-Wimplicit-fallthrough warning fixes
[deliverable/binutils-gdb.git] / bfd / elfnn-aarch64.c
1 /* AArch64-specific support for NN-bit ELF.
2 Copyright (C) 2009-2016 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
20
21 /* Notes on implementation:
22
23 Thread Local Store (TLS)
24
25 Overview:
26
27 The implementation currently supports both traditional TLS and TLS
28 descriptors, but only general dynamic (GD).
29
30 For traditional TLS the assembler will present us with code
31 fragments of the form:
32
33 adrp x0, :tlsgd:foo
34 R_AARCH64_TLSGD_ADR_PAGE21(foo)
35 add x0, :tlsgd_lo12:foo
36 R_AARCH64_TLSGD_ADD_LO12_NC(foo)
37 bl __tls_get_addr
38 nop
39
40 For TLS descriptors the assembler will present us with code
41 fragments of the form:
42
43 adrp x0, :tlsdesc:foo R_AARCH64_TLSDESC_ADR_PAGE21(foo)
44 ldr x1, [x0, #:tlsdesc_lo12:foo] R_AARCH64_TLSDESC_LD64_LO12(foo)
45 add x0, x0, #:tlsdesc_lo12:foo R_AARCH64_TLSDESC_ADD_LO12(foo)
46 .tlsdesccall foo
47 blr x1 R_AARCH64_TLSDESC_CALL(foo)
48
49 The relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} against foo
50 indicate that foo is thread local and should be accessed via the
51 traditional TLS mechanims.
52
53 The relocations R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC}
54 against foo indicate that 'foo' is thread local and should be accessed
55 via a TLS descriptor mechanism.
56
57 The precise instruction sequence is only relevant from the
58 perspective of linker relaxation which is currently not implemented.
59
60 The static linker must detect that 'foo' is a TLS object and
61 allocate a double GOT entry. The GOT entry must be created for both
62 global and local TLS symbols. Note that this is different to none
63 TLS local objects which do not need a GOT entry.
64
65 In the traditional TLS mechanism, the double GOT entry is used to
66 provide the tls_index structure, containing module and offset
67 entries. The static linker places the relocation R_AARCH64_TLS_DTPMOD
68 on the module entry. The loader will subsequently fixup this
69 relocation with the module identity.
70
71 For global traditional TLS symbols the static linker places an
72 R_AARCH64_TLS_DTPREL relocation on the offset entry. The loader
73 will subsequently fixup the offset. For local TLS symbols the static
74 linker fixes up offset.
75
76 In the TLS descriptor mechanism the double GOT entry is used to
77 provide the descriptor. The static linker places the relocation
78 R_AARCH64_TLSDESC on the first GOT slot. The loader will
79 subsequently fix this up.
80
81 Implementation:
82
83 The handling of TLS symbols is implemented across a number of
84 different backend functions. The following is a top level view of
85 what processing is performed where.
86
87 The TLS implementation maintains state information for each TLS
88 symbol. The state information for local and global symbols is kept
89 in different places. Global symbols use generic BFD structures while
90 local symbols use backend specific structures that are allocated and
91 maintained entirely by the backend.
92
93 The flow:
94
95 elfNN_aarch64_check_relocs()
96
97 This function is invoked for each relocation.
98
99 The TLS relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} and
100 R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC} are
101 spotted. One time creation of local symbol data structures are
102 created when the first local symbol is seen.
103
104 The reference count for a symbol is incremented. The GOT type for
105 each symbol is marked as general dynamic.
106
107 elfNN_aarch64_allocate_dynrelocs ()
108
109 For each global with positive reference count we allocate a double
110 GOT slot. For a traditional TLS symbol we allocate space for two
111 relocation entries on the GOT, for a TLS descriptor symbol we
112 allocate space for one relocation on the slot. Record the GOT offset
113 for this symbol.
114
115 elfNN_aarch64_size_dynamic_sections ()
116
117 Iterate all input BFDS, look for in the local symbol data structure
118 constructed earlier for local TLS symbols and allocate them double
119 GOT slots along with space for a single GOT relocation. Update the
120 local symbol structure to record the GOT offset allocated.
121
122 elfNN_aarch64_relocate_section ()
123
124 Calls elfNN_aarch64_final_link_relocate ()
125
126 Emit the relevant TLS relocations against the GOT for each TLS
127 symbol. For local TLS symbols emit the GOT offset directly. The GOT
128 relocations are emitted once the first time a TLS symbol is
129 encountered. The implementation uses the LSB of the GOT offset to
130 flag that the relevant GOT relocations for a symbol have been
131 emitted. All of the TLS code that uses the GOT offset needs to take
132 care to mask out this flag bit before using the offset.
133
134 elfNN_aarch64_final_link_relocate ()
135
136 Fixup the R_AARCH64_TLSGD_{ADR_PREL21, ADD_LO12_NC} relocations. */
137
138 #include "sysdep.h"
139 #include "bfd.h"
140 #include "libiberty.h"
141 #include "libbfd.h"
142 #include "bfd_stdint.h"
143 #include "elf-bfd.h"
144 #include "bfdlink.h"
145 #include "objalloc.h"
146 #include "elf/aarch64.h"
147 #include "elfxx-aarch64.h"
148
149 #define ARCH_SIZE NN
150
151 #if ARCH_SIZE == 64
152 #define AARCH64_R(NAME) R_AARCH64_ ## NAME
153 #define AARCH64_R_STR(NAME) "R_AARCH64_" #NAME
154 #define HOWTO64(...) HOWTO (__VA_ARGS__)
155 #define HOWTO32(...) EMPTY_HOWTO (0)
156 #define LOG_FILE_ALIGN 3
157 #endif
158
159 #if ARCH_SIZE == 32
160 #define AARCH64_R(NAME) R_AARCH64_P32_ ## NAME
161 #define AARCH64_R_STR(NAME) "R_AARCH64_P32_" #NAME
162 #define HOWTO64(...) EMPTY_HOWTO (0)
163 #define HOWTO32(...) HOWTO (__VA_ARGS__)
164 #define LOG_FILE_ALIGN 2
165 #endif
166
167 #define IS_AARCH64_TLS_RELOC(R_TYPE) \
168 ((R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
169 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
170 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
171 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
172 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
173 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
174 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC \
175 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC \
176 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
177 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC \
178 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1 \
179 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12 \
180 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12 \
181 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC \
182 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
183 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
184 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21 \
185 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12 \
186 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC \
187 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12 \
188 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC \
189 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12 \
190 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC \
191 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12 \
192 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC \
193 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0 \
194 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC \
195 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1 \
196 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC \
197 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2 \
198 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12 \
199 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12 \
200 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC \
201 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0 \
202 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC \
203 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 \
204 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC \
205 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2 \
206 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPMOD \
207 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPREL \
208 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_TPREL \
209 || IS_AARCH64_TLSDESC_RELOC ((R_TYPE)))
210
211 #define IS_AARCH64_TLS_RELAX_RELOC(R_TYPE) \
212 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
213 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC \
214 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
215 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
216 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
217 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
218 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC \
219 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
220 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
221 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1 \
222 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
223 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
224 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
225 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
226 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
227 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
228 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
229 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
230 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC \
231 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
232 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
233 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21)
234
235 #define IS_AARCH64_TLSDESC_RELOC(R_TYPE) \
236 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC \
237 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
238 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC \
239 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
240 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
241 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
242 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC \
243 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC \
244 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
245 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
246 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
247 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1)
248
249 #define ELIMINATE_COPY_RELOCS 0
250
251 /* Return size of a relocation entry. HTAB is the bfd's
252 elf_aarch64_link_hash_entry. */
253 #define RELOC_SIZE(HTAB) (sizeof (ElfNN_External_Rela))
254
255 /* GOT Entry size - 8 bytes in ELF64 and 4 bytes in ELF32. */
256 #define GOT_ENTRY_SIZE (ARCH_SIZE / 8)
257 #define PLT_ENTRY_SIZE (32)
258 #define PLT_SMALL_ENTRY_SIZE (16)
259 #define PLT_TLSDESC_ENTRY_SIZE (32)
260
261 /* Encoding of the nop instruction */
262 #define INSN_NOP 0xd503201f
263
264 #define aarch64_compute_jump_table_size(htab) \
265 (((htab)->root.srelplt == NULL) ? 0 \
266 : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE)
267
268 /* The first entry in a procedure linkage table looks like this
269 if the distance between the PLTGOT and the PLT is < 4GB use
270 these PLT entries. Note that the dynamic linker gets &PLTGOT[2]
271 in x16 and needs to work out PLTGOT[1] by using an address of
272 [x16,#-GOT_ENTRY_SIZE]. */
273 static const bfd_byte elfNN_aarch64_small_plt0_entry[PLT_ENTRY_SIZE] =
274 {
275 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
276 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
277 #if ARCH_SIZE == 64
278 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
279 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
280 #else
281 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
282 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
283 #endif
284 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
285 0x1f, 0x20, 0x03, 0xd5, /* nop */
286 0x1f, 0x20, 0x03, 0xd5, /* nop */
287 0x1f, 0x20, 0x03, 0xd5, /* nop */
288 };
289
290 /* Per function entry in a procedure linkage table looks like this
291 if the distance between the PLTGOT and the PLT is < 4GB use
292 these PLT entries. */
293 static const bfd_byte elfNN_aarch64_small_plt_entry[PLT_SMALL_ENTRY_SIZE] =
294 {
295 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
296 #if ARCH_SIZE == 64
297 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
298 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
299 #else
300 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
301 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
302 #endif
303 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
304 };
305
306 static const bfd_byte
307 elfNN_aarch64_tlsdesc_small_plt_entry[PLT_TLSDESC_ENTRY_SIZE] =
308 {
309 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
310 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
311 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
312 #if ARCH_SIZE == 64
313 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
314 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
315 #else
316 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
317 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
318 #endif
319 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
320 0x1f, 0x20, 0x03, 0xd5, /* nop */
321 0x1f, 0x20, 0x03, 0xd5, /* nop */
322 };
323
324 #define elf_info_to_howto elfNN_aarch64_info_to_howto
325 #define elf_info_to_howto_rel elfNN_aarch64_info_to_howto
326
327 #define AARCH64_ELF_ABI_VERSION 0
328
329 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
330 #define ALL_ONES (~ (bfd_vma) 0)
331
332 /* Indexed by the bfd interal reloc enumerators.
333 Therefore, the table needs to be synced with BFD_RELOC_AARCH64_*
334 in reloc.c. */
335
336 static reloc_howto_type elfNN_aarch64_howto_table[] =
337 {
338 EMPTY_HOWTO (0),
339
340 /* Basic data relocations. */
341
342 /* Deprecated, but retained for backwards compatibility. */
343 HOWTO64 (R_AARCH64_NULL, /* type */
344 0, /* rightshift */
345 3, /* size (0 = byte, 1 = short, 2 = long) */
346 0, /* bitsize */
347 FALSE, /* pc_relative */
348 0, /* bitpos */
349 complain_overflow_dont, /* complain_on_overflow */
350 bfd_elf_generic_reloc, /* special_function */
351 "R_AARCH64_NULL", /* name */
352 FALSE, /* partial_inplace */
353 0, /* src_mask */
354 0, /* dst_mask */
355 FALSE), /* pcrel_offset */
356 HOWTO (R_AARCH64_NONE, /* type */
357 0, /* rightshift */
358 3, /* size (0 = byte, 1 = short, 2 = long) */
359 0, /* bitsize */
360 FALSE, /* pc_relative */
361 0, /* bitpos */
362 complain_overflow_dont, /* complain_on_overflow */
363 bfd_elf_generic_reloc, /* special_function */
364 "R_AARCH64_NONE", /* name */
365 FALSE, /* partial_inplace */
366 0, /* src_mask */
367 0, /* dst_mask */
368 FALSE), /* pcrel_offset */
369
370 /* .xword: (S+A) */
371 HOWTO64 (AARCH64_R (ABS64), /* type */
372 0, /* rightshift */
373 4, /* size (4 = long long) */
374 64, /* bitsize */
375 FALSE, /* pc_relative */
376 0, /* bitpos */
377 complain_overflow_unsigned, /* complain_on_overflow */
378 bfd_elf_generic_reloc, /* special_function */
379 AARCH64_R_STR (ABS64), /* name */
380 FALSE, /* partial_inplace */
381 ALL_ONES, /* src_mask */
382 ALL_ONES, /* dst_mask */
383 FALSE), /* pcrel_offset */
384
385 /* .word: (S+A) */
386 HOWTO (AARCH64_R (ABS32), /* type */
387 0, /* rightshift */
388 2, /* size (0 = byte, 1 = short, 2 = long) */
389 32, /* bitsize */
390 FALSE, /* pc_relative */
391 0, /* bitpos */
392 complain_overflow_unsigned, /* complain_on_overflow */
393 bfd_elf_generic_reloc, /* special_function */
394 AARCH64_R_STR (ABS32), /* name */
395 FALSE, /* partial_inplace */
396 0xffffffff, /* src_mask */
397 0xffffffff, /* dst_mask */
398 FALSE), /* pcrel_offset */
399
400 /* .half: (S+A) */
401 HOWTO (AARCH64_R (ABS16), /* type */
402 0, /* rightshift */
403 1, /* size (0 = byte, 1 = short, 2 = long) */
404 16, /* bitsize */
405 FALSE, /* pc_relative */
406 0, /* bitpos */
407 complain_overflow_unsigned, /* complain_on_overflow */
408 bfd_elf_generic_reloc, /* special_function */
409 AARCH64_R_STR (ABS16), /* name */
410 FALSE, /* partial_inplace */
411 0xffff, /* src_mask */
412 0xffff, /* dst_mask */
413 FALSE), /* pcrel_offset */
414
415 /* .xword: (S+A-P) */
416 HOWTO64 (AARCH64_R (PREL64), /* type */
417 0, /* rightshift */
418 4, /* size (4 = long long) */
419 64, /* bitsize */
420 TRUE, /* pc_relative */
421 0, /* bitpos */
422 complain_overflow_signed, /* complain_on_overflow */
423 bfd_elf_generic_reloc, /* special_function */
424 AARCH64_R_STR (PREL64), /* name */
425 FALSE, /* partial_inplace */
426 ALL_ONES, /* src_mask */
427 ALL_ONES, /* dst_mask */
428 TRUE), /* pcrel_offset */
429
430 /* .word: (S+A-P) */
431 HOWTO (AARCH64_R (PREL32), /* type */
432 0, /* rightshift */
433 2, /* size (0 = byte, 1 = short, 2 = long) */
434 32, /* bitsize */
435 TRUE, /* pc_relative */
436 0, /* bitpos */
437 complain_overflow_signed, /* complain_on_overflow */
438 bfd_elf_generic_reloc, /* special_function */
439 AARCH64_R_STR (PREL32), /* name */
440 FALSE, /* partial_inplace */
441 0xffffffff, /* src_mask */
442 0xffffffff, /* dst_mask */
443 TRUE), /* pcrel_offset */
444
445 /* .half: (S+A-P) */
446 HOWTO (AARCH64_R (PREL16), /* type */
447 0, /* rightshift */
448 1, /* size (0 = byte, 1 = short, 2 = long) */
449 16, /* bitsize */
450 TRUE, /* pc_relative */
451 0, /* bitpos */
452 complain_overflow_signed, /* complain_on_overflow */
453 bfd_elf_generic_reloc, /* special_function */
454 AARCH64_R_STR (PREL16), /* name */
455 FALSE, /* partial_inplace */
456 0xffff, /* src_mask */
457 0xffff, /* dst_mask */
458 TRUE), /* pcrel_offset */
459
460 /* Group relocations to create a 16, 32, 48 or 64 bit
461 unsigned data or abs address inline. */
462
463 /* MOVZ: ((S+A) >> 0) & 0xffff */
464 HOWTO (AARCH64_R (MOVW_UABS_G0), /* type */
465 0, /* rightshift */
466 2, /* size (0 = byte, 1 = short, 2 = long) */
467 16, /* bitsize */
468 FALSE, /* pc_relative */
469 0, /* bitpos */
470 complain_overflow_unsigned, /* complain_on_overflow */
471 bfd_elf_generic_reloc, /* special_function */
472 AARCH64_R_STR (MOVW_UABS_G0), /* name */
473 FALSE, /* partial_inplace */
474 0xffff, /* src_mask */
475 0xffff, /* dst_mask */
476 FALSE), /* pcrel_offset */
477
478 /* MOVK: ((S+A) >> 0) & 0xffff [no overflow check] */
479 HOWTO (AARCH64_R (MOVW_UABS_G0_NC), /* type */
480 0, /* rightshift */
481 2, /* size (0 = byte, 1 = short, 2 = long) */
482 16, /* bitsize */
483 FALSE, /* pc_relative */
484 0, /* bitpos */
485 complain_overflow_dont, /* complain_on_overflow */
486 bfd_elf_generic_reloc, /* special_function */
487 AARCH64_R_STR (MOVW_UABS_G0_NC), /* name */
488 FALSE, /* partial_inplace */
489 0xffff, /* src_mask */
490 0xffff, /* dst_mask */
491 FALSE), /* pcrel_offset */
492
493 /* MOVZ: ((S+A) >> 16) & 0xffff */
494 HOWTO (AARCH64_R (MOVW_UABS_G1), /* type */
495 16, /* rightshift */
496 2, /* size (0 = byte, 1 = short, 2 = long) */
497 16, /* bitsize */
498 FALSE, /* pc_relative */
499 0, /* bitpos */
500 complain_overflow_unsigned, /* complain_on_overflow */
501 bfd_elf_generic_reloc, /* special_function */
502 AARCH64_R_STR (MOVW_UABS_G1), /* name */
503 FALSE, /* partial_inplace */
504 0xffff, /* src_mask */
505 0xffff, /* dst_mask */
506 FALSE), /* pcrel_offset */
507
508 /* MOVK: ((S+A) >> 16) & 0xffff [no overflow check] */
509 HOWTO64 (AARCH64_R (MOVW_UABS_G1_NC), /* type */
510 16, /* rightshift */
511 2, /* size (0 = byte, 1 = short, 2 = long) */
512 16, /* bitsize */
513 FALSE, /* pc_relative */
514 0, /* bitpos */
515 complain_overflow_dont, /* complain_on_overflow */
516 bfd_elf_generic_reloc, /* special_function */
517 AARCH64_R_STR (MOVW_UABS_G1_NC), /* name */
518 FALSE, /* partial_inplace */
519 0xffff, /* src_mask */
520 0xffff, /* dst_mask */
521 FALSE), /* pcrel_offset */
522
523 /* MOVZ: ((S+A) >> 32) & 0xffff */
524 HOWTO64 (AARCH64_R (MOVW_UABS_G2), /* type */
525 32, /* rightshift */
526 2, /* size (0 = byte, 1 = short, 2 = long) */
527 16, /* bitsize */
528 FALSE, /* pc_relative */
529 0, /* bitpos */
530 complain_overflow_unsigned, /* complain_on_overflow */
531 bfd_elf_generic_reloc, /* special_function */
532 AARCH64_R_STR (MOVW_UABS_G2), /* name */
533 FALSE, /* partial_inplace */
534 0xffff, /* src_mask */
535 0xffff, /* dst_mask */
536 FALSE), /* pcrel_offset */
537
538 /* MOVK: ((S+A) >> 32) & 0xffff [no overflow check] */
539 HOWTO64 (AARCH64_R (MOVW_UABS_G2_NC), /* type */
540 32, /* rightshift */
541 2, /* size (0 = byte, 1 = short, 2 = long) */
542 16, /* bitsize */
543 FALSE, /* pc_relative */
544 0, /* bitpos */
545 complain_overflow_dont, /* complain_on_overflow */
546 bfd_elf_generic_reloc, /* special_function */
547 AARCH64_R_STR (MOVW_UABS_G2_NC), /* name */
548 FALSE, /* partial_inplace */
549 0xffff, /* src_mask */
550 0xffff, /* dst_mask */
551 FALSE), /* pcrel_offset */
552
553 /* MOVZ: ((S+A) >> 48) & 0xffff */
554 HOWTO64 (AARCH64_R (MOVW_UABS_G3), /* type */
555 48, /* rightshift */
556 2, /* size (0 = byte, 1 = short, 2 = long) */
557 16, /* bitsize */
558 FALSE, /* pc_relative */
559 0, /* bitpos */
560 complain_overflow_unsigned, /* complain_on_overflow */
561 bfd_elf_generic_reloc, /* special_function */
562 AARCH64_R_STR (MOVW_UABS_G3), /* name */
563 FALSE, /* partial_inplace */
564 0xffff, /* src_mask */
565 0xffff, /* dst_mask */
566 FALSE), /* pcrel_offset */
567
568 /* Group relocations to create high part of a 16, 32, 48 or 64 bit
569 signed data or abs address inline. Will change instruction
570 to MOVN or MOVZ depending on sign of calculated value. */
571
572 /* MOV[ZN]: ((S+A) >> 0) & 0xffff */
573 HOWTO (AARCH64_R (MOVW_SABS_G0), /* type */
574 0, /* rightshift */
575 2, /* size (0 = byte, 1 = short, 2 = long) */
576 17, /* bitsize */
577 FALSE, /* pc_relative */
578 0, /* bitpos */
579 complain_overflow_signed, /* complain_on_overflow */
580 bfd_elf_generic_reloc, /* special_function */
581 AARCH64_R_STR (MOVW_SABS_G0), /* name */
582 FALSE, /* partial_inplace */
583 0xffff, /* src_mask */
584 0xffff, /* dst_mask */
585 FALSE), /* pcrel_offset */
586
587 /* MOV[ZN]: ((S+A) >> 16) & 0xffff */
588 HOWTO64 (AARCH64_R (MOVW_SABS_G1), /* type */
589 16, /* rightshift */
590 2, /* size (0 = byte, 1 = short, 2 = long) */
591 17, /* bitsize */
592 FALSE, /* pc_relative */
593 0, /* bitpos */
594 complain_overflow_signed, /* complain_on_overflow */
595 bfd_elf_generic_reloc, /* special_function */
596 AARCH64_R_STR (MOVW_SABS_G1), /* name */
597 FALSE, /* partial_inplace */
598 0xffff, /* src_mask */
599 0xffff, /* dst_mask */
600 FALSE), /* pcrel_offset */
601
602 /* MOV[ZN]: ((S+A) >> 32) & 0xffff */
603 HOWTO64 (AARCH64_R (MOVW_SABS_G2), /* type */
604 32, /* rightshift */
605 2, /* size (0 = byte, 1 = short, 2 = long) */
606 17, /* bitsize */
607 FALSE, /* pc_relative */
608 0, /* bitpos */
609 complain_overflow_signed, /* complain_on_overflow */
610 bfd_elf_generic_reloc, /* special_function */
611 AARCH64_R_STR (MOVW_SABS_G2), /* name */
612 FALSE, /* partial_inplace */
613 0xffff, /* src_mask */
614 0xffff, /* dst_mask */
615 FALSE), /* pcrel_offset */
616
617 /* Relocations to generate 19, 21 and 33 bit PC-relative load/store
618 addresses: PG(x) is (x & ~0xfff). */
619
620 /* LD-lit: ((S+A-P) >> 2) & 0x7ffff */
621 HOWTO (AARCH64_R (LD_PREL_LO19), /* type */
622 2, /* rightshift */
623 2, /* size (0 = byte, 1 = short, 2 = long) */
624 19, /* bitsize */
625 TRUE, /* pc_relative */
626 0, /* bitpos */
627 complain_overflow_signed, /* complain_on_overflow */
628 bfd_elf_generic_reloc, /* special_function */
629 AARCH64_R_STR (LD_PREL_LO19), /* name */
630 FALSE, /* partial_inplace */
631 0x7ffff, /* src_mask */
632 0x7ffff, /* dst_mask */
633 TRUE), /* pcrel_offset */
634
635 /* ADR: (S+A-P) & 0x1fffff */
636 HOWTO (AARCH64_R (ADR_PREL_LO21), /* type */
637 0, /* rightshift */
638 2, /* size (0 = byte, 1 = short, 2 = long) */
639 21, /* bitsize */
640 TRUE, /* pc_relative */
641 0, /* bitpos */
642 complain_overflow_signed, /* complain_on_overflow */
643 bfd_elf_generic_reloc, /* special_function */
644 AARCH64_R_STR (ADR_PREL_LO21), /* name */
645 FALSE, /* partial_inplace */
646 0x1fffff, /* src_mask */
647 0x1fffff, /* dst_mask */
648 TRUE), /* pcrel_offset */
649
650 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
651 HOWTO (AARCH64_R (ADR_PREL_PG_HI21), /* type */
652 12, /* rightshift */
653 2, /* size (0 = byte, 1 = short, 2 = long) */
654 21, /* bitsize */
655 TRUE, /* pc_relative */
656 0, /* bitpos */
657 complain_overflow_signed, /* complain_on_overflow */
658 bfd_elf_generic_reloc, /* special_function */
659 AARCH64_R_STR (ADR_PREL_PG_HI21), /* name */
660 FALSE, /* partial_inplace */
661 0x1fffff, /* src_mask */
662 0x1fffff, /* dst_mask */
663 TRUE), /* pcrel_offset */
664
665 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff [no overflow check] */
666 HOWTO64 (AARCH64_R (ADR_PREL_PG_HI21_NC), /* type */
667 12, /* rightshift */
668 2, /* size (0 = byte, 1 = short, 2 = long) */
669 21, /* bitsize */
670 TRUE, /* pc_relative */
671 0, /* bitpos */
672 complain_overflow_dont, /* complain_on_overflow */
673 bfd_elf_generic_reloc, /* special_function */
674 AARCH64_R_STR (ADR_PREL_PG_HI21_NC), /* name */
675 FALSE, /* partial_inplace */
676 0x1fffff, /* src_mask */
677 0x1fffff, /* dst_mask */
678 TRUE), /* pcrel_offset */
679
680 /* ADD: (S+A) & 0xfff [no overflow check] */
681 HOWTO (AARCH64_R (ADD_ABS_LO12_NC), /* type */
682 0, /* rightshift */
683 2, /* size (0 = byte, 1 = short, 2 = long) */
684 12, /* bitsize */
685 FALSE, /* pc_relative */
686 10, /* bitpos */
687 complain_overflow_dont, /* complain_on_overflow */
688 bfd_elf_generic_reloc, /* special_function */
689 AARCH64_R_STR (ADD_ABS_LO12_NC), /* name */
690 FALSE, /* partial_inplace */
691 0x3ffc00, /* src_mask */
692 0x3ffc00, /* dst_mask */
693 FALSE), /* pcrel_offset */
694
695 /* LD/ST8: (S+A) & 0xfff */
696 HOWTO (AARCH64_R (LDST8_ABS_LO12_NC), /* type */
697 0, /* rightshift */
698 2, /* size (0 = byte, 1 = short, 2 = long) */
699 12, /* bitsize */
700 FALSE, /* pc_relative */
701 0, /* bitpos */
702 complain_overflow_dont, /* complain_on_overflow */
703 bfd_elf_generic_reloc, /* special_function */
704 AARCH64_R_STR (LDST8_ABS_LO12_NC), /* name */
705 FALSE, /* partial_inplace */
706 0xfff, /* src_mask */
707 0xfff, /* dst_mask */
708 FALSE), /* pcrel_offset */
709
710 /* Relocations for control-flow instructions. */
711
712 /* TBZ/NZ: ((S+A-P) >> 2) & 0x3fff */
713 HOWTO (AARCH64_R (TSTBR14), /* type */
714 2, /* rightshift */
715 2, /* size (0 = byte, 1 = short, 2 = long) */
716 14, /* bitsize */
717 TRUE, /* pc_relative */
718 0, /* bitpos */
719 complain_overflow_signed, /* complain_on_overflow */
720 bfd_elf_generic_reloc, /* special_function */
721 AARCH64_R_STR (TSTBR14), /* name */
722 FALSE, /* partial_inplace */
723 0x3fff, /* src_mask */
724 0x3fff, /* dst_mask */
725 TRUE), /* pcrel_offset */
726
727 /* B.cond: ((S+A-P) >> 2) & 0x7ffff */
728 HOWTO (AARCH64_R (CONDBR19), /* type */
729 2, /* rightshift */
730 2, /* size (0 = byte, 1 = short, 2 = long) */
731 19, /* bitsize */
732 TRUE, /* pc_relative */
733 0, /* bitpos */
734 complain_overflow_signed, /* complain_on_overflow */
735 bfd_elf_generic_reloc, /* special_function */
736 AARCH64_R_STR (CONDBR19), /* name */
737 FALSE, /* partial_inplace */
738 0x7ffff, /* src_mask */
739 0x7ffff, /* dst_mask */
740 TRUE), /* pcrel_offset */
741
742 /* B: ((S+A-P) >> 2) & 0x3ffffff */
743 HOWTO (AARCH64_R (JUMP26), /* type */
744 2, /* rightshift */
745 2, /* size (0 = byte, 1 = short, 2 = long) */
746 26, /* bitsize */
747 TRUE, /* pc_relative */
748 0, /* bitpos */
749 complain_overflow_signed, /* complain_on_overflow */
750 bfd_elf_generic_reloc, /* special_function */
751 AARCH64_R_STR (JUMP26), /* name */
752 FALSE, /* partial_inplace */
753 0x3ffffff, /* src_mask */
754 0x3ffffff, /* dst_mask */
755 TRUE), /* pcrel_offset */
756
757 /* BL: ((S+A-P) >> 2) & 0x3ffffff */
758 HOWTO (AARCH64_R (CALL26), /* type */
759 2, /* rightshift */
760 2, /* size (0 = byte, 1 = short, 2 = long) */
761 26, /* bitsize */
762 TRUE, /* pc_relative */
763 0, /* bitpos */
764 complain_overflow_signed, /* complain_on_overflow */
765 bfd_elf_generic_reloc, /* special_function */
766 AARCH64_R_STR (CALL26), /* name */
767 FALSE, /* partial_inplace */
768 0x3ffffff, /* src_mask */
769 0x3ffffff, /* dst_mask */
770 TRUE), /* pcrel_offset */
771
772 /* LD/ST16: (S+A) & 0xffe */
773 HOWTO (AARCH64_R (LDST16_ABS_LO12_NC), /* type */
774 1, /* rightshift */
775 2, /* size (0 = byte, 1 = short, 2 = long) */
776 12, /* bitsize */
777 FALSE, /* pc_relative */
778 0, /* bitpos */
779 complain_overflow_dont, /* complain_on_overflow */
780 bfd_elf_generic_reloc, /* special_function */
781 AARCH64_R_STR (LDST16_ABS_LO12_NC), /* name */
782 FALSE, /* partial_inplace */
783 0xffe, /* src_mask */
784 0xffe, /* dst_mask */
785 FALSE), /* pcrel_offset */
786
787 /* LD/ST32: (S+A) & 0xffc */
788 HOWTO (AARCH64_R (LDST32_ABS_LO12_NC), /* type */
789 2, /* rightshift */
790 2, /* size (0 = byte, 1 = short, 2 = long) */
791 12, /* bitsize */
792 FALSE, /* pc_relative */
793 0, /* bitpos */
794 complain_overflow_dont, /* complain_on_overflow */
795 bfd_elf_generic_reloc, /* special_function */
796 AARCH64_R_STR (LDST32_ABS_LO12_NC), /* name */
797 FALSE, /* partial_inplace */
798 0xffc, /* src_mask */
799 0xffc, /* dst_mask */
800 FALSE), /* pcrel_offset */
801
802 /* LD/ST64: (S+A) & 0xff8 */
803 HOWTO (AARCH64_R (LDST64_ABS_LO12_NC), /* type */
804 3, /* rightshift */
805 2, /* size (0 = byte, 1 = short, 2 = long) */
806 12, /* bitsize */
807 FALSE, /* pc_relative */
808 0, /* bitpos */
809 complain_overflow_dont, /* complain_on_overflow */
810 bfd_elf_generic_reloc, /* special_function */
811 AARCH64_R_STR (LDST64_ABS_LO12_NC), /* name */
812 FALSE, /* partial_inplace */
813 0xff8, /* src_mask */
814 0xff8, /* dst_mask */
815 FALSE), /* pcrel_offset */
816
817 /* LD/ST128: (S+A) & 0xff0 */
818 HOWTO (AARCH64_R (LDST128_ABS_LO12_NC), /* type */
819 4, /* rightshift */
820 2, /* size (0 = byte, 1 = short, 2 = long) */
821 12, /* bitsize */
822 FALSE, /* pc_relative */
823 0, /* bitpos */
824 complain_overflow_dont, /* complain_on_overflow */
825 bfd_elf_generic_reloc, /* special_function */
826 AARCH64_R_STR (LDST128_ABS_LO12_NC), /* name */
827 FALSE, /* partial_inplace */
828 0xff0, /* src_mask */
829 0xff0, /* dst_mask */
830 FALSE), /* pcrel_offset */
831
832 /* Set a load-literal immediate field to bits
833 0x1FFFFC of G(S)-P */
834 HOWTO (AARCH64_R (GOT_LD_PREL19), /* type */
835 2, /* rightshift */
836 2, /* size (0 = byte,1 = short,2 = long) */
837 19, /* bitsize */
838 TRUE, /* pc_relative */
839 0, /* bitpos */
840 complain_overflow_signed, /* complain_on_overflow */
841 bfd_elf_generic_reloc, /* special_function */
842 AARCH64_R_STR (GOT_LD_PREL19), /* name */
843 FALSE, /* partial_inplace */
844 0xffffe0, /* src_mask */
845 0xffffe0, /* dst_mask */
846 TRUE), /* pcrel_offset */
847
848 /* Get to the page for the GOT entry for the symbol
849 (G(S) - P) using an ADRP instruction. */
850 HOWTO (AARCH64_R (ADR_GOT_PAGE), /* type */
851 12, /* rightshift */
852 2, /* size (0 = byte, 1 = short, 2 = long) */
853 21, /* bitsize */
854 TRUE, /* pc_relative */
855 0, /* bitpos */
856 complain_overflow_dont, /* complain_on_overflow */
857 bfd_elf_generic_reloc, /* special_function */
858 AARCH64_R_STR (ADR_GOT_PAGE), /* name */
859 FALSE, /* partial_inplace */
860 0x1fffff, /* src_mask */
861 0x1fffff, /* dst_mask */
862 TRUE), /* pcrel_offset */
863
864 /* LD64: GOT offset G(S) & 0xff8 */
865 HOWTO64 (AARCH64_R (LD64_GOT_LO12_NC), /* type */
866 3, /* rightshift */
867 2, /* size (0 = byte, 1 = short, 2 = long) */
868 12, /* bitsize */
869 FALSE, /* pc_relative */
870 0, /* bitpos */
871 complain_overflow_dont, /* complain_on_overflow */
872 bfd_elf_generic_reloc, /* special_function */
873 AARCH64_R_STR (LD64_GOT_LO12_NC), /* name */
874 FALSE, /* partial_inplace */
875 0xff8, /* src_mask */
876 0xff8, /* dst_mask */
877 FALSE), /* pcrel_offset */
878
879 /* LD32: GOT offset G(S) & 0xffc */
880 HOWTO32 (AARCH64_R (LD32_GOT_LO12_NC), /* type */
881 2, /* rightshift */
882 2, /* size (0 = byte, 1 = short, 2 = long) */
883 12, /* bitsize */
884 FALSE, /* pc_relative */
885 0, /* bitpos */
886 complain_overflow_dont, /* complain_on_overflow */
887 bfd_elf_generic_reloc, /* special_function */
888 AARCH64_R_STR (LD32_GOT_LO12_NC), /* name */
889 FALSE, /* partial_inplace */
890 0xffc, /* src_mask */
891 0xffc, /* dst_mask */
892 FALSE), /* pcrel_offset */
893
894 /* Lower 16 bits of GOT offset for the symbol. */
895 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G0_NC), /* type */
896 0, /* rightshift */
897 2, /* size (0 = byte, 1 = short, 2 = long) */
898 16, /* bitsize */
899 FALSE, /* pc_relative */
900 0, /* bitpos */
901 complain_overflow_dont, /* complain_on_overflow */
902 bfd_elf_generic_reloc, /* special_function */
903 AARCH64_R_STR (MOVW_GOTOFF_G0_NC), /* name */
904 FALSE, /* partial_inplace */
905 0xffff, /* src_mask */
906 0xffff, /* dst_mask */
907 FALSE), /* pcrel_offset */
908
909 /* Higher 16 bits of GOT offset for the symbol. */
910 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G1), /* type */
911 16, /* rightshift */
912 2, /* size (0 = byte, 1 = short, 2 = long) */
913 16, /* bitsize */
914 FALSE, /* pc_relative */
915 0, /* bitpos */
916 complain_overflow_unsigned, /* complain_on_overflow */
917 bfd_elf_generic_reloc, /* special_function */
918 AARCH64_R_STR (MOVW_GOTOFF_G1), /* name */
919 FALSE, /* partial_inplace */
920 0xffff, /* src_mask */
921 0xffff, /* dst_mask */
922 FALSE), /* pcrel_offset */
923
924 /* LD64: GOT offset for the symbol. */
925 HOWTO64 (AARCH64_R (LD64_GOTOFF_LO15), /* type */
926 3, /* rightshift */
927 2, /* size (0 = byte, 1 = short, 2 = long) */
928 12, /* bitsize */
929 FALSE, /* pc_relative */
930 0, /* bitpos */
931 complain_overflow_unsigned, /* complain_on_overflow */
932 bfd_elf_generic_reloc, /* special_function */
933 AARCH64_R_STR (LD64_GOTOFF_LO15), /* name */
934 FALSE, /* partial_inplace */
935 0x7ff8, /* src_mask */
936 0x7ff8, /* dst_mask */
937 FALSE), /* pcrel_offset */
938
939 /* LD32: GOT offset to the page address of GOT table.
940 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x5ffc. */
941 HOWTO32 (AARCH64_R (LD32_GOTPAGE_LO14), /* type */
942 2, /* rightshift */
943 2, /* size (0 = byte, 1 = short, 2 = long) */
944 12, /* bitsize */
945 FALSE, /* pc_relative */
946 0, /* bitpos */
947 complain_overflow_unsigned, /* complain_on_overflow */
948 bfd_elf_generic_reloc, /* special_function */
949 AARCH64_R_STR (LD32_GOTPAGE_LO14), /* name */
950 FALSE, /* partial_inplace */
951 0x5ffc, /* src_mask */
952 0x5ffc, /* dst_mask */
953 FALSE), /* pcrel_offset */
954
955 /* LD64: GOT offset to the page address of GOT table.
