* elflink.c (elf_link_add_object_symbols): Revert accidental commit.
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
4 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #define ARCH_SIZE 0
28 #include "elf-bfd.h"
29 #include "safe-ctype.h"
30 #include "libiberty.h"
31 #include "objalloc.h"
32
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
35
36 struct elf_info_failed
37 {
38 struct bfd_link_info *info;
39 bfd_boolean failed;
40 };
41
42 /* This structure is used to pass information to
43 _bfd_elf_link_find_version_dependencies. */
44
45 struct elf_find_verdep_info
46 {
47 /* General link information. */
48 struct bfd_link_info *info;
49 /* The number of dependencies. */
50 unsigned int vers;
51 /* Whether we had a failure. */
52 bfd_boolean failed;
53 };
54
55 static bfd_boolean _bfd_elf_fix_symbol_flags
56 (struct elf_link_hash_entry *, struct elf_info_failed *);
57
58 /* Define a symbol in a dynamic linkage section. */
59
60 struct elf_link_hash_entry *
61 _bfd_elf_define_linkage_sym (bfd *abfd,
62 struct bfd_link_info *info,
63 asection *sec,
64 const char *name)
65 {
66 struct elf_link_hash_entry *h;
67 struct bfd_link_hash_entry *bh;
68 const struct elf_backend_data *bed;
69
70 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
71 if (h != NULL)
72 {
73 /* Zap symbol defined in an as-needed lib that wasn't linked.
74 This is a symptom of a larger problem: Absolute symbols
75 defined in shared libraries can't be overridden, because we
76 lose the link to the bfd which is via the symbol section. */
77 h->root.type = bfd_link_hash_new;
78 }
79
80 bh = &h->root;
81 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
82 sec, 0, NULL, FALSE,
83 get_elf_backend_data (abfd)->collect,
84 &bh))
85 return NULL;
86 h = (struct elf_link_hash_entry *) bh;
87 h->def_regular = 1;
88 h->non_elf = 0;
89 h->type = STT_OBJECT;
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
91
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94 return h;
95 }
96
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
99 {
100 flagword flags;
101 asection *s;
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
105
106 /* This function may be called more than once. */
107 s = bfd_get_linker_section (abfd, ".got");
108 if (s != NULL)
109 return TRUE;
110
111 flags = bed->dynamic_sec_flags;
112
113 s = bfd_make_section_anyway_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
117 | SEC_READONLY));
118 if (s == NULL
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
120 return FALSE;
121 htab->srelgot = s;
122
123 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
124 if (s == NULL
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
126 return FALSE;
127 htab->sgot = s;
128
129 if (bed->want_got_plt)
130 {
131 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
132 if (s == NULL
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
135 return FALSE;
136 htab->sgotplt = s;
137 }
138
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
141
142 if (bed->want_got_sym)
143 {
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
151 if (h == NULL)
152 return FALSE;
153 }
154
155 return TRUE;
156 }
157 \f
158 /* Create a strtab to hold the dynamic symbol names. */
159 static bfd_boolean
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
161 {
162 struct elf_link_hash_table *hash_table;
163
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
167
168 if (hash_table->dynstr == NULL)
169 {
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
172 return FALSE;
173 }
174 return TRUE;
175 }
176
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
183
184 bfd_boolean
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
186 {
187 flagword flags;
188 asection *s;
189 const struct elf_backend_data *bed;
190 struct elf_link_hash_entry *h;
191
192 if (! is_elf_hash_table (info->hash))
193 return FALSE;
194
195 if (elf_hash_table (info)->dynamic_sections_created)
196 return TRUE;
197
198 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
199 return FALSE;
200
201 abfd = elf_hash_table (info)->dynobj;
202 bed = get_elf_backend_data (abfd);
203
204 flags = bed->dynamic_sec_flags;
205
206 /* A dynamically linked executable has a .interp section, but a
207 shared library does not. */
208 if (info->executable)
209 {
210 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
211 flags | SEC_READONLY);
212 if (s == NULL)
213 return FALSE;
214 }
215
216 /* Create sections to hold version informations. These are removed
217 if they are not needed. */
218 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
219 flags | SEC_READONLY);
220 if (s == NULL
221 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
222 return FALSE;
223
224 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
225 flags | SEC_READONLY);
226 if (s == NULL
227 || ! bfd_set_section_alignment (abfd, s, 1))
228 return FALSE;
229
230 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
231 flags | SEC_READONLY);
232 if (s == NULL
233 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
234 return FALSE;
235
236 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
237 flags | SEC_READONLY);
238 if (s == NULL
239 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
240 return FALSE;
241
242 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
243 flags | SEC_READONLY);
244 if (s == NULL)
245 return FALSE;
246
247 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
248 if (s == NULL
249 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
250 return FALSE;
251
252 /* The special symbol _DYNAMIC is always set to the start of the
253 .dynamic section. We could set _DYNAMIC in a linker script, but we
254 only want to define it if we are, in fact, creating a .dynamic
255 section. We don't want to define it if there is no .dynamic
256 section, since on some ELF platforms the start up code examines it
257 to decide how to initialize the process. */
258 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
259 elf_hash_table (info)->hdynamic = h;
260 if (h == NULL)
261 return FALSE;
262
263 if (info->emit_hash)
264 {
265 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
266 flags | SEC_READONLY);
267 if (s == NULL
268 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
269 return FALSE;
270 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
271 }
272
273 if (info->emit_gnu_hash)
274 {
275 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
276 flags | SEC_READONLY);
277 if (s == NULL
278 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
279 return FALSE;
280 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
281 4 32-bit words followed by variable count of 64-bit words, then
282 variable count of 32-bit words. */
283 if (bed->s->arch_size == 64)
284 elf_section_data (s)->this_hdr.sh_entsize = 0;
285 else
286 elf_section_data (s)->this_hdr.sh_entsize = 4;
287 }
288
289 /* Let the backend create the rest of the sections. This lets the
290 backend set the right flags. The backend will normally create
291 the .got and .plt sections. */
292 if (bed->elf_backend_create_dynamic_sections == NULL
293 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
294 return FALSE;
295
296 elf_hash_table (info)->dynamic_sections_created = TRUE;
297
298 return TRUE;
299 }
300
301 /* Create dynamic sections when linking against a dynamic object. */
302
303 bfd_boolean
304 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
305 {
306 flagword flags, pltflags;
307 struct elf_link_hash_entry *h;
308 asection *s;
309 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
310 struct elf_link_hash_table *htab = elf_hash_table (info);
311
312 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
313 .rel[a].bss sections. */
314 flags = bed->dynamic_sec_flags;
315
316 pltflags = flags;
317 if (bed->plt_not_loaded)
318 /* We do not clear SEC_ALLOC here because we still want the OS to
319 allocate space for the section; it's just that there's nothing
320 to read in from the object file. */
321 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
322 else
323 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
324 if (bed->plt_readonly)
325 pltflags |= SEC_READONLY;
326
327 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
328 if (s == NULL
329 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
330 return FALSE;
331 htab->splt = s;
332
333 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
334 .plt section. */
335 if (bed->want_plt_sym)
336 {
337 h = _bfd_elf_define_linkage_sym (abfd, info, s,
338 "_PROCEDURE_LINKAGE_TABLE_");
339 elf_hash_table (info)->hplt = h;
340 if (h == NULL)
341 return FALSE;
342 }
343
344 s = bfd_make_section_anyway_with_flags (abfd,
345 (bed->rela_plts_and_copies_p
346 ? ".rela.plt" : ".rel.plt"),
347 flags | SEC_READONLY);
348 if (s == NULL
349 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
350 return FALSE;
351 htab->srelplt = s;
352
353 if (! _bfd_elf_create_got_section (abfd, info))
354 return FALSE;
355
356 if (bed->want_dynbss)
357 {
358 /* The .dynbss section is a place to put symbols which are defined
359 by dynamic objects, are referenced by regular objects, and are
360 not functions. We must allocate space for them in the process
361 image and use a R_*_COPY reloc to tell the dynamic linker to
362 initialize them at run time. The linker script puts the .dynbss
363 section into the .bss section of the final image. */
364 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
365 (SEC_ALLOC | SEC_LINKER_CREATED));
366 if (s == NULL)
367 return FALSE;
368
369 /* The .rel[a].bss section holds copy relocs. This section is not
370 normally needed. We need to create it here, though, so that the
371 linker will map it to an output section. We can't just create it
372 only if we need it, because we will not know whether we need it
373 until we have seen all the input files, and the first time the
374 main linker code calls BFD after examining all the input files
375 (size_dynamic_sections) the input sections have already been
376 mapped to the output sections. If the section turns out not to
377 be needed, we can discard it later. We will never need this
378 section when generating a shared object, since they do not use
379 copy relocs. */
380 if (! info->shared)
381 {
382 s = bfd_make_section_anyway_with_flags (abfd,
383 (bed->rela_plts_and_copies_p
384 ? ".rela.bss" : ".rel.bss"),
385 flags | SEC_READONLY);
386 if (s == NULL
387 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
388 return FALSE;
389 }
390 }
391
392 return TRUE;
393 }
394 \f
395 /* Record a new dynamic symbol. We record the dynamic symbols as we
396 read the input files, since we need to have a list of all of them
397 before we can determine the final sizes of the output sections.
398 Note that we may actually call this function even though we are not
399 going to output any dynamic symbols; in some cases we know that a
400 symbol should be in the dynamic symbol table, but only if there is
401 one. */
402
403 bfd_boolean
404 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
405 struct elf_link_hash_entry *h)
406 {
407 if (h->dynindx == -1)
408 {
409 struct elf_strtab_hash *dynstr;
410 char *p;
411 const char *name;
412 bfd_size_type indx;
413
414 /* XXX: The ABI draft says the linker must turn hidden and
415 internal symbols into STB_LOCAL symbols when producing the
416 DSO. However, if ld.so honors st_other in the dynamic table,
417 this would not be necessary. */
418 switch (ELF_ST_VISIBILITY (h->other))
419 {
420 case STV_INTERNAL:
421 case STV_HIDDEN:
422 if (h->root.type != bfd_link_hash_undefined
423 && h->root.type != bfd_link_hash_undefweak)
424 {
425 h->forced_local = 1;
426 if (!elf_hash_table (info)->is_relocatable_executable)
427 return TRUE;
428 }
429
430 default:
431 break;
432 }
433
434 h->dynindx = elf_hash_table (info)->dynsymcount;
435 ++elf_hash_table (info)->dynsymcount;
436
437 dynstr = elf_hash_table (info)->dynstr;
438 if (dynstr == NULL)
439 {
440 /* Create a strtab to hold the dynamic symbol names. */
441 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
442 if (dynstr == NULL)
443 return FALSE;
444 }
445
446 /* We don't put any version information in the dynamic string
447 table. */
448 name = h->root.root.string;
449 p = strchr (name, ELF_VER_CHR);
450 if (p != NULL)
451 /* We know that the p points into writable memory. In fact,
452 there are only a few symbols that have read-only names, being
453 those like _GLOBAL_OFFSET_TABLE_ that are created specially
454 by the backends. Most symbols will have names pointing into
455 an ELF string table read from a file, or to objalloc memory. */
456 *p = 0;
457
458 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
459
460 if (p != NULL)
461 *p = ELF_VER_CHR;
462
463 if (indx == (bfd_size_type) -1)
464 return FALSE;
465 h->dynstr_index = indx;
466 }
467
468 return TRUE;
469 }
470 \f
471 /* Mark a symbol dynamic. */
472
473 static void
474 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
475 struct elf_link_hash_entry *h,
476 Elf_Internal_Sym *sym)
477 {
478 struct bfd_elf_dynamic_list *d = info->dynamic_list;
479
480 /* It may be called more than once on the same H. */
481 if(h->dynamic || info->relocatable)
482 return;
483
484 if ((info->dynamic_data
485 && (h->type == STT_OBJECT
486 || (sym != NULL
487 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
488 || (d != NULL
489 && h->root.type == bfd_link_hash_new
490 && (*d->match) (&d->head, NULL, h->root.root.string)))
491 h->dynamic = 1;
492 }
493
494 /* Record an assignment to a symbol made by a linker script. We need
495 this in case some dynamic object refers to this symbol. */
496
497 bfd_boolean
498 bfd_elf_record_link_assignment (bfd *output_bfd,
499 struct bfd_link_info *info,
500 const char *name,
501 bfd_boolean provide,
502 bfd_boolean hidden)
503 {
504 struct elf_link_hash_entry *h, *hv;
505 struct elf_link_hash_table *htab;
506 const struct elf_backend_data *bed;
507
508 if (!is_elf_hash_table (info->hash))
509 return TRUE;
510
511 htab = elf_hash_table (info);
512 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
513 if (h == NULL)
514 return provide;
515
516 switch (h->root.type)
517 {
518 case bfd_link_hash_defined:
519 case bfd_link_hash_defweak:
520 case bfd_link_hash_common:
521 break;
522 case bfd_link_hash_undefweak:
523 case bfd_link_hash_undefined:
524 /* Since we're defining the symbol, don't let it seem to have not
525 been defined. record_dynamic_symbol and size_dynamic_sections
526 may depend on this. */
527 h->root.type = bfd_link_hash_new;
528 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
529 bfd_link_repair_undef_list (&htab->root);
530 break;
531 case bfd_link_hash_new:
532 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
533 h->non_elf = 0;
534 break;
535 case bfd_link_hash_indirect:
536 /* We had a versioned symbol in a dynamic library. We make the
537 the versioned symbol point to this one. */
538 bed = get_elf_backend_data (output_bfd);
539 hv = h;
540 while (hv->root.type == bfd_link_hash_indirect
541 || hv->root.type == bfd_link_hash_warning)
542 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
543 /* We don't need to update h->root.u since linker will set them
544 later. */
545 h->root.type = bfd_link_hash_undefined;
546 hv->root.type = bfd_link_hash_indirect;
547 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
548 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
549 break;
550 case bfd_link_hash_warning:
551 abort ();
552 break;
553 }
554
555 /* If this symbol is being provided by the linker script, and it is
556 currently defined by a dynamic object, but not by a regular
557 object, then mark it as undefined so that the generic linker will
558 force the correct value. */
559 if (provide
560 && h->def_dynamic
561 && !h->def_regular)
562 h->root.type = bfd_link_hash_undefined;
563
564 /* If this symbol is not being provided by the linker script, and it is
565 currently defined by a dynamic object, but not by a regular object,
566 then clear out any version information because the symbol will not be
567 associated with the dynamic object any more. */
568 if (!provide
569 && h->def_dynamic
570 && !h->def_regular)
571 h->verinfo.verdef = NULL;
572
573 h->def_regular = 1;
574
575 if (hidden)
576 {
577 bed = get_elf_backend_data (output_bfd);
578 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
579 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
580 }
581
582 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
583 and executables. */
584 if (!info->relocatable
585 && h->dynindx != -1
586 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
587 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
588 h->forced_local = 1;
589
590 if ((h->def_dynamic
591 || h->ref_dynamic
592 || info->shared
593 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
594 && h->dynindx == -1)
595 {
596 if (! bfd_elf_link_record_dynamic_symbol (info, h))
597 return FALSE;
598
599 /* If this is a weak defined symbol, and we know a corresponding
600 real symbol from the same dynamic object, make sure the real
601 symbol is also made into a dynamic symbol. */
602 if (h->u.weakdef != NULL
603 && h->u.weakdef->dynindx == -1)
604 {
605 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
606 return FALSE;
607 }
608 }
609
610 return TRUE;
611 }
612
613 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
614 success, and 2 on a failure caused by attempting to record a symbol
615 in a discarded section, eg. a discarded link-once section symbol. */
616
617 int
618 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
619 bfd *input_bfd,
620 long input_indx)
621 {
622 bfd_size_type amt;
623 struct elf_link_local_dynamic_entry *entry;
624 struct elf_link_hash_table *eht;
625 struct elf_strtab_hash *dynstr;
626 unsigned long dynstr_index;
627 char *name;
628 Elf_External_Sym_Shndx eshndx;
629 char esym[sizeof (Elf64_External_Sym)];
630
631 if (! is_elf_hash_table (info->hash))
632 return 0;
633
634 /* See if the entry exists already. */
635 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
636 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
637 return 1;
638
639 amt = sizeof (*entry);
640 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
641 if (entry == NULL)
642 return 0;
643
644 /* Go find the symbol, so that we can find it's name. */
645 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
646 1, input_indx, &entry->isym, esym, &eshndx))
647 {
648 bfd_release (input_bfd, entry);
649 return 0;
650 }
651
652 if (entry->isym.st_shndx != SHN_UNDEF
653 && entry->isym.st_shndx < SHN_LORESERVE)
654 {
655 asection *s;
656
657 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
658 if (s == NULL || bfd_is_abs_section (s->output_section))
659 {
660 /* We can still bfd_release here as nothing has done another
661 bfd_alloc. We can't do this later in this function. */
662 bfd_release (input_bfd, entry);
663 return 2;
664 }
665 }
666
667 name = (bfd_elf_string_from_elf_section
668 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
669 entry->isym.st_name));
670
671 dynstr = elf_hash_table (info)->dynstr;
672 if (dynstr == NULL)
673 {
674 /* Create a strtab to hold the dynamic symbol names. */
675 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
676 if (dynstr == NULL)
677 return 0;
678 }
679
680 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
681 if (dynstr_index == (unsigned long) -1)
682 return 0;
683 entry->isym.st_name = dynstr_index;
684
685 eht = elf_hash_table (info);
686
687 entry->next = eht->dynlocal;
688 eht->dynlocal = entry;
689 entry->input_bfd = input_bfd;
690 entry->input_indx = input_indx;
691 eht->dynsymcount++;
692
693 /* Whatever binding the symbol had before, it's now local. */
694 entry->isym.st_info
695 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
696
697 /* The dynindx will be set at the end of size_dynamic_sections. */
698
699 return 1;
700 }
701
702 /* Return the dynindex of a local dynamic symbol. */
703
704 long
705 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
706 bfd *input_bfd,
707 long input_indx)
708 {
709 struct elf_link_local_dynamic_entry *e;
710
711 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
712 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
713 return e->dynindx;
714 return -1;
715 }
716
717 /* This function is used to renumber the dynamic symbols, if some of
718 them are removed because they are marked as local. This is called
719 via elf_link_hash_traverse. */
720
721 static bfd_boolean
722 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
723 void *data)
724 {
725 size_t *count = (size_t *) data;
726
727 if (h->forced_local)
728 return TRUE;
729
730 if (h->dynindx != -1)
731 h->dynindx = ++(*count);
732
733 return TRUE;
734 }
735
736
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
739
740 static bfd_boolean
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
742 void *data)
743 {
744 size_t *count = (size_t *) data;
745
746 if (!h->forced_local)
747 return TRUE;
748
749 if (h->dynindx != -1)
750 h->dynindx = ++(*count);
751
752 return TRUE;
753 }
754
755 /* Return true if the dynamic symbol for a given section should be
756 omitted when creating a shared library. */
757 bfd_boolean
758 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
759 struct bfd_link_info *info,
760 asection *p)
761 {
762 struct elf_link_hash_table *htab;
763
764 switch (elf_section_data (p)->this_hdr.sh_type)
765 {
766 case SHT_PROGBITS:
767 case SHT_NOBITS:
768 /* If sh_type is yet undecided, assume it could be
769 SHT_PROGBITS/SHT_NOBITS. */
770 case SHT_NULL:
771 htab = elf_hash_table (info);
772 if (p == htab->tls_sec)
773 return FALSE;
774
775 if (htab->text_index_section != NULL)
776 return p != htab->text_index_section && p != htab->data_index_section;
777
778 if (strcmp (p->name, ".got") == 0
779 || strcmp (p->name, ".got.plt") == 0
780 || strcmp (p->name, ".plt") == 0)
781 {
782 asection *ip;
783
784 if (htab->dynobj != NULL
785 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
786 && ip->output_section == p)
787 return TRUE;
788 }
789 return FALSE;
790
791 /* There shouldn't be section relative relocations
792 against any other section. */
793 default:
794 return TRUE;
795 }
796 }
797
798 /* Assign dynsym indices. In a shared library we generate a section
799 symbol for each output section, which come first. Next come symbols
800 which have been forced to local binding. Then all of the back-end
801 allocated local dynamic syms, followed by the rest of the global
802 symbols. */
803
804 static unsigned long
805 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
806 struct bfd_link_info *info,
807 unsigned long *section_sym_count)
808 {
809 unsigned long dynsymcount = 0;
810
811 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
812 {
813 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
814 asection *p;
815 for (p = output_bfd->sections; p ; p = p->next)
816 if ((p->flags & SEC_EXCLUDE) == 0
817 && (p->flags & SEC_ALLOC) != 0
818 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
819 elf_section_data (p)->dynindx = ++dynsymcount;
820 else
821 elf_section_data (p)->dynindx = 0;
822 }
823 *section_sym_count = dynsymcount;
824
825 elf_link_hash_traverse (elf_hash_table (info),
826 elf_link_renumber_local_hash_table_dynsyms,
827 &dynsymcount);
828
829 if (elf_hash_table (info)->dynlocal)
830 {
831 struct elf_link_local_dynamic_entry *p;
832 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
833 p->dynindx = ++dynsymcount;
834 }
835
836 elf_link_hash_traverse (elf_hash_table (info),
837 elf_link_renumber_hash_table_dynsyms,
838 &dynsymcount);
839
840 /* There is an unused NULL entry at the head of the table which
841 we must account for in our count. Unless there weren't any
842 symbols, which means we'll have no table at all. */
843 if (dynsymcount != 0)
844 ++dynsymcount;
845
846 elf_hash_table (info)->dynsymcount = dynsymcount;
847 return dynsymcount;
848 }
849
850 /* Merge st_other field. */
851
852 static void
853 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
854 Elf_Internal_Sym *isym, bfd_boolean definition,
855 bfd_boolean dynamic)
856 {
857 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
858
859 /* If st_other has a processor-specific meaning, specific
860 code might be needed here. We never merge the visibility
861 attribute with the one from a dynamic object. */
862 if (bed->elf_backend_merge_symbol_attribute)
863 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
864 dynamic);
865
866 /* If this symbol has default visibility and the user has requested
867 we not re-export it, then mark it as hidden. */
868 if (definition
869 && !dynamic
870 && (abfd->no_export
871 || (abfd->my_archive && abfd->my_archive->no_export))
872 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
873 isym->st_other = (STV_HIDDEN
874 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
875
876 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
877 {
878 unsigned char hvis, symvis, other, nvis;
879
880 /* Only merge the visibility. Leave the remainder of the
881 st_other field to elf_backend_merge_symbol_attribute. */
882 other = h->other & ~ELF_ST_VISIBILITY (-1);
883
884 /* Combine visibilities, using the most constraining one. */
885 hvis = ELF_ST_VISIBILITY (h->other);
886 symvis = ELF_ST_VISIBILITY (isym->st_other);
887 if (! hvis)
888 nvis = symvis;
889 else if (! symvis)
890 nvis = hvis;
891 else
892 nvis = hvis < symvis ? hvis : symvis;
893
894 h->other = other | nvis;
895 }
896 }
897
898 /* This function is called when we want to merge a new symbol with an
899 existing symbol. It handles the various cases which arise when we
900 find a definition in a dynamic object, or when there is already a
901 definition in a dynamic object. The new symbol is described by
902 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
903 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
904 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
905 of an old common symbol. We set OVERRIDE if the old symbol is
906 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
907 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
908 to change. By OK to change, we mean that we shouldn't warn if the
909 type or size does change. */
910
911 static bfd_boolean
912 _bfd_elf_merge_symbol (bfd *abfd,
913 struct bfd_link_info *info,
914 const char *name,
915 Elf_Internal_Sym *sym,
916 asection **psec,
917 bfd_vma *pvalue,
918 struct elf_link_hash_entry **sym_hash,
919 bfd **poldbfd,
920 bfd_boolean *pold_weak,
921 unsigned int *pold_alignment,
922 bfd_boolean *skip,
923 bfd_boolean *override,
924 bfd_boolean *type_change_ok,
925 bfd_boolean *size_change_ok)
926 {
927 asection *sec, *oldsec;
928 struct elf_link_hash_entry *h;
929 struct elf_link_hash_entry *hi;
930 struct elf_link_hash_entry *flip;
931 int bind;
932 bfd *oldbfd;
933 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
934 bfd_boolean newweak, oldweak, newfunc, oldfunc;
935 const struct elf_backend_data *bed;
936
937 *skip = FALSE;
938 *override = FALSE;
939
940 sec = *psec;
941 bind = ELF_ST_BIND (sym->st_info);
942
943 if (! bfd_is_und_section (sec))
944 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
945 else
946 h = ((struct elf_link_hash_entry *)
947 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
948 if (h == NULL)
949 return FALSE;
950 *sym_hash = h;
951
952 bed = get_elf_backend_data (abfd);
953
954 /* This code is for coping with dynamic objects, and is only useful
955 if we are doing an ELF link. */
956 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
957 return TRUE;
958
959 /* For merging, we only care about real symbols. But we need to make
960 sure that indirect symbol dynamic flags are updated. */
961 hi = h;
962 while (h->root.type == bfd_link_hash_indirect
963 || h->root.type == bfd_link_hash_warning)
964 h = (struct elf_link_hash_entry *) h->root.u.i.link;
965
966 /* We have to check it for every instance since the first few may be
967 references and not all compilers emit symbol type for undefined
968 symbols. */
969 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
970
971 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
972 respectively, is from a dynamic object. */
973
974 newdyn = (abfd->flags & DYNAMIC) != 0;
975
976 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
977 syms and defined syms in dynamic libraries respectively.
978 ref_dynamic on the other hand can be set for a symbol defined in
979 a dynamic library, and def_dynamic may not be set; When the
980 definition in a dynamic lib is overridden by a definition in the
981 executable use of the symbol in the dynamic lib becomes a
982 reference to the executable symbol. */
983 if (newdyn)
984 {
985 if (bfd_is_und_section (sec))
986 {
987 if (bind != STB_WEAK)
988 {
989 h->ref_dynamic_nonweak = 1;
990 hi->ref_dynamic_nonweak = 1;
991 }
992 }
993 else
994 {
995 h->dynamic_def = 1;
996 hi->dynamic_def = 1;
997 }
998 }
999
1000 /* If we just created the symbol, mark it as being an ELF symbol.
1001 Other than that, there is nothing to do--there is no merge issue
1002 with a newly defined symbol--so we just return. */
1003
1004 if (h->root.type == bfd_link_hash_new)
1005 {
1006 h->non_elf = 0;
1007 return TRUE;
1008 }
1009
1010 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1011 existing symbol. */
1012
1013 switch (h->root.type)
1014 {
1015 default:
1016 oldbfd = NULL;
1017 oldsec = NULL;
1018 break;
1019
1020 case bfd_link_hash_undefined:
1021 case bfd_link_hash_undefweak:
1022 oldbfd = h->root.u.undef.abfd;
1023 oldsec = NULL;
1024 break;
1025
1026 case bfd_link_hash_defined:
1027 case bfd_link_hash_defweak:
1028 oldbfd = h->root.u.def.section->owner;
1029 oldsec = h->root.u.def.section;
1030 break;
1031
1032 case bfd_link_hash_common:
1033 oldbfd = h->root.u.c.p->section->owner;
1034 oldsec = h->root.u.c.p->section;
1035 if (pold_alignment)
1036 *pold_alignment = h->root.u.c.p->alignment_power;
1037 break;
1038 }
1039 if (poldbfd && *poldbfd == NULL)
1040 *poldbfd = oldbfd;
1041
1042 /* Differentiate strong and weak symbols. */
1043 newweak = bind == STB_WEAK;
1044 oldweak = (h->root.type == bfd_link_hash_defweak
1045 || h->root.type == bfd_link_hash_undefweak);
1046 if (pold_weak)
1047 *pold_weak = oldweak;
1048
1049 /* In cases involving weak versioned symbols, we may wind up trying
1050 to merge a symbol with itself. Catch that here, to avoid the
1051 confusion that results if we try to override a symbol with
1052 itself. The additional tests catch cases like
1053 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1054 dynamic object, which we do want to handle here. */
1055 if (abfd == oldbfd
1056 && (newweak || oldweak)
1057 && ((abfd->flags & DYNAMIC) == 0
1058 || !h->def_regular))
1059 return TRUE;
1060
1061 olddyn = FALSE;
1062 if (oldbfd != NULL)
1063 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1064 else if (oldsec != NULL)
1065 {
1066 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1067 indices used by MIPS ELF. */
1068 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1069 }
1070
1071 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1072 respectively, appear to be a definition rather than reference. */
1073
1074 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1075
1076 olddef = (h->root.type != bfd_link_hash_undefined
1077 && h->root.type != bfd_link_hash_undefweak
1078 && h->root.type != bfd_link_hash_common);
1079
1080 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1081 respectively, appear to be a function. */
1082
1083 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1084 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1085
1086 oldfunc = (h->type != STT_NOTYPE
1087 && bed->is_function_type (h->type));
1088
1089 /* When we try to create a default indirect symbol from the dynamic
1090 definition with the default version, we skip it if its type and
1091 the type of existing regular definition mismatch. We only do it
1092 if the existing regular definition won't be dynamic. */
1093 if (pold_alignment == NULL
1094 && !info->shared
1095 && !info->export_dynamic
1096 && !h->ref_dynamic
1097 && newdyn
1098 && newdef
1099 && !olddyn
1100 && (olddef || h->root.type == bfd_link_hash_common)
1101 && ELF_ST_TYPE (sym->st_info) != h->type
1102 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1103 && h->type != STT_NOTYPE
1104 && !(newfunc && oldfunc))
1105 {
1106 *skip = TRUE;
1107 return TRUE;
1108 }
1109
1110 /* Plugin symbol type isn't currently set. Stop bogus errors. */
1111 if (oldbfd != NULL && (oldbfd->flags & BFD_PLUGIN) != 0)
1112 *type_change_ok = TRUE;
1113
1114 /* Check TLS symbol. We don't check undefined symbol introduced by
1115 "ld -u". */
1116 else if (oldbfd != NULL
1117 && ELF_ST_TYPE (sym->st_info) != h->type
1118 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1119 {
1120 bfd *ntbfd, *tbfd;
1121 bfd_boolean ntdef, tdef;
1122 asection *ntsec, *tsec;
1123
1124 if (h->type == STT_TLS)
1125 {
1126 ntbfd = abfd;
1127 ntsec = sec;
1128 ntdef = newdef;
1129 tbfd = oldbfd;
1130 tsec = oldsec;
1131 tdef = olddef;
1132 }
1133 else
1134 {
1135 ntbfd = oldbfd;
1136 ntsec = oldsec;
1137 ntdef = olddef;
1138 tbfd = abfd;
1139 tsec = sec;
1140 tdef = newdef;
1141 }
1142
1143 if (tdef && ntdef)
1144 (*_bfd_error_handler)
1145 (_("%s: TLS definition in %B section %A "
1146 "mismatches non-TLS definition in %B section %A"),
1147 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1148 else if (!tdef && !ntdef)
1149 (*_bfd_error_handler)
1150 (_("%s: TLS reference in %B "
1151 "mismatches non-TLS reference in %B"),
1152 tbfd, ntbfd, h->root.root.string);
1153 else if (tdef)
1154 (*_bfd_error_handler)
1155 (_("%s: TLS definition in %B section %A "
1156 "mismatches non-TLS reference in %B"),
1157 tbfd, tsec, ntbfd, h->root.root.string);
1158 else
1159 (*_bfd_error_handler)
1160 (_("%s: TLS reference in %B "
1161 "mismatches non-TLS definition in %B section %A"),
1162 tbfd, ntbfd, ntsec, h->root.root.string);
1163
1164 bfd_set_error (bfd_error_bad_value);
1165 return FALSE;
1166 }
1167
1168 /* If the old symbol has non-default visibility, we ignore the new
1169 definition from a dynamic object. */
1170 if (newdyn
1171 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1172 && !bfd_is_und_section (sec))
1173 {
1174 *skip = TRUE;
1175 /* Make sure this symbol is dynamic. */
1176 h->ref_dynamic = 1;
1177 hi->ref_dynamic = 1;
1178 /* A protected symbol has external availability. Make sure it is
1179 recorded as dynamic.
1180
1181 FIXME: Should we check type and size for protected symbol? */
1182 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1183 return bfd_elf_link_record_dynamic_symbol (info, h);
1184 else
1185 return TRUE;
1186 }
1187 else if (!newdyn
1188 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1189 && h->def_dynamic)
1190 {
1191 /* If the new symbol with non-default visibility comes from a
1192 relocatable file and the old definition comes from a dynamic
1193 object, we remove the old definition. */
1194 if (hi->root.type == bfd_link_hash_indirect)
1195 {
1196 /* Handle the case where the old dynamic definition is
1197 default versioned. We need to copy the symbol info from
1198 the symbol with default version to the normal one if it
1199 was referenced before. */
1200 if (h->ref_regular)
1201 {
1202 hi->root.type = h->root.type;
1203 h->root.type = bfd_link_hash_indirect;
1204 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1205
1206 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1207 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1208 {
1209 /* If the new symbol is hidden or internal, completely undo
1210 any dynamic link state. */
1211 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1212 h->forced_local = 0;
1213 h->ref_dynamic = 0;
1214 }
1215 else
1216 h->ref_dynamic = 1;
1217
1218 h->def_dynamic = 0;
1219 /* FIXME: Should we check type and size for protected symbol? */
1220 h->size = 0;
1221 h->type = 0;
1222
1223 h = hi;
1224 }
1225 else
1226 h = hi;
1227 }
1228
1229 /* If the old symbol was undefined before, then it will still be
1230 on the undefs list. If the new symbol is undefined or
1231 common, we can't make it bfd_link_hash_new here, because new
1232 undefined or common symbols will be added to the undefs list
1233 by _bfd_generic_link_add_one_symbol. Symbols may not be
1234 added twice to the undefs list. Also, if the new symbol is
1235 undefweak then we don't want to lose the strong undef. */
1236 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1237 {
1238 h->root.type = bfd_link_hash_undefined;
1239 h->root.u.undef.abfd = abfd;
1240 }
1241 else
1242 {
1243 h->root.type = bfd_link_hash_new;
1244 h->root.u.undef.abfd = NULL;
1245 }
1246
1247 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1248 {
1249 /* If the new symbol is hidden or internal, completely undo
1250 any dynamic link state. */
1251 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1252 h->forced_local = 0;
1253 h->ref_dynamic = 0;
1254 }
1255 else
1256 h->ref_dynamic = 1;
1257 h->def_dynamic = 0;
1258 /* FIXME: Should we check type and size for protected symbol? */
1259 h->size = 0;
1260 h->type = 0;
1261 return TRUE;
1262 }
1263
1264 /* If a new weak symbol definition comes from a regular file and the
1265 old symbol comes from a dynamic library, we treat the new one as
1266 strong. Similarly, an old weak symbol definition from a regular
1267 file is treated as strong when the new symbol comes from a dynamic
1268 library. Further, an old weak symbol from a dynamic library is
1269 treated as strong if the new symbol is from a dynamic library.
1270 This reflects the way glibc's ld.so works.
1271
1272 Do this before setting *type_change_ok or *size_change_ok so that
1273 we warn properly when dynamic library symbols are overridden. */
1274
1275 if (newdef && !newdyn && olddyn)
1276 newweak = FALSE;
1277 if (olddef && newdyn)
1278 oldweak = FALSE;
1279
1280 /* Allow changes between different types of function symbol. */
1281 if (newfunc && oldfunc)
1282 *type_change_ok = TRUE;
1283
1284 /* It's OK to change the type if either the existing symbol or the
1285 new symbol is weak. A type change is also OK if the old symbol
1286 is undefined and the new symbol is defined. */
1287
1288 if (oldweak
1289 || newweak
1290 || (newdef
1291 && h->root.type == bfd_link_hash_undefined))
1292 *type_change_ok = TRUE;
1293
1294 /* It's OK to change the size if either the existing symbol or the
1295 new symbol is weak, or if the old symbol is undefined. */
1296
1297 if (*type_change_ok
1298 || h->root.type == bfd_link_hash_undefined)
1299 *size_change_ok = TRUE;
1300
1301 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1302 symbol, respectively, appears to be a common symbol in a dynamic
1303 object. If a symbol appears in an uninitialized section, and is
1304 not weak, and is not a function, then it may be a common symbol
1305 which was resolved when the dynamic object was created. We want
1306 to treat such symbols specially, because they raise special
1307 considerations when setting the symbol size: if the symbol
1308 appears as a common symbol in a regular object, and the size in
1309 the regular object is larger, we must make sure that we use the
1310 larger size. This problematic case can always be avoided in C,
1311 but it must be handled correctly when using Fortran shared
1312 libraries.
1313
1314 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1315 likewise for OLDDYNCOMMON and OLDDEF.
1316
1317 Note that this test is just a heuristic, and that it is quite
1318 possible to have an uninitialized symbol in a shared object which
1319 is really a definition, rather than a common symbol. This could
1320 lead to some minor confusion when the symbol really is a common
1321 symbol in some regular object. However, I think it will be
1322 harmless. */
1323
1324 if (newdyn
1325 && newdef
1326 && !newweak
1327 && (sec->flags & SEC_ALLOC) != 0
1328 && (sec->flags & SEC_LOAD) == 0
1329 && sym->st_size > 0
1330 && !newfunc)
1331 newdyncommon = TRUE;
1332 else
1333 newdyncommon = FALSE;
1334
1335 if (olddyn
1336 && olddef
1337 && h->root.type == bfd_link_hash_defined
1338 && h->def_dynamic
1339 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1340 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1341 && h->size > 0
1342 && !oldfunc)
1343 olddyncommon = TRUE;
1344 else
1345 olddyncommon = FALSE;
1346
1347 /* We now know everything about the old and new symbols. We ask the
1348 backend to check if we can merge them. */
1349 if (bed->merge_symbol != NULL)
1350 {
1351 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1352 return FALSE;
1353 sec = *psec;
1354 }
1355
1356 /* If both the old and the new symbols look like common symbols in a
1357 dynamic object, set the size of the symbol to the larger of the
1358 two. */
1359
1360 if (olddyncommon
1361 && newdyncommon
1362 && sym->st_size != h->size)
1363 {
1364 /* Since we think we have two common symbols, issue a multiple
1365 common warning if desired. Note that we only warn if the
1366 size is different. If the size is the same, we simply let
1367 the old symbol override the new one as normally happens with
1368 symbols defined in dynamic objects. */
1369
1370 if (! ((*info->callbacks->multiple_common)
1371 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1372 return FALSE;
1373
1374 if (sym->st_size > h->size)
1375 h->size = sym->st_size;
1376
1377 *size_change_ok = TRUE;
1378 }
1379
1380 /* If we are looking at a dynamic object, and we have found a
1381 definition, we need to see if the symbol was already defined by
1382 some other object. If so, we want to use the existing
1383 definition, and we do not want to report a multiple symbol
1384 definition error; we do this by clobbering *PSEC to be
1385 bfd_und_section_ptr.
1386
1387 We treat a common symbol as a definition if the symbol in the
1388 shared library is a function, since common symbols always
1389 represent variables; this can cause confusion in principle, but
1390 any such confusion would seem to indicate an erroneous program or
1391 shared library. We also permit a common symbol in a regular
1392 object to override a weak symbol in a shared object. */
1393
1394 if (newdyn
1395 && newdef
1396 && (olddef
1397 || (h->root.type == bfd_link_hash_common
1398 && (newweak || newfunc))))
1399 {
1400 *override = TRUE;
1401 newdef = FALSE;
1402 newdyncommon = FALSE;
1403
1404 *psec = sec = bfd_und_section_ptr;
1405 *size_change_ok = TRUE;
1406
1407 /* If we get here when the old symbol is a common symbol, then
1408 we are explicitly letting it override a weak symbol or
1409 function in a dynamic object, and we don't want to warn about
1410 a type change. If the old symbol is a defined symbol, a type
1411 change warning may still be appropriate. */
1412
1413 if (h->root.type == bfd_link_hash_common)
1414 *type_change_ok = TRUE;
1415 }
1416
1417 /* Handle the special case of an old common symbol merging with a
1418 new symbol which looks like a common symbol in a shared object.
1419 We change *PSEC and *PVALUE to make the new symbol look like a
1420 common symbol, and let _bfd_generic_link_add_one_symbol do the
1421 right thing. */
1422
1423 if (newdyncommon
1424 && h->root.type == bfd_link_hash_common)
1425 {
1426 *override = TRUE;
1427 newdef = FALSE;
1428 newdyncommon = FALSE;
1429 *pvalue = sym->st_size;
1430 *psec = sec = bed->common_section (oldsec);
1431 *size_change_ok = TRUE;
1432 }
1433
1434 /* Skip weak definitions of symbols that are already defined. */
1435 if (newdef && olddef && newweak)
1436 {
1437 /* Don't skip new non-IR weak syms. */
1438 if (!(oldbfd != NULL
1439 && (oldbfd->flags & BFD_PLUGIN) != 0
1440 && (abfd->flags & BFD_PLUGIN) == 0))
1441 *skip = TRUE;
1442
1443 /* Merge st_other. If the symbol already has a dynamic index,
1444 but visibility says it should not be visible, turn it into a
1445 local symbol. */
1446 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1447 if (h->dynindx != -1)
1448 switch (ELF_ST_VISIBILITY (h->other))
1449 {
1450 case STV_INTERNAL:
1451 case STV_HIDDEN:
1452 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1453 break;
1454 }
1455 }
1456
1457 /* If the old symbol is from a dynamic object, and the new symbol is
1458 a definition which is not from a dynamic object, then the new
1459 symbol overrides the old symbol. Symbols from regular files
1460 always take precedence over symbols from dynamic objects, even if
1461 they are defined after the dynamic object in the link.
1462
1463 As above, we again permit a common symbol in a regular object to
1464 override a definition in a shared object if the shared object
1465 symbol is a function or is weak. */
1466
1467 flip = NULL;
1468 if (!newdyn
1469 && (newdef
1470 || (bfd_is_com_section (sec)
1471 && (oldweak || oldfunc)))
1472 && olddyn
1473 && olddef
1474 && h->def_dynamic)
1475 {
1476 /* Change the hash table entry to undefined, and let
1477 _bfd_generic_link_add_one_symbol do the right thing with the
1478 new definition. */
1479
1480 h->root.type = bfd_link_hash_undefined;
1481 h->root.u.undef.abfd = h->root.u.def.section->owner;
1482 *size_change_ok = TRUE;
1483
1484 olddef = FALSE;
1485 olddyncommon = FALSE;
1486
1487 /* We again permit a type change when a common symbol may be
1488 overriding a function. */
1489
1490 if (bfd_is_com_section (sec))
1491 {
1492 if (oldfunc)
1493 {
1494 /* If a common symbol overrides a function, make sure
1495 that it isn't defined dynamically nor has type
1496 function. */
1497 h->def_dynamic = 0;
1498 h->type = STT_NOTYPE;
1499 }
1500 *type_change_ok = TRUE;
1501 }
1502
1503 if (hi->root.type == bfd_link_hash_indirect)
1504 flip = hi;
1505 else
1506 /* This union may have been set to be non-NULL when this symbol
1507 was seen in a dynamic object. We must force the union to be
1508 NULL, so that it is correct for a regular symbol. */
1509 h->verinfo.vertree = NULL;
1510 }
1511
1512 /* Handle the special case of a new common symbol merging with an
1513 old symbol that looks like it might be a common symbol defined in
1514 a shared object. Note that we have already handled the case in
1515 which a new common symbol should simply override the definition
1516 in the shared library. */
1517
1518 if (! newdyn
1519 && bfd_is_com_section (sec)
1520 && olddyncommon)
1521 {
1522 /* It would be best if we could set the hash table entry to a
1523 common symbol, but we don't know what to use for the section
1524 or the alignment. */
1525 if (! ((*info->callbacks->multiple_common)
1526 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1527 return FALSE;
1528
1529 /* If the presumed common symbol in the dynamic object is
1530 larger, pretend that the new symbol has its size. */
1531
1532 if (h->size > *pvalue)
1533 *pvalue = h->size;
1534
1535 /* We need to remember the alignment required by the symbol
1536 in the dynamic object. */
1537 BFD_ASSERT (pold_alignment);
1538 *pold_alignment = h->root.u.def.section->alignment_power;
1539
1540 olddef = FALSE;
1541 olddyncommon = FALSE;
1542
1543 h->root.type = bfd_link_hash_undefined;
1544 h->root.u.undef.abfd = h->root.u.def.section->owner;
1545
1546 *size_change_ok = TRUE;
1547 *type_change_ok = TRUE;
1548
1549 if (hi->root.type == bfd_link_hash_indirect)
1550 flip = hi;
1551 else
1552 h->verinfo.vertree = NULL;
1553 }
1554
1555 if (flip != NULL)
1556 {
1557 /* Handle the case where we had a versioned symbol in a dynamic
1558 library and now find a definition in a normal object. In this
1559 case, we make the versioned symbol point to the normal one. */
1560 flip->root.type = h->root.type;
1561 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1562 h->root.type = bfd_link_hash_indirect;
1563 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1564 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1565 if (h->def_dynamic)
1566 {
1567 h->def_dynamic = 0;
1568 flip->ref_dynamic = 1;
1569 }
1570 }
1571
1572 return TRUE;
1573 }
1574
1575 /* This function is called to create an indirect symbol from the
1576 default for the symbol with the default version if needed. The
1577 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1578 set DYNSYM if the new indirect symbol is dynamic. */
1579
1580 static bfd_boolean
1581 _bfd_elf_add_default_symbol (bfd *abfd,
1582 struct bfd_link_info *info,
1583 struct elf_link_hash_entry *h,
1584 const char *name,
1585 Elf_Internal_Sym *sym,
1586 asection *sec,
1587 bfd_vma value,
1588 bfd **poldbfd,
1589 bfd_boolean *dynsym)
1590 {
1591 bfd_boolean type_change_ok;
1592 bfd_boolean size_change_ok;
1593 bfd_boolean skip;
1594 char *shortname;
1595 struct elf_link_hash_entry *hi;
1596 struct bfd_link_hash_entry *bh;
1597 const struct elf_backend_data *bed;
1598 bfd_boolean collect;
1599 bfd_boolean dynamic;
1600 bfd_boolean override;
1601 char *p;
1602 size_t len, shortlen;
1603 asection *tmp_sec;
1604
1605 /* If this symbol has a version, and it is the default version, we
1606 create an indirect symbol from the default name to the fully
1607 decorated name. This will cause external references which do not
1608 specify a version to be bound to this version of the symbol. */
1609 p = strchr (name, ELF_VER_CHR);
1610 if (p == NULL || p[1] != ELF_VER_CHR)
1611 return TRUE;
1612
1613 bed = get_elf_backend_data (abfd);
1614 collect = bed->collect;
1615 dynamic = (abfd->flags & DYNAMIC) != 0;
1616
1617 shortlen = p - name;
1618 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1619 if (shortname == NULL)
1620 return FALSE;
1621 memcpy (shortname, name, shortlen);
1622 shortname[shortlen] = '\0';
1623
1624 /* We are going to create a new symbol. Merge it with any existing
1625 symbol with this name. For the purposes of the merge, act as
1626 though we were defining the symbol we just defined, although we
1627 actually going to define an indirect symbol. */
1628 type_change_ok = FALSE;
1629 size_change_ok = FALSE;
1630 tmp_sec = sec;
1631 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1632 &hi, poldbfd, NULL, NULL, &skip, &override,
1633 &type_change_ok, &size_change_ok))
1634 return FALSE;
1635
1636 if (skip)
1637 goto nondefault;
1638
1639 if (! override)
1640 {
1641 bh = &hi->root;
1642 if (! (_bfd_generic_link_add_one_symbol
1643 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1644 0, name, FALSE, collect, &bh)))
1645 return FALSE;
1646 hi = (struct elf_link_hash_entry *) bh;
1647 }
1648 else
1649 {
1650 /* In this case the symbol named SHORTNAME is overriding the
1651 indirect symbol we want to add. We were planning on making
1652 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1653 is the name without a version. NAME is the fully versioned
1654 name, and it is the default version.
1655
1656 Overriding means that we already saw a definition for the
1657 symbol SHORTNAME in a regular object, and it is overriding
1658 the symbol defined in the dynamic object.
