bfd/
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #define ARCH_SIZE 0
26 #include "elf-bfd.h"
27 #include "safe-ctype.h"
28 #include "libiberty.h"
29
30 bfd_boolean
31 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
32 {
33 flagword flags;
34 asection *s;
35 struct elf_link_hash_entry *h;
36 struct bfd_link_hash_entry *bh;
37 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
38 int ptralign;
39
40 /* This function may be called more than once. */
41 s = bfd_get_section_by_name (abfd, ".got");
42 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
43 return TRUE;
44
45 switch (bed->s->arch_size)
46 {
47 case 32:
48 ptralign = 2;
49 break;
50
51 case 64:
52 ptralign = 3;
53 break;
54
55 default:
56 bfd_set_error (bfd_error_bad_value);
57 return FALSE;
58 }
59
60 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
61 | SEC_LINKER_CREATED);
62
63 s = bfd_make_section (abfd, ".got");
64 if (s == NULL
65 || !bfd_set_section_flags (abfd, s, flags)
66 || !bfd_set_section_alignment (abfd, s, ptralign))
67 return FALSE;
68
69 if (bed->want_got_plt)
70 {
71 s = bfd_make_section (abfd, ".got.plt");
72 if (s == NULL
73 || !bfd_set_section_flags (abfd, s, flags)
74 || !bfd_set_section_alignment (abfd, s, ptralign))
75 return FALSE;
76 }
77
78 if (bed->want_got_sym)
79 {
80 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
81 (or .got.plt) section. We don't do this in the linker script
82 because we don't want to define the symbol if we are not creating
83 a global offset table. */
84 bh = NULL;
85 if (!(_bfd_generic_link_add_one_symbol
86 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
87 bed->got_symbol_offset, NULL, FALSE, bed->collect, &bh)))
88 return FALSE;
89 h = (struct elf_link_hash_entry *) bh;
90 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
91 h->type = STT_OBJECT;
92
93 if (! info->executable
94 && ! bfd_elf_link_record_dynamic_symbol (info, h))
95 return FALSE;
96
97 elf_hash_table (info)->hgot = h;
98 }
99
100 /* The first bit of the global offset table is the header. */
101 s->size += bed->got_header_size + bed->got_symbol_offset;
102
103 return TRUE;
104 }
105 \f
106 /* Create some sections which will be filled in with dynamic linking
107 information. ABFD is an input file which requires dynamic sections
108 to be created. The dynamic sections take up virtual memory space
109 when the final executable is run, so we need to create them before
110 addresses are assigned to the output sections. We work out the
111 actual contents and size of these sections later. */
112
113 bfd_boolean
114 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
115 {
116 flagword flags;
117 register asection *s;
118 struct elf_link_hash_entry *h;
119 struct bfd_link_hash_entry *bh;
120 const struct elf_backend_data *bed;
121
122 if (! is_elf_hash_table (info->hash))
123 return FALSE;
124
125 if (elf_hash_table (info)->dynamic_sections_created)
126 return TRUE;
127
128 /* Make sure that all dynamic sections use the same input BFD. */
129 if (elf_hash_table (info)->dynobj == NULL)
130 elf_hash_table (info)->dynobj = abfd;
131 else
132 abfd = elf_hash_table (info)->dynobj;
133
134 /* Note that we set the SEC_IN_MEMORY flag for all of these
135 sections. */
136 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
137 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
138
139 /* A dynamically linked executable has a .interp section, but a
140 shared library does not. */
141 if (info->executable)
142 {
143 s = bfd_make_section (abfd, ".interp");
144 if (s == NULL
145 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
146 return FALSE;
147 }
148
149 if (! info->traditional_format)
150 {
151 s = bfd_make_section (abfd, ".eh_frame_hdr");
152 if (s == NULL
153 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
154 || ! bfd_set_section_alignment (abfd, s, 2))
155 return FALSE;
156 elf_hash_table (info)->eh_info.hdr_sec = s;
157 }
158
159 bed = get_elf_backend_data (abfd);
160
161 /* Create sections to hold version informations. These are removed
162 if they are not needed. */
163 s = bfd_make_section (abfd, ".gnu.version_d");
164 if (s == NULL
165 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
166 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
167 return FALSE;
168
169 s = bfd_make_section (abfd, ".gnu.version");
170 if (s == NULL
171 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
172 || ! bfd_set_section_alignment (abfd, s, 1))
173 return FALSE;
174
175 s = bfd_make_section (abfd, ".gnu.version_r");
176 if (s == NULL
177 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
178 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
179 return FALSE;
180
181 s = bfd_make_section (abfd, ".dynsym");
182 if (s == NULL
183 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
184 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
185 return FALSE;
186
187 s = bfd_make_section (abfd, ".dynstr");
188 if (s == NULL
189 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
190 return FALSE;
191
192 /* Create a strtab to hold the dynamic symbol names. */
193 if (elf_hash_table (info)->dynstr == NULL)
194 {
195 elf_hash_table (info)->dynstr = _bfd_elf_strtab_init ();
196 if (elf_hash_table (info)->dynstr == NULL)
197 return FALSE;
198 }
199
200 s = bfd_make_section (abfd, ".dynamic");
201 if (s == NULL
202 || ! bfd_set_section_flags (abfd, s, flags)
203 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
204 return FALSE;
205
206 /* The special symbol _DYNAMIC is always set to the start of the
207 .dynamic section. This call occurs before we have processed the
208 symbols for any dynamic object, so we don't have to worry about
209 overriding a dynamic definition. We could set _DYNAMIC in a
210 linker script, but we only want to define it if we are, in fact,
211 creating a .dynamic section. We don't want to define it if there
212 is no .dynamic section, since on some ELF platforms the start up
213 code examines it to decide how to initialize the process. */
214 bh = NULL;
215 if (! (_bfd_generic_link_add_one_symbol
216 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, 0, NULL, FALSE,
217 get_elf_backend_data (abfd)->collect, &bh)))
218 return FALSE;
219 h = (struct elf_link_hash_entry *) bh;
220 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
221 h->type = STT_OBJECT;
222
223 if (! info->executable
224 && ! bfd_elf_link_record_dynamic_symbol (info, h))
225 return FALSE;
226
227 s = bfd_make_section (abfd, ".hash");
228 if (s == NULL
229 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
230 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
231 return FALSE;
232 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
233
234 /* Let the backend create the rest of the sections. This lets the
235 backend set the right flags. The backend will normally create
236 the .got and .plt sections. */
237 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
238 return FALSE;
239
240 elf_hash_table (info)->dynamic_sections_created = TRUE;
241
242 return TRUE;
243 }
244
245 /* Create dynamic sections when linking against a dynamic object. */
246
247 bfd_boolean
248 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
249 {
250 flagword flags, pltflags;
251 asection *s;
252 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
253
254 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
255 .rel[a].bss sections. */
256
257 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
258 | SEC_LINKER_CREATED);
259
260 pltflags = flags;
261 pltflags |= SEC_CODE;
262 if (bed->plt_not_loaded)
263 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
264 if (bed->plt_readonly)
265 pltflags |= SEC_READONLY;
266
267 s = bfd_make_section (abfd, ".plt");
268 if (s == NULL
269 || ! bfd_set_section_flags (abfd, s, pltflags)
270 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
271 return FALSE;
272
273 if (bed->want_plt_sym)
274 {
275 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
276 .plt section. */
277 struct elf_link_hash_entry *h;
278 struct bfd_link_hash_entry *bh = NULL;
279
280 if (! (_bfd_generic_link_add_one_symbol
281 (info, abfd, "_PROCEDURE_LINKAGE_TABLE_", BSF_GLOBAL, s, 0, NULL,
282 FALSE, get_elf_backend_data (abfd)->collect, &bh)))
283 return FALSE;
284 h = (struct elf_link_hash_entry *) bh;
285 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
286 h->type = STT_OBJECT;
287
288 if (! info->executable
289 && ! bfd_elf_link_record_dynamic_symbol (info, h))
290 return FALSE;
291 }
292
293 s = bfd_make_section (abfd,
294 bed->default_use_rela_p ? ".rela.plt" : ".rel.plt");
295 if (s == NULL
296 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
297 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
298 return FALSE;
299
300 if (! _bfd_elf_create_got_section (abfd, info))
301 return FALSE;
302
303 if (bed->want_dynbss)
304 {
305 /* The .dynbss section is a place to put symbols which are defined
306 by dynamic objects, are referenced by regular objects, and are
307 not functions. We must allocate space for them in the process
308 image and use a R_*_COPY reloc to tell the dynamic linker to
309 initialize them at run time. The linker script puts the .dynbss
310 section into the .bss section of the final image. */
311 s = bfd_make_section (abfd, ".dynbss");
312 if (s == NULL
313 || ! bfd_set_section_flags (abfd, s, SEC_ALLOC | SEC_LINKER_CREATED))
314 return FALSE;
315
316 /* The .rel[a].bss section holds copy relocs. This section is not
317 normally needed. We need to create it here, though, so that the
318 linker will map it to an output section. We can't just create it
319 only if we need it, because we will not know whether we need it
320 until we have seen all the input files, and the first time the
321 main linker code calls BFD after examining all the input files
322 (size_dynamic_sections) the input sections have already been
323 mapped to the output sections. If the section turns out not to
324 be needed, we can discard it later. We will never need this
325 section when generating a shared object, since they do not use
326 copy relocs. */
327 if (! info->shared)
328 {
329 s = bfd_make_section (abfd,
330 (bed->default_use_rela_p
331 ? ".rela.bss" : ".rel.bss"));
332 if (s == NULL
333 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
334 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
335 return FALSE;
336 }
337 }
338
339 return TRUE;
340 }
341 \f
342 /* Record a new dynamic symbol. We record the dynamic symbols as we
343 read the input files, since we need to have a list of all of them
344 before we can determine the final sizes of the output sections.
345 Note that we may actually call this function even though we are not
346 going to output any dynamic symbols; in some cases we know that a
347 symbol should be in the dynamic symbol table, but only if there is
348 one. */
349
350 bfd_boolean
351 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
352 struct elf_link_hash_entry *h)
353 {
354 if (h->dynindx == -1)
355 {
356 struct elf_strtab_hash *dynstr;
357 char *p;
358 const char *name;
359 bfd_size_type indx;
360
361 /* XXX: The ABI draft says the linker must turn hidden and
362 internal symbols into STB_LOCAL symbols when producing the
363 DSO. However, if ld.so honors st_other in the dynamic table,
364 this would not be necessary. */
365 switch (ELF_ST_VISIBILITY (h->other))
366 {
367 case STV_INTERNAL:
368 case STV_HIDDEN:
369 if (h->root.type != bfd_link_hash_undefined
370 && h->root.type != bfd_link_hash_undefweak)
371 {
372 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
373 return TRUE;
374 }
375
376 default:
377 break;
378 }
379
380 h->dynindx = elf_hash_table (info)->dynsymcount;
381 ++elf_hash_table (info)->dynsymcount;
382
383 dynstr = elf_hash_table (info)->dynstr;
384 if (dynstr == NULL)
385 {
386 /* Create a strtab to hold the dynamic symbol names. */
387 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
388 if (dynstr == NULL)
389 return FALSE;
390 }
391
392 /* We don't put any version information in the dynamic string
393 table. */
394 name = h->root.root.string;
395 p = strchr (name, ELF_VER_CHR);
396 if (p != NULL)
397 /* We know that the p points into writable memory. In fact,
398 there are only a few symbols that have read-only names, being
399 those like _GLOBAL_OFFSET_TABLE_ that are created specially
400 by the backends. Most symbols will have names pointing into
401 an ELF string table read from a file, or to objalloc memory. */
402 *p = 0;
403
404 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
405
406 if (p != NULL)
407 *p = ELF_VER_CHR;
408
409 if (indx == (bfd_size_type) -1)
410 return FALSE;
411 h->dynstr_index = indx;
412 }
413
414 return TRUE;
415 }
416 \f
417 /* Record an assignment to a symbol made by a linker script. We need
418 this in case some dynamic object refers to this symbol. */
419
420 bfd_boolean
421 bfd_elf_record_link_assignment (bfd *output_bfd ATTRIBUTE_UNUSED,
422 struct bfd_link_info *info,
423 const char *name,
424 bfd_boolean provide)
425 {
426 struct elf_link_hash_entry *h;
427
428 if (!is_elf_hash_table (info->hash))
429 return TRUE;
430
431 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, TRUE, FALSE);
432 if (h == NULL)
433 return FALSE;
434
435 /* Since we're defining the symbol, don't let it seem to have not
436 been defined. record_dynamic_symbol and size_dynamic_sections
437 may depend on this. */
438 if (h->root.type == bfd_link_hash_undefweak
439 || h->root.type == bfd_link_hash_undefined)
440 h->root.type = bfd_link_hash_new;
441
442 if (h->root.type == bfd_link_hash_new)
443 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
444
445 /* If this symbol is being provided by the linker script, and it is
446 currently defined by a dynamic object, but not by a regular
447 object, then mark it as undefined so that the generic linker will
448 force the correct value. */
449 if (provide
450 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
451 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
452 h->root.type = bfd_link_hash_undefined;
453
454 /* If this symbol is not being provided by the linker script, and it is
455 currently defined by a dynamic object, but not by a regular object,
456 then clear out any version information because the symbol will not be
457 associated with the dynamic object any more. */
458 if (!provide
459 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
460 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
461 h->verinfo.verdef = NULL;
462
463 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
464
465 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
466 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
467 || info->shared)
468 && h->dynindx == -1)
469 {
470 if (! bfd_elf_link_record_dynamic_symbol (info, h))
471 return FALSE;
472
473 /* If this is a weak defined symbol, and we know a corresponding
474 real symbol from the same dynamic object, make sure the real
475 symbol is also made into a dynamic symbol. */
476 if (h->weakdef != NULL
477 && h->weakdef->dynindx == -1)
478 {
479 if (! bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
480 return FALSE;
481 }
482 }
483
484 return TRUE;
485 }
486
487 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
488 success, and 2 on a failure caused by attempting to record a symbol
489 in a discarded section, eg. a discarded link-once section symbol. */
490
491 int
492 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
493 bfd *input_bfd,
494 long input_indx)
495 {
496 bfd_size_type amt;
497 struct elf_link_local_dynamic_entry *entry;
498 struct elf_link_hash_table *eht;
499 struct elf_strtab_hash *dynstr;
500 unsigned long dynstr_index;
501 char *name;
502 Elf_External_Sym_Shndx eshndx;
503 char esym[sizeof (Elf64_External_Sym)];
504
505 if (! is_elf_hash_table (info->hash))
506 return 0;
507
508 /* See if the entry exists already. */
509 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
510 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
511 return 1;
512
513 amt = sizeof (*entry);
514 entry = bfd_alloc (input_bfd, amt);
515 if (entry == NULL)
516 return 0;
517
518 /* Go find the symbol, so that we can find it's name. */
519 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
520 1, input_indx, &entry->isym, esym, &eshndx))
521 {
522 bfd_release (input_bfd, entry);
523 return 0;
524 }
525
526 if (entry->isym.st_shndx != SHN_UNDEF
527 && (entry->isym.st_shndx < SHN_LORESERVE
528 || entry->isym.st_shndx > SHN_HIRESERVE))
529 {
530 asection *s;
531
532 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
533 if (s == NULL || bfd_is_abs_section (s->output_section))
534 {
535 /* We can still bfd_release here as nothing has done another
536 bfd_alloc. We can't do this later in this function. */
537 bfd_release (input_bfd, entry);
538 return 2;
539 }
540 }
541
542 name = (bfd_elf_string_from_elf_section
543 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
544 entry->isym.st_name));
545
546 dynstr = elf_hash_table (info)->dynstr;
547 if (dynstr == NULL)
548 {
549 /* Create a strtab to hold the dynamic symbol names. */
550 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
551 if (dynstr == NULL)
552 return 0;
553 }
554
555 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
556 if (dynstr_index == (unsigned long) -1)
557 return 0;
558 entry->isym.st_name = dynstr_index;
559
560 eht = elf_hash_table (info);
561
562 entry->next = eht->dynlocal;
563 eht->dynlocal = entry;
564 entry->input_bfd = input_bfd;
565 entry->input_indx = input_indx;
566 eht->dynsymcount++;
567
568 /* Whatever binding the symbol had before, it's now local. */
569 entry->isym.st_info
570 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
571
572 /* The dynindx will be set at the end of size_dynamic_sections. */
573
574 return 1;
575 }
576
577 /* Return the dynindex of a local dynamic symbol. */
578
579 long
580 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
581 bfd *input_bfd,
582 long input_indx)
583 {
584 struct elf_link_local_dynamic_entry *e;
585
586 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
587 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
588 return e->dynindx;
589 return -1;
590 }
591
592 /* This function is used to renumber the dynamic symbols, if some of
593 them are removed because they are marked as local. This is called
594 via elf_link_hash_traverse. */
595
596 static bfd_boolean
597 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
598 void *data)
599 {
600 size_t *count = data;
601
602 if (h->root.type == bfd_link_hash_warning)
603 h = (struct elf_link_hash_entry *) h->root.u.i.link;
604
605 if (h->dynindx != -1)
606 h->dynindx = ++(*count);
607
608 return TRUE;
609 }
610
611 /* Return true if the dynamic symbol for a given section should be
612 omitted when creating a shared library. */
613 bfd_boolean
614 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
615 struct bfd_link_info *info,
616 asection *p)
617 {
618 switch (elf_section_data (p)->this_hdr.sh_type)
619 {
620 case SHT_PROGBITS:
621 case SHT_NOBITS:
622 /* If sh_type is yet undecided, assume it could be
623 SHT_PROGBITS/SHT_NOBITS. */
624 case SHT_NULL:
625 if (strcmp (p->name, ".got") == 0
626 || strcmp (p->name, ".got.plt") == 0
627 || strcmp (p->name, ".plt") == 0)
628 {
629 asection *ip;
630 bfd *dynobj = elf_hash_table (info)->dynobj;
631
632 if (dynobj != NULL
633 && (ip = bfd_get_section_by_name (dynobj, p->name))
634 != NULL
635 && (ip->flags & SEC_LINKER_CREATED)
636 && ip->output_section == p)
637 return TRUE;
638 }
639 return FALSE;
640
641 /* There shouldn't be section relative relocations
642 against any other section. */
643 default:
644 return TRUE;
645 }
646 }
647
648 /* Assign dynsym indices. In a shared library we generate a section
649 symbol for each output section, which come first. Next come all of
650 the back-end allocated local dynamic syms, followed by the rest of
651 the global symbols. */
652
653 unsigned long
654 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
655 {
656 unsigned long dynsymcount = 0;
657
658 if (info->shared)
659 {
660 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
661 asection *p;
662 for (p = output_bfd->sections; p ; p = p->next)
663 if ((p->flags & SEC_EXCLUDE) == 0
664 && (p->flags & SEC_ALLOC) != 0
665 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
666 elf_section_data (p)->dynindx = ++dynsymcount;
667 }
668
669 if (elf_hash_table (info)->dynlocal)
670 {
671 struct elf_link_local_dynamic_entry *p;
672 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
673 p->dynindx = ++dynsymcount;
674 }
675
676 elf_link_hash_traverse (elf_hash_table (info),
677 elf_link_renumber_hash_table_dynsyms,
678 &dynsymcount);
679
680 /* There is an unused NULL entry at the head of the table which
681 we must account for in our count. Unless there weren't any
682 symbols, which means we'll have no table at all. */
683 if (dynsymcount != 0)
684 ++dynsymcount;
685
686 return elf_hash_table (info)->dynsymcount = dynsymcount;
687 }
688
689 /* This function is called when we want to define a new symbol. It
690 handles the various cases which arise when we find a definition in
691 a dynamic object, or when there is already a definition in a
692 dynamic object. The new symbol is described by NAME, SYM, PSEC,
693 and PVALUE. We set SYM_HASH to the hash table entry. We set
694 OVERRIDE if the old symbol is overriding a new definition. We set
695 TYPE_CHANGE_OK if it is OK for the type to change. We set
696 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
697 change, we mean that we shouldn't warn if the type or size does
698 change. */
699
700 bfd_boolean
701 _bfd_elf_merge_symbol (bfd *abfd,
702 struct bfd_link_info *info,
703 const char *name,
704 Elf_Internal_Sym *sym,
705 asection **psec,
706 bfd_vma *pvalue,
707 struct elf_link_hash_entry **sym_hash,
708 bfd_boolean *skip,
709 bfd_boolean *override,
710 bfd_boolean *type_change_ok,
711 bfd_boolean *size_change_ok)
712 {
713 asection *sec;
714 struct elf_link_hash_entry *h;
715 struct elf_link_hash_entry *flip;
716 int bind;
717 bfd *oldbfd;
718 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
719 bfd_boolean newweak, oldweak;
720
721 *skip = FALSE;
722 *override = FALSE;
723
724 sec = *psec;
725 bind = ELF_ST_BIND (sym->st_info);
726
727 if (! bfd_is_und_section (sec))
728 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
729 else
730 h = ((struct elf_link_hash_entry *)
731 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
732 if (h == NULL)
733 return FALSE;
734 *sym_hash = h;
735
736 /* This code is for coping with dynamic objects, and is only useful
737 if we are doing an ELF link. */
738 if (info->hash->creator != abfd->xvec)
739 return TRUE;
740
741 /* For merging, we only care about real symbols. */
742
743 while (h->root.type == bfd_link_hash_indirect
744 || h->root.type == bfd_link_hash_warning)
745 h = (struct elf_link_hash_entry *) h->root.u.i.link;
746
747 /* If we just created the symbol, mark it as being an ELF symbol.
748 Other than that, there is nothing to do--there is no merge issue
749 with a newly defined symbol--so we just return. */
750
751 if (h->root.type == bfd_link_hash_new)
752 {
753 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
754 return TRUE;
755 }
756
757 /* OLDBFD is a BFD associated with the existing symbol. */
758
759 switch (h->root.type)
760 {
761 default:
762 oldbfd = NULL;
763 break;
764
765 case bfd_link_hash_undefined:
766 case bfd_link_hash_undefweak:
767 oldbfd = h->root.u.undef.abfd;
768 break;
769
770 case bfd_link_hash_defined:
771 case bfd_link_hash_defweak:
772 oldbfd = h->root.u.def.section->owner;
773 break;
774
775 case bfd_link_hash_common:
776 oldbfd = h->root.u.c.p->section->owner;
777 break;
778 }
779
780 /* In cases involving weak versioned symbols, we may wind up trying
781 to merge a symbol with itself. Catch that here, to avoid the
782 confusion that results if we try to override a symbol with
783 itself. The additional tests catch cases like
784 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
785 dynamic object, which we do want to handle here. */
786 if (abfd == oldbfd
787 && ((abfd->flags & DYNAMIC) == 0
788 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))
789 return TRUE;
790
791 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
792 respectively, is from a dynamic object. */
793
794 if ((abfd->flags & DYNAMIC) != 0)
795 newdyn = TRUE;
796 else
797 newdyn = FALSE;
798
799 if (oldbfd != NULL)
800 olddyn = (oldbfd->flags & DYNAMIC) != 0;
801 else
802 {
803 asection *hsec;
804
805 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
806 indices used by MIPS ELF. */
807 switch (h->root.type)
808 {
809 default:
810 hsec = NULL;
811 break;
812
813 case bfd_link_hash_defined:
814 case bfd_link_hash_defweak:
815 hsec = h->root.u.def.section;
816 break;
817
818 case bfd_link_hash_common:
819 hsec = h->root.u.c.p->section;
820 break;
821 }
822
823 if (hsec == NULL)
824 olddyn = FALSE;
825 else
826 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
827 }
828
829 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
830 respectively, appear to be a definition rather than reference. */
831
832 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
833 newdef = FALSE;
834 else
835 newdef = TRUE;
836
837 if (h->root.type == bfd_link_hash_undefined
838 || h->root.type == bfd_link_hash_undefweak
839 || h->root.type == bfd_link_hash_common)
840 olddef = FALSE;
841 else
842 olddef = TRUE;
843
844 /* We need to remember if a symbol has a definition in a dynamic
845 object or is weak in all dynamic objects. Internal and hidden
846 visibility will make it unavailable to dynamic objects. */
847 if (newdyn && (h->elf_link_hash_flags & ELF_LINK_DYNAMIC_DEF) == 0)
848 {
849 if (!bfd_is_und_section (sec))
850 h->elf_link_hash_flags |= ELF_LINK_DYNAMIC_DEF;
851 else
852 {
853 /* Check if this symbol is weak in all dynamic objects. If it
854 is the first time we see it in a dynamic object, we mark
855 if it is weak. Otherwise, we clear it. */
856 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0)
857 {
858 if (bind == STB_WEAK)
859 h->elf_link_hash_flags |= ELF_LINK_DYNAMIC_WEAK;
860 }
861 else if (bind != STB_WEAK)
862 h->elf_link_hash_flags &= ~ELF_LINK_DYNAMIC_WEAK;
863 }
864 }
865
866 /* If the old symbol has non-default visibility, we ignore the new
867 definition from a dynamic object. */
868 if (newdyn
869 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
870 && !bfd_is_und_section (sec))
871 {
872 *skip = TRUE;
873 /* Make sure this symbol is dynamic. */
874 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
875 /* A protected symbol has external availability. Make sure it is
876 recorded as dynamic.
877
878 FIXME: Should we check type and size for protected symbol? */
879 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
880 return bfd_elf_link_record_dynamic_symbol (info, h);
881 else
882 return TRUE;
883 }
884 else if (!newdyn
885 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
886 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
887 {
888 /* If the new symbol with non-default visibility comes from a
889 relocatable file and the old definition comes from a dynamic
890 object, we remove the old definition. */
891 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
892 h = *sym_hash;
893
894 if ((h->root.und_next || info->hash->undefs_tail == &h->root)
895 && bfd_is_und_section (sec))
896 {
897 /* If the new symbol is undefined and the old symbol was
898 also undefined before, we need to make sure
899 _bfd_generic_link_add_one_symbol doesn't mess
900 up the linker hash table undefs list. Since the old
901 definition came from a dynamic object, it is still on the
902 undefs list. */
903 h->root.type = bfd_link_hash_undefined;
904 /* FIXME: What if the new symbol is weak undefined? */
905 h->root.u.undef.abfd = abfd;
906 }
907 else
908 {
909 h->root.type = bfd_link_hash_new;
910 h->root.u.undef.abfd = NULL;
911 }
912
913 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
914 {
915 h->elf_link_hash_flags &= ~ELF_LINK_HASH_DEF_DYNAMIC;
916 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_DYNAMIC
917 | ELF_LINK_DYNAMIC_DEF);
918 }
919 /* FIXME: Should we check type and size for protected symbol? */
920 h->size = 0;
921 h->type = 0;
922 return TRUE;
923 }
924
925 /* Differentiate strong and weak symbols. */
926 newweak = bind == STB_WEAK;
927 oldweak = (h->root.type == bfd_link_hash_defweak
928 || h->root.type == bfd_link_hash_undefweak);
929
930 /* If a new weak symbol definition comes from a regular file and the
931 old symbol comes from a dynamic library, we treat the new one as
932 strong. Similarly, an old weak symbol definition from a regular
933 file is treated as strong when the new symbol comes from a dynamic
934 library. Further, an old weak symbol from a dynamic library is
935 treated as strong if the new symbol is from a dynamic library.
936 This reflects the way glibc's ld.so works.
937
938 Do this before setting *type_change_ok or *size_change_ok so that
939 we warn properly when dynamic library symbols are overridden. */
940
941 if (newdef && !newdyn && olddyn)
942 newweak = FALSE;
943 if (olddef && newdyn)
944 oldweak = FALSE;
945
946 /* It's OK to change the type if either the existing symbol or the
947 new symbol is weak. A type change is also OK if the old symbol
948 is undefined and the new symbol is defined. */
949
950 if (oldweak
951 || newweak
952 || (newdef
953 && h->root.type == bfd_link_hash_undefined))
954 *type_change_ok = TRUE;
955
956 /* It's OK to change the size if either the existing symbol or the
957 new symbol is weak, or if the old symbol is undefined. */
958
959 if (*type_change_ok
960 || h->root.type == bfd_link_hash_undefined)
961 *size_change_ok = TRUE;
962
963 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
964 symbol, respectively, appears to be a common symbol in a dynamic
965 object. If a symbol appears in an uninitialized section, and is
966 not weak, and is not a function, then it may be a common symbol
967 which was resolved when the dynamic object was created. We want
968 to treat such symbols specially, because they raise special
969 considerations when setting the symbol size: if the symbol
970 appears as a common symbol in a regular object, and the size in
971 the regular object is larger, we must make sure that we use the
972 larger size. This problematic case can always be avoided in C,
973 but it must be handled correctly when using Fortran shared
974 libraries.
975
976 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
977 likewise for OLDDYNCOMMON and OLDDEF.
978
979 Note that this test is just a heuristic, and that it is quite
980 possible to have an uninitialized symbol in a shared object which
981 is really a definition, rather than a common symbol. This could
982 lead to some minor confusion when the symbol really is a common
983 symbol in some regular object. However, I think it will be
984 harmless. */
985
986 if (newdyn
987 && newdef
988 && !newweak
989 && (sec->flags & SEC_ALLOC) != 0
990 && (sec->flags & SEC_LOAD) == 0
991 && sym->st_size > 0
992 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
993 newdyncommon = TRUE;
994 else
995 newdyncommon = FALSE;
996
997 if (olddyn
998 && olddef
999 && h->root.type == bfd_link_hash_defined
1000 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1001 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1002 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1003 && h->size > 0
1004 && h->type != STT_FUNC)
1005 olddyncommon = TRUE;
1006 else
1007 olddyncommon = FALSE;
1008
1009 /* If both the old and the new symbols look like common symbols in a
1010 dynamic object, set the size of the symbol to the larger of the
1011 two. */
1012
1013 if (olddyncommon
1014 && newdyncommon
1015 && sym->st_size != h->size)
1016 {
1017 /* Since we think we have two common symbols, issue a multiple
1018 common warning if desired. Note that we only warn if the
1019 size is different. If the size is the same, we simply let
1020 the old symbol override the new one as normally happens with
1021 symbols defined in dynamic objects. */
1022
1023 if (! ((*info->callbacks->multiple_common)
1024 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1025 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1026 return FALSE;
1027
1028 if (sym->st_size > h->size)
1029 h->size = sym->st_size;
1030
1031 *size_change_ok = TRUE;
1032 }
1033
1034 /* If we are looking at a dynamic object, and we have found a
1035 definition, we need to see if the symbol was already defined by
1036 some other object. If so, we want to use the existing
1037 definition, and we do not want to report a multiple symbol
1038 definition error; we do this by clobbering *PSEC to be
1039 bfd_und_section_ptr.
1040
1041 We treat a common symbol as a definition if the symbol in the
1042 shared library is a function, since common symbols always
1043 represent variables; this can cause confusion in principle, but
1044 any such confusion would seem to indicate an erroneous program or
1045 shared library. We also permit a common symbol in a regular
1046 object to override a weak symbol in a shared object. */
1047
1048 if (newdyn
1049 && newdef
1050 && (olddef
1051 || (h->root.type == bfd_link_hash_common
1052 && (newweak
1053 || ELF_ST_TYPE (sym->st_info) == STT_FUNC))))
1054 {
1055 *override = TRUE;
1056 newdef = FALSE;
1057 newdyncommon = FALSE;
1058
1059 *psec = sec = bfd_und_section_ptr;
1060 *size_change_ok = TRUE;
1061
1062 /* If we get here when the old symbol is a common symbol, then
1063 we are explicitly letting it override a weak symbol or
1064 function in a dynamic object, and we don't want to warn about
1065 a type change. If the old symbol is a defined symbol, a type
1066 change warning may still be appropriate. */
1067
1068 if (h->root.type == bfd_link_hash_common)
1069 *type_change_ok = TRUE;
1070 }
1071
1072 /* Handle the special case of an old common symbol merging with a
1073 new symbol which looks like a common symbol in a shared object.
1074 We change *PSEC and *PVALUE to make the new symbol look like a
1075 common symbol, and let _bfd_generic_link_add_one_symbol will do
1076 the right thing. */
1077
1078 if (newdyncommon
1079 && h->root.type == bfd_link_hash_common)
1080 {
1081 *override = TRUE;
1082 newdef = FALSE;
1083 newdyncommon = FALSE;
1084 *pvalue = sym->st_size;
1085 *psec = sec = bfd_com_section_ptr;
1086 *size_change_ok = TRUE;
1087 }
1088
1089 /* If the old symbol is from a dynamic object, and the new symbol is
1090 a definition which is not from a dynamic object, then the new
1091 symbol overrides the old symbol. Symbols from regular files
1092 always take precedence over symbols from dynamic objects, even if
1093 they are defined after the dynamic object in the link.
