 swap_in = bed->s->swap_reloca_in;
8128 swap_out = bed->s->swap_reloca_out;
8129 }
8130 else
8131 abort ();
8132
8133 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8134 abort ();
8135
8136 if (bed->s->arch_size == 32)
8137 {
8138 r_type_mask = 0xff;
8139 r_sym_shift = 8;
8140 }
8141 else
8142 {
8143 r_type_mask = 0xffffffff;
8144 r_sym_shift = 32;
8145 }
8146
8147 erela = reldata->hdr->contents;
8148 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8149 {
8150 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8151 unsigned int j;
8152
8153 if (*rel_hash == NULL)
8154 continue;
8155
8156 BFD_ASSERT ((*rel_hash)->indx >= 0);
8157
8158 (*swap_in) (abfd, erela, irela);
8159 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8160 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8161 | (irela[j].r_info & r_type_mask));
8162 (*swap_out) (abfd, irela, erela);
8163 }
8164
8165 if (sort)
8166 {
8167 int (*compare) (const void *, const void *);
8168
8169 if (bed->s->arch_size == 32)
8170 {
8171 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8172 compare = cmp_ext32l_r_offset;
8173 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8174 compare = cmp_ext32b_r_offset;
8175 else
8176 abort ();
8177 }
8178 else
8179 {
8180 #ifdef BFD_HOST_64_BIT
8181 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8182 compare = cmp_ext64l_r_offset;
8183 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8184 compare = cmp_ext64b_r_offset;
8185 else
8186 #endif
8187 abort ();
8188 }
8189 qsort (reldata->hdr->contents, count, reldata->hdr->sh_entsize, compare);
8190 free (reldata->hashes);
8191 reldata->hashes = NULL;
8192 }
8193 }
8194
8195 struct elf_link_sort_rela
8196 {
8197 union {
8198 bfd_vma offset;
8199 bfd_vma sym_mask;
8200 } u;
8201 enum elf_reloc_type_class type;
8202 /* We use this as an array of size int_rels_per_ext_rel. */
8203 Elf_Internal_Rela rela[1];
8204 };
8205
8206 static int
8207 elf_link_sort_cmp1 (const void *A, const void *B)
8208 {
8209 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8210 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8211 int relativea, relativeb;
8212
8213 relativea = a->type == reloc_class_relative;
8214 relativeb = b->type == reloc_class_relative;
8215
8216 if (relativea < relativeb)
8217 return 1;
8218 if (relativea > relativeb)
8219 return -1;
8220 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8221 return -1;
8222 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8223 return 1;
8224 if (a->rela->r_offset < b->rela->r_offset)
8225 return -1;
8226 if (a->rela->r_offset > b->rela->r_offset)
8227 return 1;
8228 return 0;
8229 }
8230
8231 static int
8232 elf_link_sort_cmp2 (const void *A, const void *B)
8233 {
8234 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8235 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8236
8237 if (a->type < b->type)
8238 return -1;
8239 if (a->type > b->type)
8240 return 1;
8241 if (a->u.offset < b->u.offset)
8242 return -1;
8243 if (a->u.offset > b->u.offset)
8244 return 1;
8245 if (a->rela->r_offset < b->rela->r_offset)
8246 return -1;
8247 if (a->rela->r_offset > b->rela->r_offset)
8248 return 1;
8249 return 0;
8250 }
8251
8252 static size_t
8253 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8254 {
8255 asection *dynamic_relocs;
8256 asection *rela_dyn;
8257 asection *rel_dyn;
8258 bfd_size_type count, size;
8259 size_t i, ret, sort_elt, ext_size;
8260 bfd_byte *sort, *s_non_relative, *p;
8261 struct elf_link_sort_rela *sq;
8262 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8263 int i2e = bed->s->int_rels_per_ext_rel;
8264 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8265 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8266 struct bfd_link_order *lo;
8267 bfd_vma r_sym_mask;
8268 bfd_boolean use_rela;
8269
8270 /* Find a dynamic reloc section. */
8271 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8272 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8273 if (rela_dyn != NULL && rela_dyn->size > 0
8274 && rel_dyn != NULL && rel_dyn->size > 0)
8275 {
8276 bfd_boolean use_rela_initialised = FALSE;
8277
8278 /* This is just here to stop gcc from complaining.
8279 It's initialization checking code is not perfect. */
8280 use_rela = TRUE;
8281
8282 /* Both sections are present. Examine the sizes
8283 of the indirect sections to help us choose. */
8284 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8285 if (lo->type == bfd_indirect_link_order)
8286 {
8287 asection *o = lo->u.indirect.section;
8288
8289 if ((o->size % bed->s->sizeof_rela) == 0)
8290 {
8291 if ((o->size % bed->s->sizeof_rel) == 0)
8292 /* Section size is divisible by both rel and rela sizes.
8293 It is of no help to us. */
8294 ;
8295 else
8296 {
8297 /* Section size is only divisible by rela. */
8298 if (use_rela_initialised && (use_rela == FALSE))
8299 {
8300 _bfd_error_handler
8301 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8302 bfd_set_error (bfd_error_invalid_operation);
8303 return 0;
8304 }
8305 else
8306 {
8307 use_rela = TRUE;
8308 use_rela_initialised = TRUE;
8309 }
8310 }
8311 }
8312 else if ((o->size % bed->s->sizeof_rel) == 0)
8313 {
8314 /* Section size is only divisible by rel. */
8315 if (use_rela_initialised && (use_rela == TRUE))
8316 {
8317 _bfd_error_handler
8318 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8319 bfd_set_error (bfd_error_invalid_operation);
8320 return 0;
8321 }
8322 else
8323 {
8324 use_rela = FALSE;
8325 use_rela_initialised = TRUE;
8326 }
8327 }
8328 else
8329 {
8330 /* The section size is not divisible by either - something is wrong. */
8331 _bfd_error_handler
8332 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8333 bfd_set_error (bfd_error_invalid_operation);
8334 return 0;
8335 }
8336 }
8337
8338 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8339 if (lo->type == bfd_indirect_link_order)
8340 {
8341 asection *o = lo->u.indirect.section;
8342
8343 if ((o->size % bed->s->sizeof_rela) == 0)
8344 {
8345 if ((o->size % bed->s->sizeof_rel) == 0)
8346 /* Section size is divisible by both rel and rela sizes.
8347 It is of no help to us. */
8348 ;
8349 else
8350 {
8351 /* Section size is only divisible by rela. */
8352 if (use_rela_initialised && (use_rela == FALSE))
8353 {
8354 _bfd_error_handler
8355 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8356 bfd_set_error (bfd_error_invalid_operation);
8357 return 0;
8358 }
8359 else
8360 {
8361 use_rela = TRUE;
8362 use_rela_initialised = TRUE;
8363 }
8364 }
8365 }
8366 else if ((o->size % bed->s->sizeof_rel) == 0)
8367 {
8368 /* Section size is only divisible by rel. */
8369 if (use_rela_initialised && (use_rela == TRUE))
8370 {
8371 _bfd_error_handler
8372 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8373 bfd_set_error (bfd_error_invalid_operation);
8374 return 0;
8375 }
8376 else
8377 {
8378 use_rela = FALSE;
8379 use_rela_initialised = TRUE;
8380 }
8381 }
8382 else
8383 {
8384 /* The section size is not divisible by either - something is wrong. */
8385 _bfd_error_handler
8386 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8387 bfd_set_error (bfd_error_invalid_operation);
8388 return 0;
8389 }
8390 }
8391
8392 if (! use_rela_initialised)
8393 /* Make a guess. */
8394 use_rela = TRUE;
8395 }
8396 else if (rela_dyn != NULL && rela_dyn->size > 0)
8397 use_rela = TRUE;
8398 else if (rel_dyn != NULL && rel_dyn->size > 0)
8399 use_rela = FALSE;
8400 else
8401 return 0;
8402
8403 if (use_rela)
8404 {
8405 dynamic_relocs = rela_dyn;
8406 ext_size = bed->s->sizeof_rela;
8407 swap_in = bed->s->swap_reloca_in;
8408 swap_out = bed->s->swap_reloca_out;
8409 }
8410 else
8411 {
8412 dynamic_relocs = rel_dyn;
8413 ext_size = bed->s->sizeof_rel;
8414 swap_in = bed->s->swap_reloc_in;
8415 swap_out = bed->s->swap_reloc_out;
8416 }
8417
8418 size = 0;
8419 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8420 if (lo->type == bfd_indirect_link_order)
8421 size += lo->u.indirect.section->size;
8422
8423 if (size != dynamic_relocs->size)
8424 return 0;
8425
8426 sort_elt = (sizeof (struct elf_link_sort_rela)
8427 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8428
8429 count = dynamic_relocs->size / ext_size;
8430 if (count == 0)
8431 return 0;
8432 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8433
8434 if (sort == NULL)
8435 {
8436 (*info->callbacks->warning)
8437 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8438 return 0;
8439 }
8440
8441 if (bed->s->arch_size == 32)
8442 r_sym_mask = ~(bfd_vma) 0xff;
8443 else
8444 r_sym_mask = ~(bfd_vma) 0xffffffff;
8445
8446 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8447 if (lo->type == bfd_indirect_link_order)
8448 {
8449 bfd_byte *erel, *erelend;
8450 asection *o = lo->u.indirect.section;
8451
8452 if (o->contents == NULL && o->size != 0)
8453 {
8454 /* This is a reloc section that is being handled as a normal
8455 section. See bfd_section_from_shdr. We can't combine
8456 relocs in this case. */
8457 free (sort);
8458 return 0;
8459 }
8460 erel = o->contents;
8461 erelend = o->contents + o->size;
8462 /* FIXME: octets_per_byte. */
8463 p = sort + o->output_offset / ext_size * sort_elt;
8464
8465 while (erel < erelend)
8466 {
8467 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8468
8469 (*swap_in) (abfd, erel, s->rela);
8470 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8471 s->u.sym_mask = r_sym_mask;
8472 p += sort_elt;
8473 erel += ext_size;
8474 }
8475 }
8476
8477 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8478
8479 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8480 {
8481 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8482 if (s->type != reloc_class_relative)
8483 break;
8484 }
8485 ret = i;
8486 s_non_relative = p;
8487
8488 sq = (struct elf_link_sort_rela *) s_non_relative;
8489 for (; i < count; i++, p += sort_elt)
8490 {
8491 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8492 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8493 sq = sp;
8494 sp->u.offset = sq->rela->r_offset;
8495 }
8496
8497 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8498
8499 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8500 if (lo->type == bfd_indirect_link_order)
8501 {
8502 bfd_byte *erel, *erelend;
8503 asection *o = lo->u.indirect.section;
8504
8505 erel = o->contents;
8506 erelend = o->contents + o->size;
8507 /* FIXME: octets_per_byte. */
8508 p = sort + o->output_offset / ext_size * sort_elt;
8509 while (erel < erelend)
8510 {
8511 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8512 (*swap_out) (abfd, s->rela, erel);
8513 p += sort_elt;
8514 erel += ext_size;
8515 }
8516 }
8517
8518 free (sort);
8519 *psec = dynamic_relocs;
8520 return ret;
8521 }
8522
8523 /* Flush the output symbols to the file. */
8524
8525 static bfd_boolean
8526 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8527 const struct elf_backend_data *bed)
8528 {
8529 if (flinfo->symbuf_count > 0)
8530 {
8531 Elf_Internal_Shdr *hdr;
8532 file_ptr pos;
8533 bfd_size_type amt;
8534
8535 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8536 pos = hdr->sh_offset + hdr->sh_size;
8537 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8538 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8539 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8540 return FALSE;
8541
8542 hdr->sh_size += amt;
8543 flinfo->symbuf_count = 0;
8544 }
8545
8546 return TRUE;
8547 }
8548
8549 /* Add a symbol to the output symbol table. */
8550
8551 static int
8552 elf_link_output_sym (struct elf_final_link_info *flinfo,
8553 const char *name,
8554 Elf_Internal_Sym *elfsym,
8555 asection *input_sec,
8556 struct elf_link_hash_entry *h)
8557 {
8558 bfd_byte *dest;
8559 Elf_External_Sym_Shndx *destshndx;
8560 int (*output_symbol_hook)
8561 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8562 struct elf_link_hash_entry *);
8563 const struct elf_backend_data *bed;
8564
8565 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8566
8567 bed = get_elf_backend_data (flinfo->output_bfd);
8568 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8569 if (output_symbol_hook != NULL)
8570 {
8571 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8572 if (ret != 1)
8573 return ret;
8574 }
8575
8576 if (name == NULL || *name == '\0')
8577 elfsym->st_name = 0;
8578 else if (input_sec->flags & SEC_EXCLUDE)
8579 elfsym->st_name = 0;
8580 else
8581 {
8582 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8583 name, TRUE, FALSE);
8584 if (elfsym->st_name == (unsigned long) -1)
8585 return 0;
8586 }
8587
8588 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8589 {
8590 if (! elf_link_flush_output_syms (flinfo, bed))
8591 return 0;
8592 }
8593
8594 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8595 destshndx = flinfo->symshndxbuf;
8596 if (destshndx != NULL)
8597 {
8598 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8599 {
8600 bfd_size_type amt;
8601
8602 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8603 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8604 amt * 2);
8605 if (destshndx == NULL)
8606 return 0;
8607 flinfo->symshndxbuf = destshndx;
8608 memset ((char *) destshndx + amt, 0, amt);
8609 flinfo->shndxbuf_size *= 2;
8610 }
8611 destshndx += bfd_get_symcount (flinfo->output_bfd);
8612 }
8613
8614 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8615 flinfo->symbuf_count += 1;
8616 bfd_get_symcount (flinfo->output_bfd) += 1;
8617
8618 return 1;
8619 }
8620
8621 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8622
8623 static bfd_boolean
8624 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8625 {
8626 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8627 && sym->st_shndx < SHN_LORESERVE)
8628 {
8629 /* The gABI doesn't support dynamic symbols in output sections
8630 beyond 64k. */
8631 (*_bfd_error_handler)
8632 (_("%B: Too many sections: %d (>= %d)"),
8633 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8634 bfd_set_error (bfd_error_nonrepresentable_section);
8635 return FALSE;
8636 }
8637 return TRUE;
8638 }
8639
8640 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8641 allowing an unsatisfied unversioned symbol in the DSO to match a
8642 versioned symbol that would normally require an explicit version.
8643 We also handle the case that a DSO references a hidden symbol
8644 which may be satisfied by a versioned symbol in another DSO. */
8645
8646 static bfd_boolean
8647 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8648 const struct elf_backend_data *bed,
8649 struct elf_link_hash_entry *h)
8650 {
8651 bfd *abfd;
8652 struct elf_link_loaded_list *loaded;
8653
8654 if (!is_elf_hash_table (info->hash))
8655 return FALSE;
8656
8657 /* Check indirect symbol. */
8658 while (h->root.type == bfd_link_hash_indirect)
8659 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8660
8661 switch (h->root.type)
8662 {
8663 default:
8664 abfd = NULL;
8665 break;
8666
8667 case bfd_link_hash_undefined:
8668 case bfd_link_hash_undefweak:
8669 abfd = h->root.u.undef.abfd;
8670 if ((abfd->flags & DYNAMIC) == 0
8671 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8672 return FALSE;
8673 break;
8674
8675 case bfd_link_hash_defined:
8676 case bfd_link_hash_defweak:
8677 abfd = h->root.u.def.section->owner;
8678 break;
8679
8680 case bfd_link_hash_common:
8681 abfd = h->root.u.c.p->section->owner;
8682 break;
8683 }
8684 BFD_ASSERT (abfd != NULL);
8685
8686 for (loaded = elf_hash_table (info)->loaded;
8687 loaded != NULL;
8688 loaded = loaded->next)
8689 {
8690 bfd *input;
8691 Elf_Internal_Shdr *hdr;
8692 bfd_size_type symcount;
8693 bfd_size_type extsymcount;
8694 bfd_size_type extsymoff;
8695 Elf_Internal_Shdr *versymhdr;
8696 Elf_Internal_Sym *isym;
8697 Elf_Internal_Sym *isymend;
8698 Elf_Internal_Sym *isymbuf;
8699 Elf_External_Versym *ever;
8700 Elf_External_Versym *extversym;
8701
8702 input = loaded->abfd;
8703
8704 /* We check each DSO for a possible hidden versioned definition. */
8705 if (input == abfd
8706 || (input->flags & DYNAMIC) == 0
8707 || elf_dynversym (input) == 0)
8708 continue;
8709
8710 hdr = &elf_tdata (input)->dynsymtab_hdr;
8711
8712 symcount = hdr->sh_size / bed->s->sizeof_sym;
8713 if (elf_bad_symtab (input))
8714 {
8715 extsymcount = symcount;
8716 extsymoff = 0;
8717 }
8718 else
8719 {
8720 extsymcount = symcount - hdr->sh_info;
8721 extsymoff = hdr->sh_info;
8722 }
8723
8724 if (extsymcount == 0)
8725 continue;
8726
8727 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8728 NULL, NULL, NULL);
8729 if (isymbuf == NULL)
8730 return FALSE;
8731
8732 /* Read in any version definitions. */
8733 versymhdr = &elf_tdata (input)->dynversym_hdr;
8734 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8735 if (extversym == NULL)
8736 goto error_ret;
8737
8738 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8739 || (bfd_bread (extversym, versymhdr->sh_size, input)
8740 != versymhdr->sh_size))
8741 {
8742 free (extversym);
8743 error_ret:
8744 free (isymbuf);
8745 return FALSE;
8746 }
8747
8748 ever = extversym + extsymoff;
8749 isymend = isymbuf + extsymcount;
8750 for (isym = isymbuf; isym < isymend; isym++, ever++)
8751 {
8752 const char *name;
8753 Elf_Internal_Versym iver;
8754 unsigned short version_index;
8755
8756 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8757 || isym->st_shndx == SHN_UNDEF)
8758 continue;
8759
8760 name = bfd_elf_string_from_elf_section (input,
8761 hdr->sh_link,
8762 isym->st_name);
8763 if (strcmp (name, h->root.root.string) != 0)
8764 continue;
8765
8766 _bfd_elf_swap_versym_in (input, ever, &iver);
8767
8768 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8769 && !(h->def_regular
8770 && h->forced_local))
8771 {
8772 /* If we have a non-hidden versioned sym, then it should
8773 have provided a definition for the undefined sym unless
8774 it is defined in a non-shared object and forced local.
