Automatic date update in version.in
[deliverable/binutils-gdb.git] / bfd / elfnn-riscv.c
1 /* RISC-V-specific support for NN-bit ELF.
2 Copyright (C) 2011-2021 Free Software Foundation, Inc.
3
4 Contributed by Andrew Waterman (andrew@sifive.com).
5 Based on TILE-Gx and MIPS targets.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING3. If not,
21 see <http://www.gnu.org/licenses/>. */
22
23 /* This file handles RISC-V ELF targets. */
24
25 #include "sysdep.h"
26 #include "bfd.h"
27 #include "libbfd.h"
28 #include "bfdlink.h"
29 #include "genlink.h"
30 #include "elf-bfd.h"
31 #include "elfxx-riscv.h"
32 #include "elf/riscv.h"
33 #include "opcode/riscv.h"
34 #include "objalloc.h"
35 #include "cpu-riscv.h"
36
37 #include <limits.h>
38 #ifndef CHAR_BIT
39 #define CHAR_BIT 8
40 #endif
41
42 /* Internal relocations used exclusively by the relaxation pass. */
43 #define R_RISCV_DELETE (R_RISCV_max + 1)
44
45 #define ARCH_SIZE NN
46
47 #define MINUS_ONE ((bfd_vma)0 - 1)
48
49 #define RISCV_ELF_LOG_WORD_BYTES (ARCH_SIZE == 32 ? 2 : 3)
50
51 #define RISCV_ELF_WORD_BYTES (1 << RISCV_ELF_LOG_WORD_BYTES)
52
53 /* The name of the dynamic interpreter. This is put in the .interp
54 section. */
55
56 #define ELF64_DYNAMIC_INTERPRETER "/lib/ld.so.1"
57 #define ELF32_DYNAMIC_INTERPRETER "/lib32/ld.so.1"
58
59 #define ELF_ARCH bfd_arch_riscv
60 #define ELF_TARGET_ID RISCV_ELF_DATA
61 #define ELF_MACHINE_CODE EM_RISCV
62 #define ELF_MAXPAGESIZE 0x1000
63 #define ELF_COMMONPAGESIZE 0x1000
64
65 /* RISC-V ELF linker hash entry. */
66
67 struct riscv_elf_link_hash_entry
68 {
69 struct elf_link_hash_entry elf;
70
71 #define GOT_UNKNOWN 0
72 #define GOT_NORMAL 1
73 #define GOT_TLS_GD 2
74 #define GOT_TLS_IE 4
75 #define GOT_TLS_LE 8
76 char tls_type;
77 };
78
79 #define riscv_elf_hash_entry(ent) \
80 ((struct riscv_elf_link_hash_entry *) (ent))
81
82 struct _bfd_riscv_elf_obj_tdata
83 {
84 struct elf_obj_tdata root;
85
86 /* tls_type for each local got entry. */
87 char *local_got_tls_type;
88 };
89
90 #define _bfd_riscv_elf_tdata(abfd) \
91 ((struct _bfd_riscv_elf_obj_tdata *) (abfd)->tdata.any)
92
93 #define _bfd_riscv_elf_local_got_tls_type(abfd) \
94 (_bfd_riscv_elf_tdata (abfd)->local_got_tls_type)
95
96 #define _bfd_riscv_elf_tls_type(abfd, h, symndx) \
97 (*((h) != NULL ? &riscv_elf_hash_entry (h)->tls_type \
98 : &_bfd_riscv_elf_local_got_tls_type (abfd) [symndx]))
99
100 #define is_riscv_elf(bfd) \
101 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
102 && elf_tdata (bfd) != NULL \
103 && elf_object_id (bfd) == RISCV_ELF_DATA)
104
105 static bool
106 elfNN_riscv_mkobject (bfd *abfd)
107 {
108 return bfd_elf_allocate_object (abfd,
109 sizeof (struct _bfd_riscv_elf_obj_tdata),
110 RISCV_ELF_DATA);
111 }
112
113 #include "elf/common.h"
114 #include "elf/internal.h"
115
116 struct riscv_elf_link_hash_table
117 {
118 struct elf_link_hash_table elf;
119
120 /* Short-cuts to get to dynamic linker sections. */
121 asection *sdyntdata;
122
123 /* The max alignment of output sections. */
124 bfd_vma max_alignment;
125
126 /* Used by local STT_GNU_IFUNC symbols. */
127 htab_t loc_hash_table;
128 void * loc_hash_memory;
129
130 /* The index of the last unused .rel.iplt slot. */
131 bfd_vma last_iplt_index;
132
133 /* Re-run the relaxations from relax pass 0 if TRUE. */
134 bool restart_relax;
135 };
136
137 /* Instruction access functions. */
138 #define riscv_get_insn(bits, ptr) \
139 ((bits) == 16 ? bfd_getl16 (ptr) \
140 : (bits) == 32 ? bfd_getl32 (ptr) \
141 : (bits) == 64 ? bfd_getl64 (ptr) \
142 : (abort (), (bfd_vma) - 1))
143 #define riscv_put_insn(bits, val, ptr) \
144 ((bits) == 16 ? bfd_putl16 (val, ptr) \
145 : (bits) == 32 ? bfd_putl32 (val, ptr) \
146 : (bits) == 64 ? bfd_putl64 (val, ptr) \
147 : (abort (), (void) 0))
148
149 /* Get the RISC-V ELF linker hash table from a link_info structure. */
150 #define riscv_elf_hash_table(p) \
151 ((is_elf_hash_table ((p)->hash) \
152 && elf_hash_table_id (elf_hash_table (p)) == RISCV_ELF_DATA) \
153 ? (struct riscv_elf_link_hash_table *) (p)->hash : NULL)
154
155 static bool
156 riscv_info_to_howto_rela (bfd *abfd,
157 arelent *cache_ptr,
158 Elf_Internal_Rela *dst)
159 {
160 cache_ptr->howto = riscv_elf_rtype_to_howto (abfd, ELFNN_R_TYPE (dst->r_info));
161 return cache_ptr->howto != NULL;
162 }
163
164 static void
165 riscv_elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
166 {
167 const struct elf_backend_data *bed;
168 bfd_byte *loc;
169
170 bed = get_elf_backend_data (abfd);
171 loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
172 bed->s->swap_reloca_out (abfd, rel, loc);
173 }
174
175 /* Return true if a relocation is modifying an instruction. */
176
177 static bool
178 riscv_is_insn_reloc (const reloc_howto_type *howto)
179 {
180 /* Heuristic: A multibyte destination with a nontrivial mask
181 is an instruction */
182 return (howto->bitsize > 8
183 && howto->dst_mask != 0
184 && ~(howto->dst_mask | (howto->bitsize < sizeof(bfd_vma) * CHAR_BIT
185 ? (MINUS_ONE << howto->bitsize) : (bfd_vma)0)) != 0);
186 }
187
188 /* PLT/GOT stuff. */
189 #define PLT_HEADER_INSNS 8
190 #define PLT_ENTRY_INSNS 4
191 #define PLT_HEADER_SIZE (PLT_HEADER_INSNS * 4)
192 #define PLT_ENTRY_SIZE (PLT_ENTRY_INSNS * 4)
193 #define GOT_ENTRY_SIZE RISCV_ELF_WORD_BYTES
194 /* Reserve two entries of GOTPLT for ld.so, one is used for PLT resolver,
195 the other is used for link map. Other targets also reserve one more
196 entry used for runtime profile? */
197 #define GOTPLT_HEADER_SIZE (2 * GOT_ENTRY_SIZE)
198
199 #define sec_addr(sec) ((sec)->output_section->vma + (sec)->output_offset)
200
201 #if ARCH_SIZE == 32
202 # define MATCH_LREG MATCH_LW
203 #else
204 # define MATCH_LREG MATCH_LD
205 #endif
206
207 /* Generate a PLT header. */
208
209 static bool
210 riscv_make_plt_header (bfd *output_bfd, bfd_vma gotplt_addr, bfd_vma addr,
211 uint32_t *entry)
212 {
213 bfd_vma gotplt_offset_high = RISCV_PCREL_HIGH_PART (gotplt_addr, addr);
214 bfd_vma gotplt_offset_low = RISCV_PCREL_LOW_PART (gotplt_addr, addr);
215
216 /* RVE has no t3 register, so this won't work, and is not supported. */
217 if (elf_elfheader (output_bfd)->e_flags & EF_RISCV_RVE)
218 {
219 _bfd_error_handler (_("%pB: warning: RVE PLT generation not supported"),
220 output_bfd);
221 return false;
222 }
223
224 /* auipc t2, %hi(.got.plt)
225 sub t1, t1, t3 # shifted .got.plt offset + hdr size + 12
226 l[w|d] t3, %lo(.got.plt)(t2) # _dl_runtime_resolve
227 addi t1, t1, -(hdr size + 12) # shifted .got.plt offset
228 addi t0, t2, %lo(.got.plt) # &.got.plt
229 srli t1, t1, log2(16/PTRSIZE) # .got.plt offset
230 l[w|d] t0, PTRSIZE(t0) # link map
231 jr t3 */
232
233 entry[0] = RISCV_UTYPE (AUIPC, X_T2, gotplt_offset_high);
234 entry[1] = RISCV_RTYPE (SUB, X_T1, X_T1, X_T3);
235 entry[2] = RISCV_ITYPE (LREG, X_T3, X_T2, gotplt_offset_low);
236 entry[3] = RISCV_ITYPE (ADDI, X_T1, X_T1, (uint32_t) -(PLT_HEADER_SIZE + 12));
237 entry[4] = RISCV_ITYPE (ADDI, X_T0, X_T2, gotplt_offset_low);
238 entry[5] = RISCV_ITYPE (SRLI, X_T1, X_T1, 4 - RISCV_ELF_LOG_WORD_BYTES);
239 entry[6] = RISCV_ITYPE (LREG, X_T0, X_T0, RISCV_ELF_WORD_BYTES);
240 entry[7] = RISCV_ITYPE (JALR, 0, X_T3, 0);
241
242 return true;
243 }
244
245 /* Generate a PLT entry. */
246
247 static bool
248 riscv_make_plt_entry (bfd *output_bfd, bfd_vma got, bfd_vma addr,
249 uint32_t *entry)
250 {
251 /* RVE has no t3 register, so this won't work, and is not supported. */
252 if (elf_elfheader (output_bfd)->e_flags & EF_RISCV_RVE)
253 {
254 _bfd_error_handler (_("%pB: warning: RVE PLT generation not supported"),
255 output_bfd);
256 return false;
257 }
258
259 /* auipc t3, %hi(.got.plt entry)
260 l[w|d] t3, %lo(.got.plt entry)(t3)
261 jalr t1, t3
262 nop */
263
264 entry[0] = RISCV_UTYPE (AUIPC, X_T3, RISCV_PCREL_HIGH_PART (got, addr));
265 entry[1] = RISCV_ITYPE (LREG, X_T3, X_T3, RISCV_PCREL_LOW_PART (got, addr));
266 entry[2] = RISCV_ITYPE (JALR, X_T1, X_T3, 0);
267 entry[3] = RISCV_NOP;
268
269 return true;
270 }
271
272 /* Create an entry in an RISC-V ELF linker hash table. */
273
274 static struct bfd_hash_entry *
275 link_hash_newfunc (struct bfd_hash_entry *entry,
276 struct bfd_hash_table *table, const char *string)
277 {
278 /* Allocate the structure if it has not already been allocated by a
279 subclass. */
280 if (entry == NULL)
281 {
282 entry =
283 bfd_hash_allocate (table,
284 sizeof (struct riscv_elf_link_hash_entry));
285 if (entry == NULL)
286 return entry;
287 }
288
289 /* Call the allocation method of the superclass. */
290 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
291 if (entry != NULL)
292 {
293 struct riscv_elf_link_hash_entry *eh;
294
295 eh = (struct riscv_elf_link_hash_entry *) entry;
296 eh->tls_type = GOT_UNKNOWN;
297 }
298
299 return entry;
300 }
301
302 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
303 for local symbol so that we can handle local STT_GNU_IFUNC symbols
304 as global symbol. We reuse indx and dynstr_index for local symbol
305 hash since they aren't used by global symbols in this backend. */
306
307 static hashval_t
308 riscv_elf_local_htab_hash (const void *ptr)
309 {
310 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) ptr;
311 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
312 }
313
314 /* Compare local hash entries. */
315
316 static int
317 riscv_elf_local_htab_eq (const void *ptr1, const void *ptr2)
318 {
319 struct elf_link_hash_entry *h1 = (struct elf_link_hash_entry *) ptr1;
320 struct elf_link_hash_entry *h2 = (struct elf_link_hash_entry *) ptr2;
321
322 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
323 }
324
325 /* Find and/or create a hash entry for local symbol. */
326
327 static struct elf_link_hash_entry *
328 riscv_elf_get_local_sym_hash (struct riscv_elf_link_hash_table *htab,
329 bfd *abfd, const Elf_Internal_Rela *rel,
330 bool create)
331 {
332 struct riscv_elf_link_hash_entry eh, *ret;
333 asection *sec = abfd->sections;
334 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
335 ELFNN_R_SYM (rel->r_info));
336 void **slot;
337
338 eh.elf.indx = sec->id;
339 eh.elf.dynstr_index = ELFNN_R_SYM (rel->r_info);
340 slot = htab_find_slot_with_hash (htab->loc_hash_table, &eh, h,
341 create ? INSERT : NO_INSERT);
342
343 if (!slot)
344 return NULL;
345
346 if (*slot)
347 {
348 ret = (struct riscv_elf_link_hash_entry *) *slot;
349 return &ret->elf;
350 }
351
352 ret = (struct riscv_elf_link_hash_entry *)
353 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
354 sizeof (struct riscv_elf_link_hash_entry));
355 if (ret)
356 {
357 memset (ret, 0, sizeof (*ret));
358 ret->elf.indx = sec->id;
359 ret->elf.dynstr_index = ELFNN_R_SYM (rel->r_info);
360 ret->elf.dynindx = -1;
361 *slot = ret;
362 }
363 return &ret->elf;
364 }
365
366 /* Destroy a RISC-V elf linker hash table. */
367
368 static void
369 riscv_elf_link_hash_table_free (bfd *obfd)
370 {
371 struct riscv_elf_link_hash_table *ret
372 = (struct riscv_elf_link_hash_table *) obfd->link.hash;
373
374 if (ret->loc_hash_table)
375 htab_delete (ret->loc_hash_table);
376 if (ret->loc_hash_memory)
377 objalloc_free ((struct objalloc *) ret->loc_hash_memory);
378
379 _bfd_elf_link_hash_table_free (obfd);
380 }
381
382 /* Create a RISC-V ELF linker hash table. */
383
384 static struct bfd_link_hash_table *
385 riscv_elf_link_hash_table_create (bfd *abfd)
386 {
387 struct riscv_elf_link_hash_table *ret;
388 size_t amt = sizeof (struct riscv_elf_link_hash_table);
389
390 ret = (struct riscv_elf_link_hash_table *) bfd_zmalloc (amt);
391 if (ret == NULL)
392 return NULL;
393
394 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc,
395 sizeof (struct riscv_elf_link_hash_entry),
396 RISCV_ELF_DATA))
397 {
398 free (ret);
399 return NULL;
400 }
401
402 ret->max_alignment = (bfd_vma) -1;
403 ret->restart_relax = false;
404
405 /* Create hash table for local ifunc. */
406 ret->loc_hash_table = htab_try_create (1024,
407 riscv_elf_local_htab_hash,
408 riscv_elf_local_htab_eq,
409 NULL);
410 ret->loc_hash_memory = objalloc_create ();
411 if (!ret->loc_hash_table || !ret->loc_hash_memory)
412 {
413 riscv_elf_link_hash_table_free (abfd);
414 return NULL;
415 }
416 ret->elf.root.hash_table_free = riscv_elf_link_hash_table_free;
417
418 return &ret->elf.root;
419 }
420
421 /* Create the .got section. */
422
423 static bool
424 riscv_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
425 {
426 flagword flags;
427 asection *s, *s_got;
428 struct elf_link_hash_entry *h;
429 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
430 struct elf_link_hash_table *htab = elf_hash_table (info);
431
432 /* This function may be called more than once. */
433 if (htab->sgot != NULL)
434 return true;
435
436 flags = bed->dynamic_sec_flags;
437
438 s = bfd_make_section_anyway_with_flags (abfd,
439 (bed->rela_plts_and_copies_p
440 ? ".rela.got" : ".rel.got"),
441 (bed->dynamic_sec_flags
442 | SEC_READONLY));
443 if (s == NULL
444 || !bfd_set_section_alignment (s, bed->s->log_file_align))
445 return false;
446 htab->srelgot = s;
447
448 s = s_got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
449 if (s == NULL
450 || !bfd_set_section_alignment (s, bed->s->log_file_align))
451 return false;
452 htab->sgot = s;
453
454 /* The first bit of the global offset table is the header. */
455 s->size += bed->got_header_size;
456
457 if (bed->want_got_plt)
458 {
459 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
460 if (s == NULL
461 || !bfd_set_section_alignment (s, bed->s->log_file_align))
462 return false;
463 htab->sgotplt = s;
464
465 /* Reserve room for the header. */
466 s->size += GOTPLT_HEADER_SIZE;
467 }
468
469 if (bed->want_got_sym)
470 {
471 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
472 section. We don't do this in the linker script because we don't want
473 to define the symbol if we are not creating a global offset
474 table. */
475 h = _bfd_elf_define_linkage_sym (abfd, info, s_got,
476 "_GLOBAL_OFFSET_TABLE_");
477 elf_hash_table (info)->hgot = h;
478 if (h == NULL)
479 return false;
480 }
481
482 return true;
483 }
484
485 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
486 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
487 hash table. */
488
489 static bool
490 riscv_elf_create_dynamic_sections (bfd *dynobj,
491 struct bfd_link_info *info)
492 {
493 struct riscv_elf_link_hash_table *htab;
494
495 htab = riscv_elf_hash_table (info);
496 BFD_ASSERT (htab != NULL);
497
498 if (!riscv_elf_create_got_section (dynobj, info))
499 return false;
500
501 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
502 return false;
503
504 if (!bfd_link_pic (info))
505 {
506 /* Technically, this section doesn't have contents. It is used as the
507 target of TLS copy relocs, to copy TLS data from shared libraries into
508 the executable. However, if we don't mark it as loadable, then it
509 matches the IS_TBSS test in ldlang.c, and there is no run-time address
510 space allocated for it even though it has SEC_ALLOC. That test is
511 correct for .tbss, but not correct for this section. There is also
512 a second problem that having a section with no contents can only work
513 if it comes after all sections with contents in the same segment,
514 but the linker script does not guarantee that. This is just mixed in
515 with other .tdata.* sections. We can fix both problems by lying and