1094
1095 As above, we again permit a common symbol in a regular object to
1096 override a definition in a shared object if the shared object
1097 symbol is a function or is weak. */
1098
1099 flip = NULL;
1100 if (! newdyn
1101 && (newdef
1102 || (bfd_is_com_section (sec)
1103 && (oldweak
1104 || h->type == STT_FUNC)))
1105 && olddyn
1106 && olddef
1107 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
1108 {
1109 /* Change the hash table entry to undefined, and let
1110 _bfd_generic_link_add_one_symbol do the right thing with the
1111 new definition. */
1112
1113 h->root.type = bfd_link_hash_undefined;
1114 h->root.u.undef.abfd = h->root.u.def.section->owner;
1115 *size_change_ok = TRUE;
1116
1117 olddef = FALSE;
1118 olddyncommon = FALSE;
1119
1120 /* We again permit a type change when a common symbol may be
1121 overriding a function. */
1122
1123 if (bfd_is_com_section (sec))
1124 *type_change_ok = TRUE;
1125
1126 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1127 flip = *sym_hash;
1128 else
1129 /* This union may have been set to be non-NULL when this symbol
1130 was seen in a dynamic object. We must force the union to be
1131 NULL, so that it is correct for a regular symbol. */
1132 h->verinfo.vertree = NULL;
1133 }
1134
1135 /* Handle the special case of a new common symbol merging with an
1136 old symbol that looks like it might be a common symbol defined in
1137 a shared object. Note that we have already handled the case in
1138 which a new common symbol should simply override the definition
1139 in the shared library. */
1140
1141 if (! newdyn
1142 && bfd_is_com_section (sec)
1143 && olddyncommon)
1144 {
1145 /* It would be best if we could set the hash table entry to a
1146 common symbol, but we don't know what to use for the section
1147 or the alignment. */
1148 if (! ((*info->callbacks->multiple_common)
1149 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1150 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1151 return FALSE;
1152
1153 /* If the presumed common symbol in the dynamic object is
1154 larger, pretend that the new symbol has its size. */
1155
1156 if (h->size > *pvalue)
1157 *pvalue = h->size;
1158
1159 /* FIXME: We no longer know the alignment required by the symbol
1160 in the dynamic object, so we just wind up using the one from
1161 the regular object. */
1162
1163 olddef = FALSE;
1164 olddyncommon = FALSE;
1165
1166 h->root.type = bfd_link_hash_undefined;
1167 h->root.u.undef.abfd = h->root.u.def.section->owner;
1168
1169 *size_change_ok = TRUE;
1170 *type_change_ok = TRUE;
1171
1172 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1173 flip = *sym_hash;
1174 else
1175 h->verinfo.vertree = NULL;
1176 }
1177
1178 if (flip != NULL)
1179 {
1180 /* Handle the case where we had a versioned symbol in a dynamic
1181 library and now find a definition in a normal object. In this
1182 case, we make the versioned symbol point to the normal one. */
1183 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1184 flip->root.type = h->root.type;
1185 h->root.type = bfd_link_hash_indirect;
1186 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1187 (*bed->elf_backend_copy_indirect_symbol) (bed, flip, h);
1188 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1189 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1190 {
1191 h->elf_link_hash_flags &= ~ELF_LINK_HASH_DEF_DYNAMIC;
1192 flip->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1193 }
1194 }
1195
1196 return TRUE;
1197 }
1198
1199 /* This function is called to create an indirect symbol from the
1200 default for the symbol with the default version if needed. The
1201 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1202 set DYNSYM if the new indirect symbol is dynamic. */
1203
1204 bfd_boolean
1205 _bfd_elf_add_default_symbol (bfd *abfd,
1206 struct bfd_link_info *info,
1207 struct elf_link_hash_entry *h,
1208 const char *name,
1209 Elf_Internal_Sym *sym,
1210 asection **psec,
1211 bfd_vma *value,
1212 bfd_boolean *dynsym,
1213 bfd_boolean override)
1214 {
1215 bfd_boolean type_change_ok;
1216 bfd_boolean size_change_ok;
1217 bfd_boolean skip;
1218 char *shortname;
1219 struct elf_link_hash_entry *hi;
1220 struct bfd_link_hash_entry *bh;
1221 const struct elf_backend_data *bed;
1222 bfd_boolean collect;
1223 bfd_boolean dynamic;
1224 char *p;
1225 size_t len, shortlen;
1226 asection *sec;
1227
1228 /* If this symbol has a version, and it is the default version, we
1229 create an indirect symbol from the default name to the fully
1230 decorated name. This will cause external references which do not
1231 specify a version to be bound to this version of the symbol. */
1232 p = strchr (name, ELF_VER_CHR);
1233 if (p == NULL || p[1] != ELF_VER_CHR)
1234 return TRUE;
1235
1236 if (override)
1237 {
1238 /* We are overridden by an old definition. We need to check if we
1239 need to create the indirect symbol from the default name. */
1240 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1241 FALSE, FALSE);
1242 BFD_ASSERT (hi != NULL);
1243 if (hi == h)
1244 return TRUE;
1245 while (hi->root.type == bfd_link_hash_indirect
1246 || hi->root.type == bfd_link_hash_warning)
1247 {
1248 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1249 if (hi == h)
1250 return TRUE;
1251 }
1252 }
1253
1254 bed = get_elf_backend_data (abfd);
1255 collect = bed->collect;
1256 dynamic = (abfd->flags & DYNAMIC) != 0;
1257
1258 shortlen = p - name;
1259 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1260 if (shortname == NULL)
1261 return FALSE;
1262 memcpy (shortname, name, shortlen);
1263 shortname[shortlen] = '\0';
1264
1265 /* We are going to create a new symbol. Merge it with any existing
1266 symbol with this name. For the purposes of the merge, act as
1267 though we were defining the symbol we just defined, although we
1268 actually going to define an indirect symbol. */
1269 type_change_ok = FALSE;
1270 size_change_ok = FALSE;
1271 sec = *psec;
1272 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1273 &hi, &skip, &override, &type_change_ok,
1274 &size_change_ok))
1275 return FALSE;
1276
1277 if (skip)
1278 goto nondefault;
1279
1280 if (! override)
1281 {
1282 bh = &hi->root;
1283 if (! (_bfd_generic_link_add_one_symbol
1284 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1285 0, name, FALSE, collect, &bh)))
1286 return FALSE;
1287 hi = (struct elf_link_hash_entry *) bh;
1288 }
1289 else
1290 {
1291 /* In this case the symbol named SHORTNAME is overriding the
1292 indirect symbol we want to add. We were planning on making
1293 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1294 is the name without a version. NAME is the fully versioned
1295 name, and it is the default version.
1296
1297 Overriding means that we already saw a definition for the
1298 symbol SHORTNAME in a regular object, and it is overriding
1299 the symbol defined in the dynamic object.
1300
1301 When this happens, we actually want to change NAME, the
1302 symbol we just added, to refer to SHORTNAME. This will cause
1303 references to NAME in the shared object to become references
1304 to SHORTNAME in the regular object. This is what we expect
1305 when we override a function in a shared object: that the
1306 references in the shared object will be mapped to the
1307 definition in the regular object. */
1308
1309 while (hi->root.type == bfd_link_hash_indirect
1310 || hi->root.type == bfd_link_hash_warning)
1311 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1312
1313 h->root.type = bfd_link_hash_indirect;
1314 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1315 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1316 {
1317 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1318 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1319 if (hi->elf_link_hash_flags
1320 & (ELF_LINK_HASH_REF_REGULAR
1321 | ELF_LINK_HASH_DEF_REGULAR))
1322 {
1323 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1324 return FALSE;
1325 }
1326 }
1327
1328 /* Now set HI to H, so that the following code will set the
1329 other fields correctly. */
1330 hi = h;
1331 }
1332
1333 /* If there is a duplicate definition somewhere, then HI may not
1334 point to an indirect symbol. We will have reported an error to
1335 the user in that case. */
1336
1337 if (hi->root.type == bfd_link_hash_indirect)
1338 {
1339 struct elf_link_hash_entry *ht;
1340
1341 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1342 (*bed->elf_backend_copy_indirect_symbol) (bed, ht, hi);
1343
1344 /* See if the new flags lead us to realize that the symbol must
1345 be dynamic. */
1346 if (! *dynsym)
1347 {
1348 if (! dynamic)
1349 {
1350 if (info->shared
1351 || ((hi->elf_link_hash_flags
1352 & ELF_LINK_HASH_REF_DYNAMIC) != 0))
1353 *dynsym = TRUE;
1354 }
1355 else
1356 {
1357 if ((hi->elf_link_hash_flags
1358 & ELF_LINK_HASH_REF_REGULAR) != 0)
1359 *dynsym = TRUE;
1360 }
1361 }
1362 }
1363
1364 /* We also need to define an indirection from the nondefault version
1365 of the symbol. */
1366
1367 nondefault:
1368 len = strlen (name);
1369 shortname = bfd_hash_allocate (&info->hash->table, len);
1370 if (shortname == NULL)
1371 return FALSE;
1372 memcpy (shortname, name, shortlen);
1373 memcpy (shortname + shortlen, p + 1, len - shortlen);
1374
1375 /* Once again, merge with any existing symbol. */
1376 type_change_ok = FALSE;
1377 size_change_ok = FALSE;
1378 sec = *psec;
1379 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1380 &hi, &skip, &override, &type_change_ok,
1381 &size_change_ok))
1382 return FALSE;
1383
1384 if (skip)
1385 return TRUE;
1386
1387 if (override)
1388 {
1389 /* Here SHORTNAME is a versioned name, so we don't expect to see
1390 the type of override we do in the case above unless it is
1391 overridden by a versioned definition. */
1392 if (hi->root.type != bfd_link_hash_defined
1393 && hi->root.type != bfd_link_hash_defweak)
1394 (*_bfd_error_handler)
1395 (_("%s: warning: unexpected redefinition of indirect versioned symbol `%s'"),
1396 bfd_archive_filename (abfd), shortname);
1397 }
1398 else
1399 {
1400 bh = &hi->root;
1401 if (! (_bfd_generic_link_add_one_symbol
1402 (info, abfd, shortname, BSF_INDIRECT,
1403 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1404 return FALSE;
1405 hi = (struct elf_link_hash_entry *) bh;
1406
1407 /* If there is a duplicate definition somewhere, then HI may not
1408 point to an indirect symbol. We will have reported an error
1409 to the user in that case. */
1410
1411 if (hi->root.type == bfd_link_hash_indirect)
1412 {
1413 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
1414
1415 /* See if the new flags lead us to realize that the symbol
1416 must be dynamic. */
1417 if (! *dynsym)
1418 {
1419 if (! dynamic)
1420 {
1421 if (info->shared
1422 || ((hi->elf_link_hash_flags
1423 & ELF_LINK_HASH_REF_DYNAMIC) != 0))
1424 *dynsym = TRUE;
1425 }
1426 else
1427 {
1428 if ((hi->elf_link_hash_flags
1429 & ELF_LINK_HASH_REF_REGULAR) != 0)
1430 *dynsym = TRUE;
1431 }
1432 }
1433 }
1434 }
1435
1436 return TRUE;
1437 }
1438 \f
1439 /* This routine is used to export all defined symbols into the dynamic
1440 symbol table. It is called via elf_link_hash_traverse. */
1441
1442 bfd_boolean
1443 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1444 {
1445 struct elf_info_failed *eif = data;
1446
1447 /* Ignore indirect symbols. These are added by the versioning code. */
1448 if (h->root.type == bfd_link_hash_indirect)
1449 return TRUE;
1450
1451 if (h->root.type == bfd_link_hash_warning)
1452 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1453
1454 if (h->dynindx == -1
1455 && (h->elf_link_hash_flags
1456 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
1457 {
1458 struct bfd_elf_version_tree *t;
1459 struct bfd_elf_version_expr *d;
1460
1461 for (t = eif->verdefs; t != NULL; t = t->next)
1462 {
1463 if (t->globals.list != NULL)
1464 {
1465 d = (*t->match) (&t->globals, NULL, h->root.root.string);
1466 if (d != NULL)
1467 goto doit;
1468 }
1469
1470 if (t->locals.list != NULL)
1471 {
1472 d = (*t->match) (&t->locals, NULL, h->root.root.string);
1473 if (d != NULL)
1474 return TRUE;
1475 }
1476 }
1477
1478 if (!eif->verdefs)
1479 {
1480 doit:
1481 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1482 {
1483 eif->failed = TRUE;
1484 return FALSE;
1485 }
1486 }
1487 }
1488
1489 return TRUE;
1490 }
1491 \f
1492 /* Look through the symbols which are defined in other shared
1493 libraries and referenced here. Update the list of version
1494 dependencies. This will be put into the .gnu.version_r section.
1495 This function is called via elf_link_hash_traverse. */
1496
1497 bfd_boolean
1498 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1499 void *data)
1500 {
1501 struct elf_find_verdep_info *rinfo = data;
1502 Elf_Internal_Verneed *t;
1503 Elf_Internal_Vernaux *a;
1504 bfd_size_type amt;
1505
1506 if (h->root.type == bfd_link_hash_warning)
1507 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1508
1509 /* We only care about symbols defined in shared objects with version
1510 information. */
1511 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
1512 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1513 || h->dynindx == -1
1514 || h->verinfo.verdef == NULL)
1515 return TRUE;
1516
1517 /* See if we already know about this version. */
1518 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
1519 {
1520 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1521 continue;
1522
1523 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1524 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1525 return TRUE;
1526
1527 break;
1528 }
1529
1530 /* This is a new version. Add it to tree we are building. */
1531
1532 if (t == NULL)
1533 {
1534 amt = sizeof *t;
1535 t = bfd_zalloc (rinfo->output_bfd, amt);
1536 if (t == NULL)
1537 {
1538 rinfo->failed = TRUE;
1539 return FALSE;
1540 }
1541
1542 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1543 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
1544 elf_tdata (rinfo->output_bfd)->verref = t;
1545 }
1546
1547 amt = sizeof *a;
1548 a = bfd_zalloc (rinfo->output_bfd, amt);
1549
1550 /* Note that we are copying a string pointer here, and testing it
1551 above. If bfd_elf_string_from_elf_section is ever changed to
1552 discard the string data when low in memory, this will have to be
1553 fixed. */
1554 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1555
1556 a->vna_flags = h->verinfo.verdef->vd_flags;
1557 a->vna_nextptr = t->vn_auxptr;
1558
1559 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1560 ++rinfo->vers;
1561
1562 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1563
1564 t->vn_auxptr = a;
1565
1566 return TRUE;
1567 }
1568
1569 /* Figure out appropriate versions for all the symbols. We may not
1570 have the version number script until we have read all of the input
1571 files, so until that point we don't know which symbols should be
1572 local. This function is called via elf_link_hash_traverse. */
1573
1574 bfd_boolean
1575 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1576 {
1577 struct elf_assign_sym_version_info *sinfo;
1578 struct bfd_link_info *info;
1579 const struct elf_backend_data *bed;
1580 struct elf_info_failed eif;
1581 char *p;
1582 bfd_size_type amt;
1583
1584 sinfo = data;
1585 info = sinfo->info;
1586
1587 if (h->root.type == bfd_link_hash_warning)
1588 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1589
1590 /* Fix the symbol flags. */
1591 eif.failed = FALSE;
1592 eif.info = info;
1593 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1594 {
1595 if (eif.failed)
1596 sinfo->failed = TRUE;
1597 return FALSE;
1598 }
1599
1600 /* We only need version numbers for symbols defined in regular
1601 objects. */
1602 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1603 return TRUE;
1604
1605 bed = get_elf_backend_data (sinfo->output_bfd);
1606 p = strchr (h->root.root.string, ELF_VER_CHR);
1607 if (p != NULL && h->verinfo.vertree == NULL)
1608 {
1609 struct bfd_elf_version_tree *t;
1610 bfd_boolean hidden;
1611
1612 hidden = TRUE;
1613
1614 /* There are two consecutive ELF_VER_CHR characters if this is
1615 not a hidden symbol. */
1616 ++p;
1617 if (*p == ELF_VER_CHR)
1618 {
1619 hidden = FALSE;
1620 ++p;
1621 }
1622
1623 /* If there is no version string, we can just return out. */
1624 if (*p == '\0')
1625 {
1626 if (hidden)
1627 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
1628 return TRUE;
1629 }
1630
1631 /* Look for the version. If we find it, it is no longer weak. */
1632 for (t = sinfo->verdefs; t != NULL; t = t->next)
1633 {
1634 if (strcmp (t->name, p) == 0)
1635 {
1636 size_t len;
1637 char *alc;
1638 struct bfd_elf_version_expr *d;
1639
1640 len = p - h->root.root.string;
1641 alc = bfd_malloc (len);
1642 if (alc == NULL)
1643 return FALSE;
1644 memcpy (alc, h->root.root.string, len - 1);
1645 alc[len - 1] = '\0';
1646 if (alc[len - 2] == ELF_VER_CHR)
1647 alc[len - 2] = '\0';
1648
1649 h->verinfo.vertree = t;
1650 t->used = TRUE;
1651 d = NULL;
1652
1653 if (t->globals.list != NULL)
1654 d = (*t->match) (&t->globals, NULL, alc);
1655
1656 /* See if there is anything to force this symbol to
1657 local scope. */
1658 if (d == NULL && t->locals.list != NULL)
1659 {
1660 d = (*t->match) (&t->locals, NULL, alc);
1661 if (d != NULL
1662 && h->dynindx != -1
1663 && info->shared
1664 && ! info->export_dynamic)
1665 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1666 }
1667
1668 free (alc);
1669 break;
1670 }
1671 }
1672
1673 /* If we are building an application, we need to create a
1674 version node for this version. */
1675 if (t == NULL && info->executable)
1676 {
1677 struct bfd_elf_version_tree **pp;
1678 int version_index;
1679
1680 /* If we aren't going to export this symbol, we don't need
1681 to worry about it. */
1682 if (h->dynindx == -1)
1683 return TRUE;
1684
1685 amt = sizeof *t;
1686 t = bfd_zalloc (sinfo->output_bfd, amt);
1687 if (t == NULL)
1688 {
1689 sinfo->failed = TRUE;
1690 return FALSE;
1691 }
1692
1693 t->name = p;
1694 t->name_indx = (unsigned int) -1;
1695 t->used = TRUE;
1696
1697 version_index = 1;
1698 /* Don't count anonymous version tag. */
1699 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
1700 version_index = 0;
1701 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
1702 ++version_index;
1703 t->vernum = version_index;
1704
1705 *pp = t;
1706
1707 h->verinfo.vertree = t;
1708 }
1709 else if (t == NULL)
1710 {
1711 /* We could not find the version for a symbol when
1712 generating a shared archive. Return an error. */
1713 (*_bfd_error_handler)
1714 (_("%s: undefined versioned symbol name %s"),
1715 bfd_get_filename (sinfo->output_bfd), h->root.root.string);
1716 bfd_set_error (bfd_error_bad_value);
1717 sinfo->failed = TRUE;
1718 return FALSE;
1719 }
1720
1721 if (hidden)
1722 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
1723 }
1724
1725 /* If we don't have a version for this symbol, see if we can find
1726 something. */
1727 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
1728 {
1729 struct bfd_elf_version_tree *t;
1730 struct bfd_elf_version_tree *local_ver;
1731 struct bfd_elf_version_expr *d;
1732
1733 /* See if can find what version this symbol is in. If the
1734 symbol is supposed to be local, then don't actually register
1735 it. */
1736 local_ver = NULL;
1737 for (t = sinfo->verdefs; t != NULL; t = t->next)
1738 {
1739 if (t->globals.list != NULL)
1740 {
1741 bfd_boolean matched;
1742
1743 matched = FALSE;
1744 d = NULL;
1745 while ((d = (*t->match) (&t->globals, d,
1746 h->root.root.string)) != NULL)
1747 if (d->symver)
1748 matched = TRUE;
1749 else
1750 {
1751 /* There is a version without definition. Make
1752 the symbol the default definition for this
1753 version. */
1754 h->verinfo.vertree = t;
1755 local_ver = NULL;
1756 d->script = 1;
1757 break;
1758 }
1759 if (d != NULL)
1760 break;
1761 else if (matched)
1762 /* There is no undefined version for this symbol. Hide the
1763 default one. */
1764 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1765 }
1766
1767 if (t->locals.list != NULL)
1768 {
1769 d = NULL;
1770 while ((d = (*t->match) (&t->locals, d,
1771 h->root.root.string)) != NULL)
1772 {
1773 local_ver = t;
1774 /* If the match is "*", keep looking for a more
1775 explicit, perhaps even global, match.
1776 XXX: Shouldn't this be !d->wildcard instead? */
1777 if (d->pattern[0] != '*' || d->pattern[1] != '\0')
1778 break;
1779 }
1780
1781 if (d != NULL)
1782 break;
1783 }
1784 }
1785
1786 if (local_ver != NULL)
1787 {
1788 h->verinfo.vertree = local_ver;
1789 if (h->dynindx != -1
1790 && info->shared
1791 && ! info->export_dynamic)
1792 {
1793 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1794 }
1795 }
1796 }
1797
1798 return TRUE;
1799 }
1800 \f
1801 /* Read and swap the relocs from the section indicated by SHDR. This
1802 may be either a REL or a RELA section. The relocations are
1803 translated into RELA relocations and stored in INTERNAL_RELOCS,
1804 which should have already been allocated to contain enough space.
1805 The EXTERNAL_RELOCS are a buffer where the external form of the
1806 relocations should be stored.
1807
1808 Returns FALSE if something goes wrong. */
1809
1810 static bfd_boolean
1811 elf_link_read_relocs_from_section (bfd *abfd,
1812 asection *sec,
1813 Elf_Internal_Shdr *shdr,
1814 void *external_relocs,
1815 Elf_Internal_Rela *internal_relocs)
1816 {
1817 const struct elf_backend_data *bed;
1818 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
1819 const bfd_byte *erela;
1820 const bfd_byte *erelaend;
1821 Elf_Internal_Rela *irela;
1822 Elf_Internal_Shdr *symtab_hdr;
1823 size_t nsyms;
1824
1825 /* Position ourselves at the start of the section. */
1826 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
1827 return FALSE;
1828
1829 /* Read the relocations. */
1830 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
1831 return FALSE;
1832
1833 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1834 nsyms = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
1835
1836 bed = get_elf_backend_data (abfd);
1837
1838 /* Convert the external relocations to the internal format. */
1839 if (shdr->sh_entsize == bed->s->sizeof_rel)
1840 swap_in = bed->s->swap_reloc_in;
1841 else if (shdr->sh_entsize == bed->s->sizeof_rela)
1842 swap_in = bed->s->swap_reloca_in;
1843 else
1844 {
1845 bfd_set_error (bfd_error_wrong_format);
1846 return FALSE;
1847 }
1848
1849 erela = external_relocs;
1850 erelaend = erela + shdr->sh_size;
1851 irela = internal_relocs;
1852 while (erela < erelaend)
1853 {
1854 bfd_vma r_symndx;
1855
1856 (*swap_in) (abfd, erela, irela);
1857 r_symndx = ELF32_R_SYM (irela->r_info);
1858 if (bed->s->arch_size == 64)
1859 r_symndx >>= 24;
1860 if ((size_t) r_symndx >= nsyms)
1861 {
1862 (*_bfd_error_handler)
1863 (_("%s: bad reloc symbol index (0x%lx >= 0x%lx) for offset 0x%lx in section `%s'"),
1864 bfd_archive_filename (abfd), (unsigned long) r_symndx,
1865 (unsigned long) nsyms, irela->r_offset, sec->name);
1866 bfd_set_error (bfd_error_bad_value);
1867 return FALSE;
1868 }
1869 irela += bed->s->int_rels_per_ext_rel;
1870 erela += shdr->sh_entsize;
1871 }
1872
1873 return TRUE;
1874 }
1875
1876 /* Read and swap the relocs for a section O. They may have been
1877 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
1878 not NULL, they are used as buffers to read into. They are known to
1879 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
1880 the return value is allocated using either malloc or bfd_alloc,
1881 according to the KEEP_MEMORY argument. If O has two relocation
1882 sections (both REL and RELA relocations), then the REL_HDR
1883 relocations will appear first in INTERNAL_RELOCS, followed by the
1884 REL_HDR2 relocations. */
1885
1886 Elf_Internal_Rela *
1887 _bfd_elf_link_read_relocs (bfd *abfd,
1888 asection *o,
1889 void *external_relocs,
1890 Elf_Internal_Rela *internal_relocs,
1891 bfd_boolean keep_memory)
1892 {
1893 Elf_Internal_Shdr *rel_hdr;
1894 void *alloc1 = NULL;
1895 Elf_Internal_Rela *alloc2 = NULL;
1896 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1897
1898 if (elf_section_data (o)->relocs != NULL)
1899 return elf_section_data (o)->relocs;
1900
1901 if (o->reloc_count == 0)
1902 return NULL;
1903
1904 rel_hdr = &elf_section_data (o)->rel_hdr;
1905
1906 if (internal_relocs == NULL)
1907 {
1908 bfd_size_type size;
1909
1910 size = o->reloc_count;
1911 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
1912 if (keep_memory)
1913 internal_relocs = bfd_alloc (abfd, size);
1914 else
1915 internal_relocs = alloc2 = bfd_malloc (size);
1916 if (internal_relocs == NULL)
1917 goto error_return;
1918 }
1919
1920 if (external_relocs == NULL)
1921 {
1922 bfd_size_type size = rel_hdr->sh_size;
1923
1924 if (elf_section_data (o)->rel_hdr2)
1925 size += elf_section_data (o)->rel_hdr2->sh_size;
1926 alloc1 = bfd_malloc (size);
1927 if (alloc1 == NULL)
1928 goto error_return;
1929 external_relocs = alloc1;
1930 }
1931
1932 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
1933 external_relocs,
1934 internal_relocs))
1935 goto error_return;
1936 if (elf_section_data (o)->rel_hdr2
1937 && (!elf_link_read_relocs_from_section
1938 (abfd, o,
1939 elf_section_data (o)->rel_hdr2,
1940 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
1941 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
1942 * bed->s->int_rels_per_ext_rel))))
1943 goto error_return;
1944
1945 /* Cache the results for next time, if we can. */
1946 if (keep_memory)
1947 elf_section_data (o)->relocs = internal_relocs;
1948
1949 if (alloc1 != NULL)
1950 free (alloc1);
1951
1952 /* Don't free alloc2, since if it was allocated we are passing it
1953 back (under the name of internal_relocs). */
1954
1955 return internal_relocs;
1956
1957 error_return:
1958 if (alloc1 != NULL)
1959 free (alloc1);
1960 if (alloc2 != NULL)
1961 free (alloc2);
1962 return NULL;
1963 }
1964
1965 /* Compute the size of, and allocate space for, REL_HDR which is the
1966 section header for a section containing relocations for O. */
1967
1968 bfd_boolean
1969 _bfd_elf_link_size_reloc_section (bfd *abfd,
1970 Elf_Internal_Shdr *rel_hdr,
1971 asection *o)
1972 {
1973 bfd_size_type reloc_count;
1974 bfd_size_type num_rel_hashes;
1975
1976 /* Figure out how many relocations there will be. */
1977 if (rel_hdr == &elf_section_data (o)->rel_hdr)
1978 reloc_count = elf_section_data (o)->rel_count;
1979 else
1980 reloc_count = elf_section_data (o)->rel_count2;
1981
1982 num_rel_hashes = o->reloc_count;
1983 if (num_rel_hashes < reloc_count)
1984 num_rel_hashes = reloc_count;
1985
1986 /* That allows us to calculate the size of the section. */
1987 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
1988
1989 /* The contents field must last into write_object_contents, so we
1990 allocate it with bfd_alloc rather than malloc. Also since we
1991 cannot be sure that the contents will actually be filled in,
1992 we zero the allocated space. */
1993 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
1994 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
1995 return FALSE;
1996
1997 /* We only allocate one set of hash entries, so we only do it the
1998 first time we are called. */
1999 if (elf_section_data (o)->rel_hashes == NULL
2000 && num_rel_hashes)
2001 {
2002 struct elf_link_hash_entry **p;
2003
2004 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
2005 if (p == NULL)
2006 return FALSE;
2007
2008 elf_section_data (o)->rel_hashes = p;
2009 }
2010
2011 return TRUE;
2012 }
2013
2014 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2015 originated from the section given by INPUT_REL_HDR) to the
2016 OUTPUT_BFD. */
2017
2018 bfd_boolean
2019 _bfd_elf_link_output_relocs (bfd *output_bfd,
2020 asection *input_section,
2021 Elf_Internal_Shdr *input_rel_hdr,
2022 Elf_Internal_Rela *internal_relocs)
2023 {
2024 Elf_Internal_Rela *irela;
2025 Elf_Internal_Rela *irelaend;
2026 bfd_byte *erel;
2027 Elf_Internal_Shdr *output_rel_hdr;
2028 asection *output_section;
2029 unsigned int *rel_countp = NULL;
2030 const struct elf_backend_data *bed;
2031 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2032
2033 output_section = input_section->output_section;
2034 output_rel_hdr = NULL;
2035
2036 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2037 == input_rel_hdr->sh_entsize)
2038 {
2039 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2040 rel_countp = &elf_section_data (output_section)->rel_count;
2041 }
2042 else if (elf_section_data (output_section)->rel_hdr2
2043 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2044 == input_rel_hdr->sh_entsize))
2045 {
2046 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2047 rel_countp = &elf_section_data (output_section)->rel_count2;
2048 }
2049 else
2050 {
2051 (*_bfd_error_handler)
2052 (_("%s: relocation size mismatch in %s section %s"),
2053 bfd_get_filename (output_bfd),
2054 bfd_archive_filename (input_section->owner),
2055 input_section->name);
2056 bfd_set_error (bfd_error_wrong_object_format);
2057 return FALSE;
2058 }
2059
2060 bed = get_elf_backend_data (output_bfd);
2061 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2062 swap_out = bed->s->swap_reloc_out;
2063 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2064 swap_out = bed->s->swap_reloca_out;
2065 else
2066 abort ();
2067
2068 erel = output_rel_hdr->contents;
2069 erel += *rel_countp * input_rel_hdr->sh_entsize;
2070 irela = internal_relocs;
2071 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2072 * bed->s->int_rels_per_ext_rel);
2073 while (irela < irelaend)
2074 {
2075 (*swap_out) (output_bfd, irela, erel);
2076 irela += bed->s->int_rels_per_ext_rel;
2077 erel += input_rel_hdr->sh_entsize;
2078 }
2079
2080 /* Bump the counter, so that we know where to add the next set of
2081 relocations. */
2082 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2083
2084 return TRUE;
2085 }
2086 \f
2087 /* Fix up the flags for a symbol. This handles various cases which
2088 can only be fixed after all the input files are seen. This is
2089 currently called by both adjust_dynamic_symbol and
2090 assign_sym_version, which is unnecessary but perhaps more robust in
2091 the face of future changes. */
2092
2093 bfd_boolean
2094 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2095 struct elf_info_failed *eif)
2096 {
2097 /* If this symbol was mentioned in a non-ELF file, try to set
2098 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2099 permit a non-ELF file to correctly refer to a symbol defined in
2100 an ELF dynamic object. */
2101 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
2102 {
2103 while (h->root.type == bfd_link_hash_indirect)
2104 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2105
2106 if (h->root.type != bfd_link_hash_defined
2107 && h->root.type != bfd_link_hash_defweak)
2108 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
2109 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
2110 else
2111 {
2112 if (h->root.u.def.section->owner != NULL
2113 && (bfd_get_flavour (h->root.u.def.section->owner)
2114 == bfd_target_elf_flavour))
2115 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
2116 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
2117 else
2118 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2119 }
2120
2121 if (h->dynindx == -1
2122 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2123 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
2124 {
2125 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2126 {
2127 eif->failed = TRUE;
2128 return FALSE;
2129 }
2130 }
2131 }
2132 else
2133 {
2134 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
2135 was first seen in a non-ELF file. Fortunately, if the symbol
2136 was first seen in an ELF file, we're probably OK unless the
2137 symbol was defined in a non-ELF file. Catch that case here.
2138 FIXME: We're still in trouble if the symbol was first seen in
2139 a dynamic object, and then later in a non-ELF regular object. */
2140 if ((h->root.type == bfd_link_hash_defined
2141 || h->root.type == bfd_link_hash_defweak)
2142 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
2143 && (h->root.u.def.section->owner != NULL
2144 ? (bfd_get_flavour (h->root.u.def.section->owner)
2145 != bfd_target_elf_flavour)
2146 : (bfd_is_abs_section (h->root.u.def.section)
2147 && (h->elf_link_hash_flags
2148 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
2149 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2150 }
2151
2152 /* If this is a final link, and the symbol was defined as a common
2153 symbol in a regular object file, and there was no definition in
2154 any dynamic object, then the linker will have allocated space for
2155 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
2156 flag will not have been set. */
2157 if (h->root.type == bfd_link_hash_defined
2158 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
2159 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
2160 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
2161 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2162 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2163
2164 /* If -Bsymbolic was used (which means to bind references to global
2165 symbols to the definition within the shared object), and this
2166 symbol was defined in a regular object, then it actually doesn't
2167 need a PLT entry. Likewise, if the symbol has non-default
2168 visibility. If the symbol has hidden or internal visibility, we
2169 will force it local. */
2170 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
2171 && eif->info->shared
2172 && is_elf_hash_table (eif->info->hash)
2173 && (eif->info->symbolic
2174 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2175 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
2176 {
2177 const struct elf_backend_data *bed;
2178 bfd_boolean force_local;
2179
2180 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2181
2182 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2183 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2184 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2185 }
2186
2187 /* If a weak undefined symbol has non-default visibility, we also
2188 hide it from the dynamic linker. */
2189 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2190 && h->root.type == bfd_link_hash_undefweak)
2191 {
2192 const struct elf_backend_data *bed;
2193 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2194 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2195 }
2196
2197 /* If this is a weak defined symbol in a dynamic object, and we know
2198 the real definition in the dynamic object, copy interesting flags
2199 over to the real definition. */
2200 if (h->weakdef != NULL)
2201 {
2202 struct elf_link_hash_entry *weakdef;
2203
2204 weakdef = h->weakdef;
2205 if (h->root.type == bfd_link_hash_indirect)
2206 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2207
2208 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2209 || h->root.type == bfd_link_hash_defweak);
2210 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2211 || weakdef->root.type == bfd_link_hash_defweak);
2212 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
2213
2214 /* If the real definition is defined by a regular object file,
2215 don't do anything special. See the longer description in
2216 _bfd_elf_adjust_dynamic_symbol, below. */
2217 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
2218 h->weakdef = NULL;
2219 else
2220 {
2221 const struct elf_backend_data *bed;
2222
2223 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2224 (*bed->elf_backend_copy_indirect_symbol) (bed, weakdef, h);
2225 }
2226 }
2227
2228 return TRUE;
2229 }
2230
2231 /* Make the backend pick a good value for a dynamic symbol. This is
2232 called via elf_link_hash_traverse, and also calls itself
2233 recursively. */
2234
2235 bfd_boolean
2236 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2237 {
2238 struct elf_info_failed *eif = data;
2239 bfd *dynobj;
2240 const struct elf_backend_data *bed;
2241
2242 if (! is_elf_hash_table (eif->info->hash))
2243 return FALSE;
2244
2245 if (h->root.type == bfd_link_hash_warning)
2246 {
2247 h->plt = elf_hash_table (eif->info)->init_offset;
2248 h->got = elf_hash_table (eif->info)->init_offset;
2249
2250 /* When warning symbols are created, they **replace** the "real"
2251 entry in the hash table, thus we never get to see the real
2252 symbol in a hash traversal. So look at it now. */
2253 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2254 }
2255
2256 /* Ignore indirect symbols. These are added by the versioning code. */
2257 if (h->root.type == bfd_link_hash_indirect)
2258 return TRUE;
2259
2260 /* Fix the symbol flags. */
2261 if (! _bfd_elf_fix_symbol_flags (h, eif))
2262 return FALSE;
2263
2264 /* If this symbol does not require a PLT entry, and it is not
2265 defined by a dynamic object, or is not referenced by a regular
2266 object, ignore it. We do have to handle a weak defined symbol,
2267 even if no regular object refers to it, if we decided to add it
2268 to the dynamic symbol table. FIXME: Do we normally need to worry
2269 about symbols which are defined by one dynamic object and
2270 referenced by another one? */
2271 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
2272 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
2273 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
2274 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
2275 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
2276 {
2277 h->plt = elf_hash_table (eif->info)->init_offset;
2278 return TRUE;
2279 }
2280
2281 /* If we've already adjusted this symbol, don't do it again. This
2282 can happen via a recursive call. */
2283 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
2284 return TRUE;
2285
2286 /* Don't look at this symbol again. Note that we must set this
2287 after checking the above conditions, because we may look at a
2288 symbol once, decide not to do anything, and then get called
2289 recursively later after REF_REGULAR is set below. */
2290 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
2291
2292 /* If this is a weak definition, and we know a real definition, and
2293 the real symbol is not itself defined by a regular object file,
2294 then get a good value for the real definition. We handle the
2295 real symbol first, for the convenience of the backend routine.
2296
2297 Note that there is a confusing case here. If the real definition
2298 is defined by a regular object file, we don't get the real symbol
2299 from the dynamic object, but we do get the weak symbol. If the
2300 processor backend uses a COPY reloc, then if some routine in the
2301 dynamic object changes the real symbol, we will not see that
2302 change in the corresponding weak symbol. This is the way other
2303 ELF linkers work as well, and seems to be a result of the shared
2304 library model.
