Automatic date update in version.in
[deliverable/binutils-gdb.git] / bfd / elfnn-aarch64.c
1 /* AArch64-specific support for NN-bit ELF.
2 Copyright (C) 2009-2019 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
20
21 /* Notes on implementation:
22
23 Thread Local Store (TLS)
24
25 Overview:
26
27 The implementation currently supports both traditional TLS and TLS
28 descriptors, but only general dynamic (GD).
29
30 For traditional TLS the assembler will present us with code
31 fragments of the form:
32
33 adrp x0, :tlsgd:foo
34 R_AARCH64_TLSGD_ADR_PAGE21(foo)
35 add x0, :tlsgd_lo12:foo
36 R_AARCH64_TLSGD_ADD_LO12_NC(foo)
37 bl __tls_get_addr
38 nop
39
40 For TLS descriptors the assembler will present us with code
41 fragments of the form:
42
43 adrp x0, :tlsdesc:foo R_AARCH64_TLSDESC_ADR_PAGE21(foo)
44 ldr x1, [x0, #:tlsdesc_lo12:foo] R_AARCH64_TLSDESC_LD64_LO12(foo)
45 add x0, x0, #:tlsdesc_lo12:foo R_AARCH64_TLSDESC_ADD_LO12(foo)
46 .tlsdesccall foo
47 blr x1 R_AARCH64_TLSDESC_CALL(foo)
48
49 The relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} against foo
50 indicate that foo is thread local and should be accessed via the
51 traditional TLS mechanims.
52
53 The relocations R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC}
54 against foo indicate that 'foo' is thread local and should be accessed
55 via a TLS descriptor mechanism.
56
57 The precise instruction sequence is only relevant from the
58 perspective of linker relaxation which is currently not implemented.
59
60 The static linker must detect that 'foo' is a TLS object and
61 allocate a double GOT entry. The GOT entry must be created for both
62 global and local TLS symbols. Note that this is different to none
63 TLS local objects which do not need a GOT entry.
64
65 In the traditional TLS mechanism, the double GOT entry is used to
66 provide the tls_index structure, containing module and offset
67 entries. The static linker places the relocation R_AARCH64_TLS_DTPMOD
68 on the module entry. The loader will subsequently fixup this
69 relocation with the module identity.
70
71 For global traditional TLS symbols the static linker places an
72 R_AARCH64_TLS_DTPREL relocation on the offset entry. The loader
73 will subsequently fixup the offset. For local TLS symbols the static
74 linker fixes up offset.
75
76 In the TLS descriptor mechanism the double GOT entry is used to
77 provide the descriptor. The static linker places the relocation
78 R_AARCH64_TLSDESC on the first GOT slot. The loader will
79 subsequently fix this up.
80
81 Implementation:
82
83 The handling of TLS symbols is implemented across a number of
84 different backend functions. The following is a top level view of
85 what processing is performed where.
86
87 The TLS implementation maintains state information for each TLS
88 symbol. The state information for local and global symbols is kept
89 in different places. Global symbols use generic BFD structures while
90 local symbols use backend specific structures that are allocated and
91 maintained entirely by the backend.
92
93 The flow:
94
95 elfNN_aarch64_check_relocs()
96
97 This function is invoked for each relocation.
98
99 The TLS relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} and
100 R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC} are
101 spotted. One time creation of local symbol data structures are
102 created when the first local symbol is seen.
103
104 The reference count for a symbol is incremented. The GOT type for
105 each symbol is marked as general dynamic.
106
107 elfNN_aarch64_allocate_dynrelocs ()
108
109 For each global with positive reference count we allocate a double
110 GOT slot. For a traditional TLS symbol we allocate space for two
111 relocation entries on the GOT, for a TLS descriptor symbol we
112 allocate space for one relocation on the slot. Record the GOT offset
113 for this symbol.
114
115 elfNN_aarch64_size_dynamic_sections ()
116
117 Iterate all input BFDS, look for in the local symbol data structure
118 constructed earlier for local TLS symbols and allocate them double
119 GOT slots along with space for a single GOT relocation. Update the
120 local symbol structure to record the GOT offset allocated.
121
122 elfNN_aarch64_relocate_section ()
123
124 Calls elfNN_aarch64_final_link_relocate ()
125
126 Emit the relevant TLS relocations against the GOT for each TLS
127 symbol. For local TLS symbols emit the GOT offset directly. The GOT
128 relocations are emitted once the first time a TLS symbol is
129 encountered. The implementation uses the LSB of the GOT offset to
130 flag that the relevant GOT relocations for a symbol have been
131 emitted. All of the TLS code that uses the GOT offset needs to take
132 care to mask out this flag bit before using the offset.
133
134 elfNN_aarch64_final_link_relocate ()
135
136 Fixup the R_AARCH64_TLSGD_{ADR_PREL21, ADD_LO12_NC} relocations. */
137
138 #include "sysdep.h"
139 #include "bfd.h"
140 #include "libiberty.h"
141 #include "libbfd.h"
142 #include "elf-bfd.h"
143 #include "bfdlink.h"
144 #include "objalloc.h"
145 #include "elf/aarch64.h"
146 #include "elfxx-aarch64.h"
147 #include "cpu-aarch64.h"
148
149 #define ARCH_SIZE NN
150
151 #if ARCH_SIZE == 64
152 #define AARCH64_R(NAME) R_AARCH64_ ## NAME
153 #define AARCH64_R_STR(NAME) "R_AARCH64_" #NAME
154 #define HOWTO64(...) HOWTO (__VA_ARGS__)
155 #define HOWTO32(...) EMPTY_HOWTO (0)
156 #define LOG_FILE_ALIGN 3
157 #define BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC BFD_RELOC_AARCH64_TLSDESC_LD64_LO12
158 #endif
159
160 #if ARCH_SIZE == 32
161 #define AARCH64_R(NAME) R_AARCH64_P32_ ## NAME
162 #define AARCH64_R_STR(NAME) "R_AARCH64_P32_" #NAME
163 #define HOWTO64(...) EMPTY_HOWTO (0)
164 #define HOWTO32(...) HOWTO (__VA_ARGS__)
165 #define LOG_FILE_ALIGN 2
166 #define BFD_RELOC_AARCH64_TLSDESC_LD32_LO12 BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
167 #define R_AARCH64_P32_TLSDESC_ADD_LO12 R_AARCH64_P32_TLSDESC_ADD_LO12_NC
168 #endif
169
170 #define IS_AARCH64_TLS_RELOC(R_TYPE) \
171 ((R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
172 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
173 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
174 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
175 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
176 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
177 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC \
178 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC \
179 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
180 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC \
181 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1 \
182 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12 \
183 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12 \
184 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC \
185 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
186 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
187 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21 \
188 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12 \
189 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC \
190 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12 \
191 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC \
192 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12 \
193 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC \
194 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12 \
195 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC \
196 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0 \
197 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC \
198 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1 \
199 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC \
200 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2 \
201 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12 \
202 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12 \
203 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC \
204 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12 \
205 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC \
206 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12 \
207 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC \
208 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12 \
209 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC \
210 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12 \
211 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC \
212 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0 \
213 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC \
214 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 \
215 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC \
216 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2 \
217 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPMOD \
218 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPREL \
219 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_TPREL \
220 || IS_AARCH64_TLSDESC_RELOC ((R_TYPE)))
221
222 #define IS_AARCH64_TLS_RELAX_RELOC(R_TYPE) \
223 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
224 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \
225 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
226 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
227 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
228 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
229 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC \
230 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
231 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
232 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1 \
233 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
234 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
235 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
236 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
237 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
238 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
239 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
240 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
241 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC \
242 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
243 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
244 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21)
245
246 #define IS_AARCH64_TLSDESC_RELOC(R_TYPE) \
247 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC \
248 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
249 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \
250 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
251 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
252 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
253 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC \
254 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD64_LO12 \
255 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
256 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
257 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
258 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1)
259
260 #define ELIMINATE_COPY_RELOCS 1
261
262 /* Return size of a relocation entry. HTAB is the bfd's
263 elf_aarch64_link_hash_entry. */
264 #define RELOC_SIZE(HTAB) (sizeof (ElfNN_External_Rela))
265
266 /* GOT Entry size - 8 bytes in ELF64 and 4 bytes in ELF32. */
267 #define GOT_ENTRY_SIZE (ARCH_SIZE / 8)
268 #define PLT_ENTRY_SIZE (32)
269 #define PLT_SMALL_ENTRY_SIZE (16)
270 #define PLT_TLSDESC_ENTRY_SIZE (32)
271 /* PLT sizes with BTI insn. */
272 #define PLT_BTI_SMALL_ENTRY_SIZE (24)
273 /* PLT sizes with PAC insn. */
274 #define PLT_PAC_SMALL_ENTRY_SIZE (24)
275 /* PLT sizes with BTI and PAC insn. */
276 #define PLT_BTI_PAC_SMALL_ENTRY_SIZE (24)
277
278 /* Encoding of the nop instruction. */
279 #define INSN_NOP 0xd503201f
280
281 #define aarch64_compute_jump_table_size(htab) \
282 (((htab)->root.srelplt == NULL) ? 0 \
283 : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE)
284
285 /* The first entry in a procedure linkage table looks like this
286 if the distance between the PLTGOT and the PLT is < 4GB use
287 these PLT entries. Note that the dynamic linker gets &PLTGOT[2]
288 in x16 and needs to work out PLTGOT[1] by using an address of
289 [x16,#-GOT_ENTRY_SIZE]. */
290 static const bfd_byte elfNN_aarch64_small_plt0_entry[PLT_ENTRY_SIZE] =
291 {
292 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
293 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
294 #if ARCH_SIZE == 64
295 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
296 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
297 #else
298 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
299 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
300 #endif
301 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
302 0x1f, 0x20, 0x03, 0xd5, /* nop */
303 0x1f, 0x20, 0x03, 0xd5, /* nop */
304 0x1f, 0x20, 0x03, 0xd5, /* nop */
305 };
306
307 static const bfd_byte elfNN_aarch64_small_plt0_bti_entry[PLT_ENTRY_SIZE] =
308 {
309 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
310 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
311 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
312 #if ARCH_SIZE == 64
313 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
314 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
315 #else
316 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
317 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
318 #endif
319 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
320 0x1f, 0x20, 0x03, 0xd5, /* nop */
321 0x1f, 0x20, 0x03, 0xd5, /* nop */
322 };
323
324 /* Per function entry in a procedure linkage table looks like this
325 if the distance between the PLTGOT and the PLT is < 4GB use
326 these PLT entries. Use BTI versions of the PLTs when enabled. */
327 static const bfd_byte elfNN_aarch64_small_plt_entry[PLT_SMALL_ENTRY_SIZE] =
328 {
329 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
330 #if ARCH_SIZE == 64
331 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
332 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
333 #else
334 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
335 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
336 #endif
337 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
338 };
339
340 static const bfd_byte
341 elfNN_aarch64_small_plt_bti_entry[PLT_BTI_SMALL_ENTRY_SIZE] =
342 {
343 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
344 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
345 #if ARCH_SIZE == 64
346 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
347 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
348 #else
349 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
350 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
351 #endif
352 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
353 0x1f, 0x20, 0x03, 0xd5, /* nop */
354 };
355
356 static const bfd_byte
357 elfNN_aarch64_small_plt_pac_entry[PLT_PAC_SMALL_ENTRY_SIZE] =
358 {
359 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
360 #if ARCH_SIZE == 64
361 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
362 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
363 #else
364 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
365 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
366 #endif
367 0x9f, 0x21, 0x03, 0xd5, /* autia1716 */
368 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
369 0x1f, 0x20, 0x03, 0xd5, /* nop */
370 };
371
372 static const bfd_byte
373 elfNN_aarch64_small_plt_bti_pac_entry[PLT_BTI_PAC_SMALL_ENTRY_SIZE] =
374 {
375 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
376 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
377 #if ARCH_SIZE == 64
378 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
379 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
380 #else
381 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
382 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
383 #endif
384 0x9f, 0x21, 0x03, 0xd5, /* autia1716 */
385 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
386 };
387
388 static const bfd_byte
389 elfNN_aarch64_tlsdesc_small_plt_entry[PLT_TLSDESC_ENTRY_SIZE] =
390 {
391 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
392 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
393 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
394 #if ARCH_SIZE == 64
395 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
396 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
397 #else
398 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
399 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
400 #endif
401 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
402 0x1f, 0x20, 0x03, 0xd5, /* nop */
403 0x1f, 0x20, 0x03, 0xd5, /* nop */
404 };
405
406 static const bfd_byte
407 elfNN_aarch64_tlsdesc_small_plt_bti_entry[PLT_TLSDESC_ENTRY_SIZE] =
408 {
409 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
410 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
411 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
412 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
413 #if ARCH_SIZE == 64
414 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
415 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
416 #else
417 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
418 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
419 #endif
420 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
421 0x1f, 0x20, 0x03, 0xd5, /* nop */
422 };
423
424 #define elf_info_to_howto elfNN_aarch64_info_to_howto
425 #define elf_info_to_howto_rel elfNN_aarch64_info_to_howto
426
427 #define AARCH64_ELF_ABI_VERSION 0
428
429 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
430 #define ALL_ONES (~ (bfd_vma) 0)
431
432 /* Indexed by the bfd interal reloc enumerators.
433 Therefore, the table needs to be synced with BFD_RELOC_AARCH64_*
434 in reloc.c. */
435
436 static reloc_howto_type elfNN_aarch64_howto_table[] =
437 {
438 EMPTY_HOWTO (0),
439
440 /* Basic data relocations. */
441
442 /* Deprecated, but retained for backwards compatibility. */
443 HOWTO64 (R_AARCH64_NULL, /* type */
444 0, /* rightshift */
445 3, /* size (0 = byte, 1 = short, 2 = long) */
446 0, /* bitsize */
447 FALSE, /* pc_relative */
448 0, /* bitpos */
449 complain_overflow_dont, /* complain_on_overflow */
450 bfd_elf_generic_reloc, /* special_function */
451 "R_AARCH64_NULL", /* name */
452 FALSE, /* partial_inplace */
453 0, /* src_mask */
454 0, /* dst_mask */
455 FALSE), /* pcrel_offset */
456 HOWTO (R_AARCH64_NONE, /* type */
457 0, /* rightshift */
458 3, /* size (0 = byte, 1 = short, 2 = long) */
459 0, /* bitsize */
460 FALSE, /* pc_relative */
461 0, /* bitpos */
462 complain_overflow_dont, /* complain_on_overflow */
463 bfd_elf_generic_reloc, /* special_function */
464 "R_AARCH64_NONE", /* name */
465 FALSE, /* partial_inplace */
466 0, /* src_mask */
467 0, /* dst_mask */
468 FALSE), /* pcrel_offset */
469
470 /* .xword: (S+A) */
471 HOWTO64 (AARCH64_R (ABS64), /* type */
472 0, /* rightshift */
473 4, /* size (4 = long long) */
474 64, /* bitsize */
475 FALSE, /* pc_relative */
476 0, /* bitpos */
477 complain_overflow_unsigned, /* complain_on_overflow */
478 bfd_elf_generic_reloc, /* special_function */
479 AARCH64_R_STR (ABS64), /* name */
480 FALSE, /* partial_inplace */
481 ALL_ONES, /* src_mask */
482 ALL_ONES, /* dst_mask */
483 FALSE), /* pcrel_offset */
484
485 /* .word: (S+A) */
486 HOWTO (AARCH64_R (ABS32), /* type */
487 0, /* rightshift */
488 2, /* size (0 = byte, 1 = short, 2 = long) */
489 32, /* bitsize */
490 FALSE, /* pc_relative */
491 0, /* bitpos */
492 complain_overflow_unsigned, /* complain_on_overflow */
493 bfd_elf_generic_reloc, /* special_function */
494 AARCH64_R_STR (ABS32), /* name */
495 FALSE, /* partial_inplace */
496 0xffffffff, /* src_mask */
497 0xffffffff, /* dst_mask */
498 FALSE), /* pcrel_offset */
499
500 /* .half: (S+A) */
501 HOWTO (AARCH64_R (ABS16), /* type */
502 0, /* rightshift */
503 1, /* size (0 = byte, 1 = short, 2 = long) */
504 16, /* bitsize */
505 FALSE, /* pc_relative */
506 0, /* bitpos */
507 complain_overflow_unsigned, /* complain_on_overflow */
508 bfd_elf_generic_reloc, /* special_function */
509 AARCH64_R_STR (ABS16), /* name */
510 FALSE, /* partial_inplace */
511 0xffff, /* src_mask */
512 0xffff, /* dst_mask */
513 FALSE), /* pcrel_offset */
514
515 /* .xword: (S+A-P) */
516 HOWTO64 (AARCH64_R (PREL64), /* type */
517 0, /* rightshift */
518 4, /* size (4 = long long) */
519 64, /* bitsize */
520 TRUE, /* pc_relative */
521 0, /* bitpos */
522 complain_overflow_signed, /* complain_on_overflow */
523 bfd_elf_generic_reloc, /* special_function */
524 AARCH64_R_STR (PREL64), /* name */
525 FALSE, /* partial_inplace */
526 ALL_ONES, /* src_mask */
527 ALL_ONES, /* dst_mask */
528 TRUE), /* pcrel_offset */
529
530 /* .word: (S+A-P) */
531 HOWTO (AARCH64_R (PREL32), /* type */
532 0, /* rightshift */
533 2, /* size (0 = byte, 1 = short, 2 = long) */
534 32, /* bitsize */
535 TRUE, /* pc_relative */
536 0, /* bitpos */
537 complain_overflow_signed, /* complain_on_overflow */
538 bfd_elf_generic_reloc, /* special_function */
539 AARCH64_R_STR (PREL32), /* name */
540 FALSE, /* partial_inplace */
541 0xffffffff, /* src_mask */
542 0xffffffff, /* dst_mask */
543 TRUE), /* pcrel_offset */
544
545 /* .half: (S+A-P) */
546 HOWTO (AARCH64_R (PREL16), /* type */
547 0, /* rightshift */
548 1, /* size (0 = byte, 1 = short, 2 = long) */
549 16, /* bitsize */
550 TRUE, /* pc_relative */
551 0, /* bitpos */
552 complain_overflow_signed, /* complain_on_overflow */
553 bfd_elf_generic_reloc, /* special_function */
554 AARCH64_R_STR (PREL16), /* name */
555 FALSE, /* partial_inplace */
556 0xffff, /* src_mask */
557 0xffff, /* dst_mask */
558 TRUE), /* pcrel_offset */
559
560 /* Group relocations to create a 16, 32, 48 or 64 bit
561 unsigned data or abs address inline. */
562
563 /* MOVZ: ((S+A) >> 0) & 0xffff */
564 HOWTO (AARCH64_R (MOVW_UABS_G0), /* type */
565 0, /* rightshift */
566 2, /* size (0 = byte, 1 = short, 2 = long) */
567 16, /* bitsize */
568 FALSE, /* pc_relative */
569 0, /* bitpos */
570 complain_overflow_unsigned, /* complain_on_overflow */
571 bfd_elf_generic_reloc, /* special_function */
572 AARCH64_R_STR (MOVW_UABS_G0), /* name */
573 FALSE, /* partial_inplace */
574 0xffff, /* src_mask */
575 0xffff, /* dst_mask */
576 FALSE), /* pcrel_offset */
577
578 /* MOVK: ((S+A) >> 0) & 0xffff [no overflow check] */
579 HOWTO (AARCH64_R (MOVW_UABS_G0_NC), /* type */
580 0, /* rightshift */
581 2, /* size (0 = byte, 1 = short, 2 = long) */
582 16, /* bitsize */
583 FALSE, /* pc_relative */
584 0, /* bitpos */
585 complain_overflow_dont, /* complain_on_overflow */
586 bfd_elf_generic_reloc, /* special_function */
587 AARCH64_R_STR (MOVW_UABS_G0_NC), /* name */
588 FALSE, /* partial_inplace */
589 0xffff, /* src_mask */
590 0xffff, /* dst_mask */
591 FALSE), /* pcrel_offset */
592
593 /* MOVZ: ((S+A) >> 16) & 0xffff */
594 HOWTO (AARCH64_R (MOVW_UABS_G1), /* type */
595 16, /* rightshift */
596 2, /* size (0 = byte, 1 = short, 2 = long) */
597 16, /* bitsize */
598 FALSE, /* pc_relative */
599 0, /* bitpos */
600 complain_overflow_unsigned, /* complain_on_overflow */
601 bfd_elf_generic_reloc, /* special_function */
602 AARCH64_R_STR (MOVW_UABS_G1), /* name */
603 FALSE, /* partial_inplace */
604 0xffff, /* src_mask */
605 0xffff, /* dst_mask */
606 FALSE), /* pcrel_offset */
607
608 /* MOVK: ((S+A) >> 16) & 0xffff [no overflow check] */
609 HOWTO64 (AARCH64_R (MOVW_UABS_G1_NC), /* type */
610 16, /* rightshift */
611 2, /* size (0 = byte, 1 = short, 2 = long) */
612 16, /* bitsize */
613 FALSE, /* pc_relative */
614 0, /* bitpos */
615 complain_overflow_dont, /* complain_on_overflow */
616 bfd_elf_generic_reloc, /* special_function */
617 AARCH64_R_STR (MOVW_UABS_G1_NC), /* name */
618 FALSE, /* partial_inplace */
619 0xffff, /* src_mask */
620 0xffff, /* dst_mask */
621 FALSE), /* pcrel_offset */
622
623 /* MOVZ: ((S+A) >> 32) & 0xffff */
624 HOWTO64 (AARCH64_R (MOVW_UABS_G2), /* type */
625 32, /* rightshift */
626 2, /* size (0 = byte, 1 = short, 2 = long) */
627 16, /* bitsize */
628 FALSE, /* pc_relative */
629 0, /* bitpos */
630 complain_overflow_unsigned, /* complain_on_overflow */
631 bfd_elf_generic_reloc, /* special_function */
632 AARCH64_R_STR (MOVW_UABS_G2), /* name */
633 FALSE, /* partial_inplace */
634 0xffff, /* src_mask */
635 0xffff, /* dst_mask */
636 FALSE), /* pcrel_offset */
637
638 /* MOVK: ((S+A) >> 32) & 0xffff [no overflow check] */
639 HOWTO64 (AARCH64_R (MOVW_UABS_G2_NC), /* type */
640 32, /* rightshift */
641 2, /* size (0 = byte, 1 = short, 2 = long) */
642 16, /* bitsize */
643 FALSE, /* pc_relative */
644 0, /* bitpos */
645 complain_overflow_dont, /* complain_on_overflow */
646 bfd_elf_generic_reloc, /* special_function */
647 AARCH64_R_STR (MOVW_UABS_G2_NC), /* name */
648 FALSE, /* partial_inplace */
649 0xffff, /* src_mask */
650 0xffff, /* dst_mask */
651 FALSE), /* pcrel_offset */
652
653 /* MOVZ: ((S+A) >> 48) & 0xffff */
654 HOWTO64 (AARCH64_R (MOVW_UABS_G3), /* type */
655 48, /* rightshift */
656 2, /* size (0 = byte, 1 = short, 2 = long) */
657 16, /* bitsize */
658 FALSE, /* pc_relative */
659 0, /* bitpos */
660 complain_overflow_unsigned, /* complain_on_overflow */
661 bfd_elf_generic_reloc, /* special_function */
662 AARCH64_R_STR (MOVW_UABS_G3), /* name */
663 FALSE, /* partial_inplace */
664 0xffff, /* src_mask */
665 0xffff, /* dst_mask */
666 FALSE), /* pcrel_offset */
667
668 /* Group relocations to create high part of a 16, 32, 48 or 64 bit
669 signed data or abs address inline. Will change instruction
670 to MOVN or MOVZ depending on sign of calculated value. */
671
672 /* MOV[ZN]: ((S+A) >> 0) & 0xffff */
673 HOWTO (AARCH64_R (MOVW_SABS_G0), /* type */
674 0, /* rightshift */
675 2, /* size (0 = byte, 1 = short, 2 = long) */
676 17, /* bitsize */
677 FALSE, /* pc_relative */
678 0, /* bitpos */
679 complain_overflow_signed, /* complain_on_overflow */
680 bfd_elf_generic_reloc, /* special_function */
681 AARCH64_R_STR (MOVW_SABS_G0), /* name */
682 FALSE, /* partial_inplace */
683 0xffff, /* src_mask */
684 0xffff, /* dst_mask */
685 FALSE), /* pcrel_offset */
686
687 /* MOV[ZN]: ((S+A) >> 16) & 0xffff */
688 HOWTO64 (AARCH64_R (MOVW_SABS_G1), /* type */
689 16, /* rightshift */
690 2, /* size (0 = byte, 1 = short, 2 = long) */
691 17, /* bitsize */
692 FALSE, /* pc_relative */
693 0, /* bitpos */
694 complain_overflow_signed, /* complain_on_overflow */
695 bfd_elf_generic_reloc, /* special_function */
696 AARCH64_R_STR (MOVW_SABS_G1), /* name */
697 FALSE, /* partial_inplace */
698 0xffff, /* src_mask */
699 0xffff, /* dst_mask */
700 FALSE), /* pcrel_offset */
701
702 /* MOV[ZN]: ((S+A) >> 32) & 0xffff */
703 HOWTO64 (AARCH64_R (MOVW_SABS_G2), /* type */
704 32, /* rightshift */
705 2, /* size (0 = byte, 1 = short, 2 = long) */
706 17, /* bitsize */
707 FALSE, /* pc_relative */
708 0, /* bitpos */
709 complain_overflow_signed, /* complain_on_overflow */
710 bfd_elf_generic_reloc, /* special_function */
711 AARCH64_R_STR (MOVW_SABS_G2), /* name */
712 FALSE, /* partial_inplace */
713 0xffff, /* src_mask */
714 0xffff, /* dst_mask */
715 FALSE), /* pcrel_offset */
716
717 /* Group relocations to create a 16, 32, 48 or 64 bit
718 PC relative address inline. */
719
720 /* MOV[NZ]: ((S+A-P) >> 0) & 0xffff */
721 HOWTO (AARCH64_R (MOVW_PREL_G0), /* type */
722 0, /* rightshift */
723 2, /* size (0 = byte, 1 = short, 2 = long) */
724 17, /* bitsize */
725 TRUE, /* pc_relative */
726 0, /* bitpos */
727 complain_overflow_signed, /* complain_on_overflow */
728 bfd_elf_generic_reloc, /* special_function */
729 AARCH64_R_STR (MOVW_PREL_G0), /* name */
730 FALSE, /* partial_inplace */
731 0xffff, /* src_mask */
732 0xffff, /* dst_mask */
733 TRUE), /* pcrel_offset */
734
735 /* MOVK: ((S+A-P) >> 0) & 0xffff [no overflow check] */
736 HOWTO (AARCH64_R (MOVW_PREL_G0_NC), /* type */
737 0, /* rightshift */
738 2, /* size (0 = byte, 1 = short, 2 = long) */
739 16, /* bitsize */
740 TRUE, /* pc_relative */
741 0, /* bitpos */
742 complain_overflow_dont, /* complain_on_overflow */
743 bfd_elf_generic_reloc, /* special_function */
744 AARCH64_R_STR (MOVW_PREL_G0_NC), /* name */
745 FALSE, /* partial_inplace */
746 0xffff, /* src_mask */
747 0xffff, /* dst_mask */
748 TRUE), /* pcrel_offset */
749
750 /* MOV[NZ]: ((S+A-P) >> 16) & 0xffff */
751 HOWTO (AARCH64_R (MOVW_PREL_G1), /* type */
752 16, /* rightshift */
753 2, /* size (0 = byte, 1 = short, 2 = long) */
754 17, /* bitsize */
755 TRUE, /* pc_relative */
756 0, /* bitpos */
757 complain_overflow_signed, /* complain_on_overflow */
758 bfd_elf_generic_reloc, /* special_function */
759 AARCH64_R_STR (MOVW_PREL_G1), /* name */
760 FALSE, /* partial_inplace */
761 0xffff, /* src_mask */
762 0xffff, /* dst_mask */
763 TRUE), /* pcrel_offset */
764
765 /* MOVK: ((S+A-P) >> 16) & 0xffff [no overflow check] */
766 HOWTO64 (AARCH64_R (MOVW_PREL_G1_NC), /* type */
767 16, /* rightshift */
768 2, /* size (0 = byte, 1 = short, 2 = long) */
769 16, /* bitsize */
770 TRUE, /* pc_relative */
771 0, /* bitpos */
772 complain_overflow_dont, /* complain_on_overflow */
773 bfd_elf_generic_reloc, /* special_function */
774 AARCH64_R_STR (MOVW_PREL_G1_NC), /* name */
775 FALSE, /* partial_inplace */
776 0xffff, /* src_mask */
777 0xffff, /* dst_mask */
778 TRUE), /* pcrel_offset */
779
780 /* MOV[NZ]: ((S+A-P) >> 32) & 0xffff */
781 HOWTO64 (AARCH64_R (MOVW_PREL_G2), /* type */
782 32, /* rightshift */
783 2, /* size (0 = byte, 1 = short, 2 = long) */
784 17, /* bitsize */
785 TRUE, /* pc_relative */
786 0, /* bitpos */
787 complain_overflow_signed, /* complain_on_overflow */
788 bfd_elf_generic_reloc, /* special_function */
789 AARCH64_R_STR (MOVW_PREL_G2), /* name */
790 FALSE, /* partial_inplace */
791 0xffff, /* src_mask */
792 0xffff, /* dst_mask */
793 TRUE), /* pcrel_offset */
794
795 /* MOVK: ((S+A-P) >> 32) & 0xffff [no overflow check] */
796 HOWTO64 (AARCH64_R (MOVW_PREL_G2_NC), /* type */
797 32, /* rightshift */
798 2, /* size (0 = byte, 1 = short, 2 = long) */
799 16, /* bitsize */
800 TRUE, /* pc_relative */
801 0, /* bitpos */
802 complain_overflow_dont, /* complain_on_overflow */
803 bfd_elf_generic_reloc, /* special_function */
804 AARCH64_R_STR (MOVW_PREL_G2_NC), /* name */
805 FALSE, /* partial_inplace */
806 0xffff, /* src_mask */
807 0xffff, /* dst_mask */
808 TRUE), /* pcrel_offset */
809
810 /* MOV[NZ]: ((S+A-P) >> 48) & 0xffff */
811 HOWTO64 (AARCH64_R (MOVW_PREL_G3), /* type */
812 48, /* rightshift */
813 2, /* size (0 = byte, 1 = short, 2 = long) */
814 16, /* bitsize */
815 TRUE, /* pc_relative */
816 0, /* bitpos */
817 complain_overflow_dont, /* complain_on_overflow */
818 bfd_elf_generic_reloc, /* special_function */
819 AARCH64_R_STR (MOVW_PREL_G3), /* name */
820 FALSE, /* partial_inplace */
821 0xffff, /* src_mask */
822 0xffff, /* dst_mask */
823 TRUE), /* pcrel_offset */
824
825 /* Relocations to generate 19, 21 and 33 bit PC-relative load/store
826 addresses: PG(x) is (x & ~0xfff). */
827
828 /* LD-lit: ((S+A-P) >> 2) & 0x7ffff */
829 HOWTO (AARCH64_R (LD_PREL_LO19), /* type */
830 2, /* rightshift */
831 2, /* size (0 = byte, 1 = short, 2 = long) */
832 19, /* bitsize */
833 TRUE, /* pc_relative */
834 0, /* bitpos */
835 complain_overflow_signed, /* complain_on_overflow */
836 bfd_elf_generic_reloc, /* special_function */
837 AARCH64_R_STR (LD_PREL_LO19), /* name */
838 FALSE, /* partial_inplace */
839 0x7ffff, /* src_mask */
840 0x7ffff, /* dst_mask */
841 TRUE), /* pcrel_offset */
842
843 /* ADR: (S+A-P) & 0x1fffff */
844 HOWTO (AARCH64_R (ADR_PREL_LO21), /* type */
845 0, /* rightshift */
846 2, /* size (0 = byte, 1 = short, 2 = long) */
847 21, /* bitsize */
848 TRUE, /* pc_relative */
849 0, /* bitpos */
850 complain_overflow_signed, /* complain_on_overflow */
851 bfd_elf_generic_reloc, /* special_function */
852 AARCH64_R_STR (ADR_PREL_LO21), /* name */
853 FALSE, /* partial_inplace */
854 0x1fffff, /* src_mask */
855 0x1fffff, /* dst_mask */
856 TRUE), /* pcrel_offset */
857
858 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
859 HOWTO (AARCH64_R (ADR_PREL_PG_HI21), /* type */
860 12, /* rightshift */
861 2, /* size (0 = byte, 1 = short, 2 = long) */
862 21, /* bitsize */
863 TRUE, /* pc_relative */
864 0, /* bitpos */
865 complain_overflow_signed, /* complain_on_overflow */
866 bfd_elf_generic_reloc, /* special_function */
867 AARCH64_R_STR (ADR_PREL_PG_HI21), /* name */
868 FALSE, /* partial_inplace */
869 0x1fffff, /* src_mask */
870 0x1fffff, /* dst_mask */
871 TRUE), /* pcrel_offset */
872
873 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff [no overflow check] */
874 HOWTO64 (AARCH64_R (ADR_PREL_PG_HI21_NC), /* type */
875 12, /* rightshift */
876 2, /* size (0 = byte, 1 = short, 2 = long) */
877 21, /* bitsize */
878 TRUE, /* pc_relative */
879 0, /* bitpos */
880 complain_overflow_dont, /* complain_on_overflow */
881 bfd_elf_generic_reloc, /* special_function */
882 AARCH64_R_STR (ADR_PREL_PG_HI21_NC), /* name */
883 FALSE, /* partial_inplace */
884 0x1fffff, /* src_mask */
885 0x1fffff, /* dst_mask */
886 TRUE), /* pcrel_offset */
887
888 /* ADD: (S+A) & 0xfff [no overflow check] */
889 HOWTO (AARCH64_R (ADD_ABS_LO12_NC), /* type */
890 0, /* rightshift */
891 2, /* size (0 = byte, 1 = short, 2 = long) */
892 12, /* bitsize */
893 FALSE, /* pc_relative */
894 10, /* bitpos */
895 complain_overflow_dont, /* complain_on_overflow */
896 bfd_elf_generic_reloc, /* special_function */
897 AARCH64_R_STR (ADD_ABS_LO12_NC), /* name */
898 FALSE, /* partial_inplace */
899 0x3ffc00, /* src_mask */
900 0x3ffc00, /* dst_mask */
901 FALSE), /* pcrel_offset */
902
903 /* LD/ST8: (S+A) & 0xfff */
904 HOWTO (AARCH64_R (LDST8_ABS_LO12_NC), /* type */
905 0, /* rightshift */
906 2, /* size (0 = byte, 1 = short, 2 = long) */
907 12, /* bitsize */
908 FALSE, /* pc_relative */
909 0, /* bitpos */
910 complain_overflow_dont, /* complain_on_overflow */
911 bfd_elf_generic_reloc, /* special_function */
912 AARCH64_R_STR (LDST8_ABS_LO12_NC), /* name */
913 FALSE, /* partial_inplace */
914 0xfff, /* src_mask */
915 0xfff, /* dst_mask */
916 FALSE), /* pcrel_offset */
917
918 /* Relocations for control-flow instructions. */
919
920 /* TBZ/NZ: ((S+A-P) >> 2) & 0x3fff */
921 HOWTO (AARCH64_R (TSTBR14), /* type */
922 2, /* rightshift */
923 2, /* size (0 = byte, 1 = short, 2 = long) */
924 14, /* bitsize */
925 TRUE, /* pc_relative */
926 0, /* bitpos */
927 complain_overflow_signed, /* complain_on_overflow */
928 bfd_elf_generic_reloc, /* special_function */
929 AARCH64_R_STR (TSTBR14), /* name */
930 FALSE, /* partial_inplace */
931 0x3fff, /* src_mask */
932 0x3fff, /* dst_mask */
933 TRUE), /* pcrel_offset */
934
935 /* B.cond: ((S+A-P) >> 2) & 0x7ffff */
936 HOWTO (AARCH64_R (CONDBR19), /* type */
937 2, /* rightshift */
938 2, /* size (0 = byte, 1 = short, 2 = long) */
939 19, /* bitsize */
940 TRUE, /* pc_relative */
941 0, /* bitpos */
942 complain_overflow_signed, /* complain_on_overflow */
943 bfd_elf_generic_reloc, /* special_function */
944 AARCH64_R_STR (CONDBR19), /* name */
945 FALSE, /* partial_inplace */
946 0x7ffff, /* src_mask */
947 0x7ffff, /* dst_mask */
948 TRUE), /* pcrel_offset */
949
950 /* B: ((S+A-P) >> 2) & 0x3ffffff */
951 HOWTO (AARCH64_R (JUMP26), /* type */
952 2, /* rightshift */
953 2, /* size (0 = byte, 1 = short, 2 = long) */
954 26, /* bitsize */
955 TRUE, /* pc_relative */
956 0, /* bitpos */
957 complain_overflow_signed, /* complain_on_overflow */
958 bfd_elf_generic_reloc, /* special_function */
959 AARCH64_R_STR (JUMP26), /* name */
960 FALSE, /* partial_inplace */
961 0x3ffffff, /* src_mask */
962 0x3ffffff, /* dst_mask */
963 TRUE), /* pcrel_offset */
964
965 /* BL: ((S+A-P) >> 2) & 0x3ffffff */
966 HOWTO (AARCH64_R (CALL26), /* type */
967 2, /* rightshift */
968 2, /* size (0 = byte, 1 = short, 2 = long) */
969 26, /* bitsize */
970 TRUE, /* pc_relative */
971 0, /* bitpos */
972 complain_overflow_signed, /* complain_on_overflow */
973 bfd_elf_generic_reloc, /* special_function */
974 AARCH64_R_STR (CALL26), /* name */
975 FALSE, /* partial_inplace */
976 0x3ffffff, /* src_mask */
977 0x3ffffff, /* dst_mask */
978 TRUE), /* pcrel_offset */
979
980 /* LD/ST16: (S+A) & 0xffe */
981 HOWTO (AARCH64_R (LDST16_ABS_LO12_NC), /* type */
982 1, /* rightshift */
983 2, /* size (0 = byte, 1 = short, 2 = long) */
984 12, /* bitsize */
985 FALSE, /* pc_relative */
986 0, /* bitpos */
987 complain_overflow_dont, /* complain_on_overflow */
988 bfd_elf_generic_reloc, /* special_function */
989 AARCH64_R_STR (LDST16_ABS_LO12_NC), /* name */
990 FALSE, /* partial_inplace */
991 0xffe, /* src_mask */
992 0xffe, /* dst_mask */
993 FALSE), /* pcrel_offset */
994
995 /* LD/ST32: (S+A) & 0xffc */
996 HOWTO (AARCH64_R (LDST32_ABS_LO12_NC), /* type */
997 2, /* rightshift */
998 2, /* size (0 = byte, 1 = short, 2 = long) */
999 12, /* bitsize */
1000 FALSE, /* pc_relative */
1001 0, /* bitpos */
1002 complain_overflow_dont, /* complain_on_overflow */
1003 bfd_elf_generic_reloc, /* special_function */
1004 AARCH64_R_STR (LDST32_ABS_LO12_NC), /* name */
1005 FALSE, /* partial_inplace */
1006 0xffc, /* src_mask */
1007 0xffc, /* dst_mask */
1008 FALSE), /* pcrel_offset */
1009
1010 /* LD/ST64: (S+A) & 0xff8 */
1011 HOWTO (AARCH64_R (LDST64_ABS_LO12_NC), /* type */
1012 3, /* rightshift */
1013 2, /* size (0 = byte, 1 = short, 2 = long) */
1014 12, /* bitsize */
1015 FALSE, /* pc_relative */
1016 0, /* bitpos */
1017 complain_overflow_dont, /* complain_on_overflow */
1018 bfd_elf_generic_reloc, /* special_function */
1019 AARCH64_R_STR (LDST64_ABS_LO12_NC), /* name */
1020 FALSE, /* partial_inplace */
1021 0xff8, /* src_mask */
1022 0xff8, /* dst_mask */
1023 FALSE), /* pcrel_offset */
1024
1025 /* LD/ST128: (S+A) & 0xff0 */
1026 HOWTO (AARCH64_R (LDST128_ABS_LO12_NC), /* type */
1027 4, /* rightshift */
1028 2, /* size (0 = byte, 1 = short, 2 = long) */
1029 12, /* bitsize */
1030 FALSE, /* pc_relative */
1031 0, /* bitpos */
1032 complain_overflow_dont, /* complain_on_overflow */
1033 bfd_elf_generic_reloc, /* special_function */
1034 AARCH64_R_STR (LDST128_ABS_LO12_NC), /* name */
1035 FALSE, /* partial_inplace */
1036 0xff0, /* src_mask */
1037 0xff0, /* dst_mask */
1038 FALSE), /* pcrel_offset */
1039
1040 /* Set a load-literal immediate field to bits
1041 0x1FFFFC of G(S)-P */
1042 HOWTO (AARCH64_R (GOT_LD_PREL19), /* type */
1043 2, /* rightshift */
1044 2, /* size (0 = byte,1 = short,2 = long) */
1045 19, /* bitsize */
1046 TRUE, /* pc_relative */
1047 0, /* bitpos */
1048 complain_overflow_signed, /* complain_on_overflow */
1049 bfd_elf_generic_reloc, /* special_function */
1050 AARCH64_R_STR (GOT_LD_PREL19), /* name */
1051 FALSE, /* partial_inplace */
1052 0xffffe0, /* src_mask */
1053 0xffffe0, /* dst_mask */
1054 TRUE), /* pcrel_offset */
1055
1056 /* Get to the page for the GOT entry for the symbol
1057 (G(S) - P) using an ADRP instruction. */
1058 HOWTO (AARCH64_R (ADR_GOT_PAGE), /* type */
1059 12, /* rightshift */
1060 2, /* size (0 = byte, 1 = short, 2 = long) */
1061 21, /* bitsize */
1062 TRUE, /* pc_relative */
1063 0, /* bitpos */
1064 complain_overflow_dont, /* complain_on_overflow */
1065 bfd_elf_generic_reloc, /* special_function */
1066 AARCH64_R_STR (ADR_GOT_PAGE), /* name */
1067 FALSE, /* partial_inplace */
1068 0x1fffff, /* src_mask */
1069 0x1fffff, /* dst_mask */
1070 TRUE), /* pcrel_offset */
1071
1072 /* LD64: GOT offset G(S) & 0xff8 */
1073 HOWTO64 (AARCH64_R (LD64_GOT_LO12_NC), /* type */
1074 3, /* rightshift */
1075 2, /* size (0 = byte, 1 = short, 2 = long) */
1076 12, /* bitsize */
1077 FALSE, /* pc_relative */
1078 0, /* bitpos */
1079 complain_overflow_dont, /* complain_on_overflow */
1080 bfd_elf_generic_reloc, /* special_function */
1081 AARCH64_R_STR (LD64_GOT_LO12_NC), /* name */
1082 FALSE, /* partial_inplace */
1083 0xff8, /* src_mask */
1084 0xff8, /* dst_mask */
1085 FALSE), /* pcrel_offset */
1086
1087 /* LD32: GOT offset G(S) & 0xffc */
1088 HOWTO32 (AARCH64_R (LD32_GOT_LO12_NC), /* type */
1089 2, /* rightshift */
1090 2, /* size (0 = byte, 1 = short, 2 = long) */
1091 12, /* bitsize */
1092 FALSE, /* pc_relative */
1093 0, /* bitpos */
1094 complain_overflow_dont, /* complain_on_overflow */
1095 bfd_elf_generic_reloc, /* special_function */
1096 AARCH64_R_STR (LD32_GOT_LO12_NC), /* name */
1097 FALSE, /* partial_inplace */
1098 0xffc, /* src_mask */
1099 0xffc, /* dst_mask */
1100 FALSE), /* pcrel_offset */
1101
1102 /* Lower 16 bits of GOT offset for the symbol. */
1103 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G0_NC), /* type */
1104 0, /* rightshift */
1105 2, /* size (0 = byte, 1 = short, 2 = long) */
1106 16, /* bitsize */
1107 FALSE, /* pc_relative */
1108 0, /* bitpos */
1109 complain_overflow_dont, /* complain_on_overflow */
1110 bfd_elf_generic_reloc, /* special_function */
1111 AARCH64_R_STR (MOVW_GOTOFF_G0_NC), /* name */
1112 FALSE, /* partial_inplace */
1113 0xffff, /* src_mask */
1114 0xffff, /* dst_mask */
1115 FALSE), /* pcrel_offset */
1116
1117 /* Higher 16 bits of GOT offset for the symbol. */
1118 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G1), /* type */
1119 16, /* rightshift */
1120 2, /* size (0 = byte, 1 = short, 2 = long) */
1121 16, /* bitsize */
1122 FALSE, /* pc_relative */
1123 0, /* bitpos */
1124 complain_overflow_unsigned, /* complain_on_overflow */
1125 bfd_elf_generic_reloc, /* special_function */
1126 AARCH64_R_STR (MOVW_GOTOFF_G1), /* name */
1127 FALSE, /* partial_inplace */
1128 0xffff, /* src_mask */
1129 0xffff, /* dst_mask */
1130 FALSE), /* pcrel_offset */
1131
1132 /* LD64: GOT offset for the symbol. */
1133 HOWTO64 (AARCH64_R (LD64_GOTOFF_LO15), /* type */
1134 3, /* rightshift */
1135 2, /* size (0 = byte, 1 = short, 2 = long) */
1136 12, /* bitsize */
1137 FALSE, /* pc_relative */
1138 0, /* bitpos */
1139 complain_overflow_unsigned, /* complain_on_overflow */
1140 bfd_elf_generic_reloc, /* special_function */
1141 AARCH64_R_STR (LD64_GOTOFF_LO15), /* name */
1142 FALSE, /* partial_inplace */
1143 0x7ff8, /* src_mask */
1144 0x7ff8, /* dst_mask */
1145 FALSE), /* pcrel_offset */
1146
1147 /* LD32: GOT offset to the page address of GOT table.
1148 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x5ffc. */
1149 HOWTO32 (AARCH64_R (LD32_GOTPAGE_LO14), /* type */
1150 2, /* rightshift */
1151 2, /* size (0 = byte, 1 = short, 2 = long) */
1152 12, /* bitsize */
1153 FALSE, /* pc_relative */
1154 0, /* bitpos */
1155 complain_overflow_unsigned, /* complain_on_overflow */
1156 bfd_elf_generic_reloc, /* special_function */
1157 AARCH64_R_STR (LD32_GOTPAGE_LO14), /* name */
1158 FALSE, /* partial_inplace */
1159 0x5ffc, /* src_mask */
1160 0x5ffc, /* dst_mask */
1161 FALSE), /* pcrel_offset */
1162
1163 /* LD64: GOT offset to the page address of GOT table.