8775 */
8776 abort ();
8777 }
8778
8779 version_index = iver.vs_vers & VERSYM_VERSION;
8780 if (version_index == 1 || version_index == 2)
8781 {
8782 /* This is the base or first version. We can use it. */
8783 free (extversym);
8784 free (isymbuf);
8785 return TRUE;
8786 }
8787 }
8788
8789 free (extversym);
8790 free (isymbuf);
8791 }
8792
8793 return FALSE;
8794 }
8795
8796 /* Add an external symbol to the symbol table. This is called from
8797 the hash table traversal routine. When generating a shared object,
8798 we go through the symbol table twice. The first time we output
8799 anything that might have been forced to local scope in a version
8800 script. The second time we output the symbols that are still
8801 global symbols. */
8802
8803 static bfd_boolean
8804 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8805 {
8806 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8807 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8808 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8809 bfd_boolean strip;
8810 Elf_Internal_Sym sym;
8811 asection *input_sec;
8812 const struct elf_backend_data *bed;
8813 long indx;
8814 int ret;
8815
8816 if (h->root.type == bfd_link_hash_warning)
8817 {
8818 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8819 if (h->root.type == bfd_link_hash_new)
8820 return TRUE;
8821 }
8822
8823 /* Decide whether to output this symbol in this pass. */
8824 if (eoinfo->localsyms)
8825 {
8826 if (!h->forced_local)
8827 return TRUE;
8828 }
8829 else
8830 {
8831 if (h->forced_local)
8832 return TRUE;
8833 }
8834
8835 bed = get_elf_backend_data (flinfo->output_bfd);
8836
8837 if (h->root.type == bfd_link_hash_undefined)
8838 {
8839 /* If we have an undefined symbol reference here then it must have
8840 come from a shared library that is being linked in. (Undefined
8841 references in regular files have already been handled unless
8842 they are in unreferenced sections which are removed by garbage
8843 collection). */
8844 bfd_boolean ignore_undef = FALSE;
8845
8846 /* Some symbols may be special in that the fact that they're
8847 undefined can be safely ignored - let backend determine that. */
8848 if (bed->elf_backend_ignore_undef_symbol)
8849 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8850
8851 /* If we are reporting errors for this situation then do so now. */
8852 if (!ignore_undef
8853 && h->ref_dynamic
8854 && (!h->ref_regular || flinfo->info->gc_sections)
8855 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8856 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8857 {
8858 if (!(flinfo->info->callbacks->undefined_symbol
8859 (flinfo->info, h->root.root.string,
8860 h->ref_regular ? NULL : h->root.u.undef.abfd,
8861 NULL, 0,
8862 (flinfo->info->unresolved_syms_in_shared_libs
8863 == RM_GENERATE_ERROR))))
8864 {
8865 bfd_set_error (bfd_error_bad_value);
8866 eoinfo->failed = TRUE;
8867 return FALSE;
8868 }
8869 }
8870 }
8871
8872 /* We should also warn if a forced local symbol is referenced from
8873 shared libraries. */
8874 if (!flinfo->info->relocatable
8875 && flinfo->info->executable
8876 && h->forced_local
8877 && h->ref_dynamic
8878 && h->def_regular
8879 && !h->dynamic_def
8880 && h->ref_dynamic_nonweak
8881 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8882 {
8883 bfd *def_bfd;
8884 const char *msg;
8885 struct elf_link_hash_entry *hi = h;
8886
8887 /* Check indirect symbol. */
8888 while (hi->root.type == bfd_link_hash_indirect)
8889 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8890
8891 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8892 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8893 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8894 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8895 else
8896 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8897 def_bfd = flinfo->output_bfd;
8898 if (hi->root.u.def.section != bfd_abs_section_ptr)
8899 def_bfd = hi->root.u.def.section->owner;
8900 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8901 h->root.root.string);
8902 bfd_set_error (bfd_error_bad_value);
8903 eoinfo->failed = TRUE;
8904 return FALSE;
8905 }
8906
8907 /* We don't want to output symbols that have never been mentioned by
8908 a regular file, or that we have been told to strip. However, if
8909 h->indx is set to -2, the symbol is used by a reloc and we must
8910 output it. */
8911 strip = FALSE;
8912 if (h->indx == -2)
8913 ;
8914 else if ((h->def_dynamic
8915 || h->ref_dynamic
8916 || h->root.type == bfd_link_hash_new)
8917 && !h->def_regular
8918 && !h->ref_regular)
8919 strip = TRUE;
8920 else if (flinfo->info->strip == strip_all)
8921 strip = TRUE;
8922 else if (flinfo->info->strip == strip_some
8923 && bfd_hash_lookup (flinfo->info->keep_hash,
8924 h->root.root.string, FALSE, FALSE) == NULL)
8925 strip = TRUE;
8926 else if ((h->root.type == bfd_link_hash_defined
8927 || h->root.type == bfd_link_hash_defweak)
8928 && ((flinfo->info->strip_discarded
8929 && discarded_section (h->root.u.def.section))
8930 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
8931 && h->root.u.def.section->owner != NULL
8932 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8933 strip = TRUE;
8934 else if ((h->root.type == bfd_link_hash_undefined
8935 || h->root.type == bfd_link_hash_undefweak)
8936 && h->root.u.undef.abfd != NULL
8937 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8938 strip = TRUE;
8939
8940 /* If we're stripping it, and it's not a dynamic symbol, there's
8941 nothing else to do. However, if it is a forced local symbol or
8942 an ifunc symbol we need to give the backend finish_dynamic_symbol
8943 function a chance to make it dynamic. */
8944 if (strip
8945 && h->dynindx == -1
8946 && h->type != STT_GNU_IFUNC
8947 && !h->forced_local)
8948 return TRUE;
8949
8950 sym.st_value = 0;
8951 sym.st_size = h->size;
8952 sym.st_other = h->other;
8953 if (h->forced_local)
8954 {
8955 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8956 /* Turn off visibility on local symbol. */
8957 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8958 }
8959 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
8960 else if (h->unique_global && h->def_regular)
8961 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8962 else if (h->root.type == bfd_link_hash_undefweak
8963 || h->root.type == bfd_link_hash_defweak)
8964 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8965 else
8966 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8967 sym.st_target_internal = h->target_internal;
8968
8969 switch (h->root.type)
8970 {
8971 default:
8972 case bfd_link_hash_new:
8973 case bfd_link_hash_warning:
8974 abort ();
8975 return FALSE;
8976
8977 case bfd_link_hash_undefined:
8978 case bfd_link_hash_undefweak:
8979 input_sec = bfd_und_section_ptr;
8980 sym.st_shndx = SHN_UNDEF;
8981 break;
8982
8983 case bfd_link_hash_defined:
8984 case bfd_link_hash_defweak:
8985 {
8986 input_sec = h->root.u.def.section;
8987 if (input_sec->output_section != NULL)
8988 {
8989 sym.st_shndx =
8990 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
8991 input_sec->output_section);
8992 if (sym.st_shndx == SHN_BAD)
8993 {
8994 (*_bfd_error_handler)
8995 (_("%B: could not find output section %A for input section %A"),
8996 flinfo->output_bfd, input_sec->output_section, input_sec);
8997 bfd_set_error (bfd_error_nonrepresentable_section);
8998 eoinfo->failed = TRUE;
8999 return FALSE;
9000 }
9001
9002 /* ELF symbols in relocatable files are section relative,
9003 but in nonrelocatable files they are virtual
9004 addresses. */
9005 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9006 if (!flinfo->info->relocatable)
9007 {
9008 sym.st_value += input_sec->output_section->vma;
9009 if (h->type == STT_TLS)
9010 {
9011 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9012 if (tls_sec != NULL)
9013 sym.st_value -= tls_sec->vma;
9014 }
9015 }
9016 }
9017 else
9018 {
9019 BFD_ASSERT (input_sec->owner == NULL
9020 || (input_sec->owner->flags & DYNAMIC) != 0);
9021 sym.st_shndx = SHN_UNDEF;
9022 input_sec = bfd_und_section_ptr;
9023 }
9024 }
9025 break;
9026
9027 case bfd_link_hash_common:
9028 input_sec = h->root.u.c.p->section;
9029 sym.st_shndx = bed->common_section_index (input_sec);
9030 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9031 break;
9032
9033 case bfd_link_hash_indirect:
9034 /* These symbols are created by symbol versioning. They point
9035 to the decorated version of the name. For example, if the
9036 symbol foo@@GNU_1.2 is the default, which should be used when
9037 foo is used with no version, then we add an indirect symbol
9038 foo which points to foo@@GNU_1.2. We ignore these symbols,
9039 since the indirected symbol is already in the hash table. */
9040 return TRUE;
9041 }
9042
9043 /* Give the processor backend a chance to tweak the symbol value,
9044 and also to finish up anything that needs to be done for this
9045 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9046 forced local syms when non-shared is due to a historical quirk.
9047 STT_GNU_IFUNC symbol must go through PLT. */
9048 if ((h->type == STT_GNU_IFUNC
9049 && h->def_regular
9050 && !flinfo->info->relocatable)
9051 || ((h->dynindx != -1
9052 || h->forced_local)
9053 && ((flinfo->info->shared
9054 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9055 || h->root.type != bfd_link_hash_undefweak))
9056 || !h->forced_local)
9057 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9058 {
9059 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9060 (flinfo->output_bfd, flinfo->info, h, &sym)))
9061 {
9062 eoinfo->failed = TRUE;
9063 return FALSE;
9064 }
9065 }
9066
9067 /* If we are marking the symbol as undefined, and there are no
9068 non-weak references to this symbol from a regular object, then
9069 mark the symbol as weak undefined; if there are non-weak
9070 references, mark the symbol as strong. We can't do this earlier,
9071 because it might not be marked as undefined until the
9072 finish_dynamic_symbol routine gets through with it. */
9073 if (sym.st_shndx == SHN_UNDEF
9074 && h->ref_regular
9075 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9076 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9077 {
9078 int bindtype;
9079 unsigned int type = ELF_ST_TYPE (sym.st_info);
9080
9081 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9082 if (type == STT_GNU_IFUNC)
9083 type = STT_FUNC;
9084
9085 if (h->ref_regular_nonweak)
9086 bindtype = STB_GLOBAL;
9087 else
9088 bindtype = STB_WEAK;
9089 sym.st_info = ELF_ST_INFO (bindtype, type);
9090 }
9091
9092 /* If this is a symbol defined in a dynamic library, don't use the
9093 symbol size from the dynamic library. Relinking an executable
9094 against a new library may introduce gratuitous changes in the
9095 executable's symbols if we keep the size. */
9096 if (sym.st_shndx == SHN_UNDEF
9097 && !h->def_regular
9098 && h->def_dynamic)
9099 sym.st_size = 0;
9100
9101 /* If a non-weak symbol with non-default visibility is not defined
9102 locally, it is a fatal error. */
9103 if (!flinfo->info->relocatable
9104 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9105 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9106 && h->root.type == bfd_link_hash_undefined
9107 && !h->def_regular)
9108 {
9109 const char *msg;
9110
9111 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9112 msg = _("%B: protected symbol `%s' isn't defined");
9113 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9114 msg = _("%B: internal symbol `%s' isn't defined");
9115 else
9116 msg = _("%B: hidden symbol `%s' isn't defined");
9117 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9118 bfd_set_error (bfd_error_bad_value);
9119 eoinfo->failed = TRUE;
9120 return FALSE;
9121 }
9122
9123 /* If this symbol should be put in the .dynsym section, then put it
9124 there now. We already know the symbol index. We also fill in
9125 the entry in the .hash section. */
9126 if (flinfo->dynsym_sec != NULL
9127 && h->dynindx != -1
9128 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9129 {
9130 bfd_byte *esym;
9131
9132 /* Since there is no version information in the dynamic string,
9133 if there is no version info in symbol version section, we will
9134 have a run-time problem. */
9135 if (h->verinfo.verdef == NULL)
9136 {
9137 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9138
9139 if (p && p [1] != '\0')
9140 {
9141 (*_bfd_error_handler)
9142 (_("%B: No symbol version section for versioned symbol `%s'"),
9143 flinfo->output_bfd, h->root.root.string);
9144 eoinfo->failed = TRUE;
9145 return FALSE;
9146 }
9147 }
9148
9149 sym.st_name = h->dynstr_index;
9150 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9151 if (!check_dynsym (flinfo->output_bfd, &sym))
9152 {
9153 eoinfo->failed = TRUE;
9154 return FALSE;
9155 }
9156 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9157
9158 if (flinfo->hash_sec != NULL)
9159 {
9160 size_t hash_entry_size;
9161 bfd_byte *bucketpos;
9162 bfd_vma chain;
9163 size_t bucketcount;
9164 size_t bucket;
9165
9166 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9167 bucket = h->u.elf_hash_value % bucketcount;
9168
9169 hash_entry_size
9170 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9171 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9172 + (bucket + 2) * hash_entry_size);
9173 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9174 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9175 bucketpos);
9176 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9177 ((bfd_byte *) flinfo->hash_sec->contents
9178 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9179 }
9180
9181 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9182 {
9183 Elf_Internal_Versym iversym;
9184 Elf_External_Versym *eversym;
9185
9186 if (!h->def_regular)
9187 {
9188 if (h->verinfo.verdef == NULL
9189 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9190 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9191 iversym.vs_vers = 0;
9192 else
9193 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9194 }
9195 else
9196 {
9197 if (h->verinfo.vertree == NULL)
9198 iversym.vs_vers = 1;
9199 else
9200 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9201 if (flinfo->info->create_default_symver)
9202 iversym.vs_vers++;
9203 }
9204
9205 if (h->hidden)
9206 iversym.vs_vers |= VERSYM_HIDDEN;
9207
9208 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9209 eversym += h->dynindx;
9210 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9211 }
9212 }
9213
9214 /* If the symbol is undefined, and we didn't output it to .dynsym,
9215 strip it from .symtab too. Obviously we can't do this for
9216 relocatable output or when needed for --emit-relocs. */
9217 else if (input_sec == bfd_und_section_ptr
9218 && h->indx != -2
9219 && !flinfo->info->relocatable)
9220 return TRUE;
9221 /* Also strip others that we couldn't earlier due to dynamic symbol
9222 processing. */
9223 if (strip)
9224 return TRUE;
9225 if ((input_sec->flags & SEC_EXCLUDE) != 0)
9226 return TRUE;
9227
9228 /* Output a FILE symbol so that following locals are not associated
9229 with the wrong input file. We need one for forced local symbols
9230 if we've seen more than one FILE symbol or when we have exactly
9231 one FILE symbol but global symbols are present in a file other
9232 than the one with the FILE symbol. We also need one if linker
9233 defined symbols are present. In practice these conditions are
9234 always met, so just emit the FILE symbol unconditionally. */
9235 if (eoinfo->localsyms
9236 && !eoinfo->file_sym_done
9237 && eoinfo->flinfo->filesym_count != 0)
9238 {
9239 Elf_Internal_Sym fsym;
9240
9241 memset (&fsym, 0, sizeof (fsym));
9242 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9243 fsym.st_shndx = SHN_ABS;
9244 if (!elf_link_output_sym (eoinfo->flinfo, NULL, &fsym,
9245 bfd_und_section_ptr, NULL))
9246 return FALSE;
9247
9248 eoinfo->file_sym_done = TRUE;
9249 }
9250
9251 indx = bfd_get_symcount (flinfo->output_bfd);
9252 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9253 if (ret == 0)
9254 {
9255 eoinfo->failed = TRUE;
9256 return FALSE;
9257 }
9258 else if (ret == 1)
9259 h->indx = indx;
9260 else if (h->indx == -2)
9261 abort();
9262
9263 return TRUE;
9264 }
9265
9266 /* Return TRUE if special handling is done for relocs in SEC against
9267 symbols defined in discarded sections. */
9268
9269 static bfd_boolean
9270 elf_section_ignore_discarded_relocs (asection *sec)
9271 {
9272 const struct elf_backend_data *bed;
9273
9274 switch (sec->sec_info_type)
9275 {
9276 case SEC_INFO_TYPE_STABS:
9277 case SEC_INFO_TYPE_EH_FRAME:
9278 return TRUE;
9279 default:
9280 break;
9281 }
9282
9283 bed = get_elf_backend_data (sec->owner);
9284 if (bed->elf_backend_ignore_discarded_relocs != NULL
9285 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9286 return TRUE;
9287
9288 return FALSE;
9289 }
9290
9291 /* Return a mask saying how ld should treat relocations in SEC against
9292 symbols defined in discarded sections. If this function returns
9293 COMPLAIN set, ld will issue a warning message. If this function
9294 returns PRETEND set, and the discarded section was link-once and the
9295 same size as the kept link-once section, ld will pretend that the
9296 symbol was actually defined in the kept section. Otherwise ld will
9297 zero the reloc (at least that is the intent, but some cooperation by
9298 the target dependent code is needed, particularly for REL targets). */
9299
9300 unsigned int
9301 _bfd_elf_default_action_discarded (asection *sec)
9302 {
9303 if (sec->flags & SEC_DEBUGGING)
9304 return PRETEND;
9305
9306 if (strcmp (".eh_frame", sec->name) == 0)
9307 return 0;
9308
9309 if (strcmp (".gcc_except_table", sec->name) == 0)
9310 return 0;
9311
9312 return COMPLAIN | PRETEND;
9313 }
9314
9315 /* Find a match between a section and a member of a section group. */
9316
9317 static asection *
9318 match_group_member (asection *sec, asection *group,
9319 struct bfd_link_info *info)
9320 {
9321 asection *first = elf_next_in_group (group);
9322 asection *s = first;
9323
9324 while (s != NULL)
9325 {
9326 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9327 return s;
9328
9329 s = elf_next_in_group (s);
9330 if (s == first)
9331 break;
9332 }
9333
9334 return NULL;
9335 }
9336
9337 /* Check if the kept section of a discarded section SEC can be used
9338 to replace it. Return the replacement if it is OK. Otherwise return
9339 NULL. */
9340
9341 asection *
9342 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9343 {
9344 asection *kept;
9345
9346 kept = sec->kept_section;
9347 if (kept != NULL)
9348 {
9349 if ((kept->flags & SEC_GROUP) != 0)
9350 kept = match_group_member (sec, kept, info);
9351 if (kept != NULL
9352 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9353 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9354 kept = NULL;
9355 sec->kept_section = kept;
9356 }
9357 return kept;
9358 }
9359
9360 /* Link an input file into the linker output file. This function
9361 handles all the sections and relocations of the input file at once.
