Add support for -marm720 command line switch
[deliverable/binutils-gdb.git] / bfd / elflink.h
1 /* ELF linker support.
2 Copyright 1995, 1996, 1997, 1998, 1999 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 /* ELF linker code. */
21
22 /* This struct is used to pass information to routines called via
23 elf_link_hash_traverse which must return failure. */
24
25 struct elf_info_failed
26 {
27 boolean failed;
28 struct bfd_link_info *info;
29 };
30
31 static boolean elf_link_add_object_symbols
32 PARAMS ((bfd *, struct bfd_link_info *));
33 static boolean elf_link_add_archive_symbols
34 PARAMS ((bfd *, struct bfd_link_info *));
35 static boolean elf_merge_symbol
36 PARAMS ((bfd *, struct bfd_link_info *, const char *, Elf_Internal_Sym *,
37 asection **, bfd_vma *, struct elf_link_hash_entry **,
38 boolean *, boolean *, boolean *));
39 static boolean elf_export_symbol
40 PARAMS ((struct elf_link_hash_entry *, PTR));
41 static boolean elf_fix_symbol_flags
42 PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *));
43 static boolean elf_adjust_dynamic_symbol
44 PARAMS ((struct elf_link_hash_entry *, PTR));
45 static boolean elf_link_find_version_dependencies
46 PARAMS ((struct elf_link_hash_entry *, PTR));
47 static boolean elf_link_find_version_dependencies
48 PARAMS ((struct elf_link_hash_entry *, PTR));
49 static boolean elf_link_assign_sym_version
50 PARAMS ((struct elf_link_hash_entry *, PTR));
51 static boolean elf_collect_hash_codes
52 PARAMS ((struct elf_link_hash_entry *, PTR));
53 static boolean elf_link_read_relocs_from_section
54 PARAMS ((bfd *, Elf_Internal_Shdr *, PTR, Elf_Internal_Rela *));
55 static void elf_link_output_relocs
56 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *));
57 static boolean elf_link_size_reloc_section
58 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
59 static void elf_link_adjust_relocs
60 PARAMS ((bfd *, Elf_Internal_Shdr *, unsigned int,
61 struct elf_link_hash_entry **));
62
63 /* Given an ELF BFD, add symbols to the global hash table as
64 appropriate. */
65
66 boolean
67 elf_bfd_link_add_symbols (abfd, info)
68 bfd *abfd;
69 struct bfd_link_info *info;
70 {
71 switch (bfd_get_format (abfd))
72 {
73 case bfd_object:
74 return elf_link_add_object_symbols (abfd, info);
75 case bfd_archive:
76 return elf_link_add_archive_symbols (abfd, info);
77 default:
78 bfd_set_error (bfd_error_wrong_format);
79 return false;
80 }
81 }
82 \f
83 /* Search the symbol table of the archive element of the archive ABFD
84 whoes archove map contains a mention of SYMDEF, and determine if
85 the symbol is defined in this element. */
86 static boolean
87 elf_link_is_defined_archive_symbol (abfd, symdef)
88 bfd * abfd;
89 carsym * symdef;
90 {
91 Elf_Internal_Shdr * hdr;
92 Elf_External_Sym * esym;
93 Elf_External_Sym * esymend;
94 Elf_External_Sym * buf = NULL;
95 size_t symcount;
96 size_t extsymcount;
97 size_t extsymoff;
98 boolean result = false;
99
100 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
101 if (abfd == (bfd *) NULL)
102 return false;
103
104 if (! bfd_check_format (abfd, bfd_object))
105 return false;
106
107 /* Select the appropriate symbol table. */
108 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
109 hdr = &elf_tdata (abfd)->symtab_hdr;
110 else
111 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
112
113 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
114
115 /* The sh_info field of the symtab header tells us where the
116 external symbols start. We don't care about the local symbols. */
117 if (elf_bad_symtab (abfd))
118 {
119 extsymcount = symcount;
120 extsymoff = 0;
121 }
122 else
123 {
124 extsymcount = symcount - hdr->sh_info;
125 extsymoff = hdr->sh_info;
126 }
127
128 buf = ((Elf_External_Sym *)
129 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
130 if (buf == NULL && extsymcount != 0)
131 return false;
132
133 /* Read in the symbol table.
134 FIXME: This ought to be cached somewhere. */
135 if (bfd_seek (abfd,
136 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
137 SEEK_SET) != 0
138 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
139 != extsymcount * sizeof (Elf_External_Sym)))
140 {
141 free (buf);
142 return false;
143 }
144
145 /* Scan the symbol table looking for SYMDEF. */
146 esymend = buf + extsymcount;
147 for (esym = buf;
148 esym < esymend;
149 esym++)
150 {
151 Elf_Internal_Sym sym;
152 const char * name;
153
154 elf_swap_symbol_in (abfd, esym, & sym);
155
156 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
157 if (name == (const char *) NULL)
158 break;
159
160 if (strcmp (name, symdef->name) == 0)
161 {
162 result =
163 (ELF_ST_BIND (sym.st_info) == STB_GLOBAL)
164 && (sym.st_shndx != SHN_UNDEF)
165 && (sym.st_shndx != SHN_COMMON)
166 ;
167 break;
168 }
169 }
170
171 free (buf);
172
173 return result;
174 }
175 \f
176
177 /* Add symbols from an ELF archive file to the linker hash table. We
178 don't use _bfd_generic_link_add_archive_symbols because of a
179 problem which arises on UnixWare. The UnixWare libc.so is an
180 archive which includes an entry libc.so.1 which defines a bunch of
181 symbols. The libc.so archive also includes a number of other
182 object files, which also define symbols, some of which are the same
183 as those defined in libc.so.1. Correct linking requires that we
184 consider each object file in turn, and include it if it defines any
185 symbols we need. _bfd_generic_link_add_archive_symbols does not do
186 this; it looks through the list of undefined symbols, and includes
187 any object file which defines them. When this algorithm is used on
188 UnixWare, it winds up pulling in libc.so.1 early and defining a
189 bunch of symbols. This means that some of the other objects in the
190 archive are not included in the link, which is incorrect since they
191 precede libc.so.1 in the archive.
192
193 Fortunately, ELF archive handling is simpler than that done by
194 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
195 oddities. In ELF, if we find a symbol in the archive map, and the
196 symbol is currently undefined, we know that we must pull in that
197 object file.
198
199 Unfortunately, we do have to make multiple passes over the symbol
200 table until nothing further is resolved. */
201
202 static boolean
203 elf_link_add_archive_symbols (abfd, info)
204 bfd *abfd;
205 struct bfd_link_info *info;
206 {
207 symindex c;
208 boolean *defined = NULL;
209 boolean *included = NULL;
210 carsym *symdefs;
211 boolean loop;
212
213 if (! bfd_has_map (abfd))
214 {
215 /* An empty archive is a special case. */
216 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
217 return true;
218 bfd_set_error (bfd_error_no_armap);
219 return false;
220 }
221
222 /* Keep track of all symbols we know to be already defined, and all
223 files we know to be already included. This is to speed up the
224 second and subsequent passes. */
225 c = bfd_ardata (abfd)->symdef_count;
226 if (c == 0)
227 return true;
228 defined = (boolean *) bfd_malloc (c * sizeof (boolean));
229 included = (boolean *) bfd_malloc (c * sizeof (boolean));
230 if (defined == (boolean *) NULL || included == (boolean *) NULL)
231 goto error_return;
232 memset (defined, 0, c * sizeof (boolean));
233 memset (included, 0, c * sizeof (boolean));
234
235 symdefs = bfd_ardata (abfd)->symdefs;
236
237 do
238 {
239 file_ptr last;
240 symindex i;
241 carsym *symdef;
242 carsym *symdefend;
243
244 loop = false;
245 last = -1;
246
247 symdef = symdefs;
248 symdefend = symdef + c;
249 for (i = 0; symdef < symdefend; symdef++, i++)
250 {
251 struct elf_link_hash_entry *h;
252 bfd *element;
253 struct bfd_link_hash_entry *undefs_tail;
254 symindex mark;
255
256 if (defined[i] || included[i])
257 continue;
258 if (symdef->file_offset == last)
259 {
260 included[i] = true;
261 continue;
262 }
263
264 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
265 false, false, false);
266
267 if (h == NULL)
268 {
269 char *p, *copy;
270
271 /* If this is a default version (the name contains @@),
272 look up the symbol again without the version. The
273 effect is that references to the symbol without the
274 version will be matched by the default symbol in the
275 archive. */
276
277 p = strchr (symdef->name, ELF_VER_CHR);
278 if (p == NULL || p[1] != ELF_VER_CHR)
279 continue;
280
281 copy = bfd_alloc (abfd, p - symdef->name + 1);
282 if (copy == NULL)
283 goto error_return;
284 memcpy (copy, symdef->name, p - symdef->name);
285 copy[p - symdef->name] = '\0';
286
287 h = elf_link_hash_lookup (elf_hash_table (info), copy,
288 false, false, false);
289
290 bfd_release (abfd, copy);
291 }
292
293 if (h == NULL)
294 continue;
295
296 if (h->root.type == bfd_link_hash_common)
297 {
298 /* We currently have a common symbol. The archive map contains
299 a reference to this symbol, so we may want to include it. We
300 only want to include it however, if this archive element
301 contains a definition of the symbol, not just another common
302 declaration of it.
303
304 Unfortunately some archivers (including GNU ar) will put
305 declarations of common symbols into their archive maps, as
306 well as real definitions, so we cannot just go by the archive
307 map alone. Instead we must read in the element's symbol
308 table and check that to see what kind of symbol definition
309 this is. */
310 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
311 continue;
312 }
313 else if (h->root.type != bfd_link_hash_undefined)
314 {
315 if (h->root.type != bfd_link_hash_undefweak)
316 defined[i] = true;
317 continue;
318 }
319
320 /* We need to include this archive member. */
321
322 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
323 if (element == (bfd *) NULL)
324 goto error_return;
325
326 if (! bfd_check_format (element, bfd_object))
327 goto error_return;
328
329 /* Doublecheck that we have not included this object
330 already--it should be impossible, but there may be
331 something wrong with the archive. */
332 if (element->archive_pass != 0)
333 {
334 bfd_set_error (bfd_error_bad_value);
335 goto error_return;
336 }
337 element->archive_pass = 1;
338
339 undefs_tail = info->hash->undefs_tail;
340
341 if (! (*info->callbacks->add_archive_element) (info, element,
342 symdef->name))
343 goto error_return;
344 if (! elf_link_add_object_symbols (element, info))
345 goto error_return;
346
347 /* If there are any new undefined symbols, we need to make
348 another pass through the archive in order to see whether
349 they can be defined. FIXME: This isn't perfect, because
350 common symbols wind up on undefs_tail and because an
351 undefined symbol which is defined later on in this pass
352 does not require another pass. This isn't a bug, but it
353 does make the code less efficient than it could be. */
354 if (undefs_tail != info->hash->undefs_tail)
355 loop = true;
356
357 /* Look backward to mark all symbols from this object file
358 which we have already seen in this pass. */
359 mark = i;
360 do
361 {
362 included[mark] = true;
363 if (mark == 0)
364 break;
365 --mark;
366 }
367 while (symdefs[mark].file_offset == symdef->file_offset);
368
369 /* We mark subsequent symbols from this object file as we go
370 on through the loop. */
371 last = symdef->file_offset;
372 }
373 }
374 while (loop);
375
376 free (defined);
377 free (included);
378
379 return true;
380
381 error_return:
382 if (defined != (boolean *) NULL)
383 free (defined);
384 if (included != (boolean *) NULL)
385 free (included);
386 return false;
387 }
388
389 /* This function is called when we want to define a new symbol. It
390 handles the various cases which arise when we find a definition in
391 a dynamic object, or when there is already a definition in a
392 dynamic object. The new symbol is described by NAME, SYM, PSEC,
393 and PVALUE. We set SYM_HASH to the hash table entry. We set
394 OVERRIDE if the old symbol is overriding a new definition. We set
395 TYPE_CHANGE_OK if it is OK for the type to change. We set
396 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
397 change, we mean that we shouldn't warn if the type or size does
398 change. */
399
400 static boolean
401 elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash,
402 override, type_change_ok, size_change_ok)
403 bfd *abfd;
404 struct bfd_link_info *info;
405 const char *name;
406 Elf_Internal_Sym *sym;
407 asection **psec;
408 bfd_vma *pvalue;
409 struct elf_link_hash_entry **sym_hash;
410 boolean *override;
411 boolean *type_change_ok;
412 boolean *size_change_ok;
413 {
414 asection *sec;
415 struct elf_link_hash_entry *h;
416 int bind;
417 bfd *oldbfd;
418 boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
419
420 *override = false;
421
422 sec = *psec;
423 bind = ELF_ST_BIND (sym->st_info);
424
425 if (! bfd_is_und_section (sec))
426 h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
427 else
428 h = ((struct elf_link_hash_entry *)
429 bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
430 if (h == NULL)
431 return false;
432 *sym_hash = h;
433
434 /* This code is for coping with dynamic objects, and is only useful
435 if we are doing an ELF link. */
436 if (info->hash->creator != abfd->xvec)
437 return true;
438
439 /* For merging, we only care about real symbols. */
440
441 while (h->root.type == bfd_link_hash_indirect
442 || h->root.type == bfd_link_hash_warning)
443 h = (struct elf_link_hash_entry *) h->root.u.i.link;
444
445 /* If we just created the symbol, mark it as being an ELF symbol.
446 Other than that, there is nothing to do--there is no merge issue
447 with a newly defined symbol--so we just return. */
448
449 if (h->root.type == bfd_link_hash_new)
450 {
451 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
452 return true;
453 }
454
455 /* OLDBFD is a BFD associated with the existing symbol. */
456
457 switch (h->root.type)
458 {
459 default:
460 oldbfd = NULL;
461 break;
462
463 case bfd_link_hash_undefined:
464 case bfd_link_hash_undefweak:
465 oldbfd = h->root.u.undef.abfd;
466 break;
467
468 case bfd_link_hash_defined:
469 case bfd_link_hash_defweak:
470 oldbfd = h->root.u.def.section->owner;
471 break;
472
473 case bfd_link_hash_common:
474 oldbfd = h->root.u.c.p->section->owner;
475 break;
476 }
477
478 /* In cases involving weak versioned symbols, we may wind up trying
479 to merge a symbol with itself. Catch that here, to avoid the
480 confusion that results if we try to override a symbol with
481 itself. The additional tests catch cases like
482 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
483 dynamic object, which we do want to handle here. */
484 if (abfd == oldbfd
485 && ((abfd->flags & DYNAMIC) == 0
486 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))
487 return true;
488
489 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
490 respectively, is from a dynamic object. */
491
492 if ((abfd->flags & DYNAMIC) != 0)
493 newdyn = true;
494 else
495 newdyn = false;
496
497 if (oldbfd != NULL)
498 olddyn = (oldbfd->flags & DYNAMIC) != 0;
499 else
500 {
501 asection *hsec;
502
503 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
504 indices used by MIPS ELF. */
505 switch (h->root.type)
506 {
507 default:
508 hsec = NULL;
509 break;
510
511 case bfd_link_hash_defined:
512 case bfd_link_hash_defweak:
513 hsec = h->root.u.def.section;
514 break;
515
516 case bfd_link_hash_common:
517 hsec = h->root.u.c.p->section;
518 break;
519 }
520
521 if (hsec == NULL)
522 olddyn = false;
523 else
524 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
525 }
526
527 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
528 respectively, appear to be a definition rather than reference. */
529
530 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
531 newdef = false;
532 else
533 newdef = true;
534
535 if (h->root.type == bfd_link_hash_undefined
536 || h->root.type == bfd_link_hash_undefweak
537 || h->root.type == bfd_link_hash_common)
538 olddef = false;
539 else
540 olddef = true;
541
542 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
543 symbol, respectively, appears to be a common symbol in a dynamic
544 object. If a symbol appears in an uninitialized section, and is
545 not weak, and is not a function, then it may be a common symbol
546 which was resolved when the dynamic object was created. We want
547 to treat such symbols specially, because they raise special
548 considerations when setting the symbol size: if the symbol
549 appears as a common symbol in a regular object, and the size in
550 the regular object is larger, we must make sure that we use the
551 larger size. This problematic case can always be avoided in C,
552 but it must be handled correctly when using Fortran shared
553 libraries.
554
555 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
556 likewise for OLDDYNCOMMON and OLDDEF.
557
558 Note that this test is just a heuristic, and that it is quite
559 possible to have an uninitialized symbol in a shared object which
560 is really a definition, rather than a common symbol. This could
561 lead to some minor confusion when the symbol really is a common
562 symbol in some regular object. However, I think it will be
563 harmless. */
564
565 if (newdyn
566 && newdef
567 && (sec->flags & SEC_ALLOC) != 0
568 && (sec->flags & SEC_LOAD) == 0
569 && sym->st_size > 0
570 && bind != STB_WEAK
571 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
572 newdyncommon = true;
573 else
574 newdyncommon = false;
575
576 if (olddyn
577 && olddef
578 && h->root.type == bfd_link_hash_defined
579 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
580 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
581 && (h->root.u.def.section->flags & SEC_LOAD) == 0
582 && h->size > 0
583 && h->type != STT_FUNC)
584 olddyncommon = true;
585 else
586 olddyncommon = false;
587
588 /* It's OK to change the type if either the existing symbol or the
589 new symbol is weak. */
590
591 if (h->root.type == bfd_link_hash_defweak
592 || h->root.type == bfd_link_hash_undefweak
593 || bind == STB_WEAK)
594 *type_change_ok = true;
595
596 /* It's OK to change the size if either the existing symbol or the
597 new symbol is weak, or if the old symbol is undefined. */
598
599 if (*type_change_ok
600 || h->root.type == bfd_link_hash_undefined)
601 *size_change_ok = true;
602
603 /* If both the old and the new symbols look like common symbols in a
604 dynamic object, set the size of the symbol to the larger of the
605 two. */
606
607 if (olddyncommon
608 && newdyncommon
609 && sym->st_size != h->size)
610 {
611 /* Since we think we have two common symbols, issue a multiple
612 common warning if desired. Note that we only warn if the
613 size is different. If the size is the same, we simply let
614 the old symbol override the new one as normally happens with
615 symbols defined in dynamic objects. */
616
617 if (! ((*info->callbacks->multiple_common)
618 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
619 h->size, abfd, bfd_link_hash_common, sym->st_size)))
620 return false;
621
622 if (sym->st_size > h->size)
623 h->size = sym->st_size;
624
625 *size_change_ok = true;
626 }
627
628 /* If we are looking at a dynamic object, and we have found a
629 definition, we need to see if the symbol was already defined by
630 some other object. If so, we want to use the existing
631 definition, and we do not want to report a multiple symbol
632 definition error; we do this by clobbering *PSEC to be
633 bfd_und_section_ptr.
634
635 We treat a common symbol as a definition if the symbol in the
636 shared library is a function, since common symbols always
637 represent variables; this can cause confusion in principle, but
638 any such confusion would seem to indicate an erroneous program or
639 shared library. We also permit a common symbol in a regular
640 object to override a weak symbol in a shared object.
641
642 We prefer a non-weak definition in a shared library to a weak
643 definition in the executable. */
644
645 if (newdyn
646 && newdef
647 && (olddef
648 || (h->root.type == bfd_link_hash_common
649 && (bind == STB_WEAK
650 || ELF_ST_TYPE (sym->st_info) == STT_FUNC)))
651 && (h->root.type != bfd_link_hash_defweak
652 || bind == STB_WEAK))
653 {
654 *override = true;
655 newdef = false;
656 newdyncommon = false;
657
658 *psec = sec = bfd_und_section_ptr;
659 *size_change_ok = true;
660
661 /* If we get here when the old symbol is a common symbol, then
662 we are explicitly letting it override a weak symbol or
663 function in a dynamic object, and we don't want to warn about
664 a type change. If the old symbol is a defined symbol, a type
665 change warning may still be appropriate. */
666
667 if (h->root.type == bfd_link_hash_common)
668 *type_change_ok = true;
669 }
670
671 /* Handle the special case of an old common symbol merging with a
672 new symbol which looks like a common symbol in a shared object.
673 We change *PSEC and *PVALUE to make the new symbol look like a
674 common symbol, and let _bfd_generic_link_add_one_symbol will do
675 the right thing. */
676
677 if (newdyncommon
678 && h->root.type == bfd_link_hash_common)
679 {
680 *override = true;
681 newdef = false;
682 newdyncommon = false;
683 *pvalue = sym->st_size;
684 *psec = sec = bfd_com_section_ptr;
685 *size_change_ok = true;
686 }
687
688 /* If the old symbol is from a dynamic object, and the new symbol is
689 a definition which is not from a dynamic object, then the new
690 symbol overrides the old symbol. Symbols from regular files
691 always take precedence over symbols from dynamic objects, even if
692 they are defined after the dynamic object in the link.
693
694 As above, we again permit a common symbol in a regular object to
695 override a definition in a shared object if the shared object
696 symbol is a function or is weak.
697
698 As above, we permit a non-weak definition in a shared object to
699 override a weak definition in a regular object. */
700
701 if (! newdyn
702 && (newdef
703 || (bfd_is_com_section (sec)
704 && (h->root.type == bfd_link_hash_defweak
705 || h->type == STT_FUNC)))
706 && olddyn
707 && olddef
708 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
709 && (bind != STB_WEAK
710 || h->root.type == bfd_link_hash_defweak))
711 {
712 /* Change the hash table entry to undefined, and let
713 _bfd_generic_link_add_one_symbol do the right thing with the
714 new definition. */
715
716 h->root.type = bfd_link_hash_undefined;
717 h->root.u.undef.abfd = h->root.u.def.section->owner;
718 *size_change_ok = true;
719
720 olddef = false;
721 olddyncommon = false;
722
723 /* We again permit a type change when a common symbol may be
724 overriding a function. */
725
726 if (bfd_is_com_section (sec))
727 *type_change_ok = true;
728
729 /* This union may have been set to be non-NULL when this symbol
730 was seen in a dynamic object. We must force the union to be
731 NULL, so that it is correct for a regular symbol. */
732
733 h->verinfo.vertree = NULL;
734
735 /* In this special case, if H is the target of an indirection,
736 we want the caller to frob with H rather than with the
737 indirect symbol. That will permit the caller to redefine the
738 target of the indirection, rather than the indirect symbol
739 itself. FIXME: This will break the -y option if we store a
740 symbol with a different name. */
741 *sym_hash = h;
742 }
743
744 /* Handle the special case of a new common symbol merging with an
745 old symbol that looks like it might be a common symbol defined in
746 a shared object. Note that we have already handled the case in
747 which a new common symbol should simply override the definition
748 in the shared library. */
749
750 if (! newdyn
751 && bfd_is_com_section (sec)
752 && olddyncommon)
753 {
754 /* It would be best if we could set the hash table entry to a
755 common symbol, but we don't know what to use for the section
756 or the alignment. */
757 if (! ((*info->callbacks->multiple_common)
758 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
759 h->size, abfd, bfd_link_hash_common, sym->st_size)))
760 return false;
761
762 /* If the predumed common symbol in the dynamic object is
763 larger, pretend that the new symbol has its size. */
764
765 if (h->size > *pvalue)
766 *pvalue = h->size;
767
768 /* FIXME: We no longer know the alignment required by the symbol
769 in the dynamic object, so we just wind up using the one from
770 the regular object. */
771
772 olddef = false;
773 olddyncommon = false;
774
775 h->root.type = bfd_link_hash_undefined;
776 h->root.u.undef.abfd = h->root.u.def.section->owner;
777
778 *size_change_ok = true;
779 *type_change_ok = true;
780
781 h->verinfo.vertree = NULL;
782 }
783
784 /* Handle the special case of a weak definition in a regular object
785 followed by a non-weak definition in a shared object. In this
786 case, we prefer the definition in the shared object. */
787 if (olddef
788 && h->root.type == bfd_link_hash_defweak
789 && newdef
790 && newdyn
791 && bind != STB_WEAK)
792 {
793 /* To make this work we have to frob the flags so that the rest
794 of the code does not think we are using the regular
795 definition. */
796 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
797 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
798 else if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
799 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
800 h->elf_link_hash_flags &= ~ (ELF_LINK_HASH_DEF_REGULAR
801 | ELF_LINK_HASH_DEF_DYNAMIC);
802
803 /* If H is the target of an indirection, we want the caller to
804 use H rather than the indirect symbol. Otherwise if we are
805 defining a new indirect symbol we will wind up attaching it
806 to the entry we are overriding. */
807 *sym_hash = h;
808 }
809
810 /* Handle the special case of a non-weak definition in a shared
811 object followed by a weak definition in a regular object. In
812 this case we prefer to definition in the shared object. To make
813 this work we have to tell the caller to not treat the new symbol
814 as a definition. */
815 if (olddef
816 && olddyn
817 && h->root.type != bfd_link_hash_defweak
818 && newdef
819 && ! newdyn
820 && bind == STB_WEAK)
821 *override = true;
822
823 return true;
824 }
825
826 /* Add symbols from an ELF object file to the linker hash table. */
827
828 static boolean
829 elf_link_add_object_symbols (abfd, info)
830 bfd *abfd;
831 struct bfd_link_info *info;
832 {
833 boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
834 const Elf_Internal_Sym *,
835 const char **, flagword *,
836 asection **, bfd_vma *));
837 boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
838 asection *, const Elf_Internal_Rela *));
839 boolean collect;
840 Elf_Internal_Shdr *hdr;
841 size_t symcount;
842 size_t extsymcount;
843 size_t extsymoff;
844 Elf_External_Sym *buf = NULL;
845 struct elf_link_hash_entry **sym_hash;
846 boolean dynamic;
847 bfd_byte *dynver = NULL;
848 Elf_External_Versym *extversym = NULL;
849 Elf_External_Versym *ever;
850 Elf_External_Dyn *dynbuf = NULL;
851 struct elf_link_hash_entry *weaks;
852 Elf_External_Sym *esym;
853 Elf_External_Sym *esymend;
854
855 add_symbol_hook = get_elf_backend_data (abfd)->elf_add_symbol_hook;
856 collect = get_elf_backend_data (abfd)->collect;
857
858 if ((abfd->flags & DYNAMIC) == 0)
859 dynamic = false;
860 else
861 {
862 dynamic = true;
863
864 /* You can't use -r against a dynamic object. Also, there's no
865 hope of using a dynamic object which does not exactly match
866 the format of the output file. */
867 if (info->relocateable || info->hash->creator != abfd->xvec)
868 {
869 bfd_set_error (bfd_error_invalid_operation);
870 goto error_return;
871 }
872 }
873
874 /* As a GNU extension, any input sections which are named
875 .gnu.warning.SYMBOL are treated as warning symbols for the given
876 symbol. This differs from .gnu.warning sections, which generate
877 warnings when they are included in an output file. */
878 if (! info->shared)
879 {
880 asection *s;
881
882 for (s = abfd->sections; s != NULL; s = s->next)
883 {
884 const char *name;
885
886 name = bfd_get_section_name (abfd, s);
887 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
888 {
889 char *msg;
890 bfd_size_type sz;
891
892 name += sizeof ".gnu.warning." - 1;
893
894 /* If this is a shared object, then look up the symbol
895 in the hash table. If it is there, and it is already
896 been defined, then we will not be using the entry
897 from this shared object, so we don't need to warn.