1164 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x7ff8. */
1165 HOWTO64 (AARCH64_R (LD64_GOTPAGE_LO15), /* type */
1166 3, /* rightshift */
1167 2, /* size (0 = byte, 1 = short, 2 = long) */
1168 12, /* bitsize */
1169 FALSE, /* pc_relative */
1170 0, /* bitpos */
1171 complain_overflow_unsigned, /* complain_on_overflow */
1172 bfd_elf_generic_reloc, /* special_function */
1173 AARCH64_R_STR (LD64_GOTPAGE_LO15), /* name */
1174 FALSE, /* partial_inplace */
1175 0x7ff8, /* src_mask */
1176 0x7ff8, /* dst_mask */
1177 FALSE), /* pcrel_offset */
1178
1179 /* Get to the page for the GOT entry for the symbol
1180 (G(S) - P) using an ADRP instruction. */
1181 HOWTO (AARCH64_R (TLSGD_ADR_PAGE21), /* type */
1182 12, /* rightshift */
1183 2, /* size (0 = byte, 1 = short, 2 = long) */
1184 21, /* bitsize */
1185 TRUE, /* pc_relative */
1186 0, /* bitpos */
1187 complain_overflow_dont, /* complain_on_overflow */
1188 bfd_elf_generic_reloc, /* special_function */
1189 AARCH64_R_STR (TLSGD_ADR_PAGE21), /* name */
1190 FALSE, /* partial_inplace */
1191 0x1fffff, /* src_mask */
1192 0x1fffff, /* dst_mask */
1193 TRUE), /* pcrel_offset */
1194
1195 HOWTO (AARCH64_R (TLSGD_ADR_PREL21), /* type */
1196 0, /* rightshift */
1197 2, /* size (0 = byte, 1 = short, 2 = long) */
1198 21, /* bitsize */
1199 TRUE, /* pc_relative */
1200 0, /* bitpos */
1201 complain_overflow_dont, /* complain_on_overflow */
1202 bfd_elf_generic_reloc, /* special_function */
1203 AARCH64_R_STR (TLSGD_ADR_PREL21), /* name */
1204 FALSE, /* partial_inplace */
1205 0x1fffff, /* src_mask */
1206 0x1fffff, /* dst_mask */
1207 TRUE), /* pcrel_offset */
1208
1209 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1210 HOWTO (AARCH64_R (TLSGD_ADD_LO12_NC), /* type */
1211 0, /* rightshift */
1212 2, /* size (0 = byte, 1 = short, 2 = long) */
1213 12, /* bitsize */
1214 FALSE, /* pc_relative */
1215 0, /* bitpos */
1216 complain_overflow_dont, /* complain_on_overflow */
1217 bfd_elf_generic_reloc, /* special_function */
1218 AARCH64_R_STR (TLSGD_ADD_LO12_NC), /* name */
1219 FALSE, /* partial_inplace */
1220 0xfff, /* src_mask */
1221 0xfff, /* dst_mask */
1222 FALSE), /* pcrel_offset */
1223
1224 /* Lower 16 bits of GOT offset to tls_index. */
1225 HOWTO64 (AARCH64_R (TLSGD_MOVW_G0_NC), /* type */
1226 0, /* rightshift */
1227 2, /* size (0 = byte, 1 = short, 2 = long) */
1228 16, /* bitsize */
1229 FALSE, /* pc_relative */
1230 0, /* bitpos */
1231 complain_overflow_dont, /* complain_on_overflow */
1232 bfd_elf_generic_reloc, /* special_function */
1233 AARCH64_R_STR (TLSGD_MOVW_G0_NC), /* name */
1234 FALSE, /* partial_inplace */
1235 0xffff, /* src_mask */
1236 0xffff, /* dst_mask */
1237 FALSE), /* pcrel_offset */
1238
1239 /* Higher 16 bits of GOT offset to tls_index. */
1240 HOWTO64 (AARCH64_R (TLSGD_MOVW_G1), /* type */
1241 16, /* rightshift */
1242 2, /* size (0 = byte, 1 = short, 2 = long) */
1243 16, /* bitsize */
1244 FALSE, /* pc_relative */
1245 0, /* bitpos */
1246 complain_overflow_unsigned, /* complain_on_overflow */
1247 bfd_elf_generic_reloc, /* special_function */
1248 AARCH64_R_STR (TLSGD_MOVW_G1), /* name */
1249 FALSE, /* partial_inplace */
1250 0xffff, /* src_mask */
1251 0xffff, /* dst_mask */
1252 FALSE), /* pcrel_offset */
1253
1254 HOWTO (AARCH64_R (TLSIE_ADR_GOTTPREL_PAGE21), /* type */
1255 12, /* rightshift */
1256 2, /* size (0 = byte, 1 = short, 2 = long) */
1257 21, /* bitsize */
1258 FALSE, /* pc_relative */
1259 0, /* bitpos */
1260 complain_overflow_dont, /* complain_on_overflow */
1261 bfd_elf_generic_reloc, /* special_function */
1262 AARCH64_R_STR (TLSIE_ADR_GOTTPREL_PAGE21), /* name */
1263 FALSE, /* partial_inplace */
1264 0x1fffff, /* src_mask */
1265 0x1fffff, /* dst_mask */
1266 FALSE), /* pcrel_offset */
1267
1268 HOWTO64 (AARCH64_R (TLSIE_LD64_GOTTPREL_LO12_NC), /* type */
1269 3, /* rightshift */
1270 2, /* size (0 = byte, 1 = short, 2 = long) */
1271 12, /* bitsize */
1272 FALSE, /* pc_relative */
1273 0, /* bitpos */
1274 complain_overflow_dont, /* complain_on_overflow */
1275 bfd_elf_generic_reloc, /* special_function */
1276 AARCH64_R_STR (TLSIE_LD64_GOTTPREL_LO12_NC), /* name */
1277 FALSE, /* partial_inplace */
1278 0xff8, /* src_mask */
1279 0xff8, /* dst_mask */
1280 FALSE), /* pcrel_offset */
1281
1282 HOWTO32 (AARCH64_R (TLSIE_LD32_GOTTPREL_LO12_NC), /* type */
1283 2, /* rightshift */
1284 2, /* size (0 = byte, 1 = short, 2 = long) */
1285 12, /* bitsize */
1286 FALSE, /* pc_relative */
1287 0, /* bitpos */
1288 complain_overflow_dont, /* complain_on_overflow */
1289 bfd_elf_generic_reloc, /* special_function */
1290 AARCH64_R_STR (TLSIE_LD32_GOTTPREL_LO12_NC), /* name */
1291 FALSE, /* partial_inplace */
1292 0xffc, /* src_mask */
1293 0xffc, /* dst_mask */
1294 FALSE), /* pcrel_offset */
1295
1296 HOWTO (AARCH64_R (TLSIE_LD_GOTTPREL_PREL19), /* type */
1297 2, /* rightshift */
1298 2, /* size (0 = byte, 1 = short, 2 = long) */
1299 19, /* bitsize */
1300 FALSE, /* pc_relative */
1301 0, /* bitpos */
1302 complain_overflow_dont, /* complain_on_overflow */
1303 bfd_elf_generic_reloc, /* special_function */
1304 AARCH64_R_STR (TLSIE_LD_GOTTPREL_PREL19), /* name */
1305 FALSE, /* partial_inplace */
1306 0x1ffffc, /* src_mask */
1307 0x1ffffc, /* dst_mask */
1308 FALSE), /* pcrel_offset */
1309
1310 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G0_NC), /* type */
1311 0, /* rightshift */
1312 2, /* size (0 = byte, 1 = short, 2 = long) */
1313 16, /* bitsize */
1314 FALSE, /* pc_relative */
1315 0, /* bitpos */
1316 complain_overflow_dont, /* complain_on_overflow */
1317 bfd_elf_generic_reloc, /* special_function */
1318 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G0_NC), /* name */
1319 FALSE, /* partial_inplace */
1320 0xffff, /* src_mask */
1321 0xffff, /* dst_mask */
1322 FALSE), /* pcrel_offset */
1323
1324 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G1), /* type */
1325 16, /* rightshift */
1326 2, /* size (0 = byte, 1 = short, 2 = long) */
1327 16, /* bitsize */
1328 FALSE, /* pc_relative */
1329 0, /* bitpos */
1330 complain_overflow_unsigned, /* complain_on_overflow */
1331 bfd_elf_generic_reloc, /* special_function */
1332 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G1), /* name */
1333 FALSE, /* partial_inplace */
1334 0xffff, /* src_mask */
1335 0xffff, /* dst_mask */
1336 FALSE), /* pcrel_offset */
1337
1338 /* ADD: bit[23:12] of byte offset to module TLS base address. */
1339 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_HI12), /* type */
1340 12, /* rightshift */
1341 2, /* size (0 = byte, 1 = short, 2 = long) */
1342 12, /* bitsize */
1343 FALSE, /* pc_relative */
1344 0, /* bitpos */
1345 complain_overflow_unsigned, /* complain_on_overflow */
1346 bfd_elf_generic_reloc, /* special_function */
1347 AARCH64_R_STR (TLSLD_ADD_DTPREL_HI12), /* name */
1348 FALSE, /* partial_inplace */
1349 0xfff, /* src_mask */
1350 0xfff, /* dst_mask */
1351 FALSE), /* pcrel_offset */
1352
1353 /* Unsigned 12 bit byte offset to module TLS base address. */
1354 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12), /* type */
1355 0, /* rightshift */
1356 2, /* size (0 = byte, 1 = short, 2 = long) */
1357 12, /* bitsize */
1358 FALSE, /* pc_relative */
1359 0, /* bitpos */
1360 complain_overflow_unsigned, /* complain_on_overflow */
1361 bfd_elf_generic_reloc, /* special_function */
1362 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12), /* name */
1363 FALSE, /* partial_inplace */
1364 0xfff, /* src_mask */
1365 0xfff, /* dst_mask */
1366 FALSE), /* pcrel_offset */
1367
1368 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12. */
1369 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12_NC), /* type */
1370 0, /* rightshift */
1371 2, /* size (0 = byte, 1 = short, 2 = long) */
1372 12, /* bitsize */
1373 FALSE, /* pc_relative */
1374 0, /* bitpos */
1375 complain_overflow_dont, /* complain_on_overflow */
1376 bfd_elf_generic_reloc, /* special_function */
1377 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12_NC), /* name */
1378 FALSE, /* partial_inplace */
1379 0xfff, /* src_mask */
1380 0xfff, /* dst_mask */
1381 FALSE), /* pcrel_offset */
1382
1383 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1384 HOWTO (AARCH64_R (TLSLD_ADD_LO12_NC), /* type */
1385 0, /* rightshift */
1386 2, /* size (0 = byte, 1 = short, 2 = long) */
1387 12, /* bitsize */
1388 FALSE, /* pc_relative */
1389 0, /* bitpos */
1390 complain_overflow_dont, /* complain_on_overflow */
1391 bfd_elf_generic_reloc, /* special_function */
1392 AARCH64_R_STR (TLSLD_ADD_LO12_NC), /* name */
1393 FALSE, /* partial_inplace */
1394 0xfff, /* src_mask */
1395 0xfff, /* dst_mask */
1396 FALSE), /* pcrel_offset */
1397
1398 /* Get to the page for the GOT entry for the symbol
1399 (G(S) - P) using an ADRP instruction. */
1400 HOWTO (AARCH64_R (TLSLD_ADR_PAGE21), /* type */
1401 12, /* rightshift */
1402 2, /* size (0 = byte, 1 = short, 2 = long) */
1403 21, /* bitsize */
1404 TRUE, /* pc_relative */
1405 0, /* bitpos */
1406 complain_overflow_signed, /* complain_on_overflow */
1407 bfd_elf_generic_reloc, /* special_function */
1408 AARCH64_R_STR (TLSLD_ADR_PAGE21), /* name */
1409 FALSE, /* partial_inplace */
1410 0x1fffff, /* src_mask */
1411 0x1fffff, /* dst_mask */
1412 TRUE), /* pcrel_offset */
1413
1414 HOWTO (AARCH64_R (TLSLD_ADR_PREL21), /* type */
1415 0, /* rightshift */
1416 2, /* size (0 = byte, 1 = short, 2 = long) */
1417 21, /* bitsize */
1418 TRUE, /* pc_relative */
1419 0, /* bitpos */
1420 complain_overflow_signed, /* complain_on_overflow */
1421 bfd_elf_generic_reloc, /* special_function */
1422 AARCH64_R_STR (TLSLD_ADR_PREL21), /* name */
1423 FALSE, /* partial_inplace */
1424 0x1fffff, /* src_mask */
1425 0x1fffff, /* dst_mask */
1426 TRUE), /* pcrel_offset */
1427
1428 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1429 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12), /* type */
1430 1, /* rightshift */
1431 2, /* size (0 = byte, 1 = short, 2 = long) */
1432 11, /* bitsize */
1433 FALSE, /* pc_relative */
1434 10, /* bitpos */
1435 complain_overflow_unsigned, /* complain_on_overflow */
1436 bfd_elf_generic_reloc, /* special_function */
1437 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12), /* name */
1438 FALSE, /* partial_inplace */
1439 0x1ffc00, /* src_mask */
1440 0x1ffc00, /* dst_mask */
1441 FALSE), /* pcrel_offset */
1442
1443 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12, but no overflow check. */
1444 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12_NC), /* type */
1445 1, /* rightshift */
1446 2, /* size (0 = byte, 1 = short, 2 = long) */
1447 11, /* bitsize */
1448 FALSE, /* pc_relative */
1449 10, /* bitpos */
1450 complain_overflow_dont, /* complain_on_overflow */
1451 bfd_elf_generic_reloc, /* special_function */
1452 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12_NC), /* name */
1453 FALSE, /* partial_inplace */
1454 0x1ffc00, /* src_mask */
1455 0x1ffc00, /* dst_mask */
1456 FALSE), /* pcrel_offset */
1457
1458 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1459 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12), /* type */
1460 2, /* rightshift */
1461 2, /* size (0 = byte, 1 = short, 2 = long) */
1462 10, /* bitsize */
1463 FALSE, /* pc_relative */
1464 10, /* bitpos */
1465 complain_overflow_unsigned, /* complain_on_overflow */
1466 bfd_elf_generic_reloc, /* special_function */
1467 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12), /* name */
1468 FALSE, /* partial_inplace */
1469 0x3ffc00, /* src_mask */
1470 0x3ffc00, /* dst_mask */
1471 FALSE), /* pcrel_offset */
1472
1473 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12, but no overflow check. */
1474 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12_NC), /* type */
1475 2, /* rightshift */
1476 2, /* size (0 = byte, 1 = short, 2 = long) */
1477 10, /* bitsize */
1478 FALSE, /* pc_relative */
1479 10, /* bitpos */
1480 complain_overflow_dont, /* complain_on_overflow */
1481 bfd_elf_generic_reloc, /* special_function */
1482 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12_NC), /* name */
1483 FALSE, /* partial_inplace */
1484 0xffc00, /* src_mask */
1485 0xffc00, /* dst_mask */
1486 FALSE), /* pcrel_offset */
1487
1488 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1489 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12), /* type */
1490 3, /* rightshift */
1491 2, /* size (0 = byte, 1 = short, 2 = long) */
1492 9, /* bitsize */
1493 FALSE, /* pc_relative */
1494 10, /* bitpos */
1495 complain_overflow_unsigned, /* complain_on_overflow */
1496 bfd_elf_generic_reloc, /* special_function */
1497 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12), /* name */
1498 FALSE, /* partial_inplace */
1499 0x3ffc00, /* src_mask */
1500 0x3ffc00, /* dst_mask */
1501 FALSE), /* pcrel_offset */
1502
1503 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12, but no overflow check. */
1504 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12_NC), /* type */
1505 3, /* rightshift */
1506 2, /* size (0 = byte, 1 = short, 2 = long) */
1507 9, /* bitsize */
1508 FALSE, /* pc_relative */
1509 10, /* bitpos */
1510 complain_overflow_dont, /* complain_on_overflow */
1511 bfd_elf_generic_reloc, /* special_function */
1512 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12_NC), /* name */
1513 FALSE, /* partial_inplace */
1514 0x7fc00, /* src_mask */
1515 0x7fc00, /* dst_mask */
1516 FALSE), /* pcrel_offset */
1517
1518 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1519 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12), /* type */
1520 0, /* rightshift */
1521 2, /* size (0 = byte, 1 = short, 2 = long) */
1522 12, /* bitsize */
1523 FALSE, /* pc_relative */
1524 10, /* bitpos */
1525 complain_overflow_unsigned, /* complain_on_overflow */
1526 bfd_elf_generic_reloc, /* special_function */
1527 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12), /* name */
1528 FALSE, /* partial_inplace */
1529 0x3ffc00, /* src_mask */
1530 0x3ffc00, /* dst_mask */
1531 FALSE), /* pcrel_offset */
1532
1533 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12, but no overflow check. */
1534 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12_NC), /* type */
1535 0, /* rightshift */
1536 2, /* size (0 = byte, 1 = short, 2 = long) */
1537 12, /* bitsize */
1538 FALSE, /* pc_relative */
1539 10, /* bitpos */
1540 complain_overflow_dont, /* complain_on_overflow */
1541 bfd_elf_generic_reloc, /* special_function */
1542 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12_NC), /* name */
1543 FALSE, /* partial_inplace */
1544 0x3ffc00, /* src_mask */
1545 0x3ffc00, /* dst_mask */
1546 FALSE), /* pcrel_offset */
1547
1548 /* MOVZ: bit[15:0] of byte offset to module TLS base address. */
1549 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0), /* type */
1550 0, /* rightshift */
1551 2, /* size (0 = byte, 1 = short, 2 = long) */
1552 16, /* bitsize */
1553 FALSE, /* pc_relative */
1554 0, /* bitpos */
1555 complain_overflow_unsigned, /* complain_on_overflow */
1556 bfd_elf_generic_reloc, /* special_function */
1557 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0), /* name */
1558 FALSE, /* partial_inplace */
1559 0xffff, /* src_mask */
1560 0xffff, /* dst_mask */
1561 FALSE), /* pcrel_offset */
1562
1563 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
1564 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0_NC), /* type */
1565 0, /* rightshift */
1566 2, /* size (0 = byte, 1 = short, 2 = long) */
1567 16, /* bitsize */
1568 FALSE, /* pc_relative */
1569 0, /* bitpos */
1570 complain_overflow_dont, /* complain_on_overflow */
1571 bfd_elf_generic_reloc, /* special_function */
1572 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0_NC), /* name */
1573 FALSE, /* partial_inplace */
1574 0xffff, /* src_mask */
1575 0xffff, /* dst_mask */
1576 FALSE), /* pcrel_offset */
1577
1578 /* MOVZ: bit[31:16] of byte offset to module TLS base address. */
1579 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G1), /* type */
1580 16, /* rightshift */
1581 2, /* size (0 = byte, 1 = short, 2 = long) */
1582 16, /* bitsize */
1583 FALSE, /* pc_relative */
1584 0, /* bitpos */
1585 complain_overflow_unsigned, /* complain_on_overflow */
1586 bfd_elf_generic_reloc, /* special_function */
1587 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1), /* name */
1588 FALSE, /* partial_inplace */
1589 0xffff, /* src_mask */
1590 0xffff, /* dst_mask */
1591 FALSE), /* pcrel_offset */
1592
1593 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
1594 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G1_NC), /* type */
1595 16, /* rightshift */
1596 2, /* size (0 = byte, 1 = short, 2 = long) */
1597 16, /* bitsize */
1598 FALSE, /* pc_relative */
1599 0, /* bitpos */
1600 complain_overflow_dont, /* complain_on_overflow */
1601 bfd_elf_generic_reloc, /* special_function */
1602 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1_NC), /* name */
1603 FALSE, /* partial_inplace */
1604 0xffff, /* src_mask */
1605 0xffff, /* dst_mask */
1606 FALSE), /* pcrel_offset */
1607
1608 /* MOVZ: bit[47:32] of byte offset to module TLS base address. */
1609 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G2), /* type */
1610 32, /* rightshift */
1611 2, /* size (0 = byte, 1 = short, 2 = long) */
1612 16, /* bitsize */
1613 FALSE, /* pc_relative */
1614 0, /* bitpos */
1615 complain_overflow_unsigned, /* complain_on_overflow */
1616 bfd_elf_generic_reloc, /* special_function */
1617 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G2), /* name */
1618 FALSE, /* partial_inplace */
1619 0xffff, /* src_mask */
1620 0xffff, /* dst_mask */
1621 FALSE), /* pcrel_offset */
1622
1623 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G2), /* type */
1624 32, /* rightshift */
1625 2, /* size (0 = byte, 1 = short, 2 = long) */
1626 16, /* bitsize */
1627 FALSE, /* pc_relative */
1628 0, /* bitpos */
1629 complain_overflow_unsigned, /* complain_on_overflow */
1630 bfd_elf_generic_reloc, /* special_function */
1631 AARCH64_R_STR (TLSLE_MOVW_TPREL_G2), /* name */
1632 FALSE, /* partial_inplace */
1633 0xffff, /* src_mask */
1634 0xffff, /* dst_mask */
1635 FALSE), /* pcrel_offset */
1636
1637 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G1), /* type */
1638 16, /* rightshift */
1639 2, /* size (0 = byte, 1 = short, 2 = long) */
1640 16, /* bitsize */
1641 FALSE, /* pc_relative */
1642 0, /* bitpos */
1643 complain_overflow_dont, /* complain_on_overflow */
1644 bfd_elf_generic_reloc, /* special_function */
1645 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1), /* name */
1646 FALSE, /* partial_inplace */
1647 0xffff, /* src_mask */
1648 0xffff, /* dst_mask */
1649 FALSE), /* pcrel_offset */
1650
1651 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G1_NC), /* type */
1652 16, /* rightshift */
1653 2, /* size (0 = byte, 1 = short, 2 = long) */
1654 16, /* bitsize */
1655 FALSE, /* pc_relative */
1656 0, /* bitpos */
1657 complain_overflow_dont, /* complain_on_overflow */
1658 bfd_elf_generic_reloc, /* special_function */
1659 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1_NC), /* name */
1660 FALSE, /* partial_inplace */
1661 0xffff, /* src_mask */
1662 0xffff, /* dst_mask */
1663 FALSE), /* pcrel_offset */
1664
1665 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0), /* type */
1666 0, /* rightshift */
1667 2, /* size (0 = byte, 1 = short, 2 = long) */
1668 16, /* bitsize */
1669 FALSE, /* pc_relative */
1670 0, /* bitpos */
1671 complain_overflow_dont, /* complain_on_overflow */
1672 bfd_elf_generic_reloc, /* special_function */
1673 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0), /* name */
1674 FALSE, /* partial_inplace */
1675 0xffff, /* src_mask */
1676 0xffff, /* dst_mask */
1677 FALSE), /* pcrel_offset */
1678
1679 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0_NC), /* type */
1680 0, /* rightshift */
1681 2, /* size (0 = byte, 1 = short, 2 = long) */
1682 16, /* bitsize */
1683 FALSE, /* pc_relative */
1684 0, /* bitpos */
1685 complain_overflow_dont, /* complain_on_overflow */
1686 bfd_elf_generic_reloc, /* special_function */
1687 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0_NC), /* name */
1688 FALSE, /* partial_inplace */
1689 0xffff, /* src_mask */
1690 0xffff, /* dst_mask */
1691 FALSE), /* pcrel_offset */
1692
1693 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_HI12), /* type */
1694 12, /* rightshift */
1695 2, /* size (0 = byte, 1 = short, 2 = long) */
1696 12, /* bitsize */
1697 FALSE, /* pc_relative */
1698 0, /* bitpos */
1699 complain_overflow_unsigned, /* complain_on_overflow */
1700 bfd_elf_generic_reloc, /* special_function */
1701 AARCH64_R_STR (TLSLE_ADD_TPREL_HI12), /* name */
1702 FALSE, /* partial_inplace */
1703 0xfff, /* src_mask */
1704 0xfff, /* dst_mask */
1705 FALSE), /* pcrel_offset */
1706
1707 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12), /* type */
1708 0, /* rightshift */
1709 2, /* size (0 = byte, 1 = short, 2 = long) */
1710 12, /* bitsize */
1711 FALSE, /* pc_relative */
1712 0, /* bitpos */
1713 complain_overflow_unsigned, /* complain_on_overflow */
1714 bfd_elf_generic_reloc, /* special_function */
1715 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12), /* name */
1716 FALSE, /* partial_inplace */
1717 0xfff, /* src_mask */
1718 0xfff, /* dst_mask */
1719 FALSE), /* pcrel_offset */
1720
1721 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12_NC), /* type */
1722 0, /* rightshift */
1723 2, /* size (0 = byte, 1 = short, 2 = long) */
1724 12, /* bitsize */
1725 FALSE, /* pc_relative */
1726 0, /* bitpos */
1727 complain_overflow_dont, /* complain_on_overflow */
1728 bfd_elf_generic_reloc, /* special_function */
1729 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12_NC), /* name */
1730 FALSE, /* partial_inplace */
1731 0xfff, /* src_mask */
1732 0xfff, /* dst_mask */
1733 FALSE), /* pcrel_offset */
1734
1735 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1736 HOWTO (AARCH64_R (TLSLE_LDST16_TPREL_LO12), /* type */
1737 1, /* rightshift */
1738 2, /* size (0 = byte, 1 = short, 2 = long) */
1739 11, /* bitsize */
1740 FALSE, /* pc_relative */
1741 10, /* bitpos */
1742 complain_overflow_unsigned, /* complain_on_overflow */
1743 bfd_elf_generic_reloc, /* special_function */
1744 AARCH64_R_STR (TLSLE_LDST16_TPREL_LO12), /* name */
1745 FALSE, /* partial_inplace */
1746 0x1ffc00, /* src_mask */
1747 0x1ffc00, /* dst_mask */
1748 FALSE), /* pcrel_offset */
1749
1750 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12, but no overflow check. */
1751 HOWTO (AARCH64_R (TLSLE_LDST16_TPREL_LO12_NC), /* type */
1752 1, /* rightshift */
1753 2, /* size (0 = byte, 1 = short, 2 = long) */
1754 11, /* bitsize */
1755 FALSE, /* pc_relative */
1756 10, /* bitpos */
1757 complain_overflow_dont, /* complain_on_overflow */
1758 bfd_elf_generic_reloc, /* special_function */
1759 AARCH64_R_STR (TLSLE_LDST16_TPREL_LO12_NC), /* name */
1760 FALSE, /* partial_inplace */
1761 0x1ffc00, /* src_mask */
1762 0x1ffc00, /* dst_mask */
1763 FALSE), /* pcrel_offset */
1764
1765 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1766 HOWTO (AARCH64_R (TLSLE_LDST32_TPREL_LO12), /* type */
1767 2, /* rightshift */
1768 2, /* size (0 = byte, 1 = short, 2 = long) */
1769 10, /* bitsize */
1770 FALSE, /* pc_relative */
1771 10, /* bitpos */
1772 complain_overflow_unsigned, /* complain_on_overflow */
1773 bfd_elf_generic_reloc, /* special_function */
1774 AARCH64_R_STR (TLSLE_LDST32_TPREL_LO12), /* name */
1775 FALSE, /* partial_inplace */
1776 0xffc00, /* src_mask */
1777 0xffc00, /* dst_mask */
1778 FALSE), /* pcrel_offset */
1779
1780 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12, but no overflow check. */
1781 HOWTO (AARCH64_R (TLSLE_LDST32_TPREL_LO12_NC), /* type */
1782 2, /* rightshift */
1783 2, /* size (0 = byte, 1 = short, 2 = long) */
1784 10, /* bitsize */
1785 FALSE, /* pc_relative */
1786 10, /* bitpos */
1787 complain_overflow_dont, /* complain_on_overflow */
1788 bfd_elf_generic_reloc, /* special_function */
1789 AARCH64_R_STR (TLSLE_LDST32_TPREL_LO12_NC), /* name */
1790 FALSE, /* partial_inplace */
1791 0xffc00, /* src_mask */
1792 0xffc00, /* dst_mask */
1793 FALSE), /* pcrel_offset */
1794
1795 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1796 HOWTO (AARCH64_R (TLSLE_LDST64_TPREL_LO12), /* type */
1797 3, /* rightshift */
1798 2, /* size (0 = byte, 1 = short, 2 = long) */
1799 9, /* bitsize */
1800 FALSE, /* pc_relative */
1801 10, /* bitpos */
1802 complain_overflow_unsigned, /* complain_on_overflow */
1803 bfd_elf_generic_reloc, /* special_function */
1804 AARCH64_R_STR (TLSLE_LDST64_TPREL_LO12), /* name */
1805 FALSE, /* partial_inplace */
1806 0x7fc00, /* src_mask */
1807 0x7fc00, /* dst_mask */
1808 FALSE), /* pcrel_offset */
1809
1810 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12, but no overflow check. */
1811 HOWTO (AARCH64_R (TLSLE_LDST64_TPREL_LO12_NC), /* type */
1812 3, /* rightshift */
1813 2, /* size (0 = byte, 1 = short, 2 = long) */
1814 9, /* bitsize */
1815 FALSE, /* pc_relative */
1816 10, /* bitpos */
1817 complain_overflow_dont, /* complain_on_overflow */
1818 bfd_elf_generic_reloc, /* special_function */
1819 AARCH64_R_STR (TLSLE_LDST64_TPREL_LO12_NC), /* name */
1820 FALSE, /* partial_inplace */
1821 0x7fc00, /* src_mask */
1822 0x7fc00, /* dst_mask */
1823 FALSE), /* pcrel_offset */
1824
1825 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1826 HOWTO (AARCH64_R (TLSLE_LDST8_TPREL_LO12), /* type */
1827 0, /* rightshift */
1828 2, /* size (0 = byte, 1 = short, 2 = long) */
1829 12, /* bitsize */
1830 FALSE, /* pc_relative */
1831 10, /* bitpos */
1832 complain_overflow_unsigned, /* complain_on_overflow */
1833 bfd_elf_generic_reloc, /* special_function */
1834 AARCH64_R_STR (TLSLE_LDST8_TPREL_LO12), /* name */
1835 FALSE, /* partial_inplace */
1836 0x3ffc00, /* src_mask */
1837 0x3ffc00, /* dst_mask */
1838 FALSE), /* pcrel_offset */
1839
1840 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12, but no overflow check. */
1841 HOWTO (AARCH64_R (TLSLE_LDST8_TPREL_LO12_NC), /* type */
1842 0, /* rightshift */
1843 2, /* size (0 = byte, 1 = short, 2 = long) */
1844 12, /* bitsize */
1845 FALSE, /* pc_relative */
1846 10, /* bitpos */
1847 complain_overflow_dont, /* complain_on_overflow */
1848 bfd_elf_generic_reloc, /* special_function */
1849 AARCH64_R_STR (TLSLE_LDST8_TPREL_LO12_NC), /* name */
1850 FALSE, /* partial_inplace */
1851 0x3ffc00, /* src_mask */
1852 0x3ffc00, /* dst_mask */
1853 FALSE), /* pcrel_offset */
1854
1855 HOWTO (AARCH64_R (TLSDESC_LD_PREL19), /* type */
1856 2, /* rightshift */
1857 2, /* size (0 = byte, 1 = short, 2 = long) */
1858 19, /* bitsize */
1859 TRUE, /* pc_relative */
1860 0, /* bitpos */
1861 complain_overflow_dont, /* complain_on_overflow */
1862 bfd_elf_generic_reloc, /* special_function */
1863 AARCH64_R_STR (TLSDESC_LD_PREL19), /* name */
1864 FALSE, /* partial_inplace */
1865 0x0ffffe0, /* src_mask */
1866 0x0ffffe0, /* dst_mask */
1867 TRUE), /* pcrel_offset */
1868
1869 HOWTO (AARCH64_R (TLSDESC_ADR_PREL21), /* type */
1870 0, /* rightshift */
1871 2, /* size (0 = byte, 1 = short, 2 = long) */
1872 21, /* bitsize */
1873 TRUE, /* pc_relative */
1874 0, /* bitpos */
1875 complain_overflow_dont, /* complain_on_overflow */
1876 bfd_elf_generic_reloc, /* special_function */
1877 AARCH64_R_STR (TLSDESC_ADR_PREL21), /* name */
1878 FALSE, /* partial_inplace */
1879 0x1fffff, /* src_mask */
1880 0x1fffff, /* dst_mask */
1881 TRUE), /* pcrel_offset */
1882
1883 /* Get to the page for the GOT entry for the symbol
1884 (G(S) - P) using an ADRP instruction. */
1885 HOWTO (AARCH64_R (TLSDESC_ADR_PAGE21), /* type */
1886 12, /* rightshift */
1887 2, /* size (0 = byte, 1 = short, 2 = long) */
1888 21, /* bitsize */
1889 TRUE, /* pc_relative */
1890 0, /* bitpos */
1891 complain_overflow_dont, /* complain_on_overflow */
1892 bfd_elf_generic_reloc, /* special_function */
1893 AARCH64_R_STR (TLSDESC_ADR_PAGE21), /* name */
1894 FALSE, /* partial_inplace */
1895 0x1fffff, /* src_mask */
1896 0x1fffff, /* dst_mask */
1897 TRUE), /* pcrel_offset */
1898
1899 /* LD64: GOT offset G(S) & 0xff8. */
1900 HOWTO64 (AARCH64_R (TLSDESC_LD64_LO12), /* type */
1901 3, /* rightshift */
1902 2, /* size (0 = byte, 1 = short, 2 = long) */
1903 12, /* bitsize */
1904 FALSE, /* pc_relative */
1905 0, /* bitpos */
1906 complain_overflow_dont, /* complain_on_overflow */
1907 bfd_elf_generic_reloc, /* special_function */
1908 AARCH64_R_STR (TLSDESC_LD64_LO12), /* name */
1909 FALSE, /* partial_inplace */
1910 0xff8, /* src_mask */
1911 0xff8, /* dst_mask */
1912 FALSE), /* pcrel_offset */
1913
1914 /* LD32: GOT offset G(S) & 0xffc. */
1915 HOWTO32 (AARCH64_R (TLSDESC_LD32_LO12_NC), /* type */
1916 2, /* rightshift */
1917 2, /* size (0 = byte, 1 = short, 2 = long) */
1918 12, /* bitsize */
1919 FALSE, /* pc_relative */
1920 0, /* bitpos */
1921 complain_overflow_dont, /* complain_on_overflow */
1922 bfd_elf_generic_reloc, /* special_function */
1923 AARCH64_R_STR (TLSDESC_LD32_LO12_NC), /* name */
1924 FALSE, /* partial_inplace */
1925 0xffc, /* src_mask */
1926 0xffc, /* dst_mask */
1927 FALSE), /* pcrel_offset */
1928
1929 /* ADD: GOT offset G(S) & 0xfff. */
1930 HOWTO (AARCH64_R (TLSDESC_ADD_LO12), /* type */
1931 0, /* rightshift */
1932 2, /* size (0 = byte, 1 = short, 2 = long) */
1933 12, /* bitsize */
1934 FALSE, /* pc_relative */
1935 0, /* bitpos */
1936 complain_overflow_dont,/* complain_on_overflow */
1937 bfd_elf_generic_reloc, /* special_function */
1938 AARCH64_R_STR (TLSDESC_ADD_LO12), /* name */
1939 FALSE, /* partial_inplace */
1940 0xfff, /* src_mask */
1941 0xfff, /* dst_mask */
1942 FALSE), /* pcrel_offset */
1943
1944 HOWTO64 (AARCH64_R (TLSDESC_OFF_G1), /* type */
1945 16, /* rightshift */
1946 2, /* size (0 = byte, 1 = short, 2 = long) */
1947 12, /* bitsize */
1948 FALSE, /* pc_relative */
1949 0, /* bitpos */
1950 complain_overflow_unsigned, /* complain_on_overflow */
1951 bfd_elf_generic_reloc, /* special_function */
1952 AARCH64_R_STR (TLSDESC_OFF_G1), /* name */
1953 FALSE, /* partial_inplace */
1954 0xffff, /* src_mask */
1955 0xffff, /* dst_mask */
1956 FALSE), /* pcrel_offset */
1957
1958 HOWTO64 (AARCH64_R (TLSDESC_OFF_G0_NC), /* type */
1959 0, /* rightshift */
1960 2, /* size (0 = byte, 1 = short, 2 = long) */
1961 12, /* bitsize */
1962 FALSE, /* pc_relative */
1963 0, /* bitpos */
1964 complain_overflow_dont, /* complain_on_overflow */
1965 bfd_elf_generic_reloc, /* special_function */
1966 AARCH64_R_STR (TLSDESC_OFF_G0_NC), /* name */
1967 FALSE, /* partial_inplace */
1968 0xffff, /* src_mask */
1969 0xffff, /* dst_mask */
1970 FALSE), /* pcrel_offset */
1971
1972 HOWTO64 (AARCH64_R (TLSDESC_LDR), /* type */
1973 0, /* rightshift */
1974 2, /* size (0 = byte, 1 = short, 2 = long) */
1975 12, /* bitsize */
1976 FALSE, /* pc_relative */
1977 0, /* bitpos */
1978 complain_overflow_dont, /* complain_on_overflow */
1979 bfd_elf_generic_reloc, /* special_function */
1980 AARCH64_R_STR (TLSDESC_LDR), /* name */
1981 FALSE, /* partial_inplace */
1982 0x0, /* src_mask */
1983 0x0, /* dst_mask */
1984 FALSE), /* pcrel_offset */
1985
1986 HOWTO64 (AARCH64_R (TLSDESC_ADD), /* type */
1987 0, /* rightshift */
1988 2, /* size (0 = byte, 1 = short, 2 = long) */
1989 12, /* bitsize */
1990 FALSE, /* pc_relative */
1991 0, /* bitpos */
1992 complain_overflow_dont, /* complain_on_overflow */
1993 bfd_elf_generic_reloc, /* special_function */
1994 AARCH64_R_STR (TLSDESC_ADD), /* name */
1995 FALSE, /* partial_inplace */
1996 0x0, /* src_mask */
1997 0x0, /* dst_mask */
1998 FALSE), /* pcrel_offset */
1999
2000 HOWTO (AARCH64_R (TLSDESC_CALL), /* type */
2001 0, /* rightshift */
2002 2, /* size (0 = byte, 1 = short, 2 = long) */
2003 0, /* bitsize */
2004 FALSE, /* pc_relative */
2005 0, /* bitpos */
2006 complain_overflow_dont, /* complain_on_overflow */
2007 bfd_elf_generic_reloc, /* special_function */
2008 AARCH64_R_STR (TLSDESC_CALL), /* name */
2009 FALSE, /* partial_inplace */
2010 0x0, /* src_mask */
2011 0x0, /* dst_mask */
2012 FALSE), /* pcrel_offset */
2013
2014 HOWTO (AARCH64_R (COPY), /* type */
2015 0, /* rightshift */
2016 2, /* size (0 = byte, 1 = short, 2 = long) */
2017 64, /* bitsize */
2018 FALSE, /* pc_relative */
2019 0, /* bitpos */
2020 complain_overflow_bitfield, /* complain_on_overflow */
2021 bfd_elf_generic_reloc, /* special_function */
2022 AARCH64_R_STR (COPY), /* name */
2023 TRUE, /* partial_inplace */
2024 0xffffffff, /* src_mask */
2025 0xffffffff, /* dst_mask */
2026 FALSE), /* pcrel_offset */
2027
2028 HOWTO (AARCH64_R (GLOB_DAT), /* type */
2029 0, /* rightshift */
2030 2, /* size (0 = byte, 1 = short, 2 = long) */
2031 64, /* bitsize */
2032 FALSE, /* pc_relative */
2033 0, /* bitpos */
2034 complain_overflow_bitfield, /* complain_on_overflow */
2035 bfd_elf_generic_reloc, /* special_function */
2036 AARCH64_R_STR (GLOB_DAT), /* name */
2037 TRUE, /* partial_inplace */
2038 0xffffffff, /* src_mask */
2039 0xffffffff, /* dst_mask */
2040 FALSE), /* pcrel_offset */
2041
2042 HOWTO (AARCH64_R (JUMP_SLOT), /* type */
2043 0, /* rightshift */
2044 2, /* size (0 = byte, 1 = short, 2 = long) */
2045 64, /* bitsize */
2046 FALSE, /* pc_relative */
2047 0, /* bitpos */
2048 complain_overflow_bitfield, /* complain_on_overflow */
2049 bfd_elf_generic_reloc, /* special_function */
2050 AARCH64_R_STR (JUMP_SLOT), /* name */
2051 TRUE, /* partial_inplace */
2052 0xffffffff, /* src_mask */
2053 0xffffffff, /* dst_mask */
2054 FALSE), /* pcrel_offset */
2055
2056 HOWTO (AARCH64_R (RELATIVE), /* type */
2057 0, /* rightshift */
2058 2, /* size (0 = byte, 1 = short, 2 = long) */
2059 64, /* bitsize */
2060 FALSE, /* pc_relative */
2061 0, /* bitpos */
2062 complain_overflow_bitfield, /* complain_on_overflow */
2063 bfd_elf_generic_reloc, /* special_function */
2064 AARCH64_R_STR (RELATIVE), /* name */
2065 TRUE, /* partial_inplace */
2066 ALL_ONES, /* src_mask */
2067 ALL_ONES, /* dst_mask */
2068 FALSE), /* pcrel_offset */
2069
2070 HOWTO (AARCH64_R (TLS_DTPMOD), /* type */
2071 0, /* rightshift */
2072 2, /* size (0 = byte, 1 = short, 2 = long) */
2073 64, /* bitsize */
2074 FALSE, /* pc_relative */
2075 0, /* bitpos */
2076 complain_overflow_dont, /* complain_on_overflow */
2077 bfd_elf_generic_reloc, /* special_function */
2078 #if ARCH_SIZE == 64
2079 AARCH64_R_STR (TLS_DTPMOD64), /* name */
2080 #else
2081 AARCH64_R_STR (TLS_DTPMOD), /* name */
2082 #endif
2083 FALSE, /* partial_inplace */
2084 0, /* src_mask */
2085 ALL_ONES, /* dst_mask */
2086 FALSE), /* pc_reloffset */
2087
2088 HOWTO (AARCH64_R (TLS_DTPREL), /* type */
2089 0, /* rightshift */
2090 2, /* size (0 = byte, 1 = short, 2 = long) */
2091 64, /* bitsize */
2092 FALSE, /* pc_relative */
2093 0, /* bitpos */
2094 complain_overflow_dont, /* complain_on_overflow */
2095 bfd_elf_generic_reloc, /* special_function */
2096 #if ARCH_SIZE == 64
2097 AARCH64_R_STR (TLS_DTPREL64), /* name */
2098 #else
2099 AARCH64_R_STR (TLS_DTPREL), /* name */
2100 #endif
2101 FALSE, /* partial_inplace */
2102 0, /* src_mask */
2103 ALL_ONES, /* dst_mask */
2104 FALSE), /* pcrel_offset */
2105
2106 HOWTO (AARCH64_R (TLS_TPREL), /* type */
2107 0, /* rightshift */
2108 2, /* size (0 = byte, 1 = short, 2 = long) */
2109 64, /* bitsize */
2110 FALSE, /* pc_relative */
2111 0, /* bitpos */
2112 complain_overflow_dont, /* complain_on_overflow */
2113 bfd_elf_generic_reloc, /* special_function */
2114 #if ARCH_SIZE == 64
2115 AARCH64_R_STR (TLS_TPREL64), /* name */
2116 #else
2117 AARCH64_R_STR (TLS_TPREL), /* name */
2118 #endif
2119 FALSE, /* partial_inplace */
2120 0, /* src_mask */
2121 ALL_ONES, /* dst_mask */
2122 FALSE), /* pcrel_offset */
2123
2124 HOWTO (AARCH64_R (TLSDESC), /* type */
2125 0, /* rightshift */
2126 2, /* size (0 = byte, 1 = short, 2 = long) */
2127 64, /* bitsize */
2128 FALSE, /* pc_relative */
2129 0, /* bitpos */
2130 complain_overflow_dont, /* complain_on_overflow */
2131 bfd_elf_generic_reloc, /* special_function */
2132 AARCH64_R_STR (TLSDESC), /* name */
2133 FALSE, /* partial_inplace */
2134 0, /* src_mask */
2135 ALL_ONES, /* dst_mask */
2136 FALSE), /* pcrel_offset */
2137
2138 HOWTO (AARCH64_R (IRELATIVE), /* type */
2139 0, /* rightshift */
2140 2, /* size (0 = byte, 1 = short, 2 = long) */
2141 64, /* bitsize */
2142 FALSE, /* pc_relative */
2143 0, /* bitpos */
2144 complain_overflow_bitfield, /* complain_on_overflow */
2145 bfd_elf_generic_reloc, /* special_function */
2146 AARCH64_R_STR (IRELATIVE), /* name */
2147 FALSE, /* partial_inplace */
2148 0, /* src_mask */
2149 ALL_ONES, /* dst_mask */
2150 FALSE), /* pcrel_offset */
2151
2152 EMPTY_HOWTO (0),
2153 };
2154
2155 static reloc_howto_type elfNN_aarch64_howto_none =
2156 HOWTO (R_AARCH64_NONE, /* type */
2157 0, /* rightshift */
2158 3, /* size (0 = byte, 1 = short, 2 = long) */
2159 0, /* bitsize */
2160 FALSE, /* pc_relative */
2161 0, /* bitpos */
2162 complain_overflow_dont,/* complain_on_overflow */
2163 bfd_elf_generic_reloc, /* special_function */
2164 "R_AARCH64_NONE", /* name */
2165 FALSE, /* partial_inplace */
2166 0, /* src_mask */
2167 0, /* dst_mask */
2168 FALSE); /* pcrel_offset */
2169
2170 /* Given HOWTO, return the bfd internal relocation enumerator. */
2171
2172 static bfd_reloc_code_real_type
2173 elfNN_aarch64_bfd_reloc_from_howto (reloc_howto_type *howto)
2174 {
2175 const int size
2176 = (int) ARRAY_SIZE (elfNN_aarch64_howto_table);
2177 const ptrdiff_t offset
2178 = howto - elfNN_aarch64_howto_table;
2179
2180 if (offset > 0 && offset < size - 1)
2181 return BFD_RELOC_AARCH64_RELOC_START + offset;
2182
2183 if (howto == &elfNN_aarch64_howto_none)
2184 return BFD_RELOC_AARCH64_NONE;
2185
2186 return BFD_RELOC_AARCH64_RELOC_START;
2187 }
2188
2189 /* Given R_TYPE, return the bfd internal relocation enumerator. */
2190
2191 static bfd_reloc_code_real_type
2192 elfNN_aarch64_bfd_reloc_from_type (bfd *abfd, unsigned int r_type)
2193 {
2194 static bfd_boolean initialized_p = FALSE;
2195 /* Indexed by R_TYPE, values are offsets in the howto_table. */
2196 static unsigned int offsets[R_AARCH64_end];
2197
2198 if (!initialized_p)
2199 {
2200 unsigned int i;
2201
2202 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
2203 if (elfNN_aarch64_howto_table[i].type != 0)
2204 offsets[elfNN_aarch64_howto_table[i].type] = i;
2205
2206 initialized_p = TRUE;
2207 }
2208
2209 if (r_type == R_AARCH64_NONE || r_type == R_AARCH64_NULL)
2210 return BFD_RELOC_AARCH64_NONE;
2211
2212 /* PR 17512: file: b371e70a. */
2213 if (r_type >= R_AARCH64_end)
2214 {
2215 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
2216 abfd, r_type);
2217 bfd_set_error (bfd_error_bad_value);
2218 return BFD_RELOC_AARCH64_NONE;
2219 }
2220
2221 return BFD_RELOC_AARCH64_RELOC_START + offsets[r_type];
2222 }
2223
2224 struct elf_aarch64_reloc_map
2225 {
2226 bfd_reloc_code_real_type from;
2227 bfd_reloc_code_real_type to;
2228 };
2229
2230 /* Map bfd generic reloc to AArch64-specific reloc. */
2231 static const struct elf_aarch64_reloc_map elf_aarch64_reloc_map[] =
2232 {
2233 {BFD_RELOC_NONE, BFD_RELOC_AARCH64_NONE},
2234
2235 /* Basic data relocations. */
2236 {BFD_RELOC_CTOR, BFD_RELOC_AARCH64_NN},
2237 {BFD_RELOC_64, BFD_RELOC_AARCH64_64},
2238 {BFD_RELOC_32, BFD_RELOC_AARCH64_32},
2239 {BFD_RELOC_16, BFD_RELOC_AARCH64_16},
2240 {BFD_RELOC_64_PCREL, BFD_RELOC_AARCH64_64_PCREL},
2241 {BFD_RELOC_32_PCREL, BFD_RELOC_AARCH64_32_PCREL},
2242 {BFD_RELOC_16_PCREL, BFD_RELOC_AARCH64_16_PCREL},
2243 };
2244
2245 /* Given the bfd internal relocation enumerator in CODE, return the
2246 corresponding howto entry. */
2247
2248 static reloc_howto_type *
2249 elfNN_aarch64_howto_from_bfd_reloc (bfd_reloc_code_real_type code)
2250 {
2251 unsigned int i;
2252
2253 /* Convert bfd generic reloc to AArch64-specific reloc. */
2254 if (code < BFD_RELOC_AARCH64_RELOC_START
2255 || code > BFD_RELOC_AARCH64_RELOC_END)
2256 for (i = 0; i < ARRAY_SIZE (elf_aarch64_reloc_map); i++)
2257 if (elf_aarch64_reloc_map[i].from == code)
2258 {
2259 code = elf_aarch64_reloc_map[i].to;
2260 break;
2261 }
2262
2263 if (code > BFD_RELOC_AARCH64_RELOC_START
2264 && code < BFD_RELOC_AARCH64_RELOC_END)
2265 if (elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START].type)
2266 return &elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START];
2267
2268 if (code == BFD_RELOC_AARCH64_NONE)
2269 return &elfNN_aarch64_howto_none;
2270
2271 return NULL;
2272 }
2273
2274 static reloc_howto_type *
2275 elfNN_aarch64_howto_from_type (bfd *abfd, unsigned int r_type)
2276 {
2277 bfd_reloc_code_real_type val;
2278 reloc_howto_type *howto;
2279
2280 #if ARCH_SIZE == 32
2281 if (r_type > 256)
2282 {
2283 bfd_set_error (bfd_error_bad_value);
2284 return NULL;
2285 }
2286 #endif
2287
2288 if (r_type == R_AARCH64_NONE)
2289 return &elfNN_aarch64_howto_none;
2290
2291 val = elfNN_aarch64_bfd_reloc_from_type (abfd, r_type);
2292 howto = elfNN_aarch64_howto_from_bfd_reloc (val);
2293
2294 if (howto != NULL)
2295 return howto;
2296
2297 bfd_set_error (bfd_error_bad_value);
2298 return NULL;
2299 }
2300
2301 static bfd_boolean
2302 elfNN_aarch64_info_to_howto (bfd *abfd, arelent *bfd_reloc,
2303 Elf_Internal_Rela *elf_reloc)
2304 {
2305 unsigned int r_type;
2306
2307 r_type = ELFNN_R_TYPE (elf_reloc->r_info);
2308 bfd_reloc->howto = elfNN_aarch64_howto_from_type (abfd, r_type);
2309
2310 if (bfd_reloc->howto == NULL)
2311 {
2312 /* xgettext:c-format */
2313 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd, r_type);
2314 return FALSE;
2315 }
2316 return TRUE;
2317 }
2318
2319 static reloc_howto_type *
2320 elfNN_aarch64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2321 bfd_reloc_code_real_type code)
2322 {
2323 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (code);
2324
2325 if (howto != NULL)
2326 return howto;
2327
2328 bfd_set_error (bfd_error_bad_value);
2329 return NULL;
2330 }
2331
2332 static reloc_howto_type *
2333 elfNN_aarch64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2334 const char *r_name)
2335 {
2336 unsigned int i;
2337
2338 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
2339 if (elfNN_aarch64_howto_table[i].name != NULL
2340 && strcasecmp (elfNN_aarch64_howto_table[i].name, r_name) == 0)
2341 return &elfNN_aarch64_howto_table[i];
2342
2343 return NULL;
2344 }
2345
2346 #define TARGET_LITTLE_SYM aarch64_elfNN_le_vec
2347 #define TARGET_LITTLE_NAME "elfNN-littleaarch64"
2348 #define TARGET_BIG_SYM aarch64_elfNN_be_vec
2349 #define TARGET_BIG_NAME "elfNN-bigaarch64"
2350
2351 /* The linker script knows the section names for placement.