9362 This is so that we only have to read the local symbols once, and
9363 don't have to keep them in memory. */
9364
9365 static bfd_boolean
9366 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9367 {
9368 int (*relocate_section)
9369 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9370 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9371 bfd *output_bfd;
9372 Elf_Internal_Shdr *symtab_hdr;
9373 size_t locsymcount;
9374 size_t extsymoff;
9375 Elf_Internal_Sym *isymbuf;
9376 Elf_Internal_Sym *isym;
9377 Elf_Internal_Sym *isymend;
9378 long *pindex;
9379 asection **ppsection;
9380 asection *o;
9381 const struct elf_backend_data *bed;
9382 struct elf_link_hash_entry **sym_hashes;
9383 bfd_size_type address_size;
9384 bfd_vma r_type_mask;
9385 int r_sym_shift;
9386 bfd_boolean have_file_sym = FALSE;
9387
9388 output_bfd = flinfo->output_bfd;
9389 bed = get_elf_backend_data (output_bfd);
9390 relocate_section = bed->elf_backend_relocate_section;
9391
9392 /* If this is a dynamic object, we don't want to do anything here:
9393 we don't want the local symbols, and we don't want the section
9394 contents. */
9395 if ((input_bfd->flags & DYNAMIC) != 0)
9396 return TRUE;
9397
9398 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9399 if (elf_bad_symtab (input_bfd))
9400 {
9401 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9402 extsymoff = 0;
9403 }
9404 else
9405 {
9406 locsymcount = symtab_hdr->sh_info;
9407 extsymoff = symtab_hdr->sh_info;
9408 }
9409
9410 /* Read the local symbols. */
9411 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9412 if (isymbuf == NULL && locsymcount != 0)
9413 {
9414 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9415 flinfo->internal_syms,
9416 flinfo->external_syms,
9417 flinfo->locsym_shndx);
9418 if (isymbuf == NULL)
9419 return FALSE;
9420 }
9421
9422 /* Find local symbol sections and adjust values of symbols in
9423 SEC_MERGE sections. Write out those local symbols we know are
9424 going into the output file. */
9425 isymend = isymbuf + locsymcount;
9426 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9427 isym < isymend;
9428 isym++, pindex++, ppsection++)
9429 {
9430 asection *isec;
9431 const char *name;
9432 Elf_Internal_Sym osym;
9433 long indx;
9434 int ret;
9435
9436 *pindex = -1;
9437
9438 if (elf_bad_symtab (input_bfd))
9439 {
9440 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9441 {
9442 *ppsection = NULL;
9443 continue;
9444 }
9445 }
9446
9447 if (isym->st_shndx == SHN_UNDEF)
9448 isec = bfd_und_section_ptr;
9449 else if (isym->st_shndx == SHN_ABS)
9450 isec = bfd_abs_section_ptr;
9451 else if (isym->st_shndx == SHN_COMMON)
9452 isec = bfd_com_section_ptr;
9453 else
9454 {
9455 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9456 if (isec == NULL)
9457 {
9458 /* Don't attempt to output symbols with st_shnx in the
9459 reserved range other than SHN_ABS and SHN_COMMON. */
9460 *ppsection = NULL;
9461 continue;
9462 }
9463 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9464 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9465 isym->st_value =
9466 _bfd_merged_section_offset (output_bfd, &isec,
9467 elf_section_data (isec)->sec_info,
9468 isym->st_value);
9469 }
9470
9471 *ppsection = isec;
9472
9473 /* Don't output the first, undefined, symbol. In fact, don't
9474 output any undefined local symbol. */
9475 if (isec == bfd_und_section_ptr)
9476 continue;
9477
9478 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9479 {
9480 /* We never output section symbols. Instead, we use the
9481 section symbol of the corresponding section in the output
9482 file. */
9483 continue;
9484 }
9485
9486 /* If we are stripping all symbols, we don't want to output this
9487 one. */
9488 if (flinfo->info->strip == strip_all)
9489 continue;
9490
9491 /* If we are discarding all local symbols, we don't want to
9492 output this one. If we are generating a relocatable output
9493 file, then some of the local symbols may be required by
9494 relocs; we output them below as we discover that they are
9495 needed. */
9496 if (flinfo->info->discard == discard_all)
9497 continue;
9498
9499 /* If this symbol is defined in a section which we are
9500 discarding, we don't need to keep it. */
9501 if (isym->st_shndx != SHN_UNDEF
9502 && isym->st_shndx < SHN_LORESERVE
9503 && bfd_section_removed_from_list (output_bfd,
9504 isec->output_section))
9505 continue;
9506
9507 /* Get the name of the symbol. */
9508 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9509 isym->st_name);
9510 if (name == NULL)
9511 return FALSE;
9512
9513 /* See if we are discarding symbols with this name. */
9514 if ((flinfo->info->strip == strip_some
9515 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9516 == NULL))
9517 || (((flinfo->info->discard == discard_sec_merge
9518 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9519 || flinfo->info->discard == discard_l)
9520 && bfd_is_local_label_name (input_bfd, name)))
9521 continue;
9522
9523 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9524 {
9525 if (input_bfd->lto_output)
9526 /* -flto puts a temp file name here. This means builds
9527 are not reproducible. Discard the symbol. */
9528 continue;
9529 have_file_sym = TRUE;
9530 flinfo->filesym_count += 1;
9531 }
9532 if (!have_file_sym)
9533 {
9534 /* In the absence of debug info, bfd_find_nearest_line uses
9535 FILE symbols to determine the source file for local
9536 function symbols. Provide a FILE symbol here if input
9537 files lack such, so that their symbols won't be
9538 associated with a previous input file. It's not the
9539 source file, but the best we can do. */
9540 have_file_sym = TRUE;
9541 flinfo->filesym_count += 1;
9542 memset (&osym, 0, sizeof (osym));
9543 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9544 osym.st_shndx = SHN_ABS;
9545 if (!elf_link_output_sym (flinfo,
9546 (input_bfd->lto_output ? NULL
9547 : input_bfd->filename),
9548 &osym, bfd_abs_section_ptr, NULL))
9549 return FALSE;
9550 }
9551
9552 osym = *isym;
9553
9554 /* Adjust the section index for the output file. */
9555 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9556 isec->output_section);
9557 if (osym.st_shndx == SHN_BAD)
9558 return FALSE;
9559
9560 /* ELF symbols in relocatable files are section relative, but
9561 in executable files they are virtual addresses. Note that
9562 this code assumes that all ELF sections have an associated
9563 BFD section with a reasonable value for output_offset; below
9564 we assume that they also have a reasonable value for
9565 output_section. Any special sections must be set up to meet
9566 these requirements. */
9567 osym.st_value += isec->output_offset;
9568 if (!flinfo->info->relocatable)
9569 {
9570 osym.st_value += isec->output_section->vma;
9571 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9572 {
9573 /* STT_TLS symbols are relative to PT_TLS segment base. */
9574 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9575 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9576 }
9577 }
9578
9579 indx = bfd_get_symcount (output_bfd);
9580 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9581 if (ret == 0)
9582 return FALSE;
9583 else if (ret == 1)
9584 *pindex = indx;
9585 }
9586
9587 if (bed->s->arch_size == 32)
9588 {
9589 r_type_mask = 0xff;
9590 r_sym_shift = 8;
9591 address_size = 4;
9592 }
9593 else
9594 {
9595 r_type_mask = 0xffffffff;
9596 r_sym_shift = 32;
9597 address_size = 8;
9598 }
9599
9600 /* Relocate the contents of each section. */
9601 sym_hashes = elf_sym_hashes (input_bfd);
9602 for (o = input_bfd->sections; o != NULL; o = o->next)
9603 {
9604 bfd_byte *contents;
9605
9606 if (! o->linker_mark)
9607 {
9608 /* This section was omitted from the link. */
9609 continue;
9610 }
9611
9612 if (flinfo->info->relocatable
9613 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9614 {
9615 /* Deal with the group signature symbol. */
9616 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9617 unsigned long symndx = sec_data->this_hdr.sh_info;
9618 asection *osec = o->output_section;
9619
9620 if (symndx >= locsymcount
9621 || (elf_bad_symtab (input_bfd)
9622 && flinfo->sections[symndx] == NULL))
9623 {
9624 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9625 while (h->root.type == bfd_link_hash_indirect
9626 || h->root.type == bfd_link_hash_warning)
9627 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9628 /* Arrange for symbol to be output. */
9629 h->indx = -2;
9630 elf_section_data (osec)->this_hdr.sh_info = -2;
9631 }
9632 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9633 {
9634 /* We'll use the output section target_index. */
9635 asection *sec = flinfo->sections[symndx]->output_section;
9636 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9637 }
9638 else
9639 {
9640 if (flinfo->indices[symndx] == -1)
9641 {
9642 /* Otherwise output the local symbol now. */
9643 Elf_Internal_Sym sym = isymbuf[symndx];
9644 asection *sec = flinfo->sections[symndx]->output_section;
9645 const char *name;
9646 long indx;
9647 int ret;
9648
9649 name = bfd_elf_string_from_elf_section (input_bfd,
9650 symtab_hdr->sh_link,
9651 sym.st_name);
9652 if (name == NULL)
9653 return FALSE;
9654
9655 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9656 sec);
9657 if (sym.st_shndx == SHN_BAD)
9658 return FALSE;
9659
9660 sym.st_value += o->output_offset;
9661
9662 indx = bfd_get_symcount (output_bfd);
9663 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9664 if (ret == 0)
9665 return FALSE;
9666 else if (ret == 1)
9667 flinfo->indices[symndx] = indx;
9668 else
9669 abort ();
9670 }
9671 elf_section_data (osec)->this_hdr.sh_info
9672 = flinfo->indices[symndx];
9673 }
9674 }
9675
9676 if ((o->flags & SEC_HAS_CONTENTS) == 0
9677 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9678 continue;
9679
9680 if ((o->flags & SEC_LINKER_CREATED) != 0)
9681 {
9682 /* Section was created by _bfd_elf_link_create_dynamic_sections
9683 or somesuch. */
9684 continue;
9685 }
9686
9687 /* Get the contents of the section. They have been cached by a
9688 relaxation routine. Note that o is a section in an input
9689 file, so the contents field will not have been set by any of
9690 the routines which work on output files. */
9691 if (elf_section_data (o)->this_hdr.contents != NULL)
9692 {
9693 contents = elf_section_data (o)->this_hdr.contents;
9694 if (bed->caches_rawsize
9695 && o->rawsize != 0
9696 && o->rawsize < o->size)
9697 {
9698 memcpy (flinfo->contents, contents, o->rawsize);
9699 contents = flinfo->contents;
9700 }
9701 }
9702 else
9703 {
9704 contents = flinfo->contents;
9705 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9706 return FALSE;
9707 }
9708
9709 if ((o->flags & SEC_RELOC) != 0)
9710 {
9711 Elf_Internal_Rela *internal_relocs;
9712 Elf_Internal_Rela *rel, *relend;
9713 int action_discarded;
9714 int ret;
9715
9716 /* Get the swapped relocs. */
9717 internal_relocs
9718 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9719 flinfo->internal_relocs, FALSE);
9720 if (internal_relocs == NULL
9721 && o->reloc_count > 0)
9722 return FALSE;
9723
9724 /* We need to reverse-copy input .ctors/.dtors sections if
9725 they are placed in .init_array/.finit_array for output. */
9726 if (o->size > address_size
9727 && ((strncmp (o->name, ".ctors", 6) == 0
9728 && strcmp (o->output_section->name,
9729 ".init_array") == 0)
9730 || (strncmp (o->name, ".dtors", 6) == 0
9731 && strcmp (o->output_section->name,
9732 ".fini_array") == 0))
9733 && (o->name[6] == 0 || o->name[6] == '.'))
9734 {
9735 if (o->size != o->reloc_count * address_size)
9736 {
9737 (*_bfd_error_handler)
9738 (_("error: %B: size of section %A is not "
9739 "multiple of address size"),
9740 input_bfd, o);
9741 bfd_set_error (bfd_error_on_input);
9742 return FALSE;
9743 }
9744 o->flags |= SEC_ELF_REVERSE_COPY;
9745 }
9746
9747 action_discarded = -1;
9748 if (!elf_section_ignore_discarded_relocs (o))
9749 action_discarded = (*bed->action_discarded) (o);
9750
9751 /* Run through the relocs evaluating complex reloc symbols and
9752 looking for relocs against symbols from discarded sections
9753 or section symbols from removed link-once sections.
9754 Complain about relocs against discarded sections. Zero
9755 relocs against removed link-once sections. */
9756
9757 rel = internal_relocs;
9758 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9759 for ( ; rel < relend; rel++)
9760 {
9761 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9762 unsigned int s_type;
9763 asection **ps, *sec;
9764 struct elf_link_hash_entry *h = NULL;
9765 const char *sym_name;
9766
9767 if (r_symndx == STN_UNDEF)
9768 continue;
9769
9770 if (r_symndx >= locsymcount
9771 || (elf_bad_symtab (input_bfd)
9772 && flinfo->sections[r_symndx] == NULL))
9773 {
9774 h = sym_hashes[r_symndx - extsymoff];
9775
9776 /* Badly formatted input files can contain relocs that
9777 reference non-existant symbols. Check here so that
9778 we do not seg fault. */
9779 if (h == NULL)
9780 {
9781 char buffer [32];
9782
9783 sprintf_vma (buffer, rel->r_info);
9784 (*_bfd_error_handler)
9785 (_("error: %B contains a reloc (0x%s) for section %A "
9786 "that references a non-existent global symbol"),
9787 input_bfd, o, buffer);
9788 bfd_set_error (bfd_error_bad_value);
9789 return FALSE;
9790 }
9791
9792 while (h->root.type == bfd_link_hash_indirect
9793 || h->root.type == bfd_link_hash_warning)
9794 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9795
9796 s_type = h->type;
9797
9798 /* If a plugin symbol is referenced from a non-IR file,
9799 mark the symbol as undefined. Note that the
9800 linker may attach linker created dynamic sections
9801 to the plugin bfd. Symbols defined in linker
9802 created sections are not plugin symbols. */
9803 if (h->root.non_ir_ref
9804 && (h->root.type == bfd_link_hash_defined
9805 || h->root.type == bfd_link_hash_defweak)
9806 && (h->root.u.def.section->flags
9807 & SEC_LINKER_CREATED) == 0
9808 && h->root.u.def.section->owner != NULL
9809 && (h->root.u.def.section->owner->flags
9810 & BFD_PLUGIN) != 0)
9811 {
9812 h->root.type = bfd_link_hash_undefined;
9813 h->root.u.undef.abfd = h->root.u.def.section->owner;
9814 }
9815
9816 ps = NULL;
9817 if (h->root.type == bfd_link_hash_defined
9818 || h->root.type == bfd_link_hash_defweak)
9819 ps = &h->root.u.def.section;
9820
9821 sym_name = h->root.root.string;
9822 }
9823 else
9824 {
9825 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9826
9827 s_type = ELF_ST_TYPE (sym->st_info);
9828 ps = &flinfo->sections[r_symndx];
9829 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9830 sym, *ps);
9831 }
9832
9833 if ((s_type == STT_RELC || s_type == STT_SRELC)
9834 && !flinfo->info->relocatable)
9835 {
9836 bfd_vma val;
9837 bfd_vma dot = (rel->r_offset
9838 + o->output_offset + o->output_section->vma);
9839 #ifdef DEBUG
9840 printf ("Encountered a complex symbol!");
9841 printf (" (input_bfd %s, section %s, reloc %ld\n",
9842 input_bfd->filename, o->name,
9843 (long) (rel - internal_relocs));
9844 printf (" symbol: idx %8.8lx, name %s\n",
9845 r_symndx, sym_name);
9846 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9847 (unsigned long) rel->r_info,
9848 (unsigned long) rel->r_offset);
9849 #endif
9850 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9851 isymbuf, locsymcount, s_type == STT_SRELC))
9852 return FALSE;
9853
9854 /* Symbol evaluated OK. Update to absolute value. */
9855 set_symbol_value (input_bfd, isymbuf, locsymcount,
9856 r_symndx, val);
9857 continue;
9858 }
9859
9860 if (action_discarded != -1 && ps != NULL)
9861 {
9862 /* Complain if the definition comes from a
9863 discarded section. */
9864 if ((sec = *ps) != NULL && discarded_section (sec))
9865 {
9866 BFD_ASSERT (r_symndx != STN_UNDEF);
9867 if (action_discarded & COMPLAIN)
9868 (*flinfo->info->callbacks->einfo)
9869 (_("%X`%s' referenced in section `%A' of %B: "
9870 "defined in discarded section `%A' of %B\n"),
9871 sym_name, o, input_bfd, sec, sec->owner);
9872
9873 /* Try to do the best we can to support buggy old
9874 versions of gcc. Pretend that the symbol is
9875 really defined in the kept linkonce section.
9876 FIXME: This is quite broken. Modifying the
9877 symbol here means we will be changing all later
9878 uses of the symbol, not just in this section. */
9879 if (action_discarded & PRETEND)
9880 {
9881 asection *kept;
9882
9883 kept = _bfd_elf_check_kept_section (sec,
9884 flinfo->info);
9885 if (kept != NULL)
9886 {
9887 *ps = kept;
9888 continue;
9889 }
9890 }
9891 }
9892 }
9893 }
9894
9895 /* Relocate the section by invoking a back end routine.
9896
9897 The back end routine is responsible for adjusting the
9898 section contents as necessary, and (if using Rela relocs
9899 and generating a relocatable output file) adjusting the
9900 reloc addend as necessary.
9901
9902 The back end routine does not have to worry about setting
9903 the reloc address or the reloc symbol index.
9904
9905 The back end routine is given a pointer to the swapped in
9906 internal symbols, and can access the hash table entries
9907 for the external symbols via elf_sym_hashes (input_bfd).
9908
9909 When generating relocatable output, the back end routine
9910 must handle STB_LOCAL/STT_SECTION symbols specially. The
9911 output symbol is going to be a section symbol
9912 corresponding to the output section, which will require
9913 the addend to be adjusted. */
9914
9915 ret = (*relocate_section) (output_bfd, flinfo->info,
9916 input_bfd, o, contents,
9917 internal_relocs,
9918 isymbuf,
9919 flinfo->sections);
9920 if (!ret)
9921 return FALSE;
9922
9923 if (ret == 2
9924 || flinfo->info->relocatable
9925 || flinfo->info->emitrelocations)
9926 {
9927 Elf_Internal_Rela *irela;
9928 Elf_Internal_Rela *irelaend, *irelamid;
9929 bfd_vma last_offset;
9930 struct elf_link_hash_entry **rel_hash;
9931 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9932 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9933 unsigned int next_erel;
9934 bfd_boolean rela_normal;
9935 struct bfd_elf_section_data *esdi, *esdo;
9936
9937 esdi = elf_section_data (o);
9938 esdo = elf_section_data (o->output_section);
9939 rela_normal = FALSE;
9940
9941 /* Adjust the reloc addresses and symbol indices. */
9942
9943 irela = internal_relocs;
9944 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9945 rel_hash = esdo->rel.hashes + esdo->rel.count;
9946 /* We start processing the REL relocs, if any. When we reach
9947 IRELAMID in the loop, we switch to the RELA relocs. */
9948 irelamid = irela;
9949 if (esdi->rel.hdr != NULL)
9950 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9951 * bed->s->int_rels_per_ext_rel);
9952 rel_hash_list = rel_hash;
9953 rela_hash_list = NULL;
9954 last_offset = o->output_offset;
9955 if (!flinfo->info->relocatable)
9956 last_offset += o->output_section->vma;
9957 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9958 {
9959 unsigned long r_symndx;
9960 asection *sec;
9961 Elf_Internal_Sym sym;
9962
9963 if (next_erel == bed->s->int_rels_per_ext_rel)
9964 {
9965 rel_hash++;
9966 next_erel = 0;
9967 }
9968
9969 if (irela == irelamid)
9970 {
9971 rel_hash = esdo->rela.hashes + esdo->rela.count;
9972 rela_hash_list = rel_hash;
9973 rela_normal = bed->rela_normal;
9974 }
9975
9976 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9977 flinfo->info, o,
9978 irela->r_offset);
9979 if (irela->r_offset >= (bfd_vma) -2)
9980 {
9981 /* This is a reloc for a deleted entry or somesuch.
