Free linker hash table from bfd_close.
[deliverable/binutils-gdb.git] / bfd / elfnn-aarch64.c
1 /* AArch64-specific support for NN-bit ELF.
2 Copyright (C) 2009-2014 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
20
21 /* Notes on implementation:
22
23 Thread Local Store (TLS)
24
25 Overview:
26
27 The implementation currently supports both traditional TLS and TLS
28 descriptors, but only general dynamic (GD).
29
30 For traditional TLS the assembler will present us with code
31 fragments of the form:
32
33 adrp x0, :tlsgd:foo
34 R_AARCH64_TLSGD_ADR_PAGE21(foo)
35 add x0, :tlsgd_lo12:foo
36 R_AARCH64_TLSGD_ADD_LO12_NC(foo)
37 bl __tls_get_addr
38 nop
39
40 For TLS descriptors the assembler will present us with code
41 fragments of the form:
42
43 adrp x0, :tlsdesc:foo R_AARCH64_TLSDESC_ADR_PAGE21(foo)
44 ldr x1, [x0, #:tlsdesc_lo12:foo] R_AARCH64_TLSDESC_LD64_LO12(foo)
45 add x0, x0, #:tlsdesc_lo12:foo R_AARCH64_TLSDESC_ADD_LO12(foo)
46 .tlsdesccall foo
47 blr x1 R_AARCH64_TLSDESC_CALL(foo)
48
49 The relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} against foo
50 indicate that foo is thread local and should be accessed via the
51 traditional TLS mechanims.
52
53 The relocations R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC}
54 against foo indicate that 'foo' is thread local and should be accessed
55 via a TLS descriptor mechanism.
56
57 The precise instruction sequence is only relevant from the
58 perspective of linker relaxation which is currently not implemented.
59
60 The static linker must detect that 'foo' is a TLS object and
61 allocate a double GOT entry. The GOT entry must be created for both
62 global and local TLS symbols. Note that this is different to none
63 TLS local objects which do not need a GOT entry.
64
65 In the traditional TLS mechanism, the double GOT entry is used to
66 provide the tls_index structure, containing module and offset
67 entries. The static linker places the relocation R_AARCH64_TLS_DTPMOD
68 on the module entry. The loader will subsequently fixup this
69 relocation with the module identity.
70
71 For global traditional TLS symbols the static linker places an
72 R_AARCH64_TLS_DTPREL relocation on the offset entry. The loader
73 will subsequently fixup the offset. For local TLS symbols the static
74 linker fixes up offset.
75
76 In the TLS descriptor mechanism the double GOT entry is used to
77 provide the descriptor. The static linker places the relocation
78 R_AARCH64_TLSDESC on the first GOT slot. The loader will
79 subsequently fix this up.
80
81 Implementation:
82
83 The handling of TLS symbols is implemented across a number of
84 different backend functions. The following is a top level view of
85 what processing is performed where.
86
87 The TLS implementation maintains state information for each TLS
88 symbol. The state information for local and global symbols is kept
89 in different places. Global symbols use generic BFD structures while
90 local symbols use backend specific structures that are allocated and
91 maintained entirely by the backend.
92
93 The flow:
94
95 elfNN_aarch64_check_relocs()
96
97 This function is invoked for each relocation.
98
99 The TLS relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} and
100 R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC} are
101 spotted. One time creation of local symbol data structures are
102 created when the first local symbol is seen.
103
104 The reference count for a symbol is incremented. The GOT type for
105 each symbol is marked as general dynamic.
106
107 elfNN_aarch64_allocate_dynrelocs ()
108
109 For each global with positive reference count we allocate a double
110 GOT slot. For a traditional TLS symbol we allocate space for two
111 relocation entries on the GOT, for a TLS descriptor symbol we
112 allocate space for one relocation on the slot. Record the GOT offset
113 for this symbol.
114
115 elfNN_aarch64_size_dynamic_sections ()
116
117 Iterate all input BFDS, look for in the local symbol data structure
118 constructed earlier for local TLS symbols and allocate them double
119 GOT slots along with space for a single GOT relocation. Update the
120 local symbol structure to record the GOT offset allocated.
121
122 elfNN_aarch64_relocate_section ()
123
124 Calls elfNN_aarch64_final_link_relocate ()
125
126 Emit the relevant TLS relocations against the GOT for each TLS
127 symbol. For local TLS symbols emit the GOT offset directly. The GOT
128 relocations are emitted once the first time a TLS symbol is
129 encountered. The implementation uses the LSB of the GOT offset to
130 flag that the relevant GOT relocations for a symbol have been
131 emitted. All of the TLS code that uses the GOT offset needs to take
132 care to mask out this flag bit before using the offset.
133
134 elfNN_aarch64_final_link_relocate ()
135
136 Fixup the R_AARCH64_TLSGD_{ADR_PREL21, ADD_LO12_NC} relocations. */
137
138 #include "sysdep.h"
139 #include "bfd.h"
140 #include "libiberty.h"
141 #include "libbfd.h"
142 #include "bfd_stdint.h"
143 #include "elf-bfd.h"
144 #include "bfdlink.h"
145 #include "objalloc.h"
146 #include "elf/aarch64.h"
147 #include "elfxx-aarch64.h"
148
149 #define ARCH_SIZE NN
150
151 #if ARCH_SIZE == 64
152 #define AARCH64_R(NAME) R_AARCH64_ ## NAME
153 #define AARCH64_R_STR(NAME) "R_AARCH64_" #NAME
154 #define HOWTO64(...) HOWTO (__VA_ARGS__)
155 #define HOWTO32(...) EMPTY_HOWTO (0)
156 #define LOG_FILE_ALIGN 3
157 #endif
158
159 #if ARCH_SIZE == 32
160 #define AARCH64_R(NAME) R_AARCH64_P32_ ## NAME
161 #define AARCH64_R_STR(NAME) "R_AARCH64_P32_" #NAME
162 #define HOWTO64(...) EMPTY_HOWTO (0)
163 #define HOWTO32(...) HOWTO (__VA_ARGS__)
164 #define LOG_FILE_ALIGN 2
165 #endif
166
167 #define IS_AARCH64_TLS_RELOC(R_TYPE) \
168 ((R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
169 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
170 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1 \
171 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC \
172 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
173 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC \
174 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC \
175 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
176 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12 \
177 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12 \
178 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC \
179 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2 \
180 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 \
181 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC \
182 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0 \
183 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC \
184 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPMOD \
185 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPREL \
186 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_TPREL \
187 || IS_AARCH64_TLSDESC_RELOC ((R_TYPE)))
188
189 #define IS_AARCH64_TLSDESC_RELOC(R_TYPE) \
190 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
191 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
192 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
193 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC \
194 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC \
195 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC \
196 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1 \
197 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
198 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
199 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
200 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
201 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC)
202
203 #define ELIMINATE_COPY_RELOCS 0
204
205 /* Return size of a relocation entry. HTAB is the bfd's
206 elf_aarch64_link_hash_entry. */
207 #define RELOC_SIZE(HTAB) (sizeof (ElfNN_External_Rela))
208
209 /* GOT Entry size - 8 bytes in ELF64 and 4 bytes in ELF32. */
210 #define GOT_ENTRY_SIZE (ARCH_SIZE / 8)
211 #define PLT_ENTRY_SIZE (32)
212 #define PLT_SMALL_ENTRY_SIZE (16)
213 #define PLT_TLSDESC_ENTRY_SIZE (32)
214
215 /* Encoding of the nop instruction */
216 #define INSN_NOP 0xd503201f
217
218 #define aarch64_compute_jump_table_size(htab) \
219 (((htab)->root.srelplt == NULL) ? 0 \
220 : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE)
221
222 /* The first entry in a procedure linkage table looks like this
223 if the distance between the PLTGOT and the PLT is < 4GB use
224 these PLT entries. Note that the dynamic linker gets &PLTGOT[2]
225 in x16 and needs to work out PLTGOT[1] by using an address of
226 [x16,#-GOT_ENTRY_SIZE]. */
227 static const bfd_byte elfNN_aarch64_small_plt0_entry[PLT_ENTRY_SIZE] =
228 {
229 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
230 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
231 #if ARCH_SIZE == 64
232 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
233 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
234 #else
235 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
236 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
237 #endif
238 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
239 0x1f, 0x20, 0x03, 0xd5, /* nop */
240 0x1f, 0x20, 0x03, 0xd5, /* nop */
241 0x1f, 0x20, 0x03, 0xd5, /* nop */
242 };
243
244 /* Per function entry in a procedure linkage table looks like this
245 if the distance between the PLTGOT and the PLT is < 4GB use
246 these PLT entries. */
247 static const bfd_byte elfNN_aarch64_small_plt_entry[PLT_SMALL_ENTRY_SIZE] =
248 {
249 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
250 #if ARCH_SIZE == 64
251 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
252 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
253 #else
254 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
255 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
256 #endif
257 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
258 };
259
260 static const bfd_byte
261 elfNN_aarch64_tlsdesc_small_plt_entry[PLT_TLSDESC_ENTRY_SIZE] =
262 {
263 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
264 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
265 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
266 #if ARCH_SIZE == 64
267 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
268 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
269 #else
270 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
271 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
272 #endif
273 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
274 0x1f, 0x20, 0x03, 0xd5, /* nop */
275 0x1f, 0x20, 0x03, 0xd5, /* nop */
276 };
277
278 #define elf_info_to_howto elfNN_aarch64_info_to_howto
279 #define elf_info_to_howto_rel elfNN_aarch64_info_to_howto
280
281 #define AARCH64_ELF_ABI_VERSION 0
282
283 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
284 #define ALL_ONES (~ (bfd_vma) 0)
285
286 /* Indexed by the bfd interal reloc enumerators.
287 Therefore, the table needs to be synced with BFD_RELOC_AARCH64_*
288 in reloc.c. */
289
290 static reloc_howto_type elfNN_aarch64_howto_table[] =
291 {
292 EMPTY_HOWTO (0),
293
294 /* Basic data relocations. */
295
296 #if ARCH_SIZE == 64
297 HOWTO (R_AARCH64_NULL, /* type */
298 0, /* rightshift */
299 0, /* size (0 = byte, 1 = short, 2 = long) */
300 0, /* bitsize */
301 FALSE, /* pc_relative */
302 0, /* bitpos */
303 complain_overflow_dont, /* complain_on_overflow */
304 bfd_elf_generic_reloc, /* special_function */
305 "R_AARCH64_NULL", /* name */
306 FALSE, /* partial_inplace */
307 0, /* src_mask */
308 0, /* dst_mask */
309 FALSE), /* pcrel_offset */
310 #else
311 HOWTO (R_AARCH64_NONE, /* type */
312 0, /* rightshift */
313 0, /* size (0 = byte, 1 = short, 2 = long) */
314 0, /* bitsize */
315 FALSE, /* pc_relative */
316 0, /* bitpos */
317 complain_overflow_dont, /* complain_on_overflow */
318 bfd_elf_generic_reloc, /* special_function */
319 "R_AARCH64_NONE", /* name */
320 FALSE, /* partial_inplace */
321 0, /* src_mask */
322 0, /* dst_mask */
323 FALSE), /* pcrel_offset */
324 #endif
325
326 /* .xword: (S+A) */
327 HOWTO64 (AARCH64_R (ABS64), /* type */
328 0, /* rightshift */
329 4, /* size (4 = long long) */
330 64, /* bitsize */
331 FALSE, /* pc_relative */
332 0, /* bitpos */
333 complain_overflow_unsigned, /* complain_on_overflow */
334 bfd_elf_generic_reloc, /* special_function */
335 AARCH64_R_STR (ABS64), /* name */
336 FALSE, /* partial_inplace */
337 ALL_ONES, /* src_mask */
338 ALL_ONES, /* dst_mask */
339 FALSE), /* pcrel_offset */
340
341 /* .word: (S+A) */
342 HOWTO (AARCH64_R (ABS32), /* type */
343 0, /* rightshift */
344 2, /* size (0 = byte, 1 = short, 2 = long) */
345 32, /* bitsize */
346 FALSE, /* pc_relative */
347 0, /* bitpos */
348 complain_overflow_unsigned, /* complain_on_overflow */
349 bfd_elf_generic_reloc, /* special_function */
350 AARCH64_R_STR (ABS32), /* name */
351 FALSE, /* partial_inplace */
352 0xffffffff, /* src_mask */
353 0xffffffff, /* dst_mask */
354 FALSE), /* pcrel_offset */
355
356 /* .half: (S+A) */
357 HOWTO (AARCH64_R (ABS16), /* type */
358 0, /* rightshift */
359 1, /* size (0 = byte, 1 = short, 2 = long) */
360 16, /* bitsize */
361 FALSE, /* pc_relative */
362 0, /* bitpos */
363 complain_overflow_unsigned, /* complain_on_overflow */
364 bfd_elf_generic_reloc, /* special_function */
365 AARCH64_R_STR (ABS16), /* name */
366 FALSE, /* partial_inplace */
367 0xffff, /* src_mask */
368 0xffff, /* dst_mask */
369 FALSE), /* pcrel_offset */
370
371 /* .xword: (S+A-P) */
372 HOWTO64 (AARCH64_R (PREL64), /* type */
373 0, /* rightshift */
374 4, /* size (4 = long long) */
375 64, /* bitsize */
376 TRUE, /* pc_relative */
377 0, /* bitpos */
378 complain_overflow_signed, /* complain_on_overflow */
379 bfd_elf_generic_reloc, /* special_function */
380 AARCH64_R_STR (PREL64), /* name */
381 FALSE, /* partial_inplace */
382 ALL_ONES, /* src_mask */
383 ALL_ONES, /* dst_mask */
384 TRUE), /* pcrel_offset */
385
386 /* .word: (S+A-P) */
387 HOWTO (AARCH64_R (PREL32), /* type */
388 0, /* rightshift */
389 2, /* size (0 = byte, 1 = short, 2 = long) */
390 32, /* bitsize */
391 TRUE, /* pc_relative */
392 0, /* bitpos */
393 complain_overflow_signed, /* complain_on_overflow */
394 bfd_elf_generic_reloc, /* special_function */
395 AARCH64_R_STR (PREL32), /* name */
396 FALSE, /* partial_inplace */
397 0xffffffff, /* src_mask */
398 0xffffffff, /* dst_mask */
399 TRUE), /* pcrel_offset */
400
401 /* .half: (S+A-P) */
402 HOWTO (AARCH64_R (PREL16), /* type */
403 0, /* rightshift */
404 1, /* size (0 = byte, 1 = short, 2 = long) */
405 16, /* bitsize */
406 TRUE, /* pc_relative */
407 0, /* bitpos */
408 complain_overflow_signed, /* complain_on_overflow */
409 bfd_elf_generic_reloc, /* special_function */
410 AARCH64_R_STR (PREL16), /* name */
411 FALSE, /* partial_inplace */
412 0xffff, /* src_mask */
413 0xffff, /* dst_mask */
414 TRUE), /* pcrel_offset */
415
416 /* Group relocations to create a 16, 32, 48 or 64 bit
417 unsigned data or abs address inline. */
418
419 /* MOVZ: ((S+A) >> 0) & 0xffff */
420 HOWTO (AARCH64_R (MOVW_UABS_G0), /* type */
421 0, /* rightshift */
422 2, /* size (0 = byte, 1 = short, 2 = long) */
423 16, /* bitsize */
424 FALSE, /* pc_relative */
425 0, /* bitpos */
426 complain_overflow_unsigned, /* complain_on_overflow */
427 bfd_elf_generic_reloc, /* special_function */
428 AARCH64_R_STR (MOVW_UABS_G0), /* name */
429 FALSE, /* partial_inplace */
430 0xffff, /* src_mask */
431 0xffff, /* dst_mask */
432 FALSE), /* pcrel_offset */
433
434 /* MOVK: ((S+A) >> 0) & 0xffff [no overflow check] */
435 HOWTO (AARCH64_R (MOVW_UABS_G0_NC), /* type */
436 0, /* rightshift */
437 2, /* size (0 = byte, 1 = short, 2 = long) */
438 16, /* bitsize */
439 FALSE, /* pc_relative */
440 0, /* bitpos */
441 complain_overflow_dont, /* complain_on_overflow */
442 bfd_elf_generic_reloc, /* special_function */
443 AARCH64_R_STR (MOVW_UABS_G0_NC), /* name */
444 FALSE, /* partial_inplace */
445 0xffff, /* src_mask */
446 0xffff, /* dst_mask */
447 FALSE), /* pcrel_offset */
448
449 /* MOVZ: ((S+A) >> 16) & 0xffff */
450 HOWTO (AARCH64_R (MOVW_UABS_G1), /* type */
451 16, /* rightshift */
452 2, /* size (0 = byte, 1 = short, 2 = long) */
453 16, /* bitsize */
454 FALSE, /* pc_relative */
455 0, /* bitpos */
456 complain_overflow_unsigned, /* complain_on_overflow */
457 bfd_elf_generic_reloc, /* special_function */
458 AARCH64_R_STR (MOVW_UABS_G1), /* name */
459 FALSE, /* partial_inplace */
460 0xffff, /* src_mask */
461 0xffff, /* dst_mask */
462 FALSE), /* pcrel_offset */
463
464 /* MOVK: ((S+A) >> 16) & 0xffff [no overflow check] */
465 HOWTO64 (AARCH64_R (MOVW_UABS_G1_NC), /* type */
466 16, /* rightshift */
467 2, /* size (0 = byte, 1 = short, 2 = long) */
468 16, /* bitsize */
469 FALSE, /* pc_relative */
470 0, /* bitpos */
471 complain_overflow_dont, /* complain_on_overflow */
472 bfd_elf_generic_reloc, /* special_function */
473 AARCH64_R_STR (MOVW_UABS_G1_NC), /* name */
474 FALSE, /* partial_inplace */
475 0xffff, /* src_mask */
476 0xffff, /* dst_mask */
477 FALSE), /* pcrel_offset */
478
479 /* MOVZ: ((S+A) >> 32) & 0xffff */
480 HOWTO64 (AARCH64_R (MOVW_UABS_G2), /* type */
481 32, /* rightshift */
482 2, /* size (0 = byte, 1 = short, 2 = long) */
483 16, /* bitsize */
484 FALSE, /* pc_relative */
485 0, /* bitpos */
486 complain_overflow_unsigned, /* complain_on_overflow */
487 bfd_elf_generic_reloc, /* special_function */
488 AARCH64_R_STR (MOVW_UABS_G2), /* name */
489 FALSE, /* partial_inplace */
490 0xffff, /* src_mask */
491 0xffff, /* dst_mask */
492 FALSE), /* pcrel_offset */
493
494 /* MOVK: ((S+A) >> 32) & 0xffff [no overflow check] */
495 HOWTO64 (AARCH64_R (MOVW_UABS_G2_NC), /* type */
496 32, /* rightshift */
497 2, /* size (0 = byte, 1 = short, 2 = long) */
498 16, /* bitsize */
499 FALSE, /* pc_relative */
500 0, /* bitpos */
501 complain_overflow_dont, /* complain_on_overflow */
502 bfd_elf_generic_reloc, /* special_function */
503 AARCH64_R_STR (MOVW_UABS_G2_NC), /* name */
504 FALSE, /* partial_inplace */
505 0xffff, /* src_mask */
506 0xffff, /* dst_mask */
507 FALSE), /* pcrel_offset */
508
509 /* MOVZ: ((S+A) >> 48) & 0xffff */
510 HOWTO64 (AARCH64_R (MOVW_UABS_G3), /* type */
511 48, /* rightshift */
512 2, /* size (0 = byte, 1 = short, 2 = long) */
513 16, /* bitsize */
514 FALSE, /* pc_relative */
515 0, /* bitpos */
516 complain_overflow_unsigned, /* complain_on_overflow */
517 bfd_elf_generic_reloc, /* special_function */
518 AARCH64_R_STR (MOVW_UABS_G3), /* name */
519 FALSE, /* partial_inplace */
520 0xffff, /* src_mask */
521 0xffff, /* dst_mask */
522 FALSE), /* pcrel_offset */
523
524 /* Group relocations to create high part of a 16, 32, 48 or 64 bit
525 signed data or abs address inline. Will change instruction
526 to MOVN or MOVZ depending on sign of calculated value. */
527
528 /* MOV[ZN]: ((S+A) >> 0) & 0xffff */
529 HOWTO (AARCH64_R (MOVW_SABS_G0), /* type */
530 0, /* rightshift */
531 2, /* size (0 = byte, 1 = short, 2 = long) */
532 16, /* bitsize */
533 FALSE, /* pc_relative */
534 0, /* bitpos */
535 complain_overflow_signed, /* complain_on_overflow */
536 bfd_elf_generic_reloc, /* special_function */
537 AARCH64_R_STR (MOVW_SABS_G0), /* name */
538 FALSE, /* partial_inplace */
539 0xffff, /* src_mask */
540 0xffff, /* dst_mask */
541 FALSE), /* pcrel_offset */
542
543 /* MOV[ZN]: ((S+A) >> 16) & 0xffff */
544 HOWTO64 (AARCH64_R (MOVW_SABS_G1), /* type */
545 16, /* rightshift */
546 2, /* size (0 = byte, 1 = short, 2 = long) */
547 16, /* bitsize */
548 FALSE, /* pc_relative */
549 0, /* bitpos */
550 complain_overflow_signed, /* complain_on_overflow */
551 bfd_elf_generic_reloc, /* special_function */
552 AARCH64_R_STR (MOVW_SABS_G1), /* name */
553 FALSE, /* partial_inplace */
554 0xffff, /* src_mask */
555 0xffff, /* dst_mask */
556 FALSE), /* pcrel_offset */
557
558 /* MOV[ZN]: ((S+A) >> 32) & 0xffff */
559 HOWTO64 (AARCH64_R (MOVW_SABS_G2), /* type */
560 32, /* rightshift */
561 2, /* size (0 = byte, 1 = short, 2 = long) */
562 16, /* bitsize */
563 FALSE, /* pc_relative */
564 0, /* bitpos */
565 complain_overflow_signed, /* complain_on_overflow */
566 bfd_elf_generic_reloc, /* special_function */
567 AARCH64_R_STR (MOVW_SABS_G2), /* name */
568 FALSE, /* partial_inplace */
569 0xffff, /* src_mask */
570 0xffff, /* dst_mask */
571 FALSE), /* pcrel_offset */
572
573 /* Relocations to generate 19, 21 and 33 bit PC-relative load/store
574 addresses: PG(x) is (x & ~0xfff). */
575
576 /* LD-lit: ((S+A-P) >> 2) & 0x7ffff */
577 HOWTO (AARCH64_R (LD_PREL_LO19), /* type */
578 2, /* rightshift */
579 2, /* size (0 = byte, 1 = short, 2 = long) */
580 19, /* bitsize */
581 TRUE, /* pc_relative */
582 0, /* bitpos */
583 complain_overflow_signed, /* complain_on_overflow */
584 bfd_elf_generic_reloc, /* special_function */
585 AARCH64_R_STR (LD_PREL_LO19), /* name */
586 FALSE, /* partial_inplace */
587 0x7ffff, /* src_mask */
588 0x7ffff, /* dst_mask */
589 TRUE), /* pcrel_offset */
590
591 /* ADR: (S+A-P) & 0x1fffff */
592 HOWTO (AARCH64_R (ADR_PREL_LO21), /* type */
593 0, /* rightshift */
594 2, /* size (0 = byte, 1 = short, 2 = long) */
595 21, /* bitsize */
596 TRUE, /* pc_relative */
597 0, /* bitpos */
598 complain_overflow_signed, /* complain_on_overflow */
599 bfd_elf_generic_reloc, /* special_function */
600 AARCH64_R_STR (ADR_PREL_LO21), /* name */
601 FALSE, /* partial_inplace */
602 0x1fffff, /* src_mask */
603 0x1fffff, /* dst_mask */
604 TRUE), /* pcrel_offset */
605
606 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
607 HOWTO (AARCH64_R (ADR_PREL_PG_HI21), /* type */
608 12, /* rightshift */
609 2, /* size (0 = byte, 1 = short, 2 = long) */
610 21, /* bitsize */
611 TRUE, /* pc_relative */
612 0, /* bitpos */
613 complain_overflow_signed, /* complain_on_overflow */
614 bfd_elf_generic_reloc, /* special_function */
615 AARCH64_R_STR (ADR_PREL_PG_HI21), /* name */
616 FALSE, /* partial_inplace */
617 0x1fffff, /* src_mask */
618 0x1fffff, /* dst_mask */
619 TRUE), /* pcrel_offset */
620
621 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff [no overflow check] */
622 HOWTO64 (AARCH64_R (ADR_PREL_PG_HI21_NC), /* type */
623 12, /* rightshift */
624 2, /* size (0 = byte, 1 = short, 2 = long) */
625 21, /* bitsize */
626 TRUE, /* pc_relative */
627 0, /* bitpos */
628 complain_overflow_dont, /* complain_on_overflow */
629 bfd_elf_generic_reloc, /* special_function */
630 AARCH64_R_STR (ADR_PREL_PG_HI21_NC), /* name */
631 FALSE, /* partial_inplace */
632 0x1fffff, /* src_mask */
633 0x1fffff, /* dst_mask */
634 TRUE), /* pcrel_offset */
635
636 /* ADD: (S+A) & 0xfff [no overflow check] */
637 HOWTO (AARCH64_R (ADD_ABS_LO12_NC), /* type */
638 0, /* rightshift */
639 2, /* size (0 = byte, 1 = short, 2 = long) */
640 12, /* bitsize */
641 FALSE, /* pc_relative */
642 10, /* bitpos */
643 complain_overflow_dont, /* complain_on_overflow */
644 bfd_elf_generic_reloc, /* special_function */
645 AARCH64_R_STR (ADD_ABS_LO12_NC), /* name */
646 FALSE, /* partial_inplace */
647 0x3ffc00, /* src_mask */
648 0x3ffc00, /* dst_mask */
649 FALSE), /* pcrel_offset */
650
651 /* LD/ST8: (S+A) & 0xfff */
652 HOWTO (AARCH64_R (LDST8_ABS_LO12_NC), /* type */
653 0, /* rightshift */
654 2, /* size (0 = byte, 1 = short, 2 = long) */
655 12, /* bitsize */
656 FALSE, /* pc_relative */
657 0, /* bitpos */
658 complain_overflow_dont, /* complain_on_overflow */
659 bfd_elf_generic_reloc, /* special_function */
660 AARCH64_R_STR (LDST8_ABS_LO12_NC), /* name */
661 FALSE, /* partial_inplace */
662 0xfff, /* src_mask */
663 0xfff, /* dst_mask */
664 FALSE), /* pcrel_offset */
665
666 /* Relocations for control-flow instructions. */
667
668 /* TBZ/NZ: ((S+A-P) >> 2) & 0x3fff */
669 HOWTO (AARCH64_R (TSTBR14), /* type */
670 2, /* rightshift */
671 2, /* size (0 = byte, 1 = short, 2 = long) */
672 14, /* bitsize */
673 TRUE, /* pc_relative */
674 0, /* bitpos */
675 complain_overflow_signed, /* complain_on_overflow */
676 bfd_elf_generic_reloc, /* special_function */
677 AARCH64_R_STR (TSTBR14), /* name */
678 FALSE, /* partial_inplace */
679 0x3fff, /* src_mask */
680 0x3fff, /* dst_mask */
681 TRUE), /* pcrel_offset */
682
683 /* B.cond: ((S+A-P) >> 2) & 0x7ffff */
684 HOWTO (AARCH64_R (CONDBR19), /* type */
685 2, /* rightshift */
686 2, /* size (0 = byte, 1 = short, 2 = long) */
687 19, /* bitsize */
688 TRUE, /* pc_relative */
689 0, /* bitpos */
690 complain_overflow_signed, /* complain_on_overflow */
691 bfd_elf_generic_reloc, /* special_function */
692 AARCH64_R_STR (CONDBR19), /* name */
693 FALSE, /* partial_inplace */
694 0x7ffff, /* src_mask */
695 0x7ffff, /* dst_mask */
696 TRUE), /* pcrel_offset */
697
698 /* B: ((S+A-P) >> 2) & 0x3ffffff */
699 HOWTO (AARCH64_R (JUMP26), /* type */
700 2, /* rightshift */
701 2, /* size (0 = byte, 1 = short, 2 = long) */
702 26, /* bitsize */
703 TRUE, /* pc_relative */
704 0, /* bitpos */
705 complain_overflow_signed, /* complain_on_overflow */
706 bfd_elf_generic_reloc, /* special_function */
707 AARCH64_R_STR (JUMP26), /* name */
708 FALSE, /* partial_inplace */
709 0x3ffffff, /* src_mask */
710 0x3ffffff, /* dst_mask */
711 TRUE), /* pcrel_offset */
712
713 /* BL: ((S+A-P) >> 2) & 0x3ffffff */
714 HOWTO (AARCH64_R (CALL26), /* type */
715 2, /* rightshift */
716 2, /* size (0 = byte, 1 = short, 2 = long) */
717 26, /* bitsize */
718 TRUE, /* pc_relative */
719 0, /* bitpos */
720 complain_overflow_signed, /* complain_on_overflow */
721 bfd_elf_generic_reloc, /* special_function */
722 AARCH64_R_STR (CALL26), /* name */
723 FALSE, /* partial_inplace */
724 0x3ffffff, /* src_mask */
725 0x3ffffff, /* dst_mask */
726 TRUE), /* pcrel_offset */
727
728 /* LD/ST16: (S+A) & 0xffe */
729 HOWTO (AARCH64_R (LDST16_ABS_LO12_NC), /* type */
730 1, /* rightshift */
731 2, /* size (0 = byte, 1 = short, 2 = long) */
732 12, /* bitsize */
733 FALSE, /* pc_relative */
734 0, /* bitpos */
735 complain_overflow_dont, /* complain_on_overflow */
736 bfd_elf_generic_reloc, /* special_function */
737 AARCH64_R_STR (LDST16_ABS_LO12_NC), /* name */
738 FALSE, /* partial_inplace */
739 0xffe, /* src_mask */
740 0xffe, /* dst_mask */
741 FALSE), /* pcrel_offset */
742
743 /* LD/ST32: (S+A) & 0xffc */
744 HOWTO (AARCH64_R (LDST32_ABS_LO12_NC), /* type */
745 2, /* rightshift */
746 2, /* size (0 = byte, 1 = short, 2 = long) */
747 12, /* bitsize */
748 FALSE, /* pc_relative */
749 0, /* bitpos */
750 complain_overflow_dont, /* complain_on_overflow */
751 bfd_elf_generic_reloc, /* special_function */
752 AARCH64_R_STR (LDST32_ABS_LO12_NC), /* name */
753 FALSE, /* partial_inplace */
754 0xffc, /* src_mask */
755 0xffc, /* dst_mask */
756 FALSE), /* pcrel_offset */
757
758 /* LD/ST64: (S+A) & 0xff8 */
759 HOWTO (AARCH64_R (LDST64_ABS_LO12_NC), /* type */
760 3, /* rightshift */
761 2, /* size (0 = byte, 1 = short, 2 = long) */