2352 The entry_names are used to do simple name mangling on the stubs.
2353 Given a function name, and its type, the stub can be found. The
2354 name can be changed. The only requirement is the %s be present. */
2355 #define STUB_ENTRY_NAME "__%s_veneer"
2356
2357 /* The name of the dynamic interpreter. This is put in the .interp
2358 section. */
2359 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
2360
2361 #define AARCH64_MAX_FWD_BRANCH_OFFSET \
2362 (((1 << 25) - 1) << 2)
2363 #define AARCH64_MAX_BWD_BRANCH_OFFSET \
2364 (-((1 << 25) << 2))
2365
2366 #define AARCH64_MAX_ADRP_IMM ((1 << 20) - 1)
2367 #define AARCH64_MIN_ADRP_IMM (-(1 << 20))
2368
2369 static int
2370 aarch64_valid_for_adrp_p (bfd_vma value, bfd_vma place)
2371 {
2372 bfd_signed_vma offset = (bfd_signed_vma) (PG (value) - PG (place)) >> 12;
2373 return offset <= AARCH64_MAX_ADRP_IMM && offset >= AARCH64_MIN_ADRP_IMM;
2374 }
2375
2376 static int
2377 aarch64_valid_branch_p (bfd_vma value, bfd_vma place)
2378 {
2379 bfd_signed_vma offset = (bfd_signed_vma) (value - place);
2380 return (offset <= AARCH64_MAX_FWD_BRANCH_OFFSET
2381 && offset >= AARCH64_MAX_BWD_BRANCH_OFFSET);
2382 }
2383
2384 static const uint32_t aarch64_adrp_branch_stub [] =
2385 {
2386 0x90000010, /* adrp ip0, X */
2387 /* R_AARCH64_ADR_HI21_PCREL(X) */
2388 0x91000210, /* add ip0, ip0, :lo12:X */
2389 /* R_AARCH64_ADD_ABS_LO12_NC(X) */
2390 0xd61f0200, /* br ip0 */
2391 };
2392
2393 static const uint32_t aarch64_long_branch_stub[] =
2394 {
2395 #if ARCH_SIZE == 64
2396 0x58000090, /* ldr ip0, 1f */
2397 #else
2398 0x18000090, /* ldr wip0, 1f */
2399 #endif
2400 0x10000011, /* adr ip1, #0 */
2401 0x8b110210, /* add ip0, ip0, ip1 */
2402 0xd61f0200, /* br ip0 */
2403 0x00000000, /* 1: .xword or .word
2404 R_AARCH64_PRELNN(X) + 12
2405 */
2406 0x00000000,
2407 };
2408
2409 static const uint32_t aarch64_erratum_835769_stub[] =
2410 {
2411 0x00000000, /* Placeholder for multiply accumulate. */
2412 0x14000000, /* b <label> */
2413 };
2414
2415 static const uint32_t aarch64_erratum_843419_stub[] =
2416 {
2417 0x00000000, /* Placeholder for LDR instruction. */
2418 0x14000000, /* b <label> */
2419 };
2420
2421 /* Section name for stubs is the associated section name plus this
2422 string. */
2423 #define STUB_SUFFIX ".stub"
2424
2425 enum elf_aarch64_stub_type
2426 {
2427 aarch64_stub_none,
2428 aarch64_stub_adrp_branch,
2429 aarch64_stub_long_branch,
2430 aarch64_stub_erratum_835769_veneer,
2431 aarch64_stub_erratum_843419_veneer,
2432 };
2433
2434 struct elf_aarch64_stub_hash_entry
2435 {
2436 /* Base hash table entry structure. */
2437 struct bfd_hash_entry root;
2438
2439 /* The stub section. */
2440 asection *stub_sec;
2441
2442 /* Offset within stub_sec of the beginning of this stub. */
2443 bfd_vma stub_offset;
2444
2445 /* Given the symbol's value and its section we can determine its final
2446 value when building the stubs (so the stub knows where to jump). */
2447 bfd_vma target_value;
2448 asection *target_section;
2449
2450 enum elf_aarch64_stub_type stub_type;
2451
2452 /* The symbol table entry, if any, that this was derived from. */
2453 struct elf_aarch64_link_hash_entry *h;
2454
2455 /* Destination symbol type */
2456 unsigned char st_type;
2457
2458 /* Where this stub is being called from, or, in the case of combined
2459 stub sections, the first input section in the group. */
2460 asection *id_sec;
2461
2462 /* The name for the local symbol at the start of this stub. The
2463 stub name in the hash table has to be unique; this does not, so
2464 it can be friendlier. */
2465 char *output_name;
2466
2467 /* The instruction which caused this stub to be generated (only valid for
2468 erratum 835769 workaround stubs at present). */
2469 uint32_t veneered_insn;
2470
2471 /* In an erratum 843419 workaround stub, the ADRP instruction offset. */
2472 bfd_vma adrp_offset;
2473 };
2474
2475 /* Used to build a map of a section. This is required for mixed-endian
2476 code/data. */
2477
2478 typedef struct elf_elf_section_map
2479 {
2480 bfd_vma vma;
2481 char type;
2482 }
2483 elf_aarch64_section_map;
2484
2485
2486 typedef struct _aarch64_elf_section_data
2487 {
2488 struct bfd_elf_section_data elf;
2489 unsigned int mapcount;
2490 unsigned int mapsize;
2491 elf_aarch64_section_map *map;
2492 }
2493 _aarch64_elf_section_data;
2494
2495 #define elf_aarch64_section_data(sec) \
2496 ((_aarch64_elf_section_data *) elf_section_data (sec))
2497
2498 /* The size of the thread control block which is defined to be two pointers. */
2499 #define TCB_SIZE (ARCH_SIZE/8)*2
2500
2501 struct elf_aarch64_local_symbol
2502 {
2503 unsigned int got_type;
2504 bfd_signed_vma got_refcount;
2505 bfd_vma got_offset;
2506
2507 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The
2508 offset is from the end of the jump table and reserved entries
2509 within the PLTGOT.
2510
2511 The magic value (bfd_vma) -1 indicates that an offset has not be
2512 allocated. */
2513 bfd_vma tlsdesc_got_jump_table_offset;
2514 };
2515
2516 struct elf_aarch64_obj_tdata
2517 {
2518 struct elf_obj_tdata root;
2519
2520 /* local symbol descriptors */
2521 struct elf_aarch64_local_symbol *locals;
2522
2523 /* Zero to warn when linking objects with incompatible enum sizes. */
2524 int no_enum_size_warning;
2525
2526 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2527 int no_wchar_size_warning;
2528
2529 /* All GNU_PROPERTY_AARCH64_FEATURE_1_AND properties. */
2530 uint32_t gnu_and_prop;
2531
2532 /* Zero to warn when linking objects with incompatible
2533 GNU_PROPERTY_AARCH64_FEATURE_1_BTI. */
2534 int no_bti_warn;
2535
2536 /* PLT type based on security. */
2537 aarch64_plt_type plt_type;
2538 };
2539
2540 #define elf_aarch64_tdata(bfd) \
2541 ((struct elf_aarch64_obj_tdata *) (bfd)->tdata.any)
2542
2543 #define elf_aarch64_locals(bfd) (elf_aarch64_tdata (bfd)->locals)
2544
2545 #define is_aarch64_elf(bfd) \
2546 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2547 && elf_tdata (bfd) != NULL \
2548 && elf_object_id (bfd) == AARCH64_ELF_DATA)
2549
2550 static bfd_boolean
2551 elfNN_aarch64_mkobject (bfd *abfd)
2552 {
2553 return bfd_elf_allocate_object (abfd, sizeof (struct elf_aarch64_obj_tdata),
2554 AARCH64_ELF_DATA);
2555 }
2556
2557 #define elf_aarch64_hash_entry(ent) \
2558 ((struct elf_aarch64_link_hash_entry *)(ent))
2559
2560 #define GOT_UNKNOWN 0
2561 #define GOT_NORMAL 1
2562 #define GOT_TLS_GD 2
2563 #define GOT_TLS_IE 4
2564 #define GOT_TLSDESC_GD 8
2565
2566 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLSDESC_GD))
2567
2568 /* AArch64 ELF linker hash entry. */
2569 struct elf_aarch64_link_hash_entry
2570 {
2571 struct elf_link_hash_entry root;
2572
2573 /* Track dynamic relocs copied for this symbol. */
2574 struct elf_dyn_relocs *dyn_relocs;
2575
2576 /* Since PLT entries have variable size, we need to record the
2577 index into .got.plt instead of recomputing it from the PLT
2578 offset. */
2579 bfd_signed_vma plt_got_offset;
2580
2581 /* Bit mask representing the type of GOT entry(s) if any required by
2582 this symbol. */
2583 unsigned int got_type;
2584
2585 /* A pointer to the most recently used stub hash entry against this
2586 symbol. */
2587 struct elf_aarch64_stub_hash_entry *stub_cache;
2588
2589 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The offset
2590 is from the end of the jump table and reserved entries within the PLTGOT.
2591
2592 The magic value (bfd_vma) -1 indicates that an offset has not
2593 be allocated. */
2594 bfd_vma tlsdesc_got_jump_table_offset;
2595 };
2596
2597 static unsigned int
2598 elfNN_aarch64_symbol_got_type (struct elf_link_hash_entry *h,
2599 bfd *abfd,
2600 unsigned long r_symndx)
2601 {
2602 if (h)
2603 return elf_aarch64_hash_entry (h)->got_type;
2604
2605 if (! elf_aarch64_locals (abfd))
2606 return GOT_UNKNOWN;
2607
2608 return elf_aarch64_locals (abfd)[r_symndx].got_type;
2609 }
2610
2611 /* Get the AArch64 elf linker hash table from a link_info structure. */
2612 #define elf_aarch64_hash_table(info) \
2613 ((struct elf_aarch64_link_hash_table *) ((info)->hash))
2614
2615 #define aarch64_stub_hash_lookup(table, string, create, copy) \
2616 ((struct elf_aarch64_stub_hash_entry *) \
2617 bfd_hash_lookup ((table), (string), (create), (copy)))
2618
2619 /* AArch64 ELF linker hash table. */
2620 struct elf_aarch64_link_hash_table
2621 {
2622 /* The main hash table. */
2623 struct elf_link_hash_table root;
2624
2625 /* Nonzero to force PIC branch veneers. */
2626 int pic_veneer;
2627
2628 /* Fix erratum 835769. */
2629 int fix_erratum_835769;
2630
2631 /* Fix erratum 843419. */
2632 erratum_84319_opts fix_erratum_843419;
2633
2634 /* Don't apply link-time values for dynamic relocations. */
2635 int no_apply_dynamic_relocs;
2636
2637 /* The number of bytes in the initial entry in the PLT. */
2638 bfd_size_type plt_header_size;
2639
2640 /* The bytes of the initial PLT entry. */
2641 const bfd_byte *plt0_entry;
2642
2643 /* The number of bytes in the subsequent PLT entries. */
2644 bfd_size_type plt_entry_size;
2645
2646 /* The bytes of the subsequent PLT entry. */
2647 const bfd_byte *plt_entry;
2648
2649 /* Small local sym cache. */
2650 struct sym_cache sym_cache;
2651
2652 /* For convenience in allocate_dynrelocs. */
2653 bfd *obfd;
2654
2655 /* The amount of space used by the reserved portion of the sgotplt
2656 section, plus whatever space is used by the jump slots. */
2657 bfd_vma sgotplt_jump_table_size;
2658
2659 /* The stub hash table. */
2660 struct bfd_hash_table stub_hash_table;
2661
2662 /* Linker stub bfd. */
2663 bfd *stub_bfd;
2664
2665 /* Linker call-backs. */
2666 asection *(*add_stub_section) (const char *, asection *);
2667 void (*layout_sections_again) (void);
2668
2669 /* Array to keep track of which stub sections have been created, and
2670 information on stub grouping. */
2671 struct map_stub
2672 {
2673 /* This is the section to which stubs in the group will be
2674 attached. */
2675 asection *link_sec;
2676 /* The stub section. */
2677 asection *stub_sec;
2678 } *stub_group;
2679
2680 /* Assorted information used by elfNN_aarch64_size_stubs. */
2681 unsigned int bfd_count;
2682 unsigned int top_index;
2683 asection **input_list;
2684
2685 /* JUMP_SLOT relocs for variant PCS symbols may be present. */
2686 int variant_pcs;
2687
2688 /* The offset into splt of the PLT entry for the TLS descriptor
2689 resolver. Special values are 0, if not necessary (or not found
2690 to be necessary yet), and -1 if needed but not determined
2691 yet. */
2692 bfd_vma tlsdesc_plt;
2693
2694 /* The number of bytes in the PLT enty for the TLS descriptor. */
2695 bfd_size_type tlsdesc_plt_entry_size;
2696
2697 /* The GOT offset for the lazy trampoline. Communicated to the
2698 loader via DT_TLSDESC_GOT. The magic value (bfd_vma) -1
2699 indicates an offset is not allocated. */
2700 bfd_vma dt_tlsdesc_got;
2701
2702 /* Used by local STT_GNU_IFUNC symbols. */
2703 htab_t loc_hash_table;
2704 void * loc_hash_memory;
2705 };
2706
2707 /* Create an entry in an AArch64 ELF linker hash table. */
2708
2709 static struct bfd_hash_entry *
2710 elfNN_aarch64_link_hash_newfunc (struct bfd_hash_entry *entry,
2711 struct bfd_hash_table *table,
2712 const char *string)
2713 {
2714 struct elf_aarch64_link_hash_entry *ret =
2715 (struct elf_aarch64_link_hash_entry *) entry;
2716
2717 /* Allocate the structure if it has not already been allocated by a
2718 subclass. */
2719 if (ret == NULL)
2720 ret = bfd_hash_allocate (table,
2721 sizeof (struct elf_aarch64_link_hash_entry));
2722 if (ret == NULL)
2723 return (struct bfd_hash_entry *) ret;
2724
2725 /* Call the allocation method of the superclass. */
2726 ret = ((struct elf_aarch64_link_hash_entry *)
2727 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2728 table, string));
2729 if (ret != NULL)
2730 {
2731 ret->dyn_relocs = NULL;
2732 ret->got_type = GOT_UNKNOWN;
2733 ret->plt_got_offset = (bfd_vma) - 1;
2734 ret->stub_cache = NULL;
2735 ret->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
2736 }
2737
2738 return (struct bfd_hash_entry *) ret;
2739 }
2740
2741 /* Initialize an entry in the stub hash table. */
2742
2743 static struct bfd_hash_entry *
2744 stub_hash_newfunc (struct bfd_hash_entry *entry,
2745 struct bfd_hash_table *table, const char *string)
2746 {
2747 /* Allocate the structure if it has not already been allocated by a
2748 subclass. */
2749 if (entry == NULL)
2750 {
2751 entry = bfd_hash_allocate (table,
2752 sizeof (struct
2753 elf_aarch64_stub_hash_entry));
2754 if (entry == NULL)
2755 return entry;
2756 }
2757
2758 /* Call the allocation method of the superclass. */
2759 entry = bfd_hash_newfunc (entry, table, string);
2760 if (entry != NULL)
2761 {
2762 struct elf_aarch64_stub_hash_entry *eh;
2763
2764 /* Initialize the local fields. */
2765 eh = (struct elf_aarch64_stub_hash_entry *) entry;
2766 eh->adrp_offset = 0;
2767 eh->stub_sec = NULL;
2768 eh->stub_offset = 0;
2769 eh->target_value = 0;
2770 eh->target_section = NULL;
2771 eh->stub_type = aarch64_stub_none;
2772 eh->h = NULL;
2773 eh->id_sec = NULL;
2774 }
2775
2776 return entry;
2777 }
2778
2779 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
2780 for local symbol so that we can handle local STT_GNU_IFUNC symbols
2781 as global symbol. We reuse indx and dynstr_index for local symbol
2782 hash since they aren't used by global symbols in this backend. */
2783
2784 static hashval_t
2785 elfNN_aarch64_local_htab_hash (const void *ptr)
2786 {
2787 struct elf_link_hash_entry *h
2788 = (struct elf_link_hash_entry *) ptr;
2789 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
2790 }
2791
2792 /* Compare local hash entries. */
2793
2794 static int
2795 elfNN_aarch64_local_htab_eq (const void *ptr1, const void *ptr2)
2796 {
2797 struct elf_link_hash_entry *h1
2798 = (struct elf_link_hash_entry *) ptr1;
2799 struct elf_link_hash_entry *h2
2800 = (struct elf_link_hash_entry *) ptr2;
2801
2802 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
2803 }
2804
2805 /* Find and/or create a hash entry for local symbol. */
2806
2807 static struct elf_link_hash_entry *
2808 elfNN_aarch64_get_local_sym_hash (struct elf_aarch64_link_hash_table *htab,
2809 bfd *abfd, const Elf_Internal_Rela *rel,
2810 bfd_boolean create)
2811 {
2812 struct elf_aarch64_link_hash_entry e, *ret;
2813 asection *sec = abfd->sections;
2814 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
2815 ELFNN_R_SYM (rel->r_info));
2816 void **slot;
2817
2818 e.root.indx = sec->id;
2819 e.root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2820 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
2821 create ? INSERT : NO_INSERT);
2822
2823 if (!slot)
2824 return NULL;
2825
2826 if (*slot)
2827 {
2828 ret = (struct elf_aarch64_link_hash_entry *) *slot;
2829 return &ret->root;
2830 }
2831
2832 ret = (struct elf_aarch64_link_hash_entry *)
2833 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
2834 sizeof (struct elf_aarch64_link_hash_entry));
2835 if (ret)
2836 {
2837 memset (ret, 0, sizeof (*ret));
2838 ret->root.indx = sec->id;
2839 ret->root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2840 ret->root.dynindx = -1;
2841 *slot = ret;
2842 }
2843 return &ret->root;
2844 }
2845
2846 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2847
2848 static void
2849 elfNN_aarch64_copy_indirect_symbol (struct bfd_link_info *info,
2850 struct elf_link_hash_entry *dir,
2851 struct elf_link_hash_entry *ind)
2852 {
2853 struct elf_aarch64_link_hash_entry *edir, *eind;
2854
2855 edir = (struct elf_aarch64_link_hash_entry *) dir;
2856 eind = (struct elf_aarch64_link_hash_entry *) ind;
2857
2858 if (eind->dyn_relocs != NULL)
2859 {
2860 if (edir->dyn_relocs != NULL)
2861 {
2862 struct elf_dyn_relocs **pp;
2863 struct elf_dyn_relocs *p;
2864
2865 /* Add reloc counts against the indirect sym to the direct sym
2866 list. Merge any entries against the same section. */
2867 for (pp = &eind->dyn_relocs; (p = *pp) != NULL;)
2868 {
2869 struct elf_dyn_relocs *q;
2870
2871 for (q = edir->dyn_relocs; q != NULL; q = q->next)
2872 if (q->sec == p->sec)
2873 {
2874 q->pc_count += p->pc_count;
2875 q->count += p->count;
2876 *pp = p->next;
2877 break;
2878 }
2879 if (q == NULL)
2880 pp = &p->next;
2881 }
2882 *pp = edir->dyn_relocs;
2883 }
2884
2885 edir->dyn_relocs = eind->dyn_relocs;
2886 eind->dyn_relocs = NULL;
2887 }
2888
2889 if (ind->root.type == bfd_link_hash_indirect)
2890 {
2891 /* Copy over PLT info. */
2892 if (dir->got.refcount <= 0)
2893 {
2894 edir->got_type = eind->got_type;
2895 eind->got_type = GOT_UNKNOWN;
2896 }
2897 }
2898
2899 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2900 }
2901
2902 /* Merge non-visibility st_other attributes. */
2903
2904 static void
2905 elfNN_aarch64_merge_symbol_attribute (struct elf_link_hash_entry *h,
2906 const Elf_Internal_Sym *isym,
2907 bfd_boolean definition ATTRIBUTE_UNUSED,
2908 bfd_boolean dynamic ATTRIBUTE_UNUSED)
2909 {
2910 unsigned int isym_sto = isym->st_other & ~ELF_ST_VISIBILITY (-1);
2911 unsigned int h_sto = h->other & ~ELF_ST_VISIBILITY (-1);
2912
2913 if (isym_sto == h_sto)
2914 return;
2915
2916 if (isym_sto & ~STO_AARCH64_VARIANT_PCS)
2917 /* Not fatal, this callback cannot fail. */
2918 _bfd_error_handler (_("unknown attribute for symbol `%s': 0x%02x"),
2919 h->root.root.string, isym_sto);
2920
2921 /* Note: Ideally we would warn about any attribute mismatch, but
2922 this api does not allow that without substantial changes. */
2923 if (isym_sto & STO_AARCH64_VARIANT_PCS)
2924 h->other |= STO_AARCH64_VARIANT_PCS;
2925 }
2926
2927 /* Destroy an AArch64 elf linker hash table. */
2928
2929 static void
2930 elfNN_aarch64_link_hash_table_free (bfd *obfd)
2931 {
2932 struct elf_aarch64_link_hash_table *ret
2933 = (struct elf_aarch64_link_hash_table *) obfd->link.hash;
2934
2935 if (ret->loc_hash_table)
2936 htab_delete (ret->loc_hash_table);
2937 if (ret->loc_hash_memory)
2938 objalloc_free ((struct objalloc *) ret->loc_hash_memory);
2939
2940 bfd_hash_table_free (&ret->stub_hash_table);
2941 _bfd_elf_link_hash_table_free (obfd);
2942 }
2943
2944 /* Create an AArch64 elf linker hash table. */
2945
2946 static struct bfd_link_hash_table *
2947 elfNN_aarch64_link_hash_table_create (bfd *abfd)
2948 {
2949 struct elf_aarch64_link_hash_table *ret;
2950 bfd_size_type amt = sizeof (struct elf_aarch64_link_hash_table);
2951
2952 ret = bfd_zmalloc (amt);
2953 if (ret == NULL)
2954 return NULL;
2955
2956 if (!_bfd_elf_link_hash_table_init
2957 (&ret->root, abfd, elfNN_aarch64_link_hash_newfunc,
2958 sizeof (struct elf_aarch64_link_hash_entry), AARCH64_ELF_DATA))
2959 {
2960 free (ret);
2961 return NULL;
2962 }
2963
2964 ret->plt_header_size = PLT_ENTRY_SIZE;
2965 ret->plt0_entry = elfNN_aarch64_small_plt0_entry;
2966 ret->plt_entry_size = PLT_SMALL_ENTRY_SIZE;
2967 ret->plt_entry = elfNN_aarch64_small_plt_entry;
2968 ret->tlsdesc_plt_entry_size = PLT_TLSDESC_ENTRY_SIZE;
2969 ret->obfd = abfd;
2970 ret->dt_tlsdesc_got = (bfd_vma) - 1;
2971
2972 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2973 sizeof (struct elf_aarch64_stub_hash_entry)))
2974 {
2975 _bfd_elf_link_hash_table_free (abfd);
2976 return NULL;
2977 }
2978
2979 ret->loc_hash_table = htab_try_create (1024,
2980 elfNN_aarch64_local_htab_hash,
2981 elfNN_aarch64_local_htab_eq,
2982 NULL);
2983 ret->loc_hash_memory = objalloc_create ();
2984 if (!ret->loc_hash_table || !ret->loc_hash_memory)
2985 {
2986 elfNN_aarch64_link_hash_table_free (abfd);
2987 return NULL;
2988 }
2989 ret->root.root.hash_table_free = elfNN_aarch64_link_hash_table_free;
2990
2991 return &ret->root.root;
2992 }
2993
2994 /* Perform relocation R_TYPE. Returns TRUE upon success, FALSE otherwise. */
2995
2996 static bfd_boolean
2997 aarch64_relocate (unsigned int r_type, bfd *input_bfd, asection *input_section,
2998 bfd_vma offset, bfd_vma value)
2999 {
3000 reloc_howto_type *howto;
3001 bfd_vma place;
3002
3003 howto = elfNN_aarch64_howto_from_type (input_bfd, r_type);
3004 place = (input_section->output_section->vma + input_section->output_offset
3005 + offset);
3006
3007 r_type = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
3008 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, r_type, place,
3009 value, 0, FALSE);
3010 return _bfd_aarch64_elf_put_addend (input_bfd,
3011 input_section->contents + offset, r_type,
3012 howto, value) == bfd_reloc_ok;
3013 }
3014
3015 static enum elf_aarch64_stub_type
3016 aarch64_select_branch_stub (bfd_vma value, bfd_vma place)
3017 {
3018 if (aarch64_valid_for_adrp_p (value, place))
3019 return aarch64_stub_adrp_branch;
3020 return aarch64_stub_long_branch;
3021 }
3022
3023 /* Determine the type of stub needed, if any, for a call. */
3024
3025 static enum elf_aarch64_stub_type
3026 aarch64_type_of_stub (asection *input_sec,
3027 const Elf_Internal_Rela *rel,
3028 asection *sym_sec,
3029 unsigned char st_type,
3030 bfd_vma destination)
3031 {
3032 bfd_vma location;
3033 bfd_signed_vma branch_offset;
3034 unsigned int r_type;
3035 enum elf_aarch64_stub_type stub_type = aarch64_stub_none;
3036
3037 if (st_type != STT_FUNC
3038 && (sym_sec == input_sec))
3039 return stub_type;
3040
3041 /* Determine where the call point is. */
3042 location = (input_sec->output_offset
3043 + input_sec->output_section->vma + rel->r_offset);
3044
3045 branch_offset = (bfd_signed_vma) (destination - location);
3046
3047 r_type = ELFNN_R_TYPE (rel->r_info);
3048
3049 /* We don't want to redirect any old unconditional jump in this way,
3050 only one which is being used for a sibcall, where it is
3051 acceptable for the IP0 and IP1 registers to be clobbered. */
3052 if ((r_type == AARCH64_R (CALL26) || r_type == AARCH64_R (JUMP26))
3053 && (branch_offset > AARCH64_MAX_FWD_BRANCH_OFFSET
3054 || branch_offset < AARCH64_MAX_BWD_BRANCH_OFFSET))
3055 {
3056 stub_type = aarch64_stub_long_branch;
3057 }
3058
3059 return stub_type;
3060 }
3061
3062 /* Build a name for an entry in the stub hash table. */
3063
3064 static char *
3065 elfNN_aarch64_stub_name (const asection *input_section,
3066 const asection *sym_sec,
3067 const struct elf_aarch64_link_hash_entry *hash,
3068 const Elf_Internal_Rela *rel)
3069 {
3070 char *stub_name;
3071 bfd_size_type len;
3072
3073 if (hash)
3074 {
3075 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 16 + 1;
3076 stub_name = bfd_malloc (len);
3077 if (stub_name != NULL)
3078 snprintf (stub_name, len, "%08x_%s+%" BFD_VMA_FMT "x",
3079 (unsigned int) input_section->id,
3080 hash->root.root.root.string,
3081 rel->r_addend);
3082 }
3083 else
3084 {
3085 len = 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1;
3086 stub_name = bfd_malloc (len);
3087 if (stub_name != NULL)
3088 snprintf (stub_name, len, "%08x_%x:%x+%" BFD_VMA_FMT "x",
3089 (unsigned int) input_section->id,
3090 (unsigned int) sym_sec->id,
3091 (unsigned int) ELFNN_R_SYM (rel->r_info),
3092 rel->r_addend);
3093 }
3094
3095 return stub_name;
3096 }
3097
3098 /* Return TRUE if symbol H should be hashed in the `.gnu.hash' section. For
3099 executable PLT slots where the executable never takes the address of those
3100 functions, the function symbols are not added to the hash table. */
3101
3102 static bfd_boolean
3103 elf_aarch64_hash_symbol (struct elf_link_hash_entry *h)
3104 {
3105 if (h->plt.offset != (bfd_vma) -1
3106 && !h->def_regular
3107 && !h->pointer_equality_needed)
3108 return FALSE;
3109
3110 return _bfd_elf_hash_symbol (h);
3111 }
3112
3113
3114 /* Look up an entry in the stub hash. Stub entries are cached because
3115 creating the stub name takes a bit of time. */
3116
3117 static struct elf_aarch64_stub_hash_entry *
3118 elfNN_aarch64_get_stub_entry (const asection *input_section,
3119 const asection *sym_sec,
3120 struct elf_link_hash_entry *hash,
3121 const Elf_Internal_Rela *rel,
3122 struct elf_aarch64_link_hash_table *htab)
3123 {
3124 struct elf_aarch64_stub_hash_entry *stub_entry;
3125 struct elf_aarch64_link_hash_entry *h =
3126 (struct elf_aarch64_link_hash_entry *) hash;
3127 const asection *id_sec;
3128
3129 if ((input_section->flags & SEC_CODE) == 0)
3130 return NULL;
3131
3132 /* If this input section is part of a group of sections sharing one
3133 stub section, then use the id of the first section in the group.
3134 Stub names need to include a section id, as there may well be
3135 more than one stub used to reach say, printf, and we need to
3136 distinguish between them. */
3137 id_sec = htab->stub_group[input_section->id].link_sec;
3138
3139 if (h != NULL && h->stub_cache != NULL
3140 && h->stub_cache->h == h && h->stub_cache->id_sec == id_sec)
3141 {
3142 stub_entry = h->stub_cache;
3143 }
3144 else
3145 {
3146 char *stub_name;
3147
3148 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, h, rel);
3149 if (stub_name == NULL)
3150 return NULL;
3151
3152 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table,
3153 stub_name, FALSE, FALSE);
3154 if (h != NULL)
3155 h->stub_cache = stub_entry;
3156
3157 free (stub_name);
3158 }
3159
3160 return stub_entry;
3161 }
3162
3163
3164 /* Create a stub section. */
3165
3166 static asection *
3167 _bfd_aarch64_create_stub_section (asection *section,
3168 struct elf_aarch64_link_hash_table *htab)
3169 {
3170 size_t namelen;
3171 bfd_size_type len;
3172 char *s_name;
3173
3174 namelen = strlen (section->name);
3175 len = namelen + sizeof (STUB_SUFFIX);
3176 s_name = bfd_alloc (htab->stub_bfd, len);
3177 if (s_name == NULL)
3178 return NULL;
3179
3180 memcpy (s_name, section->name, namelen);
3181 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3182 return (*htab->add_stub_section) (s_name, section);
3183 }
3184
3185
3186 /* Find or create a stub section for a link section.
3187
3188 Fix or create the stub section used to collect stubs attached to
3189 the specified link section. */
3190
3191 static asection *
3192 _bfd_aarch64_get_stub_for_link_section (asection *link_section,
3193 struct elf_aarch64_link_hash_table *htab)
3194 {
3195 if (htab->stub_group[link_section->id].stub_sec == NULL)
3196 htab->stub_group[link_section->id].stub_sec
3197 = _bfd_aarch64_create_stub_section (link_section, htab);
3198 return htab->stub_group[link_section->id].stub_sec;
3199 }
3200
3201
3202 /* Find or create a stub section in the stub group for an input
3203 section. */
3204
3205 static asection *
3206 _bfd_aarch64_create_or_find_stub_sec (asection *section,
3207 struct elf_aarch64_link_hash_table *htab)
3208 {
3209 asection *link_sec = htab->stub_group[section->id].link_sec;
3210 return _bfd_aarch64_get_stub_for_link_section (link_sec, htab);
3211 }
3212
3213
3214 /* Add a new stub entry in the stub group associated with an input
3215 section to the stub hash. Not all fields of the new stub entry are
3216 initialised. */
3217
3218 static struct elf_aarch64_stub_hash_entry *
3219 _bfd_aarch64_add_stub_entry_in_group (const char *stub_name,
3220 asection *section,
3221 struct elf_aarch64_link_hash_table *htab)
3222 {
3223 asection *link_sec;
3224 asection *stub_sec;
3225 struct elf_aarch64_stub_hash_entry *stub_entry;
3226
3227 link_sec = htab->stub_group[section->id].link_sec;
3228 stub_sec = _bfd_aarch64_create_or_find_stub_sec (section, htab);
3229
3230 /* Enter this entry into the linker stub hash table. */
3231 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3232 TRUE, FALSE);
3233 if (stub_entry == NULL)
3234 {
3235 /* xgettext:c-format */
3236 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
3237 section->owner, stub_name);
3238 return NULL;
3239 }
3240
3241 stub_entry->stub_sec = stub_sec;
3242 stub_entry->stub_offset = 0;
3243 stub_entry->id_sec = link_sec;
3244
3245 return stub_entry;
3246 }
3247
3248 /* Add a new stub entry in the final stub section to the stub hash.
3249 Not all fields of the new stub entry are initialised. */
3250
3251 static struct elf_aarch64_stub_hash_entry *
3252 _bfd_aarch64_add_stub_entry_after (const char *stub_name,
3253 asection *link_section,
3254 struct elf_aarch64_link_hash_table *htab)
3255 {
3256 asection *stub_sec;
3257 struct elf_aarch64_stub_hash_entry *stub_entry;
3258
3259 stub_sec = NULL;
3260 /* Only create the actual stub if we will end up needing it. */
3261 if (htab->fix_erratum_843419 & ERRAT_ADRP)
3262 stub_sec = _bfd_aarch64_get_stub_for_link_section (link_section, htab);
3263 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3264 TRUE, FALSE);
3265 if (stub_entry == NULL)
3266 {
3267 _bfd_error_handler (_("cannot create stub entry %s"), stub_name);
3268 return NULL;
3269 }
3270
3271 stub_entry->stub_sec = stub_sec;
3272 stub_entry->stub_offset = 0;
3273 stub_entry->id_sec = link_section;
3274
3275 return stub_entry;
3276 }
3277
3278
3279 static bfd_boolean
3280 aarch64_build_one_stub (struct bfd_hash_entry *gen_entry,
3281 void *in_arg ATTRIBUTE_UNUSED)
3282 {
3283 struct elf_aarch64_stub_hash_entry *stub_entry;
3284 asection *stub_sec;
3285 bfd *stub_bfd;
3286 bfd_byte *loc;
3287 bfd_vma sym_value;
3288 bfd_vma veneered_insn_loc;
3289 bfd_vma veneer_entry_loc;
3290 bfd_signed_vma branch_offset = 0;
3291 unsigned int template_size;
3292 const uint32_t *template;
3293 unsigned int i;
3294
3295 /* Massage our args to the form they really have. */
3296 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
3297
3298 stub_sec = stub_entry->stub_sec;
3299
3300 /* Make a note of the offset within the stubs for this entry. */
3301 stub_entry->stub_offset = stub_sec->size;
3302 loc = stub_sec->contents + stub_entry->stub_offset;
3303
3304 stub_bfd = stub_sec->owner;
3305
3306 /* This is the address of the stub destination. */
3307 sym_value = (stub_entry->target_value
3308 + stub_entry->target_section->output_offset
3309 + stub_entry->target_section->output_section->vma);
3310
3311 if (stub_entry->stub_type == aarch64_stub_long_branch)
3312 {
3313 bfd_vma place = (stub_entry->stub_offset + stub_sec->output_section->vma
3314 + stub_sec->output_offset);
3315
3316 /* See if we can relax the stub. */
3317 if (aarch64_valid_for_adrp_p (sym_value, place))
3318 stub_entry->stub_type = aarch64_select_branch_stub (sym_value, place);
3319 }
3320
3321 switch (stub_entry->stub_type)
3322 {
3323 case aarch64_stub_adrp_branch:
3324 template = aarch64_adrp_branch_stub;
3325 template_size = sizeof (aarch64_adrp_branch_stub);
3326 break;
3327 case aarch64_stub_long_branch:
3328 template = aarch64_long_branch_stub;
3329 template_size = sizeof (aarch64_long_branch_stub);
3330 break;
3331 case aarch64_stub_erratum_835769_veneer:
3332 template = aarch64_erratum_835769_stub;
3333 template_size = sizeof (aarch64_erratum_835769_stub);
3334 break;
3335 case aarch64_stub_erratum_843419_veneer:
3336 template = aarch64_erratum_843419_stub;
3337 template_size = sizeof (aarch64_erratum_843419_stub);
3338 break;
3339 default:
3340 abort ();
3341 }
3342
3343 for (i = 0; i < (template_size / sizeof template[0]); i++)
3344 {
3345 bfd_putl32 (template[i], loc);
3346 loc += 4;
3347 }
3348
3349 template_size = (template_size + 7) & ~7;
3350 stub_sec->size += template_size;
3351
3352 switch (stub_entry->stub_type)
3353 {
3354 case aarch64_stub_adrp_branch:
3355 if (!aarch64_relocate (AARCH64_R (ADR_PREL_PG_HI21), stub_bfd, stub_sec,
3356 stub_entry->stub_offset, sym_value))
3357 /* The stub would not have been relaxed if the offset was out
3358 of range. */
3359 BFD_FAIL ();
3360
3361 if (!aarch64_relocate (AARCH64_R (ADD_ABS_LO12_NC), stub_bfd, stub_sec,
3362 stub_entry->stub_offset + 4, sym_value))
3363 BFD_FAIL ();
3364 break;
3365
3366 case aarch64_stub_long_branch:
3367 /* We want the value relative to the address 12 bytes back from the
3368 value itself. */
3369 if (!aarch64_relocate (AARCH64_R (PRELNN), stub_bfd, stub_sec,
3370 stub_entry->stub_offset + 16, sym_value + 12))
3371 BFD_FAIL ();
3372 break;
3373
3374 case aarch64_stub_erratum_835769_veneer:
3375 veneered_insn_loc = stub_entry->target_section->output_section->vma
3376 + stub_entry->target_section->output_offset
3377 + stub_entry->target_value;
3378 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
3379 + stub_entry->stub_sec->output_offset
3380 + stub_entry->stub_offset;
3381 branch_offset = veneered_insn_loc - veneer_entry_loc;
3382 branch_offset >>= 2;
3383 branch_offset &= 0x3ffffff;
3384 bfd_putl32 (stub_entry->veneered_insn,
3385 stub_sec->contents + stub_entry->stub_offset);
3386 bfd_putl32 (template[1] | branch_offset,
3387 stub_sec->contents + stub_entry->stub_offset + 4);
3388 break;
3389
3390 case aarch64_stub_erratum_843419_veneer:
3391 if (!aarch64_relocate (AARCH64_R (JUMP26), stub_bfd, stub_sec,
3392 stub_entry->stub_offset + 4, sym_value + 4))
3393 BFD_FAIL ();
3394 break;
3395
3396 default:
3397 abort ();
3398 }
3399
3400 return TRUE;
3401 }
3402
3403 /* As above, but don't actually build the stub. Just bump offset so
3404 we know stub section sizes. */
3405
3406 static bfd_boolean
3407 aarch64_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
3408 {
3409 struct elf_aarch64_stub_hash_entry *stub_entry;
3410 struct elf_aarch64_link_hash_table *htab;
3411 int size;
3412
3413 /* Massage our args to the form they really have. */
3414 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
3415 htab = (struct elf_aarch64_link_hash_table *) in_arg;
3416
3417 switch (stub_entry->stub_type)
3418 {
3419 case aarch64_stub_adrp_branch:
3420 size = sizeof (aarch64_adrp_branch_stub);
3421 break;
3422 case aarch64_stub_long_branch:
3423 size = sizeof (aarch64_long_branch_stub);
3424 break;
3425 case aarch64_stub_erratum_835769_veneer:
3426 size = sizeof (aarch64_erratum_835769_stub);
3427 break;
3428 case aarch64_stub_erratum_843419_veneer:
3429 {
3430 if (htab->fix_erratum_843419 == ERRAT_ADR)
3431 return TRUE;
3432 size = sizeof (aarch64_erratum_843419_stub);
3433 }
3434 break;
3435 default:
3436 abort ();
3437 }
3438
3439 size = (size + 7) & ~7;
3440 stub_entry->stub_sec->size += size;
3441 return TRUE;
3442 }
3443
3444 /* External entry points for sizing and building linker stubs. */
3445
3446 /* Set up various things so that we can make a list of input sections
3447 for each output section included in the link. Returns -1 on error,
3448 0 when no stubs will be needed, and 1 on success. */
3449
3450 int
3451 elfNN_aarch64_setup_section_lists (bfd *output_bfd,
3452 struct bfd_link_info *info)
3453 {
3454 bfd *input_bfd;
3455 unsigned int bfd_count;
3456 unsigned int top_id, top_index;
3457 asection *section;
3458 asection **input_list, **list;
3459 bfd_size_type amt;
3460 struct elf_aarch64_link_hash_table *htab =
3461 elf_aarch64_hash_table (info);
3462
3463 if (!is_elf_hash_table (htab))
3464 return 0;
3465
3466 /* Count the number of input BFDs and find the top input section id. */
3467 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3468 input_bfd != NULL; input_bfd = input_bfd->link.next)
3469 {
3470 bfd_count += 1;
3471 for (section = input_bfd->sections;
3472 section != NULL; section = section->next)
3473 {
3474 if (top_id < section->id)
3475 top_id = section->id;
3476 }
3477 }
3478 htab->bfd_count = bfd_count;
3479
3480 amt = sizeof (struct map_stub) * (top_id + 1);
3481 htab->stub_group = bfd_zmalloc (amt);
3482 if (htab->stub_group == NULL)
3483 return -1;
3484
3485 /* We can't use output_bfd->section_count here to find the top output
3486 section index as some sections may have been removed, and
3487 _bfd_strip_section_from_output doesn't renumber the indices. */
3488 for (section = output_bfd->sections, top_index = 0;
3489 section != NULL; section = section->next)
3490 {
3491 if (top_index < section->index)
3492 top_index = section->index;
3493 }
3494
3495 htab->top_index = top_index;
3496 amt = sizeof (asection *) * (top_index + 1);
3497 input_list = bfd_malloc (amt);
3498 htab->input_list = input_list;
3499 if (input_list == NULL)
3500 return -1;
3501
3502 /* For sections we aren't interested in, mark their entries with a
3503 value we can check later. */
3504 list = input_list + top_index;
3505 do
3506 *list = bfd_abs_section_ptr;
3507 while (list-- != input_list);
3508
3509 for (section = output_bfd->sections;
3510 section != NULL; section = section->next)
3511 {
3512 if ((section->flags & SEC_CODE) != 0)
3513 input_list[section->index] = NULL;
3514 }
3515
3516 return 1;
3517 }
3518
3519 /* Used by elfNN_aarch64_next_input_section and group_sections. */
3520 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3521
3522 /* The linker repeatedly calls this function for each input section,
3523 in the order that input sections are linked into output sections.
