Use dynrelro for symbols in relro sections too
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2016 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfd_stdint.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31 #if BFD_SUPPORTS_PLUGINS
32 #include "plugin-api.h"
33 #include "plugin.h"
34 #endif
35
36 /* This struct is used to pass information to routines called via
37 elf_link_hash_traverse which must return failure. */
38
39 struct elf_info_failed
40 {
41 struct bfd_link_info *info;
42 bfd_boolean failed;
43 };
44
45 /* This structure is used to pass information to
46 _bfd_elf_link_find_version_dependencies. */
47
48 struct elf_find_verdep_info
49 {
50 /* General link information. */
51 struct bfd_link_info *info;
52 /* The number of dependencies. */
53 unsigned int vers;
54 /* Whether we had a failure. */
55 bfd_boolean failed;
56 };
57
58 static bfd_boolean _bfd_elf_fix_symbol_flags
59 (struct elf_link_hash_entry *, struct elf_info_failed *);
60
61 asection *
62 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
63 unsigned long r_symndx,
64 bfd_boolean discard)
65 {
66 if (r_symndx >= cookie->locsymcount
67 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
68 {
69 struct elf_link_hash_entry *h;
70
71 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
72
73 while (h->root.type == bfd_link_hash_indirect
74 || h->root.type == bfd_link_hash_warning)
75 h = (struct elf_link_hash_entry *) h->root.u.i.link;
76
77 if ((h->root.type == bfd_link_hash_defined
78 || h->root.type == bfd_link_hash_defweak)
79 && discarded_section (h->root.u.def.section))
80 return h->root.u.def.section;
81 else
82 return NULL;
83 }
84 else
85 {
86 /* It's not a relocation against a global symbol,
87 but it could be a relocation against a local
88 symbol for a discarded section. */
89 asection *isec;
90 Elf_Internal_Sym *isym;
91
92 /* Need to: get the symbol; get the section. */
93 isym = &cookie->locsyms[r_symndx];
94 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
95 if (isec != NULL
96 && discard ? discarded_section (isec) : 1)
97 return isec;
98 }
99 return NULL;
100 }
101
102 /* Define a symbol in a dynamic linkage section. */
103
104 struct elf_link_hash_entry *
105 _bfd_elf_define_linkage_sym (bfd *abfd,
106 struct bfd_link_info *info,
107 asection *sec,
108 const char *name)
109 {
110 struct elf_link_hash_entry *h;
111 struct bfd_link_hash_entry *bh;
112 const struct elf_backend_data *bed;
113
114 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
115 if (h != NULL)
116 {
117 /* Zap symbol defined in an as-needed lib that wasn't linked.
118 This is a symptom of a larger problem: Absolute symbols
119 defined in shared libraries can't be overridden, because we
120 lose the link to the bfd which is via the symbol section. */
121 h->root.type = bfd_link_hash_new;
122 }
123
124 bh = &h->root;
125 bed = get_elf_backend_data (abfd);
126 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
127 sec, 0, NULL, FALSE, bed->collect,
128 &bh))
129 return NULL;
130 h = (struct elf_link_hash_entry *) bh;
131 h->def_regular = 1;
132 h->non_elf = 0;
133 h->root.linker_def = 1;
134 h->type = STT_OBJECT;
135 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
136 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
137
138 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
139 return h;
140 }
141
142 bfd_boolean
143 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
144 {
145 flagword flags;
146 asection *s;
147 struct elf_link_hash_entry *h;
148 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
149 struct elf_link_hash_table *htab = elf_hash_table (info);
150
151 /* This function may be called more than once. */
152 if (htab->sgot != NULL)
153 return TRUE;
154
155 flags = bed->dynamic_sec_flags;
156
157 s = bfd_make_section_anyway_with_flags (abfd,
158 (bed->rela_plts_and_copies_p
159 ? ".rela.got" : ".rel.got"),
160 (bed->dynamic_sec_flags
161 | SEC_READONLY));
162 if (s == NULL
163 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
164 return FALSE;
165 htab->srelgot = s;
166
167 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
168 if (s == NULL
169 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
170 return FALSE;
171 htab->sgot = s;
172
173 if (bed->want_got_plt)
174 {
175 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
176 if (s == NULL
177 || !bfd_set_section_alignment (abfd, s,
178 bed->s->log_file_align))
179 return FALSE;
180 htab->sgotplt = s;
181 }
182
183 /* The first bit of the global offset table is the header. */
184 s->size += bed->got_header_size;
185
186 if (bed->want_got_sym)
187 {
188 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
189 (or .got.plt) section. We don't do this in the linker script
190 because we don't want to define the symbol if we are not creating
191 a global offset table. */
192 h = _bfd_elf_define_linkage_sym (abfd, info, s,
193 "_GLOBAL_OFFSET_TABLE_");
194 elf_hash_table (info)->hgot = h;
195 if (h == NULL)
196 return FALSE;
197 }
198
199 return TRUE;
200 }
201 \f
202 /* Create a strtab to hold the dynamic symbol names. */
203 static bfd_boolean
204 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
205 {
206 struct elf_link_hash_table *hash_table;
207
208 hash_table = elf_hash_table (info);
209 if (hash_table->dynobj == NULL)
210 {
211 /* We may not set dynobj, an input file holding linker created
212 dynamic sections to abfd, which may be a dynamic object with
213 its own dynamic sections. We need to find a normal input file
214 to hold linker created sections if possible. */
215 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
216 {
217 bfd *ibfd;
218 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
219 if ((ibfd->flags
220 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0)
221 {
222 abfd = ibfd;
223 break;
224 }
225 }
226 hash_table->dynobj = abfd;
227 }
228
229 if (hash_table->dynstr == NULL)
230 {
231 hash_table->dynstr = _bfd_elf_strtab_init ();
232 if (hash_table->dynstr == NULL)
233 return FALSE;
234 }
235 return TRUE;
236 }
237
238 /* Create some sections which will be filled in with dynamic linking
239 information. ABFD is an input file which requires dynamic sections
240 to be created. The dynamic sections take up virtual memory space
241 when the final executable is run, so we need to create them before
242 addresses are assigned to the output sections. We work out the
243 actual contents and size of these sections later. */
244
245 bfd_boolean
246 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
247 {
248 flagword flags;
249 asection *s;
250 const struct elf_backend_data *bed;
251 struct elf_link_hash_entry *h;
252
253 if (! is_elf_hash_table (info->hash))
254 return FALSE;
255
256 if (elf_hash_table (info)->dynamic_sections_created)
257 return TRUE;
258
259 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
260 return FALSE;
261
262 abfd = elf_hash_table (info)->dynobj;
263 bed = get_elf_backend_data (abfd);
264
265 flags = bed->dynamic_sec_flags;
266
267 /* A dynamically linked executable has a .interp section, but a
268 shared library does not. */
269 if (bfd_link_executable (info) && !info->nointerp)
270 {
271 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
272 flags | SEC_READONLY);
273 if (s == NULL)
274 return FALSE;
275 }
276
277 /* Create sections to hold version informations. These are removed
278 if they are not needed. */
279 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
280 flags | SEC_READONLY);
281 if (s == NULL
282 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
283 return FALSE;
284
285 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
286 flags | SEC_READONLY);
287 if (s == NULL
288 || ! bfd_set_section_alignment (abfd, s, 1))
289 return FALSE;
290
291 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
292 flags | SEC_READONLY);
293 if (s == NULL
294 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
295 return FALSE;
296
297 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
298 flags | SEC_READONLY);
299 if (s == NULL
300 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
301 return FALSE;
302 elf_hash_table (info)->dynsym = s;
303
304 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
305 flags | SEC_READONLY);
306 if (s == NULL)
307 return FALSE;
308
309 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
310 if (s == NULL
311 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
312 return FALSE;
313
314 /* The special symbol _DYNAMIC is always set to the start of the
315 .dynamic section. We could set _DYNAMIC in a linker script, but we
316 only want to define it if we are, in fact, creating a .dynamic
317 section. We don't want to define it if there is no .dynamic
318 section, since on some ELF platforms the start up code examines it
319 to decide how to initialize the process. */
320 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
321 elf_hash_table (info)->hdynamic = h;
322 if (h == NULL)
323 return FALSE;
324
325 if (info->emit_hash)
326 {
327 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
328 flags | SEC_READONLY);
329 if (s == NULL
330 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
331 return FALSE;
332 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
333 }
334
335 if (info->emit_gnu_hash)
336 {
337 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
338 flags | SEC_READONLY);
339 if (s == NULL
340 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
341 return FALSE;
342 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
343 4 32-bit words followed by variable count of 64-bit words, then
344 variable count of 32-bit words. */
345 if (bed->s->arch_size == 64)
346 elf_section_data (s)->this_hdr.sh_entsize = 0;
347 else
348 elf_section_data (s)->this_hdr.sh_entsize = 4;
349 }
350
351 /* Let the backend create the rest of the sections. This lets the
352 backend set the right flags. The backend will normally create
353 the .got and .plt sections. */
354 if (bed->elf_backend_create_dynamic_sections == NULL
355 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
356 return FALSE;
357
358 elf_hash_table (info)->dynamic_sections_created = TRUE;
359
360 return TRUE;
361 }
362
363 /* Create dynamic sections when linking against a dynamic object. */
364
365 bfd_boolean
366 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
367 {
368 flagword flags, pltflags;
369 struct elf_link_hash_entry *h;
370 asection *s;
371 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
372 struct elf_link_hash_table *htab = elf_hash_table (info);
373
374 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
375 .rel[a].bss sections. */
376 flags = bed->dynamic_sec_flags;
377
378 pltflags = flags;
379 if (bed->plt_not_loaded)
380 /* We do not clear SEC_ALLOC here because we still want the OS to
381 allocate space for the section; it's just that there's nothing
382 to read in from the object file. */
383 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
384 else
385 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
386 if (bed->plt_readonly)
387 pltflags |= SEC_READONLY;
388
389 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
390 if (s == NULL
391 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
392 return FALSE;
393 htab->splt = s;
394
395 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
396 .plt section. */
397 if (bed->want_plt_sym)
398 {
399 h = _bfd_elf_define_linkage_sym (abfd, info, s,
400 "_PROCEDURE_LINKAGE_TABLE_");
401 elf_hash_table (info)->hplt = h;
402 if (h == NULL)
403 return FALSE;
404 }
405
406 s = bfd_make_section_anyway_with_flags (abfd,
407 (bed->rela_plts_and_copies_p
408 ? ".rela.plt" : ".rel.plt"),
409 flags | SEC_READONLY);
410 if (s == NULL
411 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
412 return FALSE;
413 htab->srelplt = s;
414
415 if (! _bfd_elf_create_got_section (abfd, info))
416 return FALSE;
417
418 if (bed->want_dynbss)
419 {
420 /* The .dynbss section is a place to put symbols which are defined
421 by dynamic objects, are referenced by regular objects, and are
422 not functions. We must allocate space for them in the process
423 image and use a R_*_COPY reloc to tell the dynamic linker to
424 initialize them at run time. The linker script puts the .dynbss
425 section into the .bss section of the final image. */
426 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
427 (SEC_ALLOC | SEC_LINKER_CREATED));
428 if (s == NULL)
429 return FALSE;
430 htab->sdynbss = s;
431
432 if (bed->want_dynrelro)
433 {
434 /* Similarly, but for symbols that were originally in read-only
435 sections. */
436 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
437 (SEC_ALLOC | SEC_READONLY
438 | SEC_HAS_CONTENTS
439 | SEC_LINKER_CREATED));
440 if (s == NULL)
441 return FALSE;
442 htab->sdynrelro = s;
443 }
444
445 /* The .rel[a].bss section holds copy relocs. This section is not
446 normally needed. We need to create it here, though, so that the
447 linker will map it to an output section. We can't just create it
448 only if we need it, because we will not know whether we need it
449 until we have seen all the input files, and the first time the
450 main linker code calls BFD after examining all the input files
451 (size_dynamic_sections) the input sections have already been
452 mapped to the output sections. If the section turns out not to
453 be needed, we can discard it later. We will never need this
454 section when generating a shared object, since they do not use
455 copy relocs. */
456 if (bfd_link_executable (info))
457 {
458 s = bfd_make_section_anyway_with_flags (abfd,
459 (bed->rela_plts_and_copies_p
460 ? ".rela.bss" : ".rel.bss"),
461 flags | SEC_READONLY);
462 if (s == NULL
463 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
464 return FALSE;
465 htab->srelbss = s;
466
467 if (bed->want_dynrelro)
468 {
469 s = (bfd_make_section_anyway_with_flags
470 (abfd, (bed->rela_plts_and_copies_p
471 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
472 flags | SEC_READONLY));
473 if (s == NULL
474 || ! bfd_set_section_alignment (abfd, s,
475 bed->s->log_file_align))
476 return FALSE;
477 htab->sreldynrelro = s;
478 }
479 }
480 }
481
482 return TRUE;
483 }
484 \f
485 /* Record a new dynamic symbol. We record the dynamic symbols as we
486 read the input files, since we need to have a list of all of them
487 before we can determine the final sizes of the output sections.
488 Note that we may actually call this function even though we are not
489 going to output any dynamic symbols; in some cases we know that a
490 symbol should be in the dynamic symbol table, but only if there is
491 one. */
492
493 bfd_boolean
494 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
495 struct elf_link_hash_entry *h)
496 {
497 if (h->dynindx == -1)
498 {
499 struct elf_strtab_hash *dynstr;
500 char *p;
501 const char *name;
502 size_t indx;
503
504 /* XXX: The ABI draft says the linker must turn hidden and
505 internal symbols into STB_LOCAL symbols when producing the
506 DSO. However, if ld.so honors st_other in the dynamic table,
507 this would not be necessary. */
508 switch (ELF_ST_VISIBILITY (h->other))
509 {
510 case STV_INTERNAL:
511 case STV_HIDDEN:
512 if (h->root.type != bfd_link_hash_undefined
513 && h->root.type != bfd_link_hash_undefweak)
514 {
515 h->forced_local = 1;
516 if (!elf_hash_table (info)->is_relocatable_executable)
517 return TRUE;
518 }
519
520 default:
521 break;
522 }
523
524 h->dynindx = elf_hash_table (info)->dynsymcount;
525 ++elf_hash_table (info)->dynsymcount;
526
527 dynstr = elf_hash_table (info)->dynstr;
528 if (dynstr == NULL)
529 {
530 /* Create a strtab to hold the dynamic symbol names. */
531 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
532 if (dynstr == NULL)
533 return FALSE;
534 }
535
536 /* We don't put any version information in the dynamic string
537 table. */
538 name = h->root.root.string;
539 p = strchr (name, ELF_VER_CHR);
540 if (p != NULL)
541 /* We know that the p points into writable memory. In fact,
542 there are only a few symbols that have read-only names, being
543 those like _GLOBAL_OFFSET_TABLE_ that are created specially
544 by the backends. Most symbols will have names pointing into
545 an ELF string table read from a file, or to objalloc memory. */
546 *p = 0;
547
548 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
549
550 if (p != NULL)
551 *p = ELF_VER_CHR;
552
553 if (indx == (size_t) -1)
554 return FALSE;
555 h->dynstr_index = indx;
556 }
557
558 return TRUE;
559 }
560 \f
561 /* Mark a symbol dynamic. */
562
563 static void
564 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
565 struct elf_link_hash_entry *h,
566 Elf_Internal_Sym *sym)
567 {
568 struct bfd_elf_dynamic_list *d = info->dynamic_list;
569
570 /* It may be called more than once on the same H. */
571 if(h->dynamic || bfd_link_relocatable (info))
572 return;
573
574 if ((info->dynamic_data
575 && (h->type == STT_OBJECT
576 || h->type == STT_COMMON
577 || (sym != NULL
578 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
579 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
580 || (d != NULL
581 && h->root.type == bfd_link_hash_new
582 && (*d->match) (&d->head, NULL, h->root.root.string)))
583 h->dynamic = 1;
584 }
585
586 /* Record an assignment to a symbol made by a linker script. We need
587 this in case some dynamic object refers to this symbol. */
588
589 bfd_boolean
590 bfd_elf_record_link_assignment (bfd *output_bfd,
591 struct bfd_link_info *info,
592 const char *name,
593 bfd_boolean provide,
594 bfd_boolean hidden)
595 {
596 struct elf_link_hash_entry *h, *hv;
597 struct elf_link_hash_table *htab;
598 const struct elf_backend_data *bed;
599
600 if (!is_elf_hash_table (info->hash))
601 return TRUE;
602
603 htab = elf_hash_table (info);
604 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
605 if (h == NULL)
606 return provide;
607
608 if (h->root.type == bfd_link_hash_warning)
609 h = (struct elf_link_hash_entry *) h->root.u.i.link;
610
611 if (h->versioned == unknown)
612 {
613 /* Set versioned if symbol version is unknown. */
614 char *version = strrchr (name, ELF_VER_CHR);
615 if (version)
616 {
617 if (version > name && version[-1] != ELF_VER_CHR)
618 h->versioned = versioned_hidden;
619 else
620 h->versioned = versioned;
621 }
622 }
623
624 switch (h->root.type)
625 {
626 case bfd_link_hash_defined:
627 case bfd_link_hash_defweak:
628 case bfd_link_hash_common:
629 break;
630 case bfd_link_hash_undefweak:
631 case bfd_link_hash_undefined:
632 /* Since we're defining the symbol, don't let it seem to have not
633 been defined. record_dynamic_symbol and size_dynamic_sections
634 may depend on this. */
635 h->root.type = bfd_link_hash_new;
636 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
637 bfd_link_repair_undef_list (&htab->root);
638 break;
639 case bfd_link_hash_new:
640 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
641 h->non_elf = 0;
642 break;
643 case bfd_link_hash_indirect:
644 /* We had a versioned symbol in a dynamic library. We make the
645 the versioned symbol point to this one. */
646 bed = get_elf_backend_data (output_bfd);
647 hv = h;
648 while (hv->root.type == bfd_link_hash_indirect
649 || hv->root.type == bfd_link_hash_warning)
650 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
651 /* We don't need to update h->root.u since linker will set them
652 later. */
653 h->root.type = bfd_link_hash_undefined;
654 hv->root.type = bfd_link_hash_indirect;
655 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
656 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
657 break;
658 default:
659 BFD_FAIL ();
660 return FALSE;
661 }
662
663 /* If this symbol is being provided by the linker script, and it is
664 currently defined by a dynamic object, but not by a regular
665 object, then mark it as undefined so that the generic linker will
666 force the correct value. */
667 if (provide
668 && h->def_dynamic
669 && !h->def_regular)
670 h->root.type = bfd_link_hash_undefined;
671
672 /* If this symbol is not being provided by the linker script, and it is
673 currently defined by a dynamic object, but not by a regular object,
674 then clear out any version information because the symbol will not be
675 associated with the dynamic object any more. */
676 if (!provide
677 && h->def_dynamic
678 && !h->def_regular)
679 h->verinfo.verdef = NULL;
680
681 h->def_regular = 1;
682
683 if (hidden)
684 {
685 bed = get_elf_backend_data (output_bfd);
686 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
687 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
688 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
689 }
690
691 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
692 and executables. */
693 if (!bfd_link_relocatable (info)
694 && h->dynindx != -1
695 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
696 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
697 h->forced_local = 1;
698
699 if ((h->def_dynamic
700 || h->ref_dynamic
701 || bfd_link_dll (info)
702 || elf_hash_table (info)->is_relocatable_executable)
703 && h->dynindx == -1)
704 {
705 if (! bfd_elf_link_record_dynamic_symbol (info, h))
706 return FALSE;
707
708 /* If this is a weak defined symbol, and we know a corresponding
709 real symbol from the same dynamic object, make sure the real
710 symbol is also made into a dynamic symbol. */
711 if (h->u.weakdef != NULL
712 && h->u.weakdef->dynindx == -1)
713 {
714 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
715 return FALSE;
716 }
717 }
718
719 return TRUE;
720 }
721
722 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
723 success, and 2 on a failure caused by attempting to record a symbol
724 in a discarded section, eg. a discarded link-once section symbol. */
725
726 int
727 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
728 bfd *input_bfd,
729 long input_indx)
730 {
731 bfd_size_type amt;
732 struct elf_link_local_dynamic_entry *entry;
733 struct elf_link_hash_table *eht;
734 struct elf_strtab_hash *dynstr;
735 size_t dynstr_index;
736 char *name;
737 Elf_External_Sym_Shndx eshndx;
738 char esym[sizeof (Elf64_External_Sym)];
739
740 if (! is_elf_hash_table (info->hash))
741 return 0;
742
743 /* See if the entry exists already. */
744 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
745 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
746 return 1;
747
748 amt = sizeof (*entry);
749 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
750 if (entry == NULL)
751 return 0;
752
753 /* Go find the symbol, so that we can find it's name. */
754 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
755 1, input_indx, &entry->isym, esym, &eshndx))
756 {
757 bfd_release (input_bfd, entry);
758 return 0;
759 }
760
761 if (entry->isym.st_shndx != SHN_UNDEF
762 && entry->isym.st_shndx < SHN_LORESERVE)
763 {
764 asection *s;
765
766 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
767 if (s == NULL || bfd_is_abs_section (s->output_section))
768 {
769 /* We can still bfd_release here as nothing has done another
770 bfd_alloc. We can't do this later in this function. */
771 bfd_release (input_bfd, entry);
772 return 2;
773 }
774 }
775
776 name = (bfd_elf_string_from_elf_section
777 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
778 entry->isym.st_name));
779
780 dynstr = elf_hash_table (info)->dynstr;
781 if (dynstr == NULL)
782 {
783 /* Create a strtab to hold the dynamic symbol names. */
784 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
785 if (dynstr == NULL)
786 return 0;
787 }
788
789 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
790 if (dynstr_index == (size_t) -1)
791 return 0;
792 entry->isym.st_name = dynstr_index;
793
794 eht = elf_hash_table (info);
795
796 entry->next = eht->dynlocal;
797 eht->dynlocal = entry;
798 entry->input_bfd = input_bfd;
799 entry->input_indx = input_indx;
800 eht->dynsymcount++;
801
802 /* Whatever binding the symbol had before, it's now local. */
803 entry->isym.st_info
804 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
805
806 /* The dynindx will be set at the end of size_dynamic_sections. */
807
808 return 1;
809 }
810
811 /* Return the dynindex of a local dynamic symbol. */
812
813 long
814 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
815 bfd *input_bfd,
816 long input_indx)
817 {
818 struct elf_link_local_dynamic_entry *e;
819
820 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
821 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
822 return e->dynindx;
823 return -1;
824 }
825
826 /* This function is used to renumber the dynamic symbols, if some of
827 them are removed because they are marked as local. This is called
828 via elf_link_hash_traverse. */
829
830 static bfd_boolean
831 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
832 void *data)
833 {
834 size_t *count = (size_t *) data;
835
836 if (h->forced_local)
837 return TRUE;
838
839 if (h->dynindx != -1)
840 h->dynindx = ++(*count);
841
842 return TRUE;
843 }
844
845
846 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
847 STB_LOCAL binding. */
848
849 static bfd_boolean
850 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
851 void *data)
852 {
853 size_t *count = (size_t *) data;
854
855 if (!h->forced_local)
856 return TRUE;
857
858 if (h->dynindx != -1)
859 h->dynindx = ++(*count);
860
861 return TRUE;
862 }
863
864 /* Return true if the dynamic symbol for a given section should be
865 omitted when creating a shared library. */
866 bfd_boolean
867 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
868 struct bfd_link_info *info,
869 asection *p)
870 {
871 struct elf_link_hash_table *htab;
872 asection *ip;
873
874 switch (elf_section_data (p)->this_hdr.sh_type)
875 {
876 case SHT_PROGBITS:
877 case SHT_NOBITS:
878 /* If sh_type is yet undecided, assume it could be
879 SHT_PROGBITS/SHT_NOBITS. */
880 case SHT_NULL:
881 htab = elf_hash_table (info);
882 if (p == htab->tls_sec)
883 return FALSE;
884
885 if (htab->text_index_section != NULL)
886 return p != htab->text_index_section && p != htab->data_index_section;
887
888 return (htab->dynobj != NULL
889 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
890 && ip->output_section == p);
891
892 /* There shouldn't be section relative relocations
893 against any other section. */
894 default:
895 return TRUE;
896 }
897 }
898
899 /* Assign dynsym indices. In a shared library we generate a section
900 symbol for each output section, which come first. Next come symbols
901 which have been forced to local binding. Then all of the back-end
902 allocated local dynamic syms, followed by the rest of the global
903 symbols. */
904
905 static unsigned long
906 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
907 struct bfd_link_info *info,
908 unsigned long *section_sym_count)
909 {
910 unsigned long dynsymcount = 0;
911
912 if (bfd_link_pic (info)
913 || elf_hash_table (info)->is_relocatable_executable)
914 {
915 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
916 asection *p;
917 for (p = output_bfd->sections; p ; p = p->next)
918 if ((p->flags & SEC_EXCLUDE) == 0
919 && (p->flags & SEC_ALLOC) != 0
920 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
921 elf_section_data (p)->dynindx = ++dynsymcount;
922 else
923 elf_section_data (p)->dynindx = 0;
924 }
925 *section_sym_count = dynsymcount;
926
927 elf_link_hash_traverse (elf_hash_table (info),
928 elf_link_renumber_local_hash_table_dynsyms,
929 &dynsymcount);
930
931 if (elf_hash_table (info)->dynlocal)
932 {
933 struct elf_link_local_dynamic_entry *p;
934 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
935 p->dynindx = ++dynsymcount;
936 }
937 elf_hash_table (info)->local_dynsymcount = dynsymcount;
938
939 elf_link_hash_traverse (elf_hash_table (info),
940 elf_link_renumber_hash_table_dynsyms,
941 &dynsymcount);
942
943 /* There is an unused NULL entry at the head of the table which we
944 must account for in our count even if the table is empty since it
945 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
946 .dynamic section. */
947 dynsymcount++;
948
949 elf_hash_table (info)->dynsymcount = dynsymcount;
950 return dynsymcount;
951 }
952
953 /* Merge st_other field. */
954
955 static void
956 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
957 const Elf_Internal_Sym *isym, asection *sec,
958 bfd_boolean definition, bfd_boolean dynamic)
959 {
960 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
961
962 /* If st_other has a processor-specific meaning, specific
963 code might be needed here. */
964 if (bed->elf_backend_merge_symbol_attribute)
965 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
966 dynamic);
967
968 if (!dynamic)
969 {
970 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
971 unsigned hvis = ELF_ST_VISIBILITY (h->other);
972
973 /* Keep the most constraining visibility. Leave the remainder
974 of the st_other field to elf_backend_merge_symbol_attribute. */
975 if (symvis - 1 < hvis - 1)
976 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
977 }
978 else if (definition
979 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
980 && (sec->flags & SEC_READONLY) == 0)
981 h->protected_def = 1;
982 }
983
984 /* This function is called when we want to merge a new symbol with an
985 existing symbol. It handles the various cases which arise when we
986 find a definition in a dynamic object, or when there is already a
987 definition in a dynamic object. The new symbol is described by
988 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
989 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
990 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
991 of an old common symbol. We set OVERRIDE if the old symbol is
992 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
993 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
994 to change. By OK to change, we mean that we shouldn't warn if the
995 type or size does change. */
996
997 static bfd_boolean
998 _bfd_elf_merge_symbol (bfd *abfd,
999 struct bfd_link_info *info,
1000 const char *name,
1001 Elf_Internal_Sym *sym,
1002 asection **psec,
1003 bfd_vma *pvalue,
1004 struct elf_link_hash_entry **sym_hash,
1005 bfd **poldbfd,
1006 bfd_boolean *pold_weak,
1007 unsigned int *pold_alignment,
1008 bfd_boolean *skip,
1009 bfd_boolean *override,
1010 bfd_boolean *type_change_ok,
1011 bfd_boolean *size_change_ok,
1012 bfd_boolean *matched)
1013 {
1014 asection *sec, *oldsec;
1015 struct elf_link_hash_entry *h;
1016 struct elf_link_hash_entry *hi;
1017 struct elf_link_hash_entry *flip;
1018 int bind;
1019 bfd *oldbfd;
1020 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1021 bfd_boolean newweak, oldweak, newfunc, oldfunc;
1022 const struct elf_backend_data *bed;
1023 char *new_version;
1024
1025 *skip = FALSE;
1026 *override = FALSE;
1027
1028 sec = *psec;
1029 bind = ELF_ST_BIND (sym->st_info);
1030
1031 if (! bfd_is_und_section (sec))
1032 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
1033 else
1034 h = ((struct elf_link_hash_entry *)
1035 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1036 if (h == NULL)
1037 return FALSE;
1038 *sym_hash = h;
1039
1040 bed = get_elf_backend_data (abfd);
1041
1042 /* NEW_VERSION is the symbol version of the new symbol. */
1043 if (h->versioned != unversioned)
1044 {
1045 /* Symbol version is unknown or versioned. */
1046 new_version = strrchr (name, ELF_VER_CHR);
1047 if (new_version)
1048 {
1049 if (h->versioned == unknown)
1050 {
1051 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1052 h->versioned = versioned_hidden;
1053 else
1054 h->versioned = versioned;
1055 }
1056 new_version += 1;
1057 if (new_version[0] == '\0')
1058 new_version = NULL;
1059 }
1060 else
1061 h->versioned = unversioned;
1062 }
1063 else
1064 new_version = NULL;
1065
1066 /* For merging, we only care about real symbols. But we need to make
1067 sure that indirect symbol dynamic flags are updated. */
1068 hi = h;
1069 while (h->root.type == bfd_link_hash_indirect
1070 || h->root.type == bfd_link_hash_warning)
1071 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1072
1073 if (!*matched)
1074 {
1075 if (hi == h || h->root.type == bfd_link_hash_new)
1076 *matched = TRUE;
1077 else
1078 {
1079 /* OLD_HIDDEN is true if the existing symbol is only visible
1080 to the symbol with the same symbol version. NEW_HIDDEN is
1081 true if the new symbol is only visible to the symbol with
1082 the same symbol version. */
1083 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1084 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1085 if (!old_hidden && !new_hidden)
1086 /* The new symbol matches the existing symbol if both
1087 aren't hidden. */
1088 *matched = TRUE;
1089 else
1090 {
1091 /* OLD_VERSION is the symbol version of the existing
1092 symbol. */
1093 char *old_version;
1094
1095 if (h->versioned >= versioned)
1096 old_version = strrchr (h->root.root.string,
1097 ELF_VER_CHR) + 1;
1098 else
1099 old_version = NULL;
1100
1101 /* The new symbol matches the existing symbol if they
1102 have the same symbol version. */
1103 *matched = (old_version == new_version
1104 || (old_version != NULL
1105 && new_version != NULL
1106 && strcmp (old_version, new_version) == 0));
1107 }
1108 }
1109 }
1110
1111 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1112 existing symbol. */
1113
1114 oldbfd = NULL;
1115 oldsec = NULL;
1116 switch (h->root.type)
1117 {
1118 default:
1119 break;
1120
1121 case bfd_link_hash_undefined:
1122 case bfd_link_hash_undefweak:
1123 oldbfd = h->root.u.undef.abfd;
1124 break;
1125
1126 case bfd_link_hash_defined:
1127 case bfd_link_hash_defweak:
1128 oldbfd = h->root.u.def.section->owner;
1129 oldsec = h->root.u.def.section;
1130 break;
1131
1132 case bfd_link_hash_common:
1133 oldbfd = h->root.u.c.p->section->owner;
1134 oldsec = h->root.u.c.p->section;
1135 if (pold_alignment)
1136 *pold_alignment = h->root.u.c.p->alignment_power;
1137 break;
1138 }
1139 if (poldbfd && *poldbfd == NULL)
1140 *poldbfd = oldbfd;
1141
1142 /* Differentiate strong and weak symbols. */
1143 newweak = bind == STB_WEAK;
1144 oldweak = (h->root.type == bfd_link_hash_defweak
1145 || h->root.type == bfd_link_hash_undefweak);
1146 if (pold_weak)
1147 *pold_weak = oldweak;
1148
1149 /* This code is for coping with dynamic objects, and is only useful
1150 if we are doing an ELF link. */
1151 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
1152 return TRUE;
1153
1154 /* We have to check it for every instance since the first few may be
1155 references and not all compilers emit symbol type for undefined
1156 symbols. */
1157 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1158
1159 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1160 respectively, is from a dynamic object. */
1161
1162 newdyn = (abfd->flags & DYNAMIC) != 0;
1163
1164 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1165 syms and defined syms in dynamic libraries respectively.
1166 ref_dynamic on the other hand can be set for a symbol defined in
1167 a dynamic library, and def_dynamic may not be set; When the
1168 definition in a dynamic lib is overridden by a definition in the
1169 executable use of the symbol in the dynamic lib becomes a
1170 reference to the executable symbol. */
1171 if (newdyn)
1172 {
1173 if (bfd_is_und_section (sec))
1174 {
1175 if (bind != STB_WEAK)
1176 {
1177 h->ref_dynamic_nonweak = 1;
1178 hi->ref_dynamic_nonweak = 1;
1179 }
1180 }
1181 else
1182 {
1183 /* Update the existing symbol only if they match. */
1184 if (*matched)
1185 h->dynamic_def = 1;
1186 hi->dynamic_def = 1;
1187 }
1188 }
1189
1190 /* If we just created the symbol, mark it as being an ELF symbol.
1191 Other than that, there is nothing to do--there is no merge issue
1192 with a newly defined symbol--so we just return. */
1193
1194 if (h->root.type == bfd_link_hash_new)
1195 {
1196 h->non_elf = 0;
1197 return TRUE;
1198 }
1199
1200 /* In cases involving weak versioned symbols, we may wind up trying
1201 to merge a symbol with itself. Catch that here, to avoid the
1202 confusion that results if we try to override a symbol with
1203 itself. The additional tests catch cases like
1204 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1205 dynamic object, which we do want to handle here. */
1206 if (abfd == oldbfd
1207 && (newweak || oldweak)
1208 && ((abfd->flags & DYNAMIC) == 0
1209 || !h->def_regular))
1210 return TRUE;
1211
1212 olddyn = FALSE;
1213 if (oldbfd != NULL)
1214 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1215 else if (oldsec != NULL)
1216 {
1217 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1218 indices used by MIPS ELF. */
1219 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1220 }
1221
1222 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1223 respectively, appear to be a definition rather than reference. */
1224
1225 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1226
1227 olddef = (h->root.type != bfd_link_hash_undefined
1228 && h->root.type != bfd_link_hash_undefweak
1229 && h->root.type != bfd_link_hash_common);
1230
1231 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1232 respectively, appear to be a function. */
1233
1234 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1235 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1236
1237 oldfunc = (h->type != STT_NOTYPE
1238 && bed->is_function_type (h->type));
1239
1240 /* If creating a default indirect symbol ("foo" or "foo@") from a
1241 dynamic versioned definition ("foo@@") skip doing so if there is
1242 an existing regular definition with a different type. We don't
1243 want, for example, a "time" variable in the executable overriding
1244 a "time" function in a shared library. */
1245 if (pold_alignment == NULL
1246 && newdyn
1247 && newdef
1248 && !olddyn
1249 && (olddef || h->root.type == bfd_link_hash_common)
1250 && ELF_ST_TYPE (sym->st_info) != h->type
1251 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1252 && h->type != STT_NOTYPE
1253 && !(newfunc && oldfunc))
1254 {
1255 *skip = TRUE;
1256 return TRUE;
1257 }
1258
1259 /* Check TLS symbols. We don't check undefined symbols introduced
1260 by "ld -u" which have no type (and oldbfd NULL), and we don't
1261 check symbols from plugins because they also have no type. */
1262 if (oldbfd != NULL
1263 && (oldbfd->flags & BFD_PLUGIN) == 0
1264 && (abfd->flags & BFD_PLUGIN) == 0
1265 && ELF_ST_TYPE (sym->st_info) != h->type
1266 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1267 {
1268 bfd *ntbfd, *tbfd;
1269 bfd_boolean ntdef, tdef;
1270 asection *ntsec, *tsec;
1271
1272 if (h->type == STT_TLS)
1273 {
1274 ntbfd = abfd;
1275 ntsec = sec;
1276 ntdef = newdef;
1277 tbfd = oldbfd;
1278 tsec = oldsec;
1279 tdef = olddef;
1280 }
1281 else
1282 {
1283 ntbfd = oldbfd;
1284 ntsec = oldsec;
1285 ntdef = olddef;
1286 tbfd = abfd;
1287 tsec = sec;
1288 tdef = newdef;
1289 }
1290
1291 if (tdef && ntdef)
1292 _bfd_error_handler
1293 /* xgettext:c-format */
1294 (_("%s: TLS definition in %B section %A "
1295 "mismatches non-TLS definition in %B section %A"),
1296 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1297 else if (!tdef && !ntdef)
1298 _bfd_error_handler
1299 /* xgettext:c-format */
1300 (_("%s: TLS reference in %B "
1301 "mismatches non-TLS reference in %B"),
1302 tbfd, ntbfd, h->root.root.string);
1303 else if (tdef)
1304 _bfd_error_handler
1305 /* xgettext:c-format */
1306 (_("%s: TLS definition in %B section %A "
1307 "mismatches non-TLS reference in %B"),
1308 tbfd, tsec, ntbfd, h->root.root.string);
1309 else
1310 _bfd_error_handler
1311 /* xgettext:c-format */
1312 (_("%s: TLS reference in %B "
1313 "mismatches non-TLS definition in %B section %A"),
1314 tbfd, ntbfd, ntsec, h->root.root.string);
1315
1316 bfd_set_error (bfd_error_bad_value);
1317 return FALSE;
1318 }
1319
1320 /* If the old symbol has non-default visibility, we ignore the new
1321 definition from a dynamic object. */
1322 if (newdyn
1323 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1324 && !bfd_is_und_section (sec))
1325 {
1326 *skip = TRUE;
1327 /* Make sure this symbol is dynamic. */
1328 h->ref_dynamic = 1;
1329 hi->ref_dynamic = 1;
1330 /* A protected symbol has external availability. Make sure it is
1331 recorded as dynamic.
1332
1333 FIXME: Should we check type and size for protected symbol? */
1334 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1335 return bfd_elf_link_record_dynamic_symbol (info, h);
1336 else
1337 return TRUE;
1338 }
1339 else if (!newdyn
1340 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1341 && h->def_dynamic)
1342 {
1343 /* If the new symbol with non-default visibility comes from a
1344 relocatable file and the old definition comes from a dynamic
1345 object, we remove the old definition. */
1346 if (hi->root.type == bfd_link_hash_indirect)
1347 {
1348 /* Handle the case where the old dynamic definition is
1349 default versioned. We need to copy the symbol info from
1350 the symbol with default version to the normal one if it
1351 was referenced before. */
1352 if (h->ref_regular)
1353 {
1354 hi->root.type = h->root.type;
1355 h->root.type = bfd_link_hash_indirect;
1356 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1357
1358 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1359 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1360 {
1361 /* If the new symbol is hidden or internal, completely undo
1362 any dynamic link state. */
1363 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1364 h->forced_local = 0;
1365 h->ref_dynamic = 0;
1366 }
1367 else
1368 h->ref_dynamic = 1;
1369
1370 h->def_dynamic = 0;
1371 /* FIXME: Should we check type and size for protected symbol? */
1372 h->size = 0;
1373 h->type = 0;
1374
1375 h = hi;
1376 }
1377 else
1378 h = hi;
1379 }
1380
1381 /* If the old symbol was undefined before, then it will still be
1382 on the undefs list. If the new symbol is undefined or
1383 common, we can't make it bfd_link_hash_new here, because new
1384 undefined or common symbols will be added to the undefs list
1385 by _bfd_generic_link_add_one_symbol. Symbols may not be
1386 added twice to the undefs list. Also, if the new symbol is
1387 undefweak then we don't want to lose the strong undef. */
1388 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1389 {
1390 h->root.type = bfd_link_hash_undefined;
1391 h->root.u.undef.abfd = abfd;
1392 }
1393 else
1394 {
1395 h->root.type = bfd_link_hash_new;
1396 h->root.u.undef.abfd = NULL;
1397 }
1398
1399 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1400 {
1401 /* If the new symbol is hidden or internal, completely undo
1402 any dynamic link state. */
1403 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1404 h->forced_local = 0;
1405 h->ref_dynamic = 0;
1406 }
1407 else
1408 h->ref_dynamic = 1;
1409 h->def_dynamic = 0;
1410 /* FIXME: Should we check type and size for protected symbol? */
1411 h->size = 0;
1412 h->type = 0;
1413 return TRUE;
1414 }
1415
1416 /* If a new weak symbol definition comes from a regular file and the
1417 old symbol comes from a dynamic library, we treat the new one as
1418 strong. Similarly, an old weak symbol definition from a regular
1419 file is treated as strong when the new symbol comes from a dynamic
1420 library. Further, an old weak symbol from a dynamic library is
1421 treated as strong if the new symbol is from a dynamic library.
1422 This reflects the way glibc's ld.so works.
1423
1424 Do this before setting *type_change_ok or *size_change_ok so that
1425 we warn properly when dynamic library symbols are overridden. */
1426
1427 if (newdef && !newdyn && olddyn)
1428 newweak = FALSE;
1429 if (olddef && newdyn)
1430 oldweak = FALSE;
1431
1432 /* Allow changes between different types of function symbol. */
1433 if (newfunc && oldfunc)
1434 *type_change_ok = TRUE;
1435
1436 /* It's OK to change the type if either the existing symbol or the
1437 new symbol is weak. A type change is also OK if the old symbol
1438 is undefined and the new symbol is defined. */
1439
1440 if (oldweak
1441 || newweak
1442 || (newdef
1443 && h->root.type == bfd_link_hash_undefined))
1444 *type_change_ok = TRUE;
1445
1446 /* It's OK to change the size if either the existing symbol or the
1447 new symbol is weak, or if the old symbol is undefined. */
1448
1449 if (*type_change_ok
1450 || h->root.type == bfd_link_hash_undefined)
1451 *size_change_ok = TRUE;
1452
1453 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1454 symbol, respectively, appears to be a common symbol in a dynamic
1455 object. If a symbol appears in an uninitialized section, and is
1456 not weak, and is not a function, then it may be a common symbol
1457 which was resolved when the dynamic object was created. We want
1458 to treat such symbols specially, because they raise special
1459 considerations when setting the symbol size: if the symbol
1460 appears as a common symbol in a regular object, and the size in
1461 the regular object is larger, we must make sure that we use the
1462 larger size. This problematic case can always be avoided in C,
1463 but it must be handled correctly when using Fortran shared
1464 libraries.
1465
1466 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1467 likewise for OLDDYNCOMMON and OLDDEF.
1468
1469 Note that this test is just a heuristic, and that it is quite
1470 possible to have an uninitialized symbol in a shared object which
1471 is really a definition, rather than a common symbol. This could
1472 lead to some minor confusion when the symbol really is a common
1473 symbol in some regular object. However, I think it will be
1474 harmless. */
1475
1476 if (newdyn
1477 && newdef
1478 && !newweak
1479 && (sec->flags & SEC_ALLOC) != 0
1480 && (sec->flags & SEC_LOAD) == 0
1481 && sym->st_size > 0
1482 && !newfunc)
1483 newdyncommon = TRUE;
1484 else
1485 newdyncommon = FALSE;
1486
1487 if (olddyn
1488 && olddef
1489 && h->root.type == bfd_link_hash_defined
1490 && h->def_dynamic
1491 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1492 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1493 && h->size > 0
1494 && !oldfunc)
1495 olddyncommon = TRUE;
1496 else
1497 olddyncommon = FALSE;
1498
1499 /* We now know everything about the old and new symbols. We ask the
1500 backend to check if we can merge them. */
1501 if (bed->merge_symbol != NULL)
1502 {
1503 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1504 return FALSE;
1505 sec = *psec;
1506 }
1507
1508 /* If both the old and the new symbols look like common symbols in a
1509 dynamic object, set the size of the symbol to the larger of the
1510 two. */
1511
1512 if (olddyncommon
1513 && newdyncommon
1514 && sym->st_size != h->size)
1515 {
1516 /* Since we think we have two common symbols, issue a multiple
1517 common warning if desired. Note that we only warn if the
1518 size is different. If the size is the same, we simply let
1519 the old symbol override the new one as normally happens with
1520 symbols defined in dynamic objects. */
1521
1522 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1523 bfd_link_hash_common, sym->st_size);
1524 if (sym->st_size > h->size)
1525 h->size = sym->st_size;
1526
1527 *size_change_ok = TRUE;
1528 }
1529
1530 /* If we are looking at a dynamic object, and we have found a
1531 definition, we need to see if the symbol was already defined by
1532 some other object. If so, we want to use the existing
1533 definition, and we do not want to report a multiple symbol
1534 definition error; we do this by clobbering *PSEC to be
1535 bfd_und_section_ptr.
1536
1537 We treat a common symbol as a definition if the symbol in the
1538 shared library is a function, since common symbols always
1539 represent variables; this can cause confusion in principle, but
1540 any such confusion would seem to indicate an erroneous program or
1541 shared library. We also permit a common symbol in a regular
1542 object to override a weak symbol in a shared object. A common
1543 symbol in executable also overrides a symbol in a shared object. */
1544
1545 if (newdyn
1546 && newdef
1547 && (olddef
1548 || (h->root.type == bfd_link_hash_common
1549 && (newweak
1550 || newfunc
1551 || (!olddyn && bfd_link_executable (info))))))
1552 {
1553 *override = TRUE;
1554 newdef = FALSE;
1555 newdyncommon = FALSE;
1556
1557 *psec = sec = bfd_und_section_ptr;
1558 *size_change_ok = TRUE;
1559
1560 /* If we get here when the old symbol is a common symbol, then
1561 we are explicitly letting it override a weak symbol or
1562 function in a dynamic object, and we don't want to warn about
1563 a type change. If the old symbol is a defined symbol, a type
1564 change warning may still be appropriate. */
1565
1566 if (h->root.type == bfd_link_hash_common)
1567 *type_change_ok = TRUE;
1568 }
1569
1570 /* Handle the special case of an old common symbol merging with a
1571 new symbol which looks like a common symbol in a shared object.
1572 We change *PSEC and *PVALUE to make the new symbol look like a
1573 common symbol, and let _bfd_generic_link_add_one_symbol do the
1574 right thing. */
1575
1576 if (newdyncommon
1577 && h->root.type == bfd_link_hash_common)
1578 {
1579 *override = TRUE;
1580 newdef = FALSE;
1581 newdyncommon = FALSE;
1582 *pvalue = sym->st_size;
1583 *psec = sec = bed->common_section (oldsec);
1584 *size_change_ok = TRUE;
1585 }
1586
1587 /* Skip weak definitions of symbols that are already defined. */
1588 if (newdef && olddef && newweak)
1589 {
1590 /* Don't skip new non-IR weak syms. */
1591 if (!(oldbfd != NULL
1592 && (oldbfd->flags & BFD_PLUGIN) != 0
1593 && (abfd->flags & BFD_PLUGIN) == 0))
1594 {
1595 newdef = FALSE;
1596 *skip = TRUE;
1597 }
1598
1599 /* Merge st_other. If the symbol already has a dynamic index,
1600 but visibility says it should not be visible, turn it into a
1601 local symbol. */
1602 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1603 if (h->dynindx != -1)
1604 switch (ELF_ST_VISIBILITY (h->other))
1605 {
1606 case STV_INTERNAL:
1607 case STV_HIDDEN:
1608 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1609 break;
1610 }
1611 }
1612
1613 /* If the old symbol is from a dynamic object, and the new symbol is
1614 a definition which is not from a dynamic object, then the new
1615 symbol overrides the old symbol. Symbols from regular files
1616 always take precedence over symbols from dynamic objects, even if
1617 they are defined after the dynamic object in the link.
1618
1619 As above, we again permit a common symbol in a regular object to
1620 override a definition in a shared object if the shared object
1621 symbol is a function or is weak. */
1622
1623 flip = NULL;
1624 if (!newdyn
1625 && (newdef
1626 || (bfd_is_com_section (sec)
1627 && (oldweak || oldfunc)))
1628 && olddyn
1629 && olddef
1630 && h->def_dynamic)
1631 {
1632 /* Change the hash table entry to undefined, and let
1633 _bfd_generic_link_add_one_symbol do the right thing with the
1634 new definition. */
1635
1636 h->root.type = bfd_link_hash_undefined;
1637 h->root.u.undef.abfd = h->root.u.def.section->owner;
1638 *size_change_ok = TRUE;
1639
1640 olddef = FALSE;
1641 olddyncommon = FALSE;
1642
1643 /* We again permit a type change when a common symbol may be
1644 overriding a function. */
1645
1646 if (bfd_is_com_section (sec))
1647 {
1648 if (oldfunc)
1649 {
1650 /* If a common symbol overrides a function, make sure
1651 that it isn't defined dynamically nor has type
1652 function. */
1653 h->def_dynamic = 0;
1654 h->type = STT_NOTYPE;
1655 }
1656 *type_change_ok = TRUE;
1657 }
1658
1659 if (hi->root.type == bfd_link_hash_indirect)
1660 flip = hi;
1661 else
1662 /* This union may have been set to be non-NULL when this symbol
1663 was seen in a dynamic object. We must force the union to be
1664 NULL, so that it is correct for a regular symbol. */
1665 h->verinfo.vertree = NULL;
1666 }
1667
1668 /* Handle the special case of a new common symbol merging with an
1669 old symbol that looks like it might be a common symbol defined in
1670 a shared object. Note that we have already handled the case in
1671 which a new common symbol should simply override the definition
1672 in the shared library. */
1673
1674 if (! newdyn
1675 && bfd_is_com_section (sec)
1676 && olddyncommon)
1677 {
1678 /* It would be best if we could set the hash table entry to a
1679 common symbol, but we don't know what to use for the section
1680 or the alignment. */
1681 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1682 bfd_link_hash_common, sym->st_size);
1683
1684 /* If the presumed common symbol in the dynamic object is
1685 larger, pretend that the new symbol has its size. */
1686
1687 if (h->size > *pvalue)
1688 *pvalue = h->size;
1689
1690 /* We need to remember the alignment required by the symbol
1691 in the dynamic object. */
1692 BFD_ASSERT (pold_alignment);
1693 *pold_alignment = h->root.u.def.section->alignment_power;
1694
1695 olddef = FALSE;
1696 olddyncommon = FALSE;
1697
1698 h->root.type = bfd_link_hash_undefined;
1699 h->root.u.undef.abfd = h->root.u.def.section->owner;
1700
1701 *size_change_ok = TRUE;
1702 *type_change_ok = TRUE;
1703
1704 if (hi->root.type == bfd_link_hash_indirect)
1705 flip = hi;
1706 else
1707 h->verinfo.vertree = NULL;
1708 }
1709
1710 if (flip != NULL)
1711 {
1712 /* Handle the case where we had a versioned symbol in a dynamic
1713 library and now find a definition in a normal object. In this
1714 case, we make the versioned symbol point to the normal one. */
1715 flip->root.type = h->root.type;
1716 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1717 h->root.type = bfd_link_hash_indirect;
1718 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1719 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1720 if (h->def_dynamic)
1721 {
1722 h->def_dynamic = 0;
1723 flip->ref_dynamic = 1;
1724 }
1725 }
1726
1727 return TRUE;
1728 }
1729
1730 /* This function is called to create an indirect symbol from the
1731 default for the symbol with the default version if needed. The
1732 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1733 set DYNSYM if the new indirect symbol is dynamic. */
1734
1735 static bfd_boolean
1736 _bfd_elf_add_default_symbol (bfd *abfd,
1737 struct bfd_link_info *info,
1738 struct elf_link_hash_entry *h,
1739 const char *name,
1740 Elf_Internal_Sym *sym,
1741 asection *sec,
1742 bfd_vma value,
1743 bfd **poldbfd,
1744 bfd_boolean *dynsym)
1745 {
1746 bfd_boolean type_change_ok;
1747 bfd_boolean size_change_ok;
1748 bfd_boolean skip;
1749 char *shortname;
1750 struct elf_link_hash_entry *hi;
1751 struct bfd_link_hash_entry *bh;
1752 const struct elf_backend_data *bed;
1753 bfd_boolean collect;
1754 bfd_boolean dynamic;
1755 bfd_boolean override;
1756 char *p;
1757 size_t len, shortlen;
1758 asection *tmp_sec;
1759 bfd_boolean matched;
1760
1761 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1762 return TRUE;
1763
1764 /* If this symbol has a version, and it is the default version, we
1765 create an indirect symbol from the default name to the fully
1766 decorated name. This will cause external references which do not
1767 specify a version to be bound to this version of the symbol. */
1768 p = strchr (name, ELF_VER_CHR);
1769 if (h->versioned == unknown)
1770 {
1771 if (p == NULL)
1772 {
1773 h->versioned = unversioned;
1774 return TRUE;
1775 }
1776 else
1777 {
1778 if (p[1] != ELF_VER_CHR)
1779 {
1780 h->versioned = versioned_hidden;
1781 return TRUE;
1782 }
1783 else
1784 h->versioned = versioned;
1785 }
1786 }
1787 else
1788 {
1789 /* PR ld/19073: We may see an unversioned definition after the
1790 default version. */
1791 if (p == NULL)
1792 return TRUE;
1793 }
1794
1795 bed = get_elf_backend_data (abfd);
1796 collect = bed->collect;
1797 dynamic = (abfd->flags & DYNAMIC) != 0;
1798
1799 shortlen = p - name;
1800 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1801 if (shortname == NULL)
1802 return FALSE;
1803 memcpy (shortname, name, shortlen);
1804 shortname[shortlen] = '\0';
1805
1806 /* We are going to create a new symbol. Merge it with any existing
1807 symbol with this name. For the purposes of the merge, act as
1808 though we were defining the symbol we just defined, although we
1809 actually going to define an indirect symbol. */
1810 type_change_ok = FALSE;
1811 size_change_ok = FALSE;
1812 matched = TRUE;
1813 tmp_sec = sec;
1814 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1815 &hi, poldbfd, NULL, NULL, &skip, &override,
1816 &type_change_ok, &size_change_ok, &matched))
1817 return FALSE;
1818
1819 if (skip)
1820 goto nondefault;
1821
1822 if (hi->def_regular)
1823 {
1824 /* If the undecorated symbol will have a version added by a
1825 script different to H, then don't indirect to/from the
1826 undecorated symbol. This isn't ideal because we may not yet
1827 have seen symbol versions, if given by a script on the
1828 command line rather than via --version-script. */
1829 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1830 {
1831 bfd_boolean hide;
1832
1833 hi->verinfo.vertree
1834 = bfd_find_version_for_sym (info->version_info,
1835 hi->root.root.string, &hide);
1836 if (hi->verinfo.vertree != NULL && hide)
1837 {
1838 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1839 goto nondefault;
1840 }
1841 }
1842 if (hi->verinfo.vertree != NULL
1843 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1844 goto nondefault;
1845 }
1846
1847 if (! override)
1848 {
1849 /* Add the default symbol if not performing a relocatable link. */
1850 if (! bfd_link_relocatable (info))
1851 {
1852 bh = &hi->root;
1853 if (! (_bfd_generic_link_add_one_symbol
1854 (info, abfd, shortname, BSF_INDIRECT,
1855 bfd_ind_section_ptr,
1856 0, name, FALSE, collect, &bh)))
1857 return FALSE;
1858 hi = (struct elf_link_hash_entry *) bh;
1859 }
1860 }
1861 else
1862 {
1863 /* In this case the symbol named SHORTNAME is overriding the
1864 indirect symbol we want to add. We were planning on making
1865 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1866 is the name without a version. NAME is the fully versioned
1867 name, and it is the default version.
