57819e9958930554d87b7e45ae5ed824808d966b
[deliverable/binutils-gdb.git] / bfd / elflink.h
1 /* ELF linker support.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 /* ELF linker code. */
22
23 /* This struct is used to pass information to routines called via
24 elf_link_hash_traverse which must return failure. */
25
26 struct elf_info_failed
27 {
28 boolean failed;
29 struct bfd_link_info *info;
30 struct bfd_elf_version_tree *verdefs;
31 };
32
33 static boolean is_global_data_symbol_definition
34 PARAMS ((bfd *, Elf_Internal_Sym *));
35 static boolean elf_link_is_defined_archive_symbol
36 PARAMS ((bfd *, carsym *));
37 static boolean elf_link_add_object_symbols
38 PARAMS ((bfd *, struct bfd_link_info *));
39 static boolean elf_link_add_archive_symbols
40 PARAMS ((bfd *, struct bfd_link_info *));
41 static boolean elf_merge_symbol
42 PARAMS ((bfd *, struct bfd_link_info *, const char *,
43 Elf_Internal_Sym *, asection **, bfd_vma *,
44 struct elf_link_hash_entry **, boolean *, boolean *,
45 boolean *, boolean));
46 static boolean elf_add_default_symbol
47 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
48 const char *, Elf_Internal_Sym *, asection **, bfd_vma *,
49 boolean *, boolean, boolean));
50 static boolean elf_export_symbol
51 PARAMS ((struct elf_link_hash_entry *, PTR));
52 static boolean elf_finalize_dynstr
53 PARAMS ((bfd *, struct bfd_link_info *));
54 static boolean elf_fix_symbol_flags
55 PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *));
56 static boolean elf_adjust_dynamic_symbol
57 PARAMS ((struct elf_link_hash_entry *, PTR));
58 static boolean elf_link_find_version_dependencies
59 PARAMS ((struct elf_link_hash_entry *, PTR));
60 static boolean elf_link_assign_sym_version
61 PARAMS ((struct elf_link_hash_entry *, PTR));
62 static boolean elf_collect_hash_codes
63 PARAMS ((struct elf_link_hash_entry *, PTR));
64 static boolean elf_link_read_relocs_from_section
65 PARAMS ((bfd *, Elf_Internal_Shdr *, PTR, Elf_Internal_Rela *));
66 static size_t compute_bucket_count
67 PARAMS ((struct bfd_link_info *));
68 static boolean elf_link_output_relocs
69 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *));
70 static boolean elf_link_size_reloc_section
71 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
72 static void elf_link_adjust_relocs
73 PARAMS ((bfd *, Elf_Internal_Shdr *, unsigned int,
74 struct elf_link_hash_entry **));
75 static int elf_link_sort_cmp1
76 PARAMS ((const void *, const void *));
77 static int elf_link_sort_cmp2
78 PARAMS ((const void *, const void *));
79 static size_t elf_link_sort_relocs
80 PARAMS ((bfd *, struct bfd_link_info *, asection **));
81 static boolean elf_section_ignore_discarded_relocs
82 PARAMS ((asection *));
83
84 /* Given an ELF BFD, add symbols to the global hash table as
85 appropriate. */
86
87 boolean
88 elf_bfd_link_add_symbols (abfd, info)
89 bfd *abfd;
90 struct bfd_link_info *info;
91 {
92 switch (bfd_get_format (abfd))
93 {
94 case bfd_object:
95 return elf_link_add_object_symbols (abfd, info);
96 case bfd_archive:
97 return elf_link_add_archive_symbols (abfd, info);
98 default:
99 bfd_set_error (bfd_error_wrong_format);
100 return false;
101 }
102 }
103 \f
104 /* Return true iff this is a non-common, definition of a non-function symbol. */
105 static boolean
106 is_global_data_symbol_definition (abfd, sym)
107 bfd * abfd ATTRIBUTE_UNUSED;
108 Elf_Internal_Sym * sym;
109 {
110 /* Local symbols do not count, but target specific ones might. */
111 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
112 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
113 return false;
114
115 /* Function symbols do not count. */
116 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC)
117 return false;
118
119 /* If the section is undefined, then so is the symbol. */
120 if (sym->st_shndx == SHN_UNDEF)
121 return false;
122
123 /* If the symbol is defined in the common section, then
124 it is a common definition and so does not count. */
125 if (sym->st_shndx == SHN_COMMON)
126 return false;
127
128 /* If the symbol is in a target specific section then we
129 must rely upon the backend to tell us what it is. */
130 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
131 /* FIXME - this function is not coded yet:
132
133 return _bfd_is_global_symbol_definition (abfd, sym);
134
135 Instead for now assume that the definition is not global,
136 Even if this is wrong, at least the linker will behave
137 in the same way that it used to do. */
138 return false;
139
140 return true;
141 }
142
143 /* Search the symbol table of the archive element of the archive ABFD
144 whose archive map contains a mention of SYMDEF, and determine if
145 the symbol is defined in this element. */
146 static boolean
147 elf_link_is_defined_archive_symbol (abfd, symdef)
148 bfd * abfd;
149 carsym * symdef;
150 {
151 Elf_Internal_Shdr * hdr;
152 bfd_size_type symcount;
153 bfd_size_type extsymcount;
154 bfd_size_type extsymoff;
155 Elf_Internal_Sym *isymbuf;
156 Elf_Internal_Sym *isym;
157 Elf_Internal_Sym *isymend;
158 boolean result;
159
160 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
161 if (abfd == (bfd *) NULL)
162 return false;
163
164 if (! bfd_check_format (abfd, bfd_object))
165 return false;
166
167 /* If we have already included the element containing this symbol in the
168 link then we do not need to include it again. Just claim that any symbol
169 it contains is not a definition, so that our caller will not decide to
170 (re)include this element. */
171 if (abfd->archive_pass)
172 return false;
173
174 /* Select the appropriate symbol table. */
175 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
176 hdr = &elf_tdata (abfd)->symtab_hdr;
177 else
178 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
179
180 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
181
182 /* The sh_info field of the symtab header tells us where the
183 external symbols start. We don't care about the local symbols. */
184 if (elf_bad_symtab (abfd))
185 {
186 extsymcount = symcount;
187 extsymoff = 0;
188 }
189 else
190 {
191 extsymcount = symcount - hdr->sh_info;
192 extsymoff = hdr->sh_info;
193 }
194
195 if (extsymcount == 0)
196 return false;
197
198 /* Read in the symbol table. */
199 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
200 NULL, NULL, NULL);
201 if (isymbuf == NULL)
202 return false;
203
204 /* Scan the symbol table looking for SYMDEF. */
205 result = false;
206 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
207 {
208 const char *name;
209
210 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
211 isym->st_name);
212 if (name == (const char *) NULL)
213 break;
214
215 if (strcmp (name, symdef->name) == 0)
216 {
217 result = is_global_data_symbol_definition (abfd, isym);
218 break;
219 }
220 }
221
222 free (isymbuf);
223
224 return result;
225 }
226 \f
227 /* Add symbols from an ELF archive file to the linker hash table. We
228 don't use _bfd_generic_link_add_archive_symbols because of a
229 problem which arises on UnixWare. The UnixWare libc.so is an
230 archive which includes an entry libc.so.1 which defines a bunch of
231 symbols. The libc.so archive also includes a number of other
232 object files, which also define symbols, some of which are the same
233 as those defined in libc.so.1. Correct linking requires that we
234 consider each object file in turn, and include it if it defines any
235 symbols we need. _bfd_generic_link_add_archive_symbols does not do
236 this; it looks through the list of undefined symbols, and includes
237 any object file which defines them. When this algorithm is used on
238 UnixWare, it winds up pulling in libc.so.1 early and defining a
239 bunch of symbols. This means that some of the other objects in the
240 archive are not included in the link, which is incorrect since they
241 precede libc.so.1 in the archive.
242
243 Fortunately, ELF archive handling is simpler than that done by
244 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
245 oddities. In ELF, if we find a symbol in the archive map, and the
246 symbol is currently undefined, we know that we must pull in that
247 object file.
248
249 Unfortunately, we do have to make multiple passes over the symbol
250 table until nothing further is resolved. */
251
252 static boolean
253 elf_link_add_archive_symbols (abfd, info)
254 bfd *abfd;
255 struct bfd_link_info *info;
256 {
257 symindex c;
258 boolean *defined = NULL;
259 boolean *included = NULL;
260 carsym *symdefs;
261 boolean loop;
262 bfd_size_type amt;
263
264 if (! bfd_has_map (abfd))
265 {
266 /* An empty archive is a special case. */
267 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
268 return true;
269 bfd_set_error (bfd_error_no_armap);
270 return false;
271 }
272
273 /* Keep track of all symbols we know to be already defined, and all
274 files we know to be already included. This is to speed up the
275 second and subsequent passes. */
276 c = bfd_ardata (abfd)->symdef_count;
277 if (c == 0)
278 return true;
279 amt = c;
280 amt *= sizeof (boolean);
281 defined = (boolean *) bfd_zmalloc (amt);
282 included = (boolean *) bfd_zmalloc (amt);
283 if (defined == (boolean *) NULL || included == (boolean *) NULL)
284 goto error_return;
285
286 symdefs = bfd_ardata (abfd)->symdefs;
287
288 do
289 {
290 file_ptr last;
291 symindex i;
292 carsym *symdef;
293 carsym *symdefend;
294
295 loop = false;
296 last = -1;
297
298 symdef = symdefs;
299 symdefend = symdef + c;
300 for (i = 0; symdef < symdefend; symdef++, i++)
301 {
302 struct elf_link_hash_entry *h;
303 bfd *element;
304 struct bfd_link_hash_entry *undefs_tail;
305 symindex mark;
306
307 if (defined[i] || included[i])
308 continue;
309 if (symdef->file_offset == last)
310 {
311 included[i] = true;
312 continue;
313 }
314
315 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
316 false, false, false);
317
318 if (h == NULL)
319 {
320 char *p, *copy;
321 size_t len, first;
322
323 /* If this is a default version (the name contains @@),
324 look up the symbol again with only one `@' as well
325 as without the version. The effect is that references
326 to the symbol with and without the version will be
327 matched by the default symbol in the archive. */
328
329 p = strchr (symdef->name, ELF_VER_CHR);
330 if (p == NULL || p[1] != ELF_VER_CHR)
331 continue;
332
333 /* First check with only one `@'. */
334 len = strlen (symdef->name);
335 copy = bfd_alloc (abfd, (bfd_size_type) len);
336 if (copy == NULL)
337 goto error_return;
338 first = p - symdef->name + 1;
339 memcpy (copy, symdef->name, first);
340 memcpy (copy + first, symdef->name + first + 1, len - first);
341
342 h = elf_link_hash_lookup (elf_hash_table (info), copy,
343 false, false, false);
344
345 if (h == NULL)
346 {
347 /* We also need to check references to the symbol
348 without the version. */
349
350 copy[first - 1] = '\0';
351 h = elf_link_hash_lookup (elf_hash_table (info),
352 copy, false, false, false);
353 }
354
355 bfd_release (abfd, copy);
356 }
357
358 if (h == NULL)
359 continue;
360
361 if (h->root.type == bfd_link_hash_common)
362 {
363 /* We currently have a common symbol. The archive map contains
364 a reference to this symbol, so we may want to include it. We
365 only want to include it however, if this archive element
366 contains a definition of the symbol, not just another common
367 declaration of it.
368
369 Unfortunately some archivers (including GNU ar) will put
370 declarations of common symbols into their archive maps, as
371 well as real definitions, so we cannot just go by the archive
372 map alone. Instead we must read in the element's symbol
373 table and check that to see what kind of symbol definition
374 this is. */
375 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
376 continue;
377 }
378 else if (h->root.type != bfd_link_hash_undefined)
379 {
380 if (h->root.type != bfd_link_hash_undefweak)
381 defined[i] = true;
382 continue;
383 }
384
385 /* We need to include this archive member. */
386 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
387 if (element == (bfd *) NULL)
388 goto error_return;
389
390 if (! bfd_check_format (element, bfd_object))
391 goto error_return;
392
393 /* Doublecheck that we have not included this object
394 already--it should be impossible, but there may be
395 something wrong with the archive. */
396 if (element->archive_pass != 0)
397 {
398 bfd_set_error (bfd_error_bad_value);
399 goto error_return;
400 }
401 element->archive_pass = 1;
402
403 undefs_tail = info->hash->undefs_tail;
404
405 if (! (*info->callbacks->add_archive_element) (info, element,
406 symdef->name))
407 goto error_return;
408 if (! elf_link_add_object_symbols (element, info))
409 goto error_return;
410
411 /* If there are any new undefined symbols, we need to make
412 another pass through the archive in order to see whether
413 they can be defined. FIXME: This isn't perfect, because
414 common symbols wind up on undefs_tail and because an
415 undefined symbol which is defined later on in this pass
416 does not require another pass. This isn't a bug, but it
417 does make the code less efficient than it could be. */
418 if (undefs_tail != info->hash->undefs_tail)
419 loop = true;
420
421 /* Look backward to mark all symbols from this object file
422 which we have already seen in this pass. */
423 mark = i;
424 do
425 {
426 included[mark] = true;
427 if (mark == 0)
428 break;
429 --mark;
430 }
431 while (symdefs[mark].file_offset == symdef->file_offset);
432
433 /* We mark subsequent symbols from this object file as we go
434 on through the loop. */
435 last = symdef->file_offset;
436 }
437 }
438 while (loop);
439
440 free (defined);
441 free (included);
442
443 return true;
444
445 error_return:
446 if (defined != (boolean *) NULL)
447 free (defined);
448 if (included != (boolean *) NULL)
449 free (included);
450 return false;
451 }
452
453 /* This function is called when we want to define a new symbol. It
454 handles the various cases which arise when we find a definition in
455 a dynamic object, or when there is already a definition in a
456 dynamic object. The new symbol is described by NAME, SYM, PSEC,
457 and PVALUE. We set SYM_HASH to the hash table entry. We set
458 OVERRIDE if the old symbol is overriding a new definition. We set
459 TYPE_CHANGE_OK if it is OK for the type to change. We set
460 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
461 change, we mean that we shouldn't warn if the type or size does
462 change. DT_NEEDED indicates if it comes from a DT_NEEDED entry of
463 a shared object. */
464
465 static boolean
466 elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash,
467 override, type_change_ok, size_change_ok, dt_needed)
468 bfd *abfd;
469 struct bfd_link_info *info;
470 const char *name;
471 Elf_Internal_Sym *sym;
472 asection **psec;
473 bfd_vma *pvalue;
474 struct elf_link_hash_entry **sym_hash;
475 boolean *override;
476 boolean *type_change_ok;
477 boolean *size_change_ok;
478 boolean dt_needed;
479 {
480 asection *sec;
481 struct elf_link_hash_entry *h;
482 int bind;
483 bfd *oldbfd;
484 boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
485
486 *override = false;
487
488 sec = *psec;
489 bind = ELF_ST_BIND (sym->st_info);
490
491 if (! bfd_is_und_section (sec))
492 h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
493 else
494 h = ((struct elf_link_hash_entry *)
495 bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
496 if (h == NULL)
497 return false;
498 *sym_hash = h;
499
500 /* This code is for coping with dynamic objects, and is only useful
501 if we are doing an ELF link. */
502 if (info->hash->creator != abfd->xvec)
503 return true;
504
505 /* For merging, we only care about real symbols. */
506
507 while (h->root.type == bfd_link_hash_indirect
508 || h->root.type == bfd_link_hash_warning)
509 h = (struct elf_link_hash_entry *) h->root.u.i.link;
510
511 /* If we just created the symbol, mark it as being an ELF symbol.
512 Other than that, there is nothing to do--there is no merge issue
513 with a newly defined symbol--so we just return. */
514
515 if (h->root.type == bfd_link_hash_new)
516 {
517 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
518 return true;
519 }
520
521 /* OLDBFD is a BFD associated with the existing symbol. */
522
523 switch (h->root.type)
524 {
525 default:
526 oldbfd = NULL;
527 break;
528
529 case bfd_link_hash_undefined:
530 case bfd_link_hash_undefweak:
531 oldbfd = h->root.u.undef.abfd;
532 break;
533
534 case bfd_link_hash_defined:
535 case bfd_link_hash_defweak:
536 oldbfd = h->root.u.def.section->owner;
537 break;
538
539 case bfd_link_hash_common:
540 oldbfd = h->root.u.c.p->section->owner;
541 break;
542 }
543
544 /* In cases involving weak versioned symbols, we may wind up trying
545 to merge a symbol with itself. Catch that here, to avoid the
546 confusion that results if we try to override a symbol with
547 itself. The additional tests catch cases like
548 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
549 dynamic object, which we do want to handle here. */
550 if (abfd == oldbfd
551 && ((abfd->flags & DYNAMIC) == 0
552 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))
553 return true;
554
555 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
556 respectively, is from a dynamic object. */
557
558 if ((abfd->flags & DYNAMIC) != 0)
559 newdyn = true;
560 else
561 newdyn = false;
562
563 if (oldbfd != NULL)
564 olddyn = (oldbfd->flags & DYNAMIC) != 0;
565 else
566 {
567 asection *hsec;
568
569 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
570 indices used by MIPS ELF. */
571 switch (h->root.type)
572 {
573 default:
574 hsec = NULL;
575 break;
576
577 case bfd_link_hash_defined:
578 case bfd_link_hash_defweak:
579 hsec = h->root.u.def.section;
580 break;
581
582 case bfd_link_hash_common:
583 hsec = h->root.u.c.p->section;
584 break;
585 }
586
587 if (hsec == NULL)
588 olddyn = false;
589 else
590 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
591 }
592
593 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
594 respectively, appear to be a definition rather than reference. */
595
596 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
597 newdef = false;
598 else
599 newdef = true;
600
601 if (h->root.type == bfd_link_hash_undefined
602 || h->root.type == bfd_link_hash_undefweak
603 || h->root.type == bfd_link_hash_common)
604 olddef = false;
605 else
606 olddef = true;
607
608 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
609 symbol, respectively, appears to be a common symbol in a dynamic
610 object. If a symbol appears in an uninitialized section, and is
611 not weak, and is not a function, then it may be a common symbol
612 which was resolved when the dynamic object was created. We want
613 to treat such symbols specially, because they raise special
614 considerations when setting the symbol size: if the symbol
615 appears as a common symbol in a regular object, and the size in
616 the regular object is larger, we must make sure that we use the
617 larger size. This problematic case can always be avoided in C,
618 but it must be handled correctly when using Fortran shared
619 libraries.
620
621 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
622 likewise for OLDDYNCOMMON and OLDDEF.
623
624 Note that this test is just a heuristic, and that it is quite
625 possible to have an uninitialized symbol in a shared object which
626 is really a definition, rather than a common symbol. This could
627 lead to some minor confusion when the symbol really is a common
628 symbol in some regular object. However, I think it will be
629 harmless. */
630
631 if (newdyn
632 && newdef
633 && (sec->flags & SEC_ALLOC) != 0
634 && (sec->flags & SEC_LOAD) == 0
635 && sym->st_size > 0
636 && bind != STB_WEAK
637 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
638 newdyncommon = true;
639 else
640 newdyncommon = false;
641
642 if (olddyn
643 && olddef
644 && h->root.type == bfd_link_hash_defined
645 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
646 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
647 && (h->root.u.def.section->flags & SEC_LOAD) == 0
648 && h->size > 0
649 && h->type != STT_FUNC)
650 olddyncommon = true;
651 else
652 olddyncommon = false;
653
654 /* It's OK to change the type if either the existing symbol or the
655 new symbol is weak unless it comes from a DT_NEEDED entry of
656 a shared object, in which case, the DT_NEEDED entry may not be
657 required at the run time. */
658
659 if ((! dt_needed && h->root.type == bfd_link_hash_defweak)
660 || h->root.type == bfd_link_hash_undefweak
661 || bind == STB_WEAK)
662 *type_change_ok = true;
663
664 /* It's OK to change the size if either the existing symbol or the
665 new symbol is weak, or if the old symbol is undefined. */
666
667 if (*type_change_ok
668 || h->root.type == bfd_link_hash_undefined)
669 *size_change_ok = true;
670
671 /* If both the old and the new symbols look like common symbols in a
672 dynamic object, set the size of the symbol to the larger of the
673 two. */
674
675 if (olddyncommon
676 && newdyncommon
677 && sym->st_size != h->size)
678 {
679 /* Since we think we have two common symbols, issue a multiple
680 common warning if desired. Note that we only warn if the
681 size is different. If the size is the same, we simply let
682 the old symbol override the new one as normally happens with
683 symbols defined in dynamic objects. */
684
685 if (! ((*info->callbacks->multiple_common)
686 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
687 h->size, abfd, bfd_link_hash_common, sym->st_size)))
688 return false;
689
690 if (sym->st_size > h->size)
691 h->size = sym->st_size;
692
693 *size_change_ok = true;
694 }
695
696 /* If we are looking at a dynamic object, and we have found a
697 definition, we need to see if the symbol was already defined by
698 some other object. If so, we want to use the existing
699 definition, and we do not want to report a multiple symbol
700 definition error; we do this by clobbering *PSEC to be
701 bfd_und_section_ptr.
702
703 We treat a common symbol as a definition if the symbol in the
704 shared library is a function, since common symbols always
705 represent variables; this can cause confusion in principle, but
706 any such confusion would seem to indicate an erroneous program or
707 shared library. We also permit a common symbol in a regular
708 object to override a weak symbol in a shared object.
709
710 We prefer a non-weak definition in a shared library to a weak
711 definition in the executable unless it comes from a DT_NEEDED
712 entry of a shared object, in which case, the DT_NEEDED entry
713 may not be required at the run time. */
714
715 if (newdyn
716 && newdef
717 && (olddef
718 || (h->root.type == bfd_link_hash_common
719 && (bind == STB_WEAK
720 || ELF_ST_TYPE (sym->st_info) == STT_FUNC)))
721 && (h->root.type != bfd_link_hash_defweak
722 || dt_needed
723 || bind == STB_WEAK))
724 {
725 *override = true;
726 newdef = false;
727 newdyncommon = false;
728
729 *psec = sec = bfd_und_section_ptr;
730 *size_change_ok = true;
731
732 /* If we get here when the old symbol is a common symbol, then
733 we are explicitly letting it override a weak symbol or
734 function in a dynamic object, and we don't want to warn about
735 a type change. If the old symbol is a defined symbol, a type
736 change warning may still be appropriate. */
737
738 if (h->root.type == bfd_link_hash_common)
739 *type_change_ok = true;
740 }
741
742 /* Handle the special case of an old common symbol merging with a
743 new symbol which looks like a common symbol in a shared object.
744 We change *PSEC and *PVALUE to make the new symbol look like a
745 common symbol, and let _bfd_generic_link_add_one_symbol will do
746 the right thing. */
747
748 if (newdyncommon
749 && h->root.type == bfd_link_hash_common)
750 {
751 *override = true;
752 newdef = false;
753 newdyncommon = false;
754 *pvalue = sym->st_size;
755 *psec = sec = bfd_com_section_ptr;
756 *size_change_ok = true;
757 }
758
759 /* If the old symbol is from a dynamic object, and the new symbol is
760 a definition which is not from a dynamic object, then the new
761 symbol overrides the old symbol. Symbols from regular files
762 always take precedence over symbols from dynamic objects, even if
763 they are defined after the dynamic object in the link.
764
765 As above, we again permit a common symbol in a regular object to
766 override a definition in a shared object if the shared object
767 symbol is a function or is weak.
768
769 As above, we permit a non-weak definition in a shared object to
770 override a weak definition in a regular object. */
771
772 if (! newdyn
773 && (newdef
774 || (bfd_is_com_section (sec)
775 && (h->root.type == bfd_link_hash_defweak
776 || h->type == STT_FUNC)))
777 && olddyn
778 && olddef
779 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
780 && (bind != STB_WEAK
781 || h->root.type == bfd_link_hash_defweak))
782 {
783 /* Change the hash table entry to undefined, and let
784 _bfd_generic_link_add_one_symbol do the right thing with the
785 new definition. */
786
787 h->root.type = bfd_link_hash_undefined;
788 h->root.u.undef.abfd = h->root.u.def.section->owner;
789 *size_change_ok = true;
790
791 olddef = false;
792 olddyncommon = false;
793
794 /* We again permit a type change when a common symbol may be
795 overriding a function. */
796
797 if (bfd_is_com_section (sec))
798 *type_change_ok = true;
799
800 /* This union may have been set to be non-NULL when this symbol
801 was seen in a dynamic object. We must force the union to be
802 NULL, so that it is correct for a regular symbol. */
803
804 h->verinfo.vertree = NULL;
805
806 /* In this special case, if H is the target of an indirection,
807 we want the caller to frob with H rather than with the
808 indirect symbol. That will permit the caller to redefine the
809 target of the indirection, rather than the indirect symbol
810 itself. FIXME: This will break the -y option if we store a
811 symbol with a different name. */
812 *sym_hash = h;
813 }
814
815 /* Handle the special case of a new common symbol merging with an
816 old symbol that looks like it might be a common symbol defined in
817 a shared object. Note that we have already handled the case in
818 which a new common symbol should simply override the definition
819 in the shared library. */
820
821 if (! newdyn
822 && bfd_is_com_section (sec)
823 && olddyncommon)
824 {
825 /* It would be best if we could set the hash table entry to a
826 common symbol, but we don't know what to use for the section
827 or the alignment. */
828 if (! ((*info->callbacks->multiple_common)
829 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
830 h->size, abfd, bfd_link_hash_common, sym->st_size)))
831 return false;
832
833 /* If the predumed common symbol in the dynamic object is
834 larger, pretend that the new symbol has its size. */
835
836 if (h->size > *pvalue)
837 *pvalue = h->size;
838
839 /* FIXME: We no longer know the alignment required by the symbol
840 in the dynamic object, so we just wind up using the one from
841 the regular object. */
842
843 olddef = false;
844 olddyncommon = false;
845
846 h->root.type = bfd_link_hash_undefined;
847 h->root.u.undef.abfd = h->root.u.def.section->owner;
848
849 *size_change_ok = true;
850 *type_change_ok = true;
851
852 h->verinfo.vertree = NULL;
853 }
854
855 /* Handle the special case of a weak definition in a regular object
856 followed by a non-weak definition in a shared object. In this
857 case, we prefer the definition in the shared object unless it
858 comes from a DT_NEEDED entry of a shared object, in which case,
859 the DT_NEEDED entry may not be required at the run time. */
860 if (olddef
861 && ! dt_needed
862 && h->root.type == bfd_link_hash_defweak
863 && newdef
864 && newdyn
865 && bind != STB_WEAK)
866 {
867 /* To make this work we have to frob the flags so that the rest
868 of the code does not think we are using the regular
869 definition. */
870 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
871 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
872 else if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
873 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
874 h->elf_link_hash_flags &= ~ (ELF_LINK_HASH_DEF_REGULAR
875 | ELF_LINK_HASH_DEF_DYNAMIC);
876
877 /* If H is the target of an indirection, we want the caller to
878 use H rather than the indirect symbol. Otherwise if we are
879 defining a new indirect symbol we will wind up attaching it
880 to the entry we are overriding. */
881 *sym_hash = h;
882 }
883
884 /* Handle the special case of a non-weak definition in a shared
885 object followed by a weak definition in a regular object. In
886 this case we prefer to definition in the shared object. To make
887 this work we have to tell the caller to not treat the new symbol
888 as a definition. */
889 if (olddef
890 && olddyn
891 && h->root.type != bfd_link_hash_defweak
892 && newdef
893 && ! newdyn
894 && bind == STB_WEAK)
895 *override = true;
896
897 return true;
898 }
899
900 /* This function is called to create an indirect symbol from the
901 default for the symbol with the default version if needed. The
902 symbol is described by H, NAME, SYM, SEC, VALUE, and OVERRIDE. We
903 set DYNSYM if the new indirect symbol is dynamic. DT_NEEDED
904 indicates if it comes from a DT_NEEDED entry of a shared object. */
905
906 static boolean
907 elf_add_default_symbol (abfd, info, h, name, sym, sec, value,
908 dynsym, override, dt_needed)
909 bfd *abfd;
910 struct bfd_link_info *info;
911 struct elf_link_hash_entry *h;
912 const char *name;
913 Elf_Internal_Sym *sym;
914 asection **sec;
915 bfd_vma *value;
916 boolean *dynsym;
917 boolean override;
918 boolean dt_needed;
919 {
920 boolean type_change_ok;
921 boolean size_change_ok;
922 char *shortname;
923 struct elf_link_hash_entry *hi;
924 struct elf_backend_data *bed;
925 boolean collect;
926 boolean dynamic;
927 char *p;
928 size_t len, shortlen;
929
930 /* If this symbol has a version, and it is the default version, we
931 create an indirect symbol from the default name to the fully
932 decorated name. This will cause external references which do not
933 specify a version to be bound to this version of the symbol. */
934 p = strchr (name, ELF_VER_CHR);
935 if (p == NULL || p[1] != ELF_VER_CHR)
936 return true;
937
938 if (override)
939 {
940 /* We are overridden by an old defition. We need to check if we
941 need to create the indirect symbol from the default name. */
942 hi = elf_link_hash_lookup (elf_hash_table (info), name, true,
943 false, false);
944 BFD_ASSERT (hi != NULL);
945 if (hi == h)
946 return true;
947 while (hi->root.type == bfd_link_hash_indirect
948 || hi->root.type == bfd_link_hash_warning)
949 {
950 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
951 if (hi == h)
952 return true;
953 }
954 }
955
956 bed = get_elf_backend_data (abfd);
957 collect = bed->collect;
958 dynamic = (abfd->flags & DYNAMIC) != 0;
959
960 shortlen = p - name;
961 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
962 if (shortname == NULL)
963 return false;
964 memcpy (shortname, name, shortlen);
965 shortname[shortlen] = '\0';
966
967 /* We are going to create a new symbol. Merge it with any existing
968 symbol with this name. For the purposes of the merge, act as
969 though we were defining the symbol we just defined, although we
970 actually going to define an indirect symbol. */
971 type_change_ok = false;
972 size_change_ok = false;
973 if (! elf_merge_symbol (abfd, info, shortname, sym, sec, value,
974 &hi, &override, &type_change_ok,
975 &size_change_ok, dt_needed))
976 return false;
977
978 if (! override)
979 {
980 if (! (_bfd_generic_link_add_one_symbol
981 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
982 (bfd_vma) 0, name, false, collect,
983 (struct bfd_link_hash_entry **) &hi)))
984 return false;
985 }
986 else
987 {
988 /* In this case the symbol named SHORTNAME is overriding the
989 indirect symbol we want to add. We were planning on making
990 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
991 is the name without a version. NAME is the fully versioned
992 name, and it is the default version.
993
994 Overriding means that we already saw a definition for the
995 symbol SHORTNAME in a regular object, and it is overriding
996 the symbol defined in the dynamic object.
997
998 When this happens, we actually want to change NAME, the
999 symbol we just added, to refer to SHORTNAME. This will cause
1000 references to NAME in the shared object to become references
1001 to SHORTNAME in the regular object. This is what we expect
1002 when we override a function in a shared object: that the
1003 references in the shared object will be mapped to the
1004 definition in the regular object. */
1005
1006 while (hi->root.type == bfd_link_hash_indirect
1007 || hi->root.type == bfd_link_hash_warning)
1008 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1009
1010 h->root.type = bfd_link_hash_indirect;
1011 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1012 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1013 {
1014 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1015 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1016 if (hi->elf_link_hash_flags
1017 & (ELF_LINK_HASH_REF_REGULAR
1018 | ELF_LINK_HASH_DEF_REGULAR))
1019 {
1020 if (! _bfd_elf_link_record_dynamic_symbol (info, hi))
1021 return false;
1022 }
1023 }
1024
1025 /* Now set HI to H, so that the following code will set the
1026 other fields correctly. */
1027 hi = h;
1028 }
1029
1030 /* If there is a duplicate definition somewhere, then HI may not
1031 point to an indirect symbol. We will have reported an error to
1032 the user in that case. */
1033
1034 if (hi->root.type == bfd_link_hash_indirect)
1035 {
1036 struct elf_link_hash_entry *ht;
1037
1038 /* If the symbol became indirect, then we assume that we have
1039 not seen a definition before. */
1040 BFD_ASSERT ((hi->elf_link_hash_flags
1041 & (ELF_LINK_HASH_DEF_DYNAMIC
1042 | ELF_LINK_HASH_DEF_REGULAR)) == 0);
1043
1044 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1045 (*bed->elf_backend_copy_indirect_symbol) (ht, hi);
1046
1047 /* See if the new flags lead us to realize that the symbol must
1048 be dynamic. */
1049 if (! *dynsym)
1050 {
1051 if (! dynamic)
1052 {
1053 if (info->shared
1054 || ((hi->elf_link_hash_flags
1055 & ELF_LINK_HASH_REF_DYNAMIC) != 0))
1056 *dynsym = true;
1057 }
1058 else
1059 {
1060 if ((hi->elf_link_hash_flags
1061 & ELF_LINK_HASH_REF_REGULAR) != 0)
1062 *dynsym = true;
1063 }
1064 }
1065 }
1066
1067 /* We also need to define an indirection from the nondefault version
1068 of the symbol. */
1069
1070 len = strlen (name);
1071 shortname = bfd_hash_allocate (&info->hash->table, len);
1072 if (shortname == NULL)
1073 return false;
1074 memcpy (shortname, name, shortlen);
1075 memcpy (shortname + shortlen, p + 1, len - shortlen);
1076
1077 /* Once again, merge with any existing symbol. */
1078 type_change_ok = false;
1079 size_change_ok = false;
1080 if (! elf_merge_symbol (abfd, info, shortname, sym, sec, value,
1081 &hi, &override, &type_change_ok,
1082 &size_change_ok, dt_needed))
1083 return false;
1084
1085 if (override)
1086 {
1087 /* Here SHORTNAME is a versioned name, so we don't expect to see
1088 the type of override we do in the case above. */
1089 (*_bfd_error_handler)
1090 (_("%s: warning: unexpected redefinition of `%s'"),
1091 bfd_archive_filename (abfd), shortname);
1092 }
1093 else
1094 {
1095 if (! (_bfd_generic_link_add_one_symbol
1096 (info, abfd, shortname, BSF_INDIRECT,
1097 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1098 collect, (struct bfd_link_hash_entry **) &hi)))
1099 return false;
1100
1101 /* If there is a duplicate definition somewhere, then HI may not
1102 point to an indirect symbol. We will have reported an error
1103 to the user in that case. */
1104
1105 if (hi->root.type == bfd_link_hash_indirect)
1106 {
1107 /* If the symbol became indirect, then we assume that we have
1108 not seen a definition before. */
1109 BFD_ASSERT ((hi->elf_link_hash_flags
1110 & (ELF_LINK_HASH_DEF_DYNAMIC
1111 | ELF_LINK_HASH_DEF_REGULAR)) == 0);
1112
1113 (*bed->elf_backend_copy_indirect_symbol) (h, hi);
1114
1115 /* See if the new flags lead us to realize that the symbol
1116 must be dynamic. */
1117 if (! *dynsym)
1118 {
1119 if (! dynamic)
1120 {
1121 if (info->shared
1122 || ((hi->elf_link_hash_flags
1123 & ELF_LINK_HASH_REF_DYNAMIC) != 0))
1124 *dynsym = true;
1125 }
1126 else
1127 {
1128 if ((hi->elf_link_hash_flags
1129 & ELF_LINK_HASH_REF_REGULAR) != 0)
1130 *dynsym = true;
1131 }
1132 }
1133 }
1134 }
1135
1136 return true;
1137 }
1138
1139 /* Add symbols from an ELF object file to the linker hash table. */
1140
1141 static boolean
1142 elf_link_add_object_symbols (abfd, info)
1143 bfd *abfd;
1144 struct bfd_link_info *info;
1145 {
1146 boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
1147 const Elf_Internal_Sym *,
1148 const char **, flagword *,
1149 asection **, bfd_vma *));
1150 boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
1151 asection *, const Elf_Internal_Rela *));
1152 boolean collect;
1153 Elf_Internal_Shdr *hdr;
1154 bfd_size_type symcount;
1155 bfd_size_type extsymcount;
1156 bfd_size_type extsymoff;
1157 struct elf_link_hash_entry **sym_hash;
1158 boolean dynamic;
1159 Elf_External_Versym *extversym = NULL;
1160 Elf_External_Versym *ever;
1161 struct elf_link_hash_entry *weaks;
1162 Elf_Internal_Sym *isymbuf = NULL;
1163 Elf_Internal_Sym *isym;
1164 Elf_Internal_Sym *isymend;
1165 struct elf_backend_data *bed;
1166 boolean dt_needed;
1167 struct elf_link_hash_table * hash_table;
1168 bfd_size_type amt;
1169
1170 hash_table = elf_hash_table (info);
1171
1172 bed = get_elf_backend_data (abfd);
1173 add_symbol_hook = bed->elf_add_symbol_hook;
1174 collect = bed->collect;
1175
1176 if ((abfd->flags & DYNAMIC) == 0)
1177 dynamic = false;
1178 else
1179 {
1180 dynamic = true;
1181
1182 /* You can't use -r against a dynamic object. Also, there's no
1183 hope of using a dynamic object which does not exactly match
1184 the format of the output file. */
1185 if (info->relocateable || info->hash->creator != abfd->xvec)
1186 {
1187 bfd_set_error (bfd_error_invalid_operation);
1188 goto error_return;
1189 }
1190 }
1191
1192 /* As a GNU extension, any input sections which are named
1193 .gnu.warning.SYMBOL are treated as warning symbols for the given
1194 symbol. This differs from .gnu.warning sections, which generate
1195 warnings when they are included in an output file. */
1196 if (! info->shared)
1197 {
1198 asection *s;
1199
1200 for (s = abfd->sections; s != NULL; s = s->next)
1201 {
1202 const char *name;
1203
1204 name = bfd_get_section_name (abfd, s);
1205 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
1206 {
1207 char *msg;
1208 bfd_size_type sz;
1209
1210 name += sizeof ".gnu.warning." - 1;
1211
1212 /* If this is a shared object, then look up the symbol
1213 in the hash table. If it is there, and it is already
1214 been defined, then we will not be using the entry
1215 from this shared object, so we don't need to warn.