956 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x7ff8. */
957 HOWTO64 (AARCH64_R (LD64_GOTPAGE_LO15), /* type */
958 3, /* rightshift */
959 2, /* size (0 = byte, 1 = short, 2 = long) */
960 12, /* bitsize */
961 FALSE, /* pc_relative */
962 0, /* bitpos */
963 complain_overflow_unsigned, /* complain_on_overflow */
964 bfd_elf_generic_reloc, /* special_function */
965 AARCH64_R_STR (LD64_GOTPAGE_LO15), /* name */
966 FALSE, /* partial_inplace */
967 0x7ff8, /* src_mask */
968 0x7ff8, /* dst_mask */
969 FALSE), /* pcrel_offset */
970
971 /* Get to the page for the GOT entry for the symbol
972 (G(S) - P) using an ADRP instruction. */
973 HOWTO (AARCH64_R (TLSGD_ADR_PAGE21), /* type */
974 12, /* rightshift */
975 2, /* size (0 = byte, 1 = short, 2 = long) */
976 21, /* bitsize */
977 TRUE, /* pc_relative */
978 0, /* bitpos */
979 complain_overflow_dont, /* complain_on_overflow */
980 bfd_elf_generic_reloc, /* special_function */
981 AARCH64_R_STR (TLSGD_ADR_PAGE21), /* name */
982 FALSE, /* partial_inplace */
983 0x1fffff, /* src_mask */
984 0x1fffff, /* dst_mask */
985 TRUE), /* pcrel_offset */
986
987 HOWTO (AARCH64_R (TLSGD_ADR_PREL21), /* type */
988 0, /* rightshift */
989 2, /* size (0 = byte, 1 = short, 2 = long) */
990 21, /* bitsize */
991 TRUE, /* pc_relative */
992 0, /* bitpos */
993 complain_overflow_dont, /* complain_on_overflow */
994 bfd_elf_generic_reloc, /* special_function */
995 AARCH64_R_STR (TLSGD_ADR_PREL21), /* name */
996 FALSE, /* partial_inplace */
997 0x1fffff, /* src_mask */
998 0x1fffff, /* dst_mask */
999 TRUE), /* pcrel_offset */
1000
1001 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1002 HOWTO (AARCH64_R (TLSGD_ADD_LO12_NC), /* type */
1003 0, /* rightshift */
1004 2, /* size (0 = byte, 1 = short, 2 = long) */
1005 12, /* bitsize */
1006 FALSE, /* pc_relative */
1007 0, /* bitpos */
1008 complain_overflow_dont, /* complain_on_overflow */
1009 bfd_elf_generic_reloc, /* special_function */
1010 AARCH64_R_STR (TLSGD_ADD_LO12_NC), /* name */
1011 FALSE, /* partial_inplace */
1012 0xfff, /* src_mask */
1013 0xfff, /* dst_mask */
1014 FALSE), /* pcrel_offset */
1015
1016 /* Lower 16 bits of GOT offset to tls_index. */
1017 HOWTO64 (AARCH64_R (TLSGD_MOVW_G0_NC), /* type */
1018 0, /* rightshift */
1019 2, /* size (0 = byte, 1 = short, 2 = long) */
1020 16, /* bitsize */
1021 FALSE, /* pc_relative */
1022 0, /* bitpos */
1023 complain_overflow_dont, /* complain_on_overflow */
1024 bfd_elf_generic_reloc, /* special_function */
1025 AARCH64_R_STR (TLSGD_MOVW_G0_NC), /* name */
1026 FALSE, /* partial_inplace */
1027 0xffff, /* src_mask */
1028 0xffff, /* dst_mask */
1029 FALSE), /* pcrel_offset */
1030
1031 /* Higher 16 bits of GOT offset to tls_index. */
1032 HOWTO64 (AARCH64_R (TLSGD_MOVW_G1), /* type */
1033 16, /* rightshift */
1034 2, /* size (0 = byte, 1 = short, 2 = long) */
1035 16, /* bitsize */
1036 FALSE, /* pc_relative */
1037 0, /* bitpos */
1038 complain_overflow_unsigned, /* complain_on_overflow */
1039 bfd_elf_generic_reloc, /* special_function */
1040 AARCH64_R_STR (TLSGD_MOVW_G1), /* name */
1041 FALSE, /* partial_inplace */
1042 0xffff, /* src_mask */
1043 0xffff, /* dst_mask */
1044 FALSE), /* pcrel_offset */
1045
1046 HOWTO (AARCH64_R (TLSIE_ADR_GOTTPREL_PAGE21), /* type */
1047 12, /* rightshift */
1048 2, /* size (0 = byte, 1 = short, 2 = long) */
1049 21, /* bitsize */
1050 FALSE, /* pc_relative */
1051 0, /* bitpos */
1052 complain_overflow_dont, /* complain_on_overflow */
1053 bfd_elf_generic_reloc, /* special_function */
1054 AARCH64_R_STR (TLSIE_ADR_GOTTPREL_PAGE21), /* name */
1055 FALSE, /* partial_inplace */
1056 0x1fffff, /* src_mask */
1057 0x1fffff, /* dst_mask */
1058 FALSE), /* pcrel_offset */
1059
1060 HOWTO64 (AARCH64_R (TLSIE_LD64_GOTTPREL_LO12_NC), /* type */
1061 3, /* rightshift */
1062 2, /* size (0 = byte, 1 = short, 2 = long) */
1063 12, /* bitsize */
1064 FALSE, /* pc_relative */
1065 0, /* bitpos */
1066 complain_overflow_dont, /* complain_on_overflow */
1067 bfd_elf_generic_reloc, /* special_function */
1068 AARCH64_R_STR (TLSIE_LD64_GOTTPREL_LO12_NC), /* name */
1069 FALSE, /* partial_inplace */
1070 0xff8, /* src_mask */
1071 0xff8, /* dst_mask */
1072 FALSE), /* pcrel_offset */
1073
1074 HOWTO32 (AARCH64_R (TLSIE_LD32_GOTTPREL_LO12_NC), /* type */
1075 2, /* rightshift */
1076 2, /* size (0 = byte, 1 = short, 2 = long) */
1077 12, /* bitsize */
1078 FALSE, /* pc_relative */
1079 0, /* bitpos */
1080 complain_overflow_dont, /* complain_on_overflow */
1081 bfd_elf_generic_reloc, /* special_function */
1082 AARCH64_R_STR (TLSIE_LD32_GOTTPREL_LO12_NC), /* name */
1083 FALSE, /* partial_inplace */
1084 0xffc, /* src_mask */
1085 0xffc, /* dst_mask */
1086 FALSE), /* pcrel_offset */
1087
1088 HOWTO (AARCH64_R (TLSIE_LD_GOTTPREL_PREL19), /* type */
1089 2, /* rightshift */
1090 2, /* size (0 = byte, 1 = short, 2 = long) */
1091 19, /* bitsize */
1092 FALSE, /* pc_relative */
1093 0, /* bitpos */
1094 complain_overflow_dont, /* complain_on_overflow */
1095 bfd_elf_generic_reloc, /* special_function */
1096 AARCH64_R_STR (TLSIE_LD_GOTTPREL_PREL19), /* name */
1097 FALSE, /* partial_inplace */
1098 0x1ffffc, /* src_mask */
1099 0x1ffffc, /* dst_mask */
1100 FALSE), /* pcrel_offset */
1101
1102 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G0_NC), /* type */
1103 0, /* rightshift */
1104 2, /* size (0 = byte, 1 = short, 2 = long) */
1105 16, /* bitsize */
1106 FALSE, /* pc_relative */
1107 0, /* bitpos */
1108 complain_overflow_dont, /* complain_on_overflow */
1109 bfd_elf_generic_reloc, /* special_function */
1110 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G0_NC), /* name */
1111 FALSE, /* partial_inplace */
1112 0xffff, /* src_mask */
1113 0xffff, /* dst_mask */
1114 FALSE), /* pcrel_offset */
1115
1116 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G1), /* type */
1117 16, /* rightshift */
1118 2, /* size (0 = byte, 1 = short, 2 = long) */
1119 16, /* bitsize */
1120 FALSE, /* pc_relative */
1121 0, /* bitpos */
1122 complain_overflow_unsigned, /* complain_on_overflow */
1123 bfd_elf_generic_reloc, /* special_function */
1124 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G1), /* name */
1125 FALSE, /* partial_inplace */
1126 0xffff, /* src_mask */
1127 0xffff, /* dst_mask */
1128 FALSE), /* pcrel_offset */
1129
1130 /* ADD: bit[23:12] of byte offset to module TLS base address. */
1131 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_HI12), /* type */
1132 12, /* rightshift */
1133 2, /* size (0 = byte, 1 = short, 2 = long) */
1134 12, /* bitsize */
1135 FALSE, /* pc_relative */
1136 0, /* bitpos */
1137 complain_overflow_unsigned, /* complain_on_overflow */
1138 bfd_elf_generic_reloc, /* special_function */
1139 AARCH64_R_STR (TLSLD_ADD_DTPREL_HI12), /* name */
1140 FALSE, /* partial_inplace */
1141 0xfff, /* src_mask */
1142 0xfff, /* dst_mask */
1143 FALSE), /* pcrel_offset */
1144
1145 /* Unsigned 12 bit byte offset to module TLS base address. */
1146 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12), /* type */
1147 0, /* rightshift */
1148 2, /* size (0 = byte, 1 = short, 2 = long) */
1149 12, /* bitsize */
1150 FALSE, /* pc_relative */
1151 0, /* bitpos */
1152 complain_overflow_unsigned, /* complain_on_overflow */
1153 bfd_elf_generic_reloc, /* special_function */
1154 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12), /* name */
1155 FALSE, /* partial_inplace */
1156 0xfff, /* src_mask */
1157 0xfff, /* dst_mask */
1158 FALSE), /* pcrel_offset */
1159
1160 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12. */
1161 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12_NC), /* type */
1162 0, /* rightshift */
1163 2, /* size (0 = byte, 1 = short, 2 = long) */
1164 12, /* bitsize */
1165 FALSE, /* pc_relative */
1166 0, /* bitpos */
1167 complain_overflow_dont, /* complain_on_overflow */
1168 bfd_elf_generic_reloc, /* special_function */
1169 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12_NC), /* name */
1170 FALSE, /* partial_inplace */
1171 0xfff, /* src_mask */
1172 0xfff, /* dst_mask */
1173 FALSE), /* pcrel_offset */
1174
1175 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1176 HOWTO (AARCH64_R (TLSLD_ADD_LO12_NC), /* type */
1177 0, /* rightshift */
1178 2, /* size (0 = byte, 1 = short, 2 = long) */
1179 12, /* bitsize */
1180 FALSE, /* pc_relative */
1181 0, /* bitpos */
1182 complain_overflow_dont, /* complain_on_overflow */
1183 bfd_elf_generic_reloc, /* special_function */
1184 AARCH64_R_STR (TLSLD_ADD_LO12_NC), /* name */
1185 FALSE, /* partial_inplace */
1186 0xfff, /* src_mask */
1187 0xfff, /* dst_mask */
1188 FALSE), /* pcrel_offset */
1189
1190 /* Get to the page for the GOT entry for the symbol
1191 (G(S) - P) using an ADRP instruction. */
1192 HOWTO (AARCH64_R (TLSLD_ADR_PAGE21), /* type */
1193 12, /* rightshift */
1194 2, /* size (0 = byte, 1 = short, 2 = long) */
1195 21, /* bitsize */
1196 TRUE, /* pc_relative */
1197 0, /* bitpos */
1198 complain_overflow_signed, /* complain_on_overflow */
1199 bfd_elf_generic_reloc, /* special_function */
1200 AARCH64_R_STR (TLSLD_ADR_PAGE21), /* name */
1201 FALSE, /* partial_inplace */
1202 0x1fffff, /* src_mask */
1203 0x1fffff, /* dst_mask */
1204 TRUE), /* pcrel_offset */
1205
1206 HOWTO (AARCH64_R (TLSLD_ADR_PREL21), /* type */
1207 0, /* rightshift */
1208 2, /* size (0 = byte, 1 = short, 2 = long) */
1209 21, /* bitsize */
1210 TRUE, /* pc_relative */
1211 0, /* bitpos */
1212 complain_overflow_signed, /* complain_on_overflow */
1213 bfd_elf_generic_reloc, /* special_function */
1214 AARCH64_R_STR (TLSLD_ADR_PREL21), /* name */
1215 FALSE, /* partial_inplace */
1216 0x1fffff, /* src_mask */
1217 0x1fffff, /* dst_mask */
1218 TRUE), /* pcrel_offset */
1219
1220 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1221 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12), /* type */
1222 1, /* rightshift */
1223 2, /* size (0 = byte, 1 = short, 2 = long) */
1224 11, /* bitsize */
1225 FALSE, /* pc_relative */
1226 10, /* bitpos */
1227 complain_overflow_unsigned, /* complain_on_overflow */
1228 bfd_elf_generic_reloc, /* special_function */
1229 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12), /* name */
1230 FALSE, /* partial_inplace */
1231 0x1ffc00, /* src_mask */
1232 0x1ffc00, /* dst_mask */
1233 FALSE), /* pcrel_offset */
1234
1235 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12, but no overflow check. */
1236 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12_NC), /* type */
1237 1, /* rightshift */
1238 2, /* size (0 = byte, 1 = short, 2 = long) */
1239 11, /* bitsize */
1240 FALSE, /* pc_relative */
1241 10, /* bitpos */
1242 complain_overflow_dont, /* complain_on_overflow */
1243 bfd_elf_generic_reloc, /* special_function */
1244 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12_NC), /* name */
1245 FALSE, /* partial_inplace */
1246 0x1ffc00, /* src_mask */
1247 0x1ffc00, /* dst_mask */
1248 FALSE), /* pcrel_offset */
1249
1250 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1251 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12), /* type */
1252 2, /* rightshift */
1253 2, /* size (0 = byte, 1 = short, 2 = long) */
1254 10, /* bitsize */
1255 FALSE, /* pc_relative */
1256 10, /* bitpos */
1257 complain_overflow_unsigned, /* complain_on_overflow */
1258 bfd_elf_generic_reloc, /* special_function */
1259 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12), /* name */
1260 FALSE, /* partial_inplace */
1261 0x3ffc00, /* src_mask */
1262 0x3ffc00, /* dst_mask */
1263 FALSE), /* pcrel_offset */
1264
1265 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12, but no overflow check. */
1266 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12_NC), /* type */
1267 2, /* rightshift */
1268 2, /* size (0 = byte, 1 = short, 2 = long) */
1269 10, /* bitsize */
1270 FALSE, /* pc_relative */
1271 10, /* bitpos */
1272 complain_overflow_dont, /* complain_on_overflow */
1273 bfd_elf_generic_reloc, /* special_function */
1274 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12_NC), /* name */
1275 FALSE, /* partial_inplace */
1276 0xffc00, /* src_mask */
1277 0xffc00, /* dst_mask */
1278 FALSE), /* pcrel_offset */
1279
1280 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1281 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12), /* type */
1282 3, /* rightshift */
1283 2, /* size (0 = byte, 1 = short, 2 = long) */
1284 9, /* bitsize */
1285 FALSE, /* pc_relative */
1286 10, /* bitpos */
1287 complain_overflow_unsigned, /* complain_on_overflow */
1288 bfd_elf_generic_reloc, /* special_function */
1289 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12), /* name */
1290 FALSE, /* partial_inplace */
1291 0x3ffc00, /* src_mask */
1292 0x3ffc00, /* dst_mask */
1293 FALSE), /* pcrel_offset */
1294
1295 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12, but no overflow check. */
1296 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12_NC), /* type */
1297 3, /* rightshift */
1298 2, /* size (0 = byte, 1 = short, 2 = long) */
1299 9, /* bitsize */
1300 FALSE, /* pc_relative */
1301 10, /* bitpos */
1302 complain_overflow_dont, /* complain_on_overflow */
1303 bfd_elf_generic_reloc, /* special_function */
1304 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12_NC), /* name */
1305 FALSE, /* partial_inplace */
1306 0x7fc00, /* src_mask */
1307 0x7fc00, /* dst_mask */
1308 FALSE), /* pcrel_offset */
1309
1310 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1311 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12), /* type */
1312 0, /* rightshift */
1313 2, /* size (0 = byte, 1 = short, 2 = long) */
1314 12, /* bitsize */
1315 FALSE, /* pc_relative */
1316 10, /* bitpos */
1317 complain_overflow_unsigned, /* complain_on_overflow */
1318 bfd_elf_generic_reloc, /* special_function */
1319 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12), /* name */
1320 FALSE, /* partial_inplace */
1321 0x3ffc00, /* src_mask */
1322 0x3ffc00, /* dst_mask */
1323 FALSE), /* pcrel_offset */
1324
1325 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12, but no overflow check. */
1326 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12_NC), /* type */
1327 0, /* rightshift */
1328 2, /* size (0 = byte, 1 = short, 2 = long) */
1329 12, /* bitsize */
1330 FALSE, /* pc_relative */
1331 10, /* bitpos */
1332 complain_overflow_dont, /* complain_on_overflow */
1333 bfd_elf_generic_reloc, /* special_function */
1334 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12_NC), /* name */
1335 FALSE, /* partial_inplace */
1336 0x3ffc00, /* src_mask */
1337 0x3ffc00, /* dst_mask */
1338 FALSE), /* pcrel_offset */
1339
1340 /* MOVZ: bit[15:0] of byte offset to module TLS base address. */
1341 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0), /* type */
1342 0, /* rightshift */
1343 2, /* size (0 = byte, 1 = short, 2 = long) */
1344 16, /* bitsize */
1345 FALSE, /* pc_relative */
1346 0, /* bitpos */
1347 complain_overflow_unsigned, /* complain_on_overflow */
1348 bfd_elf_generic_reloc, /* special_function */
1349 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0), /* name */
1350 FALSE, /* partial_inplace */
1351 0xffff, /* src_mask */
1352 0xffff, /* dst_mask */
1353 FALSE), /* pcrel_offset */
1354
1355 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
1356 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0_NC), /* type */
1357 0, /* rightshift */
1358 2, /* size (0 = byte, 1 = short, 2 = long) */
1359 16, /* bitsize */
1360 FALSE, /* pc_relative */
1361 0, /* bitpos */
1362 complain_overflow_dont, /* complain_on_overflow */
1363 bfd_elf_generic_reloc, /* special_function */
1364 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0_NC), /* name */
1365 FALSE, /* partial_inplace */
1366 0xffff, /* src_mask */
1367 0xffff, /* dst_mask */
1368 FALSE), /* pcrel_offset */
1369
1370 /* MOVZ: bit[31:16] of byte offset to module TLS base address. */
1371 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G1), /* type */
1372 16, /* rightshift */
1373 2, /* size (0 = byte, 1 = short, 2 = long) */
1374 16, /* bitsize */
1375 FALSE, /* pc_relative */
1376 0, /* bitpos */
1377 complain_overflow_unsigned, /* complain_on_overflow */
1378 bfd_elf_generic_reloc, /* special_function */
1379 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1), /* name */
1380 FALSE, /* partial_inplace */
1381 0xffff, /* src_mask */
1382 0xffff, /* dst_mask */
1383 FALSE), /* pcrel_offset */
1384
1385 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
1386 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G1_NC), /* type */
1387 16, /* rightshift */
1388 2, /* size (0 = byte, 1 = short, 2 = long) */
1389 16, /* bitsize */
1390 FALSE, /* pc_relative */
1391 0, /* bitpos */
1392 complain_overflow_dont, /* complain_on_overflow */
1393 bfd_elf_generic_reloc, /* special_function */
1394 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1_NC), /* name */
1395 FALSE, /* partial_inplace */
1396 0xffff, /* src_mask */
1397 0xffff, /* dst_mask */
1398 FALSE), /* pcrel_offset */
1399
1400 /* MOVZ: bit[47:32] of byte offset to module TLS base address. */
1401 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G2), /* type */
1402 32, /* rightshift */
1403 2, /* size (0 = byte, 1 = short, 2 = long) */
1404 16, /* bitsize */
1405 FALSE, /* pc_relative */
1406 0, /* bitpos */
1407 complain_overflow_unsigned, /* complain_on_overflow */
1408 bfd_elf_generic_reloc, /* special_function */
1409 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G2), /* name */
1410 FALSE, /* partial_inplace */
1411 0xffff, /* src_mask */
1412 0xffff, /* dst_mask */
1413 FALSE), /* pcrel_offset */
1414
1415 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G2), /* type */
1416 32, /* rightshift */
1417 2, /* size (0 = byte, 1 = short, 2 = long) */
1418 16, /* bitsize */
1419 FALSE, /* pc_relative */
1420 0, /* bitpos */
1421 complain_overflow_unsigned, /* complain_on_overflow */
1422 bfd_elf_generic_reloc, /* special_function */
1423 AARCH64_R_STR (TLSLE_MOVW_TPREL_G2), /* name */
1424 FALSE, /* partial_inplace */
1425 0xffff, /* src_mask */
1426 0xffff, /* dst_mask */
1427 FALSE), /* pcrel_offset */
1428
1429 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G1), /* type */
1430 16, /* rightshift */
1431 2, /* size (0 = byte, 1 = short, 2 = long) */
1432 16, /* bitsize */
1433 FALSE, /* pc_relative */
1434 0, /* bitpos */
1435 complain_overflow_dont, /* complain_on_overflow */
1436 bfd_elf_generic_reloc, /* special_function */
1437 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1), /* name */
1438 FALSE, /* partial_inplace */
1439 0xffff, /* src_mask */
1440 0xffff, /* dst_mask */
1441 FALSE), /* pcrel_offset */
1442
1443 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G1_NC), /* type */
1444 16, /* rightshift */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1446 16, /* bitsize */
1447 FALSE, /* pc_relative */
1448 0, /* bitpos */
1449 complain_overflow_dont, /* complain_on_overflow */
1450 bfd_elf_generic_reloc, /* special_function */
1451 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1_NC), /* name */
1452 FALSE, /* partial_inplace */
1453 0xffff, /* src_mask */
1454 0xffff, /* dst_mask */
1455 FALSE), /* pcrel_offset */
1456
1457 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0), /* type */
1458 0, /* rightshift */
1459 2, /* size (0 = byte, 1 = short, 2 = long) */
1460 16, /* bitsize */
1461 FALSE, /* pc_relative */
1462 0, /* bitpos */
1463 complain_overflow_dont, /* complain_on_overflow */
1464 bfd_elf_generic_reloc, /* special_function */
1465 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0), /* name */
1466 FALSE, /* partial_inplace */
1467 0xffff, /* src_mask */
1468 0xffff, /* dst_mask */
1469 FALSE), /* pcrel_offset */
1470
1471 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0_NC), /* type */
1472 0, /* rightshift */
1473 2, /* size (0 = byte, 1 = short, 2 = long) */
1474 16, /* bitsize */
1475 FALSE, /* pc_relative */
1476 0, /* bitpos */
1477 complain_overflow_dont, /* complain_on_overflow */
1478 bfd_elf_generic_reloc, /* special_function */
1479 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0_NC), /* name */
1480 FALSE, /* partial_inplace */
1481 0xffff, /* src_mask */
1482 0xffff, /* dst_mask */
1483 FALSE), /* pcrel_offset */
1484
1485 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_HI12), /* type */
1486 12, /* rightshift */
1487 2, /* size (0 = byte, 1 = short, 2 = long) */
1488 12, /* bitsize */
1489 FALSE, /* pc_relative */
1490 0, /* bitpos */
1491 complain_overflow_unsigned, /* complain_on_overflow */
1492 bfd_elf_generic_reloc, /* special_function */
1493 AARCH64_R_STR (TLSLE_ADD_TPREL_HI12), /* name */
1494 FALSE, /* partial_inplace */
1495 0xfff, /* src_mask */
1496 0xfff, /* dst_mask */
1497 FALSE), /* pcrel_offset */
1498
1499 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12), /* type */
1500 0, /* rightshift */
1501 2, /* size (0 = byte, 1 = short, 2 = long) */
1502 12, /* bitsize */
1503 FALSE, /* pc_relative */
1504 0, /* bitpos */
1505 complain_overflow_unsigned, /* complain_on_overflow */
1506 bfd_elf_generic_reloc, /* special_function */
1507 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12), /* name */
1508 FALSE, /* partial_inplace */
1509 0xfff, /* src_mask */
1510 0xfff, /* dst_mask */
1511 FALSE), /* pcrel_offset */
1512
1513 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12_NC), /* type */
1514 0, /* rightshift */
1515 2, /* size (0 = byte, 1 = short, 2 = long) */
1516 12, /* bitsize */
1517 FALSE, /* pc_relative */
1518 0, /* bitpos */
1519 complain_overflow_dont, /* complain_on_overflow */
1520 bfd_elf_generic_reloc, /* special_function */
1521 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12_NC), /* name */
1522 FALSE, /* partial_inplace */
1523 0xfff, /* src_mask */
1524 0xfff, /* dst_mask */
1525 FALSE), /* pcrel_offset */
1526
1527 HOWTO (AARCH64_R (TLSDESC_LD_PREL19), /* type */
1528 2, /* rightshift */
1529 2, /* size (0 = byte, 1 = short, 2 = long) */
1530 19, /* bitsize */
1531 TRUE, /* pc_relative */
1532 0, /* bitpos */
1533 complain_overflow_dont, /* complain_on_overflow */
1534 bfd_elf_generic_reloc, /* special_function */
1535 AARCH64_R_STR (TLSDESC_LD_PREL19), /* name */
1536 FALSE, /* partial_inplace */
1537 0x0ffffe0, /* src_mask */
1538 0x0ffffe0, /* dst_mask */
1539 TRUE), /* pcrel_offset */
1540
1541 HOWTO (AARCH64_R (TLSDESC_ADR_PREL21), /* type */
1542 0, /* rightshift */
1543 2, /* size (0 = byte, 1 = short, 2 = long) */
1544 21, /* bitsize */
1545 TRUE, /* pc_relative */
1546 0, /* bitpos */
1547 complain_overflow_dont, /* complain_on_overflow */
1548 bfd_elf_generic_reloc, /* special_function */
1549 AARCH64_R_STR (TLSDESC_ADR_PREL21), /* name */
1550 FALSE, /* partial_inplace */
1551 0x1fffff, /* src_mask */
1552 0x1fffff, /* dst_mask */
1553 TRUE), /* pcrel_offset */
1554
1555 /* Get to the page for the GOT entry for the symbol
1556 (G(S) - P) using an ADRP instruction. */
1557 HOWTO (AARCH64_R (TLSDESC_ADR_PAGE21), /* type */
1558 12, /* rightshift */
1559 2, /* size (0 = byte, 1 = short, 2 = long) */
1560 21, /* bitsize */
1561 TRUE, /* pc_relative */
1562 0, /* bitpos */
1563 complain_overflow_dont, /* complain_on_overflow */
1564 bfd_elf_generic_reloc, /* special_function */
1565 AARCH64_R_STR (TLSDESC_ADR_PAGE21), /* name */
1566 FALSE, /* partial_inplace */
1567 0x1fffff, /* src_mask */
1568 0x1fffff, /* dst_mask */
1569 TRUE), /* pcrel_offset */
1570
1571 /* LD64: GOT offset G(S) & 0xff8. */
1572 HOWTO64 (AARCH64_R (TLSDESC_LD64_LO12_NC), /* type */
1573 3, /* rightshift */
1574 2, /* size (0 = byte, 1 = short, 2 = long) */
1575 12, /* bitsize */
1576 FALSE, /* pc_relative */
1577 0, /* bitpos */
1578 complain_overflow_dont, /* complain_on_overflow */
1579 bfd_elf_generic_reloc, /* special_function */
1580 AARCH64_R_STR (TLSDESC_LD64_LO12_NC), /* name */
1581 FALSE, /* partial_inplace */
1582 0xff8, /* src_mask */
1583 0xff8, /* dst_mask */
1584 FALSE), /* pcrel_offset */
1585
1586 /* LD32: GOT offset G(S) & 0xffc. */
1587 HOWTO32 (AARCH64_R (TLSDESC_LD32_LO12_NC), /* type */
1588 2, /* rightshift */
1589 2, /* size (0 = byte, 1 = short, 2 = long) */
1590 12, /* bitsize */
1591 FALSE, /* pc_relative */
1592 0, /* bitpos */
1593 complain_overflow_dont, /* complain_on_overflow */
1594 bfd_elf_generic_reloc, /* special_function */
1595 AARCH64_R_STR (TLSDESC_LD32_LO12_NC), /* name */
1596 FALSE, /* partial_inplace */
1597 0xffc, /* src_mask */
1598 0xffc, /* dst_mask */
1599 FALSE), /* pcrel_offset */
1600
1601 /* ADD: GOT offset G(S) & 0xfff. */
1602 HOWTO (AARCH64_R (TLSDESC_ADD_LO12_NC), /* type */
1603 0, /* rightshift */
1604 2, /* size (0 = byte, 1 = short, 2 = long) */
1605 12, /* bitsize */
1606 FALSE, /* pc_relative */
1607 0, /* bitpos */
1608 complain_overflow_dont, /* complain_on_overflow */
1609 bfd_elf_generic_reloc, /* special_function */
1610 AARCH64_R_STR (TLSDESC_ADD_LO12_NC), /* name */
1611 FALSE, /* partial_inplace */
1612 0xfff, /* src_mask */
1613 0xfff, /* dst_mask */
1614 FALSE), /* pcrel_offset */
1615
1616 HOWTO64 (AARCH64_R (TLSDESC_OFF_G1), /* type */
1617 16, /* rightshift */
1618 2, /* size (0 = byte, 1 = short, 2 = long) */
1619 12, /* bitsize */
1620 FALSE, /* pc_relative */
1621 0, /* bitpos */
1622 complain_overflow_unsigned, /* complain_on_overflow */
1623 bfd_elf_generic_reloc, /* special_function */
1624 AARCH64_R_STR (TLSDESC_OFF_G1), /* name */
1625 FALSE, /* partial_inplace */
1626 0xffff, /* src_mask */
1627 0xffff, /* dst_mask */
1628 FALSE), /* pcrel_offset */
1629
1630 HOWTO64 (AARCH64_R (TLSDESC_OFF_G0_NC), /* type */
1631 0, /* rightshift */
1632 2, /* size (0 = byte, 1 = short, 2 = long) */
1633 12, /* bitsize */
1634 FALSE, /* pc_relative */
1635 0, /* bitpos */
1636 complain_overflow_dont, /* complain_on_overflow */
1637 bfd_elf_generic_reloc, /* special_function */
1638 AARCH64_R_STR (TLSDESC_OFF_G0_NC), /* name */
1639 FALSE, /* partial_inplace */
1640 0xffff, /* src_mask */
1641 0xffff, /* dst_mask */
1642 FALSE), /* pcrel_offset */
1643
1644 HOWTO64 (AARCH64_R (TLSDESC_LDR), /* type */
1645 0, /* rightshift */
1646 2, /* size (0 = byte, 1 = short, 2 = long) */
1647 12, /* bitsize */
1648 FALSE, /* pc_relative */
1649 0, /* bitpos */
1650 complain_overflow_dont, /* complain_on_overflow */
1651 bfd_elf_generic_reloc, /* special_function */
1652 AARCH64_R_STR (TLSDESC_LDR), /* name */
1653 FALSE, /* partial_inplace */
1654 0x0, /* src_mask */
1655 0x0, /* dst_mask */
1656 FALSE), /* pcrel_offset */
1657
1658 HOWTO64 (AARCH64_R (TLSDESC_ADD), /* type */
1659 0, /* rightshift */
1660 2, /* size (0 = byte, 1 = short, 2 = long) */
1661 12, /* bitsize */
1662 FALSE, /* pc_relative */
1663 0, /* bitpos */
1664 complain_overflow_dont, /* complain_on_overflow */
1665 bfd_elf_generic_reloc, /* special_function */
1666 AARCH64_R_STR (TLSDESC_ADD), /* name */
1667 FALSE, /* partial_inplace */
1668 0x0, /* src_mask */
1669 0x0, /* dst_mask */
1670 FALSE), /* pcrel_offset */
1671
1672 HOWTO (AARCH64_R (TLSDESC_CALL), /* type */
1673 0, /* rightshift */
1674 2, /* size (0 = byte, 1 = short, 2 = long) */
1675 0, /* bitsize */
1676 FALSE, /* pc_relative */
1677 0, /* bitpos */
1678 complain_overflow_dont, /* complain_on_overflow */
1679 bfd_elf_generic_reloc, /* special_function */
1680 AARCH64_R_STR (TLSDESC_CALL), /* name */
1681 FALSE, /* partial_inplace */
1682 0x0, /* src_mask */
1683 0x0, /* dst_mask */
1684 FALSE), /* pcrel_offset */
1685
1686 HOWTO (AARCH64_R (COPY), /* type */
1687 0, /* rightshift */
1688 2, /* size (0 = byte, 1 = short, 2 = long) */
1689 64, /* bitsize */
1690 FALSE, /* pc_relative */
1691 0, /* bitpos */
1692 complain_overflow_bitfield, /* complain_on_overflow */
1693 bfd_elf_generic_reloc, /* special_function */
1694 AARCH64_R_STR (COPY), /* name */
1695 TRUE, /* partial_inplace */
1696 0xffffffff, /* src_mask */
1697 0xffffffff, /* dst_mask */
1698 FALSE), /* pcrel_offset */
1699
1700 HOWTO (AARCH64_R (GLOB_DAT), /* type */
1701 0, /* rightshift */
1702 2, /* size (0 = byte, 1 = short, 2 = long) */
1703 64, /* bitsize */
1704 FALSE, /* pc_relative */
1705 0, /* bitpos */
1706 complain_overflow_bitfield, /* complain_on_overflow */
1707 bfd_elf_generic_reloc, /* special_function */
1708 AARCH64_R_STR (GLOB_DAT), /* name */
1709 TRUE, /* partial_inplace */
1710 0xffffffff, /* src_mask */
1711 0xffffffff, /* dst_mask */
1712 FALSE), /* pcrel_offset */
1713
1714 HOWTO (AARCH64_R (JUMP_SLOT), /* type */
1715 0, /* rightshift */
1716 2, /* size (0 = byte, 1 = short, 2 = long) */
1717 64, /* bitsize */
1718 FALSE, /* pc_relative */
1719 0, /* bitpos */
1720 complain_overflow_bitfield, /* complain_on_overflow */
1721 bfd_elf_generic_reloc, /* special_function */
1722 AARCH64_R_STR (JUMP_SLOT), /* name */
1723 TRUE, /* partial_inplace */
1724 0xffffffff, /* src_mask */
1725 0xffffffff, /* dst_mask */
1726 FALSE), /* pcrel_offset */
1727
1728 HOWTO (AARCH64_R (RELATIVE), /* type */
1729 0, /* rightshift */
1730 2, /* size (0 = byte, 1 = short, 2 = long) */
1731 64, /* bitsize */
1732 FALSE, /* pc_relative */
1733 0, /* bitpos */
1734 complain_overflow_bitfield, /* complain_on_overflow */
1735 bfd_elf_generic_reloc, /* special_function */
1736 AARCH64_R_STR (RELATIVE), /* name */
1737 TRUE, /* partial_inplace */
1738 ALL_ONES, /* src_mask */
1739 ALL_ONES, /* dst_mask */
1740 FALSE), /* pcrel_offset */
1741
1742 HOWTO (AARCH64_R (TLS_DTPMOD), /* type */
1743 0, /* rightshift */
1744 2, /* size (0 = byte, 1 = short, 2 = long) */
1745 64, /* bitsize */
1746 FALSE, /* pc_relative */
1747 0, /* bitpos */
1748 complain_overflow_dont, /* complain_on_overflow */
1749 bfd_elf_generic_reloc, /* special_function */
1750 #if ARCH_SIZE == 64
1751 AARCH64_R_STR (TLS_DTPMOD64), /* name */
1752 #else
1753 AARCH64_R_STR (TLS_DTPMOD), /* name */
1754 #endif
1755 FALSE, /* partial_inplace */
1756 0, /* src_mask */
1757 ALL_ONES, /* dst_mask */
1758 FALSE), /* pc_reloffset */
1759
1760 HOWTO (AARCH64_R (TLS_DTPREL), /* type */
1761 0, /* rightshift */
1762 2, /* size (0 = byte, 1 = short, 2 = long) */
1763 64, /* bitsize */
1764 FALSE, /* pc_relative */
1765 0, /* bitpos */
1766 complain_overflow_dont, /* complain_on_overflow */
1767 bfd_elf_generic_reloc, /* special_function */
1768 #if ARCH_SIZE == 64
1769 AARCH64_R_STR (TLS_DTPREL64), /* name */
1770 #else
1771 AARCH64_R_STR (TLS_DTPREL), /* name */
1772 #endif
1773 FALSE, /* partial_inplace */
1774 0, /* src_mask */
1775 ALL_ONES, /* dst_mask */
1776 FALSE), /* pcrel_offset */
1777
1778 HOWTO (AARCH64_R (TLS_TPREL), /* type */
1779 0, /* rightshift */
1780 2, /* size (0 = byte, 1 = short, 2 = long) */
1781 64, /* bitsize */
1782 FALSE, /* pc_relative */
1783 0, /* bitpos */
1784 complain_overflow_dont, /* complain_on_overflow */
1785 bfd_elf_generic_reloc, /* special_function */
1786 #if ARCH_SIZE == 64
1787 AARCH64_R_STR (TLS_TPREL64), /* name */
1788 #else
1789 AARCH64_R_STR (TLS_TPREL), /* name */
1790 #endif
1791 FALSE, /* partial_inplace */
1792 0, /* src_mask */
1793 ALL_ONES, /* dst_mask */
1794 FALSE), /* pcrel_offset */
1795
1796 HOWTO (AARCH64_R (TLSDESC), /* type */
1797 0, /* rightshift */
1798 2, /* size (0 = byte, 1 = short, 2 = long) */
1799 64, /* bitsize */
1800 FALSE, /* pc_relative */
1801 0, /* bitpos */
1802 complain_overflow_dont, /* complain_on_overflow */
1803 bfd_elf_generic_reloc, /* special_function */
1804 AARCH64_R_STR (TLSDESC), /* name */
1805 FALSE, /* partial_inplace */
1806 0, /* src_mask */
1807 ALL_ONES, /* dst_mask */
1808 FALSE), /* pcrel_offset */
1809
1810 HOWTO (AARCH64_R (IRELATIVE), /* type */
1811 0, /* rightshift */
1812 2, /* size (0 = byte, 1 = short, 2 = long) */
1813 64, /* bitsize */
1814 FALSE, /* pc_relative */
1815 0, /* bitpos */
1816 complain_overflow_bitfield, /* complain_on_overflow */
1817 bfd_elf_generic_reloc, /* special_function */
1818 AARCH64_R_STR (IRELATIVE), /* name */
1819 FALSE, /* partial_inplace */
1820 0, /* src_mask */
1821 ALL_ONES, /* dst_mask */
1822 FALSE), /* pcrel_offset */
1823
1824 EMPTY_HOWTO (0),
1825 };
1826
1827 static reloc_howto_type elfNN_aarch64_howto_none =
1828 HOWTO (R_AARCH64_NONE, /* type */
1829 0, /* rightshift */
1830 3, /* size (0 = byte, 1 = short, 2 = long) */
1831 0, /* bitsize */
1832 FALSE, /* pc_relative */
1833 0, /* bitpos */
1834 complain_overflow_dont,/* complain_on_overflow */
1835 bfd_elf_generic_reloc, /* special_function */
1836 "R_AARCH64_NONE", /* name */
1837 FALSE, /* partial_inplace */
1838 0, /* src_mask */
1839 0, /* dst_mask */
1840 FALSE); /* pcrel_offset */
1841
1842 /* Given HOWTO, return the bfd internal relocation enumerator. */
1843
1844 static bfd_reloc_code_real_type
1845 elfNN_aarch64_bfd_reloc_from_howto (reloc_howto_type *howto)
1846 {
1847 const int size
1848 = (int) ARRAY_SIZE (elfNN_aarch64_howto_table);
1849 const ptrdiff_t offset
1850 = howto - elfNN_aarch64_howto_table;
1851
1852 if (offset > 0 && offset < size - 1)
1853 return BFD_RELOC_AARCH64_RELOC_START + offset;
1854
1855 if (howto == &elfNN_aarch64_howto_none)
1856 return BFD_RELOC_AARCH64_NONE;
1857
1858 return BFD_RELOC_AARCH64_RELOC_START;
1859 }
1860
1861 /* Given R_TYPE, return the bfd internal relocation enumerator. */
1862
1863 static bfd_reloc_code_real_type
1864 elfNN_aarch64_bfd_reloc_from_type (unsigned int r_type)
1865 {
1866 static bfd_boolean initialized_p = FALSE;
1867 /* Indexed by R_TYPE, values are offsets in the howto_table. */
1868 static unsigned int offsets[R_AARCH64_end];
1869
1870 if (initialized_p == FALSE)
1871 {
1872 unsigned int i;
1873
1874 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
1875 if (elfNN_aarch64_howto_table[i].type != 0)
1876 offsets[elfNN_aarch64_howto_table[i].type] = i;
1877
1878 initialized_p = TRUE;
1879 }
1880
1881 if (r_type == R_AARCH64_NONE || r_type == R_AARCH64_NULL)
1882 return BFD_RELOC_AARCH64_NONE;
1883
1884 /* PR 17512: file: b371e70a. */
1885 if (r_type >= R_AARCH64_end)
1886 {
1887 _bfd_error_handler (_("Invalid AArch64 reloc number: %d"), r_type);
1888 bfd_set_error (bfd_error_bad_value);
1889 return BFD_RELOC_AARCH64_NONE;
1890 }
1891
1892 return BFD_RELOC_AARCH64_RELOC_START + offsets[r_type];
1893 }
1894
1895 struct elf_aarch64_reloc_map
1896 {
1897 bfd_reloc_code_real_type from;
1898 bfd_reloc_code_real_type to;
1899 };
1900
1901 /* Map bfd generic reloc to AArch64-specific reloc. */
1902 static const struct elf_aarch64_reloc_map elf_aarch64_reloc_map[] =
1903 {
1904 {BFD_RELOC_NONE, BFD_RELOC_AARCH64_NONE},
1905
1906 /* Basic data relocations. */
1907 {BFD_RELOC_CTOR, BFD_RELOC_AARCH64_NN},
1908 {BFD_RELOC_64, BFD_RELOC_AARCH64_64},
1909 {BFD_RELOC_32, BFD_RELOC_AARCH64_32},
1910 {BFD_RELOC_16, BFD_RELOC_AARCH64_16},
1911 {BFD_RELOC_64_PCREL, BFD_RELOC_AARCH64_64_PCREL},
1912 {BFD_RELOC_32_PCREL, BFD_RELOC_AARCH64_32_PCREL},
1913 {BFD_RELOC_16_PCREL, BFD_RELOC_AARCH64_16_PCREL},
1914 };
1915
1916 /* Given the bfd internal relocation enumerator in CODE, return the
1917 corresponding howto entry. */
1918
1919 static reloc_howto_type *
1920 elfNN_aarch64_howto_from_bfd_reloc (bfd_reloc_code_real_type code)
1921 {
1922 unsigned int i;
1923
1924 /* Convert bfd generic reloc to AArch64-specific reloc. */
1925 if (code < BFD_RELOC_AARCH64_RELOC_START
1926 || code > BFD_RELOC_AARCH64_RELOC_END)
1927 for (i = 0; i < ARRAY_SIZE (elf_aarch64_reloc_map); i++)
1928 if (elf_aarch64_reloc_map[i].from == code)
1929 {
1930 code = elf_aarch64_reloc_map[i].to;
1931 break;
1932 }
1933
1934 if (code > BFD_RELOC_AARCH64_RELOC_START
1935 && code < BFD_RELOC_AARCH64_RELOC_END)
1936 if (elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START].type)
1937 return &elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START];
1938
1939 if (code == BFD_RELOC_AARCH64_NONE)
1940 return &elfNN_aarch64_howto_none;
1941
1942 return NULL;
1943 }
1944
1945 static reloc_howto_type *
1946 elfNN_aarch64_howto_from_type (unsigned int r_type)
1947 {
1948 bfd_reloc_code_real_type val;
1949 reloc_howto_type *howto;
1950
1951 #if ARCH_SIZE == 32
1952 if (r_type > 256)
1953 {
1954 bfd_set_error (bfd_error_bad_value);
1955 return NULL;
1956 }
1957 #endif
1958
1959 if (r_type == R_AARCH64_NONE)
1960 return &elfNN_aarch64_howto_none;
1961
1962 val = elfNN_aarch64_bfd_reloc_from_type (r_type);
1963 howto = elfNN_aarch64_howto_from_bfd_reloc (val);
1964
1965 if (howto != NULL)
1966 return howto;
1967
1968 bfd_set_error (bfd_error_bad_value);
1969 return NULL;
1970 }
1971
1972 static void
1973 elfNN_aarch64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *bfd_reloc,
1974 Elf_Internal_Rela *elf_reloc)
1975 {
1976 unsigned int r_type;
1977
1978 r_type = ELFNN_R_TYPE (elf_reloc->r_info);
1979 bfd_reloc->howto = elfNN_aarch64_howto_from_type (r_type);
1980 }
1981
1982 static reloc_howto_type *
1983 elfNN_aarch64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1984 bfd_reloc_code_real_type code)
1985 {
1986 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (code);
1987
1988 if (howto != NULL)
1989 return howto;
1990
1991 bfd_set_error (bfd_error_bad_value);
1992 return NULL;
1993 }
1994
1995 static reloc_howto_type *
1996 elfNN_aarch64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1997 const char *r_name)
1998 {
1999 unsigned int i;
2000
2001 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
2002 if (elfNN_aarch64_howto_table[i].name != NULL
2003 && strcasecmp (elfNN_aarch64_howto_table[i].name, r_name) == 0)
2004 return &elfNN_aarch64_howto_table[i];
2005
2006 return NULL;
2007 }
2008
2009 #define TARGET_LITTLE_SYM aarch64_elfNN_le_vec
2010 #define TARGET_LITTLE_NAME "elfNN-littleaarch64"
2011 #define TARGET_BIG_SYM aarch64_elfNN_be_vec
2012 #define TARGET_BIG_NAME "elfNN-bigaarch64"
2013
2014 /* The linker script knows the section names for placement.