1868
1869 Overriding means that we already saw a definition for the
1870 symbol SHORTNAME in a regular object, and it is overriding
1871 the symbol defined in the dynamic object.
1872
1873 When this happens, we actually want to change NAME, the
1874 symbol we just added, to refer to SHORTNAME. This will cause
1875 references to NAME in the shared object to become references
1876 to SHORTNAME in the regular object. This is what we expect
1877 when we override a function in a shared object: that the
1878 references in the shared object will be mapped to the
1879 definition in the regular object. */
1880
1881 while (hi->root.type == bfd_link_hash_indirect
1882 || hi->root.type == bfd_link_hash_warning)
1883 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1884
1885 h->root.type = bfd_link_hash_indirect;
1886 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1887 if (h->def_dynamic)
1888 {
1889 h->def_dynamic = 0;
1890 hi->ref_dynamic = 1;
1891 if (hi->ref_regular
1892 || hi->def_regular)
1893 {
1894 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1895 return FALSE;
1896 }
1897 }
1898
1899 /* Now set HI to H, so that the following code will set the
1900 other fields correctly. */
1901 hi = h;
1902 }
1903
1904 /* Check if HI is a warning symbol. */
1905 if (hi->root.type == bfd_link_hash_warning)
1906 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1907
1908 /* If there is a duplicate definition somewhere, then HI may not
1909 point to an indirect symbol. We will have reported an error to
1910 the user in that case. */
1911
1912 if (hi->root.type == bfd_link_hash_indirect)
1913 {
1914 struct elf_link_hash_entry *ht;
1915
1916 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1917 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1918
1919 /* A reference to the SHORTNAME symbol from a dynamic library
1920 will be satisfied by the versioned symbol at runtime. In
1921 effect, we have a reference to the versioned symbol. */
1922 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1923 hi->dynamic_def |= ht->dynamic_def;
1924
1925 /* See if the new flags lead us to realize that the symbol must
1926 be dynamic. */
1927 if (! *dynsym)
1928 {
1929 if (! dynamic)
1930 {
1931 if (! bfd_link_executable (info)
1932 || hi->def_dynamic
1933 || hi->ref_dynamic)
1934 *dynsym = TRUE;
1935 }
1936 else
1937 {
1938 if (hi->ref_regular)
1939 *dynsym = TRUE;
1940 }
1941 }
1942 }
1943
1944 /* We also need to define an indirection from the nondefault version
1945 of the symbol. */
1946
1947 nondefault:
1948 len = strlen (name);
1949 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1950 if (shortname == NULL)
1951 return FALSE;
1952 memcpy (shortname, name, shortlen);
1953 memcpy (shortname + shortlen, p + 1, len - shortlen);
1954
1955 /* Once again, merge with any existing symbol. */
1956 type_change_ok = FALSE;
1957 size_change_ok = FALSE;
1958 tmp_sec = sec;
1959 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1960 &hi, poldbfd, NULL, NULL, &skip, &override,
1961 &type_change_ok, &size_change_ok, &matched))
1962 return FALSE;
1963
1964 if (skip)
1965 return TRUE;
1966
1967 if (override)
1968 {
1969 /* Here SHORTNAME is a versioned name, so we don't expect to see
1970 the type of override we do in the case above unless it is
1971 overridden by a versioned definition. */
1972 if (hi->root.type != bfd_link_hash_defined
1973 && hi->root.type != bfd_link_hash_defweak)
1974 _bfd_error_handler
1975 /* xgettext:c-format */
1976 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1977 abfd, shortname);
1978 }
1979 else
1980 {
1981 bh = &hi->root;
1982 if (! (_bfd_generic_link_add_one_symbol
1983 (info, abfd, shortname, BSF_INDIRECT,
1984 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1985 return FALSE;
1986 hi = (struct elf_link_hash_entry *) bh;
1987
1988 /* If there is a duplicate definition somewhere, then HI may not
1989 point to an indirect symbol. We will have reported an error
1990 to the user in that case. */
1991
1992 if (hi->root.type == bfd_link_hash_indirect)
1993 {
1994 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1995 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1996 hi->dynamic_def |= h->dynamic_def;
1997
1998 /* See if the new flags lead us to realize that the symbol
1999 must be dynamic. */
2000 if (! *dynsym)
2001 {
2002 if (! dynamic)
2003 {
2004 if (! bfd_link_executable (info)
2005 || hi->ref_dynamic)
2006 *dynsym = TRUE;
2007 }
2008 else
2009 {
2010 if (hi->ref_regular)
2011 *dynsym = TRUE;
2012 }
2013 }
2014 }
2015 }
2016
2017 return TRUE;
2018 }
2019 \f
2020 /* This routine is used to export all defined symbols into the dynamic
2021 symbol table. It is called via elf_link_hash_traverse. */
2022
2023 static bfd_boolean
2024 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2025 {
2026 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2027
2028 /* Ignore indirect symbols. These are added by the versioning code. */
2029 if (h->root.type == bfd_link_hash_indirect)
2030 return TRUE;
2031
2032 /* Ignore this if we won't export it. */
2033 if (!eif->info->export_dynamic && !h->dynamic)
2034 return TRUE;
2035
2036 if (h->dynindx == -1
2037 && (h->def_regular || h->ref_regular)
2038 && ! bfd_hide_sym_by_version (eif->info->version_info,
2039 h->root.root.string))
2040 {
2041 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2042 {
2043 eif->failed = TRUE;
2044 return FALSE;
2045 }
2046 }
2047
2048 return TRUE;
2049 }
2050 \f
2051 /* Look through the symbols which are defined in other shared
2052 libraries and referenced here. Update the list of version
2053 dependencies. This will be put into the .gnu.version_r section.
2054 This function is called via elf_link_hash_traverse. */
2055
2056 static bfd_boolean
2057 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2058 void *data)
2059 {
2060 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2061 Elf_Internal_Verneed *t;
2062 Elf_Internal_Vernaux *a;
2063 bfd_size_type amt;
2064
2065 /* We only care about symbols defined in shared objects with version
2066 information. */
2067 if (!h->def_dynamic
2068 || h->def_regular
2069 || h->dynindx == -1
2070 || h->verinfo.verdef == NULL
2071 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2072 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2073 return TRUE;
2074
2075 /* See if we already know about this version. */
2076 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2077 t != NULL;
2078 t = t->vn_nextref)
2079 {
2080 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2081 continue;
2082
2083 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2084 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2085 return TRUE;
2086
2087 break;
2088 }
2089
2090 /* This is a new version. Add it to tree we are building. */
2091
2092 if (t == NULL)
2093 {
2094 amt = sizeof *t;
2095 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2096 if (t == NULL)
2097 {
2098 rinfo->failed = TRUE;
2099 return FALSE;
2100 }
2101
2102 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2103 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2104 elf_tdata (rinfo->info->output_bfd)->verref = t;
2105 }
2106
2107 amt = sizeof *a;
2108 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2109 if (a == NULL)
2110 {
2111 rinfo->failed = TRUE;
2112 return FALSE;
2113 }
2114
2115 /* Note that we are copying a string pointer here, and testing it
2116 above. If bfd_elf_string_from_elf_section is ever changed to
2117 discard the string data when low in memory, this will have to be
2118 fixed. */
2119 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2120
2121 a->vna_flags = h->verinfo.verdef->vd_flags;
2122 a->vna_nextptr = t->vn_auxptr;
2123
2124 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2125 ++rinfo->vers;
2126
2127 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2128
2129 t->vn_auxptr = a;
2130
2131 return TRUE;
2132 }
2133
2134 /* Figure out appropriate versions for all the symbols. We may not
2135 have the version number script until we have read all of the input
2136 files, so until that point we don't know which symbols should be
2137 local. This function is called via elf_link_hash_traverse. */
2138
2139 static bfd_boolean
2140 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2141 {
2142 struct elf_info_failed *sinfo;
2143 struct bfd_link_info *info;
2144 const struct elf_backend_data *bed;
2145 struct elf_info_failed eif;
2146 char *p;
2147
2148 sinfo = (struct elf_info_failed *) data;
2149 info = sinfo->info;
2150
2151 /* Fix the symbol flags. */
2152 eif.failed = FALSE;
2153 eif.info = info;
2154 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2155 {
2156 if (eif.failed)
2157 sinfo->failed = TRUE;
2158 return FALSE;
2159 }
2160
2161 /* We only need version numbers for symbols defined in regular
2162 objects. */
2163 if (!h->def_regular)
2164 return TRUE;
2165
2166 bed = get_elf_backend_data (info->output_bfd);
2167 p = strchr (h->root.root.string, ELF_VER_CHR);
2168 if (p != NULL && h->verinfo.vertree == NULL)
2169 {
2170 struct bfd_elf_version_tree *t;
2171
2172 ++p;
2173 if (*p == ELF_VER_CHR)
2174 ++p;
2175
2176 /* If there is no version string, we can just return out. */
2177 if (*p == '\0')
2178 return TRUE;
2179
2180 /* Look for the version. If we find it, it is no longer weak. */
2181 for (t = sinfo->info->version_info; t != NULL; t = t->next)
2182 {
2183 if (strcmp (t->name, p) == 0)
2184 {
2185 size_t len;
2186 char *alc;
2187 struct bfd_elf_version_expr *d;
2188
2189 len = p - h->root.root.string;
2190 alc = (char *) bfd_malloc (len);
2191 if (alc == NULL)
2192 {
2193 sinfo->failed = TRUE;
2194 return FALSE;
2195 }
2196 memcpy (alc, h->root.root.string, len - 1);
2197 alc[len - 1] = '\0';
2198 if (alc[len - 2] == ELF_VER_CHR)
2199 alc[len - 2] = '\0';
2200
2201 h->verinfo.vertree = t;
2202 t->used = TRUE;
2203 d = NULL;
2204
2205 if (t->globals.list != NULL)
2206 d = (*t->match) (&t->globals, NULL, alc);
2207
2208 /* See if there is anything to force this symbol to
2209 local scope. */
2210 if (d == NULL && t->locals.list != NULL)
2211 {
2212 d = (*t->match) (&t->locals, NULL, alc);
2213 if (d != NULL
2214 && h->dynindx != -1
2215 && ! info->export_dynamic)
2216 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2217 }
2218
2219 free (alc);
2220 break;
2221 }
2222 }
2223
2224 /* If we are building an application, we need to create a
2225 version node for this version. */
2226 if (t == NULL && bfd_link_executable (info))
2227 {
2228 struct bfd_elf_version_tree **pp;
2229 int version_index;
2230
2231 /* If we aren't going to export this symbol, we don't need
2232 to worry about it. */
2233 if (h->dynindx == -1)
2234 return TRUE;
2235
2236 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2237 sizeof *t);
2238 if (t == NULL)
2239 {
2240 sinfo->failed = TRUE;
2241 return FALSE;
2242 }
2243
2244 t->name = p;
2245 t->name_indx = (unsigned int) -1;
2246 t->used = TRUE;
2247
2248 version_index = 1;
2249 /* Don't count anonymous version tag. */
2250 if (sinfo->info->version_info != NULL
2251 && sinfo->info->version_info->vernum == 0)
2252 version_index = 0;
2253 for (pp = &sinfo->info->version_info;
2254 *pp != NULL;
2255 pp = &(*pp)->next)
2256 ++version_index;
2257 t->vernum = version_index;
2258
2259 *pp = t;
2260
2261 h->verinfo.vertree = t;
2262 }
2263 else if (t == NULL)
2264 {
2265 /* We could not find the version for a symbol when
2266 generating a shared archive. Return an error. */
2267 _bfd_error_handler
2268 /* xgettext:c-format */
2269 (_("%B: version node not found for symbol %s"),
2270 info->output_bfd, h->root.root.string);
2271 bfd_set_error (bfd_error_bad_value);
2272 sinfo->failed = TRUE;
2273 return FALSE;
2274 }
2275 }
2276
2277 /* If we don't have a version for this symbol, see if we can find
2278 something. */
2279 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2280 {
2281 bfd_boolean hide;
2282
2283 h->verinfo.vertree
2284 = bfd_find_version_for_sym (sinfo->info->version_info,
2285 h->root.root.string, &hide);
2286 if (h->verinfo.vertree != NULL && hide)
2287 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2288 }
2289
2290 return TRUE;
2291 }
2292 \f
2293 /* Read and swap the relocs from the section indicated by SHDR. This
2294 may be either a REL or a RELA section. The relocations are
2295 translated into RELA relocations and stored in INTERNAL_RELOCS,
2296 which should have already been allocated to contain enough space.
2297 The EXTERNAL_RELOCS are a buffer where the external form of the
2298 relocations should be stored.
2299
2300 Returns FALSE if something goes wrong. */
2301
2302 static bfd_boolean
2303 elf_link_read_relocs_from_section (bfd *abfd,
2304 asection *sec,
2305 Elf_Internal_Shdr *shdr,
2306 void *external_relocs,
2307 Elf_Internal_Rela *internal_relocs)
2308 {
2309 const struct elf_backend_data *bed;
2310 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2311 const bfd_byte *erela;
2312 const bfd_byte *erelaend;
2313 Elf_Internal_Rela *irela;
2314 Elf_Internal_Shdr *symtab_hdr;
2315 size_t nsyms;
2316
2317 /* Position ourselves at the start of the section. */
2318 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2319 return FALSE;
2320
2321 /* Read the relocations. */
2322 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2323 return FALSE;
2324
2325 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2326 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2327
2328 bed = get_elf_backend_data (abfd);
2329
2330 /* Convert the external relocations to the internal format. */
2331 if (shdr->sh_entsize == bed->s->sizeof_rel)
2332 swap_in = bed->s->swap_reloc_in;
2333 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2334 swap_in = bed->s->swap_reloca_in;
2335 else
2336 {
2337 bfd_set_error (bfd_error_wrong_format);
2338 return FALSE;
2339 }
2340
2341 erela = (const bfd_byte *) external_relocs;
2342 erelaend = erela + shdr->sh_size;
2343 irela = internal_relocs;
2344 while (erela < erelaend)
2345 {
2346 bfd_vma r_symndx;
2347
2348 (*swap_in) (abfd, erela, irela);
2349 r_symndx = ELF32_R_SYM (irela->r_info);
2350 if (bed->s->arch_size == 64)
2351 r_symndx >>= 24;
2352 if (nsyms > 0)
2353 {
2354 if ((size_t) r_symndx >= nsyms)
2355 {
2356 _bfd_error_handler
2357 /* xgettext:c-format */
2358 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2359 " for offset 0x%lx in section `%A'"),
2360 abfd, sec,
2361 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2362 bfd_set_error (bfd_error_bad_value);
2363 return FALSE;
2364 }
2365 }
2366 else if (r_symndx != STN_UNDEF)
2367 {
2368 _bfd_error_handler
2369 /* xgettext:c-format */
2370 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2371 " when the object file has no symbol table"),
2372 abfd, sec,
2373 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2374 bfd_set_error (bfd_error_bad_value);
2375 return FALSE;
2376 }
2377 irela += bed->s->int_rels_per_ext_rel;
2378 erela += shdr->sh_entsize;
2379 }
2380
2381 return TRUE;
2382 }
2383
2384 /* Read and swap the relocs for a section O. They may have been
2385 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2386 not NULL, they are used as buffers to read into. They are known to
2387 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2388 the return value is allocated using either malloc or bfd_alloc,
2389 according to the KEEP_MEMORY argument. If O has two relocation
2390 sections (both REL and RELA relocations), then the REL_HDR
2391 relocations will appear first in INTERNAL_RELOCS, followed by the
2392 RELA_HDR relocations. */
2393
2394 Elf_Internal_Rela *
2395 _bfd_elf_link_read_relocs (bfd *abfd,
2396 asection *o,
2397 void *external_relocs,
2398 Elf_Internal_Rela *internal_relocs,
2399 bfd_boolean keep_memory)
2400 {
2401 void *alloc1 = NULL;
2402 Elf_Internal_Rela *alloc2 = NULL;
2403 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2404 struct bfd_elf_section_data *esdo = elf_section_data (o);
2405 Elf_Internal_Rela *internal_rela_relocs;
2406
2407 if (esdo->relocs != NULL)
2408 return esdo->relocs;
2409
2410 if (o->reloc_count == 0)
2411 return NULL;
2412
2413 if (internal_relocs == NULL)
2414 {
2415 bfd_size_type size;
2416
2417 size = o->reloc_count;
2418 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2419 if (keep_memory)
2420 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2421 else
2422 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2423 if (internal_relocs == NULL)
2424 goto error_return;
2425 }
2426
2427 if (external_relocs == NULL)
2428 {
2429 bfd_size_type size = 0;
2430
2431 if (esdo->rel.hdr)
2432 size += esdo->rel.hdr->sh_size;
2433 if (esdo->rela.hdr)
2434 size += esdo->rela.hdr->sh_size;
2435
2436 alloc1 = bfd_malloc (size);
2437 if (alloc1 == NULL)
2438 goto error_return;
2439 external_relocs = alloc1;
2440 }
2441
2442 internal_rela_relocs = internal_relocs;
2443 if (esdo->rel.hdr)
2444 {
2445 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2446 external_relocs,
2447 internal_relocs))
2448 goto error_return;
2449 external_relocs = (((bfd_byte *) external_relocs)
2450 + esdo->rel.hdr->sh_size);
2451 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2452 * bed->s->int_rels_per_ext_rel);
2453 }
2454
2455 if (esdo->rela.hdr
2456 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2457 external_relocs,
2458 internal_rela_relocs)))
2459 goto error_return;
2460
2461 /* Cache the results for next time, if we can. */
2462 if (keep_memory)
2463 esdo->relocs = internal_relocs;
2464
2465 if (alloc1 != NULL)
2466 free (alloc1);
2467
2468 /* Don't free alloc2, since if it was allocated we are passing it
2469 back (under the name of internal_relocs). */
2470
2471 return internal_relocs;
2472
2473 error_return:
2474 if (alloc1 != NULL)
2475 free (alloc1);
2476 if (alloc2 != NULL)
2477 {
2478 if (keep_memory)
2479 bfd_release (abfd, alloc2);
2480 else
2481 free (alloc2);
2482 }
2483 return NULL;
2484 }
2485
2486 /* Compute the size of, and allocate space for, REL_HDR which is the
2487 section header for a section containing relocations for O. */
2488
2489 static bfd_boolean
2490 _bfd_elf_link_size_reloc_section (bfd *abfd,
2491 struct bfd_elf_section_reloc_data *reldata)
2492 {
2493 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2494
2495 /* That allows us to calculate the size of the section. */
2496 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2497
2498 /* The contents field must last into write_object_contents, so we
2499 allocate it with bfd_alloc rather than malloc. Also since we
2500 cannot be sure that the contents will actually be filled in,
2501 we zero the allocated space. */
2502 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2503 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2504 return FALSE;
2505
2506 if (reldata->hashes == NULL && reldata->count)
2507 {
2508 struct elf_link_hash_entry **p;
2509
2510 p = ((struct elf_link_hash_entry **)
2511 bfd_zmalloc (reldata->count * sizeof (*p)));
2512 if (p == NULL)
2513 return FALSE;
2514
2515 reldata->hashes = p;
2516 }
2517
2518 return TRUE;
2519 }
2520
2521 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2522 originated from the section given by INPUT_REL_HDR) to the
2523 OUTPUT_BFD. */
2524
2525 bfd_boolean
2526 _bfd_elf_link_output_relocs (bfd *output_bfd,
2527 asection *input_section,
2528 Elf_Internal_Shdr *input_rel_hdr,
2529 Elf_Internal_Rela *internal_relocs,
2530 struct elf_link_hash_entry **rel_hash
2531 ATTRIBUTE_UNUSED)
2532 {
2533 Elf_Internal_Rela *irela;
2534 Elf_Internal_Rela *irelaend;
2535 bfd_byte *erel;
2536 struct bfd_elf_section_reloc_data *output_reldata;
2537 asection *output_section;
2538 const struct elf_backend_data *bed;
2539 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2540 struct bfd_elf_section_data *esdo;
2541
2542 output_section = input_section->output_section;
2543
2544 bed = get_elf_backend_data (output_bfd);
2545 esdo = elf_section_data (output_section);
2546 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2547 {
2548 output_reldata = &esdo->rel;
2549 swap_out = bed->s->swap_reloc_out;
2550 }
2551 else if (esdo->rela.hdr
2552 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2553 {
2554 output_reldata = &esdo->rela;
2555 swap_out = bed->s->swap_reloca_out;
2556 }
2557 else
2558 {
2559 _bfd_error_handler
2560 /* xgettext:c-format */
2561 (_("%B: relocation size mismatch in %B section %A"),
2562 output_bfd, input_section->owner, input_section);
2563 bfd_set_error (bfd_error_wrong_format);
2564 return FALSE;
2565 }
2566
2567 erel = output_reldata->hdr->contents;
2568 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2569 irela = internal_relocs;
2570 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2571 * bed->s->int_rels_per_ext_rel);
2572 while (irela < irelaend)
2573 {
2574 (*swap_out) (output_bfd, irela, erel);
2575 irela += bed->s->int_rels_per_ext_rel;
2576 erel += input_rel_hdr->sh_entsize;
2577 }
2578
2579 /* Bump the counter, so that we know where to add the next set of
2580 relocations. */
2581 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2582
2583 return TRUE;
2584 }
2585 \f
2586 /* Make weak undefined symbols in PIE dynamic. */
2587
2588 bfd_boolean
2589 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2590 struct elf_link_hash_entry *h)
2591 {
2592 if (bfd_link_pie (info)
2593 && h->dynindx == -1
2594 && h->root.type == bfd_link_hash_undefweak)
2595 return bfd_elf_link_record_dynamic_symbol (info, h);
2596
2597 return TRUE;
2598 }
2599
2600 /* Fix up the flags for a symbol. This handles various cases which
2601 can only be fixed after all the input files are seen. This is
2602 currently called by both adjust_dynamic_symbol and
2603 assign_sym_version, which is unnecessary but perhaps more robust in
2604 the face of future changes. */
2605
2606 static bfd_boolean
2607 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2608 struct elf_info_failed *eif)
2609 {
2610 const struct elf_backend_data *bed;
2611
2612 /* If this symbol was mentioned in a non-ELF file, try to set
2613 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2614 permit a non-ELF file to correctly refer to a symbol defined in
2615 an ELF dynamic object. */
2616 if (h->non_elf)
2617 {
2618 while (h->root.type == bfd_link_hash_indirect)
2619 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2620
2621 if (h->root.type != bfd_link_hash_defined
2622 && h->root.type != bfd_link_hash_defweak)
2623 {
2624 h->ref_regular = 1;
2625 h->ref_regular_nonweak = 1;
2626 }
2627 else
2628 {
2629 if (h->root.u.def.section->owner != NULL
2630 && (bfd_get_flavour (h->root.u.def.section->owner)
2631 == bfd_target_elf_flavour))
2632 {
2633 h->ref_regular = 1;
2634 h->ref_regular_nonweak = 1;
2635 }
2636 else
2637 h->def_regular = 1;
2638 }
2639
2640 if (h->dynindx == -1
2641 && (h->def_dynamic
2642 || h->ref_dynamic))
2643 {
2644 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2645 {
2646 eif->failed = TRUE;
2647 return FALSE;
2648 }
2649 }
2650 }
2651 else
2652 {
2653 /* Unfortunately, NON_ELF is only correct if the symbol
2654 was first seen in a non-ELF file. Fortunately, if the symbol
2655 was first seen in an ELF file, we're probably OK unless the
2656 symbol was defined in a non-ELF file. Catch that case here.
2657 FIXME: We're still in trouble if the symbol was first seen in
2658 a dynamic object, and then later in a non-ELF regular object. */
2659 if ((h->root.type == bfd_link_hash_defined
2660 || h->root.type == bfd_link_hash_defweak)
2661 && !h->def_regular
2662 && (h->root.u.def.section->owner != NULL
2663 ? (bfd_get_flavour (h->root.u.def.section->owner)
2664 != bfd_target_elf_flavour)
2665 : (bfd_is_abs_section (h->root.u.def.section)
2666 && !h->def_dynamic)))
2667 h->def_regular = 1;
2668 }
2669
2670 /* Backend specific symbol fixup. */
2671 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2672 if (bed->elf_backend_fixup_symbol
2673 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2674 return FALSE;
2675
2676 /* If this is a final link, and the symbol was defined as a common
2677 symbol in a regular object file, and there was no definition in
2678 any dynamic object, then the linker will have allocated space for
2679 the symbol in a common section but the DEF_REGULAR
2680 flag will not have been set. */
2681 if (h->root.type == bfd_link_hash_defined
2682 && !h->def_regular
2683 && h->ref_regular
2684 && !h->def_dynamic
2685 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2686 h->def_regular = 1;
2687
2688 /* If a weak undefined symbol has non-default visibility, we also
2689 hide it from the dynamic linker. */
2690 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2691 && h->root.type == bfd_link_hash_undefweak)
2692 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2693
2694 /* A hidden versioned symbol in executable should be forced local if
2695 it is is locally defined, not referenced by shared library and not
2696 exported. */
2697 else if (bfd_link_executable (eif->info)
2698 && h->versioned == versioned_hidden
2699 && !eif->info->export_dynamic
2700 && !h->dynamic
2701 && !h->ref_dynamic
2702 && h->def_regular)
2703 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2704
2705 /* If -Bsymbolic was used (which means to bind references to global
2706 symbols to the definition within the shared object), and this
2707 symbol was defined in a regular object, then it actually doesn't
2708 need a PLT entry. Likewise, if the symbol has non-default
2709 visibility. If the symbol has hidden or internal visibility, we
2710 will force it local. */
2711 else if (h->needs_plt
2712 && bfd_link_pic (eif->info)
2713 && is_elf_hash_table (eif->info->hash)
2714 && (SYMBOLIC_BIND (eif->info, h)
2715 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2716 && h->def_regular)
2717 {
2718 bfd_boolean force_local;
2719
2720 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2721 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2722 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2723 }
2724
2725 /* If this is a weak defined symbol in a dynamic object, and we know
2726 the real definition in the dynamic object, copy interesting flags
2727 over to the real definition. */
2728 if (h->u.weakdef != NULL)
2729 {
2730 /* If the real definition is defined by a regular object file,
2731 don't do anything special. See the longer description in
2732 _bfd_elf_adjust_dynamic_symbol, below. */
2733 if (h->u.weakdef->def_regular)
2734 h->u.weakdef = NULL;
2735 else
2736 {
2737 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2738
2739 while (h->root.type == bfd_link_hash_indirect)
2740 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2741
2742 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2743 || h->root.type == bfd_link_hash_defweak);
2744 BFD_ASSERT (weakdef->def_dynamic);
2745 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2746 || weakdef->root.type == bfd_link_hash_defweak);
2747 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2748 }
2749 }
2750
2751 return TRUE;
2752 }
2753
2754 /* Make the backend pick a good value for a dynamic symbol. This is
2755 called via elf_link_hash_traverse, and also calls itself
2756 recursively. */
2757
2758 static bfd_boolean
2759 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2760 {
2761 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2762 bfd *dynobj;
2763 const struct elf_backend_data *bed;
2764
2765 if (! is_elf_hash_table (eif->info->hash))
2766 return FALSE;
2767
2768 /* Ignore indirect symbols. These are added by the versioning code. */
2769 if (h->root.type == bfd_link_hash_indirect)
2770 return TRUE;
2771
2772 /* Fix the symbol flags. */
2773 if (! _bfd_elf_fix_symbol_flags (h, eif))
2774 return FALSE;
2775
2776 /* If this symbol does not require a PLT entry, and it is not
2777 defined by a dynamic object, or is not referenced by a regular
2778 object, ignore it. We do have to handle a weak defined symbol,
2779 even if no regular object refers to it, if we decided to add it
2780 to the dynamic symbol table. FIXME: Do we normally need to worry
2781 about symbols which are defined by one dynamic object and
2782 referenced by another one? */
2783 if (!h->needs_plt
2784 && h->type != STT_GNU_IFUNC
2785 && (h->def_regular
2786 || !h->def_dynamic
2787 || (!h->ref_regular
2788 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2789 {
2790 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2791 return TRUE;
2792 }
2793
2794 /* If we've already adjusted this symbol, don't do it again. This
2795 can happen via a recursive call. */
2796 if (h->dynamic_adjusted)
2797 return TRUE;
2798
2799 /* Don't look at this symbol again. Note that we must set this
2800 after checking the above conditions, because we may look at a
2801 symbol once, decide not to do anything, and then get called
2802 recursively later after REF_REGULAR is set below. */
2803 h->dynamic_adjusted = 1;
2804
2805 /* If this is a weak definition, and we know a real definition, and
2806 the real symbol is not itself defined by a regular object file,
2807 then get a good value for the real definition. We handle the
2808 real symbol first, for the convenience of the backend routine.
2809
2810 Note that there is a confusing case here. If the real definition
2811 is defined by a regular object file, we don't get the real symbol
2812 from the dynamic object, but we do get the weak symbol. If the
2813 processor backend uses a COPY reloc, then if some routine in the
2814 dynamic object changes the real symbol, we will not see that
2815 change in the corresponding weak symbol. This is the way other
2816 ELF linkers work as well, and seems to be a result of the shared
2817 library model.
2818
2819 I will clarify this issue. Most SVR4 shared libraries define the
2820 variable _timezone and define timezone as a weak synonym. The
2821 tzset call changes _timezone. If you write
2822 extern int timezone;
2823 int _timezone = 5;
2824 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2825 you might expect that, since timezone is a synonym for _timezone,
2826 the same number will print both times. However, if the processor
2827 backend uses a COPY reloc, then actually timezone will be copied
2828 into your process image, and, since you define _timezone
2829 yourself, _timezone will not. Thus timezone and _timezone will
2830 wind up at different memory locations. The tzset call will set
2831 _timezone, leaving timezone unchanged. */
2832
2833 if (h->u.weakdef != NULL)
2834 {
2835 /* If we get to this point, there is an implicit reference to
2836 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2837 h->u.weakdef->ref_regular = 1;
2838
2839 /* Ensure that the backend adjust_dynamic_symbol function sees
2840 H->U.WEAKDEF before H by recursively calling ourselves. */
2841 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2842 return FALSE;
2843 }
2844
2845 /* If a symbol has no type and no size and does not require a PLT
2846 entry, then we are probably about to do the wrong thing here: we
2847 are probably going to create a COPY reloc for an empty object.
2848 This case can arise when a shared object is built with assembly
2849 code, and the assembly code fails to set the symbol type. */
2850 if (h->size == 0
2851 && h->type == STT_NOTYPE
2852 && !h->needs_plt)
2853 _bfd_error_handler
2854 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2855 h->root.root.string);
2856
2857 dynobj = elf_hash_table (eif->info)->dynobj;
2858 bed = get_elf_backend_data (dynobj);
2859
2860 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2861 {
2862 eif->failed = TRUE;
2863 return FALSE;
2864 }
2865
2866 return TRUE;
2867 }
2868
2869 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2870 DYNBSS. */
2871
2872 bfd_boolean
2873 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2874 struct elf_link_hash_entry *h,
2875 asection *dynbss)
2876 {
2877 unsigned int power_of_two;
2878 bfd_vma mask;
2879 asection *sec = h->root.u.def.section;
2880
2881 /* The section aligment of definition is the maximum alignment
2882 requirement of symbols defined in the section. Since we don't
2883 know the symbol alignment requirement, we start with the
2884 maximum alignment and check low bits of the symbol address
2885 for the minimum alignment. */
2886 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2887 mask = ((bfd_vma) 1 << power_of_two) - 1;
2888 while ((h->root.u.def.value & mask) != 0)
2889 {
2890 mask >>= 1;
2891 --power_of_two;
2892 }
2893
2894 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2895 dynbss))
2896 {
2897 /* Adjust the section alignment if needed. */
2898 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2899 power_of_two))
2900 return FALSE;
2901 }
2902
2903 /* We make sure that the symbol will be aligned properly. */
2904 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2905
2906 /* Define the symbol as being at this point in DYNBSS. */
2907 h->root.u.def.section = dynbss;
2908 h->root.u.def.value = dynbss->size;
2909
2910 /* Increment the size of DYNBSS to make room for the symbol. */
2911 dynbss->size += h->size;
2912
2913 /* No error if extern_protected_data is true. */
2914 if (h->protected_def
2915 && (!info->extern_protected_data
2916 || (info->extern_protected_data < 0
2917 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
2918 info->callbacks->einfo
2919 (_("%P: copy reloc against protected `%T' is dangerous\n"),
2920 h->root.root.string);
2921
2922 return TRUE;
2923 }
2924
2925 /* Adjust all external symbols pointing into SEC_MERGE sections
2926 to reflect the object merging within the sections. */
2927
2928 static bfd_boolean
2929 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2930 {
2931 asection *sec;
2932
2933 if ((h->root.type == bfd_link_hash_defined
2934 || h->root.type == bfd_link_hash_defweak)
2935 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2936 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2937 {
2938 bfd *output_bfd = (bfd *) data;
2939
2940 h->root.u.def.value =
2941 _bfd_merged_section_offset (output_bfd,
2942 &h->root.u.def.section,
2943 elf_section_data (sec)->sec_info,
2944 h->root.u.def.value);
2945 }
2946
2947 return TRUE;
2948 }
2949
2950 /* Returns false if the symbol referred to by H should be considered
2951 to resolve local to the current module, and true if it should be
2952 considered to bind dynamically. */
2953
2954 bfd_boolean
2955 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2956 struct bfd_link_info *info,
2957 bfd_boolean not_local_protected)
2958 {
2959 bfd_boolean binding_stays_local_p;
2960 const struct elf_backend_data *bed;
2961 struct elf_link_hash_table *hash_table;
2962
2963 if (h == NULL)
2964 return FALSE;
2965
2966 while (h->root.type == bfd_link_hash_indirect
2967 || h->root.type == bfd_link_hash_warning)
2968 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2969
2970 /* If it was forced local, then clearly it's not dynamic. */
2971 if (h->dynindx == -1)
2972 return FALSE;
2973 if (h->forced_local)
2974 return FALSE;
2975
2976 /* Identify the cases where name binding rules say that a
2977 visible symbol resolves locally. */
2978 binding_stays_local_p = (bfd_link_executable (info)
2979 || SYMBOLIC_BIND (info, h));
2980
2981 switch (ELF_ST_VISIBILITY (h->other))
2982 {
2983 case STV_INTERNAL:
2984 case STV_HIDDEN:
2985 return FALSE;
2986
2987 case STV_PROTECTED:
2988 hash_table = elf_hash_table (info);
2989 if (!is_elf_hash_table (hash_table))
2990 return FALSE;
2991
2992 bed = get_elf_backend_data (hash_table->dynobj);
2993
2994 /* Proper resolution for function pointer equality may require
2995 that these symbols perhaps be resolved dynamically, even though
2996 we should be resolving them to the current module. */
2997 if (!not_local_protected || !bed->is_function_type (h->type))
2998 binding_stays_local_p = TRUE;
2999 break;
3000
3001 default:
3002 break;
3003 }
3004
3005 /* If it isn't defined locally, then clearly it's dynamic. */
3006 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3007 return TRUE;
3008
3009 /* Otherwise, the symbol is dynamic if binding rules don't tell
3010 us that it remains local. */
3011 return !binding_stays_local_p;
3012 }
3013
3014 /* Return true if the symbol referred to by H should be considered
3015 to resolve local to the current module, and false otherwise. Differs
3016 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3017 undefined symbols. The two functions are virtually identical except
3018 for the place where forced_local and dynindx == -1 are tested. If
3019 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
3020 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
3021 the symbol is local only for defined symbols.
3022 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3023 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3024 treatment of undefined weak symbols. For those that do not make
3025 undefined weak symbols dynamic, both functions may return false. */
3026
3027 bfd_boolean
3028 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3029 struct bfd_link_info *info,
3030 bfd_boolean local_protected)
3031 {
3032 const struct elf_backend_data *bed;
3033 struct elf_link_hash_table *hash_table;
3034
3035 /* If it's a local sym, of course we resolve locally. */
3036 if (h == NULL)
3037 return TRUE;
3038
3039 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
3040 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3041 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3042 return TRUE;
3043
3044 /* Common symbols that become definitions don't get the DEF_REGULAR
3045 flag set, so test it first, and don't bail out. */
3046 if (ELF_COMMON_DEF_P (h))
3047 /* Do nothing. */;
3048 /* If we don't have a definition in a regular file, then we can't
3049 resolve locally. The sym is either undefined or dynamic. */
3050 else if (!h->def_regular)
3051 return FALSE;
3052
3053 /* Forced local symbols resolve locally. */
3054 if (h->forced_local)
3055 return TRUE;
3056
3057 /* As do non-dynamic symbols. */
3058 if (h->dynindx == -1)
3059 return TRUE;
3060
3061 /* At this point, we know the symbol is defined and dynamic. In an
3062 executable it must resolve locally, likewise when building symbolic
3063 shared libraries. */
3064 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3065 return TRUE;
3066
3067 /* Now deal with defined dynamic symbols in shared libraries. Ones
3068 with default visibility might not resolve locally. */
3069 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3070 return FALSE;
3071
3072 hash_table = elf_hash_table (info);
3073 if (!is_elf_hash_table (hash_table))
3074 return TRUE;
3075
3076 bed = get_elf_backend_data (hash_table->dynobj);
3077
3078 /* If extern_protected_data is false, STV_PROTECTED non-function
3079 symbols are local. */
3080 if ((!info->extern_protected_data
3081 || (info->extern_protected_data < 0
3082 && !bed->extern_protected_data))
3083 && !bed->is_function_type (h->type))
3084 return TRUE;
3085
3086 /* Function pointer equality tests may require that STV_PROTECTED
3087 symbols be treated as dynamic symbols. If the address of a
3088 function not defined in an executable is set to that function's
3089 plt entry in the executable, then the address of the function in
3090 a shared library must also be the plt entry in the executable. */
3091 return local_protected;
3092 }
3093
3094 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3095 aligned. Returns the first TLS output section. */
3096
3097 struct bfd_section *
3098 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3099 {
3100 struct bfd_section *sec, *tls;
3101 unsigned int align = 0;
3102
3103 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3104 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3105 break;
3106 tls = sec;
3107
3108 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3109 if (sec->alignment_power > align)
3110 align = sec->alignment_power;
3111
3112 elf_hash_table (info)->tls_sec = tls;
3113
3114 /* Ensure the alignment of the first section is the largest alignment,
3115 so that the tls segment starts aligned. */
3116 if (tls != NULL)
3117 tls->alignment_power = align;
3118
3119 return tls;
3120 }
3121
3122 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3123 static bfd_boolean
3124 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3125 Elf_Internal_Sym *sym)
3126 {
3127 const struct elf_backend_data *bed;
3128
3129 /* Local symbols do not count, but target specific ones might. */
3130 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3131 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3132 return FALSE;
3133
3134 bed = get_elf_backend_data (abfd);
3135 /* Function symbols do not count. */
3136 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3137 return FALSE;
3138
3139 /* If the section is undefined, then so is the symbol. */
3140 if (sym->st_shndx == SHN_UNDEF)
3141 return FALSE;
3142
3143 /* If the symbol is defined in the common section, then
3144 it is a common definition and so does not count. */
3145 if (bed->common_definition (sym))
3146 return FALSE;
3147
3148 /* If the symbol is in a target specific section then we
3149 must rely upon the backend to tell us what it is. */
3150 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3151 /* FIXME - this function is not coded yet:
3152
3153 return _bfd_is_global_symbol_definition (abfd, sym);
3154
3155 Instead for now assume that the definition is not global,
3156 Even if this is wrong, at least the linker will behave
3157 in the same way that it used to do. */
3158 return FALSE;
3159
3160 return TRUE;
3161 }
3162
3163 /* Search the symbol table of the archive element of the archive ABFD
3164 whose archive map contains a mention of SYMDEF, and determine if
3165 the symbol is defined in this element. */
3166 static bfd_boolean
3167 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3168 {
3169 Elf_Internal_Shdr * hdr;
3170 size_t symcount;
3171 size_t extsymcount;
3172 size_t extsymoff;
3173 Elf_Internal_Sym *isymbuf;
3174 Elf_Internal_Sym *isym;
3175 Elf_Internal_Sym *isymend;
3176 bfd_boolean result;
3177
3178 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3179 if (abfd == NULL)
3180 return FALSE;
3181
3182 if (! bfd_check_format (abfd, bfd_object))
3183 return FALSE;
3184
3185 /* Select the appropriate symbol table. If we don't know if the
3186 object file is an IR object, give linker LTO plugin a chance to
3187 get the correct symbol table. */
3188 if (abfd->plugin_format == bfd_plugin_yes
3189 #if BFD_SUPPORTS_PLUGINS
3190 || (abfd->plugin_format == bfd_plugin_unknown
3191 && bfd_link_plugin_object_p (abfd))
3192 #endif
3193 )
3194 {
3195 /* Use the IR symbol table if the object has been claimed by
3196 plugin. */
3197 abfd = abfd->plugin_dummy_bfd;
3198 hdr = &elf_tdata (abfd)->symtab_hdr;
3199 }
3200 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3201 hdr = &elf_tdata (abfd)->symtab_hdr;
3202 else
3203 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3204
3205 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3206
3207 /* The sh_info field of the symtab header tells us where the
3208 external symbols start. We don't care about the local symbols. */
3209 if (elf_bad_symtab (abfd))
3210 {
3211 extsymcount = symcount;
3212 extsymoff = 0;
3213 }
3214 else
3215 {
3216 extsymcount = symcount - hdr->sh_info;
3217 extsymoff = hdr->sh_info;
3218 }
3219
3220 if (extsymcount == 0)
3221 return FALSE;
3222
3223 /* Read in the symbol table. */
3224 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3225 NULL, NULL, NULL);
3226 if (isymbuf == NULL)
3227 return FALSE;
3228
3229 /* Scan the symbol table looking for SYMDEF. */
3230 result = FALSE;
3231 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3232 {
3233 const char *name;
3234
3235 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3236 isym->st_name);
3237 if (name == NULL)
3238 break;
3239
3240 if (strcmp (name, symdef->name) == 0)
3241 {
3242 result = is_global_data_symbol_definition (abfd, isym);
3243 break;
3244 }
3245 }
3246
3247 free (isymbuf);
3248
3249 return result;
3250 }
3251 \f
3252 /* Add an entry to the .dynamic table. */
3253
3254 bfd_boolean
3255 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3256 bfd_vma tag,
3257 bfd_vma val)
3258 {
3259 struct elf_link_hash_table *hash_table;
3260 const struct elf_backend_data *bed;
3261 asection *s;
3262 bfd_size_type newsize;
3263 bfd_byte *newcontents;
3264 Elf_Internal_Dyn dyn;
3265
3266 hash_table = elf_hash_table (info);
3267 if (! is_elf_hash_table (hash_table))
3268 return FALSE;
3269
3270 bed = get_elf_backend_data (hash_table->dynobj);
3271 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3272 BFD_ASSERT (s != NULL);
3273
3274 newsize = s->size + bed->s->sizeof_dyn;
3275 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3276 if (newcontents == NULL)
3277 return FALSE;
3278
3279 dyn.d_tag = tag;
3280 dyn.d_un.d_val = val;
3281 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3282
3283 s->size = newsize;
3284 s->contents = newcontents;
3285
3286 return TRUE;
3287 }
3288
3289 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3290 otherwise just check whether one already exists. Returns -1 on error,
3291 1 if a DT_NEEDED tag already exists, and 0 on success. */
3292
3293 static int
3294 elf_add_dt_needed_tag (bfd *abfd,
3295 struct bfd_link_info *info,
3296 const char *soname,
3297 bfd_boolean do_it)
3298 {
3299 struct elf_link_hash_table *hash_table;
3300 size_t strindex;
3301
3302 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3303 return -1;
3304
3305 hash_table = elf_hash_table (info);
3306 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3307 if (strindex == (size_t) -1)
3308 return -1;
3309
3310 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3311 {
3312 asection *sdyn;
3313 const struct elf_backend_data *bed;
3314 bfd_byte *extdyn;
3315
3316 bed = get_elf_backend_data (hash_table->dynobj);
3317 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3318 if (sdyn != NULL)
3319 for (extdyn = sdyn->contents;
3320 extdyn < sdyn->contents + sdyn->size;
3321 extdyn += bed->s->sizeof_dyn)
3322 {
3323 Elf_Internal_Dyn dyn;
3324
3325 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3326 if (dyn.d_tag == DT_NEEDED
3327 && dyn.d_un.d_val == strindex)
3328 {
3329 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3330 return 1;
3331 }
3332 }
3333 }
3334
3335 if (do_it)
3336 {
3337 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3338 return -1;
3339
3340 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3341 return -1;
3342 }
3343 else
3344 /* We were just checking for existence of the tag. */
3345 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3346
3347 return 0;
3348 }
3349
3350 /* Return true if SONAME is on the needed list between NEEDED and STOP
3351 (or the end of list if STOP is NULL), and needed by a library that
3352 will be loaded. */
3353
3354 static bfd_boolean
3355 on_needed_list (const char *soname,
3356 struct bfd_link_needed_list *needed,
3357 struct bfd_link_needed_list *stop)
3358 {
3359 struct bfd_link_needed_list *look;
3360 for (look = needed; look != stop; look = look->next)
3361 if (strcmp (soname, look->name) == 0
3362 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3363 /* If needed by a library that itself is not directly
3364 needed, recursively check whether that library is
3365 indirectly needed. Since we add DT_NEEDED entries to
3366 the end of the list, library dependencies appear after
3367 the library. Therefore search prior to the current
3368 LOOK, preventing possible infinite recursion. */
3369 || on_needed_list (elf_dt_name (look->by), needed, look)))
3370 return TRUE;
3371
3372 return FALSE;
3373 }
3374
3375 /* Sort symbol by value, section, and size. */
3376 static int
3377 elf_sort_symbol (const void *arg1, const void *arg2)
3378 {
3379 const struct elf_link_hash_entry *h1;
3380 const struct elf_link_hash_entry *h2;
3381 bfd_signed_vma vdiff;
3382
3383 h1 = *(const struct elf_link_hash_entry **) arg1;
3384 h2 = *(const struct elf_link_hash_entry **) arg2;
3385 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3386 if (vdiff != 0)
3387 return vdiff > 0 ? 1 : -1;
3388 else
3389 {
3390 int sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3391 if (sdiff != 0)
3392 return sdiff > 0 ? 1 : -1;
3393 }
3394 vdiff = h1->size - h2->size;
3395 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3396 }
3397
3398 /* This function is used to adjust offsets into .dynstr for
3399 dynamic symbols. This is called via elf_link_hash_traverse. */
3400
3401 static bfd_boolean
3402 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3403 {
3404 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3405
3406 if (h->dynindx != -1)
3407 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3408 return TRUE;
3409 }
3410
3411 /* Assign string offsets in .dynstr, update all structures referencing
3412 them. */
3413
3414 static bfd_boolean
3415 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3416 {
3417 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3418 struct elf_link_local_dynamic_entry *entry;
3419 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3420 bfd *dynobj = hash_table->dynobj;
3421 asection *sdyn;
3422 bfd_size_type size;
3423 const struct elf_backend_data *bed;
3424 bfd_byte *extdyn;
3425
3426 _bfd_elf_strtab_finalize (dynstr);
3427 size = _bfd_elf_strtab_size (dynstr);
3428
3429 bed = get_elf_backend_data (dynobj);
3430 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3431 BFD_ASSERT (sdyn != NULL);
3432
3433 /* Update all .dynamic entries referencing .dynstr strings. */
3434 for (extdyn = sdyn->contents;
3435 extdyn < sdyn->contents + sdyn->size;
3436 extdyn += bed->s->sizeof_dyn)
3437 {
3438 Elf_Internal_Dyn dyn;
3439
3440 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3441 switch (dyn.d_tag)
3442 {
3443 case DT_STRSZ:
3444 dyn.d_un.d_val = size;
3445 break;
3446 case DT_NEEDED:
3447 case DT_SONAME:
3448 case DT_RPATH:
3449 case DT_RUNPATH:
3450 case DT_FILTER:
3451 case DT_AUXILIARY:
3452 case DT_AUDIT:
3453 case DT_DEPAUDIT:
3454 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3455 break;
3456 default:
3457 continue;
3458 }
3459 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3460 }
3461
3462 /* Now update local dynamic symbols. */
3463 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3464 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3465 entry->isym.st_name);
3466
3467 /* And the rest of dynamic symbols. */
3468 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3469
3470 /* Adjust version definitions. */
3471 if (elf_tdata (output_bfd)->cverdefs)
3472 {
3473 asection *s;
3474 bfd_byte *p;
3475 size_t i;
3476 Elf_Internal_Verdef def;
3477 Elf_Internal_Verdaux defaux;
3478
3479 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3480 p = s->contents;
3481 do
3482 {
3483 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3484 &def);
3485 p += sizeof (Elf_External_Verdef);
3486 if (def.vd_aux != sizeof (Elf_External_Verdef))
3487 continue;
3488 for (i = 0; i < def.vd_cnt; ++i)
3489 {
3490 _bfd_elf_swap_verdaux_in (output_bfd,
3491 (Elf_External_Verdaux *) p, &defaux);
3492 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3493 defaux.vda_name);
3494 _bfd_elf_swap_verdaux_out (output_bfd,
3495 &defaux, (Elf_External_Verdaux *) p);
3496 p += sizeof (Elf_External_Verdaux);
3497 }
3498 }
3499 while (def.vd_next);
3500 }
3501
3502 /* Adjust version references. */
3503 if (elf_tdata (output_bfd)->verref)
3504 {
3505 asection *s;
3506 bfd_byte *p;
3507 size_t i;
3508 Elf_Internal_Verneed need;
3509 Elf_Internal_Vernaux needaux;
3510
3511 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3512 p = s->contents;
3513 do
3514 {
3515 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3516 &need);
3517 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3518 _bfd_elf_swap_verneed_out (output_bfd, &need,
3519 (Elf_External_Verneed *) p);
3520 p += sizeof (Elf_External_Verneed);
3521 for (i = 0; i < need.vn_cnt; ++i)
3522 {
3523 _bfd_elf_swap_vernaux_in (output_bfd,
3524 (Elf_External_Vernaux *) p, &needaux);
3525 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3526 needaux.vna_name);
3527 _bfd_elf_swap_vernaux_out (output_bfd,
3528 &needaux,
3529 (Elf_External_Vernaux *) p);
3530 p += sizeof (Elf_External_Vernaux);
3531 }
3532 }
3533 while (need.vn_next);
3534 }
3535
3536 return TRUE;
3537 }
3538 \f
3539 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3540 The default is to only match when the INPUT and OUTPUT are exactly
3541 the same target. */
3542
3543 bfd_boolean
3544 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3545 const bfd_target *output)
3546 {
3547 return input == output;
3548 }
3549
3550 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3551 This version is used when different targets for the same architecture
3552 are virtually identical. */
3553
3554 bfd_boolean
3555 _bfd_elf_relocs_compatible (const bfd_target *input,
3556 const bfd_target *output)
3557 {
3558 const struct elf_backend_data *obed, *ibed;
3559
3560 if (input == output)
3561 return TRUE;
3562
3563 ibed = xvec_get_elf_backend_data (input);
3564 obed = xvec_get_elf_backend_data (output);
3565
3566 if (ibed->arch != obed->arch)
3567 return FALSE;
3568
3569 /* If both backends are using this function, deem them compatible. */
3570 return ibed->relocs_compatible == obed->relocs_compatible;
3571 }
3572
3573 /* Make a special call to the linker "notice" function to tell it that
3574 we are about to handle an as-needed lib, or have finished
3575 processing the lib. */
3576
3577 bfd_boolean
3578 _bfd_elf_notice_as_needed (bfd *ibfd,
3579 struct bfd_link_info *info,
3580 enum notice_asneeded_action act)
3581 {
3582 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3583 }
3584
3585 /* Check relocations an ELF object file. */
3586
3587 bfd_boolean
3588 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3589 {
3590 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3591 struct elf_link_hash_table *htab = elf_hash_table (info);
3592
3593 /* If this object is the same format as the output object, and it is
3594 not a shared library, then let the backend look through the
3595 relocs.