1216 FIXME: If we see the definition in a regular object
1217 later on, we will warn, but we shouldn't. The only
1218 fix is to keep track of what warnings we are supposed
1219 to emit, and then handle them all at the end of the
1220 link. */
1221 if (dynamic && abfd->xvec == info->hash->creator)
1222 {
1223 struct elf_link_hash_entry *h;
1224
1225 h = elf_link_hash_lookup (hash_table, name,
1226 false, false, true);
1227
1228 /* FIXME: What about bfd_link_hash_common? */
1229 if (h != NULL
1230 && (h->root.type == bfd_link_hash_defined
1231 || h->root.type == bfd_link_hash_defweak))
1232 {
1233 /* We don't want to issue this warning. Clobber
1234 the section size so that the warning does not
1235 get copied into the output file. */
1236 s->_raw_size = 0;
1237 continue;
1238 }
1239 }
1240
1241 sz = bfd_section_size (abfd, s);
1242 msg = (char *) bfd_alloc (abfd, sz + 1);
1243 if (msg == NULL)
1244 goto error_return;
1245
1246 if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
1247 goto error_return;
1248
1249 msg[sz] = '\0';
1250
1251 if (! (_bfd_generic_link_add_one_symbol
1252 (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg,
1253 false, collect, (struct bfd_link_hash_entry **) NULL)))
1254 goto error_return;
1255
1256 if (! info->relocateable)
1257 {
1258 /* Clobber the section size so that the warning does
1259 not get copied into the output file. */
1260 s->_raw_size = 0;
1261 }
1262 }
1263 }
1264 }
1265
1266 dt_needed = false;
1267 if (! dynamic)
1268 {
1269 /* If we are creating a shared library, create all the dynamic
1270 sections immediately. We need to attach them to something,
1271 so we attach them to this BFD, provided it is the right
1272 format. FIXME: If there are no input BFD's of the same
1273 format as the output, we can't make a shared library. */
1274 if (info->shared
1275 && is_elf_hash_table (info)
1276 && ! hash_table->dynamic_sections_created
1277 && abfd->xvec == info->hash->creator)
1278 {
1279 if (! elf_link_create_dynamic_sections (abfd, info))
1280 goto error_return;
1281 }
1282 }
1283 else if (! is_elf_hash_table (info))
1284 goto error_return;
1285 else
1286 {
1287 asection *s;
1288 boolean add_needed;
1289 const char *name;
1290 bfd_size_type oldsize;
1291 bfd_size_type strindex;
1292
1293 /* Find the name to use in a DT_NEEDED entry that refers to this
1294 object. If the object has a DT_SONAME entry, we use it.
1295 Otherwise, if the generic linker stuck something in
1296 elf_dt_name, we use that. Otherwise, we just use the file
1297 name. If the generic linker put a null string into
1298 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
1299 there is a DT_SONAME entry. */
1300 add_needed = true;
1301 name = bfd_get_filename (abfd);
1302 if (elf_dt_name (abfd) != NULL)
1303 {
1304 name = elf_dt_name (abfd);
1305 if (*name == '\0')
1306 {
1307 if (elf_dt_soname (abfd) != NULL)
1308 dt_needed = true;
1309
1310 add_needed = false;
1311 }
1312 }
1313 s = bfd_get_section_by_name (abfd, ".dynamic");
1314 if (s != NULL)
1315 {
1316 Elf_External_Dyn *dynbuf = NULL;
1317 Elf_External_Dyn *extdyn;
1318 Elf_External_Dyn *extdynend;
1319 int elfsec;
1320 unsigned long shlink;
1321 int rpath;
1322 int runpath;
1323
1324 dynbuf = (Elf_External_Dyn *) bfd_malloc (s->_raw_size);
1325 if (dynbuf == NULL)
1326 goto error_return;
1327
1328 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
1329 (file_ptr) 0, s->_raw_size))
1330 goto error_free_dyn;
1331
1332 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1333 if (elfsec == -1)
1334 goto error_free_dyn;
1335 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1336
1337 extdyn = dynbuf;
1338 extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
1339 rpath = 0;
1340 runpath = 0;
1341 for (; extdyn < extdynend; extdyn++)
1342 {
1343 Elf_Internal_Dyn dyn;
1344
1345 elf_swap_dyn_in (abfd, extdyn, &dyn);
1346 if (dyn.d_tag == DT_SONAME)
1347 {
1348 unsigned int tagv = dyn.d_un.d_val;
1349 name = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1350 if (name == NULL)
1351 goto error_free_dyn;
1352 }
1353 if (dyn.d_tag == DT_NEEDED)
1354 {
1355 struct bfd_link_needed_list *n, **pn;
1356 char *fnm, *anm;
1357 unsigned int tagv = dyn.d_un.d_val;
1358
1359 amt = sizeof (struct bfd_link_needed_list);
1360 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
1361 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1362 if (n == NULL || fnm == NULL)
1363 goto error_free_dyn;
1364 amt = strlen (fnm) + 1;
1365 anm = bfd_alloc (abfd, amt);
1366 if (anm == NULL)
1367 goto error_free_dyn;
1368 memcpy (anm, fnm, (size_t) amt);
1369 n->name = anm;
1370 n->by = abfd;
1371 n->next = NULL;
1372 for (pn = & hash_table->needed;
1373 *pn != NULL;
1374 pn = &(*pn)->next)
1375 ;
1376 *pn = n;
1377 }
1378 if (dyn.d_tag == DT_RUNPATH)
1379 {
1380 struct bfd_link_needed_list *n, **pn;
1381 char *fnm, *anm;
1382 unsigned int tagv = dyn.d_un.d_val;
1383
1384 /* When we see DT_RPATH before DT_RUNPATH, we have
1385 to clear runpath. Do _NOT_ bfd_release, as that
1386 frees all more recently bfd_alloc'd blocks as
1387 well. */
1388 if (rpath && hash_table->runpath)
1389 hash_table->runpath = NULL;
1390
1391 amt = sizeof (struct bfd_link_needed_list);
1392 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
1393 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1394 if (n == NULL || fnm == NULL)
1395 goto error_free_dyn;
1396 amt = strlen (fnm) + 1;
1397 anm = bfd_alloc (abfd, amt);
1398 if (anm == NULL)
1399 goto error_free_dyn;
1400 memcpy (anm, fnm, (size_t) amt);
1401 n->name = anm;
1402 n->by = abfd;
1403 n->next = NULL;
1404 for (pn = & hash_table->runpath;
1405 *pn != NULL;
1406 pn = &(*pn)->next)
1407 ;
1408 *pn = n;
1409 runpath = 1;
1410 rpath = 0;
1411 }
1412 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
1413 if (!runpath && dyn.d_tag == DT_RPATH)
1414 {
1415 struct bfd_link_needed_list *n, **pn;
1416 char *fnm, *anm;
1417 unsigned int tagv = dyn.d_un.d_val;
1418
1419 amt = sizeof (struct bfd_link_needed_list);
1420 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
1421 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1422 if (n == NULL || fnm == NULL)
1423 goto error_free_dyn;
1424 amt = strlen (fnm) + 1;
1425 anm = bfd_alloc (abfd, amt);
1426 if (anm == NULL)
1427 {
1428 error_free_dyn:
1429 free (dynbuf);
1430 goto error_return;
1431 }
1432 memcpy (anm, fnm, (size_t) amt);
1433 n->name = anm;
1434 n->by = abfd;
1435 n->next = NULL;
1436 for (pn = & hash_table->runpath;
1437 *pn != NULL;
1438 pn = &(*pn)->next)
1439 ;
1440 *pn = n;
1441 rpath = 1;
1442 }
1443 }
1444
1445 free (dynbuf);
1446 }
1447
1448 /* We do not want to include any of the sections in a dynamic
1449 object in the output file. We hack by simply clobbering the
1450 list of sections in the BFD. This could be handled more
1451 cleanly by, say, a new section flag; the existing
1452 SEC_NEVER_LOAD flag is not the one we want, because that one
1453 still implies that the section takes up space in the output
1454 file. */
1455 bfd_section_list_clear (abfd);
1456
1457 /* If this is the first dynamic object found in the link, create
1458 the special sections required for dynamic linking. */
1459 if (! hash_table->dynamic_sections_created)
1460 if (! elf_link_create_dynamic_sections (abfd, info))
1461 goto error_return;
1462
1463 if (add_needed)
1464 {
1465 /* Add a DT_NEEDED entry for this dynamic object. */
1466 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
1467 strindex = _bfd_elf_strtab_add (hash_table->dynstr, name, false);
1468 if (strindex == (bfd_size_type) -1)
1469 goto error_return;
1470
1471 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
1472 {
1473 asection *sdyn;
1474 Elf_External_Dyn *dyncon, *dynconend;
1475
1476 /* The hash table size did not change, which means that
1477 the dynamic object name was already entered. If we
1478 have already included this dynamic object in the
1479 link, just ignore it. There is no reason to include
1480 a particular dynamic object more than once. */
1481 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
1482 BFD_ASSERT (sdyn != NULL);
1483
1484 dyncon = (Elf_External_Dyn *) sdyn->contents;
1485 dynconend = (Elf_External_Dyn *) (sdyn->contents +
1486 sdyn->_raw_size);
1487 for (; dyncon < dynconend; dyncon++)
1488 {
1489 Elf_Internal_Dyn dyn;
1490
1491 elf_swap_dyn_in (hash_table->dynobj, dyncon, & dyn);
1492 if (dyn.d_tag == DT_NEEDED
1493 && dyn.d_un.d_val == strindex)
1494 {
1495 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
1496 return true;
1497 }
1498 }
1499 }
1500
1501 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_NEEDED, strindex))
1502 goto error_return;
1503 }
1504
1505 /* Save the SONAME, if there is one, because sometimes the
1506 linker emulation code will need to know it. */
1507 if (*name == '\0')
1508 name = basename (bfd_get_filename (abfd));
1509 elf_dt_name (abfd) = name;
1510 }
1511
1512 /* If this is a dynamic object, we always link against the .dynsym
1513 symbol table, not the .symtab symbol table. The dynamic linker
1514 will only see the .dynsym symbol table, so there is no reason to
1515 look at .symtab for a dynamic object. */
1516
1517 if (! dynamic || elf_dynsymtab (abfd) == 0)
1518 hdr = &elf_tdata (abfd)->symtab_hdr;
1519 else
1520 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1521
1522 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
1523
1524 /* The sh_info field of the symtab header tells us where the
1525 external symbols start. We don't care about the local symbols at
1526 this point. */
1527 if (elf_bad_symtab (abfd))
1528 {
1529 extsymcount = symcount;
1530 extsymoff = 0;
1531 }
1532 else
1533 {
1534 extsymcount = symcount - hdr->sh_info;
1535 extsymoff = hdr->sh_info;
1536 }
1537
1538 sym_hash = NULL;
1539 if (extsymcount != 0)
1540 {
1541 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
1542 NULL, NULL, NULL);
1543 if (isymbuf == NULL)
1544 goto error_return;
1545
1546 /* We store a pointer to the hash table entry for each external
1547 symbol. */
1548 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
1549 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
1550 if (sym_hash == NULL)
1551 goto error_free_sym;
1552 elf_sym_hashes (abfd) = sym_hash;
1553 }
1554
1555 if (dynamic)
1556 {
1557 /* Read in any version definitions. */
1558 if (! _bfd_elf_slurp_version_tables (abfd))
1559 goto error_free_sym;
1560
1561 /* Read in the symbol versions, but don't bother to convert them
1562 to internal format. */
1563 if (elf_dynversym (abfd) != 0)
1564 {
1565 Elf_Internal_Shdr *versymhdr;
1566
1567 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
1568 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
1569 if (extversym == NULL)
1570 goto error_free_sym;
1571 amt = versymhdr->sh_size;
1572 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
1573 || bfd_bread ((PTR) extversym, amt, abfd) != amt)
1574 goto error_free_vers;
1575 }
1576 }
1577
1578 weaks = NULL;
1579
1580 ever = extversym != NULL ? extversym + extsymoff : NULL;
1581 for (isym = isymbuf, isymend = isymbuf + extsymcount;
1582 isym < isymend;
1583 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
1584 {
1585 int bind;
1586 bfd_vma value;
1587 asection *sec;
1588 flagword flags;
1589 const char *name;
1590 struct elf_link_hash_entry *h;
1591 boolean definition;
1592 boolean size_change_ok, type_change_ok;
1593 boolean new_weakdef;
1594 unsigned int old_alignment;
1595 boolean override;
1596
1597 override = false;
1598
1599 flags = BSF_NO_FLAGS;
1600 sec = NULL;
1601 value = isym->st_value;
1602 *sym_hash = NULL;
1603
1604 bind = ELF_ST_BIND (isym->st_info);
1605 if (bind == STB_LOCAL)
1606 {
1607 /* This should be impossible, since ELF requires that all
1608 global symbols follow all local symbols, and that sh_info
1609 point to the first global symbol. Unfortunatealy, Irix 5
1610 screws this up. */
1611 continue;
1612 }
1613 else if (bind == STB_GLOBAL)
1614 {
1615 if (isym->st_shndx != SHN_UNDEF
1616 && isym->st_shndx != SHN_COMMON)
1617 flags = BSF_GLOBAL;
1618 }
1619 else if (bind == STB_WEAK)
1620 flags = BSF_WEAK;
1621 else
1622 {
1623 /* Leave it up to the processor backend. */
1624 }
1625
1626 if (isym->st_shndx == SHN_UNDEF)
1627 sec = bfd_und_section_ptr;
1628 else if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
1629 {
1630 sec = section_from_elf_index (abfd, isym->st_shndx);
1631 if (sec == NULL)
1632 sec = bfd_abs_section_ptr;
1633 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
1634 value -= sec->vma;
1635 }
1636 else if (isym->st_shndx == SHN_ABS)
1637 sec = bfd_abs_section_ptr;
1638 else if (isym->st_shndx == SHN_COMMON)
1639 {
1640 sec = bfd_com_section_ptr;
1641 /* What ELF calls the size we call the value. What ELF
1642 calls the value we call the alignment. */
1643 value = isym->st_size;
1644 }
1645 else
1646 {
1647 /* Leave it up to the processor backend. */
1648 }
1649
1650 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
1651 isym->st_name);
1652 if (name == (const char *) NULL)
1653 goto error_free_vers;
1654
1655 if (isym->st_shndx == SHN_COMMON
1656 && ELF_ST_TYPE (isym->st_info) == STT_TLS)
1657 {
1658 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
1659
1660 if (tcomm == NULL)
1661 {
1662 tcomm = bfd_make_section (abfd, ".tcommon");
1663 if (tcomm == NULL
1664 || !bfd_set_section_flags (abfd, tcomm, (SEC_ALLOC
1665 | SEC_IS_COMMON
1666 | SEC_LINKER_CREATED
1667 | SEC_THREAD_LOCAL)))
1668 goto error_free_vers;
1669 }
1670 sec = tcomm;
1671 }
1672 else if (add_symbol_hook)
1673 {
1674 if (! (*add_symbol_hook) (abfd, info, isym, &name, &flags, &sec,
1675 &value))
1676 goto error_free_vers;
1677
1678 /* The hook function sets the name to NULL if this symbol
1679 should be skipped for some reason. */
1680 if (name == (const char *) NULL)
1681 continue;
1682 }
1683
1684 /* Sanity check that all possibilities were handled. */
1685 if (sec == (asection *) NULL)
1686 {
1687 bfd_set_error (bfd_error_bad_value);
1688 goto error_free_vers;
1689 }
1690
1691 if (bfd_is_und_section (sec)
1692 || bfd_is_com_section (sec))
1693 definition = false;
1694 else
1695 definition = true;
1696
1697 size_change_ok = false;
1698 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
1699 old_alignment = 0;
1700 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1701 {
1702 Elf_Internal_Versym iver;
1703 unsigned int vernum = 0;
1704
1705 if (ever != NULL)
1706 {
1707 _bfd_elf_swap_versym_in (abfd, ever, &iver);
1708 vernum = iver.vs_vers & VERSYM_VERSION;
1709
1710 /* If this is a hidden symbol, or if it is not version
1711 1, we append the version name to the symbol name.
1712 However, we do not modify a non-hidden absolute
1713 symbol, because it might be the version symbol
1714 itself. FIXME: What if it isn't? */
1715 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
1716 || (vernum > 1 && ! bfd_is_abs_section (sec)))
1717 {
1718 const char *verstr;
1719 size_t namelen, verlen, newlen;
1720 char *newname, *p;
1721
1722 if (isym->st_shndx != SHN_UNDEF)
1723 {
1724 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
1725 {
1726 (*_bfd_error_handler)
1727 (_("%s: %s: invalid version %u (max %d)"),
1728 bfd_archive_filename (abfd), name, vernum,
1729 elf_tdata (abfd)->dynverdef_hdr.sh_info);
1730 bfd_set_error (bfd_error_bad_value);
1731 goto error_free_vers;
1732 }
1733 else if (vernum > 1)
1734 verstr =
1735 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1736 else
1737 verstr = "";
1738 }
1739 else
1740 {
1741 /* We cannot simply test for the number of
1742 entries in the VERNEED section since the
1743 numbers for the needed versions do not start
1744 at 0. */
1745 Elf_Internal_Verneed *t;
1746
1747 verstr = NULL;
1748 for (t = elf_tdata (abfd)->verref;
1749 t != NULL;
1750 t = t->vn_nextref)
1751 {
1752 Elf_Internal_Vernaux *a;
1753
1754 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1755 {
1756 if (a->vna_other == vernum)
1757 {
1758 verstr = a->vna_nodename;
1759 break;
1760 }
1761 }
1762 if (a != NULL)
1763 break;
1764 }
1765 if (verstr == NULL)
1766 {
1767 (*_bfd_error_handler)
1768 (_("%s: %s: invalid needed version %d"),
1769 bfd_archive_filename (abfd), name, vernum);
1770 bfd_set_error (bfd_error_bad_value);
1771 goto error_free_vers;
1772 }
1773 }
1774
1775 namelen = strlen (name);
1776 verlen = strlen (verstr);
1777 newlen = namelen + verlen + 2;
1778 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
1779 && isym->st_shndx != SHN_UNDEF)
1780 ++newlen;
1781
1782 newname = (char *) bfd_alloc (abfd, (bfd_size_type) newlen);
1783 if (newname == NULL)
1784 goto error_free_vers;
1785 memcpy (newname, name, namelen);
1786 p = newname + namelen;
1787 *p++ = ELF_VER_CHR;
1788 /* If this is a defined non-hidden version symbol,
1789 we add another @ to the name. This indicates the
1790 default version of the symbol. */
1791 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
1792 && isym->st_shndx != SHN_UNDEF)
1793 *p++ = ELF_VER_CHR;
1794 memcpy (p, verstr, verlen + 1);
1795
1796 name = newname;
1797 }
1798 }
1799
1800 if (! elf_merge_symbol (abfd, info, name, isym, &sec, &value,
1801 sym_hash, &override, &type_change_ok,
1802 &size_change_ok, dt_needed))
1803 goto error_free_vers;
1804
1805 if (override)
1806 definition = false;
1807
1808 h = *sym_hash;
1809 while (h->root.type == bfd_link_hash_indirect
1810 || h->root.type == bfd_link_hash_warning)
1811 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1812
1813 /* Remember the old alignment if this is a common symbol, so
1814 that we don't reduce the alignment later on. We can't
1815 check later, because _bfd_generic_link_add_one_symbol
1816 will set a default for the alignment which we want to
1817 override. */
1818 if (h->root.type == bfd_link_hash_common)
1819 old_alignment = h->root.u.c.p->alignment_power;
1820
1821 if (elf_tdata (abfd)->verdef != NULL
1822 && ! override
1823 && vernum > 1
1824 && definition)
1825 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
1826 }
1827
1828 if (! (_bfd_generic_link_add_one_symbol
1829 (info, abfd, name, flags, sec, value, (const char *) NULL,
1830 false, collect, (struct bfd_link_hash_entry **) sym_hash)))
1831 goto error_free_vers;
1832
1833 h = *sym_hash;
1834 while (h->root.type == bfd_link_hash_indirect
1835 || h->root.type == bfd_link_hash_warning)
1836 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1837 *sym_hash = h;
1838
1839 new_weakdef = false;
1840 if (dynamic
1841 && definition
1842 && (flags & BSF_WEAK) != 0
1843 && ELF_ST_TYPE (isym->st_info) != STT_FUNC
1844 && info->hash->creator->flavour == bfd_target_elf_flavour
1845 && h->weakdef == NULL)
1846 {
1847 /* Keep a list of all weak defined non function symbols from
1848 a dynamic object, using the weakdef field. Later in this
1849 function we will set the weakdef field to the correct
1850 value. We only put non-function symbols from dynamic
1851 objects on this list, because that happens to be the only
1852 time we need to know the normal symbol corresponding to a
1853 weak symbol, and the information is time consuming to
1854 figure out. If the weakdef field is not already NULL,
1855 then this symbol was already defined by some previous
1856 dynamic object, and we will be using that previous
1857 definition anyhow. */
1858
1859 h->weakdef = weaks;
1860 weaks = h;
1861 new_weakdef = true;
1862 }
1863
1864 /* Set the alignment of a common symbol. */
1865 if (isym->st_shndx == SHN_COMMON
1866 && h->root.type == bfd_link_hash_common)
1867 {
1868 unsigned int align;
1869
1870 align = bfd_log2 (isym->st_value);
1871 if (align > old_alignment
1872 /* Permit an alignment power of zero if an alignment of one
1873 is specified and no other alignments have been specified. */
1874 || (isym->st_value == 1 && old_alignment == 0))
1875 h->root.u.c.p->alignment_power = align;
1876 }
1877
1878 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1879 {
1880 int old_flags;
1881 boolean dynsym;
1882 int new_flag;
1883
1884 /* Remember the symbol size and type. */
1885 if (isym->st_size != 0
1886 && (definition || h->size == 0))
1887 {
1888 if (h->size != 0 && h->size != isym->st_size && ! size_change_ok)
1889 (*_bfd_error_handler)
1890 (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
1891 name, (unsigned long) h->size,
1892 (unsigned long) isym->st_size, bfd_archive_filename (abfd));
1893
1894 h->size = isym->st_size;
1895 }
1896
1897 /* If this is a common symbol, then we always want H->SIZE
1898 to be the size of the common symbol. The code just above
1899 won't fix the size if a common symbol becomes larger. We
1900 don't warn about a size change here, because that is
1901 covered by --warn-common. */
1902 if (h->root.type == bfd_link_hash_common)
1903 h->size = h->root.u.c.size;
1904
1905 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
1906 && (definition || h->type == STT_NOTYPE))
1907 {
1908 if (h->type != STT_NOTYPE
1909 && h->type != ELF_ST_TYPE (isym->st_info)
1910 && ! type_change_ok)
1911 (*_bfd_error_handler)
1912 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
1913 name, h->type, ELF_ST_TYPE (isym->st_info),
1914 bfd_archive_filename (abfd));
1915
1916 h->type = ELF_ST_TYPE (isym->st_info);
1917 }
1918
1919 /* If st_other has a processor-specific meaning, specific code
1920 might be needed here. */
1921 if (isym->st_other != 0)
1922 {
1923 /* Combine visibilities, using the most constraining one. */
1924 unsigned char hvis = ELF_ST_VISIBILITY (h->other);
1925 unsigned char symvis = ELF_ST_VISIBILITY (isym->st_other);
1926
1927 if (symvis && (hvis > symvis || hvis == 0))
1928 h->other = isym->st_other;
1929
1930 /* If neither has visibility, use the st_other of the
1931 definition. This is an arbitrary choice, since the
1932 other bits have no general meaning. */
1933 if (!symvis && !hvis
1934 && (definition || h->other == 0))
1935 h->other = isym->st_other;
1936 }
1937
1938 /* Set a flag in the hash table entry indicating the type of
1939 reference or definition we just found. Keep a count of
1940 the number of dynamic symbols we find. A dynamic symbol
1941 is one which is referenced or defined by both a regular
1942 object and a shared object. */
1943 old_flags = h->elf_link_hash_flags;
1944 dynsym = false;
1945 if (! dynamic)
1946 {
1947 if (! definition)
1948 {
1949 new_flag = ELF_LINK_HASH_REF_REGULAR;
1950 if (bind != STB_WEAK)
1951 new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
1952 }
1953 else
1954 new_flag = ELF_LINK_HASH_DEF_REGULAR;
1955 if (info->shared
1956 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
1957 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
1958 dynsym = true;
1959 }
1960 else
1961 {
1962 if (! definition)
1963 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
1964 else
1965 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
1966 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
1967 | ELF_LINK_HASH_REF_REGULAR)) != 0
1968 || (h->weakdef != NULL
1969 && ! new_weakdef
1970 && h->weakdef->dynindx != -1))
1971 dynsym = true;
1972 }
1973
1974 h->elf_link_hash_flags |= new_flag;
1975
1976 /* Check to see if we need to add an indirect symbol for
1977 the default name. */
1978 if (definition || h->root.type == bfd_link_hash_common)
1979 if (! elf_add_default_symbol (abfd, info, h, name, isym,
1980 &sec, &value, &dynsym,
1981 override, dt_needed))
1982 goto error_free_vers;
1983
1984 if (dynsym && h->dynindx == -1)
1985 {
1986 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1987 goto error_free_vers;
1988 if (h->weakdef != NULL
1989 && ! new_weakdef
1990 && h->weakdef->dynindx == -1)
1991 {
1992 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
1993 goto error_free_vers;
1994 }
1995 }
1996 else if (dynsym && h->dynindx != -1)
1997 /* If the symbol already has a dynamic index, but
1998 visibility says it should not be visible, turn it into
1999 a local symbol. */
2000 switch (ELF_ST_VISIBILITY (h->other))
2001 {
2002 case STV_INTERNAL:
2003 case STV_HIDDEN:
2004 (*bed->elf_backend_hide_symbol) (info, h, true);
2005 break;
2006 }
2007
2008 if (dt_needed && definition
2009 && (h->elf_link_hash_flags
2010 & ELF_LINK_HASH_REF_REGULAR) != 0)
2011 {
2012 bfd_size_type oldsize;
2013 bfd_size_type strindex;
2014
2015 if (! is_elf_hash_table (info))
2016 goto error_free_vers;
2017
2018 /* The symbol from a DT_NEEDED object is referenced from
2019 the regular object to create a dynamic executable. We
2020 have to make sure there is a DT_NEEDED entry for it. */
2021
2022 dt_needed = false;
2023 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
2024 strindex = _bfd_elf_strtab_add (hash_table->dynstr,
2025 elf_dt_soname (abfd), false);
2026 if (strindex == (bfd_size_type) -1)
2027 goto error_free_vers;
2028
2029 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
2030 {
2031 asection *sdyn;
2032 Elf_External_Dyn *dyncon, *dynconend;
2033
2034 sdyn = bfd_get_section_by_name (hash_table->dynobj,
2035 ".dynamic");
2036 BFD_ASSERT (sdyn != NULL);
2037
2038 dyncon = (Elf_External_Dyn *) sdyn->contents;
2039 dynconend = (Elf_External_Dyn *) (sdyn->contents +
2040 sdyn->_raw_size);
2041 for (; dyncon < dynconend; dyncon++)
2042 {
2043 Elf_Internal_Dyn dyn;
2044
2045 elf_swap_dyn_in (hash_table->dynobj,
2046 dyncon, &dyn);
2047 BFD_ASSERT (dyn.d_tag != DT_NEEDED ||
2048 dyn.d_un.d_val != strindex);
2049 }
2050 }
2051
2052 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_NEEDED, strindex))
2053 goto error_free_vers;
2054 }
2055 }
2056 }
2057
2058 if (extversym != NULL)
2059 {
2060 free (extversym);
2061 extversym = NULL;
2062 }
2063
2064 if (isymbuf != NULL)
2065 free (isymbuf);
2066 isymbuf = NULL;
2067
2068 /* Now set the weakdefs field correctly for all the weak defined
2069 symbols we found. The only way to do this is to search all the
2070 symbols. Since we only need the information for non functions in
2071 dynamic objects, that's the only time we actually put anything on
2072 the list WEAKS. We need this information so that if a regular
2073 object refers to a symbol defined weakly in a dynamic object, the
2074 real symbol in the dynamic object is also put in the dynamic
2075 symbols; we also must arrange for both symbols to point to the
2076 same memory location. We could handle the general case of symbol
2077 aliasing, but a general symbol alias can only be generated in
2078 assembler code, handling it correctly would be very time
2079 consuming, and other ELF linkers don't handle general aliasing
2080 either. */
2081 while (weaks != NULL)
2082 {
2083 struct elf_link_hash_entry *hlook;
2084 asection *slook;
2085 bfd_vma vlook;
2086 struct elf_link_hash_entry **hpp;
2087 struct elf_link_hash_entry **hppend;
2088
2089 hlook = weaks;
2090 weaks = hlook->weakdef;
2091 hlook->weakdef = NULL;
2092
2093 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
2094 || hlook->root.type == bfd_link_hash_defweak
2095 || hlook->root.type == bfd_link_hash_common
2096 || hlook->root.type == bfd_link_hash_indirect);
2097 slook = hlook->root.u.def.section;
2098 vlook = hlook->root.u.def.value;
2099
2100 hpp = elf_sym_hashes (abfd);
2101 hppend = hpp + extsymcount;
2102 for (; hpp < hppend; hpp++)
2103 {
2104 struct elf_link_hash_entry *h;
2105
2106 h = *hpp;
2107 if (h != NULL && h != hlook
2108 && h->root.type == bfd_link_hash_defined
2109 && h->root.u.def.section == slook
2110 && h->root.u.def.value == vlook)
2111 {
2112 hlook->weakdef = h;
2113
2114 /* If the weak definition is in the list of dynamic
2115 symbols, make sure the real definition is put there
2116 as well. */
2117 if (hlook->dynindx != -1
2118 && h->dynindx == -1)
2119 {
2120 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2121 goto error_return;
2122 }
2123
2124 /* If the real definition is in the list of dynamic
2125 symbols, make sure the weak definition is put there
2126 as well. If we don't do this, then the dynamic
2127 loader might not merge the entries for the real
2128 definition and the weak definition. */
2129 if (h->dynindx != -1
2130 && hlook->dynindx == -1)
2131 {
2132 if (! _bfd_elf_link_record_dynamic_symbol (info, hlook))
2133 goto error_return;
2134 }
2135 break;
2136 }
2137 }
2138 }
2139
2140 /* If this object is the same format as the output object, and it is
2141 not a shared library, then let the backend look through the
2142 relocs.
2143
2144 This is required to build global offset table entries and to
2145 arrange for dynamic relocs. It is not required for the
2146 particular common case of linking non PIC code, even when linking
2147 against shared libraries, but unfortunately there is no way of
2148 knowing whether an object file has been compiled PIC or not.
2149 Looking through the relocs is not particularly time consuming.
2150 The problem is that we must either (1) keep the relocs in memory,
2151 which causes the linker to require additional runtime memory or
2152 (2) read the relocs twice from the input file, which wastes time.