1659
1660 When this happens, we actually want to change NAME, the
1661 symbol we just added, to refer to SHORTNAME. This will cause
1662 references to NAME in the shared object to become references
1663 to SHORTNAME in the regular object. This is what we expect
1664 when we override a function in a shared object: that the
1665 references in the shared object will be mapped to the
1666 definition in the regular object. */
1667
1668 while (hi->root.type == bfd_link_hash_indirect
1669 || hi->root.type == bfd_link_hash_warning)
1670 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1671
1672 h->root.type = bfd_link_hash_indirect;
1673 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1674 if (h->def_dynamic)
1675 {
1676 h->def_dynamic = 0;
1677 hi->ref_dynamic = 1;
1678 if (hi->ref_regular
1679 || hi->def_regular)
1680 {
1681 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1682 return FALSE;
1683 }
1684 }
1685
1686 /* Now set HI to H, so that the following code will set the
1687 other fields correctly. */
1688 hi = h;
1689 }
1690
1691 /* Check if HI is a warning symbol. */
1692 if (hi->root.type == bfd_link_hash_warning)
1693 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1694
1695 /* If there is a duplicate definition somewhere, then HI may not
1696 point to an indirect symbol. We will have reported an error to
1697 the user in that case. */
1698
1699 if (hi->root.type == bfd_link_hash_indirect)
1700 {
1701 struct elf_link_hash_entry *ht;
1702
1703 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1704 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1705
1706 /* See if the new flags lead us to realize that the symbol must
1707 be dynamic. */
1708 if (! *dynsym)
1709 {
1710 if (! dynamic)
1711 {
1712 if (! info->executable
1713 || hi->def_dynamic
1714 || hi->ref_dynamic)
1715 *dynsym = TRUE;
1716 }
1717 else
1718 {
1719 if (hi->ref_regular)
1720 *dynsym = TRUE;
1721 }
1722 }
1723 }
1724
1725 /* We also need to define an indirection from the nondefault version
1726 of the symbol. */
1727
1728 nondefault:
1729 len = strlen (name);
1730 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1731 if (shortname == NULL)
1732 return FALSE;
1733 memcpy (shortname, name, shortlen);
1734 memcpy (shortname + shortlen, p + 1, len - shortlen);
1735
1736 /* Once again, merge with any existing symbol. */
1737 type_change_ok = FALSE;
1738 size_change_ok = FALSE;
1739 tmp_sec = sec;
1740 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1741 &hi, NULL, NULL, NULL, &skip, &override,
1742 &type_change_ok, &size_change_ok))
1743 return FALSE;
1744
1745 if (skip)
1746 return TRUE;
1747
1748 if (override)
1749 {
1750 /* Here SHORTNAME is a versioned name, so we don't expect to see
1751 the type of override we do in the case above unless it is
1752 overridden by a versioned definition. */
1753 if (hi->root.type != bfd_link_hash_defined
1754 && hi->root.type != bfd_link_hash_defweak)
1755 (*_bfd_error_handler)
1756 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1757 abfd, shortname);
1758 }
1759 else
1760 {
1761 bh = &hi->root;
1762 if (! (_bfd_generic_link_add_one_symbol
1763 (info, abfd, shortname, BSF_INDIRECT,
1764 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1765 return FALSE;
1766 hi = (struct elf_link_hash_entry *) bh;
1767
1768 /* If there is a duplicate definition somewhere, then HI may not
1769 point to an indirect symbol. We will have reported an error
1770 to the user in that case. */
1771
1772 if (hi->root.type == bfd_link_hash_indirect)
1773 {
1774 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1775
1776 /* See if the new flags lead us to realize that the symbol
1777 must be dynamic. */
1778 if (! *dynsym)
1779 {
1780 if (! dynamic)
1781 {
1782 if (! info->executable
1783 || hi->ref_dynamic)
1784 *dynsym = TRUE;
1785 }
1786 else
1787 {
1788 if (hi->ref_regular)
1789 *dynsym = TRUE;
1790 }
1791 }
1792 }
1793 }
1794
1795 return TRUE;
1796 }
1797 \f
1798 /* This routine is used to export all defined symbols into the dynamic
1799 symbol table. It is called via elf_link_hash_traverse. */
1800
1801 static bfd_boolean
1802 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1803 {
1804 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1805
1806 /* Ignore indirect symbols. These are added by the versioning code. */
1807 if (h->root.type == bfd_link_hash_indirect)
1808 return TRUE;
1809
1810 /* Ignore this if we won't export it. */
1811 if (!eif->info->export_dynamic && !h->dynamic)
1812 return TRUE;
1813
1814 if (h->dynindx == -1
1815 && (h->def_regular || h->ref_regular)
1816 && ! bfd_hide_sym_by_version (eif->info->version_info,
1817 h->root.root.string))
1818 {
1819 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1820 {
1821 eif->failed = TRUE;
1822 return FALSE;
1823 }
1824 }
1825
1826 return TRUE;
1827 }
1828 \f
1829 /* Look through the symbols which are defined in other shared
1830 libraries and referenced here. Update the list of version
1831 dependencies. This will be put into the .gnu.version_r section.
1832 This function is called via elf_link_hash_traverse. */
1833
1834 static bfd_boolean
1835 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1836 void *data)
1837 {
1838 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1839 Elf_Internal_Verneed *t;
1840 Elf_Internal_Vernaux *a;
1841 bfd_size_type amt;
1842
1843 /* We only care about symbols defined in shared objects with version
1844 information. */
1845 if (!h->def_dynamic
1846 || h->def_regular
1847 || h->dynindx == -1
1848 || h->verinfo.verdef == NULL)
1849 return TRUE;
1850
1851 /* See if we already know about this version. */
1852 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1853 t != NULL;
1854 t = t->vn_nextref)
1855 {
1856 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1857 continue;
1858
1859 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1860 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1861 return TRUE;
1862
1863 break;
1864 }
1865
1866 /* This is a new version. Add it to tree we are building. */
1867
1868 if (t == NULL)
1869 {
1870 amt = sizeof *t;
1871 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1872 if (t == NULL)
1873 {
1874 rinfo->failed = TRUE;
1875 return FALSE;
1876 }
1877
1878 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1879 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1880 elf_tdata (rinfo->info->output_bfd)->verref = t;
1881 }
1882
1883 amt = sizeof *a;
1884 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1885 if (a == NULL)
1886 {
1887 rinfo->failed = TRUE;
1888 return FALSE;
1889 }
1890
1891 /* Note that we are copying a string pointer here, and testing it
1892 above. If bfd_elf_string_from_elf_section is ever changed to
1893 discard the string data when low in memory, this will have to be
1894 fixed. */
1895 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1896
1897 a->vna_flags = h->verinfo.verdef->vd_flags;
1898 a->vna_nextptr = t->vn_auxptr;
1899
1900 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1901 ++rinfo->vers;
1902
1903 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1904
1905 t->vn_auxptr = a;
1906
1907 return TRUE;
1908 }
1909
1910 /* Figure out appropriate versions for all the symbols. We may not
1911 have the version number script until we have read all of the input
1912 files, so until that point we don't know which symbols should be
1913 local. This function is called via elf_link_hash_traverse. */
1914
1915 static bfd_boolean
1916 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1917 {
1918 struct elf_info_failed *sinfo;
1919 struct bfd_link_info *info;
1920 const struct elf_backend_data *bed;
1921 struct elf_info_failed eif;
1922 char *p;
1923 bfd_size_type amt;
1924
1925 sinfo = (struct elf_info_failed *) data;
1926 info = sinfo->info;
1927
1928 /* Fix the symbol flags. */
1929 eif.failed = FALSE;
1930 eif.info = info;
1931 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1932 {
1933 if (eif.failed)
1934 sinfo->failed = TRUE;
1935 return FALSE;
1936 }
1937
1938 /* We only need version numbers for symbols defined in regular
1939 objects. */
1940 if (!h->def_regular)
1941 return TRUE;
1942
1943 bed = get_elf_backend_data (info->output_bfd);
1944 p = strchr (h->root.root.string, ELF_VER_CHR);
1945 if (p != NULL && h->verinfo.vertree == NULL)
1946 {
1947 struct bfd_elf_version_tree *t;
1948 bfd_boolean hidden;
1949
1950 hidden = TRUE;
1951
1952 /* There are two consecutive ELF_VER_CHR characters if this is
1953 not a hidden symbol. */
1954 ++p;
1955 if (*p == ELF_VER_CHR)
1956 {
1957 hidden = FALSE;
1958 ++p;
1959 }
1960
1961 /* If there is no version string, we can just return out. */
1962 if (*p == '\0')
1963 {
1964 if (hidden)
1965 h->hidden = 1;
1966 return TRUE;
1967 }
1968
1969 /* Look for the version. If we find it, it is no longer weak. */
1970 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1971 {
1972 if (strcmp (t->name, p) == 0)
1973 {
1974 size_t len;
1975 char *alc;
1976 struct bfd_elf_version_expr *d;
1977
1978 len = p - h->root.root.string;
1979 alc = (char *) bfd_malloc (len);
1980 if (alc == NULL)
1981 {
1982 sinfo->failed = TRUE;
1983 return FALSE;
1984 }
1985 memcpy (alc, h->root.root.string, len - 1);
1986 alc[len - 1] = '\0';
1987 if (alc[len - 2] == ELF_VER_CHR)
1988 alc[len - 2] = '\0';
1989
1990 h->verinfo.vertree = t;
1991 t->used = TRUE;
1992 d = NULL;
1993
1994 if (t->globals.list != NULL)
1995 d = (*t->match) (&t->globals, NULL, alc);
1996
1997 /* See if there is anything to force this symbol to
1998 local scope. */
1999 if (d == NULL && t->locals.list != NULL)
2000 {
2001 d = (*t->match) (&t->locals, NULL, alc);
2002 if (d != NULL
2003 && h->dynindx != -1
2004 && ! info->export_dynamic)
2005 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2006 }
2007
2008 free (alc);
2009 break;
2010 }
2011 }
2012
2013 /* If we are building an application, we need to create a
2014 version node for this version. */
2015 if (t == NULL && info->executable)
2016 {
2017 struct bfd_elf_version_tree **pp;
2018 int version_index;
2019
2020 /* If we aren't going to export this symbol, we don't need
2021 to worry about it. */
2022 if (h->dynindx == -1)
2023 return TRUE;
2024
2025 amt = sizeof *t;
2026 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2027 if (t == NULL)
2028 {
2029 sinfo->failed = TRUE;
2030 return FALSE;
2031 }
2032
2033 t->name = p;
2034 t->name_indx = (unsigned int) -1;
2035 t->used = TRUE;
2036
2037 version_index = 1;
2038 /* Don't count anonymous version tag. */
2039 if (sinfo->info->version_info != NULL
2040 && sinfo->info->version_info->vernum == 0)
2041 version_index = 0;
2042 for (pp = &sinfo->info->version_info;
2043 *pp != NULL;
2044 pp = &(*pp)->next)
2045 ++version_index;
2046 t->vernum = version_index;
2047
2048 *pp = t;
2049
2050 h->verinfo.vertree = t;
2051 }
2052 else if (t == NULL)
2053 {
2054 /* We could not find the version for a symbol when
2055 generating a shared archive. Return an error. */
2056 (*_bfd_error_handler)
2057 (_("%B: version node not found for symbol %s"),
2058 info->output_bfd, h->root.root.string);
2059 bfd_set_error (bfd_error_bad_value);
2060 sinfo->failed = TRUE;
2061 return FALSE;
2062 }
2063
2064 if (hidden)
2065 h->hidden = 1;
2066 }
2067
2068 /* If we don't have a version for this symbol, see if we can find
2069 something. */
2070 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2071 {
2072 bfd_boolean hide;
2073
2074 h->verinfo.vertree
2075 = bfd_find_version_for_sym (sinfo->info->version_info,
2076 h->root.root.string, &hide);
2077 if (h->verinfo.vertree != NULL && hide)
2078 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2079 }
2080
2081 return TRUE;
2082 }
2083 \f
2084 /* Read and swap the relocs from the section indicated by SHDR. This
2085 may be either a REL or a RELA section. The relocations are
2086 translated into RELA relocations and stored in INTERNAL_RELOCS,
2087 which should have already been allocated to contain enough space.
2088 The EXTERNAL_RELOCS are a buffer where the external form of the
2089 relocations should be stored.
2090
2091 Returns FALSE if something goes wrong. */
2092
2093 static bfd_boolean
2094 elf_link_read_relocs_from_section (bfd *abfd,
2095 asection *sec,
2096 Elf_Internal_Shdr *shdr,
2097 void *external_relocs,
2098 Elf_Internal_Rela *internal_relocs)
2099 {
2100 const struct elf_backend_data *bed;
2101 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2102 const bfd_byte *erela;
2103 const bfd_byte *erelaend;
2104 Elf_Internal_Rela *irela;
2105 Elf_Internal_Shdr *symtab_hdr;
2106 size_t nsyms;
2107
2108 /* Position ourselves at the start of the section. */
2109 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2110 return FALSE;
2111
2112 /* Read the relocations. */
2113 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2114 return FALSE;
2115
2116 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2117 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2118
2119 bed = get_elf_backend_data (abfd);
2120
2121 /* Convert the external relocations to the internal format. */
2122 if (shdr->sh_entsize == bed->s->sizeof_rel)
2123 swap_in = bed->s->swap_reloc_in;
2124 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2125 swap_in = bed->s->swap_reloca_in;
2126 else
2127 {
2128 bfd_set_error (bfd_error_wrong_format);
2129 return FALSE;
2130 }
2131
2132 erela = (const bfd_byte *) external_relocs;
2133 erelaend = erela + shdr->sh_size;
2134 irela = internal_relocs;
2135 while (erela < erelaend)
2136 {
2137 bfd_vma r_symndx;
2138
2139 (*swap_in) (abfd, erela, irela);
2140 r_symndx = ELF32_R_SYM (irela->r_info);
2141 if (bed->s->arch_size == 64)
2142 r_symndx >>= 24;
2143 if (nsyms > 0)
2144 {
2145 if ((size_t) r_symndx >= nsyms)
2146 {
2147 (*_bfd_error_handler)
2148 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2149 " for offset 0x%lx in section `%A'"),
2150 abfd, sec,
2151 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2152 bfd_set_error (bfd_error_bad_value);
2153 return FALSE;
2154 }
2155 }
2156 else if (r_symndx != STN_UNDEF)
2157 {
2158 (*_bfd_error_handler)
2159 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2160 " when the object file has no symbol table"),
2161 abfd, sec,
2162 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2163 bfd_set_error (bfd_error_bad_value);
2164 return FALSE;
2165 }
2166 irela += bed->s->int_rels_per_ext_rel;
2167 erela += shdr->sh_entsize;
2168 }
2169
2170 return TRUE;
2171 }
2172
2173 /* Read and swap the relocs for a section O. They may have been
2174 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2175 not NULL, they are used as buffers to read into. They are known to
2176 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2177 the return value is allocated using either malloc or bfd_alloc,
2178 according to the KEEP_MEMORY argument. If O has two relocation
2179 sections (both REL and RELA relocations), then the REL_HDR
2180 relocations will appear first in INTERNAL_RELOCS, followed by the
2181 RELA_HDR relocations. */
2182
2183 Elf_Internal_Rela *
2184 _bfd_elf_link_read_relocs (bfd *abfd,
2185 asection *o,
2186 void *external_relocs,
2187 Elf_Internal_Rela *internal_relocs,
2188 bfd_boolean keep_memory)
2189 {
2190 void *alloc1 = NULL;
2191 Elf_Internal_Rela *alloc2 = NULL;
2192 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2193 struct bfd_elf_section_data *esdo = elf_section_data (o);
2194 Elf_Internal_Rela *internal_rela_relocs;
2195
2196 if (esdo->relocs != NULL)
2197 return esdo->relocs;
2198
2199 if (o->reloc_count == 0)
2200 return NULL;
2201
2202 if (internal_relocs == NULL)
2203 {
2204 bfd_size_type size;
2205
2206 size = o->reloc_count;
2207 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2208 if (keep_memory)
2209 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2210 else
2211 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2212 if (internal_relocs == NULL)
2213 goto error_return;
2214 }
2215
2216 if (external_relocs == NULL)
2217 {
2218 bfd_size_type size = 0;
2219
2220 if (esdo->rel.hdr)
2221 size += esdo->rel.hdr->sh_size;
2222 if (esdo->rela.hdr)
2223 size += esdo->rela.hdr->sh_size;
2224
2225 alloc1 = bfd_malloc (size);
2226 if (alloc1 == NULL)
2227 goto error_return;
2228 external_relocs = alloc1;
2229 }
2230
2231 internal_rela_relocs = internal_relocs;
2232 if (esdo->rel.hdr)
2233 {
2234 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2235 external_relocs,
2236 internal_relocs))
2237 goto error_return;
2238 external_relocs = (((bfd_byte *) external_relocs)
2239 + esdo->rel.hdr->sh_size);
2240 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2241 * bed->s->int_rels_per_ext_rel);
2242 }
2243
2244 if (esdo->rela.hdr
2245 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2246 external_relocs,
2247 internal_rela_relocs)))
2248 goto error_return;
2249
2250 /* Cache the results for next time, if we can. */
2251 if (keep_memory)
2252 esdo->relocs = internal_relocs;
2253
2254 if (alloc1 != NULL)
2255 free (alloc1);
2256
2257 /* Don't free alloc2, since if it was allocated we are passing it
2258 back (under the name of internal_relocs). */
2259
2260 return internal_relocs;
2261
2262 error_return:
2263 if (alloc1 != NULL)
2264 free (alloc1);
2265 if (alloc2 != NULL)
2266 {
2267 if (keep_memory)
2268 bfd_release (abfd, alloc2);
2269 else
2270 free (alloc2);
2271 }
2272 return NULL;
2273 }
2274
2275 /* Compute the size of, and allocate space for, REL_HDR which is the
2276 section header for a section containing relocations for O. */
2277
2278 static bfd_boolean
2279 _bfd_elf_link_size_reloc_section (bfd *abfd,
2280 struct bfd_elf_section_reloc_data *reldata)
2281 {
2282 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2283
2284 /* That allows us to calculate the size of the section. */
2285 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2286
2287 /* The contents field must last into write_object_contents, so we
2288 allocate it with bfd_alloc rather than malloc. Also since we
2289 cannot be sure that the contents will actually be filled in,
2290 we zero the allocated space. */
2291 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2292 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2293 return FALSE;
2294
2295 if (reldata->hashes == NULL && reldata->count)
2296 {
2297 struct elf_link_hash_entry **p;
2298
2299 p = (struct elf_link_hash_entry **)
2300 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2301 if (p == NULL)
2302 return FALSE;
2303
2304 reldata->hashes = p;
2305 }
2306
2307 return TRUE;
2308 }
2309
2310 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2311 originated from the section given by INPUT_REL_HDR) to the
2312 OUTPUT_BFD. */
2313
2314 bfd_boolean
2315 _bfd_elf_link_output_relocs (bfd *output_bfd,
2316 asection *input_section,
2317 Elf_Internal_Shdr *input_rel_hdr,
2318 Elf_Internal_Rela *internal_relocs,
2319 struct elf_link_hash_entry **rel_hash
2320 ATTRIBUTE_UNUSED)
2321 {
2322 Elf_Internal_Rela *irela;
2323 Elf_Internal_Rela *irelaend;
2324 bfd_byte *erel;
2325 struct bfd_elf_section_reloc_data *output_reldata;
2326 asection *output_section;
2327 const struct elf_backend_data *bed;
2328 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2329 struct bfd_elf_section_data *esdo;
2330
2331 output_section = input_section->output_section;
2332
2333 bed = get_elf_backend_data (output_bfd);
2334 esdo = elf_section_data (output_section);
2335 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2336 {
2337 output_reldata = &esdo->rel;
2338 swap_out = bed->s->swap_reloc_out;
2339 }
2340 else if (esdo->rela.hdr
2341 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2342 {
2343 output_reldata = &esdo->rela;
2344 swap_out = bed->s->swap_reloca_out;
2345 }
2346 else
2347 {
2348 (*_bfd_error_handler)
2349 (_("%B: relocation size mismatch in %B section %A"),
2350 output_bfd, input_section->owner, input_section);
2351 bfd_set_error (bfd_error_wrong_format);
2352 return FALSE;
2353 }
2354
2355 erel = output_reldata->hdr->contents;
2356 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2357 irela = internal_relocs;
2358 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2359 * bed->s->int_rels_per_ext_rel);
2360 while (irela < irelaend)
2361 {
2362 (*swap_out) (output_bfd, irela, erel);
2363 irela += bed->s->int_rels_per_ext_rel;
2364 erel += input_rel_hdr->sh_entsize;
2365 }
2366
2367 /* Bump the counter, so that we know where to add the next set of
2368 relocations. */
2369 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2370
2371 return TRUE;
2372 }
2373 \f
2374 /* Make weak undefined symbols in PIE dynamic. */
2375
2376 bfd_boolean
2377 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2378 struct elf_link_hash_entry *h)
2379 {
2380 if (info->pie
2381 && h->dynindx == -1
2382 && h->root.type == bfd_link_hash_undefweak)
2383 return bfd_elf_link_record_dynamic_symbol (info, h);
2384
2385 return TRUE;
2386 }
2387
2388 /* Fix up the flags for a symbol. This handles various cases which
2389 can only be fixed after all the input files are seen. This is
2390 currently called by both adjust_dynamic_symbol and
2391 assign_sym_version, which is unnecessary but perhaps more robust in
2392 the face of future changes. */
2393
2394 static bfd_boolean
2395 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2396 struct elf_info_failed *eif)
2397 {
2398 const struct elf_backend_data *bed;
2399
2400 /* If this symbol was mentioned in a non-ELF file, try to set
2401 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2402 permit a non-ELF file to correctly refer to a symbol defined in
2403 an ELF dynamic object. */
2404 if (h->non_elf)
2405 {
2406 while (h->root.type == bfd_link_hash_indirect)
2407 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2408
2409 if (h->root.type != bfd_link_hash_defined
2410 && h->root.type != bfd_link_hash_defweak)
2411 {
2412 h->ref_regular = 1;
2413 h->ref_regular_nonweak = 1;
2414 }
2415 else
2416 {
2417 if (h->root.u.def.section->owner != NULL
2418 && (bfd_get_flavour (h->root.u.def.section->owner)
2419 == bfd_target_elf_flavour))
2420 {
2421 h->ref_regular = 1;
2422 h->ref_regular_nonweak = 1;
2423 }
2424 else
2425 h->def_regular = 1;
2426 }
2427
2428 if (h->dynindx == -1
2429 && (h->def_dynamic
2430 || h->ref_dynamic))
2431 {
2432 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2433 {
2434 eif->failed = TRUE;
2435 return FALSE;
2436 }
2437 }
2438 }
2439 else
2440 {
2441 /* Unfortunately, NON_ELF is only correct if the symbol
2442 was first seen in a non-ELF file. Fortunately, if the symbol
2443 was first seen in an ELF file, we're probably OK unless the
2444 symbol was defined in a non-ELF file. Catch that case here.
2445 FIXME: We're still in trouble if the symbol was first seen in
2446 a dynamic object, and then later in a non-ELF regular object. */
2447 if ((h->root.type == bfd_link_hash_defined
2448 || h->root.type == bfd_link_hash_defweak)
2449 && !h->def_regular
2450 && (h->root.u.def.section->owner != NULL
2451 ? (bfd_get_flavour (h->root.u.def.section->owner)
2452 != bfd_target_elf_flavour)
2453 : (bfd_is_abs_section (h->root.u.def.section)
2454 && !h->def_dynamic)))
2455 h->def_regular = 1;
2456 }
2457
2458 /* Backend specific symbol fixup. */
2459 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2460 if (bed->elf_backend_fixup_symbol
2461 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2462 return FALSE;
2463
2464 /* If this is a final link, and the symbol was defined as a common
2465 symbol in a regular object file, and there was no definition in
2466 any dynamic object, then the linker will have allocated space for
2467 the symbol in a common section but the DEF_REGULAR
2468 flag will not have been set. */
2469 if (h->root.type == bfd_link_hash_defined
2470 && !h->def_regular
2471 && h->ref_regular
2472 && !h->def_dynamic
2473 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2474 h->def_regular = 1;
2475
2476 /* If -Bsymbolic was used (which means to bind references to global
2477 symbols to the definition within the shared object), and this
2478 symbol was defined in a regular object, then it actually doesn't
2479 need a PLT entry. Likewise, if the symbol has non-default
2480 visibility. If the symbol has hidden or internal visibility, we
2481 will force it local. */
2482 if (h->needs_plt
2483 && eif->info->shared
2484 && is_elf_hash_table (eif->info->hash)
2485 && (SYMBOLIC_BIND (eif->info, h)
2486 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2487 && h->def_regular)
2488 {
2489 bfd_boolean force_local;
2490
2491 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2492 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2493 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2494 }
2495
2496 /* If a weak undefined symbol has non-default visibility, we also
2497 hide it from the dynamic linker. */
2498 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2499 && h->root.type == bfd_link_hash_undefweak)
2500 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2501
2502 /* If this is a weak defined symbol in a dynamic object, and we know
2503 the real definition in the dynamic object, copy interesting flags
2504 over to the real definition. */
2505 if (h->u.weakdef != NULL)
2506 {
2507 /* If the real definition is defined by a regular object file,
2508 don't do anything special. See the longer description in
2509 _bfd_elf_adjust_dynamic_symbol, below. */
2510 if (h->u.weakdef->def_regular)
2511 h->u.weakdef = NULL;
2512 else
2513 {
2514 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2515
2516 while (h->root.type == bfd_link_hash_indirect)
2517 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2518
2519 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2520 || h->root.type == bfd_link_hash_defweak);
2521 BFD_ASSERT (weakdef->def_dynamic);
2522 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2523 || weakdef->root.type == bfd_link_hash_defweak);
2524 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2525 }
2526 }
2527
2528 return TRUE;
2529 }
2530
2531 /* Make the backend pick a good value for a dynamic symbol. This is
2532 called via elf_link_hash_traverse, and also calls itself
2533 recursively. */
2534
2535 static bfd_boolean
2536 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2537 {
2538 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2539 bfd *dynobj;
2540 const struct elf_backend_data *bed;
2541
2542 if (! is_elf_hash_table (eif->info->hash))
2543 return FALSE;
2544
2545 /* Ignore indirect symbols. These are added by the versioning code. */
2546 if (h->root.type == bfd_link_hash_indirect)
2547 return TRUE;
2548
2549 /* Fix the symbol flags. */
2550 if (! _bfd_elf_fix_symbol_flags (h, eif))
2551 return FALSE;
2552
2553 /* If this symbol does not require a PLT entry, and it is not
2554 defined by a dynamic object, or is not referenced by a regular
2555 object, ignore it. We do have to handle a weak defined symbol,
2556 even if no regular object refers to it, if we decided to add it
2557 to the dynamic symbol table. FIXME: Do we normally need to worry
2558 about symbols which are defined by one dynamic object and
2559 referenced by another one? */
2560 if (!h->needs_plt
2561 && h->type != STT_GNU_IFUNC
2562 && (h->def_regular
2563 || !h->def_dynamic
2564 || (!h->ref_regular
2565 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2566 {
2567 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2568 return TRUE;
2569 }
2570
2571 /* If we've already adjusted this symbol, don't do it again. This
2572 can happen via a recursive call. */
2573 if (h->dynamic_adjusted)
2574 return TRUE;
2575
2576 /* Don't look at this symbol again. Note that we must set this
2577 after checking the above conditions, because we may look at a
2578 symbol once, decide not to do anything, and then get called
2579 recursively later after REF_REGULAR is set below. */
2580 h->dynamic_adjusted = 1;
2581
2582 /* If this is a weak definition, and we know a real definition, and
2583 the real symbol is not itself defined by a regular object file,
2584 then get a good value for the real definition. We handle the
2585 real symbol first, for the convenience of the backend routine.
2586
2587 Note that there is a confusing case here. If the real definition
2588 is defined by a regular object file, we don't get the real symbol
2589 from the dynamic object, but we do get the weak symbol. If the
2590 processor backend uses a COPY reloc, then if some routine in the
2591 dynamic object changes the real symbol, we will not see that
2592 change in the corresponding weak symbol. This is the way other
2593 ELF linkers work as well, and seems to be a result of the shared
2594 library model.
2595
2596 I will clarify this issue. Most SVR4 shared libraries define the
2597 variable _timezone and define timezone as a weak synonym. The
2598 tzset call changes _timezone. If you write
2599 extern int timezone;
2600 int _timezone = 5;
2601 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2602 you might expect that, since timezone is a synonym for _timezone,
2603 the same number will print both times. However, if the processor
2604 backend uses a COPY reloc, then actually timezone will be copied
2605 into your process image, and, since you define _timezone
2606 yourself, _timezone will not. Thus timezone and _timezone will
2607 wind up at different memory locations. The tzset call will set
2608 _timezone, leaving timezone unchanged. */
2609
2610 if (h->u.weakdef != NULL)
2611 {
2612 /* If we get to this point, there is an implicit reference to
2613 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2614 h->u.weakdef->ref_regular = 1;
2615
2616 /* Ensure that the backend adjust_dynamic_symbol function sees
2617 H->U.WEAKDEF before H by recursively calling ourselves. */
2618 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2619 return FALSE;
2620 }
2621
2622 /* If a symbol has no type and no size and does not require a PLT
2623 entry, then we are probably about to do the wrong thing here: we
2624 are probably going to create a COPY reloc for an empty object.
2625 This case can arise when a shared object is built with assembly
2626 code, and the assembly code fails to set the symbol type. */
2627 if (h->size == 0
2628 && h->type == STT_NOTYPE
2629 && !h->needs_plt)
2630 (*_bfd_error_handler)
2631 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2632 h->root.root.string);
2633
2634 dynobj = elf_hash_table (eif->info)->dynobj;
2635 bed = get_elf_backend_data (dynobj);
2636
2637 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2638 {
2639 eif->failed = TRUE;
2640 return FALSE;
2641 }
2642
2643 return TRUE;
2644 }
2645
2646 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2647 DYNBSS. */
2648
2649 bfd_boolean
2650 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2651 asection *dynbss)
2652 {
2653 unsigned int power_of_two;
2654 bfd_vma mask;
2655 asection *sec = h->root.u.def.section;
2656
2657 /* The section aligment of definition is the maximum alignment
2658 requirement of symbols defined in the section. Since we don't
2659 know the symbol alignment requirement, we start with the
2660 maximum alignment and check low bits of the symbol address
2661 for the minimum alignment. */
2662 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2663 mask = ((bfd_vma) 1 << power_of_two) - 1;
2664 while ((h->root.u.def.value & mask) != 0)
2665 {
2666 mask >>= 1;
2667 --power_of_two;
2668 }
2669
2670 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2671 dynbss))
2672 {
2673 /* Adjust the section alignment if needed. */
2674 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2675 power_of_two))
2676 return FALSE;
2677 }
2678
2679 /* We make sure that the symbol will be aligned properly. */
2680 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2681
2682 /* Define the symbol as being at this point in DYNBSS. */
2683 h->root.u.def.section = dynbss;
2684 h->root.u.def.value = dynbss->size;
2685
2686 /* Increment the size of DYNBSS to make room for the symbol. */
2687 dynbss->size += h->size;
2688
2689 return TRUE;
2690 }
2691
2692 /* Adjust all external symbols pointing into SEC_MERGE sections
2693 to reflect the object merging within the sections. */
2694
2695 static bfd_boolean
2696 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2697 {
2698 asection *sec;
2699
2700 if ((h->root.type == bfd_link_hash_defined
2701 || h->root.type == bfd_link_hash_defweak)
2702 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2703 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2704 {
2705 bfd *output_bfd = (bfd *) data;
2706
2707 h->root.u.def.value =
2708 _bfd_merged_section_offset (output_bfd,
2709 &h->root.u.def.section,
2710 elf_section_data (sec)->sec_info,
2711 h->root.u.def.value);
2712 }
2713
2714 return TRUE;
2715 }
2716
2717 /* Returns false if the symbol referred to by H should be considered
2718 to resolve local to the current module, and true if it should be
2719 considered to bind dynamically. */
2720
2721 bfd_boolean
2722 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2723 struct bfd_link_info *info,
2724 bfd_boolean not_local_protected)
2725 {
2726 bfd_boolean binding_stays_local_p;
2727 const struct elf_backend_data *bed;
2728 struct elf_link_hash_table *hash_table;
2729
2730 if (h == NULL)
2731 return FALSE;
2732
2733 while (h->root.type == bfd_link_hash_indirect
2734 || h->root.type == bfd_link_hash_warning)
2735 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2736
2737 /* If it was forced local, then clearly it's not dynamic. */
2738 if (h->dynindx == -1)
2739 return FALSE;
2740 if (h->forced_local)
2741 return FALSE;
2742
2743 /* Identify the cases where name binding rules say that a
2744 visible symbol resolves locally. */
2745 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2746
2747 switch (ELF_ST_VISIBILITY (h->other))
2748 {
2749 case STV_INTERNAL:
2750 case STV_HIDDEN:
2751 return FALSE;
2752
2753 case STV_PROTECTED:
2754 hash_table = elf_hash_table (info);
2755 if (!is_elf_hash_table (hash_table))
2756 return FALSE;
2757
2758 bed = get_elf_backend_data (hash_table->dynobj);
2759
2760 /* Proper resolution for function pointer equality may require
2761 that these symbols perhaps be resolved dynamically, even though
2762 we should be resolving them to the current module. */
2763 if (!not_local_protected || !bed->is_function_type (h->type))
2764 binding_stays_local_p = TRUE;
2765 break;
2766
2767 default:
2768 break;
2769 }
2770
2771 /* If it isn't defined locally, then clearly it's dynamic. */
2772 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2773 return TRUE;
2774
2775 /* Otherwise, the symbol is dynamic if binding rules don't tell
2776 us that it remains local. */
2777 return !binding_stays_local_p;
2778 }
2779
2780 /* Return true if the symbol referred to by H should be considered
2781 to resolve local to the current module, and false otherwise. Differs
2782 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2783 undefined symbols. The two functions are virtually identical except
2784 for the place where forced_local and dynindx == -1 are tested. If
2785 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2786 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2787 the symbol is local only for defined symbols.
2788 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2789 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2790 treatment of undefined weak symbols. For those that do not make
2791 undefined weak symbols dynamic, both functions may return false. */
2792
2793 bfd_boolean
2794 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2795 struct bfd_link_info *info,
2796 bfd_boolean local_protected)
2797 {
2798 const struct elf_backend_data *bed;
2799 struct elf_link_hash_table *hash_table;
2800
2801 /* If it's a local sym, of course we resolve locally. */
2802 if (h == NULL)
2803 return TRUE;
2804
2805 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2806 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2807 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2808 return TRUE;
2809
2810 /* Common symbols that become definitions don't get the DEF_REGULAR
2811 flag set, so test it first, and don't bail out. */
2812 if (ELF_COMMON_DEF_P (h))
2813 /* Do nothing. */;
2814 /* If we don't have a definition in a regular file, then we can't
2815 resolve locally. The sym is either undefined or dynamic. */
2816 else if (!h->def_regular)
2817 return FALSE;
2818
2819 /* Forced local symbols resolve locally. */
2820 if (h->forced_local)
2821 return TRUE;
2822
2823 /* As do non-dynamic symbols. */
2824 if (h->dynindx == -1)
2825 return TRUE;
2826
2827 /* At this point, we know the symbol is defined and dynamic. In an
2828 executable it must resolve locally, likewise when building symbolic
2829 shared libraries. */
2830 if (info->executable || SYMBOLIC_BIND (info, h))
2831 return TRUE;
2832
2833 /* Now deal with defined dynamic symbols in shared libraries. Ones
2834 with default visibility might not resolve locally. */
2835 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2836 return FALSE;
2837
2838 hash_table = elf_hash_table (info);
2839 if (!is_elf_hash_table (hash_table))
2840 return TRUE;
2841
2842 bed = get_elf_backend_data (hash_table->dynobj);
2843
2844 /* STV_PROTECTED non-function symbols are local. */
2845 if (!bed->is_function_type (h->type))
2846 return TRUE;
2847
2848 /* Function pointer equality tests may require that STV_PROTECTED
2849 symbols be treated as dynamic symbols. If the address of a
2850 function not defined in an executable is set to that function's
2851 plt entry in the executable, then the address of the function in
2852 a shared library must also be the plt entry in the executable. */
2853 return local_protected;
2854 }
2855
2856 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2857 aligned. Returns the first TLS output section. */
2858
2859 struct bfd_section *
2860 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2861 {
2862 struct bfd_section *sec, *tls;
2863 unsigned int align = 0;
2864
2865 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2866 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2867 break;
2868 tls = sec;
2869
2870 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2871 if (sec->alignment_power > align)
2872 align = sec->alignment_power;
2873
2874 elf_hash_table (info)->tls_sec = tls;
2875
2876 /* Ensure the alignment of the first section is the largest alignment,
2877 so that the tls segment starts aligned. */
2878 if (tls != NULL)
2879 tls->alignment_power = align;
2880
2881 return tls;
2882 }
2883
2884 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2885 static bfd_boolean
2886 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2887 Elf_Internal_Sym *sym)
2888 {
2889 const struct elf_backend_data *bed;
2890
2891 /* Local symbols do not count, but target specific ones might. */
2892 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2893 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2894 return FALSE;
2895
2896 bed = get_elf_backend_data (abfd);
2897 /* Function symbols do not count. */
2898 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2899 return FALSE;
2900
2901 /* If the section is undefined, then so is the symbol. */
2902 if (sym->st_shndx == SHN_UNDEF)
2903 return FALSE;
2904
2905 /* If the symbol is defined in the common section, then
2906 it is a common definition and so does not count. */
2907 if (bed->common_definition (sym))
2908 return FALSE;
2909
2910 /* If the symbol is in a target specific section then we
2911 must rely upon the backend to tell us what it is. */
2912 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2913 /* FIXME - this function is not coded yet:
2914
2915 return _bfd_is_global_symbol_definition (abfd, sym);
2916
2917 Instead for now assume that the definition is not global,
2918 Even if this is wrong, at least the linker will behave
2919 in the same way that it used to do. */
2920 return FALSE;
2921
2922 return TRUE;
2923 }
2924
2925 /* Search the symbol table of the archive element of the archive ABFD
2926 whose archive map contains a mention of SYMDEF, and determine if
2927 the symbol is defined in this element. */
2928 static bfd_boolean
2929 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2930 {
2931 Elf_Internal_Shdr * hdr;
2932 bfd_size_type symcount;
2933 bfd_size_type extsymcount;
2934 bfd_size_type extsymoff;
2935 Elf_Internal_Sym *isymbuf;
2936 Elf_Internal_Sym *isym;
2937 Elf_Internal_Sym *isymend;
2938 bfd_boolean result;
2939
2940 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2941 if (abfd == NULL)
2942 return FALSE;
2943
2944 if (! bfd_check_format (abfd, bfd_object))
2945 return FALSE;
2946
2947 /* If we have already included the element containing this symbol in the
2948 link then we do not need to include it again. Just claim that any symbol
2949 it contains is not a definition, so that our caller will not decide to
2950 (re)include this element. */
2951 if (abfd->archive_pass)
2952 return FALSE;
2953
2954 /* Select the appropriate symbol table. */
2955 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2956 hdr = &elf_tdata (abfd)->symtab_hdr;
2957 else
2958 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2959
2960 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2961
2962 /* The sh_info field of the symtab header tells us where the
2963 external symbols start. We don't care about the local symbols. */
2964 if (elf_bad_symtab (abfd))
2965 {
2966 extsymcount = symcount;
2967 extsymoff = 0;
2968 }
2969 else
2970 {
2971 extsymcount = symcount - hdr->sh_info;
2972 extsymoff = hdr->sh_info;
2973 }
2974
2975 if (extsymcount == 0)
2976 return FALSE;
2977
2978 /* Read in the symbol table. */
2979 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2980 NULL, NULL, NULL);
2981 if (isymbuf == NULL)
2982 return FALSE;
2983
2984 /* Scan the symbol table looking for SYMDEF. */
2985 result = FALSE;
2986 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2987 {
2988 const char *name;
2989
2990 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2991 isym->st_name);
2992 if (name == NULL)
2993 break;
2994
2995 if (strcmp (name, symdef->name) == 0)
2996 {
2997 result = is_global_data_symbol_definition (abfd, isym);
2998 break;
2999 }
3000 }
3001
3002 free (isymbuf);
3003
3004 return result;
3005 }
3006 \f
3007 /* Add an entry to the .dynamic table. */
3008
3009 bfd_boolean
3010 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3011 bfd_vma tag,
3012 bfd_vma val)
3013 {
3014 struct elf_link_hash_table *hash_table;
3015 const struct elf_backend_data *bed;
3016 asection *s;
3017 bfd_size_type newsize;
3018 bfd_byte *newcontents;
3019 Elf_Internal_Dyn dyn;
3020
3021 hash_table = elf_hash_table (info);
3022 if (! is_elf_hash_table (hash_table))
3023 return FALSE;
3024
3025 bed = get_elf_backend_data (hash_table->dynobj);
3026 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3027 BFD_ASSERT (s != NULL);
3028
3029 newsize = s->size + bed->s->sizeof_dyn;
3030 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3031 if (newcontents == NULL)
3032 return FALSE;
3033
3034 dyn.d_tag = tag;
3035 dyn.d_un.d_val = val;
3036 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3037
3038 s->size = newsize;
3039 s->contents = newcontents;
3040
3041 return TRUE;
3042 }
3043
3044 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3045 otherwise just check whether one already exists. Returns -1 on error,
3046 1 if a DT_NEEDED tag already exists, and 0 on success. */
3047
3048 static int
3049 elf_add_dt_needed_tag (bfd *abfd,
3050 struct bfd_link_info *info,
3051 const char *soname,
3052 bfd_boolean do_it)
3053 {
3054 struct elf_link_hash_table *hash_table;
3055 bfd_size_type strindex;
3056
3057 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3058 return -1;
3059
3060 hash_table = elf_hash_table (info);
3061 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3062 if (strindex == (bfd_size_type) -1)
3063 return -1;
3064
3065 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3066 {
3067 asection *sdyn;
3068 const struct elf_backend_data *bed;
3069 bfd_byte *extdyn;
3070
3071 bed = get_elf_backend_data (hash_table->dynobj);
3072 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3073 if (sdyn != NULL)
3074 for (extdyn = sdyn->contents;
3075 extdyn < sdyn->contents + sdyn->size;
3076 extdyn += bed->s->sizeof_dyn)
3077 {
3078 Elf_Internal_Dyn dyn;
3079
3080 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3081 if (dyn.d_tag == DT_NEEDED
3082 && dyn.d_un.d_val == strindex)
3083 {
3084 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3085 return 1;
3086 }
3087 }
3088 }
3089
3090 if (do_it)
3091 {
3092 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3093 return -1;
3094
3095 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3096 return -1;
3097 }
3098 else
3099 /* We were just checking for existence of the tag. */
3100 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3101
3102 return 0;
3103 }
3104
3105 static bfd_boolean
3106 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3107 {
3108 for (; needed != NULL; needed = needed->next)
3109 if (strcmp (soname, needed->name) == 0)
3110 return TRUE;
3111
3112 return FALSE;
3113 }
3114
3115 /* Sort symbol by value, section, and size. */
3116 static int
3117 elf_sort_symbol (const void *arg1, const void *arg2)
3118 {
3119 const struct elf_link_hash_entry *h1;
3120 const struct elf_link_hash_entry *h2;
3121 bfd_signed_vma vdiff;
3122
3123 h1 = *(const struct elf_link_hash_entry **) arg1;
3124 h2 = *(const struct elf_link_hash_entry **) arg2;
3125 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3126 if (vdiff != 0)
3127 return vdiff > 0 ? 1 : -1;
3128 else
3129 {
3130 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3131 if (sdiff != 0)
3132 return sdiff > 0 ? 1 : -1;
3133 }
3134 vdiff = h1->size - h2->size;
3135 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3136 }
3137
3138 /* This function is used to adjust offsets into .dynstr for
3139 dynamic symbols. This is called via elf_link_hash_traverse. */
3140
3141 static bfd_boolean
3142 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3143 {
3144 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3145
3146 if (h->dynindx != -1)
3147 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3148 return TRUE;
3149 }
3150
3151 /* Assign string offsets in .dynstr, update all structures referencing
3152 them. */
3153
3154 static bfd_boolean
3155 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3156 {
3157 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3158 struct elf_link_local_dynamic_entry *entry;
3159 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3160 bfd *dynobj = hash_table->dynobj;
3161 asection *sdyn;
3162 bfd_size_type size;
3163 const struct elf_backend_data *bed;
3164 bfd_byte *extdyn;
3165
3166 _bfd_elf_strtab_finalize (dynstr);
3167 size = _bfd_elf_strtab_size (dynstr);
3168
3169 bed = get_elf_backend_data (dynobj);
3170 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3171 BFD_ASSERT (sdyn != NULL);
3172
3173 /* Update all .dynamic entries referencing .dynstr strings. */
3174 for (extdyn = sdyn->contents;
3175 extdyn < sdyn->contents + sdyn->size;
3176 extdyn += bed->s->sizeof_dyn)
3177 {
3178 Elf_Internal_Dyn dyn;
3179
3180 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3181 switch (dyn.d_tag)
3182 {
3183 case DT_STRSZ:
3184 dyn.d_un.d_val = size;
3185 break;
3186 case DT_NEEDED:
3187 case DT_SONAME:
3188 case DT_RPATH:
3189 case DT_RUNPATH:
3190 case DT_FILTER:
3191 case DT_AUXILIARY:
3192 case DT_AUDIT:
3193 case DT_DEPAUDIT:
3194 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3195 break;
3196 default:
3197 continue;
3198 }
3199 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3200 }
3201
3202 /* Now update local dynamic symbols. */
3203 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3204 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3205 entry->isym.st_name);
3206
3207 /* And the rest of dynamic symbols. */
3208 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3209
3210 /* Adjust version definitions. */
3211 if (elf_tdata (output_bfd)->cverdefs)
3212 {
3213 asection *s;
3214 bfd_byte *p;
3215 bfd_size_type i;
3216 Elf_Internal_Verdef def;
3217 Elf_Internal_Verdaux defaux;
3218
3219 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3220 p = s->contents;
3221 do
3222 {
3223 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3224 &def);
3225 p += sizeof (Elf_External_Verdef);
3226 if (def.vd_aux != sizeof (Elf_External_Verdef))
3227 continue;
3228 for (i = 0; i < def.vd_cnt; ++i)
3229 {
3230 _bfd_elf_swap_verdaux_in (output_bfd,
3231 (Elf_External_Verdaux *) p, &defaux);
3232 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3233 defaux.vda_name);
3234 _bfd_elf_swap_verdaux_out (output_bfd,
3235 &defaux, (Elf_External_Verdaux *) p);
3236 p += sizeof (Elf_External_Verdaux);
3237 }
3238 }
3239 while (def.vd_next);
3240 }
3241
3242 /* Adjust version references. */
3243 if (elf_tdata (output_bfd)->verref)
3244 {
3245 asection *s;
3246 bfd_byte *p;
3247 bfd_size_type i;
3248 Elf_Internal_Verneed need;
3249 Elf_Internal_Vernaux needaux;
3250
3251 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3252 p = s->contents;
3253 do
3254 {
3255 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3256 &need);
3257 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3258 _bfd_elf_swap_verneed_out (output_bfd, &need,
3259 (Elf_External_Verneed *) p);
3260 p += sizeof (Elf_External_Verneed);
3261 for (i = 0; i < need.vn_cnt; ++i)
3262 {
3263 _bfd_elf_swap_vernaux_in (output_bfd,
3264 (Elf_External_Vernaux *) p, &needaux);
3265 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3266 needaux.vna_name);
3267 _bfd_elf_swap_vernaux_out (output_bfd,
3268 &needaux,
3269 (Elf_External_Vernaux *) p);
3270 p += sizeof (Elf_External_Vernaux);
3271 }
3272 }
3273 while (need.vn_next);
3274 }
3275
3276 return TRUE;
3277 }
3278 \f
3279 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3280 The default is to only match when the INPUT and OUTPUT are exactly
3281 the same target. */
3282
3283 bfd_boolean
3284 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3285 const bfd_target *output)
3286 {
3287 return input == output;
3288 }
3289
3290 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3291 This version is used when different targets for the same architecture
3292 are virtually identical. */
3293
3294 bfd_boolean
3295 _bfd_elf_relocs_compatible (const bfd_target *input,
3296 const bfd_target *output)
3297 {
3298 const struct elf_backend_data *obed, *ibed;
3299
3300 if (input == output)
3301 return TRUE;
3302
3303 ibed = xvec_get_elf_backend_data (input);
3304 obed = xvec_get_elf_backend_data (output);
3305
3306 if (ibed->arch != obed->arch)
3307 return FALSE;
3308
3309 /* If both backends are using this function, deem them compatible. */
3310 return ibed->relocs_compatible == obed->relocs_compatible;
3311 }
3312
3313 /* Add symbols from an ELF object file to the linker hash table. */
3314
3315 static bfd_boolean
3316 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3317 {
3318 Elf_Internal_Ehdr *ehdr;
3319 Elf_Internal_Shdr *hdr;
3320 bfd_size_type symcount;
3321 bfd_size_type extsymcount;
3322 bfd_size_type extsymoff;
3323 struct elf_link_hash_entry **sym_hash;
3324 bfd_boolean dynamic;
3325 Elf_External_Versym *extversym = NULL;
3326 Elf_External_Versym *ever;
3327 struct elf_link_hash_entry *weaks;
3328 struct elf_link_hash_entry **nondeflt_vers = NULL;
3329 bfd_size_type nondeflt_vers_cnt = 0;
3330 Elf_Internal_Sym *isymbuf = NULL;
3331 Elf_Internal_Sym *isym;
3332 Elf_Internal_Sym *isymend;
3333 const struct elf_backend_data *bed;
3334 bfd_boolean add_needed;
3335 struct elf_link_hash_table *htab;
3336 bfd_size_type amt;
3337 void *alloc_mark = NULL;
3338 struct bfd_hash_entry **old_table = NULL;
3339 unsigned int old_size = 0;
3340 unsigned int old_count = 0;
3341 void *old_tab = NULL;
3342 void *old_hash;
3343 void *old_ent;
3344 struct bfd_link_hash_entry *old_undefs = NULL;
3345 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3346 long old_dynsymcount = 0;
3347 bfd_size_type old_dynstr_size = 0;
3348 size_t tabsize = 0;
3349 size_t hashsize = 0;
3350
3351 htab = elf_hash_table (info);
3352 bed = get_elf_backend_data (abfd);
3353
3354 if ((abfd->flags & DYNAMIC) == 0)
3355 dynamic = FALSE;
3356 else
3357 {
3358 dynamic = TRUE;
3359
3360 /* You can't use -r against a dynamic object. Also, there's no
3361 hope of using a dynamic object which does not exactly match
3362 the format of the output file. */
3363 if (info->relocatable
3364 || !is_elf_hash_table (htab)
3365 || info->output_bfd->xvec != abfd->xvec)
3366 {
3367 if (info->relocatable)
3368 bfd_set_error (bfd_error_invalid_operation);
3369 else
3370 bfd_set_error (bfd_error_wrong_format);
3371 goto error_return;
3372 }
3373 }
3374
3375 ehdr = elf_elfheader (abfd);
3376 if (info->warn_alternate_em
3377 && bed->elf_machine_code != ehdr->e_machine
3378 && ((bed->elf_machine_alt1 != 0
3379 && ehdr->e_machine == bed->elf_machine_alt1)
3380 || (bed->elf_machine_alt2 != 0
3381 && ehdr->e_machine == bed->elf_machine_alt2)))
3382 info->callbacks->einfo
3383 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3384 ehdr->e_machine, abfd, bed->elf_machine_code);
3385
3386 /* As a GNU extension, any input sections which are named
3387 .gnu.warning.SYMBOL are treated as warning symbols for the given
3388 symbol. This differs from .gnu.warning sections, which generate
3389 warnings when they are included in an output file. */
3390 /* PR 12761: Also generate this warning when building shared libraries. */
3391 if (info->executable || info->shared)
3392 {
3393 asection *s;
3394
3395 for (s = abfd->sections; s != NULL; s = s->next)
3396 {
3397 const char *name;
3398
3399 name = bfd_get_section_name (abfd, s);
3400 if (CONST_STRNEQ (name, ".gnu.warning."))