2305
2306 I will clarify this issue. Most SVR4 shared libraries define the
2307 variable _timezone and define timezone as a weak synonym. The
2308 tzset call changes _timezone. If you write
2309 extern int timezone;
2310 int _timezone = 5;
2311 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2312 you might expect that, since timezone is a synonym for _timezone,
2313 the same number will print both times. However, if the processor
2314 backend uses a COPY reloc, then actually timezone will be copied
2315 into your process image, and, since you define _timezone
2316 yourself, _timezone will not. Thus timezone and _timezone will
2317 wind up at different memory locations. The tzset call will set
2318 _timezone, leaving timezone unchanged. */
2319
2320 if (h->weakdef != NULL)
2321 {
2322 /* If we get to this point, we know there is an implicit
2323 reference by a regular object file via the weak symbol H.
2324 FIXME: Is this really true? What if the traversal finds
2325 H->WEAKDEF before it finds H? */
2326 h->weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
2327
2328 if (! _bfd_elf_adjust_dynamic_symbol (h->weakdef, eif))
2329 return FALSE;
2330 }
2331
2332 /* If a symbol has no type and no size and does not require a PLT
2333 entry, then we are probably about to do the wrong thing here: we
2334 are probably going to create a COPY reloc for an empty object.
2335 This case can arise when a shared object is built with assembly
2336 code, and the assembly code fails to set the symbol type. */
2337 if (h->size == 0
2338 && h->type == STT_NOTYPE
2339 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
2340 (*_bfd_error_handler)
2341 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2342 h->root.root.string);
2343
2344 dynobj = elf_hash_table (eif->info)->dynobj;
2345 bed = get_elf_backend_data (dynobj);
2346 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2347 {
2348 eif->failed = TRUE;
2349 return FALSE;
2350 }
2351
2352 return TRUE;
2353 }
2354
2355 /* Adjust all external symbols pointing into SEC_MERGE sections
2356 to reflect the object merging within the sections. */
2357
2358 bfd_boolean
2359 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2360 {
2361 asection *sec;
2362
2363 if (h->root.type == bfd_link_hash_warning)
2364 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2365
2366 if ((h->root.type == bfd_link_hash_defined
2367 || h->root.type == bfd_link_hash_defweak)
2368 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2369 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2370 {
2371 bfd *output_bfd = data;
2372
2373 h->root.u.def.value =
2374 _bfd_merged_section_offset (output_bfd,
2375 &h->root.u.def.section,
2376 elf_section_data (sec)->sec_info,
2377 h->root.u.def.value);
2378 }
2379
2380 return TRUE;
2381 }
2382
2383 /* Returns false if the symbol referred to by H should be considered
2384 to resolve local to the current module, and true if it should be
2385 considered to bind dynamically. */
2386
2387 bfd_boolean
2388 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2389 struct bfd_link_info *info,
2390 bfd_boolean ignore_protected)
2391 {
2392 bfd_boolean binding_stays_local_p;
2393
2394 if (h == NULL)
2395 return FALSE;
2396
2397 while (h->root.type == bfd_link_hash_indirect
2398 || h->root.type == bfd_link_hash_warning)
2399 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2400
2401 /* If it was forced local, then clearly it's not dynamic. */
2402 if (h->dynindx == -1)
2403 return FALSE;
2404 if (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)
2405 return FALSE;
2406
2407 /* Identify the cases where name binding rules say that a
2408 visible symbol resolves locally. */
2409 binding_stays_local_p = info->executable || info->symbolic;
2410
2411 switch (ELF_ST_VISIBILITY (h->other))
2412 {
2413 case STV_INTERNAL:
2414 case STV_HIDDEN:
2415 return FALSE;
2416
2417 case STV_PROTECTED:
2418 /* Proper resolution for function pointer equality may require
2419 that these symbols perhaps be resolved dynamically, even though
2420 we should be resolving them to the current module. */
2421 if (!ignore_protected)
2422 binding_stays_local_p = TRUE;
2423 break;
2424
2425 default:
2426 break;
2427 }
2428
2429 /* If it isn't defined locally, then clearly it's dynamic. */
2430 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2431 return TRUE;
2432
2433 /* Otherwise, the symbol is dynamic if binding rules don't tell
2434 us that it remains local. */
2435 return !binding_stays_local_p;
2436 }
2437
2438 /* Return true if the symbol referred to by H should be considered
2439 to resolve local to the current module, and false otherwise. Differs
2440 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2441 undefined symbols and weak symbols. */
2442
2443 bfd_boolean
2444 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2445 struct bfd_link_info *info,
2446 bfd_boolean local_protected)
2447 {
2448 /* If it's a local sym, of course we resolve locally. */
2449 if (h == NULL)
2450 return TRUE;
2451
2452 /* If we don't have a definition in a regular file, then we can't
2453 resolve locally. The sym is either undefined or dynamic. */
2454 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2455 return FALSE;
2456
2457 /* Forced local symbols resolve locally. */
2458 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
2459 return TRUE;
2460
2461 /* As do non-dynamic symbols. */
2462 if (h->dynindx == -1)
2463 return TRUE;
2464
2465 /* At this point, we know the symbol is defined and dynamic. In an
2466 executable it must resolve locally, likewise when building symbolic
2467 shared libraries. */
2468 if (info->executable || info->symbolic)
2469 return TRUE;
2470
2471 /* Now deal with defined dynamic symbols in shared libraries. Ones
2472 with default visibility might not resolve locally. */
2473 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2474 return FALSE;
2475
2476 /* However, STV_HIDDEN or STV_INTERNAL ones must be local. */
2477 if (ELF_ST_VISIBILITY (h->other) != STV_PROTECTED)
2478 return TRUE;
2479
2480 /* Function pointer equality tests may require that STV_PROTECTED
2481 symbols be treated as dynamic symbols, even when we know that the
2482 dynamic linker will resolve them locally. */
2483 return local_protected;
2484 }
2485
2486 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2487 aligned. Returns the first TLS output section. */
2488
2489 struct bfd_section *
2490 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2491 {
2492 struct bfd_section *sec, *tls;
2493 unsigned int align = 0;
2494
2495 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2496 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2497 break;
2498 tls = sec;
2499
2500 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2501 if (sec->alignment_power > align)
2502 align = sec->alignment_power;
2503
2504 elf_hash_table (info)->tls_sec = tls;
2505
2506 /* Ensure the alignment of the first section is the largest alignment,
2507 so that the tls segment starts aligned. */
2508 if (tls != NULL)
2509 tls->alignment_power = align;
2510
2511 return tls;
2512 }
2513
2514 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2515 static bfd_boolean
2516 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2517 Elf_Internal_Sym *sym)
2518 {
2519 /* Local symbols do not count, but target specific ones might. */
2520 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2521 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2522 return FALSE;
2523
2524 /* Function symbols do not count. */
2525 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC)
2526 return FALSE;
2527
2528 /* If the section is undefined, then so is the symbol. */
2529 if (sym->st_shndx == SHN_UNDEF)
2530 return FALSE;
2531
2532 /* If the symbol is defined in the common section, then
2533 it is a common definition and so does not count. */
2534 if (sym->st_shndx == SHN_COMMON)
2535 return FALSE;
2536
2537 /* If the symbol is in a target specific section then we
2538 must rely upon the backend to tell us what it is. */
2539 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2540 /* FIXME - this function is not coded yet:
2541
2542 return _bfd_is_global_symbol_definition (abfd, sym);
2543
2544 Instead for now assume that the definition is not global,
2545 Even if this is wrong, at least the linker will behave
2546 in the same way that it used to do. */
2547 return FALSE;
2548
2549 return TRUE;
2550 }
2551
2552 /* Search the symbol table of the archive element of the archive ABFD
2553 whose archive map contains a mention of SYMDEF, and determine if
2554 the symbol is defined in this element. */
2555 static bfd_boolean
2556 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2557 {
2558 Elf_Internal_Shdr * hdr;
2559 bfd_size_type symcount;
2560 bfd_size_type extsymcount;
2561 bfd_size_type extsymoff;
2562 Elf_Internal_Sym *isymbuf;
2563 Elf_Internal_Sym *isym;
2564 Elf_Internal_Sym *isymend;
2565 bfd_boolean result;
2566
2567 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2568 if (abfd == NULL)
2569 return FALSE;
2570
2571 if (! bfd_check_format (abfd, bfd_object))
2572 return FALSE;
2573
2574 /* If we have already included the element containing this symbol in the
2575 link then we do not need to include it again. Just claim that any symbol
2576 it contains is not a definition, so that our caller will not decide to
2577 (re)include this element. */
2578 if (abfd->archive_pass)
2579 return FALSE;
2580
2581 /* Select the appropriate symbol table. */
2582 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2583 hdr = &elf_tdata (abfd)->symtab_hdr;
2584 else
2585 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2586
2587 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2588
2589 /* The sh_info field of the symtab header tells us where the
2590 external symbols start. We don't care about the local symbols. */
2591 if (elf_bad_symtab (abfd))
2592 {
2593 extsymcount = symcount;
2594 extsymoff = 0;
2595 }
2596 else
2597 {
2598 extsymcount = symcount - hdr->sh_info;
2599 extsymoff = hdr->sh_info;
2600 }
2601
2602 if (extsymcount == 0)
2603 return FALSE;
2604
2605 /* Read in the symbol table. */
2606 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2607 NULL, NULL, NULL);
2608 if (isymbuf == NULL)
2609 return FALSE;
2610
2611 /* Scan the symbol table looking for SYMDEF. */
2612 result = FALSE;
2613 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2614 {
2615 const char *name;
2616
2617 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2618 isym->st_name);
2619 if (name == NULL)
2620 break;
2621
2622 if (strcmp (name, symdef->name) == 0)
2623 {
2624 result = is_global_data_symbol_definition (abfd, isym);
2625 break;
2626 }
2627 }
2628
2629 free (isymbuf);
2630
2631 return result;
2632 }
2633 \f
2634 /* Add an entry to the .dynamic table. */
2635
2636 bfd_boolean
2637 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
2638 bfd_vma tag,
2639 bfd_vma val)
2640 {
2641 struct elf_link_hash_table *hash_table;
2642 const struct elf_backend_data *bed;
2643 asection *s;
2644 bfd_size_type newsize;
2645 bfd_byte *newcontents;
2646 Elf_Internal_Dyn dyn;
2647
2648 hash_table = elf_hash_table (info);
2649 if (! is_elf_hash_table (hash_table))
2650 return FALSE;
2651
2652 bed = get_elf_backend_data (hash_table->dynobj);
2653 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
2654 BFD_ASSERT (s != NULL);
2655
2656 newsize = s->size + bed->s->sizeof_dyn;
2657 newcontents = bfd_realloc (s->contents, newsize);
2658 if (newcontents == NULL)
2659 return FALSE;
2660
2661 dyn.d_tag = tag;
2662 dyn.d_un.d_val = val;
2663 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
2664
2665 s->size = newsize;
2666 s->contents = newcontents;
2667
2668 return TRUE;
2669 }
2670
2671 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
2672 otherwise just check whether one already exists. Returns -1 on error,
2673 1 if a DT_NEEDED tag already exists, and 0 on success. */
2674
2675 static int
2676 elf_add_dt_needed_tag (struct bfd_link_info *info,
2677 const char *soname,
2678 bfd_boolean do_it)
2679 {
2680 struct elf_link_hash_table *hash_table;
2681 bfd_size_type oldsize;
2682 bfd_size_type strindex;
2683
2684 hash_table = elf_hash_table (info);
2685 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
2686 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
2687 if (strindex == (bfd_size_type) -1)
2688 return -1;
2689
2690 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
2691 {
2692 asection *sdyn;
2693 const struct elf_backend_data *bed;
2694 bfd_byte *extdyn;
2695
2696 bed = get_elf_backend_data (hash_table->dynobj);
2697 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
2698 BFD_ASSERT (sdyn != NULL);
2699
2700 for (extdyn = sdyn->contents;
2701 extdyn < sdyn->contents + sdyn->size;
2702 extdyn += bed->s->sizeof_dyn)
2703 {
2704 Elf_Internal_Dyn dyn;
2705
2706 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
2707 if (dyn.d_tag == DT_NEEDED
2708 && dyn.d_un.d_val == strindex)
2709 {
2710 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2711 return 1;
2712 }
2713 }
2714 }
2715
2716 if (do_it)
2717 {
2718 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
2719 return -1;
2720 }
2721 else
2722 /* We were just checking for existence of the tag. */
2723 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2724
2725 return 0;
2726 }
2727
2728 /* Sort symbol by value and section. */
2729 static int
2730 elf_sort_symbol (const void *arg1, const void *arg2)
2731 {
2732 const struct elf_link_hash_entry *h1;
2733 const struct elf_link_hash_entry *h2;
2734 bfd_signed_vma vdiff;
2735
2736 h1 = *(const struct elf_link_hash_entry **) arg1;
2737 h2 = *(const struct elf_link_hash_entry **) arg2;
2738 vdiff = h1->root.u.def.value - h2->root.u.def.value;
2739 if (vdiff != 0)
2740 return vdiff > 0 ? 1 : -1;
2741 else
2742 {
2743 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
2744 if (sdiff != 0)
2745 return sdiff > 0 ? 1 : -1;
2746 }
2747 return 0;
2748 }
2749
2750 /* This function is used to adjust offsets into .dynstr for
2751 dynamic symbols. This is called via elf_link_hash_traverse. */
2752
2753 static bfd_boolean
2754 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
2755 {
2756 struct elf_strtab_hash *dynstr = data;
2757
2758 if (h->root.type == bfd_link_hash_warning)
2759 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2760
2761 if (h->dynindx != -1)
2762 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
2763 return TRUE;
2764 }
2765
2766 /* Assign string offsets in .dynstr, update all structures referencing
2767 them. */
2768
2769 static bfd_boolean
2770 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
2771 {
2772 struct elf_link_hash_table *hash_table = elf_hash_table (info);
2773 struct elf_link_local_dynamic_entry *entry;
2774 struct elf_strtab_hash *dynstr = hash_table->dynstr;
2775 bfd *dynobj = hash_table->dynobj;
2776 asection *sdyn;
2777 bfd_size_type size;
2778 const struct elf_backend_data *bed;
2779 bfd_byte *extdyn;
2780
2781 _bfd_elf_strtab_finalize (dynstr);
2782 size = _bfd_elf_strtab_size (dynstr);
2783
2784 bed = get_elf_backend_data (dynobj);
2785 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2786 BFD_ASSERT (sdyn != NULL);
2787
2788 /* Update all .dynamic entries referencing .dynstr strings. */
2789 for (extdyn = sdyn->contents;
2790 extdyn < sdyn->contents + sdyn->size;
2791 extdyn += bed->s->sizeof_dyn)
2792 {
2793 Elf_Internal_Dyn dyn;
2794
2795 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
2796 switch (dyn.d_tag)
2797 {
2798 case DT_STRSZ:
2799 dyn.d_un.d_val = size;
2800 break;
2801 case DT_NEEDED:
2802 case DT_SONAME:
2803 case DT_RPATH:
2804 case DT_RUNPATH:
2805 case DT_FILTER:
2806 case DT_AUXILIARY:
2807 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
2808 break;
2809 default:
2810 continue;
2811 }
2812 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
2813 }
2814
2815 /* Now update local dynamic symbols. */
2816 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
2817 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
2818 entry->isym.st_name);
2819
2820 /* And the rest of dynamic symbols. */
2821 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
2822
2823 /* Adjust version definitions. */
2824 if (elf_tdata (output_bfd)->cverdefs)
2825 {
2826 asection *s;
2827 bfd_byte *p;
2828 bfd_size_type i;
2829 Elf_Internal_Verdef def;
2830 Elf_Internal_Verdaux defaux;
2831
2832 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
2833 p = s->contents;
2834 do
2835 {
2836 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
2837 &def);
2838 p += sizeof (Elf_External_Verdef);
2839 for (i = 0; i < def.vd_cnt; ++i)
2840 {
2841 _bfd_elf_swap_verdaux_in (output_bfd,
2842 (Elf_External_Verdaux *) p, &defaux);
2843 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
2844 defaux.vda_name);
2845 _bfd_elf_swap_verdaux_out (output_bfd,
2846 &defaux, (Elf_External_Verdaux *) p);
2847 p += sizeof (Elf_External_Verdaux);
2848 }
2849 }
2850 while (def.vd_next);
2851 }
2852
2853 /* Adjust version references. */
2854 if (elf_tdata (output_bfd)->verref)
2855 {
2856 asection *s;
2857 bfd_byte *p;
2858 bfd_size_type i;
2859 Elf_Internal_Verneed need;
2860 Elf_Internal_Vernaux needaux;
2861
2862 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
2863 p = s->contents;
2864 do
2865 {
2866 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
2867 &need);
2868 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
2869 _bfd_elf_swap_verneed_out (output_bfd, &need,
2870 (Elf_External_Verneed *) p);
2871 p += sizeof (Elf_External_Verneed);
2872 for (i = 0; i < need.vn_cnt; ++i)
2873 {
2874 _bfd_elf_swap_vernaux_in (output_bfd,
2875 (Elf_External_Vernaux *) p, &needaux);
2876 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
2877 needaux.vna_name);
2878 _bfd_elf_swap_vernaux_out (output_bfd,
2879 &needaux,
2880 (Elf_External_Vernaux *) p);
2881 p += sizeof (Elf_External_Vernaux);
2882 }
2883 }
2884 while (need.vn_next);
2885 }
2886
2887 return TRUE;
2888 }
2889 \f
2890 /* Add symbols from an ELF object file to the linker hash table. */
2891
2892 static bfd_boolean
2893 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
2894 {
2895 bfd_boolean (*add_symbol_hook)
2896 (bfd *, struct bfd_link_info *, Elf_Internal_Sym *,
2897 const char **, flagword *, asection **, bfd_vma *);
2898 bfd_boolean (*check_relocs)
2899 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
2900 bfd_boolean collect;
2901 Elf_Internal_Shdr *hdr;
2902 bfd_size_type symcount;
2903 bfd_size_type extsymcount;
2904 bfd_size_type extsymoff;
2905 struct elf_link_hash_entry **sym_hash;
2906 bfd_boolean dynamic;
2907 Elf_External_Versym *extversym = NULL;
2908 Elf_External_Versym *ever;
2909 struct elf_link_hash_entry *weaks;
2910 struct elf_link_hash_entry **nondeflt_vers = NULL;
2911 bfd_size_type nondeflt_vers_cnt = 0;
2912 Elf_Internal_Sym *isymbuf = NULL;
2913 Elf_Internal_Sym *isym;
2914 Elf_Internal_Sym *isymend;
2915 const struct elf_backend_data *bed;
2916 bfd_boolean add_needed;
2917 struct elf_link_hash_table * hash_table;
2918 bfd_size_type amt;
2919
2920 hash_table = elf_hash_table (info);
2921
2922 bed = get_elf_backend_data (abfd);
2923 add_symbol_hook = bed->elf_add_symbol_hook;
2924 collect = bed->collect;
2925
2926 if ((abfd->flags & DYNAMIC) == 0)
2927 dynamic = FALSE;
2928 else
2929 {
2930 dynamic = TRUE;
2931
2932 /* You can't use -r against a dynamic object. Also, there's no
2933 hope of using a dynamic object which does not exactly match
2934 the format of the output file. */
2935 if (info->relocatable
2936 || !is_elf_hash_table (hash_table)
2937 || hash_table->root.creator != abfd->xvec)
2938 {
2939 bfd_set_error (bfd_error_invalid_operation);
2940 goto error_return;
2941 }
2942 }
2943
2944 /* As a GNU extension, any input sections which are named
2945 .gnu.warning.SYMBOL are treated as warning symbols for the given
2946 symbol. This differs from .gnu.warning sections, which generate
2947 warnings when they are included in an output file. */
2948 if (info->executable)
2949 {
2950 asection *s;
2951
2952 for (s = abfd->sections; s != NULL; s = s->next)
2953 {
2954 const char *name;
2955
2956 name = bfd_get_section_name (abfd, s);
2957 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
2958 {
2959 char *msg;
2960 bfd_size_type sz;
2961 bfd_size_type prefix_len;
2962 const char * gnu_warning_prefix = _("warning: ");
2963
2964 name += sizeof ".gnu.warning." - 1;
2965
2966 /* If this is a shared object, then look up the symbol
2967 in the hash table. If it is there, and it is already
2968 been defined, then we will not be using the entry
2969 from this shared object, so we don't need to warn.
2970 FIXME: If we see the definition in a regular object
2971 later on, we will warn, but we shouldn't. The only
2972 fix is to keep track of what warnings we are supposed
2973 to emit, and then handle them all at the end of the
2974 link. */
2975 if (dynamic)
2976 {
2977 struct elf_link_hash_entry *h;
2978
2979 h = elf_link_hash_lookup (hash_table, name,
2980 FALSE, FALSE, TRUE);
2981
2982 /* FIXME: What about bfd_link_hash_common? */
2983 if (h != NULL
2984 && (h->root.type == bfd_link_hash_defined
2985 || h->root.type == bfd_link_hash_defweak))
2986 {
2987 /* We don't want to issue this warning. Clobber
2988 the section size so that the warning does not
2989 get copied into the output file. */
2990 s->size = 0;
2991 continue;
2992 }
2993 }
2994
2995 sz = s->size;
2996 prefix_len = strlen (gnu_warning_prefix);
2997 msg = bfd_alloc (abfd, prefix_len + sz + 1);
2998 if (msg == NULL)
2999 goto error_return;
3000
3001 strcpy (msg, gnu_warning_prefix);
3002 if (! bfd_get_section_contents (abfd, s, msg + prefix_len, 0, sz))
3003 goto error_return;
3004
3005 msg[prefix_len + sz] = '\0';
3006
3007 if (! (_bfd_generic_link_add_one_symbol
3008 (info, abfd, name, BSF_WARNING, s, 0, msg,
3009 FALSE, collect, NULL)))
3010 goto error_return;
3011
3012 if (! info->relocatable)
3013 {
3014 /* Clobber the section size so that the warning does
3015 not get copied into the output file. */
3016 s->size = 0;
3017 }
3018 }
3019 }
3020 }
3021
3022 add_needed = TRUE;
3023 if (! dynamic)
3024 {
3025 /* If we are creating a shared library, create all the dynamic
3026 sections immediately. We need to attach them to something,
3027 so we attach them to this BFD, provided it is the right
3028 format. FIXME: If there are no input BFD's of the same
3029 format as the output, we can't make a shared library. */
3030 if (info->shared
3031 && is_elf_hash_table (hash_table)
3032 && hash_table->root.creator == abfd->xvec
3033 && ! hash_table->dynamic_sections_created)
3034 {
3035 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3036 goto error_return;
3037 }
3038 }
3039 else if (!is_elf_hash_table (hash_table))
3040 goto error_return;
3041 else
3042 {
3043 asection *s;
3044 const char *soname = NULL;
3045 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3046 int ret;
3047
3048 /* ld --just-symbols and dynamic objects don't mix very well.
3049 Test for --just-symbols by looking at info set up by
3050 _bfd_elf_link_just_syms. */
3051 if ((s = abfd->sections) != NULL
3052 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3053 goto error_return;
3054
3055 /* If this dynamic lib was specified on the command line with
3056 --as-needed in effect, then we don't want to add a DT_NEEDED
3057 tag unless the lib is actually used. Similary for libs brought
3058 in by another lib's DT_NEEDED. */
3059 add_needed = elf_dyn_lib_class (abfd) == DYN_NORMAL;
3060
3061 s = bfd_get_section_by_name (abfd, ".dynamic");
3062 if (s != NULL)
3063 {
3064 bfd_byte *dynbuf;
3065 bfd_byte *extdyn;
3066 int elfsec;
3067 unsigned long shlink;
3068
3069 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3070 goto error_free_dyn;
3071
3072 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3073 if (elfsec == -1)
3074 goto error_free_dyn;
3075 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3076
3077 for (extdyn = dynbuf;
3078 extdyn < dynbuf + s->size;
3079 extdyn += bed->s->sizeof_dyn)
3080 {
3081 Elf_Internal_Dyn dyn;
3082
3083 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3084 if (dyn.d_tag == DT_SONAME)
3085 {
3086 unsigned int tagv = dyn.d_un.d_val;
3087 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3088 if (soname == NULL)
3089 goto error_free_dyn;
3090 }
3091 if (dyn.d_tag == DT_NEEDED)
3092 {
3093 struct bfd_link_needed_list *n, **pn;
3094 char *fnm, *anm;
3095 unsigned int tagv = dyn.d_un.d_val;
3096
3097 amt = sizeof (struct bfd_link_needed_list);
3098 n = bfd_alloc (abfd, amt);
3099 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3100 if (n == NULL || fnm == NULL)
3101 goto error_free_dyn;
3102 amt = strlen (fnm) + 1;
3103 anm = bfd_alloc (abfd, amt);
3104 if (anm == NULL)
3105 goto error_free_dyn;
3106 memcpy (anm, fnm, amt);
3107 n->name = anm;
3108 n->by = abfd;
3109 n->next = NULL;
3110 for (pn = & hash_table->needed;
3111 *pn != NULL;
3112 pn = &(*pn)->next)
3113 ;
3114 *pn = n;
3115 }
3116 if (dyn.d_tag == DT_RUNPATH)
3117 {
3118 struct bfd_link_needed_list *n, **pn;
3119 char *fnm, *anm;
3120 unsigned int tagv = dyn.d_un.d_val;
3121
3122 amt = sizeof (struct bfd_link_needed_list);
3123 n = bfd_alloc (abfd, amt);
3124 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3125 if (n == NULL || fnm == NULL)
3126 goto error_free_dyn;
3127 amt = strlen (fnm) + 1;
3128 anm = bfd_alloc (abfd, amt);
3129 if (anm == NULL)
3130 goto error_free_dyn;
3131 memcpy (anm, fnm, amt);
3132 n->name = anm;
3133 n->by = abfd;
3134 n->next = NULL;
3135 for (pn = & runpath;
3136 *pn != NULL;
3137 pn = &(*pn)->next)
3138 ;
3139 *pn = n;
3140 }
3141 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3142 if (!runpath && dyn.d_tag == DT_RPATH)
3143 {
3144 struct bfd_link_needed_list *n, **pn;
3145 char *fnm, *anm;
3146 unsigned int tagv = dyn.d_un.d_val;
3147
3148 amt = sizeof (struct bfd_link_needed_list);
3149 n = bfd_alloc (abfd, amt);
3150 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3151 if (n == NULL || fnm == NULL)
3152 goto error_free_dyn;
3153 amt = strlen (fnm) + 1;
3154 anm = bfd_alloc (abfd, amt);
3155 if (anm == NULL)
3156 {
3157 error_free_dyn:
3158 free (dynbuf);
3159 goto error_return;
3160 }
3161 memcpy (anm, fnm, amt);
3162 n->name = anm;
3163 n->by = abfd;
3164 n->next = NULL;
3165 for (pn = & rpath;
3166 *pn != NULL;
3167 pn = &(*pn)->next)
3168 ;
3169 *pn = n;
3170 }
3171 }
3172
3173 free (dynbuf);
3174 }
3175
3176 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3177 frees all more recently bfd_alloc'd blocks as well. */
3178 if (runpath)
3179 rpath = runpath;
3180
3181 if (rpath)
3182 {
3183 struct bfd_link_needed_list **pn;
3184 for (pn = & hash_table->runpath;
3185 *pn != NULL;
3186 pn = &(*pn)->next)
3187 ;
3188 *pn = rpath;
3189 }
3190
3191 /* We do not want to include any of the sections in a dynamic
3192 object in the output file. We hack by simply clobbering the
3193 list of sections in the BFD. This could be handled more
3194 cleanly by, say, a new section flag; the existing
3195 SEC_NEVER_LOAD flag is not the one we want, because that one
3196 still implies that the section takes up space in the output
3197 file. */
3198 bfd_section_list_clear (abfd);
3199
3200 /* If this is the first dynamic object found in the link, create
3201 the special sections required for dynamic linking. */
3202 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3203 goto error_return;
3204
3205 /* Find the name to use in a DT_NEEDED entry that refers to this
3206 object. If the object has a DT_SONAME entry, we use it.
3207 Otherwise, if the generic linker stuck something in
3208 elf_dt_name, we use that. Otherwise, we just use the file
3209 name. */
3210 if (soname == NULL || *soname == '\0')
3211 {
3212 soname = elf_dt_name (abfd);
3213 if (soname == NULL || *soname == '\0')
3214 soname = bfd_get_filename (abfd);
3215 }
3216
3217 /* Save the SONAME because sometimes the linker emulation code
3218 will need to know it. */
3219 elf_dt_name (abfd) = soname;
3220
3221 ret = elf_add_dt_needed_tag (info, soname, add_needed);
3222 if (ret < 0)
3223 goto error_return;
3224
3225 /* If we have already included this dynamic object in the
3226 link, just ignore it. There is no reason to include a
3227 particular dynamic object more than once. */
3228 if (ret > 0)
3229 return TRUE;
3230 }
3231
3232 /* If this is a dynamic object, we always link against the .dynsym
3233 symbol table, not the .symtab symbol table. The dynamic linker
3234 will only see the .dynsym symbol table, so there is no reason to
3235 look at .symtab for a dynamic object. */
3236
3237 if (! dynamic || elf_dynsymtab (abfd) == 0)
3238 hdr = &elf_tdata (abfd)->symtab_hdr;
3239 else
3240 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3241
3242 symcount = hdr->sh_size / bed->s->sizeof_sym;
3243
3244 /* The sh_info field of the symtab header tells us where the
3245 external symbols start. We don't care about the local symbols at
3246 this point. */
3247 if (elf_bad_symtab (abfd))
3248 {
3249 extsymcount = symcount;
3250 extsymoff = 0;
3251 }
3252 else
3253 {
3254 extsymcount = symcount - hdr->sh_info;
3255 extsymoff = hdr->sh_info;
3256 }
3257
3258 sym_hash = NULL;
3259 if (extsymcount != 0)
3260 {
3261 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3262 NULL, NULL, NULL);
3263 if (isymbuf == NULL)
3264 goto error_return;
3265
3266 /* We store a pointer to the hash table entry for each external
3267 symbol. */
3268 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3269 sym_hash = bfd_alloc (abfd, amt);
3270 if (sym_hash == NULL)
3271 goto error_free_sym;
3272 elf_sym_hashes (abfd) = sym_hash;
3273 }
3274
3275 if (dynamic)
3276 {
3277 /* Read in any version definitions. */
3278 if (! _bfd_elf_slurp_version_tables (abfd))
3279 goto error_free_sym;
3280
3281 /* Read in the symbol versions, but don't bother to convert them
3282 to internal format. */
3283 if (elf_dynversym (abfd) != 0)
3284 {
3285 Elf_Internal_Shdr *versymhdr;
3286
3287 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3288 extversym = bfd_malloc (versymhdr->sh_size);
3289 if (extversym == NULL)
3290 goto error_free_sym;
3291 amt = versymhdr->sh_size;
3292 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3293 || bfd_bread (extversym, amt, abfd) != amt)
3294 goto error_free_vers;
3295 }
3296 }
3297
3298 weaks = NULL;
3299
3300 ever = extversym != NULL ? extversym + extsymoff : NULL;
3301 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3302 isym < isymend;
3303 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3304 {
3305 int bind;
3306 bfd_vma value;
3307 asection *sec;
3308 flagword flags;
3309 const char *name;
3310 struct elf_link_hash_entry *h;
3311 bfd_boolean definition;
3312 bfd_boolean size_change_ok;
3313 bfd_boolean type_change_ok;
3314 bfd_boolean new_weakdef;
3315 bfd_boolean override;
3316 unsigned int old_alignment;
3317 bfd *old_bfd;
3318
3319 override = FALSE;
3320
3321 flags = BSF_NO_FLAGS;
3322 sec = NULL;
3323 value = isym->st_value;
3324 *sym_hash = NULL;
3325
3326 bind = ELF_ST_BIND (isym->st_info);
3327 if (bind == STB_LOCAL)
3328 {
3329 /* This should be impossible, since ELF requires that all
3330 global symbols follow all local symbols, and that sh_info
3331 point to the first global symbol. Unfortunately, Irix 5
3332 screws this up. */
3333 continue;
3334 }
3335 else if (bind == STB_GLOBAL)
3336 {
3337 if (isym->st_shndx != SHN_UNDEF
3338 && isym->st_shndx != SHN_COMMON)
3339 flags = BSF_GLOBAL;
3340 }
3341 else if (bind == STB_WEAK)
3342 flags = BSF_WEAK;
3343 else
3344 {
3345 /* Leave it up to the processor backend. */
3346 }
3347
3348 if (isym->st_shndx == SHN_UNDEF)
3349 sec = bfd_und_section_ptr;
3350 else if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
3351 {
3352 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3353 if (sec == NULL)
3354 sec = bfd_abs_section_ptr;
3355 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3356 value -= sec->vma;
3357 }
3358 else if (isym->st_shndx == SHN_ABS)
3359 sec = bfd_abs_section_ptr;
3360 else if (isym->st_shndx == SHN_COMMON)
3361 {
3362 sec = bfd_com_section_ptr;
3363 /* What ELF calls the size we call the value. What ELF
3364 calls the value we call the alignment. */
3365 value = isym->st_size;
3366 }
3367 else
3368 {
3369 /* Leave it up to the processor backend. */
3370 }
3371
3372 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3373 isym->st_name);
3374 if (name == NULL)
3375 goto error_free_vers;
3376
3377 if (isym->st_shndx == SHN_COMMON
3378 && ELF_ST_TYPE (isym->st_info) == STT_TLS)
3379 {
3380 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3381
3382 if (tcomm == NULL)
3383 {
3384 tcomm = bfd_make_section (abfd, ".tcommon");
3385 if (tcomm == NULL
3386 || !bfd_set_section_flags (abfd, tcomm, (SEC_ALLOC
3387 | SEC_IS_COMMON
3388 | SEC_LINKER_CREATED
3389 | SEC_THREAD_LOCAL)))
3390 goto error_free_vers;
3391 }
3392 sec = tcomm;
3393 }
3394 else if (add_symbol_hook)
3395 {
3396 if (! (*add_symbol_hook) (abfd, info, isym, &name, &flags, &sec,
3397 &value))
3398 goto error_free_vers;
3399
3400 /* The hook function sets the name to NULL if this symbol
3401 should be skipped for some reason. */
3402 if (name == NULL)
3403 continue;
3404 }
3405
3406 /* Sanity check that all possibilities were handled. */
3407 if (sec == NULL)
3408 {
3409 bfd_set_error (bfd_error_bad_value);
3410 goto error_free_vers;
3411 }
3412
3413 if (bfd_is_und_section (sec)
3414 || bfd_is_com_section (sec))
3415 definition = FALSE;
3416 else
3417 definition = TRUE;
3418
3419 size_change_ok = FALSE;
3420 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
3421 old_alignment = 0;
3422 old_bfd = NULL;
3423
3424 if (is_elf_hash_table (hash_table))
3425 {
3426 Elf_Internal_Versym iver;
3427 unsigned int vernum = 0;
3428 bfd_boolean skip;
3429
3430 if (ever != NULL)
3431 {
3432 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3433 vernum = iver.vs_vers & VERSYM_VERSION;
3434
3435 /* If this is a hidden symbol, or if it is not version
3436 1, we append the version name to the symbol name.