516 saying that there are contents. This section is expected to be small
517 so this should not cause a significant extra program startup cost. */
518 htab->sdyntdata =
519 bfd_make_section_anyway_with_flags (dynobj, ".tdata.dyn",
520 (SEC_ALLOC | SEC_THREAD_LOCAL
521 | SEC_LOAD | SEC_DATA
522 | SEC_HAS_CONTENTS
523 | SEC_LINKER_CREATED));
524 }
525
526 if (!htab->elf.splt || !htab->elf.srelplt || !htab->elf.sdynbss
527 || (!bfd_link_pic (info) && (!htab->elf.srelbss || !htab->sdyntdata)))
528 abort ();
529
530 return true;
531 }
532
533 /* Copy the extra info we tack onto an elf_link_hash_entry. */
534
535 static void
536 riscv_elf_copy_indirect_symbol (struct bfd_link_info *info,
537 struct elf_link_hash_entry *dir,
538 struct elf_link_hash_entry *ind)
539 {
540 struct riscv_elf_link_hash_entry *edir, *eind;
541
542 edir = (struct riscv_elf_link_hash_entry *) dir;
543 eind = (struct riscv_elf_link_hash_entry *) ind;
544
545 if (ind->root.type == bfd_link_hash_indirect
546 && dir->got.refcount <= 0)
547 {
548 edir->tls_type = eind->tls_type;
549 eind->tls_type = GOT_UNKNOWN;
550 }
551 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
552 }
553
554 static bool
555 riscv_elf_record_tls_type (bfd *abfd, struct elf_link_hash_entry *h,
556 unsigned long symndx, char tls_type)
557 {
558 char *new_tls_type = &_bfd_riscv_elf_tls_type (abfd, h, symndx);
559
560 *new_tls_type |= tls_type;
561 if ((*new_tls_type & GOT_NORMAL) && (*new_tls_type & ~GOT_NORMAL))
562 {
563 (*_bfd_error_handler)
564 (_("%pB: `%s' accessed both as normal and thread local symbol"),
565 abfd, h ? h->root.root.string : "<local>");
566 return false;
567 }
568 return true;
569 }
570
571 static bool
572 riscv_elf_record_got_reference (bfd *abfd, struct bfd_link_info *info,
573 struct elf_link_hash_entry *h, long symndx)
574 {
575 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
576 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
577
578 if (htab->elf.sgot == NULL)
579 {
580 if (!riscv_elf_create_got_section (htab->elf.dynobj, info))
581 return false;
582 }
583
584 if (h != NULL)
585 {
586 h->got.refcount += 1;
587 return true;
588 }
589
590 /* This is a global offset table entry for a local symbol. */
591 if (elf_local_got_refcounts (abfd) == NULL)
592 {
593 bfd_size_type size = symtab_hdr->sh_info * (sizeof (bfd_vma) + 1);
594 if (!(elf_local_got_refcounts (abfd) = bfd_zalloc (abfd, size)))
595 return false;
596 _bfd_riscv_elf_local_got_tls_type (abfd)
597 = (char *) (elf_local_got_refcounts (abfd) + symtab_hdr->sh_info);
598 }
599 elf_local_got_refcounts (abfd) [symndx] += 1;
600
601 return true;
602 }
603
604 static bool
605 bad_static_reloc (bfd *abfd, unsigned r_type, struct elf_link_hash_entry *h)
606 {
607 reloc_howto_type * r = riscv_elf_rtype_to_howto (abfd, r_type);
608
609 /* We propably can improve the information to tell users that they
610 should be recompile the code with -fPIC or -fPIE, just like what
611 x86 does. */
612 (*_bfd_error_handler)
613 (_("%pB: relocation %s against `%s' can not be used when making a shared "
614 "object; recompile with -fPIC"),
615 abfd, r ? r->name : _("<unknown>"),
616 h != NULL ? h->root.root.string : "a local symbol");
617 bfd_set_error (bfd_error_bad_value);
618 return false;
619 }
620
621 /* Look through the relocs for a section during the first phase, and
622 allocate space in the global offset table or procedure linkage
623 table. */
624
625 static bool
626 riscv_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
627 asection *sec, const Elf_Internal_Rela *relocs)
628 {
629 struct riscv_elf_link_hash_table *htab;
630 Elf_Internal_Shdr *symtab_hdr;
631 struct elf_link_hash_entry **sym_hashes;
632 const Elf_Internal_Rela *rel;
633 asection *sreloc = NULL;
634
635 if (bfd_link_relocatable (info))
636 return true;
637
638 htab = riscv_elf_hash_table (info);
639 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
640 sym_hashes = elf_sym_hashes (abfd);
641
642 if (htab->elf.dynobj == NULL)
643 htab->elf.dynobj = abfd;
644
645 for (rel = relocs; rel < relocs + sec->reloc_count; rel++)
646 {
647 unsigned int r_type;
648 unsigned int r_symndx;
649 struct elf_link_hash_entry *h;
650
651 r_symndx = ELFNN_R_SYM (rel->r_info);
652 r_type = ELFNN_R_TYPE (rel->r_info);
653
654 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
655 {
656 (*_bfd_error_handler) (_("%pB: bad symbol index: %d"),
657 abfd, r_symndx);
658 return false;
659 }
660
661 if (r_symndx < symtab_hdr->sh_info)
662 {
663 /* A local symbol. */
664 Elf_Internal_Sym *isym = bfd_sym_from_r_symndx (&htab->elf.sym_cache,
665 abfd, r_symndx);
666 if (isym == NULL)
667 return false;
668
669 /* Check relocation against local STT_GNU_IFUNC symbol. */
670 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
671 {
672 h = riscv_elf_get_local_sym_hash (htab, abfd, rel, true);
673 if (h == NULL)
674 return false;
675
676 /* Fake STT_GNU_IFUNC global symbol. */
677 h->root.root.string = bfd_elf_sym_name (abfd, symtab_hdr,
678 isym, NULL);
679 h->type = STT_GNU_IFUNC;
680 h->def_regular = 1;
681 h->ref_regular = 1;
682 h->forced_local = 1;
683 h->root.type = bfd_link_hash_defined;
684 }
685 else
686 h = NULL;
687 }
688 else
689 {
690 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
691 while (h->root.type == bfd_link_hash_indirect
692 || h->root.type == bfd_link_hash_warning)
693 h = (struct elf_link_hash_entry *) h->root.u.i.link;
694 }
695
696 if (h != NULL)
697 {
698 switch (r_type)
699 {
700 case R_RISCV_32:
701 case R_RISCV_64:
702 case R_RISCV_CALL:
703 case R_RISCV_CALL_PLT:
704 case R_RISCV_HI20:
705 case R_RISCV_GOT_HI20:
706 case R_RISCV_PCREL_HI20:
707 /* Create the ifunc sections, iplt and ipltgot, for static
708 executables. */
709 if (h->type == STT_GNU_IFUNC
710 && !_bfd_elf_create_ifunc_sections (htab->elf.dynobj, info))
711 return false;
712 break;
713
714 default:
715 break;
716 }
717
718 /* It is referenced by a non-shared object. */
719 h->ref_regular = 1;
720 }
721
722 switch (r_type)
723 {
724 case R_RISCV_TLS_GD_HI20:
725 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
726 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_GD))
727 return false;
728 break;
729
730 case R_RISCV_TLS_GOT_HI20:
731 if (bfd_link_pic (info))
732 info->flags |= DF_STATIC_TLS;
733 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
734 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_IE))
735 return false;
736 break;
737
738 case R_RISCV_GOT_HI20:
739 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
740 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_NORMAL))
741 return false;
742 break;
743
744 case R_RISCV_CALL:
745 case R_RISCV_CALL_PLT:
746 /* These symbol requires a procedure linkage table entry.
747 We actually build the entry in adjust_dynamic_symbol,
748 because these might be a case of linking PIC code without
749 linking in any dynamic objects, in which case we don't
750 need to generate a procedure linkage table after all. */
751
752 /* If it is a local symbol, then we resolve it directly
753 without creating a PLT entry. */
754 if (h == NULL)
755 continue;
756
757 h->needs_plt = 1;
758 h->plt.refcount += 1;
759 break;
760
761 case R_RISCV_PCREL_HI20:
762 if (h != NULL
763 && h->type == STT_GNU_IFUNC)
764 {
765 h->non_got_ref = 1;
766 h->pointer_equality_needed = 1;
767
768 /* We don't use the PCREL_HI20 in the data section,
769 so we always need the plt when it refers to
770 ifunc symbol. */
771 h->plt.refcount += 1;
772 }
773 /* Fall through. */
774
775 case R_RISCV_JAL:
776 case R_RISCV_BRANCH:
777 case R_RISCV_RVC_BRANCH:
778 case R_RISCV_RVC_JUMP:
779 /* In shared libraries and pie, these relocs are known
780 to bind locally. */
781 if (bfd_link_pic (info))
782 break;
783 goto static_reloc;
784
785 case R_RISCV_TPREL_HI20:
786 if (!bfd_link_executable (info))
787 return bad_static_reloc (abfd, r_type, h);
788 if (h != NULL)
789 riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_LE);
790 goto static_reloc;
791
792 case R_RISCV_HI20:
793 if (bfd_link_pic (info))
794 return bad_static_reloc (abfd, r_type, h);
795 /* Fall through. */
796
797 case R_RISCV_COPY:
798 case R_RISCV_JUMP_SLOT:
799 case R_RISCV_RELATIVE:
800 case R_RISCV_64:
801 case R_RISCV_32:
802 /* Fall through. */
803
804 static_reloc:
805
806 if (h != NULL
807 && (!bfd_link_pic (info)
808 || h->type == STT_GNU_IFUNC))
809 {
810 /* This reloc might not bind locally. */
811 h->non_got_ref = 1;
812 h->pointer_equality_needed = 1;
813
814 if (!h->def_regular
815 || (sec->flags & (SEC_CODE | SEC_READONLY)) != 0)
816 {
817 /* We may need a .plt entry if the symbol is a function
818 defined in a shared lib or is a function referenced
819 from the code or read-only section. */
820 h->plt.refcount += 1;
821 }
822 }
823
824 /* If we are creating a shared library, and this is a reloc
825 against a global symbol, or a non PC relative reloc
826 against a local symbol, then we need to copy the reloc
827 into the shared library. However, if we are linking with
828 -Bsymbolic, we do not need to copy a reloc against a
829 global symbol which is defined in an object we are
830 including in the link (i.e., DEF_REGULAR is set). At
831 this point we have not seen all the input files, so it is
832 possible that DEF_REGULAR is not set now but will be set
833 later (it is never cleared). In case of a weak definition,
834 DEF_REGULAR may be cleared later by a strong definition in
835 a shared library. We account for that possibility below by
836 storing information in the relocs_copied field of the hash
837 table entry. A similar situation occurs when creating
838 shared libraries and symbol visibility changes render the
839 symbol local.
840
841 If on the other hand, we are creating an executable, we
842 may need to keep relocations for symbols satisfied by a
843 dynamic library if we manage to avoid copy relocs for the
844 symbol.
845
846 Generate dynamic pointer relocation against STT_GNU_IFUNC
847 symbol in the non-code section (R_RISCV_32/R_RISCV_64). */
848 reloc_howto_type * r = riscv_elf_rtype_to_howto (abfd, r_type);
849
850 if ((bfd_link_pic (info)
851 && (sec->flags & SEC_ALLOC) != 0
852 && ((r != NULL && !r->pc_relative)
853 || (h != NULL
854 && (!info->symbolic
855 || h->root.type == bfd_link_hash_defweak
856 || !h->def_regular))))
857 || (!bfd_link_pic (info)
858 && (sec->flags & SEC_ALLOC) != 0
859 && h != NULL
860 && (h->root.type == bfd_link_hash_defweak
861 || !h->def_regular))
862 || (!bfd_link_pic (info)
863 && h != NULL
864 && h->type == STT_GNU_IFUNC
865 && (sec->flags & SEC_CODE) == 0))
866 {
867 struct elf_dyn_relocs *p;
868 struct elf_dyn_relocs **head;
869
870 /* When creating a shared object, we must copy these
871 relocs into the output file. We create a reloc
872 section in dynobj and make room for the reloc. */
873 if (sreloc == NULL)
874 {
875 sreloc = _bfd_elf_make_dynamic_reloc_section
876 (sec, htab->elf.dynobj, RISCV_ELF_LOG_WORD_BYTES,
877 abfd, /*rela?*/ true);
878
879 if (sreloc == NULL)
880 return false;
881 }
882
883 /* If this is a global symbol, we count the number of
884 relocations we need for this symbol. */
885 if (h != NULL)
886 head = &h->dyn_relocs;
887 else
888 {
889 /* Track dynamic relocs needed for local syms too.
890 We really need local syms available to do this
891 easily. Oh well. */
892
893 asection *s;
894 void *vpp;
895 Elf_Internal_Sym *isym;
896
897 isym = bfd_sym_from_r_symndx (&htab->elf.sym_cache,
898 abfd, r_symndx);
899 if (isym == NULL)
900 return false;
901
902 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
903 if (s == NULL)
904 s = sec;
905
906 vpp = &elf_section_data (s)->local_dynrel;
907 head = (struct elf_dyn_relocs **) vpp;
908 }
909
910 p = *head;
911 if (p == NULL || p->sec != sec)
912 {
913 size_t amt = sizeof *p;
914 p = ((struct elf_dyn_relocs *)
915 bfd_alloc (htab->elf.dynobj, amt));
916 if (p == NULL)
917 return false;
918 p->next = *head;
919 *head = p;
920 p->sec = sec;
921 p->count = 0;
922 p->pc_count = 0;
923 }
924
925 p->count += 1;
926 p->pc_count += r == NULL ? 0 : r->pc_relative;
927 }
928
929 break;
930
931 case R_RISCV_GNU_VTINHERIT:
932 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
933 return false;
934 break;
935
936 case R_RISCV_GNU_VTENTRY:
937 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
938 return false;
939 break;
940
941 default:
942 break;
943 }
944 }
945
946 return true;
947 }
948
949 static asection *
950 riscv_elf_gc_mark_hook (asection *sec,
951 struct bfd_link_info *info,
952 Elf_Internal_Rela *rel,
953 struct elf_link_hash_entry *h,
954 Elf_Internal_Sym *sym)
955 {
956 if (h != NULL)
957 switch (ELFNN_R_TYPE (rel->r_info))
958 {
959 case R_RISCV_GNU_VTINHERIT:
960 case R_RISCV_GNU_VTENTRY:
961 return NULL;
962 }
963
964 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
965 }
966
967 /* Adjust a symbol defined by a dynamic object and referenced by a
968 regular object. The current definition is in some section of the
969 dynamic object, but we're not including those sections. We have to
970 change the definition to something the rest of the link can
971 understand. */
972
973 static bool
974 riscv_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
975 struct elf_link_hash_entry *h)
976 {
977 struct riscv_elf_link_hash_table *htab;
978 struct riscv_elf_link_hash_entry * eh;
979 bfd *dynobj;
980 asection *s, *srel;
981
982 htab = riscv_elf_hash_table (info);
983 BFD_ASSERT (htab != NULL);
984
985 dynobj = htab->elf.dynobj;
986
987 /* Make sure we know what is going on here. */
988 BFD_ASSERT (dynobj != NULL
989 && (h->needs_plt
990 || h->type == STT_GNU_IFUNC
991 || h->is_weakalias
992 || (h->def_dynamic
993 && h->ref_regular
994 && !h->def_regular)));
995
996 /* If this is a function, put it in the procedure linkage table. We
997 will fill in the contents of the procedure linkage table later
998 (although we could actually do it here). */
999 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
1000 {
1001 if (h->plt.refcount <= 0
1002 || (h->type != STT_GNU_IFUNC
1003 && (SYMBOL_CALLS_LOCAL (info, h)
1004 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1005 && h->root.type == bfd_link_hash_undefweak))))
1006 {
1007 /* This case can occur if we saw a R_RISCV_CALL_PLT reloc in an
1008 input file, but the symbol was never referred to by a dynamic
1009 object, or if all references were garbage collected. In such
1010 a case, we don't actually need to build a PLT entry. */
1011 h->plt.offset = (bfd_vma) -1;
1012 h->needs_plt = 0;
1013 }
1014
1015 return true;
1016 }
1017 else
1018 h->plt.offset = (bfd_vma) -1;
1019
1020 /* If this is a weak symbol, and there is a real definition, the
1021 processor independent code will have arranged for us to see the
1022 real definition first, and we can just use the same value. */
1023 if (h->is_weakalias)
1024 {
1025 struct elf_link_hash_entry *def = weakdef (h);
1026 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
1027 h->root.u.def.section = def->root.u.def.section;
1028 h->root.u.def.value = def->root.u.def.value;
1029 return true;
1030 }
1031
1032 /* This is a reference to a symbol defined by a dynamic object which
1033 is not a function. */
1034
1035 /* If we are creating a shared library, we must presume that the
1036 only references to the symbol are via the global offset table.