898 FIXME: If we see the definition in a regular object
899 later on, we will warn, but we shouldn't. The only
900 fix is to keep track of what warnings we are supposed
901 to emit, and then handle them all at the end of the
902 link. */
903 if (dynamic && abfd->xvec == info->hash->creator)
904 {
905 struct elf_link_hash_entry *h;
906
907 h = elf_link_hash_lookup (elf_hash_table (info), name,
908 false, false, true);
909
910 /* FIXME: What about bfd_link_hash_common? */
911 if (h != NULL
912 && (h->root.type == bfd_link_hash_defined
913 || h->root.type == bfd_link_hash_defweak))
914 {
915 /* We don't want to issue this warning. Clobber
916 the section size so that the warning does not
917 get copied into the output file. */
918 s->_raw_size = 0;
919 continue;
920 }
921 }
922
923 sz = bfd_section_size (abfd, s);
924 msg = (char *) bfd_alloc (abfd, sz + 1);
925 if (msg == NULL)
926 goto error_return;
927
928 if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
929 goto error_return;
930
931 msg[sz] = '\0';
932
933 if (! (_bfd_generic_link_add_one_symbol
934 (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg,
935 false, collect, (struct bfd_link_hash_entry **) NULL)))
936 goto error_return;
937
938 if (! info->relocateable)
939 {
940 /* Clobber the section size so that the warning does
941 not get copied into the output file. */
942 s->_raw_size = 0;
943 }
944 }
945 }
946 }
947
948 /* If this is a dynamic object, we always link against the .dynsym
949 symbol table, not the .symtab symbol table. The dynamic linker
950 will only see the .dynsym symbol table, so there is no reason to
951 look at .symtab for a dynamic object. */
952
953 if (! dynamic || elf_dynsymtab (abfd) == 0)
954 hdr = &elf_tdata (abfd)->symtab_hdr;
955 else
956 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
957
958 if (dynamic)
959 {
960 /* Read in any version definitions. */
961
962 if (! _bfd_elf_slurp_version_tables (abfd))
963 goto error_return;
964
965 /* Read in the symbol versions, but don't bother to convert them
966 to internal format. */
967 if (elf_dynversym (abfd) != 0)
968 {
969 Elf_Internal_Shdr *versymhdr;
970
971 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
972 extversym = (Elf_External_Versym *) bfd_malloc (hdr->sh_size);
973 if (extversym == NULL)
974 goto error_return;
975 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
976 || (bfd_read ((PTR) extversym, 1, versymhdr->sh_size, abfd)
977 != versymhdr->sh_size))
978 goto error_return;
979 }
980 }
981
982 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
983
984 /* The sh_info field of the symtab header tells us where the
985 external symbols start. We don't care about the local symbols at
986 this point. */
987 if (elf_bad_symtab (abfd))
988 {
989 extsymcount = symcount;
990 extsymoff = 0;
991 }
992 else
993 {
994 extsymcount = symcount - hdr->sh_info;
995 extsymoff = hdr->sh_info;
996 }
997
998 buf = ((Elf_External_Sym *)
999 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
1000 if (buf == NULL && extsymcount != 0)
1001 goto error_return;
1002
1003 /* We store a pointer to the hash table entry for each external
1004 symbol. */
1005 sym_hash = ((struct elf_link_hash_entry **)
1006 bfd_alloc (abfd,
1007 extsymcount * sizeof (struct elf_link_hash_entry *)));
1008 if (sym_hash == NULL)
1009 goto error_return;
1010 elf_sym_hashes (abfd) = sym_hash;
1011
1012 if (! dynamic)
1013 {
1014 /* If we are creating a shared library, create all the dynamic
1015 sections immediately. We need to attach them to something,
1016 so we attach them to this BFD, provided it is the right
1017 format. FIXME: If there are no input BFD's of the same
1018 format as the output, we can't make a shared library. */
1019 if (info->shared
1020 && ! elf_hash_table (info)->dynamic_sections_created
1021 && abfd->xvec == info->hash->creator)
1022 {
1023 if (! elf_link_create_dynamic_sections (abfd, info))
1024 goto error_return;
1025 }
1026 }
1027 else
1028 {
1029 asection *s;
1030 boolean add_needed;
1031 const char *name;
1032 bfd_size_type oldsize;
1033 bfd_size_type strindex;
1034
1035 /* Find the name to use in a DT_NEEDED entry that refers to this
1036 object. If the object has a DT_SONAME entry, we use it.
1037 Otherwise, if the generic linker stuck something in
1038 elf_dt_name, we use that. Otherwise, we just use the file
1039 name. If the generic linker put a null string into
1040 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
1041 there is a DT_SONAME entry. */
1042 add_needed = true;
1043 name = bfd_get_filename (abfd);
1044 if (elf_dt_name (abfd) != NULL)
1045 {
1046 name = elf_dt_name (abfd);
1047 if (*name == '\0')
1048 add_needed = false;
1049 }
1050 s = bfd_get_section_by_name (abfd, ".dynamic");
1051 if (s != NULL)
1052 {
1053 Elf_External_Dyn *extdyn;
1054 Elf_External_Dyn *extdynend;
1055 int elfsec;
1056 unsigned long link;
1057
1058 dynbuf = (Elf_External_Dyn *) bfd_malloc ((size_t) s->_raw_size);
1059 if (dynbuf == NULL)
1060 goto error_return;
1061
1062 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
1063 (file_ptr) 0, s->_raw_size))
1064 goto error_return;
1065
1066 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1067 if (elfsec == -1)
1068 goto error_return;
1069 link = elf_elfsections (abfd)[elfsec]->sh_link;
1070
1071 {
1072 /* The shared libraries distributed with hpux11 have a bogus
1073 sh_link field for the ".dynamic" section. This code detects
1074 when LINK refers to a section that is not a string table and
1075 tries to find the string table for the ".dynsym" section
1076 instead. */
1077 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[link];
1078 if (hdr->sh_type != SHT_STRTAB)
1079 {
1080 asection *s = bfd_get_section_by_name (abfd, ".dynsym");
1081 int elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1082 if (elfsec == -1)
1083 goto error_return;
1084 link = elf_elfsections (abfd)[elfsec]->sh_link;
1085 }
1086 }
1087
1088 extdyn = dynbuf;
1089 extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
1090 for (; extdyn < extdynend; extdyn++)
1091 {
1092 Elf_Internal_Dyn dyn;
1093
1094 elf_swap_dyn_in (abfd, extdyn, &dyn);
1095 if (dyn.d_tag == DT_SONAME)
1096 {
1097 name = bfd_elf_string_from_elf_section (abfd, link,
1098 dyn.d_un.d_val);
1099 if (name == NULL)
1100 goto error_return;
1101 }
1102 if (dyn.d_tag == DT_NEEDED)
1103 {
1104 struct bfd_link_needed_list *n, **pn;
1105 char *fnm, *anm;
1106
1107 n = ((struct bfd_link_needed_list *)
1108 bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
1109 fnm = bfd_elf_string_from_elf_section (abfd, link,
1110 dyn.d_un.d_val);
1111 if (n == NULL || fnm == NULL)
1112 goto error_return;
1113 anm = bfd_alloc (abfd, strlen (fnm) + 1);
1114 if (anm == NULL)
1115 goto error_return;
1116 strcpy (anm, fnm);
1117 n->name = anm;
1118 n->by = abfd;
1119 n->next = NULL;
1120 for (pn = &elf_hash_table (info)->needed;
1121 *pn != NULL;
1122 pn = &(*pn)->next)
1123 ;
1124 *pn = n;
1125 }
1126 }
1127
1128 free (dynbuf);
1129 dynbuf = NULL;
1130 }
1131
1132 /* We do not want to include any of the sections in a dynamic
1133 object in the output file. We hack by simply clobbering the
1134 list of sections in the BFD. This could be handled more
1135 cleanly by, say, a new section flag; the existing
1136 SEC_NEVER_LOAD flag is not the one we want, because that one
1137 still implies that the section takes up space in the output
1138 file. */
1139 abfd->sections = NULL;
1140 abfd->section_count = 0;
1141
1142 /* If this is the first dynamic object found in the link, create
1143 the special sections required for dynamic linking. */
1144 if (! elf_hash_table (info)->dynamic_sections_created)
1145 {
1146 if (! elf_link_create_dynamic_sections (abfd, info))
1147 goto error_return;
1148 }
1149
1150 if (add_needed)
1151 {
1152 /* Add a DT_NEEDED entry for this dynamic object. */
1153 oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
1154 strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name,
1155 true, false);
1156 if (strindex == (bfd_size_type) -1)
1157 goto error_return;
1158
1159 if (oldsize == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
1160 {
1161 asection *sdyn;
1162 Elf_External_Dyn *dyncon, *dynconend;
1163
1164 /* The hash table size did not change, which means that
1165 the dynamic object name was already entered. If we
1166 have already included this dynamic object in the
1167 link, just ignore it. There is no reason to include
1168 a particular dynamic object more than once. */
1169 sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
1170 ".dynamic");
1171 BFD_ASSERT (sdyn != NULL);
1172
1173 dyncon = (Elf_External_Dyn *) sdyn->contents;
1174 dynconend = (Elf_External_Dyn *) (sdyn->contents +
1175 sdyn->_raw_size);
1176 for (; dyncon < dynconend; dyncon++)
1177 {
1178 Elf_Internal_Dyn dyn;
1179
1180 elf_swap_dyn_in (elf_hash_table (info)->dynobj, dyncon,
1181 &dyn);
1182 if (dyn.d_tag == DT_NEEDED
1183 && dyn.d_un.d_val == strindex)
1184 {
1185 if (buf != NULL)
1186 free (buf);
1187 if (extversym != NULL)
1188 free (extversym);
1189 return true;
1190 }
1191 }
1192 }
1193
1194 if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
1195 goto error_return;
1196 }
1197
1198 /* Save the SONAME, if there is one, because sometimes the
1199 linker emulation code will need to know it. */
1200 if (*name == '\0')
1201 name = bfd_get_filename (abfd);
1202 elf_dt_name (abfd) = name;
1203 }
1204
1205 if (bfd_seek (abfd,
1206 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
1207 SEEK_SET) != 0
1208 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
1209 != extsymcount * sizeof (Elf_External_Sym)))
1210 goto error_return;
1211
1212 weaks = NULL;
1213
1214 ever = extversym != NULL ? extversym + extsymoff : NULL;
1215 esymend = buf + extsymcount;
1216 for (esym = buf;
1217 esym < esymend;
1218 esym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
1219 {
1220 Elf_Internal_Sym sym;
1221 int bind;
1222 bfd_vma value;
1223 asection *sec;
1224 flagword flags;
1225 const char *name;
1226 struct elf_link_hash_entry *h;
1227 boolean definition;
1228 boolean size_change_ok, type_change_ok;
1229 boolean new_weakdef;
1230 unsigned int old_alignment;
1231
1232 elf_swap_symbol_in (abfd, esym, &sym);
1233
1234 flags = BSF_NO_FLAGS;
1235 sec = NULL;
1236 value = sym.st_value;
1237 *sym_hash = NULL;
1238
1239 bind = ELF_ST_BIND (sym.st_info);
1240 if (bind == STB_LOCAL)
1241 {
1242 /* This should be impossible, since ELF requires that all
1243 global symbols follow all local symbols, and that sh_info
1244 point to the first global symbol. Unfortunatealy, Irix 5
1245 screws this up. */
1246 continue;
1247 }
1248 else if (bind == STB_GLOBAL)
1249 {
1250 if (sym.st_shndx != SHN_UNDEF
1251 && sym.st_shndx != SHN_COMMON)
1252 flags = BSF_GLOBAL;
1253 else
1254 flags = 0;
1255 }
1256 else if (bind == STB_WEAK)
1257 flags = BSF_WEAK;
1258 else
1259 {
1260 /* Leave it up to the processor backend. */
1261 }
1262
1263 if (sym.st_shndx == SHN_UNDEF)
1264 sec = bfd_und_section_ptr;
1265 else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE)
1266 {
1267 sec = section_from_elf_index (abfd, sym.st_shndx);
1268 if (sec == NULL)
1269 sec = bfd_abs_section_ptr;
1270 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
1271 value -= sec->vma;
1272 }
1273 else if (sym.st_shndx == SHN_ABS)
1274 sec = bfd_abs_section_ptr;
1275 else if (sym.st_shndx == SHN_COMMON)
1276 {
1277 sec = bfd_com_section_ptr;
1278 /* What ELF calls the size we call the value. What ELF
1279 calls the value we call the alignment. */
1280 value = sym.st_size;
1281 }
1282 else
1283 {
1284 /* Leave it up to the processor backend. */
1285 }
1286
1287 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
1288 if (name == (const char *) NULL)
1289 goto error_return;
1290
1291 if (add_symbol_hook)
1292 {
1293 if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec,
1294 &value))
1295 goto error_return;
1296
1297 /* The hook function sets the name to NULL if this symbol
1298 should be skipped for some reason. */
1299 if (name == (const char *) NULL)
1300 continue;
1301 }
1302
1303 /* Sanity check that all possibilities were handled. */
1304 if (sec == (asection *) NULL)
1305 {
1306 bfd_set_error (bfd_error_bad_value);
1307 goto error_return;
1308 }
1309
1310 if (bfd_is_und_section (sec)
1311 || bfd_is_com_section (sec))
1312 definition = false;
1313 else
1314 definition = true;
1315
1316 size_change_ok = false;
1317 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
1318 old_alignment = 0;
1319 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1320 {
1321 Elf_Internal_Versym iver;
1322 unsigned int vernum = 0;
1323 boolean override;
1324
1325 if (ever != NULL)
1326 {
1327 _bfd_elf_swap_versym_in (abfd, ever, &iver);
1328 vernum = iver.vs_vers & VERSYM_VERSION;
1329
1330 /* If this is a hidden symbol, or if it is not version
1331 1, we append the version name to the symbol name.
1332 However, we do not modify a non-hidden absolute
1333 symbol, because it might be the version symbol
1334 itself. FIXME: What if it isn't? */
1335 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
1336 || (vernum > 1 && ! bfd_is_abs_section (sec)))
1337 {
1338 const char *verstr;
1339 int namelen, newlen;
1340 char *newname, *p;
1341
1342 if (sym.st_shndx != SHN_UNDEF)
1343 {
1344 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
1345 {
1346 (*_bfd_error_handler)
1347 (_("%s: %s: invalid version %u (max %d)"),
1348 bfd_get_filename (abfd), name, vernum,
1349 elf_tdata (abfd)->dynverdef_hdr.sh_info);
1350 bfd_set_error (bfd_error_bad_value);
1351 goto error_return;
1352 }
1353 else if (vernum > 1)
1354 verstr =
1355 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1356 else
1357 verstr = "";
1358 }
1359 else
1360 {
1361 /* We cannot simply test for the number of
1362 entries in the VERNEED section since the
1363 numbers for the needed versions do not start
1364 at 0. */
1365 Elf_Internal_Verneed *t;
1366
1367 verstr = NULL;
1368 for (t = elf_tdata (abfd)->verref;
1369 t != NULL;
1370 t = t->vn_nextref)
1371 {
1372 Elf_Internal_Vernaux *a;
1373
1374 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1375 {
1376 if (a->vna_other == vernum)
1377 {
1378 verstr = a->vna_nodename;
1379 break;
1380 }
1381 }
1382 if (a != NULL)
1383 break;
1384 }
1385 if (verstr == NULL)
1386 {
1387 (*_bfd_error_handler)
1388 (_("%s: %s: invalid needed version %d"),
1389 bfd_get_filename (abfd), name, vernum);
1390 bfd_set_error (bfd_error_bad_value);
1391 goto error_return;
1392 }
1393 }
1394
1395 namelen = strlen (name);
1396 newlen = namelen + strlen (verstr) + 2;
1397 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1398 ++newlen;
1399
1400 newname = (char *) bfd_alloc (abfd, newlen);
1401 if (newname == NULL)
1402 goto error_return;
1403 strcpy (newname, name);
1404 p = newname + namelen;
1405 *p++ = ELF_VER_CHR;
1406 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1407 *p++ = ELF_VER_CHR;
1408 strcpy (p, verstr);
1409
1410 name = newname;
1411 }
1412 }
1413
1414 if (! elf_merge_symbol (abfd, info, name, &sym, &sec, &value,
1415 sym_hash, &override, &type_change_ok,
1416 &size_change_ok))
1417 goto error_return;
1418
1419 if (override)
1420 definition = false;
1421
1422 h = *sym_hash;
1423 while (h->root.type == bfd_link_hash_indirect
1424 || h->root.type == bfd_link_hash_warning)
1425 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1426
1427 /* Remember the old alignment if this is a common symbol, so
1428 that we don't reduce the alignment later on. We can't
1429 check later, because _bfd_generic_link_add_one_symbol
1430 will set a default for the alignment which we want to
1431 override. */
1432 if (h->root.type == bfd_link_hash_common)
1433 old_alignment = h->root.u.c.p->alignment_power;
1434
1435 if (elf_tdata (abfd)->verdef != NULL
1436 && ! override
1437 && vernum > 1
1438 && definition)
1439 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
1440 }
1441
1442 if (! (_bfd_generic_link_add_one_symbol
1443 (info, abfd, name, flags, sec, value, (const char *) NULL,
1444 false, collect, (struct bfd_link_hash_entry **) sym_hash)))
1445 goto error_return;
1446
1447 h = *sym_hash;
1448 while (h->root.type == bfd_link_hash_indirect
1449 || h->root.type == bfd_link_hash_warning)
1450 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1451 *sym_hash = h;
1452
1453 new_weakdef = false;
1454 if (dynamic
1455 && definition
1456 && (flags & BSF_WEAK) != 0
1457 && ELF_ST_TYPE (sym.st_info) != STT_FUNC
1458 && info->hash->creator->flavour == bfd_target_elf_flavour
1459 && h->weakdef == NULL)
1460 {
1461 /* Keep a list of all weak defined non function symbols from
1462 a dynamic object, using the weakdef field. Later in this
1463 function we will set the weakdef field to the correct
1464 value. We only put non-function symbols from dynamic
1465 objects on this list, because that happens to be the only
1466 time we need to know the normal symbol corresponding to a
1467 weak symbol, and the information is time consuming to
1468 figure out. If the weakdef field is not already NULL,
1469 then this symbol was already defined by some previous
1470 dynamic object, and we will be using that previous
1471 definition anyhow. */
1472
1473 h->weakdef = weaks;
1474 weaks = h;
1475 new_weakdef = true;
1476 }
1477
1478 /* Set the alignment of a common symbol. */
1479 if (sym.st_shndx == SHN_COMMON
1480 && h->root.type == bfd_link_hash_common)
1481 {
1482 unsigned int align;
1483
1484 align = bfd_log2 (sym.st_value);
1485 if (align > old_alignment)
1486 h->root.u.c.p->alignment_power = align;
1487 }
1488
1489 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1490 {
1491 int old_flags;
1492 boolean dynsym;
1493 int new_flag;
1494
1495 /* Remember the symbol size and type. */
1496 if (sym.st_size != 0
1497 && (definition || h->size == 0))
1498 {
1499 if (h->size != 0 && h->size != sym.st_size && ! size_change_ok)
1500 (*_bfd_error_handler)
1501 (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
1502 name, (unsigned long) h->size, (unsigned long) sym.st_size,
1503 bfd_get_filename (abfd));
1504
1505 h->size = sym.st_size;
1506 }
1507
1508 /* If this is a common symbol, then we always want H->SIZE
1509 to be the size of the common symbol. The code just above
1510 won't fix the size if a common symbol becomes larger. We
1511 don't warn about a size change here, because that is
1512 covered by --warn-common. */
1513 if (h->root.type == bfd_link_hash_common)
1514 h->size = h->root.u.c.size;
1515
1516 if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE
1517 && (definition || h->type == STT_NOTYPE))
1518 {
1519 if (h->type != STT_NOTYPE
1520 && h->type != ELF_ST_TYPE (sym.st_info)
1521 && ! type_change_ok)
1522 (*_bfd_error_handler)
1523 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
1524 name, h->type, ELF_ST_TYPE (sym.st_info),
1525 bfd_get_filename (abfd));
1526
1527 h->type = ELF_ST_TYPE (sym.st_info);
1528 }
1529
1530 if (sym.st_other != 0
1531 && (definition || h->other == 0))
1532 h->other = sym.st_other;
1533
1534 /* Set a flag in the hash table entry indicating the type of
1535 reference or definition we just found. Keep a count of
1536 the number of dynamic symbols we find. A dynamic symbol
1537 is one which is referenced or defined by both a regular
1538 object and a shared object. */
1539 old_flags = h->elf_link_hash_flags;
1540 dynsym = false;
1541 if (! dynamic)
1542 {
1543 if (! definition)
1544 {
1545 new_flag = ELF_LINK_HASH_REF_REGULAR;
1546 if (bind != STB_WEAK)
1547 new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
1548 }
1549 else
1550 new_flag = ELF_LINK_HASH_DEF_REGULAR;
1551 if (info->shared
1552 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
1553 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
1554 dynsym = true;
1555 }
1556 else
1557 {
1558 if (! definition)
1559 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
1560 else
1561 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
1562 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
1563 | ELF_LINK_HASH_REF_REGULAR)) != 0
1564 || (h->weakdef != NULL
1565 && ! new_weakdef
1566 && h->weakdef->dynindx != -1))
1567 dynsym = true;
1568 }
1569
1570 h->elf_link_hash_flags |= new_flag;
1571
1572 /* If this symbol has a version, and it is the default
1573 version, we create an indirect symbol from the default
1574 name to the fully decorated name. This will cause
1575 external references which do not specify a version to be
1576 bound to this version of the symbol. */
1577 if (definition)
1578 {
1579 char *p;
1580
1581 p = strchr (name, ELF_VER_CHR);
1582 if (p != NULL && p[1] == ELF_VER_CHR)
1583 {
1584 char *shortname;
1585 struct elf_link_hash_entry *hi;
1586 boolean override;
1587
1588 shortname = bfd_hash_allocate (&info->hash->table,
1589 p - name + 1);
1590 if (shortname == NULL)
1591 goto error_return;
1592 strncpy (shortname, name, p - name);
1593 shortname[p - name] = '\0';
1594
1595 /* We are going to create a new symbol. Merge it
1596 with any existing symbol with this name. For the
1597 purposes of the merge, act as though we were
1598 defining the symbol we just defined, although we
1599 actually going to define an indirect symbol. */
1600 type_change_ok = false;
1601 size_change_ok = false;
1602 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1603 &value, &hi, &override,
1604 &type_change_ok, &size_change_ok))
1605 goto error_return;
1606
1607 if (! override)
1608 {
1609 if (! (_bfd_generic_link_add_one_symbol
1610 (info, abfd, shortname, BSF_INDIRECT,
1611 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1612 collect, (struct bfd_link_hash_entry **) &hi)))
1613 goto error_return;
1614 }
1615 else
1616 {
1617 /* In this case the symbol named SHORTNAME is
1618 overriding the indirect symbol we want to
1619 add. We were planning on making SHORTNAME an
1620 indirect symbol referring to NAME. SHORTNAME
1621 is the name without a version. NAME is the
1622 fully versioned name, and it is the default
1623 version.
1624
1625 Overriding means that we already saw a
1626 definition for the symbol SHORTNAME in a
1627 regular object, and it is overriding the
1628 symbol defined in the dynamic object.
1629
1630 When this happens, we actually want to change
1631 NAME, the symbol we just added, to refer to
1632 SHORTNAME. This will cause references to
1633 NAME in the shared object to become
1634 references to SHORTNAME in the regular
1635 object. This is what we expect when we
1636 override a function in a shared object: that
1637 the references in the shared object will be
1638 mapped to the definition in the regular
1639 object. */
1640
1641 while (hi->root.type == bfd_link_hash_indirect
1642 || hi->root.type == bfd_link_hash_warning)
1643 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1644
1645 h->root.type = bfd_link_hash_indirect;
1646 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1647 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1648 {
1649 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1650 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1651 if (hi->elf_link_hash_flags
1652 & (ELF_LINK_HASH_REF_REGULAR
1653 | ELF_LINK_HASH_DEF_REGULAR))
1654 {
1655 if (! _bfd_elf_link_record_dynamic_symbol (info,
1656 hi))
1657 goto error_return;
1658 }
1659 }
1660
1661 /* Now set HI to H, so that the following code
1662 will set the other fields correctly. */
1663 hi = h;
1664 }
1665
1666 /* If there is a duplicate definition somewhere,
1667 then HI may not point to an indirect symbol. We
1668 will have reported an error to the user in that
1669 case. */
1670
1671 if (hi->root.type == bfd_link_hash_indirect)
1672 {
1673 struct elf_link_hash_entry *ht;
1674
1675 /* If the symbol became indirect, then we assume
1676 that we have not seen a definition before. */
1677 BFD_ASSERT ((hi->elf_link_hash_flags
1678 & (ELF_LINK_HASH_DEF_DYNAMIC
1679 | ELF_LINK_HASH_DEF_REGULAR))
1680 == 0);
1681
1682 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1683
1684 /* Copy down any references that we may have
1685 already seen to the symbol which just became
1686 indirect. */
1687 ht->elf_link_hash_flags |=
1688 (hi->elf_link_hash_flags
1689 & (ELF_LINK_HASH_REF_DYNAMIC
1690 | ELF_LINK_HASH_REF_REGULAR
1691 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
1692 | ELF_LINK_NON_GOT_REF));
1693
1694 /* Copy over the global and procedure linkage table
1695 offset entries. These may have been already set
1696 up by a check_relocs routine. */
1697 if (ht->got.offset == (bfd_vma) -1)
1698 {
1699 ht->got.offset = hi->got.offset;
1700 hi->got.offset = (bfd_vma) -1;
1701 }
1702 BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
1703
1704 if (ht->plt.offset == (bfd_vma) -1)
1705 {
1706 ht->plt.offset = hi->plt.offset;
1707 hi->plt.offset = (bfd_vma) -1;
1708 }
1709 BFD_ASSERT (hi->plt.offset == (bfd_vma) -1);
1710
1711 if (ht->dynindx == -1)
1712 {
1713 ht->dynindx = hi->dynindx;
1714 ht->dynstr_index = hi->dynstr_index;
1715 hi->dynindx = -1;
1716 hi->dynstr_index = 0;
1717 }
1718 BFD_ASSERT (hi->dynindx == -1);
1719
1720 /* FIXME: There may be other information to copy
1721 over for particular targets. */
1722
1723 /* See if the new flags lead us to realize that
1724 the symbol must be dynamic. */
1725 if (! dynsym)
1726 {
1727 if (! dynamic)
1728 {
1729 if (info->shared
1730 || ((hi->elf_link_hash_flags
1731 & ELF_LINK_HASH_REF_DYNAMIC)
1732 != 0))
1733 dynsym = true;
1734 }
1735 else
1736 {
1737 if ((hi->elf_link_hash_flags
1738 & ELF_LINK_HASH_REF_REGULAR) != 0)
1739 dynsym = true;
1740 }
1741 }
1742 }
1743
1744 /* We also need to define an indirection from the
1745 nondefault version of the symbol. */
1746
1747 shortname = bfd_hash_allocate (&info->hash->table,
1748 strlen (name));
1749 if (shortname == NULL)
1750 goto error_return;
1751 strncpy (shortname, name, p - name);
1752 strcpy (shortname + (p - name), p + 1);
1753
1754 /* Once again, merge with any existing symbol. */
1755 type_change_ok = false;
1756 size_change_ok = false;
1757 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1758 &value, &hi, &override,
1759 &type_change_ok, &size_change_ok))
1760 goto error_return;
1761
1762 if (override)
1763 {
1764 /* Here SHORTNAME is a versioned name, so we
1765 don't expect to see the type of override we
1766 do in the case above. */
1767 (*_bfd_error_handler)
1768 (_("%s: warning: unexpected redefinition of `%s'"),
1769 bfd_get_filename (abfd), shortname);
1770 }
1771 else
1772 {
1773 if (! (_bfd_generic_link_add_one_symbol
1774 (info, abfd, shortname, BSF_INDIRECT,
1775 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1776 collect, (struct bfd_link_hash_entry **) &hi)))
1777 goto error_return;
1778
1779 /* If there is a duplicate definition somewhere,
1780 then HI may not point to an indirect symbol.