3437 However, we do not modify a non-hidden absolute
3438 symbol, because it might be the version symbol
3439 itself. FIXME: What if it isn't? */
3440 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3441 || (vernum > 1 && ! bfd_is_abs_section (sec)))
3442 {
3443 const char *verstr;
3444 size_t namelen, verlen, newlen;
3445 char *newname, *p;
3446
3447 if (isym->st_shndx != SHN_UNDEF)
3448 {
3449 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
3450 {
3451 (*_bfd_error_handler)
3452 (_("%s: %s: invalid version %u (max %d)"),
3453 bfd_archive_filename (abfd), name, vernum,
3454 elf_tdata (abfd)->dynverdef_hdr.sh_info);
3455 bfd_set_error (bfd_error_bad_value);
3456 goto error_free_vers;
3457 }
3458 else if (vernum > 1)
3459 verstr =
3460 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
3461 else
3462 verstr = "";
3463 }
3464 else
3465 {
3466 /* We cannot simply test for the number of
3467 entries in the VERNEED section since the
3468 numbers for the needed versions do not start
3469 at 0. */
3470 Elf_Internal_Verneed *t;
3471
3472 verstr = NULL;
3473 for (t = elf_tdata (abfd)->verref;
3474 t != NULL;
3475 t = t->vn_nextref)
3476 {
3477 Elf_Internal_Vernaux *a;
3478
3479 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3480 {
3481 if (a->vna_other == vernum)
3482 {
3483 verstr = a->vna_nodename;
3484 break;
3485 }
3486 }
3487 if (a != NULL)
3488 break;
3489 }
3490 if (verstr == NULL)
3491 {
3492 (*_bfd_error_handler)
3493 (_("%s: %s: invalid needed version %d"),
3494 bfd_archive_filename (abfd), name, vernum);
3495 bfd_set_error (bfd_error_bad_value);
3496 goto error_free_vers;
3497 }
3498 }
3499
3500 namelen = strlen (name);
3501 verlen = strlen (verstr);
3502 newlen = namelen + verlen + 2;
3503 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3504 && isym->st_shndx != SHN_UNDEF)
3505 ++newlen;
3506
3507 newname = bfd_alloc (abfd, newlen);
3508 if (newname == NULL)
3509 goto error_free_vers;
3510 memcpy (newname, name, namelen);
3511 p = newname + namelen;
3512 *p++ = ELF_VER_CHR;
3513 /* If this is a defined non-hidden version symbol,
3514 we add another @ to the name. This indicates the
3515 default version of the symbol. */
3516 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3517 && isym->st_shndx != SHN_UNDEF)
3518 *p++ = ELF_VER_CHR;
3519 memcpy (p, verstr, verlen + 1);
3520
3521 name = newname;
3522 }
3523 }
3524
3525 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
3526 sym_hash, &skip, &override,
3527 &type_change_ok, &size_change_ok))
3528 goto error_free_vers;
3529
3530 if (skip)
3531 continue;
3532
3533 if (override)
3534 definition = FALSE;
3535
3536 h = *sym_hash;
3537 while (h->root.type == bfd_link_hash_indirect
3538 || h->root.type == bfd_link_hash_warning)
3539 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3540
3541 /* Remember the old alignment if this is a common symbol, so
3542 that we don't reduce the alignment later on. We can't
3543 check later, because _bfd_generic_link_add_one_symbol
3544 will set a default for the alignment which we want to
3545 override. We also remember the old bfd where the existing
3546 definition comes from. */
3547 switch (h->root.type)
3548 {
3549 default:
3550 break;
3551
3552 case bfd_link_hash_defined:
3553 case bfd_link_hash_defweak:
3554 old_bfd = h->root.u.def.section->owner;
3555 break;
3556
3557 case bfd_link_hash_common:
3558 old_bfd = h->root.u.c.p->section->owner;
3559 old_alignment = h->root.u.c.p->alignment_power;
3560 break;
3561 }
3562
3563 if (elf_tdata (abfd)->verdef != NULL
3564 && ! override
3565 && vernum > 1
3566 && definition)
3567 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
3568 }
3569
3570 if (! (_bfd_generic_link_add_one_symbol
3571 (info, abfd, name, flags, sec, value, NULL, FALSE, collect,
3572 (struct bfd_link_hash_entry **) sym_hash)))
3573 goto error_free_vers;
3574
3575 h = *sym_hash;
3576 while (h->root.type == bfd_link_hash_indirect
3577 || h->root.type == bfd_link_hash_warning)
3578 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3579 *sym_hash = h;
3580
3581 new_weakdef = FALSE;
3582 if (dynamic
3583 && definition
3584 && (flags & BSF_WEAK) != 0
3585 && ELF_ST_TYPE (isym->st_info) != STT_FUNC
3586 && is_elf_hash_table (hash_table)
3587 && h->weakdef == NULL)
3588 {
3589 /* Keep a list of all weak defined non function symbols from
3590 a dynamic object, using the weakdef field. Later in this
3591 function we will set the weakdef field to the correct
3592 value. We only put non-function symbols from dynamic
3593 objects on this list, because that happens to be the only
3594 time we need to know the normal symbol corresponding to a
3595 weak symbol, and the information is time consuming to
3596 figure out. If the weakdef field is not already NULL,
3597 then this symbol was already defined by some previous
3598 dynamic object, and we will be using that previous
3599 definition anyhow. */
3600
3601 h->weakdef = weaks;
3602 weaks = h;
3603 new_weakdef = TRUE;
3604 }
3605
3606 /* Set the alignment of a common symbol. */
3607 if (isym->st_shndx == SHN_COMMON
3608 && h->root.type == bfd_link_hash_common)
3609 {
3610 unsigned int align;
3611
3612 align = bfd_log2 (isym->st_value);
3613 if (align > old_alignment
3614 /* Permit an alignment power of zero if an alignment of one
3615 is specified and no other alignments have been specified. */
3616 || (isym->st_value == 1 && old_alignment == 0))
3617 h->root.u.c.p->alignment_power = align;
3618 else
3619 h->root.u.c.p->alignment_power = old_alignment;
3620 }
3621
3622 if (is_elf_hash_table (hash_table))
3623 {
3624 int old_flags;
3625 bfd_boolean dynsym;
3626 int new_flag;
3627
3628 /* Check the alignment when a common symbol is involved. This
3629 can change when a common symbol is overridden by a normal
3630 definition or a common symbol is ignored due to the old
3631 normal definition. We need to make sure the maximum
3632 alignment is maintained. */
3633 if ((old_alignment || isym->st_shndx == SHN_COMMON)
3634 && h->root.type != bfd_link_hash_common)
3635 {
3636 unsigned int common_align;
3637 unsigned int normal_align;
3638 unsigned int symbol_align;
3639 bfd *normal_bfd;
3640 bfd *common_bfd;
3641
3642 symbol_align = ffs (h->root.u.def.value) - 1;
3643 if (h->root.u.def.section->owner != NULL
3644 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3645 {
3646 normal_align = h->root.u.def.section->alignment_power;
3647 if (normal_align > symbol_align)
3648 normal_align = symbol_align;
3649 }
3650 else
3651 normal_align = symbol_align;
3652
3653 if (old_alignment)
3654 {
3655 common_align = old_alignment;
3656 common_bfd = old_bfd;
3657 normal_bfd = abfd;
3658 }
3659 else
3660 {
3661 common_align = bfd_log2 (isym->st_value);
3662 common_bfd = abfd;
3663 normal_bfd = old_bfd;
3664 }
3665
3666 if (normal_align < common_align)
3667 (*_bfd_error_handler)
3668 (_("Warning: alignment %u of symbol `%s' in %s is smaller than %u in %s"),
3669 1 << normal_align,
3670 name,
3671 bfd_archive_filename (normal_bfd),
3672 1 << common_align,
3673 bfd_archive_filename (common_bfd));
3674 }
3675
3676 /* Remember the symbol size and type. */
3677 if (isym->st_size != 0
3678 && (definition || h->size == 0))
3679 {
3680 if (h->size != 0 && h->size != isym->st_size && ! size_change_ok)
3681 (*_bfd_error_handler)
3682 (_("Warning: size of symbol `%s' changed from %lu in %s to %lu in %s"),
3683 name, (unsigned long) h->size,
3684 bfd_archive_filename (old_bfd),
3685 (unsigned long) isym->st_size,
3686 bfd_archive_filename (abfd));
3687
3688 h->size = isym->st_size;
3689 }
3690
3691 /* If this is a common symbol, then we always want H->SIZE
3692 to be the size of the common symbol. The code just above
3693 won't fix the size if a common symbol becomes larger. We
3694 don't warn about a size change here, because that is
3695 covered by --warn-common. */
3696 if (h->root.type == bfd_link_hash_common)
3697 h->size = h->root.u.c.size;
3698
3699 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
3700 && (definition || h->type == STT_NOTYPE))
3701 {
3702 if (h->type != STT_NOTYPE
3703 && h->type != ELF_ST_TYPE (isym->st_info)
3704 && ! type_change_ok)
3705 (*_bfd_error_handler)
3706 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
3707 name, h->type, ELF_ST_TYPE (isym->st_info),
3708 bfd_archive_filename (abfd));
3709
3710 h->type = ELF_ST_TYPE (isym->st_info);
3711 }
3712
3713 /* If st_other has a processor-specific meaning, specific
3714 code might be needed here. We never merge the visibility
3715 attribute with the one from a dynamic object. */
3716 if (bed->elf_backend_merge_symbol_attribute)
3717 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
3718 dynamic);
3719
3720 if (isym->st_other != 0 && !dynamic)
3721 {
3722 unsigned char hvis, symvis, other, nvis;
3723
3724 /* Take the balance of OTHER from the definition. */
3725 other = (definition ? isym->st_other : h->other);
3726 other &= ~ ELF_ST_VISIBILITY (-1);
3727
3728 /* Combine visibilities, using the most constraining one. */
3729 hvis = ELF_ST_VISIBILITY (h->other);
3730 symvis = ELF_ST_VISIBILITY (isym->st_other);
3731 if (! hvis)
3732 nvis = symvis;
3733 else if (! symvis)
3734 nvis = hvis;
3735 else
3736 nvis = hvis < symvis ? hvis : symvis;
3737
3738 h->other = other | nvis;
3739 }
3740
3741 /* Set a flag in the hash table entry indicating the type of
3742 reference or definition we just found. Keep a count of
3743 the number of dynamic symbols we find. A dynamic symbol
3744 is one which is referenced or defined by both a regular
3745 object and a shared object. */
3746 old_flags = h->elf_link_hash_flags;
3747 dynsym = FALSE;
3748 if (! dynamic)
3749 {
3750 if (! definition)
3751 {
3752 new_flag = ELF_LINK_HASH_REF_REGULAR;
3753 if (bind != STB_WEAK)
3754 new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
3755 }
3756 else
3757 new_flag = ELF_LINK_HASH_DEF_REGULAR;
3758 if (! info->executable
3759 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
3760 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
3761 dynsym = TRUE;
3762 }
3763 else
3764 {
3765 if (! definition)
3766 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
3767 else
3768 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
3769 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
3770 | ELF_LINK_HASH_REF_REGULAR)) != 0
3771 || (h->weakdef != NULL
3772 && ! new_weakdef
3773 && h->weakdef->dynindx != -1))
3774 dynsym = TRUE;
3775 }
3776
3777 h->elf_link_hash_flags |= new_flag;
3778
3779 /* Check to see if we need to add an indirect symbol for
3780 the default name. */
3781 if (definition || h->root.type == bfd_link_hash_common)
3782 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
3783 &sec, &value, &dynsym,
3784 override))
3785 goto error_free_vers;
3786
3787 if (definition && !dynamic)
3788 {
3789 char *p = strchr (name, ELF_VER_CHR);
3790 if (p != NULL && p[1] != ELF_VER_CHR)
3791 {
3792 /* Queue non-default versions so that .symver x, x@FOO
3793 aliases can be checked. */
3794 if (! nondeflt_vers)
3795 {
3796 amt = (isymend - isym + 1)
3797 * sizeof (struct elf_link_hash_entry *);
3798 nondeflt_vers = bfd_malloc (amt);
3799 }
3800 nondeflt_vers [nondeflt_vers_cnt++] = h;
3801 }
3802 }
3803
3804 if (dynsym && h->dynindx == -1)
3805 {
3806 if (! bfd_elf_link_record_dynamic_symbol (info, h))
3807 goto error_free_vers;
3808 if (h->weakdef != NULL
3809 && ! new_weakdef
3810 && h->weakdef->dynindx == -1)
3811 {
3812 if (! bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
3813 goto error_free_vers;
3814 }
3815 }
3816 else if (dynsym && h->dynindx != -1)
3817 /* If the symbol already has a dynamic index, but
3818 visibility says it should not be visible, turn it into
3819 a local symbol. */
3820 switch (ELF_ST_VISIBILITY (h->other))
3821 {
3822 case STV_INTERNAL:
3823 case STV_HIDDEN:
3824 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
3825 dynsym = FALSE;
3826 break;
3827 }
3828
3829 if (!add_needed
3830 && definition
3831 && dynsym
3832 && (h->elf_link_hash_flags
3833 & ELF_LINK_HASH_REF_REGULAR) != 0)
3834 {
3835 int ret;
3836 const char *soname = elf_dt_name (abfd);
3837
3838 /* A symbol from a library loaded via DT_NEEDED of some
3839 other library is referenced by a regular object.
3840 Add a DT_NEEDED entry for it. */
3841 add_needed = TRUE;
3842 ret = elf_add_dt_needed_tag (info, soname, add_needed);
3843 if (ret < 0)
3844 goto error_free_vers;
3845
3846 BFD_ASSERT (ret == 0);
3847 }
3848 }
3849 }
3850
3851 /* Now that all the symbols from this input file are created, handle
3852 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
3853 if (nondeflt_vers != NULL)
3854 {
3855 bfd_size_type cnt, symidx;
3856
3857 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
3858 {
3859 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
3860 char *shortname, *p;
3861
3862 p = strchr (h->root.root.string, ELF_VER_CHR);
3863 if (p == NULL
3864 || (h->root.type != bfd_link_hash_defined
3865 && h->root.type != bfd_link_hash_defweak))
3866 continue;
3867
3868 amt = p - h->root.root.string;
3869 shortname = bfd_malloc (amt + 1);
3870 memcpy (shortname, h->root.root.string, amt);
3871 shortname[amt] = '\0';
3872
3873 hi = (struct elf_link_hash_entry *)
3874 bfd_link_hash_lookup (&hash_table->root, shortname,
3875 FALSE, FALSE, FALSE);
3876 if (hi != NULL
3877 && hi->root.type == h->root.type
3878 && hi->root.u.def.value == h->root.u.def.value
3879 && hi->root.u.def.section == h->root.u.def.section)
3880 {
3881 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
3882 hi->root.type = bfd_link_hash_indirect;
3883 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
3884 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
3885 sym_hash = elf_sym_hashes (abfd);
3886 if (sym_hash)
3887 for (symidx = 0; symidx < extsymcount; ++symidx)
3888 if (sym_hash[symidx] == hi)
3889 {
3890 sym_hash[symidx] = h;
3891 break;
3892 }
3893 }
3894 free (shortname);
3895 }
3896 free (nondeflt_vers);
3897 nondeflt_vers = NULL;
3898 }
3899
3900 if (extversym != NULL)
3901 {
3902 free (extversym);
3903 extversym = NULL;
3904 }
3905
3906 if (isymbuf != NULL)
3907 free (isymbuf);
3908 isymbuf = NULL;
3909
3910 /* Now set the weakdefs field correctly for all the weak defined
3911 symbols we found. The only way to do this is to search all the
3912 symbols. Since we only need the information for non functions in
3913 dynamic objects, that's the only time we actually put anything on
3914 the list WEAKS. We need this information so that if a regular
3915 object refers to a symbol defined weakly in a dynamic object, the
3916 real symbol in the dynamic object is also put in the dynamic
3917 symbols; we also must arrange for both symbols to point to the
3918 same memory location. We could handle the general case of symbol
3919 aliasing, but a general symbol alias can only be generated in
3920 assembler code, handling it correctly would be very time
3921 consuming, and other ELF linkers don't handle general aliasing
3922 either. */
3923 if (weaks != NULL)
3924 {
3925 struct elf_link_hash_entry **hpp;
3926 struct elf_link_hash_entry **hppend;
3927 struct elf_link_hash_entry **sorted_sym_hash;
3928 struct elf_link_hash_entry *h;
3929 size_t sym_count;
3930
3931 /* Since we have to search the whole symbol list for each weak
3932 defined symbol, search time for N weak defined symbols will be
3933 O(N^2). Binary search will cut it down to O(NlogN). */
3934 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3935 sorted_sym_hash = bfd_malloc (amt);
3936 if (sorted_sym_hash == NULL)
3937 goto error_return;
3938 sym_hash = sorted_sym_hash;
3939 hpp = elf_sym_hashes (abfd);
3940 hppend = hpp + extsymcount;
3941 sym_count = 0;
3942 for (; hpp < hppend; hpp++)
3943 {
3944 h = *hpp;
3945 if (h != NULL
3946 && h->root.type == bfd_link_hash_defined
3947 && h->type != STT_FUNC)
3948 {
3949 *sym_hash = h;
3950 sym_hash++;
3951 sym_count++;
3952 }
3953 }
3954
3955 qsort (sorted_sym_hash, sym_count,
3956 sizeof (struct elf_link_hash_entry *),
3957 elf_sort_symbol);
3958
3959 while (weaks != NULL)
3960 {
3961 struct elf_link_hash_entry *hlook;
3962 asection *slook;
3963 bfd_vma vlook;
3964 long ilook;
3965 size_t i, j, idx;
3966
3967 hlook = weaks;
3968 weaks = hlook->weakdef;
3969 hlook->weakdef = NULL;
3970
3971 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
3972 || hlook->root.type == bfd_link_hash_defweak
3973 || hlook->root.type == bfd_link_hash_common
3974 || hlook->root.type == bfd_link_hash_indirect);
3975 slook = hlook->root.u.def.section;
3976 vlook = hlook->root.u.def.value;
3977
3978 ilook = -1;
3979 i = 0;
3980 j = sym_count;
3981 while (i < j)
3982 {
3983 bfd_signed_vma vdiff;
3984 idx = (i + j) / 2;
3985 h = sorted_sym_hash [idx];
3986 vdiff = vlook - h->root.u.def.value;
3987 if (vdiff < 0)
3988 j = idx;
3989 else if (vdiff > 0)
3990 i = idx + 1;
3991 else
3992 {
3993 long sdiff = slook->id - h->root.u.def.section->id;
3994 if (sdiff < 0)
3995 j = idx;
3996 else if (sdiff > 0)
3997 i = idx + 1;
3998 else
3999 {
4000 ilook = idx;
4001 break;
4002 }
4003 }
4004 }
4005
4006 /* We didn't find a value/section match. */
4007 if (ilook == -1)
4008 continue;
4009
4010 for (i = ilook; i < sym_count; i++)
4011 {
4012 h = sorted_sym_hash [i];
4013
4014 /* Stop if value or section doesn't match. */
4015 if (h->root.u.def.value != vlook
4016 || h->root.u.def.section != slook)
4017 break;
4018 else if (h != hlook)
4019 {
4020 hlook->weakdef = h;
4021
4022 /* If the weak definition is in the list of dynamic
4023 symbols, make sure the real definition is put
4024 there as well. */
4025 if (hlook->dynindx != -1 && h->dynindx == -1)
4026 {
4027 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4028 goto error_return;
4029 }
4030
4031 /* If the real definition is in the list of dynamic
4032 symbols, make sure the weak definition is put
4033 there as well. If we don't do this, then the
4034 dynamic loader might not merge the entries for the
4035 real definition and the weak definition. */
4036 if (h->dynindx != -1 && hlook->dynindx == -1)
4037 {
4038 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4039 goto error_return;
4040 }
4041 break;
4042 }
4043 }
4044 }
4045
4046 free (sorted_sym_hash);
4047 }
4048
4049 /* If this object is the same format as the output object, and it is
4050 not a shared library, then let the backend look through the
4051 relocs.
4052
4053 This is required to build global offset table entries and to
4054 arrange for dynamic relocs. It is not required for the
4055 particular common case of linking non PIC code, even when linking
4056 against shared libraries, but unfortunately there is no way of
4057 knowing whether an object file has been compiled PIC or not.
4058 Looking through the relocs is not particularly time consuming.
4059 The problem is that we must either (1) keep the relocs in memory,
4060 which causes the linker to require additional runtime memory or
4061 (2) read the relocs twice from the input file, which wastes time.
4062 This would be a good case for using mmap.
4063
4064 I have no idea how to handle linking PIC code into a file of a
4065 different format. It probably can't be done. */
4066 check_relocs = get_elf_backend_data (abfd)->check_relocs;
4067 if (! dynamic
4068 && is_elf_hash_table (hash_table)
4069 && hash_table->root.creator == abfd->xvec
4070 && check_relocs != NULL)
4071 {
4072 asection *o;
4073
4074 for (o = abfd->sections; o != NULL; o = o->next)
4075 {
4076 Elf_Internal_Rela *internal_relocs;
4077 bfd_boolean ok;
4078
4079 if ((o->flags & SEC_RELOC) == 0
4080 || o->reloc_count == 0
4081 || ((info->strip == strip_all || info->strip == strip_debugger)
4082 && (o->flags & SEC_DEBUGGING) != 0)
4083 || bfd_is_abs_section (o->output_section))
4084 continue;
4085
4086 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4087 info->keep_memory);
4088 if (internal_relocs == NULL)
4089 goto error_return;
4090
4091 ok = (*check_relocs) (abfd, info, o, internal_relocs);
4092
4093 if (elf_section_data (o)->relocs != internal_relocs)
4094 free (internal_relocs);
4095
4096 if (! ok)
4097 goto error_return;
4098 }
4099 }
4100
4101 /* If this is a non-traditional link, try to optimize the handling
4102 of the .stab/.stabstr sections. */
4103 if (! dynamic
4104 && ! info->traditional_format
4105 && is_elf_hash_table (hash_table)
4106 && (info->strip != strip_all && info->strip != strip_debugger))
4107 {
4108 asection *stabstr;
4109
4110 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4111 if (stabstr != NULL)
4112 {
4113 bfd_size_type string_offset = 0;
4114 asection *stab;
4115
4116 for (stab = abfd->sections; stab; stab = stab->next)
4117 if (strncmp (".stab", stab->name, 5) == 0
4118 && (!stab->name[5] ||
4119 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4120 && (stab->flags & SEC_MERGE) == 0
4121 && !bfd_is_abs_section (stab->output_section))
4122 {
4123 struct bfd_elf_section_data *secdata;
4124
4125 secdata = elf_section_data (stab);
4126 if (! _bfd_link_section_stabs (abfd,
4127 &hash_table->stab_info,
4128 stab, stabstr,
4129 &secdata->sec_info,
4130 &string_offset))
4131 goto error_return;
4132 if (secdata->sec_info)
4133 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4134 }
4135 }
4136 }
4137
4138 if (is_elf_hash_table (hash_table))
4139 {
4140 /* Add this bfd to the loaded list. */
4141 struct elf_link_loaded_list *n;
4142
4143 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4144 if (n == NULL)
4145 goto error_return;
4146 n->abfd = abfd;
4147 n->next = hash_table->loaded;
4148 hash_table->loaded = n;
4149 }
4150
4151 return TRUE;
4152
4153 error_free_vers:
4154 if (nondeflt_vers != NULL)
4155 free (nondeflt_vers);
4156 if (extversym != NULL)
4157 free (extversym);
4158 error_free_sym:
4159 if (isymbuf != NULL)
4160 free (isymbuf);
4161 error_return:
4162 return FALSE;
4163 }
4164
4165 /* Add symbols from an ELF archive file to the linker hash table. We
4166 don't use _bfd_generic_link_add_archive_symbols because of a
4167 problem which arises on UnixWare. The UnixWare libc.so is an
4168 archive which includes an entry libc.so.1 which defines a bunch of
4169 symbols. The libc.so archive also includes a number of other
4170 object files, which also define symbols, some of which are the same
4171 as those defined in libc.so.1. Correct linking requires that we
4172 consider each object file in turn, and include it if it defines any
4173 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4174 this; it looks through the list of undefined symbols, and includes
4175 any object file which defines them. When this algorithm is used on
4176 UnixWare, it winds up pulling in libc.so.1 early and defining a
4177 bunch of symbols. This means that some of the other objects in the
4178 archive are not included in the link, which is incorrect since they
4179 precede libc.so.1 in the archive.
4180
4181 Fortunately, ELF archive handling is simpler than that done by
4182 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4183 oddities. In ELF, if we find a symbol in the archive map, and the
4184 symbol is currently undefined, we know that we must pull in that
4185 object file.
4186
4187 Unfortunately, we do have to make multiple passes over the symbol
4188 table until nothing further is resolved. */
4189
4190 static bfd_boolean
4191 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4192 {
4193 symindex c;
4194 bfd_boolean *defined = NULL;
4195 bfd_boolean *included = NULL;
4196 carsym *symdefs;
4197 bfd_boolean loop;
4198 bfd_size_type amt;
4199
4200 if (! bfd_has_map (abfd))
4201 {
4202 /* An empty archive is a special case. */
4203 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4204 return TRUE;
4205 bfd_set_error (bfd_error_no_armap);
4206 return FALSE;
4207 }
4208
4209 /* Keep track of all symbols we know to be already defined, and all
4210 files we know to be already included. This is to speed up the
4211 second and subsequent passes. */
4212 c = bfd_ardata (abfd)->symdef_count;
4213 if (c == 0)
4214 return TRUE;
4215 amt = c;
4216 amt *= sizeof (bfd_boolean);
4217 defined = bfd_zmalloc (amt);
4218 included = bfd_zmalloc (amt);
4219 if (defined == NULL || included == NULL)
4220 goto error_return;
4221
4222 symdefs = bfd_ardata (abfd)->symdefs;
4223
4224 do
4225 {
4226 file_ptr last;
4227 symindex i;
4228 carsym *symdef;
4229 carsym *symdefend;
4230
4231 loop = FALSE;
4232 last = -1;
4233
4234 symdef = symdefs;
4235 symdefend = symdef + c;
4236 for (i = 0; symdef < symdefend; symdef++, i++)
4237 {
4238 struct elf_link_hash_entry *h;
4239 bfd *element;
4240 struct bfd_link_hash_entry *undefs_tail;
4241 symindex mark;
4242
4243 if (defined[i] || included[i])
4244 continue;
4245 if (symdef->file_offset == last)
4246 {
4247 included[i] = TRUE;
4248 continue;
4249 }
4250
4251 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
4252 FALSE, FALSE, FALSE);
4253
4254 if (h == NULL)
4255 {
4256 char *p, *copy;
4257 size_t len, first;
4258
4259 /* If this is a default version (the name contains @@),
4260 look up the symbol again with only one `@' as well
4261 as without the version. The effect is that references
4262 to the symbol with and without the version will be
4263 matched by the default symbol in the archive. */
4264
4265 p = strchr (symdef->name, ELF_VER_CHR);
4266 if (p == NULL || p[1] != ELF_VER_CHR)
4267 continue;
4268
4269 /* First check with only one `@'. */
4270 len = strlen (symdef->name);
4271 copy = bfd_alloc (abfd, len);
4272 if (copy == NULL)
4273 goto error_return;
4274 first = p - symdef->name + 1;
4275 memcpy (copy, symdef->name, first);
4276 memcpy (copy + first, symdef->name + first + 1, len - first);
4277
4278 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4279 FALSE, FALSE, FALSE);
4280
4281 if (h == NULL)
4282 {
4283 /* We also need to check references to the symbol
4284 without the version. */
4285
4286 copy[first - 1] = '\0';
4287 h = elf_link_hash_lookup (elf_hash_table (info),
4288 copy, FALSE, FALSE, FALSE);
4289 }
4290
4291 bfd_release (abfd, copy);
4292 }
4293
4294 if (h == NULL)
4295 continue;
4296
4297 if (h->root.type == bfd_link_hash_common)
4298 {
4299 /* We currently have a common symbol. The archive map contains
4300 a reference to this symbol, so we may want to include it. We
4301 only want to include it however, if this archive element
4302 contains a definition of the symbol, not just another common
4303 declaration of it.
4304
4305 Unfortunately some archivers (including GNU ar) will put
4306 declarations of common symbols into their archive maps, as
4307 well as real definitions, so we cannot just go by the archive
4308 map alone. Instead we must read in the element's symbol
4309 table and check that to see what kind of symbol definition
4310 this is. */
4311 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
4312 continue;
4313 }
4314 else if (h->root.type != bfd_link_hash_undefined)
4315 {
4316 if (h->root.type != bfd_link_hash_undefweak)
4317 defined[i] = TRUE;
4318 continue;
4319 }
4320
4321 /* We need to include this archive member. */
4322 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
4323 if (element == NULL)
4324 goto error_return;
4325
4326 if (! bfd_check_format (element, bfd_object))
4327 goto error_return;
4328
4329 /* Doublecheck that we have not included this object
4330 already--it should be impossible, but there may be
4331 something wrong with the archive. */
4332 if (element->archive_pass != 0)
4333 {
4334 bfd_set_error (bfd_error_bad_value);
4335 goto error_return;
4336 }
4337 element->archive_pass = 1;
4338
4339 undefs_tail = info->hash->undefs_tail;
4340
4341 if (! (*info->callbacks->add_archive_element) (info, element,
4342 symdef->name))
4343 goto error_return;
4344 if (! bfd_link_add_symbols (element, info))
4345 goto error_return;
4346
4347 /* If there are any new undefined symbols, we need to make
4348 another pass through the archive in order to see whether
4349 they can be defined. FIXME: This isn't perfect, because
4350 common symbols wind up on undefs_tail and because an
4351 undefined symbol which is defined later on in this pass
4352 does not require another pass. This isn't a bug, but it
4353 does make the code less efficient than it could be. */
4354 if (undefs_tail != info->hash->undefs_tail)
4355 loop = TRUE;
4356
4357 /* Look backward to mark all symbols from this object file
4358 which we have already seen in this pass. */
4359 mark = i;
4360 do
4361 {
4362 included[mark] = TRUE;
4363 if (mark == 0)
4364 break;
4365 --mark;
4366 }
4367 while (symdefs[mark].file_offset == symdef->file_offset);
4368
4369 /* We mark subsequent symbols from this object file as we go
4370 on through the loop. */
4371 last = symdef->file_offset;
4372 }
4373 }
4374 while (loop);
4375
4376 free (defined);
4377 free (included);
4378
4379 return TRUE;
4380
4381 error_return:
4382 if (defined != NULL)
4383 free (defined);
4384 if (included != NULL)
4385 free (included);
4386 return FALSE;
4387 }
4388
4389 /* Given an ELF BFD, add symbols to the global hash table as
4390 appropriate. */
4391
4392 bfd_boolean
4393 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
4394 {
4395 switch (bfd_get_format (abfd))
4396 {
4397 case bfd_object:
4398 return elf_link_add_object_symbols (abfd, info);
4399 case bfd_archive:
4400 return elf_link_add_archive_symbols (abfd, info);
4401 default:
4402 bfd_set_error (bfd_error_wrong_format);
4403 return FALSE;
4404 }
4405 }
4406 \f
4407 /* This function will be called though elf_link_hash_traverse to store
4408 all hash value of the exported symbols in an array. */
4409
4410 static bfd_boolean
4411 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
4412 {
4413 unsigned long **valuep = data;
4414 const char *name;
4415 char *p;
4416 unsigned long ha;
4417 char *alc = NULL;
4418
4419 if (h->root.type == bfd_link_hash_warning)
4420 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4421
4422 /* Ignore indirect symbols. These are added by the versioning code. */
4423 if (h->dynindx == -1)
4424 return TRUE;
4425
4426 name = h->root.root.string;
4427 p = strchr (name, ELF_VER_CHR);
4428 if (p != NULL)
4429 {
4430 alc = bfd_malloc (p - name + 1);
4431 memcpy (alc, name, p - name);
4432 alc[p - name] = '\0';
4433 name = alc;
4434 }
4435
4436 /* Compute the hash value. */
4437 ha = bfd_elf_hash (name);
4438
4439 /* Store the found hash value in the array given as the argument. */
4440 *(*valuep)++ = ha;
4441
4442 /* And store it in the struct so that we can put it in the hash table
4443 later. */
4444 h->elf_hash_value = ha;
4445
4446 if (alc != NULL)
4447 free (alc);
4448
4449 return TRUE;
4450 }
4451
4452 /* Array used to determine the number of hash table buckets to use
4453 based on the number of symbols there are. If there are fewer than
4454 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
4455 fewer than 37 we use 17 buckets, and so forth. We never use more
4456 than 32771 buckets. */
4457
4458 static const size_t elf_buckets[] =
4459 {
4460 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
4461 16411, 32771, 0
4462 };
4463
4464 /* Compute bucket count for hashing table. We do not use a static set
4465 of possible tables sizes anymore. Instead we determine for all
4466 possible reasonable sizes of the table the outcome (i.e., the
4467 number of collisions etc) and choose the best solution. The
4468 weighting functions are not too simple to allow the table to grow
4469 without bounds. Instead one of the weighting factors is the size.