1037 For such cases we need not do anything here; the relocations will
1038 be handled correctly by relocate_section. */
1039 if (bfd_link_pic (info))
1040 return true;
1041
1042 /* If there are no references to this symbol that do not use the
1043 GOT, we don't need to generate a copy reloc. */
1044 if (!h->non_got_ref)
1045 return true;
1046
1047 /* If -z nocopyreloc was given, we won't generate them either. */
1048 if (info->nocopyreloc)
1049 {
1050 h->non_got_ref = 0;
1051 return true;
1052 }
1053
1054 /* If we don't find any dynamic relocs in read-only sections, then
1055 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1056 if (!_bfd_elf_readonly_dynrelocs (h))
1057 {
1058 h->non_got_ref = 0;
1059 return true;
1060 }
1061
1062 /* We must allocate the symbol in our .dynbss section, which will
1063 become part of the .bss section of the executable. There will be
1064 an entry for this symbol in the .dynsym section. The dynamic
1065 object will contain position independent code, so all references
1066 from the dynamic object to this symbol will go through the global
1067 offset table. The dynamic linker will use the .dynsym entry to
1068 determine the address it must put in the global offset table, so
1069 both the dynamic object and the regular object will refer to the
1070 same memory location for the variable. */
1071
1072 /* We must generate a R_RISCV_COPY reloc to tell the dynamic linker
1073 to copy the initial value out of the dynamic object and into the
1074 runtime process image. We need to remember the offset into the
1075 .rel.bss section we are going to use. */
1076 eh = (struct riscv_elf_link_hash_entry *) h;
1077 if (eh->tls_type & ~GOT_NORMAL)
1078 {
1079 s = htab->sdyntdata;
1080 srel = htab->elf.srelbss;
1081 }
1082 else if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
1083 {
1084 s = htab->elf.sdynrelro;
1085 srel = htab->elf.sreldynrelro;
1086 }
1087 else
1088 {
1089 s = htab->elf.sdynbss;
1090 srel = htab->elf.srelbss;
1091 }
1092 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
1093 {
1094 srel->size += sizeof (ElfNN_External_Rela);
1095 h->needs_copy = 1;
1096 }
1097
1098 return _bfd_elf_adjust_dynamic_copy (info, h, s);
1099 }
1100
1101 /* Allocate space in .plt, .got and associated reloc sections for
1102 dynamic relocs. */
1103
1104 static bool
1105 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
1106 {
1107 struct bfd_link_info *info;
1108 struct riscv_elf_link_hash_table *htab;
1109 struct elf_dyn_relocs *p;
1110
1111 if (h->root.type == bfd_link_hash_indirect)
1112 return true;
1113
1114 info = (struct bfd_link_info *) inf;
1115 htab = riscv_elf_hash_table (info);
1116 BFD_ASSERT (htab != NULL);
1117
1118 /* When we are generating pde, make sure gp symbol is output as a
1119 dynamic symbol. Then ld.so can set the gp register earlier, before
1120 resolving the ifunc. */
1121 if (!bfd_link_pic (info)
1122 && htab->elf.dynamic_sections_created
1123 && strcmp (h->root.root.string, RISCV_GP_SYMBOL) == 0
1124 && !bfd_elf_link_record_dynamic_symbol (info, h))
1125 return false;
1126
1127 /* Since STT_GNU_IFUNC symbols must go through PLT, we handle them
1128 in the allocate_ifunc_dynrelocs and allocate_local_ifunc_dynrelocs,
1129 if they are defined and referenced in a non-shared object. */
1130 if (h->type == STT_GNU_IFUNC
1131 && h->def_regular)
1132 return true;
1133 else if (htab->elf.dynamic_sections_created
1134 && h->plt.refcount > 0)
1135 {
1136 /* Make sure this symbol is output as a dynamic symbol.
1137 Undefined weak syms won't yet be marked as dynamic. */
1138 if (h->dynindx == -1
1139 && !h->forced_local)
1140 {
1141 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1142 return false;
1143 }
1144
1145 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), h))
1146 {
1147 asection *s = htab->elf.splt;
1148
1149 if (s->size == 0)
1150 s->size = PLT_HEADER_SIZE;
1151
1152 h->plt.offset = s->size;
1153
1154 /* Make room for this entry. */
1155 s->size += PLT_ENTRY_SIZE;
1156
1157 /* We also need to make an entry in the .got.plt section. */
1158 htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
1159
1160 /* We also need to make an entry in the .rela.plt section. */
1161 htab->elf.srelplt->size += sizeof (ElfNN_External_Rela);
1162
1163 /* If this symbol is not defined in a regular file, and we are
1164 not generating a shared library, then set the symbol to this
1165 location in the .plt. This is required to make function
1166 pointers compare as equal between the normal executable and
1167 the shared library. */
1168 if (! bfd_link_pic (info)
1169 && !h->def_regular)
1170 {
1171 h->root.u.def.section = s;
1172 h->root.u.def.value = h->plt.offset;
1173 }
1174 }
1175 else
1176 {
1177 h->plt.offset = (bfd_vma) -1;
1178 h->needs_plt = 0;
1179 }
1180 }
1181 else
1182 {
1183 h->plt.offset = (bfd_vma) -1;
1184 h->needs_plt = 0;
1185 }
1186
1187 if (h->got.refcount > 0)
1188 {
1189 asection *s;
1190 bool dyn;
1191 int tls_type = riscv_elf_hash_entry (h)->tls_type;
1192
1193 /* Make sure this symbol is output as a dynamic symbol.
1194 Undefined weak syms won't yet be marked as dynamic. */
1195 if (h->dynindx == -1
1196 && !h->forced_local)
1197 {
1198 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1199 return false;
1200 }
1201
1202 s = htab->elf.sgot;
1203 h->got.offset = s->size;
1204 dyn = htab->elf.dynamic_sections_created;
1205 if (tls_type & (GOT_TLS_GD | GOT_TLS_IE))
1206 {
1207 /* TLS_GD needs two dynamic relocs and two GOT slots. */
1208 if (tls_type & GOT_TLS_GD)
1209 {
1210 s->size += 2 * RISCV_ELF_WORD_BYTES;
1211 htab->elf.srelgot->size += 2 * sizeof (ElfNN_External_Rela);
1212 }
1213
1214 /* TLS_IE needs one dynamic reloc and one GOT slot. */
1215 if (tls_type & GOT_TLS_IE)
1216 {
1217 s->size += RISCV_ELF_WORD_BYTES;
1218 htab->elf.srelgot->size += sizeof (ElfNN_External_Rela);
1219 }
1220 }
1221 else
1222 {
1223 s->size += RISCV_ELF_WORD_BYTES;
1224 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
1225 && ! UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
1226 htab->elf.srelgot->size += sizeof (ElfNN_External_Rela);
1227 }
1228 }
1229 else
1230 h->got.offset = (bfd_vma) -1;
1231
1232 if (h->dyn_relocs == NULL)
1233 return true;
1234
1235 /* In the shared -Bsymbolic case, discard space allocated for
1236 dynamic pc-relative relocs against symbols which turn out to be
1237 defined in regular objects. For the normal shared case, discard
1238 space for pc-relative relocs that have become local due to symbol
1239 visibility changes. */
1240
1241 if (bfd_link_pic (info))
1242 {
1243 if (SYMBOL_CALLS_LOCAL (info, h))
1244 {
1245 struct elf_dyn_relocs **pp;
1246
1247 for (pp = &h->dyn_relocs; (p = *pp) != NULL; )
1248 {
1249 p->count -= p->pc_count;
1250 p->pc_count = 0;
1251 if (p->count == 0)
1252 *pp = p->next;
1253 else
1254 pp = &p->next;
1255 }
1256 }
1257
1258 /* Also discard relocs on undefined weak syms with non-default
1259 visibility. */
1260 if (h->dyn_relocs != NULL
1261 && h->root.type == bfd_link_hash_undefweak)
1262 {
1263 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1264 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
1265 h->dyn_relocs = NULL;
1266
1267 /* Make sure undefined weak symbols are output as a dynamic
1268 symbol in PIEs. */
1269 else if (h->dynindx == -1
1270 && !h->forced_local)
1271 {
1272 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1273 return false;
1274 }
1275 }
1276 }
1277 else
1278 {
1279 /* For the non-shared case, discard space for relocs against
1280 symbols which turn out to need copy relocs or are not
1281 dynamic. */
1282
1283 if (!h->non_got_ref
1284 && ((h->def_dynamic
1285 && !h->def_regular)
1286 || (htab->elf.dynamic_sections_created
1287 && (h->root.type == bfd_link_hash_undefweak
1288 || h->root.type == bfd_link_hash_undefined))))
1289 {
1290 /* Make sure this symbol is output as a dynamic symbol.
1291 Undefined weak syms won't yet be marked as dynamic. */
1292 if (h->dynindx == -1
1293 && !h->forced_local)
1294 {
1295 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1296 return false;
1297 }
1298
1299 /* If that succeeded, we know we'll be keeping all the
1300 relocs. */
1301 if (h->dynindx != -1)
1302 goto keep;
1303 }
1304
1305 h->dyn_relocs = NULL;
1306
1307 keep: ;
1308 }
1309
1310 /* Finally, allocate space. */
1311 for (p = h->dyn_relocs; p != NULL; p = p->next)
1312 {
1313 asection *sreloc = elf_section_data (p->sec)->sreloc;
1314 sreloc->size += p->count * sizeof (ElfNN_External_Rela);
1315 }
1316
1317 return true;
1318 }
1319
1320 /* Allocate space in .plt, .got and associated reloc sections for
1321 ifunc dynamic relocs. */
1322
1323 static bool
1324 allocate_ifunc_dynrelocs (struct elf_link_hash_entry *h,
1325 void *inf)
1326 {
1327 struct bfd_link_info *info;
1328
1329 if (h->root.type == bfd_link_hash_indirect)
1330 return true;
1331
1332 if (h->root.type == bfd_link_hash_warning)
1333 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1334
1335 info = (struct bfd_link_info *) inf;
1336
1337 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
1338 here if it is defined and referenced in a non-shared object. */
1339 if (h->type == STT_GNU_IFUNC
1340 && h->def_regular)
1341 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
1342 &h->dyn_relocs,
1343 PLT_ENTRY_SIZE,
1344 PLT_HEADER_SIZE,
1345 GOT_ENTRY_SIZE,
1346 true);
1347 return true;
1348 }
1349
1350 /* Allocate space in .plt, .got and associated reloc sections for
1351 local ifunc dynamic relocs. */
1352
1353 static int
1354 allocate_local_ifunc_dynrelocs (void **slot, void *inf)
1355 {
1356 struct elf_link_hash_entry *h
1357 = (struct elf_link_hash_entry *) *slot;
1358
1359 if (h->type != STT_GNU_IFUNC
1360 || !h->def_regular
1361 || !h->ref_regular
1362 || !h->forced_local
1363 || h->root.type != bfd_link_hash_defined)
1364 abort ();
1365
1366 return allocate_ifunc_dynrelocs (h, inf);
1367 }
1368
1369 static bool
1370 riscv_elf_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
1371 {
1372 struct riscv_elf_link_hash_table *htab;
1373 bfd *dynobj;
1374 asection *s;
1375 bfd *ibfd;
1376
1377 htab = riscv_elf_hash_table (info);
1378 BFD_ASSERT (htab != NULL);
1379 dynobj = htab->elf.dynobj;
1380 BFD_ASSERT (dynobj != NULL);
1381
1382 if (elf_hash_table (info)->dynamic_sections_created)
1383 {
1384 /* Set the contents of the .interp section to the interpreter. */
1385 if (bfd_link_executable (info) && !info->nointerp)
1386 {
1387 s = bfd_get_linker_section (dynobj, ".interp");
1388 BFD_ASSERT (s != NULL);
1389 s->size = strlen (ELFNN_DYNAMIC_INTERPRETER) + 1;
1390 s->contents = (unsigned char *) ELFNN_DYNAMIC_INTERPRETER;
1391 }
1392 }
1393
1394 /* Set up .got offsets for local syms, and space for local dynamic
1395 relocs. */
1396 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
1397 {
1398 bfd_signed_vma *local_got;
1399 bfd_signed_vma *end_local_got;
1400 char *local_tls_type;
1401 bfd_size_type locsymcount;
1402 Elf_Internal_Shdr *symtab_hdr;
1403 asection *srel;
1404
1405 if (! is_riscv_elf (ibfd))
1406 continue;
1407
1408 for (s = ibfd->sections; s != NULL; s = s->next)
1409 {
1410 struct elf_dyn_relocs *p;
1411
1412 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
1413 {
1414 if (!bfd_is_abs_section (p->sec)
1415 && bfd_is_abs_section (p->sec->output_section))
1416 {
1417 /* Input section has been discarded, either because
1418 it is a copy of a linkonce section or due to
1419 linker script /DISCARD/, so we'll be discarding
1420 the relocs too. */
1421 }
1422 else if (p->count != 0)
1423 {
1424 srel = elf_section_data (p->sec)->sreloc;
1425 srel->size += p->count * sizeof (ElfNN_External_Rela);
1426 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
1427 info->flags |= DF_TEXTREL;
1428 }
1429 }
1430 }
1431
1432 local_got = elf_local_got_refcounts (ibfd);
1433 if (!local_got)
1434 continue;
1435
1436 symtab_hdr = &elf_symtab_hdr (ibfd);
1437 locsymcount = symtab_hdr->sh_info;
1438 end_local_got = local_got + locsymcount;
1439 local_tls_type = _bfd_riscv_elf_local_got_tls_type (ibfd);
1440 s = htab->elf.sgot;
1441 srel = htab->elf.srelgot;
1442 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
1443 {
1444 if (*local_got > 0)
1445 {
1446 *local_got = s->size;
1447 s->size += RISCV_ELF_WORD_BYTES;
1448 if (*local_tls_type & GOT_TLS_GD)
1449 s->size += RISCV_ELF_WORD_BYTES;
1450 if (bfd_link_pic (info)
1451 || (*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)))
1452 srel->size += sizeof (ElfNN_External_Rela);
1453 }
1454 else
1455 *local_got = (bfd_vma) -1;
1456 }
1457 }
1458
1459 /* Allocate .plt and .got entries and space dynamic relocs for
1460 global symbols. */
1461 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
1462
1463 /* Allocate .plt and .got entries and space dynamic relocs for
1464 global ifunc symbols. */
1465 elf_link_hash_traverse (&htab->elf, allocate_ifunc_dynrelocs, info);
1466
1467 /* Allocate .plt and .got entries and space dynamic relocs for
1468 local ifunc symbols. */
1469 htab_traverse (htab->loc_hash_table, allocate_local_ifunc_dynrelocs, info);
1470
1471 /* Used to resolve the dynamic relocs overwite problems when
1472 generating static executable. */
1473 if (htab->elf.irelplt)
1474 htab->last_iplt_index = htab->elf.irelplt->reloc_count - 1;
1475
1476 if (htab->elf.sgotplt)
1477 {
1478 struct elf_link_hash_entry *got;
1479 got = elf_link_hash_lookup (elf_hash_table (info),
1480 "_GLOBAL_OFFSET_TABLE_",
1481 false, false, false);
1482
1483 /* Don't allocate .got.plt section if there are no GOT nor PLT
1484 entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
1485 if ((got == NULL
1486 || !got->ref_regular_nonweak)