2153 This would be a good case for using mmap.
2154
2155 I have no idea how to handle linking PIC code into a file of a
2156 different format. It probably can't be done. */
2157 check_relocs = get_elf_backend_data (abfd)->check_relocs;
2158 if (! dynamic
2159 && abfd->xvec == info->hash->creator
2160 && check_relocs != NULL)
2161 {
2162 asection *o;
2163
2164 for (o = abfd->sections; o != NULL; o = o->next)
2165 {
2166 Elf_Internal_Rela *internal_relocs;
2167 boolean ok;
2168
2169 if ((o->flags & SEC_RELOC) == 0
2170 || o->reloc_count == 0
2171 || ((info->strip == strip_all || info->strip == strip_debugger)
2172 && (o->flags & SEC_DEBUGGING) != 0)
2173 || bfd_is_abs_section (o->output_section))
2174 continue;
2175
2176 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
2177 (abfd, o, (PTR) NULL,
2178 (Elf_Internal_Rela *) NULL,
2179 info->keep_memory));
2180 if (internal_relocs == NULL)
2181 goto error_return;
2182
2183 ok = (*check_relocs) (abfd, info, o, internal_relocs);
2184
2185 if (elf_section_data (o)->relocs != internal_relocs)
2186 free (internal_relocs);
2187
2188 if (! ok)
2189 goto error_return;
2190 }
2191 }
2192
2193 /* If this is a non-traditional, non-relocateable link, try to
2194 optimize the handling of the .stab/.stabstr sections. */
2195 if (! dynamic
2196 && ! info->relocateable
2197 && ! info->traditional_format
2198 && info->hash->creator->flavour == bfd_target_elf_flavour
2199 && is_elf_hash_table (info)
2200 && (info->strip != strip_all && info->strip != strip_debugger))
2201 {
2202 asection *stab, *stabstr;
2203
2204 stab = bfd_get_section_by_name (abfd, ".stab");
2205 if (stab != NULL
2206 && (stab->flags & SEC_MERGE) == 0
2207 && !bfd_is_abs_section (stab->output_section))
2208 {
2209 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
2210
2211 if (stabstr != NULL)
2212 {
2213 struct bfd_elf_section_data *secdata;
2214
2215 secdata = elf_section_data (stab);
2216 if (! _bfd_link_section_stabs (abfd,
2217 & hash_table->stab_info,
2218 stab, stabstr,
2219 &secdata->sec_info))
2220 goto error_return;
2221 if (secdata->sec_info)
2222 secdata->sec_info_type = ELF_INFO_TYPE_STABS;
2223 }
2224 }
2225 }
2226
2227 if (! info->relocateable && ! dynamic
2228 && is_elf_hash_table (info))
2229 {
2230 asection *s;
2231
2232 for (s = abfd->sections; s != NULL; s = s->next)
2233 if ((s->flags & SEC_MERGE) != 0
2234 && !bfd_is_abs_section (s->output_section))
2235 {
2236 struct bfd_elf_section_data *secdata;
2237
2238 secdata = elf_section_data (s);
2239 if (! _bfd_merge_section (abfd,
2240 & hash_table->merge_info,
2241 s, &secdata->sec_info))
2242 goto error_return;
2243 else if (secdata->sec_info)
2244 secdata->sec_info_type = ELF_INFO_TYPE_MERGE;
2245 }
2246 }
2247
2248 if (is_elf_hash_table (info))
2249 {
2250 /* Add this bfd to the loaded list. */
2251 struct elf_link_loaded_list *n;
2252
2253 n = ((struct elf_link_loaded_list *)
2254 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list)));
2255 if (n == NULL)
2256 goto error_return;
2257 n->abfd = abfd;
2258 n->next = hash_table->loaded;
2259 hash_table->loaded = n;
2260 }
2261
2262 return true;
2263
2264 error_free_vers:
2265 if (extversym != NULL)
2266 free (extversym);
2267 error_free_sym:
2268 if (isymbuf != NULL)
2269 free (isymbuf);
2270 error_return:
2271 return false;
2272 }
2273
2274 /* Create some sections which will be filled in with dynamic linking
2275 information. ABFD is an input file which requires dynamic sections
2276 to be created. The dynamic sections take up virtual memory space
2277 when the final executable is run, so we need to create them before
2278 addresses are assigned to the output sections. We work out the
2279 actual contents and size of these sections later. */
2280
2281 boolean
2282 elf_link_create_dynamic_sections (abfd, info)
2283 bfd *abfd;
2284 struct bfd_link_info *info;
2285 {
2286 flagword flags;
2287 register asection *s;
2288 struct elf_link_hash_entry *h;
2289 struct elf_backend_data *bed;
2290
2291 if (! is_elf_hash_table (info))
2292 return false;
2293
2294 if (elf_hash_table (info)->dynamic_sections_created)
2295 return true;
2296
2297 /* Make sure that all dynamic sections use the same input BFD. */
2298 if (elf_hash_table (info)->dynobj == NULL)
2299 elf_hash_table (info)->dynobj = abfd;
2300 else
2301 abfd = elf_hash_table (info)->dynobj;
2302
2303 /* Note that we set the SEC_IN_MEMORY flag for all of these
2304 sections. */
2305 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
2306 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2307
2308 /* A dynamically linked executable has a .interp section, but a
2309 shared library does not. */
2310 if (! info->shared)
2311 {
2312 s = bfd_make_section (abfd, ".interp");
2313 if (s == NULL
2314 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2315 return false;
2316 }
2317
2318 if (! info->traditional_format
2319 && info->hash->creator->flavour == bfd_target_elf_flavour)
2320 {
2321 s = bfd_make_section (abfd, ".eh_frame_hdr");
2322 if (s == NULL
2323 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2324 || ! bfd_set_section_alignment (abfd, s, 2))
2325 return false;
2326 }
2327
2328 /* Create sections to hold version informations. These are removed
2329 if they are not needed. */
2330 s = bfd_make_section (abfd, ".gnu.version_d");
2331 if (s == NULL
2332 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2333 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2334 return false;
2335
2336 s = bfd_make_section (abfd, ".gnu.version");
2337 if (s == NULL
2338 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2339 || ! bfd_set_section_alignment (abfd, s, 1))
2340 return false;
2341
2342 s = bfd_make_section (abfd, ".gnu.version_r");
2343 if (s == NULL
2344 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2345 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2346 return false;
2347
2348 s = bfd_make_section (abfd, ".dynsym");
2349 if (s == NULL
2350 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2351 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2352 return false;
2353
2354 s = bfd_make_section (abfd, ".dynstr");
2355 if (s == NULL
2356 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2357 return false;
2358
2359 /* Create a strtab to hold the dynamic symbol names. */
2360 if (elf_hash_table (info)->dynstr == NULL)
2361 {
2362 elf_hash_table (info)->dynstr = _bfd_elf_strtab_init ();
2363 if (elf_hash_table (info)->dynstr == NULL)
2364 return false;
2365 }
2366
2367 s = bfd_make_section (abfd, ".dynamic");
2368 if (s == NULL
2369 || ! bfd_set_section_flags (abfd, s, flags)
2370 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2371 return false;
2372
2373 /* The special symbol _DYNAMIC is always set to the start of the
2374 .dynamic section. This call occurs before we have processed the
2375 symbols for any dynamic object, so we don't have to worry about
2376 overriding a dynamic definition. We could set _DYNAMIC in a
2377 linker script, but we only want to define it if we are, in fact,
2378 creating a .dynamic section. We don't want to define it if there
2379 is no .dynamic section, since on some ELF platforms the start up
2380 code examines it to decide how to initialize the process. */
2381 h = NULL;
2382 if (! (_bfd_generic_link_add_one_symbol
2383 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
2384 (const char *) NULL, false, get_elf_backend_data (abfd)->collect,
2385 (struct bfd_link_hash_entry **) &h)))
2386 return false;
2387 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2388 h->type = STT_OBJECT;
2389
2390 if (info->shared
2391 && ! _bfd_elf_link_record_dynamic_symbol (info, h))
2392 return false;
2393
2394 bed = get_elf_backend_data (abfd);
2395
2396 s = bfd_make_section (abfd, ".hash");
2397 if (s == NULL
2398 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2399 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2400 return false;
2401 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
2402
2403 /* Let the backend create the rest of the sections. This lets the
2404 backend set the right flags. The backend will normally create
2405 the .got and .plt sections. */
2406 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
2407 return false;
2408
2409 elf_hash_table (info)->dynamic_sections_created = true;
2410
2411 return true;
2412 }
2413
2414 /* Add an entry to the .dynamic table. */
2415
2416 boolean
2417 elf_add_dynamic_entry (info, tag, val)
2418 struct bfd_link_info *info;
2419 bfd_vma tag;
2420 bfd_vma val;
2421 {
2422 Elf_Internal_Dyn dyn;
2423 bfd *dynobj;
2424 asection *s;
2425 bfd_size_type newsize;
2426 bfd_byte *newcontents;
2427
2428 if (! is_elf_hash_table (info))
2429 return false;
2430
2431 dynobj = elf_hash_table (info)->dynobj;
2432
2433 s = bfd_get_section_by_name (dynobj, ".dynamic");
2434 BFD_ASSERT (s != NULL);
2435
2436 newsize = s->_raw_size + sizeof (Elf_External_Dyn);
2437 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
2438 if (newcontents == NULL)
2439 return false;
2440
2441 dyn.d_tag = tag;
2442 dyn.d_un.d_val = val;
2443 elf_swap_dyn_out (dynobj, &dyn,
2444 (Elf_External_Dyn *) (newcontents + s->_raw_size));
2445
2446 s->_raw_size = newsize;
2447 s->contents = newcontents;
2448
2449 return true;
2450 }
2451
2452 /* Record a new local dynamic symbol. */
2453
2454 boolean
2455 elf_link_record_local_dynamic_symbol (info, input_bfd, input_indx)
2456 struct bfd_link_info *info;
2457 bfd *input_bfd;
2458 long input_indx;
2459 {
2460 struct elf_link_local_dynamic_entry *entry;
2461 struct elf_link_hash_table *eht;
2462 struct elf_strtab_hash *dynstr;
2463 Elf_External_Sym esym;
2464 Elf_External_Sym_Shndx eshndx;
2465 Elf_External_Sym_Shndx *shndx;
2466 unsigned long dynstr_index;
2467 char *name;
2468 file_ptr pos;
2469 bfd_size_type amt;
2470
2471 if (! is_elf_hash_table (info))
2472 return false;
2473
2474 /* See if the entry exists already. */
2475 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
2476 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
2477 return true;
2478
2479 entry = (struct elf_link_local_dynamic_entry *)
2480 bfd_alloc (input_bfd, (bfd_size_type) sizeof (*entry));
2481 if (entry == NULL)
2482 return false;
2483
2484 /* Go find the symbol, so that we can find it's name. */
2485 amt = sizeof (Elf_External_Sym);
2486 pos = elf_tdata (input_bfd)->symtab_hdr.sh_offset + input_indx * amt;
2487 if (bfd_seek (input_bfd, pos, SEEK_SET) != 0
2488 || bfd_bread ((PTR) &esym, amt, input_bfd) != amt)
2489 return false;
2490 shndx = NULL;
2491 if (elf_tdata (input_bfd)->symtab_shndx_hdr.sh_size != 0)
2492 {
2493 amt = sizeof (Elf_External_Sym_Shndx);
2494 pos = elf_tdata (input_bfd)->symtab_shndx_hdr.sh_offset;
2495 pos += input_indx * amt;
2496 shndx = &eshndx;
2497 if (bfd_seek (input_bfd, pos, SEEK_SET) != 0
2498 || bfd_bread ((PTR) shndx, amt, input_bfd) != amt)
2499 return false;
2500 }
2501 elf_swap_symbol_in (input_bfd, (const PTR) &esym, (const PTR) shndx,
2502 &entry->isym);
2503
2504 name = (bfd_elf_string_from_elf_section
2505 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
2506 entry->isym.st_name));
2507
2508 dynstr = elf_hash_table (info)->dynstr;
2509 if (dynstr == NULL)
2510 {
2511 /* Create a strtab to hold the dynamic symbol names. */
2512 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
2513 if (dynstr == NULL)
2514 return false;
2515 }
2516
2517 dynstr_index = _bfd_elf_strtab_add (dynstr, name, false);
2518 if (dynstr_index == (unsigned long) -1)
2519 return false;
2520 entry->isym.st_name = dynstr_index;
2521
2522 eht = elf_hash_table (info);
2523
2524 entry->next = eht->dynlocal;
2525 eht->dynlocal = entry;
2526 entry->input_bfd = input_bfd;
2527 entry->input_indx = input_indx;
2528 eht->dynsymcount++;
2529
2530 /* Whatever binding the symbol had before, it's now local. */
2531 entry->isym.st_info
2532 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
2533
2534 /* The dynindx will be set at the end of size_dynamic_sections. */
2535
2536 return true;
2537 }
2538 \f
2539 /* Read and swap the relocs from the section indicated by SHDR. This
2540 may be either a REL or a RELA section. The relocations are
2541 translated into RELA relocations and stored in INTERNAL_RELOCS,
2542 which should have already been allocated to contain enough space.
2543 The EXTERNAL_RELOCS are a buffer where the external form of the
2544 relocations should be stored.
2545
2546 Returns false if something goes wrong. */
2547
2548 static boolean
2549 elf_link_read_relocs_from_section (abfd, shdr, external_relocs,
2550 internal_relocs)
2551 bfd *abfd;
2552 Elf_Internal_Shdr *shdr;
2553 PTR external_relocs;
2554 Elf_Internal_Rela *internal_relocs;
2555 {
2556 struct elf_backend_data *bed;
2557 bfd_size_type amt;
2558
2559 /* If there aren't any relocations, that's OK. */
2560 if (!shdr)
2561 return true;
2562
2563 /* Position ourselves at the start of the section. */
2564 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2565 return false;
2566
2567 /* Read the relocations. */
2568 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2569 return false;
2570
2571 bed = get_elf_backend_data (abfd);
2572
2573 /* Convert the external relocations to the internal format. */
2574 if (shdr->sh_entsize == sizeof (Elf_External_Rel))
2575 {
2576 Elf_External_Rel *erel;
2577 Elf_External_Rel *erelend;
2578 Elf_Internal_Rela *irela;
2579 Elf_Internal_Rel *irel;
2580
2581 erel = (Elf_External_Rel *) external_relocs;
2582 erelend = erel + NUM_SHDR_ENTRIES (shdr);
2583 irela = internal_relocs;
2584 amt = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rel);
2585 irel = bfd_alloc (abfd, amt);
2586 for (; erel < erelend; erel++, irela += bed->s->int_rels_per_ext_rel)
2587 {
2588 unsigned int i;
2589
2590 if (bed->s->swap_reloc_in)
2591 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
2592 else
2593 elf_swap_reloc_in (abfd, erel, irel);
2594
2595 for (i = 0; i < bed->s->int_rels_per_ext_rel; ++i)
2596 {
2597 irela[i].r_offset = irel[i].r_offset;
2598 irela[i].r_info = irel[i].r_info;
2599 irela[i].r_addend = 0;
2600 }
2601 }
2602 }
2603 else
2604 {
2605 Elf_External_Rela *erela;
2606 Elf_External_Rela *erelaend;
2607 Elf_Internal_Rela *irela;
2608
2609 BFD_ASSERT (shdr->sh_entsize == sizeof (Elf_External_Rela));
2610
2611 erela = (Elf_External_Rela *) external_relocs;
2612 erelaend = erela + NUM_SHDR_ENTRIES (shdr);
2613 irela = internal_relocs;
2614 for (; erela < erelaend; erela++, irela += bed->s->int_rels_per_ext_rel)
2615 {
2616 if (bed->s->swap_reloca_in)
2617 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
2618 else
2619 elf_swap_reloca_in (abfd, erela, irela);
2620 }
2621 }
2622
2623 return true;
2624 }
2625
2626 /* Read and swap the relocs for a section O. They may have been
2627 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2628 not NULL, they are used as buffers to read into. They are known to
2629 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2630 the return value is allocated using either malloc or bfd_alloc,
2631 according to the KEEP_MEMORY argument. If O has two relocation
2632 sections (both REL and RELA relocations), then the REL_HDR
2633 relocations will appear first in INTERNAL_RELOCS, followed by the
2634 REL_HDR2 relocations. */
2635
2636 Elf_Internal_Rela *
2637 NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
2638 keep_memory)
2639 bfd *abfd;
2640 asection *o;
2641 PTR external_relocs;
2642 Elf_Internal_Rela *internal_relocs;
2643 boolean keep_memory;
2644 {
2645 Elf_Internal_Shdr *rel_hdr;
2646 PTR alloc1 = NULL;
2647 Elf_Internal_Rela *alloc2 = NULL;
2648 struct elf_backend_data *bed = get_elf_backend_data (abfd);
2649
2650 if (elf_section_data (o)->relocs != NULL)
2651 return elf_section_data (o)->relocs;
2652
2653 if (o->reloc_count == 0)
2654 return NULL;
2655
2656 rel_hdr = &elf_section_data (o)->rel_hdr;
2657
2658 if (internal_relocs == NULL)
2659 {
2660 bfd_size_type size;
2661
2662 size = o->reloc_count;
2663 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2664 if (keep_memory)
2665 internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2666 else
2667 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2668 if (internal_relocs == NULL)
2669 goto error_return;
2670 }
2671
2672 if (external_relocs == NULL)
2673 {
2674 bfd_size_type size = rel_hdr->sh_size;
2675
2676 if (elf_section_data (o)->rel_hdr2)
2677 size += elf_section_data (o)->rel_hdr2->sh_size;
2678 alloc1 = (PTR) bfd_malloc (size);
2679 if (alloc1 == NULL)
2680 goto error_return;
2681 external_relocs = alloc1;
2682 }
2683
2684 if (!elf_link_read_relocs_from_section (abfd, rel_hdr,
2685 external_relocs,
2686 internal_relocs))
2687 goto error_return;
2688 if (!elf_link_read_relocs_from_section
2689 (abfd,
2690 elf_section_data (o)->rel_hdr2,
2691 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2692 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2693 * bed->s->int_rels_per_ext_rel)))
2694 goto error_return;
2695
2696 /* Cache the results for next time, if we can. */
2697 if (keep_memory)
2698 elf_section_data (o)->relocs = internal_relocs;
2699
2700 if (alloc1 != NULL)
2701 free (alloc1);
2702
2703 /* Don't free alloc2, since if it was allocated we are passing it
2704 back (under the name of internal_relocs). */
2705
2706 return internal_relocs;
2707
2708 error_return:
2709 if (alloc1 != NULL)
2710 free (alloc1);
2711 if (alloc2 != NULL)
2712 free (alloc2);
2713 return NULL;
2714 }
2715 \f
2716 /* Record an assignment to a symbol made by a linker script. We need
2717 this in case some dynamic object refers to this symbol. */
2718
2719 boolean
2720 NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
2721 bfd *output_bfd ATTRIBUTE_UNUSED;
2722 struct bfd_link_info *info;
2723 const char *name;
2724 boolean provide;
2725 {
2726 struct elf_link_hash_entry *h;
2727
2728 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2729 return true;
2730
2731 h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
2732 if (h == NULL)
2733 return false;
2734
2735 if (h->root.type == bfd_link_hash_new)
2736 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
2737
2738 /* If this symbol is being provided by the linker script, and it is
2739 currently defined by a dynamic object, but not by a regular
2740 object, then mark it as undefined so that the generic linker will
2741 force the correct value. */
2742 if (provide
2743 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2744 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2745 h->root.type = bfd_link_hash_undefined;
2746
2747 /* If this symbol is not being provided by the linker script, and it is
2748 currently defined by a dynamic object, but not by a regular object,
2749 then clear out any version information because the symbol will not be
2750 associated with the dynamic object any more. */
2751 if (!provide
2752 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2753 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2754 h->verinfo.verdef = NULL;
2755
2756 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2757
2758 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
2759 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
2760 || info->shared)
2761 && h->dynindx == -1)
2762 {
2763 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2764 return false;
2765
2766 /* If this is a weak defined symbol, and we know a corresponding
2767 real symbol from the same dynamic object, make sure the real
2768 symbol is also made into a dynamic symbol. */
2769 if (h->weakdef != NULL
2770 && h->weakdef->dynindx == -1)
2771 {
2772 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2773 return false;
2774 }
2775 }
2776
2777 return true;
2778 }
2779 \f
2780 /* This structure is used to pass information to
2781 elf_link_assign_sym_version. */
2782
2783 struct elf_assign_sym_version_info
2784 {
2785 /* Output BFD. */
2786 bfd *output_bfd;
2787 /* General link information. */
2788 struct bfd_link_info *info;
2789 /* Version tree. */
2790 struct bfd_elf_version_tree *verdefs;
2791 /* Whether we had a failure. */
2792 boolean failed;
2793 };
2794
2795 /* This structure is used to pass information to
2796 elf_link_find_version_dependencies. */
2797
2798 struct elf_find_verdep_info
2799 {
2800 /* Output BFD. */
2801 bfd *output_bfd;
2802 /* General link information. */
2803 struct bfd_link_info *info;
2804 /* The number of dependencies. */
2805 unsigned int vers;
2806 /* Whether we had a failure. */
2807 boolean failed;
2808 };
2809
2810 /* Array used to determine the number of hash table buckets to use
2811 based on the number of symbols there are. If there are fewer than
2812 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2813 fewer than 37 we use 17 buckets, and so forth. We never use more
2814 than 32771 buckets. */
2815
2816 static const size_t elf_buckets[] =
2817 {
2818 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2819 16411, 32771, 0
2820 };
2821
2822 /* Compute bucket count for hashing table. We do not use a static set
2823 of possible tables sizes anymore. Instead we determine for all
2824 possible reasonable sizes of the table the outcome (i.e., the
2825 number of collisions etc) and choose the best solution. The
2826 weighting functions are not too simple to allow the table to grow
2827 without bounds. Instead one of the weighting factors is the size.
2828 Therefore the result is always a good payoff between few collisions
2829 (= short chain lengths) and table size. */
2830 static size_t
2831 compute_bucket_count (info)
2832 struct bfd_link_info *info;
2833 {
2834 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
2835 size_t best_size = 0;
2836 unsigned long int *hashcodes;
2837 unsigned long int *hashcodesp;
2838 unsigned long int i;
2839 bfd_size_type amt;
2840
2841 /* Compute the hash values for all exported symbols. At the same
2842 time store the values in an array so that we could use them for
2843 optimizations. */
2844 amt = dynsymcount;
2845 amt *= sizeof (unsigned long int);
2846 hashcodes = (unsigned long int *) bfd_malloc (amt);
2847 if (hashcodes == NULL)
2848 return 0;
2849 hashcodesp = hashcodes;
2850
2851 /* Put all hash values in HASHCODES. */
2852 elf_link_hash_traverse (elf_hash_table (info),
2853 elf_collect_hash_codes, &hashcodesp);
2854
2855 /* We have a problem here. The following code to optimize the table
2856 size requires an integer type with more the 32 bits. If
2857 BFD_HOST_U_64_BIT is set we know about such a type. */
2858 #ifdef BFD_HOST_U_64_BIT
2859 if (info->optimize)
2860 {
2861 unsigned long int nsyms = hashcodesp - hashcodes;
2862 size_t minsize;
2863 size_t maxsize;
2864 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
2865 unsigned long int *counts ;
2866
2867 /* Possible optimization parameters: if we have NSYMS symbols we say
2868 that the hashing table must at least have NSYMS/4 and at most
2869 2*NSYMS buckets. */
2870 minsize = nsyms / 4;
2871 if (minsize == 0)
2872 minsize = 1;
2873 best_size = maxsize = nsyms * 2;
2874
2875 /* Create array where we count the collisions in. We must use bfd_malloc
2876 since the size could be large. */
2877 amt = maxsize;
2878 amt *= sizeof (unsigned long int);
2879 counts = (unsigned long int *) bfd_malloc (amt);
2880 if (counts == NULL)
2881 {
2882 free (hashcodes);
2883 return 0;
2884 }
2885
2886 /* Compute the "optimal" size for the hash table. The criteria is a
2887 minimal chain length. The minor criteria is (of course) the size
2888 of the table. */
2889 for (i = minsize; i < maxsize; ++i)
2890 {
2891 /* Walk through the array of hashcodes and count the collisions. */
2892 BFD_HOST_U_64_BIT max;
2893 unsigned long int j;
2894 unsigned long int fact;
2895
2896 memset (counts, '\0', i * sizeof (unsigned long int));
2897
2898 /* Determine how often each hash bucket is used. */
2899 for (j = 0; j < nsyms; ++j)
2900 ++counts[hashcodes[j] % i];
2901
2902 /* For the weight function we need some information about the
2903 pagesize on the target. This is information need not be 100%
2904 accurate. Since this information is not available (so far) we
2905 define it here to a reasonable default value. If it is crucial
2906 to have a better value some day simply define this value. */
2907 # ifndef BFD_TARGET_PAGESIZE
2908 # define BFD_TARGET_PAGESIZE (4096)
2909 # endif
2910
2911 /* We in any case need 2 + NSYMS entries for the size values and
2912 the chains. */
2913 max = (2 + nsyms) * (ARCH_SIZE / 8);
2914
2915 # if 1
2916 /* Variant 1: optimize for short chains. We add the squares
2917 of all the chain lengths (which favous many small chain
2918 over a few long chains). */
2919 for (j = 0; j < i; ++j)
2920 max += counts[j] * counts[j];
2921
2922 /* This adds penalties for the overall size of the table. */
2923 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2924 max *= fact * fact;
2925 # else
2926 /* Variant 2: Optimize a lot more for small table. Here we
2927 also add squares of the size but we also add penalties for
2928 empty slots (the +1 term). */
2929 for (j = 0; j < i; ++j)
2930 max += (1 + counts[j]) * (1 + counts[j]);
2931
2932 /* The overall size of the table is considered, but not as
2933 strong as in variant 1, where it is squared. */
2934 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2935 max *= fact;
2936 # endif
2937
2938 /* Compare with current best results. */
2939 if (max < best_chlen)
2940 {
2941 best_chlen = max;
2942 best_size = i;
2943 }
2944 }
2945
2946 free (counts);
2947 }
2948 else
2949 #endif /* defined (BFD_HOST_U_64_BIT) */
2950 {
2951 /* This is the fallback solution if no 64bit type is available or if we
2952 are not supposed to spend much time on optimizations. We select the
2953 bucket count using a fixed set of numbers. */
2954 for (i = 0; elf_buckets[i] != 0; i++)
2955 {
2956 best_size = elf_buckets[i];
2957 if (dynsymcount < elf_buckets[i + 1])
2958 break;
2959 }
2960 }
2961
2962 /* Free the arrays we needed. */
2963 free (hashcodes);
2964
2965 return best_size;
2966 }
2967
2968 /* Set up the sizes and contents of the ELF dynamic sections. This is
2969 called by the ELF linker emulation before_allocation routine. We
2970 must set the sizes of the sections before the linker sets the
2971 addresses of the various sections. */
2972
2973 boolean
2974 NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
2975 filter_shlib,
2976 auxiliary_filters, info, sinterpptr,
2977 verdefs)
2978 bfd *output_bfd;
2979 const char *soname;
2980 const char *rpath;
2981 const char *filter_shlib;
2982 const char * const *auxiliary_filters;
2983 struct bfd_link_info *info;
2984 asection **sinterpptr;
2985 struct bfd_elf_version_tree *verdefs;
2986 {
2987 bfd_size_type soname_indx;
2988 bfd *dynobj;
2989 struct elf_backend_data *bed;
2990 struct elf_assign_sym_version_info asvinfo;
2991
2992 *sinterpptr = NULL;
2993
2994 soname_indx = (bfd_size_type) -1;
2995
2996 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2997 return true;
2998
2999 if (! is_elf_hash_table (info))
3000 return true;
3001
3002 /* Any syms created from now on start with -1 in
3003 got.refcount/offset and plt.refcount/offset. */
3004 elf_hash_table (info)->init_refcount = -1;
3005
3006 /* The backend may have to create some sections regardless of whether
3007 we're dynamic or not. */
3008 bed = get_elf_backend_data (output_bfd);
3009 if (bed->elf_backend_always_size_sections
3010 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
3011 return false;
3012
3013 dynobj = elf_hash_table (info)->dynobj;
3014
3015 /* If there were no dynamic objects in the link, there is nothing to
3016 do here. */
3017 if (dynobj == NULL)
3018 return true;
3019
3020 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
3021 return false;
3022
3023 if (elf_hash_table (info)->dynamic_sections_created)
3024 {
3025 struct elf_info_failed eif;
3026 struct elf_link_hash_entry *h;
3027 asection *dynstr;
3028
3029 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
3030 BFD_ASSERT (*sinterpptr != NULL || info->shared);
3031
3032 if (soname != NULL)
3033 {
3034 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3035 soname, true);
3036 if (soname_indx == (bfd_size_type) -1
3037 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_SONAME,
3038 soname_indx))
3039 return false;
3040 }
3041
3042 if (info->symbolic)
3043 {
3044 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_SYMBOLIC,
3045 (bfd_vma) 0))
3046 return false;
3047 info->flags |= DF_SYMBOLIC;
3048 }
3049
3050 if (rpath != NULL)
3051 {
3052 bfd_size_type indx;
3053
3054 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
3055 true);
3056 if (info->new_dtags)
3057 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
3058 if (indx == (bfd_size_type) -1
3059 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_RPATH, indx)
3060 || (info->new_dtags
3061 && ! elf_add_dynamic_entry (info, (bfd_vma) DT_RUNPATH,
3062 indx)))
3063 return false;
3064 }
3065
3066 if (filter_shlib != NULL)
3067 {
3068 bfd_size_type indx;
3069
3070 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3071 filter_shlib, true);
3072 if (indx == (bfd_size_type) -1
3073 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_FILTER, indx))
3074 return false;
3075 }
3076
3077 if (auxiliary_filters != NULL)
3078 {
3079 const char * const *p;
3080
3081 for (p = auxiliary_filters; *p != NULL; p++)
3082 {
3083 bfd_size_type indx;
3084
3085 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3086 *p, true);
3087 if (indx == (bfd_size_type) -1
3088 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_AUXILIARY,
3089 indx))
3090 return false;
3091 }
3092 }
3093
3094 eif.info = info;
3095 eif.verdefs = verdefs;
3096 eif.failed = false;
3097
3098 /* If we are supposed to export all symbols into the dynamic symbol
3099 table (this is not the normal case), then do so. */
3100 if (info->export_dynamic)
3101 {
3102 elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
3103 (PTR) &eif);
3104 if (eif.failed)
3105 return false;
3106 }
3107
3108 /* Attach all the symbols to their version information. */
3109 asvinfo.output_bfd = output_bfd;
3110 asvinfo.info = info;
3111 asvinfo.verdefs = verdefs;
3112 asvinfo.failed = false;
3113
3114 elf_link_hash_traverse (elf_hash_table (info),
3115 elf_link_assign_sym_version,
3116 (PTR) &asvinfo);
3117 if (asvinfo.failed)
3118 return false;
3119
3120 /* Find all symbols which were defined in a dynamic object and make
3121 the backend pick a reasonable value for them. */
3122 elf_link_hash_traverse (elf_hash_table (info),
3123 elf_adjust_dynamic_symbol,
3124 (PTR) &eif);
3125 if (eif.failed)
3126 return false;
3127
3128 /* Add some entries to the .dynamic section. We fill in some of the
3129 values later, in elf_bfd_final_link, but we must add the entries
3130 now so that we know the final size of the .dynamic section. */
3131
3132 /* If there are initialization and/or finalization functions to
3133 call then add the corresponding DT_INIT/DT_FINI entries. */
3134 h = (info->init_function
3135 ? elf_link_hash_lookup (elf_hash_table (info),
3136 info->init_function, false,
3137 false, false)
3138 : NULL);
3139 if (h != NULL
3140 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
3141 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
3142 {
3143 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_INIT, (bfd_vma) 0))
3144 return false;
3145 }
3146 h = (info->fini_function
3147 ? elf_link_hash_lookup (elf_hash_table (info),
3148 info->fini_function, false,
3149 false, false)
3150 : NULL);
3151 if (h != NULL
3152 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
3153 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
3154 {
3155 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_FINI, (bfd_vma) 0))
3156 return false;
3157 }
3158
3159 if (bfd_get_section_by_name (output_bfd, ".preinit_array") != NULL)
3160 {
3161 /* DT_PREINIT_ARRAY is not allowed in shared library. */
3162 if (info->shared)
3163 {
3164 bfd *sub;
3165 asection *o;
3166
3167 for (sub = info->input_bfds; sub != NULL;
3168 sub = sub->link_next)
3169 for (o = sub->sections; o != NULL; o = o->next)
3170 if (elf_section_data (o)->this_hdr.sh_type
3171 == SHT_PREINIT_ARRAY)
3172 {
3173 (*_bfd_error_handler)
3174 (_("%s: .preinit_array section is not allowed in DSO"),
3175 bfd_archive_filename (sub));
3176 break;
3177 }
3178
3179 bfd_set_error (bfd_error_nonrepresentable_section);
3180 return false;
3181 }
3182
3183 if (!elf_add_dynamic_entry (info, (bfd_vma) DT_PREINIT_ARRAY,
3184 (bfd_vma) 0)
3185 || !elf_add_dynamic_entry (info, (bfd_vma) DT_PREINIT_ARRAYSZ,
3186 (bfd_vma) 0))
3187 return false;
3188 }
3189 if (bfd_get_section_by_name (output_bfd, ".init_array") != NULL)
3190 {
3191 if (!elf_add_dynamic_entry (info, (bfd_vma) DT_INIT_ARRAY,
3192 (bfd_vma) 0)
3193 || !elf_add_dynamic_entry (info, (bfd_vma) DT_INIT_ARRAYSZ,
3194 (bfd_vma) 0))
3195 return false;
3196 }
3197 if (bfd_get_section_by_name (output_bfd, ".fini_array") != NULL)
3198 {
3199 if (!elf_add_dynamic_entry (info, (bfd_vma) DT_FINI_ARRAY,
3200 (bfd_vma) 0)
3201 || !elf_add_dynamic_entry (info, (bfd_vma) DT_FINI_ARRAYSZ,
3202 (bfd_vma) 0))
3203 return false;
3204 }
3205
3206 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
3207 /* If .dynstr is excluded from the link, we don't want any of
3208 these tags. Strictly, we should be checking each section
3209 individually; This quick check covers for the case where
3210 someone does a /DISCARD/ : { *(*) }. */
3211 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
3212 {
3213 bfd_size_type strsize;
3214
3215 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
3216 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_HASH, (bfd_vma) 0)
3217 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_STRTAB, (bfd_vma) 0)
3218 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_SYMTAB, (bfd_vma) 0)
3219 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_STRSZ, strsize)
3220 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_SYMENT,
3221 (bfd_vma) sizeof (Elf_External_Sym)))
3222 return false;
3223 }
3224 }
3225
3226 /* The backend must work out the sizes of all the other dynamic
3227 sections. */
3228 if (bed->elf_backend_size_dynamic_sections
3229 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
3230 return false;
3231
3232 if (elf_hash_table (info)->dynamic_sections_created)
3233 {
3234 bfd_size_type dynsymcount;
3235 asection *s;
3236 size_t bucketcount = 0;
3237 size_t hash_entry_size;
3238 unsigned int dtagcount;
3239
3240 /* Set up the version definition section. */
3241 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3242 BFD_ASSERT (s != NULL);
3243
3244 /* We may have created additional version definitions if we are
3245 just linking a regular application. */
3246 verdefs = asvinfo.verdefs;
3247
3248 /* Skip anonymous version tag. */
3249 if (verdefs != NULL && verdefs->vernum == 0)
3250 verdefs = verdefs->next;
3251
3252 if (verdefs == NULL)
3253 _bfd_strip_section_from_output (info, s);
3254 else
3255 {
3256 unsigned int cdefs;
3257 bfd_size_type size;
3258 struct bfd_elf_version_tree *t;
3259 bfd_byte *p;
3260 Elf_Internal_Verdef def;
3261 Elf_Internal_Verdaux defaux;
3262
3263 cdefs = 0;
3264 size = 0;
3265
3266 /* Make space for the base version. */
3267 size += sizeof (Elf_External_Verdef);
3268 size += sizeof (Elf_External_Verdaux);
3269 ++cdefs;
3270
3271 for (t = verdefs; t != NULL; t = t->next)
3272 {
3273 struct bfd_elf_version_deps *n;
3274
3275 size += sizeof (Elf_External_Verdef);
3276 size += sizeof (Elf_External_Verdaux);
3277 ++cdefs;
3278
3279 for (n = t->deps; n != NULL; n = n->next)
3280 size += sizeof (Elf_External_Verdaux);
3281 }
3282
3283 s->_raw_size = size;
3284 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3285 if (s->contents == NULL && s->_raw_size != 0)
3286 return false;
3287
3288 /* Fill in the version definition section. */
3289
3290 p = s->contents;
3291
3292 def.vd_version = VER_DEF_CURRENT;
3293 def.vd_flags = VER_FLG_BASE;
3294 def.vd_ndx = 1;
3295 def.vd_cnt = 1;
3296 def.vd_aux = sizeof (Elf_External_Verdef);
3297 def.vd_next = (sizeof (Elf_External_Verdef)
3298 + sizeof (Elf_External_Verdaux));
3299
3300 if (soname_indx != (bfd_size_type) -1)
3301 {
3302 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
3303 soname_indx);
3304 def.vd_hash = bfd_elf_hash (soname);
3305 defaux.vda_name = soname_indx;
3306 }
3307 else
3308 {
3309 const char *name;
3310 bfd_size_type indx;
3311
3312 name = basename (output_bfd->filename);
3313 def.vd_hash = bfd_elf_hash (name);
3314 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3315 name, false);
3316 if (indx == (bfd_size_type) -1)
3317 return false;
3318 defaux.vda_name = indx;
3319 }
3320 defaux.vda_next = 0;
3321
3322 _bfd_elf_swap_verdef_out (output_bfd, &def,
3323 (Elf_External_Verdef *) p);
3324 p += sizeof (Elf_External_Verdef);
3325 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3326 (Elf_External_Verdaux *) p);
3327 p += sizeof (Elf_External_Verdaux);
3328
3329 for (t = verdefs; t != NULL; t = t->next)
3330 {
3331 unsigned int cdeps;
3332 struct bfd_elf_version_deps *n;
3333 struct elf_link_hash_entry *h;
3334
3335 cdeps = 0;
3336 for (n = t->deps; n != NULL; n = n->next)
3337 ++cdeps;
3338
3339 /* Add a symbol representing this version. */
3340 h = NULL;
3341 if (! (_bfd_generic_link_add_one_symbol
3342 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
3343 (bfd_vma) 0, (const char *) NULL, false,
3344 get_elf_backend_data (dynobj)->collect,
3345 (struct bfd_link_hash_entry **) &h)))
3346 return false;
3347 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
3348 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3349 h->type = STT_OBJECT;
3350 h->verinfo.vertree = t;
3351
3352 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
3353 return false;
3354
3355 def.vd_version = VER_DEF_CURRENT;
3356 def.vd_flags = 0;
3357 if (t->globals == NULL && t->locals == NULL && ! t->used)
3358 def.vd_flags |= VER_FLG_WEAK;
3359 def.vd_ndx = t->vernum + 1;
3360 def.vd_cnt = cdeps + 1;
3361 def.vd_hash = bfd_elf_hash (t->name);
3362 def.vd_aux = sizeof (Elf_External_Verdef);
3363 if (t->next != NULL)
3364 def.vd_next = (sizeof (Elf_External_Verdef)
3365 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
3366 else
3367 def.vd_next = 0;
3368
3369 _bfd_elf_swap_verdef_out (output_bfd, &def,
3370 (Elf_External_Verdef *) p);
3371 p += sizeof (Elf_External_Verdef);
3372
3373 defaux.vda_name = h->dynstr_index;
3374 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
3375 h->dynstr_index);
3376 if (t->deps == NULL)
3377 defaux.vda_next = 0;
3378 else
3379 defaux.vda_next = sizeof (Elf_External_Verdaux);
3380 t->name_indx = defaux.vda_name;
3381
3382 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3383 (Elf_External_Verdaux *) p);
3384 p += sizeof (Elf_External_Verdaux);
3385
3386 for (n = t->deps; n != NULL; n = n->next)
3387 {
3388 if (n->version_needed == NULL)
3389 {
3390 /* This can happen if there was an error in the
3391 version script. */
3392 defaux.vda_name = 0;
3393 }
3394 else
3395 {
3396 defaux.vda_name = n->version_needed->name_indx;
3397 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
3398 defaux.vda_name);
3399 }
3400 if (n->next == NULL)
3401 defaux.vda_next = 0;
3402 else
3403 defaux.vda_next = sizeof (Elf_External_Verdaux);
3404
3405 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3406 (Elf_External_Verdaux *) p);
3407 p += sizeof (Elf_External_Verdaux);
3408 }
3409 }
3410
3411 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_VERDEF, (bfd_vma) 0)
3412 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_VERDEFNUM,
3413 (bfd_vma) cdefs))
3414 return false;
3415
3416 elf_tdata (output_bfd)->cverdefs = cdefs;
3417 }
3418
3419 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
3420 {
3421 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_FLAGS, info->flags))
3422 return false;
3423 }
3424
3425 if (info->flags_1)
3426 {
3427 if (! info->shared)
3428 info->flags_1 &= ~ (DF_1_INITFIRST
3429 | DF_1_NODELETE
3430 | DF_1_NOOPEN);
3431 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_FLAGS_1,
3432 info->flags_1))
3433 return false;
3434 }
3435
3436 /* Work out the size of the version reference section. */
3437
3438 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3439 BFD_ASSERT (s != NULL);
3440 {
3441 struct elf_find_verdep_info sinfo;
3442
3443 sinfo.output_bfd = output_bfd;
3444 sinfo.info = info;
3445 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
3446 if (sinfo.vers == 0)
3447 sinfo.vers = 1;
3448 sinfo.failed = false;
3449
3450 elf_link_hash_traverse (elf_hash_table (info),
3451 elf_link_find_version_dependencies,
3452 (PTR) &sinfo);
3453
3454 if (elf_tdata (output_bfd)->verref == NULL)
3455 _bfd_strip_section_from_output (info, s);
3456 else
3457 {
3458 Elf_Internal_Verneed *t;
3459 unsigned int size;
3460 unsigned int crefs;
3461 bfd_byte *p;
3462
3463 /* Build the version definition section. */
3464 size = 0;
3465 crefs = 0;
3466 for (t = elf_tdata (output_bfd)->verref;
3467 t != NULL;
3468 t = t->vn_nextref)
3469 {
3470 Elf_Internal_Vernaux *a;
3471
3472 size += sizeof (Elf_External_Verneed);
3473 ++crefs;
3474 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3475 size += sizeof (Elf_External_Vernaux);
3476 }
3477
3478 s->_raw_size = size;
3479 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3480 if (s->contents == NULL)
3481 return false;
3482
3483 p = s->contents;
3484 for (t = elf_tdata (output_bfd)->verref;
3485 t != NULL;
3486 t = t->vn_nextref)
3487 {
3488 unsigned int caux;
3489 Elf_Internal_Vernaux *a;
3490 bfd_size_type indx;
3491
3492 caux = 0;
3493 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3494 ++caux;
3495
3496 t->vn_version = VER_NEED_CURRENT;
3497 t->vn_cnt = caux;
3498 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3499 elf_dt_name (t->vn_bfd) != NULL
3500 ? elf_dt_name (t->vn_bfd)
3501 : basename (t->vn_bfd->filename),
3502 false);
3503 if (indx == (bfd_size_type) -1)
3504 return false;
3505 t->vn_file = indx;
3506 t->vn_aux = sizeof (Elf_External_Verneed);
3507 if (t->vn_nextref == NULL)
3508 t->vn_next = 0;
3509 else
3510 t->vn_next = (sizeof (Elf_External_Verneed)
3511 + caux * sizeof (Elf_External_Vernaux));
3512
3513 _bfd_elf_swap_verneed_out (output_bfd, t,
3514 (Elf_External_Verneed *) p);
3515 p += sizeof (Elf_External_Verneed);
3516
3517 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3518 {
3519 a->vna_hash = bfd_elf_hash (a->vna_nodename);
3520 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3521 a->vna_nodename, false);
3522 if (indx == (bfd_size_type) -1)
3523 return false;
3524 a->vna_name = indx;
3525 if (a->vna_nextptr == NULL)
3526 a->vna_next = 0;
3527 else
3528 a->vna_next = sizeof (Elf_External_Vernaux);
3529
3530 _bfd_elf_swap_vernaux_out (output_bfd, a,
3531 (Elf_External_Vernaux *) p);
3532 p += sizeof (Elf_External_Vernaux);
3533 }
3534 }
3535
3536 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_VERNEED,
3537 (bfd_vma) 0)
3538 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_VERNEEDNUM,
3539 (bfd_vma) crefs))
3540 return false;
3541
3542 elf_tdata (output_bfd)->cverrefs = crefs;
3543 }
3544 }
3545
3546 /* Assign dynsym indicies. In a shared library we generate a
3547 section symbol for each output section, which come first.