2015 The entry_names are used to do simple name mangling on the stubs.
2016 Given a function name, and its type, the stub can be found. The
2017 name can be changed. The only requirement is the %s be present. */
2018 #define STUB_ENTRY_NAME "__%s_veneer"
2019
2020 /* The name of the dynamic interpreter. This is put in the .interp
2021 section. */
2022 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
2023
2024 #define AARCH64_MAX_FWD_BRANCH_OFFSET \
2025 (((1 << 25) - 1) << 2)
2026 #define AARCH64_MAX_BWD_BRANCH_OFFSET \
2027 (-((1 << 25) << 2))
2028
2029 #define AARCH64_MAX_ADRP_IMM ((1 << 20) - 1)
2030 #define AARCH64_MIN_ADRP_IMM (-(1 << 20))
2031
2032 static int
2033 aarch64_valid_for_adrp_p (bfd_vma value, bfd_vma place)
2034 {
2035 bfd_signed_vma offset = (bfd_signed_vma) (PG (value) - PG (place)) >> 12;
2036 return offset <= AARCH64_MAX_ADRP_IMM && offset >= AARCH64_MIN_ADRP_IMM;
2037 }
2038
2039 static int
2040 aarch64_valid_branch_p (bfd_vma value, bfd_vma place)
2041 {
2042 bfd_signed_vma offset = (bfd_signed_vma) (value - place);
2043 return (offset <= AARCH64_MAX_FWD_BRANCH_OFFSET
2044 && offset >= AARCH64_MAX_BWD_BRANCH_OFFSET);
2045 }
2046
2047 static const uint32_t aarch64_adrp_branch_stub [] =
2048 {
2049 0x90000010, /* adrp ip0, X */
2050 /* R_AARCH64_ADR_HI21_PCREL(X) */
2051 0x91000210, /* add ip0, ip0, :lo12:X */
2052 /* R_AARCH64_ADD_ABS_LO12_NC(X) */
2053 0xd61f0200, /* br ip0 */
2054 };
2055
2056 static const uint32_t aarch64_long_branch_stub[] =
2057 {
2058 #if ARCH_SIZE == 64
2059 0x58000090, /* ldr ip0, 1f */
2060 #else
2061 0x18000090, /* ldr wip0, 1f */
2062 #endif
2063 0x10000011, /* adr ip1, #0 */
2064 0x8b110210, /* add ip0, ip0, ip1 */
2065 0xd61f0200, /* br ip0 */
2066 0x00000000, /* 1: .xword or .word
2067 R_AARCH64_PRELNN(X) + 12
2068 */
2069 0x00000000,
2070 };
2071
2072 static const uint32_t aarch64_erratum_835769_stub[] =
2073 {
2074 0x00000000, /* Placeholder for multiply accumulate. */
2075 0x14000000, /* b <label> */
2076 };
2077
2078 static const uint32_t aarch64_erratum_843419_stub[] =
2079 {
2080 0x00000000, /* Placeholder for LDR instruction. */
2081 0x14000000, /* b <label> */
2082 };
2083
2084 /* Section name for stubs is the associated section name plus this
2085 string. */
2086 #define STUB_SUFFIX ".stub"
2087
2088 enum elf_aarch64_stub_type
2089 {
2090 aarch64_stub_none,
2091 aarch64_stub_adrp_branch,
2092 aarch64_stub_long_branch,
2093 aarch64_stub_erratum_835769_veneer,
2094 aarch64_stub_erratum_843419_veneer,
2095 };
2096
2097 struct elf_aarch64_stub_hash_entry
2098 {
2099 /* Base hash table entry structure. */
2100 struct bfd_hash_entry root;
2101
2102 /* The stub section. */
2103 asection *stub_sec;
2104
2105 /* Offset within stub_sec of the beginning of this stub. */
2106 bfd_vma stub_offset;
2107
2108 /* Given the symbol's value and its section we can determine its final
2109 value when building the stubs (so the stub knows where to jump). */
2110 bfd_vma target_value;
2111 asection *target_section;
2112
2113 enum elf_aarch64_stub_type stub_type;
2114
2115 /* The symbol table entry, if any, that this was derived from. */
2116 struct elf_aarch64_link_hash_entry *h;
2117
2118 /* Destination symbol type */
2119 unsigned char st_type;
2120
2121 /* Where this stub is being called from, or, in the case of combined
2122 stub sections, the first input section in the group. */
2123 asection *id_sec;
2124
2125 /* The name for the local symbol at the start of this stub. The
2126 stub name in the hash table has to be unique; this does not, so
2127 it can be friendlier. */
2128 char *output_name;
2129
2130 /* The instruction which caused this stub to be generated (only valid for
2131 erratum 835769 workaround stubs at present). */
2132 uint32_t veneered_insn;
2133
2134 /* In an erratum 843419 workaround stub, the ADRP instruction offset. */
2135 bfd_vma adrp_offset;
2136 };
2137
2138 /* Used to build a map of a section. This is required for mixed-endian
2139 code/data. */
2140
2141 typedef struct elf_elf_section_map
2142 {
2143 bfd_vma vma;
2144 char type;
2145 }
2146 elf_aarch64_section_map;
2147
2148
2149 typedef struct _aarch64_elf_section_data
2150 {
2151 struct bfd_elf_section_data elf;
2152 unsigned int mapcount;
2153 unsigned int mapsize;
2154 elf_aarch64_section_map *map;
2155 }
2156 _aarch64_elf_section_data;
2157
2158 #define elf_aarch64_section_data(sec) \
2159 ((_aarch64_elf_section_data *) elf_section_data (sec))
2160
2161 /* The size of the thread control block which is defined to be two pointers. */
2162 #define TCB_SIZE (ARCH_SIZE/8)*2
2163
2164 struct elf_aarch64_local_symbol
2165 {
2166 unsigned int got_type;
2167 bfd_signed_vma got_refcount;
2168 bfd_vma got_offset;
2169
2170 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The
2171 offset is from the end of the jump table and reserved entries
2172 within the PLTGOT.
2173
2174 The magic value (bfd_vma) -1 indicates that an offset has not be
2175 allocated. */
2176 bfd_vma tlsdesc_got_jump_table_offset;
2177 };
2178
2179 struct elf_aarch64_obj_tdata
2180 {
2181 struct elf_obj_tdata root;
2182
2183 /* local symbol descriptors */
2184 struct elf_aarch64_local_symbol *locals;
2185
2186 /* Zero to warn when linking objects with incompatible enum sizes. */
2187 int no_enum_size_warning;
2188
2189 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2190 int no_wchar_size_warning;
2191 };
2192
2193 #define elf_aarch64_tdata(bfd) \
2194 ((struct elf_aarch64_obj_tdata *) (bfd)->tdata.any)
2195
2196 #define elf_aarch64_locals(bfd) (elf_aarch64_tdata (bfd)->locals)
2197
2198 #define is_aarch64_elf(bfd) \
2199 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2200 && elf_tdata (bfd) != NULL \
2201 && elf_object_id (bfd) == AARCH64_ELF_DATA)
2202
2203 static bfd_boolean
2204 elfNN_aarch64_mkobject (bfd *abfd)
2205 {
2206 return bfd_elf_allocate_object (abfd, sizeof (struct elf_aarch64_obj_tdata),
2207 AARCH64_ELF_DATA);
2208 }
2209
2210 #define elf_aarch64_hash_entry(ent) \
2211 ((struct elf_aarch64_link_hash_entry *)(ent))
2212
2213 #define GOT_UNKNOWN 0
2214 #define GOT_NORMAL 1
2215 #define GOT_TLS_GD 2
2216 #define GOT_TLS_IE 4
2217 #define GOT_TLSDESC_GD 8
2218
2219 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLSDESC_GD))
2220
2221 /* AArch64 ELF linker hash entry. */
2222 struct elf_aarch64_link_hash_entry
2223 {
2224 struct elf_link_hash_entry root;
2225
2226 /* Track dynamic relocs copied for this symbol. */
2227 struct elf_dyn_relocs *dyn_relocs;
2228
2229 /* Since PLT entries have variable size, we need to record the
2230 index into .got.plt instead of recomputing it from the PLT
2231 offset. */
2232 bfd_signed_vma plt_got_offset;
2233
2234 /* Bit mask representing the type of GOT entry(s) if any required by
2235 this symbol. */
2236 unsigned int got_type;
2237
2238 /* A pointer to the most recently used stub hash entry against this
2239 symbol. */
2240 struct elf_aarch64_stub_hash_entry *stub_cache;
2241
2242 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The offset
2243 is from the end of the jump table and reserved entries within the PLTGOT.
2244
2245 The magic value (bfd_vma) -1 indicates that an offset has not
2246 be allocated. */
2247 bfd_vma tlsdesc_got_jump_table_offset;
2248 };
2249
2250 static unsigned int
2251 elfNN_aarch64_symbol_got_type (struct elf_link_hash_entry *h,
2252 bfd *abfd,
2253 unsigned long r_symndx)
2254 {
2255 if (h)
2256 return elf_aarch64_hash_entry (h)->got_type;
2257
2258 if (! elf_aarch64_locals (abfd))
2259 return GOT_UNKNOWN;
2260
2261 return elf_aarch64_locals (abfd)[r_symndx].got_type;
2262 }
2263
2264 /* Get the AArch64 elf linker hash table from a link_info structure. */
2265 #define elf_aarch64_hash_table(info) \
2266 ((struct elf_aarch64_link_hash_table *) ((info)->hash))
2267
2268 #define aarch64_stub_hash_lookup(table, string, create, copy) \
2269 ((struct elf_aarch64_stub_hash_entry *) \
2270 bfd_hash_lookup ((table), (string), (create), (copy)))
2271
2272 /* AArch64 ELF linker hash table. */
2273 struct elf_aarch64_link_hash_table
2274 {
2275 /* The main hash table. */
2276 struct elf_link_hash_table root;
2277
2278 /* Nonzero to force PIC branch veneers. */
2279 int pic_veneer;
2280
2281 /* Fix erratum 835769. */
2282 int fix_erratum_835769;
2283
2284 /* Fix erratum 843419. */
2285 int fix_erratum_843419;
2286
2287 /* Enable ADRP->ADR rewrite for erratum 843419 workaround. */
2288 int fix_erratum_843419_adr;
2289
2290 /* Don't apply link-time values for dynamic relocations. */
2291 int no_apply_dynamic_relocs;
2292
2293 /* The number of bytes in the initial entry in the PLT. */
2294 bfd_size_type plt_header_size;
2295
2296 /* The number of bytes in the subsequent PLT etries. */
2297 bfd_size_type plt_entry_size;
2298
2299 /* Short-cuts to get to dynamic linker sections. */
2300 asection *sdynbss;
2301 asection *srelbss;
2302
2303 /* Small local sym cache. */
2304 struct sym_cache sym_cache;
2305
2306 /* For convenience in allocate_dynrelocs. */
2307 bfd *obfd;
2308
2309 /* The amount of space used by the reserved portion of the sgotplt
2310 section, plus whatever space is used by the jump slots. */
2311 bfd_vma sgotplt_jump_table_size;
2312
2313 /* The stub hash table. */
2314 struct bfd_hash_table stub_hash_table;
2315
2316 /* Linker stub bfd. */
2317 bfd *stub_bfd;
2318
2319 /* Linker call-backs. */
2320 asection *(*add_stub_section) (const char *, asection *);
2321 void (*layout_sections_again) (void);
2322
2323 /* Array to keep track of which stub sections have been created, and
2324 information on stub grouping. */
2325 struct map_stub
2326 {
2327 /* This is the section to which stubs in the group will be
2328 attached. */
2329 asection *link_sec;
2330 /* The stub section. */
2331 asection *stub_sec;
2332 } *stub_group;
2333
2334 /* Assorted information used by elfNN_aarch64_size_stubs. */
2335 unsigned int bfd_count;
2336 unsigned int top_index;
2337 asection **input_list;
2338
2339 /* The offset into splt of the PLT entry for the TLS descriptor
2340 resolver. Special values are 0, if not necessary (or not found
2341 to be necessary yet), and -1 if needed but not determined
2342 yet. */
2343 bfd_vma tlsdesc_plt;
2344
2345 /* The GOT offset for the lazy trampoline. Communicated to the
2346 loader via DT_TLSDESC_GOT. The magic value (bfd_vma) -1
2347 indicates an offset is not allocated. */
2348 bfd_vma dt_tlsdesc_got;
2349
2350 /* Used by local STT_GNU_IFUNC symbols. */
2351 htab_t loc_hash_table;
2352 void * loc_hash_memory;
2353 };
2354
2355 /* Create an entry in an AArch64 ELF linker hash table. */
2356
2357 static struct bfd_hash_entry *
2358 elfNN_aarch64_link_hash_newfunc (struct bfd_hash_entry *entry,
2359 struct bfd_hash_table *table,
2360 const char *string)
2361 {
2362 struct elf_aarch64_link_hash_entry *ret =
2363 (struct elf_aarch64_link_hash_entry *) entry;
2364
2365 /* Allocate the structure if it has not already been allocated by a
2366 subclass. */
2367 if (ret == NULL)
2368 ret = bfd_hash_allocate (table,
2369 sizeof (struct elf_aarch64_link_hash_entry));
2370 if (ret == NULL)
2371 return (struct bfd_hash_entry *) ret;
2372
2373 /* Call the allocation method of the superclass. */
2374 ret = ((struct elf_aarch64_link_hash_entry *)
2375 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2376 table, string));
2377 if (ret != NULL)
2378 {
2379 ret->dyn_relocs = NULL;
2380 ret->got_type = GOT_UNKNOWN;
2381 ret->plt_got_offset = (bfd_vma) - 1;
2382 ret->stub_cache = NULL;
2383 ret->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
2384 }
2385
2386 return (struct bfd_hash_entry *) ret;
2387 }
2388
2389 /* Initialize an entry in the stub hash table. */
2390
2391 static struct bfd_hash_entry *
2392 stub_hash_newfunc (struct bfd_hash_entry *entry,
2393 struct bfd_hash_table *table, const char *string)
2394 {
2395 /* Allocate the structure if it has not already been allocated by a
2396 subclass. */
2397 if (entry == NULL)
2398 {
2399 entry = bfd_hash_allocate (table,
2400 sizeof (struct
2401 elf_aarch64_stub_hash_entry));
2402 if (entry == NULL)
2403 return entry;
2404 }
2405
2406 /* Call the allocation method of the superclass. */
2407 entry = bfd_hash_newfunc (entry, table, string);
2408 if (entry != NULL)
2409 {
2410 struct elf_aarch64_stub_hash_entry *eh;
2411
2412 /* Initialize the local fields. */
2413 eh = (struct elf_aarch64_stub_hash_entry *) entry;
2414 eh->adrp_offset = 0;
2415 eh->stub_sec = NULL;
2416 eh->stub_offset = 0;
2417 eh->target_value = 0;
2418 eh->target_section = NULL;
2419 eh->stub_type = aarch64_stub_none;
2420 eh->h = NULL;
2421 eh->id_sec = NULL;
2422 }
2423
2424 return entry;
2425 }
2426
2427 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
2428 for local symbol so that we can handle local STT_GNU_IFUNC symbols
2429 as global symbol. We reuse indx and dynstr_index for local symbol
2430 hash since they aren't used by global symbols in this backend. */
2431
2432 static hashval_t
2433 elfNN_aarch64_local_htab_hash (const void *ptr)
2434 {
2435 struct elf_link_hash_entry *h
2436 = (struct elf_link_hash_entry *) ptr;
2437 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
2438 }
2439
2440 /* Compare local hash entries. */
2441
2442 static int
2443 elfNN_aarch64_local_htab_eq (const void *ptr1, const void *ptr2)
2444 {
2445 struct elf_link_hash_entry *h1
2446 = (struct elf_link_hash_entry *) ptr1;
2447 struct elf_link_hash_entry *h2
2448 = (struct elf_link_hash_entry *) ptr2;
2449
2450 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
2451 }
2452
2453 /* Find and/or create a hash entry for local symbol. */
2454
2455 static struct elf_link_hash_entry *
2456 elfNN_aarch64_get_local_sym_hash (struct elf_aarch64_link_hash_table *htab,
2457 bfd *abfd, const Elf_Internal_Rela *rel,
2458 bfd_boolean create)
2459 {
2460 struct elf_aarch64_link_hash_entry e, *ret;
2461 asection *sec = abfd->sections;
2462 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
2463 ELFNN_R_SYM (rel->r_info));
2464 void **slot;
2465
2466 e.root.indx = sec->id;
2467 e.root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2468 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
2469 create ? INSERT : NO_INSERT);
2470
2471 if (!slot)
2472 return NULL;
2473
2474 if (*slot)
2475 {
2476 ret = (struct elf_aarch64_link_hash_entry *) *slot;
2477 return &ret->root;
2478 }
2479
2480 ret = (struct elf_aarch64_link_hash_entry *)
2481 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
2482 sizeof (struct elf_aarch64_link_hash_entry));
2483 if (ret)
2484 {
2485 memset (ret, 0, sizeof (*ret));
2486 ret->root.indx = sec->id;
2487 ret->root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2488 ret->root.dynindx = -1;
2489 *slot = ret;
2490 }
2491 return &ret->root;
2492 }
2493
2494 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2495
2496 static void
2497 elfNN_aarch64_copy_indirect_symbol (struct bfd_link_info *info,
2498 struct elf_link_hash_entry *dir,
2499 struct elf_link_hash_entry *ind)
2500 {
2501 struct elf_aarch64_link_hash_entry *edir, *eind;
2502
2503 edir = (struct elf_aarch64_link_hash_entry *) dir;
2504 eind = (struct elf_aarch64_link_hash_entry *) ind;
2505
2506 if (eind->dyn_relocs != NULL)
2507 {
2508 if (edir->dyn_relocs != NULL)
2509 {
2510 struct elf_dyn_relocs **pp;
2511 struct elf_dyn_relocs *p;
2512
2513 /* Add reloc counts against the indirect sym to the direct sym
2514 list. Merge any entries against the same section. */
2515 for (pp = &eind->dyn_relocs; (p = *pp) != NULL;)
2516 {
2517 struct elf_dyn_relocs *q;
2518
2519 for (q = edir->dyn_relocs; q != NULL; q = q->next)
2520 if (q->sec == p->sec)
2521 {
2522 q->pc_count += p->pc_count;
2523 q->count += p->count;
2524 *pp = p->next;
2525 break;
2526 }
2527 if (q == NULL)
2528 pp = &p->next;
2529 }
2530 *pp = edir->dyn_relocs;
2531 }
2532
2533 edir->dyn_relocs = eind->dyn_relocs;
2534 eind->dyn_relocs = NULL;
2535 }
2536
2537 if (ind->root.type == bfd_link_hash_indirect)
2538 {
2539 /* Copy over PLT info. */
2540 if (dir->got.refcount <= 0)
2541 {
2542 edir->got_type = eind->got_type;
2543 eind->got_type = GOT_UNKNOWN;
2544 }
2545 }
2546
2547 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2548 }
2549
2550 /* Destroy an AArch64 elf linker hash table. */
2551
2552 static void
2553 elfNN_aarch64_link_hash_table_free (bfd *obfd)
2554 {
2555 struct elf_aarch64_link_hash_table *ret
2556 = (struct elf_aarch64_link_hash_table *) obfd->link.hash;
2557
2558 if (ret->loc_hash_table)
2559 htab_delete (ret->loc_hash_table);
2560 if (ret->loc_hash_memory)
2561 objalloc_free ((struct objalloc *) ret->loc_hash_memory);
2562
2563 bfd_hash_table_free (&ret->stub_hash_table);
2564 _bfd_elf_link_hash_table_free (obfd);
2565 }
2566
2567 /* Create an AArch64 elf linker hash table. */
2568
2569 static struct bfd_link_hash_table *
2570 elfNN_aarch64_link_hash_table_create (bfd *abfd)
2571 {
2572 struct elf_aarch64_link_hash_table *ret;
2573 bfd_size_type amt = sizeof (struct elf_aarch64_link_hash_table);
2574
2575 ret = bfd_zmalloc (amt);
2576 if (ret == NULL)
2577 return NULL;
2578
2579 if (!_bfd_elf_link_hash_table_init
2580 (&ret->root, abfd, elfNN_aarch64_link_hash_newfunc,
2581 sizeof (struct elf_aarch64_link_hash_entry), AARCH64_ELF_DATA))
2582 {
2583 free (ret);
2584 return NULL;
2585 }
2586
2587 ret->plt_header_size = PLT_ENTRY_SIZE;
2588 ret->plt_entry_size = PLT_SMALL_ENTRY_SIZE;
2589 ret->obfd = abfd;
2590 ret->dt_tlsdesc_got = (bfd_vma) - 1;
2591
2592 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2593 sizeof (struct elf_aarch64_stub_hash_entry)))
2594 {
2595 _bfd_elf_link_hash_table_free (abfd);
2596 return NULL;
2597 }
2598
2599 ret->loc_hash_table = htab_try_create (1024,
2600 elfNN_aarch64_local_htab_hash,
2601 elfNN_aarch64_local_htab_eq,
2602 NULL);
2603 ret->loc_hash_memory = objalloc_create ();
2604 if (!ret->loc_hash_table || !ret->loc_hash_memory)
2605 {
2606 elfNN_aarch64_link_hash_table_free (abfd);
2607 return NULL;
2608 }
2609 ret->root.root.hash_table_free = elfNN_aarch64_link_hash_table_free;
2610
2611 return &ret->root.root;
2612 }
2613
2614 static bfd_boolean
2615 aarch64_relocate (unsigned int r_type, bfd *input_bfd, asection *input_section,
2616 bfd_vma offset, bfd_vma value)
2617 {
2618 reloc_howto_type *howto;
2619 bfd_vma place;
2620
2621 howto = elfNN_aarch64_howto_from_type (r_type);
2622 place = (input_section->output_section->vma + input_section->output_offset
2623 + offset);
2624
2625 r_type = elfNN_aarch64_bfd_reloc_from_type (r_type);
2626 value = _bfd_aarch64_elf_resolve_relocation (r_type, place, value, 0, FALSE);
2627 return _bfd_aarch64_elf_put_addend (input_bfd,
2628 input_section->contents + offset, r_type,
2629 howto, value);
2630 }
2631
2632 static enum elf_aarch64_stub_type
2633 aarch64_select_branch_stub (bfd_vma value, bfd_vma place)
2634 {
2635 if (aarch64_valid_for_adrp_p (value, place))
2636 return aarch64_stub_adrp_branch;
2637 return aarch64_stub_long_branch;
2638 }
2639
2640 /* Determine the type of stub needed, if any, for a call. */
2641
2642 static enum elf_aarch64_stub_type
2643 aarch64_type_of_stub (asection *input_sec,
2644 const Elf_Internal_Rela *rel,
2645 asection *sym_sec,
2646 unsigned char st_type,
2647 bfd_vma destination)
2648 {
2649 bfd_vma location;
2650 bfd_signed_vma branch_offset;
2651 unsigned int r_type;
2652 enum elf_aarch64_stub_type stub_type = aarch64_stub_none;
2653
2654 if (st_type != STT_FUNC
2655 && (sym_sec == input_sec))
2656 return stub_type;
2657
2658 /* Determine where the call point is. */
2659 location = (input_sec->output_offset
2660 + input_sec->output_section->vma + rel->r_offset);
2661
2662 branch_offset = (bfd_signed_vma) (destination - location);
2663
2664 r_type = ELFNN_R_TYPE (rel->r_info);
2665
2666 /* We don't want to redirect any old unconditional jump in this way,
2667 only one which is being used for a sibcall, where it is
2668 acceptable for the IP0 and IP1 registers to be clobbered. */
2669 if ((r_type == AARCH64_R (CALL26) || r_type == AARCH64_R (JUMP26))
2670 && (branch_offset > AARCH64_MAX_FWD_BRANCH_OFFSET
2671 || branch_offset < AARCH64_MAX_BWD_BRANCH_OFFSET))
2672 {
2673 stub_type = aarch64_stub_long_branch;
2674 }
2675
2676 return stub_type;
2677 }
2678
2679 /* Build a name for an entry in the stub hash table. */
2680
2681 static char *
2682 elfNN_aarch64_stub_name (const asection *input_section,
2683 const asection *sym_sec,
2684 const struct elf_aarch64_link_hash_entry *hash,
2685 const Elf_Internal_Rela *rel)
2686 {
2687 char *stub_name;
2688 bfd_size_type len;
2689
2690 if (hash)
2691 {
2692 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 16 + 1;
2693 stub_name = bfd_malloc (len);
2694 if (stub_name != NULL)
2695 snprintf (stub_name, len, "%08x_%s+%" BFD_VMA_FMT "x",
2696 (unsigned int) input_section->id,
2697 hash->root.root.root.string,
2698 rel->r_addend);
2699 }
2700 else
2701 {
2702 len = 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1;
2703 stub_name = bfd_malloc (len);
2704 if (stub_name != NULL)
2705 snprintf (stub_name, len, "%08x_%x:%x+%" BFD_VMA_FMT "x",
2706 (unsigned int) input_section->id,
2707 (unsigned int) sym_sec->id,
2708 (unsigned int) ELFNN_R_SYM (rel->r_info),
2709 rel->r_addend);
2710 }
2711
2712 return stub_name;
2713 }
2714
2715 /* Look up an entry in the stub hash. Stub entries are cached because
2716 creating the stub name takes a bit of time. */
2717
2718 static struct elf_aarch64_stub_hash_entry *
2719 elfNN_aarch64_get_stub_entry (const asection *input_section,
2720 const asection *sym_sec,
2721 struct elf_link_hash_entry *hash,
2722 const Elf_Internal_Rela *rel,
2723 struct elf_aarch64_link_hash_table *htab)
2724 {
2725 struct elf_aarch64_stub_hash_entry *stub_entry;
2726 struct elf_aarch64_link_hash_entry *h =
2727 (struct elf_aarch64_link_hash_entry *) hash;
2728 const asection *id_sec;
2729
2730 if ((input_section->flags & SEC_CODE) == 0)
2731 return NULL;
2732
2733 /* If this input section is part of a group of sections sharing one
2734 stub section, then use the id of the first section in the group.
2735 Stub names need to include a section id, as there may well be
2736 more than one stub used to reach say, printf, and we need to
2737 distinguish between them. */
2738 id_sec = htab->stub_group[input_section->id].link_sec;
2739
2740 if (h != NULL && h->stub_cache != NULL
2741 && h->stub_cache->h == h && h->stub_cache->id_sec == id_sec)
2742 {
2743 stub_entry = h->stub_cache;
2744 }
2745 else
2746 {
2747 char *stub_name;
2748
2749 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, h, rel);
2750 if (stub_name == NULL)
2751 return NULL;
2752
2753 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table,
2754 stub_name, FALSE, FALSE);
2755 if (h != NULL)
2756 h->stub_cache = stub_entry;
2757
2758 free (stub_name);
2759 }
2760
2761 return stub_entry;
2762 }
2763
2764
2765 /* Create a stub section. */
2766
2767 static asection *
2768 _bfd_aarch64_create_stub_section (asection *section,
2769 struct elf_aarch64_link_hash_table *htab)
2770 {
2771 size_t namelen;
2772 bfd_size_type len;
2773 char *s_name;
2774
2775 namelen = strlen (section->name);
2776 len = namelen + sizeof (STUB_SUFFIX);
2777 s_name = bfd_alloc (htab->stub_bfd, len);
2778 if (s_name == NULL)
2779 return NULL;
2780
2781 memcpy (s_name, section->name, namelen);
2782 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
2783 return (*htab->add_stub_section) (s_name, section);
2784 }
2785
2786
2787 /* Find or create a stub section for a link section.
2788
2789 Fix or create the stub section used to collect stubs attached to
2790 the specified link section. */
2791
2792 static asection *
2793 _bfd_aarch64_get_stub_for_link_section (asection *link_section,
2794 struct elf_aarch64_link_hash_table *htab)
2795 {
2796 if (htab->stub_group[link_section->id].stub_sec == NULL)
2797 htab->stub_group[link_section->id].stub_sec
2798 = _bfd_aarch64_create_stub_section (link_section, htab);
2799 return htab->stub_group[link_section->id].stub_sec;
2800 }
2801
2802
2803 /* Find or create a stub section in the stub group for an input
2804 section. */
2805
2806 static asection *
2807 _bfd_aarch64_create_or_find_stub_sec (asection *section,
2808 struct elf_aarch64_link_hash_table *htab)
2809 {
2810 asection *link_sec = htab->stub_group[section->id].link_sec;
2811 return _bfd_aarch64_get_stub_for_link_section (link_sec, htab);
2812 }
2813
2814
2815 /* Add a new stub entry in the stub group associated with an input
2816 section to the stub hash. Not all fields of the new stub entry are
2817 initialised. */
2818
2819 static struct elf_aarch64_stub_hash_entry *
2820 _bfd_aarch64_add_stub_entry_in_group (const char *stub_name,
2821 asection *section,
2822 struct elf_aarch64_link_hash_table *htab)
2823 {
2824 asection *link_sec;
2825 asection *stub_sec;
2826 struct elf_aarch64_stub_hash_entry *stub_entry;
2827
2828 link_sec = htab->stub_group[section->id].link_sec;
2829 stub_sec = _bfd_aarch64_create_or_find_stub_sec (section, htab);
2830
2831 /* Enter this entry into the linker stub hash table. */
2832 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
2833 TRUE, FALSE);
2834 if (stub_entry == NULL)
2835 {
2836 _bfd_error_handler (_("%s: cannot create stub entry %s"),
2837 section->owner, stub_name);
2838 return NULL;
2839 }
2840
2841 stub_entry->stub_sec = stub_sec;
2842 stub_entry->stub_offset = 0;
2843 stub_entry->id_sec = link_sec;
2844
2845 return stub_entry;
2846 }
2847
2848 /* Add a new stub entry in the final stub section to the stub hash.
2849 Not all fields of the new stub entry are initialised. */
2850
2851 static struct elf_aarch64_stub_hash_entry *
2852 _bfd_aarch64_add_stub_entry_after (const char *stub_name,
2853 asection *link_section,
2854 struct elf_aarch64_link_hash_table *htab)
2855 {
2856 asection *stub_sec;
2857 struct elf_aarch64_stub_hash_entry *stub_entry;
2858
2859 stub_sec = _bfd_aarch64_get_stub_for_link_section (link_section, htab);
2860 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
2861 TRUE, FALSE);
2862 if (stub_entry == NULL)
2863 {
2864 _bfd_error_handler (_("cannot create stub entry %s"), stub_name);
2865 return NULL;
2866 }
2867
2868 stub_entry->stub_sec = stub_sec;
2869 stub_entry->stub_offset = 0;
2870 stub_entry->id_sec = link_section;
2871
2872 return stub_entry;
2873 }
2874
2875
2876 static bfd_boolean
2877 aarch64_build_one_stub (struct bfd_hash_entry *gen_entry,
2878 void *in_arg ATTRIBUTE_UNUSED)
2879 {
2880 struct elf_aarch64_stub_hash_entry *stub_entry;
2881 asection *stub_sec;
2882 bfd *stub_bfd;
2883 bfd_byte *loc;
2884 bfd_vma sym_value;
2885 bfd_vma veneered_insn_loc;
2886 bfd_vma veneer_entry_loc;
2887 bfd_signed_vma branch_offset = 0;
2888 unsigned int template_size;
2889 const uint32_t *template;
2890 unsigned int i;
2891
2892 /* Massage our args to the form they really have. */
2893 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
2894
2895 stub_sec = stub_entry->stub_sec;
2896
2897 /* Make a note of the offset within the stubs for this entry. */
2898 stub_entry->stub_offset = stub_sec->size;
2899 loc = stub_sec->contents + stub_entry->stub_offset;
2900
2901 stub_bfd = stub_sec->owner;
2902
2903 /* This is the address of the stub destination. */
2904 sym_value = (stub_entry->target_value
2905 + stub_entry->target_section->output_offset
2906 + stub_entry->target_section->output_section->vma);
2907
2908 if (stub_entry->stub_type == aarch64_stub_long_branch)
2909 {
2910 bfd_vma place = (stub_entry->stub_offset + stub_sec->output_section->vma
2911 + stub_sec->output_offset);
2912
2913 /* See if we can relax the stub. */
2914 if (aarch64_valid_for_adrp_p (sym_value, place))
2915 stub_entry->stub_type = aarch64_select_branch_stub (sym_value, place);
2916 }
2917
2918 switch (stub_entry->stub_type)
2919 {
2920 case aarch64_stub_adrp_branch:
2921 template = aarch64_adrp_branch_stub;
2922 template_size = sizeof (aarch64_adrp_branch_stub);
2923 break;
2924 case aarch64_stub_long_branch:
2925 template = aarch64_long_branch_stub;
2926 template_size = sizeof (aarch64_long_branch_stub);
2927 break;
2928 case aarch64_stub_erratum_835769_veneer:
2929 template = aarch64_erratum_835769_stub;
2930 template_size = sizeof (aarch64_erratum_835769_stub);
2931 break;
2932 case aarch64_stub_erratum_843419_veneer:
2933 template = aarch64_erratum_843419_stub;
2934 template_size = sizeof (aarch64_erratum_843419_stub);
2935 break;
2936 default:
2937 abort ();
2938 }
2939
2940 for (i = 0; i < (template_size / sizeof template[0]); i++)
2941 {
2942 bfd_putl32 (template[i], loc);
2943 loc += 4;
2944 }
2945
2946 template_size = (template_size + 7) & ~7;
2947 stub_sec->size += template_size;
2948
2949 switch (stub_entry->stub_type)
2950 {
2951 case aarch64_stub_adrp_branch:
2952 if (aarch64_relocate (AARCH64_R (ADR_PREL_PG_HI21), stub_bfd, stub_sec,
2953 stub_entry->stub_offset, sym_value))
2954 /* The stub would not have been relaxed if the offset was out
2955 of range. */
2956 BFD_FAIL ();
2957
2958 if (aarch64_relocate (AARCH64_R (ADD_ABS_LO12_NC), stub_bfd, stub_sec,
2959 stub_entry->stub_offset + 4, sym_value))
2960 BFD_FAIL ();
2961 break;
2962
2963 case aarch64_stub_long_branch:
2964 /* We want the value relative to the address 12 bytes back from the
2965 value itself. */
2966 if (aarch64_relocate (AARCH64_R (PRELNN), stub_bfd, stub_sec,
2967 stub_entry->stub_offset + 16, sym_value + 12))
2968 BFD_FAIL ();
2969 break;
2970
2971 case aarch64_stub_erratum_835769_veneer:
2972 veneered_insn_loc = stub_entry->target_section->output_section->vma
2973 + stub_entry->target_section->output_offset
2974 + stub_entry->target_value;
2975 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
2976 + stub_entry->stub_sec->output_offset
2977 + stub_entry->stub_offset;
2978 branch_offset = veneered_insn_loc - veneer_entry_loc;
2979 branch_offset >>= 2;
2980 branch_offset &= 0x3ffffff;
2981 bfd_putl32 (stub_entry->veneered_insn,
2982 stub_sec->contents + stub_entry->stub_offset);
2983 bfd_putl32 (template[1] | branch_offset,
2984 stub_sec->contents + stub_entry->stub_offset + 4);
2985 break;
2986
2987 case aarch64_stub_erratum_843419_veneer:
2988 if (aarch64_relocate (AARCH64_R (JUMP26), stub_bfd, stub_sec,
2989 stub_entry->stub_offset + 4, sym_value + 4))
2990 BFD_FAIL ();
2991 break;
2992
2993 default:
2994 abort ();
2995 }
2996
2997 return TRUE;
2998 }
2999
3000 /* As above, but don't actually build the stub. Just bump offset so
3001 we know stub section sizes. */
3002
3003 static bfd_boolean
3004 aarch64_size_one_stub (struct bfd_hash_entry *gen_entry,
3005 void *in_arg ATTRIBUTE_UNUSED)
3006 {
3007 struct elf_aarch64_stub_hash_entry *stub_entry;
3008 int size;
3009
3010 /* Massage our args to the form they really have. */
3011 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
3012
3013 switch (stub_entry->stub_type)
3014 {
3015 case aarch64_stub_adrp_branch:
3016 size = sizeof (aarch64_adrp_branch_stub);
3017 break;
3018 case aarch64_stub_long_branch:
3019 size = sizeof (aarch64_long_branch_stub);
3020 break;
3021 case aarch64_stub_erratum_835769_veneer:
3022 size = sizeof (aarch64_erratum_835769_stub);
3023 break;
3024 case aarch64_stub_erratum_843419_veneer:
3025 size = sizeof (aarch64_erratum_843419_stub);
3026 break;
3027 default:
3028 abort ();
3029 }
3030
3031 size = (size + 7) & ~7;
3032 stub_entry->stub_sec->size += size;
3033 return TRUE;
3034 }
3035
3036 /* External entry points for sizing and building linker stubs. */
3037
3038 /* Set up various things so that we can make a list of input sections
3039 for each output section included in the link. Returns -1 on error,
3040 0 when no stubs will be needed, and 1 on success. */
3041
3042 int
3043 elfNN_aarch64_setup_section_lists (bfd *output_bfd,
3044 struct bfd_link_info *info)
3045 {
3046 bfd *input_bfd;
3047 unsigned int bfd_count;
3048 unsigned int top_id, top_index;
3049 asection *section;
3050 asection **input_list, **list;
3051 bfd_size_type amt;
3052 struct elf_aarch64_link_hash_table *htab =
3053 elf_aarch64_hash_table (info);
3054
3055 if (!is_elf_hash_table (htab))
3056 return 0;
3057
3058 /* Count the number of input BFDs and find the top input section id. */
3059 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3060 input_bfd != NULL; input_bfd = input_bfd->link.next)
3061 {
3062 bfd_count += 1;
3063 for (section = input_bfd->sections;
3064 section != NULL; section = section->next)
3065 {
3066 if (top_id < section->id)
3067 top_id = section->id;
3068 }
3069 }
3070 htab->bfd_count = bfd_count;
3071
3072 amt = sizeof (struct map_stub) * (top_id + 1);
3073 htab->stub_group = bfd_zmalloc (amt);
3074 if (htab->stub_group == NULL)
3075 return -1;
3076
3077 /* We can't use output_bfd->section_count here to find the top output
3078 section index as some sections may have been removed, and
3079 _bfd_strip_section_from_output doesn't renumber the indices. */
3080 for (section = output_bfd->sections, top_index = 0;
3081 section != NULL; section = section->next)
3082 {
3083 if (top_index < section->index)
3084 top_index = section->index;
3085 }
3086
3087 htab->top_index = top_index;
3088 amt = sizeof (asection *) * (top_index + 1);
3089 input_list = bfd_malloc (amt);
3090 htab->input_list = input_list;
3091 if (input_list == NULL)
3092 return -1;
3093
3094 /* For sections we aren't interested in, mark their entries with a
3095 value we can check later. */
3096 list = input_list + top_index;
3097 do
3098 *list = bfd_abs_section_ptr;
3099 while (list-- != input_list);
3100
3101 for (section = output_bfd->sections;
3102 section != NULL; section = section->next)
3103 {
3104 if ((section->flags & SEC_CODE) != 0)
3105 input_list[section->index] = NULL;
3106 }
3107
3108 return 1;
3109 }
3110
3111 /* Used by elfNN_aarch64_next_input_section and group_sections. */
3112 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3113
3114 /* The linker repeatedly calls this function for each input section,
3115 in the order that input sections are linked into output sections.
3116 Build lists of input sections to determine groupings between which
3117 we may insert linker stubs. */
3118
3119 void
3120 elfNN_aarch64_next_input_section (struct bfd_link_info *info, asection *isec)
3121 {
3122 struct elf_aarch64_link_hash_table *htab =
3123 elf_aarch64_hash_table (info);
3124
3125 if (isec->output_section->index <= htab->top_index)
3126 {
3127 asection **list = htab->input_list + isec->output_section->index;
3128
3129 if (*list != bfd_abs_section_ptr)
3130 {
3131 /* Steal the link_sec pointer for our list. */
3132 /* This happens to make the list in reverse order,
3133 which is what we want. */
3134 PREV_SEC (isec) = *list;
3135 *list = isec;
3136 }
3137 }
3138 }
3139
3140 /* See whether we can group stub sections together. Grouping stub
3141 sections may result in fewer stubs. More importantly, we need to
3142 put all .init* and .fini* stubs at the beginning of the .init or
3143 .fini output sections respectively, because glibc splits the
3144 _init and _fini functions into multiple parts. Putting a stub in
3145 the middle of a function is not a good idea. */
3146
3147 static void
3148 group_sections (struct elf_aarch64_link_hash_table *htab,
3149 bfd_size_type stub_group_size,
3150 bfd_boolean stubs_always_before_branch)
3151 {
3152 asection **list = htab->input_list + htab->top_index;
3153
3154 do
3155 {
3156 asection *tail = *list;
3157
3158 if (tail == bfd_abs_section_ptr)
3159 continue;
3160
3161 while (tail != NULL)
3162 {
3163 asection *curr;
3164 asection *prev;
3165 bfd_size_type total;
3166
3167 curr = tail;
3168 total = tail->size;
3169 while ((prev = PREV_SEC (curr)) != NULL
3170 && ((total += curr->output_offset - prev->output_offset)
3171 < stub_group_size))
3172 curr = prev;
3173
3174 /* OK, the size from the start of CURR to the end is less
3175 than stub_group_size and thus can be handled by one stub
3176 section. (Or the tail section is itself larger than
3177 stub_group_size, in which case we may be toast.)