3524 Build lists of input sections to determine groupings between which
3525 we may insert linker stubs. */
3526
3527 void
3528 elfNN_aarch64_next_input_section (struct bfd_link_info *info, asection *isec)
3529 {
3530 struct elf_aarch64_link_hash_table *htab =
3531 elf_aarch64_hash_table (info);
3532
3533 if (isec->output_section->index <= htab->top_index)
3534 {
3535 asection **list = htab->input_list + isec->output_section->index;
3536
3537 if (*list != bfd_abs_section_ptr)
3538 {
3539 /* Steal the link_sec pointer for our list. */
3540 /* This happens to make the list in reverse order,
3541 which is what we want. */
3542 PREV_SEC (isec) = *list;
3543 *list = isec;
3544 }
3545 }
3546 }
3547
3548 /* See whether we can group stub sections together. Grouping stub
3549 sections may result in fewer stubs. More importantly, we need to
3550 put all .init* and .fini* stubs at the beginning of the .init or
3551 .fini output sections respectively, because glibc splits the
3552 _init and _fini functions into multiple parts. Putting a stub in
3553 the middle of a function is not a good idea. */
3554
3555 static void
3556 group_sections (struct elf_aarch64_link_hash_table *htab,
3557 bfd_size_type stub_group_size,
3558 bfd_boolean stubs_always_before_branch)
3559 {
3560 asection **list = htab->input_list + htab->top_index;
3561
3562 do
3563 {
3564 asection *tail = *list;
3565
3566 if (tail == bfd_abs_section_ptr)
3567 continue;
3568
3569 while (tail != NULL)
3570 {
3571 asection *curr;
3572 asection *prev;
3573 bfd_size_type total;
3574
3575 curr = tail;
3576 total = tail->size;
3577 while ((prev = PREV_SEC (curr)) != NULL
3578 && ((total += curr->output_offset - prev->output_offset)
3579 < stub_group_size))
3580 curr = prev;
3581
3582 /* OK, the size from the start of CURR to the end is less
3583 than stub_group_size and thus can be handled by one stub
3584 section. (Or the tail section is itself larger than
3585 stub_group_size, in which case we may be toast.)
3586 We should really be keeping track of the total size of
3587 stubs added here, as stubs contribute to the final output
3588 section size. */
3589 do
3590 {
3591 prev = PREV_SEC (tail);
3592 /* Set up this stub group. */
3593 htab->stub_group[tail->id].link_sec = curr;
3594 }
3595 while (tail != curr && (tail = prev) != NULL);
3596
3597 /* But wait, there's more! Input sections up to stub_group_size
3598 bytes before the stub section can be handled by it too. */
3599 if (!stubs_always_before_branch)
3600 {
3601 total = 0;
3602 while (prev != NULL
3603 && ((total += tail->output_offset - prev->output_offset)
3604 < stub_group_size))
3605 {
3606 tail = prev;
3607 prev = PREV_SEC (tail);
3608 htab->stub_group[tail->id].link_sec = curr;
3609 }
3610 }
3611 tail = prev;
3612 }
3613 }
3614 while (list-- != htab->input_list);
3615
3616 free (htab->input_list);
3617 }
3618
3619 #undef PREV_SEC
3620
3621 #define AARCH64_BITS(x, pos, n) (((x) >> (pos)) & ((1 << (n)) - 1))
3622
3623 #define AARCH64_RT(insn) AARCH64_BITS (insn, 0, 5)
3624 #define AARCH64_RT2(insn) AARCH64_BITS (insn, 10, 5)
3625 #define AARCH64_RA(insn) AARCH64_BITS (insn, 10, 5)
3626 #define AARCH64_RD(insn) AARCH64_BITS (insn, 0, 5)
3627 #define AARCH64_RN(insn) AARCH64_BITS (insn, 5, 5)
3628 #define AARCH64_RM(insn) AARCH64_BITS (insn, 16, 5)
3629
3630 #define AARCH64_MAC(insn) (((insn) & 0xff000000) == 0x9b000000)
3631 #define AARCH64_BIT(insn, n) AARCH64_BITS (insn, n, 1)
3632 #define AARCH64_OP31(insn) AARCH64_BITS (insn, 21, 3)
3633 #define AARCH64_ZR 0x1f
3634
3635 /* All ld/st ops. See C4-182 of the ARM ARM. The encoding space for
3636 LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops. */
3637
3638 #define AARCH64_LD(insn) (AARCH64_BIT (insn, 22) == 1)
3639 #define AARCH64_LDST(insn) (((insn) & 0x0a000000) == 0x08000000)
3640 #define AARCH64_LDST_EX(insn) (((insn) & 0x3f000000) == 0x08000000)
3641 #define AARCH64_LDST_PCREL(insn) (((insn) & 0x3b000000) == 0x18000000)
3642 #define AARCH64_LDST_NAP(insn) (((insn) & 0x3b800000) == 0x28000000)
3643 #define AARCH64_LDSTP_PI(insn) (((insn) & 0x3b800000) == 0x28800000)
3644 #define AARCH64_LDSTP_O(insn) (((insn) & 0x3b800000) == 0x29000000)
3645 #define AARCH64_LDSTP_PRE(insn) (((insn) & 0x3b800000) == 0x29800000)
3646 #define AARCH64_LDST_UI(insn) (((insn) & 0x3b200c00) == 0x38000000)
3647 #define AARCH64_LDST_PIIMM(insn) (((insn) & 0x3b200c00) == 0x38000400)
3648 #define AARCH64_LDST_U(insn) (((insn) & 0x3b200c00) == 0x38000800)
3649 #define AARCH64_LDST_PREIMM(insn) (((insn) & 0x3b200c00) == 0x38000c00)
3650 #define AARCH64_LDST_RO(insn) (((insn) & 0x3b200c00) == 0x38200800)
3651 #define AARCH64_LDST_UIMM(insn) (((insn) & 0x3b000000) == 0x39000000)
3652 #define AARCH64_LDST_SIMD_M(insn) (((insn) & 0xbfbf0000) == 0x0c000000)
3653 #define AARCH64_LDST_SIMD_M_PI(insn) (((insn) & 0xbfa00000) == 0x0c800000)
3654 #define AARCH64_LDST_SIMD_S(insn) (((insn) & 0xbf9f0000) == 0x0d000000)
3655 #define AARCH64_LDST_SIMD_S_PI(insn) (((insn) & 0xbf800000) == 0x0d800000)
3656
3657 /* Classify an INSN if it is indeed a load/store.
3658
3659 Return TRUE if INSN is a LD/ST instruction otherwise return FALSE.
3660
3661 For scalar LD/ST instructions PAIR is FALSE, RT is returned and RT2
3662 is set equal to RT.
3663
3664 For LD/ST pair instructions PAIR is TRUE, RT and RT2 are returned. */
3665
3666 static bfd_boolean
3667 aarch64_mem_op_p (uint32_t insn, unsigned int *rt, unsigned int *rt2,
3668 bfd_boolean *pair, bfd_boolean *load)
3669 {
3670 uint32_t opcode;
3671 unsigned int r;
3672 uint32_t opc = 0;
3673 uint32_t v = 0;
3674 uint32_t opc_v = 0;
3675
3676 /* Bail out quickly if INSN doesn't fall into the load-store
3677 encoding space. */
3678 if (!AARCH64_LDST (insn))
3679 return FALSE;
3680
3681 *pair = FALSE;
3682 *load = FALSE;
3683 if (AARCH64_LDST_EX (insn))
3684 {
3685 *rt = AARCH64_RT (insn);
3686 *rt2 = *rt;
3687 if (AARCH64_BIT (insn, 21) == 1)
3688 {
3689 *pair = TRUE;
3690 *rt2 = AARCH64_RT2 (insn);
3691 }
3692 *load = AARCH64_LD (insn);
3693 return TRUE;
3694 }
3695 else if (AARCH64_LDST_NAP (insn)
3696 || AARCH64_LDSTP_PI (insn)
3697 || AARCH64_LDSTP_O (insn)
3698 || AARCH64_LDSTP_PRE (insn))
3699 {
3700 *pair = TRUE;
3701 *rt = AARCH64_RT (insn);
3702 *rt2 = AARCH64_RT2 (insn);
3703 *load = AARCH64_LD (insn);
3704 return TRUE;
3705 }
3706 else if (AARCH64_LDST_PCREL (insn)
3707 || AARCH64_LDST_UI (insn)
3708 || AARCH64_LDST_PIIMM (insn)
3709 || AARCH64_LDST_U (insn)
3710 || AARCH64_LDST_PREIMM (insn)
3711 || AARCH64_LDST_RO (insn)
3712 || AARCH64_LDST_UIMM (insn))
3713 {
3714 *rt = AARCH64_RT (insn);
3715 *rt2 = *rt;
3716 if (AARCH64_LDST_PCREL (insn))
3717 *load = TRUE;
3718 opc = AARCH64_BITS (insn, 22, 2);
3719 v = AARCH64_BIT (insn, 26);
3720 opc_v = opc | (v << 2);
3721 *load = (opc_v == 1 || opc_v == 2 || opc_v == 3
3722 || opc_v == 5 || opc_v == 7);
3723 return TRUE;
3724 }
3725 else if (AARCH64_LDST_SIMD_M (insn)
3726 || AARCH64_LDST_SIMD_M_PI (insn))
3727 {
3728 *rt = AARCH64_RT (insn);
3729 *load = AARCH64_BIT (insn, 22);
3730 opcode = (insn >> 12) & 0xf;
3731 switch (opcode)
3732 {
3733 case 0:
3734 case 2:
3735 *rt2 = *rt + 3;
3736 break;
3737
3738 case 4:
3739 case 6:
3740 *rt2 = *rt + 2;
3741 break;
3742
3743 case 7:
3744 *rt2 = *rt;
3745 break;
3746
3747 case 8:
3748 case 10:
3749 *rt2 = *rt + 1;
3750 break;
3751
3752 default:
3753 return FALSE;
3754 }
3755 return TRUE;
3756 }
3757 else if (AARCH64_LDST_SIMD_S (insn)
3758 || AARCH64_LDST_SIMD_S_PI (insn))
3759 {
3760 *rt = AARCH64_RT (insn);
3761 r = (insn >> 21) & 1;
3762 *load = AARCH64_BIT (insn, 22);
3763 opcode = (insn >> 13) & 0x7;
3764 switch (opcode)
3765 {
3766 case 0:
3767 case 2:
3768 case 4:
3769 *rt2 = *rt + r;
3770 break;
3771
3772 case 1:
3773 case 3:
3774 case 5:
3775 *rt2 = *rt + (r == 0 ? 2 : 3);
3776 break;
3777
3778 case 6:
3779 *rt2 = *rt + r;
3780 break;
3781
3782 case 7:
3783 *rt2 = *rt + (r == 0 ? 2 : 3);
3784 break;
3785
3786 default:
3787 return FALSE;
3788 }
3789 return TRUE;
3790 }
3791
3792 return FALSE;
3793 }
3794
3795 /* Return TRUE if INSN is multiply-accumulate. */
3796
3797 static bfd_boolean
3798 aarch64_mlxl_p (uint32_t insn)
3799 {
3800 uint32_t op31 = AARCH64_OP31 (insn);
3801
3802 if (AARCH64_MAC (insn)
3803 && (op31 == 0 || op31 == 1 || op31 == 5)
3804 /* Exclude MUL instructions which are encoded as a multiple accumulate
3805 with RA = XZR. */
3806 && AARCH64_RA (insn) != AARCH64_ZR)
3807 return TRUE;
3808
3809 return FALSE;
3810 }
3811
3812 /* Some early revisions of the Cortex-A53 have an erratum (835769) whereby
3813 it is possible for a 64-bit multiply-accumulate instruction to generate an
3814 incorrect result. The details are quite complex and hard to
3815 determine statically, since branches in the code may exist in some
3816 circumstances, but all cases end with a memory (load, store, or
3817 prefetch) instruction followed immediately by the multiply-accumulate
3818 operation. We employ a linker patching technique, by moving the potentially
3819 affected multiply-accumulate instruction into a patch region and replacing
3820 the original instruction with a branch to the patch. This function checks
3821 if INSN_1 is the memory operation followed by a multiply-accumulate
3822 operation (INSN_2). Return TRUE if an erratum sequence is found, FALSE
3823 if INSN_1 and INSN_2 are safe. */
3824
3825 static bfd_boolean
3826 aarch64_erratum_sequence (uint32_t insn_1, uint32_t insn_2)
3827 {
3828 uint32_t rt;
3829 uint32_t rt2;
3830 uint32_t rn;
3831 uint32_t rm;
3832 uint32_t ra;
3833 bfd_boolean pair;
3834 bfd_boolean load;
3835
3836 if (aarch64_mlxl_p (insn_2)
3837 && aarch64_mem_op_p (insn_1, &rt, &rt2, &pair, &load))
3838 {
3839 /* Any SIMD memory op is independent of the subsequent MLA
3840 by definition of the erratum. */
3841 if (AARCH64_BIT (insn_1, 26))
3842 return TRUE;
3843
3844 /* If not SIMD, check for integer memory ops and MLA relationship. */
3845 rn = AARCH64_RN (insn_2);
3846 ra = AARCH64_RA (insn_2);
3847 rm = AARCH64_RM (insn_2);
3848
3849 /* If this is a load and there's a true(RAW) dependency, we are safe
3850 and this is not an erratum sequence. */
3851 if (load &&
3852 (rt == rn || rt == rm || rt == ra
3853 || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
3854 return FALSE;
3855
3856 /* We conservatively put out stubs for all other cases (including
3857 writebacks). */
3858 return TRUE;
3859 }
3860
3861 return FALSE;
3862 }
3863
3864 /* Used to order a list of mapping symbols by address. */
3865
3866 static int
3867 elf_aarch64_compare_mapping (const void *a, const void *b)
3868 {
3869 const elf_aarch64_section_map *amap = (const elf_aarch64_section_map *) a;
3870 const elf_aarch64_section_map *bmap = (const elf_aarch64_section_map *) b;
3871
3872 if (amap->vma > bmap->vma)
3873 return 1;
3874 else if (amap->vma < bmap->vma)
3875 return -1;
3876 else if (amap->type > bmap->type)
3877 /* Ensure results do not depend on the host qsort for objects with
3878 multiple mapping symbols at the same address by sorting on type
3879 after vma. */
3880 return 1;
3881 else if (amap->type < bmap->type)
3882 return -1;
3883 else
3884 return 0;
3885 }
3886
3887
3888 static char *
3889 _bfd_aarch64_erratum_835769_stub_name (unsigned num_fixes)
3890 {
3891 char *stub_name = (char *) bfd_malloc
3892 (strlen ("__erratum_835769_veneer_") + 16);
3893 if (stub_name != NULL)
3894 sprintf (stub_name,"__erratum_835769_veneer_%d", num_fixes);
3895 return stub_name;
3896 }
3897
3898 /* Scan for Cortex-A53 erratum 835769 sequence.
3899
3900 Return TRUE else FALSE on abnormal termination. */
3901
3902 static bfd_boolean
3903 _bfd_aarch64_erratum_835769_scan (bfd *input_bfd,
3904 struct bfd_link_info *info,
3905 unsigned int *num_fixes_p)
3906 {
3907 asection *section;
3908 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3909 unsigned int num_fixes = *num_fixes_p;
3910
3911 if (htab == NULL)
3912 return TRUE;
3913
3914 for (section = input_bfd->sections;
3915 section != NULL;
3916 section = section->next)
3917 {
3918 bfd_byte *contents = NULL;
3919 struct _aarch64_elf_section_data *sec_data;
3920 unsigned int span;
3921
3922 if (elf_section_type (section) != SHT_PROGBITS
3923 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3924 || (section->flags & SEC_EXCLUDE) != 0
3925 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3926 || (section->output_section == bfd_abs_section_ptr))
3927 continue;
3928
3929 if (elf_section_data (section)->this_hdr.contents != NULL)
3930 contents = elf_section_data (section)->this_hdr.contents;
3931 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
3932 return FALSE;
3933
3934 sec_data = elf_aarch64_section_data (section);
3935
3936 qsort (sec_data->map, sec_data->mapcount,
3937 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
3938
3939 for (span = 0; span < sec_data->mapcount; span++)
3940 {
3941 unsigned int span_start = sec_data->map[span].vma;
3942 unsigned int span_end = ((span == sec_data->mapcount - 1)
3943 ? sec_data->map[0].vma + section->size
3944 : sec_data->map[span + 1].vma);
3945 unsigned int i;
3946 char span_type = sec_data->map[span].type;
3947
3948 if (span_type == 'd')
3949 continue;
3950
3951 for (i = span_start; i + 4 < span_end; i += 4)
3952 {
3953 uint32_t insn_1 = bfd_getl32 (contents + i);
3954 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3955
3956 if (aarch64_erratum_sequence (insn_1, insn_2))
3957 {
3958 struct elf_aarch64_stub_hash_entry *stub_entry;
3959 char *stub_name = _bfd_aarch64_erratum_835769_stub_name (num_fixes);
3960 if (! stub_name)
3961 return FALSE;
3962
3963 stub_entry = _bfd_aarch64_add_stub_entry_in_group (stub_name,
3964 section,
3965 htab);
3966 if (! stub_entry)
3967 return FALSE;
3968
3969 stub_entry->stub_type = aarch64_stub_erratum_835769_veneer;
3970 stub_entry->target_section = section;
3971 stub_entry->target_value = i + 4;
3972 stub_entry->veneered_insn = insn_2;
3973 stub_entry->output_name = stub_name;
3974 num_fixes++;
3975 }
3976 }
3977 }
3978 if (elf_section_data (section)->this_hdr.contents == NULL)
3979 free (contents);
3980 }
3981
3982 *num_fixes_p = num_fixes;
3983
3984 return TRUE;
3985 }
3986
3987
3988 /* Test if instruction INSN is ADRP. */
3989
3990 static bfd_boolean
3991 _bfd_aarch64_adrp_p (uint32_t insn)
3992 {
3993 return ((insn & AARCH64_ADRP_OP_MASK) == AARCH64_ADRP_OP);
3994 }
3995
3996
3997 /* Helper predicate to look for cortex-a53 erratum 843419 sequence 1. */
3998
3999 static bfd_boolean
4000 _bfd_aarch64_erratum_843419_sequence_p (uint32_t insn_1, uint32_t insn_2,
4001 uint32_t insn_3)
4002 {
4003 uint32_t rt;
4004 uint32_t rt2;
4005 bfd_boolean pair;
4006 bfd_boolean load;
4007
4008 return (aarch64_mem_op_p (insn_2, &rt, &rt2, &pair, &load)
4009 && (!pair
4010 || (pair && !load))
4011 && AARCH64_LDST_UIMM (insn_3)
4012 && AARCH64_RN (insn_3) == AARCH64_RD (insn_1));
4013 }
4014
4015
4016 /* Test for the presence of Cortex-A53 erratum 843419 instruction sequence.
4017
4018 Return TRUE if section CONTENTS at offset I contains one of the
4019 erratum 843419 sequences, otherwise return FALSE. If a sequence is
4020 seen set P_VENEER_I to the offset of the final LOAD/STORE
4021 instruction in the sequence.
4022 */
4023
4024 static bfd_boolean
4025 _bfd_aarch64_erratum_843419_p (bfd_byte *contents, bfd_vma vma,
4026 bfd_vma i, bfd_vma span_end,
4027 bfd_vma *p_veneer_i)
4028 {
4029 uint32_t insn_1 = bfd_getl32 (contents + i);
4030
4031 if (!_bfd_aarch64_adrp_p (insn_1))
4032 return FALSE;
4033
4034 if (span_end < i + 12)
4035 return FALSE;
4036
4037 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
4038 uint32_t insn_3 = bfd_getl32 (contents + i + 8);
4039
4040 if ((vma & 0xfff) != 0xff8 && (vma & 0xfff) != 0xffc)
4041 return FALSE;
4042
4043 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_3))
4044 {
4045 *p_veneer_i = i + 8;
4046 return TRUE;
4047 }
4048
4049 if (span_end < i + 16)
4050 return FALSE;
4051
4052 uint32_t insn_4 = bfd_getl32 (contents + i + 12);
4053
4054 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_4))
4055 {
4056 *p_veneer_i = i + 12;
4057 return TRUE;
4058 }
4059
4060 return FALSE;
4061 }
4062
4063
4064 /* Resize all stub sections. */
4065
4066 static void
4067 _bfd_aarch64_resize_stubs (struct elf_aarch64_link_hash_table *htab)
4068 {
4069 asection *section;
4070
4071 /* OK, we've added some stubs. Find out the new size of the
4072 stub sections. */
4073 for (section = htab->stub_bfd->sections;
4074 section != NULL; section = section->next)
4075 {
4076 /* Ignore non-stub sections. */
4077 if (!strstr (section->name, STUB_SUFFIX))
4078 continue;
4079 section->size = 0;
4080 }
4081
4082 bfd_hash_traverse (&htab->stub_hash_table, aarch64_size_one_stub, htab);
4083
4084 for (section = htab->stub_bfd->sections;
4085 section != NULL; section = section->next)
4086 {
4087 if (!strstr (section->name, STUB_SUFFIX))
4088 continue;
4089
4090 /* Add space for a branch. Add 8 bytes to keep section 8 byte aligned,
4091 as long branch stubs contain a 64-bit address. */
4092 if (section->size)
4093 section->size += 8;
4094
4095 /* Ensure all stub sections have a size which is a multiple of
4096 4096. This is important in order to ensure that the insertion
4097 of stub sections does not in itself move existing code around
4098 in such a way that new errata sequences are created. We only do this
4099 when the ADRP workaround is enabled. If only the ADR workaround is
4100 enabled then the stubs workaround won't ever be used. */
4101 if (htab->fix_erratum_843419 & ERRAT_ADRP)
4102 if (section->size)
4103 section->size = BFD_ALIGN (section->size, 0x1000);
4104 }
4105 }
4106
4107 /* Construct an erratum 843419 workaround stub name. */
4108
4109 static char *
4110 _bfd_aarch64_erratum_843419_stub_name (asection *input_section,
4111 bfd_vma offset)
4112 {
4113 const bfd_size_type len = 8 + 4 + 1 + 8 + 1 + 16 + 1;
4114 char *stub_name = bfd_malloc (len);
4115
4116 if (stub_name != NULL)
4117 snprintf (stub_name, len, "e843419@%04x_%08x_%" BFD_VMA_FMT "x",
4118 input_section->owner->id,
4119 input_section->id,
4120 offset);
4121 return stub_name;
4122 }
4123
4124 /* Build a stub_entry structure describing an 843419 fixup.
4125
4126 The stub_entry constructed is populated with the bit pattern INSN
4127 of the instruction located at OFFSET within input SECTION.
4128
4129 Returns TRUE on success. */
4130
4131 static bfd_boolean
4132 _bfd_aarch64_erratum_843419_fixup (uint32_t insn,
4133 bfd_vma adrp_offset,
4134 bfd_vma ldst_offset,
4135 asection *section,
4136 struct bfd_link_info *info)
4137 {
4138 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4139 char *stub_name;
4140 struct elf_aarch64_stub_hash_entry *stub_entry;
4141
4142 stub_name = _bfd_aarch64_erratum_843419_stub_name (section, ldst_offset);
4143 if (stub_name == NULL)
4144 return FALSE;
4145 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4146 FALSE, FALSE);
4147 if (stub_entry)
4148 {
4149 free (stub_name);
4150 return TRUE;
4151 }
4152
4153 /* We always place an 843419 workaround veneer in the stub section
4154 attached to the input section in which an erratum sequence has
4155 been found. This ensures that later in the link process (in
4156 elfNN_aarch64_write_section) when we copy the veneered
4157 instruction from the input section into the stub section the
4158 copied instruction will have had any relocations applied to it.
4159 If we placed workaround veneers in any other stub section then we
4160 could not assume that all relocations have been processed on the
4161 corresponding input section at the point we output the stub
4162 section. */
4163
4164 stub_entry = _bfd_aarch64_add_stub_entry_after (stub_name, section, htab);
4165 if (stub_entry == NULL)
4166 {
4167 free (stub_name);
4168 return FALSE;
4169 }
4170
4171 stub_entry->adrp_offset = adrp_offset;
4172 stub_entry->target_value = ldst_offset;
4173 stub_entry->target_section = section;
4174 stub_entry->stub_type = aarch64_stub_erratum_843419_veneer;
4175 stub_entry->veneered_insn = insn;
4176 stub_entry->output_name = stub_name;
4177
4178 return TRUE;
4179 }
4180
4181
4182 /* Scan an input section looking for the signature of erratum 843419.
4183
4184 Scans input SECTION in INPUT_BFD looking for erratum 843419
4185 signatures, for each signature found a stub_entry is created
4186 describing the location of the erratum for subsequent fixup.
4187
4188 Return TRUE on successful scan, FALSE on failure to scan.
4189 */
4190
4191 static bfd_boolean
4192 _bfd_aarch64_erratum_843419_scan (bfd *input_bfd, asection *section,
4193 struct bfd_link_info *info)
4194 {
4195 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4196
4197 if (htab == NULL)
4198 return TRUE;
4199
4200 if (elf_section_type (section) != SHT_PROGBITS
4201 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
4202 || (section->flags & SEC_EXCLUDE) != 0
4203 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4204 || (section->output_section == bfd_abs_section_ptr))
4205 return TRUE;
4206
4207 do
4208 {
4209 bfd_byte *contents = NULL;
4210 struct _aarch64_elf_section_data *sec_data;
4211 unsigned int span;
4212
4213 if (elf_section_data (section)->this_hdr.contents != NULL)
4214 contents = elf_section_data (section)->this_hdr.contents;
4215 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
4216 return FALSE;
4217
4218 sec_data = elf_aarch64_section_data (section);
4219
4220 qsort (sec_data->map, sec_data->mapcount,
4221 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
4222
4223 for (span = 0; span < sec_data->mapcount; span++)
4224 {
4225 unsigned int span_start = sec_data->map[span].vma;
4226 unsigned int span_end = ((span == sec_data->mapcount - 1)
4227 ? sec_data->map[0].vma + section->size
4228 : sec_data->map[span + 1].vma);
4229 unsigned int i;
4230 char span_type = sec_data->map[span].type;
4231
4232 if (span_type == 'd')
4233 continue;
4234
4235 for (i = span_start; i + 8 < span_end; i += 4)
4236 {
4237 bfd_vma vma = (section->output_section->vma
4238 + section->output_offset
4239 + i);
4240 bfd_vma veneer_i;
4241
4242 if (_bfd_aarch64_erratum_843419_p
4243 (contents, vma, i, span_end, &veneer_i))
4244 {
4245 uint32_t insn = bfd_getl32 (contents + veneer_i);
4246
4247 if (!_bfd_aarch64_erratum_843419_fixup (insn, i, veneer_i,
4248 section, info))
4249 return FALSE;
4250 }
4251 }
4252 }
4253
4254 if (elf_section_data (section)->this_hdr.contents == NULL)
4255 free (contents);
4256 }
4257 while (0);
4258
4259 return TRUE;
4260 }
4261
4262
4263 /* Determine and set the size of the stub section for a final link.
4264
4265 The basic idea here is to examine all the relocations looking for
4266 PC-relative calls to a target that is unreachable with a "bl"
4267 instruction. */
4268
4269 bfd_boolean
4270 elfNN_aarch64_size_stubs (bfd *output_bfd,
4271 bfd *stub_bfd,
4272 struct bfd_link_info *info,
4273 bfd_signed_vma group_size,
4274 asection * (*add_stub_section) (const char *,
4275 asection *),
4276 void (*layout_sections_again) (void))
4277 {
4278 bfd_size_type stub_group_size;
4279 bfd_boolean stubs_always_before_branch;
4280 bfd_boolean stub_changed = FALSE;
4281 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4282 unsigned int num_erratum_835769_fixes = 0;
4283
4284 /* Propagate mach to stub bfd, because it may not have been
4285 finalized when we created stub_bfd. */
4286 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
4287 bfd_get_mach (output_bfd));
4288
4289 /* Stash our params away. */
4290 htab->stub_bfd = stub_bfd;
4291 htab->add_stub_section = add_stub_section;
4292 htab->layout_sections_again = layout_sections_again;
4293 stubs_always_before_branch = group_size < 0;
4294 if (group_size < 0)
4295 stub_group_size = -group_size;
4296 else
4297 stub_group_size = group_size;
4298
4299 if (stub_group_size == 1)
4300 {
4301 /* Default values. */
4302 /* AArch64 branch range is +-128MB. The value used is 1MB less. */
4303 stub_group_size = 127 * 1024 * 1024;
4304 }
4305
4306 group_sections (htab, stub_group_size, stubs_always_before_branch);
4307
4308 (*htab->layout_sections_again) ();
4309
4310 if (htab->fix_erratum_835769)
4311 {
4312 bfd *input_bfd;
4313
4314 for (input_bfd = info->input_bfds;
4315 input_bfd != NULL; input_bfd = input_bfd->link.next)
4316 if (!_bfd_aarch64_erratum_835769_scan (input_bfd, info,
4317 &num_erratum_835769_fixes))
4318 return FALSE;
4319
4320 _bfd_aarch64_resize_stubs (htab);
4321 (*htab->layout_sections_again) ();
4322 }
4323
4324 if (htab->fix_erratum_843419 != ERRAT_NONE)
4325 {
4326 bfd *input_bfd;
4327
4328 for (input_bfd = info->input_bfds;
4329 input_bfd != NULL;
4330 input_bfd = input_bfd->link.next)
4331 {
4332 asection *section;
4333
4334 for (section = input_bfd->sections;
4335 section != NULL;
4336 section = section->next)
4337 if (!_bfd_aarch64_erratum_843419_scan (input_bfd, section, info))
4338 return FALSE;
4339 }
4340
4341 _bfd_aarch64_resize_stubs (htab);
4342 (*htab->layout_sections_again) ();
4343 }
4344
4345 while (1)
4346 {
4347 bfd *input_bfd;
4348
4349 for (input_bfd = info->input_bfds;
4350 input_bfd != NULL; input_bfd = input_bfd->link.next)
4351 {
4352 Elf_Internal_Shdr *symtab_hdr;
4353 asection *section;
4354 Elf_Internal_Sym *local_syms = NULL;
4355
4356 /* We'll need the symbol table in a second. */
4357 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4358 if (symtab_hdr->sh_info == 0)
4359 continue;
4360
4361 /* Walk over each section attached to the input bfd. */
4362 for (section = input_bfd->sections;
4363 section != NULL; section = section->next)
4364 {
4365 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
4366
4367 /* If there aren't any relocs, then there's nothing more
4368 to do. */
4369 if ((section->flags & SEC_RELOC) == 0
4370 || section->reloc_count == 0
4371 || (section->flags & SEC_CODE) == 0)
4372 continue;
4373
4374 /* If this section is a link-once section that will be
4375 discarded, then don't create any stubs. */
4376 if (section->output_section == NULL
4377 || section->output_section->owner != output_bfd)
4378 continue;
4379
4380 /* Get the relocs. */
4381 internal_relocs
4382 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
4383 NULL, info->keep_memory);
4384 if (internal_relocs == NULL)
4385 goto error_ret_free_local;
4386
4387 /* Now examine each relocation. */
4388 irela = internal_relocs;
4389 irelaend = irela + section->reloc_count;
4390 for (; irela < irelaend; irela++)
4391 {
4392 unsigned int r_type, r_indx;
4393 enum elf_aarch64_stub_type stub_type;
4394 struct elf_aarch64_stub_hash_entry *stub_entry;
4395 asection *sym_sec;
4396 bfd_vma sym_value;
4397 bfd_vma destination;
4398 struct elf_aarch64_link_hash_entry *hash;
4399 const char *sym_name;
4400 char *stub_name;
4401 const asection *id_sec;
4402 unsigned char st_type;
4403 bfd_size_type len;
4404
4405 r_type = ELFNN_R_TYPE (irela->r_info);
4406 r_indx = ELFNN_R_SYM (irela->r_info);
4407
4408 if (r_type >= (unsigned int) R_AARCH64_end)
4409 {
4410 bfd_set_error (bfd_error_bad_value);
4411 error_ret_free_internal:
4412 if (elf_section_data (section)->relocs == NULL)
4413 free (internal_relocs);
4414 goto error_ret_free_local;
4415 }
4416
4417 /* Only look for stubs on unconditional branch and
4418 branch and link instructions. */
4419 if (r_type != (unsigned int) AARCH64_R (CALL26)
4420 && r_type != (unsigned int) AARCH64_R (JUMP26))
4421 continue;
4422
4423 /* Now determine the call target, its name, value,
4424 section. */
4425 sym_sec = NULL;
4426 sym_value = 0;
4427 destination = 0;
4428 hash = NULL;
4429 sym_name = NULL;
4430 if (r_indx < symtab_hdr->sh_info)
4431 {
4432 /* It's a local symbol. */
4433 Elf_Internal_Sym *sym;
4434 Elf_Internal_Shdr *hdr;
4435
4436 if (local_syms == NULL)
4437 {
4438 local_syms
4439 = (Elf_Internal_Sym *) symtab_hdr->contents;
4440 if (local_syms == NULL)
4441 local_syms
4442 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4443 symtab_hdr->sh_info, 0,
4444 NULL, NULL, NULL);
4445 if (local_syms == NULL)
4446 goto error_ret_free_internal;
4447 }
4448
4449 sym = local_syms + r_indx;
4450 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
4451 sym_sec = hdr->bfd_section;
4452 if (!sym_sec)
4453 /* This is an undefined symbol. It can never
4454 be resolved. */
4455 continue;
4456
4457 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
4458 sym_value = sym->st_value;
4459 destination = (sym_value + irela->r_addend
4460 + sym_sec->output_offset
4461 + sym_sec->output_section->vma);
4462 st_type = ELF_ST_TYPE (sym->st_info);
4463 sym_name
4464 = bfd_elf_string_from_elf_section (input_bfd,
4465 symtab_hdr->sh_link,
4466 sym->st_name);
4467 }
4468 else
4469 {
4470 int e_indx;
4471
4472 e_indx = r_indx - symtab_hdr->sh_info;
4473 hash = ((struct elf_aarch64_link_hash_entry *)
4474 elf_sym_hashes (input_bfd)[e_indx]);
4475
4476 while (hash->root.root.type == bfd_link_hash_indirect
4477 || hash->root.root.type == bfd_link_hash_warning)
4478 hash = ((struct elf_aarch64_link_hash_entry *)
4479 hash->root.root.u.i.link);
4480
4481 if (hash->root.root.type == bfd_link_hash_defined
4482 || hash->root.root.type == bfd_link_hash_defweak)
4483 {
4484 struct elf_aarch64_link_hash_table *globals =
4485 elf_aarch64_hash_table (info);
4486 sym_sec = hash->root.root.u.def.section;
4487 sym_value = hash->root.root.u.def.value;
4488 /* For a destination in a shared library,
4489 use the PLT stub as target address to
4490 decide whether a branch stub is
4491 needed. */
4492 if (globals->root.splt != NULL && hash != NULL
4493 && hash->root.plt.offset != (bfd_vma) - 1)
4494 {
4495 sym_sec = globals->root.splt;
4496 sym_value = hash->root.plt.offset;
4497 if (sym_sec->output_section != NULL)
4498 destination = (sym_value
4499 + sym_sec->output_offset
4500 +
4501 sym_sec->output_section->vma);
4502 }
4503 else if (sym_sec->output_section != NULL)
4504 destination = (sym_value + irela->r_addend
4505 + sym_sec->output_offset
4506 + sym_sec->output_section->vma);
4507 }
4508 else if (hash->root.root.type == bfd_link_hash_undefined
4509 || (hash->root.root.type
4510 == bfd_link_hash_undefweak))
4511 {
4512 /* For a shared library, use the PLT stub as
4513 target address to decide whether a long
4514 branch stub is needed.
4515 For absolute code, they cannot be handled. */
4516 struct elf_aarch64_link_hash_table *globals =
4517 elf_aarch64_hash_table (info);
4518
4519 if (globals->root.splt != NULL && hash != NULL
4520 && hash->root.plt.offset != (bfd_vma) - 1)
4521 {
4522 sym_sec = globals->root.splt;
4523 sym_value = hash->root.plt.offset;
4524 if (sym_sec->output_section != NULL)
4525 destination = (sym_value
4526 + sym_sec->output_offset
4527 +
4528 sym_sec->output_section->vma);
4529 }
4530 else
4531 continue;
4532 }
4533 else
4534 {
4535 bfd_set_error (bfd_error_bad_value);
4536 goto error_ret_free_internal;
4537 }
4538 st_type = ELF_ST_TYPE (hash->root.type);
4539 sym_name = hash->root.root.root.string;
4540 }
4541
4542 /* Determine what (if any) linker stub is needed. */
4543 stub_type = aarch64_type_of_stub (section, irela, sym_sec,
4544 st_type, destination);
4545 if (stub_type == aarch64_stub_none)
4546 continue;
4547
4548 /* Support for grouping stub sections. */
4549 id_sec = htab->stub_group[section->id].link_sec;
4550
4551 /* Get the name of this stub. */
4552 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, hash,
4553 irela);
4554 if (!stub_name)
4555 goto error_ret_free_internal;
4556
4557 stub_entry =
4558 aarch64_stub_hash_lookup (&htab->stub_hash_table,
4559 stub_name, FALSE, FALSE);
4560 if (stub_entry != NULL)
4561 {
4562 /* The proper stub has already been created. */
4563 free (stub_name);
4564 /* Always update this stub's target since it may have
4565 changed after layout. */
4566 stub_entry->target_value = sym_value + irela->r_addend;
4567 continue;
4568 }
4569
4570 stub_entry = _bfd_aarch64_add_stub_entry_in_group
4571 (stub_name, section, htab);
4572 if (stub_entry == NULL)
4573 {
4574 free (stub_name);
4575 goto error_ret_free_internal;
4576 }
4577
4578 stub_entry->target_value = sym_value + irela->r_addend;
4579 stub_entry->target_section = sym_sec;
4580 stub_entry->stub_type = stub_type;
4581 stub_entry->h = hash;
4582 stub_entry->st_type = st_type;
4583
4584 if (sym_name == NULL)
4585 sym_name = "unnamed";
4586 len = sizeof (STUB_ENTRY_NAME) + strlen (sym_name);
4587 stub_entry->output_name = bfd_alloc (htab->stub_bfd, len);
4588 if (stub_entry->output_name == NULL)
4589 {
4590 free (stub_name);
4591 goto error_ret_free_internal;
4592 }
4593
4594 snprintf (stub_entry->output_name, len, STUB_ENTRY_NAME,
4595 sym_name);
4596
4597 stub_changed = TRUE;
4598 }
4599
4600 /* We're done with the internal relocs, free them. */
4601 if (elf_section_data (section)->relocs == NULL)
4602 free (internal_relocs);
4603 }
4604 }
4605
4606 if (!stub_changed)
4607 break;
4608
4609 _bfd_aarch64_resize_stubs (htab);
4610
4611 /* Ask the linker to do its stuff. */
4612 (*htab->layout_sections_again) ();
4613 stub_changed = FALSE;
4614 }
4615
4616 return TRUE;
4617
4618 error_ret_free_local:
4619 return FALSE;
4620 }
4621
4622 /* Build all the stubs associated with the current output file. The
4623 stubs are kept in a hash table attached to the main linker hash
4624 table. We also set up the .plt entries for statically linked PIC
4625 functions here. This function is called via aarch64_elf_finish in the
4626 linker. */
4627
4628 bfd_boolean
4629 elfNN_aarch64_build_stubs (struct bfd_link_info *info)
4630 {
4631 asection *stub_sec;
4632 struct bfd_hash_table *table;
4633 struct elf_aarch64_link_hash_table *htab;
4634
4635 htab = elf_aarch64_hash_table (info);
4636
4637 for (stub_sec = htab->stub_bfd->sections;
4638 stub_sec != NULL; stub_sec = stub_sec->next)
4639 {
4640 bfd_size_type size;
4641
4642 /* Ignore non-stub sections. */
4643 if (!strstr (stub_sec->name, STUB_SUFFIX))
4644 continue;
4645
4646 /* Allocate memory to hold the linker stubs. */
4647 size = stub_sec->size;
4648 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
4649 if (stub_sec->contents == NULL && size != 0)
4650 return FALSE;
4651 stub_sec->size = 0;
4652
4653 /* Add a branch around the stub section, and a nop, to keep it 8 byte
4654 aligned, as long branch stubs contain a 64-bit address. */
4655 bfd_putl32 (0x14000000 | (size >> 2), stub_sec->contents);
4656 bfd_putl32 (INSN_NOP, stub_sec->contents + 4);
4657 stub_sec->size += 8;
4658 }
4659
4660 /* Build the stubs as directed by the stub hash table. */
4661 table = &htab->stub_hash_table;
4662 bfd_hash_traverse (table, aarch64_build_one_stub, info);
4663
4664 return TRUE;
4665 }
4666
4667
4668 /* Add an entry to the code/data map for section SEC. */
4669
4670 static void
4671 elfNN_aarch64_section_map_add (asection *sec, char type, bfd_vma vma)
4672 {
4673 struct _aarch64_elf_section_data *sec_data =
4674 elf_aarch64_section_data (sec);
4675 unsigned int newidx;
4676
4677 if (sec_data->map == NULL)
4678 {
4679 sec_data->map = bfd_malloc (sizeof (elf_aarch64_section_map));
4680 sec_data->mapcount = 0;
4681 sec_data->mapsize = 1;
4682 }
4683
4684 newidx = sec_data->mapcount++;
4685
4686 if (sec_data->mapcount > sec_data->mapsize)
4687 {
4688 sec_data->mapsize *= 2;
4689 sec_data->map = bfd_realloc_or_free
4690 (sec_data->map, sec_data->mapsize * sizeof (elf_aarch64_section_map));
4691 }
4692
4693 if (sec_data->map)
4694 {
4695 sec_data->map[newidx].vma = vma;
4696 sec_data->map[newidx].type = type;
4697 }
4698 }
4699
4700
4701 /* Initialise maps of insn/data for input BFDs. */
4702 void
4703 bfd_elfNN_aarch64_init_maps (bfd *abfd)
4704 {
4705 Elf_Internal_Sym *isymbuf;
4706 Elf_Internal_Shdr *hdr;
4707 unsigned int i, localsyms;
4708
4709 /* Make sure that we are dealing with an AArch64 elf binary. */
4710 if (!is_aarch64_elf (abfd))
4711 return;
4712
4713 if ((abfd->flags & DYNAMIC) != 0)
4714 return;
4715
4716 hdr = &elf_symtab_hdr (abfd);
4717 localsyms = hdr->sh_info;
4718
4719 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4720 should contain the number of local symbols, which should come before any
4721 global symbols. Mapping symbols are always local. */
4722 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, NULL);
4723
4724 /* No internal symbols read? Skip this BFD. */
4725 if (isymbuf == NULL)
4726 return;
4727
4728 for (i = 0; i < localsyms; i++)
4729 {
4730 Elf_Internal_Sym *isym = &isymbuf[i];
4731 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4732 const char *name;
4733
4734 if (sec != NULL && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4735 {
4736 name = bfd_elf_string_from_elf_section (abfd,
4737 hdr->sh_link,
4738 isym->st_name);
4739
4740 if (bfd_is_aarch64_special_symbol_name
4741 (name, BFD_AARCH64_SPECIAL_SYM_TYPE_MAP))
4742 elfNN_aarch64_section_map_add (sec, name[1], isym->st_value);
4743 }
4744 }
4745 }
4746
4747 static void
4748 setup_plt_values (struct bfd_link_info *link_info,
4749 aarch64_plt_type plt_type)
4750 {
4751 struct elf_aarch64_link_hash_table *globals;
4752 globals = elf_aarch64_hash_table (link_info);
4753
4754 if (plt_type == PLT_BTI_PAC)
4755 {
4756 globals->plt0_entry = elfNN_aarch64_small_plt0_bti_entry;
4757
4758 /* Only in ET_EXEC we need PLTn with BTI. */
4759 if (bfd_link_pde (link_info))
4760 {
4761 globals->plt_entry_size = PLT_BTI_PAC_SMALL_ENTRY_SIZE;
4762 globals->plt_entry = elfNN_aarch64_small_plt_bti_pac_entry;
4763 }
4764 else
4765 {
4766 globals->plt_entry_size = PLT_PAC_SMALL_ENTRY_SIZE;
4767 globals->plt_entry = elfNN_aarch64_small_plt_pac_entry;
4768 }
4769 }
4770 else if (plt_type == PLT_BTI)
4771 {
4772 globals->plt0_entry = elfNN_aarch64_small_plt0_bti_entry;
4773
4774 /* Only in ET_EXEC we need PLTn with BTI. */
4775 if (bfd_link_pde (link_info))
4776 {
4777 globals->plt_entry_size = PLT_BTI_SMALL_ENTRY_SIZE;
4778 globals->plt_entry = elfNN_aarch64_small_plt_bti_entry;
4779 }
4780 }
4781 else if (plt_type == PLT_PAC)
4782 {
4783 globals->plt_entry_size = PLT_PAC_SMALL_ENTRY_SIZE;
4784 globals->plt_entry = elfNN_aarch64_small_plt_pac_entry;
4785 }
4786 }
4787
4788 /* Set option values needed during linking. */
4789 void
4790 bfd_elfNN_aarch64_set_options (struct bfd *output_bfd,
4791 struct bfd_link_info *link_info,
4792 int no_enum_warn,
4793 int no_wchar_warn, int pic_veneer,
4794 int fix_erratum_835769,
4795 erratum_84319_opts fix_erratum_843419,
4796 int no_apply_dynamic_relocs,
4797 aarch64_bti_pac_info bp_info)
4798 {
4799 struct elf_aarch64_link_hash_table *globals;
4800
4801 globals = elf_aarch64_hash_table (link_info);
4802 globals->pic_veneer = pic_veneer;
4803 globals->fix_erratum_835769 = fix_erratum_835769;
4804 /* If the default options are used, then ERRAT_ADR will be set by default
4805 which will enable the ADRP->ADR workaround for the erratum 843419
4806 workaround. */
4807 globals->fix_erratum_843419 = fix_erratum_843419;
4808 globals->no_apply_dynamic_relocs = no_apply_dynamic_relocs;
4809
4810 BFD_ASSERT (is_aarch64_elf (output_bfd));
4811 elf_aarch64_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
4812 elf_aarch64_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
4813
4814 switch (bp_info.bti_type)
4815 {
4816 case BTI_WARN:
4817 elf_aarch64_tdata (output_bfd)->no_bti_warn = 0;
4818 elf_aarch64_tdata (output_bfd)->gnu_and_prop
4819 |= GNU_PROPERTY_AARCH64_FEATURE_1_BTI;
4820 break;
4821
4822 default:
4823 break;
4824 }
4825 elf_aarch64_tdata (output_bfd)->plt_type = bp_info.plt_type;
4826 setup_plt_values (link_info, bp_info.plt_type);
4827 }
4828
4829 static bfd_vma
4830 aarch64_calculate_got_entry_vma (struct elf_link_hash_entry *h,
4831 struct elf_aarch64_link_hash_table
4832 *globals, struct bfd_link_info *info,
4833 bfd_vma value, bfd *output_bfd,
4834 bfd_boolean *unresolved_reloc_p)
4835 {
4836 bfd_vma off = (bfd_vma) - 1;
4837 asection *basegot = globals->root.sgot;
4838 bfd_boolean dyn = globals->root.dynamic_sections_created;
4839
4840 if (h != NULL)
4841 {
4842 BFD_ASSERT (basegot != NULL);
4843 off = h->got.offset;
4844 BFD_ASSERT (off != (bfd_vma) - 1);
4845 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
4846 || (bfd_link_pic (info)
4847 && SYMBOL_REFERENCES_LOCAL (info, h))
4848 || (ELF_ST_VISIBILITY (h->other)
4849 && h->root.type == bfd_link_hash_undefweak))
4850 {
4851 /* This is actually a static link, or it is a -Bsymbolic link
4852 and the symbol is defined locally. We must initialize this
4853 entry in the global offset table. Since the offset must
4854 always be a multiple of 8 (4 in the case of ILP32), we use
4855 the least significant bit to record whether we have
4856 initialized it already.