3596
3597 This is required to build global offset table entries and to
3598 arrange for dynamic relocs. It is not required for the
3599 particular common case of linking non PIC code, even when linking
3600 against shared libraries, but unfortunately there is no way of
3601 knowing whether an object file has been compiled PIC or not.
3602 Looking through the relocs is not particularly time consuming.
3603 The problem is that we must either (1) keep the relocs in memory,
3604 which causes the linker to require additional runtime memory or
3605 (2) read the relocs twice from the input file, which wastes time.
3606 This would be a good case for using mmap.
3607
3608 I have no idea how to handle linking PIC code into a file of a
3609 different format. It probably can't be done. */
3610 if ((abfd->flags & DYNAMIC) == 0
3611 && is_elf_hash_table (htab)
3612 && bed->check_relocs != NULL
3613 && elf_object_id (abfd) == elf_hash_table_id (htab)
3614 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3615 {
3616 asection *o;
3617
3618 for (o = abfd->sections; o != NULL; o = o->next)
3619 {
3620 Elf_Internal_Rela *internal_relocs;
3621 bfd_boolean ok;
3622
3623 /* Don't check relocations in excluded sections. */
3624 if ((o->flags & SEC_RELOC) == 0
3625 || (o->flags & SEC_EXCLUDE) != 0
3626 || o->reloc_count == 0
3627 || ((info->strip == strip_all || info->strip == strip_debugger)
3628 && (o->flags & SEC_DEBUGGING) != 0)
3629 || bfd_is_abs_section (o->output_section))
3630 continue;
3631
3632 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3633 info->keep_memory);
3634 if (internal_relocs == NULL)
3635 return FALSE;
3636
3637 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3638
3639 if (elf_section_data (o)->relocs != internal_relocs)
3640 free (internal_relocs);
3641
3642 if (! ok)
3643 return FALSE;
3644 }
3645 }
3646
3647 return TRUE;
3648 }
3649
3650 /* Add symbols from an ELF object file to the linker hash table. */
3651
3652 static bfd_boolean
3653 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3654 {
3655 Elf_Internal_Ehdr *ehdr;
3656 Elf_Internal_Shdr *hdr;
3657 size_t symcount;
3658 size_t extsymcount;
3659 size_t extsymoff;
3660 struct elf_link_hash_entry **sym_hash;
3661 bfd_boolean dynamic;
3662 Elf_External_Versym *extversym = NULL;
3663 Elf_External_Versym *ever;
3664 struct elf_link_hash_entry *weaks;
3665 struct elf_link_hash_entry **nondeflt_vers = NULL;
3666 size_t nondeflt_vers_cnt = 0;
3667 Elf_Internal_Sym *isymbuf = NULL;
3668 Elf_Internal_Sym *isym;
3669 Elf_Internal_Sym *isymend;
3670 const struct elf_backend_data *bed;
3671 bfd_boolean add_needed;
3672 struct elf_link_hash_table *htab;
3673 bfd_size_type amt;
3674 void *alloc_mark = NULL;
3675 struct bfd_hash_entry **old_table = NULL;
3676 unsigned int old_size = 0;
3677 unsigned int old_count = 0;
3678 void *old_tab = NULL;
3679 void *old_ent;
3680 struct bfd_link_hash_entry *old_undefs = NULL;
3681 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3682 void *old_strtab = NULL;
3683 size_t tabsize = 0;
3684 asection *s;
3685 bfd_boolean just_syms;
3686
3687 htab = elf_hash_table (info);
3688 bed = get_elf_backend_data (abfd);
3689
3690 if ((abfd->flags & DYNAMIC) == 0)
3691 dynamic = FALSE;
3692 else
3693 {
3694 dynamic = TRUE;
3695
3696 /* You can't use -r against a dynamic object. Also, there's no
3697 hope of using a dynamic object which does not exactly match
3698 the format of the output file. */
3699 if (bfd_link_relocatable (info)
3700 || !is_elf_hash_table (htab)
3701 || info->output_bfd->xvec != abfd->xvec)
3702 {
3703 if (bfd_link_relocatable (info))
3704 bfd_set_error (bfd_error_invalid_operation);
3705 else
3706 bfd_set_error (bfd_error_wrong_format);
3707 goto error_return;
3708 }
3709 }
3710
3711 ehdr = elf_elfheader (abfd);
3712 if (info->warn_alternate_em
3713 && bed->elf_machine_code != ehdr->e_machine
3714 && ((bed->elf_machine_alt1 != 0
3715 && ehdr->e_machine == bed->elf_machine_alt1)
3716 || (bed->elf_machine_alt2 != 0
3717 && ehdr->e_machine == bed->elf_machine_alt2)))
3718 info->callbacks->einfo
3719 /* xgettext:c-format */
3720 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3721 ehdr->e_machine, abfd, bed->elf_machine_code);
3722
3723 /* As a GNU extension, any input sections which are named
3724 .gnu.warning.SYMBOL are treated as warning symbols for the given
3725 symbol. This differs from .gnu.warning sections, which generate
3726 warnings when they are included in an output file. */
3727 /* PR 12761: Also generate this warning when building shared libraries. */
3728 for (s = abfd->sections; s != NULL; s = s->next)
3729 {
3730 const char *name;
3731
3732 name = bfd_get_section_name (abfd, s);
3733 if (CONST_STRNEQ (name, ".gnu.warning."))
3734 {
3735 char *msg;
3736 bfd_size_type sz;
3737
3738 name += sizeof ".gnu.warning." - 1;
3739
3740 /* If this is a shared object, then look up the symbol
3741 in the hash table. If it is there, and it is already
3742 been defined, then we will not be using the entry
3743 from this shared object, so we don't need to warn.
3744 FIXME: If we see the definition in a regular object
3745 later on, we will warn, but we shouldn't. The only
3746 fix is to keep track of what warnings we are supposed
3747 to emit, and then handle them all at the end of the
3748 link. */
3749 if (dynamic)
3750 {
3751 struct elf_link_hash_entry *h;
3752
3753 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3754
3755 /* FIXME: What about bfd_link_hash_common? */
3756 if (h != NULL
3757 && (h->root.type == bfd_link_hash_defined
3758 || h->root.type == bfd_link_hash_defweak))
3759 continue;
3760 }
3761
3762 sz = s->size;
3763 msg = (char *) bfd_alloc (abfd, sz + 1);
3764 if (msg == NULL)
3765 goto error_return;
3766
3767 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3768 goto error_return;
3769
3770 msg[sz] = '\0';
3771
3772 if (! (_bfd_generic_link_add_one_symbol
3773 (info, abfd, name, BSF_WARNING, s, 0, msg,
3774 FALSE, bed->collect, NULL)))
3775 goto error_return;
3776
3777 if (bfd_link_executable (info))
3778 {
3779 /* Clobber the section size so that the warning does
3780 not get copied into the output file. */
3781 s->size = 0;
3782
3783 /* Also set SEC_EXCLUDE, so that symbols defined in
3784 the warning section don't get copied to the output. */
3785 s->flags |= SEC_EXCLUDE;
3786 }
3787 }
3788 }
3789
3790 just_syms = ((s = abfd->sections) != NULL
3791 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3792
3793 add_needed = TRUE;
3794 if (! dynamic)
3795 {
3796 /* If we are creating a shared library, create all the dynamic
3797 sections immediately. We need to attach them to something,
3798 so we attach them to this BFD, provided it is the right
3799 format and is not from ld --just-symbols. Always create the
3800 dynamic sections for -E/--dynamic-list. FIXME: If there
3801 are no input BFD's of the same format as the output, we can't
3802 make a shared library. */
3803 if (!just_syms
3804 && (bfd_link_pic (info)
3805 || (!bfd_link_relocatable (info)
3806 && (info->export_dynamic || info->dynamic)))
3807 && is_elf_hash_table (htab)
3808 && info->output_bfd->xvec == abfd->xvec
3809 && !htab->dynamic_sections_created)
3810 {
3811 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3812 goto error_return;
3813 }
3814 }
3815 else if (!is_elf_hash_table (htab))
3816 goto error_return;
3817 else
3818 {
3819 const char *soname = NULL;
3820 char *audit = NULL;
3821 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3822 const Elf_Internal_Phdr *phdr;
3823 int ret;
3824
3825 /* ld --just-symbols and dynamic objects don't mix very well.
3826 ld shouldn't allow it. */
3827 if (just_syms)
3828 abort ();
3829
3830 /* If this dynamic lib was specified on the command line with
3831 --as-needed in effect, then we don't want to add a DT_NEEDED
3832 tag unless the lib is actually used. Similary for libs brought
3833 in by another lib's DT_NEEDED. When --no-add-needed is used
3834 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3835 any dynamic library in DT_NEEDED tags in the dynamic lib at
3836 all. */
3837 add_needed = (elf_dyn_lib_class (abfd)
3838 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3839 | DYN_NO_NEEDED)) == 0;
3840
3841 s = bfd_get_section_by_name (abfd, ".dynamic");
3842 if (s != NULL)
3843 {
3844 bfd_byte *dynbuf;
3845 bfd_byte *extdyn;
3846 unsigned int elfsec;
3847 unsigned long shlink;
3848
3849 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3850 {
3851 error_free_dyn:
3852 free (dynbuf);
3853 goto error_return;
3854 }
3855
3856 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3857 if (elfsec == SHN_BAD)
3858 goto error_free_dyn;
3859 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3860
3861 for (extdyn = dynbuf;
3862 extdyn < dynbuf + s->size;
3863 extdyn += bed->s->sizeof_dyn)
3864 {
3865 Elf_Internal_Dyn dyn;
3866
3867 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3868 if (dyn.d_tag == DT_SONAME)
3869 {
3870 unsigned int tagv = dyn.d_un.d_val;
3871 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3872 if (soname == NULL)
3873 goto error_free_dyn;
3874 }
3875 if (dyn.d_tag == DT_NEEDED)
3876 {
3877 struct bfd_link_needed_list *n, **pn;
3878 char *fnm, *anm;
3879 unsigned int tagv = dyn.d_un.d_val;
3880
3881 amt = sizeof (struct bfd_link_needed_list);
3882 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3883 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3884 if (n == NULL || fnm == NULL)
3885 goto error_free_dyn;
3886 amt = strlen (fnm) + 1;
3887 anm = (char *) bfd_alloc (abfd, amt);
3888 if (anm == NULL)
3889 goto error_free_dyn;
3890 memcpy (anm, fnm, amt);
3891 n->name = anm;
3892 n->by = abfd;
3893 n->next = NULL;
3894 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3895 ;
3896 *pn = n;
3897 }
3898 if (dyn.d_tag == DT_RUNPATH)
3899 {
3900 struct bfd_link_needed_list *n, **pn;
3901 char *fnm, *anm;
3902 unsigned int tagv = dyn.d_un.d_val;
3903
3904 amt = sizeof (struct bfd_link_needed_list);
3905 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3906 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3907 if (n == NULL || fnm == NULL)
3908 goto error_free_dyn;
3909 amt = strlen (fnm) + 1;
3910 anm = (char *) bfd_alloc (abfd, amt);
3911 if (anm == NULL)
3912 goto error_free_dyn;
3913 memcpy (anm, fnm, amt);
3914 n->name = anm;
3915 n->by = abfd;
3916 n->next = NULL;
3917 for (pn = & runpath;
3918 *pn != NULL;
3919 pn = &(*pn)->next)
3920 ;
3921 *pn = n;
3922 }
3923 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3924 if (!runpath && dyn.d_tag == DT_RPATH)
3925 {
3926 struct bfd_link_needed_list *n, **pn;
3927 char *fnm, *anm;
3928 unsigned int tagv = dyn.d_un.d_val;
3929
3930 amt = sizeof (struct bfd_link_needed_list);
3931 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3932 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3933 if (n == NULL || fnm == NULL)
3934 goto error_free_dyn;
3935 amt = strlen (fnm) + 1;
3936 anm = (char *) bfd_alloc (abfd, amt);
3937 if (anm == NULL)
3938 goto error_free_dyn;
3939 memcpy (anm, fnm, amt);
3940 n->name = anm;
3941 n->by = abfd;
3942 n->next = NULL;
3943 for (pn = & rpath;
3944 *pn != NULL;
3945 pn = &(*pn)->next)
3946 ;
3947 *pn = n;
3948 }
3949 if (dyn.d_tag == DT_AUDIT)
3950 {
3951 unsigned int tagv = dyn.d_un.d_val;
3952 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3953 }
3954 }
3955
3956 free (dynbuf);
3957 }
3958
3959 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3960 frees all more recently bfd_alloc'd blocks as well. */
3961 if (runpath)
3962 rpath = runpath;
3963
3964 if (rpath)
3965 {
3966 struct bfd_link_needed_list **pn;
3967 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3968 ;
3969 *pn = rpath;
3970 }
3971
3972 /* If we have a PT_GNU_RELRO program header, mark as read-only
3973 all sections contained fully therein. This makes relro
3974 shared library sections appear as they will at run-time. */
3975 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
3976 while (--phdr >= elf_tdata (abfd)->phdr)
3977 if (phdr->p_type == PT_GNU_RELRO)
3978 {
3979 for (s = abfd->sections; s != NULL; s = s->next)
3980 if ((s->flags & SEC_ALLOC) != 0
3981 && s->vma >= phdr->p_vaddr
3982 && s->vma + s->size <= phdr->p_vaddr + phdr->p_memsz)
3983 s->flags |= SEC_READONLY;
3984 break;
3985 }
3986
3987 /* We do not want to include any of the sections in a dynamic
3988 object in the output file. We hack by simply clobbering the
3989 list of sections in the BFD. This could be handled more
3990 cleanly by, say, a new section flag; the existing
3991 SEC_NEVER_LOAD flag is not the one we want, because that one
3992 still implies that the section takes up space in the output
3993 file. */
3994 bfd_section_list_clear (abfd);
3995
3996 /* Find the name to use in a DT_NEEDED entry that refers to this
3997 object. If the object has a DT_SONAME entry, we use it.
3998 Otherwise, if the generic linker stuck something in
3999 elf_dt_name, we use that. Otherwise, we just use the file
4000 name. */
4001 if (soname == NULL || *soname == '\0')
4002 {
4003 soname = elf_dt_name (abfd);
4004 if (soname == NULL || *soname == '\0')
4005 soname = bfd_get_filename (abfd);
4006 }
4007
4008 /* Save the SONAME because sometimes the linker emulation code
4009 will need to know it. */
4010 elf_dt_name (abfd) = soname;
4011
4012 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4013 if (ret < 0)
4014 goto error_return;
4015
4016 /* If we have already included this dynamic object in the
4017 link, just ignore it. There is no reason to include a
4018 particular dynamic object more than once. */
4019 if (ret > 0)
4020 return TRUE;
4021
4022 /* Save the DT_AUDIT entry for the linker emulation code. */
4023 elf_dt_audit (abfd) = audit;
4024 }
4025
4026 /* If this is a dynamic object, we always link against the .dynsym
4027 symbol table, not the .symtab symbol table. The dynamic linker
4028 will only see the .dynsym symbol table, so there is no reason to
4029 look at .symtab for a dynamic object. */
4030
4031 if (! dynamic || elf_dynsymtab (abfd) == 0)
4032 hdr = &elf_tdata (abfd)->symtab_hdr;
4033 else
4034 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4035
4036 symcount = hdr->sh_size / bed->s->sizeof_sym;
4037
4038 /* The sh_info field of the symtab header tells us where the
4039 external symbols start. We don't care about the local symbols at
4040 this point. */
4041 if (elf_bad_symtab (abfd))
4042 {
4043 extsymcount = symcount;
4044 extsymoff = 0;
4045 }
4046 else
4047 {
4048 extsymcount = symcount - hdr->sh_info;
4049 extsymoff = hdr->sh_info;
4050 }
4051
4052 sym_hash = elf_sym_hashes (abfd);
4053 if (extsymcount != 0)
4054 {
4055 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4056 NULL, NULL, NULL);
4057 if (isymbuf == NULL)
4058 goto error_return;
4059
4060 if (sym_hash == NULL)
4061 {
4062 /* We store a pointer to the hash table entry for each
4063 external symbol. */
4064 amt = extsymcount;
4065 amt *= sizeof (struct elf_link_hash_entry *);
4066 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4067 if (sym_hash == NULL)
4068 goto error_free_sym;
4069 elf_sym_hashes (abfd) = sym_hash;
4070 }
4071 }
4072
4073 if (dynamic)
4074 {
4075 /* Read in any version definitions. */
4076 if (!_bfd_elf_slurp_version_tables (abfd,
4077 info->default_imported_symver))
4078 goto error_free_sym;
4079
4080 /* Read in the symbol versions, but don't bother to convert them
4081 to internal format. */
4082 if (elf_dynversym (abfd) != 0)
4083 {
4084 Elf_Internal_Shdr *versymhdr;
4085
4086 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4087 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
4088 if (extversym == NULL)
4089 goto error_free_sym;
4090 amt = versymhdr->sh_size;
4091 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
4092 || bfd_bread (extversym, amt, abfd) != amt)
4093 goto error_free_vers;
4094 }
4095 }
4096
4097 /* If we are loading an as-needed shared lib, save the symbol table
4098 state before we start adding symbols. If the lib turns out
4099 to be unneeded, restore the state. */
4100 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4101 {
4102 unsigned int i;
4103 size_t entsize;
4104
4105 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4106 {
4107 struct bfd_hash_entry *p;
4108 struct elf_link_hash_entry *h;
4109
4110 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4111 {
4112 h = (struct elf_link_hash_entry *) p;
4113 entsize += htab->root.table.entsize;
4114 if (h->root.type == bfd_link_hash_warning)
4115 entsize += htab->root.table.entsize;
4116 }
4117 }
4118
4119 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4120 old_tab = bfd_malloc (tabsize + entsize);
4121 if (old_tab == NULL)
4122 goto error_free_vers;
4123
4124 /* Remember the current objalloc pointer, so that all mem for
4125 symbols added can later be reclaimed. */
4126 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4127 if (alloc_mark == NULL)
4128 goto error_free_vers;
4129
4130 /* Make a special call to the linker "notice" function to
4131 tell it that we are about to handle an as-needed lib. */
4132 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4133 goto error_free_vers;
4134
4135 /* Clone the symbol table. Remember some pointers into the
4136 symbol table, and dynamic symbol count. */
4137 old_ent = (char *) old_tab + tabsize;
4138 memcpy (old_tab, htab->root.table.table, tabsize);
4139 old_undefs = htab->root.undefs;
4140 old_undefs_tail = htab->root.undefs_tail;
4141 old_table = htab->root.table.table;
4142 old_size = htab->root.table.size;
4143 old_count = htab->root.table.count;
4144 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4145 if (old_strtab == NULL)
4146 goto error_free_vers;
4147
4148 for (i = 0; i < htab->root.table.size; i++)
4149 {
4150 struct bfd_hash_entry *p;
4151 struct elf_link_hash_entry *h;
4152
4153 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4154 {
4155 memcpy (old_ent, p, htab->root.table.entsize);
4156 old_ent = (char *) old_ent + htab->root.table.entsize;
4157 h = (struct elf_link_hash_entry *) p;
4158 if (h->root.type == bfd_link_hash_warning)
4159 {
4160 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4161 old_ent = (char *) old_ent + htab->root.table.entsize;
4162 }
4163 }
4164 }
4165 }
4166
4167 weaks = NULL;
4168 ever = extversym != NULL ? extversym + extsymoff : NULL;
4169 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4170 isym < isymend;
4171 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4172 {
4173 int bind;
4174 bfd_vma value;
4175 asection *sec, *new_sec;
4176 flagword flags;
4177 const char *name;
4178 struct elf_link_hash_entry *h;
4179 struct elf_link_hash_entry *hi;
4180 bfd_boolean definition;
4181 bfd_boolean size_change_ok;
4182 bfd_boolean type_change_ok;
4183 bfd_boolean new_weakdef;
4184 bfd_boolean new_weak;
4185 bfd_boolean old_weak;
4186 bfd_boolean override;
4187 bfd_boolean common;
4188 bfd_boolean discarded;
4189 unsigned int old_alignment;
4190 bfd *old_bfd;
4191 bfd_boolean matched;
4192
4193 override = FALSE;
4194
4195 flags = BSF_NO_FLAGS;
4196 sec = NULL;
4197 value = isym->st_value;
4198 common = bed->common_definition (isym);
4199 discarded = FALSE;
4200
4201 bind = ELF_ST_BIND (isym->st_info);
4202 switch (bind)
4203 {
4204 case STB_LOCAL:
4205 /* This should be impossible, since ELF requires that all
4206 global symbols follow all local symbols, and that sh_info
4207 point to the first global symbol. Unfortunately, Irix 5
4208 screws this up. */
4209 continue;
4210
4211 case STB_GLOBAL:
4212 if (isym->st_shndx != SHN_UNDEF && !common)
4213 flags = BSF_GLOBAL;
4214 break;
4215
4216 case STB_WEAK:
4217 flags = BSF_WEAK;
4218 break;
4219
4220 case STB_GNU_UNIQUE:
4221 flags = BSF_GNU_UNIQUE;
4222 break;
4223
4224 default:
4225 /* Leave it up to the processor backend. */
4226 break;
4227 }
4228
4229 if (isym->st_shndx == SHN_UNDEF)
4230 sec = bfd_und_section_ptr;
4231 else if (isym->st_shndx == SHN_ABS)
4232 sec = bfd_abs_section_ptr;
4233 else if (isym->st_shndx == SHN_COMMON)
4234 {
4235 sec = bfd_com_section_ptr;
4236 /* What ELF calls the size we call the value. What ELF
4237 calls the value we call the alignment. */
4238 value = isym->st_size;
4239 }
4240 else
4241 {
4242 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4243 if (sec == NULL)
4244 sec = bfd_abs_section_ptr;
4245 else if (discarded_section (sec))
4246 {
4247 /* Symbols from discarded section are undefined. We keep
4248 its visibility. */
4249 sec = bfd_und_section_ptr;
4250 discarded = TRUE;
4251 isym->st_shndx = SHN_UNDEF;
4252 }
4253 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4254 value -= sec->vma;
4255 }
4256
4257 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4258 isym->st_name);
4259 if (name == NULL)
4260 goto error_free_vers;
4261
4262 if (isym->st_shndx == SHN_COMMON
4263 && (abfd->flags & BFD_PLUGIN) != 0)
4264 {
4265 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4266
4267 if (xc == NULL)
4268 {
4269 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4270 | SEC_EXCLUDE);
4271 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4272 if (xc == NULL)
4273 goto error_free_vers;
4274 }
4275 sec = xc;
4276 }
4277 else if (isym->st_shndx == SHN_COMMON
4278 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4279 && !bfd_link_relocatable (info))
4280 {
4281 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4282
4283 if (tcomm == NULL)
4284 {
4285 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4286 | SEC_LINKER_CREATED);
4287 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4288 if (tcomm == NULL)
4289 goto error_free_vers;
4290 }
4291 sec = tcomm;
4292 }
4293 else if (bed->elf_add_symbol_hook)
4294 {
4295 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4296 &sec, &value))
4297 goto error_free_vers;
4298
4299 /* The hook function sets the name to NULL if this symbol
4300 should be skipped for some reason. */
4301 if (name == NULL)
4302 continue;
4303 }
4304
4305 /* Sanity check that all possibilities were handled. */
4306 if (sec == NULL)
4307 {
4308 bfd_set_error (bfd_error_bad_value);
4309 goto error_free_vers;
4310 }
4311
4312 /* Silently discard TLS symbols from --just-syms. There's
4313 no way to combine a static TLS block with a new TLS block
4314 for this executable. */
4315 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4316 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4317 continue;
4318
4319 if (bfd_is_und_section (sec)
4320 || bfd_is_com_section (sec))
4321 definition = FALSE;
4322 else
4323 definition = TRUE;
4324
4325 size_change_ok = FALSE;
4326 type_change_ok = bed->type_change_ok;
4327 old_weak = FALSE;
4328 matched = FALSE;
4329 old_alignment = 0;
4330 old_bfd = NULL;
4331 new_sec = sec;
4332
4333 if (is_elf_hash_table (htab))
4334 {
4335 Elf_Internal_Versym iver;
4336 unsigned int vernum = 0;
4337 bfd_boolean skip;
4338
4339 if (ever == NULL)
4340 {
4341 if (info->default_imported_symver)
4342 /* Use the default symbol version created earlier. */
4343 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4344 else
4345 iver.vs_vers = 0;
4346 }
4347 else
4348 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4349
4350 vernum = iver.vs_vers & VERSYM_VERSION;
4351
4352 /* If this is a hidden symbol, or if it is not version
4353 1, we append the version name to the symbol name.
4354 However, we do not modify a non-hidden absolute symbol
4355 if it is not a function, because it might be the version
4356 symbol itself. FIXME: What if it isn't? */
4357 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4358 || (vernum > 1
4359 && (!bfd_is_abs_section (sec)
4360 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4361 {
4362 const char *verstr;
4363 size_t namelen, verlen, newlen;
4364 char *newname, *p;
4365
4366 if (isym->st_shndx != SHN_UNDEF)
4367 {
4368 if (vernum > elf_tdata (abfd)->cverdefs)
4369 verstr = NULL;
4370 else if (vernum > 1)
4371 verstr =
4372 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4373 else
4374 verstr = "";
4375
4376 if (verstr == NULL)
4377 {
4378 _bfd_error_handler
4379 /* xgettext:c-format */
4380 (_("%B: %s: invalid version %u (max %d)"),
4381 abfd, name, vernum,
4382 elf_tdata (abfd)->cverdefs);
4383 bfd_set_error (bfd_error_bad_value);
4384 goto error_free_vers;
4385 }
4386 }
4387 else
4388 {
4389 /* We cannot simply test for the number of
4390 entries in the VERNEED section since the
4391 numbers for the needed versions do not start
4392 at 0. */
4393 Elf_Internal_Verneed *t;
4394
4395 verstr = NULL;
4396 for (t = elf_tdata (abfd)->verref;
4397 t != NULL;
4398 t = t->vn_nextref)
4399 {
4400 Elf_Internal_Vernaux *a;
4401
4402 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4403 {
4404 if (a->vna_other == vernum)
4405 {
4406 verstr = a->vna_nodename;
4407 break;
4408 }
4409 }
4410 if (a != NULL)
4411 break;
4412 }
4413 if (verstr == NULL)
4414 {
4415 _bfd_error_handler
4416 /* xgettext:c-format */
4417 (_("%B: %s: invalid needed version %d"),
4418 abfd, name, vernum);
4419 bfd_set_error (bfd_error_bad_value);
4420 goto error_free_vers;
4421 }
4422 }
4423
4424 namelen = strlen (name);
4425 verlen = strlen (verstr);
4426 newlen = namelen + verlen + 2;
4427 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4428 && isym->st_shndx != SHN_UNDEF)
4429 ++newlen;
4430
4431 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4432 if (newname == NULL)
4433 goto error_free_vers;
4434 memcpy (newname, name, namelen);
4435 p = newname + namelen;
4436 *p++ = ELF_VER_CHR;
4437 /* If this is a defined non-hidden version symbol,
4438 we add another @ to the name. This indicates the
4439 default version of the symbol. */
4440 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4441 && isym->st_shndx != SHN_UNDEF)
4442 *p++ = ELF_VER_CHR;
4443 memcpy (p, verstr, verlen + 1);
4444
4445 name = newname;
4446 }
4447
4448 /* If this symbol has default visibility and the user has
4449 requested we not re-export it, then mark it as hidden. */
4450 if (!bfd_is_und_section (sec)
4451 && !dynamic
4452 && abfd->no_export
4453 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4454 isym->st_other = (STV_HIDDEN
4455 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4456
4457 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4458 sym_hash, &old_bfd, &old_weak,
4459 &old_alignment, &skip, &override,
4460 &type_change_ok, &size_change_ok,
4461 &matched))
4462 goto error_free_vers;
4463
4464 if (skip)
4465 continue;
4466
4467 /* Override a definition only if the new symbol matches the
4468 existing one. */
4469 if (override && matched)
4470 definition = FALSE;
4471
4472 h = *sym_hash;
4473 while (h->root.type == bfd_link_hash_indirect
4474 || h->root.type == bfd_link_hash_warning)
4475 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4476
4477 if (elf_tdata (abfd)->verdef != NULL
4478 && vernum > 1
4479 && definition)
4480 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4481 }
4482
4483 if (! (_bfd_generic_link_add_one_symbol
4484 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4485 (struct bfd_link_hash_entry **) sym_hash)))
4486 goto error_free_vers;
4487
4488 if ((flags & BSF_GNU_UNIQUE)
4489 && (abfd->flags & DYNAMIC) == 0
4490 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
4491 elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_unique;
4492
4493 h = *sym_hash;
4494 /* We need to make sure that indirect symbol dynamic flags are
4495 updated. */
4496 hi = h;
4497 while (h->root.type == bfd_link_hash_indirect
4498 || h->root.type == bfd_link_hash_warning)
4499 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4500
4501 /* Setting the index to -3 tells elf_link_output_extsym that
4502 this symbol is defined in a discarded section. */
4503 if (discarded)
4504 h->indx = -3;
4505
4506 *sym_hash = h;
4507
4508 new_weak = (flags & BSF_WEAK) != 0;
4509 new_weakdef = FALSE;
4510 if (dynamic
4511 && definition
4512 && new_weak
4513 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4514 && is_elf_hash_table (htab)
4515 && h->u.weakdef == NULL)
4516 {
4517 /* Keep a list of all weak defined non function symbols from
4518 a dynamic object, using the weakdef field. Later in this
4519 function we will set the weakdef field to the correct
4520 value. We only put non-function symbols from dynamic
4521 objects on this list, because that happens to be the only
4522 time we need to know the normal symbol corresponding to a
4523 weak symbol, and the information is time consuming to
4524 figure out. If the weakdef field is not already NULL,
4525 then this symbol was already defined by some previous
4526 dynamic object, and we will be using that previous
4527 definition anyhow. */
4528
4529 h->u.weakdef = weaks;
4530 weaks = h;
4531 new_weakdef = TRUE;
4532 }
4533
4534 /* Set the alignment of a common symbol. */
4535 if ((common || bfd_is_com_section (sec))
4536 && h->root.type == bfd_link_hash_common)
4537 {
4538 unsigned int align;
4539
4540 if (common)
4541 align = bfd_log2 (isym->st_value);
4542 else
4543 {
4544 /* The new symbol is a common symbol in a shared object.
4545 We need to get the alignment from the section. */
4546 align = new_sec->alignment_power;
4547 }
4548 if (align > old_alignment)
4549 h->root.u.c.p->alignment_power = align;
4550 else
4551 h->root.u.c.p->alignment_power = old_alignment;
4552 }
4553
4554 if (is_elf_hash_table (htab))
4555 {
4556 /* Set a flag in the hash table entry indicating the type of
4557 reference or definition we just found. A dynamic symbol
4558 is one which is referenced or defined by both a regular
4559 object and a shared object. */
4560 bfd_boolean dynsym = FALSE;
4561
4562 /* Plugin symbols aren't normal. Don't set def_regular or
4563 ref_regular for them, or make them dynamic. */
4564 if ((abfd->flags & BFD_PLUGIN) != 0)
4565 ;
4566 else if (! dynamic)
4567 {
4568 if (! definition)
4569 {
4570 h->ref_regular = 1;
4571 if (bind != STB_WEAK)
4572 h->ref_regular_nonweak = 1;
4573 }
4574 else
4575 {
4576 h->def_regular = 1;
4577 if (h->def_dynamic)
4578 {
4579 h->def_dynamic = 0;
4580 h->ref_dynamic = 1;
4581 }
4582 }
4583
4584 /* If the indirect symbol has been forced local, don't
4585 make the real symbol dynamic. */
4586 if ((h == hi || !hi->forced_local)
4587 && (bfd_link_dll (info)
4588 || h->def_dynamic
4589 || h->ref_dynamic))
4590 dynsym = TRUE;
4591 }
4592 else
4593 {
4594 if (! definition)
4595 {
4596 h->ref_dynamic = 1;
4597 hi->ref_dynamic = 1;
4598 }
4599 else
4600 {
4601 h->def_dynamic = 1;
4602 hi->def_dynamic = 1;
4603 }
4604
4605 /* If the indirect symbol has been forced local, don't
4606 make the real symbol dynamic. */
4607 if ((h == hi || !hi->forced_local)
4608 && (h->def_regular
4609 || h->ref_regular
4610 || (h->u.weakdef != NULL
4611 && ! new_weakdef
4612 && h->u.weakdef->dynindx != -1)))
4613 dynsym = TRUE;
4614 }
4615
4616 /* Check to see if we need to add an indirect symbol for
4617 the default name. */
4618 if (definition
4619 || (!override && h->root.type == bfd_link_hash_common))
4620 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4621 sec, value, &old_bfd, &dynsym))
4622 goto error_free_vers;
4623
4624 /* Check the alignment when a common symbol is involved. This
4625 can change when a common symbol is overridden by a normal
4626 definition or a common symbol is ignored due to the old
4627 normal definition. We need to make sure the maximum
4628 alignment is maintained. */
4629 if ((old_alignment || common)
4630 && h->root.type != bfd_link_hash_common)
4631 {
4632 unsigned int common_align;
4633 unsigned int normal_align;
4634 unsigned int symbol_align;
4635 bfd *normal_bfd;
4636 bfd *common_bfd;
4637
4638 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4639 || h->root.type == bfd_link_hash_defweak);
4640
4641 symbol_align = ffs (h->root.u.def.value) - 1;
4642 if (h->root.u.def.section->owner != NULL
4643 && (h->root.u.def.section->owner->flags
4644 & (DYNAMIC | BFD_PLUGIN)) == 0)
4645 {
4646 normal_align = h->root.u.def.section->alignment_power;
4647 if (normal_align > symbol_align)
4648 normal_align = symbol_align;
4649 }
4650 else
4651 normal_align = symbol_align;
4652
4653 if (old_alignment)
4654 {
4655 common_align = old_alignment;
4656 common_bfd = old_bfd;
4657 normal_bfd = abfd;
4658 }
4659 else
4660 {
4661 common_align = bfd_log2 (isym->st_value);
4662 common_bfd = abfd;
4663 normal_bfd = old_bfd;
4664 }
4665
4666 if (normal_align < common_align)
4667 {
4668 /* PR binutils/2735 */
4669 if (normal_bfd == NULL)
4670 _bfd_error_handler
4671 /* xgettext:c-format */
4672 (_("Warning: alignment %u of common symbol `%s' in %B is"
4673 " greater than the alignment (%u) of its section %A"),
4674 common_bfd, h->root.u.def.section,
4675 1 << common_align, name, 1 << normal_align);
4676 else
4677 _bfd_error_handler
4678 /* xgettext:c-format */
4679 (_("Warning: alignment %u of symbol `%s' in %B"
4680 " is smaller than %u in %B"),
4681 normal_bfd, common_bfd,
4682 1 << normal_align, name, 1 << common_align);
4683 }
4684 }
4685
4686 /* Remember the symbol size if it isn't undefined. */
4687 if (isym->st_size != 0
4688 && isym->st_shndx != SHN_UNDEF
4689 && (definition || h->size == 0))
4690 {
4691 if (h->size != 0
4692 && h->size != isym->st_size
4693 && ! size_change_ok)
4694 _bfd_error_handler
4695 /* xgettext:c-format */
4696 (_("Warning: size of symbol `%s' changed"
4697 " from %lu in %B to %lu in %B"),
4698 old_bfd, abfd,
4699 name, (unsigned long) h->size,
4700 (unsigned long) isym->st_size);
4701
4702 h->size = isym->st_size;
4703 }
4704
4705 /* If this is a common symbol, then we always want H->SIZE
4706 to be the size of the common symbol. The code just above
4707 won't fix the size if a common symbol becomes larger. We
4708 don't warn about a size change here, because that is
4709 covered by --warn-common. Allow changes between different
4710 function types. */
4711 if (h->root.type == bfd_link_hash_common)
4712 h->size = h->root.u.c.size;
4713
4714 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4715 && ((definition && !new_weak)
4716 || (old_weak && h->root.type == bfd_link_hash_common)
4717 || h->type == STT_NOTYPE))
4718 {
4719 unsigned int type = ELF_ST_TYPE (isym->st_info);
4720
4721 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4722 symbol. */
4723 if (type == STT_GNU_IFUNC
4724 && (abfd->flags & DYNAMIC) != 0)
4725 type = STT_FUNC;
4726
4727 if (h->type != type)
4728 {
4729 if (h->type != STT_NOTYPE && ! type_change_ok)
4730 /* xgettext:c-format */
4731 _bfd_error_handler
4732 (_("Warning: type of symbol `%s' changed"
4733 " from %d to %d in %B"),
4734 abfd, name, h->type, type);
4735
4736 h->type = type;
4737 }
4738 }
4739
4740 /* Merge st_other field. */
4741 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4742
4743 /* We don't want to make debug symbol dynamic. */
4744 if (definition
4745 && (sec->flags & SEC_DEBUGGING)
4746 && !bfd_link_relocatable (info))
4747 dynsym = FALSE;
4748
4749 /* Nor should we make plugin symbols dynamic. */
4750 if ((abfd->flags & BFD_PLUGIN) != 0)
4751 dynsym = FALSE;
4752
4753 if (definition)
4754 {
4755 h->target_internal = isym->st_target_internal;
4756 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4757 }
4758
4759 if (definition && !dynamic)
4760 {
4761 char *p = strchr (name, ELF_VER_CHR);
4762 if (p != NULL && p[1] != ELF_VER_CHR)
4763 {
4764 /* Queue non-default versions so that .symver x, x@FOO
4765 aliases can be checked. */
4766 if (!nondeflt_vers)
4767 {
4768 amt = ((isymend - isym + 1)
4769 * sizeof (struct elf_link_hash_entry *));
4770 nondeflt_vers
4771 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4772 if (!nondeflt_vers)
4773 goto error_free_vers;
4774 }
4775 nondeflt_vers[nondeflt_vers_cnt++] = h;
4776 }
4777 }
4778
4779 if (dynsym && h->dynindx == -1)
4780 {
4781 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4782 goto error_free_vers;
4783 if (h->u.weakdef != NULL
4784 && ! new_weakdef
4785 && h->u.weakdef->dynindx == -1)
4786 {
4787 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4788 goto error_free_vers;
4789 }
4790 }
4791 else if (h->dynindx != -1)
4792 /* If the symbol already has a dynamic index, but
4793 visibility says it should not be visible, turn it into
4794 a local symbol. */
4795 switch (ELF_ST_VISIBILITY (h->other))
4796 {
4797 case STV_INTERNAL:
4798 case STV_HIDDEN:
4799 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4800 dynsym = FALSE;
4801 break;
4802 }
4803
4804 /* Don't add DT_NEEDED for references from the dummy bfd nor
4805 for unmatched symbol. */
4806 if (!add_needed
4807 && matched
4808 && definition
4809 && ((dynsym
4810 && h->ref_regular_nonweak
4811 && (old_bfd == NULL
4812 || (old_bfd->flags & BFD_PLUGIN) == 0))
4813 || (h->ref_dynamic_nonweak
4814 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4815 && !on_needed_list (elf_dt_name (abfd),
4816 htab->needed, NULL))))
4817 {
4818 int ret;
4819 const char *soname = elf_dt_name (abfd);
4820
4821 info->callbacks->minfo ("%!", soname, old_bfd,
4822 h->root.root.string);
4823
4824 /* A symbol from a library loaded via DT_NEEDED of some
4825 other library is referenced by a regular object.
4826 Add a DT_NEEDED entry for it. Issue an error if
4827 --no-add-needed is used and the reference was not
4828 a weak one. */
4829 if (old_bfd != NULL
4830 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4831 {
4832 _bfd_error_handler
4833 /* xgettext:c-format */
4834 (_("%B: undefined reference to symbol '%s'"),
4835 old_bfd, name);
4836 bfd_set_error (bfd_error_missing_dso);
4837 goto error_free_vers;
4838 }
4839
4840 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4841 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4842
4843 add_needed = TRUE;
4844 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4845 if (ret < 0)
4846 goto error_free_vers;
4847
4848 BFD_ASSERT (ret == 0);
4849 }
4850 }
4851 }
4852
4853 if (extversym != NULL)
4854 {
4855 free (extversym);
4856 extversym = NULL;
4857 }
4858
4859 if (isymbuf != NULL)
4860 {
4861 free (isymbuf);
4862 isymbuf = NULL;
4863 }
4864
4865 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4866 {
4867 unsigned int i;
4868
4869 /* Restore the symbol table. */
4870 old_ent = (char *) old_tab + tabsize;
4871 memset (elf_sym_hashes (abfd), 0,
4872 extsymcount * sizeof (struct elf_link_hash_entry *));
4873 htab->root.table.table = old_table;
4874 htab->root.table.size = old_size;
4875 htab->root.table.count = old_count;
4876 memcpy (htab->root.table.table, old_tab, tabsize);
4877 htab->root.undefs = old_undefs;
4878 htab->root.undefs_tail = old_undefs_tail;
4879 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
4880 free (old_strtab);
4881 old_strtab = NULL;
4882 for (i = 0; i < htab->root.table.size; i++)
4883 {
4884 struct bfd_hash_entry *p;
4885 struct elf_link_hash_entry *h;
4886 bfd_size_type size;
4887 unsigned int alignment_power;
4888
4889 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4890 {
4891 h = (struct elf_link_hash_entry *) p;
4892 if (h->root.type == bfd_link_hash_warning)
4893 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4894
4895 /* Preserve the maximum alignment and size for common
4896 symbols even if this dynamic lib isn't on DT_NEEDED
4897 since it can still be loaded at run time by another
4898 dynamic lib. */
4899 if (h->root.type == bfd_link_hash_common)
4900 {
4901 size = h->root.u.c.size;
4902 alignment_power = h->root.u.c.p->alignment_power;
4903 }
4904 else
4905 {
4906 size = 0;
4907 alignment_power = 0;
4908 }
4909 memcpy (p, old_ent, htab->root.table.entsize);
4910 old_ent = (char *) old_ent + htab->root.table.entsize;
4911 h = (struct elf_link_hash_entry *) p;
4912 if (h->root.type == bfd_link_hash_warning)
4913 {
4914 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4915 old_ent = (char *) old_ent + htab->root.table.entsize;
4916 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4917 }
4918 if (h->root.type == bfd_link_hash_common)
4919 {
4920 if (size > h->root.u.c.size)
4921 h->root.u.c.size = size;
4922 if (alignment_power > h->root.u.c.p->alignment_power)
4923 h->root.u.c.p->alignment_power = alignment_power;
4924 }
4925 }
4926 }
4927
4928 /* Make a special call to the linker "notice" function to
4929 tell it that symbols added for crefs may need to be removed. */
4930 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4931 goto error_free_vers;
4932
4933 free (old_tab);
4934 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4935 alloc_mark);
4936 if (nondeflt_vers != NULL)
4937 free (nondeflt_vers);
4938 return TRUE;
4939 }
4940
4941 if (old_tab != NULL)
4942 {
4943 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4944 goto error_free_vers;
4945 free (old_tab);
4946 old_tab = NULL;
4947 }
4948
4949 /* Now that all the symbols from this input file are created, if
4950 not performing a relocatable link, handle .symver foo, foo@BAR
4951 such that any relocs against foo become foo@BAR. */
4952 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
4953 {
4954 size_t cnt, symidx;
4955
4956 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4957 {
4958 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4959 char *shortname, *p;
4960
4961 p = strchr (h->root.root.string, ELF_VER_CHR);
4962 if (p == NULL
4963 || (h->root.type != bfd_link_hash_defined
4964 && h->root.type != bfd_link_hash_defweak))
4965 continue;
4966
4967 amt = p - h->root.root.string;
4968 shortname = (char *) bfd_malloc (amt + 1);
4969 if (!shortname)
4970 goto error_free_vers;
4971 memcpy (shortname, h->root.root.string, amt);
4972 shortname[amt] = '\0';
4973
4974 hi = (struct elf_link_hash_entry *)
4975 bfd_link_hash_lookup (&htab->root, shortname,
4976 FALSE, FALSE, FALSE);
4977 if (hi != NULL
4978 && hi->root.type == h->root.type
4979 && hi->root.u.def.value == h->root.u.def.value
4980 && hi->root.u.def.section == h->root.u.def.section)
4981 {
4982 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4983 hi->root.type = bfd_link_hash_indirect;
4984 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4985 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4986 sym_hash = elf_sym_hashes (abfd);
4987 if (sym_hash)
4988 for (symidx = 0; symidx < extsymcount; ++symidx)
4989 if (sym_hash[symidx] == hi)
4990 {
4991 sym_hash[symidx] = h;
4992 break;
4993 }
4994 }
4995 free (shortname);
4996 }
4997 free (nondeflt_vers);
4998 nondeflt_vers = NULL;
4999 }
5000
5001 /* Now set the weakdefs field correctly for all the weak defined
5002 symbols we found. The only way to do this is to search all the
5003 symbols. Since we only need the information for non functions in
5004 dynamic objects, that's the only time we actually put anything on
5005 the list WEAKS. We need this information so that if a regular
5006 object refers to a symbol defined weakly in a dynamic object, the
5007 real symbol in the dynamic object is also put in the dynamic
5008 symbols; we also must arrange for both symbols to point to the
5009 same memory location. We could handle the general case of symbol
5010 aliasing, but a general symbol alias can only be generated in
5011 assembler code, handling it correctly would be very time
5012 consuming, and other ELF linkers don't handle general aliasing
5013 either. */
5014 if (weaks != NULL)
5015 {
5016 struct elf_link_hash_entry **hpp;
5017 struct elf_link_hash_entry **hppend;
5018 struct elf_link_hash_entry **sorted_sym_hash;
5019 struct elf_link_hash_entry *h;
5020 size_t sym_count;
5021
5022 /* Since we have to search the whole symbol list for each weak
5023 defined symbol, search time for N weak defined symbols will be
5024 O(N^2). Binary search will cut it down to O(NlogN). */
5025 amt = extsymcount;
5026 amt *= sizeof (struct elf_link_hash_entry *);
5027 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
5028 if (sorted_sym_hash == NULL)
5029 goto error_return;
5030 sym_hash = sorted_sym_hash;
5031 hpp = elf_sym_hashes (abfd);
5032 hppend = hpp + extsymcount;
5033 sym_count = 0;
5034 for (; hpp < hppend; hpp++)
5035 {
5036 h = *hpp;
5037 if (h != NULL
5038 && h->root.type == bfd_link_hash_defined
5039 && !bed->is_function_type (h->type))
5040 {
5041 *sym_hash = h;
5042 sym_hash++;
5043 sym_count++;
5044 }
5045 }
5046
5047 qsort (sorted_sym_hash, sym_count,
5048 sizeof (struct elf_link_hash_entry *),
5049 elf_sort_symbol);
5050
5051 while (weaks != NULL)
5052 {
5053 struct elf_link_hash_entry *hlook;
5054 asection *slook;
5055 bfd_vma vlook;
5056 size_t i, j, idx = 0;
5057
5058 hlook = weaks;
5059 weaks = hlook->u.weakdef;
5060 hlook->u.weakdef = NULL;
5061
5062 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
5063 || hlook->root.type == bfd_link_hash_defweak
5064 || hlook->root.type == bfd_link_hash_common
5065 || hlook->root.type == bfd_link_hash_indirect);
5066 slook = hlook->root.u.def.section;
5067 vlook = hlook->root.u.def.value;
5068
5069 i = 0;
5070 j = sym_count;
5071 while (i != j)
5072 {
5073 bfd_signed_vma vdiff;
5074 idx = (i + j) / 2;
5075 h = sorted_sym_hash[idx];
5076 vdiff = vlook - h->root.u.def.value;
5077 if (vdiff < 0)
5078 j = idx;
5079 else if (vdiff > 0)
5080 i = idx + 1;
5081 else
5082 {
5083 int sdiff = slook->id - h->root.u.def.section->id;
5084 if (sdiff < 0)
5085 j = idx;
5086 else if (sdiff > 0)
5087 i = idx + 1;
5088 else
5089 break;
5090 }
5091 }
5092
5093 /* We didn't find a value/section match. */
5094 if (i == j)
5095 continue;
5096
5097 /* With multiple aliases, or when the weak symbol is already
5098 strongly defined, we have multiple matching symbols and
5099 the binary search above may land on any of them. Step
5100 one past the matching symbol(s). */
5101 while (++idx != j)
5102 {
5103 h = sorted_sym_hash[idx];
5104 if (h->root.u.def.section != slook
5105 || h->root.u.def.value != vlook)
5106 break;
5107 }
5108
5109 /* Now look back over the aliases. Since we sorted by size
5110 as well as value and section, we'll choose the one with
5111 the largest size. */
5112 while (idx-- != i)
5113 {
5114 h = sorted_sym_hash[idx];
5115
5116 /* Stop if value or section doesn't match. */
5117 if (h->root.u.def.section != slook
5118 || h->root.u.def.value != vlook)
5119 break;
5120 else if (h != hlook)
5121 {
5122 hlook->u.weakdef = h;
5123
5124 /* If the weak definition is in the list of dynamic
5125 symbols, make sure the real definition is put
5126 there as well. */
5127 if (hlook->dynindx != -1 && h->dynindx == -1)
5128 {
5129 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5130 {
5131 err_free_sym_hash:
5132 free (sorted_sym_hash);
5133 goto error_return;
5134 }
5135 }
5136
5137 /* If the real definition is in the list of dynamic
5138 symbols, make sure the weak definition is put
5139 there as well. If we don't do this, then the
5140 dynamic loader might not merge the entries for the
5141 real definition and the weak definition. */
5142 if (h->dynindx != -1 && hlook->dynindx == -1)
5143 {
5144 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5145 goto err_free_sym_hash;
5146 }
5147 break;
5148 }
5149 }
5150 }
5151
5152 free (sorted_sym_hash);
5153 }
5154
5155 if (bed->check_directives
5156 && !(*bed->check_directives) (abfd, info))
5157 return FALSE;
5158
5159 if (!info->check_relocs_after_open_input
5160 && !_bfd_elf_link_check_relocs (abfd, info))
5161 return FALSE;
5162
5163 /* If this is a non-traditional link, try to optimize the handling
5164 of the .stab/.stabstr sections. */
5165 if (! dynamic
5166 && ! info->traditional_format
5167 && is_elf_hash_table (htab)
5168 && (info->strip != strip_all && info->strip != strip_debugger))
5169 {
5170 asection *stabstr;
5171
5172 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5173 if (stabstr != NULL)
5174 {
5175 bfd_size_type string_offset = 0;
5176 asection *stab;
5177
5178 for (stab = abfd->sections; stab; stab = stab->next)
5179 if (CONST_STRNEQ (stab->name, ".stab")
5180 && (!stab->name[5] ||
5181 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5182 && (stab->flags & SEC_MERGE) == 0
5183 && !bfd_is_abs_section (stab->output_section))
5184 {
5185 struct bfd_elf_section_data *secdata;
5186
5187 secdata = elf_section_data (stab);
5188 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5189 stabstr, &secdata->sec_info,
5190 &string_offset))
5191 goto error_return;
5192 if (secdata->sec_info)
5193 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5194 }
5195 }
5196 }
5197
5198 if (is_elf_hash_table (htab) && add_needed)
5199 {
5200 /* Add this bfd to the loaded list. */
5201 struct elf_link_loaded_list *n;
5202
5203 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5204 if (n == NULL)
5205 goto error_return;
5206 n->abfd = abfd;
5207 n->next = htab->loaded;
5208 htab->loaded = n;
5209 }
5210
5211 return TRUE;
5212
5213 error_free_vers:
5214 if (old_tab != NULL)
5215 free (old_tab);
5216 if (old_strtab != NULL)
5217 free (old_strtab);
5218 if (nondeflt_vers != NULL)
5219 free (nondeflt_vers);
5220 if (extversym != NULL)
5221 free (extversym);
5222 error_free_sym:
5223 if (isymbuf != NULL)
5224 free (isymbuf);
5225 error_return:
5226 return FALSE;
5227 }
5228
5229 /* Return the linker hash table entry of a symbol that might be
5230 satisfied by an archive symbol. Return -1 on error. */
5231
5232 struct elf_link_hash_entry *
5233 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5234 struct bfd_link_info *info,
5235 const char *name)
5236 {
5237 struct elf_link_hash_entry *h;
5238 char *p, *copy;
5239 size_t len, first;
5240
5241 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5242 if (h != NULL)
5243 return h;
5244
5245 /* If this is a default version (the name contains @@), look up the
5246 symbol again with only one `@' as well as without the version.