3178 We should really be keeping track of the total size of
3179 stubs added here, as stubs contribute to the final output
3180 section size. */
3181 do
3182 {
3183 prev = PREV_SEC (tail);
3184 /* Set up this stub group. */
3185 htab->stub_group[tail->id].link_sec = curr;
3186 }
3187 while (tail != curr && (tail = prev) != NULL);
3188
3189 /* But wait, there's more! Input sections up to stub_group_size
3190 bytes before the stub section can be handled by it too. */
3191 if (!stubs_always_before_branch)
3192 {
3193 total = 0;
3194 while (prev != NULL
3195 && ((total += tail->output_offset - prev->output_offset)
3196 < stub_group_size))
3197 {
3198 tail = prev;
3199 prev = PREV_SEC (tail);
3200 htab->stub_group[tail->id].link_sec = curr;
3201 }
3202 }
3203 tail = prev;
3204 }
3205 }
3206 while (list-- != htab->input_list);
3207
3208 free (htab->input_list);
3209 }
3210
3211 #undef PREV_SEC
3212
3213 #define AARCH64_BITS(x, pos, n) (((x) >> (pos)) & ((1 << (n)) - 1))
3214
3215 #define AARCH64_RT(insn) AARCH64_BITS (insn, 0, 5)
3216 #define AARCH64_RT2(insn) AARCH64_BITS (insn, 10, 5)
3217 #define AARCH64_RA(insn) AARCH64_BITS (insn, 10, 5)
3218 #define AARCH64_RD(insn) AARCH64_BITS (insn, 0, 5)
3219 #define AARCH64_RN(insn) AARCH64_BITS (insn, 5, 5)
3220 #define AARCH64_RM(insn) AARCH64_BITS (insn, 16, 5)
3221
3222 #define AARCH64_MAC(insn) (((insn) & 0xff000000) == 0x9b000000)
3223 #define AARCH64_BIT(insn, n) AARCH64_BITS (insn, n, 1)
3224 #define AARCH64_OP31(insn) AARCH64_BITS (insn, 21, 3)
3225 #define AARCH64_ZR 0x1f
3226
3227 /* All ld/st ops. See C4-182 of the ARM ARM. The encoding space for
3228 LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops. */
3229
3230 #define AARCH64_LD(insn) (AARCH64_BIT (insn, 22) == 1)
3231 #define AARCH64_LDST(insn) (((insn) & 0x0a000000) == 0x08000000)
3232 #define AARCH64_LDST_EX(insn) (((insn) & 0x3f000000) == 0x08000000)
3233 #define AARCH64_LDST_PCREL(insn) (((insn) & 0x3b000000) == 0x18000000)
3234 #define AARCH64_LDST_NAP(insn) (((insn) & 0x3b800000) == 0x28000000)
3235 #define AARCH64_LDSTP_PI(insn) (((insn) & 0x3b800000) == 0x28800000)
3236 #define AARCH64_LDSTP_O(insn) (((insn) & 0x3b800000) == 0x29000000)
3237 #define AARCH64_LDSTP_PRE(insn) (((insn) & 0x3b800000) == 0x29800000)
3238 #define AARCH64_LDST_UI(insn) (((insn) & 0x3b200c00) == 0x38000000)
3239 #define AARCH64_LDST_PIIMM(insn) (((insn) & 0x3b200c00) == 0x38000400)
3240 #define AARCH64_LDST_U(insn) (((insn) & 0x3b200c00) == 0x38000800)
3241 #define AARCH64_LDST_PREIMM(insn) (((insn) & 0x3b200c00) == 0x38000c00)
3242 #define AARCH64_LDST_RO(insn) (((insn) & 0x3b200c00) == 0x38200800)
3243 #define AARCH64_LDST_UIMM(insn) (((insn) & 0x3b000000) == 0x39000000)
3244 #define AARCH64_LDST_SIMD_M(insn) (((insn) & 0xbfbf0000) == 0x0c000000)
3245 #define AARCH64_LDST_SIMD_M_PI(insn) (((insn) & 0xbfa00000) == 0x0c800000)
3246 #define AARCH64_LDST_SIMD_S(insn) (((insn) & 0xbf9f0000) == 0x0d000000)
3247 #define AARCH64_LDST_SIMD_S_PI(insn) (((insn) & 0xbf800000) == 0x0d800000)
3248
3249 /* Classify an INSN if it is indeed a load/store.
3250
3251 Return TRUE if INSN is a LD/ST instruction otherwise return FALSE.
3252
3253 For scalar LD/ST instructions PAIR is FALSE, RT is returned and RT2
3254 is set equal to RT.
3255
3256 For LD/ST pair instructions PAIR is TRUE, RT and RT2 are returned.
3257
3258 */
3259
3260 static bfd_boolean
3261 aarch64_mem_op_p (uint32_t insn, unsigned int *rt, unsigned int *rt2,
3262 bfd_boolean *pair, bfd_boolean *load)
3263 {
3264 uint32_t opcode;
3265 unsigned int r;
3266 uint32_t opc = 0;
3267 uint32_t v = 0;
3268 uint32_t opc_v = 0;
3269
3270 /* Bail out quickly if INSN doesn't fall into the the load-store
3271 encoding space. */
3272 if (!AARCH64_LDST (insn))
3273 return FALSE;
3274
3275 *pair = FALSE;
3276 *load = FALSE;
3277 if (AARCH64_LDST_EX (insn))
3278 {
3279 *rt = AARCH64_RT (insn);
3280 *rt2 = *rt;
3281 if (AARCH64_BIT (insn, 21) == 1)
3282 {
3283 *pair = TRUE;
3284 *rt2 = AARCH64_RT2 (insn);
3285 }
3286 *load = AARCH64_LD (insn);
3287 return TRUE;
3288 }
3289 else if (AARCH64_LDST_NAP (insn)
3290 || AARCH64_LDSTP_PI (insn)
3291 || AARCH64_LDSTP_O (insn)
3292 || AARCH64_LDSTP_PRE (insn))
3293 {
3294 *pair = TRUE;
3295 *rt = AARCH64_RT (insn);
3296 *rt2 = AARCH64_RT2 (insn);
3297 *load = AARCH64_LD (insn);
3298 return TRUE;
3299 }
3300 else if (AARCH64_LDST_PCREL (insn)
3301 || AARCH64_LDST_UI (insn)
3302 || AARCH64_LDST_PIIMM (insn)
3303 || AARCH64_LDST_U (insn)
3304 || AARCH64_LDST_PREIMM (insn)
3305 || AARCH64_LDST_RO (insn)
3306 || AARCH64_LDST_UIMM (insn))
3307 {
3308 *rt = AARCH64_RT (insn);
3309 *rt2 = *rt;
3310 if (AARCH64_LDST_PCREL (insn))
3311 *load = TRUE;
3312 opc = AARCH64_BITS (insn, 22, 2);
3313 v = AARCH64_BIT (insn, 26);
3314 opc_v = opc | (v << 2);
3315 *load = (opc_v == 1 || opc_v == 2 || opc_v == 3
3316 || opc_v == 5 || opc_v == 7);
3317 return TRUE;
3318 }
3319 else if (AARCH64_LDST_SIMD_M (insn)
3320 || AARCH64_LDST_SIMD_M_PI (insn))
3321 {
3322 *rt = AARCH64_RT (insn);
3323 *load = AARCH64_BIT (insn, 22);
3324 opcode = (insn >> 12) & 0xf;
3325 switch (opcode)
3326 {
3327 case 0:
3328 case 2:
3329 *rt2 = *rt + 3;
3330 break;
3331
3332 case 4:
3333 case 6:
3334 *rt2 = *rt + 2;
3335 break;
3336
3337 case 7:
3338 *rt2 = *rt;
3339 break;
3340
3341 case 8:
3342 case 10:
3343 *rt2 = *rt + 1;
3344 break;
3345
3346 default:
3347 return FALSE;
3348 }
3349 return TRUE;
3350 }
3351 else if (AARCH64_LDST_SIMD_S (insn)
3352 || AARCH64_LDST_SIMD_S_PI (insn))
3353 {
3354 *rt = AARCH64_RT (insn);
3355 r = (insn >> 21) & 1;
3356 *load = AARCH64_BIT (insn, 22);
3357 opcode = (insn >> 13) & 0x7;
3358 switch (opcode)
3359 {
3360 case 0:
3361 case 2:
3362 case 4:
3363 *rt2 = *rt + r;
3364 break;
3365
3366 case 1:
3367 case 3:
3368 case 5:
3369 *rt2 = *rt + (r == 0 ? 2 : 3);
3370 break;
3371
3372 case 6:
3373 *rt2 = *rt + r;
3374 break;
3375
3376 case 7:
3377 *rt2 = *rt + (r == 0 ? 2 : 3);
3378 break;
3379
3380 default:
3381 return FALSE;
3382 }
3383 return TRUE;
3384 }
3385
3386 return FALSE;
3387 }
3388
3389 /* Return TRUE if INSN is multiply-accumulate. */
3390
3391 static bfd_boolean
3392 aarch64_mlxl_p (uint32_t insn)
3393 {
3394 uint32_t op31 = AARCH64_OP31 (insn);
3395
3396 if (AARCH64_MAC (insn)
3397 && (op31 == 0 || op31 == 1 || op31 == 5)
3398 /* Exclude MUL instructions which are encoded as a multiple accumulate
3399 with RA = XZR. */
3400 && AARCH64_RA (insn) != AARCH64_ZR)
3401 return TRUE;
3402
3403 return FALSE;
3404 }
3405
3406 /* Some early revisions of the Cortex-A53 have an erratum (835769) whereby
3407 it is possible for a 64-bit multiply-accumulate instruction to generate an
3408 incorrect result. The details are quite complex and hard to
3409 determine statically, since branches in the code may exist in some
3410 circumstances, but all cases end with a memory (load, store, or
3411 prefetch) instruction followed immediately by the multiply-accumulate
3412 operation. We employ a linker patching technique, by moving the potentially
3413 affected multiply-accumulate instruction into a patch region and replacing
3414 the original instruction with a branch to the patch. This function checks
3415 if INSN_1 is the memory operation followed by a multiply-accumulate
3416 operation (INSN_2). Return TRUE if an erratum sequence is found, FALSE
3417 if INSN_1 and INSN_2 are safe. */
3418
3419 static bfd_boolean
3420 aarch64_erratum_sequence (uint32_t insn_1, uint32_t insn_2)
3421 {
3422 uint32_t rt;
3423 uint32_t rt2;
3424 uint32_t rn;
3425 uint32_t rm;
3426 uint32_t ra;
3427 bfd_boolean pair;
3428 bfd_boolean load;
3429
3430 if (aarch64_mlxl_p (insn_2)
3431 && aarch64_mem_op_p (insn_1, &rt, &rt2, &pair, &load))
3432 {
3433 /* Any SIMD memory op is independent of the subsequent MLA
3434 by definition of the erratum. */
3435 if (AARCH64_BIT (insn_1, 26))
3436 return TRUE;
3437
3438 /* If not SIMD, check for integer memory ops and MLA relationship. */
3439 rn = AARCH64_RN (insn_2);
3440 ra = AARCH64_RA (insn_2);
3441 rm = AARCH64_RM (insn_2);
3442
3443 /* If this is a load and there's a true(RAW) dependency, we are safe
3444 and this is not an erratum sequence. */
3445 if (load &&
3446 (rt == rn || rt == rm || rt == ra
3447 || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
3448 return FALSE;
3449
3450 /* We conservatively put out stubs for all other cases (including
3451 writebacks). */
3452 return TRUE;
3453 }
3454
3455 return FALSE;
3456 }
3457
3458 /* Used to order a list of mapping symbols by address. */
3459
3460 static int
3461 elf_aarch64_compare_mapping (const void *a, const void *b)
3462 {
3463 const elf_aarch64_section_map *amap = (const elf_aarch64_section_map *) a;
3464 const elf_aarch64_section_map *bmap = (const elf_aarch64_section_map *) b;
3465
3466 if (amap->vma > bmap->vma)
3467 return 1;
3468 else if (amap->vma < bmap->vma)
3469 return -1;
3470 else if (amap->type > bmap->type)
3471 /* Ensure results do not depend on the host qsort for objects with
3472 multiple mapping symbols at the same address by sorting on type
3473 after vma. */
3474 return 1;
3475 else if (amap->type < bmap->type)
3476 return -1;
3477 else
3478 return 0;
3479 }
3480
3481
3482 static char *
3483 _bfd_aarch64_erratum_835769_stub_name (unsigned num_fixes)
3484 {
3485 char *stub_name = (char *) bfd_malloc
3486 (strlen ("__erratum_835769_veneer_") + 16);
3487 sprintf (stub_name,"__erratum_835769_veneer_%d", num_fixes);
3488 return stub_name;
3489 }
3490
3491 /* Scan for Cortex-A53 erratum 835769 sequence.
3492
3493 Return TRUE else FALSE on abnormal termination. */
3494
3495 static bfd_boolean
3496 _bfd_aarch64_erratum_835769_scan (bfd *input_bfd,
3497 struct bfd_link_info *info,
3498 unsigned int *num_fixes_p)
3499 {
3500 asection *section;
3501 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3502 unsigned int num_fixes = *num_fixes_p;
3503
3504 if (htab == NULL)
3505 return TRUE;
3506
3507 for (section = input_bfd->sections;
3508 section != NULL;
3509 section = section->next)
3510 {
3511 bfd_byte *contents = NULL;
3512 struct _aarch64_elf_section_data *sec_data;
3513 unsigned int span;
3514
3515 if (elf_section_type (section) != SHT_PROGBITS
3516 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3517 || (section->flags & SEC_EXCLUDE) != 0
3518 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3519 || (section->output_section == bfd_abs_section_ptr))
3520 continue;
3521
3522 if (elf_section_data (section)->this_hdr.contents != NULL)
3523 contents = elf_section_data (section)->this_hdr.contents;
3524 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
3525 return FALSE;
3526
3527 sec_data = elf_aarch64_section_data (section);
3528
3529 qsort (sec_data->map, sec_data->mapcount,
3530 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
3531
3532 for (span = 0; span < sec_data->mapcount; span++)
3533 {
3534 unsigned int span_start = sec_data->map[span].vma;
3535 unsigned int span_end = ((span == sec_data->mapcount - 1)
3536 ? sec_data->map[0].vma + section->size
3537 : sec_data->map[span + 1].vma);
3538 unsigned int i;
3539 char span_type = sec_data->map[span].type;
3540
3541 if (span_type == 'd')
3542 continue;
3543
3544 for (i = span_start; i + 4 < span_end; i += 4)
3545 {
3546 uint32_t insn_1 = bfd_getl32 (contents + i);
3547 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3548
3549 if (aarch64_erratum_sequence (insn_1, insn_2))
3550 {
3551 struct elf_aarch64_stub_hash_entry *stub_entry;
3552 char *stub_name = _bfd_aarch64_erratum_835769_stub_name (num_fixes);
3553 if (! stub_name)
3554 return FALSE;
3555
3556 stub_entry = _bfd_aarch64_add_stub_entry_in_group (stub_name,
3557 section,
3558 htab);
3559 if (! stub_entry)
3560 return FALSE;
3561
3562 stub_entry->stub_type = aarch64_stub_erratum_835769_veneer;
3563 stub_entry->target_section = section;
3564 stub_entry->target_value = i + 4;
3565 stub_entry->veneered_insn = insn_2;
3566 stub_entry->output_name = stub_name;
3567 num_fixes++;
3568 }
3569 }
3570 }
3571 if (elf_section_data (section)->this_hdr.contents == NULL)
3572 free (contents);
3573 }
3574
3575 *num_fixes_p = num_fixes;
3576
3577 return TRUE;
3578 }
3579
3580
3581 /* Test if instruction INSN is ADRP. */
3582
3583 static bfd_boolean
3584 _bfd_aarch64_adrp_p (uint32_t insn)
3585 {
3586 return ((insn & 0x9f000000) == 0x90000000);
3587 }
3588
3589
3590 /* Helper predicate to look for cortex-a53 erratum 843419 sequence 1. */
3591
3592 static bfd_boolean
3593 _bfd_aarch64_erratum_843419_sequence_p (uint32_t insn_1, uint32_t insn_2,
3594 uint32_t insn_3)
3595 {
3596 uint32_t rt;
3597 uint32_t rt2;
3598 bfd_boolean pair;
3599 bfd_boolean load;
3600
3601 return (aarch64_mem_op_p (insn_2, &rt, &rt2, &pair, &load)
3602 && (!pair
3603 || (pair && !load))
3604 && AARCH64_LDST_UIMM (insn_3)
3605 && AARCH64_RN (insn_3) == AARCH64_RD (insn_1));
3606 }
3607
3608
3609 /* Test for the presence of Cortex-A53 erratum 843419 instruction sequence.
3610
3611 Return TRUE if section CONTENTS at offset I contains one of the
3612 erratum 843419 sequences, otherwise return FALSE. If a sequence is
3613 seen set P_VENEER_I to the offset of the final LOAD/STORE
3614 instruction in the sequence.
3615 */
3616
3617 static bfd_boolean
3618 _bfd_aarch64_erratum_843419_p (bfd_byte *contents, bfd_vma vma,
3619 bfd_vma i, bfd_vma span_end,
3620 bfd_vma *p_veneer_i)
3621 {
3622 uint32_t insn_1 = bfd_getl32 (contents + i);
3623
3624 if (!_bfd_aarch64_adrp_p (insn_1))
3625 return FALSE;
3626
3627 if (span_end < i + 12)
3628 return FALSE;
3629
3630 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3631 uint32_t insn_3 = bfd_getl32 (contents + i + 8);
3632
3633 if ((vma & 0xfff) != 0xff8 && (vma & 0xfff) != 0xffc)
3634 return FALSE;
3635
3636 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_3))
3637 {
3638 *p_veneer_i = i + 8;
3639 return TRUE;
3640 }
3641
3642 if (span_end < i + 16)
3643 return FALSE;
3644
3645 uint32_t insn_4 = bfd_getl32 (contents + i + 12);
3646
3647 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_4))
3648 {
3649 *p_veneer_i = i + 12;
3650 return TRUE;
3651 }
3652
3653 return FALSE;
3654 }
3655
3656
3657 /* Resize all stub sections. */
3658
3659 static void
3660 _bfd_aarch64_resize_stubs (struct elf_aarch64_link_hash_table *htab)
3661 {
3662 asection *section;
3663
3664 /* OK, we've added some stubs. Find out the new size of the
3665 stub sections. */
3666 for (section = htab->stub_bfd->sections;
3667 section != NULL; section = section->next)
3668 {
3669 /* Ignore non-stub sections. */
3670 if (!strstr (section->name, STUB_SUFFIX))
3671 continue;
3672 section->size = 0;
3673 }
3674
3675 bfd_hash_traverse (&htab->stub_hash_table, aarch64_size_one_stub, htab);
3676
3677 for (section = htab->stub_bfd->sections;
3678 section != NULL; section = section->next)
3679 {
3680 if (!strstr (section->name, STUB_SUFFIX))
3681 continue;
3682
3683 if (section->size)
3684 section->size += 4;
3685
3686 /* Ensure all stub sections have a size which is a multiple of
3687 4096. This is important in order to ensure that the insertion
3688 of stub sections does not in itself move existing code around
3689 in such a way that new errata sequences are created. */
3690 if (htab->fix_erratum_843419)
3691 if (section->size)
3692 section->size = BFD_ALIGN (section->size, 0x1000);
3693 }
3694 }
3695
3696
3697 /* Construct an erratum 843419 workaround stub name.
3698 */
3699
3700 static char *
3701 _bfd_aarch64_erratum_843419_stub_name (asection *input_section,
3702 bfd_vma offset)
3703 {
3704 const bfd_size_type len = 8 + 4 + 1 + 8 + 1 + 16 + 1;
3705 char *stub_name = bfd_malloc (len);
3706
3707 if (stub_name != NULL)
3708 snprintf (stub_name, len, "e843419@%04x_%08x_%" BFD_VMA_FMT "x",
3709 input_section->owner->id,
3710 input_section->id,
3711 offset);
3712 return stub_name;
3713 }
3714
3715 /* Build a stub_entry structure describing an 843419 fixup.
3716
3717 The stub_entry constructed is populated with the bit pattern INSN
3718 of the instruction located at OFFSET within input SECTION.
3719
3720 Returns TRUE on success. */
3721
3722 static bfd_boolean
3723 _bfd_aarch64_erratum_843419_fixup (uint32_t insn,
3724 bfd_vma adrp_offset,
3725 bfd_vma ldst_offset,
3726 asection *section,
3727 struct bfd_link_info *info)
3728 {
3729 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3730 char *stub_name;
3731 struct elf_aarch64_stub_hash_entry *stub_entry;
3732
3733 stub_name = _bfd_aarch64_erratum_843419_stub_name (section, ldst_offset);
3734 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3735 FALSE, FALSE);
3736 if (stub_entry)
3737 {
3738 free (stub_name);
3739 return TRUE;
3740 }
3741
3742 /* We always place an 843419 workaround veneer in the stub section
3743 attached to the input section in which an erratum sequence has
3744 been found. This ensures that later in the link process (in
3745 elfNN_aarch64_write_section) when we copy the veneered
3746 instruction from the input section into the stub section the
3747 copied instruction will have had any relocations applied to it.
3748 If we placed workaround veneers in any other stub section then we
3749 could not assume that all relocations have been processed on the
3750 corresponding input section at the point we output the stub
3751 section.
3752 */
3753
3754 stub_entry = _bfd_aarch64_add_stub_entry_after (stub_name, section, htab);
3755 if (stub_entry == NULL)
3756 {
3757 free (stub_name);
3758 return FALSE;
3759 }
3760
3761 stub_entry->adrp_offset = adrp_offset;
3762 stub_entry->target_value = ldst_offset;
3763 stub_entry->target_section = section;
3764 stub_entry->stub_type = aarch64_stub_erratum_843419_veneer;
3765 stub_entry->veneered_insn = insn;
3766 stub_entry->output_name = stub_name;
3767
3768 return TRUE;
3769 }
3770
3771
3772 /* Scan an input section looking for the signature of erratum 843419.
3773
3774 Scans input SECTION in INPUT_BFD looking for erratum 843419
3775 signatures, for each signature found a stub_entry is created
3776 describing the location of the erratum for subsequent fixup.
3777
3778 Return TRUE on successful scan, FALSE on failure to scan.
3779 */
3780
3781 static bfd_boolean
3782 _bfd_aarch64_erratum_843419_scan (bfd *input_bfd, asection *section,
3783 struct bfd_link_info *info)
3784 {
3785 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3786
3787 if (htab == NULL)
3788 return TRUE;
3789
3790 if (elf_section_type (section) != SHT_PROGBITS
3791 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3792 || (section->flags & SEC_EXCLUDE) != 0
3793 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3794 || (section->output_section == bfd_abs_section_ptr))
3795 return TRUE;
3796
3797 do
3798 {
3799 bfd_byte *contents = NULL;
3800 struct _aarch64_elf_section_data *sec_data;
3801 unsigned int span;
3802
3803 if (elf_section_data (section)->this_hdr.contents != NULL)
3804 contents = elf_section_data (section)->this_hdr.contents;
3805 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
3806 return FALSE;
3807
3808 sec_data = elf_aarch64_section_data (section);
3809
3810 qsort (sec_data->map, sec_data->mapcount,
3811 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
3812
3813 for (span = 0; span < sec_data->mapcount; span++)
3814 {
3815 unsigned int span_start = sec_data->map[span].vma;
3816 unsigned int span_end = ((span == sec_data->mapcount - 1)
3817 ? sec_data->map[0].vma + section->size
3818 : sec_data->map[span + 1].vma);
3819 unsigned int i;
3820 char span_type = sec_data->map[span].type;
3821
3822 if (span_type == 'd')
3823 continue;
3824
3825 for (i = span_start; i + 8 < span_end; i += 4)
3826 {
3827 bfd_vma vma = (section->output_section->vma
3828 + section->output_offset
3829 + i);
3830 bfd_vma veneer_i;
3831
3832 if (_bfd_aarch64_erratum_843419_p
3833 (contents, vma, i, span_end, &veneer_i))
3834 {
3835 uint32_t insn = bfd_getl32 (contents + veneer_i);
3836
3837 if (!_bfd_aarch64_erratum_843419_fixup (insn, i, veneer_i,
3838 section, info))
3839 return FALSE;
3840 }
3841 }
3842 }
3843
3844 if (elf_section_data (section)->this_hdr.contents == NULL)
3845 free (contents);
3846 }
3847 while (0);
3848
3849 return TRUE;
3850 }
3851
3852
3853 /* Determine and set the size of the stub section for a final link.
3854
3855 The basic idea here is to examine all the relocations looking for
3856 PC-relative calls to a target that is unreachable with a "bl"
3857 instruction. */
3858
3859 bfd_boolean
3860 elfNN_aarch64_size_stubs (bfd *output_bfd,
3861 bfd *stub_bfd,
3862 struct bfd_link_info *info,
3863 bfd_signed_vma group_size,
3864 asection * (*add_stub_section) (const char *,
3865 asection *),
3866 void (*layout_sections_again) (void))
3867 {
3868 bfd_size_type stub_group_size;
3869 bfd_boolean stubs_always_before_branch;
3870 bfd_boolean stub_changed = FALSE;
3871 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3872 unsigned int num_erratum_835769_fixes = 0;
3873
3874 /* Propagate mach to stub bfd, because it may not have been
3875 finalized when we created stub_bfd. */
3876 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
3877 bfd_get_mach (output_bfd));
3878
3879 /* Stash our params away. */
3880 htab->stub_bfd = stub_bfd;
3881 htab->add_stub_section = add_stub_section;
3882 htab->layout_sections_again = layout_sections_again;
3883 stubs_always_before_branch = group_size < 0;
3884 if (group_size < 0)
3885 stub_group_size = -group_size;
3886 else
3887 stub_group_size = group_size;
3888
3889 if (stub_group_size == 1)
3890 {
3891 /* Default values. */
3892 /* AArch64 branch range is +-128MB. The value used is 1MB less. */
3893 stub_group_size = 127 * 1024 * 1024;
3894 }
3895
3896 group_sections (htab, stub_group_size, stubs_always_before_branch);
3897
3898 (*htab->layout_sections_again) ();
3899
3900 if (htab->fix_erratum_835769)
3901 {
3902 bfd *input_bfd;
3903
3904 for (input_bfd = info->input_bfds;
3905 input_bfd != NULL; input_bfd = input_bfd->link.next)
3906 if (!_bfd_aarch64_erratum_835769_scan (input_bfd, info,
3907 &num_erratum_835769_fixes))
3908 return FALSE;
3909
3910 _bfd_aarch64_resize_stubs (htab);
3911 (*htab->layout_sections_again) ();
3912 }
3913
3914 if (htab->fix_erratum_843419)
3915 {
3916 bfd *input_bfd;
3917
3918 for (input_bfd = info->input_bfds;
3919 input_bfd != NULL;
3920 input_bfd = input_bfd->link.next)
3921 {
3922 asection *section;
3923
3924 for (section = input_bfd->sections;
3925 section != NULL;
3926 section = section->next)
3927 if (!_bfd_aarch64_erratum_843419_scan (input_bfd, section, info))
3928 return FALSE;
3929 }
3930
3931 _bfd_aarch64_resize_stubs (htab);
3932 (*htab->layout_sections_again) ();
3933 }
3934
3935 while (1)
3936 {
3937 bfd *input_bfd;
3938
3939 for (input_bfd = info->input_bfds;
3940 input_bfd != NULL; input_bfd = input_bfd->link.next)
3941 {
3942 Elf_Internal_Shdr *symtab_hdr;
3943 asection *section;
3944 Elf_Internal_Sym *local_syms = NULL;
3945
3946 /* We'll need the symbol table in a second. */
3947 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3948 if (symtab_hdr->sh_info == 0)
3949 continue;
3950
3951 /* Walk over each section attached to the input bfd. */
3952 for (section = input_bfd->sections;
3953 section != NULL; section = section->next)
3954 {
3955 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
3956
3957 /* If there aren't any relocs, then there's nothing more
3958 to do. */
3959 if ((section->flags & SEC_RELOC) == 0
3960 || section->reloc_count == 0
3961 || (section->flags & SEC_CODE) == 0)
3962 continue;
3963
3964 /* If this section is a link-once section that will be
3965 discarded, then don't create any stubs. */
3966 if (section->output_section == NULL
3967 || section->output_section->owner != output_bfd)
3968 continue;
3969
3970 /* Get the relocs. */
3971 internal_relocs
3972 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
3973 NULL, info->keep_memory);
3974 if (internal_relocs == NULL)
3975 goto error_ret_free_local;
3976
3977 /* Now examine each relocation. */
3978 irela = internal_relocs;
3979 irelaend = irela + section->reloc_count;
3980 for (; irela < irelaend; irela++)
3981 {
3982 unsigned int r_type, r_indx;
3983 enum elf_aarch64_stub_type stub_type;
3984 struct elf_aarch64_stub_hash_entry *stub_entry;
3985 asection *sym_sec;
3986 bfd_vma sym_value;
3987 bfd_vma destination;
3988 struct elf_aarch64_link_hash_entry *hash;
3989 const char *sym_name;
3990 char *stub_name;
3991 const asection *id_sec;
3992 unsigned char st_type;
3993 bfd_size_type len;
3994
3995 r_type = ELFNN_R_TYPE (irela->r_info);
3996 r_indx = ELFNN_R_SYM (irela->r_info);
3997
3998 if (r_type >= (unsigned int) R_AARCH64_end)
3999 {
4000 bfd_set_error (bfd_error_bad_value);
4001 error_ret_free_internal:
4002 if (elf_section_data (section)->relocs == NULL)
4003 free (internal_relocs);
4004 goto error_ret_free_local;
4005 }
4006
4007 /* Only look for stubs on unconditional branch and
4008 branch and link instructions. */
4009 if (r_type != (unsigned int) AARCH64_R (CALL26)
4010 && r_type != (unsigned int) AARCH64_R (JUMP26))
4011 continue;
4012
4013 /* Now determine the call target, its name, value,
4014 section. */
4015 sym_sec = NULL;
4016 sym_value = 0;
4017 destination = 0;
4018 hash = NULL;
4019 sym_name = NULL;
4020 if (r_indx < symtab_hdr->sh_info)
4021 {
4022 /* It's a local symbol. */
4023 Elf_Internal_Sym *sym;
4024 Elf_Internal_Shdr *hdr;
4025
4026 if (local_syms == NULL)
4027 {
4028 local_syms
4029 = (Elf_Internal_Sym *) symtab_hdr->contents;
4030 if (local_syms == NULL)
4031 local_syms
4032 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4033 symtab_hdr->sh_info, 0,
4034 NULL, NULL, NULL);
4035 if (local_syms == NULL)
4036 goto error_ret_free_internal;
4037 }
4038
4039 sym = local_syms + r_indx;
4040 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
4041 sym_sec = hdr->bfd_section;
4042 if (!sym_sec)
4043 /* This is an undefined symbol. It can never
4044 be resolved. */
4045 continue;
4046
4047 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
4048 sym_value = sym->st_value;
4049 destination = (sym_value + irela->r_addend
4050 + sym_sec->output_offset
4051 + sym_sec->output_section->vma);
4052 st_type = ELF_ST_TYPE (sym->st_info);
4053 sym_name
4054 = bfd_elf_string_from_elf_section (input_bfd,
4055 symtab_hdr->sh_link,
4056 sym->st_name);
4057 }
4058 else
4059 {
4060 int e_indx;
4061
4062 e_indx = r_indx - symtab_hdr->sh_info;
4063 hash = ((struct elf_aarch64_link_hash_entry *)
4064 elf_sym_hashes (input_bfd)[e_indx]);
4065
4066 while (hash->root.root.type == bfd_link_hash_indirect
4067 || hash->root.root.type == bfd_link_hash_warning)
4068 hash = ((struct elf_aarch64_link_hash_entry *)
4069 hash->root.root.u.i.link);
4070
4071 if (hash->root.root.type == bfd_link_hash_defined
4072 || hash->root.root.type == bfd_link_hash_defweak)
4073 {
4074 struct elf_aarch64_link_hash_table *globals =
4075 elf_aarch64_hash_table (info);
4076 sym_sec = hash->root.root.u.def.section;
4077 sym_value = hash->root.root.u.def.value;
4078 /* For a destination in a shared library,
4079 use the PLT stub as target address to
4080 decide whether a branch stub is
4081 needed. */
4082 if (globals->root.splt != NULL && hash != NULL
4083 && hash->root.plt.offset != (bfd_vma) - 1)
4084 {
4085 sym_sec = globals->root.splt;
4086 sym_value = hash->root.plt.offset;
4087 if (sym_sec->output_section != NULL)
4088 destination = (sym_value
4089 + sym_sec->output_offset
4090 +
4091 sym_sec->output_section->vma);
4092 }
4093 else if (sym_sec->output_section != NULL)
4094 destination = (sym_value + irela->r_addend
4095 + sym_sec->output_offset
4096 + sym_sec->output_section->vma);
4097 }
4098 else if (hash->root.root.type == bfd_link_hash_undefined
4099 || (hash->root.root.type
4100 == bfd_link_hash_undefweak))
4101 {
4102 /* For a shared library, use the PLT stub as
4103 target address to decide whether a long
4104 branch stub is needed.
4105 For absolute code, they cannot be handled. */
4106 struct elf_aarch64_link_hash_table *globals =
4107 elf_aarch64_hash_table (info);
4108
4109 if (globals->root.splt != NULL && hash != NULL
4110 && hash->root.plt.offset != (bfd_vma) - 1)
4111 {
4112 sym_sec = globals->root.splt;
4113 sym_value = hash->root.plt.offset;
4114 if (sym_sec->output_section != NULL)
4115 destination = (sym_value
4116 + sym_sec->output_offset
4117 +
4118 sym_sec->output_section->vma);
4119 }
4120 else
4121 continue;
4122 }
4123 else
4124 {
4125 bfd_set_error (bfd_error_bad_value);
4126 goto error_ret_free_internal;
4127 }
4128 st_type = ELF_ST_TYPE (hash->root.type);
4129 sym_name = hash->root.root.root.string;
4130 }
4131
4132 /* Determine what (if any) linker stub is needed. */
4133 stub_type = aarch64_type_of_stub (section, irela, sym_sec,
4134 st_type, destination);
4135 if (stub_type == aarch64_stub_none)
4136 continue;
4137
4138 /* Support for grouping stub sections. */
4139 id_sec = htab->stub_group[section->id].link_sec;
4140
4141 /* Get the name of this stub. */
4142 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, hash,
4143 irela);
4144 if (!stub_name)
4145 goto error_ret_free_internal;
4146
4147 stub_entry =
4148 aarch64_stub_hash_lookup (&htab->stub_hash_table,
4149 stub_name, FALSE, FALSE);
4150 if (stub_entry != NULL)
4151 {
4152 /* The proper stub has already been created. */
4153 free (stub_name);
4154 continue;
4155 }
4156
4157 stub_entry = _bfd_aarch64_add_stub_entry_in_group
4158 (stub_name, section, htab);
4159 if (stub_entry == NULL)
4160 {
4161 free (stub_name);
4162 goto error_ret_free_internal;
4163 }
4164
4165 stub_entry->target_value = sym_value + irela->r_addend;
4166 stub_entry->target_section = sym_sec;
4167 stub_entry->stub_type = stub_type;
4168 stub_entry->h = hash;
4169 stub_entry->st_type = st_type;
4170
4171 if (sym_name == NULL)
4172 sym_name = "unnamed";
4173 len = sizeof (STUB_ENTRY_NAME) + strlen (sym_name);
4174 stub_entry->output_name = bfd_alloc (htab->stub_bfd, len);
4175 if (stub_entry->output_name == NULL)
4176 {
4177 free (stub_name);
4178 goto error_ret_free_internal;
4179 }
4180
4181 snprintf (stub_entry->output_name, len, STUB_ENTRY_NAME,
4182 sym_name);
4183
4184 stub_changed = TRUE;
4185 }
4186
4187 /* We're done with the internal relocs, free them. */
4188 if (elf_section_data (section)->relocs == NULL)
4189 free (internal_relocs);
4190 }
4191 }
4192
4193 if (!stub_changed)
4194 break;
4195
4196 _bfd_aarch64_resize_stubs (htab);
4197
4198 /* Ask the linker to do its stuff. */
4199 (*htab->layout_sections_again) ();
4200 stub_changed = FALSE;
4201 }
4202
4203 return TRUE;
4204
4205 error_ret_free_local:
4206 return FALSE;
4207 }
4208
4209 /* Build all the stubs associated with the current output file. The
4210 stubs are kept in a hash table attached to the main linker hash
4211 table. We also set up the .plt entries for statically linked PIC
4212 functions here. This function is called via aarch64_elf_finish in the
4213 linker. */
4214
4215 bfd_boolean
4216 elfNN_aarch64_build_stubs (struct bfd_link_info *info)
4217 {
4218 asection *stub_sec;
4219 struct bfd_hash_table *table;
4220 struct elf_aarch64_link_hash_table *htab;
4221
4222 htab = elf_aarch64_hash_table (info);
4223
4224 for (stub_sec = htab->stub_bfd->sections;
4225 stub_sec != NULL; stub_sec = stub_sec->next)
4226 {
4227 bfd_size_type size;
4228
4229 /* Ignore non-stub sections. */
4230 if (!strstr (stub_sec->name, STUB_SUFFIX))
4231 continue;
4232
4233 /* Allocate memory to hold the linker stubs. */
4234 size = stub_sec->size;
4235 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
4236 if (stub_sec->contents == NULL && size != 0)
4237 return FALSE;
4238 stub_sec->size = 0;
4239
4240 bfd_putl32 (0x14000000 | (size >> 2), stub_sec->contents);
4241 stub_sec->size += 4;
4242 }
4243
4244 /* Build the stubs as directed by the stub hash table. */
4245 table = &htab->stub_hash_table;
4246 bfd_hash_traverse (table, aarch64_build_one_stub, info);
4247
4248 return TRUE;
4249 }
4250
4251
4252 /* Add an entry to the code/data map for section SEC. */
4253
4254 static void
4255 elfNN_aarch64_section_map_add (asection *sec, char type, bfd_vma vma)
4256 {
4257 struct _aarch64_elf_section_data *sec_data =
4258 elf_aarch64_section_data (sec);
4259 unsigned int newidx;
4260
4261 if (sec_data->map == NULL)
4262 {
4263 sec_data->map = bfd_malloc (sizeof (elf_aarch64_section_map));
4264 sec_data->mapcount = 0;
4265 sec_data->mapsize = 1;
4266 }
4267
4268 newidx = sec_data->mapcount++;
4269
4270 if (sec_data->mapcount > sec_data->mapsize)
4271 {
4272 sec_data->mapsize *= 2;
4273 sec_data->map = bfd_realloc_or_free
4274 (sec_data->map, sec_data->mapsize * sizeof (elf_aarch64_section_map));
4275 }
4276
4277 if (sec_data->map)
4278 {
4279 sec_data->map[newidx].vma = vma;
4280 sec_data->map[newidx].type = type;
4281 }
4282 }
4283
4284
4285 /* Initialise maps of insn/data for input BFDs. */
4286 void
4287 bfd_elfNN_aarch64_init_maps (bfd *abfd)
4288 {
4289 Elf_Internal_Sym *isymbuf;
4290 Elf_Internal_Shdr *hdr;
4291 unsigned int i, localsyms;
4292
4293 /* Make sure that we are dealing with an AArch64 elf binary. */
4294 if (!is_aarch64_elf (abfd))
4295 return;
4296
4297 if ((abfd->flags & DYNAMIC) != 0)
4298 return;
4299
4300 hdr = &elf_symtab_hdr (abfd);
4301 localsyms = hdr->sh_info;
4302
4303 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4304 should contain the number of local symbols, which should come before any
4305 global symbols. Mapping symbols are always local. */
4306 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, NULL);
4307
4308 /* No internal symbols read? Skip this BFD. */
4309 if (isymbuf == NULL)
4310 return;
4311
4312 for (i = 0; i < localsyms; i++)
4313 {
4314 Elf_Internal_Sym *isym = &isymbuf[i];
4315 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4316 const char *name;
4317
4318 if (sec != NULL && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4319 {
4320 name = bfd_elf_string_from_elf_section (abfd,
4321 hdr->sh_link,
4322 isym->st_name);
4323
4324 if (bfd_is_aarch64_special_symbol_name
4325 (name, BFD_AARCH64_SPECIAL_SYM_TYPE_MAP))
4326 elfNN_aarch64_section_map_add (sec, name[1], isym->st_value);
4327 }
4328 }
4329 }
4330
4331 /* Set option values needed during linking. */
4332 void
4333 bfd_elfNN_aarch64_set_options (struct bfd *output_bfd,
4334 struct bfd_link_info *link_info,
4335 int no_enum_warn,
4336 int no_wchar_warn, int pic_veneer,
4337 int fix_erratum_835769,
4338 int fix_erratum_843419,
4339 int no_apply_dynamic_relocs)
4340 {
4341 struct elf_aarch64_link_hash_table *globals;
4342
4343 globals = elf_aarch64_hash_table (link_info);
4344 globals->pic_veneer = pic_veneer;
4345 globals->fix_erratum_835769 = fix_erratum_835769;
4346 globals->fix_erratum_843419 = fix_erratum_843419;
4347 globals->fix_erratum_843419_adr = TRUE;
4348 globals->no_apply_dynamic_relocs = no_apply_dynamic_relocs;
4349
4350 BFD_ASSERT (is_aarch64_elf (output_bfd));
4351 elf_aarch64_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
4352 elf_aarch64_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
4353 }
4354
4355 static bfd_vma
4356 aarch64_calculate_got_entry_vma (struct elf_link_hash_entry *h,
4357 struct elf_aarch64_link_hash_table
4358 *globals, struct bfd_link_info *info,
4359 bfd_vma value, bfd *output_bfd,
4360 bfd_boolean *unresolved_reloc_p)
4361 {
4362 bfd_vma off = (bfd_vma) - 1;
4363 asection *basegot = globals->root.sgot;
4364 bfd_boolean dyn = globals->root.dynamic_sections_created;
4365
4366 if (h != NULL)
4367 {
4368 BFD_ASSERT (basegot != NULL);
4369 off = h->got.offset;
4370 BFD_ASSERT (off != (bfd_vma) - 1);
4371 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
4372 || (bfd_link_pic (info)
4373 && SYMBOL_REFERENCES_LOCAL (info, h))
4374 || (ELF_ST_VISIBILITY (h->other)
4375 && h->root.type == bfd_link_hash_undefweak))
4376 {
4377 /* This is actually a static link, or it is a -Bsymbolic link
4378 and the symbol is defined locally. We must initialize this
4379 entry in the global offset table. Since the offset must
4380 always be a multiple of 8 (4 in the case of ILP32), we use
4381 the least significant bit to record whether we have
4382 initialized it already.