1781 We will have reported an error to the user in
1782 that case. */
1783
1784 if (hi->root.type == bfd_link_hash_indirect)
1785 {
1786 /* If the symbol became indirect, then we
1787 assume that we have not seen a definition
1788 before. */
1789 BFD_ASSERT ((hi->elf_link_hash_flags
1790 & (ELF_LINK_HASH_DEF_DYNAMIC
1791 | ELF_LINK_HASH_DEF_REGULAR))
1792 == 0);
1793
1794 /* Copy down any references that we may have
1795 already seen to the symbol which just
1796 became indirect. */
1797 h->elf_link_hash_flags |=
1798 (hi->elf_link_hash_flags
1799 & (ELF_LINK_HASH_REF_DYNAMIC
1800 | ELF_LINK_HASH_REF_REGULAR
1801 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
1802 | ELF_LINK_NON_GOT_REF));
1803
1804 /* Copy over the global and procedure linkage
1805 table offset entries. These may have been
1806 already set up by a check_relocs routine. */
1807 if (h->got.offset == (bfd_vma) -1)
1808 {
1809 h->got.offset = hi->got.offset;
1810 hi->got.offset = (bfd_vma) -1;
1811 }
1812 BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
1813
1814 if (h->plt.offset == (bfd_vma) -1)
1815 {
1816 h->plt.offset = hi->plt.offset;
1817 hi->plt.offset = (bfd_vma) -1;
1818 }
1819 BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
1820
1821 if (h->dynindx == -1)
1822 {
1823 h->dynindx = hi->dynindx;
1824 h->dynstr_index = hi->dynstr_index;
1825 hi->dynindx = -1;
1826 hi->dynstr_index = 0;
1827 }
1828 BFD_ASSERT (hi->dynindx == -1);
1829
1830 /* FIXME: There may be other information to
1831 copy over for particular targets. */
1832
1833 /* See if the new flags lead us to realize
1834 that the symbol must be dynamic. */
1835 if (! dynsym)
1836 {
1837 if (! dynamic)
1838 {
1839 if (info->shared
1840 || ((hi->elf_link_hash_flags
1841 & ELF_LINK_HASH_REF_DYNAMIC)
1842 != 0))
1843 dynsym = true;
1844 }
1845 else
1846 {
1847 if ((hi->elf_link_hash_flags
1848 & ELF_LINK_HASH_REF_REGULAR) != 0)
1849 dynsym = true;
1850 }
1851 }
1852 }
1853 }
1854 }
1855 }
1856
1857 if (dynsym && h->dynindx == -1)
1858 {
1859 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1860 goto error_return;
1861 if (h->weakdef != NULL
1862 && ! new_weakdef
1863 && h->weakdef->dynindx == -1)
1864 {
1865 if (! _bfd_elf_link_record_dynamic_symbol (info,
1866 h->weakdef))
1867 goto error_return;
1868 }
1869 }
1870 }
1871 }
1872
1873 /* Now set the weakdefs field correctly for all the weak defined
1874 symbols we found. The only way to do this is to search all the
1875 symbols. Since we only need the information for non functions in
1876 dynamic objects, that's the only time we actually put anything on
1877 the list WEAKS. We need this information so that if a regular
1878 object refers to a symbol defined weakly in a dynamic object, the
1879 real symbol in the dynamic object is also put in the dynamic
1880 symbols; we also must arrange for both symbols to point to the
1881 same memory location. We could handle the general case of symbol
1882 aliasing, but a general symbol alias can only be generated in
1883 assembler code, handling it correctly would be very time
1884 consuming, and other ELF linkers don't handle general aliasing
1885 either. */
1886 while (weaks != NULL)
1887 {
1888 struct elf_link_hash_entry *hlook;
1889 asection *slook;
1890 bfd_vma vlook;
1891 struct elf_link_hash_entry **hpp;
1892 struct elf_link_hash_entry **hppend;
1893
1894 hlook = weaks;
1895 weaks = hlook->weakdef;
1896 hlook->weakdef = NULL;
1897
1898 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
1899 || hlook->root.type == bfd_link_hash_defweak
1900 || hlook->root.type == bfd_link_hash_common
1901 || hlook->root.type == bfd_link_hash_indirect);
1902 slook = hlook->root.u.def.section;
1903 vlook = hlook->root.u.def.value;
1904
1905 hpp = elf_sym_hashes (abfd);
1906 hppend = hpp + extsymcount;
1907 for (; hpp < hppend; hpp++)
1908 {
1909 struct elf_link_hash_entry *h;
1910
1911 h = *hpp;
1912 if (h != NULL && h != hlook
1913 && h->root.type == bfd_link_hash_defined
1914 && h->root.u.def.section == slook
1915 && h->root.u.def.value == vlook)
1916 {
1917 hlook->weakdef = h;
1918
1919 /* If the weak definition is in the list of dynamic
1920 symbols, make sure the real definition is put there
1921 as well. */
1922 if (hlook->dynindx != -1
1923 && h->dynindx == -1)
1924 {
1925 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1926 goto error_return;
1927 }
1928
1929 /* If the real definition is in the list of dynamic
1930 symbols, make sure the weak definition is put there
1931 as well. If we don't do this, then the dynamic
1932 loader might not merge the entries for the real
1933 definition and the weak definition. */
1934 if (h->dynindx != -1
1935 && hlook->dynindx == -1)
1936 {
1937 if (! _bfd_elf_link_record_dynamic_symbol (info, hlook))
1938 goto error_return;
1939 }
1940
1941 break;
1942 }
1943 }
1944 }
1945
1946 if (buf != NULL)
1947 {
1948 free (buf);
1949 buf = NULL;
1950 }
1951
1952 if (extversym != NULL)
1953 {
1954 free (extversym);
1955 extversym = NULL;
1956 }
1957
1958 /* If this object is the same format as the output object, and it is
1959 not a shared library, then let the backend look through the
1960 relocs.
1961
1962 This is required to build global offset table entries and to
1963 arrange for dynamic relocs. It is not required for the
1964 particular common case of linking non PIC code, even when linking
1965 against shared libraries, but unfortunately there is no way of
1966 knowing whether an object file has been compiled PIC or not.
1967 Looking through the relocs is not particularly time consuming.
1968 The problem is that we must either (1) keep the relocs in memory,
1969 which causes the linker to require additional runtime memory or
1970 (2) read the relocs twice from the input file, which wastes time.
1971 This would be a good case for using mmap.
1972
1973 I have no idea how to handle linking PIC code into a file of a
1974 different format. It probably can't be done. */
1975 check_relocs = get_elf_backend_data (abfd)->check_relocs;
1976 if (! dynamic
1977 && abfd->xvec == info->hash->creator
1978 && check_relocs != NULL)
1979 {
1980 asection *o;
1981
1982 for (o = abfd->sections; o != NULL; o = o->next)
1983 {
1984 Elf_Internal_Rela *internal_relocs;
1985 boolean ok;
1986
1987 if ((o->flags & SEC_RELOC) == 0
1988 || o->reloc_count == 0
1989 || ((info->strip == strip_all || info->strip == strip_debugger)
1990 && (o->flags & SEC_DEBUGGING) != 0)
1991 || bfd_is_abs_section (o->output_section))
1992 continue;
1993
1994 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
1995 (abfd, o, (PTR) NULL,
1996 (Elf_Internal_Rela *) NULL,
1997 info->keep_memory));
1998 if (internal_relocs == NULL)
1999 goto error_return;
2000
2001 ok = (*check_relocs) (abfd, info, o, internal_relocs);
2002
2003 if (! info->keep_memory)
2004 free (internal_relocs);
2005
2006 if (! ok)
2007 goto error_return;
2008 }
2009 }
2010
2011 /* If this is a non-traditional, non-relocateable link, try to
2012 optimize the handling of the .stab/.stabstr sections. */
2013 if (! dynamic
2014 && ! info->relocateable
2015 && ! info->traditional_format
2016 && info->hash->creator->flavour == bfd_target_elf_flavour
2017 && (info->strip != strip_all && info->strip != strip_debugger))
2018 {
2019 asection *stab, *stabstr;
2020
2021 stab = bfd_get_section_by_name (abfd, ".stab");
2022 if (stab != NULL)
2023 {
2024 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
2025
2026 if (stabstr != NULL)
2027 {
2028 struct bfd_elf_section_data *secdata;
2029
2030 secdata = elf_section_data (stab);
2031 if (! _bfd_link_section_stabs (abfd,
2032 &elf_hash_table (info)->stab_info,
2033 stab, stabstr,
2034 &secdata->stab_info))
2035 goto error_return;
2036 }
2037 }
2038 }
2039
2040 return true;
2041
2042 error_return:
2043 if (buf != NULL)
2044 free (buf);
2045 if (dynbuf != NULL)
2046 free (dynbuf);
2047 if (dynver != NULL)
2048 free (dynver);
2049 if (extversym != NULL)
2050 free (extversym);
2051 return false;
2052 }
2053
2054 /* Create some sections which will be filled in with dynamic linking
2055 information. ABFD is an input file which requires dynamic sections
2056 to be created. The dynamic sections take up virtual memory space
2057 when the final executable is run, so we need to create them before
2058 addresses are assigned to the output sections. We work out the
2059 actual contents and size of these sections later. */
2060
2061 boolean
2062 elf_link_create_dynamic_sections (abfd, info)
2063 bfd *abfd;
2064 struct bfd_link_info *info;
2065 {
2066 flagword flags;
2067 register asection *s;
2068 struct elf_link_hash_entry *h;
2069 struct elf_backend_data *bed;
2070
2071 if (elf_hash_table (info)->dynamic_sections_created)
2072 return true;
2073
2074 /* Make sure that all dynamic sections use the same input BFD. */
2075 if (elf_hash_table (info)->dynobj == NULL)
2076 elf_hash_table (info)->dynobj = abfd;
2077 else
2078 abfd = elf_hash_table (info)->dynobj;
2079
2080 /* Note that we set the SEC_IN_MEMORY flag for all of these
2081 sections. */
2082 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
2083 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2084
2085 /* A dynamically linked executable has a .interp section, but a
2086 shared library does not. */
2087 if (! info->shared)
2088 {
2089 s = bfd_make_section (abfd, ".interp");
2090 if (s == NULL
2091 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2092 return false;
2093 }
2094
2095 /* Create sections to hold version informations. These are removed
2096 if they are not needed. */
2097 s = bfd_make_section (abfd, ".gnu.version_d");
2098 if (s == NULL
2099 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2100 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2101 return false;
2102
2103 s = bfd_make_section (abfd, ".gnu.version");
2104 if (s == NULL
2105 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2106 || ! bfd_set_section_alignment (abfd, s, 1))
2107 return false;
2108
2109 s = bfd_make_section (abfd, ".gnu.version_r");
2110 if (s == NULL
2111 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2112 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2113 return false;
2114
2115 s = bfd_make_section (abfd, ".dynsym");
2116 if (s == NULL
2117 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2118 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2119 return false;
2120
2121 s = bfd_make_section (abfd, ".dynstr");
2122 if (s == NULL
2123 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2124 return false;
2125
2126 /* Create a strtab to hold the dynamic symbol names. */
2127 if (elf_hash_table (info)->dynstr == NULL)
2128 {
2129 elf_hash_table (info)->dynstr = elf_stringtab_init ();
2130 if (elf_hash_table (info)->dynstr == NULL)
2131 return false;
2132 }
2133
2134 s = bfd_make_section (abfd, ".dynamic");
2135 if (s == NULL
2136 || ! bfd_set_section_flags (abfd, s, flags)
2137 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2138 return false;
2139
2140 /* The special symbol _DYNAMIC is always set to the start of the
2141 .dynamic section. This call occurs before we have processed the
2142 symbols for any dynamic object, so we don't have to worry about
2143 overriding a dynamic definition. We could set _DYNAMIC in a
2144 linker script, but we only want to define it if we are, in fact,
2145 creating a .dynamic section. We don't want to define it if there
2146 is no .dynamic section, since on some ELF platforms the start up
2147 code examines it to decide how to initialize the process. */
2148 h = NULL;
2149 if (! (_bfd_generic_link_add_one_symbol
2150 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
2151 (const char *) NULL, false, get_elf_backend_data (abfd)->collect,
2152 (struct bfd_link_hash_entry **) &h)))
2153 return false;
2154 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2155 h->type = STT_OBJECT;
2156
2157 if (info->shared
2158 && ! _bfd_elf_link_record_dynamic_symbol (info, h))
2159 return false;
2160
2161 bed = get_elf_backend_data (abfd);
2162
2163 s = bfd_make_section (abfd, ".hash");
2164 if (s == NULL
2165 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2166 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2167 return false;
2168 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
2169
2170 /* Let the backend create the rest of the sections. This lets the
2171 backend set the right flags. The backend will normally create
2172 the .got and .plt sections. */
2173 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
2174 return false;
2175
2176 elf_hash_table (info)->dynamic_sections_created = true;
2177
2178 return true;
2179 }
2180
2181 /* Add an entry to the .dynamic table. */
2182
2183 boolean
2184 elf_add_dynamic_entry (info, tag, val)
2185 struct bfd_link_info *info;
2186 bfd_vma tag;
2187 bfd_vma val;
2188 {
2189 Elf_Internal_Dyn dyn;
2190 bfd *dynobj;
2191 asection *s;
2192 size_t newsize;
2193 bfd_byte *newcontents;
2194
2195 dynobj = elf_hash_table (info)->dynobj;
2196
2197 s = bfd_get_section_by_name (dynobj, ".dynamic");
2198 BFD_ASSERT (s != NULL);
2199
2200 newsize = s->_raw_size + sizeof (Elf_External_Dyn);
2201 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
2202 if (newcontents == NULL)
2203 return false;
2204
2205 dyn.d_tag = tag;
2206 dyn.d_un.d_val = val;
2207 elf_swap_dyn_out (dynobj, &dyn,
2208 (Elf_External_Dyn *) (newcontents + s->_raw_size));
2209
2210 s->_raw_size = newsize;
2211 s->contents = newcontents;
2212
2213 return true;
2214 }
2215
2216 /* Record a new local dynamic symbol. */
2217
2218 boolean
2219 elf_link_record_local_dynamic_symbol (info, input_bfd, input_indx)
2220 struct bfd_link_info *info;
2221 bfd *input_bfd;
2222 long input_indx;
2223 {
2224 struct elf_link_local_dynamic_entry *entry;
2225 struct elf_link_hash_table *eht;
2226 struct bfd_strtab_hash *dynstr;
2227 Elf_External_Sym esym;
2228 unsigned long dynstr_index;
2229 char *name;
2230
2231 /* See if the entry exists already. */
2232 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
2233 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
2234 return true;
2235
2236 entry = (struct elf_link_local_dynamic_entry *)
2237 bfd_alloc (input_bfd, sizeof (*entry));
2238 if (entry == NULL)
2239 return false;
2240
2241 /* Go find the symbol, so that we can find it's name. */
2242 if (bfd_seek (input_bfd,
2243 (elf_tdata (input_bfd)->symtab_hdr.sh_offset
2244 + input_indx * sizeof (Elf_External_Sym)),
2245 SEEK_SET) != 0
2246 || (bfd_read (&esym, sizeof (Elf_External_Sym), 1, input_bfd)
2247 != sizeof (Elf_External_Sym)))
2248 return false;
2249 elf_swap_symbol_in (input_bfd, &esym, &entry->isym);
2250
2251 name = (bfd_elf_string_from_elf_section
2252 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
2253 entry->isym.st_name));
2254
2255 dynstr = elf_hash_table (info)->dynstr;
2256 if (dynstr == NULL)
2257 {
2258 /* Create a strtab to hold the dynamic symbol names. */
2259 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_stringtab_init ();
2260 if (dynstr == NULL)
2261 return false;
2262 }
2263
2264 dynstr_index = _bfd_stringtab_add (dynstr, name, true, false);
2265 if (dynstr_index == (unsigned long) -1)
2266 return false;
2267 entry->isym.st_name = dynstr_index;
2268
2269 eht = elf_hash_table (info);
2270
2271 entry->next = eht->dynlocal;
2272 eht->dynlocal = entry;
2273 entry->input_bfd = input_bfd;
2274 entry->input_indx = input_indx;
2275 eht->dynsymcount++;
2276
2277 /* Whatever binding the symbol had before, it's now local. */
2278 entry->isym.st_info
2279 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
2280
2281 /* The dynindx will be set at the end of size_dynamic_sections. */
2282
2283 return true;
2284 }
2285 \f
2286
2287 /* Read and swap the relocs from the section indicated by SHDR. This
2288 may be either a REL or a RELA section. The relocations are
2289 translated into RELA relocations and stored in INTERNAL_RELOCS,
2290 which should have already been allocated to contain enough space.
2291 The EXTERNAL_RELOCS are a buffer where the external form of the
2292 relocations should be stored.
2293
2294 Returns false if something goes wrong. */
2295
2296 static boolean
2297 elf_link_read_relocs_from_section (abfd, shdr, external_relocs,
2298 internal_relocs)
2299 bfd *abfd;
2300 Elf_Internal_Shdr *shdr;
2301 PTR external_relocs;
2302 Elf_Internal_Rela *internal_relocs;
2303 {
2304 struct elf_backend_data *bed;
2305
2306 /* If there aren't any relocations, that's OK. */
2307 if (!shdr)
2308 return true;
2309
2310 /* Position ourselves at the start of the section. */
2311 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2312 return false;
2313
2314 /* Read the relocations. */
2315 if (bfd_read (external_relocs, 1, shdr->sh_size, abfd)
2316 != shdr->sh_size)
2317 return false;
2318
2319 bed = get_elf_backend_data (abfd);
2320
2321 /* Convert the external relocations to the internal format. */
2322 if (shdr->sh_entsize == sizeof (Elf_External_Rel))
2323 {
2324 Elf_External_Rel *erel;
2325 Elf_External_Rel *erelend;
2326 Elf_Internal_Rela *irela;
2327 Elf_Internal_Rel *irel;
2328
2329 erel = (Elf_External_Rel *) external_relocs;
2330 erelend = erel + shdr->sh_size / shdr->sh_entsize;
2331 irela = internal_relocs;
2332 irel = bfd_alloc (abfd, (bed->s->int_rels_per_ext_rel
2333 * sizeof (Elf_Internal_Rel)));
2334 for (; erel < erelend; erel++, irela += bed->s->int_rels_per_ext_rel)
2335 {
2336 unsigned char i;
2337
2338 if (bed->s->swap_reloc_in)
2339 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
2340 else
2341 elf_swap_reloc_in (abfd, erel, irel);
2342
2343 for (i = 0; i < bed->s->int_rels_per_ext_rel; ++i)
2344 {
2345 irela[i].r_offset = irel[i].r_offset;
2346 irela[i].r_info = irel[i].r_info;
2347 irela[i].r_addend = 0;
2348 }
2349 }
2350 }
2351 else
2352 {
2353 Elf_External_Rela *erela;
2354 Elf_External_Rela *erelaend;
2355 Elf_Internal_Rela *irela;
2356
2357 BFD_ASSERT (shdr->sh_entsize == sizeof (Elf_External_Rela));
2358
2359 erela = (Elf_External_Rela *) external_relocs;
2360 erelaend = erela + shdr->sh_size / shdr->sh_entsize;
2361 irela = internal_relocs;
2362 for (; erela < erelaend; erela++, irela += bed->s->int_rels_per_ext_rel)
2363 {
2364 if (bed->s->swap_reloca_in)
2365 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
2366 else
2367 elf_swap_reloca_in (abfd, erela, irela);
2368 }
2369 }
2370
2371 return true;
2372 }
2373
2374 /* Read and swap the relocs for a section O. They may have been
2375 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2376 not NULL, they are used as buffers to read into. They are known to
2377 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2378 the return value is allocated using either malloc or bfd_alloc,
2379 according to the KEEP_MEMORY argument. If O has two relocation
2380 sections (both REL and RELA relocations), then the REL_HDR
2381 relocations will appear first in INTERNAL_RELOCS, followed by the
2382 REL_HDR2 relocations. */
2383
2384 Elf_Internal_Rela *
2385 NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
2386 keep_memory)
2387 bfd *abfd;
2388 asection *o;
2389 PTR external_relocs;
2390 Elf_Internal_Rela *internal_relocs;
2391 boolean keep_memory;
2392 {
2393 Elf_Internal_Shdr *rel_hdr;
2394 PTR alloc1 = NULL;
2395 Elf_Internal_Rela *alloc2 = NULL;
2396 struct elf_backend_data *bed = get_elf_backend_data (abfd);
2397
2398 if (elf_section_data (o)->relocs != NULL)
2399 return elf_section_data (o)->relocs;
2400
2401 if (o->reloc_count == 0)
2402 return NULL;
2403
2404 rel_hdr = &elf_section_data (o)->rel_hdr;
2405
2406 if (internal_relocs == NULL)
2407 {
2408 size_t size;
2409
2410 size = (o->reloc_count * bed->s->int_rels_per_ext_rel
2411 * sizeof (Elf_Internal_Rela));
2412 if (keep_memory)
2413 internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2414 else
2415 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2416 if (internal_relocs == NULL)
2417 goto error_return;
2418 }
2419
2420 if (external_relocs == NULL)
2421 {
2422 size_t size = (size_t) rel_hdr->sh_size;
2423
2424 if (elf_section_data (o)->rel_hdr2)
2425 size += (size_t) elf_section_data (o)->rel_hdr2->sh_size;
2426 alloc1 = (PTR) bfd_malloc (size);
2427 if (alloc1 == NULL)
2428 goto error_return;
2429 external_relocs = alloc1;
2430 }
2431
2432 if (!elf_link_read_relocs_from_section (abfd, rel_hdr,
2433 external_relocs,
2434 internal_relocs))
2435 goto error_return;
2436 if (!elf_link_read_relocs_from_section
2437 (abfd,
2438 elf_section_data (o)->rel_hdr2,
2439 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2440 internal_relocs + (rel_hdr->sh_size / rel_hdr->sh_entsize
2441 * bed->s->int_rels_per_ext_rel)))
2442 goto error_return;
2443
2444 /* Cache the results for next time, if we can. */
2445 if (keep_memory)
2446 elf_section_data (o)->relocs = internal_relocs;
2447
2448 if (alloc1 != NULL)
2449 free (alloc1);
2450
2451 /* Don't free alloc2, since if it was allocated we are passing it
2452 back (under the name of internal_relocs). */
2453
2454 return internal_relocs;
2455
2456 error_return:
2457 if (alloc1 != NULL)
2458 free (alloc1);
2459 if (alloc2 != NULL)
2460 free (alloc2);
2461 return NULL;
2462 }
2463 \f
2464
2465 /* Record an assignment to a symbol made by a linker script. We need
2466 this in case some dynamic object refers to this symbol. */
2467
2468 /*ARGSUSED*/
2469 boolean
2470 NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
2471 bfd *output_bfd ATTRIBUTE_UNUSED;
2472 struct bfd_link_info *info;
2473 const char *name;
2474 boolean provide;
2475 {
2476 struct elf_link_hash_entry *h;
2477
2478 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2479 return true;
2480
2481 h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
2482 if (h == NULL)
2483 return false;
2484
2485 if (h->root.type == bfd_link_hash_new)
2486 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
2487
2488 /* If this symbol is being provided by the linker script, and it is
2489 currently defined by a dynamic object, but not by a regular
2490 object, then mark it as undefined so that the generic linker will
2491 force the correct value. */
2492 if (provide
2493 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2494 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2495 h->root.type = bfd_link_hash_undefined;
2496
2497 /* If this symbol is not being provided by the linker script, and it is
2498 currently defined by a dynamic object, but not by a regular object,
2499 then clear out any version information because the symbol will not be
2500 associated with the dynamic object any more. */
2501 if (!provide
2502 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2503 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2504 h->verinfo.verdef = NULL;
2505
2506 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2507
2508 /* When possible, keep the original type of the symbol */
2509 if (h->type == STT_NOTYPE)
2510 h->type = STT_OBJECT;
2511
2512 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
2513 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
2514 || info->shared)
2515 && h->dynindx == -1)
2516 {
2517 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2518 return false;
2519
2520 /* If this is a weak defined symbol, and we know a corresponding
2521 real symbol from the same dynamic object, make sure the real
2522 symbol is also made into a dynamic symbol. */
2523 if (h->weakdef != NULL
2524 && h->weakdef->dynindx == -1)
2525 {
2526 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2527 return false;
2528 }
2529 }
2530
2531 return true;
2532 }
2533 \f
2534 /* This structure is used to pass information to
2535 elf_link_assign_sym_version. */
2536
2537 struct elf_assign_sym_version_info
2538 {
2539 /* Output BFD. */
2540 bfd *output_bfd;
2541 /* General link information. */
2542 struct bfd_link_info *info;
2543 /* Version tree. */
2544 struct bfd_elf_version_tree *verdefs;
2545 /* Whether we are exporting all dynamic symbols. */
2546 boolean export_dynamic;
2547 /* Whether we had a failure. */
2548 boolean failed;
2549 };
2550
2551 /* This structure is used to pass information to
2552 elf_link_find_version_dependencies. */
2553
2554 struct elf_find_verdep_info
2555 {
2556 /* Output BFD. */
2557 bfd *output_bfd;
2558 /* General link information. */
2559 struct bfd_link_info *info;
2560 /* The number of dependencies. */
2561 unsigned int vers;
2562 /* Whether we had a failure. */
2563 boolean failed;
2564 };
2565
2566 /* Array used to determine the number of hash table buckets to use
2567 based on the number of symbols there are. If there are fewer than
2568 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2569 fewer than 37 we use 17 buckets, and so forth. We never use more
2570 than 32771 buckets. */
2571
2572 static const size_t elf_buckets[] =
2573 {
2574 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2575 16411, 32771, 0
2576 };
2577
2578 /* Compute bucket count for hashing table. We do not use a static set
2579 of possible tables sizes anymore. Instead we determine for all
2580 possible reasonable sizes of the table the outcome (i.e., the
2581 number of collisions etc) and choose the best solution. The
2582 weighting functions are not too simple to allow the table to grow
2583 without bounds. Instead one of the weighting factors is the size.