5247 The effect is that references to the symbol with and without the
5248 version will be matched by the default symbol in the archive. */
5249
5250 p = strchr (name, ELF_VER_CHR);
5251 if (p == NULL || p[1] != ELF_VER_CHR)
5252 return h;
5253
5254 /* First check with only one `@'. */
5255 len = strlen (name);
5256 copy = (char *) bfd_alloc (abfd, len);
5257 if (copy == NULL)
5258 return (struct elf_link_hash_entry *) 0 - 1;
5259
5260 first = p - name + 1;
5261 memcpy (copy, name, first);
5262 memcpy (copy + first, name + first + 1, len - first);
5263
5264 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5265 if (h == NULL)
5266 {
5267 /* We also need to check references to the symbol without the
5268 version. */
5269 copy[first - 1] = '\0';
5270 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5271 FALSE, FALSE, TRUE);
5272 }
5273
5274 bfd_release (abfd, copy);
5275 return h;
5276 }
5277
5278 /* Add symbols from an ELF archive file to the linker hash table. We
5279 don't use _bfd_generic_link_add_archive_symbols because we need to
5280 handle versioned symbols.
5281
5282 Fortunately, ELF archive handling is simpler than that done by
5283 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5284 oddities. In ELF, if we find a symbol in the archive map, and the
5285 symbol is currently undefined, we know that we must pull in that
5286 object file.
5287
5288 Unfortunately, we do have to make multiple passes over the symbol
5289 table until nothing further is resolved. */
5290
5291 static bfd_boolean
5292 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5293 {
5294 symindex c;
5295 unsigned char *included = NULL;
5296 carsym *symdefs;
5297 bfd_boolean loop;
5298 bfd_size_type amt;
5299 const struct elf_backend_data *bed;
5300 struct elf_link_hash_entry * (*archive_symbol_lookup)
5301 (bfd *, struct bfd_link_info *, const char *);
5302
5303 if (! bfd_has_map (abfd))
5304 {
5305 /* An empty archive is a special case. */
5306 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5307 return TRUE;
5308 bfd_set_error (bfd_error_no_armap);
5309 return FALSE;
5310 }
5311
5312 /* Keep track of all symbols we know to be already defined, and all
5313 files we know to be already included. This is to speed up the
5314 second and subsequent passes. */
5315 c = bfd_ardata (abfd)->symdef_count;
5316 if (c == 0)
5317 return TRUE;
5318 amt = c;
5319 amt *= sizeof (*included);
5320 included = (unsigned char *) bfd_zmalloc (amt);
5321 if (included == NULL)
5322 return FALSE;
5323
5324 symdefs = bfd_ardata (abfd)->symdefs;
5325 bed = get_elf_backend_data (abfd);
5326 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5327
5328 do
5329 {
5330 file_ptr last;
5331 symindex i;
5332 carsym *symdef;
5333 carsym *symdefend;
5334
5335 loop = FALSE;
5336 last = -1;
5337
5338 symdef = symdefs;
5339 symdefend = symdef + c;
5340 for (i = 0; symdef < symdefend; symdef++, i++)
5341 {
5342 struct elf_link_hash_entry *h;
5343 bfd *element;
5344 struct bfd_link_hash_entry *undefs_tail;
5345 symindex mark;
5346
5347 if (included[i])
5348 continue;
5349 if (symdef->file_offset == last)
5350 {
5351 included[i] = TRUE;
5352 continue;
5353 }
5354
5355 h = archive_symbol_lookup (abfd, info, symdef->name);
5356 if (h == (struct elf_link_hash_entry *) 0 - 1)
5357 goto error_return;
5358
5359 if (h == NULL)
5360 continue;
5361
5362 if (h->root.type == bfd_link_hash_common)
5363 {
5364 /* We currently have a common symbol. The archive map contains
5365 a reference to this symbol, so we may want to include it. We
5366 only want to include it however, if this archive element
5367 contains a definition of the symbol, not just another common
5368 declaration of it.
5369
5370 Unfortunately some archivers (including GNU ar) will put
5371 declarations of common symbols into their archive maps, as
5372 well as real definitions, so we cannot just go by the archive
5373 map alone. Instead we must read in the element's symbol
5374 table and check that to see what kind of symbol definition
5375 this is. */
5376 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5377 continue;
5378 }
5379 else if (h->root.type != bfd_link_hash_undefined)
5380 {
5381 if (h->root.type != bfd_link_hash_undefweak)
5382 /* Symbol must be defined. Don't check it again. */
5383 included[i] = TRUE;
5384 continue;
5385 }
5386
5387 /* We need to include this archive member. */
5388 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5389 if (element == NULL)
5390 goto error_return;
5391
5392 if (! bfd_check_format (element, bfd_object))
5393 goto error_return;
5394
5395 undefs_tail = info->hash->undefs_tail;
5396
5397 if (!(*info->callbacks
5398 ->add_archive_element) (info, element, symdef->name, &element))
5399 continue;
5400 if (!bfd_link_add_symbols (element, info))
5401 goto error_return;
5402
5403 /* If there are any new undefined symbols, we need to make
5404 another pass through the archive in order to see whether
5405 they can be defined. FIXME: This isn't perfect, because
5406 common symbols wind up on undefs_tail and because an
5407 undefined symbol which is defined later on in this pass
5408 does not require another pass. This isn't a bug, but it
5409 does make the code less efficient than it could be. */
5410 if (undefs_tail != info->hash->undefs_tail)
5411 loop = TRUE;
5412
5413 /* Look backward to mark all symbols from this object file
5414 which we have already seen in this pass. */
5415 mark = i;
5416 do
5417 {
5418 included[mark] = TRUE;
5419 if (mark == 0)
5420 break;
5421 --mark;
5422 }
5423 while (symdefs[mark].file_offset == symdef->file_offset);
5424
5425 /* We mark subsequent symbols from this object file as we go
5426 on through the loop. */
5427 last = symdef->file_offset;
5428 }
5429 }
5430 while (loop);
5431
5432 free (included);
5433
5434 return TRUE;
5435
5436 error_return:
5437 if (included != NULL)
5438 free (included);
5439 return FALSE;
5440 }
5441
5442 /* Given an ELF BFD, add symbols to the global hash table as
5443 appropriate. */
5444
5445 bfd_boolean
5446 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5447 {
5448 switch (bfd_get_format (abfd))
5449 {
5450 case bfd_object:
5451 return elf_link_add_object_symbols (abfd, info);
5452 case bfd_archive:
5453 return elf_link_add_archive_symbols (abfd, info);
5454 default:
5455 bfd_set_error (bfd_error_wrong_format);
5456 return FALSE;
5457 }
5458 }
5459 \f
5460 struct hash_codes_info
5461 {
5462 unsigned long *hashcodes;
5463 bfd_boolean error;
5464 };
5465
5466 /* This function will be called though elf_link_hash_traverse to store
5467 all hash value of the exported symbols in an array. */
5468
5469 static bfd_boolean
5470 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5471 {
5472 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5473 const char *name;
5474 unsigned long ha;
5475 char *alc = NULL;
5476
5477 /* Ignore indirect symbols. These are added by the versioning code. */
5478 if (h->dynindx == -1)
5479 return TRUE;
5480
5481 name = h->root.root.string;
5482 if (h->versioned >= versioned)
5483 {
5484 char *p = strchr (name, ELF_VER_CHR);
5485 if (p != NULL)
5486 {
5487 alc = (char *) bfd_malloc (p - name + 1);
5488 if (alc == NULL)
5489 {
5490 inf->error = TRUE;
5491 return FALSE;
5492 }
5493 memcpy (alc, name, p - name);
5494 alc[p - name] = '\0';
5495 name = alc;
5496 }
5497 }
5498
5499 /* Compute the hash value. */
5500 ha = bfd_elf_hash (name);
5501
5502 /* Store the found hash value in the array given as the argument. */
5503 *(inf->hashcodes)++ = ha;
5504
5505 /* And store it in the struct so that we can put it in the hash table
5506 later. */
5507 h->u.elf_hash_value = ha;
5508
5509 if (alc != NULL)
5510 free (alc);
5511
5512 return TRUE;
5513 }
5514
5515 struct collect_gnu_hash_codes
5516 {
5517 bfd *output_bfd;
5518 const struct elf_backend_data *bed;
5519 unsigned long int nsyms;
5520 unsigned long int maskbits;
5521 unsigned long int *hashcodes;
5522 unsigned long int *hashval;
5523 unsigned long int *indx;
5524 unsigned long int *counts;
5525 bfd_vma *bitmask;
5526 bfd_byte *contents;
5527 long int min_dynindx;
5528 unsigned long int bucketcount;
5529 unsigned long int symindx;
5530 long int local_indx;
5531 long int shift1, shift2;
5532 unsigned long int mask;
5533 bfd_boolean error;
5534 };
5535
5536 /* This function will be called though elf_link_hash_traverse to store
5537 all hash value of the exported symbols in an array. */
5538
5539 static bfd_boolean
5540 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5541 {
5542 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5543 const char *name;
5544 unsigned long ha;
5545 char *alc = NULL;
5546
5547 /* Ignore indirect symbols. These are added by the versioning code. */
5548 if (h->dynindx == -1)
5549 return TRUE;
5550
5551 /* Ignore also local symbols and undefined symbols. */
5552 if (! (*s->bed->elf_hash_symbol) (h))
5553 return TRUE;
5554
5555 name = h->root.root.string;
5556 if (h->versioned >= versioned)
5557 {
5558 char *p = strchr (name, ELF_VER_CHR);
5559 if (p != NULL)
5560 {
5561 alc = (char *) bfd_malloc (p - name + 1);
5562 if (alc == NULL)
5563 {
5564 s->error = TRUE;
5565 return FALSE;
5566 }
5567 memcpy (alc, name, p - name);
5568 alc[p - name] = '\0';
5569 name = alc;
5570 }
5571 }
5572
5573 /* Compute the hash value. */
5574 ha = bfd_elf_gnu_hash (name);
5575
5576 /* Store the found hash value in the array for compute_bucket_count,
5577 and also for .dynsym reordering purposes. */
5578 s->hashcodes[s->nsyms] = ha;
5579 s->hashval[h->dynindx] = ha;
5580 ++s->nsyms;
5581 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5582 s->min_dynindx = h->dynindx;
5583
5584 if (alc != NULL)
5585 free (alc);
5586
5587 return TRUE;
5588 }
5589
5590 /* This function will be called though elf_link_hash_traverse to do
5591 final dynaminc symbol renumbering. */
5592
5593 static bfd_boolean
5594 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5595 {
5596 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5597 unsigned long int bucket;
5598 unsigned long int val;
5599
5600 /* Ignore indirect symbols. */
5601 if (h->dynindx == -1)
5602 return TRUE;
5603
5604 /* Ignore also local symbols and undefined symbols. */
5605 if (! (*s->bed->elf_hash_symbol) (h))
5606 {
5607 if (h->dynindx >= s->min_dynindx)
5608 h->dynindx = s->local_indx++;
5609 return TRUE;
5610 }
5611
5612 bucket = s->hashval[h->dynindx] % s->bucketcount;
5613 val = (s->hashval[h->dynindx] >> s->shift1)
5614 & ((s->maskbits >> s->shift1) - 1);
5615 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5616 s->bitmask[val]
5617 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5618 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5619 if (s->counts[bucket] == 1)
5620 /* Last element terminates the chain. */
5621 val |= 1;
5622 bfd_put_32 (s->output_bfd, val,
5623 s->contents + (s->indx[bucket] - s->symindx) * 4);
5624 --s->counts[bucket];
5625 h->dynindx = s->indx[bucket]++;
5626 return TRUE;
5627 }
5628
5629 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5630
5631 bfd_boolean
5632 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5633 {
5634 return !(h->forced_local
5635 || h->root.type == bfd_link_hash_undefined
5636 || h->root.type == bfd_link_hash_undefweak
5637 || ((h->root.type == bfd_link_hash_defined
5638 || h->root.type == bfd_link_hash_defweak)
5639 && h->root.u.def.section->output_section == NULL));
5640 }
5641
5642 /* Array used to determine the number of hash table buckets to use
5643 based on the number of symbols there are. If there are fewer than
5644 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5645 fewer than 37 we use 17 buckets, and so forth. We never use more
5646 than 32771 buckets. */
5647
5648 static const size_t elf_buckets[] =
5649 {
5650 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5651 16411, 32771, 0
5652 };
5653
5654 /* Compute bucket count for hashing table. We do not use a static set
5655 of possible tables sizes anymore. Instead we determine for all
5656 possible reasonable sizes of the table the outcome (i.e., the
5657 number of collisions etc) and choose the best solution. The
5658 weighting functions are not too simple to allow the table to grow
5659 without bounds. Instead one of the weighting factors is the size.
5660 Therefore the result is always a good payoff between few collisions
5661 (= short chain lengths) and table size. */
5662 static size_t
5663 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5664 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5665 unsigned long int nsyms,
5666 int gnu_hash)
5667 {
5668 size_t best_size = 0;
5669 unsigned long int i;
5670
5671 /* We have a problem here. The following code to optimize the table
5672 size requires an integer type with more the 32 bits. If
5673 BFD_HOST_U_64_BIT is set we know about such a type. */
5674 #ifdef BFD_HOST_U_64_BIT
5675 if (info->optimize)
5676 {
5677 size_t minsize;
5678 size_t maxsize;
5679 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5680 bfd *dynobj = elf_hash_table (info)->dynobj;
5681 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5682 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5683 unsigned long int *counts;
5684 bfd_size_type amt;
5685 unsigned int no_improvement_count = 0;
5686
5687 /* Possible optimization parameters: if we have NSYMS symbols we say
5688 that the hashing table must at least have NSYMS/4 and at most
5689 2*NSYMS buckets. */
5690 minsize = nsyms / 4;
5691 if (minsize == 0)
5692 minsize = 1;
5693 best_size = maxsize = nsyms * 2;
5694 if (gnu_hash)
5695 {
5696 if (minsize < 2)
5697 minsize = 2;
5698 if ((best_size & 31) == 0)
5699 ++best_size;
5700 }
5701
5702 /* Create array where we count the collisions in. We must use bfd_malloc
5703 since the size could be large. */
5704 amt = maxsize;
5705 amt *= sizeof (unsigned long int);
5706 counts = (unsigned long int *) bfd_malloc (amt);
5707 if (counts == NULL)
5708 return 0;
5709
5710 /* Compute the "optimal" size for the hash table. The criteria is a
5711 minimal chain length. The minor criteria is (of course) the size
5712 of the table. */
5713 for (i = minsize; i < maxsize; ++i)
5714 {
5715 /* Walk through the array of hashcodes and count the collisions. */
5716 BFD_HOST_U_64_BIT max;
5717 unsigned long int j;
5718 unsigned long int fact;
5719
5720 if (gnu_hash && (i & 31) == 0)
5721 continue;
5722
5723 memset (counts, '\0', i * sizeof (unsigned long int));
5724
5725 /* Determine how often each hash bucket is used. */
5726 for (j = 0; j < nsyms; ++j)
5727 ++counts[hashcodes[j] % i];
5728
5729 /* For the weight function we need some information about the
5730 pagesize on the target. This is information need not be 100%
5731 accurate. Since this information is not available (so far) we
5732 define it here to a reasonable default value. If it is crucial
5733 to have a better value some day simply define this value. */
5734 # ifndef BFD_TARGET_PAGESIZE
5735 # define BFD_TARGET_PAGESIZE (4096)
5736 # endif
5737
5738 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5739 and the chains. */
5740 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5741
5742 # if 1
5743 /* Variant 1: optimize for short chains. We add the squares
5744 of all the chain lengths (which favors many small chain
5745 over a few long chains). */
5746 for (j = 0; j < i; ++j)
5747 max += counts[j] * counts[j];
5748
5749 /* This adds penalties for the overall size of the table. */
5750 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5751 max *= fact * fact;
5752 # else
5753 /* Variant 2: Optimize a lot more for small table. Here we
5754 also add squares of the size but we also add penalties for
5755 empty slots (the +1 term). */
5756 for (j = 0; j < i; ++j)
5757 max += (1 + counts[j]) * (1 + counts[j]);
5758
5759 /* The overall size of the table is considered, but not as
5760 strong as in variant 1, where it is squared. */
5761 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5762 max *= fact;
5763 # endif
5764
5765 /* Compare with current best results. */
5766 if (max < best_chlen)
5767 {
5768 best_chlen = max;
5769 best_size = i;
5770 no_improvement_count = 0;
5771 }
5772 /* PR 11843: Avoid futile long searches for the best bucket size
5773 when there are a large number of symbols. */
5774 else if (++no_improvement_count == 100)
5775 break;
5776 }
5777
5778 free (counts);
5779 }
5780 else
5781 #endif /* defined (BFD_HOST_U_64_BIT) */
5782 {
5783 /* This is the fallback solution if no 64bit type is available or if we
5784 are not supposed to spend much time on optimizations. We select the
5785 bucket count using a fixed set of numbers. */
5786 for (i = 0; elf_buckets[i] != 0; i++)
5787 {
5788 best_size = elf_buckets[i];
5789 if (nsyms < elf_buckets[i + 1])
5790 break;
5791 }
5792 if (gnu_hash && best_size < 2)
5793 best_size = 2;
5794 }
5795
5796 return best_size;
5797 }
5798
5799 /* Size any SHT_GROUP section for ld -r. */
5800
5801 bfd_boolean
5802 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5803 {
5804 bfd *ibfd;
5805
5806 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5807 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5808 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5809 return FALSE;
5810 return TRUE;
5811 }
5812
5813 /* Set a default stack segment size. The value in INFO wins. If it
5814 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5815 undefined it is initialized. */
5816
5817 bfd_boolean
5818 bfd_elf_stack_segment_size (bfd *output_bfd,
5819 struct bfd_link_info *info,
5820 const char *legacy_symbol,
5821 bfd_vma default_size)
5822 {
5823 struct elf_link_hash_entry *h = NULL;
5824
5825 /* Look for legacy symbol. */
5826 if (legacy_symbol)
5827 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5828 FALSE, FALSE, FALSE);
5829 if (h && (h->root.type == bfd_link_hash_defined
5830 || h->root.type == bfd_link_hash_defweak)
5831 && h->def_regular
5832 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5833 {
5834 /* The symbol has no type if specified on the command line. */
5835 h->type = STT_OBJECT;
5836 if (info->stacksize)
5837 /* xgettext:c-format */
5838 _bfd_error_handler (_("%B: stack size specified and %s set"),
5839 output_bfd, legacy_symbol);
5840 else if (h->root.u.def.section != bfd_abs_section_ptr)
5841 /* xgettext:c-format */
5842 _bfd_error_handler (_("%B: %s not absolute"),
5843 output_bfd, legacy_symbol);
5844 else
5845 info->stacksize = h->root.u.def.value;
5846 }
5847
5848 if (!info->stacksize)
5849 /* If the user didn't set a size, or explicitly inhibit the
5850 size, set it now. */
5851 info->stacksize = default_size;
5852
5853 /* Provide the legacy symbol, if it is referenced. */
5854 if (h && (h->root.type == bfd_link_hash_undefined
5855 || h->root.type == bfd_link_hash_undefweak))
5856 {
5857 struct bfd_link_hash_entry *bh = NULL;
5858
5859 if (!(_bfd_generic_link_add_one_symbol
5860 (info, output_bfd, legacy_symbol,
5861 BSF_GLOBAL, bfd_abs_section_ptr,
5862 info->stacksize >= 0 ? info->stacksize : 0,
5863 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5864 return FALSE;
5865
5866 h = (struct elf_link_hash_entry *) bh;
5867 h->def_regular = 1;
5868 h->type = STT_OBJECT;
5869 }
5870
5871 return TRUE;
5872 }
5873
5874 /* Set up the sizes and contents of the ELF dynamic sections. This is
5875 called by the ELF linker emulation before_allocation routine. We
5876 must set the sizes of the sections before the linker sets the
5877 addresses of the various sections. */
5878
5879 bfd_boolean
5880 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5881 const char *soname,
5882 const char *rpath,
5883 const char *filter_shlib,
5884 const char *audit,
5885 const char *depaudit,
5886 const char * const *auxiliary_filters,
5887 struct bfd_link_info *info,
5888 asection **sinterpptr)
5889 {
5890 size_t soname_indx;
5891 bfd *dynobj;
5892 const struct elf_backend_data *bed;
5893 struct elf_info_failed asvinfo;
5894
5895 *sinterpptr = NULL;
5896
5897 soname_indx = (size_t) -1;
5898
5899 if (!is_elf_hash_table (info->hash))
5900 return TRUE;
5901
5902 bed = get_elf_backend_data (output_bfd);
5903
5904 /* Any syms created from now on start with -1 in
5905 got.refcount/offset and plt.refcount/offset. */
5906 elf_hash_table (info)->init_got_refcount
5907 = elf_hash_table (info)->init_got_offset;
5908 elf_hash_table (info)->init_plt_refcount
5909 = elf_hash_table (info)->init_plt_offset;
5910
5911 if (bfd_link_relocatable (info)
5912 && !_bfd_elf_size_group_sections (info))
5913 return FALSE;
5914
5915 /* The backend may have to create some sections regardless of whether
5916 we're dynamic or not. */
5917 if (bed->elf_backend_always_size_sections
5918 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5919 return FALSE;
5920
5921 /* Determine any GNU_STACK segment requirements, after the backend
5922 has had a chance to set a default segment size. */
5923 if (info->execstack)
5924 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5925 else if (info->noexecstack)
5926 elf_stack_flags (output_bfd) = PF_R | PF_W;
5927 else
5928 {
5929 bfd *inputobj;
5930 asection *notesec = NULL;
5931 int exec = 0;
5932
5933 for (inputobj = info->input_bfds;
5934 inputobj;
5935 inputobj = inputobj->link.next)
5936 {
5937 asection *s;
5938
5939 if (inputobj->flags
5940 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5941 continue;
5942 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5943 if (s)
5944 {
5945 if (s->flags & SEC_CODE)
5946 exec = PF_X;
5947 notesec = s;
5948 }
5949 else if (bed->default_execstack)
5950 exec = PF_X;
5951 }
5952 if (notesec || info->stacksize > 0)
5953 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5954 if (notesec && exec && bfd_link_relocatable (info)
5955 && notesec->output_section != bfd_abs_section_ptr)
5956 notesec->output_section->flags |= SEC_CODE;
5957 }
5958
5959 dynobj = elf_hash_table (info)->dynobj;
5960
5961 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5962 {
5963 struct elf_info_failed eif;
5964 struct elf_link_hash_entry *h;
5965 asection *dynstr;
5966 struct bfd_elf_version_tree *t;
5967 struct bfd_elf_version_expr *d;
5968 asection *s;
5969 bfd_boolean all_defined;
5970
5971 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5972 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
5973
5974 if (soname != NULL)
5975 {
5976 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5977 soname, TRUE);
5978 if (soname_indx == (size_t) -1
5979 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5980 return FALSE;
5981 }
5982
5983 if (info->symbolic)
5984 {
5985 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5986 return FALSE;
5987 info->flags |= DF_SYMBOLIC;
5988 }
5989
5990 if (rpath != NULL)
5991 {
5992 size_t indx;
5993 bfd_vma tag;
5994
5995 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5996 TRUE);
5997 if (indx == (size_t) -1)
5998 return FALSE;
5999
6000 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
6001 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
6002 return FALSE;
6003 }
6004
6005 if (filter_shlib != NULL)
6006 {
6007 size_t indx;
6008
6009 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6010 filter_shlib, TRUE);
6011 if (indx == (size_t) -1
6012 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
6013 return FALSE;
6014 }
6015
6016 if (auxiliary_filters != NULL)
6017 {
6018 const char * const *p;
6019
6020 for (p = auxiliary_filters; *p != NULL; p++)
6021 {
6022 size_t indx;
6023
6024 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6025 *p, TRUE);
6026 if (indx == (size_t) -1
6027 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
6028 return FALSE;
6029 }
6030 }
6031
6032 if (audit != NULL)
6033 {
6034 size_t indx;
6035
6036 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
6037 TRUE);
6038 if (indx == (size_t) -1
6039 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
6040 return FALSE;
6041 }
6042
6043 if (depaudit != NULL)
6044 {
6045 size_t indx;
6046
6047 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
6048 TRUE);
6049 if (indx == (size_t) -1
6050 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
6051 return FALSE;
6052 }
6053
6054 eif.info = info;
6055 eif.failed = FALSE;
6056
6057 /* If we are supposed to export all symbols into the dynamic symbol
6058 table (this is not the normal case), then do so. */
6059 if (info->export_dynamic
6060 || (bfd_link_executable (info) && info->dynamic))
6061 {
6062 elf_link_hash_traverse (elf_hash_table (info),
6063 _bfd_elf_export_symbol,
6064 &eif);
6065 if (eif.failed)
6066 return FALSE;
6067 }
6068
6069 /* Make all global versions with definition. */
6070 for (t = info->version_info; t != NULL; t = t->next)
6071 for (d = t->globals.list; d != NULL; d = d->next)
6072 if (!d->symver && d->literal)
6073 {
6074 const char *verstr, *name;
6075 size_t namelen, verlen, newlen;
6076 char *newname, *p, leading_char;
6077 struct elf_link_hash_entry *newh;
6078
6079 leading_char = bfd_get_symbol_leading_char (output_bfd);
6080 name = d->pattern;
6081 namelen = strlen (name) + (leading_char != '\0');
6082 verstr = t->name;
6083 verlen = strlen (verstr);
6084 newlen = namelen + verlen + 3;
6085
6086 newname = (char *) bfd_malloc (newlen);
6087 if (newname == NULL)
6088 return FALSE;
6089 newname[0] = leading_char;
6090 memcpy (newname + (leading_char != '\0'), name, namelen);
6091
6092 /* Check the hidden versioned definition. */
6093 p = newname + namelen;
6094 *p++ = ELF_VER_CHR;
6095 memcpy (p, verstr, verlen + 1);
6096 newh = elf_link_hash_lookup (elf_hash_table (info),
6097 newname, FALSE, FALSE,
6098 FALSE);
6099 if (newh == NULL
6100 || (newh->root.type != bfd_link_hash_defined
6101 && newh->root.type != bfd_link_hash_defweak))
6102 {
6103 /* Check the default versioned definition. */
6104 *p++ = ELF_VER_CHR;
6105 memcpy (p, verstr, verlen + 1);
6106 newh = elf_link_hash_lookup (elf_hash_table (info),
6107 newname, FALSE, FALSE,
6108 FALSE);
6109 }
6110 free (newname);
6111
6112 /* Mark this version if there is a definition and it is
6113 not defined in a shared object. */
6114 if (newh != NULL
6115 && !newh->def_dynamic
6116 && (newh->root.type == bfd_link_hash_defined
6117 || newh->root.type == bfd_link_hash_defweak))
6118 d->symver = 1;
6119 }
6120
6121 /* Attach all the symbols to their version information. */
6122 asvinfo.info = info;
6123 asvinfo.failed = FALSE;
6124
6125 elf_link_hash_traverse (elf_hash_table (info),
6126 _bfd_elf_link_assign_sym_version,
6127 &asvinfo);
6128 if (asvinfo.failed)
6129 return FALSE;
6130
6131 if (!info->allow_undefined_version)
6132 {
6133 /* Check if all global versions have a definition. */
6134 all_defined = TRUE;
6135 for (t = info->version_info; t != NULL; t = t->next)
6136 for (d = t->globals.list; d != NULL; d = d->next)
6137 if (d->literal && !d->symver && !d->script)
6138 {
6139 _bfd_error_handler
6140 (_("%s: undefined version: %s"),
6141 d->pattern, t->name);
6142 all_defined = FALSE;
6143 }
6144
6145 if (!all_defined)
6146 {
6147 bfd_set_error (bfd_error_bad_value);
6148 return FALSE;
6149 }
6150 }
6151
6152 /* Find all symbols which were defined in a dynamic object and make
6153 the backend pick a reasonable value for them. */
6154 elf_link_hash_traverse (elf_hash_table (info),
6155 _bfd_elf_adjust_dynamic_symbol,
6156 &eif);
6157 if (eif.failed)
6158 return FALSE;
6159
6160 /* Add some entries to the .dynamic section. We fill in some of the
6161 values later, in bfd_elf_final_link, but we must add the entries
6162 now so that we know the final size of the .dynamic section. */
6163
6164 /* If there are initialization and/or finalization functions to
6165 call then add the corresponding DT_INIT/DT_FINI entries. */
6166 h = (info->init_function
6167 ? elf_link_hash_lookup (elf_hash_table (info),
6168 info->init_function, FALSE,
6169 FALSE, FALSE)
6170 : NULL);
6171 if (h != NULL
6172 && (h->ref_regular
6173 || h->def_regular))
6174 {
6175 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
6176 return FALSE;
6177 }
6178 h = (info->fini_function
6179 ? elf_link_hash_lookup (elf_hash_table (info),
6180 info->fini_function, FALSE,
6181 FALSE, FALSE)
6182 : NULL);
6183 if (h != NULL
6184 && (h->ref_regular
6185 || h->def_regular))
6186 {
6187 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
6188 return FALSE;
6189 }
6190
6191 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
6192 if (s != NULL && s->linker_has_input)
6193 {
6194 /* DT_PREINIT_ARRAY is not allowed in shared library. */
6195 if (! bfd_link_executable (info))
6196 {
6197 bfd *sub;
6198 asection *o;
6199
6200 for (sub = info->input_bfds; sub != NULL;
6201 sub = sub->link.next)
6202 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
6203 for (o = sub->sections; o != NULL; o = o->next)
6204 if (elf_section_data (o)->this_hdr.sh_type
6205 == SHT_PREINIT_ARRAY)
6206 {
6207 _bfd_error_handler
6208 (_("%B: .preinit_array section is not allowed in DSO"),
6209 sub);
6210 break;
6211 }
6212
6213 bfd_set_error (bfd_error_nonrepresentable_section);
6214 return FALSE;
6215 }
6216
6217 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6218 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
6219 return FALSE;
6220 }
6221 s = bfd_get_section_by_name (output_bfd, ".init_array");
6222 if (s != NULL && s->linker_has_input)
6223 {
6224 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
6225 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
6226 return FALSE;
6227 }
6228 s = bfd_get_section_by_name (output_bfd, ".fini_array");
6229 if (s != NULL && s->linker_has_input)
6230 {
6231 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
6232 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
6233 return FALSE;
6234 }
6235
6236 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
6237 /* If .dynstr is excluded from the link, we don't want any of
6238 these tags. Strictly, we should be checking each section
6239 individually; This quick check covers for the case where
6240 someone does a /DISCARD/ : { *(*) }. */
6241 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6242 {
6243 bfd_size_type strsize;
6244
6245 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6246 if ((info->emit_hash
6247 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6248 || (info->emit_gnu_hash
6249 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6250 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6251 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6252 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6253 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6254 bed->s->sizeof_sym))
6255 return FALSE;
6256 }
6257 }
6258
6259 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6260 return FALSE;
6261
6262 /* The backend must work out the sizes of all the other dynamic
6263 sections. */
6264 if (dynobj != NULL
6265 && bed->elf_backend_size_dynamic_sections != NULL
6266 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6267 return FALSE;
6268
6269 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6270 {
6271 unsigned long section_sym_count;
6272 struct bfd_elf_version_tree *verdefs;
6273 asection *s;
6274
6275 /* Set up the version definition section. */
6276 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6277 BFD_ASSERT (s != NULL);
6278
6279 /* We may have created additional version definitions if we are
6280 just linking a regular application. */
6281 verdefs = info->version_info;
6282
6283 /* Skip anonymous version tag. */
6284 if (verdefs != NULL && verdefs->vernum == 0)
6285 verdefs = verdefs->next;
6286
6287 if (verdefs == NULL && !info->create_default_symver)
6288 s->flags |= SEC_EXCLUDE;
6289 else
6290 {
6291 unsigned int cdefs;
6292 bfd_size_type size;
6293 struct bfd_elf_version_tree *t;
6294 bfd_byte *p;
6295 Elf_Internal_Verdef def;
6296 Elf_Internal_Verdaux defaux;
6297 struct bfd_link_hash_entry *bh;
6298 struct elf_link_hash_entry *h;
6299 const char *name;
6300
6301 cdefs = 0;
6302 size = 0;
6303
6304 /* Make space for the base version. */
6305 size += sizeof (Elf_External_Verdef);
6306 size += sizeof (Elf_External_Verdaux);
6307 ++cdefs;
6308
6309 /* Make space for the default version. */
6310 if (info->create_default_symver)
6311 {
6312 size += sizeof (Elf_External_Verdef);
6313 ++cdefs;
6314 }
6315
6316 for (t = verdefs; t != NULL; t = t->next)
6317 {
6318 struct bfd_elf_version_deps *n;
6319
6320 /* Don't emit base version twice. */
6321 if (t->vernum == 0)
6322 continue;
6323
6324 size += sizeof (Elf_External_Verdef);
6325 size += sizeof (Elf_External_Verdaux);
6326 ++cdefs;
6327
6328 for (n = t->deps; n != NULL; n = n->next)
6329 size += sizeof (Elf_External_Verdaux);
6330 }
6331
6332 s->size = size;
6333 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6334 if (s->contents == NULL && s->size != 0)
6335 return FALSE;
6336
6337 /* Fill in the version definition section. */
6338
6339 p = s->contents;
6340
6341 def.vd_version = VER_DEF_CURRENT;
6342 def.vd_flags = VER_FLG_BASE;
6343 def.vd_ndx = 1;
6344 def.vd_cnt = 1;
6345 if (info->create_default_symver)
6346 {
6347 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6348 def.vd_next = sizeof (Elf_External_Verdef);
6349 }
6350 else
6351 {
6352 def.vd_aux = sizeof (Elf_External_Verdef);
6353 def.vd_next = (sizeof (Elf_External_Verdef)
6354 + sizeof (Elf_External_Verdaux));
6355 }
6356
6357 if (soname_indx != (size_t) -1)
6358 {
6359 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6360 soname_indx);
6361 def.vd_hash = bfd_elf_hash (soname);
6362 defaux.vda_name = soname_indx;
6363 name = soname;
6364 }
6365 else
6366 {
6367 size_t indx;
6368
6369 name = lbasename (output_bfd->filename);
6370 def.vd_hash = bfd_elf_hash (name);
6371 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6372 name, FALSE);
6373 if (indx == (size_t) -1)
6374 return FALSE;
6375 defaux.vda_name = indx;
6376 }
6377 defaux.vda_next = 0;
6378
6379 _bfd_elf_swap_verdef_out (output_bfd, &def,
6380 (Elf_External_Verdef *) p);
6381 p += sizeof (Elf_External_Verdef);
6382 if (info->create_default_symver)
6383 {
6384 /* Add a symbol representing this version. */
6385 bh = NULL;
6386 if (! (_bfd_generic_link_add_one_symbol
6387 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6388 0, NULL, FALSE,
6389 get_elf_backend_data (dynobj)->collect, &bh)))
6390 return FALSE;
6391 h = (struct elf_link_hash_entry *) bh;
6392 h->non_elf = 0;
6393 h->def_regular = 1;
6394 h->type = STT_OBJECT;
6395 h->verinfo.vertree = NULL;
6396
6397 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6398 return FALSE;
6399
6400 /* Create a duplicate of the base version with the same
6401 aux block, but different flags. */
6402 def.vd_flags = 0;
6403 def.vd_ndx = 2;
6404 def.vd_aux = sizeof (Elf_External_Verdef);
6405 if (verdefs)
6406 def.vd_next = (sizeof (Elf_External_Verdef)
6407 + sizeof (Elf_External_Verdaux));
6408 else
6409 def.vd_next = 0;
6410 _bfd_elf_swap_verdef_out (output_bfd, &def,
6411 (Elf_External_Verdef *) p);
6412 p += sizeof (Elf_External_Verdef);
6413 }
6414 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6415 (Elf_External_Verdaux *) p);
6416 p += sizeof (Elf_External_Verdaux);
6417
6418 for (t = verdefs; t != NULL; t = t->next)
6419 {
6420 unsigned int cdeps;
6421 struct bfd_elf_version_deps *n;
6422
6423 /* Don't emit the base version twice. */
6424 if (t->vernum == 0)
6425 continue;
6426
6427 cdeps = 0;
6428 for (n = t->deps; n != NULL; n = n->next)
6429 ++cdeps;
6430
6431 /* Add a symbol representing this version. */
6432 bh = NULL;
6433 if (! (_bfd_generic_link_add_one_symbol
6434 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6435 0, NULL, FALSE,
6436 get_elf_backend_data (dynobj)->collect, &bh)))
6437 return FALSE;
6438 h = (struct elf_link_hash_entry *) bh;
6439 h->non_elf = 0;
6440 h->def_regular = 1;
6441 h->type = STT_OBJECT;
6442 h->verinfo.vertree = t;
6443
6444 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6445 return FALSE;
6446
6447 def.vd_version = VER_DEF_CURRENT;
6448 def.vd_flags = 0;
6449 if (t->globals.list == NULL
6450 && t->locals.list == NULL
6451 && ! t->used)
6452 def.vd_flags |= VER_FLG_WEAK;
6453 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6454 def.vd_cnt = cdeps + 1;
6455 def.vd_hash = bfd_elf_hash (t->name);
6456 def.vd_aux = sizeof (Elf_External_Verdef);
6457 def.vd_next = 0;
6458
6459 /* If a basever node is next, it *must* be the last node in
6460 the chain, otherwise Verdef construction breaks. */
6461 if (t->next != NULL && t->next->vernum == 0)
6462 BFD_ASSERT (t->next->next == NULL);
6463
6464 if (t->next != NULL && t->next->vernum != 0)
6465 def.vd_next = (sizeof (Elf_External_Verdef)
6466 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6467
6468 _bfd_elf_swap_verdef_out (output_bfd, &def,
6469 (Elf_External_Verdef *) p);
6470 p += sizeof (Elf_External_Verdef);
6471
6472 defaux.vda_name = h->dynstr_index;
6473 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6474 h->dynstr_index);
6475 defaux.vda_next = 0;
6476 if (t->deps != NULL)
6477 defaux.vda_next = sizeof (Elf_External_Verdaux);
6478 t->name_indx = defaux.vda_name;
6479
6480 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6481 (Elf_External_Verdaux *) p);
6482 p += sizeof (Elf_External_Verdaux);
6483
6484 for (n = t->deps; n != NULL; n = n->next)
6485 {
6486 if (n->version_needed == NULL)
6487 {
6488 /* This can happen if there was an error in the
6489 version script. */
6490 defaux.vda_name = 0;
6491 }
6492 else
6493 {
6494 defaux.vda_name = n->version_needed->name_indx;
6495 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6496 defaux.vda_name);
6497 }
6498 if (n->next == NULL)
6499 defaux.vda_next = 0;
6500 else
6501 defaux.vda_next = sizeof (Elf_External_Verdaux);
6502
6503 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6504 (Elf_External_Verdaux *) p);
6505 p += sizeof (Elf_External_Verdaux);
6506 }
6507 }
6508
6509 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6510 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6511 return FALSE;
6512
6513 elf_tdata (output_bfd)->cverdefs = cdefs;
6514 }
6515
6516 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6517 {
6518 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6519 return FALSE;
6520 }
6521 else if (info->flags & DF_BIND_NOW)
6522 {
6523 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6524 return FALSE;
6525 }
6526
6527 if (info->flags_1)
6528 {
6529 if (bfd_link_executable (info))
6530 info->flags_1 &= ~ (DF_1_INITFIRST
6531 | DF_1_NODELETE
6532 | DF_1_NOOPEN);
6533 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6534 return FALSE;
6535 }
6536
6537 /* Work out the size of the version reference section. */
6538
6539 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6540 BFD_ASSERT (s != NULL);
6541 {
6542 struct elf_find_verdep_info sinfo;
6543
6544 sinfo.info = info;
6545 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6546 if (sinfo.vers == 0)
6547 sinfo.vers = 1;
6548 sinfo.failed = FALSE;
6549
6550 elf_link_hash_traverse (elf_hash_table (info),
6551 _bfd_elf_link_find_version_dependencies,
6552 &sinfo);
6553 if (sinfo.failed)
6554 return FALSE;
6555
6556 if (elf_tdata (output_bfd)->verref == NULL)
6557 s->flags |= SEC_EXCLUDE;
6558 else
6559 {
6560 Elf_Internal_Verneed *t;
6561 unsigned int size;
6562 unsigned int crefs;
6563 bfd_byte *p;
6564
6565 /* Build the version dependency section. */
6566 size = 0;
6567 crefs = 0;
6568 for (t = elf_tdata (output_bfd)->verref;
6569 t != NULL;
6570 t = t->vn_nextref)
6571 {
6572 Elf_Internal_Vernaux *a;
6573
6574 size += sizeof (Elf_External_Verneed);
6575 ++crefs;
6576 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6577 size += sizeof (Elf_External_Vernaux);
6578 }
6579
6580 s->size = size;
6581 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6582 if (s->contents == NULL)
6583 return FALSE;
6584
6585 p = s->contents;
6586 for (t = elf_tdata (output_bfd)->verref;
6587 t != NULL;
6588 t = t->vn_nextref)
6589 {
6590 unsigned int caux;
6591 Elf_Internal_Vernaux *a;
6592 size_t indx;
6593
6594 caux = 0;
6595 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6596 ++caux;
6597
6598 t->vn_version = VER_NEED_CURRENT;
6599 t->vn_cnt = caux;
6600 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6601 elf_dt_name (t->vn_bfd) != NULL
6602 ? elf_dt_name (t->vn_bfd)
6603 : lbasename (t->vn_bfd->filename),
6604 FALSE);
6605 if (indx == (size_t) -1)
6606 return FALSE;
6607 t->vn_file = indx;
6608 t->vn_aux = sizeof (Elf_External_Verneed);
6609 if (t->vn_nextref == NULL)
6610 t->vn_next = 0;
6611 else
6612 t->vn_next = (sizeof (Elf_External_Verneed)
6613 + caux * sizeof (Elf_External_Vernaux));
6614
6615 _bfd_elf_swap_verneed_out (output_bfd, t,
6616 (Elf_External_Verneed *) p);
6617 p += sizeof (Elf_External_Verneed);
6618
6619 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6620 {
6621 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6622 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6623 a->vna_nodename, FALSE);
6624 if (indx == (size_t) -1)
6625 return FALSE;
6626 a->vna_name = indx;
6627 if (a->vna_nextptr == NULL)
6628 a->vna_next = 0;
6629 else
6630 a->vna_next = sizeof (Elf_External_Vernaux);
6631
6632 _bfd_elf_swap_vernaux_out (output_bfd, a,
6633 (Elf_External_Vernaux *) p);
6634 p += sizeof (Elf_External_Vernaux);
6635 }
6636 }
6637
6638 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6639 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6640 return FALSE;
6641
6642 elf_tdata (output_bfd)->cverrefs = crefs;
6643 }
6644 }
6645
6646 if ((elf_tdata (output_bfd)->cverrefs == 0
6647 && elf_tdata (output_bfd)->cverdefs == 0)
6648 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6649 &section_sym_count) == 0)
6650 {
6651 s = bfd_get_linker_section (dynobj, ".gnu.version");
6652 s->flags |= SEC_EXCLUDE;
6653 }
6654 }
6655 return TRUE;
6656 }
6657
6658 /* Find the first non-excluded output section. We'll use its
6659 section symbol for some emitted relocs. */
6660 void
6661 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6662 {
6663 asection *s;
6664
6665 for (s = output_bfd->sections; s != NULL; s = s->next)
6666 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6667 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6668 {
6669 elf_hash_table (info)->text_index_section = s;
6670 break;
6671 }
6672 }
6673
6674 /* Find two non-excluded output sections, one for code, one for data.
6675 We'll use their section symbols for some emitted relocs. */
6676 void
6677 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6678 {
6679 asection *s;
6680
6681 /* Data first, since setting text_index_section changes
6682 _bfd_elf_link_omit_section_dynsym. */
6683 for (s = output_bfd->sections; s != NULL; s = s->next)
6684 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6685 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6686 {
6687 elf_hash_table (info)->data_index_section = s;
6688 break;
6689 }
6690
6691 for (s = output_bfd->sections; s != NULL; s = s->next)
6692 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6693 == (SEC_ALLOC | SEC_READONLY))
6694 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6695 {
6696 elf_hash_table (info)->text_index_section = s;
6697 break;
6698 }
6699
6700 if (elf_hash_table (info)->text_index_section == NULL)
6701 elf_hash_table (info)->text_index_section
6702 = elf_hash_table (info)->data_index_section;
6703 }
6704
6705 bfd_boolean
6706 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6707 {
6708 const struct elf_backend_data *bed;
6709
6710 if (!is_elf_hash_table (info->hash))
6711 return TRUE;
6712
6713 bed = get_elf_backend_data (output_bfd);
6714 (*bed->elf_backend_init_index_section) (output_bfd, info);
6715
6716 if (elf_hash_table (info)->dynamic_sections_created)
6717 {
6718 bfd *dynobj;
6719 asection *s;
6720 bfd_size_type dynsymcount;
6721 unsigned long section_sym_count;
6722 unsigned int dtagcount;
6723
6724 dynobj = elf_hash_table (info)->dynobj;
6725
6726 /* Assign dynsym indicies. In a shared library we generate a
6727 section symbol for each output section, which come first.
6728 Next come all of the back-end allocated local dynamic syms,
6729 followed by the rest of the global symbols. */
6730
6731 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6732 &section_sym_count);
6733
6734 /* Work out the size of the symbol version section. */
6735 s = bfd_get_linker_section (dynobj, ".gnu.version");
6736 BFD_ASSERT (s != NULL);
6737 if ((s->flags & SEC_EXCLUDE) == 0)
6738 {
6739 s->size = dynsymcount * sizeof (Elf_External_Versym);
6740 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6741 if (s->contents == NULL)
6742 return FALSE;
6743
6744 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6745 return FALSE;
6746 }
6747
6748 /* Set the size of the .dynsym and .hash sections. We counted
6749 the number of dynamic symbols in elf_link_add_object_symbols.
6750 We will build the contents of .dynsym and .hash when we build
6751 the final symbol table, because until then we do not know the
6752 correct value to give the symbols. We built the .dynstr
6753 section as we went along in elf_link_add_object_symbols. */
6754 s = elf_hash_table (info)->dynsym;
6755 BFD_ASSERT (s != NULL);
6756 s->size = dynsymcount * bed->s->sizeof_sym;
6757
6758 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6759 if (s->contents == NULL)
6760 return FALSE;
6761
6762 /* The first entry in .dynsym is a dummy symbol. Clear all the
6763 section syms, in case we don't output them all. */
6764 ++section_sym_count;
6765 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6766
6767 elf_hash_table (info)->bucketcount = 0;
6768
6769 /* Compute the size of the hashing table. As a side effect this
6770 computes the hash values for all the names we export. */
6771 if (info->emit_hash)
6772 {
6773 unsigned long int *hashcodes;
6774 struct hash_codes_info hashinf;
6775 bfd_size_type amt;
6776 unsigned long int nsyms;
6777 size_t bucketcount;
6778 size_t hash_entry_size;
6779
6780 /* Compute the hash values for all exported symbols. At the same
6781 time store the values in an array so that we could use them for
6782 optimizations. */
6783 amt = dynsymcount * sizeof (unsigned long int);
6784 hashcodes = (unsigned long int *) bfd_malloc (amt);
6785 if (hashcodes == NULL)
6786 return FALSE;
6787 hashinf.hashcodes = hashcodes;
6788 hashinf.error = FALSE;
6789
6790 /* Put all hash values in HASHCODES. */
6791 elf_link_hash_traverse (elf_hash_table (info),
6792 elf_collect_hash_codes, &hashinf);
6793 if (hashinf.error)
6794 {
6795 free (hashcodes);
6796 return FALSE;
6797 }
6798
6799 nsyms = hashinf.hashcodes - hashcodes;
6800 bucketcount
6801 = compute_bucket_count (info, hashcodes, nsyms, 0);
6802 free (hashcodes);
6803
6804 if (bucketcount == 0)
6805 return FALSE;
6806
6807 elf_hash_table (info)->bucketcount = bucketcount;
6808
6809 s = bfd_get_linker_section (dynobj, ".hash");
6810 BFD_ASSERT (s != NULL);
6811 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6812 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6813 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6814 if (s->contents == NULL)
6815 return FALSE;
6816
6817 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6818 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6819 s->contents + hash_entry_size);
6820 }
6821
6822 if (info->emit_gnu_hash)
6823 {
6824 size_t i, cnt;
6825 unsigned char *contents;
6826 struct collect_gnu_hash_codes cinfo;
6827 bfd_size_type amt;
6828 size_t bucketcount;
6829
6830 memset (&cinfo, 0, sizeof (cinfo));
6831
6832 /* Compute the hash values for all exported symbols. At the same
6833 time store the values in an array so that we could use them for
6834 optimizations. */
6835 amt = dynsymcount * 2 * sizeof (unsigned long int);
6836 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6837 if (cinfo.hashcodes == NULL)
6838 return FALSE;
6839
6840 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6841 cinfo.min_dynindx = -1;
6842 cinfo.output_bfd = output_bfd;
6843 cinfo.bed = bed;
6844
6845 /* Put all hash values in HASHCODES. */
6846 elf_link_hash_traverse (elf_hash_table (info),
6847 elf_collect_gnu_hash_codes, &cinfo);
6848 if (cinfo.error)
6849 {
6850 free (cinfo.hashcodes);
6851 return FALSE;
6852 }
6853
6854 bucketcount
6855 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6856
6857 if (bucketcount == 0)
6858 {
6859 free (cinfo.hashcodes);
6860 return FALSE;
6861 }
6862
6863 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6864 BFD_ASSERT (s != NULL);
6865
6866 if (cinfo.nsyms == 0)
6867 {
6868 /* Empty .gnu.hash section is special. */
6869 BFD_ASSERT (cinfo.min_dynindx == -1);
6870 free (cinfo.hashcodes);
6871 s->size = 5 * 4 + bed->s->arch_size / 8;
6872 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6873 if (contents == NULL)
6874 return FALSE;
6875 s->contents = contents;
6876 /* 1 empty bucket. */
6877 bfd_put_32 (output_bfd, 1, contents);
6878 /* SYMIDX above the special symbol 0. */
6879 bfd_put_32 (output_bfd, 1, contents + 4);
6880 /* Just one word for bitmask. */
6881 bfd_put_32 (output_bfd, 1, contents + 8);
6882 /* Only hash fn bloom filter. */
6883 bfd_put_32 (output_bfd, 0, contents + 12);
6884 /* No hashes are valid - empty bitmask. */
6885 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6886 /* No hashes in the only bucket. */
6887 bfd_put_32 (output_bfd, 0,
6888 contents + 16 + bed->s->arch_size / 8);
6889 }
6890 else
6891 {
6892 unsigned long int maskwords, maskbitslog2, x;
6893 BFD_ASSERT (cinfo.min_dynindx != -1);
6894
6895 x = cinfo.nsyms;
6896 maskbitslog2 = 1;
6897 while ((x >>= 1) != 0)
6898 ++maskbitslog2;
6899 if (maskbitslog2 < 3)
6900 maskbitslog2 = 5;
6901 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6902 maskbitslog2 = maskbitslog2 + 3;
6903 else
6904 maskbitslog2 = maskbitslog2 + 2;
6905 if (bed->s->arch_size == 64)
6906 {
6907 if (maskbitslog2 == 5)
6908 maskbitslog2 = 6;
6909 cinfo.shift1 = 6;
6910 }
6911 else
6912 cinfo.shift1 = 5;
6913 cinfo.mask = (1 << cinfo.shift1) - 1;
6914 cinfo.shift2 = maskbitslog2;
6915 cinfo.maskbits = 1 << maskbitslog2;
6916 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6917 amt = bucketcount * sizeof (unsigned long int) * 2;
6918 amt += maskwords * sizeof (bfd_vma);
6919 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6920 if (cinfo.bitmask == NULL)
6921 {
6922 free (cinfo.hashcodes);
6923 return FALSE;
6924 }
6925
6926 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6927 cinfo.indx = cinfo.counts + bucketcount;
6928 cinfo.symindx = dynsymcount - cinfo.nsyms;
6929 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6930
6931 /* Determine how often each hash bucket is used. */
6932 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6933 for (i = 0; i < cinfo.nsyms; ++i)
6934 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6935
6936 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6937 if (cinfo.counts[i] != 0)
6938 {
6939 cinfo.indx[i] = cnt;
6940 cnt += cinfo.counts[i];
6941 }
6942 BFD_ASSERT (cnt == dynsymcount);
6943 cinfo.bucketcount = bucketcount;
6944 cinfo.local_indx = cinfo.min_dynindx;
6945
6946 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6947 s->size += cinfo.maskbits / 8;
6948 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6949 if (contents == NULL)
6950 {
6951 free (cinfo.bitmask);
6952 free (cinfo.hashcodes);
6953 return FALSE;
6954 }
6955
6956 s->contents = contents;
6957 bfd_put_32 (output_bfd, bucketcount, contents);
6958 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6959 bfd_put_32 (output_bfd, maskwords, contents + 8);
6960 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6961 contents += 16 + cinfo.maskbits / 8;
6962
6963 for (i = 0; i < bucketcount; ++i)
6964 {
6965 if (cinfo.counts[i] == 0)
6966 bfd_put_32 (output_bfd, 0, contents);
6967 else
6968 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6969 contents += 4;
6970 }
6971
6972 cinfo.contents = contents;
6973
6974 /* Renumber dynamic symbols, populate .gnu.hash section. */
6975 elf_link_hash_traverse (elf_hash_table (info),
6976 elf_renumber_gnu_hash_syms, &cinfo);
6977
6978 contents = s->contents + 16;
6979 for (i = 0; i < maskwords; ++i)
6980 {
6981 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6982 contents);
6983 contents += bed->s->arch_size / 8;
6984 }
6985
6986 free (cinfo.bitmask);
6987 free (cinfo.hashcodes);
6988 }
6989 }
6990
6991 s = bfd_get_linker_section (dynobj, ".dynstr");
6992 BFD_ASSERT (s != NULL);
6993
6994 elf_finalize_dynstr (output_bfd, info);
6995
6996 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6997
6998 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6999 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7000 return FALSE;
7001 }
7002
7003 return TRUE;
7004 }
7005 \f
7006 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
7007
7008 static void
7009 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7010 asection *sec)
7011 {
7012 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7013 sec->sec_info_type = SEC_INFO_TYPE_NONE;
7014 }
7015
7016 /* Finish SHF_MERGE section merging. */
7017
7018 bfd_boolean
7019 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7020 {
7021 bfd *ibfd;
7022 asection *sec;
7023
7024 if (!is_elf_hash_table (info->hash))
7025 return FALSE;
7026
7027 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7028 if ((ibfd->flags & DYNAMIC) == 0
7029 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7030 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7031 == get_elf_backend_data (obfd)->s->elfclass))
7032 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7033 if ((sec->flags & SEC_MERGE) != 0
7034 && !bfd_is_abs_section (sec->output_section))
7035 {
7036 struct bfd_elf_section_data *secdata;
7037
7038 secdata = elf_section_data (sec);
7039 if (! _bfd_add_merge_section (obfd,
7040 &elf_hash_table (info)->merge_info,
7041 sec, &secdata->sec_info))
7042 return FALSE;
7043 else if (secdata->sec_info)
7044 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7045 }
7046
7047 if (elf_hash_table (info)->merge_info != NULL)
7048 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7049 merge_sections_remove_hook);
7050 return TRUE;
7051 }
7052
7053 /* Create an entry in an ELF linker hash table. */
7054
7055 struct bfd_hash_entry *
7056 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7057 struct bfd_hash_table *table,
7058 const char *string)
7059 {
7060 /* Allocate the structure if it has not already been allocated by a
7061 subclass. */
7062 if (entry == NULL)
7063 {
7064 entry = (struct bfd_hash_entry *)
7065 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7066 if (entry == NULL)
7067 return entry;
7068 }
7069
7070 /* Call the allocation method of the superclass. */
7071 entry = _bfd_link_hash_newfunc (entry, table, string);
7072 if (entry != NULL)
7073 {
7074 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7075 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7076
7077 /* Set local fields. */
7078 ret->indx = -1;
7079 ret->dynindx = -1;
7080 ret->got = htab->init_got_refcount;
7081 ret->plt = htab->init_plt_refcount;
7082 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7083 - offsetof (struct elf_link_hash_entry, size)));
7084 /* Assume that we have been called by a non-ELF symbol reader.