3548 Next come all of the back-end allocated local dynamic syms,
3549 followed by the rest of the global symbols. */
3550
3551 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3552
3553 /* Work out the size of the symbol version section. */
3554 s = bfd_get_section_by_name (dynobj, ".gnu.version");
3555 BFD_ASSERT (s != NULL);
3556 if (dynsymcount == 0
3557 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
3558 {
3559 _bfd_strip_section_from_output (info, s);
3560 /* The DYNSYMCOUNT might have changed if we were going to
3561 output a dynamic symbol table entry for S. */
3562 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3563 }
3564 else
3565 {
3566 s->_raw_size = dynsymcount * sizeof (Elf_External_Versym);
3567 s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
3568 if (s->contents == NULL)
3569 return false;
3570
3571 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_VERSYM, (bfd_vma) 0))
3572 return false;
3573 }
3574
3575 /* Set the size of the .dynsym and .hash sections. We counted
3576 the number of dynamic symbols in elf_link_add_object_symbols.
3577 We will build the contents of .dynsym and .hash when we build
3578 the final symbol table, because until then we do not know the
3579 correct value to give the symbols. We built the .dynstr
3580 section as we went along in elf_link_add_object_symbols. */
3581 s = bfd_get_section_by_name (dynobj, ".dynsym");
3582 BFD_ASSERT (s != NULL);
3583 s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
3584 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3585 if (s->contents == NULL && s->_raw_size != 0)
3586 return false;
3587
3588 if (dynsymcount != 0)
3589 {
3590 Elf_Internal_Sym isym;
3591
3592 /* The first entry in .dynsym is a dummy symbol. */
3593 isym.st_value = 0;
3594 isym.st_size = 0;
3595 isym.st_name = 0;
3596 isym.st_info = 0;
3597 isym.st_other = 0;
3598 isym.st_shndx = 0;
3599 elf_swap_symbol_out (output_bfd, &isym, (PTR) s->contents, (PTR) 0);
3600 }
3601
3602 /* Compute the size of the hashing table. As a side effect this
3603 computes the hash values for all the names we export. */
3604 bucketcount = compute_bucket_count (info);
3605
3606 s = bfd_get_section_by_name (dynobj, ".hash");
3607 BFD_ASSERT (s != NULL);
3608 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
3609 s->_raw_size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
3610 s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
3611 if (s->contents == NULL)
3612 return false;
3613
3614 bfd_put (8 * hash_entry_size, output_bfd, (bfd_vma) bucketcount,
3615 s->contents);
3616 bfd_put (8 * hash_entry_size, output_bfd, (bfd_vma) dynsymcount,
3617 s->contents + hash_entry_size);
3618
3619 elf_hash_table (info)->bucketcount = bucketcount;
3620
3621 s = bfd_get_section_by_name (dynobj, ".dynstr");
3622 BFD_ASSERT (s != NULL);
3623
3624 elf_finalize_dynstr (output_bfd, info);
3625
3626 s->_raw_size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
3627
3628 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
3629 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_NULL, (bfd_vma) 0))
3630 return false;
3631 }
3632
3633 return true;
3634 }
3635 \f
3636 /* This function is used to adjust offsets into .dynstr for
3637 dynamic symbols. This is called via elf_link_hash_traverse. */
3638
3639 static boolean elf_adjust_dynstr_offsets
3640 PARAMS ((struct elf_link_hash_entry *, PTR));
3641
3642 static boolean
3643 elf_adjust_dynstr_offsets (h, data)
3644 struct elf_link_hash_entry *h;
3645 PTR data;
3646 {
3647 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3648
3649 if (h->root.type == bfd_link_hash_warning)
3650 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3651
3652 if (h->dynindx != -1)
3653 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3654 return true;
3655 }
3656
3657 /* Assign string offsets in .dynstr, update all structures referencing
3658 them. */
3659
3660 static boolean
3661 elf_finalize_dynstr (output_bfd, info)
3662 bfd *output_bfd;
3663 struct bfd_link_info *info;
3664 {
3665 struct elf_link_local_dynamic_entry *entry;
3666 struct elf_strtab_hash *dynstr = elf_hash_table (info)->dynstr;
3667 bfd *dynobj = elf_hash_table (info)->dynobj;
3668 asection *sdyn;
3669 bfd_size_type size;
3670 Elf_External_Dyn *dyncon, *dynconend;
3671
3672 _bfd_elf_strtab_finalize (dynstr);
3673 size = _bfd_elf_strtab_size (dynstr);
3674
3675 /* Update all .dynamic entries referencing .dynstr strings. */
3676 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3677 BFD_ASSERT (sdyn != NULL);
3678
3679 dyncon = (Elf_External_Dyn *) sdyn->contents;
3680 dynconend = (Elf_External_Dyn *) (sdyn->contents +
3681 sdyn->_raw_size);
3682 for (; dyncon < dynconend; dyncon++)
3683 {
3684 Elf_Internal_Dyn dyn;
3685
3686 elf_swap_dyn_in (dynobj, dyncon, & dyn);
3687 switch (dyn.d_tag)
3688 {
3689 case DT_STRSZ:
3690 dyn.d_un.d_val = size;
3691 elf_swap_dyn_out (dynobj, & dyn, dyncon);
3692 break;
3693 case DT_NEEDED:
3694 case DT_SONAME:
3695 case DT_RPATH:
3696 case DT_RUNPATH:
3697 case DT_FILTER:
3698 case DT_AUXILIARY:
3699 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3700 elf_swap_dyn_out (dynobj, & dyn, dyncon);
3701 break;
3702 default:
3703 break;
3704 }
3705 }
3706
3707 /* Now update local dynamic symbols. */
3708 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
3709 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3710 entry->isym.st_name);
3711
3712 /* And the rest of dynamic symbols. */
3713 elf_link_hash_traverse (elf_hash_table (info),
3714 elf_adjust_dynstr_offsets, dynstr);
3715
3716 /* Adjust version definitions. */
3717 if (elf_tdata (output_bfd)->cverdefs)
3718 {
3719 asection *s;
3720 bfd_byte *p;
3721 bfd_size_type i;
3722 Elf_Internal_Verdef def;
3723 Elf_Internal_Verdaux defaux;
3724
3725 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3726 p = (bfd_byte *) s->contents;
3727 do
3728 {
3729 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3730 &def);
3731 p += sizeof (Elf_External_Verdef);
3732 for (i = 0; i < def.vd_cnt; ++i)
3733 {
3734 _bfd_elf_swap_verdaux_in (output_bfd,
3735 (Elf_External_Verdaux *) p, &defaux);
3736 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3737 defaux.vda_name);
3738 _bfd_elf_swap_verdaux_out (output_bfd,
3739 &defaux, (Elf_External_Verdaux *) p);
3740 p += sizeof (Elf_External_Verdaux);
3741 }
3742 }
3743 while (def.vd_next);
3744 }
3745
3746 /* Adjust version references. */
3747 if (elf_tdata (output_bfd)->verref)
3748 {
3749 asection *s;
3750 bfd_byte *p;
3751 bfd_size_type i;
3752 Elf_Internal_Verneed need;
3753 Elf_Internal_Vernaux needaux;
3754
3755 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3756 p = (bfd_byte *) s->contents;
3757 do
3758 {
3759 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3760 &need);
3761 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3762 _bfd_elf_swap_verneed_out (output_bfd, &need,
3763 (Elf_External_Verneed *) p);
3764 p += sizeof (Elf_External_Verneed);
3765 for (i = 0; i < need.vn_cnt; ++i)
3766 {
3767 _bfd_elf_swap_vernaux_in (output_bfd,
3768 (Elf_External_Vernaux *) p, &needaux);
3769 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3770 needaux.vna_name);
3771 _bfd_elf_swap_vernaux_out (output_bfd,
3772 &needaux,
3773 (Elf_External_Vernaux *) p);
3774 p += sizeof (Elf_External_Vernaux);
3775 }
3776 }
3777 while (need.vn_next);
3778 }
3779
3780 return true;
3781 }
3782
3783 /* Fix up the flags for a symbol. This handles various cases which
3784 can only be fixed after all the input files are seen. This is
3785 currently called by both adjust_dynamic_symbol and
3786 assign_sym_version, which is unnecessary but perhaps more robust in
3787 the face of future changes. */
3788
3789 static boolean
3790 elf_fix_symbol_flags (h, eif)
3791 struct elf_link_hash_entry *h;
3792 struct elf_info_failed *eif;
3793 {
3794 /* If this symbol was mentioned in a non-ELF file, try to set
3795 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
3796 permit a non-ELF file to correctly refer to a symbol defined in
3797 an ELF dynamic object. */
3798 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
3799 {
3800 while (h->root.type == bfd_link_hash_indirect)
3801 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3802
3803 if (h->root.type != bfd_link_hash_defined
3804 && h->root.type != bfd_link_hash_defweak)
3805 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3806 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3807 else
3808 {
3809 if (h->root.u.def.section->owner != NULL
3810 && (bfd_get_flavour (h->root.u.def.section->owner)
3811 == bfd_target_elf_flavour))
3812 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3813 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3814 else
3815 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3816 }
3817
3818 if (h->dynindx == -1
3819 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3820 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
3821 {
3822 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3823 {
3824 eif->failed = true;
3825 return false;
3826 }
3827 }
3828 }
3829 else
3830 {
3831 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
3832 was first seen in a non-ELF file. Fortunately, if the symbol
3833 was first seen in an ELF file, we're probably OK unless the
3834 symbol was defined in a non-ELF file. Catch that case here.
3835 FIXME: We're still in trouble if the symbol was first seen in
3836 a dynamic object, and then later in a non-ELF regular object. */
3837 if ((h->root.type == bfd_link_hash_defined
3838 || h->root.type == bfd_link_hash_defweak)
3839 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3840 && (h->root.u.def.section->owner != NULL
3841 ? (bfd_get_flavour (h->root.u.def.section->owner)
3842 != bfd_target_elf_flavour)
3843 : (bfd_is_abs_section (h->root.u.def.section)
3844 && (h->elf_link_hash_flags
3845 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
3846 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3847 }
3848
3849 /* If this is a final link, and the symbol was defined as a common
3850 symbol in a regular object file, and there was no definition in
3851 any dynamic object, then the linker will have allocated space for
3852 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
3853 flag will not have been set. */
3854 if (h->root.type == bfd_link_hash_defined
3855 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3856 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
3857 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3858 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3859 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3860
3861 /* If -Bsymbolic was used (which means to bind references to global
3862 symbols to the definition within the shared object), and this
3863 symbol was defined in a regular object, then it actually doesn't
3864 need a PLT entry, and we can accomplish that by forcing it local.
3865 Likewise, if the symbol has hidden or internal visibility.
3866 FIXME: It might be that we also do not need a PLT for other
3867 non-hidden visibilities, but we would have to tell that to the
3868 backend specifically; we can't just clear PLT-related data here. */
3869 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
3870 && eif->info->shared
3871 && is_elf_hash_table (eif->info)
3872 && (eif->info->symbolic
3873 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
3874 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
3875 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3876 {
3877 struct elf_backend_data *bed;
3878 boolean force_local;
3879
3880 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
3881
3882 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
3883 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
3884 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
3885 }
3886
3887 /* If this is a weak defined symbol in a dynamic object, and we know
3888 the real definition in the dynamic object, copy interesting flags
3889 over to the real definition. */
3890 if (h->weakdef != NULL)
3891 {
3892 struct elf_link_hash_entry *weakdef;
3893
3894 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3895 || h->root.type == bfd_link_hash_defweak);
3896 weakdef = h->weakdef;
3897 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
3898 || weakdef->root.type == bfd_link_hash_defweak);
3899 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
3900
3901 /* If the real definition is defined by a regular object file,
3902 don't do anything special. See the longer description in
3903 elf_adjust_dynamic_symbol, below. */
3904 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3905 h->weakdef = NULL;
3906 else
3907 {
3908 struct elf_backend_data *bed;
3909
3910 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
3911 (*bed->elf_backend_copy_indirect_symbol) (weakdef, h);
3912 }
3913 }
3914
3915 return true;
3916 }
3917
3918 /* Make the backend pick a good value for a dynamic symbol. This is
3919 called via elf_link_hash_traverse, and also calls itself
3920 recursively. */
3921
3922 static boolean
3923 elf_adjust_dynamic_symbol (h, data)
3924 struct elf_link_hash_entry *h;
3925 PTR data;
3926 {
3927 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3928 bfd *dynobj;
3929 struct elf_backend_data *bed;
3930
3931 if (h->root.type == bfd_link_hash_warning)
3932 {
3933 h->plt.offset = (bfd_vma) -1;
3934 h->got.offset = (bfd_vma) -1;
3935
3936 /* When warning symbols are created, they **replace** the "real"
3937 entry in the hash table, thus we never get to see the real
3938 symbol in a hash traversal. So look at it now. */
3939 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3940 }
3941
3942 /* Ignore indirect symbols. These are added by the versioning code. */
3943 if (h->root.type == bfd_link_hash_indirect)
3944 return true;
3945
3946 if (! is_elf_hash_table (eif->info))
3947 return false;
3948
3949 /* Fix the symbol flags. */
3950 if (! elf_fix_symbol_flags (h, eif))
3951 return false;
3952
3953 /* If this symbol does not require a PLT entry, and it is not
3954 defined by a dynamic object, or is not referenced by a regular
3955 object, ignore it. We do have to handle a weak defined symbol,
3956 even if no regular object refers to it, if we decided to add it
3957 to the dynamic symbol table. FIXME: Do we normally need to worry
3958 about symbols which are defined by one dynamic object and
3959 referenced by another one? */
3960 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
3961 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3962 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3963 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
3964 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
3965 {
3966 h->plt.offset = (bfd_vma) -1;
3967 return true;
3968 }
3969
3970 /* If we've already adjusted this symbol, don't do it again. This
3971 can happen via a recursive call. */
3972 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
3973 return true;
3974
3975 /* Don't look at this symbol again. Note that we must set this
3976 after checking the above conditions, because we may look at a
3977 symbol once, decide not to do anything, and then get called
3978 recursively later after REF_REGULAR is set below. */
3979 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
3980
3981 /* If this is a weak definition, and we know a real definition, and
3982 the real symbol is not itself defined by a regular object file,
3983 then get a good value for the real definition. We handle the
3984 real symbol first, for the convenience of the backend routine.
3985
3986 Note that there is a confusing case here. If the real definition
3987 is defined by a regular object file, we don't get the real symbol
3988 from the dynamic object, but we do get the weak symbol. If the
3989 processor backend uses a COPY reloc, then if some routine in the
3990 dynamic object changes the real symbol, we will not see that
3991 change in the corresponding weak symbol. This is the way other
3992 ELF linkers work as well, and seems to be a result of the shared
3993 library model.
3994
3995 I will clarify this issue. Most SVR4 shared libraries define the
3996 variable _timezone and define timezone as a weak synonym. The
3997 tzset call changes _timezone. If you write
3998 extern int timezone;
3999 int _timezone = 5;
4000 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
4001 you might expect that, since timezone is a synonym for _timezone,
4002 the same number will print both times. However, if the processor
4003 backend uses a COPY reloc, then actually timezone will be copied
4004 into your process image, and, since you define _timezone
4005 yourself, _timezone will not. Thus timezone and _timezone will
4006 wind up at different memory locations. The tzset call will set
4007 _timezone, leaving timezone unchanged. */
4008
4009 if (h->weakdef != NULL)
4010 {
4011 /* If we get to this point, we know there is an implicit
4012 reference by a regular object file via the weak symbol H.
4013 FIXME: Is this really true? What if the traversal finds
4014 H->WEAKDEF before it finds H? */
4015 h->weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
4016
4017 if (! elf_adjust_dynamic_symbol (h->weakdef, (PTR) eif))
4018 return false;
4019 }
4020
4021 /* If a symbol has no type and no size and does not require a PLT
4022 entry, then we are probably about to do the wrong thing here: we
4023 are probably going to create a COPY reloc for an empty object.
4024 This case can arise when a shared object is built with assembly
4025 code, and the assembly code fails to set the symbol type. */
4026 if (h->size == 0
4027 && h->type == STT_NOTYPE
4028 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
4029 (*_bfd_error_handler)
4030 (_("warning: type and size of dynamic symbol `%s' are not defined"),
4031 h->root.root.string);
4032
4033 dynobj = elf_hash_table (eif->info)->dynobj;
4034 bed = get_elf_backend_data (dynobj);
4035 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
4036 {
4037 eif->failed = true;
4038 return false;
4039 }
4040
4041 return true;
4042 }
4043 \f
4044 /* This routine is used to export all defined symbols into the dynamic
4045 symbol table. It is called via elf_link_hash_traverse. */
4046
4047 static boolean
4048 elf_export_symbol (h, data)
4049 struct elf_link_hash_entry *h;
4050 PTR data;
4051 {
4052 struct elf_info_failed *eif = (struct elf_info_failed *) data;
4053
4054 /* Ignore indirect symbols. These are added by the versioning code. */
4055 if (h->root.type == bfd_link_hash_indirect)
4056 return true;
4057
4058 if (h->root.type == bfd_link_hash_warning)
4059 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4060
4061 if (h->dynindx == -1
4062 && (h->elf_link_hash_flags
4063 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
4064 {
4065 struct bfd_elf_version_tree *t;
4066 struct bfd_elf_version_expr *d;
4067
4068 for (t = eif->verdefs; t != NULL; t = t->next)
4069 {
4070 if (t->globals != NULL)
4071 {
4072 for (d = t->globals; d != NULL; d = d->next)
4073 {
4074 if ((*d->match) (d, h->root.root.string))
4075 goto doit;
4076 }
4077 }
4078
4079 if (t->locals != NULL)
4080 {
4081 for (d = t->locals ; d != NULL; d = d->next)
4082 {
4083 if ((*d->match) (d, h->root.root.string))
4084 return true;
4085 }
4086 }
4087 }
4088
4089 if (!eif->verdefs)
4090 {
4091 doit:
4092 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
4093 {
4094 eif->failed = true;
4095 return false;
4096 }
4097 }
4098 }
4099
4100 return true;
4101 }
4102 \f
4103 /* Look through the symbols which are defined in other shared
4104 libraries and referenced here. Update the list of version
4105 dependencies. This will be put into the .gnu.version_r section.