4857 When doing a dynamic link, we create a .rel(a).got relocation
4858 entry to initialize the value. This is done in the
4859 finish_dynamic_symbol routine. */
4860 if ((off & 1) != 0)
4861 off &= ~1;
4862 else
4863 {
4864 bfd_put_NN (output_bfd, value, basegot->contents + off);
4865 h->got.offset |= 1;
4866 }
4867 }
4868 else
4869 *unresolved_reloc_p = FALSE;
4870
4871 off = off + basegot->output_section->vma + basegot->output_offset;
4872 }
4873
4874 return off;
4875 }
4876
4877 /* Change R_TYPE to a more efficient access model where possible,
4878 return the new reloc type. */
4879
4880 static bfd_reloc_code_real_type
4881 aarch64_tls_transition_without_check (bfd_reloc_code_real_type r_type,
4882 struct elf_link_hash_entry *h)
4883 {
4884 bfd_boolean is_local = h == NULL;
4885
4886 switch (r_type)
4887 {
4888 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4889 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4890 return (is_local
4891 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4892 : BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21);
4893
4894 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4895 return (is_local
4896 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4897 : r_type);
4898
4899 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4900 return (is_local
4901 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4902 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4903
4904 case BFD_RELOC_AARCH64_TLSDESC_LDR:
4905 return (is_local
4906 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4907 : BFD_RELOC_AARCH64_NONE);
4908
4909 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
4910 return (is_local
4911 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4912 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC);
4913
4914 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
4915 return (is_local
4916 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4917 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1);
4918
4919 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
4920 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4921 return (is_local
4922 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4923 : BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC);
4924
4925 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4926 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 : r_type;
4927
4928 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
4929 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC : r_type;
4930
4931 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4932 return r_type;
4933
4934 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4935 return (is_local
4936 ? BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12
4937 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4938
4939 case BFD_RELOC_AARCH64_TLSDESC_ADD:
4940 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
4941 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4942 /* Instructions with these relocations will become NOPs. */
4943 return BFD_RELOC_AARCH64_NONE;
4944
4945 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4946 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4947 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4948 return is_local ? BFD_RELOC_AARCH64_NONE : r_type;
4949
4950 #if ARCH_SIZE == 64
4951 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
4952 return is_local
4953 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4954 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC;
4955
4956 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
4957 return is_local
4958 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4959 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1;
4960 #endif
4961
4962 default:
4963 break;
4964 }
4965
4966 return r_type;
4967 }
4968
4969 static unsigned int
4970 aarch64_reloc_got_type (bfd_reloc_code_real_type r_type)
4971 {
4972 switch (r_type)
4973 {
4974 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
4975 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
4976 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
4977 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
4978 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
4979 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
4980 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
4981 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
4982 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
4983 return GOT_NORMAL;
4984
4985 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4986 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4987 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4988 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
4989 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
4990 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4991 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4992 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4993 return GOT_TLS_GD;
4994
4995 case BFD_RELOC_AARCH64_TLSDESC_ADD:
4996 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
4997 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4998 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4999 case BFD_RELOC_AARCH64_TLSDESC_CALL:
5000 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
5001 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
5002 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
5003 case BFD_RELOC_AARCH64_TLSDESC_LDR:
5004 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
5005 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
5006 return GOT_TLSDESC_GD;
5007
5008 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5009 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
5010 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5011 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5012 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5013 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5014 return GOT_TLS_IE;
5015
5016 default:
5017 break;
5018 }
5019 return GOT_UNKNOWN;
5020 }
5021
5022 static bfd_boolean
5023 aarch64_can_relax_tls (bfd *input_bfd,
5024 struct bfd_link_info *info,
5025 bfd_reloc_code_real_type r_type,
5026 struct elf_link_hash_entry *h,
5027 unsigned long r_symndx)
5028 {
5029 unsigned int symbol_got_type;
5030 unsigned int reloc_got_type;
5031
5032 if (! IS_AARCH64_TLS_RELAX_RELOC (r_type))
5033 return FALSE;
5034
5035 symbol_got_type = elfNN_aarch64_symbol_got_type (h, input_bfd, r_symndx);
5036 reloc_got_type = aarch64_reloc_got_type (r_type);
5037
5038 if (symbol_got_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (reloc_got_type))
5039 return TRUE;
5040
5041 if (!bfd_link_executable (info))
5042 return FALSE;
5043
5044 if (h && h->root.type == bfd_link_hash_undefweak)
5045 return FALSE;
5046
5047 return TRUE;
5048 }
5049
5050 /* Given the relocation code R_TYPE, return the relaxed bfd reloc
5051 enumerator. */
5052
5053 static bfd_reloc_code_real_type
5054 aarch64_tls_transition (bfd *input_bfd,
5055 struct bfd_link_info *info,
5056 unsigned int r_type,
5057 struct elf_link_hash_entry *h,
5058 unsigned long r_symndx)
5059 {
5060 bfd_reloc_code_real_type bfd_r_type
5061 = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
5062
5063 if (! aarch64_can_relax_tls (input_bfd, info, bfd_r_type, h, r_symndx))
5064 return bfd_r_type;
5065
5066 return aarch64_tls_transition_without_check (bfd_r_type, h);
5067 }
5068
5069 /* Return the base VMA address which should be subtracted from real addresses
5070 when resolving R_AARCH64_TLS_DTPREL relocation. */
5071
5072 static bfd_vma
5073 dtpoff_base (struct bfd_link_info *info)
5074 {
5075 /* If tls_sec is NULL, we should have signalled an error already. */
5076 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
5077 return elf_hash_table (info)->tls_sec->vma;
5078 }
5079
5080 /* Return the base VMA address which should be subtracted from real addresses
5081 when resolving R_AARCH64_TLS_GOTTPREL64 relocations. */
5082
5083 static bfd_vma
5084 tpoff_base (struct bfd_link_info *info)
5085 {
5086 struct elf_link_hash_table *htab = elf_hash_table (info);
5087
5088 /* If tls_sec is NULL, we should have signalled an error already. */
5089 BFD_ASSERT (htab->tls_sec != NULL);
5090
5091 bfd_vma base = align_power ((bfd_vma) TCB_SIZE,
5092 htab->tls_sec->alignment_power);
5093 return htab->tls_sec->vma - base;
5094 }
5095
5096 static bfd_vma *
5097 symbol_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
5098 unsigned long r_symndx)
5099 {
5100 /* Calculate the address of the GOT entry for symbol
5101 referred to in h. */
5102 if (h != NULL)
5103 return &h->got.offset;
5104 else
5105 {
5106 /* local symbol */
5107 struct elf_aarch64_local_symbol *l;
5108
5109 l = elf_aarch64_locals (input_bfd);
5110 return &l[r_symndx].got_offset;
5111 }
5112 }
5113
5114 static void
5115 symbol_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
5116 unsigned long r_symndx)
5117 {
5118 bfd_vma *p;
5119 p = symbol_got_offset_ref (input_bfd, h, r_symndx);
5120 *p |= 1;
5121 }
5122
5123 static int
5124 symbol_got_offset_mark_p (bfd *input_bfd, struct elf_link_hash_entry *h,
5125 unsigned long r_symndx)
5126 {
5127 bfd_vma value;
5128 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
5129 return value & 1;
5130 }
5131
5132 static bfd_vma
5133 symbol_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
5134 unsigned long r_symndx)
5135 {
5136 bfd_vma value;
5137 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
5138 value &= ~1;
5139 return value;
5140 }
5141
5142 static bfd_vma *
5143 symbol_tlsdesc_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
5144 unsigned long r_symndx)
5145 {
5146 /* Calculate the address of the GOT entry for symbol
5147 referred to in h. */
5148 if (h != NULL)
5149 {
5150 struct elf_aarch64_link_hash_entry *eh;
5151 eh = (struct elf_aarch64_link_hash_entry *) h;
5152 return &eh->tlsdesc_got_jump_table_offset;
5153 }
5154 else
5155 {
5156 /* local symbol */
5157 struct elf_aarch64_local_symbol *l;
5158
5159 l = elf_aarch64_locals (input_bfd);
5160 return &l[r_symndx].tlsdesc_got_jump_table_offset;
5161 }
5162 }
5163
5164 static void
5165 symbol_tlsdesc_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
5166 unsigned long r_symndx)
5167 {
5168 bfd_vma *p;
5169 p = symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
5170 *p |= 1;
5171 }
5172
5173 static int
5174 symbol_tlsdesc_got_offset_mark_p (bfd *input_bfd,
5175 struct elf_link_hash_entry *h,
5176 unsigned long r_symndx)
5177 {
5178 bfd_vma value;
5179 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
5180 return value & 1;
5181 }
5182
5183 static bfd_vma
5184 symbol_tlsdesc_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
5185 unsigned long r_symndx)
5186 {
5187 bfd_vma value;
5188 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
5189 value &= ~1;
5190 return value;
5191 }
5192
5193 /* Data for make_branch_to_erratum_835769_stub(). */
5194
5195 struct erratum_835769_branch_to_stub_data
5196 {
5197 struct bfd_link_info *info;
5198 asection *output_section;
5199 bfd_byte *contents;
5200 };
5201
5202 /* Helper to insert branches to erratum 835769 stubs in the right
5203 places for a particular section. */
5204
5205 static bfd_boolean
5206 make_branch_to_erratum_835769_stub (struct bfd_hash_entry *gen_entry,
5207 void *in_arg)
5208 {
5209 struct elf_aarch64_stub_hash_entry *stub_entry;
5210 struct erratum_835769_branch_to_stub_data *data;
5211 bfd_byte *contents;
5212 unsigned long branch_insn = 0;
5213 bfd_vma veneered_insn_loc, veneer_entry_loc;
5214 bfd_signed_vma branch_offset;
5215 unsigned int target;
5216 bfd *abfd;
5217
5218 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
5219 data = (struct erratum_835769_branch_to_stub_data *) in_arg;
5220
5221 if (stub_entry->target_section != data->output_section
5222 || stub_entry->stub_type != aarch64_stub_erratum_835769_veneer)
5223 return TRUE;
5224
5225 contents = data->contents;
5226 veneered_insn_loc = stub_entry->target_section->output_section->vma
5227 + stub_entry->target_section->output_offset
5228 + stub_entry->target_value;
5229 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
5230 + stub_entry->stub_sec->output_offset
5231 + stub_entry->stub_offset;
5232 branch_offset = veneer_entry_loc - veneered_insn_loc;
5233
5234 abfd = stub_entry->target_section->owner;
5235 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
5236 _bfd_error_handler
5237 (_("%pB: error: erratum 835769 stub out "
5238 "of range (input file too large)"), abfd);
5239
5240 target = stub_entry->target_value;
5241 branch_insn = 0x14000000;
5242 branch_offset >>= 2;
5243 branch_offset &= 0x3ffffff;
5244 branch_insn |= branch_offset;
5245 bfd_putl32 (branch_insn, &contents[target]);
5246
5247 return TRUE;
5248 }
5249
5250
5251 static bfd_boolean
5252 _bfd_aarch64_erratum_843419_branch_to_stub (struct bfd_hash_entry *gen_entry,
5253 void *in_arg)
5254 {
5255 struct elf_aarch64_stub_hash_entry *stub_entry
5256 = (struct elf_aarch64_stub_hash_entry *) gen_entry;
5257 struct erratum_835769_branch_to_stub_data *data
5258 = (struct erratum_835769_branch_to_stub_data *) in_arg;
5259 struct bfd_link_info *info;
5260 struct elf_aarch64_link_hash_table *htab;
5261 bfd_byte *contents;
5262 asection *section;
5263 bfd *abfd;
5264 bfd_vma place;
5265 uint32_t insn;
5266
5267 info = data->info;
5268 contents = data->contents;
5269 section = data->output_section;
5270
5271 htab = elf_aarch64_hash_table (info);
5272
5273 if (stub_entry->target_section != section
5274 || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer)
5275 return TRUE;
5276
5277 BFD_ASSERT (((htab->fix_erratum_843419 & ERRAT_ADRP) && stub_entry->stub_sec)
5278 || (htab->fix_erratum_843419 & ERRAT_ADR));
5279
5280 /* Only update the stub section if we have one. We should always have one if
5281 we're allowed to use the ADRP errata workaround, otherwise it is not
5282 required. */
5283 if (stub_entry->stub_sec)
5284 {
5285 insn = bfd_getl32 (contents + stub_entry->target_value);
5286 bfd_putl32 (insn,
5287 stub_entry->stub_sec->contents + stub_entry->stub_offset);
5288 }
5289
5290 place = (section->output_section->vma + section->output_offset
5291 + stub_entry->adrp_offset);
5292 insn = bfd_getl32 (contents + stub_entry->adrp_offset);
5293
5294 if (!_bfd_aarch64_adrp_p (insn))
5295 abort ();
5296
5297 bfd_signed_vma imm =
5298 (_bfd_aarch64_sign_extend
5299 ((bfd_vma) _bfd_aarch64_decode_adrp_imm (insn) << 12, 33)
5300 - (place & 0xfff));
5301
5302 if ((htab->fix_erratum_843419 & ERRAT_ADR)
5303 && (imm >= AARCH64_MIN_ADRP_IMM && imm <= AARCH64_MAX_ADRP_IMM))
5304 {
5305 insn = (_bfd_aarch64_reencode_adr_imm (AARCH64_ADR_OP, imm)
5306 | AARCH64_RT (insn));
5307 bfd_putl32 (insn, contents + stub_entry->adrp_offset);
5308 /* Stub is not needed, don't map it out. */
5309 stub_entry->stub_type = aarch64_stub_none;
5310 }
5311 else if (htab->fix_erratum_843419 & ERRAT_ADRP)
5312 {
5313 bfd_vma veneered_insn_loc;
5314 bfd_vma veneer_entry_loc;
5315 bfd_signed_vma branch_offset;
5316 uint32_t branch_insn;
5317
5318 veneered_insn_loc = stub_entry->target_section->output_section->vma
5319 + stub_entry->target_section->output_offset
5320 + stub_entry->target_value;
5321 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
5322 + stub_entry->stub_sec->output_offset
5323 + stub_entry->stub_offset;
5324 branch_offset = veneer_entry_loc - veneered_insn_loc;
5325
5326 abfd = stub_entry->target_section->owner;
5327 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
5328 _bfd_error_handler
5329 (_("%pB: error: erratum 843419 stub out "
5330 "of range (input file too large)"), abfd);
5331
5332 branch_insn = 0x14000000;
5333 branch_offset >>= 2;
5334 branch_offset &= 0x3ffffff;
5335 branch_insn |= branch_offset;
5336 bfd_putl32 (branch_insn, contents + stub_entry->target_value);
5337 }
5338 else
5339 {
5340 abfd = stub_entry->target_section->owner;
5341 _bfd_error_handler
5342 (_("%pB: error: erratum 843419 immediate 0x%" BFD_VMA_FMT "x "
5343 "out of range for ADR (input file too large) and "
5344 "--fix-cortex-a53-843419=adr used. Run the linker with "
5345 "--fix-cortex-a53-843419=full instead"), abfd, imm);
5346 bfd_set_error (bfd_error_bad_value);
5347 /* This function is called inside a hashtable traversal and the error
5348 handlers called above turn into non-fatal errors. Which means this
5349 case ld returns an exit code 0 and also produces a broken object file.
5350 To prevent this, issue a hard abort. */
5351 BFD_FAIL ();
5352 }
5353 return TRUE;
5354 }
5355
5356
5357 static bfd_boolean
5358 elfNN_aarch64_write_section (bfd *output_bfd ATTRIBUTE_UNUSED,
5359 struct bfd_link_info *link_info,
5360 asection *sec,
5361 bfd_byte *contents)
5362
5363 {
5364 struct elf_aarch64_link_hash_table *globals =
5365 elf_aarch64_hash_table (link_info);
5366
5367 if (globals == NULL)
5368 return FALSE;
5369
5370 /* Fix code to point to erratum 835769 stubs. */
5371 if (globals->fix_erratum_835769)
5372 {
5373 struct erratum_835769_branch_to_stub_data data;
5374
5375 data.info = link_info;
5376 data.output_section = sec;
5377 data.contents = contents;
5378 bfd_hash_traverse (&globals->stub_hash_table,
5379 make_branch_to_erratum_835769_stub, &data);
5380 }
5381
5382 if (globals->fix_erratum_843419)
5383 {
5384 struct erratum_835769_branch_to_stub_data data;
5385
5386 data.info = link_info;
5387 data.output_section = sec;
5388 data.contents = contents;
5389 bfd_hash_traverse (&globals->stub_hash_table,
5390 _bfd_aarch64_erratum_843419_branch_to_stub, &data);
5391 }
5392
5393 return FALSE;
5394 }
5395
5396 /* Return TRUE if RELOC is a relocation against the base of GOT table. */
5397
5398 static bfd_boolean
5399 aarch64_relocation_aginst_gp_p (bfd_reloc_code_real_type reloc)
5400 {
5401 return (reloc == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14
5402 || reloc == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
5403 || reloc == BFD_RELOC_AARCH64_LD64_GOTOFF_LO15
5404 || reloc == BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC
5405 || reloc == BFD_RELOC_AARCH64_MOVW_GOTOFF_G1);
5406 }
5407
5408 /* Perform a relocation as part of a final link. The input relocation type
5409 should be TLS relaxed. */
5410
5411 static bfd_reloc_status_type
5412 elfNN_aarch64_final_link_relocate (reloc_howto_type *howto,
5413 bfd *input_bfd,
5414 bfd *output_bfd,
5415 asection *input_section,
5416 bfd_byte *contents,
5417 Elf_Internal_Rela *rel,
5418 bfd_vma value,
5419 struct bfd_link_info *info,
5420 asection *sym_sec,
5421 struct elf_link_hash_entry *h,
5422 bfd_boolean *unresolved_reloc_p,
5423 bfd_boolean save_addend,
5424 bfd_vma *saved_addend,
5425 Elf_Internal_Sym *sym)
5426 {
5427 Elf_Internal_Shdr *symtab_hdr;
5428 unsigned int r_type = howto->type;
5429 bfd_reloc_code_real_type bfd_r_type
5430 = elfNN_aarch64_bfd_reloc_from_howto (howto);
5431 unsigned long r_symndx;
5432 bfd_byte *hit_data = contents + rel->r_offset;
5433 bfd_vma place, off, got_entry_addr = 0;
5434 bfd_signed_vma signed_addend;
5435 struct elf_aarch64_link_hash_table *globals;
5436 bfd_boolean weak_undef_p;
5437 bfd_boolean relative_reloc;
5438 asection *base_got;
5439 bfd_vma orig_value = value;
5440 bfd_boolean resolved_to_zero;
5441 bfd_boolean abs_symbol_p;
5442
5443 globals = elf_aarch64_hash_table (info);
5444
5445 symtab_hdr = &elf_symtab_hdr (input_bfd);
5446
5447 BFD_ASSERT (is_aarch64_elf (input_bfd));
5448
5449 r_symndx = ELFNN_R_SYM (rel->r_info);
5450
5451 place = input_section->output_section->vma
5452 + input_section->output_offset + rel->r_offset;
5453
5454 /* Get addend, accumulating the addend for consecutive relocs
5455 which refer to the same offset. */
5456 signed_addend = saved_addend ? *saved_addend : 0;
5457 signed_addend += rel->r_addend;
5458
5459 weak_undef_p = (h ? h->root.type == bfd_link_hash_undefweak
5460 : bfd_is_und_section (sym_sec));
5461 abs_symbol_p = h != NULL && bfd_is_abs_symbol (&h->root);
5462
5463
5464 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
5465 it here if it is defined in a non-shared object. */
5466 if (h != NULL
5467 && h->type == STT_GNU_IFUNC
5468 && h->def_regular)
5469 {
5470 asection *plt;
5471 const char *name;
5472 bfd_vma addend = 0;
5473
5474 if ((input_section->flags & SEC_ALLOC) == 0)
5475 {
5476 /* If this is a SHT_NOTE section without SHF_ALLOC, treat
5477 STT_GNU_IFUNC symbol as STT_FUNC. */
5478 if (elf_section_type (input_section) == SHT_NOTE)
5479 goto skip_ifunc;
5480
5481 /* Dynamic relocs are not propagated for SEC_DEBUGGING
5482 sections because such sections are not SEC_ALLOC and
5483 thus ld.so will not process them. */
5484 if ((input_section->flags & SEC_DEBUGGING) != 0)
5485 return bfd_reloc_ok;
5486
5487 if (h->root.root.string)
5488 name = h->root.root.string;
5489 else
5490 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, NULL);
5491 _bfd_error_handler
5492 /* xgettext:c-format */
5493 (_("%pB(%pA+%#" PRIx64 "): "
5494 "unresolvable %s relocation against symbol `%s'"),
5495 input_bfd, input_section, (uint64_t) rel->r_offset,
5496 howto->name, name);
5497 bfd_set_error (bfd_error_bad_value);
5498 return bfd_reloc_notsupported;
5499 }
5500 else if (h->plt.offset == (bfd_vma) -1)
5501 goto bad_ifunc_reloc;
5502
5503 /* STT_GNU_IFUNC symbol must go through PLT. */
5504 plt = globals->root.splt ? globals->root.splt : globals->root.iplt;
5505 value = (plt->output_section->vma + plt->output_offset + h->plt.offset);
5506
5507 switch (bfd_r_type)
5508 {
5509 default:
5510 bad_ifunc_reloc:
5511 if (h->root.root.string)
5512 name = h->root.root.string;
5513 else
5514 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
5515 NULL);
5516 _bfd_error_handler
5517 /* xgettext:c-format */
5518 (_("%pB: relocation %s against STT_GNU_IFUNC "
5519 "symbol `%s' isn't handled by %s"), input_bfd,
5520 howto->name, name, __FUNCTION__);
5521 bfd_set_error (bfd_error_bad_value);
5522 return bfd_reloc_notsupported;
5523
5524 case BFD_RELOC_AARCH64_NN:
5525 if (rel->r_addend != 0)
5526 {
5527 if (h->root.root.string)
5528 name = h->root.root.string;
5529 else
5530 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
5531 sym, NULL);
5532 _bfd_error_handler
5533 /* xgettext:c-format */
5534 (_("%pB: relocation %s against STT_GNU_IFUNC "
5535 "symbol `%s' has non-zero addend: %" PRId64),
5536 input_bfd, howto->name, name, (int64_t) rel->r_addend);
5537 bfd_set_error (bfd_error_bad_value);
5538 return bfd_reloc_notsupported;
5539 }
5540
5541 /* Generate dynamic relocation only when there is a
5542 non-GOT reference in a shared object. */
5543 if (bfd_link_pic (info) && h->non_got_ref)
5544 {
5545 Elf_Internal_Rela outrel;
5546 asection *sreloc;
5547
5548 /* Need a dynamic relocation to get the real function
5549 address. */
5550 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
5551 info,
5552 input_section,
5553 rel->r_offset);
5554 if (outrel.r_offset == (bfd_vma) -1
5555 || outrel.r_offset == (bfd_vma) -2)
5556 abort ();
5557
5558 outrel.r_offset += (input_section->output_section->vma
5559 + input_section->output_offset);
5560
5561 if (h->dynindx == -1
5562 || h->forced_local
5563 || bfd_link_executable (info))
5564 {
5565 /* This symbol is resolved locally. */
5566 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
5567 outrel.r_addend = (h->root.u.def.value
5568 + h->root.u.def.section->output_section->vma
5569 + h->root.u.def.section->output_offset);
5570 }
5571 else
5572 {
5573 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5574 outrel.r_addend = 0;
5575 }
5576
5577 sreloc = globals->root.irelifunc;
5578 elf_append_rela (output_bfd, sreloc, &outrel);
5579
5580 /* If this reloc is against an external symbol, we
5581 do not want to fiddle with the addend. Otherwise,
5582 we need to include the symbol value so that it
5583 becomes an addend for the dynamic reloc. For an
5584 internal symbol, we have updated addend. */
5585 return bfd_reloc_ok;
5586 }
5587 /* FALLTHROUGH */
5588 case BFD_RELOC_AARCH64_CALL26:
5589 case BFD_RELOC_AARCH64_JUMP26:
5590 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5591 place, value,
5592 signed_addend,
5593 weak_undef_p);
5594 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
5595 howto, value);
5596 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5597 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5598 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5599 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5600 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5601 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5602 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5603 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5604 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5605 base_got = globals->root.sgot;
5606 off = h->got.offset;
5607
5608 if (base_got == NULL)
5609 abort ();
5610
5611 if (off == (bfd_vma) -1)
5612 {
5613 bfd_vma plt_index;
5614
5615 /* We can't use h->got.offset here to save state, or
5616 even just remember the offset, as finish_dynamic_symbol
5617 would use that as offset into .got. */
5618
5619 if (globals->root.splt != NULL)
5620 {
5621 plt_index = ((h->plt.offset - globals->plt_header_size) /
5622 globals->plt_entry_size);
5623 off = (plt_index + 3) * GOT_ENTRY_SIZE;
5624 base_got = globals->root.sgotplt;
5625 }
5626 else
5627 {
5628 plt_index = h->plt.offset / globals->plt_entry_size;
5629 off = plt_index * GOT_ENTRY_SIZE;
5630 base_got = globals->root.igotplt;
5631 }
5632
5633 if (h->dynindx == -1
5634 || h->forced_local
5635 || info->symbolic)
5636 {
5637 /* This references the local definition. We must
5638 initialize this entry in the global offset table.
5639 Since the offset must always be a multiple of 8,
5640 we use the least significant bit to record
5641 whether we have initialized it already.
5642
5643 When doing a dynamic link, we create a .rela.got
5644 relocation entry to initialize the value. This
5645 is done in the finish_dynamic_symbol routine. */
5646 if ((off & 1) != 0)
5647 off &= ~1;
5648 else
5649 {
5650 bfd_put_NN (output_bfd, value,
5651 base_got->contents + off);
5652 /* Note that this is harmless as -1 | 1 still is -1. */
5653 h->got.offset |= 1;
5654 }
5655 }
5656 value = (base_got->output_section->vma
5657 + base_got->output_offset + off);
5658 }
5659 else
5660 value = aarch64_calculate_got_entry_vma (h, globals, info,
5661 value, output_bfd,
5662 unresolved_reloc_p);
5663
5664 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5665 addend = (globals->root.sgot->output_section->vma
5666 + globals->root.sgot->output_offset);
5667
5668 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5669 place, value,
5670 addend, weak_undef_p);
5671 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type, howto, value);
5672 case BFD_RELOC_AARCH64_ADD_LO12:
5673 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5674 break;
5675 }
5676 }
5677
5678 skip_ifunc:
5679 resolved_to_zero = (h != NULL
5680 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
5681
5682 switch (bfd_r_type)
5683 {
5684 case BFD_RELOC_AARCH64_NONE:
5685 case BFD_RELOC_AARCH64_TLSDESC_ADD:
5686 case BFD_RELOC_AARCH64_TLSDESC_CALL:
5687 case BFD_RELOC_AARCH64_TLSDESC_LDR:
5688 *unresolved_reloc_p = FALSE;
5689 return bfd_reloc_ok;
5690
5691 case BFD_RELOC_AARCH64_NN:
5692
5693 /* When generating a shared object or relocatable executable, these
5694 relocations are copied into the output file to be resolved at
5695 run time. */
5696 if (((bfd_link_pic (info)
5697 || globals->root.is_relocatable_executable)
5698 && (input_section->flags & SEC_ALLOC)
5699 && (h == NULL
5700 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5701 && !resolved_to_zero)
5702 || h->root.type != bfd_link_hash_undefweak))
5703 /* Or we are creating an executable, we may need to keep relocations
5704 for symbols satisfied by a dynamic library if we manage to avoid
5705 copy relocs for the symbol. */
5706 || (ELIMINATE_COPY_RELOCS
5707 && !bfd_link_pic (info)
5708 && h != NULL
5709 && (input_section->flags & SEC_ALLOC)
5710 && h->dynindx != -1
5711 && !h->non_got_ref
5712 && ((h->def_dynamic
5713 && !h->def_regular)
5714 || h->root.type == bfd_link_hash_undefweak
5715 || h->root.type == bfd_link_hash_undefined)))
5716 {
5717 Elf_Internal_Rela outrel;
5718 bfd_byte *loc;
5719 bfd_boolean skip, relocate;
5720 asection *sreloc;
5721
5722 *unresolved_reloc_p = FALSE;
5723
5724 skip = FALSE;
5725 relocate = FALSE;
5726
5727 outrel.r_addend = signed_addend;
5728 outrel.r_offset =
5729 _bfd_elf_section_offset (output_bfd, info, input_section,
5730 rel->r_offset);
5731 if (outrel.r_offset == (bfd_vma) - 1)
5732 skip = TRUE;
5733 else if (outrel.r_offset == (bfd_vma) - 2)
5734 {
5735 skip = TRUE;
5736 relocate = TRUE;
5737 }
5738 else if (abs_symbol_p)
5739 {
5740 /* Local absolute symbol. */
5741 skip = (h->forced_local || (h->dynindx == -1));
5742 relocate = skip;
5743 }
5744
5745 outrel.r_offset += (input_section->output_section->vma
5746 + input_section->output_offset);
5747
5748 if (skip)
5749 memset (&outrel, 0, sizeof outrel);
5750 else if (h != NULL
5751 && h->dynindx != -1
5752 && (!bfd_link_pic (info)
5753 || !(bfd_link_pie (info) || SYMBOLIC_BIND (info, h))
5754 || !h->def_regular))
5755 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5756 else
5757 {
5758 int symbol;
5759
5760 /* On SVR4-ish systems, the dynamic loader cannot
5761 relocate the text and data segments independently,
5762 so the symbol does not matter. */
5763 symbol = 0;
5764 relocate = globals->no_apply_dynamic_relocs ? FALSE : TRUE;
5765 outrel.r_info = ELFNN_R_INFO (symbol, AARCH64_R (RELATIVE));
5766 outrel.r_addend += value;
5767 }
5768
5769 sreloc = elf_section_data (input_section)->sreloc;
5770 if (sreloc == NULL || sreloc->contents == NULL)
5771 return bfd_reloc_notsupported;
5772
5773 loc = sreloc->contents + sreloc->reloc_count++ * RELOC_SIZE (globals);
5774 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
5775
5776 if (sreloc->reloc_count * RELOC_SIZE (globals) > sreloc->size)
5777 {
5778 /* Sanity to check that we have previously allocated
5779 sufficient space in the relocation section for the
5780 number of relocations we actually want to emit. */
5781 abort ();
5782 }
5783
5784 /* If this reloc is against an external symbol, we do not want to
5785 fiddle with the addend. Otherwise, we need to include the symbol
5786 value so that it becomes an addend for the dynamic reloc. */
5787 if (!relocate)
5788 return bfd_reloc_ok;
5789
5790 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5791 contents, rel->r_offset, value,
5792 signed_addend);
5793 }
5794 else
5795 value += signed_addend;
5796 break;
5797
5798 case BFD_RELOC_AARCH64_CALL26:
5799 case BFD_RELOC_AARCH64_JUMP26:
5800 {
5801 asection *splt = globals->root.splt;
5802 bfd_boolean via_plt_p =
5803 splt != NULL && h != NULL && h->plt.offset != (bfd_vma) - 1;
5804
5805 /* A call to an undefined weak symbol is converted to a jump to
5806 the next instruction unless a PLT entry will be created.
5807 The jump to the next instruction is optimized as a NOP.
5808 Do the same for local undefined symbols. */
5809 if (weak_undef_p && ! via_plt_p)
5810 {
5811 bfd_putl32 (INSN_NOP, hit_data);
5812 return bfd_reloc_ok;
5813 }
5814
5815 /* If the call goes through a PLT entry, make sure to
5816 check distance to the right destination address. */
5817 if (via_plt_p)
5818 value = (splt->output_section->vma
5819 + splt->output_offset + h->plt.offset);
5820
5821 /* Check if a stub has to be inserted because the destination
5822 is too far away. */
5823 struct elf_aarch64_stub_hash_entry *stub_entry = NULL;
5824
5825 /* If the branch destination is directed to plt stub, "value" will be
5826 the final destination, otherwise we should plus signed_addend, it may
5827 contain non-zero value, for example call to local function symbol
5828 which are turned into "sec_sym + sec_off", and sec_off is kept in
5829 signed_addend. */
5830 if (! aarch64_valid_branch_p (via_plt_p ? value : value + signed_addend,
5831 place))
5832 /* The target is out of reach, so redirect the branch to
5833 the local stub for this function. */
5834 stub_entry = elfNN_aarch64_get_stub_entry (input_section, sym_sec, h,
5835 rel, globals);
5836 if (stub_entry != NULL)
5837 {
5838 value = (stub_entry->stub_offset
5839 + stub_entry->stub_sec->output_offset
5840 + stub_entry->stub_sec->output_section->vma);
5841
5842 /* We have redirected the destination to stub entry address,
5843 so ignore any addend record in the original rela entry. */
5844 signed_addend = 0;
5845 }
5846 }
5847 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5848 place, value,
5849 signed_addend, weak_undef_p);
5850 *unresolved_reloc_p = FALSE;
5851 break;
5852
5853 case BFD_RELOC_AARCH64_16_PCREL:
5854 case BFD_RELOC_AARCH64_32_PCREL:
5855 case BFD_RELOC_AARCH64_64_PCREL:
5856 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
5857 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5858 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
5859 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
5860 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
5861 case BFD_RELOC_AARCH64_MOVW_PREL_G0_NC:
5862 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
5863 case BFD_RELOC_AARCH64_MOVW_PREL_G1_NC:
5864 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
5865 case BFD_RELOC_AARCH64_MOVW_PREL_G2_NC:
5866 case BFD_RELOC_AARCH64_MOVW_PREL_G3:
5867 if (bfd_link_pic (info)
5868 && (input_section->flags & SEC_ALLOC) != 0
5869 && (input_section->flags & SEC_READONLY) != 0
5870 && !SYMBOL_REFERENCES_LOCAL (info, h))
5871 {
5872 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5873
5874 _bfd_error_handler
5875 /* xgettext:c-format */
5876 (_("%pB: relocation %s against symbol `%s' which may bind "
5877 "externally can not be used when making a shared object; "
5878 "recompile with -fPIC"),
5879 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
5880 h->root.root.string);
5881 bfd_set_error (bfd_error_bad_value);
5882 return bfd_reloc_notsupported;
5883 }
5884 /* Fall through. */
5885
5886 case BFD_RELOC_AARCH64_16:
5887 #if ARCH_SIZE == 64
5888 case BFD_RELOC_AARCH64_32:
5889 #endif
5890 case BFD_RELOC_AARCH64_ADD_LO12:
5891 case BFD_RELOC_AARCH64_BRANCH19:
5892 case BFD_RELOC_AARCH64_LDST128_LO12:
5893 case BFD_RELOC_AARCH64_LDST16_LO12:
5894 case BFD_RELOC_AARCH64_LDST32_LO12:
5895 case BFD_RELOC_AARCH64_LDST64_LO12:
5896 case BFD_RELOC_AARCH64_LDST8_LO12:
5897 case BFD_RELOC_AARCH64_MOVW_G0:
5898 case BFD_RELOC_AARCH64_MOVW_G0_NC:
5899 case BFD_RELOC_AARCH64_MOVW_G0_S:
5900 case BFD_RELOC_AARCH64_MOVW_G1:
5901 case BFD_RELOC_AARCH64_MOVW_G1_NC:
5902 case BFD_RELOC_AARCH64_MOVW_G1_S:
5903 case BFD_RELOC_AARCH64_MOVW_G2:
5904 case BFD_RELOC_AARCH64_MOVW_G2_NC:
5905 case BFD_RELOC_AARCH64_MOVW_G2_S:
5906 case BFD_RELOC_AARCH64_MOVW_G3:
5907 case BFD_RELOC_AARCH64_TSTBR14:
5908 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5909 place, value,
5910 signed_addend, weak_undef_p);
5911 break;
5912
5913 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5914 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5915 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5916 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5917 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5918 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5919 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5920 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5921 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5922 if (globals->root.sgot == NULL)
5923 BFD_ASSERT (h != NULL);
5924
5925 relative_reloc = FALSE;
5926 if (h != NULL)
5927 {
5928 bfd_vma addend = 0;
5929
5930 /* If a symbol is not dynamic and is not undefined weak, bind it
5931 locally and generate a RELATIVE relocation under PIC mode.
5932
5933 NOTE: one symbol may be referenced by several relocations, we
5934 should only generate one RELATIVE relocation for that symbol.
5935 Therefore, check GOT offset mark first. */
5936 if (h->dynindx == -1
5937 && !h->forced_local
5938 && h->root.type != bfd_link_hash_undefweak
5939 && bfd_link_pic (info)
5940 && !symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5941 relative_reloc = TRUE;
5942
5943 value = aarch64_calculate_got_entry_vma (h, globals, info, value,
5944 output_bfd,
5945 unresolved_reloc_p);
5946 /* Record the GOT entry address which will be used when generating
5947 RELATIVE relocation. */
5948 if (relative_reloc)
5949 got_entry_addr = value;
5950
5951 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5952 addend = (globals->root.sgot->output_section->vma
5953 + globals->root.sgot->output_offset);
5954 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5955 place, value,
5956 addend, weak_undef_p);
5957 }
5958 else
5959 {
5960 bfd_vma addend = 0;
5961 struct elf_aarch64_local_symbol *locals
5962 = elf_aarch64_locals (input_bfd);
5963
5964 if (locals == NULL)
5965 {
5966 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5967 _bfd_error_handler
5968 /* xgettext:c-format */
5969 (_("%pB: local symbol descriptor table be NULL when applying "
5970 "relocation %s against local symbol"),
5971 input_bfd, elfNN_aarch64_howto_table[howto_index].name);
5972 abort ();
5973 }
5974
5975 off = symbol_got_offset (input_bfd, h, r_symndx);
5976 base_got = globals->root.sgot;
5977 got_entry_addr = (base_got->output_section->vma
5978 + base_got->output_offset + off);
5979
5980 if (!symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5981 {
5982 bfd_put_64 (output_bfd, value, base_got->contents + off);
5983
5984 /* For local symbol, we have done absolute relocation in static
5985 linking stage. While for shared library, we need to update the
5986 content of GOT entry according to the shared object's runtime
5987 base address. So, we need to generate a R_AARCH64_RELATIVE reloc
5988 for dynamic linker. */
5989 if (bfd_link_pic (info))
5990 relative_reloc = TRUE;
5991
5992 symbol_got_offset_mark (input_bfd, h, r_symndx);
5993 }
5994
5995 /* Update the relocation value to GOT entry addr as we have transformed
5996 the direct data access into indirect data access through GOT. */
5997 value = got_entry_addr;
5998
5999 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
6000 addend = base_got->output_section->vma + base_got->output_offset;
6001
6002 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6003 place, value,
6004 addend, weak_undef_p);
6005 }
6006
6007 if (relative_reloc)
6008 {
6009 asection *s;
6010 Elf_Internal_Rela outrel;
6011
6012 s = globals->root.srelgot;
6013 if (s == NULL)
6014 abort ();
6015
6016 outrel.r_offset = got_entry_addr;
6017 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
6018 outrel.r_addend = orig_value;
6019 elf_append_rela (output_bfd, s, &outrel);
6020 }
6021 break;
6022
6023 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6024 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6025 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6026 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6027 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
6028 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6029 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6030 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6031 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6032 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6033 if (globals->root.sgot == NULL)
6034 return bfd_reloc_notsupported;
6035
6036 value = (symbol_got_offset (input_bfd, h, r_symndx)
6037 + globals->root.sgot->output_section->vma
6038 + globals->root.sgot->output_offset);
6039
6040 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6041 place, value,
6042 0, weak_undef_p);
6043 *unresolved_reloc_p = FALSE;
6044 break;
6045
6046 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6047 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6048 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
6049 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
6050 if (globals->root.sgot == NULL)
6051 return bfd_reloc_notsupported;
6052
6053 value = symbol_got_offset (input_bfd, h, r_symndx);
6054 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6055 place, value,
6056 0, weak_undef_p);
6057 *unresolved_reloc_p = FALSE;
6058 break;
6059
6060 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
6061 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
6062 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
6063 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
6064 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
6065 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
6066 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
6067 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
6068 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
6069 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
6070 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
6071 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
6072 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6073 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
6074 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
6075 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
6076 {
6077 if (!(weak_undef_p || elf_hash_table (info)->tls_sec))
6078 {
6079 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
6080 _bfd_error_handler
6081 /* xgettext:c-format */
6082 (_("%pB: TLS relocation %s against undefined symbol `%s'"),
6083 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
6084 h->root.root.string);
6085 bfd_set_error (bfd_error_bad_value);
6086 return bfd_reloc_notsupported;
6087 }
6088
6089 bfd_vma def_value
6090 = weak_undef_p ? 0 : signed_addend - dtpoff_base (info);
6091 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6092 place, value,
6093 def_value, weak_undef_p);
6094 break;
6095 }
6096
6097 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
6098 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
6099 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
6100 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12:
6101 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
6102 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12:
6103 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
6104 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12:
6105 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
6106 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12:
6107 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
6108 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
6109 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
6110 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
6111 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6112 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
6113 {
6114 if (!(weak_undef_p || elf_hash_table (info)->tls_sec))
6115 {
6116 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
6117 _bfd_error_handler
6118 /* xgettext:c-format */
6119 (_("%pB: TLS relocation %s against undefined symbol `%s'"),
6120 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
6121 h->root.root.string);
6122 bfd_set_error (bfd_error_bad_value);
6123 return bfd_reloc_notsupported;
6124 }
6125
6126 bfd_vma def_value
6127 = weak_undef_p ? 0 : signed_addend - tpoff_base (info);
6128 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6129 place, value,
6130 def_value, weak_undef_p);
6131 *unresolved_reloc_p = FALSE;
6132 break;
6133 }
6134
6135 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
6136 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6137 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6138 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
6139 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
6140 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6141 if (globals->root.sgot == NULL)
6142 return bfd_reloc_notsupported;
6143 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
6144 + globals->root.sgotplt->output_section->vma
6145 + globals->root.sgotplt->output_offset
6146 + globals->sgotplt_jump_table_size);
6147
6148 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6149 place, value,
6150 0, weak_undef_p);
6151 *unresolved_reloc_p = FALSE;
6152 break;
6153
6154 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6155 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6156 if (globals->root.sgot == NULL)
6157 return bfd_reloc_notsupported;
6158
6159 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
6160 + globals->root.sgotplt->output_section->vma
6161 + globals->root.sgotplt->output_offset
6162 + globals->sgotplt_jump_table_size);
6163
6164 value -= (globals->root.sgot->output_section->vma
6165 + globals->root.sgot->output_offset);
6166
6167 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6168 place, value,
6169 0, weak_undef_p);
6170 *unresolved_reloc_p = FALSE;
6171 break;
6172
6173 default:
6174 return bfd_reloc_notsupported;
6175 }
6176
6177 if (saved_addend)
6178 *saved_addend = value;
6179
6180 /* Only apply the final relocation in a sequence. */
6181 if (save_addend)
6182 return bfd_reloc_continue;
6183
6184 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
6185 howto, value);
6186 }
6187
6188 /* LP64 and ILP32 operates on x- and w-registers respectively.