3401 {
3402 char *msg;
3403 bfd_size_type sz;
3404
3405 name += sizeof ".gnu.warning." - 1;
3406
3407 /* If this is a shared object, then look up the symbol
3408 in the hash table. If it is there, and it is already
3409 been defined, then we will not be using the entry
3410 from this shared object, so we don't need to warn.
3411 FIXME: If we see the definition in a regular object
3412 later on, we will warn, but we shouldn't. The only
3413 fix is to keep track of what warnings we are supposed
3414 to emit, and then handle them all at the end of the
3415 link. */
3416 if (dynamic)
3417 {
3418 struct elf_link_hash_entry *h;
3419
3420 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3421
3422 /* FIXME: What about bfd_link_hash_common? */
3423 if (h != NULL
3424 && (h->root.type == bfd_link_hash_defined
3425 || h->root.type == bfd_link_hash_defweak))
3426 {
3427 /* We don't want to issue this warning. Clobber
3428 the section size so that the warning does not
3429 get copied into the output file. */
3430 s->size = 0;
3431 continue;
3432 }
3433 }
3434
3435 sz = s->size;
3436 msg = (char *) bfd_alloc (abfd, sz + 1);
3437 if (msg == NULL)
3438 goto error_return;
3439
3440 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3441 goto error_return;
3442
3443 msg[sz] = '\0';
3444
3445 if (! (_bfd_generic_link_add_one_symbol
3446 (info, abfd, name, BSF_WARNING, s, 0, msg,
3447 FALSE, bed->collect, NULL)))
3448 goto error_return;
3449
3450 if (! info->relocatable)
3451 {
3452 /* Clobber the section size so that the warning does
3453 not get copied into the output file. */
3454 s->size = 0;
3455
3456 /* Also set SEC_EXCLUDE, so that symbols defined in
3457 the warning section don't get copied to the output. */
3458 s->flags |= SEC_EXCLUDE;
3459 }
3460 }
3461 }
3462 }
3463
3464 add_needed = TRUE;
3465 if (! dynamic)
3466 {
3467 /* If we are creating a shared library, create all the dynamic
3468 sections immediately. We need to attach them to something,
3469 so we attach them to this BFD, provided it is the right
3470 format. FIXME: If there are no input BFD's of the same
3471 format as the output, we can't make a shared library. */
3472 if (info->shared
3473 && is_elf_hash_table (htab)
3474 && info->output_bfd->xvec == abfd->xvec
3475 && !htab->dynamic_sections_created)
3476 {
3477 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3478 goto error_return;
3479 }
3480 }
3481 else if (!is_elf_hash_table (htab))
3482 goto error_return;
3483 else
3484 {
3485 asection *s;
3486 const char *soname = NULL;
3487 char *audit = NULL;
3488 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3489 int ret;
3490
3491 /* ld --just-symbols and dynamic objects don't mix very well.
3492 ld shouldn't allow it. */
3493 if ((s = abfd->sections) != NULL
3494 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3495 abort ();
3496
3497 /* If this dynamic lib was specified on the command line with
3498 --as-needed in effect, then we don't want to add a DT_NEEDED
3499 tag unless the lib is actually used. Similary for libs brought
3500 in by another lib's DT_NEEDED. When --no-add-needed is used
3501 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3502 any dynamic library in DT_NEEDED tags in the dynamic lib at
3503 all. */
3504 add_needed = (elf_dyn_lib_class (abfd)
3505 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3506 | DYN_NO_NEEDED)) == 0;
3507
3508 s = bfd_get_section_by_name (abfd, ".dynamic");
3509 if (s != NULL)
3510 {
3511 bfd_byte *dynbuf;
3512 bfd_byte *extdyn;
3513 unsigned int elfsec;
3514 unsigned long shlink;
3515
3516 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3517 {
3518 error_free_dyn:
3519 free (dynbuf);
3520 goto error_return;
3521 }
3522
3523 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3524 if (elfsec == SHN_BAD)
3525 goto error_free_dyn;
3526 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3527
3528 for (extdyn = dynbuf;
3529 extdyn < dynbuf + s->size;
3530 extdyn += bed->s->sizeof_dyn)
3531 {
3532 Elf_Internal_Dyn dyn;
3533
3534 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3535 if (dyn.d_tag == DT_SONAME)
3536 {
3537 unsigned int tagv = dyn.d_un.d_val;
3538 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3539 if (soname == NULL)
3540 goto error_free_dyn;
3541 }
3542 if (dyn.d_tag == DT_NEEDED)
3543 {
3544 struct bfd_link_needed_list *n, **pn;
3545 char *fnm, *anm;
3546 unsigned int tagv = dyn.d_un.d_val;
3547
3548 amt = sizeof (struct bfd_link_needed_list);
3549 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3550 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3551 if (n == NULL || fnm == NULL)
3552 goto error_free_dyn;
3553 amt = strlen (fnm) + 1;
3554 anm = (char *) bfd_alloc (abfd, amt);
3555 if (anm == NULL)
3556 goto error_free_dyn;
3557 memcpy (anm, fnm, amt);
3558 n->name = anm;
3559 n->by = abfd;
3560 n->next = NULL;
3561 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3562 ;
3563 *pn = n;
3564 }
3565 if (dyn.d_tag == DT_RUNPATH)
3566 {
3567 struct bfd_link_needed_list *n, **pn;
3568 char *fnm, *anm;
3569 unsigned int tagv = dyn.d_un.d_val;
3570
3571 amt = sizeof (struct bfd_link_needed_list);
3572 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3573 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3574 if (n == NULL || fnm == NULL)
3575 goto error_free_dyn;
3576 amt = strlen (fnm) + 1;
3577 anm = (char *) bfd_alloc (abfd, amt);
3578 if (anm == NULL)
3579 goto error_free_dyn;
3580 memcpy (anm, fnm, amt);
3581 n->name = anm;
3582 n->by = abfd;
3583 n->next = NULL;
3584 for (pn = & runpath;
3585 *pn != NULL;
3586 pn = &(*pn)->next)
3587 ;
3588 *pn = n;
3589 }
3590 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3591 if (!runpath && dyn.d_tag == DT_RPATH)
3592 {
3593 struct bfd_link_needed_list *n, **pn;
3594 char *fnm, *anm;
3595 unsigned int tagv = dyn.d_un.d_val;
3596
3597 amt = sizeof (struct bfd_link_needed_list);
3598 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3599 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3600 if (n == NULL || fnm == NULL)
3601 goto error_free_dyn;
3602 amt = strlen (fnm) + 1;
3603 anm = (char *) bfd_alloc (abfd, amt);
3604 if (anm == NULL)
3605 goto error_free_dyn;
3606 memcpy (anm, fnm, amt);
3607 n->name = anm;
3608 n->by = abfd;
3609 n->next = NULL;
3610 for (pn = & rpath;
3611 *pn != NULL;
3612 pn = &(*pn)->next)
3613 ;
3614 *pn = n;
3615 }
3616 if (dyn.d_tag == DT_AUDIT)
3617 {
3618 unsigned int tagv = dyn.d_un.d_val;
3619 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3620 }
3621 }
3622
3623 free (dynbuf);
3624 }
3625
3626 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3627 frees all more recently bfd_alloc'd blocks as well. */
3628 if (runpath)
3629 rpath = runpath;
3630
3631 if (rpath)
3632 {
3633 struct bfd_link_needed_list **pn;
3634 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3635 ;
3636 *pn = rpath;
3637 }
3638
3639 /* We do not want to include any of the sections in a dynamic
3640 object in the output file. We hack by simply clobbering the
3641 list of sections in the BFD. This could be handled more
3642 cleanly by, say, a new section flag; the existing
3643 SEC_NEVER_LOAD flag is not the one we want, because that one
3644 still implies that the section takes up space in the output
3645 file. */
3646 bfd_section_list_clear (abfd);
3647
3648 /* Find the name to use in a DT_NEEDED entry that refers to this
3649 object. If the object has a DT_SONAME entry, we use it.
3650 Otherwise, if the generic linker stuck something in
3651 elf_dt_name, we use that. Otherwise, we just use the file
3652 name. */
3653 if (soname == NULL || *soname == '\0')
3654 {
3655 soname = elf_dt_name (abfd);
3656 if (soname == NULL || *soname == '\0')
3657 soname = bfd_get_filename (abfd);
3658 }
3659
3660 /* Save the SONAME because sometimes the linker emulation code
3661 will need to know it. */
3662 elf_dt_name (abfd) = soname;
3663
3664 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3665 if (ret < 0)
3666 goto error_return;
3667
3668 /* If we have already included this dynamic object in the
3669 link, just ignore it. There is no reason to include a
3670 particular dynamic object more than once. */
3671 if (ret > 0)
3672 return TRUE;
3673
3674 /* Save the DT_AUDIT entry for the linker emulation code. */
3675 elf_dt_audit (abfd) = audit;
3676 }
3677
3678 /* If this is a dynamic object, we always link against the .dynsym
3679 symbol table, not the .symtab symbol table. The dynamic linker
3680 will only see the .dynsym symbol table, so there is no reason to
3681 look at .symtab for a dynamic object. */
3682
3683 if (! dynamic || elf_dynsymtab (abfd) == 0)
3684 hdr = &elf_tdata (abfd)->symtab_hdr;
3685 else
3686 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3687
3688 symcount = hdr->sh_size / bed->s->sizeof_sym;
3689
3690 /* The sh_info field of the symtab header tells us where the
3691 external symbols start. We don't care about the local symbols at
3692 this point. */
3693 if (elf_bad_symtab (abfd))
3694 {
3695 extsymcount = symcount;
3696 extsymoff = 0;
3697 }
3698 else
3699 {
3700 extsymcount = symcount - hdr->sh_info;
3701 extsymoff = hdr->sh_info;
3702 }
3703
3704 sym_hash = NULL;
3705 if (extsymcount != 0)
3706 {
3707 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3708 NULL, NULL, NULL);
3709 if (isymbuf == NULL)
3710 goto error_return;
3711
3712 /* We store a pointer to the hash table entry for each external
3713 symbol. */
3714 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3715 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3716 if (sym_hash == NULL)
3717 goto error_free_sym;
3718 elf_sym_hashes (abfd) = sym_hash;
3719 }
3720
3721 if (dynamic)
3722 {
3723 /* Read in any version definitions. */
3724 if (!_bfd_elf_slurp_version_tables (abfd,
3725 info->default_imported_symver))
3726 goto error_free_sym;
3727
3728 /* Read in the symbol versions, but don't bother to convert them
3729 to internal format. */
3730 if (elf_dynversym (abfd) != 0)
3731 {
3732 Elf_Internal_Shdr *versymhdr;
3733
3734 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3735 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3736 if (extversym == NULL)
3737 goto error_free_sym;
3738 amt = versymhdr->sh_size;
3739 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3740 || bfd_bread (extversym, amt, abfd) != amt)
3741 goto error_free_vers;
3742 }
3743 }
3744
3745 /* If we are loading an as-needed shared lib, save the symbol table
3746 state before we start adding symbols. If the lib turns out
3747 to be unneeded, restore the state. */
3748 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3749 {
3750 unsigned int i;
3751 size_t entsize;
3752
3753 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3754 {
3755 struct bfd_hash_entry *p;
3756 struct elf_link_hash_entry *h;
3757
3758 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3759 {
3760 h = (struct elf_link_hash_entry *) p;
3761 entsize += htab->root.table.entsize;
3762 if (h->root.type == bfd_link_hash_warning)
3763 entsize += htab->root.table.entsize;
3764 }
3765 }
3766
3767 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3768 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3769 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3770 if (old_tab == NULL)
3771 goto error_free_vers;
3772
3773 /* Remember the current objalloc pointer, so that all mem for
3774 symbols added can later be reclaimed. */
3775 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3776 if (alloc_mark == NULL)
3777 goto error_free_vers;
3778
3779 /* Make a special call to the linker "notice" function to
3780 tell it that we are about to handle an as-needed lib. */
3781 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3782 notice_as_needed, 0, NULL))
3783 goto error_free_vers;
3784
3785 /* Clone the symbol table and sym hashes. Remember some
3786 pointers into the symbol table, and dynamic symbol count. */
3787 old_hash = (char *) old_tab + tabsize;
3788 old_ent = (char *) old_hash + hashsize;
3789 memcpy (old_tab, htab->root.table.table, tabsize);
3790 memcpy (old_hash, sym_hash, hashsize);
3791 old_undefs = htab->root.undefs;
3792 old_undefs_tail = htab->root.undefs_tail;
3793 old_table = htab->root.table.table;
3794 old_size = htab->root.table.size;
3795 old_count = htab->root.table.count;
3796 old_dynsymcount = htab->dynsymcount;
3797 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3798
3799 for (i = 0; i < htab->root.table.size; i++)
3800 {
3801 struct bfd_hash_entry *p;
3802 struct elf_link_hash_entry *h;
3803
3804 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3805 {
3806 memcpy (old_ent, p, htab->root.table.entsize);
3807 old_ent = (char *) old_ent + htab->root.table.entsize;
3808 h = (struct elf_link_hash_entry *) p;
3809 if (h->root.type == bfd_link_hash_warning)
3810 {
3811 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3812 old_ent = (char *) old_ent + htab->root.table.entsize;
3813 }
3814 }
3815 }
3816 }
3817
3818 weaks = NULL;
3819 ever = extversym != NULL ? extversym + extsymoff : NULL;
3820 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3821 isym < isymend;
3822 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3823 {
3824 int bind;
3825 bfd_vma value;
3826 asection *sec, *new_sec;
3827 flagword flags;
3828 const char *name;
3829 struct elf_link_hash_entry *h;
3830 struct elf_link_hash_entry *hi;
3831 bfd_boolean definition;
3832 bfd_boolean size_change_ok;
3833 bfd_boolean type_change_ok;
3834 bfd_boolean new_weakdef;
3835 bfd_boolean new_weak;
3836 bfd_boolean old_weak;
3837 bfd_boolean override;
3838 bfd_boolean common;
3839 unsigned int old_alignment;
3840 bfd *old_bfd;
3841
3842 override = FALSE;
3843
3844 flags = BSF_NO_FLAGS;
3845 sec = NULL;
3846 value = isym->st_value;
3847 *sym_hash = NULL;
3848 common = bed->common_definition (isym);
3849
3850 bind = ELF_ST_BIND (isym->st_info);
3851 switch (bind)
3852 {
3853 case STB_LOCAL:
3854 /* This should be impossible, since ELF requires that all
3855 global symbols follow all local symbols, and that sh_info
3856 point to the first global symbol. Unfortunately, Irix 5
3857 screws this up. */
3858 continue;
3859
3860 case STB_GLOBAL:
3861 if (isym->st_shndx != SHN_UNDEF && !common)
3862 flags = BSF_GLOBAL;
3863 break;
3864
3865 case STB_WEAK:
3866 flags = BSF_WEAK;
3867 break;
3868
3869 case STB_GNU_UNIQUE:
3870 flags = BSF_GNU_UNIQUE;
3871 break;
3872
3873 default:
3874 /* Leave it up to the processor backend. */
3875 break;
3876 }
3877
3878 if (isym->st_shndx == SHN_UNDEF)
3879 sec = bfd_und_section_ptr;
3880 else if (isym->st_shndx == SHN_ABS)
3881 sec = bfd_abs_section_ptr;
3882 else if (isym->st_shndx == SHN_COMMON)
3883 {
3884 sec = bfd_com_section_ptr;
3885 /* What ELF calls the size we call the value. What ELF
3886 calls the value we call the alignment. */
3887 value = isym->st_size;
3888 }
3889 else
3890 {
3891 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3892 if (sec == NULL)
3893 sec = bfd_abs_section_ptr;
3894 else if (discarded_section (sec))
3895 {
3896 /* Symbols from discarded section are undefined. We keep
3897 its visibility. */
3898 sec = bfd_und_section_ptr;
3899 isym->st_shndx = SHN_UNDEF;
3900 }
3901 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3902 value -= sec->vma;
3903 }
3904
3905 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3906 isym->st_name);
3907 if (name == NULL)
3908 goto error_free_vers;
3909
3910 if (isym->st_shndx == SHN_COMMON
3911 && (abfd->flags & BFD_PLUGIN) != 0)
3912 {
3913 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3914
3915 if (xc == NULL)
3916 {
3917 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3918 | SEC_EXCLUDE);
3919 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3920 if (xc == NULL)
3921 goto error_free_vers;
3922 }
3923 sec = xc;
3924 }
3925 else if (isym->st_shndx == SHN_COMMON
3926 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3927 && !info->relocatable)
3928 {
3929 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3930
3931 if (tcomm == NULL)
3932 {
3933 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3934 | SEC_LINKER_CREATED);
3935 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3936 if (tcomm == NULL)
3937 goto error_free_vers;
3938 }
3939 sec = tcomm;
3940 }
3941 else if (bed->elf_add_symbol_hook)
3942 {
3943 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3944 &sec, &value))
3945 goto error_free_vers;
3946
3947 /* The hook function sets the name to NULL if this symbol
3948 should be skipped for some reason. */
3949 if (name == NULL)
3950 continue;
3951 }
3952
3953 /* Sanity check that all possibilities were handled. */
3954 if (sec == NULL)
3955 {
3956 bfd_set_error (bfd_error_bad_value);
3957 goto error_free_vers;
3958 }
3959
3960 /* Silently discard TLS symbols from --just-syms. There's
3961 no way to combine a static TLS block with a new TLS block
3962 for this executable. */
3963 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
3964 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3965 continue;
3966
3967 if (bfd_is_und_section (sec)
3968 || bfd_is_com_section (sec))
3969 definition = FALSE;
3970 else
3971 definition = TRUE;
3972
3973 size_change_ok = FALSE;
3974 type_change_ok = bed->type_change_ok;
3975 old_weak = FALSE;
3976 old_alignment = 0;
3977 old_bfd = NULL;
3978 new_sec = sec;
3979
3980 if (is_elf_hash_table (htab))
3981 {
3982 Elf_Internal_Versym iver;
3983 unsigned int vernum = 0;
3984 bfd_boolean skip;
3985
3986 if (ever == NULL)
3987 {
3988 if (info->default_imported_symver)
3989 /* Use the default symbol version created earlier. */
3990 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3991 else
3992 iver.vs_vers = 0;
3993 }
3994 else
3995 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3996
3997 vernum = iver.vs_vers & VERSYM_VERSION;
3998
3999 /* If this is a hidden symbol, or if it is not version
4000 1, we append the version name to the symbol name.
4001 However, we do not modify a non-hidden absolute symbol
4002 if it is not a function, because it might be the version
4003 symbol itself. FIXME: What if it isn't? */
4004 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4005 || (vernum > 1
4006 && (!bfd_is_abs_section (sec)
4007 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4008 {
4009 const char *verstr;
4010 size_t namelen, verlen, newlen;
4011 char *newname, *p;
4012
4013 if (isym->st_shndx != SHN_UNDEF)
4014 {
4015 if (vernum > elf_tdata (abfd)->cverdefs)
4016 verstr = NULL;
4017 else if (vernum > 1)
4018 verstr =
4019 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4020 else
4021 verstr = "";
4022
4023 if (verstr == NULL)
4024 {
4025 (*_bfd_error_handler)
4026 (_("%B: %s: invalid version %u (max %d)"),
4027 abfd, name, vernum,
4028 elf_tdata (abfd)->cverdefs);
4029 bfd_set_error (bfd_error_bad_value);
4030 goto error_free_vers;
4031 }
4032 }
4033 else
4034 {
4035 /* We cannot simply test for the number of
4036 entries in the VERNEED section since the
4037 numbers for the needed versions do not start
4038 at 0. */
4039 Elf_Internal_Verneed *t;
4040
4041 verstr = NULL;
4042 for (t = elf_tdata (abfd)->verref;
4043 t != NULL;
4044 t = t->vn_nextref)
4045 {
4046 Elf_Internal_Vernaux *a;
4047
4048 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4049 {
4050 if (a->vna_other == vernum)
4051 {
4052 verstr = a->vna_nodename;
4053 break;
4054 }
4055 }
4056 if (a != NULL)
4057 break;
4058 }
4059 if (verstr == NULL)
4060 {
4061 (*_bfd_error_handler)
4062 (_("%B: %s: invalid needed version %d"),
4063 abfd, name, vernum);
4064 bfd_set_error (bfd_error_bad_value);
4065 goto error_free_vers;
4066 }
4067 }
4068
4069 namelen = strlen (name);
4070 verlen = strlen (verstr);
4071 newlen = namelen + verlen + 2;
4072 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4073 && isym->st_shndx != SHN_UNDEF)
4074 ++newlen;
4075
4076 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4077 if (newname == NULL)
4078 goto error_free_vers;
4079 memcpy (newname, name, namelen);
4080 p = newname + namelen;
4081 *p++ = ELF_VER_CHR;
4082 /* If this is a defined non-hidden version symbol,
4083 we add another @ to the name. This indicates the
4084 default version of the symbol. */
4085 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4086 && isym->st_shndx != SHN_UNDEF)
4087 *p++ = ELF_VER_CHR;
4088 memcpy (p, verstr, verlen + 1);
4089
4090 name = newname;
4091 }
4092
4093 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4094 sym_hash, &old_bfd, &old_weak,
4095 &old_alignment, &skip, &override,
4096 &type_change_ok, &size_change_ok))
4097 goto error_free_vers;
4098
4099 if (skip)
4100 continue;
4101
4102 if (override)
4103 definition = FALSE;
4104
4105 h = *sym_hash;
4106 while (h->root.type == bfd_link_hash_indirect
4107 || h->root.type == bfd_link_hash_warning)
4108 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4109
4110 if (elf_tdata (abfd)->verdef != NULL
4111 && vernum > 1
4112 && definition)
4113 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4114 }
4115
4116 if (! (_bfd_generic_link_add_one_symbol
4117 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4118 (struct bfd_link_hash_entry **) sym_hash)))
4119 goto error_free_vers;
4120
4121 h = *sym_hash;
4122 /* We need to make sure that indirect symbol dynamic flags are
4123 updated. */
4124 hi = h;
4125 while (h->root.type == bfd_link_hash_indirect
4126 || h->root.type == bfd_link_hash_warning)
4127 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4128
4129 *sym_hash = h;
4130
4131 new_weak = (flags & BSF_WEAK) != 0;
4132 new_weakdef = FALSE;
4133 if (dynamic
4134 && definition
4135 && new_weak
4136 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4137 && is_elf_hash_table (htab)
4138 && h->u.weakdef == NULL)
4139 {
4140 /* Keep a list of all weak defined non function symbols from
4141 a dynamic object, using the weakdef field. Later in this
4142 function we will set the weakdef field to the correct
4143 value. We only put non-function symbols from dynamic
4144 objects on this list, because that happens to be the only
4145 time we need to know the normal symbol corresponding to a
4146 weak symbol, and the information is time consuming to
4147 figure out. If the weakdef field is not already NULL,
4148 then this symbol was already defined by some previous
4149 dynamic object, and we will be using that previous
4150 definition anyhow. */
4151
4152 h->u.weakdef = weaks;
4153 weaks = h;
4154 new_weakdef = TRUE;
4155 }
4156
4157 /* Set the alignment of a common symbol. */
4158 if ((common || bfd_is_com_section (sec))
4159 && h->root.type == bfd_link_hash_common)
4160 {
4161 unsigned int align;
4162
4163 if (common)
4164 align = bfd_log2 (isym->st_value);
4165 else
4166 {
4167 /* The new symbol is a common symbol in a shared object.
4168 We need to get the alignment from the section. */
4169 align = new_sec->alignment_power;
4170 }
4171 if (align > old_alignment)
4172 h->root.u.c.p->alignment_power = align;
4173 else
4174 h->root.u.c.p->alignment_power = old_alignment;
4175 }
4176
4177 if (is_elf_hash_table (htab))
4178 {
4179 /* Set a flag in the hash table entry indicating the type of
4180 reference or definition we just found. A dynamic symbol
4181 is one which is referenced or defined by both a regular
4182 object and a shared object. */
4183 bfd_boolean dynsym = FALSE;
4184
4185 /* Plugin symbols aren't normal. Don't set def_regular or
4186 ref_regular for them, or make them dynamic. */
4187 if ((abfd->flags & BFD_PLUGIN) != 0)
4188 ;
4189 else if (! dynamic)
4190 {
4191 if (! definition)
4192 {
4193 h->ref_regular = 1;
4194 if (bind != STB_WEAK)
4195 h->ref_regular_nonweak = 1;
4196 }
4197 else
4198 {
4199 h->def_regular = 1;
4200 if (h->def_dynamic)
4201 {
4202 h->def_dynamic = 0;
4203 h->ref_dynamic = 1;
4204 }
4205 }
4206
4207 /* If the indirect symbol has been forced local, don't
4208 make the real symbol dynamic. */
4209 if ((h == hi || !hi->forced_local)
4210 && (! info->executable
4211 || h->def_dynamic
4212 || h->ref_dynamic))
4213 dynsym = TRUE;
4214 }
4215 else
4216 {
4217 if (! definition)
4218 {
4219 h->ref_dynamic = 1;
4220 hi->ref_dynamic = 1;
4221 }
4222 else
4223 {
4224 h->def_dynamic = 1;
4225 hi->def_dynamic = 1;
4226 }
4227
4228 /* If the indirect symbol has been forced local, don't
4229 make the real symbol dynamic. */
4230 if ((h == hi || !hi->forced_local)
4231 && (h->def_regular
4232 || h->ref_regular
4233 || (h->u.weakdef != NULL
4234 && ! new_weakdef
4235 && h->u.weakdef->dynindx != -1)))
4236 dynsym = TRUE;
4237 }
4238
4239 /* Check to see if we need to add an indirect symbol for
4240 the default name. */
4241 if (definition
4242 || (!override && h->root.type == bfd_link_hash_common))
4243 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4244 sec, value, &old_bfd, &dynsym))
4245 goto error_free_vers;
4246
4247 /* Check the alignment when a common symbol is involved. This
4248 can change when a common symbol is overridden by a normal
4249 definition or a common symbol is ignored due to the old
4250 normal definition. We need to make sure the maximum
4251 alignment is maintained. */
4252 if ((old_alignment || common)
4253 && h->root.type != bfd_link_hash_common)
4254 {
4255 unsigned int common_align;
4256 unsigned int normal_align;
4257 unsigned int symbol_align;
4258 bfd *normal_bfd;
4259 bfd *common_bfd;
4260
4261 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4262 || h->root.type == bfd_link_hash_defweak);
4263
4264 symbol_align = ffs (h->root.u.def.value) - 1;
4265 if (h->root.u.def.section->owner != NULL
4266 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4267 {
4268 normal_align = h->root.u.def.section->alignment_power;
4269 if (normal_align > symbol_align)
4270 normal_align = symbol_align;
4271 }
4272 else
4273 normal_align = symbol_align;
4274
4275 if (old_alignment)
4276 {
4277 common_align = old_alignment;
4278 common_bfd = old_bfd;
4279 normal_bfd = abfd;
4280 }
4281 else
4282 {
4283 common_align = bfd_log2 (isym->st_value);
4284 common_bfd = abfd;
4285 normal_bfd = old_bfd;
4286 }
4287
4288 if (normal_align < common_align)
4289 {
4290 /* PR binutils/2735 */
4291 if (normal_bfd == NULL)
4292 (*_bfd_error_handler)
4293 (_("Warning: alignment %u of common symbol `%s' in %B is"
4294 " greater than the alignment (%u) of its section %A"),
4295 common_bfd, h->root.u.def.section,
4296 1 << common_align, name, 1 << normal_align);
4297 else
4298 (*_bfd_error_handler)
4299 (_("Warning: alignment %u of symbol `%s' in %B"
4300 " is smaller than %u in %B"),
4301 normal_bfd, common_bfd,
4302 1 << normal_align, name, 1 << common_align);
4303 }
4304 }
4305
4306 /* Remember the symbol size if it isn't undefined. */
4307 if (isym->st_size != 0
4308 && isym->st_shndx != SHN_UNDEF
4309 && (definition || h->size == 0))
4310 {
4311 if (h->size != 0
4312 && h->size != isym->st_size
4313 && ! size_change_ok)
4314 (*_bfd_error_handler)
4315 (_("Warning: size of symbol `%s' changed"
4316 " from %lu in %B to %lu in %B"),
4317 old_bfd, abfd,
4318 name, (unsigned long) h->size,
4319 (unsigned long) isym->st_size);
4320
4321 h->size = isym->st_size;
4322 }
4323
4324 /* If this is a common symbol, then we always want H->SIZE
4325 to be the size of the common symbol. The code just above
4326 won't fix the size if a common symbol becomes larger. We
4327 don't warn about a size change here, because that is
4328 covered by --warn-common. Allow changes between different
4329 function types. */
4330 if (h->root.type == bfd_link_hash_common)
4331 h->size = h->root.u.c.size;
4332
4333 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4334 && ((definition && !new_weak)
4335 || (old_weak && h->root.type == bfd_link_hash_common)
4336 || h->type == STT_NOTYPE))
4337 {
4338 unsigned int type = ELF_ST_TYPE (isym->st_info);
4339
4340 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4341 symbol. */
4342 if (type == STT_GNU_IFUNC
4343 && (abfd->flags & DYNAMIC) != 0)
4344 type = STT_FUNC;
4345
4346 if (h->type != type)
4347 {
4348 if (h->type != STT_NOTYPE && ! type_change_ok)
4349 (*_bfd_error_handler)
4350 (_("Warning: type of symbol `%s' changed"
4351 " from %d to %d in %B"),
4352 abfd, name, h->type, type);
4353
4354 h->type = type;
4355 }
4356 }
4357
4358 /* Merge st_other field. */
4359 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4360
4361 /* We don't want to make debug symbol dynamic. */
4362 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4363 dynsym = FALSE;
4364
4365 /* Nor should we make plugin symbols dynamic. */
4366 if ((abfd->flags & BFD_PLUGIN) != 0)
4367 dynsym = FALSE;
4368
4369 if (definition)
4370 {
4371 h->target_internal = isym->st_target_internal;
4372 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4373 }
4374
4375 if (definition && !dynamic)
4376 {
4377 char *p = strchr (name, ELF_VER_CHR);
4378 if (p != NULL && p[1] != ELF_VER_CHR)
4379 {
4380 /* Queue non-default versions so that .symver x, x@FOO
4381 aliases can be checked. */
4382 if (!nondeflt_vers)
4383 {
4384 amt = ((isymend - isym + 1)
4385 * sizeof (struct elf_link_hash_entry *));
4386 nondeflt_vers =
4387 (struct elf_link_hash_entry **) bfd_malloc (amt);
4388 if (!nondeflt_vers)
4389 goto error_free_vers;
4390 }
4391 nondeflt_vers[nondeflt_vers_cnt++] = h;
4392 }
4393 }
4394
4395 if (dynsym && h->dynindx == -1)
4396 {
4397 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4398 goto error_free_vers;
4399 if (h->u.weakdef != NULL
4400 && ! new_weakdef
4401 && h->u.weakdef->dynindx == -1)
4402 {
4403 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4404 goto error_free_vers;
4405 }
4406 }
4407 else if (dynsym && h->dynindx != -1)
4408 /* If the symbol already has a dynamic index, but
4409 visibility says it should not be visible, turn it into
4410 a local symbol. */
4411 switch (ELF_ST_VISIBILITY (h->other))
4412 {
4413 case STV_INTERNAL:
4414 case STV_HIDDEN:
4415 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4416 dynsym = FALSE;
4417 break;
4418 }
4419
4420 /* Don't add DT_NEEDED for references from the dummy bfd. */
4421 if (!add_needed
4422 && definition
4423 && ((dynsym
4424 && h->ref_regular_nonweak
4425 && (old_bfd == NULL
4426 || (old_bfd->flags & BFD_PLUGIN) == 0))
4427 || (h->ref_dynamic_nonweak
4428 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4429 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4430 {
4431 int ret;
4432 const char *soname = elf_dt_name (abfd);
4433
4434 /* A symbol from a library loaded via DT_NEEDED of some
4435 other library is referenced by a regular object.
4436 Add a DT_NEEDED entry for it. Issue an error if
4437 --no-add-needed is used and the reference was not
4438 a weak one. */
4439 if (old_bfd != NULL
4440 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4441 {
4442 (*_bfd_error_handler)
4443 (_("%B: undefined reference to symbol '%s'"),
4444 old_bfd, name);
4445 bfd_set_error (bfd_error_missing_dso);
4446 goto error_free_vers;
4447 }
4448
4449 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4450 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4451
4452 add_needed = TRUE;
4453 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4454 if (ret < 0)
4455 goto error_free_vers;
4456
4457 BFD_ASSERT (ret == 0);
4458 }
4459 }
4460 }
4461
4462 if (extversym != NULL)
4463 {
4464 free (extversym);
4465 extversym = NULL;
4466 }
4467
4468 if (isymbuf != NULL)
4469 {
4470 free (isymbuf);
4471 isymbuf = NULL;
4472 }
4473
4474 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4475 {
4476 unsigned int i;
4477
4478 /* Restore the symbol table. */
4479 if (bed->as_needed_cleanup)
4480 (*bed->as_needed_cleanup) (abfd, info);
4481 old_hash = (char *) old_tab + tabsize;
4482 old_ent = (char *) old_hash + hashsize;
4483 sym_hash = elf_sym_hashes (abfd);
4484 htab->root.table.table = old_table;
4485 htab->root.table.size = old_size;
4486 htab->root.table.count = old_count;
4487 memcpy (htab->root.table.table, old_tab, tabsize);
4488 memcpy (sym_hash, old_hash, hashsize);
4489 htab->root.undefs = old_undefs;
4490 htab->root.undefs_tail = old_undefs_tail;
4491 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4492 for (i = 0; i < htab->root.table.size; i++)
4493 {
4494 struct bfd_hash_entry *p;
4495 struct elf_link_hash_entry *h;
4496 bfd_size_type size;
4497 unsigned int alignment_power;
4498
4499 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4500 {
4501 h = (struct elf_link_hash_entry *) p;
4502 if (h->root.type == bfd_link_hash_warning)
4503 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4504 if (h->dynindx >= old_dynsymcount
4505 && h->dynstr_index < old_dynstr_size)
4506 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4507
4508 /* Preserve the maximum alignment and size for common
4509 symbols even if this dynamic lib isn't on DT_NEEDED
4510 since it can still be loaded at run time by another
4511 dynamic lib. */
4512 if (h->root.type == bfd_link_hash_common)
4513 {
4514 size = h->root.u.c.size;
4515 alignment_power = h->root.u.c.p->alignment_power;
4516 }
4517 else
4518 {
4519 size = 0;
4520 alignment_power = 0;
4521 }
4522 memcpy (p, old_ent, htab->root.table.entsize);
4523 old_ent = (char *) old_ent + htab->root.table.entsize;
4524 h = (struct elf_link_hash_entry *) p;
4525 if (h->root.type == bfd_link_hash_warning)
4526 {
4527 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4528 old_ent = (char *) old_ent + htab->root.table.entsize;
4529 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4530 }
4531 if (h->root.type == bfd_link_hash_common)
4532 {
4533 if (size > h->root.u.c.size)
4534 h->root.u.c.size = size;
4535 if (alignment_power > h->root.u.c.p->alignment_power)
4536 h->root.u.c.p->alignment_power = alignment_power;
4537 }
4538 }
4539 }
4540
4541 /* Make a special call to the linker "notice" function to
4542 tell it that symbols added for crefs may need to be removed. */
4543 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4544 notice_not_needed, 0, NULL))
4545 goto error_free_vers;
4546
4547 free (old_tab);
4548 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4549 alloc_mark);
4550 if (nondeflt_vers != NULL)
4551 free (nondeflt_vers);
4552 return TRUE;
4553 }
4554
4555 if (old_tab != NULL)
4556 {
4557 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4558 notice_needed, 0, NULL))
4559 goto error_free_vers;
4560 free (old_tab);
4561 old_tab = NULL;
4562 }
4563
4564 /* Now that all the symbols from this input file are created, handle
4565 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4566 if (nondeflt_vers != NULL)
4567 {
4568 bfd_size_type cnt, symidx;
4569
4570 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4571 {
4572 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4573 char *shortname, *p;
4574
4575 p = strchr (h->root.root.string, ELF_VER_CHR);
4576 if (p == NULL
4577 || (h->root.type != bfd_link_hash_defined
4578 && h->root.type != bfd_link_hash_defweak))
4579 continue;
4580
4581 amt = p - h->root.root.string;
4582 shortname = (char *) bfd_malloc (amt + 1);
4583 if (!shortname)
4584 goto error_free_vers;
4585 memcpy (shortname, h->root.root.string, amt);
4586 shortname[amt] = '\0';
4587
4588 hi = (struct elf_link_hash_entry *)
4589 bfd_link_hash_lookup (&htab->root, shortname,
4590 FALSE, FALSE, FALSE);
4591 if (hi != NULL
4592 && hi->root.type == h->root.type
4593 && hi->root.u.def.value == h->root.u.def.value
4594 && hi->root.u.def.section == h->root.u.def.section)
4595 {
4596 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4597 hi->root.type = bfd_link_hash_indirect;
4598 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4599 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4600 sym_hash = elf_sym_hashes (abfd);
4601 if (sym_hash)
4602 for (symidx = 0; symidx < extsymcount; ++symidx)
4603 if (sym_hash[symidx] == hi)
4604 {
4605 sym_hash[symidx] = h;
4606 break;
4607 }
4608 }
4609 free (shortname);
4610 }
4611 free (nondeflt_vers);
4612 nondeflt_vers = NULL;
4613 }
4614
4615 /* Now set the weakdefs field correctly for all the weak defined
4616 symbols we found. The only way to do this is to search all the
4617 symbols. Since we only need the information for non functions in
4618 dynamic objects, that's the only time we actually put anything on
4619 the list WEAKS. We need this information so that if a regular
4620 object refers to a symbol defined weakly in a dynamic object, the
4621 real symbol in the dynamic object is also put in the dynamic
4622 symbols; we also must arrange for both symbols to point to the
4623 same memory location. We could handle the general case of symbol
4624 aliasing, but a general symbol alias can only be generated in
4625 assembler code, handling it correctly would be very time
4626 consuming, and other ELF linkers don't handle general aliasing
4627 either. */
4628 if (weaks != NULL)
4629 {
4630 struct elf_link_hash_entry **hpp;
4631 struct elf_link_hash_entry **hppend;
4632 struct elf_link_hash_entry **sorted_sym_hash;
4633 struct elf_link_hash_entry *h;
4634 size_t sym_count;
4635
4636 /* Since we have to search the whole symbol list for each weak
4637 defined symbol, search time for N weak defined symbols will be
4638 O(N^2). Binary search will cut it down to O(NlogN). */
4639 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4640 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4641 if (sorted_sym_hash == NULL)
4642 goto error_return;
4643 sym_hash = sorted_sym_hash;
4644 hpp = elf_sym_hashes (abfd);
4645 hppend = hpp + extsymcount;
4646 sym_count = 0;
4647 for (; hpp < hppend; hpp++)
4648 {
4649 h = *hpp;
4650 if (h != NULL
4651 && h->root.type == bfd_link_hash_defined
4652 && !bed->is_function_type (h->type))
4653 {
4654 *sym_hash = h;
4655 sym_hash++;
4656 sym_count++;
4657 }
4658 }
4659
4660 qsort (sorted_sym_hash, sym_count,
4661 sizeof (struct elf_link_hash_entry *),
4662 elf_sort_symbol);
4663
4664 while (weaks != NULL)
4665 {
4666 struct elf_link_hash_entry *hlook;
4667 asection *slook;
4668 bfd_vma vlook;
4669 size_t i, j, idx;
4670
4671 hlook = weaks;
4672 weaks = hlook->u.weakdef;
4673 hlook->u.weakdef = NULL;
4674
4675 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4676 || hlook->root.type == bfd_link_hash_defweak
4677 || hlook->root.type == bfd_link_hash_common
4678 || hlook->root.type == bfd_link_hash_indirect);
4679 slook = hlook->root.u.def.section;
4680 vlook = hlook->root.u.def.value;
4681
4682 i = 0;
4683 j = sym_count;
4684 while (i != j)
4685 {
4686 bfd_signed_vma vdiff;
4687 idx = (i + j) / 2;
4688 h = sorted_sym_hash[idx];
4689 vdiff = vlook - h->root.u.def.value;
4690 if (vdiff < 0)
4691 j = idx;
4692 else if (vdiff > 0)
4693 i = idx + 1;
4694 else
4695 {
4696 long sdiff = slook->id - h->root.u.def.section->id;
4697 if (sdiff < 0)
4698 j = idx;
4699 else if (sdiff > 0)
4700 i = idx + 1;
4701 else
4702 break;
4703 }
4704 }
4705
4706 /* We didn't find a value/section match. */
4707 if (i == j)
4708 continue;
4709
4710 /* With multiple aliases, or when the weak symbol is already
4711 strongly defined, we have multiple matching symbols and
4712 the binary search above may land on any of them. Step
4713 one past the matching symbol(s). */
4714 while (++idx != j)
4715 {
4716 h = sorted_sym_hash[idx];
4717 if (h->root.u.def.section != slook
4718 || h->root.u.def.value != vlook)
4719 break;
4720 }
4721
4722 /* Now look back over the aliases. Since we sorted by size
4723 as well as value and section, we'll choose the one with
4724 the largest size. */
4725 while (idx-- != i)
4726 {
4727 h = sorted_sym_hash[idx];
4728
4729 /* Stop if value or section doesn't match. */
4730 if (h->root.u.def.section != slook
4731 || h->root.u.def.value != vlook)
4732 break;
4733 else if (h != hlook)
4734 {
4735 hlook->u.weakdef = h;
4736
4737 /* If the weak definition is in the list of dynamic
4738 symbols, make sure the real definition is put
4739 there as well. */
4740 if (hlook->dynindx != -1 && h->dynindx == -1)
4741 {
4742 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4743 {
4744 err_free_sym_hash:
4745 free (sorted_sym_hash);
4746 goto error_return;
4747 }
4748 }
4749
4750 /* If the real definition is in the list of dynamic
4751 symbols, make sure the weak definition is put
4752 there as well. If we don't do this, then the
4753 dynamic loader might not merge the entries for the
4754 real definition and the weak definition. */
4755 if (h->dynindx != -1 && hlook->dynindx == -1)
4756 {
4757 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4758 goto err_free_sym_hash;
4759 }
4760 break;
4761 }
4762 }
4763 }
4764
4765 free (sorted_sym_hash);
4766 }
4767
4768 if (bed->check_directives
4769 && !(*bed->check_directives) (abfd, info))
4770 return FALSE;
4771
4772 /* If this object is the same format as the output object, and it is
4773 not a shared library, then let the backend look through the
4774 relocs.
4775
4776 This is required to build global offset table entries and to
4777 arrange for dynamic relocs. It is not required for the
4778 particular common case of linking non PIC code, even when linking
4779 against shared libraries, but unfortunately there is no way of
4780 knowing whether an object file has been compiled PIC or not.
4781 Looking through the relocs is not particularly time consuming.
4782 The problem is that we must either (1) keep the relocs in memory,
4783 which causes the linker to require additional runtime memory or
4784 (2) read the relocs twice from the input file, which wastes time.
4785 This would be a good case for using mmap.
4786
4787 I have no idea how to handle linking PIC code into a file of a
4788 different format. It probably can't be done. */
4789 if (! dynamic
4790 && is_elf_hash_table (htab)
4791 && bed->check_relocs != NULL
4792 && elf_object_id (abfd) == elf_hash_table_id (htab)
4793 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4794 {
4795 asection *o;
4796
4797 for (o = abfd->sections; o != NULL; o = o->next)
4798 {
4799 Elf_Internal_Rela *internal_relocs;
4800 bfd_boolean ok;
4801
4802 if ((o->flags & SEC_RELOC) == 0
4803 || o->reloc_count == 0
4804 || ((info->strip == strip_all || info->strip == strip_debugger)
4805 && (o->flags & SEC_DEBUGGING) != 0)
4806 || bfd_is_abs_section (o->output_section))
4807 continue;
4808
4809 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4810 info->keep_memory);
4811 if (internal_relocs == NULL)
4812 goto error_return;
4813
4814 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4815
4816 if (elf_section_data (o)->relocs != internal_relocs)
4817 free (internal_relocs);
4818
4819 if (! ok)
4820 goto error_return;
4821 }
4822 }
4823
4824 /* If this is a non-traditional link, try to optimize the handling
4825 of the .stab/.stabstr sections. */
4826 if (! dynamic
4827 && ! info->traditional_format
4828 && is_elf_hash_table (htab)
4829 && (info->strip != strip_all && info->strip != strip_debugger))
4830 {
4831 asection *stabstr;
4832
4833 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4834 if (stabstr != NULL)
4835 {
4836 bfd_size_type string_offset = 0;
4837 asection *stab;
4838
4839 for (stab = abfd->sections; stab; stab = stab->next)
4840 if (CONST_STRNEQ (stab->name, ".stab")
4841 && (!stab->name[5] ||
4842 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4843 && (stab->flags & SEC_MERGE) == 0
4844 && !bfd_is_abs_section (stab->output_section))
4845 {
4846 struct bfd_elf_section_data *secdata;
4847
4848 secdata = elf_section_data (stab);
4849 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4850 stabstr, &secdata->sec_info,
4851 &string_offset))
4852 goto error_return;
4853 if (secdata->sec_info)
4854 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4855 }
4856 }
4857 }
4858
4859 if (is_elf_hash_table (htab) && add_needed)
4860 {
4861 /* Add this bfd to the loaded list. */
4862 struct elf_link_loaded_list *n;
4863
4864 n = (struct elf_link_loaded_list *)
4865 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4866 if (n == NULL)
4867 goto error_return;
4868 n->abfd = abfd;
4869 n->next = htab->loaded;
4870 htab->loaded = n;
4871 }
4872
4873 return TRUE;
4874
4875 error_free_vers:
4876 if (old_tab != NULL)
4877 free (old_tab);
4878 if (nondeflt_vers != NULL)
4879 free (nondeflt_vers);
4880 if (extversym != NULL)
4881 free (extversym);
4882 error_free_sym:
4883 if (isymbuf != NULL)
4884 free (isymbuf);
4885 error_return:
4886 return FALSE;
4887 }
4888
4889 /* Return the linker hash table entry of a symbol that might be
4890 satisfied by an archive symbol. Return -1 on error. */
4891
4892 struct elf_link_hash_entry *
4893 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4894 struct bfd_link_info *info,
4895 const char *name)
4896 {
4897 struct elf_link_hash_entry *h;
4898 char *p, *copy;
4899 size_t len, first;
4900
4901 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4902 if (h != NULL)
4903 return h;
4904
4905 /* If this is a default version (the name contains @@), look up the
4906 symbol again with only one `@' as well as without the version.