4106 This function is called via elf_link_hash_traverse. */
4107
4108 static boolean
4109 elf_link_find_version_dependencies (h, data)
4110 struct elf_link_hash_entry *h;
4111 PTR data;
4112 {
4113 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
4114 Elf_Internal_Verneed *t;
4115 Elf_Internal_Vernaux *a;
4116 bfd_size_type amt;
4117
4118 if (h->root.type == bfd_link_hash_warning)
4119 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4120
4121 /* We only care about symbols defined in shared objects with version
4122 information. */
4123 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
4124 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
4125 || h->dynindx == -1
4126 || h->verinfo.verdef == NULL)
4127 return true;
4128
4129 /* See if we already know about this version. */
4130 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
4131 {
4132 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
4133 continue;
4134
4135 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4136 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
4137 return true;
4138
4139 break;
4140 }
4141
4142 /* This is a new version. Add it to tree we are building. */
4143
4144 if (t == NULL)
4145 {
4146 amt = sizeof *t;
4147 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, amt);
4148 if (t == NULL)
4149 {
4150 rinfo->failed = true;
4151 return false;
4152 }
4153
4154 t->vn_bfd = h->verinfo.verdef->vd_bfd;
4155 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
4156 elf_tdata (rinfo->output_bfd)->verref = t;
4157 }
4158
4159 amt = sizeof *a;
4160 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, amt);
4161
4162 /* Note that we are copying a string pointer here, and testing it
4163 above. If bfd_elf_string_from_elf_section is ever changed to
4164 discard the string data when low in memory, this will have to be
4165 fixed. */
4166 a->vna_nodename = h->verinfo.verdef->vd_nodename;
4167
4168 a->vna_flags = h->verinfo.verdef->vd_flags;
4169 a->vna_nextptr = t->vn_auxptr;
4170
4171 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
4172 ++rinfo->vers;
4173
4174 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
4175
4176 t->vn_auxptr = a;
4177
4178 return true;
4179 }
4180
4181 /* Figure out appropriate versions for all the symbols. We may not
4182 have the version number script until we have read all of the input
4183 files, so until that point we don't know which symbols should be
4184 local. This function is called via elf_link_hash_traverse. */
4185
4186 static boolean
4187 elf_link_assign_sym_version (h, data)
4188 struct elf_link_hash_entry *h;
4189 PTR data;
4190 {
4191 struct elf_assign_sym_version_info *sinfo;
4192 struct bfd_link_info *info;
4193 struct elf_backend_data *bed;
4194 struct elf_info_failed eif;
4195 char *p;
4196 bfd_size_type amt;
4197
4198 sinfo = (struct elf_assign_sym_version_info *) data;
4199 info = sinfo->info;
4200
4201 if (h->root.type == bfd_link_hash_warning)
4202 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4203
4204 /* Fix the symbol flags. */
4205 eif.failed = false;
4206 eif.info = info;
4207 if (! elf_fix_symbol_flags (h, &eif))
4208 {
4209 if (eif.failed)
4210 sinfo->failed = true;
4211 return false;
4212 }
4213
4214 /* We only need version numbers for symbols defined in regular
4215 objects. */
4216 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
4217 return true;
4218
4219 bed = get_elf_backend_data (sinfo->output_bfd);
4220 p = strchr (h->root.root.string, ELF_VER_CHR);
4221 if (p != NULL && h->verinfo.vertree == NULL)
4222 {
4223 struct bfd_elf_version_tree *t;
4224 boolean hidden;
4225
4226 hidden = true;
4227
4228 /* There are two consecutive ELF_VER_CHR characters if this is
4229 not a hidden symbol. */
4230 ++p;
4231 if (*p == ELF_VER_CHR)
4232 {
4233 hidden = false;
4234 ++p;
4235 }
4236
4237 /* If there is no version string, we can just return out. */
4238 if (*p == '\0')
4239 {
4240 if (hidden)
4241 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
4242 return true;
4243 }
4244
4245 /* Look for the version. If we find it, it is no longer weak. */
4246 for (t = sinfo->verdefs; t != NULL; t = t->next)
4247 {
4248 if (strcmp (t->name, p) == 0)
4249 {
4250 size_t len;
4251 char *alc;
4252 struct bfd_elf_version_expr *d;
4253
4254 len = p - h->root.root.string;
4255 alc = bfd_malloc ((bfd_size_type) len);
4256 if (alc == NULL)
4257 return false;
4258 memcpy (alc, h->root.root.string, len - 1);
4259 alc[len - 1] = '\0';
4260 if (alc[len - 2] == ELF_VER_CHR)
4261 alc[len - 2] = '\0';
4262
4263 h->verinfo.vertree = t;
4264 t->used = true;
4265 d = NULL;
4266
4267 if (t->globals != NULL)
4268 {
4269 for (d = t->globals; d != NULL; d = d->next)
4270 if ((*d->match) (d, alc))
4271 break;
4272 }
4273
4274 /* See if there is anything to force this symbol to
4275 local scope. */
4276 if (d == NULL && t->locals != NULL)
4277 {
4278 for (d = t->locals; d != NULL; d = d->next)
4279 {
4280 if ((*d->match) (d, alc))
4281 {
4282 if (h->dynindx != -1
4283 && info->shared
4284 && ! info->export_dynamic)
4285 {
4286 (*bed->elf_backend_hide_symbol) (info, h, true);
4287 }
4288
4289 break;
4290 }
4291 }
4292 }
4293
4294 free (alc);
4295 break;
4296 }
4297 }
4298
4299 /* If we are building an application, we need to create a
4300 version node for this version. */
4301 if (t == NULL && ! info->shared)
4302 {
4303 struct bfd_elf_version_tree **pp;
4304 int version_index;
4305
4306 /* If we aren't going to export this symbol, we don't need
4307 to worry about it. */
4308 if (h->dynindx == -1)
4309 return true;
4310
4311 amt = sizeof *t;
4312 t = ((struct bfd_elf_version_tree *)
4313 bfd_alloc (sinfo->output_bfd, amt));
4314 if (t == NULL)
4315 {
4316 sinfo->failed = true;
4317 return false;
4318 }
4319
4320 t->next = NULL;
4321 t->name = p;
4322 t->globals = NULL;
4323 t->locals = NULL;
4324 t->deps = NULL;
4325 t->name_indx = (unsigned int) -1;
4326 t->used = true;
4327
4328 version_index = 1;
4329 /* Don't count anonymous version tag. */
4330 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
4331 version_index = 0;
4332 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
4333 ++version_index;
4334 t->vernum = version_index;
4335
4336 *pp = t;
4337
4338 h->verinfo.vertree = t;
4339 }
4340 else if (t == NULL)
4341 {
4342 /* We could not find the version for a symbol when
4343 generating a shared archive. Return an error. */
4344 (*_bfd_error_handler)
4345 (_("%s: undefined versioned symbol name %s"),
4346 bfd_get_filename (sinfo->output_bfd), h->root.root.string);
4347 bfd_set_error (bfd_error_bad_value);
4348 sinfo->failed = true;
4349 return false;
4350 }
4351
4352 if (hidden)
4353 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
4354 }
4355
4356 /* If we don't have a version for this symbol, see if we can find
4357 something. */
4358 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
4359 {
4360 struct bfd_elf_version_tree *t;
4361 struct bfd_elf_version_tree *deflt;
4362 struct bfd_elf_version_expr *d;
4363
4364 /* See if can find what version this symbol is in. If the
4365 symbol is supposed to be local, then don't actually register
4366 it. */
4367 deflt = NULL;
4368 for (t = sinfo->verdefs; t != NULL; t = t->next)
4369 {
4370 if (t->globals != NULL)
4371 {
4372 for (d = t->globals; d != NULL; d = d->next)
4373 {
4374 if ((*d->match) (d, h->root.root.string))
4375 {
4376 h->verinfo.vertree = t;
4377 break;
4378 }
4379 }
4380
4381 if (d != NULL)
4382 break;
4383 }
4384
4385 if (t->locals != NULL)
4386 {
4387 for (d = t->locals; d != NULL; d = d->next)
4388 {
4389 if (d->pattern[0] == '*' && d->pattern[1] == '\0')
4390 deflt = t;
4391 else if ((*d->match) (d, h->root.root.string))
4392 {
4393 h->verinfo.vertree = t;
4394 if (h->dynindx != -1
4395 && info->shared
4396 && ! info->export_dynamic)
4397 {
4398 (*bed->elf_backend_hide_symbol) (info, h, true);
4399 }
4400 break;
4401 }
4402 }
4403
4404 if (d != NULL)
4405 break;
4406 }
4407 }
4408
4409 if (deflt != NULL && h->verinfo.vertree == NULL)
4410 {
4411 h->verinfo.vertree = deflt;
4412 if (h->dynindx != -1
4413 && info->shared
4414 && ! info->export_dynamic)
4415 {
4416 (*bed->elf_backend_hide_symbol) (info, h, true);
4417 }
4418 }
4419 }
4420
4421 return true;
4422 }
4423 \f
4424 /* Final phase of ELF linker. */
4425
4426 /* A structure we use to avoid passing large numbers of arguments. */
4427
4428 struct elf_final_link_info
4429 {
4430 /* General link information. */
4431 struct bfd_link_info *info;
4432 /* Output BFD. */
4433 bfd *output_bfd;
4434 /* Symbol string table. */
4435 struct bfd_strtab_hash *symstrtab;
4436 /* .dynsym section. */
4437 asection *dynsym_sec;
4438 /* .hash section. */
4439 asection *hash_sec;
4440 /* symbol version section (.gnu.version). */
4441 asection *symver_sec;
4442 /* first SHF_TLS section (if any). */
4443 asection *first_tls_sec;
4444 /* Buffer large enough to hold contents of any section. */
4445 bfd_byte *contents;
4446 /* Buffer large enough to hold external relocs of any section. */
4447 PTR external_relocs;
4448 /* Buffer large enough to hold internal relocs of any section. */
4449 Elf_Internal_Rela *internal_relocs;
4450 /* Buffer large enough to hold external local symbols of any input
4451 BFD. */
4452 Elf_External_Sym *external_syms;
4453 /* And a buffer for symbol section indices. */
4454 Elf_External_Sym_Shndx *locsym_shndx;
4455 /* Buffer large enough to hold internal local symbols of any input
4456 BFD. */
4457 Elf_Internal_Sym *internal_syms;
4458 /* Array large enough to hold a symbol index for each local symbol
4459 of any input BFD. */
4460 long *indices;
4461 /* Array large enough to hold a section pointer for each local
4462 symbol of any input BFD. */
4463 asection **sections;
4464 /* Buffer to hold swapped out symbols. */
4465 Elf_External_Sym *symbuf;
4466 /* And one for symbol section indices. */
4467 Elf_External_Sym_Shndx *symshndxbuf;
4468 /* Number of swapped out symbols in buffer. */
4469 size_t symbuf_count;
4470 /* Number of symbols which fit in symbuf. */
4471 size_t symbuf_size;
4472 };
4473
4474 static boolean elf_link_output_sym
4475 PARAMS ((struct elf_final_link_info *, const char *,
4476 Elf_Internal_Sym *, asection *));
4477 static boolean elf_link_flush_output_syms
4478 PARAMS ((struct elf_final_link_info *));
4479 static boolean elf_link_output_extsym
4480 PARAMS ((struct elf_link_hash_entry *, PTR));
4481 static boolean elf_link_sec_merge_syms
4482 PARAMS ((struct elf_link_hash_entry *, PTR));
4483 static boolean elf_link_check_versioned_symbol
4484 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
4485 static boolean elf_link_input_bfd
4486 PARAMS ((struct elf_final_link_info *, bfd *));
4487 static boolean elf_reloc_link_order
4488 PARAMS ((bfd *, struct bfd_link_info *, asection *,
4489 struct bfd_link_order *));
4490
4491 /* This struct is used to pass information to elf_link_output_extsym. */
4492
4493 struct elf_outext_info
4494 {
4495 boolean failed;
4496 boolean localsyms;
4497 struct elf_final_link_info *finfo;
4498 };
4499
4500 /* Compute the size of, and allocate space for, REL_HDR which is the
4501 section header for a section containing relocations for O. */
4502
4503 static boolean
4504 elf_link_size_reloc_section (abfd, rel_hdr, o)
4505 bfd *abfd;
4506 Elf_Internal_Shdr *rel_hdr;
4507 asection *o;
4508 {
4509 bfd_size_type reloc_count;
4510 bfd_size_type num_rel_hashes;
4511
4512 /* Figure out how many relocations there will be. */
4513 if (rel_hdr == &elf_section_data (o)->rel_hdr)
4514 reloc_count = elf_section_data (o)->rel_count;
4515 else
4516 reloc_count = elf_section_data (o)->rel_count2;
4517
4518 num_rel_hashes = o->reloc_count;
4519 if (num_rel_hashes < reloc_count)
4520 num_rel_hashes = reloc_count;
4521
4522 /* That allows us to calculate the size of the section. */
4523 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
4524
4525 /* The contents field must last into write_object_contents, so we
4526 allocate it with bfd_alloc rather than malloc. Also since we
4527 cannot be sure that the contents will actually be filled in,
4528 we zero the allocated space. */
4529 rel_hdr->contents = (PTR) bfd_zalloc (abfd, rel_hdr->sh_size);
4530 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
4531 return false;
4532
4533 /* We only allocate one set of hash entries, so we only do it the
4534 first time we are called. */
4535 if (elf_section_data (o)->rel_hashes == NULL
4536 && num_rel_hashes)
4537 {
4538 struct elf_link_hash_entry **p;
4539
4540 p = ((struct elf_link_hash_entry **)
4541 bfd_zmalloc (num_rel_hashes
4542 * sizeof (struct elf_link_hash_entry *)));
4543 if (p == NULL)
4544 return false;
4545
4546 elf_section_data (o)->rel_hashes = p;
4547 }
4548
4549 return true;
4550 }
4551
4552 /* When performing a relocateable link, the input relocations are
4553 preserved. But, if they reference global symbols, the indices
4554 referenced must be updated. Update all the relocations in
4555 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
4556
4557 static void
4558 elf_link_adjust_relocs (abfd, rel_hdr, count, rel_hash)
4559 bfd *abfd;
4560 Elf_Internal_Shdr *rel_hdr;
4561 unsigned int count;
4562 struct elf_link_hash_entry **rel_hash;
4563 {
4564 unsigned int i;
4565 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4566 Elf_Internal_Rel *irel;
4567 Elf_Internal_Rela *irela;
4568 bfd_size_type amt = sizeof (Elf_Internal_Rel) * bed->s->int_rels_per_ext_rel;
4569
4570 irel = (Elf_Internal_Rel *) bfd_zmalloc (amt);
4571 if (irel == NULL)
4572 {
4573 (*_bfd_error_handler) (_("Error: out of memory"));
4574 abort ();
4575 }
4576
4577 amt = sizeof (Elf_Internal_Rela) * bed->s->int_rels_per_ext_rel;
4578 irela = (Elf_Internal_Rela *) bfd_zmalloc (amt);
4579 if (irela == NULL)
4580 {
4581 (*_bfd_error_handler) (_("Error: out of memory"));
4582 abort ();
4583 }
4584
4585 for (i = 0; i < count; i++, rel_hash++)
4586 {
4587 if (*rel_hash == NULL)
4588 continue;
4589
4590 BFD_ASSERT ((*rel_hash)->indx >= 0);
4591
4592 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
4593 {
4594 Elf_External_Rel *erel;
4595 unsigned int j;
4596
4597 erel = (Elf_External_Rel *) rel_hdr->contents + i;
4598 if (bed->s->swap_reloc_in)
4599 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
4600 else
4601 elf_swap_reloc_in (abfd, erel, irel);
4602
4603 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
4604 irel[j].r_info = ELF_R_INFO ((*rel_hash)->indx,
4605 ELF_R_TYPE (irel[j].r_info));
4606
4607 if (bed->s->swap_reloc_out)
4608 (*bed->s->swap_reloc_out) (abfd, irel, (bfd_byte *) erel);
4609 else
4610 elf_swap_reloc_out (abfd, irel, erel);
4611 }
4612 else
4613 {
4614 Elf_External_Rela *erela;
4615 unsigned int j;
4616
4617 BFD_ASSERT (rel_hdr->sh_entsize
4618 == sizeof (Elf_External_Rela));
4619
4620 erela = (Elf_External_Rela *) rel_hdr->contents + i;
4621 if (bed->s->swap_reloca_in)
4622 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
4623 else
4624 elf_swap_reloca_in (abfd, erela, irela);
4625
4626 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
4627 irela[j].r_info = ELF_R_INFO ((*rel_hash)->indx,
4628 ELF_R_TYPE (irela[j].r_info));
4629
4630 if (bed->s->swap_reloca_out)
4631 (*bed->s->swap_reloca_out) (abfd, irela, (bfd_byte *) erela);
4632 else
4633 elf_swap_reloca_out (abfd, irela, erela);
4634 }
4635 }
4636
4637 free (irel);
4638 free (irela);
4639 }
4640
4641 struct elf_link_sort_rela {
4642 bfd_vma offset;
4643 enum elf_reloc_type_class type;
4644 union {
4645 Elf_Internal_Rel rel;
4646 Elf_Internal_Rela rela;
4647 } u;
4648 };
4649
4650 static int
4651 elf_link_sort_cmp1 (A, B)
4652 const PTR A;
4653 const PTR B;
4654 {
4655 struct elf_link_sort_rela *a = (struct elf_link_sort_rela *) A;
4656 struct elf_link_sort_rela *b = (struct elf_link_sort_rela *) B;
4657 int relativea, relativeb;
4658
4659 relativea = a->type == reloc_class_relative;
4660 relativeb = b->type == reloc_class_relative;
4661
4662 if (relativea < relativeb)
4663 return 1;
4664 if (relativea > relativeb)
4665 return -1;
4666 if (ELF_R_SYM (a->u.rel.r_info) < ELF_R_SYM (b->u.rel.r_info))
4667 return -1;
4668 if (ELF_R_SYM (a->u.rel.r_info) > ELF_R_SYM (b->u.rel.r_info))
4669 return 1;
4670 if (a->u.rel.r_offset < b->u.rel.r_offset)
4671 return -1;
4672 if (a->u.rel.r_offset > b->u.rel.r_offset)
4673 return 1;
4674 return 0;
4675 }
4676
4677 static int
4678 elf_link_sort_cmp2 (A, B)
4679 const PTR A;
4680 const PTR B;
4681 {
4682 struct elf_link_sort_rela *a = (struct elf_link_sort_rela *) A;
4683 struct elf_link_sort_rela *b = (struct elf_link_sort_rela *) B;
4684 int copya, copyb;
4685
4686 if (a->offset < b->offset)
4687 return -1;
4688 if (a->offset > b->offset)
4689 return 1;
4690 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
4691 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
4692 if (copya < copyb)
4693 return -1;
4694 if (copya > copyb)
4695 return 1;
4696 if (a->u.rel.r_offset < b->u.rel.r_offset)
4697 return -1;
4698 if (a->u.rel.r_offset > b->u.rel.r_offset)
4699 return 1;
4700 return 0;
4701 }
4702
4703 static size_t
4704 elf_link_sort_relocs (abfd, info, psec)
4705 bfd *abfd;
4706 struct bfd_link_info *info;
4707 asection **psec;
4708 {
4709 bfd *dynobj = elf_hash_table (info)->dynobj;
4710 asection *reldyn, *o;
4711 boolean rel = false;
4712 bfd_size_type count, size;
4713 size_t i, j, ret;
4714 struct elf_link_sort_rela *rela;
4715 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4716
4717 reldyn = bfd_get_section_by_name (abfd, ".rela.dyn");
4718 if (reldyn == NULL || reldyn->_raw_size == 0)
4719 {
4720 reldyn = bfd_get_section_by_name (abfd, ".rel.dyn");
4721 if (reldyn == NULL || reldyn->_raw_size == 0)
4722 return 0;
4723 rel = true;
4724 count = reldyn->_raw_size / sizeof (Elf_External_Rel);
4725 }
4726 else
4727 count = reldyn->_raw_size / sizeof (Elf_External_Rela);
4728
4729 size = 0;
4730 for (o = dynobj->sections; o != NULL; o = o->next)
4731 if ((o->flags & (SEC_HAS_CONTENTS|SEC_LINKER_CREATED))
4732 == (SEC_HAS_CONTENTS|SEC_LINKER_CREATED)
4733 && o->output_section == reldyn)
4734 size += o->_raw_size;
4735
4736 if (size != reldyn->_raw_size)
4737 return 0;
4738
4739 rela = (struct elf_link_sort_rela *) bfd_zmalloc (sizeof (*rela) * count);
4740 if (rela == NULL)
4741 {
4742 (*info->callbacks->warning)
4743 (info, _("Not enough memory to sort relocations"), 0, abfd, 0,
4744 (bfd_vma) 0);
4745 return 0;
4746 }
4747
4748 for (o = dynobj->sections; o != NULL; o = o->next)
4749 if ((o->flags & (SEC_HAS_CONTENTS|SEC_LINKER_CREATED))
4750 == (SEC_HAS_CONTENTS|SEC_LINKER_CREATED)
4751 && o->output_section == reldyn)
4752 {
4753 if (rel)
4754 {
4755 Elf_External_Rel *erel, *erelend;
4756 struct elf_link_sort_rela *s;
4757
4758 erel = (Elf_External_Rel *) o->contents;
4759 erelend = (Elf_External_Rel *) (o->contents + o->_raw_size);
4760 s = rela + o->output_offset / sizeof (Elf_External_Rel);
4761 for (; erel < erelend; erel++, s++)
4762 {
4763 if (bed->s->swap_reloc_in)
4764 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, &s->u.rel);
4765 else
4766 elf_swap_reloc_in (abfd, erel, &s->u.rel);
4767
4768 s->type = (*bed->elf_backend_reloc_type_class) (&s->u.rela);
4769 }
4770 }
4771 else
4772 {
4773 Elf_External_Rela *erela, *erelaend;
4774 struct elf_link_sort_rela *s;
4775
4776 erela = (Elf_External_Rela *) o->contents;
4777 erelaend = (Elf_External_Rela *) (o->contents + o->_raw_size);
4778 s = rela + o->output_offset / sizeof (Elf_External_Rela);
4779 for (; erela < erelaend; erela++, s++)
4780 {
4781 if (bed->s->swap_reloca_in)
4782 (*bed->s->swap_reloca_in) (dynobj, (bfd_byte *) erela,
4783 &s->u.rela);
4784 else
4785 elf_swap_reloca_in (dynobj, erela, &s->u.rela);
4786
4787 s->type = (*bed->elf_backend_reloc_type_class) (&s->u.rela);
4788 }
4789 }
4790 }
4791
4792 qsort (rela, (size_t) count, sizeof (*rela), elf_link_sort_cmp1);
4793 for (ret = 0; ret < count && rela[ret].type == reloc_class_relative; ret++)
4794 ;
4795 for (i = ret, j = ret; i < count; i++)
4796 {
4797 if (ELF_R_SYM (rela[i].u.rel.r_info) != ELF_R_SYM (rela[j].u.rel.r_info))
4798 j = i;
4799 rela[i].offset = rela[j].u.rel.r_offset;
4800 }
4801 qsort (rela + ret, (size_t) count - ret, sizeof (*rela), elf_link_sort_cmp2);
4802
4803 for (o = dynobj->sections; o != NULL; o = o->next)
4804 if ((o->flags & (SEC_HAS_CONTENTS|SEC_LINKER_CREATED))
4805 == (SEC_HAS_CONTENTS|SEC_LINKER_CREATED)
4806 && o->output_section == reldyn)
4807 {
4808 if (rel)
4809 {
4810 Elf_External_Rel *erel, *erelend;
4811 struct elf_link_sort_rela *s;
4812
4813 erel = (Elf_External_Rel *) o->contents;
4814 erelend = (Elf_External_Rel *) (o->contents + o->_raw_size);
4815 s = rela + o->output_offset / sizeof (Elf_External_Rel);
4816 for (; erel < erelend; erel++, s++)
4817 {
4818 if (bed->s->swap_reloc_out)
4819 (*bed->s->swap_reloc_out) (abfd, &s->u.rel,
4820 (bfd_byte *) erel);
4821 else
4822 elf_swap_reloc_out (abfd, &s->u.rel, erel);
4823 }
4824 }
4825 else
4826 {
4827 Elf_External_Rela *erela, *erelaend;
4828 struct elf_link_sort_rela *s;
4829
4830 erela = (Elf_External_Rela *) o->contents;
4831 erelaend = (Elf_External_Rela *) (o->contents + o->_raw_size);
4832 s = rela + o->output_offset / sizeof (Elf_External_Rela);
4833 for (; erela < erelaend; erela++, s++)
4834 {
4835 if (bed->s->swap_reloca_out)
4836 (*bed->s->swap_reloca_out) (dynobj, &s->u.rela,
4837 (bfd_byte *) erela);
4838 else
4839 elf_swap_reloca_out (dynobj, &s->u.rela, erela);
4840 }
4841 }
4842 }
4843
4844 free (rela);
4845 *psec = reldyn;
4846 return ret;
4847 }
4848
4849 /* Do the final step of an ELF link. */
4850
4851 boolean
4852 elf_bfd_final_link (abfd, info)
4853 bfd *abfd;
4854 struct bfd_link_info *info;
4855 {
4856 boolean dynamic;
4857 boolean emit_relocs;
4858 bfd *dynobj;
4859 struct elf_final_link_info finfo;
4860 register asection *o;
4861 register struct bfd_link_order *p;
4862 register bfd *sub;
4863 bfd_size_type max_contents_size;
4864 bfd_size_type max_external_reloc_size;
4865 bfd_size_type max_internal_reloc_count;
4866 bfd_size_type max_sym_count;
4867 bfd_size_type max_sym_shndx_count;
4868 file_ptr off;
4869 Elf_Internal_Sym elfsym;
4870 unsigned int i;
4871 Elf_Internal_Shdr *symtab_hdr;
4872 Elf_Internal_Shdr *symstrtab_hdr;
4873 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4874 struct elf_outext_info eoinfo;
4875 boolean merged;
4876 size_t relativecount = 0;
4877 asection *reldyn = 0;
4878 bfd_size_type amt;
4879
4880 if (! is_elf_hash_table (info))
4881 return false;
4882
4883 if (info->shared)
4884 abfd->flags |= DYNAMIC;
4885
4886 dynamic = elf_hash_table (info)->dynamic_sections_created;
4887 dynobj = elf_hash_table (info)->dynobj;
4888
4889 emit_relocs = (info->relocateable
4890 || info->emitrelocations
4891 || bed->elf_backend_emit_relocs);
4892
4893 finfo.info = info;
4894 finfo.output_bfd = abfd;
4895 finfo.symstrtab = elf_stringtab_init ();
4896 if (finfo.symstrtab == NULL)
4897 return false;
4898
4899 if (! dynamic)
4900 {
4901 finfo.dynsym_sec = NULL;
4902 finfo.hash_sec = NULL;
4903 finfo.symver_sec = NULL;
4904 }
4905 else
4906 {
4907 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
4908 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
4909 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
4910 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
4911 /* Note that it is OK if symver_sec is NULL. */
4912 }
4913
4914 finfo.contents = NULL;
4915 finfo.external_relocs = NULL;
4916 finfo.internal_relocs = NULL;
4917 finfo.external_syms = NULL;
4918 finfo.locsym_shndx = NULL;
4919 finfo.internal_syms = NULL;
4920 finfo.indices = NULL;
4921 finfo.sections = NULL;
4922 finfo.symbuf = NULL;
4923 finfo.symshndxbuf = NULL;
4924 finfo.symbuf_count = 0;
4925 finfo.first_tls_sec = NULL;
4926 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4927 if ((o->flags & SEC_THREAD_LOCAL) != 0
4928 && (o->flags & SEC_LOAD) != 0)
4929 {
4930 finfo.first_tls_sec = o;
4931 break;
4932 }
4933
4934 /* Count up the number of relocations we will output for each output
4935 section, so that we know the sizes of the reloc sections. We
4936 also figure out some maximum sizes. */
4937 max_contents_size = 0;
4938 max_external_reloc_size = 0;
4939 max_internal_reloc_count = 0;
4940 max_sym_count = 0;
4941 max_sym_shndx_count = 0;
4942 merged = false;
4943 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4944 {
4945 o->reloc_count = 0;
4946
4947 for (p = o->link_order_head; p != NULL; p = p->next)
4948 {
4949 if (p->type == bfd_section_reloc_link_order
4950 || p->type == bfd_symbol_reloc_link_order)
4951 ++o->reloc_count;
4952 else if (p->type == bfd_indirect_link_order)
4953 {
4954 asection *sec;
4955
4956 sec = p->u.indirect.section;
4957
4958 /* Mark all sections which are to be included in the
4959 link. This will normally be every section. We need
4960 to do this so that we can identify any sections which
4961 the linker has decided to not include. */
4962 sec->linker_mark = true;
4963
4964 if (sec->flags & SEC_MERGE)
4965 merged = true;
4966
4967 if (info->relocateable || info->emitrelocations)
4968 o->reloc_count += sec->reloc_count;
4969 else if (bed->elf_backend_count_relocs)
4970 {
4971 Elf_Internal_Rela * relocs;
4972
4973 relocs = (NAME(_bfd_elf,link_read_relocs)
4974 (abfd, sec, (PTR) NULL,
4975 (Elf_Internal_Rela *) NULL, info->keep_memory));
4976
4977 o->reloc_count
4978 += (*bed->elf_backend_count_relocs) (sec, relocs);
4979
4980 if (elf_section_data (o)->relocs != relocs)
4981 free (relocs);
4982 }
4983
4984 if (sec->_raw_size > max_contents_size)
4985 max_contents_size = sec->_raw_size;
4986 if (sec->_cooked_size > max_contents_size)
4987 max_contents_size = sec->_cooked_size;
4988
4989 /* We are interested in just local symbols, not all
4990 symbols. */
4991 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
4992 && (sec->owner->flags & DYNAMIC) == 0)
4993 {
4994 size_t sym_count;
4995
4996 if (elf_bad_symtab (sec->owner))
4997 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
4998 / sizeof (Elf_External_Sym));
4999 else
5000 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
5001
5002 if (sym_count > max_sym_count)
5003 max_sym_count = sym_count;
5004
5005 if (sym_count > max_sym_shndx_count
5006 && elf_symtab_shndx (sec->owner) != 0)
5007 max_sym_shndx_count = sym_count;
5008
5009 if ((sec->flags & SEC_RELOC) != 0)
5010 {
5011 size_t ext_size;
5012
5013 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
5014 if (ext_size > max_external_reloc_size)
5015 max_external_reloc_size = ext_size;
5016 if (sec->reloc_count > max_internal_reloc_count)
5017 max_internal_reloc_count = sec->reloc_count;
5018 }
5019 }
5020 }
5021 }
5022
5023 if (o->reloc_count > 0)
5024 o->flags |= SEC_RELOC;
5025 else
5026 {
5027 /* Explicitly clear the SEC_RELOC flag. The linker tends to
5028 set it (this is probably a bug) and if it is set
5029 assign_section_numbers will create a reloc section. */
5030 o->flags &=~ SEC_RELOC;
5031 }
5032
5033 /* If the SEC_ALLOC flag is not set, force the section VMA to
5034 zero. This is done in elf_fake_sections as well, but forcing
5035 the VMA to 0 here will ensure that relocs against these
5036 sections are handled correctly. */
5037 if ((o->flags & SEC_ALLOC) == 0
5038 && ! o->user_set_vma)
5039 o->vma = 0;
5040 }
5041
5042 if (! info->relocateable && merged)
5043 elf_link_hash_traverse (elf_hash_table (info),
5044 elf_link_sec_merge_syms, (PTR) abfd);
5045
5046 /* Figure out the file positions for everything but the symbol table
5047 and the relocs. We set symcount to force assign_section_numbers
5048 to create a symbol table. */
5049 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
5050 BFD_ASSERT (! abfd->output_has_begun);
5051 if (! _bfd_elf_compute_section_file_positions (abfd, info))
5052 goto error_return;
5053
5054 /* Figure out how many relocations we will have in each section.
5055 Just using RELOC_COUNT isn't good enough since that doesn't
5056 maintain a separate value for REL vs. RELA relocations. */
5057 if (emit_relocs)
5058 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
5059 for (o = sub->sections; o != NULL; o = o->next)
5060 {
5061 asection *output_section;
5062
5063 if (! o->linker_mark)
5064 {
5065 /* This section was omitted from the link. */
5066 continue;
5067 }
5068
5069 output_section = o->output_section;
5070
5071 if (output_section != NULL
5072 && (o->flags & SEC_RELOC) != 0)
5073 {
5074 struct bfd_elf_section_data *esdi
5075 = elf_section_data (o);
5076 struct bfd_elf_section_data *esdo
5077 = elf_section_data (output_section);
5078 unsigned int *rel_count;
5079 unsigned int *rel_count2;
5080 bfd_size_type entsize;
5081 bfd_size_type entsize2;
5082
5083 /* We must be careful to add the relocations from the
5084 input section to the right output count. */
5085 entsize = esdi->rel_hdr.sh_entsize;
5086 entsize2 = esdi->rel_hdr2 ? esdi->rel_hdr2->sh_entsize : 0;
5087 BFD_ASSERT ((entsize == sizeof (Elf_External_Rel)
5088 || entsize == sizeof (Elf_External_Rela))
5089 && entsize2 != entsize
5090 && (entsize2 == 0
5091 || entsize2 == sizeof (Elf_External_Rel)
5092 || entsize2 == sizeof (Elf_External_Rela)));
5093 if (entsize == esdo->rel_hdr.sh_entsize)
5094 {
5095 rel_count = &esdo->rel_count;
5096 rel_count2 = &esdo->rel_count2;
5097 }
5098 else
5099 {
5100 rel_count = &esdo->rel_count2;
5101 rel_count2 = &esdo->rel_count;
5102 }
5103
5104 *rel_count += NUM_SHDR_ENTRIES (& esdi->rel_hdr);
5105 if (esdi->rel_hdr2)
5106 *rel_count2 += NUM_SHDR_ENTRIES (esdi->rel_hdr2);
5107 output_section->flags |= SEC_RELOC;
5108 }
5109 }
5110
5111 /* That created the reloc sections. Set their sizes, and assign
5112 them file positions, and allocate some buffers. */
5113 for (o = abfd->sections; o != NULL; o = o->next)
5114 {
5115 if ((o->flags & SEC_RELOC) != 0)
5116 {
5117 if (!elf_link_size_reloc_section (abfd,
5118 &elf_section_data (o)->rel_hdr,
5119 o))
5120 goto error_return;
5121
5122 if (elf_section_data (o)->rel_hdr2
5123 && !elf_link_size_reloc_section (abfd,
5124 elf_section_data (o)->rel_hdr2,
5125 o))
5126 goto error_return;
5127 }
5128
5129 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
5130 to count upwards while actually outputting the relocations. */
5131 elf_section_data (o)->rel_count = 0;
5132 elf_section_data (o)->rel_count2 = 0;
5133 }
5134
5135 _bfd_elf_assign_file_positions_for_relocs (abfd);
5136
5137 /* We have now assigned file positions for all the sections except
5138 .symtab and .strtab. We start the .symtab section at the current
5139 file position, and write directly to it. We build the .strtab
5140 section in memory. */
5141 bfd_get_symcount (abfd) = 0;
5142 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5143 /* sh_name is set in prep_headers. */
5144 symtab_hdr->sh_type = SHT_SYMTAB;
5145 symtab_hdr->sh_flags = 0;
5146 symtab_hdr->sh_addr = 0;
5147 symtab_hdr->sh_size = 0;
5148 symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
5149 /* sh_link is set in assign_section_numbers. */
5150 /* sh_info is set below. */
5151 /* sh_offset is set just below. */
5152 symtab_hdr->sh_addralign = bed->s->file_align;
5153
5154 off = elf_tdata (abfd)->next_file_pos;
5155 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
5156
5157 /* Note that at this point elf_tdata (abfd)->next_file_pos is
5158 incorrect. We do not yet know the size of the .symtab section.
5159 We correct next_file_pos below, after we do know the size. */
5160
5161 /* Allocate a buffer to hold swapped out symbols. This is to avoid
5162 continuously seeking to the right position in the file. */
5163 if (! info->keep_memory || max_sym_count < 20)
5164 finfo.symbuf_size = 20;
5165 else
5166 finfo.symbuf_size = max_sym_count;
5167 amt = finfo.symbuf_size;
5168 amt *= sizeof (Elf_External_Sym);
5169 finfo.symbuf = (Elf_External_Sym *) bfd_malloc (amt);
5170 if (finfo.symbuf == NULL)
5171 goto error_return;
5172 if (elf_numsections (abfd) > SHN_LORESERVE)
5173 {
5174 amt = finfo.symbuf_size;
5175 amt *= sizeof (Elf_External_Sym_Shndx);
5176 finfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
5177 if (finfo.symshndxbuf == NULL)
5178 goto error_return;
5179 }
5180
5181 /* Start writing out the symbol table. The first symbol is always a
5182 dummy symbol. */
5183 if (info->strip != strip_all
5184 || emit_relocs)
5185 {
5186 elfsym.st_value = 0;
5187 elfsym.st_size = 0;
5188 elfsym.st_info = 0;
5189 elfsym.st_other = 0;
5190 elfsym.st_shndx = SHN_UNDEF;
5191 if (! elf_link_output_sym (&finfo, (const char *) NULL,
5192 &elfsym, bfd_und_section_ptr))
5193 goto error_return;
5194 }
5195
5196 #if 0
5197 /* Some standard ELF linkers do this, but we don't because it causes
5198 bootstrap comparison failures. */
5199 /* Output a file symbol for the output file as the second symbol.
5200 We output this even if we are discarding local symbols, although
5201 I'm not sure if this is correct. */
5202 elfsym.st_value = 0;
5203 elfsym.st_size = 0;
5204 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
5205 elfsym.st_other = 0;
5206 elfsym.st_shndx = SHN_ABS;
5207 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
5208 &elfsym, bfd_abs_section_ptr))
5209 goto error_return;
5210 #endif
5211
5212 /* Output a symbol for each section. We output these even if we are
5213 discarding local symbols, since they are used for relocs. These
5214 symbols have no names. We store the index of each one in the
5215 index field of the section, so that we can find it again when
5216 outputting relocs. */
5217 if (info->strip != strip_all
5218 || emit_relocs)
5219 {
5220 elfsym.st_size = 0;
5221 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5222 elfsym.st_other = 0;
5223 for (i = 1; i < elf_numsections (abfd); i++)
5224 {
5225 o = section_from_elf_index (abfd, i);
5226 if (o != NULL)
5227 o->target_index = bfd_get_symcount (abfd);
5228 elfsym.st_shndx = i;
5229 if (info->relocateable || o == NULL)
5230 elfsym.st_value = 0;
5231 else
5232 elfsym.st_value = o->vma;
5233 if (! elf_link_output_sym (&finfo, (const char *) NULL,
5234 &elfsym, o))
5235 goto error_return;
5236 if (i == SHN_LORESERVE)
5237 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
5238 }
5239 }
5240
5241 /* Allocate some memory to hold information read in from the input
5242 files. */
5243 if (max_contents_size != 0)
5244 {
5245 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
5246 if (finfo.contents == NULL)
5247 goto error_return;
5248 }
5249
5250 if (max_external_reloc_size != 0)
5251 {
5252 finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
5253 if (finfo.external_relocs == NULL)
5254 goto error_return;
5255 }
5256
5257 if (max_internal_reloc_count != 0)
5258 {
5259 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
5260 amt *= sizeof (Elf_Internal_Rela);
5261 finfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
5262 if (finfo.internal_relocs == NULL)
5263 goto error_return;
5264 }
5265
5266 if (max_sym_count != 0)
5267 {
5268 amt = max_sym_count * sizeof (Elf_External_Sym);
5269 finfo.external_syms = (Elf_External_Sym *) bfd_malloc (amt);
5270 if (finfo.external_syms == NULL)
5271 goto error_return;
5272
5273 amt = max_sym_count * sizeof (Elf_Internal_Sym);
5274 finfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
5275 if (finfo.internal_syms == NULL)
5276 goto error_return;
5277
5278 amt = max_sym_count * sizeof (long);
5279 finfo.indices = (long *) bfd_malloc (amt);
5280 if (finfo.indices == NULL)
5281 goto error_return;
5282
5283 amt = max_sym_count * sizeof (asection *);
5284 finfo.sections = (asection **) bfd_malloc (amt);
5285 if (finfo.sections == NULL)
5286 goto error_return;
5287 }
5288
5289 if (max_sym_shndx_count != 0)
5290 {
5291 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
5292 finfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
5293 if (finfo.locsym_shndx == NULL)
5294 goto error_return;
5295 }
5296
5297 if (finfo.first_tls_sec)
5298 {
5299 unsigned int align = 0;
5300 bfd_vma base = finfo.first_tls_sec->vma, end = 0;
5301 asection *sec;
5302
5303 for (sec = finfo.first_tls_sec;
5304 sec && (sec->flags & SEC_THREAD_LOCAL);
5305 sec = sec->next)
5306 {
5307 bfd_vma size = sec->_raw_size;
5308
5309 if (bfd_get_section_alignment (abfd, sec) > align)
5310 align = bfd_get_section_alignment (abfd, sec);
5311 if (sec->_raw_size == 0 && (sec->flags & SEC_HAS_CONTENTS) == 0)
5312 {
5313 struct bfd_link_order *o;
5314
5315 size = 0;
5316 for (o = sec->link_order_head; o != NULL; o = o->next)
5317 if (size < o->offset + o->size)
5318 size = o->offset + o->size;
5319 }
5320 end = sec->vma + size;
5321 }
5322 elf_hash_table (info)->tls_segment
5323 = bfd_zalloc (abfd, sizeof (struct elf_link_tls_segment));
5324 if (elf_hash_table (info)->tls_segment == NULL)
5325 goto error_return;
5326 elf_hash_table (info)->tls_segment->start = base;
5327 elf_hash_table (info)->tls_segment->size = end - base;
5328 elf_hash_table (info)->tls_segment->align = align;
5329 }
5330
5331 /* Since ELF permits relocations to be against local symbols, we
5332 must have the local symbols available when we do the relocations.