6189 Next definitions take into account the difference between
6190 corresponding machine codes. R means x-register if the target
6191 arch is LP64, and w-register if the target is ILP32. */
6192
6193 #if ARCH_SIZE == 64
6194 # define add_R0_R0 (0x91000000)
6195 # define add_R0_R0_R1 (0x8b000020)
6196 # define add_R0_R1 (0x91400020)
6197 # define ldr_R0 (0x58000000)
6198 # define ldr_R0_mask(i) (i & 0xffffffe0)
6199 # define ldr_R0_x0 (0xf9400000)
6200 # define ldr_hw_R0 (0xf2a00000)
6201 # define movk_R0 (0xf2800000)
6202 # define movz_R0 (0xd2a00000)
6203 # define movz_hw_R0 (0xd2c00000)
6204 #else /*ARCH_SIZE == 32 */
6205 # define add_R0_R0 (0x11000000)
6206 # define add_R0_R0_R1 (0x0b000020)
6207 # define add_R0_R1 (0x11400020)
6208 # define ldr_R0 (0x18000000)
6209 # define ldr_R0_mask(i) (i & 0xbfffffe0)
6210 # define ldr_R0_x0 (0xb9400000)
6211 # define ldr_hw_R0 (0x72a00000)
6212 # define movk_R0 (0x72800000)
6213 # define movz_R0 (0x52a00000)
6214 # define movz_hw_R0 (0x52c00000)
6215 #endif
6216
6217 /* Structure to hold payload for _bfd_aarch64_erratum_843419_clear_stub,
6218 it is used to identify the stub information to reset. */
6219
6220 struct erratum_843419_branch_to_stub_clear_data
6221 {
6222 bfd_vma adrp_offset;
6223 asection *output_section;
6224 };
6225
6226 /* Clear the erratum information for GEN_ENTRY if the ADRP_OFFSET and
6227 section inside IN_ARG matches. The clearing is done by setting the
6228 stub_type to none. */
6229
6230 static bfd_boolean
6231 _bfd_aarch64_erratum_843419_clear_stub (struct bfd_hash_entry *gen_entry,
6232 void *in_arg)
6233 {
6234 struct elf_aarch64_stub_hash_entry *stub_entry
6235 = (struct elf_aarch64_stub_hash_entry *) gen_entry;
6236 struct erratum_843419_branch_to_stub_clear_data *data
6237 = (struct erratum_843419_branch_to_stub_clear_data *) in_arg;
6238
6239 if (stub_entry->target_section != data->output_section
6240 || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer
6241 || stub_entry->adrp_offset != data->adrp_offset)
6242 return TRUE;
6243
6244 /* Change the stub type instead of removing the entry, removing from the hash
6245 table would be slower and we have already reserved the memory for the entry
6246 so there wouldn't be much gain. Changing the stub also keeps around a
6247 record of what was there before. */
6248 stub_entry->stub_type = aarch64_stub_none;
6249
6250 /* We're done and there could have been only one matching stub at that
6251 particular offset, so abort further traversal. */
6252 return FALSE;
6253 }
6254
6255 /* TLS Relaxations may relax an adrp sequence that matches the erratum 843419
6256 sequence. In this case the erratum no longer applies and we need to remove
6257 the entry from the pending stub generation. This clears matching adrp insn
6258 at ADRP_OFFSET in INPUT_SECTION in the stub table defined in GLOBALS. */
6259
6260 static void
6261 clear_erratum_843419_entry (struct elf_aarch64_link_hash_table *globals,
6262 bfd_vma adrp_offset, asection *input_section)
6263 {
6264 if (globals->fix_erratum_843419 & ERRAT_ADRP)
6265 {
6266 struct erratum_843419_branch_to_stub_clear_data data;
6267 data.adrp_offset = adrp_offset;
6268 data.output_section = input_section;
6269
6270 bfd_hash_traverse (&globals->stub_hash_table,
6271 _bfd_aarch64_erratum_843419_clear_stub, &data);
6272 }
6273 }
6274
6275 /* Handle TLS relaxations. Relaxing is possible for symbols that use
6276 R_AARCH64_TLSDESC_ADR_{PAGE, LD64_LO12_NC, ADD_LO12_NC} during a static
6277 link.
6278
6279 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
6280 is to then call final_link_relocate. Return other values in the
6281 case of error. */
6282
6283 static bfd_reloc_status_type
6284 elfNN_aarch64_tls_relax (struct elf_aarch64_link_hash_table *globals,
6285 bfd *input_bfd, asection *input_section,
6286 bfd_byte *contents, Elf_Internal_Rela *rel,
6287 struct elf_link_hash_entry *h)
6288 {
6289 bfd_boolean is_local = h == NULL;
6290 unsigned int r_type = ELFNN_R_TYPE (rel->r_info);
6291 unsigned long insn;
6292
6293 BFD_ASSERT (globals && input_bfd && contents && rel);
6294
6295 switch (elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type))
6296 {
6297 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6298 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6299 if (is_local)
6300 {
6301 /* GD->LE relaxation:
6302 adrp x0, :tlsgd:var => movz R0, :tprel_g1:var
6303 or
6304 adrp x0, :tlsdesc:var => movz R0, :tprel_g1:var
6305
6306 Where R is x for LP64, and w for ILP32. */
6307 bfd_putl32 (movz_R0, contents + rel->r_offset);
6308 /* We have relaxed the adrp into a mov, we may have to clear any
6309 pending erratum fixes. */
6310 clear_erratum_843419_entry (globals, rel->r_offset, input_section);
6311 return bfd_reloc_continue;
6312 }
6313 else
6314 {
6315 /* GD->IE relaxation:
6316 adrp x0, :tlsgd:var => adrp x0, :gottprel:var
6317 or
6318 adrp x0, :tlsdesc:var => adrp x0, :gottprel:var
6319 */
6320 return bfd_reloc_continue;
6321 }
6322
6323 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6324 BFD_ASSERT (0);
6325 break;
6326
6327 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6328 if (is_local)
6329 {
6330 /* Tiny TLSDESC->LE relaxation:
6331 ldr x1, :tlsdesc:var => movz R0, #:tprel_g1:var
6332 adr x0, :tlsdesc:var => movk R0, #:tprel_g0_nc:var
6333 .tlsdesccall var
6334 blr x1 => nop
6335
6336 Where R is x for LP64, and w for ILP32. */
6337 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
6338 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
6339
6340 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6341 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
6342 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6343
6344 bfd_putl32 (movz_R0, contents + rel->r_offset);
6345 bfd_putl32 (movk_R0, contents + rel->r_offset + 4);
6346 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
6347 return bfd_reloc_continue;
6348 }
6349 else
6350 {
6351 /* Tiny TLSDESC->IE relaxation:
6352 ldr x1, :tlsdesc:var => ldr x0, :gottprel:var
6353 adr x0, :tlsdesc:var => nop
6354 .tlsdesccall var
6355 blr x1 => nop
6356 */
6357 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
6358 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
6359
6360 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6361 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6362
6363 bfd_putl32 (ldr_R0, contents + rel->r_offset);
6364 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
6365 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
6366 return bfd_reloc_continue;
6367 }
6368
6369 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6370 if (is_local)
6371 {
6372 /* Tiny GD->LE relaxation:
6373 adr x0, :tlsgd:var => mrs x1, tpidr_el0
6374 bl __tls_get_addr => add R0, R1, #:tprel_hi12:x, lsl #12
6375 nop => add R0, R0, #:tprel_lo12_nc:x
6376
6377 Where R is x for LP64, and x for Ilp32. */
6378
6379 /* First kill the tls_get_addr reloc on the bl instruction. */
6380 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6381
6382 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 0);
6383 bfd_putl32 (add_R0_R1, contents + rel->r_offset + 4);
6384 bfd_putl32 (add_R0_R0, contents + rel->r_offset + 8);
6385
6386 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6387 AARCH64_R (TLSLE_ADD_TPREL_LO12_NC));
6388 rel[1].r_offset = rel->r_offset + 8;
6389
6390 /* Move the current relocation to the second instruction in
6391 the sequence. */
6392 rel->r_offset += 4;
6393 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6394 AARCH64_R (TLSLE_ADD_TPREL_HI12));
6395 return bfd_reloc_continue;
6396 }
6397 else
6398 {
6399 /* Tiny GD->IE relaxation:
6400 adr x0, :tlsgd:var => ldr R0, :gottprel:var
6401 bl __tls_get_addr => mrs x1, tpidr_el0
6402 nop => add R0, R0, R1
6403
6404 Where R is x for LP64, and w for Ilp32. */
6405
6406 /* First kill the tls_get_addr reloc on the bl instruction. */
6407 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6408 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6409
6410 bfd_putl32 (ldr_R0, contents + rel->r_offset);
6411 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
6412 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 8);
6413 return bfd_reloc_continue;
6414 }
6415
6416 #if ARCH_SIZE == 64
6417 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6418 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSGD_MOVW_G0_NC));
6419 BFD_ASSERT (rel->r_offset + 12 == rel[2].r_offset);
6420 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (CALL26));
6421
6422 if (is_local)
6423 {
6424 /* Large GD->LE relaxation:
6425 movz x0, #:tlsgd_g1:var => movz x0, #:tprel_g2:var, lsl #32
6426 movk x0, #:tlsgd_g0_nc:var => movk x0, #:tprel_g1_nc:var, lsl #16
6427 add x0, gp, x0 => movk x0, #:tprel_g0_nc:var
6428 bl __tls_get_addr => mrs x1, tpidr_el0
6429 nop => add x0, x0, x1
6430 */
6431 rel[2].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6432 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
6433 rel[2].r_offset = rel->r_offset + 8;
6434
6435 bfd_putl32 (movz_hw_R0, contents + rel->r_offset + 0);
6436 bfd_putl32 (ldr_hw_R0, contents + rel->r_offset + 4);
6437 bfd_putl32 (movk_R0, contents + rel->r_offset + 8);
6438 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
6439 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 16);
6440 }
6441 else
6442 {
6443 /* Large GD->IE relaxation:
6444 movz x0, #:tlsgd_g1:var => movz x0, #:gottprel_g1:var, lsl #16
6445 movk x0, #:tlsgd_g0_nc:var => movk x0, #:gottprel_g0_nc:var
6446 add x0, gp, x0 => ldr x0, [gp, x0]
6447 bl __tls_get_addr => mrs x1, tpidr_el0
6448 nop => add x0, x0, x1
6449 */
6450 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6451 bfd_putl32 (0xd2a80000, contents + rel->r_offset + 0);
6452 bfd_putl32 (ldr_R0, contents + rel->r_offset + 8);
6453 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
6454 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 16);
6455 }
6456 return bfd_reloc_continue;
6457
6458 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6459 return bfd_reloc_continue;
6460 #endif
6461
6462 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6463 return bfd_reloc_continue;
6464
6465 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
6466 if (is_local)
6467 {
6468 /* GD->LE relaxation:
6469 ldr xd, [x0, #:tlsdesc_lo12:var] => movk x0, :tprel_g0_nc:var
6470
6471 Where R is x for lp64 mode, and w for ILP32 mode. */
6472 bfd_putl32 (movk_R0, contents + rel->r_offset);
6473 return bfd_reloc_continue;
6474 }
6475 else
6476 {
6477 /* GD->IE relaxation:
6478 ldr xd, [x0, #:tlsdesc_lo12:var] => ldr R0, [x0, #:gottprel_lo12:var]
6479
6480 Where R is x for lp64 mode, and w for ILP32 mode. */
6481 insn = bfd_getl32 (contents + rel->r_offset);
6482 bfd_putl32 (ldr_R0_mask (insn), contents + rel->r_offset);
6483 return bfd_reloc_continue;
6484 }
6485
6486 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6487 if (is_local)
6488 {
6489 /* GD->LE relaxation
6490 add x0, #:tlsgd_lo12:var => movk R0, :tprel_g0_nc:var
6491 bl __tls_get_addr => mrs x1, tpidr_el0
6492 nop => add R0, R1, R0
6493
6494 Where R is x for lp64 mode, and w for ILP32 mode. */
6495
6496 /* First kill the tls_get_addr reloc on the bl instruction. */
6497 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6498 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6499
6500 bfd_putl32 (movk_R0, contents + rel->r_offset);
6501 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
6502 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 8);
6503 return bfd_reloc_continue;
6504 }
6505 else
6506 {
6507 /* GD->IE relaxation
6508 ADD x0, #:tlsgd_lo12:var => ldr R0, [x0, #:gottprel_lo12:var]
6509 BL __tls_get_addr => mrs x1, tpidr_el0
6510 R_AARCH64_CALL26
6511 NOP => add R0, R1, R0
6512
6513 Where R is x for lp64 mode, and w for ilp32 mode. */
6514
6515 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6516
6517 /* Remove the relocation on the BL instruction. */
6518 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6519
6520 /* We choose to fixup the BL and NOP instructions using the
6521 offset from the second relocation to allow flexibility in
6522 scheduling instructions between the ADD and BL. */
6523 bfd_putl32 (ldr_R0_x0, contents + rel->r_offset);
6524 bfd_putl32 (0xd53bd041, contents + rel[1].r_offset);
6525 bfd_putl32 (add_R0_R0_R1, contents + rel[1].r_offset + 4);
6526 return bfd_reloc_continue;
6527 }
6528
6529 case BFD_RELOC_AARCH64_TLSDESC_ADD:
6530 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
6531 case BFD_RELOC_AARCH64_TLSDESC_CALL:
6532 /* GD->IE/LE relaxation:
6533 add x0, x0, #:tlsdesc_lo12:var => nop
6534 blr xd => nop
6535 */
6536 bfd_putl32 (INSN_NOP, contents + rel->r_offset);
6537 return bfd_reloc_ok;
6538
6539 case BFD_RELOC_AARCH64_TLSDESC_LDR:
6540 if (is_local)
6541 {
6542 /* GD->LE relaxation:
6543 ldr xd, [gp, xn] => movk R0, #:tprel_g0_nc:var
6544
6545 Where R is x for lp64 mode, and w for ILP32 mode. */
6546 bfd_putl32 (movk_R0, contents + rel->r_offset);
6547 return bfd_reloc_continue;
6548 }
6549 else
6550 {
6551 /* GD->IE relaxation:
6552 ldr xd, [gp, xn] => ldr R0, [gp, xn]
6553
6554 Where R is x for lp64 mode, and w for ILP32 mode. */
6555 insn = bfd_getl32 (contents + rel->r_offset);
6556 bfd_putl32 (ldr_R0_mask (insn), contents + rel->r_offset);
6557 return bfd_reloc_ok;
6558 }
6559
6560 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6561 /* GD->LE relaxation:
6562 movk xd, #:tlsdesc_off_g0_nc:var => movk R0, #:tprel_g1_nc:var, lsl #16
6563 GD->IE relaxation:
6564 movk xd, #:tlsdesc_off_g0_nc:var => movk Rd, #:gottprel_g0_nc:var
6565
6566 Where R is x for lp64 mode, and w for ILP32 mode. */
6567 if (is_local)
6568 bfd_putl32 (ldr_hw_R0, contents + rel->r_offset);
6569 return bfd_reloc_continue;
6570
6571 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6572 if (is_local)
6573 {
6574 /* GD->LE relaxation:
6575 movz xd, #:tlsdesc_off_g1:var => movz R0, #:tprel_g2:var, lsl #32
6576
6577 Where R is x for lp64 mode, and w for ILP32 mode. */
6578 bfd_putl32 (movz_hw_R0, contents + rel->r_offset);
6579 return bfd_reloc_continue;
6580 }
6581 else
6582 {
6583 /* GD->IE relaxation:
6584 movz xd, #:tlsdesc_off_g1:var => movz Rd, #:gottprel_g1:var, lsl #16
6585
6586 Where R is x for lp64 mode, and w for ILP32 mode. */
6587 insn = bfd_getl32 (contents + rel->r_offset);
6588 bfd_putl32 (movz_R0 | (insn & 0x1f), contents + rel->r_offset);
6589 return bfd_reloc_continue;
6590 }
6591
6592 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6593 /* IE->LE relaxation:
6594 adrp xd, :gottprel:var => movz Rd, :tprel_g1:var
6595
6596 Where R is x for lp64 mode, and w for ILP32 mode. */
6597 if (is_local)
6598 {
6599 insn = bfd_getl32 (contents + rel->r_offset);
6600 bfd_putl32 (movz_R0 | (insn & 0x1f), contents + rel->r_offset);
6601 /* We have relaxed the adrp into a mov, we may have to clear any
6602 pending erratum fixes. */
6603 clear_erratum_843419_entry (globals, rel->r_offset, input_section);
6604 }
6605 return bfd_reloc_continue;
6606
6607 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
6608 /* IE->LE relaxation:
6609 ldr xd, [xm, #:gottprel_lo12:var] => movk Rd, :tprel_g0_nc:var
6610
6611 Where R is x for lp64 mode, and w for ILP32 mode. */
6612 if (is_local)
6613 {
6614 insn = bfd_getl32 (contents + rel->r_offset);
6615 bfd_putl32 (movk_R0 | (insn & 0x1f), contents + rel->r_offset);
6616 }
6617 return bfd_reloc_continue;
6618
6619 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6620 /* LD->LE relaxation (tiny):
6621 adr x0, :tlsldm:x => mrs x0, tpidr_el0
6622 bl __tls_get_addr => add R0, R0, TCB_SIZE
6623
6624 Where R is x for lp64 mode, and w for ilp32 mode. */
6625 if (is_local)
6626 {
6627 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6628 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6629 /* No need of CALL26 relocation for tls_get_addr. */
6630 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6631 bfd_putl32 (0xd53bd040, contents + rel->r_offset + 0);
6632 bfd_putl32 (add_R0_R0 | (TCB_SIZE << 10),
6633 contents + rel->r_offset + 4);
6634 return bfd_reloc_ok;
6635 }
6636 return bfd_reloc_continue;
6637
6638 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6639 /* LD->LE relaxation (small):
6640 adrp x0, :tlsldm:x => mrs x0, tpidr_el0
6641 */
6642 if (is_local)
6643 {
6644 bfd_putl32 (0xd53bd040, contents + rel->r_offset);
6645 return bfd_reloc_ok;
6646 }
6647 return bfd_reloc_continue;
6648
6649 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6650 /* LD->LE relaxation (small):
6651 add x0, #:tlsldm_lo12:x => add R0, R0, TCB_SIZE
6652 bl __tls_get_addr => nop
6653
6654 Where R is x for lp64 mode, and w for ilp32 mode. */
6655 if (is_local)
6656 {
6657 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6658 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6659 /* No need of CALL26 relocation for tls_get_addr. */
6660 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6661 bfd_putl32 (add_R0_R0 | (TCB_SIZE << 10),
6662 contents + rel->r_offset + 0);
6663 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
6664 return bfd_reloc_ok;
6665 }
6666 return bfd_reloc_continue;
6667
6668 default:
6669 return bfd_reloc_continue;
6670 }
6671
6672 return bfd_reloc_ok;
6673 }
6674
6675 /* Relocate an AArch64 ELF section. */
6676
6677 static bfd_boolean
6678 elfNN_aarch64_relocate_section (bfd *output_bfd,
6679 struct bfd_link_info *info,
6680 bfd *input_bfd,
6681 asection *input_section,
6682 bfd_byte *contents,
6683 Elf_Internal_Rela *relocs,
6684 Elf_Internal_Sym *local_syms,
6685 asection **local_sections)
6686 {
6687 Elf_Internal_Shdr *symtab_hdr;
6688 struct elf_link_hash_entry **sym_hashes;
6689 Elf_Internal_Rela *rel;
6690 Elf_Internal_Rela *relend;
6691 const char *name;
6692 struct elf_aarch64_link_hash_table *globals;
6693 bfd_boolean save_addend = FALSE;
6694 bfd_vma addend = 0;
6695
6696 globals = elf_aarch64_hash_table (info);
6697
6698 symtab_hdr = &elf_symtab_hdr (input_bfd);
6699 sym_hashes = elf_sym_hashes (input_bfd);
6700
6701 rel = relocs;
6702 relend = relocs + input_section->reloc_count;
6703 for (; rel < relend; rel++)
6704 {
6705 unsigned int r_type;
6706 bfd_reloc_code_real_type bfd_r_type;
6707 bfd_reloc_code_real_type relaxed_bfd_r_type;
6708 reloc_howto_type *howto;
6709 unsigned long r_symndx;
6710 Elf_Internal_Sym *sym;
6711 asection *sec;
6712 struct elf_link_hash_entry *h;
6713 bfd_vma relocation;
6714 bfd_reloc_status_type r;
6715 arelent bfd_reloc;
6716 char sym_type;
6717 bfd_boolean unresolved_reloc = FALSE;
6718 char *error_message = NULL;
6719
6720 r_symndx = ELFNN_R_SYM (rel->r_info);
6721 r_type = ELFNN_R_TYPE (rel->r_info);
6722
6723 bfd_reloc.howto = elfNN_aarch64_howto_from_type (input_bfd, r_type);
6724 howto = bfd_reloc.howto;
6725
6726 if (howto == NULL)
6727 return _bfd_unrecognized_reloc (input_bfd, input_section, r_type);
6728
6729 bfd_r_type = elfNN_aarch64_bfd_reloc_from_howto (howto);
6730
6731 h = NULL;
6732 sym = NULL;
6733 sec = NULL;
6734
6735 if (r_symndx < symtab_hdr->sh_info)
6736 {
6737 sym = local_syms + r_symndx;
6738 sym_type = ELFNN_ST_TYPE (sym->st_info);
6739 sec = local_sections[r_symndx];
6740
6741 /* An object file might have a reference to a local
6742 undefined symbol. This is a daft object file, but we
6743 should at least do something about it. */
6744 if (r_type != R_AARCH64_NONE && r_type != R_AARCH64_NULL
6745 && bfd_is_und_section (sec)
6746 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
6747 (*info->callbacks->undefined_symbol)
6748 (info, bfd_elf_string_from_elf_section
6749 (input_bfd, symtab_hdr->sh_link, sym->st_name),
6750 input_bfd, input_section, rel->r_offset, TRUE);
6751
6752 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
6753
6754 /* Relocate against local STT_GNU_IFUNC symbol. */
6755 if (!bfd_link_relocatable (info)
6756 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
6757 {
6758 h = elfNN_aarch64_get_local_sym_hash (globals, input_bfd,
6759 rel, FALSE);
6760 if (h == NULL)
6761 abort ();
6762
6763 /* Set STT_GNU_IFUNC symbol value. */
6764 h->root.u.def.value = sym->st_value;
6765 h->root.u.def.section = sec;
6766 }
6767 }
6768 else
6769 {
6770 bfd_boolean warned, ignored;
6771
6772 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
6773 r_symndx, symtab_hdr, sym_hashes,
6774 h, sec, relocation,
6775 unresolved_reloc, warned, ignored);
6776
6777 sym_type = h->type;
6778 }
6779
6780 if (sec != NULL && discarded_section (sec))
6781 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
6782 rel, 1, relend, howto, 0, contents);
6783
6784 if (bfd_link_relocatable (info))
6785 continue;
6786
6787 if (h != NULL)
6788 name = h->root.root.string;
6789 else
6790 {
6791 name = (bfd_elf_string_from_elf_section
6792 (input_bfd, symtab_hdr->sh_link, sym->st_name));
6793 if (name == NULL || *name == '\0')
6794 name = bfd_section_name (sec);
6795 }
6796
6797 if (r_symndx != 0
6798 && r_type != R_AARCH64_NONE
6799 && r_type != R_AARCH64_NULL
6800 && (h == NULL
6801 || h->root.type == bfd_link_hash_defined
6802 || h->root.type == bfd_link_hash_defweak)
6803 && IS_AARCH64_TLS_RELOC (bfd_r_type) != (sym_type == STT_TLS))
6804 {
6805 _bfd_error_handler
6806 ((sym_type == STT_TLS
6807 /* xgettext:c-format */
6808 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
6809 /* xgettext:c-format */
6810 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
6811 input_bfd,
6812 input_section, (uint64_t) rel->r_offset, howto->name, name);
6813 }
6814
6815 /* We relax only if we can see that there can be a valid transition
6816 from a reloc type to another.
6817 We call elfNN_aarch64_final_link_relocate unless we're completely
6818 done, i.e., the relaxation produced the final output we want. */
6819
6820 relaxed_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type,
6821 h, r_symndx);
6822 if (relaxed_bfd_r_type != bfd_r_type)
6823 {
6824 bfd_r_type = relaxed_bfd_r_type;
6825 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
6826 BFD_ASSERT (howto != NULL);
6827 r_type = howto->type;
6828 r = elfNN_aarch64_tls_relax (globals, input_bfd, input_section,
6829 contents, rel, h);
6830 unresolved_reloc = 0;
6831 }
6832 else
6833 r = bfd_reloc_continue;
6834
6835 /* There may be multiple consecutive relocations for the
6836 same offset. In that case we are supposed to treat the
6837 output of each relocation as the addend for the next. */
6838 if (rel + 1 < relend
6839 && rel->r_offset == rel[1].r_offset
6840 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NONE
6841 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NULL)
6842 save_addend = TRUE;
6843 else
6844 save_addend = FALSE;
6845
6846 if (r == bfd_reloc_continue)
6847 r = elfNN_aarch64_final_link_relocate (howto, input_bfd, output_bfd,
6848 input_section, contents, rel,
6849 relocation, info, sec,
6850 h, &unresolved_reloc,
6851 save_addend, &addend, sym);
6852
6853 switch (elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type))
6854 {
6855 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6856 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6857 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6858 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6859 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6860 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6861 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6862 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6863 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6864 {
6865 bfd_boolean need_relocs = FALSE;
6866 bfd_byte *loc;
6867 int indx;
6868 bfd_vma off;
6869
6870 off = symbol_got_offset (input_bfd, h, r_symndx);
6871 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6872
6873 need_relocs =
6874 (!bfd_link_executable (info) || indx != 0) &&
6875 (h == NULL
6876 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6877 || h->root.type != bfd_link_hash_undefweak);
6878
6879 BFD_ASSERT (globals->root.srelgot != NULL);
6880
6881 if (need_relocs)
6882 {
6883 Elf_Internal_Rela rela;
6884 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPMOD));
6885 rela.r_addend = 0;
6886 rela.r_offset = globals->root.sgot->output_section->vma +
6887 globals->root.sgot->output_offset + off;
6888
6889
6890 loc = globals->root.srelgot->contents;
6891 loc += globals->root.srelgot->reloc_count++
6892 * RELOC_SIZE (htab);
6893 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6894
6895 bfd_reloc_code_real_type real_type =
6896 elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
6897
6898 if (real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21
6899 || real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21
6900 || real_type == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC)
6901 {
6902 /* For local dynamic, don't generate DTPREL in any case.
6903 Initialize the DTPREL slot into zero, so we get module
6904 base address when invoke runtime TLS resolver. */
6905 bfd_put_NN (output_bfd, 0,
6906 globals->root.sgot->contents + off
6907 + GOT_ENTRY_SIZE);
6908 }
6909 else if (indx == 0)
6910 {
6911 bfd_put_NN (output_bfd,
6912 relocation - dtpoff_base (info),
6913 globals->root.sgot->contents + off
6914 + GOT_ENTRY_SIZE);
6915 }
6916 else
6917 {
6918 /* This TLS symbol is global. We emit a
6919 relocation to fixup the tls offset at load
6920 time. */
6921 rela.r_info =
6922 ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPREL));
6923 rela.r_addend = 0;
6924 rela.r_offset =
6925 (globals->root.sgot->output_section->vma
6926 + globals->root.sgot->output_offset + off
6927 + GOT_ENTRY_SIZE);
6928
6929 loc = globals->root.srelgot->contents;
6930 loc += globals->root.srelgot->reloc_count++
6931 * RELOC_SIZE (globals);
6932 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6933 bfd_put_NN (output_bfd, (bfd_vma) 0,
6934 globals->root.sgot->contents + off
6935 + GOT_ENTRY_SIZE);
6936 }
6937 }
6938 else
6939 {
6940 bfd_put_NN (output_bfd, (bfd_vma) 1,
6941 globals->root.sgot->contents + off);
6942 bfd_put_NN (output_bfd,
6943 relocation - dtpoff_base (info),
6944 globals->root.sgot->contents + off
6945 + GOT_ENTRY_SIZE);
6946 }
6947
6948 symbol_got_offset_mark (input_bfd, h, r_symndx);
6949 }
6950 break;
6951
6952 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6953 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
6954 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6955 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
6956 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
6957 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6958 {
6959 bfd_boolean need_relocs = FALSE;
6960 bfd_byte *loc;
6961 int indx;
6962 bfd_vma off;
6963
6964 off = symbol_got_offset (input_bfd, h, r_symndx);
6965
6966 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6967
6968 need_relocs =
6969 (!bfd_link_executable (info) || indx != 0) &&
6970 (h == NULL
6971 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6972 || h->root.type != bfd_link_hash_undefweak);
6973
6974 BFD_ASSERT (globals->root.srelgot != NULL);
6975
6976 if (need_relocs)
6977 {
6978 Elf_Internal_Rela rela;
6979
6980 if (indx == 0)
6981 rela.r_addend = relocation - dtpoff_base (info);
6982 else
6983 rela.r_addend = 0;
6984
6985 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_TPREL));
6986 rela.r_offset = globals->root.sgot->output_section->vma +
6987 globals->root.sgot->output_offset + off;
6988
6989 loc = globals->root.srelgot->contents;
6990 loc += globals->root.srelgot->reloc_count++
6991 * RELOC_SIZE (htab);
6992
6993 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6994
6995 bfd_put_NN (output_bfd, rela.r_addend,
6996 globals->root.sgot->contents + off);
6997 }
6998 else
6999 bfd_put_NN (output_bfd, relocation - tpoff_base (info),
7000 globals->root.sgot->contents + off);
7001
7002 symbol_got_offset_mark (input_bfd, h, r_symndx);
7003 }
7004 break;
7005
7006 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
7007 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
7008 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7009 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
7010 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
7011 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7012 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7013 if (! symbol_tlsdesc_got_offset_mark_p (input_bfd, h, r_symndx))
7014 {
7015 bfd_boolean need_relocs = FALSE;
7016 int indx = h && h->dynindx != -1 ? h->dynindx : 0;
7017 bfd_vma off = symbol_tlsdesc_got_offset (input_bfd, h, r_symndx);
7018
7019 need_relocs = (h == NULL
7020 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7021 || h->root.type != bfd_link_hash_undefweak);
7022
7023 BFD_ASSERT (globals->root.srelgot != NULL);
7024 BFD_ASSERT (globals->root.sgot != NULL);
7025
7026 if (need_relocs)
7027 {
7028 bfd_byte *loc;
7029 Elf_Internal_Rela rela;
7030 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLSDESC));
7031
7032 rela.r_addend = 0;
7033 rela.r_offset = (globals->root.sgotplt->output_section->vma
7034 + globals->root.sgotplt->output_offset
7035 + off + globals->sgotplt_jump_table_size);
7036
7037 if (indx == 0)
7038 rela.r_addend = relocation - dtpoff_base (info);
7039
7040 /* Allocate the next available slot in the PLT reloc
7041 section to hold our R_AARCH64_TLSDESC, the next
7042 available slot is determined from reloc_count,
7043 which we step. But note, reloc_count was
7044 artifically moved down while allocating slots for
7045 real PLT relocs such that all of the PLT relocs
7046 will fit above the initial reloc_count and the
7047 extra stuff will fit below. */
7048 loc = globals->root.srelplt->contents;
7049 loc += globals->root.srelplt->reloc_count++
7050 * RELOC_SIZE (globals);
7051
7052 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
7053
7054 bfd_put_NN (output_bfd, (bfd_vma) 0,
7055 globals->root.sgotplt->contents + off +
7056 globals->sgotplt_jump_table_size);
7057 bfd_put_NN (output_bfd, (bfd_vma) 0,
7058 globals->root.sgotplt->contents + off +
7059 globals->sgotplt_jump_table_size +
7060 GOT_ENTRY_SIZE);
7061 }
7062
7063 symbol_tlsdesc_got_offset_mark (input_bfd, h, r_symndx);
7064 }
7065 break;
7066 default:
7067 break;
7068 }
7069
7070 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
7071 because such sections are not SEC_ALLOC and thus ld.so will
7072 not process them. */
7073 if (unresolved_reloc
7074 && !((input_section->flags & SEC_DEBUGGING) != 0
7075 && h->def_dynamic)
7076 && _bfd_elf_section_offset (output_bfd, info, input_section,
7077 +rel->r_offset) != (bfd_vma) - 1)
7078 {
7079 _bfd_error_handler
7080 /* xgettext:c-format */
7081 (_("%pB(%pA+%#" PRIx64 "): "
7082 "unresolvable %s relocation against symbol `%s'"),
7083 input_bfd, input_section, (uint64_t) rel->r_offset, howto->name,
7084 h->root.root.string);
7085 return FALSE;
7086 }
7087
7088 if (r != bfd_reloc_ok && r != bfd_reloc_continue)
7089 {
7090 bfd_reloc_code_real_type real_r_type
7091 = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
7092
7093 switch (r)
7094 {
7095 case bfd_reloc_overflow:
7096 (*info->callbacks->reloc_overflow)
7097 (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0,
7098 input_bfd, input_section, rel->r_offset);
7099 if (real_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
7100 || real_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
7101 {
7102 (*info->callbacks->warning)
7103 (info,
7104 _("too many GOT entries for -fpic, "
7105 "please recompile with -fPIC"),
7106 name, input_bfd, input_section, rel->r_offset);
7107 return FALSE;
7108 }
7109 /* Overflow can occur when a variable is referenced with a type
7110 that has a larger alignment than the type with which it was
7111 declared. eg:
7112 file1.c: extern int foo; int a (void) { return foo; }
7113 file2.c: char bar, foo, baz;
7114 If the variable is placed into a data section at an offset
7115 that is incompatible with the larger alignment requirement
7116 overflow will occur. (Strictly speaking this is not overflow
7117 but rather an alignment problem, but the bfd_reloc_ error
7118 enum does not have a value to cover that situation).
7119
7120 Try to catch this situation here and provide a more helpful
7121 error message to the user. */
7122 if (addend & ((1 << howto->rightshift) - 1)
7123 /* FIXME: Are we testing all of the appropriate reloc
7124 types here ? */
7125 && (real_r_type == BFD_RELOC_AARCH64_LD_LO19_PCREL
7126 || real_r_type == BFD_RELOC_AARCH64_LDST16_LO12
7127 || real_r_type == BFD_RELOC_AARCH64_LDST32_LO12
7128 || real_r_type == BFD_RELOC_AARCH64_LDST64_LO12
7129 || real_r_type == BFD_RELOC_AARCH64_LDST128_LO12))
7130 {
7131 info->callbacks->warning
7132 (info, _("one possible cause of this error is that the \
7133 symbol is being referenced in the indicated code as if it had a larger \
7134 alignment than was declared where it was defined"),
7135 name, input_bfd, input_section, rel->r_offset);
7136 }
7137 break;
7138
7139 case bfd_reloc_undefined:
7140 (*info->callbacks->undefined_symbol)
7141 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
7142 break;
7143
7144 case bfd_reloc_outofrange:
7145 error_message = _("out of range");
7146 goto common_error;
7147
7148 case bfd_reloc_notsupported:
7149 error_message = _("unsupported relocation");
7150 goto common_error;
7151
7152 case bfd_reloc_dangerous:
7153 /* error_message should already be set. */
7154 goto common_error;
7155
7156 default:
7157 error_message = _("unknown error");
7158 /* Fall through. */
7159
7160 common_error:
7161 BFD_ASSERT (error_message != NULL);
7162 (*info->callbacks->reloc_dangerous)
7163 (info, error_message, input_bfd, input_section, rel->r_offset);
7164 break;
7165 }
7166 }
7167
7168 if (!save_addend)
7169 addend = 0;
7170 }
7171
7172 return TRUE;
7173 }
7174
7175 /* Set the right machine number. */
7176
7177 static bfd_boolean
7178 elfNN_aarch64_object_p (bfd *abfd)
7179 {
7180 #if ARCH_SIZE == 32
7181 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64_ilp32);
7182 #else
7183 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64);
7184 #endif
7185 return TRUE;
7186 }
7187
7188 /* Function to keep AArch64 specific flags in the ELF header. */
7189
7190 static bfd_boolean
7191 elfNN_aarch64_set_private_flags (bfd *abfd, flagword flags)
7192 {
7193 if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags)
7194 {
7195 }
7196 else
7197 {
7198 elf_elfheader (abfd)->e_flags = flags;
7199 elf_flags_init (abfd) = TRUE;
7200 }
7201
7202 return TRUE;
7203 }
7204
7205 /* Merge backend specific data from an object file to the output
7206 object file when linking. */
7207
7208 static bfd_boolean
7209 elfNN_aarch64_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
7210 {
7211 bfd *obfd = info->output_bfd;
7212 flagword out_flags;
7213 flagword in_flags;
7214 bfd_boolean flags_compatible = TRUE;
7215 asection *sec;
7216
7217 /* Check if we have the same endianess. */
7218 if (!_bfd_generic_verify_endian_match (ibfd, info))
7219 return FALSE;
7220
7221 if (!is_aarch64_elf (ibfd) || !is_aarch64_elf (obfd))
7222 return TRUE;
7223
7224 /* The input BFD must have had its flags initialised. */
7225 /* The following seems bogus to me -- The flags are initialized in
7226 the assembler but I don't think an elf_flags_init field is
7227 written into the object. */
7228 /* BFD_ASSERT (elf_flags_init (ibfd)); */
7229
7230 in_flags = elf_elfheader (ibfd)->e_flags;
7231 out_flags = elf_elfheader (obfd)->e_flags;
7232
7233 if (!elf_flags_init (obfd))
7234 {
7235 /* If the input is the default architecture and had the default
7236 flags then do not bother setting the flags for the output
7237 architecture, instead allow future merges to do this. If no
7238 future merges ever set these flags then they will retain their
7239 uninitialised values, which surprise surprise, correspond
7240 to the default values. */
7241 if (bfd_get_arch_info (ibfd)->the_default
7242 && elf_elfheader (ibfd)->e_flags == 0)
7243 return TRUE;
7244
7245 elf_flags_init (obfd) = TRUE;
7246 elf_elfheader (obfd)->e_flags = in_flags;
7247
7248 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
7249 && bfd_get_arch_info (obfd)->the_default)
7250 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
7251 bfd_get_mach (ibfd));
7252
7253 return TRUE;
7254 }
7255
7256 /* Identical flags must be compatible. */
7257 if (in_flags == out_flags)
7258 return TRUE;
7259
7260 /* Check to see if the input BFD actually contains any sections. If
7261 not, its flags may not have been initialised either, but it
7262 cannot actually cause any incompatiblity. Do not short-circuit
7263 dynamic objects; their section list may be emptied by
7264 elf_link_add_object_symbols.
7265
7266 Also check to see if there are no code sections in the input.
7267 In this case there is no need to check for code specific flags.
7268 XXX - do we need to worry about floating-point format compatability
7269 in data sections ? */
7270 if (!(ibfd->flags & DYNAMIC))
7271 {
7272 bfd_boolean null_input_bfd = TRUE;
7273 bfd_boolean only_data_sections = TRUE;
7274
7275 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7276 {
7277 if ((bfd_section_flags (sec)
7278 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
7279 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
7280 only_data_sections = FALSE;
7281
7282 null_input_bfd = FALSE;
7283 break;
7284 }
7285
7286 if (null_input_bfd || only_data_sections)
7287 return TRUE;
7288 }
7289
7290 return flags_compatible;
7291 }
7292
7293 /* Display the flags field. */
7294
7295 static bfd_boolean
7296 elfNN_aarch64_print_private_bfd_data (bfd *abfd, void *ptr)
7297 {
7298 FILE *file = (FILE *) ptr;
7299 unsigned long flags;
7300
7301 BFD_ASSERT (abfd != NULL && ptr != NULL);
7302
7303 /* Print normal ELF private data. */
7304 _bfd_elf_print_private_bfd_data (abfd, ptr);
7305
7306 flags = elf_elfheader (abfd)->e_flags;
7307 /* Ignore init flag - it may not be set, despite the flags field
7308 containing valid data. */
7309
7310 /* xgettext:c-format */
7311 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
7312
7313 if (flags)
7314 fprintf (file, _("<Unrecognised flag bits set>"));
7315
7316 fputc ('\n', file);
7317
7318 return TRUE;
7319 }
7320
7321 /* Find dynamic relocs for H that apply to read-only sections. */
7322
7323 static asection *
7324 readonly_dynrelocs (struct elf_link_hash_entry *h)
7325 {
7326 struct elf_dyn_relocs *p;
7327
7328 for (p = elf_aarch64_hash_entry (h)->dyn_relocs; p != NULL; p = p->next)
7329 {
7330 asection *s = p->sec->output_section;
7331
7332 if (s != NULL && (s->flags & SEC_READONLY) != 0)
7333 return p->sec;
7334 }
7335 return NULL;
7336 }
7337
7338 /* Return true if we need copy relocation against EH. */
7339
7340 static bfd_boolean
7341 need_copy_relocation_p (struct elf_aarch64_link_hash_entry *eh)
7342 {
7343 struct elf_dyn_relocs *p;
7344 asection *s;
7345
7346 for (p = eh->dyn_relocs; p != NULL; p = p->next)
7347 {
7348 /* If there is any pc-relative reference, we need to keep copy relocation
7349 to avoid propagating the relocation into runtime that current glibc
7350 does not support. */
7351 if (p->pc_count)
7352 return TRUE;
7353
7354 s = p->sec->output_section;
7355 /* Need copy relocation if it's against read-only section. */
7356 if (s != NULL && (s->flags & SEC_READONLY) != 0)
7357 return TRUE;
7358 }
7359
7360 return FALSE;
7361 }
7362
7363 /* Adjust a symbol defined by a dynamic object and referenced by a
7364 regular object. The current definition is in some section of the
7365 dynamic object, but we're not including those sections. We have to
7366 change the definition to something the rest of the link can
7367 understand. */
7368
7369 static bfd_boolean
7370 elfNN_aarch64_adjust_dynamic_symbol (struct bfd_link_info *info,
7371 struct elf_link_hash_entry *h)
7372 {
7373 struct elf_aarch64_link_hash_table *htab;
7374 asection *s, *srel;
7375
7376 /* If this is a function, put it in the procedure linkage table. We
7377 will fill in the contents of the procedure linkage table later,
7378 when we know the address of the .got section. */
7379 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
7380 {
7381 if (h->plt.refcount <= 0
7382 || (h->type != STT_GNU_IFUNC
7383 && (SYMBOL_CALLS_LOCAL (info, h)
7384 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7385 && h->root.type == bfd_link_hash_undefweak))))
7386 {
7387 /* This case can occur if we saw a CALL26 reloc in
7388 an input file, but the symbol wasn't referred to
7389 by a dynamic object or all references were
7390 garbage collected. In which case we can end up
7391 resolving. */
7392 h->plt.offset = (bfd_vma) - 1;
7393 h->needs_plt = 0;
7394 }
7395
7396 return TRUE;
7397 }
7398 else
7399 /* Otherwise, reset to -1. */
7400 h->plt.offset = (bfd_vma) - 1;
7401
7402
7403 /* If this is a weak symbol, and there is a real definition, the
7404 processor independent code will have arranged for us to see the
7405 real definition first, and we can just use the same value. */
7406 if (h->is_weakalias)
7407 {
7408 struct elf_link_hash_entry *def = weakdef (h);
7409 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
7410 h->root.u.def.section = def->root.u.def.section;
7411 h->root.u.def.value = def->root.u.def.value;
7412 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
7413 h->non_got_ref = def->non_got_ref;
7414 return TRUE;
7415 }
7416
7417 /* If we are creating a shared library, we must presume that the
7418 only references to the symbol are via the global offset table.