4907 The effect is that references to the symbol with and without the
4908 version will be matched by the default symbol in the archive. */
4909
4910 p = strchr (name, ELF_VER_CHR);
4911 if (p == NULL || p[1] != ELF_VER_CHR)
4912 return h;
4913
4914 /* First check with only one `@'. */
4915 len = strlen (name);
4916 copy = (char *) bfd_alloc (abfd, len);
4917 if (copy == NULL)
4918 return (struct elf_link_hash_entry *) 0 - 1;
4919
4920 first = p - name + 1;
4921 memcpy (copy, name, first);
4922 memcpy (copy + first, name + first + 1, len - first);
4923
4924 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4925 if (h == NULL)
4926 {
4927 /* We also need to check references to the symbol without the
4928 version. */
4929 copy[first - 1] = '\0';
4930 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4931 FALSE, FALSE, TRUE);
4932 }
4933
4934 bfd_release (abfd, copy);
4935 return h;
4936 }
4937
4938 /* Add symbols from an ELF archive file to the linker hash table. We
4939 don't use _bfd_generic_link_add_archive_symbols because of a
4940 problem which arises on UnixWare. The UnixWare libc.so is an
4941 archive which includes an entry libc.so.1 which defines a bunch of
4942 symbols. The libc.so archive also includes a number of other
4943 object files, which also define symbols, some of which are the same
4944 as those defined in libc.so.1. Correct linking requires that we
4945 consider each object file in turn, and include it if it defines any
4946 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4947 this; it looks through the list of undefined symbols, and includes
4948 any object file which defines them. When this algorithm is used on
4949 UnixWare, it winds up pulling in libc.so.1 early and defining a
4950 bunch of symbols. This means that some of the other objects in the
4951 archive are not included in the link, which is incorrect since they
4952 precede libc.so.1 in the archive.
4953
4954 Fortunately, ELF archive handling is simpler than that done by
4955 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4956 oddities. In ELF, if we find a symbol in the archive map, and the
4957 symbol is currently undefined, we know that we must pull in that
4958 object file.
4959
4960 Unfortunately, we do have to make multiple passes over the symbol
4961 table until nothing further is resolved. */
4962
4963 static bfd_boolean
4964 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4965 {
4966 symindex c;
4967 bfd_boolean *defined = NULL;
4968 bfd_boolean *included = NULL;
4969 carsym *symdefs;
4970 bfd_boolean loop;
4971 bfd_size_type amt;
4972 const struct elf_backend_data *bed;
4973 struct elf_link_hash_entry * (*archive_symbol_lookup)
4974 (bfd *, struct bfd_link_info *, const char *);
4975
4976 if (! bfd_has_map (abfd))
4977 {
4978 /* An empty archive is a special case. */
4979 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4980 return TRUE;
4981 bfd_set_error (bfd_error_no_armap);
4982 return FALSE;
4983 }
4984
4985 /* Keep track of all symbols we know to be already defined, and all
4986 files we know to be already included. This is to speed up the
4987 second and subsequent passes. */
4988 c = bfd_ardata (abfd)->symdef_count;
4989 if (c == 0)
4990 return TRUE;
4991 amt = c;
4992 amt *= sizeof (bfd_boolean);
4993 defined = (bfd_boolean *) bfd_zmalloc (amt);
4994 included = (bfd_boolean *) bfd_zmalloc (amt);
4995 if (defined == NULL || included == NULL)
4996 goto error_return;
4997
4998 symdefs = bfd_ardata (abfd)->symdefs;
4999 bed = get_elf_backend_data (abfd);
5000 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5001
5002 do
5003 {
5004 file_ptr last;
5005 symindex i;
5006 carsym *symdef;
5007 carsym *symdefend;
5008
5009 loop = FALSE;
5010 last = -1;
5011
5012 symdef = symdefs;
5013 symdefend = symdef + c;
5014 for (i = 0; symdef < symdefend; symdef++, i++)
5015 {
5016 struct elf_link_hash_entry *h;
5017 bfd *element;
5018 struct bfd_link_hash_entry *undefs_tail;
5019 symindex mark;
5020
5021 if (defined[i] || included[i])
5022 continue;
5023 if (symdef->file_offset == last)
5024 {
5025 included[i] = TRUE;
5026 continue;
5027 }
5028
5029 h = archive_symbol_lookup (abfd, info, symdef->name);
5030 if (h == (struct elf_link_hash_entry *) 0 - 1)
5031 goto error_return;
5032
5033 if (h == NULL)
5034 continue;
5035
5036 if (h->root.type == bfd_link_hash_common)
5037 {
5038 /* We currently have a common symbol. The archive map contains
5039 a reference to this symbol, so we may want to include it. We
5040 only want to include it however, if this archive element
5041 contains a definition of the symbol, not just another common
5042 declaration of it.
5043
5044 Unfortunately some archivers (including GNU ar) will put
5045 declarations of common symbols into their archive maps, as
5046 well as real definitions, so we cannot just go by the archive
5047 map alone. Instead we must read in the element's symbol
5048 table and check that to see what kind of symbol definition
5049 this is. */
5050 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5051 continue;
5052 }
5053 else if (h->root.type != bfd_link_hash_undefined)
5054 {
5055 if (h->root.type != bfd_link_hash_undefweak)
5056 defined[i] = TRUE;
5057 continue;
5058 }
5059
5060 /* We need to include this archive member. */
5061 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5062 if (element == NULL)
5063 goto error_return;
5064
5065 if (! bfd_check_format (element, bfd_object))
5066 goto error_return;
5067
5068 /* Doublecheck that we have not included this object
5069 already--it should be impossible, but there may be
5070 something wrong with the archive. */
5071 if (element->archive_pass != 0)
5072 {
5073 bfd_set_error (bfd_error_bad_value);
5074 goto error_return;
5075 }
5076 element->archive_pass = 1;
5077
5078 undefs_tail = info->hash->undefs_tail;
5079
5080 if (!(*info->callbacks
5081 ->add_archive_element) (info, element, symdef->name, &element))
5082 goto error_return;
5083 if (!bfd_link_add_symbols (element, info))
5084 goto error_return;
5085
5086 /* If there are any new undefined symbols, we need to make
5087 another pass through the archive in order to see whether
5088 they can be defined. FIXME: This isn't perfect, because
5089 common symbols wind up on undefs_tail and because an
5090 undefined symbol which is defined later on in this pass
5091 does not require another pass. This isn't a bug, but it
5092 does make the code less efficient than it could be. */
5093 if (undefs_tail != info->hash->undefs_tail)
5094 loop = TRUE;
5095
5096 /* Look backward to mark all symbols from this object file
5097 which we have already seen in this pass. */
5098 mark = i;
5099 do
5100 {
5101 included[mark] = TRUE;
5102 if (mark == 0)
5103 break;
5104 --mark;
5105 }
5106 while (symdefs[mark].file_offset == symdef->file_offset);
5107
5108 /* We mark subsequent symbols from this object file as we go
5109 on through the loop. */
5110 last = symdef->file_offset;
5111 }
5112 }
5113 while (loop);
5114
5115 free (defined);
5116 free (included);
5117
5118 return TRUE;
5119
5120 error_return:
5121 if (defined != NULL)
5122 free (defined);
5123 if (included != NULL)
5124 free (included);
5125 return FALSE;
5126 }
5127
5128 /* Given an ELF BFD, add symbols to the global hash table as
5129 appropriate. */
5130
5131 bfd_boolean
5132 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5133 {
5134 switch (bfd_get_format (abfd))
5135 {
5136 case bfd_object:
5137 return elf_link_add_object_symbols (abfd, info);
5138 case bfd_archive:
5139 return elf_link_add_archive_symbols (abfd, info);
5140 default:
5141 bfd_set_error (bfd_error_wrong_format);
5142 return FALSE;
5143 }
5144 }
5145 \f
5146 struct hash_codes_info
5147 {
5148 unsigned long *hashcodes;
5149 bfd_boolean error;
5150 };
5151
5152 /* This function will be called though elf_link_hash_traverse to store
5153 all hash value of the exported symbols in an array. */
5154
5155 static bfd_boolean
5156 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5157 {
5158 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5159 const char *name;
5160 char *p;
5161 unsigned long ha;
5162 char *alc = NULL;
5163
5164 /* Ignore indirect symbols. These are added by the versioning code. */
5165 if (h->dynindx == -1)
5166 return TRUE;
5167
5168 name = h->root.root.string;
5169 p = strchr (name, ELF_VER_CHR);
5170 if (p != NULL)
5171 {
5172 alc = (char *) bfd_malloc (p - name + 1);
5173 if (alc == NULL)
5174 {
5175 inf->error = TRUE;
5176 return FALSE;
5177 }
5178 memcpy (alc, name, p - name);
5179 alc[p - name] = '\0';
5180 name = alc;
5181 }
5182
5183 /* Compute the hash value. */
5184 ha = bfd_elf_hash (name);
5185
5186 /* Store the found hash value in the array given as the argument. */
5187 *(inf->hashcodes)++ = ha;
5188
5189 /* And store it in the struct so that we can put it in the hash table
5190 later. */
5191 h->u.elf_hash_value = ha;
5192
5193 if (alc != NULL)
5194 free (alc);
5195
5196 return TRUE;
5197 }
5198
5199 struct collect_gnu_hash_codes
5200 {
5201 bfd *output_bfd;
5202 const struct elf_backend_data *bed;
5203 unsigned long int nsyms;
5204 unsigned long int maskbits;
5205 unsigned long int *hashcodes;
5206 unsigned long int *hashval;
5207 unsigned long int *indx;
5208 unsigned long int *counts;
5209 bfd_vma *bitmask;
5210 bfd_byte *contents;
5211 long int min_dynindx;
5212 unsigned long int bucketcount;
5213 unsigned long int symindx;
5214 long int local_indx;
5215 long int shift1, shift2;
5216 unsigned long int mask;
5217 bfd_boolean error;
5218 };
5219
5220 /* This function will be called though elf_link_hash_traverse to store
5221 all hash value of the exported symbols in an array. */
5222
5223 static bfd_boolean
5224 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5225 {
5226 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5227 const char *name;
5228 char *p;
5229 unsigned long ha;
5230 char *alc = NULL;
5231
5232 /* Ignore indirect symbols. These are added by the versioning code. */
5233 if (h->dynindx == -1)
5234 return TRUE;
5235
5236 /* Ignore also local symbols and undefined symbols. */
5237 if (! (*s->bed->elf_hash_symbol) (h))
5238 return TRUE;
5239
5240 name = h->root.root.string;
5241 p = strchr (name, ELF_VER_CHR);
5242 if (p != NULL)
5243 {
5244 alc = (char *) bfd_malloc (p - name + 1);
5245 if (alc == NULL)
5246 {
5247 s->error = TRUE;
5248 return FALSE;
5249 }
5250 memcpy (alc, name, p - name);
5251 alc[p - name] = '\0';
5252 name = alc;
5253 }
5254
5255 /* Compute the hash value. */
5256 ha = bfd_elf_gnu_hash (name);
5257
5258 /* Store the found hash value in the array for compute_bucket_count,
5259 and also for .dynsym reordering purposes. */
5260 s->hashcodes[s->nsyms] = ha;
5261 s->hashval[h->dynindx] = ha;
5262 ++s->nsyms;
5263 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5264 s->min_dynindx = h->dynindx;
5265
5266 if (alc != NULL)
5267 free (alc);
5268
5269 return TRUE;
5270 }
5271
5272 /* This function will be called though elf_link_hash_traverse to do
5273 final dynaminc symbol renumbering. */
5274
5275 static bfd_boolean
5276 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5277 {
5278 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5279 unsigned long int bucket;
5280 unsigned long int val;
5281
5282 /* Ignore indirect symbols. */
5283 if (h->dynindx == -1)
5284 return TRUE;
5285
5286 /* Ignore also local symbols and undefined symbols. */
5287 if (! (*s->bed->elf_hash_symbol) (h))
5288 {
5289 if (h->dynindx >= s->min_dynindx)
5290 h->dynindx = s->local_indx++;
5291 return TRUE;
5292 }
5293
5294 bucket = s->hashval[h->dynindx] % s->bucketcount;
5295 val = (s->hashval[h->dynindx] >> s->shift1)
5296 & ((s->maskbits >> s->shift1) - 1);
5297 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5298 s->bitmask[val]
5299 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5300 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5301 if (s->counts[bucket] == 1)
5302 /* Last element terminates the chain. */
5303 val |= 1;
5304 bfd_put_32 (s->output_bfd, val,
5305 s->contents + (s->indx[bucket] - s->symindx) * 4);
5306 --s->counts[bucket];
5307 h->dynindx = s->indx[bucket]++;
5308 return TRUE;
5309 }
5310
5311 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5312
5313 bfd_boolean
5314 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5315 {
5316 return !(h->forced_local
5317 || h->root.type == bfd_link_hash_undefined
5318 || h->root.type == bfd_link_hash_undefweak
5319 || ((h->root.type == bfd_link_hash_defined
5320 || h->root.type == bfd_link_hash_defweak)
5321 && h->root.u.def.section->output_section == NULL));
5322 }
5323
5324 /* Array used to determine the number of hash table buckets to use
5325 based on the number of symbols there are. If there are fewer than
5326 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5327 fewer than 37 we use 17 buckets, and so forth. We never use more
5328 than 32771 buckets. */
5329
5330 static const size_t elf_buckets[] =
5331 {
5332 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5333 16411, 32771, 0
5334 };
5335
5336 /* Compute bucket count for hashing table. We do not use a static set
5337 of possible tables sizes anymore. Instead we determine for all
5338 possible reasonable sizes of the table the outcome (i.e., the
5339 number of collisions etc) and choose the best solution. The
5340 weighting functions are not too simple to allow the table to grow
5341 without bounds. Instead one of the weighting factors is the size.
5342 Therefore the result is always a good payoff between few collisions
5343 (= short chain lengths) and table size. */
5344 static size_t
5345 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5346 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5347 unsigned long int nsyms,
5348 int gnu_hash)
5349 {
5350 size_t best_size = 0;
5351 unsigned long int i;
5352
5353 /* We have a problem here. The following code to optimize the table
5354 size requires an integer type with more the 32 bits. If
5355 BFD_HOST_U_64_BIT is set we know about such a type. */
5356 #ifdef BFD_HOST_U_64_BIT
5357 if (info->optimize)
5358 {
5359 size_t minsize;
5360 size_t maxsize;
5361 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5362 bfd *dynobj = elf_hash_table (info)->dynobj;
5363 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5364 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5365 unsigned long int *counts;
5366 bfd_size_type amt;
5367 unsigned int no_improvement_count = 0;
5368
5369 /* Possible optimization parameters: if we have NSYMS symbols we say
5370 that the hashing table must at least have NSYMS/4 and at most
5371 2*NSYMS buckets. */
5372 minsize = nsyms / 4;
5373 if (minsize == 0)
5374 minsize = 1;
5375 best_size = maxsize = nsyms * 2;
5376 if (gnu_hash)
5377 {
5378 if (minsize < 2)
5379 minsize = 2;
5380 if ((best_size & 31) == 0)
5381 ++best_size;
5382 }
5383
5384 /* Create array where we count the collisions in. We must use bfd_malloc
5385 since the size could be large. */
5386 amt = maxsize;
5387 amt *= sizeof (unsigned long int);
5388 counts = (unsigned long int *) bfd_malloc (amt);
5389 if (counts == NULL)
5390 return 0;
5391
5392 /* Compute the "optimal" size for the hash table. The criteria is a
5393 minimal chain length. The minor criteria is (of course) the size
5394 of the table. */
5395 for (i = minsize; i < maxsize; ++i)
5396 {
5397 /* Walk through the array of hashcodes and count the collisions. */
5398 BFD_HOST_U_64_BIT max;
5399 unsigned long int j;
5400 unsigned long int fact;
5401
5402 if (gnu_hash && (i & 31) == 0)
5403 continue;
5404
5405 memset (counts, '\0', i * sizeof (unsigned long int));
5406
5407 /* Determine how often each hash bucket is used. */
5408 for (j = 0; j < nsyms; ++j)
5409 ++counts[hashcodes[j] % i];
5410
5411 /* For the weight function we need some information about the
5412 pagesize on the target. This is information need not be 100%
5413 accurate. Since this information is not available (so far) we
5414 define it here to a reasonable default value. If it is crucial
5415 to have a better value some day simply define this value. */
5416 # ifndef BFD_TARGET_PAGESIZE
5417 # define BFD_TARGET_PAGESIZE (4096)
5418 # endif
5419
5420 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5421 and the chains. */
5422 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5423
5424 # if 1
5425 /* Variant 1: optimize for short chains. We add the squares
5426 of all the chain lengths (which favors many small chain
5427 over a few long chains). */
5428 for (j = 0; j < i; ++j)
5429 max += counts[j] * counts[j];
5430
5431 /* This adds penalties for the overall size of the table. */
5432 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5433 max *= fact * fact;
5434 # else
5435 /* Variant 2: Optimize a lot more for small table. Here we
5436 also add squares of the size but we also add penalties for
5437 empty slots (the +1 term). */
5438 for (j = 0; j < i; ++j)
5439 max += (1 + counts[j]) * (1 + counts[j]);
5440
5441 /* The overall size of the table is considered, but not as
5442 strong as in variant 1, where it is squared. */
5443 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5444 max *= fact;
5445 # endif
5446
5447 /* Compare with current best results. */
5448 if (max < best_chlen)
5449 {
5450 best_chlen = max;
5451 best_size = i;
5452 no_improvement_count = 0;
5453 }
5454 /* PR 11843: Avoid futile long searches for the best bucket size
5455 when there are a large number of symbols. */
5456 else if (++no_improvement_count == 100)
5457 break;
5458 }
5459
5460 free (counts);
5461 }
5462 else
5463 #endif /* defined (BFD_HOST_U_64_BIT) */
5464 {
5465 /* This is the fallback solution if no 64bit type is available or if we
5466 are not supposed to spend much time on optimizations. We select the
5467 bucket count using a fixed set of numbers. */
5468 for (i = 0; elf_buckets[i] != 0; i++)
5469 {
5470 best_size = elf_buckets[i];
5471 if (nsyms < elf_buckets[i + 1])
5472 break;
5473 }
5474 if (gnu_hash && best_size < 2)
5475 best_size = 2;
5476 }
5477
5478 return best_size;
5479 }
5480
5481 /* Size any SHT_GROUP section for ld -r. */
5482
5483 bfd_boolean
5484 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5485 {
5486 bfd *ibfd;
5487
5488 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5489 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5490 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5491 return FALSE;
5492 return TRUE;
5493 }
5494
5495 /* Set a default stack segment size. The value in INFO wins. If it
5496 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5497 undefined it is initialized. */
5498
5499 bfd_boolean
5500 bfd_elf_stack_segment_size (bfd *output_bfd,
5501 struct bfd_link_info *info,
5502 const char *legacy_symbol,
5503 bfd_vma default_size)
5504 {
5505 struct elf_link_hash_entry *h = NULL;
5506
5507 /* Look for legacy symbol. */
5508 if (legacy_symbol)
5509 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5510 FALSE, FALSE, FALSE);
5511 if (h && (h->root.type == bfd_link_hash_defined
5512 || h->root.type == bfd_link_hash_defweak)
5513 && h->def_regular
5514 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5515 {
5516 /* The symbol has no type if specified on the command line. */
5517 h->type = STT_OBJECT;
5518 if (info->stacksize)
5519 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5520 output_bfd, legacy_symbol);
5521 else if (h->root.u.def.section != bfd_abs_section_ptr)
5522 (*_bfd_error_handler) (_("%B: %s not absolute"),
5523 output_bfd, legacy_symbol);
5524 else
5525 info->stacksize = h->root.u.def.value;
5526 }
5527
5528 if (!info->stacksize)
5529 /* If the user didn't set a size, or explicitly inhibit the
5530 size, set it now. */
5531 info->stacksize = default_size;
5532
5533 /* Provide the legacy symbol, if it is referenced. */
5534 if (h && (h->root.type == bfd_link_hash_undefined
5535 || h->root.type == bfd_link_hash_undefweak))
5536 {
5537 struct bfd_link_hash_entry *bh = NULL;
5538
5539 if (!(_bfd_generic_link_add_one_symbol
5540 (info, output_bfd, legacy_symbol,
5541 BSF_GLOBAL, bfd_abs_section_ptr,
5542 info->stacksize >= 0 ? info->stacksize : 0,
5543 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5544 return FALSE;
5545
5546 h = (struct elf_link_hash_entry *) bh;
5547 h->def_regular = 1;
5548 h->type = STT_OBJECT;
5549 }
5550
5551 return TRUE;
5552 }
5553
5554 /* Set up the sizes and contents of the ELF dynamic sections. This is
5555 called by the ELF linker emulation before_allocation routine. We
5556 must set the sizes of the sections before the linker sets the
5557 addresses of the various sections. */
5558
5559 bfd_boolean
5560 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5561 const char *soname,
5562 const char *rpath,
5563 const char *filter_shlib,
5564 const char *audit,
5565 const char *depaudit,
5566 const char * const *auxiliary_filters,
5567 struct bfd_link_info *info,
5568 asection **sinterpptr)
5569 {
5570 bfd_size_type soname_indx;
5571 bfd *dynobj;
5572 const struct elf_backend_data *bed;
5573 struct elf_info_failed asvinfo;
5574
5575 *sinterpptr = NULL;
5576
5577 soname_indx = (bfd_size_type) -1;
5578
5579 if (!is_elf_hash_table (info->hash))
5580 return TRUE;
5581
5582 bed = get_elf_backend_data (output_bfd);
5583
5584 /* Any syms created from now on start with -1 in
5585 got.refcount/offset and plt.refcount/offset. */
5586 elf_hash_table (info)->init_got_refcount
5587 = elf_hash_table (info)->init_got_offset;
5588 elf_hash_table (info)->init_plt_refcount
5589 = elf_hash_table (info)->init_plt_offset;
5590
5591 if (info->relocatable
5592 && !_bfd_elf_size_group_sections (info))
5593 return FALSE;
5594
5595 /* The backend may have to create some sections regardless of whether
5596 we're dynamic or not. */
5597 if (bed->elf_backend_always_size_sections
5598 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5599 return FALSE;
5600
5601 /* Determine any GNU_STACK segment requirements, after the backend
5602 has had a chance to set a default segment size. */
5603 if (info->execstack)
5604 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5605 else if (info->noexecstack)
5606 elf_stack_flags (output_bfd) = PF_R | PF_W;
5607 else
5608 {
5609 bfd *inputobj;
5610 asection *notesec = NULL;
5611 int exec = 0;
5612
5613 for (inputobj = info->input_bfds;
5614 inputobj;
5615 inputobj = inputobj->link_next)
5616 {
5617 asection *s;
5618
5619 if (inputobj->flags
5620 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5621 continue;
5622 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5623 if (s)
5624 {
5625 if (s->flags & SEC_CODE)
5626 exec = PF_X;
5627 notesec = s;
5628 }
5629 else if (bed->default_execstack)
5630 exec = PF_X;
5631 }
5632 if (notesec || info->stacksize > 0)
5633 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5634 if (notesec && exec && info->relocatable
5635 && notesec->output_section != bfd_abs_section_ptr)
5636 notesec->output_section->flags |= SEC_CODE;
5637 }
5638
5639 dynobj = elf_hash_table (info)->dynobj;
5640
5641 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5642 {
5643 struct elf_info_failed eif;
5644 struct elf_link_hash_entry *h;
5645 asection *dynstr;
5646 struct bfd_elf_version_tree *t;
5647 struct bfd_elf_version_expr *d;
5648 asection *s;
5649 bfd_boolean all_defined;
5650
5651 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5652 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5653
5654 if (soname != NULL)
5655 {
5656 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5657 soname, TRUE);
5658 if (soname_indx == (bfd_size_type) -1
5659 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5660 return FALSE;
5661 }
5662
5663 if (info->symbolic)
5664 {
5665 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5666 return FALSE;
5667 info->flags |= DF_SYMBOLIC;
5668 }
5669
5670 if (rpath != NULL)
5671 {
5672 bfd_size_type indx;
5673 bfd_vma tag;
5674
5675 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5676 TRUE);
5677 if (indx == (bfd_size_type) -1)
5678 return FALSE;
5679
5680 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5681 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5682 return FALSE;
5683 }
5684
5685 if (filter_shlib != NULL)
5686 {
5687 bfd_size_type indx;
5688
5689 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5690 filter_shlib, TRUE);
5691 if (indx == (bfd_size_type) -1
5692 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5693 return FALSE;
5694 }
5695
5696 if (auxiliary_filters != NULL)
5697 {
5698 const char * const *p;
5699
5700 for (p = auxiliary_filters; *p != NULL; p++)
5701 {
5702 bfd_size_type indx;
5703
5704 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5705 *p, TRUE);
5706 if (indx == (bfd_size_type) -1
5707 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5708 return FALSE;
5709 }
5710 }
5711
5712 if (audit != NULL)
5713 {
5714 bfd_size_type indx;
5715
5716 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5717 TRUE);
5718 if (indx == (bfd_size_type) -1
5719 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5720 return FALSE;
5721 }
5722
5723 if (depaudit != NULL)
5724 {
5725 bfd_size_type indx;
5726
5727 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5728 TRUE);
5729 if (indx == (bfd_size_type) -1
5730 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5731 return FALSE;
5732 }
5733
5734 eif.info = info;
5735 eif.failed = FALSE;
5736
5737 /* If we are supposed to export all symbols into the dynamic symbol
5738 table (this is not the normal case), then do so. */
5739 if (info->export_dynamic
5740 || (info->executable && info->dynamic))
5741 {
5742 elf_link_hash_traverse (elf_hash_table (info),
5743 _bfd_elf_export_symbol,
5744 &eif);
5745 if (eif.failed)
5746 return FALSE;
5747 }
5748
5749 /* Make all global versions with definition. */
5750 for (t = info->version_info; t != NULL; t = t->next)
5751 for (d = t->globals.list; d != NULL; d = d->next)
5752 if (!d->symver && d->literal)
5753 {
5754 const char *verstr, *name;
5755 size_t namelen, verlen, newlen;
5756 char *newname, *p, leading_char;
5757 struct elf_link_hash_entry *newh;
5758
5759 leading_char = bfd_get_symbol_leading_char (output_bfd);
5760 name = d->pattern;
5761 namelen = strlen (name) + (leading_char != '\0');
5762 verstr = t->name;
5763 verlen = strlen (verstr);
5764 newlen = namelen + verlen + 3;
5765
5766 newname = (char *) bfd_malloc (newlen);
5767 if (newname == NULL)
5768 return FALSE;
5769 newname[0] = leading_char;
5770 memcpy (newname + (leading_char != '\0'), name, namelen);
5771
5772 /* Check the hidden versioned definition. */
5773 p = newname + namelen;
5774 *p++ = ELF_VER_CHR;
5775 memcpy (p, verstr, verlen + 1);
5776 newh = elf_link_hash_lookup (elf_hash_table (info),
5777 newname, FALSE, FALSE,
5778 FALSE);
5779 if (newh == NULL
5780 || (newh->root.type != bfd_link_hash_defined
5781 && newh->root.type != bfd_link_hash_defweak))
5782 {
5783 /* Check the default versioned definition. */
5784 *p++ = ELF_VER_CHR;
5785 memcpy (p, verstr, verlen + 1);
5786 newh = elf_link_hash_lookup (elf_hash_table (info),
5787 newname, FALSE, FALSE,
5788 FALSE);
5789 }
5790 free (newname);
5791
5792 /* Mark this version if there is a definition and it is
5793 not defined in a shared object. */
5794 if (newh != NULL
5795 && !newh->def_dynamic
5796 && (newh->root.type == bfd_link_hash_defined
5797 || newh->root.type == bfd_link_hash_defweak))
5798 d->symver = 1;
5799 }
5800
5801 /* Attach all the symbols to their version information. */
5802 asvinfo.info = info;
5803 asvinfo.failed = FALSE;
5804
5805 elf_link_hash_traverse (elf_hash_table (info),
5806 _bfd_elf_link_assign_sym_version,
5807 &asvinfo);
5808 if (asvinfo.failed)
5809 return FALSE;
5810
5811 if (!info->allow_undefined_version)
5812 {
5813 /* Check if all global versions have a definition. */
5814 all_defined = TRUE;
5815 for (t = info->version_info; t != NULL; t = t->next)
5816 for (d = t->globals.list; d != NULL; d = d->next)
5817 if (d->literal && !d->symver && !d->script)
5818 {
5819 (*_bfd_error_handler)
5820 (_("%s: undefined version: %s"),
5821 d->pattern, t->name);
5822 all_defined = FALSE;
5823 }
5824
5825 if (!all_defined)
5826 {
5827 bfd_set_error (bfd_error_bad_value);
5828 return FALSE;
5829 }
5830 }
5831
5832 /* Find all symbols which were defined in a dynamic object and make
5833 the backend pick a reasonable value for them. */
5834 elf_link_hash_traverse (elf_hash_table (info),
5835 _bfd_elf_adjust_dynamic_symbol,
5836 &eif);
5837 if (eif.failed)
5838 return FALSE;
5839
5840 /* Add some entries to the .dynamic section. We fill in some of the
5841 values later, in bfd_elf_final_link, but we must add the entries
5842 now so that we know the final size of the .dynamic section. */
5843
5844 /* If there are initialization and/or finalization functions to
5845 call then add the corresponding DT_INIT/DT_FINI entries. */
5846 h = (info->init_function
5847 ? elf_link_hash_lookup (elf_hash_table (info),
5848 info->init_function, FALSE,
5849 FALSE, FALSE)
5850 : NULL);
5851 if (h != NULL
5852 && (h->ref_regular
5853 || h->def_regular))
5854 {
5855 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5856 return FALSE;
5857 }
5858 h = (info->fini_function
5859 ? elf_link_hash_lookup (elf_hash_table (info),
5860 info->fini_function, FALSE,
5861 FALSE, FALSE)
5862 : NULL);
5863 if (h != NULL
5864 && (h->ref_regular
5865 || h->def_regular))
5866 {
5867 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5868 return FALSE;
5869 }
5870
5871 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5872 if (s != NULL && s->linker_has_input)
5873 {
5874 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5875 if (! info->executable)
5876 {
5877 bfd *sub;
5878 asection *o;
5879
5880 for (sub = info->input_bfds; sub != NULL;
5881 sub = sub->link_next)
5882 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5883 for (o = sub->sections; o != NULL; o = o->next)
5884 if (elf_section_data (o)->this_hdr.sh_type
5885 == SHT_PREINIT_ARRAY)
5886 {
5887 (*_bfd_error_handler)
5888 (_("%B: .preinit_array section is not allowed in DSO"),
5889 sub);
5890 break;
5891 }
5892
5893 bfd_set_error (bfd_error_nonrepresentable_section);
5894 return FALSE;
5895 }
5896
5897 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5898 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5899 return FALSE;
5900 }
5901 s = bfd_get_section_by_name (output_bfd, ".init_array");
5902 if (s != NULL && s->linker_has_input)
5903 {
5904 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5905 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5906 return FALSE;
5907 }
5908 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5909 if (s != NULL && s->linker_has_input)
5910 {
5911 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5912 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5913 return FALSE;
5914 }
5915
5916 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5917 /* If .dynstr is excluded from the link, we don't want any of
5918 these tags. Strictly, we should be checking each section
5919 individually; This quick check covers for the case where
5920 someone does a /DISCARD/ : { *(*) }. */
5921 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5922 {
5923 bfd_size_type strsize;
5924
5925 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5926 if ((info->emit_hash
5927 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5928 || (info->emit_gnu_hash
5929 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5930 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5931 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5932 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5933 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5934 bed->s->sizeof_sym))
5935 return FALSE;
5936 }
5937 }
5938
5939 /* The backend must work out the sizes of all the other dynamic
5940 sections. */
5941 if (dynobj != NULL
5942 && bed->elf_backend_size_dynamic_sections != NULL
5943 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5944 return FALSE;
5945
5946 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5947 return FALSE;
5948
5949 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5950 {
5951 unsigned long section_sym_count;
5952 struct bfd_elf_version_tree *verdefs;
5953 asection *s;
5954
5955 /* Set up the version definition section. */
5956 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
5957 BFD_ASSERT (s != NULL);
5958
5959 /* We may have created additional version definitions if we are
5960 just linking a regular application. */
5961 verdefs = info->version_info;
5962
5963 /* Skip anonymous version tag. */
5964 if (verdefs != NULL && verdefs->vernum == 0)
5965 verdefs = verdefs->next;
5966
5967 if (verdefs == NULL && !info->create_default_symver)
5968 s->flags |= SEC_EXCLUDE;
5969 else
5970 {
5971 unsigned int cdefs;
5972 bfd_size_type size;
5973 struct bfd_elf_version_tree *t;
5974 bfd_byte *p;
5975 Elf_Internal_Verdef def;
5976 Elf_Internal_Verdaux defaux;
5977 struct bfd_link_hash_entry *bh;
5978 struct elf_link_hash_entry *h;
5979 const char *name;
5980
5981 cdefs = 0;
5982 size = 0;
5983
5984 /* Make space for the base version. */
5985 size += sizeof (Elf_External_Verdef);
5986 size += sizeof (Elf_External_Verdaux);
5987 ++cdefs;
5988
5989 /* Make space for the default version. */
5990 if (info->create_default_symver)
5991 {
5992 size += sizeof (Elf_External_Verdef);
5993 ++cdefs;
5994 }
5995
5996 for (t = verdefs; t != NULL; t = t->next)
5997 {
5998 struct bfd_elf_version_deps *n;
5999
6000 /* Don't emit base version twice. */
6001 if (t->vernum == 0)
6002 continue;
6003
6004 size += sizeof (Elf_External_Verdef);
6005 size += sizeof (Elf_External_Verdaux);
6006 ++cdefs;
6007
6008 for (n = t->deps; n != NULL; n = n->next)
6009 size += sizeof (Elf_External_Verdaux);
6010 }
6011
6012 s->size = size;
6013 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6014 if (s->contents == NULL && s->size != 0)
6015 return FALSE;
6016
6017 /* Fill in the version definition section. */
6018
6019 p = s->contents;
6020
6021 def.vd_version = VER_DEF_CURRENT;
6022 def.vd_flags = VER_FLG_BASE;
6023 def.vd_ndx = 1;
6024 def.vd_cnt = 1;
6025 if (info->create_default_symver)
6026 {
6027 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6028 def.vd_next = sizeof (Elf_External_Verdef);
6029 }
6030 else
6031 {
6032 def.vd_aux = sizeof (Elf_External_Verdef);
6033 def.vd_next = (sizeof (Elf_External_Verdef)
6034 + sizeof (Elf_External_Verdaux));
6035 }
6036
6037 if (soname_indx != (bfd_size_type) -1)
6038 {
6039 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6040 soname_indx);
6041 def.vd_hash = bfd_elf_hash (soname);
6042 defaux.vda_name = soname_indx;
6043 name = soname;
6044 }
6045 else
6046 {
6047 bfd_size_type indx;
6048
6049 name = lbasename (output_bfd->filename);
6050 def.vd_hash = bfd_elf_hash (name);
6051 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6052 name, FALSE);
6053 if (indx == (bfd_size_type) -1)
6054 return FALSE;
6055 defaux.vda_name = indx;
6056 }
6057 defaux.vda_next = 0;
6058
6059 _bfd_elf_swap_verdef_out (output_bfd, &def,
6060 (Elf_External_Verdef *) p);
6061 p += sizeof (Elf_External_Verdef);
6062 if (info->create_default_symver)
6063 {
6064 /* Add a symbol representing this version. */
6065 bh = NULL;
6066 if (! (_bfd_generic_link_add_one_symbol
6067 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6068 0, NULL, FALSE,
6069 get_elf_backend_data (dynobj)->collect, &bh)))
6070 return FALSE;
6071 h = (struct elf_link_hash_entry *) bh;
6072 h->non_elf = 0;
6073 h->def_regular = 1;
6074 h->type = STT_OBJECT;
6075 h->verinfo.vertree = NULL;
6076
6077 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6078 return FALSE;
6079
6080 /* Create a duplicate of the base version with the same
6081 aux block, but different flags. */
6082 def.vd_flags = 0;
6083 def.vd_ndx = 2;
6084 def.vd_aux = sizeof (Elf_External_Verdef);
6085 if (verdefs)
6086 def.vd_next = (sizeof (Elf_External_Verdef)
6087 + sizeof (Elf_External_Verdaux));
6088 else
6089 def.vd_next = 0;
6090 _bfd_elf_swap_verdef_out (output_bfd, &def,
6091 (Elf_External_Verdef *) p);
6092 p += sizeof (Elf_External_Verdef);
6093 }
6094 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6095 (Elf_External_Verdaux *) p);
6096 p += sizeof (Elf_External_Verdaux);
6097
6098 for (t = verdefs; t != NULL; t = t->next)
6099 {
6100 unsigned int cdeps;
6101 struct bfd_elf_version_deps *n;
6102
6103 /* Don't emit the base version twice. */
6104 if (t->vernum == 0)
6105 continue;
6106
6107 cdeps = 0;
6108 for (n = t->deps; n != NULL; n = n->next)
6109 ++cdeps;
6110
6111 /* Add a symbol representing this version. */
6112 bh = NULL;
6113 if (! (_bfd_generic_link_add_one_symbol
6114 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6115 0, NULL, FALSE,
6116 get_elf_backend_data (dynobj)->collect, &bh)))
6117 return FALSE;
6118 h = (struct elf_link_hash_entry *) bh;
6119 h->non_elf = 0;
6120 h->def_regular = 1;
6121 h->type = STT_OBJECT;
6122 h->verinfo.vertree = t;
6123
6124 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6125 return FALSE;
6126
6127 def.vd_version = VER_DEF_CURRENT;
6128 def.vd_flags = 0;
6129 if (t->globals.list == NULL
6130 && t->locals.list == NULL
6131 && ! t->used)
6132 def.vd_flags |= VER_FLG_WEAK;
6133 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6134 def.vd_cnt = cdeps + 1;
6135 def.vd_hash = bfd_elf_hash (t->name);
6136 def.vd_aux = sizeof (Elf_External_Verdef);
6137 def.vd_next = 0;
6138
6139 /* If a basever node is next, it *must* be the last node in
6140 the chain, otherwise Verdef construction breaks. */
6141 if (t->next != NULL && t->next->vernum == 0)
6142 BFD_ASSERT (t->next->next == NULL);
6143
6144 if (t->next != NULL && t->next->vernum != 0)
6145 def.vd_next = (sizeof (Elf_External_Verdef)
6146 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6147
6148 _bfd_elf_swap_verdef_out (output_bfd, &def,
6149 (Elf_External_Verdef *) p);
6150 p += sizeof (Elf_External_Verdef);
6151
6152 defaux.vda_name = h->dynstr_index;
6153 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6154 h->dynstr_index);
6155 defaux.vda_next = 0;
6156 if (t->deps != NULL)
6157 defaux.vda_next = sizeof (Elf_External_Verdaux);
6158 t->name_indx = defaux.vda_name;
6159
6160 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6161 (Elf_External_Verdaux *) p);
6162 p += sizeof (Elf_External_Verdaux);
6163
6164 for (n = t->deps; n != NULL; n = n->next)
6165 {
6166 if (n->version_needed == NULL)
6167 {
6168 /* This can happen if there was an error in the
6169 version script. */
6170 defaux.vda_name = 0;
6171 }
6172 else
6173 {
6174 defaux.vda_name = n->version_needed->name_indx;
6175 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6176 defaux.vda_name);
6177 }
6178 if (n->next == NULL)
6179 defaux.vda_next = 0;
6180 else
6181 defaux.vda_next = sizeof (Elf_External_Verdaux);
6182
6183 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6184 (Elf_External_Verdaux *) p);
6185 p += sizeof (Elf_External_Verdaux);
6186 }
6187 }
6188
6189 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6190 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6191 return FALSE;
6192
6193 elf_tdata (output_bfd)->cverdefs = cdefs;
6194 }
6195
6196 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6197 {
6198 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6199 return FALSE;
6200 }
6201 else if (info->flags & DF_BIND_NOW)
6202 {
6203 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6204 return FALSE;
6205 }
6206
6207 if (info->flags_1)
6208 {
6209 if (info->executable)
6210 info->flags_1 &= ~ (DF_1_INITFIRST
6211 | DF_1_NODELETE
6212 | DF_1_NOOPEN);
6213 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6214 return FALSE;
6215 }
6216
6217 /* Work out the size of the version reference section. */
6218
6219 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6220 BFD_ASSERT (s != NULL);
6221 {
6222 struct elf_find_verdep_info sinfo;
6223
6224 sinfo.info = info;
6225 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6226 if (sinfo.vers == 0)
6227 sinfo.vers = 1;
6228 sinfo.failed = FALSE;
6229
6230 elf_link_hash_traverse (elf_hash_table (info),
6231 _bfd_elf_link_find_version_dependencies,
6232 &sinfo);
6233 if (sinfo.failed)
6234 return FALSE;
6235
6236 if (elf_tdata (output_bfd)->verref == NULL)
6237 s->flags |= SEC_EXCLUDE;
6238 else
6239 {
6240 Elf_Internal_Verneed *t;
6241 unsigned int size;
6242 unsigned int crefs;
6243 bfd_byte *p;
6244
6245 /* Build the version dependency section. */
6246 size = 0;
6247 crefs = 0;
6248 for (t = elf_tdata (output_bfd)->verref;
6249 t != NULL;
6250 t = t->vn_nextref)
6251 {
6252 Elf_Internal_Vernaux *a;
6253
6254 size += sizeof (Elf_External_Verneed);
6255 ++crefs;
6256 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6257 size += sizeof (Elf_External_Vernaux);
6258 }
6259
6260 s->size = size;
6261 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6262 if (s->contents == NULL)
6263 return FALSE;
6264
6265 p = s->contents;
6266 for (t = elf_tdata (output_bfd)->verref;
6267 t != NULL;
6268 t = t->vn_nextref)
6269 {
6270 unsigned int caux;
6271 Elf_Internal_Vernaux *a;
6272 bfd_size_type indx;
6273
6274 caux = 0;
6275 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6276 ++caux;
6277
6278 t->vn_version = VER_NEED_CURRENT;
6279 t->vn_cnt = caux;
6280 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6281 elf_dt_name (t->vn_bfd) != NULL
6282 ? elf_dt_name (t->vn_bfd)
6283 : lbasename (t->vn_bfd->filename),
6284 FALSE);
6285 if (indx == (bfd_size_type) -1)
6286 return FALSE;
6287 t->vn_file = indx;
6288 t->vn_aux = sizeof (Elf_External_Verneed);
6289 if (t->vn_nextref == NULL)
6290 t->vn_next = 0;
6291 else
6292 t->vn_next = (sizeof (Elf_External_Verneed)
6293 + caux * sizeof (Elf_External_Vernaux));
6294
6295 _bfd_elf_swap_verneed_out (output_bfd, t,
6296 (Elf_External_Verneed *) p);
6297 p += sizeof (Elf_External_Verneed);
6298
6299 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6300 {
6301 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6302 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6303 a->vna_nodename, FALSE);
6304 if (indx == (bfd_size_type) -1)
6305 return FALSE;
6306 a->vna_name = indx;
6307 if (a->vna_nextptr == NULL)
6308 a->vna_next = 0;
6309 else
6310 a->vna_next = sizeof (Elf_External_Vernaux);
6311
6312 _bfd_elf_swap_vernaux_out (output_bfd, a,
6313 (Elf_External_Vernaux *) p);
6314 p += sizeof (Elf_External_Vernaux);
6315 }
6316 }
6317
6318 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6319 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6320 return FALSE;
6321
6322 elf_tdata (output_bfd)->cverrefs = crefs;
6323 }
6324 }
6325
6326 if ((elf_tdata (output_bfd)->cverrefs == 0
6327 && elf_tdata (output_bfd)->cverdefs == 0)
6328 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6329 &section_sym_count) == 0)
6330 {
6331 s = bfd_get_linker_section (dynobj, ".gnu.version");
6332 s->flags |= SEC_EXCLUDE;
6333 }
6334 }
6335 return TRUE;
6336 }
6337
6338 /* Find the first non-excluded output section. We'll use its
6339 section symbol for some emitted relocs. */
6340 void
6341 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6342 {
6343 asection *s;
6344
6345 for (s = output_bfd->sections; s != NULL; s = s->next)
6346 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6347 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6348 {
6349 elf_hash_table (info)->text_index_section = s;
6350 break;
6351 }
6352 }
6353
6354 /* Find two non-excluded output sections, one for code, one for data.
6355 We'll use their section symbols for some emitted relocs. */
6356 void
6357 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6358 {
6359 asection *s;
6360
6361 /* Data first, since setting text_index_section changes
6362 _bfd_elf_link_omit_section_dynsym. */
6363 for (s = output_bfd->sections; s != NULL; s = s->next)
6364 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6365 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6366 {
6367 elf_hash_table (info)->data_index_section = s;
6368 break;
6369 }
6370
6371 for (s = output_bfd->sections; s != NULL; s = s->next)
6372 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6373 == (SEC_ALLOC | SEC_READONLY))
6374 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6375 {
6376 elf_hash_table (info)->text_index_section = s;
6377 break;
6378 }
6379
6380 if (elf_hash_table (info)->text_index_section == NULL)
6381 elf_hash_table (info)->text_index_section
6382 = elf_hash_table (info)->data_index_section;
6383 }
6384
6385 bfd_boolean
6386 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6387 {
6388 const struct elf_backend_data *bed;
6389
6390 if (!is_elf_hash_table (info->hash))
6391 return TRUE;
6392
6393 bed = get_elf_backend_data (output_bfd);
6394 (*bed->elf_backend_init_index_section) (output_bfd, info);
6395
6396 if (elf_hash_table (info)->dynamic_sections_created)
6397 {
6398 bfd *dynobj;
6399 asection *s;
6400 bfd_size_type dynsymcount;
6401 unsigned long section_sym_count;
6402 unsigned int dtagcount;
6403
6404 dynobj = elf_hash_table (info)->dynobj;
6405
6406 /* Assign dynsym indicies. In a shared library we generate a
6407 section symbol for each output section, which come first.
6408 Next come all of the back-end allocated local dynamic syms,
6409 followed by the rest of the global symbols. */
6410
6411 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6412 &section_sym_count);
6413
6414 /* Work out the size of the symbol version section. */
6415 s = bfd_get_linker_section (dynobj, ".gnu.version");
6416 BFD_ASSERT (s != NULL);
6417 if (dynsymcount != 0
6418 && (s->flags & SEC_EXCLUDE) == 0)
6419 {
6420 s->size = dynsymcount * sizeof (Elf_External_Versym);
6421 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6422 if (s->contents == NULL)
6423 return FALSE;
6424
6425 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6426 return FALSE;
6427 }
6428
6429 /* Set the size of the .dynsym and .hash sections. We counted
6430 the number of dynamic symbols in elf_link_add_object_symbols.
6431 We will build the contents of .dynsym and .hash when we build
6432 the final symbol table, because until then we do not know the
6433 correct value to give the symbols. We built the .dynstr
6434 section as we went along in elf_link_add_object_symbols. */
6435 s = bfd_get_linker_section (dynobj, ".dynsym");
6436 BFD_ASSERT (s != NULL);
6437 s->size = dynsymcount * bed->s->sizeof_sym;
6438
6439 if (dynsymcount != 0)
6440 {
6441 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6442 if (s->contents == NULL)
6443 return FALSE;
6444
6445 /* The first entry in .dynsym is a dummy symbol.