7085 This flag is then reset by the code which reads an ELF input
7086 file. This ensures that a symbol created by a non-ELF symbol
7087 reader will have the flag set correctly. */
7088 ret->non_elf = 1;
7089 }
7090
7091 return entry;
7092 }
7093
7094 /* Copy data from an indirect symbol to its direct symbol, hiding the
7095 old indirect symbol. Also used for copying flags to a weakdef. */
7096
7097 void
7098 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7099 struct elf_link_hash_entry *dir,
7100 struct elf_link_hash_entry *ind)
7101 {
7102 struct elf_link_hash_table *htab;
7103
7104 /* Copy down any references that we may have already seen to the
7105 symbol which just became indirect if DIR isn't a hidden versioned
7106 symbol. */
7107
7108 if (dir->versioned != versioned_hidden)
7109 {
7110 dir->ref_dynamic |= ind->ref_dynamic;
7111 dir->ref_regular |= ind->ref_regular;
7112 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7113 dir->non_got_ref |= ind->non_got_ref;
7114 dir->needs_plt |= ind->needs_plt;
7115 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7116 }
7117
7118 if (ind->root.type != bfd_link_hash_indirect)
7119 return;
7120
7121 /* Copy over the global and procedure linkage table refcount entries.
7122 These may have been already set up by a check_relocs routine. */
7123 htab = elf_hash_table (info);
7124 if (ind->got.refcount > htab->init_got_refcount.refcount)
7125 {
7126 if (dir->got.refcount < 0)
7127 dir->got.refcount = 0;
7128 dir->got.refcount += ind->got.refcount;
7129 ind->got.refcount = htab->init_got_refcount.refcount;
7130 }
7131
7132 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7133 {
7134 if (dir->plt.refcount < 0)
7135 dir->plt.refcount = 0;
7136 dir->plt.refcount += ind->plt.refcount;
7137 ind->plt.refcount = htab->init_plt_refcount.refcount;
7138 }
7139
7140 if (ind->dynindx != -1)
7141 {
7142 if (dir->dynindx != -1)
7143 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7144 dir->dynindx = ind->dynindx;
7145 dir->dynstr_index = ind->dynstr_index;
7146 ind->dynindx = -1;
7147 ind->dynstr_index = 0;
7148 }
7149 }
7150
7151 void
7152 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7153 struct elf_link_hash_entry *h,
7154 bfd_boolean force_local)
7155 {
7156 /* STT_GNU_IFUNC symbol must go through PLT. */
7157 if (h->type != STT_GNU_IFUNC)
7158 {
7159 h->plt = elf_hash_table (info)->init_plt_offset;
7160 h->needs_plt = 0;
7161 }
7162 if (force_local)
7163 {
7164 h->forced_local = 1;
7165 if (h->dynindx != -1)
7166 {
7167 h->dynindx = -1;
7168 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7169 h->dynstr_index);
7170 }
7171 }
7172 }
7173
7174 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7175 caller. */
7176
7177 bfd_boolean
7178 _bfd_elf_link_hash_table_init
7179 (struct elf_link_hash_table *table,
7180 bfd *abfd,
7181 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7182 struct bfd_hash_table *,
7183 const char *),
7184 unsigned int entsize,
7185 enum elf_target_id target_id)
7186 {
7187 bfd_boolean ret;
7188 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7189
7190 table->init_got_refcount.refcount = can_refcount - 1;
7191 table->init_plt_refcount.refcount = can_refcount - 1;
7192 table->init_got_offset.offset = -(bfd_vma) 1;
7193 table->init_plt_offset.offset = -(bfd_vma) 1;
7194 /* The first dynamic symbol is a dummy. */
7195 table->dynsymcount = 1;
7196
7197 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7198
7199 table->root.type = bfd_link_elf_hash_table;
7200 table->hash_table_id = target_id;
7201
7202 return ret;
7203 }
7204
7205 /* Create an ELF linker hash table. */
7206
7207 struct bfd_link_hash_table *
7208 _bfd_elf_link_hash_table_create (bfd *abfd)
7209 {
7210 struct elf_link_hash_table *ret;
7211 bfd_size_type amt = sizeof (struct elf_link_hash_table);
7212
7213 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7214 if (ret == NULL)
7215 return NULL;
7216
7217 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7218 sizeof (struct elf_link_hash_entry),
7219 GENERIC_ELF_DATA))
7220 {
7221 free (ret);
7222 return NULL;
7223 }
7224 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7225
7226 return &ret->root;
7227 }
7228
7229 /* Destroy an ELF linker hash table. */
7230
7231 void
7232 _bfd_elf_link_hash_table_free (bfd *obfd)
7233 {
7234 struct elf_link_hash_table *htab;
7235
7236 htab = (struct elf_link_hash_table *) obfd->link.hash;
7237 if (htab->dynstr != NULL)
7238 _bfd_elf_strtab_free (htab->dynstr);
7239 _bfd_merge_sections_free (htab->merge_info);
7240 _bfd_generic_link_hash_table_free (obfd);
7241 }
7242
7243 /* This is a hook for the ELF emulation code in the generic linker to
7244 tell the backend linker what file name to use for the DT_NEEDED
7245 entry for a dynamic object. */
7246
7247 void
7248 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7249 {
7250 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7251 && bfd_get_format (abfd) == bfd_object)
7252 elf_dt_name (abfd) = name;
7253 }
7254
7255 int
7256 bfd_elf_get_dyn_lib_class (bfd *abfd)
7257 {
7258 int lib_class;
7259 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7260 && bfd_get_format (abfd) == bfd_object)
7261 lib_class = elf_dyn_lib_class (abfd);
7262 else
7263 lib_class = 0;
7264 return lib_class;
7265 }
7266
7267 void
7268 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7269 {
7270 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7271 && bfd_get_format (abfd) == bfd_object)
7272 elf_dyn_lib_class (abfd) = lib_class;
7273 }
7274
7275 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7276 the linker ELF emulation code. */
7277
7278 struct bfd_link_needed_list *
7279 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7280 struct bfd_link_info *info)
7281 {
7282 if (! is_elf_hash_table (info->hash))
7283 return NULL;
7284 return elf_hash_table (info)->needed;
7285 }
7286
7287 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7288 hook for the linker ELF emulation code. */
7289
7290 struct bfd_link_needed_list *
7291 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7292 struct bfd_link_info *info)
7293 {
7294 if (! is_elf_hash_table (info->hash))
7295 return NULL;
7296 return elf_hash_table (info)->runpath;
7297 }
7298
7299 /* Get the name actually used for a dynamic object for a link. This
7300 is the SONAME entry if there is one. Otherwise, it is the string
7301 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7302
7303 const char *
7304 bfd_elf_get_dt_soname (bfd *abfd)
7305 {
7306 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7307 && bfd_get_format (abfd) == bfd_object)
7308 return elf_dt_name (abfd);
7309 return NULL;
7310 }
7311
7312 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7313 the ELF linker emulation code. */
7314
7315 bfd_boolean
7316 bfd_elf_get_bfd_needed_list (bfd *abfd,
7317 struct bfd_link_needed_list **pneeded)
7318 {
7319 asection *s;
7320 bfd_byte *dynbuf = NULL;
7321 unsigned int elfsec;
7322 unsigned long shlink;
7323 bfd_byte *extdyn, *extdynend;
7324 size_t extdynsize;
7325 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7326
7327 *pneeded = NULL;
7328
7329 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7330 || bfd_get_format (abfd) != bfd_object)
7331 return TRUE;
7332
7333 s = bfd_get_section_by_name (abfd, ".dynamic");
7334 if (s == NULL || s->size == 0)
7335 return TRUE;
7336
7337 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7338 goto error_return;
7339
7340 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7341 if (elfsec == SHN_BAD)
7342 goto error_return;
7343
7344 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7345
7346 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7347 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7348
7349 extdyn = dynbuf;
7350 extdynend = extdyn + s->size;
7351 for (; extdyn < extdynend; extdyn += extdynsize)
7352 {
7353 Elf_Internal_Dyn dyn;
7354
7355 (*swap_dyn_in) (abfd, extdyn, &dyn);
7356
7357 if (dyn.d_tag == DT_NULL)
7358 break;
7359
7360 if (dyn.d_tag == DT_NEEDED)
7361 {
7362 const char *string;
7363 struct bfd_link_needed_list *l;
7364 unsigned int tagv = dyn.d_un.d_val;
7365 bfd_size_type amt;
7366
7367 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7368 if (string == NULL)
7369 goto error_return;
7370
7371 amt = sizeof *l;
7372 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7373 if (l == NULL)
7374 goto error_return;
7375
7376 l->by = abfd;
7377 l->name = string;
7378 l->next = *pneeded;
7379 *pneeded = l;
7380 }
7381 }
7382
7383 free (dynbuf);
7384
7385 return TRUE;
7386
7387 error_return:
7388 if (dynbuf != NULL)
7389 free (dynbuf);
7390 return FALSE;
7391 }
7392
7393 struct elf_symbuf_symbol
7394 {
7395 unsigned long st_name; /* Symbol name, index in string tbl */
7396 unsigned char st_info; /* Type and binding attributes */
7397 unsigned char st_other; /* Visibilty, and target specific */
7398 };
7399
7400 struct elf_symbuf_head
7401 {
7402 struct elf_symbuf_symbol *ssym;
7403 size_t count;
7404 unsigned int st_shndx;
7405 };
7406
7407 struct elf_symbol
7408 {
7409 union
7410 {
7411 Elf_Internal_Sym *isym;
7412 struct elf_symbuf_symbol *ssym;
7413 } u;
7414 const char *name;
7415 };
7416
7417 /* Sort references to symbols by ascending section number. */
7418
7419 static int
7420 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7421 {
7422 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7423 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7424
7425 return s1->st_shndx - s2->st_shndx;
7426 }
7427
7428 static int
7429 elf_sym_name_compare (const void *arg1, const void *arg2)
7430 {
7431 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7432 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7433 return strcmp (s1->name, s2->name);
7434 }
7435
7436 static struct elf_symbuf_head *
7437 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
7438 {
7439 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7440 struct elf_symbuf_symbol *ssym;
7441 struct elf_symbuf_head *ssymbuf, *ssymhead;
7442 size_t i, shndx_count, total_size;
7443
7444 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7445 if (indbuf == NULL)
7446 return NULL;
7447
7448 for (ind = indbuf, i = 0; i < symcount; i++)
7449 if (isymbuf[i].st_shndx != SHN_UNDEF)
7450 *ind++ = &isymbuf[i];
7451 indbufend = ind;
7452
7453 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7454 elf_sort_elf_symbol);
7455
7456 shndx_count = 0;
7457 if (indbufend > indbuf)
7458 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7459 if (ind[0]->st_shndx != ind[1]->st_shndx)
7460 shndx_count++;
7461
7462 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7463 + (indbufend - indbuf) * sizeof (*ssym));
7464 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7465 if (ssymbuf == NULL)
7466 {
7467 free (indbuf);
7468 return NULL;
7469 }
7470
7471 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7472 ssymbuf->ssym = NULL;
7473 ssymbuf->count = shndx_count;
7474 ssymbuf->st_shndx = 0;
7475 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7476 {
7477 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7478 {
7479 ssymhead++;
7480 ssymhead->ssym = ssym;
7481 ssymhead->count = 0;
7482 ssymhead->st_shndx = (*ind)->st_shndx;
7483 }
7484 ssym->st_name = (*ind)->st_name;
7485 ssym->st_info = (*ind)->st_info;
7486 ssym->st_other = (*ind)->st_other;
7487 ssymhead->count++;
7488 }
7489 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
7490 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7491 == total_size));
7492
7493 free (indbuf);
7494 return ssymbuf;
7495 }
7496
7497 /* Check if 2 sections define the same set of local and global
7498 symbols. */
7499
7500 static bfd_boolean
7501 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7502 struct bfd_link_info *info)
7503 {
7504 bfd *bfd1, *bfd2;
7505 const struct elf_backend_data *bed1, *bed2;
7506 Elf_Internal_Shdr *hdr1, *hdr2;
7507 size_t symcount1, symcount2;
7508 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7509 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7510 Elf_Internal_Sym *isym, *isymend;
7511 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7512 size_t count1, count2, i;
7513 unsigned int shndx1, shndx2;
7514 bfd_boolean result;
7515
7516 bfd1 = sec1->owner;
7517 bfd2 = sec2->owner;
7518
7519 /* Both sections have to be in ELF. */
7520 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7521 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7522 return FALSE;
7523
7524 if (elf_section_type (sec1) != elf_section_type (sec2))
7525 return FALSE;
7526
7527 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7528 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7529 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7530 return FALSE;
7531
7532 bed1 = get_elf_backend_data (bfd1);
7533 bed2 = get_elf_backend_data (bfd2);
7534 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7535 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7536 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7537 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7538
7539 if (symcount1 == 0 || symcount2 == 0)
7540 return FALSE;
7541
7542 result = FALSE;
7543 isymbuf1 = NULL;
7544 isymbuf2 = NULL;
7545 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7546 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7547
7548 if (ssymbuf1 == NULL)
7549 {
7550 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7551 NULL, NULL, NULL);
7552 if (isymbuf1 == NULL)
7553 goto done;
7554
7555 if (!info->reduce_memory_overheads)
7556 elf_tdata (bfd1)->symbuf = ssymbuf1
7557 = elf_create_symbuf (symcount1, isymbuf1);
7558 }
7559
7560 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7561 {
7562 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7563 NULL, NULL, NULL);
7564 if (isymbuf2 == NULL)
7565 goto done;
7566
7567 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7568 elf_tdata (bfd2)->symbuf = ssymbuf2
7569 = elf_create_symbuf (symcount2, isymbuf2);
7570 }
7571
7572 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7573 {
7574 /* Optimized faster version. */
7575 size_t lo, hi, mid;
7576 struct elf_symbol *symp;
7577 struct elf_symbuf_symbol *ssym, *ssymend;
7578
7579 lo = 0;
7580 hi = ssymbuf1->count;
7581 ssymbuf1++;
7582 count1 = 0;
7583 while (lo < hi)
7584 {
7585 mid = (lo + hi) / 2;
7586 if (shndx1 < ssymbuf1[mid].st_shndx)
7587 hi = mid;
7588 else if (shndx1 > ssymbuf1[mid].st_shndx)
7589 lo = mid + 1;
7590 else
7591 {
7592 count1 = ssymbuf1[mid].count;
7593 ssymbuf1 += mid;
7594 break;
7595 }
7596 }
7597
7598 lo = 0;
7599 hi = ssymbuf2->count;
7600 ssymbuf2++;
7601 count2 = 0;
7602 while (lo < hi)
7603 {
7604 mid = (lo + hi) / 2;
7605 if (shndx2 < ssymbuf2[mid].st_shndx)
7606 hi = mid;
7607 else if (shndx2 > ssymbuf2[mid].st_shndx)
7608 lo = mid + 1;
7609 else
7610 {
7611 count2 = ssymbuf2[mid].count;
7612 ssymbuf2 += mid;
7613 break;
7614 }
7615 }
7616
7617 if (count1 == 0 || count2 == 0 || count1 != count2)
7618 goto done;
7619
7620 symtable1
7621 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7622 symtable2
7623 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7624 if (symtable1 == NULL || symtable2 == NULL)
7625 goto done;
7626
7627 symp = symtable1;
7628 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7629 ssym < ssymend; ssym++, symp++)
7630 {
7631 symp->u.ssym = ssym;
7632 symp->name = bfd_elf_string_from_elf_section (bfd1,
7633 hdr1->sh_link,
7634 ssym->st_name);
7635 }
7636
7637 symp = symtable2;
7638 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7639 ssym < ssymend; ssym++, symp++)
7640 {
7641 symp->u.ssym = ssym;
7642 symp->name = bfd_elf_string_from_elf_section (bfd2,
7643 hdr2->sh_link,
7644 ssym->st_name);
7645 }
7646
7647 /* Sort symbol by name. */
7648 qsort (symtable1, count1, sizeof (struct elf_symbol),
7649 elf_sym_name_compare);
7650 qsort (symtable2, count1, sizeof (struct elf_symbol),
7651 elf_sym_name_compare);
7652
7653 for (i = 0; i < count1; i++)
7654 /* Two symbols must have the same binding, type and name. */
7655 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7656 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7657 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7658 goto done;
7659
7660 result = TRUE;
7661 goto done;
7662 }
7663
7664 symtable1 = (struct elf_symbol *)
7665 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7666 symtable2 = (struct elf_symbol *)
7667 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7668 if (symtable1 == NULL || symtable2 == NULL)
7669 goto done;
7670
7671 /* Count definitions in the section. */
7672 count1 = 0;
7673 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7674 if (isym->st_shndx == shndx1)
7675 symtable1[count1++].u.isym = isym;
7676
7677 count2 = 0;
7678 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7679 if (isym->st_shndx == shndx2)
7680 symtable2[count2++].u.isym = isym;
7681
7682 if (count1 == 0 || count2 == 0 || count1 != count2)
7683 goto done;
7684
7685 for (i = 0; i < count1; i++)
7686 symtable1[i].name
7687 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7688 symtable1[i].u.isym->st_name);
7689
7690 for (i = 0; i < count2; i++)
7691 symtable2[i].name
7692 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7693 symtable2[i].u.isym->st_name);
7694
7695 /* Sort symbol by name. */
7696 qsort (symtable1, count1, sizeof (struct elf_symbol),
7697 elf_sym_name_compare);
7698 qsort (symtable2, count1, sizeof (struct elf_symbol),
7699 elf_sym_name_compare);
7700
7701 for (i = 0; i < count1; i++)
7702 /* Two symbols must have the same binding, type and name. */
7703 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7704 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7705 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7706 goto done;
7707
7708 result = TRUE;
7709
7710 done:
7711 if (symtable1)
7712 free (symtable1);
7713 if (symtable2)
7714 free (symtable2);
7715 if (isymbuf1)
7716 free (isymbuf1);
7717 if (isymbuf2)
7718 free (isymbuf2);
7719
7720 return result;
7721 }
7722
7723 /* Return TRUE if 2 section types are compatible. */
7724
7725 bfd_boolean
7726 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7727 bfd *bbfd, const asection *bsec)
7728 {
7729 if (asec == NULL
7730 || bsec == NULL
7731 || abfd->xvec->flavour != bfd_target_elf_flavour
7732 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7733 return TRUE;
7734
7735 return elf_section_type (asec) == elf_section_type (bsec);
7736 }
7737 \f
7738 /* Final phase of ELF linker. */
7739
7740 /* A structure we use to avoid passing large numbers of arguments. */
7741
7742 struct elf_final_link_info
7743 {
7744 /* General link information. */
7745 struct bfd_link_info *info;
7746 /* Output BFD. */
7747 bfd *output_bfd;
7748 /* Symbol string table. */
7749 struct elf_strtab_hash *symstrtab;
7750 /* .hash section. */
7751 asection *hash_sec;
7752 /* symbol version section (.gnu.version). */
7753 asection *symver_sec;
7754 /* Buffer large enough to hold contents of any section. */
7755 bfd_byte *contents;
7756 /* Buffer large enough to hold external relocs of any section. */
7757 void *external_relocs;
7758 /* Buffer large enough to hold internal relocs of any section. */
7759 Elf_Internal_Rela *internal_relocs;
7760 /* Buffer large enough to hold external local symbols of any input
7761 BFD. */
7762 bfd_byte *external_syms;
7763 /* And a buffer for symbol section indices. */
7764 Elf_External_Sym_Shndx *locsym_shndx;
7765 /* Buffer large enough to hold internal local symbols of any input
7766 BFD. */
7767 Elf_Internal_Sym *internal_syms;
7768 /* Array large enough to hold a symbol index for each local symbol
7769 of any input BFD. */
7770 long *indices;
7771 /* Array large enough to hold a section pointer for each local
7772 symbol of any input BFD. */
7773 asection **sections;
7774 /* Buffer for SHT_SYMTAB_SHNDX section. */
7775 Elf_External_Sym_Shndx *symshndxbuf;
7776 /* Number of STT_FILE syms seen. */
7777 size_t filesym_count;
7778 };
7779
7780 /* This struct is used to pass information to elf_link_output_extsym. */
7781
7782 struct elf_outext_info
7783 {
7784 bfd_boolean failed;
7785 bfd_boolean localsyms;
7786 bfd_boolean file_sym_done;
7787 struct elf_final_link_info *flinfo;
7788 };
7789
7790
7791 /* Support for evaluating a complex relocation.
7792
7793 Complex relocations are generalized, self-describing relocations. The
7794 implementation of them consists of two parts: complex symbols, and the
7795 relocations themselves.
7796
7797 The relocations are use a reserved elf-wide relocation type code (R_RELC
7798 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7799 information (start bit, end bit, word width, etc) into the addend. This
7800 information is extracted from CGEN-generated operand tables within gas.
7801
7802 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7803 internal) representing prefix-notation expressions, including but not
7804 limited to those sorts of expressions normally encoded as addends in the
7805 addend field. The symbol mangling format is:
7806
7807 <node> := <literal>
7808 | <unary-operator> ':' <node>
7809 | <binary-operator> ':' <node> ':' <node>
7810 ;
7811
7812 <literal> := 's' <digits=N> ':' <N character symbol name>
7813 | 'S' <digits=N> ':' <N character section name>
7814 | '#' <hexdigits>
7815 ;
7816
7817 <binary-operator> := as in C
7818 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7819
7820 static void
7821 set_symbol_value (bfd *bfd_with_globals,
7822 Elf_Internal_Sym *isymbuf,
7823 size_t locsymcount,
7824 size_t symidx,
7825 bfd_vma val)
7826 {
7827 struct elf_link_hash_entry **sym_hashes;
7828 struct elf_link_hash_entry *h;
7829 size_t extsymoff = locsymcount;
7830
7831 if (symidx < locsymcount)
7832 {
7833 Elf_Internal_Sym *sym;
7834
7835 sym = isymbuf + symidx;
7836 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7837 {
7838 /* It is a local symbol: move it to the
7839 "absolute" section and give it a value. */
7840 sym->st_shndx = SHN_ABS;
7841 sym->st_value = val;
7842 return;
7843 }
7844 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7845 extsymoff = 0;
7846 }
7847
7848 /* It is a global symbol: set its link type
7849 to "defined" and give it a value. */
7850
7851 sym_hashes = elf_sym_hashes (bfd_with_globals);
7852 h = sym_hashes [symidx - extsymoff];
7853 while (h->root.type == bfd_link_hash_indirect
7854 || h->root.type == bfd_link_hash_warning)
7855 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7856 h->root.type = bfd_link_hash_defined;
7857 h->root.u.def.value = val;
7858 h->root.u.def.section = bfd_abs_section_ptr;
7859 }
7860
7861 static bfd_boolean
7862 resolve_symbol (const char *name,
7863 bfd *input_bfd,
7864 struct elf_final_link_info *flinfo,
7865 bfd_vma *result,
7866 Elf_Internal_Sym *isymbuf,
7867 size_t locsymcount)
7868 {
7869 Elf_Internal_Sym *sym;
7870 struct bfd_link_hash_entry *global_entry;
7871 const char *candidate = NULL;
7872 Elf_Internal_Shdr *symtab_hdr;
7873 size_t i;
7874
7875 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7876
7877 for (i = 0; i < locsymcount; ++ i)
7878 {
7879 sym = isymbuf + i;
7880
7881 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7882 continue;
7883
7884 candidate = bfd_elf_string_from_elf_section (input_bfd,
7885 symtab_hdr->sh_link,
7886 sym->st_name);
7887 #ifdef DEBUG
7888 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7889 name, candidate, (unsigned long) sym->st_value);
7890 #endif
7891 if (candidate && strcmp (candidate, name) == 0)
7892 {
7893 asection *sec = flinfo->sections [i];
7894
7895 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7896 *result += sec->output_offset + sec->output_section->vma;
7897 #ifdef DEBUG
7898 printf ("Found symbol with value %8.8lx\n",
7899 (unsigned long) *result);
7900 #endif
7901 return TRUE;
7902 }
7903 }
7904
7905 /* Hmm, haven't found it yet. perhaps it is a global. */
7906 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7907 FALSE, FALSE, TRUE);
7908 if (!global_entry)
7909 return FALSE;
7910
7911 if (global_entry->type == bfd_link_hash_defined
7912 || global_entry->type == bfd_link_hash_defweak)
7913 {
7914 *result = (global_entry->u.def.value
7915 + global_entry->u.def.section->output_section->vma
7916 + global_entry->u.def.section->output_offset);
7917 #ifdef DEBUG
7918 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7919 global_entry->root.string, (unsigned long) *result);
7920 #endif
7921 return TRUE;
7922 }
7923
7924 return FALSE;
7925 }
7926
7927 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
7928 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
7929 names like "foo.end" which is the end address of section "foo". */
7930
7931 static bfd_boolean
7932 resolve_section (const char *name,
7933 asection *sections,
7934 bfd_vma *result,
7935 bfd * abfd)
7936 {
7937 asection *curr;
7938 unsigned int len;
7939
7940 for (curr = sections; curr; curr = curr->next)
7941 if (strcmp (curr->name, name) == 0)
7942 {
7943 *result = curr->vma;
7944 return TRUE;
7945 }
7946
7947 /* Hmm. still haven't found it. try pseudo-section names. */
7948 /* FIXME: This could be coded more efficiently... */
7949 for (curr = sections; curr; curr = curr->next)
7950 {
7951 len = strlen (curr->name);
7952 if (len > strlen (name))
7953 continue;
7954
7955 if (strncmp (curr->name, name, len) == 0)
7956 {
7957 if (strncmp (".end", name + len, 4) == 0)
7958 {
7959 *result = curr->vma + curr->size / bfd_octets_per_byte (abfd);
7960 return TRUE;
7961 }
7962
7963 /* Insert more pseudo-section names here, if you like. */
7964 }
7965 }
7966
7967 return FALSE;
7968 }
7969
7970 static void
7971 undefined_reference (const char *reftype, const char *name)
7972 {
7973 /* xgettext:c-format */
7974 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7975 reftype, name);
7976 }
7977
7978 static bfd_boolean
7979 eval_symbol (bfd_vma *result,
7980 const char **symp,
7981 bfd *input_bfd,
7982 struct elf_final_link_info *flinfo,
7983 bfd_vma dot,
7984 Elf_Internal_Sym *isymbuf,
7985 size_t locsymcount,
7986 int signed_p)
7987 {
7988 size_t len;
7989 size_t symlen;
7990 bfd_vma a;
7991 bfd_vma b;
7992 char symbuf[4096];
7993 const char *sym = *symp;
7994 const char *symend;
7995 bfd_boolean symbol_is_section = FALSE;
7996
7997 len = strlen (sym);
7998 symend = sym + len;
7999
8000 if (len < 1 || len > sizeof (symbuf))
8001 {
8002 bfd_set_error (bfd_error_invalid_operation);
8003 return FALSE;
8004 }
8005
8006 switch (* sym)
8007 {
8008 case '.':
8009 *result = dot;
8010 *symp = sym + 1;
8011 return TRUE;
8012
8013 case '#':
8014 ++sym;
8015 *result = strtoul (sym, (char **) symp, 16);
8016 return TRUE;
8017
8018 case 'S':
8019 symbol_is_section = TRUE;
8020 /* Fall through. */
8021 case 's':
8022 ++sym;
8023 symlen = strtol (sym, (char **) symp, 10);
8024 sym = *symp + 1; /* Skip the trailing ':'. */
8025
8026 if (symend < sym || symlen + 1 > sizeof (symbuf))
8027 {
8028 bfd_set_error (bfd_error_invalid_operation);
8029 return FALSE;
8030 }
8031
8032 memcpy (symbuf, sym, symlen);
8033 symbuf[symlen] = '\0';
8034 *symp = sym + symlen;
8035
8036 /* Is it always possible, with complex symbols, that gas "mis-guessed"
8037 the symbol as a section, or vice-versa. so we're pretty liberal in our
8038 interpretation here; section means "try section first", not "must be a
8039 section", and likewise with symbol. */
8040
8041 if (symbol_is_section)
8042 {
8043 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
8044 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
8045 isymbuf, locsymcount))
8046 {
8047 undefined_reference ("section", symbuf);
8048 return FALSE;
8049 }
8050 }
8051 else
8052 {
8053 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
8054 isymbuf, locsymcount)
8055 && !resolve_section (symbuf, flinfo->output_bfd->sections,
8056 result, input_bfd))
8057 {
8058 undefined_reference ("symbol", symbuf);
8059 return FALSE;
8060 }
8061 }
8062
8063 return TRUE;
8064
8065 /* All that remains are operators. */
8066
8067 #define UNARY_OP(op) \
8068 if (strncmp (sym, #op, strlen (#op)) == 0) \
8069 { \
8070 sym += strlen (#op); \
8071 if (*sym == ':') \
8072 ++sym; \
8073 *symp = sym; \
8074 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8075 isymbuf, locsymcount, signed_p)) \
8076 return FALSE; \
8077 if (signed_p) \
8078 *result = op ((bfd_signed_vma) a); \
8079 else \
8080 *result = op a; \
8081 return TRUE; \
8082 }
8083
8084 #define BINARY_OP(op) \
8085 if (strncmp (sym, #op, strlen (#op)) == 0) \
8086 { \
8087 sym += strlen (#op); \
8088 if (*sym == ':') \
8089 ++sym; \
8090 *symp = sym; \
8091 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8092 isymbuf, locsymcount, signed_p)) \
8093 return FALSE; \
8094 ++*symp; \
8095 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8096 isymbuf, locsymcount, signed_p)) \
8097 return FALSE; \
8098 if (signed_p) \
8099 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8100 else \
8101 *result = a op b; \
8102 return TRUE; \
8103 }
8104
8105 default:
8106 UNARY_OP (0-);
8107 BINARY_OP (<<);
8108 BINARY_OP (>>);
8109 BINARY_OP (==);
8110 BINARY_OP (!=);
8111 BINARY_OP (<=);
8112 BINARY_OP (>=);
8113 BINARY_OP (&&);
8114 BINARY_OP (||);
8115 UNARY_OP (~);
8116 UNARY_OP (!);
8117 BINARY_OP (*);
8118 BINARY_OP (/);
8119 BINARY_OP (%);
8120 BINARY_OP (^);
8121 BINARY_OP (|);
8122 BINARY_OP (&);
8123 BINARY_OP (+);
8124 BINARY_OP (-);
8125 BINARY_OP (<);
8126 BINARY_OP (>);
8127 #undef UNARY_OP
8128 #undef BINARY_OP
8129 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8130 bfd_set_error (bfd_error_invalid_operation);
8131 return FALSE;
8132 }
8133 }
8134
8135 static void
8136 put_value (bfd_vma size,
8137 unsigned long chunksz,
8138 bfd *input_bfd,
8139 bfd_vma x,
8140 bfd_byte *location)
8141 {
8142 location += (size - chunksz);
8143
8144 for (; size; size -= chunksz, location -= chunksz)
8145 {
8146 switch (chunksz)
8147 {
8148 case 1:
8149 bfd_put_8 (input_bfd, x, location);
8150 x >>= 8;
8151 break;
8152 case 2:
8153 bfd_put_16 (input_bfd, x, location);
8154 x >>= 16;
8155 break;
8156 case 4:
8157 bfd_put_32 (input_bfd, x, location);
8158 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8159 x >>= 16;
8160 x >>= 16;
8161 break;
8162 #ifdef BFD64
8163 case 8:
8164 bfd_put_64 (input_bfd, x, location);
8165 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8166 x >>= 32;
8167 x >>= 32;
8168 break;
8169 #endif
8170 default:
8171 abort ();
8172 break;
8173 }
8174 }
8175 }
8176
8177 static bfd_vma
8178 get_value (bfd_vma size,
8179 unsigned long chunksz,
8180 bfd *input_bfd,
8181 bfd_byte *location)
8182 {
8183 int shift;
8184 bfd_vma x = 0;
8185
8186 /* Sanity checks. */
8187 BFD_ASSERT (chunksz <= sizeof (x)
8188 && size >= chunksz
8189 && chunksz != 0
8190 && (size % chunksz) == 0
8191 && input_bfd != NULL
8192 && location != NULL);
8193
8194 if (chunksz == sizeof (x))
8195 {
8196 BFD_ASSERT (size == chunksz);
8197
8198 /* Make sure that we do not perform an undefined shift operation.
8199 We know that size == chunksz so there will only be one iteration
8200 of the loop below. */
8201 shift = 0;
8202 }
8203 else
8204 shift = 8 * chunksz;
8205
8206 for (; size; size -= chunksz, location += chunksz)
8207 {
8208 switch (chunksz)
8209 {
8210 case 1:
8211 x = (x << shift) | bfd_get_8 (input_bfd, location);
8212 break;
8213 case 2:
8214 x = (x << shift) | bfd_get_16 (input_bfd, location);
8215 break;
8216 case 4:
8217 x = (x << shift) | bfd_get_32 (input_bfd, location);
8218 break;
8219 #ifdef BFD64
8220 case 8:
8221 x = (x << shift) | bfd_get_64 (input_bfd, location);
8222 break;
8223 #endif
8224 default:
8225 abort ();
8226 }
8227 }
8228 return x;
8229 }
8230
8231 static void
8232 decode_complex_addend (unsigned long *start, /* in bits */
8233 unsigned long *oplen, /* in bits */
8234 unsigned long *len, /* in bits */
8235 unsigned long *wordsz, /* in bytes */
8236 unsigned long *chunksz, /* in bytes */
8237 unsigned long *lsb0_p,
8238 unsigned long *signed_p,
8239 unsigned long *trunc_p,
8240 unsigned long encoded)
8241 {
8242 * start = encoded & 0x3F;
8243 * len = (encoded >> 6) & 0x3F;
8244 * oplen = (encoded >> 12) & 0x3F;
8245 * wordsz = (encoded >> 18) & 0xF;
8246 * chunksz = (encoded >> 22) & 0xF;
8247 * lsb0_p = (encoded >> 27) & 1;
8248 * signed_p = (encoded >> 28) & 1;
8249 * trunc_p = (encoded >> 29) & 1;
8250 }
8251
8252 bfd_reloc_status_type
8253 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8254 asection *input_section ATTRIBUTE_UNUSED,
8255 bfd_byte *contents,
8256 Elf_Internal_Rela *rel,
8257 bfd_vma relocation)
8258 {
8259 bfd_vma shift, x, mask;
8260 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8261 bfd_reloc_status_type r;
8262
8263 /* Perform this reloc, since it is complex.
8264 (this is not to say that it necessarily refers to a complex
8265 symbol; merely that it is a self-describing CGEN based reloc.
8266 i.e. the addend has the complete reloc information (bit start, end,
8267 word size, etc) encoded within it.). */
8268
8269 decode_complex_addend (&start, &oplen, &len, &wordsz,
8270 &chunksz, &lsb0_p, &signed_p,
8271 &trunc_p, rel->r_addend);
8272
8273 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8274
8275 if (lsb0_p)
8276 shift = (start + 1) - len;
8277 else
8278 shift = (8 * wordsz) - (start + len);
8279
8280 x = get_value (wordsz, chunksz, input_bfd,
8281 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8282
8283 #ifdef DEBUG
8284 printf ("Doing complex reloc: "
8285 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8286 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8287 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8288 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8289 oplen, (unsigned long) x, (unsigned long) mask,
8290 (unsigned long) relocation);
8291 #endif
8292
8293 r = bfd_reloc_ok;
8294 if (! trunc_p)
8295 /* Now do an overflow check. */
8296 r = bfd_check_overflow ((signed_p
8297 ? complain_overflow_signed
8298 : complain_overflow_unsigned),
8299 len, 0, (8 * wordsz),
8300 relocation);
8301
8302 /* Do the deed. */
8303 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8304
8305 #ifdef DEBUG
8306 printf (" relocation: %8.8lx\n"
8307 " shifted mask: %8.8lx\n"
8308 " shifted/masked reloc: %8.8lx\n"
8309 " result: %8.8lx\n",
8310 (unsigned long) relocation, (unsigned long) (mask << shift),
8311 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8312 #endif
8313 put_value (wordsz, chunksz, input_bfd, x,
8314 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8315 return r;
8316 }
8317
8318 /* Functions to read r_offset from external (target order) reloc
8319 entry. Faster than bfd_getl32 et al, because we let the compiler
8320 know the value is aligned. */
8321
8322 static bfd_vma
8323 ext32l_r_offset (const void *p)
8324 {
8325 union aligned32
8326 {
8327 uint32_t v;
8328 unsigned char c[4];
8329 };
8330 const union aligned32 *a
8331 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8332
8333 uint32_t aval = ( (uint32_t) a->c[0]
8334 | (uint32_t) a->c[1] << 8
8335 | (uint32_t) a->c[2] << 16
8336 | (uint32_t) a->c[3] << 24);
8337 return aval;
8338 }
8339
8340 static bfd_vma
8341 ext32b_r_offset (const void *p)
8342 {
8343 union aligned32
8344 {
8345 uint32_t v;
8346 unsigned char c[4];
8347 };
8348 const union aligned32 *a
8349 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8350
8351 uint32_t aval = ( (uint32_t) a->c[0] << 24
8352 | (uint32_t) a->c[1] << 16
8353 | (uint32_t) a->c[2] << 8
8354 | (uint32_t) a->c[3]);
8355 return aval;
8356 }
8357
8358 #ifdef BFD_HOST_64_BIT
8359 static bfd_vma
8360 ext64l_r_offset (const void *p)
8361 {
8362 union aligned64
8363 {
8364 uint64_t v;
8365 unsigned char c[8];
8366 };
8367 const union aligned64 *a
8368 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8369
8370 uint64_t aval = ( (uint64_t) a->c[0]
8371 | (uint64_t) a->c[1] << 8
8372 | (uint64_t) a->c[2] << 16
8373 | (uint64_t) a->c[3] << 24
8374 | (uint64_t) a->c[4] << 32
8375 | (uint64_t) a->c[5] << 40
8376 | (uint64_t) a->c[6] << 48
8377 | (uint64_t) a->c[7] << 56);
8378 return aval;
8379 }
8380
8381 static bfd_vma
8382 ext64b_r_offset (const void *p)
8383 {
8384 union aligned64
8385 {
8386 uint64_t v;
8387 unsigned char c[8];
8388 };
8389 const union aligned64 *a
8390 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8391
8392 uint64_t aval = ( (uint64_t) a->c[0] << 56
8393 | (uint64_t) a->c[1] << 48
8394 | (uint64_t) a->c[2] << 40
8395 | (uint64_t) a->c[3] << 32
8396 | (uint64_t) a->c[4] << 24
8397 | (uint64_t) a->c[5] << 16
8398 | (uint64_t) a->c[6] << 8
8399 | (uint64_t) a->c[7]);
8400 return aval;
8401 }
8402 #endif
8403
8404 /* When performing a relocatable link, the input relocations are
8405 preserved. But, if they reference global symbols, the indices
8406 referenced must be updated. Update all the relocations found in
8407 RELDATA. */
8408
8409 static bfd_boolean
8410 elf_link_adjust_relocs (bfd *abfd,
8411 asection *sec,
8412 struct bfd_elf_section_reloc_data *reldata,
8413 bfd_boolean sort)
8414 {
8415 unsigned int i;
8416 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8417 bfd_byte *erela;
8418 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8419 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8420 bfd_vma r_type_mask;
8421 int r_sym_shift;
8422 unsigned int count = reldata->count;
8423 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8424
8425 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8426 {
8427 swap_in = bed->s->swap_reloc_in;
8428 swap_out = bed->s->swap_reloc_out;
8429 }
8430 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8431 {
8432 swap_in = bed->s->swap_reloca_in;
8433 swap_out = bed->s->swap_reloca_out;
8434 }
8435 else
8436 abort ();
8437
8438 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8439 abort ();
8440
8441 if (bed->s->arch_size == 32)
8442 {
8443 r_type_mask = 0xff;
8444 r_sym_shift = 8;
8445 }
8446 else
8447 {
8448 r_type_mask = 0xffffffff;
8449 r_sym_shift = 32;
8450 }
8451
8452 erela = reldata->hdr->contents;
8453 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8454 {
8455 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8456 unsigned int j;
8457
8458 if (*rel_hash == NULL)
8459 continue;
8460
8461 BFD_ASSERT ((*rel_hash)->indx >= 0);
8462
8463 (*swap_in) (abfd, erela, irela);
8464 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8465 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8466 | (irela[j].r_info & r_type_mask));
8467 (*swap_out) (abfd, irela, erela);
8468 }
8469
8470 if (bed->elf_backend_update_relocs)
8471 (*bed->elf_backend_update_relocs) (sec, reldata);
8472
8473 if (sort && count != 0)
8474 {
8475 bfd_vma (*ext_r_off) (const void *);
8476 bfd_vma r_off;
8477 size_t elt_size;
8478 bfd_byte *base, *end, *p, *loc;
8479 bfd_byte *buf = NULL;
8480
8481 if (bed->s->arch_size == 32)
8482 {
8483 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8484 ext_r_off = ext32l_r_offset;
8485 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8486 ext_r_off = ext32b_r_offset;
8487 else
8488 abort ();
8489 }
8490 else
8491 {
8492 #ifdef BFD_HOST_64_BIT
8493 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8494 ext_r_off = ext64l_r_offset;
8495 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8496 ext_r_off = ext64b_r_offset;
8497 else
8498 #endif
8499 abort ();
8500 }
8501
8502 /* Must use a stable sort here. A modified insertion sort,
8503 since the relocs are mostly sorted already. */
8504 elt_size = reldata->hdr->sh_entsize;
8505 base = reldata->hdr->contents;
8506 end = base + count * elt_size;
8507 if (elt_size > sizeof (Elf64_External_Rela))
8508 abort ();
8509
8510 /* Ensure the first element is lowest. This acts as a sentinel,
8511 speeding the main loop below. */
8512 r_off = (*ext_r_off) (base);
8513 for (p = loc = base; (p += elt_size) < end; )
8514 {
8515 bfd_vma r_off2 = (*ext_r_off) (p);
8516 if (r_off > r_off2)
8517 {
8518 r_off = r_off2;
8519 loc = p;
8520 }
8521 }
8522 if (loc != base)
8523 {
8524 /* Don't just swap *base and *loc as that changes the order
8525 of the original base[0] and base[1] if they happen to
8526 have the same r_offset. */
8527 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
8528 memcpy (onebuf, loc, elt_size);
8529 memmove (base + elt_size, base, loc - base);
8530 memcpy (base, onebuf, elt_size);
8531 }
8532
8533 for (p = base + elt_size; (p += elt_size) < end; )
8534 {
8535 /* base to p is sorted, *p is next to insert. */
8536 r_off = (*ext_r_off) (p);
8537 /* Search the sorted region for location to insert. */
8538 loc = p - elt_size;
8539 while (r_off < (*ext_r_off) (loc))
8540 loc -= elt_size;
8541 loc += elt_size;
8542 if (loc != p)
8543 {
8544 /* Chances are there is a run of relocs to insert here,
8545 from one of more input files. Files are not always
8546 linked in order due to the way elf_link_input_bfd is
8547 called. See pr17666. */
8548 size_t sortlen = p - loc;
8549 bfd_vma r_off2 = (*ext_r_off) (loc);
8550 size_t runlen = elt_size;
8551 size_t buf_size = 96 * 1024;
8552 while (p + runlen < end
8553 && (sortlen <= buf_size
8554 || runlen + elt_size <= buf_size)
8555 && r_off2 > (*ext_r_off) (p + runlen))
8556 runlen += elt_size;
8557 if (buf == NULL)
8558 {
8559 buf = bfd_malloc (buf_size);
8560 if (buf == NULL)
8561 return FALSE;
8562 }
8563 if (runlen < sortlen)
8564 {
8565 memcpy (buf, p, runlen);
8566 memmove (loc + runlen, loc, sortlen);
8567 memcpy (loc, buf, runlen);
8568 }
8569 else
8570 {
8571 memcpy (buf, loc, sortlen);
8572 memmove (loc, p, runlen);
8573 memcpy (loc + runlen, buf, sortlen);
8574 }
8575 p += runlen - elt_size;
8576 }
8577 }
8578 /* Hashes are no longer valid. */
8579 free (reldata->hashes);
8580 reldata->hashes = NULL;
8581 free (buf);
8582 }
8583 return TRUE;
8584 }
8585
8586 struct elf_link_sort_rela
8587 {
8588 union {
8589 bfd_vma offset;
8590 bfd_vma sym_mask;
8591 } u;
8592 enum elf_reloc_type_class type;
8593 /* We use this as an array of size int_rels_per_ext_rel. */
8594 Elf_Internal_Rela rela[1];
8595 };
8596
8597 static int
8598 elf_link_sort_cmp1 (const void *A, const void *B)
8599 {
8600 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8601 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8602 int relativea, relativeb;
8603
8604 relativea = a->type == reloc_class_relative;
8605 relativeb = b->type == reloc_class_relative;
8606
8607 if (relativea < relativeb)
8608 return 1;
8609 if (relativea > relativeb)
8610 return -1;
8611 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8612 return -1;
8613 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8614 return 1;
8615 if (a->rela->r_offset < b->rela->r_offset)
8616 return -1;
8617 if (a->rela->r_offset > b->rela->r_offset)
8618 return 1;
8619 return 0;
8620 }
8621
8622 static int
8623 elf_link_sort_cmp2 (const void *A, const void *B)
8624 {
8625 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8626 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8627
8628 if (a->type < b->type)
8629 return -1;
8630 if (a->type > b->type)
8631 return 1;
8632 if (a->u.offset < b->u.offset)
8633 return -1;
8634 if (a->u.offset > b->u.offset)
8635 return 1;
8636 if (a->rela->r_offset < b->rela->r_offset)
8637 return -1;
8638 if (a->rela->r_offset > b->rela->r_offset)
8639 return 1;
8640 return 0;
8641 }
8642
8643 static size_t
8644 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8645 {
8646 asection *dynamic_relocs;
8647 asection *rela_dyn;
8648 asection *rel_dyn;
8649 bfd_size_type count, size;
8650 size_t i, ret, sort_elt, ext_size;
8651 bfd_byte *sort, *s_non_relative, *p;
8652 struct elf_link_sort_rela *sq;
8653 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8654 int i2e = bed->s->int_rels_per_ext_rel;
8655 unsigned int opb = bfd_octets_per_byte (abfd);
8656 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8657 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8658 struct bfd_link_order *lo;
8659 bfd_vma r_sym_mask;
8660 bfd_boolean use_rela;
8661
8662 /* Find a dynamic reloc section. */
8663 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8664 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8665 if (rela_dyn != NULL && rela_dyn->size > 0
8666 && rel_dyn != NULL && rel_dyn->size > 0)
8667 {
8668 bfd_boolean use_rela_initialised = FALSE;
8669
8670 /* This is just here to stop gcc from complaining.
8671 Its initialization checking code is not perfect. */
8672 use_rela = TRUE;
8673
8674 /* Both sections are present. Examine the sizes
8675 of the indirect sections to help us choose. */
8676 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8677 if (lo->type == bfd_indirect_link_order)
8678 {
8679 asection *o = lo->u.indirect.section;
8680
8681 if ((o->size % bed->s->sizeof_rela) == 0)
8682 {
8683 if ((o->size % bed->s->sizeof_rel) == 0)
8684 /* Section size is divisible by both rel and rela sizes.
8685 It is of no help to us. */
8686 ;
8687 else
8688 {
8689 /* Section size is only divisible by rela. */
8690 if (use_rela_initialised && (use_rela == FALSE))
8691 {
8692 _bfd_error_handler (_("%B: Unable to sort relocs - "
8693 "they are in more than one size"),
8694 abfd);
8695 bfd_set_error (bfd_error_invalid_operation);
8696 return 0;
8697 }
8698 else
8699 {
8700 use_rela = TRUE;
8701 use_rela_initialised = TRUE;
8702 }
8703 }
8704 }
8705 else if ((o->size % bed->s->sizeof_rel) == 0)
8706 {
8707 /* Section size is only divisible by rel. */
8708 if (use_rela_initialised && (use_rela == TRUE))
8709 {
8710 _bfd_error_handler (_("%B: Unable to sort relocs - "
8711 "they are in more than one size"),
8712 abfd);
8713 bfd_set_error (bfd_error_invalid_operation);
8714 return 0;
8715 }
8716 else
8717 {
8718 use_rela = FALSE;
8719 use_rela_initialised = TRUE;
8720 }
8721 }
8722 else
8723 {
8724 /* The section size is not divisible by either -
8725 something is wrong. */
8726 _bfd_error_handler (_("%B: Unable to sort relocs - "
8727 "they are of an unknown size"), abfd);
8728 bfd_set_error (bfd_error_invalid_operation);
8729 return 0;
8730 }
8731 }
8732
8733 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8734 if (lo->type == bfd_indirect_link_order)
8735 {
8736 asection *o = lo->u.indirect.section;
8737
8738 if ((o->size % bed->s->sizeof_rela) == 0)
8739 {
8740 if ((o->size % bed->s->sizeof_rel) == 0)
8741 /* Section size is divisible by both rel and rela sizes.