5333 Since we would rather only read the local symbols once, and we
5334 would rather not keep them in memory, we handle all the
5335 relocations for a single input file at the same time.
5336
5337 Unfortunately, there is no way to know the total number of local
5338 symbols until we have seen all of them, and the local symbol
5339 indices precede the global symbol indices. This means that when
5340 we are generating relocateable output, and we see a reloc against
5341 a global symbol, we can not know the symbol index until we have
5342 finished examining all the local symbols to see which ones we are
5343 going to output. To deal with this, we keep the relocations in
5344 memory, and don't output them until the end of the link. This is
5345 an unfortunate waste of memory, but I don't see a good way around
5346 it. Fortunately, it only happens when performing a relocateable
5347 link, which is not the common case. FIXME: If keep_memory is set
5348 we could write the relocs out and then read them again; I don't
5349 know how bad the memory loss will be. */
5350
5351 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
5352 sub->output_has_begun = false;
5353 for (o = abfd->sections; o != NULL; o = o->next)
5354 {
5355 for (p = o->link_order_head; p != NULL; p = p->next)
5356 {
5357 if (p->type == bfd_indirect_link_order
5358 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
5359 == bfd_target_elf_flavour)
5360 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
5361 {
5362 if (! sub->output_has_begun)
5363 {
5364 if (! elf_link_input_bfd (&finfo, sub))
5365 goto error_return;
5366 sub->output_has_begun = true;
5367 }
5368 }
5369 else if (p->type == bfd_section_reloc_link_order
5370 || p->type == bfd_symbol_reloc_link_order)
5371 {
5372 if (! elf_reloc_link_order (abfd, info, o, p))
5373 goto error_return;
5374 }
5375 else
5376 {
5377 if (! _bfd_default_link_order (abfd, info, o, p))
5378 goto error_return;
5379 }
5380 }
5381 }
5382
5383 /* Output any global symbols that got converted to local in a
5384 version script or due to symbol visibility. We do this in a
5385 separate step since ELF requires all local symbols to appear
5386 prior to any global symbols. FIXME: We should only do this if
5387 some global symbols were, in fact, converted to become local.
5388 FIXME: Will this work correctly with the Irix 5 linker? */
5389 eoinfo.failed = false;
5390 eoinfo.finfo = &finfo;
5391 eoinfo.localsyms = true;
5392 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
5393 (PTR) &eoinfo);
5394 if (eoinfo.failed)
5395 return false;
5396
5397 /* That wrote out all the local symbols. Finish up the symbol table
5398 with the global symbols. Even if we want to strip everything we
5399 can, we still need to deal with those global symbols that got
5400 converted to local in a version script. */
5401
5402 /* The sh_info field records the index of the first non local symbol. */
5403 symtab_hdr->sh_info = bfd_get_symcount (abfd);
5404
5405 if (dynamic
5406 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
5407 {
5408 Elf_Internal_Sym sym;
5409 Elf_External_Sym *dynsym =
5410 (Elf_External_Sym *) finfo.dynsym_sec->contents;
5411 long last_local = 0;
5412
5413 /* Write out the section symbols for the output sections. */
5414 if (info->shared)
5415 {
5416 asection *s;
5417
5418 sym.st_size = 0;
5419 sym.st_name = 0;
5420 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5421 sym.st_other = 0;
5422
5423 for (s = abfd->sections; s != NULL; s = s->next)
5424 {
5425 int indx;
5426 Elf_External_Sym *dest;
5427
5428 indx = elf_section_data (s)->this_idx;
5429 BFD_ASSERT (indx > 0);
5430 sym.st_shndx = indx;
5431 sym.st_value = s->vma;
5432 dest = dynsym + elf_section_data (s)->dynindx;
5433 elf_swap_symbol_out (abfd, &sym, (PTR) dest, (PTR) 0);
5434 }
5435
5436 last_local = bfd_count_sections (abfd);
5437 }
5438
5439 /* Write out the local dynsyms. */
5440 if (elf_hash_table (info)->dynlocal)
5441 {
5442 struct elf_link_local_dynamic_entry *e;
5443 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
5444 {
5445 asection *s;
5446 Elf_External_Sym *dest;
5447
5448 sym.st_size = e->isym.st_size;
5449 sym.st_other = e->isym.st_other;
5450
5451 /* Copy the internal symbol as is.
5452 Note that we saved a word of storage and overwrote
5453 the original st_name with the dynstr_index. */
5454 sym = e->isym;
5455
5456 if (e->isym.st_shndx != SHN_UNDEF
5457 && (e->isym.st_shndx < SHN_LORESERVE
5458 || e->isym.st_shndx > SHN_HIRESERVE))
5459 {
5460 s = bfd_section_from_elf_index (e->input_bfd,
5461 e->isym.st_shndx);
5462
5463 sym.st_shndx =
5464 elf_section_data (s->output_section)->this_idx;
5465 sym.st_value = (s->output_section->vma
5466 + s->output_offset
5467 + e->isym.st_value);
5468 }
5469
5470 if (last_local < e->dynindx)
5471 last_local = e->dynindx;
5472
5473 dest = dynsym + e->dynindx;
5474 elf_swap_symbol_out (abfd, &sym, (PTR) dest, (PTR) 0);
5475 }
5476 }
5477
5478 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
5479 last_local + 1;
5480 }
5481
5482 /* We get the global symbols from the hash table. */
5483 eoinfo.failed = false;
5484 eoinfo.localsyms = false;
5485 eoinfo.finfo = &finfo;
5486 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
5487 (PTR) &eoinfo);
5488 if (eoinfo.failed)
5489 return false;
5490
5491 /* If backend needs to output some symbols not present in the hash
5492 table, do it now. */
5493 if (bed->elf_backend_output_arch_syms)
5494 {
5495 typedef boolean (*out_sym_func) PARAMS ((PTR, const char *,
5496 Elf_Internal_Sym *,
5497 asection *));
5498
5499 if (! ((*bed->elf_backend_output_arch_syms)
5500 (abfd, info, (PTR) &finfo, (out_sym_func) elf_link_output_sym)))
5501 return false;
5502 }
5503
5504 /* Flush all symbols to the file. */
5505 if (! elf_link_flush_output_syms (&finfo))
5506 return false;
5507
5508 /* Now we know the size of the symtab section. */
5509 off += symtab_hdr->sh_size;
5510
5511 /* Finish up and write out the symbol string table (.strtab)
5512 section. */
5513 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5514 /* sh_name was set in prep_headers. */
5515 symstrtab_hdr->sh_type = SHT_STRTAB;
5516 symstrtab_hdr->sh_flags = 0;
5517 symstrtab_hdr->sh_addr = 0;
5518 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
5519 symstrtab_hdr->sh_entsize = 0;
5520 symstrtab_hdr->sh_link = 0;
5521 symstrtab_hdr->sh_info = 0;
5522 /* sh_offset is set just below. */
5523 symstrtab_hdr->sh_addralign = 1;
5524
5525 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
5526 elf_tdata (abfd)->next_file_pos = off;
5527
5528 if (bfd_get_symcount (abfd) > 0)
5529 {
5530 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
5531 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
5532 return false;
5533 }
5534
5535 /* Adjust the relocs to have the correct symbol indices. */
5536 for (o = abfd->sections; o != NULL; o = o->next)
5537 {
5538 if ((o->flags & SEC_RELOC) == 0)
5539 continue;
5540
5541 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
5542 elf_section_data (o)->rel_count,
5543 elf_section_data (o)->rel_hashes);
5544 if (elf_section_data (o)->rel_hdr2 != NULL)
5545 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
5546 elf_section_data (o)->rel_count2,
5547 (elf_section_data (o)->rel_hashes
5548 + elf_section_data (o)->rel_count));
5549
5550 /* Set the reloc_count field to 0 to prevent write_relocs from
5551 trying to swap the relocs out itself. */
5552 o->reloc_count = 0;
5553 }
5554
5555 if (dynamic && info->combreloc && dynobj != NULL)
5556 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
5557
5558 /* If we are linking against a dynamic object, or generating a
5559 shared library, finish up the dynamic linking information. */
5560 if (dynamic)
5561 {
5562 Elf_External_Dyn *dyncon, *dynconend;
5563
5564 /* Fix up .dynamic entries. */
5565 o = bfd_get_section_by_name (dynobj, ".dynamic");
5566 BFD_ASSERT (o != NULL);
5567
5568 dyncon = (Elf_External_Dyn *) o->contents;
5569 dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
5570 for (; dyncon < dynconend; dyncon++)
5571 {
5572 Elf_Internal_Dyn dyn;
5573 const char *name;
5574 unsigned int type;
5575
5576 elf_swap_dyn_in (dynobj, dyncon, &dyn);
5577
5578 switch (dyn.d_tag)
5579 {
5580 default:
5581 break;
5582 case DT_NULL:
5583 if (relativecount > 0 && dyncon + 1 < dynconend)
5584 {
5585 switch (elf_section_data (reldyn)->this_hdr.sh_type)
5586 {
5587 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
5588 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
5589 default: break;
5590 }
5591 if (dyn.d_tag != DT_NULL)
5592 {
5593 dyn.d_un.d_val = relativecount;
5594 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5595 relativecount = 0;
5596 }
5597 }
5598 break;
5599 case DT_INIT:
5600 name = info->init_function;
5601 goto get_sym;
5602 case DT_FINI:
5603 name = info->fini_function;
5604 get_sym:
5605 {
5606 struct elf_link_hash_entry *h;
5607
5608 h = elf_link_hash_lookup (elf_hash_table (info), name,
5609 false, false, true);
5610 if (h != NULL
5611 && (h->root.type == bfd_link_hash_defined
5612 || h->root.type == bfd_link_hash_defweak))
5613 {
5614 dyn.d_un.d_val = h->root.u.def.value;
5615 o = h->root.u.def.section;
5616 if (o->output_section != NULL)
5617 dyn.d_un.d_val += (o->output_section->vma
5618 + o->output_offset);
5619 else
5620 {
5621 /* The symbol is imported from another shared
5622 library and does not apply to this one. */
5623 dyn.d_un.d_val = 0;
5624 }
5625
5626 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5627 }
5628 }
5629 break;
5630
5631 case DT_PREINIT_ARRAYSZ:
5632 name = ".preinit_array";
5633 goto get_size;
5634 case DT_INIT_ARRAYSZ:
5635 name = ".init_array";
5636 goto get_size;
5637 case DT_FINI_ARRAYSZ:
5638 name = ".fini_array";
5639 get_size:
5640 o = bfd_get_section_by_name (abfd, name);
5641 if (o == NULL)
5642 {
5643 (*_bfd_error_handler)
5644 (_("%s: could not find output section %s"),
5645 bfd_get_filename (abfd), name);
5646 goto error_return;
5647 }
5648 if (o->_raw_size == 0)
5649 (*_bfd_error_handler)
5650 (_("warning: %s section has zero size"), name);
5651 dyn.d_un.d_val = o->_raw_size;
5652 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5653 break;
5654
5655 case DT_PREINIT_ARRAY:
5656 name = ".preinit_array";
5657 goto get_vma;
5658 case DT_INIT_ARRAY:
5659 name = ".init_array";
5660 goto get_vma;
5661 case DT_FINI_ARRAY:
5662 name = ".fini_array";
5663 goto get_vma;
5664
5665 case DT_HASH:
5666 name = ".hash";
5667 goto get_vma;
5668 case DT_STRTAB:
5669 name = ".dynstr";
5670 goto get_vma;
5671 case DT_SYMTAB:
5672 name = ".dynsym";
5673 goto get_vma;
5674 case DT_VERDEF:
5675 name = ".gnu.version_d";
5676 goto get_vma;
5677 case DT_VERNEED:
5678 name = ".gnu.version_r";
5679 goto get_vma;
5680 case DT_VERSYM:
5681 name = ".gnu.version";
5682 get_vma:
5683 o = bfd_get_section_by_name (abfd, name);
5684 if (o == NULL)
5685 {
5686 (*_bfd_error_handler)
5687 (_("%s: could not find output section %s"),
5688 bfd_get_filename (abfd), name);
5689 goto error_return;
5690 }
5691 dyn.d_un.d_ptr = o->vma;
5692 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5693 break;
5694
5695 case DT_REL:
5696 case DT_RELA:
5697 case DT_RELSZ:
5698 case DT_RELASZ:
5699 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
5700 type = SHT_REL;
5701 else
5702 type = SHT_RELA;
5703 dyn.d_un.d_val = 0;
5704 for (i = 1; i < elf_numsections (abfd); i++)
5705 {
5706 Elf_Internal_Shdr *hdr;
5707
5708 hdr = elf_elfsections (abfd)[i];
5709 if (hdr->sh_type == type
5710 && (hdr->sh_flags & SHF_ALLOC) != 0)
5711 {
5712 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
5713 dyn.d_un.d_val += hdr->sh_size;
5714 else
5715 {
5716 if (dyn.d_un.d_val == 0
5717 || hdr->sh_addr < dyn.d_un.d_val)
5718 dyn.d_un.d_val = hdr->sh_addr;
5719 }
5720 }
5721 }
5722 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5723 break;
5724 }
5725 }
5726 }
5727
5728 /* If we have created any dynamic sections, then output them. */
5729 if (dynobj != NULL)
5730 {
5731 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
5732 goto error_return;
5733
5734 for (o = dynobj->sections; o != NULL; o = o->next)
5735 {
5736 if ((o->flags & SEC_HAS_CONTENTS) == 0
5737 || o->_raw_size == 0
5738 || o->output_section == bfd_abs_section_ptr)
5739 continue;
5740 if ((o->flags & SEC_LINKER_CREATED) == 0)
5741 {
5742 /* At this point, we are only interested in sections
5743 created by elf_link_create_dynamic_sections. */
5744 continue;
5745 }
5746 if ((elf_section_data (o->output_section)->this_hdr.sh_type
5747 != SHT_STRTAB)
5748 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
5749 {
5750 if (! bfd_set_section_contents (abfd, o->output_section,
5751 o->contents,
5752 (file_ptr) o->output_offset,
5753 o->_raw_size))
5754 goto error_return;
5755 }
5756 else
5757 {
5758 /* The contents of the .dynstr section are actually in a
5759 stringtab. */
5760 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
5761 if (bfd_seek (abfd, off, SEEK_SET) != 0
5762 || ! _bfd_elf_strtab_emit (abfd,
5763 elf_hash_table (info)->dynstr))
5764 goto error_return;
5765 }
5766 }
5767 }
5768
5769 if (info->relocateable)
5770 {
5771 boolean failed = false;
5772
5773 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
5774 if (failed)
5775 goto error_return;
5776 }
5777
5778 /* If we have optimized stabs strings, output them. */
5779 if (elf_hash_table (info)->stab_info != NULL)
5780 {
5781 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
5782 goto error_return;
5783 }
5784
5785 if (info->eh_frame_hdr && elf_hash_table (info)->dynobj)
5786 {
5787 o = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
5788 ".eh_frame_hdr");
5789 if (o
5790 && (elf_section_data (o)->sec_info_type
5791 == ELF_INFO_TYPE_EH_FRAME_HDR))
5792 {
5793 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, o))
5794 goto error_return;
5795 }
5796 }
5797
5798 if (finfo.symstrtab != NULL)
5799 _bfd_stringtab_free (finfo.symstrtab);
5800 if (finfo.contents != NULL)
5801 free (finfo.contents);
5802 if (finfo.external_relocs != NULL)
5803 free (finfo.external_relocs);
5804 if (finfo.internal_relocs != NULL)
5805 free (finfo.internal_relocs);
5806 if (finfo.external_syms != NULL)
5807 free (finfo.external_syms);
5808 if (finfo.locsym_shndx != NULL)
5809 free (finfo.locsym_shndx);
5810 if (finfo.internal_syms != NULL)
5811 free (finfo.internal_syms);
5812 if (finfo.indices != NULL)
5813 free (finfo.indices);
5814 if (finfo.sections != NULL)
5815 free (finfo.sections);
5816 if (finfo.symbuf != NULL)
5817 free (finfo.symbuf);
5818 if (finfo.symshndxbuf != NULL)
5819 free (finfo.symbuf);
5820 for (o = abfd->sections; o != NULL; o = o->next)
5821 {
5822 if ((o->flags & SEC_RELOC) != 0
5823 && elf_section_data (o)->rel_hashes != NULL)
5824 free (elf_section_data (o)->rel_hashes);
5825 }
5826
5827 elf_tdata (abfd)->linker = true;
5828
5829 return true;
5830
5831 error_return:
5832 if (finfo.symstrtab != NULL)
5833 _bfd_stringtab_free (finfo.symstrtab);
5834 if (finfo.contents != NULL)
5835 free (finfo.contents);
5836 if (finfo.external_relocs != NULL)
5837 free (finfo.external_relocs);
5838 if (finfo.internal_relocs != NULL)
5839 free (finfo.internal_relocs);
5840 if (finfo.external_syms != NULL)
5841 free (finfo.external_syms);
5842 if (finfo.locsym_shndx != NULL)
5843 free (finfo.locsym_shndx);
5844 if (finfo.internal_syms != NULL)
5845 free (finfo.internal_syms);
5846 if (finfo.indices != NULL)
5847 free (finfo.indices);
5848 if (finfo.sections != NULL)
5849 free (finfo.sections);
5850 if (finfo.symbuf != NULL)
5851 free (finfo.symbuf);
5852 if (finfo.symshndxbuf != NULL)
5853 free (finfo.symbuf);
5854 for (o = abfd->sections; o != NULL; o = o->next)
5855 {
5856 if ((o->flags & SEC_RELOC) != 0
5857 && elf_section_data (o)->rel_hashes != NULL)
5858 free (elf_section_data (o)->rel_hashes);
5859 }
5860
5861 return false;
5862 }
5863
5864 /* Add a symbol to the output symbol table. */
5865
5866 static boolean
5867 elf_link_output_sym (finfo, name, elfsym, input_sec)
5868 struct elf_final_link_info *finfo;
5869 const char *name;
5870 Elf_Internal_Sym *elfsym;
5871 asection *input_sec;
5872 {
5873 Elf_External_Sym *dest;
5874 Elf_External_Sym_Shndx *destshndx;
5875
5876 boolean (*output_symbol_hook) PARAMS ((bfd *,
5877 struct bfd_link_info *info,
5878 const char *,
5879 Elf_Internal_Sym *,
5880 asection *));
5881
5882 output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
5883 elf_backend_link_output_symbol_hook;
5884 if (output_symbol_hook != NULL)
5885 {
5886 if (! ((*output_symbol_hook)
5887 (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
5888 return false;
5889 }
5890
5891 if (name == (const char *) NULL || *name == '\0')
5892 elfsym->st_name = 0;
5893 else if (input_sec->flags & SEC_EXCLUDE)
5894 elfsym->st_name = 0;
5895 else
5896 {
5897 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
5898 name, true, false);
5899 if (elfsym->st_name == (unsigned long) -1)
5900 return false;
5901 }
5902
5903 if (finfo->symbuf_count >= finfo->symbuf_size)
5904 {
5905 if (! elf_link_flush_output_syms (finfo))
5906 return false;
5907 }
5908
5909 dest = finfo->symbuf + finfo->symbuf_count;
5910 destshndx = finfo->symshndxbuf;
5911 if (destshndx != NULL)
5912 destshndx += finfo->symbuf_count;
5913 elf_swap_symbol_out (finfo->output_bfd, elfsym, (PTR) dest, (PTR) destshndx);
5914 ++finfo->symbuf_count;
5915
5916 ++ bfd_get_symcount (finfo->output_bfd);
5917
5918 return true;
5919 }
5920
5921 /* Flush the output symbols to the file. */
5922
5923 static boolean
5924 elf_link_flush_output_syms (finfo)
5925 struct elf_final_link_info *finfo;
5926 {
5927 if (finfo->symbuf_count > 0)
5928 {
5929 Elf_Internal_Shdr *hdr;
5930 file_ptr pos;
5931 bfd_size_type amt;
5932
5933 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
5934 pos = hdr->sh_offset + hdr->sh_size;
5935 amt = finfo->symbuf_count * sizeof (Elf_External_Sym);
5936 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
5937 || bfd_bwrite ((PTR) finfo->symbuf, amt, finfo->output_bfd) != amt)
5938 return false;
5939
5940 hdr->sh_size += amt;
5941
5942 if (finfo->symshndxbuf != NULL)
5943 {
5944 hdr = &elf_tdata (finfo->output_bfd)->symtab_shndx_hdr;
5945 pos = hdr->sh_offset + hdr->sh_size;
5946 amt = finfo->symbuf_count * sizeof (Elf_External_Sym_Shndx);
5947 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
5948 || (bfd_bwrite ((PTR) finfo->symshndxbuf, amt, finfo->output_bfd)
5949 != amt))
5950 return false;
5951
5952 hdr->sh_size += amt;
5953 }
5954
5955 finfo->symbuf_count = 0;
5956 }
5957
5958 return true;
5959 }
5960
5961 /* Adjust all external symbols pointing into SEC_MERGE sections
5962 to reflect the object merging within the sections. */
5963
5964 static boolean
5965 elf_link_sec_merge_syms (h, data)
5966 struct elf_link_hash_entry *h;
5967 PTR data;
5968 {
5969 asection *sec;
5970
5971 if (h->root.type == bfd_link_hash_warning)
5972 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5973
5974 if ((h->root.type == bfd_link_hash_defined
5975 || h->root.type == bfd_link_hash_defweak)
5976 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
5977 && elf_section_data (sec)->sec_info_type == ELF_INFO_TYPE_MERGE)
5978 {
5979 bfd *output_bfd = (bfd *) data;
5980
5981 h->root.u.def.value =
5982 _bfd_merged_section_offset (output_bfd,
5983 &h->root.u.def.section,
5984 elf_section_data (sec)->sec_info,
5985 h->root.u.def.value, (bfd_vma) 0);
5986 }
5987
5988 return true;
5989 }
5990
5991 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
5992 allowing an unsatisfied unversioned symbol in the DSO to match a
5993 versioned symbol that would normally require an explicit version. */
5994
5995 static boolean
5996 elf_link_check_versioned_symbol (info, h)
5997 struct bfd_link_info *info;
5998 struct elf_link_hash_entry *h;
5999 {
6000 bfd *undef_bfd = h->root.u.undef.abfd;
6001 struct elf_link_loaded_list *loaded;
6002
6003 if ((undef_bfd->flags & DYNAMIC) == 0
6004 || info->hash->creator->flavour != bfd_target_elf_flavour
6005 || elf_dt_soname (h->root.u.undef.abfd) == NULL)
6006 return false;
6007
6008 for (loaded = elf_hash_table (info)->loaded;
6009 loaded != NULL;
6010 loaded = loaded->next)
6011 {
6012 bfd *input;
6013 Elf_Internal_Shdr *hdr;
6014 bfd_size_type symcount;
6015 bfd_size_type extsymcount;
6016 bfd_size_type extsymoff;
6017 Elf_Internal_Shdr *versymhdr;
6018 Elf_Internal_Sym *isym;
6019 Elf_Internal_Sym *isymend;
6020 Elf_Internal_Sym *isymbuf;
6021 Elf_External_Versym *ever;
6022 Elf_External_Versym *extversym;
6023
6024 input = loaded->abfd;
6025
6026 /* We check each DSO for a possible hidden versioned definition. */
6027 if (input == undef_bfd
6028 || (input->flags & DYNAMIC) == 0
6029 || elf_dynversym (input) == 0)
6030 continue;
6031
6032 hdr = &elf_tdata (input)->dynsymtab_hdr;
6033
6034 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
6035 if (elf_bad_symtab (input))
6036 {
6037 extsymcount = symcount;
6038 extsymoff = 0;
6039 }
6040 else
6041 {
6042 extsymcount = symcount - hdr->sh_info;
6043 extsymoff = hdr->sh_info;
6044 }
6045
6046 if (extsymcount == 0)
6047 continue;
6048
6049 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
6050 NULL, NULL, NULL);
6051 if (isymbuf == NULL)
6052 return false;
6053
6054 /* Read in any version definitions. */
6055 versymhdr = &elf_tdata (input)->dynversym_hdr;
6056 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
6057 if (extversym == NULL)
6058 goto error_ret;
6059
6060 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
6061 || (bfd_bread ((PTR) extversym, versymhdr->sh_size, input)
6062 != versymhdr->sh_size))
6063 {
6064 free (extversym);
6065 error_ret:
6066 free (isymbuf);
6067 return false;
6068 }
6069
6070 ever = extversym + extsymoff;
6071 isymend = isymbuf + extsymcount;
6072 for (isym = isymbuf; isym < isymend; isym++, ever++)
6073 {
6074 const char *name;
6075 Elf_Internal_Versym iver;
6076
6077 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
6078 || isym->st_shndx == SHN_UNDEF)
6079 continue;
6080
6081 name = bfd_elf_string_from_elf_section (input,
6082 hdr->sh_link,
6083 isym->st_name);
6084 if (strcmp (name, h->root.root.string) != 0)
6085 continue;
6086
6087 _bfd_elf_swap_versym_in (input, ever, &iver);
6088
6089 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
6090 {
6091 /* If we have a non-hidden versioned sym, then it should
6092 have provided a definition for the undefined sym. */
6093 abort ();
6094 }
6095
6096 if ((iver.vs_vers & VERSYM_VERSION) == 2)
6097 {
6098 /* This is the oldest (default) sym. We can use it. */
6099 free (extversym);
6100 free (isymbuf);
6101 return true;
6102 }
6103 }
6104
6105 free (extversym);
6106 free (isymbuf);
6107 }
6108
6109 return false;
6110 }
6111
6112 /* Add an external symbol to the symbol table. This is called from
6113 the hash table traversal routine. When generating a shared object,
6114 we go through the symbol table twice. The first time we output
6115 anything that might have been forced to local scope in a version
6116 script. The second time we output the symbols that are still
6117 global symbols. */
6118
6119 static boolean
6120 elf_link_output_extsym (h, data)
6121 struct elf_link_hash_entry *h;
6122 PTR data;
6123 {
6124 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
6125 struct elf_final_link_info *finfo = eoinfo->finfo;
6126 boolean strip;
6127 Elf_Internal_Sym sym;
6128 asection *input_sec;
6129
6130 if (h->root.type == bfd_link_hash_warning)
6131 {
6132 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6133 if (h->root.type == bfd_link_hash_new)
6134 return true;
6135 }
6136
6137 /* Decide whether to output this symbol in this pass. */
6138 if (eoinfo->localsyms)
6139 {
6140 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
6141 return true;
6142 }
6143 else
6144 {
6145 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
6146 return true;
6147 }
6148
6149 /* If we are not creating a shared library, and this symbol is
6150 referenced by a shared library but is not defined anywhere, then
6151 warn that it is undefined. If we do not do this, the runtime
6152 linker will complain that the symbol is undefined when the
6153 program is run. We don't have to worry about symbols that are
6154 referenced by regular files, because we will already have issued
6155 warnings for them. */
6156 if (! finfo->info->relocateable
6157 && ! finfo->info->allow_shlib_undefined
6158 && ! finfo->info->shared
6159 && h->root.type == bfd_link_hash_undefined
6160 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
6161 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
6162 && ! elf_link_check_versioned_symbol (finfo->info, h))
6163 {
6164 if (! ((*finfo->info->callbacks->undefined_symbol)
6165 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
6166 (asection *) NULL, (bfd_vma) 0, true)))
6167 {
6168 eoinfo->failed = true;
6169 return false;
6170 }
6171 }
6172
6173 /* We don't want to output symbols that have never been mentioned by
6174 a regular file, or that we have been told to strip. However, if
6175 h->indx is set to -2, the symbol is used by a reloc and we must
6176 output it. */
6177 if (h->indx == -2)
6178 strip = false;
6179 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
6180 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
6181 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
6182 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
6183 strip = true;
6184 else if (finfo->info->strip == strip_all
6185 || (finfo->info->strip == strip_some
6186 && bfd_hash_lookup (finfo->info->keep_hash,
6187 h->root.root.string,
6188 false, false) == NULL))
6189 strip = true;
6190 else
6191 strip = false;
6192
6193 /* If we're stripping it, and it's not a dynamic symbol, there's
6194 nothing else to do unless it is a forced local symbol. */
6195 if (strip
6196 && h->dynindx == -1
6197 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
6198 return true;
6199
6200 sym.st_value = 0;
6201 sym.st_size = h->size;
6202 sym.st_other = h->other;
6203 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
6204 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
6205 else if (h->root.type == bfd_link_hash_undefweak
6206 || h->root.type == bfd_link_hash_defweak)
6207 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
6208 else
6209 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
6210
6211 switch (h->root.type)
6212 {
6213 default:
6214 case bfd_link_hash_new:
6215 case bfd_link_hash_warning:
6216 abort ();
6217 return false;
6218
6219 case bfd_link_hash_undefined:
6220 case bfd_link_hash_undefweak:
6221 input_sec = bfd_und_section_ptr;
6222 sym.st_shndx = SHN_UNDEF;
6223 break;
6224
6225 case bfd_link_hash_defined:
6226 case bfd_link_hash_defweak:
6227 {
6228 input_sec = h->root.u.def.section;
6229 if (input_sec->output_section != NULL)
6230 {
6231 sym.st_shndx =
6232 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
6233 input_sec->output_section);
6234 if (sym.st_shndx == SHN_BAD)
6235 {
6236 (*_bfd_error_handler)
6237 (_("%s: could not find output section %s for input section %s"),
6238 bfd_get_filename (finfo->output_bfd),
6239 input_sec->output_section->name,
6240 input_sec->name);
6241 eoinfo->failed = true;
6242 return false;
6243 }
6244
6245 /* ELF symbols in relocateable files are section relative,
6246 but in nonrelocateable files they are virtual
6247 addresses. */
6248 sym.st_value = h->root.u.def.value + input_sec->output_offset;
6249 if (! finfo->info->relocateable)
6250 {
6251 sym.st_value += input_sec->output_section->vma;
6252 if (h->type == STT_TLS)
6253 {
6254 /* STT_TLS symbols are relative to PT_TLS segment
6255 base. */
6256 BFD_ASSERT (finfo->first_tls_sec != NULL);
6257 sym.st_value -= finfo->first_tls_sec->vma;
6258 }
6259 }
6260 }
6261 else
6262 {
6263 BFD_ASSERT (input_sec->owner == NULL
6264 || (input_sec->owner->flags & DYNAMIC) != 0);
6265 sym.st_shndx = SHN_UNDEF;
6266 input_sec = bfd_und_section_ptr;
6267 }
6268 }
6269 break;
6270
6271 case bfd_link_hash_common:
6272 input_sec = h->root.u.c.p->section;
6273 sym.st_shndx = SHN_COMMON;
6274 sym.st_value = 1 << h->root.u.c.p->alignment_power;
6275 break;
6276
6277 case bfd_link_hash_indirect:
6278 /* These symbols are created by symbol versioning. They point
6279 to the decorated version of the name. For example, if the
6280 symbol foo@@GNU_1.2 is the default, which should be used when
6281 foo is used with no version, then we add an indirect symbol
6282 foo which points to foo@@GNU_1.2. We ignore these symbols,
6283 since the indirected symbol is already in the hash table. */
6284 return true;
6285 }
6286
6287 /* Give the processor backend a chance to tweak the symbol value,
6288 and also to finish up anything that needs to be done for this
6289 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
6290 forced local syms when non-shared is due to a historical quirk. */
6291 if ((h->dynindx != -1
6292 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
6293 && (finfo->info->shared
6294 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
6295 && elf_hash_table (finfo->info)->dynamic_sections_created)
6296 {
6297 struct elf_backend_data *bed;
6298
6299 bed = get_elf_backend_data (finfo->output_bfd);
6300 if (! ((*bed->elf_backend_finish_dynamic_symbol)
6301 (finfo->output_bfd, finfo->info, h, &sym)))
6302 {
6303 eoinfo->failed = true;
6304 return false;
6305 }
6306 }
6307
6308 /* If we are marking the symbol as undefined, and there are no
6309 non-weak references to this symbol from a regular object, then
6310 mark the symbol as weak undefined; if there are non-weak
6311 references, mark the symbol as strong. We can't do this earlier,
6312 because it might not be marked as undefined until the
6313 finish_dynamic_symbol routine gets through with it. */
6314 if (sym.st_shndx == SHN_UNDEF
6315 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
6316 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
6317 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
6318 {
6319 int bindtype;
6320
6321 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) != 0)
6322 bindtype = STB_GLOBAL;
6323 else
6324 bindtype = STB_WEAK;
6325 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
6326 }
6327
6328 /* If a symbol is not defined locally, we clear the visibility
6329 field. */
6330 if (! finfo->info->relocateable
6331 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
6332 sym.st_other ^= ELF_ST_VISIBILITY (sym.st_other);
6333
6334 /* If this symbol should be put in the .dynsym section, then put it
6335 there now. We already know the symbol index. We also fill in
6336 the entry in the .hash section. */
6337 if (h->dynindx != -1
6338 && elf_hash_table (finfo->info)->dynamic_sections_created)
6339 {
6340 size_t bucketcount;
6341 size_t bucket;
6342 size_t hash_entry_size;
6343 bfd_byte *bucketpos;
6344 bfd_vma chain;
6345 Elf_External_Sym *esym;
6346
6347 sym.st_name = h->dynstr_index;
6348 esym = (Elf_External_Sym *) finfo->dynsym_sec->contents + h->dynindx;
6349 elf_swap_symbol_out (finfo->output_bfd, &sym, (PTR) esym, (PTR) 0);
6350
6351 bucketcount = elf_hash_table (finfo->info)->bucketcount;
6352 bucket = h->elf_hash_value % bucketcount;
6353 hash_entry_size
6354 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
6355 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
6356 + (bucket + 2) * hash_entry_size);
6357 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
6358 bfd_put (8 * hash_entry_size, finfo->output_bfd, (bfd_vma) h->dynindx,
6359 bucketpos);
6360 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
6361 ((bfd_byte *) finfo->hash_sec->contents
6362 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
6363
6364 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
6365 {
6366 Elf_Internal_Versym iversym;
6367 Elf_External_Versym *eversym;
6368
6369 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
6370 {
6371 if (h->verinfo.verdef == NULL)
6372 iversym.vs_vers = 0;
6373 else
6374 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
6375 }
6376 else
6377 {
6378 if (h->verinfo.vertree == NULL)
6379 iversym.vs_vers = 1;
6380 else
6381 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
6382 }
6383
6384 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
6385 iversym.vs_vers |= VERSYM_HIDDEN;
6386
6387 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
6388 eversym += h->dynindx;
6389 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
6390 }
6391 }
6392
6393 /* If we're stripping it, then it was just a dynamic symbol, and
6394 there's nothing else to do. */
6395 if (strip)
6396 return true;
6397
6398 h->indx = bfd_get_symcount (finfo->output_bfd);
6399
6400 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
6401 {
6402 eoinfo->failed = true;
6403 return false;
6404 }
6405
6406 return true;
6407 }
6408
6409 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
6410 originated from the section given by INPUT_REL_HDR) to the
6411 OUTPUT_BFD. */
6412
6413 static boolean
6414 elf_link_output_relocs (output_bfd, input_section, input_rel_hdr,
6415 internal_relocs)
6416 bfd *output_bfd;
6417 asection *input_section;
6418 Elf_Internal_Shdr *input_rel_hdr;
6419 Elf_Internal_Rela *internal_relocs;
6420 {
6421 Elf_Internal_Rela *irela;
6422 Elf_Internal_Rela *irelaend;
6423 Elf_Internal_Shdr *output_rel_hdr;
6424 asection *output_section;
6425 unsigned int *rel_countp = NULL;
6426 struct elf_backend_data *bed;
6427 bfd_size_type amt;
6428
6429 output_section = input_section->output_section;
6430 output_rel_hdr = NULL;
6431
6432 if (elf_section_data (output_section)->rel_hdr.sh_entsize
6433 == input_rel_hdr->sh_entsize)
6434 {
6435 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
6436 rel_countp = &elf_section_data (output_section)->rel_count;
6437 }
6438 else if (elf_section_data (output_section)->rel_hdr2
6439 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
6440 == input_rel_hdr->sh_entsize))
6441 {
6442 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
6443 rel_countp = &elf_section_data (output_section)->rel_count2;
6444 }
6445 else
6446 {
6447 (*_bfd_error_handler) (
6448 _("%s: relocation size mismatch in %s section %s"),
6449 bfd_get_filename (output_bfd),
6450 bfd_archive_filename (input_section->owner),
6451 input_section->name);
6452 bfd_set_error (bfd_error_wrong_object_format);
6453 return false;
6454 }
6455
6456 bed = get_elf_backend_data (output_bfd);
6457 irela = internal_relocs;
6458 irelaend = irela + NUM_SHDR_ENTRIES (input_rel_hdr)
6459 * bed->s->int_rels_per_ext_rel;
6460
6461 if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
6462 {
6463 Elf_External_Rel *erel;
6464 Elf_Internal_Rel *irel;
6465
6466 amt = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rel);
6467 irel = (Elf_Internal_Rel *) bfd_zmalloc (amt);
6468 if (irel == NULL)
6469 {
6470 (*_bfd_error_handler) (_("Error: out of memory"));
6471 abort ();
6472 }
6473
6474 erel = ((Elf_External_Rel *) output_rel_hdr->contents + *rel_countp);
6475 for (; irela < irelaend; irela += bed->s->int_rels_per_ext_rel, erel++)
6476 {
6477 unsigned int i;
6478
6479 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
6480 {
6481 irel[i].r_offset = irela[i].r_offset;
6482 irel[i].r_info = irela[i].r_info;
6483 BFD_ASSERT (irela[i].r_addend == 0);
6484 }
6485
6486 if (bed->s->swap_reloc_out)
6487 (*bed->s->swap_reloc_out) (output_bfd, irel, (PTR) erel);
6488 else
6489 elf_swap_reloc_out (output_bfd, irel, erel);
6490 }
6491
6492 free (irel);
6493 }
6494 else
6495 {
6496 Elf_External_Rela *erela;
6497
6498 BFD_ASSERT (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rela));
6499
6500 erela = ((Elf_External_Rela *) output_rel_hdr->contents + *rel_countp);
6501 for (; irela < irelaend; irela += bed->s->int_rels_per_ext_rel, erela++)
6502 if (bed->s->swap_reloca_out)
6503 (*bed->s->swap_reloca_out) (output_bfd, irela, (PTR) erela);
6504 else
6505 elf_swap_reloca_out (output_bfd, irela, erela);
6506 }
6507
6508 /* Bump the counter, so that we know where to add the next set of
6509 relocations. */
6510 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
6511
6512 return true;
6513 }
6514
6515 /* Link an input file into the linker output file. This function
6516 handles all the sections and relocations of the input file at once.