4383 When doing a dynamic link, we create a .rel(a).got relocation
4384 entry to initialize the value. This is done in the
4385 finish_dynamic_symbol routine. */
4386 if ((off & 1) != 0)
4387 off &= ~1;
4388 else
4389 {
4390 bfd_put_NN (output_bfd, value, basegot->contents + off);
4391 h->got.offset |= 1;
4392 }
4393 }
4394 else
4395 *unresolved_reloc_p = FALSE;
4396
4397 off = off + basegot->output_section->vma + basegot->output_offset;
4398 }
4399
4400 return off;
4401 }
4402
4403 /* Change R_TYPE to a more efficient access model where possible,
4404 return the new reloc type. */
4405
4406 static bfd_reloc_code_real_type
4407 aarch64_tls_transition_without_check (bfd_reloc_code_real_type r_type,
4408 struct elf_link_hash_entry *h)
4409 {
4410 bfd_boolean is_local = h == NULL;
4411
4412 switch (r_type)
4413 {
4414 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4415 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4416 return (is_local
4417 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4418 : BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21);
4419
4420 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4421 return (is_local
4422 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4423 : r_type);
4424
4425 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4426 return (is_local
4427 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4428 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4429
4430 case BFD_RELOC_AARCH64_TLSDESC_LDR:
4431 return (is_local
4432 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4433 : BFD_RELOC_AARCH64_NONE);
4434
4435 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
4436 return (is_local
4437 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4438 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC);
4439
4440 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
4441 return (is_local
4442 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4443 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1);
4444
4445 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
4446 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4447 return (is_local
4448 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4449 : BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC);
4450
4451 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4452 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 : r_type;
4453
4454 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
4455 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC : r_type;
4456
4457 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4458 return r_type;
4459
4460 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4461 return (is_local
4462 ? BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12
4463 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4464
4465 case BFD_RELOC_AARCH64_TLSDESC_ADD:
4466 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
4467 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4468 /* Instructions with these relocations will become NOPs. */
4469 return BFD_RELOC_AARCH64_NONE;
4470
4471 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4472 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4473 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4474 return is_local ? BFD_RELOC_AARCH64_NONE : r_type;
4475
4476 #if ARCH_SIZE == 64
4477 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
4478 return is_local
4479 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4480 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC;
4481
4482 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
4483 return is_local
4484 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4485 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1;
4486 #endif
4487
4488 default:
4489 break;
4490 }
4491
4492 return r_type;
4493 }
4494
4495 static unsigned int
4496 aarch64_reloc_got_type (bfd_reloc_code_real_type r_type)
4497 {
4498 switch (r_type)
4499 {
4500 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
4501 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
4502 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
4503 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
4504 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
4505 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
4506 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
4507 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
4508 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
4509 return GOT_NORMAL;
4510
4511 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4512 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4513 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4514 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
4515 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
4516 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4517 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4518 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4519 return GOT_TLS_GD;
4520
4521 case BFD_RELOC_AARCH64_TLSDESC_ADD:
4522 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
4523 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4524 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4525 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4526 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
4527 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
4528 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4529 case BFD_RELOC_AARCH64_TLSDESC_LDR:
4530 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
4531 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
4532 return GOT_TLSDESC_GD;
4533
4534 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4535 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
4536 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
4537 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4538 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
4539 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
4540 return GOT_TLS_IE;
4541
4542 default:
4543 break;
4544 }
4545 return GOT_UNKNOWN;
4546 }
4547
4548 static bfd_boolean
4549 aarch64_can_relax_tls (bfd *input_bfd,
4550 struct bfd_link_info *info,
4551 bfd_reloc_code_real_type r_type,
4552 struct elf_link_hash_entry *h,
4553 unsigned long r_symndx)
4554 {
4555 unsigned int symbol_got_type;
4556 unsigned int reloc_got_type;
4557
4558 if (! IS_AARCH64_TLS_RELAX_RELOC (r_type))
4559 return FALSE;
4560
4561 symbol_got_type = elfNN_aarch64_symbol_got_type (h, input_bfd, r_symndx);
4562 reloc_got_type = aarch64_reloc_got_type (r_type);
4563
4564 if (symbol_got_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (reloc_got_type))
4565 return TRUE;
4566
4567 if (bfd_link_pic (info))
4568 return FALSE;
4569
4570 if (h && h->root.type == bfd_link_hash_undefweak)
4571 return FALSE;
4572
4573 return TRUE;
4574 }
4575
4576 /* Given the relocation code R_TYPE, return the relaxed bfd reloc
4577 enumerator. */
4578
4579 static bfd_reloc_code_real_type
4580 aarch64_tls_transition (bfd *input_bfd,
4581 struct bfd_link_info *info,
4582 unsigned int r_type,
4583 struct elf_link_hash_entry *h,
4584 unsigned long r_symndx)
4585 {
4586 bfd_reloc_code_real_type bfd_r_type
4587 = elfNN_aarch64_bfd_reloc_from_type (r_type);
4588
4589 if (! aarch64_can_relax_tls (input_bfd, info, bfd_r_type, h, r_symndx))
4590 return bfd_r_type;
4591
4592 return aarch64_tls_transition_without_check (bfd_r_type, h);
4593 }
4594
4595 /* Return the base VMA address which should be subtracted from real addresses
4596 when resolving R_AARCH64_TLS_DTPREL relocation. */
4597
4598 static bfd_vma
4599 dtpoff_base (struct bfd_link_info *info)
4600 {
4601 /* If tls_sec is NULL, we should have signalled an error already. */
4602 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4603 return elf_hash_table (info)->tls_sec->vma;
4604 }
4605
4606 /* Return the base VMA address which should be subtracted from real addresses
4607 when resolving R_AARCH64_TLS_GOTTPREL64 relocations. */
4608
4609 static bfd_vma
4610 tpoff_base (struct bfd_link_info *info)
4611 {
4612 struct elf_link_hash_table *htab = elf_hash_table (info);
4613
4614 /* If tls_sec is NULL, we should have signalled an error already. */
4615 BFD_ASSERT (htab->tls_sec != NULL);
4616
4617 bfd_vma base = align_power ((bfd_vma) TCB_SIZE,
4618 htab->tls_sec->alignment_power);
4619 return htab->tls_sec->vma - base;
4620 }
4621
4622 static bfd_vma *
4623 symbol_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
4624 unsigned long r_symndx)
4625 {
4626 /* Calculate the address of the GOT entry for symbol
4627 referred to in h. */
4628 if (h != NULL)
4629 return &h->got.offset;
4630 else
4631 {
4632 /* local symbol */
4633 struct elf_aarch64_local_symbol *l;
4634
4635 l = elf_aarch64_locals (input_bfd);
4636 return &l[r_symndx].got_offset;
4637 }
4638 }
4639
4640 static void
4641 symbol_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
4642 unsigned long r_symndx)
4643 {
4644 bfd_vma *p;
4645 p = symbol_got_offset_ref (input_bfd, h, r_symndx);
4646 *p |= 1;
4647 }
4648
4649 static int
4650 symbol_got_offset_mark_p (bfd *input_bfd, struct elf_link_hash_entry *h,
4651 unsigned long r_symndx)
4652 {
4653 bfd_vma value;
4654 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
4655 return value & 1;
4656 }
4657
4658 static bfd_vma
4659 symbol_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
4660 unsigned long r_symndx)
4661 {
4662 bfd_vma value;
4663 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
4664 value &= ~1;
4665 return value;
4666 }
4667
4668 static bfd_vma *
4669 symbol_tlsdesc_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
4670 unsigned long r_symndx)
4671 {
4672 /* Calculate the address of the GOT entry for symbol
4673 referred to in h. */
4674 if (h != NULL)
4675 {
4676 struct elf_aarch64_link_hash_entry *eh;
4677 eh = (struct elf_aarch64_link_hash_entry *) h;
4678 return &eh->tlsdesc_got_jump_table_offset;
4679 }
4680 else
4681 {
4682 /* local symbol */
4683 struct elf_aarch64_local_symbol *l;
4684
4685 l = elf_aarch64_locals (input_bfd);
4686 return &l[r_symndx].tlsdesc_got_jump_table_offset;
4687 }
4688 }
4689
4690 static void
4691 symbol_tlsdesc_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
4692 unsigned long r_symndx)
4693 {
4694 bfd_vma *p;
4695 p = symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4696 *p |= 1;
4697 }
4698
4699 static int
4700 symbol_tlsdesc_got_offset_mark_p (bfd *input_bfd,
4701 struct elf_link_hash_entry *h,
4702 unsigned long r_symndx)
4703 {
4704 bfd_vma value;
4705 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4706 return value & 1;
4707 }
4708
4709 static bfd_vma
4710 symbol_tlsdesc_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
4711 unsigned long r_symndx)
4712 {
4713 bfd_vma value;
4714 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4715 value &= ~1;
4716 return value;
4717 }
4718
4719 /* Data for make_branch_to_erratum_835769_stub(). */
4720
4721 struct erratum_835769_branch_to_stub_data
4722 {
4723 struct bfd_link_info *info;
4724 asection *output_section;
4725 bfd_byte *contents;
4726 };
4727
4728 /* Helper to insert branches to erratum 835769 stubs in the right
4729 places for a particular section. */
4730
4731 static bfd_boolean
4732 make_branch_to_erratum_835769_stub (struct bfd_hash_entry *gen_entry,
4733 void *in_arg)
4734 {
4735 struct elf_aarch64_stub_hash_entry *stub_entry;
4736 struct erratum_835769_branch_to_stub_data *data;
4737 bfd_byte *contents;
4738 unsigned long branch_insn = 0;
4739 bfd_vma veneered_insn_loc, veneer_entry_loc;
4740 bfd_signed_vma branch_offset;
4741 unsigned int target;
4742 bfd *abfd;
4743
4744 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
4745 data = (struct erratum_835769_branch_to_stub_data *) in_arg;
4746
4747 if (stub_entry->target_section != data->output_section
4748 || stub_entry->stub_type != aarch64_stub_erratum_835769_veneer)
4749 return TRUE;
4750
4751 contents = data->contents;
4752 veneered_insn_loc = stub_entry->target_section->output_section->vma
4753 + stub_entry->target_section->output_offset
4754 + stub_entry->target_value;
4755 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
4756 + stub_entry->stub_sec->output_offset
4757 + stub_entry->stub_offset;
4758 branch_offset = veneer_entry_loc - veneered_insn_loc;
4759
4760 abfd = stub_entry->target_section->owner;
4761 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
4762 _bfd_error_handler
4763 (_("%B: error: Erratum 835769 stub out "
4764 "of range (input file too large)"), abfd);
4765
4766 target = stub_entry->target_value;
4767 branch_insn = 0x14000000;
4768 branch_offset >>= 2;
4769 branch_offset &= 0x3ffffff;
4770 branch_insn |= branch_offset;
4771 bfd_putl32 (branch_insn, &contents[target]);
4772
4773 return TRUE;
4774 }
4775
4776
4777 static bfd_boolean
4778 _bfd_aarch64_erratum_843419_branch_to_stub (struct bfd_hash_entry *gen_entry,
4779 void *in_arg)
4780 {
4781 struct elf_aarch64_stub_hash_entry *stub_entry
4782 = (struct elf_aarch64_stub_hash_entry *) gen_entry;
4783 struct erratum_835769_branch_to_stub_data *data
4784 = (struct erratum_835769_branch_to_stub_data *) in_arg;
4785 struct bfd_link_info *info;
4786 struct elf_aarch64_link_hash_table *htab;
4787 bfd_byte *contents;
4788 asection *section;
4789 bfd *abfd;
4790 bfd_vma place;
4791 uint32_t insn;
4792
4793 info = data->info;
4794 contents = data->contents;
4795 section = data->output_section;
4796
4797 htab = elf_aarch64_hash_table (info);
4798
4799 if (stub_entry->target_section != section
4800 || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer)
4801 return TRUE;
4802
4803 insn = bfd_getl32 (contents + stub_entry->target_value);
4804 bfd_putl32 (insn,
4805 stub_entry->stub_sec->contents + stub_entry->stub_offset);
4806
4807 place = (section->output_section->vma + section->output_offset
4808 + stub_entry->adrp_offset);
4809 insn = bfd_getl32 (contents + stub_entry->adrp_offset);
4810
4811 if ((insn & AARCH64_ADRP_OP_MASK) != AARCH64_ADRP_OP)
4812 abort ();
4813
4814 bfd_signed_vma imm =
4815 (_bfd_aarch64_sign_extend
4816 ((bfd_vma) _bfd_aarch64_decode_adrp_imm (insn) << 12, 33)
4817 - (place & 0xfff));
4818
4819 if (htab->fix_erratum_843419_adr
4820 && (imm >= AARCH64_MIN_ADRP_IMM && imm <= AARCH64_MAX_ADRP_IMM))
4821 {
4822 insn = (_bfd_aarch64_reencode_adr_imm (AARCH64_ADR_OP, imm)
4823 | AARCH64_RT (insn));
4824 bfd_putl32 (insn, contents + stub_entry->adrp_offset);
4825 }
4826 else
4827 {
4828 bfd_vma veneered_insn_loc;
4829 bfd_vma veneer_entry_loc;
4830 bfd_signed_vma branch_offset;
4831 uint32_t branch_insn;
4832
4833 veneered_insn_loc = stub_entry->target_section->output_section->vma
4834 + stub_entry->target_section->output_offset
4835 + stub_entry->target_value;
4836 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
4837 + stub_entry->stub_sec->output_offset
4838 + stub_entry->stub_offset;
4839 branch_offset = veneer_entry_loc - veneered_insn_loc;
4840
4841 abfd = stub_entry->target_section->owner;
4842 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
4843 _bfd_error_handler
4844 (_("%B: error: Erratum 843419 stub out "
4845 "of range (input file too large)"), abfd);
4846
4847 branch_insn = 0x14000000;
4848 branch_offset >>= 2;
4849 branch_offset &= 0x3ffffff;
4850 branch_insn |= branch_offset;
4851 bfd_putl32 (branch_insn, contents + stub_entry->target_value);
4852 }
4853 return TRUE;
4854 }
4855
4856
4857 static bfd_boolean
4858 elfNN_aarch64_write_section (bfd *output_bfd ATTRIBUTE_UNUSED,
4859 struct bfd_link_info *link_info,
4860 asection *sec,
4861 bfd_byte *contents)
4862
4863 {
4864 struct elf_aarch64_link_hash_table *globals =
4865 elf_aarch64_hash_table (link_info);
4866
4867 if (globals == NULL)
4868 return FALSE;
4869
4870 /* Fix code to point to erratum 835769 stubs. */
4871 if (globals->fix_erratum_835769)
4872 {
4873 struct erratum_835769_branch_to_stub_data data;
4874
4875 data.info = link_info;
4876 data.output_section = sec;
4877 data.contents = contents;
4878 bfd_hash_traverse (&globals->stub_hash_table,
4879 make_branch_to_erratum_835769_stub, &data);
4880 }
4881
4882 if (globals->fix_erratum_843419)
4883 {
4884 struct erratum_835769_branch_to_stub_data data;
4885
4886 data.info = link_info;
4887 data.output_section = sec;
4888 data.contents = contents;
4889 bfd_hash_traverse (&globals->stub_hash_table,
4890 _bfd_aarch64_erratum_843419_branch_to_stub, &data);
4891 }
4892
4893 return FALSE;
4894 }
4895
4896 /* Perform a relocation as part of a final link. The input relocation type
4897 should be TLS relaxed. */
4898
4899 static bfd_reloc_status_type
4900 elfNN_aarch64_final_link_relocate (reloc_howto_type *howto,
4901 bfd *input_bfd,
4902 bfd *output_bfd,
4903 asection *input_section,
4904 bfd_byte *contents,
4905 Elf_Internal_Rela *rel,
4906 bfd_vma value,
4907 struct bfd_link_info *info,
4908 asection *sym_sec,
4909 struct elf_link_hash_entry *h,
4910 bfd_boolean *unresolved_reloc_p,
4911 bfd_boolean save_addend,
4912 bfd_vma *saved_addend,
4913 Elf_Internal_Sym *sym)
4914 {
4915 Elf_Internal_Shdr *symtab_hdr;
4916 unsigned int r_type = howto->type;
4917 bfd_reloc_code_real_type bfd_r_type
4918 = elfNN_aarch64_bfd_reloc_from_howto (howto);
4919 unsigned long r_symndx;
4920 bfd_byte *hit_data = contents + rel->r_offset;
4921 bfd_vma place, off;
4922 bfd_signed_vma signed_addend;
4923 struct elf_aarch64_link_hash_table *globals;
4924 bfd_boolean weak_undef_p;
4925 asection *base_got;
4926
4927 globals = elf_aarch64_hash_table (info);
4928
4929 symtab_hdr = &elf_symtab_hdr (input_bfd);
4930
4931 BFD_ASSERT (is_aarch64_elf (input_bfd));
4932
4933 r_symndx = ELFNN_R_SYM (rel->r_info);
4934
4935 place = input_section->output_section->vma
4936 + input_section->output_offset + rel->r_offset;
4937
4938 /* Get addend, accumulating the addend for consecutive relocs
4939 which refer to the same offset. */
4940 signed_addend = saved_addend ? *saved_addend : 0;
4941 signed_addend += rel->r_addend;
4942
4943 weak_undef_p = (h ? h->root.type == bfd_link_hash_undefweak
4944 : bfd_is_und_section (sym_sec));
4945
4946 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
4947 it here if it is defined in a non-shared object. */
4948 if (h != NULL
4949 && h->type == STT_GNU_IFUNC
4950 && h->def_regular)
4951 {
4952 asection *plt;
4953 const char *name;
4954 bfd_vma addend = 0;
4955
4956 if ((input_section->flags & SEC_ALLOC) == 0
4957 || h->plt.offset == (bfd_vma) -1)
4958 abort ();
4959
4960 /* STT_GNU_IFUNC symbol must go through PLT. */
4961 plt = globals->root.splt ? globals->root.splt : globals->root.iplt;
4962 value = (plt->output_section->vma + plt->output_offset + h->plt.offset);
4963
4964 switch (bfd_r_type)
4965 {
4966 default:
4967 if (h->root.root.string)
4968 name = h->root.root.string;
4969 else
4970 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
4971 NULL);
4972 _bfd_error_handler
4973 (_("%B: relocation %s against STT_GNU_IFUNC "
4974 "symbol `%s' isn't handled by %s"), input_bfd,
4975 howto->name, name, __FUNCTION__);
4976 bfd_set_error (bfd_error_bad_value);
4977 return FALSE;
4978
4979 case BFD_RELOC_AARCH64_NN:
4980 if (rel->r_addend != 0)
4981 {
4982 if (h->root.root.string)
4983 name = h->root.root.string;
4984 else
4985 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
4986 sym, NULL);
4987 _bfd_error_handler
4988 (_("%B: relocation %s against STT_GNU_IFUNC "
4989 "symbol `%s' has non-zero addend: %d"),
4990 input_bfd, howto->name, name, rel->r_addend);
4991 bfd_set_error (bfd_error_bad_value);
4992 return FALSE;
4993 }
4994
4995 /* Generate dynamic relocation only when there is a
4996 non-GOT reference in a shared object. */
4997 if (bfd_link_pic (info) && h->non_got_ref)
4998 {
4999 Elf_Internal_Rela outrel;
5000 asection *sreloc;
5001
5002 /* Need a dynamic relocation to get the real function
5003 address. */
5004 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
5005 info,
5006 input_section,
5007 rel->r_offset);
5008 if (outrel.r_offset == (bfd_vma) -1
5009 || outrel.r_offset == (bfd_vma) -2)
5010 abort ();
5011
5012 outrel.r_offset += (input_section->output_section->vma
5013 + input_section->output_offset);
5014
5015 if (h->dynindx == -1
5016 || h->forced_local
5017 || bfd_link_executable (info))
5018 {
5019 /* This symbol is resolved locally. */
5020 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
5021 outrel.r_addend = (h->root.u.def.value
5022 + h->root.u.def.section->output_section->vma
5023 + h->root.u.def.section->output_offset);
5024 }
5025 else
5026 {
5027 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5028 outrel.r_addend = 0;
5029 }
5030
5031 sreloc = globals->root.irelifunc;
5032 elf_append_rela (output_bfd, sreloc, &outrel);
5033
5034 /* If this reloc is against an external symbol, we
5035 do not want to fiddle with the addend. Otherwise,
5036 we need to include the symbol value so that it
5037 becomes an addend for the dynamic reloc. For an
5038 internal symbol, we have updated addend. */
5039 return bfd_reloc_ok;
5040 }
5041 /* FALLTHROUGH */
5042 case BFD_RELOC_AARCH64_CALL26:
5043 case BFD_RELOC_AARCH64_JUMP26:
5044 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5045 signed_addend,
5046 weak_undef_p);
5047 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
5048 howto, value);
5049 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5050 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5051 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5052 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5053 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5054 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5055 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5056 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5057 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5058 base_got = globals->root.sgot;
5059 off = h->got.offset;
5060
5061 if (base_got == NULL)
5062 abort ();
5063
5064 if (off == (bfd_vma) -1)
5065 {
5066 bfd_vma plt_index;
5067
5068 /* We can't use h->got.offset here to save state, or
5069 even just remember the offset, as finish_dynamic_symbol
5070 would use that as offset into .got. */
5071
5072 if (globals->root.splt != NULL)
5073 {
5074 plt_index = ((h->plt.offset - globals->plt_header_size) /
5075 globals->plt_entry_size);
5076 off = (plt_index + 3) * GOT_ENTRY_SIZE;
5077 base_got = globals->root.sgotplt;
5078 }
5079 else
5080 {
5081 plt_index = h->plt.offset / globals->plt_entry_size;
5082 off = plt_index * GOT_ENTRY_SIZE;
5083 base_got = globals->root.igotplt;
5084 }
5085
5086 if (h->dynindx == -1
5087 || h->forced_local
5088 || info->symbolic)
5089 {
5090 /* This references the local definition. We must
5091 initialize this entry in the global offset table.
5092 Since the offset must always be a multiple of 8,
5093 we use the least significant bit to record
5094 whether we have initialized it already.
5095
5096 When doing a dynamic link, we create a .rela.got
5097 relocation entry to initialize the value. This
5098 is done in the finish_dynamic_symbol routine. */
5099 if ((off & 1) != 0)
5100 off &= ~1;
5101 else
5102 {
5103 bfd_put_NN (output_bfd, value,
5104 base_got->contents + off);
5105 /* Note that this is harmless as -1 | 1 still is -1. */
5106 h->got.offset |= 1;
5107 }
5108 }
5109 value = (base_got->output_section->vma
5110 + base_got->output_offset + off);
5111 }
5112 else
5113 value = aarch64_calculate_got_entry_vma (h, globals, info,
5114 value, output_bfd,
5115 unresolved_reloc_p);
5116
5117 switch (bfd_r_type)
5118 {
5119 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5120 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5121 addend = (globals->root.sgot->output_section->vma
5122 + globals->root.sgot->output_offset);
5123 break;
5124 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5125 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5126 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5127 value = (value - globals->root.sgot->output_section->vma
5128 - globals->root.sgot->output_offset);
5129 default:
5130 break;
5131 }
5132
5133 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5134 addend, weak_undef_p);
5135 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type, howto, value);
5136 case BFD_RELOC_AARCH64_ADD_LO12:
5137 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5138 break;
5139 }
5140 }
5141
5142 switch (bfd_r_type)
5143 {
5144 case BFD_RELOC_AARCH64_NONE:
5145 case BFD_RELOC_AARCH64_TLSDESC_ADD:
5146 case BFD_RELOC_AARCH64_TLSDESC_CALL:
5147 case BFD_RELOC_AARCH64_TLSDESC_LDR:
5148 *unresolved_reloc_p = FALSE;
5149 return bfd_reloc_ok;
5150
5151 case BFD_RELOC_AARCH64_NN:
5152
5153 /* When generating a shared object or relocatable executable, these
5154 relocations are copied into the output file to be resolved at
5155 run time. */
5156 if (((bfd_link_pic (info) == TRUE)
5157 || globals->root.is_relocatable_executable)
5158 && (input_section->flags & SEC_ALLOC)
5159 && (h == NULL
5160 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5161 || h->root.type != bfd_link_hash_undefweak))
5162 {
5163 Elf_Internal_Rela outrel;
5164 bfd_byte *loc;
5165 bfd_boolean skip, relocate;
5166 asection *sreloc;
5167
5168 *unresolved_reloc_p = FALSE;
5169
5170 skip = FALSE;
5171 relocate = FALSE;
5172
5173 outrel.r_addend = signed_addend;
5174 outrel.r_offset =
5175 _bfd_elf_section_offset (output_bfd, info, input_section,
5176 rel->r_offset);
5177 if (outrel.r_offset == (bfd_vma) - 1)
5178 skip = TRUE;
5179 else if (outrel.r_offset == (bfd_vma) - 2)
5180 {
5181 skip = TRUE;
5182 relocate = TRUE;
5183 }
5184
5185 outrel.r_offset += (input_section->output_section->vma
5186 + input_section->output_offset);
5187
5188 if (skip)
5189 memset (&outrel, 0, sizeof outrel);
5190 else if (h != NULL
5191 && h->dynindx != -1
5192 && (!bfd_link_pic (info)
5193 || !SYMBOLIC_BIND (info, h)
5194 || !h->def_regular))
5195 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5196 else
5197 {
5198 int symbol;
5199
5200 /* On SVR4-ish systems, the dynamic loader cannot
5201 relocate the text and data segments independently,
5202 so the symbol does not matter. */
5203 symbol = 0;
5204 relocate = globals->no_apply_dynamic_relocs ? FALSE : TRUE;
5205 outrel.r_info = ELFNN_R_INFO (symbol, AARCH64_R (RELATIVE));
5206 outrel.r_addend += value;
5207 }
5208
5209 sreloc = elf_section_data (input_section)->sreloc;
5210 if (sreloc == NULL || sreloc->contents == NULL)
5211 return bfd_reloc_notsupported;
5212
5213 loc = sreloc->contents + sreloc->reloc_count++ * RELOC_SIZE (globals);
5214 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
5215
5216 if (sreloc->reloc_count * RELOC_SIZE (globals) > sreloc->size)
5217 {
5218 /* Sanity to check that we have previously allocated
5219 sufficient space in the relocation section for the
5220 number of relocations we actually want to emit. */
5221 abort ();
5222 }
5223
5224 /* If this reloc is against an external symbol, we do not want to
5225 fiddle with the addend. Otherwise, we need to include the symbol
5226 value so that it becomes an addend for the dynamic reloc. */
5227 if (!relocate)
5228 return bfd_reloc_ok;
5229
5230 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5231 contents, rel->r_offset, value,
5232 signed_addend);
5233 }
5234 else
5235 value += signed_addend;
5236 break;
5237
5238 case BFD_RELOC_AARCH64_CALL26:
5239 case BFD_RELOC_AARCH64_JUMP26:
5240 {
5241 asection *splt = globals->root.splt;
5242 bfd_boolean via_plt_p =
5243 splt != NULL && h != NULL && h->plt.offset != (bfd_vma) - 1;
5244
5245 /* A call to an undefined weak symbol is converted to a jump to
5246 the next instruction unless a PLT entry will be created.
5247 The jump to the next instruction is optimized as a NOP.
5248 Do the same for local undefined symbols. */
5249 if (weak_undef_p && ! via_plt_p)
5250 {
5251 bfd_putl32 (INSN_NOP, hit_data);
5252 return bfd_reloc_ok;
5253 }
5254
5255 /* If the call goes through a PLT entry, make sure to
5256 check distance to the right destination address. */
5257 if (via_plt_p)
5258 value = (splt->output_section->vma
5259 + splt->output_offset + h->plt.offset);
5260
5261 /* Check if a stub has to be inserted because the destination
5262 is too far away. */
5263 struct elf_aarch64_stub_hash_entry *stub_entry = NULL;
5264
5265 /* If the branch destination is directed to plt stub, "value" will be
5266 the final destination, otherwise we should plus signed_addend, it may
5267 contain non-zero value, for example call to local function symbol
5268 which are turned into "sec_sym + sec_off", and sec_off is kept in
5269 signed_addend. */
5270 if (! aarch64_valid_branch_p (via_plt_p ? value : value + signed_addend,
5271 place))
5272 /* The target is out of reach, so redirect the branch to
5273 the local stub for this function. */
5274 stub_entry = elfNN_aarch64_get_stub_entry (input_section, sym_sec, h,
5275 rel, globals);
5276 if (stub_entry != NULL)
5277 {
5278 value = (stub_entry->stub_offset
5279 + stub_entry->stub_sec->output_offset
5280 + stub_entry->stub_sec->output_section->vma);
5281
5282 /* We have redirected the destination to stub entry address,
5283 so ignore any addend record in the original rela entry. */
5284 signed_addend = 0;
5285 }
5286 }
5287 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5288 signed_addend, weak_undef_p);
5289 *unresolved_reloc_p = FALSE;
5290 break;
5291
5292 case BFD_RELOC_AARCH64_16_PCREL:
5293 case BFD_RELOC_AARCH64_32_PCREL:
5294 case BFD_RELOC_AARCH64_64_PCREL:
5295 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
5296 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5297 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
5298 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
5299 if (bfd_link_pic (info)
5300 && (input_section->flags & SEC_ALLOC) != 0
5301 && (input_section->flags & SEC_READONLY) != 0
5302 && h != NULL
5303 && !h->def_regular)
5304 {
5305 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5306
5307 _bfd_error_handler
5308 (_("%B: relocation %s against external symbol `%s' can not be used"
5309 " when making a shared object; recompile with -fPIC"),
5310 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
5311 h->root.root.string);
5312 bfd_set_error (bfd_error_bad_value);
5313 return FALSE;
5314 }
5315 /* Fall through. */
5316
5317 case BFD_RELOC_AARCH64_16:
5318 #if ARCH_SIZE == 64
5319 case BFD_RELOC_AARCH64_32:
5320 #endif
5321 case BFD_RELOC_AARCH64_ADD_LO12:
5322 case BFD_RELOC_AARCH64_BRANCH19:
5323 case BFD_RELOC_AARCH64_LDST128_LO12:
5324 case BFD_RELOC_AARCH64_LDST16_LO12:
5325 case BFD_RELOC_AARCH64_LDST32_LO12:
5326 case BFD_RELOC_AARCH64_LDST64_LO12:
5327 case BFD_RELOC_AARCH64_LDST8_LO12:
5328 case BFD_RELOC_AARCH64_MOVW_G0:
5329 case BFD_RELOC_AARCH64_MOVW_G0_NC:
5330 case BFD_RELOC_AARCH64_MOVW_G0_S:
5331 case BFD_RELOC_AARCH64_MOVW_G1:
5332 case BFD_RELOC_AARCH64_MOVW_G1_NC:
5333 case BFD_RELOC_AARCH64_MOVW_G1_S:
5334 case BFD_RELOC_AARCH64_MOVW_G2:
5335 case BFD_RELOC_AARCH64_MOVW_G2_NC:
5336 case BFD_RELOC_AARCH64_MOVW_G2_S:
5337 case BFD_RELOC_AARCH64_MOVW_G3:
5338 case BFD_RELOC_AARCH64_TSTBR14:
5339 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5340 signed_addend, weak_undef_p);
5341 break;
5342
5343 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5344 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5345 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5346 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5347 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5348 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5349 if (globals->root.sgot == NULL)
5350 BFD_ASSERT (h != NULL);
5351
5352 if (h != NULL)
5353 {
5354 bfd_vma addend = 0;
5355 value = aarch64_calculate_got_entry_vma (h, globals, info, value,
5356 output_bfd,
5357 unresolved_reloc_p);
5358 if (bfd_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
5359 || bfd_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
5360 addend = (globals->root.sgot->output_section->vma
5361 + globals->root.sgot->output_offset);
5362 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5363 addend, weak_undef_p);
5364 }
5365 else
5366 {
5367 bfd_vma addend = 0;
5368 struct elf_aarch64_local_symbol *locals
5369 = elf_aarch64_locals (input_bfd);
5370
5371 if (locals == NULL)
5372 {
5373 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5374 _bfd_error_handler
5375 (_("%B: Local symbol descriptor table be NULL when applying "
5376 "relocation %s against local symbol"),
5377 input_bfd, elfNN_aarch64_howto_table[howto_index].name);
5378 abort ();
5379 }
5380
5381 off = symbol_got_offset (input_bfd, h, r_symndx);
5382 base_got = globals->root.sgot;
5383 bfd_vma got_entry_addr = (base_got->output_section->vma
5384 + base_got->output_offset + off);
5385
5386 if (!symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5387 {
5388 bfd_put_64 (output_bfd, value, base_got->contents + off);
5389
5390 if (bfd_link_pic (info))
5391 {
5392 asection *s;
5393 Elf_Internal_Rela outrel;
5394
5395 /* For local symbol, we have done absolute relocation in static
5396 linking stageh. While for share library, we need to update
5397 the content of GOT entry according to the share objects
5398 loading base address. So we need to generate a
5399 R_AARCH64_RELATIVE reloc for dynamic linker. */
5400 s = globals->root.srelgot;
5401 if (s == NULL)
5402 abort ();
5403
5404 outrel.r_offset = got_entry_addr;
5405 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
5406 outrel.r_addend = value;
5407 elf_append_rela (output_bfd, s, &outrel);
5408 }
5409
5410 symbol_got_offset_mark (input_bfd, h, r_symndx);
5411 }
5412
5413 /* Update the relocation value to GOT entry addr as we have transformed
5414 the direct data access into indirect data access through GOT. */
5415 value = got_entry_addr;
5416
5417 if (bfd_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
5418 || bfd_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
5419 addend = base_got->output_section->vma + base_got->output_offset;
5420
5421 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5422 addend, weak_undef_p);
5423 }
5424
5425 break;
5426
5427 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5428 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5429 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5430 if (h != NULL)
5431 value = aarch64_calculate_got_entry_vma (h, globals, info, value,
5432 output_bfd,
5433 unresolved_reloc_p);
5434 else
5435 {
5436 struct elf_aarch64_local_symbol *locals
5437 = elf_aarch64_locals (input_bfd);
5438
5439 if (locals == NULL)
5440 {
5441 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5442 _bfd_error_handler
5443 (_("%B: Local symbol descriptor table be NULL when applying "
5444 "relocation %s against local symbol"),
5445 input_bfd, elfNN_aarch64_howto_table[howto_index].name);
5446 abort ();
5447 }
5448
5449 off = symbol_got_offset (input_bfd, h, r_symndx);
5450 base_got = globals->root.sgot;
5451 if (base_got == NULL)
5452 abort ();
5453
5454 bfd_vma got_entry_addr = (base_got->output_section->vma
5455 + base_got->output_offset + off);
5456
5457 if (!symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5458 {
5459 bfd_put_64 (output_bfd, value, base_got->contents + off);
5460
5461 if (bfd_link_pic (info))
5462 {
5463 asection *s;
5464 Elf_Internal_Rela outrel;
5465
5466 /* For local symbol, we have done absolute relocation in static
5467 linking stage. While for share library, we need to update
5468 the content of GOT entry according to the share objects
5469 loading base address. So we need to generate a
5470 R_AARCH64_RELATIVE reloc for dynamic linker. */
5471 s = globals->root.srelgot;
5472 if (s == NULL)
5473 abort ();
5474
5475 outrel.r_offset = got_entry_addr;
5476 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
5477 outrel.r_addend = value;
5478 elf_append_rela (output_bfd, s, &outrel);
5479 }
5480
5481 symbol_got_offset_mark (input_bfd, h, r_symndx);
5482 }
5483 }
5484
5485 /* Update the relocation value to GOT entry addr as we have transformed
5486 the direct data access into indirect data access through GOT. */
5487 value = symbol_got_offset (input_bfd, h, r_symndx);
5488 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5489 0, weak_undef_p);
5490 *unresolved_reloc_p = FALSE;
5491 break;
5492
5493 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
5494 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
5495 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
5496 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5497 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
5498 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5499 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5500 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
5501 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
5502 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
5503 if (globals->root.sgot == NULL)
5504 return bfd_reloc_notsupported;
5505
5506 value = (symbol_got_offset (input_bfd, h, r_symndx)
5507 + globals->root.sgot->output_section->vma
5508 + globals->root.sgot->output_offset);
5509
5510 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5511 0, weak_undef_p);
5512 *unresolved_reloc_p = FALSE;
5513 break;
5514
5515 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
5516 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
5517 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5518 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5519 if (globals->root.sgot == NULL)
5520 return bfd_reloc_notsupported;
5521
5522 value = symbol_got_offset (input_bfd, h, r_symndx);
5523 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5524 0, weak_undef_p);
5525 *unresolved_reloc_p = FALSE;
5526 break;
5527
5528 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
5529 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
5530 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
5531 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
5532 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
5533 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
5534 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
5535 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
5536 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
5537 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
5538 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
5539 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
5540 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5541 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
5542 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
5543 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
5544 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5545 signed_addend - dtpoff_base (info),
5546 weak_undef_p);
5547 break;
5548
5549 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
5550 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
5551 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
5552 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
5553 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5554 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
5555 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5556 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
5557 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5558 signed_addend - tpoff_base (info),
5559 weak_undef_p);
5560 *unresolved_reloc_p = FALSE;
5561 break;
5562
5563 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
5564 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
5565 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
5566 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
5567 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
5568 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
5569 if (globals->root.sgot == NULL)
5570 return bfd_reloc_notsupported;
5571 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
5572 + globals->root.sgotplt->output_section->vma
5573 + globals->root.sgotplt->output_offset
5574 + globals->sgotplt_jump_table_size);
5575
5576 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5577 0, weak_undef_p);
5578 *unresolved_reloc_p = FALSE;
5579 break;
5580
5581 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
5582 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
5583 if (globals->root.sgot == NULL)
5584 return bfd_reloc_notsupported;
5585
5586 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
5587 + globals->root.sgotplt->output_section->vma
5588 + globals->root.sgotplt->output_offset
5589 + globals->sgotplt_jump_table_size);
5590
5591 value -= (globals->root.sgot->output_section->vma
5592 + globals->root.sgot->output_offset);
5593
5594 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5595 0, weak_undef_p);
5596 *unresolved_reloc_p = FALSE;
5597 break;
5598
5599 default:
5600 return bfd_reloc_notsupported;
5601 }
5602
5603 if (saved_addend)
5604 *saved_addend = value;
5605
5606 /* Only apply the final relocation in a sequence. */
5607 if (save_addend)
5608 return bfd_reloc_continue;
5609
5610 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
5611 howto, value);
5612 }
5613
5614 /* Handle TLS relaxations. Relaxing is possible for symbols that use
5615 R_AARCH64_TLSDESC_ADR_{PAGE, LD64_LO12_NC, ADD_LO12_NC} during a static
5616 link.