762 12, /* bitsize */
763 FALSE, /* pc_relative */
764 0, /* bitpos */
765 complain_overflow_dont, /* complain_on_overflow */
766 bfd_elf_generic_reloc, /* special_function */
767 AARCH64_R_STR (LDST64_ABS_LO12_NC), /* name */
768 FALSE, /* partial_inplace */
769 0xff8, /* src_mask */
770 0xff8, /* dst_mask */
771 FALSE), /* pcrel_offset */
772
773 /* LD/ST128: (S+A) & 0xff0 */
774 HOWTO (AARCH64_R (LDST128_ABS_LO12_NC), /* type */
775 4, /* rightshift */
776 2, /* size (0 = byte, 1 = short, 2 = long) */
777 12, /* bitsize */
778 FALSE, /* pc_relative */
779 0, /* bitpos */
780 complain_overflow_dont, /* complain_on_overflow */
781 bfd_elf_generic_reloc, /* special_function */
782 AARCH64_R_STR (LDST128_ABS_LO12_NC), /* name */
783 FALSE, /* partial_inplace */
784 0xff0, /* src_mask */
785 0xff0, /* dst_mask */
786 FALSE), /* pcrel_offset */
787
788 /* Set a load-literal immediate field to bits
789 0x1FFFFC of G(S)-P */
790 HOWTO (AARCH64_R (GOT_LD_PREL19), /* type */
791 2, /* rightshift */
792 2, /* size (0 = byte,1 = short,2 = long) */
793 19, /* bitsize */
794 TRUE, /* pc_relative */
795 0, /* bitpos */
796 complain_overflow_signed, /* complain_on_overflow */
797 bfd_elf_generic_reloc, /* special_function */
798 AARCH64_R_STR (GOT_LD_PREL19), /* name */
799 FALSE, /* partial_inplace */
800 0xffffe0, /* src_mask */
801 0xffffe0, /* dst_mask */
802 TRUE), /* pcrel_offset */
803
804 /* Get to the page for the GOT entry for the symbol
805 (G(S) - P) using an ADRP instruction. */
806 HOWTO (AARCH64_R (ADR_GOT_PAGE), /* type */
807 12, /* rightshift */
808 2, /* size (0 = byte, 1 = short, 2 = long) */
809 21, /* bitsize */
810 TRUE, /* pc_relative */
811 0, /* bitpos */
812 complain_overflow_dont, /* complain_on_overflow */
813 bfd_elf_generic_reloc, /* special_function */
814 AARCH64_R_STR (ADR_GOT_PAGE), /* name */
815 FALSE, /* partial_inplace */
816 0x1fffff, /* src_mask */
817 0x1fffff, /* dst_mask */
818 TRUE), /* pcrel_offset */
819
820 /* LD64: GOT offset G(S) & 0xff8 */
821 HOWTO64 (AARCH64_R (LD64_GOT_LO12_NC), /* type */
822 3, /* rightshift */
823 2, /* size (0 = byte, 1 = short, 2 = long) */
824 12, /* bitsize */
825 FALSE, /* pc_relative */
826 0, /* bitpos */
827 complain_overflow_dont, /* complain_on_overflow */
828 bfd_elf_generic_reloc, /* special_function */
829 AARCH64_R_STR (LD64_GOT_LO12_NC), /* name */
830 FALSE, /* partial_inplace */
831 0xff8, /* src_mask */
832 0xff8, /* dst_mask */
833 FALSE), /* pcrel_offset */
834
835 /* LD32: GOT offset G(S) & 0xffc */
836 HOWTO32 (AARCH64_R (LD32_GOT_LO12_NC), /* type */
837 2, /* rightshift */
838 2, /* size (0 = byte, 1 = short, 2 = long) */
839 12, /* bitsize */
840 FALSE, /* pc_relative */
841 0, /* bitpos */
842 complain_overflow_dont, /* complain_on_overflow */
843 bfd_elf_generic_reloc, /* special_function */
844 AARCH64_R_STR (LD32_GOT_LO12_NC), /* name */
845 FALSE, /* partial_inplace */
846 0xffc, /* src_mask */
847 0xffc, /* dst_mask */
848 FALSE), /* pcrel_offset */
849
850 /* Get to the page for the GOT entry for the symbol
851 (G(S) - P) using an ADRP instruction. */
852 HOWTO (AARCH64_R (TLSGD_ADR_PAGE21), /* type */
853 12, /* rightshift */
854 2, /* size (0 = byte, 1 = short, 2 = long) */
855 21, /* bitsize */
856 TRUE, /* pc_relative */
857 0, /* bitpos */
858 complain_overflow_dont, /* complain_on_overflow */
859 bfd_elf_generic_reloc, /* special_function */
860 AARCH64_R_STR (TLSGD_ADR_PAGE21), /* name */
861 FALSE, /* partial_inplace */
862 0x1fffff, /* src_mask */
863 0x1fffff, /* dst_mask */
864 TRUE), /* pcrel_offset */
865
866 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
867 HOWTO (AARCH64_R (TLSGD_ADD_LO12_NC), /* type */
868 0, /* rightshift */
869 2, /* size (0 = byte, 1 = short, 2 = long) */
870 12, /* bitsize */
871 FALSE, /* pc_relative */
872 0, /* bitpos */
873 complain_overflow_dont, /* complain_on_overflow */
874 bfd_elf_generic_reloc, /* special_function */
875 AARCH64_R_STR (TLSGD_ADD_LO12_NC), /* name */
876 FALSE, /* partial_inplace */
877 0xfff, /* src_mask */
878 0xfff, /* dst_mask */
879 FALSE), /* pcrel_offset */
880
881 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G1), /* type */
882 16, /* rightshift */
883 2, /* size (0 = byte, 1 = short, 2 = long) */
884 16, /* bitsize */
885 FALSE, /* pc_relative */
886 0, /* bitpos */
887 complain_overflow_dont, /* complain_on_overflow */
888 bfd_elf_generic_reloc, /* special_function */
889 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G1), /* name */
890 FALSE, /* partial_inplace */
891 0xffff, /* src_mask */
892 0xffff, /* dst_mask */
893 FALSE), /* pcrel_offset */
894
895 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G0_NC), /* type */
896 0, /* rightshift */
897 2, /* size (0 = byte, 1 = short, 2 = long) */
898 32, /* bitsize */
899 FALSE, /* pc_relative */
900 0, /* bitpos */
901 complain_overflow_dont, /* complain_on_overflow */
902 bfd_elf_generic_reloc, /* special_function */
903 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G0_NC), /* name */
904 FALSE, /* partial_inplace */
905 0xffff, /* src_mask */
906 0xffff, /* dst_mask */
907 FALSE), /* pcrel_offset */
908
909 HOWTO (AARCH64_R (TLSIE_ADR_GOTTPREL_PAGE21), /* type */
910 12, /* rightshift */
911 2, /* size (0 = byte, 1 = short, 2 = long) */
912 21, /* bitsize */
913 FALSE, /* pc_relative */
914 0, /* bitpos */
915 complain_overflow_dont, /* complain_on_overflow */
916 bfd_elf_generic_reloc, /* special_function */
917 AARCH64_R_STR (TLSIE_ADR_GOTTPREL_PAGE21), /* name */
918 FALSE, /* partial_inplace */
919 0x1fffff, /* src_mask */
920 0x1fffff, /* dst_mask */
921 FALSE), /* pcrel_offset */
922
923 HOWTO64 (AARCH64_R (TLSIE_LD64_GOTTPREL_LO12_NC), /* type */
924 3, /* rightshift */
925 2, /* size (0 = byte, 1 = short, 2 = long) */
926 12, /* bitsize */
927 FALSE, /* pc_relative */
928 0, /* bitpos */
929 complain_overflow_dont, /* complain_on_overflow */
930 bfd_elf_generic_reloc, /* special_function */
931 AARCH64_R_STR (TLSIE_LD64_GOTTPREL_LO12_NC), /* name */
932 FALSE, /* partial_inplace */
933 0xff8, /* src_mask */
934 0xff8, /* dst_mask */
935 FALSE), /* pcrel_offset */
936
937 HOWTO32 (AARCH64_R (TLSIE_LD32_GOTTPREL_LO12_NC), /* type */
938 2, /* rightshift */
939 2, /* size (0 = byte, 1 = short, 2 = long) */
940 12, /* bitsize */
941 FALSE, /* pc_relative */
942 0, /* bitpos */
943 complain_overflow_dont, /* complain_on_overflow */
944 bfd_elf_generic_reloc, /* special_function */
945 AARCH64_R_STR (TLSIE_LD32_GOTTPREL_LO12_NC), /* name */
946 FALSE, /* partial_inplace */
947 0xffc, /* src_mask */
948 0xffc, /* dst_mask */
949 FALSE), /* pcrel_offset */
950
951 HOWTO (AARCH64_R (TLSIE_LD_GOTTPREL_PREL19), /* type */
952 2, /* rightshift */
953 2, /* size (0 = byte, 1 = short, 2 = long) */
954 21, /* bitsize */
955 FALSE, /* pc_relative */
956 0, /* bitpos */
957 complain_overflow_dont, /* complain_on_overflow */
958 bfd_elf_generic_reloc, /* special_function */
959 AARCH64_R_STR (TLSIE_LD_GOTTPREL_PREL19), /* name */
960 FALSE, /* partial_inplace */
961 0x1ffffc, /* src_mask */
962 0x1ffffc, /* dst_mask */
963 FALSE), /* pcrel_offset */
964
965 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G2), /* type */
966 32, /* rightshift */
967 2, /* size (0 = byte, 1 = short, 2 = long) */
968 12, /* bitsize */
969 FALSE, /* pc_relative */
970 0, /* bitpos */
971 complain_overflow_dont, /* complain_on_overflow */
972 bfd_elf_generic_reloc, /* special_function */
973 AARCH64_R_STR (TLSLE_MOVW_TPREL_G2), /* name */
974 FALSE, /* partial_inplace */
975 0xffff, /* src_mask */
976 0xffff, /* dst_mask */
977 FALSE), /* pcrel_offset */
978
979 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G1), /* type */
980 16, /* rightshift */
981 2, /* size (0 = byte, 1 = short, 2 = long) */
982 12, /* bitsize */
983 FALSE, /* pc_relative */
984 0, /* bitpos */
985 complain_overflow_dont, /* complain_on_overflow */
986 bfd_elf_generic_reloc, /* special_function */
987 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1), /* name */
988 FALSE, /* partial_inplace */
989 0xffff, /* src_mask */
990 0xffff, /* dst_mask */
991 FALSE), /* pcrel_offset */
992
993 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G1_NC), /* type */
994 16, /* rightshift */
995 2, /* size (0 = byte, 1 = short, 2 = long) */
996 12, /* bitsize */
997 FALSE, /* pc_relative */
998 0, /* bitpos */
999 complain_overflow_dont, /* complain_on_overflow */
1000 bfd_elf_generic_reloc, /* special_function */
1001 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1_NC), /* name */
1002 FALSE, /* partial_inplace */
1003 0xffff, /* src_mask */
1004 0xffff, /* dst_mask */
1005 FALSE), /* pcrel_offset */
1006
1007 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0), /* type */
1008 0, /* rightshift */
1009 2, /* size (0 = byte, 1 = short, 2 = long) */
1010 12, /* bitsize */
1011 FALSE, /* pc_relative */
1012 0, /* bitpos */
1013 complain_overflow_dont, /* complain_on_overflow */
1014 bfd_elf_generic_reloc, /* special_function */
1015 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0), /* name */
1016 FALSE, /* partial_inplace */
1017 0xffff, /* src_mask */
1018 0xffff, /* dst_mask */
1019 FALSE), /* pcrel_offset */
1020
1021 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0_NC), /* type */
1022 0, /* rightshift */
1023 2, /* size (0 = byte, 1 = short, 2 = long) */
1024 12, /* bitsize */
1025 FALSE, /* pc_relative */
1026 0, /* bitpos */
1027 complain_overflow_dont, /* complain_on_overflow */
1028 bfd_elf_generic_reloc, /* special_function */
1029 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0_NC), /* name */
1030 FALSE, /* partial_inplace */
1031 0xffff, /* src_mask */
1032 0xffff, /* dst_mask */
1033 FALSE), /* pcrel_offset */
1034
1035 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_HI12), /* type */
1036 12, /* rightshift */
1037 2, /* size (0 = byte, 1 = short, 2 = long) */
1038 12, /* bitsize */
1039 FALSE, /* pc_relative */
1040 0, /* bitpos */
1041 complain_overflow_dont, /* complain_on_overflow */
1042 bfd_elf_generic_reloc, /* special_function */
1043 AARCH64_R_STR (TLSLE_ADD_TPREL_HI12), /* name */
1044 FALSE, /* partial_inplace */
1045 0xfff, /* src_mask */
1046 0xfff, /* dst_mask */
1047 FALSE), /* pcrel_offset */
1048
1049 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12), /* type */
1050 0, /* rightshift */
1051 2, /* size (0 = byte, 1 = short, 2 = long) */
1052 12, /* bitsize */
1053 FALSE, /* pc_relative */
1054 0, /* bitpos */
1055 complain_overflow_dont, /* complain_on_overflow */
1056 bfd_elf_generic_reloc, /* special_function */
1057 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12), /* name */
1058 FALSE, /* partial_inplace */
1059 0xfff, /* src_mask */
1060 0xfff, /* dst_mask */
1061 FALSE), /* pcrel_offset */
1062
1063 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12_NC), /* type */
1064 0, /* rightshift */
1065 2, /* size (0 = byte, 1 = short, 2 = long) */
1066 12, /* bitsize */
1067 FALSE, /* pc_relative */
1068 0, /* bitpos */
1069 complain_overflow_dont, /* complain_on_overflow */
1070 bfd_elf_generic_reloc, /* special_function */
1071 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12_NC), /* name */
1072 FALSE, /* partial_inplace */
1073 0xfff, /* src_mask */
1074 0xfff, /* dst_mask */
1075 FALSE), /* pcrel_offset */
1076
1077 HOWTO (AARCH64_R (TLSDESC_LD_PREL19), /* type */
1078 2, /* rightshift */
1079 2, /* size (0 = byte, 1 = short, 2 = long) */
1080 21, /* bitsize */
1081 TRUE, /* pc_relative */
1082 0, /* bitpos */
1083 complain_overflow_dont, /* complain_on_overflow */
1084 bfd_elf_generic_reloc, /* special_function */
1085 AARCH64_R_STR (TLSDESC_LD_PREL19), /* name */
1086 FALSE, /* partial_inplace */
1087 0x1ffffc, /* src_mask */
1088 0x1ffffc, /* dst_mask */
1089 TRUE), /* pcrel_offset */
1090
1091 HOWTO (AARCH64_R (TLSDESC_ADR_PREL21), /* type */
1092 0, /* rightshift */
1093 2, /* size (0 = byte, 1 = short, 2 = long) */
1094 21, /* bitsize */
1095 TRUE, /* pc_relative */
1096 0, /* bitpos */
1097 complain_overflow_dont, /* complain_on_overflow */
1098 bfd_elf_generic_reloc, /* special_function */
1099 AARCH64_R_STR (TLSDESC_ADR_PREL21), /* name */
1100 FALSE, /* partial_inplace */
1101 0x1fffff, /* src_mask */
1102 0x1fffff, /* dst_mask */
1103 TRUE), /* pcrel_offset */
1104
1105 /* Get to the page for the GOT entry for the symbol
1106 (G(S) - P) using an ADRP instruction. */
1107 HOWTO (AARCH64_R (TLSDESC_ADR_PAGE21), /* type */
1108 12, /* rightshift */
1109 2, /* size (0 = byte, 1 = short, 2 = long) */
1110 21, /* bitsize */
1111 TRUE, /* pc_relative */
1112 0, /* bitpos */
1113 complain_overflow_dont, /* complain_on_overflow */
1114 bfd_elf_generic_reloc, /* special_function */
1115 AARCH64_R_STR (TLSDESC_ADR_PAGE21), /* name */
1116 FALSE, /* partial_inplace */
1117 0x1fffff, /* src_mask */
1118 0x1fffff, /* dst_mask */
1119 TRUE), /* pcrel_offset */
1120
1121 /* LD64: GOT offset G(S) & 0xff8. */
1122 HOWTO64 (AARCH64_R (TLSDESC_LD64_LO12_NC), /* type */
1123 3, /* rightshift */
1124 2, /* size (0 = byte, 1 = short, 2 = long) */
1125 12, /* bitsize */
1126 FALSE, /* pc_relative */
1127 0, /* bitpos */
1128 complain_overflow_dont, /* complain_on_overflow */
1129 bfd_elf_generic_reloc, /* special_function */
1130 AARCH64_R_STR (TLSDESC_LD64_LO12_NC), /* name */
1131 FALSE, /* partial_inplace */
1132 0xff8, /* src_mask */
1133 0xff8, /* dst_mask */
1134 FALSE), /* pcrel_offset */
1135
1136 /* LD32: GOT offset G(S) & 0xffc. */
1137 HOWTO32 (AARCH64_R (TLSDESC_LD32_LO12_NC), /* type */
1138 2, /* rightshift */
1139 2, /* size (0 = byte, 1 = short, 2 = long) */
1140 12, /* bitsize */
1141 FALSE, /* pc_relative */
1142 0, /* bitpos */
1143 complain_overflow_dont, /* complain_on_overflow */
1144 bfd_elf_generic_reloc, /* special_function */
1145 AARCH64_R_STR (TLSDESC_LD32_LO12_NC), /* name */
1146 FALSE, /* partial_inplace */
1147 0xffc, /* src_mask */
1148 0xffc, /* dst_mask */
1149 FALSE), /* pcrel_offset */
1150
1151 /* ADD: GOT offset G(S) & 0xfff. */
1152 HOWTO (AARCH64_R (TLSDESC_ADD_LO12_NC), /* type */
1153 0, /* rightshift */
1154 2, /* size (0 = byte, 1 = short, 2 = long) */
1155 12, /* bitsize */
1156 FALSE, /* pc_relative */
1157 0, /* bitpos */
1158 complain_overflow_dont, /* complain_on_overflow */
1159 bfd_elf_generic_reloc, /* special_function */
1160 AARCH64_R_STR (TLSDESC_ADD_LO12_NC), /* name */
1161 FALSE, /* partial_inplace */
1162 0xfff, /* src_mask */
1163 0xfff, /* dst_mask */
1164 FALSE), /* pcrel_offset */
1165
1166 HOWTO64 (AARCH64_R (TLSDESC_OFF_G1), /* type */
1167 16, /* rightshift */
1168 2, /* size (0 = byte, 1 = short, 2 = long) */
1169 12, /* bitsize */
1170 FALSE, /* pc_relative */
1171 0, /* bitpos */
1172 complain_overflow_dont, /* complain_on_overflow */
1173 bfd_elf_generic_reloc, /* special_function */
1174 AARCH64_R_STR (TLSDESC_OFF_G1), /* name */
1175 FALSE, /* partial_inplace */
1176 0xffff, /* src_mask */
1177 0xffff, /* dst_mask */
1178 FALSE), /* pcrel_offset */
1179
1180 HOWTO64 (AARCH64_R (TLSDESC_OFF_G0_NC), /* type */
1181 0, /* rightshift */
1182 2, /* size (0 = byte, 1 = short, 2 = long) */
1183 12, /* bitsize */
1184 FALSE, /* pc_relative */
1185 0, /* bitpos */
1186 complain_overflow_dont, /* complain_on_overflow */
1187 bfd_elf_generic_reloc, /* special_function */
1188 AARCH64_R_STR (TLSDESC_OFF_G0_NC), /* name */
1189 FALSE, /* partial_inplace */
1190 0xffff, /* src_mask */
1191 0xffff, /* dst_mask */
1192 FALSE), /* pcrel_offset */
1193
1194 HOWTO64 (AARCH64_R (TLSDESC_LDR), /* type */
1195 0, /* rightshift */
1196 2, /* size (0 = byte, 1 = short, 2 = long) */
1197 12, /* bitsize */
1198 FALSE, /* pc_relative */
1199 0, /* bitpos */
1200 complain_overflow_dont, /* complain_on_overflow */
1201 bfd_elf_generic_reloc, /* special_function */
1202 AARCH64_R_STR (TLSDESC_LDR), /* name */
1203 FALSE, /* partial_inplace */
1204 0x0, /* src_mask */
1205 0x0, /* dst_mask */
1206 FALSE), /* pcrel_offset */
1207
1208 HOWTO64 (AARCH64_R (TLSDESC_ADD), /* type */
1209 0, /* rightshift */
1210 2, /* size (0 = byte, 1 = short, 2 = long) */
1211 12, /* bitsize */
1212 FALSE, /* pc_relative */
1213 0, /* bitpos */
1214 complain_overflow_dont, /* complain_on_overflow */
1215 bfd_elf_generic_reloc, /* special_function */
1216 AARCH64_R_STR (TLSDESC_ADD), /* name */
1217 FALSE, /* partial_inplace */
1218 0x0, /* src_mask */
1219 0x0, /* dst_mask */
1220 FALSE), /* pcrel_offset */
1221
1222 HOWTO (AARCH64_R (TLSDESC_CALL), /* type */
1223 0, /* rightshift */
1224 2, /* size (0 = byte, 1 = short, 2 = long) */
1225 12, /* bitsize */
1226 FALSE, /* pc_relative */
1227 0, /* bitpos */
1228 complain_overflow_dont, /* complain_on_overflow */
1229 bfd_elf_generic_reloc, /* special_function */
1230 AARCH64_R_STR (TLSDESC_CALL), /* name */
1231 FALSE, /* partial_inplace */
1232 0x0, /* src_mask */
1233 0x0, /* dst_mask */
1234 FALSE), /* pcrel_offset */
1235
1236 HOWTO (AARCH64_R (COPY), /* type */
1237 0, /* rightshift */
1238 2, /* size (0 = byte, 1 = short, 2 = long) */
1239 64, /* bitsize */
1240 FALSE, /* pc_relative */
1241 0, /* bitpos */
1242 complain_overflow_bitfield, /* complain_on_overflow */
1243 bfd_elf_generic_reloc, /* special_function */
1244 AARCH64_R_STR (COPY), /* name */
1245 TRUE, /* partial_inplace */
1246 0xffffffff, /* src_mask */
1247 0xffffffff, /* dst_mask */
1248 FALSE), /* pcrel_offset */
1249
1250 HOWTO (AARCH64_R (GLOB_DAT), /* type */
1251 0, /* rightshift */
1252 2, /* size (0 = byte, 1 = short, 2 = long) */
1253 64, /* bitsize */
1254 FALSE, /* pc_relative */
1255 0, /* bitpos */
1256 complain_overflow_bitfield, /* complain_on_overflow */
1257 bfd_elf_generic_reloc, /* special_function */
1258 AARCH64_R_STR (GLOB_DAT), /* name */
1259 TRUE, /* partial_inplace */
1260 0xffffffff, /* src_mask */
1261 0xffffffff, /* dst_mask */
1262 FALSE), /* pcrel_offset */
1263
1264 HOWTO (AARCH64_R (JUMP_SLOT), /* type */
1265 0, /* rightshift */
1266 2, /* size (0 = byte, 1 = short, 2 = long) */
1267 64, /* bitsize */
1268 FALSE, /* pc_relative */
1269 0, /* bitpos */
1270 complain_overflow_bitfield, /* complain_on_overflow */
1271 bfd_elf_generic_reloc, /* special_function */
1272 AARCH64_R_STR (JUMP_SLOT), /* name */
1273 TRUE, /* partial_inplace */
1274 0xffffffff, /* src_mask */
1275 0xffffffff, /* dst_mask */
1276 FALSE), /* pcrel_offset */
1277
1278 HOWTO (AARCH64_R (RELATIVE), /* type */
1279 0, /* rightshift */
1280 2, /* size (0 = byte, 1 = short, 2 = long) */
1281 64, /* bitsize */
1282 FALSE, /* pc_relative */
1283 0, /* bitpos */
1284 complain_overflow_bitfield, /* complain_on_overflow */
1285 bfd_elf_generic_reloc, /* special_function */
1286 AARCH64_R_STR (RELATIVE), /* name */
1287 TRUE, /* partial_inplace */
1288 ALL_ONES, /* src_mask */
1289 ALL_ONES, /* dst_mask */
1290 FALSE), /* pcrel_offset */
1291
1292 HOWTO (AARCH64_R (TLS_DTPMOD), /* type */
1293 0, /* rightshift */
1294 2, /* size (0 = byte, 1 = short, 2 = long) */
1295 64, /* bitsize */
1296 FALSE, /* pc_relative */
1297 0, /* bitpos */
1298 complain_overflow_dont, /* complain_on_overflow */
1299 bfd_elf_generic_reloc, /* special_function */
1300 #if ARCH_SIZE == 64
1301 AARCH64_R_STR (TLS_DTPMOD64), /* name */
1302 #else
1303 AARCH64_R_STR (TLS_DTPMOD), /* name */
1304 #endif
1305 FALSE, /* partial_inplace */
1306 0, /* src_mask */
1307 ALL_ONES, /* dst_mask */
1308 FALSE), /* pc_reloffset */
1309
1310 HOWTO (AARCH64_R (TLS_DTPREL), /* type */
1311 0, /* rightshift */
1312 2, /* size (0 = byte, 1 = short, 2 = long) */
1313 64, /* bitsize */
1314 FALSE, /* pc_relative */
1315 0, /* bitpos */
1316 complain_overflow_dont, /* complain_on_overflow */
1317 bfd_elf_generic_reloc, /* special_function */
1318 #if ARCH_SIZE == 64
1319 AARCH64_R_STR (TLS_DTPREL64), /* name */
1320 #else
1321 AARCH64_R_STR (TLS_DTPREL), /* name */
1322 #endif
1323 FALSE, /* partial_inplace */
1324 0, /* src_mask */
1325 ALL_ONES, /* dst_mask */
1326 FALSE), /* pcrel_offset */
1327
1328 HOWTO (AARCH64_R (TLS_TPREL), /* type */
1329 0, /* rightshift */
1330 2, /* size (0 = byte, 1 = short, 2 = long) */
1331 64, /* bitsize */
1332 FALSE, /* pc_relative */
1333 0, /* bitpos */
1334 complain_overflow_dont, /* complain_on_overflow */
1335 bfd_elf_generic_reloc, /* special_function */
1336 #if ARCH_SIZE == 64
1337 AARCH64_R_STR (TLS_TPREL64), /* name */
1338 #else
1339 AARCH64_R_STR (TLS_TPREL), /* name */
1340 #endif
1341 FALSE, /* partial_inplace */
1342 0, /* src_mask */
1343 ALL_ONES, /* dst_mask */
1344 FALSE), /* pcrel_offset */
1345
1346 HOWTO (AARCH64_R (TLSDESC), /* type */
1347 0, /* rightshift */
1348 2, /* size (0 = byte, 1 = short, 2 = long) */
1349 64, /* bitsize */
1350 FALSE, /* pc_relative */
1351 0, /* bitpos */
1352 complain_overflow_dont, /* complain_on_overflow */
1353 bfd_elf_generic_reloc, /* special_function */
1354 AARCH64_R_STR (TLSDESC), /* name */
1355 FALSE, /* partial_inplace */
1356 0, /* src_mask */
1357 ALL_ONES, /* dst_mask */
1358 FALSE), /* pcrel_offset */
1359
1360 HOWTO (AARCH64_R (IRELATIVE), /* type */
1361 0, /* rightshift */
1362 2, /* size (0 = byte, 1 = short, 2 = long) */
1363 64, /* bitsize */
1364 FALSE, /* pc_relative */
1365 0, /* bitpos */
1366 complain_overflow_bitfield, /* complain_on_overflow */
1367 bfd_elf_generic_reloc, /* special_function */
1368 AARCH64_R_STR (IRELATIVE), /* name */
1369 FALSE, /* partial_inplace */
1370 0, /* src_mask */
1371 ALL_ONES, /* dst_mask */
1372 FALSE), /* pcrel_offset */
1373
1374 EMPTY_HOWTO (0),
1375 };
1376
1377 static reloc_howto_type elfNN_aarch64_howto_none =
1378 HOWTO (R_AARCH64_NONE, /* type */
1379 0, /* rightshift */
1380 0, /* size (0 = byte, 1 = short, 2 = long) */
1381 0, /* bitsize */
1382 FALSE, /* pc_relative */
1383 0, /* bitpos */
1384 complain_overflow_dont,/* complain_on_overflow */
1385 bfd_elf_generic_reloc, /* special_function */
1386 "R_AARCH64_NONE", /* name */
1387 FALSE, /* partial_inplace */
1388 0, /* src_mask */
1389 0, /* dst_mask */
1390 FALSE); /* pcrel_offset */
1391
1392 /* Given HOWTO, return the bfd internal relocation enumerator. */
1393
1394 static bfd_reloc_code_real_type
1395 elfNN_aarch64_bfd_reloc_from_howto (reloc_howto_type *howto)
1396 {
1397 const int size
1398 = (int) ARRAY_SIZE (elfNN_aarch64_howto_table);
1399 const ptrdiff_t offset
1400 = howto - elfNN_aarch64_howto_table;
1401
1402 if (offset > 0 && offset < size - 1)
1403 return BFD_RELOC_AARCH64_RELOC_START + offset;
1404
1405 if (howto == &elfNN_aarch64_howto_none)
1406 return BFD_RELOC_AARCH64_NONE;
1407
1408 return BFD_RELOC_AARCH64_RELOC_START;
1409 }
1410
1411 /* Given R_TYPE, return the bfd internal relocation enumerator. */
1412
1413 static bfd_reloc_code_real_type
1414 elfNN_aarch64_bfd_reloc_from_type (unsigned int r_type)
1415 {
1416 static bfd_boolean initialized_p = FALSE;
1417 /* Indexed by R_TYPE, values are offsets in the howto_table. */
1418 static unsigned int offsets[R_AARCH64_end];
1419
1420 if (initialized_p == FALSE)
1421 {
1422 unsigned int i;
1423
1424 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
1425 if (elfNN_aarch64_howto_table[i].type != 0)
1426 offsets[elfNN_aarch64_howto_table[i].type] = i;
1427
1428 initialized_p = TRUE;
1429 }
1430
1431 if (r_type == R_AARCH64_NONE || r_type == R_AARCH64_NULL)
1432 return BFD_RELOC_AARCH64_NONE;
1433
1434 return BFD_RELOC_AARCH64_RELOC_START + offsets[r_type];
1435 }
1436
1437 struct elf_aarch64_reloc_map
1438 {
1439 bfd_reloc_code_real_type from;
1440 bfd_reloc_code_real_type to;
1441 };
1442
1443 /* Map bfd generic reloc to AArch64-specific reloc. */
1444 static const struct elf_aarch64_reloc_map elf_aarch64_reloc_map[] =
1445 {
1446 {BFD_RELOC_NONE, BFD_RELOC_AARCH64_NONE},
1447
1448 /* Basic data relocations. */
1449 {BFD_RELOC_CTOR, BFD_RELOC_AARCH64_NN},
1450 {BFD_RELOC_64, BFD_RELOC_AARCH64_64},
1451 {BFD_RELOC_32, BFD_RELOC_AARCH64_32},
1452 {BFD_RELOC_16, BFD_RELOC_AARCH64_16},
1453 {BFD_RELOC_64_PCREL, BFD_RELOC_AARCH64_64_PCREL},
1454 {BFD_RELOC_32_PCREL, BFD_RELOC_AARCH64_32_PCREL},
1455 {BFD_RELOC_16_PCREL, BFD_RELOC_AARCH64_16_PCREL},
1456 };
1457
1458 /* Given the bfd internal relocation enumerator in CODE, return the
1459 corresponding howto entry. */
1460
1461 static reloc_howto_type *
1462 elfNN_aarch64_howto_from_bfd_reloc (bfd_reloc_code_real_type code)
1463 {
1464 unsigned int i;
1465
1466 /* Convert bfd generic reloc to AArch64-specific reloc. */
1467 if (code < BFD_RELOC_AARCH64_RELOC_START
1468 || code > BFD_RELOC_AARCH64_RELOC_END)
1469 for (i = 0; i < ARRAY_SIZE (elf_aarch64_reloc_map); i++)
1470 if (elf_aarch64_reloc_map[i].from == code)
1471 {
1472 code = elf_aarch64_reloc_map[i].to;
1473 break;
1474 }
1475
1476 if (code > BFD_RELOC_AARCH64_RELOC_START
1477 && code < BFD_RELOC_AARCH64_RELOC_END)
1478 if (elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START].type)
1479 return &elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START];
1480
1481 if (code == BFD_RELOC_AARCH64_NONE)
1482 return &elfNN_aarch64_howto_none;
1483
1484 return NULL;
1485 }
1486
1487 static reloc_howto_type *
1488 elfNN_aarch64_howto_from_type (unsigned int r_type)
1489 {
1490 bfd_reloc_code_real_type val;
1491 reloc_howto_type *howto;
1492
1493 #if ARCH_SIZE == 32
1494 if (r_type > 256)
1495 {
1496 bfd_set_error (bfd_error_bad_value);
1497 return NULL;
1498 }
1499 #endif
1500
1501 if (r_type == R_AARCH64_NONE)
1502 return &elfNN_aarch64_howto_none;
1503
1504 val = elfNN_aarch64_bfd_reloc_from_type (r_type);
1505 howto = elfNN_aarch64_howto_from_bfd_reloc (val);
1506
1507 if (howto != NULL)
1508 return howto;
1509
1510 bfd_set_error (bfd_error_bad_value);
1511 return NULL;
1512 }
1513
1514 static void
1515 elfNN_aarch64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *bfd_reloc,
1516 Elf_Internal_Rela *elf_reloc)
1517 {
1518 unsigned int r_type;
1519
1520 r_type = ELFNN_R_TYPE (elf_reloc->r_info);
1521 bfd_reloc->howto = elfNN_aarch64_howto_from_type (r_type);
1522 }
1523
1524 static reloc_howto_type *
1525 elfNN_aarch64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1526 bfd_reloc_code_real_type code)
1527 {
1528 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (code);
1529
1530 if (howto != NULL)
1531 return howto;
1532
1533 bfd_set_error (bfd_error_bad_value);
1534 return NULL;
1535 }
1536
1537 static reloc_howto_type *
1538 elfNN_aarch64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1539 const char *r_name)
1540 {
1541 unsigned int i;
1542
1543 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
1544 if (elfNN_aarch64_howto_table[i].name != NULL
1545 && strcasecmp (elfNN_aarch64_howto_table[i].name, r_name) == 0)
1546 return &elfNN_aarch64_howto_table[i];
1547
1548 return NULL;
1549 }
1550
1551 #define TARGET_LITTLE_SYM aarch64_elfNN_le_vec
1552 #define TARGET_LITTLE_NAME "elfNN-littleaarch64"
1553 #define TARGET_BIG_SYM aarch64_elfNN_be_vec
1554 #define TARGET_BIG_NAME "elfNN-bigaarch64"
1555
1556 /* The linker script knows the section names for placement.