6446 Clear all the section syms, in case we don't output them all. */
6447 ++section_sym_count;
6448 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6449 }
6450
6451 elf_hash_table (info)->bucketcount = 0;
6452
6453 /* Compute the size of the hashing table. As a side effect this
6454 computes the hash values for all the names we export. */
6455 if (info->emit_hash)
6456 {
6457 unsigned long int *hashcodes;
6458 struct hash_codes_info hashinf;
6459 bfd_size_type amt;
6460 unsigned long int nsyms;
6461 size_t bucketcount;
6462 size_t hash_entry_size;
6463
6464 /* Compute the hash values for all exported symbols. At the same
6465 time store the values in an array so that we could use them for
6466 optimizations. */
6467 amt = dynsymcount * sizeof (unsigned long int);
6468 hashcodes = (unsigned long int *) bfd_malloc (amt);
6469 if (hashcodes == NULL)
6470 return FALSE;
6471 hashinf.hashcodes = hashcodes;
6472 hashinf.error = FALSE;
6473
6474 /* Put all hash values in HASHCODES. */
6475 elf_link_hash_traverse (elf_hash_table (info),
6476 elf_collect_hash_codes, &hashinf);
6477 if (hashinf.error)
6478 {
6479 free (hashcodes);
6480 return FALSE;
6481 }
6482
6483 nsyms = hashinf.hashcodes - hashcodes;
6484 bucketcount
6485 = compute_bucket_count (info, hashcodes, nsyms, 0);
6486 free (hashcodes);
6487
6488 if (bucketcount == 0)
6489 return FALSE;
6490
6491 elf_hash_table (info)->bucketcount = bucketcount;
6492
6493 s = bfd_get_linker_section (dynobj, ".hash");
6494 BFD_ASSERT (s != NULL);
6495 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6496 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6497 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6498 if (s->contents == NULL)
6499 return FALSE;
6500
6501 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6502 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6503 s->contents + hash_entry_size);
6504 }
6505
6506 if (info->emit_gnu_hash)
6507 {
6508 size_t i, cnt;
6509 unsigned char *contents;
6510 struct collect_gnu_hash_codes cinfo;
6511 bfd_size_type amt;
6512 size_t bucketcount;
6513
6514 memset (&cinfo, 0, sizeof (cinfo));
6515
6516 /* Compute the hash values for all exported symbols. At the same
6517 time store the values in an array so that we could use them for
6518 optimizations. */
6519 amt = dynsymcount * 2 * sizeof (unsigned long int);
6520 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6521 if (cinfo.hashcodes == NULL)
6522 return FALSE;
6523
6524 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6525 cinfo.min_dynindx = -1;
6526 cinfo.output_bfd = output_bfd;
6527 cinfo.bed = bed;
6528
6529 /* Put all hash values in HASHCODES. */
6530 elf_link_hash_traverse (elf_hash_table (info),
6531 elf_collect_gnu_hash_codes, &cinfo);
6532 if (cinfo.error)
6533 {
6534 free (cinfo.hashcodes);
6535 return FALSE;
6536 }
6537
6538 bucketcount
6539 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6540
6541 if (bucketcount == 0)
6542 {
6543 free (cinfo.hashcodes);
6544 return FALSE;
6545 }
6546
6547 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6548 BFD_ASSERT (s != NULL);
6549
6550 if (cinfo.nsyms == 0)
6551 {
6552 /* Empty .gnu.hash section is special. */
6553 BFD_ASSERT (cinfo.min_dynindx == -1);
6554 free (cinfo.hashcodes);
6555 s->size = 5 * 4 + bed->s->arch_size / 8;
6556 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6557 if (contents == NULL)
6558 return FALSE;
6559 s->contents = contents;
6560 /* 1 empty bucket. */
6561 bfd_put_32 (output_bfd, 1, contents);
6562 /* SYMIDX above the special symbol 0. */
6563 bfd_put_32 (output_bfd, 1, contents + 4);
6564 /* Just one word for bitmask. */
6565 bfd_put_32 (output_bfd, 1, contents + 8);
6566 /* Only hash fn bloom filter. */
6567 bfd_put_32 (output_bfd, 0, contents + 12);
6568 /* No hashes are valid - empty bitmask. */
6569 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6570 /* No hashes in the only bucket. */
6571 bfd_put_32 (output_bfd, 0,
6572 contents + 16 + bed->s->arch_size / 8);
6573 }
6574 else
6575 {
6576 unsigned long int maskwords, maskbitslog2, x;
6577 BFD_ASSERT (cinfo.min_dynindx != -1);
6578
6579 x = cinfo.nsyms;
6580 maskbitslog2 = 1;
6581 while ((x >>= 1) != 0)
6582 ++maskbitslog2;
6583 if (maskbitslog2 < 3)
6584 maskbitslog2 = 5;
6585 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6586 maskbitslog2 = maskbitslog2 + 3;
6587 else
6588 maskbitslog2 = maskbitslog2 + 2;
6589 if (bed->s->arch_size == 64)
6590 {
6591 if (maskbitslog2 == 5)
6592 maskbitslog2 = 6;
6593 cinfo.shift1 = 6;
6594 }
6595 else
6596 cinfo.shift1 = 5;
6597 cinfo.mask = (1 << cinfo.shift1) - 1;
6598 cinfo.shift2 = maskbitslog2;
6599 cinfo.maskbits = 1 << maskbitslog2;
6600 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6601 amt = bucketcount * sizeof (unsigned long int) * 2;
6602 amt += maskwords * sizeof (bfd_vma);
6603 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6604 if (cinfo.bitmask == NULL)
6605 {
6606 free (cinfo.hashcodes);
6607 return FALSE;
6608 }
6609
6610 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6611 cinfo.indx = cinfo.counts + bucketcount;
6612 cinfo.symindx = dynsymcount - cinfo.nsyms;
6613 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6614
6615 /* Determine how often each hash bucket is used. */
6616 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6617 for (i = 0; i < cinfo.nsyms; ++i)
6618 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6619
6620 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6621 if (cinfo.counts[i] != 0)
6622 {
6623 cinfo.indx[i] = cnt;
6624 cnt += cinfo.counts[i];
6625 }
6626 BFD_ASSERT (cnt == dynsymcount);
6627 cinfo.bucketcount = bucketcount;
6628 cinfo.local_indx = cinfo.min_dynindx;
6629
6630 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6631 s->size += cinfo.maskbits / 8;
6632 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6633 if (contents == NULL)
6634 {
6635 free (cinfo.bitmask);
6636 free (cinfo.hashcodes);
6637 return FALSE;
6638 }
6639
6640 s->contents = contents;
6641 bfd_put_32 (output_bfd, bucketcount, contents);
6642 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6643 bfd_put_32 (output_bfd, maskwords, contents + 8);
6644 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6645 contents += 16 + cinfo.maskbits / 8;
6646
6647 for (i = 0; i < bucketcount; ++i)
6648 {
6649 if (cinfo.counts[i] == 0)
6650 bfd_put_32 (output_bfd, 0, contents);
6651 else
6652 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6653 contents += 4;
6654 }
6655
6656 cinfo.contents = contents;
6657
6658 /* Renumber dynamic symbols, populate .gnu.hash section. */
6659 elf_link_hash_traverse (elf_hash_table (info),
6660 elf_renumber_gnu_hash_syms, &cinfo);
6661
6662 contents = s->contents + 16;
6663 for (i = 0; i < maskwords; ++i)
6664 {
6665 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6666 contents);
6667 contents += bed->s->arch_size / 8;
6668 }
6669
6670 free (cinfo.bitmask);
6671 free (cinfo.hashcodes);
6672 }
6673 }
6674
6675 s = bfd_get_linker_section (dynobj, ".dynstr");
6676 BFD_ASSERT (s != NULL);
6677
6678 elf_finalize_dynstr (output_bfd, info);
6679
6680 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6681
6682 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6683 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6684 return FALSE;
6685 }
6686
6687 return TRUE;
6688 }
6689 \f
6690 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6691
6692 static void
6693 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6694 asection *sec)
6695 {
6696 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6697 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6698 }
6699
6700 /* Finish SHF_MERGE section merging. */
6701
6702 bfd_boolean
6703 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6704 {
6705 bfd *ibfd;
6706 asection *sec;
6707
6708 if (!is_elf_hash_table (info->hash))
6709 return FALSE;
6710
6711 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6712 if ((ibfd->flags & DYNAMIC) == 0)
6713 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6714 if ((sec->flags & SEC_MERGE) != 0
6715 && !bfd_is_abs_section (sec->output_section))
6716 {
6717 struct bfd_elf_section_data *secdata;
6718
6719 secdata = elf_section_data (sec);
6720 if (! _bfd_add_merge_section (abfd,
6721 &elf_hash_table (info)->merge_info,
6722 sec, &secdata->sec_info))
6723 return FALSE;
6724 else if (secdata->sec_info)
6725 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6726 }
6727
6728 if (elf_hash_table (info)->merge_info != NULL)
6729 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6730 merge_sections_remove_hook);
6731 return TRUE;
6732 }
6733
6734 /* Create an entry in an ELF linker hash table. */
6735
6736 struct bfd_hash_entry *
6737 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6738 struct bfd_hash_table *table,
6739 const char *string)
6740 {
6741 /* Allocate the structure if it has not already been allocated by a
6742 subclass. */
6743 if (entry == NULL)
6744 {
6745 entry = (struct bfd_hash_entry *)
6746 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6747 if (entry == NULL)
6748 return entry;
6749 }
6750
6751 /* Call the allocation method of the superclass. */
6752 entry = _bfd_link_hash_newfunc (entry, table, string);
6753 if (entry != NULL)
6754 {
6755 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6756 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6757
6758 /* Set local fields. */
6759 ret->indx = -1;
6760 ret->dynindx = -1;
6761 ret->got = htab->init_got_refcount;
6762 ret->plt = htab->init_plt_refcount;
6763 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6764 - offsetof (struct elf_link_hash_entry, size)));
6765 /* Assume that we have been called by a non-ELF symbol reader.
6766 This flag is then reset by the code which reads an ELF input
6767 file. This ensures that a symbol created by a non-ELF symbol
6768 reader will have the flag set correctly. */
6769 ret->non_elf = 1;
6770 }
6771
6772 return entry;
6773 }
6774
6775 /* Copy data from an indirect symbol to its direct symbol, hiding the
6776 old indirect symbol. Also used for copying flags to a weakdef. */
6777
6778 void
6779 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6780 struct elf_link_hash_entry *dir,
6781 struct elf_link_hash_entry *ind)
6782 {
6783 struct elf_link_hash_table *htab;
6784
6785 /* Copy down any references that we may have already seen to the
6786 symbol which just became indirect. */
6787
6788 dir->ref_dynamic |= ind->ref_dynamic;
6789 dir->ref_regular |= ind->ref_regular;
6790 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6791 dir->non_got_ref |= ind->non_got_ref;
6792 dir->needs_plt |= ind->needs_plt;
6793 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6794
6795 if (ind->root.type != bfd_link_hash_indirect)
6796 return;
6797
6798 /* Copy over the global and procedure linkage table refcount entries.
6799 These may have been already set up by a check_relocs routine. */
6800 htab = elf_hash_table (info);
6801 if (ind->got.refcount > htab->init_got_refcount.refcount)
6802 {
6803 if (dir->got.refcount < 0)
6804 dir->got.refcount = 0;
6805 dir->got.refcount += ind->got.refcount;
6806 ind->got.refcount = htab->init_got_refcount.refcount;
6807 }
6808
6809 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6810 {
6811 if (dir->plt.refcount < 0)
6812 dir->plt.refcount = 0;
6813 dir->plt.refcount += ind->plt.refcount;
6814 ind->plt.refcount = htab->init_plt_refcount.refcount;
6815 }
6816
6817 if (ind->dynindx != -1)
6818 {
6819 if (dir->dynindx != -1)
6820 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6821 dir->dynindx = ind->dynindx;
6822 dir->dynstr_index = ind->dynstr_index;
6823 ind->dynindx = -1;
6824 ind->dynstr_index = 0;
6825 }
6826 }
6827
6828 void
6829 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6830 struct elf_link_hash_entry *h,
6831 bfd_boolean force_local)
6832 {
6833 /* STT_GNU_IFUNC symbol must go through PLT. */
6834 if (h->type != STT_GNU_IFUNC)
6835 {
6836 h->plt = elf_hash_table (info)->init_plt_offset;
6837 h->needs_plt = 0;
6838 }
6839 if (force_local)
6840 {
6841 h->forced_local = 1;
6842 if (h->dynindx != -1)
6843 {
6844 h->dynindx = -1;
6845 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6846 h->dynstr_index);
6847 }
6848 }
6849 }
6850
6851 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
6852 caller. */
6853
6854 bfd_boolean
6855 _bfd_elf_link_hash_table_init
6856 (struct elf_link_hash_table *table,
6857 bfd *abfd,
6858 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6859 struct bfd_hash_table *,
6860 const char *),
6861 unsigned int entsize,
6862 enum elf_target_id target_id)
6863 {
6864 bfd_boolean ret;
6865 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6866
6867 table->init_got_refcount.refcount = can_refcount - 1;
6868 table->init_plt_refcount.refcount = can_refcount - 1;
6869 table->init_got_offset.offset = -(bfd_vma) 1;
6870 table->init_plt_offset.offset = -(bfd_vma) 1;
6871 /* The first dynamic symbol is a dummy. */
6872 table->dynsymcount = 1;
6873
6874 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6875
6876 table->root.type = bfd_link_elf_hash_table;
6877 table->hash_table_id = target_id;
6878
6879 return ret;
6880 }
6881
6882 /* Create an ELF linker hash table. */
6883
6884 struct bfd_link_hash_table *
6885 _bfd_elf_link_hash_table_create (bfd *abfd)
6886 {
6887 struct elf_link_hash_table *ret;
6888 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6889
6890 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
6891 if (ret == NULL)
6892 return NULL;
6893
6894 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6895 sizeof (struct elf_link_hash_entry),
6896 GENERIC_ELF_DATA))
6897 {
6898 free (ret);
6899 return NULL;
6900 }
6901
6902 return &ret->root;
6903 }
6904
6905 /* Destroy an ELF linker hash table. */
6906
6907 void
6908 _bfd_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
6909 {
6910 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) hash;
6911 if (htab->dynstr != NULL)
6912 _bfd_elf_strtab_free (htab->dynstr);
6913 _bfd_merge_sections_free (htab->merge_info);
6914 _bfd_generic_link_hash_table_free (hash);
6915 }
6916
6917 /* This is a hook for the ELF emulation code in the generic linker to
6918 tell the backend linker what file name to use for the DT_NEEDED
6919 entry for a dynamic object. */
6920
6921 void
6922 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6923 {
6924 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6925 && bfd_get_format (abfd) == bfd_object)
6926 elf_dt_name (abfd) = name;
6927 }
6928
6929 int
6930 bfd_elf_get_dyn_lib_class (bfd *abfd)
6931 {
6932 int lib_class;
6933 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6934 && bfd_get_format (abfd) == bfd_object)
6935 lib_class = elf_dyn_lib_class (abfd);
6936 else
6937 lib_class = 0;
6938 return lib_class;
6939 }
6940
6941 void
6942 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6943 {
6944 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6945 && bfd_get_format (abfd) == bfd_object)
6946 elf_dyn_lib_class (abfd) = lib_class;
6947 }
6948
6949 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6950 the linker ELF emulation code. */
6951
6952 struct bfd_link_needed_list *
6953 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6954 struct bfd_link_info *info)
6955 {
6956 if (! is_elf_hash_table (info->hash))
6957 return NULL;
6958 return elf_hash_table (info)->needed;
6959 }
6960
6961 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6962 hook for the linker ELF emulation code. */
6963
6964 struct bfd_link_needed_list *
6965 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6966 struct bfd_link_info *info)
6967 {
6968 if (! is_elf_hash_table (info->hash))
6969 return NULL;
6970 return elf_hash_table (info)->runpath;
6971 }
6972
6973 /* Get the name actually used for a dynamic object for a link. This
6974 is the SONAME entry if there is one. Otherwise, it is the string
6975 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6976
6977 const char *
6978 bfd_elf_get_dt_soname (bfd *abfd)
6979 {
6980 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6981 && bfd_get_format (abfd) == bfd_object)
6982 return elf_dt_name (abfd);
6983 return NULL;
6984 }
6985
6986 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6987 the ELF linker emulation code. */
6988
6989 bfd_boolean
6990 bfd_elf_get_bfd_needed_list (bfd *abfd,
6991 struct bfd_link_needed_list **pneeded)
6992 {
6993 asection *s;
6994 bfd_byte *dynbuf = NULL;
6995 unsigned int elfsec;
6996 unsigned long shlink;
6997 bfd_byte *extdyn, *extdynend;
6998 size_t extdynsize;
6999 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7000
7001 *pneeded = NULL;
7002
7003 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7004 || bfd_get_format (abfd) != bfd_object)
7005 return TRUE;
7006
7007 s = bfd_get_section_by_name (abfd, ".dynamic");
7008 if (s == NULL || s->size == 0)
7009 return TRUE;
7010
7011 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7012 goto error_return;
7013
7014 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7015 if (elfsec == SHN_BAD)
7016 goto error_return;
7017
7018 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7019
7020 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7021 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7022
7023 extdyn = dynbuf;
7024 extdynend = extdyn + s->size;
7025 for (; extdyn < extdynend; extdyn += extdynsize)
7026 {
7027 Elf_Internal_Dyn dyn;
7028
7029 (*swap_dyn_in) (abfd, extdyn, &dyn);
7030
7031 if (dyn.d_tag == DT_NULL)
7032 break;
7033
7034 if (dyn.d_tag == DT_NEEDED)
7035 {
7036 const char *string;
7037 struct bfd_link_needed_list *l;
7038 unsigned int tagv = dyn.d_un.d_val;
7039 bfd_size_type amt;
7040
7041 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7042 if (string == NULL)
7043 goto error_return;
7044
7045 amt = sizeof *l;
7046 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7047 if (l == NULL)
7048 goto error_return;
7049
7050 l->by = abfd;
7051 l->name = string;
7052 l->next = *pneeded;
7053 *pneeded = l;
7054 }
7055 }
7056
7057 free (dynbuf);
7058
7059 return TRUE;
7060
7061 error_return:
7062 if (dynbuf != NULL)
7063 free (dynbuf);
7064 return FALSE;
7065 }
7066
7067 struct elf_symbuf_symbol
7068 {
7069 unsigned long st_name; /* Symbol name, index in string tbl */
7070 unsigned char st_info; /* Type and binding attributes */
7071 unsigned char st_other; /* Visibilty, and target specific */
7072 };
7073
7074 struct elf_symbuf_head
7075 {
7076 struct elf_symbuf_symbol *ssym;
7077 bfd_size_type count;
7078 unsigned int st_shndx;
7079 };
7080
7081 struct elf_symbol
7082 {
7083 union
7084 {
7085 Elf_Internal_Sym *isym;
7086 struct elf_symbuf_symbol *ssym;
7087 } u;
7088 const char *name;
7089 };
7090
7091 /* Sort references to symbols by ascending section number. */
7092
7093 static int
7094 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7095 {
7096 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7097 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7098
7099 return s1->st_shndx - s2->st_shndx;
7100 }
7101
7102 static int
7103 elf_sym_name_compare (const void *arg1, const void *arg2)
7104 {
7105 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7106 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7107 return strcmp (s1->name, s2->name);
7108 }
7109
7110 static struct elf_symbuf_head *
7111 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7112 {
7113 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7114 struct elf_symbuf_symbol *ssym;
7115 struct elf_symbuf_head *ssymbuf, *ssymhead;
7116 bfd_size_type i, shndx_count, total_size;
7117
7118 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7119 if (indbuf == NULL)
7120 return NULL;
7121
7122 for (ind = indbuf, i = 0; i < symcount; i++)
7123 if (isymbuf[i].st_shndx != SHN_UNDEF)
7124 *ind++ = &isymbuf[i];
7125 indbufend = ind;
7126
7127 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7128 elf_sort_elf_symbol);
7129
7130 shndx_count = 0;
7131 if (indbufend > indbuf)
7132 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7133 if (ind[0]->st_shndx != ind[1]->st_shndx)
7134 shndx_count++;
7135
7136 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7137 + (indbufend - indbuf) * sizeof (*ssym));
7138 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7139 if (ssymbuf == NULL)
7140 {
7141 free (indbuf);
7142 return NULL;
7143 }
7144
7145 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7146 ssymbuf->ssym = NULL;
7147 ssymbuf->count = shndx_count;
7148 ssymbuf->st_shndx = 0;
7149 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7150 {
7151 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7152 {
7153 ssymhead++;
7154 ssymhead->ssym = ssym;
7155 ssymhead->count = 0;
7156 ssymhead->st_shndx = (*ind)->st_shndx;
7157 }
7158 ssym->st_name = (*ind)->st_name;
7159 ssym->st_info = (*ind)->st_info;
7160 ssym->st_other = (*ind)->st_other;
7161 ssymhead->count++;
7162 }
7163 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7164 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7165 == total_size));
7166
7167 free (indbuf);
7168 return ssymbuf;
7169 }
7170
7171 /* Check if 2 sections define the same set of local and global
7172 symbols. */
7173
7174 static bfd_boolean
7175 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7176 struct bfd_link_info *info)
7177 {
7178 bfd *bfd1, *bfd2;
7179 const struct elf_backend_data *bed1, *bed2;
7180 Elf_Internal_Shdr *hdr1, *hdr2;
7181 bfd_size_type symcount1, symcount2;
7182 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7183 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7184 Elf_Internal_Sym *isym, *isymend;
7185 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7186 bfd_size_type count1, count2, i;
7187 unsigned int shndx1, shndx2;
7188 bfd_boolean result;
7189
7190 bfd1 = sec1->owner;
7191 bfd2 = sec2->owner;
7192
7193 /* Both sections have to be in ELF. */
7194 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7195 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7196 return FALSE;
7197
7198 if (elf_section_type (sec1) != elf_section_type (sec2))
7199 return FALSE;
7200
7201 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7202 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7203 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7204 return FALSE;
7205
7206 bed1 = get_elf_backend_data (bfd1);
7207 bed2 = get_elf_backend_data (bfd2);
7208 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7209 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7210 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7211 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7212
7213 if (symcount1 == 0 || symcount2 == 0)
7214 return FALSE;
7215
7216 result = FALSE;
7217 isymbuf1 = NULL;
7218 isymbuf2 = NULL;
7219 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7220 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7221
7222 if (ssymbuf1 == NULL)
7223 {
7224 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7225 NULL, NULL, NULL);
7226 if (isymbuf1 == NULL)
7227 goto done;
7228
7229 if (!info->reduce_memory_overheads)
7230 elf_tdata (bfd1)->symbuf = ssymbuf1
7231 = elf_create_symbuf (symcount1, isymbuf1);
7232 }
7233
7234 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7235 {
7236 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7237 NULL, NULL, NULL);
7238 if (isymbuf2 == NULL)
7239 goto done;
7240
7241 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7242 elf_tdata (bfd2)->symbuf = ssymbuf2
7243 = elf_create_symbuf (symcount2, isymbuf2);
7244 }
7245
7246 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7247 {
7248 /* Optimized faster version. */
7249 bfd_size_type lo, hi, mid;
7250 struct elf_symbol *symp;
7251 struct elf_symbuf_symbol *ssym, *ssymend;
7252
7253 lo = 0;
7254 hi = ssymbuf1->count;
7255 ssymbuf1++;
7256 count1 = 0;
7257 while (lo < hi)
7258 {
7259 mid = (lo + hi) / 2;
7260 if (shndx1 < ssymbuf1[mid].st_shndx)
7261 hi = mid;
7262 else if (shndx1 > ssymbuf1[mid].st_shndx)
7263 lo = mid + 1;
7264 else
7265 {
7266 count1 = ssymbuf1[mid].count;
7267 ssymbuf1 += mid;
7268 break;
7269 }
7270 }
7271
7272 lo = 0;
7273 hi = ssymbuf2->count;
7274 ssymbuf2++;
7275 count2 = 0;
7276 while (lo < hi)
7277 {
7278 mid = (lo + hi) / 2;
7279 if (shndx2 < ssymbuf2[mid].st_shndx)
7280 hi = mid;
7281 else if (shndx2 > ssymbuf2[mid].st_shndx)
7282 lo = mid + 1;
7283 else
7284 {
7285 count2 = ssymbuf2[mid].count;
7286 ssymbuf2 += mid;
7287 break;
7288 }
7289 }
7290
7291 if (count1 == 0 || count2 == 0 || count1 != count2)
7292 goto done;
7293
7294 symtable1 = (struct elf_symbol *)
7295 bfd_malloc (count1 * sizeof (struct elf_symbol));
7296 symtable2 = (struct elf_symbol *)
7297 bfd_malloc (count2 * sizeof (struct elf_symbol));
7298 if (symtable1 == NULL || symtable2 == NULL)
7299 goto done;
7300
7301 symp = symtable1;
7302 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7303 ssym < ssymend; ssym++, symp++)
7304 {
7305 symp->u.ssym = ssym;
7306 symp->name = bfd_elf_string_from_elf_section (bfd1,
7307 hdr1->sh_link,
7308 ssym->st_name);
7309 }
7310
7311 symp = symtable2;
7312 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7313 ssym < ssymend; ssym++, symp++)
7314 {
7315 symp->u.ssym = ssym;
7316 symp->name = bfd_elf_string_from_elf_section (bfd2,
7317 hdr2->sh_link,
7318 ssym->st_name);
7319 }
7320
7321 /* Sort symbol by name. */
7322 qsort (symtable1, count1, sizeof (struct elf_symbol),
7323 elf_sym_name_compare);
7324 qsort (symtable2, count1, sizeof (struct elf_symbol),
7325 elf_sym_name_compare);
7326
7327 for (i = 0; i < count1; i++)
7328 /* Two symbols must have the same binding, type and name. */
7329 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7330 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7331 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7332 goto done;
7333
7334 result = TRUE;
7335 goto done;
7336 }
7337
7338 symtable1 = (struct elf_symbol *)
7339 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7340 symtable2 = (struct elf_symbol *)
7341 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7342 if (symtable1 == NULL || symtable2 == NULL)
7343 goto done;
7344
7345 /* Count definitions in the section. */
7346 count1 = 0;
7347 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7348 if (isym->st_shndx == shndx1)
7349 symtable1[count1++].u.isym = isym;
7350
7351 count2 = 0;
7352 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7353 if (isym->st_shndx == shndx2)
7354 symtable2[count2++].u.isym = isym;
7355
7356 if (count1 == 0 || count2 == 0 || count1 != count2)
7357 goto done;
7358
7359 for (i = 0; i < count1; i++)
7360 symtable1[i].name
7361 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7362 symtable1[i].u.isym->st_name);
7363
7364 for (i = 0; i < count2; i++)
7365 symtable2[i].name
7366 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7367 symtable2[i].u.isym->st_name);
7368
7369 /* Sort symbol by name. */
7370 qsort (symtable1, count1, sizeof (struct elf_symbol),
7371 elf_sym_name_compare);
7372 qsort (symtable2, count1, sizeof (struct elf_symbol),
7373 elf_sym_name_compare);
7374
7375 for (i = 0; i < count1; i++)
7376 /* Two symbols must have the same binding, type and name. */
7377 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7378 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7379 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7380 goto done;
7381
7382 result = TRUE;
7383
7384 done:
7385 if (symtable1)
7386 free (symtable1);
7387 if (symtable2)
7388 free (symtable2);
7389 if (isymbuf1)
7390 free (isymbuf1);
7391 if (isymbuf2)
7392 free (isymbuf2);
7393
7394 return result;
7395 }
7396
7397 /* Return TRUE if 2 section types are compatible. */
7398
7399 bfd_boolean
7400 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7401 bfd *bbfd, const asection *bsec)
7402 {
7403 if (asec == NULL
7404 || bsec == NULL
7405 || abfd->xvec->flavour != bfd_target_elf_flavour
7406 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7407 return TRUE;
7408
7409 return elf_section_type (asec) == elf_section_type (bsec);
7410 }
7411 \f
7412 /* Final phase of ELF linker. */
7413
7414 /* A structure we use to avoid passing large numbers of arguments. */
7415
7416 struct elf_final_link_info
7417 {
7418 /* General link information. */
7419 struct bfd_link_info *info;
7420 /* Output BFD. */
7421 bfd *output_bfd;
7422 /* Symbol string table. */
7423 struct bfd_strtab_hash *symstrtab;
7424 /* .dynsym section. */
7425 asection *dynsym_sec;
7426 /* .hash section. */
7427 asection *hash_sec;
7428 /* symbol version section (.gnu.version). */
7429 asection *symver_sec;
7430 /* Buffer large enough to hold contents of any section. */
7431 bfd_byte *contents;
7432 /* Buffer large enough to hold external relocs of any section. */
7433 void *external_relocs;
7434 /* Buffer large enough to hold internal relocs of any section. */
7435 Elf_Internal_Rela *internal_relocs;
7436 /* Buffer large enough to hold external local symbols of any input
7437 BFD. */
7438 bfd_byte *external_syms;
7439 /* And a buffer for symbol section indices. */
7440 Elf_External_Sym_Shndx *locsym_shndx;
7441 /* Buffer large enough to hold internal local symbols of any input
7442 BFD. */
7443 Elf_Internal_Sym *internal_syms;
7444 /* Array large enough to hold a symbol index for each local symbol
7445 of any input BFD. */
7446 long *indices;
7447 /* Array large enough to hold a section pointer for each local
7448 symbol of any input BFD. */
7449 asection **sections;
7450 /* Buffer to hold swapped out symbols. */
7451 bfd_byte *symbuf;
7452 /* And one for symbol section indices. */
7453 Elf_External_Sym_Shndx *symshndxbuf;
7454 /* Number of swapped out symbols in buffer. */
7455 size_t symbuf_count;
7456 /* Number of symbols which fit in symbuf. */
7457 size_t symbuf_size;
7458 /* And same for symshndxbuf. */
7459 size_t shndxbuf_size;
7460 /* Number of STT_FILE syms seen. */
7461 size_t filesym_count;
7462 };
7463
7464 /* This struct is used to pass information to elf_link_output_extsym. */
7465
7466 struct elf_outext_info
7467 {
7468 bfd_boolean failed;
7469 bfd_boolean localsyms;
7470 bfd_boolean need_second_pass;
7471 bfd_boolean second_pass;
7472 struct elf_final_link_info *flinfo;
7473 };
7474
7475
7476 /* Support for evaluating a complex relocation.
7477
7478 Complex relocations are generalized, self-describing relocations. The
7479 implementation of them consists of two parts: complex symbols, and the
7480 relocations themselves.
7481
7482 The relocations are use a reserved elf-wide relocation type code (R_RELC
7483 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7484 information (start bit, end bit, word width, etc) into the addend. This
7485 information is extracted from CGEN-generated operand tables within gas.
7486
7487 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7488 internal) representing prefix-notation expressions, including but not
7489 limited to those sorts of expressions normally encoded as addends in the
7490 addend field. The symbol mangling format is:
7491
7492 <node> := <literal>
7493 | <unary-operator> ':' <node>
7494 | <binary-operator> ':' <node> ':' <node>
7495 ;
7496
7497 <literal> := 's' <digits=N> ':' <N character symbol name>
7498 | 'S' <digits=N> ':' <N character section name>
7499 | '#' <hexdigits>
7500 ;
7501
7502 <binary-operator> := as in C
7503 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7504
7505 static void
7506 set_symbol_value (bfd *bfd_with_globals,
7507 Elf_Internal_Sym *isymbuf,
7508 size_t locsymcount,
7509 size_t symidx,
7510 bfd_vma val)
7511 {
7512 struct elf_link_hash_entry **sym_hashes;
7513 struct elf_link_hash_entry *h;
7514 size_t extsymoff = locsymcount;
7515
7516 if (symidx < locsymcount)
7517 {
7518 Elf_Internal_Sym *sym;
7519
7520 sym = isymbuf + symidx;
7521 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7522 {
7523 /* It is a local symbol: move it to the
7524 "absolute" section and give it a value. */
7525 sym->st_shndx = SHN_ABS;
7526 sym->st_value = val;
7527 return;
7528 }
7529 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7530 extsymoff = 0;
7531 }
7532
7533 /* It is a global symbol: set its link type
7534 to "defined" and give it a value. */
7535
7536 sym_hashes = elf_sym_hashes (bfd_with_globals);
7537 h = sym_hashes [symidx - extsymoff];
7538 while (h->root.type == bfd_link_hash_indirect
7539 || h->root.type == bfd_link_hash_warning)
7540 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7541 h->root.type = bfd_link_hash_defined;
7542 h->root.u.def.value = val;
7543 h->root.u.def.section = bfd_abs_section_ptr;
7544 }
7545
7546 static bfd_boolean
7547 resolve_symbol (const char *name,
7548 bfd *input_bfd,
7549 struct elf_final_link_info *flinfo,
7550 bfd_vma *result,
7551 Elf_Internal_Sym *isymbuf,
7552 size_t locsymcount)
7553 {
7554 Elf_Internal_Sym *sym;
7555 struct bfd_link_hash_entry *global_entry;
7556 const char *candidate = NULL;
7557 Elf_Internal_Shdr *symtab_hdr;
7558 size_t i;
7559
7560 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7561
7562 for (i = 0; i < locsymcount; ++ i)
7563 {
7564 sym = isymbuf + i;
7565
7566 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7567 continue;
7568
7569 candidate = bfd_elf_string_from_elf_section (input_bfd,
7570 symtab_hdr->sh_link,
7571 sym->st_name);
7572 #ifdef DEBUG
7573 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7574 name, candidate, (unsigned long) sym->st_value);
7575 #endif
7576 if (candidate && strcmp (candidate, name) == 0)
7577 {
7578 asection *sec = flinfo->sections [i];
7579
7580 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7581 *result += sec->output_offset + sec->output_section->vma;
7582 #ifdef DEBUG
7583 printf ("Found symbol with value %8.8lx\n",
7584 (unsigned long) *result);
7585 #endif
7586 return TRUE;
7587 }
7588 }
7589
7590 /* Hmm, haven't found it yet. perhaps it is a global. */
7591 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7592 FALSE, FALSE, TRUE);
7593 if (!global_entry)
7594 return FALSE;
7595
7596 if (global_entry->type == bfd_link_hash_defined
7597 || global_entry->type == bfd_link_hash_defweak)
7598 {
7599 *result = (global_entry->u.def.value
7600 + global_entry->u.def.section->output_section->vma
7601 + global_entry->u.def.section->output_offset);
7602 #ifdef DEBUG
7603 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7604 global_entry->root.string, (unsigned long) *result);
7605 #endif
7606 return TRUE;
7607 }
7608
7609 return FALSE;
7610 }
7611
7612 static bfd_boolean
7613 resolve_section (const char *name,
7614 asection *sections,
7615 bfd_vma *result)
7616 {
7617 asection *curr;
7618 unsigned int len;
7619
7620 for (curr = sections; curr; curr = curr->next)
7621 if (strcmp (curr->name, name) == 0)
7622 {
7623 *result = curr->vma;
7624 return TRUE;
7625 }
7626
7627 /* Hmm. still haven't found it. try pseudo-section names. */
7628 for (curr = sections; curr; curr = curr->next)
7629 {
7630 len = strlen (curr->name);
7631 if (len > strlen (name))
7632 continue;
7633
7634 if (strncmp (curr->name, name, len) == 0)
7635 {
7636 if (strncmp (".end", name + len, 4) == 0)
7637 {
7638 *result = curr->vma + curr->size;
7639 return TRUE;
7640 }
7641
7642 /* Insert more pseudo-section names here, if you like. */
7643 }
7644 }
7645
7646 return FALSE;
7647 }
7648
7649 static void
7650 undefined_reference (const char *reftype, const char *name)
7651 {
7652 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7653 reftype, name);
7654 }
7655
7656 static bfd_boolean
7657 eval_symbol (bfd_vma *result,
7658 const char **symp,
7659 bfd *input_bfd,
7660 struct elf_final_link_info *flinfo,
7661 bfd_vma dot,
7662 Elf_Internal_Sym *isymbuf,
7663 size_t locsymcount,
7664 int signed_p)
7665 {
7666 size_t len;
7667 size_t symlen;
7668 bfd_vma a;
7669 bfd_vma b;
7670 char symbuf[4096];
7671 const char *sym = *symp;
7672 const char *symend;
7673 bfd_boolean symbol_is_section = FALSE;
7674
7675 len = strlen (sym);
7676 symend = sym + len;
7677
7678 if (len < 1 || len > sizeof (symbuf))
7679 {
7680 bfd_set_error (bfd_error_invalid_operation);
7681 return FALSE;
7682 }
7683
7684 switch (* sym)
7685 {
7686 case '.':
7687 *result = dot;
7688 *symp = sym + 1;
7689 return TRUE;
7690
7691 case '#':
7692 ++sym;
7693 *result = strtoul (sym, (char **) symp, 16);
7694 return TRUE;
7695
7696 case 'S':
7697 symbol_is_section = TRUE;
7698 case 's':
7699 ++sym;
7700 symlen = strtol (sym, (char **) symp, 10);
7701 sym = *symp + 1; /* Skip the trailing ':'. */
7702
7703 if (symend < sym || symlen + 1 > sizeof (symbuf))
7704 {
7705 bfd_set_error (bfd_error_invalid_operation);
7706 return FALSE;
7707 }
7708
7709 memcpy (symbuf, sym, symlen);
7710 symbuf[symlen] = '\0';
7711 *symp = sym + symlen;
7712
7713 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7714 the symbol as a section, or vice-versa. so we're pretty liberal in our
7715 interpretation here; section means "try section first", not "must be a
7716 section", and likewise with symbol. */
7717
7718 if (symbol_is_section)
7719 {
7720 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7721 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7722 isymbuf, locsymcount))
7723 {
7724 undefined_reference ("section", symbuf);
7725 return FALSE;
7726 }
7727 }
7728 else
7729 {
7730 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7731 isymbuf, locsymcount)
7732 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7733 result))
7734 {
7735 undefined_reference ("symbol", symbuf);
7736 return FALSE;
7737 }
7738 }
7739
7740 return TRUE;
7741
7742 /* All that remains are operators. */
7743
7744 #define UNARY_OP(op) \
7745 if (strncmp (sym, #op, strlen (#op)) == 0) \
7746 { \
7747 sym += strlen (#op); \
7748 if (*sym == ':') \
7749 ++sym; \
7750 *symp = sym; \
7751 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7752 isymbuf, locsymcount, signed_p)) \
7753 return FALSE; \
7754 if (signed_p) \
7755 *result = op ((bfd_signed_vma) a); \
7756 else \
7757 *result = op a; \
7758 return TRUE; \
7759 }
7760
7761 #define BINARY_OP(op) \
7762 if (strncmp (sym, #op, strlen (#op)) == 0) \
7763 { \
7764 sym += strlen (#op); \
7765 if (*sym == ':') \
7766 ++sym; \
7767 *symp = sym; \
7768 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7769 isymbuf, locsymcount, signed_p)) \
7770 return FALSE; \
7771 ++*symp; \
7772 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7773 isymbuf, locsymcount, signed_p)) \
7774 return FALSE; \
7775 if (signed_p) \
7776 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7777 else \
7778 *result = a op b; \
7779 return TRUE; \
7780 }
7781
7782 default:
7783 UNARY_OP (0-);
7784 BINARY_OP (<<);
7785 BINARY_OP (>>);
7786 BINARY_OP (==);
7787 BINARY_OP (!=);
7788 BINARY_OP (<=);
7789 BINARY_OP (>=);
7790 BINARY_OP (&&);
7791 BINARY_OP (||);
7792 UNARY_OP (~);
7793 UNARY_OP (!);
7794 BINARY_OP (*);
7795 BINARY_OP (/);
7796 BINARY_OP (%);
7797 BINARY_OP (^);
7798 BINARY_OP (|);
7799 BINARY_OP (&);
7800 BINARY_OP (+);
7801 BINARY_OP (-);
7802 BINARY_OP (<);
7803 BINARY_OP (>);
7804 #undef UNARY_OP
7805 #undef BINARY_OP
7806 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7807 bfd_set_error (bfd_error_invalid_operation);
7808 return FALSE;
7809 }
7810 }
7811
7812 static void
7813 put_value (bfd_vma size,
7814 unsigned long chunksz,
7815 bfd *input_bfd,
7816 bfd_vma x,
7817 bfd_byte *location)
7818 {
7819 location += (size - chunksz);
7820
7821 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7822 {
7823 switch (chunksz)
7824 {
7825 default:
7826 case 0:
7827 abort ();
7828 case 1:
7829 bfd_put_8 (input_bfd, x, location);
7830 break;
7831 case 2:
7832 bfd_put_16 (input_bfd, x, location);
7833 break;
7834 case 4:
7835 bfd_put_32 (input_bfd, x, location);
7836 break;
7837 case 8:
7838 #ifdef BFD64
7839 bfd_put_64 (input_bfd, x, location);
7840 #else
7841 abort ();
7842 #endif
7843 break;
7844 }
7845 }
7846 }
7847
7848 static bfd_vma
7849 get_value (bfd_vma size,
7850 unsigned long chunksz,
7851 bfd *input_bfd,
7852 bfd_byte *location)
7853 {
7854 int shift;
7855 bfd_vma x = 0;
7856
7857 /* Sanity checks. */
7858 BFD_ASSERT (chunksz <= sizeof (x)
7859 && size >= chunksz
7860 && chunksz != 0
7861 && (size % chunksz) == 0
7862 && input_bfd != NULL
7863 && location != NULL);
7864
7865 if (chunksz == sizeof (x))
7866 {
7867 BFD_ASSERT (size == chunksz);
7868
7869 /* Make sure that we do not perform an undefined shift operation.
7870 We know that size == chunksz so there will only be one iteration
7871 of the loop below. */
7872 shift = 0;
7873 }
7874 else
7875 shift = 8 * chunksz;
7876
7877 for (; size; size -= chunksz, location += chunksz)
7878 {
7879 switch (chunksz)
7880 {
7881 case 1:
7882 x = (x << shift) | bfd_get_8 (input_bfd, location);
7883 break;
7884 case 2:
7885 x = (x << shift) | bfd_get_16 (input_bfd, location);
7886 break;
7887 case 4:
7888 x = (x << shift) | bfd_get_32 (input_bfd, location);
7889 break;
7890 #ifdef BFD64
7891 case 8:
7892 x = (x << shift) | bfd_get_64 (input_bfd, location);
7893 break;
7894 #endif
7895 default:
7896 abort ();
7897 }
7898 }
7899 return x;
7900 }
7901
7902 static void
7903 decode_complex_addend (unsigned long *start, /* in bits */
7904 unsigned long *oplen, /* in bits */
7905 unsigned long *len, /* in bits */
7906 unsigned long *wordsz, /* in bytes */
7907 unsigned long *chunksz, /* in bytes */
7908 unsigned long *lsb0_p,
7909 unsigned long *signed_p,
7910 unsigned long *trunc_p,
7911 unsigned long encoded)
7912 {
7913 * start = encoded & 0x3F;
7914 * len = (encoded >> 6) & 0x3F;
7915 * oplen = (encoded >> 12) & 0x3F;
7916 * wordsz = (encoded >> 18) & 0xF;
7917 * chunksz = (encoded >> 22) & 0xF;
7918 * lsb0_p = (encoded >> 27) & 1;
7919 * signed_p = (encoded >> 28) & 1;
7920 * trunc_p = (encoded >> 29) & 1;
7921 }
7922
7923 bfd_reloc_status_type
7924 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7925 asection *input_section ATTRIBUTE_UNUSED,
7926 bfd_byte *contents,
7927 Elf_Internal_Rela *rel,
7928 bfd_vma relocation)
7929 {
7930 bfd_vma shift, x, mask;
7931 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7932 bfd_reloc_status_type r;
7933
7934 /* Perform this reloc, since it is complex.
7935 (this is not to say that it necessarily refers to a complex
7936 symbol; merely that it is a self-describing CGEN based reloc.
7937 i.e. the addend has the complete reloc information (bit start, end,
7938 word size, etc) encoded within it.). */
7939
7940 decode_complex_addend (&start, &oplen, &len, &wordsz,
7941 &chunksz, &lsb0_p, &signed_p,
7942 &trunc_p, rel->r_addend);
7943
7944 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7945
7946 if (lsb0_p)
7947 shift = (start + 1) - len;
7948 else
7949 shift = (8 * wordsz) - (start + len);
7950
7951 /* FIXME: octets_per_byte. */
7952 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7953
7954 #ifdef DEBUG
7955 printf ("Doing complex reloc: "
7956 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7957 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7958 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7959 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7960 oplen, (unsigned long) x, (unsigned long) mask,
7961 (unsigned long) relocation);
7962 #endif
7963
7964 r = bfd_reloc_ok;
7965 if (! trunc_p)
7966 /* Now do an overflow check. */
7967 r = bfd_check_overflow ((signed_p
7968 ? complain_overflow_signed
7969 : complain_overflow_unsigned),
7970 len, 0, (8 * wordsz),
7971 relocation);
7972
7973 /* Do the deed. */
7974 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7975
7976 #ifdef DEBUG
7977 printf (" relocation: %8.8lx\n"
7978 " shifted mask: %8.8lx\n"
7979 " shifted/masked reloc: %8.8lx\n"
7980 " result: %8.8lx\n",
7981 (unsigned long) relocation, (unsigned long) (mask << shift),
7982 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7983 #endif
7984 /* FIXME: octets_per_byte. */
7985 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7986 return r;
7987 }
7988
7989 /* When performing a relocatable link, the input relocations are
7990 preserved. But, if they reference global symbols, the indices
7991 referenced must be updated. Update all the relocations found in
7992 RELDATA. */
7993
7994 static void
7995 elf_link_adjust_relocs (bfd *abfd,
7996 struct bfd_elf_section_reloc_data *reldata)
7997 {
7998 unsigned int i;
7999 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8000 bfd_byte *erela;
8001 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8002 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8003 bfd_vma r_type_mask;
8004 int r_sym_shift;
8005 unsigned int count = reldata->count;
8006 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8007
8008 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8009 {
8010 swap_in = bed->s->swap_reloc_in;
8011 swap_out = bed->s->swap_reloc_out;
8012 }
8013 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8014 {
8015 swap_in = bed->s->swap_reloca_in;
8016 swap_out = bed->s->swap_reloca_out;
8017 }
8018 else
8019 abort ();
8020
8021 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8022 abort ();
8023
8024 if (bed->s->arch_size == 32)
8025 {
8026 r_type_mask = 0xff;
8027 r_sym_shift = 8;
8028 }
8029 else
8030 {
8031 r_type_mask = 0xffffffff;
8032 r_sym_shift = 32;
8033 }
8034
8035 erela = reldata->hdr->contents;
8036 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8037 {
8038 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8039 unsigned int j;
8040
8041 if (*rel_hash == NULL)
8042 continue;
8043
8044 BFD_ASSERT ((*rel_hash)->indx >= 0);
8045
8046 (*swap_in) (abfd, erela, irela);
8047 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8048 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8049 | (irela[j].r_info & r_type_mask));
8050 (*swap_out) (abfd, irela, erela);
8051 }
8052 }
8053
8054 struct elf_link_sort_rela
8055 {
8056 union {
8057 bfd_vma offset;
8058 bfd_vma sym_mask;
8059 } u;
8060 enum elf_reloc_type_class type;
8061 /* We use this as an array of size int_rels_per_ext_rel. */
8062 Elf_Internal_Rela rela[1];
8063 };
8064
8065 static int
8066 elf_link_sort_cmp1 (const void *A, const void *B)
8067 {
8068 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8069 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8070 int relativea, relativeb;
8071
8072 relativea = a->type == reloc_class_relative;
8073 relativeb = b->type == reloc_class_relative;
8074
8075 if (relativea < relativeb)
8076 return 1;
8077 if (relativea > relativeb)
8078 return -1;
8079 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8080 return -1;
8081 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8082 return 1;
8083 if (a->rela->r_offset < b->rela->r_offset)
8084 return -1;
8085 if (a->rela->r_offset > b->rela->r_offset)
8086 return 1;
8087 return 0;
8088 }
8089
8090 static int
8091 elf_link_sort_cmp2 (const void *A, const void *B)
8092 {
8093 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8094 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8095
8096 if (a->type < b->type)
8097 return -1;
8098 if (a->type > b->type)
8099 return 1;
8100 if (a->u.offset < b->u.offset)
8101 return -1;
8102 if (a->u.offset > b->u.offset)
8103 return 1;
8104 if (a->rela->r_offset < b->rela->r_offset)
8105 return -1;
8106 if (a->rela->r_offset > b->rela->r_offset)
8107 return 1;
8108 return 0;
8109 }
8110
8111 static size_t
8112 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8113 {
8114 asection *dynamic_relocs;
8115 asection *rela_dyn;
8116 asection *rel_dyn;
8117 bfd_size_type count, size;
8118 size_t i, ret, sort_elt, ext_size;
8119 bfd_byte *sort, *s_non_relative, *p;
8120 struct elf_link_sort_rela *sq;
8121 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8122 int i2e = bed->s->int_rels_per_ext_rel;
8123 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8124 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8125 struct bfd_link_order *lo;
8126 bfd_vma r_sym_mask;
8127 bfd_boolean use_rela;
8128
8129 /* Find a dynamic reloc section. */
8130 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8131 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8132 if (rela_dyn != NULL && rela_dyn->size > 0
8133 && rel_dyn != NULL && rel_dyn->size > 0)
8134 {
8135 bfd_boolean use_rela_initialised = FALSE;
8136
8137 /* This is just here to stop gcc from complaining.