7419 For such cases we need not do anything here; the relocations will
7420 be handled correctly by relocate_section. */
7421 if (bfd_link_pic (info))
7422 return TRUE;
7423
7424 /* If there are no references to this symbol that do not use the
7425 GOT, we don't need to generate a copy reloc. */
7426 if (!h->non_got_ref)
7427 return TRUE;
7428
7429 /* If -z nocopyreloc was given, we won't generate them either. */
7430 if (info->nocopyreloc)
7431 {
7432 h->non_got_ref = 0;
7433 return TRUE;
7434 }
7435
7436 if (ELIMINATE_COPY_RELOCS)
7437 {
7438 struct elf_aarch64_link_hash_entry *eh;
7439 /* If we don't find any dynamic relocs in read-only sections, then
7440 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
7441 eh = (struct elf_aarch64_link_hash_entry *) h;
7442 if (!need_copy_relocation_p (eh))
7443 {
7444 h->non_got_ref = 0;
7445 return TRUE;
7446 }
7447 }
7448
7449 /* We must allocate the symbol in our .dynbss section, which will
7450 become part of the .bss section of the executable. There will be
7451 an entry for this symbol in the .dynsym section. The dynamic
7452 object will contain position independent code, so all references
7453 from the dynamic object to this symbol will go through the global
7454 offset table. The dynamic linker will use the .dynsym entry to
7455 determine the address it must put in the global offset table, so
7456 both the dynamic object and the regular object will refer to the
7457 same memory location for the variable. */
7458
7459 htab = elf_aarch64_hash_table (info);
7460
7461 /* We must generate a R_AARCH64_COPY reloc to tell the dynamic linker
7462 to copy the initial value out of the dynamic object and into the
7463 runtime process image. */
7464 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
7465 {
7466 s = htab->root.sdynrelro;
7467 srel = htab->root.sreldynrelro;
7468 }
7469 else
7470 {
7471 s = htab->root.sdynbss;
7472 srel = htab->root.srelbss;
7473 }
7474 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
7475 {
7476 srel->size += RELOC_SIZE (htab);
7477 h->needs_copy = 1;
7478 }
7479
7480 return _bfd_elf_adjust_dynamic_copy (info, h, s);
7481
7482 }
7483
7484 static bfd_boolean
7485 elfNN_aarch64_allocate_local_symbols (bfd *abfd, unsigned number)
7486 {
7487 struct elf_aarch64_local_symbol *locals;
7488 locals = elf_aarch64_locals (abfd);
7489 if (locals == NULL)
7490 {
7491 locals = (struct elf_aarch64_local_symbol *)
7492 bfd_zalloc (abfd, number * sizeof (struct elf_aarch64_local_symbol));
7493 if (locals == NULL)
7494 return FALSE;
7495 elf_aarch64_locals (abfd) = locals;
7496 }
7497 return TRUE;
7498 }
7499
7500 /* Create the .got section to hold the global offset table. */
7501
7502 static bfd_boolean
7503 aarch64_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
7504 {
7505 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7506 flagword flags;
7507 asection *s;
7508 struct elf_link_hash_entry *h;
7509 struct elf_link_hash_table *htab = elf_hash_table (info);
7510
7511 /* This function may be called more than once. */
7512 if (htab->sgot != NULL)
7513 return TRUE;
7514
7515 flags = bed->dynamic_sec_flags;
7516
7517 s = bfd_make_section_anyway_with_flags (abfd,
7518 (bed->rela_plts_and_copies_p
7519 ? ".rela.got" : ".rel.got"),
7520 (bed->dynamic_sec_flags
7521 | SEC_READONLY));
7522 if (s == NULL
7523 || !bfd_set_section_alignment (s, bed->s->log_file_align))
7524 return FALSE;
7525 htab->srelgot = s;
7526
7527 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
7528 if (s == NULL
7529 || !bfd_set_section_alignment (s, bed->s->log_file_align))
7530 return FALSE;
7531 htab->sgot = s;
7532 htab->sgot->size += GOT_ENTRY_SIZE;
7533
7534 if (bed->want_got_sym)
7535 {
7536 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
7537 (or .got.plt) section. We don't do this in the linker script
7538 because we don't want to define the symbol if we are not creating
7539 a global offset table. */
7540 h = _bfd_elf_define_linkage_sym (abfd, info, s,
7541 "_GLOBAL_OFFSET_TABLE_");
7542 elf_hash_table (info)->hgot = h;
7543 if (h == NULL)
7544 return FALSE;
7545 }
7546
7547 if (bed->want_got_plt)
7548 {
7549 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
7550 if (s == NULL
7551 || !bfd_set_section_alignment (s, bed->s->log_file_align))
7552 return FALSE;
7553 htab->sgotplt = s;
7554 }
7555
7556 /* The first bit of the global offset table is the header. */
7557 s->size += bed->got_header_size;
7558
7559 return TRUE;
7560 }
7561
7562 /* Look through the relocs for a section during the first phase. */
7563
7564 static bfd_boolean
7565 elfNN_aarch64_check_relocs (bfd *abfd, struct bfd_link_info *info,
7566 asection *sec, const Elf_Internal_Rela *relocs)
7567 {
7568 Elf_Internal_Shdr *symtab_hdr;
7569 struct elf_link_hash_entry **sym_hashes;
7570 const Elf_Internal_Rela *rel;
7571 const Elf_Internal_Rela *rel_end;
7572 asection *sreloc;
7573
7574 struct elf_aarch64_link_hash_table *htab;
7575
7576 if (bfd_link_relocatable (info))
7577 return TRUE;
7578
7579 BFD_ASSERT (is_aarch64_elf (abfd));
7580
7581 htab = elf_aarch64_hash_table (info);
7582 sreloc = NULL;
7583
7584 symtab_hdr = &elf_symtab_hdr (abfd);
7585 sym_hashes = elf_sym_hashes (abfd);
7586
7587 rel_end = relocs + sec->reloc_count;
7588 for (rel = relocs; rel < rel_end; rel++)
7589 {
7590 struct elf_link_hash_entry *h;
7591 unsigned int r_symndx;
7592 unsigned int r_type;
7593 bfd_reloc_code_real_type bfd_r_type;
7594 Elf_Internal_Sym *isym;
7595
7596 r_symndx = ELFNN_R_SYM (rel->r_info);
7597 r_type = ELFNN_R_TYPE (rel->r_info);
7598
7599 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
7600 {
7601 /* xgettext:c-format */
7602 _bfd_error_handler (_("%pB: bad symbol index: %d"), abfd, r_symndx);
7603 return FALSE;
7604 }
7605
7606 if (r_symndx < symtab_hdr->sh_info)
7607 {
7608 /* A local symbol. */
7609 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7610 abfd, r_symndx);
7611 if (isym == NULL)
7612 return FALSE;
7613
7614 /* Check relocation against local STT_GNU_IFUNC symbol. */
7615 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
7616 {
7617 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel,
7618 TRUE);
7619 if (h == NULL)
7620 return FALSE;
7621
7622 /* Fake a STT_GNU_IFUNC symbol. */
7623 h->type = STT_GNU_IFUNC;
7624 h->def_regular = 1;
7625 h->ref_regular = 1;
7626 h->forced_local = 1;
7627 h->root.type = bfd_link_hash_defined;
7628 }
7629 else
7630 h = NULL;
7631 }
7632 else
7633 {
7634 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7635 while (h->root.type == bfd_link_hash_indirect
7636 || h->root.type == bfd_link_hash_warning)
7637 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7638 }
7639
7640 /* Could be done earlier, if h were already available. */
7641 bfd_r_type = aarch64_tls_transition (abfd, info, r_type, h, r_symndx);
7642
7643 if (h != NULL)
7644 {
7645 /* If a relocation refers to _GLOBAL_OFFSET_TABLE_, create the .got.
7646 This shows up in particular in an R_AARCH64_PREL64 in large model
7647 when calculating the pc-relative address to .got section which is
7648 used to initialize the gp register. */
7649 if (h->root.root.string
7650 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
7651 {
7652 if (htab->root.dynobj == NULL)
7653 htab->root.dynobj = abfd;
7654
7655 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7656 return FALSE;
7657
7658 BFD_ASSERT (h == htab->root.hgot);
7659 }
7660
7661 /* Create the ifunc sections for static executables. If we
7662 never see an indirect function symbol nor we are building
7663 a static executable, those sections will be empty and
7664 won't appear in output. */
7665 switch (bfd_r_type)
7666 {
7667 default:
7668 break;
7669
7670 case BFD_RELOC_AARCH64_ADD_LO12:
7671 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7672 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7673 case BFD_RELOC_AARCH64_CALL26:
7674 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7675 case BFD_RELOC_AARCH64_JUMP26:
7676 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7677 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7678 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7679 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7680 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7681 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7682 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7683 case BFD_RELOC_AARCH64_NN:
7684 if (htab->root.dynobj == NULL)
7685 htab->root.dynobj = abfd;
7686 if (!_bfd_elf_create_ifunc_sections (htab->root.dynobj, info))
7687 return FALSE;
7688 break;
7689 }
7690
7691 /* It is referenced by a non-shared object. */
7692 h->ref_regular = 1;
7693 }
7694
7695 switch (bfd_r_type)
7696 {
7697 case BFD_RELOC_AARCH64_16:
7698 #if ARCH_SIZE == 64
7699 case BFD_RELOC_AARCH64_32:
7700 #endif
7701 if (bfd_link_pic (info) && (sec->flags & SEC_ALLOC) != 0)
7702 {
7703 if (h != NULL
7704 /* This is an absolute symbol. It represents a value instead
7705 of an address. */
7706 && (bfd_is_abs_symbol (&h->root)
7707 /* This is an undefined symbol. */
7708 || h->root.type == bfd_link_hash_undefined))
7709 break;
7710
7711 /* For local symbols, defined global symbols in a non-ABS section,
7712 it is assumed that the value is an address. */
7713 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7714 _bfd_error_handler
7715 /* xgettext:c-format */
7716 (_("%pB: relocation %s against `%s' can not be used when making "
7717 "a shared object"),
7718 abfd, elfNN_aarch64_howto_table[howto_index].name,
7719 (h) ? h->root.root.string : "a local symbol");
7720 bfd_set_error (bfd_error_bad_value);
7721 return FALSE;
7722 }
7723 else
7724 break;
7725
7726 case BFD_RELOC_AARCH64_MOVW_G0_NC:
7727 case BFD_RELOC_AARCH64_MOVW_G1_NC:
7728 case BFD_RELOC_AARCH64_MOVW_G2_NC:
7729 case BFD_RELOC_AARCH64_MOVW_G3:
7730 if (bfd_link_pic (info))
7731 {
7732 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7733 _bfd_error_handler
7734 /* xgettext:c-format */
7735 (_("%pB: relocation %s against `%s' can not be used when making "
7736 "a shared object; recompile with -fPIC"),
7737 abfd, elfNN_aarch64_howto_table[howto_index].name,
7738 (h) ? h->root.root.string : "a local symbol");
7739 bfd_set_error (bfd_error_bad_value);
7740 return FALSE;
7741 }
7742 /* Fall through. */
7743
7744 case BFD_RELOC_AARCH64_16_PCREL:
7745 case BFD_RELOC_AARCH64_32_PCREL:
7746 case BFD_RELOC_AARCH64_64_PCREL:
7747 case BFD_RELOC_AARCH64_ADD_LO12:
7748 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7749 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7750 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
7751 case BFD_RELOC_AARCH64_LDST128_LO12:
7752 case BFD_RELOC_AARCH64_LDST16_LO12:
7753 case BFD_RELOC_AARCH64_LDST32_LO12:
7754 case BFD_RELOC_AARCH64_LDST64_LO12:
7755 case BFD_RELOC_AARCH64_LDST8_LO12:
7756 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
7757 if (h == NULL || bfd_link_pic (info))
7758 break;
7759 /* Fall through. */
7760
7761 case BFD_RELOC_AARCH64_NN:
7762
7763 /* We don't need to handle relocs into sections not going into
7764 the "real" output. */
7765 if ((sec->flags & SEC_ALLOC) == 0)
7766 break;
7767
7768 if (h != NULL)
7769 {
7770 if (!bfd_link_pic (info))
7771 h->non_got_ref = 1;
7772
7773 h->plt.refcount += 1;
7774 h->pointer_equality_needed = 1;
7775 }
7776
7777 /* No need to do anything if we're not creating a shared
7778 object. */
7779 if (!(bfd_link_pic (info)
7780 /* If on the other hand, we are creating an executable, we
7781 may need to keep relocations for symbols satisfied by a
7782 dynamic library if we manage to avoid copy relocs for the
7783 symbol.
7784
7785 NOTE: Currently, there is no support of copy relocs
7786 elimination on pc-relative relocation types, because there is
7787 no dynamic relocation support for them in glibc. We still
7788 record the dynamic symbol reference for them. This is
7789 because one symbol may be referenced by both absolute
7790 relocation (for example, BFD_RELOC_AARCH64_NN) and
7791 pc-relative relocation. We need full symbol reference
7792 information to make correct decision later in
7793 elfNN_aarch64_adjust_dynamic_symbol. */
7794 || (ELIMINATE_COPY_RELOCS
7795 && !bfd_link_pic (info)
7796 && h != NULL
7797 && (h->root.type == bfd_link_hash_defweak
7798 || !h->def_regular))))
7799 break;
7800
7801 {
7802 struct elf_dyn_relocs *p;
7803 struct elf_dyn_relocs **head;
7804 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7805
7806 /* We must copy these reloc types into the output file.
7807 Create a reloc section in dynobj and make room for
7808 this reloc. */
7809 if (sreloc == NULL)
7810 {
7811 if (htab->root.dynobj == NULL)
7812 htab->root.dynobj = abfd;
7813
7814 sreloc = _bfd_elf_make_dynamic_reloc_section
7815 (sec, htab->root.dynobj, LOG_FILE_ALIGN, abfd, /*rela? */ TRUE);
7816
7817 if (sreloc == NULL)
7818 return FALSE;
7819 }
7820
7821 /* If this is a global symbol, we count the number of
7822 relocations we need for this symbol. */
7823 if (h != NULL)
7824 {
7825 struct elf_aarch64_link_hash_entry *eh;
7826 eh = (struct elf_aarch64_link_hash_entry *) h;
7827 head = &eh->dyn_relocs;
7828 }
7829 else
7830 {
7831 /* Track dynamic relocs needed for local syms too.
7832 We really need local syms available to do this
7833 easily. Oh well. */
7834
7835 asection *s;
7836 void **vpp;
7837
7838 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7839 abfd, r_symndx);
7840 if (isym == NULL)
7841 return FALSE;
7842
7843 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
7844 if (s == NULL)
7845 s = sec;
7846
7847 /* Beware of type punned pointers vs strict aliasing
7848 rules. */
7849 vpp = &(elf_section_data (s)->local_dynrel);
7850 head = (struct elf_dyn_relocs **) vpp;
7851 }
7852
7853 p = *head;
7854 if (p == NULL || p->sec != sec)
7855 {
7856 bfd_size_type amt = sizeof *p;
7857 p = ((struct elf_dyn_relocs *)
7858 bfd_zalloc (htab->root.dynobj, amt));
7859 if (p == NULL)
7860 return FALSE;
7861 p->next = *head;
7862 *head = p;
7863 p->sec = sec;
7864 }
7865
7866 p->count += 1;
7867
7868 if (elfNN_aarch64_howto_table[howto_index].pc_relative)
7869 p->pc_count += 1;
7870 }
7871 break;
7872
7873 /* RR: We probably want to keep a consistency check that
7874 there are no dangling GOT_PAGE relocs. */
7875 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7876 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7877 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7878 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7879 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7880 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7881 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7882 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7883 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7884 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
7885 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
7886 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7887 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7888 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
7889 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
7890 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7891 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7892 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7893 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
7894 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
7895 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
7896 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
7897 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7898 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7899 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7900 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
7901 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7902 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
7903 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
7904 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
7905 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
7906 {
7907 unsigned got_type;
7908 unsigned old_got_type;
7909
7910 got_type = aarch64_reloc_got_type (bfd_r_type);
7911
7912 if (h)
7913 {
7914 h->got.refcount += 1;
7915 old_got_type = elf_aarch64_hash_entry (h)->got_type;
7916 }
7917 else
7918 {
7919 struct elf_aarch64_local_symbol *locals;
7920
7921 if (!elfNN_aarch64_allocate_local_symbols
7922 (abfd, symtab_hdr->sh_info))
7923 return FALSE;
7924
7925 locals = elf_aarch64_locals (abfd);
7926 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7927 locals[r_symndx].got_refcount += 1;
7928 old_got_type = locals[r_symndx].got_type;
7929 }
7930
7931 /* If a variable is accessed with both general dynamic TLS
7932 methods, two slots may be created. */
7933 if (GOT_TLS_GD_ANY_P (old_got_type) && GOT_TLS_GD_ANY_P (got_type))
7934 got_type |= old_got_type;
7935
7936 /* We will already have issued an error message if there
7937 is a TLS/non-TLS mismatch, based on the symbol type.
7938 So just combine any TLS types needed. */
7939 if (old_got_type != GOT_UNKNOWN && old_got_type != GOT_NORMAL
7940 && got_type != GOT_NORMAL)
7941 got_type |= old_got_type;
7942
7943 /* If the symbol is accessed by both IE and GD methods, we
7944 are able to relax. Turn off the GD flag, without
7945 messing up with any other kind of TLS types that may be
7946 involved. */
7947 if ((got_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (got_type))
7948 got_type &= ~ (GOT_TLSDESC_GD | GOT_TLS_GD);
7949
7950 if (old_got_type != got_type)
7951 {
7952 if (h != NULL)
7953 elf_aarch64_hash_entry (h)->got_type = got_type;
7954 else
7955 {
7956 struct elf_aarch64_local_symbol *locals;
7957 locals = elf_aarch64_locals (abfd);
7958 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7959 locals[r_symndx].got_type = got_type;
7960 }
7961 }
7962
7963 if (htab->root.dynobj == NULL)
7964 htab->root.dynobj = abfd;
7965 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7966 return FALSE;
7967 break;
7968 }
7969
7970 case BFD_RELOC_AARCH64_CALL26:
7971 case BFD_RELOC_AARCH64_JUMP26:
7972 /* If this is a local symbol then we resolve it
7973 directly without creating a PLT entry. */
7974 if (h == NULL)
7975 continue;
7976
7977 h->needs_plt = 1;
7978 if (h->plt.refcount <= 0)
7979 h->plt.refcount = 1;
7980 else
7981 h->plt.refcount += 1;
7982 break;
7983
7984 default:
7985 break;
7986 }
7987 }
7988
7989 return TRUE;
7990 }
7991
7992 /* Treat mapping symbols as special target symbols. */
7993
7994 static bfd_boolean
7995 elfNN_aarch64_is_target_special_symbol (bfd *abfd ATTRIBUTE_UNUSED,
7996 asymbol *sym)
7997 {
7998 return bfd_is_aarch64_special_symbol_name (sym->name,
7999 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY);
8000 }
8001
8002 /* If the ELF symbol SYM might be a function in SEC, return the
8003 function size and set *CODE_OFF to the function's entry point,
8004 otherwise return zero. */
8005
8006 static bfd_size_type
8007 elfNN_aarch64_maybe_function_sym (const asymbol *sym, asection *sec,
8008 bfd_vma *code_off)
8009 {
8010 bfd_size_type size;
8011
8012 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
8013 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
8014 || sym->section != sec)
8015 return 0;
8016
8017 if (!(sym->flags & BSF_SYNTHETIC))
8018 switch (ELF_ST_TYPE (((elf_symbol_type *) sym)->internal_elf_sym.st_info))
8019 {
8020 case STT_FUNC:
8021 case STT_NOTYPE:
8022 break;
8023 default:
8024 return 0;
8025 }
8026
8027 if ((sym->flags & BSF_LOCAL)
8028 && bfd_is_aarch64_special_symbol_name (sym->name,
8029 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY))
8030 return 0;
8031
8032 *code_off = sym->value;
8033 size = 0;
8034 if (!(sym->flags & BSF_SYNTHETIC))
8035 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
8036 if (size == 0)
8037 size = 1;
8038 return size;
8039 }
8040
8041 static bfd_boolean
8042 elfNN_aarch64_find_inliner_info (bfd *abfd,
8043 const char **filename_ptr,
8044 const char **functionname_ptr,
8045 unsigned int *line_ptr)
8046 {
8047 bfd_boolean found;
8048 found = _bfd_dwarf2_find_inliner_info
8049 (abfd, filename_ptr,
8050 functionname_ptr, line_ptr, &elf_tdata (abfd)->dwarf2_find_line_info);
8051 return found;
8052 }
8053
8054
8055 static bfd_boolean
8056 elfNN_aarch64_init_file_header (bfd *abfd, struct bfd_link_info *link_info)
8057 {
8058 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
8059
8060 if (!_bfd_elf_init_file_header (abfd, link_info))
8061 return FALSE;
8062
8063 i_ehdrp = elf_elfheader (abfd);
8064 i_ehdrp->e_ident[EI_ABIVERSION] = AARCH64_ELF_ABI_VERSION;
8065 return TRUE;
8066 }
8067
8068 static enum elf_reloc_type_class
8069 elfNN_aarch64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
8070 const asection *rel_sec ATTRIBUTE_UNUSED,
8071 const Elf_Internal_Rela *rela)
8072 {
8073 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
8074
8075 if (htab->root.dynsym != NULL
8076 && htab->root.dynsym->contents != NULL)
8077 {
8078 /* Check relocation against STT_GNU_IFUNC symbol if there are
8079 dynamic symbols. */
8080 bfd *abfd = info->output_bfd;
8081 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8082 unsigned long r_symndx = ELFNN_R_SYM (rela->r_info);
8083 if (r_symndx != STN_UNDEF)
8084 {
8085 Elf_Internal_Sym sym;
8086 if (!bed->s->swap_symbol_in (abfd,
8087 (htab->root.dynsym->contents
8088 + r_symndx * bed->s->sizeof_sym),
8089 0, &sym))
8090 {
8091 /* xgettext:c-format */
8092 _bfd_error_handler (_("%pB symbol number %lu references"
8093 " nonexistent SHT_SYMTAB_SHNDX section"),
8094 abfd, r_symndx);
8095 /* Ideally an error class should be returned here. */
8096 }
8097 else if (ELF_ST_TYPE (sym.st_info) == STT_GNU_IFUNC)
8098 return reloc_class_ifunc;
8099 }
8100 }
8101
8102 switch ((int) ELFNN_R_TYPE (rela->r_info))
8103 {
8104 case AARCH64_R (IRELATIVE):
8105 return reloc_class_ifunc;
8106 case AARCH64_R (RELATIVE):
8107 return reloc_class_relative;
8108 case AARCH64_R (JUMP_SLOT):
8109 return reloc_class_plt;
8110 case AARCH64_R (COPY):
8111 return reloc_class_copy;
8112 default:
8113 return reloc_class_normal;
8114 }
8115 }
8116
8117 /* Handle an AArch64 specific section when reading an object file. This is
8118 called when bfd_section_from_shdr finds a section with an unknown
8119 type. */
8120
8121 static bfd_boolean
8122 elfNN_aarch64_section_from_shdr (bfd *abfd,
8123 Elf_Internal_Shdr *hdr,
8124 const char *name, int shindex)
8125 {
8126 /* There ought to be a place to keep ELF backend specific flags, but
8127 at the moment there isn't one. We just keep track of the
8128 sections by their name, instead. Fortunately, the ABI gives
8129 names for all the AArch64 specific sections, so we will probably get
8130 away with this. */
8131 switch (hdr->sh_type)
8132 {
8133 case SHT_AARCH64_ATTRIBUTES:
8134 break;
8135
8136 default:
8137 return FALSE;
8138 }
8139
8140 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
8141 return FALSE;
8142
8143 return TRUE;
8144 }
8145
8146 /* A structure used to record a list of sections, independently
8147 of the next and prev fields in the asection structure. */
8148 typedef struct section_list
8149 {
8150 asection *sec;
8151 struct section_list *next;
8152 struct section_list *prev;
8153 }
8154 section_list;
8155
8156 /* Unfortunately we need to keep a list of sections for which
8157 an _aarch64_elf_section_data structure has been allocated. This
8158 is because it is possible for functions like elfNN_aarch64_write_section
8159 to be called on a section which has had an elf_data_structure
8160 allocated for it (and so the used_by_bfd field is valid) but
8161 for which the AArch64 extended version of this structure - the
8162 _aarch64_elf_section_data structure - has not been allocated. */
8163 static section_list *sections_with_aarch64_elf_section_data = NULL;
8164
8165 static void
8166 record_section_with_aarch64_elf_section_data (asection *sec)
8167 {
8168 struct section_list *entry;
8169
8170 entry = bfd_malloc (sizeof (*entry));
8171 if (entry == NULL)
8172 return;
8173 entry->sec = sec;
8174 entry->next = sections_with_aarch64_elf_section_data;
8175 entry->prev = NULL;
8176 if (entry->next != NULL)
8177 entry->next->prev = entry;
8178 sections_with_aarch64_elf_section_data = entry;
8179 }
8180
8181 static struct section_list *
8182 find_aarch64_elf_section_entry (asection *sec)
8183 {
8184 struct section_list *entry;
8185 static struct section_list *last_entry = NULL;
8186
8187 /* This is a short cut for the typical case where the sections are added
8188 to the sections_with_aarch64_elf_section_data list in forward order and
8189 then looked up here in backwards order. This makes a real difference
8190 to the ld-srec/sec64k.exp linker test. */
8191 entry = sections_with_aarch64_elf_section_data;
8192 if (last_entry != NULL)
8193 {
8194 if (last_entry->sec == sec)
8195 entry = last_entry;
8196 else if (last_entry->next != NULL && last_entry->next->sec == sec)
8197 entry = last_entry->next;
8198 }
8199
8200 for (; entry; entry = entry->next)
8201 if (entry->sec == sec)
8202 break;
8203
8204 if (entry)
8205 /* Record the entry prior to this one - it is the entry we are
8206 most likely to want to locate next time. Also this way if we
8207 have been called from
8208 unrecord_section_with_aarch64_elf_section_data () we will not
8209 be caching a pointer that is about to be freed. */
8210 last_entry = entry->prev;
8211
8212 return entry;
8213 }
8214
8215 static void
8216 unrecord_section_with_aarch64_elf_section_data (asection *sec)
8217 {
8218 struct section_list *entry;
8219
8220 entry = find_aarch64_elf_section_entry (sec);
8221
8222 if (entry)
8223 {
8224 if (entry->prev != NULL)
8225 entry->prev->next = entry->next;
8226 if (entry->next != NULL)
8227 entry->next->prev = entry->prev;
8228 if (entry == sections_with_aarch64_elf_section_data)
8229 sections_with_aarch64_elf_section_data = entry->next;
8230 free (entry);
8231 }
8232 }
8233
8234
8235 typedef struct
8236 {
8237 void *finfo;
8238 struct bfd_link_info *info;
8239 asection *sec;
8240 int sec_shndx;
8241 int (*func) (void *, const char *, Elf_Internal_Sym *,
8242 asection *, struct elf_link_hash_entry *);
8243 } output_arch_syminfo;
8244
8245 enum map_symbol_type
8246 {
8247 AARCH64_MAP_INSN,
8248 AARCH64_MAP_DATA
8249 };
8250
8251
8252 /* Output a single mapping symbol. */
8253
8254 static bfd_boolean
8255 elfNN_aarch64_output_map_sym (output_arch_syminfo *osi,
8256 enum map_symbol_type type, bfd_vma offset)
8257 {
8258 static const char *names[2] = { "$x", "$d" };
8259 Elf_Internal_Sym sym;
8260
8261 sym.st_value = (osi->sec->output_section->vma
8262 + osi->sec->output_offset + offset);
8263 sym.st_size = 0;
8264 sym.st_other = 0;
8265 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
8266 sym.st_shndx = osi->sec_shndx;
8267 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
8268 }
8269
8270 /* Output a single local symbol for a generated stub. */
8271
8272 static bfd_boolean
8273 elfNN_aarch64_output_stub_sym (output_arch_syminfo *osi, const char *name,
8274 bfd_vma offset, bfd_vma size)
8275 {
8276 Elf_Internal_Sym sym;
8277
8278 sym.st_value = (osi->sec->output_section->vma
8279 + osi->sec->output_offset + offset);
8280 sym.st_size = size;
8281 sym.st_other = 0;
8282 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
8283 sym.st_shndx = osi->sec_shndx;
8284 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
8285 }
8286
8287 static bfd_boolean
8288 aarch64_map_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
8289 {
8290 struct elf_aarch64_stub_hash_entry *stub_entry;
8291 asection *stub_sec;
8292 bfd_vma addr;
8293 char *stub_name;
8294 output_arch_syminfo *osi;
8295
8296 /* Massage our args to the form they really have. */
8297 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
8298 osi = (output_arch_syminfo *) in_arg;
8299
8300 stub_sec = stub_entry->stub_sec;
8301
8302 /* Ensure this stub is attached to the current section being
8303 processed. */
8304 if (stub_sec != osi->sec)
8305 return TRUE;
8306
8307 addr = (bfd_vma) stub_entry->stub_offset;
8308
8309 stub_name = stub_entry->output_name;
8310
8311 switch (stub_entry->stub_type)
8312 {
8313 case aarch64_stub_adrp_branch:
8314 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8315 sizeof (aarch64_adrp_branch_stub)))
8316 return FALSE;
8317 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8318 return FALSE;
8319 break;
8320 case aarch64_stub_long_branch:
8321 if (!elfNN_aarch64_output_stub_sym
8322 (osi, stub_name, addr, sizeof (aarch64_long_branch_stub)))
8323 return FALSE;
8324 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8325 return FALSE;
8326 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_DATA, addr + 16))
8327 return FALSE;
8328 break;
8329 case aarch64_stub_erratum_835769_veneer:
8330 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8331 sizeof (aarch64_erratum_835769_stub)))
8332 return FALSE;
8333 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8334 return FALSE;
8335 break;
8336 case aarch64_stub_erratum_843419_veneer:
8337 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8338 sizeof (aarch64_erratum_843419_stub)))
8339 return FALSE;
8340 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8341 return FALSE;
8342 break;
8343 case aarch64_stub_none:
8344 break;
8345
8346 default:
8347 abort ();
8348 }
8349
8350 return TRUE;
8351 }
8352
8353 /* Output mapping symbols for linker generated sections. */
8354
8355 static bfd_boolean
8356 elfNN_aarch64_output_arch_local_syms (bfd *output_bfd,
8357 struct bfd_link_info *info,
8358 void *finfo,
8359 int (*func) (void *, const char *,
8360 Elf_Internal_Sym *,
8361 asection *,
8362 struct elf_link_hash_entry
8363 *))
8364 {
8365 output_arch_syminfo osi;
8366 struct elf_aarch64_link_hash_table *htab;
8367
8368 htab = elf_aarch64_hash_table (info);
8369
8370 osi.finfo = finfo;
8371 osi.info = info;
8372 osi.func = func;
8373
8374 /* Long calls stubs. */
8375 if (htab->stub_bfd && htab->stub_bfd->sections)
8376 {
8377 asection *stub_sec;
8378
8379 for (stub_sec = htab->stub_bfd->sections;
8380 stub_sec != NULL; stub_sec = stub_sec->next)
8381 {
8382 /* Ignore non-stub sections. */
8383 if (!strstr (stub_sec->name, STUB_SUFFIX))
8384 continue;
8385
8386 osi.sec = stub_sec;
8387
8388 osi.sec_shndx = _bfd_elf_section_from_bfd_section
8389 (output_bfd, osi.sec->output_section);
8390
8391 /* The first instruction in a stub is always a branch. */
8392 if (!elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0))
8393 return FALSE;
8394
8395 bfd_hash_traverse (&htab->stub_hash_table, aarch64_map_one_stub,
8396 &osi);
8397 }
8398 }
8399
8400 /* Finally, output mapping symbols for the PLT. */
8401 if (!htab->root.splt || htab->root.splt->size == 0)
8402 return TRUE;
8403
8404 osi.sec_shndx = _bfd_elf_section_from_bfd_section
8405 (output_bfd, htab->root.splt->output_section);
8406 osi.sec = htab->root.splt;
8407
8408 elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0);
8409
8410 return TRUE;
8411
8412 }
8413
8414 /* Allocate target specific section data. */
8415
8416 static bfd_boolean
8417 elfNN_aarch64_new_section_hook (bfd *abfd, asection *sec)
8418 {
8419 if (!sec->used_by_bfd)
8420 {
8421 _aarch64_elf_section_data *sdata;
8422 bfd_size_type amt = sizeof (*sdata);
8423
8424 sdata = bfd_zalloc (abfd, amt);
8425 if (sdata == NULL)
8426 return FALSE;
8427 sec->used_by_bfd = sdata;
8428 }
8429
8430 record_section_with_aarch64_elf_section_data (sec);
8431
8432 return _bfd_elf_new_section_hook (abfd, sec);
8433 }
8434
8435
8436 static void
8437 unrecord_section_via_map_over_sections (bfd *abfd ATTRIBUTE_UNUSED,
8438 asection *sec,
8439 void *ignore ATTRIBUTE_UNUSED)
8440 {
8441 unrecord_section_with_aarch64_elf_section_data (sec);
8442 }
8443
8444 static bfd_boolean
8445 elfNN_aarch64_close_and_cleanup (bfd *abfd)
8446 {
8447 if (abfd->sections)
8448 bfd_map_over_sections (abfd,
8449 unrecord_section_via_map_over_sections, NULL);
8450
8451 return _bfd_elf_close_and_cleanup (abfd);
8452 }
8453
8454 static bfd_boolean
8455 elfNN_aarch64_bfd_free_cached_info (bfd *abfd)
8456 {
8457 if (abfd->sections)
8458 bfd_map_over_sections (abfd,
8459 unrecord_section_via_map_over_sections, NULL);
8460
8461 return _bfd_free_cached_info (abfd);
8462 }
8463
8464 /* Create dynamic sections. This is different from the ARM backend in that
8465 the got, plt, gotplt and their relocation sections are all created in the
8466 standard part of the bfd elf backend. */
8467
8468 static bfd_boolean
8469 elfNN_aarch64_create_dynamic_sections (bfd *dynobj,
8470 struct bfd_link_info *info)
8471 {
8472 /* We need to create .got section. */
8473 if (!aarch64_elf_create_got_section (dynobj, info))
8474 return FALSE;
8475
8476 return _bfd_elf_create_dynamic_sections (dynobj, info);
8477 }
8478
8479
8480 /* Allocate space in .plt, .got and associated reloc sections for
8481 dynamic relocs. */
8482
8483 static bfd_boolean
8484 elfNN_aarch64_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8485 {
8486 struct bfd_link_info *info;
8487 struct elf_aarch64_link_hash_table *htab;
8488 struct elf_aarch64_link_hash_entry *eh;
8489 struct elf_dyn_relocs *p;
8490
8491 /* An example of a bfd_link_hash_indirect symbol is versioned
8492 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8493 -> __gxx_personality_v0(bfd_link_hash_defined)
8494
8495 There is no need to process bfd_link_hash_indirect symbols here
8496 because we will also be presented with the concrete instance of
8497 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8498 called to copy all relevant data from the generic to the concrete
8499 symbol instance. */
8500 if (h->root.type == bfd_link_hash_indirect)
8501 return TRUE;
8502
8503 if (h->root.type == bfd_link_hash_warning)
8504 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8505
8506 info = (struct bfd_link_info *) inf;
8507 htab = elf_aarch64_hash_table (info);
8508
8509 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8510 here if it is defined and referenced in a non-shared object. */
8511 if (h->type == STT_GNU_IFUNC
8512 && h->def_regular)
8513 return TRUE;
8514 else if (htab->root.dynamic_sections_created && h->plt.refcount > 0)
8515 {
8516 /* Make sure this symbol is output as a dynamic symbol.
8517 Undefined weak syms won't yet be marked as dynamic. */
8518 if (h->dynindx == -1 && !h->forced_local
8519 && h->root.type == bfd_link_hash_undefweak)
8520 {
8521 if (!bfd_elf_link_record_dynamic_symbol (info, h))
8522 return FALSE;
8523 }
8524
8525 if (bfd_link_pic (info) || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
8526 {
8527 asection *s = htab->root.splt;
8528
8529 /* If this is the first .plt entry, make room for the special
8530 first entry. */
8531 if (s->size == 0)
8532 s->size += htab->plt_header_size;
8533
8534 h->plt.offset = s->size;
8535
8536 /* If this symbol is not defined in a regular file, and we are
8537 not generating a shared library, then set the symbol to this
8538 location in the .plt. This is required to make function
8539 pointers compare as equal between the normal executable and
8540 the shared library. */
8541 if (!bfd_link_pic (info) && !h->def_regular)
8542 {
8543 h->root.u.def.section = s;
8544 h->root.u.def.value = h->plt.offset;
8545 }
8546
8547 /* Make room for this entry. For now we only create the
8548 small model PLT entries. We later need to find a way
8549 of relaxing into these from the large model PLT entries. */
8550 s->size += htab->plt_entry_size;
8551
8552 /* We also need to make an entry in the .got.plt section, which
8553 will be placed in the .got section by the linker script. */
8554 htab->root.sgotplt->size += GOT_ENTRY_SIZE;
8555
8556 /* We also need to make an entry in the .rela.plt section. */
8557 htab->root.srelplt->size += RELOC_SIZE (htab);
8558
8559 /* We need to ensure that all GOT entries that serve the PLT
8560 are consecutive with the special GOT slots [0] [1] and
8561 [2]. Any addtional relocations, such as
8562 R_AARCH64_TLSDESC, must be placed after the PLT related
8563 entries. We abuse the reloc_count such that during
8564 sizing we adjust reloc_count to indicate the number of
8565 PLT related reserved entries. In subsequent phases when
8566 filling in the contents of the reloc entries, PLT related
8567 entries are placed by computing their PLT index (0
8568 .. reloc_count). While other none PLT relocs are placed
8569 at the slot indicated by reloc_count and reloc_count is
8570 updated. */
8571
8572 htab->root.srelplt->reloc_count++;
8573
8574 /* Mark the DSO in case R_<CLS>_JUMP_SLOT relocs against
8575 variant PCS symbols are present. */
8576 if (h->other & STO_AARCH64_VARIANT_PCS)
8577 htab->variant_pcs = 1;
8578
8579 }
8580 else
8581 {
8582 h->plt.offset = (bfd_vma) - 1;
8583 h->needs_plt = 0;
8584 }
8585 }
8586 else
8587 {
8588 h->plt.offset = (bfd_vma) - 1;
8589 h->needs_plt = 0;
8590 }
8591
8592 eh = (struct elf_aarch64_link_hash_entry *) h;
8593 eh->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8594
8595 if (h->got.refcount > 0)
8596 {
8597 bfd_boolean dyn;
8598 unsigned got_type = elf_aarch64_hash_entry (h)->got_type;
8599
8600 h->got.offset = (bfd_vma) - 1;
8601
8602 dyn = htab->root.dynamic_sections_created;
8603
8604 /* Make sure this symbol is output as a dynamic symbol.
8605 Undefined weak syms won't yet be marked as dynamic. */
8606 if (dyn && h->dynindx == -1 && !h->forced_local
8607 && h->root.type == bfd_link_hash_undefweak)
8608 {
8609 if (!bfd_elf_link_record_dynamic_symbol (info, h))
8610 return FALSE;
8611 }
8612
8613 if (got_type == GOT_UNKNOWN)
8614 {
8615 }
8616 else if (got_type == GOT_NORMAL)
8617 {
8618 h->got.offset = htab->root.sgot->size;
8619 htab->root.sgot->size += GOT_ENTRY_SIZE;
8620 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8621 || h->root.type != bfd_link_hash_undefweak)
8622 && (bfd_link_pic (info)
8623 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
8624 /* Undefined weak symbol in static PIE resolves to 0 without
8625 any dynamic relocations. */
8626 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8627 {
8628 htab->root.srelgot->size += RELOC_SIZE (htab);
8629 }
8630 }
8631 else
8632 {
8633 int indx;
8634 if (got_type & GOT_TLSDESC_GD)
8635 {
8636 eh->tlsdesc_got_jump_table_offset =
8637 (htab->root.sgotplt->size
8638 - aarch64_compute_jump_table_size (htab));
8639 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8640 h->got.offset = (bfd_vma) - 2;
8641 }
8642
8643 if (got_type & GOT_TLS_GD)
8644 {
8645 h->got.offset = htab->root.sgot->size;
8646 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8647 }
8648
8649 if (got_type & GOT_TLS_IE)
8650 {
8651 h->got.offset = htab->root.sgot->size;
8652 htab->root.sgot->size += GOT_ENTRY_SIZE;
8653 }
8654
8655 indx = h && h->dynindx != -1 ? h->dynindx : 0;
8656 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8657 || h->root.type != bfd_link_hash_undefweak)
8658 && (!bfd_link_executable (info)
8659 || indx != 0
8660 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
8661 {
8662 if (got_type & GOT_TLSDESC_GD)
8663 {
8664 htab->root.srelplt->size += RELOC_SIZE (htab);
8665 /* Note reloc_count not incremented here! We have
8666 already adjusted reloc_count for this relocation
8667 type. */
8668
8669 /* TLSDESC PLT is now needed, but not yet determined. */
8670 htab->tlsdesc_plt = (bfd_vma) - 1;
8671 }
8672
8673 if (got_type & GOT_TLS_GD)
8674 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8675
8676 if (got_type & GOT_TLS_IE)
8677 htab->root.srelgot->size += RELOC_SIZE (htab);
8678 }
8679 }
8680 }
8681 else
8682 {
8683 h->got.offset = (bfd_vma) - 1;
8684 }
8685
8686 if (eh->dyn_relocs == NULL)
8687 return TRUE;
8688
8689 /* In the shared -Bsymbolic case, discard space allocated for
8690 dynamic pc-relative relocs against symbols which turn out to be
8691 defined in regular objects. For the normal shared case, discard
8692 space for pc-relative relocs that have become local due to symbol
8693 visibility changes. */
8694
8695 if (bfd_link_pic (info))
8696 {
8697 /* Relocs that use pc_count are those that appear on a call
8698 insn, or certain REL relocs that can generated via assembly.
8699 We want calls to protected symbols to resolve directly to the
8700 function rather than going via the plt. If people want
8701 function pointer comparisons to work as expected then they
8702 should avoid writing weird assembly. */
8703 if (SYMBOL_CALLS_LOCAL (info, h))
8704 {
8705 struct elf_dyn_relocs **pp;
8706
8707 for (pp = &eh->dyn_relocs; (p = *pp) != NULL;)
8708 {
8709 p->count -= p->pc_count;
8710 p->pc_count = 0;
8711 if (p->count == 0)
8712 *pp = p->next;
8713 else
8714 pp = &p->next;
8715 }
8716 }
8717
8718 /* Also discard relocs on undefined weak syms with non-default
8719 visibility. */
8720 if (eh->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak)
8721 {
8722 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8723 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8724 eh->dyn_relocs = NULL;
8725
8726 /* Make sure undefined weak symbols are output as a dynamic
8727 symbol in PIEs. */
8728 else if (h->dynindx == -1
8729 && !h->forced_local
8730 && h->root.type == bfd_link_hash_undefweak
8731 && !bfd_elf_link_record_dynamic_symbol (info, h))
8732 return FALSE;
8733 }
8734
8735 }
8736 else if (ELIMINATE_COPY_RELOCS)
8737 {
8738 /* For the non-shared case, discard space for relocs against
8739 symbols which turn out to need copy relocs or are not
8740 dynamic. */
8741
8742 if (!h->non_got_ref
8743 && ((h->def_dynamic
8744 && !h->def_regular)
8745 || (htab->root.dynamic_sections_created
8746 && (h->root.type == bfd_link_hash_undefweak
8747 || h->root.type == bfd_link_hash_undefined))))
8748 {
8749 /* Make sure this symbol is output as a dynamic symbol.
8750 Undefined weak syms won't yet be marked as dynamic. */
8751 if (h->dynindx == -1
8752 && !h->forced_local
8753 && h->root.type == bfd_link_hash_undefweak
8754 && !bfd_elf_link_record_dynamic_symbol (info, h))
8755 return FALSE;
8756
8757 /* If that succeeded, we know we'll be keeping all the
8758 relocs. */
8759 if (h->dynindx != -1)
8760 goto keep;
8761 }
8762
8763 eh->dyn_relocs = NULL;
8764
8765 keep:;
8766 }
8767
8768 /* Finally, allocate space. */
8769 for (p = eh->dyn_relocs; p != NULL; p = p->next)
8770 {
8771 asection *sreloc;
8772
8773 sreloc = elf_section_data (p->sec)->sreloc;
8774
8775 BFD_ASSERT (sreloc != NULL);
8776
8777 sreloc->size += p->count * RELOC_SIZE (htab);
8778 }
8779
8780 return TRUE;
8781 }
8782
8783 /* Allocate space in .plt, .got and associated reloc sections for
8784 ifunc dynamic relocs. */
8785
8786 static bfd_boolean
8787 elfNN_aarch64_allocate_ifunc_dynrelocs (struct elf_link_hash_entry *h,
8788 void *inf)
8789 {
8790 struct bfd_link_info *info;
8791 struct elf_aarch64_link_hash_table *htab;
8792 struct elf_aarch64_link_hash_entry *eh;
8793
8794 /* An example of a bfd_link_hash_indirect symbol is versioned
8795 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8796 -> __gxx_personality_v0(bfd_link_hash_defined)
8797
8798 There is no need to process bfd_link_hash_indirect symbols here
8799 because we will also be presented with the concrete instance of
8800 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8801 called to copy all relevant data from the generic to the concrete
8802 symbol instance. */
8803 if (h->root.type == bfd_link_hash_indirect)
8804 return TRUE;
8805
8806 if (h->root.type == bfd_link_hash_warning)
8807 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8808
8809 info = (struct bfd_link_info *) inf;
8810 htab = elf_aarch64_hash_table (info);
8811
8812 eh = (struct elf_aarch64_link_hash_entry *) h;
8813
8814 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8815 here if it is defined and referenced in a non-shared object. */
8816 if (h->type == STT_GNU_IFUNC
8817 && h->def_regular)
8818 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
8819 &eh->dyn_relocs,
8820 NULL,
8821 htab->plt_entry_size,
8822 htab->plt_header_size,
8823 GOT_ENTRY_SIZE,
8824 FALSE);
8825 return TRUE;
8826 }
8827
8828 /* Allocate space in .plt, .got and associated reloc sections for
8829 local ifunc dynamic relocs. */
8830
8831 static bfd_boolean
8832 elfNN_aarch64_allocate_local_ifunc_dynrelocs (void **slot, void *inf)
8833 {
8834 struct elf_link_hash_entry *h
8835 = (struct elf_link_hash_entry *) *slot;
8836
8837 if (h->type != STT_GNU_IFUNC
8838 || !h->def_regular
8839 || !h->ref_regular
8840 || !h->forced_local
8841 || h->root.type != bfd_link_hash_defined)
8842 abort ();
8843
8844 return elfNN_aarch64_allocate_ifunc_dynrelocs (h, inf);
8845 }
8846
8847 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
8848 read-only sections. */
8849
8850 static bfd_boolean
8851 maybe_set_textrel (struct elf_link_hash_entry *h, void *info_p)
8852 {
8853 asection *sec;
8854
8855 if (h->root.type == bfd_link_hash_indirect)
8856 return TRUE;
8857
8858 sec = readonly_dynrelocs (h);
8859 if (sec != NULL)
8860 {
8861 struct bfd_link_info *info = (struct bfd_link_info *) info_p;
8862
8863 info->flags |= DF_TEXTREL;
8864 info->callbacks->minfo
8865 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
8866 sec->owner, h->root.root.string, sec);
8867
8868 /* Not an error, just cut short the traversal. */
8869 return FALSE;
8870 }
8871 return TRUE;
8872 }
8873
8874 /* This is the most important function of all . Innocuosly named
8875 though ! */
8876
8877 static bfd_boolean
8878 elfNN_aarch64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
8879 struct bfd_link_info *info)
8880 {
8881 struct elf_aarch64_link_hash_table *htab;
8882 bfd *dynobj;
8883 asection *s;
8884 bfd_boolean relocs;
8885 bfd *ibfd;
8886
8887 htab = elf_aarch64_hash_table ((info));
8888 dynobj = htab->root.dynobj;
8889
8890 BFD_ASSERT (dynobj != NULL);
8891
8892 if (htab->root.dynamic_sections_created)
8893 {
8894 if (bfd_link_executable (info) && !info->nointerp)
8895 {
8896 s = bfd_get_linker_section (dynobj, ".interp");
8897 if (s == NULL)
8898 abort ();
8899 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
8900 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
8901 }
8902 }
8903
8904 /* Set up .got offsets for local syms, and space for local dynamic
8905 relocs. */
8906 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8907 {
8908 struct elf_aarch64_local_symbol *locals = NULL;
8909 Elf_Internal_Shdr *symtab_hdr;
8910 asection *srel;
8911 unsigned int i;
8912
8913 if (!is_aarch64_elf (ibfd))
8914 continue;
8915
8916 for (s = ibfd->sections; s != NULL; s = s->next)
8917 {
8918 struct elf_dyn_relocs *p;
8919
8920 for (p = (struct elf_dyn_relocs *)
8921 (elf_section_data (s)->local_dynrel); p != NULL; p = p->next)
8922 {
8923 if (!bfd_is_abs_section (p->sec)
8924 && bfd_is_abs_section (p->sec->output_section))
8925 {
8926 /* Input section has been discarded, either because
8927 it is a copy of a linkonce section or due to
8928 linker script /DISCARD/, so we'll be discarding
8929 the relocs too. */
8930 }
8931 else if (p->count != 0)
8932 {
8933 srel = elf_section_data (p->sec)->sreloc;
8934 srel->size += p->count * RELOC_SIZE (htab);
8935 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
8936 info->flags |= DF_TEXTREL;
8937 }
8938 }
8939 }
8940
8941 locals = elf_aarch64_locals (ibfd);
8942 if (!locals)
8943 continue;
8944
8945 symtab_hdr = &elf_symtab_hdr (ibfd);
8946 srel = htab->root.srelgot;
8947 for (i = 0; i < symtab_hdr->sh_info; i++)
8948 {
8949 locals[i].got_offset = (bfd_vma) - 1;
8950 locals[i].tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8951 if (locals[i].got_refcount > 0)
8952 {
8953 unsigned got_type = locals[i].got_type;
8954 if (got_type & GOT_TLSDESC_GD)
8955 {
8956 locals[i].tlsdesc_got_jump_table_offset =
8957 (htab->root.sgotplt->size
8958 - aarch64_compute_jump_table_size (htab));
8959 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8960 locals[i].got_offset = (bfd_vma) - 2;
8961 }
8962
8963 if (got_type & GOT_TLS_GD)
8964 {
8965 locals[i].got_offset = htab->root.sgot->size;
8966 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8967 }
8968
8969 if (got_type & GOT_TLS_IE
8970 || got_type & GOT_NORMAL)
8971 {
8972 locals[i].got_offset = htab->root.sgot->size;
8973 htab->root.sgot->size += GOT_ENTRY_SIZE;
8974 }
8975
8976 if (got_type == GOT_UNKNOWN)
8977 {
8978 }
8979
8980 if (bfd_link_pic (info))
8981 {
8982 if (got_type & GOT_TLSDESC_GD)
8983 {
8984 htab->root.srelplt->size += RELOC_SIZE (htab);
8985 /* Note RELOC_COUNT not incremented here! */
8986 htab->tlsdesc_plt = (bfd_vma) - 1;
8987 }
8988
8989 if (got_type & GOT_TLS_GD)
8990 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8991
8992 if (got_type & GOT_TLS_IE
8993 || got_type & GOT_NORMAL)
8994 htab->root.srelgot->size += RELOC_SIZE (htab);
8995 }
8996 }
8997 else
8998 {
8999 locals[i].got_refcount = (bfd_vma) - 1;
9000 }
9001 }
9002 }
9003
9004
9005 /* Allocate global sym .plt and .got entries, and space for global
9006 sym dynamic relocs. */
9007 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_dynrelocs,
9008 info);
9009
9010 /* Allocate global ifunc sym .plt and .got entries, and space for global
9011 ifunc sym dynamic relocs. */
9012 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_ifunc_dynrelocs,
9013 info);
9014
9015 /* Allocate .plt and .got entries, and space for local ifunc symbols. */
9016 htab_traverse (htab->loc_hash_table,
9017 elfNN_aarch64_allocate_local_ifunc_dynrelocs,
9018 info);
9019
9020 /* For every jump slot reserved in the sgotplt, reloc_count is
9021 incremented. However, when we reserve space for TLS descriptors,
9022 it's not incremented, so in order to compute the space reserved
9023 for them, it suffices to multiply the reloc count by the jump
9024 slot size. */
9025
9026 if (htab->root.srelplt)
9027 htab->sgotplt_jump_table_size = aarch64_compute_jump_table_size (htab);
9028
9029 if (htab->tlsdesc_plt)
9030 {
9031 if (htab->root.splt->size == 0)
9032 htab->root.splt->size += htab->plt_header_size;
9033
9034 /* If we're not using lazy TLS relocations, don't generate the
9035 GOT and PLT entry required. */
9036 if (!(info->flags & DF_BIND_NOW))
9037 {
9038 htab->tlsdesc_plt = htab->root.splt->size;
9039 htab->root.splt->size += htab->tlsdesc_plt_entry_size;
9040
9041 htab->dt_tlsdesc_got = htab->root.sgot->size;
9042 htab->root.sgot->size += GOT_ENTRY_SIZE;
9043 }
9044 }
9045
9046 /* Init mapping symbols information to use later to distingush between
9047 code and data while scanning for errata. */
9048 if (htab->fix_erratum_835769 || htab->fix_erratum_843419)
9049 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9050 {
9051 if (!is_aarch64_elf (ibfd))
9052 continue;
9053 bfd_elfNN_aarch64_init_maps (ibfd);
9054 }
9055
9056 /* We now have determined the sizes of the various dynamic sections.