4470 Therefore the result is always a good payoff between few collisions
4471 (= short chain lengths) and table size. */
4472 static size_t
4473 compute_bucket_count (struct bfd_link_info *info)
4474 {
4475 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
4476 size_t best_size = 0;
4477 unsigned long int *hashcodes;
4478 unsigned long int *hashcodesp;
4479 unsigned long int i;
4480 bfd_size_type amt;
4481
4482 /* Compute the hash values for all exported symbols. At the same
4483 time store the values in an array so that we could use them for
4484 optimizations. */
4485 amt = dynsymcount;
4486 amt *= sizeof (unsigned long int);
4487 hashcodes = bfd_malloc (amt);
4488 if (hashcodes == NULL)
4489 return 0;
4490 hashcodesp = hashcodes;
4491
4492 /* Put all hash values in HASHCODES. */
4493 elf_link_hash_traverse (elf_hash_table (info),
4494 elf_collect_hash_codes, &hashcodesp);
4495
4496 /* We have a problem here. The following code to optimize the table
4497 size requires an integer type with more the 32 bits. If
4498 BFD_HOST_U_64_BIT is set we know about such a type. */
4499 #ifdef BFD_HOST_U_64_BIT
4500 if (info->optimize)
4501 {
4502 unsigned long int nsyms = hashcodesp - hashcodes;
4503 size_t minsize;
4504 size_t maxsize;
4505 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
4506 unsigned long int *counts ;
4507 bfd *dynobj = elf_hash_table (info)->dynobj;
4508 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
4509
4510 /* Possible optimization parameters: if we have NSYMS symbols we say
4511 that the hashing table must at least have NSYMS/4 and at most
4512 2*NSYMS buckets. */
4513 minsize = nsyms / 4;
4514 if (minsize == 0)
4515 minsize = 1;
4516 best_size = maxsize = nsyms * 2;
4517
4518 /* Create array where we count the collisions in. We must use bfd_malloc
4519 since the size could be large. */
4520 amt = maxsize;
4521 amt *= sizeof (unsigned long int);
4522 counts = bfd_malloc (amt);
4523 if (counts == NULL)
4524 {
4525 free (hashcodes);
4526 return 0;
4527 }
4528
4529 /* Compute the "optimal" size for the hash table. The criteria is a
4530 minimal chain length. The minor criteria is (of course) the size
4531 of the table. */
4532 for (i = minsize; i < maxsize; ++i)
4533 {
4534 /* Walk through the array of hashcodes and count the collisions. */
4535 BFD_HOST_U_64_BIT max;
4536 unsigned long int j;
4537 unsigned long int fact;
4538
4539 memset (counts, '\0', i * sizeof (unsigned long int));
4540
4541 /* Determine how often each hash bucket is used. */
4542 for (j = 0; j < nsyms; ++j)
4543 ++counts[hashcodes[j] % i];
4544
4545 /* For the weight function we need some information about the
4546 pagesize on the target. This is information need not be 100%
4547 accurate. Since this information is not available (so far) we
4548 define it here to a reasonable default value. If it is crucial
4549 to have a better value some day simply define this value. */
4550 # ifndef BFD_TARGET_PAGESIZE
4551 # define BFD_TARGET_PAGESIZE (4096)
4552 # endif
4553
4554 /* We in any case need 2 + NSYMS entries for the size values and
4555 the chains. */
4556 max = (2 + nsyms) * (bed->s->arch_size / 8);
4557
4558 # if 1
4559 /* Variant 1: optimize for short chains. We add the squares
4560 of all the chain lengths (which favors many small chain
4561 over a few long chains). */
4562 for (j = 0; j < i; ++j)
4563 max += counts[j] * counts[j];
4564
4565 /* This adds penalties for the overall size of the table. */
4566 fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1;
4567 max *= fact * fact;
4568 # else
4569 /* Variant 2: Optimize a lot more for small table. Here we
4570 also add squares of the size but we also add penalties for
4571 empty slots (the +1 term). */
4572 for (j = 0; j < i; ++j)
4573 max += (1 + counts[j]) * (1 + counts[j]);
4574
4575 /* The overall size of the table is considered, but not as
4576 strong as in variant 1, where it is squared. */
4577 fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1;
4578 max *= fact;
4579 # endif
4580
4581 /* Compare with current best results. */
4582 if (max < best_chlen)
4583 {
4584 best_chlen = max;
4585 best_size = i;
4586 }
4587 }
4588
4589 free (counts);
4590 }
4591 else
4592 #endif /* defined (BFD_HOST_U_64_BIT) */
4593 {
4594 /* This is the fallback solution if no 64bit type is available or if we
4595 are not supposed to spend much time on optimizations. We select the
4596 bucket count using a fixed set of numbers. */
4597 for (i = 0; elf_buckets[i] != 0; i++)
4598 {
4599 best_size = elf_buckets[i];
4600 if (dynsymcount < elf_buckets[i + 1])
4601 break;
4602 }
4603 }
4604
4605 /* Free the arrays we needed. */
4606 free (hashcodes);
4607
4608 return best_size;
4609 }
4610
4611 /* Set up the sizes and contents of the ELF dynamic sections. This is
4612 called by the ELF linker emulation before_allocation routine. We
4613 must set the sizes of the sections before the linker sets the
4614 addresses of the various sections. */
4615
4616 bfd_boolean
4617 bfd_elf_size_dynamic_sections (bfd *output_bfd,
4618 const char *soname,
4619 const char *rpath,
4620 const char *filter_shlib,
4621 const char * const *auxiliary_filters,
4622 struct bfd_link_info *info,
4623 asection **sinterpptr,
4624 struct bfd_elf_version_tree *verdefs)
4625 {
4626 bfd_size_type soname_indx;
4627 bfd *dynobj;
4628 const struct elf_backend_data *bed;
4629 struct elf_assign_sym_version_info asvinfo;
4630
4631 *sinterpptr = NULL;
4632
4633 soname_indx = (bfd_size_type) -1;
4634
4635 if (!is_elf_hash_table (info->hash))
4636 return TRUE;
4637
4638 elf_tdata (output_bfd)->relro = info->relro;
4639 if (info->execstack)
4640 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
4641 else if (info->noexecstack)
4642 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
4643 else
4644 {
4645 bfd *inputobj;
4646 asection *notesec = NULL;
4647 int exec = 0;
4648
4649 for (inputobj = info->input_bfds;
4650 inputobj;
4651 inputobj = inputobj->link_next)
4652 {
4653 asection *s;
4654
4655 if (inputobj->flags & DYNAMIC)
4656 continue;
4657 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
4658 if (s)
4659 {
4660 if (s->flags & SEC_CODE)
4661 exec = PF_X;
4662 notesec = s;
4663 }
4664 else
4665 exec = PF_X;
4666 }
4667 if (notesec)
4668 {
4669 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
4670 if (exec && info->relocatable
4671 && notesec->output_section != bfd_abs_section_ptr)
4672 notesec->output_section->flags |= SEC_CODE;
4673 }
4674 }
4675
4676 /* Any syms created from now on start with -1 in
4677 got.refcount/offset and plt.refcount/offset. */
4678 elf_hash_table (info)->init_refcount = elf_hash_table (info)->init_offset;
4679
4680 /* The backend may have to create some sections regardless of whether
4681 we're dynamic or not. */
4682 bed = get_elf_backend_data (output_bfd);
4683 if (bed->elf_backend_always_size_sections
4684 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
4685 return FALSE;
4686
4687 dynobj = elf_hash_table (info)->dynobj;
4688
4689 /* If there were no dynamic objects in the link, there is nothing to
4690 do here. */
4691 if (dynobj == NULL)
4692 return TRUE;
4693
4694 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
4695 return FALSE;
4696
4697 if (elf_hash_table (info)->dynamic_sections_created)
4698 {
4699 struct elf_info_failed eif;
4700 struct elf_link_hash_entry *h;
4701 asection *dynstr;
4702 struct bfd_elf_version_tree *t;
4703 struct bfd_elf_version_expr *d;
4704 bfd_boolean all_defined;
4705
4706 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
4707 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
4708
4709 if (soname != NULL)
4710 {
4711 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
4712 soname, TRUE);
4713 if (soname_indx == (bfd_size_type) -1
4714 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
4715 return FALSE;
4716 }
4717
4718 if (info->symbolic)
4719 {
4720 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
4721 return FALSE;
4722 info->flags |= DF_SYMBOLIC;
4723 }
4724
4725 if (rpath != NULL)
4726 {
4727 bfd_size_type indx;
4728
4729 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
4730 TRUE);
4731 if (indx == (bfd_size_type) -1
4732 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
4733 return FALSE;
4734
4735 if (info->new_dtags)
4736 {
4737 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
4738 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
4739 return FALSE;
4740 }
4741 }
4742
4743 if (filter_shlib != NULL)
4744 {
4745 bfd_size_type indx;
4746
4747 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
4748 filter_shlib, TRUE);
4749 if (indx == (bfd_size_type) -1
4750 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
4751 return FALSE;
4752 }
4753
4754 if (auxiliary_filters != NULL)
4755 {
4756 const char * const *p;
4757
4758 for (p = auxiliary_filters; *p != NULL; p++)
4759 {
4760 bfd_size_type indx;
4761
4762 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
4763 *p, TRUE);
4764 if (indx == (bfd_size_type) -1
4765 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
4766 return FALSE;
4767 }
4768 }
4769
4770 eif.info = info;
4771 eif.verdefs = verdefs;
4772 eif.failed = FALSE;
4773
4774 /* If we are supposed to export all symbols into the dynamic symbol
4775 table (this is not the normal case), then do so. */
4776 if (info->export_dynamic)
4777 {
4778 elf_link_hash_traverse (elf_hash_table (info),
4779 _bfd_elf_export_symbol,
4780 &eif);
4781 if (eif.failed)
4782 return FALSE;
4783 }
4784
4785 /* Make all global versions with definition. */
4786 for (t = verdefs; t != NULL; t = t->next)
4787 for (d = t->globals.list; d != NULL; d = d->next)
4788 if (!d->symver && d->symbol)
4789 {
4790 const char *verstr, *name;
4791 size_t namelen, verlen, newlen;
4792 char *newname, *p;
4793 struct elf_link_hash_entry *newh;
4794
4795 name = d->symbol;
4796 namelen = strlen (name);
4797 verstr = t->name;
4798 verlen = strlen (verstr);
4799 newlen = namelen + verlen + 3;
4800
4801 newname = bfd_malloc (newlen);
4802 if (newname == NULL)
4803 return FALSE;
4804 memcpy (newname, name, namelen);
4805
4806 /* Check the hidden versioned definition. */
4807 p = newname + namelen;
4808 *p++ = ELF_VER_CHR;
4809 memcpy (p, verstr, verlen + 1);
4810 newh = elf_link_hash_lookup (elf_hash_table (info),
4811 newname, FALSE, FALSE,
4812 FALSE);
4813 if (newh == NULL
4814 || (newh->root.type != bfd_link_hash_defined
4815 && newh->root.type != bfd_link_hash_defweak))
4816 {
4817 /* Check the default versioned definition. */
4818 *p++ = ELF_VER_CHR;
4819 memcpy (p, verstr, verlen + 1);
4820 newh = elf_link_hash_lookup (elf_hash_table (info),
4821 newname, FALSE, FALSE,
4822 FALSE);
4823 }
4824 free (newname);
4825
4826 /* Mark this version if there is a definition and it is
4827 not defined in a shared object. */
4828 if (newh != NULL
4829 && ((newh->elf_link_hash_flags
4830 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)
4831 && (newh->root.type == bfd_link_hash_defined
4832 || newh->root.type == bfd_link_hash_defweak))
4833 d->symver = 1;
4834 }
4835
4836 /* Attach all the symbols to their version information. */
4837 asvinfo.output_bfd = output_bfd;
4838 asvinfo.info = info;
4839 asvinfo.verdefs = verdefs;
4840 asvinfo.failed = FALSE;
4841
4842 elf_link_hash_traverse (elf_hash_table (info),
4843 _bfd_elf_link_assign_sym_version,
4844 &asvinfo);
4845 if (asvinfo.failed)
4846 return FALSE;
4847
4848 if (!info->allow_undefined_version)
4849 {
4850 /* Check if all global versions have a definition. */
4851 all_defined = TRUE;
4852 for (t = verdefs; t != NULL; t = t->next)
4853 for (d = t->globals.list; d != NULL; d = d->next)
4854 if (!d->symver && !d->script)
4855 {
4856 (*_bfd_error_handler)
4857 (_("%s: undefined version: %s"),
4858 d->pattern, t->name);
4859 all_defined = FALSE;
4860 }
4861
4862 if (!all_defined)
4863 {
4864 bfd_set_error (bfd_error_bad_value);
4865 return FALSE;
4866 }
4867 }
4868
4869 /* Find all symbols which were defined in a dynamic object and make
4870 the backend pick a reasonable value for them. */
4871 elf_link_hash_traverse (elf_hash_table (info),
4872 _bfd_elf_adjust_dynamic_symbol,
4873 &eif);
4874 if (eif.failed)
4875 return FALSE;
4876
4877 /* Add some entries to the .dynamic section. We fill in some of the
4878 values later, in elf_bfd_final_link, but we must add the entries
4879 now so that we know the final size of the .dynamic section. */
4880
4881 /* If there are initialization and/or finalization functions to
4882 call then add the corresponding DT_INIT/DT_FINI entries. */
4883 h = (info->init_function
4884 ? elf_link_hash_lookup (elf_hash_table (info),
4885 info->init_function, FALSE,
4886 FALSE, FALSE)
4887 : NULL);
4888 if (h != NULL
4889 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
4890 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
4891 {
4892 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
4893 return FALSE;
4894 }
4895 h = (info->fini_function
4896 ? elf_link_hash_lookup (elf_hash_table (info),
4897 info->fini_function, FALSE,
4898 FALSE, FALSE)
4899 : NULL);
4900 if (h != NULL
4901 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
4902 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
4903 {
4904 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
4905 return FALSE;
4906 }
4907
4908 if (bfd_get_section_by_name (output_bfd, ".preinit_array") != NULL)
4909 {
4910 /* DT_PREINIT_ARRAY is not allowed in shared library. */
4911 if (! info->executable)
4912 {
4913 bfd *sub;
4914 asection *o;
4915
4916 for (sub = info->input_bfds; sub != NULL;
4917 sub = sub->link_next)
4918 for (o = sub->sections; o != NULL; o = o->next)
4919 if (elf_section_data (o)->this_hdr.sh_type
4920 == SHT_PREINIT_ARRAY)
4921 {
4922 (*_bfd_error_handler)
4923 (_("%s: .preinit_array section is not allowed in DSO"),
4924 bfd_archive_filename (sub));
4925 break;
4926 }
4927
4928 bfd_set_error (bfd_error_nonrepresentable_section);
4929 return FALSE;
4930 }
4931
4932 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
4933 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
4934 return FALSE;
4935 }
4936 if (bfd_get_section_by_name (output_bfd, ".init_array") != NULL)
4937 {
4938 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
4939 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
4940 return FALSE;
4941 }
4942 if (bfd_get_section_by_name (output_bfd, ".fini_array") != NULL)
4943 {
4944 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
4945 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
4946 return FALSE;
4947 }
4948
4949 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
4950 /* If .dynstr is excluded from the link, we don't want any of
4951 these tags. Strictly, we should be checking each section
4952 individually; This quick check covers for the case where
4953 someone does a /DISCARD/ : { *(*) }. */
4954 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
4955 {
4956 bfd_size_type strsize;
4957
4958 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
4959 if (!_bfd_elf_add_dynamic_entry (info, DT_HASH, 0)
4960 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
4961 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
4962 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
4963 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
4964 bed->s->sizeof_sym))
4965 return FALSE;
4966 }
4967 }
4968
4969 /* The backend must work out the sizes of all the other dynamic
4970 sections. */
4971 if (bed->elf_backend_size_dynamic_sections
4972 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
4973 return FALSE;
4974
4975 if (elf_hash_table (info)->dynamic_sections_created)
4976 {
4977 bfd_size_type dynsymcount;
4978 asection *s;
4979 size_t bucketcount = 0;
4980 size_t hash_entry_size;
4981 unsigned int dtagcount;
4982
4983 /* Set up the version definition section. */
4984 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
4985 BFD_ASSERT (s != NULL);
4986
4987 /* We may have created additional version definitions if we are
4988 just linking a regular application. */
4989 verdefs = asvinfo.verdefs;
4990
4991 /* Skip anonymous version tag. */
4992 if (verdefs != NULL && verdefs->vernum == 0)
4993 verdefs = verdefs->next;
4994
4995 if (verdefs == NULL)
4996 _bfd_strip_section_from_output (info, s);
4997 else
4998 {
4999 unsigned int cdefs;
5000 bfd_size_type size;
5001 struct bfd_elf_version_tree *t;
5002 bfd_byte *p;
5003 Elf_Internal_Verdef def;
5004 Elf_Internal_Verdaux defaux;
5005
5006 cdefs = 0;
5007 size = 0;
5008
5009 /* Make space for the base version. */
5010 size += sizeof (Elf_External_Verdef);
5011 size += sizeof (Elf_External_Verdaux);
5012 ++cdefs;
5013
5014 for (t = verdefs; t != NULL; t = t->next)
5015 {
5016 struct bfd_elf_version_deps *n;
5017
5018 size += sizeof (Elf_External_Verdef);
5019 size += sizeof (Elf_External_Verdaux);
5020 ++cdefs;
5021
5022 for (n = t->deps; n != NULL; n = n->next)
5023 size += sizeof (Elf_External_Verdaux);
5024 }
5025
5026 s->size = size;
5027 s->contents = bfd_alloc (output_bfd, s->size);
5028 if (s->contents == NULL && s->size != 0)
5029 return FALSE;
5030
5031 /* Fill in the version definition section. */
5032
5033 p = s->contents;
5034
5035 def.vd_version = VER_DEF_CURRENT;
5036 def.vd_flags = VER_FLG_BASE;
5037 def.vd_ndx = 1;
5038 def.vd_cnt = 1;
5039 def.vd_aux = sizeof (Elf_External_Verdef);
5040 def.vd_next = (sizeof (Elf_External_Verdef)
5041 + sizeof (Elf_External_Verdaux));
5042
5043 if (soname_indx != (bfd_size_type) -1)
5044 {
5045 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5046 soname_indx);
5047 def.vd_hash = bfd_elf_hash (soname);
5048 defaux.vda_name = soname_indx;
5049 }
5050 else
5051 {
5052 const char *name;
5053 bfd_size_type indx;
5054
5055 name = basename (output_bfd->filename);
5056 def.vd_hash = bfd_elf_hash (name);
5057 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5058 name, FALSE);
5059 if (indx == (bfd_size_type) -1)
5060 return FALSE;
5061 defaux.vda_name = indx;
5062 }
5063 defaux.vda_next = 0;
5064
5065 _bfd_elf_swap_verdef_out (output_bfd, &def,
5066 (Elf_External_Verdef *) p);
5067 p += sizeof (Elf_External_Verdef);
5068 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5069 (Elf_External_Verdaux *) p);
5070 p += sizeof (Elf_External_Verdaux);
5071
5072 for (t = verdefs; t != NULL; t = t->next)
5073 {
5074 unsigned int cdeps;
5075 struct bfd_elf_version_deps *n;
5076 struct elf_link_hash_entry *h;
5077 struct bfd_link_hash_entry *bh;
5078
5079 cdeps = 0;
5080 for (n = t->deps; n != NULL; n = n->next)
5081 ++cdeps;
5082
5083 /* Add a symbol representing this version. */
5084 bh = NULL;
5085 if (! (_bfd_generic_link_add_one_symbol
5086 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
5087 0, NULL, FALSE,
5088 get_elf_backend_data (dynobj)->collect, &bh)))
5089 return FALSE;
5090 h = (struct elf_link_hash_entry *) bh;
5091 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
5092 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
5093 h->type = STT_OBJECT;
5094 h->verinfo.vertree = t;
5095
5096 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5097 return FALSE;
5098
5099 def.vd_version = VER_DEF_CURRENT;
5100 def.vd_flags = 0;
5101 if (t->globals.list == NULL
5102 && t->locals.list == NULL
5103 && ! t->used)
5104 def.vd_flags |= VER_FLG_WEAK;
5105 def.vd_ndx = t->vernum + 1;
5106 def.vd_cnt = cdeps + 1;
5107 def.vd_hash = bfd_elf_hash (t->name);
5108 def.vd_aux = sizeof (Elf_External_Verdef);
5109 def.vd_next = 0;
5110 if (t->next != NULL)
5111 def.vd_next = (sizeof (Elf_External_Verdef)
5112 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
5113
5114 _bfd_elf_swap_verdef_out (output_bfd, &def,
5115 (Elf_External_Verdef *) p);
5116 p += sizeof (Elf_External_Verdef);
5117
5118 defaux.vda_name = h->dynstr_index;
5119 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5120 h->dynstr_index);
5121 defaux.vda_next = 0;
5122 if (t->deps != NULL)
5123 defaux.vda_next = sizeof (Elf_External_Verdaux);
5124 t->name_indx = defaux.vda_name;
5125
5126 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5127 (Elf_External_Verdaux *) p);
5128 p += sizeof (Elf_External_Verdaux);
5129
5130 for (n = t->deps; n != NULL; n = n->next)
5131 {
5132 if (n->version_needed == NULL)
5133 {
5134 /* This can happen if there was an error in the
5135 version script. */
5136 defaux.vda_name = 0;
5137 }
5138 else
5139 {
5140 defaux.vda_name = n->version_needed->name_indx;
5141 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5142 defaux.vda_name);
5143 }
5144 if (n->next == NULL)
5145 defaux.vda_next = 0;
5146 else
5147 defaux.vda_next = sizeof (Elf_External_Verdaux);
5148
5149 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5150 (Elf_External_Verdaux *) p);
5151 p += sizeof (Elf_External_Verdaux);
5152 }
5153 }
5154
5155 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
5156 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
5157 return FALSE;
5158
5159 elf_tdata (output_bfd)->cverdefs = cdefs;
5160 }
5161
5162 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
5163 {
5164 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
5165 return FALSE;
5166 }
5167 else if (info->flags & DF_BIND_NOW)
5168 {
5169 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
5170 return FALSE;
5171 }
5172
5173 if (info->flags_1)
5174 {
5175 if (info->executable)
5176 info->flags_1 &= ~ (DF_1_INITFIRST
5177 | DF_1_NODELETE
5178 | DF_1_NOOPEN);
5179 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
5180 return FALSE;
5181 }
5182
5183 /* Work out the size of the version reference section. */
5184
5185 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
5186 BFD_ASSERT (s != NULL);
5187 {
5188 struct elf_find_verdep_info sinfo;
5189
5190 sinfo.output_bfd = output_bfd;
5191 sinfo.info = info;
5192 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
5193 if (sinfo.vers == 0)
5194 sinfo.vers = 1;
5195 sinfo.failed = FALSE;
5196
5197 elf_link_hash_traverse (elf_hash_table (info),
5198 _bfd_elf_link_find_version_dependencies,
5199 &sinfo);
5200
5201 if (elf_tdata (output_bfd)->verref == NULL)
5202 _bfd_strip_section_from_output (info, s);
5203 else
5204 {
5205 Elf_Internal_Verneed *t;
5206 unsigned int size;
5207 unsigned int crefs;
5208 bfd_byte *p;
5209
5210 /* Build the version definition section. */
5211 size = 0;
5212 crefs = 0;
5213 for (t = elf_tdata (output_bfd)->verref;
5214 t != NULL;
5215 t = t->vn_nextref)
5216 {
5217 Elf_Internal_Vernaux *a;
5218
5219 size += sizeof (Elf_External_Verneed);
5220 ++crefs;
5221 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5222 size += sizeof (Elf_External_Vernaux);
5223 }
5224
5225 s->size = size;
5226 s->contents = bfd_alloc (output_bfd, s->size);
5227 if (s->contents == NULL)
5228 return FALSE;
5229
5230 p = s->contents;
5231 for (t = elf_tdata (output_bfd)->verref;
5232 t != NULL;
5233 t = t->vn_nextref)
5234 {
5235 unsigned int caux;
5236 Elf_Internal_Vernaux *a;
5237 bfd_size_type indx;
5238
5239 caux = 0;
5240 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5241 ++caux;
5242
5243 t->vn_version = VER_NEED_CURRENT;
5244 t->vn_cnt = caux;
5245 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5246 elf_dt_name (t->vn_bfd) != NULL
5247 ? elf_dt_name (t->vn_bfd)
5248 : basename (t->vn_bfd->filename),
5249 FALSE);
5250 if (indx == (bfd_size_type) -1)
5251 return FALSE;
5252 t->vn_file = indx;
5253 t->vn_aux = sizeof (Elf_External_Verneed);
5254 if (t->vn_nextref == NULL)
5255 t->vn_next = 0;
5256 else
5257 t->vn_next = (sizeof (Elf_External_Verneed)
5258 + caux * sizeof (Elf_External_Vernaux));
5259
5260 _bfd_elf_swap_verneed_out (output_bfd, t,
5261 (Elf_External_Verneed *) p);
5262 p += sizeof (Elf_External_Verneed);
5263
5264 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5265 {
5266 a->vna_hash = bfd_elf_hash (a->vna_nodename);
5267 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5268 a->vna_nodename, FALSE);
5269 if (indx == (bfd_size_type) -1)
5270 return FALSE;
5271 a->vna_name = indx;
5272 if (a->vna_nextptr == NULL)
5273 a->vna_next = 0;
5274 else
5275 a->vna_next = sizeof (Elf_External_Vernaux);
5276
5277 _bfd_elf_swap_vernaux_out (output_bfd, a,
5278 (Elf_External_Vernaux *) p);
5279 p += sizeof (Elf_External_Vernaux);
5280 }
5281 }
5282
5283 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
5284 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
5285 return FALSE;
5286
5287 elf_tdata (output_bfd)->cverrefs = crefs;
5288 }
5289 }
5290
5291 /* Assign dynsym indicies. In a shared library we generate a
5292 section symbol for each output section, which come first.
5293 Next come all of the back-end allocated local dynamic syms,
5294 followed by the rest of the global symbols. */
5295
5296 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
5297
5298 /* Work out the size of the symbol version section. */
5299 s = bfd_get_section_by_name (dynobj, ".gnu.version");
5300 BFD_ASSERT (s != NULL);
5301 if (dynsymcount == 0
5302 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
5303 {
5304 _bfd_strip_section_from_output (info, s);
5305 /* The DYNSYMCOUNT might have changed if we were going to
5306 output a dynamic symbol table entry for S. */
5307 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
5308 }
5309 else
5310 {
5311 s->size = dynsymcount * sizeof (Elf_External_Versym);
5312 s->contents = bfd_zalloc (output_bfd, s->size);
5313 if (s->contents == NULL)
5314 return FALSE;
5315
5316 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
5317 return FALSE;
5318 }
5319
5320 /* Set the size of the .dynsym and .hash sections. We counted
5321 the number of dynamic symbols in elf_link_add_object_symbols.
5322 We will build the contents of .dynsym and .hash when we build
5323 the final symbol table, because until then we do not know the
5324 correct value to give the symbols. We built the .dynstr
5325 section as we went along in elf_link_add_object_symbols. */
5326 s = bfd_get_section_by_name (dynobj, ".dynsym");
5327 BFD_ASSERT (s != NULL);
5328 s->size = dynsymcount * bed->s->sizeof_sym;
5329 s->contents = bfd_alloc (output_bfd, s->size);
5330 if (s->contents == NULL && s->size != 0)
5331 return FALSE;
5332
5333 if (dynsymcount != 0)
5334 {
5335 Elf_Internal_Sym isym;
5336
5337 /* The first entry in .dynsym is a dummy symbol. */
5338 isym.st_value = 0;
5339 isym.st_size = 0;
5340 isym.st_name = 0;
5341 isym.st_info = 0;
5342 isym.st_other = 0;
5343 isym.st_shndx = 0;
5344 bed->s->swap_symbol_out (output_bfd, &isym, s->contents, 0);
5345 }
5346
5347 /* Compute the size of the hashing table. As a side effect this
5348 computes the hash values for all the names we export. */
5349 bucketcount = compute_bucket_count (info);
5350
5351 s = bfd_get_section_by_name (dynobj, ".hash");
5352 BFD_ASSERT (s != NULL);
5353 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
5354 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
5355 s->contents = bfd_zalloc (output_bfd, s->size);
5356 if (s->contents == NULL)
5357 return FALSE;
5358
5359 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
5360 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
5361 s->contents + hash_entry_size);
5362
5363 elf_hash_table (info)->bucketcount = bucketcount;
5364
5365 s = bfd_get_section_by_name (dynobj, ".dynstr");
5366 BFD_ASSERT (s != NULL);
5367
5368 elf_finalize_dynstr (output_bfd, info);
5369
5370 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5371
5372 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
5373 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
5374 return FALSE;
5375 }
5376
5377 return TRUE;
5378 }
5379
5380 /* Final phase of ELF linker. */
5381
5382 /* A structure we use to avoid passing large numbers of arguments. */
5383
5384 struct elf_final_link_info
5385 {
5386 /* General link information. */
5387 struct bfd_link_info *info;
5388 /* Output BFD. */
5389 bfd *output_bfd;
5390 /* Symbol string table. */
5391 struct bfd_strtab_hash *symstrtab;
5392 /* .dynsym section. */
5393 asection *dynsym_sec;
5394 /* .hash section. */
5395 asection *hash_sec;
5396 /* symbol version section (.gnu.version). */
5397 asection *symver_sec;
5398 /* Buffer large enough to hold contents of any section. */
5399 bfd_byte *contents;
5400 /* Buffer large enough to hold external relocs of any section. */
5401 void *external_relocs;
5402 /* Buffer large enough to hold internal relocs of any section. */
5403 Elf_Internal_Rela *internal_relocs;
5404 /* Buffer large enough to hold external local symbols of any input
5405 BFD. */
5406 bfd_byte *external_syms;
5407 /* And a buffer for symbol section indices. */
5408 Elf_External_Sym_Shndx *locsym_shndx;
5409 /* Buffer large enough to hold internal local symbols of any input
5410 BFD. */
5411 Elf_Internal_Sym *internal_syms;
5412 /* Array large enough to hold a symbol index for each local symbol
5413 of any input BFD. */
5414 long *indices;
5415 /* Array large enough to hold a section pointer for each local
5416 symbol of any input BFD. */
5417 asection **sections;
5418 /* Buffer to hold swapped out symbols. */
5419 bfd_byte *symbuf;
5420 /* And one for symbol section indices. */
5421 Elf_External_Sym_Shndx *symshndxbuf;
5422 /* Number of swapped out symbols in buffer. */
5423 size_t symbuf_count;
5424 /* Number of symbols which fit in symbuf. */
5425 size_t symbuf_size;
5426 /* And same for symshndxbuf. */
5427 size_t shndxbuf_size;
5428 };
5429
5430 /* This struct is used to pass information to elf_link_output_extsym. */
5431
5432 struct elf_outext_info
5433 {
5434 bfd_boolean failed;
5435 bfd_boolean localsyms;
5436 struct elf_final_link_info *finfo;
5437 };
5438
5439 /* When performing a relocatable link, the input relocations are
5440 preserved. But, if they reference global symbols, the indices
5441 referenced must be updated. Update all the relocations in
5442 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
5443
5444 static void
5445 elf_link_adjust_relocs (bfd *abfd,
5446 Elf_Internal_Shdr *rel_hdr,
5447 unsigned int count,
5448 struct elf_link_hash_entry **rel_hash)
5449 {
5450 unsigned int i;
5451 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5452 bfd_byte *erela;
5453 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
5454 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
5455 bfd_vma r_type_mask;
5456 int r_sym_shift;
5457
5458 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
5459 {
5460 swap_in = bed->s->swap_reloc_in;
5461 swap_out = bed->s->swap_reloc_out;
5462 }
5463 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
5464 {
5465 swap_in = bed->s->swap_reloca_in;
5466 swap_out = bed->s->swap_reloca_out;
5467 }
5468 else
5469 abort ();
5470
5471 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
5472 abort ();
5473
5474 if (bed->s->arch_size == 32)
5475 {
5476 r_type_mask = 0xff;
5477 r_sym_shift = 8;
5478 }
5479 else
5480 {
5481 r_type_mask = 0xffffffff;
5482 r_sym_shift = 32;
5483 }
5484
5485 erela = rel_hdr->contents;
5486 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
5487 {
5488 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
5489 unsigned int j;
5490
5491 if (*rel_hash == NULL)
5492 continue;
5493
5494 BFD_ASSERT ((*rel_hash)->indx >= 0);
5495
5496 (*swap_in) (abfd, erela, irela);
5497 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
5498 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
5499 | (irela[j].r_info & r_type_mask));
5500 (*swap_out) (abfd, irela, erela);
5501 }
5502 }
5503
5504 struct elf_link_sort_rela
5505 {
5506 union {
5507 bfd_vma offset;
5508 bfd_vma sym_mask;
5509 } u;
5510 enum elf_reloc_type_class type;
5511 /* We use this as an array of size int_rels_per_ext_rel. */
5512 Elf_Internal_Rela rela[1];
5513 };
5514
5515 static int
5516 elf_link_sort_cmp1 (const void *A, const void *B)
5517 {
5518 const struct elf_link_sort_rela *a = A;
5519 const struct elf_link_sort_rela *b = B;
5520 int relativea, relativeb;
5521
5522 relativea = a->type == reloc_class_relative;
5523 relativeb = b->type == reloc_class_relative;
5524
5525 if (relativea < relativeb)
5526 return 1;
5527 if (relativea > relativeb)
5528 return -1;
5529 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
5530 return -1;
5531 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
5532 return 1;
5533 if (a->rela->r_offset < b->rela->r_offset)
5534 return -1;
5535 if (a->rela->r_offset > b->rela->r_offset)
5536 return 1;
5537 return 0;
5538 }
5539
5540 static int
5541 elf_link_sort_cmp2 (const void *A, const void *B)
5542 {
5543 const struct elf_link_sort_rela *a = A;
5544 const struct elf_link_sort_rela *b = B;
5545 int copya, copyb;
5546
5547 if (a->u.offset < b->u.offset)
5548 return -1;
5549 if (a->u.offset > b->u.offset)
5550 return 1;
5551 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
5552 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
5553 if (copya < copyb)
5554 return -1;
5555 if (copya > copyb)
5556 return 1;
5557 if (a->rela->r_offset < b->rela->r_offset)
5558 return -1;
5559 if (a->rela->r_offset > b->rela->r_offset)
5560 return 1;
5561 return 0;
5562 }
5563
5564 static size_t
5565 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
5566 {
5567 asection *reldyn;
5568 bfd_size_type count, size;
5569 size_t i, ret, sort_elt, ext_size;
5570 bfd_byte *sort, *s_non_relative, *p;
5571 struct elf_link_sort_rela *sq;
5572 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5573 int i2e = bed->s->int_rels_per_ext_rel;
5574 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
5575 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
5576 struct bfd_link_order *lo;
5577 bfd_vma r_sym_mask;
5578
5579 reldyn = bfd_get_section_by_name (abfd, ".rela.dyn");
5580 if (reldyn == NULL || reldyn->size == 0)
5581 {
5582 reldyn = bfd_get_section_by_name (abfd, ".rel.dyn");
5583 if (reldyn == NULL || reldyn->size == 0)
5584 return 0;
5585 ext_size = bed->s->sizeof_rel;
5586 swap_in = bed->s->swap_reloc_in;
5587 swap_out = bed->s->swap_reloc_out;
5588 }
5589 else
5590 {
5591 ext_size = bed->s->sizeof_rela;
5592 swap_in = bed->s->swap_reloca_in;
5593 swap_out = bed->s->swap_reloca_out;
5594 }
5595 count = reldyn->size / ext_size;
5596
5597 size = 0;
5598 for (lo = reldyn->link_order_head; lo != NULL; lo = lo->next)
5599 if (lo->type == bfd_indirect_link_order)
5600 {
5601 asection *o = lo->u.indirect.section;
5602 size += o->size;
5603 }
5604
5605 if (size != reldyn->size)
5606 return 0;
5607
5608 sort_elt = (sizeof (struct elf_link_sort_rela)
5609 + (i2e - 1) * sizeof (Elf_Internal_Rela));
5610 sort = bfd_zmalloc (sort_elt * count);
5611 if (sort == NULL)
5612 {
5613 (*info->callbacks->warning)
5614 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
5615 return 0;
5616 }
5617
5618 if (bed->s->arch_size == 32)
5619 r_sym_mask = ~(bfd_vma) 0xff;
5620 else
5621 r_sym_mask = ~(bfd_vma) 0xffffffff;
5622
5623 for (lo = reldyn->link_order_head; lo != NULL; lo = lo->next)
5624 if (lo->type == bfd_indirect_link_order)
5625 {
5626 bfd_byte *erel, *erelend;
5627 asection *o = lo->u.indirect.section;
5628
5629 erel = o->contents;
5630 erelend = o->contents + o->size;
5631 p = sort + o->output_offset / ext_size * sort_elt;
5632 while (erel < erelend)
5633 {
5634 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
5635 (*swap_in) (abfd, erel, s->rela);
5636 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
5637 s->u.sym_mask = r_sym_mask;
5638 p += sort_elt;
5639 erel += ext_size;
5640 }
5641 }
5642
5643 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
5644
5645 for (i = 0, p = sort; i < count; i++, p += sort_elt)
5646 {
5647 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
5648 if (s->type != reloc_class_relative)
5649 break;
5650 }
5651 ret = i;
5652 s_non_relative = p;
5653
5654 sq = (struct elf_link_sort_rela *) s_non_relative;
5655 for (; i < count; i++, p += sort_elt)
5656 {
5657 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
5658 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
5659 sq = sp;
5660 sp->u.offset = sq->rela->r_offset;
5661 }
5662
5663 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
5664
5665 for (lo = reldyn->link_order_head; lo != NULL; lo = lo->next)
5666 if (lo->type == bfd_indirect_link_order)
5667 {
5668 bfd_byte *erel, *erelend;
5669 asection *o = lo->u.indirect.section;
5670
5671 erel = o->contents;
5672 erelend = o->contents + o->size;
5673 p = sort + o->output_offset / ext_size * sort_elt;
5674 while (erel < erelend)
5675 {
5676 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
5677 (*swap_out) (abfd, s->rela, erel);
5678 p += sort_elt;
5679 erel += ext_size;
5680 }
5681 }
5682
5683 free (sort);
5684 *psec = reldyn;
5685 return ret;
5686 }
5687
5688 /* Flush the output symbols to the file. */
5689
5690 static bfd_boolean
5691 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
5692 const struct elf_backend_data *bed)
5693 {
5694 if (finfo->symbuf_count > 0)
5695 {
5696 Elf_Internal_Shdr *hdr;
5697 file_ptr pos;
5698 bfd_size_type amt;
5699
5700 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
5701 pos = hdr->sh_offset + hdr->sh_size;
5702 amt = finfo->symbuf_count * bed->s->sizeof_sym;
5703 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
5704 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
5705 return FALSE;
5706
5707 hdr->sh_size += amt;
5708 finfo->symbuf_count = 0;
5709 }
5710
5711 return TRUE;
5712 }
5713
5714 /* Add a symbol to the output symbol table. */
5715
5716 static bfd_boolean
5717 elf_link_output_sym (struct elf_final_link_info *finfo,
5718 const char *name,
5719 Elf_Internal_Sym *elfsym,
5720 asection *input_sec,
5721 struct elf_link_hash_entry *h)
5722 {
5723 bfd_byte *dest;
5724 Elf_External_Sym_Shndx *destshndx;
5725 bfd_boolean (*output_symbol_hook)
5726 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
5727 struct elf_link_hash_entry *);
5728 const struct elf_backend_data *bed;
5729
5730 bed = get_elf_backend_data (finfo->output_bfd);
5731 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
5732 if (output_symbol_hook != NULL)
5733 {
5734 if (! (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h))
5735 return FALSE;
5736 }
5737
5738 if (name == NULL || *name == '\0')
5739 elfsym->st_name = 0;
5740 else if (input_sec->flags & SEC_EXCLUDE)
5741 elfsym->st_name = 0;
5742 else
5743 {
5744 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
5745 name, TRUE, FALSE);
5746 if (elfsym->st_name == (unsigned long) -1)
5747 return FALSE;
5748 }
5749
5750 if (finfo->symbuf_count >= finfo->symbuf_size)
5751 {
5752 if (! elf_link_flush_output_syms (finfo, bed))
5753 return FALSE;
5754 }
5755
5756 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
5757 destshndx = finfo->symshndxbuf;
5758 if (destshndx != NULL)
5759 {
5760 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
5761 {
5762 bfd_size_type amt;
5763
5764 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
5765 finfo->symshndxbuf = destshndx = bfd_realloc (destshndx, amt * 2);
5766 if (destshndx == NULL)
5767 return FALSE;
5768 memset ((char *) destshndx + amt, 0, amt);
5769 finfo->shndxbuf_size *= 2;
5770 }
5771 destshndx += bfd_get_symcount (finfo->output_bfd);
5772 }
5773
5774 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
5775 finfo->symbuf_count += 1;
5776 bfd_get_symcount (finfo->output_bfd) += 1;
5777
5778 return TRUE;
5779 }
5780
5781 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
5782 allowing an unsatisfied unversioned symbol in the DSO to match a
5783 versioned symbol that would normally require an explicit version.