1557 The entry_names are used to do simple name mangling on the stubs.
1558 Given a function name, and its type, the stub can be found. The
1559 name can be changed. The only requirement is the %s be present. */
1560 #define STUB_ENTRY_NAME "__%s_veneer"
1561
1562 /* The name of the dynamic interpreter. This is put in the .interp
1563 section. */
1564 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
1565
1566 #define AARCH64_MAX_FWD_BRANCH_OFFSET \
1567 (((1 << 25) - 1) << 2)
1568 #define AARCH64_MAX_BWD_BRANCH_OFFSET \
1569 (-((1 << 25) << 2))
1570
1571 #define AARCH64_MAX_ADRP_IMM ((1 << 20) - 1)
1572 #define AARCH64_MIN_ADRP_IMM (-(1 << 20))
1573
1574 static int
1575 aarch64_valid_for_adrp_p (bfd_vma value, bfd_vma place)
1576 {
1577 bfd_signed_vma offset = (bfd_signed_vma) (PG (value) - PG (place)) >> 12;
1578 return offset <= AARCH64_MAX_ADRP_IMM && offset >= AARCH64_MIN_ADRP_IMM;
1579 }
1580
1581 static int
1582 aarch64_valid_branch_p (bfd_vma value, bfd_vma place)
1583 {
1584 bfd_signed_vma offset = (bfd_signed_vma) (value - place);
1585 return (offset <= AARCH64_MAX_FWD_BRANCH_OFFSET
1586 && offset >= AARCH64_MAX_BWD_BRANCH_OFFSET);
1587 }
1588
1589 static const uint32_t aarch64_adrp_branch_stub [] =
1590 {
1591 0x90000010, /* adrp ip0, X */
1592 /* R_AARCH64_ADR_HI21_PCREL(X) */
1593 0x91000210, /* add ip0, ip0, :lo12:X */
1594 /* R_AARCH64_ADD_ABS_LO12_NC(X) */
1595 0xd61f0200, /* br ip0 */
1596 };
1597
1598 static const uint32_t aarch64_long_branch_stub[] =
1599 {
1600 #if ARCH_SIZE == 64
1601 0x58000090, /* ldr ip0, 1f */
1602 #else
1603 0x18000090, /* ldr wip0, 1f */
1604 #endif
1605 0x10000011, /* adr ip1, #0 */
1606 0x8b110210, /* add ip0, ip0, ip1 */
1607 0xd61f0200, /* br ip0 */
1608 0x00000000, /* 1: .xword or .word
1609 R_AARCH64_PRELNN(X) + 12
1610 */
1611 0x00000000,
1612 };
1613
1614 /* Section name for stubs is the associated section name plus this
1615 string. */
1616 #define STUB_SUFFIX ".stub"
1617
1618 enum elf_aarch64_stub_type
1619 {
1620 aarch64_stub_none,
1621 aarch64_stub_adrp_branch,
1622 aarch64_stub_long_branch,
1623 };
1624
1625 struct elf_aarch64_stub_hash_entry
1626 {
1627 /* Base hash table entry structure. */
1628 struct bfd_hash_entry root;
1629
1630 /* The stub section. */
1631 asection *stub_sec;
1632
1633 /* Offset within stub_sec of the beginning of this stub. */
1634 bfd_vma stub_offset;
1635
1636 /* Given the symbol's value and its section we can determine its final
1637 value when building the stubs (so the stub knows where to jump). */
1638 bfd_vma target_value;
1639 asection *target_section;
1640
1641 enum elf_aarch64_stub_type stub_type;
1642
1643 /* The symbol table entry, if any, that this was derived from. */
1644 struct elf_aarch64_link_hash_entry *h;
1645
1646 /* Destination symbol type */
1647 unsigned char st_type;
1648
1649 /* Where this stub is being called from, or, in the case of combined
1650 stub sections, the first input section in the group. */
1651 asection *id_sec;
1652
1653 /* The name for the local symbol at the start of this stub. The
1654 stub name in the hash table has to be unique; this does not, so
1655 it can be friendlier. */
1656 char *output_name;
1657 };
1658
1659 /* Used to build a map of a section. This is required for mixed-endian
1660 code/data. */
1661
1662 typedef struct elf_elf_section_map
1663 {
1664 bfd_vma vma;
1665 char type;
1666 }
1667 elf_aarch64_section_map;
1668
1669
1670 typedef struct _aarch64_elf_section_data
1671 {
1672 struct bfd_elf_section_data elf;
1673 unsigned int mapcount;
1674 unsigned int mapsize;
1675 elf_aarch64_section_map *map;
1676 }
1677 _aarch64_elf_section_data;
1678
1679 #define elf_aarch64_section_data(sec) \
1680 ((_aarch64_elf_section_data *) elf_section_data (sec))
1681
1682 /* The size of the thread control block which is defined to be two pointers. */
1683 #define TCB_SIZE (ARCH_SIZE/8)*2
1684
1685 struct elf_aarch64_local_symbol
1686 {
1687 unsigned int got_type;
1688 bfd_signed_vma got_refcount;
1689 bfd_vma got_offset;
1690
1691 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The
1692 offset is from the end of the jump table and reserved entries
1693 within the PLTGOT.
1694
1695 The magic value (bfd_vma) -1 indicates that an offset has not be
1696 allocated. */
1697 bfd_vma tlsdesc_got_jump_table_offset;
1698 };
1699
1700 struct elf_aarch64_obj_tdata
1701 {
1702 struct elf_obj_tdata root;
1703
1704 /* local symbol descriptors */
1705 struct elf_aarch64_local_symbol *locals;
1706
1707 /* Zero to warn when linking objects with incompatible enum sizes. */
1708 int no_enum_size_warning;
1709
1710 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
1711 int no_wchar_size_warning;
1712 };
1713
1714 #define elf_aarch64_tdata(bfd) \
1715 ((struct elf_aarch64_obj_tdata *) (bfd)->tdata.any)
1716
1717 #define elf_aarch64_locals(bfd) (elf_aarch64_tdata (bfd)->locals)
1718
1719 #define is_aarch64_elf(bfd) \
1720 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
1721 && elf_tdata (bfd) != NULL \
1722 && elf_object_id (bfd) == AARCH64_ELF_DATA)
1723
1724 static bfd_boolean
1725 elfNN_aarch64_mkobject (bfd *abfd)
1726 {
1727 return bfd_elf_allocate_object (abfd, sizeof (struct elf_aarch64_obj_tdata),
1728 AARCH64_ELF_DATA);
1729 }
1730
1731 #define elf_aarch64_hash_entry(ent) \
1732 ((struct elf_aarch64_link_hash_entry *)(ent))
1733
1734 #define GOT_UNKNOWN 0
1735 #define GOT_NORMAL 1
1736 #define GOT_TLS_GD 2
1737 #define GOT_TLS_IE 4
1738 #define GOT_TLSDESC_GD 8
1739
1740 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLSDESC_GD))
1741
1742 /* AArch64 ELF linker hash entry. */
1743 struct elf_aarch64_link_hash_entry
1744 {
1745 struct elf_link_hash_entry root;
1746
1747 /* Track dynamic relocs copied for this symbol. */
1748 struct elf_dyn_relocs *dyn_relocs;
1749
1750 /* Since PLT entries have variable size, we need to record the
1751 index into .got.plt instead of recomputing it from the PLT
1752 offset. */
1753 bfd_signed_vma plt_got_offset;
1754
1755 /* Bit mask representing the type of GOT entry(s) if any required by
1756 this symbol. */
1757 unsigned int got_type;
1758
1759 /* A pointer to the most recently used stub hash entry against this
1760 symbol. */
1761 struct elf_aarch64_stub_hash_entry *stub_cache;
1762
1763 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The offset
1764 is from the end of the jump table and reserved entries within the PLTGOT.
1765
1766 The magic value (bfd_vma) -1 indicates that an offset has not
1767 be allocated. */
1768 bfd_vma tlsdesc_got_jump_table_offset;
1769 };
1770
1771 static unsigned int
1772 elfNN_aarch64_symbol_got_type (struct elf_link_hash_entry *h,
1773 bfd *abfd,
1774 unsigned long r_symndx)
1775 {
1776 if (h)
1777 return elf_aarch64_hash_entry (h)->got_type;
1778
1779 if (! elf_aarch64_locals (abfd))
1780 return GOT_UNKNOWN;
1781
1782 return elf_aarch64_locals (abfd)[r_symndx].got_type;
1783 }
1784
1785 /* Get the AArch64 elf linker hash table from a link_info structure. */
1786 #define elf_aarch64_hash_table(info) \
1787 ((struct elf_aarch64_link_hash_table *) ((info)->hash))
1788
1789 #define aarch64_stub_hash_lookup(table, string, create, copy) \
1790 ((struct elf_aarch64_stub_hash_entry *) \
1791 bfd_hash_lookup ((table), (string), (create), (copy)))
1792
1793 /* AArch64 ELF linker hash table. */
1794 struct elf_aarch64_link_hash_table
1795 {
1796 /* The main hash table. */
1797 struct elf_link_hash_table root;
1798
1799 /* Nonzero to force PIC branch veneers. */
1800 int pic_veneer;
1801
1802 /* The number of bytes in the initial entry in the PLT. */
1803 bfd_size_type plt_header_size;
1804
1805 /* The number of bytes in the subsequent PLT etries. */
1806 bfd_size_type plt_entry_size;
1807
1808 /* Short-cuts to get to dynamic linker sections. */
1809 asection *sdynbss;
1810 asection *srelbss;
1811
1812 /* Small local sym cache. */
1813 struct sym_cache sym_cache;
1814
1815 /* For convenience in allocate_dynrelocs. */
1816 bfd *obfd;
1817
1818 /* The amount of space used by the reserved portion of the sgotplt
1819 section, plus whatever space is used by the jump slots. */
1820 bfd_vma sgotplt_jump_table_size;
1821
1822 /* The stub hash table. */
1823 struct bfd_hash_table stub_hash_table;
1824
1825 /* Linker stub bfd. */
1826 bfd *stub_bfd;
1827
1828 /* Linker call-backs. */
1829 asection *(*add_stub_section) (const char *, asection *);
1830 void (*layout_sections_again) (void);
1831
1832 /* Array to keep track of which stub sections have been created, and
1833 information on stub grouping. */
1834 struct map_stub
1835 {
1836 /* This is the section to which stubs in the group will be
1837 attached. */
1838 asection *link_sec;
1839 /* The stub section. */
1840 asection *stub_sec;
1841 } *stub_group;
1842
1843 /* Assorted information used by elfNN_aarch64_size_stubs. */
1844 unsigned int bfd_count;
1845 int top_index;
1846 asection **input_list;
1847
1848 /* The offset into splt of the PLT entry for the TLS descriptor
1849 resolver. Special values are 0, if not necessary (or not found
1850 to be necessary yet), and -1 if needed but not determined
1851 yet. */
1852 bfd_vma tlsdesc_plt;
1853
1854 /* The GOT offset for the lazy trampoline. Communicated to the
1855 loader via DT_TLSDESC_GOT. The magic value (bfd_vma) -1
1856 indicates an offset is not allocated. */
1857 bfd_vma dt_tlsdesc_got;
1858
1859 /* Used by local STT_GNU_IFUNC symbols. */
1860 htab_t loc_hash_table;
1861 void * loc_hash_memory;
1862 };
1863
1864 /* Create an entry in an AArch64 ELF linker hash table. */
1865
1866 static struct bfd_hash_entry *
1867 elfNN_aarch64_link_hash_newfunc (struct bfd_hash_entry *entry,
1868 struct bfd_hash_table *table,
1869 const char *string)
1870 {
1871 struct elf_aarch64_link_hash_entry *ret =
1872 (struct elf_aarch64_link_hash_entry *) entry;
1873
1874 /* Allocate the structure if it has not already been allocated by a
1875 subclass. */
1876 if (ret == NULL)
1877 ret = bfd_hash_allocate (table,
1878 sizeof (struct elf_aarch64_link_hash_entry));
1879 if (ret == NULL)
1880 return (struct bfd_hash_entry *) ret;
1881
1882 /* Call the allocation method of the superclass. */
1883 ret = ((struct elf_aarch64_link_hash_entry *)
1884 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1885 table, string));
1886 if (ret != NULL)
1887 {
1888 ret->dyn_relocs = NULL;
1889 ret->got_type = GOT_UNKNOWN;
1890 ret->plt_got_offset = (bfd_vma) - 1;
1891 ret->stub_cache = NULL;
1892 ret->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
1893 }
1894
1895 return (struct bfd_hash_entry *) ret;
1896 }
1897
1898 /* Initialize an entry in the stub hash table. */
1899
1900 static struct bfd_hash_entry *
1901 stub_hash_newfunc (struct bfd_hash_entry *entry,
1902 struct bfd_hash_table *table, const char *string)
1903 {
1904 /* Allocate the structure if it has not already been allocated by a
1905 subclass. */
1906 if (entry == NULL)
1907 {
1908 entry = bfd_hash_allocate (table,
1909 sizeof (struct
1910 elf_aarch64_stub_hash_entry));
1911 if (entry == NULL)
1912 return entry;
1913 }
1914
1915 /* Call the allocation method of the superclass. */
1916 entry = bfd_hash_newfunc (entry, table, string);
1917 if (entry != NULL)
1918 {
1919 struct elf_aarch64_stub_hash_entry *eh;
1920
1921 /* Initialize the local fields. */
1922 eh = (struct elf_aarch64_stub_hash_entry *) entry;
1923 eh->stub_sec = NULL;
1924 eh->stub_offset = 0;
1925 eh->target_value = 0;
1926 eh->target_section = NULL;
1927 eh->stub_type = aarch64_stub_none;
1928 eh->h = NULL;
1929 eh->id_sec = NULL;
1930 }
1931
1932 return entry;
1933 }
1934
1935 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
1936 for local symbol so that we can handle local STT_GNU_IFUNC symbols
1937 as global symbol. We reuse indx and dynstr_index for local symbol
1938 hash since they aren't used by global symbols in this backend. */
1939
1940 static hashval_t
1941 elfNN_aarch64_local_htab_hash (const void *ptr)
1942 {
1943 struct elf_link_hash_entry *h
1944 = (struct elf_link_hash_entry *) ptr;
1945 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
1946 }
1947
1948 /* Compare local hash entries. */
1949
1950 static int
1951 elfNN_aarch64_local_htab_eq (const void *ptr1, const void *ptr2)
1952 {
1953 struct elf_link_hash_entry *h1
1954 = (struct elf_link_hash_entry *) ptr1;
1955 struct elf_link_hash_entry *h2
1956 = (struct elf_link_hash_entry *) ptr2;
1957
1958 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
1959 }
1960
1961 /* Find and/or create a hash entry for local symbol. */
1962
1963 static struct elf_link_hash_entry *
1964 elfNN_aarch64_get_local_sym_hash (struct elf_aarch64_link_hash_table *htab,
1965 bfd *abfd, const Elf_Internal_Rela *rel,
1966 bfd_boolean create)
1967 {
1968 struct elf_aarch64_link_hash_entry e, *ret;
1969 asection *sec = abfd->sections;
1970 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
1971 ELFNN_R_SYM (rel->r_info));
1972 void **slot;
1973
1974 e.root.indx = sec->id;
1975 e.root.dynstr_index = ELFNN_R_SYM (rel->r_info);
1976 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
1977 create ? INSERT : NO_INSERT);
1978
1979 if (!slot)
1980 return NULL;
1981
1982 if (*slot)
1983 {
1984 ret = (struct elf_aarch64_link_hash_entry *) *slot;
1985 return &ret->root;
1986 }
1987
1988 ret = (struct elf_aarch64_link_hash_entry *)
1989 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
1990 sizeof (struct elf_aarch64_link_hash_entry));
1991 if (ret)
1992 {
1993 memset (ret, 0, sizeof (*ret));
1994 ret->root.indx = sec->id;
1995 ret->root.dynstr_index = ELFNN_R_SYM (rel->r_info);
1996 ret->root.dynindx = -1;
1997 *slot = ret;
1998 }
1999 return &ret->root;
2000 }
2001
2002 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2003
2004 static void
2005 elfNN_aarch64_copy_indirect_symbol (struct bfd_link_info *info,
2006 struct elf_link_hash_entry *dir,
2007 struct elf_link_hash_entry *ind)
2008 {
2009 struct elf_aarch64_link_hash_entry *edir, *eind;
2010
2011 edir = (struct elf_aarch64_link_hash_entry *) dir;
2012 eind = (struct elf_aarch64_link_hash_entry *) ind;
2013
2014 if (eind->dyn_relocs != NULL)
2015 {
2016 if (edir->dyn_relocs != NULL)
2017 {
2018 struct elf_dyn_relocs **pp;
2019 struct elf_dyn_relocs *p;
2020
2021 /* Add reloc counts against the indirect sym to the direct sym
2022 list. Merge any entries against the same section. */
2023 for (pp = &eind->dyn_relocs; (p = *pp) != NULL;)
2024 {
2025 struct elf_dyn_relocs *q;
2026
2027 for (q = edir->dyn_relocs; q != NULL; q = q->next)
2028 if (q->sec == p->sec)
2029 {
2030 q->pc_count += p->pc_count;
2031 q->count += p->count;
2032 *pp = p->next;
2033 break;
2034 }
2035 if (q == NULL)
2036 pp = &p->next;
2037 }
2038 *pp = edir->dyn_relocs;
2039 }
2040
2041 edir->dyn_relocs = eind->dyn_relocs;
2042 eind->dyn_relocs = NULL;
2043 }
2044
2045 if (ind->root.type == bfd_link_hash_indirect)
2046 {
2047 /* Copy over PLT info. */
2048 if (dir->got.refcount <= 0)
2049 {
2050 edir->got_type = eind->got_type;
2051 eind->got_type = GOT_UNKNOWN;
2052 }
2053 }
2054
2055 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2056 }
2057
2058 /* Destroy an AArch64 elf linker hash table. */
2059
2060 static void
2061 elfNN_aarch64_link_hash_table_free (bfd *obfd)
2062 {
2063 struct elf_aarch64_link_hash_table *ret
2064 = (struct elf_aarch64_link_hash_table *) obfd->link.hash;
2065
2066 if (ret->loc_hash_table)
2067 htab_delete (ret->loc_hash_table);
2068 if (ret->loc_hash_memory)
2069 objalloc_free ((struct objalloc *) ret->loc_hash_memory);
2070
2071 bfd_hash_table_free (&ret->stub_hash_table);
2072 _bfd_elf_link_hash_table_free (obfd);
2073 }
2074
2075 /* Create an AArch64 elf linker hash table. */
2076
2077 static struct bfd_link_hash_table *
2078 elfNN_aarch64_link_hash_table_create (bfd *abfd)
2079 {
2080 struct elf_aarch64_link_hash_table *ret;
2081 bfd_size_type amt = sizeof (struct elf_aarch64_link_hash_table);
2082
2083 ret = bfd_zmalloc (amt);
2084 if (ret == NULL)
2085 return NULL;
2086
2087 if (!_bfd_elf_link_hash_table_init
2088 (&ret->root, abfd, elfNN_aarch64_link_hash_newfunc,
2089 sizeof (struct elf_aarch64_link_hash_entry), AARCH64_ELF_DATA))
2090 {
2091 free (ret);
2092 return NULL;
2093 }
2094
2095 ret->plt_header_size = PLT_ENTRY_SIZE;
2096 ret->plt_entry_size = PLT_SMALL_ENTRY_SIZE;
2097 ret->obfd = abfd;
2098 ret->dt_tlsdesc_got = (bfd_vma) - 1;
2099
2100 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2101 sizeof (struct elf_aarch64_stub_hash_entry)))
2102 {
2103 _bfd_elf_link_hash_table_free (abfd);
2104 return NULL;
2105 }
2106
2107 ret->loc_hash_table = htab_try_create (1024,
2108 elfNN_aarch64_local_htab_hash,
2109 elfNN_aarch64_local_htab_eq,
2110 NULL);
2111 ret->loc_hash_memory = objalloc_create ();
2112 if (!ret->loc_hash_table || !ret->loc_hash_memory)
2113 {
2114 elfNN_aarch64_link_hash_table_free (abfd);
2115 return NULL;
2116 }
2117 ret->root.root.hash_table_free = elfNN_aarch64_link_hash_table_free;
2118
2119 return &ret->root.root;
2120 }
2121
2122 static bfd_boolean
2123 aarch64_relocate (unsigned int r_type, bfd *input_bfd, asection *input_section,
2124 bfd_vma offset, bfd_vma value)
2125 {
2126 reloc_howto_type *howto;
2127 bfd_vma place;
2128
2129 howto = elfNN_aarch64_howto_from_type (r_type);
2130 place = (input_section->output_section->vma + input_section->output_offset
2131 + offset);
2132
2133 r_type = elfNN_aarch64_bfd_reloc_from_type (r_type);
2134 value = _bfd_aarch64_elf_resolve_relocation (r_type, place, value, 0, FALSE);
2135 return _bfd_aarch64_elf_put_addend (input_bfd,
2136 input_section->contents + offset, r_type,
2137 howto, value);
2138 }
2139
2140 static enum elf_aarch64_stub_type
2141 aarch64_select_branch_stub (bfd_vma value, bfd_vma place)
2142 {
2143 if (aarch64_valid_for_adrp_p (value, place))
2144 return aarch64_stub_adrp_branch;
2145 return aarch64_stub_long_branch;
2146 }
2147
2148 /* Determine the type of stub needed, if any, for a call. */
2149
2150 static enum elf_aarch64_stub_type
2151 aarch64_type_of_stub (struct bfd_link_info *info,
2152 asection *input_sec,
2153 const Elf_Internal_Rela *rel,
2154 unsigned char st_type,
2155 struct elf_aarch64_link_hash_entry *hash,
2156 bfd_vma destination)
2157 {
2158 bfd_vma location;
2159 bfd_signed_vma branch_offset;
2160 unsigned int r_type;
2161 struct elf_aarch64_link_hash_table *globals;
2162 enum elf_aarch64_stub_type stub_type = aarch64_stub_none;
2163 bfd_boolean via_plt_p;
2164
2165 if (st_type != STT_FUNC)
2166 return stub_type;
2167
2168 globals = elf_aarch64_hash_table (info);
2169 via_plt_p = (globals->root.splt != NULL && hash != NULL
2170 && hash->root.plt.offset != (bfd_vma) - 1);
2171
2172 if (via_plt_p)
2173 return stub_type;
2174
2175 /* Determine where the call point is. */
2176 location = (input_sec->output_offset
2177 + input_sec->output_section->vma + rel->r_offset);
2178
2179 branch_offset = (bfd_signed_vma) (destination - location);
2180
2181 r_type = ELFNN_R_TYPE (rel->r_info);
2182
2183 /* We don't want to redirect any old unconditional jump in this way,
2184 only one which is being used for a sibcall, where it is
2185 acceptable for the IP0 and IP1 registers to be clobbered. */
2186 if ((r_type == AARCH64_R (CALL26) || r_type == AARCH64_R (JUMP26))
2187 && (branch_offset > AARCH64_MAX_FWD_BRANCH_OFFSET
2188 || branch_offset < AARCH64_MAX_BWD_BRANCH_OFFSET))
2189 {
2190 stub_type = aarch64_stub_long_branch;
2191 }
2192
2193 return stub_type;
2194 }
2195
2196 /* Build a name for an entry in the stub hash table. */
2197
2198 static char *
2199 elfNN_aarch64_stub_name (const asection *input_section,
2200 const asection *sym_sec,
2201 const struct elf_aarch64_link_hash_entry *hash,
2202 const Elf_Internal_Rela *rel)
2203 {
2204 char *stub_name;
2205 bfd_size_type len;
2206
2207 if (hash)
2208 {
2209 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 16 + 1;
2210 stub_name = bfd_malloc (len);
2211 if (stub_name != NULL)
2212 snprintf (stub_name, len, "%08x_%s+%" BFD_VMA_FMT "x",
2213 (unsigned int) input_section->id,
2214 hash->root.root.root.string,
2215 rel->r_addend);
2216 }
2217 else
2218 {
2219 len = 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1;
2220 stub_name = bfd_malloc (len);
2221 if (stub_name != NULL)
2222 snprintf (stub_name, len, "%08x_%x:%x+%" BFD_VMA_FMT "x",
2223 (unsigned int) input_section->id,
2224 (unsigned int) sym_sec->id,
2225 (unsigned int) ELFNN_R_SYM (rel->r_info),
2226 rel->r_addend);
2227 }
2228
2229 return stub_name;
2230 }
2231
2232 /* Look up an entry in the stub hash. Stub entries are cached because
2233 creating the stub name takes a bit of time. */
2234
2235 static struct elf_aarch64_stub_hash_entry *
2236 elfNN_aarch64_get_stub_entry (const asection *input_section,
2237 const asection *sym_sec,
2238 struct elf_link_hash_entry *hash,
2239 const Elf_Internal_Rela *rel,
2240 struct elf_aarch64_link_hash_table *htab)
2241 {
2242 struct elf_aarch64_stub_hash_entry *stub_entry;
2243 struct elf_aarch64_link_hash_entry *h =
2244 (struct elf_aarch64_link_hash_entry *) hash;
2245 const asection *id_sec;
2246
2247 if ((input_section->flags & SEC_CODE) == 0)
2248 return NULL;
2249
2250 /* If this input section is part of a group of sections sharing one
2251 stub section, then use the id of the first section in the group.
2252 Stub names need to include a section id, as there may well be
2253 more than one stub used to reach say, printf, and we need to
2254 distinguish between them. */
2255 id_sec = htab->stub_group[input_section->id].link_sec;
2256
2257 if (h != NULL && h->stub_cache != NULL
2258 && h->stub_cache->h == h && h->stub_cache->id_sec == id_sec)
2259 {
2260 stub_entry = h->stub_cache;
2261 }
2262 else
2263 {
2264 char *stub_name;
2265
2266 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, h, rel);
2267 if (stub_name == NULL)
2268 return NULL;
2269
2270 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table,
2271 stub_name, FALSE, FALSE);
2272 if (h != NULL)
2273 h->stub_cache = stub_entry;
2274
2275 free (stub_name);
2276 }
2277
2278 return stub_entry;
2279 }
2280
2281 /* Add a new stub entry to the stub hash. Not all fields of the new
2282 stub entry are initialised. */
2283
2284 static struct elf_aarch64_stub_hash_entry *
2285 elfNN_aarch64_add_stub (const char *stub_name,
2286 asection *section,
2287 struct elf_aarch64_link_hash_table *htab)
2288 {
2289 asection *link_sec;
2290 asection *stub_sec;
2291 struct elf_aarch64_stub_hash_entry *stub_entry;
2292
2293 link_sec = htab->stub_group[section->id].link_sec;
2294 stub_sec = htab->stub_group[section->id].stub_sec;
2295 if (stub_sec == NULL)
2296 {
2297 stub_sec = htab->stub_group[link_sec->id].stub_sec;
2298 if (stub_sec == NULL)
2299 {
2300 size_t namelen;
2301 bfd_size_type len;
2302 char *s_name;
2303
2304 namelen = strlen (link_sec->name);
2305 len = namelen + sizeof (STUB_SUFFIX);
2306 s_name = bfd_alloc (htab->stub_bfd, len);
2307 if (s_name == NULL)
2308 return NULL;
2309
2310 memcpy (s_name, link_sec->name, namelen);
2311 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
2312 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
2313 if (stub_sec == NULL)
2314 return NULL;
2315 htab->stub_group[link_sec->id].stub_sec = stub_sec;
2316 }
2317 htab->stub_group[section->id].stub_sec = stub_sec;
2318 }
2319
2320 /* Enter this entry into the linker stub hash table. */
2321 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
2322 TRUE, FALSE);
2323 if (stub_entry == NULL)
2324 {
2325 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
2326 section->owner, stub_name);
2327 return NULL;
2328 }
2329
2330 stub_entry->stub_sec = stub_sec;
2331 stub_entry->stub_offset = 0;
2332 stub_entry->id_sec = link_sec;
2333
2334 return stub_entry;
2335 }
2336
2337 static bfd_boolean
2338 aarch64_build_one_stub (struct bfd_hash_entry *gen_entry,
2339 void *in_arg ATTRIBUTE_UNUSED)
2340 {
2341 struct elf_aarch64_stub_hash_entry *stub_entry;
2342 asection *stub_sec;
2343 bfd *stub_bfd;
2344 bfd_byte *loc;
2345 bfd_vma sym_value;
2346 unsigned int template_size;
2347 const uint32_t *template;
2348 unsigned int i;
2349
2350 /* Massage our args to the form they really have. */
2351 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
2352
2353 stub_sec = stub_entry->stub_sec;
2354
2355 /* Make a note of the offset within the stubs for this entry. */
2356 stub_entry->stub_offset = stub_sec->size;
2357 loc = stub_sec->contents + stub_entry->stub_offset;
2358
2359 stub_bfd = stub_sec->owner;
2360
2361 /* This is the address of the stub destination. */
2362 sym_value = (stub_entry->target_value
2363 + stub_entry->target_section->output_offset
2364 + stub_entry->target_section->output_section->vma);
2365
2366 if (stub_entry->stub_type == aarch64_stub_long_branch)
2367 {
2368 bfd_vma place = (stub_entry->stub_offset + stub_sec->output_section->vma
2369 + stub_sec->output_offset);
2370
2371 /* See if we can relax the stub. */
2372 if (aarch64_valid_for_adrp_p (sym_value, place))
2373 stub_entry->stub_type = aarch64_select_branch_stub (sym_value, place);
2374 }
2375
2376 switch (stub_entry->stub_type)
2377 {
2378 case aarch64_stub_adrp_branch:
2379 template = aarch64_adrp_branch_stub;
2380 template_size = sizeof (aarch64_adrp_branch_stub);
2381 break;
2382 case aarch64_stub_long_branch:
2383 template = aarch64_long_branch_stub;
2384 template_size = sizeof (aarch64_long_branch_stub);
2385 break;
2386 default:
2387 BFD_FAIL ();
2388 return FALSE;
2389 }
2390
2391 for (i = 0; i < (template_size / sizeof template[0]); i++)
2392 {
2393 bfd_putl32 (template[i], loc);
2394 loc += 4;
2395 }
2396
2397 template_size = (template_size + 7) & ~7;
2398 stub_sec->size += template_size;
2399
2400 switch (stub_entry->stub_type)
2401 {
2402 case aarch64_stub_adrp_branch:
2403 if (aarch64_relocate (AARCH64_R (ADR_PREL_PG_HI21), stub_bfd, stub_sec,
2404 stub_entry->stub_offset, sym_value))
2405 /* The stub would not have been relaxed if the offset was out
2406 of range. */
2407 BFD_FAIL ();
2408
2409 _bfd_final_link_relocate
2410 (elfNN_aarch64_howto_from_type (AARCH64_R (ADD_ABS_LO12_NC)),
2411 stub_bfd,
2412 stub_sec,
2413 stub_sec->contents,
2414 stub_entry->stub_offset + 4,
2415 sym_value,
2416 0);
2417 break;
2418
2419 case aarch64_stub_long_branch:
2420 /* We want the value relative to the address 12 bytes back from the
2421 value itself. */
2422 _bfd_final_link_relocate (elfNN_aarch64_howto_from_type
2423 (AARCH64_R (PRELNN)), stub_bfd, stub_sec,
2424 stub_sec->contents,
2425 stub_entry->stub_offset + 16,
2426 sym_value + 12, 0);
2427 break;
2428 default:
2429 break;
2430 }
2431
2432 return TRUE;
2433 }
2434
2435 /* As above, but don't actually build the stub. Just bump offset so
2436 we know stub section sizes. */
2437
2438 static bfd_boolean
2439 aarch64_size_one_stub (struct bfd_hash_entry *gen_entry,
2440 void *in_arg ATTRIBUTE_UNUSED)
2441 {
2442 struct elf_aarch64_stub_hash_entry *stub_entry;
2443 int size;
2444
2445 /* Massage our args to the form they really have. */
2446 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
2447
2448 switch (stub_entry->stub_type)
2449 {
2450 case aarch64_stub_adrp_branch:
2451 size = sizeof (aarch64_adrp_branch_stub);
2452 break;
2453 case aarch64_stub_long_branch:
2454 size = sizeof (aarch64_long_branch_stub);
2455 break;
2456 default:
2457 BFD_FAIL ();
2458 return FALSE;
2459 break;
2460 }
2461
2462 size = (size + 7) & ~7;
2463 stub_entry->stub_sec->size += size;
2464 return TRUE;
2465 }
2466
2467 /* External entry points for sizing and building linker stubs. */
2468
2469 /* Set up various things so that we can make a list of input sections
2470 for each output section included in the link. Returns -1 on error,
2471 0 when no stubs will be needed, and 1 on success. */
2472
2473 int
2474 elfNN_aarch64_setup_section_lists (bfd *output_bfd,
2475 struct bfd_link_info *info)
2476 {
2477 bfd *input_bfd;
2478 unsigned int bfd_count;
2479 int top_id, top_index;
2480 asection *section;
2481 asection **input_list, **list;
2482 bfd_size_type amt;
2483 struct elf_aarch64_link_hash_table *htab =
2484 elf_aarch64_hash_table (info);
2485
2486 if (!is_elf_hash_table (htab))
2487 return 0;
2488
2489 /* Count the number of input BFDs and find the top input section id. */
2490 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2491 input_bfd != NULL; input_bfd = input_bfd->link.next)
2492 {
2493 bfd_count += 1;
2494 for (section = input_bfd->sections;
2495 section != NULL; section = section->next)
2496 {
2497 if (top_id < section->id)
2498 top_id = section->id;
2499 }
2500 }
2501 htab->bfd_count = bfd_count;
2502
2503 amt = sizeof (struct map_stub) * (top_id + 1);
2504 htab->stub_group = bfd_zmalloc (amt);
2505 if (htab->stub_group == NULL)
2506 return -1;
2507
2508 /* We can't use output_bfd->section_count here to find the top output
2509 section index as some sections may have been removed, and
2510 _bfd_strip_section_from_output doesn't renumber the indices. */
2511 for (section = output_bfd->sections, top_index = 0;
2512 section != NULL; section = section->next)
2513 {
2514 if (top_index < section->index)
2515 top_index = section->index;
2516 }
2517
2518 htab->top_index = top_index;
2519 amt = sizeof (asection *) * (top_index + 1);
2520 input_list = bfd_malloc (amt);
2521 htab->input_list = input_list;
2522 if (input_list == NULL)
2523 return -1;
2524
2525 /* For sections we aren't interested in, mark their entries with a
2526 value we can check later. */
2527 list = input_list + top_index;
2528 do
2529 *list = bfd_abs_section_ptr;
2530 while (list-- != input_list);
2531
2532 for (section = output_bfd->sections;
2533 section != NULL; section = section->next)
2534 {
2535 if ((section->flags & SEC_CODE) != 0)
2536 input_list[section->index] = NULL;
2537 }
2538
2539 return 1;
2540 }
2541
2542 /* Used by elfNN_aarch64_next_input_section and group_sections. */
2543 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2544
2545 /* The linker repeatedly calls this function for each input section,
2546 in the order that input sections are linked into output sections.