9982 Turn it into an R_*_NONE reloc, at the same
9983 offset as the last reloc. elf_eh_frame.c and
9984 bfd_elf_discard_info rely on reloc offsets
9985 being ordered. */
9986 irela->r_offset = last_offset;
9987 irela->r_info = 0;
9988 irela->r_addend = 0;
9989 continue;
9990 }
9991
9992 irela->r_offset += o->output_offset;
9993
9994 /* Relocs in an executable have to be virtual addresses. */
9995 if (!flinfo->info->relocatable)
9996 irela->r_offset += o->output_section->vma;
9997
9998 last_offset = irela->r_offset;
9999
10000 r_symndx = irela->r_info >> r_sym_shift;
10001 if (r_symndx == STN_UNDEF)
10002 continue;
10003
10004 if (r_symndx >= locsymcount
10005 || (elf_bad_symtab (input_bfd)
10006 && flinfo->sections[r_symndx] == NULL))
10007 {
10008 struct elf_link_hash_entry *rh;
10009 unsigned long indx;
10010
10011 /* This is a reloc against a global symbol. We
10012 have not yet output all the local symbols, so
10013 we do not know the symbol index of any global
10014 symbol. We set the rel_hash entry for this
10015 reloc to point to the global hash table entry
10016 for this symbol. The symbol index is then
10017 set at the end of bfd_elf_final_link. */
10018 indx = r_symndx - extsymoff;
10019 rh = elf_sym_hashes (input_bfd)[indx];
10020 while (rh->root.type == bfd_link_hash_indirect
10021 || rh->root.type == bfd_link_hash_warning)
10022 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10023
10024 /* Setting the index to -2 tells
10025 elf_link_output_extsym that this symbol is
10026 used by a reloc. */
10027 BFD_ASSERT (rh->indx < 0);
10028 rh->indx = -2;
10029
10030 *rel_hash = rh;
10031
10032 continue;
10033 }
10034
10035 /* This is a reloc against a local symbol. */
10036
10037 *rel_hash = NULL;
10038 sym = isymbuf[r_symndx];
10039 sec = flinfo->sections[r_symndx];
10040 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10041 {
10042 /* I suppose the backend ought to fill in the
10043 section of any STT_SECTION symbol against a
10044 processor specific section. */
10045 r_symndx = STN_UNDEF;
10046 if (bfd_is_abs_section (sec))
10047 ;
10048 else if (sec == NULL || sec->owner == NULL)
10049 {
10050 bfd_set_error (bfd_error_bad_value);
10051 return FALSE;
10052 }
10053 else
10054 {
10055 asection *osec = sec->output_section;
10056
10057 /* If we have discarded a section, the output
10058 section will be the absolute section. In
10059 case of discarded SEC_MERGE sections, use
10060 the kept section. relocate_section should
10061 have already handled discarded linkonce
10062 sections. */
10063 if (bfd_is_abs_section (osec)
10064 && sec->kept_section != NULL
10065 && sec->kept_section->output_section != NULL)
10066 {
10067 osec = sec->kept_section->output_section;
10068 irela->r_addend -= osec->vma;
10069 }
10070
10071 if (!bfd_is_abs_section (osec))
10072 {
10073 r_symndx = osec->target_index;
10074 if (r_symndx == STN_UNDEF)
10075 {
10076 irela->r_addend += osec->vma;
10077 osec = _bfd_nearby_section (output_bfd, osec,
10078 osec->vma);
10079 irela->r_addend -= osec->vma;
10080 r_symndx = osec->target_index;
10081 }
10082 }
10083 }
10084
10085 /* Adjust the addend according to where the
10086 section winds up in the output section. */
10087 if (rela_normal)
10088 irela->r_addend += sec->output_offset;
10089 }
10090 else
10091 {
10092 if (flinfo->indices[r_symndx] == -1)
10093 {
10094 unsigned long shlink;
10095 const char *name;
10096 asection *osec;
10097 long indx;
10098
10099 if (flinfo->info->strip == strip_all)
10100 {
10101 /* You can't do ld -r -s. */
10102 bfd_set_error (bfd_error_invalid_operation);
10103 return FALSE;
10104 }
10105
10106 /* This symbol was skipped earlier, but
10107 since it is needed by a reloc, we
10108 must output it now. */
10109 shlink = symtab_hdr->sh_link;
10110 name = (bfd_elf_string_from_elf_section
10111 (input_bfd, shlink, sym.st_name));
10112 if (name == NULL)
10113 return FALSE;
10114
10115 osec = sec->output_section;
10116 sym.st_shndx =
10117 _bfd_elf_section_from_bfd_section (output_bfd,
10118 osec);
10119 if (sym.st_shndx == SHN_BAD)
10120 return FALSE;
10121
10122 sym.st_value += sec->output_offset;
10123 if (!flinfo->info->relocatable)
10124 {
10125 sym.st_value += osec->vma;
10126 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10127 {
10128 /* STT_TLS symbols are relative to PT_TLS
10129 segment base. */
10130 BFD_ASSERT (elf_hash_table (flinfo->info)
10131 ->tls_sec != NULL);
10132 sym.st_value -= (elf_hash_table (flinfo->info)
10133 ->tls_sec->vma);
10134 }
10135 }
10136
10137 indx = bfd_get_symcount (output_bfd);
10138 ret = elf_link_output_sym (flinfo, name, &sym, sec,
10139 NULL);
10140 if (ret == 0)
10141 return FALSE;
10142 else if (ret == 1)
10143 flinfo->indices[r_symndx] = indx;
10144 else
10145 abort ();
10146 }
10147
10148 r_symndx = flinfo->indices[r_symndx];
10149 }
10150
10151 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10152 | (irela->r_info & r_type_mask));
10153 }
10154
10155 /* Swap out the relocs. */
10156 input_rel_hdr = esdi->rel.hdr;
10157 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10158 {
10159 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10160 input_rel_hdr,
10161 internal_relocs,
10162 rel_hash_list))
10163 return FALSE;
10164 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10165 * bed->s->int_rels_per_ext_rel);
10166 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10167 }
10168
10169 input_rela_hdr = esdi->rela.hdr;
10170 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10171 {
10172 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10173 input_rela_hdr,
10174 internal_relocs,
10175 rela_hash_list))
10176 return FALSE;
10177 }
10178 }
10179 }
10180
10181 /* Write out the modified section contents. */
10182 if (bed->elf_backend_write_section
10183 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10184 contents))
10185 {
10186 /* Section written out. */
10187 }
10188 else switch (o->sec_info_type)
10189 {
10190 case SEC_INFO_TYPE_STABS:
10191 if (! (_bfd_write_section_stabs
10192 (output_bfd,
10193 &elf_hash_table (flinfo->info)->stab_info,
10194 o, &elf_section_data (o)->sec_info, contents)))
10195 return FALSE;
10196 break;
10197 case SEC_INFO_TYPE_MERGE:
10198 if (! _bfd_write_merged_section (output_bfd, o,
10199 elf_section_data (o)->sec_info))
10200 return FALSE;
10201 break;
10202 case SEC_INFO_TYPE_EH_FRAME:
10203 {
10204 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10205 o, contents))
10206 return FALSE;
10207 }
10208 break;
10209 default:
10210 {
10211 /* FIXME: octets_per_byte. */
10212 if (! (o->flags & SEC_EXCLUDE))
10213 {
10214 file_ptr offset = (file_ptr) o->output_offset;
10215 bfd_size_type todo = o->size;
10216 if ((o->flags & SEC_ELF_REVERSE_COPY))
10217 {
10218 /* Reverse-copy input section to output. */
10219 do
10220 {
10221 todo -= address_size;
10222 if (! bfd_set_section_contents (output_bfd,
10223 o->output_section,
10224 contents + todo,
10225 offset,
10226 address_size))
10227 return FALSE;
10228 if (todo == 0)
10229 break;
10230 offset += address_size;
10231 }
10232 while (1);
10233 }
10234 else if (! bfd_set_section_contents (output_bfd,
10235 o->output_section,
10236 contents,
10237 offset, todo))
10238 return FALSE;
10239 }
10240 }
10241 break;
10242 }
10243 }
10244
10245 return TRUE;
10246 }
10247
10248 /* Generate a reloc when linking an ELF file. This is a reloc
10249 requested by the linker, and does not come from any input file. This
10250 is used to build constructor and destructor tables when linking
10251 with -Ur. */
10252
10253 static bfd_boolean
10254 elf_reloc_link_order (bfd *output_bfd,
10255 struct bfd_link_info *info,
10256 asection *output_section,
10257 struct bfd_link_order *link_order)
10258 {
10259 reloc_howto_type *howto;
10260 long indx;
10261 bfd_vma offset;
10262 bfd_vma addend;
10263 struct bfd_elf_section_reloc_data *reldata;
10264 struct elf_link_hash_entry **rel_hash_ptr;
10265 Elf_Internal_Shdr *rel_hdr;
10266 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10267 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10268 bfd_byte *erel;
10269 unsigned int i;
10270 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10271
10272 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10273 if (howto == NULL)
10274 {
10275 bfd_set_error (bfd_error_bad_value);
10276 return FALSE;
10277 }
10278
10279 addend = link_order->u.reloc.p->addend;
10280
10281 if (esdo->rel.hdr)
10282 reldata = &esdo->rel;
10283 else if (esdo->rela.hdr)
10284 reldata = &esdo->rela;
10285 else
10286 {
10287 reldata = NULL;
10288 BFD_ASSERT (0);
10289 }
10290
10291 /* Figure out the symbol index. */
10292 rel_hash_ptr = reldata->hashes + reldata->count;
10293 if (link_order->type == bfd_section_reloc_link_order)
10294 {
10295 indx = link_order->u.reloc.p->u.section->target_index;
10296 BFD_ASSERT (indx != 0);
10297 *rel_hash_ptr = NULL;
10298 }
10299 else
10300 {
10301 struct elf_link_hash_entry *h;
10302
10303 /* Treat a reloc against a defined symbol as though it were
10304 actually against the section. */
10305 h = ((struct elf_link_hash_entry *)
10306 bfd_wrapped_link_hash_lookup (output_bfd, info,
10307 link_order->u.reloc.p->u.name,
10308 FALSE, FALSE, TRUE));
10309 if (h != NULL
10310 && (h->root.type == bfd_link_hash_defined
10311 || h->root.type == bfd_link_hash_defweak))
10312 {
10313 asection *section;
10314
10315 section = h->root.u.def.section;
10316 indx = section->output_section->target_index;
10317 *rel_hash_ptr = NULL;
10318 /* It seems that we ought to add the symbol value to the
10319 addend here, but in practice it has already been added
10320 because it was passed to constructor_callback. */
10321 addend += section->output_section->vma + section->output_offset;
10322 }
10323 else if (h != NULL)
10324 {
10325 /* Setting the index to -2 tells elf_link_output_extsym that
10326 this symbol is used by a reloc. */
10327 h->indx = -2;
10328 *rel_hash_ptr = h;
10329 indx = 0;
10330 }
10331 else
10332 {
10333 if (! ((*info->callbacks->unattached_reloc)
10334 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10335 return FALSE;
10336 indx = 0;
10337 }
10338 }
10339
10340 /* If this is an inplace reloc, we must write the addend into the
10341 object file. */
10342 if (howto->partial_inplace && addend != 0)
10343 {
10344 bfd_size_type size;
10345 bfd_reloc_status_type rstat;
10346 bfd_byte *buf;
10347 bfd_boolean ok;
10348 const char *sym_name;
10349
10350 size = (bfd_size_type) bfd_get_reloc_size (howto);
10351 buf = (bfd_byte *) bfd_zmalloc (size);
10352 if (buf == NULL && size != 0)
10353 return FALSE;
10354 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10355 switch (rstat)
10356 {
10357 case bfd_reloc_ok:
10358 break;
10359
10360 default:
10361 case bfd_reloc_outofrange:
10362 abort ();
10363
10364 case bfd_reloc_overflow:
10365 if (link_order->type == bfd_section_reloc_link_order)
10366 sym_name = bfd_section_name (output_bfd,
10367 link_order->u.reloc.p->u.section);
10368 else
10369 sym_name = link_order->u.reloc.p->u.name;
10370 if (! ((*info->callbacks->reloc_overflow)
10371 (info, NULL, sym_name, howto->name, addend, NULL,
10372 NULL, (bfd_vma) 0)))
10373 {
10374 free (buf);
10375 return FALSE;
10376 }
10377 break;
10378 }
10379 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10380 link_order->offset, size);
10381 free (buf);
10382 if (! ok)
10383 return FALSE;
10384 }
10385
10386 /* The address of a reloc is relative to the section in a
10387 relocatable file, and is a virtual address in an executable
10388 file. */
10389 offset = link_order->offset;
10390 if (! info->relocatable)
10391 offset += output_section->vma;
10392
10393 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10394 {
10395 irel[i].r_offset = offset;
10396 irel[i].r_info = 0;
10397 irel[i].r_addend = 0;
10398 }
10399 if (bed->s->arch_size == 32)
10400 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10401 else
10402 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10403
10404 rel_hdr = reldata->hdr;
10405 erel = rel_hdr->contents;
10406 if (rel_hdr->sh_type == SHT_REL)
10407 {
10408 erel += reldata->count * bed->s->sizeof_rel;
10409 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10410 }
10411 else
10412 {
10413 irel[0].r_addend = addend;
10414 erel += reldata->count * bed->s->sizeof_rela;
10415 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10416 }
10417
10418 ++reldata->count;
10419
10420 return TRUE;
10421 }
10422
10423
10424 /* Get the output vma of the section pointed to by the sh_link field. */
10425
10426 static bfd_vma
10427 elf_get_linked_section_vma (struct bfd_link_order *p)
10428 {
10429 Elf_Internal_Shdr **elf_shdrp;
10430 asection *s;
10431 int elfsec;
10432
10433 s = p->u.indirect.section;
10434 elf_shdrp = elf_elfsections (s->owner);
10435 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10436 elfsec = elf_shdrp[elfsec]->sh_link;
10437 /* PR 290:
10438 The Intel C compiler generates SHT_IA_64_UNWIND with
10439 SHF_LINK_ORDER. But it doesn't set the sh_link or
10440 sh_info fields. Hence we could get the situation
10441 where elfsec is 0. */
10442 if (elfsec == 0)
10443 {
10444 const struct elf_backend_data *bed
10445 = get_elf_backend_data (s->owner);
10446 if (bed->link_order_error_handler)
10447 bed->link_order_error_handler
10448 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10449 return 0;
10450 }
10451 else
10452 {
10453 s = elf_shdrp[elfsec]->bfd_section;
10454 return s->output_section->vma + s->output_offset;
10455 }
10456 }
10457
10458
10459 /* Compare two sections based on the locations of the sections they are
10460 linked to. Used by elf_fixup_link_order. */
10461
10462 static int
10463 compare_link_order (const void * a, const void * b)
10464 {
10465 bfd_vma apos;
10466 bfd_vma bpos;
10467
10468 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10469 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10470 if (apos < bpos)
10471 return -1;
10472 return apos > bpos;
10473 }
10474
10475
10476 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10477 order as their linked sections. Returns false if this could not be done
10478 because an output section includes both ordered and unordered
10479 sections. Ideally we'd do this in the linker proper. */
10480
10481 static bfd_boolean
10482 elf_fixup_link_order (bfd *abfd, asection *o)
10483 {
10484 int seen_linkorder;
10485 int seen_other;
10486 int n;
10487 struct bfd_link_order *p;
10488 bfd *sub;
10489 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10490 unsigned elfsec;
10491 struct bfd_link_order **sections;
10492 asection *s, *other_sec, *linkorder_sec;
10493 bfd_vma offset;
10494
10495 other_sec = NULL;
10496 linkorder_sec = NULL;
10497 seen_other = 0;
10498 seen_linkorder = 0;
10499 for (p = o->map_head.link_order; p != NULL; p = p->next)
10500 {
10501 if (p->type == bfd_indirect_link_order)
10502 {
10503 s = p->u.indirect.section;
10504 sub = s->owner;
10505 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10506 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10507 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10508 && elfsec < elf_numsections (sub)
10509 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10510 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10511 {
10512 seen_linkorder++;
10513 linkorder_sec = s;
10514 }
10515 else
10516 {
10517 seen_other++;
10518 other_sec = s;
10519 }
10520 }
10521 else
10522 seen_other++;
10523
10524 if (seen_other && seen_linkorder)
10525 {
10526 if (other_sec && linkorder_sec)
10527 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10528 o, linkorder_sec,
10529 linkorder_sec->owner, other_sec,
10530 other_sec->owner);
10531 else
10532 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10533 o);
10534 bfd_set_error (bfd_error_bad_value);
10535 return FALSE;
10536 }
10537 }
10538
10539 if (!seen_linkorder)
10540 return TRUE;
10541
10542 sections = (struct bfd_link_order **)
10543 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10544 if (sections == NULL)
10545 return FALSE;
10546 seen_linkorder = 0;
10547
10548 for (p = o->map_head.link_order; p != NULL; p = p->next)
10549 {
10550 sections[seen_linkorder++] = p;
10551 }
10552 /* Sort the input sections in the order of their linked section. */
10553 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10554 compare_link_order);
10555
10556 /* Change the offsets of the sections. */
10557 offset = 0;
10558 for (n = 0; n < seen_linkorder; n++)
10559 {
10560 s = sections[n]->u.indirect.section;
10561 offset &= ~(bfd_vma) 0 << s->alignment_power;
10562 s->output_offset = offset;
10563 sections[n]->offset = offset;
10564 /* FIXME: octets_per_byte. */
10565 offset += sections[n]->size;
10566 }
10567
10568 free (sections);
10569 return TRUE;
10570 }
10571
10572 static void
10573 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10574 {
10575 asection *o;
10576
10577 if (flinfo->symstrtab != NULL)
10578 _bfd_stringtab_free (flinfo->symstrtab);
10579 if (flinfo->contents != NULL)
10580 free (flinfo->contents);
10581 if (flinfo->external_relocs != NULL)
10582 free (flinfo->external_relocs);
10583 if (flinfo->internal_relocs != NULL)
10584 free (flinfo->internal_relocs);
10585 if (flinfo->external_syms != NULL)
10586 free (flinfo->external_syms);
10587 if (flinfo->locsym_shndx != NULL)
10588 free (flinfo->locsym_shndx);
10589 if (flinfo->internal_syms != NULL)
10590 free (flinfo->internal_syms);
10591 if (flinfo->indices != NULL)
10592 free (flinfo->indices);
10593 if (flinfo->sections != NULL)
10594 free (flinfo->sections);
10595 if (flinfo->symbuf != NULL)
10596 free (flinfo->symbuf);
10597 if (flinfo->symshndxbuf != NULL)
10598 free (flinfo->symshndxbuf);
10599 for (o = obfd->sections; o != NULL; o = o->next)
10600 {
10601 struct bfd_elf_section_data *esdo = elf_section_data (o);
10602 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10603 free (esdo->rel.hashes);
10604 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10605 free (esdo->rela.hashes);
10606 }
10607 }
10608
10609 /* Do the final step of an ELF link. */
10610
10611 bfd_boolean
10612 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10613 {
10614 bfd_boolean dynamic;
10615 bfd_boolean emit_relocs;
10616 bfd *dynobj;
10617 struct elf_final_link_info flinfo;
10618 asection *o;
10619 struct bfd_link_order *p;
10620 bfd *sub;
10621 bfd_size_type max_contents_size;
10622 bfd_size_type max_external_reloc_size;
10623 bfd_size_type max_internal_reloc_count;
10624 bfd_size_type max_sym_count;
10625 bfd_size_type max_sym_shndx_count;
10626 Elf_Internal_Sym elfsym;
10627 unsigned int i;
10628 Elf_Internal_Shdr *symtab_hdr;
10629 Elf_Internal_Shdr *symtab_shndx_hdr;
10630 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10631 struct elf_outext_info eoinfo;
10632 bfd_boolean merged;
10633 size_t relativecount = 0;
10634 asection *reldyn = 0;
10635 bfd_size_type amt;
10636 asection *attr_section = NULL;
10637 bfd_vma attr_size = 0;
10638 const char *std_attrs_section;
10639
10640 if (! is_elf_hash_table (info->hash))
10641 return FALSE;
10642
10643 if (info->shared)
10644 abfd->flags |= DYNAMIC;
10645
10646 dynamic = elf_hash_table (info)->dynamic_sections_created;
10647 dynobj = elf_hash_table (info)->dynobj;
10648
10649 emit_relocs = (info->relocatable
10650 || info->emitrelocations);
10651
10652 flinfo.info = info;
10653 flinfo.output_bfd = abfd;
10654 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10655 if (flinfo.symstrtab == NULL)
10656 return FALSE;
10657
10658 if (! dynamic)
10659 {