6517 This is so that we only have to read the local symbols once, and
6518 don't have to keep them in memory. */
6519
6520 static boolean
6521 elf_link_input_bfd (finfo, input_bfd)
6522 struct elf_final_link_info *finfo;
6523 bfd *input_bfd;
6524 {
6525 boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
6526 bfd *, asection *, bfd_byte *,
6527 Elf_Internal_Rela *,
6528 Elf_Internal_Sym *, asection **));
6529 bfd *output_bfd;
6530 Elf_Internal_Shdr *symtab_hdr;
6531 size_t locsymcount;
6532 size_t extsymoff;
6533 Elf_Internal_Sym *isymbuf;
6534 Elf_Internal_Sym *isym;
6535 Elf_Internal_Sym *isymend;
6536 long *pindex;
6537 asection **ppsection;
6538 asection *o;
6539 struct elf_backend_data *bed;
6540 boolean emit_relocs;
6541 struct elf_link_hash_entry **sym_hashes;
6542
6543 output_bfd = finfo->output_bfd;
6544 bed = get_elf_backend_data (output_bfd);
6545 relocate_section = bed->elf_backend_relocate_section;
6546
6547 /* If this is a dynamic object, we don't want to do anything here:
6548 we don't want the local symbols, and we don't want the section
6549 contents. */
6550 if ((input_bfd->flags & DYNAMIC) != 0)
6551 return true;
6552
6553 emit_relocs = (finfo->info->relocateable
6554 || finfo->info->emitrelocations
6555 || bed->elf_backend_emit_relocs);
6556
6557 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6558 if (elf_bad_symtab (input_bfd))
6559 {
6560 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6561 extsymoff = 0;
6562 }
6563 else
6564 {
6565 locsymcount = symtab_hdr->sh_info;
6566 extsymoff = symtab_hdr->sh_info;
6567 }
6568
6569 /* Read the local symbols. */
6570 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6571 if (isymbuf == NULL && locsymcount != 0)
6572 {
6573 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6574 finfo->internal_syms,
6575 finfo->external_syms,
6576 finfo->locsym_shndx);
6577 if (isymbuf == NULL)
6578 return false;
6579 }
6580
6581 /* Find local symbol sections and adjust values of symbols in
6582 SEC_MERGE sections. Write out those local symbols we know are
6583 going into the output file. */
6584 isymend = isymbuf + locsymcount;
6585 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
6586 isym < isymend;
6587 isym++, pindex++, ppsection++)
6588 {
6589 asection *isec;
6590 const char *name;
6591 Elf_Internal_Sym osym;
6592
6593 *pindex = -1;
6594
6595 if (elf_bad_symtab (input_bfd))
6596 {
6597 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
6598 {
6599 *ppsection = NULL;
6600 continue;
6601 }
6602 }
6603
6604 if (isym->st_shndx == SHN_UNDEF)
6605 isec = bfd_und_section_ptr;
6606 else if (isym->st_shndx < SHN_LORESERVE
6607 || isym->st_shndx > SHN_HIRESERVE)
6608 {
6609 isec = section_from_elf_index (input_bfd, isym->st_shndx);
6610 if (isec
6611 && elf_section_data (isec)->sec_info_type == ELF_INFO_TYPE_MERGE
6612 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
6613 isym->st_value =
6614 _bfd_merged_section_offset (output_bfd, &isec,
6615 elf_section_data (isec)->sec_info,
6616 isym->st_value, (bfd_vma) 0);
6617 }
6618 else if (isym->st_shndx == SHN_ABS)
6619 isec = bfd_abs_section_ptr;
6620 else if (isym->st_shndx == SHN_COMMON)
6621 isec = bfd_com_section_ptr;
6622 else
6623 {
6624 /* Who knows? */
6625 isec = NULL;
6626 }
6627
6628 *ppsection = isec;
6629
6630 /* Don't output the first, undefined, symbol. */
6631 if (ppsection == finfo->sections)
6632 continue;
6633
6634 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
6635 {
6636 /* We never output section symbols. Instead, we use the
6637 section symbol of the corresponding section in the output
6638 file. */
6639 continue;
6640 }
6641
6642 /* If we are stripping all symbols, we don't want to output this
6643 one. */
6644 if (finfo->info->strip == strip_all)
6645 continue;
6646
6647 /* If we are discarding all local symbols, we don't want to
6648 output this one. If we are generating a relocateable output
6649 file, then some of the local symbols may be required by
6650 relocs; we output them below as we discover that they are
6651 needed. */
6652 if (finfo->info->discard == discard_all)
6653 continue;
6654
6655 /* If this symbol is defined in a section which we are
6656 discarding, we don't need to keep it, but note that
6657 linker_mark is only reliable for sections that have contents.
6658 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
6659 as well as linker_mark. */
6660 if ((isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
6661 && isec != NULL
6662 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
6663 || (! finfo->info->relocateable
6664 && (isec->flags & SEC_EXCLUDE) != 0)))
6665 continue;
6666
6667 /* Get the name of the symbol. */
6668 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
6669 isym->st_name);
6670 if (name == NULL)
6671 return false;
6672
6673 /* See if we are discarding symbols with this name. */
6674 if ((finfo->info->strip == strip_some
6675 && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
6676 == NULL))
6677 || (((finfo->info->discard == discard_sec_merge
6678 && (isec->flags & SEC_MERGE) && ! finfo->info->relocateable)
6679 || finfo->info->discard == discard_l)
6680 && bfd_is_local_label_name (input_bfd, name)))
6681 continue;
6682
6683 /* If we get here, we are going to output this symbol. */
6684
6685 osym = *isym;
6686
6687 /* Adjust the section index for the output file. */
6688 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
6689 isec->output_section);
6690 if (osym.st_shndx == SHN_BAD)
6691 return false;
6692
6693 *pindex = bfd_get_symcount (output_bfd);
6694
6695 /* ELF symbols in relocateable files are section relative, but
6696 in executable files they are virtual addresses. Note that
6697 this code assumes that all ELF sections have an associated
6698 BFD section with a reasonable value for output_offset; below
6699 we assume that they also have a reasonable value for
6700 output_section. Any special sections must be set up to meet
6701 these requirements. */
6702 osym.st_value += isec->output_offset;
6703 if (! finfo->info->relocateable)
6704 {
6705 osym.st_value += isec->output_section->vma;
6706 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
6707 {
6708 /* STT_TLS symbols are relative to PT_TLS segment base. */
6709 BFD_ASSERT (finfo->first_tls_sec != NULL);
6710 osym.st_value -= finfo->first_tls_sec->vma;
6711 }
6712 }
6713
6714 if (! elf_link_output_sym (finfo, name, &osym, isec))
6715 return false;
6716 }
6717
6718 /* Relocate the contents of each section. */
6719 sym_hashes = elf_sym_hashes (input_bfd);
6720 for (o = input_bfd->sections; o != NULL; o = o->next)
6721 {
6722 bfd_byte *contents;
6723
6724 if (! o->linker_mark)
6725 {
6726 /* This section was omitted from the link. */
6727 continue;
6728 }
6729
6730 if ((o->flags & SEC_HAS_CONTENTS) == 0
6731 || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
6732 continue;
6733
6734 if ((o->flags & SEC_LINKER_CREATED) != 0)
6735 {
6736 /* Section was created by elf_link_create_dynamic_sections
6737 or somesuch. */
6738 continue;
6739 }
6740
6741 /* Get the contents of the section. They have been cached by a
6742 relaxation routine. Note that o is a section in an input
6743 file, so the contents field will not have been set by any of
6744 the routines which work on output files. */
6745 if (elf_section_data (o)->this_hdr.contents != NULL)
6746 contents = elf_section_data (o)->this_hdr.contents;
6747 else
6748 {
6749 contents = finfo->contents;
6750 if (! bfd_get_section_contents (input_bfd, o, contents,
6751 (file_ptr) 0, o->_raw_size))
6752 return false;
6753 }
6754
6755 if ((o->flags & SEC_RELOC) != 0)
6756 {
6757 Elf_Internal_Rela *internal_relocs;
6758
6759 /* Get the swapped relocs. */
6760 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
6761 (input_bfd, o, finfo->external_relocs,
6762 finfo->internal_relocs, false));
6763 if (internal_relocs == NULL
6764 && o->reloc_count > 0)
6765 return false;
6766
6767 /* Run through the relocs looking for any against symbols
6768 from discarded sections and section symbols from
6769 removed link-once sections. Complain about relocs
6770 against discarded sections. Zero relocs against removed
6771 link-once sections. We should really complain if
6772 anything in the final link tries to use it, but
6773 DWARF-based exception handling might have an entry in
6774 .eh_frame to describe a routine in the linkonce section,
6775 and it turns out to be hard to remove the .eh_frame
6776 entry too. FIXME. */
6777 if (!finfo->info->relocateable
6778 && !elf_section_ignore_discarded_relocs (o))
6779 {
6780 Elf_Internal_Rela *rel, *relend;
6781
6782 rel = internal_relocs;
6783 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
6784 for ( ; rel < relend; rel++)
6785 {
6786 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
6787
6788 if (r_symndx >= locsymcount
6789 || (elf_bad_symtab (input_bfd)
6790 && finfo->sections[r_symndx] == NULL))
6791 {
6792 struct elf_link_hash_entry *h;
6793
6794 h = sym_hashes[r_symndx - extsymoff];
6795 while (h->root.type == bfd_link_hash_indirect
6796 || h->root.type == bfd_link_hash_warning)
6797 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6798
6799 /* Complain if the definition comes from a
6800 discarded section. */
6801 if ((h->root.type == bfd_link_hash_defined
6802 || h->root.type == bfd_link_hash_defweak)
6803 && elf_discarded_section (h->root.u.def.section))
6804 {
6805 #if BFD_VERSION_DATE < 20031005
6806 if ((o->flags & SEC_DEBUGGING) != 0)
6807 {
6808 #if BFD_VERSION_DATE > 20021005
6809 (*finfo->info->callbacks->warning)
6810 (finfo->info,
6811 _("warning: relocation against removed section; zeroing"),
6812 NULL, input_bfd, o, rel->r_offset);
6813 #endif
6814 BFD_ASSERT (r_symndx != 0);
6815 memset (rel, 0, sizeof (*rel));
6816 }
6817 else
6818 #endif
6819 {
6820 if (! ((*finfo->info->callbacks->undefined_symbol)
6821 (finfo->info, h->root.root.string,
6822 input_bfd, o, rel->r_offset,
6823 true)))
6824 return false;
6825 }
6826 }
6827 }
6828 else
6829 {
6830 asection *sec = finfo->sections[r_symndx];
6831
6832 if (sec != NULL && elf_discarded_section (sec))
6833 {
6834 #if BFD_VERSION_DATE < 20031005
6835 if ((o->flags & SEC_DEBUGGING) != 0
6836 || (sec->flags & SEC_LINK_ONCE) != 0)
6837 {
6838 #if BFD_VERSION_DATE > 20021005
6839 (*finfo->info->callbacks->warning)
6840 (finfo->info,
6841 _("warning: relocation against removed section"),
6842 NULL, input_bfd, o, rel->r_offset);
6843 #endif
6844 BFD_ASSERT (r_symndx != 0);
6845 rel->r_info
6846 = ELF_R_INFO (0, ELF_R_TYPE (rel->r_info));
6847 rel->r_addend = 0;
6848 }
6849 else
6850 #endif
6851 {
6852 boolean ok;
6853 const char *msg
6854 = _("local symbols in discarded section %s");
6855 bfd_size_type amt
6856 = strlen (sec->name) + strlen (msg) - 1;
6857 char *buf = (char *) bfd_malloc (amt);
6858
6859 if (buf != NULL)
6860 sprintf (buf, msg, sec->name);
6861 else
6862 buf = (char *) sec->name;
6863 ok = (*finfo->info->callbacks
6864 ->undefined_symbol) (finfo->info, buf,
6865 input_bfd, o,
6866 rel->r_offset,
6867 true);
6868 if (buf != sec->name)
6869 free (buf);
6870 if (!ok)
6871 return false;
6872 }
6873 }
6874 }
6875 }
6876 }
6877
6878 /* Relocate the section by invoking a back end routine.
6879
6880 The back end routine is responsible for adjusting the
6881 section contents as necessary, and (if using Rela relocs
6882 and generating a relocateable output file) adjusting the
6883 reloc addend as necessary.
6884
6885 The back end routine does not have to worry about setting
6886 the reloc address or the reloc symbol index.
6887
6888 The back end routine is given a pointer to the swapped in
6889 internal symbols, and can access the hash table entries
6890 for the external symbols via elf_sym_hashes (input_bfd).
6891
6892 When generating relocateable output, the back end routine
6893 must handle STB_LOCAL/STT_SECTION symbols specially. The
6894 output symbol is going to be a section symbol
6895 corresponding to the output section, which will require
6896 the addend to be adjusted. */
6897
6898 if (! (*relocate_section) (output_bfd, finfo->info,
6899 input_bfd, o, contents,
6900 internal_relocs,
6901 isymbuf,
6902 finfo->sections))
6903 return false;
6904
6905 if (emit_relocs)
6906 {
6907 Elf_Internal_Rela *irela;
6908 Elf_Internal_Rela *irelaend;
6909 struct elf_link_hash_entry **rel_hash;
6910 Elf_Internal_Shdr *input_rel_hdr;
6911 unsigned int next_erel;
6912 boolean (*reloc_emitter) PARAMS ((bfd *, asection *,
6913 Elf_Internal_Shdr *,
6914 Elf_Internal_Rela *));
6915 boolean rela_normal;
6916
6917 input_rel_hdr = &elf_section_data (o)->rel_hdr;
6918 rela_normal = (bed->rela_normal
6919 && (input_rel_hdr->sh_entsize
6920 == sizeof (Elf_External_Rela)));
6921
6922 /* Adjust the reloc addresses and symbol indices. */
6923
6924 irela = internal_relocs;
6925 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
6926 rel_hash = (elf_section_data (o->output_section)->rel_hashes
6927 + elf_section_data (o->output_section)->rel_count
6928 + elf_section_data (o->output_section)->rel_count2);
6929 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
6930 {
6931 unsigned long r_symndx;
6932 asection *sec;
6933
6934 if (next_erel == bed->s->int_rels_per_ext_rel)
6935 {
6936 rel_hash++;
6937 next_erel = 0;
6938 }
6939
6940 irela->r_offset += o->output_offset;
6941
6942 /* Relocs in an executable have to be virtual addresses. */
6943 if (!finfo->info->relocateable)
6944 irela->r_offset += o->output_section->vma;
6945
6946 r_symndx = ELF_R_SYM (irela->r_info);
6947
6948 if (r_symndx == 0)
6949 continue;
6950
6951 if (r_symndx >= locsymcount
6952 || (elf_bad_symtab (input_bfd)
6953 && finfo->sections[r_symndx] == NULL))
6954 {
6955 struct elf_link_hash_entry *rh;
6956 unsigned long indx;
6957
6958 /* This is a reloc against a global symbol. We
6959 have not yet output all the local symbols, so
6960 we do not know the symbol index of any global
6961 symbol. We set the rel_hash entry for this
6962 reloc to point to the global hash table entry
6963 for this symbol. The symbol index is then
6964 set at the end of elf_bfd_final_link. */
6965 indx = r_symndx - extsymoff;
6966 rh = elf_sym_hashes (input_bfd)[indx];
6967 while (rh->root.type == bfd_link_hash_indirect
6968 || rh->root.type == bfd_link_hash_warning)
6969 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
6970
6971 /* Setting the index to -2 tells
6972 elf_link_output_extsym that this symbol is
6973 used by a reloc. */
6974 BFD_ASSERT (rh->indx < 0);
6975 rh->indx = -2;
6976
6977 *rel_hash = rh;
6978
6979 continue;
6980 }
6981
6982 /* This is a reloc against a local symbol. */
6983
6984 *rel_hash = NULL;
6985 isym = isymbuf + r_symndx;
6986 sec = finfo->sections[r_symndx];
6987 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
6988 {
6989 /* I suppose the backend ought to fill in the
6990 section of any STT_SECTION symbol against a
6991 processor specific section. If we have
6992 discarded a section, the output_section will
6993 be the absolute section. */
6994 if (bfd_is_abs_section (sec)
6995 || (sec != NULL
6996 && bfd_is_abs_section (sec->output_section)))
6997 r_symndx = 0;
6998 else if (sec == NULL || sec->owner == NULL)
6999 {
7000 bfd_set_error (bfd_error_bad_value);
7001 return false;
7002 }
7003 else
7004 {
7005 r_symndx = sec->output_section->target_index;
7006 BFD_ASSERT (r_symndx != 0);
7007 }
7008
7009 /* Adjust the addend according to where the
7010 section winds up in the output section. */
7011 if (rela_normal)
7012 irela->r_addend += sec->output_offset;
7013 }
7014 else
7015 {
7016 if (finfo->indices[r_symndx] == -1)
7017 {
7018 unsigned long shlink;
7019 const char *name;
7020 asection *osec;
7021
7022 if (finfo->info->strip == strip_all)
7023 {
7024 /* You can't do ld -r -s. */
7025 bfd_set_error (bfd_error_invalid_operation);
7026 return false;
7027 }
7028
7029 /* This symbol was skipped earlier, but
7030 since it is needed by a reloc, we
7031 must output it now. */
7032 shlink = symtab_hdr->sh_link;
7033 name = (bfd_elf_string_from_elf_section
7034 (input_bfd, shlink, isym->st_name));
7035 if (name == NULL)
7036 return false;
7037
7038 osec = sec->output_section;
7039 isym->st_shndx =
7040 _bfd_elf_section_from_bfd_section (output_bfd,
7041 osec);
7042 if (isym->st_shndx == SHN_BAD)
7043 return false;
7044
7045 isym->st_value += sec->output_offset;
7046 if (! finfo->info->relocateable)
7047 {
7048 isym->st_value += osec->vma;
7049 if (ELF_ST_TYPE (isym->st_info) == STT_TLS)
7050 {
7051 /* STT_TLS symbols are relative to PT_TLS
7052 segment base. */
7053 BFD_ASSERT (finfo->first_tls_sec != NULL);
7054 isym->st_value -= finfo->first_tls_sec->vma;
7055 }
7056 }
7057
7058 finfo->indices[r_symndx]
7059 = bfd_get_symcount (output_bfd);
7060
7061 if (! elf_link_output_sym (finfo, name, isym, sec))
7062 return false;
7063 }
7064
7065 r_symndx = finfo->indices[r_symndx];
7066 }
7067
7068 irela->r_info = ELF_R_INFO (r_symndx,
7069 ELF_R_TYPE (irela->r_info));
7070 }
7071
7072 /* Swap out the relocs. */
7073 if (bed->elf_backend_emit_relocs
7074 && !(finfo->info->relocateable
7075 || finfo->info->emitrelocations))
7076 reloc_emitter = bed->elf_backend_emit_relocs;
7077 else
7078 reloc_emitter = elf_link_output_relocs;
7079
7080 if (! (*reloc_emitter) (output_bfd, o, input_rel_hdr,
7081 internal_relocs))
7082 return false;
7083
7084 input_rel_hdr = elf_section_data (o)->rel_hdr2;
7085 if (input_rel_hdr)
7086 {
7087 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
7088 * bed->s->int_rels_per_ext_rel);
7089 if (! (*reloc_emitter) (output_bfd, o, input_rel_hdr,
7090 internal_relocs))
7091 return false;
7092 }
7093
7094 }
7095 }
7096
7097 /* Write out the modified section contents. */
7098 if (bed->elf_backend_write_section
7099 && (*bed->elf_backend_write_section) (output_bfd, o, contents))
7100 {
7101 /* Section written out. */
7102 }
7103 else switch (elf_section_data (o)->sec_info_type)
7104 {
7105 case ELF_INFO_TYPE_STABS:
7106 if (! (_bfd_write_section_stabs
7107 (output_bfd,
7108 &elf_hash_table (finfo->info)->stab_info,
7109 o, &elf_section_data (o)->sec_info, contents)))
7110 return false;
7111 break;
7112 case ELF_INFO_TYPE_MERGE:
7113 if (! (_bfd_write_merged_section
7114 (output_bfd, o, elf_section_data (o)->sec_info)))
7115 return false;
7116 break;
7117 case ELF_INFO_TYPE_EH_FRAME:
7118 {
7119 asection *ehdrsec;
7120
7121 ehdrsec
7122 = bfd_get_section_by_name (elf_hash_table (finfo->info)->dynobj,
7123 ".eh_frame_hdr");
7124 if (! (_bfd_elf_write_section_eh_frame (output_bfd, o, ehdrsec,
7125 contents)))
7126 return false;
7127 }
7128 break;
7129 default:
7130 {
7131 bfd_size_type sec_size;
7132
7133 sec_size = (o->_cooked_size != 0 ? o->_cooked_size : o->_raw_size);
7134 if (! (o->flags & SEC_EXCLUDE)
7135 && ! bfd_set_section_contents (output_bfd, o->output_section,
7136 contents,
7137 (file_ptr) o->output_offset,
7138 sec_size))
7139 return false;
7140 }
7141 break;
7142 }
7143 }
7144
7145 return true;
7146 }
7147
7148 /* Generate a reloc when linking an ELF file. This is a reloc
7149 requested by the linker, and does come from any input file. This
7150 is used to build constructor and destructor tables when linking
7151 with -Ur. */
7152
7153 static boolean
7154 elf_reloc_link_order (output_bfd, info, output_section, link_order)
7155 bfd *output_bfd;
7156 struct bfd_link_info *info;
7157 asection *output_section;
7158 struct bfd_link_order *link_order;
7159 {
7160 reloc_howto_type *howto;
7161 long indx;
7162 bfd_vma offset;
7163 bfd_vma addend;
7164 struct elf_link_hash_entry **rel_hash_ptr;
7165 Elf_Internal_Shdr *rel_hdr;
7166 struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
7167
7168 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
7169 if (howto == NULL)
7170 {
7171 bfd_set_error (bfd_error_bad_value);
7172 return false;
7173 }
7174
7175 addend = link_order->u.reloc.p->addend;
7176
7177 /* Figure out the symbol index. */
7178 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
7179 + elf_section_data (output_section)->rel_count
7180 + elf_section_data (output_section)->rel_count2);
7181 if (link_order->type == bfd_section_reloc_link_order)
7182 {
7183 indx = link_order->u.reloc.p->u.section->target_index;
7184 BFD_ASSERT (indx != 0);
7185 *rel_hash_ptr = NULL;
7186 }
7187 else
7188 {
7189 struct elf_link_hash_entry *h;
7190
7191 /* Treat a reloc against a defined symbol as though it were
7192 actually against the section. */
7193 h = ((struct elf_link_hash_entry *)
7194 bfd_wrapped_link_hash_lookup (output_bfd, info,
7195 link_order->u.reloc.p->u.name,
7196 false, false, true));
7197 if (h != NULL
7198 && (h->root.type == bfd_link_hash_defined
7199 || h->root.type == bfd_link_hash_defweak))
7200 {
7201 asection *section;
7202
7203 section = h->root.u.def.section;
7204 indx = section->output_section->target_index;
7205 *rel_hash_ptr = NULL;
7206 /* It seems that we ought to add the symbol value to the
7207 addend here, but in practice it has already been added
7208 because it was passed to constructor_callback. */
7209 addend += section->output_section->vma + section->output_offset;
7210 }
7211 else if (h != NULL)
7212 {
7213 /* Setting the index to -2 tells elf_link_output_extsym that
7214 this symbol is used by a reloc. */
7215 h->indx = -2;
7216 *rel_hash_ptr = h;
7217 indx = 0;
7218 }
7219 else
7220 {
7221 if (! ((*info->callbacks->unattached_reloc)
7222 (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
7223 (asection *) NULL, (bfd_vma) 0)))
7224 return false;
7225 indx = 0;
7226 }
7227 }
7228
7229 /* If this is an inplace reloc, we must write the addend into the
7230 object file. */
7231 if (howto->partial_inplace && addend != 0)
7232 {
7233 bfd_size_type size;
7234 bfd_reloc_status_type rstat;
7235 bfd_byte *buf;
7236 boolean ok;
7237 const char *sym_name;
7238
7239 size = bfd_get_reloc_size (howto);
7240 buf = (bfd_byte *) bfd_zmalloc (size);
7241 if (buf == (bfd_byte *) NULL)
7242 return false;
7243 rstat = _bfd_relocate_contents (howto, output_bfd, (bfd_vma) addend, buf);
7244 switch (rstat)
7245 {
7246 case bfd_reloc_ok:
7247 break;
7248
7249 default:
7250 case bfd_reloc_outofrange:
7251 abort ();
7252
7253 case bfd_reloc_overflow:
7254 if (link_order->type == bfd_section_reloc_link_order)
7255 sym_name = bfd_section_name (output_bfd,
7256 link_order->u.reloc.p->u.section);
7257 else
7258 sym_name = link_order->u.reloc.p->u.name;
7259 if (! ((*info->callbacks->reloc_overflow)
7260 (info, sym_name, howto->name, addend,
7261 (bfd *) NULL, (asection *) NULL, (bfd_vma) 0)))
7262 {
7263 free (buf);
7264 return false;
7265 }
7266 break;
7267 }
7268 ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
7269 (file_ptr) link_order->offset, size);
7270 free (buf);
7271 if (! ok)
7272 return false;
7273 }
7274
7275 /* The address of a reloc is relative to the section in a
7276 relocateable file, and is a virtual address in an executable
7277 file. */
7278 offset = link_order->offset;
7279 if (! info->relocateable)
7280 offset += output_section->vma;
7281
7282 rel_hdr = &elf_section_data (output_section)->rel_hdr;
7283
7284 if (rel_hdr->sh_type == SHT_REL)
7285 {
7286 bfd_size_type size;
7287 Elf_Internal_Rel *irel;
7288 Elf_External_Rel *erel;
7289 unsigned int i;
7290
7291 size = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rel);
7292 irel = (Elf_Internal_Rel *) bfd_zmalloc (size);
7293 if (irel == NULL)
7294 return false;
7295
7296 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7297 irel[i].r_offset = offset;
7298 irel[0].r_info = ELF_R_INFO (indx, howto->type);
7299
7300 erel = ((Elf_External_Rel *) rel_hdr->contents
7301 + elf_section_data (output_section)->rel_count);
7302
7303 if (bed->s->swap_reloc_out)
7304 (*bed->s->swap_reloc_out) (output_bfd, irel, (bfd_byte *) erel);
7305 else
7306 elf_swap_reloc_out (output_bfd, irel, erel);
7307
7308 free (irel);
7309 }
7310 else
7311 {
7312 bfd_size_type size;
7313 Elf_Internal_Rela *irela;
7314 Elf_External_Rela *erela;
7315 unsigned int i;
7316
7317 size = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
7318 irela = (Elf_Internal_Rela *) bfd_zmalloc (size);
7319 if (irela == NULL)
7320 return false;
7321
7322 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7323 irela[i].r_offset = offset;
7324 irela[0].r_info = ELF_R_INFO (indx, howto->type);
7325 irela[0].r_addend = addend;
7326
7327 erela = ((Elf_External_Rela *) rel_hdr->contents
7328 + elf_section_data (output_section)->rel_count);
7329
7330 if (bed->s->swap_reloca_out)
7331 (*bed->s->swap_reloca_out) (output_bfd, irela, (bfd_byte *) erela);
7332 else
7333 elf_swap_reloca_out (output_bfd, irela, erela);
7334 }
7335
7336 ++elf_section_data (output_section)->rel_count;
7337
7338 return true;
7339 }
7340 \f
7341 /* Allocate a pointer to live in a linker created section. */
7342
7343 boolean
7344 elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
7345 bfd *abfd;
7346 struct bfd_link_info *info;
7347 elf_linker_section_t *lsect;
7348 struct elf_link_hash_entry *h;
7349 const Elf_Internal_Rela *rel;
7350 {
7351 elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
7352 elf_linker_section_pointers_t *linker_section_ptr;
7353 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
7354 bfd_size_type amt;
7355
7356 BFD_ASSERT (lsect != NULL);
7357
7358 /* Is this a global symbol? */
7359 if (h != NULL)
7360 {
7361 /* Has this symbol already been allocated? If so, our work is done. */
7362 if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
7363 rel->r_addend,
7364 lsect->which))
7365 return true;
7366
7367 ptr_linker_section_ptr = &h->linker_section_pointer;
7368 /* Make sure this symbol is output as a dynamic symbol. */
7369 if (h->dynindx == -1)
7370 {
7371 if (! elf_link_record_dynamic_symbol (info, h))
7372 return false;
7373 }
7374
7375 if (lsect->rel_section)
7376 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
7377 }
7378 else
7379 {
7380 /* Allocation of a pointer to a local symbol. */
7381 elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
7382
7383 /* Allocate a table to hold the local symbols if first time. */
7384 if (!ptr)
7385 {
7386 unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
7387 register unsigned int i;
7388
7389 amt = num_symbols;
7390 amt *= sizeof (elf_linker_section_pointers_t *);
7391 ptr = (elf_linker_section_pointers_t **) bfd_alloc (abfd, amt);
7392
7393 if (!ptr)
7394 return false;
7395
7396 elf_local_ptr_offsets (abfd) = ptr;
7397 for (i = 0; i < num_symbols; i++)
7398 ptr[i] = (elf_linker_section_pointers_t *) 0;
7399 }
7400
7401 /* Has this symbol already been allocated? If so, our work is done. */
7402 if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
7403 rel->r_addend,
7404 lsect->which))
7405 return true;
7406
7407 ptr_linker_section_ptr = &ptr[r_symndx];
7408
7409 if (info->shared)
7410 {
7411 /* If we are generating a shared object, we need to
7412 output a R_<xxx>_RELATIVE reloc so that the
7413 dynamic linker can adjust this GOT entry. */
7414 BFD_ASSERT (lsect->rel_section != NULL);
7415 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
7416 }
7417 }
7418
7419 /* Allocate space for a pointer in the linker section, and allocate
7420 a new pointer record from internal memory. */
7421 BFD_ASSERT (ptr_linker_section_ptr != NULL);
7422 amt = sizeof (elf_linker_section_pointers_t);
7423 linker_section_ptr = (elf_linker_section_pointers_t *) bfd_alloc (abfd, amt);
7424
7425 if (!linker_section_ptr)
7426 return false;
7427
7428 linker_section_ptr->next = *ptr_linker_section_ptr;
7429 linker_section_ptr->addend = rel->r_addend;
7430 linker_section_ptr->which = lsect->which;
7431 linker_section_ptr->written_address_p = false;
7432 *ptr_linker_section_ptr = linker_section_ptr;
7433
7434 #if 0
7435 if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
7436 {
7437 linker_section_ptr->offset = (lsect->section->_raw_size
7438 - lsect->hole_size + (ARCH_SIZE / 8));
7439 lsect->hole_offset += ARCH_SIZE / 8;
7440 lsect->sym_offset += ARCH_SIZE / 8;
7441 if (lsect->sym_hash)
7442 {
7443 /* Bump up symbol value if needed. */
7444 lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
7445 #ifdef DEBUG
7446 fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
7447 lsect->sym_hash->root.root.string,
7448 (long) ARCH_SIZE / 8,
7449 (long) lsect->sym_hash->root.u.def.value);
7450 #endif
7451 }
7452 }
7453 else
7454 #endif
7455 linker_section_ptr->offset = lsect->section->_raw_size;
7456
7457 lsect->section->_raw_size += ARCH_SIZE / 8;
7458
7459 #ifdef DEBUG
7460 fprintf (stderr,
7461 "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
7462 lsect->name, (long) linker_section_ptr->offset,
7463 (long) lsect->section->_raw_size);
7464 #endif
7465
7466 return true;
7467 }
7468 \f
7469 #if ARCH_SIZE==64
7470 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
7471 #endif
7472 #if ARCH_SIZE==32
7473 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
7474 #endif
7475
7476 /* Fill in the address for a pointer generated in a linker section. */
7477
7478 bfd_vma
7479 elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h,
7480 relocation, rel, relative_reloc)
7481 bfd *output_bfd;
7482 bfd *input_bfd;
7483 struct bfd_link_info *info;
7484 elf_linker_section_t *lsect;
7485 struct elf_link_hash_entry *h;
7486 bfd_vma relocation;
7487 const Elf_Internal_Rela *rel;
7488 int relative_reloc;
7489 {
7490 elf_linker_section_pointers_t *linker_section_ptr;
7491
7492 BFD_ASSERT (lsect != NULL);
7493
7494 if (h != NULL)
7495 {
7496 /* Handle global symbol. */
7497 linker_section_ptr = (_bfd_elf_find_pointer_linker_section
7498 (h->linker_section_pointer,
7499 rel->r_addend,
7500 lsect->which));
7501
7502 BFD_ASSERT (linker_section_ptr != NULL);
7503
7504 if (! elf_hash_table (info)->dynamic_sections_created
7505 || (info->shared
7506 && info->symbolic
7507 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
7508 {
7509 /* This is actually a static link, or it is a
7510 -Bsymbolic link and the symbol is defined
7511 locally. We must initialize this entry in the
7512 global section.