5784 We also handle the case that a DSO references a hidden symbol
5785 which may be satisfied by a versioned symbol in another DSO. */
5786
5787 static bfd_boolean
5788 elf_link_check_versioned_symbol (struct bfd_link_info *info,
5789 const struct elf_backend_data *bed,
5790 struct elf_link_hash_entry *h)
5791 {
5792 bfd *abfd;
5793 struct elf_link_loaded_list *loaded;
5794
5795 if (!is_elf_hash_table (info->hash))
5796 return FALSE;
5797
5798 switch (h->root.type)
5799 {
5800 default:
5801 abfd = NULL;
5802 break;
5803
5804 case bfd_link_hash_undefined:
5805 case bfd_link_hash_undefweak:
5806 abfd = h->root.u.undef.abfd;
5807 if ((abfd->flags & DYNAMIC) == 0
5808 || elf_dyn_lib_class (abfd) != DYN_DT_NEEDED)
5809 return FALSE;
5810 break;
5811
5812 case bfd_link_hash_defined:
5813 case bfd_link_hash_defweak:
5814 abfd = h->root.u.def.section->owner;
5815 break;
5816
5817 case bfd_link_hash_common:
5818 abfd = h->root.u.c.p->section->owner;
5819 break;
5820 }
5821 BFD_ASSERT (abfd != NULL);
5822
5823 for (loaded = elf_hash_table (info)->loaded;
5824 loaded != NULL;
5825 loaded = loaded->next)
5826 {
5827 bfd *input;
5828 Elf_Internal_Shdr *hdr;
5829 bfd_size_type symcount;
5830 bfd_size_type extsymcount;
5831 bfd_size_type extsymoff;
5832 Elf_Internal_Shdr *versymhdr;
5833 Elf_Internal_Sym *isym;
5834 Elf_Internal_Sym *isymend;
5835 Elf_Internal_Sym *isymbuf;
5836 Elf_External_Versym *ever;
5837 Elf_External_Versym *extversym;
5838
5839 input = loaded->abfd;
5840
5841 /* We check each DSO for a possible hidden versioned definition. */
5842 if (input == abfd
5843 || (input->flags & DYNAMIC) == 0
5844 || elf_dynversym (input) == 0)
5845 continue;
5846
5847 hdr = &elf_tdata (input)->dynsymtab_hdr;
5848
5849 symcount = hdr->sh_size / bed->s->sizeof_sym;
5850 if (elf_bad_symtab (input))
5851 {
5852 extsymcount = symcount;
5853 extsymoff = 0;
5854 }
5855 else
5856 {
5857 extsymcount = symcount - hdr->sh_info;
5858 extsymoff = hdr->sh_info;
5859 }
5860
5861 if (extsymcount == 0)
5862 continue;
5863
5864 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
5865 NULL, NULL, NULL);
5866 if (isymbuf == NULL)
5867 return FALSE;
5868
5869 /* Read in any version definitions. */
5870 versymhdr = &elf_tdata (input)->dynversym_hdr;
5871 extversym = bfd_malloc (versymhdr->sh_size);
5872 if (extversym == NULL)
5873 goto error_ret;
5874
5875 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
5876 || (bfd_bread (extversym, versymhdr->sh_size, input)
5877 != versymhdr->sh_size))
5878 {
5879 free (extversym);
5880 error_ret:
5881 free (isymbuf);
5882 return FALSE;
5883 }
5884
5885 ever = extversym + extsymoff;
5886 isymend = isymbuf + extsymcount;
5887 for (isym = isymbuf; isym < isymend; isym++, ever++)
5888 {
5889 const char *name;
5890 Elf_Internal_Versym iver;
5891 unsigned short version_index;
5892
5893 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
5894 || isym->st_shndx == SHN_UNDEF)
5895 continue;
5896
5897 name = bfd_elf_string_from_elf_section (input,
5898 hdr->sh_link,
5899 isym->st_name);
5900 if (strcmp (name, h->root.root.string) != 0)
5901 continue;
5902
5903 _bfd_elf_swap_versym_in (input, ever, &iver);
5904
5905 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
5906 {
5907 /* If we have a non-hidden versioned sym, then it should
5908 have provided a definition for the undefined sym. */
5909 abort ();
5910 }
5911
5912 version_index = iver.vs_vers & VERSYM_VERSION;
5913 if (version_index == 1 || version_index == 2)
5914 {
5915 /* This is the base or first version. We can use it. */
5916 free (extversym);
5917 free (isymbuf);
5918 return TRUE;
5919 }
5920 }
5921
5922 free (extversym);
5923 free (isymbuf);
5924 }
5925
5926 return FALSE;
5927 }
5928
5929 /* Add an external symbol to the symbol table. This is called from
5930 the hash table traversal routine. When generating a shared object,
5931 we go through the symbol table twice. The first time we output
5932 anything that might have been forced to local scope in a version
5933 script. The second time we output the symbols that are still
5934 global symbols. */
5935
5936 static bfd_boolean
5937 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
5938 {
5939 struct elf_outext_info *eoinfo = data;
5940 struct elf_final_link_info *finfo = eoinfo->finfo;
5941 bfd_boolean strip;
5942 Elf_Internal_Sym sym;
5943 asection *input_sec;
5944 const struct elf_backend_data *bed;
5945
5946 if (h->root.type == bfd_link_hash_warning)
5947 {
5948 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5949 if (h->root.type == bfd_link_hash_new)
5950 return TRUE;
5951 }
5952
5953 /* Decide whether to output this symbol in this pass. */
5954 if (eoinfo->localsyms)
5955 {
5956 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
5957 return TRUE;
5958 }
5959 else
5960 {
5961 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5962 return TRUE;
5963 }
5964
5965 bed = get_elf_backend_data (finfo->output_bfd);
5966
5967 /* If we have an undefined symbol reference here then it must have
5968 come from a shared library that is being linked in. (Undefined
5969 references in regular files have already been handled). If we
5970 are reporting errors for this situation then do so now. */
5971 if (h->root.type == bfd_link_hash_undefined
5972 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
5973 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
5974 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
5975 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
5976 {
5977 if (! ((*finfo->info->callbacks->undefined_symbol)
5978 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
5979 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
5980 {
5981 eoinfo->failed = TRUE;
5982 return FALSE;
5983 }
5984 }
5985
5986 /* We should also warn if a forced local symbol is referenced from
5987 shared libraries. */
5988 if (! finfo->info->relocatable
5989 && (! finfo->info->shared)
5990 && (h->elf_link_hash_flags
5991 & (ELF_LINK_FORCED_LOCAL | ELF_LINK_HASH_REF_DYNAMIC | ELF_LINK_DYNAMIC_DEF | ELF_LINK_DYNAMIC_WEAK))
5992 == (ELF_LINK_FORCED_LOCAL | ELF_LINK_HASH_REF_DYNAMIC)
5993 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
5994 {
5995 (*_bfd_error_handler)
5996 (_("%s: %s symbol `%s' in %s is referenced by DSO"),
5997 bfd_get_filename (finfo->output_bfd),
5998 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
5999 ? "internal"
6000 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
6001 ? "hidden" : "local",
6002 h->root.root.string,
6003 bfd_archive_filename (h->root.u.def.section->owner));
6004 eoinfo->failed = TRUE;
6005 return FALSE;
6006 }
6007
6008 /* We don't want to output symbols that have never been mentioned by
6009 a regular file, or that we have been told to strip. However, if
6010 h->indx is set to -2, the symbol is used by a reloc and we must
6011 output it. */
6012 if (h->indx == -2)
6013 strip = FALSE;
6014 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
6015 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
6016 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
6017 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
6018 strip = TRUE;
6019 else if (finfo->info->strip == strip_all)
6020 strip = TRUE;
6021 else if (finfo->info->strip == strip_some
6022 && bfd_hash_lookup (finfo->info->keep_hash,
6023 h->root.root.string, FALSE, FALSE) == NULL)
6024 strip = TRUE;
6025 else if (finfo->info->strip_discarded
6026 && (h->root.type == bfd_link_hash_defined
6027 || h->root.type == bfd_link_hash_defweak)
6028 && elf_discarded_section (h->root.u.def.section))
6029 strip = TRUE;
6030 else
6031 strip = FALSE;
6032
6033 /* If we're stripping it, and it's not a dynamic symbol, there's
6034 nothing else to do unless it is a forced local symbol. */
6035 if (strip
6036 && h->dynindx == -1
6037 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
6038 return TRUE;
6039
6040 sym.st_value = 0;
6041 sym.st_size = h->size;
6042 sym.st_other = h->other;
6043 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
6044 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
6045 else if (h->root.type == bfd_link_hash_undefweak
6046 || h->root.type == bfd_link_hash_defweak)
6047 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
6048 else
6049 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
6050
6051 switch (h->root.type)
6052 {
6053 default:
6054 case bfd_link_hash_new:
6055 case bfd_link_hash_warning:
6056 abort ();
6057 return FALSE;
6058
6059 case bfd_link_hash_undefined:
6060 case bfd_link_hash_undefweak:
6061 input_sec = bfd_und_section_ptr;
6062 sym.st_shndx = SHN_UNDEF;
6063 break;
6064
6065 case bfd_link_hash_defined:
6066 case bfd_link_hash_defweak:
6067 {
6068 input_sec = h->root.u.def.section;
6069 if (input_sec->output_section != NULL)
6070 {
6071 sym.st_shndx =
6072 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
6073 input_sec->output_section);
6074 if (sym.st_shndx == SHN_BAD)
6075 {
6076 (*_bfd_error_handler)
6077 (_("%s: could not find output section %s for input section %s"),
6078 bfd_get_filename (finfo->output_bfd),
6079 input_sec->output_section->name,
6080 input_sec->name);
6081 eoinfo->failed = TRUE;
6082 return FALSE;
6083 }
6084
6085 /* ELF symbols in relocatable files are section relative,
6086 but in nonrelocatable files they are virtual
6087 addresses. */
6088 sym.st_value = h->root.u.def.value + input_sec->output_offset;
6089 if (! finfo->info->relocatable)
6090 {
6091 sym.st_value += input_sec->output_section->vma;
6092 if (h->type == STT_TLS)
6093 {
6094 /* STT_TLS symbols are relative to PT_TLS segment
6095 base. */
6096 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
6097 sym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
6098 }
6099 }
6100 }
6101 else
6102 {
6103 BFD_ASSERT (input_sec->owner == NULL
6104 || (input_sec->owner->flags & DYNAMIC) != 0);
6105 sym.st_shndx = SHN_UNDEF;
6106 input_sec = bfd_und_section_ptr;
6107 }
6108 }
6109 break;
6110
6111 case bfd_link_hash_common:
6112 input_sec = h->root.u.c.p->section;
6113 sym.st_shndx = SHN_COMMON;
6114 sym.st_value = 1 << h->root.u.c.p->alignment_power;
6115 break;
6116
6117 case bfd_link_hash_indirect:
6118 /* These symbols are created by symbol versioning. They point
6119 to the decorated version of the name. For example, if the
6120 symbol foo@@GNU_1.2 is the default, which should be used when
6121 foo is used with no version, then we add an indirect symbol
6122 foo which points to foo@@GNU_1.2. We ignore these symbols,
6123 since the indirected symbol is already in the hash table. */
6124 return TRUE;
6125 }
6126
6127 /* Give the processor backend a chance to tweak the symbol value,
6128 and also to finish up anything that needs to be done for this
6129 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
6130 forced local syms when non-shared is due to a historical quirk. */
6131 if ((h->dynindx != -1
6132 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
6133 && ((finfo->info->shared
6134 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6135 || h->root.type != bfd_link_hash_undefweak))
6136 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
6137 && elf_hash_table (finfo->info)->dynamic_sections_created)
6138 {
6139 if (! ((*bed->elf_backend_finish_dynamic_symbol)
6140 (finfo->output_bfd, finfo->info, h, &sym)))
6141 {
6142 eoinfo->failed = TRUE;
6143 return FALSE;
6144 }
6145 }
6146
6147 /* If we are marking the symbol as undefined, and there are no
6148 non-weak references to this symbol from a regular object, then
6149 mark the symbol as weak undefined; if there are non-weak
6150 references, mark the symbol as strong. We can't do this earlier,
6151 because it might not be marked as undefined until the
6152 finish_dynamic_symbol routine gets through with it. */
6153 if (sym.st_shndx == SHN_UNDEF
6154 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
6155 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
6156 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
6157 {
6158 int bindtype;
6159
6160 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) != 0)
6161 bindtype = STB_GLOBAL;
6162 else
6163 bindtype = STB_WEAK;
6164 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
6165 }
6166
6167 /* If a non-weak symbol with non-default visibility is not defined
6168 locally, it is a fatal error. */
6169 if (! finfo->info->relocatable
6170 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
6171 && ELF_ST_BIND (sym.st_info) != STB_WEAK
6172 && h->root.type == bfd_link_hash_undefined
6173 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
6174 {
6175 (*_bfd_error_handler)
6176 (_("%s: %s symbol `%s' isn't defined"),
6177 bfd_get_filename (finfo->output_bfd),
6178 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
6179 ? "protected"
6180 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
6181 ? "internal" : "hidden",
6182 h->root.root.string);
6183 eoinfo->failed = TRUE;
6184 return FALSE;
6185 }
6186
6187 /* If this symbol should be put in the .dynsym section, then put it
6188 there now. We already know the symbol index. We also fill in
6189 the entry in the .hash section. */
6190 if (h->dynindx != -1
6191 && elf_hash_table (finfo->info)->dynamic_sections_created)
6192 {
6193 size_t bucketcount;
6194 size_t bucket;
6195 size_t hash_entry_size;
6196 bfd_byte *bucketpos;
6197 bfd_vma chain;
6198 bfd_byte *esym;
6199
6200 sym.st_name = h->dynstr_index;
6201 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
6202 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
6203
6204 bucketcount = elf_hash_table (finfo->info)->bucketcount;
6205 bucket = h->elf_hash_value % bucketcount;
6206 hash_entry_size
6207 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
6208 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
6209 + (bucket + 2) * hash_entry_size);
6210 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
6211 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
6212 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
6213 ((bfd_byte *) finfo->hash_sec->contents
6214 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
6215
6216 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
6217 {
6218 Elf_Internal_Versym iversym;
6219 Elf_External_Versym *eversym;
6220
6221 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
6222 {
6223 if (h->verinfo.verdef == NULL)
6224 iversym.vs_vers = 0;
6225 else
6226 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
6227 }
6228 else
6229 {
6230 if (h->verinfo.vertree == NULL)
6231 iversym.vs_vers = 1;
6232 else
6233 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
6234 }
6235
6236 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
6237 iversym.vs_vers |= VERSYM_HIDDEN;
6238
6239 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
6240 eversym += h->dynindx;
6241 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
6242 }
6243 }
6244
6245 /* If we're stripping it, then it was just a dynamic symbol, and
6246 there's nothing else to do. */
6247 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
6248 return TRUE;
6249
6250 h->indx = bfd_get_symcount (finfo->output_bfd);
6251
6252 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h))
6253 {
6254 eoinfo->failed = TRUE;
6255 return FALSE;
6256 }
6257
6258 return TRUE;
6259 }
6260
6261 /* Return TRUE if special handling is done for relocs in SEC against
6262 symbols defined in discarded sections. */
6263
6264 static bfd_boolean
6265 elf_section_ignore_discarded_relocs (asection *sec)
6266 {
6267 const struct elf_backend_data *bed;
6268
6269 switch (sec->sec_info_type)
6270 {
6271 case ELF_INFO_TYPE_STABS:
6272 case ELF_INFO_TYPE_EH_FRAME:
6273 return TRUE;
6274 default:
6275 break;
6276 }
6277
6278 bed = get_elf_backend_data (sec->owner);
6279 if (bed->elf_backend_ignore_discarded_relocs != NULL
6280 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
6281 return TRUE;
6282
6283 return FALSE;
6284 }
6285
6286 /* Return TRUE if we should complain about a reloc in SEC against a
6287 symbol defined in a discarded section. */
6288
6289 static bfd_boolean
6290 elf_section_complain_discarded (asection *sec)
6291 {
6292 if (strncmp (".stab", sec->name, 5) == 0
6293 && (!sec->name[5] ||
6294 (sec->name[5] == '.' && ISDIGIT (sec->name[6]))))
6295 return FALSE;
6296
6297 if (strcmp (".eh_frame", sec->name) == 0)
6298 return FALSE;
6299
6300 if (strcmp (".gcc_except_table", sec->name) == 0)
6301 return FALSE;
6302
6303 return TRUE;
6304 }
6305
6306 /* Link an input file into the linker output file. This function
6307 handles all the sections and relocations of the input file at once.
6308 This is so that we only have to read the local symbols once, and
6309 don't have to keep them in memory. */
6310
6311 static bfd_boolean
6312 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
6313 {
6314 bfd_boolean (*relocate_section)
6315 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
6316 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
6317 bfd *output_bfd;
6318 Elf_Internal_Shdr *symtab_hdr;
6319 size_t locsymcount;
6320 size_t extsymoff;
6321 Elf_Internal_Sym *isymbuf;
6322 Elf_Internal_Sym *isym;
6323 Elf_Internal_Sym *isymend;
6324 long *pindex;
6325 asection **ppsection;
6326 asection *o;
6327 const struct elf_backend_data *bed;
6328 bfd_boolean emit_relocs;
6329 struct elf_link_hash_entry **sym_hashes;
6330
6331 output_bfd = finfo->output_bfd;
6332 bed = get_elf_backend_data (output_bfd);
6333 relocate_section = bed->elf_backend_relocate_section;
6334
6335 /* If this is a dynamic object, we don't want to do anything here:
6336 we don't want the local symbols, and we don't want the section
6337 contents. */
6338 if ((input_bfd->flags & DYNAMIC) != 0)
6339 return TRUE;
6340
6341 emit_relocs = (finfo->info->relocatable
6342 || finfo->info->emitrelocations
6343 || bed->elf_backend_emit_relocs);
6344
6345 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6346 if (elf_bad_symtab (input_bfd))
6347 {
6348 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
6349 extsymoff = 0;
6350 }
6351 else
6352 {
6353 locsymcount = symtab_hdr->sh_info;
6354 extsymoff = symtab_hdr->sh_info;
6355 }
6356
6357 /* Read the local symbols. */
6358 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6359 if (isymbuf == NULL && locsymcount != 0)
6360 {
6361 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6362 finfo->internal_syms,
6363 finfo->external_syms,
6364 finfo->locsym_shndx);
6365 if (isymbuf == NULL)
6366 return FALSE;
6367 }
6368
6369 /* Find local symbol sections and adjust values of symbols in
6370 SEC_MERGE sections. Write out those local symbols we know are
6371 going into the output file. */
6372 isymend = isymbuf + locsymcount;
6373 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
6374 isym < isymend;
6375 isym++, pindex++, ppsection++)
6376 {
6377 asection *isec;
6378 const char *name;
6379 Elf_Internal_Sym osym;
6380
6381 *pindex = -1;
6382
6383 if (elf_bad_symtab (input_bfd))
6384 {
6385 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
6386 {
6387 *ppsection = NULL;
6388 continue;
6389 }
6390 }
6391
6392 if (isym->st_shndx == SHN_UNDEF)
6393 isec = bfd_und_section_ptr;
6394 else if (isym->st_shndx < SHN_LORESERVE
6395 || isym->st_shndx > SHN_HIRESERVE)
6396 {
6397 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
6398 if (isec
6399 && isec->sec_info_type == ELF_INFO_TYPE_MERGE
6400 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
6401 isym->st_value =
6402 _bfd_merged_section_offset (output_bfd, &isec,
6403 elf_section_data (isec)->sec_info,
6404 isym->st_value);
6405 }
6406 else if (isym->st_shndx == SHN_ABS)
6407 isec = bfd_abs_section_ptr;
6408 else if (isym->st_shndx == SHN_COMMON)
6409 isec = bfd_com_section_ptr;
6410 else
6411 {
6412 /* Who knows? */
6413 isec = NULL;
6414 }
6415
6416 *ppsection = isec;
6417
6418 /* Don't output the first, undefined, symbol. */
6419 if (ppsection == finfo->sections)
6420 continue;
6421
6422 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
6423 {
6424 /* We never output section symbols. Instead, we use the
6425 section symbol of the corresponding section in the output
6426 file. */
6427 continue;
6428 }
6429
6430 /* If we are stripping all symbols, we don't want to output this
6431 one. */
6432 if (finfo->info->strip == strip_all)
6433 continue;
6434
6435 /* If we are discarding all local symbols, we don't want to
6436 output this one. If we are generating a relocatable output
6437 file, then some of the local symbols may be required by
6438 relocs; we output them below as we discover that they are
6439 needed. */
6440 if (finfo->info->discard == discard_all)
6441 continue;
6442
6443 /* If this symbol is defined in a section which we are
6444 discarding, we don't need to keep it, but note that
6445 linker_mark is only reliable for sections that have contents.
6446 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
6447 as well as linker_mark. */
6448 if ((isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
6449 && isec != NULL
6450 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
6451 || (! finfo->info->relocatable
6452 && (isec->flags & SEC_EXCLUDE) != 0)))
6453 continue;
6454
6455 /* Get the name of the symbol. */
6456 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
6457 isym->st_name);
6458 if (name == NULL)
6459 return FALSE;
6460
6461 /* See if we are discarding symbols with this name. */
6462 if ((finfo->info->strip == strip_some
6463 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
6464 == NULL))
6465 || (((finfo->info->discard == discard_sec_merge
6466 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
6467 || finfo->info->discard == discard_l)
6468 && bfd_is_local_label_name (input_bfd, name)))
6469 continue;
6470
6471 /* If we get here, we are going to output this symbol. */
6472
6473 osym = *isym;
6474
6475 /* Adjust the section index for the output file. */
6476 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
6477 isec->output_section);
6478 if (osym.st_shndx == SHN_BAD)
6479 return FALSE;
6480
6481 *pindex = bfd_get_symcount (output_bfd);
6482
6483 /* ELF symbols in relocatable files are section relative, but
6484 in executable files they are virtual addresses. Note that
6485 this code assumes that all ELF sections have an associated
6486 BFD section with a reasonable value for output_offset; below
6487 we assume that they also have a reasonable value for
6488 output_section. Any special sections must be set up to meet
6489 these requirements. */
6490 osym.st_value += isec->output_offset;
6491 if (! finfo->info->relocatable)
6492 {
6493 osym.st_value += isec->output_section->vma;
6494 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
6495 {
6496 /* STT_TLS symbols are relative to PT_TLS segment base. */
6497 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
6498 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
6499 }
6500 }
6501
6502 if (! elf_link_output_sym (finfo, name, &osym, isec, NULL))
6503 return FALSE;
6504 }
6505
6506 /* Relocate the contents of each section. */
6507 sym_hashes = elf_sym_hashes (input_bfd);
6508 for (o = input_bfd->sections; o != NULL; o = o->next)
6509 {
6510 bfd_byte *contents;
6511
6512 if (! o->linker_mark)
6513 {
6514 /* This section was omitted from the link. */
6515 continue;
6516 }
6517
6518 if ((o->flags & SEC_HAS_CONTENTS) == 0
6519 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
6520 continue;
6521
6522 if ((o->flags & SEC_LINKER_CREATED) != 0)
6523 {
6524 /* Section was created by _bfd_elf_link_create_dynamic_sections
6525 or somesuch. */
6526 continue;
6527 }
6528
6529 /* Get the contents of the section. They have been cached by a
6530 relaxation routine. Note that o is a section in an input
6531 file, so the contents field will not have been set by any of
6532 the routines which work on output files. */
6533 if (elf_section_data (o)->this_hdr.contents != NULL)
6534 contents = elf_section_data (o)->this_hdr.contents;
6535 else
6536 {
6537 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
6538
6539 contents = finfo->contents;
6540 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
6541 return FALSE;
6542 }
6543
6544 if ((o->flags & SEC_RELOC) != 0)
6545 {
6546 Elf_Internal_Rela *internal_relocs;
6547 bfd_vma r_type_mask;
6548 int r_sym_shift;
6549
6550 /* Get the swapped relocs. */
6551 internal_relocs
6552 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
6553 finfo->internal_relocs, FALSE);
6554 if (internal_relocs == NULL
6555 && o->reloc_count > 0)
6556 return FALSE;
6557
6558 if (bed->s->arch_size == 32)
6559 {
6560 r_type_mask = 0xff;
6561 r_sym_shift = 8;
6562 }
6563 else
6564 {
6565 r_type_mask = 0xffffffff;
6566 r_sym_shift = 32;
6567 }
6568
6569 /* Run through the relocs looking for any against symbols
6570 from discarded sections and section symbols from
6571 removed link-once sections. Complain about relocs
6572 against discarded sections. Zero relocs against removed
6573 link-once sections. Preserve debug information as much
6574 as we can. */
6575 if (!elf_section_ignore_discarded_relocs (o))
6576 {
6577 Elf_Internal_Rela *rel, *relend;
6578 bfd_boolean complain = elf_section_complain_discarded (o);
6579
6580 rel = internal_relocs;
6581 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
6582 for ( ; rel < relend; rel++)
6583 {
6584 unsigned long r_symndx = rel->r_info >> r_sym_shift;
6585 asection **ps, *sec;
6586 struct elf_link_hash_entry *h = NULL;
6587 const char *sym_name;
6588
6589 if (r_symndx >= locsymcount
6590 || (elf_bad_symtab (input_bfd)
6591 && finfo->sections[r_symndx] == NULL))
6592 {
6593 h = sym_hashes[r_symndx - extsymoff];
6594 while (h->root.type == bfd_link_hash_indirect
6595 || h->root.type == bfd_link_hash_warning)
6596 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6597
6598 if (h->root.type != bfd_link_hash_defined
6599 && h->root.type != bfd_link_hash_defweak)
6600 continue;
6601
6602 ps = &h->root.u.def.section;
6603 sym_name = h->root.root.string;
6604 }
6605 else
6606 {
6607 Elf_Internal_Sym *sym = isymbuf + r_symndx;
6608 ps = &finfo->sections[r_symndx];
6609 sym_name = bfd_elf_local_sym_name (input_bfd, sym);
6610 }
6611
6612 /* Complain if the definition comes from a
6613 discarded section. */
6614 if ((sec = *ps) != NULL && elf_discarded_section (sec))
6615 {
6616 if ((o->flags & SEC_DEBUGGING) != 0)
6617 {
6618 BFD_ASSERT (r_symndx != 0);
6619
6620 /* Try to preserve debug information.
6621 FIXME: This is quite broken. Modifying
6622 the symbol here means we will be changing
6623 all uses of the symbol, not just those in
6624 debug sections. The only thing that makes
6625 this half reasonable is that debug sections
6626 tend to come after other sections. Of
6627 course, that doesn't help with globals.
6628 ??? All link-once sections of the same name
6629 ought to define the same set of symbols, so
6630 it would seem that globals ought to always
6631 be defined in the kept section. */
6632 if (sec->kept_section != NULL
6633 && sec->size == sec->kept_section->size)
6634 {
6635 *ps = sec->kept_section;
6636 continue;
6637 }
6638 }
6639 else if (complain)
6640 {
6641 finfo->info->callbacks->error_handler
6642 (LD_DEFINITION_IN_DISCARDED_SECTION,
6643 _("`%T' referenced in section `%s' of %B: "
6644 "defined in discarded section `%s' of %B\n"),
6645 sym_name,
6646 sym_name, o->name, input_bfd,
6647 sec->name, sec->owner);
6648 }
6649
6650 /* Remove the symbol reference from the reloc, but
6651 don't kill the reloc completely. This is so that
6652 a zero value will be written into the section,
6653 which may have non-zero contents put there by the
6654 assembler. Zero in things like an eh_frame fde
6655 pc_begin allows stack unwinders to recognize the
6656 fde as bogus. */
6657 rel->r_info &= r_type_mask;
6658 rel->r_addend = 0;
6659 }
6660 }
6661 }
6662
6663 /* Relocate the section by invoking a back end routine.
6664
6665 The back end routine is responsible for adjusting the
6666 section contents as necessary, and (if using Rela relocs
6667 and generating a relocatable output file) adjusting the
6668 reloc addend as necessary.
6669
6670 The back end routine does not have to worry about setting
6671 the reloc address or the reloc symbol index.
6672
6673 The back end routine is given a pointer to the swapped in
6674 internal symbols, and can access the hash table entries
6675 for the external symbols via elf_sym_hashes (input_bfd).
6676
6677 When generating relocatable output, the back end routine
6678 must handle STB_LOCAL/STT_SECTION symbols specially. The
6679 output symbol is going to be a section symbol
6680 corresponding to the output section, which will require
6681 the addend to be adjusted. */
6682
6683 if (! (*relocate_section) (output_bfd, finfo->info,
6684 input_bfd, o, contents,
6685 internal_relocs,
6686 isymbuf,
6687 finfo->sections))
6688 return FALSE;
6689
6690 if (emit_relocs)
6691 {
6692 Elf_Internal_Rela *irela;
6693 Elf_Internal_Rela *irelaend;
6694 bfd_vma last_offset;
6695 struct elf_link_hash_entry **rel_hash;
6696 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
6697 unsigned int next_erel;
6698 bfd_boolean (*reloc_emitter)
6699 (bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *);
6700 bfd_boolean rela_normal;
6701
6702 input_rel_hdr = &elf_section_data (o)->rel_hdr;
6703 rela_normal = (bed->rela_normal
6704 && (input_rel_hdr->sh_entsize
6705 == bed->s->sizeof_rela));
6706
6707 /* Adjust the reloc addresses and symbol indices. */
6708
6709 irela = internal_relocs;
6710 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
6711 rel_hash = (elf_section_data (o->output_section)->rel_hashes
6712 + elf_section_data (o->output_section)->rel_count
6713 + elf_section_data (o->output_section)->rel_count2);
6714 last_offset = o->output_offset;
6715 if (!finfo->info->relocatable)
6716 last_offset += o->output_section->vma;
6717 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
6718 {
6719 unsigned long r_symndx;
6720 asection *sec;
6721 Elf_Internal_Sym sym;
6722
6723 if (next_erel == bed->s->int_rels_per_ext_rel)
6724 {
6725 rel_hash++;
6726 next_erel = 0;
6727 }
6728
6729 irela->r_offset = _bfd_elf_section_offset (output_bfd,
6730 finfo->info, o,
6731 irela->r_offset);
6732 if (irela->r_offset >= (bfd_vma) -2)
6733 {
6734 /* This is a reloc for a deleted entry or somesuch.