8742 It is of no help to us. */
8743 ;
8744 else
8745 {
8746 /* Section size is only divisible by rela. */
8747 if (use_rela_initialised && (use_rela == FALSE))
8748 {
8749 _bfd_error_handler (_("%B: Unable to sort relocs - "
8750 "they are in more than one size"),
8751 abfd);
8752 bfd_set_error (bfd_error_invalid_operation);
8753 return 0;
8754 }
8755 else
8756 {
8757 use_rela = TRUE;
8758 use_rela_initialised = TRUE;
8759 }
8760 }
8761 }
8762 else if ((o->size % bed->s->sizeof_rel) == 0)
8763 {
8764 /* Section size is only divisible by rel. */
8765 if (use_rela_initialised && (use_rela == TRUE))
8766 {
8767 _bfd_error_handler (_("%B: Unable to sort relocs - "
8768 "they are in more than one size"),
8769 abfd);
8770 bfd_set_error (bfd_error_invalid_operation);
8771 return 0;
8772 }
8773 else
8774 {
8775 use_rela = FALSE;
8776 use_rela_initialised = TRUE;
8777 }
8778 }
8779 else
8780 {
8781 /* The section size is not divisible by either -
8782 something is wrong. */
8783 _bfd_error_handler (_("%B: Unable to sort relocs - "
8784 "they are of an unknown size"), abfd);
8785 bfd_set_error (bfd_error_invalid_operation);
8786 return 0;
8787 }
8788 }
8789
8790 if (! use_rela_initialised)
8791 /* Make a guess. */
8792 use_rela = TRUE;
8793 }
8794 else if (rela_dyn != NULL && rela_dyn->size > 0)
8795 use_rela = TRUE;
8796 else if (rel_dyn != NULL && rel_dyn->size > 0)
8797 use_rela = FALSE;
8798 else
8799 return 0;
8800
8801 if (use_rela)
8802 {
8803 dynamic_relocs = rela_dyn;
8804 ext_size = bed->s->sizeof_rela;
8805 swap_in = bed->s->swap_reloca_in;
8806 swap_out = bed->s->swap_reloca_out;
8807 }
8808 else
8809 {
8810 dynamic_relocs = rel_dyn;
8811 ext_size = bed->s->sizeof_rel;
8812 swap_in = bed->s->swap_reloc_in;
8813 swap_out = bed->s->swap_reloc_out;
8814 }
8815
8816 size = 0;
8817 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8818 if (lo->type == bfd_indirect_link_order)
8819 size += lo->u.indirect.section->size;
8820
8821 if (size != dynamic_relocs->size)
8822 return 0;
8823
8824 sort_elt = (sizeof (struct elf_link_sort_rela)
8825 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8826
8827 count = dynamic_relocs->size / ext_size;
8828 if (count == 0)
8829 return 0;
8830 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8831
8832 if (sort == NULL)
8833 {
8834 (*info->callbacks->warning)
8835 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8836 return 0;
8837 }
8838
8839 if (bed->s->arch_size == 32)
8840 r_sym_mask = ~(bfd_vma) 0xff;
8841 else
8842 r_sym_mask = ~(bfd_vma) 0xffffffff;
8843
8844 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8845 if (lo->type == bfd_indirect_link_order)
8846 {
8847 bfd_byte *erel, *erelend;
8848 asection *o = lo->u.indirect.section;
8849
8850 if (o->contents == NULL && o->size != 0)
8851 {
8852 /* This is a reloc section that is being handled as a normal
8853 section. See bfd_section_from_shdr. We can't combine
8854 relocs in this case. */
8855 free (sort);
8856 return 0;
8857 }
8858 erel = o->contents;
8859 erelend = o->contents + o->size;
8860 p = sort + o->output_offset * opb / ext_size * sort_elt;
8861
8862 while (erel < erelend)
8863 {
8864 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8865
8866 (*swap_in) (abfd, erel, s->rela);
8867 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8868 s->u.sym_mask = r_sym_mask;
8869 p += sort_elt;
8870 erel += ext_size;
8871 }
8872 }
8873
8874 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8875
8876 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8877 {
8878 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8879 if (s->type != reloc_class_relative)
8880 break;
8881 }
8882 ret = i;
8883 s_non_relative = p;
8884
8885 sq = (struct elf_link_sort_rela *) s_non_relative;
8886 for (; i < count; i++, p += sort_elt)
8887 {
8888 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8889 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8890 sq = sp;
8891 sp->u.offset = sq->rela->r_offset;
8892 }
8893
8894 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8895
8896 struct elf_link_hash_table *htab = elf_hash_table (info);
8897 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
8898 {
8899 /* We have plt relocs in .rela.dyn. */
8900 sq = (struct elf_link_sort_rela *) sort;
8901 for (i = 0; i < count; i++)
8902 if (sq[count - i - 1].type != reloc_class_plt)
8903 break;
8904 if (i != 0 && htab->srelplt->size == i * ext_size)
8905 {
8906 struct bfd_link_order **plo;
8907 /* Put srelplt link_order last. This is so the output_offset
8908 set in the next loop is correct for DT_JMPREL. */
8909 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
8910 if ((*plo)->type == bfd_indirect_link_order
8911 && (*plo)->u.indirect.section == htab->srelplt)
8912 {
8913 lo = *plo;
8914 *plo = lo->next;
8915 }
8916 else
8917 plo = &(*plo)->next;
8918 *plo = lo;
8919 lo->next = NULL;
8920 dynamic_relocs->map_tail.link_order = lo;
8921 }
8922 }
8923
8924 p = sort;
8925 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8926 if (lo->type == bfd_indirect_link_order)
8927 {
8928 bfd_byte *erel, *erelend;
8929 asection *o = lo->u.indirect.section;
8930
8931 erel = o->contents;
8932 erelend = o->contents + o->size;
8933 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
8934 while (erel < erelend)
8935 {
8936 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8937 (*swap_out) (abfd, s->rela, erel);
8938 p += sort_elt;
8939 erel += ext_size;
8940 }
8941 }
8942
8943 free (sort);
8944 *psec = dynamic_relocs;
8945 return ret;
8946 }
8947
8948 /* Add a symbol to the output symbol string table. */
8949
8950 static int
8951 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
8952 const char *name,
8953 Elf_Internal_Sym *elfsym,
8954 asection *input_sec,
8955 struct elf_link_hash_entry *h)
8956 {
8957 int (*output_symbol_hook)
8958 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8959 struct elf_link_hash_entry *);
8960 struct elf_link_hash_table *hash_table;
8961 const struct elf_backend_data *bed;
8962 bfd_size_type strtabsize;
8963
8964 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8965
8966 bed = get_elf_backend_data (flinfo->output_bfd);
8967 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8968 if (output_symbol_hook != NULL)
8969 {
8970 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8971 if (ret != 1)
8972 return ret;
8973 }
8974
8975 if (name == NULL
8976 || *name == '\0'
8977 || (input_sec->flags & SEC_EXCLUDE))
8978 elfsym->st_name = (unsigned long) -1;
8979 else
8980 {
8981 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
8982 to get the final offset for st_name. */
8983 elfsym->st_name
8984 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
8985 name, FALSE);
8986 if (elfsym->st_name == (unsigned long) -1)
8987 return 0;
8988 }
8989
8990 hash_table = elf_hash_table (flinfo->info);
8991 strtabsize = hash_table->strtabsize;
8992 if (strtabsize <= hash_table->strtabcount)
8993 {
8994 strtabsize += strtabsize;
8995 hash_table->strtabsize = strtabsize;
8996 strtabsize *= sizeof (*hash_table->strtab);
8997 hash_table->strtab
8998 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
8999 strtabsize);
9000 if (hash_table->strtab == NULL)
9001 return 0;
9002 }
9003 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
9004 hash_table->strtab[hash_table->strtabcount].dest_index
9005 = hash_table->strtabcount;
9006 hash_table->strtab[hash_table->strtabcount].destshndx_index
9007 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
9008
9009 bfd_get_symcount (flinfo->output_bfd) += 1;
9010 hash_table->strtabcount += 1;
9011
9012 return 1;
9013 }
9014
9015 /* Swap symbols out to the symbol table and flush the output symbols to
9016 the file. */
9017
9018 static bfd_boolean
9019 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
9020 {
9021 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
9022 bfd_size_type amt;
9023 size_t i;
9024 const struct elf_backend_data *bed;
9025 bfd_byte *symbuf;
9026 Elf_Internal_Shdr *hdr;
9027 file_ptr pos;
9028 bfd_boolean ret;
9029
9030 if (!hash_table->strtabcount)
9031 return TRUE;
9032
9033 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9034
9035 bed = get_elf_backend_data (flinfo->output_bfd);
9036
9037 amt = bed->s->sizeof_sym * hash_table->strtabcount;
9038 symbuf = (bfd_byte *) bfd_malloc (amt);
9039 if (symbuf == NULL)
9040 return FALSE;
9041
9042 if (flinfo->symshndxbuf)
9043 {
9044 amt = sizeof (Elf_External_Sym_Shndx);
9045 amt *= bfd_get_symcount (flinfo->output_bfd);
9046 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
9047 if (flinfo->symshndxbuf == NULL)
9048 {
9049 free (symbuf);
9050 return FALSE;
9051 }
9052 }
9053
9054 for (i = 0; i < hash_table->strtabcount; i++)
9055 {
9056 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
9057 if (elfsym->sym.st_name == (unsigned long) -1)
9058 elfsym->sym.st_name = 0;
9059 else
9060 elfsym->sym.st_name
9061 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
9062 elfsym->sym.st_name);
9063 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
9064 ((bfd_byte *) symbuf
9065 + (elfsym->dest_index
9066 * bed->s->sizeof_sym)),
9067 (flinfo->symshndxbuf
9068 + elfsym->destshndx_index));
9069 }
9070
9071 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
9072 pos = hdr->sh_offset + hdr->sh_size;
9073 amt = hash_table->strtabcount * bed->s->sizeof_sym;
9074 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
9075 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
9076 {
9077 hdr->sh_size += amt;
9078 ret = TRUE;
9079 }
9080 else
9081 ret = FALSE;
9082
9083 free (symbuf);
9084
9085 free (hash_table->strtab);
9086 hash_table->strtab = NULL;
9087
9088 return ret;
9089 }
9090
9091 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9092
9093 static bfd_boolean
9094 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9095 {
9096 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9097 && sym->st_shndx < SHN_LORESERVE)
9098 {
9099 /* The gABI doesn't support dynamic symbols in output sections
9100 beyond 64k. */
9101 _bfd_error_handler
9102 /* xgettext:c-format */
9103 (_("%B: Too many sections: %d (>= %d)"),
9104 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9105 bfd_set_error (bfd_error_nonrepresentable_section);
9106 return FALSE;
9107 }
9108 return TRUE;
9109 }
9110
9111 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9112 allowing an unsatisfied unversioned symbol in the DSO to match a
9113 versioned symbol that would normally require an explicit version.
9114 We also handle the case that a DSO references a hidden symbol
9115 which may be satisfied by a versioned symbol in another DSO. */
9116
9117 static bfd_boolean
9118 elf_link_check_versioned_symbol (struct bfd_link_info *info,
9119 const struct elf_backend_data *bed,
9120 struct elf_link_hash_entry *h)
9121 {
9122 bfd *abfd;
9123 struct elf_link_loaded_list *loaded;
9124
9125 if (!is_elf_hash_table (info->hash))
9126 return FALSE;
9127
9128 /* Check indirect symbol. */
9129 while (h->root.type == bfd_link_hash_indirect)
9130 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9131
9132 switch (h->root.type)
9133 {
9134 default:
9135 abfd = NULL;
9136 break;
9137
9138 case bfd_link_hash_undefined:
9139 case bfd_link_hash_undefweak:
9140 abfd = h->root.u.undef.abfd;
9141 if (abfd == NULL
9142 || (abfd->flags & DYNAMIC) == 0
9143 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9144 return FALSE;
9145 break;
9146
9147 case bfd_link_hash_defined:
9148 case bfd_link_hash_defweak:
9149 abfd = h->root.u.def.section->owner;
9150 break;
9151
9152 case bfd_link_hash_common:
9153 abfd = h->root.u.c.p->section->owner;
9154 break;
9155 }
9156 BFD_ASSERT (abfd != NULL);
9157
9158 for (loaded = elf_hash_table (info)->loaded;
9159 loaded != NULL;
9160 loaded = loaded->next)
9161 {
9162 bfd *input;
9163 Elf_Internal_Shdr *hdr;
9164 size_t symcount;
9165 size_t extsymcount;
9166 size_t extsymoff;
9167 Elf_Internal_Shdr *versymhdr;
9168 Elf_Internal_Sym *isym;
9169 Elf_Internal_Sym *isymend;
9170 Elf_Internal_Sym *isymbuf;
9171 Elf_External_Versym *ever;
9172 Elf_External_Versym *extversym;
9173
9174 input = loaded->abfd;
9175
9176 /* We check each DSO for a possible hidden versioned definition. */
9177 if (input == abfd
9178 || (input->flags & DYNAMIC) == 0
9179 || elf_dynversym (input) == 0)
9180 continue;
9181
9182 hdr = &elf_tdata (input)->dynsymtab_hdr;
9183
9184 symcount = hdr->sh_size / bed->s->sizeof_sym;
9185 if (elf_bad_symtab (input))
9186 {
9187 extsymcount = symcount;
9188 extsymoff = 0;
9189 }
9190 else
9191 {
9192 extsymcount = symcount - hdr->sh_info;
9193 extsymoff = hdr->sh_info;
9194 }
9195
9196 if (extsymcount == 0)
9197 continue;
9198
9199 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9200 NULL, NULL, NULL);
9201 if (isymbuf == NULL)
9202 return FALSE;
9203
9204 /* Read in any version definitions. */
9205 versymhdr = &elf_tdata (input)->dynversym_hdr;
9206 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
9207 if (extversym == NULL)
9208 goto error_ret;
9209
9210 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9211 || (bfd_bread (extversym, versymhdr->sh_size, input)
9212 != versymhdr->sh_size))
9213 {
9214 free (extversym);
9215 error_ret:
9216 free (isymbuf);
9217 return FALSE;
9218 }
9219
9220 ever = extversym + extsymoff;
9221 isymend = isymbuf + extsymcount;
9222 for (isym = isymbuf; isym < isymend; isym++, ever++)
9223 {
9224 const char *name;
9225 Elf_Internal_Versym iver;
9226 unsigned short version_index;
9227
9228 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9229 || isym->st_shndx == SHN_UNDEF)
9230 continue;
9231
9232 name = bfd_elf_string_from_elf_section (input,
9233 hdr->sh_link,
9234 isym->st_name);
9235 if (strcmp (name, h->root.root.string) != 0)
9236 continue;
9237
9238 _bfd_elf_swap_versym_in (input, ever, &iver);
9239
9240 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9241 && !(h->def_regular
9242 && h->forced_local))
9243 {
9244 /* If we have a non-hidden versioned sym, then it should
9245 have provided a definition for the undefined sym unless
9246 it is defined in a non-shared object and forced local.
9247 */
9248 abort ();
9249 }
9250
9251 version_index = iver.vs_vers & VERSYM_VERSION;
9252 if (version_index == 1 || version_index == 2)
9253 {
9254 /* This is the base or first version. We can use it. */
9255 free (extversym);
9256 free (isymbuf);
9257 return TRUE;
9258 }
9259 }
9260
9261 free (extversym);
9262 free (isymbuf);
9263 }
9264
9265 return FALSE;
9266 }
9267
9268 /* Convert ELF common symbol TYPE. */
9269
9270 static int
9271 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9272 {
9273 /* Commom symbol can only appear in relocatable link. */
9274 if (!bfd_link_relocatable (info))
9275 abort ();
9276 switch (info->elf_stt_common)
9277 {
9278 case unchanged:
9279 break;
9280 case elf_stt_common:
9281 type = STT_COMMON;
9282 break;
9283 case no_elf_stt_common:
9284 type = STT_OBJECT;
9285 break;
9286 }
9287 return type;
9288 }
9289
9290 /* Add an external symbol to the symbol table. This is called from
9291 the hash table traversal routine. When generating a shared object,
9292 we go through the symbol table twice. The first time we output
9293 anything that might have been forced to local scope in a version
9294 script. The second time we output the symbols that are still
9295 global symbols. */
9296
9297 static bfd_boolean
9298 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9299 {
9300 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9301 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9302 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9303 bfd_boolean strip;
9304 Elf_Internal_Sym sym;
9305 asection *input_sec;
9306 const struct elf_backend_data *bed;
9307 long indx;
9308 int ret;
9309 unsigned int type;
9310
9311 if (h->root.type == bfd_link_hash_warning)
9312 {
9313 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9314 if (h->root.type == bfd_link_hash_new)
9315 return TRUE;
9316 }
9317
9318 /* Decide whether to output this symbol in this pass. */
9319 if (eoinfo->localsyms)
9320 {
9321 if (!h->forced_local)
9322 return TRUE;
9323 }
9324 else
9325 {
9326 if (h->forced_local)
9327 return TRUE;
9328 }
9329
9330 bed = get_elf_backend_data (flinfo->output_bfd);
9331
9332 if (h->root.type == bfd_link_hash_undefined)
9333 {
9334 /* If we have an undefined symbol reference here then it must have
9335 come from a shared library that is being linked in. (Undefined
9336 references in regular files have already been handled unless
9337 they are in unreferenced sections which are removed by garbage
9338 collection). */
9339 bfd_boolean ignore_undef = FALSE;
9340
9341 /* Some symbols may be special in that the fact that they're
9342 undefined can be safely ignored - let backend determine that. */
9343 if (bed->elf_backend_ignore_undef_symbol)
9344 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9345
9346 /* If we are reporting errors for this situation then do so now. */
9347 if (!ignore_undef
9348 && h->ref_dynamic
9349 && (!h->ref_regular || flinfo->info->gc_sections)
9350 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9351 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9352 (*flinfo->info->callbacks->undefined_symbol)
9353 (flinfo->info, h->root.root.string,
9354 h->ref_regular ? NULL : h->root.u.undef.abfd,
9355 NULL, 0,
9356 flinfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR);
9357
9358 /* Strip a global symbol defined in a discarded section. */
9359 if (h->indx == -3)
9360 return TRUE;
9361 }
9362
9363 /* We should also warn if a forced local symbol is referenced from
9364 shared libraries. */
9365 if (bfd_link_executable (flinfo->info)
9366 && h->forced_local
9367 && h->ref_dynamic
9368 && h->def_regular
9369 && !h->dynamic_def
9370 && h->ref_dynamic_nonweak
9371 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9372 {
9373 bfd *def_bfd;
9374 const char *msg;
9375 struct elf_link_hash_entry *hi = h;
9376
9377 /* Check indirect symbol. */
9378 while (hi->root.type == bfd_link_hash_indirect)
9379 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9380
9381 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9382 /* xgettext:c-format */
9383 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
9384 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9385 /* xgettext:c-format */
9386 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
9387 else
9388 /* xgettext:c-format */
9389 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
9390 def_bfd = flinfo->output_bfd;
9391 if (hi->root.u.def.section != bfd_abs_section_ptr)
9392 def_bfd = hi->root.u.def.section->owner;
9393 _bfd_error_handler (msg, flinfo->output_bfd, def_bfd,
9394 h->root.root.string);
9395 bfd_set_error (bfd_error_bad_value);
9396 eoinfo->failed = TRUE;
9397 return FALSE;
9398 }
9399
9400 /* We don't want to output symbols that have never been mentioned by
9401 a regular file, or that we have been told to strip. However, if
9402 h->indx is set to -2, the symbol is used by a reloc and we must
9403 output it. */
9404 strip = FALSE;
9405 if (h->indx == -2)
9406 ;
9407 else if ((h->def_dynamic
9408 || h->ref_dynamic
9409 || h->root.type == bfd_link_hash_new)
9410 && !h->def_regular
9411 && !h->ref_regular)
9412 strip = TRUE;
9413 else if (flinfo->info->strip == strip_all)
9414 strip = TRUE;
9415 else if (flinfo->info->strip == strip_some
9416 && bfd_hash_lookup (flinfo->info->keep_hash,
9417 h->root.root.string, FALSE, FALSE) == NULL)
9418 strip = TRUE;
9419 else if ((h->root.type == bfd_link_hash_defined
9420 || h->root.type == bfd_link_hash_defweak)
9421 && ((flinfo->info->strip_discarded
9422 && discarded_section (h->root.u.def.section))
9423 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9424 && h->root.u.def.section->owner != NULL
9425 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9426 strip = TRUE;
9427 else if ((h->root.type == bfd_link_hash_undefined
9428 || h->root.type == bfd_link_hash_undefweak)
9429 && h->root.u.undef.abfd != NULL
9430 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9431 strip = TRUE;
9432
9433 type = h->type;
9434
9435 /* If we're stripping it, and it's not a dynamic symbol, there's
9436 nothing else to do. However, if it is a forced local symbol or
9437 an ifunc symbol we need to give the backend finish_dynamic_symbol
9438 function a chance to make it dynamic. */
9439 if (strip
9440 && h->dynindx == -1
9441 && type != STT_GNU_IFUNC
9442 && !h->forced_local)
9443 return TRUE;
9444
9445 sym.st_value = 0;
9446 sym.st_size = h->size;
9447 sym.st_other = h->other;
9448 switch (h->root.type)
9449 {
9450 default:
9451 case bfd_link_hash_new:
9452 case bfd_link_hash_warning:
9453 abort ();
9454 return FALSE;
9455
9456 case bfd_link_hash_undefined:
9457 case bfd_link_hash_undefweak:
9458 input_sec = bfd_und_section_ptr;
9459 sym.st_shndx = SHN_UNDEF;
9460 break;
9461
9462 case bfd_link_hash_defined:
9463 case bfd_link_hash_defweak:
9464 {
9465 input_sec = h->root.u.def.section;
9466 if (input_sec->output_section != NULL)
9467 {
9468 sym.st_shndx =
9469 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9470 input_sec->output_section);
9471 if (sym.st_shndx == SHN_BAD)
9472 {
9473 _bfd_error_handler
9474 /* xgettext:c-format */
9475 (_("%B: could not find output section %A for input section %A"),
9476 flinfo->output_bfd, input_sec->output_section, input_sec);
9477 bfd_set_error (bfd_error_nonrepresentable_section);
9478 eoinfo->failed = TRUE;
9479 return FALSE;
9480 }
9481
9482 /* ELF symbols in relocatable files are section relative,
9483 but in nonrelocatable files they are virtual
9484 addresses. */
9485 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9486 if (!bfd_link_relocatable (flinfo->info))
9487 {
9488 sym.st_value += input_sec->output_section->vma;
9489 if (h->type == STT_TLS)
9490 {
9491 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9492 if (tls_sec != NULL)
9493 sym.st_value -= tls_sec->vma;
9494 }
9495 }
9496 }
9497 else
9498 {
9499 BFD_ASSERT (input_sec->owner == NULL
9500 || (input_sec->owner->flags & DYNAMIC) != 0);
9501 sym.st_shndx = SHN_UNDEF;
9502 input_sec = bfd_und_section_ptr;
9503 }
9504 }
9505 break;
9506
9507 case bfd_link_hash_common:
9508 input_sec = h->root.u.c.p->section;
9509 sym.st_shndx = bed->common_section_index (input_sec);
9510 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9511 break;
9512
9513 case bfd_link_hash_indirect:
9514 /* These symbols are created by symbol versioning. They point
9515 to the decorated version of the name. For example, if the
9516 symbol foo@@GNU_1.2 is the default, which should be used when
9517 foo is used with no version, then we add an indirect symbol
9518 foo which points to foo@@GNU_1.2. We ignore these symbols,
9519 since the indirected symbol is already in the hash table. */
9520 return TRUE;
9521 }
9522
9523 if (type == STT_COMMON || type == STT_OBJECT)
9524 switch (h->root.type)
9525 {
9526 case bfd_link_hash_common:
9527 type = elf_link_convert_common_type (flinfo->info, type);
9528 break;
9529 case bfd_link_hash_defined:
9530 case bfd_link_hash_defweak:
9531 if (bed->common_definition (&sym))
9532 type = elf_link_convert_common_type (flinfo->info, type);
9533 else
9534 type = STT_OBJECT;
9535 break;
9536 case bfd_link_hash_undefined:
9537 case bfd_link_hash_undefweak:
9538 break;
9539 default:
9540 abort ();
9541 }
9542
9543 if (h->forced_local)
9544 {
9545 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
9546 /* Turn off visibility on local symbol. */
9547 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
9548 }
9549 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
9550 else if (h->unique_global && h->def_regular)
9551 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
9552 else if (h->root.type == bfd_link_hash_undefweak
9553 || h->root.type == bfd_link_hash_defweak)
9554 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
9555 else
9556 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
9557 sym.st_target_internal = h->target_internal;
9558
9559 /* Give the processor backend a chance to tweak the symbol value,
9560 and also to finish up anything that needs to be done for this
9561 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9562 forced local syms when non-shared is due to a historical quirk.
9563 STT_GNU_IFUNC symbol must go through PLT. */
9564 if ((h->type == STT_GNU_IFUNC
9565 && h->def_regular
9566 && !bfd_link_relocatable (flinfo->info))
9567 || ((h->dynindx != -1
9568 || h->forced_local)
9569 && ((bfd_link_pic (flinfo->info)
9570 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9571 || h->root.type != bfd_link_hash_undefweak))
9572 || !h->forced_local)
9573 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9574 {
9575 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9576 (flinfo->output_bfd, flinfo->info, h, &sym)))
9577 {
9578 eoinfo->failed = TRUE;
9579 return FALSE;
9580 }
9581 }
9582
9583 /* If we are marking the symbol as undefined, and there are no
9584 non-weak references to this symbol from a regular object, then
9585 mark the symbol as weak undefined; if there are non-weak
9586 references, mark the symbol as strong. We can't do this earlier,
9587 because it might not be marked as undefined until the
9588 finish_dynamic_symbol routine gets through with it. */
9589 if (sym.st_shndx == SHN_UNDEF
9590 && h->ref_regular
9591 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9592 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9593 {
9594 int bindtype;
9595 type = ELF_ST_TYPE (sym.st_info);
9596
9597 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9598 if (type == STT_GNU_IFUNC)
9599 type = STT_FUNC;
9600
9601 if (h->ref_regular_nonweak)
9602 bindtype = STB_GLOBAL;
9603 else
9604 bindtype = STB_WEAK;
9605 sym.st_info = ELF_ST_INFO (bindtype, type);
9606 }
9607
9608 /* If this is a symbol defined in a dynamic library, don't use the
9609 symbol size from the dynamic library. Relinking an executable
9610 against a new library may introduce gratuitous changes in the
9611 executable's symbols if we keep the size. */
9612 if (sym.st_shndx == SHN_UNDEF
9613 && !h->def_regular
9614 && h->def_dynamic)
9615 sym.st_size = 0;
9616
9617 /* If a non-weak symbol with non-default visibility is not defined
9618 locally, it is a fatal error. */
9619 if (!bfd_link_relocatable (flinfo->info)
9620 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9621 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9622 && h->root.type == bfd_link_hash_undefined
9623 && !h->def_regular)
9624 {
9625 const char *msg;
9626
9627 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9628 /* xgettext:c-format */
9629 msg = _("%B: protected symbol `%s' isn't defined");
9630 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9631 /* xgettext:c-format */
9632 msg = _("%B: internal symbol `%s' isn't defined");
9633 else
9634 /* xgettext:c-format */
9635 msg = _("%B: hidden symbol `%s' isn't defined");
9636 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
9637 bfd_set_error (bfd_error_bad_value);
9638 eoinfo->failed = TRUE;
9639 return FALSE;
9640 }
9641
9642 /* If this symbol should be put in the .dynsym section, then put it
9643 there now. We already know the symbol index. We also fill in
9644 the entry in the .hash section. */
9645 if (elf_hash_table (flinfo->info)->dynsym != NULL
9646 && h->dynindx != -1
9647 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9648 {
9649 bfd_byte *esym;
9650
9651 /* Since there is no version information in the dynamic string,
9652 if there is no version info in symbol version section, we will
9653 have a run-time problem if not linking executable, referenced
9654 by shared library, or not bound locally. */
9655 if (h->verinfo.verdef == NULL
9656 && (!bfd_link_executable (flinfo->info)
9657 || h->ref_dynamic
9658 || !h->def_regular))
9659 {
9660 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9661
9662 if (p && p [1] != '\0')
9663 {
9664 _bfd_error_handler
9665 /* xgettext:c-format */
9666 (_("%B: No symbol version section for versioned symbol `%s'"),
9667 flinfo->output_bfd, h->root.root.string);
9668 eoinfo->failed = TRUE;
9669 return FALSE;
9670 }
9671 }
9672
9673 sym.st_name = h->dynstr_index;
9674 esym = (elf_hash_table (flinfo->info)->dynsym->contents
9675 + h->dynindx * bed->s->sizeof_sym);
9676 if (!check_dynsym (flinfo->output_bfd, &sym))
9677 {
9678 eoinfo->failed = TRUE;
9679 return FALSE;
9680 }
9681 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9682
9683 if (flinfo->hash_sec != NULL)
9684 {
9685 size_t hash_entry_size;
9686 bfd_byte *bucketpos;
9687 bfd_vma chain;
9688 size_t bucketcount;
9689 size_t bucket;
9690
9691 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9692 bucket = h->u.elf_hash_value % bucketcount;
9693
9694 hash_entry_size
9695 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9696 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9697 + (bucket + 2) * hash_entry_size);
9698 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9699 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9700 bucketpos);
9701 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9702 ((bfd_byte *) flinfo->hash_sec->contents
9703 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9704 }
9705
9706 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9707 {
9708 Elf_Internal_Versym iversym;
9709 Elf_External_Versym *eversym;
9710
9711 if (!h->def_regular)
9712 {
9713 if (h->verinfo.verdef == NULL
9714 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9715 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9716 iversym.vs_vers = 0;
9717 else
9718 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9719 }
9720 else
9721 {
9722 if (h->verinfo.vertree == NULL)
9723 iversym.vs_vers = 1;
9724 else
9725 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9726 if (flinfo->info->create_default_symver)
9727 iversym.vs_vers++;
9728 }
9729
9730 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
9731 defined locally. */
9732 if (h->versioned == versioned_hidden && h->def_regular)
9733 iversym.vs_vers |= VERSYM_HIDDEN;
9734
9735 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9736 eversym += h->dynindx;
9737 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9738 }
9739 }
9740
9741 /* If the symbol is undefined, and we didn't output it to .dynsym,
9742 strip it from .symtab too. Obviously we can't do this for
9743 relocatable output or when needed for --emit-relocs. */
9744 else if (input_sec == bfd_und_section_ptr
9745 && h->indx != -2
9746 && !bfd_link_relocatable (flinfo->info))
9747 return TRUE;
9748 /* Also strip others that we couldn't earlier due to dynamic symbol
9749 processing. */
9750 if (strip)
9751 return TRUE;
9752 if ((input_sec->flags & SEC_EXCLUDE) != 0)
9753 return TRUE;
9754
9755 /* Output a FILE symbol so that following locals are not associated
9756 with the wrong input file. We need one for forced local symbols
9757 if we've seen more than one FILE symbol or when we have exactly
9758 one FILE symbol but global symbols are present in a file other
9759 than the one with the FILE symbol. We also need one if linker
9760 defined symbols are present. In practice these conditions are
9761 always met, so just emit the FILE symbol unconditionally. */
9762 if (eoinfo->localsyms
9763 && !eoinfo->file_sym_done
9764 && eoinfo->flinfo->filesym_count != 0)
9765 {
9766 Elf_Internal_Sym fsym;
9767
9768 memset (&fsym, 0, sizeof (fsym));
9769 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9770 fsym.st_shndx = SHN_ABS;
9771 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
9772 bfd_und_section_ptr, NULL))
9773 return FALSE;
9774
9775 eoinfo->file_sym_done = TRUE;
9776 }
9777
9778 indx = bfd_get_symcount (flinfo->output_bfd);
9779 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
9780 input_sec, h);
9781 if (ret == 0)
9782 {
9783 eoinfo->failed = TRUE;
9784 return FALSE;
9785 }
9786 else if (ret == 1)
9787 h->indx = indx;
9788 else if (h->indx == -2)
9789 abort();
9790
9791 return TRUE;
9792 }
9793
9794 /* Return TRUE if special handling is done for relocs in SEC against
9795 symbols defined in discarded sections. */
9796
9797 static bfd_boolean
9798 elf_section_ignore_discarded_relocs (asection *sec)
9799 {
9800 const struct elf_backend_data *bed;
9801
9802 switch (sec->sec_info_type)
9803 {
9804 case SEC_INFO_TYPE_STABS:
9805 case SEC_INFO_TYPE_EH_FRAME:
9806 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
9807 return TRUE;
9808 default:
9809 break;
9810 }
9811
9812 bed = get_elf_backend_data (sec->owner);
9813 if (bed->elf_backend_ignore_discarded_relocs != NULL
9814 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9815 return TRUE;
9816
9817 return FALSE;
9818 }
9819
9820 /* Return a mask saying how ld should treat relocations in SEC against
9821 symbols defined in discarded sections. If this function returns
9822 COMPLAIN set, ld will issue a warning message. If this function
9823 returns PRETEND set, and the discarded section was link-once and the
9824 same size as the kept link-once section, ld will pretend that the
9825 symbol was actually defined in the kept section. Otherwise ld will
9826 zero the reloc (at least that is the intent, but some cooperation by
9827 the target dependent code is needed, particularly for REL targets). */
9828
9829 unsigned int
9830 _bfd_elf_default_action_discarded (asection *sec)
9831 {
9832 if (sec->flags & SEC_DEBUGGING)
9833 return PRETEND;
9834
9835 if (strcmp (".eh_frame", sec->name) == 0)
9836 return 0;
9837
9838 if (strcmp (".gcc_except_table", sec->name) == 0)
9839 return 0;
9840
9841 return COMPLAIN | PRETEND;
9842 }
9843
9844 /* Find a match between a section and a member of a section group. */
9845
9846 static asection *
9847 match_group_member (asection *sec, asection *group,
9848 struct bfd_link_info *info)
9849 {
9850 asection *first = elf_next_in_group (group);
9851 asection *s = first;
9852
9853 while (s != NULL)
9854 {
9855 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9856 return s;
9857
9858 s = elf_next_in_group (s);
9859 if (s == first)
9860 break;
9861 }
9862
9863 return NULL;
9864 }
9865
9866 /* Check if the kept section of a discarded section SEC can be used
9867 to replace it. Return the replacement if it is OK. Otherwise return
9868 NULL. */
9869
9870 asection *
9871 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9872 {
9873 asection *kept;
9874
9875 kept = sec->kept_section;
9876 if (kept != NULL)
9877 {
9878 if ((kept->flags & SEC_GROUP) != 0)
9879 kept = match_group_member (sec, kept, info);
9880 if (kept != NULL
9881 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9882 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9883 kept = NULL;
9884 sec->kept_section = kept;
9885 }
9886 return kept;
9887 }
9888
9889 /* Link an input file into the linker output file. This function
9890 handles all the sections and relocations of the input file at once.
9891 This is so that we only have to read the local symbols once, and
9892 don't have to keep them in memory. */
9893
9894 static bfd_boolean
9895 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9896 {
9897 int (*relocate_section)
9898 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9899 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9900 bfd *output_bfd;
9901 Elf_Internal_Shdr *symtab_hdr;
9902 size_t locsymcount;
9903 size_t extsymoff;
9904 Elf_Internal_Sym *isymbuf;
9905 Elf_Internal_Sym *isym;
9906 Elf_Internal_Sym *isymend;
9907 long *pindex;
9908 asection **ppsection;
9909 asection *o;
9910 const struct elf_backend_data *bed;
9911 struct elf_link_hash_entry **sym_hashes;
9912 bfd_size_type address_size;
9913 bfd_vma r_type_mask;
9914 int r_sym_shift;
9915 bfd_boolean have_file_sym = FALSE;
9916
9917 output_bfd = flinfo->output_bfd;
9918 bed = get_elf_backend_data (output_bfd);
9919 relocate_section = bed->elf_backend_relocate_section;
9920
9921 /* If this is a dynamic object, we don't want to do anything here:
9922 we don't want the local symbols, and we don't want the section
9923 contents. */
9924 if ((input_bfd->flags & DYNAMIC) != 0)
9925 return TRUE;
9926
9927 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9928 if (elf_bad_symtab (input_bfd))
9929 {
9930 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9931 extsymoff = 0;
9932 }
9933 else
9934 {
9935 locsymcount = symtab_hdr->sh_info;
9936 extsymoff = symtab_hdr->sh_info;
9937 }
9938
9939 /* Read the local symbols. */
9940 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9941 if (isymbuf == NULL && locsymcount != 0)
9942 {
9943 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9944 flinfo->internal_syms,
9945 flinfo->external_syms,
9946 flinfo->locsym_shndx);
9947 if (isymbuf == NULL)
9948 return FALSE;
9949 }
9950
9951 /* Find local symbol sections and adjust values of symbols in
9952 SEC_MERGE sections. Write out those local symbols we know are
9953 going into the output file. */
9954 isymend = isymbuf + locsymcount;
9955 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9956 isym < isymend;
9957 isym++, pindex++, ppsection++)
9958 {
9959 asection *isec;
9960 const char *name;
9961 Elf_Internal_Sym osym;
9962 long indx;
9963 int ret;
9964
9965 *pindex = -1;
9966
9967 if (elf_bad_symtab (input_bfd))
9968 {
9969 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9970 {
9971 *ppsection = NULL;
9972 continue;
9973 }
9974 }
9975
9976 if (isym->st_shndx == SHN_UNDEF)
9977 isec = bfd_und_section_ptr;
9978 else if (isym->st_shndx == SHN_ABS)
9979 isec = bfd_abs_section_ptr;
9980 else if (isym->st_shndx == SHN_COMMON)
9981 isec = bfd_com_section_ptr;
9982 else
9983 {
9984 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9985 if (isec == NULL)
9986 {
9987 /* Don't attempt to output symbols with st_shnx in the
9988 reserved range other than SHN_ABS and SHN_COMMON. */
9989 *ppsection = NULL;
9990 continue;
9991 }
9992 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9993 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9994 isym->st_value =
9995 _bfd_merged_section_offset (output_bfd, &isec,
9996 elf_section_data (isec)->sec_info,
9997 isym->st_value);
9998 }
9999
10000 *ppsection = isec;
10001
10002 /* Don't output the first, undefined, symbol. In fact, don't
10003 output any undefined local symbol. */
10004 if (isec == bfd_und_section_ptr)
10005 continue;
10006
10007 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
10008 {
10009 /* We never output section symbols. Instead, we use the
10010 section symbol of the corresponding section in the output
10011 file. */
10012 continue;
10013 }
10014
10015 /* If we are stripping all symbols, we don't want to output this
10016 one. */
10017 if (flinfo->info->strip == strip_all)
10018 continue;
10019
10020 /* If we are discarding all local symbols, we don't want to
10021 output this one. If we are generating a relocatable output
10022 file, then some of the local symbols may be required by
10023 relocs; we output them below as we discover that they are
10024 needed. */
10025 if (flinfo->info->discard == discard_all)
10026 continue;
10027
10028 /* If this symbol is defined in a section which we are
10029 discarding, we don't need to keep it. */
10030 if (isym->st_shndx != SHN_UNDEF
10031 && isym->st_shndx < SHN_LORESERVE
10032 && bfd_section_removed_from_list (output_bfd,
10033 isec->output_section))
10034 continue;
10035
10036 /* Get the name of the symbol. */
10037 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
10038 isym->st_name);
10039 if (name == NULL)
10040 return FALSE;
10041
10042 /* See if we are discarding symbols with this name. */
10043 if ((flinfo->info->strip == strip_some
10044 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
10045 == NULL))
10046 || (((flinfo->info->discard == discard_sec_merge
10047 && (isec->flags & SEC_MERGE)
10048 && !bfd_link_relocatable (flinfo->info))
10049 || flinfo->info->discard == discard_l)
10050 && bfd_is_local_label_name (input_bfd, name)))
10051 continue;
10052
10053 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
10054 {
10055 if (input_bfd->lto_output)
10056 /* -flto puts a temp file name here. This means builds
10057 are not reproducible. Discard the symbol. */
10058 continue;
10059 have_file_sym = TRUE;
10060 flinfo->filesym_count += 1;
10061 }
10062 if (!have_file_sym)
10063 {
10064 /* In the absence of debug info, bfd_find_nearest_line uses
10065 FILE symbols to determine the source file for local
10066 function symbols. Provide a FILE symbol here if input
10067 files lack such, so that their symbols won't be
10068 associated with a previous input file. It's not the
10069 source file, but the best we can do. */
10070 have_file_sym = TRUE;
10071 flinfo->filesym_count += 1;
10072 memset (&osym, 0, sizeof (osym));
10073 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10074 osym.st_shndx = SHN_ABS;
10075 if (!elf_link_output_symstrtab (flinfo,
10076 (input_bfd->lto_output ? NULL
10077 : input_bfd->filename),
10078 &osym, bfd_abs_section_ptr,
10079 NULL))
10080 return FALSE;
10081 }
10082
10083 osym = *isym;
10084
10085 /* Adjust the section index for the output file. */
10086 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10087 isec->output_section);
10088 if (osym.st_shndx == SHN_BAD)
10089 return FALSE;
10090
10091 /* ELF symbols in relocatable files are section relative, but
10092 in executable files they are virtual addresses. Note that
10093 this code assumes that all ELF sections have an associated
10094 BFD section with a reasonable value for output_offset; below
10095 we assume that they also have a reasonable value for
10096 output_section. Any special sections must be set up to meet
10097 these requirements. */
10098 osym.st_value += isec->output_offset;
10099 if (!bfd_link_relocatable (flinfo->info))
10100 {
10101 osym.st_value += isec->output_section->vma;
10102 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
10103 {
10104 /* STT_TLS symbols are relative to PT_TLS segment base. */
10105 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
10106 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
10107 }
10108 }
10109
10110 indx = bfd_get_symcount (output_bfd);
10111 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
10112 if (ret == 0)
10113 return FALSE;
10114 else if (ret == 1)
10115 *pindex = indx;
10116 }
10117
10118 if (bed->s->arch_size == 32)
10119 {
10120 r_type_mask = 0xff;
10121 r_sym_shift = 8;
10122 address_size = 4;
10123 }
10124 else
10125 {
10126 r_type_mask = 0xffffffff;
10127 r_sym_shift = 32;
10128 address_size = 8;
10129 }
10130
10131 /* Relocate the contents of each section. */
10132 sym_hashes = elf_sym_hashes (input_bfd);
10133 for (o = input_bfd->sections; o != NULL; o = o->next)
10134 {
10135 bfd_byte *contents;
10136
10137 if (! o->linker_mark)
10138 {
10139 /* This section was omitted from the link. */
10140 continue;
10141 }
10142
10143 if (bfd_link_relocatable (flinfo->info)
10144 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10145 {
10146 /* Deal with the group signature symbol. */
10147 struct bfd_elf_section_data *sec_data = elf_section_data (o);
10148 unsigned long symndx = sec_data->this_hdr.sh_info;
10149 asection *osec = o->output_section;
10150
10151 if (symndx >= locsymcount
10152 || (elf_bad_symtab (input_bfd)
10153 && flinfo->sections[symndx] == NULL))
10154 {
10155 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10156 while (h->root.type == bfd_link_hash_indirect
10157 || h->root.type == bfd_link_hash_warning)
10158 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10159 /* Arrange for symbol to be output. */
10160 h->indx = -2;
10161 elf_section_data (osec)->this_hdr.sh_info = -2;
10162 }
10163 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10164 {
10165 /* We'll use the output section target_index. */
10166 asection *sec = flinfo->sections[symndx]->output_section;
10167 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10168 }
10169 else
10170 {
10171 if (flinfo->indices[symndx] == -1)
10172 {
10173 /* Otherwise output the local symbol now. */
10174 Elf_Internal_Sym sym = isymbuf[symndx];
10175 asection *sec = flinfo->sections[symndx]->output_section;
10176 const char *name;
10177 long indx;
10178 int ret;
10179
10180 name = bfd_elf_string_from_elf_section (input_bfd,
10181 symtab_hdr->sh_link,
10182 sym.st_name);
10183 if (name == NULL)
10184 return FALSE;
10185
10186 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10187 sec);
10188 if (sym.st_shndx == SHN_BAD)
10189 return FALSE;
10190
10191 sym.st_value += o->output_offset;
10192
10193 indx = bfd_get_symcount (output_bfd);
10194 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10195 NULL);
10196 if (ret == 0)
10197 return FALSE;
10198 else if (ret == 1)
10199 flinfo->indices[symndx] = indx;
10200 else
10201 abort ();
10202 }
10203 elf_section_data (osec)->this_hdr.sh_info
10204 = flinfo->indices[symndx];
10205 }
10206 }
10207
10208 if ((o->flags & SEC_HAS_CONTENTS) == 0
10209 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10210 continue;
10211
10212 if ((o->flags & SEC_LINKER_CREATED) != 0)
10213 {
10214 /* Section was created by _bfd_elf_link_create_dynamic_sections
10215 or somesuch. */
10216 continue;
10217 }
10218
10219 /* Get the contents of the section. They have been cached by a
10220 relaxation routine. Note that o is a section in an input
10221 file, so the contents field will not have been set by any of
10222 the routines which work on output files. */
10223 if (elf_section_data (o)->this_hdr.contents != NULL)
10224 {
10225 contents = elf_section_data (o)->this_hdr.contents;
10226 if (bed->caches_rawsize
10227 && o->rawsize != 0
10228 && o->rawsize < o->size)
10229 {
10230 memcpy (flinfo->contents, contents, o->rawsize);
10231 contents = flinfo->contents;
10232 }
10233 }
10234 else
10235 {
10236 contents = flinfo->contents;
10237 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10238 return FALSE;
10239 }
10240
10241 if ((o->flags & SEC_RELOC) != 0)
10242 {
10243 Elf_Internal_Rela *internal_relocs;
10244 Elf_Internal_Rela *rel, *relend;
10245 int action_discarded;
10246 int ret;
10247
10248 /* Get the swapped relocs. */
10249 internal_relocs
10250 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10251 flinfo->internal_relocs, FALSE);
10252 if (internal_relocs == NULL
10253 && o->reloc_count > 0)
10254 return FALSE;
10255
10256 /* We need to reverse-copy input .ctors/.dtors sections if
10257 they are placed in .init_array/.finit_array for output. */
10258 if (o->size > address_size
10259 && ((strncmp (o->name, ".ctors", 6) == 0
10260 && strcmp (o->output_section->name,
10261 ".init_array") == 0)
10262 || (strncmp (o->name, ".dtors", 6) == 0
10263 && strcmp (o->output_section->name,
10264 ".fini_array") == 0))
10265 && (o->name[6] == 0 || o->name[6] == '.'))
10266 {
10267 if (o->size != o->reloc_count * address_size)
10268 {
10269 _bfd_error_handler
10270 /* xgettext:c-format */
10271 (_("error: %B: size of section %A is not "
10272 "multiple of address size"),
10273 input_bfd, o);
10274 bfd_set_error (bfd_error_on_input);
10275 return FALSE;
10276 }
10277 o->flags |= SEC_ELF_REVERSE_COPY;
10278 }
10279
10280 action_discarded = -1;
10281 if (!elf_section_ignore_discarded_relocs (o))
10282 action_discarded = (*bed->action_discarded) (o);
10283
10284 /* Run through the relocs evaluating complex reloc symbols and
10285 looking for relocs against symbols from discarded sections
10286 or section symbols from removed link-once sections.
10287 Complain about relocs against discarded sections. Zero
10288 relocs against removed link-once sections. */
10289
10290 rel = internal_relocs;
10291 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
10292 for ( ; rel < relend; rel++)
10293 {
10294 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10295 unsigned int s_type;
10296 asection **ps, *sec;
10297 struct elf_link_hash_entry *h = NULL;
10298 const char *sym_name;
10299
10300 if (r_symndx == STN_UNDEF)
10301 continue;
10302
10303 if (r_symndx >= locsymcount
10304 || (elf_bad_symtab (input_bfd)
10305 && flinfo->sections[r_symndx] == NULL))
10306 {
10307 h = sym_hashes[r_symndx - extsymoff];
10308
10309 /* Badly formatted input files can contain relocs that
10310 reference non-existant symbols. Check here so that
10311 we do not seg fault. */
10312 if (h == NULL)
10313 {
10314 char buffer [32];
10315
10316 sprintf_vma (buffer, rel->r_info);
10317 _bfd_error_handler
10318 /* xgettext:c-format */
10319 (_("error: %B contains a reloc (0x%s) for section %A "
10320 "that references a non-existent global symbol"),
10321 input_bfd, o, buffer);
10322 bfd_set_error (bfd_error_bad_value);
10323 return FALSE;
10324 }
10325
10326 while (h->root.type == bfd_link_hash_indirect
10327 || h->root.type == bfd_link_hash_warning)
10328 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10329
10330 s_type = h->type;
10331
10332 /* If a plugin symbol is referenced from a non-IR file,
10333 mark the symbol as undefined. Note that the
10334 linker may attach linker created dynamic sections
10335 to the plugin bfd. Symbols defined in linker
10336 created sections are not plugin symbols. */
10337 if (h->root.non_ir_ref
10338 && (h->root.type == bfd_link_hash_defined
10339 || h->root.type == bfd_link_hash_defweak)
10340 && (h->root.u.def.section->flags
10341 & SEC_LINKER_CREATED) == 0
10342 && h->root.u.def.section->owner != NULL
10343 && (h->root.u.def.section->owner->flags
10344 & BFD_PLUGIN) != 0)
10345 {
10346 h->root.type = bfd_link_hash_undefined;
10347 h->root.u.undef.abfd = h->root.u.def.section->owner;
10348 }
10349
10350 ps = NULL;
10351 if (h->root.type == bfd_link_hash_defined
10352 || h->root.type == bfd_link_hash_defweak)
10353 ps = &h->root.u.def.section;
10354
10355 sym_name = h->root.root.string;
10356 }
10357 else
10358 {
10359 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10360
10361 s_type = ELF_ST_TYPE (sym->st_info);
10362 ps = &flinfo->sections[r_symndx];
10363 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10364 sym, *ps);
10365 }
10366
10367 if ((s_type == STT_RELC || s_type == STT_SRELC)
10368 && !bfd_link_relocatable (flinfo->info))
10369 {
10370 bfd_vma val;
10371 bfd_vma dot = (rel->r_offset
10372 + o->output_offset + o->output_section->vma);
10373 #ifdef DEBUG
10374 printf ("Encountered a complex symbol!");
10375 printf (" (input_bfd %s, section %s, reloc %ld\n",
10376 input_bfd->filename, o->name,
10377 (long) (rel - internal_relocs));
10378 printf (" symbol: idx %8.8lx, name %s\n",
10379 r_symndx, sym_name);
10380 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10381 (unsigned long) rel->r_info,
10382 (unsigned long) rel->r_offset);
10383 #endif
10384 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10385 isymbuf, locsymcount, s_type == STT_SRELC))
10386 return FALSE;
10387
10388 /* Symbol evaluated OK. Update to absolute value. */
10389 set_symbol_value (input_bfd, isymbuf, locsymcount,
10390 r_symndx, val);
10391 continue;
10392 }
10393
10394 if (action_discarded != -1 && ps != NULL)
10395 {
10396 /* Complain if the definition comes from a
10397 discarded section. */
10398 if ((sec = *ps) != NULL && discarded_section (sec))
10399 {
10400 BFD_ASSERT (r_symndx != STN_UNDEF);
10401 if (action_discarded & COMPLAIN)
10402 (*flinfo->info->callbacks->einfo)
10403 /* xgettext:c-format */
10404 (_("%X`%s' referenced in section `%A' of %B: "
10405 "defined in discarded section `%A' of %B\n"),
10406 sym_name, o, input_bfd, sec, sec->owner);
10407
10408 /* Try to do the best we can to support buggy old
10409 versions of gcc. Pretend that the symbol is
10410 really defined in the kept linkonce section.
10411 FIXME: This is quite broken. Modifying the
10412 symbol here means we will be changing all later
10413 uses of the symbol, not just in this section. */
10414 if (action_discarded & PRETEND)
10415 {
10416 asection *kept;
10417
10418 kept = _bfd_elf_check_kept_section (sec,
10419 flinfo->info);
10420 if (kept != NULL)
10421 {
10422 *ps = kept;
10423 continue;
10424 }
10425 }
10426 }
10427 }
10428 }
10429
10430 /* Relocate the section by invoking a back end routine.
10431
10432 The back end routine is responsible for adjusting the
10433 section contents as necessary, and (if using Rela relocs
10434 and generating a relocatable output file) adjusting the
10435 reloc addend as necessary.
10436
10437 The back end routine does not have to worry about setting
10438 the reloc address or the reloc symbol index.
10439
10440 The back end routine is given a pointer to the swapped in
10441 internal symbols, and can access the hash table entries
10442 for the external symbols via elf_sym_hashes (input_bfd).
10443
10444 When generating relocatable output, the back end routine
10445 must handle STB_LOCAL/STT_SECTION symbols specially. The
10446 output symbol is going to be a section symbol
10447 corresponding to the output section, which will require
10448 the addend to be adjusted. */
10449
10450 ret = (*relocate_section) (output_bfd, flinfo->info,
10451 input_bfd, o, contents,
10452 internal_relocs,
10453 isymbuf,
10454 flinfo->sections);
10455 if (!ret)
10456 return FALSE;
10457
10458 if (ret == 2
10459 || bfd_link_relocatable (flinfo->info)
10460 || flinfo->info->emitrelocations)
10461 {
10462 Elf_Internal_Rela *irela;
10463 Elf_Internal_Rela *irelaend, *irelamid;
10464 bfd_vma last_offset;
10465 struct elf_link_hash_entry **rel_hash;
10466 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
10467 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
10468 unsigned int next_erel;
10469 bfd_boolean rela_normal;
10470 struct bfd_elf_section_data *esdi, *esdo;
10471
10472 esdi = elf_section_data (o);
10473 esdo = elf_section_data (o->output_section);
10474 rela_normal = FALSE;
10475
10476 /* Adjust the reloc addresses and symbol indices. */
10477
10478 irela = internal_relocs;
10479 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
10480 rel_hash = esdo->rel.hashes + esdo->rel.count;
10481 /* We start processing the REL relocs, if any. When we reach
10482 IRELAMID in the loop, we switch to the RELA relocs. */
10483 irelamid = irela;
10484 if (esdi->rel.hdr != NULL)
10485 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10486 * bed->s->int_rels_per_ext_rel);
10487 rel_hash_list = rel_hash;
10488 rela_hash_list = NULL;
10489 last_offset = o->output_offset;
10490 if (!bfd_link_relocatable (flinfo->info))
10491 last_offset += o->output_section->vma;
10492 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10493 {
10494 unsigned long r_symndx;
10495 asection *sec;
10496 Elf_Internal_Sym sym;
10497
10498 if (next_erel == bed->s->int_rels_per_ext_rel)
10499 {
10500 rel_hash++;
10501 next_erel = 0;
10502 }
10503
10504 if (irela == irelamid)
10505 {
10506 rel_hash = esdo->rela.hashes + esdo->rela.count;
10507 rela_hash_list = rel_hash;
10508 rela_normal = bed->rela_normal;
10509 }
10510
10511 irela->r_offset = _bfd_elf_section_offset (output_bfd,
10512 flinfo->info, o,
10513 irela->r_offset);
10514 if (irela->r_offset >= (bfd_vma) -2)
10515 {
10516 /* This is a reloc for a deleted entry or somesuch.