7513
7514 When doing a dynamic link, we create a .rela.<xxx>
7515 relocation entry to initialize the value. This
7516 is done in the finish_dynamic_symbol routine. */
7517 if (!linker_section_ptr->written_address_p)
7518 {
7519 linker_section_ptr->written_address_p = true;
7520 bfd_put_ptr (output_bfd,
7521 relocation + linker_section_ptr->addend,
7522 (lsect->section->contents
7523 + linker_section_ptr->offset));
7524 }
7525 }
7526 }
7527 else
7528 {
7529 /* Handle local symbol. */
7530 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
7531 BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
7532 BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
7533 linker_section_ptr = (_bfd_elf_find_pointer_linker_section
7534 (elf_local_ptr_offsets (input_bfd)[r_symndx],
7535 rel->r_addend,
7536 lsect->which));
7537
7538 BFD_ASSERT (linker_section_ptr != NULL);
7539
7540 /* Write out pointer if it hasn't been rewritten out before. */
7541 if (!linker_section_ptr->written_address_p)
7542 {
7543 linker_section_ptr->written_address_p = true;
7544 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
7545 lsect->section->contents + linker_section_ptr->offset);
7546
7547 if (info->shared)
7548 {
7549 asection *srel = lsect->rel_section;
7550 Elf_Internal_Rela *outrel;
7551 Elf_External_Rela *erel;
7552 struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
7553 unsigned int i;
7554 bfd_size_type amt;
7555
7556 amt = sizeof (Elf_Internal_Rela) * bed->s->int_rels_per_ext_rel;
7557 outrel = (Elf_Internal_Rela *) bfd_zmalloc (amt);
7558 if (outrel == NULL)
7559 {
7560 (*_bfd_error_handler) (_("Error: out of memory"));
7561 return 0;
7562 }
7563
7564 /* We need to generate a relative reloc for the dynamic
7565 linker. */
7566 if (!srel)
7567 {
7568 srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
7569 lsect->rel_name);
7570 lsect->rel_section = srel;
7571 }
7572
7573 BFD_ASSERT (srel != NULL);
7574
7575 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7576 outrel[i].r_offset = (lsect->section->output_section->vma
7577 + lsect->section->output_offset
7578 + linker_section_ptr->offset);
7579 outrel[0].r_info = ELF_R_INFO (0, relative_reloc);
7580 outrel[0].r_addend = 0;
7581 erel = (Elf_External_Rela *) lsect->section->contents;
7582 erel += elf_section_data (lsect->section)->rel_count;
7583 elf_swap_reloca_out (output_bfd, outrel, erel);
7584 ++elf_section_data (lsect->section)->rel_count;
7585
7586 free (outrel);
7587 }
7588 }
7589 }
7590
7591 relocation = (lsect->section->output_offset
7592 + linker_section_ptr->offset
7593 - lsect->hole_offset
7594 - lsect->sym_offset);
7595
7596 #ifdef DEBUG
7597 fprintf (stderr,
7598 "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
7599 lsect->name, (long) relocation, (long) relocation);
7600 #endif
7601
7602 /* Subtract out the addend, because it will get added back in by the normal
7603 processing. */
7604 return relocation - linker_section_ptr->addend;
7605 }
7606 \f
7607 /* Garbage collect unused sections. */
7608
7609 static boolean elf_gc_mark
7610 PARAMS ((struct bfd_link_info *info, asection *sec,
7611 asection * (*gc_mark_hook)
7612 PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
7613 struct elf_link_hash_entry *, Elf_Internal_Sym *))));
7614
7615 static boolean elf_gc_sweep
7616 PARAMS ((struct bfd_link_info *info,
7617 boolean (*gc_sweep_hook)
7618 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
7619 const Elf_Internal_Rela *relocs))));
7620
7621 static boolean elf_gc_sweep_symbol
7622 PARAMS ((struct elf_link_hash_entry *h, PTR idxptr));
7623
7624 static boolean elf_gc_allocate_got_offsets
7625 PARAMS ((struct elf_link_hash_entry *h, PTR offarg));
7626
7627 static boolean elf_gc_propagate_vtable_entries_used
7628 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
7629
7630 static boolean elf_gc_smash_unused_vtentry_relocs
7631 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
7632
7633 /* The mark phase of garbage collection. For a given section, mark
7634 it and any sections in this section's group, and all the sections
7635 which define symbols to which it refers. */
7636
7637 static boolean
7638 elf_gc_mark (info, sec, gc_mark_hook)
7639 struct bfd_link_info *info;
7640 asection *sec;
7641 asection * (*gc_mark_hook)
7642 PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
7643 struct elf_link_hash_entry *, Elf_Internal_Sym *));
7644 {
7645 boolean ret;
7646 asection *group_sec;
7647
7648 sec->gc_mark = 1;
7649
7650 /* Mark all the sections in the group. */
7651 group_sec = elf_section_data (sec)->next_in_group;
7652 if (group_sec && !group_sec->gc_mark)
7653 if (!elf_gc_mark (info, group_sec, gc_mark_hook))
7654 return false;
7655
7656 /* Look through the section relocs. */
7657 ret = true;
7658 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
7659 {
7660 Elf_Internal_Rela *relstart, *rel, *relend;
7661 Elf_Internal_Shdr *symtab_hdr;
7662 struct elf_link_hash_entry **sym_hashes;
7663 size_t nlocsyms;
7664 size_t extsymoff;
7665 bfd *input_bfd = sec->owner;
7666 struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
7667 Elf_Internal_Sym *isym = NULL;
7668
7669 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
7670 sym_hashes = elf_sym_hashes (input_bfd);
7671
7672 /* Read the local symbols. */
7673 if (elf_bad_symtab (input_bfd))
7674 {
7675 nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
7676 extsymoff = 0;
7677 }
7678 else
7679 extsymoff = nlocsyms = symtab_hdr->sh_info;
7680
7681 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
7682 if (isym == NULL && nlocsyms != 0)
7683 {
7684 isym = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, nlocsyms, 0,
7685 NULL, NULL, NULL);
7686 if (isym == NULL)
7687 return false;
7688 }
7689
7690 /* Read the relocations. */
7691 relstart = (NAME(_bfd_elf,link_read_relocs)
7692 (input_bfd, sec, NULL, (Elf_Internal_Rela *) NULL,
7693 info->keep_memory));
7694 if (relstart == NULL)
7695 {
7696 ret = false;
7697 goto out1;
7698 }
7699 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7700
7701 for (rel = relstart; rel < relend; rel++)
7702 {
7703 unsigned long r_symndx;
7704 asection *rsec;
7705 struct elf_link_hash_entry *h;
7706
7707 r_symndx = ELF_R_SYM (rel->r_info);
7708 if (r_symndx == 0)
7709 continue;
7710
7711 if (r_symndx >= nlocsyms
7712 || ELF_ST_BIND (isym[r_symndx].st_info) != STB_LOCAL)
7713 {
7714 h = sym_hashes[r_symndx - extsymoff];
7715 rsec = (*gc_mark_hook) (sec, info, rel, h, NULL);
7716 }
7717 else
7718 {
7719 rsec = (*gc_mark_hook) (sec, info, rel, NULL, &isym[r_symndx]);
7720 }
7721
7722 if (rsec && !rsec->gc_mark)
7723 {
7724 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
7725 rsec->gc_mark = 1;
7726 else if (!elf_gc_mark (info, rsec, gc_mark_hook))
7727 {
7728 ret = false;
7729 goto out2;
7730 }
7731 }
7732 }
7733
7734 out2:
7735 if (elf_section_data (sec)->relocs != relstart)
7736 free (relstart);
7737 out1:
7738 if (isym != NULL && symtab_hdr->contents != (unsigned char *) isym)
7739 {
7740 if (! info->keep_memory)
7741 free (isym);
7742 else
7743 symtab_hdr->contents = (unsigned char *) isym;
7744 }
7745 }
7746
7747 return ret;
7748 }
7749
7750 /* The sweep phase of garbage collection. Remove all garbage sections. */
7751
7752 static boolean
7753 elf_gc_sweep (info, gc_sweep_hook)
7754 struct bfd_link_info *info;
7755 boolean (*gc_sweep_hook)
7756 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
7757 const Elf_Internal_Rela *relocs));
7758 {
7759 bfd *sub;
7760
7761 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
7762 {
7763 asection *o;
7764
7765 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
7766 continue;
7767
7768 for (o = sub->sections; o != NULL; o = o->next)
7769 {
7770 /* Keep special sections. Keep .debug sections. */
7771 if ((o->flags & SEC_LINKER_CREATED)
7772 || (o->flags & SEC_DEBUGGING))
7773 o->gc_mark = 1;
7774
7775 if (o->gc_mark)
7776 continue;
7777
7778 /* Skip sweeping sections already excluded. */
7779 if (o->flags & SEC_EXCLUDE)
7780 continue;
7781
7782 /* Since this is early in the link process, it is simple
7783 to remove a section from the output. */
7784 o->flags |= SEC_EXCLUDE;
7785
7786 /* But we also have to update some of the relocation
7787 info we collected before. */
7788 if (gc_sweep_hook
7789 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
7790 {
7791 Elf_Internal_Rela *internal_relocs;
7792 boolean r;
7793
7794 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
7795 (o->owner, o, NULL, NULL, info->keep_memory));
7796 if (internal_relocs == NULL)
7797 return false;
7798
7799 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
7800
7801 if (elf_section_data (o)->relocs != internal_relocs)
7802 free (internal_relocs);
7803
7804 if (!r)
7805 return false;
7806 }
7807 }
7808 }
7809
7810 /* Remove the symbols that were in the swept sections from the dynamic
7811 symbol table. GCFIXME: Anyone know how to get them out of the
7812 static symbol table as well? */
7813 {
7814 int i = 0;
7815
7816 elf_link_hash_traverse (elf_hash_table (info),
7817 elf_gc_sweep_symbol,
7818 (PTR) &i);
7819
7820 elf_hash_table (info)->dynsymcount = i;
7821 }
7822
7823 return true;
7824 }
7825
7826 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
7827
7828 static boolean
7829 elf_gc_sweep_symbol (h, idxptr)
7830 struct elf_link_hash_entry *h;
7831 PTR idxptr;
7832 {
7833 int *idx = (int *) idxptr;
7834
7835 if (h->root.type == bfd_link_hash_warning)
7836 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7837
7838 if (h->dynindx != -1
7839 && ((h->root.type != bfd_link_hash_defined
7840 && h->root.type != bfd_link_hash_defweak)
7841 || h->root.u.def.section->gc_mark))
7842 h->dynindx = (*idx)++;
7843
7844 return true;
7845 }
7846
7847 /* Propogate collected vtable information. This is called through
7848 elf_link_hash_traverse. */
7849
7850 static boolean
7851 elf_gc_propagate_vtable_entries_used (h, okp)
7852 struct elf_link_hash_entry *h;
7853 PTR okp;
7854 {
7855 if (h->root.type == bfd_link_hash_warning)
7856 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7857
7858 /* Those that are not vtables. */
7859 if (h->vtable_parent == NULL)
7860 return true;
7861
7862 /* Those vtables that do not have parents, we cannot merge. */
7863 if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
7864 return true;
7865
7866 /* If we've already been done, exit. */
7867 if (h->vtable_entries_used && h->vtable_entries_used[-1])
7868 return true;
7869
7870 /* Make sure the parent's table is up to date. */
7871 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
7872
7873 if (h->vtable_entries_used == NULL)
7874 {
7875 /* None of this table's entries were referenced. Re-use the
7876 parent's table. */
7877 h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
7878 h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
7879 }
7880 else
7881 {
7882 size_t n;
7883 boolean *cu, *pu;
7884
7885 /* Or the parent's entries into ours. */
7886 cu = h->vtable_entries_used;
7887 cu[-1] = true;
7888 pu = h->vtable_parent->vtable_entries_used;
7889 if (pu != NULL)
7890 {
7891 asection *sec = h->root.u.def.section;
7892 struct elf_backend_data *bed = get_elf_backend_data (sec->owner);
7893 int file_align = bed->s->file_align;
7894
7895 n = h->vtable_parent->vtable_entries_size / file_align;
7896 while (n--)
7897 {
7898 if (*pu)
7899 *cu = true;
7900 pu++;
7901 cu++;
7902 }
7903 }
7904 }
7905
7906 return true;
7907 }
7908
7909 static boolean
7910 elf_gc_smash_unused_vtentry_relocs (h, okp)
7911 struct elf_link_hash_entry *h;
7912 PTR okp;
7913 {
7914 asection *sec;
7915 bfd_vma hstart, hend;
7916 Elf_Internal_Rela *relstart, *relend, *rel;
7917 struct elf_backend_data *bed;
7918 int file_align;
7919
7920 if (h->root.type == bfd_link_hash_warning)
7921 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7922
7923 /* Take care of both those symbols that do not describe vtables as
7924 well as those that are not loaded. */
7925 if (h->vtable_parent == NULL)
7926 return true;
7927
7928 BFD_ASSERT (h->root.type == bfd_link_hash_defined
7929 || h->root.type == bfd_link_hash_defweak);
7930
7931 sec = h->root.u.def.section;
7932 hstart = h->root.u.def.value;
7933 hend = hstart + h->size;
7934
7935 relstart = (NAME(_bfd_elf,link_read_relocs)
7936 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true));
7937 if (!relstart)
7938 return *(boolean *) okp = false;
7939 bed = get_elf_backend_data (sec->owner);
7940 file_align = bed->s->file_align;
7941
7942 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7943
7944 for (rel = relstart; rel < relend; ++rel)
7945 if (rel->r_offset >= hstart && rel->r_offset < hend)
7946 {
7947 /* If the entry is in use, do nothing. */
7948 if (h->vtable_entries_used
7949 && (rel->r_offset - hstart) < h->vtable_entries_size)
7950 {
7951 bfd_vma entry = (rel->r_offset - hstart) / file_align;
7952 if (h->vtable_entries_used[entry])
7953 continue;
7954 }
7955 /* Otherwise, kill it. */
7956 rel->r_offset = rel->r_info = rel->r_addend = 0;
7957 }
7958
7959 return true;
7960 }
7961
7962 /* Do mark and sweep of unused sections. */
7963
7964 boolean
7965 elf_gc_sections (abfd, info)
7966 bfd *abfd;
7967 struct bfd_link_info *info;
7968 {
7969 boolean ok = true;
7970 bfd *sub;
7971 asection * (*gc_mark_hook)
7972 PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
7973 struct elf_link_hash_entry *h, Elf_Internal_Sym *));
7974
7975 if (!get_elf_backend_data (abfd)->can_gc_sections
7976 || info->relocateable || info->emitrelocations
7977 || elf_hash_table (info)->dynamic_sections_created)
7978 return true;
7979
7980 /* Apply transitive closure to the vtable entry usage info. */
7981 elf_link_hash_traverse (elf_hash_table (info),
7982 elf_gc_propagate_vtable_entries_used,
7983 (PTR) &ok);
7984 if (!ok)
7985 return false;
7986
7987 /* Kill the vtable relocations that were not used. */
7988 elf_link_hash_traverse (elf_hash_table (info),
7989 elf_gc_smash_unused_vtentry_relocs,
7990 (PTR) &ok);
7991 if (!ok)
7992 return false;
7993
7994 /* Grovel through relocs to find out who stays ... */
7995
7996 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
7997 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
7998 {
7999 asection *o;
8000
8001 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
8002 continue;
8003
8004 for (o = sub->sections; o != NULL; o = o->next)
8005 {
8006 if (o->flags & SEC_KEEP)
8007 if (!elf_gc_mark (info, o, gc_mark_hook))
8008 return false;
8009 }
8010 }
8011
8012 /* ... and mark SEC_EXCLUDE for those that go. */
8013 if (!elf_gc_sweep (info, get_elf_backend_data (abfd)->gc_sweep_hook))
8014 return false;
8015
8016 return true;
8017 }
8018 \f
8019 /* Called from check_relocs to record the existance of a VTINHERIT reloc. */
8020
8021 boolean
8022 elf_gc_record_vtinherit (abfd, sec, h, offset)
8023 bfd *abfd;
8024 asection *sec;
8025 struct elf_link_hash_entry *h;
8026 bfd_vma offset;
8027 {
8028 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
8029 struct elf_link_hash_entry **search, *child;
8030 bfd_size_type extsymcount;
8031
8032 /* The sh_info field of the symtab header tells us where the
8033 external symbols start. We don't care about the local symbols at
8034 this point. */
8035 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym);
8036 if (!elf_bad_symtab (abfd))
8037 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
8038
8039 sym_hashes = elf_sym_hashes (abfd);
8040 sym_hashes_end = sym_hashes + extsymcount;
8041
8042 /* Hunt down the child symbol, which is in this section at the same
8043 offset as the relocation. */
8044 for (search = sym_hashes; search != sym_hashes_end; ++search)
8045 {
8046 if ((child = *search) != NULL
8047 && (child->root.type == bfd_link_hash_defined
8048 || child->root.type == bfd_link_hash_defweak)
8049 && child->root.u.def.section == sec
8050 && child->root.u.def.value == offset)
8051 goto win;
8052 }
8053
8054 (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
8055 bfd_archive_filename (abfd), sec->name,
8056 (unsigned long) offset);
8057 bfd_set_error (bfd_error_invalid_operation);
8058 return false;
8059
8060 win:
8061 if (!h)
8062 {
8063 /* This *should* only be the absolute section. It could potentially
8064 be that someone has defined a non-global vtable though, which
8065 would be bad. It isn't worth paging in the local symbols to be
8066 sure though; that case should simply be handled by the assembler. */
8067
8068 child->vtable_parent = (struct elf_link_hash_entry *) -1;
8069 }
8070 else
8071 child->vtable_parent = h;
8072
8073 return true;
8074 }
8075
8076 /* Called from check_relocs to record the existance of a VTENTRY reloc. */
8077
8078 boolean
8079 elf_gc_record_vtentry (abfd, sec, h, addend)
8080 bfd *abfd ATTRIBUTE_UNUSED;
8081 asection *sec ATTRIBUTE_UNUSED;
8082 struct elf_link_hash_entry *h;
8083 bfd_vma addend;
8084 {
8085 struct elf_backend_data *bed = get_elf_backend_data (abfd);
8086 int file_align = bed->s->file_align;
8087
8088 if (addend >= h->vtable_entries_size)
8089 {
8090 size_t size, bytes;
8091 boolean *ptr = h->vtable_entries_used;
8092
8093 /* While the symbol is undefined, we have to be prepared to handle
8094 a zero size. */
8095 if (h->root.type == bfd_link_hash_undefined)
8096 size = addend;
8097 else
8098 {
8099 size = h->size;
8100 if (size < addend)
8101 {
8102 /* Oops! We've got a reference past the defined end of
8103 the table. This is probably a bug -- shall we warn? */
8104 size = addend;
8105 }
8106 }
8107
8108 /* Allocate one extra entry for use as a "done" flag for the
8109 consolidation pass. */
8110 bytes = (size / file_align + 1) * sizeof (boolean);
8111
8112 if (ptr)
8113 {
8114 ptr = bfd_realloc (ptr - 1, (bfd_size_type) bytes);
8115
8116 if (ptr != NULL)
8117 {
8118 size_t oldbytes;
8119
8120 oldbytes = ((h->vtable_entries_size / file_align + 1)
8121 * sizeof (boolean));
8122 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
8123 }
8124 }
8125 else
8126 ptr = bfd_zmalloc ((bfd_size_type) bytes);
8127
8128 if (ptr == NULL)
8129 return false;
8130
8131 /* And arrange for that done flag to be at index -1. */
8132 h->vtable_entries_used = ptr + 1;
8133 h->vtable_entries_size = size;
8134 }
8135
8136 h->vtable_entries_used[addend / file_align] = true;
8137
8138 return true;
8139 }
8140
8141 /* And an accompanying bit to work out final got entry offsets once
8142 we're done. Should be called from final_link. */
8143
8144 boolean
8145 elf_gc_common_finalize_got_offsets (abfd, info)
8146 bfd *abfd;
8147 struct bfd_link_info *info;
8148 {
8149 bfd *i;
8150 struct elf_backend_data *bed = get_elf_backend_data (abfd);
8151 bfd_vma gotoff;
8152
8153 /* The GOT offset is relative to the .got section, but the GOT header is
8154 put into the .got.plt section, if the backend uses it. */
8155 if (bed->want_got_plt)
8156 gotoff = 0;
8157 else
8158 gotoff = bed->got_header_size;
8159
8160 /* Do the local .got entries first. */
8161 for (i = info->input_bfds; i; i = i->link_next)
8162 {
8163 bfd_signed_vma *local_got;
8164 bfd_size_type j, locsymcount;
8165 Elf_Internal_Shdr *symtab_hdr;
8166
8167 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
8168 continue;
8169
8170 local_got = elf_local_got_refcounts (i);
8171 if (!local_got)
8172 continue;
8173
8174 symtab_hdr = &elf_tdata (i)->symtab_hdr;
8175 if (elf_bad_symtab (i))
8176 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
8177 else
8178 locsymcount = symtab_hdr->sh_info;
8179
8180 for (j = 0; j < locsymcount; ++j)
8181 {
8182 if (local_got[j] > 0)
8183 {
8184 local_got[j] = gotoff;
8185 gotoff += ARCH_SIZE / 8;
8186 }
8187 else
8188 local_got[j] = (bfd_vma) -1;
8189 }
8190 }
8191
8192 /* Then the global .got entries. .plt refcounts are handled by
8193 adjust_dynamic_symbol */
8194 elf_link_hash_traverse (elf_hash_table (info),
8195 elf_gc_allocate_got_offsets,
8196 (PTR) &gotoff);
8197 return true;
8198 }
8199
8200 /* We need a special top-level link routine to convert got reference counts
8201 to real got offsets. */
8202
8203 static boolean
8204 elf_gc_allocate_got_offsets (h, offarg)
8205 struct elf_link_hash_entry *h;
8206 PTR offarg;
8207 {
8208 bfd_vma *off = (bfd_vma *) offarg;
8209
8210 if (h->root.type == bfd_link_hash_warning)
8211 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8212
8213 if (h->got.refcount > 0)
8214 {
8215 h->got.offset = off[0];
8216 off[0] += ARCH_SIZE / 8;
8217 }
8218 else
8219 h->got.offset = (bfd_vma) -1;
8220
8221 return true;
8222 }
8223
8224 /* Many folk need no more in the way of final link than this, once
8225 got entry reference counting is enabled. */
8226
8227 boolean
8228 elf_gc_common_final_link (abfd, info)
8229 bfd *abfd;
8230 struct bfd_link_info *info;
8231 {
8232 if (!elf_gc_common_finalize_got_offsets (abfd, info))
8233 return false;
8234
8235 /* Invoke the regular ELF backend linker to do all the work. */
8236 return elf_bfd_final_link (abfd, info);
8237 }
8238
8239 /* This function will be called though elf_link_hash_traverse to store
8240 all hash value of the exported symbols in an array. */
8241
8242 static boolean
8243 elf_collect_hash_codes (h, data)
8244 struct elf_link_hash_entry *h;
8245 PTR data;
8246 {
8247 unsigned long **valuep = (unsigned long **) data;
8248 const char *name;
8249 char *p;
8250 unsigned long ha;
8251 char *alc = NULL;
8252
8253 if (h->root.type == bfd_link_hash_warning)
8254 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8255
8256 /* Ignore indirect symbols. These are added by the versioning code. */
8257 if (h->dynindx == -1)
8258 return true;
8259
8260 name = h->root.root.string;
8261 p = strchr (name, ELF_VER_CHR);
8262 if (p != NULL)
8263 {
8264 alc = bfd_malloc ((bfd_size_type) (p - name + 1));
8265 memcpy (alc, name, (size_t) (p - name));
8266 alc[p - name] = '\0';
8267 name = alc;
8268 }
8269
8270 /* Compute the hash value. */
8271 ha = bfd_elf_hash (name);
8272
8273 /* Store the found hash value in the array given as the argument. */
8274 *(*valuep)++ = ha;
8275
8276 /* And store it in the struct so that we can put it in the hash table
8277 later. */
8278 h->elf_hash_value = ha;
8279
8280 if (alc != NULL)
8281 free (alc);
8282
8283 return true;
8284 }
8285
8286 boolean
8287 elf_reloc_symbol_deleted_p (offset, cookie)
8288 bfd_vma offset;
8289 PTR cookie;
8290 {
8291 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
8292
8293 if (rcookie->bad_symtab)
8294 rcookie->rel = rcookie->rels;
8295
8296 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
8297 {
8298 unsigned long r_symndx = ELF_R_SYM (rcookie->rel->r_info);
8299
8300 if (! rcookie->bad_symtab)
8301 if (rcookie->rel->r_offset > offset)
8302 return false;
8303 if (rcookie->rel->r_offset != offset)
8304 continue;
8305
8306 if (r_symndx >= rcookie->locsymcount
8307 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
8308 {
8309 struct elf_link_hash_entry *h;
8310
8311 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
8312
8313 while (h->root.type == bfd_link_hash_indirect
8314 || h->root.type == bfd_link_hash_warning)
8315 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8316
8317 if ((h->root.type == bfd_link_hash_defined
8318 || h->root.type == bfd_link_hash_defweak)
8319 && elf_discarded_section (h->root.u.def.section))
8320 return true;
8321 else
8322 return false;
8323 }
8324 else
8325 {
8326 /* It's not a relocation against a global symbol,
8327 but it could be a relocation against a local
8328 symbol for a discarded section. */
8329 asection *isec;
8330 Elf_Internal_Sym *isym;
8331
8332 /* Need to: get the symbol; get the section. */
8333 isym = &rcookie->locsyms[r_symndx];
8334 if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
8335 {
8336 isec = section_from_elf_index (rcookie->abfd, isym->st_shndx);
8337 if (isec != NULL && elf_discarded_section (isec))
8338 return true;
8339 }
8340 }
8341 return false;
8342 }
8343 return false;
8344 }
8345
8346 /* Discard unneeded references to discarded sections.
8347 Returns true if any section's size was changed. */
8348 /* This function assumes that the relocations are in sorted order,
8349 which is true for all known assemblers. */
8350
8351 boolean
8352 elf_bfd_discard_info (output_bfd, info)
8353 bfd *output_bfd;
8354 struct bfd_link_info *info;
8355 {
8356 struct elf_reloc_cookie cookie;
8357 asection *stab, *eh, *ehdr;
8358 Elf_Internal_Shdr *symtab_hdr;
8359 struct elf_backend_data *bed;
8360 bfd *abfd;
8361 boolean ret = false;
8362 boolean strip = info->strip == strip_all || info->strip == strip_debugger;
8363
8364 if (info->relocateable
8365 || info->traditional_format
8366 || info->hash->creator->flavour != bfd_target_elf_flavour
8367 || ! is_elf_hash_table (info))
8368 return false;
8369
8370 ehdr = NULL;
8371 if (elf_hash_table (info)->dynobj != NULL)
8372 ehdr = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
8373 ".eh_frame_hdr");
8374
8375 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
8376 {
8377 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
8378 continue;
8379
8380 bed = get_elf_backend_data (abfd);
8381
8382 if ((abfd->flags & DYNAMIC) != 0)
8383 continue;
8384
8385 eh = NULL;
8386 if (ehdr)
8387 {
8388 eh = bfd_get_section_by_name (abfd, ".eh_frame");
8389 if (eh && (eh->_raw_size == 0
8390 || bfd_is_abs_section (eh->output_section)))
8391 eh = NULL;
8392 }
8393
8394 stab = NULL;
8395 if (!strip)
8396 {
8397 stab = bfd_get_section_by_name (abfd, ".stab");
8398 if (stab && (stab->_raw_size == 0
8399 || bfd_is_abs_section (stab->output_section)))
8400 stab = NULL;
8401 }
8402 if ((! stab
8403 || elf_section_data(stab)->sec_info_type != ELF_INFO_TYPE_STABS)
8404 && ! eh
8405 && (strip || ! bed->elf_backend_discard_info))
8406 continue;
8407
8408 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8409 cookie.abfd = abfd;
8410 cookie.sym_hashes = elf_sym_hashes (abfd);
8411 cookie.bad_symtab = elf_bad_symtab (abfd);
8412 if (cookie.bad_symtab)
8413 {
8414 cookie.locsymcount =
8415 symtab_hdr->sh_size / sizeof (Elf_External_Sym);
8416 cookie.extsymoff = 0;
8417 }
8418 else
8419 {
8420 cookie.locsymcount = symtab_hdr->sh_info;
8421 cookie.extsymoff = symtab_hdr->sh_info;
8422 }
8423
8424 cookie.locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
8425 if (cookie.locsyms == NULL && cookie.locsymcount != 0)
8426 {
8427 cookie.locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8428 cookie.locsymcount, 0,
8429 NULL, NULL, NULL);
8430 if (cookie.locsyms == NULL)
8431 return false;
8432 }
8433
8434 if (stab)
8435 {
8436 cookie.rels = (NAME(_bfd_elf,link_read_relocs)
8437 (abfd, stab, (PTR) NULL, (Elf_Internal_Rela *) NULL,
8438 info->keep_memory));
8439 if (cookie.rels)
8440 {
8441 cookie.rel = cookie.rels;
8442 cookie.relend =
8443 cookie.rels + stab->reloc_count * bed->s->int_rels_per_ext_rel;
8444 if (_bfd_discard_section_stabs (abfd, stab,
8445 elf_section_data (stab)->sec_info,
8446 elf_reloc_symbol_deleted_p,
8447 &cookie))
8448 ret = true;
8449 if (elf_section_data (stab)->relocs != cookie.rels)
8450 free (cookie.rels);
8451 }
8452 }
8453
8454 if (eh)
8455 {
8456 cookie.rels = NULL;
8457 cookie.rel = NULL;
8458 cookie.relend = NULL;
8459 if (eh->reloc_count)
8460 cookie.rels = (NAME(_bfd_elf,link_read_relocs)
8461 (abfd, eh, (PTR) NULL, (Elf_Internal_Rela *) NULL,
8462 info->keep_memory));
8463 if (cookie.rels)
8464 {
8465 cookie.rel = cookie.rels;
8466 cookie.relend =
8467 cookie.rels + eh->reloc_count * bed->s->int_rels_per_ext_rel;
8468 }
8469 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh, ehdr,
8470 elf_reloc_symbol_deleted_p,
8471 &cookie))
8472 ret = true;
8473 if (cookie.rels && elf_section_data (eh)->relocs != cookie.rels)
8474 free (cookie.rels);
8475 }
8476
8477 if (bed->elf_backend_discard_info)
8478 {
8479 if (bed->elf_backend_discard_info (abfd, &cookie, info))
8480 ret = true;
8481 }
8482
8483 if (cookie.locsyms != NULL
8484 && symtab_hdr->contents != (unsigned char *) cookie.locsyms)
8485 {
8486 if (! info->keep_memory)
8487 free (cookie.locsyms);
8488 else
8489 symtab_hdr->contents = (unsigned char *) cookie.locsyms;
8490 }
8491 }
8492
8493 if (ehdr && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info, ehdr))
8494 ret = true;
8495 return ret;
8496 }
8497
8498 static boolean
8499 elf_section_ignore_discarded_relocs (sec)
8500 asection *sec;
8501 {
8502 struct elf_backend_data *bed;
8503
8504 switch (elf_section_data (sec)->sec_info_type)
8505 {
8506 case ELF_INFO_TYPE_STABS:
8507 case ELF_INFO_TYPE_EH_FRAME:
8508 return true;
8509 default:
8510 break;
8511 }
8512
8513 bed = get_elf_backend_data (sec->owner);
8514 if (bed->elf_backend_ignore_discarded_relocs != NULL
8515 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8516 return true;
8517
8518 return false;
8519 }
This page took 0.198748 seconds and 3 git commands to generate.