1487 && (htab->elf.sgotplt->size == GOTPLT_HEADER_SIZE)
1488 && (htab->elf.splt == NULL
1489 || htab->elf.splt->size == 0)
1490 && (htab->elf.sgot == NULL
1491 || (htab->elf.sgot->size
1492 == get_elf_backend_data (output_bfd)->got_header_size)))
1493 htab->elf.sgotplt->size = 0;
1494 }
1495
1496 /* The check_relocs and adjust_dynamic_symbol entry points have
1497 determined the sizes of the various dynamic sections. Allocate
1498 memory for them. */
1499 for (s = dynobj->sections; s != NULL; s = s->next)
1500 {
1501 if ((s->flags & SEC_LINKER_CREATED) == 0)
1502 continue;
1503
1504 if (s == htab->elf.splt
1505 || s == htab->elf.sgot
1506 || s == htab->elf.sgotplt
1507 || s == htab->elf.iplt
1508 || s == htab->elf.igotplt
1509 || s == htab->elf.sdynbss
1510 || s == htab->elf.sdynrelro
1511 || s == htab->sdyntdata)
1512 {
1513 /* Strip this section if we don't need it; see the
1514 comment below. */
1515 }
1516 else if (startswith (s->name, ".rela"))
1517 {
1518 if (s->size != 0)
1519 {
1520 /* We use the reloc_count field as a counter if we need
1521 to copy relocs into the output file. */
1522 s->reloc_count = 0;
1523 }
1524 }
1525 else
1526 {
1527 /* It's not one of our sections. */
1528 continue;
1529 }
1530
1531 if (s->size == 0)
1532 {
1533 /* If we don't need this section, strip it from the
1534 output file. This is mostly to handle .rela.bss and
1535 .rela.plt. We must create both sections in
1536 create_dynamic_sections, because they must be created
1537 before the linker maps input sections to output
1538 sections. The linker does that before
1539 adjust_dynamic_symbol is called, and it is that
1540 function which decides whether anything needs to go
1541 into these sections. */
1542 s->flags |= SEC_EXCLUDE;
1543 continue;
1544 }
1545
1546 if ((s->flags & SEC_HAS_CONTENTS) == 0)
1547 continue;
1548
1549 /* Allocate memory for the section contents. Zero the memory
1550 for the benefit of .rela.plt, which has 4 unused entries
1551 at the beginning, and we don't want garbage. */
1552 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1553 if (s->contents == NULL)
1554 return false;
1555 }
1556
1557 return _bfd_elf_add_dynamic_tags (output_bfd, info, true);
1558 }
1559
1560 #define TP_OFFSET 0
1561 #define DTP_OFFSET 0x800
1562
1563 /* Return the relocation value for a TLS dtp-relative reloc. */
1564
1565 static bfd_vma
1566 dtpoff (struct bfd_link_info *info, bfd_vma address)
1567 {
1568 /* If tls_sec is NULL, we should have signalled an error already. */
1569 if (elf_hash_table (info)->tls_sec == NULL)
1570 return 0;
1571 return address - elf_hash_table (info)->tls_sec->vma - DTP_OFFSET;
1572 }
1573
1574 /* Return the relocation value for a static TLS tp-relative relocation. */
1575
1576 static bfd_vma
1577 tpoff (struct bfd_link_info *info, bfd_vma address)
1578 {
1579 /* If tls_sec is NULL, we should have signalled an error already. */
1580 if (elf_hash_table (info)->tls_sec == NULL)
1581 return 0;
1582 return address - elf_hash_table (info)->tls_sec->vma - TP_OFFSET;
1583 }
1584
1585 /* Return the global pointer's value, or 0 if it is not in use. */
1586
1587 static bfd_vma
1588 riscv_global_pointer_value (struct bfd_link_info *info)
1589 {
1590 struct bfd_link_hash_entry *h;
1591
1592 h = bfd_link_hash_lookup (info->hash, RISCV_GP_SYMBOL, false, false, true);
1593 if (h == NULL || h->type != bfd_link_hash_defined)
1594 return 0;
1595
1596 return h->u.def.value + sec_addr (h->u.def.section);
1597 }
1598
1599 /* Emplace a static relocation. */
1600
1601 static bfd_reloc_status_type
1602 perform_relocation (const reloc_howto_type *howto,
1603 const Elf_Internal_Rela *rel,
1604 bfd_vma value,
1605 asection *input_section,
1606 bfd *input_bfd,
1607 bfd_byte *contents)
1608 {
1609 if (howto->pc_relative)
1610 value -= sec_addr (input_section) + rel->r_offset;
1611 value += rel->r_addend;
1612
1613 switch (ELFNN_R_TYPE (rel->r_info))
1614 {
1615 case R_RISCV_HI20:
1616 case R_RISCV_TPREL_HI20:
1617 case R_RISCV_PCREL_HI20:
1618 case R_RISCV_GOT_HI20:
1619 case R_RISCV_TLS_GOT_HI20:
1620 case R_RISCV_TLS_GD_HI20:
1621 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value)))
1622 return bfd_reloc_overflow;
1623 value = ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value));
1624 break;
1625
1626 case R_RISCV_LO12_I:
1627 case R_RISCV_GPREL_I:
1628 case R_RISCV_TPREL_LO12_I:
1629 case R_RISCV_TPREL_I:
1630 case R_RISCV_PCREL_LO12_I:
1631 value = ENCODE_ITYPE_IMM (value);
1632 break;
1633
1634 case R_RISCV_LO12_S:
1635 case R_RISCV_GPREL_S:
1636 case R_RISCV_TPREL_LO12_S:
1637 case R_RISCV_TPREL_S:
1638 case R_RISCV_PCREL_LO12_S:
1639 value = ENCODE_STYPE_IMM (value);
1640 break;
1641
1642 case R_RISCV_CALL:
1643 case R_RISCV_CALL_PLT:
1644 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value)))
1645 return bfd_reloc_overflow;
1646 value = ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value))
1647 | (ENCODE_ITYPE_IMM (value) << 32);
1648 break;
1649
1650 case R_RISCV_JAL:
1651 if (!VALID_JTYPE_IMM (value))
1652 return bfd_reloc_overflow;
1653 value = ENCODE_JTYPE_IMM (value);
1654 break;
1655
1656 case R_RISCV_BRANCH:
1657 if (!VALID_BTYPE_IMM (value))
1658 return bfd_reloc_overflow;
1659 value = ENCODE_BTYPE_IMM (value);
1660 break;
1661
1662 case R_RISCV_RVC_BRANCH:
1663 if (!VALID_CBTYPE_IMM (value))
1664 return bfd_reloc_overflow;
1665 value = ENCODE_CBTYPE_IMM (value);
1666 break;
1667
1668 case R_RISCV_RVC_JUMP:
1669 if (!VALID_CJTYPE_IMM (value))
1670 return bfd_reloc_overflow;
1671 value = ENCODE_CJTYPE_IMM (value);
1672 break;
1673
1674 case R_RISCV_RVC_LUI:
1675 if (RISCV_CONST_HIGH_PART (value) == 0)
1676 {
1677 /* Linker relaxation can convert an address equal to or greater than
1678 0x800 to slightly below 0x800. C.LUI does not accept zero as a
1679 valid immediate. We can fix this by converting it to a C.LI. */
1680 bfd_vma insn = riscv_get_insn (howto->bitsize,
1681 contents + rel->r_offset);
1682 insn = (insn & ~MATCH_C_LUI) | MATCH_C_LI;
1683 riscv_put_insn (howto->bitsize, insn, contents + rel->r_offset);
1684 value = ENCODE_CITYPE_IMM (0);
1685 }
1686 else if (!VALID_CITYPE_LUI_IMM (RISCV_CONST_HIGH_PART (value)))
1687 return bfd_reloc_overflow;
1688 else
1689 value = ENCODE_CITYPE_LUI_IMM (RISCV_CONST_HIGH_PART (value));
1690 break;
1691
1692 case R_RISCV_32:
1693 case R_RISCV_64:
1694 case R_RISCV_ADD8:
1695 case R_RISCV_ADD16:
1696 case R_RISCV_ADD32:
1697 case R_RISCV_ADD64:
1698 case R_RISCV_SUB6:
1699 case R_RISCV_SUB8:
1700 case R_RISCV_SUB16:
1701 case R_RISCV_SUB32:
1702 case R_RISCV_SUB64:
1703 case R_RISCV_SET6:
1704 case R_RISCV_SET8:
1705 case R_RISCV_SET16:
1706 case R_RISCV_SET32:
1707 case R_RISCV_32_PCREL:
1708 case R_RISCV_TLS_DTPREL32:
1709 case R_RISCV_TLS_DTPREL64:
1710 break;
1711
1712 case R_RISCV_DELETE:
1713 return bfd_reloc_ok;
1714
1715 default:
1716 return bfd_reloc_notsupported;
1717 }
1718
1719 bfd_vma word;
1720 if (riscv_is_insn_reloc (howto))
1721 word = riscv_get_insn (howto->bitsize, contents + rel->r_offset);
1722 else
1723 word = bfd_get (howto->bitsize, input_bfd, contents + rel->r_offset);
1724 word = (word & ~howto->dst_mask) | (value & howto->dst_mask);
1725 if (riscv_is_insn_reloc (howto))
1726 riscv_put_insn (howto->bitsize, word, contents + rel->r_offset);
1727 else
1728 bfd_put (howto->bitsize, input_bfd, word, contents + rel->r_offset);
1729
1730 return bfd_reloc_ok;
1731 }
1732
1733 /* Remember all PC-relative high-part relocs we've encountered to help us
1734 later resolve the corresponding low-part relocs. */
1735
1736 typedef struct
1737 {
1738 bfd_vma address;
1739 bfd_vma value;
1740 } riscv_pcrel_hi_reloc;
1741
1742 typedef struct riscv_pcrel_lo_reloc
1743 {
1744 asection *input_section;
1745 struct bfd_link_info *info;
1746 reloc_howto_type *howto;
1747 const Elf_Internal_Rela *reloc;
1748 bfd_vma addr;
1749 const char *name;
1750 bfd_byte *contents;
1751 struct riscv_pcrel_lo_reloc *next;
1752 } riscv_pcrel_lo_reloc;
1753
1754 typedef struct
1755 {
1756 htab_t hi_relocs;
1757 riscv_pcrel_lo_reloc *lo_relocs;
1758 } riscv_pcrel_relocs;
1759
1760 static hashval_t
1761 riscv_pcrel_reloc_hash (const void *entry)
1762 {
1763 const riscv_pcrel_hi_reloc *e = entry;
1764 return (hashval_t)(e->address >> 2);
1765 }
1766
1767 static int
1768 riscv_pcrel_reloc_eq (const void *entry1, const void *entry2)
1769 {
1770 const riscv_pcrel_hi_reloc *e1 = entry1, *e2 = entry2;
1771 return e1->address == e2->address;
1772 }
1773
1774 static bool
1775 riscv_init_pcrel_relocs (riscv_pcrel_relocs *p)
1776 {
1777 p->lo_relocs = NULL;
1778 p->hi_relocs = htab_create (1024, riscv_pcrel_reloc_hash,
1779 riscv_pcrel_reloc_eq, free);
1780 return p->hi_relocs != NULL;
1781 }
1782
1783 static void
1784 riscv_free_pcrel_relocs (riscv_pcrel_relocs *p)
1785 {
1786 riscv_pcrel_lo_reloc *cur = p->lo_relocs;
1787
1788 while (cur != NULL)
1789 {
1790 riscv_pcrel_lo_reloc *next = cur->next;
1791 free (cur);
1792 cur = next;
1793 }
1794
1795 htab_delete (p->hi_relocs);
1796 }
1797
1798 static bool
1799 riscv_zero_pcrel_hi_reloc (Elf_Internal_Rela *rel,
1800 struct bfd_link_info *info,
1801 bfd_vma pc,
1802 bfd_vma addr,
1803 bfd_byte *contents,
1804 const reloc_howto_type *howto,
1805 bfd *input_bfd ATTRIBUTE_UNUSED)
1806 {
1807 /* We may need to reference low addreses in PC-relative modes even when the
1808 PC is far away from these addresses. For example, undefweak references
1809 need to produce the address 0 when linked. As 0 is far from the arbitrary
1810 addresses that we can link PC-relative programs at, the linker can't
1811 actually relocate references to those symbols. In order to allow these
1812 programs to work we simply convert the PC-relative auipc sequences to
1813 0-relative lui sequences. */
1814 if (bfd_link_pic (info))
1815 return false;
1816
1817 /* If it's possible to reference the symbol using auipc we do so, as that's
1818 more in the spirit of the PC-relative relocations we're processing. */
1819 bfd_vma offset = addr - pc;
1820 if (ARCH_SIZE == 32 || VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (offset)))
1821 return false;
1822
1823 /* If it's impossible to reference this with a LUI-based offset then don't
1824 bother to convert it at all so users still see the PC-relative relocation
1825 in the truncation message. */
1826 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (addr)))
1827 return false;
1828
1829 rel->r_info = ELFNN_R_INFO (addr, R_RISCV_HI20);
1830
1831 bfd_vma insn = riscv_get_insn (howto->bitsize, contents + rel->r_offset);
1832 insn = (insn & ~MASK_AUIPC) | MATCH_LUI;
1833 riscv_put_insn (howto->bitsize, insn, contents + rel->r_offset);
1834 return true;
1835 }
1836
1837 static bool
1838 riscv_record_pcrel_hi_reloc (riscv_pcrel_relocs *p, bfd_vma addr,
1839 bfd_vma value, bool absolute)
1840 {
1841 bfd_vma offset = absolute ? value : value - addr;
1842 riscv_pcrel_hi_reloc entry = {addr, offset};
1843 riscv_pcrel_hi_reloc **slot =
1844 (riscv_pcrel_hi_reloc **) htab_find_slot (p->hi_relocs, &entry, INSERT);
1845
1846 BFD_ASSERT (*slot == NULL);
1847 *slot = (riscv_pcrel_hi_reloc *) bfd_malloc (sizeof (riscv_pcrel_hi_reloc));
1848 if (*slot == NULL)
1849 return false;
1850 **slot = entry;
1851 return true;
1852 }
1853
1854 static bool
1855 riscv_record_pcrel_lo_reloc (riscv_pcrel_relocs *p,
1856 asection *input_section,
1857 struct bfd_link_info *info,
1858 reloc_howto_type *howto,
1859 const Elf_Internal_Rela *reloc,
1860 bfd_vma addr,
1861 const char *name,
1862 bfd_byte *contents)
1863 {
1864 riscv_pcrel_lo_reloc *entry;
1865 entry = (riscv_pcrel_lo_reloc *) bfd_malloc (sizeof (riscv_pcrel_lo_reloc));
1866 if (entry == NULL)
1867 return false;
1868 *entry = (riscv_pcrel_lo_reloc) {input_section, info, howto, reloc, addr,
1869 name, contents, p->lo_relocs};
1870 p->lo_relocs = entry;
1871 return true;
1872 }
1873
1874 static bool
1875 riscv_resolve_pcrel_lo_relocs (riscv_pcrel_relocs *p)
1876 {
1877 riscv_pcrel_lo_reloc *r;
1878
1879 for (r = p->lo_relocs; r != NULL; r = r->next)
1880 {
1881 bfd *input_bfd = r->input_section->owner;
1882
1883 riscv_pcrel_hi_reloc search = {r->addr, 0};
1884 riscv_pcrel_hi_reloc *entry = htab_find (p->hi_relocs, &search);
1885 if (entry == NULL
1886 /* Check for overflow into bit 11 when adding reloc addend. */
1887 || (!(entry->value & 0x800)
1888 && ((entry->value + r->reloc->r_addend) & 0x800)))
1889 {
1890 char *string = (entry == NULL
1891 ? "%pcrel_lo missing matching %pcrel_hi"
1892 : "%pcrel_lo overflow with an addend");
1893 (*r->info->callbacks->reloc_dangerous)
1894 (r->info, string, input_bfd, r->input_section, r->reloc->r_offset);
1895 return true;
1896 }
1897
1898 perform_relocation (r->howto, r->reloc, entry->value, r->input_section,
1899 input_bfd, r->contents);
1900 }
1901
1902 return true;
1903 }
1904
1905 /* Relocate a RISC-V ELF section.
1906
1907 The RELOCATE_SECTION function is called by the new ELF backend linker
1908 to handle the relocations for a section.
1909
1910 The relocs are always passed as Rela structures.
1911
1912 This function is responsible for adjusting the section contents as
1913 necessary, and (if generating a relocatable output file) adjusting
1914 the reloc addend as necessary.
1915
1916 This function does not have to worry about setting the reloc
1917 address or the reloc symbol index.
1918
1919 LOCAL_SYMS is a pointer to the swapped in local symbols.
1920
1921 LOCAL_SECTIONS is an array giving the section in the input file
1922 corresponding to the st_shndx field of each local symbol.
1923
1924 The global hash table entry for the global symbols can be found
1925 via elf_sym_hashes (input_bfd).