2584 Therefore the result is always a good payoff between few collisions
2585 (= short chain lengths) and table size. */
2586 static size_t
2587 compute_bucket_count (info)
2588 struct bfd_link_info *info;
2589 {
2590 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
2591 size_t best_size = 0;
2592 unsigned long int *hashcodes;
2593 unsigned long int *hashcodesp;
2594 unsigned long int i;
2595
2596 /* Compute the hash values for all exported symbols. At the same
2597 time store the values in an array so that we could use them for
2598 optimizations. */
2599 hashcodes = (unsigned long int *) bfd_malloc (dynsymcount
2600 * sizeof (unsigned long int));
2601 if (hashcodes == NULL)
2602 return 0;
2603 hashcodesp = hashcodes;
2604
2605 /* Put all hash values in HASHCODES. */
2606 elf_link_hash_traverse (elf_hash_table (info),
2607 elf_collect_hash_codes, &hashcodesp);
2608
2609 /* We have a problem here. The following code to optimize the table
2610 size requires an integer type with more the 32 bits. If
2611 BFD_HOST_U_64_BIT is set we know about such a type. */
2612 #ifdef BFD_HOST_U_64_BIT
2613 if (info->optimize == true)
2614 {
2615 unsigned long int nsyms = hashcodesp - hashcodes;
2616 size_t minsize;
2617 size_t maxsize;
2618 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
2619 unsigned long int *counts ;
2620
2621 /* Possible optimization parameters: if we have NSYMS symbols we say
2622 that the hashing table must at least have NSYMS/4 and at most
2623 2*NSYMS buckets. */
2624 minsize = nsyms / 4;
2625 if (minsize == 0)
2626 minsize = 1;
2627 best_size = maxsize = nsyms * 2;
2628
2629 /* Create array where we count the collisions in. We must use bfd_malloc
2630 since the size could be large. */
2631 counts = (unsigned long int *) bfd_malloc (maxsize
2632 * sizeof (unsigned long int));
2633 if (counts == NULL)
2634 {
2635 free (hashcodes);
2636 return 0;
2637 }
2638
2639 /* Compute the "optimal" size for the hash table. The criteria is a
2640 minimal chain length. The minor criteria is (of course) the size
2641 of the table. */
2642 for (i = minsize; i < maxsize; ++i)
2643 {
2644 /* Walk through the array of hashcodes and count the collisions. */
2645 BFD_HOST_U_64_BIT max;
2646 unsigned long int j;
2647 unsigned long int fact;
2648
2649 memset (counts, '\0', i * sizeof (unsigned long int));
2650
2651 /* Determine how often each hash bucket is used. */
2652 for (j = 0; j < nsyms; ++j)
2653 ++counts[hashcodes[j] % i];
2654
2655 /* For the weight function we need some information about the
2656 pagesize on the target. This is information need not be 100%
2657 accurate. Since this information is not available (so far) we
2658 define it here to a reasonable default value. If it is crucial
2659 to have a better value some day simply define this value. */
2660 # ifndef BFD_TARGET_PAGESIZE
2661 # define BFD_TARGET_PAGESIZE (4096)
2662 # endif
2663
2664 /* We in any case need 2 + NSYMS entries for the size values and
2665 the chains. */
2666 max = (2 + nsyms) * (ARCH_SIZE / 8);
2667
2668 # if 1
2669 /* Variant 1: optimize for short chains. We add the squares
2670 of all the chain lengths (which favous many small chain
2671 over a few long chains). */
2672 for (j = 0; j < i; ++j)
2673 max += counts[j] * counts[j];
2674
2675 /* This adds penalties for the overall size of the table. */
2676 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2677 max *= fact * fact;
2678 # else
2679 /* Variant 2: Optimize a lot more for small table. Here we
2680 also add squares of the size but we also add penalties for
2681 empty slots (the +1 term). */
2682 for (j = 0; j < i; ++j)
2683 max += (1 + counts[j]) * (1 + counts[j]);
2684
2685 /* The overall size of the table is considered, but not as
2686 strong as in variant 1, where it is squared. */
2687 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2688 max *= fact;
2689 # endif
2690
2691 /* Compare with current best results. */
2692 if (max < best_chlen)
2693 {
2694 best_chlen = max;
2695 best_size = i;
2696 }
2697 }
2698
2699 free (counts);
2700 }
2701 else
2702 #endif /* defined (BFD_HOST_U_64_BIT) */
2703 {
2704 /* This is the fallback solution if no 64bit type is available or if we
2705 are not supposed to spend much time on optimizations. We select the
2706 bucket count using a fixed set of numbers. */
2707 for (i = 0; elf_buckets[i] != 0; i++)
2708 {
2709 best_size = elf_buckets[i];
2710 if (dynsymcount < elf_buckets[i + 1])
2711 break;
2712 }
2713 }
2714
2715 /* Free the arrays we needed. */
2716 free (hashcodes);
2717
2718 return best_size;
2719 }
2720
2721 /* Set up the sizes and contents of the ELF dynamic sections. This is
2722 called by the ELF linker emulation before_allocation routine. We
2723 must set the sizes of the sections before the linker sets the
2724 addresses of the various sections. */
2725
2726 boolean
2727 NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
2728 export_dynamic, filter_shlib,
2729 auxiliary_filters, info, sinterpptr,
2730 verdefs)
2731 bfd *output_bfd;
2732 const char *soname;
2733 const char *rpath;
2734 boolean export_dynamic;
2735 const char *filter_shlib;
2736 const char * const *auxiliary_filters;
2737 struct bfd_link_info *info;
2738 asection **sinterpptr;
2739 struct bfd_elf_version_tree *verdefs;
2740 {
2741 bfd_size_type soname_indx;
2742 bfd *dynobj;
2743 struct elf_backend_data *bed;
2744 struct elf_assign_sym_version_info asvinfo;
2745
2746 *sinterpptr = NULL;
2747
2748 soname_indx = (bfd_size_type) -1;
2749
2750 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2751 return true;
2752
2753 /* The backend may have to create some sections regardless of whether
2754 we're dynamic or not. */
2755 bed = get_elf_backend_data (output_bfd);
2756 if (bed->elf_backend_always_size_sections
2757 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
2758 return false;
2759
2760 dynobj = elf_hash_table (info)->dynobj;
2761
2762 /* If there were no dynamic objects in the link, there is nothing to
2763 do here. */
2764 if (dynobj == NULL)
2765 return true;
2766
2767 /* If we are supposed to export all symbols into the dynamic symbol
2768 table (this is not the normal case), then do so. */
2769 if (export_dynamic)
2770 {
2771 struct elf_info_failed eif;
2772
2773 eif.failed = false;
2774 eif.info = info;
2775 elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
2776 (PTR) &eif);
2777 if (eif.failed)
2778 return false;
2779 }
2780
2781 if (elf_hash_table (info)->dynamic_sections_created)
2782 {
2783 struct elf_info_failed eif;
2784 struct elf_link_hash_entry *h;
2785 bfd_size_type strsize;
2786
2787 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
2788 BFD_ASSERT (*sinterpptr != NULL || info->shared);
2789
2790 if (soname != NULL)
2791 {
2792 soname_indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2793 soname, true, true);
2794 if (soname_indx == (bfd_size_type) -1
2795 || ! elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
2796 return false;
2797 }
2798
2799 if (info->symbolic)
2800 {
2801 if (! elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
2802 return false;
2803 }
2804
2805 if (rpath != NULL)
2806 {
2807 bfd_size_type indx;
2808
2809 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath,
2810 true, true);
2811 if (indx == (bfd_size_type) -1
2812 || ! elf_add_dynamic_entry (info, DT_RPATH, indx))
2813 return false;
2814 }
2815
2816 if (filter_shlib != NULL)
2817 {
2818 bfd_size_type indx;
2819
2820 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2821 filter_shlib, true, true);
2822 if (indx == (bfd_size_type) -1
2823 || ! elf_add_dynamic_entry (info, DT_FILTER, indx))
2824 return false;
2825 }
2826
2827 if (auxiliary_filters != NULL)
2828 {
2829 const char * const *p;
2830
2831 for (p = auxiliary_filters; *p != NULL; p++)
2832 {
2833 bfd_size_type indx;
2834
2835 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2836 *p, true, true);
2837 if (indx == (bfd_size_type) -1
2838 || ! elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
2839 return false;
2840 }
2841 }
2842
2843 /* Attach all the symbols to their version information. */
2844 asvinfo.output_bfd = output_bfd;
2845 asvinfo.info = info;
2846 asvinfo.verdefs = verdefs;
2847 asvinfo.export_dynamic = export_dynamic;
2848 asvinfo.failed = false;
2849
2850 elf_link_hash_traverse (elf_hash_table (info),
2851 elf_link_assign_sym_version,
2852 (PTR) &asvinfo);
2853 if (asvinfo.failed)
2854 return false;
2855
2856 /* Find all symbols which were defined in a dynamic object and make
2857 the backend pick a reasonable value for them. */
2858 eif.failed = false;
2859 eif.info = info;
2860 elf_link_hash_traverse (elf_hash_table (info),
2861 elf_adjust_dynamic_symbol,
2862 (PTR) &eif);
2863 if (eif.failed)
2864 return false;
2865
2866 /* Add some entries to the .dynamic section. We fill in some of the
2867 values later, in elf_bfd_final_link, but we must add the entries
2868 now so that we know the final size of the .dynamic section. */
2869
2870 /* If there are initialization and/or finalization functions to
2871 call then add the corresponding DT_INIT/DT_FINI entries. */
2872 h = (info->init_function
2873 ? elf_link_hash_lookup (elf_hash_table (info),
2874 info->init_function, false,
2875 false, false)
2876 : NULL);
2877 if (h != NULL
2878 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
2879 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
2880 {
2881 if (! elf_add_dynamic_entry (info, DT_INIT, 0))
2882 return false;
2883 }
2884 h = (info->fini_function
2885 ? elf_link_hash_lookup (elf_hash_table (info),
2886 info->fini_function, false,
2887 false, false)
2888 : NULL);
2889 if (h != NULL
2890 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
2891 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
2892 {
2893 if (! elf_add_dynamic_entry (info, DT_FINI, 0))
2894 return false;
2895 }
2896
2897 strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
2898 if (! elf_add_dynamic_entry (info, DT_HASH, 0)
2899 || ! elf_add_dynamic_entry (info, DT_STRTAB, 0)
2900 || ! elf_add_dynamic_entry (info, DT_SYMTAB, 0)
2901 || ! elf_add_dynamic_entry (info, DT_STRSZ, strsize)
2902 || ! elf_add_dynamic_entry (info, DT_SYMENT,
2903 sizeof (Elf_External_Sym)))
2904 return false;
2905 }
2906
2907 /* The backend must work out the sizes of all the other dynamic
2908 sections. */
2909 if (bed->elf_backend_size_dynamic_sections
2910 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
2911 return false;
2912
2913 if (elf_hash_table (info)->dynamic_sections_created)
2914 {
2915 size_t dynsymcount;
2916 asection *s;
2917 size_t bucketcount = 0;
2918 Elf_Internal_Sym isym;
2919 size_t hash_entry_size;
2920
2921 /* Set up the version definition section. */
2922 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
2923 BFD_ASSERT (s != NULL);
2924
2925 /* We may have created additional version definitions if we are
2926 just linking a regular application. */
2927 verdefs = asvinfo.verdefs;
2928
2929 if (verdefs == NULL)
2930 _bfd_strip_section_from_output (s);
2931 else
2932 {
2933 unsigned int cdefs;
2934 bfd_size_type size;
2935 struct bfd_elf_version_tree *t;
2936 bfd_byte *p;
2937 Elf_Internal_Verdef def;
2938 Elf_Internal_Verdaux defaux;
2939
2940 cdefs = 0;
2941 size = 0;
2942
2943 /* Make space for the base version. */
2944 size += sizeof (Elf_External_Verdef);
2945 size += sizeof (Elf_External_Verdaux);
2946 ++cdefs;
2947
2948 for (t = verdefs; t != NULL; t = t->next)
2949 {
2950 struct bfd_elf_version_deps *n;
2951
2952 size += sizeof (Elf_External_Verdef);
2953 size += sizeof (Elf_External_Verdaux);
2954 ++cdefs;
2955
2956 for (n = t->deps; n != NULL; n = n->next)
2957 size += sizeof (Elf_External_Verdaux);
2958 }
2959
2960 s->_raw_size = size;
2961 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
2962 if (s->contents == NULL && s->_raw_size != 0)
2963 return false;
2964
2965 /* Fill in the version definition section. */
2966
2967 p = s->contents;
2968
2969 def.vd_version = VER_DEF_CURRENT;
2970 def.vd_flags = VER_FLG_BASE;
2971 def.vd_ndx = 1;
2972 def.vd_cnt = 1;
2973 def.vd_aux = sizeof (Elf_External_Verdef);
2974 def.vd_next = (sizeof (Elf_External_Verdef)
2975 + sizeof (Elf_External_Verdaux));
2976
2977 if (soname_indx != (bfd_size_type) -1)
2978 {
2979 def.vd_hash = bfd_elf_hash (soname);
2980 defaux.vda_name = soname_indx;
2981 }
2982 else
2983 {
2984 const char *name;
2985 bfd_size_type indx;
2986
2987 name = output_bfd->filename;
2988 def.vd_hash = bfd_elf_hash (name);
2989 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2990 name, true, false);
2991 if (indx == (bfd_size_type) -1)
2992 return false;
2993 defaux.vda_name = indx;
2994 }
2995 defaux.vda_next = 0;
2996
2997 _bfd_elf_swap_verdef_out (output_bfd, &def,
2998 (Elf_External_Verdef *)p);
2999 p += sizeof (Elf_External_Verdef);
3000 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3001 (Elf_External_Verdaux *) p);
3002 p += sizeof (Elf_External_Verdaux);
3003
3004 for (t = verdefs; t != NULL; t = t->next)
3005 {
3006 unsigned int cdeps;
3007 struct bfd_elf_version_deps *n;
3008 struct elf_link_hash_entry *h;
3009
3010 cdeps = 0;
3011 for (n = t->deps; n != NULL; n = n->next)
3012 ++cdeps;
3013
3014 /* Add a symbol representing this version. */
3015 h = NULL;
3016 if (! (_bfd_generic_link_add_one_symbol
3017 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
3018 (bfd_vma) 0, (const char *) NULL, false,
3019 get_elf_backend_data (dynobj)->collect,
3020 (struct bfd_link_hash_entry **) &h)))
3021 return false;
3022 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
3023 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3024 h->type = STT_OBJECT;
3025 h->verinfo.vertree = t;
3026
3027 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
3028 return false;
3029
3030 def.vd_version = VER_DEF_CURRENT;
3031 def.vd_flags = 0;
3032 if (t->globals == NULL && t->locals == NULL && ! t->used)
3033 def.vd_flags |= VER_FLG_WEAK;
3034 def.vd_ndx = t->vernum + 1;
3035 def.vd_cnt = cdeps + 1;
3036 def.vd_hash = bfd_elf_hash (t->name);
3037 def.vd_aux = sizeof (Elf_External_Verdef);
3038 if (t->next != NULL)
3039 def.vd_next = (sizeof (Elf_External_Verdef)
3040 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
3041 else
3042 def.vd_next = 0;
3043
3044 _bfd_elf_swap_verdef_out (output_bfd, &def,
3045 (Elf_External_Verdef *) p);
3046 p += sizeof (Elf_External_Verdef);
3047
3048 defaux.vda_name = h->dynstr_index;
3049 if (t->deps == NULL)
3050 defaux.vda_next = 0;
3051 else
3052 defaux.vda_next = sizeof (Elf_External_Verdaux);
3053 t->name_indx = defaux.vda_name;
3054
3055 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3056 (Elf_External_Verdaux *) p);
3057 p += sizeof (Elf_External_Verdaux);
3058
3059 for (n = t->deps; n != NULL; n = n->next)
3060 {
3061 if (n->version_needed == NULL)
3062 {
3063 /* This can happen if there was an error in the
3064 version script. */
3065 defaux.vda_name = 0;
3066 }
3067 else
3068 defaux.vda_name = n->version_needed->name_indx;
3069 if (n->next == NULL)
3070 defaux.vda_next = 0;
3071 else
3072 defaux.vda_next = sizeof (Elf_External_Verdaux);
3073
3074 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3075 (Elf_External_Verdaux *) p);
3076 p += sizeof (Elf_External_Verdaux);
3077 }
3078 }
3079
3080 if (! elf_add_dynamic_entry (info, DT_VERDEF, 0)
3081 || ! elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
3082 return false;
3083
3084 elf_tdata (output_bfd)->cverdefs = cdefs;
3085 }
3086
3087 /* Work out the size of the version reference section. */
3088
3089 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3090 BFD_ASSERT (s != NULL);
3091 {
3092 struct elf_find_verdep_info sinfo;
3093
3094 sinfo.output_bfd = output_bfd;
3095 sinfo.info = info;
3096 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
3097 if (sinfo.vers == 0)
3098 sinfo.vers = 1;
3099 sinfo.failed = false;
3100
3101 elf_link_hash_traverse (elf_hash_table (info),
3102 elf_link_find_version_dependencies,
3103 (PTR) &sinfo);
3104
3105 if (elf_tdata (output_bfd)->verref == NULL)
3106 _bfd_strip_section_from_output (s);
3107 else
3108 {
3109 Elf_Internal_Verneed *t;
3110 unsigned int size;
3111 unsigned int crefs;
3112 bfd_byte *p;
3113
3114 /* Build the version definition section. */
3115 size = 0;
3116 crefs = 0;
3117 for (t = elf_tdata (output_bfd)->verref;
3118 t != NULL;
3119 t = t->vn_nextref)
3120 {
3121 Elf_Internal_Vernaux *a;
3122
3123 size += sizeof (Elf_External_Verneed);
3124 ++crefs;
3125 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3126 size += sizeof (Elf_External_Vernaux);
3127 }
3128
3129 s->_raw_size = size;
3130 s->contents = (bfd_byte *) bfd_alloc (output_bfd, size);
3131 if (s->contents == NULL)
3132 return false;
3133
3134 p = s->contents;
3135 for (t = elf_tdata (output_bfd)->verref;
3136 t != NULL;
3137 t = t->vn_nextref)
3138 {
3139 unsigned int caux;
3140 Elf_Internal_Vernaux *a;
3141 bfd_size_type indx;
3142
3143 caux = 0;
3144 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3145 ++caux;
3146
3147 t->vn_version = VER_NEED_CURRENT;
3148 t->vn_cnt = caux;
3149 if (elf_dt_name (t->vn_bfd) != NULL)
3150 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3151 elf_dt_name (t->vn_bfd),
3152 true, false);
3153 else
3154 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3155 t->vn_bfd->filename, true, false);
3156 if (indx == (bfd_size_type) -1)
3157 return false;
3158 t->vn_file = indx;
3159 t->vn_aux = sizeof (Elf_External_Verneed);
3160 if (t->vn_nextref == NULL)
3161 t->vn_next = 0;
3162 else
3163 t->vn_next = (sizeof (Elf_External_Verneed)
3164 + caux * sizeof (Elf_External_Vernaux));
3165
3166 _bfd_elf_swap_verneed_out (output_bfd, t,
3167 (Elf_External_Verneed *) p);
3168 p += sizeof (Elf_External_Verneed);
3169
3170 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3171 {
3172 a->vna_hash = bfd_elf_hash (a->vna_nodename);
3173 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3174 a->vna_nodename, true, false);
3175 if (indx == (bfd_size_type) -1)
3176 return false;
3177 a->vna_name = indx;
3178 if (a->vna_nextptr == NULL)
3179 a->vna_next = 0;
3180 else
3181 a->vna_next = sizeof (Elf_External_Vernaux);
3182
3183 _bfd_elf_swap_vernaux_out (output_bfd, a,
3184 (Elf_External_Vernaux *) p);
3185 p += sizeof (Elf_External_Vernaux);
3186 }
3187 }
3188
3189 if (! elf_add_dynamic_entry (info, DT_VERNEED, 0)
3190 || ! elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
3191 return false;
3192
3193 elf_tdata (output_bfd)->cverrefs = crefs;
3194 }
3195 }
3196
3197 /* Assign dynsym indicies. In a shared library we generate a
3198 section symbol for each output section, which come first.
3199 Next come all of the back-end allocated local dynamic syms,
3200 followed by the rest of the global symbols. */
3201
3202 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3203
3204 /* Work out the size of the symbol version section. */
3205 s = bfd_get_section_by_name (dynobj, ".gnu.version");
3206 BFD_ASSERT (s != NULL);
3207 if (dynsymcount == 0
3208 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
3209 {
3210 _bfd_strip_section_from_output (s);
3211 /* The DYNSYMCOUNT might have changed if we were going to
3212 output a dynamic symbol table entry for S. */
3213 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3214 }
3215 else
3216 {
3217 s->_raw_size = dynsymcount * sizeof (Elf_External_Versym);
3218 s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
3219 if (s->contents == NULL)
3220 return false;
3221
3222 if (! elf_add_dynamic_entry (info, DT_VERSYM, 0))
3223 return false;
3224 }
3225
3226 /* Set the size of the .dynsym and .hash sections. We counted
3227 the number of dynamic symbols in elf_link_add_object_symbols.
3228 We will build the contents of .dynsym and .hash when we build
3229 the final symbol table, because until then we do not know the
3230 correct value to give the symbols. We built the .dynstr
3231 section as we went along in elf_link_add_object_symbols. */
3232 s = bfd_get_section_by_name (dynobj, ".dynsym");
3233 BFD_ASSERT (s != NULL);
3234 s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
3235 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3236 if (s->contents == NULL && s->_raw_size != 0)
3237 return false;
3238
3239 /* The first entry in .dynsym is a dummy symbol. */
3240 isym.st_value = 0;
3241 isym.st_size = 0;
3242 isym.st_name = 0;
3243 isym.st_info = 0;
3244 isym.st_other = 0;
3245 isym.st_shndx = 0;
3246 elf_swap_symbol_out (output_bfd, &isym,
3247 (PTR) (Elf_External_Sym *) s->contents);
3248
3249 /* Compute the size of the hashing table. As a side effect this
3250 computes the hash values for all the names we export. */
3251 bucketcount = compute_bucket_count (info);
3252
3253 s = bfd_get_section_by_name (dynobj, ".hash");
3254 BFD_ASSERT (s != NULL);
3255 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
3256 s->_raw_size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
3257 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3258 if (s->contents == NULL)
3259 return false;
3260 memset (s->contents, 0, (size_t) s->_raw_size);
3261
3262 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
3263 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
3264 s->contents + hash_entry_size);
3265
3266 elf_hash_table (info)->bucketcount = bucketcount;
3267
3268 s = bfd_get_section_by_name (dynobj, ".dynstr");
3269 BFD_ASSERT (s != NULL);
3270 s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
3271
3272 if (! elf_add_dynamic_entry (info, DT_NULL, 0))
3273 return false;
3274 }
3275
3276 return true;
3277 }
3278 \f
3279 /* Fix up the flags for a symbol. This handles various cases which
3280 can only be fixed after all the input files are seen. This is
3281 currently called by both adjust_dynamic_symbol and
3282 assign_sym_version, which is unnecessary but perhaps more robust in
3283 the face of future changes. */
3284
3285 static boolean
3286 elf_fix_symbol_flags (h, eif)
3287 struct elf_link_hash_entry *h;
3288 struct elf_info_failed *eif;
3289 {
3290 /* If this symbol was mentioned in a non-ELF file, try to set
3291 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
3292 permit a non-ELF file to correctly refer to a symbol defined in
3293 an ELF dynamic object. */
3294 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
3295 {
3296 if (h->root.type != bfd_link_hash_defined
3297 && h->root.type != bfd_link_hash_defweak)
3298 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3299 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3300 else
3301 {
3302 if (h->root.u.def.section->owner != NULL
3303 && (bfd_get_flavour (h->root.u.def.section->owner)
3304 == bfd_target_elf_flavour))
3305 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3306 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3307 else
3308 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3309 }
3310
3311 if (h->dynindx == -1
3312 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3313 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
3314 {
3315 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3316 {
3317 eif->failed = true;
3318 return false;
3319 }
3320 }
3321 }
3322 else
3323 {
3324 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
3325 was first seen in a non-ELF file. Fortunately, if the symbol
3326 was first seen in an ELF file, we're probably OK unless the
3327 symbol was defined in a non-ELF file. Catch that case here.
3328 FIXME: We're still in trouble if the symbol was first seen in
3329 a dynamic object, and then later in a non-ELF regular object. */
3330 if ((h->root.type == bfd_link_hash_defined
3331 || h->root.type == bfd_link_hash_defweak)
3332 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3333 && (h->root.u.def.section->owner != NULL
3334 ? (bfd_get_flavour (h->root.u.def.section->owner)
3335 != bfd_target_elf_flavour)
3336 : (bfd_is_abs_section (h->root.u.def.section)
3337 && (h->elf_link_hash_flags
3338 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
3339 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3340 }
3341
3342 /* If this is a final link, and the symbol was defined as a common
3343 symbol in a regular object file, and there was no definition in
3344 any dynamic object, then the linker will have allocated space for
3345 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
3346 flag will not have been set. */
3347 if (h->root.type == bfd_link_hash_defined
3348 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3349 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
3350 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3351 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3352 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3353
3354 /* If -Bsymbolic was used (which means to bind references to global
3355 symbols to the definition within the shared object), and this
3356 symbol was defined in a regular object, then it actually doesn't
3357 need a PLT entry. */
3358 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
3359 && eif->info->shared
3360 && eif->info->symbolic
3361 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3362 {
3363 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3364 h->plt.offset = (bfd_vma) -1;
3365 }
3366
3367 /* If this is a weak defined symbol in a dynamic object, and we know
3368 the real definition in the dynamic object, copy interesting flags
3369 over to the real definition. */
3370 if (h->weakdef != NULL)
3371 {
3372 struct elf_link_hash_entry *weakdef;
3373
3374 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3375 || h->root.type == bfd_link_hash_defweak);
3376 weakdef = h->weakdef;
3377 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
3378 || weakdef->root.type == bfd_link_hash_defweak);
3379 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
3380
3381 /* If the real definition is defined by a regular object file,
3382 don't do anything special. See the longer description in
3383 elf_adjust_dynamic_symbol, below. */
3384 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3385 h->weakdef = NULL;
3386 else
3387 weakdef->elf_link_hash_flags |=
3388 (h->elf_link_hash_flags
3389 & (ELF_LINK_HASH_REF_REGULAR
3390 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
3391 | ELF_LINK_NON_GOT_REF));
3392 }
3393
3394 return true;
3395 }
3396
3397 /* Make the backend pick a good value for a dynamic symbol. This is
3398 called via elf_link_hash_traverse, and also calls itself
3399 recursively. */
3400
3401 static boolean
3402 elf_adjust_dynamic_symbol (h, data)
3403 struct elf_link_hash_entry *h;
3404 PTR data;
3405 {
3406 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3407 bfd *dynobj;
3408 struct elf_backend_data *bed;
3409
3410 /* Ignore indirect symbols. These are added by the versioning code. */
3411 if (h->root.type == bfd_link_hash_indirect)
3412 return true;
3413
3414 /* Fix the symbol flags. */
3415 if (! elf_fix_symbol_flags (h, eif))
3416 return false;
3417
3418 /* If this symbol does not require a PLT entry, and it is not
3419 defined by a dynamic object, or is not referenced by a regular
3420 object, ignore it. We do have to handle a weak defined symbol,
3421 even if no regular object refers to it, if we decided to add it
3422 to the dynamic symbol table. FIXME: Do we normally need to worry
3423 about symbols which are defined by one dynamic object and
3424 referenced by another one? */
3425 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
3426 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3427 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3428 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
3429 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
3430 {
3431 h->plt.offset = (bfd_vma) -1;
3432 return true;
3433 }
3434
3435 /* If we've already adjusted this symbol, don't do it again. This
3436 can happen via a recursive call. */
3437 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
3438 return true;
3439
3440 /* Don't look at this symbol again. Note that we must set this
3441 after checking the above conditions, because we may look at a
3442 symbol once, decide not to do anything, and then get called
3443 recursively later after REF_REGULAR is set below. */
3444 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
3445
3446 /* If this is a weak definition, and we know a real definition, and
3447 the real symbol is not itself defined by a regular object file,
3448 then get a good value for the real definition. We handle the
3449 real symbol first, for the convenience of the backend routine.