10660 flinfo.dynsym_sec = NULL;
10661 flinfo.hash_sec = NULL;
10662 flinfo.symver_sec = NULL;
10663 }
10664 else
10665 {
10666 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10667 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10668 /* Note that dynsym_sec can be NULL (on VMS). */
10669 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10670 /* Note that it is OK if symver_sec is NULL. */
10671 }
10672
10673 flinfo.contents = NULL;
10674 flinfo.external_relocs = NULL;
10675 flinfo.internal_relocs = NULL;
10676 flinfo.external_syms = NULL;
10677 flinfo.locsym_shndx = NULL;
10678 flinfo.internal_syms = NULL;
10679 flinfo.indices = NULL;
10680 flinfo.sections = NULL;
10681 flinfo.symbuf = NULL;
10682 flinfo.symshndxbuf = NULL;
10683 flinfo.symbuf_count = 0;
10684 flinfo.shndxbuf_size = 0;
10685 flinfo.filesym_count = 0;
10686
10687 /* The object attributes have been merged. Remove the input
10688 sections from the link, and set the contents of the output
10689 secton. */
10690 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10691 for (o = abfd->sections; o != NULL; o = o->next)
10692 {
10693 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10694 || strcmp (o->name, ".gnu.attributes") == 0)
10695 {
10696 for (p = o->map_head.link_order; p != NULL; p = p->next)
10697 {
10698 asection *input_section;
10699
10700 if (p->type != bfd_indirect_link_order)
10701 continue;
10702 input_section = p->u.indirect.section;
10703 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10704 elf_link_input_bfd ignores this section. */
10705 input_section->flags &= ~SEC_HAS_CONTENTS;
10706 }
10707
10708 attr_size = bfd_elf_obj_attr_size (abfd);
10709 if (attr_size)
10710 {
10711 bfd_set_section_size (abfd, o, attr_size);
10712 attr_section = o;
10713 /* Skip this section later on. */
10714 o->map_head.link_order = NULL;
10715 }
10716 else
10717 o->flags |= SEC_EXCLUDE;
10718 }
10719 }
10720
10721 /* Count up the number of relocations we will output for each output
10722 section, so that we know the sizes of the reloc sections. We
10723 also figure out some maximum sizes. */
10724 max_contents_size = 0;
10725 max_external_reloc_size = 0;
10726 max_internal_reloc_count = 0;
10727 max_sym_count = 0;
10728 max_sym_shndx_count = 0;
10729 merged = FALSE;
10730 for (o = abfd->sections; o != NULL; o = o->next)
10731 {
10732 struct bfd_elf_section_data *esdo = elf_section_data (o);
10733 o->reloc_count = 0;
10734
10735 for (p = o->map_head.link_order; p != NULL; p = p->next)
10736 {
10737 unsigned int reloc_count = 0;
10738 struct bfd_elf_section_data *esdi = NULL;
10739
10740 if (p->type == bfd_section_reloc_link_order
10741 || p->type == bfd_symbol_reloc_link_order)
10742 reloc_count = 1;
10743 else if (p->type == bfd_indirect_link_order)
10744 {
10745 asection *sec;
10746
10747 sec = p->u.indirect.section;
10748 esdi = elf_section_data (sec);
10749
10750 /* Mark all sections which are to be included in the
10751 link. This will normally be every section. We need
10752 to do this so that we can identify any sections which
10753 the linker has decided to not include. */
10754 sec->linker_mark = TRUE;
10755
10756 if (sec->flags & SEC_MERGE)
10757 merged = TRUE;
10758
10759 if (esdo->this_hdr.sh_type == SHT_REL
10760 || esdo->this_hdr.sh_type == SHT_RELA)
10761 /* Some backends use reloc_count in relocation sections
10762 to count particular types of relocs. Of course,
10763 reloc sections themselves can't have relocations. */
10764 reloc_count = 0;
10765 else if (info->relocatable || info->emitrelocations)
10766 reloc_count = sec->reloc_count;
10767 else if (bed->elf_backend_count_relocs)
10768 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10769
10770 if (sec->rawsize > max_contents_size)
10771 max_contents_size = sec->rawsize;
10772 if (sec->size > max_contents_size)
10773 max_contents_size = sec->size;
10774
10775 /* We are interested in just local symbols, not all
10776 symbols. */
10777 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10778 && (sec->owner->flags & DYNAMIC) == 0)
10779 {
10780 size_t sym_count;
10781
10782 if (elf_bad_symtab (sec->owner))
10783 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10784 / bed->s->sizeof_sym);
10785 else
10786 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10787
10788 if (sym_count > max_sym_count)
10789 max_sym_count = sym_count;
10790
10791 if (sym_count > max_sym_shndx_count
10792 && elf_symtab_shndx (sec->owner) != 0)
10793 max_sym_shndx_count = sym_count;
10794
10795 if ((sec->flags & SEC_RELOC) != 0)
10796 {
10797 size_t ext_size = 0;
10798
10799 if (esdi->rel.hdr != NULL)
10800 ext_size = esdi->rel.hdr->sh_size;
10801 if (esdi->rela.hdr != NULL)
10802 ext_size += esdi->rela.hdr->sh_size;
10803
10804 if (ext_size > max_external_reloc_size)
10805 max_external_reloc_size = ext_size;
10806 if (sec->reloc_count > max_internal_reloc_count)
10807 max_internal_reloc_count = sec->reloc_count;
10808 }
10809 }
10810 }
10811
10812 if (reloc_count == 0)
10813 continue;
10814
10815 o->reloc_count += reloc_count;
10816
10817 if (p->type == bfd_indirect_link_order
10818 && (info->relocatable || info->emitrelocations))
10819 {
10820 if (esdi->rel.hdr)
10821 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10822 if (esdi->rela.hdr)
10823 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10824 }
10825 else
10826 {
10827 if (o->use_rela_p)
10828 esdo->rela.count += reloc_count;
10829 else
10830 esdo->rel.count += reloc_count;
10831 }
10832 }
10833
10834 if (o->reloc_count > 0)
10835 o->flags |= SEC_RELOC;
10836 else
10837 {
10838 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10839 set it (this is probably a bug) and if it is set
10840 assign_section_numbers will create a reloc section. */
10841 o->flags &=~ SEC_RELOC;
10842 }
10843
10844 /* If the SEC_ALLOC flag is not set, force the section VMA to
10845 zero. This is done in elf_fake_sections as well, but forcing
10846 the VMA to 0 here will ensure that relocs against these
10847 sections are handled correctly. */
10848 if ((o->flags & SEC_ALLOC) == 0
10849 && ! o->user_set_vma)
10850 o->vma = 0;
10851 }
10852
10853 if (! info->relocatable && merged)
10854 elf_link_hash_traverse (elf_hash_table (info),
10855 _bfd_elf_link_sec_merge_syms, abfd);
10856
10857 /* Figure out the file positions for everything but the symbol table
10858 and the relocs. We set symcount to force assign_section_numbers
10859 to create a symbol table. */
10860 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
10861 BFD_ASSERT (! abfd->output_has_begun);
10862 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10863 goto error_return;
10864
10865 /* Set sizes, and assign file positions for reloc sections. */
10866 for (o = abfd->sections; o != NULL; o = o->next)
10867 {
10868 struct bfd_elf_section_data *esdo = elf_section_data (o);
10869 if ((o->flags & SEC_RELOC) != 0)
10870 {
10871 if (esdo->rel.hdr
10872 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10873 goto error_return;
10874
10875 if (esdo->rela.hdr
10876 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10877 goto error_return;
10878 }
10879
10880 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10881 to count upwards while actually outputting the relocations. */
10882 esdo->rel.count = 0;
10883 esdo->rela.count = 0;
10884 }
10885
10886 /* We have now assigned file positions for all the sections except
10887 .symtab, .strtab, and non-loaded reloc sections. We start the
10888 .symtab section at the current file position, and write directly
10889 to it. We build the .strtab section in memory. */
10890 bfd_get_symcount (abfd) = 0;
10891 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10892 /* sh_name is set in prep_headers. */
10893 symtab_hdr->sh_type = SHT_SYMTAB;
10894 /* sh_flags, sh_addr and sh_size all start off zero. */
10895 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10896 /* sh_link is set in assign_section_numbers. */
10897 /* sh_info is set below. */
10898 /* sh_offset is set just below. */
10899 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10900
10901 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10902 continuously seeking to the right position in the file. */
10903 if (! info->keep_memory || max_sym_count < 20)
10904 flinfo.symbuf_size = 20;
10905 else
10906 flinfo.symbuf_size = max_sym_count;
10907 amt = flinfo.symbuf_size;
10908 amt *= bed->s->sizeof_sym;
10909 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10910 if (flinfo.symbuf == NULL)
10911 goto error_return;
10912 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10913 {
10914 /* Wild guess at number of output symbols. realloc'd as needed. */
10915 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10916 flinfo.shndxbuf_size = amt;
10917 amt *= sizeof (Elf_External_Sym_Shndx);
10918 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10919 if (flinfo.symshndxbuf == NULL)
10920 goto error_return;
10921 }
10922
10923 if (info->strip != strip_all || emit_relocs)
10924 {
10925 file_ptr off = elf_next_file_pos (abfd);
10926
10927 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10928
10929 /* Note that at this point elf_next_file_pos (abfd) is
10930 incorrect. We do not yet know the size of the .symtab section.
10931 We correct next_file_pos below, after we do know the size. */
10932
10933 /* Start writing out the symbol table. The first symbol is always a
10934 dummy symbol. */
10935 elfsym.st_value = 0;
10936 elfsym.st_size = 0;
10937 elfsym.st_info = 0;
10938 elfsym.st_other = 0;
10939 elfsym.st_shndx = SHN_UNDEF;
10940 elfsym.st_target_internal = 0;
10941 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10942 NULL) != 1)
10943 goto error_return;
10944
10945 /* Output a symbol for each section. We output these even if we are
10946 discarding local symbols, since they are used for relocs. These
10947 symbols have no names. We store the index of each one in the
10948 index field of the section, so that we can find it again when
10949 outputting relocs. */
10950
10951 elfsym.st_size = 0;
10952 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10953 elfsym.st_other = 0;
10954 elfsym.st_value = 0;
10955 elfsym.st_target_internal = 0;
10956 for (i = 1; i < elf_numsections (abfd); i++)
10957 {
10958 o = bfd_section_from_elf_index (abfd, i);
10959 if (o != NULL)
10960 {
10961 o->target_index = bfd_get_symcount (abfd);
10962 elfsym.st_shndx = i;
10963 if (!info->relocatable)
10964 elfsym.st_value = o->vma;
10965 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10966 goto error_return;
10967 }
10968 }
10969 }
10970
10971 /* Allocate some memory to hold information read in from the input
10972 files. */
10973 if (max_contents_size != 0)
10974 {
10975 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10976 if (flinfo.contents == NULL)
10977 goto error_return;
10978 }
10979
10980 if (max_external_reloc_size != 0)
10981 {
10982 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10983 if (flinfo.external_relocs == NULL)
10984 goto error_return;
10985 }
10986
10987 if (max_internal_reloc_count != 0)
10988 {
10989 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10990 amt *= sizeof (Elf_Internal_Rela);
10991 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10992 if (flinfo.internal_relocs == NULL)
10993 goto error_return;
10994 }
10995
10996 if (max_sym_count != 0)
10997 {
10998 amt = max_sym_count * bed->s->sizeof_sym;
10999 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
11000 if (flinfo.external_syms == NULL)
11001 goto error_return;
11002
11003 amt = max_sym_count * sizeof (Elf_Internal_Sym);
11004 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
11005 if (flinfo.internal_syms == NULL)
11006 goto error_return;
11007
11008 amt = max_sym_count * sizeof (long);
11009 flinfo.indices = (long int *) bfd_malloc (amt);
11010 if (flinfo.indices == NULL)
11011 goto error_return;
11012
11013 amt = max_sym_count * sizeof (asection *);
11014 flinfo.sections = (asection **) bfd_malloc (amt);
11015 if (flinfo.sections == NULL)
11016 goto error_return;
11017 }
11018
11019 if (max_sym_shndx_count != 0)
11020 {
11021 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11022 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11023 if (flinfo.locsym_shndx == NULL)
11024 goto error_return;
11025 }
11026
11027 if (elf_hash_table (info)->tls_sec)
11028 {
11029 bfd_vma base, end = 0;
11030 asection *sec;
11031
11032 for (sec = elf_hash_table (info)->tls_sec;
11033 sec && (sec->flags & SEC_THREAD_LOCAL);
11034 sec = sec->next)
11035 {
11036 bfd_size_type size = sec->size;
11037
11038 if (size == 0
11039 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11040 {
11041 struct bfd_link_order *ord = sec->map_tail.link_order;
11042
11043 if (ord != NULL)
11044 size = ord->offset + ord->size;
11045 }
11046 end = sec->vma + size;
11047 }
11048 base = elf_hash_table (info)->tls_sec->vma;
11049 /* Only align end of TLS section if static TLS doesn't have special
11050 alignment requirements. */
11051 if (bed->static_tls_alignment == 1)
11052 end = align_power (end,
11053 elf_hash_table (info)->tls_sec->alignment_power);
11054 elf_hash_table (info)->tls_size = end - base;
11055 }
11056
11057 /* Reorder SHF_LINK_ORDER sections. */
11058 for (o = abfd->sections; o != NULL; o = o->next)
11059 {
11060 if (!elf_fixup_link_order (abfd, o))
11061 return FALSE;
11062 }
11063
11064 /* Since ELF permits relocations to be against local symbols, we
11065 must have the local symbols available when we do the relocations.
11066 Since we would rather only read the local symbols once, and we
11067 would rather not keep them in memory, we handle all the
11068 relocations for a single input file at the same time.
11069
11070 Unfortunately, there is no way to know the total number of local
11071 symbols until we have seen all of them, and the local symbol
11072 indices precede the global symbol indices. This means that when
11073 we are generating relocatable output, and we see a reloc against
11074 a global symbol, we can not know the symbol index until we have
11075 finished examining all the local symbols to see which ones we are
11076 going to output. To deal with this, we keep the relocations in
11077 memory, and don't output them until the end of the link. This is
11078 an unfortunate waste of memory, but I don't see a good way around
11079 it. Fortunately, it only happens when performing a relocatable
11080 link, which is not the common case. FIXME: If keep_memory is set
11081 we could write the relocs out and then read them again; I don't
11082 know how bad the memory loss will be. */
11083
11084 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11085 sub->output_has_begun = FALSE;
11086 for (o = abfd->sections; o != NULL; o = o->next)
11087 {
11088 for (p = o->map_head.link_order; p != NULL; p = p->next)
11089 {
11090 if (p->type == bfd_indirect_link_order
11091 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11092 == bfd_target_elf_flavour)
11093 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11094 {
11095 if (! sub->output_has_begun)
11096 {
11097 if (! elf_link_input_bfd (&flinfo, sub))
11098 goto error_return;
11099 sub->output_has_begun = TRUE;
11100 }
11101 }
11102 else if (p->type == bfd_section_reloc_link_order
11103 || p->type == bfd_symbol_reloc_link_order)
11104 {
11105 if (! elf_reloc_link_order (abfd, info, o, p))
11106 goto error_return;
11107 }
11108 else
11109 {
11110 if (! _bfd_default_link_order (abfd, info, o, p))
11111 {
11112 if (p->type == bfd_indirect_link_order
11113 && (bfd_get_flavour (sub)
11114 == bfd_target_elf_flavour)
11115 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11116 != bed->s->elfclass))
11117 {
11118 const char *iclass, *oclass;
11119
11120 if (bed->s->elfclass == ELFCLASS64)
11121 {
11122 iclass = "ELFCLASS32";
11123 oclass = "ELFCLASS64";
11124 }
11125 else
11126 {
11127 iclass = "ELFCLASS64";
11128 oclass = "ELFCLASS32";
11129 }
11130
11131 bfd_set_error (bfd_error_wrong_format);
11132 (*_bfd_error_handler)
11133 (_("%B: file class %s incompatible with %s"),
11134 sub, iclass, oclass);
11135 }
11136
11137 goto error_return;
11138 }
11139 }
11140 }
11141 }
11142
11143 /* Free symbol buffer if needed. */
11144 if (!info->reduce_memory_overheads)
11145 {
11146 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11147 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11148 && elf_tdata (sub)->symbuf)
11149 {
11150 free (elf_tdata (sub)->symbuf);
11151 elf_tdata (sub)->symbuf = NULL;
11152 }
11153 }
11154
11155 /* Output any global symbols that got converted to local in a
11156 version script or due to symbol visibility. We do this in a
11157 separate step since ELF requires all local symbols to appear
11158 prior to any global symbols. FIXME: We should only do this if
11159 some global symbols were, in fact, converted to become local.
11160 FIXME: Will this work correctly with the Irix 5 linker? */
11161 eoinfo.failed = FALSE;
11162 eoinfo.flinfo = &flinfo;
11163 eoinfo.localsyms = TRUE;
11164 eoinfo.file_sym_done = FALSE;
11165 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11166 if (eoinfo.failed)
11167 return FALSE;
11168
11169 /* If backend needs to output some local symbols not present in the hash
11170 table, do it now. */
11171 if (bed->elf_backend_output_arch_local_syms
11172 && (info->strip != strip_all || emit_relocs))
11173 {
11174 typedef int (*out_sym_func)
11175 (void *, const char *, Elf_Internal_Sym *, asection *,
11176 struct elf_link_hash_entry *);
11177
11178 if (! ((*bed->elf_backend_output_arch_local_syms)
11179 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11180 return FALSE;
11181 }
11182
11183 /* That wrote out all the local symbols. Finish up the symbol table
11184 with the global symbols. Even if we want to strip everything we
11185 can, we still need to deal with those global symbols that got
11186 converted to local in a version script. */
11187
11188 /* The sh_info field records the index of the first non local symbol. */
11189 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11190
11191 if (dynamic
11192 && flinfo.dynsym_sec != NULL
11193 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11194 {
11195 Elf_Internal_Sym sym;
11196 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11197 long last_local = 0;
11198
11199 /* Write out the section symbols for the output sections. */
11200 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11201 {
11202 asection *s;
11203
11204 sym.st_size = 0;
11205 sym.st_name = 0;
11206 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11207 sym.st_other = 0;
11208 sym.st_target_internal = 0;
11209
11210 for (s = abfd->sections; s != NULL; s = s->next)
11211 {
11212 int indx;
11213 bfd_byte *dest;
11214 long dynindx;
11215
11216 dynindx = elf_section_data (s)->dynindx;
11217 if (dynindx <= 0)
11218 continue;
11219 indx = elf_section_data (s)->this_idx;
11220 BFD_ASSERT (indx > 0);
11221 sym.st_shndx = indx;
11222 if (! check_dynsym (abfd, &sym))
11223 return FALSE;
11224 sym.st_value = s->vma;
11225 dest = dynsym + dynindx * bed->s->sizeof_sym;
11226 if (last_local < dynindx)
11227 last_local = dynindx;
11228 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11229 }
11230 }
11231
11232 /* Write out the local dynsyms. */
11233 if (elf_hash_table (info)->dynlocal)
11234 {
11235 struct elf_link_local_dynamic_entry *e;
11236 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11237 {
11238 asection *s;
11239 bfd_byte *dest;
11240
11241 /* Copy the internal symbol and turn off visibility.