9057 Allocate memory for them. */
9058 relocs = FALSE;
9059 for (s = dynobj->sections; s != NULL; s = s->next)
9060 {
9061 if ((s->flags & SEC_LINKER_CREATED) == 0)
9062 continue;
9063
9064 if (s == htab->root.splt
9065 || s == htab->root.sgot
9066 || s == htab->root.sgotplt
9067 || s == htab->root.iplt
9068 || s == htab->root.igotplt
9069 || s == htab->root.sdynbss
9070 || s == htab->root.sdynrelro)
9071 {
9072 /* Strip this section if we don't need it; see the
9073 comment below. */
9074 }
9075 else if (CONST_STRNEQ (bfd_section_name (s), ".rela"))
9076 {
9077 if (s->size != 0 && s != htab->root.srelplt)
9078 relocs = TRUE;
9079
9080 /* We use the reloc_count field as a counter if we need
9081 to copy relocs into the output file. */
9082 if (s != htab->root.srelplt)
9083 s->reloc_count = 0;
9084 }
9085 else
9086 {
9087 /* It's not one of our sections, so don't allocate space. */
9088 continue;
9089 }
9090
9091 if (s->size == 0)
9092 {
9093 /* If we don't need this section, strip it from the
9094 output file. This is mostly to handle .rela.bss and
9095 .rela.plt. We must create both sections in
9096 create_dynamic_sections, because they must be created
9097 before the linker maps input sections to output
9098 sections. The linker does that before
9099 adjust_dynamic_symbol is called, and it is that
9100 function which decides whether anything needs to go
9101 into these sections. */
9102 s->flags |= SEC_EXCLUDE;
9103 continue;
9104 }
9105
9106 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9107 continue;
9108
9109 /* Allocate memory for the section contents. We use bfd_zalloc
9110 here in case unused entries are not reclaimed before the
9111 section's contents are written out. This should not happen,
9112 but this way if it does, we get a R_AARCH64_NONE reloc instead
9113 of garbage. */
9114 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
9115 if (s->contents == NULL)
9116 return FALSE;
9117 }
9118
9119 if (htab->root.dynamic_sections_created)
9120 {
9121 /* Add some entries to the .dynamic section. We fill in the
9122 values later, in elfNN_aarch64_finish_dynamic_sections, but we
9123 must add the entries now so that we get the correct size for
9124 the .dynamic section. The DT_DEBUG entry is filled in by the
9125 dynamic linker and used by the debugger. */
9126 #define add_dynamic_entry(TAG, VAL) \
9127 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
9128
9129 if (bfd_link_executable (info))
9130 {
9131 if (!add_dynamic_entry (DT_DEBUG, 0))
9132 return FALSE;
9133 }
9134
9135 if (htab->root.splt->size != 0)
9136 {
9137 if (!add_dynamic_entry (DT_PLTGOT, 0)
9138 || !add_dynamic_entry (DT_PLTRELSZ, 0)
9139 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
9140 || !add_dynamic_entry (DT_JMPREL, 0))
9141 return FALSE;
9142
9143 if (htab->variant_pcs
9144 && !add_dynamic_entry (DT_AARCH64_VARIANT_PCS, 0))
9145 return FALSE;
9146
9147 if (htab->tlsdesc_plt
9148 && !(info->flags & DF_BIND_NOW)
9149 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
9150 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
9151 return FALSE;
9152
9153 if ((elf_aarch64_tdata (output_bfd)->plt_type == PLT_BTI_PAC)
9154 && (!add_dynamic_entry (DT_AARCH64_BTI_PLT, 0)
9155 || !add_dynamic_entry (DT_AARCH64_PAC_PLT, 0)))
9156 return FALSE;
9157
9158 else if ((elf_aarch64_tdata (output_bfd)->plt_type == PLT_BTI)
9159 && !add_dynamic_entry (DT_AARCH64_BTI_PLT, 0))
9160 return FALSE;
9161
9162 else if ((elf_aarch64_tdata (output_bfd)->plt_type == PLT_PAC)
9163 && !add_dynamic_entry (DT_AARCH64_PAC_PLT, 0))
9164 return FALSE;
9165 }
9166
9167 if (relocs)
9168 {
9169 if (!add_dynamic_entry (DT_RELA, 0)
9170 || !add_dynamic_entry (DT_RELASZ, 0)
9171 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
9172 return FALSE;
9173
9174 /* If any dynamic relocs apply to a read-only section,
9175 then we need a DT_TEXTREL entry. */
9176 if ((info->flags & DF_TEXTREL) == 0)
9177 elf_link_hash_traverse (&htab->root, maybe_set_textrel, info);
9178
9179 if ((info->flags & DF_TEXTREL) != 0)
9180 {
9181 if (!add_dynamic_entry (DT_TEXTREL, 0))
9182 return FALSE;
9183 }
9184 }
9185 }
9186 #undef add_dynamic_entry
9187
9188 return TRUE;
9189 }
9190
9191 static inline void
9192 elf_aarch64_update_plt_entry (bfd *output_bfd,
9193 bfd_reloc_code_real_type r_type,
9194 bfd_byte *plt_entry, bfd_vma value)
9195 {
9196 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (r_type);
9197
9198 /* FIXME: We should check the return value from this function call. */
9199 (void) _bfd_aarch64_elf_put_addend (output_bfd, plt_entry, r_type, howto, value);
9200 }
9201
9202 static void
9203 elfNN_aarch64_create_small_pltn_entry (struct elf_link_hash_entry *h,
9204 struct elf_aarch64_link_hash_table
9205 *htab, bfd *output_bfd,
9206 struct bfd_link_info *info)
9207 {
9208 bfd_byte *plt_entry;
9209 bfd_vma plt_index;
9210 bfd_vma got_offset;
9211 bfd_vma gotplt_entry_address;
9212 bfd_vma plt_entry_address;
9213 Elf_Internal_Rela rela;
9214 bfd_byte *loc;
9215 asection *plt, *gotplt, *relplt;
9216
9217 /* When building a static executable, use .iplt, .igot.plt and
9218 .rela.iplt sections for STT_GNU_IFUNC symbols. */
9219 if (htab->root.splt != NULL)
9220 {
9221 plt = htab->root.splt;
9222 gotplt = htab->root.sgotplt;
9223 relplt = htab->root.srelplt;
9224 }
9225 else
9226 {
9227 plt = htab->root.iplt;
9228 gotplt = htab->root.igotplt;
9229 relplt = htab->root.irelplt;
9230 }
9231
9232 /* Get the index in the procedure linkage table which
9233 corresponds to this symbol. This is the index of this symbol
9234 in all the symbols for which we are making plt entries. The
9235 first entry in the procedure linkage table is reserved.
9236
9237 Get the offset into the .got table of the entry that
9238 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
9239 bytes. The first three are reserved for the dynamic linker.
9240
9241 For static executables, we don't reserve anything. */
9242
9243 if (plt == htab->root.splt)
9244 {
9245 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
9246 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
9247 }
9248 else
9249 {
9250 plt_index = h->plt.offset / htab->plt_entry_size;
9251 got_offset = plt_index * GOT_ENTRY_SIZE;
9252 }
9253
9254 plt_entry = plt->contents + h->plt.offset;
9255 plt_entry_address = plt->output_section->vma
9256 + plt->output_offset + h->plt.offset;
9257 gotplt_entry_address = gotplt->output_section->vma +
9258 gotplt->output_offset + got_offset;
9259
9260 /* Copy in the boiler-plate for the PLTn entry. */
9261 memcpy (plt_entry, htab->plt_entry, htab->plt_entry_size);
9262
9263 /* First instruction in BTI enabled PLT stub is a BTI
9264 instruction so skip it. */
9265 if (elf_aarch64_tdata (output_bfd)->plt_type & PLT_BTI
9266 && elf_elfheader (output_bfd)->e_type == ET_EXEC)
9267 plt_entry = plt_entry + 4;
9268
9269 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
9270 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
9271 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9272 plt_entry,
9273 PG (gotplt_entry_address) -
9274 PG (plt_entry_address));
9275
9276 /* Fill in the lo12 bits for the load from the pltgot. */
9277 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
9278 plt_entry + 4,
9279 PG_OFFSET (gotplt_entry_address));
9280
9281 /* Fill in the lo12 bits for the add from the pltgot entry. */
9282 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
9283 plt_entry + 8,
9284 PG_OFFSET (gotplt_entry_address));
9285
9286 /* All the GOTPLT Entries are essentially initialized to PLT0. */
9287 bfd_put_NN (output_bfd,
9288 plt->output_section->vma + plt->output_offset,
9289 gotplt->contents + got_offset);
9290
9291 rela.r_offset = gotplt_entry_address;
9292
9293 if (h->dynindx == -1
9294 || ((bfd_link_executable (info)
9295 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9296 && h->def_regular
9297 && h->type == STT_GNU_IFUNC))
9298 {
9299 /* If an STT_GNU_IFUNC symbol is locally defined, generate
9300 R_AARCH64_IRELATIVE instead of R_AARCH64_JUMP_SLOT. */
9301 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
9302 rela.r_addend = (h->root.u.def.value
9303 + h->root.u.def.section->output_section->vma
9304 + h->root.u.def.section->output_offset);
9305 }
9306 else
9307 {
9308 /* Fill in the entry in the .rela.plt section. */
9309 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (JUMP_SLOT));
9310 rela.r_addend = 0;
9311 }
9312
9313 /* Compute the relocation entry to used based on PLT index and do
9314 not adjust reloc_count. The reloc_count has already been adjusted
9315 to account for this entry. */
9316 loc = relplt->contents + plt_index * RELOC_SIZE (htab);
9317 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9318 }
9319
9320 /* Size sections even though they're not dynamic. We use it to setup
9321 _TLS_MODULE_BASE_, if needed. */
9322
9323 static bfd_boolean
9324 elfNN_aarch64_always_size_sections (bfd *output_bfd,
9325 struct bfd_link_info *info)
9326 {
9327 asection *tls_sec;
9328
9329 if (bfd_link_relocatable (info))
9330 return TRUE;
9331
9332 tls_sec = elf_hash_table (info)->tls_sec;
9333
9334 if (tls_sec)
9335 {
9336 struct elf_link_hash_entry *tlsbase;
9337
9338 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
9339 "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
9340
9341 if (tlsbase)
9342 {
9343 struct bfd_link_hash_entry *h = NULL;
9344 const struct elf_backend_data *bed =
9345 get_elf_backend_data (output_bfd);
9346
9347 if (!(_bfd_generic_link_add_one_symbol
9348 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
9349 tls_sec, 0, NULL, FALSE, bed->collect, &h)))
9350 return FALSE;
9351
9352 tlsbase->type = STT_TLS;
9353 tlsbase = (struct elf_link_hash_entry *) h;
9354 tlsbase->def_regular = 1;
9355 tlsbase->other = STV_HIDDEN;
9356 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
9357 }
9358 }
9359
9360 return TRUE;
9361 }
9362
9363 /* Finish up dynamic symbol handling. We set the contents of various
9364 dynamic sections here. */
9365
9366 static bfd_boolean
9367 elfNN_aarch64_finish_dynamic_symbol (bfd *output_bfd,
9368 struct bfd_link_info *info,
9369 struct elf_link_hash_entry *h,
9370 Elf_Internal_Sym *sym)
9371 {
9372 struct elf_aarch64_link_hash_table *htab;
9373 htab = elf_aarch64_hash_table (info);
9374
9375 if (h->plt.offset != (bfd_vma) - 1)
9376 {
9377 asection *plt, *gotplt, *relplt;
9378
9379 /* This symbol has an entry in the procedure linkage table. Set
9380 it up. */
9381
9382 /* When building a static executable, use .iplt, .igot.plt and
9383 .rela.iplt sections for STT_GNU_IFUNC symbols. */
9384 if (htab->root.splt != NULL)
9385 {
9386 plt = htab->root.splt;
9387 gotplt = htab->root.sgotplt;
9388 relplt = htab->root.srelplt;
9389 }
9390 else
9391 {
9392 plt = htab->root.iplt;
9393 gotplt = htab->root.igotplt;
9394 relplt = htab->root.irelplt;
9395 }
9396
9397 /* This symbol has an entry in the procedure linkage table. Set
9398 it up. */
9399 if ((h->dynindx == -1
9400 && !((h->forced_local || bfd_link_executable (info))
9401 && h->def_regular
9402 && h->type == STT_GNU_IFUNC))
9403 || plt == NULL
9404 || gotplt == NULL
9405 || relplt == NULL)
9406 return FALSE;
9407
9408 elfNN_aarch64_create_small_pltn_entry (h, htab, output_bfd, info);
9409 if (!h->def_regular)
9410 {
9411 /* Mark the symbol as undefined, rather than as defined in
9412 the .plt section. */
9413 sym->st_shndx = SHN_UNDEF;
9414 /* If the symbol is weak we need to clear the value.
9415 Otherwise, the PLT entry would provide a definition for
9416 the symbol even if the symbol wasn't defined anywhere,
9417 and so the symbol would never be NULL. Leave the value if
9418 there were any relocations where pointer equality matters
9419 (this is a clue for the dynamic linker, to make function
9420 pointer comparisons work between an application and shared
9421 library). */
9422 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
9423 sym->st_value = 0;
9424 }
9425 }
9426
9427 if (h->got.offset != (bfd_vma) - 1
9428 && elf_aarch64_hash_entry (h)->got_type == GOT_NORMAL
9429 /* Undefined weak symbol in static PIE resolves to 0 without
9430 any dynamic relocations. */
9431 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9432 {
9433 Elf_Internal_Rela rela;
9434 bfd_byte *loc;
9435
9436 /* This symbol has an entry in the global offset table. Set it
9437 up. */
9438 if (htab->root.sgot == NULL || htab->root.srelgot == NULL)
9439 abort ();
9440
9441 rela.r_offset = (htab->root.sgot->output_section->vma
9442 + htab->root.sgot->output_offset
9443 + (h->got.offset & ~(bfd_vma) 1));
9444
9445 if (h->def_regular
9446 && h->type == STT_GNU_IFUNC)
9447 {
9448 if (bfd_link_pic (info))
9449 {
9450 /* Generate R_AARCH64_GLOB_DAT. */
9451 goto do_glob_dat;
9452 }
9453 else
9454 {
9455 asection *plt;
9456
9457 if (!h->pointer_equality_needed)
9458 abort ();
9459
9460 /* For non-shared object, we can't use .got.plt, which
9461 contains the real function address if we need pointer
9462 equality. We load the GOT entry with the PLT entry. */
9463 plt = htab->root.splt ? htab->root.splt : htab->root.iplt;
9464 bfd_put_NN (output_bfd, (plt->output_section->vma
9465 + plt->output_offset
9466 + h->plt.offset),
9467 htab->root.sgot->contents
9468 + (h->got.offset & ~(bfd_vma) 1));
9469 return TRUE;
9470 }
9471 }
9472 else if (bfd_link_pic (info) && SYMBOL_REFERENCES_LOCAL (info, h))
9473 {
9474 if (!(h->def_regular || ELF_COMMON_DEF_P (h)))
9475 return FALSE;
9476
9477 BFD_ASSERT ((h->got.offset & 1) != 0);
9478 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
9479 rela.r_addend = (h->root.u.def.value
9480 + h->root.u.def.section->output_section->vma
9481 + h->root.u.def.section->output_offset);
9482 }
9483 else
9484 {
9485 do_glob_dat:
9486 BFD_ASSERT ((h->got.offset & 1) == 0);
9487 bfd_put_NN (output_bfd, (bfd_vma) 0,
9488 htab->root.sgot->contents + h->got.offset);
9489 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (GLOB_DAT));
9490 rela.r_addend = 0;
9491 }
9492
9493 loc = htab->root.srelgot->contents;
9494 loc += htab->root.srelgot->reloc_count++ * RELOC_SIZE (htab);
9495 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9496 }
9497
9498 if (h->needs_copy)
9499 {
9500 Elf_Internal_Rela rela;
9501 asection *s;
9502 bfd_byte *loc;
9503
9504 /* This symbol needs a copy reloc. Set it up. */
9505 if (h->dynindx == -1
9506 || (h->root.type != bfd_link_hash_defined
9507 && h->root.type != bfd_link_hash_defweak)
9508 || htab->root.srelbss == NULL)
9509 abort ();
9510
9511 rela.r_offset = (h->root.u.def.value
9512 + h->root.u.def.section->output_section->vma
9513 + h->root.u.def.section->output_offset);
9514 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (COPY));
9515 rela.r_addend = 0;
9516 if (h->root.u.def.section == htab->root.sdynrelro)
9517 s = htab->root.sreldynrelro;
9518 else
9519 s = htab->root.srelbss;
9520 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
9521 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9522 }
9523
9524 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
9525 be NULL for local symbols. */
9526 if (sym != NULL
9527 && (h == elf_hash_table (info)->hdynamic
9528 || h == elf_hash_table (info)->hgot))
9529 sym->st_shndx = SHN_ABS;
9530
9531 return TRUE;
9532 }
9533
9534 /* Finish up local dynamic symbol handling. We set the contents of
9535 various dynamic sections here. */
9536
9537 static bfd_boolean
9538 elfNN_aarch64_finish_local_dynamic_symbol (void **slot, void *inf)
9539 {
9540 struct elf_link_hash_entry *h
9541 = (struct elf_link_hash_entry *) *slot;
9542 struct bfd_link_info *info
9543 = (struct bfd_link_info *) inf;
9544
9545 return elfNN_aarch64_finish_dynamic_symbol (info->output_bfd,
9546 info, h, NULL);
9547 }
9548
9549 static void
9550 elfNN_aarch64_init_small_plt0_entry (bfd *output_bfd ATTRIBUTE_UNUSED,
9551 struct elf_aarch64_link_hash_table
9552 *htab)
9553 {
9554 /* Fill in PLT0. Fixme:RR Note this doesn't distinguish between
9555 small and large plts and at the minute just generates
9556 the small PLT. */
9557
9558 /* PLT0 of the small PLT looks like this in ELF64 -
9559 stp x16, x30, [sp, #-16]! // Save the reloc and lr on stack.
9560 adrp x16, PLT_GOT + 16 // Get the page base of the GOTPLT
9561 ldr x17, [x16, #:lo12:PLT_GOT+16] // Load the address of the
9562 // symbol resolver
9563 add x16, x16, #:lo12:PLT_GOT+16 // Load the lo12 bits of the
9564 // GOTPLT entry for this.
9565 br x17
9566 PLT0 will be slightly different in ELF32 due to different got entry
9567 size. */
9568 bfd_vma plt_got_2nd_ent; /* Address of GOT[2]. */
9569 bfd_vma plt_base;
9570
9571
9572 memcpy (htab->root.splt->contents, htab->plt0_entry,
9573 htab->plt_header_size);
9574 elf_section_data (htab->root.splt->output_section)->this_hdr.sh_entsize =
9575 htab->plt_header_size;
9576
9577 plt_got_2nd_ent = (htab->root.sgotplt->output_section->vma
9578 + htab->root.sgotplt->output_offset
9579 + GOT_ENTRY_SIZE * 2);
9580
9581 plt_base = htab->root.splt->output_section->vma +
9582 htab->root.splt->output_offset;
9583
9584 /* First instruction in BTI enabled PLT stub is a BTI
9585 instruction so skip it. */
9586 bfd_byte *plt0_entry = htab->root.splt->contents;
9587 if (elf_aarch64_tdata (output_bfd)->plt_type & PLT_BTI)
9588 plt0_entry = plt0_entry + 4;
9589
9590 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
9591 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
9592 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9593 plt0_entry + 4,
9594 PG (plt_got_2nd_ent) - PG (plt_base + 4));
9595
9596 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
9597 plt0_entry + 8,
9598 PG_OFFSET (plt_got_2nd_ent));
9599
9600 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
9601 plt0_entry + 12,
9602 PG_OFFSET (plt_got_2nd_ent));
9603 }
9604
9605 static bfd_boolean
9606 elfNN_aarch64_finish_dynamic_sections (bfd *output_bfd,
9607 struct bfd_link_info *info)
9608 {
9609 struct elf_aarch64_link_hash_table *htab;
9610 bfd *dynobj;
9611 asection *sdyn;
9612
9613 htab = elf_aarch64_hash_table (info);
9614 dynobj = htab->root.dynobj;
9615 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
9616
9617 if (htab->root.dynamic_sections_created)
9618 {
9619 ElfNN_External_Dyn *dyncon, *dynconend;
9620
9621 if (sdyn == NULL || htab->root.sgot == NULL)
9622 abort ();
9623
9624 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
9625 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
9626 for (; dyncon < dynconend; dyncon++)
9627 {
9628 Elf_Internal_Dyn dyn;
9629 asection *s;
9630
9631 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
9632
9633 switch (dyn.d_tag)
9634 {
9635 default:
9636 continue;
9637
9638 case DT_PLTGOT:
9639 s = htab->root.sgotplt;
9640 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9641 break;
9642
9643 case DT_JMPREL:
9644 s = htab->root.srelplt;
9645 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9646 break;
9647
9648 case DT_PLTRELSZ:
9649 s = htab->root.srelplt;
9650 dyn.d_un.d_val = s->size;
9651 break;
9652
9653 case DT_TLSDESC_PLT:
9654 s = htab->root.splt;
9655 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9656 + htab->tlsdesc_plt;
9657 break;
9658
9659 case DT_TLSDESC_GOT:
9660 s = htab->root.sgot;
9661 BFD_ASSERT (htab->dt_tlsdesc_got != (bfd_vma)-1);
9662 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9663 + htab->dt_tlsdesc_got;
9664 break;
9665 }
9666
9667 bfd_elfNN_swap_dyn_out (output_bfd, &dyn, dyncon);
9668 }
9669
9670 }
9671
9672 /* Fill in the special first entry in the procedure linkage table. */
9673 if (htab->root.splt && htab->root.splt->size > 0)
9674 {
9675 elfNN_aarch64_init_small_plt0_entry (output_bfd, htab);
9676
9677 elf_section_data (htab->root.splt->output_section)->
9678 this_hdr.sh_entsize = htab->plt_entry_size;
9679
9680
9681 if (htab->tlsdesc_plt && !(info->flags & DF_BIND_NOW))
9682 {
9683 BFD_ASSERT (htab->dt_tlsdesc_got != (bfd_vma)-1);
9684 bfd_put_NN (output_bfd, (bfd_vma) 0,
9685 htab->root.sgot->contents + htab->dt_tlsdesc_got);
9686
9687 const bfd_byte *entry = elfNN_aarch64_tlsdesc_small_plt_entry;
9688 htab->tlsdesc_plt_entry_size = PLT_TLSDESC_ENTRY_SIZE;
9689
9690 aarch64_plt_type type = elf_aarch64_tdata (output_bfd)->plt_type;
9691 if (type == PLT_BTI || type == PLT_BTI_PAC)
9692 {
9693 entry = elfNN_aarch64_tlsdesc_small_plt_bti_entry;
9694 }
9695
9696 memcpy (htab->root.splt->contents + htab->tlsdesc_plt,
9697 entry, htab->tlsdesc_plt_entry_size);
9698
9699 {
9700 bfd_vma adrp1_addr =
9701 htab->root.splt->output_section->vma
9702 + htab->root.splt->output_offset + htab->tlsdesc_plt + 4;
9703
9704 bfd_vma adrp2_addr = adrp1_addr + 4;
9705
9706 bfd_vma got_addr =
9707 htab->root.sgot->output_section->vma
9708 + htab->root.sgot->output_offset;
9709
9710 bfd_vma pltgot_addr =
9711 htab->root.sgotplt->output_section->vma
9712 + htab->root.sgotplt->output_offset;
9713
9714 bfd_vma dt_tlsdesc_got = got_addr + htab->dt_tlsdesc_got;
9715
9716 bfd_byte *plt_entry =
9717 htab->root.splt->contents + htab->tlsdesc_plt;
9718
9719 /* First instruction in BTI enabled PLT stub is a BTI
9720 instruction so skip it. */
9721 if (type & PLT_BTI)
9722 {
9723 plt_entry = plt_entry + 4;
9724 adrp1_addr = adrp1_addr + 4;
9725 adrp2_addr = adrp2_addr + 4;
9726 }
9727
9728 /* adrp x2, DT_TLSDESC_GOT */
9729 elf_aarch64_update_plt_entry (output_bfd,
9730 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9731 plt_entry + 4,
9732 (PG (dt_tlsdesc_got)
9733 - PG (adrp1_addr)));
9734
9735 /* adrp x3, 0 */
9736 elf_aarch64_update_plt_entry (output_bfd,
9737 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9738 plt_entry + 8,
9739 (PG (pltgot_addr)
9740 - PG (adrp2_addr)));
9741
9742 /* ldr x2, [x2, #0] */
9743 elf_aarch64_update_plt_entry (output_bfd,
9744 BFD_RELOC_AARCH64_LDSTNN_LO12,
9745 plt_entry + 12,
9746 PG_OFFSET (dt_tlsdesc_got));
9747
9748 /* add x3, x3, 0 */
9749 elf_aarch64_update_plt_entry (output_bfd,
9750 BFD_RELOC_AARCH64_ADD_LO12,
9751 plt_entry + 16,
9752 PG_OFFSET (pltgot_addr));
9753 }
9754 }
9755 }
9756
9757 if (htab->root.sgotplt)
9758 {
9759 if (bfd_is_abs_section (htab->root.sgotplt->output_section))
9760 {
9761 _bfd_error_handler
9762 (_("discarded output section: `%pA'"), htab->root.sgotplt);
9763 return FALSE;
9764 }
9765
9766 /* Fill in the first three entries in the global offset table. */
9767 if (htab->root.sgotplt->size > 0)
9768 {
9769 bfd_put_NN (output_bfd, (bfd_vma) 0, htab->root.sgotplt->contents);
9770
9771 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
9772 bfd_put_NN (output_bfd,
9773 (bfd_vma) 0,
9774 htab->root.sgotplt->contents + GOT_ENTRY_SIZE);
9775 bfd_put_NN (output_bfd,
9776 (bfd_vma) 0,
9777 htab->root.sgotplt->contents + GOT_ENTRY_SIZE * 2);
9778 }
9779
9780 if (htab->root.sgot)
9781 {
9782 if (htab->root.sgot->size > 0)
9783 {
9784 bfd_vma addr =
9785 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0;
9786 bfd_put_NN (output_bfd, addr, htab->root.sgot->contents);
9787 }
9788 }
9789
9790 elf_section_data (htab->root.sgotplt->output_section)->
9791 this_hdr.sh_entsize = GOT_ENTRY_SIZE;
9792 }
9793
9794 if (htab->root.sgot && htab->root.sgot->size > 0)
9795 elf_section_data (htab->root.sgot->output_section)->this_hdr.sh_entsize
9796 = GOT_ENTRY_SIZE;
9797
9798 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
9799 htab_traverse (htab->loc_hash_table,
9800 elfNN_aarch64_finish_local_dynamic_symbol,
9801 info);
9802
9803 return TRUE;
9804 }
9805
9806 /* Check if BTI enabled PLTs are needed. Returns the type needed. */
9807 static aarch64_plt_type
9808 get_plt_type (bfd *abfd)
9809 {
9810 aarch64_plt_type ret = PLT_NORMAL;
9811 bfd_byte *contents, *extdyn, *extdynend;
9812 asection *sec = bfd_get_section_by_name (abfd, ".dynamic");
9813 if (!sec || !bfd_malloc_and_get_section (abfd, sec, &contents))
9814 return ret;
9815 extdyn = contents;
9816 extdynend = contents + sec->size;
9817 for (; extdyn < extdynend; extdyn += sizeof (ElfNN_External_Dyn))
9818 {
9819 Elf_Internal_Dyn dyn;
9820 bfd_elfNN_swap_dyn_in (abfd, extdyn, &dyn);
9821
9822 /* Let's check the processor specific dynamic array tags. */
9823 bfd_vma tag = dyn.d_tag;
9824 if (tag < DT_LOPROC || tag > DT_HIPROC)
9825 continue;
9826
9827 switch (tag)
9828 {
9829 case DT_AARCH64_BTI_PLT:
9830 ret |= PLT_BTI;
9831 break;
9832
9833 case DT_AARCH64_PAC_PLT:
9834 ret |= PLT_PAC;
9835 break;
9836
9837 default: break;
9838 }
9839 }
9840 free (contents);
9841 return ret;
9842 }
9843
9844 static long
9845 elfNN_aarch64_get_synthetic_symtab (bfd *abfd,
9846 long symcount,
9847 asymbol **syms,
9848 long dynsymcount,
9849 asymbol **dynsyms,
9850 asymbol **ret)
9851 {
9852 elf_aarch64_tdata (abfd)->plt_type = get_plt_type (abfd);
9853 return _bfd_elf_get_synthetic_symtab (abfd, symcount, syms,
9854 dynsymcount, dynsyms, ret);
9855 }
9856
9857 /* Return address for Ith PLT stub in section PLT, for relocation REL
9858 or (bfd_vma) -1 if it should not be included. */
9859
9860 static bfd_vma
9861 elfNN_aarch64_plt_sym_val (bfd_vma i, const asection *plt,
9862 const arelent *rel ATTRIBUTE_UNUSED)
9863 {
9864 size_t plt0_size = PLT_ENTRY_SIZE;
9865 size_t pltn_size = PLT_SMALL_ENTRY_SIZE;
9866
9867 if (elf_aarch64_tdata (plt->owner)->plt_type == PLT_BTI_PAC)
9868 {
9869 if (elf_elfheader (plt->owner)->e_type == ET_EXEC)
9870 pltn_size = PLT_BTI_PAC_SMALL_ENTRY_SIZE;
9871 else
9872 pltn_size = PLT_PAC_SMALL_ENTRY_SIZE;
9873 }
9874 else if (elf_aarch64_tdata (plt->owner)->plt_type == PLT_BTI)
9875 {
9876 if (elf_elfheader (plt->owner)->e_type == ET_EXEC)
9877 pltn_size = PLT_BTI_SMALL_ENTRY_SIZE;
9878 }
9879 else if (elf_aarch64_tdata (plt->owner)->plt_type == PLT_PAC)
9880 {
9881 pltn_size = PLT_PAC_SMALL_ENTRY_SIZE;
9882 }
9883
9884 return plt->vma + plt0_size + i * pltn_size;
9885 }
9886
9887 /* Returns TRUE if NAME is an AArch64 mapping symbol.
9888 The ARM ELF standard defines $x (for A64 code) and $d (for data).
9889 It also allows a period initiated suffix to be added to the symbol, ie:
9890 "$[adtx]\.[:sym_char]+". */
9891
9892 static bfd_boolean
9893 is_aarch64_mapping_symbol (const char * name)
9894 {
9895 return name != NULL /* Paranoia. */
9896 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
9897 the mapping symbols could have acquired a prefix.
9898 We do not support this here, since such symbols no
9899 longer conform to the ARM ELF ABI. */
9900 && (name[1] == 'd' || name[1] == 'x')
9901 && (name[2] == 0 || name[2] == '.');
9902 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
9903 any characters that follow the period are legal characters for the body
9904 of a symbol's name. For now we just assume that this is the case. */
9905 }
9906
9907 /* Make sure that mapping symbols in object files are not removed via the
9908 "strip --strip-unneeded" tool. These symbols might needed in order to
9909 correctly generate linked files. Once an object file has been linked,
9910 it should be safe to remove them. */
9911
9912 static void
9913 elfNN_aarch64_backend_symbol_processing (bfd *abfd, asymbol *sym)
9914 {
9915 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
9916 && sym->section != bfd_abs_section_ptr
9917 && is_aarch64_mapping_symbol (sym->name))
9918 sym->flags |= BSF_KEEP;
9919 }
9920
9921 /* Implement elf_backend_setup_gnu_properties for AArch64. It serves as a
9922 wrapper function for _bfd_aarch64_elf_link_setup_gnu_properties to account
9923 for the effect of GNU properties of the output_bfd. */
9924 static bfd *
9925 elfNN_aarch64_link_setup_gnu_properties (struct bfd_link_info *info)
9926 {
9927 uint32_t prop = elf_aarch64_tdata (info->output_bfd)->gnu_and_prop;
9928 bfd *pbfd = _bfd_aarch64_elf_link_setup_gnu_properties (info, &prop);
9929 elf_aarch64_tdata (info->output_bfd)->gnu_and_prop = prop;
9930 elf_aarch64_tdata (info->output_bfd)->plt_type
9931 |= (prop & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) ? PLT_BTI : 0;
9932 setup_plt_values (info, elf_aarch64_tdata (info->output_bfd)->plt_type);
9933 return pbfd;
9934 }
9935
9936 /* Implement elf_backend_merge_gnu_properties for AArch64. It serves as a
9937 wrapper function for _bfd_aarch64_elf_merge_gnu_properties to account
9938 for the effect of GNU properties of the output_bfd. */
9939 static bfd_boolean
9940 elfNN_aarch64_merge_gnu_properties (struct bfd_link_info *info,
9941 bfd *abfd, bfd *bbfd,
9942 elf_property *aprop,
9943 elf_property *bprop)
9944 {
9945 uint32_t prop
9946 = elf_aarch64_tdata (info->output_bfd)->gnu_and_prop;
9947
9948 /* If output has been marked with BTI using command line argument, give out
9949 warning if necessary. */
9950 /* Properties are merged per type, hence only check for warnings when merging
9951 GNU_PROPERTY_AARCH64_FEATURE_1_AND. */
9952 if (((aprop && aprop->pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND)
9953 || (bprop && bprop->pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND))
9954 && (prop & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
9955 && (!elf_aarch64_tdata (info->output_bfd)->no_bti_warn))
9956 {
9957 if ((aprop && !(aprop->u.number & GNU_PROPERTY_AARCH64_FEATURE_1_BTI))
9958 || !aprop)
9959 {
9960 _bfd_error_handler (_("%pB: warning: BTI turned on by -z force-bti when "
9961 "all inputs do not have BTI in NOTE section."),
9962 abfd);
9963 }
9964 if ((bprop && !(bprop->u.number & GNU_PROPERTY_AARCH64_FEATURE_1_BTI))
9965 || !bprop)
9966 {
9967 _bfd_error_handler (_("%pB: warning: BTI turned on by -z force-bti when "
9968 "all inputs do not have BTI in NOTE section."),
9969 bbfd);
9970 }
9971 }
9972
9973 return _bfd_aarch64_elf_merge_gnu_properties (info, abfd, aprop,
9974 bprop, prop);
9975 }
9976
9977 /* We use this so we can override certain functions
9978 (though currently we don't). */
9979
9980 const struct elf_size_info elfNN_aarch64_size_info =
9981 {
9982 sizeof (ElfNN_External_Ehdr),
9983 sizeof (ElfNN_External_Phdr),
9984 sizeof (ElfNN_External_Shdr),
9985 sizeof (ElfNN_External_Rel),
9986 sizeof (ElfNN_External_Rela),
9987 sizeof (ElfNN_External_Sym),
9988 sizeof (ElfNN_External_Dyn),
9989 sizeof (Elf_External_Note),
9990 4, /* Hash table entry size. */
9991 1, /* Internal relocs per external relocs. */
9992 ARCH_SIZE, /* Arch size. */
9993 LOG_FILE_ALIGN, /* Log_file_align. */
9994 ELFCLASSNN, EV_CURRENT,
9995 bfd_elfNN_write_out_phdrs,
9996 bfd_elfNN_write_shdrs_and_ehdr,
9997 bfd_elfNN_checksum_contents,
9998 bfd_elfNN_write_relocs,
9999 bfd_elfNN_swap_symbol_in,
10000 bfd_elfNN_swap_symbol_out,
10001 bfd_elfNN_slurp_reloc_table,
10002 bfd_elfNN_slurp_symbol_table,
10003 bfd_elfNN_swap_dyn_in,
10004 bfd_elfNN_swap_dyn_out,
10005 bfd_elfNN_swap_reloc_in,
10006 bfd_elfNN_swap_reloc_out,
10007 bfd_elfNN_swap_reloca_in,
10008 bfd_elfNN_swap_reloca_out
10009 };
10010
10011 #define ELF_ARCH bfd_arch_aarch64
10012 #define ELF_MACHINE_CODE EM_AARCH64
10013 #define ELF_MAXPAGESIZE 0x10000
10014 #define ELF_MINPAGESIZE 0x1000
10015 #define ELF_COMMONPAGESIZE 0x1000
10016
10017 #define bfd_elfNN_close_and_cleanup \
10018 elfNN_aarch64_close_and_cleanup
10019
10020 #define bfd_elfNN_bfd_free_cached_info \
10021 elfNN_aarch64_bfd_free_cached_info
10022
10023 #define bfd_elfNN_bfd_is_target_special_symbol \
10024 elfNN_aarch64_is_target_special_symbol
10025
10026 #define bfd_elfNN_bfd_link_hash_table_create \
10027 elfNN_aarch64_link_hash_table_create
10028
10029 #define bfd_elfNN_bfd_merge_private_bfd_data \
10030 elfNN_aarch64_merge_private_bfd_data
10031
10032 #define bfd_elfNN_bfd_print_private_bfd_data \
10033 elfNN_aarch64_print_private_bfd_data
10034
10035 #define bfd_elfNN_bfd_reloc_type_lookup \
10036 elfNN_aarch64_reloc_type_lookup
10037
10038 #define bfd_elfNN_bfd_reloc_name_lookup \
10039 elfNN_aarch64_reloc_name_lookup
10040
10041 #define bfd_elfNN_bfd_set_private_flags \
10042 elfNN_aarch64_set_private_flags
10043
10044 #define bfd_elfNN_find_inliner_info \
10045 elfNN_aarch64_find_inliner_info
10046
10047 #define bfd_elfNN_get_synthetic_symtab \
10048 elfNN_aarch64_get_synthetic_symtab
10049
10050 #define bfd_elfNN_mkobject \
10051 elfNN_aarch64_mkobject
10052
10053 #define bfd_elfNN_new_section_hook \
10054 elfNN_aarch64_new_section_hook
10055
10056 #define elf_backend_adjust_dynamic_symbol \
10057 elfNN_aarch64_adjust_dynamic_symbol
10058
10059 #define elf_backend_always_size_sections \
10060 elfNN_aarch64_always_size_sections
10061
10062 #define elf_backend_check_relocs \
10063 elfNN_aarch64_check_relocs
10064
10065 #define elf_backend_copy_indirect_symbol \
10066 elfNN_aarch64_copy_indirect_symbol
10067
10068 #define elf_backend_merge_symbol_attribute \
10069 elfNN_aarch64_merge_symbol_attribute
10070
10071 /* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts
10072 to them in our hash. */
10073 #define elf_backend_create_dynamic_sections \
10074 elfNN_aarch64_create_dynamic_sections
10075
10076 #define elf_backend_init_index_section \
10077 _bfd_elf_init_2_index_sections
10078
10079 #define elf_backend_finish_dynamic_sections \
10080 elfNN_aarch64_finish_dynamic_sections
10081
10082 #define elf_backend_finish_dynamic_symbol \
10083 elfNN_aarch64_finish_dynamic_symbol
10084
10085 #define elf_backend_object_p \
10086 elfNN_aarch64_object_p
10087
10088 #define elf_backend_output_arch_local_syms \
10089 elfNN_aarch64_output_arch_local_syms
10090
10091 #define elf_backend_maybe_function_sym \
10092 elfNN_aarch64_maybe_function_sym
10093
10094 #define elf_backend_plt_sym_val \
10095 elfNN_aarch64_plt_sym_val
10096
10097 #define elf_backend_init_file_header \
10098 elfNN_aarch64_init_file_header
10099
10100 #define elf_backend_relocate_section \
10101 elfNN_aarch64_relocate_section
10102
10103 #define elf_backend_reloc_type_class \
10104 elfNN_aarch64_reloc_type_class
10105
10106 #define elf_backend_section_from_shdr \
10107 elfNN_aarch64_section_from_shdr
10108
10109 #define elf_backend_size_dynamic_sections \
10110 elfNN_aarch64_size_dynamic_sections
10111
10112 #define elf_backend_size_info \
10113 elfNN_aarch64_size_info
10114
10115 #define elf_backend_write_section \
10116 elfNN_aarch64_write_section
10117
10118 #define elf_backend_symbol_processing \
10119 elfNN_aarch64_backend_symbol_processing
10120
10121 #define elf_backend_setup_gnu_properties \
10122 elfNN_aarch64_link_setup_gnu_properties
10123
10124 #define elf_backend_merge_gnu_properties \
10125 elfNN_aarch64_merge_gnu_properties
10126
10127 #define elf_backend_can_refcount 1
10128 #define elf_backend_can_gc_sections 1
10129 #define elf_backend_plt_readonly 1
10130 #define elf_backend_want_got_plt 1
10131 #define elf_backend_want_plt_sym 0
10132 #define elf_backend_want_dynrelro 1
10133 #define elf_backend_may_use_rel_p 0
10134 #define elf_backend_may_use_rela_p 1
10135 #define elf_backend_default_use_rela_p 1
10136 #define elf_backend_rela_normal 1
10137 #define elf_backend_dtrel_excludes_plt 1
10138 #define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3)
10139 #define elf_backend_default_execstack 0
10140 #define elf_backend_extern_protected_data 1
10141 #define elf_backend_hash_symbol elf_aarch64_hash_symbol
10142
10143 #undef elf_backend_obj_attrs_section
10144 #define elf_backend_obj_attrs_section ".ARM.attributes"
10145
10146 #include "elfNN-target.h"
10147
10148 /* CloudABI support. */
10149
10150 #undef TARGET_LITTLE_SYM
10151 #define TARGET_LITTLE_SYM aarch64_elfNN_le_cloudabi_vec
10152 #undef TARGET_LITTLE_NAME
10153 #define TARGET_LITTLE_NAME "elfNN-littleaarch64-cloudabi"
10154 #undef TARGET_BIG_SYM
10155 #define TARGET_BIG_SYM aarch64_elfNN_be_cloudabi_vec
10156 #undef TARGET_BIG_NAME
10157 #define TARGET_BIG_NAME "elfNN-bigaarch64-cloudabi"
10158
10159 #undef ELF_OSABI
10160 #define ELF_OSABI ELFOSABI_CLOUDABI
10161
10162 #undef elfNN_bed
10163 #define elfNN_bed elfNN_aarch64_cloudabi_bed
10164
10165 #include "elfNN-target.h"
This page took 0.341993 seconds and 4 git commands to generate.