6735 Turn it into an R_*_NONE reloc, at the same
6736 offset as the last reloc. elf_eh_frame.c and
6737 elf_bfd_discard_info rely on reloc offsets
6738 being ordered. */
6739 irela->r_offset = last_offset;
6740 irela->r_info = 0;
6741 irela->r_addend = 0;
6742 continue;
6743 }
6744
6745 irela->r_offset += o->output_offset;
6746
6747 /* Relocs in an executable have to be virtual addresses. */
6748 if (!finfo->info->relocatable)
6749 irela->r_offset += o->output_section->vma;
6750
6751 last_offset = irela->r_offset;
6752
6753 r_symndx = irela->r_info >> r_sym_shift;
6754 if (r_symndx == STN_UNDEF)
6755 continue;
6756
6757 if (r_symndx >= locsymcount
6758 || (elf_bad_symtab (input_bfd)
6759 && finfo->sections[r_symndx] == NULL))
6760 {
6761 struct elf_link_hash_entry *rh;
6762 unsigned long indx;
6763
6764 /* This is a reloc against a global symbol. We
6765 have not yet output all the local symbols, so
6766 we do not know the symbol index of any global
6767 symbol. We set the rel_hash entry for this
6768 reloc to point to the global hash table entry
6769 for this symbol. The symbol index is then
6770 set at the end of elf_bfd_final_link. */
6771 indx = r_symndx - extsymoff;
6772 rh = elf_sym_hashes (input_bfd)[indx];
6773 while (rh->root.type == bfd_link_hash_indirect
6774 || rh->root.type == bfd_link_hash_warning)
6775 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
6776
6777 /* Setting the index to -2 tells
6778 elf_link_output_extsym that this symbol is
6779 used by a reloc. */
6780 BFD_ASSERT (rh->indx < 0);
6781 rh->indx = -2;
6782
6783 *rel_hash = rh;
6784
6785 continue;
6786 }
6787
6788 /* This is a reloc against a local symbol. */
6789
6790 *rel_hash = NULL;
6791 sym = isymbuf[r_symndx];
6792 sec = finfo->sections[r_symndx];
6793 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
6794 {
6795 /* I suppose the backend ought to fill in the
6796 section of any STT_SECTION symbol against a
6797 processor specific section. */
6798 r_symndx = 0;
6799 if (bfd_is_abs_section (sec))
6800 ;
6801 else if (sec == NULL || sec->owner == NULL)
6802 {
6803 bfd_set_error (bfd_error_bad_value);
6804 return FALSE;
6805 }
6806 else
6807 {
6808 asection *osec = sec->output_section;
6809
6810 /* If we have discarded a section, the output
6811 section will be the absolute section. In
6812 case of discarded link-once and discarded
6813 SEC_MERGE sections, use the kept section. */
6814 if (bfd_is_abs_section (osec)
6815 && sec->kept_section != NULL
6816 && sec->kept_section->output_section != NULL)
6817 {
6818 osec = sec->kept_section->output_section;
6819 irela->r_addend -= osec->vma;
6820 }
6821
6822 if (!bfd_is_abs_section (osec))
6823 {
6824 r_symndx = osec->target_index;
6825 BFD_ASSERT (r_symndx != 0);
6826 }
6827 }
6828
6829 /* Adjust the addend according to where the
6830 section winds up in the output section. */
6831 if (rela_normal)
6832 irela->r_addend += sec->output_offset;
6833 }
6834 else
6835 {
6836 if (finfo->indices[r_symndx] == -1)
6837 {
6838 unsigned long shlink;
6839 const char *name;
6840 asection *osec;
6841
6842 if (finfo->info->strip == strip_all)
6843 {
6844 /* You can't do ld -r -s. */
6845 bfd_set_error (bfd_error_invalid_operation);
6846 return FALSE;
6847 }
6848
6849 /* This symbol was skipped earlier, but
6850 since it is needed by a reloc, we
6851 must output it now. */
6852 shlink = symtab_hdr->sh_link;
6853 name = (bfd_elf_string_from_elf_section
6854 (input_bfd, shlink, sym.st_name));
6855 if (name == NULL)
6856 return FALSE;
6857
6858 osec = sec->output_section;
6859 sym.st_shndx =
6860 _bfd_elf_section_from_bfd_section (output_bfd,
6861 osec);
6862 if (sym.st_shndx == SHN_BAD)
6863 return FALSE;
6864
6865 sym.st_value += sec->output_offset;
6866 if (! finfo->info->relocatable)
6867 {
6868 sym.st_value += osec->vma;
6869 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
6870 {
6871 /* STT_TLS symbols are relative to PT_TLS
6872 segment base. */
6873 BFD_ASSERT (elf_hash_table (finfo->info)
6874 ->tls_sec != NULL);
6875 sym.st_value -= (elf_hash_table (finfo->info)
6876 ->tls_sec->vma);
6877 }
6878 }
6879
6880 finfo->indices[r_symndx]
6881 = bfd_get_symcount (output_bfd);
6882
6883 if (! elf_link_output_sym (finfo, name, &sym, sec,
6884 NULL))
6885 return FALSE;
6886 }
6887
6888 r_symndx = finfo->indices[r_symndx];
6889 }
6890
6891 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
6892 | (irela->r_info & r_type_mask));
6893 }
6894
6895 /* Swap out the relocs. */
6896 if (bed->elf_backend_emit_relocs
6897 && !(finfo->info->relocatable
6898 || finfo->info->emitrelocations))
6899 reloc_emitter = bed->elf_backend_emit_relocs;
6900 else
6901 reloc_emitter = _bfd_elf_link_output_relocs;
6902
6903 if (input_rel_hdr->sh_size != 0
6904 && ! (*reloc_emitter) (output_bfd, o, input_rel_hdr,
6905 internal_relocs))
6906 return FALSE;
6907
6908 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
6909 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
6910 {
6911 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
6912 * bed->s->int_rels_per_ext_rel);
6913 if (! (*reloc_emitter) (output_bfd, o, input_rel_hdr2,
6914 internal_relocs))
6915 return FALSE;
6916 }
6917 }
6918 }
6919
6920 /* Write out the modified section contents. */
6921 if (bed->elf_backend_write_section
6922 && (*bed->elf_backend_write_section) (output_bfd, o, contents))
6923 {
6924 /* Section written out. */
6925 }
6926 else switch (o->sec_info_type)
6927 {
6928 case ELF_INFO_TYPE_STABS:
6929 if (! (_bfd_write_section_stabs
6930 (output_bfd,
6931 &elf_hash_table (finfo->info)->stab_info,
6932 o, &elf_section_data (o)->sec_info, contents)))
6933 return FALSE;
6934 break;
6935 case ELF_INFO_TYPE_MERGE:
6936 if (! _bfd_write_merged_section (output_bfd, o,
6937 elf_section_data (o)->sec_info))
6938 return FALSE;
6939 break;
6940 case ELF_INFO_TYPE_EH_FRAME:
6941 {
6942 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
6943 o, contents))
6944 return FALSE;
6945 }
6946 break;
6947 default:
6948 {
6949 if (! (o->flags & SEC_EXCLUDE)
6950 && ! bfd_set_section_contents (output_bfd, o->output_section,
6951 contents,
6952 (file_ptr) o->output_offset,
6953 o->size))
6954 return FALSE;
6955 }
6956 break;
6957 }
6958 }
6959
6960 return TRUE;
6961 }
6962
6963 /* Generate a reloc when linking an ELF file. This is a reloc
6964 requested by the linker, and does come from any input file. This
6965 is used to build constructor and destructor tables when linking
6966 with -Ur. */
6967
6968 static bfd_boolean
6969 elf_reloc_link_order (bfd *output_bfd,
6970 struct bfd_link_info *info,
6971 asection *output_section,
6972 struct bfd_link_order *link_order)
6973 {
6974 reloc_howto_type *howto;
6975 long indx;
6976 bfd_vma offset;
6977 bfd_vma addend;
6978 struct elf_link_hash_entry **rel_hash_ptr;
6979 Elf_Internal_Shdr *rel_hdr;
6980 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
6981 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
6982 bfd_byte *erel;
6983 unsigned int i;
6984
6985 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
6986 if (howto == NULL)
6987 {
6988 bfd_set_error (bfd_error_bad_value);
6989 return FALSE;
6990 }
6991
6992 addend = link_order->u.reloc.p->addend;
6993
6994 /* Figure out the symbol index. */
6995 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
6996 + elf_section_data (output_section)->rel_count
6997 + elf_section_data (output_section)->rel_count2);
6998 if (link_order->type == bfd_section_reloc_link_order)
6999 {
7000 indx = link_order->u.reloc.p->u.section->target_index;
7001 BFD_ASSERT (indx != 0);
7002 *rel_hash_ptr = NULL;
7003 }
7004 else
7005 {
7006 struct elf_link_hash_entry *h;
7007
7008 /* Treat a reloc against a defined symbol as though it were
7009 actually against the section. */
7010 h = ((struct elf_link_hash_entry *)
7011 bfd_wrapped_link_hash_lookup (output_bfd, info,
7012 link_order->u.reloc.p->u.name,
7013 FALSE, FALSE, TRUE));
7014 if (h != NULL
7015 && (h->root.type == bfd_link_hash_defined
7016 || h->root.type == bfd_link_hash_defweak))
7017 {
7018 asection *section;
7019
7020 section = h->root.u.def.section;
7021 indx = section->output_section->target_index;
7022 *rel_hash_ptr = NULL;
7023 /* It seems that we ought to add the symbol value to the
7024 addend here, but in practice it has already been added
7025 because it was passed to constructor_callback. */
7026 addend += section->output_section->vma + section->output_offset;
7027 }
7028 else if (h != NULL)
7029 {
7030 /* Setting the index to -2 tells elf_link_output_extsym that
7031 this symbol is used by a reloc. */
7032 h->indx = -2;
7033 *rel_hash_ptr = h;
7034 indx = 0;
7035 }
7036 else
7037 {
7038 if (! ((*info->callbacks->unattached_reloc)
7039 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
7040 return FALSE;
7041 indx = 0;
7042 }
7043 }
7044
7045 /* If this is an inplace reloc, we must write the addend into the
7046 object file. */
7047 if (howto->partial_inplace && addend != 0)
7048 {
7049 bfd_size_type size;
7050 bfd_reloc_status_type rstat;
7051 bfd_byte *buf;
7052 bfd_boolean ok;
7053 const char *sym_name;
7054
7055 size = bfd_get_reloc_size (howto);
7056 buf = bfd_zmalloc (size);
7057 if (buf == NULL)
7058 return FALSE;
7059 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
7060 switch (rstat)
7061 {
7062 case bfd_reloc_ok:
7063 break;
7064
7065 default:
7066 case bfd_reloc_outofrange:
7067 abort ();
7068
7069 case bfd_reloc_overflow:
7070 if (link_order->type == bfd_section_reloc_link_order)
7071 sym_name = bfd_section_name (output_bfd,
7072 link_order->u.reloc.p->u.section);
7073 else
7074 sym_name = link_order->u.reloc.p->u.name;
7075 if (! ((*info->callbacks->reloc_overflow)
7076 (info, sym_name, howto->name, addend, NULL, NULL, 0)))
7077 {
7078 free (buf);
7079 return FALSE;
7080 }
7081 break;
7082 }
7083 ok = bfd_set_section_contents (output_bfd, output_section, buf,
7084 link_order->offset, size);
7085 free (buf);
7086 if (! ok)
7087 return FALSE;
7088 }
7089
7090 /* The address of a reloc is relative to the section in a
7091 relocatable file, and is a virtual address in an executable
7092 file. */
7093 offset = link_order->offset;
7094 if (! info->relocatable)
7095 offset += output_section->vma;
7096
7097 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7098 {
7099 irel[i].r_offset = offset;
7100 irel[i].r_info = 0;
7101 irel[i].r_addend = 0;
7102 }
7103 if (bed->s->arch_size == 32)
7104 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
7105 else
7106 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
7107
7108 rel_hdr = &elf_section_data (output_section)->rel_hdr;
7109 erel = rel_hdr->contents;
7110 if (rel_hdr->sh_type == SHT_REL)
7111 {
7112 erel += (elf_section_data (output_section)->rel_count
7113 * bed->s->sizeof_rel);
7114 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
7115 }
7116 else
7117 {
7118 irel[0].r_addend = addend;
7119 erel += (elf_section_data (output_section)->rel_count
7120 * bed->s->sizeof_rela);
7121 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
7122 }
7123
7124 ++elf_section_data (output_section)->rel_count;
7125
7126 return TRUE;
7127 }
7128
7129 /* Do the final step of an ELF link. */
7130
7131 bfd_boolean
7132 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
7133 {
7134 bfd_boolean dynamic;
7135 bfd_boolean emit_relocs;
7136 bfd *dynobj;
7137 struct elf_final_link_info finfo;
7138 register asection *o;
7139 register struct bfd_link_order *p;
7140 register bfd *sub;
7141 bfd_size_type max_contents_size;
7142 bfd_size_type max_external_reloc_size;
7143 bfd_size_type max_internal_reloc_count;
7144 bfd_size_type max_sym_count;
7145 bfd_size_type max_sym_shndx_count;
7146 file_ptr off;
7147 Elf_Internal_Sym elfsym;
7148 unsigned int i;
7149 Elf_Internal_Shdr *symtab_hdr;
7150 Elf_Internal_Shdr *symtab_shndx_hdr;
7151 Elf_Internal_Shdr *symstrtab_hdr;
7152 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7153 struct elf_outext_info eoinfo;
7154 bfd_boolean merged;
7155 size_t relativecount = 0;
7156 asection *reldyn = 0;
7157 bfd_size_type amt;
7158
7159 if (! is_elf_hash_table (info->hash))
7160 return FALSE;
7161
7162 if (info->shared)
7163 abfd->flags |= DYNAMIC;
7164
7165 dynamic = elf_hash_table (info)->dynamic_sections_created;
7166 dynobj = elf_hash_table (info)->dynobj;
7167
7168 emit_relocs = (info->relocatable
7169 || info->emitrelocations
7170 || bed->elf_backend_emit_relocs);
7171
7172 finfo.info = info;
7173 finfo.output_bfd = abfd;
7174 finfo.symstrtab = _bfd_elf_stringtab_init ();
7175 if (finfo.symstrtab == NULL)
7176 return FALSE;
7177
7178 if (! dynamic)
7179 {
7180 finfo.dynsym_sec = NULL;
7181 finfo.hash_sec = NULL;
7182 finfo.symver_sec = NULL;
7183 }
7184 else
7185 {
7186 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
7187 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
7188 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
7189 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
7190 /* Note that it is OK if symver_sec is NULL. */
7191 }
7192
7193 finfo.contents = NULL;
7194 finfo.external_relocs = NULL;
7195 finfo.internal_relocs = NULL;
7196 finfo.external_syms = NULL;
7197 finfo.locsym_shndx = NULL;
7198 finfo.internal_syms = NULL;
7199 finfo.indices = NULL;
7200 finfo.sections = NULL;
7201 finfo.symbuf = NULL;
7202 finfo.symshndxbuf = NULL;
7203 finfo.symbuf_count = 0;
7204 finfo.shndxbuf_size = 0;
7205
7206 /* Count up the number of relocations we will output for each output
7207 section, so that we know the sizes of the reloc sections. We
7208 also figure out some maximum sizes. */
7209 max_contents_size = 0;
7210 max_external_reloc_size = 0;
7211 max_internal_reloc_count = 0;
7212 max_sym_count = 0;
7213 max_sym_shndx_count = 0;
7214 merged = FALSE;
7215 for (o = abfd->sections; o != NULL; o = o->next)
7216 {
7217 struct bfd_elf_section_data *esdo = elf_section_data (o);
7218 o->reloc_count = 0;
7219
7220 for (p = o->link_order_head; p != NULL; p = p->next)
7221 {
7222 unsigned int reloc_count = 0;
7223 struct bfd_elf_section_data *esdi = NULL;
7224 unsigned int *rel_count1;
7225
7226 if (p->type == bfd_section_reloc_link_order
7227 || p->type == bfd_symbol_reloc_link_order)
7228 reloc_count = 1;
7229 else if (p->type == bfd_indirect_link_order)
7230 {
7231 asection *sec;
7232
7233 sec = p->u.indirect.section;
7234 esdi = elf_section_data (sec);
7235
7236 /* Mark all sections which are to be included in the
7237 link. This will normally be every section. We need
7238 to do this so that we can identify any sections which
7239 the linker has decided to not include. */
7240 sec->linker_mark = TRUE;
7241
7242 if (sec->flags & SEC_MERGE)
7243 merged = TRUE;
7244
7245 if (info->relocatable || info->emitrelocations)
7246 reloc_count = sec->reloc_count;
7247 else if (bed->elf_backend_count_relocs)
7248 {
7249 Elf_Internal_Rela * relocs;
7250
7251 relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
7252 info->keep_memory);
7253
7254 reloc_count = (*bed->elf_backend_count_relocs) (sec, relocs);
7255
7256 if (elf_section_data (o)->relocs != relocs)
7257 free (relocs);
7258 }
7259
7260 if (sec->rawsize > max_contents_size)
7261 max_contents_size = sec->rawsize;
7262 if (sec->size > max_contents_size)
7263 max_contents_size = sec->size;
7264
7265 /* We are interested in just local symbols, not all
7266 symbols. */
7267 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
7268 && (sec->owner->flags & DYNAMIC) == 0)
7269 {
7270 size_t sym_count;
7271
7272 if (elf_bad_symtab (sec->owner))
7273 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
7274 / bed->s->sizeof_sym);
7275 else
7276 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
7277
7278 if (sym_count > max_sym_count)
7279 max_sym_count = sym_count;
7280
7281 if (sym_count > max_sym_shndx_count
7282 && elf_symtab_shndx (sec->owner) != 0)
7283 max_sym_shndx_count = sym_count;
7284
7285 if ((sec->flags & SEC_RELOC) != 0)
7286 {
7287 size_t ext_size;
7288
7289 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
7290 if (ext_size > max_external_reloc_size)
7291 max_external_reloc_size = ext_size;
7292 if (sec->reloc_count > max_internal_reloc_count)
7293 max_internal_reloc_count = sec->reloc_count;
7294 }
7295 }
7296 }
7297
7298 if (reloc_count == 0)
7299 continue;
7300
7301 o->reloc_count += reloc_count;
7302
7303 /* MIPS may have a mix of REL and RELA relocs on sections.
7304 To support this curious ABI we keep reloc counts in
7305 elf_section_data too. We must be careful to add the
7306 relocations from the input section to the right output
7307 count. FIXME: Get rid of one count. We have
7308 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
7309 rel_count1 = &esdo->rel_count;
7310 if (esdi != NULL)
7311 {
7312 bfd_boolean same_size;
7313 bfd_size_type entsize1;
7314
7315 entsize1 = esdi->rel_hdr.sh_entsize;
7316 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
7317 || entsize1 == bed->s->sizeof_rela);
7318 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
7319
7320 if (!same_size)
7321 rel_count1 = &esdo->rel_count2;
7322
7323 if (esdi->rel_hdr2 != NULL)
7324 {
7325 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
7326 unsigned int alt_count;
7327 unsigned int *rel_count2;
7328
7329 BFD_ASSERT (entsize2 != entsize1
7330 && (entsize2 == bed->s->sizeof_rel
7331 || entsize2 == bed->s->sizeof_rela));
7332
7333 rel_count2 = &esdo->rel_count2;
7334 if (!same_size)
7335 rel_count2 = &esdo->rel_count;
7336
7337 /* The following is probably too simplistic if the
7338 backend counts output relocs unusually. */
7339 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
7340 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
7341 *rel_count2 += alt_count;
7342 reloc_count -= alt_count;
7343 }
7344 }
7345 *rel_count1 += reloc_count;
7346 }
7347
7348 if (o->reloc_count > 0)
7349 o->flags |= SEC_RELOC;
7350 else
7351 {
7352 /* Explicitly clear the SEC_RELOC flag. The linker tends to
7353 set it (this is probably a bug) and if it is set
7354 assign_section_numbers will create a reloc section. */
7355 o->flags &=~ SEC_RELOC;
7356 }
7357
7358 /* If the SEC_ALLOC flag is not set, force the section VMA to
7359 zero. This is done in elf_fake_sections as well, but forcing
7360 the VMA to 0 here will ensure that relocs against these
7361 sections are handled correctly. */
7362 if ((o->flags & SEC_ALLOC) == 0
7363 && ! o->user_set_vma)
7364 o->vma = 0;
7365 }
7366
7367 if (! info->relocatable && merged)
7368 elf_link_hash_traverse (elf_hash_table (info),
7369 _bfd_elf_link_sec_merge_syms, abfd);
7370
7371 /* Figure out the file positions for everything but the symbol table
7372 and the relocs. We set symcount to force assign_section_numbers
7373 to create a symbol table. */
7374 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
7375 BFD_ASSERT (! abfd->output_has_begun);
7376 if (! _bfd_elf_compute_section_file_positions (abfd, info))
7377 goto error_return;
7378
7379 /* That created the reloc sections. Set their sizes, and assign
7380 them file positions, and allocate some buffers. */
7381 for (o = abfd->sections; o != NULL; o = o->next)
7382 {
7383 if ((o->flags & SEC_RELOC) != 0)
7384 {
7385 if (!(_bfd_elf_link_size_reloc_section
7386 (abfd, &elf_section_data (o)->rel_hdr, o)))
7387 goto error_return;
7388
7389 if (elf_section_data (o)->rel_hdr2
7390 && !(_bfd_elf_link_size_reloc_section
7391 (abfd, elf_section_data (o)->rel_hdr2, o)))
7392 goto error_return;
7393 }
7394
7395 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
7396 to count upwards while actually outputting the relocations. */
7397 elf_section_data (o)->rel_count = 0;
7398 elf_section_data (o)->rel_count2 = 0;
7399 }
7400
7401 _bfd_elf_assign_file_positions_for_relocs (abfd);
7402
7403 /* We have now assigned file positions for all the sections except
7404 .symtab and .strtab. We start the .symtab section at the current
7405 file position, and write directly to it. We build the .strtab
7406 section in memory. */
7407 bfd_get_symcount (abfd) = 0;
7408 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7409 /* sh_name is set in prep_headers. */
7410 symtab_hdr->sh_type = SHT_SYMTAB;
7411 /* sh_flags, sh_addr and sh_size all start off zero. */
7412 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
7413 /* sh_link is set in assign_section_numbers. */
7414 /* sh_info is set below. */
7415 /* sh_offset is set just below. */
7416 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
7417
7418 off = elf_tdata (abfd)->next_file_pos;
7419 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
7420
7421 /* Note that at this point elf_tdata (abfd)->next_file_pos is
7422 incorrect. We do not yet know the size of the .symtab section.
7423 We correct next_file_pos below, after we do know the size. */
7424
7425 /* Allocate a buffer to hold swapped out symbols. This is to avoid
7426 continuously seeking to the right position in the file. */
7427 if (! info->keep_memory || max_sym_count < 20)
7428 finfo.symbuf_size = 20;
7429 else
7430 finfo.symbuf_size = max_sym_count;
7431 amt = finfo.symbuf_size;
7432 amt *= bed->s->sizeof_sym;
7433 finfo.symbuf = bfd_malloc (amt);
7434 if (finfo.symbuf == NULL)
7435 goto error_return;
7436 if (elf_numsections (abfd) > SHN_LORESERVE)
7437 {
7438 /* Wild guess at number of output symbols. realloc'd as needed. */
7439 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
7440 finfo.shndxbuf_size = amt;
7441 amt *= sizeof (Elf_External_Sym_Shndx);
7442 finfo.symshndxbuf = bfd_zmalloc (amt);
7443 if (finfo.symshndxbuf == NULL)
7444 goto error_return;
7445 }
7446
7447 /* Start writing out the symbol table. The first symbol is always a
7448 dummy symbol. */
7449 if (info->strip != strip_all
7450 || emit_relocs)
7451 {
7452 elfsym.st_value = 0;
7453 elfsym.st_size = 0;
7454 elfsym.st_info = 0;
7455 elfsym.st_other = 0;
7456 elfsym.st_shndx = SHN_UNDEF;
7457 if (! elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
7458 NULL))
7459 goto error_return;
7460 }
7461
7462 #if 0
7463 /* Some standard ELF linkers do this, but we don't because it causes
7464 bootstrap comparison failures. */
7465 /* Output a file symbol for the output file as the second symbol.
7466 We output this even if we are discarding local symbols, although
7467 I'm not sure if this is correct. */
7468 elfsym.st_value = 0;
7469 elfsym.st_size = 0;
7470 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
7471 elfsym.st_other = 0;
7472 elfsym.st_shndx = SHN_ABS;
7473 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
7474 &elfsym, bfd_abs_section_ptr, NULL))
7475 goto error_return;
7476 #endif
7477
7478 /* Output a symbol for each section. We output these even if we are
7479 discarding local symbols, since they are used for relocs. These
7480 symbols have no names. We store the index of each one in the
7481 index field of the section, so that we can find it again when
7482 outputting relocs. */
7483 if (info->strip != strip_all
7484 || emit_relocs)
7485 {
7486 elfsym.st_size = 0;
7487 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
7488 elfsym.st_other = 0;
7489 for (i = 1; i < elf_numsections (abfd); i++)
7490 {
7491 o = bfd_section_from_elf_index (abfd, i);
7492 if (o != NULL)
7493 o->target_index = bfd_get_symcount (abfd);
7494 elfsym.st_shndx = i;
7495 if (info->relocatable || o == NULL)
7496 elfsym.st_value = 0;
7497 else
7498 elfsym.st_value = o->vma;
7499 if (! elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL))
7500 goto error_return;
7501 if (i == SHN_LORESERVE - 1)
7502 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
7503 }
7504 }
7505
7506 /* Allocate some memory to hold information read in from the input
7507 files. */
7508 if (max_contents_size != 0)
7509 {
7510 finfo.contents = bfd_malloc (max_contents_size);
7511 if (finfo.contents == NULL)
7512 goto error_return;
7513 }
7514
7515 if (max_external_reloc_size != 0)
7516 {
7517 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
7518 if (finfo.external_relocs == NULL)
7519 goto error_return;
7520 }
7521
7522 if (max_internal_reloc_count != 0)
7523 {
7524 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
7525 amt *= sizeof (Elf_Internal_Rela);
7526 finfo.internal_relocs = bfd_malloc (amt);
7527 if (finfo.internal_relocs == NULL)
7528 goto error_return;
7529 }
7530
7531 if (max_sym_count != 0)
7532 {
7533 amt = max_sym_count * bed->s->sizeof_sym;
7534 finfo.external_syms = bfd_malloc (amt);
7535 if (finfo.external_syms == NULL)
7536 goto error_return;
7537
7538 amt = max_sym_count * sizeof (Elf_Internal_Sym);
7539 finfo.internal_syms = bfd_malloc (amt);
7540 if (finfo.internal_syms == NULL)
7541 goto error_return;
7542
7543 amt = max_sym_count * sizeof (long);
7544 finfo.indices = bfd_malloc (amt);
7545 if (finfo.indices == NULL)
7546 goto error_return;
7547
7548 amt = max_sym_count * sizeof (asection *);
7549 finfo.sections = bfd_malloc (amt);
7550 if (finfo.sections == NULL)
7551 goto error_return;
7552 }
7553
7554 if (max_sym_shndx_count != 0)
7555 {
7556 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
7557 finfo.locsym_shndx = bfd_malloc (amt);
7558 if (finfo.locsym_shndx == NULL)
7559 goto error_return;
7560 }
7561
7562 if (elf_hash_table (info)->tls_sec)
7563 {
7564 bfd_vma base, end = 0;
7565 asection *sec;
7566
7567 for (sec = elf_hash_table (info)->tls_sec;
7568 sec && (sec->flags & SEC_THREAD_LOCAL);
7569 sec = sec->next)
7570 {
7571 bfd_vma size = sec->size;
7572
7573 if (size == 0 && (sec->flags & SEC_HAS_CONTENTS) == 0)
7574 {
7575 struct bfd_link_order *o;
7576
7577 for (o = sec->link_order_head; o != NULL; o = o->next)
7578 if (size < o->offset + o->size)
7579 size = o->offset + o->size;
7580 }
7581 end = sec->vma + size;
7582 }
7583 base = elf_hash_table (info)->tls_sec->vma;
7584 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
7585 elf_hash_table (info)->tls_size = end - base;
7586 }
7587
7588 /* Since ELF permits relocations to be against local symbols, we
7589 must have the local symbols available when we do the relocations.
7590 Since we would rather only read the local symbols once, and we
7591 would rather not keep them in memory, we handle all the
7592 relocations for a single input file at the same time.
7593
7594 Unfortunately, there is no way to know the total number of local
7595 symbols until we have seen all of them, and the local symbol
7596 indices precede the global symbol indices. This means that when
7597 we are generating relocatable output, and we see a reloc against
7598 a global symbol, we can not know the symbol index until we have
7599 finished examining all the local symbols to see which ones we are
7600 going to output. To deal with this, we keep the relocations in
7601 memory, and don't output them until the end of the link. This is
7602 an unfortunate waste of memory, but I don't see a good way around
7603 it. Fortunately, it only happens when performing a relocatable
7604 link, which is not the common case. FIXME: If keep_memory is set
7605 we could write the relocs out and then read them again; I don't
7606 know how bad the memory loss will be. */
7607
7608 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
7609 sub->output_has_begun = FALSE;
7610 for (o = abfd->sections; o != NULL; o = o->next)
7611 {
7612 for (p = o->link_order_head; p != NULL; p = p->next)
7613 {
7614 if (p->type == bfd_indirect_link_order
7615 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
7616 == bfd_target_elf_flavour)
7617 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
7618 {
7619 if (! sub->output_has_begun)
7620 {
7621 if (! elf_link_input_bfd (&finfo, sub))
7622 goto error_return;
7623 sub->output_has_begun = TRUE;
7624 }
7625 }
7626 else if (p->type == bfd_section_reloc_link_order
7627 || p->type == bfd_symbol_reloc_link_order)
7628 {
7629 if (! elf_reloc_link_order (abfd, info, o, p))
7630 goto error_return;
7631 }
7632 else
7633 {
7634 if (! _bfd_default_link_order (abfd, info, o, p))
7635 goto error_return;
7636 }
7637 }
7638 }
7639
7640 /* Output any global symbols that got converted to local in a
7641 version script or due to symbol visibility. We do this in a
7642 separate step since ELF requires all local symbols to appear
7643 prior to any global symbols. FIXME: We should only do this if
7644 some global symbols were, in fact, converted to become local.
7645 FIXME: Will this work correctly with the Irix 5 linker? */
7646 eoinfo.failed = FALSE;
7647 eoinfo.finfo = &finfo;
7648 eoinfo.localsyms = TRUE;
7649 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
7650 &eoinfo);
7651 if (eoinfo.failed)
7652 return FALSE;
7653
7654 /* That wrote out all the local symbols. Finish up the symbol table
7655 with the global symbols. Even if we want to strip everything we
7656 can, we still need to deal with those global symbols that got
7657 converted to local in a version script. */
7658
7659 /* The sh_info field records the index of the first non local symbol. */
7660 symtab_hdr->sh_info = bfd_get_symcount (abfd);
7661
7662 if (dynamic
7663 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
7664 {
7665 Elf_Internal_Sym sym;
7666 bfd_byte *dynsym = finfo.dynsym_sec->contents;
7667 long last_local = 0;
7668
7669 /* Write out the section symbols for the output sections. */
7670 if (info->shared)
7671 {
7672 asection *s;
7673
7674 sym.st_size = 0;
7675 sym.st_name = 0;
7676 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
7677 sym.st_other = 0;
7678
7679 for (s = abfd->sections; s != NULL; s = s->next)
7680 {
7681 int indx;
7682 bfd_byte *dest;
7683 long dynindx;
7684
7685 dynindx = elf_section_data (s)->dynindx;
7686 if (dynindx <= 0)
7687 continue;
7688 indx = elf_section_data (s)->this_idx;
7689 BFD_ASSERT (indx > 0);
7690 sym.st_shndx = indx;
7691 sym.st_value = s->vma;
7692 dest = dynsym + dynindx * bed->s->sizeof_sym;
7693 if (last_local < dynindx)
7694 last_local = dynindx;
7695 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
7696 }
7697 }
7698
7699 /* Write out the local dynsyms. */
7700 if (elf_hash_table (info)->dynlocal)
7701 {
7702 struct elf_link_local_dynamic_entry *e;
7703 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
7704 {
7705 asection *s;
7706 bfd_byte *dest;
7707
7708 sym.st_size = e->isym.st_size;
7709 sym.st_other = e->isym.st_other;
7710
7711 /* Copy the internal symbol as is.