2547 Build lists of input sections to determine groupings between which
2548 we may insert linker stubs. */
2549
2550 void
2551 elfNN_aarch64_next_input_section (struct bfd_link_info *info, asection *isec)
2552 {
2553 struct elf_aarch64_link_hash_table *htab =
2554 elf_aarch64_hash_table (info);
2555
2556 if (isec->output_section->index <= htab->top_index)
2557 {
2558 asection **list = htab->input_list + isec->output_section->index;
2559
2560 if (*list != bfd_abs_section_ptr)
2561 {
2562 /* Steal the link_sec pointer for our list. */
2563 /* This happens to make the list in reverse order,
2564 which is what we want. */
2565 PREV_SEC (isec) = *list;
2566 *list = isec;
2567 }
2568 }
2569 }
2570
2571 /* See whether we can group stub sections together. Grouping stub
2572 sections may result in fewer stubs. More importantly, we need to
2573 put all .init* and .fini* stubs at the beginning of the .init or
2574 .fini output sections respectively, because glibc splits the
2575 _init and _fini functions into multiple parts. Putting a stub in
2576 the middle of a function is not a good idea. */
2577
2578 static void
2579 group_sections (struct elf_aarch64_link_hash_table *htab,
2580 bfd_size_type stub_group_size,
2581 bfd_boolean stubs_always_before_branch)
2582 {
2583 asection **list = htab->input_list + htab->top_index;
2584
2585 do
2586 {
2587 asection *tail = *list;
2588
2589 if (tail == bfd_abs_section_ptr)
2590 continue;
2591
2592 while (tail != NULL)
2593 {
2594 asection *curr;
2595 asection *prev;
2596 bfd_size_type total;
2597
2598 curr = tail;
2599 total = tail->size;
2600 while ((prev = PREV_SEC (curr)) != NULL
2601 && ((total += curr->output_offset - prev->output_offset)
2602 < stub_group_size))
2603 curr = prev;
2604
2605 /* OK, the size from the start of CURR to the end is less
2606 than stub_group_size and thus can be handled by one stub
2607 section. (Or the tail section is itself larger than
2608 stub_group_size, in which case we may be toast.)
2609 We should really be keeping track of the total size of
2610 stubs added here, as stubs contribute to the final output
2611 section size. */
2612 do
2613 {
2614 prev = PREV_SEC (tail);
2615 /* Set up this stub group. */
2616 htab->stub_group[tail->id].link_sec = curr;
2617 }
2618 while (tail != curr && (tail = prev) != NULL);
2619
2620 /* But wait, there's more! Input sections up to stub_group_size
2621 bytes before the stub section can be handled by it too. */
2622 if (!stubs_always_before_branch)
2623 {
2624 total = 0;
2625 while (prev != NULL
2626 && ((total += tail->output_offset - prev->output_offset)
2627 < stub_group_size))
2628 {
2629 tail = prev;
2630 prev = PREV_SEC (tail);
2631 htab->stub_group[tail->id].link_sec = curr;
2632 }
2633 }
2634 tail = prev;
2635 }
2636 }
2637 while (list-- != htab->input_list);
2638
2639 free (htab->input_list);
2640 }
2641
2642 #undef PREV_SEC
2643
2644 /* Determine and set the size of the stub section for a final link.
2645
2646 The basic idea here is to examine all the relocations looking for
2647 PC-relative calls to a target that is unreachable with a "bl"
2648 instruction. */
2649
2650 bfd_boolean
2651 elfNN_aarch64_size_stubs (bfd *output_bfd,
2652 bfd *stub_bfd,
2653 struct bfd_link_info *info,
2654 bfd_signed_vma group_size,
2655 asection * (*add_stub_section) (const char *,
2656 asection *),
2657 void (*layout_sections_again) (void))
2658 {
2659 bfd_size_type stub_group_size;
2660 bfd_boolean stubs_always_before_branch;
2661 bfd_boolean stub_changed = 0;
2662 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
2663
2664 /* Propagate mach to stub bfd, because it may not have been
2665 finalized when we created stub_bfd. */
2666 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
2667 bfd_get_mach (output_bfd));
2668
2669 /* Stash our params away. */
2670 htab->stub_bfd = stub_bfd;
2671 htab->add_stub_section = add_stub_section;
2672 htab->layout_sections_again = layout_sections_again;
2673 stubs_always_before_branch = group_size < 0;
2674 if (group_size < 0)
2675 stub_group_size = -group_size;
2676 else
2677 stub_group_size = group_size;
2678
2679 if (stub_group_size == 1)
2680 {
2681 /* Default values. */
2682 /* AArch64 branch range is +-128MB. The value used is 1MB less. */
2683 stub_group_size = 127 * 1024 * 1024;
2684 }
2685
2686 group_sections (htab, stub_group_size, stubs_always_before_branch);
2687
2688 while (1)
2689 {
2690 bfd *input_bfd;
2691 unsigned int bfd_indx;
2692 asection *stub_sec;
2693
2694 for (input_bfd = info->input_bfds, bfd_indx = 0;
2695 input_bfd != NULL; input_bfd = input_bfd->link.next, bfd_indx++)
2696 {
2697 Elf_Internal_Shdr *symtab_hdr;
2698 asection *section;
2699 Elf_Internal_Sym *local_syms = NULL;
2700
2701 /* We'll need the symbol table in a second. */
2702 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2703 if (symtab_hdr->sh_info == 0)
2704 continue;
2705
2706 /* Walk over each section attached to the input bfd. */
2707 for (section = input_bfd->sections;
2708 section != NULL; section = section->next)
2709 {
2710 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2711
2712 /* If there aren't any relocs, then there's nothing more
2713 to do. */
2714 if ((section->flags & SEC_RELOC) == 0
2715 || section->reloc_count == 0
2716 || (section->flags & SEC_CODE) == 0)
2717 continue;
2718
2719 /* If this section is a link-once section that will be
2720 discarded, then don't create any stubs. */
2721 if (section->output_section == NULL
2722 || section->output_section->owner != output_bfd)
2723 continue;
2724
2725 /* Get the relocs. */
2726 internal_relocs
2727 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
2728 NULL, info->keep_memory);
2729 if (internal_relocs == NULL)
2730 goto error_ret_free_local;
2731
2732 /* Now examine each relocation. */
2733 irela = internal_relocs;
2734 irelaend = irela + section->reloc_count;
2735 for (; irela < irelaend; irela++)
2736 {
2737 unsigned int r_type, r_indx;
2738 enum elf_aarch64_stub_type stub_type;
2739 struct elf_aarch64_stub_hash_entry *stub_entry;
2740 asection *sym_sec;
2741 bfd_vma sym_value;
2742 bfd_vma destination;
2743 struct elf_aarch64_link_hash_entry *hash;
2744 const char *sym_name;
2745 char *stub_name;
2746 const asection *id_sec;
2747 unsigned char st_type;
2748 bfd_size_type len;
2749
2750 r_type = ELFNN_R_TYPE (irela->r_info);
2751 r_indx = ELFNN_R_SYM (irela->r_info);
2752
2753 if (r_type >= (unsigned int) R_AARCH64_end)
2754 {
2755 bfd_set_error (bfd_error_bad_value);
2756 error_ret_free_internal:
2757 if (elf_section_data (section)->relocs == NULL)
2758 free (internal_relocs);
2759 goto error_ret_free_local;
2760 }
2761
2762 /* Only look for stubs on unconditional branch and
2763 branch and link instructions. */
2764 if (r_type != (unsigned int) AARCH64_R (CALL26)
2765 && r_type != (unsigned int) AARCH64_R (JUMP26))
2766 continue;
2767
2768 /* Now determine the call target, its name, value,
2769 section. */
2770 sym_sec = NULL;
2771 sym_value = 0;
2772 destination = 0;
2773 hash = NULL;
2774 sym_name = NULL;
2775 if (r_indx < symtab_hdr->sh_info)
2776 {
2777 /* It's a local symbol. */
2778 Elf_Internal_Sym *sym;
2779 Elf_Internal_Shdr *hdr;
2780
2781 if (local_syms == NULL)
2782 {
2783 local_syms
2784 = (Elf_Internal_Sym *) symtab_hdr->contents;
2785 if (local_syms == NULL)
2786 local_syms
2787 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2788 symtab_hdr->sh_info, 0,
2789 NULL, NULL, NULL);
2790 if (local_syms == NULL)
2791 goto error_ret_free_internal;
2792 }
2793
2794 sym = local_syms + r_indx;
2795 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2796 sym_sec = hdr->bfd_section;
2797 if (!sym_sec)
2798 /* This is an undefined symbol. It can never
2799 be resolved. */
2800 continue;
2801
2802 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2803 sym_value = sym->st_value;
2804 destination = (sym_value + irela->r_addend
2805 + sym_sec->output_offset
2806 + sym_sec->output_section->vma);
2807 st_type = ELF_ST_TYPE (sym->st_info);
2808 sym_name
2809 = bfd_elf_string_from_elf_section (input_bfd,
2810 symtab_hdr->sh_link,
2811 sym->st_name);
2812 }
2813 else
2814 {
2815 int e_indx;
2816
2817 e_indx = r_indx - symtab_hdr->sh_info;
2818 hash = ((struct elf_aarch64_link_hash_entry *)
2819 elf_sym_hashes (input_bfd)[e_indx]);
2820
2821 while (hash->root.root.type == bfd_link_hash_indirect
2822 || hash->root.root.type == bfd_link_hash_warning)
2823 hash = ((struct elf_aarch64_link_hash_entry *)
2824 hash->root.root.u.i.link);
2825
2826 if (hash->root.root.type == bfd_link_hash_defined
2827 || hash->root.root.type == bfd_link_hash_defweak)
2828 {
2829 struct elf_aarch64_link_hash_table *globals =
2830 elf_aarch64_hash_table (info);
2831 sym_sec = hash->root.root.u.def.section;
2832 sym_value = hash->root.root.u.def.value;
2833 /* For a destination in a shared library,
2834 use the PLT stub as target address to
2835 decide whether a branch stub is
2836 needed. */
2837 if (globals->root.splt != NULL && hash != NULL
2838 && hash->root.plt.offset != (bfd_vma) - 1)
2839 {
2840 sym_sec = globals->root.splt;
2841 sym_value = hash->root.plt.offset;
2842 if (sym_sec->output_section != NULL)
2843 destination = (sym_value
2844 + sym_sec->output_offset
2845 +
2846 sym_sec->output_section->vma);
2847 }
2848 else if (sym_sec->output_section != NULL)
2849 destination = (sym_value + irela->r_addend
2850 + sym_sec->output_offset
2851 + sym_sec->output_section->vma);
2852 }
2853 else if (hash->root.root.type == bfd_link_hash_undefined
2854 || (hash->root.root.type
2855 == bfd_link_hash_undefweak))
2856 {
2857 /* For a shared library, use the PLT stub as
2858 target address to decide whether a long
2859 branch stub is needed.
2860 For absolute code, they cannot be handled. */
2861 struct elf_aarch64_link_hash_table *globals =
2862 elf_aarch64_hash_table (info);
2863
2864 if (globals->root.splt != NULL && hash != NULL
2865 && hash->root.plt.offset != (bfd_vma) - 1)
2866 {
2867 sym_sec = globals->root.splt;
2868 sym_value = hash->root.plt.offset;
2869 if (sym_sec->output_section != NULL)
2870 destination = (sym_value
2871 + sym_sec->output_offset
2872 +
2873 sym_sec->output_section->vma);
2874 }
2875 else
2876 continue;
2877 }
2878 else
2879 {
2880 bfd_set_error (bfd_error_bad_value);
2881 goto error_ret_free_internal;
2882 }
2883 st_type = ELF_ST_TYPE (hash->root.type);
2884 sym_name = hash->root.root.root.string;
2885 }
2886
2887 /* Determine what (if any) linker stub is needed. */
2888 stub_type = aarch64_type_of_stub
2889 (info, section, irela, st_type, hash, destination);
2890 if (stub_type == aarch64_stub_none)
2891 continue;
2892
2893 /* Support for grouping stub sections. */
2894 id_sec = htab->stub_group[section->id].link_sec;
2895
2896 /* Get the name of this stub. */
2897 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, hash,
2898 irela);
2899 if (!stub_name)
2900 goto error_ret_free_internal;
2901
2902 stub_entry =
2903 aarch64_stub_hash_lookup (&htab->stub_hash_table,
2904 stub_name, FALSE, FALSE);
2905 if (stub_entry != NULL)
2906 {
2907 /* The proper stub has already been created. */
2908 free (stub_name);
2909 continue;
2910 }
2911
2912 stub_entry = elfNN_aarch64_add_stub (stub_name, section,
2913 htab);
2914 if (stub_entry == NULL)
2915 {
2916 free (stub_name);
2917 goto error_ret_free_internal;
2918 }
2919
2920 stub_entry->target_value = sym_value;
2921 stub_entry->target_section = sym_sec;
2922 stub_entry->stub_type = stub_type;
2923 stub_entry->h = hash;
2924 stub_entry->st_type = st_type;
2925
2926 if (sym_name == NULL)
2927 sym_name = "unnamed";
2928 len = sizeof (STUB_ENTRY_NAME) + strlen (sym_name);
2929 stub_entry->output_name = bfd_alloc (htab->stub_bfd, len);
2930 if (stub_entry->output_name == NULL)
2931 {
2932 free (stub_name);
2933 goto error_ret_free_internal;
2934 }
2935
2936 snprintf (stub_entry->output_name, len, STUB_ENTRY_NAME,
2937 sym_name);
2938
2939 stub_changed = TRUE;
2940 }
2941
2942 /* We're done with the internal relocs, free them. */
2943 if (elf_section_data (section)->relocs == NULL)
2944 free (internal_relocs);
2945 }
2946 }
2947
2948 if (!stub_changed)
2949 break;
2950
2951 /* OK, we've added some stubs. Find out the new size of the
2952 stub sections. */
2953 for (stub_sec = htab->stub_bfd->sections;
2954 stub_sec != NULL; stub_sec = stub_sec->next)
2955 stub_sec->size = 0;
2956
2957 bfd_hash_traverse (&htab->stub_hash_table, aarch64_size_one_stub, htab);
2958
2959 /* Ask the linker to do its stuff. */
2960 (*htab->layout_sections_again) ();
2961 stub_changed = FALSE;
2962 }
2963
2964 return TRUE;
2965
2966 error_ret_free_local:
2967 return FALSE;
2968 }
2969
2970 /* Build all the stubs associated with the current output file. The
2971 stubs are kept in a hash table attached to the main linker hash
2972 table. We also set up the .plt entries for statically linked PIC
2973 functions here. This function is called via aarch64_elf_finish in the
2974 linker. */
2975
2976 bfd_boolean
2977 elfNN_aarch64_build_stubs (struct bfd_link_info *info)
2978 {
2979 asection *stub_sec;
2980 struct bfd_hash_table *table;
2981 struct elf_aarch64_link_hash_table *htab;
2982
2983 htab = elf_aarch64_hash_table (info);
2984
2985 for (stub_sec = htab->stub_bfd->sections;
2986 stub_sec != NULL; stub_sec = stub_sec->next)
2987 {
2988 bfd_size_type size;
2989
2990 /* Ignore non-stub sections. */
2991 if (!strstr (stub_sec->name, STUB_SUFFIX))
2992 continue;
2993
2994 /* Allocate memory to hold the linker stubs. */
2995 size = stub_sec->size;
2996 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
2997 if (stub_sec->contents == NULL && size != 0)
2998 return FALSE;
2999 stub_sec->size = 0;
3000 }
3001
3002 /* Build the stubs as directed by the stub hash table. */
3003 table = &htab->stub_hash_table;
3004 bfd_hash_traverse (table, aarch64_build_one_stub, info);
3005
3006 return TRUE;
3007 }
3008
3009
3010 /* Add an entry to the code/data map for section SEC. */
3011
3012 static void
3013 elfNN_aarch64_section_map_add (asection *sec, char type, bfd_vma vma)
3014 {
3015 struct _aarch64_elf_section_data *sec_data =
3016 elf_aarch64_section_data (sec);
3017 unsigned int newidx;
3018
3019 if (sec_data->map == NULL)
3020 {
3021 sec_data->map = bfd_malloc (sizeof (elf_aarch64_section_map));
3022 sec_data->mapcount = 0;
3023 sec_data->mapsize = 1;
3024 }
3025
3026 newidx = sec_data->mapcount++;
3027
3028 if (sec_data->mapcount > sec_data->mapsize)
3029 {
3030 sec_data->mapsize *= 2;
3031 sec_data->map = bfd_realloc_or_free
3032 (sec_data->map, sec_data->mapsize * sizeof (elf_aarch64_section_map));
3033 }
3034
3035 if (sec_data->map)
3036 {
3037 sec_data->map[newidx].vma = vma;
3038 sec_data->map[newidx].type = type;
3039 }
3040 }
3041
3042
3043 /* Initialise maps of insn/data for input BFDs. */
3044 void
3045 bfd_elfNN_aarch64_init_maps (bfd *abfd)
3046 {
3047 Elf_Internal_Sym *isymbuf;
3048 Elf_Internal_Shdr *hdr;
3049 unsigned int i, localsyms;
3050
3051 /* Make sure that we are dealing with an AArch64 elf binary. */
3052 if (!is_aarch64_elf (abfd))
3053 return;
3054
3055 if ((abfd->flags & DYNAMIC) != 0)
3056 return;
3057
3058 hdr = &elf_symtab_hdr (abfd);
3059 localsyms = hdr->sh_info;
3060
3061 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
3062 should contain the number of local symbols, which should come before any
3063 global symbols. Mapping symbols are always local. */
3064 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, NULL);
3065
3066 /* No internal symbols read? Skip this BFD. */
3067 if (isymbuf == NULL)
3068 return;
3069
3070 for (i = 0; i < localsyms; i++)
3071 {
3072 Elf_Internal_Sym *isym = &isymbuf[i];
3073 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3074 const char *name;
3075
3076 if (sec != NULL && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
3077 {
3078 name = bfd_elf_string_from_elf_section (abfd,
3079 hdr->sh_link,
3080 isym->st_name);
3081
3082 if (bfd_is_aarch64_special_symbol_name
3083 (name, BFD_AARCH64_SPECIAL_SYM_TYPE_MAP))
3084 elfNN_aarch64_section_map_add (sec, name[1], isym->st_value);
3085 }
3086 }
3087 }
3088
3089 /* Set option values needed during linking. */
3090 void
3091 bfd_elfNN_aarch64_set_options (struct bfd *output_bfd,
3092 struct bfd_link_info *link_info,
3093 int no_enum_warn,
3094 int no_wchar_warn, int pic_veneer)
3095 {
3096 struct elf_aarch64_link_hash_table *globals;
3097
3098 globals = elf_aarch64_hash_table (link_info);
3099 globals->pic_veneer = pic_veneer;
3100
3101 BFD_ASSERT (is_aarch64_elf (output_bfd));
3102 elf_aarch64_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
3103 elf_aarch64_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
3104 }
3105
3106 static bfd_vma
3107 aarch64_calculate_got_entry_vma (struct elf_link_hash_entry *h,
3108 struct elf_aarch64_link_hash_table
3109 *globals, struct bfd_link_info *info,
3110 bfd_vma value, bfd *output_bfd,
3111 bfd_boolean *unresolved_reloc_p)
3112 {
3113 bfd_vma off = (bfd_vma) - 1;
3114 asection *basegot = globals->root.sgot;
3115 bfd_boolean dyn = globals->root.dynamic_sections_created;
3116
3117 if (h != NULL)
3118 {
3119 BFD_ASSERT (basegot != NULL);
3120 off = h->got.offset;
3121 BFD_ASSERT (off != (bfd_vma) - 1);
3122 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3123 || (info->shared
3124 && SYMBOL_REFERENCES_LOCAL (info, h))
3125 || (ELF_ST_VISIBILITY (h->other)
3126 && h->root.type == bfd_link_hash_undefweak))
3127 {
3128 /* This is actually a static link, or it is a -Bsymbolic link
3129 and the symbol is defined locally. We must initialize this
3130 entry in the global offset table. Since the offset must
3131 always be a multiple of 8 (4 in the case of ILP32), we use
3132 the least significant bit to record whether we have
3133 initialized it already.
3134 When doing a dynamic link, we create a .rel(a).got relocation
3135 entry to initialize the value. This is done in the
3136 finish_dynamic_symbol routine. */
3137 if ((off & 1) != 0)
3138 off &= ~1;
3139 else
3140 {
3141 bfd_put_NN (output_bfd, value, basegot->contents + off);
3142 h->got.offset |= 1;
3143 }
3144 }
3145 else
3146 *unresolved_reloc_p = FALSE;
3147
3148 off = off + basegot->output_section->vma + basegot->output_offset;
3149 }
3150
3151 return off;
3152 }
3153
3154 /* Change R_TYPE to a more efficient access model where possible,
3155 return the new reloc type. */
3156
3157 static bfd_reloc_code_real_type
3158 aarch64_tls_transition_without_check (bfd_reloc_code_real_type r_type,
3159 struct elf_link_hash_entry *h)
3160 {
3161 bfd_boolean is_local = h == NULL;
3162
3163 switch (r_type)
3164 {
3165 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3166 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
3167 return (is_local
3168 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
3169 : BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21);
3170
3171 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
3172 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
3173 return (is_local
3174 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
3175 : BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC);
3176
3177 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
3178 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 : r_type;
3179
3180 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
3181 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC : r_type;
3182
3183 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
3184 case BFD_RELOC_AARCH64_TLSDESC_CALL:
3185 /* Instructions with these relocations will become NOPs. */
3186 return BFD_RELOC_AARCH64_NONE;
3187
3188 default:
3189 break;
3190 }
3191
3192 return r_type;
3193 }
3194
3195 static unsigned int
3196 aarch64_reloc_got_type (bfd_reloc_code_real_type r_type)
3197 {
3198 switch (r_type)
3199 {
3200 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
3201 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3202 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
3203 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
3204 return GOT_NORMAL;
3205
3206 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3207 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
3208 return GOT_TLS_GD;
3209
3210 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
3211 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
3212 case BFD_RELOC_AARCH64_TLSDESC_CALL:
3213 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
3214 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
3215 return GOT_TLSDESC_GD;
3216
3217 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
3218 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
3219 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
3220 return GOT_TLS_IE;
3221
3222 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
3223 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
3224 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
3225 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
3226 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
3227 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
3228 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
3229 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
3230 return GOT_UNKNOWN;
3231
3232 default:
3233 break;
3234 }
3235 return GOT_UNKNOWN;
3236 }
3237
3238 static bfd_boolean
3239 aarch64_can_relax_tls (bfd *input_bfd,
3240 struct bfd_link_info *info,
3241 bfd_reloc_code_real_type r_type,
3242 struct elf_link_hash_entry *h,
3243 unsigned long r_symndx)
3244 {
3245 unsigned int symbol_got_type;
3246 unsigned int reloc_got_type;
3247
3248 if (! IS_AARCH64_TLS_RELOC (r_type))
3249 return FALSE;
3250
3251 symbol_got_type = elfNN_aarch64_symbol_got_type (h, input_bfd, r_symndx);
3252 reloc_got_type = aarch64_reloc_got_type (r_type);
3253
3254 if (symbol_got_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (reloc_got_type))
3255 return TRUE;
3256
3257 if (info->shared)
3258 return FALSE;
3259
3260 if (h && h->root.type == bfd_link_hash_undefweak)
3261 return FALSE;
3262
3263 return TRUE;
3264 }
3265
3266 /* Given the relocation code R_TYPE, return the relaxed bfd reloc
3267 enumerator. */
3268
3269 static bfd_reloc_code_real_type
3270 aarch64_tls_transition (bfd *input_bfd,
3271 struct bfd_link_info *info,
3272 unsigned int r_type,
3273 struct elf_link_hash_entry *h,
3274 unsigned long r_symndx)
3275 {
3276 bfd_reloc_code_real_type bfd_r_type
3277 = elfNN_aarch64_bfd_reloc_from_type (r_type);
3278
3279 if (! aarch64_can_relax_tls (input_bfd, info, bfd_r_type, h, r_symndx))
3280 return bfd_r_type;
3281
3282 return aarch64_tls_transition_without_check (bfd_r_type, h);
3283 }
3284
3285 /* Return the base VMA address which should be subtracted from real addresses
3286 when resolving R_AARCH64_TLS_DTPREL relocation. */
3287
3288 static bfd_vma
3289 dtpoff_base (struct bfd_link_info *info)
3290 {
3291 /* If tls_sec is NULL, we should have signalled an error already. */
3292 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
3293 return elf_hash_table (info)->tls_sec->vma;
3294 }
3295
3296 /* Return the base VMA address which should be subtracted from real addresses
3297 when resolving R_AARCH64_TLS_GOTTPREL64 relocations. */
3298
3299 static bfd_vma
3300 tpoff_base (struct bfd_link_info *info)
3301 {
3302 struct elf_link_hash_table *htab = elf_hash_table (info);
3303
3304 /* If tls_sec is NULL, we should have signalled an error already. */
3305 BFD_ASSERT (htab->tls_sec != NULL);
3306
3307 bfd_vma base = align_power ((bfd_vma) TCB_SIZE,
3308 htab->tls_sec->alignment_power);
3309 return htab->tls_sec->vma - base;
3310 }
3311
3312 static bfd_vma *
3313 symbol_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
3314 unsigned long r_symndx)
3315 {
3316 /* Calculate the address of the GOT entry for symbol
3317 referred to in h. */
3318 if (h != NULL)
3319 return &h->got.offset;
3320 else
3321 {
3322 /* local symbol */
3323 struct elf_aarch64_local_symbol *l;
3324
3325 l = elf_aarch64_locals (input_bfd);
3326 return &l[r_symndx].got_offset;
3327 }
3328 }
3329
3330 static void
3331 symbol_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
3332 unsigned long r_symndx)
3333 {
3334 bfd_vma *p;
3335 p = symbol_got_offset_ref (input_bfd, h, r_symndx);
3336 *p |= 1;
3337 }
3338
3339 static int
3340 symbol_got_offset_mark_p (bfd *input_bfd, struct elf_link_hash_entry *h,
3341 unsigned long r_symndx)
3342 {
3343 bfd_vma value;
3344 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
3345 return value & 1;
3346 }
3347
3348 static bfd_vma
3349 symbol_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
3350 unsigned long r_symndx)
3351 {
3352 bfd_vma value;
3353 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
3354 value &= ~1;
3355 return value;
3356 }
3357
3358 static bfd_vma *
3359 symbol_tlsdesc_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
3360 unsigned long r_symndx)
3361 {
3362 /* Calculate the address of the GOT entry for symbol
3363 referred to in h. */
3364 if (h != NULL)
3365 {
3366 struct elf_aarch64_link_hash_entry *eh;
3367 eh = (struct elf_aarch64_link_hash_entry *) h;
3368 return &eh->tlsdesc_got_jump_table_offset;
3369 }
3370 else
3371 {
3372 /* local symbol */
3373 struct elf_aarch64_local_symbol *l;
3374
3375 l = elf_aarch64_locals (input_bfd);
3376 return &l[r_symndx].tlsdesc_got_jump_table_offset;
3377 }
3378 }
3379
3380 static void
3381 symbol_tlsdesc_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
3382 unsigned long r_symndx)
3383 {
3384 bfd_vma *p;
3385 p = symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
3386 *p |= 1;
3387 }
3388
3389 static int
3390 symbol_tlsdesc_got_offset_mark_p (bfd *input_bfd,
3391 struct elf_link_hash_entry *h,
3392 unsigned long r_symndx)
3393 {
3394 bfd_vma value;
3395 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
3396 return value & 1;
3397 }
3398
3399 static bfd_vma
3400 symbol_tlsdesc_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
3401 unsigned long r_symndx)
3402 {
3403 bfd_vma value;
3404 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
3405 value &= ~1;
3406 return value;
3407 }
3408
3409 /* Perform a relocation as part of a final link. */
3410 static bfd_reloc_status_type
3411 elfNN_aarch64_final_link_relocate (reloc_howto_type *howto,
3412 bfd *input_bfd,
3413 bfd *output_bfd,
3414 asection *input_section,
3415 bfd_byte *contents,
3416 Elf_Internal_Rela *rel,
3417 bfd_vma value,
3418 struct bfd_link_info *info,
3419 asection *sym_sec,
3420 struct elf_link_hash_entry *h,
3421 bfd_boolean *unresolved_reloc_p,
3422 bfd_boolean save_addend,
3423 bfd_vma *saved_addend,
3424 Elf_Internal_Sym *sym)
3425 {
3426 Elf_Internal_Shdr *symtab_hdr;
3427 unsigned int r_type = howto->type;
3428 bfd_reloc_code_real_type bfd_r_type
3429 = elfNN_aarch64_bfd_reloc_from_howto (howto);
3430 bfd_reloc_code_real_type new_bfd_r_type;
3431 unsigned long r_symndx;
3432 bfd_byte *hit_data = contents + rel->r_offset;
3433 bfd_vma place;
3434 bfd_signed_vma signed_addend;
3435 struct elf_aarch64_link_hash_table *globals;
3436 bfd_boolean weak_undef_p;
3437
3438 globals = elf_aarch64_hash_table (info);
3439
3440 symtab_hdr = &elf_symtab_hdr (input_bfd);
3441
3442 BFD_ASSERT (is_aarch64_elf (input_bfd));
3443
3444 r_symndx = ELFNN_R_SYM (rel->r_info);
3445
3446 /* It is possible to have linker relaxations on some TLS access
3447 models. Update our information here. */
3448 new_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type, h, r_symndx);
3449 if (new_bfd_r_type != bfd_r_type)
3450 {
3451 bfd_r_type = new_bfd_r_type;
3452 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
3453 BFD_ASSERT (howto != NULL);
3454 r_type = howto->type;
3455 }
3456
3457 place = input_section->output_section->vma
3458 + input_section->output_offset + rel->r_offset;
3459
3460 /* Get addend, accumulating the addend for consecutive relocs
3461 which refer to the same offset. */
3462 signed_addend = saved_addend ? *saved_addend : 0;
3463 signed_addend += rel->r_addend;
3464
3465 weak_undef_p = (h ? h->root.type == bfd_link_hash_undefweak
3466 : bfd_is_und_section (sym_sec));
3467
3468 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
3469 it here if it is defined in a non-shared object. */
3470 if (h != NULL
3471 && h->type == STT_GNU_IFUNC
3472 && h->def_regular)
3473 {
3474 asection *plt;
3475 const char *name;
3476 asection *base_got;
3477 bfd_vma off;
3478
3479 if ((input_section->flags & SEC_ALLOC) == 0
3480 || h->plt.offset == (bfd_vma) -1)
3481 abort ();
3482
3483 /* STT_GNU_IFUNC symbol must go through PLT. */
3484 plt = globals->root.splt ? globals->root.splt : globals->root.iplt;
3485 value = (plt->output_section->vma + plt->output_offset + h->plt.offset);
3486
3487 switch (bfd_r_type)
3488 {
3489 default:
3490 if (h->root.root.string)
3491 name = h->root.root.string;
3492 else
3493 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
3494 NULL);
3495 (*_bfd_error_handler)
3496 (_("%B: relocation %s against STT_GNU_IFUNC "
3497 "symbol `%s' isn't handled by %s"), input_bfd,
3498 howto->name, name, __FUNCTION__);
3499 bfd_set_error (bfd_error_bad_value);
3500 return FALSE;
3501
3502 case BFD_RELOC_AARCH64_NN:
3503 if (rel->r_addend != 0)
3504 {
3505 if (h->root.root.string)
3506 name = h->root.root.string;
3507 else
3508 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
3509 sym, NULL);
3510 (*_bfd_error_handler)
3511 (_("%B: relocation %s against STT_GNU_IFUNC "
3512 "symbol `%s' has non-zero addend: %d"),
3513 input_bfd, howto->name, name, rel->r_addend);
3514 bfd_set_error (bfd_error_bad_value);
3515 return FALSE;
3516 }
3517
3518 /* Generate dynamic relocation only when there is a
3519 non-GOT reference in a shared object. */
3520 if (info->shared && h->non_got_ref)
3521 {
3522 Elf_Internal_Rela outrel;
3523 asection *sreloc;
3524
3525 /* Need a dynamic relocation to get the real function
3526 address. */
3527 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
3528 info,
3529 input_section,
3530 rel->r_offset);
3531 if (outrel.r_offset == (bfd_vma) -1
3532 || outrel.r_offset == (bfd_vma) -2)
3533 abort ();
3534
3535 outrel.r_offset += (input_section->output_section->vma
3536 + input_section->output_offset);
3537
3538 if (h->dynindx == -1
3539 || h->forced_local
3540 || info->executable)
3541 {
3542 /* This symbol is resolved locally. */
3543 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
3544 outrel.r_addend = (h->root.u.def.value
3545 + h->root.u.def.section->output_section->vma
3546 + h->root.u.def.section->output_offset);
3547 }
3548 else
3549 {
3550 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
3551 outrel.r_addend = 0;
3552 }
3553
3554 sreloc = globals->root.irelifunc;
3555 elf_append_rela (output_bfd, sreloc, &outrel);
3556
3557 /* If this reloc is against an external symbol, we
3558 do not want to fiddle with the addend. Otherwise,
3559 we need to include the symbol value so that it
3560 becomes an addend for the dynamic reloc. For an
3561 internal symbol, we have updated addend. */
3562 return bfd_reloc_ok;
3563 }
3564 /* FALLTHROUGH */
3565 case BFD_RELOC_AARCH64_JUMP26:
3566 case BFD_RELOC_AARCH64_CALL26:
3567 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3568 signed_addend,
3569 weak_undef_p);
3570 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
3571 howto, value);
3572 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
3573 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3574 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
3575 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
3576 base_got = globals->root.sgot;
3577 off = h->got.offset;
3578
3579 if (base_got == NULL)
3580 abort ();
3581
3582 if (off == (bfd_vma) -1)
3583 {
3584 bfd_vma plt_index;
3585
3586 /* We can't use h->got.offset here to save state, or
3587 even just remember the offset, as finish_dynamic_symbol
3588 would use that as offset into .got. */
3589
3590 if (globals->root.splt != NULL)
3591 {
3592 plt_index = ((h->plt.offset - globals->plt_header_size) /
3593 globals->plt_entry_size);
3594 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3595 base_got = globals->root.sgotplt;
3596 }
3597 else
3598 {
3599 plt_index = h->plt.offset / globals->plt_entry_size;
3600 off = plt_index * GOT_ENTRY_SIZE;
3601 base_got = globals->root.igotplt;
3602 }
3603
3604 if (h->dynindx == -1
3605 || h->forced_local
3606 || info->symbolic)
3607 {
3608 /* This references the local definition. We must
3609 initialize this entry in the global offset table.