1926
1927 When generating relocatable output, this function must handle
1928 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
1929 going to be the section symbol corresponding to the output
1930 section, which means that the addend must be adjusted
1931 accordingly. */
1932
1933 static int
1934 riscv_elf_relocate_section (bfd *output_bfd,
1935 struct bfd_link_info *info,
1936 bfd *input_bfd,
1937 asection *input_section,
1938 bfd_byte *contents,
1939 Elf_Internal_Rela *relocs,
1940 Elf_Internal_Sym *local_syms,
1941 asection **local_sections)
1942 {
1943 Elf_Internal_Rela *rel;
1944 Elf_Internal_Rela *relend;
1945 riscv_pcrel_relocs pcrel_relocs;
1946 bool ret = false;
1947 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
1948 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_bfd);
1949 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
1950 bfd_vma *local_got_offsets = elf_local_got_offsets (input_bfd);
1951 bool absolute;
1952
1953 if (!riscv_init_pcrel_relocs (&pcrel_relocs))
1954 return false;
1955
1956 relend = relocs + input_section->reloc_count;
1957 for (rel = relocs; rel < relend; rel++)
1958 {
1959 unsigned long r_symndx;
1960 struct elf_link_hash_entry *h;
1961 Elf_Internal_Sym *sym;
1962 asection *sec;
1963 bfd_vma relocation;
1964 bfd_reloc_status_type r = bfd_reloc_ok;
1965 const char *name = NULL;
1966 bfd_vma off, ie_off;
1967 bool unresolved_reloc, is_ie = false;
1968 bfd_vma pc = sec_addr (input_section) + rel->r_offset;
1969 int r_type = ELFNN_R_TYPE (rel->r_info), tls_type;
1970 reloc_howto_type *howto = riscv_elf_rtype_to_howto (input_bfd, r_type);
1971 const char *msg = NULL;
1972 char *msg_buf = NULL;
1973 bool resolved_to_zero;
1974
1975 if (howto == NULL
1976 || r_type == R_RISCV_GNU_VTINHERIT || r_type == R_RISCV_GNU_VTENTRY)
1977 continue;
1978
1979 /* This is a final link. */
1980 r_symndx = ELFNN_R_SYM (rel->r_info);
1981 h = NULL;
1982 sym = NULL;
1983 sec = NULL;
1984 unresolved_reloc = false;
1985 if (r_symndx < symtab_hdr->sh_info)
1986 {
1987 sym = local_syms + r_symndx;
1988 sec = local_sections[r_symndx];
1989 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1990
1991 /* Relocate against local STT_GNU_IFUNC symbol. */
1992 if (!bfd_link_relocatable (info)
1993 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
1994 {
1995 h = riscv_elf_get_local_sym_hash (htab, input_bfd, rel, false);
1996 if (h == NULL)
1997 abort ();
1998
1999 /* Set STT_GNU_IFUNC symbol value. */
2000 h->root.u.def.value = sym->st_value;
2001 h->root.u.def.section = sec;
2002 }
2003 }
2004 else
2005 {
2006 bool warned, ignored;
2007
2008 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2009 r_symndx, symtab_hdr, sym_hashes,
2010 h, sec, relocation,
2011 unresolved_reloc, warned, ignored);
2012 if (warned)
2013 {
2014 /* To avoid generating warning messages about truncated
2015 relocations, set the relocation's address to be the same as
2016 the start of this section. */
2017 if (input_section->output_section != NULL)
2018 relocation = input_section->output_section->vma;
2019 else
2020 relocation = 0;
2021 }
2022 }
2023
2024 if (sec != NULL && discarded_section (sec))
2025 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
2026 rel, 1, relend, howto, 0, contents);
2027
2028 if (bfd_link_relocatable (info))
2029 continue;
2030
2031 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
2032 it here if it is defined in a non-shared object. */
2033 if (h != NULL
2034 && h->type == STT_GNU_IFUNC
2035 && h->def_regular)
2036 {
2037 asection *plt, *base_got;
2038
2039 if ((input_section->flags & SEC_ALLOC) == 0)
2040 {
2041 /* If this is a SHT_NOTE section without SHF_ALLOC, treat
2042 STT_GNU_IFUNC symbol as STT_FUNC. */
2043 if (elf_section_type (input_section) == SHT_NOTE)
2044 goto skip_ifunc;
2045
2046 /* Dynamic relocs are not propagated for SEC_DEBUGGING
2047 sections because such sections are not SEC_ALLOC and
2048 thus ld.so will not process them. */
2049 if ((input_section->flags & SEC_DEBUGGING) != 0)
2050 continue;
2051
2052 abort ();
2053 }
2054 else if (h->plt.offset == (bfd_vma) -1
2055 /* The following relocation may not need the .plt entries
2056 when all references to a STT_GNU_IFUNC symbols are done
2057 via GOT or static function pointers. */
2058 && r_type != R_RISCV_32
2059 && r_type != R_RISCV_64
2060 && r_type != R_RISCV_HI20
2061 && r_type != R_RISCV_GOT_HI20
2062 && r_type != R_RISCV_LO12_I
2063 && r_type != R_RISCV_LO12_S)
2064 goto bad_ifunc_reloc;
2065
2066 /* STT_GNU_IFUNC symbol must go through PLT. */
2067 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
2068 relocation = plt->output_section->vma
2069 + plt->output_offset
2070 + h->plt.offset;
2071
2072 switch (r_type)
2073 {
2074 case R_RISCV_32:
2075 case R_RISCV_64:
2076 if (rel->r_addend != 0)
2077 {
2078 if (h->root.root.string)
2079 name = h->root.root.string;
2080 else
2081 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, NULL);
2082
2083 _bfd_error_handler
2084 /* xgettext:c-format */
2085 (_("%pB: relocation %s against STT_GNU_IFUNC "
2086 "symbol `%s' has non-zero addend: %" PRId64),
2087 input_bfd, howto->name, name, (int64_t) rel->r_addend);
2088 bfd_set_error (bfd_error_bad_value);
2089 return false;
2090 }
2091
2092 /* Generate dynamic relocation only when there is a non-GOT
2093 reference in a shared object or there is no PLT. */
2094 if ((bfd_link_pic (info) && h->non_got_ref)
2095 || h->plt.offset == (bfd_vma) -1)
2096 {
2097 Elf_Internal_Rela outrel;
2098 asection *sreloc;
2099
2100 /* Need a dynamic relocation to get the real function
2101 address. */
2102 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
2103 info,
2104 input_section,
2105 rel->r_offset);
2106 if (outrel.r_offset == (bfd_vma) -1
2107 || outrel.r_offset == (bfd_vma) -2)
2108 abort ();
2109
2110 outrel.r_offset += input_section->output_section->vma
2111 + input_section->output_offset;
2112
2113 if (h->dynindx == -1
2114 || h->forced_local
2115 || bfd_link_executable (info))
2116 {
2117 info->callbacks->minfo
2118 (_("Local IFUNC function `%s' in %pB\n"),
2119 h->root.root.string,
2120 h->root.u.def.section->owner);
2121
2122 /* This symbol is resolved locally. */
2123 outrel.r_info = ELFNN_R_INFO (0, R_RISCV_IRELATIVE);
2124 outrel.r_addend = h->root.u.def.value
2125 + h->root.u.def.section->output_section->vma
2126 + h->root.u.def.section->output_offset;
2127 }
2128 else
2129 {
2130 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
2131 outrel.r_addend = 0;
2132 }
2133
2134 /* Dynamic relocations are stored in
2135 1. .rela.ifunc section in PIC object.
2136 2. .rela.got section in dynamic executable.
2137 3. .rela.iplt section in static executable. */
2138 if (bfd_link_pic (info))
2139 sreloc = htab->elf.irelifunc;
2140 else if (htab->elf.splt != NULL)
2141 sreloc = htab->elf.srelgot;
2142 else
2143 sreloc = htab->elf.irelplt;
2144
2145 riscv_elf_append_rela (output_bfd, sreloc, &outrel);
2146
2147 /* If this reloc is against an external symbol, we
2148 do not want to fiddle with the addend. Otherwise,
2149 we need to include the symbol value so that it
2150 becomes an addend for the dynamic reloc. For an
2151 internal symbol, we have updated addend. */
2152 continue;
2153 }
2154 goto do_relocation;
2155
2156 case R_RISCV_GOT_HI20:
2157 base_got = htab->elf.sgot;
2158 off = h->got.offset;
2159
2160 if (base_got == NULL)
2161 abort ();
2162
2163 if (off == (bfd_vma) -1)
2164 {
2165 bfd_vma plt_idx;
2166
2167 /* We can't use h->got.offset here to save state, or
2168 even just remember the offset, as finish_dynamic_symbol
2169 would use that as offset into .got. */
2170
2171 if (htab->elf.splt != NULL)
2172 {
2173 plt_idx = (h->plt.offset - PLT_HEADER_SIZE)
2174 / PLT_ENTRY_SIZE;
2175 off = GOTPLT_HEADER_SIZE + (plt_idx * GOT_ENTRY_SIZE);
2176 base_got = htab->elf.sgotplt;
2177 }
2178 else
2179 {
2180 plt_idx = h->plt.offset / PLT_ENTRY_SIZE;
2181 off = plt_idx * GOT_ENTRY_SIZE;
2182 base_got = htab->elf.igotplt;
2183 }
2184
2185 if (h->dynindx == -1
2186 || h->forced_local
2187 || info->symbolic)
2188 {
2189 /* This references the local definition. We must
2190 initialize this entry in the global offset table.
2191 Since the offset must always be a multiple of 8,
2192 we use the least significant bit to record
2193 whether we have initialized it already.
2194
2195 When doing a dynamic link, we create a .rela.got
2196 relocation entry to initialize the value. This
2197 is done in the finish_dynamic_symbol routine. */
2198 if ((off & 1) != 0)
2199 off &= ~1;
2200 else
2201 {
2202 bfd_put_NN (output_bfd, relocation,
2203 base_got->contents + off);
2204 /* Note that this is harmless for the case,
2205 as -1 | 1 still is -1. */
2206 h->got.offset |= 1;
2207 }
2208 }
2209 }
2210
2211 relocation = base_got->output_section->vma
2212 + base_got->output_offset + off;
2213
2214 r_type = ELFNN_R_TYPE (rel->r_info);
2215 howto = riscv_elf_rtype_to_howto (input_bfd, r_type);
2216 if (howto == NULL)
2217 r = bfd_reloc_notsupported;
2218 else if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
2219 relocation, false))
2220 r = bfd_reloc_overflow;
2221 goto do_relocation;
2222
2223 case R_RISCV_CALL:
2224 case R_RISCV_CALL_PLT:
2225 case R_RISCV_HI20:
2226 case R_RISCV_LO12_I:
2227 case R_RISCV_LO12_S:
2228 goto do_relocation;
2229
2230 case R_RISCV_PCREL_HI20:
2231 r_type = ELFNN_R_TYPE (rel->r_info);
2232 howto = riscv_elf_rtype_to_howto (input_bfd, r_type);
2233 if (howto == NULL)
2234 r = bfd_reloc_notsupported;
2235 else if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
2236 relocation, false))
2237 r = bfd_reloc_overflow;
2238 goto do_relocation;
2239
2240 default:
2241 bad_ifunc_reloc:
2242 if (h->root.root.string)
2243 name = h->root.root.string;
2244 else
2245 /* The entry of local ifunc is fake in global hash table,
2246 we should find the name by the original local symbol. */
2247 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, NULL);
2248
2249 _bfd_error_handler
2250 /* xgettext:c-format */
2251 (_("%pB: relocation %s against STT_GNU_IFUNC "
2252 "symbol `%s' isn't supported"), input_bfd,
2253 howto->name, name);
2254 bfd_set_error (bfd_error_bad_value);
2255 return false;
2256 }
2257 }
2258
2259 skip_ifunc:
2260 if (h != NULL)
2261 name = h->root.root.string;
2262 else
2263 {
2264 name = (bfd_elf_string_from_elf_section
2265 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2266 if (name == NULL || *name == '\0')
2267 name = bfd_section_name (sec);
2268 }
2269
2270 resolved_to_zero = (h != NULL
2271 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
2272
2273 switch (r_type)
2274 {
2275 case R_RISCV_NONE:
2276 case R_RISCV_RELAX:
2277 case R_RISCV_TPREL_ADD:
2278 case R_RISCV_COPY:
2279 case R_RISCV_JUMP_SLOT:
2280 case R_RISCV_RELATIVE:
2281 /* These require nothing of us at all. */
2282 continue;
2283
2284 case R_RISCV_HI20:
2285 case R_RISCV_BRANCH:
2286 case R_RISCV_RVC_BRANCH:
2287 case R_RISCV_RVC_LUI:
2288 case R_RISCV_LO12_I:
2289 case R_RISCV_LO12_S:
2290 case R_RISCV_SET6:
2291 case R_RISCV_SET8:
2292 case R_RISCV_SET16:
2293 case R_RISCV_SET32:
2294 case R_RISCV_32_PCREL:
2295 case R_RISCV_DELETE:
2296 /* These require no special handling beyond perform_relocation. */
2297 break;
2298
2299 case R_RISCV_GOT_HI20:
2300 if (h != NULL)
2301 {
2302 bool dyn, pic;
2303
2304 off = h->got.offset;
2305 BFD_ASSERT (off != (bfd_vma) -1);
2306 dyn = elf_hash_table (info)->dynamic_sections_created;
2307 pic = bfd_link_pic (info);
2308
2309 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, pic, h)
2310 || (pic && SYMBOL_REFERENCES_LOCAL (info, h)))
2311 {
2312 /* This is actually a static link, or it is a
2313 -Bsymbolic link and the symbol is defined
2314 locally, or the symbol was forced to be local
2315 because of a version file. We must initialize
2316 this entry in the global offset table. Since the
2317 offset must always be a multiple of the word size,
2318 we use the least significant bit to record whether
2319 we have initialized it already.
2320
2321 When doing a dynamic link, we create a .rela.got
2322 relocation entry to initialize the value. This
2323 is done in the finish_dynamic_symbol routine. */
2324 if ((off & 1) != 0)
2325 off &= ~1;
2326 else
2327 {
2328 bfd_put_NN (output_bfd, relocation,
2329 htab->elf.sgot->contents + off);
2330 h->got.offset |= 1;
2331 }
2332 }
2333 else
2334 unresolved_reloc = false;
2335 }
2336 else
2337 {
2338 BFD_ASSERT (local_got_offsets != NULL
2339 && local_got_offsets[r_symndx] != (bfd_vma) -1);
2340
2341 off = local_got_offsets[r_symndx];
2342
2343 /* The offset must always be a multiple of the word size.