10517 Turn it into an R_*_NONE reloc, at the same
10518 offset as the last reloc. elf_eh_frame.c and
10519 bfd_elf_discard_info rely on reloc offsets
10520 being ordered. */
10521 irela->r_offset = last_offset;
10522 irela->r_info = 0;
10523 irela->r_addend = 0;
10524 continue;
10525 }
10526
10527 irela->r_offset += o->output_offset;
10528
10529 /* Relocs in an executable have to be virtual addresses. */
10530 if (!bfd_link_relocatable (flinfo->info))
10531 irela->r_offset += o->output_section->vma;
10532
10533 last_offset = irela->r_offset;
10534
10535 r_symndx = irela->r_info >> r_sym_shift;
10536 if (r_symndx == STN_UNDEF)
10537 continue;
10538
10539 if (r_symndx >= locsymcount
10540 || (elf_bad_symtab (input_bfd)
10541 && flinfo->sections[r_symndx] == NULL))
10542 {
10543 struct elf_link_hash_entry *rh;
10544 unsigned long indx;
10545
10546 /* This is a reloc against a global symbol. We
10547 have not yet output all the local symbols, so
10548 we do not know the symbol index of any global
10549 symbol. We set the rel_hash entry for this
10550 reloc to point to the global hash table entry
10551 for this symbol. The symbol index is then
10552 set at the end of bfd_elf_final_link. */
10553 indx = r_symndx - extsymoff;
10554 rh = elf_sym_hashes (input_bfd)[indx];
10555 while (rh->root.type == bfd_link_hash_indirect
10556 || rh->root.type == bfd_link_hash_warning)
10557 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10558
10559 /* Setting the index to -2 tells
10560 elf_link_output_extsym that this symbol is
10561 used by a reloc. */
10562 BFD_ASSERT (rh->indx < 0);
10563 rh->indx = -2;
10564
10565 *rel_hash = rh;
10566
10567 continue;
10568 }
10569
10570 /* This is a reloc against a local symbol. */
10571
10572 *rel_hash = NULL;
10573 sym = isymbuf[r_symndx];
10574 sec = flinfo->sections[r_symndx];
10575 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10576 {
10577 /* I suppose the backend ought to fill in the
10578 section of any STT_SECTION symbol against a
10579 processor specific section. */
10580 r_symndx = STN_UNDEF;
10581 if (bfd_is_abs_section (sec))
10582 ;
10583 else if (sec == NULL || sec->owner == NULL)
10584 {
10585 bfd_set_error (bfd_error_bad_value);
10586 return FALSE;
10587 }
10588 else
10589 {
10590 asection *osec = sec->output_section;
10591
10592 /* If we have discarded a section, the output
10593 section will be the absolute section. In
10594 case of discarded SEC_MERGE sections, use
10595 the kept section. relocate_section should
10596 have already handled discarded linkonce
10597 sections. */
10598 if (bfd_is_abs_section (osec)
10599 && sec->kept_section != NULL
10600 && sec->kept_section->output_section != NULL)
10601 {
10602 osec = sec->kept_section->output_section;
10603 irela->r_addend -= osec->vma;
10604 }
10605
10606 if (!bfd_is_abs_section (osec))
10607 {
10608 r_symndx = osec->target_index;
10609 if (r_symndx == STN_UNDEF)
10610 {
10611 irela->r_addend += osec->vma;
10612 osec = _bfd_nearby_section (output_bfd, osec,
10613 osec->vma);
10614 irela->r_addend -= osec->vma;
10615 r_symndx = osec->target_index;
10616 }
10617 }
10618 }
10619
10620 /* Adjust the addend according to where the
10621 section winds up in the output section. */
10622 if (rela_normal)
10623 irela->r_addend += sec->output_offset;
10624 }
10625 else
10626 {
10627 if (flinfo->indices[r_symndx] == -1)
10628 {
10629 unsigned long shlink;
10630 const char *name;
10631 asection *osec;
10632 long indx;
10633
10634 if (flinfo->info->strip == strip_all)
10635 {
10636 /* You can't do ld -r -s. */
10637 bfd_set_error (bfd_error_invalid_operation);
10638 return FALSE;
10639 }
10640
10641 /* This symbol was skipped earlier, but
10642 since it is needed by a reloc, we
10643 must output it now. */
10644 shlink = symtab_hdr->sh_link;
10645 name = (bfd_elf_string_from_elf_section
10646 (input_bfd, shlink, sym.st_name));
10647 if (name == NULL)
10648 return FALSE;
10649
10650 osec = sec->output_section;
10651 sym.st_shndx =
10652 _bfd_elf_section_from_bfd_section (output_bfd,
10653 osec);
10654 if (sym.st_shndx == SHN_BAD)
10655 return FALSE;
10656
10657 sym.st_value += sec->output_offset;
10658 if (!bfd_link_relocatable (flinfo->info))
10659 {
10660 sym.st_value += osec->vma;
10661 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10662 {
10663 /* STT_TLS symbols are relative to PT_TLS
10664 segment base. */
10665 BFD_ASSERT (elf_hash_table (flinfo->info)
10666 ->tls_sec != NULL);
10667 sym.st_value -= (elf_hash_table (flinfo->info)
10668 ->tls_sec->vma);
10669 }
10670 }
10671
10672 indx = bfd_get_symcount (output_bfd);
10673 ret = elf_link_output_symstrtab (flinfo, name,
10674 &sym, sec,
10675 NULL);
10676 if (ret == 0)
10677 return FALSE;
10678 else if (ret == 1)
10679 flinfo->indices[r_symndx] = indx;
10680 else
10681 abort ();
10682 }
10683
10684 r_symndx = flinfo->indices[r_symndx];
10685 }
10686
10687 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10688 | (irela->r_info & r_type_mask));
10689 }
10690
10691 /* Swap out the relocs. */
10692 input_rel_hdr = esdi->rel.hdr;
10693 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10694 {
10695 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10696 input_rel_hdr,
10697 internal_relocs,
10698 rel_hash_list))
10699 return FALSE;
10700 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10701 * bed->s->int_rels_per_ext_rel);
10702 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10703 }
10704
10705 input_rela_hdr = esdi->rela.hdr;
10706 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10707 {
10708 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10709 input_rela_hdr,
10710 internal_relocs,
10711 rela_hash_list))
10712 return FALSE;
10713 }
10714 }
10715 }
10716
10717 /* Write out the modified section contents. */
10718 if (bed->elf_backend_write_section
10719 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10720 contents))
10721 {
10722 /* Section written out. */
10723 }
10724 else switch (o->sec_info_type)
10725 {
10726 case SEC_INFO_TYPE_STABS:
10727 if (! (_bfd_write_section_stabs
10728 (output_bfd,
10729 &elf_hash_table (flinfo->info)->stab_info,
10730 o, &elf_section_data (o)->sec_info, contents)))
10731 return FALSE;
10732 break;
10733 case SEC_INFO_TYPE_MERGE:
10734 if (! _bfd_write_merged_section (output_bfd, o,
10735 elf_section_data (o)->sec_info))
10736 return FALSE;
10737 break;
10738 case SEC_INFO_TYPE_EH_FRAME:
10739 {
10740 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10741 o, contents))
10742 return FALSE;
10743 }
10744 break;
10745 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10746 {
10747 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
10748 flinfo->info,
10749 o, contents))
10750 return FALSE;
10751 }
10752 break;
10753 default:
10754 {
10755 if (! (o->flags & SEC_EXCLUDE))
10756 {
10757 file_ptr offset = (file_ptr) o->output_offset;
10758 bfd_size_type todo = o->size;
10759
10760 offset *= bfd_octets_per_byte (output_bfd);
10761
10762 if ((o->flags & SEC_ELF_REVERSE_COPY))
10763 {
10764 /* Reverse-copy input section to output. */
10765 do
10766 {
10767 todo -= address_size;
10768 if (! bfd_set_section_contents (output_bfd,
10769 o->output_section,
10770 contents + todo,
10771 offset,
10772 address_size))
10773 return FALSE;
10774 if (todo == 0)
10775 break;
10776 offset += address_size;
10777 }
10778 while (1);
10779 }
10780 else if (! bfd_set_section_contents (output_bfd,
10781 o->output_section,
10782 contents,
10783 offset, todo))
10784 return FALSE;
10785 }
10786 }
10787 break;
10788 }
10789 }
10790
10791 return TRUE;
10792 }
10793
10794 /* Generate a reloc when linking an ELF file. This is a reloc
10795 requested by the linker, and does not come from any input file. This
10796 is used to build constructor and destructor tables when linking
10797 with -Ur. */
10798
10799 static bfd_boolean
10800 elf_reloc_link_order (bfd *output_bfd,
10801 struct bfd_link_info *info,
10802 asection *output_section,
10803 struct bfd_link_order *link_order)
10804 {
10805 reloc_howto_type *howto;
10806 long indx;
10807 bfd_vma offset;
10808 bfd_vma addend;
10809 struct bfd_elf_section_reloc_data *reldata;
10810 struct elf_link_hash_entry **rel_hash_ptr;
10811 Elf_Internal_Shdr *rel_hdr;
10812 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10813 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10814 bfd_byte *erel;
10815 unsigned int i;
10816 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10817
10818 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10819 if (howto == NULL)
10820 {
10821 bfd_set_error (bfd_error_bad_value);
10822 return FALSE;
10823 }
10824
10825 addend = link_order->u.reloc.p->addend;
10826
10827 if (esdo->rel.hdr)
10828 reldata = &esdo->rel;
10829 else if (esdo->rela.hdr)
10830 reldata = &esdo->rela;
10831 else
10832 {
10833 reldata = NULL;
10834 BFD_ASSERT (0);
10835 }
10836
10837 /* Figure out the symbol index. */
10838 rel_hash_ptr = reldata->hashes + reldata->count;
10839 if (link_order->type == bfd_section_reloc_link_order)
10840 {
10841 indx = link_order->u.reloc.p->u.section->target_index;
10842 BFD_ASSERT (indx != 0);
10843 *rel_hash_ptr = NULL;
10844 }
10845 else
10846 {
10847 struct elf_link_hash_entry *h;
10848
10849 /* Treat a reloc against a defined symbol as though it were
10850 actually against the section. */
10851 h = ((struct elf_link_hash_entry *)
10852 bfd_wrapped_link_hash_lookup (output_bfd, info,
10853 link_order->u.reloc.p->u.name,
10854 FALSE, FALSE, TRUE));
10855 if (h != NULL
10856 && (h->root.type == bfd_link_hash_defined
10857 || h->root.type == bfd_link_hash_defweak))
10858 {
10859 asection *section;
10860
10861 section = h->root.u.def.section;
10862 indx = section->output_section->target_index;
10863 *rel_hash_ptr = NULL;
10864 /* It seems that we ought to add the symbol value to the
10865 addend here, but in practice it has already been added
10866 because it was passed to constructor_callback. */
10867 addend += section->output_section->vma + section->output_offset;
10868 }
10869 else if (h != NULL)
10870 {
10871 /* Setting the index to -2 tells elf_link_output_extsym that
10872 this symbol is used by a reloc. */
10873 h->indx = -2;
10874 *rel_hash_ptr = h;
10875 indx = 0;
10876 }
10877 else
10878 {
10879 (*info->callbacks->unattached_reloc)
10880 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
10881 indx = 0;
10882 }
10883 }
10884
10885 /* If this is an inplace reloc, we must write the addend into the
10886 object file. */
10887 if (howto->partial_inplace && addend != 0)
10888 {
10889 bfd_size_type size;
10890 bfd_reloc_status_type rstat;
10891 bfd_byte *buf;
10892 bfd_boolean ok;
10893 const char *sym_name;
10894
10895 size = (bfd_size_type) bfd_get_reloc_size (howto);
10896 buf = (bfd_byte *) bfd_zmalloc (size);
10897 if (buf == NULL && size != 0)
10898 return FALSE;
10899 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10900 switch (rstat)
10901 {
10902 case bfd_reloc_ok:
10903 break;
10904
10905 default:
10906 case bfd_reloc_outofrange:
10907 abort ();
10908
10909 case bfd_reloc_overflow:
10910 if (link_order->type == bfd_section_reloc_link_order)
10911 sym_name = bfd_section_name (output_bfd,
10912 link_order->u.reloc.p->u.section);
10913 else
10914 sym_name = link_order->u.reloc.p->u.name;
10915 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
10916 howto->name, addend, NULL, NULL,
10917 (bfd_vma) 0);
10918 break;
10919 }
10920
10921 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10922 link_order->offset
10923 * bfd_octets_per_byte (output_bfd),
10924 size);
10925 free (buf);
10926 if (! ok)
10927 return FALSE;
10928 }
10929
10930 /* The address of a reloc is relative to the section in a
10931 relocatable file, and is a virtual address in an executable
10932 file. */
10933 offset = link_order->offset;
10934 if (! bfd_link_relocatable (info))
10935 offset += output_section->vma;
10936
10937 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10938 {
10939 irel[i].r_offset = offset;
10940 irel[i].r_info = 0;
10941 irel[i].r_addend = 0;
10942 }
10943 if (bed->s->arch_size == 32)
10944 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10945 else
10946 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10947
10948 rel_hdr = reldata->hdr;
10949 erel = rel_hdr->contents;
10950 if (rel_hdr->sh_type == SHT_REL)
10951 {
10952 erel += reldata->count * bed->s->sizeof_rel;
10953 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10954 }
10955 else
10956 {
10957 irel[0].r_addend = addend;
10958 erel += reldata->count * bed->s->sizeof_rela;
10959 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10960 }
10961
10962 ++reldata->count;
10963
10964 return TRUE;
10965 }
10966
10967
10968 /* Get the output vma of the section pointed to by the sh_link field. */
10969
10970 static bfd_vma
10971 elf_get_linked_section_vma (struct bfd_link_order *p)
10972 {
10973 Elf_Internal_Shdr **elf_shdrp;
10974 asection *s;
10975 int elfsec;
10976
10977 s = p->u.indirect.section;
10978 elf_shdrp = elf_elfsections (s->owner);
10979 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10980 elfsec = elf_shdrp[elfsec]->sh_link;
10981 /* PR 290:
10982 The Intel C compiler generates SHT_IA_64_UNWIND with
10983 SHF_LINK_ORDER. But it doesn't set the sh_link or
10984 sh_info fields. Hence we could get the situation
10985 where elfsec is 0. */
10986 if (elfsec == 0)
10987 {
10988 const struct elf_backend_data *bed
10989 = get_elf_backend_data (s->owner);
10990 if (bed->link_order_error_handler)
10991 bed->link_order_error_handler
10992 /* xgettext:c-format */
10993 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10994 return 0;
10995 }
10996 else
10997 {
10998 s = elf_shdrp[elfsec]->bfd_section;
10999 return s->output_section->vma + s->output_offset;
11000 }
11001 }
11002
11003
11004 /* Compare two sections based on the locations of the sections they are
11005 linked to. Used by elf_fixup_link_order. */
11006
11007 static int
11008 compare_link_order (const void * a, const void * b)
11009 {
11010 bfd_vma apos;
11011 bfd_vma bpos;
11012
11013 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
11014 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
11015 if (apos < bpos)
11016 return -1;
11017 return apos > bpos;
11018 }
11019
11020
11021 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
11022 order as their linked sections. Returns false if this could not be done
11023 because an output section includes both ordered and unordered
11024 sections. Ideally we'd do this in the linker proper. */
11025
11026 static bfd_boolean
11027 elf_fixup_link_order (bfd *abfd, asection *o)
11028 {
11029 int seen_linkorder;
11030 int seen_other;
11031 int n;
11032 struct bfd_link_order *p;
11033 bfd *sub;
11034 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11035 unsigned elfsec;
11036 struct bfd_link_order **sections;
11037 asection *s, *other_sec, *linkorder_sec;
11038 bfd_vma offset;
11039
11040 other_sec = NULL;
11041 linkorder_sec = NULL;
11042 seen_other = 0;
11043 seen_linkorder = 0;
11044 for (p = o->map_head.link_order; p != NULL; p = p->next)
11045 {
11046 if (p->type == bfd_indirect_link_order)
11047 {
11048 s = p->u.indirect.section;
11049 sub = s->owner;
11050 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11051 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
11052 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
11053 && elfsec < elf_numsections (sub)
11054 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
11055 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
11056 {
11057 seen_linkorder++;
11058 linkorder_sec = s;
11059 }
11060 else
11061 {
11062 seen_other++;
11063 other_sec = s;
11064 }
11065 }
11066 else
11067 seen_other++;
11068
11069 if (seen_other && seen_linkorder)
11070 {
11071 if (other_sec && linkorder_sec)
11072 _bfd_error_handler
11073 /* xgettext:c-format */
11074 (_("%A has both ordered [`%A' in %B] "
11075 "and unordered [`%A' in %B] sections"),
11076 o, linkorder_sec,
11077 linkorder_sec->owner, other_sec,
11078 other_sec->owner);
11079 else
11080 _bfd_error_handler
11081 (_("%A has both ordered and unordered sections"), o);
11082 bfd_set_error (bfd_error_bad_value);
11083 return FALSE;
11084 }
11085 }
11086
11087 if (!seen_linkorder)
11088 return TRUE;
11089
11090 sections = (struct bfd_link_order **)
11091 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
11092 if (sections == NULL)
11093 return FALSE;
11094 seen_linkorder = 0;
11095
11096 for (p = o->map_head.link_order; p != NULL; p = p->next)
11097 {
11098 sections[seen_linkorder++] = p;
11099 }
11100 /* Sort the input sections in the order of their linked section. */
11101 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
11102 compare_link_order);
11103
11104 /* Change the offsets of the sections. */
11105 offset = 0;
11106 for (n = 0; n < seen_linkorder; n++)
11107 {
11108 s = sections[n]->u.indirect.section;
11109 offset &= ~(bfd_vma) 0 << s->alignment_power;
11110 s->output_offset = offset / bfd_octets_per_byte (abfd);
11111 sections[n]->offset = offset;
11112 offset += sections[n]->size;
11113 }
11114
11115 free (sections);
11116 return TRUE;
11117 }
11118
11119 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11120 Returns TRUE upon success, FALSE otherwise. */
11121
11122 static bfd_boolean
11123 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11124 {
11125 bfd_boolean ret = FALSE;
11126 bfd *implib_bfd;
11127 const struct elf_backend_data *bed;
11128 flagword flags;
11129 enum bfd_architecture arch;
11130 unsigned int mach;
11131 asymbol **sympp = NULL;
11132 long symsize;
11133 long symcount;
11134 long src_count;
11135 elf_symbol_type *osymbuf;
11136
11137 implib_bfd = info->out_implib_bfd;
11138 bed = get_elf_backend_data (abfd);
11139
11140 if (!bfd_set_format (implib_bfd, bfd_object))
11141 return FALSE;
11142
11143 flags = bfd_get_file_flags (abfd);
11144 flags &= ~HAS_RELOC;
11145 if (!bfd_set_start_address (implib_bfd, 0)
11146 || !bfd_set_file_flags (implib_bfd, flags))
11147 return FALSE;
11148
11149 /* Copy architecture of output file to import library file. */
11150 arch = bfd_get_arch (abfd);
11151 mach = bfd_get_mach (abfd);
11152 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11153 && (abfd->target_defaulted
11154 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11155 return FALSE;
11156
11157 /* Get symbol table size. */
11158 symsize = bfd_get_symtab_upper_bound (abfd);
11159 if (symsize < 0)
11160 return FALSE;
11161
11162 /* Read in the symbol table. */
11163 sympp = (asymbol **) xmalloc (symsize);
11164 symcount = bfd_canonicalize_symtab (abfd, sympp);
11165 if (symcount < 0)
11166 goto free_sym_buf;
11167
11168 /* Allow the BFD backend to copy any private header data it
11169 understands from the output BFD to the import library BFD. */
11170 if (! bfd_copy_private_header_data (abfd, implib_bfd))
11171 goto free_sym_buf;
11172
11173 /* Filter symbols to appear in the import library. */
11174 if (bed->elf_backend_filter_implib_symbols)
11175 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11176 symcount);
11177 else
11178 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11179 if (symcount == 0)
11180 {
11181 bfd_set_error (bfd_error_no_symbols);
11182 _bfd_error_handler (_("%B: no symbol found for import library"),
11183 implib_bfd);
11184 goto free_sym_buf;
11185 }
11186
11187
11188 /* Make symbols absolute. */
11189 osymbuf = (elf_symbol_type *) bfd_alloc2 (implib_bfd, symcount,
11190 sizeof (*osymbuf));
11191 for (src_count = 0; src_count < symcount; src_count++)
11192 {
11193 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11194 sizeof (*osymbuf));
11195 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
11196 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
11197 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
11198 osymbuf[src_count].internal_elf_sym.st_value =
11199 osymbuf[src_count].symbol.value;
11200 sympp[src_count] = &osymbuf[src_count].symbol;
11201 }
11202
11203 bfd_set_symtab (implib_bfd, sympp, symcount);
11204
11205 /* Allow the BFD backend to copy any private data it understands
11206 from the output BFD to the import library BFD. This is done last
11207 to permit the routine to look at the filtered symbol table. */
11208 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
11209 goto free_sym_buf;
11210
11211 if (!bfd_close (implib_bfd))
11212 goto free_sym_buf;
11213
11214 ret = TRUE;
11215
11216 free_sym_buf:
11217 free (sympp);
11218 return ret;
11219 }
11220
11221 static void
11222 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11223 {
11224 asection *o;
11225
11226 if (flinfo->symstrtab != NULL)
11227 _bfd_elf_strtab_free (flinfo->symstrtab);
11228 if (flinfo->contents != NULL)
11229 free (flinfo->contents);
11230 if (flinfo->external_relocs != NULL)
11231 free (flinfo->external_relocs);
11232 if (flinfo->internal_relocs != NULL)
11233 free (flinfo->internal_relocs);
11234 if (flinfo->external_syms != NULL)
11235 free (flinfo->external_syms);
11236 if (flinfo->locsym_shndx != NULL)
11237 free (flinfo->locsym_shndx);
11238 if (flinfo->internal_syms != NULL)
11239 free (flinfo->internal_syms);
11240 if (flinfo->indices != NULL)
11241 free (flinfo->indices);
11242 if (flinfo->sections != NULL)
11243 free (flinfo->sections);
11244 if (flinfo->symshndxbuf != NULL)
11245 free (flinfo->symshndxbuf);
11246 for (o = obfd->sections; o != NULL; o = o->next)
11247 {
11248 struct bfd_elf_section_data *esdo = elf_section_data (o);
11249 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11250 free (esdo->rel.hashes);
11251 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11252 free (esdo->rela.hashes);
11253 }
11254 }
11255
11256 /* Do the final step of an ELF link. */
11257
11258 bfd_boolean
11259 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11260 {
11261 bfd_boolean dynamic;
11262 bfd_boolean emit_relocs;
11263 bfd *dynobj;
11264 struct elf_final_link_info flinfo;
11265 asection *o;
11266 struct bfd_link_order *p;
11267 bfd *sub;
11268 bfd_size_type max_contents_size;
11269 bfd_size_type max_external_reloc_size;
11270 bfd_size_type max_internal_reloc_count;
11271 bfd_size_type max_sym_count;
11272 bfd_size_type max_sym_shndx_count;
11273 Elf_Internal_Sym elfsym;
11274 unsigned int i;
11275 Elf_Internal_Shdr *symtab_hdr;
11276 Elf_Internal_Shdr *symtab_shndx_hdr;
11277 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11278 struct elf_outext_info eoinfo;
11279 bfd_boolean merged;
11280 size_t relativecount = 0;
11281 asection *reldyn = 0;
11282 bfd_size_type amt;
11283 asection *attr_section = NULL;
11284 bfd_vma attr_size = 0;
11285 const char *std_attrs_section;
11286 struct elf_link_hash_table *htab = elf_hash_table (info);
11287
11288 if (!is_elf_hash_table (htab))
11289 return FALSE;
11290
11291 if (bfd_link_pic (info))
11292 abfd->flags |= DYNAMIC;
11293
11294 dynamic = htab->dynamic_sections_created;
11295 dynobj = htab->dynobj;
11296
11297 emit_relocs = (bfd_link_relocatable (info)
11298 || info->emitrelocations);
11299
11300 flinfo.info = info;
11301 flinfo.output_bfd = abfd;
11302 flinfo.symstrtab = _bfd_elf_strtab_init ();
11303 if (flinfo.symstrtab == NULL)
11304 return FALSE;
11305
11306 if (! dynamic)
11307 {
11308 flinfo.hash_sec = NULL;
11309 flinfo.symver_sec = NULL;
11310 }
11311 else
11312 {
11313 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11314 /* Note that dynsym_sec can be NULL (on VMS). */
11315 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11316 /* Note that it is OK if symver_sec is NULL. */
11317 }
11318
11319 flinfo.contents = NULL;
11320 flinfo.external_relocs = NULL;
11321 flinfo.internal_relocs = NULL;
11322 flinfo.external_syms = NULL;
11323 flinfo.locsym_shndx = NULL;
11324 flinfo.internal_syms = NULL;
11325 flinfo.indices = NULL;
11326 flinfo.sections = NULL;
11327 flinfo.symshndxbuf = NULL;
11328 flinfo.filesym_count = 0;
11329
11330 /* The object attributes have been merged. Remove the input
11331 sections from the link, and set the contents of the output
11332 secton. */
11333 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11334 for (o = abfd->sections; o != NULL; o = o->next)
11335 {
11336 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11337 || strcmp (o->name, ".gnu.attributes") == 0)
11338 {
11339 for (p = o->map_head.link_order; p != NULL; p = p->next)
11340 {
11341 asection *input_section;
11342
11343 if (p->type != bfd_indirect_link_order)
11344 continue;
11345 input_section = p->u.indirect.section;
11346 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11347 elf_link_input_bfd ignores this section. */
11348 input_section->flags &= ~SEC_HAS_CONTENTS;
11349 }
11350
11351 attr_size = bfd_elf_obj_attr_size (abfd);
11352 if (attr_size)
11353 {
11354 bfd_set_section_size (abfd, o, attr_size);
11355 attr_section = o;
11356 /* Skip this section later on. */
11357 o->map_head.link_order = NULL;
11358 }
11359 else
11360 o->flags |= SEC_EXCLUDE;
11361 }
11362 }
11363
11364 /* Count up the number of relocations we will output for each output
11365 section, so that we know the sizes of the reloc sections. We
11366 also figure out some maximum sizes. */
11367 max_contents_size = 0;
11368 max_external_reloc_size = 0;
11369 max_internal_reloc_count = 0;
11370 max_sym_count = 0;
11371 max_sym_shndx_count = 0;
11372 merged = FALSE;
11373 for (o = abfd->sections; o != NULL; o = o->next)
11374 {
11375 struct bfd_elf_section_data *esdo = elf_section_data (o);
11376 o->reloc_count = 0;
11377
11378 for (p = o->map_head.link_order; p != NULL; p = p->next)
11379 {
11380 unsigned int reloc_count = 0;
11381 unsigned int additional_reloc_count = 0;
11382 struct bfd_elf_section_data *esdi = NULL;
11383
11384 if (p->type == bfd_section_reloc_link_order
11385 || p->type == bfd_symbol_reloc_link_order)
11386 reloc_count = 1;
11387 else if (p->type == bfd_indirect_link_order)
11388 {
11389 asection *sec;
11390
11391 sec = p->u.indirect.section;
11392
11393 /* Mark all sections which are to be included in the
11394 link. This will normally be every section. We need
11395 to do this so that we can identify any sections which
11396 the linker has decided to not include. */
11397 sec->linker_mark = TRUE;
11398
11399 if (sec->flags & SEC_MERGE)
11400 merged = TRUE;
11401
11402 if (sec->rawsize > max_contents_size)
11403 max_contents_size = sec->rawsize;
11404 if (sec->size > max_contents_size)
11405 max_contents_size = sec->size;
11406
11407 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11408 && (sec->owner->flags & DYNAMIC) == 0)
11409 {
11410 size_t sym_count;
11411
11412 /* We are interested in just local symbols, not all
11413 symbols. */
11414 if (elf_bad_symtab (sec->owner))
11415 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11416 / bed->s->sizeof_sym);
11417 else
11418 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11419
11420 if (sym_count > max_sym_count)
11421 max_sym_count = sym_count;
11422
11423 if (sym_count > max_sym_shndx_count
11424 && elf_symtab_shndx_list (sec->owner) != NULL)
11425 max_sym_shndx_count = sym_count;
11426
11427 if (esdo->this_hdr.sh_type == SHT_REL
11428 || esdo->this_hdr.sh_type == SHT_RELA)
11429 /* Some backends use reloc_count in relocation sections
11430 to count particular types of relocs. Of course,
11431 reloc sections themselves can't have relocations. */
11432 ;
11433 else if (emit_relocs)
11434 {
11435 reloc_count = sec->reloc_count;
11436 if (bed->elf_backend_count_additional_relocs)
11437 {
11438 int c;
11439 c = (*bed->elf_backend_count_additional_relocs) (sec);
11440 additional_reloc_count += c;
11441 }
11442 }
11443 else if (bed->elf_backend_count_relocs)
11444 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11445
11446 esdi = elf_section_data (sec);
11447
11448 if ((sec->flags & SEC_RELOC) != 0)
11449 {
11450 size_t ext_size = 0;
11451
11452 if (esdi->rel.hdr != NULL)
11453 ext_size = esdi->rel.hdr->sh_size;
11454 if (esdi->rela.hdr != NULL)
11455 ext_size += esdi->rela.hdr->sh_size;
11456
11457 if (ext_size > max_external_reloc_size)
11458 max_external_reloc_size = ext_size;
11459 if (sec->reloc_count > max_internal_reloc_count)
11460 max_internal_reloc_count = sec->reloc_count;
11461 }
11462 }
11463 }
11464
11465 if (reloc_count == 0)
11466 continue;
11467
11468 reloc_count += additional_reloc_count;
11469 o->reloc_count += reloc_count;
11470
11471 if (p->type == bfd_indirect_link_order && emit_relocs)
11472 {
11473 if (esdi->rel.hdr)
11474 {
11475 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
11476 esdo->rel.count += additional_reloc_count;
11477 }
11478 if (esdi->rela.hdr)
11479 {
11480 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
11481 esdo->rela.count += additional_reloc_count;
11482 }
11483 }
11484 else
11485 {
11486 if (o->use_rela_p)
11487 esdo->rela.count += reloc_count;
11488 else
11489 esdo->rel.count += reloc_count;
11490 }
11491 }
11492
11493 if (o->reloc_count > 0)
11494 o->flags |= SEC_RELOC;
11495 else
11496 {
11497 /* Explicitly clear the SEC_RELOC flag. The linker tends to
11498 set it (this is probably a bug) and if it is set
11499 assign_section_numbers will create a reloc section. */
11500 o->flags &=~ SEC_RELOC;
11501 }
11502
11503 /* If the SEC_ALLOC flag is not set, force the section VMA to
11504 zero. This is done in elf_fake_sections as well, but forcing
11505 the VMA to 0 here will ensure that relocs against these
11506 sections are handled correctly. */
11507 if ((o->flags & SEC_ALLOC) == 0
11508 && ! o->user_set_vma)
11509 o->vma = 0;
11510 }
11511
11512 if (! bfd_link_relocatable (info) && merged)
11513 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
11514
11515 /* Figure out the file positions for everything but the symbol table
11516 and the relocs. We set symcount to force assign_section_numbers
11517 to create a symbol table. */
11518 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
11519 BFD_ASSERT (! abfd->output_has_begun);
11520 if (! _bfd_elf_compute_section_file_positions (abfd, info))
11521 goto error_return;
11522
11523 /* Set sizes, and assign file positions for reloc sections. */
11524 for (o = abfd->sections; o != NULL; o = o->next)
11525 {
11526 struct bfd_elf_section_data *esdo = elf_section_data (o);
11527 if ((o->flags & SEC_RELOC) != 0)
11528 {
11529 if (esdo->rel.hdr
11530 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
11531 goto error_return;
11532
11533 if (esdo->rela.hdr
11534 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
11535 goto error_return;
11536 }
11537
11538 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
11539 to count upwards while actually outputting the relocations. */
11540 esdo->rel.count = 0;
11541 esdo->rela.count = 0;
11542
11543 if (esdo->this_hdr.sh_offset == (file_ptr) -1)
11544 {
11545 /* Cache the section contents so that they can be compressed
11546 later. Use bfd_malloc since it will be freed by
11547 bfd_compress_section_contents. */
11548 unsigned char *contents = esdo->this_hdr.contents;
11549 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
11550 abort ();
11551 contents
11552 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
11553 if (contents == NULL)
11554 goto error_return;
11555 esdo->this_hdr.contents = contents;
11556 }
11557 }
11558
11559 /* We have now assigned file positions for all the sections except
11560 .symtab, .strtab, and non-loaded reloc sections. We start the
11561 .symtab section at the current file position, and write directly
11562 to it. We build the .strtab section in memory. */
11563 bfd_get_symcount (abfd) = 0;
11564 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11565 /* sh_name is set in prep_headers. */
11566 symtab_hdr->sh_type = SHT_SYMTAB;
11567 /* sh_flags, sh_addr and sh_size all start off zero. */
11568 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
11569 /* sh_link is set in assign_section_numbers. */
11570 /* sh_info is set below. */
11571 /* sh_offset is set just below. */
11572 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
11573
11574 if (max_sym_count < 20)
11575 max_sym_count = 20;
11576 htab->strtabsize = max_sym_count;
11577 amt = max_sym_count * sizeof (struct elf_sym_strtab);
11578 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
11579 if (htab->strtab == NULL)
11580 goto error_return;
11581 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
11582 flinfo.symshndxbuf
11583 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
11584 ? (Elf_External_Sym_Shndx *) -1 : NULL);
11585
11586 if (info->strip != strip_all || emit_relocs)
11587 {
11588 file_ptr off = elf_next_file_pos (abfd);
11589
11590 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
11591
11592 /* Note that at this point elf_next_file_pos (abfd) is
11593 incorrect. We do not yet know the size of the .symtab section.
11594 We correct next_file_pos below, after we do know the size. */
11595
11596 /* Start writing out the symbol table. The first symbol is always a
11597 dummy symbol. */
11598 elfsym.st_value = 0;
11599 elfsym.st_size = 0;
11600 elfsym.st_info = 0;
11601 elfsym.st_other = 0;
11602 elfsym.st_shndx = SHN_UNDEF;
11603 elfsym.st_target_internal = 0;
11604 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
11605 bfd_und_section_ptr, NULL) != 1)
11606 goto error_return;
11607
11608 /* Output a symbol for each section. We output these even if we are
11609 discarding local symbols, since they are used for relocs. These
11610 symbols have no names. We store the index of each one in the
11611 index field of the section, so that we can find it again when
11612 outputting relocs. */
11613
11614 elfsym.st_size = 0;
11615 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11616 elfsym.st_other = 0;
11617 elfsym.st_value = 0;
11618 elfsym.st_target_internal = 0;
11619 for (i = 1; i < elf_numsections (abfd); i++)
11620 {
11621 o = bfd_section_from_elf_index (abfd, i);
11622 if (o != NULL)
11623 {
11624 o->target_index = bfd_get_symcount (abfd);
11625 elfsym.st_shndx = i;
11626 if (!bfd_link_relocatable (info))
11627 elfsym.st_value = o->vma;
11628 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
11629 NULL) != 1)
11630 goto error_return;
11631 }
11632 }
11633 }
11634
11635 /* Allocate some memory to hold information read in from the input
11636 files. */
11637 if (max_contents_size != 0)
11638 {
11639 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
11640 if (flinfo.contents == NULL)
11641 goto error_return;
11642 }
11643
11644 if (max_external_reloc_size != 0)
11645 {
11646 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
11647 if (flinfo.external_relocs == NULL)
11648 goto error_return;
11649 }
11650
11651 if (max_internal_reloc_count != 0)
11652 {
11653 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
11654 amt *= sizeof (Elf_Internal_Rela);
11655 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
11656 if (flinfo.internal_relocs == NULL)
11657 goto error_return;
11658 }
11659
11660 if (max_sym_count != 0)
11661 {
11662 amt = max_sym_count * bed->s->sizeof_sym;
11663 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
11664 if (flinfo.external_syms == NULL)
11665 goto error_return;
11666
11667 amt = max_sym_count * sizeof (Elf_Internal_Sym);
11668 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
11669 if (flinfo.internal_syms == NULL)
11670 goto error_return;
11671
11672 amt = max_sym_count * sizeof (long);
11673 flinfo.indices = (long int *) bfd_malloc (amt);
11674 if (flinfo.indices == NULL)
11675 goto error_return;
11676
11677 amt = max_sym_count * sizeof (asection *);
11678 flinfo.sections = (asection **) bfd_malloc (amt);
11679 if (flinfo.sections == NULL)
11680 goto error_return;
11681 }
11682
11683 if (max_sym_shndx_count != 0)
11684 {
11685 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11686 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11687 if (flinfo.locsym_shndx == NULL)
11688 goto error_return;
11689 }
11690
11691 if (htab->tls_sec)
11692 {
11693 bfd_vma base, end = 0;
11694 asection *sec;
11695
11696 for (sec = htab->tls_sec;
11697 sec && (sec->flags & SEC_THREAD_LOCAL);
11698 sec = sec->next)
11699 {
11700 bfd_size_type size = sec->size;
11701
11702 if (size == 0
11703 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11704 {
11705 struct bfd_link_order *ord = sec->map_tail.link_order;
11706
11707 if (ord != NULL)
11708 size = ord->offset + ord->size;
11709 }
11710 end = sec->vma + size;
11711 }
11712 base = htab->tls_sec->vma;
11713 /* Only align end of TLS section if static TLS doesn't have special
11714 alignment requirements. */
11715 if (bed->static_tls_alignment == 1)
11716 end = align_power (end, htab->tls_sec->alignment_power);
11717 htab->tls_size = end - base;
11718 }
11719
11720 /* Reorder SHF_LINK_ORDER sections. */
11721 for (o = abfd->sections; o != NULL; o = o->next)
11722 {
11723 if (!elf_fixup_link_order (abfd, o))
11724 return FALSE;
11725 }
11726
11727 if (!_bfd_elf_fixup_eh_frame_hdr (info))
11728 return FALSE;
11729
11730 /* Since ELF permits relocations to be against local symbols, we
11731 must have the local symbols available when we do the relocations.
11732 Since we would rather only read the local symbols once, and we
11733 would rather not keep them in memory, we handle all the
11734 relocations for a single input file at the same time.
11735
11736 Unfortunately, there is no way to know the total number of local
11737 symbols until we have seen all of them, and the local symbol
11738 indices precede the global symbol indices. This means that when
11739 we are generating relocatable output, and we see a reloc against
11740 a global symbol, we can not know the symbol index until we have
11741 finished examining all the local symbols to see which ones we are
11742 going to output. To deal with this, we keep the relocations in
11743 memory, and don't output them until the end of the link. This is
11744 an unfortunate waste of memory, but I don't see a good way around
11745 it. Fortunately, it only happens when performing a relocatable
11746 link, which is not the common case. FIXME: If keep_memory is set
11747 we could write the relocs out and then read them again; I don't
11748 know how bad the memory loss will be. */
11749
11750 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11751 sub->output_has_begun = FALSE;
11752 for (o = abfd->sections; o != NULL; o = o->next)
11753 {
11754 for (p = o->map_head.link_order; p != NULL; p = p->next)
11755 {
11756 if (p->type == bfd_indirect_link_order
11757 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11758 == bfd_target_elf_flavour)
11759 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11760 {
11761 if (! sub->output_has_begun)
11762 {
11763 if (! elf_link_input_bfd (&flinfo, sub))
11764 goto error_return;
11765 sub->output_has_begun = TRUE;
11766 }
11767 }
11768 else if (p->type == bfd_section_reloc_link_order
11769 || p->type == bfd_symbol_reloc_link_order)
11770 {
11771 if (! elf_reloc_link_order (abfd, info, o, p))
11772 goto error_return;
11773 }
11774 else
11775 {
11776 if (! _bfd_default_link_order (abfd, info, o, p))
11777 {
11778 if (p->type == bfd_indirect_link_order
11779 && (bfd_get_flavour (sub)
11780 == bfd_target_elf_flavour)
11781 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11782 != bed->s->elfclass))
11783 {
11784 const char *iclass, *oclass;
11785
11786 switch (bed->s->elfclass)
11787 {
11788 case ELFCLASS64: oclass = "ELFCLASS64"; break;
11789 case ELFCLASS32: oclass = "ELFCLASS32"; break;
11790 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
11791 default: abort ();
11792 }
11793
11794 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
11795 {
11796 case ELFCLASS64: iclass = "ELFCLASS64"; break;
11797 case ELFCLASS32: iclass = "ELFCLASS32"; break;
11798 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
11799 default: abort ();
11800 }
11801
11802 bfd_set_error (bfd_error_wrong_format);
11803 _bfd_error_handler
11804 /* xgettext:c-format */
11805 (_("%B: file class %s incompatible with %s"),
11806 sub, iclass, oclass);
11807 }
11808
11809 goto error_return;
11810 }
11811 }
11812 }
11813 }
11814
11815 /* Free symbol buffer if needed. */
11816 if (!info->reduce_memory_overheads)
11817 {
11818 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11819 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11820 && elf_tdata (sub)->symbuf)
11821 {
11822 free (elf_tdata (sub)->symbuf);
11823 elf_tdata (sub)->symbuf = NULL;
11824 }
11825 }
11826
11827 /* Output any global symbols that got converted to local in a
11828 version script or due to symbol visibility. We do this in a
11829 separate step since ELF requires all local symbols to appear
11830 prior to any global symbols. FIXME: We should only do this if
11831 some global symbols were, in fact, converted to become local.
11832 FIXME: Will this work correctly with the Irix 5 linker? */
11833 eoinfo.failed = FALSE;
11834 eoinfo.flinfo = &flinfo;
11835 eoinfo.localsyms = TRUE;
11836 eoinfo.file_sym_done = FALSE;
11837 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11838 if (eoinfo.failed)
11839 return FALSE;
11840
11841 /* If backend needs to output some local symbols not present in the hash
11842 table, do it now. */
11843 if (bed->elf_backend_output_arch_local_syms
11844 && (info->strip != strip_all || emit_relocs))
11845 {
11846 typedef int (*out_sym_func)
11847 (void *, const char *, Elf_Internal_Sym *, asection *,
11848 struct elf_link_hash_entry *);
11849
11850 if (! ((*bed->elf_backend_output_arch_local_syms)
11851 (abfd, info, &flinfo,
11852 (out_sym_func) elf_link_output_symstrtab)))
11853 return FALSE;
11854 }
11855
11856 /* That wrote out all the local symbols. Finish up the symbol table
11857 with the global symbols. Even if we want to strip everything we
11858 can, we still need to deal with those global symbols that got
11859 converted to local in a version script. */
11860
11861 /* The sh_info field records the index of the first non local symbol. */
11862 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11863
11864 if (dynamic
11865 && htab->dynsym != NULL
11866 && htab->dynsym->output_section != bfd_abs_section_ptr)
11867 {
11868 Elf_Internal_Sym sym;
11869 bfd_byte *dynsym = htab->dynsym->contents;
11870
11871 o = htab->dynsym->output_section;
11872 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
11873
11874 /* Write out the section symbols for the output sections. */
11875 if (bfd_link_pic (info)
11876 || htab->is_relocatable_executable)
11877 {
11878 asection *s;
11879
11880 sym.st_size = 0;
11881 sym.st_name = 0;
11882 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11883 sym.st_other = 0;
11884 sym.st_target_internal = 0;
11885
11886 for (s = abfd->sections; s != NULL; s = s->next)
11887 {
11888 int indx;
11889 bfd_byte *dest;
11890 long dynindx;
11891
11892 dynindx = elf_section_data (s)->dynindx;
11893 if (dynindx <= 0)
11894 continue;
11895 indx = elf_section_data (s)->this_idx;
11896 BFD_ASSERT (indx > 0);
11897 sym.st_shndx = indx;
11898 if (! check_dynsym (abfd, &sym))
11899 return FALSE;
11900 sym.st_value = s->vma;
11901 dest = dynsym + dynindx * bed->s->sizeof_sym;
11902 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11903 }
11904 }
11905
11906 /* Write out the local dynsyms. */
11907 if (htab->dynlocal)
11908 {
11909 struct elf_link_local_dynamic_entry *e;
11910 for (e = htab->dynlocal; e ; e = e->next)
11911 {
11912 asection *s;
11913 bfd_byte *dest;
11914
11915 /* Copy the internal symbol and turn off visibility.