3610 Since the offset must always be a multiple of 8,
3611 we use the least significant bit to record
3612 whether we have initialized it already.
3613
3614 When doing a dynamic link, we create a .rela.got
3615 relocation entry to initialize the value. This
3616 is done in the finish_dynamic_symbol routine. */
3617 if ((off & 1) != 0)
3618 off &= ~1;
3619 else
3620 {
3621 bfd_put_NN (output_bfd, value,
3622 base_got->contents + off);
3623 /* Note that this is harmless as -1 | 1 still is -1. */
3624 h->got.offset |= 1;
3625 }
3626 }
3627 value = (base_got->output_section->vma
3628 + base_got->output_offset + off);
3629 }
3630 else
3631 value = aarch64_calculate_got_entry_vma (h, globals, info,
3632 value, output_bfd,
3633 unresolved_reloc_p);
3634 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3635 0, weak_undef_p);
3636 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type, howto, value);
3637 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
3638 case BFD_RELOC_AARCH64_ADD_LO12:
3639 break;
3640 }
3641 }
3642
3643 switch (bfd_r_type)
3644 {
3645 case BFD_RELOC_AARCH64_NONE:
3646 case BFD_RELOC_AARCH64_TLSDESC_CALL:
3647 *unresolved_reloc_p = FALSE;
3648 return bfd_reloc_ok;
3649
3650 case BFD_RELOC_AARCH64_NN:
3651
3652 /* When generating a shared object or relocatable executable, these
3653 relocations are copied into the output file to be resolved at
3654 run time. */
3655 if (((info->shared == TRUE) || globals->root.is_relocatable_executable)
3656 && (input_section->flags & SEC_ALLOC)
3657 && (h == NULL
3658 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3659 || h->root.type != bfd_link_hash_undefweak))
3660 {
3661 Elf_Internal_Rela outrel;
3662 bfd_byte *loc;
3663 bfd_boolean skip, relocate;
3664 asection *sreloc;
3665
3666 *unresolved_reloc_p = FALSE;
3667
3668 skip = FALSE;
3669 relocate = FALSE;
3670
3671 outrel.r_addend = signed_addend;
3672 outrel.r_offset =
3673 _bfd_elf_section_offset (output_bfd, info, input_section,
3674 rel->r_offset);
3675 if (outrel.r_offset == (bfd_vma) - 1)
3676 skip = TRUE;
3677 else if (outrel.r_offset == (bfd_vma) - 2)
3678 {
3679 skip = TRUE;
3680 relocate = TRUE;
3681 }
3682
3683 outrel.r_offset += (input_section->output_section->vma
3684 + input_section->output_offset);
3685
3686 if (skip)
3687 memset (&outrel, 0, sizeof outrel);
3688 else if (h != NULL
3689 && h->dynindx != -1
3690 && (!info->shared || !info->symbolic || !h->def_regular))
3691 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
3692 else
3693 {
3694 int symbol;
3695
3696 /* On SVR4-ish systems, the dynamic loader cannot
3697 relocate the text and data segments independently,
3698 so the symbol does not matter. */
3699 symbol = 0;
3700 outrel.r_info = ELFNN_R_INFO (symbol, AARCH64_R (RELATIVE));
3701 outrel.r_addend += value;
3702 }
3703
3704 sreloc = elf_section_data (input_section)->sreloc;
3705 if (sreloc == NULL || sreloc->contents == NULL)
3706 return bfd_reloc_notsupported;
3707
3708 loc = sreloc->contents + sreloc->reloc_count++ * RELOC_SIZE (globals);
3709 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
3710
3711 if (sreloc->reloc_count * RELOC_SIZE (globals) > sreloc->size)
3712 {
3713 /* Sanity to check that we have previously allocated
3714 sufficient space in the relocation section for the
3715 number of relocations we actually want to emit. */
3716 abort ();
3717 }
3718
3719 /* If this reloc is against an external symbol, we do not want to
3720 fiddle with the addend. Otherwise, we need to include the symbol
3721 value so that it becomes an addend for the dynamic reloc. */
3722 if (!relocate)
3723 return bfd_reloc_ok;
3724
3725 return _bfd_final_link_relocate (howto, input_bfd, input_section,
3726 contents, rel->r_offset, value,
3727 signed_addend);
3728 }
3729 else
3730 value += signed_addend;
3731 break;
3732
3733 case BFD_RELOC_AARCH64_JUMP26:
3734 case BFD_RELOC_AARCH64_CALL26:
3735 {
3736 asection *splt = globals->root.splt;
3737 bfd_boolean via_plt_p =
3738 splt != NULL && h != NULL && h->plt.offset != (bfd_vma) - 1;
3739
3740 /* A call to an undefined weak symbol is converted to a jump to
3741 the next instruction unless a PLT entry will be created.
3742 The jump to the next instruction is optimized as a NOP.
3743 Do the same for local undefined symbols. */
3744 if (weak_undef_p && ! via_plt_p)
3745 {
3746 bfd_putl32 (INSN_NOP, hit_data);
3747 return bfd_reloc_ok;
3748 }
3749
3750 /* If the call goes through a PLT entry, make sure to
3751 check distance to the right destination address. */
3752 if (via_plt_p)
3753 {
3754 value = (splt->output_section->vma
3755 + splt->output_offset + h->plt.offset);
3756 *unresolved_reloc_p = FALSE;
3757 }
3758
3759 /* If the target symbol is global and marked as a function the
3760 relocation applies a function call or a tail call. In this
3761 situation we can veneer out of range branches. The veneers
3762 use IP0 and IP1 hence cannot be used arbitrary out of range
3763 branches that occur within the body of a function. */
3764 if (h && h->type == STT_FUNC)
3765 {
3766 /* Check if a stub has to be inserted because the destination
3767 is too far away. */
3768 if (! aarch64_valid_branch_p (value, place))
3769 {
3770 /* The target is out of reach, so redirect the branch to
3771 the local stub for this function. */
3772 struct elf_aarch64_stub_hash_entry *stub_entry;
3773 stub_entry = elfNN_aarch64_get_stub_entry (input_section,
3774 sym_sec, h,
3775 rel, globals);
3776 if (stub_entry != NULL)
3777 value = (stub_entry->stub_offset
3778 + stub_entry->stub_sec->output_offset
3779 + stub_entry->stub_sec->output_section->vma);
3780 }
3781 }
3782 }
3783 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3784 signed_addend, weak_undef_p);
3785 break;
3786
3787 case BFD_RELOC_AARCH64_16:
3788 #if ARCH_SIZE == 64
3789 case BFD_RELOC_AARCH64_32:
3790 #endif
3791 case BFD_RELOC_AARCH64_ADD_LO12:
3792 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
3793 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
3794 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
3795 case BFD_RELOC_AARCH64_BRANCH19:
3796 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
3797 case BFD_RELOC_AARCH64_LDST8_LO12:
3798 case BFD_RELOC_AARCH64_LDST16_LO12:
3799 case BFD_RELOC_AARCH64_LDST32_LO12:
3800 case BFD_RELOC_AARCH64_LDST64_LO12:
3801 case BFD_RELOC_AARCH64_LDST128_LO12:
3802 case BFD_RELOC_AARCH64_MOVW_G0_S:
3803 case BFD_RELOC_AARCH64_MOVW_G1_S:
3804 case BFD_RELOC_AARCH64_MOVW_G2_S:
3805 case BFD_RELOC_AARCH64_MOVW_G0:
3806 case BFD_RELOC_AARCH64_MOVW_G0_NC:
3807 case BFD_RELOC_AARCH64_MOVW_G1:
3808 case BFD_RELOC_AARCH64_MOVW_G1_NC:
3809 case BFD_RELOC_AARCH64_MOVW_G2:
3810 case BFD_RELOC_AARCH64_MOVW_G2_NC:
3811 case BFD_RELOC_AARCH64_MOVW_G3:
3812 case BFD_RELOC_AARCH64_16_PCREL:
3813 case BFD_RELOC_AARCH64_32_PCREL:
3814 case BFD_RELOC_AARCH64_64_PCREL:
3815 case BFD_RELOC_AARCH64_TSTBR14:
3816 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3817 signed_addend, weak_undef_p);
3818 break;
3819
3820 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
3821 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3822 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
3823 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
3824 if (globals->root.sgot == NULL)
3825 BFD_ASSERT (h != NULL);
3826
3827 if (h != NULL)
3828 {
3829 value = aarch64_calculate_got_entry_vma (h, globals, info, value,
3830 output_bfd,
3831 unresolved_reloc_p);
3832 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3833 0, weak_undef_p);
3834 }
3835 break;
3836
3837 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3838 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
3839 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
3840 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
3841 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
3842 if (globals->root.sgot == NULL)
3843 return bfd_reloc_notsupported;
3844
3845 value = (symbol_got_offset (input_bfd, h, r_symndx)
3846 + globals->root.sgot->output_section->vma
3847 + globals->root.sgot->output_offset);
3848
3849 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3850 0, weak_undef_p);
3851 *unresolved_reloc_p = FALSE;
3852 break;
3853
3854 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
3855 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
3856 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
3857 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
3858 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
3859 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
3860 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
3861 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
3862 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3863 signed_addend - tpoff_base (info),
3864 weak_undef_p);
3865 *unresolved_reloc_p = FALSE;
3866 break;
3867
3868 case BFD_RELOC_AARCH64_TLSDESC_ADD:
3869 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
3870 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
3871 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
3872 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
3873 case BFD_RELOC_AARCH64_TLSDESC_LDR:
3874 if (globals->root.sgot == NULL)
3875 return bfd_reloc_notsupported;
3876 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
3877 + globals->root.sgotplt->output_section->vma
3878 + globals->root.sgotplt->output_offset
3879 + globals->sgotplt_jump_table_size);
3880
3881 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3882 0, weak_undef_p);
3883 *unresolved_reloc_p = FALSE;
3884 break;
3885
3886 default:
3887 return bfd_reloc_notsupported;
3888 }
3889
3890 if (saved_addend)
3891 *saved_addend = value;
3892
3893 /* Only apply the final relocation in a sequence. */
3894 if (save_addend)
3895 return bfd_reloc_continue;
3896
3897 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
3898 howto, value);
3899 }
3900
3901 /* Handle TLS relaxations. Relaxing is possible for symbols that use
3902 R_AARCH64_TLSDESC_ADR_{PAGE, LD64_LO12_NC, ADD_LO12_NC} during a static
3903 link.
3904
3905 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
3906 is to then call final_link_relocate. Return other values in the
3907 case of error. */
3908
3909 static bfd_reloc_status_type
3910 elfNN_aarch64_tls_relax (struct elf_aarch64_link_hash_table *globals,
3911 bfd *input_bfd, bfd_byte *contents,
3912 Elf_Internal_Rela *rel, struct elf_link_hash_entry *h)
3913 {
3914 bfd_boolean is_local = h == NULL;
3915 unsigned int r_type = ELFNN_R_TYPE (rel->r_info);
3916 unsigned long insn;
3917
3918 BFD_ASSERT (globals && input_bfd && contents && rel);
3919
3920 switch (elfNN_aarch64_bfd_reloc_from_type (r_type))
3921 {
3922 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3923 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
3924 if (is_local)
3925 {
3926 /* GD->LE relaxation:
3927 adrp x0, :tlsgd:var => movz x0, :tprel_g1:var
3928 or
3929 adrp x0, :tlsdesc:var => movz x0, :tprel_g1:var
3930 */
3931 bfd_putl32 (0xd2a00000, contents + rel->r_offset);
3932 return bfd_reloc_continue;
3933 }
3934 else
3935 {
3936 /* GD->IE relaxation:
3937 adrp x0, :tlsgd:var => adrp x0, :gottprel:var
3938 or
3939 adrp x0, :tlsdesc:var => adrp x0, :gottprel:var
3940 */
3941 return bfd_reloc_continue;
3942 }
3943
3944 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
3945 if (is_local)
3946 {
3947 /* GD->LE relaxation:
3948 ldr xd, [x0, #:tlsdesc_lo12:var] => movk x0, :tprel_g0_nc:var
3949 */
3950 bfd_putl32 (0xf2800000, contents + rel->r_offset);
3951 return bfd_reloc_continue;
3952 }
3953 else
3954 {
3955 /* GD->IE relaxation:
3956 ldr xd, [x0, #:tlsdesc_lo12:var] => ldr x0, [x0, #:gottprel_lo12:var]
3957 */
3958 insn = bfd_getl32 (contents + rel->r_offset);
3959 insn &= 0xffffffe0;
3960 bfd_putl32 (insn, contents + rel->r_offset);
3961 return bfd_reloc_continue;
3962 }
3963
3964 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
3965 if (is_local)
3966 {
3967 /* GD->LE relaxation
3968 add x0, #:tlsgd_lo12:var => movk x0, :tprel_g0_nc:var
3969 bl __tls_get_addr => mrs x1, tpidr_el0
3970 nop => add x0, x1, x0
3971 */
3972
3973 /* First kill the tls_get_addr reloc on the bl instruction. */
3974 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
3975 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
3976
3977 bfd_putl32 (0xf2800000, contents + rel->r_offset);
3978 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
3979 bfd_putl32 (0x8b000020, contents + rel->r_offset + 8);
3980 return bfd_reloc_continue;
3981 }
3982 else
3983 {
3984 /* GD->IE relaxation
3985 ADD x0, #:tlsgd_lo12:var => ldr x0, [x0, #:gottprel_lo12:var]
3986 BL __tls_get_addr => mrs x1, tpidr_el0
3987 R_AARCH64_CALL26
3988 NOP => add x0, x1, x0
3989 */
3990
3991 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
3992
3993 /* Remove the relocation on the BL instruction. */
3994 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
3995
3996 bfd_putl32 (0xf9400000, contents + rel->r_offset);
3997
3998 /* We choose to fixup the BL and NOP instructions using the
3999 offset from the second relocation to allow flexibility in
4000 scheduling instructions between the ADD and BL. */
4001 bfd_putl32 (0xd53bd041, contents + rel[1].r_offset);
4002 bfd_putl32 (0x8b000020, contents + rel[1].r_offset + 4);
4003 return bfd_reloc_continue;
4004 }
4005
4006 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
4007 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4008 /* GD->IE/LE relaxation:
4009 add x0, x0, #:tlsdesc_lo12:var => nop
4010 blr xd => nop
4011 */
4012 bfd_putl32 (INSN_NOP, contents + rel->r_offset);
4013 return bfd_reloc_ok;
4014
4015 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4016 /* IE->LE relaxation:
4017 adrp xd, :gottprel:var => movz xd, :tprel_g1:var
4018 */
4019 if (is_local)
4020 {
4021 insn = bfd_getl32 (contents + rel->r_offset);
4022 bfd_putl32 (0xd2a00000 | (insn & 0x1f), contents + rel->r_offset);
4023 }
4024 return bfd_reloc_continue;
4025
4026 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
4027 /* IE->LE relaxation:
4028 ldr xd, [xm, #:gottprel_lo12:var] => movk xd, :tprel_g0_nc:var
4029 */
4030 if (is_local)
4031 {
4032 insn = bfd_getl32 (contents + rel->r_offset);
4033 bfd_putl32 (0xf2800000 | (insn & 0x1f), contents + rel->r_offset);
4034 }
4035 return bfd_reloc_continue;
4036
4037 default:
4038 return bfd_reloc_continue;
4039 }
4040
4041 return bfd_reloc_ok;
4042 }
4043
4044 /* Relocate an AArch64 ELF section. */
4045
4046 static bfd_boolean
4047 elfNN_aarch64_relocate_section (bfd *output_bfd,
4048 struct bfd_link_info *info,
4049 bfd *input_bfd,
4050 asection *input_section,
4051 bfd_byte *contents,
4052 Elf_Internal_Rela *relocs,
4053 Elf_Internal_Sym *local_syms,
4054 asection **local_sections)
4055 {
4056 Elf_Internal_Shdr *symtab_hdr;
4057 struct elf_link_hash_entry **sym_hashes;
4058 Elf_Internal_Rela *rel;
4059 Elf_Internal_Rela *relend;
4060 const char *name;
4061 struct elf_aarch64_link_hash_table *globals;
4062 bfd_boolean save_addend = FALSE;
4063 bfd_vma addend = 0;
4064
4065 globals = elf_aarch64_hash_table (info);
4066
4067 symtab_hdr = &elf_symtab_hdr (input_bfd);
4068 sym_hashes = elf_sym_hashes (input_bfd);
4069
4070 rel = relocs;
4071 relend = relocs + input_section->reloc_count;
4072 for (; rel < relend; rel++)
4073 {
4074 unsigned int r_type;
4075 bfd_reloc_code_real_type bfd_r_type;
4076 bfd_reloc_code_real_type relaxed_bfd_r_type;
4077 reloc_howto_type *howto;
4078 unsigned long r_symndx;
4079 Elf_Internal_Sym *sym;
4080 asection *sec;
4081 struct elf_link_hash_entry *h;
4082 bfd_vma relocation;
4083 bfd_reloc_status_type r;
4084 arelent bfd_reloc;
4085 char sym_type;
4086 bfd_boolean unresolved_reloc = FALSE;
4087 char *error_message = NULL;
4088
4089 r_symndx = ELFNN_R_SYM (rel->r_info);
4090 r_type = ELFNN_R_TYPE (rel->r_info);
4091
4092 bfd_reloc.howto = elfNN_aarch64_howto_from_type (r_type);
4093 howto = bfd_reloc.howto;
4094
4095 if (howto == NULL)
4096 {
4097 (*_bfd_error_handler)
4098 (_("%B: unrecognized relocation (0x%x) in section `%A'"),
4099 input_bfd, input_section, r_type);
4100 return FALSE;
4101 }
4102 bfd_r_type = elfNN_aarch64_bfd_reloc_from_howto (howto);
4103
4104 h = NULL;
4105 sym = NULL;
4106 sec = NULL;
4107
4108 if (r_symndx < symtab_hdr->sh_info)
4109 {
4110 sym = local_syms + r_symndx;
4111 sym_type = ELFNN_ST_TYPE (sym->st_info);
4112 sec = local_sections[r_symndx];
4113
4114 /* An object file might have a reference to a local
4115 undefined symbol. This is a daft object file, but we
4116 should at least do something about it. */
4117 if (r_type != R_AARCH64_NONE && r_type != R_AARCH64_NULL
4118 && bfd_is_und_section (sec)
4119 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
4120 {
4121 if (!info->callbacks->undefined_symbol
4122 (info, bfd_elf_string_from_elf_section
4123 (input_bfd, symtab_hdr->sh_link, sym->st_name),
4124 input_bfd, input_section, rel->r_offset, TRUE))
4125 return FALSE;
4126 }
4127
4128 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
4129
4130 /* Relocate against local STT_GNU_IFUNC symbol. */
4131 if (!info->relocatable
4132 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
4133 {
4134 h = elfNN_aarch64_get_local_sym_hash (globals, input_bfd,
4135 rel, FALSE);
4136 if (h == NULL)
4137 abort ();
4138
4139 /* Set STT_GNU_IFUNC symbol value. */
4140 h->root.u.def.value = sym->st_value;
4141 h->root.u.def.section = sec;
4142 }
4143 }
4144 else
4145 {
4146 bfd_boolean warned, ignored;
4147
4148 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
4149 r_symndx, symtab_hdr, sym_hashes,
4150 h, sec, relocation,
4151 unresolved_reloc, warned, ignored);
4152
4153 sym_type = h->type;
4154 }
4155
4156 if (sec != NULL && discarded_section (sec))
4157 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
4158 rel, 1, relend, howto, 0, contents);
4159
4160 if (info->relocatable)
4161 {
4162 /* This is a relocatable link. We don't have to change
4163 anything, unless the reloc is against a section symbol,
4164 in which case we have to adjust according to where the
4165 section symbol winds up in the output section. */
4166 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
4167 rel->r_addend += sec->output_offset;
4168 continue;
4169 }
4170
4171 if (h != NULL)
4172 name = h->root.root.string;
4173 else
4174 {
4175 name = (bfd_elf_string_from_elf_section
4176 (input_bfd, symtab_hdr->sh_link, sym->st_name));
4177 if (name == NULL || *name == '\0')
4178 name = bfd_section_name (input_bfd, sec);
4179 }
4180
4181 if (r_symndx != 0
4182 && r_type != R_AARCH64_NONE
4183 && r_type != R_AARCH64_NULL
4184 && (h == NULL
4185 || h->root.type == bfd_link_hash_defined
4186 || h->root.type == bfd_link_hash_defweak)
4187 && IS_AARCH64_TLS_RELOC (bfd_r_type) != (sym_type == STT_TLS))
4188 {
4189 (*_bfd_error_handler)
4190 ((sym_type == STT_TLS
4191 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
4192 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
4193 input_bfd,
4194 input_section, (long) rel->r_offset, howto->name, name);
4195 }
4196
4197 /* We relax only if we can see that there can be a valid transition
4198 from a reloc type to another.