2344 So, we can use the least significant bit to record
2345 whether we have already processed this entry. */
2346 if ((off & 1) != 0)
2347 off &= ~1;
2348 else
2349 {
2350 if (bfd_link_pic (info))
2351 {
2352 asection *s;
2353 Elf_Internal_Rela outrel;
2354
2355 /* We need to generate a R_RISCV_RELATIVE reloc
2356 for the dynamic linker. */
2357 s = htab->elf.srelgot;
2358 BFD_ASSERT (s != NULL);
2359
2360 outrel.r_offset = sec_addr (htab->elf.sgot) + off;
2361 outrel.r_info =
2362 ELFNN_R_INFO (0, R_RISCV_RELATIVE);
2363 outrel.r_addend = relocation;
2364 relocation = 0;
2365 riscv_elf_append_rela (output_bfd, s, &outrel);
2366 }
2367
2368 bfd_put_NN (output_bfd, relocation,
2369 htab->elf.sgot->contents + off);
2370 local_got_offsets[r_symndx] |= 1;
2371 }
2372 }
2373 relocation = sec_addr (htab->elf.sgot) + off;
2374 absolute = riscv_zero_pcrel_hi_reloc (rel,
2375 info,
2376 pc,
2377 relocation,
2378 contents,
2379 howto,
2380 input_bfd);
2381 r_type = ELFNN_R_TYPE (rel->r_info);
2382 howto = riscv_elf_rtype_to_howto (input_bfd, r_type);
2383 if (howto == NULL)
2384 r = bfd_reloc_notsupported;
2385 else if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
2386 relocation, absolute))
2387 r = bfd_reloc_overflow;
2388 break;
2389
2390 case R_RISCV_ADD8:
2391 case R_RISCV_ADD16:
2392 case R_RISCV_ADD32:
2393 case R_RISCV_ADD64:
2394 {
2395 bfd_vma old_value = bfd_get (howto->bitsize, input_bfd,
2396 contents + rel->r_offset);
2397 relocation = old_value + relocation;
2398 }
2399 break;
2400
2401 case R_RISCV_SUB6:
2402 case R_RISCV_SUB8:
2403 case R_RISCV_SUB16:
2404 case R_RISCV_SUB32:
2405 case R_RISCV_SUB64:
2406 {
2407 bfd_vma old_value = bfd_get (howto->bitsize, input_bfd,
2408 contents + rel->r_offset);
2409 relocation = old_value - relocation;
2410 }
2411 break;
2412
2413 case R_RISCV_CALL:
2414 case R_RISCV_CALL_PLT:
2415 /* Handle a call to an undefined weak function. This won't be
2416 relaxed, so we have to handle it here. */
2417 if (h != NULL && h->root.type == bfd_link_hash_undefweak
2418 && (!bfd_link_pic (info) || h->plt.offset == MINUS_ONE))
2419 {
2420 /* We can use x0 as the base register. */
2421 bfd_vma insn = bfd_getl32 (contents + rel->r_offset + 4);
2422 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
2423 bfd_putl32 (insn, contents + rel->r_offset + 4);
2424 /* Set the relocation value so that we get 0 after the pc
2425 relative adjustment. */
2426 relocation = sec_addr (input_section) + rel->r_offset;
2427 }
2428 /* Fall through. */
2429
2430 case R_RISCV_JAL:
2431 case R_RISCV_RVC_JUMP:
2432 /* This line has to match the check in _bfd_riscv_relax_section. */
2433 if (bfd_link_pic (info) && h != NULL && h->plt.offset != MINUS_ONE)
2434 {
2435 /* Refer to the PLT entry. */
2436 relocation = sec_addr (htab->elf.splt) + h->plt.offset;
2437 unresolved_reloc = false;
2438 }
2439 break;
2440
2441 case R_RISCV_TPREL_HI20:
2442 relocation = tpoff (info, relocation);
2443 break;
2444
2445 case R_RISCV_TPREL_LO12_I:
2446 case R_RISCV_TPREL_LO12_S:
2447 relocation = tpoff (info, relocation);
2448 break;
2449
2450 case R_RISCV_TPREL_I:
2451 case R_RISCV_TPREL_S:
2452 relocation = tpoff (info, relocation);
2453 if (VALID_ITYPE_IMM (relocation + rel->r_addend))
2454 {
2455 /* We can use tp as the base register. */
2456 bfd_vma insn = bfd_getl32 (contents + rel->r_offset);
2457 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
2458 insn |= X_TP << OP_SH_RS1;
2459 bfd_putl32 (insn, contents + rel->r_offset);
2460 }
2461 else
2462 r = bfd_reloc_overflow;
2463 break;
2464
2465 case R_RISCV_GPREL_I:
2466 case R_RISCV_GPREL_S:
2467 {
2468 bfd_vma gp = riscv_global_pointer_value (info);
2469 bool x0_base = VALID_ITYPE_IMM (relocation + rel->r_addend);
2470 if (x0_base || VALID_ITYPE_IMM (relocation + rel->r_addend - gp))
2471 {
2472 /* We can use x0 or gp as the base register. */
2473 bfd_vma insn = bfd_getl32 (contents + rel->r_offset);
2474 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
2475 if (!x0_base)
2476 {
2477 rel->r_addend -= gp;
2478 insn |= X_GP << OP_SH_RS1;
2479 }
2480 bfd_putl32 (insn, contents + rel->r_offset);
2481 }
2482 else
2483 r = bfd_reloc_overflow;
2484 break;
2485 }
2486
2487 case R_RISCV_PCREL_HI20:
2488 absolute = riscv_zero_pcrel_hi_reloc (rel,
2489 info,
2490 pc,
2491 relocation,
2492 contents,
2493 howto,
2494 input_bfd);
2495 r_type = ELFNN_R_TYPE (rel->r_info);
2496 howto = riscv_elf_rtype_to_howto (input_bfd, r_type);
2497 if (howto == NULL)
2498 r = bfd_reloc_notsupported;
2499 else if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
2500 relocation + rel->r_addend,
2501 absolute))
2502 r = bfd_reloc_overflow;
2503 break;
2504
2505 case R_RISCV_PCREL_LO12_I:
2506 case R_RISCV_PCREL_LO12_S:
2507 /* We don't allow section symbols plus addends as the auipc address,
2508 because then riscv_relax_delete_bytes would have to search through
2509 all relocs to update these addends. This is also ambiguous, as
2510 we do allow offsets to be added to the target address, which are
2511 not to be used to find the auipc address. */
2512 if (((sym != NULL && (ELF_ST_TYPE (sym->st_info) == STT_SECTION))
2513 || (h != NULL && h->type == STT_SECTION))
2514 && rel->r_addend)
2515 {
2516 msg = _("%pcrel_lo section symbol with an addend");
2517 r = bfd_reloc_dangerous;
2518 break;
2519 }
2520
2521 if (riscv_record_pcrel_lo_reloc (&pcrel_relocs, input_section, info,
2522 howto, rel, relocation, name,
2523 contents))
2524 continue;
2525 r = bfd_reloc_overflow;
2526 break;
2527
2528 case R_RISCV_TLS_DTPREL32:
2529 case R_RISCV_TLS_DTPREL64:
2530 relocation = dtpoff (info, relocation);
2531 break;
2532
2533 case R_RISCV_32:
2534 case R_RISCV_64:
2535 if ((input_section->flags & SEC_ALLOC) == 0)
2536 break;
2537
2538 if ((bfd_link_pic (info)
2539 && (h == NULL
2540 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2541 && !resolved_to_zero)
2542 || h->root.type != bfd_link_hash_undefweak)
2543 && (!howto->pc_relative
2544 || !SYMBOL_CALLS_LOCAL (info, h)))
2545 || (!bfd_link_pic (info)
2546 && h != NULL
2547 && h->dynindx != -1
2548 && !h->non_got_ref
2549 && ((h->def_dynamic
2550 && !h->def_regular)
2551 || h->root.type == bfd_link_hash_undefweak
2552 || h->root.type == bfd_link_hash_undefined)))
2553 {
2554 Elf_Internal_Rela outrel;
2555 asection *sreloc;
2556 bool skip_static_relocation, skip_dynamic_relocation;
2557
2558 /* When generating a shared object, these relocations
2559 are copied into the output file to be resolved at run
2560 time. */
2561
2562 outrel.r_offset =
2563 _bfd_elf_section_offset (output_bfd, info, input_section,
2564 rel->r_offset);
2565 skip_static_relocation = outrel.r_offset != (bfd_vma) -2;
2566 skip_dynamic_relocation = outrel.r_offset >= (bfd_vma) -2;
2567 outrel.r_offset += sec_addr (input_section);
2568
2569 if (skip_dynamic_relocation)
2570 memset (&outrel, 0, sizeof outrel);
2571 else if (h != NULL && h->dynindx != -1
2572 && !(bfd_link_pic (info)
2573 && SYMBOLIC_BIND (info, h)
2574 && h->def_regular))
2575 {
2576 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
2577 outrel.r_addend = rel->r_addend;
2578 }
2579 else
2580 {
2581 outrel.r_info = ELFNN_R_INFO (0, R_RISCV_RELATIVE);
2582 outrel.r_addend = relocation + rel->r_addend;
2583 }
2584
2585 sreloc = elf_section_data (input_section)->sreloc;
2586 riscv_elf_append_rela (output_bfd, sreloc, &outrel);
2587 if (skip_static_relocation)
2588 continue;
2589 }
2590 break;
2591
2592 case R_RISCV_TLS_GOT_HI20:
2593 is_ie = true;
2594 /* Fall through. */
2595
2596 case R_RISCV_TLS_GD_HI20:
2597 if (h != NULL)
2598 {
2599 off = h->got.offset;
2600 h->got.offset |= 1;
2601 }
2602 else
2603 {
2604 off = local_got_offsets[r_symndx];
2605 local_got_offsets[r_symndx] |= 1;
2606 }
2607
2608 tls_type = _bfd_riscv_elf_tls_type (input_bfd, h, r_symndx);
2609 BFD_ASSERT (tls_type & (GOT_TLS_IE | GOT_TLS_GD));
2610 /* If this symbol is referenced by both GD and IE TLS, the IE
2611 reference's GOT slot follows the GD reference's slots. */
2612 ie_off = 0;
2613 if ((tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_IE))
2614 ie_off = 2 * GOT_ENTRY_SIZE;
2615
2616 if ((off & 1) != 0)
2617 off &= ~1;
2618 else
2619 {
2620 Elf_Internal_Rela outrel;
2621 int indx = 0;
2622 bool need_relocs = false;
2623
2624 if (htab->elf.srelgot == NULL)
2625 abort ();
2626
2627 if (h != NULL)
2628 {
2629 bool dyn, pic;
2630 dyn = htab->elf.dynamic_sections_created;
2631 pic = bfd_link_pic (info);
2632
2633 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, pic, h)
2634 && (!pic || !SYMBOL_REFERENCES_LOCAL (info, h)))
2635 indx = h->dynindx;
2636 }
2637
2638 /* The GOT entries have not been initialized yet. Do it
2639 now, and emit any relocations. */
2640 if ((bfd_link_pic (info) || indx != 0)
2641 && (h == NULL
2642 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2643 || h->root.type != bfd_link_hash_undefweak))
2644 need_relocs = true;
2645
2646 if (tls_type & GOT_TLS_GD)
2647 {
2648 if (need_relocs)
2649 {
2650 outrel.r_offset = sec_addr (htab->elf.sgot) + off;
2651 outrel.r_addend = 0;
2652 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_DTPMODNN);
2653 bfd_put_NN (output_bfd, 0,
2654 htab->elf.sgot->contents + off);
2655 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
2656 if (indx == 0)
2657 {
2658 BFD_ASSERT (! unresolved_reloc);
2659 bfd_put_NN (output_bfd,
2660 dtpoff (info, relocation),
2661 (htab->elf.sgot->contents
2662 + off + RISCV_ELF_WORD_BYTES));
2663 }
2664 else
2665 {
2666 bfd_put_NN (output_bfd, 0,
2667 (htab->elf.sgot->contents
2668 + off + RISCV_ELF_WORD_BYTES));
2669 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_DTPRELNN);
2670 outrel.r_offset += RISCV_ELF_WORD_BYTES;
2671 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
2672 }
2673 }
2674 else
2675 {
2676 /* If we are not emitting relocations for a
2677 general dynamic reference, then we must be in a
2678 static link or an executable link with the
2679 symbol binding locally. Mark it as belonging
2680 to module 1, the executable. */
2681 bfd_put_NN (output_bfd, 1,
2682 htab->elf.sgot->contents + off);
2683 bfd_put_NN (output_bfd,
2684 dtpoff (info, relocation),
2685 (htab->elf.sgot->contents
2686 + off + RISCV_ELF_WORD_BYTES));
2687 }
2688 }
2689
2690 if (tls_type & GOT_TLS_IE)
2691 {
2692 if (need_relocs)
2693 {
2694 bfd_put_NN (output_bfd, 0,
2695 htab->elf.sgot->contents + off + ie_off);
2696 outrel.r_offset = sec_addr (htab->elf.sgot)
2697 + off + ie_off;
2698 outrel.r_addend = 0;
2699 if (indx == 0)
2700 outrel.r_addend = tpoff (info, relocation);
2701 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_TPRELNN);
2702 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
2703 }
2704 else
2705 {
2706 bfd_put_NN (output_bfd, tpoff (info, relocation),
2707 htab->elf.sgot->contents + off + ie_off);
2708 }
2709 }
2710 }
2711
2712 BFD_ASSERT (off < (bfd_vma) -2);
2713 relocation = sec_addr (htab->elf.sgot) + off + (is_ie ? ie_off : 0);
2714 if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
2715 relocation, false))
2716 r = bfd_reloc_overflow;
2717 unresolved_reloc = false;
2718 break;
2719
2720 default:
2721 r = bfd_reloc_notsupported;
2722 }
2723
2724 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2725 because such sections are not SEC_ALLOC and thus ld.so will
2726 not process them. */
2727 if (unresolved_reloc
2728 && !((input_section->flags & SEC_DEBUGGING) != 0
2729 && h->def_dynamic)
2730 && _bfd_elf_section_offset (output_bfd, info, input_section,
2731 rel->r_offset) != (bfd_vma) -1)
2732 {
2733 switch (r_type)
2734 {
2735 case R_RISCV_JAL:
2736 case R_RISCV_RVC_JUMP:
2737 if (asprintf (&msg_buf,
2738 _("%%X%%P: relocation %s against `%s' can "
2739 "not be used when making a shared object; "
2740 "recompile with -fPIC\n"),
2741 howto->name,
2742 h->root.root.string) == -1)
2743 msg_buf = NULL;
2744 break;
2745
2746 default:
2747 if (asprintf (&msg_buf,
2748 _("%%X%%P: unresolvable %s relocation against "
2749 "symbol `%s'\n"),
2750 howto->name,
2751 h->root.root.string) == -1)
2752 msg_buf = NULL;
2753 break;
2754 }
2755
2756 msg = msg_buf;
2757 r = bfd_reloc_notsupported;
2758 }
2759
2760 do_relocation:
2761 if (r == bfd_reloc_ok)
2762 r = perform_relocation (howto, rel, relocation, input_section,
2763 input_bfd, contents);
2764
2765 /* We should have already detected the error and set message before.
2766 If the error message isn't set since the linker runs out of memory
2767 or we don't set it before, then we should set the default message
2768 with the "internal error" string here. */
2769 switch (r)
2770 {
2771 case bfd_reloc_ok:
2772 continue;
2773
2774 case bfd_reloc_overflow:
2775 info->callbacks->reloc_overflow
2776 (info, (h ? &h->root : NULL), name, howto->name,
2777 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
2778 break;
2779
2780 case bfd_reloc_undefined:
2781 info->callbacks->undefined_symbol
2782 (info, name, input_bfd, input_section, rel->r_offset,
2783 true);
2784 break;
2785
2786 case bfd_reloc_outofrange:
2787 if (msg == NULL)
2788 msg = _("%X%P: internal error: out of range error\n");
2789 break;
2790
2791 case bfd_reloc_notsupported:
2792 if (msg == NULL)
2793 msg = _("%X%P: internal error: unsupported relocation error\n");
2794 break;
2795
2796 case bfd_reloc_dangerous:
2797 /* The error message should already be set. */
2798 if (msg == NULL)
2799 msg = _("dangerous relocation error");
2800 info->callbacks->reloc_dangerous
2801 (info, msg, input_bfd, input_section, rel->r_offset);
2802 break;
2803
2804 default:
2805 msg = _("%X%P: internal error: unknown error\n");
2806 break;
2807 }
2808
2809 /* Do not report error message for the dangerous relocation again. */
2810 if (msg && r != bfd_reloc_dangerous)
2811 info->callbacks->einfo (msg);
2812
2813 /* Free the unused `msg_buf`. */
2814 free (msg_buf);
2815
2816 /* We already reported the error via a callback, so don't try to report
2817 it again by returning false. That leads to spurious errors. */
2818 ret = true;
2819 goto out;
2820 }
2821
2822 ret = riscv_resolve_pcrel_lo_relocs (&pcrel_relocs);
2823 out:
2824 riscv_free_pcrel_relocs (&pcrel_relocs);
2825 return ret;
2826 }
2827
2828 /* Finish up dynamic symbol handling. We set the contents of various
2829 dynamic sections here. */
2830
2831 static bool
2832 riscv_elf_finish_dynamic_symbol (bfd *output_bfd,
2833 struct bfd_link_info *info,
2834 struct elf_link_hash_entry *h,
2835 Elf_Internal_Sym *sym)
2836 {
2837 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
2838 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
2839
2840 if (h->plt.offset != (bfd_vma) -1)
2841 {
2842 /* We've decided to create a PLT entry for this symbol. */
2843 bfd_byte *loc;
2844 bfd_vma i, header_address, plt_idx, got_offset, got_address;
2845 uint32_t plt_entry[PLT_ENTRY_INSNS];
2846 Elf_Internal_Rela rela;
2847 asection *plt, *gotplt, *relplt;
2848
2849 /* When building a static executable, use .iplt, .igot.plt and
2850 .rela.iplt sections for STT_GNU_IFUNC symbols. */
2851 if (htab->elf.splt != NULL)
2852 {
2853 plt = htab->elf.splt;
2854 gotplt = htab->elf.sgotplt;
2855 relplt = htab->elf.srelplt;
2856 }
2857 else
2858 {
2859 plt = htab->elf.iplt;
2860 gotplt = htab->elf.igotplt;
2861 relplt = htab->elf.irelplt;
2862 }
2863
2864 /* This symbol has an entry in the procedure linkage table. Set
2865 it up. */
2866 if ((h->dynindx == -1
2867 && !((h->forced_local || bfd_link_executable (info))
2868 && h->def_regular
2869 && h->type == STT_GNU_IFUNC))
2870 || plt == NULL
2871 || gotplt == NULL
2872 || relplt == NULL)
2873 return false;
2874
2875 /* Calculate the address of the PLT header. */
2876 header_address = sec_addr (plt);
2877
2878 /* Calculate the index of the entry and the offset of .got.plt entry.