7712 Note that we saved a word of storage and overwrote
7713 the original st_name with the dynstr_index. */
7714 sym = e->isym;
7715
7716 if (e->isym.st_shndx != SHN_UNDEF
7717 && (e->isym.st_shndx < SHN_LORESERVE
7718 || e->isym.st_shndx > SHN_HIRESERVE))
7719 {
7720 s = bfd_section_from_elf_index (e->input_bfd,
7721 e->isym.st_shndx);
7722
7723 sym.st_shndx =
7724 elf_section_data (s->output_section)->this_idx;
7725 sym.st_value = (s->output_section->vma
7726 + s->output_offset
7727 + e->isym.st_value);
7728 }
7729
7730 if (last_local < e->dynindx)
7731 last_local = e->dynindx;
7732
7733 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
7734 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
7735 }
7736 }
7737
7738 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
7739 last_local + 1;
7740 }
7741
7742 /* We get the global symbols from the hash table. */
7743 eoinfo.failed = FALSE;
7744 eoinfo.localsyms = FALSE;
7745 eoinfo.finfo = &finfo;
7746 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
7747 &eoinfo);
7748 if (eoinfo.failed)
7749 return FALSE;
7750
7751 /* If backend needs to output some symbols not present in the hash
7752 table, do it now. */
7753 if (bed->elf_backend_output_arch_syms)
7754 {
7755 typedef bfd_boolean (*out_sym_func)
7756 (void *, const char *, Elf_Internal_Sym *, asection *,
7757 struct elf_link_hash_entry *);
7758
7759 if (! ((*bed->elf_backend_output_arch_syms)
7760 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
7761 return FALSE;
7762 }
7763
7764 /* Flush all symbols to the file. */
7765 if (! elf_link_flush_output_syms (&finfo, bed))
7766 return FALSE;
7767
7768 /* Now we know the size of the symtab section. */
7769 off += symtab_hdr->sh_size;
7770
7771 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
7772 if (symtab_shndx_hdr->sh_name != 0)
7773 {
7774 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
7775 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
7776 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
7777 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
7778 symtab_shndx_hdr->sh_size = amt;
7779
7780 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
7781 off, TRUE);
7782
7783 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
7784 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
7785 return FALSE;
7786 }
7787
7788
7789 /* Finish up and write out the symbol string table (.strtab)
7790 section. */
7791 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
7792 /* sh_name was set in prep_headers. */
7793 symstrtab_hdr->sh_type = SHT_STRTAB;
7794 symstrtab_hdr->sh_flags = 0;
7795 symstrtab_hdr->sh_addr = 0;
7796 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
7797 symstrtab_hdr->sh_entsize = 0;
7798 symstrtab_hdr->sh_link = 0;
7799 symstrtab_hdr->sh_info = 0;
7800 /* sh_offset is set just below. */
7801 symstrtab_hdr->sh_addralign = 1;
7802
7803 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
7804 elf_tdata (abfd)->next_file_pos = off;
7805
7806 if (bfd_get_symcount (abfd) > 0)
7807 {
7808 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
7809 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
7810 return FALSE;
7811 }
7812
7813 /* Adjust the relocs to have the correct symbol indices. */
7814 for (o = abfd->sections; o != NULL; o = o->next)
7815 {
7816 if ((o->flags & SEC_RELOC) == 0)
7817 continue;
7818
7819 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
7820 elf_section_data (o)->rel_count,
7821 elf_section_data (o)->rel_hashes);
7822 if (elf_section_data (o)->rel_hdr2 != NULL)
7823 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
7824 elf_section_data (o)->rel_count2,
7825 (elf_section_data (o)->rel_hashes
7826 + elf_section_data (o)->rel_count));
7827
7828 /* Set the reloc_count field to 0 to prevent write_relocs from
7829 trying to swap the relocs out itself. */
7830 o->reloc_count = 0;
7831 }
7832
7833 if (dynamic && info->combreloc && dynobj != NULL)
7834 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
7835
7836 /* If we are linking against a dynamic object, or generating a
7837 shared library, finish up the dynamic linking information. */
7838 if (dynamic)
7839 {
7840 bfd_byte *dyncon, *dynconend;
7841
7842 /* Fix up .dynamic entries. */
7843 o = bfd_get_section_by_name (dynobj, ".dynamic");
7844 BFD_ASSERT (o != NULL);
7845
7846 dyncon = o->contents;
7847 dynconend = o->contents + o->size;
7848 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
7849 {
7850 Elf_Internal_Dyn dyn;
7851 const char *name;
7852 unsigned int type;
7853
7854 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
7855
7856 switch (dyn.d_tag)
7857 {
7858 default:
7859 continue;
7860 case DT_NULL:
7861 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
7862 {
7863 switch (elf_section_data (reldyn)->this_hdr.sh_type)
7864 {
7865 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
7866 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
7867 default: continue;
7868 }
7869 dyn.d_un.d_val = relativecount;
7870 relativecount = 0;
7871 break;
7872 }
7873 continue;
7874
7875 case DT_INIT:
7876 name = info->init_function;
7877 goto get_sym;
7878 case DT_FINI:
7879 name = info->fini_function;
7880 get_sym:
7881 {
7882 struct elf_link_hash_entry *h;
7883
7884 h = elf_link_hash_lookup (elf_hash_table (info), name,
7885 FALSE, FALSE, TRUE);
7886 if (h != NULL
7887 && (h->root.type == bfd_link_hash_defined
7888 || h->root.type == bfd_link_hash_defweak))
7889 {
7890 dyn.d_un.d_val = h->root.u.def.value;
7891 o = h->root.u.def.section;
7892 if (o->output_section != NULL)
7893 dyn.d_un.d_val += (o->output_section->vma
7894 + o->output_offset);
7895 else
7896 {
7897 /* The symbol is imported from another shared
7898 library and does not apply to this one. */
7899 dyn.d_un.d_val = 0;
7900 }
7901 break;
7902 }
7903 }
7904 continue;
7905
7906 case DT_PREINIT_ARRAYSZ:
7907 name = ".preinit_array";
7908 goto get_size;
7909 case DT_INIT_ARRAYSZ:
7910 name = ".init_array";
7911 goto get_size;
7912 case DT_FINI_ARRAYSZ:
7913 name = ".fini_array";
7914 get_size:
7915 o = bfd_get_section_by_name (abfd, name);
7916 if (o == NULL)
7917 {
7918 (*_bfd_error_handler)
7919 (_("%s: could not find output section %s"),
7920 bfd_get_filename (abfd), name);
7921 goto error_return;
7922 }
7923 if (o->size == 0)
7924 (*_bfd_error_handler)
7925 (_("warning: %s section has zero size"), name);
7926 dyn.d_un.d_val = o->size;
7927 break;
7928
7929 case DT_PREINIT_ARRAY:
7930 name = ".preinit_array";
7931 goto get_vma;
7932 case DT_INIT_ARRAY:
7933 name = ".init_array";
7934 goto get_vma;
7935 case DT_FINI_ARRAY:
7936 name = ".fini_array";
7937 goto get_vma;
7938
7939 case DT_HASH:
7940 name = ".hash";
7941 goto get_vma;
7942 case DT_STRTAB:
7943 name = ".dynstr";
7944 goto get_vma;
7945 case DT_SYMTAB:
7946 name = ".dynsym";
7947 goto get_vma;
7948 case DT_VERDEF:
7949 name = ".gnu.version_d";
7950 goto get_vma;
7951 case DT_VERNEED:
7952 name = ".gnu.version_r";
7953 goto get_vma;
7954 case DT_VERSYM:
7955 name = ".gnu.version";
7956 get_vma:
7957 o = bfd_get_section_by_name (abfd, name);
7958 if (o == NULL)
7959 {
7960 (*_bfd_error_handler)
7961 (_("%s: could not find output section %s"),
7962 bfd_get_filename (abfd), name);
7963 goto error_return;
7964 }
7965 dyn.d_un.d_ptr = o->vma;
7966 break;
7967
7968 case DT_REL:
7969 case DT_RELA:
7970 case DT_RELSZ:
7971 case DT_RELASZ:
7972 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
7973 type = SHT_REL;
7974 else
7975 type = SHT_RELA;
7976 dyn.d_un.d_val = 0;
7977 for (i = 1; i < elf_numsections (abfd); i++)
7978 {
7979 Elf_Internal_Shdr *hdr;
7980
7981 hdr = elf_elfsections (abfd)[i];
7982 if (hdr->sh_type == type
7983 && (hdr->sh_flags & SHF_ALLOC) != 0)
7984 {
7985 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
7986 dyn.d_un.d_val += hdr->sh_size;
7987 else
7988 {
7989 if (dyn.d_un.d_val == 0
7990 || hdr->sh_addr < dyn.d_un.d_val)
7991 dyn.d_un.d_val = hdr->sh_addr;
7992 }
7993 }
7994 }
7995 break;
7996 }
7997 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
7998 }
7999 }
8000
8001 /* If we have created any dynamic sections, then output them. */
8002 if (dynobj != NULL)
8003 {
8004 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
8005 goto error_return;
8006
8007 for (o = dynobj->sections; o != NULL; o = o->next)
8008 {
8009 if ((o->flags & SEC_HAS_CONTENTS) == 0
8010 || o->size == 0
8011 || o->output_section == bfd_abs_section_ptr)
8012 continue;
8013 if ((o->flags & SEC_LINKER_CREATED) == 0)
8014 {
8015 /* At this point, we are only interested in sections
8016 created by _bfd_elf_link_create_dynamic_sections. */
8017 continue;
8018 }
8019 if (elf_hash_table (info)->stab_info.stabstr == o)
8020 continue;
8021 if (elf_hash_table (info)->eh_info.hdr_sec == o)
8022 continue;
8023 if ((elf_section_data (o->output_section)->this_hdr.sh_type
8024 != SHT_STRTAB)
8025 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
8026 {
8027 if (! bfd_set_section_contents (abfd, o->output_section,
8028 o->contents,
8029 (file_ptr) o->output_offset,
8030 o->size))
8031 goto error_return;
8032 }
8033 else
8034 {
8035 /* The contents of the .dynstr section are actually in a
8036 stringtab. */
8037 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
8038 if (bfd_seek (abfd, off, SEEK_SET) != 0
8039 || ! _bfd_elf_strtab_emit (abfd,
8040 elf_hash_table (info)->dynstr))
8041 goto error_return;
8042 }
8043 }
8044 }
8045
8046 if (info->relocatable)
8047 {
8048 bfd_boolean failed = FALSE;
8049
8050 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
8051 if (failed)
8052 goto error_return;
8053 }
8054
8055 /* If we have optimized stabs strings, output them. */
8056 if (elf_hash_table (info)->stab_info.stabstr != NULL)
8057 {
8058 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
8059 goto error_return;
8060 }
8061
8062 if (info->eh_frame_hdr)
8063 {
8064 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
8065 goto error_return;
8066 }
8067
8068 if (finfo.symstrtab != NULL)
8069 _bfd_stringtab_free (finfo.symstrtab);
8070 if (finfo.contents != NULL)
8071 free (finfo.contents);
8072 if (finfo.external_relocs != NULL)
8073 free (finfo.external_relocs);
8074 if (finfo.internal_relocs != NULL)
8075 free (finfo.internal_relocs);
8076 if (finfo.external_syms != NULL)
8077 free (finfo.external_syms);
8078 if (finfo.locsym_shndx != NULL)
8079 free (finfo.locsym_shndx);
8080 if (finfo.internal_syms != NULL)
8081 free (finfo.internal_syms);
8082 if (finfo.indices != NULL)
8083 free (finfo.indices);
8084 if (finfo.sections != NULL)
8085 free (finfo.sections);
8086 if (finfo.symbuf != NULL)
8087 free (finfo.symbuf);
8088 if (finfo.symshndxbuf != NULL)
8089 free (finfo.symshndxbuf);
8090 for (o = abfd->sections; o != NULL; o = o->next)
8091 {
8092 if ((o->flags & SEC_RELOC) != 0
8093 && elf_section_data (o)->rel_hashes != NULL)
8094 free (elf_section_data (o)->rel_hashes);
8095 }
8096
8097 elf_tdata (abfd)->linker = TRUE;
8098
8099 return TRUE;
8100
8101 error_return:
8102 if (finfo.symstrtab != NULL)
8103 _bfd_stringtab_free (finfo.symstrtab);
8104 if (finfo.contents != NULL)
8105 free (finfo.contents);
8106 if (finfo.external_relocs != NULL)
8107 free (finfo.external_relocs);
8108 if (finfo.internal_relocs != NULL)
8109 free (finfo.internal_relocs);
8110 if (finfo.external_syms != NULL)
8111 free (finfo.external_syms);
8112 if (finfo.locsym_shndx != NULL)
8113 free (finfo.locsym_shndx);
8114 if (finfo.internal_syms != NULL)
8115 free (finfo.internal_syms);
8116 if (finfo.indices != NULL)
8117 free (finfo.indices);
8118 if (finfo.sections != NULL)
8119 free (finfo.sections);
8120 if (finfo.symbuf != NULL)
8121 free (finfo.symbuf);
8122 if (finfo.symshndxbuf != NULL)
8123 free (finfo.symshndxbuf);
8124 for (o = abfd->sections; o != NULL; o = o->next)
8125 {
8126 if ((o->flags & SEC_RELOC) != 0
8127 && elf_section_data (o)->rel_hashes != NULL)
8128 free (elf_section_data (o)->rel_hashes);
8129 }
8130
8131 return FALSE;
8132 }
8133 \f
8134 /* Garbage collect unused sections. */
8135
8136 /* The mark phase of garbage collection. For a given section, mark
8137 it and any sections in this section's group, and all the sections
8138 which define symbols to which it refers. */
8139
8140 typedef asection * (*gc_mark_hook_fn)
8141 (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
8142 struct elf_link_hash_entry *, Elf_Internal_Sym *);
8143
8144 static bfd_boolean
8145 elf_gc_mark (struct bfd_link_info *info,
8146 asection *sec,
8147 gc_mark_hook_fn gc_mark_hook)
8148 {
8149 bfd_boolean ret;
8150 asection *group_sec;
8151
8152 sec->gc_mark = 1;
8153
8154 /* Mark all the sections in the group. */
8155 group_sec = elf_section_data (sec)->next_in_group;
8156 if (group_sec && !group_sec->gc_mark)
8157 if (!elf_gc_mark (info, group_sec, gc_mark_hook))
8158 return FALSE;
8159
8160 /* Look through the section relocs. */
8161 ret = TRUE;
8162 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
8163 {
8164 Elf_Internal_Rela *relstart, *rel, *relend;
8165 Elf_Internal_Shdr *symtab_hdr;
8166 struct elf_link_hash_entry **sym_hashes;
8167 size_t nlocsyms;
8168 size_t extsymoff;
8169 bfd *input_bfd = sec->owner;
8170 const struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
8171 Elf_Internal_Sym *isym = NULL;
8172 int r_sym_shift;
8173
8174 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8175 sym_hashes = elf_sym_hashes (input_bfd);
8176
8177 /* Read the local symbols. */
8178 if (elf_bad_symtab (input_bfd))
8179 {
8180 nlocsyms = symtab_hdr->sh_size / bed->s->sizeof_sym;
8181 extsymoff = 0;
8182 }
8183 else
8184 extsymoff = nlocsyms = symtab_hdr->sh_info;
8185
8186 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
8187 if (isym == NULL && nlocsyms != 0)
8188 {
8189 isym = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, nlocsyms, 0,
8190 NULL, NULL, NULL);
8191 if (isym == NULL)
8192 return FALSE;
8193 }
8194
8195 /* Read the relocations. */
8196 relstart = _bfd_elf_link_read_relocs (input_bfd, sec, NULL, NULL,
8197 info->keep_memory);
8198 if (relstart == NULL)
8199 {
8200 ret = FALSE;
8201 goto out1;
8202 }
8203 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8204
8205 if (bed->s->arch_size == 32)
8206 r_sym_shift = 8;
8207 else
8208 r_sym_shift = 32;
8209
8210 for (rel = relstart; rel < relend; rel++)
8211 {
8212 unsigned long r_symndx;
8213 asection *rsec;
8214 struct elf_link_hash_entry *h;
8215
8216 r_symndx = rel->r_info >> r_sym_shift;
8217 if (r_symndx == 0)
8218 continue;
8219
8220 if (r_symndx >= nlocsyms
8221 || ELF_ST_BIND (isym[r_symndx].st_info) != STB_LOCAL)
8222 {
8223 h = sym_hashes[r_symndx - extsymoff];
8224 while (h->root.type == bfd_link_hash_indirect
8225 || h->root.type == bfd_link_hash_warning)
8226 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8227 rsec = (*gc_mark_hook) (sec, info, rel, h, NULL);
8228 }
8229 else
8230 {
8231 rsec = (*gc_mark_hook) (sec, info, rel, NULL, &isym[r_symndx]);
8232 }
8233
8234 if (rsec && !rsec->gc_mark)
8235 {
8236 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
8237 rsec->gc_mark = 1;
8238 else if (!elf_gc_mark (info, rsec, gc_mark_hook))
8239 {
8240 ret = FALSE;
8241 goto out2;
8242 }
8243 }
8244 }
8245
8246 out2:
8247 if (elf_section_data (sec)->relocs != relstart)
8248 free (relstart);
8249 out1:
8250 if (isym != NULL && symtab_hdr->contents != (unsigned char *) isym)
8251 {
8252 if (! info->keep_memory)
8253 free (isym);
8254 else
8255 symtab_hdr->contents = (unsigned char *) isym;
8256 }
8257 }
8258
8259 return ret;
8260 }
8261
8262 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
8263
8264 static bfd_boolean
8265 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *idxptr)
8266 {
8267 int *idx = idxptr;
8268
8269 if (h->root.type == bfd_link_hash_warning)
8270 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8271
8272 if (h->dynindx != -1
8273 && ((h->root.type != bfd_link_hash_defined
8274 && h->root.type != bfd_link_hash_defweak)
8275 || h->root.u.def.section->gc_mark))
8276 h->dynindx = (*idx)++;
8277
8278 return TRUE;
8279 }
8280
8281 /* The sweep phase of garbage collection. Remove all garbage sections. */
8282
8283 typedef bfd_boolean (*gc_sweep_hook_fn)
8284 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
8285
8286 static bfd_boolean
8287 elf_gc_sweep (struct bfd_link_info *info, gc_sweep_hook_fn gc_sweep_hook)
8288 {
8289 bfd *sub;
8290
8291 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8292 {
8293 asection *o;
8294
8295 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
8296 continue;
8297
8298 for (o = sub->sections; o != NULL; o = o->next)
8299 {
8300 /* Keep special sections. Keep .debug sections. */
8301 if ((o->flags & SEC_LINKER_CREATED)
8302 || (o->flags & SEC_DEBUGGING))
8303 o->gc_mark = 1;
8304
8305 if (o->gc_mark)
8306 continue;
8307
8308 /* Skip sweeping sections already excluded. */
8309 if (o->flags & SEC_EXCLUDE)
8310 continue;
8311
8312 /* Since this is early in the link process, it is simple
8313 to remove a section from the output. */
8314 o->flags |= SEC_EXCLUDE;
8315
8316 /* But we also have to update some of the relocation
8317 info we collected before. */
8318 if (gc_sweep_hook
8319 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
8320 {
8321 Elf_Internal_Rela *internal_relocs;
8322 bfd_boolean r;
8323
8324 internal_relocs
8325 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
8326 info->keep_memory);
8327 if (internal_relocs == NULL)
8328 return FALSE;
8329
8330 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
8331
8332 if (elf_section_data (o)->relocs != internal_relocs)
8333 free (internal_relocs);
8334
8335 if (!r)
8336 return FALSE;
8337 }
8338 }
8339 }
8340
8341 /* Remove the symbols that were in the swept sections from the dynamic
8342 symbol table. GCFIXME: Anyone know how to get them out of the
8343 static symbol table as well? */
8344 {
8345 int i = 0;
8346
8347 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol, &i);
8348
8349 elf_hash_table (info)->dynsymcount = i;
8350 }
8351
8352 return TRUE;
8353 }
8354
8355 /* Propagate collected vtable information. This is called through
8356 elf_link_hash_traverse. */
8357
8358 static bfd_boolean
8359 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
8360 {
8361 if (h->root.type == bfd_link_hash_warning)
8362 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8363
8364 /* Those that are not vtables. */
8365 if (h->vtable_parent == NULL)
8366 return TRUE;
8367
8368 /* Those vtables that do not have parents, we cannot merge. */
8369 if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
8370 return TRUE;
8371
8372 /* If we've already been done, exit. */
8373 if (h->vtable_entries_used && h->vtable_entries_used[-1])
8374 return TRUE;
8375
8376 /* Make sure the parent's table is up to date. */
8377 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
8378
8379 if (h->vtable_entries_used == NULL)
8380 {
8381 /* None of this table's entries were referenced. Re-use the
8382 parent's table. */
8383 h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
8384 h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
8385 }
8386 else
8387 {
8388 size_t n;
8389 bfd_boolean *cu, *pu;
8390
8391 /* Or the parent's entries into ours. */
8392 cu = h->vtable_entries_used;
8393 cu[-1] = TRUE;
8394 pu = h->vtable_parent->vtable_entries_used;
8395 if (pu != NULL)
8396 {
8397 const struct elf_backend_data *bed;
8398 unsigned int log_file_align;
8399
8400 bed = get_elf_backend_data (h->root.u.def.section->owner);
8401 log_file_align = bed->s->log_file_align;
8402 n = h->vtable_parent->vtable_entries_size >> log_file_align;
8403 while (n--)
8404 {
8405 if (*pu)
8406 *cu = TRUE;
8407 pu++;
8408 cu++;
8409 }
8410 }
8411 }
8412
8413 return TRUE;
8414 }
8415
8416 static bfd_boolean
8417 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
8418 {
8419 asection *sec;
8420 bfd_vma hstart, hend;
8421 Elf_Internal_Rela *relstart, *relend, *rel;
8422 const struct elf_backend_data *bed;
8423 unsigned int log_file_align;
8424
8425 if (h->root.type == bfd_link_hash_warning)
8426 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8427
8428 /* Take care of both those symbols that do not describe vtables as
8429 well as those that are not loaded. */
8430 if (h->vtable_parent == NULL)
8431 return TRUE;
8432
8433 BFD_ASSERT (h->root.type == bfd_link_hash_defined
8434 || h->root.type == bfd_link_hash_defweak);
8435
8436 sec = h->root.u.def.section;
8437 hstart = h->root.u.def.value;
8438 hend = hstart + h->size;
8439
8440 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
8441 if (!relstart)
8442 return *(bfd_boolean *) okp = FALSE;
8443 bed = get_elf_backend_data (sec->owner);
8444 log_file_align = bed->s->log_file_align;
8445
8446 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8447
8448 for (rel = relstart; rel < relend; ++rel)
8449 if (rel->r_offset >= hstart && rel->r_offset < hend)
8450 {
8451 /* If the entry is in use, do nothing. */
8452 if (h->vtable_entries_used
8453 && (rel->r_offset - hstart) < h->vtable_entries_size)
8454 {
8455 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
8456 if (h->vtable_entries_used[entry])
8457 continue;
8458 }
8459 /* Otherwise, kill it. */
8460 rel->r_offset = rel->r_info = rel->r_addend = 0;
8461 }
8462
8463 return TRUE;
8464 }
8465
8466 /* Mark sections containing dynamically referenced symbols. This is called
8467 through elf_link_hash_traverse. */
8468
8469 static bfd_boolean
8470 elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h,
8471 void *okp ATTRIBUTE_UNUSED)
8472 {
8473 if (h->root.type == bfd_link_hash_warning)
8474 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8475
8476 if ((h->root.type == bfd_link_hash_defined
8477 || h->root.type == bfd_link_hash_defweak)
8478 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC))
8479 h->root.u.def.section->flags |= SEC_KEEP;
8480
8481 return TRUE;
8482 }
8483
8484 /* Do mark and sweep of unused sections. */
8485
8486 bfd_boolean
8487 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
8488 {
8489 bfd_boolean ok = TRUE;
8490 bfd *sub;
8491 asection * (*gc_mark_hook)
8492 (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
8493 struct elf_link_hash_entry *h, Elf_Internal_Sym *);
8494
8495 if (!get_elf_backend_data (abfd)->can_gc_sections
8496 || info->relocatable
8497 || info->emitrelocations
8498 || info->shared
8499 || !is_elf_hash_table (info->hash))
8500 {
8501 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
8502 return TRUE;
8503 }
8504
8505 /* Apply transitive closure to the vtable entry usage info. */
8506 elf_link_hash_traverse (elf_hash_table (info),
8507 elf_gc_propagate_vtable_entries_used,
8508 &ok);
8509 if (!ok)
8510 return FALSE;
8511
8512 /* Kill the vtable relocations that were not used. */
8513 elf_link_hash_traverse (elf_hash_table (info),
8514 elf_gc_smash_unused_vtentry_relocs,
8515 &ok);
8516 if (!ok)
8517 return FALSE;
8518
8519 /* Mark dynamically referenced symbols. */
8520 if (elf_hash_table (info)->dynamic_sections_created)
8521 elf_link_hash_traverse (elf_hash_table (info),
8522 elf_gc_mark_dynamic_ref_symbol,
8523 &ok);
8524 if (!ok)
8525 return FALSE;
8526
8527 /* Grovel through relocs to find out who stays ... */
8528 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
8529 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8530 {
8531 asection *o;
8532
8533 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
8534 continue;
8535
8536 for (o = sub->sections; o != NULL; o = o->next)
8537 {
8538 if (o->flags & SEC_KEEP)
8539 {
8540 /* _bfd_elf_discard_section_eh_frame knows how to discard
8541 orphaned FDEs so don't mark sections referenced by the
8542 EH frame section. */
8543 if (strcmp (o->name, ".eh_frame") == 0)
8544 o->gc_mark = 1;
8545 else if (!elf_gc_mark (info, o, gc_mark_hook))
8546 return FALSE;
8547 }
8548 }
8549 }
8550
8551 /* ... and mark SEC_EXCLUDE for those that go. */
8552 if (!elf_gc_sweep (info, get_elf_backend_data (abfd)->gc_sweep_hook))
8553 return FALSE;
8554
8555 return TRUE;
8556 }
8557 \f
8558 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
8559
8560 bfd_boolean
8561 bfd_elf_gc_record_vtinherit (bfd *abfd,
8562 asection *sec,
8563 struct elf_link_hash_entry *h,
8564 bfd_vma offset)
8565 {
8566 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
8567 struct elf_link_hash_entry **search, *child;
8568 bfd_size_type extsymcount;
8569 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8570
8571 /* The sh_info field of the symtab header tells us where the
8572 external symbols start. We don't care about the local symbols at
8573 this point. */
8574 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
8575 if (!elf_bad_symtab (abfd))
8576 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
8577
8578 sym_hashes = elf_sym_hashes (abfd);
8579 sym_hashes_end = sym_hashes + extsymcount;
8580
8581 /* Hunt down the child symbol, which is in this section at the same
8582 offset as the relocation. */
8583 for (search = sym_hashes; search != sym_hashes_end; ++search)
8584 {
8585 if ((child = *search) != NULL
8586 && (child->root.type == bfd_link_hash_defined
8587 || child->root.type == bfd_link_hash_defweak)
8588 && child->root.u.def.section == sec
8589 && child->root.u.def.value == offset)
8590 goto win;
8591 }
8592
8593 (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
8594 bfd_archive_filename (abfd), sec->name,
8595 (unsigned long) offset);
8596 bfd_set_error (bfd_error_invalid_operation);
8597 return FALSE;
8598
8599 win:
8600 if (!h)
8601 {
8602 /* This *should* only be the absolute section. It could potentially
8603 be that someone has defined a non-global vtable though, which
8604 would be bad. It isn't worth paging in the local symbols to be
8605 sure though; that case should simply be handled by the assembler. */
8606
8607 child->vtable_parent = (struct elf_link_hash_entry *) -1;
8608 }
8609 else
8610 child->vtable_parent = h;
8611
8612 return TRUE;
8613 }
8614
8615 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
8616
8617 bfd_boolean
8618 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
8619 asection *sec ATTRIBUTE_UNUSED,
8620 struct elf_link_hash_entry *h,
8621 bfd_vma addend)
8622 {
8623 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8624 unsigned int log_file_align = bed->s->log_file_align;
8625
8626 if (addend >= h->vtable_entries_size)
8627 {
8628 size_t size, bytes, file_align;
8629 bfd_boolean *ptr = h->vtable_entries_used;
8630
8631 /* While the symbol is undefined, we have to be prepared to handle
8632 a zero size. */
8633 file_align = 1 << log_file_align;
8634 if (h->root.type == bfd_link_hash_undefined)
8635 size = addend + file_align;
8636 else
8637 {
8638 size = h->size;
8639 if (addend >= size)
8640 {
8641 /* Oops! We've got a reference past the defined end of
8642 the table. This is probably a bug -- shall we warn? */
8643 size = addend + file_align;
8644 }
8645 }
8646 size = (size + file_align - 1) & -file_align;
8647
8648 /* Allocate one extra entry for use as a "done" flag for the
8649 consolidation pass. */
8650 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
8651
8652 if (ptr)
8653 {
8654 ptr = bfd_realloc (ptr - 1, bytes);
8655
8656 if (ptr != NULL)
8657 {
8658 size_t oldbytes;
8659
8660 oldbytes = (((h->vtable_entries_size >> log_file_align) + 1)
8661 * sizeof (bfd_boolean));
8662 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
8663 }
8664 }
8665 else
8666 ptr = bfd_zmalloc (bytes);
8667
8668 if (ptr == NULL)
8669 return FALSE;
8670
8671 /* And arrange for that done flag to be at index -1. */
8672 h->vtable_entries_used = ptr + 1;
8673 h->vtable_entries_size = size;
8674 }
8675
8676 h->vtable_entries_used[addend >> log_file_align] = TRUE;
8677
8678 return TRUE;
8679 }
8680
8681 struct alloc_got_off_arg {
8682 bfd_vma gotoff;
8683 unsigned int got_elt_size;
8684 };
8685
8686 /* We need a special top-level link routine to convert got reference counts
8687 to real got offsets. */
8688
8689 static bfd_boolean
8690 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
8691 {
8692 struct alloc_got_off_arg *gofarg = arg;
8693
8694 if (h->root.type == bfd_link_hash_warning)
8695 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8696
8697 if (h->got.refcount > 0)
8698 {
8699 h->got.offset = gofarg->gotoff;
8700 gofarg->gotoff += gofarg->got_elt_size;
8701 }
8702 else
8703 h->got.offset = (bfd_vma) -1;
8704
8705 return TRUE;
8706 }
8707
8708 /* And an accompanying bit to work out final got entry offsets once
8709 we're done. Should be called from final_link. */
8710
8711 bfd_boolean
8712 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
8713 struct bfd_link_info *info)
8714 {
8715 bfd *i;
8716 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8717 bfd_vma gotoff;
8718 unsigned int got_elt_size = bed->s->arch_size / 8;
8719 struct alloc_got_off_arg gofarg;
8720
8721 if (! is_elf_hash_table (info->hash))
8722 return FALSE;
8723
8724 /* The GOT offset is relative to the .got section, but the GOT header is
8725 put into the .got.plt section, if the backend uses it. */
8726 if (bed->want_got_plt)
8727 gotoff = 0;
8728 else
8729 gotoff = bed->got_header_size;
8730
8731 /* Do the local .got entries first. */
8732 for (i = info->input_bfds; i; i = i->link_next)
8733 {
8734 bfd_signed_vma *local_got;
8735 bfd_size_type j, locsymcount;
8736 Elf_Internal_Shdr *symtab_hdr;
8737
8738 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
8739 continue;
8740
8741 local_got = elf_local_got_refcounts (i);
8742 if (!local_got)
8743 continue;
8744
8745 symtab_hdr = &elf_tdata (i)->symtab_hdr;
8746 if (elf_bad_symtab (i))
8747 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
8748 else
8749 locsymcount = symtab_hdr->sh_info;
8750
8751 for (j = 0; j < locsymcount; ++j)
8752 {
8753 if (local_got[j] > 0)
8754 {
8755 local_got[j] = gotoff;
8756 gotoff += got_elt_size;
8757 }
8758 else
8759 local_got[j] = (bfd_vma) -1;
8760 }
8761 }
8762
8763 /* Then the global .got entries. .plt refcounts are handled by
8764 adjust_dynamic_symbol */
8765 gofarg.gotoff = gotoff;
8766 gofarg.got_elt_size = got_elt_size;
8767 elf_link_hash_traverse (elf_hash_table (info),
8768 elf_gc_allocate_got_offsets,
8769 &gofarg);
8770 return TRUE;
8771 }
8772
8773 /* Many folk need no more in the way of final link than this, once
8774 got entry reference counting is enabled. */
8775
8776 bfd_boolean
8777 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
8778 {
8779 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
8780 return FALSE;
8781
8782 /* Invoke the regular ELF backend linker to do all the work. */
8783 return bfd_elf_final_link (abfd, info);
8784 }
8785
8786 bfd_boolean
8787 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
8788 {
8789 struct elf_reloc_cookie *rcookie = cookie;
8790
8791 if (rcookie->bad_symtab)
8792 rcookie->rel = rcookie->rels;
8793
8794 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
8795 {
8796 unsigned long r_symndx;
8797
8798 if (! rcookie->bad_symtab)
8799 if (rcookie->rel->r_offset > offset)
8800 return FALSE;
8801 if (rcookie->rel->r_offset != offset)
8802 continue;
8803
8804 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
8805 if (r_symndx == SHN_UNDEF)
8806 return TRUE;
8807
8808 if (r_symndx >= rcookie->locsymcount
8809 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
8810 {
8811 struct elf_link_hash_entry *h;
8812
8813 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
8814
8815 while (h->root.type == bfd_link_hash_indirect
8816 || h->root.type == bfd_link_hash_warning)
8817 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8818
8819 if ((h->root.type == bfd_link_hash_defined
8820 || h->root.type == bfd_link_hash_defweak)
8821 && elf_discarded_section (h->root.u.def.section))
8822 return TRUE;
8823 else
8824 return FALSE;
8825 }
8826 else
8827 {
8828 /* It's not a relocation against a global symbol,
8829 but it could be a relocation against a local
8830 symbol for a discarded section. */
8831 asection *isec;
8832 Elf_Internal_Sym *isym;
8833
8834 /* Need to: get the symbol; get the section. */
8835 isym = &rcookie->locsyms[r_symndx];
8836 if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
8837 {
8838 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
8839 if (isec != NULL && elf_discarded_section (isec))
8840 return TRUE;
8841 }
8842 }
8843 return FALSE;
8844 }
8845 return FALSE;
8846 }
8847
8848 /* Discard unneeded references to discarded sections.
8849 Returns TRUE if any section's size was changed. */
8850 /* This function assumes that the relocations are in sorted order,
8851 which is true for all known assemblers. */
8852
8853 bfd_boolean
8854 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
8855 {
8856 struct elf_reloc_cookie cookie;
8857 asection *stab, *eh;
8858 Elf_Internal_Shdr *symtab_hdr;
8859 const struct elf_backend_data *bed;
8860 bfd *abfd;
8861 unsigned int count;
8862 bfd_boolean ret = FALSE;
8863
8864 if (info->traditional_format
8865 || !is_elf_hash_table (info->hash))
8866 return FALSE;
8867
8868 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
8869 {
8870 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
8871 continue;
8872
8873 bed = get_elf_backend_data (abfd);
8874
8875 if ((abfd->flags & DYNAMIC) != 0)
8876 continue;
8877
8878 eh = bfd_get_section_by_name (abfd, ".eh_frame");
8879 if (info->relocatable
8880 || (eh != NULL
8881 && (eh->size == 0
8882 || bfd_is_abs_section (eh->output_section))))
8883 eh = NULL;
8884
8885 stab = bfd_get_section_by_name (abfd, ".stab");
8886 if (stab != NULL
8887 && (stab->size == 0
8888 || bfd_is_abs_section (stab->output_section)
8889 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
8890 stab = NULL;
8891
8892 if (stab == NULL
8893 && eh == NULL
8894 && bed->elf_backend_discard_info == NULL)
8895 continue;
8896
8897 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8898 cookie.abfd = abfd;
8899 cookie.sym_hashes = elf_sym_hashes (abfd);
8900 cookie.bad_symtab = elf_bad_symtab (abfd);
8901 if (cookie.bad_symtab)
8902 {
8903 cookie.locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
8904 cookie.extsymoff = 0;
8905 }
8906 else
8907 {
8908 cookie.locsymcount = symtab_hdr->sh_info;
8909 cookie.extsymoff = symtab_hdr->sh_info;
8910 }
8911
8912 if (bed->s->arch_size == 32)
8913 cookie.r_sym_shift = 8;
8914 else
8915 cookie.r_sym_shift = 32;
8916
8917 cookie.locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
8918 if (cookie.locsyms == NULL && cookie.locsymcount != 0)
8919 {
8920 cookie.locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8921 cookie.locsymcount, 0,
8922 NULL, NULL, NULL);
8923 if (cookie.locsyms == NULL)
8924 return FALSE;
8925 }
8926
8927 if (stab != NULL)
8928 {
8929 cookie.rels = NULL;
8930 count = stab->reloc_count;
8931 if (count != 0)
8932 cookie.rels = _bfd_elf_link_read_relocs (abfd, stab, NULL, NULL,
8933 info->keep_memory);
8934 if (cookie.rels != NULL)
8935 {
8936 cookie.rel = cookie.rels;
8937 cookie.relend = cookie.rels;
8938 cookie.relend += count * bed->s->int_rels_per_ext_rel;
8939 if (_bfd_discard_section_stabs (abfd, stab,
8940 elf_section_data (stab)->sec_info,
8941 bfd_elf_reloc_symbol_deleted_p,
8942 &cookie))
8943 ret = TRUE;
8944 if (elf_section_data (stab)->relocs != cookie.rels)
8945 free (cookie.rels);
8946 }
8947 }
8948
8949 if (eh != NULL)
8950 {
8951 cookie.rels = NULL;
8952 count = eh->reloc_count;
8953 if (count != 0)
8954 cookie.rels = _bfd_elf_link_read_relocs (abfd, eh, NULL, NULL,
8955 info->keep_memory);
8956 cookie.rel = cookie.rels;
8957 cookie.relend = cookie.rels;
8958 if (cookie.rels != NULL)
8959 cookie.relend += count * bed->s->int_rels_per_ext_rel;
8960
8961 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
8962 bfd_elf_reloc_symbol_deleted_p,
8963 &cookie))
8964 ret = TRUE;
8965
8966 if (cookie.rels != NULL
8967 && elf_section_data (eh)->relocs != cookie.rels)
8968 free (cookie.rels);
8969 }
8970
8971 if (bed->elf_backend_discard_info != NULL
8972 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
8973 ret = TRUE;
8974
8975 if (cookie.locsyms != NULL
8976 && symtab_hdr->contents != (unsigned char *) cookie.locsyms)
8977 {
8978 if (! info->keep_memory)
8979 free (cookie.locsyms);
8980 else
8981 symtab_hdr->contents = (unsigned char *) cookie.locsyms;
8982 }
8983 }
8984
8985 if (info->eh_frame_hdr
8986 && !info->relocatable
8987 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
8988 ret = TRUE;
8989
8990 return ret;
8991 }
This page took 0.234078 seconds and 5 git commands to generate.