5617
5618 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
5619 is to then call final_link_relocate. Return other values in the
5620 case of error. */
5621
5622 static bfd_reloc_status_type
5623 elfNN_aarch64_tls_relax (struct elf_aarch64_link_hash_table *globals,
5624 bfd *input_bfd, bfd_byte *contents,
5625 Elf_Internal_Rela *rel, struct elf_link_hash_entry *h)
5626 {
5627 bfd_boolean is_local = h == NULL;
5628 unsigned int r_type = ELFNN_R_TYPE (rel->r_info);
5629 unsigned long insn;
5630
5631 BFD_ASSERT (globals && input_bfd && contents && rel);
5632
5633 switch (elfNN_aarch64_bfd_reloc_from_type (r_type))
5634 {
5635 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
5636 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
5637 if (is_local)
5638 {
5639 /* GD->LE relaxation:
5640 adrp x0, :tlsgd:var => movz x0, :tprel_g1:var
5641 or
5642 adrp x0, :tlsdesc:var => movz x0, :tprel_g1:var
5643 */
5644 bfd_putl32 (0xd2a00000, contents + rel->r_offset);
5645 return bfd_reloc_continue;
5646 }
5647 else
5648 {
5649 /* GD->IE relaxation:
5650 adrp x0, :tlsgd:var => adrp x0, :gottprel:var
5651 or
5652 adrp x0, :tlsdesc:var => adrp x0, :gottprel:var
5653 */
5654 return bfd_reloc_continue;
5655 }
5656
5657 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
5658 BFD_ASSERT (0);
5659 break;
5660
5661 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
5662 if (is_local)
5663 {
5664 /* Tiny TLSDESC->LE relaxation:
5665 ldr x1, :tlsdesc:var => movz x0, #:tprel_g1:var
5666 adr x0, :tlsdesc:var => movk x0, #:tprel_g0_nc:var
5667 .tlsdesccall var
5668 blr x1 => nop
5669 */
5670 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
5671 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
5672
5673 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5674 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
5675 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5676
5677 bfd_putl32 (0xd2a00000, contents + rel->r_offset);
5678 bfd_putl32 (0xf2800000, contents + rel->r_offset + 4);
5679 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
5680 return bfd_reloc_continue;
5681 }
5682 else
5683 {
5684 /* Tiny TLSDESC->IE relaxation:
5685 ldr x1, :tlsdesc:var => ldr x0, :gottprel:var
5686 adr x0, :tlsdesc:var => nop
5687 .tlsdesccall var
5688 blr x1 => nop
5689 */
5690 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
5691 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
5692
5693 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5694 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5695
5696 bfd_putl32 (0x58000000, contents + rel->r_offset);
5697 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
5698 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
5699 return bfd_reloc_continue;
5700 }
5701
5702 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
5703 if (is_local)
5704 {
5705 /* Tiny GD->LE relaxation:
5706 adr x0, :tlsgd:var => mrs x1, tpidr_el0
5707 bl __tls_get_addr => add x0, x1, #:tprel_hi12:x, lsl #12
5708 nop => add x0, x0, #:tprel_lo12_nc:x
5709 */
5710
5711 /* First kill the tls_get_addr reloc on the bl instruction. */
5712 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5713
5714 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 0);
5715 bfd_putl32 (0x91400020, contents + rel->r_offset + 4);
5716 bfd_putl32 (0x91000000, contents + rel->r_offset + 8);
5717
5718 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5719 AARCH64_R (TLSLE_ADD_TPREL_LO12_NC));
5720 rel[1].r_offset = rel->r_offset + 8;
5721
5722 /* Move the current relocation to the second instruction in
5723 the sequence. */
5724 rel->r_offset += 4;
5725 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5726 AARCH64_R (TLSLE_ADD_TPREL_HI12));
5727 return bfd_reloc_continue;
5728 }
5729 else
5730 {
5731 /* Tiny GD->IE relaxation:
5732 adr x0, :tlsgd:var => ldr x0, :gottprel:var
5733 bl __tls_get_addr => mrs x1, tpidr_el0
5734 nop => add x0, x0, x1
5735 */
5736
5737 /* First kill the tls_get_addr reloc on the bl instruction. */
5738 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5739 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5740
5741 bfd_putl32 (0x58000000, contents + rel->r_offset);
5742 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
5743 bfd_putl32 (0x8b000020, contents + rel->r_offset + 8);
5744 return bfd_reloc_continue;
5745 }
5746
5747 #if ARCH_SIZE == 64
5748 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
5749 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSGD_MOVW_G0_NC));
5750 BFD_ASSERT (rel->r_offset + 12 == rel[2].r_offset);
5751 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (CALL26));
5752
5753 if (is_local)
5754 {
5755 /* Large GD->LE relaxation:
5756 movz x0, #:tlsgd_g1:var => movz x0, #:tprel_g2:var, lsl #32
5757 movk x0, #:tlsgd_g0_nc:var => movk x0, #:tprel_g1_nc:var, lsl #16
5758 add x0, gp, x0 => movk x0, #:tprel_g0_nc:var
5759 bl __tls_get_addr => mrs x1, tpidr_el0
5760 nop => add x0, x0, x1
5761 */
5762 rel[2].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5763 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
5764 rel[2].r_offset = rel->r_offset + 8;
5765
5766 bfd_putl32 (0xd2c00000, contents + rel->r_offset + 0);
5767 bfd_putl32 (0xf2a00000, contents + rel->r_offset + 4);
5768 bfd_putl32 (0xf2800000, contents + rel->r_offset + 8);
5769 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
5770 bfd_putl32 (0x8b000020, contents + rel->r_offset + 16);
5771 }
5772 else
5773 {
5774 /* Large GD->IE relaxation:
5775 movz x0, #:tlsgd_g1:var => movz x0, #:gottprel_g1:var, lsl #16
5776 movk x0, #:tlsgd_g0_nc:var => movk x0, #:gottprel_g0_nc:var
5777 add x0, gp, x0 => ldr x0, [gp, x0]
5778 bl __tls_get_addr => mrs x1, tpidr_el0
5779 nop => add x0, x0, x1
5780 */
5781 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5782 bfd_putl32 (0xd2a80000, contents + rel->r_offset + 0);
5783 bfd_putl32 (0x58000000, contents + rel->r_offset + 8);
5784 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
5785 bfd_putl32 (0x8b000020, contents + rel->r_offset + 16);
5786 }
5787 return bfd_reloc_continue;
5788
5789 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
5790 return bfd_reloc_continue;
5791 #endif
5792
5793 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5794 return bfd_reloc_continue;
5795
5796 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
5797 if (is_local)
5798 {
5799 /* GD->LE relaxation:
5800 ldr xd, [x0, #:tlsdesc_lo12:var] => movk x0, :tprel_g0_nc:var
5801 */
5802 bfd_putl32 (0xf2800000, contents + rel->r_offset);
5803 return bfd_reloc_continue;
5804 }
5805 else
5806 {
5807 /* GD->IE relaxation:
5808 ldr xd, [x0, #:tlsdesc_lo12:var] => ldr x0, [x0, #:gottprel_lo12:var]
5809 */
5810 insn = bfd_getl32 (contents + rel->r_offset);
5811 insn &= 0xffffffe0;
5812 bfd_putl32 (insn, contents + rel->r_offset);
5813 return bfd_reloc_continue;
5814 }
5815
5816 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
5817 if (is_local)
5818 {
5819 /* GD->LE relaxation
5820 add x0, #:tlsgd_lo12:var => movk x0, :tprel_g0_nc:var
5821 bl __tls_get_addr => mrs x1, tpidr_el0
5822 nop => add x0, x1, x0
5823 */
5824
5825 /* First kill the tls_get_addr reloc on the bl instruction. */
5826 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5827 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5828
5829 bfd_putl32 (0xf2800000, contents + rel->r_offset);
5830 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
5831 bfd_putl32 (0x8b000020, contents + rel->r_offset + 8);
5832 return bfd_reloc_continue;
5833 }
5834 else
5835 {
5836 /* GD->IE relaxation
5837 ADD x0, #:tlsgd_lo12:var => ldr x0, [x0, #:gottprel_lo12:var]
5838 BL __tls_get_addr => mrs x1, tpidr_el0
5839 R_AARCH64_CALL26
5840 NOP => add x0, x1, x0
5841 */
5842
5843 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
5844
5845 /* Remove the relocation on the BL instruction. */
5846 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5847
5848 bfd_putl32 (0xf9400000, contents + rel->r_offset);
5849
5850 /* We choose to fixup the BL and NOP instructions using the
5851 offset from the second relocation to allow flexibility in
5852 scheduling instructions between the ADD and BL. */
5853 bfd_putl32 (0xd53bd041, contents + rel[1].r_offset);
5854 bfd_putl32 (0x8b000020, contents + rel[1].r_offset + 4);
5855 return bfd_reloc_continue;
5856 }
5857
5858 case BFD_RELOC_AARCH64_TLSDESC_ADD:
5859 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
5860 case BFD_RELOC_AARCH64_TLSDESC_CALL:
5861 /* GD->IE/LE relaxation:
5862 add x0, x0, #:tlsdesc_lo12:var => nop
5863 blr xd => nop
5864 */
5865 bfd_putl32 (INSN_NOP, contents + rel->r_offset);
5866 return bfd_reloc_ok;
5867
5868 case BFD_RELOC_AARCH64_TLSDESC_LDR:
5869 if (is_local)
5870 {
5871 /* GD->LE relaxation:
5872 ldr xd, [gp, xn] => movk x0, #:tprel_g0_nc:var
5873 */
5874 bfd_putl32 (0xf2800000, contents + rel->r_offset);
5875 return bfd_reloc_continue;
5876 }
5877 else
5878 {
5879 /* GD->IE relaxation:
5880 ldr xd, [gp, xn] => ldr x0, [gp, xn]
5881 */
5882 insn = bfd_getl32 (contents + rel->r_offset);
5883 insn &= 0xffffffe0;
5884 bfd_putl32 (insn, contents + rel->r_offset);
5885 return bfd_reloc_ok;
5886 }
5887
5888 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
5889 /* GD->LE relaxation:
5890 movk xd, #:tlsdesc_off_g0_nc:var => movk x0, #:tprel_g1_nc:var, lsl #16
5891 GD->IE relaxation:
5892 movk xd, #:tlsdesc_off_g0_nc:var => movk xd, #:gottprel_g0_nc:var
5893 */
5894 if (is_local)
5895 bfd_putl32 (0xf2a00000, contents + rel->r_offset);
5896 return bfd_reloc_continue;
5897
5898 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
5899 if (is_local)
5900 {
5901 /* GD->LE relaxation:
5902 movz xd, #:tlsdesc_off_g1:var => movz x0, #:tprel_g2:var, lsl #32
5903 */
5904 bfd_putl32 (0xd2c00000, contents + rel->r_offset);
5905 return bfd_reloc_continue;
5906 }
5907 else
5908 {
5909 /* GD->IE relaxation:
5910 movz xd, #:tlsdesc_off_g1:var => movz xd, #:gottprel_g1:var, lsl #16
5911 */
5912 insn = bfd_getl32 (contents + rel->r_offset);
5913 bfd_putl32 (0xd2a00000 | (insn & 0x1f), contents + rel->r_offset);
5914 return bfd_reloc_continue;
5915 }
5916
5917 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5918 /* IE->LE relaxation:
5919 adrp xd, :gottprel:var => movz xd, :tprel_g1:var
5920 */
5921 if (is_local)
5922 {
5923 insn = bfd_getl32 (contents + rel->r_offset);
5924 bfd_putl32 (0xd2a00000 | (insn & 0x1f), contents + rel->r_offset);
5925 }
5926 return bfd_reloc_continue;
5927
5928 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
5929 /* IE->LE relaxation:
5930 ldr xd, [xm, #:gottprel_lo12:var] => movk xd, :tprel_g0_nc:var
5931 */
5932 if (is_local)
5933 {
5934 insn = bfd_getl32 (contents + rel->r_offset);
5935 bfd_putl32 (0xf2800000 | (insn & 0x1f), contents + rel->r_offset);
5936 }
5937 return bfd_reloc_continue;
5938
5939 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
5940 /* LD->LE relaxation (tiny):
5941 adr x0, :tlsldm:x => mrs x0, tpidr_el0
5942 bl __tls_get_addr => add x0, x0, TCB_SIZE
5943 */
5944 if (is_local)
5945 {
5946 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5947 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
5948 /* No need of CALL26 relocation for tls_get_addr. */
5949 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5950 bfd_putl32 (0xd53bd040, contents + rel->r_offset + 0);
5951 bfd_putl32 (0x91004000, contents + rel->r_offset + 4);
5952 return bfd_reloc_ok;
5953 }
5954 return bfd_reloc_continue;
5955
5956 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
5957 /* LD->LE relaxation (small):
5958 adrp x0, :tlsldm:x => mrs x0, tpidr_el0
5959 */
5960 if (is_local)
5961 {
5962 bfd_putl32 (0xd53bd040, contents + rel->r_offset);
5963 return bfd_reloc_ok;
5964 }
5965 return bfd_reloc_continue;
5966
5967 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
5968 /* LD->LE relaxation (small):
5969 add x0, #:tlsldm_lo12:x => add x0, x0, TCB_SIZE
5970 bl __tls_get_addr => nop
5971 */
5972 if (is_local)
5973 {
5974 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5975 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
5976 /* No need of CALL26 relocation for tls_get_addr. */
5977 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5978 bfd_putl32 (0x91004000, contents + rel->r_offset + 0);
5979 bfd_putl32 (0xd503201f, contents + rel->r_offset + 4);
5980 return bfd_reloc_ok;
5981 }
5982 return bfd_reloc_continue;
5983
5984 default:
5985 return bfd_reloc_continue;
5986 }
5987
5988 return bfd_reloc_ok;
5989 }
5990
5991 /* Relocate an AArch64 ELF section. */
5992
5993 static bfd_boolean
5994 elfNN_aarch64_relocate_section (bfd *output_bfd,
5995 struct bfd_link_info *info,
5996 bfd *input_bfd,
5997 asection *input_section,
5998 bfd_byte *contents,
5999 Elf_Internal_Rela *relocs,
6000 Elf_Internal_Sym *local_syms,
6001 asection **local_sections)
6002 {
6003 Elf_Internal_Shdr *symtab_hdr;
6004 struct elf_link_hash_entry **sym_hashes;
6005 Elf_Internal_Rela *rel;
6006 Elf_Internal_Rela *relend;
6007 const char *name;
6008 struct elf_aarch64_link_hash_table *globals;
6009 bfd_boolean save_addend = FALSE;
6010 bfd_vma addend = 0;
6011
6012 globals = elf_aarch64_hash_table (info);
6013
6014 symtab_hdr = &elf_symtab_hdr (input_bfd);
6015 sym_hashes = elf_sym_hashes (input_bfd);
6016
6017 rel = relocs;
6018 relend = relocs + input_section->reloc_count;
6019 for (; rel < relend; rel++)
6020 {
6021 unsigned int r_type;
6022 bfd_reloc_code_real_type bfd_r_type;
6023 bfd_reloc_code_real_type relaxed_bfd_r_type;
6024 reloc_howto_type *howto;
6025 unsigned long r_symndx;
6026 Elf_Internal_Sym *sym;
6027 asection *sec;
6028 struct elf_link_hash_entry *h;
6029 bfd_vma relocation;
6030 bfd_reloc_status_type r;
6031 arelent bfd_reloc;
6032 char sym_type;
6033 bfd_boolean unresolved_reloc = FALSE;
6034 char *error_message = NULL;
6035
6036 r_symndx = ELFNN_R_SYM (rel->r_info);
6037 r_type = ELFNN_R_TYPE (rel->r_info);
6038
6039 bfd_reloc.howto = elfNN_aarch64_howto_from_type (r_type);
6040 howto = bfd_reloc.howto;
6041
6042 if (howto == NULL)
6043 {
6044 _bfd_error_handler
6045 (_("%B: unrecognized relocation (0x%x) in section `%A'"),
6046 input_bfd, input_section, r_type);
6047 return FALSE;
6048 }
6049 bfd_r_type = elfNN_aarch64_bfd_reloc_from_howto (howto);
6050
6051 h = NULL;
6052 sym = NULL;
6053 sec = NULL;
6054
6055 if (r_symndx < symtab_hdr->sh_info)
6056 {
6057 sym = local_syms + r_symndx;
6058 sym_type = ELFNN_ST_TYPE (sym->st_info);
6059 sec = local_sections[r_symndx];
6060
6061 /* An object file might have a reference to a local
6062 undefined symbol. This is a daft object file, but we
6063 should at least do something about it. */
6064 if (r_type != R_AARCH64_NONE && r_type != R_AARCH64_NULL
6065 && bfd_is_und_section (sec)
6066 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
6067 (*info->callbacks->undefined_symbol)
6068 (info, bfd_elf_string_from_elf_section
6069 (input_bfd, symtab_hdr->sh_link, sym->st_name),
6070 input_bfd, input_section, rel->r_offset, TRUE);
6071
6072 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
6073
6074 /* Relocate against local STT_GNU_IFUNC symbol. */
6075 if (!bfd_link_relocatable (info)
6076 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
6077 {
6078 h = elfNN_aarch64_get_local_sym_hash (globals, input_bfd,
6079 rel, FALSE);
6080 if (h == NULL)
6081 abort ();
6082
6083 /* Set STT_GNU_IFUNC symbol value. */
6084 h->root.u.def.value = sym->st_value;
6085 h->root.u.def.section = sec;
6086 }
6087 }
6088 else
6089 {
6090 bfd_boolean warned, ignored;
6091
6092 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
6093 r_symndx, symtab_hdr, sym_hashes,
6094 h, sec, relocation,
6095 unresolved_reloc, warned, ignored);
6096
6097 sym_type = h->type;
6098 }
6099
6100 if (sec != NULL && discarded_section (sec))
6101 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
6102 rel, 1, relend, howto, 0, contents);
6103
6104 if (bfd_link_relocatable (info))
6105 continue;
6106
6107 if (h != NULL)
6108 name = h->root.root.string;
6109 else
6110 {
6111 name = (bfd_elf_string_from_elf_section
6112 (input_bfd, symtab_hdr->sh_link, sym->st_name));
6113 if (name == NULL || *name == '\0')
6114 name = bfd_section_name (input_bfd, sec);
6115 }
6116
6117 if (r_symndx != 0
6118 && r_type != R_AARCH64_NONE
6119 && r_type != R_AARCH64_NULL
6120 && (h == NULL
6121 || h->root.type == bfd_link_hash_defined
6122 || h->root.type == bfd_link_hash_defweak)
6123 && IS_AARCH64_TLS_RELOC (bfd_r_type) != (sym_type == STT_TLS))
6124 {
6125 _bfd_error_handler
6126 ((sym_type == STT_TLS
6127 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
6128 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
6129 input_bfd,
6130 input_section, (long) rel->r_offset, howto->name, name);
6131 }
6132
6133 /* We relax only if we can see that there can be a valid transition
6134 from a reloc type to another.
6135 We call elfNN_aarch64_final_link_relocate unless we're completely
6136 done, i.e., the relaxation produced the final output we want. */
6137
6138 relaxed_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type,
6139 h, r_symndx);
6140 if (relaxed_bfd_r_type != bfd_r_type)
6141 {
6142 bfd_r_type = relaxed_bfd_r_type;
6143 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
6144 BFD_ASSERT (howto != NULL);
6145 r_type = howto->type;
6146 r = elfNN_aarch64_tls_relax (globals, input_bfd, contents, rel, h);
6147 unresolved_reloc = 0;
6148 }
6149 else
6150 r = bfd_reloc_continue;
6151
6152 /* There may be multiple consecutive relocations for the
6153 same offset. In that case we are supposed to treat the
6154 output of each relocation as the addend for the next. */
6155 if (rel + 1 < relend
6156 && rel->r_offset == rel[1].r_offset
6157 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NONE
6158 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NULL)
6159 save_addend = TRUE;
6160 else
6161 save_addend = FALSE;
6162
6163 if (r == bfd_reloc_continue)
6164 r = elfNN_aarch64_final_link_relocate (howto, input_bfd, output_bfd,
6165 input_section, contents, rel,
6166 relocation, info, sec,
6167 h, &unresolved_reloc,
6168 save_addend, &addend, sym);
6169
6170 switch (elfNN_aarch64_bfd_reloc_from_type (r_type))
6171 {
6172 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6173 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6174 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6175 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6176 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6177 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6178 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6179 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6180 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6181 {
6182 bfd_boolean need_relocs = FALSE;
6183 bfd_byte *loc;
6184 int indx;
6185 bfd_vma off;
6186
6187 off = symbol_got_offset (input_bfd, h, r_symndx);
6188 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6189
6190 need_relocs =
6191 (bfd_link_pic (info) || indx != 0) &&
6192 (h == NULL
6193 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6194 || h->root.type != bfd_link_hash_undefweak);
6195
6196 BFD_ASSERT (globals->root.srelgot != NULL);
6197
6198 if (need_relocs)
6199 {
6200 Elf_Internal_Rela rela;
6201 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPMOD));
6202 rela.r_addend = 0;
6203 rela.r_offset = globals->root.sgot->output_section->vma +
6204 globals->root.sgot->output_offset + off;
6205
6206
6207 loc = globals->root.srelgot->contents;
6208 loc += globals->root.srelgot->reloc_count++
6209 * RELOC_SIZE (htab);
6210 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6211
6212 bfd_reloc_code_real_type real_type =
6213 elfNN_aarch64_bfd_reloc_from_type (r_type);
6214
6215 if (real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21
6216 || real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21
6217 || real_type == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC)
6218 {
6219 /* For local dynamic, don't generate DTPREL in any case.
6220 Initialize the DTPREL slot into zero, so we get module
6221 base address when invoke runtime TLS resolver. */
6222 bfd_put_NN (output_bfd, 0,
6223 globals->root.sgot->contents + off
6224 + GOT_ENTRY_SIZE);
6225 }
6226 else if (indx == 0)
6227 {
6228 bfd_put_NN (output_bfd,
6229 relocation - dtpoff_base (info),
6230 globals->root.sgot->contents + off
6231 + GOT_ENTRY_SIZE);
6232 }
6233 else
6234 {
6235 /* This TLS symbol is global. We emit a
6236 relocation to fixup the tls offset at load
6237 time. */
6238 rela.r_info =
6239 ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPREL));
6240 rela.r_addend = 0;
6241 rela.r_offset =
6242 (globals->root.sgot->output_section->vma
6243 + globals->root.sgot->output_offset + off
6244 + GOT_ENTRY_SIZE);
6245
6246 loc = globals->root.srelgot->contents;
6247 loc += globals->root.srelgot->reloc_count++
6248 * RELOC_SIZE (globals);
6249 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6250 bfd_put_NN (output_bfd, (bfd_vma) 0,
6251 globals->root.sgot->contents + off
6252 + GOT_ENTRY_SIZE);
6253 }
6254 }
6255 else
6256 {
6257 bfd_put_NN (output_bfd, (bfd_vma) 1,
6258 globals->root.sgot->contents + off);
6259 bfd_put_NN (output_bfd,
6260 relocation - dtpoff_base (info),
6261 globals->root.sgot->contents + off
6262 + GOT_ENTRY_SIZE);
6263 }
6264
6265 symbol_got_offset_mark (input_bfd, h, r_symndx);
6266 }
6267 break;
6268
6269 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6270 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
6271 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6272 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
6273 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
6274 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6275 {
6276 bfd_boolean need_relocs = FALSE;
6277 bfd_byte *loc;
6278 int indx;
6279 bfd_vma off;
6280
6281 off = symbol_got_offset (input_bfd, h, r_symndx);
6282
6283 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6284
6285 need_relocs =
6286 (bfd_link_pic (info) || indx != 0) &&
6287 (h == NULL
6288 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6289 || h->root.type != bfd_link_hash_undefweak);
6290
6291 BFD_ASSERT (globals->root.srelgot != NULL);
6292
6293 if (need_relocs)
6294 {
6295 Elf_Internal_Rela rela;
6296
6297 if (indx == 0)
6298 rela.r_addend = relocation - dtpoff_base (info);
6299 else
6300 rela.r_addend = 0;
6301
6302 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_TPREL));
6303 rela.r_offset = globals->root.sgot->output_section->vma +
6304 globals->root.sgot->output_offset + off;
6305
6306 loc = globals->root.srelgot->contents;
6307 loc += globals->root.srelgot->reloc_count++
6308 * RELOC_SIZE (htab);
6309
6310 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6311
6312 bfd_put_NN (output_bfd, rela.r_addend,
6313 globals->root.sgot->contents + off);
6314 }
6315 else
6316 bfd_put_NN (output_bfd, relocation - tpoff_base (info),
6317 globals->root.sgot->contents + off);
6318
6319 symbol_got_offset_mark (input_bfd, h, r_symndx);
6320 }
6321 break;
6322
6323 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
6324 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6325 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6326 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
6327 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6328 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6329 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6330 if (! symbol_tlsdesc_got_offset_mark_p (input_bfd, h, r_symndx))
6331 {
6332 bfd_boolean need_relocs = FALSE;
6333 int indx = h && h->dynindx != -1 ? h->dynindx : 0;
6334 bfd_vma off = symbol_tlsdesc_got_offset (input_bfd, h, r_symndx);
6335
6336 need_relocs = (h == NULL
6337 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6338 || h->root.type != bfd_link_hash_undefweak);
6339
6340 BFD_ASSERT (globals->root.srelgot != NULL);
6341 BFD_ASSERT (globals->root.sgot != NULL);
6342
6343 if (need_relocs)
6344 {
6345 bfd_byte *loc;
6346 Elf_Internal_Rela rela;
6347 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLSDESC));
6348
6349 rela.r_addend = 0;
6350 rela.r_offset = (globals->root.sgotplt->output_section->vma
6351 + globals->root.sgotplt->output_offset
6352 + off + globals->sgotplt_jump_table_size);
6353
6354 if (indx == 0)
6355 rela.r_addend = relocation - dtpoff_base (info);
6356
6357 /* Allocate the next available slot in the PLT reloc
6358 section to hold our R_AARCH64_TLSDESC, the next
6359 available slot is determined from reloc_count,
6360 which we step. But note, reloc_count was
6361 artifically moved down while allocating slots for
6362 real PLT relocs such that all of the PLT relocs
6363 will fit above the initial reloc_count and the
6364 extra stuff will fit below. */
6365 loc = globals->root.srelplt->contents;
6366 loc += globals->root.srelplt->reloc_count++
6367 * RELOC_SIZE (globals);
6368
6369 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6370
6371 bfd_put_NN (output_bfd, (bfd_vma) 0,
6372 globals->root.sgotplt->contents + off +
6373 globals->sgotplt_jump_table_size);
6374 bfd_put_NN (output_bfd, (bfd_vma) 0,
6375 globals->root.sgotplt->contents + off +
6376 globals->sgotplt_jump_table_size +
6377 GOT_ENTRY_SIZE);
6378 }
6379
6380 symbol_tlsdesc_got_offset_mark (input_bfd, h, r_symndx);
6381 }
6382 break;
6383 default:
6384 break;
6385 }
6386
6387 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
6388 because such sections are not SEC_ALLOC and thus ld.so will
6389 not process them. */
6390 if (unresolved_reloc
6391 && !((input_section->flags & SEC_DEBUGGING) != 0
6392 && h->def_dynamic)
6393 && _bfd_elf_section_offset (output_bfd, info, input_section,
6394 +rel->r_offset) != (bfd_vma) - 1)
6395 {
6396 _bfd_error_handler
6397 (_
6398 ("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
6399 input_bfd, input_section, (long) rel->r_offset, howto->name,
6400 h->root.root.string);
6401 return FALSE;
6402 }
6403
6404 if (r != bfd_reloc_ok && r != bfd_reloc_continue)
6405 {
6406 bfd_reloc_code_real_type real_r_type
6407 = elfNN_aarch64_bfd_reloc_from_type (r_type);
6408
6409 switch (r)
6410 {
6411 case bfd_reloc_overflow:
6412 (*info->callbacks->reloc_overflow)
6413 (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0,
6414 input_bfd, input_section, rel->r_offset);
6415 if (real_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
6416 || real_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
6417 {
6418 (*info->callbacks->warning)
6419 (info,
6420 _("Too many GOT entries for -fpic, "
6421 "please recompile with -fPIC"),
6422 name, input_bfd, input_section, rel->r_offset);
6423 return FALSE;
6424 }
6425 /* Overflow can occur when a variable is referenced with a type
6426 that has a larger alignment than the type with which it was
6427 declared. eg:
6428 file1.c: extern int foo; int a (void) { return foo; }
6429 file2.c: char bar, foo, baz;
6430 If the variable is placed into a data section at an offset
6431 that is incompatible with the larger alignment requirement
6432 overflow will occur. (Strictly speaking this is not overflow
6433 but rather an alignment problem, but the bfd_reloc_ error
6434 enum does not have a value to cover that situation).
6435
6436 Try to catch this situation here and provide a more helpful
6437 error message to the user. */
6438 if (addend & ((1 << howto->rightshift) - 1)
6439 /* FIXME: Are we testing all of the appropriate reloc
6440 types here ? */
6441 && (real_r_type == BFD_RELOC_AARCH64_LD_LO19_PCREL
6442 || real_r_type == BFD_RELOC_AARCH64_LDST16_LO12
6443 || real_r_type == BFD_RELOC_AARCH64_LDST32_LO12
6444 || real_r_type == BFD_RELOC_AARCH64_LDST64_LO12
6445 || real_r_type == BFD_RELOC_AARCH64_LDST128_LO12))
6446 {
6447 info->callbacks->warning
6448 (info, _("One possible cause of this error is that the \
6449 symbol is being referenced in the indicated code as if it had a larger \
6450 alignment than was declared where it was defined."),
6451 name, input_bfd, input_section, rel->r_offset);
6452 }
6453 break;
6454
6455 case bfd_reloc_undefined:
6456 (*info->callbacks->undefined_symbol)
6457 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
6458 break;
6459
6460 case bfd_reloc_outofrange:
6461 error_message = _("out of range");
6462 goto common_error;
6463
6464 case bfd_reloc_notsupported:
6465 error_message = _("unsupported relocation");
6466 goto common_error;
6467
6468 case bfd_reloc_dangerous:
6469 /* error_message should already be set. */
6470 goto common_error;
6471
6472 default:
6473 error_message = _("unknown error");
6474 /* Fall through. */
6475
6476 common_error:
6477 BFD_ASSERT (error_message != NULL);
6478 (*info->callbacks->reloc_dangerous)
6479 (info, error_message, input_bfd, input_section, rel->r_offset);
6480 break;
6481 }
6482 }
6483
6484 if (!save_addend)
6485 addend = 0;
6486 }
6487
6488 return TRUE;
6489 }
6490
6491 /* Set the right machine number. */
6492
6493 static bfd_boolean
6494 elfNN_aarch64_object_p (bfd *abfd)
6495 {
6496 #if ARCH_SIZE == 32
6497 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64_ilp32);
6498 #else
6499 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64);
6500 #endif
6501 return TRUE;
6502 }
6503
6504 /* Function to keep AArch64 specific flags in the ELF header. */
6505
6506 static bfd_boolean
6507 elfNN_aarch64_set_private_flags (bfd *abfd, flagword flags)
6508 {
6509 if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags)
6510 {
6511 }
6512 else
6513 {
6514 elf_elfheader (abfd)->e_flags = flags;
6515 elf_flags_init (abfd) = TRUE;
6516 }
6517
6518 return TRUE;
6519 }
6520
6521 /* Merge backend specific data from an object file to the output
6522 object file when linking. */
6523
6524 static bfd_boolean
6525 elfNN_aarch64_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
6526 {
6527 flagword out_flags;
6528 flagword in_flags;
6529 bfd_boolean flags_compatible = TRUE;
6530 asection *sec;
6531
6532 /* Check if we have the same endianess. */
6533 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
6534 return FALSE;
6535
6536 if (!is_aarch64_elf (ibfd) || !is_aarch64_elf (obfd))
6537 return TRUE;
6538
6539 /* The input BFD must have had its flags initialised. */
6540 /* The following seems bogus to me -- The flags are initialized in
6541 the assembler but I don't think an elf_flags_init field is
6542 written into the object. */
6543 /* BFD_ASSERT (elf_flags_init (ibfd)); */
6544
6545 in_flags = elf_elfheader (ibfd)->e_flags;
6546 out_flags = elf_elfheader (obfd)->e_flags;
6547
6548 if (!elf_flags_init (obfd))
6549 {
6550 /* If the input is the default architecture and had the default
6551 flags then do not bother setting the flags for the output
6552 architecture, instead allow future merges to do this. If no
6553 future merges ever set these flags then they will retain their
6554 uninitialised values, which surprise surprise, correspond
6555 to the default values. */
6556 if (bfd_get_arch_info (ibfd)->the_default
6557 && elf_elfheader (ibfd)->e_flags == 0)
6558 return TRUE;
6559
6560 elf_flags_init (obfd) = TRUE;
6561 elf_elfheader (obfd)->e_flags = in_flags;
6562
6563 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
6564 && bfd_get_arch_info (obfd)->the_default)
6565 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
6566 bfd_get_mach (ibfd));
6567
6568 return TRUE;
6569 }
6570
6571 /* Identical flags must be compatible. */
6572 if (in_flags == out_flags)
6573 return TRUE;
6574
6575 /* Check to see if the input BFD actually contains any sections. If
6576 not, its flags may not have been initialised either, but it
6577 cannot actually cause any incompatiblity. Do not short-circuit
6578 dynamic objects; their section list may be emptied by
6579 elf_link_add_object_symbols.
6580
6581 Also check to see if there are no code sections in the input.
6582 In this case there is no need to check for code specific flags.
6583 XXX - do we need to worry about floating-point format compatability
6584 in data sections ? */
6585 if (!(ibfd->flags & DYNAMIC))
6586 {
6587 bfd_boolean null_input_bfd = TRUE;
6588 bfd_boolean only_data_sections = TRUE;
6589
6590 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6591 {
6592 if ((bfd_get_section_flags (ibfd, sec)
6593 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
6594 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
6595 only_data_sections = FALSE;
6596
6597 null_input_bfd = FALSE;
6598 break;
6599 }
6600
6601 if (null_input_bfd || only_data_sections)
6602 return TRUE;
6603 }
6604
6605 return flags_compatible;
6606 }
6607
6608 /* Display the flags field. */
6609
6610 static bfd_boolean
6611 elfNN_aarch64_print_private_bfd_data (bfd *abfd, void *ptr)
6612 {
6613 FILE *file = (FILE *) ptr;
6614 unsigned long flags;
6615
6616 BFD_ASSERT (abfd != NULL && ptr != NULL);
6617
6618 /* Print normal ELF private data. */
6619 _bfd_elf_print_private_bfd_data (abfd, ptr);
6620
6621 flags = elf_elfheader (abfd)->e_flags;
6622 /* Ignore init flag - it may not be set, despite the flags field
6623 containing valid data. */
6624
6625 /* xgettext:c-format */
6626 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
6627
6628 if (flags)
6629 fprintf (file, _("<Unrecognised flag bits set>"));
6630
6631 fputc ('\n', file);
6632
6633 return TRUE;
6634 }
6635
6636 /* Update the got entry reference counts for the section being removed. */
6637
6638 static bfd_boolean
6639 elfNN_aarch64_gc_sweep_hook (bfd *abfd,
6640 struct bfd_link_info *info,
6641 asection *sec,
6642 const Elf_Internal_Rela * relocs)
6643 {
6644 struct elf_aarch64_link_hash_table *htab;
6645 Elf_Internal_Shdr *symtab_hdr;
6646 struct elf_link_hash_entry **sym_hashes;
6647 struct elf_aarch64_local_symbol *locals;
6648 const Elf_Internal_Rela *rel, *relend;
6649
6650 if (bfd_link_relocatable (info))
6651 return TRUE;
6652
6653 htab = elf_aarch64_hash_table (info);
6654
6655 if (htab == NULL)
6656 return FALSE;
6657
6658 elf_section_data (sec)->local_dynrel = NULL;
6659
6660 symtab_hdr = &elf_symtab_hdr (abfd);
6661 sym_hashes = elf_sym_hashes (abfd);
6662
6663 locals = elf_aarch64_locals (abfd);
6664
6665 relend = relocs + sec->reloc_count;
6666 for (rel = relocs; rel < relend; rel++)
6667 {
6668 unsigned long r_symndx;
6669 unsigned int r_type;
6670 struct elf_link_hash_entry *h = NULL;
6671
6672 r_symndx = ELFNN_R_SYM (rel->r_info);
6673
6674 if (r_symndx >= symtab_hdr->sh_info)
6675 {
6676
6677 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6678 while (h->root.type == bfd_link_hash_indirect
6679 || h->root.type == bfd_link_hash_warning)
6680 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6681 }
6682 else
6683 {
6684 Elf_Internal_Sym *isym;
6685
6686 /* A local symbol. */
6687 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
6688 abfd, r_symndx);
6689
6690 /* Check relocation against local STT_GNU_IFUNC symbol. */
6691 if (isym != NULL
6692 && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
6693 {
6694 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel, FALSE);
6695 if (h == NULL)
6696 abort ();
6697 }
6698 }
6699
6700 if (h)
6701 {
6702 struct elf_aarch64_link_hash_entry *eh;
6703 struct elf_dyn_relocs **pp;
6704 struct elf_dyn_relocs *p;
6705
6706 eh = (struct elf_aarch64_link_hash_entry *) h;
6707
6708 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
6709 if (p->sec == sec)
6710 {
6711 /* Everything must go for SEC. */
6712 *pp = p->next;
6713 break;
6714 }
6715 }
6716
6717 r_type = ELFNN_R_TYPE (rel->r_info);
6718 switch (aarch64_tls_transition (abfd,info, r_type, h ,r_symndx))
6719 {
6720 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
6721 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
6722 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
6723 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
6724 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
6725 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
6726 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
6727 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
6728 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
6729 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
6730 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6731 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6732 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
6733 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
6734 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6735 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6736 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6737 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6738 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6739 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6740 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6741 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6742 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6743 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
6744 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6745 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6746 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
6747 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
6748 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6749 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6750 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6751 if (h != NULL)
6752 {
6753 if (h->got.refcount > 0)
6754 h->got.refcount -= 1;
6755
6756 if (h->type == STT_GNU_IFUNC)
6757 {
6758 if (h->plt.refcount > 0)
6759 h->plt.refcount -= 1;
6760 }
6761 }
6762 else if (locals != NULL)
6763 {
6764 if (locals[r_symndx].got_refcount > 0)
6765 locals[r_symndx].got_refcount -= 1;
6766 }
6767 break;
6768
6769 case BFD_RELOC_AARCH64_CALL26:
6770 case BFD_RELOC_AARCH64_JUMP26:
6771 /* If this is a local symbol then we resolve it
6772 directly without creating a PLT entry. */
6773 if (h == NULL)
6774 continue;
6775
6776 if (h->plt.refcount > 0)
6777 h->plt.refcount -= 1;
6778 break;
6779
6780 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
6781 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
6782 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
6783 case BFD_RELOC_AARCH64_MOVW_G0_NC:
6784 case BFD_RELOC_AARCH64_MOVW_G1_NC:
6785 case BFD_RELOC_AARCH64_MOVW_G2_NC:
6786 case BFD_RELOC_AARCH64_MOVW_G3:
6787 case BFD_RELOC_AARCH64_NN:
6788 if (h != NULL && bfd_link_executable (info))
6789 {
6790 if (h->plt.refcount > 0)
6791 h->plt.refcount -= 1;
6792 }
6793 break;
6794
6795 default:
6796 break;
6797 }
6798 }
6799
6800 return TRUE;
6801 }
6802
6803 /* Adjust a symbol defined by a dynamic object and referenced by a
6804 regular object. The current definition is in some section of the
6805 dynamic object, but we're not including those sections. We have to
6806 change the definition to something the rest of the link can
6807 understand. */
6808
6809 static bfd_boolean
6810 elfNN_aarch64_adjust_dynamic_symbol (struct bfd_link_info *info,
6811 struct elf_link_hash_entry *h)
6812 {
6813 struct elf_aarch64_link_hash_table *htab;
6814 asection *s;
6815
6816 /* If this is a function, put it in the procedure linkage table. We
6817 will fill in the contents of the procedure linkage table later,
6818 when we know the address of the .got section. */
6819 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
6820 {
6821 if (h->plt.refcount <= 0
6822 || (h->type != STT_GNU_IFUNC
6823 && (SYMBOL_CALLS_LOCAL (info, h)
6824 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
6825 && h->root.type == bfd_link_hash_undefweak))))
6826 {
6827 /* This case can occur if we saw a CALL26 reloc in
6828 an input file, but the symbol wasn't referred to
6829 by a dynamic object or all references were
6830 garbage collected. In which case we can end up
6831 resolving. */
6832 h->plt.offset = (bfd_vma) - 1;
6833 h->needs_plt = 0;
6834 }
6835
6836 return TRUE;
6837 }
6838 else
6839 /* Otherwise, reset to -1. */
6840 h->plt.offset = (bfd_vma) - 1;
6841
6842
6843 /* If this is a weak symbol, and there is a real definition, the
6844 processor independent code will have arranged for us to see the
6845 real definition first, and we can just use the same value. */
6846 if (h->u.weakdef != NULL)
6847 {
6848 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
6849 || h->u.weakdef->root.type == bfd_link_hash_defweak);
6850 h->root.u.def.section = h->u.weakdef->root.u.def.section;
6851 h->root.u.def.value = h->u.weakdef->root.u.def.value;
6852 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
6853 h->non_got_ref = h->u.weakdef->non_got_ref;
6854 return TRUE;
6855 }
6856
6857 /* If we are creating a shared library, we must presume that the
6858 only references to the symbol are via the global offset table.