3450
3451 Note that there is a confusing case here. If the real definition
3452 is defined by a regular object file, we don't get the real symbol
3453 from the dynamic object, but we do get the weak symbol. If the
3454 processor backend uses a COPY reloc, then if some routine in the
3455 dynamic object changes the real symbol, we will not see that
3456 change in the corresponding weak symbol. This is the way other
3457 ELF linkers work as well, and seems to be a result of the shared
3458 library model.
3459
3460 I will clarify this issue. Most SVR4 shared libraries define the
3461 variable _timezone and define timezone as a weak synonym. The
3462 tzset call changes _timezone. If you write
3463 extern int timezone;
3464 int _timezone = 5;
3465 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3466 you might expect that, since timezone is a synonym for _timezone,
3467 the same number will print both times. However, if the processor
3468 backend uses a COPY reloc, then actually timezone will be copied
3469 into your process image, and, since you define _timezone
3470 yourself, _timezone will not. Thus timezone and _timezone will
3471 wind up at different memory locations. The tzset call will set
3472 _timezone, leaving timezone unchanged. */
3473
3474 if (h->weakdef != NULL)
3475 {
3476 /* If we get to this point, we know there is an implicit
3477 reference by a regular object file via the weak symbol H.
3478 FIXME: Is this really true? What if the traversal finds
3479 H->WEAKDEF before it finds H? */
3480 h->weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
3481
3482 if (! elf_adjust_dynamic_symbol (h->weakdef, (PTR) eif))
3483 return false;
3484 }
3485
3486 /* If a symbol has no type and no size and does not require a PLT
3487 entry, then we are probably about to do the wrong thing here: we
3488 are probably going to create a COPY reloc for an empty object.
3489 This case can arise when a shared object is built with assembly
3490 code, and the assembly code fails to set the symbol type. */
3491 if (h->size == 0
3492 && h->type == STT_NOTYPE
3493 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
3494 (*_bfd_error_handler)
3495 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3496 h->root.root.string);
3497
3498 dynobj = elf_hash_table (eif->info)->dynobj;
3499 bed = get_elf_backend_data (dynobj);
3500 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3501 {
3502 eif->failed = true;
3503 return false;
3504 }
3505
3506 return true;
3507 }
3508 \f
3509 /* This routine is used to export all defined symbols into the dynamic
3510 symbol table. It is called via elf_link_hash_traverse. */
3511
3512 static boolean
3513 elf_export_symbol (h, data)
3514 struct elf_link_hash_entry *h;
3515 PTR data;
3516 {
3517 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3518
3519 /* Ignore indirect symbols. These are added by the versioning code. */
3520 if (h->root.type == bfd_link_hash_indirect)
3521 return true;
3522
3523 if (h->dynindx == -1
3524 && (h->elf_link_hash_flags
3525 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
3526 {
3527 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3528 {
3529 eif->failed = true;
3530 return false;
3531 }
3532 }
3533
3534 return true;
3535 }
3536 \f
3537 /* Look through the symbols which are defined in other shared
3538 libraries and referenced here. Update the list of version
3539 dependencies. This will be put into the .gnu.version_r section.
3540 This function is called via elf_link_hash_traverse. */
3541
3542 static boolean
3543 elf_link_find_version_dependencies (h, data)
3544 struct elf_link_hash_entry *h;
3545 PTR data;
3546 {
3547 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
3548 Elf_Internal_Verneed *t;
3549 Elf_Internal_Vernaux *a;
3550
3551 /* We only care about symbols defined in shared objects with version
3552 information. */
3553 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3554 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3555 || h->dynindx == -1
3556 || h->verinfo.verdef == NULL)
3557 return true;
3558
3559 /* See if we already know about this version. */
3560 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
3561 {
3562 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
3563 continue;
3564
3565 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3566 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
3567 return true;
3568
3569 break;
3570 }
3571
3572 /* This is a new version. Add it to tree we are building. */
3573
3574 if (t == NULL)
3575 {
3576 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, sizeof *t);
3577 if (t == NULL)
3578 {
3579 rinfo->failed = true;
3580 return false;
3581 }
3582
3583 t->vn_bfd = h->verinfo.verdef->vd_bfd;
3584 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
3585 elf_tdata (rinfo->output_bfd)->verref = t;
3586 }
3587
3588 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, sizeof *a);
3589
3590 /* Note that we are copying a string pointer here, and testing it
3591 above. If bfd_elf_string_from_elf_section is ever changed to
3592 discard the string data when low in memory, this will have to be
3593 fixed. */
3594 a->vna_nodename = h->verinfo.verdef->vd_nodename;
3595
3596 a->vna_flags = h->verinfo.verdef->vd_flags;
3597 a->vna_nextptr = t->vn_auxptr;
3598
3599 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
3600 ++rinfo->vers;
3601
3602 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
3603
3604 t->vn_auxptr = a;
3605
3606 return true;
3607 }
3608
3609 /* Figure out appropriate versions for all the symbols. We may not
3610 have the version number script until we have read all of the input
3611 files, so until that point we don't know which symbols should be
3612 local. This function is called via elf_link_hash_traverse. */
3613
3614 static boolean
3615 elf_link_assign_sym_version (h, data)
3616 struct elf_link_hash_entry *h;
3617 PTR data;
3618 {
3619 struct elf_assign_sym_version_info *sinfo =
3620 (struct elf_assign_sym_version_info *) data;
3621 struct bfd_link_info *info = sinfo->info;
3622 struct elf_info_failed eif;
3623 char *p;
3624
3625 /* Fix the symbol flags. */
3626 eif.failed = false;
3627 eif.info = info;
3628 if (! elf_fix_symbol_flags (h, &eif))
3629 {
3630 if (eif.failed)
3631 sinfo->failed = true;
3632 return false;
3633 }
3634
3635 /* We only need version numbers for symbols defined in regular
3636 objects. */
3637 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3638 return true;
3639
3640 p = strchr (h->root.root.string, ELF_VER_CHR);
3641 if (p != NULL && h->verinfo.vertree == NULL)
3642 {
3643 struct bfd_elf_version_tree *t;
3644 boolean hidden;
3645
3646 hidden = true;
3647
3648 /* There are two consecutive ELF_VER_CHR characters if this is
3649 not a hidden symbol. */
3650 ++p;
3651 if (*p == ELF_VER_CHR)
3652 {
3653 hidden = false;
3654 ++p;
3655 }
3656
3657 /* If there is no version string, we can just return out. */
3658 if (*p == '\0')
3659 {
3660 if (hidden)
3661 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3662 return true;
3663 }
3664
3665 /* Look for the version. If we find it, it is no longer weak. */
3666 for (t = sinfo->verdefs; t != NULL; t = t->next)
3667 {
3668 if (strcmp (t->name, p) == 0)
3669 {
3670 int len;
3671 char *alc;
3672 struct bfd_elf_version_expr *d;
3673
3674 len = p - h->root.root.string;
3675 alc = bfd_alloc (sinfo->output_bfd, len);
3676 if (alc == NULL)
3677 return false;
3678 strncpy (alc, h->root.root.string, len - 1);
3679 alc[len - 1] = '\0';
3680 if (alc[len - 2] == ELF_VER_CHR)
3681 alc[len - 2] = '\0';
3682
3683 h->verinfo.vertree = t;
3684 t->used = true;
3685 d = NULL;
3686
3687 if (t->globals != NULL)
3688 {
3689 for (d = t->globals; d != NULL; d = d->next)
3690 if ((*d->match) (d, alc))
3691 break;
3692 }
3693
3694 /* See if there is anything to force this symbol to
3695 local scope. */
3696 if (d == NULL && t->locals != NULL)
3697 {
3698 for (d = t->locals; d != NULL; d = d->next)
3699 {
3700 if ((*d->match) (d, alc))
3701 {
3702 if (h->dynindx != -1
3703 && info->shared
3704 && ! sinfo->export_dynamic)
3705 {
3706 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3707 h->elf_link_hash_flags &=~
3708 ELF_LINK_HASH_NEEDS_PLT;
3709 h->dynindx = -1;
3710 h->plt.offset = (bfd_vma) -1;
3711 /* FIXME: The name of the symbol has
3712 already been recorded in the dynamic
3713 string table section. */
3714 }
3715
3716 break;
3717 }
3718 }
3719 }
3720
3721 bfd_release (sinfo->output_bfd, alc);
3722 break;
3723 }
3724 }
3725
3726 /* If we are building an application, we need to create a
3727 version node for this version. */
3728 if (t == NULL && ! info->shared)
3729 {
3730 struct bfd_elf_version_tree **pp;
3731 int version_index;
3732
3733 /* If we aren't going to export this symbol, we don't need
3734 to worry about it. */
3735 if (h->dynindx == -1)
3736 return true;
3737
3738 t = ((struct bfd_elf_version_tree *)
3739 bfd_alloc (sinfo->output_bfd, sizeof *t));
3740 if (t == NULL)
3741 {
3742 sinfo->failed = true;
3743 return false;
3744 }
3745
3746 t->next = NULL;
3747 t->name = p;
3748 t->globals = NULL;
3749 t->locals = NULL;
3750 t->deps = NULL;
3751 t->name_indx = (unsigned int) -1;
3752 t->used = true;
3753
3754 version_index = 1;
3755 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
3756 ++version_index;
3757 t->vernum = version_index;
3758
3759 *pp = t;
3760
3761 h->verinfo.vertree = t;
3762 }
3763 else if (t == NULL)
3764 {
3765 /* We could not find the version for a symbol when
3766 generating a shared archive. Return an error. */
3767 (*_bfd_error_handler)
3768 (_("%s: undefined versioned symbol name %s"),
3769 bfd_get_filename (sinfo->output_bfd), h->root.root.string);
3770 bfd_set_error (bfd_error_bad_value);
3771 sinfo->failed = true;
3772 return false;
3773 }
3774
3775 if (hidden)
3776 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3777 }
3778
3779 /* If we don't have a version for this symbol, see if we can find
3780 something. */
3781 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
3782 {
3783 struct bfd_elf_version_tree *t;
3784 struct bfd_elf_version_tree *deflt;
3785 struct bfd_elf_version_expr *d;
3786
3787 /* See if can find what version this symbol is in. If the
3788 symbol is supposed to be local, then don't actually register
3789 it. */
3790 deflt = NULL;
3791 for (t = sinfo->verdefs; t != NULL; t = t->next)
3792 {
3793 if (t->globals != NULL)
3794 {
3795 for (d = t->globals; d != NULL; d = d->next)
3796 {
3797 if ((*d->match) (d, h->root.root.string))
3798 {
3799 h->verinfo.vertree = t;
3800 break;
3801 }
3802 }
3803
3804 if (d != NULL)
3805 break;
3806 }
3807
3808 if (t->locals != NULL)
3809 {
3810 for (d = t->locals; d != NULL; d = d->next)
3811 {
3812 if (d->pattern[0] == '*' && d->pattern[1] == '\0')
3813 deflt = t;
3814 else if ((*d->match) (d, h->root.root.string))
3815 {
3816 h->verinfo.vertree = t;
3817 if (h->dynindx != -1
3818 && info->shared
3819 && ! sinfo->export_dynamic)
3820 {
3821 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3822 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3823 h->dynindx = -1;
3824 h->plt.offset = (bfd_vma) -1;
3825 /* FIXME: The name of the symbol has already
3826 been recorded in the dynamic string table
3827 section. */
3828 }
3829 break;
3830 }
3831 }
3832
3833 if (d != NULL)
3834 break;
3835 }
3836 }
3837
3838 if (deflt != NULL && h->verinfo.vertree == NULL)
3839 {
3840 h->verinfo.vertree = deflt;
3841 if (h->dynindx != -1
3842 && info->shared
3843 && ! sinfo->export_dynamic)
3844 {
3845 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3846 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3847 h->dynindx = -1;
3848 h->plt.offset = (bfd_vma) -1;
3849 /* FIXME: The name of the symbol has already been
3850 recorded in the dynamic string table section. */
3851 }
3852 }
3853 }
3854
3855 return true;
3856 }
3857 \f
3858 /* Final phase of ELF linker. */
3859
3860 /* A structure we use to avoid passing large numbers of arguments. */
3861
3862 struct elf_final_link_info
3863 {
3864 /* General link information. */
3865 struct bfd_link_info *info;
3866 /* Output BFD. */
3867 bfd *output_bfd;
3868 /* Symbol string table. */
3869 struct bfd_strtab_hash *symstrtab;
3870 /* .dynsym section. */
3871 asection *dynsym_sec;
3872 /* .hash section. */
3873 asection *hash_sec;
3874 /* symbol version section (.gnu.version). */
3875 asection *symver_sec;
3876 /* Buffer large enough to hold contents of any section. */
3877 bfd_byte *contents;
3878 /* Buffer large enough to hold external relocs of any section. */
3879 PTR external_relocs;
3880 /* Buffer large enough to hold internal relocs of any section. */
3881 Elf_Internal_Rela *internal_relocs;
3882 /* Buffer large enough to hold external local symbols of any input
3883 BFD. */
3884 Elf_External_Sym *external_syms;
3885 /* Buffer large enough to hold internal local symbols of any input
3886 BFD. */
3887 Elf_Internal_Sym *internal_syms;
3888 /* Array large enough to hold a symbol index for each local symbol
3889 of any input BFD. */
3890 long *indices;
3891 /* Array large enough to hold a section pointer for each local
3892 symbol of any input BFD. */
3893 asection **sections;
3894 /* Buffer to hold swapped out symbols. */
3895 Elf_External_Sym *symbuf;
3896 /* Number of swapped out symbols in buffer. */
3897 size_t symbuf_count;
3898 /* Number of symbols which fit in symbuf. */
3899 size_t symbuf_size;
3900 };
3901
3902 static boolean elf_link_output_sym
3903 PARAMS ((struct elf_final_link_info *, const char *,
3904 Elf_Internal_Sym *, asection *));
3905 static boolean elf_link_flush_output_syms
3906 PARAMS ((struct elf_final_link_info *));
3907 static boolean elf_link_output_extsym
3908 PARAMS ((struct elf_link_hash_entry *, PTR));
3909 static boolean elf_link_input_bfd
3910 PARAMS ((struct elf_final_link_info *, bfd *));
3911 static boolean elf_reloc_link_order
3912 PARAMS ((bfd *, struct bfd_link_info *, asection *,
3913 struct bfd_link_order *));
3914
3915 /* This struct is used to pass information to elf_link_output_extsym. */
3916
3917 struct elf_outext_info
3918 {
3919 boolean failed;
3920 boolean localsyms;
3921 struct elf_final_link_info *finfo;
3922 };
3923
3924 /* Compute the size of, and allocate space for, REL_HDR which is the
3925 section header for a section containing relocations for O. */
3926
3927 static boolean
3928 elf_link_size_reloc_section (abfd, rel_hdr, o)
3929 bfd *abfd;
3930 Elf_Internal_Shdr *rel_hdr;
3931 asection *o;
3932 {
3933 register struct elf_link_hash_entry **p, **pend;
3934 unsigned reloc_count;
3935
3936 /* Figure out how many relocations there will be. */
3937 if (rel_hdr == &elf_section_data (o)->rel_hdr)
3938 reloc_count = elf_section_data (o)->rel_count;
3939 else
3940 reloc_count = elf_section_data (o)->rel_count2;
3941
3942 /* That allows us to calculate the size of the section. */
3943 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
3944
3945 /* The contents field must last into write_object_contents, so we
3946 allocate it with bfd_alloc rather than malloc. */
3947 rel_hdr->contents = (PTR) bfd_alloc (abfd, rel_hdr->sh_size);
3948 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
3949 return false;
3950
3951 /* We only allocate one set of hash entries, so we only do it the
3952 first time we are called. */
3953 if (elf_section_data (o)->rel_hashes == NULL)
3954 {
3955 p = ((struct elf_link_hash_entry **)
3956 bfd_malloc (o->reloc_count
3957 * sizeof (struct elf_link_hash_entry *)));
3958 if (p == NULL && o->reloc_count != 0)
3959 return false;
3960
3961 elf_section_data (o)->rel_hashes = p;
3962 pend = p + o->reloc_count;
3963 for (; p < pend; p++)
3964 *p = NULL;
3965 }
3966
3967 return true;
3968 }
3969
3970 /* When performing a relocateable link, the input relocations are
3971 preserved. But, if they reference global symbols, the indices
3972 referenced must be updated. Update all the relocations in
3973 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
3974
3975 static void
3976 elf_link_adjust_relocs (abfd, rel_hdr, count, rel_hash)
3977 bfd *abfd;
3978 Elf_Internal_Shdr *rel_hdr;
3979 unsigned int count;
3980 struct elf_link_hash_entry **rel_hash;
3981 {
3982 unsigned int i;
3983
3984 for (i = 0; i < count; i++, rel_hash++)
3985 {
3986 if (*rel_hash == NULL)
3987 continue;
3988
3989 BFD_ASSERT ((*rel_hash)->indx >= 0);
3990
3991 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
3992 {
3993 Elf_External_Rel *erel;
3994 Elf_Internal_Rel irel;
3995
3996 erel = (Elf_External_Rel *) rel_hdr->contents + i;
3997 elf_swap_reloc_in (abfd, erel, &irel);
3998 irel.r_info = ELF_R_INFO ((*rel_hash)->indx,
3999 ELF_R_TYPE (irel.r_info));
4000 elf_swap_reloc_out (abfd, &irel, erel);
4001 }
4002 else
4003 {
4004 Elf_External_Rela *erela;
4005 Elf_Internal_Rela irela;
4006
4007 BFD_ASSERT (rel_hdr->sh_entsize
4008 == sizeof (Elf_External_Rela));
4009
4010 erela = (Elf_External_Rela *) rel_hdr->contents + i;
4011 elf_swap_reloca_in (abfd, erela, &irela);
4012 irela.r_info = ELF_R_INFO ((*rel_hash)->indx,
4013 ELF_R_TYPE (irela.r_info));
4014 elf_swap_reloca_out (abfd, &irela, erela);
4015 }
4016 }
4017 }
4018
4019 /* Do the final step of an ELF link. */
4020
4021 boolean
4022 elf_bfd_final_link (abfd, info)
4023 bfd *abfd;
4024 struct bfd_link_info *info;
4025 {
4026 boolean dynamic;
4027 bfd *dynobj;
4028 struct elf_final_link_info finfo;
4029 register asection *o;
4030 register struct bfd_link_order *p;
4031 register bfd *sub;
4032 size_t max_contents_size;
4033 size_t max_external_reloc_size;
4034 size_t max_internal_reloc_count;
4035 size_t max_sym_count;
4036 file_ptr off;
4037 Elf_Internal_Sym elfsym;
4038 unsigned int i;
4039 Elf_Internal_Shdr *symtab_hdr;
4040 Elf_Internal_Shdr *symstrtab_hdr;
4041 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4042 struct elf_outext_info eoinfo;
4043
4044 if (info->shared)
4045 abfd->flags |= DYNAMIC;
4046
4047 dynamic = elf_hash_table (info)->dynamic_sections_created;
4048 dynobj = elf_hash_table (info)->dynobj;
4049
4050 finfo.info = info;
4051 finfo.output_bfd = abfd;
4052 finfo.symstrtab = elf_stringtab_init ();
4053 if (finfo.symstrtab == NULL)
4054 return false;
4055
4056 if (! dynamic)
4057 {
4058 finfo.dynsym_sec = NULL;
4059 finfo.hash_sec = NULL;
4060 finfo.symver_sec = NULL;
4061 }
4062 else
4063 {
4064 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
4065 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
4066 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
4067 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
4068 /* Note that it is OK if symver_sec is NULL. */
4069 }
4070
4071 finfo.contents = NULL;
4072 finfo.external_relocs = NULL;
4073 finfo.internal_relocs = NULL;
4074 finfo.external_syms = NULL;
4075 finfo.internal_syms = NULL;
4076 finfo.indices = NULL;
4077 finfo.sections = NULL;
4078 finfo.symbuf = NULL;
4079 finfo.symbuf_count = 0;
4080
4081 /* Count up the number of relocations we will output for each output
4082 section, so that we know the sizes of the reloc sections. We
4083 also figure out some maximum sizes. */
4084 max_contents_size = 0;
4085 max_external_reloc_size = 0;
4086 max_internal_reloc_count = 0;
4087 max_sym_count = 0;
4088 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4089 {
4090 o->reloc_count = 0;
4091
4092 for (p = o->link_order_head; p != NULL; p = p->next)
4093 {
4094 if (p->type == bfd_section_reloc_link_order
4095 || p->type == bfd_symbol_reloc_link_order)
4096 ++o->reloc_count;
4097 else if (p->type == bfd_indirect_link_order)
4098 {
4099 asection *sec;
4100
4101 sec = p->u.indirect.section;
4102
4103 /* Mark all sections which are to be included in the
4104 link. This will normally be every section. We need
4105 to do this so that we can identify any sections which
4106 the linker has decided to not include. */
4107 sec->linker_mark = true;
4108
4109 if (info->relocateable)
4110 o->reloc_count += sec->reloc_count;
4111
4112 if (sec->_raw_size > max_contents_size)
4113 max_contents_size = sec->_raw_size;
4114 if (sec->_cooked_size > max_contents_size)
4115 max_contents_size = sec->_cooked_size;
4116
4117 /* We are interested in just local symbols, not all
4118 symbols. */
4119 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
4120 && (sec->owner->flags & DYNAMIC) == 0)
4121 {
4122 size_t sym_count;
4123
4124 if (elf_bad_symtab (sec->owner))
4125 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
4126 / sizeof (Elf_External_Sym));
4127 else
4128 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
4129
4130 if (sym_count > max_sym_count)
4131 max_sym_count = sym_count;
4132
4133 if ((sec->flags & SEC_RELOC) != 0)
4134 {
4135 size_t ext_size;
4136
4137 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
4138 if (ext_size > max_external_reloc_size)
4139 max_external_reloc_size = ext_size;
4140 if (sec->reloc_count > max_internal_reloc_count)
4141 max_internal_reloc_count = sec->reloc_count;
4142 }
4143 }
4144 }
4145 }
4146
4147 if (o->reloc_count > 0)
4148 o->flags |= SEC_RELOC;
4149 else
4150 {
4151 /* Explicitly clear the SEC_RELOC flag. The linker tends to
4152 set it (this is probably a bug) and if it is set
4153 assign_section_numbers will create a reloc section. */
4154 o->flags &=~ SEC_RELOC;
4155 }
4156
4157 /* If the SEC_ALLOC flag is not set, force the section VMA to
4158 zero. This is done in elf_fake_sections as well, but forcing
4159 the VMA to 0 here will ensure that relocs against these
4160 sections are handled correctly. */
4161 if ((o->flags & SEC_ALLOC) == 0
4162 && ! o->user_set_vma)
4163 o->vma = 0;
4164 }
4165
4166 /* Figure out the file positions for everything but the symbol table
4167 and the relocs. We set symcount to force assign_section_numbers
4168 to create a symbol table. */
4169 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
4170 BFD_ASSERT (! abfd->output_has_begun);
4171 if (! _bfd_elf_compute_section_file_positions (abfd, info))
4172 goto error_return;
4173
4174 /* Figure out how many relocations we will have in each section.
4175 Just using RELOC_COUNT isn't good enough since that doesn't
4176 maintain a separate value for REL vs. RELA relocations. */
4177 if (info->relocateable)
4178 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
4179 for (o = sub->sections; o != NULL; o = o->next)
4180 {
4181 asection *output_section;
4182
4183 if (! o->linker_mark)
4184 {
4185 /* This section was omitted from the link. */
4186 continue;
4187 }
4188
4189 output_section = o->output_section;
4190
4191 if (output_section != NULL
4192 && (o->flags & SEC_RELOC) != 0)
4193 {
4194 struct bfd_elf_section_data *esdi
4195 = elf_section_data (o);
4196 struct bfd_elf_section_data *esdo
4197 = elf_section_data (output_section);
4198 unsigned int *rel_count;
4199 unsigned int *rel_count2;
4200
4201 /* We must be careful to add the relocation froms the
4202 input section to the right output count. */
4203 if (esdi->rel_hdr.sh_entsize == esdo->rel_hdr.sh_entsize)
4204 {
4205 rel_count = &esdo->rel_count;
4206 rel_count2 = &esdo->rel_count2;
4207 }
4208 else
4209 {
4210 rel_count = &esdo->rel_count2;
4211 rel_count2 = &esdo->rel_count;
4212 }
4213
4214 *rel_count += (esdi->rel_hdr.sh_size
4215 / esdi->rel_hdr.sh_entsize);
4216 if (esdi->rel_hdr2)
4217 *rel_count2 += (esdi->rel_hdr2->sh_size
4218 / esdi->rel_hdr2->sh_entsize);
4219 }
4220 }
4221
4222 /* That created the reloc sections. Set their sizes, and assign
4223 them file positions, and allocate some buffers. */
4224 for (o = abfd->sections; o != NULL; o = o->next)
4225 {
4226 if ((o->flags & SEC_RELOC) != 0)
4227 {
4228 if (!elf_link_size_reloc_section (abfd,
4229 &elf_section_data (o)->rel_hdr,
4230 o))
4231 goto error_return;
4232
4233 if (elf_section_data (o)->rel_hdr2
4234 && !elf_link_size_reloc_section (abfd,
4235 elf_section_data (o)->rel_hdr2,
4236 o))
4237 goto error_return;
4238 }
4239
4240 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
4241 to count upwards while actually outputting the relocations. */
4242 elf_section_data (o)->rel_count = 0;
4243 elf_section_data (o)->rel_count2 = 0;
4244 }
4245
4246 _bfd_elf_assign_file_positions_for_relocs (abfd);
4247
4248 /* We have now assigned file positions for all the sections except
4249 .symtab and .strtab. We start the .symtab section at the current
4250 file position, and write directly to it. We build the .strtab
4251 section in memory. */
4252 bfd_get_symcount (abfd) = 0;
4253 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4254 /* sh_name is set in prep_headers. */
4255 symtab_hdr->sh_type = SHT_SYMTAB;
4256 symtab_hdr->sh_flags = 0;
4257 symtab_hdr->sh_addr = 0;
4258 symtab_hdr->sh_size = 0;
4259 symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
4260 /* sh_link is set in assign_section_numbers. */
4261 /* sh_info is set below. */
4262 /* sh_offset is set just below. */
4263 symtab_hdr->sh_addralign = 4; /* FIXME: system dependent? */
4264
4265 off = elf_tdata (abfd)->next_file_pos;
4266 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
4267
4268 /* Note that at this point elf_tdata (abfd)->next_file_pos is
4269 incorrect. We do not yet know the size of the .symtab section.