11242 Note that we saved a word of storage and overwrote
11243 the original st_name with the dynstr_index. */
11244 sym = e->isym;
11245 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11246
11247 s = bfd_section_from_elf_index (e->input_bfd,
11248 e->isym.st_shndx);
11249 if (s != NULL)
11250 {
11251 sym.st_shndx =
11252 elf_section_data (s->output_section)->this_idx;
11253 if (! check_dynsym (abfd, &sym))
11254 return FALSE;
11255 sym.st_value = (s->output_section->vma
11256 + s->output_offset
11257 + e->isym.st_value);
11258 }
11259
11260 if (last_local < e->dynindx)
11261 last_local = e->dynindx;
11262
11263 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11264 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11265 }
11266 }
11267
11268 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11269 last_local + 1;
11270 }
11271
11272 /* We get the global symbols from the hash table. */
11273 eoinfo.failed = FALSE;
11274 eoinfo.localsyms = FALSE;
11275 eoinfo.flinfo = &flinfo;
11276 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11277 if (eoinfo.failed)
11278 return FALSE;
11279
11280 /* If backend needs to output some symbols not present in the hash
11281 table, do it now. */
11282 if (bed->elf_backend_output_arch_syms
11283 && (info->strip != strip_all || emit_relocs))
11284 {
11285 typedef int (*out_sym_func)
11286 (void *, const char *, Elf_Internal_Sym *, asection *,
11287 struct elf_link_hash_entry *);
11288
11289 if (! ((*bed->elf_backend_output_arch_syms)
11290 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11291 return FALSE;
11292 }
11293
11294 /* Flush all symbols to the file. */
11295 if (! elf_link_flush_output_syms (&flinfo, bed))
11296 return FALSE;
11297
11298 /* Now we know the size of the symtab section. */
11299 if (bfd_get_symcount (abfd) > 0)
11300 {
11301 /* Finish up and write out the symbol string table (.strtab)
11302 section. */
11303 Elf_Internal_Shdr *symstrtab_hdr;
11304 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
11305
11306 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11307 if (symtab_shndx_hdr->sh_name != 0)
11308 {
11309 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11310 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11311 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11312 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11313 symtab_shndx_hdr->sh_size = amt;
11314
11315 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11316 off, TRUE);
11317
11318 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11319 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11320 return FALSE;
11321 }
11322
11323 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11324 /* sh_name was set in prep_headers. */
11325 symstrtab_hdr->sh_type = SHT_STRTAB;
11326 symstrtab_hdr->sh_flags = 0;
11327 symstrtab_hdr->sh_addr = 0;
11328 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11329 symstrtab_hdr->sh_entsize = 0;
11330 symstrtab_hdr->sh_link = 0;
11331 symstrtab_hdr->sh_info = 0;
11332 /* sh_offset is set just below. */
11333 symstrtab_hdr->sh_addralign = 1;
11334
11335 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
11336 off, TRUE);
11337 elf_next_file_pos (abfd) = off;
11338
11339 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11340 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11341 return FALSE;
11342 }
11343
11344 /* Adjust the relocs to have the correct symbol indices. */
11345 for (o = abfd->sections; o != NULL; o = o->next)
11346 {
11347 struct bfd_elf_section_data *esdo = elf_section_data (o);
11348 bfd_boolean sort;
11349 if ((o->flags & SEC_RELOC) == 0)
11350 continue;
11351
11352 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
11353 if (esdo->rel.hdr != NULL)
11354 elf_link_adjust_relocs (abfd, &esdo->rel, sort);
11355 if (esdo->rela.hdr != NULL)
11356 elf_link_adjust_relocs (abfd, &esdo->rela, sort);
11357
11358 /* Set the reloc_count field to 0 to prevent write_relocs from
11359 trying to swap the relocs out itself. */
11360 o->reloc_count = 0;
11361 }
11362
11363 if (dynamic && info->combreloc && dynobj != NULL)
11364 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11365
11366 /* If we are linking against a dynamic object, or generating a
11367 shared library, finish up the dynamic linking information. */
11368 if (dynamic)
11369 {
11370 bfd_byte *dyncon, *dynconend;
11371
11372 /* Fix up .dynamic entries. */
11373 o = bfd_get_linker_section (dynobj, ".dynamic");
11374 BFD_ASSERT (o != NULL);
11375
11376 dyncon = o->contents;
11377 dynconend = o->contents + o->size;
11378 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11379 {
11380 Elf_Internal_Dyn dyn;
11381 const char *name;
11382 unsigned int type;
11383
11384 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11385
11386 switch (dyn.d_tag)
11387 {
11388 default:
11389 continue;
11390 case DT_NULL:
11391 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11392 {
11393 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11394 {
11395 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11396 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11397 default: continue;
11398 }
11399 dyn.d_un.d_val = relativecount;
11400 relativecount = 0;
11401 break;
11402 }
11403 continue;
11404
11405 case DT_INIT:
11406 name = info->init_function;
11407 goto get_sym;
11408 case DT_FINI:
11409 name = info->fini_function;
11410 get_sym:
11411 {
11412 struct elf_link_hash_entry *h;
11413
11414 h = elf_link_hash_lookup (elf_hash_table (info), name,
11415 FALSE, FALSE, TRUE);
11416 if (h != NULL
11417 && (h->root.type == bfd_link_hash_defined
11418 || h->root.type == bfd_link_hash_defweak))
11419 {
11420 dyn.d_un.d_ptr = h->root.u.def.value;
11421 o = h->root.u.def.section;
11422 if (o->output_section != NULL)
11423 dyn.d_un.d_ptr += (o->output_section->vma
11424 + o->output_offset);
11425 else
11426 {
11427 /* The symbol is imported from another shared
11428 library and does not apply to this one. */
11429 dyn.d_un.d_ptr = 0;
11430 }
11431 break;
11432 }
11433 }
11434 continue;
11435
11436 case DT_PREINIT_ARRAYSZ:
11437 name = ".preinit_array";
11438 goto get_size;
11439 case DT_INIT_ARRAYSZ:
11440 name = ".init_array";
11441 goto get_size;
11442 case DT_FINI_ARRAYSZ:
11443 name = ".fini_array";
11444 get_size:
11445 o = bfd_get_section_by_name (abfd, name);
11446 if (o == NULL)
11447 {
11448 (*_bfd_error_handler)
11449 (_("%B: could not find output section %s"), abfd, name);
11450 goto error_return;
11451 }
11452 if (o->size == 0)
11453 (*_bfd_error_handler)
11454 (_("warning: %s section has zero size"), name);
11455 dyn.d_un.d_val = o->size;
11456 break;
11457
11458 case DT_PREINIT_ARRAY:
11459 name = ".preinit_array";
11460 goto get_vma;
11461 case DT_INIT_ARRAY:
11462 name = ".init_array";
11463 goto get_vma;
11464 case DT_FINI_ARRAY:
11465 name = ".fini_array";
11466 goto get_vma;
11467
11468 case DT_HASH:
11469 name = ".hash";
11470 goto get_vma;
11471 case DT_GNU_HASH:
11472 name = ".gnu.hash";
11473 goto get_vma;
11474 case DT_STRTAB:
11475 name = ".dynstr";
11476 goto get_vma;
11477 case DT_SYMTAB:
11478 name = ".dynsym";
11479 goto get_vma;
11480 case DT_VERDEF:
11481 name = ".gnu.version_d";
11482 goto get_vma;
11483 case DT_VERNEED:
11484 name = ".gnu.version_r";
11485 goto get_vma;
11486 case DT_VERSYM:
11487 name = ".gnu.version";
11488 get_vma:
11489 o = bfd_get_section_by_name (abfd, name);
11490 if (o == NULL)
11491 {
11492 (*_bfd_error_handler)
11493 (_("%B: could not find output section %s"), abfd, name);
11494 goto error_return;
11495 }
11496 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11497 {
11498 (*_bfd_error_handler)
11499 (_("warning: section '%s' is being made into a note"), name);
11500 bfd_set_error (bfd_error_nonrepresentable_section);
11501 goto error_return;
11502 }
11503 dyn.d_un.d_ptr = o->vma;
11504 break;
11505
11506 case DT_REL:
11507 case DT_RELA:
11508 case DT_RELSZ:
11509 case DT_RELASZ:
11510 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11511 type = SHT_REL;
11512 else
11513 type = SHT_RELA;
11514 dyn.d_un.d_val = 0;
11515 dyn.d_un.d_ptr = 0;
11516 for (i = 1; i < elf_numsections (abfd); i++)
11517 {
11518 Elf_Internal_Shdr *hdr;
11519
11520 hdr = elf_elfsections (abfd)[i];
11521 if (hdr->sh_type == type
11522 && (hdr->sh_flags & SHF_ALLOC) != 0)
11523 {
11524 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11525 dyn.d_un.d_val += hdr->sh_size;
11526 else
11527 {
11528 if (dyn.d_un.d_ptr == 0
11529 || hdr->sh_addr < dyn.d_un.d_ptr)
11530 dyn.d_un.d_ptr = hdr->sh_addr;
11531 }
11532 }
11533 }
11534 break;
11535 }
11536 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11537 }
11538 }
11539
11540 /* If we have created any dynamic sections, then output them. */
11541 if (dynobj != NULL)
11542 {
11543 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11544 goto error_return;
11545
11546 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11547 if (((info->warn_shared_textrel && info->shared)
11548 || info->error_textrel)
11549 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11550 {
11551 bfd_byte *dyncon, *dynconend;
11552
11553 dyncon = o->contents;
11554 dynconend = o->contents + o->size;
11555 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11556 {
11557 Elf_Internal_Dyn dyn;
11558
11559 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11560
11561 if (dyn.d_tag == DT_TEXTREL)
11562 {
11563 if (info->error_textrel)
11564 info->callbacks->einfo
11565 (_("%P%X: read-only segment has dynamic relocations.\n"));
11566 else
11567 info->callbacks->einfo
11568 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11569 break;
11570 }
11571 }
11572 }
11573
11574 for (o = dynobj->sections; o != NULL; o = o->next)
11575 {
11576 if ((o->flags & SEC_HAS_CONTENTS) == 0
11577 || o->size == 0
11578 || o->output_section == bfd_abs_section_ptr)
11579 continue;
11580 if ((o->flags & SEC_LINKER_CREATED) == 0)
11581 {
11582 /* At this point, we are only interested in sections
11583 created by _bfd_elf_link_create_dynamic_sections. */
11584 continue;
11585 }
11586 if (elf_hash_table (info)->stab_info.stabstr == o)
11587 continue;
11588 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11589 continue;
11590 if (strcmp (o->name, ".dynstr") != 0)
11591 {
11592 /* FIXME: octets_per_byte. */
11593 if (! bfd_set_section_contents (abfd, o->output_section,
11594 o->contents,
11595 (file_ptr) o->output_offset,
11596 o->size))
11597 goto error_return;
11598 }
11599 else
11600 {
11601 /* The contents of the .dynstr section are actually in a
11602 stringtab. */
11603 file_ptr off;
11604
11605 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11606 if (bfd_seek (abfd, off, SEEK_SET) != 0
11607 || ! _bfd_elf_strtab_emit (abfd,
11608 elf_hash_table (info)->dynstr))
11609 goto error_return;
11610 }
11611 }
11612 }
11613
11614 if (info->relocatable)
11615 {
11616 bfd_boolean failed = FALSE;
11617
11618 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11619 if (failed)
11620 goto error_return;
11621 }
11622
11623 /* If we have optimized stabs strings, output them. */
11624 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11625 {
11626 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11627 goto error_return;
11628 }
11629
11630 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11631 goto error_return;
11632
11633 elf_final_link_free (abfd, &flinfo);
11634
11635 elf_linker (abfd) = TRUE;
11636
11637 if (attr_section)
11638 {
11639 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11640 if (contents == NULL)
11641 return FALSE; /* Bail out and fail. */
11642 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11643 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11644 free (contents);
11645 }
11646
11647 return TRUE;
11648
11649 error_return:
11650 elf_final_link_free (abfd, &flinfo);
11651 return FALSE;
11652 }
11653 \f
11654 /* Initialize COOKIE for input bfd ABFD. */
11655
11656 static bfd_boolean
11657 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11658 struct bfd_link_info *info, bfd *abfd)
11659 {
11660 Elf_Internal_Shdr *symtab_hdr;
11661 const struct elf_backend_data *bed;
11662
11663 bed = get_elf_backend_data (abfd);
11664 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11665
11666 cookie->abfd = abfd;
11667 cookie->sym_hashes = elf_sym_hashes (abfd);
11668 cookie->bad_symtab = elf_bad_symtab (abfd);
11669 if (cookie->bad_symtab)
11670 {
11671 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11672 cookie->extsymoff = 0;
11673 }
11674 else
11675 {
11676 cookie->locsymcount = symtab_hdr->sh_info;
11677 cookie->extsymoff = symtab_hdr->sh_info;
11678 }
11679
11680 if (bed->s->arch_size == 32)
11681 cookie->r_sym_shift = 8;
11682 else
11683 cookie->r_sym_shift = 32;
11684
11685 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11686 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11687 {
11688 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11689 cookie->locsymcount, 0,
11690 NULL, NULL, NULL);
11691 if (cookie->locsyms == NULL)
11692 {
11693 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11694 return FALSE;
11695 }
11696 if (info->keep_memory)
11697 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11698 }
11699 return TRUE;
11700 }
11701
11702 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11703
11704 static void
11705 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11706 {
11707 Elf_Internal_Shdr *symtab_hdr;
11708
11709 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11710 if (cookie->locsyms != NULL
11711 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11712 free (cookie->locsyms);
11713 }
11714
11715 /* Initialize the relocation information in COOKIE for input section SEC
11716 of input bfd ABFD. */
11717
11718 static bfd_boolean
11719 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11720 struct bfd_link_info *info, bfd *abfd,
11721 asection *sec)
11722 {
11723 const struct elf_backend_data *bed;
11724
11725 if (sec->reloc_count == 0)
11726 {
11727 cookie->rels = NULL;
11728 cookie->relend = NULL;
11729 }
11730 else
11731 {
11732 bed = get_elf_backend_data (abfd);
11733
11734 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11735 info->keep_memory);
11736 if (cookie->rels == NULL)
11737 return FALSE;
11738 cookie->rel = cookie->rels;
11739 cookie->relend = (cookie->rels
11740 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11741 }
11742 cookie->rel = cookie->rels;
11743 return TRUE;
11744 }
11745
11746 /* Free the memory allocated by init_reloc_cookie_rels,
11747 if appropriate. */
11748
11749 static void
11750 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11751 asection *sec)
11752 {
11753 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11754 free (cookie->rels);
11755 }
11756
11757 /* Initialize the whole of COOKIE for input section SEC. */
11758
11759 static bfd_boolean
11760 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11761 struct bfd_link_info *info,
11762 asection *sec)
11763 {
11764 if (!init_reloc_cookie (cookie, info, sec->owner))
11765 goto error1;
11766 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11767 goto error2;
11768 return TRUE;
11769
11770 error2:
11771 fini_reloc_cookie (cookie, sec->owner);
11772 error1:
11773 return FALSE;
11774 }
11775
11776 /* Free the memory allocated by init_reloc_cookie_for_section,
11777 if appropriate. */
11778
11779 static void
11780 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11781 asection *sec)
11782 {
11783 fini_reloc_cookie_rels (cookie, sec);
11784 fini_reloc_cookie (cookie, sec->owner);
11785 }
11786 \f
11787 /* Garbage collect unused sections. */
11788
11789 /* Default gc_mark_hook. */
11790
11791 asection *
11792 _bfd_elf_gc_mark_hook (asection *sec,
11793 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11794 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11795 struct elf_link_hash_entry *h,
11796 Elf_Internal_Sym *sym)
11797 {
11798 const char *sec_name;
11799
11800 if (h != NULL)
11801 {
11802 switch (h->root.type)
11803 {
11804 case bfd_link_hash_defined:
11805 case bfd_link_hash_defweak:
11806 return h->root.u.def.section;
11807
11808 case bfd_link_hash_common:
11809 return h->root.u.c.p->section;
11810
11811 case bfd_link_hash_undefined:
11812 case bfd_link_hash_undefweak:
11813 /* To work around a glibc bug, keep all XXX input sections
11814 when there is an as yet undefined reference to __start_XXX
11815 or __stop_XXX symbols. The linker will later define such
11816 symbols for orphan input sections that have a name
11817 representable as a C identifier. */
11818 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11819 sec_name = h->root.root.string + 8;
11820 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11821 sec_name = h->root.root.string + 7;
11822 else
11823 sec_name = NULL;
11824
11825 if (sec_name && *sec_name != '\0')
11826 {
11827 bfd *i;
11828
11829 for (i = info->input_bfds; i; i = i->link.next)
11830 {
11831 sec = bfd_get_section_by_name (i, sec_name);
11832 if (sec)
11833 sec->flags |= SEC_KEEP;
11834 }
11835 }
11836 break;
11837
11838 default:
11839 break;
11840 }
11841 }
11842 else
11843 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11844
11845 return NULL;
11846 }
11847
11848 /* COOKIE->rel describes a relocation against section SEC, which is
11849 a section we've decided to keep. Return the section that contains
11850 the relocation symbol, or NULL if no section contains it. */
11851
11852 asection *
11853 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11854 elf_gc_mark_hook_fn gc_mark_hook,
11855 struct elf_reloc_cookie *cookie)
11856 {
11857 unsigned long r_symndx;
11858 struct elf_link_hash_entry *h;
11859
11860 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11861 if (r_symndx == STN_UNDEF)
11862 return NULL;
11863
11864 if (r_symndx >= cookie->locsymcount
11865 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11866 {
11867 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11868 if (h == NULL)
11869 {
11870 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
11871 sec->owner);
11872 return NULL;
11873 }
11874 while (h->root.type == bfd_link_hash_indirect
11875 || h->root.type == bfd_link_hash_warning)
11876 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11877 h->mark = 1;
11878 /* If this symbol is weak and there is a non-weak definition, we
11879 keep the non-weak definition because many backends put
11880 dynamic reloc info on the non-weak definition for code
11881 handling copy relocs. */
11882 if (h->u.weakdef != NULL)
11883 h->u.weakdef->mark = 1;
11884 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11885 }
11886
11887 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11888 &cookie->locsyms[r_symndx]);
11889 }
11890
11891 /* COOKIE->rel describes a relocation against section SEC, which is
11892 a section we've decided to keep. Mark the section that contains
11893 the relocation symbol. */
11894
11895 bfd_boolean
11896 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11897 asection *sec,
11898 elf_gc_mark_hook_fn gc_mark_hook,
11899 struct elf_reloc_cookie *cookie)
11900 {
11901 asection *rsec;
11902
11903 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11904 if (rsec && !rsec->gc_mark)
11905 {
11906 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11907 || (rsec->owner->flags & DYNAMIC) != 0)
11908 rsec->gc_mark = 1;
11909 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11910 return FALSE;
11911 }
11912 return TRUE;
11913 }
11914
11915 /* The mark phase of garbage collection. For a given section, mark
11916 it and any sections in this section's group, and all the sections
11917 which define symbols to which it refers. */
11918
11919 bfd_boolean
11920 _bfd_elf_gc_mark (struct bfd_link_info *info,
11921 asection *sec,
11922 elf_gc_mark_hook_fn gc_mark_hook)
11923 {
11924 bfd_boolean ret;
11925 asection *group_sec, *eh_frame;
11926
11927 sec->gc_mark = 1;
11928
11929 /* Mark all the sections in the group. */
11930 group_sec = elf_section_data (sec)->next_in_group;
11931 if (group_sec && !group_sec->gc_mark)
11932 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11933 return FALSE;
11934
11935 /* Look through the section relocs. */
11936 ret = TRUE;
11937 eh_frame = elf_eh_frame_section (sec->owner);
11938 if ((sec->flags & SEC_RELOC) != 0
11939 && sec->reloc_count > 0
11940 && sec != eh_frame)
11941 {
11942 struct elf_reloc_cookie cookie;
11943
11944 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11945 ret = FALSE;
11946 else
11947 {
11948 for (; cookie.rel < cookie.relend; cookie.rel++)
11949 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11950 {
11951 ret = FALSE;
11952 break;
11953 }
11954 fini_reloc_cookie_for_section (&cookie, sec);
11955 }
11956 }
11957
11958 if (ret && eh_frame && elf_fde_list (sec))
11959 {
11960 struct elf_reloc_cookie cookie;
11961
11962 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11963 ret = FALSE;
11964 else
11965 {
11966 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11967 gc_mark_hook, &cookie))
11968 ret = FALSE;
11969 fini_reloc_cookie_for_section (&cookie, eh_frame);
11970 }
11971 }
11972
11973 return ret;
11974 }
11975
11976 /* Scan and mark sections in a special or debug section group. */
11977
11978 static void
11979 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
11980 {
11981 /* Point to first section of section group. */
11982 asection *ssec;
11983 /* Used to iterate the section group. */
11984 asection *msec;
11985
11986 bfd_boolean is_special_grp = TRUE;
11987 bfd_boolean is_debug_grp = TRUE;
11988
11989 /* First scan to see if group contains any section other than debug
11990 and special section. */
11991 ssec = msec = elf_next_in_group (grp);
11992 do
11993 {
11994 if ((msec->flags & SEC_DEBUGGING) == 0)
11995 is_debug_grp = FALSE;
11996
11997 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
11998 is_special_grp = FALSE;
11999
12000 msec = elf_next_in_group (msec);
12001 }
12002 while (msec != ssec);
12003
12004 /* If this is a pure debug section group or pure special section group,
12005 keep all sections in this group. */
12006 if (is_debug_grp || is_special_grp)
12007 {
12008 do
12009 {
12010 msec->gc_mark = 1;
12011 msec = elf_next_in_group (msec);
12012 }
12013 while (msec != ssec);
12014 }
12015 }
12016
12017 /* Keep debug and special sections. */
12018
12019 bfd_boolean
12020 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12021 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12022 {
12023 bfd *ibfd;
12024
12025 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12026 {
12027 asection *isec;
12028 bfd_boolean some_kept;
12029 bfd_boolean debug_frag_seen;
12030
12031 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12032 continue;
12033
12034 /* Ensure all linker created sections are kept,
12035 see if any other section is already marked,
12036 and note if we have any fragmented debug sections. */
12037 debug_frag_seen = some_kept = FALSE;
12038 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12039 {
12040 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12041 isec->gc_mark = 1;
12042 else if (isec->gc_mark)
12043 some_kept = TRUE;
12044
12045 if (debug_frag_seen == FALSE
12046 && (isec->flags & SEC_DEBUGGING)
12047 && CONST_STRNEQ (isec->name, ".debug_line."))