6859 For such cases we need not do anything here; the relocations will
6860 be handled correctly by relocate_section. */
6861 if (bfd_link_pic (info))
6862 return TRUE;
6863
6864 /* If there are no references to this symbol that do not use the
6865 GOT, we don't need to generate a copy reloc. */
6866 if (!h->non_got_ref)
6867 return TRUE;
6868
6869 /* If -z nocopyreloc was given, we won't generate them either. */
6870 if (info->nocopyreloc)
6871 {
6872 h->non_got_ref = 0;
6873 return TRUE;
6874 }
6875
6876 /* We must allocate the symbol in our .dynbss section, which will
6877 become part of the .bss section of the executable. There will be
6878 an entry for this symbol in the .dynsym section. The dynamic
6879 object will contain position independent code, so all references
6880 from the dynamic object to this symbol will go through the global
6881 offset table. The dynamic linker will use the .dynsym entry to
6882 determine the address it must put in the global offset table, so
6883 both the dynamic object and the regular object will refer to the
6884 same memory location for the variable. */
6885
6886 htab = elf_aarch64_hash_table (info);
6887
6888 /* We must generate a R_AARCH64_COPY reloc to tell the dynamic linker
6889 to copy the initial value out of the dynamic object and into the
6890 runtime process image. */
6891 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
6892 {
6893 htab->srelbss->size += RELOC_SIZE (htab);
6894 h->needs_copy = 1;
6895 }
6896
6897 s = htab->sdynbss;
6898
6899 return _bfd_elf_adjust_dynamic_copy (info, h, s);
6900
6901 }
6902
6903 static bfd_boolean
6904 elfNN_aarch64_allocate_local_symbols (bfd *abfd, unsigned number)
6905 {
6906 struct elf_aarch64_local_symbol *locals;
6907 locals = elf_aarch64_locals (abfd);
6908 if (locals == NULL)
6909 {
6910 locals = (struct elf_aarch64_local_symbol *)
6911 bfd_zalloc (abfd, number * sizeof (struct elf_aarch64_local_symbol));
6912 if (locals == NULL)
6913 return FALSE;
6914 elf_aarch64_locals (abfd) = locals;
6915 }
6916 return TRUE;
6917 }
6918
6919 /* Create the .got section to hold the global offset table. */
6920
6921 static bfd_boolean
6922 aarch64_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
6923 {
6924 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6925 flagword flags;
6926 asection *s;
6927 struct elf_link_hash_entry *h;
6928 struct elf_link_hash_table *htab = elf_hash_table (info);
6929
6930 /* This function may be called more than once. */
6931 s = bfd_get_linker_section (abfd, ".got");
6932 if (s != NULL)
6933 return TRUE;
6934
6935 flags = bed->dynamic_sec_flags;
6936
6937 s = bfd_make_section_anyway_with_flags (abfd,
6938 (bed->rela_plts_and_copies_p
6939 ? ".rela.got" : ".rel.got"),
6940 (bed->dynamic_sec_flags
6941 | SEC_READONLY));
6942 if (s == NULL
6943 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
6944 return FALSE;
6945 htab->srelgot = s;
6946
6947 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
6948 if (s == NULL
6949 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
6950 return FALSE;
6951 htab->sgot = s;
6952 htab->sgot->size += GOT_ENTRY_SIZE;
6953
6954 if (bed->want_got_sym)
6955 {
6956 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
6957 (or .got.plt) section. We don't do this in the linker script
6958 because we don't want to define the symbol if we are not creating
6959 a global offset table. */
6960 h = _bfd_elf_define_linkage_sym (abfd, info, s,
6961 "_GLOBAL_OFFSET_TABLE_");
6962 elf_hash_table (info)->hgot = h;
6963 if (h == NULL)
6964 return FALSE;
6965 }
6966
6967 if (bed->want_got_plt)
6968 {
6969 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
6970 if (s == NULL
6971 || !bfd_set_section_alignment (abfd, s,
6972 bed->s->log_file_align))
6973 return FALSE;
6974 htab->sgotplt = s;
6975 }
6976
6977 /* The first bit of the global offset table is the header. */
6978 s->size += bed->got_header_size;
6979
6980 return TRUE;
6981 }
6982
6983 /* Look through the relocs for a section during the first phase. */
6984
6985 static bfd_boolean
6986 elfNN_aarch64_check_relocs (bfd *abfd, struct bfd_link_info *info,
6987 asection *sec, const Elf_Internal_Rela *relocs)
6988 {
6989 Elf_Internal_Shdr *symtab_hdr;
6990 struct elf_link_hash_entry **sym_hashes;
6991 const Elf_Internal_Rela *rel;
6992 const Elf_Internal_Rela *rel_end;
6993 asection *sreloc;
6994
6995 struct elf_aarch64_link_hash_table *htab;
6996
6997 if (bfd_link_relocatable (info))
6998 return TRUE;
6999
7000 BFD_ASSERT (is_aarch64_elf (abfd));
7001
7002 htab = elf_aarch64_hash_table (info);
7003 sreloc = NULL;
7004
7005 symtab_hdr = &elf_symtab_hdr (abfd);
7006 sym_hashes = elf_sym_hashes (abfd);
7007
7008 rel_end = relocs + sec->reloc_count;
7009 for (rel = relocs; rel < rel_end; rel++)
7010 {
7011 struct elf_link_hash_entry *h;
7012 unsigned long r_symndx;
7013 unsigned int r_type;
7014 bfd_reloc_code_real_type bfd_r_type;
7015 Elf_Internal_Sym *isym;
7016
7017 r_symndx = ELFNN_R_SYM (rel->r_info);
7018 r_type = ELFNN_R_TYPE (rel->r_info);
7019
7020 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
7021 {
7022 _bfd_error_handler (_("%B: bad symbol index: %d"), abfd, r_symndx);
7023 return FALSE;
7024 }
7025
7026 if (r_symndx < symtab_hdr->sh_info)
7027 {
7028 /* A local symbol. */
7029 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7030 abfd, r_symndx);
7031 if (isym == NULL)
7032 return FALSE;
7033
7034 /* Check relocation against local STT_GNU_IFUNC symbol. */
7035 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
7036 {
7037 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel,
7038 TRUE);
7039 if (h == NULL)
7040 return FALSE;
7041
7042 /* Fake a STT_GNU_IFUNC symbol. */
7043 h->type = STT_GNU_IFUNC;
7044 h->def_regular = 1;
7045 h->ref_regular = 1;
7046 h->forced_local = 1;
7047 h->root.type = bfd_link_hash_defined;
7048 }
7049 else
7050 h = NULL;
7051 }
7052 else
7053 {
7054 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7055 while (h->root.type == bfd_link_hash_indirect
7056 || h->root.type == bfd_link_hash_warning)
7057 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7058
7059 /* PR15323, ref flags aren't set for references in the same
7060 object. */
7061 h->root.non_ir_ref = 1;
7062 }
7063
7064 /* Could be done earlier, if h were already available. */
7065 bfd_r_type = aarch64_tls_transition (abfd, info, r_type, h, r_symndx);
7066
7067 if (h != NULL)
7068 {
7069 /* If a relocation refers to _GLOBAL_OFFSET_TABLE_, create the .got.
7070 This shows up in particular in an R_AARCH64_PREL64 in large model
7071 when calculating the pc-relative address to .got section which is
7072 used to initialize the gp register. */
7073 if (h->root.root.string
7074 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
7075 {
7076 if (htab->root.dynobj == NULL)
7077 htab->root.dynobj = abfd;
7078
7079 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7080 return FALSE;
7081
7082 BFD_ASSERT (h == htab->root.hgot);
7083 }
7084
7085 /* Create the ifunc sections for static executables. If we
7086 never see an indirect function symbol nor we are building
7087 a static executable, those sections will be empty and
7088 won't appear in output. */
7089 switch (bfd_r_type)
7090 {
7091 default:
7092 break;
7093
7094 case BFD_RELOC_AARCH64_ADD_LO12:
7095 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7096 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7097 case BFD_RELOC_AARCH64_CALL26:
7098 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7099 case BFD_RELOC_AARCH64_JUMP26:
7100 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7101 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7102 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7103 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7104 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7105 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7106 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7107 case BFD_RELOC_AARCH64_NN:
7108 if (htab->root.dynobj == NULL)
7109 htab->root.dynobj = abfd;
7110 if (!_bfd_elf_create_ifunc_sections (htab->root.dynobj, info))
7111 return FALSE;
7112 break;
7113 }
7114
7115 /* It is referenced by a non-shared object. */
7116 h->ref_regular = 1;
7117 h->root.non_ir_ref = 1;
7118 }
7119
7120 switch (bfd_r_type)
7121 {
7122 case BFD_RELOC_AARCH64_NN:
7123
7124 /* We don't need to handle relocs into sections not going into
7125 the "real" output. */
7126 if ((sec->flags & SEC_ALLOC) == 0)
7127 break;
7128
7129 if (h != NULL)
7130 {
7131 if (!bfd_link_pic (info))
7132 h->non_got_ref = 1;
7133
7134 h->plt.refcount += 1;
7135 h->pointer_equality_needed = 1;
7136 }
7137
7138 /* No need to do anything if we're not creating a shared
7139 object. */
7140 if (! bfd_link_pic (info))
7141 break;
7142
7143 {
7144 struct elf_dyn_relocs *p;
7145 struct elf_dyn_relocs **head;
7146
7147 /* We must copy these reloc types into the output file.
7148 Create a reloc section in dynobj and make room for
7149 this reloc. */
7150 if (sreloc == NULL)
7151 {
7152 if (htab->root.dynobj == NULL)
7153 htab->root.dynobj = abfd;
7154
7155 sreloc = _bfd_elf_make_dynamic_reloc_section
7156 (sec, htab->root.dynobj, LOG_FILE_ALIGN, abfd, /*rela? */ TRUE);
7157
7158 if (sreloc == NULL)
7159 return FALSE;
7160 }
7161
7162 /* If this is a global symbol, we count the number of
7163 relocations we need for this symbol. */
7164 if (h != NULL)
7165 {
7166 struct elf_aarch64_link_hash_entry *eh;
7167 eh = (struct elf_aarch64_link_hash_entry *) h;
7168 head = &eh->dyn_relocs;
7169 }
7170 else
7171 {
7172 /* Track dynamic relocs needed for local syms too.
7173 We really need local syms available to do this
7174 easily. Oh well. */
7175
7176 asection *s;
7177 void **vpp;
7178
7179 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7180 abfd, r_symndx);
7181 if (isym == NULL)
7182 return FALSE;
7183
7184 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
7185 if (s == NULL)
7186 s = sec;
7187
7188 /* Beware of type punned pointers vs strict aliasing
7189 rules. */
7190 vpp = &(elf_section_data (s)->local_dynrel);
7191 head = (struct elf_dyn_relocs **) vpp;
7192 }
7193
7194 p = *head;
7195 if (p == NULL || p->sec != sec)
7196 {
7197 bfd_size_type amt = sizeof *p;
7198 p = ((struct elf_dyn_relocs *)
7199 bfd_zalloc (htab->root.dynobj, amt));
7200 if (p == NULL)
7201 return FALSE;
7202 p->next = *head;
7203 *head = p;
7204 p->sec = sec;
7205 }
7206
7207 p->count += 1;
7208
7209 }
7210 break;
7211
7212 /* RR: We probably want to keep a consistency check that
7213 there are no dangling GOT_PAGE relocs. */
7214 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7215 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7216 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7217 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7218 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7219 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7220 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7221 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7222 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7223 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
7224 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
7225 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7226 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7227 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
7228 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
7229 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7230 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7231 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7232 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
7233 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
7234 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
7235 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
7236 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7237 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7238 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7239 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
7240 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7241 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
7242 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
7243 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
7244 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
7245 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
7246 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7247 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
7248 {
7249 unsigned got_type;
7250 unsigned old_got_type;
7251
7252 got_type = aarch64_reloc_got_type (bfd_r_type);
7253
7254 if (h)
7255 {
7256 h->got.refcount += 1;
7257 old_got_type = elf_aarch64_hash_entry (h)->got_type;
7258 }
7259 else
7260 {
7261 struct elf_aarch64_local_symbol *locals;
7262
7263 if (!elfNN_aarch64_allocate_local_symbols
7264 (abfd, symtab_hdr->sh_info))
7265 return FALSE;
7266
7267 locals = elf_aarch64_locals (abfd);
7268 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7269 locals[r_symndx].got_refcount += 1;
7270 old_got_type = locals[r_symndx].got_type;
7271 }
7272
7273 /* If a variable is accessed with both general dynamic TLS
7274 methods, two slots may be created. */
7275 if (GOT_TLS_GD_ANY_P (old_got_type) && GOT_TLS_GD_ANY_P (got_type))
7276 got_type |= old_got_type;
7277
7278 /* We will already have issued an error message if there
7279 is a TLS/non-TLS mismatch, based on the symbol type.
7280 So just combine any TLS types needed. */
7281 if (old_got_type != GOT_UNKNOWN && old_got_type != GOT_NORMAL
7282 && got_type != GOT_NORMAL)
7283 got_type |= old_got_type;
7284
7285 /* If the symbol is accessed by both IE and GD methods, we
7286 are able to relax. Turn off the GD flag, without
7287 messing up with any other kind of TLS types that may be
7288 involved. */
7289 if ((got_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (got_type))
7290 got_type &= ~ (GOT_TLSDESC_GD | GOT_TLS_GD);
7291
7292 if (old_got_type != got_type)
7293 {
7294 if (h != NULL)
7295 elf_aarch64_hash_entry (h)->got_type = got_type;
7296 else
7297 {
7298 struct elf_aarch64_local_symbol *locals;
7299 locals = elf_aarch64_locals (abfd);
7300 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7301 locals[r_symndx].got_type = got_type;
7302 }
7303 }
7304
7305 if (htab->root.dynobj == NULL)
7306 htab->root.dynobj = abfd;
7307 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7308 return FALSE;
7309 break;
7310 }
7311
7312 case BFD_RELOC_AARCH64_MOVW_G0_NC:
7313 case BFD_RELOC_AARCH64_MOVW_G1_NC:
7314 case BFD_RELOC_AARCH64_MOVW_G2_NC:
7315 case BFD_RELOC_AARCH64_MOVW_G3:
7316 if (bfd_link_pic (info))
7317 {
7318 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7319 _bfd_error_handler
7320 (_("%B: relocation %s against `%s' can not be used when making "
7321 "a shared object; recompile with -fPIC"),
7322 abfd, elfNN_aarch64_howto_table[howto_index].name,
7323 (h) ? h->root.root.string : "a local symbol");
7324 bfd_set_error (bfd_error_bad_value);
7325 return FALSE;
7326 }
7327 /* Fall through. */
7328
7329 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7330 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7331 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
7332 if (h != NULL && bfd_link_executable (info))
7333 {
7334 /* If this reloc is in a read-only section, we might
7335 need a copy reloc. We can't check reliably at this
7336 stage whether the section is read-only, as input
7337 sections have not yet been mapped to output sections.
7338 Tentatively set the flag for now, and correct in
7339 adjust_dynamic_symbol. */
7340 h->non_got_ref = 1;
7341 h->plt.refcount += 1;
7342 h->pointer_equality_needed = 1;
7343 }
7344 /* FIXME:: RR need to handle these in shared libraries
7345 and essentially bomb out as these being non-PIC
7346 relocations in shared libraries. */
7347 break;
7348
7349 case BFD_RELOC_AARCH64_CALL26:
7350 case BFD_RELOC_AARCH64_JUMP26:
7351 /* If this is a local symbol then we resolve it
7352 directly without creating a PLT entry. */
7353 if (h == NULL)
7354 continue;
7355
7356 h->needs_plt = 1;
7357 if (h->plt.refcount <= 0)
7358 h->plt.refcount = 1;
7359 else
7360 h->plt.refcount += 1;
7361 break;
7362
7363 default:
7364 break;
7365 }
7366 }
7367
7368 return TRUE;
7369 }
7370
7371 /* Treat mapping symbols as special target symbols. */
7372
7373 static bfd_boolean
7374 elfNN_aarch64_is_target_special_symbol (bfd *abfd ATTRIBUTE_UNUSED,
7375 asymbol *sym)
7376 {
7377 return bfd_is_aarch64_special_symbol_name (sym->name,
7378 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY);
7379 }
7380
7381 /* This is a copy of elf_find_function () from elf.c except that
7382 AArch64 mapping symbols are ignored when looking for function names. */
7383
7384 static bfd_boolean
7385 aarch64_elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
7386 asymbol **symbols,
7387 asection *section,
7388 bfd_vma offset,
7389 const char **filename_ptr,
7390 const char **functionname_ptr)
7391 {
7392 const char *filename = NULL;
7393 asymbol *func = NULL;
7394 bfd_vma low_func = 0;
7395 asymbol **p;
7396
7397 for (p = symbols; *p != NULL; p++)
7398 {
7399 elf_symbol_type *q;
7400
7401 q = (elf_symbol_type *) * p;
7402
7403 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
7404 {
7405 default:
7406 break;
7407 case STT_FILE:
7408 filename = bfd_asymbol_name (&q->symbol);
7409 break;
7410 case STT_FUNC:
7411 case STT_NOTYPE:
7412 /* Skip mapping symbols. */
7413 if ((q->symbol.flags & BSF_LOCAL)
7414 && (bfd_is_aarch64_special_symbol_name
7415 (q->symbol.name, BFD_AARCH64_SPECIAL_SYM_TYPE_ANY)))
7416 continue;
7417 /* Fall through. */
7418 if (bfd_get_section (&q->symbol) == section
7419 && q->symbol.value >= low_func && q->symbol.value <= offset)
7420 {
7421 func = (asymbol *) q;
7422 low_func = q->symbol.value;
7423 }
7424 break;
7425 }
7426 }
7427
7428 if (func == NULL)
7429 return FALSE;
7430
7431 if (filename_ptr)
7432 *filename_ptr = filename;
7433 if (functionname_ptr)
7434 *functionname_ptr = bfd_asymbol_name (func);
7435
7436 return TRUE;
7437 }
7438
7439
7440 /* Find the nearest line to a particular section and offset, for error
7441 reporting. This code is a duplicate of the code in elf.c, except
7442 that it uses aarch64_elf_find_function. */
7443
7444 static bfd_boolean
7445 elfNN_aarch64_find_nearest_line (bfd *abfd,
7446 asymbol **symbols,
7447 asection *section,
7448 bfd_vma offset,
7449 const char **filename_ptr,
7450 const char **functionname_ptr,
7451 unsigned int *line_ptr,
7452 unsigned int *discriminator_ptr)
7453 {
7454 bfd_boolean found = FALSE;
7455
7456 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
7457 filename_ptr, functionname_ptr,
7458 line_ptr, discriminator_ptr,
7459 dwarf_debug_sections, 0,
7460 &elf_tdata (abfd)->dwarf2_find_line_info))
7461 {
7462 if (!*functionname_ptr)
7463 aarch64_elf_find_function (abfd, symbols, section, offset,
7464 *filename_ptr ? NULL : filename_ptr,
7465 functionname_ptr);
7466
7467 return TRUE;
7468 }
7469
7470 /* Skip _bfd_dwarf1_find_nearest_line since no known AArch64
7471 toolchain uses DWARF1. */
7472
7473 if (!_bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7474 &found, filename_ptr,
7475 functionname_ptr, line_ptr,
7476 &elf_tdata (abfd)->line_info))
7477 return FALSE;
7478
7479 if (found && (*functionname_ptr || *line_ptr))
7480 return TRUE;
7481
7482 if (symbols == NULL)
7483 return FALSE;
7484
7485 if (!aarch64_elf_find_function (abfd, symbols, section, offset,
7486 filename_ptr, functionname_ptr))
7487 return FALSE;
7488
7489 *line_ptr = 0;
7490 return TRUE;
7491 }
7492
7493 static bfd_boolean
7494 elfNN_aarch64_find_inliner_info (bfd *abfd,
7495 const char **filename_ptr,
7496 const char **functionname_ptr,
7497 unsigned int *line_ptr)
7498 {
7499 bfd_boolean found;
7500 found = _bfd_dwarf2_find_inliner_info
7501 (abfd, filename_ptr,
7502 functionname_ptr, line_ptr, &elf_tdata (abfd)->dwarf2_find_line_info);
7503 return found;
7504 }
7505
7506
7507 static void
7508 elfNN_aarch64_post_process_headers (bfd *abfd,
7509 struct bfd_link_info *link_info)
7510 {
7511 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
7512
7513 i_ehdrp = elf_elfheader (abfd);
7514 i_ehdrp->e_ident[EI_ABIVERSION] = AARCH64_ELF_ABI_VERSION;
7515
7516 _bfd_elf_post_process_headers (abfd, link_info);
7517 }
7518
7519 static enum elf_reloc_type_class
7520 elfNN_aarch64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
7521 const asection *rel_sec ATTRIBUTE_UNUSED,
7522 const Elf_Internal_Rela *rela)
7523 {
7524 switch ((int) ELFNN_R_TYPE (rela->r_info))
7525 {
7526 case AARCH64_R (RELATIVE):
7527 return reloc_class_relative;
7528 case AARCH64_R (JUMP_SLOT):
7529 return reloc_class_plt;
7530 case AARCH64_R (COPY):
7531 return reloc_class_copy;
7532 default:
7533 return reloc_class_normal;
7534 }
7535 }
7536
7537 /* Handle an AArch64 specific section when reading an object file. This is
7538 called when bfd_section_from_shdr finds a section with an unknown
7539 type. */
7540
7541 static bfd_boolean
7542 elfNN_aarch64_section_from_shdr (bfd *abfd,
7543 Elf_Internal_Shdr *hdr,
7544 const char *name, int shindex)
7545 {
7546 /* There ought to be a place to keep ELF backend specific flags, but
7547 at the moment there isn't one. We just keep track of the
7548 sections by their name, instead. Fortunately, the ABI gives
7549 names for all the AArch64 specific sections, so we will probably get
7550 away with this. */
7551 switch (hdr->sh_type)
7552 {
7553 case SHT_AARCH64_ATTRIBUTES:
7554 break;
7555
7556 default:
7557 return FALSE;
7558 }
7559
7560 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7561 return FALSE;
7562
7563 return TRUE;
7564 }
7565
7566 /* A structure used to record a list of sections, independently
7567 of the next and prev fields in the asection structure. */
7568 typedef struct section_list
7569 {
7570 asection *sec;
7571 struct section_list *next;
7572 struct section_list *prev;
7573 }
7574 section_list;
7575
7576 /* Unfortunately we need to keep a list of sections for which
7577 an _aarch64_elf_section_data structure has been allocated. This
7578 is because it is possible for functions like elfNN_aarch64_write_section
7579 to be called on a section which has had an elf_data_structure
7580 allocated for it (and so the used_by_bfd field is valid) but
7581 for which the AArch64 extended version of this structure - the
7582 _aarch64_elf_section_data structure - has not been allocated. */
7583 static section_list *sections_with_aarch64_elf_section_data = NULL;
7584
7585 static void
7586 record_section_with_aarch64_elf_section_data (asection *sec)
7587 {
7588 struct section_list *entry;
7589
7590 entry = bfd_malloc (sizeof (*entry));
7591 if (entry == NULL)
7592 return;
7593 entry->sec = sec;
7594 entry->next = sections_with_aarch64_elf_section_data;
7595 entry->prev = NULL;
7596 if (entry->next != NULL)
7597 entry->next->prev = entry;
7598 sections_with_aarch64_elf_section_data = entry;
7599 }
7600
7601 static struct section_list *
7602 find_aarch64_elf_section_entry (asection *sec)
7603 {
7604 struct section_list *entry;
7605 static struct section_list *last_entry = NULL;
7606
7607 /* This is a short cut for the typical case where the sections are added
7608 to the sections_with_aarch64_elf_section_data list in forward order and
7609 then looked up here in backwards order. This makes a real difference
7610 to the ld-srec/sec64k.exp linker test. */
7611 entry = sections_with_aarch64_elf_section_data;
7612 if (last_entry != NULL)
7613 {
7614 if (last_entry->sec == sec)
7615 entry = last_entry;
7616 else if (last_entry->next != NULL && last_entry->next->sec == sec)
7617 entry = last_entry->next;
7618 }
7619
7620 for (; entry; entry = entry->next)
7621 if (entry->sec == sec)
7622 break;
7623
7624 if (entry)
7625 /* Record the entry prior to this one - it is the entry we are
7626 most likely to want to locate next time. Also this way if we
7627 have been called from
7628 unrecord_section_with_aarch64_elf_section_data () we will not
7629 be caching a pointer that is about to be freed. */
7630 last_entry = entry->prev;
7631
7632 return entry;
7633 }
7634
7635 static void
7636 unrecord_section_with_aarch64_elf_section_data (asection *sec)
7637 {
7638 struct section_list *entry;
7639
7640 entry = find_aarch64_elf_section_entry (sec);
7641
7642 if (entry)
7643 {
7644 if (entry->prev != NULL)
7645 entry->prev->next = entry->next;
7646 if (entry->next != NULL)
7647 entry->next->prev = entry->prev;
7648 if (entry == sections_with_aarch64_elf_section_data)
7649 sections_with_aarch64_elf_section_data = entry->next;
7650 free (entry);
7651 }
7652 }
7653
7654
7655 typedef struct
7656 {
7657 void *finfo;
7658 struct bfd_link_info *info;
7659 asection *sec;
7660 int sec_shndx;
7661 int (*func) (void *, const char *, Elf_Internal_Sym *,
7662 asection *, struct elf_link_hash_entry *);
7663 } output_arch_syminfo;
7664
7665 enum map_symbol_type
7666 {
7667 AARCH64_MAP_INSN,
7668 AARCH64_MAP_DATA
7669 };
7670
7671
7672 /* Output a single mapping symbol. */
7673
7674 static bfd_boolean
7675 elfNN_aarch64_output_map_sym (output_arch_syminfo *osi,
7676 enum map_symbol_type type, bfd_vma offset)
7677 {
7678 static const char *names[2] = { "$x", "$d" };
7679 Elf_Internal_Sym sym;
7680
7681 sym.st_value = (osi->sec->output_section->vma
7682 + osi->sec->output_offset + offset);
7683 sym.st_size = 0;
7684 sym.st_other = 0;
7685 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7686 sym.st_shndx = osi->sec_shndx;
7687 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
7688 }
7689
7690 /* Output a single local symbol for a generated stub. */
7691
7692 static bfd_boolean
7693 elfNN_aarch64_output_stub_sym (output_arch_syminfo *osi, const char *name,
7694 bfd_vma offset, bfd_vma size)
7695 {
7696 Elf_Internal_Sym sym;
7697
7698 sym.st_value = (osi->sec->output_section->vma
7699 + osi->sec->output_offset + offset);
7700 sym.st_size = size;
7701 sym.st_other = 0;
7702 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7703 sym.st_shndx = osi->sec_shndx;
7704 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
7705 }
7706
7707 static bfd_boolean
7708 aarch64_map_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
7709 {
7710 struct elf_aarch64_stub_hash_entry *stub_entry;
7711 asection *stub_sec;
7712 bfd_vma addr;
7713 char *stub_name;
7714 output_arch_syminfo *osi;
7715
7716 /* Massage our args to the form they really have. */
7717 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
7718 osi = (output_arch_syminfo *) in_arg;
7719
7720 stub_sec = stub_entry->stub_sec;
7721
7722 /* Ensure this stub is attached to the current section being
7723 processed. */
7724 if (stub_sec != osi->sec)
7725 return TRUE;
7726
7727 addr = (bfd_vma) stub_entry->stub_offset;
7728
7729 stub_name = stub_entry->output_name;
7730
7731 switch (stub_entry->stub_type)
7732 {
7733 case aarch64_stub_adrp_branch:
7734 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
7735 sizeof (aarch64_adrp_branch_stub)))
7736 return FALSE;
7737 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7738 return FALSE;
7739 break;
7740 case aarch64_stub_long_branch:
7741 if (!elfNN_aarch64_output_stub_sym
7742 (osi, stub_name, addr, sizeof (aarch64_long_branch_stub)))
7743 return FALSE;
7744 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7745 return FALSE;
7746 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_DATA, addr + 16))
7747 return FALSE;
7748 break;
7749 case aarch64_stub_erratum_835769_veneer:
7750 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
7751 sizeof (aarch64_erratum_835769_stub)))
7752 return FALSE;
7753 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7754 return FALSE;
7755 break;
7756 case aarch64_stub_erratum_843419_veneer:
7757 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
7758 sizeof (aarch64_erratum_843419_stub)))
7759 return FALSE;
7760 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7761 return FALSE;
7762 break;
7763
7764 default:
7765 abort ();
7766 }
7767
7768 return TRUE;
7769 }
7770
7771 /* Output mapping symbols for linker generated sections. */
7772
7773 static bfd_boolean
7774 elfNN_aarch64_output_arch_local_syms (bfd *output_bfd,
7775 struct bfd_link_info *info,
7776 void *finfo,
7777 int (*func) (void *, const char *,
7778 Elf_Internal_Sym *,
7779 asection *,
7780 struct elf_link_hash_entry
7781 *))
7782 {
7783 output_arch_syminfo osi;
7784 struct elf_aarch64_link_hash_table *htab;
7785
7786 htab = elf_aarch64_hash_table (info);
7787
7788 osi.finfo = finfo;
7789 osi.info = info;
7790 osi.func = func;
7791
7792 /* Long calls stubs. */
7793 if (htab->stub_bfd && htab->stub_bfd->sections)
7794 {
7795 asection *stub_sec;
7796
7797 for (stub_sec = htab->stub_bfd->sections;
7798 stub_sec != NULL; stub_sec = stub_sec->next)
7799 {
7800 /* Ignore non-stub sections. */
7801 if (!strstr (stub_sec->name, STUB_SUFFIX))
7802 continue;
7803
7804 osi.sec = stub_sec;
7805
7806 osi.sec_shndx = _bfd_elf_section_from_bfd_section
7807 (output_bfd, osi.sec->output_section);
7808
7809 /* The first instruction in a stub is always a branch. */
7810 if (!elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0))
7811 return FALSE;
7812
7813 bfd_hash_traverse (&htab->stub_hash_table, aarch64_map_one_stub,
7814 &osi);
7815 }
7816 }
7817
7818 /* Finally, output mapping symbols for the PLT. */
7819 if (!htab->root.splt || htab->root.splt->size == 0)
7820 return TRUE;
7821
7822 osi.sec_shndx = _bfd_elf_section_from_bfd_section
7823 (output_bfd, htab->root.splt->output_section);
7824 osi.sec = htab->root.splt;
7825
7826 elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0);
7827
7828 return TRUE;
7829
7830 }
7831
7832 /* Allocate target specific section data. */
7833
7834 static bfd_boolean
7835 elfNN_aarch64_new_section_hook (bfd *abfd, asection *sec)
7836 {
7837 if (!sec->used_by_bfd)
7838 {
7839 _aarch64_elf_section_data *sdata;
7840 bfd_size_type amt = sizeof (*sdata);
7841
7842 sdata = bfd_zalloc (abfd, amt);
7843 if (sdata == NULL)
7844 return FALSE;
7845 sec->used_by_bfd = sdata;
7846 }
7847
7848 record_section_with_aarch64_elf_section_data (sec);
7849
7850 return _bfd_elf_new_section_hook (abfd, sec);
7851 }
7852
7853
7854 static void
7855 unrecord_section_via_map_over_sections (bfd *abfd ATTRIBUTE_UNUSED,
7856 asection *sec,
7857 void *ignore ATTRIBUTE_UNUSED)
7858 {
7859 unrecord_section_with_aarch64_elf_section_data (sec);
7860 }
7861
7862 static bfd_boolean
7863 elfNN_aarch64_close_and_cleanup (bfd *abfd)
7864 {
7865 if (abfd->sections)
7866 bfd_map_over_sections (abfd,
7867 unrecord_section_via_map_over_sections, NULL);
7868
7869 return _bfd_elf_close_and_cleanup (abfd);
7870 }
7871
7872 static bfd_boolean
7873 elfNN_aarch64_bfd_free_cached_info (bfd *abfd)
7874 {
7875 if (abfd->sections)
7876 bfd_map_over_sections (abfd,
7877 unrecord_section_via_map_over_sections, NULL);
7878
7879 return _bfd_free_cached_info (abfd);
7880 }
7881
7882 /* Create dynamic sections. This is different from the ARM backend in that
7883 the got, plt, gotplt and their relocation sections are all created in the
7884 standard part of the bfd elf backend. */
7885
7886 static bfd_boolean
7887 elfNN_aarch64_create_dynamic_sections (bfd *dynobj,
7888 struct bfd_link_info *info)
7889 {
7890 struct elf_aarch64_link_hash_table *htab;
7891
7892 /* We need to create .got section. */
7893 if (!aarch64_elf_create_got_section (dynobj, info))
7894 return FALSE;
7895
7896 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
7897 return FALSE;
7898
7899 htab = elf_aarch64_hash_table (info);
7900 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
7901 if (!bfd_link_pic (info))
7902 htab->srelbss = bfd_get_linker_section (dynobj, ".rela.bss");
7903
7904 if (!htab->sdynbss || (!bfd_link_pic (info) && !htab->srelbss))
7905 abort ();
7906
7907 return TRUE;
7908 }
7909
7910
7911 /* Allocate space in .plt, .got and associated reloc sections for
7912 dynamic relocs. */
7913
7914 static bfd_boolean
7915 elfNN_aarch64_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
7916 {
7917 struct bfd_link_info *info;
7918 struct elf_aarch64_link_hash_table *htab;
7919 struct elf_aarch64_link_hash_entry *eh;
7920 struct elf_dyn_relocs *p;
7921
7922 /* An example of a bfd_link_hash_indirect symbol is versioned
7923 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
7924 -> __gxx_personality_v0(bfd_link_hash_defined)
7925
7926 There is no need to process bfd_link_hash_indirect symbols here
7927 because we will also be presented with the concrete instance of
7928 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
7929 called to copy all relevant data from the generic to the concrete
7930 symbol instance.
7931 */
7932 if (h->root.type == bfd_link_hash_indirect)
7933 return TRUE;
7934
7935 if (h->root.type == bfd_link_hash_warning)
7936 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7937
7938 info = (struct bfd_link_info *) inf;
7939 htab = elf_aarch64_hash_table (info);
7940
7941 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
7942 here if it is defined and referenced in a non-shared object. */
7943 if (h->type == STT_GNU_IFUNC
7944 && h->def_regular)
7945 return TRUE;
7946 else if (htab->root.dynamic_sections_created && h->plt.refcount > 0)
7947 {
7948 /* Make sure this symbol is output as a dynamic symbol.
7949 Undefined weak syms won't yet be marked as dynamic. */
7950 if (h->dynindx == -1 && !h->forced_local)
7951 {
7952 if (!bfd_elf_link_record_dynamic_symbol (info, h))
7953 return FALSE;
7954 }
7955
7956 if (bfd_link_pic (info) || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
7957 {
7958 asection *s = htab->root.splt;
7959
7960 /* If this is the first .plt entry, make room for the special
7961 first entry. */
7962 if (s->size == 0)
7963 s->size += htab->plt_header_size;
7964
7965 h->plt.offset = s->size;
7966
7967 /* If this symbol is not defined in a regular file, and we are
7968 not generating a shared library, then set the symbol to this
7969 location in the .plt. This is required to make function
7970 pointers compare as equal between the normal executable and
7971 the shared library. */
7972 if (!bfd_link_pic (info) && !h->def_regular)
7973 {
7974 h->root.u.def.section = s;
7975 h->root.u.def.value = h->plt.offset;
7976 }
7977
7978 /* Make room for this entry. For now we only create the
7979 small model PLT entries. We later need to find a way
7980 of relaxing into these from the large model PLT entries. */
7981 s->size += PLT_SMALL_ENTRY_SIZE;
7982
7983 /* We also need to make an entry in the .got.plt section, which
7984 will be placed in the .got section by the linker script. */
7985 htab->root.sgotplt->size += GOT_ENTRY_SIZE;
7986
7987 /* We also need to make an entry in the .rela.plt section. */
7988 htab->root.srelplt->size += RELOC_SIZE (htab);
7989
7990 /* We need to ensure that all GOT entries that serve the PLT
7991 are consecutive with the special GOT slots [0] [1] and
7992 [2]. Any addtional relocations, such as
7993 R_AARCH64_TLSDESC, must be placed after the PLT related
7994 entries. We abuse the reloc_count such that during
7995 sizing we adjust reloc_count to indicate the number of
7996 PLT related reserved entries. In subsequent phases when
7997 filling in the contents of the reloc entries, PLT related
7998 entries are placed by computing their PLT index (0
7999 .. reloc_count). While other none PLT relocs are placed
8000 at the slot indicated by reloc_count and reloc_count is
8001 updated. */
8002
8003 htab->root.srelplt->reloc_count++;
8004 }
8005 else
8006 {
8007 h->plt.offset = (bfd_vma) - 1;
8008 h->needs_plt = 0;
8009 }
8010 }
8011 else
8012 {
8013 h->plt.offset = (bfd_vma) - 1;
8014 h->needs_plt = 0;
8015 }
8016
8017 eh = (struct elf_aarch64_link_hash_entry *) h;
8018 eh->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8019
8020 if (h->got.refcount > 0)
8021 {
8022 bfd_boolean dyn;
8023 unsigned got_type = elf_aarch64_hash_entry (h)->got_type;
8024
8025 h->got.offset = (bfd_vma) - 1;
8026
8027 dyn = htab->root.dynamic_sections_created;
8028
8029 /* Make sure this symbol is output as a dynamic symbol.
8030 Undefined weak syms won't yet be marked as dynamic. */
8031 if (dyn && h->dynindx == -1 && !h->forced_local)
8032 {
8033 if (!bfd_elf_link_record_dynamic_symbol (info, h))
8034 return FALSE;
8035 }
8036
8037 if (got_type == GOT_UNKNOWN)
8038 {
8039 }
8040 else if (got_type == GOT_NORMAL)
8041 {
8042 h->got.offset = htab->root.sgot->size;
8043 htab->root.sgot->size += GOT_ENTRY_SIZE;
8044 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8045 || h->root.type != bfd_link_hash_undefweak)
8046 && (bfd_link_pic (info)
8047 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
8048 {
8049 htab->root.srelgot->size += RELOC_SIZE (htab);
8050 }
8051 }
8052 else
8053 {
8054 int indx;
8055 if (got_type & GOT_TLSDESC_GD)
8056 {
8057 eh->tlsdesc_got_jump_table_offset =
8058 (htab->root.sgotplt->size
8059 - aarch64_compute_jump_table_size (htab));
8060 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8061 h->got.offset = (bfd_vma) - 2;
8062 }
8063
8064 if (got_type & GOT_TLS_GD)
8065 {
8066 h->got.offset = htab->root.sgot->size;
8067 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8068 }
8069
8070 if (got_type & GOT_TLS_IE)
8071 {
8072 h->got.offset = htab->root.sgot->size;
8073 htab->root.sgot->size += GOT_ENTRY_SIZE;
8074 }
8075
8076 indx = h && h->dynindx != -1 ? h->dynindx : 0;
8077 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8078 || h->root.type != bfd_link_hash_undefweak)
8079 && (bfd_link_pic (info)
8080 || indx != 0
8081 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
8082 {
8083 if (got_type & GOT_TLSDESC_GD)
8084 {
8085 htab->root.srelplt->size += RELOC_SIZE (htab);
8086 /* Note reloc_count not incremented here! We have
8087 already adjusted reloc_count for this relocation
8088 type. */
8089
8090 /* TLSDESC PLT is now needed, but not yet determined. */
8091 htab->tlsdesc_plt = (bfd_vma) - 1;
8092 }
8093
8094 if (got_type & GOT_TLS_GD)
8095 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8096
8097 if (got_type & GOT_TLS_IE)
8098 htab->root.srelgot->size += RELOC_SIZE (htab);
8099 }
8100 }
8101 }
8102 else
8103 {
8104 h->got.offset = (bfd_vma) - 1;
8105 }
8106
8107 if (eh->dyn_relocs == NULL)
8108 return TRUE;
8109
8110 /* In the shared -Bsymbolic case, discard space allocated for
8111 dynamic pc-relative relocs against symbols which turn out to be
8112 defined in regular objects. For the normal shared case, discard
8113 space for pc-relative relocs that have become local due to symbol
8114 visibility changes. */
8115
8116 if (bfd_link_pic (info))
8117 {
8118 /* Relocs that use pc_count are those that appear on a call
8119 insn, or certain REL relocs that can generated via assembly.
8120 We want calls to protected symbols to resolve directly to the
8121 function rather than going via the plt. If people want
8122 function pointer comparisons to work as expected then they
8123 should avoid writing weird assembly. */
8124 if (SYMBOL_CALLS_LOCAL (info, h))
8125 {
8126 struct elf_dyn_relocs **pp;
8127
8128 for (pp = &eh->dyn_relocs; (p = *pp) != NULL;)
8129 {
8130 p->count -= p->pc_count;
8131 p->pc_count = 0;
8132 if (p->count == 0)
8133 *pp = p->next;
8134 else
8135 pp = &p->next;
8136 }
8137 }
8138
8139 /* Also discard relocs on undefined weak syms with non-default
8140 visibility. */
8141 if (eh->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak)
8142 {
8143 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8144 eh->dyn_relocs = NULL;
8145
8146 /* Make sure undefined weak symbols are output as a dynamic
8147 symbol in PIEs. */
8148 else if (h->dynindx == -1
8149 && !h->forced_local
8150 && !bfd_elf_link_record_dynamic_symbol (info, h))
8151 return FALSE;
8152 }
8153
8154 }
8155 else if (ELIMINATE_COPY_RELOCS)
8156 {
8157 /* For the non-shared case, discard space for relocs against
8158 symbols which turn out to need copy relocs or are not
8159 dynamic. */
8160
8161 if (!h->non_got_ref
8162 && ((h->def_dynamic
8163 && !h->def_regular)
8164 || (htab->root.dynamic_sections_created
8165 && (h->root.type == bfd_link_hash_undefweak
8166 || h->root.type == bfd_link_hash_undefined))))
8167 {
8168 /* Make sure this symbol is output as a dynamic symbol.
8169 Undefined weak syms won't yet be marked as dynamic. */
8170 if (h->dynindx == -1
8171 && !h->forced_local
8172 && !bfd_elf_link_record_dynamic_symbol (info, h))
8173 return FALSE;
8174
8175 /* If that succeeded, we know we'll be keeping all the
8176 relocs. */
8177 if (h->dynindx != -1)
8178 goto keep;
8179 }
8180
8181 eh->dyn_relocs = NULL;
8182
8183 keep:;
8184 }
8185
8186 /* Finally, allocate space. */
8187 for (p = eh->dyn_relocs; p != NULL; p = p->next)
8188 {
8189 asection *sreloc;
8190
8191 sreloc = elf_section_data (p->sec)->sreloc;
8192
8193 BFD_ASSERT (sreloc != NULL);
8194
8195 sreloc->size += p->count * RELOC_SIZE (htab);
8196 }
8197
8198 return TRUE;
8199 }
8200
8201 /* Allocate space in .plt, .got and associated reloc sections for
8202 ifunc dynamic relocs. */
8203
8204 static bfd_boolean
8205 elfNN_aarch64_allocate_ifunc_dynrelocs (struct elf_link_hash_entry *h,
8206 void *inf)
8207 {
8208 struct bfd_link_info *info;
8209 struct elf_aarch64_link_hash_table *htab;
8210 struct elf_aarch64_link_hash_entry *eh;
8211
8212 /* An example of a bfd_link_hash_indirect symbol is versioned
8213 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8214 -> __gxx_personality_v0(bfd_link_hash_defined)
8215
8216 There is no need to process bfd_link_hash_indirect symbols here
8217 because we will also be presented with the concrete instance of
8218 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8219 called to copy all relevant data from the generic to the concrete
8220 symbol instance.