4270 We correct next_file_pos below, after we do know the size. */
4271
4272 /* Allocate a buffer to hold swapped out symbols. This is to avoid
4273 continuously seeking to the right position in the file. */
4274 if (! info->keep_memory || max_sym_count < 20)
4275 finfo.symbuf_size = 20;
4276 else
4277 finfo.symbuf_size = max_sym_count;
4278 finfo.symbuf = ((Elf_External_Sym *)
4279 bfd_malloc (finfo.symbuf_size * sizeof (Elf_External_Sym)));
4280 if (finfo.symbuf == NULL)
4281 goto error_return;
4282
4283 /* Start writing out the symbol table. The first symbol is always a
4284 dummy symbol. */
4285 if (info->strip != strip_all || info->relocateable)
4286 {
4287 elfsym.st_value = 0;
4288 elfsym.st_size = 0;
4289 elfsym.st_info = 0;
4290 elfsym.st_other = 0;
4291 elfsym.st_shndx = SHN_UNDEF;
4292 if (! elf_link_output_sym (&finfo, (const char *) NULL,
4293 &elfsym, bfd_und_section_ptr))
4294 goto error_return;
4295 }
4296
4297 #if 0
4298 /* Some standard ELF linkers do this, but we don't because it causes
4299 bootstrap comparison failures. */
4300 /* Output a file symbol for the output file as the second symbol.
4301 We output this even if we are discarding local symbols, although
4302 I'm not sure if this is correct. */
4303 elfsym.st_value = 0;
4304 elfsym.st_size = 0;
4305 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
4306 elfsym.st_other = 0;
4307 elfsym.st_shndx = SHN_ABS;
4308 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
4309 &elfsym, bfd_abs_section_ptr))
4310 goto error_return;
4311 #endif
4312
4313 /* Output a symbol for each section. We output these even if we are
4314 discarding local symbols, since they are used for relocs. These
4315 symbols have no names. We store the index of each one in the
4316 index field of the section, so that we can find it again when
4317 outputting relocs. */
4318 if (info->strip != strip_all || info->relocateable)
4319 {
4320 elfsym.st_size = 0;
4321 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
4322 elfsym.st_other = 0;
4323 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4324 {
4325 o = section_from_elf_index (abfd, i);
4326 if (o != NULL)
4327 o->target_index = bfd_get_symcount (abfd);
4328 elfsym.st_shndx = i;
4329 if (info->relocateable || o == NULL)
4330 elfsym.st_value = 0;
4331 else
4332 elfsym.st_value = o->vma;
4333 if (! elf_link_output_sym (&finfo, (const char *) NULL,
4334 &elfsym, o))
4335 goto error_return;
4336 }
4337 }
4338
4339 /* Allocate some memory to hold information read in from the input
4340 files. */
4341 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
4342 finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
4343 finfo.internal_relocs = ((Elf_Internal_Rela *)
4344 bfd_malloc (max_internal_reloc_count
4345 * sizeof (Elf_Internal_Rela)
4346 * bed->s->int_rels_per_ext_rel));
4347 finfo.external_syms = ((Elf_External_Sym *)
4348 bfd_malloc (max_sym_count
4349 * sizeof (Elf_External_Sym)));
4350 finfo.internal_syms = ((Elf_Internal_Sym *)
4351 bfd_malloc (max_sym_count
4352 * sizeof (Elf_Internal_Sym)));
4353 finfo.indices = (long *) bfd_malloc (max_sym_count * sizeof (long));
4354 finfo.sections = ((asection **)
4355 bfd_malloc (max_sym_count * sizeof (asection *)));
4356 if ((finfo.contents == NULL && max_contents_size != 0)
4357 || (finfo.external_relocs == NULL && max_external_reloc_size != 0)
4358 || (finfo.internal_relocs == NULL && max_internal_reloc_count != 0)
4359 || (finfo.external_syms == NULL && max_sym_count != 0)
4360 || (finfo.internal_syms == NULL && max_sym_count != 0)
4361 || (finfo.indices == NULL && max_sym_count != 0)
4362 || (finfo.sections == NULL && max_sym_count != 0))
4363 goto error_return;
4364
4365 /* Since ELF permits relocations to be against local symbols, we
4366 must have the local symbols available when we do the relocations.
4367 Since we would rather only read the local symbols once, and we
4368 would rather not keep them in memory, we handle all the
4369 relocations for a single input file at the same time.
4370
4371 Unfortunately, there is no way to know the total number of local
4372 symbols until we have seen all of them, and the local symbol
4373 indices precede the global symbol indices. This means that when
4374 we are generating relocateable output, and we see a reloc against
4375 a global symbol, we can not know the symbol index until we have
4376 finished examining all the local symbols to see which ones we are
4377 going to output. To deal with this, we keep the relocations in
4378 memory, and don't output them until the end of the link. This is
4379 an unfortunate waste of memory, but I don't see a good way around
4380 it. Fortunately, it only happens when performing a relocateable
4381 link, which is not the common case. FIXME: If keep_memory is set
4382 we could write the relocs out and then read them again; I don't
4383 know how bad the memory loss will be. */
4384
4385 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
4386 sub->output_has_begun = false;
4387 for (o = abfd->sections; o != NULL; o = o->next)
4388 {
4389 for (p = o->link_order_head; p != NULL; p = p->next)
4390 {
4391 if (p->type == bfd_indirect_link_order
4392 && (bfd_get_flavour (p->u.indirect.section->owner)
4393 == bfd_target_elf_flavour))
4394 {
4395 sub = p->u.indirect.section->owner;
4396 if (! sub->output_has_begun)
4397 {
4398 if (! elf_link_input_bfd (&finfo, sub))
4399 goto error_return;
4400 sub->output_has_begun = true;
4401 }
4402 }
4403 else if (p->type == bfd_section_reloc_link_order
4404 || p->type == bfd_symbol_reloc_link_order)
4405 {
4406 if (! elf_reloc_link_order (abfd, info, o, p))
4407 goto error_return;
4408 }
4409 else
4410 {
4411 if (! _bfd_default_link_order (abfd, info, o, p))
4412 goto error_return;
4413 }
4414 }
4415 }
4416
4417 /* That wrote out all the local symbols. Finish up the symbol table
4418 with the global symbols. */
4419
4420 if (info->strip != strip_all && info->shared)
4421 {
4422 /* Output any global symbols that got converted to local in a
4423 version script. We do this in a separate step since ELF
4424 requires all local symbols to appear prior to any global
4425 symbols. FIXME: We should only do this if some global
4426 symbols were, in fact, converted to become local. FIXME:
4427 Will this work correctly with the Irix 5 linker? */
4428 eoinfo.failed = false;
4429 eoinfo.finfo = &finfo;
4430 eoinfo.localsyms = true;
4431 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4432 (PTR) &eoinfo);
4433 if (eoinfo.failed)
4434 return false;
4435 }
4436
4437 /* The sh_info field records the index of the first non local symbol. */
4438 symtab_hdr->sh_info = bfd_get_symcount (abfd);
4439
4440 if (dynamic)
4441 {
4442 Elf_Internal_Sym sym;
4443 Elf_External_Sym *dynsym =
4444 (Elf_External_Sym *)finfo.dynsym_sec->contents;
4445 long last_local = 0;
4446
4447 /* Write out the section symbols for the output sections. */
4448 if (info->shared)
4449 {
4450 asection *s;
4451
4452 sym.st_size = 0;
4453 sym.st_name = 0;
4454 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
4455 sym.st_other = 0;
4456
4457 for (s = abfd->sections; s != NULL; s = s->next)
4458 {
4459 int indx;
4460 indx = elf_section_data (s)->this_idx;
4461 BFD_ASSERT (indx > 0);
4462 sym.st_shndx = indx;
4463 sym.st_value = s->vma;
4464
4465 elf_swap_symbol_out (abfd, &sym,
4466 dynsym + elf_section_data (s)->dynindx);
4467 }
4468
4469 last_local = bfd_count_sections (abfd);
4470 }
4471
4472 /* Write out the local dynsyms. */
4473 if (elf_hash_table (info)->dynlocal)
4474 {
4475 struct elf_link_local_dynamic_entry *e;
4476 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
4477 {
4478 asection *s;
4479
4480 sym.st_size = e->isym.st_size;
4481 sym.st_other = e->isym.st_other;
4482
4483 /* Copy the internal symbol as is.
4484 Note that we saved a word of storage and overwrote
4485 the original st_name with the dynstr_index. */
4486 sym = e->isym;
4487
4488 if (e->isym.st_shndx > 0 && e->isym.st_shndx < SHN_LORESERVE)
4489 {
4490 s = bfd_section_from_elf_index (e->input_bfd,
4491 e->isym.st_shndx);
4492
4493 sym.st_shndx =
4494 elf_section_data (s->output_section)->this_idx;
4495 sym.st_value = (s->output_section->vma
4496 + s->output_offset
4497 + e->isym.st_value);
4498 }
4499
4500 if (last_local < e->dynindx)
4501 last_local = e->dynindx;
4502
4503 elf_swap_symbol_out (abfd, &sym, dynsym + e->dynindx);
4504 }
4505 }
4506
4507 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
4508 last_local + 1;
4509 }
4510
4511 /* We get the global symbols from the hash table. */
4512 eoinfo.failed = false;
4513 eoinfo.localsyms = false;
4514 eoinfo.finfo = &finfo;
4515 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4516 (PTR) &eoinfo);
4517 if (eoinfo.failed)
4518 return false;
4519
4520 /* If backend needs to output some symbols not present in the hash
4521 table, do it now. */
4522 if (bed->elf_backend_output_arch_syms)
4523 {
4524 if (! (*bed->elf_backend_output_arch_syms)
4525 (abfd, info, (PTR) &finfo,
4526 (boolean (*) PARAMS ((PTR, const char *,
4527 Elf_Internal_Sym *, asection *)))
4528 elf_link_output_sym))
4529 return false;
4530 }
4531
4532 /* Flush all symbols to the file. */
4533 if (! elf_link_flush_output_syms (&finfo))
4534 return false;
4535
4536 /* Now we know the size of the symtab section. */
4537 off += symtab_hdr->sh_size;
4538
4539 /* Finish up and write out the symbol string table (.strtab)
4540 section. */
4541 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
4542 /* sh_name was set in prep_headers. */
4543 symstrtab_hdr->sh_type = SHT_STRTAB;
4544 symstrtab_hdr->sh_flags = 0;
4545 symstrtab_hdr->sh_addr = 0;
4546 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
4547 symstrtab_hdr->sh_entsize = 0;
4548 symstrtab_hdr->sh_link = 0;
4549 symstrtab_hdr->sh_info = 0;
4550 /* sh_offset is set just below. */
4551 symstrtab_hdr->sh_addralign = 1;
4552
4553 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
4554 elf_tdata (abfd)->next_file_pos = off;
4555
4556 if (bfd_get_symcount (abfd) > 0)
4557 {
4558 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
4559 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
4560 return false;
4561 }
4562
4563 /* Adjust the relocs to have the correct symbol indices. */
4564 for (o = abfd->sections; o != NULL; o = o->next)
4565 {
4566 if ((o->flags & SEC_RELOC) == 0)
4567 continue;
4568
4569 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
4570 elf_section_data (o)->rel_count,
4571 elf_section_data (o)->rel_hashes);
4572 if (elf_section_data (o)->rel_hdr2 != NULL)
4573 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
4574 elf_section_data (o)->rel_count2,
4575 (elf_section_data (o)->rel_hashes
4576 + elf_section_data (o)->rel_count));
4577
4578 /* Set the reloc_count field to 0 to prevent write_relocs from
4579 trying to swap the relocs out itself. */
4580 o->reloc_count = 0;
4581 }
4582
4583 /* If we are linking against a dynamic object, or generating a
4584 shared library, finish up the dynamic linking information. */
4585 if (dynamic)
4586 {
4587 Elf_External_Dyn *dyncon, *dynconend;
4588
4589 /* Fix up .dynamic entries. */
4590 o = bfd_get_section_by_name (dynobj, ".dynamic");
4591 BFD_ASSERT (o != NULL);
4592
4593 dyncon = (Elf_External_Dyn *) o->contents;
4594 dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
4595 for (; dyncon < dynconend; dyncon++)
4596 {
4597 Elf_Internal_Dyn dyn;
4598 const char *name;
4599 unsigned int type;
4600
4601 elf_swap_dyn_in (dynobj, dyncon, &dyn);
4602
4603 switch (dyn.d_tag)
4604 {
4605 default:
4606 break;
4607 case DT_INIT:
4608 name = info->init_function;
4609 goto get_sym;
4610 case DT_FINI:
4611 name = info->fini_function;
4612 get_sym:
4613 {
4614 struct elf_link_hash_entry *h;
4615
4616 h = elf_link_hash_lookup (elf_hash_table (info), name,
4617 false, false, true);
4618 if (h != NULL
4619 && (h->root.type == bfd_link_hash_defined
4620 || h->root.type == bfd_link_hash_defweak))
4621 {
4622 dyn.d_un.d_val = h->root.u.def.value;
4623 o = h->root.u.def.section;
4624 if (o->output_section != NULL)
4625 dyn.d_un.d_val += (o->output_section->vma
4626 + o->output_offset);
4627 else
4628 {
4629 /* The symbol is imported from another shared
4630 library and does not apply to this one. */
4631 dyn.d_un.d_val = 0;
4632 }
4633
4634 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4635 }
4636 }
4637 break;
4638
4639 case DT_HASH:
4640 name = ".hash";
4641 goto get_vma;
4642 case DT_STRTAB:
4643 name = ".dynstr";
4644 goto get_vma;
4645 case DT_SYMTAB:
4646 name = ".dynsym";
4647 goto get_vma;
4648 case DT_VERDEF:
4649 name = ".gnu.version_d";
4650 goto get_vma;
4651 case DT_VERNEED:
4652 name = ".gnu.version_r";
4653 goto get_vma;
4654 case DT_VERSYM:
4655 name = ".gnu.version";
4656 get_vma:
4657 o = bfd_get_section_by_name (abfd, name);
4658 BFD_ASSERT (o != NULL);
4659 dyn.d_un.d_ptr = o->vma;
4660 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4661 break;
4662
4663 case DT_REL:
4664 case DT_RELA:
4665 case DT_RELSZ:
4666 case DT_RELASZ:
4667 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
4668 type = SHT_REL;
4669 else
4670 type = SHT_RELA;
4671 dyn.d_un.d_val = 0;
4672 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4673 {
4674 Elf_Internal_Shdr *hdr;
4675
4676 hdr = elf_elfsections (abfd)[i];
4677 if (hdr->sh_type == type
4678 && (hdr->sh_flags & SHF_ALLOC) != 0)
4679 {
4680 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
4681 dyn.d_un.d_val += hdr->sh_size;
4682 else
4683 {
4684 if (dyn.d_un.d_val == 0
4685 || hdr->sh_addr < dyn.d_un.d_val)
4686 dyn.d_un.d_val = hdr->sh_addr;
4687 }
4688 }
4689 }
4690 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4691 break;
4692 }
4693 }
4694 }
4695
4696 /* If we have created any dynamic sections, then output them. */
4697 if (dynobj != NULL)
4698 {
4699 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
4700 goto error_return;
4701
4702 for (o = dynobj->sections; o != NULL; o = o->next)
4703 {
4704 if ((o->flags & SEC_HAS_CONTENTS) == 0
4705 || o->_raw_size == 0)
4706 continue;
4707 if ((o->flags & SEC_LINKER_CREATED) == 0)
4708 {
4709 /* At this point, we are only interested in sections
4710 created by elf_link_create_dynamic_sections. */
4711 continue;
4712 }
4713 if ((elf_section_data (o->output_section)->this_hdr.sh_type
4714 != SHT_STRTAB)
4715 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
4716 {
4717 if (! bfd_set_section_contents (abfd, o->output_section,
4718 o->contents, o->output_offset,
4719 o->_raw_size))
4720 goto error_return;
4721 }
4722 else
4723 {
4724 file_ptr off;
4725
4726 /* The contents of the .dynstr section are actually in a
4727 stringtab. */
4728 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
4729 if (bfd_seek (abfd, off, SEEK_SET) != 0
4730 || ! _bfd_stringtab_emit (abfd,
4731 elf_hash_table (info)->dynstr))
4732 goto error_return;
4733 }
4734 }
4735 }
4736
4737 /* If we have optimized stabs strings, output them. */
4738 if (elf_hash_table (info)->stab_info != NULL)
4739 {
4740 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
4741 goto error_return;
4742 }
4743
4744 if (finfo.symstrtab != NULL)
4745 _bfd_stringtab_free (finfo.symstrtab);
4746 if (finfo.contents != NULL)
4747 free (finfo.contents);
4748 if (finfo.external_relocs != NULL)
4749 free (finfo.external_relocs);
4750 if (finfo.internal_relocs != NULL)
4751 free (finfo.internal_relocs);
4752 if (finfo.external_syms != NULL)
4753 free (finfo.external_syms);
4754 if (finfo.internal_syms != NULL)
4755 free (finfo.internal_syms);
4756 if (finfo.indices != NULL)
4757 free (finfo.indices);
4758 if (finfo.sections != NULL)
4759 free (finfo.sections);
4760 if (finfo.symbuf != NULL)
4761 free (finfo.symbuf);
4762 for (o = abfd->sections; o != NULL; o = o->next)
4763 {
4764 if ((o->flags & SEC_RELOC) != 0
4765 && elf_section_data (o)->rel_hashes != NULL)
4766 free (elf_section_data (o)->rel_hashes);
4767 }
4768
4769 elf_tdata (abfd)->linker = true;
4770
4771 return true;
4772
4773 error_return:
4774 if (finfo.symstrtab != NULL)
4775 _bfd_stringtab_free (finfo.symstrtab);
4776 if (finfo.contents != NULL)
4777 free (finfo.contents);
4778 if (finfo.external_relocs != NULL)
4779 free (finfo.external_relocs);
4780 if (finfo.internal_relocs != NULL)
4781 free (finfo.internal_relocs);
4782 if (finfo.external_syms != NULL)
4783 free (finfo.external_syms);
4784 if (finfo.internal_syms != NULL)
4785 free (finfo.internal_syms);
4786 if (finfo.indices != NULL)
4787 free (finfo.indices);
4788 if (finfo.sections != NULL)
4789 free (finfo.sections);
4790 if (finfo.symbuf != NULL)
4791 free (finfo.symbuf);
4792 for (o = abfd->sections; o != NULL; o = o->next)
4793 {
4794 if ((o->flags & SEC_RELOC) != 0
4795 && elf_section_data (o)->rel_hashes != NULL)
4796 free (elf_section_data (o)->rel_hashes);
4797 }
4798
4799 return false;
4800 }
4801
4802 /* Add a symbol to the output symbol table. */
4803
4804 static boolean
4805 elf_link_output_sym (finfo, name, elfsym, input_sec)
4806 struct elf_final_link_info *finfo;
4807 const char *name;
4808 Elf_Internal_Sym *elfsym;
4809 asection *input_sec;
4810 {
4811 boolean (*output_symbol_hook) PARAMS ((bfd *,
4812 struct bfd_link_info *info,
4813 const char *,
4814 Elf_Internal_Sym *,
4815 asection *));
4816
4817 output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
4818 elf_backend_link_output_symbol_hook;
4819 if (output_symbol_hook != NULL)
4820 {
4821 if (! ((*output_symbol_hook)
4822 (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
4823 return false;
4824 }
4825
4826 if (name == (const char *) NULL || *name == '\0')
4827 elfsym->st_name = 0;
4828 else if (input_sec->flags & SEC_EXCLUDE)
4829 elfsym->st_name = 0;
4830 else
4831 {
4832 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
4833 name, true,
4834 false);
4835 if (elfsym->st_name == (unsigned long) -1)
4836 return false;
4837 }
4838
4839 if (finfo->symbuf_count >= finfo->symbuf_size)
4840 {
4841 if (! elf_link_flush_output_syms (finfo))
4842 return false;
4843 }
4844
4845 elf_swap_symbol_out (finfo->output_bfd, elfsym,
4846 (PTR) (finfo->symbuf + finfo->symbuf_count));
4847 ++finfo->symbuf_count;
4848
4849 ++ bfd_get_symcount (finfo->output_bfd);
4850
4851 return true;
4852 }
4853
4854 /* Flush the output symbols to the file. */
4855
4856 static boolean
4857 elf_link_flush_output_syms (finfo)
4858 struct elf_final_link_info *finfo;
4859 {
4860 if (finfo->symbuf_count > 0)
4861 {
4862 Elf_Internal_Shdr *symtab;
4863
4864 symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr;
4865
4866 if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size,
4867 SEEK_SET) != 0
4868 || (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count,
4869 sizeof (Elf_External_Sym), finfo->output_bfd)
4870 != finfo->symbuf_count * sizeof (Elf_External_Sym)))
4871 return false;
4872
4873 symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym);
4874
4875 finfo->symbuf_count = 0;
4876 }
4877
4878 return true;
4879 }
4880
4881 /* Add an external symbol to the symbol table. This is called from
4882 the hash table traversal routine. When generating a shared object,
4883 we go through the symbol table twice. The first time we output
4884 anything that might have been forced to local scope in a version
4885 script. The second time we output the symbols that are still
4886 global symbols. */
4887
4888 static boolean
4889 elf_link_output_extsym (h, data)
4890 struct elf_link_hash_entry *h;
4891 PTR data;
4892 {
4893 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
4894 struct elf_final_link_info *finfo = eoinfo->finfo;
4895 boolean strip;
4896 Elf_Internal_Sym sym;
4897 asection *input_sec;
4898
4899 /* Decide whether to output this symbol in this pass. */
4900 if (eoinfo->localsyms)
4901 {
4902 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
4903 return true;
4904 }
4905 else
4906 {
4907 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4908 return true;
4909 }
4910
4911 /* If we are not creating a shared library, and this symbol is
4912 referenced by a shared library but is not defined anywhere, then
4913 warn that it is undefined. If we do not do this, the runtime
4914 linker will complain that the symbol is undefined when the
4915 program is run. We don't have to worry about symbols that are
4916 referenced by regular files, because we will already have issued
4917 warnings for them. */
4918 if (! finfo->info->relocateable
4919 && ! (finfo->info->shared
4920 && !finfo->info->no_undefined)
4921 && h->root.type == bfd_link_hash_undefined
4922 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
4923 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4924 {
4925 if (! ((*finfo->info->callbacks->undefined_symbol)
4926 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
4927 (asection *) NULL, 0)))
4928 {
4929 eoinfo->failed = true;
4930 return false;
4931 }
4932 }
4933
4934 /* We don't want to output symbols that have never been mentioned by
4935 a regular file, or that we have been told to strip. However, if
4936 h->indx is set to -2, the symbol is used by a reloc and we must
4937 output it. */
4938 if (h->indx == -2)
4939 strip = false;
4940 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
4941 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
4942 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
4943 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4944 strip = true;
4945 else if (finfo->info->strip == strip_all
4946 || (finfo->info->strip == strip_some
4947 && bfd_hash_lookup (finfo->info->keep_hash,
4948 h->root.root.string,
4949 false, false) == NULL))
4950 strip = true;
4951 else
4952 strip = false;
4953
4954 /* If we're stripping it, and it's not a dynamic symbol, there's
4955 nothing else to do. */
4956 if (strip && h->dynindx == -1)
4957 return true;
4958
4959 sym.st_value = 0;
4960 sym.st_size = h->size;
4961 sym.st_other = h->other;
4962 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4963 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
4964 else if (h->root.type == bfd_link_hash_undefweak
4965 || h->root.type == bfd_link_hash_defweak)
4966 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
4967 else
4968 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
4969
4970 switch (h->root.type)
4971 {
4972 default:
4973 case bfd_link_hash_new:
4974 abort ();
4975 return false;
4976
4977 case bfd_link_hash_undefined:
4978 input_sec = bfd_und_section_ptr;
4979 sym.st_shndx = SHN_UNDEF;
4980 break;
4981
4982 case bfd_link_hash_undefweak:
4983 input_sec = bfd_und_section_ptr;
4984 sym.st_shndx = SHN_UNDEF;
4985 break;
4986
4987 case bfd_link_hash_defined:
4988 case bfd_link_hash_defweak:
4989 {
4990 input_sec = h->root.u.def.section;
4991 if (input_sec->output_section != NULL)
4992 {
4993 sym.st_shndx =
4994 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
4995 input_sec->output_section);
4996 if (sym.st_shndx == (unsigned short) -1)
4997 {
4998 (*_bfd_error_handler)
4999 (_("%s: could not find output section %s for input section %s"),
5000 bfd_get_filename (finfo->output_bfd),
5001 input_sec->output_section->name,
5002 input_sec->name);
5003 eoinfo->failed = true;
5004 return false;
5005 }
5006
5007 /* ELF symbols in relocateable files are section relative,
5008 but in nonrelocateable files they are virtual
5009 addresses. */
5010 sym.st_value = h->root.u.def.value + input_sec->output_offset;
5011 if (! finfo->info->relocateable)
5012 sym.st_value += input_sec->output_section->vma;
5013 }
5014 else
5015 {
5016 BFD_ASSERT (input_sec->owner == NULL
5017 || (input_sec->owner->flags & DYNAMIC) != 0);
5018 sym.st_shndx = SHN_UNDEF;
5019 input_sec = bfd_und_section_ptr;
5020 }
5021 }
5022 break;
5023
5024 case bfd_link_hash_common:
5025 input_sec = h->root.u.c.p->section;
5026 sym.st_shndx = SHN_COMMON;
5027 sym.st_value = 1 << h->root.u.c.p->alignment_power;
5028 break;
5029
5030 case bfd_link_hash_indirect:
5031 /* These symbols are created by symbol versioning. They point
5032 to the decorated version of the name. For example, if the
5033 symbol foo@@GNU_1.2 is the default, which should be used when
5034 foo is used with no version, then we add an indirect symbol
5035 foo which points to foo@@GNU_1.2. We ignore these symbols,
5036 since the indirected symbol is already in the hash table. If
5037 the indirect symbol is non-ELF, fall through and output it. */
5038 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) == 0)
5039 return true;
5040
5041 /* Fall through. */
5042 case bfd_link_hash_warning:
5043 /* We can't represent these symbols in ELF, although a warning
5044 symbol may have come from a .gnu.warning.SYMBOL section. We
5045 just put the target symbol in the hash table. If the target
5046 symbol does not really exist, don't do anything. */
5047 if (h->root.u.i.link->type == bfd_link_hash_new)
5048 return true;
5049 return (elf_link_output_extsym
5050 ((struct elf_link_hash_entry *) h->root.u.i.link, data));
5051 }
5052
5053 /* Give the processor backend a chance to tweak the symbol value,
5054 and also to finish up anything that needs to be done for this
5055 symbol. */
5056 if ((h->dynindx != -1
5057 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5058 && elf_hash_table (finfo->info)->dynamic_sections_created)
5059 {
5060 struct elf_backend_data *bed;
5061
5062 bed = get_elf_backend_data (finfo->output_bfd);
5063 if (! ((*bed->elf_backend_finish_dynamic_symbol)
5064 (finfo->output_bfd, finfo->info, h, &sym)))
5065 {
5066 eoinfo->failed = true;
5067 return false;
5068 }
5069 }
5070
5071 /* If we are marking the symbol as undefined, and there are no
5072 non-weak references to this symbol from a regular object, then
5073 mark the symbol as weak undefined; if there are non-weak
5074 references, mark the symbol as strong. We can't do this earlier,
5075 because it might not be marked as undefined until the
5076 finish_dynamic_symbol routine gets through with it. */
5077 if (sym.st_shndx == SHN_UNDEF
5078 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
5079 && (ELF_ST_BIND(sym.st_info) == STB_GLOBAL
5080 || ELF_ST_BIND(sym.st_info) == STB_WEAK))
5081 {
5082 int bindtype;
5083
5084 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) != 0)
5085 bindtype = STB_GLOBAL;
5086 else
5087 bindtype = STB_WEAK;
5088 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
5089 }
5090
5091 /* If this symbol should be put in the .dynsym section, then put it
5092 there now. We have already know the symbol index. We also fill
5093 in the entry in the .hash section. */
5094 if (h->dynindx != -1
5095 && elf_hash_table (finfo->info)->dynamic_sections_created)
5096 {
5097 size_t bucketcount;
5098 size_t bucket;
5099 size_t hash_entry_size;
5100 bfd_byte *bucketpos;
5101 bfd_vma chain;
5102
5103 sym.st_name = h->dynstr_index;
5104
5105 elf_swap_symbol_out (finfo->output_bfd, &sym,
5106 (PTR) (((Elf_External_Sym *)
5107 finfo->dynsym_sec->contents)
5108 + h->dynindx));
5109
5110 bucketcount = elf_hash_table (finfo->info)->bucketcount;
5111 bucket = h->elf_hash_value % bucketcount;
5112 hash_entry_size
5113 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
5114 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
5115 + (bucket + 2) * hash_entry_size);
5116 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
5117 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
5118 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
5119 ((bfd_byte *) finfo->hash_sec->contents
5120 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
5121
5122 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
5123 {
5124 Elf_Internal_Versym iversym;
5125
5126 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5127 {
5128 if (h->verinfo.verdef == NULL)
5129 iversym.vs_vers = 0;
5130 else
5131 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
5132 }
5133 else
5134 {
5135 if (h->verinfo.vertree == NULL)
5136 iversym.vs_vers = 1;
5137 else
5138 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
5139 }
5140
5141 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
5142 iversym.vs_vers |= VERSYM_HIDDEN;
5143
5144 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym,
5145 (((Elf_External_Versym *)
5146 finfo->symver_sec->contents)
5147 + h->dynindx));
5148 }
5149 }
5150
5151 /* If we're stripping it, then it was just a dynamic symbol, and
5152 there's nothing else to do. */
5153 if (strip)
5154 return true;
5155
5156 h->indx = bfd_get_symcount (finfo->output_bfd);
5157
5158 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
5159 {
5160 eoinfo->failed = true;
5161 return false;
5162 }
5163
5164 return true;
5165 }
5166
5167 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
5168 originated from the section given by INPUT_REL_HDR) to the
5169 OUTPUT_BFD. */
5170
5171 static void
5172 elf_link_output_relocs (output_bfd, input_section, input_rel_hdr,
5173 internal_relocs)
5174 bfd *output_bfd;
5175 asection *input_section;
5176 Elf_Internal_Shdr *input_rel_hdr;
5177 Elf_Internal_Rela *internal_relocs;
5178 {
5179 Elf_Internal_Rela *irela;
5180 Elf_Internal_Rela *irelaend;
5181 Elf_Internal_Shdr *output_rel_hdr;
5182 asection *output_section;
5183 unsigned int *rel_countp = NULL;
5184
5185 output_section = input_section->output_section;
5186 output_rel_hdr = NULL;
5187
5188 if (elf_section_data (output_section)->rel_hdr.sh_entsize
5189 == input_rel_hdr->sh_entsize)
5190 {
5191 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
5192 rel_countp = &elf_section_data (output_section)->rel_count;
5193 }
5194 else if (elf_section_data (output_section)->rel_hdr2
5195 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
5196 == input_rel_hdr->sh_entsize))
5197 {
5198 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
5199 rel_countp = &elf_section_data (output_section)->rel_count2;
5200 }
5201
5202 BFD_ASSERT (output_rel_hdr != NULL);
5203
5204 irela = internal_relocs;
5205 irelaend = irela + input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5206 if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
5207 {
5208 Elf_External_Rel *erel;
5209
5210 erel = ((Elf_External_Rel *) output_rel_hdr->contents + *rel_countp);
5211 for (; irela < irelaend; irela++, erel++)
5212 {
5213 Elf_Internal_Rel irel;
5214
5215 irel.r_offset = irela->r_offset;
5216 irel.r_info = irela->r_info;
5217 BFD_ASSERT (irela->r_addend == 0);
5218 elf_swap_reloc_out (output_bfd, &irel, erel);
5219 }
5220 }
5221 else
5222 {
5223 Elf_External_Rela *erela;
5224
5225 BFD_ASSERT (input_rel_hdr->sh_entsize
5226 == sizeof (Elf_External_Rela));
5227 erela = ((Elf_External_Rela *) output_rel_hdr->contents + *rel_countp);
5228 for (; irela < irelaend; irela++, erela++)
5229 elf_swap_reloca_out (output_bfd, irela, erela);
5230 }
5231
5232 /* Bump the counter, so that we know where to add the next set of
5233 relocations. */
5234 *rel_countp += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5235 }
5236
5237 /* Link an input file into the linker output file. This function
5238 handles all the sections and relocations of the input file at once.