2879 For static executables, we don't reserve anything. */
2880 if (plt == htab->elf.splt)
2881 {
2882 plt_idx = (h->plt.offset - PLT_HEADER_SIZE) / PLT_ENTRY_SIZE;
2883 got_offset = GOTPLT_HEADER_SIZE + (plt_idx * GOT_ENTRY_SIZE);
2884 }
2885 else
2886 {
2887 plt_idx = h->plt.offset / PLT_ENTRY_SIZE;
2888 got_offset = plt_idx * GOT_ENTRY_SIZE;
2889 }
2890
2891 /* Calculate the address of the .got.plt entry. */
2892 got_address = sec_addr (gotplt) + got_offset;
2893
2894 /* Find out where the .plt entry should go. */
2895 loc = plt->contents + h->plt.offset;
2896
2897 /* Fill in the PLT entry itself. */
2898 if (! riscv_make_plt_entry (output_bfd, got_address,
2899 header_address + h->plt.offset,
2900 plt_entry))
2901 return false;
2902
2903 for (i = 0; i < PLT_ENTRY_INSNS; i++)
2904 bfd_putl32 (plt_entry[i], loc + 4*i);
2905
2906 /* Fill in the initial value of the .got.plt entry. */
2907 loc = gotplt->contents + (got_address - sec_addr (gotplt));
2908 bfd_put_NN (output_bfd, sec_addr (plt), loc);
2909
2910 rela.r_offset = got_address;
2911
2912 if (h->dynindx == -1
2913 || ((bfd_link_executable (info)
2914 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2915 && h->def_regular
2916 && h->type == STT_GNU_IFUNC))
2917 {
2918 info->callbacks->minfo (_("Local IFUNC function `%s' in %pB\n"),
2919 h->root.root.string,
2920 h->root.u.def.section->owner);
2921
2922 /* If an STT_GNU_IFUNC symbol is locally defined, generate
2923 R_RISCV_IRELATIVE instead of R_RISCV_JUMP_SLOT. */
2924 asection *sec = h->root.u.def.section;
2925 rela.r_info = ELFNN_R_INFO (0, R_RISCV_IRELATIVE);
2926 rela.r_addend = h->root.u.def.value
2927 + sec->output_section->vma
2928 + sec->output_offset;
2929 }
2930 else
2931 {
2932 /* Fill in the entry in the .rela.plt section. */
2933 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_JUMP_SLOT);
2934 rela.r_addend = 0;
2935 }
2936
2937 loc = relplt->contents + plt_idx * sizeof (ElfNN_External_Rela);
2938 bed->s->swap_reloca_out (output_bfd, &rela, loc);
2939
2940 if (!h->def_regular)
2941 {
2942 /* Mark the symbol as undefined, rather than as defined in
2943 the .plt section. Leave the value alone. */
2944 sym->st_shndx = SHN_UNDEF;
2945 /* If the symbol is weak, we do need to clear the value.
2946 Otherwise, the PLT entry would provide a definition for
2947 the symbol even if the symbol wasn't defined anywhere,
2948 and so the symbol would never be NULL. */
2949 if (!h->ref_regular_nonweak)
2950 sym->st_value = 0;
2951 }
2952 }
2953
2954 if (h->got.offset != (bfd_vma) -1
2955 && !(riscv_elf_hash_entry (h)->tls_type & (GOT_TLS_GD | GOT_TLS_IE))
2956 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
2957 {
2958 asection *sgot;
2959 asection *srela;
2960 Elf_Internal_Rela rela;
2961 bool use_elf_append_rela = true;
2962
2963 /* This symbol has an entry in the GOT. Set it up. */
2964
2965 sgot = htab->elf.sgot;
2966 srela = htab->elf.srelgot;
2967 BFD_ASSERT (sgot != NULL && srela != NULL);
2968
2969 rela.r_offset = sec_addr (sgot) + (h->got.offset &~ (bfd_vma) 1);
2970
2971 /* Handle the ifunc symbol in GOT entry. */
2972 if (h->def_regular
2973 && h->type == STT_GNU_IFUNC)
2974 {
2975 if (h->plt.offset == (bfd_vma) -1)
2976 {
2977 /* STT_GNU_IFUNC is referenced without PLT. */
2978
2979 if (htab->elf.splt == NULL)
2980 {
2981 /* Use .rela.iplt section to store .got relocations
2982 in static executable. */
2983 srela = htab->elf.irelplt;
2984
2985 /* Do not use riscv_elf_append_rela to add dynamic
2986 relocs. */
2987 use_elf_append_rela = false;
2988 }
2989
2990 if (SYMBOL_REFERENCES_LOCAL (info, h))
2991 {
2992 info->callbacks->minfo (_("Local IFUNC function `%s' in %pB\n"),
2993 h->root.root.string,
2994 h->root.u.def.section->owner);
2995
2996 rela.r_info = ELFNN_R_INFO (0, R_RISCV_IRELATIVE);
2997 rela.r_addend = (h->root.u.def.value
2998 + h->root.u.def.section->output_section->vma
2999 + h->root.u.def.section->output_offset);
3000 }
3001 else
3002 {
3003 /* Generate R_RISCV_NN. */
3004 BFD_ASSERT ((h->got.offset & 1) == 0);
3005 BFD_ASSERT (h->dynindx != -1);
3006 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_NN);
3007 rela.r_addend = 0;
3008 }
3009 }
3010 else if (bfd_link_pic (info))
3011 {
3012 /* Generate R_RISCV_NN. */
3013 BFD_ASSERT ((h->got.offset & 1) == 0);
3014 BFD_ASSERT (h->dynindx != -1);
3015 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_NN);
3016 rela.r_addend = 0;
3017 }
3018 else
3019 {
3020 asection *plt;
3021
3022 if (!h->pointer_equality_needed)
3023 abort ();
3024
3025 /* For non-shared object, we can't use .got.plt, which
3026 contains the real function address if we need pointer
3027 equality. We load the GOT entry with the PLT entry. */
3028 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
3029 bfd_put_NN (output_bfd, (plt->output_section->vma
3030 + plt->output_offset
3031 + h->plt.offset),
3032 htab->elf.sgot->contents
3033 + (h->got.offset & ~(bfd_vma) 1));
3034 return true;
3035 }
3036 }
3037 else if (bfd_link_pic (info)
3038 && SYMBOL_REFERENCES_LOCAL (info, h))
3039 {
3040 /* If this is a local symbol reference, we just want to emit
3041 a RELATIVE reloc. This can happen if it is a -Bsymbolic link,
3042 or a pie link, or the symbol was forced to be local because
3043 of a version file. The entry in the global offset table will
3044 already have been initialized in the relocate_section function. */
3045 BFD_ASSERT ((h->got.offset & 1) != 0);
3046 asection *sec = h->root.u.def.section;
3047 rela.r_info = ELFNN_R_INFO (0, R_RISCV_RELATIVE);
3048 rela.r_addend = (h->root.u.def.value
3049 + sec->output_section->vma
3050 + sec->output_offset);
3051 }
3052 else
3053 {
3054 BFD_ASSERT ((h->got.offset & 1) == 0);
3055 BFD_ASSERT (h->dynindx != -1);
3056 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_NN);
3057 rela.r_addend = 0;
3058 }
3059
3060 bfd_put_NN (output_bfd, 0,
3061 sgot->contents + (h->got.offset & ~(bfd_vma) 1));
3062
3063 if (use_elf_append_rela)
3064 riscv_elf_append_rela (output_bfd, srela, &rela);
3065 else
3066 {
3067 /* Use riscv_elf_append_rela to add the dynamic relocs into
3068 .rela.iplt may cause the overwrite problems. Since we insert
3069 the relocs for PLT didn't handle the reloc_index of .rela.iplt,
3070 but the riscv_elf_append_rela adds the relocs to the place
3071 that are calculated from the reloc_index (in seqential).
3072
3073 One solution is that add these dynamic relocs (GOT IFUNC)
3074 from the last of .rela.iplt section. */
3075 bfd_vma iplt_idx = htab->last_iplt_index--;
3076 bfd_byte *loc = srela->contents
3077 + iplt_idx * sizeof (ElfNN_External_Rela);
3078 bed->s->swap_reloca_out (output_bfd, &rela, loc);
3079 }
3080 }
3081
3082 if (h->needs_copy)
3083 {
3084 Elf_Internal_Rela rela;
3085 asection *s;
3086
3087 /* This symbols needs a copy reloc. Set it up. */
3088 BFD_ASSERT (h->dynindx != -1);
3089
3090 rela.r_offset = sec_addr (h->root.u.def.section) + h->root.u.def.value;
3091 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_COPY);
3092 rela.r_addend = 0;
3093 if (h->root.u.def.section == htab->elf.sdynrelro)
3094 s = htab->elf.sreldynrelro;
3095 else
3096 s = htab->elf.srelbss;
3097 riscv_elf_append_rela (output_bfd, s, &rela);
3098 }
3099
3100 /* Mark some specially defined symbols as absolute. */
3101 if (h == htab->elf.hdynamic
3102 || (h == htab->elf.hgot || h == htab->elf.hplt))
3103 sym->st_shndx = SHN_ABS;
3104
3105 return true;
3106 }
3107
3108 /* Finish up local dynamic symbol handling. We set the contents of
3109 various dynamic sections here. */
3110
3111 static int
3112 riscv_elf_finish_local_dynamic_symbol (void **slot, void *inf)
3113 {
3114 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) *slot;
3115 struct bfd_link_info *info = (struct bfd_link_info *) inf;
3116
3117 return riscv_elf_finish_dynamic_symbol (info->output_bfd, info, h, NULL);
3118 }
3119
3120 /* Finish up the dynamic sections. */
3121
3122 static bool
3123 riscv_finish_dyn (bfd *output_bfd, struct bfd_link_info *info,
3124 bfd *dynobj, asection *sdyn)
3125 {
3126 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
3127 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
3128 size_t dynsize = bed->s->sizeof_dyn;
3129 bfd_byte *dyncon, *dynconend;
3130
3131 dynconend = sdyn->contents + sdyn->size;
3132 for (dyncon = sdyn->contents; dyncon < dynconend; dyncon += dynsize)
3133 {
3134 Elf_Internal_Dyn dyn;
3135 asection *s;
3136
3137 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
3138
3139 switch (dyn.d_tag)
3140 {
3141 case DT_PLTGOT:
3142 s = htab->elf.sgotplt;
3143 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
3144 break;
3145 case DT_JMPREL:
3146 s = htab->elf.srelplt;
3147 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
3148 break;
3149 case DT_PLTRELSZ:
3150 s = htab->elf.srelplt;
3151 dyn.d_un.d_val = s->size;
3152 break;
3153 default:
3154 continue;
3155 }
3156
3157 bed->s->swap_dyn_out (output_bfd, &dyn, dyncon);
3158 }
3159 return true;
3160 }
3161
3162 static bool
3163 riscv_elf_finish_dynamic_sections (bfd *output_bfd,
3164 struct bfd_link_info *info)
3165 {
3166 bfd *dynobj;
3167 asection *sdyn;
3168 struct riscv_elf_link_hash_table *htab;
3169
3170 htab = riscv_elf_hash_table (info);
3171 BFD_ASSERT (htab != NULL);
3172 dynobj = htab->elf.dynobj;
3173
3174 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3175
3176 if (elf_hash_table (info)->dynamic_sections_created)
3177 {
3178 asection *splt;
3179 bool ret;
3180
3181 splt = htab->elf.splt;
3182 BFD_ASSERT (splt != NULL && sdyn != NULL);
3183
3184 ret = riscv_finish_dyn (output_bfd, info, dynobj, sdyn);
3185
3186 if (!ret)
3187 return ret;
3188
3189 /* Fill in the head and tail entries in the procedure linkage table. */
3190 if (splt->size > 0)
3191 {
3192 int i;
3193 uint32_t plt_header[PLT_HEADER_INSNS];
3194 ret = riscv_make_plt_header (output_bfd,
3195 sec_addr (htab->elf.sgotplt),
3196 sec_addr (splt), plt_header);
3197 if (!ret)
3198 return ret;
3199
3200 for (i = 0; i < PLT_HEADER_INSNS; i++)
3201 bfd_putl32 (plt_header[i], splt->contents + 4*i);
3202
3203 elf_section_data (splt->output_section)->this_hdr.sh_entsize
3204 = PLT_ENTRY_SIZE;
3205 }
3206 }
3207
3208 if (htab->elf.sgotplt)
3209 {
3210 asection *output_section = htab->elf.sgotplt->output_section;
3211
3212 if (bfd_is_abs_section (output_section))
3213 {
3214 (*_bfd_error_handler)
3215 (_("discarded output section: `%pA'"), htab->elf.sgotplt);
3216 return false;
3217 }
3218
3219 if (htab->elf.sgotplt->size > 0)
3220 {
3221 /* Write the first two entries in .got.plt, needed for the dynamic
3222 linker. */
3223 bfd_put_NN (output_bfd, (bfd_vma) -1, htab->elf.sgotplt->contents);
3224 bfd_put_NN (output_bfd, (bfd_vma) 0,
3225 htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
3226 }
3227
3228 elf_section_data (output_section)->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
3229 }
3230
3231 if (htab->elf.sgot)
3232 {
3233 asection *output_section = htab->elf.sgot->output_section;
3234
3235 if (htab->elf.sgot->size > 0)
3236 {
3237 /* Set the first entry in the global offset table to the address of
3238 the dynamic section. */
3239 bfd_vma val = sdyn ? sec_addr (sdyn) : 0;
3240 bfd_put_NN (output_bfd, val, htab->elf.sgot->contents);
3241 }
3242
3243 elf_section_data (output_section)->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
3244 }
3245
3246 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
3247 htab_traverse (htab->loc_hash_table,
3248 riscv_elf_finish_local_dynamic_symbol,
3249 info);
3250
3251 return true;
3252 }
3253
3254 /* Return address for Ith PLT stub in section PLT, for relocation REL
3255 or (bfd_vma) -1 if it should not be included. */
3256
3257 static bfd_vma
3258 riscv_elf_plt_sym_val (bfd_vma i, const asection *plt,
3259 const arelent *rel ATTRIBUTE_UNUSED)
3260 {
3261 return plt->vma + PLT_HEADER_SIZE + i * PLT_ENTRY_SIZE;
3262 }
3263
3264 static enum elf_reloc_type_class
3265 riscv_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
3266 const asection *rel_sec ATTRIBUTE_UNUSED,
3267 const Elf_Internal_Rela *rela)
3268 {
3269 switch (ELFNN_R_TYPE (rela->r_info))
3270 {
3271 case R_RISCV_RELATIVE:
3272 return reloc_class_relative;
3273 case R_RISCV_JUMP_SLOT:
3274 return reloc_class_plt;
3275 case R_RISCV_COPY:
3276 return reloc_class_copy;
3277 default:
3278 return reloc_class_normal;
3279 }
3280 }
3281
3282 /* Given the ELF header flags in FLAGS, it returns a string that describes the
3283 float ABI. */
3284
3285 static const char *
3286 riscv_float_abi_string (flagword flags)
3287 {
3288 switch (flags & EF_RISCV_FLOAT_ABI)
3289 {
3290 case EF_RISCV_FLOAT_ABI_SOFT:
3291 return "soft-float";
3292 break;
3293 case EF_RISCV_FLOAT_ABI_SINGLE:
3294 return "single-float";
3295 break;
3296 case EF_RISCV_FLOAT_ABI_DOUBLE:
3297 return "double-float";
3298 break;
3299 case EF_RISCV_FLOAT_ABI_QUAD:
3300 return "quad-float";
3301 break;
3302 default:
3303 abort ();
3304 }
3305 }
3306
3307 /* The information of architecture elf attributes. */
3308 static riscv_subset_list_t in_subsets;
3309 static riscv_subset_list_t out_subsets;
3310 static riscv_subset_list_t merged_subsets;
3311
3312 /* Predicator for standard extension. */
3313
3314 static bool
3315 riscv_std_ext_p (const char *name)
3316 {
3317 return (strlen (name) == 1) && (name[0] != 'x') && (name[0] != 's');
3318 }
3319
3320 /* Check if the versions are compatible. */
3321
3322 static bool
3323 riscv_version_mismatch (bfd *ibfd,
3324 struct riscv_subset_t *in,
3325 struct riscv_subset_t *out)
3326 {
3327 if (in == NULL || out == NULL)
3328 return true;
3329
3330 /* Since there are no version conflicts for now, we just report
3331 warning when the versions are mis-matched. */
3332 if (in->major_version != out->major_version
3333 || in->minor_version != out->minor_version)
3334 {
3335 _bfd_error_handler
3336 (_("warning: %pB: mis-matched ISA version %d.%d for '%s' "
3337 "extension, the output version is %d.%d"),
3338 ibfd,
3339 in->major_version,
3340 in->minor_version,
3341 in->name,
3342 out->major_version,
3343 out->minor_version);
3344
3345 /* Update the output ISA versions to the newest ones. */
3346 if ((in->major_version > out->major_version)
3347 || (in->major_version == out->major_version
3348 && in->minor_version > out->minor_version))
3349 {
3350 out->major_version = in->major_version;
3351 out->minor_version = in->minor_version;
3352 }
3353 }
3354
3355 return true;
3356 }
3357
3358 /* Return true if subset is 'i' or 'e'. */
3359
3360 static bool
3361 riscv_i_or_e_p (bfd *ibfd,
3362 const char *arch,
3363 struct riscv_subset_t *subset)
3364 {
3365 if ((strcasecmp (subset->name, "e") != 0)
3366 && (strcasecmp (subset->name, "i") != 0))
3367 {
3368 _bfd_error_handler
3369 (_("error: %pB: corrupted ISA string '%s'. "
3370 "First letter should be 'i' or 'e' but got '%s'"),
3371 ibfd, arch, subset->name);
3372 return false;
3373 }
3374 return true;
3375 }
3376
3377 /* Merge standard extensions.
3378
3379 Return Value:
3380 Return FALSE if failed to merge.
3381
3382 Arguments:
3383 `bfd`: bfd handler.
3384 `in_arch`: Raw ISA string for input object.
3385 `out_arch`: Raw ISA string for output object.
3386 `pin`: Subset list for input object.