8221 */
8222 if (h->root.type == bfd_link_hash_indirect)
8223 return TRUE;
8224
8225 if (h->root.type == bfd_link_hash_warning)
8226 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8227
8228 info = (struct bfd_link_info *) inf;
8229 htab = elf_aarch64_hash_table (info);
8230
8231 eh = (struct elf_aarch64_link_hash_entry *) h;
8232
8233 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8234 here if it is defined and referenced in a non-shared object. */
8235 if (h->type == STT_GNU_IFUNC
8236 && h->def_regular)
8237 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
8238 &eh->dyn_relocs,
8239 NULL,
8240 htab->plt_entry_size,
8241 htab->plt_header_size,
8242 GOT_ENTRY_SIZE,
8243 FALSE);
8244 return TRUE;
8245 }
8246
8247 /* Allocate space in .plt, .got and associated reloc sections for
8248 local dynamic relocs. */
8249
8250 static bfd_boolean
8251 elfNN_aarch64_allocate_local_dynrelocs (void **slot, void *inf)
8252 {
8253 struct elf_link_hash_entry *h
8254 = (struct elf_link_hash_entry *) *slot;
8255
8256 if (h->type != STT_GNU_IFUNC
8257 || !h->def_regular
8258 || !h->ref_regular
8259 || !h->forced_local
8260 || h->root.type != bfd_link_hash_defined)
8261 abort ();
8262
8263 return elfNN_aarch64_allocate_dynrelocs (h, inf);
8264 }
8265
8266 /* Allocate space in .plt, .got and associated reloc sections for
8267 local ifunc dynamic relocs. */
8268
8269 static bfd_boolean
8270 elfNN_aarch64_allocate_local_ifunc_dynrelocs (void **slot, void *inf)
8271 {
8272 struct elf_link_hash_entry *h
8273 = (struct elf_link_hash_entry *) *slot;
8274
8275 if (h->type != STT_GNU_IFUNC
8276 || !h->def_regular
8277 || !h->ref_regular
8278 || !h->forced_local
8279 || h->root.type != bfd_link_hash_defined)
8280 abort ();
8281
8282 return elfNN_aarch64_allocate_ifunc_dynrelocs (h, inf);
8283 }
8284
8285 /* Find any dynamic relocs that apply to read-only sections. */
8286
8287 static bfd_boolean
8288 aarch64_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
8289 {
8290 struct elf_aarch64_link_hash_entry * eh;
8291 struct elf_dyn_relocs * p;
8292
8293 eh = (struct elf_aarch64_link_hash_entry *) h;
8294 for (p = eh->dyn_relocs; p != NULL; p = p->next)
8295 {
8296 asection *s = p->sec;
8297
8298 if (s != NULL && (s->flags & SEC_READONLY) != 0)
8299 {
8300 struct bfd_link_info *info = (struct bfd_link_info *) inf;
8301
8302 info->flags |= DF_TEXTREL;
8303
8304 /* Not an error, just cut short the traversal. */
8305 return FALSE;
8306 }
8307 }
8308 return TRUE;
8309 }
8310
8311 /* This is the most important function of all . Innocuosly named
8312 though ! */
8313 static bfd_boolean
8314 elfNN_aarch64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
8315 struct bfd_link_info *info)
8316 {
8317 struct elf_aarch64_link_hash_table *htab;
8318 bfd *dynobj;
8319 asection *s;
8320 bfd_boolean relocs;
8321 bfd *ibfd;
8322
8323 htab = elf_aarch64_hash_table ((info));
8324 dynobj = htab->root.dynobj;
8325
8326 BFD_ASSERT (dynobj != NULL);
8327
8328 if (htab->root.dynamic_sections_created)
8329 {
8330 if (bfd_link_executable (info) && !info->nointerp)
8331 {
8332 s = bfd_get_linker_section (dynobj, ".interp");
8333 if (s == NULL)
8334 abort ();
8335 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
8336 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
8337 }
8338 }
8339
8340 /* Set up .got offsets for local syms, and space for local dynamic
8341 relocs. */
8342 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8343 {
8344 struct elf_aarch64_local_symbol *locals = NULL;
8345 Elf_Internal_Shdr *symtab_hdr;
8346 asection *srel;
8347 unsigned int i;
8348
8349 if (!is_aarch64_elf (ibfd))
8350 continue;
8351
8352 for (s = ibfd->sections; s != NULL; s = s->next)
8353 {
8354 struct elf_dyn_relocs *p;
8355
8356 for (p = (struct elf_dyn_relocs *)
8357 (elf_section_data (s)->local_dynrel); p != NULL; p = p->next)
8358 {
8359 if (!bfd_is_abs_section (p->sec)
8360 && bfd_is_abs_section (p->sec->output_section))
8361 {
8362 /* Input section has been discarded, either because
8363 it is a copy of a linkonce section or due to
8364 linker script /DISCARD/, so we'll be discarding
8365 the relocs too. */
8366 }
8367 else if (p->count != 0)
8368 {
8369 srel = elf_section_data (p->sec)->sreloc;
8370 srel->size += p->count * RELOC_SIZE (htab);
8371 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
8372 info->flags |= DF_TEXTREL;
8373 }
8374 }
8375 }
8376
8377 locals = elf_aarch64_locals (ibfd);
8378 if (!locals)
8379 continue;
8380
8381 symtab_hdr = &elf_symtab_hdr (ibfd);
8382 srel = htab->root.srelgot;
8383 for (i = 0; i < symtab_hdr->sh_info; i++)
8384 {
8385 locals[i].got_offset = (bfd_vma) - 1;
8386 locals[i].tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8387 if (locals[i].got_refcount > 0)
8388 {
8389 unsigned got_type = locals[i].got_type;
8390 if (got_type & GOT_TLSDESC_GD)
8391 {
8392 locals[i].tlsdesc_got_jump_table_offset =
8393 (htab->root.sgotplt->size
8394 - aarch64_compute_jump_table_size (htab));
8395 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8396 locals[i].got_offset = (bfd_vma) - 2;
8397 }
8398
8399 if (got_type & GOT_TLS_GD)
8400 {
8401 locals[i].got_offset = htab->root.sgot->size;
8402 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8403 }
8404
8405 if (got_type & GOT_TLS_IE
8406 || got_type & GOT_NORMAL)
8407 {
8408 locals[i].got_offset = htab->root.sgot->size;
8409 htab->root.sgot->size += GOT_ENTRY_SIZE;
8410 }
8411
8412 if (got_type == GOT_UNKNOWN)
8413 {
8414 }
8415
8416 if (bfd_link_pic (info))
8417 {
8418 if (got_type & GOT_TLSDESC_GD)
8419 {
8420 htab->root.srelplt->size += RELOC_SIZE (htab);
8421 /* Note RELOC_COUNT not incremented here! */
8422 htab->tlsdesc_plt = (bfd_vma) - 1;
8423 }
8424
8425 if (got_type & GOT_TLS_GD)
8426 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8427
8428 if (got_type & GOT_TLS_IE
8429 || got_type & GOT_NORMAL)
8430 htab->root.srelgot->size += RELOC_SIZE (htab);
8431 }
8432 }
8433 else
8434 {
8435 locals[i].got_refcount = (bfd_vma) - 1;
8436 }
8437 }
8438 }
8439
8440
8441 /* Allocate global sym .plt and .got entries, and space for global
8442 sym dynamic relocs. */
8443 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_dynrelocs,
8444 info);
8445
8446 /* Allocate global ifunc sym .plt and .got entries, and space for global
8447 ifunc sym dynamic relocs. */
8448 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_ifunc_dynrelocs,
8449 info);
8450
8451 /* Allocate .plt and .got entries, and space for local symbols. */
8452 htab_traverse (htab->loc_hash_table,
8453 elfNN_aarch64_allocate_local_dynrelocs,
8454 info);
8455
8456 /* Allocate .plt and .got entries, and space for local ifunc symbols. */
8457 htab_traverse (htab->loc_hash_table,
8458 elfNN_aarch64_allocate_local_ifunc_dynrelocs,
8459 info);
8460
8461 /* For every jump slot reserved in the sgotplt, reloc_count is
8462 incremented. However, when we reserve space for TLS descriptors,
8463 it's not incremented, so in order to compute the space reserved
8464 for them, it suffices to multiply the reloc count by the jump
8465 slot size. */
8466
8467 if (htab->root.srelplt)
8468 htab->sgotplt_jump_table_size = aarch64_compute_jump_table_size (htab);
8469
8470 if (htab->tlsdesc_plt)
8471 {
8472 if (htab->root.splt->size == 0)
8473 htab->root.splt->size += PLT_ENTRY_SIZE;
8474
8475 htab->tlsdesc_plt = htab->root.splt->size;
8476 htab->root.splt->size += PLT_TLSDESC_ENTRY_SIZE;
8477
8478 /* If we're not using lazy TLS relocations, don't generate the
8479 GOT entry required. */
8480 if (!(info->flags & DF_BIND_NOW))
8481 {
8482 htab->dt_tlsdesc_got = htab->root.sgot->size;
8483 htab->root.sgot->size += GOT_ENTRY_SIZE;
8484 }
8485 }
8486
8487 /* Init mapping symbols information to use later to distingush between
8488 code and data while scanning for errata. */
8489 if (htab->fix_erratum_835769 || htab->fix_erratum_843419)
8490 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8491 {
8492 if (!is_aarch64_elf (ibfd))
8493 continue;
8494 bfd_elfNN_aarch64_init_maps (ibfd);
8495 }
8496
8497 /* We now have determined the sizes of the various dynamic sections.
8498 Allocate memory for them. */
8499 relocs = FALSE;
8500 for (s = dynobj->sections; s != NULL; s = s->next)
8501 {
8502 if ((s->flags & SEC_LINKER_CREATED) == 0)
8503 continue;
8504
8505 if (s == htab->root.splt
8506 || s == htab->root.sgot
8507 || s == htab->root.sgotplt
8508 || s == htab->root.iplt
8509 || s == htab->root.igotplt || s == htab->sdynbss)
8510 {
8511 /* Strip this section if we don't need it; see the
8512 comment below. */
8513 }
8514 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
8515 {
8516 if (s->size != 0 && s != htab->root.srelplt)
8517 relocs = TRUE;
8518
8519 /* We use the reloc_count field as a counter if we need
8520 to copy relocs into the output file. */
8521 if (s != htab->root.srelplt)
8522 s->reloc_count = 0;
8523 }
8524 else
8525 {
8526 /* It's not one of our sections, so don't allocate space. */
8527 continue;
8528 }
8529
8530 if (s->size == 0)
8531 {
8532 /* If we don't need this section, strip it from the
8533 output file. This is mostly to handle .rela.bss and
8534 .rela.plt. We must create both sections in
8535 create_dynamic_sections, because they must be created
8536 before the linker maps input sections to output
8537 sections. The linker does that before
8538 adjust_dynamic_symbol is called, and it is that
8539 function which decides whether anything needs to go
8540 into these sections. */
8541
8542 s->flags |= SEC_EXCLUDE;
8543 continue;
8544 }
8545
8546 if ((s->flags & SEC_HAS_CONTENTS) == 0)
8547 continue;
8548
8549 /* Allocate memory for the section contents. We use bfd_zalloc
8550 here in case unused entries are not reclaimed before the
8551 section's contents are written out. This should not happen,
8552 but this way if it does, we get a R_AARCH64_NONE reloc instead
8553 of garbage. */
8554 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
8555 if (s->contents == NULL)
8556 return FALSE;
8557 }
8558
8559 if (htab->root.dynamic_sections_created)
8560 {
8561 /* Add some entries to the .dynamic section. We fill in the
8562 values later, in elfNN_aarch64_finish_dynamic_sections, but we
8563 must add the entries now so that we get the correct size for
8564 the .dynamic section. The DT_DEBUG entry is filled in by the
8565 dynamic linker and used by the debugger. */
8566 #define add_dynamic_entry(TAG, VAL) \
8567 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
8568
8569 if (bfd_link_executable (info))
8570 {
8571 if (!add_dynamic_entry (DT_DEBUG, 0))
8572 return FALSE;
8573 }
8574
8575 if (htab->root.splt->size != 0)
8576 {
8577 if (!add_dynamic_entry (DT_PLTGOT, 0)
8578 || !add_dynamic_entry (DT_PLTRELSZ, 0)
8579 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
8580 || !add_dynamic_entry (DT_JMPREL, 0))
8581 return FALSE;
8582
8583 if (htab->tlsdesc_plt
8584 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
8585 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
8586 return FALSE;
8587 }
8588
8589 if (relocs)
8590 {
8591 if (!add_dynamic_entry (DT_RELA, 0)
8592 || !add_dynamic_entry (DT_RELASZ, 0)
8593 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
8594 return FALSE;
8595
8596 /* If any dynamic relocs apply to a read-only section,
8597 then we need a DT_TEXTREL entry. */
8598 if ((info->flags & DF_TEXTREL) == 0)
8599 elf_link_hash_traverse (& htab->root, aarch64_readonly_dynrelocs,
8600 info);
8601
8602 if ((info->flags & DF_TEXTREL) != 0)
8603 {
8604 if (!add_dynamic_entry (DT_TEXTREL, 0))
8605 return FALSE;
8606 }
8607 }
8608 }
8609 #undef add_dynamic_entry
8610
8611 return TRUE;
8612 }
8613
8614 static inline void
8615 elf_aarch64_update_plt_entry (bfd *output_bfd,
8616 bfd_reloc_code_real_type r_type,
8617 bfd_byte *plt_entry, bfd_vma value)
8618 {
8619 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (r_type);
8620
8621 _bfd_aarch64_elf_put_addend (output_bfd, plt_entry, r_type, howto, value);
8622 }
8623
8624 static void
8625 elfNN_aarch64_create_small_pltn_entry (struct elf_link_hash_entry *h,
8626 struct elf_aarch64_link_hash_table
8627 *htab, bfd *output_bfd,
8628 struct bfd_link_info *info)
8629 {
8630 bfd_byte *plt_entry;
8631 bfd_vma plt_index;
8632 bfd_vma got_offset;
8633 bfd_vma gotplt_entry_address;
8634 bfd_vma plt_entry_address;
8635 Elf_Internal_Rela rela;
8636 bfd_byte *loc;
8637 asection *plt, *gotplt, *relplt;
8638
8639 /* When building a static executable, use .iplt, .igot.plt and
8640 .rela.iplt sections for STT_GNU_IFUNC symbols. */
8641 if (htab->root.splt != NULL)
8642 {
8643 plt = htab->root.splt;
8644 gotplt = htab->root.sgotplt;
8645 relplt = htab->root.srelplt;
8646 }
8647 else
8648 {
8649 plt = htab->root.iplt;
8650 gotplt = htab->root.igotplt;
8651 relplt = htab->root.irelplt;
8652 }
8653
8654 /* Get the index in the procedure linkage table which
8655 corresponds to this symbol. This is the index of this symbol
8656 in all the symbols for which we are making plt entries. The
8657 first entry in the procedure linkage table is reserved.
8658
8659 Get the offset into the .got table of the entry that
8660 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
8661 bytes. The first three are reserved for the dynamic linker.
8662
8663 For static executables, we don't reserve anything. */
8664
8665 if (plt == htab->root.splt)
8666 {
8667 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
8668 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
8669 }
8670 else
8671 {
8672 plt_index = h->plt.offset / htab->plt_entry_size;
8673 got_offset = plt_index * GOT_ENTRY_SIZE;
8674 }
8675
8676 plt_entry = plt->contents + h->plt.offset;
8677 plt_entry_address = plt->output_section->vma
8678 + plt->output_offset + h->plt.offset;
8679 gotplt_entry_address = gotplt->output_section->vma +
8680 gotplt->output_offset + got_offset;
8681
8682 /* Copy in the boiler-plate for the PLTn entry. */
8683 memcpy (plt_entry, elfNN_aarch64_small_plt_entry, PLT_SMALL_ENTRY_SIZE);
8684
8685 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
8686 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
8687 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
8688 plt_entry,
8689 PG (gotplt_entry_address) -
8690 PG (plt_entry_address));
8691
8692 /* Fill in the lo12 bits for the load from the pltgot. */
8693 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
8694 plt_entry + 4,
8695 PG_OFFSET (gotplt_entry_address));
8696
8697 /* Fill in the lo12 bits for the add from the pltgot entry. */
8698 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
8699 plt_entry + 8,
8700 PG_OFFSET (gotplt_entry_address));
8701
8702 /* All the GOTPLT Entries are essentially initialized to PLT0. */
8703 bfd_put_NN (output_bfd,
8704 plt->output_section->vma + plt->output_offset,
8705 gotplt->contents + got_offset);
8706
8707 rela.r_offset = gotplt_entry_address;
8708
8709 if (h->dynindx == -1
8710 || ((bfd_link_executable (info)
8711 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8712 && h->def_regular
8713 && h->type == STT_GNU_IFUNC))
8714 {
8715 /* If an STT_GNU_IFUNC symbol is locally defined, generate
8716 R_AARCH64_IRELATIVE instead of R_AARCH64_JUMP_SLOT. */
8717 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
8718 rela.r_addend = (h->root.u.def.value
8719 + h->root.u.def.section->output_section->vma
8720 + h->root.u.def.section->output_offset);
8721 }
8722 else
8723 {
8724 /* Fill in the entry in the .rela.plt section. */
8725 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (JUMP_SLOT));
8726 rela.r_addend = 0;
8727 }
8728
8729 /* Compute the relocation entry to used based on PLT index and do
8730 not adjust reloc_count. The reloc_count has already been adjusted
8731 to account for this entry. */
8732 loc = relplt->contents + plt_index * RELOC_SIZE (htab);
8733 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
8734 }
8735
8736 /* Size sections even though they're not dynamic. We use it to setup
8737 _TLS_MODULE_BASE_, if needed. */
8738
8739 static bfd_boolean
8740 elfNN_aarch64_always_size_sections (bfd *output_bfd,
8741 struct bfd_link_info *info)
8742 {
8743 asection *tls_sec;
8744
8745 if (bfd_link_relocatable (info))
8746 return TRUE;
8747
8748 tls_sec = elf_hash_table (info)->tls_sec;
8749
8750 if (tls_sec)
8751 {
8752 struct elf_link_hash_entry *tlsbase;
8753
8754 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
8755 "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
8756
8757 if (tlsbase)
8758 {
8759 struct bfd_link_hash_entry *h = NULL;
8760 const struct elf_backend_data *bed =
8761 get_elf_backend_data (output_bfd);
8762
8763 if (!(_bfd_generic_link_add_one_symbol
8764 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
8765 tls_sec, 0, NULL, FALSE, bed->collect, &h)))
8766 return FALSE;
8767
8768 tlsbase->type = STT_TLS;
8769 tlsbase = (struct elf_link_hash_entry *) h;
8770 tlsbase->def_regular = 1;
8771 tlsbase->other = STV_HIDDEN;
8772 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
8773 }
8774 }
8775
8776 return TRUE;
8777 }
8778
8779 /* Finish up dynamic symbol handling. We set the contents of various
8780 dynamic sections here. */
8781 static bfd_boolean
8782 elfNN_aarch64_finish_dynamic_symbol (bfd *output_bfd,
8783 struct bfd_link_info *info,
8784 struct elf_link_hash_entry *h,
8785 Elf_Internal_Sym *sym)
8786 {
8787 struct elf_aarch64_link_hash_table *htab;
8788 htab = elf_aarch64_hash_table (info);
8789
8790 if (h->plt.offset != (bfd_vma) - 1)
8791 {
8792 asection *plt, *gotplt, *relplt;
8793
8794 /* This symbol has an entry in the procedure linkage table. Set
8795 it up. */
8796
8797 /* When building a static executable, use .iplt, .igot.plt and
8798 .rela.iplt sections for STT_GNU_IFUNC symbols. */
8799 if (htab->root.splt != NULL)
8800 {
8801 plt = htab->root.splt;
8802 gotplt = htab->root.sgotplt;
8803 relplt = htab->root.srelplt;
8804 }
8805 else
8806 {
8807 plt = htab->root.iplt;
8808 gotplt = htab->root.igotplt;
8809 relplt = htab->root.irelplt;
8810 }
8811
8812 /* This symbol has an entry in the procedure linkage table. Set
8813 it up. */
8814 if ((h->dynindx == -1
8815 && !((h->forced_local || bfd_link_executable (info))
8816 && h->def_regular
8817 && h->type == STT_GNU_IFUNC))
8818 || plt == NULL
8819 || gotplt == NULL
8820 || relplt == NULL)
8821 abort ();
8822
8823 elfNN_aarch64_create_small_pltn_entry (h, htab, output_bfd, info);
8824 if (!h->def_regular)
8825 {
8826 /* Mark the symbol as undefined, rather than as defined in
8827 the .plt section. */
8828 sym->st_shndx = SHN_UNDEF;
8829 /* If the symbol is weak we need to clear the value.
8830 Otherwise, the PLT entry would provide a definition for
8831 the symbol even if the symbol wasn't defined anywhere,
8832 and so the symbol would never be NULL. Leave the value if
8833 there were any relocations where pointer equality matters
8834 (this is a clue for the dynamic linker, to make function
8835 pointer comparisons work between an application and shared
8836 library). */
8837 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
8838 sym->st_value = 0;
8839 }
8840 }
8841
8842 if (h->got.offset != (bfd_vma) - 1
8843 && elf_aarch64_hash_entry (h)->got_type == GOT_NORMAL)
8844 {
8845 Elf_Internal_Rela rela;
8846 bfd_byte *loc;
8847
8848 /* This symbol has an entry in the global offset table. Set it
8849 up. */
8850 if (htab->root.sgot == NULL || htab->root.srelgot == NULL)
8851 abort ();
8852
8853 rela.r_offset = (htab->root.sgot->output_section->vma
8854 + htab->root.sgot->output_offset
8855 + (h->got.offset & ~(bfd_vma) 1));
8856
8857 if (h->def_regular
8858 && h->type == STT_GNU_IFUNC)
8859 {
8860 if (bfd_link_pic (info))
8861 {
8862 /* Generate R_AARCH64_GLOB_DAT. */
8863 goto do_glob_dat;
8864 }
8865 else
8866 {
8867 asection *plt;
8868
8869 if (!h->pointer_equality_needed)
8870 abort ();
8871
8872 /* For non-shared object, we can't use .got.plt, which
8873 contains the real function address if we need pointer
8874 equality. We load the GOT entry with the PLT entry. */
8875 plt = htab->root.splt ? htab->root.splt : htab->root.iplt;
8876 bfd_put_NN (output_bfd, (plt->output_section->vma
8877 + plt->output_offset
8878 + h->plt.offset),
8879 htab->root.sgot->contents
8880 + (h->got.offset & ~(bfd_vma) 1));
8881 return TRUE;
8882 }
8883 }
8884 else if (bfd_link_pic (info) && SYMBOL_REFERENCES_LOCAL (info, h))
8885 {
8886 if (!h->def_regular)
8887 return FALSE;
8888
8889 BFD_ASSERT ((h->got.offset & 1) != 0);
8890 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
8891 rela.r_addend = (h->root.u.def.value
8892 + h->root.u.def.section->output_section->vma
8893 + h->root.u.def.section->output_offset);
8894 }
8895 else
8896 {
8897 do_glob_dat:
8898 BFD_ASSERT ((h->got.offset & 1) == 0);
8899 bfd_put_NN (output_bfd, (bfd_vma) 0,
8900 htab->root.sgot->contents + h->got.offset);
8901 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (GLOB_DAT));
8902 rela.r_addend = 0;
8903 }
8904
8905 loc = htab->root.srelgot->contents;
8906 loc += htab->root.srelgot->reloc_count++ * RELOC_SIZE (htab);
8907 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
8908 }
8909
8910 if (h->needs_copy)
8911 {
8912 Elf_Internal_Rela rela;
8913 bfd_byte *loc;
8914
8915 /* This symbol needs a copy reloc. Set it up. */
8916
8917 if (h->dynindx == -1
8918 || (h->root.type != bfd_link_hash_defined
8919 && h->root.type != bfd_link_hash_defweak)
8920 || htab->srelbss == NULL)
8921 abort ();
8922
8923 rela.r_offset = (h->root.u.def.value
8924 + h->root.u.def.section->output_section->vma
8925 + h->root.u.def.section->output_offset);
8926 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (COPY));
8927 rela.r_addend = 0;
8928 loc = htab->srelbss->contents;
8929 loc += htab->srelbss->reloc_count++ * RELOC_SIZE (htab);
8930 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
8931 }
8932
8933 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
8934 be NULL for local symbols. */
8935 if (sym != NULL
8936 && (h == elf_hash_table (info)->hdynamic
8937 || h == elf_hash_table (info)->hgot))
8938 sym->st_shndx = SHN_ABS;
8939
8940 return TRUE;
8941 }
8942
8943 /* Finish up local dynamic symbol handling. We set the contents of
8944 various dynamic sections here. */
8945
8946 static bfd_boolean
8947 elfNN_aarch64_finish_local_dynamic_symbol (void **slot, void *inf)
8948 {
8949 struct elf_link_hash_entry *h
8950 = (struct elf_link_hash_entry *) *slot;
8951 struct bfd_link_info *info
8952 = (struct bfd_link_info *) inf;
8953
8954 return elfNN_aarch64_finish_dynamic_symbol (info->output_bfd,
8955 info, h, NULL);
8956 }
8957
8958 static void
8959 elfNN_aarch64_init_small_plt0_entry (bfd *output_bfd ATTRIBUTE_UNUSED,
8960 struct elf_aarch64_link_hash_table
8961 *htab)
8962 {
8963 /* Fill in PLT0. Fixme:RR Note this doesn't distinguish between
8964 small and large plts and at the minute just generates
8965 the small PLT. */
8966
8967 /* PLT0 of the small PLT looks like this in ELF64 -
8968 stp x16, x30, [sp, #-16]! // Save the reloc and lr on stack.
8969 adrp x16, PLT_GOT + 16 // Get the page base of the GOTPLT
8970 ldr x17, [x16, #:lo12:PLT_GOT+16] // Load the address of the
8971 // symbol resolver
8972 add x16, x16, #:lo12:PLT_GOT+16 // Load the lo12 bits of the
8973 // GOTPLT entry for this.
8974 br x17
8975 PLT0 will be slightly different in ELF32 due to different got entry
8976 size.
8977 */
8978 bfd_vma plt_got_2nd_ent; /* Address of GOT[2]. */
8979 bfd_vma plt_base;
8980
8981
8982 memcpy (htab->root.splt->contents, elfNN_aarch64_small_plt0_entry,
8983 PLT_ENTRY_SIZE);
8984 elf_section_data (htab->root.splt->output_section)->this_hdr.sh_entsize =
8985 PLT_ENTRY_SIZE;
8986
8987 plt_got_2nd_ent = (htab->root.sgotplt->output_section->vma
8988 + htab->root.sgotplt->output_offset
8989 + GOT_ENTRY_SIZE * 2);
8990
8991 plt_base = htab->root.splt->output_section->vma +
8992 htab->root.splt->output_offset;
8993
8994 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
8995 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
8996 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
8997 htab->root.splt->contents + 4,
8998 PG (plt_got_2nd_ent) - PG (plt_base + 4));
8999
9000 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
9001 htab->root.splt->contents + 8,
9002 PG_OFFSET (plt_got_2nd_ent));
9003
9004 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
9005 htab->root.splt->contents + 12,
9006 PG_OFFSET (plt_got_2nd_ent));
9007 }
9008
9009 static bfd_boolean
9010 elfNN_aarch64_finish_dynamic_sections (bfd *output_bfd,
9011 struct bfd_link_info *info)
9012 {
9013 struct elf_aarch64_link_hash_table *htab;
9014 bfd *dynobj;
9015 asection *sdyn;
9016
9017 htab = elf_aarch64_hash_table (info);
9018 dynobj = htab->root.dynobj;
9019 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
9020
9021 if (htab->root.dynamic_sections_created)
9022 {
9023 ElfNN_External_Dyn *dyncon, *dynconend;
9024
9025 if (sdyn == NULL || htab->root.sgot == NULL)
9026 abort ();
9027
9028 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
9029 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
9030 for (; dyncon < dynconend; dyncon++)
9031 {
9032 Elf_Internal_Dyn dyn;
9033 asection *s;
9034
9035 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
9036
9037 switch (dyn.d_tag)
9038 {
9039 default:
9040 continue;
9041
9042 case DT_PLTGOT:
9043 s = htab->root.sgotplt;
9044 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9045 break;
9046
9047 case DT_JMPREL:
9048 s = htab->root.srelplt;
9049 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9050 break;
9051
9052 case DT_PLTRELSZ:
9053 s = htab->root.srelplt;
9054 dyn.d_un.d_val = s->size;
9055 break;
9056
9057 case DT_RELASZ:
9058 /* The procedure linkage table relocs (DT_JMPREL) should
9059 not be included in the overall relocs (DT_RELA).
9060 Therefore, we override the DT_RELASZ entry here to
9061 make it not include the JMPREL relocs. Since the
9062 linker script arranges for .rela.plt to follow all
9063 other relocation sections, we don't have to worry
9064 about changing the DT_RELA entry. */
9065 if (htab->root.srelplt != NULL)
9066 {
9067 s = htab->root.srelplt;
9068 dyn.d_un.d_val -= s->size;
9069 }
9070 break;
9071
9072 case DT_TLSDESC_PLT:
9073 s = htab->root.splt;
9074 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9075 + htab->tlsdesc_plt;
9076 break;
9077
9078 case DT_TLSDESC_GOT:
9079 s = htab->root.sgot;
9080 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9081 + htab->dt_tlsdesc_got;
9082 break;
9083 }
9084
9085 bfd_elfNN_swap_dyn_out (output_bfd, &dyn, dyncon);
9086 }
9087
9088 }
9089
9090 /* Fill in the special first entry in the procedure linkage table. */
9091 if (htab->root.splt && htab->root.splt->size > 0)
9092 {
9093 elfNN_aarch64_init_small_plt0_entry (output_bfd, htab);
9094
9095 elf_section_data (htab->root.splt->output_section)->
9096 this_hdr.sh_entsize = htab->plt_entry_size;
9097
9098
9099 if (htab->tlsdesc_plt)
9100 {
9101 bfd_put_NN (output_bfd, (bfd_vma) 0,
9102 htab->root.sgot->contents + htab->dt_tlsdesc_got);
9103
9104 memcpy (htab->root.splt->contents + htab->tlsdesc_plt,
9105 elfNN_aarch64_tlsdesc_small_plt_entry,
9106 sizeof (elfNN_aarch64_tlsdesc_small_plt_entry));
9107
9108 {
9109 bfd_vma adrp1_addr =
9110 htab->root.splt->output_section->vma
9111 + htab->root.splt->output_offset + htab->tlsdesc_plt + 4;
9112
9113 bfd_vma adrp2_addr = adrp1_addr + 4;
9114
9115 bfd_vma got_addr =
9116 htab->root.sgot->output_section->vma
9117 + htab->root.sgot->output_offset;
9118
9119 bfd_vma pltgot_addr =
9120 htab->root.sgotplt->output_section->vma
9121 + htab->root.sgotplt->output_offset;
9122
9123 bfd_vma dt_tlsdesc_got = got_addr + htab->dt_tlsdesc_got;
9124
9125 bfd_byte *plt_entry =
9126 htab->root.splt->contents + htab->tlsdesc_plt;
9127
9128 /* adrp x2, DT_TLSDESC_GOT */
9129 elf_aarch64_update_plt_entry (output_bfd,
9130 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9131 plt_entry + 4,
9132 (PG (dt_tlsdesc_got)
9133 - PG (adrp1_addr)));
9134
9135 /* adrp x3, 0 */
9136 elf_aarch64_update_plt_entry (output_bfd,
9137 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9138 plt_entry + 8,
9139 (PG (pltgot_addr)
9140 - PG (adrp2_addr)));
9141
9142 /* ldr x2, [x2, #0] */
9143 elf_aarch64_update_plt_entry (output_bfd,
9144 BFD_RELOC_AARCH64_LDSTNN_LO12,
9145 plt_entry + 12,
9146 PG_OFFSET (dt_tlsdesc_got));
9147
9148 /* add x3, x3, 0 */
9149 elf_aarch64_update_plt_entry (output_bfd,
9150 BFD_RELOC_AARCH64_ADD_LO12,
9151 plt_entry + 16,
9152 PG_OFFSET (pltgot_addr));
9153 }
9154 }
9155 }
9156
9157 if (htab->root.sgotplt)
9158 {
9159 if (bfd_is_abs_section (htab->root.sgotplt->output_section))
9160 {
9161 _bfd_error_handler
9162 (_("discarded output section: `%A'"), htab->root.sgotplt);
9163 return FALSE;
9164 }
9165
9166 /* Fill in the first three entries in the global offset table. */
9167 if (htab->root.sgotplt->size > 0)
9168 {
9169 bfd_put_NN (output_bfd, (bfd_vma) 0, htab->root.sgotplt->contents);
9170
9171 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
9172 bfd_put_NN (output_bfd,
9173 (bfd_vma) 0,
9174 htab->root.sgotplt->contents + GOT_ENTRY_SIZE);
9175 bfd_put_NN (output_bfd,
9176 (bfd_vma) 0,
9177 htab->root.sgotplt->contents + GOT_ENTRY_SIZE * 2);
9178 }
9179
9180 if (htab->root.sgot)
9181 {
9182 if (htab->root.sgot->size > 0)
9183 {
9184 bfd_vma addr =
9185 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0;
9186 bfd_put_NN (output_bfd, addr, htab->root.sgot->contents);
9187 }
9188 }
9189
9190 elf_section_data (htab->root.sgotplt->output_section)->
9191 this_hdr.sh_entsize = GOT_ENTRY_SIZE;
9192 }
9193
9194 if (htab->root.sgot && htab->root.sgot->size > 0)
9195 elf_section_data (htab->root.sgot->output_section)->this_hdr.sh_entsize
9196 = GOT_ENTRY_SIZE;
9197
9198 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
9199 htab_traverse (htab->loc_hash_table,
9200 elfNN_aarch64_finish_local_dynamic_symbol,
9201 info);
9202
9203 return TRUE;
9204 }
9205
9206 /* Return address for Ith PLT stub in section PLT, for relocation REL
9207 or (bfd_vma) -1 if it should not be included. */
9208
9209 static bfd_vma
9210 elfNN_aarch64_plt_sym_val (bfd_vma i, const asection *plt,
9211 const arelent *rel ATTRIBUTE_UNUSED)
9212 {
9213 return plt->vma + PLT_ENTRY_SIZE + i * PLT_SMALL_ENTRY_SIZE;
9214 }
9215
9216 /* Returns TRUE if NAME is an AArch64 mapping symbol.
9217 The ARM ELF standard defines $x (for A64 code) and $d (for data).
9218 It also allows a period initiated suffix to be added to the symbol, ie:
9219 "$[adtx]\.[:sym_char]+". */
9220
9221 static bfd_boolean
9222 is_aarch64_mapping_symbol (const char * name)
9223 {
9224 return name != NULL /* Paranoia. */
9225 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
9226 the mapping symbols could have acquired a prefix.
9227 We do not support this here, since such symbols no
9228 longer conform to the ARM ELF ABI. */
9229 && (name[1] == 'd' || name[1] == 'x')
9230 && (name[2] == 0 || name[2] == '.');
9231 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
9232 any characters that follow the period are legal characters for the body
9233 of a symbol's name. For now we just assume that this is the case. */
9234 }
9235
9236 /* Make sure that mapping symbols in object files are not removed via the
9237 "strip --strip-unneeded" tool. These symbols might needed in order to
9238 correctly generate linked files. Once an object file has been linked,
9239 it should be safe to remove them. */
9240
9241 static void
9242 elfNN_aarch64_backend_symbol_processing (bfd *abfd, asymbol *sym)
9243 {
9244 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
9245 && sym->section != bfd_abs_section_ptr
9246 && is_aarch64_mapping_symbol (sym->name))
9247 sym->flags |= BSF_KEEP;
9248 }
9249
9250
9251 /* We use this so we can override certain functions
9252 (though currently we don't). */
9253
9254 const struct elf_size_info elfNN_aarch64_size_info =
9255 {
9256 sizeof (ElfNN_External_Ehdr),
9257 sizeof (ElfNN_External_Phdr),
9258 sizeof (ElfNN_External_Shdr),
9259 sizeof (ElfNN_External_Rel),
9260 sizeof (ElfNN_External_Rela),
9261 sizeof (ElfNN_External_Sym),
9262 sizeof (ElfNN_External_Dyn),
9263 sizeof (Elf_External_Note),
9264 4, /* Hash table entry size. */
9265 1, /* Internal relocs per external relocs. */
9266 ARCH_SIZE, /* Arch size. */
9267 LOG_FILE_ALIGN, /* Log_file_align. */
9268 ELFCLASSNN, EV_CURRENT,
9269 bfd_elfNN_write_out_phdrs,
9270 bfd_elfNN_write_shdrs_and_ehdr,
9271 bfd_elfNN_checksum_contents,
9272 bfd_elfNN_write_relocs,
9273 bfd_elfNN_swap_symbol_in,
9274 bfd_elfNN_swap_symbol_out,
9275 bfd_elfNN_slurp_reloc_table,
9276 bfd_elfNN_slurp_symbol_table,
9277 bfd_elfNN_swap_dyn_in,
9278 bfd_elfNN_swap_dyn_out,
9279 bfd_elfNN_swap_reloc_in,
9280 bfd_elfNN_swap_reloc_out,
9281 bfd_elfNN_swap_reloca_in,
9282 bfd_elfNN_swap_reloca_out
9283 };
9284
9285 #define ELF_ARCH bfd_arch_aarch64
9286 #define ELF_MACHINE_CODE EM_AARCH64
9287 #define ELF_MAXPAGESIZE 0x10000
9288 #define ELF_MINPAGESIZE 0x1000
9289 #define ELF_COMMONPAGESIZE 0x1000
9290
9291 #define bfd_elfNN_close_and_cleanup \
9292 elfNN_aarch64_close_and_cleanup
9293
9294 #define bfd_elfNN_bfd_free_cached_info \
9295 elfNN_aarch64_bfd_free_cached_info
9296
9297 #define bfd_elfNN_bfd_is_target_special_symbol \
9298 elfNN_aarch64_is_target_special_symbol
9299
9300 #define bfd_elfNN_bfd_link_hash_table_create \
9301 elfNN_aarch64_link_hash_table_create
9302
9303 #define bfd_elfNN_bfd_merge_private_bfd_data \
9304 elfNN_aarch64_merge_private_bfd_data
9305
9306 #define bfd_elfNN_bfd_print_private_bfd_data \
9307 elfNN_aarch64_print_private_bfd_data
9308
9309 #define bfd_elfNN_bfd_reloc_type_lookup \
9310 elfNN_aarch64_reloc_type_lookup
9311
9312 #define bfd_elfNN_bfd_reloc_name_lookup \
9313 elfNN_aarch64_reloc_name_lookup
9314
9315 #define bfd_elfNN_bfd_set_private_flags \
9316 elfNN_aarch64_set_private_flags
9317
9318 #define bfd_elfNN_find_inliner_info \
9319 elfNN_aarch64_find_inliner_info
9320
9321 #define bfd_elfNN_find_nearest_line \
9322 elfNN_aarch64_find_nearest_line
9323
9324 #define bfd_elfNN_mkobject \
9325 elfNN_aarch64_mkobject
9326
9327 #define bfd_elfNN_new_section_hook \
9328 elfNN_aarch64_new_section_hook
9329
9330 #define elf_backend_adjust_dynamic_symbol \
9331 elfNN_aarch64_adjust_dynamic_symbol
9332
9333 #define elf_backend_always_size_sections \
9334 elfNN_aarch64_always_size_sections
9335
9336 #define elf_backend_check_relocs \
9337 elfNN_aarch64_check_relocs
9338
9339 #define elf_backend_copy_indirect_symbol \
9340 elfNN_aarch64_copy_indirect_symbol
9341
9342 /* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts
9343 to them in our hash. */
9344 #define elf_backend_create_dynamic_sections \
9345 elfNN_aarch64_create_dynamic_sections
9346
9347 #define elf_backend_init_index_section \
9348 _bfd_elf_init_2_index_sections
9349
9350 #define elf_backend_finish_dynamic_sections \
9351 elfNN_aarch64_finish_dynamic_sections
9352
9353 #define elf_backend_finish_dynamic_symbol \
9354 elfNN_aarch64_finish_dynamic_symbol
9355
9356 #define elf_backend_gc_sweep_hook \
9357 elfNN_aarch64_gc_sweep_hook
9358
9359 #define elf_backend_object_p \
9360 elfNN_aarch64_object_p
9361
9362 #define elf_backend_output_arch_local_syms \
9363 elfNN_aarch64_output_arch_local_syms
9364
9365 #define elf_backend_plt_sym_val \
9366 elfNN_aarch64_plt_sym_val
9367
9368 #define elf_backend_post_process_headers \
9369 elfNN_aarch64_post_process_headers
9370
9371 #define elf_backend_relocate_section \
9372 elfNN_aarch64_relocate_section
9373
9374 #define elf_backend_reloc_type_class \
9375 elfNN_aarch64_reloc_type_class
9376
9377 #define elf_backend_section_from_shdr \
9378 elfNN_aarch64_section_from_shdr
9379
9380 #define elf_backend_size_dynamic_sections \
9381 elfNN_aarch64_size_dynamic_sections
9382
9383 #define elf_backend_size_info \
9384 elfNN_aarch64_size_info
9385
9386 #define elf_backend_write_section \
9387 elfNN_aarch64_write_section
9388
9389 #define elf_backend_symbol_processing \
9390 elfNN_aarch64_backend_symbol_processing
9391
9392 #define elf_backend_can_refcount 1
9393 #define elf_backend_can_gc_sections 1
9394 #define elf_backend_plt_readonly 1
9395 #define elf_backend_want_got_plt 1
9396 #define elf_backend_want_plt_sym 0
9397 #define elf_backend_may_use_rel_p 0
9398 #define elf_backend_may_use_rela_p 1
9399 #define elf_backend_default_use_rela_p 1
9400 #define elf_backend_rela_normal 1
9401 #define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3)
9402 #define elf_backend_default_execstack 0
9403 #define elf_backend_extern_protected_data 1
9404
9405 #undef elf_backend_obj_attrs_section
9406 #define elf_backend_obj_attrs_section ".ARM.attributes"
9407
9408 #include "elfNN-target.h"
9409
9410 /* CloudABI support. */
9411
9412 #undef TARGET_LITTLE_SYM
9413 #define TARGET_LITTLE_SYM aarch64_elfNN_le_cloudabi_vec
9414 #undef TARGET_LITTLE_NAME
9415 #define TARGET_LITTLE_NAME "elfNN-littleaarch64-cloudabi"
9416 #undef TARGET_BIG_SYM
9417 #define TARGET_BIG_SYM aarch64_elfNN_be_cloudabi_vec
9418 #undef TARGET_BIG_NAME
9419 #define TARGET_BIG_NAME "elfNN-bigaarch64-cloudabi"
9420
9421 #undef ELF_OSABI
9422 #define ELF_OSABI ELFOSABI_CLOUDABI
9423
9424 #undef elfNN_bed
9425 #define elfNN_bed elfNN_aarch64_cloudabi_bed
9426
9427 #include "elfNN-target.h"
This page took 0.327445 seconds and 4 git commands to generate.