5239 This is so that we only have to read the local symbols once, and
5240 don't have to keep them in memory. */
5241
5242 static boolean
5243 elf_link_input_bfd (finfo, input_bfd)
5244 struct elf_final_link_info *finfo;
5245 bfd *input_bfd;
5246 {
5247 boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
5248 bfd *, asection *, bfd_byte *,
5249 Elf_Internal_Rela *,
5250 Elf_Internal_Sym *, asection **));
5251 bfd *output_bfd;
5252 Elf_Internal_Shdr *symtab_hdr;
5253 size_t locsymcount;
5254 size_t extsymoff;
5255 Elf_External_Sym *external_syms;
5256 Elf_External_Sym *esym;
5257 Elf_External_Sym *esymend;
5258 Elf_Internal_Sym *isym;
5259 long *pindex;
5260 asection **ppsection;
5261 asection *o;
5262 struct elf_backend_data *bed;
5263
5264 output_bfd = finfo->output_bfd;
5265 bed = get_elf_backend_data (output_bfd);
5266 relocate_section = bed->elf_backend_relocate_section;
5267
5268 /* If this is a dynamic object, we don't want to do anything here:
5269 we don't want the local symbols, and we don't want the section
5270 contents. */
5271 if ((input_bfd->flags & DYNAMIC) != 0)
5272 return true;
5273
5274 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5275 if (elf_bad_symtab (input_bfd))
5276 {
5277 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
5278 extsymoff = 0;
5279 }
5280 else
5281 {
5282 locsymcount = symtab_hdr->sh_info;
5283 extsymoff = symtab_hdr->sh_info;
5284 }
5285
5286 /* Read the local symbols. */
5287 if (symtab_hdr->contents != NULL)
5288 external_syms = (Elf_External_Sym *) symtab_hdr->contents;
5289 else if (locsymcount == 0)
5290 external_syms = NULL;
5291 else
5292 {
5293 external_syms = finfo->external_syms;
5294 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
5295 || (bfd_read (external_syms, sizeof (Elf_External_Sym),
5296 locsymcount, input_bfd)
5297 != locsymcount * sizeof (Elf_External_Sym)))
5298 return false;
5299 }
5300
5301 /* Swap in the local symbols and write out the ones which we know
5302 are going into the output file. */
5303 esym = external_syms;
5304 esymend = esym + locsymcount;
5305 isym = finfo->internal_syms;
5306 pindex = finfo->indices;
5307 ppsection = finfo->sections;
5308 for (; esym < esymend; esym++, isym++, pindex++, ppsection++)
5309 {
5310 asection *isec;
5311 const char *name;
5312 Elf_Internal_Sym osym;
5313
5314 elf_swap_symbol_in (input_bfd, esym, isym);
5315 *pindex = -1;
5316
5317 if (elf_bad_symtab (input_bfd))
5318 {
5319 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
5320 {
5321 *ppsection = NULL;
5322 continue;
5323 }
5324 }
5325
5326 if (isym->st_shndx == SHN_UNDEF)
5327 isec = bfd_und_section_ptr;
5328 else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE)
5329 isec = section_from_elf_index (input_bfd, isym->st_shndx);
5330 else if (isym->st_shndx == SHN_ABS)
5331 isec = bfd_abs_section_ptr;
5332 else if (isym->st_shndx == SHN_COMMON)
5333 isec = bfd_com_section_ptr;
5334 else
5335 {
5336 /* Who knows? */
5337 isec = NULL;
5338 }
5339
5340 *ppsection = isec;
5341
5342 /* Don't output the first, undefined, symbol. */
5343 if (esym == external_syms)
5344 continue;
5345
5346 /* If we are stripping all symbols, we don't want to output this
5347 one. */
5348 if (finfo->info->strip == strip_all)
5349 continue;
5350
5351 /* We never output section symbols. Instead, we use the section
5352 symbol of the corresponding section in the output file. */
5353 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5354 continue;
5355
5356 /* If we are discarding all local symbols, we don't want to
5357 output this one. If we are generating a relocateable output
5358 file, then some of the local symbols may be required by
5359 relocs; we output them below as we discover that they are
5360 needed. */
5361 if (finfo->info->discard == discard_all)
5362 continue;
5363
5364 /* If this symbol is defined in a section which we are
5365 discarding, we don't need to keep it, but note that
5366 linker_mark is only reliable for sections that have contents.
5367 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
5368 as well as linker_mark. */
5369 if (isym->st_shndx > 0
5370 && isym->st_shndx < SHN_LORESERVE
5371 && isec != NULL
5372 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
5373 || (! finfo->info->relocateable
5374 && (isec->flags & SEC_EXCLUDE) != 0)))
5375 continue;
5376
5377 /* Get the name of the symbol. */
5378 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
5379 isym->st_name);
5380 if (name == NULL)
5381 return false;
5382
5383 /* See if we are discarding symbols with this name. */
5384 if ((finfo->info->strip == strip_some
5385 && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
5386 == NULL))
5387 || (finfo->info->discard == discard_l
5388 && bfd_is_local_label_name (input_bfd, name)))
5389 continue;
5390
5391 /* If we get here, we are going to output this symbol. */
5392
5393 osym = *isym;
5394
5395 /* Adjust the section index for the output file. */
5396 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
5397 isec->output_section);
5398 if (osym.st_shndx == (unsigned short) -1)
5399 return false;
5400
5401 *pindex = bfd_get_symcount (output_bfd);
5402
5403 /* ELF symbols in relocateable files are section relative, but
5404 in executable files they are virtual addresses. Note that
5405 this code assumes that all ELF sections have an associated
5406 BFD section with a reasonable value for output_offset; below
5407 we assume that they also have a reasonable value for
5408 output_section. Any special sections must be set up to meet
5409 these requirements. */
5410 osym.st_value += isec->output_offset;
5411 if (! finfo->info->relocateable)
5412 osym.st_value += isec->output_section->vma;
5413
5414 if (! elf_link_output_sym (finfo, name, &osym, isec))
5415 return false;
5416 }
5417
5418 /* Relocate the contents of each section. */
5419 for (o = input_bfd->sections; o != NULL; o = o->next)
5420 {
5421 bfd_byte *contents;
5422
5423 if (! o->linker_mark)
5424 {
5425 /* This section was omitted from the link. */
5426 continue;
5427 }
5428
5429 if ((o->flags & SEC_HAS_CONTENTS) == 0
5430 || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
5431 continue;
5432
5433 if ((o->flags & SEC_LINKER_CREATED) != 0)
5434 {
5435 /* Section was created by elf_link_create_dynamic_sections
5436 or somesuch. */
5437 continue;
5438 }
5439
5440 /* Get the contents of the section. They have been cached by a
5441 relaxation routine. Note that o is a section in an input
5442 file, so the contents field will not have been set by any of
5443 the routines which work on output files. */
5444 if (elf_section_data (o)->this_hdr.contents != NULL)
5445 contents = elf_section_data (o)->this_hdr.contents;
5446 else
5447 {
5448 contents = finfo->contents;
5449 if (! bfd_get_section_contents (input_bfd, o, contents,
5450 (file_ptr) 0, o->_raw_size))
5451 return false;
5452 }
5453
5454 if ((o->flags & SEC_RELOC) != 0)
5455 {
5456 Elf_Internal_Rela *internal_relocs;
5457
5458 /* Get the swapped relocs. */
5459 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
5460 (input_bfd, o, finfo->external_relocs,
5461 finfo->internal_relocs, false));
5462 if (internal_relocs == NULL
5463 && o->reloc_count > 0)
5464 return false;
5465
5466 /* Relocate the section by invoking a back end routine.
5467
5468 The back end routine is responsible for adjusting the
5469 section contents as necessary, and (if using Rela relocs
5470 and generating a relocateable output file) adjusting the
5471 reloc addend as necessary.
5472
5473 The back end routine does not have to worry about setting
5474 the reloc address or the reloc symbol index.
5475
5476 The back end routine is given a pointer to the swapped in
5477 internal symbols, and can access the hash table entries
5478 for the external symbols via elf_sym_hashes (input_bfd).
5479
5480 When generating relocateable output, the back end routine
5481 must handle STB_LOCAL/STT_SECTION symbols specially. The
5482 output symbol is going to be a section symbol
5483 corresponding to the output section, which will require
5484 the addend to be adjusted. */
5485
5486 if (! (*relocate_section) (output_bfd, finfo->info,
5487 input_bfd, o, contents,
5488 internal_relocs,
5489 finfo->internal_syms,
5490 finfo->sections))
5491 return false;
5492
5493 if (finfo->info->relocateable)
5494 {
5495 Elf_Internal_Rela *irela;
5496 Elf_Internal_Rela *irelaend;
5497 struct elf_link_hash_entry **rel_hash;
5498 Elf_Internal_Shdr *input_rel_hdr;
5499
5500 /* Adjust the reloc addresses and symbol indices. */
5501
5502 irela = internal_relocs;
5503 irelaend =
5504 irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
5505 rel_hash = (elf_section_data (o->output_section)->rel_hashes
5506 + elf_section_data (o->output_section)->rel_count
5507 + elf_section_data (o->output_section)->rel_count2);
5508 for (; irela < irelaend; irela++, rel_hash++)
5509 {
5510 unsigned long r_symndx;
5511 Elf_Internal_Sym *isym;
5512 asection *sec;
5513
5514 irela->r_offset += o->output_offset;
5515
5516 r_symndx = ELF_R_SYM (irela->r_info);
5517
5518 if (r_symndx == 0)
5519 continue;
5520
5521 if (r_symndx >= locsymcount
5522 || (elf_bad_symtab (input_bfd)
5523 && finfo->sections[r_symndx] == NULL))
5524 {
5525 struct elf_link_hash_entry *rh;
5526 long indx;
5527
5528 /* This is a reloc against a global symbol. We
5529 have not yet output all the local symbols, so
5530 we do not know the symbol index of any global
5531 symbol. We set the rel_hash entry for this
5532 reloc to point to the global hash table entry
5533 for this symbol. The symbol index is then
5534 set at the end of elf_bfd_final_link. */
5535 indx = r_symndx - extsymoff;
5536 rh = elf_sym_hashes (input_bfd)[indx];
5537 while (rh->root.type == bfd_link_hash_indirect
5538 || rh->root.type == bfd_link_hash_warning)
5539 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
5540
5541 /* Setting the index to -2 tells
5542 elf_link_output_extsym that this symbol is
5543 used by a reloc. */
5544 BFD_ASSERT (rh->indx < 0);
5545 rh->indx = -2;
5546
5547 *rel_hash = rh;
5548
5549 continue;
5550 }
5551
5552 /* This is a reloc against a local symbol. */
5553
5554 *rel_hash = NULL;
5555 isym = finfo->internal_syms + r_symndx;
5556 sec = finfo->sections[r_symndx];
5557 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5558 {
5559 /* I suppose the backend ought to fill in the
5560 section of any STT_SECTION symbol against a
5561 processor specific section. If we have
5562 discarded a section, the output_section will
5563 be the absolute section. */
5564 if (sec != NULL
5565 && (bfd_is_abs_section (sec)
5566 || (sec->output_section != NULL
5567 && bfd_is_abs_section (sec->output_section))))
5568 r_symndx = 0;
5569 else if (sec == NULL || sec->owner == NULL)
5570 {
5571 bfd_set_error (bfd_error_bad_value);
5572 return false;
5573 }
5574 else
5575 {
5576 r_symndx = sec->output_section->target_index;
5577 BFD_ASSERT (r_symndx != 0);
5578 }
5579 }
5580 else
5581 {
5582 if (finfo->indices[r_symndx] == -1)
5583 {
5584 unsigned long link;
5585 const char *name;
5586 asection *osec;
5587
5588 if (finfo->info->strip == strip_all)
5589 {
5590 /* You can't do ld -r -s. */
5591 bfd_set_error (bfd_error_invalid_operation);
5592 return false;
5593 }
5594
5595 /* This symbol was skipped earlier, but
5596 since it is needed by a reloc, we
5597 must output it now. */
5598 link = symtab_hdr->sh_link;
5599 name = bfd_elf_string_from_elf_section (input_bfd,
5600 link,
5601 isym->st_name);
5602 if (name == NULL)
5603 return false;
5604
5605 osec = sec->output_section;
5606 isym->st_shndx =
5607 _bfd_elf_section_from_bfd_section (output_bfd,
5608 osec);
5609 if (isym->st_shndx == (unsigned short) -1)
5610 return false;
5611
5612 isym->st_value += sec->output_offset;
5613 if (! finfo->info->relocateable)
5614 isym->st_value += osec->vma;
5615
5616 finfo->indices[r_symndx] = bfd_get_symcount (output_bfd);
5617
5618 if (! elf_link_output_sym (finfo, name, isym, sec))
5619 return false;
5620 }
5621
5622 r_symndx = finfo->indices[r_symndx];
5623 }
5624
5625 irela->r_info = ELF_R_INFO (r_symndx,
5626 ELF_R_TYPE (irela->r_info));
5627 }
5628
5629 /* Swap out the relocs. */
5630 input_rel_hdr = &elf_section_data (o)->rel_hdr;
5631 elf_link_output_relocs (output_bfd, o,
5632 input_rel_hdr,
5633 internal_relocs);
5634 internal_relocs
5635 += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5636 input_rel_hdr = elf_section_data (o)->rel_hdr2;
5637 if (input_rel_hdr)
5638 elf_link_output_relocs (output_bfd, o,
5639 input_rel_hdr,
5640 internal_relocs);
5641 }
5642 }
5643
5644 /* Write out the modified section contents. */
5645 if (elf_section_data (o)->stab_info == NULL)
5646 {
5647 if (! (o->flags & SEC_EXCLUDE) &&
5648 ! bfd_set_section_contents (output_bfd, o->output_section,
5649 contents, o->output_offset,
5650 (o->_cooked_size != 0
5651 ? o->_cooked_size
5652 : o->_raw_size)))
5653 return false;
5654 }
5655 else
5656 {
5657 if (! (_bfd_write_section_stabs
5658 (output_bfd, &elf_hash_table (finfo->info)->stab_info,
5659 o, &elf_section_data (o)->stab_info, contents)))
5660 return false;
5661 }
5662 }
5663
5664 return true;
5665 }
5666
5667 /* Generate a reloc when linking an ELF file. This is a reloc
5668 requested by the linker, and does come from any input file. This
5669 is used to build constructor and destructor tables when linking
5670 with -Ur. */
5671
5672 static boolean
5673 elf_reloc_link_order (output_bfd, info, output_section, link_order)
5674 bfd *output_bfd;
5675 struct bfd_link_info *info;
5676 asection *output_section;
5677 struct bfd_link_order *link_order;
5678 {
5679 reloc_howto_type *howto;
5680 long indx;
5681 bfd_vma offset;
5682 bfd_vma addend;
5683 struct elf_link_hash_entry **rel_hash_ptr;
5684 Elf_Internal_Shdr *rel_hdr;
5685
5686 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
5687 if (howto == NULL)
5688 {
5689 bfd_set_error (bfd_error_bad_value);
5690 return false;
5691 }
5692
5693 addend = link_order->u.reloc.p->addend;
5694
5695 /* Figure out the symbol index. */
5696 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
5697 + elf_section_data (output_section)->rel_count
5698 + elf_section_data (output_section)->rel_count2);
5699 if (link_order->type == bfd_section_reloc_link_order)
5700 {
5701 indx = link_order->u.reloc.p->u.section->target_index;
5702 BFD_ASSERT (indx != 0);
5703 *rel_hash_ptr = NULL;
5704 }
5705 else
5706 {
5707 struct elf_link_hash_entry *h;
5708
5709 /* Treat a reloc against a defined symbol as though it were
5710 actually against the section. */
5711 h = ((struct elf_link_hash_entry *)
5712 bfd_wrapped_link_hash_lookup (output_bfd, info,
5713 link_order->u.reloc.p->u.name,
5714 false, false, true));
5715 if (h != NULL
5716 && (h->root.type == bfd_link_hash_defined
5717 || h->root.type == bfd_link_hash_defweak))
5718 {
5719 asection *section;
5720
5721 section = h->root.u.def.section;
5722 indx = section->output_section->target_index;
5723 *rel_hash_ptr = NULL;
5724 /* It seems that we ought to add the symbol value to the
5725 addend here, but in practice it has already been added
5726 because it was passed to constructor_callback. */
5727 addend += section->output_section->vma + section->output_offset;
5728 }
5729 else if (h != NULL)
5730 {
5731 /* Setting the index to -2 tells elf_link_output_extsym that
5732 this symbol is used by a reloc. */
5733 h->indx = -2;
5734 *rel_hash_ptr = h;
5735 indx = 0;
5736 }
5737 else
5738 {
5739 if (! ((*info->callbacks->unattached_reloc)
5740 (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
5741 (asection *) NULL, (bfd_vma) 0)))
5742 return false;
5743 indx = 0;
5744 }
5745 }
5746
5747 /* If this is an inplace reloc, we must write the addend into the
5748 object file. */
5749 if (howto->partial_inplace && addend != 0)
5750 {
5751 bfd_size_type size;
5752 bfd_reloc_status_type rstat;
5753 bfd_byte *buf;
5754 boolean ok;
5755
5756 size = bfd_get_reloc_size (howto);
5757 buf = (bfd_byte *) bfd_zmalloc (size);
5758 if (buf == (bfd_byte *) NULL)
5759 return false;
5760 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
5761 switch (rstat)
5762 {
5763 case bfd_reloc_ok:
5764 break;
5765 default:
5766 case bfd_reloc_outofrange:
5767 abort ();
5768 case bfd_reloc_overflow:
5769 if (! ((*info->callbacks->reloc_overflow)
5770 (info,
5771 (link_order->type == bfd_section_reloc_link_order
5772 ? bfd_section_name (output_bfd,
5773 link_order->u.reloc.p->u.section)
5774 : link_order->u.reloc.p->u.name),
5775 howto->name, addend, (bfd *) NULL, (asection *) NULL,
5776 (bfd_vma) 0)))
5777 {
5778 free (buf);
5779 return false;
5780 }
5781 break;
5782 }
5783 ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
5784 (file_ptr) link_order->offset, size);
5785 free (buf);
5786 if (! ok)
5787 return false;
5788 }
5789
5790 /* The address of a reloc is relative to the section in a
5791 relocateable file, and is a virtual address in an executable
5792 file. */
5793 offset = link_order->offset;
5794 if (! info->relocateable)
5795 offset += output_section->vma;
5796
5797 rel_hdr = &elf_section_data (output_section)->rel_hdr;
5798
5799 if (rel_hdr->sh_type == SHT_REL)
5800 {
5801 Elf_Internal_Rel irel;
5802 Elf_External_Rel *erel;
5803
5804 irel.r_offset = offset;
5805 irel.r_info = ELF_R_INFO (indx, howto->type);
5806 erel = ((Elf_External_Rel *) rel_hdr->contents
5807 + elf_section_data (output_section)->rel_count);
5808 elf_swap_reloc_out (output_bfd, &irel, erel);
5809 }
5810 else
5811 {
5812 Elf_Internal_Rela irela;
5813 Elf_External_Rela *erela;
5814
5815 irela.r_offset = offset;
5816 irela.r_info = ELF_R_INFO (indx, howto->type);
5817 irela.r_addend = addend;
5818 erela = ((Elf_External_Rela *) rel_hdr->contents
5819 + elf_section_data (output_section)->rel_count);
5820 elf_swap_reloca_out (output_bfd, &irela, erela);
5821 }
5822
5823 ++elf_section_data (output_section)->rel_count;
5824
5825 return true;
5826 }
5827
5828 \f
5829 /* Allocate a pointer to live in a linker created section. */
5830
5831 boolean
5832 elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
5833 bfd *abfd;
5834 struct bfd_link_info *info;
5835 elf_linker_section_t *lsect;
5836 struct elf_link_hash_entry *h;
5837 const Elf_Internal_Rela *rel;
5838 {
5839 elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
5840 elf_linker_section_pointers_t *linker_section_ptr;
5841 unsigned long r_symndx = ELF_R_SYM (rel->r_info);;
5842
5843 BFD_ASSERT (lsect != NULL);
5844
5845 /* Is this a global symbol? */
5846 if (h != NULL)
5847 {
5848 /* Has this symbol already been allocated, if so, our work is done */
5849 if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
5850 rel->r_addend,
5851 lsect->which))
5852 return true;
5853
5854 ptr_linker_section_ptr = &h->linker_section_pointer;
5855 /* Make sure this symbol is output as a dynamic symbol. */
5856 if (h->dynindx == -1)
5857 {
5858 if (! elf_link_record_dynamic_symbol (info, h))
5859 return false;
5860 }
5861
5862 if (lsect->rel_section)
5863 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
5864 }
5865
5866 else /* Allocation of a pointer to a local symbol */
5867 {
5868 elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
5869
5870 /* Allocate a table to hold the local symbols if first time */
5871 if (!ptr)
5872 {
5873 unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
5874 register unsigned int i;
5875
5876 ptr = (elf_linker_section_pointers_t **)
5877 bfd_alloc (abfd, num_symbols * sizeof (elf_linker_section_pointers_t *));
5878
5879 if (!ptr)
5880 return false;
5881
5882 elf_local_ptr_offsets (abfd) = ptr;
5883 for (i = 0; i < num_symbols; i++)
5884 ptr[i] = (elf_linker_section_pointers_t *)0;
5885 }
5886
5887 /* Has this symbol already been allocated, if so, our work is done */
5888 if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
5889 rel->r_addend,
5890 lsect->which))
5891 return true;
5892
5893 ptr_linker_section_ptr = &ptr[r_symndx];
5894
5895 if (info->shared)
5896 {
5897 /* If we are generating a shared object, we need to
5898 output a R_<xxx>_RELATIVE reloc so that the
5899 dynamic linker can adjust this GOT entry. */
5900 BFD_ASSERT (lsect->rel_section != NULL);
5901 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
5902 }
5903 }
5904
5905 /* Allocate space for a pointer in the linker section, and allocate a new pointer record
5906 from internal memory. */
5907 BFD_ASSERT (ptr_linker_section_ptr != NULL);
5908 linker_section_ptr = (elf_linker_section_pointers_t *)
5909 bfd_alloc (abfd, sizeof (elf_linker_section_pointers_t));
5910
5911 if (!linker_section_ptr)
5912 return false;
5913
5914 linker_section_ptr->next = *ptr_linker_section_ptr;
5915 linker_section_ptr->addend = rel->r_addend;
5916 linker_section_ptr->which = lsect->which;
5917 linker_section_ptr->written_address_p = false;
5918 *ptr_linker_section_ptr = linker_section_ptr;
5919
5920 #if 0
5921 if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
5922 {
5923 linker_section_ptr->offset = lsect->section->_raw_size - lsect->hole_size + (ARCH_SIZE / 8);
5924 lsect->hole_offset += ARCH_SIZE / 8;
5925 lsect->sym_offset += ARCH_SIZE / 8;
5926 if (lsect->sym_hash) /* Bump up symbol value if needed */
5927 {
5928 lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
5929 #ifdef DEBUG
5930 fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
5931 lsect->sym_hash->root.root.string,
5932 (long)ARCH_SIZE / 8,
5933 (long)lsect->sym_hash->root.u.def.value);
5934 #endif
5935 }
5936 }
5937 else
5938 #endif
5939 linker_section_ptr->offset = lsect->section->_raw_size;
5940
5941 lsect->section->_raw_size += ARCH_SIZE / 8;
5942
5943 #ifdef DEBUG
5944 fprintf (stderr, "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
5945 lsect->name, (long)linker_section_ptr->offset, (long)lsect->section->_raw_size);
5946 #endif
5947
5948 return true;
5949 }
5950
5951 \f
5952 #if ARCH_SIZE==64
5953 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
5954 #endif
5955 #if ARCH_SIZE==32
5956 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
5957 #endif
5958
5959 /* Fill in the address for a pointer generated in alinker section. */
5960
5961 bfd_vma
5962 elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h, relocation, rel, relative_reloc)
5963 bfd *output_bfd;
5964 bfd *input_bfd;
5965 struct bfd_link_info *info;
5966 elf_linker_section_t *lsect;
5967 struct elf_link_hash_entry *h;
5968 bfd_vma relocation;
5969 const Elf_Internal_Rela *rel;
5970 int relative_reloc;
5971 {
5972 elf_linker_section_pointers_t *linker_section_ptr;
5973
5974 BFD_ASSERT (lsect != NULL);
5975
5976 if (h != NULL) /* global symbol */
5977 {
5978 linker_section_ptr = _bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
5979 rel->r_addend,
5980 lsect->which);
5981
5982 BFD_ASSERT (linker_section_ptr != NULL);
5983
5984 if (! elf_hash_table (info)->dynamic_sections_created
5985 || (info->shared
5986 && info->symbolic
5987 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
5988 {
5989 /* This is actually a static link, or it is a
5990 -Bsymbolic link and the symbol is defined
5991 locally. We must initialize this entry in the
5992 global section.