4199 We call elfNN_aarch64_final_link_relocate unless we're completely
4200 done, i.e., the relaxation produced the final output we want. */
4201
4202 relaxed_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type,
4203 h, r_symndx);
4204 if (relaxed_bfd_r_type != bfd_r_type)
4205 {
4206 bfd_r_type = relaxed_bfd_r_type;
4207 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
4208 BFD_ASSERT (howto != NULL);
4209 r_type = howto->type;
4210 r = elfNN_aarch64_tls_relax (globals, input_bfd, contents, rel, h);
4211 unresolved_reloc = 0;
4212 }
4213 else
4214 r = bfd_reloc_continue;
4215
4216 /* There may be multiple consecutive relocations for the
4217 same offset. In that case we are supposed to treat the
4218 output of each relocation as the addend for the next. */
4219 if (rel + 1 < relend
4220 && rel->r_offset == rel[1].r_offset
4221 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NONE
4222 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NULL)
4223 save_addend = TRUE;
4224 else
4225 save_addend = FALSE;
4226
4227 if (r == bfd_reloc_continue)
4228 r = elfNN_aarch64_final_link_relocate (howto, input_bfd, output_bfd,
4229 input_section, contents, rel,
4230 relocation, info, sec,
4231 h, &unresolved_reloc,
4232 save_addend, &addend, sym);
4233
4234 switch (elfNN_aarch64_bfd_reloc_from_type (r_type))
4235 {
4236 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4237 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4238 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
4239 {
4240 bfd_boolean need_relocs = FALSE;
4241 bfd_byte *loc;
4242 int indx;
4243 bfd_vma off;
4244
4245 off = symbol_got_offset (input_bfd, h, r_symndx);
4246 indx = h && h->dynindx != -1 ? h->dynindx : 0;
4247
4248 need_relocs =
4249 (info->shared || indx != 0) &&
4250 (h == NULL
4251 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
4252 || h->root.type != bfd_link_hash_undefweak);
4253
4254 BFD_ASSERT (globals->root.srelgot != NULL);
4255
4256 if (need_relocs)
4257 {
4258 Elf_Internal_Rela rela;
4259 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPMOD));
4260 rela.r_addend = 0;
4261 rela.r_offset = globals->root.sgot->output_section->vma +
4262 globals->root.sgot->output_offset + off;
4263
4264
4265 loc = globals->root.srelgot->contents;
4266 loc += globals->root.srelgot->reloc_count++
4267 * RELOC_SIZE (htab);
4268 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
4269
4270 if (indx == 0)
4271 {
4272 bfd_put_NN (output_bfd,
4273 relocation - dtpoff_base (info),
4274 globals->root.sgot->contents + off
4275 + GOT_ENTRY_SIZE);
4276 }
4277 else
4278 {
4279 /* This TLS symbol is global. We emit a
4280 relocation to fixup the tls offset at load
4281 time. */
4282 rela.r_info =
4283 ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPREL));
4284 rela.r_addend = 0;
4285 rela.r_offset =
4286 (globals->root.sgot->output_section->vma
4287 + globals->root.sgot->output_offset + off
4288 + GOT_ENTRY_SIZE);
4289
4290 loc = globals->root.srelgot->contents;
4291 loc += globals->root.srelgot->reloc_count++
4292 * RELOC_SIZE (globals);
4293 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
4294 bfd_put_NN (output_bfd, (bfd_vma) 0,
4295 globals->root.sgot->contents + off
4296 + GOT_ENTRY_SIZE);
4297 }
4298 }
4299 else
4300 {
4301 bfd_put_NN (output_bfd, (bfd_vma) 1,
4302 globals->root.sgot->contents + off);
4303 bfd_put_NN (output_bfd,
4304 relocation - dtpoff_base (info),
4305 globals->root.sgot->contents + off
4306 + GOT_ENTRY_SIZE);
4307 }
4308
4309 symbol_got_offset_mark (input_bfd, h, r_symndx);
4310 }
4311 break;
4312
4313 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4314 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
4315 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
4316 {
4317 bfd_boolean need_relocs = FALSE;
4318 bfd_byte *loc;
4319 int indx;
4320 bfd_vma off;
4321
4322 off = symbol_got_offset (input_bfd, h, r_symndx);
4323
4324 indx = h && h->dynindx != -1 ? h->dynindx : 0;
4325
4326 need_relocs =
4327 (info->shared || indx != 0) &&
4328 (h == NULL
4329 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
4330 || h->root.type != bfd_link_hash_undefweak);
4331
4332 BFD_ASSERT (globals->root.srelgot != NULL);
4333
4334 if (need_relocs)
4335 {
4336 Elf_Internal_Rela rela;
4337
4338 if (indx == 0)
4339 rela.r_addend = relocation - dtpoff_base (info);
4340 else
4341 rela.r_addend = 0;
4342
4343 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_TPREL));
4344 rela.r_offset = globals->root.sgot->output_section->vma +
4345 globals->root.sgot->output_offset + off;
4346
4347 loc = globals->root.srelgot->contents;
4348 loc += globals->root.srelgot->reloc_count++
4349 * RELOC_SIZE (htab);
4350
4351 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
4352
4353 bfd_put_NN (output_bfd, rela.r_addend,
4354 globals->root.sgot->contents + off);
4355 }
4356 else
4357 bfd_put_NN (output_bfd, relocation - tpoff_base (info),
4358 globals->root.sgot->contents + off);
4359
4360 symbol_got_offset_mark (input_bfd, h, r_symndx);
4361 }
4362 break;
4363
4364 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
4365 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
4366 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
4367 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
4368 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
4369 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
4370 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
4371 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
4372 break;
4373
4374 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
4375 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4376 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
4377 if (! symbol_tlsdesc_got_offset_mark_p (input_bfd, h, r_symndx))
4378 {
4379 bfd_boolean need_relocs = FALSE;
4380 int indx = h && h->dynindx != -1 ? h->dynindx : 0;
4381 bfd_vma off = symbol_tlsdesc_got_offset (input_bfd, h, r_symndx);
4382
4383 need_relocs = (h == NULL
4384 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
4385 || h->root.type != bfd_link_hash_undefweak);
4386
4387 BFD_ASSERT (globals->root.srelgot != NULL);
4388 BFD_ASSERT (globals->root.sgot != NULL);
4389
4390 if (need_relocs)
4391 {
4392 bfd_byte *loc;
4393 Elf_Internal_Rela rela;
4394 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLSDESC));
4395
4396 rela.r_addend = 0;
4397 rela.r_offset = (globals->root.sgotplt->output_section->vma
4398 + globals->root.sgotplt->output_offset
4399 + off + globals->sgotplt_jump_table_size);
4400
4401 if (indx == 0)
4402 rela.r_addend = relocation - dtpoff_base (info);
4403
4404 /* Allocate the next available slot in the PLT reloc
4405 section to hold our R_AARCH64_TLSDESC, the next
4406 available slot is determined from reloc_count,
4407 which we step. But note, reloc_count was
4408 artifically moved down while allocating slots for
4409 real PLT relocs such that all of the PLT relocs
4410 will fit above the initial reloc_count and the
4411 extra stuff will fit below. */
4412 loc = globals->root.srelplt->contents;
4413 loc += globals->root.srelplt->reloc_count++
4414 * RELOC_SIZE (globals);
4415
4416 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
4417
4418 bfd_put_NN (output_bfd, (bfd_vma) 0,
4419 globals->root.sgotplt->contents + off +
4420 globals->sgotplt_jump_table_size);
4421 bfd_put_NN (output_bfd, (bfd_vma) 0,
4422 globals->root.sgotplt->contents + off +
4423 globals->sgotplt_jump_table_size +
4424 GOT_ENTRY_SIZE);
4425 }
4426
4427 symbol_tlsdesc_got_offset_mark (input_bfd, h, r_symndx);
4428 }
4429 break;
4430 default:
4431 break;
4432 }
4433
4434 if (!save_addend)
4435 addend = 0;
4436
4437
4438 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
4439 because such sections are not SEC_ALLOC and thus ld.so will
4440 not process them. */
4441 if (unresolved_reloc
4442 && !((input_section->flags & SEC_DEBUGGING) != 0
4443 && h->def_dynamic)
4444 && _bfd_elf_section_offset (output_bfd, info, input_section,
4445 +rel->r_offset) != (bfd_vma) - 1)
4446 {
4447 (*_bfd_error_handler)
4448 (_
4449 ("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
4450 input_bfd, input_section, (long) rel->r_offset, howto->name,
4451 h->root.root.string);
4452 return FALSE;
4453 }
4454
4455 if (r != bfd_reloc_ok && r != bfd_reloc_continue)
4456 {
4457 switch (r)
4458 {
4459 case bfd_reloc_overflow:
4460 /* If the overflowing reloc was to an undefined symbol,
4461 we have already printed one error message and there
4462 is no point complaining again. */
4463 if ((!h ||
4464 h->root.type != bfd_link_hash_undefined)
4465 && (!((*info->callbacks->reloc_overflow)
4466 (info, (h ? &h->root : NULL), name, howto->name,
4467 (bfd_vma) 0, input_bfd, input_section,
4468 rel->r_offset))))
4469 return FALSE;
4470 break;
4471
4472 case bfd_reloc_undefined:
4473 if (!((*info->callbacks->undefined_symbol)
4474 (info, name, input_bfd, input_section,
4475 rel->r_offset, TRUE)))
4476 return FALSE;
4477 break;
4478
4479 case bfd_reloc_outofrange:
4480 error_message = _("out of range");
4481 goto common_error;
4482
4483 case bfd_reloc_notsupported:
4484 error_message = _("unsupported relocation");
4485 goto common_error;
4486
4487 case bfd_reloc_dangerous:
4488 /* error_message should already be set. */
4489 goto common_error;
4490
4491 default:
4492 error_message = _("unknown error");
4493 /* Fall through. */
4494
4495 common_error:
4496 BFD_ASSERT (error_message != NULL);
4497 if (!((*info->callbacks->reloc_dangerous)
4498 (info, error_message, input_bfd, input_section,
4499 rel->r_offset)))
4500 return FALSE;
4501 break;
4502 }
4503 }
4504 }
4505
4506 return TRUE;
4507 }
4508
4509 /* Set the right machine number. */
4510
4511 static bfd_boolean
4512 elfNN_aarch64_object_p (bfd *abfd)
4513 {
4514 #if ARCH_SIZE == 32
4515 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64_ilp32);
4516 #else
4517 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64);
4518 #endif
4519 return TRUE;
4520 }
4521
4522 /* Function to keep AArch64 specific flags in the ELF header. */
4523
4524 static bfd_boolean
4525 elfNN_aarch64_set_private_flags (bfd *abfd, flagword flags)
4526 {
4527 if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags)
4528 {
4529 }
4530 else
4531 {
4532 elf_elfheader (abfd)->e_flags = flags;
4533 elf_flags_init (abfd) = TRUE;
4534 }
4535
4536 return TRUE;
4537 }
4538
4539 /* Merge backend specific data from an object file to the output
4540 object file when linking. */
4541
4542 static bfd_boolean
4543 elfNN_aarch64_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
4544 {
4545 flagword out_flags;
4546 flagword in_flags;
4547 bfd_boolean flags_compatible = TRUE;
4548 asection *sec;
4549
4550 /* Check if we have the same endianess. */
4551 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
4552 return FALSE;
4553
4554 if (!is_aarch64_elf (ibfd) || !is_aarch64_elf (obfd))
4555 return TRUE;
4556
4557 /* The input BFD must have had its flags initialised. */
4558 /* The following seems bogus to me -- The flags are initialized in
4559 the assembler but I don't think an elf_flags_init field is
4560 written into the object. */
4561 /* BFD_ASSERT (elf_flags_init (ibfd)); */
4562
4563 in_flags = elf_elfheader (ibfd)->e_flags;
4564 out_flags = elf_elfheader (obfd)->e_flags;
4565
4566 if (!elf_flags_init (obfd))
4567 {
4568 /* If the input is the default architecture and had the default
4569 flags then do not bother setting the flags for the output
4570 architecture, instead allow future merges to do this. If no
4571 future merges ever set these flags then they will retain their
4572 uninitialised values, which surprise surprise, correspond
4573 to the default values. */
4574 if (bfd_get_arch_info (ibfd)->the_default
4575 && elf_elfheader (ibfd)->e_flags == 0)
4576 return TRUE;
4577
4578 elf_flags_init (obfd) = TRUE;
4579 elf_elfheader (obfd)->e_flags = in_flags;
4580
4581 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
4582 && bfd_get_arch_info (obfd)->the_default)
4583 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
4584 bfd_get_mach (ibfd));
4585
4586 return TRUE;
4587 }
4588
4589 /* Identical flags must be compatible. */
4590 if (in_flags == out_flags)
4591 return TRUE;
4592
4593 /* Check to see if the input BFD actually contains any sections. If
4594 not, its flags may not have been initialised either, but it
4595 cannot actually cause any incompatiblity. Do not short-circuit
4596 dynamic objects; their section list may be emptied by
4597 elf_link_add_object_symbols.
4598
4599 Also check to see if there are no code sections in the input.
4600 In this case there is no need to check for code specific flags.
4601 XXX - do we need to worry about floating-point format compatability
4602 in data sections ? */
4603 if (!(ibfd->flags & DYNAMIC))
4604 {
4605 bfd_boolean null_input_bfd = TRUE;
4606 bfd_boolean only_data_sections = TRUE;
4607
4608 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
4609 {
4610 if ((bfd_get_section_flags (ibfd, sec)
4611 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
4612 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
4613 only_data_sections = FALSE;
4614
4615 null_input_bfd = FALSE;
4616 break;
4617 }
4618
4619 if (null_input_bfd || only_data_sections)
4620 return TRUE;
4621 }
4622
4623 return flags_compatible;
4624 }
4625
4626 /* Display the flags field. */
4627
4628 static bfd_boolean
4629 elfNN_aarch64_print_private_bfd_data (bfd *abfd, void *ptr)
4630 {
4631 FILE *file = (FILE *) ptr;
4632 unsigned long flags;
4633
4634 BFD_ASSERT (abfd != NULL && ptr != NULL);
4635
4636 /* Print normal ELF private data. */
4637 _bfd_elf_print_private_bfd_data (abfd, ptr);
4638
4639 flags = elf_elfheader (abfd)->e_flags;
4640 /* Ignore init flag - it may not be set, despite the flags field
4641 containing valid data. */
4642
4643 /* xgettext:c-format */
4644 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
4645
4646 if (flags)
4647 fprintf (file, _("<Unrecognised flag bits set>"));
4648
4649 fputc ('\n', file);
4650
4651 return TRUE;
4652 }
4653
4654 /* Update the got entry reference counts for the section being removed. */
4655
4656 static bfd_boolean
4657 elfNN_aarch64_gc_sweep_hook (bfd *abfd,
4658 struct bfd_link_info *info,
4659 asection *sec,
4660 const Elf_Internal_Rela * relocs)
4661 {
4662 struct elf_aarch64_link_hash_table *htab;
4663 Elf_Internal_Shdr *symtab_hdr;
4664 struct elf_link_hash_entry **sym_hashes;
4665 struct elf_aarch64_local_symbol *locals;
4666 const Elf_Internal_Rela *rel, *relend;
4667
4668 if (info->relocatable)
4669 return TRUE;
4670
4671 htab = elf_aarch64_hash_table (info);
4672
4673 if (htab == NULL)
4674 return FALSE;
4675
4676 elf_section_data (sec)->local_dynrel = NULL;
4677
4678 symtab_hdr = &elf_symtab_hdr (abfd);
4679 sym_hashes = elf_sym_hashes (abfd);
4680
4681 locals = elf_aarch64_locals (abfd);
4682
4683 relend = relocs + sec->reloc_count;
4684 for (rel = relocs; rel < relend; rel++)
4685 {
4686 unsigned long r_symndx;
4687 unsigned int r_type;
4688 struct elf_link_hash_entry *h = NULL;
4689
4690 r_symndx = ELFNN_R_SYM (rel->r_info);
4691
4692 if (r_symndx >= symtab_hdr->sh_info)
4693 {
4694
4695 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4696 while (h->root.type == bfd_link_hash_indirect
4697 || h->root.type == bfd_link_hash_warning)
4698 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4699 }
4700 else
4701 {
4702 Elf_Internal_Sym *isym;
4703
4704 /* A local symbol. */
4705 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
4706 abfd, r_symndx);
4707
4708 /* Check relocation against local STT_GNU_IFUNC symbol. */
4709 if (isym != NULL
4710 && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
4711 {
4712 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel, FALSE);
4713 if (h == NULL)
4714 abort ();
4715 }
4716 }
4717
4718 if (h)
4719 {
4720 struct elf_aarch64_link_hash_entry *eh;
4721 struct elf_dyn_relocs **pp;
4722 struct elf_dyn_relocs *p;
4723
4724 eh = (struct elf_aarch64_link_hash_entry *) h;
4725
4726 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
4727 if (p->sec == sec)
4728 {
4729 /* Everything must go for SEC. */
4730 *pp = p->next;
4731 break;
4732 }
4733 }
4734
4735 r_type = ELFNN_R_TYPE (rel->r_info);
4736 switch (aarch64_tls_transition (abfd,info, r_type, h ,r_symndx))
4737 {
4738 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
4739 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
4740 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
4741 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
4742 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
4743 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4744 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
4745 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
4746 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4747 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4748 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4749 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
4750 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
4751 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
4752 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
4753 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
4754 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
4755 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
4756 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
4757 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
4758 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
4759 if (h != NULL)
4760 {
4761 if (h->got.refcount > 0)
4762 h->got.refcount -= 1;
4763
4764 if (h->type == STT_GNU_IFUNC)
4765 {
4766 if (h->plt.refcount > 0)
4767 h->plt.refcount -= 1;
4768 }
4769 }
4770 else if (locals != NULL)
4771 {
4772 if (locals[r_symndx].got_refcount > 0)
4773 locals[r_symndx].got_refcount -= 1;
4774 }
4775 break;
4776
4777 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
4778 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
4779 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
4780 if (h != NULL && info->executable)
4781 {
4782 if (h->plt.refcount > 0)
4783 h->plt.refcount -= 1;
4784 }
4785 break;
4786
4787 case BFD_RELOC_AARCH64_CALL26:
4788 case BFD_RELOC_AARCH64_JUMP26:
4789 /* If this is a local symbol then we resolve it
4790 directly without creating a PLT entry. */
4791 if (h == NULL)
4792 continue;
4793
4794 if (h->plt.refcount > 0)
4795 h->plt.refcount -= 1;
4796 break;
4797
4798 case BFD_RELOC_AARCH64_NN:
4799 if (h != NULL && info->executable)
4800 {
4801 if (h->plt.refcount > 0)
4802 h->plt.refcount -= 1;
4803 }
4804 break;
4805
4806 default:
4807 break;
4808 }
4809 }
4810
4811 return TRUE;
4812 }
4813
4814 /* Adjust a symbol defined by a dynamic object and referenced by a
4815 regular object. The current definition is in some section of the
4816 dynamic object, but we're not including those sections. We have to
4817 change the definition to something the rest of the link can
4818 understand. */
4819
4820 static bfd_boolean
4821 elfNN_aarch64_adjust_dynamic_symbol (struct bfd_link_info *info,
4822 struct elf_link_hash_entry *h)
4823 {
4824 struct elf_aarch64_link_hash_table *htab;
4825 asection *s;
4826
4827 /* If this is a function, put it in the procedure linkage table. We
4828 will fill in the contents of the procedure linkage table later,
4829 when we know the address of the .got section. */
4830 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
4831 {
4832 if (h->plt.refcount <= 0
4833 || (h->type != STT_GNU_IFUNC
4834 && (SYMBOL_CALLS_LOCAL (info, h)
4835 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
4836 && h->root.type == bfd_link_hash_undefweak))))
4837 {
4838 /* This case can occur if we saw a CALL26 reloc in
4839 an input file, but the symbol wasn't referred to
4840 by a dynamic object or all references were
4841 garbage collected. In which case we can end up
4842 resolving. */
4843 h->plt.offset = (bfd_vma) - 1;
4844 h->needs_plt = 0;
4845 }
4846
4847 return TRUE;
4848 }
4849 else
4850 /* It's possible that we incorrectly decided a .plt reloc was
4851 needed for an R_X86_64_PC32 reloc to a non-function sym in
4852 check_relocs. We can't decide accurately between function and
4853 non-function syms in check-relocs; Objects loaded later in
4854 the link may change h->type. So fix it now. */
4855 h->plt.offset = (bfd_vma) - 1;
4856
4857
4858 /* If this is a weak symbol, and there is a real definition, the
4859 processor independent code will have arranged for us to see the
4860 real definition first, and we can just use the same value. */
4861 if (h->u.weakdef != NULL)
4862 {
4863 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
4864 || h->u.weakdef->root.type == bfd_link_hash_defweak);
4865 h->root.u.def.section = h->u.weakdef->root.u.def.section;
4866 h->root.u.def.value = h->u.weakdef->root.u.def.value;
4867 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
4868 h->non_got_ref = h->u.weakdef->non_got_ref;
4869 return TRUE;
4870 }
4871
4872 /* If we are creating a shared library, we must presume that the
4873 only references to the symbol are via the global offset table.
4874 For such cases we need not do anything here; the relocations will
4875 be handled correctly by relocate_section. */
4876 if (info->shared)
4877 return TRUE;
4878
4879 /* If there are no references to this symbol that do not use the
4880 GOT, we don't need to generate a copy reloc. */
4881 if (!h->non_got_ref)
4882 return TRUE;
4883
4884 /* If -z nocopyreloc was given, we won't generate them either. */
4885 if (info->nocopyreloc)
4886 {
4887 h->non_got_ref = 0;
4888 return TRUE;
4889 }
4890
4891 /* We must allocate the symbol in our .dynbss section, which will
4892 become part of the .bss section of the executable. There will be
4893 an entry for this symbol in the .dynsym section. The dynamic
4894 object will contain position independent code, so all references
4895 from the dynamic object to this symbol will go through the global
4896 offset table. The dynamic linker will use the .dynsym entry to
4897 determine the address it must put in the global offset table, so
4898 both the dynamic object and the regular object will refer to the
4899 same memory location for the variable. */
4900
4901 htab = elf_aarch64_hash_table (info);
4902
4903 /* We must generate a R_AARCH64_COPY reloc to tell the dynamic linker
4904 to copy the initial value out of the dynamic object and into the
4905 runtime process image. */
4906 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
4907 {
4908 htab->srelbss->size += RELOC_SIZE (htab);
4909 h->needs_copy = 1;
4910 }
4911
4912 s = htab->sdynbss;
4913
4914 return _bfd_elf_adjust_dynamic_copy (h, s);
4915
4916 }
4917
4918 static bfd_boolean
4919 elfNN_aarch64_allocate_local_symbols (bfd *abfd, unsigned number)
4920 {
4921 struct elf_aarch64_local_symbol *locals;
4922 locals = elf_aarch64_locals (abfd);
4923 if (locals == NULL)
4924 {
4925 locals = (struct elf_aarch64_local_symbol *)
4926 bfd_zalloc (abfd, number * sizeof (struct elf_aarch64_local_symbol));
4927 if (locals == NULL)
4928 return FALSE;
4929 elf_aarch64_locals (abfd) = locals;
4930 }
4931 return TRUE;
4932 }
4933
4934 /* Create the .got section to hold the global offset table. */
4935
4936 static bfd_boolean
4937 aarch64_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
4938 {
4939 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4940 flagword flags;
4941 asection *s;
4942 struct elf_link_hash_entry *h;
4943 struct elf_link_hash_table *htab = elf_hash_table (info);
4944
4945 /* This function may be called more than once. */
4946 s = bfd_get_linker_section (abfd, ".got");
4947 if (s != NULL)
4948 return TRUE;
4949
4950 flags = bed->dynamic_sec_flags;
4951
4952 s = bfd_make_section_anyway_with_flags (abfd,
4953 (bed->rela_plts_and_copies_p
4954 ? ".rela.got" : ".rel.got"),
4955 (bed->dynamic_sec_flags
4956 | SEC_READONLY));
4957 if (s == NULL
4958 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
4959 return FALSE;
4960 htab->srelgot = s;
4961
4962 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
4963 if (s == NULL
4964 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
4965 return FALSE;
4966 htab->sgot = s;
4967 htab->sgot->size += GOT_ENTRY_SIZE;
4968
4969 if (bed->want_got_sym)
4970 {
4971 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
4972 (or .got.plt) section. We don't do this in the linker script
4973 because we don't want to define the symbol if we are not creating
4974 a global offset table. */
4975 h = _bfd_elf_define_linkage_sym (abfd, info, s,
4976 "_GLOBAL_OFFSET_TABLE_");
4977 elf_hash_table (info)->hgot = h;
4978 if (h == NULL)
4979 return FALSE;
4980 }
4981
4982 if (bed->want_got_plt)
4983 {
4984 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
4985 if (s == NULL
4986 || !bfd_set_section_alignment (abfd, s,
4987 bed->s->log_file_align))
4988 return FALSE;
4989 htab->sgotplt = s;
4990 }
4991
4992 /* The first bit of the global offset table is the header. */
4993 s->size += bed->got_header_size;
4994
4995 return TRUE;
4996 }
4997
4998 /* Look through the relocs for a section during the first phase. */
4999
5000 static bfd_boolean
5001 elfNN_aarch64_check_relocs (bfd *abfd, struct bfd_link_info *info,
5002 asection *sec, const Elf_Internal_Rela *relocs)
5003 {
5004 Elf_Internal_Shdr *symtab_hdr;
5005 struct elf_link_hash_entry **sym_hashes;
5006 const Elf_Internal_Rela *rel;
5007 const Elf_Internal_Rela *rel_end;
5008 asection *sreloc;
5009
5010 struct elf_aarch64_link_hash_table *htab;
5011
5012 if (info->relocatable)
5013 return TRUE;
5014
5015 BFD_ASSERT (is_aarch64_elf (abfd));
5016
5017 htab = elf_aarch64_hash_table (info);
5018 sreloc = NULL;
5019
5020 symtab_hdr = &elf_symtab_hdr (abfd);
5021 sym_hashes = elf_sym_hashes (abfd);
5022
5023 rel_end = relocs + sec->reloc_count;
5024 for (rel = relocs; rel < rel_end; rel++)
5025 {
5026 struct elf_link_hash_entry *h;
5027 unsigned long r_symndx;
5028 unsigned int r_type;
5029 bfd_reloc_code_real_type bfd_r_type;
5030 Elf_Internal_Sym *isym;
5031
5032 r_symndx = ELFNN_R_SYM (rel->r_info);
5033 r_type = ELFNN_R_TYPE (rel->r_info);
5034
5035 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
5036 {
5037 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
5038 r_symndx);
5039 return FALSE;
5040 }
5041
5042 if (r_symndx < symtab_hdr->sh_info)
5043 {
5044 /* A local symbol. */
5045 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5046 abfd, r_symndx);
5047 if (isym == NULL)
5048 return FALSE;
5049
5050 /* Check relocation against local STT_GNU_IFUNC symbol. */
5051 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
5052 {
5053 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel,
5054 TRUE);
5055 if (h == NULL)
5056 return FALSE;
5057
5058 /* Fake a STT_GNU_IFUNC symbol. */
5059 h->type = STT_GNU_IFUNC;
5060 h->def_regular = 1;
5061 h->ref_regular = 1;
5062 h->forced_local = 1;
5063 h->root.type = bfd_link_hash_defined;
5064 }
5065 else
5066 h = NULL;
5067 }
5068 else
5069 {
5070 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5071 while (h->root.type == bfd_link_hash_indirect
5072 || h->root.type == bfd_link_hash_warning)
5073 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5074
5075 /* PR15323, ref flags aren't set for references in the same
5076 object. */
5077 h->root.non_ir_ref = 1;
5078 }
5079
5080 /* Could be done earlier, if h were already available. */
5081 bfd_r_type = aarch64_tls_transition (abfd, info, r_type, h, r_symndx);
5082
5083 if (h != NULL)
5084 {
5085 /* Create the ifunc sections for static executables. If we
5086 never see an indirect function symbol nor we are building
5087 a static executable, those sections will be empty and
5088 won't appear in output. */
5089 switch (bfd_r_type)
5090 {
5091 default:
5092 break;
5093
5094 case BFD_RELOC_AARCH64_NN:
5095 case BFD_RELOC_AARCH64_CALL26:
5096 case BFD_RELOC_AARCH64_JUMP26:
5097 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5098 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5099 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5100 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5101 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5102 case BFD_RELOC_AARCH64_ADD_LO12:
5103 if (htab->root.dynobj == NULL)
5104 htab->root.dynobj = abfd;
5105 if (!_bfd_elf_create_ifunc_sections (htab->root.dynobj, info))
5106 return FALSE;
5107 break;
5108 }
5109
5110 /* It is referenced by a non-shared object. */
5111 h->ref_regular = 1;
5112 h->root.non_ir_ref = 1;
5113 }
5114
5115 switch (bfd_r_type)
5116 {
5117 case BFD_RELOC_AARCH64_NN:
5118
5119 /* We don't need to handle relocs into sections not going into
5120 the "real" output. */
5121 if ((sec->flags & SEC_ALLOC) == 0)
5122 break;
5123
5124 if (h != NULL)
5125 {
5126 if (!info->shared)
5127 h->non_got_ref = 1;
5128
5129 h->plt.refcount += 1;
5130 h->pointer_equality_needed = 1;
5131 }
5132
5133 /* No need to do anything if we're not creating a shared
5134 object. */
5135 if (! info->shared)
5136 break;
5137
5138 {
5139 struct elf_dyn_relocs *p;
5140 struct elf_dyn_relocs **head;
5141
5142 /* We must copy these reloc types into the output file.
5143 Create a reloc section in dynobj and make room for
5144 this reloc. */
5145 if (sreloc == NULL)
5146 {
5147 if (htab->root.dynobj == NULL)
5148 htab->root.dynobj = abfd;
5149
5150 sreloc = _bfd_elf_make_dynamic_reloc_section
5151 (sec, htab->root.dynobj, LOG_FILE_ALIGN, abfd, /*rela? */ TRUE);
5152
5153 if (sreloc == NULL)
5154 return FALSE;
5155 }
5156
5157 /* If this is a global symbol, we count the number of
5158 relocations we need for this symbol. */
5159 if (h != NULL)
5160 {
5161 struct elf_aarch64_link_hash_entry *eh;
5162 eh = (struct elf_aarch64_link_hash_entry *) h;
5163 head = &eh->dyn_relocs;
5164 }
5165 else
5166 {
5167 /* Track dynamic relocs needed for local syms too.
5168 We really need local syms available to do this
5169 easily. Oh well. */
5170
5171 asection *s;
5172 void **vpp;
5173
5174 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5175 abfd, r_symndx);
5176 if (isym == NULL)
5177 return FALSE;
5178
5179 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5180 if (s == NULL)
5181 s = sec;
5182
5183 /* Beware of type punned pointers vs strict aliasing
5184 rules. */
5185 vpp = &(elf_section_data (s)->local_dynrel);
5186 head = (struct elf_dyn_relocs **) vpp;
5187 }
5188
5189 p = *head;
5190 if (p == NULL || p->sec != sec)
5191 {
5192 bfd_size_type amt = sizeof *p;
5193 p = ((struct elf_dyn_relocs *)
5194 bfd_zalloc (htab->root.dynobj, amt));
5195 if (p == NULL)
5196 return FALSE;
5197 p->next = *head;
5198 *head = p;
5199 p->sec = sec;
5200 }
5201
5202 p->count += 1;
5203
5204 }
5205 break;
5206
5207 /* RR: We probably want to keep a consistency check that
5208 there are no dangling GOT_PAGE relocs. */
5209 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5210 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5211 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5212 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5213 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
5214 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
5215 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
5216 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
5217 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
5218 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
5219 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5220 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
5221 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5222 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
5223 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
5224 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
5225 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
5226 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5227 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
5228 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5229 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
5230 {
5231 unsigned got_type;
5232 unsigned old_got_type;
5233
5234 got_type = aarch64_reloc_got_type (bfd_r_type);
5235
5236 if (h)
5237 {
5238 h->got.refcount += 1;
5239 old_got_type = elf_aarch64_hash_entry (h)->got_type;
5240 }
5241 else
5242 {
5243 struct elf_aarch64_local_symbol *locals;
5244
5245 if (!elfNN_aarch64_allocate_local_symbols
5246 (abfd, symtab_hdr->sh_info))
5247 return FALSE;
5248
5249 locals = elf_aarch64_locals (abfd);
5250 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
5251 locals[r_symndx].got_refcount += 1;
5252 old_got_type = locals[r_symndx].got_type;
5253 }
5254
5255 /* If a variable is accessed with both general dynamic TLS
5256 methods, two slots may be created. */
5257 if (GOT_TLS_GD_ANY_P (old_got_type) && GOT_TLS_GD_ANY_P (got_type))
5258 got_type |= old_got_type;
5259
5260 /* We will already have issued an error message if there
5261 is a TLS/non-TLS mismatch, based on the symbol type.
5262 So just combine any TLS types needed. */
5263 if (old_got_type != GOT_UNKNOWN && old_got_type != GOT_NORMAL
5264 && got_type != GOT_NORMAL)
5265 got_type |= old_got_type;
5266
5267 /* If the symbol is accessed by both IE and GD methods, we
5268 are able to relax. Turn off the GD flag, without
5269 messing up with any other kind of TLS types that may be
5270 involved. */
5271 if ((got_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (got_type))
5272 got_type &= ~ (GOT_TLSDESC_GD | GOT_TLS_GD);
5273
5274 if (old_got_type != got_type)
5275 {
5276 if (h != NULL)
5277 elf_aarch64_hash_entry (h)->got_type = got_type;
5278 else
5279 {
5280 struct elf_aarch64_local_symbol *locals;
5281 locals = elf_aarch64_locals (abfd);
5282 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
5283 locals[r_symndx].got_type = got_type;
5284 }
5285 }
5286
5287 if (htab->root.dynobj == NULL)
5288 htab->root.dynobj = abfd;
5289 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
5290 return FALSE;
5291 break;
5292 }
5293
5294 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
5295 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5296 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
5297 if (h != NULL && info->executable)
5298 {
5299 /* If this reloc is in a read-only section, we might
5300 need a copy reloc. We can't check reliably at this
5301 stage whether the section is read-only, as input
5302 sections have not yet been mapped to output sections.