8138 It's initialization checking code is not perfect. */
8139 use_rela = TRUE;
8140
8141 /* Both sections are present. Examine the sizes
8142 of the indirect sections to help us choose. */
8143 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8144 if (lo->type == bfd_indirect_link_order)
8145 {
8146 asection *o = lo->u.indirect.section;
8147
8148 if ((o->size % bed->s->sizeof_rela) == 0)
8149 {
8150 if ((o->size % bed->s->sizeof_rel) == 0)
8151 /* Section size is divisible by both rel and rela sizes.
8152 It is of no help to us. */
8153 ;
8154 else
8155 {
8156 /* Section size is only divisible by rela. */
8157 if (use_rela_initialised && (use_rela == FALSE))
8158 {
8159 _bfd_error_handler
8160 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8161 bfd_set_error (bfd_error_invalid_operation);
8162 return 0;
8163 }
8164 else
8165 {
8166 use_rela = TRUE;
8167 use_rela_initialised = TRUE;
8168 }
8169 }
8170 }
8171 else if ((o->size % bed->s->sizeof_rel) == 0)
8172 {
8173 /* Section size is only divisible by rel. */
8174 if (use_rela_initialised && (use_rela == TRUE))
8175 {
8176 _bfd_error_handler
8177 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8178 bfd_set_error (bfd_error_invalid_operation);
8179 return 0;
8180 }
8181 else
8182 {
8183 use_rela = FALSE;
8184 use_rela_initialised = TRUE;
8185 }
8186 }
8187 else
8188 {
8189 /* The section size is not divisible by either - something is wrong. */
8190 _bfd_error_handler
8191 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8192 bfd_set_error (bfd_error_invalid_operation);
8193 return 0;
8194 }
8195 }
8196
8197 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8198 if (lo->type == bfd_indirect_link_order)
8199 {
8200 asection *o = lo->u.indirect.section;
8201
8202 if ((o->size % bed->s->sizeof_rela) == 0)
8203 {
8204 if ((o->size % bed->s->sizeof_rel) == 0)
8205 /* Section size is divisible by both rel and rela sizes.
8206 It is of no help to us. */
8207 ;
8208 else
8209 {
8210 /* Section size is only divisible by rela. */
8211 if (use_rela_initialised && (use_rela == FALSE))
8212 {
8213 _bfd_error_handler
8214 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8215 bfd_set_error (bfd_error_invalid_operation);
8216 return 0;
8217 }
8218 else
8219 {
8220 use_rela = TRUE;
8221 use_rela_initialised = TRUE;
8222 }
8223 }
8224 }
8225 else if ((o->size % bed->s->sizeof_rel) == 0)
8226 {
8227 /* Section size is only divisible by rel. */
8228 if (use_rela_initialised && (use_rela == TRUE))
8229 {
8230 _bfd_error_handler
8231 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8232 bfd_set_error (bfd_error_invalid_operation);
8233 return 0;
8234 }
8235 else
8236 {
8237 use_rela = FALSE;
8238 use_rela_initialised = TRUE;
8239 }
8240 }
8241 else
8242 {
8243 /* The section size is not divisible by either - something is wrong. */
8244 _bfd_error_handler
8245 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8246 bfd_set_error (bfd_error_invalid_operation);
8247 return 0;
8248 }
8249 }
8250
8251 if (! use_rela_initialised)
8252 /* Make a guess. */
8253 use_rela = TRUE;
8254 }
8255 else if (rela_dyn != NULL && rela_dyn->size > 0)
8256 use_rela = TRUE;
8257 else if (rel_dyn != NULL && rel_dyn->size > 0)
8258 use_rela = FALSE;
8259 else
8260 return 0;
8261
8262 if (use_rela)
8263 {
8264 dynamic_relocs = rela_dyn;
8265 ext_size = bed->s->sizeof_rela;
8266 swap_in = bed->s->swap_reloca_in;
8267 swap_out = bed->s->swap_reloca_out;
8268 }
8269 else
8270 {
8271 dynamic_relocs = rel_dyn;
8272 ext_size = bed->s->sizeof_rel;
8273 swap_in = bed->s->swap_reloc_in;
8274 swap_out = bed->s->swap_reloc_out;
8275 }
8276
8277 size = 0;
8278 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8279 if (lo->type == bfd_indirect_link_order)
8280 size += lo->u.indirect.section->size;
8281
8282 if (size != dynamic_relocs->size)
8283 return 0;
8284
8285 sort_elt = (sizeof (struct elf_link_sort_rela)
8286 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8287
8288 count = dynamic_relocs->size / ext_size;
8289 if (count == 0)
8290 return 0;
8291 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8292
8293 if (sort == NULL)
8294 {
8295 (*info->callbacks->warning)
8296 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8297 return 0;
8298 }
8299
8300 if (bed->s->arch_size == 32)
8301 r_sym_mask = ~(bfd_vma) 0xff;
8302 else
8303 r_sym_mask = ~(bfd_vma) 0xffffffff;
8304
8305 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8306 if (lo->type == bfd_indirect_link_order)
8307 {
8308 bfd_byte *erel, *erelend;
8309 asection *o = lo->u.indirect.section;
8310
8311 if (o->contents == NULL && o->size != 0)
8312 {
8313 /* This is a reloc section that is being handled as a normal
8314 section. See bfd_section_from_shdr. We can't combine
8315 relocs in this case. */
8316 free (sort);
8317 return 0;
8318 }
8319 erel = o->contents;
8320 erelend = o->contents + o->size;
8321 /* FIXME: octets_per_byte. */
8322 p = sort + o->output_offset / ext_size * sort_elt;
8323
8324 while (erel < erelend)
8325 {
8326 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8327
8328 (*swap_in) (abfd, erel, s->rela);
8329 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8330 s->u.sym_mask = r_sym_mask;
8331 p += sort_elt;
8332 erel += ext_size;
8333 }
8334 }
8335
8336 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8337
8338 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8339 {
8340 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8341 if (s->type != reloc_class_relative)
8342 break;
8343 }
8344 ret = i;
8345 s_non_relative = p;
8346
8347 sq = (struct elf_link_sort_rela *) s_non_relative;
8348 for (; i < count; i++, p += sort_elt)
8349 {
8350 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8351 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8352 sq = sp;
8353 sp->u.offset = sq->rela->r_offset;
8354 }
8355
8356 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8357
8358 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8359 if (lo->type == bfd_indirect_link_order)
8360 {
8361 bfd_byte *erel, *erelend;
8362 asection *o = lo->u.indirect.section;
8363
8364 erel = o->contents;
8365 erelend = o->contents + o->size;
8366 /* FIXME: octets_per_byte. */
8367 p = sort + o->output_offset / ext_size * sort_elt;
8368 while (erel < erelend)
8369 {
8370 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8371 (*swap_out) (abfd, s->rela, erel);
8372 p += sort_elt;
8373 erel += ext_size;
8374 }
8375 }
8376
8377 free (sort);
8378 *psec = dynamic_relocs;
8379 return ret;
8380 }
8381
8382 /* Flush the output symbols to the file. */
8383
8384 static bfd_boolean
8385 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8386 const struct elf_backend_data *bed)
8387 {
8388 if (flinfo->symbuf_count > 0)
8389 {
8390 Elf_Internal_Shdr *hdr;
8391 file_ptr pos;
8392 bfd_size_type amt;
8393
8394 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8395 pos = hdr->sh_offset + hdr->sh_size;
8396 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8397 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8398 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8399 return FALSE;
8400
8401 hdr->sh_size += amt;
8402 flinfo->symbuf_count = 0;
8403 }
8404
8405 return TRUE;
8406 }
8407
8408 /* Add a symbol to the output symbol table. */
8409
8410 static int
8411 elf_link_output_sym (struct elf_final_link_info *flinfo,
8412 const char *name,
8413 Elf_Internal_Sym *elfsym,
8414 asection *input_sec,
8415 struct elf_link_hash_entry *h)
8416 {
8417 bfd_byte *dest;
8418 Elf_External_Sym_Shndx *destshndx;
8419 int (*output_symbol_hook)
8420 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8421 struct elf_link_hash_entry *);
8422 const struct elf_backend_data *bed;
8423
8424 bed = get_elf_backend_data (flinfo->output_bfd);
8425 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8426 if (output_symbol_hook != NULL)
8427 {
8428 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8429 if (ret != 1)
8430 return ret;
8431 }
8432
8433 if (name == NULL || *name == '\0')
8434 elfsym->st_name = 0;
8435 else if (input_sec->flags & SEC_EXCLUDE)
8436 elfsym->st_name = 0;
8437 else
8438 {
8439 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8440 name, TRUE, FALSE);
8441 if (elfsym->st_name == (unsigned long) -1)
8442 return 0;
8443 }
8444
8445 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8446 {
8447 if (! elf_link_flush_output_syms (flinfo, bed))
8448 return 0;
8449 }
8450
8451 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8452 destshndx = flinfo->symshndxbuf;
8453 if (destshndx != NULL)
8454 {
8455 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8456 {
8457 bfd_size_type amt;
8458
8459 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8460 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8461 amt * 2);
8462 if (destshndx == NULL)
8463 return 0;
8464 flinfo->symshndxbuf = destshndx;
8465 memset ((char *) destshndx + amt, 0, amt);
8466 flinfo->shndxbuf_size *= 2;
8467 }
8468 destshndx += bfd_get_symcount (flinfo->output_bfd);
8469 }
8470
8471 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8472 flinfo->symbuf_count += 1;
8473 bfd_get_symcount (flinfo->output_bfd) += 1;
8474
8475 return 1;
8476 }
8477
8478 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8479
8480 static bfd_boolean
8481 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8482 {
8483 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8484 && sym->st_shndx < SHN_LORESERVE)
8485 {
8486 /* The gABI doesn't support dynamic symbols in output sections
8487 beyond 64k. */
8488 (*_bfd_error_handler)
8489 (_("%B: Too many sections: %d (>= %d)"),
8490 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8491 bfd_set_error (bfd_error_nonrepresentable_section);
8492 return FALSE;
8493 }
8494 return TRUE;
8495 }
8496
8497 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8498 allowing an unsatisfied unversioned symbol in the DSO to match a
8499 versioned symbol that would normally require an explicit version.
8500 We also handle the case that a DSO references a hidden symbol
8501 which may be satisfied by a versioned symbol in another DSO. */
8502
8503 static bfd_boolean
8504 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8505 const struct elf_backend_data *bed,
8506 struct elf_link_hash_entry *h)
8507 {
8508 bfd *abfd;
8509 struct elf_link_loaded_list *loaded;
8510
8511 if (!is_elf_hash_table (info->hash))
8512 return FALSE;
8513
8514 /* Check indirect symbol. */
8515 while (h->root.type == bfd_link_hash_indirect)
8516 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8517
8518 switch (h->root.type)
8519 {
8520 default:
8521 abfd = NULL;
8522 break;
8523
8524 case bfd_link_hash_undefined:
8525 case bfd_link_hash_undefweak:
8526 abfd = h->root.u.undef.abfd;
8527 if ((abfd->flags & DYNAMIC) == 0
8528 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8529 return FALSE;
8530 break;
8531
8532 case bfd_link_hash_defined:
8533 case bfd_link_hash_defweak:
8534 abfd = h->root.u.def.section->owner;
8535 break;
8536
8537 case bfd_link_hash_common:
8538 abfd = h->root.u.c.p->section->owner;
8539 break;
8540 }
8541 BFD_ASSERT (abfd != NULL);
8542
8543 for (loaded = elf_hash_table (info)->loaded;
8544 loaded != NULL;
8545 loaded = loaded->next)
8546 {
8547 bfd *input;
8548 Elf_Internal_Shdr *hdr;
8549 bfd_size_type symcount;
8550 bfd_size_type extsymcount;
8551 bfd_size_type extsymoff;
8552 Elf_Internal_Shdr *versymhdr;
8553 Elf_Internal_Sym *isym;
8554 Elf_Internal_Sym *isymend;
8555 Elf_Internal_Sym *isymbuf;
8556 Elf_External_Versym *ever;
8557 Elf_External_Versym *extversym;
8558
8559 input = loaded->abfd;
8560
8561 /* We check each DSO for a possible hidden versioned definition. */
8562 if (input == abfd
8563 || (input->flags & DYNAMIC) == 0
8564 || elf_dynversym (input) == 0)
8565 continue;
8566
8567 hdr = &elf_tdata (input)->dynsymtab_hdr;
8568
8569 symcount = hdr->sh_size / bed->s->sizeof_sym;
8570 if (elf_bad_symtab (input))
8571 {
8572 extsymcount = symcount;
8573 extsymoff = 0;
8574 }
8575 else
8576 {
8577 extsymcount = symcount - hdr->sh_info;
8578 extsymoff = hdr->sh_info;
8579 }
8580
8581 if (extsymcount == 0)
8582 continue;
8583
8584 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8585 NULL, NULL, NULL);
8586 if (isymbuf == NULL)
8587 return FALSE;
8588
8589 /* Read in any version definitions. */
8590 versymhdr = &elf_tdata (input)->dynversym_hdr;
8591 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8592 if (extversym == NULL)
8593 goto error_ret;
8594
8595 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8596 || (bfd_bread (extversym, versymhdr->sh_size, input)
8597 != versymhdr->sh_size))
8598 {
8599 free (extversym);
8600 error_ret:
8601 free (isymbuf);
8602 return FALSE;
8603 }
8604
8605 ever = extversym + extsymoff;
8606 isymend = isymbuf + extsymcount;
8607 for (isym = isymbuf; isym < isymend; isym++, ever++)
8608 {
8609 const char *name;
8610 Elf_Internal_Versym iver;
8611 unsigned short version_index;
8612
8613 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8614 || isym->st_shndx == SHN_UNDEF)
8615 continue;
8616
8617 name = bfd_elf_string_from_elf_section (input,
8618 hdr->sh_link,
8619 isym->st_name);
8620 if (strcmp (name, h->root.root.string) != 0)
8621 continue;
8622
8623 _bfd_elf_swap_versym_in (input, ever, &iver);
8624
8625 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8626 && !(h->def_regular
8627 && h->forced_local))
8628 {
8629 /* If we have a non-hidden versioned sym, then it should
8630 have provided a definition for the undefined sym unless
8631 it is defined in a non-shared object and forced local.
8632 */
8633 abort ();
8634 }
8635
8636 version_index = iver.vs_vers & VERSYM_VERSION;
8637 if (version_index == 1 || version_index == 2)
8638 {
8639 /* This is the base or first version. We can use it. */
8640 free (extversym);
8641 free (isymbuf);
8642 return TRUE;
8643 }
8644 }
8645
8646 free (extversym);
8647 free (isymbuf);
8648 }
8649
8650 return FALSE;
8651 }
8652
8653 /* Add an external symbol to the symbol table. This is called from
8654 the hash table traversal routine. When generating a shared object,
8655 we go through the symbol table twice. The first time we output
8656 anything that might have been forced to local scope in a version
8657 script. The second time we output the symbols that are still
8658 global symbols. */
8659
8660 static bfd_boolean
8661 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8662 {
8663 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8664 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8665 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8666 bfd_boolean strip;
8667 Elf_Internal_Sym sym;
8668 asection *input_sec;
8669 const struct elf_backend_data *bed;
8670 long indx;
8671 int ret;
8672
8673 if (h->root.type == bfd_link_hash_warning)
8674 {
8675 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8676 if (h->root.type == bfd_link_hash_new)
8677 return TRUE;
8678 }
8679
8680 /* Decide whether to output this symbol in this pass. */
8681 if (eoinfo->localsyms)
8682 {
8683 if (!h->forced_local)
8684 return TRUE;
8685 if (eoinfo->second_pass
8686 && !((h->root.type == bfd_link_hash_defined
8687 || h->root.type == bfd_link_hash_defweak)
8688 && h->root.u.def.section->output_section != NULL))
8689 return TRUE;
8690 }
8691 else
8692 {
8693 if (h->forced_local)
8694 return TRUE;
8695 }
8696
8697 bed = get_elf_backend_data (flinfo->output_bfd);
8698
8699 if (h->root.type == bfd_link_hash_undefined)
8700 {
8701 /* If we have an undefined symbol reference here then it must have
8702 come from a shared library that is being linked in. (Undefined
8703 references in regular files have already been handled unless
8704 they are in unreferenced sections which are removed by garbage
8705 collection). */
8706 bfd_boolean ignore_undef = FALSE;
8707
8708 /* Some symbols may be special in that the fact that they're
8709 undefined can be safely ignored - let backend determine that. */
8710 if (bed->elf_backend_ignore_undef_symbol)
8711 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8712
8713 /* If we are reporting errors for this situation then do so now. */
8714 if (!ignore_undef
8715 && h->ref_dynamic
8716 && (!h->ref_regular || flinfo->info->gc_sections)
8717 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8718 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8719 {
8720 if (!(flinfo->info->callbacks->undefined_symbol
8721 (flinfo->info, h->root.root.string,
8722 h->ref_regular ? NULL : h->root.u.undef.abfd,
8723 NULL, 0,
8724 (flinfo->info->unresolved_syms_in_shared_libs
8725 == RM_GENERATE_ERROR))))
8726 {
8727 bfd_set_error (bfd_error_bad_value);
8728 eoinfo->failed = TRUE;
8729 return FALSE;
8730 }
8731 }
8732 }
8733
8734 /* We should also warn if a forced local symbol is referenced from
8735 shared libraries. */
8736 if (!flinfo->info->relocatable
8737 && flinfo->info->executable
8738 && h->forced_local
8739 && h->ref_dynamic
8740 && h->def_regular
8741 && !h->dynamic_def
8742 && h->ref_dynamic_nonweak
8743 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8744 {
8745 bfd *def_bfd;
8746 const char *msg;
8747 struct elf_link_hash_entry *hi = h;
8748
8749 /* Check indirect symbol. */
8750 while (hi->root.type == bfd_link_hash_indirect)
8751 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8752
8753 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8754 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8755 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8756 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8757 else
8758 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8759 def_bfd = flinfo->output_bfd;
8760 if (hi->root.u.def.section != bfd_abs_section_ptr)
8761 def_bfd = hi->root.u.def.section->owner;
8762 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8763 h->root.root.string);
8764 bfd_set_error (bfd_error_bad_value);
8765 eoinfo->failed = TRUE;
8766 return FALSE;
8767 }
8768
8769 /* We don't want to output symbols that have never been mentioned by
8770 a regular file, or that we have been told to strip. However, if
8771 h->indx is set to -2, the symbol is used by a reloc and we must
8772 output it. */
8773 if (h->indx == -2)
8774 strip = FALSE;
8775 else if ((h->def_dynamic
8776 || h->ref_dynamic
8777 || h->root.type == bfd_link_hash_new)
8778 && !h->def_regular
8779 && !h->ref_regular)
8780 strip = TRUE;
8781 else if (flinfo->info->strip == strip_all)
8782 strip = TRUE;
8783 else if (flinfo->info->strip == strip_some
8784 && bfd_hash_lookup (flinfo->info->keep_hash,
8785 h->root.root.string, FALSE, FALSE) == NULL)
8786 strip = TRUE;
8787 else if ((h->root.type == bfd_link_hash_defined
8788 || h->root.type == bfd_link_hash_defweak)
8789 && ((flinfo->info->strip_discarded
8790 && discarded_section (h->root.u.def.section))
8791 || (h->root.u.def.section->owner != NULL
8792 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8793 strip = TRUE;
8794 else if ((h->root.type == bfd_link_hash_undefined
8795 || h->root.type == bfd_link_hash_undefweak)
8796 && h->root.u.undef.abfd != NULL
8797 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8798 strip = TRUE;
8799 else
8800 strip = FALSE;
8801
8802 /* If we're stripping it, and it's not a dynamic symbol, there's
8803 nothing else to do unless it is a forced local symbol or a
8804 STT_GNU_IFUNC symbol. */
8805 if (strip
8806 && h->dynindx == -1
8807 && h->type != STT_GNU_IFUNC
8808 && !h->forced_local)
8809 return TRUE;
8810
8811 sym.st_value = 0;
8812 sym.st_size = h->size;
8813 sym.st_other = h->other;
8814 if (h->forced_local)
8815 {
8816 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8817 /* Turn off visibility on local symbol. */
8818 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8819 }
8820 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
8821 else if (h->unique_global && h->def_regular)
8822 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8823 else if (h->root.type == bfd_link_hash_undefweak
8824 || h->root.type == bfd_link_hash_defweak)
8825 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8826 else
8827 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8828 sym.st_target_internal = h->target_internal;
8829
8830 switch (h->root.type)
8831 {
8832 default:
8833 case bfd_link_hash_new:
8834 case bfd_link_hash_warning:
8835 abort ();
8836 return FALSE;
8837
8838 case bfd_link_hash_undefined:
8839 case bfd_link_hash_undefweak:
8840 input_sec = bfd_und_section_ptr;
8841 sym.st_shndx = SHN_UNDEF;
8842 break;
8843
8844 case bfd_link_hash_defined:
8845 case bfd_link_hash_defweak:
8846 {
8847 input_sec = h->root.u.def.section;
8848 if (input_sec->output_section != NULL)
8849 {
8850 if (eoinfo->localsyms && flinfo->filesym_count == 1)
8851 {
8852 bfd_boolean second_pass_sym
8853 = (input_sec->owner == flinfo->output_bfd
8854 || input_sec->owner == NULL
8855 || (input_sec->flags & SEC_LINKER_CREATED) != 0
8856 || (input_sec->owner->flags & BFD_LINKER_CREATED) != 0);
8857
8858 eoinfo->need_second_pass |= second_pass_sym;
8859 if (eoinfo->second_pass != second_pass_sym)
8860 return TRUE;
8861 }
8862
8863 sym.st_shndx =
8864 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
8865 input_sec->output_section);
8866 if (sym.st_shndx == SHN_BAD)
8867 {
8868 (*_bfd_error_handler)
8869 (_("%B: could not find output section %A for input section %A"),
8870 flinfo->output_bfd, input_sec->output_section, input_sec);
8871 bfd_set_error (bfd_error_nonrepresentable_section);
8872 eoinfo->failed = TRUE;
8873 return FALSE;
8874 }
8875
8876 /* ELF symbols in relocatable files are section relative,
8877 but in nonrelocatable files they are virtual
8878 addresses. */
8879 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8880 if (!flinfo->info->relocatable)
8881 {
8882 sym.st_value += input_sec->output_section->vma;
8883 if (h->type == STT_TLS)
8884 {
8885 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
8886 if (tls_sec != NULL)
8887 sym.st_value -= tls_sec->vma;
8888 else
8889 {
8890 /* The TLS section may have been garbage collected. */
8891 BFD_ASSERT (flinfo->info->gc_sections
8892 && !input_sec->gc_mark);
8893 }
8894 }
8895 }
8896 }
8897 else
8898 {
8899 BFD_ASSERT (input_sec->owner == NULL
8900 || (input_sec->owner->flags & DYNAMIC) != 0);
8901 sym.st_shndx = SHN_UNDEF;
8902 input_sec = bfd_und_section_ptr;
8903 }
8904 }
8905 break;
8906
8907 case bfd_link_hash_common:
8908 input_sec = h->root.u.c.p->section;
8909 sym.st_shndx = bed->common_section_index (input_sec);
8910 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8911 break;
8912
8913 case bfd_link_hash_indirect:
8914 /* These symbols are created by symbol versioning. They point
8915 to the decorated version of the name. For example, if the
8916 symbol foo@@GNU_1.2 is the default, which should be used when
8917 foo is used with no version, then we add an indirect symbol
8918 foo which points to foo@@GNU_1.2. We ignore these symbols,
8919 since the indirected symbol is already in the hash table. */
8920 return TRUE;
8921 }
8922
8923 /* Give the processor backend a chance to tweak the symbol value,
8924 and also to finish up anything that needs to be done for this
8925 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8926 forced local syms when non-shared is due to a historical quirk.
8927 STT_GNU_IFUNC symbol must go through PLT. */
8928 if ((h->type == STT_GNU_IFUNC
8929 && h->def_regular
8930 && !flinfo->info->relocatable)
8931 || ((h->dynindx != -1
8932 || h->forced_local)
8933 && ((flinfo->info->shared
8934 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8935 || h->root.type != bfd_link_hash_undefweak))
8936 || !h->forced_local)
8937 && elf_hash_table (flinfo->info)->dynamic_sections_created))
8938 {
8939 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8940 (flinfo->output_bfd, flinfo->info, h, &sym)))
8941 {
8942 eoinfo->failed = TRUE;
8943 return FALSE;
8944 }
8945 }
8946
8947 /* If we are marking the symbol as undefined, and there are no
8948 non-weak references to this symbol from a regular object, then
8949 mark the symbol as weak undefined; if there are non-weak
8950 references, mark the symbol as strong. We can't do this earlier,
8951 because it might not be marked as undefined until the
8952 finish_dynamic_symbol routine gets through with it. */
8953 if (sym.st_shndx == SHN_UNDEF
8954 && h->ref_regular
8955 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8956 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8957 {
8958 int bindtype;
8959 unsigned int type = ELF_ST_TYPE (sym.st_info);
8960
8961 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8962 if (type == STT_GNU_IFUNC)
8963 type = STT_FUNC;
8964
8965 if (h->ref_regular_nonweak)
8966 bindtype = STB_GLOBAL;
8967 else
8968 bindtype = STB_WEAK;
8969 sym.st_info = ELF_ST_INFO (bindtype, type);
8970 }
8971
8972 /* If this is a symbol defined in a dynamic library, don't use the
8973 symbol size from the dynamic library. Relinking an executable
8974 against a new library may introduce gratuitous changes in the
8975 executable's symbols if we keep the size. */
8976 if (sym.st_shndx == SHN_UNDEF
8977 && !h->def_regular
8978 && h->def_dynamic)
8979 sym.st_size = 0;
8980
8981 /* If a non-weak symbol with non-default visibility is not defined
8982 locally, it is a fatal error. */
8983 if (!flinfo->info->relocatable
8984 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8985 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8986 && h->root.type == bfd_link_hash_undefined
8987 && !h->def_regular)
8988 {
8989 const char *msg;
8990
8991 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
8992 msg = _("%B: protected symbol `%s' isn't defined");
8993 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
8994 msg = _("%B: internal symbol `%s' isn't defined");
8995 else
8996 msg = _("%B: hidden symbol `%s' isn't defined");
8997 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
8998 bfd_set_error (bfd_error_bad_value);
8999 eoinfo->failed = TRUE;
9000 return FALSE;
9001 }
9002
9003 /* If this symbol should be put in the .dynsym section, then put it
9004 there now. We already know the symbol index. We also fill in
9005 the entry in the .hash section. */
9006 if (flinfo->dynsym_sec != NULL
9007 && h->dynindx != -1
9008 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9009 {
9010 bfd_byte *esym;
9011
9012 /* Since there is no version information in the dynamic string,
9013 if there is no version info in symbol version section, we will
9014 have a run-time problem. */
9015 if (h->verinfo.verdef == NULL)
9016 {
9017 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9018
9019 if (p && p [1] != '\0')
9020 {
9021 (*_bfd_error_handler)
9022 (_("%B: No symbol version section for versioned symbol `%s'"),
9023 flinfo->output_bfd, h->root.root.string);
9024 eoinfo->failed = TRUE;
9025 return FALSE;
9026 }
9027 }
9028
9029 sym.st_name = h->dynstr_index;
9030 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9031 if (!check_dynsym (flinfo->output_bfd, &sym))
9032 {
9033 eoinfo->failed = TRUE;
9034 return FALSE;
9035 }
9036 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9037
9038 if (flinfo->hash_sec != NULL)
9039 {
9040 size_t hash_entry_size;
9041 bfd_byte *bucketpos;
9042 bfd_vma chain;
9043 size_t bucketcount;
9044 size_t bucket;
9045
9046 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9047 bucket = h->u.elf_hash_value % bucketcount;
9048
9049 hash_entry_size
9050 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9051 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9052 + (bucket + 2) * hash_entry_size);
9053 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9054 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9055 bucketpos);
9056 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9057 ((bfd_byte *) flinfo->hash_sec->contents
9058 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9059 }
9060
9061 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9062 {
9063 Elf_Internal_Versym iversym;
9064 Elf_External_Versym *eversym;
9065
9066 if (!h->def_regular)
9067 {
9068 if (h->verinfo.verdef == NULL)
9069 iversym.vs_vers = 0;
9070 else
9071 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9072 }
9073 else
9074 {
9075 if (h->verinfo.vertree == NULL)
9076 iversym.vs_vers = 1;
9077 else
9078 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9079 if (flinfo->info->create_default_symver)
9080 iversym.vs_vers++;
9081 }
9082
9083 if (h->hidden)
9084 iversym.vs_vers |= VERSYM_HIDDEN;
9085
9086 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9087 eversym += h->dynindx;
9088 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9089 }
9090 }
9091
9092 /* If we're stripping it, then it was just a dynamic symbol, and
9093 there's nothing else to do. */
9094 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
9095 return TRUE;
9096
9097 indx = bfd_get_symcount (flinfo->output_bfd);
9098 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9099 if (ret == 0)
9100 {
9101 eoinfo->failed = TRUE;
9102 return FALSE;
9103 }
9104 else if (ret == 1)
9105 h->indx = indx;
9106 else if (h->indx == -2)
9107 abort();
9108
9109 return TRUE;
9110 }
9111
9112 /* Return TRUE if special handling is done for relocs in SEC against
9113 symbols defined in discarded sections. */
9114
9115 static bfd_boolean
9116 elf_section_ignore_discarded_relocs (asection *sec)
9117 {
9118 const struct elf_backend_data *bed;
9119
9120 switch (sec->sec_info_type)
9121 {
9122 case SEC_INFO_TYPE_STABS:
9123 case SEC_INFO_TYPE_EH_FRAME:
9124 return TRUE;
9125 default:
9126 break;
9127 }
9128
9129 bed = get_elf_backend_data (sec->owner);
9130 if (bed->elf_backend_ignore_discarded_relocs != NULL
9131 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9132 return TRUE;
9133
9134 return FALSE;
9135 }
9136
9137 /* Return a mask saying how ld should treat relocations in SEC against
9138 symbols defined in discarded sections. If this function returns
9139 COMPLAIN set, ld will issue a warning message. If this function
9140 returns PRETEND set, and the discarded section was link-once and the
9141 same size as the kept link-once section, ld will pretend that the
9142 symbol was actually defined in the kept section. Otherwise ld will
9143 zero the reloc (at least that is the intent, but some cooperation by
9144 the target dependent code is needed, particularly for REL targets). */
9145
9146 unsigned int
9147 _bfd_elf_default_action_discarded (asection *sec)
9148 {
9149 if (sec->flags & SEC_DEBUGGING)
9150 return PRETEND;
9151
9152 if (strcmp (".eh_frame", sec->name) == 0)
9153 return 0;
9154
9155 if (strcmp (".gcc_except_table", sec->name) == 0)
9156 return 0;
9157
9158 return COMPLAIN | PRETEND;
9159 }
9160
9161 /* Find a match between a section and a member of a section group. */
9162
9163 static asection *
9164 match_group_member (asection *sec, asection *group,
9165 struct bfd_link_info *info)
9166 {
9167 asection *first = elf_next_in_group (group);
9168 asection *s = first;
9169
9170 while (s != NULL)
9171 {
9172 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9173 return s;
9174
9175 s = elf_next_in_group (s);
9176 if (s == first)
9177 break;
9178 }
9179
9180 return NULL;
9181 }
9182
9183 /* Check if the kept section of a discarded section SEC can be used
9184 to replace it. Return the replacement if it is OK. Otherwise return
9185 NULL. */
9186
9187 asection *
9188 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9189 {
9190 asection *kept;
9191
9192 kept = sec->kept_section;
9193 if (kept != NULL)
9194 {
9195 if ((kept->flags & SEC_GROUP) != 0)
9196 kept = match_group_member (sec, kept, info);
9197 if (kept != NULL
9198 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9199 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9200 kept = NULL;
9201 sec->kept_section = kept;
9202 }
9203 return kept;
9204 }
9205
9206 /* Link an input file into the linker output file. This function
9207 handles all the sections and relocations of the input file at once.
9208 This is so that we only have to read the local symbols once, and
9209 don't have to keep them in memory. */
9210
9211 static bfd_boolean
9212 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9213 {
9214 int (*relocate_section)
9215 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9216 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9217 bfd *output_bfd;
9218 Elf_Internal_Shdr *symtab_hdr;
9219 size_t locsymcount;
9220 size_t extsymoff;
9221 Elf_Internal_Sym *isymbuf;
9222 Elf_Internal_Sym *isym;
9223 Elf_Internal_Sym *isymend;
9224 long *pindex;
9225 asection **ppsection;
9226 asection *o;
9227 const struct elf_backend_data *bed;
9228 struct elf_link_hash_entry **sym_hashes;
9229 bfd_size_type address_size;
9230 bfd_vma r_type_mask;
9231 int r_sym_shift;
9232 bfd_boolean have_file_sym = FALSE;
9233
9234 output_bfd = flinfo->output_bfd;
9235 bed = get_elf_backend_data (output_bfd);
9236 relocate_section = bed->elf_backend_relocate_section;
9237
9238 /* If this is a dynamic object, we don't want to do anything here:
9239 we don't want the local symbols, and we don't want the section
9240 contents. */
9241 if ((input_bfd->flags & DYNAMIC) != 0)
9242 return TRUE;
9243
9244 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9245 if (elf_bad_symtab (input_bfd))
9246 {
9247 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9248 extsymoff = 0;
9249 }
9250 else
9251 {
9252 locsymcount = symtab_hdr->sh_info;
9253 extsymoff = symtab_hdr->sh_info;
9254 }
9255
9256 /* Read the local symbols. */
9257 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9258 if (isymbuf == NULL && locsymcount != 0)
9259 {
9260 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9261 flinfo->internal_syms,
9262 flinfo->external_syms,
9263 flinfo->locsym_shndx);
9264 if (isymbuf == NULL)
9265 return FALSE;
9266 }
9267
9268 /* Find local symbol sections and adjust values of symbols in
9269 SEC_MERGE sections. Write out those local symbols we know are
9270 going into the output file. */
9271 isymend = isymbuf + locsymcount;
9272 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9273 isym < isymend;
9274 isym++, pindex++, ppsection++)
9275 {
9276 asection *isec;
9277 const char *name;
9278 Elf_Internal_Sym osym;
9279 long indx;
9280 int ret;
9281
9282 *pindex = -1;
9283
9284 if (elf_bad_symtab (input_bfd))
9285 {
9286 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9287 {
9288 *ppsection = NULL;
9289 continue;
9290 }
9291 }
9292
9293 if (isym->st_shndx == SHN_UNDEF)
9294 isec = bfd_und_section_ptr;
9295 else if (isym->st_shndx == SHN_ABS)
9296 isec = bfd_abs_section_ptr;
9297 else if (isym->st_shndx == SHN_COMMON)
9298 isec = bfd_com_section_ptr;
9299 else
9300 {
9301 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9302 if (isec == NULL)
9303 {
9304 /* Don't attempt to output symbols with st_shnx in the
9305 reserved range other than SHN_ABS and SHN_COMMON. */
9306 *ppsection = NULL;
9307 continue;
9308 }
9309 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9310 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9311 isym->st_value =
9312 _bfd_merged_section_offset (output_bfd, &isec,
9313 elf_section_data (isec)->sec_info,
9314 isym->st_value);
9315 }
9316
9317 *ppsection = isec;
9318
9319 /* Don't output the first, undefined, symbol. */
9320 if (ppsection == flinfo->sections)
9321 continue;
9322
9323 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9324 {
9325 /* We never output section symbols. Instead, we use the
9326 section symbol of the corresponding section in the output
9327 file. */
9328 continue;
9329 }
9330
9331 /* If we are stripping all symbols, we don't want to output this
9332 one. */
9333 if (flinfo->info->strip == strip_all)
9334 continue;
9335
9336 /* If we are discarding all local symbols, we don't want to
9337 output this one. If we are generating a relocatable output
9338 file, then some of the local symbols may be required by
9339 relocs; we output them below as we discover that they are
9340 needed. */
9341 if (flinfo->info->discard == discard_all)
9342 continue;
9343
9344 /* If this symbol is defined in a section which we are
9345 discarding, we don't need to keep it. */
9346 if (isym->st_shndx != SHN_UNDEF
9347 && isym->st_shndx < SHN_LORESERVE
9348 && bfd_section_removed_from_list (output_bfd,
9349 isec->output_section))
9350 continue;
9351
9352 /* Get the name of the symbol. */
9353 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9354 isym->st_name);
9355 if (name == NULL)
9356 return FALSE;
9357
9358 /* See if we are discarding symbols with this name. */
9359 if ((flinfo->info->strip == strip_some
9360 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9361 == NULL))
9362 || (((flinfo->info->discard == discard_sec_merge
9363 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9364 || flinfo->info->discard == discard_l)
9365 && bfd_is_local_label_name (input_bfd, name)))
9366 continue;
9367
9368 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9369 {
9370 have_file_sym = TRUE;
9371 flinfo->filesym_count += 1;
9372 }
9373 if (!have_file_sym)
9374 {
9375 /* In the absence of debug info, bfd_find_nearest_line uses
9376 FILE symbols to determine the source file for local
9377 function symbols. Provide a FILE symbol here if input
9378 files lack such, so that their symbols won't be
9379 associated with a previous input file. It's not the
9380 source file, but the best we can do. */
9381 have_file_sym = TRUE;
9382 flinfo->filesym_count += 1;
9383 memset (&osym, 0, sizeof (osym));
9384 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9385 osym.st_shndx = SHN_ABS;
9386 if (!elf_link_output_sym (flinfo, input_bfd->filename, &osym,
9387 bfd_abs_section_ptr, NULL))
9388 return FALSE;
9389 }
9390
9391 osym = *isym;
9392
9393 /* Adjust the section index for the output file. */
9394 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9395 isec->output_section);
9396 if (osym.st_shndx == SHN_BAD)
9397 return FALSE;
9398
9399 /* ELF symbols in relocatable files are section relative, but
9400 in executable files they are virtual addresses. Note that
9401 this code assumes that all ELF sections have an associated
9402 BFD section with a reasonable value for output_offset; below
9403 we assume that they also have a reasonable value for
9404 output_section. Any special sections must be set up to meet
9405 these requirements. */
9406 osym.st_value += isec->output_offset;
9407 if (!flinfo->info->relocatable)
9408 {
9409 osym.st_value += isec->output_section->vma;
9410 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9411 {
9412 /* STT_TLS symbols are relative to PT_TLS segment base. */
9413 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9414 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9415 }
9416 }
9417
9418 indx = bfd_get_symcount (output_bfd);
9419 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9420 if (ret == 0)
9421 return FALSE;
9422 else if (ret == 1)
9423 *pindex = indx;
9424 }
9425
9426 if (bed->s->arch_size == 32)
9427 {
9428 r_type_mask = 0xff;
9429 r_sym_shift = 8;
9430 address_size = 4;
9431 }
9432 else
9433 {
9434 r_type_mask = 0xffffffff;
9435 r_sym_shift = 32;
9436 address_size = 8;
9437 }
9438
9439 /* Relocate the contents of each section. */
9440 sym_hashes = elf_sym_hashes (input_bfd);
9441 for (o = input_bfd->sections; o != NULL; o = o->next)
9442 {
9443 bfd_byte *contents;
9444
9445 if (! o->linker_mark)
9446 {
9447 /* This section was omitted from the link. */
9448 continue;
9449 }
9450
9451 if (flinfo->info->relocatable
9452 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9453 {
9454 /* Deal with the group signature symbol. */
9455 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9456 unsigned long symndx = sec_data->this_hdr.sh_info;
9457 asection *osec = o->output_section;
9458
9459 if (symndx >= locsymcount
9460 || (elf_bad_symtab (input_bfd)
9461 && flinfo->sections[symndx] == NULL))
9462 {
9463 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9464 while (h->root.type == bfd_link_hash_indirect
9465 || h->root.type == bfd_link_hash_warning)
9466 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9467 /* Arrange for symbol to be output. */
9468 h->indx = -2;
9469 elf_section_data (osec)->this_hdr.sh_info = -2;
9470 }
9471 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9472 {
9473 /* We'll use the output section target_index. */
9474 asection *sec = flinfo->sections[symndx]->output_section;
9475 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9476 }
9477 else
9478 {
9479 if (flinfo->indices[symndx] == -1)
9480 {
9481 /* Otherwise output the local symbol now. */
9482 Elf_Internal_Sym sym = isymbuf[symndx];
9483 asection *sec = flinfo->sections[symndx]->output_section;
9484 const char *name;
9485 long indx;
9486 int ret;
9487
9488 name = bfd_elf_string_from_elf_section (input_bfd,
9489 symtab_hdr->sh_link,
9490 sym.st_name);
9491 if (name == NULL)
9492 return FALSE;
9493
9494 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9495 sec);
9496 if (sym.st_shndx == SHN_BAD)
9497 return FALSE;
9498
9499 sym.st_value += o->output_offset;
9500
9501 indx = bfd_get_symcount (output_bfd);
9502 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9503 if (ret == 0)
9504 return FALSE;
9505 else if (ret == 1)
9506 flinfo->indices[symndx] = indx;
9507 else
9508 abort ();
9509 }
9510 elf_section_data (osec)->this_hdr.sh_info
9511 = flinfo->indices[symndx];
9512 }
9513 }
9514
9515 if ((o->flags & SEC_HAS_CONTENTS) == 0
9516 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9517 continue;
9518
9519 if ((o->flags & SEC_LINKER_CREATED) != 0)
9520 {
9521 /* Section was created by _bfd_elf_link_create_dynamic_sections
9522 or somesuch. */
9523 continue;
9524 }
9525
9526 /* Get the contents of the section. They have been cached by a
9527 relaxation routine. Note that o is a section in an input
9528 file, so the contents field will not have been set by any of
9529 the routines which work on output files. */
9530 if (elf_section_data (o)->this_hdr.contents != NULL)
9531 contents = elf_section_data (o)->this_hdr.contents;
9532 else
9533 {
9534 contents = flinfo->contents;
9535 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9536 return FALSE;
9537 }
9538
9539 if ((o->flags & SEC_RELOC) != 0)
9540 {
9541 Elf_Internal_Rela *internal_relocs;
9542 Elf_Internal_Rela *rel, *relend;
9543 int action_discarded;
9544 int ret;
9545
9546 /* Get the swapped relocs. */
9547 internal_relocs
9548 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9549 flinfo->internal_relocs, FALSE);
9550 if (internal_relocs == NULL
9551 && o->reloc_count > 0)
9552 return FALSE;
9553
9554 /* We need to reverse-copy input .ctors/.dtors sections if
9555 they are placed in .init_array/.finit_array for output. */
9556 if (o->size > address_size
9557 && ((strncmp (o->name, ".ctors", 6) == 0
9558 && strcmp (o->output_section->name,
9559 ".init_array") == 0)
9560 || (strncmp (o->name, ".dtors", 6) == 0
9561 && strcmp (o->output_section->name,
9562 ".fini_array") == 0))
9563 && (o->name[6] == 0 || o->name[6] == '.'))
9564 {
9565 if (o->size != o->reloc_count * address_size)
9566 {
9567 (*_bfd_error_handler)
9568 (_("error: %B: size of section %A is not "
9569 "multiple of address size"),
9570 input_bfd, o);
9571 bfd_set_error (bfd_error_on_input);
9572 return FALSE;
9573 }
9574 o->flags |= SEC_ELF_REVERSE_COPY;
9575 }
9576
9577 action_discarded = -1;
9578 if (!elf_section_ignore_discarded_relocs (o))
9579 action_discarded = (*bed->action_discarded) (o);
9580
9581 /* Run through the relocs evaluating complex reloc symbols and
9582 looking for relocs against symbols from discarded sections
9583 or section symbols from removed link-once sections.
9584 Complain about relocs against discarded sections. Zero
9585 relocs against removed link-once sections. */
9586
9587 rel = internal_relocs;
9588 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9589 for ( ; rel < relend; rel++)
9590 {
9591 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9592 unsigned int s_type;
9593 asection **ps, *sec;
9594 struct elf_link_hash_entry *h = NULL;
9595 const char *sym_name;
9596
9597 if (r_symndx == STN_UNDEF)
9598 continue;
9599
9600 if (r_symndx >= locsymcount
9601 || (elf_bad_symtab (input_bfd)
9602 && flinfo->sections[r_symndx] == NULL))
9603 {
9604 h = sym_hashes[r_symndx - extsymoff];
9605
9606 /* Badly formatted input files can contain relocs that
9607 reference non-existant symbols. Check here so that
9608 we do not seg fault. */
9609 if (h == NULL)
9610 {
9611 char buffer [32];
9612
9613 sprintf_vma (buffer, rel->r_info);
9614 (*_bfd_error_handler)
9615 (_("error: %B contains a reloc (0x%s) for section %A "
9616 "that references a non-existent global symbol"),
9617 input_bfd, o, buffer);
9618 bfd_set_error (bfd_error_bad_value);
9619 return FALSE;
9620 }
9621
9622 while (h->root.type == bfd_link_hash_indirect
9623 || h->root.type == bfd_link_hash_warning)
9624 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9625
9626 s_type = h->type;
9627
9628 ps = NULL;
9629 if (h->root.type == bfd_link_hash_defined
9630 || h->root.type == bfd_link_hash_defweak)
9631 ps = &h->root.u.def.section;
9632
9633 sym_name = h->root.root.string;
9634 }
9635 else
9636 {
9637 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9638
9639 s_type = ELF_ST_TYPE (sym->st_info);
9640 ps = &flinfo->sections[r_symndx];
9641 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9642 sym, *ps);
9643 }
9644
9645 if ((s_type == STT_RELC || s_type == STT_SRELC)
9646 && !flinfo->info->relocatable)
9647 {
9648 bfd_vma val;
9649 bfd_vma dot = (rel->r_offset
9650 + o->output_offset + o->output_section->vma);
9651 #ifdef DEBUG
9652 printf ("Encountered a complex symbol!");
9653 printf (" (input_bfd %s, section %s, reloc %ld\n",
9654 input_bfd->filename, o->name,
9655 (long) (rel - internal_relocs));
9656 printf (" symbol: idx %8.8lx, name %s\n",
9657 r_symndx, sym_name);
9658 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9659 (unsigned long) rel->r_info,
9660 (unsigned long) rel->r_offset);
9661 #endif
9662 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9663 isymbuf, locsymcount, s_type == STT_SRELC))
9664 return FALSE;
9665
9666 /* Symbol evaluated OK. Update to absolute value. */
9667 set_symbol_value (input_bfd, isymbuf, locsymcount,
9668 r_symndx, val);
9669 continue;
9670 }
9671
9672 if (action_discarded != -1 && ps != NULL)
9673 {
9674 /* Complain if the definition comes from a
9675 discarded section. */
9676 if ((sec = *ps) != NULL && discarded_section (sec))
9677 {
9678 BFD_ASSERT (r_symndx != STN_UNDEF);
9679 if (action_discarded & COMPLAIN)
9680 (*flinfo->info->callbacks->einfo)
9681 (_("%X`%s' referenced in section `%A' of %B: "
9682 "defined in discarded section `%A' of %B\n"),
9683 sym_name, o, input_bfd, sec, sec->owner);
9684
9685 /* Try to do the best we can to support buggy old
9686 versions of gcc. Pretend that the symbol is
9687 really defined in the kept linkonce section.
9688 FIXME: This is quite broken. Modifying the
9689 symbol here means we will be changing all later
9690 uses of the symbol, not just in this section. */
9691 if (action_discarded & PRETEND)
9692 {
9693 asection *kept;
9694
9695 kept = _bfd_elf_check_kept_section (sec,
9696 flinfo->info);
9697 if (kept != NULL)
9698 {
9699 *ps = kept;
9700 continue;
9701 }
9702 }
9703 }
9704 }
9705 }
9706
9707 /* Relocate the section by invoking a back end routine.
9708
9709 The back end routine is responsible for adjusting the
9710 section contents as necessary, and (if using Rela relocs
9711 and generating a relocatable output file) adjusting the
9712 reloc addend as necessary.
9713
9714 The back end routine does not have to worry about setting
9715 the reloc address or the reloc symbol index.
9716
9717 The back end routine is given a pointer to the swapped in
9718 internal symbols, and can access the hash table entries
9719 for the external symbols via elf_sym_hashes (input_bfd).