12048 debug_frag_seen = TRUE;
12049 }
12050
12051 /* If no section in this file will be kept, then we can
12052 toss out the debug and special sections. */
12053 if (!some_kept)
12054 continue;
12055
12056 /* Keep debug and special sections like .comment when they are
12057 not part of a group. Also keep section groups that contain
12058 just debug sections or special sections. */
12059 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12060 {
12061 if ((isec->flags & SEC_GROUP) != 0)
12062 _bfd_elf_gc_mark_debug_special_section_group (isec);
12063 else if (((isec->flags & SEC_DEBUGGING) != 0
12064 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12065 && elf_next_in_group (isec) == NULL)
12066 isec->gc_mark = 1;
12067 }
12068
12069 if (! debug_frag_seen)
12070 continue;
12071
12072 /* Look for CODE sections which are going to be discarded,
12073 and find and discard any fragmented debug sections which
12074 are associated with that code section. */
12075 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12076 if ((isec->flags & SEC_CODE) != 0
12077 && isec->gc_mark == 0)
12078 {
12079 unsigned int ilen;
12080 asection *dsec;
12081
12082 ilen = strlen (isec->name);
12083
12084 /* Association is determined by the name of the debug section
12085 containing the name of the code section as a suffix. For
12086 example .debug_line.text.foo is a debug section associated
12087 with .text.foo. */
12088 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12089 {
12090 unsigned int dlen;
12091
12092 if (dsec->gc_mark == 0
12093 || (dsec->flags & SEC_DEBUGGING) == 0)
12094 continue;
12095
12096 dlen = strlen (dsec->name);
12097
12098 if (dlen > ilen
12099 && strncmp (dsec->name + (dlen - ilen),
12100 isec->name, ilen) == 0)
12101 {
12102 dsec->gc_mark = 0;
12103 break;
12104 }
12105 }
12106 }
12107 }
12108 return TRUE;
12109 }
12110
12111 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
12112
12113 struct elf_gc_sweep_symbol_info
12114 {
12115 struct bfd_link_info *info;
12116 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
12117 bfd_boolean);
12118 };
12119
12120 static bfd_boolean
12121 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
12122 {
12123 if (!h->mark
12124 && (((h->root.type == bfd_link_hash_defined
12125 || h->root.type == bfd_link_hash_defweak)
12126 && !((h->def_regular || ELF_COMMON_DEF_P (h))
12127 && h->root.u.def.section->gc_mark))
12128 || h->root.type == bfd_link_hash_undefined
12129 || h->root.type == bfd_link_hash_undefweak))
12130 {
12131 struct elf_gc_sweep_symbol_info *inf;
12132
12133 inf = (struct elf_gc_sweep_symbol_info *) data;
12134 (*inf->hide_symbol) (inf->info, h, TRUE);
12135 h->def_regular = 0;
12136 h->ref_regular = 0;
12137 h->ref_regular_nonweak = 0;
12138 }
12139
12140 return TRUE;
12141 }
12142
12143 /* The sweep phase of garbage collection. Remove all garbage sections. */
12144
12145 typedef bfd_boolean (*gc_sweep_hook_fn)
12146 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
12147
12148 static bfd_boolean
12149 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
12150 {
12151 bfd *sub;
12152 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12153 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
12154 unsigned long section_sym_count;
12155 struct elf_gc_sweep_symbol_info sweep_info;
12156
12157 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12158 {
12159 asection *o;
12160
12161 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12162 continue;
12163
12164 for (o = sub->sections; o != NULL; o = o->next)
12165 {
12166 /* When any section in a section group is kept, we keep all
12167 sections in the section group. If the first member of
12168 the section group is excluded, we will also exclude the
12169 group section. */
12170 if (o->flags & SEC_GROUP)
12171 {
12172 asection *first = elf_next_in_group (o);
12173 o->gc_mark = first->gc_mark;
12174 }
12175
12176 if (o->gc_mark)
12177 continue;
12178
12179 /* Skip sweeping sections already excluded. */
12180 if (o->flags & SEC_EXCLUDE)
12181 continue;
12182
12183 /* Since this is early in the link process, it is simple
12184 to remove a section from the output. */
12185 o->flags |= SEC_EXCLUDE;
12186
12187 if (info->print_gc_sections && o->size != 0)
12188 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
12189
12190 /* But we also have to update some of the relocation
12191 info we collected before. */
12192 if (gc_sweep_hook
12193 && (o->flags & SEC_RELOC) != 0
12194 && o->reloc_count != 0
12195 && !((info->strip == strip_all || info->strip == strip_debugger)
12196 && (o->flags & SEC_DEBUGGING) != 0)
12197 && !bfd_is_abs_section (o->output_section))
12198 {
12199 Elf_Internal_Rela *internal_relocs;
12200 bfd_boolean r;
12201
12202 internal_relocs
12203 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12204 info->keep_memory);
12205 if (internal_relocs == NULL)
12206 return FALSE;
12207
12208 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12209
12210 if (elf_section_data (o)->relocs != internal_relocs)
12211 free (internal_relocs);
12212
12213 if (!r)
12214 return FALSE;
12215 }
12216 }
12217 }
12218
12219 /* Remove the symbols that were in the swept sections from the dynamic
12220 symbol table. GCFIXME: Anyone know how to get them out of the
12221 static symbol table as well? */
12222 sweep_info.info = info;
12223 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12224 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12225 &sweep_info);
12226
12227 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12228 return TRUE;
12229 }
12230
12231 /* Propagate collected vtable information. This is called through
12232 elf_link_hash_traverse. */
12233
12234 static bfd_boolean
12235 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12236 {
12237 /* Those that are not vtables. */
12238 if (h->vtable == NULL || h->vtable->parent == NULL)
12239 return TRUE;
12240
12241 /* Those vtables that do not have parents, we cannot merge. */
12242 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12243 return TRUE;
12244
12245 /* If we've already been done, exit. */
12246 if (h->vtable->used && h->vtable->used[-1])
12247 return TRUE;
12248
12249 /* Make sure the parent's table is up to date. */
12250 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12251
12252 if (h->vtable->used == NULL)
12253 {
12254 /* None of this table's entries were referenced. Re-use the
12255 parent's table. */
12256 h->vtable->used = h->vtable->parent->vtable->used;
12257 h->vtable->size = h->vtable->parent->vtable->size;
12258 }
12259 else
12260 {
12261 size_t n;
12262 bfd_boolean *cu, *pu;
12263
12264 /* Or the parent's entries into ours. */
12265 cu = h->vtable->used;
12266 cu[-1] = TRUE;
12267 pu = h->vtable->parent->vtable->used;
12268 if (pu != NULL)
12269 {
12270 const struct elf_backend_data *bed;
12271 unsigned int log_file_align;
12272
12273 bed = get_elf_backend_data (h->root.u.def.section->owner);
12274 log_file_align = bed->s->log_file_align;
12275 n = h->vtable->parent->vtable->size >> log_file_align;
12276 while (n--)
12277 {
12278 if (*pu)
12279 *cu = TRUE;
12280 pu++;
12281 cu++;
12282 }
12283 }
12284 }
12285
12286 return TRUE;
12287 }
12288
12289 static bfd_boolean
12290 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12291 {
12292 asection *sec;
12293 bfd_vma hstart, hend;
12294 Elf_Internal_Rela *relstart, *relend, *rel;
12295 const struct elf_backend_data *bed;
12296 unsigned int log_file_align;
12297
12298 /* Take care of both those symbols that do not describe vtables as
12299 well as those that are not loaded. */
12300 if (h->vtable == NULL || h->vtable->parent == NULL)
12301 return TRUE;
12302
12303 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12304 || h->root.type == bfd_link_hash_defweak);
12305
12306 sec = h->root.u.def.section;
12307 hstart = h->root.u.def.value;
12308 hend = hstart + h->size;
12309
12310 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12311 if (!relstart)
12312 return *(bfd_boolean *) okp = FALSE;
12313 bed = get_elf_backend_data (sec->owner);
12314 log_file_align = bed->s->log_file_align;
12315
12316 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12317
12318 for (rel = relstart; rel < relend; ++rel)
12319 if (rel->r_offset >= hstart && rel->r_offset < hend)
12320 {
12321 /* If the entry is in use, do nothing. */
12322 if (h->vtable->used
12323 && (rel->r_offset - hstart) < h->vtable->size)
12324 {
12325 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12326 if (h->vtable->used[entry])
12327 continue;
12328 }
12329 /* Otherwise, kill it. */
12330 rel->r_offset = rel->r_info = rel->r_addend = 0;
12331 }
12332
12333 return TRUE;
12334 }
12335
12336 /* Mark sections containing dynamically referenced symbols. When
12337 building shared libraries, we must assume that any visible symbol is
12338 referenced. */
12339
12340 bfd_boolean
12341 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12342 {
12343 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12344 struct bfd_elf_dynamic_list *d = info->dynamic_list;
12345
12346 if ((h->root.type == bfd_link_hash_defined
12347 || h->root.type == bfd_link_hash_defweak)
12348 && (h->ref_dynamic
12349 || ((h->def_regular || ELF_COMMON_DEF_P (h))
12350 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12351 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12352 && (!info->executable
12353 || info->export_dynamic
12354 || (h->dynamic
12355 && d != NULL
12356 && (*d->match) (&d->head, NULL, h->root.root.string)))
12357 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12358 || !bfd_hide_sym_by_version (info->version_info,
12359 h->root.root.string)))))
12360 h->root.u.def.section->flags |= SEC_KEEP;
12361
12362 return TRUE;
12363 }
12364
12365 /* Keep all sections containing symbols undefined on the command-line,
12366 and the section containing the entry symbol. */
12367
12368 void
12369 _bfd_elf_gc_keep (struct bfd_link_info *info)
12370 {
12371 struct bfd_sym_chain *sym;
12372
12373 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12374 {
12375 struct elf_link_hash_entry *h;
12376
12377 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12378 FALSE, FALSE, FALSE);
12379
12380 if (h != NULL
12381 && (h->root.type == bfd_link_hash_defined
12382 || h->root.type == bfd_link_hash_defweak)
12383 && !bfd_is_abs_section (h->root.u.def.section))
12384 h->root.u.def.section->flags |= SEC_KEEP;
12385 }
12386 }
12387
12388 /* Do mark and sweep of unused sections. */
12389
12390 bfd_boolean
12391 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12392 {
12393 bfd_boolean ok = TRUE;
12394 bfd *sub;
12395 elf_gc_mark_hook_fn gc_mark_hook;
12396 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12397 struct elf_link_hash_table *htab;
12398
12399 if (!bed->can_gc_sections
12400 || !is_elf_hash_table (info->hash))
12401 {
12402 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12403 return TRUE;
12404 }
12405
12406 bed->gc_keep (info);
12407 htab = elf_hash_table (info);
12408
12409 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12410 at the .eh_frame section if we can mark the FDEs individually. */
12411 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12412 {
12413 asection *sec;
12414 struct elf_reloc_cookie cookie;
12415
12416 sec = bfd_get_section_by_name (sub, ".eh_frame");
12417 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12418 {
12419 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12420 if (elf_section_data (sec)->sec_info
12421 && (sec->flags & SEC_LINKER_CREATED) == 0)
12422 elf_eh_frame_section (sub) = sec;
12423 fini_reloc_cookie_for_section (&cookie, sec);
12424 sec = bfd_get_next_section_by_name (sec);
12425 }
12426 }
12427
12428 /* Apply transitive closure to the vtable entry usage info. */
12429 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
12430 if (!ok)
12431 return FALSE;
12432
12433 /* Kill the vtable relocations that were not used. */
12434 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
12435 if (!ok)
12436 return FALSE;
12437
12438 /* Mark dynamically referenced symbols. */
12439 if (htab->dynamic_sections_created)
12440 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
12441
12442 /* Grovel through relocs to find out who stays ... */
12443 gc_mark_hook = bed->gc_mark_hook;
12444 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12445 {
12446 asection *o;
12447
12448 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12449 continue;
12450
12451 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12452 Also treat note sections as a root, if the section is not part
12453 of a group. */
12454 for (o = sub->sections; o != NULL; o = o->next)
12455 if (!o->gc_mark
12456 && (o->flags & SEC_EXCLUDE) == 0
12457 && ((o->flags & SEC_KEEP) != 0
12458 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12459 && elf_next_in_group (o) == NULL )))
12460 {
12461 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12462 return FALSE;
12463 }
12464 }
12465
12466 /* Allow the backend to mark additional target specific sections. */
12467 bed->gc_mark_extra_sections (info, gc_mark_hook);
12468
12469 /* ... and mark SEC_EXCLUDE for those that go. */
12470 return elf_gc_sweep (abfd, info);
12471 }
12472 \f
12473 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12474
12475 bfd_boolean
12476 bfd_elf_gc_record_vtinherit (bfd *abfd,
12477 asection *sec,
12478 struct elf_link_hash_entry *h,
12479 bfd_vma offset)
12480 {
12481 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12482 struct elf_link_hash_entry **search, *child;
12483 bfd_size_type extsymcount;
12484 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12485
12486 /* The sh_info field of the symtab header tells us where the
12487 external symbols start. We don't care about the local symbols at
12488 this point. */
12489 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12490 if (!elf_bad_symtab (abfd))
12491 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12492
12493 sym_hashes = elf_sym_hashes (abfd);
12494 sym_hashes_end = sym_hashes + extsymcount;
12495
12496 /* Hunt down the child symbol, which is in this section at the same
12497 offset as the relocation. */
12498 for (search = sym_hashes; search != sym_hashes_end; ++search)
12499 {
12500 if ((child = *search) != NULL
12501 && (child->root.type == bfd_link_hash_defined
12502 || child->root.type == bfd_link_hash_defweak)
12503 && child->root.u.def.section == sec
12504 && child->root.u.def.value == offset)
12505 goto win;
12506 }
12507
12508 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12509 abfd, sec, (unsigned long) offset);
12510 bfd_set_error (bfd_error_invalid_operation);
12511 return FALSE;
12512
12513 win:
12514 if (!child->vtable)
12515 {
12516 child->vtable = ((struct elf_link_virtual_table_entry *)
12517 bfd_zalloc (abfd, sizeof (*child->vtable)));
12518 if (!child->vtable)
12519 return FALSE;
12520 }
12521 if (!h)
12522 {
12523 /* This *should* only be the absolute section. It could potentially
12524 be that someone has defined a non-global vtable though, which
12525 would be bad. It isn't worth paging in the local symbols to be
12526 sure though; that case should simply be handled by the assembler. */
12527
12528 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12529 }
12530 else
12531 child->vtable->parent = h;
12532
12533 return TRUE;
12534 }
12535
12536 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12537
12538 bfd_boolean
12539 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12540 asection *sec ATTRIBUTE_UNUSED,
12541 struct elf_link_hash_entry *h,
12542 bfd_vma addend)
12543 {
12544 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12545 unsigned int log_file_align = bed->s->log_file_align;
12546
12547 if (!h->vtable)
12548 {
12549 h->vtable = ((struct elf_link_virtual_table_entry *)
12550 bfd_zalloc (abfd, sizeof (*h->vtable)));
12551 if (!h->vtable)
12552 return FALSE;
12553 }
12554
12555 if (addend >= h->vtable->size)
12556 {
12557 size_t size, bytes, file_align;
12558 bfd_boolean *ptr = h->vtable->used;
12559
12560 /* While the symbol is undefined, we have to be prepared to handle
12561 a zero size. */
12562 file_align = 1 << log_file_align;
12563 if (h->root.type == bfd_link_hash_undefined)
12564 size = addend + file_align;
12565 else
12566 {
12567 size = h->size;
12568 if (addend >= size)
12569 {
12570 /* Oops! We've got a reference past the defined end of
12571 the table. This is probably a bug -- shall we warn? */
12572 size = addend + file_align;
12573 }
12574 }
12575 size = (size + file_align - 1) & -file_align;
12576
12577 /* Allocate one extra entry for use as a "done" flag for the
12578 consolidation pass. */
12579 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12580
12581 if (ptr)
12582 {
12583 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12584
12585 if (ptr != NULL)
12586 {
12587 size_t oldbytes;
12588
12589 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12590 * sizeof (bfd_boolean));
12591 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12592 }
12593 }
12594 else
12595 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12596
12597 if (ptr == NULL)
12598 return FALSE;
12599
12600 /* And arrange for that done flag to be at index -1. */
12601 h->vtable->used = ptr + 1;
12602 h->vtable->size = size;
12603 }
12604
12605 h->vtable->used[addend >> log_file_align] = TRUE;
12606
12607 return TRUE;
12608 }
12609
12610 /* Map an ELF section header flag to its corresponding string. */
12611 typedef struct
12612 {
12613 char *flag_name;
12614 flagword flag_value;
12615 } elf_flags_to_name_table;
12616
12617 static elf_flags_to_name_table elf_flags_to_names [] =
12618 {
12619 { "SHF_WRITE", SHF_WRITE },
12620 { "SHF_ALLOC", SHF_ALLOC },
12621 { "SHF_EXECINSTR", SHF_EXECINSTR },
12622 { "SHF_MERGE", SHF_MERGE },
12623 { "SHF_STRINGS", SHF_STRINGS },
12624 { "SHF_INFO_LINK", SHF_INFO_LINK},
12625 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12626 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12627 { "SHF_GROUP", SHF_GROUP },
12628 { "SHF_TLS", SHF_TLS },
12629 { "SHF_MASKOS", SHF_MASKOS },
12630 { "SHF_EXCLUDE", SHF_EXCLUDE },
12631 };
12632
12633 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12634 bfd_boolean
12635 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12636 struct flag_info *flaginfo,
12637 asection *section)
12638 {
12639 const bfd_vma sh_flags = elf_section_flags (section);
12640
12641 if (!flaginfo->flags_initialized)
12642 {
12643 bfd *obfd = info->output_bfd;
12644 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12645 struct flag_info_list *tf = flaginfo->flag_list;
12646 int with_hex = 0;
12647 int without_hex = 0;
12648
12649 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12650 {
12651 unsigned i;
12652 flagword (*lookup) (char *);
12653
12654 lookup = bed->elf_backend_lookup_section_flags_hook;
12655 if (lookup != NULL)
12656 {
12657 flagword hexval = (*lookup) ((char *) tf->name);
12658
12659 if (hexval != 0)
12660 {
12661 if (tf->with == with_flags)
12662 with_hex |= hexval;
12663 else if (tf->with == without_flags)
12664 without_hex |= hexval;
12665 tf->valid = TRUE;
12666 continue;
12667 }
12668 }