5993
5994 When doing a dynamic link, we create a .rela.<xxx>
5995 relocation entry to initialize the value. This
5996 is done in the finish_dynamic_symbol routine. */
5997 if (!linker_section_ptr->written_address_p)
5998 {
5999 linker_section_ptr->written_address_p = true;
6000 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
6001 lsect->section->contents + linker_section_ptr->offset);
6002 }
6003 }
6004 }
6005 else /* local symbol */
6006 {
6007 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
6008 BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
6009 BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
6010 linker_section_ptr = _bfd_elf_find_pointer_linker_section (elf_local_ptr_offsets (input_bfd)[r_symndx],
6011 rel->r_addend,
6012 lsect->which);
6013
6014 BFD_ASSERT (linker_section_ptr != NULL);
6015
6016 /* Write out pointer if it hasn't been rewritten out before */
6017 if (!linker_section_ptr->written_address_p)
6018 {
6019 linker_section_ptr->written_address_p = true;
6020 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
6021 lsect->section->contents + linker_section_ptr->offset);
6022
6023 if (info->shared)
6024 {
6025 asection *srel = lsect->rel_section;
6026 Elf_Internal_Rela outrel;
6027
6028 /* We need to generate a relative reloc for the dynamic linker. */
6029 if (!srel)
6030 lsect->rel_section = srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
6031 lsect->rel_name);
6032
6033 BFD_ASSERT (srel != NULL);
6034
6035 outrel.r_offset = (lsect->section->output_section->vma
6036 + lsect->section->output_offset
6037 + linker_section_ptr->offset);
6038 outrel.r_info = ELF_R_INFO (0, relative_reloc);
6039 outrel.r_addend = 0;
6040 elf_swap_reloca_out (output_bfd, &outrel,
6041 (((Elf_External_Rela *)
6042 lsect->section->contents)
6043 + elf_section_data (lsect->section)->rel_count));
6044 ++elf_section_data (lsect->section)->rel_count;
6045 }
6046 }
6047 }
6048
6049 relocation = (lsect->section->output_offset
6050 + linker_section_ptr->offset
6051 - lsect->hole_offset
6052 - lsect->sym_offset);
6053
6054 #ifdef DEBUG
6055 fprintf (stderr, "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
6056 lsect->name, (long)relocation, (long)relocation);
6057 #endif
6058
6059 /* Subtract out the addend, because it will get added back in by the normal
6060 processing. */
6061 return relocation - linker_section_ptr->addend;
6062 }
6063 \f
6064 /* Garbage collect unused sections. */
6065
6066 static boolean elf_gc_mark
6067 PARAMS ((struct bfd_link_info *info, asection *sec,
6068 asection * (*gc_mark_hook)
6069 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
6070 struct elf_link_hash_entry *, Elf_Internal_Sym *))));
6071
6072 static boolean elf_gc_sweep
6073 PARAMS ((struct bfd_link_info *info,
6074 boolean (*gc_sweep_hook)
6075 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
6076 const Elf_Internal_Rela *relocs))));
6077
6078 static boolean elf_gc_sweep_symbol
6079 PARAMS ((struct elf_link_hash_entry *h, PTR idxptr));
6080
6081 static boolean elf_gc_allocate_got_offsets
6082 PARAMS ((struct elf_link_hash_entry *h, PTR offarg));
6083
6084 static boolean elf_gc_propagate_vtable_entries_used
6085 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
6086
6087 static boolean elf_gc_smash_unused_vtentry_relocs
6088 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
6089
6090 /* The mark phase of garbage collection. For a given section, mark
6091 it, and all the sections which define symbols to which it refers. */
6092
6093 static boolean
6094 elf_gc_mark (info, sec, gc_mark_hook)
6095 struct bfd_link_info *info;
6096 asection *sec;
6097 asection * (*gc_mark_hook)
6098 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
6099 struct elf_link_hash_entry *, Elf_Internal_Sym *));
6100 {
6101 boolean ret = true;
6102
6103 sec->gc_mark = 1;
6104
6105 /* Look through the section relocs. */
6106
6107 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
6108 {
6109 Elf_Internal_Rela *relstart, *rel, *relend;
6110 Elf_Internal_Shdr *symtab_hdr;
6111 struct elf_link_hash_entry **sym_hashes;
6112 size_t nlocsyms;
6113 size_t extsymoff;
6114 Elf_External_Sym *locsyms, *freesyms = NULL;
6115 bfd *input_bfd = sec->owner;
6116 struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
6117
6118 /* GCFIXME: how to arrange so that relocs and symbols are not
6119 reread continually? */
6120
6121 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6122 sym_hashes = elf_sym_hashes (input_bfd);
6123
6124 /* Read the local symbols. */
6125 if (elf_bad_symtab (input_bfd))
6126 {
6127 nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6128 extsymoff = 0;
6129 }
6130 else
6131 extsymoff = nlocsyms = symtab_hdr->sh_info;
6132 if (symtab_hdr->contents)
6133 locsyms = (Elf_External_Sym *) symtab_hdr->contents;
6134 else if (nlocsyms == 0)
6135 locsyms = NULL;
6136 else
6137 {
6138 locsyms = freesyms =
6139 bfd_malloc (nlocsyms * sizeof (Elf_External_Sym));
6140 if (freesyms == NULL
6141 || bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
6142 || (bfd_read (locsyms, sizeof (Elf_External_Sym),
6143 nlocsyms, input_bfd)
6144 != nlocsyms * sizeof (Elf_External_Sym)))
6145 {
6146 ret = false;
6147 goto out1;
6148 }
6149 }
6150
6151 /* Read the relocations. */
6152 relstart = (NAME(_bfd_elf,link_read_relocs)
6153 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL,
6154 info->keep_memory));
6155 if (relstart == NULL)
6156 {
6157 ret = false;
6158 goto out1;
6159 }
6160 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6161
6162 for (rel = relstart; rel < relend; rel++)
6163 {
6164 unsigned long r_symndx;
6165 asection *rsec;
6166 struct elf_link_hash_entry *h;
6167 Elf_Internal_Sym s;
6168
6169 r_symndx = ELF_R_SYM (rel->r_info);
6170 if (r_symndx == 0)
6171 continue;
6172
6173 if (elf_bad_symtab (sec->owner))
6174 {
6175 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
6176 if (ELF_ST_BIND (s.st_info) == STB_LOCAL)
6177 rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
6178 else
6179 {
6180 h = sym_hashes[r_symndx - extsymoff];
6181 rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
6182 }
6183 }
6184 else if (r_symndx >= nlocsyms)
6185 {
6186 h = sym_hashes[r_symndx - extsymoff];
6187 rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
6188 }
6189 else
6190 {
6191 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
6192 rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
6193 }
6194
6195 if (rsec && !rsec->gc_mark)
6196 if (!elf_gc_mark (info, rsec, gc_mark_hook))
6197 {
6198 ret = false;
6199 goto out2;
6200 }
6201 }
6202
6203 out2:
6204 if (!info->keep_memory)
6205 free (relstart);
6206 out1:
6207 if (freesyms)
6208 free (freesyms);
6209 }
6210
6211 return ret;
6212 }
6213
6214 /* The sweep phase of garbage collection. Remove all garbage sections. */
6215
6216 static boolean
6217 elf_gc_sweep (info, gc_sweep_hook)
6218 struct bfd_link_info *info;
6219 boolean (*gc_sweep_hook)
6220 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
6221 const Elf_Internal_Rela *relocs));
6222 {
6223 bfd *sub;
6224
6225 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
6226 {
6227 asection *o;
6228
6229 for (o = sub->sections; o != NULL; o = o->next)
6230 {
6231 /* Keep special sections. Keep .debug sections. */
6232 if ((o->flags & SEC_LINKER_CREATED)
6233 || (o->flags & SEC_DEBUGGING))
6234 o->gc_mark = 1;
6235
6236 if (o->gc_mark)
6237 continue;
6238
6239 /* Skip sweeping sections already excluded. */
6240 if (o->flags & SEC_EXCLUDE)
6241 continue;
6242
6243 /* Since this is early in the link process, it is simple
6244 to remove a section from the output. */
6245 o->flags |= SEC_EXCLUDE;
6246
6247 /* But we also have to update some of the relocation
6248 info we collected before. */
6249 if (gc_sweep_hook
6250 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
6251 {
6252 Elf_Internal_Rela *internal_relocs;
6253 boolean r;
6254
6255 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
6256 (o->owner, o, NULL, NULL, info->keep_memory));
6257 if (internal_relocs == NULL)
6258 return false;
6259
6260 r = (*gc_sweep_hook)(o->owner, info, o, internal_relocs);
6261
6262 if (!info->keep_memory)
6263 free (internal_relocs);
6264
6265 if (!r)
6266 return false;
6267 }
6268 }
6269 }
6270
6271 /* Remove the symbols that were in the swept sections from the dynamic
6272 symbol table. GCFIXME: Anyone know how to get them out of the
6273 static symbol table as well? */
6274 {
6275 int i = 0;
6276
6277 elf_link_hash_traverse (elf_hash_table (info),
6278 elf_gc_sweep_symbol,
6279 (PTR) &i);
6280
6281 elf_hash_table (info)->dynsymcount = i;
6282 }
6283
6284 return true;
6285 }
6286
6287 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6288
6289 static boolean
6290 elf_gc_sweep_symbol (h, idxptr)
6291 struct elf_link_hash_entry *h;
6292 PTR idxptr;
6293 {
6294 int *idx = (int *) idxptr;
6295
6296 if (h->dynindx != -1
6297 && ((h->root.type != bfd_link_hash_defined
6298 && h->root.type != bfd_link_hash_defweak)
6299 || h->root.u.def.section->gc_mark))
6300 h->dynindx = (*idx)++;
6301
6302 return true;
6303 }
6304
6305 /* Propogate collected vtable information. This is called through
6306 elf_link_hash_traverse. */
6307
6308 static boolean
6309 elf_gc_propagate_vtable_entries_used (h, okp)
6310 struct elf_link_hash_entry *h;
6311 PTR okp;
6312 {
6313 /* Those that are not vtables. */
6314 if (h->vtable_parent == NULL)
6315 return true;
6316
6317 /* Those vtables that do not have parents, we cannot merge. */
6318 if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
6319 return true;
6320
6321 /* If we've already been done, exit. */
6322 if (h->vtable_entries_used && h->vtable_entries_used[-1])
6323 return true;
6324
6325 /* Make sure the parent's table is up to date. */
6326 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
6327
6328 if (h->vtable_entries_used == NULL)
6329 {
6330 /* None of this table's entries were referenced. Re-use the
6331 parent's table. */
6332 h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
6333 h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
6334 }
6335 else
6336 {
6337 size_t n;
6338 boolean *cu, *pu;
6339
6340 /* Or the parent's entries into ours. */
6341 cu = h->vtable_entries_used;
6342 cu[-1] = true;
6343 pu = h->vtable_parent->vtable_entries_used;
6344 if (pu != NULL)
6345 {
6346 n = h->vtable_parent->vtable_entries_size / FILE_ALIGN;
6347 while (--n != 0)
6348 {
6349 if (*pu) *cu = true;
6350 pu++, cu++;
6351 }
6352 }
6353 }
6354
6355 return true;
6356 }
6357
6358 static boolean
6359 elf_gc_smash_unused_vtentry_relocs (h, okp)
6360 struct elf_link_hash_entry *h;
6361 PTR okp;
6362 {
6363 asection *sec;
6364 bfd_vma hstart, hend;
6365 Elf_Internal_Rela *relstart, *relend, *rel;
6366 struct elf_backend_data *bed;
6367
6368 /* Take care of both those symbols that do not describe vtables as
6369 well as those that are not loaded. */
6370 if (h->vtable_parent == NULL)
6371 return true;
6372
6373 BFD_ASSERT (h->root.type == bfd_link_hash_defined
6374 || h->root.type == bfd_link_hash_defweak);
6375
6376 sec = h->root.u.def.section;
6377 hstart = h->root.u.def.value;
6378 hend = hstart + h->size;
6379
6380 relstart = (NAME(_bfd_elf,link_read_relocs)
6381 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true));
6382 if (!relstart)
6383 return *(boolean *)okp = false;
6384 bed = get_elf_backend_data (sec->owner);
6385 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6386
6387 for (rel = relstart; rel < relend; ++rel)
6388 if (rel->r_offset >= hstart && rel->r_offset < hend)
6389 {
6390 /* If the entry is in use, do nothing. */
6391 if (h->vtable_entries_used
6392 && (rel->r_offset - hstart) < h->vtable_entries_size)
6393 {
6394 bfd_vma entry = (rel->r_offset - hstart) / FILE_ALIGN;
6395 if (h->vtable_entries_used[entry])
6396 continue;
6397 }
6398 /* Otherwise, kill it. */
6399 rel->r_offset = rel->r_info = rel->r_addend = 0;
6400 }
6401
6402 return true;
6403 }
6404
6405 /* Do mark and sweep of unused sections. */
6406
6407 boolean
6408 elf_gc_sections (abfd, info)
6409 bfd *abfd;
6410 struct bfd_link_info *info;
6411 {
6412 boolean ok = true;
6413 bfd *sub;
6414 asection * (*gc_mark_hook)
6415 PARAMS ((bfd *abfd, struct bfd_link_info *, Elf_Internal_Rela *,
6416 struct elf_link_hash_entry *h, Elf_Internal_Sym *));
6417
6418 if (!get_elf_backend_data (abfd)->can_gc_sections
6419 || info->relocateable
6420 || elf_hash_table (info)->dynamic_sections_created)
6421 return true;
6422
6423 /* Apply transitive closure to the vtable entry usage info. */
6424 elf_link_hash_traverse (elf_hash_table (info),
6425 elf_gc_propagate_vtable_entries_used,
6426 (PTR) &ok);
6427 if (!ok)
6428 return false;
6429
6430 /* Kill the vtable relocations that were not used. */
6431 elf_link_hash_traverse (elf_hash_table (info),
6432 elf_gc_smash_unused_vtentry_relocs,
6433 (PTR) &ok);
6434 if (!ok)
6435 return false;
6436
6437 /* Grovel through relocs to find out who stays ... */
6438
6439 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
6440 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
6441 {
6442 asection *o;
6443 for (o = sub->sections; o != NULL; o = o->next)
6444 {
6445 if (o->flags & SEC_KEEP)
6446 if (!elf_gc_mark (info, o, gc_mark_hook))
6447 return false;
6448 }
6449 }
6450
6451 /* ... and mark SEC_EXCLUDE for those that go. */
6452 if (!elf_gc_sweep(info, get_elf_backend_data (abfd)->gc_sweep_hook))
6453 return false;
6454
6455 return true;
6456 }
6457 \f
6458 /* Called from check_relocs to record the existance of a VTINHERIT reloc. */
6459
6460 boolean
6461 elf_gc_record_vtinherit (abfd, sec, h, offset)
6462 bfd *abfd;
6463 asection *sec;
6464 struct elf_link_hash_entry *h;
6465 bfd_vma offset;
6466 {
6467 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
6468 struct elf_link_hash_entry **search, *child;
6469 bfd_size_type extsymcount;
6470
6471 /* The sh_info field of the symtab header tells us where the
6472 external symbols start. We don't care about the local symbols at
6473 this point. */
6474 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym);
6475 if (!elf_bad_symtab (abfd))
6476 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
6477
6478 sym_hashes = elf_sym_hashes (abfd);
6479 sym_hashes_end = sym_hashes + extsymcount;
6480
6481 /* Hunt down the child symbol, which is in this section at the same
6482 offset as the relocation. */
6483 for (search = sym_hashes; search != sym_hashes_end; ++search)
6484 {
6485 if ((child = *search) != NULL
6486 && (child->root.type == bfd_link_hash_defined
6487 || child->root.type == bfd_link_hash_defweak)
6488 && child->root.u.def.section == sec
6489 && child->root.u.def.value == offset)
6490 goto win;
6491 }
6492
6493 (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
6494 bfd_get_filename (abfd), sec->name,
6495 (unsigned long)offset);
6496 bfd_set_error (bfd_error_invalid_operation);
6497 return false;
6498
6499 win:
6500 if (!h)
6501 {
6502 /* This *should* only be the absolute section. It could potentially
6503 be that someone has defined a non-global vtable though, which
6504 would be bad. It isn't worth paging in the local symbols to be
6505 sure though; that case should simply be handled by the assembler. */
6506
6507 child->vtable_parent = (struct elf_link_hash_entry *) -1;
6508 }
6509 else
6510 child->vtable_parent = h;
6511
6512 return true;
6513 }
6514
6515 /* Called from check_relocs to record the existance of a VTENTRY reloc. */
6516
6517 boolean
6518 elf_gc_record_vtentry (abfd, sec, h, addend)
6519 bfd *abfd ATTRIBUTE_UNUSED;
6520 asection *sec ATTRIBUTE_UNUSED;
6521 struct elf_link_hash_entry *h;
6522 bfd_vma addend;
6523 {
6524 if (addend >= h->vtable_entries_size)
6525 {
6526 size_t size, bytes;
6527 boolean *ptr = h->vtable_entries_used;
6528
6529 /* While the symbol is undefined, we have to be prepared to handle
6530 a zero size. */
6531 if (h->root.type == bfd_link_hash_undefined)
6532 size = addend;
6533 else
6534 {
6535 size = h->size;
6536 if (size < addend)
6537 {
6538 /* Oops! We've got a reference past the defined end of
6539 the table. This is probably a bug -- shall we warn? */
6540 size = addend;
6541 }
6542 }
6543
6544 /* Allocate one extra entry for use as a "done" flag for the
6545 consolidation pass. */
6546 bytes = (size / FILE_ALIGN + 1) * sizeof (boolean);
6547
6548 if (ptr)
6549 {
6550 ptr = bfd_realloc (ptr - 1, bytes);
6551
6552 if (ptr != NULL)
6553 {
6554 size_t oldbytes;
6555
6556 oldbytes = (h->vtable_entries_size/FILE_ALIGN + 1) * sizeof (boolean);
6557 memset (((char *)ptr) + oldbytes, 0, bytes - oldbytes);
6558 }
6559 }
6560 else
6561 ptr = bfd_zmalloc (bytes);
6562
6563 if (ptr == NULL)
6564 return false;
6565
6566 /* And arrange for that done flag to be at index -1. */
6567 h->vtable_entries_used = ptr + 1;
6568 h->vtable_entries_size = size;
6569 }
6570
6571 h->vtable_entries_used[addend / FILE_ALIGN] = true;
6572
6573 return true;
6574 }
6575
6576 /* And an accompanying bit to work out final got entry offsets once
6577 we're done. Should be called from final_link. */
6578
6579 boolean
6580 elf_gc_common_finalize_got_offsets (abfd, info)
6581 bfd *abfd;
6582 struct bfd_link_info *info;
6583 {
6584 bfd *i;
6585 struct elf_backend_data *bed = get_elf_backend_data (abfd);
6586 bfd_vma gotoff;
6587
6588 /* The GOT offset is relative to the .got section, but the GOT header is
6589 put into the .got.plt section, if the backend uses it. */
6590 if (bed->want_got_plt)
6591 gotoff = 0;
6592 else
6593 gotoff = bed->got_header_size;
6594
6595 /* Do the local .got entries first. */
6596 for (i = info->input_bfds; i; i = i->link_next)
6597 {
6598 bfd_signed_vma *local_got = elf_local_got_refcounts (i);
6599 bfd_size_type j, locsymcount;
6600 Elf_Internal_Shdr *symtab_hdr;
6601
6602 if (!local_got)
6603 continue;
6604
6605 symtab_hdr = &elf_tdata (i)->symtab_hdr;
6606 if (elf_bad_symtab (i))
6607 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6608 else
6609 locsymcount = symtab_hdr->sh_info;
6610
6611 for (j = 0; j < locsymcount; ++j)
6612 {
6613 if (local_got[j] > 0)
6614 {
6615 local_got[j] = gotoff;
6616 gotoff += ARCH_SIZE / 8;
6617 }
6618 else
6619 local_got[j] = (bfd_vma) -1;
6620 }
6621 }
6622
6623 /* Then the global .got and .plt entries. */
6624 elf_link_hash_traverse (elf_hash_table (info),
6625 elf_gc_allocate_got_offsets,
6626 (PTR) &gotoff);
6627 return true;
6628 }
6629
6630 /* We need a special top-level link routine to convert got reference counts
6631 to real got offsets. */
6632
6633 static boolean
6634 elf_gc_allocate_got_offsets (h, offarg)
6635 struct elf_link_hash_entry *h;
6636 PTR offarg;
6637 {
6638 bfd_vma *off = (bfd_vma *) offarg;
6639
6640 if (h->got.refcount > 0)
6641 {
6642 h->got.offset = off[0];
6643 off[0] += ARCH_SIZE / 8;
6644 }
6645 else
6646 h->got.offset = (bfd_vma) -1;
6647
6648 return true;
6649 }
6650
6651 /* Many folk need no more in the way of final link than this, once
6652 got entry reference counting is enabled. */
6653
6654 boolean
6655 elf_gc_common_final_link (abfd, info)
6656 bfd *abfd;
6657 struct bfd_link_info *info;
6658 {
6659 if (!elf_gc_common_finalize_got_offsets (abfd, info))
6660 return false;
6661
6662 /* Invoke the regular ELF backend linker to do all the work. */
6663 return elf_bfd_final_link (abfd, info);
6664 }
6665
6666 /* This function will be called though elf_link_hash_traverse to store
6667 all hash value of the exported symbols in an array. */
6668
6669 static boolean
6670 elf_collect_hash_codes (h, data)
6671 struct elf_link_hash_entry *h;
6672 PTR data;
6673 {
6674 unsigned long **valuep = (unsigned long **) data;
6675 const char *name;
6676 char *p;
6677 unsigned long ha;
6678 char *alc = NULL;
6679
6680 /* Ignore indirect symbols. These are added by the versioning code. */
6681 if (h->dynindx == -1)
6682 return true;
6683
6684 name = h->root.root.string;
6685 p = strchr (name, ELF_VER_CHR);
6686 if (p != NULL)
6687 {
6688 alc = bfd_malloc (p - name + 1);
6689 memcpy (alc, name, p - name);
6690 alc[p - name] = '\0';
6691 name = alc;
6692 }
6693
6694 /* Compute the hash value. */
6695 ha = bfd_elf_hash (name);
6696
6697 /* Store the found hash value in the array given as the argument. */
6698 *(*valuep)++ = ha;
6699
6700 /* And store it in the struct so that we can put it in the hash table
6701 later. */
6702 h->elf_hash_value = ha;
6703
6704 if (alc != NULL)
6705 free (alc);
6706
6707 return true;
6708 }
This page took 0.181879 seconds and 4 git commands to generate.