9720
9721 When generating relocatable output, the back end routine
9722 must handle STB_LOCAL/STT_SECTION symbols specially. The
9723 output symbol is going to be a section symbol
9724 corresponding to the output section, which will require
9725 the addend to be adjusted. */
9726
9727 ret = (*relocate_section) (output_bfd, flinfo->info,
9728 input_bfd, o, contents,
9729 internal_relocs,
9730 isymbuf,
9731 flinfo->sections);
9732 if (!ret)
9733 return FALSE;
9734
9735 if (ret == 2
9736 || flinfo->info->relocatable
9737 || flinfo->info->emitrelocations)
9738 {
9739 Elf_Internal_Rela *irela;
9740 Elf_Internal_Rela *irelaend, *irelamid;
9741 bfd_vma last_offset;
9742 struct elf_link_hash_entry **rel_hash;
9743 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9744 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9745 unsigned int next_erel;
9746 bfd_boolean rela_normal;
9747 struct bfd_elf_section_data *esdi, *esdo;
9748
9749 esdi = elf_section_data (o);
9750 esdo = elf_section_data (o->output_section);
9751 rela_normal = FALSE;
9752
9753 /* Adjust the reloc addresses and symbol indices. */
9754
9755 irela = internal_relocs;
9756 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9757 rel_hash = esdo->rel.hashes + esdo->rel.count;
9758 /* We start processing the REL relocs, if any. When we reach
9759 IRELAMID in the loop, we switch to the RELA relocs. */
9760 irelamid = irela;
9761 if (esdi->rel.hdr != NULL)
9762 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9763 * bed->s->int_rels_per_ext_rel);
9764 rel_hash_list = rel_hash;
9765 rela_hash_list = NULL;
9766 last_offset = o->output_offset;
9767 if (!flinfo->info->relocatable)
9768 last_offset += o->output_section->vma;
9769 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9770 {
9771 unsigned long r_symndx;
9772 asection *sec;
9773 Elf_Internal_Sym sym;
9774
9775 if (next_erel == bed->s->int_rels_per_ext_rel)
9776 {
9777 rel_hash++;
9778 next_erel = 0;
9779 }
9780
9781 if (irela == irelamid)
9782 {
9783 rel_hash = esdo->rela.hashes + esdo->rela.count;
9784 rela_hash_list = rel_hash;
9785 rela_normal = bed->rela_normal;
9786 }
9787
9788 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9789 flinfo->info, o,
9790 irela->r_offset);
9791 if (irela->r_offset >= (bfd_vma) -2)
9792 {
9793 /* This is a reloc for a deleted entry or somesuch.
9794 Turn it into an R_*_NONE reloc, at the same
9795 offset as the last reloc. elf_eh_frame.c and
9796 bfd_elf_discard_info rely on reloc offsets
9797 being ordered. */
9798 irela->r_offset = last_offset;
9799 irela->r_info = 0;
9800 irela->r_addend = 0;
9801 continue;
9802 }
9803
9804 irela->r_offset += o->output_offset;
9805
9806 /* Relocs in an executable have to be virtual addresses. */
9807 if (!flinfo->info->relocatable)
9808 irela->r_offset += o->output_section->vma;
9809
9810 last_offset = irela->r_offset;
9811
9812 r_symndx = irela->r_info >> r_sym_shift;
9813 if (r_symndx == STN_UNDEF)
9814 continue;
9815
9816 if (r_symndx >= locsymcount
9817 || (elf_bad_symtab (input_bfd)
9818 && flinfo->sections[r_symndx] == NULL))
9819 {
9820 struct elf_link_hash_entry *rh;
9821 unsigned long indx;
9822
9823 /* This is a reloc against a global symbol. We
9824 have not yet output all the local symbols, so
9825 we do not know the symbol index of any global
9826 symbol. We set the rel_hash entry for this
9827 reloc to point to the global hash table entry
9828 for this symbol. The symbol index is then
9829 set at the end of bfd_elf_final_link. */
9830 indx = r_symndx - extsymoff;
9831 rh = elf_sym_hashes (input_bfd)[indx];
9832 while (rh->root.type == bfd_link_hash_indirect
9833 || rh->root.type == bfd_link_hash_warning)
9834 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9835
9836 /* Setting the index to -2 tells
9837 elf_link_output_extsym that this symbol is
9838 used by a reloc. */
9839 BFD_ASSERT (rh->indx < 0);
9840 rh->indx = -2;
9841
9842 *rel_hash = rh;
9843
9844 continue;
9845 }
9846
9847 /* This is a reloc against a local symbol. */
9848
9849 *rel_hash = NULL;
9850 sym = isymbuf[r_symndx];
9851 sec = flinfo->sections[r_symndx];
9852 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9853 {
9854 /* I suppose the backend ought to fill in the
9855 section of any STT_SECTION symbol against a
9856 processor specific section. */
9857 r_symndx = STN_UNDEF;
9858 if (bfd_is_abs_section (sec))
9859 ;
9860 else if (sec == NULL || sec->owner == NULL)
9861 {
9862 bfd_set_error (bfd_error_bad_value);
9863 return FALSE;
9864 }
9865 else
9866 {
9867 asection *osec = sec->output_section;
9868
9869 /* If we have discarded a section, the output
9870 section will be the absolute section. In
9871 case of discarded SEC_MERGE sections, use
9872 the kept section. relocate_section should
9873 have already handled discarded linkonce
9874 sections. */
9875 if (bfd_is_abs_section (osec)
9876 && sec->kept_section != NULL
9877 && sec->kept_section->output_section != NULL)
9878 {
9879 osec = sec->kept_section->output_section;
9880 irela->r_addend -= osec->vma;
9881 }
9882
9883 if (!bfd_is_abs_section (osec))
9884 {
9885 r_symndx = osec->target_index;
9886 if (r_symndx == STN_UNDEF)
9887 {
9888 irela->r_addend += osec->vma;
9889 osec = _bfd_nearby_section (output_bfd, osec,
9890 osec->vma);
9891 irela->r_addend -= osec->vma;
9892 r_symndx = osec->target_index;
9893 }
9894 }
9895 }
9896
9897 /* Adjust the addend according to where the
9898 section winds up in the output section. */
9899 if (rela_normal)
9900 irela->r_addend += sec->output_offset;
9901 }
9902 else
9903 {
9904 if (flinfo->indices[r_symndx] == -1)
9905 {
9906 unsigned long shlink;
9907 const char *name;
9908 asection *osec;
9909 long indx;
9910
9911 if (flinfo->info->strip == strip_all)
9912 {
9913 /* You can't do ld -r -s. */
9914 bfd_set_error (bfd_error_invalid_operation);
9915 return FALSE;
9916 }
9917
9918 /* This symbol was skipped earlier, but
9919 since it is needed by a reloc, we
9920 must output it now. */
9921 shlink = symtab_hdr->sh_link;
9922 name = (bfd_elf_string_from_elf_section
9923 (input_bfd, shlink, sym.st_name));
9924 if (name == NULL)
9925 return FALSE;
9926
9927 osec = sec->output_section;
9928 sym.st_shndx =
9929 _bfd_elf_section_from_bfd_section (output_bfd,
9930 osec);
9931 if (sym.st_shndx == SHN_BAD)
9932 return FALSE;
9933
9934 sym.st_value += sec->output_offset;
9935 if (!flinfo->info->relocatable)
9936 {
9937 sym.st_value += osec->vma;
9938 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9939 {
9940 /* STT_TLS symbols are relative to PT_TLS
9941 segment base. */
9942 BFD_ASSERT (elf_hash_table (flinfo->info)
9943 ->tls_sec != NULL);
9944 sym.st_value -= (elf_hash_table (flinfo->info)
9945 ->tls_sec->vma);
9946 }
9947 }
9948
9949 indx = bfd_get_symcount (output_bfd);
9950 ret = elf_link_output_sym (flinfo, name, &sym, sec,
9951 NULL);
9952 if (ret == 0)
9953 return FALSE;
9954 else if (ret == 1)
9955 flinfo->indices[r_symndx] = indx;
9956 else
9957 abort ();
9958 }
9959
9960 r_symndx = flinfo->indices[r_symndx];
9961 }
9962
9963 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9964 | (irela->r_info & r_type_mask));
9965 }
9966
9967 /* Swap out the relocs. */
9968 input_rel_hdr = esdi->rel.hdr;
9969 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
9970 {
9971 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9972 input_rel_hdr,
9973 internal_relocs,
9974 rel_hash_list))
9975 return FALSE;
9976 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9977 * bed->s->int_rels_per_ext_rel);
9978 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9979 }
9980
9981 input_rela_hdr = esdi->rela.hdr;
9982 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
9983 {
9984 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9985 input_rela_hdr,
9986 internal_relocs,
9987 rela_hash_list))
9988 return FALSE;
9989 }
9990 }
9991 }
9992
9993 /* Write out the modified section contents. */
9994 if (bed->elf_backend_write_section
9995 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
9996 contents))
9997 {
9998 /* Section written out. */
9999 }
10000 else switch (o->sec_info_type)
10001 {
10002 case SEC_INFO_TYPE_STABS:
10003 if (! (_bfd_write_section_stabs
10004 (output_bfd,
10005 &elf_hash_table (flinfo->info)->stab_info,
10006 o, &elf_section_data (o)->sec_info, contents)))
10007 return FALSE;
10008 break;
10009 case SEC_INFO_TYPE_MERGE:
10010 if (! _bfd_write_merged_section (output_bfd, o,
10011 elf_section_data (o)->sec_info))
10012 return FALSE;
10013 break;
10014 case SEC_INFO_TYPE_EH_FRAME:
10015 {
10016 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10017 o, contents))
10018 return FALSE;
10019 }
10020 break;
10021 default:
10022 {
10023 /* FIXME: octets_per_byte. */
10024 if (! (o->flags & SEC_EXCLUDE))
10025 {
10026 file_ptr offset = (file_ptr) o->output_offset;
10027 bfd_size_type todo = o->size;
10028 if ((o->flags & SEC_ELF_REVERSE_COPY))
10029 {
10030 /* Reverse-copy input section to output. */
10031 do
10032 {
10033 todo -= address_size;
10034 if (! bfd_set_section_contents (output_bfd,
10035 o->output_section,
10036 contents + todo,
10037 offset,
10038 address_size))
10039 return FALSE;
10040 if (todo == 0)
10041 break;
10042 offset += address_size;
10043 }
10044 while (1);
10045 }
10046 else if (! bfd_set_section_contents (output_bfd,
10047 o->output_section,
10048 contents,
10049 offset, todo))
10050 return FALSE;
10051 }
10052 }
10053 break;
10054 }
10055 }
10056
10057 return TRUE;
10058 }
10059
10060 /* Generate a reloc when linking an ELF file. This is a reloc
10061 requested by the linker, and does not come from any input file. This
10062 is used to build constructor and destructor tables when linking
10063 with -Ur. */
10064
10065 static bfd_boolean
10066 elf_reloc_link_order (bfd *output_bfd,
10067 struct bfd_link_info *info,
10068 asection *output_section,
10069 struct bfd_link_order *link_order)
10070 {
10071 reloc_howto_type *howto;
10072 long indx;
10073 bfd_vma offset;
10074 bfd_vma addend;
10075 struct bfd_elf_section_reloc_data *reldata;
10076 struct elf_link_hash_entry **rel_hash_ptr;
10077 Elf_Internal_Shdr *rel_hdr;
10078 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10079 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10080 bfd_byte *erel;
10081 unsigned int i;
10082 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10083
10084 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10085 if (howto == NULL)
10086 {
10087 bfd_set_error (bfd_error_bad_value);
10088 return FALSE;
10089 }
10090
10091 addend = link_order->u.reloc.p->addend;
10092
10093 if (esdo->rel.hdr)
10094 reldata = &esdo->rel;
10095 else if (esdo->rela.hdr)
10096 reldata = &esdo->rela;
10097 else
10098 {
10099 reldata = NULL;
10100 BFD_ASSERT (0);
10101 }
10102
10103 /* Figure out the symbol index. */
10104 rel_hash_ptr = reldata->hashes + reldata->count;
10105 if (link_order->type == bfd_section_reloc_link_order)
10106 {
10107 indx = link_order->u.reloc.p->u.section->target_index;
10108 BFD_ASSERT (indx != 0);
10109 *rel_hash_ptr = NULL;
10110 }
10111 else
10112 {
10113 struct elf_link_hash_entry *h;
10114
10115 /* Treat a reloc against a defined symbol as though it were
10116 actually against the section. */
10117 h = ((struct elf_link_hash_entry *)
10118 bfd_wrapped_link_hash_lookup (output_bfd, info,
10119 link_order->u.reloc.p->u.name,
10120 FALSE, FALSE, TRUE));
10121 if (h != NULL
10122 && (h->root.type == bfd_link_hash_defined
10123 || h->root.type == bfd_link_hash_defweak))
10124 {
10125 asection *section;
10126
10127 section = h->root.u.def.section;
10128 indx = section->output_section->target_index;
10129 *rel_hash_ptr = NULL;
10130 /* It seems that we ought to add the symbol value to the
10131 addend here, but in practice it has already been added
10132 because it was passed to constructor_callback. */
10133 addend += section->output_section->vma + section->output_offset;
10134 }
10135 else if (h != NULL)
10136 {
10137 /* Setting the index to -2 tells elf_link_output_extsym that
10138 this symbol is used by a reloc. */
10139 h->indx = -2;
10140 *rel_hash_ptr = h;
10141 indx = 0;
10142 }
10143 else
10144 {
10145 if (! ((*info->callbacks->unattached_reloc)
10146 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10147 return FALSE;
10148 indx = 0;
10149 }
10150 }
10151
10152 /* If this is an inplace reloc, we must write the addend into the
10153 object file. */
10154 if (howto->partial_inplace && addend != 0)
10155 {
10156 bfd_size_type size;
10157 bfd_reloc_status_type rstat;
10158 bfd_byte *buf;
10159 bfd_boolean ok;
10160 const char *sym_name;
10161
10162 size = (bfd_size_type) bfd_get_reloc_size (howto);
10163 buf = (bfd_byte *) bfd_zmalloc (size);
10164 if (buf == NULL)
10165 return FALSE;
10166 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10167 switch (rstat)
10168 {
10169 case bfd_reloc_ok:
10170 break;
10171
10172 default:
10173 case bfd_reloc_outofrange:
10174 abort ();
10175
10176 case bfd_reloc_overflow:
10177 if (link_order->type == bfd_section_reloc_link_order)
10178 sym_name = bfd_section_name (output_bfd,
10179 link_order->u.reloc.p->u.section);
10180 else
10181 sym_name = link_order->u.reloc.p->u.name;
10182 if (! ((*info->callbacks->reloc_overflow)
10183 (info, NULL, sym_name, howto->name, addend, NULL,
10184 NULL, (bfd_vma) 0)))
10185 {
10186 free (buf);
10187 return FALSE;
10188 }
10189 break;
10190 }
10191 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10192 link_order->offset, size);
10193 free (buf);
10194 if (! ok)
10195 return FALSE;
10196 }
10197
10198 /* The address of a reloc is relative to the section in a
10199 relocatable file, and is a virtual address in an executable
10200 file. */
10201 offset = link_order->offset;
10202 if (! info->relocatable)
10203 offset += output_section->vma;
10204
10205 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10206 {
10207 irel[i].r_offset = offset;
10208 irel[i].r_info = 0;
10209 irel[i].r_addend = 0;
10210 }
10211 if (bed->s->arch_size == 32)
10212 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10213 else
10214 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10215
10216 rel_hdr = reldata->hdr;
10217 erel = rel_hdr->contents;
10218 if (rel_hdr->sh_type == SHT_REL)
10219 {
10220 erel += reldata->count * bed->s->sizeof_rel;
10221 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10222 }
10223 else
10224 {
10225 irel[0].r_addend = addend;
10226 erel += reldata->count * bed->s->sizeof_rela;
10227 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10228 }
10229
10230 ++reldata->count;
10231
10232 return TRUE;
10233 }
10234
10235
10236 /* Get the output vma of the section pointed to by the sh_link field. */
10237
10238 static bfd_vma
10239 elf_get_linked_section_vma (struct bfd_link_order *p)
10240 {
10241 Elf_Internal_Shdr **elf_shdrp;
10242 asection *s;
10243 int elfsec;
10244
10245 s = p->u.indirect.section;
10246 elf_shdrp = elf_elfsections (s->owner);
10247 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10248 elfsec = elf_shdrp[elfsec]->sh_link;
10249 /* PR 290:
10250 The Intel C compiler generates SHT_IA_64_UNWIND with
10251 SHF_LINK_ORDER. But it doesn't set the sh_link or
10252 sh_info fields. Hence we could get the situation
10253 where elfsec is 0. */
10254 if (elfsec == 0)
10255 {
10256 const struct elf_backend_data *bed
10257 = get_elf_backend_data (s->owner);
10258 if (bed->link_order_error_handler)
10259 bed->link_order_error_handler
10260 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10261 return 0;
10262 }
10263 else
10264 {
10265 s = elf_shdrp[elfsec]->bfd_section;
10266 return s->output_section->vma + s->output_offset;
10267 }
10268 }
10269
10270
10271 /* Compare two sections based on the locations of the sections they are
10272 linked to. Used by elf_fixup_link_order. */
10273
10274 static int
10275 compare_link_order (const void * a, const void * b)
10276 {
10277 bfd_vma apos;
10278 bfd_vma bpos;
10279
10280 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10281 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10282 if (apos < bpos)
10283 return -1;
10284 return apos > bpos;
10285 }
10286
10287
10288 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10289 order as their linked sections. Returns false if this could not be done
10290 because an output section includes both ordered and unordered
10291 sections. Ideally we'd do this in the linker proper. */
10292
10293 static bfd_boolean
10294 elf_fixup_link_order (bfd *abfd, asection *o)
10295 {
10296 int seen_linkorder;
10297 int seen_other;
10298 int n;
10299 struct bfd_link_order *p;
10300 bfd *sub;
10301 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10302 unsigned elfsec;
10303 struct bfd_link_order **sections;
10304 asection *s, *other_sec, *linkorder_sec;
10305 bfd_vma offset;
10306
10307 other_sec = NULL;
10308 linkorder_sec = NULL;
10309 seen_other = 0;
10310 seen_linkorder = 0;
10311 for (p = o->map_head.link_order; p != NULL; p = p->next)
10312 {
10313 if (p->type == bfd_indirect_link_order)
10314 {
10315 s = p->u.indirect.section;
10316 sub = s->owner;
10317 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10318 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10319 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10320 && elfsec < elf_numsections (sub)
10321 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10322 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10323 {
10324 seen_linkorder++;
10325 linkorder_sec = s;
10326 }
10327 else
10328 {
10329 seen_other++;
10330 other_sec = s;
10331 }
10332 }
10333 else
10334 seen_other++;
10335
10336 if (seen_other && seen_linkorder)
10337 {
10338 if (other_sec && linkorder_sec)
10339 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10340 o, linkorder_sec,
10341 linkorder_sec->owner, other_sec,
10342 other_sec->owner);
10343 else
10344 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10345 o);
10346 bfd_set_error (bfd_error_bad_value);
10347 return FALSE;
10348 }
10349 }
10350
10351 if (!seen_linkorder)
10352 return TRUE;
10353
10354 sections = (struct bfd_link_order **)
10355 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10356 if (sections == NULL)
10357 return FALSE;
10358 seen_linkorder = 0;
10359
10360 for (p = o->map_head.link_order; p != NULL; p = p->next)
10361 {
10362 sections[seen_linkorder++] = p;
10363 }
10364 /* Sort the input sections in the order of their linked section. */
10365 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10366 compare_link_order);
10367
10368 /* Change the offsets of the sections. */
10369 offset = 0;
10370 for (n = 0; n < seen_linkorder; n++)
10371 {
10372 s = sections[n]->u.indirect.section;
10373 offset &= ~(bfd_vma) 0 << s->alignment_power;
10374 s->output_offset = offset;
10375 sections[n]->offset = offset;
10376 /* FIXME: octets_per_byte. */
10377 offset += sections[n]->size;
10378 }
10379
10380 free (sections);
10381 return TRUE;
10382 }
10383
10384 static void
10385 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10386 {
10387 asection *o;
10388
10389 if (flinfo->symstrtab != NULL)
10390 _bfd_stringtab_free (flinfo->symstrtab);
10391 if (flinfo->contents != NULL)
10392 free (flinfo->contents);
10393 if (flinfo->external_relocs != NULL)
10394 free (flinfo->external_relocs);
10395 if (flinfo->internal_relocs != NULL)
10396 free (flinfo->internal_relocs);
10397 if (flinfo->external_syms != NULL)
10398 free (flinfo->external_syms);
10399 if (flinfo->locsym_shndx != NULL)
10400 free (flinfo->locsym_shndx);
10401 if (flinfo->internal_syms != NULL)
10402 free (flinfo->internal_syms);
10403 if (flinfo->indices != NULL)
10404 free (flinfo->indices);
10405 if (flinfo->sections != NULL)
10406 free (flinfo->sections);
10407 if (flinfo->symbuf != NULL)
10408 free (flinfo->symbuf);
10409 if (flinfo->symshndxbuf != NULL)
10410 free (flinfo->symshndxbuf);
10411 for (o = obfd->sections; o != NULL; o = o->next)
10412 {
10413 struct bfd_elf_section_data *esdo = elf_section_data (o);
10414 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10415 free (esdo->rel.hashes);
10416 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10417 free (esdo->rela.hashes);
10418 }
10419 }
10420
10421 /* Do the final step of an ELF link. */
10422
10423 bfd_boolean
10424 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10425 {
10426 bfd_boolean dynamic;
10427 bfd_boolean emit_relocs;
10428 bfd *dynobj;
10429 struct elf_final_link_info flinfo;
10430 asection *o;
10431 struct bfd_link_order *p;
10432 bfd *sub;
10433 bfd_size_type max_contents_size;
10434 bfd_size_type max_external_reloc_size;
10435 bfd_size_type max_internal_reloc_count;
10436 bfd_size_type max_sym_count;
10437 bfd_size_type max_sym_shndx_count;
10438 file_ptr off;
10439 Elf_Internal_Sym elfsym;
10440 unsigned int i;
10441 Elf_Internal_Shdr *symtab_hdr;
10442 Elf_Internal_Shdr *symtab_shndx_hdr;
10443 Elf_Internal_Shdr *symstrtab_hdr;
10444 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10445 struct elf_outext_info eoinfo;
10446 bfd_boolean merged;
10447 size_t relativecount = 0;
10448 asection *reldyn = 0;
10449 bfd_size_type amt;
10450 asection *attr_section = NULL;
10451 bfd_vma attr_size = 0;
10452 const char *std_attrs_section;
10453
10454 if (! is_elf_hash_table (info->hash))
10455 return FALSE;
10456
10457 if (info->shared)
10458 abfd->flags |= DYNAMIC;
10459
10460 dynamic = elf_hash_table (info)->dynamic_sections_created;
10461 dynobj = elf_hash_table (info)->dynobj;
10462
10463 emit_relocs = (info->relocatable
10464 || info->emitrelocations);
10465
10466 flinfo.info = info;
10467 flinfo.output_bfd = abfd;
10468 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10469 if (flinfo.symstrtab == NULL)
10470 return FALSE;
10471
10472 if (! dynamic)
10473 {
10474 flinfo.dynsym_sec = NULL;
10475 flinfo.hash_sec = NULL;
10476 flinfo.symver_sec = NULL;
10477 }
10478 else
10479 {
10480 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10481 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10482 /* Note that dynsym_sec can be NULL (on VMS). */
10483 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10484 /* Note that it is OK if symver_sec is NULL. */
10485 }
10486
10487 flinfo.contents = NULL;
10488 flinfo.external_relocs = NULL;
10489 flinfo.internal_relocs = NULL;
10490 flinfo.external_syms = NULL;
10491 flinfo.locsym_shndx = NULL;
10492 flinfo.internal_syms = NULL;
10493 flinfo.indices = NULL;
10494 flinfo.sections = NULL;
10495 flinfo.symbuf = NULL;
10496 flinfo.symshndxbuf = NULL;
10497 flinfo.symbuf_count = 0;
10498 flinfo.shndxbuf_size = 0;
10499 flinfo.filesym_count = 0;
10500
10501 /* The object attributes have been merged. Remove the input
10502 sections from the link, and set the contents of the output
10503 secton. */
10504 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10505 for (o = abfd->sections; o != NULL; o = o->next)
10506 {
10507 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10508 || strcmp (o->name, ".gnu.attributes") == 0)
10509 {
10510 for (p = o->map_head.link_order; p != NULL; p = p->next)
10511 {
10512 asection *input_section;
10513
10514 if (p->type != bfd_indirect_link_order)
10515 continue;
10516 input_section = p->u.indirect.section;
10517 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10518 elf_link_input_bfd ignores this section. */
10519 input_section->flags &= ~SEC_HAS_CONTENTS;
10520 }
10521
10522 attr_size = bfd_elf_obj_attr_size (abfd);
10523 if (attr_size)
10524 {
10525 bfd_set_section_size (abfd, o, attr_size);
10526 attr_section = o;
10527 /* Skip this section later on. */
10528 o->map_head.link_order = NULL;
10529 }
10530 else
10531 o->flags |= SEC_EXCLUDE;
10532 }
10533 }
10534
10535 /* Count up the number of relocations we will output for each output
10536 section, so that we know the sizes of the reloc sections. We
10537 also figure out some maximum sizes. */
10538 max_contents_size = 0;
10539 max_external_reloc_size = 0;
10540 max_internal_reloc_count = 0;
10541 max_sym_count = 0;
10542 max_sym_shndx_count = 0;
10543 merged = FALSE;
10544 for (o = abfd->sections; o != NULL; o = o->next)
10545 {
10546 struct bfd_elf_section_data *esdo = elf_section_data (o);
10547 o->reloc_count = 0;
10548
10549 for (p = o->map_head.link_order; p != NULL; p = p->next)
10550 {
10551 unsigned int reloc_count = 0;
10552 struct bfd_elf_section_data *esdi = NULL;
10553
10554 if (p->type == bfd_section_reloc_link_order
10555 || p->type == bfd_symbol_reloc_link_order)
10556 reloc_count = 1;
10557 else if (p->type == bfd_indirect_link_order)
10558 {
10559 asection *sec;
10560
10561 sec = p->u.indirect.section;
10562 esdi = elf_section_data (sec);
10563
10564 /* Mark all sections which are to be included in the
10565 link. This will normally be every section. We need
10566 to do this so that we can identify any sections which
10567 the linker has decided to not include. */
10568 sec->linker_mark = TRUE;
10569
10570 if (sec->flags & SEC_MERGE)
10571 merged = TRUE;
10572
10573 if (esdo->this_hdr.sh_type == SHT_REL
10574 || esdo->this_hdr.sh_type == SHT_RELA)
10575 /* Some backends use reloc_count in relocation sections
10576 to count particular types of relocs. Of course,
10577 reloc sections themselves can't have relocations. */
10578 reloc_count = 0;
10579 else if (info->relocatable || info->emitrelocations)
10580 reloc_count = sec->reloc_count;
10581 else if (bed->elf_backend_count_relocs)
10582 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10583
10584 if (sec->rawsize > max_contents_size)
10585 max_contents_size = sec->rawsize;
10586 if (sec->size > max_contents_size)
10587 max_contents_size = sec->size;
10588
10589 /* We are interested in just local symbols, not all
10590 symbols. */
10591 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10592 && (sec->owner->flags & DYNAMIC) == 0)
10593 {
10594 size_t sym_count;
10595
10596 if (elf_bad_symtab (sec->owner))
10597 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10598 / bed->s->sizeof_sym);
10599 else
10600 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10601
10602 if (sym_count > max_sym_count)
10603 max_sym_count = sym_count;
10604
10605 if (sym_count > max_sym_shndx_count
10606 && elf_symtab_shndx (sec->owner) != 0)
10607 max_sym_shndx_count = sym_count;
10608
10609 if ((sec->flags & SEC_RELOC) != 0)
10610 {
10611 size_t ext_size = 0;
10612
10613 if (esdi->rel.hdr != NULL)
10614 ext_size = esdi->rel.hdr->sh_size;
10615 if (esdi->rela.hdr != NULL)
10616 ext_size += esdi->rela.hdr->sh_size;
10617
10618 if (ext_size > max_external_reloc_size)
10619 max_external_reloc_size = ext_size;
10620 if (sec->reloc_count > max_internal_reloc_count)
10621 max_internal_reloc_count = sec->reloc_count;
10622 }
10623 }
10624 }
10625
10626 if (reloc_count == 0)
10627 continue;
10628
10629 o->reloc_count += reloc_count;
10630
10631 if (p->type == bfd_indirect_link_order
10632 && (info->relocatable || info->emitrelocations))
10633 {
10634 if (esdi->rel.hdr)
10635 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10636 if (esdi->rela.hdr)
10637 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10638 }
10639 else
10640 {
10641 if (o->use_rela_p)
10642 esdo->rela.count += reloc_count;
10643 else
10644 esdo->rel.count += reloc_count;
10645 }
10646 }
10647
10648 if (o->reloc_count > 0)
10649 o->flags |= SEC_RELOC;
10650 else
10651 {
10652 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10653 set it (this is probably a bug) and if it is set
10654 assign_section_numbers will create a reloc section. */
10655 o->flags &=~ SEC_RELOC;
10656 }
10657
10658 /* If the SEC_ALLOC flag is not set, force the section VMA to
10659 zero. This is done in elf_fake_sections as well, but forcing
10660 the VMA to 0 here will ensure that relocs against these
10661 sections are handled correctly. */
10662 if ((o->flags & SEC_ALLOC) == 0
10663 && ! o->user_set_vma)
10664 o->vma = 0;
10665 }
10666
10667 if (! info->relocatable && merged)
10668 elf_link_hash_traverse (elf_hash_table (info),
10669 _bfd_elf_link_sec_merge_syms, abfd);
10670
10671 /* Figure out the file positions for everything but the symbol table
10672 and the relocs. We set symcount to force assign_section_numbers
10673 to create a symbol table. */
10674 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10675 BFD_ASSERT (! abfd->output_has_begun);
10676 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10677 goto error_return;
10678
10679 /* Set sizes, and assign file positions for reloc sections. */
10680 for (o = abfd->sections; o != NULL; o = o->next)
10681 {
10682 struct bfd_elf_section_data *esdo = elf_section_data (o);
10683 if ((o->flags & SEC_RELOC) != 0)
10684 {
10685 if (esdo->rel.hdr
10686 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10687 goto error_return;
10688
10689 if (esdo->rela.hdr
10690 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10691 goto error_return;
10692 }
10693
10694 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10695 to count upwards while actually outputting the relocations. */
10696 esdo->rel.count = 0;
10697 esdo->rela.count = 0;
10698 }
10699
10700 _bfd_elf_assign_file_positions_for_relocs (abfd);
10701
10702 /* We have now assigned file positions for all the sections except
10703 .symtab and .strtab. We start the .symtab section at the current
10704 file position, and write directly to it. We build the .strtab
10705 section in memory. */
10706 bfd_get_symcount (abfd) = 0;
10707 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10708 /* sh_name is set in prep_headers. */
10709 symtab_hdr->sh_type = SHT_SYMTAB;
10710 /* sh_flags, sh_addr and sh_size all start off zero. */
10711 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10712 /* sh_link is set in assign_section_numbers. */
10713 /* sh_info is set below. */
10714 /* sh_offset is set just below. */
10715 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10716
10717 off = elf_next_file_pos (abfd);
10718 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10719
10720 /* Note that at this point elf_next_file_pos (abfd) is
10721 incorrect. We do not yet know the size of the .symtab section.
10722 We correct next_file_pos below, after we do know the size. */
10723
10724 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10725 continuously seeking to the right position in the file. */
10726 if (! info->keep_memory || max_sym_count < 20)
10727 flinfo.symbuf_size = 20;
10728 else
10729 flinfo.symbuf_size = max_sym_count;
10730 amt = flinfo.symbuf_size;
10731 amt *= bed->s->sizeof_sym;
10732 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10733 if (flinfo.symbuf == NULL)
10734 goto error_return;
10735 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10736 {
10737 /* Wild guess at number of output symbols. realloc'd as needed. */
10738 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10739 flinfo.shndxbuf_size = amt;
10740 amt *= sizeof (Elf_External_Sym_Shndx);
10741 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10742 if (flinfo.symshndxbuf == NULL)
10743 goto error_return;
10744 }
10745
10746 /* Start writing out the symbol table. The first symbol is always a
10747 dummy symbol. */
10748 if (info->strip != strip_all
10749 || emit_relocs)
10750 {
10751 elfsym.st_value = 0;
10752 elfsym.st_size = 0;
10753 elfsym.st_info = 0;
10754 elfsym.st_other = 0;
10755 elfsym.st_shndx = SHN_UNDEF;
10756 elfsym.st_target_internal = 0;
10757 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10758 NULL) != 1)
10759 goto error_return;
10760 }
10761
10762 /* Output a symbol for each section. We output these even if we are
10763 discarding local symbols, since they are used for relocs. These
10764 symbols have no names. We store the index of each one in the
10765 index field of the section, so that we can find it again when
10766 outputting relocs. */
10767 if (info->strip != strip_all
10768 || emit_relocs)
10769 {
10770 elfsym.st_size = 0;
10771 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10772 elfsym.st_other = 0;
10773 elfsym.st_value = 0;
10774 elfsym.st_target_internal = 0;
10775 for (i = 1; i < elf_numsections (abfd); i++)
10776 {
10777 o = bfd_section_from_elf_index (abfd, i);
10778 if (o != NULL)
10779 {
10780 o->target_index = bfd_get_symcount (abfd);
10781 elfsym.st_shndx = i;
10782 if (!info->relocatable)
10783 elfsym.st_value = o->vma;
10784 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10785 goto error_return;
10786 }
10787 }
10788 }
10789
10790 /* Allocate some memory to hold information read in from the input
10791 files. */
10792 if (max_contents_size != 0)
10793 {
10794 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10795 if (flinfo.contents == NULL)
10796 goto error_return;
10797 }
10798
10799 if (max_external_reloc_size != 0)
10800 {
10801 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10802 if (flinfo.external_relocs == NULL)
10803 goto error_return;
10804 }
10805
10806 if (max_internal_reloc_count != 0)
10807 {
10808 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10809 amt *= sizeof (Elf_Internal_Rela);
10810 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10811 if (flinfo.internal_relocs == NULL)
10812 goto error_return;
10813 }
10814
10815 if (max_sym_count != 0)
10816 {
10817 amt = max_sym_count * bed->s->sizeof_sym;
10818 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10819 if (flinfo.external_syms == NULL)
10820 goto error_return;
10821
10822 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10823 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10824 if (flinfo.internal_syms == NULL)
10825 goto error_return;
10826
10827 amt = max_sym_count * sizeof (long);
10828 flinfo.indices = (long int *) bfd_malloc (amt);
10829 if (flinfo.indices == NULL)
10830 goto error_return;
10831
10832 amt = max_sym_count * sizeof (asection *);
10833 flinfo.sections = (asection **) bfd_malloc (amt);
10834 if (flinfo.sections == NULL)
10835 goto error_return;
10836 }
10837
10838 if (max_sym_shndx_count != 0)
10839 {
10840 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10841 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10842 if (flinfo.locsym_shndx == NULL)
10843 goto error_return;
10844 }
10845
10846 if (elf_hash_table (info)->tls_sec)
10847 {
10848 bfd_vma base, end = 0;
10849 asection *sec;
10850
10851 for (sec = elf_hash_table (info)->tls_sec;
10852 sec && (sec->flags & SEC_THREAD_LOCAL);
10853 sec = sec->next)
10854 {
10855 bfd_size_type size = sec->size;
10856
10857 if (size == 0
10858 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10859 {
10860 struct bfd_link_order *ord = sec->map_tail.link_order;
10861
10862 if (ord != NULL)
10863 size = ord->offset + ord->size;
10864 }
10865 end = sec->vma + size;
10866 }
10867 base = elf_hash_table (info)->tls_sec->vma;
10868 /* Only align end of TLS section if static TLS doesn't have special
10869 alignment requirements. */
10870 if (bed->static_tls_alignment == 1)
10871 end = align_power (end,
10872 elf_hash_table (info)->tls_sec->alignment_power);
10873 elf_hash_table (info)->tls_size = end - base;
10874 }
10875
10876 /* Reorder SHF_LINK_ORDER sections. */
10877 for (o = abfd->sections; o != NULL; o = o->next)
10878 {
10879 if (!elf_fixup_link_order (abfd, o))
10880 return FALSE;
10881 }
10882
10883 /* Since ELF permits relocations to be against local symbols, we
10884 must have the local symbols available when we do the relocations.
10885 Since we would rather only read the local symbols once, and we
10886 would rather not keep them in memory, we handle all the
10887 relocations for a single input file at the same time.
10888
10889 Unfortunately, there is no way to know the total number of local
10890 symbols until we have seen all of them, and the local symbol
10891 indices precede the global symbol indices. This means that when
10892 we are generating relocatable output, and we see a reloc against
10893 a global symbol, we can not know the symbol index until we have
10894 finished examining all the local symbols to see which ones we are
10895 going to output. To deal with this, we keep the relocations in
10896 memory, and don't output them until the end of the link. This is
10897 an unfortunate waste of memory, but I don't see a good way around
10898 it. Fortunately, it only happens when performing a relocatable
10899 link, which is not the common case. FIXME: If keep_memory is set
10900 we could write the relocs out and then read them again; I don't
10901 know how bad the memory loss will be. */
10902
10903 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10904 sub->output_has_begun = FALSE;
10905 for (o = abfd->sections; o != NULL; o = o->next)
10906 {
10907 for (p = o->map_head.link_order; p != NULL; p = p->next)
10908 {
10909 if (p->type == bfd_indirect_link_order
10910 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10911 == bfd_target_elf_flavour)
10912 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10913 {
10914 if (! sub->output_has_begun)
10915 {
10916 if (! elf_link_input_bfd (&flinfo, sub))
10917 goto error_return;
10918 sub->output_has_begun = TRUE;
10919 }
10920 }
10921 else if (p->type == bfd_section_reloc_link_order
10922 || p->type == bfd_symbol_reloc_link_order)
10923 {
10924 if (! elf_reloc_link_order (abfd, info, o, p))
10925 goto error_return;
10926 }
10927 else
10928 {
10929 if (! _bfd_default_link_order (abfd, info, o, p))
10930 {
10931 if (p->type == bfd_indirect_link_order
10932 && (bfd_get_flavour (sub)
10933 == bfd_target_elf_flavour)
10934 && (elf_elfheader (sub)->e_ident[EI_CLASS]
10935 != bed->s->elfclass))
10936 {
10937 const char *iclass, *oclass;
10938
10939 if (bed->s->elfclass == ELFCLASS64)
10940 {
10941 iclass = "ELFCLASS32";
10942 oclass = "ELFCLASS64";
10943 }
10944 else
10945 {
10946 iclass = "ELFCLASS64";
10947 oclass = "ELFCLASS32";
10948 }
10949
10950 bfd_set_error (bfd_error_wrong_format);
10951 (*_bfd_error_handler)
10952 (_("%B: file class %s incompatible with %s"),
10953 sub, iclass, oclass);
10954 }
10955
10956 goto error_return;
10957 }
10958 }
10959 }
10960 }
10961
10962 /* Free symbol buffer if needed. */
10963 if (!info->reduce_memory_overheads)
10964 {
10965 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10966 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10967 && elf_tdata (sub)->symbuf)
10968 {
10969 free (elf_tdata (sub)->symbuf);
10970 elf_tdata (sub)->symbuf = NULL;
10971 }
10972 }
10973
10974 /* Output a FILE symbol so that following locals are not associated
10975 with the wrong input file. */
10976 memset (&elfsym, 0, sizeof (elfsym));
10977 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10978 elfsym.st_shndx = SHN_ABS;
10979
10980 if (flinfo.filesym_count > 1
10981 && !elf_link_output_sym (&flinfo, NULL, &elfsym,
10982 bfd_und_section_ptr, NULL))
10983 return FALSE;
10984
10985 /* Output any global symbols that got converted to local in a
10986 version script or due to symbol visibility. We do this in a
10987 separate step since ELF requires all local symbols to appear
10988 prior to any global symbols. FIXME: We should only do this if
10989 some global symbols were, in fact, converted to become local.
10990 FIXME: Will this work correctly with the Irix 5 linker? */
10991 eoinfo.failed = FALSE;
10992 eoinfo.flinfo = &flinfo;
10993 eoinfo.localsyms = TRUE;
10994 eoinfo.need_second_pass = FALSE;
10995 eoinfo.second_pass = FALSE;
10996 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
10997 if (eoinfo.failed)
10998 return FALSE;
10999
11000 if (flinfo.filesym_count == 1
11001 && !elf_link_output_sym (&flinfo, NULL, &elfsym,
11002 bfd_und_section_ptr, NULL))
11003 return FALSE;
11004
11005 if (eoinfo.need_second_pass)
11006 {
11007 eoinfo.second_pass = TRUE;
11008 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11009 if (eoinfo.failed)
11010 return FALSE;
11011 }
11012
11013 /* If backend needs to output some local symbols not present in the hash
11014 table, do it now. */
11015 if (bed->elf_backend_output_arch_local_syms)
11016 {
11017 typedef int (*out_sym_func)
11018 (void *, const char *, Elf_Internal_Sym *, asection *,
11019 struct elf_link_hash_entry *);
11020
11021 if (! ((*bed->elf_backend_output_arch_local_syms)
11022 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11023 return FALSE;
11024 }
11025
11026 /* That wrote out all the local symbols. Finish up the symbol table
11027 with the global symbols. Even if we want to strip everything we
11028 can, we still need to deal with those global symbols that got
11029 converted to local in a version script. */
11030
11031 /* The sh_info field records the index of the first non local symbol. */
11032 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11033
11034 if (dynamic
11035 && flinfo.dynsym_sec != NULL
11036 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11037 {
11038 Elf_Internal_Sym sym;
11039 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11040 long last_local = 0;
11041
11042 /* Write out the section symbols for the output sections. */
11043 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11044 {
11045 asection *s;
11046
11047 sym.st_size = 0;
11048 sym.st_name = 0;
11049 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11050 sym.st_other = 0;
11051 sym.st_target_internal = 0;
11052
11053 for (s = abfd->sections; s != NULL; s = s->next)
11054 {
11055 int indx;
11056 bfd_byte *dest;
11057 long dynindx;
11058
11059 dynindx = elf_section_data (s)->dynindx;
11060 if (dynindx <= 0)
11061 continue;
11062 indx = elf_section_data (s)->this_idx;
11063 BFD_ASSERT (indx > 0);
11064 sym.st_shndx = indx;
11065 if (! check_dynsym (abfd, &sym))
11066 return FALSE;
11067 sym.st_value = s->vma;
11068 dest = dynsym + dynindx * bed->s->sizeof_sym;
11069 if (last_local < dynindx)
11070 last_local = dynindx;
11071 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11072 }
11073 }
11074
11075 /* Write out the local dynsyms. */
11076 if (elf_hash_table (info)->dynlocal)
11077 {
11078 struct elf_link_local_dynamic_entry *e;
11079 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11080 {
11081 asection *s;
11082 bfd_byte *dest;
11083
11084 /* Copy the internal symbol and turn off visibility.