11916 Note that we saved a word of storage and overwrote
11917 the original st_name with the dynstr_index. */
11918 sym = e->isym;
11919 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11920
11921 s = bfd_section_from_elf_index (e->input_bfd,
11922 e->isym.st_shndx);
11923 if (s != NULL)
11924 {
11925 sym.st_shndx =
11926 elf_section_data (s->output_section)->this_idx;
11927 if (! check_dynsym (abfd, &sym))
11928 return FALSE;
11929 sym.st_value = (s->output_section->vma
11930 + s->output_offset
11931 + e->isym.st_value);
11932 }
11933
11934 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11935 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11936 }
11937 }
11938 }
11939
11940 /* We get the global symbols from the hash table. */
11941 eoinfo.failed = FALSE;
11942 eoinfo.localsyms = FALSE;
11943 eoinfo.flinfo = &flinfo;
11944 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11945 if (eoinfo.failed)
11946 return FALSE;
11947
11948 /* If backend needs to output some symbols not present in the hash
11949 table, do it now. */
11950 if (bed->elf_backend_output_arch_syms
11951 && (info->strip != strip_all || emit_relocs))
11952 {
11953 typedef int (*out_sym_func)
11954 (void *, const char *, Elf_Internal_Sym *, asection *,
11955 struct elf_link_hash_entry *);
11956
11957 if (! ((*bed->elf_backend_output_arch_syms)
11958 (abfd, info, &flinfo,
11959 (out_sym_func) elf_link_output_symstrtab)))
11960 return FALSE;
11961 }
11962
11963 /* Finalize the .strtab section. */
11964 _bfd_elf_strtab_finalize (flinfo.symstrtab);
11965
11966 /* Swap out the .strtab section. */
11967 if (!elf_link_swap_symbols_out (&flinfo))
11968 return FALSE;
11969
11970 /* Now we know the size of the symtab section. */
11971 if (bfd_get_symcount (abfd) > 0)
11972 {
11973 /* Finish up and write out the symbol string table (.strtab)
11974 section. */
11975 Elf_Internal_Shdr *symstrtab_hdr;
11976 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
11977
11978 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
11979 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
11980 {
11981 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11982 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11983 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11984 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11985 symtab_shndx_hdr->sh_size = amt;
11986
11987 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11988 off, TRUE);
11989
11990 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11991 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11992 return FALSE;
11993 }
11994
11995 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11996 /* sh_name was set in prep_headers. */
11997 symstrtab_hdr->sh_type = SHT_STRTAB;
11998 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
11999 symstrtab_hdr->sh_addr = 0;
12000 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
12001 symstrtab_hdr->sh_entsize = 0;
12002 symstrtab_hdr->sh_link = 0;
12003 symstrtab_hdr->sh_info = 0;
12004 /* sh_offset is set just below. */
12005 symstrtab_hdr->sh_addralign = 1;
12006
12007 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
12008 off, TRUE);
12009 elf_next_file_pos (abfd) = off;
12010
12011 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
12012 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
12013 return FALSE;
12014 }
12015
12016 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
12017 {
12018 _bfd_error_handler (_("%B: failed to generate import library"),
12019 info->out_implib_bfd);
12020 return FALSE;
12021 }
12022
12023 /* Adjust the relocs to have the correct symbol indices. */
12024 for (o = abfd->sections; o != NULL; o = o->next)
12025 {
12026 struct bfd_elf_section_data *esdo = elf_section_data (o);
12027 bfd_boolean sort;
12028 if ((o->flags & SEC_RELOC) == 0)
12029 continue;
12030
12031 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
12032 if (esdo->rel.hdr != NULL
12033 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort))
12034 return FALSE;
12035 if (esdo->rela.hdr != NULL
12036 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort))
12037 return FALSE;
12038
12039 /* Set the reloc_count field to 0 to prevent write_relocs from
12040 trying to swap the relocs out itself. */
12041 o->reloc_count = 0;
12042 }
12043
12044 if (dynamic && info->combreloc && dynobj != NULL)
12045 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
12046
12047 /* If we are linking against a dynamic object, or generating a
12048 shared library, finish up the dynamic linking information. */
12049 if (dynamic)
12050 {
12051 bfd_byte *dyncon, *dynconend;
12052
12053 /* Fix up .dynamic entries. */
12054 o = bfd_get_linker_section (dynobj, ".dynamic");
12055 BFD_ASSERT (o != NULL);
12056
12057 dyncon = o->contents;
12058 dynconend = o->contents + o->size;
12059 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12060 {
12061 Elf_Internal_Dyn dyn;
12062 const char *name;
12063 unsigned int type;
12064
12065 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12066
12067 switch (dyn.d_tag)
12068 {
12069 default:
12070 continue;
12071 case DT_NULL:
12072 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
12073 {
12074 switch (elf_section_data (reldyn)->this_hdr.sh_type)
12075 {
12076 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
12077 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
12078 default: continue;
12079 }
12080 dyn.d_un.d_val = relativecount;
12081 relativecount = 0;
12082 break;
12083 }
12084 continue;
12085
12086 case DT_INIT:
12087 name = info->init_function;
12088 goto get_sym;
12089 case DT_FINI:
12090 name = info->fini_function;
12091 get_sym:
12092 {
12093 struct elf_link_hash_entry *h;
12094
12095 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
12096 if (h != NULL
12097 && (h->root.type == bfd_link_hash_defined
12098 || h->root.type == bfd_link_hash_defweak))
12099 {
12100 dyn.d_un.d_ptr = h->root.u.def.value;
12101 o = h->root.u.def.section;
12102 if (o->output_section != NULL)
12103 dyn.d_un.d_ptr += (o->output_section->vma
12104 + o->output_offset);
12105 else
12106 {
12107 /* The symbol is imported from another shared
12108 library and does not apply to this one. */
12109 dyn.d_un.d_ptr = 0;
12110 }
12111 break;
12112 }
12113 }
12114 continue;
12115
12116 case DT_PREINIT_ARRAYSZ:
12117 name = ".preinit_array";
12118 goto get_out_size;
12119 case DT_INIT_ARRAYSZ:
12120 name = ".init_array";
12121 goto get_out_size;
12122 case DT_FINI_ARRAYSZ:
12123 name = ".fini_array";
12124 get_out_size:
12125 o = bfd_get_section_by_name (abfd, name);
12126 if (o == NULL)
12127 {
12128 _bfd_error_handler
12129 (_("could not find section %s"), name);
12130 goto error_return;
12131 }
12132 if (o->size == 0)
12133 _bfd_error_handler
12134 (_("warning: %s section has zero size"), name);
12135 dyn.d_un.d_val = o->size;
12136 break;
12137
12138 case DT_PREINIT_ARRAY:
12139 name = ".preinit_array";
12140 goto get_out_vma;
12141 case DT_INIT_ARRAY:
12142 name = ".init_array";
12143 goto get_out_vma;
12144 case DT_FINI_ARRAY:
12145 name = ".fini_array";
12146 get_out_vma:
12147 o = bfd_get_section_by_name (abfd, name);
12148 goto do_vma;
12149
12150 case DT_HASH:
12151 name = ".hash";
12152 goto get_vma;
12153 case DT_GNU_HASH:
12154 name = ".gnu.hash";
12155 goto get_vma;
12156 case DT_STRTAB:
12157 name = ".dynstr";
12158 goto get_vma;
12159 case DT_SYMTAB:
12160 name = ".dynsym";
12161 goto get_vma;
12162 case DT_VERDEF:
12163 name = ".gnu.version_d";
12164 goto get_vma;
12165 case DT_VERNEED:
12166 name = ".gnu.version_r";
12167 goto get_vma;
12168 case DT_VERSYM:
12169 name = ".gnu.version";
12170 get_vma:
12171 o = bfd_get_linker_section (dynobj, name);
12172 do_vma:
12173 if (o == NULL)
12174 {
12175 _bfd_error_handler
12176 (_("could not find section %s"), name);
12177 goto error_return;
12178 }
12179 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
12180 {
12181 _bfd_error_handler
12182 (_("warning: section '%s' is being made into a note"), name);
12183 bfd_set_error (bfd_error_nonrepresentable_section);
12184 goto error_return;
12185 }
12186 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
12187 break;
12188
12189 case DT_REL:
12190 case DT_RELA:
12191 case DT_RELSZ:
12192 case DT_RELASZ:
12193 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12194 type = SHT_REL;
12195 else
12196 type = SHT_RELA;
12197 dyn.d_un.d_val = 0;
12198 dyn.d_un.d_ptr = 0;
12199 for (i = 1; i < elf_numsections (abfd); i++)
12200 {
12201 Elf_Internal_Shdr *hdr;
12202
12203 hdr = elf_elfsections (abfd)[i];
12204 if (hdr->sh_type == type
12205 && (hdr->sh_flags & SHF_ALLOC) != 0)
12206 {
12207 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
12208 dyn.d_un.d_val += hdr->sh_size;
12209 else
12210 {
12211 if (dyn.d_un.d_ptr == 0
12212 || hdr->sh_addr < dyn.d_un.d_ptr)
12213 dyn.d_un.d_ptr = hdr->sh_addr;
12214 }
12215 }
12216 }
12217 if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
12218 {
12219 /* Don't count procedure linkage table relocs in the
12220 overall reloc count. */
12221 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
12222 dyn.d_un.d_val -= htab->srelplt->size;
12223 /* If .rela.plt is the first .rela section, exclude
12224 it from DT_RELA. */
12225 else if (dyn.d_un.d_ptr == (htab->srelplt->output_section->vma
12226 + htab->srelplt->output_offset))
12227 dyn.d_un.d_ptr += htab->srelplt->size;
12228 }
12229 break;
12230 }
12231 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
12232 }
12233 }
12234
12235 /* If we have created any dynamic sections, then output them. */
12236 if (dynobj != NULL)
12237 {
12238 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
12239 goto error_return;
12240
12241 /* Check for DT_TEXTREL (late, in case the backend removes it). */
12242 if (((info->warn_shared_textrel && bfd_link_pic (info))
12243 || info->error_textrel)
12244 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
12245 {
12246 bfd_byte *dyncon, *dynconend;
12247
12248 dyncon = o->contents;
12249 dynconend = o->contents + o->size;
12250 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12251 {
12252 Elf_Internal_Dyn dyn;
12253
12254 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12255
12256 if (dyn.d_tag == DT_TEXTREL)
12257 {
12258 if (info->error_textrel)
12259 info->callbacks->einfo
12260 (_("%P%X: read-only segment has dynamic relocations.\n"));
12261 else
12262 info->callbacks->einfo
12263 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
12264 break;
12265 }
12266 }
12267 }
12268
12269 for (o = dynobj->sections; o != NULL; o = o->next)
12270 {
12271 if ((o->flags & SEC_HAS_CONTENTS) == 0
12272 || o->size == 0
12273 || o->output_section == bfd_abs_section_ptr)
12274 continue;
12275 if ((o->flags & SEC_LINKER_CREATED) == 0)
12276 {
12277 /* At this point, we are only interested in sections
12278 created by _bfd_elf_link_create_dynamic_sections. */
12279 continue;
12280 }
12281 if (htab->stab_info.stabstr == o)
12282 continue;
12283 if (htab->eh_info.hdr_sec == o)
12284 continue;
12285 if (strcmp (o->name, ".dynstr") != 0)
12286 {
12287 if (! bfd_set_section_contents (abfd, o->output_section,
12288 o->contents,
12289 (file_ptr) o->output_offset
12290 * bfd_octets_per_byte (abfd),
12291 o->size))
12292 goto error_return;
12293 }
12294 else
12295 {
12296 /* The contents of the .dynstr section are actually in a
12297 stringtab. */
12298 file_ptr off;
12299
12300 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
12301 if (bfd_seek (abfd, off, SEEK_SET) != 0
12302 || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
12303 goto error_return;
12304 }
12305 }
12306 }
12307
12308 if (bfd_link_relocatable (info))
12309 {
12310 bfd_boolean failed = FALSE;
12311
12312 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
12313 if (failed)
12314 goto error_return;
12315 }
12316
12317 /* If we have optimized stabs strings, output them. */
12318 if (htab->stab_info.stabstr != NULL)
12319 {
12320 if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
12321 goto error_return;
12322 }
12323
12324 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
12325 goto error_return;
12326
12327 elf_final_link_free (abfd, &flinfo);
12328
12329 elf_linker (abfd) = TRUE;
12330
12331 if (attr_section)
12332 {
12333 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
12334 if (contents == NULL)
12335 return FALSE; /* Bail out and fail. */
12336 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
12337 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
12338 free (contents);
12339 }
12340
12341 return TRUE;
12342
12343 error_return:
12344 elf_final_link_free (abfd, &flinfo);
12345 return FALSE;
12346 }
12347 \f
12348 /* Initialize COOKIE for input bfd ABFD. */
12349
12350 static bfd_boolean
12351 init_reloc_cookie (struct elf_reloc_cookie *cookie,
12352 struct bfd_link_info *info, bfd *abfd)
12353 {
12354 Elf_Internal_Shdr *symtab_hdr;
12355 const struct elf_backend_data *bed;
12356
12357 bed = get_elf_backend_data (abfd);
12358 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12359
12360 cookie->abfd = abfd;
12361 cookie->sym_hashes = elf_sym_hashes (abfd);
12362 cookie->bad_symtab = elf_bad_symtab (abfd);
12363 if (cookie->bad_symtab)
12364 {
12365 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12366 cookie->extsymoff = 0;
12367 }
12368 else
12369 {
12370 cookie->locsymcount = symtab_hdr->sh_info;
12371 cookie->extsymoff = symtab_hdr->sh_info;
12372 }
12373
12374 if (bed->s->arch_size == 32)
12375 cookie->r_sym_shift = 8;
12376 else
12377 cookie->r_sym_shift = 32;
12378
12379 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
12380 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
12381 {
12382 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12383 cookie->locsymcount, 0,
12384 NULL, NULL, NULL);
12385 if (cookie->locsyms == NULL)
12386 {
12387 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
12388 return FALSE;
12389 }
12390 if (info->keep_memory)
12391 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
12392 }
12393 return TRUE;
12394 }
12395
12396 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
12397
12398 static void
12399 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
12400 {
12401 Elf_Internal_Shdr *symtab_hdr;
12402
12403 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12404 if (cookie->locsyms != NULL
12405 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
12406 free (cookie->locsyms);
12407 }
12408
12409 /* Initialize the relocation information in COOKIE for input section SEC
12410 of input bfd ABFD. */
12411
12412 static bfd_boolean
12413 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12414 struct bfd_link_info *info, bfd *abfd,
12415 asection *sec)
12416 {
12417 const struct elf_backend_data *bed;
12418
12419 if (sec->reloc_count == 0)
12420 {
12421 cookie->rels = NULL;
12422 cookie->relend = NULL;
12423 }
12424 else
12425 {
12426 bed = get_elf_backend_data (abfd);
12427
12428 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
12429 info->keep_memory);
12430 if (cookie->rels == NULL)
12431 return FALSE;
12432 cookie->rel = cookie->rels;
12433 cookie->relend = (cookie->rels
12434 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
12435 }
12436 cookie->rel = cookie->rels;
12437 return TRUE;
12438 }
12439
12440 /* Free the memory allocated by init_reloc_cookie_rels,
12441 if appropriate. */
12442
12443 static void
12444 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12445 asection *sec)
12446 {
12447 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
12448 free (cookie->rels);
12449 }
12450
12451 /* Initialize the whole of COOKIE for input section SEC. */
12452
12453 static bfd_boolean
12454 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12455 struct bfd_link_info *info,
12456 asection *sec)
12457 {
12458 if (!init_reloc_cookie (cookie, info, sec->owner))
12459 goto error1;
12460 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
12461 goto error2;
12462 return TRUE;
12463
12464 error2:
12465 fini_reloc_cookie (cookie, sec->owner);
12466 error1:
12467 return FALSE;
12468 }
12469
12470 /* Free the memory allocated by init_reloc_cookie_for_section,
12471 if appropriate. */
12472
12473 static void
12474 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12475 asection *sec)
12476 {
12477 fini_reloc_cookie_rels (cookie, sec);
12478 fini_reloc_cookie (cookie, sec->owner);
12479 }
12480 \f
12481 /* Garbage collect unused sections. */
12482
12483 /* Default gc_mark_hook. */
12484
12485 asection *
12486 _bfd_elf_gc_mark_hook (asection *sec,
12487 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12488 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12489 struct elf_link_hash_entry *h,
12490 Elf_Internal_Sym *sym)
12491 {
12492 if (h != NULL)
12493 {
12494 switch (h->root.type)
12495 {
12496 case bfd_link_hash_defined:
12497 case bfd_link_hash_defweak:
12498 return h->root.u.def.section;
12499
12500 case bfd_link_hash_common:
12501 return h->root.u.c.p->section;
12502
12503 default:
12504 break;
12505 }
12506 }
12507 else
12508 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
12509
12510 return NULL;
12511 }
12512
12513 /* For undefined __start_<name> and __stop_<name> symbols, return the
12514 first input section matching <name>. Return NULL otherwise. */
12515
12516 asection *
12517 _bfd_elf_is_start_stop (const struct bfd_link_info *info,
12518 struct elf_link_hash_entry *h)
12519 {
12520 asection *s;
12521 const char *sec_name;
12522
12523 if (h->root.type != bfd_link_hash_undefined
12524 && h->root.type != bfd_link_hash_undefweak)
12525 return NULL;
12526
12527 s = h->root.u.undef.section;
12528 if (s != NULL)
12529 {
12530 if (s == (asection *) 0 - 1)
12531 return NULL;
12532 return s;
12533 }
12534
12535 sec_name = NULL;
12536 if (strncmp (h->root.root.string, "__start_", 8) == 0)
12537 sec_name = h->root.root.string + 8;
12538 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
12539 sec_name = h->root.root.string + 7;
12540
12541 if (sec_name != NULL && *sec_name != '\0')
12542 {
12543 bfd *i;
12544
12545 for (i = info->input_bfds; i != NULL; i = i->link.next)
12546 {
12547 s = bfd_get_section_by_name (i, sec_name);
12548 if (s != NULL)
12549 {
12550 h->root.u.undef.section = s;
12551 break;
12552 }
12553 }
12554 }
12555
12556 if (s == NULL)
12557 h->root.u.undef.section = (asection *) 0 - 1;
12558
12559 return s;
12560 }
12561
12562 /* COOKIE->rel describes a relocation against section SEC, which is
12563 a section we've decided to keep. Return the section that contains
12564 the relocation symbol, or NULL if no section contains it. */
12565
12566 asection *
12567 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
12568 elf_gc_mark_hook_fn gc_mark_hook,
12569 struct elf_reloc_cookie *cookie,
12570 bfd_boolean *start_stop)
12571 {
12572 unsigned long r_symndx;
12573 struct elf_link_hash_entry *h;
12574
12575 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
12576 if (r_symndx == STN_UNDEF)
12577 return NULL;
12578
12579 if (r_symndx >= cookie->locsymcount
12580 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12581 {
12582 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
12583 if (h == NULL)
12584 {
12585 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
12586 sec->owner);
12587 return NULL;
12588 }
12589 while (h->root.type == bfd_link_hash_indirect
12590 || h->root.type == bfd_link_hash_warning)
12591 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12592 h->mark = 1;
12593 /* If this symbol is weak and there is a non-weak definition, we
12594 keep the non-weak definition because many backends put
12595 dynamic reloc info on the non-weak definition for code
12596 handling copy relocs. */
12597 if (h->u.weakdef != NULL)
12598 h->u.weakdef->mark = 1;
12599
12600 if (start_stop != NULL)
12601 {
12602 /* To work around a glibc bug, mark all XXX input sections
12603 when there is an as yet undefined reference to __start_XXX
12604 or __stop_XXX symbols. The linker will later define such
12605 symbols for orphan input sections that have a name
12606 representable as a C identifier. */
12607 asection *s = _bfd_elf_is_start_stop (info, h);
12608
12609 if (s != NULL)
12610 {
12611 *start_stop = !s->gc_mark;
12612 return s;
12613 }
12614 }
12615
12616 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
12617 }
12618
12619 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
12620 &cookie->locsyms[r_symndx]);
12621 }
12622
12623 /* COOKIE->rel describes a relocation against section SEC, which is
12624 a section we've decided to keep. Mark the section that contains
12625 the relocation symbol. */
12626
12627 bfd_boolean
12628 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
12629 asection *sec,
12630 elf_gc_mark_hook_fn gc_mark_hook,
12631 struct elf_reloc_cookie *cookie)
12632 {
12633 asection *rsec;
12634 bfd_boolean start_stop = FALSE;
12635
12636 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
12637 while (rsec != NULL)
12638 {
12639 if (!rsec->gc_mark)
12640 {
12641 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
12642 || (rsec->owner->flags & DYNAMIC) != 0)
12643 rsec->gc_mark = 1;
12644 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
12645 return FALSE;
12646 }
12647 if (!start_stop)
12648 break;
12649 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
12650 }
12651 return TRUE;
12652 }
12653
12654 /* The mark phase of garbage collection. For a given section, mark
12655 it and any sections in this section's group, and all the sections
12656 which define symbols to which it refers. */
12657
12658 bfd_boolean
12659 _bfd_elf_gc_mark (struct bfd_link_info *info,
12660 asection *sec,
12661 elf_gc_mark_hook_fn gc_mark_hook)
12662 {
12663 bfd_boolean ret;
12664 asection *group_sec, *eh_frame;
12665
12666 sec->gc_mark = 1;
12667
12668 /* Mark all the sections in the group. */
12669 group_sec = elf_section_data (sec)->next_in_group;
12670 if (group_sec && !group_sec->gc_mark)
12671 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
12672 return FALSE;
12673
12674 /* Look through the section relocs. */
12675 ret = TRUE;
12676 eh_frame = elf_eh_frame_section (sec->owner);
12677 if ((sec->flags & SEC_RELOC) != 0
12678 && sec->reloc_count > 0
12679 && sec != eh_frame)
12680 {
12681 struct elf_reloc_cookie cookie;
12682
12683 if (!init_reloc_cookie_for_section (&cookie, info, sec))
12684 ret = FALSE;
12685 else
12686 {
12687 for (; cookie.rel < cookie.relend; cookie.rel++)
12688 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
12689 {
12690 ret = FALSE;
12691 break;
12692 }
12693 fini_reloc_cookie_for_section (&cookie, sec);
12694 }
12695 }
12696
12697 if (ret && eh_frame && elf_fde_list (sec))
12698 {
12699 struct elf_reloc_cookie cookie;
12700
12701 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
12702 ret = FALSE;
12703 else
12704 {
12705 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
12706 gc_mark_hook, &cookie))
12707 ret = FALSE;
12708 fini_reloc_cookie_for_section (&cookie, eh_frame);
12709 }
12710 }
12711
12712 eh_frame = elf_section_eh_frame_entry (sec);
12713 if (ret && eh_frame && !eh_frame->gc_mark)
12714 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
12715 ret = FALSE;
12716
12717 return ret;
12718 }
12719
12720 /* Scan and mark sections in a special or debug section group. */
12721
12722 static void
12723 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
12724 {
12725 /* Point to first section of section group. */
12726 asection *ssec;
12727 /* Used to iterate the section group. */
12728 asection *msec;
12729
12730 bfd_boolean is_special_grp = TRUE;
12731 bfd_boolean is_debug_grp = TRUE;
12732
12733 /* First scan to see if group contains any section other than debug
12734 and special section. */
12735 ssec = msec = elf_next_in_group (grp);
12736 do
12737 {
12738 if ((msec->flags & SEC_DEBUGGING) == 0)
12739 is_debug_grp = FALSE;
12740
12741 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
12742 is_special_grp = FALSE;
12743
12744 msec = elf_next_in_group (msec);
12745 }
12746 while (msec != ssec);
12747
12748 /* If this is a pure debug section group or pure special section group,
12749 keep all sections in this group. */
12750 if (is_debug_grp || is_special_grp)
12751 {
12752 do
12753 {
12754 msec->gc_mark = 1;
12755 msec = elf_next_in_group (msec);
12756 }
12757 while (msec != ssec);
12758 }
12759 }
12760
12761 /* Keep debug and special sections. */
12762
12763 bfd_boolean
12764 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12765 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12766 {
12767 bfd *ibfd;
12768
12769 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12770 {
12771 asection *isec;
12772 bfd_boolean some_kept;
12773 bfd_boolean debug_frag_seen;
12774
12775 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12776 continue;
12777
12778 /* Ensure all linker created sections are kept,
12779 see if any other section is already marked,
12780 and note if we have any fragmented debug sections. */
12781 debug_frag_seen = some_kept = FALSE;
12782 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12783 {
12784 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12785 isec->gc_mark = 1;
12786 else if (isec->gc_mark)
12787 some_kept = TRUE;
12788
12789 if (debug_frag_seen == FALSE
12790 && (isec->flags & SEC_DEBUGGING)
12791 && CONST_STRNEQ (isec->name, ".debug_line."))
12792 debug_frag_seen = TRUE;
12793 }
12794
12795 /* If no section in this file will be kept, then we can
12796 toss out the debug and special sections. */
12797 if (!some_kept)
12798 continue;
12799
12800 /* Keep debug and special sections like .comment when they are
12801 not part of a group. Also keep section groups that contain
12802 just debug sections or special sections. */
12803 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12804 {
12805 if ((isec->flags & SEC_GROUP) != 0)
12806 _bfd_elf_gc_mark_debug_special_section_group (isec);
12807 else if (((isec->flags & SEC_DEBUGGING) != 0
12808 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12809 && elf_next_in_group (isec) == NULL)
12810 isec->gc_mark = 1;
12811 }
12812
12813 if (! debug_frag_seen)
12814 continue;
12815
12816 /* Look for CODE sections which are going to be discarded,
12817 and find and discard any fragmented debug sections which
12818 are associated with that code section. */
12819 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12820 if ((isec->flags & SEC_CODE) != 0
12821 && isec->gc_mark == 0)
12822 {
12823 unsigned int ilen;
12824 asection *dsec;
12825
12826 ilen = strlen (isec->name);
12827
12828 /* Association is determined by the name of the debug section
12829 containing the name of the code section as a suffix. For
12830 example .debug_line.text.foo is a debug section associated
12831 with .text.foo. */
12832 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12833 {
12834 unsigned int dlen;
12835
12836 if (dsec->gc_mark == 0
12837 || (dsec->flags & SEC_DEBUGGING) == 0)
12838 continue;
12839
12840 dlen = strlen (dsec->name);
12841
12842 if (dlen > ilen
12843 && strncmp (dsec->name + (dlen - ilen),
12844 isec->name, ilen) == 0)
12845 {
12846 dsec->gc_mark = 0;
12847 }
12848 }
12849 }
12850 }
12851 return TRUE;
12852 }
12853
12854 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
12855
12856 struct elf_gc_sweep_symbol_info
12857 {
12858 struct bfd_link_info *info;
12859 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
12860 bfd_boolean);
12861 };
12862
12863 static bfd_boolean
12864 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
12865 {
12866 if (!h->mark
12867 && (((h->root.type == bfd_link_hash_defined
12868 || h->root.type == bfd_link_hash_defweak)
12869 && !((h->def_regular || ELF_COMMON_DEF_P (h))
12870 && h->root.u.def.section->gc_mark))
12871 || h->root.type == bfd_link_hash_undefined
12872 || h->root.type == bfd_link_hash_undefweak))
12873 {
12874 struct elf_gc_sweep_symbol_info *inf;
12875
12876 inf = (struct elf_gc_sweep_symbol_info *) data;
12877 (*inf->hide_symbol) (inf->info, h, TRUE);
12878 h->def_regular = 0;
12879 h->ref_regular = 0;
12880 h->ref_regular_nonweak = 0;
12881 }
12882
12883 return TRUE;
12884 }
12885
12886 /* The sweep phase of garbage collection. Remove all garbage sections. */
12887
12888 typedef bfd_boolean (*gc_sweep_hook_fn)
12889 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
12890
12891 static bfd_boolean
12892 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
12893 {
12894 bfd *sub;
12895 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12896 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
12897 unsigned long section_sym_count;
12898 struct elf_gc_sweep_symbol_info sweep_info;
12899
12900 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12901 {
12902 asection *o;
12903
12904 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12905 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12906 continue;
12907
12908 for (o = sub->sections; o != NULL; o = o->next)
12909 {
12910 /* When any section in a section group is kept, we keep all
12911 sections in the section group. If the first member of
12912 the section group is excluded, we will also exclude the
12913 group section. */
12914 if (o->flags & SEC_GROUP)
12915 {
12916 asection *first = elf_next_in_group (o);
12917 o->gc_mark = first->gc_mark;
12918 }
12919
12920 if (o->gc_mark)
12921 continue;
12922
12923 /* Skip sweeping sections already excluded. */
12924 if (o->flags & SEC_EXCLUDE)
12925 continue;
12926
12927 /* Since this is early in the link process, it is simple
12928 to remove a section from the output. */
12929 o->flags |= SEC_EXCLUDE;
12930
12931 if (info->print_gc_sections && o->size != 0)
12932 /* xgettext:c-format */
12933 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
12934
12935 /* But we also have to update some of the relocation
12936 info we collected before. */
12937 if (gc_sweep_hook
12938 && (o->flags & SEC_RELOC) != 0
12939 && o->reloc_count != 0
12940 && !((info->strip == strip_all || info->strip == strip_debugger)
12941 && (o->flags & SEC_DEBUGGING) != 0)
12942 && !bfd_is_abs_section (o->output_section))
12943 {
12944 Elf_Internal_Rela *internal_relocs;
12945 bfd_boolean r;
12946
12947 internal_relocs
12948 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12949 info->keep_memory);
12950 if (internal_relocs == NULL)
12951 return FALSE;
12952
12953 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12954
12955 if (elf_section_data (o)->relocs != internal_relocs)
12956 free (internal_relocs);
12957
12958 if (!r)
12959 return FALSE;
12960 }
12961 }
12962 }
12963
12964 /* Remove the symbols that were in the swept sections from the dynamic
12965 symbol table. GCFIXME: Anyone know how to get them out of the
12966 static symbol table as well? */
12967 sweep_info.info = info;
12968 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12969 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12970 &sweep_info);
12971
12972 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12973 return TRUE;
12974 }
12975
12976 /* Propagate collected vtable information. This is called through
12977 elf_link_hash_traverse. */
12978
12979 static bfd_boolean
12980 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12981 {
12982 /* Those that are not vtables. */
12983 if (h->vtable == NULL || h->vtable->parent == NULL)
12984 return TRUE;
12985
12986 /* Those vtables that do not have parents, we cannot merge. */
12987 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12988 return TRUE;
12989
12990 /* If we've already been done, exit. */
12991 if (h->vtable->used && h->vtable->used[-1])
12992 return TRUE;
12993
12994 /* Make sure the parent's table is up to date. */
12995 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12996
12997 if (h->vtable->used == NULL)
12998 {
12999 /* None of this table's entries were referenced. Re-use the
13000 parent's table. */
13001 h->vtable->used = h->vtable->parent->vtable->used;
13002 h->vtable->size = h->vtable->parent->vtable->size;
13003 }
13004 else
13005 {
13006 size_t n;
13007 bfd_boolean *cu, *pu;
13008
13009 /* Or the parent's entries into ours. */
13010 cu = h->vtable->used;
13011 cu[-1] = TRUE;
13012 pu = h->vtable->parent->vtable->used;
13013 if (pu != NULL)
13014 {
13015 const struct elf_backend_data *bed;
13016 unsigned int log_file_align;
13017
13018 bed = get_elf_backend_data (h->root.u.def.section->owner);
13019 log_file_align = bed->s->log_file_align;
13020 n = h->vtable->parent->vtable->size >> log_file_align;
13021 while (n--)
13022 {
13023 if (*pu)
13024 *cu = TRUE;
13025 pu++;
13026 cu++;
13027 }
13028 }
13029 }
13030
13031 return TRUE;
13032 }
13033
13034 static bfd_boolean
13035 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
13036 {
13037 asection *sec;
13038 bfd_vma hstart, hend;
13039 Elf_Internal_Rela *relstart, *relend, *rel;
13040 const struct elf_backend_data *bed;
13041 unsigned int log_file_align;
13042
13043 /* Take care of both those symbols that do not describe vtables as
13044 well as those that are not loaded. */
13045 if (h->vtable == NULL || h->vtable->parent == NULL)
13046 return TRUE;
13047
13048 BFD_ASSERT (h->root.type == bfd_link_hash_defined
13049 || h->root.type == bfd_link_hash_defweak);
13050
13051 sec = h->root.u.def.section;
13052 hstart = h->root.u.def.value;
13053 hend = hstart + h->size;
13054
13055 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
13056 if (!relstart)
13057 return *(bfd_boolean *) okp = FALSE;
13058 bed = get_elf_backend_data (sec->owner);
13059 log_file_align = bed->s->log_file_align;
13060
13061 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
13062
13063 for (rel = relstart; rel < relend; ++rel)
13064 if (rel->r_offset >= hstart && rel->r_offset < hend)
13065 {
13066 /* If the entry is in use, do nothing. */
13067 if (h->vtable->used
13068 && (rel->r_offset - hstart) < h->vtable->size)
13069 {
13070 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
13071 if (h->vtable->used[entry])
13072 continue;
13073 }
13074 /* Otherwise, kill it. */
13075 rel->r_offset = rel->r_info = rel->r_addend = 0;
13076 }
13077
13078 return TRUE;
13079 }
13080
13081 /* Mark sections containing dynamically referenced symbols. When
13082 building shared libraries, we must assume that any visible symbol is
13083 referenced. */
13084
13085 bfd_boolean
13086 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
13087 {
13088 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13089 struct bfd_elf_dynamic_list *d = info->dynamic_list;
13090
13091 if ((h->root.type == bfd_link_hash_defined
13092 || h->root.type == bfd_link_hash_defweak)
13093 && (h->ref_dynamic
13094 || ((h->def_regular || ELF_COMMON_DEF_P (h))
13095 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13096 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13097 && (!bfd_link_executable (info)
13098 || info->gc_keep_exported
13099 || info->export_dynamic
13100 || (h->dynamic
13101 && d != NULL
13102 && (*d->match) (&d->head, NULL, h->root.root.string)))
13103 && (h->versioned >= versioned
13104 || !bfd_hide_sym_by_version (info->version_info,
13105 h->root.root.string)))))
13106 h->root.u.def.section->flags |= SEC_KEEP;
13107
13108 return TRUE;
13109 }
13110
13111 /* Keep all sections containing symbols undefined on the command-line,
13112 and the section containing the entry symbol. */
13113
13114 void
13115 _bfd_elf_gc_keep (struct bfd_link_info *info)
13116 {
13117 struct bfd_sym_chain *sym;
13118
13119 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13120 {
13121 struct elf_link_hash_entry *h;
13122
13123 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13124 FALSE, FALSE, FALSE);
13125
13126 if (h != NULL
13127 && (h->root.type == bfd_link_hash_defined
13128 || h->root.type == bfd_link_hash_defweak)
13129 && !bfd_is_abs_section (h->root.u.def.section)
13130 && !bfd_is_und_section (h->root.u.def.section))
13131 h->root.u.def.section->flags |= SEC_KEEP;
13132 }
13133 }
13134
13135 bfd_boolean
13136 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13137 struct bfd_link_info *info)
13138 {
13139 bfd *ibfd = info->input_bfds;
13140
13141 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13142 {
13143 asection *sec;
13144 struct elf_reloc_cookie cookie;
13145
13146 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13147 continue;
13148
13149 if (!init_reloc_cookie (&cookie, info, ibfd))
13150 return FALSE;
13151
13152 for (sec = ibfd->sections; sec; sec = sec->next)
13153 {
13154 if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
13155 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
13156 {
13157 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
13158 fini_reloc_cookie_rels (&cookie, sec);
13159 }
13160 }
13161 }
13162 return TRUE;
13163 }
13164
13165 /* Do mark and sweep of unused sections. */
13166
13167 bfd_boolean
13168 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
13169 {
13170 bfd_boolean ok = TRUE;
13171 bfd *sub;
13172 elf_gc_mark_hook_fn gc_mark_hook;
13173 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13174 struct elf_link_hash_table *htab;
13175
13176 if (!bed->can_gc_sections
13177 || !is_elf_hash_table (info->hash))
13178 {
13179 _bfd_error_handler(_("Warning: gc-sections option ignored"));
13180 return TRUE;
13181 }
13182
13183 bed->gc_keep (info);
13184 htab = elf_hash_table (info);
13185
13186 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
13187 at the .eh_frame section if we can mark the FDEs individually. */
13188 for (sub = info->input_bfds;
13189 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
13190 sub = sub->link.next)
13191 {
13192 asection *sec;
13193 struct elf_reloc_cookie cookie;
13194
13195 sec = bfd_get_section_by_name (sub, ".eh_frame");
13196 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
13197 {
13198 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
13199 if (elf_section_data (sec)->sec_info
13200 && (sec->flags & SEC_LINKER_CREATED) == 0)
13201 elf_eh_frame_section (sub) = sec;
13202 fini_reloc_cookie_for_section (&cookie, sec);
13203 sec = bfd_get_next_section_by_name (NULL, sec);
13204 }
13205 }
13206
13207 /* Apply transitive closure to the vtable entry usage info. */
13208 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
13209 if (!ok)
13210 return FALSE;
13211
13212 /* Kill the vtable relocations that were not used. */
13213 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
13214 if (!ok)
13215 return FALSE;
13216
13217 /* Mark dynamically referenced symbols. */
13218 if (htab->dynamic_sections_created || info->gc_keep_exported)
13219 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
13220
13221 /* Grovel through relocs to find out who stays ... */
13222 gc_mark_hook = bed->gc_mark_hook;
13223 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13224 {
13225 asection *o;
13226
13227 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13228 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13229 continue;
13230
13231 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13232 Also treat note sections as a root, if the section is not part
13233 of a group. */
13234 for (o = sub->sections; o != NULL; o = o->next)
13235 if (!o->gc_mark
13236 && (o->flags & SEC_EXCLUDE) == 0
13237 && ((o->flags & SEC_KEEP) != 0
13238 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
13239 && elf_next_in_group (o) == NULL )))
13240 {
13241 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13242 return FALSE;
13243 }
13244 }
13245
13246 /* Allow the backend to mark additional target specific sections. */
13247 bed->gc_mark_extra_sections (info, gc_mark_hook);
13248
13249 /* ... and mark SEC_EXCLUDE for those that go. */
13250 return elf_gc_sweep (abfd, info);
13251 }
13252 \f
13253 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
13254
13255 bfd_boolean
13256 bfd_elf_gc_record_vtinherit (bfd *abfd,
13257 asection *sec,
13258 struct elf_link_hash_entry *h,
13259 bfd_vma offset)
13260 {
13261 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
13262 struct elf_link_hash_entry **search, *child;
13263 size_t extsymcount;
13264 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13265
13266 /* The sh_info field of the symtab header tells us where the
13267 external symbols start. We don't care about the local symbols at
13268 this point. */
13269 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
13270 if (!elf_bad_symtab (abfd))
13271 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
13272
13273 sym_hashes = elf_sym_hashes (abfd);
13274 sym_hashes_end = sym_hashes + extsymcount;
13275
13276 /* Hunt down the child symbol, which is in this section at the same
13277 offset as the relocation. */
13278 for (search = sym_hashes; search != sym_hashes_end; ++search)
13279 {
13280 if ((child = *search) != NULL
13281 && (child->root.type == bfd_link_hash_defined
13282 || child->root.type == bfd_link_hash_defweak)
13283 && child->root.u.def.section == sec
13284 && child->root.u.def.value == offset)
13285 goto win;
13286 }
13287
13288 /* xgettext:c-format */
13289 _bfd_error_handler (_("%B: %A+%lu: No symbol found for INHERIT"),
13290 abfd, sec, (unsigned long) offset);
13291 bfd_set_error (bfd_error_invalid_operation);
13292 return FALSE;
13293
13294 win:
13295 if (!child->vtable)
13296 {
13297 child->vtable = ((struct elf_link_virtual_table_entry *)
13298 bfd_zalloc (abfd, sizeof (*child->vtable)));
13299 if (!child->vtable)
13300 return FALSE;
13301 }
13302 if (!h)
13303 {
13304 /* This *should* only be the absolute section. It could potentially
13305 be that someone has defined a non-global vtable though, which
13306 would be bad. It isn't worth paging in the local symbols to be
13307 sure though; that case should simply be handled by the assembler. */
13308
13309 child->vtable->parent = (struct elf_link_hash_entry *) -1;
13310 }
13311 else
13312 child->vtable->parent = h;
13313
13314 return TRUE;
13315 }
13316
13317 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
13318
13319 bfd_boolean
13320 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
13321 asection *sec ATTRIBUTE_UNUSED,
13322 struct elf_link_hash_entry *h,
13323 bfd_vma addend)
13324 {
13325 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13326 unsigned int log_file_align = bed->s->log_file_align;
13327
13328 if (!h->vtable)
13329 {
13330 h->vtable = ((struct elf_link_virtual_table_entry *)
13331 bfd_zalloc (abfd, sizeof (*h->vtable)));
13332 if (!h->vtable)
13333 return FALSE;
13334 }
13335
13336 if (addend >= h->vtable->size)
13337 {
13338 size_t size, bytes, file_align;
13339 bfd_boolean *ptr = h->vtable->used;
13340
13341 /* While the symbol is undefined, we have to be prepared to handle
13342 a zero size. */
13343 file_align = 1 << log_file_align;
13344 if (h->root.type == bfd_link_hash_undefined)
13345 size = addend + file_align;
13346 else
13347 {
13348 size = h->size;
13349 if (addend >= size)
13350 {
13351 /* Oops! We've got a reference past the defined end of
13352 the table. This is probably a bug -- shall we warn? */
13353 size = addend + file_align;
13354 }
13355 }
13356 size = (size + file_align - 1) & -file_align;
13357
13358 /* Allocate one extra entry for use as a "done" flag for the
13359 consolidation pass. */
13360 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
13361
13362 if (ptr)
13363 {
13364 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
13365
13366 if (ptr != NULL)
13367 {
13368 size_t oldbytes;
13369
13370 oldbytes = (((h->vtable->size >> log_file_align) + 1)
13371 * sizeof (bfd_boolean));
13372 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
13373 }
13374 }
13375 else
13376 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
13377
13378 if (ptr == NULL)
13379 return FALSE;
13380
13381 /* And arrange for that done flag to be at index -1. */
13382 h->vtable->used = ptr + 1;
13383 h->vtable->size = size;
13384 }
13385
13386 h->vtable->used[addend >> log_file_align] = TRUE;
13387
13388 return TRUE;
13389 }
13390
13391 /* Map an ELF section header flag to its corresponding string. */
13392 typedef struct
13393 {
13394 char *flag_name;
13395 flagword flag_value;
13396 } elf_flags_to_name_table;
13397
13398 static elf_flags_to_name_table elf_flags_to_names [] =
13399 {
13400 { "SHF_WRITE", SHF_WRITE },
13401 { "SHF_ALLOC", SHF_ALLOC },
13402 { "SHF_EXECINSTR", SHF_EXECINSTR },
13403 { "SHF_MERGE", SHF_MERGE },
13404 { "SHF_STRINGS", SHF_STRINGS },
13405 { "SHF_INFO_LINK", SHF_INFO_LINK},
13406 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
13407 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
13408 { "SHF_GROUP", SHF_GROUP },
13409 { "SHF_TLS", SHF_TLS },
13410 { "SHF_MASKOS", SHF_MASKOS },
13411 { "SHF_EXCLUDE", SHF_EXCLUDE },
13412 };
13413
13414 /* Returns TRUE if the section is to be included, otherwise FALSE. */
13415 bfd_boolean
13416 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
13417 struct flag_info *flaginfo,
13418 asection *section)
13419 {
13420 const bfd_vma sh_flags = elf_section_flags (section);
13421
13422 if (!flaginfo->flags_initialized)
13423 {
13424 bfd *obfd = info->output_bfd;
13425 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13426 struct flag_info_list *tf = flaginfo->flag_list;
13427 int with_hex = 0;
13428 int without_hex = 0;
13429
13430 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
13431 {
13432 unsigned i;
13433 flagword (*lookup) (char *);
13434
13435 lookup = bed->elf_backend_lookup_section_flags_hook;
13436 if (lookup != NULL)
13437 {
13438 flagword hexval = (*lookup) ((char *) tf->name);
13439
13440 if (hexval != 0)
13441 {
13442 if (tf->with == with_flags)
13443 with_hex |= hexval;
13444 else if (tf->with == without_flags)
13445 without_hex |= hexval;
13446 tf->valid = TRUE;
13447 continue;
13448 }
13449 }
13450 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
13451 {
13452 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
13453 {
13454 if (tf->with == with_flags)
13455 with_hex |= elf_flags_to_names[i].flag_value;
13456 else if (tf->with == without_flags)
13457 without_hex |= elf_flags_to_names[i].flag_value;
13458 tf->valid = TRUE;
13459 break;
13460 }
13461 }
13462 if (!tf->valid)
13463 {
13464 info->callbacks->einfo
13465 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
13466 return FALSE;
13467 }
13468 }
13469 flaginfo->flags_initialized = TRUE;
13470 flaginfo->only_with_flags |= with_hex;
13471 flaginfo->not_with_flags |= without_hex;
13472 }
13473
13474 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
13475 return FALSE;
13476
13477 if ((flaginfo->not_with_flags & sh_flags) != 0)
13478 return FALSE;
13479
13480 return TRUE;
13481 }
13482
13483 struct alloc_got_off_arg {
13484 bfd_vma gotoff;
13485 struct bfd_link_info *info;
13486 };
13487
13488 /* We need a special top-level link routine to convert got reference counts
13489 to real got offsets. */
13490
13491 static bfd_boolean
13492 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
13493 {
13494 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
13495 bfd *obfd = gofarg->info->output_bfd;
13496 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13497
13498 if (h->got.refcount > 0)
13499 {
13500 h->got.offset = gofarg->gotoff;
13501 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
13502 }
13503 else
13504 h->got.offset = (bfd_vma) -1;
13505
13506 return TRUE;
13507 }
13508
13509 /* And an accompanying bit to work out final got entry offsets once
13510 we're done. Should be called from final_link. */
13511
13512 bfd_boolean
13513 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
13514 struct bfd_link_info *info)
13515 {
13516 bfd *i;
13517 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13518 bfd_vma gotoff;
13519 struct alloc_got_off_arg gofarg;
13520
13521 BFD_ASSERT (abfd == info->output_bfd);
13522
13523 if (! is_elf_hash_table (info->hash))
13524 return FALSE;
13525
13526 /* The GOT offset is relative to the .got section, but the GOT header is
13527 put into the .got.plt section, if the backend uses it. */
13528 if (bed->want_got_plt)
13529 gotoff = 0;
13530 else
13531 gotoff = bed->got_header_size;
13532
13533 /* Do the local .got entries first. */
13534 for (i = info->input_bfds; i; i = i->link.next)
13535 {
13536 bfd_signed_vma *local_got;
13537 size_t j, locsymcount;
13538 Elf_Internal_Shdr *symtab_hdr;
13539
13540 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
13541 continue;
13542
13543 local_got = elf_local_got_refcounts (i);
13544 if (!local_got)
13545 continue;
13546
13547 symtab_hdr = &elf_tdata (i)->symtab_hdr;
13548 if (elf_bad_symtab (i))
13549 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13550 else
13551 locsymcount = symtab_hdr->sh_info;
13552
13553 for (j = 0; j < locsymcount; ++j)
13554 {
13555 if (local_got[j] > 0)
13556 {
13557 local_got[j] = gotoff;
13558 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
13559 }
13560 else
13561 local_got[j] = (bfd_vma) -1;
13562 }
13563 }
13564
13565 /* Then the global .got entries. .plt refcounts are handled by
13566 adjust_dynamic_symbol */
13567 gofarg.gotoff = gotoff;
13568 gofarg.info = info;
13569 elf_link_hash_traverse (elf_hash_table (info),
13570 elf_gc_allocate_got_offsets,
13571 &gofarg);
13572 return TRUE;
13573 }
13574
13575 /* Many folk need no more in the way of final link than this, once
13576 got entry reference counting is enabled. */
13577
13578 bfd_boolean
13579 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
13580 {
13581 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
13582 return FALSE;
13583
13584 /* Invoke the regular ELF backend linker to do all the work. */
13585 return bfd_elf_final_link (abfd, info);
13586 }
13587
13588 bfd_boolean
13589 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
13590 {
13591 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
13592
13593 if (rcookie->bad_symtab)
13594 rcookie->rel = rcookie->rels;
13595
13596 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
13597 {
13598 unsigned long r_symndx;
13599
13600 if (! rcookie->bad_symtab)
13601 if (rcookie->rel->r_offset > offset)
13602 return FALSE;
13603 if (rcookie->rel->r_offset != offset)
13604 continue;
13605
13606 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
13607 if (r_symndx == STN_UNDEF)
13608 return TRUE;
13609
13610 if (r_symndx >= rcookie->locsymcount
13611 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13612 {
13613 struct elf_link_hash_entry *h;
13614
13615 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
13616
13617 while (h->root.type == bfd_link_hash_indirect
13618 || h->root.type == bfd_link_hash_warning)
13619 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13620
13621 if ((h->root.type == bfd_link_hash_defined
13622 || h->root.type == bfd_link_hash_defweak)
13623 && (h->root.u.def.section->owner != rcookie->abfd
13624 || h->root.u.def.section->kept_section != NULL
13625 || discarded_section (h->root.u.def.section)))
13626 return TRUE;
13627 }
13628 else
13629 {
13630 /* It's not a relocation against a global symbol,
13631 but it could be a relocation against a local
13632 symbol for a discarded section. */
13633 asection *isec;
13634 Elf_Internal_Sym *isym;
13635
13636 /* Need to: get the symbol; get the section. */
13637 isym = &rcookie->locsyms[r_symndx];
13638 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
13639 if (isec != NULL
13640 && (isec->kept_section != NULL
13641 || discarded_section (isec)))
13642 return TRUE;
13643 }
13644 return FALSE;
13645 }
13646 return FALSE;
13647 }
13648
13649 /* Discard unneeded references to discarded sections.
13650 Returns -1 on error, 1 if any section's size was changed, 0 if
13651 nothing changed. This function assumes that the relocations are in
13652 sorted order, which is true for all known assemblers. */
13653
13654 int
13655 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
13656 {
13657 struct elf_reloc_cookie cookie;
13658 asection *o;
13659 bfd *abfd;
13660 int changed = 0;
13661
13662 if (info->traditional_format
13663 || !is_elf_hash_table (info->hash))
13664 return 0;
13665
13666 o = bfd_get_section_by_name (output_bfd, ".stab");
13667 if (o != NULL)
13668 {
13669 asection *i;
13670
13671 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13672 {
13673 if (i->size == 0
13674 || i->reloc_count == 0
13675 || i->sec_info_type != SEC_INFO_TYPE_STABS)
13676 continue;
13677
13678 abfd = i->owner;
13679 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13680 continue;
13681
13682 if (!init_reloc_cookie_for_section (&cookie, info, i))
13683 return -1;
13684
13685 if (_bfd_discard_section_stabs (abfd, i,
13686 elf_section_data (i)->sec_info,
13687 bfd_elf_reloc_symbol_deleted_p,
13688 &cookie))
13689 changed = 1;
13690
13691 fini_reloc_cookie_for_section (&cookie, i);
13692 }
13693 }
13694
13695 o = NULL;
13696 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
13697 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
13698 if (o != NULL)
13699 {
13700 asection *i;
13701
13702 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13703 {
13704 if (i->size == 0)
13705 continue;
13706
13707 abfd = i->owner;
13708 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13709 continue;
13710
13711 if (!init_reloc_cookie_for_section (&cookie, info, i))
13712 return -1;
13713
13714 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
13715 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
13716 bfd_elf_reloc_symbol_deleted_p,
13717 &cookie))
13718 changed = 1;
13719
13720 fini_reloc_cookie_for_section (&cookie, i);
13721 }
13722 }
13723
13724 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
13725 {
13726 const struct elf_backend_data *bed;
13727
13728 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13729 continue;
13730
13731 bed = get_elf_backend_data (abfd);
13732
13733 if (bed->elf_backend_discard_info != NULL)
13734 {
13735 if (!init_reloc_cookie (&cookie, info, abfd))
13736 return -1;
13737
13738 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
13739 changed = 1;
13740
13741 fini_reloc_cookie (&cookie, abfd);
13742 }
13743 }
13744
13745 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
13746 _bfd_elf_end_eh_frame_parsing (info);
13747
13748 if (info->eh_frame_hdr_type
13749 && !bfd_link_relocatable (info)
13750 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
13751 changed = 1;
13752
13753 return changed;
13754 }
13755
13756 bfd_boolean
13757 _bfd_elf_section_already_linked (bfd *abfd,
13758 asection *sec,
13759 struct bfd_link_info *info)
13760 {
13761 flagword flags;
13762 const char *name, *key;
13763 struct bfd_section_already_linked *l;
13764 struct bfd_section_already_linked_hash_entry *already_linked_list;
13765
13766 if (sec->output_section == bfd_abs_section_ptr)
13767 return FALSE;
13768
13769 flags = sec->flags;
13770
13771 /* Return if it isn't a linkonce section. A comdat group section
13772 also has SEC_LINK_ONCE set. */
13773 if ((flags & SEC_LINK_ONCE) == 0)
13774 return FALSE;
13775
13776 /* Don't put group member sections on our list of already linked
13777 sections. They are handled as a group via their group section. */
13778 if (elf_sec_group (sec) != NULL)
13779 return FALSE;
13780
13781 /* For a SHT_GROUP section, use the group signature as the key. */
13782 name = sec->name;
13783 if ((flags & SEC_GROUP) != 0
13784 && elf_next_in_group (sec) != NULL
13785 && elf_group_name (elf_next_in_group (sec)) != NULL)
13786 key = elf_group_name (elf_next_in_group (sec));
13787 else
13788 {
13789 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
13790 if (CONST_STRNEQ (name, ".gnu.linkonce.")
13791 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
13792 key++;
13793 else
13794 /* Must be a user linkonce section that doesn't follow gcc's
13795 naming convention. In this case we won't be matching
13796 single member groups. */
13797 key = name;
13798 }
13799
13800 already_linked_list = bfd_section_already_linked_table_lookup (key);
13801
13802 for (l = already_linked_list->entry; l != NULL; l = l->next)
13803 {
13804 /* We may have 2 different types of sections on the list: group
13805 sections with a signature of <key> (<key> is some string),
13806 and linkonce sections named .gnu.linkonce.<type>.<key>.
13807 Match like sections. LTO plugin sections are an exception.
13808 They are always named .gnu.linkonce.t.<key> and match either
13809 type of section. */
13810 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13811 && ((flags & SEC_GROUP) != 0
13812 || strcmp (name, l->sec->name) == 0))
13813 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13814 {
13815 /* The section has already been linked. See if we should
13816 issue a warning. */
13817 if (!_bfd_handle_already_linked (sec, l, info))
13818 return FALSE;
13819
13820 if (flags & SEC_GROUP)
13821 {
13822 asection *first = elf_next_in_group (sec);
13823 asection *s = first;
13824
13825 while (s != NULL)
13826 {
13827 s->output_section = bfd_abs_section_ptr;
13828 /* Record which group discards it. */
13829 s->kept_section = l->sec;
13830 s = elf_next_in_group (s);
13831 /* These lists are circular. */
13832 if (s == first)
13833 break;
13834 }
13835 }
13836
13837 return TRUE;
13838 }
13839 }
13840
13841 /* A single member comdat group section may be discarded by a
13842 linkonce section and vice versa. */
13843 if ((flags & SEC_GROUP) != 0)
13844 {
13845 asection *first = elf_next_in_group (sec);
13846
13847 if (first != NULL && elf_next_in_group (first) == first)
13848 /* Check this single member group against linkonce sections. */
13849 for (l = already_linked_list->entry; l != NULL; l = l->next)
13850 if ((l->sec->flags & SEC_GROUP) == 0
13851 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
13852 {
13853 first->output_section = bfd_abs_section_ptr;
13854 first->kept_section = l->sec;
13855 sec->output_section = bfd_abs_section_ptr;
13856 break;
13857 }
13858 }
13859 else
13860 /* Check this linkonce section against single member groups. */
13861 for (l = already_linked_list->entry; l != NULL; l = l->next)
13862 if (l->sec->flags & SEC_GROUP)
13863 {
13864 asection *first = elf_next_in_group (l->sec);
13865
13866 if (first != NULL
13867 && elf_next_in_group (first) == first
13868 && bfd_elf_match_symbols_in_sections (first, sec, info))
13869 {
13870 sec->output_section = bfd_abs_section_ptr;
13871 sec->kept_section = first;
13872 break;
13873 }
13874 }
13875
13876 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
13877 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
13878 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
13879 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
13880 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
13881 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
13882 `.gnu.linkonce.t.F' section from a different bfd not requiring any
13883 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
13884 The reverse order cannot happen as there is never a bfd with only the
13885 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
13886 matter as here were are looking only for cross-bfd sections. */
13887
13888 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
13889 for (l = already_linked_list->entry; l != NULL; l = l->next)
13890 if ((l->sec->flags & SEC_GROUP) == 0
13891 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
13892 {
13893 if (abfd != l->sec->owner)
13894 sec->output_section = bfd_abs_section_ptr;
13895 break;
13896 }
13897
13898 /* This is the first section with this name. Record it. */
13899 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
13900 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
13901 return sec->output_section == bfd_abs_section_ptr;
13902 }
13903
13904 bfd_boolean
13905 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
13906 {
13907 return sym->st_shndx == SHN_COMMON;
13908 }
13909
13910 unsigned int
13911 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
13912 {
13913 return SHN_COMMON;
13914 }
13915
13916 asection *
13917 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
13918 {
13919 return bfd_com_section_ptr;
13920 }
13921
13922 bfd_vma
13923 _bfd_elf_default_got_elt_size (bfd *abfd,
13924 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13925 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
13926 bfd *ibfd ATTRIBUTE_UNUSED,
13927 unsigned long symndx ATTRIBUTE_UNUSED)
13928 {
13929 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13930 return bed->s->arch_size / 8;
13931 }
13932
13933 /* Routines to support the creation of dynamic relocs. */
13934
13935 /* Returns the name of the dynamic reloc section associated with SEC. */
13936
13937 static const char *
13938 get_dynamic_reloc_section_name (bfd * abfd,
13939 asection * sec,
13940 bfd_boolean is_rela)
13941 {
13942 char *name;
13943 const char *old_name = bfd_get_section_name (NULL, sec);
13944 const char *prefix = is_rela ? ".rela" : ".rel";
13945
13946 if (old_name == NULL)
13947 return NULL;
13948
13949 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
13950 sprintf (name, "%s%s", prefix, old_name);
13951
13952 return name;
13953 }
13954
13955 /* Returns the dynamic reloc section associated with SEC.
13956 If necessary compute the name of the dynamic reloc section based
13957 on SEC's name (looked up in ABFD's string table) and the setting
13958 of IS_RELA. */
13959
13960 asection *
13961 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
13962 asection * sec,
13963 bfd_boolean is_rela)
13964 {
13965 asection * reloc_sec = elf_section_data (sec)->sreloc;
13966
13967 if (reloc_sec == NULL)
13968 {
13969 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13970
13971 if (name != NULL)
13972 {
13973 reloc_sec = bfd_get_linker_section (abfd, name);
13974
13975 if (reloc_sec != NULL)
13976 elf_section_data (sec)->sreloc = reloc_sec;
13977 }
13978 }
13979
13980 return reloc_sec;
13981 }
13982
13983 /* Returns the dynamic reloc section associated with SEC. If the
13984 section does not exist it is created and attached to the DYNOBJ
13985 bfd and stored in the SRELOC field of SEC's elf_section_data
13986 structure.
13987
13988 ALIGNMENT is the alignment for the newly created section and
13989 IS_RELA defines whether the name should be .rela.<SEC's name>
13990 or .rel.<SEC's name>. The section name is looked up in the
13991 string table associated with ABFD. */
13992
13993 asection *
13994 _bfd_elf_make_dynamic_reloc_section (asection *sec,
13995 bfd *dynobj,
13996 unsigned int alignment,
13997 bfd *abfd,
13998 bfd_boolean is_rela)
13999 {
14000 asection * reloc_sec = elf_section_data (sec)->sreloc;
14001
14002 if (reloc_sec == NULL)
14003 {
14004 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14005
14006 if (name == NULL)
14007 return NULL;
14008
14009 reloc_sec = bfd_get_linker_section (dynobj, name);
14010
14011 if (reloc_sec == NULL)
14012 {
14013 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
14014 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
14015 if ((sec->flags & SEC_ALLOC) != 0)
14016 flags |= SEC_ALLOC | SEC_LOAD;
14017
14018 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
14019 if (reloc_sec != NULL)
14020 {
14021 /* _bfd_elf_get_sec_type_attr chooses a section type by
14022 name. Override as it may be wrong, eg. for a user
14023 section named "auto" we'll get ".relauto" which is
14024 seen to be a .rela section. */
14025 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
14026 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
14027 reloc_sec = NULL;
14028 }
14029 }
14030
14031 elf_section_data (sec)->sreloc = reloc_sec;
14032 }
14033
14034 return reloc_sec;
14035 }
14036
14037 /* Copy the ELF symbol type and other attributes for a linker script
14038 assignment from HSRC to HDEST. Generally this should be treated as
14039 if we found a strong non-dynamic definition for HDEST (except that
14040 ld ignores multiple definition errors). */
14041 void
14042 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
14043 struct bfd_link_hash_entry *hdest,
14044 struct bfd_link_hash_entry *hsrc)
14045 {
14046 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
14047 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
14048 Elf_Internal_Sym isym;
14049
14050 ehdest->type = ehsrc->type;
14051 ehdest->target_internal = ehsrc->target_internal;
14052
14053 isym.st_other = ehsrc->other;
14054 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
14055 }
14056
14057 /* Append a RELA relocation REL to section S in BFD. */
14058
14059 void
14060 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14061 {
14062 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14063 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
14064 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
14065 bed->s->swap_reloca_out (abfd, rel, loc);
14066 }
14067
14068 /* Append a REL relocation REL to section S in BFD. */
14069
14070 void
14071 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14072 {
14073 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14074 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
14075 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
14076 bed->s->swap_reloc_out (abfd, rel, loc);
14077 }
This page took 0.311475 seconds and 5 git commands to generate.