12669 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12670 {
12671 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12672 {
12673 if (tf->with == with_flags)
12674 with_hex |= elf_flags_to_names[i].flag_value;
12675 else if (tf->with == without_flags)
12676 without_hex |= elf_flags_to_names[i].flag_value;
12677 tf->valid = TRUE;
12678 break;
12679 }
12680 }
12681 if (!tf->valid)
12682 {
12683 info->callbacks->einfo
12684 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12685 return FALSE;
12686 }
12687 }
12688 flaginfo->flags_initialized = TRUE;
12689 flaginfo->only_with_flags |= with_hex;
12690 flaginfo->not_with_flags |= without_hex;
12691 }
12692
12693 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12694 return FALSE;
12695
12696 if ((flaginfo->not_with_flags & sh_flags) != 0)
12697 return FALSE;
12698
12699 return TRUE;
12700 }
12701
12702 struct alloc_got_off_arg {
12703 bfd_vma gotoff;
12704 struct bfd_link_info *info;
12705 };
12706
12707 /* We need a special top-level link routine to convert got reference counts
12708 to real got offsets. */
12709
12710 static bfd_boolean
12711 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12712 {
12713 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12714 bfd *obfd = gofarg->info->output_bfd;
12715 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12716
12717 if (h->got.refcount > 0)
12718 {
12719 h->got.offset = gofarg->gotoff;
12720 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12721 }
12722 else
12723 h->got.offset = (bfd_vma) -1;
12724
12725 return TRUE;
12726 }
12727
12728 /* And an accompanying bit to work out final got entry offsets once
12729 we're done. Should be called from final_link. */
12730
12731 bfd_boolean
12732 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12733 struct bfd_link_info *info)
12734 {
12735 bfd *i;
12736 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12737 bfd_vma gotoff;
12738 struct alloc_got_off_arg gofarg;
12739
12740 BFD_ASSERT (abfd == info->output_bfd);
12741
12742 if (! is_elf_hash_table (info->hash))
12743 return FALSE;
12744
12745 /* The GOT offset is relative to the .got section, but the GOT header is
12746 put into the .got.plt section, if the backend uses it. */
12747 if (bed->want_got_plt)
12748 gotoff = 0;
12749 else
12750 gotoff = bed->got_header_size;
12751
12752 /* Do the local .got entries first. */
12753 for (i = info->input_bfds; i; i = i->link.next)
12754 {
12755 bfd_signed_vma *local_got;
12756 bfd_size_type j, locsymcount;
12757 Elf_Internal_Shdr *symtab_hdr;
12758
12759 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12760 continue;
12761
12762 local_got = elf_local_got_refcounts (i);
12763 if (!local_got)
12764 continue;
12765
12766 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12767 if (elf_bad_symtab (i))
12768 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12769 else
12770 locsymcount = symtab_hdr->sh_info;
12771
12772 for (j = 0; j < locsymcount; ++j)
12773 {
12774 if (local_got[j] > 0)
12775 {
12776 local_got[j] = gotoff;
12777 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12778 }
12779 else
12780 local_got[j] = (bfd_vma) -1;
12781 }
12782 }
12783
12784 /* Then the global .got entries. .plt refcounts are handled by
12785 adjust_dynamic_symbol */
12786 gofarg.gotoff = gotoff;
12787 gofarg.info = info;
12788 elf_link_hash_traverse (elf_hash_table (info),
12789 elf_gc_allocate_got_offsets,
12790 &gofarg);
12791 return TRUE;
12792 }
12793
12794 /* Many folk need no more in the way of final link than this, once
12795 got entry reference counting is enabled. */
12796
12797 bfd_boolean
12798 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12799 {
12800 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12801 return FALSE;
12802
12803 /* Invoke the regular ELF backend linker to do all the work. */
12804 return bfd_elf_final_link (abfd, info);
12805 }
12806
12807 bfd_boolean
12808 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12809 {
12810 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12811
12812 if (rcookie->bad_symtab)
12813 rcookie->rel = rcookie->rels;
12814
12815 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12816 {
12817 unsigned long r_symndx;
12818
12819 if (! rcookie->bad_symtab)
12820 if (rcookie->rel->r_offset > offset)
12821 return FALSE;
12822 if (rcookie->rel->r_offset != offset)
12823 continue;
12824
12825 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12826 if (r_symndx == STN_UNDEF)
12827 return TRUE;
12828
12829 if (r_symndx >= rcookie->locsymcount
12830 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12831 {
12832 struct elf_link_hash_entry *h;
12833
12834 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12835
12836 while (h->root.type == bfd_link_hash_indirect
12837 || h->root.type == bfd_link_hash_warning)
12838 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12839
12840 if ((h->root.type == bfd_link_hash_defined
12841 || h->root.type == bfd_link_hash_defweak)
12842 && (h->root.u.def.section->owner != rcookie->abfd
12843 || h->root.u.def.section->kept_section != NULL
12844 || discarded_section (h->root.u.def.section)))
12845 return TRUE;
12846 }
12847 else
12848 {
12849 /* It's not a relocation against a global symbol,
12850 but it could be a relocation against a local
12851 symbol for a discarded section. */
12852 asection *isec;
12853 Elf_Internal_Sym *isym;
12854
12855 /* Need to: get the symbol; get the section. */
12856 isym = &rcookie->locsyms[r_symndx];
12857 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12858 if (isec != NULL
12859 && (isec->kept_section != NULL
12860 || discarded_section (isec)))
12861 return TRUE;
12862 }
12863 return FALSE;
12864 }
12865 return FALSE;
12866 }
12867
12868 /* Discard unneeded references to discarded sections.
12869 Returns -1 on error, 1 if any section's size was changed, 0 if
12870 nothing changed. This function assumes that the relocations are in
12871 sorted order, which is true for all known assemblers. */
12872
12873 int
12874 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12875 {
12876 struct elf_reloc_cookie cookie;
12877 asection *o;
12878 bfd *abfd;
12879 int changed = 0;
12880
12881 if (info->traditional_format
12882 || !is_elf_hash_table (info->hash))
12883 return 0;
12884
12885 o = bfd_get_section_by_name (output_bfd, ".stab");
12886 if (o != NULL)
12887 {
12888 asection *i;
12889
12890 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12891 {
12892 if (i->size == 0
12893 || i->reloc_count == 0
12894 || i->sec_info_type != SEC_INFO_TYPE_STABS)
12895 continue;
12896
12897 abfd = i->owner;
12898 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12899 continue;
12900
12901 if (!init_reloc_cookie_for_section (&cookie, info, i))
12902 return -1;
12903
12904 if (_bfd_discard_section_stabs (abfd, i,
12905 elf_section_data (i)->sec_info,
12906 bfd_elf_reloc_symbol_deleted_p,
12907 &cookie))
12908 changed = 1;
12909
12910 fini_reloc_cookie_for_section (&cookie, i);
12911 }
12912 }
12913
12914 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
12915 if (o != NULL)
12916 {
12917 asection *i;
12918
12919 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12920 {
12921 if (i->size == 0)
12922 continue;
12923
12924 abfd = i->owner;
12925 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12926 continue;
12927
12928 if (!init_reloc_cookie_for_section (&cookie, info, i))
12929 return -1;
12930
12931 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
12932 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
12933 bfd_elf_reloc_symbol_deleted_p,
12934 &cookie))
12935 changed = 1;
12936
12937 fini_reloc_cookie_for_section (&cookie, i);
12938 }
12939 }
12940
12941 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
12942 {
12943 const struct elf_backend_data *bed;
12944
12945 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12946 continue;
12947
12948 bed = get_elf_backend_data (abfd);
12949
12950 if (bed->elf_backend_discard_info != NULL)
12951 {
12952 if (!init_reloc_cookie (&cookie, info, abfd))
12953 return -1;
12954
12955 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
12956 changed = 1;
12957
12958 fini_reloc_cookie (&cookie, abfd);
12959 }
12960 }
12961
12962 if (info->eh_frame_hdr
12963 && !info->relocatable
12964 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12965 changed = 1;
12966
12967 return changed;
12968 }
12969
12970 bfd_boolean
12971 _bfd_elf_section_already_linked (bfd *abfd,
12972 asection *sec,
12973 struct bfd_link_info *info)
12974 {
12975 flagword flags;
12976 const char *name, *key;
12977 struct bfd_section_already_linked *l;
12978 struct bfd_section_already_linked_hash_entry *already_linked_list;
12979
12980 if (sec->output_section == bfd_abs_section_ptr)
12981 return FALSE;
12982
12983 flags = sec->flags;
12984
12985 /* Return if it isn't a linkonce section. A comdat group section
12986 also has SEC_LINK_ONCE set. */
12987 if ((flags & SEC_LINK_ONCE) == 0)
12988 return FALSE;
12989
12990 /* Don't put group member sections on our list of already linked
12991 sections. They are handled as a group via their group section. */
12992 if (elf_sec_group (sec) != NULL)
12993 return FALSE;
12994
12995 /* For a SHT_GROUP section, use the group signature as the key. */
12996 name = sec->name;
12997 if ((flags & SEC_GROUP) != 0
12998 && elf_next_in_group (sec) != NULL
12999 && elf_group_name (elf_next_in_group (sec)) != NULL)
13000 key = elf_group_name (elf_next_in_group (sec));
13001 else
13002 {
13003 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
13004 if (CONST_STRNEQ (name, ".gnu.linkonce.")
13005 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
13006 key++;
13007 else
13008 /* Must be a user linkonce section that doesn't follow gcc's
13009 naming convention. In this case we won't be matching
13010 single member groups. */
13011 key = name;
13012 }
13013
13014 already_linked_list = bfd_section_already_linked_table_lookup (key);
13015
13016 for (l = already_linked_list->entry; l != NULL; l = l->next)
13017 {
13018 /* We may have 2 different types of sections on the list: group
13019 sections with a signature of <key> (<key> is some string),
13020 and linkonce sections named .gnu.linkonce.<type>.<key>.
13021 Match like sections. LTO plugin sections are an exception.
13022 They are always named .gnu.linkonce.t.<key> and match either
13023 type of section. */
13024 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13025 && ((flags & SEC_GROUP) != 0
13026 || strcmp (name, l->sec->name) == 0))
13027 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13028 {
13029 /* The section has already been linked. See if we should
13030 issue a warning. */
13031 if (!_bfd_handle_already_linked (sec, l, info))
13032 return FALSE;
13033
13034 if (flags & SEC_GROUP)
13035 {
13036 asection *first = elf_next_in_group (sec);
13037 asection *s = first;
13038
13039 while (s != NULL)
13040 {
13041 s->output_section = bfd_abs_section_ptr;
13042 /* Record which group discards it. */
13043 s->kept_section = l->sec;
13044 s = elf_next_in_group (s);
13045 /* These lists are circular. */
13046 if (s == first)
13047 break;
13048 }
13049 }
13050
13051 return TRUE;
13052 }
13053 }
13054
13055 /* A single member comdat group section may be discarded by a
13056 linkonce section and vice versa. */
13057 if ((flags & SEC_GROUP) != 0)
13058 {
13059 asection *first = elf_next_in_group (sec);
13060
13061 if (first != NULL && elf_next_in_group (first) == first)
13062 /* Check this single member group against linkonce sections. */
13063 for (l = already_linked_list->entry; l != NULL; l = l->next)
13064 if ((l->sec->flags & SEC_GROUP) == 0
13065 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
13066 {
13067 first->output_section = bfd_abs_section_ptr;
13068 first->kept_section = l->sec;
13069 sec->output_section = bfd_abs_section_ptr;
13070 break;
13071 }
13072 }
13073 else
13074 /* Check this linkonce section against single member groups. */
13075 for (l = already_linked_list->entry; l != NULL; l = l->next)
13076 if (l->sec->flags & SEC_GROUP)
13077 {
13078 asection *first = elf_next_in_group (l->sec);
13079
13080 if (first != NULL
13081 && elf_next_in_group (first) == first
13082 && bfd_elf_match_symbols_in_sections (first, sec, info))
13083 {
13084 sec->output_section = bfd_abs_section_ptr;
13085 sec->kept_section = first;
13086 break;
13087 }
13088 }
13089
13090 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
13091 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
13092 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
13093 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
13094 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
13095 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
13096 `.gnu.linkonce.t.F' section from a different bfd not requiring any
13097 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
13098 The reverse order cannot happen as there is never a bfd with only the
13099 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
13100 matter as here were are looking only for cross-bfd sections. */
13101
13102 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
13103 for (l = already_linked_list->entry; l != NULL; l = l->next)
13104 if ((l->sec->flags & SEC_GROUP) == 0
13105 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
13106 {
13107 if (abfd != l->sec->owner)
13108 sec->output_section = bfd_abs_section_ptr;
13109 break;
13110 }
13111
13112 /* This is the first section with this name. Record it. */
13113 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
13114 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
13115 return sec->output_section == bfd_abs_section_ptr;
13116 }
13117
13118 bfd_boolean
13119 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
13120 {
13121 return sym->st_shndx == SHN_COMMON;
13122 }
13123
13124 unsigned int
13125 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
13126 {
13127 return SHN_COMMON;
13128 }
13129
13130 asection *
13131 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
13132 {
13133 return bfd_com_section_ptr;
13134 }
13135
13136 bfd_vma
13137 _bfd_elf_default_got_elt_size (bfd *abfd,
13138 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13139 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
13140 bfd *ibfd ATTRIBUTE_UNUSED,
13141 unsigned long symndx ATTRIBUTE_UNUSED)
13142 {
13143 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13144 return bed->s->arch_size / 8;
13145 }
13146
13147 /* Routines to support the creation of dynamic relocs. */
13148
13149 /* Returns the name of the dynamic reloc section associated with SEC. */
13150
13151 static const char *
13152 get_dynamic_reloc_section_name (bfd * abfd,
13153 asection * sec,
13154 bfd_boolean is_rela)
13155 {
13156 char *name;
13157 const char *old_name = bfd_get_section_name (NULL, sec);
13158 const char *prefix = is_rela ? ".rela" : ".rel";
13159
13160 if (old_name == NULL)
13161 return NULL;
13162
13163 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
13164 sprintf (name, "%s%s", prefix, old_name);
13165
13166 return name;
13167 }
13168
13169 /* Returns the dynamic reloc section associated with SEC.
13170 If necessary compute the name of the dynamic reloc section based
13171 on SEC's name (looked up in ABFD's string table) and the setting
13172 of IS_RELA. */
13173
13174 asection *
13175 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
13176 asection * sec,
13177 bfd_boolean is_rela)
13178 {
13179 asection * reloc_sec = elf_section_data (sec)->sreloc;
13180
13181 if (reloc_sec == NULL)
13182 {
13183 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13184
13185 if (name != NULL)
13186 {
13187 reloc_sec = bfd_get_linker_section (abfd, name);
13188
13189 if (reloc_sec != NULL)
13190 elf_section_data (sec)->sreloc = reloc_sec;
13191 }
13192 }
13193
13194 return reloc_sec;
13195 }
13196
13197 /* Returns the dynamic reloc section associated with SEC. If the
13198 section does not exist it is created and attached to the DYNOBJ
13199 bfd and stored in the SRELOC field of SEC's elf_section_data
13200 structure.
13201
13202 ALIGNMENT is the alignment for the newly created section and
13203 IS_RELA defines whether the name should be .rela.<SEC's name>
13204 or .rel.<SEC's name>. The section name is looked up in the
13205 string table associated with ABFD. */
13206
13207 asection *
13208 _bfd_elf_make_dynamic_reloc_section (asection *sec,
13209 bfd *dynobj,
13210 unsigned int alignment,
13211 bfd *abfd,
13212 bfd_boolean is_rela)
13213 {
13214 asection * reloc_sec = elf_section_data (sec)->sreloc;
13215
13216 if (reloc_sec == NULL)
13217 {
13218 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13219
13220 if (name == NULL)
13221 return NULL;
13222
13223 reloc_sec = bfd_get_linker_section (dynobj, name);
13224
13225 if (reloc_sec == NULL)
13226 {
13227 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13228 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13229 if ((sec->flags & SEC_ALLOC) != 0)
13230 flags |= SEC_ALLOC | SEC_LOAD;
13231
13232 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13233 if (reloc_sec != NULL)
13234 {
13235 /* _bfd_elf_get_sec_type_attr chooses a section type by
13236 name. Override as it may be wrong, eg. for a user
13237 section named "auto" we'll get ".relauto" which is
13238 seen to be a .rela section. */
13239 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13240 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13241 reloc_sec = NULL;
13242 }
13243 }
13244
13245 elf_section_data (sec)->sreloc = reloc_sec;
13246 }
13247
13248 return reloc_sec;
13249 }
13250
13251 /* Copy the ELF symbol type and other attributes for a linker script
13252 assignment from HSRC to HDEST. Generally this should be treated as
13253 if we found a strong non-dynamic definition for HDEST (except that
13254 ld ignores multiple definition errors). */
13255 void
13256 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
13257 struct bfd_link_hash_entry *hdest,
13258 struct bfd_link_hash_entry *hsrc)
13259 {
13260 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
13261 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
13262 Elf_Internal_Sym isym;
13263
13264 ehdest->type = ehsrc->type;
13265 ehdest->target_internal = ehsrc->target_internal;
13266
13267 isym.st_other = ehsrc->other;
13268 elf_merge_st_other (abfd, ehdest, &isym, TRUE, FALSE);
13269 }
13270
13271 /* Append a RELA relocation REL to section S in BFD. */
13272
13273 void
13274 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13275 {
13276 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13277 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13278 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13279 bed->s->swap_reloca_out (abfd, rel, loc);
13280 }
13281
13282 /* Append a REL relocation REL to section S in BFD. */
13283
13284 void
13285 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13286 {
13287 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13288 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13289 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13290 bed->s->swap_reloc_out (abfd, rel, loc);
13291 }
This page took 0.349542 seconds and 5 git commands to generate.