5303 Tentatively set the flag for now, and correct in
5304 adjust_dynamic_symbol. */
5305 h->non_got_ref = 1;
5306 h->plt.refcount += 1;
5307 h->pointer_equality_needed = 1;
5308 }
5309 /* FIXME:: RR need to handle these in shared libraries
5310 and essentially bomb out as these being non-PIC
5311 relocations in shared libraries. */
5312 break;
5313
5314 case BFD_RELOC_AARCH64_CALL26:
5315 case BFD_RELOC_AARCH64_JUMP26:
5316 /* If this is a local symbol then we resolve it
5317 directly without creating a PLT entry. */
5318 if (h == NULL)
5319 continue;
5320
5321 h->needs_plt = 1;
5322 if (h->plt.refcount <= 0)
5323 h->plt.refcount = 1;
5324 else
5325 h->plt.refcount += 1;
5326 break;
5327
5328 default:
5329 break;
5330 }
5331 }
5332
5333 return TRUE;
5334 }
5335
5336 /* Treat mapping symbols as special target symbols. */
5337
5338 static bfd_boolean
5339 elfNN_aarch64_is_target_special_symbol (bfd *abfd ATTRIBUTE_UNUSED,
5340 asymbol *sym)
5341 {
5342 return bfd_is_aarch64_special_symbol_name (sym->name,
5343 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY);
5344 }
5345
5346 /* This is a copy of elf_find_function () from elf.c except that
5347 AArch64 mapping symbols are ignored when looking for function names. */
5348
5349 static bfd_boolean
5350 aarch64_elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
5351 asection *section,
5352 asymbol **symbols,
5353 bfd_vma offset,
5354 const char **filename_ptr,
5355 const char **functionname_ptr)
5356 {
5357 const char *filename = NULL;
5358 asymbol *func = NULL;
5359 bfd_vma low_func = 0;
5360 asymbol **p;
5361
5362 for (p = symbols; *p != NULL; p++)
5363 {
5364 elf_symbol_type *q;
5365
5366 q = (elf_symbol_type *) * p;
5367
5368 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
5369 {
5370 default:
5371 break;
5372 case STT_FILE:
5373 filename = bfd_asymbol_name (&q->symbol);
5374 break;
5375 case STT_FUNC:
5376 case STT_NOTYPE:
5377 /* Skip mapping symbols. */
5378 if ((q->symbol.flags & BSF_LOCAL)
5379 && (bfd_is_aarch64_special_symbol_name
5380 (q->symbol.name, BFD_AARCH64_SPECIAL_SYM_TYPE_ANY)))
5381 continue;
5382 /* Fall through. */
5383 if (bfd_get_section (&q->symbol) == section
5384 && q->symbol.value >= low_func && q->symbol.value <= offset)
5385 {
5386 func = (asymbol *) q;
5387 low_func = q->symbol.value;
5388 }
5389 break;
5390 }
5391 }
5392
5393 if (func == NULL)
5394 return FALSE;
5395
5396 if (filename_ptr)
5397 *filename_ptr = filename;
5398 if (functionname_ptr)
5399 *functionname_ptr = bfd_asymbol_name (func);
5400
5401 return TRUE;
5402 }
5403
5404
5405 /* Find the nearest line to a particular section and offset, for error
5406 reporting. This code is a duplicate of the code in elf.c, except
5407 that it uses aarch64_elf_find_function. */
5408
5409 static bfd_boolean
5410 elfNN_aarch64_find_nearest_line (bfd *abfd,
5411 asection *section,
5412 asymbol **symbols,
5413 bfd_vma offset,
5414 const char **filename_ptr,
5415 const char **functionname_ptr,
5416 unsigned int *line_ptr)
5417 {
5418 bfd_boolean found = FALSE;
5419
5420 /* We skip _bfd_dwarf1_find_nearest_line since no known AArch64
5421 toolchain uses it. */
5422
5423 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
5424 section, symbols, offset,
5425 filename_ptr, functionname_ptr,
5426 line_ptr, NULL, 0,
5427 &elf_tdata (abfd)->dwarf2_find_line_info))
5428 {
5429 if (!*functionname_ptr)
5430 aarch64_elf_find_function (abfd, section, symbols, offset,
5431 *filename_ptr ? NULL : filename_ptr,
5432 functionname_ptr);
5433
5434 return TRUE;
5435 }
5436
5437 if (!_bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
5438 &found, filename_ptr,
5439 functionname_ptr, line_ptr,
5440 &elf_tdata (abfd)->line_info))
5441 return FALSE;
5442
5443 if (found && (*functionname_ptr || *line_ptr))
5444 return TRUE;
5445
5446 if (symbols == NULL)
5447 return FALSE;
5448
5449 if (!aarch64_elf_find_function (abfd, section, symbols, offset,
5450 filename_ptr, functionname_ptr))
5451 return FALSE;
5452
5453 *line_ptr = 0;
5454 return TRUE;
5455 }
5456
5457 static bfd_boolean
5458 elfNN_aarch64_find_inliner_info (bfd *abfd,
5459 const char **filename_ptr,
5460 const char **functionname_ptr,
5461 unsigned int *line_ptr)
5462 {
5463 bfd_boolean found;
5464 found = _bfd_dwarf2_find_inliner_info
5465 (abfd, filename_ptr,
5466 functionname_ptr, line_ptr, &elf_tdata (abfd)->dwarf2_find_line_info);
5467 return found;
5468 }
5469
5470
5471 static void
5472 elfNN_aarch64_post_process_headers (bfd *abfd,
5473 struct bfd_link_info *link_info)
5474 {
5475 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
5476
5477 i_ehdrp = elf_elfheader (abfd);
5478 i_ehdrp->e_ident[EI_ABIVERSION] = AARCH64_ELF_ABI_VERSION;
5479
5480 _bfd_elf_post_process_headers (abfd, link_info);
5481 }
5482
5483 static enum elf_reloc_type_class
5484 elfNN_aarch64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
5485 const asection *rel_sec ATTRIBUTE_UNUSED,
5486 const Elf_Internal_Rela *rela)
5487 {
5488 switch ((int) ELFNN_R_TYPE (rela->r_info))
5489 {
5490 case AARCH64_R (RELATIVE):
5491 return reloc_class_relative;
5492 case AARCH64_R (JUMP_SLOT):
5493 return reloc_class_plt;
5494 case AARCH64_R (COPY):
5495 return reloc_class_copy;
5496 default:
5497 return reloc_class_normal;
5498 }
5499 }
5500
5501 /* Handle an AArch64 specific section when reading an object file. This is
5502 called when bfd_section_from_shdr finds a section with an unknown
5503 type. */
5504
5505 static bfd_boolean
5506 elfNN_aarch64_section_from_shdr (bfd *abfd,
5507 Elf_Internal_Shdr *hdr,
5508 const char *name, int shindex)
5509 {
5510 /* There ought to be a place to keep ELF backend specific flags, but
5511 at the moment there isn't one. We just keep track of the
5512 sections by their name, instead. Fortunately, the ABI gives
5513 names for all the AArch64 specific sections, so we will probably get
5514 away with this. */
5515 switch (hdr->sh_type)
5516 {
5517 case SHT_AARCH64_ATTRIBUTES:
5518 break;
5519
5520 default:
5521 return FALSE;
5522 }
5523
5524 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5525 return FALSE;
5526
5527 return TRUE;
5528 }
5529
5530 /* A structure used to record a list of sections, independently
5531 of the next and prev fields in the asection structure. */
5532 typedef struct section_list
5533 {
5534 asection *sec;
5535 struct section_list *next;
5536 struct section_list *prev;
5537 }
5538 section_list;
5539
5540 /* Unfortunately we need to keep a list of sections for which
5541 an _aarch64_elf_section_data structure has been allocated. This
5542 is because it is possible for functions like elfNN_aarch64_write_section
5543 to be called on a section which has had an elf_data_structure
5544 allocated for it (and so the used_by_bfd field is valid) but
5545 for which the AArch64 extended version of this structure - the
5546 _aarch64_elf_section_data structure - has not been allocated. */
5547 static section_list *sections_with_aarch64_elf_section_data = NULL;
5548
5549 static void
5550 record_section_with_aarch64_elf_section_data (asection *sec)
5551 {
5552 struct section_list *entry;
5553
5554 entry = bfd_malloc (sizeof (*entry));
5555 if (entry == NULL)
5556 return;
5557 entry->sec = sec;
5558 entry->next = sections_with_aarch64_elf_section_data;
5559 entry->prev = NULL;
5560 if (entry->next != NULL)
5561 entry->next->prev = entry;
5562 sections_with_aarch64_elf_section_data = entry;
5563 }
5564
5565 static struct section_list *
5566 find_aarch64_elf_section_entry (asection *sec)
5567 {
5568 struct section_list *entry;
5569 static struct section_list *last_entry = NULL;
5570
5571 /* This is a short cut for the typical case where the sections are added
5572 to the sections_with_aarch64_elf_section_data list in forward order and
5573 then looked up here in backwards order. This makes a real difference
5574 to the ld-srec/sec64k.exp linker test. */
5575 entry = sections_with_aarch64_elf_section_data;
5576 if (last_entry != NULL)
5577 {
5578 if (last_entry->sec == sec)
5579 entry = last_entry;
5580 else if (last_entry->next != NULL && last_entry->next->sec == sec)
5581 entry = last_entry->next;
5582 }
5583
5584 for (; entry; entry = entry->next)
5585 if (entry->sec == sec)
5586 break;
5587
5588 if (entry)
5589 /* Record the entry prior to this one - it is the entry we are
5590 most likely to want to locate next time. Also this way if we
5591 have been called from
5592 unrecord_section_with_aarch64_elf_section_data () we will not
5593 be caching a pointer that is about to be freed. */
5594 last_entry = entry->prev;
5595
5596 return entry;
5597 }
5598
5599 static void
5600 unrecord_section_with_aarch64_elf_section_data (asection *sec)
5601 {
5602 struct section_list *entry;
5603
5604 entry = find_aarch64_elf_section_entry (sec);
5605
5606 if (entry)
5607 {
5608 if (entry->prev != NULL)
5609 entry->prev->next = entry->next;
5610 if (entry->next != NULL)
5611 entry->next->prev = entry->prev;
5612 if (entry == sections_with_aarch64_elf_section_data)
5613 sections_with_aarch64_elf_section_data = entry->next;
5614 free (entry);
5615 }
5616 }
5617
5618
5619 typedef struct
5620 {
5621 void *finfo;
5622 struct bfd_link_info *info;
5623 asection *sec;
5624 int sec_shndx;
5625 int (*func) (void *, const char *, Elf_Internal_Sym *,
5626 asection *, struct elf_link_hash_entry *);
5627 } output_arch_syminfo;
5628
5629 enum map_symbol_type
5630 {
5631 AARCH64_MAP_INSN,
5632 AARCH64_MAP_DATA
5633 };
5634
5635
5636 /* Output a single mapping symbol. */
5637
5638 static bfd_boolean
5639 elfNN_aarch64_output_map_sym (output_arch_syminfo *osi,
5640 enum map_symbol_type type, bfd_vma offset)
5641 {
5642 static const char *names[2] = { "$x", "$d" };
5643 Elf_Internal_Sym sym;
5644
5645 sym.st_value = (osi->sec->output_section->vma
5646 + osi->sec->output_offset + offset);
5647 sym.st_size = 0;
5648 sym.st_other = 0;
5649 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
5650 sym.st_shndx = osi->sec_shndx;
5651 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
5652 }
5653
5654
5655
5656 /* Output mapping symbols for PLT entries associated with H. */
5657
5658 static bfd_boolean
5659 elfNN_aarch64_output_plt_map (struct elf_link_hash_entry *h, void *inf)
5660 {
5661 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
5662 bfd_vma addr;
5663
5664 if (h->root.type == bfd_link_hash_indirect)
5665 return TRUE;
5666
5667 if (h->root.type == bfd_link_hash_warning)
5668 /* When warning symbols are created, they **replace** the "real"
5669 entry in the hash table, thus we never get to see the real
5670 symbol in a hash traversal. So look at it now. */
5671 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5672
5673 if (h->plt.offset == (bfd_vma) - 1)
5674 return TRUE;
5675
5676 addr = h->plt.offset;
5677 if (addr == 32)
5678 {
5679 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
5680 return FALSE;
5681 }
5682 return TRUE;
5683 }
5684
5685
5686 /* Output a single local symbol for a generated stub. */
5687
5688 static bfd_boolean
5689 elfNN_aarch64_output_stub_sym (output_arch_syminfo *osi, const char *name,
5690 bfd_vma offset, bfd_vma size)
5691 {
5692 Elf_Internal_Sym sym;
5693
5694 sym.st_value = (osi->sec->output_section->vma
5695 + osi->sec->output_offset + offset);
5696 sym.st_size = size;
5697 sym.st_other = 0;
5698 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5699 sym.st_shndx = osi->sec_shndx;
5700 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
5701 }
5702
5703 static bfd_boolean
5704 aarch64_map_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
5705 {
5706 struct elf_aarch64_stub_hash_entry *stub_entry;
5707 asection *stub_sec;
5708 bfd_vma addr;
5709 char *stub_name;
5710 output_arch_syminfo *osi;
5711
5712 /* Massage our args to the form they really have. */
5713 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
5714 osi = (output_arch_syminfo *) in_arg;
5715
5716 stub_sec = stub_entry->stub_sec;
5717
5718 /* Ensure this stub is attached to the current section being
5719 processed. */
5720 if (stub_sec != osi->sec)
5721 return TRUE;
5722
5723 addr = (bfd_vma) stub_entry->stub_offset;
5724
5725 stub_name = stub_entry->output_name;
5726
5727 switch (stub_entry->stub_type)
5728 {
5729 case aarch64_stub_adrp_branch:
5730 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
5731 sizeof (aarch64_adrp_branch_stub)))
5732 return FALSE;
5733 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
5734 return FALSE;
5735 break;
5736 case aarch64_stub_long_branch:
5737 if (!elfNN_aarch64_output_stub_sym
5738 (osi, stub_name, addr, sizeof (aarch64_long_branch_stub)))
5739 return FALSE;
5740 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
5741 return FALSE;
5742 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_DATA, addr + 16))
5743 return FALSE;
5744 break;
5745 default:
5746 BFD_FAIL ();
5747 }
5748
5749 return TRUE;
5750 }
5751
5752 /* Output mapping symbols for linker generated sections. */
5753
5754 static bfd_boolean
5755 elfNN_aarch64_output_arch_local_syms (bfd *output_bfd,
5756 struct bfd_link_info *info,
5757 void *finfo,
5758 int (*func) (void *, const char *,
5759 Elf_Internal_Sym *,
5760 asection *,
5761 struct elf_link_hash_entry
5762 *))
5763 {
5764 output_arch_syminfo osi;
5765 struct elf_aarch64_link_hash_table *htab;
5766
5767 htab = elf_aarch64_hash_table (info);
5768
5769 osi.finfo = finfo;
5770 osi.info = info;
5771 osi.func = func;
5772
5773 /* Long calls stubs. */
5774 if (htab->stub_bfd && htab->stub_bfd->sections)
5775 {
5776 asection *stub_sec;
5777
5778 for (stub_sec = htab->stub_bfd->sections;
5779 stub_sec != NULL; stub_sec = stub_sec->next)
5780 {
5781 /* Ignore non-stub sections. */
5782 if (!strstr (stub_sec->name, STUB_SUFFIX))
5783 continue;
5784
5785 osi.sec = stub_sec;
5786
5787 osi.sec_shndx = _bfd_elf_section_from_bfd_section
5788 (output_bfd, osi.sec->output_section);
5789
5790 bfd_hash_traverse (&htab->stub_hash_table, aarch64_map_one_stub,
5791 &osi);
5792 }
5793 }
5794
5795 /* Finally, output mapping symbols for the PLT. */
5796 if (!htab->root.splt || htab->root.splt->size == 0)
5797 return TRUE;
5798
5799 /* For now live without mapping symbols for the plt. */
5800 osi.sec_shndx = _bfd_elf_section_from_bfd_section
5801 (output_bfd, htab->root.splt->output_section);
5802 osi.sec = htab->root.splt;
5803
5804 elf_link_hash_traverse (&htab->root, elfNN_aarch64_output_plt_map,
5805 (void *) &osi);
5806
5807 return TRUE;
5808
5809 }
5810
5811 /* Allocate target specific section data. */
5812
5813 static bfd_boolean
5814 elfNN_aarch64_new_section_hook (bfd *abfd, asection *sec)
5815 {
5816 if (!sec->used_by_bfd)
5817 {
5818 _aarch64_elf_section_data *sdata;
5819 bfd_size_type amt = sizeof (*sdata);
5820
5821 sdata = bfd_zalloc (abfd, amt);
5822 if (sdata == NULL)
5823 return FALSE;
5824 sec->used_by_bfd = sdata;
5825 }
5826
5827 record_section_with_aarch64_elf_section_data (sec);
5828
5829 return _bfd_elf_new_section_hook (abfd, sec);
5830 }
5831
5832
5833 static void
5834 unrecord_section_via_map_over_sections (bfd *abfd ATTRIBUTE_UNUSED,
5835 asection *sec,
5836 void *ignore ATTRIBUTE_UNUSED)
5837 {
5838 unrecord_section_with_aarch64_elf_section_data (sec);
5839 }
5840
5841 static bfd_boolean
5842 elfNN_aarch64_close_and_cleanup (bfd *abfd)
5843 {
5844 if (abfd->sections)
5845 bfd_map_over_sections (abfd,
5846 unrecord_section_via_map_over_sections, NULL);
5847
5848 return _bfd_elf_close_and_cleanup (abfd);
5849 }
5850
5851 static bfd_boolean
5852 elfNN_aarch64_bfd_free_cached_info (bfd *abfd)
5853 {
5854 if (abfd->sections)
5855 bfd_map_over_sections (abfd,
5856 unrecord_section_via_map_over_sections, NULL);
5857
5858 return _bfd_free_cached_info (abfd);
5859 }
5860
5861 /* Create dynamic sections. This is different from the ARM backend in that
5862 the got, plt, gotplt and their relocation sections are all created in the
5863 standard part of the bfd elf backend. */
5864
5865 static bfd_boolean
5866 elfNN_aarch64_create_dynamic_sections (bfd *dynobj,
5867 struct bfd_link_info *info)
5868 {
5869 struct elf_aarch64_link_hash_table *htab;
5870
5871 /* We need to create .got section. */
5872 if (!aarch64_elf_create_got_section (dynobj, info))
5873 return FALSE;
5874
5875 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
5876 return FALSE;
5877
5878 htab = elf_aarch64_hash_table (info);
5879 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
5880 if (!info->shared)
5881 htab->srelbss = bfd_get_linker_section (dynobj, ".rela.bss");
5882
5883 if (!htab->sdynbss || (!info->shared && !htab->srelbss))
5884 abort ();
5885
5886 return TRUE;
5887 }
5888
5889
5890 /* Allocate space in .plt, .got and associated reloc sections for
5891 dynamic relocs. */
5892
5893 static bfd_boolean
5894 elfNN_aarch64_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
5895 {
5896 struct bfd_link_info *info;
5897 struct elf_aarch64_link_hash_table *htab;
5898 struct elf_aarch64_link_hash_entry *eh;
5899 struct elf_dyn_relocs *p;
5900
5901 /* An example of a bfd_link_hash_indirect symbol is versioned
5902 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
5903 -> __gxx_personality_v0(bfd_link_hash_defined)
5904
5905 There is no need to process bfd_link_hash_indirect symbols here
5906 because we will also be presented with the concrete instance of
5907 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
5908 called to copy all relevant data from the generic to the concrete
5909 symbol instance.
5910 */
5911 if (h->root.type == bfd_link_hash_indirect)
5912 return TRUE;
5913
5914 if (h->root.type == bfd_link_hash_warning)
5915 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5916
5917 info = (struct bfd_link_info *) inf;
5918 htab = elf_aarch64_hash_table (info);
5919
5920 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
5921 here if it is defined and referenced in a non-shared object. */
5922 if (h->type == STT_GNU_IFUNC
5923 && h->def_regular)
5924 return TRUE;
5925 else if (htab->root.dynamic_sections_created && h->plt.refcount > 0)
5926 {
5927 /* Make sure this symbol is output as a dynamic symbol.
5928 Undefined weak syms won't yet be marked as dynamic. */
5929 if (h->dynindx == -1 && !h->forced_local)
5930 {
5931 if (!bfd_elf_link_record_dynamic_symbol (info, h))
5932 return FALSE;
5933 }
5934
5935 if (info->shared || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
5936 {
5937 asection *s = htab->root.splt;
5938
5939 /* If this is the first .plt entry, make room for the special
5940 first entry. */
5941 if (s->size == 0)
5942 s->size += htab->plt_header_size;
5943
5944 h->plt.offset = s->size;
5945
5946 /* If this symbol is not defined in a regular file, and we are
5947 not generating a shared library, then set the symbol to this
5948 location in the .plt. This is required to make function
5949 pointers compare as equal between the normal executable and
5950 the shared library. */
5951 if (!info->shared && !h->def_regular)
5952 {
5953 h->root.u.def.section = s;
5954 h->root.u.def.value = h->plt.offset;
5955 }
5956
5957 /* Make room for this entry. For now we only create the
5958 small model PLT entries. We later need to find a way
5959 of relaxing into these from the large model PLT entries. */
5960 s->size += PLT_SMALL_ENTRY_SIZE;
5961
5962 /* We also need to make an entry in the .got.plt section, which
5963 will be placed in the .got section by the linker script. */
5964 htab->root.sgotplt->size += GOT_ENTRY_SIZE;
5965
5966 /* We also need to make an entry in the .rela.plt section. */
5967 htab->root.srelplt->size += RELOC_SIZE (htab);
5968
5969 /* We need to ensure that all GOT entries that serve the PLT
5970 are consecutive with the special GOT slots [0] [1] and
5971 [2]. Any addtional relocations, such as
5972 R_AARCH64_TLSDESC, must be placed after the PLT related
5973 entries. We abuse the reloc_count such that during
5974 sizing we adjust reloc_count to indicate the number of
5975 PLT related reserved entries. In subsequent phases when
5976 filling in the contents of the reloc entries, PLT related
5977 entries are placed by computing their PLT index (0
5978 .. reloc_count). While other none PLT relocs are placed
5979 at the slot indicated by reloc_count and reloc_count is
5980 updated. */
5981
5982 htab->root.srelplt->reloc_count++;
5983 }
5984 else
5985 {
5986 h->plt.offset = (bfd_vma) - 1;
5987 h->needs_plt = 0;
5988 }
5989 }
5990 else
5991 {
5992 h->plt.offset = (bfd_vma) - 1;
5993 h->needs_plt = 0;
5994 }
5995
5996 eh = (struct elf_aarch64_link_hash_entry *) h;
5997 eh->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
5998
5999 if (h->got.refcount > 0)
6000 {
6001 bfd_boolean dyn;
6002 unsigned got_type = elf_aarch64_hash_entry (h)->got_type;
6003
6004 h->got.offset = (bfd_vma) - 1;
6005
6006 dyn = htab->root.dynamic_sections_created;
6007
6008 /* Make sure this symbol is output as a dynamic symbol.
6009 Undefined weak syms won't yet be marked as dynamic. */
6010 if (dyn && h->dynindx == -1 && !h->forced_local)
6011 {
6012 if (!bfd_elf_link_record_dynamic_symbol (info, h))
6013 return FALSE;
6014 }
6015
6016 if (got_type == GOT_UNKNOWN)
6017 {
6018 }
6019 else if (got_type == GOT_NORMAL)
6020 {
6021 h->got.offset = htab->root.sgot->size;
6022 htab->root.sgot->size += GOT_ENTRY_SIZE;
6023 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6024 || h->root.type != bfd_link_hash_undefweak)
6025 && (info->shared
6026 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
6027 {
6028 htab->root.srelgot->size += RELOC_SIZE (htab);
6029 }
6030 }
6031 else
6032 {
6033 int indx;
6034 if (got_type & GOT_TLSDESC_GD)
6035 {
6036 eh->tlsdesc_got_jump_table_offset =
6037 (htab->root.sgotplt->size
6038 - aarch64_compute_jump_table_size (htab));
6039 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
6040 h->got.offset = (bfd_vma) - 2;
6041 }
6042
6043 if (got_type & GOT_TLS_GD)
6044 {
6045 h->got.offset = htab->root.sgot->size;
6046 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
6047 }
6048
6049 if (got_type & GOT_TLS_IE)
6050 {
6051 h->got.offset = htab->root.sgot->size;
6052 htab->root.sgot->size += GOT_ENTRY_SIZE;
6053 }
6054
6055 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6056 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6057 || h->root.type != bfd_link_hash_undefweak)
6058 && (info->shared
6059 || indx != 0
6060 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
6061 {
6062 if (got_type & GOT_TLSDESC_GD)
6063 {
6064 htab->root.srelplt->size += RELOC_SIZE (htab);
6065 /* Note reloc_count not incremented here! We have
6066 already adjusted reloc_count for this relocation
6067 type. */
6068
6069 /* TLSDESC PLT is now needed, but not yet determined. */
6070 htab->tlsdesc_plt = (bfd_vma) - 1;
6071 }
6072
6073 if (got_type & GOT_TLS_GD)
6074 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
6075
6076 if (got_type & GOT_TLS_IE)
6077 htab->root.srelgot->size += RELOC_SIZE (htab);
6078 }
6079 }
6080 }
6081 else
6082 {
6083 h->got.offset = (bfd_vma) - 1;
6084 }
6085
6086 if (eh->dyn_relocs == NULL)
6087 return TRUE;
6088
6089 /* In the shared -Bsymbolic case, discard space allocated for
6090 dynamic pc-relative relocs against symbols which turn out to be
6091 defined in regular objects. For the normal shared case, discard
6092 space for pc-relative relocs that have become local due to symbol
6093 visibility changes. */
6094
6095 if (info->shared)
6096 {
6097 /* Relocs that use pc_count are those that appear on a call
6098 insn, or certain REL relocs that can generated via assembly.
6099 We want calls to protected symbols to resolve directly to the
6100 function rather than going via the plt. If people want
6101 function pointer comparisons to work as expected then they
6102 should avoid writing weird assembly. */
6103 if (SYMBOL_CALLS_LOCAL (info, h))
6104 {
6105 struct elf_dyn_relocs **pp;
6106
6107 for (pp = &eh->dyn_relocs; (p = *pp) != NULL;)
6108 {
6109 p->count -= p->pc_count;
6110 p->pc_count = 0;
6111 if (p->count == 0)
6112 *pp = p->next;
6113 else
6114 pp = &p->next;
6115 }
6116 }
6117
6118 /* Also discard relocs on undefined weak syms with non-default
6119 visibility. */
6120 if (eh->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak)
6121 {
6122 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
6123 eh->dyn_relocs = NULL;
6124
6125 /* Make sure undefined weak symbols are output as a dynamic
6126 symbol in PIEs. */
6127 else if (h->dynindx == -1
6128 && !h->forced_local
6129 && !bfd_elf_link_record_dynamic_symbol (info, h))
6130 return FALSE;
6131 }
6132
6133 }
6134 else if (ELIMINATE_COPY_RELOCS)
6135 {
6136 /* For the non-shared case, discard space for relocs against
6137 symbols which turn out to need copy relocs or are not
6138 dynamic. */
6139
6140 if (!h->non_got_ref
6141 && ((h->def_dynamic
6142 && !h->def_regular)
6143 || (htab->root.dynamic_sections_created
6144 && (h->root.type == bfd_link_hash_undefweak
6145 || h->root.type == bfd_link_hash_undefined))))
6146 {
6147 /* Make sure this symbol is output as a dynamic symbol.
6148 Undefined weak syms won't yet be marked as dynamic. */
6149 if (h->dynindx == -1
6150 && !h->forced_local
6151 && !bfd_elf_link_record_dynamic_symbol (info, h))
6152 return FALSE;
6153
6154 /* If that succeeded, we know we'll be keeping all the
6155 relocs. */
6156 if (h->dynindx != -1)
6157 goto keep;
6158 }
6159
6160 eh->dyn_relocs = NULL;
6161
6162 keep:;
6163 }
6164
6165 /* Finally, allocate space. */
6166 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6167 {
6168 asection *sreloc;
6169
6170 sreloc = elf_section_data (p->sec)->sreloc;
6171
6172 BFD_ASSERT (sreloc != NULL);
6173
6174 sreloc->size += p->count * RELOC_SIZE (htab);
6175 }
6176
6177 return TRUE;
6178 }
6179
6180 /* Allocate space in .plt, .got and associated reloc sections for
6181 ifunc dynamic relocs. */
6182
6183 static bfd_boolean
6184 elfNN_aarch64_allocate_ifunc_dynrelocs (struct elf_link_hash_entry *h,
6185 void *inf)
6186 {
6187 struct bfd_link_info *info;
6188 struct elf_aarch64_link_hash_table *htab;
6189 struct elf_aarch64_link_hash_entry *eh;
6190
6191 /* An example of a bfd_link_hash_indirect symbol is versioned
6192 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
6193 -> __gxx_personality_v0(bfd_link_hash_defined)
6194
6195 There is no need to process bfd_link_hash_indirect symbols here
6196 because we will also be presented with the concrete instance of
6197 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
6198 called to copy all relevant data from the generic to the concrete
6199 symbol instance.
6200 */
6201 if (h->root.type == bfd_link_hash_indirect)
6202 return TRUE;
6203
6204 if (h->root.type == bfd_link_hash_warning)
6205 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6206
6207 info = (struct bfd_link_info *) inf;
6208 htab = elf_aarch64_hash_table (info);
6209
6210 eh = (struct elf_aarch64_link_hash_entry *) h;
6211
6212 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
6213 here if it is defined and referenced in a non-shared object. */
6214 if (h->type == STT_GNU_IFUNC
6215 && h->def_regular)
6216 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
6217 &eh->dyn_relocs,
6218 htab->plt_entry_size,
6219 htab->plt_header_size,
6220 GOT_ENTRY_SIZE);
6221 return TRUE;
6222 }
6223
6224 /* Allocate space in .plt, .got and associated reloc sections for
6225 local dynamic relocs. */
6226
6227 static bfd_boolean
6228 elfNN_aarch64_allocate_local_dynrelocs (void **slot, void *inf)
6229 {
6230 struct elf_link_hash_entry *h
6231 = (struct elf_link_hash_entry *) *slot;
6232
6233 if (h->type != STT_GNU_IFUNC
6234 || !h->def_regular
6235 || !h->ref_regular
6236 || !h->forced_local
6237 || h->root.type != bfd_link_hash_defined)
6238 abort ();
6239
6240 return elfNN_aarch64_allocate_dynrelocs (h, inf);
6241 }
6242
6243 /* Allocate space in .plt, .got and associated reloc sections for
6244 local ifunc dynamic relocs. */
6245
6246 static bfd_boolean
6247 elfNN_aarch64_allocate_local_ifunc_dynrelocs (void **slot, void *inf)
6248 {
6249 struct elf_link_hash_entry *h
6250 = (struct elf_link_hash_entry *) *slot;
6251
6252 if (h->type != STT_GNU_IFUNC
6253 || !h->def_regular
6254 || !h->ref_regular
6255 || !h->forced_local
6256 || h->root.type != bfd_link_hash_defined)
6257 abort ();
6258
6259 return elfNN_aarch64_allocate_ifunc_dynrelocs (h, inf);
6260 }
6261
6262 /* This is the most important function of all . Innocuosly named
6263 though ! */
6264 static bfd_boolean
6265 elfNN_aarch64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
6266 struct bfd_link_info *info)
6267 {
6268 struct elf_aarch64_link_hash_table *htab;
6269 bfd *dynobj;
6270 asection *s;
6271 bfd_boolean relocs;
6272 bfd *ibfd;
6273
6274 htab = elf_aarch64_hash_table ((info));
6275 dynobj = htab->root.dynobj;
6276
6277 BFD_ASSERT (dynobj != NULL);
6278
6279 if (htab->root.dynamic_sections_created)
6280 {
6281 if (info->executable)
6282 {
6283 s = bfd_get_linker_section (dynobj, ".interp");
6284 if (s == NULL)
6285 abort ();
6286 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
6287 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
6288 }
6289 }
6290
6291 /* Set up .got offsets for local syms, and space for local dynamic
6292 relocs. */
6293 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6294 {
6295 struct elf_aarch64_local_symbol *locals = NULL;
6296 Elf_Internal_Shdr *symtab_hdr;
6297 asection *srel;
6298 unsigned int i;
6299
6300 if (!is_aarch64_elf (ibfd))
6301 continue;
6302
6303 for (s = ibfd->sections; s != NULL; s = s->next)
6304 {
6305 struct elf_dyn_relocs *p;
6306
6307 for (p = (struct elf_dyn_relocs *)
6308 (elf_section_data (s)->local_dynrel); p != NULL; p = p->next)
6309 {
6310 if (!bfd_is_abs_section (p->sec)
6311 && bfd_is_abs_section (p->sec->output_section))
6312 {
6313 /* Input section has been discarded, either because
6314 it is a copy of a linkonce section or due to
6315 linker script /DISCARD/, so we'll be discarding
6316 the relocs too. */
6317 }
6318 else if (p->count != 0)
6319 {
6320 srel = elf_section_data (p->sec)->sreloc;
6321 srel->size += p->count * RELOC_SIZE (htab);
6322 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
6323 info->flags |= DF_TEXTREL;
6324 }
6325 }
6326 }
6327
6328 locals = elf_aarch64_locals (ibfd);
6329 if (!locals)
6330 continue;
6331
6332 symtab_hdr = &elf_symtab_hdr (ibfd);
6333 srel = htab->root.srelgot;
6334 for (i = 0; i < symtab_hdr->sh_info; i++)
6335 {
6336 locals[i].got_offset = (bfd_vma) - 1;
6337 locals[i].tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
6338 if (locals[i].got_refcount > 0)
6339 {
6340 unsigned got_type = locals[i].got_type;
6341 if (got_type & GOT_TLSDESC_GD)
6342 {
6343 locals[i].tlsdesc_got_jump_table_offset =
6344 (htab->root.sgotplt->size
6345 - aarch64_compute_jump_table_size (htab));
6346 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
6347 locals[i].got_offset = (bfd_vma) - 2;
6348 }
6349
6350 if (got_type & GOT_TLS_GD)
6351 {
6352 locals[i].got_offset = htab->root.sgot->size;
6353 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
6354 }
6355
6356 if (got_type & GOT_TLS_IE)
6357 {
6358 locals[i].got_offset = htab->root.sgot->size;
6359 htab->root.sgot->size += GOT_ENTRY_SIZE;
6360 }
6361
6362 if (got_type == GOT_UNKNOWN)
6363 {
6364 }
6365
6366 if (got_type == GOT_NORMAL)
6367 {
6368 }
6369
6370 if (info->shared)
6371 {
6372 if (got_type & GOT_TLSDESC_GD)
6373 {
6374 htab->root.srelplt->size += RELOC_SIZE (htab);
6375 /* Note RELOC_COUNT not incremented here! */
6376 htab->tlsdesc_plt = (bfd_vma) - 1;
6377 }
6378
6379 if (got_type & GOT_TLS_GD)
6380 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
6381
6382 if (got_type & GOT_TLS_IE)
6383 htab->root.srelgot->size += RELOC_SIZE (htab);
6384 }
6385 }
6386 else
6387 {
6388 locals[i].got_refcount = (bfd_vma) - 1;
6389 }
6390 }
6391 }
6392
6393
6394 /* Allocate global sym .plt and .got entries, and space for global
6395 sym dynamic relocs. */
6396 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_dynrelocs,
6397 info);
6398
6399 /* Allocate global ifunc sym .plt and .got entries, and space for global
6400 ifunc sym dynamic relocs. */
6401 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_ifunc_dynrelocs,
6402 info);
6403
6404 /* Allocate .plt and .got entries, and space for local symbols. */
6405 htab_traverse (htab->loc_hash_table,
6406 elfNN_aarch64_allocate_local_dynrelocs,
6407 info);
6408
6409 /* Allocate .plt and .got entries, and space for local ifunc symbols. */
6410 htab_traverse (htab->loc_hash_table,
6411 elfNN_aarch64_allocate_local_ifunc_dynrelocs,
6412 info);
6413
6414 /* For every jump slot reserved in the sgotplt, reloc_count is
6415 incremented. However, when we reserve space for TLS descriptors,
6416 it's not incremented, so in order to compute the space reserved
6417 for them, it suffices to multiply the reloc count by the jump
6418 slot size. */
6419
6420 if (htab->root.srelplt)
6421 htab->sgotplt_jump_table_size = aarch64_compute_jump_table_size (htab);
6422
6423 if (htab->tlsdesc_plt)
6424 {
6425 if (htab->root.splt->size == 0)
6426 htab->root.splt->size += PLT_ENTRY_SIZE;
6427
6428 htab->tlsdesc_plt = htab->root.splt->size;
6429 htab->root.splt->size += PLT_TLSDESC_ENTRY_SIZE;
6430
6431 /* If we're not using lazy TLS relocations, don't generate the
6432 GOT entry required. */
6433 if (!(info->flags & DF_BIND_NOW))
6434 {
6435 htab->dt_tlsdesc_got = htab->root.sgot->size;
6436 htab->root.sgot->size += GOT_ENTRY_SIZE;
6437 }
6438 }
6439
6440 /* We now have determined the sizes of the various dynamic sections.