11085 Note that we saved a word of storage and overwrote
11086 the original st_name with the dynstr_index. */
11087 sym = e->isym;
11088 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11089
11090 s = bfd_section_from_elf_index (e->input_bfd,
11091 e->isym.st_shndx);
11092 if (s != NULL)
11093 {
11094 sym.st_shndx =
11095 elf_section_data (s->output_section)->this_idx;
11096 if (! check_dynsym (abfd, &sym))
11097 return FALSE;
11098 sym.st_value = (s->output_section->vma
11099 + s->output_offset
11100 + e->isym.st_value);
11101 }
11102
11103 if (last_local < e->dynindx)
11104 last_local = e->dynindx;
11105
11106 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11107 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11108 }
11109 }
11110
11111 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11112 last_local + 1;
11113 }
11114
11115 /* We get the global symbols from the hash table. */
11116 eoinfo.failed = FALSE;
11117 eoinfo.localsyms = FALSE;
11118 eoinfo.flinfo = &flinfo;
11119 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11120 if (eoinfo.failed)
11121 return FALSE;
11122
11123 /* If backend needs to output some symbols not present in the hash
11124 table, do it now. */
11125 if (bed->elf_backend_output_arch_syms)
11126 {
11127 typedef int (*out_sym_func)
11128 (void *, const char *, Elf_Internal_Sym *, asection *,
11129 struct elf_link_hash_entry *);
11130
11131 if (! ((*bed->elf_backend_output_arch_syms)
11132 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11133 return FALSE;
11134 }
11135
11136 /* Flush all symbols to the file. */
11137 if (! elf_link_flush_output_syms (&flinfo, bed))
11138 return FALSE;
11139
11140 /* Now we know the size of the symtab section. */
11141 off += symtab_hdr->sh_size;
11142
11143 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11144 if (symtab_shndx_hdr->sh_name != 0)
11145 {
11146 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11147 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11148 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11149 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11150 symtab_shndx_hdr->sh_size = amt;
11151
11152 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11153 off, TRUE);
11154
11155 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11156 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11157 return FALSE;
11158 }
11159
11160
11161 /* Finish up and write out the symbol string table (.strtab)
11162 section. */
11163 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11164 /* sh_name was set in prep_headers. */
11165 symstrtab_hdr->sh_type = SHT_STRTAB;
11166 symstrtab_hdr->sh_flags = 0;
11167 symstrtab_hdr->sh_addr = 0;
11168 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11169 symstrtab_hdr->sh_entsize = 0;
11170 symstrtab_hdr->sh_link = 0;
11171 symstrtab_hdr->sh_info = 0;
11172 /* sh_offset is set just below. */
11173 symstrtab_hdr->sh_addralign = 1;
11174
11175 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
11176 elf_next_file_pos (abfd) = off;
11177
11178 if (bfd_get_symcount (abfd) > 0)
11179 {
11180 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11181 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11182 return FALSE;
11183 }
11184
11185 /* Adjust the relocs to have the correct symbol indices. */
11186 for (o = abfd->sections; o != NULL; o = o->next)
11187 {
11188 struct bfd_elf_section_data *esdo = elf_section_data (o);
11189 if ((o->flags & SEC_RELOC) == 0)
11190 continue;
11191
11192 if (esdo->rel.hdr != NULL)
11193 elf_link_adjust_relocs (abfd, &esdo->rel);
11194 if (esdo->rela.hdr != NULL)
11195 elf_link_adjust_relocs (abfd, &esdo->rela);
11196
11197 /* Set the reloc_count field to 0 to prevent write_relocs from
11198 trying to swap the relocs out itself. */
11199 o->reloc_count = 0;
11200 }
11201
11202 if (dynamic && info->combreloc && dynobj != NULL)
11203 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11204
11205 /* If we are linking against a dynamic object, or generating a
11206 shared library, finish up the dynamic linking information. */
11207 if (dynamic)
11208 {
11209 bfd_byte *dyncon, *dynconend;
11210
11211 /* Fix up .dynamic entries. */
11212 o = bfd_get_linker_section (dynobj, ".dynamic");
11213 BFD_ASSERT (o != NULL);
11214
11215 dyncon = o->contents;
11216 dynconend = o->contents + o->size;
11217 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11218 {
11219 Elf_Internal_Dyn dyn;
11220 const char *name;
11221 unsigned int type;
11222
11223 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11224
11225 switch (dyn.d_tag)
11226 {
11227 default:
11228 continue;
11229 case DT_NULL:
11230 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11231 {
11232 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11233 {
11234 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11235 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11236 default: continue;
11237 }
11238 dyn.d_un.d_val = relativecount;
11239 relativecount = 0;
11240 break;
11241 }
11242 continue;
11243
11244 case DT_INIT:
11245 name = info->init_function;
11246 goto get_sym;
11247 case DT_FINI:
11248 name = info->fini_function;
11249 get_sym:
11250 {
11251 struct elf_link_hash_entry *h;
11252
11253 h = elf_link_hash_lookup (elf_hash_table (info), name,
11254 FALSE, FALSE, TRUE);
11255 if (h != NULL
11256 && (h->root.type == bfd_link_hash_defined
11257 || h->root.type == bfd_link_hash_defweak))
11258 {
11259 dyn.d_un.d_ptr = h->root.u.def.value;
11260 o = h->root.u.def.section;
11261 if (o->output_section != NULL)
11262 dyn.d_un.d_ptr += (o->output_section->vma
11263 + o->output_offset);
11264 else
11265 {
11266 /* The symbol is imported from another shared
11267 library and does not apply to this one. */
11268 dyn.d_un.d_ptr = 0;
11269 }
11270 break;
11271 }
11272 }
11273 continue;
11274
11275 case DT_PREINIT_ARRAYSZ:
11276 name = ".preinit_array";
11277 goto get_size;
11278 case DT_INIT_ARRAYSZ:
11279 name = ".init_array";
11280 goto get_size;
11281 case DT_FINI_ARRAYSZ:
11282 name = ".fini_array";
11283 get_size:
11284 o = bfd_get_section_by_name (abfd, name);
11285 if (o == NULL)
11286 {
11287 (*_bfd_error_handler)
11288 (_("%B: could not find output section %s"), abfd, name);
11289 goto error_return;
11290 }
11291 if (o->size == 0)
11292 (*_bfd_error_handler)
11293 (_("warning: %s section has zero size"), name);
11294 dyn.d_un.d_val = o->size;
11295 break;
11296
11297 case DT_PREINIT_ARRAY:
11298 name = ".preinit_array";
11299 goto get_vma;
11300 case DT_INIT_ARRAY:
11301 name = ".init_array";
11302 goto get_vma;
11303 case DT_FINI_ARRAY:
11304 name = ".fini_array";
11305 goto get_vma;
11306
11307 case DT_HASH:
11308 name = ".hash";
11309 goto get_vma;
11310 case DT_GNU_HASH:
11311 name = ".gnu.hash";
11312 goto get_vma;
11313 case DT_STRTAB:
11314 name = ".dynstr";
11315 goto get_vma;
11316 case DT_SYMTAB:
11317 name = ".dynsym";
11318 goto get_vma;
11319 case DT_VERDEF:
11320 name = ".gnu.version_d";
11321 goto get_vma;
11322 case DT_VERNEED:
11323 name = ".gnu.version_r";
11324 goto get_vma;
11325 case DT_VERSYM:
11326 name = ".gnu.version";
11327 get_vma:
11328 o = bfd_get_section_by_name (abfd, name);
11329 if (o == NULL)
11330 {
11331 (*_bfd_error_handler)
11332 (_("%B: could not find output section %s"), abfd, name);
11333 goto error_return;
11334 }
11335 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11336 {
11337 (*_bfd_error_handler)
11338 (_("warning: section '%s' is being made into a note"), name);
11339 bfd_set_error (bfd_error_nonrepresentable_section);
11340 goto error_return;
11341 }
11342 dyn.d_un.d_ptr = o->vma;
11343 break;
11344
11345 case DT_REL:
11346 case DT_RELA:
11347 case DT_RELSZ:
11348 case DT_RELASZ:
11349 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11350 type = SHT_REL;
11351 else
11352 type = SHT_RELA;
11353 dyn.d_un.d_val = 0;
11354 dyn.d_un.d_ptr = 0;
11355 for (i = 1; i < elf_numsections (abfd); i++)
11356 {
11357 Elf_Internal_Shdr *hdr;
11358
11359 hdr = elf_elfsections (abfd)[i];
11360 if (hdr->sh_type == type
11361 && (hdr->sh_flags & SHF_ALLOC) != 0)
11362 {
11363 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11364 dyn.d_un.d_val += hdr->sh_size;
11365 else
11366 {
11367 if (dyn.d_un.d_ptr == 0
11368 || hdr->sh_addr < dyn.d_un.d_ptr)
11369 dyn.d_un.d_ptr = hdr->sh_addr;
11370 }
11371 }
11372 }
11373 break;
11374 }
11375 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11376 }
11377 }
11378
11379 /* If we have created any dynamic sections, then output them. */
11380 if (dynobj != NULL)
11381 {
11382 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11383 goto error_return;
11384
11385 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11386 if (((info->warn_shared_textrel && info->shared)
11387 || info->error_textrel)
11388 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11389 {
11390 bfd_byte *dyncon, *dynconend;
11391
11392 dyncon = o->contents;
11393 dynconend = o->contents + o->size;
11394 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11395 {
11396 Elf_Internal_Dyn dyn;
11397
11398 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11399
11400 if (dyn.d_tag == DT_TEXTREL)
11401 {
11402 if (info->error_textrel)
11403 info->callbacks->einfo
11404 (_("%P%X: read-only segment has dynamic relocations.\n"));
11405 else
11406 info->callbacks->einfo
11407 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11408 break;
11409 }
11410 }
11411 }
11412
11413 for (o = dynobj->sections; o != NULL; o = o->next)
11414 {
11415 if ((o->flags & SEC_HAS_CONTENTS) == 0
11416 || o->size == 0
11417 || o->output_section == bfd_abs_section_ptr)
11418 continue;
11419 if ((o->flags & SEC_LINKER_CREATED) == 0)
11420 {
11421 /* At this point, we are only interested in sections
11422 created by _bfd_elf_link_create_dynamic_sections. */
11423 continue;
11424 }
11425 if (elf_hash_table (info)->stab_info.stabstr == o)
11426 continue;
11427 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11428 continue;
11429 if (strcmp (o->name, ".dynstr") != 0)
11430 {
11431 /* FIXME: octets_per_byte. */
11432 if (! bfd_set_section_contents (abfd, o->output_section,
11433 o->contents,
11434 (file_ptr) o->output_offset,
11435 o->size))
11436 goto error_return;
11437 }
11438 else
11439 {
11440 /* The contents of the .dynstr section are actually in a
11441 stringtab. */
11442 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11443 if (bfd_seek (abfd, off, SEEK_SET) != 0
11444 || ! _bfd_elf_strtab_emit (abfd,
11445 elf_hash_table (info)->dynstr))
11446 goto error_return;
11447 }
11448 }
11449 }
11450
11451 if (info->relocatable)
11452 {
11453 bfd_boolean failed = FALSE;
11454
11455 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11456 if (failed)
11457 goto error_return;
11458 }
11459
11460 /* If we have optimized stabs strings, output them. */
11461 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11462 {
11463 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11464 goto error_return;
11465 }
11466
11467 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11468 goto error_return;
11469
11470 elf_final_link_free (abfd, &flinfo);
11471
11472 elf_linker (abfd) = TRUE;
11473
11474 if (attr_section)
11475 {
11476 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11477 if (contents == NULL)
11478 return FALSE; /* Bail out and fail. */
11479 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11480 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11481 free (contents);
11482 }
11483
11484 return TRUE;
11485
11486 error_return:
11487 elf_final_link_free (abfd, &flinfo);
11488 return FALSE;
11489 }
11490 \f
11491 /* Initialize COOKIE for input bfd ABFD. */
11492
11493 static bfd_boolean
11494 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11495 struct bfd_link_info *info, bfd *abfd)
11496 {
11497 Elf_Internal_Shdr *symtab_hdr;
11498 const struct elf_backend_data *bed;
11499
11500 bed = get_elf_backend_data (abfd);
11501 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11502
11503 cookie->abfd = abfd;
11504 cookie->sym_hashes = elf_sym_hashes (abfd);
11505 cookie->bad_symtab = elf_bad_symtab (abfd);
11506 if (cookie->bad_symtab)
11507 {
11508 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11509 cookie->extsymoff = 0;
11510 }
11511 else
11512 {
11513 cookie->locsymcount = symtab_hdr->sh_info;
11514 cookie->extsymoff = symtab_hdr->sh_info;
11515 }
11516
11517 if (bed->s->arch_size == 32)
11518 cookie->r_sym_shift = 8;
11519 else
11520 cookie->r_sym_shift = 32;
11521
11522 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11523 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11524 {
11525 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11526 cookie->locsymcount, 0,
11527 NULL, NULL, NULL);
11528 if (cookie->locsyms == NULL)
11529 {
11530 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11531 return FALSE;
11532 }
11533 if (info->keep_memory)
11534 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11535 }
11536 return TRUE;
11537 }
11538
11539 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11540
11541 static void
11542 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11543 {
11544 Elf_Internal_Shdr *symtab_hdr;
11545
11546 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11547 if (cookie->locsyms != NULL
11548 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11549 free (cookie->locsyms);
11550 }
11551
11552 /* Initialize the relocation information in COOKIE for input section SEC
11553 of input bfd ABFD. */
11554
11555 static bfd_boolean
11556 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11557 struct bfd_link_info *info, bfd *abfd,
11558 asection *sec)
11559 {
11560 const struct elf_backend_data *bed;
11561
11562 if (sec->reloc_count == 0)
11563 {
11564 cookie->rels = NULL;
11565 cookie->relend = NULL;
11566 }
11567 else
11568 {
11569 bed = get_elf_backend_data (abfd);
11570
11571 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11572 info->keep_memory);
11573 if (cookie->rels == NULL)
11574 return FALSE;
11575 cookie->rel = cookie->rels;
11576 cookie->relend = (cookie->rels
11577 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11578 }
11579 cookie->rel = cookie->rels;
11580 return TRUE;
11581 }
11582
11583 /* Free the memory allocated by init_reloc_cookie_rels,
11584 if appropriate. */
11585
11586 static void
11587 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11588 asection *sec)
11589 {
11590 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11591 free (cookie->rels);
11592 }
11593
11594 /* Initialize the whole of COOKIE for input section SEC. */
11595
11596 static bfd_boolean
11597 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11598 struct bfd_link_info *info,
11599 asection *sec)
11600 {
11601 if (!init_reloc_cookie (cookie, info, sec->owner))
11602 goto error1;
11603 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11604 goto error2;
11605 return TRUE;
11606
11607 error2:
11608 fini_reloc_cookie (cookie, sec->owner);
11609 error1:
11610 return FALSE;
11611 }
11612
11613 /* Free the memory allocated by init_reloc_cookie_for_section,
11614 if appropriate. */
11615
11616 static void
11617 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11618 asection *sec)
11619 {
11620 fini_reloc_cookie_rels (cookie, sec);
11621 fini_reloc_cookie (cookie, sec->owner);
11622 }
11623 \f
11624 /* Garbage collect unused sections. */
11625
11626 /* Default gc_mark_hook. */
11627
11628 asection *
11629 _bfd_elf_gc_mark_hook (asection *sec,
11630 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11631 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11632 struct elf_link_hash_entry *h,
11633 Elf_Internal_Sym *sym)
11634 {
11635 const char *sec_name;
11636
11637 if (h != NULL)
11638 {
11639 switch (h->root.type)
11640 {
11641 case bfd_link_hash_defined:
11642 case bfd_link_hash_defweak:
11643 return h->root.u.def.section;
11644
11645 case bfd_link_hash_common:
11646 return h->root.u.c.p->section;
11647
11648 case bfd_link_hash_undefined:
11649 case bfd_link_hash_undefweak:
11650 /* To work around a glibc bug, keep all XXX input sections
11651 when there is an as yet undefined reference to __start_XXX
11652 or __stop_XXX symbols. The linker will later define such
11653 symbols for orphan input sections that have a name
11654 representable as a C identifier. */
11655 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11656 sec_name = h->root.root.string + 8;
11657 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11658 sec_name = h->root.root.string + 7;
11659 else
11660 sec_name = NULL;
11661
11662 if (sec_name && *sec_name != '\0')
11663 {
11664 bfd *i;
11665
11666 for (i = info->input_bfds; i; i = i->link_next)
11667 {
11668 sec = bfd_get_section_by_name (i, sec_name);
11669 if (sec)
11670 sec->flags |= SEC_KEEP;
11671 }
11672 }
11673 break;
11674
11675 default:
11676 break;
11677 }
11678 }
11679 else
11680 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11681
11682 return NULL;
11683 }
11684
11685 /* COOKIE->rel describes a relocation against section SEC, which is
11686 a section we've decided to keep. Return the section that contains
11687 the relocation symbol, or NULL if no section contains it. */
11688
11689 asection *
11690 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11691 elf_gc_mark_hook_fn gc_mark_hook,
11692 struct elf_reloc_cookie *cookie)
11693 {
11694 unsigned long r_symndx;
11695 struct elf_link_hash_entry *h;
11696
11697 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11698 if (r_symndx == STN_UNDEF)
11699 return NULL;
11700
11701 if (r_symndx >= cookie->locsymcount
11702 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11703 {
11704 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11705 while (h->root.type == bfd_link_hash_indirect
11706 || h->root.type == bfd_link_hash_warning)
11707 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11708 h->mark = 1;
11709 /* If this symbol is weak and there is a non-weak definition, we
11710 keep the non-weak definition because many backends put
11711 dynamic reloc info on the non-weak definition for code
11712 handling copy relocs. */
11713 if (h->u.weakdef != NULL)
11714 h->u.weakdef->mark = 1;
11715 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11716 }
11717
11718 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11719 &cookie->locsyms[r_symndx]);
11720 }
11721
11722 /* COOKIE->rel describes a relocation against section SEC, which is
11723 a section we've decided to keep. Mark the section that contains
11724 the relocation symbol. */
11725
11726 bfd_boolean
11727 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11728 asection *sec,
11729 elf_gc_mark_hook_fn gc_mark_hook,
11730 struct elf_reloc_cookie *cookie)
11731 {
11732 asection *rsec;
11733
11734 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11735 if (rsec && !rsec->gc_mark)
11736 {
11737 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11738 || (rsec->owner->flags & DYNAMIC) != 0)
11739 rsec->gc_mark = 1;
11740 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11741 return FALSE;
11742 }
11743 return TRUE;
11744 }
11745
11746 /* The mark phase of garbage collection. For a given section, mark
11747 it and any sections in this section's group, and all the sections
11748 which define symbols to which it refers. */
11749
11750 bfd_boolean
11751 _bfd_elf_gc_mark (struct bfd_link_info *info,
11752 asection *sec,
11753 elf_gc_mark_hook_fn gc_mark_hook)
11754 {
11755 bfd_boolean ret;
11756 asection *group_sec, *eh_frame;
11757
11758 sec->gc_mark = 1;
11759
11760 /* Mark all the sections in the group. */
11761 group_sec = elf_section_data (sec)->next_in_group;
11762 if (group_sec && !group_sec->gc_mark)
11763 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11764 return FALSE;
11765
11766 /* Look through the section relocs. */
11767 ret = TRUE;
11768 eh_frame = elf_eh_frame_section (sec->owner);
11769 if ((sec->flags & SEC_RELOC) != 0
11770 && sec->reloc_count > 0
11771 && sec != eh_frame)
11772 {
11773 struct elf_reloc_cookie cookie;
11774
11775 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11776 ret = FALSE;
11777 else
11778 {
11779 for (; cookie.rel < cookie.relend; cookie.rel++)
11780 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11781 {
11782 ret = FALSE;
11783 break;
11784 }
11785 fini_reloc_cookie_for_section (&cookie, sec);
11786 }
11787 }
11788
11789 if (ret && eh_frame && elf_fde_list (sec))
11790 {
11791 struct elf_reloc_cookie cookie;
11792
11793 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11794 ret = FALSE;
11795 else
11796 {
11797 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11798 gc_mark_hook, &cookie))
11799 ret = FALSE;
11800 fini_reloc_cookie_for_section (&cookie, eh_frame);
11801 }
11802 }
11803
11804 return ret;
11805 }
11806
11807 /* Keep debug and special sections. */
11808
11809 bfd_boolean
11810 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
11811 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
11812 {
11813 bfd *ibfd;
11814
11815 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11816 {
11817 asection *isec;
11818 bfd_boolean some_kept;
11819
11820 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
11821 continue;
11822
11823 /* Ensure all linker created sections are kept, and see whether
11824 any other section is already marked. */
11825 some_kept = FALSE;
11826 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11827 {
11828 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11829 isec->gc_mark = 1;
11830 else if (isec->gc_mark)
11831 some_kept = TRUE;
11832 }
11833
11834 /* If no section in this file will be kept, then we can
11835 toss out debug sections. */
11836 if (!some_kept)
11837 continue;
11838
11839 /* Keep debug and special sections like .comment when they are
11840 not part of a group, or when we have single-member groups. */
11841 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11842 if ((elf_next_in_group (isec) == NULL
11843 || elf_next_in_group (isec) == isec)
11844 && ((isec->flags & SEC_DEBUGGING) != 0
11845 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
11846 isec->gc_mark = 1;
11847 }
11848 return TRUE;
11849 }
11850
11851 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11852
11853 struct elf_gc_sweep_symbol_info
11854 {
11855 struct bfd_link_info *info;
11856 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11857 bfd_boolean);
11858 };
11859
11860 static bfd_boolean
11861 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11862 {
11863 if (!h->mark
11864 && (((h->root.type == bfd_link_hash_defined
11865 || h->root.type == bfd_link_hash_defweak)
11866 && !(h->def_regular
11867 && h->root.u.def.section->gc_mark))
11868 || h->root.type == bfd_link_hash_undefined
11869 || h->root.type == bfd_link_hash_undefweak))
11870 {
11871 struct elf_gc_sweep_symbol_info *inf;
11872
11873 inf = (struct elf_gc_sweep_symbol_info *) data;
11874 (*inf->hide_symbol) (inf->info, h, TRUE);
11875 h->def_regular = 0;
11876 h->ref_regular = 0;
11877 h->ref_regular_nonweak = 0;
11878 }
11879
11880 return TRUE;
11881 }
11882
11883 /* The sweep phase of garbage collection. Remove all garbage sections. */
11884
11885 typedef bfd_boolean (*gc_sweep_hook_fn)
11886 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11887
11888 static bfd_boolean
11889 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11890 {
11891 bfd *sub;
11892 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11893 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11894 unsigned long section_sym_count;
11895 struct elf_gc_sweep_symbol_info sweep_info;
11896
11897 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11898 {
11899 asection *o;
11900
11901 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11902 continue;
11903
11904 for (o = sub->sections; o != NULL; o = o->next)
11905 {
11906 /* When any section in a section group is kept, we keep all
11907 sections in the section group. If the first member of
11908 the section group is excluded, we will also exclude the
11909 group section. */
11910 if (o->flags & SEC_GROUP)
11911 {
11912 asection *first = elf_next_in_group (o);
11913 o->gc_mark = first->gc_mark;
11914 }
11915
11916 if (o->gc_mark)
11917 continue;
11918
11919 /* Skip sweeping sections already excluded. */
11920 if (o->flags & SEC_EXCLUDE)
11921 continue;
11922
11923 /* Since this is early in the link process, it is simple
11924 to remove a section from the output. */
11925 o->flags |= SEC_EXCLUDE;
11926
11927 if (info->print_gc_sections && o->size != 0)
11928 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11929
11930 /* But we also have to update some of the relocation
11931 info we collected before. */
11932 if (gc_sweep_hook
11933 && (o->flags & SEC_RELOC) != 0
11934 && o->reloc_count > 0
11935 && !bfd_is_abs_section (o->output_section))
11936 {
11937 Elf_Internal_Rela *internal_relocs;
11938 bfd_boolean r;
11939
11940 internal_relocs
11941 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11942 info->keep_memory);
11943 if (internal_relocs == NULL)
11944 return FALSE;
11945
11946 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11947
11948 if (elf_section_data (o)->relocs != internal_relocs)
11949 free (internal_relocs);
11950
11951 if (!r)
11952 return FALSE;
11953 }
11954 }
11955 }
11956
11957 /* Remove the symbols that were in the swept sections from the dynamic
11958 symbol table. GCFIXME: Anyone know how to get them out of the
11959 static symbol table as well? */
11960 sweep_info.info = info;
11961 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11962 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11963 &sweep_info);
11964
11965 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11966 return TRUE;
11967 }
11968
11969 /* Propagate collected vtable information. This is called through
11970 elf_link_hash_traverse. */
11971
11972 static bfd_boolean
11973 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11974 {
11975 /* Those that are not vtables. */
11976 if (h->vtable == NULL || h->vtable->parent == NULL)
11977 return TRUE;
11978
11979 /* Those vtables that do not have parents, we cannot merge. */
11980 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11981 return TRUE;
11982
11983 /* If we've already been done, exit. */
11984 if (h->vtable->used && h->vtable->used[-1])
11985 return TRUE;
11986
11987 /* Make sure the parent's table is up to date. */
11988 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11989
11990 if (h->vtable->used == NULL)
11991 {
11992 /* None of this table's entries were referenced. Re-use the
11993 parent's table. */
11994 h->vtable->used = h->vtable->parent->vtable->used;
11995 h->vtable->size = h->vtable->parent->vtable->size;
11996 }
11997 else
11998 {
11999 size_t n;
12000 bfd_boolean *cu, *pu;
12001
12002 /* Or the parent's entries into ours. */
12003 cu = h->vtable->used;
12004 cu[-1] = TRUE;
12005 pu = h->vtable->parent->vtable->used;
12006 if (pu != NULL)
12007 {
12008 const struct elf_backend_data *bed;
12009 unsigned int log_file_align;
12010
12011 bed = get_elf_backend_data (h->root.u.def.section->owner);
12012 log_file_align = bed->s->log_file_align;
12013 n = h->vtable->parent->vtable->size >> log_file_align;
12014 while (n--)
12015 {
12016 if (*pu)
12017 *cu = TRUE;
12018 pu++;
12019 cu++;
12020 }
12021 }
12022 }
12023
12024 return TRUE;
12025 }
12026
12027 static bfd_boolean
12028 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12029 {
12030 asection *sec;
12031 bfd_vma hstart, hend;
12032 Elf_Internal_Rela *relstart, *relend, *rel;
12033 const struct elf_backend_data *bed;
12034 unsigned int log_file_align;
12035
12036 /* Take care of both those symbols that do not describe vtables as
12037 well as those that are not loaded. */
12038 if (h->vtable == NULL || h->vtable->parent == NULL)
12039 return TRUE;
12040
12041 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12042 || h->root.type == bfd_link_hash_defweak);
12043
12044 sec = h->root.u.def.section;
12045 hstart = h->root.u.def.value;
12046 hend = hstart + h->size;
12047
12048 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12049 if (!relstart)
12050 return *(bfd_boolean *) okp = FALSE;
12051 bed = get_elf_backend_data (sec->owner);
12052 log_file_align = bed->s->log_file_align;
12053
12054 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12055
12056 for (rel = relstart; rel < relend; ++rel)
12057 if (rel->r_offset >= hstart && rel->r_offset < hend)
12058 {
12059 /* If the entry is in use, do nothing. */
12060 if (h->vtable->used
12061 && (rel->r_offset - hstart) < h->vtable->size)
12062 {
12063 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12064 if (h->vtable->used[entry])
12065 continue;
12066 }
12067 /* Otherwise, kill it. */
12068 rel->r_offset = rel->r_info = rel->r_addend = 0;
12069 }
12070
12071 return TRUE;
12072 }
12073
12074 /* Mark sections containing dynamically referenced symbols. When
12075 building shared libraries, we must assume that any visible symbol is
12076 referenced. */
12077
12078 bfd_boolean
12079 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12080 {
12081 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12082
12083 if ((h->root.type == bfd_link_hash_defined
12084 || h->root.type == bfd_link_hash_defweak)
12085 && (h->ref_dynamic
12086 || ((!info->executable || info->export_dynamic)
12087 && h->def_regular
12088 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12089 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12090 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12091 || !bfd_hide_sym_by_version (info->version_info,
12092 h->root.root.string)))))
12093 h->root.u.def.section->flags |= SEC_KEEP;
12094
12095 return TRUE;
12096 }
12097
12098 /* Keep all sections containing symbols undefined on the command-line,
12099 and the section containing the entry symbol. */
12100
12101 void
12102 _bfd_elf_gc_keep (struct bfd_link_info *info)
12103 {
12104 struct bfd_sym_chain *sym;
12105
12106 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12107 {
12108 struct elf_link_hash_entry *h;
12109
12110 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12111 FALSE, FALSE, FALSE);
12112
12113 if (h != NULL
12114 && (h->root.type == bfd_link_hash_defined
12115 || h->root.type == bfd_link_hash_defweak)
12116 && !bfd_is_abs_section (h->root.u.def.section))
12117 h->root.u.def.section->flags |= SEC_KEEP;
12118 }
12119 }
12120
12121 /* Do mark and sweep of unused sections. */
12122
12123 bfd_boolean
12124 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12125 {
12126 bfd_boolean ok = TRUE;
12127 bfd *sub;
12128 elf_gc_mark_hook_fn gc_mark_hook;
12129 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12130
12131 if (!bed->can_gc_sections
12132 || !is_elf_hash_table (info->hash))
12133 {
12134 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12135 return TRUE;
12136 }
12137
12138 bed->gc_keep (info);
12139
12140 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12141 at the .eh_frame section if we can mark the FDEs individually. */
12142 _bfd_elf_begin_eh_frame_parsing (info);
12143 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12144 {
12145 asection *sec;
12146 struct elf_reloc_cookie cookie;
12147
12148 sec = bfd_get_section_by_name (sub, ".eh_frame");
12149 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12150 {
12151 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12152 if (elf_section_data (sec)->sec_info
12153 && (sec->flags & SEC_LINKER_CREATED) == 0)
12154 elf_eh_frame_section (sub) = sec;
12155 fini_reloc_cookie_for_section (&cookie, sec);
12156 sec = bfd_get_next_section_by_name (sec);
12157 }
12158 }
12159 _bfd_elf_end_eh_frame_parsing (info);
12160
12161 /* Apply transitive closure to the vtable entry usage info. */
12162 elf_link_hash_traverse (elf_hash_table (info),
12163 elf_gc_propagate_vtable_entries_used,
12164 &ok);
12165 if (!ok)
12166 return FALSE;
12167
12168 /* Kill the vtable relocations that were not used. */
12169 elf_link_hash_traverse (elf_hash_table (info),
12170 elf_gc_smash_unused_vtentry_relocs,
12171 &ok);
12172 if (!ok)
12173 return FALSE;
12174
12175 /* Mark dynamically referenced symbols. */
12176 if (elf_hash_table (info)->dynamic_sections_created)
12177 elf_link_hash_traverse (elf_hash_table (info),
12178 bed->gc_mark_dynamic_ref,
12179 info);
12180
12181 /* Grovel through relocs to find out who stays ... */
12182 gc_mark_hook = bed->gc_mark_hook;
12183 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12184 {
12185 asection *o;
12186
12187 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12188 continue;
12189
12190 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12191 Also treat note sections as a root, if the section is not part
12192 of a group. */
12193 for (o = sub->sections; o != NULL; o = o->next)
12194 if (!o->gc_mark
12195 && (o->flags & SEC_EXCLUDE) == 0
12196 && ((o->flags & SEC_KEEP) != 0
12197 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12198 && elf_next_in_group (o) == NULL )))
12199 {
12200 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12201 return FALSE;
12202 }
12203 }
12204
12205 /* Allow the backend to mark additional target specific sections. */
12206 bed->gc_mark_extra_sections (info, gc_mark_hook);
12207
12208 /* ... and mark SEC_EXCLUDE for those that go. */
12209 return elf_gc_sweep (abfd, info);
12210 }
12211 \f
12212 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12213
12214 bfd_boolean
12215 bfd_elf_gc_record_vtinherit (bfd *abfd,
12216 asection *sec,
12217 struct elf_link_hash_entry *h,
12218 bfd_vma offset)
12219 {
12220 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12221 struct elf_link_hash_entry **search, *child;
12222 bfd_size_type extsymcount;
12223 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12224
12225 /* The sh_info field of the symtab header tells us where the
12226 external symbols start. We don't care about the local symbols at
12227 this point. */
12228 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12229 if (!elf_bad_symtab (abfd))
12230 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12231
12232 sym_hashes = elf_sym_hashes (abfd);
12233 sym_hashes_end = sym_hashes + extsymcount;
12234
12235 /* Hunt down the child symbol, which is in this section at the same
12236 offset as the relocation. */
12237 for (search = sym_hashes; search != sym_hashes_end; ++search)
12238 {
12239 if ((child = *search) != NULL
12240 && (child->root.type == bfd_link_hash_defined
12241 || child->root.type == bfd_link_hash_defweak)
12242 && child->root.u.def.section == sec
12243 && child->root.u.def.value == offset)
12244 goto win;
12245 }
12246
12247 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12248 abfd, sec, (unsigned long) offset);
12249 bfd_set_error (bfd_error_invalid_operation);
12250 return FALSE;
12251
12252 win:
12253 if (!child->vtable)
12254 {
12255 child->vtable = (struct elf_link_virtual_table_entry *)
12256 bfd_zalloc (abfd, sizeof (*child->vtable));
12257 if (!child->vtable)
12258 return FALSE;
12259 }
12260 if (!h)
12261 {
12262 /* This *should* only be the absolute section. It could potentially
12263 be that someone has defined a non-global vtable though, which
12264 would be bad. It isn't worth paging in the local symbols to be
12265 sure though; that case should simply be handled by the assembler. */
12266
12267 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12268 }
12269 else
12270 child->vtable->parent = h;
12271
12272 return TRUE;
12273 }
12274
12275 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12276
12277 bfd_boolean
12278 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12279 asection *sec ATTRIBUTE_UNUSED,
12280 struct elf_link_hash_entry *h,
12281 bfd_vma addend)
12282 {
12283 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12284 unsigned int log_file_align = bed->s->log_file_align;
12285
12286 if (!h->vtable)
12287 {
12288 h->vtable = (struct elf_link_virtual_table_entry *)
12289 bfd_zalloc (abfd, sizeof (*h->vtable));
12290 if (!h->vtable)
12291 return FALSE;
12292 }
12293
12294 if (addend >= h->vtable->size)
12295 {
12296 size_t size, bytes, file_align;
12297 bfd_boolean *ptr = h->vtable->used;
12298
12299 /* While the symbol is undefined, we have to be prepared to handle
12300 a zero size. */
12301 file_align = 1 << log_file_align;
12302 if (h->root.type == bfd_link_hash_undefined)
12303 size = addend + file_align;
12304 else
12305 {
12306 size = h->size;
12307 if (addend >= size)
12308 {
12309 /* Oops! We've got a reference past the defined end of
12310 the table. This is probably a bug -- shall we warn? */
12311 size = addend + file_align;
12312 }
12313 }
12314 size = (size + file_align - 1) & -file_align;
12315
12316 /* Allocate one extra entry for use as a "done" flag for the
12317 consolidation pass. */
12318 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12319
12320 if (ptr)
12321 {
12322 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12323
12324 if (ptr != NULL)
12325 {
12326 size_t oldbytes;
12327
12328 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12329 * sizeof (bfd_boolean));
12330 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12331 }
12332 }
12333 else
12334 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12335
12336 if (ptr == NULL)
12337 return FALSE;
12338
12339 /* And arrange for that done flag to be at index -1. */
12340 h->vtable->used = ptr + 1;
12341 h->vtable->size = size;
12342 }
12343
12344 h->vtable->used[addend >> log_file_align] = TRUE;
12345
12346 return TRUE;
12347 }
12348
12349 /* Map an ELF section header flag to its corresponding string. */
12350 typedef struct
12351 {
12352 char *flag_name;
12353 flagword flag_value;
12354 } elf_flags_to_name_table;
12355
12356 static elf_flags_to_name_table elf_flags_to_names [] =
12357 {
12358 { "SHF_WRITE", SHF_WRITE },
12359 { "SHF_ALLOC", SHF_ALLOC },
12360 { "SHF_EXECINSTR", SHF_EXECINSTR },
12361 { "SHF_MERGE", SHF_MERGE },
12362 { "SHF_STRINGS", SHF_STRINGS },
12363 { "SHF_INFO_LINK", SHF_INFO_LINK},
12364 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12365 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12366 { "SHF_GROUP", SHF_GROUP },
12367 { "SHF_TLS", SHF_TLS },
12368 { "SHF_MASKOS", SHF_MASKOS },
12369 { "SHF_EXCLUDE", SHF_EXCLUDE },
12370 };
12371
12372 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12373 bfd_boolean
12374 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12375 struct flag_info *flaginfo,
12376 asection *section)
12377 {
12378 const bfd_vma sh_flags = elf_section_flags (section);
12379
12380 if (!flaginfo->flags_initialized)
12381 {
12382 bfd *obfd = info->output_bfd;
12383 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12384 struct flag_info_list *tf = flaginfo->flag_list;
12385 int with_hex = 0;
12386 int without_hex = 0;
12387
12388 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12389 {
12390 unsigned i;
12391 flagword (*lookup) (char *);
12392
12393 lookup = bed->elf_backend_lookup_section_flags_hook;
12394 if (lookup != NULL)
12395 {
12396 flagword hexval = (*lookup) ((char *) tf->name);
12397
12398 if (hexval != 0)
12399 {
12400 if (tf->with == with_flags)
12401 with_hex |= hexval;
12402 else if (tf->with == without_flags)
12403 without_hex |= hexval;
12404 tf->valid = TRUE;
12405 continue;
12406 }
12407 }
12408 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12409 {
12410 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12411 {
12412 if (tf->with == with_flags)
12413 with_hex |= elf_flags_to_names[i].flag_value;
12414 else if (tf->with == without_flags)
12415 without_hex |= elf_flags_to_names[i].flag_value;
12416 tf->valid = TRUE;
12417 break;
12418 }
12419 }
12420 if (!tf->valid)
12421 {
12422 info->callbacks->einfo
12423 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12424 return FALSE;
12425 }
12426 }
12427 flaginfo->flags_initialized = TRUE;
12428 flaginfo->only_with_flags |= with_hex;
12429 flaginfo->not_with_flags |= without_hex;
12430 }
12431
12432 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12433 return FALSE;
12434
12435 if ((flaginfo->not_with_flags & sh_flags) != 0)
12436 return FALSE;
12437
12438 return TRUE;
12439 }
12440
12441 struct alloc_got_off_arg {
12442 bfd_vma gotoff;
12443 struct bfd_link_info *info;
12444 };
12445
12446 /* We need a special top-level link routine to convert got reference counts
12447 to real got offsets. */
12448
12449 static bfd_boolean
12450 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12451 {
12452 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12453 bfd *obfd = gofarg->info->output_bfd;
12454 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12455
12456 if (h->got.refcount > 0)
12457 {
12458 h->got.offset = gofarg->gotoff;
12459 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12460 }
12461 else
12462 h->got.offset = (bfd_vma) -1;
12463
12464 return TRUE;
12465 }
12466
12467 /* And an accompanying bit to work out final got entry offsets once
12468 we're done. Should be called from final_link. */
12469
12470 bfd_boolean
12471 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12472 struct bfd_link_info *info)
12473 {
12474 bfd *i;
12475 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12476 bfd_vma gotoff;
12477 struct alloc_got_off_arg gofarg;
12478
12479 BFD_ASSERT (abfd == info->output_bfd);
12480
12481 if (! is_elf_hash_table (info->hash))
12482 return FALSE;
12483
12484 /* The GOT offset is relative to the .got section, but the GOT header is
12485 put into the .got.plt section, if the backend uses it. */
12486 if (bed->want_got_plt)
12487 gotoff = 0;
12488 else
12489 gotoff = bed->got_header_size;
12490
12491 /* Do the local .got entries first. */
12492 for (i = info->input_bfds; i; i = i->link_next)
12493 {
12494 bfd_signed_vma *local_got;
12495 bfd_size_type j, locsymcount;
12496 Elf_Internal_Shdr *symtab_hdr;
12497
12498 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12499 continue;
12500
12501 local_got = elf_local_got_refcounts (i);
12502 if (!local_got)
12503 continue;
12504
12505 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12506 if (elf_bad_symtab (i))
12507 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12508 else
12509 locsymcount = symtab_hdr->sh_info;
12510
12511 for (j = 0; j < locsymcount; ++j)
12512 {
12513 if (local_got[j] > 0)
12514 {
12515 local_got[j] = gotoff;
12516 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12517 }
12518 else
12519 local_got[j] = (bfd_vma) -1;
12520 }
12521 }
12522
12523 /* Then the global .got entries. .plt refcounts are handled by
12524 adjust_dynamic_symbol */
12525 gofarg.gotoff = gotoff;
12526 gofarg.info = info;
12527 elf_link_hash_traverse (elf_hash_table (info),
12528 elf_gc_allocate_got_offsets,
12529 &gofarg);
12530 return TRUE;
12531 }
12532
12533 /* Many folk need no more in the way of final link than this, once
12534 got entry reference counting is enabled. */
12535
12536 bfd_boolean
12537 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12538 {
12539 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12540 return FALSE;
12541
12542 /* Invoke the regular ELF backend linker to do all the work. */
12543 return bfd_elf_final_link (abfd, info);
12544 }
12545
12546 bfd_boolean
12547 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12548 {
12549 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12550
12551 if (rcookie->bad_symtab)
12552 rcookie->rel = rcookie->rels;
12553
12554 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12555 {
12556 unsigned long r_symndx;
12557
12558 if (! rcookie->bad_symtab)
12559 if (rcookie->rel->r_offset > offset)
12560 return FALSE;
12561 if (rcookie->rel->r_offset != offset)
12562 continue;
12563
12564 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12565 if (r_symndx == STN_UNDEF)
12566 return TRUE;
12567
12568 if (r_symndx >= rcookie->locsymcount
12569 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12570 {
12571 struct elf_link_hash_entry *h;
12572
12573 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12574
12575 while (h->root.type == bfd_link_hash_indirect
12576 || h->root.type == bfd_link_hash_warning)
12577 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12578
12579 if ((h->root.type == bfd_link_hash_defined
12580 || h->root.type == bfd_link_hash_defweak)
12581 && discarded_section (h->root.u.def.section))
12582 return TRUE;
12583 else
12584 return FALSE;
12585 }
12586 else
12587 {
12588 /* It's not a relocation against a global symbol,
12589 but it could be a relocation against a local
12590 symbol for a discarded section. */
12591 asection *isec;
12592 Elf_Internal_Sym *isym;
12593
12594 /* Need to: get the symbol; get the section. */
12595 isym = &rcookie->locsyms[r_symndx];
12596 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12597 if (isec != NULL && discarded_section (isec))
12598 return TRUE;
12599 }
12600 return FALSE;
12601 }
12602 return FALSE;
12603 }
12604
12605 /* Discard unneeded references to discarded sections.
12606 Returns TRUE if any section's size was changed. */
12607 /* This function assumes that the relocations are in sorted order,
12608 which is true for all known assemblers. */
12609
12610 bfd_boolean
12611 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12612 {
12613 struct elf_reloc_cookie cookie;
12614 asection *stab, *eh;
12615 const struct elf_backend_data *bed;
12616 bfd *abfd;
12617 bfd_boolean ret = FALSE;
12618
12619 if (info->traditional_format
12620 || !is_elf_hash_table (info->hash))
12621 return FALSE;
12622
12623 _bfd_elf_begin_eh_frame_parsing (info);
12624 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12625 {
12626 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12627 continue;
12628
12629 bed = get_elf_backend_data (abfd);
12630
12631 eh = NULL;
12632 if (!info->relocatable)
12633 {
12634 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12635 while (eh != NULL
12636 && (eh->size == 0
12637 || bfd_is_abs_section (eh->output_section)))
12638 eh = bfd_get_next_section_by_name (eh);
12639 }
12640
12641 stab = bfd_get_section_by_name (abfd, ".stab");
12642 if (stab != NULL
12643 && (stab->size == 0
12644 || bfd_is_abs_section (stab->output_section)
12645 || stab->sec_info_type != SEC_INFO_TYPE_STABS))
12646 stab = NULL;
12647
12648 if (stab == NULL
12649 && eh == NULL
12650 && bed->elf_backend_discard_info == NULL)
12651 continue;
12652
12653 if (!init_reloc_cookie (&cookie, info, abfd))
12654 return FALSE;
12655
12656 if (stab != NULL
12657 && stab->reloc_count > 0
12658 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12659 {
12660 if (_bfd_discard_section_stabs (abfd, stab,
12661 elf_section_data (stab)->sec_info,
12662 bfd_elf_reloc_symbol_deleted_p,
12663 &cookie))
12664 ret = TRUE;
12665 fini_reloc_cookie_rels (&cookie, stab);
12666 }
12667
12668 while (eh != NULL
12669 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12670 {
12671 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12672 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12673 bfd_elf_reloc_symbol_deleted_p,
12674 &cookie))
12675 ret = TRUE;
12676 fini_reloc_cookie_rels (&cookie, eh);
12677 eh = bfd_get_next_section_by_name (eh);
12678 }
12679
12680 if (bed->elf_backend_discard_info != NULL
12681 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12682 ret = TRUE;
12683
12684 fini_reloc_cookie (&cookie, abfd);
12685 }
12686 _bfd_elf_end_eh_frame_parsing (info);
12687
12688 if (info->eh_frame_hdr
12689 && !info->relocatable
12690 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12691 ret = TRUE;
12692
12693 return ret;
12694 }
12695
12696 bfd_boolean
12697 _bfd_elf_section_already_linked (bfd *abfd,
12698 asection *sec,
12699 struct bfd_link_info *info)
12700 {
12701 flagword flags;
12702 const char *name, *key;
12703 struct bfd_section_already_linked *l;
12704 struct bfd_section_already_linked_hash_entry *already_linked_list;
12705
12706 if (sec->output_section == bfd_abs_section_ptr)
12707 return FALSE;
12708
12709 flags = sec->flags;
12710
12711 /* Return if it isn't a linkonce section. A comdat group section
12712 also has SEC_LINK_ONCE set. */
12713 if ((flags & SEC_LINK_ONCE) == 0)
12714 return FALSE;
12715
12716 /* Don't put group member sections on our list of already linked
12717 sections. They are handled as a group via their group section. */
12718 if (elf_sec_group (sec) != NULL)
12719 return FALSE;
12720
12721 /* For a SHT_GROUP section, use the group signature as the key. */
12722 name = sec->name;
12723 if ((flags & SEC_GROUP) != 0
12724 && elf_next_in_group (sec) != NULL
12725 && elf_group_name (elf_next_in_group (sec)) != NULL)
12726 key = elf_group_name (elf_next_in_group (sec));
12727 else
12728 {
12729 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
12730 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12731 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12732 key++;
12733 else
12734 /* Must be a user linkonce section that doesn't follow gcc's
12735 naming convention. In this case we won't be matching
12736 single member groups. */
12737 key = name;
12738 }
12739
12740 already_linked_list = bfd_section_already_linked_table_lookup (key);
12741
12742 for (l = already_linked_list->entry; l != NULL; l = l->next)
12743 {
12744 /* We may have 2 different types of sections on the list: group
12745 sections with a signature of <key> (<key> is some string),
12746 and linkonce sections named .gnu.linkonce.<type>.<key>.
12747 Match like sections. LTO plugin sections are an exception.
12748 They are always named .gnu.linkonce.t.<key> and match either
12749 type of section. */
12750 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12751 && ((flags & SEC_GROUP) != 0
12752 || strcmp (name, l->sec->name) == 0))
12753 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
12754 {
12755 /* The section has already been linked. See if we should
12756 issue a warning. */
12757 if (!_bfd_handle_already_linked (sec, l, info))
12758 return FALSE;
12759
12760 if (flags & SEC_GROUP)
12761 {
12762 asection *first = elf_next_in_group (sec);
12763 asection *s = first;
12764
12765 while (s != NULL)
12766 {
12767 s->output_section = bfd_abs_section_ptr;
12768 /* Record which group discards it. */
12769 s->kept_section = l->sec;
12770 s = elf_next_in_group (s);
12771 /* These lists are circular. */
12772 if (s == first)
12773 break;
12774 }
12775 }
12776
12777 return TRUE;
12778 }
12779 }
12780
12781 /* A single member comdat group section may be discarded by a
12782 linkonce section and vice versa. */
12783 if ((flags & SEC_GROUP) != 0)
12784 {
12785 asection *first = elf_next_in_group (sec);
12786
12787 if (first != NULL && elf_next_in_group (first) == first)
12788 /* Check this single member group against linkonce sections. */
12789 for (l = already_linked_list->entry; l != NULL; l = l->next)
12790 if ((l->sec->flags & SEC_GROUP) == 0
12791 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12792 {
12793 first->output_section = bfd_abs_section_ptr;
12794 first->kept_section = l->sec;
12795 sec->output_section = bfd_abs_section_ptr;
12796 break;
12797 }
12798 }
12799 else
12800 /* Check this linkonce section against single member groups. */
12801 for (l = already_linked_list->entry; l != NULL; l = l->next)
12802 if (l->sec->flags & SEC_GROUP)
12803 {
12804 asection *first = elf_next_in_group (l->sec);
12805
12806 if (first != NULL
12807 && elf_next_in_group (first) == first
12808 && bfd_elf_match_symbols_in_sections (first, sec, info))
12809 {
12810 sec->output_section = bfd_abs_section_ptr;
12811 sec->kept_section = first;
12812 break;
12813 }
12814 }
12815
12816 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12817 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12818 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12819 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12820 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12821 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12822 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12823 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12824 The reverse order cannot happen as there is never a bfd with only the
12825 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12826 matter as here were are looking only for cross-bfd sections. */
12827
12828 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12829 for (l = already_linked_list->entry; l != NULL; l = l->next)
12830 if ((l->sec->flags & SEC_GROUP) == 0
12831 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12832 {
12833 if (abfd != l->sec->owner)
12834 sec->output_section = bfd_abs_section_ptr;
12835 break;
12836 }
12837
12838 /* This is the first section with this name. Record it. */
12839 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
12840 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12841 return sec->output_section == bfd_abs_section_ptr;
12842 }
12843
12844 bfd_boolean
12845 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12846 {
12847 return sym->st_shndx == SHN_COMMON;
12848 }
12849
12850 unsigned int
12851 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12852 {
12853 return SHN_COMMON;
12854 }
12855
12856 asection *
12857 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12858 {
12859 return bfd_com_section_ptr;
12860 }
12861
12862 bfd_vma
12863 _bfd_elf_default_got_elt_size (bfd *abfd,
12864 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12865 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12866 bfd *ibfd ATTRIBUTE_UNUSED,
12867 unsigned long symndx ATTRIBUTE_UNUSED)
12868 {
12869 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12870 return bed->s->arch_size / 8;
12871 }
12872
12873 /* Routines to support the creation of dynamic relocs. */
12874
12875 /* Returns the name of the dynamic reloc section associated with SEC. */
12876
12877 static const char *
12878 get_dynamic_reloc_section_name (bfd * abfd,
12879 asection * sec,
12880 bfd_boolean is_rela)
12881 {
12882 char *name;
12883 const char *old_name = bfd_get_section_name (NULL, sec);
12884 const char *prefix = is_rela ? ".rela" : ".rel";
12885
12886 if (old_name == NULL)
12887 return NULL;
12888
12889 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12890 sprintf (name, "%s%s", prefix, old_name);
12891
12892 return name;
12893 }
12894
12895 /* Returns the dynamic reloc section associated with SEC.
12896 If necessary compute the name of the dynamic reloc section based
12897 on SEC's name (looked up in ABFD's string table) and the setting
12898 of IS_RELA. */
12899
12900 asection *
12901 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12902 asection * sec,
12903 bfd_boolean is_rela)
12904 {
12905 asection * reloc_sec = elf_section_data (sec)->sreloc;
12906
12907 if (reloc_sec == NULL)
12908 {
12909 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12910
12911 if (name != NULL)
12912 {
12913 reloc_sec = bfd_get_linker_section (abfd, name);
12914
12915 if (reloc_sec != NULL)
12916 elf_section_data (sec)->sreloc = reloc_sec;
12917 }
12918 }
12919
12920 return reloc_sec;
12921 }
12922
12923 /* Returns the dynamic reloc section associated with SEC. If the
12924 section does not exist it is created and attached to the DYNOBJ
12925 bfd and stored in the SRELOC field of SEC's elf_section_data
12926 structure.
12927
12928 ALIGNMENT is the alignment for the newly created section and
12929 IS_RELA defines whether the name should be .rela.<SEC's name>
12930 or .rel.<SEC's name>. The section name is looked up in the
12931 string table associated with ABFD. */
12932
12933 asection *
12934 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12935 bfd * dynobj,
12936 unsigned int alignment,
12937 bfd * abfd,
12938 bfd_boolean is_rela)
12939 {
12940 asection * reloc_sec = elf_section_data (sec)->sreloc;
12941
12942 if (reloc_sec == NULL)
12943 {
12944 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12945
12946 if (name == NULL)
12947 return NULL;
12948
12949 reloc_sec = bfd_get_linker_section (dynobj, name);
12950
12951 if (reloc_sec == NULL)
12952 {
12953 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
12954 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12955 if ((sec->flags & SEC_ALLOC) != 0)
12956 flags |= SEC_ALLOC | SEC_LOAD;
12957
12958 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
12959 if (reloc_sec != NULL)
12960 {
12961 /* _bfd_elf_get_sec_type_attr chooses a section type by
12962 name. Override as it may be wrong, eg. for a user
12963 section named "auto" we'll get ".relauto" which is
12964 seen to be a .rela section. */
12965 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
12966 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12967 reloc_sec = NULL;
12968 }
12969 }
12970
12971 elf_section_data (sec)->sreloc = reloc_sec;
12972 }
12973
12974 return reloc_sec;
12975 }
12976
12977 /* Copy the ELF symbol type associated with a linker hash entry. */
12978 void
12979 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
12980 struct bfd_link_hash_entry * hdest,
12981 struct bfd_link_hash_entry * hsrc)
12982 {
12983 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
12984 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
12985
12986 ehdest->type = ehsrc->type;
12987 ehdest->target_internal = ehsrc->target_internal;
12988 }
12989
12990 /* Append a RELA relocation REL to section S in BFD. */
12991
12992 void
12993 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
12994 {
12995 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12996 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
12997 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
12998 bed->s->swap_reloca_out (abfd, rel, loc);
12999 }
13000
13001 /* Append a REL relocation REL to section S in BFD. */
13002
13003 void
13004 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13005 {
13006 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13007 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13008 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13009 bed->s->swap_reloc_out (abfd, rel, loc);
13010 }
This page took 0.430054 seconds and 5 git commands to generate.