6441 Allocate memory for them. */
6442 relocs = FALSE;
6443 for (s = dynobj->sections; s != NULL; s = s->next)
6444 {
6445 if ((s->flags & SEC_LINKER_CREATED) == 0)
6446 continue;
6447
6448 if (s == htab->root.splt
6449 || s == htab->root.sgot
6450 || s == htab->root.sgotplt
6451 || s == htab->root.iplt
6452 || s == htab->root.igotplt || s == htab->sdynbss)
6453 {
6454 /* Strip this section if we don't need it; see the
6455 comment below. */
6456 }
6457 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
6458 {
6459 if (s->size != 0 && s != htab->root.srelplt)
6460 relocs = TRUE;
6461
6462 /* We use the reloc_count field as a counter if we need
6463 to copy relocs into the output file. */
6464 if (s != htab->root.srelplt)
6465 s->reloc_count = 0;
6466 }
6467 else
6468 {
6469 /* It's not one of our sections, so don't allocate space. */
6470 continue;
6471 }
6472
6473 if (s->size == 0)
6474 {
6475 /* If we don't need this section, strip it from the
6476 output file. This is mostly to handle .rela.bss and
6477 .rela.plt. We must create both sections in
6478 create_dynamic_sections, because they must be created
6479 before the linker maps input sections to output
6480 sections. The linker does that before
6481 adjust_dynamic_symbol is called, and it is that
6482 function which decides whether anything needs to go
6483 into these sections. */
6484
6485 s->flags |= SEC_EXCLUDE;
6486 continue;
6487 }
6488
6489 if ((s->flags & SEC_HAS_CONTENTS) == 0)
6490 continue;
6491
6492 /* Allocate memory for the section contents. We use bfd_zalloc
6493 here in case unused entries are not reclaimed before the
6494 section's contents are written out. This should not happen,
6495 but this way if it does, we get a R_AARCH64_NONE reloc instead
6496 of garbage. */
6497 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
6498 if (s->contents == NULL)
6499 return FALSE;
6500 }
6501
6502 if (htab->root.dynamic_sections_created)
6503 {
6504 /* Add some entries to the .dynamic section. We fill in the
6505 values later, in elfNN_aarch64_finish_dynamic_sections, but we
6506 must add the entries now so that we get the correct size for
6507 the .dynamic section. The DT_DEBUG entry is filled in by the
6508 dynamic linker and used by the debugger. */
6509 #define add_dynamic_entry(TAG, VAL) \
6510 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
6511
6512 if (info->executable)
6513 {
6514 if (!add_dynamic_entry (DT_DEBUG, 0))
6515 return FALSE;
6516 }
6517
6518 if (htab->root.splt->size != 0)
6519 {
6520 if (!add_dynamic_entry (DT_PLTGOT, 0)
6521 || !add_dynamic_entry (DT_PLTRELSZ, 0)
6522 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
6523 || !add_dynamic_entry (DT_JMPREL, 0))
6524 return FALSE;
6525
6526 if (htab->tlsdesc_plt
6527 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
6528 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
6529 return FALSE;
6530 }
6531
6532 if (relocs)
6533 {
6534 if (!add_dynamic_entry (DT_RELA, 0)
6535 || !add_dynamic_entry (DT_RELASZ, 0)
6536 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
6537 return FALSE;
6538
6539 /* If any dynamic relocs apply to a read-only section,
6540 then we need a DT_TEXTREL entry. */
6541 if ((info->flags & DF_TEXTREL) != 0)
6542 {
6543 if (!add_dynamic_entry (DT_TEXTREL, 0))
6544 return FALSE;
6545 }
6546 }
6547 }
6548 #undef add_dynamic_entry
6549
6550 return TRUE;
6551 }
6552
6553 static inline void
6554 elf_aarch64_update_plt_entry (bfd *output_bfd,
6555 bfd_reloc_code_real_type r_type,
6556 bfd_byte *plt_entry, bfd_vma value)
6557 {
6558 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (r_type);
6559
6560 _bfd_aarch64_elf_put_addend (output_bfd, plt_entry, r_type, howto, value);
6561 }
6562
6563 static void
6564 elfNN_aarch64_create_small_pltn_entry (struct elf_link_hash_entry *h,
6565 struct elf_aarch64_link_hash_table
6566 *htab, bfd *output_bfd,
6567 struct bfd_link_info *info)
6568 {
6569 bfd_byte *plt_entry;
6570 bfd_vma plt_index;
6571 bfd_vma got_offset;
6572 bfd_vma gotplt_entry_address;
6573 bfd_vma plt_entry_address;
6574 Elf_Internal_Rela rela;
6575 bfd_byte *loc;
6576 asection *plt, *gotplt, *relplt;
6577
6578 /* When building a static executable, use .iplt, .igot.plt and
6579 .rela.iplt sections for STT_GNU_IFUNC symbols. */
6580 if (htab->root.splt != NULL)
6581 {
6582 plt = htab->root.splt;
6583 gotplt = htab->root.sgotplt;
6584 relplt = htab->root.srelplt;
6585 }
6586 else
6587 {
6588 plt = htab->root.iplt;
6589 gotplt = htab->root.igotplt;
6590 relplt = htab->root.irelplt;
6591 }
6592
6593 /* Get the index in the procedure linkage table which
6594 corresponds to this symbol. This is the index of this symbol
6595 in all the symbols for which we are making plt entries. The
6596 first entry in the procedure linkage table is reserved.
6597
6598 Get the offset into the .got table of the entry that
6599 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
6600 bytes. The first three are reserved for the dynamic linker.
6601
6602 For static executables, we don't reserve anything. */
6603
6604 if (plt == htab->root.splt)
6605 {
6606 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
6607 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
6608 }
6609 else
6610 {
6611 plt_index = h->plt.offset / htab->plt_entry_size;
6612 got_offset = plt_index * GOT_ENTRY_SIZE;
6613 }
6614
6615 plt_entry = plt->contents + h->plt.offset;
6616 plt_entry_address = plt->output_section->vma
6617 + plt->output_offset + h->plt.offset;
6618 gotplt_entry_address = gotplt->output_section->vma +
6619 gotplt->output_offset + got_offset;
6620
6621 /* Copy in the boiler-plate for the PLTn entry. */
6622 memcpy (plt_entry, elfNN_aarch64_small_plt_entry, PLT_SMALL_ENTRY_SIZE);
6623
6624 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
6625 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
6626 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
6627 plt_entry,
6628 PG (gotplt_entry_address) -
6629 PG (plt_entry_address));
6630
6631 /* Fill in the lo12 bits for the load from the pltgot. */
6632 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
6633 plt_entry + 4,
6634 PG_OFFSET (gotplt_entry_address));
6635
6636 /* Fill in the lo12 bits for the add from the pltgot entry. */
6637 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
6638 plt_entry + 8,
6639 PG_OFFSET (gotplt_entry_address));
6640
6641 /* All the GOTPLT Entries are essentially initialized to PLT0. */
6642 bfd_put_NN (output_bfd,
6643 plt->output_section->vma + plt->output_offset,
6644 gotplt->contents + got_offset);
6645
6646 rela.r_offset = gotplt_entry_address;
6647
6648 if (h->dynindx == -1
6649 || ((info->executable
6650 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
6651 && h->def_regular
6652 && h->type == STT_GNU_IFUNC))
6653 {
6654 /* If an STT_GNU_IFUNC symbol is locally defined, generate
6655 R_AARCH64_IRELATIVE instead of R_AARCH64_JUMP_SLOT. */
6656 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
6657 rela.r_addend = (h->root.u.def.value
6658 + h->root.u.def.section->output_section->vma
6659 + h->root.u.def.section->output_offset);
6660 }
6661 else
6662 {
6663 /* Fill in the entry in the .rela.plt section. */
6664 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (JUMP_SLOT));
6665 rela.r_addend = 0;
6666 }
6667
6668 /* Compute the relocation entry to used based on PLT index and do
6669 not adjust reloc_count. The reloc_count has already been adjusted
6670 to account for this entry. */
6671 loc = relplt->contents + plt_index * RELOC_SIZE (htab);
6672 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6673 }
6674
6675 /* Size sections even though they're not dynamic. We use it to setup
6676 _TLS_MODULE_BASE_, if needed. */
6677
6678 static bfd_boolean
6679 elfNN_aarch64_always_size_sections (bfd *output_bfd,
6680 struct bfd_link_info *info)
6681 {
6682 asection *tls_sec;
6683
6684 if (info->relocatable)
6685 return TRUE;
6686
6687 tls_sec = elf_hash_table (info)->tls_sec;
6688
6689 if (tls_sec)
6690 {
6691 struct elf_link_hash_entry *tlsbase;
6692
6693 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
6694 "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
6695
6696 if (tlsbase)
6697 {
6698 struct bfd_link_hash_entry *h = NULL;
6699 const struct elf_backend_data *bed =
6700 get_elf_backend_data (output_bfd);
6701
6702 if (!(_bfd_generic_link_add_one_symbol
6703 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
6704 tls_sec, 0, NULL, FALSE, bed->collect, &h)))
6705 return FALSE;
6706
6707 tlsbase->type = STT_TLS;
6708 tlsbase = (struct elf_link_hash_entry *) h;
6709 tlsbase->def_regular = 1;
6710 tlsbase->other = STV_HIDDEN;
6711 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
6712 }
6713 }
6714
6715 return TRUE;
6716 }
6717
6718 /* Finish up dynamic symbol handling. We set the contents of various
6719 dynamic sections here. */
6720 static bfd_boolean
6721 elfNN_aarch64_finish_dynamic_symbol (bfd *output_bfd,
6722 struct bfd_link_info *info,
6723 struct elf_link_hash_entry *h,
6724 Elf_Internal_Sym *sym)
6725 {
6726 struct elf_aarch64_link_hash_table *htab;
6727 htab = elf_aarch64_hash_table (info);
6728
6729 if (h->plt.offset != (bfd_vma) - 1)
6730 {
6731 asection *plt, *gotplt, *relplt;
6732
6733 /* This symbol has an entry in the procedure linkage table. Set
6734 it up. */
6735
6736 /* When building a static executable, use .iplt, .igot.plt and
6737 .rela.iplt sections for STT_GNU_IFUNC symbols. */
6738 if (htab->root.splt != NULL)
6739 {
6740 plt = htab->root.splt;
6741 gotplt = htab->root.sgotplt;
6742 relplt = htab->root.srelplt;
6743 }
6744 else
6745 {
6746 plt = htab->root.iplt;
6747 gotplt = htab->root.igotplt;
6748 relplt = htab->root.irelplt;
6749 }
6750
6751 /* This symbol has an entry in the procedure linkage table. Set
6752 it up. */
6753 if ((h->dynindx == -1
6754 && !((h->forced_local || info->executable)
6755 && h->def_regular
6756 && h->type == STT_GNU_IFUNC))
6757 || plt == NULL
6758 || gotplt == NULL
6759 || relplt == NULL)
6760 abort ();
6761
6762 elfNN_aarch64_create_small_pltn_entry (h, htab, output_bfd, info);
6763 if (!h->def_regular)
6764 {
6765 /* Mark the symbol as undefined, rather than as defined in
6766 the .plt section. Leave the value alone. This is a clue
6767 for the dynamic linker, to make function pointer
6768 comparisons work between an application and shared
6769 library. */
6770 sym->st_shndx = SHN_UNDEF;
6771 }
6772 }
6773
6774 if (h->got.offset != (bfd_vma) - 1
6775 && elf_aarch64_hash_entry (h)->got_type == GOT_NORMAL)
6776 {
6777 Elf_Internal_Rela rela;
6778 bfd_byte *loc;
6779
6780 /* This symbol has an entry in the global offset table. Set it
6781 up. */
6782 if (htab->root.sgot == NULL || htab->root.srelgot == NULL)
6783 abort ();
6784
6785 rela.r_offset = (htab->root.sgot->output_section->vma
6786 + htab->root.sgot->output_offset
6787 + (h->got.offset & ~(bfd_vma) 1));
6788
6789 if (h->def_regular
6790 && h->type == STT_GNU_IFUNC)
6791 {
6792 if (info->shared)
6793 {
6794 /* Generate R_AARCH64_GLOB_DAT. */
6795 goto do_glob_dat;
6796 }
6797 else
6798 {
6799 asection *plt;
6800
6801 if (!h->pointer_equality_needed)
6802 abort ();
6803
6804 /* For non-shared object, we can't use .got.plt, which
6805 contains the real function address if we need pointer
6806 equality. We load the GOT entry with the PLT entry. */
6807 plt = htab->root.splt ? htab->root.splt : htab->root.iplt;
6808 bfd_put_NN (output_bfd, (plt->output_section->vma
6809 + plt->output_offset
6810 + h->plt.offset),
6811 htab->root.sgot->contents
6812 + (h->got.offset & ~(bfd_vma) 1));
6813 return TRUE;
6814 }
6815 }
6816 else if (info->shared && SYMBOL_REFERENCES_LOCAL (info, h))
6817 {
6818 if (!h->def_regular)
6819 return FALSE;
6820
6821 BFD_ASSERT ((h->got.offset & 1) != 0);
6822 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
6823 rela.r_addend = (h->root.u.def.value
6824 + h->root.u.def.section->output_section->vma
6825 + h->root.u.def.section->output_offset);
6826 }
6827 else
6828 {
6829 do_glob_dat:
6830 BFD_ASSERT ((h->got.offset & 1) == 0);
6831 bfd_put_NN (output_bfd, (bfd_vma) 0,
6832 htab->root.sgot->contents + h->got.offset);
6833 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (GLOB_DAT));
6834 rela.r_addend = 0;
6835 }
6836
6837 loc = htab->root.srelgot->contents;
6838 loc += htab->root.srelgot->reloc_count++ * RELOC_SIZE (htab);
6839 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6840 }
6841
6842 if (h->needs_copy)
6843 {
6844 Elf_Internal_Rela rela;
6845 bfd_byte *loc;
6846
6847 /* This symbol needs a copy reloc. Set it up. */
6848
6849 if (h->dynindx == -1
6850 || (h->root.type != bfd_link_hash_defined
6851 && h->root.type != bfd_link_hash_defweak)
6852 || htab->srelbss == NULL)
6853 abort ();
6854
6855 rela.r_offset = (h->root.u.def.value
6856 + h->root.u.def.section->output_section->vma
6857 + h->root.u.def.section->output_offset);
6858 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (COPY));
6859 rela.r_addend = 0;
6860 loc = htab->srelbss->contents;
6861 loc += htab->srelbss->reloc_count++ * RELOC_SIZE (htab);
6862 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6863 }
6864
6865 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
6866 be NULL for local symbols. */
6867 if (sym != NULL
6868 && (h == elf_hash_table (info)->hdynamic
6869 || h == elf_hash_table (info)->hgot))
6870 sym->st_shndx = SHN_ABS;
6871
6872 return TRUE;
6873 }
6874
6875 /* Finish up local dynamic symbol handling. We set the contents of
6876 various dynamic sections here. */
6877
6878 static bfd_boolean
6879 elfNN_aarch64_finish_local_dynamic_symbol (void **slot, void *inf)
6880 {
6881 struct elf_link_hash_entry *h
6882 = (struct elf_link_hash_entry *) *slot;
6883 struct bfd_link_info *info
6884 = (struct bfd_link_info *) inf;
6885
6886 return elfNN_aarch64_finish_dynamic_symbol (info->output_bfd,
6887 info, h, NULL);
6888 }
6889
6890 static void
6891 elfNN_aarch64_init_small_plt0_entry (bfd *output_bfd ATTRIBUTE_UNUSED,
6892 struct elf_aarch64_link_hash_table
6893 *htab)
6894 {
6895 /* Fill in PLT0. Fixme:RR Note this doesn't distinguish between
6896 small and large plts and at the minute just generates
6897 the small PLT. */
6898
6899 /* PLT0 of the small PLT looks like this in ELF64 -
6900 stp x16, x30, [sp, #-16]! // Save the reloc and lr on stack.
6901 adrp x16, PLT_GOT + 16 // Get the page base of the GOTPLT
6902 ldr x17, [x16, #:lo12:PLT_GOT+16] // Load the address of the
6903 // symbol resolver
6904 add x16, x16, #:lo12:PLT_GOT+16 // Load the lo12 bits of the
6905 // GOTPLT entry for this.
6906 br x17
6907 PLT0 will be slightly different in ELF32 due to different got entry
6908 size.
6909 */
6910 bfd_vma plt_got_2nd_ent; /* Address of GOT[2]. */
6911 bfd_vma plt_base;
6912
6913
6914 memcpy (htab->root.splt->contents, elfNN_aarch64_small_plt0_entry,
6915 PLT_ENTRY_SIZE);
6916 elf_section_data (htab->root.splt->output_section)->this_hdr.sh_entsize =
6917 PLT_ENTRY_SIZE;
6918
6919 plt_got_2nd_ent = (htab->root.sgotplt->output_section->vma
6920 + htab->root.sgotplt->output_offset
6921 + GOT_ENTRY_SIZE * 2);
6922
6923 plt_base = htab->root.splt->output_section->vma +
6924 htab->root.splt->output_offset;
6925
6926 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
6927 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
6928 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
6929 htab->root.splt->contents + 4,
6930 PG (plt_got_2nd_ent) - PG (plt_base + 4));
6931
6932 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
6933 htab->root.splt->contents + 8,
6934 PG_OFFSET (plt_got_2nd_ent));
6935
6936 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
6937 htab->root.splt->contents + 12,
6938 PG_OFFSET (plt_got_2nd_ent));
6939 }
6940
6941 static bfd_boolean
6942 elfNN_aarch64_finish_dynamic_sections (bfd *output_bfd,
6943 struct bfd_link_info *info)
6944 {
6945 struct elf_aarch64_link_hash_table *htab;
6946 bfd *dynobj;
6947 asection *sdyn;
6948
6949 htab = elf_aarch64_hash_table (info);
6950 dynobj = htab->root.dynobj;
6951 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
6952
6953 if (htab->root.dynamic_sections_created)
6954 {
6955 ElfNN_External_Dyn *dyncon, *dynconend;
6956
6957 if (sdyn == NULL || htab->root.sgot == NULL)
6958 abort ();
6959
6960 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
6961 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
6962 for (; dyncon < dynconend; dyncon++)
6963 {
6964 Elf_Internal_Dyn dyn;
6965 asection *s;
6966
6967 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
6968
6969 switch (dyn.d_tag)
6970 {
6971 default:
6972 continue;
6973
6974 case DT_PLTGOT:
6975 s = htab->root.sgotplt;
6976 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
6977 break;
6978
6979 case DT_JMPREL:
6980 dyn.d_un.d_ptr = htab->root.srelplt->output_section->vma;
6981 break;
6982
6983 case DT_PLTRELSZ:
6984 s = htab->root.srelplt;
6985 dyn.d_un.d_val = s->size;
6986 break;
6987
6988 case DT_RELASZ:
6989 /* The procedure linkage table relocs (DT_JMPREL) should
6990 not be included in the overall relocs (DT_RELA).
6991 Therefore, we override the DT_RELASZ entry here to
6992 make it not include the JMPREL relocs. Since the
6993 linker script arranges for .rela.plt to follow all
6994 other relocation sections, we don't have to worry
6995 about changing the DT_RELA entry. */
6996 if (htab->root.srelplt != NULL)
6997 {
6998 s = htab->root.srelplt;
6999 dyn.d_un.d_val -= s->size;
7000 }
7001 break;
7002
7003 case DT_TLSDESC_PLT:
7004 s = htab->root.splt;
7005 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
7006 + htab->tlsdesc_plt;
7007 break;
7008
7009 case DT_TLSDESC_GOT:
7010 s = htab->root.sgot;
7011 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
7012 + htab->dt_tlsdesc_got;
7013 break;
7014 }
7015
7016 bfd_elfNN_swap_dyn_out (output_bfd, &dyn, dyncon);
7017 }
7018
7019 }
7020
7021 /* Fill in the special first entry in the procedure linkage table. */
7022 if (htab->root.splt && htab->root.splt->size > 0)
7023 {
7024 elfNN_aarch64_init_small_plt0_entry (output_bfd, htab);
7025
7026 elf_section_data (htab->root.splt->output_section)->
7027 this_hdr.sh_entsize = htab->plt_entry_size;
7028
7029
7030 if (htab->tlsdesc_plt)
7031 {
7032 bfd_put_NN (output_bfd, (bfd_vma) 0,
7033 htab->root.sgot->contents + htab->dt_tlsdesc_got);
7034
7035 memcpy (htab->root.splt->contents + htab->tlsdesc_plt,
7036 elfNN_aarch64_tlsdesc_small_plt_entry,
7037 sizeof (elfNN_aarch64_tlsdesc_small_plt_entry));
7038
7039 {
7040 bfd_vma adrp1_addr =
7041 htab->root.splt->output_section->vma
7042 + htab->root.splt->output_offset + htab->tlsdesc_plt + 4;
7043
7044 bfd_vma adrp2_addr = adrp1_addr + 4;
7045
7046 bfd_vma got_addr =
7047 htab->root.sgot->output_section->vma
7048 + htab->root.sgot->output_offset;
7049
7050 bfd_vma pltgot_addr =
7051 htab->root.sgotplt->output_section->vma
7052 + htab->root.sgotplt->output_offset;
7053
7054 bfd_vma dt_tlsdesc_got = got_addr + htab->dt_tlsdesc_got;
7055
7056 bfd_byte *plt_entry =
7057 htab->root.splt->contents + htab->tlsdesc_plt;
7058
7059 /* adrp x2, DT_TLSDESC_GOT */
7060 elf_aarch64_update_plt_entry (output_bfd,
7061 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
7062 plt_entry + 4,
7063 (PG (dt_tlsdesc_got)
7064 - PG (adrp1_addr)));
7065
7066 /* adrp x3, 0 */
7067 elf_aarch64_update_plt_entry (output_bfd,
7068 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
7069 plt_entry + 8,
7070 (PG (pltgot_addr)
7071 - PG (adrp2_addr)));
7072
7073 /* ldr x2, [x2, #0] */
7074 elf_aarch64_update_plt_entry (output_bfd,
7075 BFD_RELOC_AARCH64_LDSTNN_LO12,
7076 plt_entry + 12,
7077 PG_OFFSET (dt_tlsdesc_got));
7078
7079 /* add x3, x3, 0 */
7080 elf_aarch64_update_plt_entry (output_bfd,
7081 BFD_RELOC_AARCH64_ADD_LO12,
7082 plt_entry + 16,
7083 PG_OFFSET (pltgot_addr));
7084 }
7085 }
7086 }
7087
7088 if (htab->root.sgotplt)
7089 {
7090 if (bfd_is_abs_section (htab->root.sgotplt->output_section))
7091 {
7092 (*_bfd_error_handler)
7093 (_("discarded output section: `%A'"), htab->root.sgotplt);
7094 return FALSE;
7095 }
7096
7097 /* Fill in the first three entries in the global offset table. */
7098 if (htab->root.sgotplt->size > 0)
7099 {
7100 bfd_put_NN (output_bfd, (bfd_vma) 0, htab->root.sgotplt->contents);
7101
7102 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
7103 bfd_put_NN (output_bfd,
7104 (bfd_vma) 0,
7105 htab->root.sgotplt->contents + GOT_ENTRY_SIZE);
7106 bfd_put_NN (output_bfd,
7107 (bfd_vma) 0,
7108 htab->root.sgotplt->contents + GOT_ENTRY_SIZE * 2);
7109 }
7110
7111 if (htab->root.sgot)
7112 {
7113 if (htab->root.sgot->size > 0)
7114 {
7115 bfd_vma addr =
7116 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0;
7117 bfd_put_NN (output_bfd, addr, htab->root.sgot->contents);
7118 }
7119 }
7120
7121 elf_section_data (htab->root.sgotplt->output_section)->
7122 this_hdr.sh_entsize = GOT_ENTRY_SIZE;
7123 }
7124
7125 if (htab->root.sgot && htab->root.sgot->size > 0)
7126 elf_section_data (htab->root.sgot->output_section)->this_hdr.sh_entsize
7127 = GOT_ENTRY_SIZE;
7128
7129 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
7130 htab_traverse (htab->loc_hash_table,
7131 elfNN_aarch64_finish_local_dynamic_symbol,
7132 info);
7133
7134 return TRUE;
7135 }
7136
7137 /* Return address for Ith PLT stub in section PLT, for relocation REL
7138 or (bfd_vma) -1 if it should not be included. */
7139
7140 static bfd_vma
7141 elfNN_aarch64_plt_sym_val (bfd_vma i, const asection *plt,
7142 const arelent *rel ATTRIBUTE_UNUSED)
7143 {
7144 return plt->vma + PLT_ENTRY_SIZE + i * PLT_SMALL_ENTRY_SIZE;
7145 }
7146
7147
7148 /* We use this so we can override certain functions
7149 (though currently we don't). */
7150
7151 const struct elf_size_info elfNN_aarch64_size_info =
7152 {
7153 sizeof (ElfNN_External_Ehdr),
7154 sizeof (ElfNN_External_Phdr),
7155 sizeof (ElfNN_External_Shdr),
7156 sizeof (ElfNN_External_Rel),
7157 sizeof (ElfNN_External_Rela),
7158 sizeof (ElfNN_External_Sym),
7159 sizeof (ElfNN_External_Dyn),
7160 sizeof (Elf_External_Note),
7161 4, /* Hash table entry size. */
7162 1, /* Internal relocs per external relocs. */
7163 ARCH_SIZE, /* Arch size. */
7164 LOG_FILE_ALIGN, /* Log_file_align. */
7165 ELFCLASSNN, EV_CURRENT,
7166 bfd_elfNN_write_out_phdrs,
7167 bfd_elfNN_write_shdrs_and_ehdr,
7168 bfd_elfNN_checksum_contents,
7169 bfd_elfNN_write_relocs,
7170 bfd_elfNN_swap_symbol_in,
7171 bfd_elfNN_swap_symbol_out,
7172 bfd_elfNN_slurp_reloc_table,
7173 bfd_elfNN_slurp_symbol_table,
7174 bfd_elfNN_swap_dyn_in,
7175 bfd_elfNN_swap_dyn_out,
7176 bfd_elfNN_swap_reloc_in,
7177 bfd_elfNN_swap_reloc_out,
7178 bfd_elfNN_swap_reloca_in,
7179 bfd_elfNN_swap_reloca_out
7180 };
7181
7182 #define ELF_ARCH bfd_arch_aarch64
7183 #define ELF_MACHINE_CODE EM_AARCH64
7184 #define ELF_MAXPAGESIZE 0x10000
7185 #define ELF_MINPAGESIZE 0x1000
7186 #define ELF_COMMONPAGESIZE 0x1000
7187
7188 #define bfd_elfNN_close_and_cleanup \
7189 elfNN_aarch64_close_and_cleanup
7190
7191 #define bfd_elfNN_bfd_free_cached_info \
7192 elfNN_aarch64_bfd_free_cached_info
7193
7194 #define bfd_elfNN_bfd_is_target_special_symbol \
7195 elfNN_aarch64_is_target_special_symbol
7196
7197 #define bfd_elfNN_bfd_link_hash_table_create \
7198 elfNN_aarch64_link_hash_table_create
7199
7200 #define bfd_elfNN_bfd_merge_private_bfd_data \
7201 elfNN_aarch64_merge_private_bfd_data
7202
7203 #define bfd_elfNN_bfd_print_private_bfd_data \
7204 elfNN_aarch64_print_private_bfd_data
7205
7206 #define bfd_elfNN_bfd_reloc_type_lookup \
7207 elfNN_aarch64_reloc_type_lookup
7208
7209 #define bfd_elfNN_bfd_reloc_name_lookup \
7210 elfNN_aarch64_reloc_name_lookup
7211
7212 #define bfd_elfNN_bfd_set_private_flags \
7213 elfNN_aarch64_set_private_flags
7214
7215 #define bfd_elfNN_find_inliner_info \
7216 elfNN_aarch64_find_inliner_info
7217
7218 #define bfd_elfNN_find_nearest_line \
7219 elfNN_aarch64_find_nearest_line
7220
7221 #define bfd_elfNN_mkobject \
7222 elfNN_aarch64_mkobject
7223
7224 #define bfd_elfNN_new_section_hook \
7225 elfNN_aarch64_new_section_hook
7226
7227 #define elf_backend_adjust_dynamic_symbol \
7228 elfNN_aarch64_adjust_dynamic_symbol
7229
7230 #define elf_backend_always_size_sections \
7231 elfNN_aarch64_always_size_sections
7232
7233 #define elf_backend_check_relocs \
7234 elfNN_aarch64_check_relocs
7235
7236 #define elf_backend_copy_indirect_symbol \
7237 elfNN_aarch64_copy_indirect_symbol
7238
7239 /* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts
7240 to them in our hash. */
7241 #define elf_backend_create_dynamic_sections \
7242 elfNN_aarch64_create_dynamic_sections
7243
7244 #define elf_backend_init_index_section \
7245 _bfd_elf_init_2_index_sections
7246
7247 #define elf_backend_finish_dynamic_sections \
7248 elfNN_aarch64_finish_dynamic_sections
7249
7250 #define elf_backend_finish_dynamic_symbol \
7251 elfNN_aarch64_finish_dynamic_symbol
7252
7253 #define elf_backend_gc_sweep_hook \
7254 elfNN_aarch64_gc_sweep_hook
7255
7256 #define elf_backend_object_p \
7257 elfNN_aarch64_object_p
7258
7259 #define elf_backend_output_arch_local_syms \
7260 elfNN_aarch64_output_arch_local_syms
7261
7262 #define elf_backend_plt_sym_val \
7263 elfNN_aarch64_plt_sym_val
7264
7265 #define elf_backend_post_process_headers \
7266 elfNN_aarch64_post_process_headers
7267
7268 #define elf_backend_relocate_section \
7269 elfNN_aarch64_relocate_section
7270
7271 #define elf_backend_reloc_type_class \
7272 elfNN_aarch64_reloc_type_class
7273
7274 #define elf_backend_section_from_shdr \
7275 elfNN_aarch64_section_from_shdr
7276
7277 #define elf_backend_size_dynamic_sections \
7278 elfNN_aarch64_size_dynamic_sections
7279
7280 #define elf_backend_size_info \
7281 elfNN_aarch64_size_info
7282
7283 #define elf_backend_can_refcount 1
7284 #define elf_backend_can_gc_sections 1
7285 #define elf_backend_plt_readonly 1
7286 #define elf_backend_want_got_plt 1
7287 #define elf_backend_want_plt_sym 0
7288 #define elf_backend_may_use_rel_p 0
7289 #define elf_backend_may_use_rela_p 1
7290 #define elf_backend_default_use_rela_p 1
7291 #define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3)
7292 #define elf_backend_default_execstack 0
7293
7294 #undef elf_backend_obj_attrs_section
7295 #define elf_backend_obj_attrs_section ".ARM.attributes"
7296
7297 #include "elfNN-target.h"
This page took 0.220697 seconds and 5 git commands to generate.