3387 `pout`: Subset list for output object. */
3388
3389 static bool
3390 riscv_merge_std_ext (bfd *ibfd,
3391 const char *in_arch,
3392 const char *out_arch,
3393 struct riscv_subset_t **pin,
3394 struct riscv_subset_t **pout)
3395 {
3396 const char *standard_exts = riscv_supported_std_ext ();
3397 const char *p;
3398 struct riscv_subset_t *in = *pin;
3399 struct riscv_subset_t *out = *pout;
3400
3401 /* First letter should be 'i' or 'e'. */
3402 if (!riscv_i_or_e_p (ibfd, in_arch, in))
3403 return false;
3404
3405 if (!riscv_i_or_e_p (ibfd, out_arch, out))
3406 return false;
3407
3408 if (strcasecmp (in->name, out->name) != 0)
3409 {
3410 /* TODO: We might allow merge 'i' with 'e'. */
3411 _bfd_error_handler
3412 (_("error: %pB: mis-matched ISA string to merge '%s' and '%s'"),
3413 ibfd, in->name, out->name);
3414 return false;
3415 }
3416 else if (!riscv_version_mismatch (ibfd, in, out))
3417 return false;
3418 else
3419 riscv_add_subset (&merged_subsets,
3420 out->name, out->major_version, out->minor_version);
3421
3422 in = in->next;
3423 out = out->next;
3424
3425 /* Handle standard extension first. */
3426 for (p = standard_exts; *p; ++p)
3427 {
3428 struct riscv_subset_t *ext_in, *ext_out, *ext_merged;
3429 char find_ext[2] = {*p, '\0'};
3430 bool find_in, find_out;
3431
3432 find_in = riscv_lookup_subset (&in_subsets, find_ext, &ext_in);
3433 find_out = riscv_lookup_subset (&out_subsets, find_ext, &ext_out);
3434
3435 if (!find_in && !find_out)
3436 continue;
3437
3438 if (find_in
3439 && find_out
3440 && !riscv_version_mismatch (ibfd, ext_in, ext_out))
3441 return false;
3442
3443 ext_merged = find_out ? ext_out : ext_in;
3444 riscv_add_subset (&merged_subsets, ext_merged->name,
3445 ext_merged->major_version, ext_merged->minor_version);
3446 }
3447
3448 /* Skip all standard extensions. */
3449 while ((in != NULL) && riscv_std_ext_p (in->name)) in = in->next;
3450 while ((out != NULL) && riscv_std_ext_p (out->name)) out = out->next;
3451
3452 *pin = in;
3453 *pout = out;
3454
3455 return true;
3456 }
3457
3458 /* Merge multi letter extensions. PIN is a pointer to the head of the input
3459 object subset list. Likewise for POUT and the output object. Return TRUE
3460 on success and FALSE when a conflict is found. */
3461
3462 static bool
3463 riscv_merge_multi_letter_ext (bfd *ibfd,
3464 riscv_subset_t **pin,
3465 riscv_subset_t **pout)
3466 {
3467 riscv_subset_t *in = *pin;
3468 riscv_subset_t *out = *pout;
3469 riscv_subset_t *tail;
3470
3471 int cmp;
3472
3473 while (in && out)
3474 {
3475 cmp = riscv_compare_subsets (in->name, out->name);
3476
3477 if (cmp < 0)
3478 {
3479 /* `in' comes before `out', append `in' and increment. */
3480 riscv_add_subset (&merged_subsets, in->name, in->major_version,
3481 in->minor_version);
3482 in = in->next;
3483 }
3484 else if (cmp > 0)
3485 {
3486 /* `out' comes before `in', append `out' and increment. */
3487 riscv_add_subset (&merged_subsets, out->name, out->major_version,
3488 out->minor_version);
3489 out = out->next;
3490 }
3491 else
3492 {
3493 /* Both present, check version and increment both. */
3494 if (!riscv_version_mismatch (ibfd, in, out))
3495 return false;
3496
3497 riscv_add_subset (&merged_subsets, out->name, out->major_version,
3498 out->minor_version);
3499 out = out->next;
3500 in = in->next;
3501 }
3502 }
3503
3504 if (in || out)
3505 {
3506 /* If we're here, either `in' or `out' is running longer than
3507 the other. So, we need to append the corresponding tail. */
3508 tail = in ? in : out;
3509 while (tail)
3510 {
3511 riscv_add_subset (&merged_subsets, tail->name, tail->major_version,
3512 tail->minor_version);
3513 tail = tail->next;
3514 }
3515 }
3516
3517 return true;
3518 }
3519
3520 /* Merge Tag_RISCV_arch attribute. */
3521
3522 static char *
3523 riscv_merge_arch_attr_info (bfd *ibfd, char *in_arch, char *out_arch)
3524 {
3525 riscv_subset_t *in, *out;
3526 char *merged_arch_str;
3527
3528 unsigned xlen_in, xlen_out;
3529 merged_subsets.head = NULL;
3530 merged_subsets.tail = NULL;
3531
3532 riscv_parse_subset_t rpe_in;
3533 riscv_parse_subset_t rpe_out;
3534
3535 /* Only assembler needs to check the default version of ISA, so just set
3536 the rpe_in.get_default_version and rpe_out.get_default_version to NULL. */
3537 rpe_in.subset_list = &in_subsets;
3538 rpe_in.error_handler = _bfd_error_handler;
3539 rpe_in.xlen = &xlen_in;
3540 rpe_in.get_default_version = NULL;
3541
3542 rpe_out.subset_list = &out_subsets;
3543 rpe_out.error_handler = _bfd_error_handler;
3544 rpe_out.xlen = &xlen_out;
3545 rpe_out.get_default_version = NULL;
3546
3547 if (in_arch == NULL && out_arch == NULL)
3548 return NULL;
3549
3550 if (in_arch == NULL && out_arch != NULL)
3551 return out_arch;
3552
3553 if (in_arch != NULL && out_arch == NULL)
3554 return in_arch;
3555
3556 /* Parse subset from ISA string. */
3557 if (!riscv_parse_subset (&rpe_in, in_arch))
3558 return NULL;
3559
3560 if (!riscv_parse_subset (&rpe_out, out_arch))
3561 return NULL;
3562
3563 /* Checking XLEN. */
3564 if (xlen_out != xlen_in)
3565 {
3566 _bfd_error_handler
3567 (_("error: %pB: ISA string of input (%s) doesn't match "
3568 "output (%s)"), ibfd, in_arch, out_arch);
3569 return NULL;
3570 }
3571
3572 /* Merge subset list. */
3573 in = in_subsets.head;
3574 out = out_subsets.head;
3575
3576 /* Merge standard extension. */
3577 if (!riscv_merge_std_ext (ibfd, in_arch, out_arch, &in, &out))
3578 return NULL;
3579
3580 /* Merge all non-single letter extensions with single call. */
3581 if (!riscv_merge_multi_letter_ext (ibfd, &in, &out))
3582 return NULL;
3583
3584 if (xlen_in != xlen_out)
3585 {
3586 _bfd_error_handler
3587 (_("error: %pB: XLEN of input (%u) doesn't match "
3588 "output (%u)"), ibfd, xlen_in, xlen_out);
3589 return NULL;
3590 }
3591
3592 if (xlen_in != ARCH_SIZE)
3593 {
3594 _bfd_error_handler
3595 (_("error: %pB: unsupported XLEN (%u), you might be "
3596 "using wrong emulation"), ibfd, xlen_in);
3597 return NULL;
3598 }
3599
3600 merged_arch_str = riscv_arch_str (ARCH_SIZE, &merged_subsets);
3601
3602 /* Release the subset lists. */
3603 riscv_release_subset_list (&in_subsets);
3604 riscv_release_subset_list (&out_subsets);
3605 riscv_release_subset_list (&merged_subsets);
3606
3607 return merged_arch_str;
3608 }
3609
3610 /* Merge object attributes from IBFD into output_bfd of INFO.
3611 Raise an error if there are conflicting attributes. */
3612
3613 static bool
3614 riscv_merge_attributes (bfd *ibfd, struct bfd_link_info *info)
3615 {
3616 bfd *obfd = info->output_bfd;
3617 obj_attribute *in_attr;
3618 obj_attribute *out_attr;
3619 bool result = true;
3620 bool priv_attrs_merged = false;
3621 const char *sec_name = get_elf_backend_data (ibfd)->obj_attrs_section;
3622 unsigned int i;
3623
3624 /* Skip linker created files. */
3625 if (ibfd->flags & BFD_LINKER_CREATED)
3626 return true;
3627
3628 /* Skip any input that doesn't have an attribute section.
3629 This enables to link object files without attribute section with
3630 any others. */
3631 if (bfd_get_section_by_name (ibfd, sec_name) == NULL)
3632 return true;
3633
3634 if (!elf_known_obj_attributes_proc (obfd)[0].i)
3635 {
3636 /* This is the first object. Copy the attributes. */
3637 _bfd_elf_copy_obj_attributes (ibfd, obfd);
3638
3639 out_attr = elf_known_obj_attributes_proc (obfd);
3640
3641 /* Use the Tag_null value to indicate the attributes have been
3642 initialized. */
3643 out_attr[0].i = 1;
3644
3645 return true;
3646 }
3647
3648 in_attr = elf_known_obj_attributes_proc (ibfd);
3649 out_attr = elf_known_obj_attributes_proc (obfd);
3650
3651 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
3652 {
3653 switch (i)
3654 {
3655 case Tag_RISCV_arch:
3656 if (!out_attr[Tag_RISCV_arch].s)
3657 out_attr[Tag_RISCV_arch].s = in_attr[Tag_RISCV_arch].s;
3658 else if (in_attr[Tag_RISCV_arch].s
3659 && out_attr[Tag_RISCV_arch].s)
3660 {
3661 /* Check compatible. */
3662 char *merged_arch =
3663 riscv_merge_arch_attr_info (ibfd,
3664 in_attr[Tag_RISCV_arch].s,
3665 out_attr[Tag_RISCV_arch].s);
3666 if (merged_arch == NULL)
3667 {
3668 result = false;
3669 out_attr[Tag_RISCV_arch].s = "";
3670 }
3671 else
3672 out_attr[Tag_RISCV_arch].s = merged_arch;
3673 }
3674 break;
3675
3676 case Tag_RISCV_priv_spec:
3677 case Tag_RISCV_priv_spec_minor:
3678 case Tag_RISCV_priv_spec_revision:
3679 /* If we have handled the privileged elf attributes, then skip it. */
3680 if (!priv_attrs_merged)
3681 {
3682 unsigned int Tag_a = Tag_RISCV_priv_spec;
3683 unsigned int Tag_b = Tag_RISCV_priv_spec_minor;
3684 unsigned int Tag_c = Tag_RISCV_priv_spec_revision;
3685 enum riscv_spec_class in_priv_spec = PRIV_SPEC_CLASS_NONE;
3686 enum riscv_spec_class out_priv_spec = PRIV_SPEC_CLASS_NONE;
3687
3688 /* Get the privileged spec class from elf attributes. */
3689 riscv_get_priv_spec_class_from_numbers (in_attr[Tag_a].i,
3690 in_attr[Tag_b].i,
3691 in_attr[Tag_c].i,
3692 &in_priv_spec);
3693 riscv_get_priv_spec_class_from_numbers (out_attr[Tag_a].i,
3694 out_attr[Tag_b].i,
3695 out_attr[Tag_c].i,
3696 &out_priv_spec);
3697
3698 /* Allow to link the object without the privileged specs. */
3699 if (out_priv_spec == PRIV_SPEC_CLASS_NONE)
3700 {
3701 out_attr[Tag_a].i = in_attr[Tag_a].i;
3702 out_attr[Tag_b].i = in_attr[Tag_b].i;
3703 out_attr[Tag_c].i = in_attr[Tag_c].i;
3704 }
3705 else if (in_priv_spec != PRIV_SPEC_CLASS_NONE
3706 && in_priv_spec != out_priv_spec)
3707 {
3708 _bfd_error_handler
3709 (_("warning: %pB use privileged spec version %u.%u.%u but "
3710 "the output use version %u.%u.%u"),
3711 ibfd,
3712 in_attr[Tag_a].i,
3713 in_attr[Tag_b].i,
3714 in_attr[Tag_c].i,
3715 out_attr[Tag_a].i,
3716 out_attr[Tag_b].i,
3717 out_attr[Tag_c].i);
3718
3719 /* The privileged spec v1.9.1 can not be linked with others
3720 since the conflicts, so we plan to drop it in a year or
3721 two. */
3722 if (in_priv_spec == PRIV_SPEC_CLASS_1P9P1
3723 || out_priv_spec == PRIV_SPEC_CLASS_1P9P1)
3724 {
3725 _bfd_error_handler
3726 (_("warning: privileged spec version 1.9.1 can not be "
3727 "linked with other spec versions"));
3728 }
3729
3730 /* Update the output privileged spec to the newest one. */
3731 if (in_priv_spec > out_priv_spec)
3732 {
3733 out_attr[Tag_a].i = in_attr[Tag_a].i;
3734 out_attr[Tag_b].i = in_attr[Tag_b].i;
3735 out_attr[Tag_c].i = in_attr[Tag_c].i;
3736 }
3737 }
3738 priv_attrs_merged = true;
3739 }
3740 break;
3741
3742 case Tag_RISCV_unaligned_access:
3743 out_attr[i].i |= in_attr[i].i;
3744 break;
3745
3746 case Tag_RISCV_stack_align:
3747 if (out_attr[i].i == 0)
3748 out_attr[i].i = in_attr[i].i;
3749 else if (in_attr[i].i != 0
3750 && out_attr[i].i != 0
3751 && out_attr[i].i != in_attr[i].i)
3752 {
3753 _bfd_error_handler
3754 (_("error: %pB use %u-byte stack aligned but the output "
3755 "use %u-byte stack aligned"),
3756 ibfd, in_attr[i].i, out_attr[i].i);
3757 result = false;
3758 }
3759 break;
3760
3761 default:
3762 result &= _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
3763 }
3764
3765 /* If out_attr was copied from in_attr then it won't have a type yet. */
3766 if (in_attr[i].type && !out_attr[i].type)
3767 out_attr[i].type = in_attr[i].type;
3768 }
3769
3770 /* Merge Tag_compatibility attributes and any common GNU ones. */
3771 if (!_bfd_elf_merge_object_attributes (ibfd, info))
3772 return false;
3773
3774 /* Check for any attributes not known on RISC-V. */
3775 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
3776
3777 return result;
3778 }
3779
3780 /* Merge backend specific data from an object file to the output
3781 object file when linking. */
3782
3783 static bool
3784 _bfd_riscv_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
3785 {
3786 bfd *obfd = info->output_bfd;
3787 flagword new_flags, old_flags;
3788
3789 if (!is_riscv_elf (ibfd) || !is_riscv_elf (obfd))
3790 return true;
3791
3792 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
3793 {
3794 (*_bfd_error_handler)
3795 (_("%pB: ABI is incompatible with that of the selected emulation:\n"
3796 " target emulation `%s' does not match `%s'"),
3797 ibfd, bfd_get_target (ibfd), bfd_get_target (obfd));
3798 return false;
3799 }
3800
3801 if (!_bfd_elf_merge_object_attributes (ibfd, info))
3802 return false;
3803
3804 if (!riscv_merge_attributes (ibfd, info))
3805 return false;
3806
3807 /* Check to see if the input BFD actually contains any sections. If not,
3808 its flags may not have been initialized either, but it cannot actually
3809 cause any incompatibility. Do not short-circuit dynamic objects; their
3810 section list may be emptied by elf_link_add_object_symbols.
3811
3812 Also check to see if there are no code sections in the input. In this
3813 case, there is no need to check for code specific flags. */
3814 if (!(ibfd->flags & DYNAMIC))
3815 {
3816 bool null_input_bfd = true;
3817 bool only_data_sections = true;
3818 asection *sec;
3819
3820 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
3821 {
3822 null_input_bfd = false;
3823
3824 if ((bfd_section_flags (sec)
3825 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
3826 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
3827 {
3828 only_data_sections = false;
3829 break;
3830 }
3831 }
3832
3833 if (null_input_bfd || only_data_sections)
3834 return true;
3835 }
3836
3837 new_flags = elf_elfheader (ibfd)->e_flags;
3838 old_flags = elf_elfheader (obfd)->e_flags;
3839
3840 if (!elf_flags_init (obfd))
3841 {
3842 elf_flags_init (obfd) = true;
3843 elf_elfheader (obfd)->e_flags = new_flags;
3844 return true;
3845 }
3846
3847 /* Disallow linking different float ABIs. */
3848 if ((old_flags ^ new_flags) & EF_RISCV_FLOAT_ABI)
3849 {
3850 (*_bfd_error_handler)
3851 (_("%pB: can't link %s modules with %s modules"), ibfd,
3852 riscv_float_abi_string (new_flags),
3853 riscv_float_abi_string (old_flags));
3854 goto fail;
3855 }
3856
3857 /* Disallow linking RVE and non-RVE. */
3858 if ((old_flags ^ new_flags) & EF_RISCV_RVE)
3859 {
3860 (*_bfd_error_handler)
3861 (_("%pB: can't link RVE with other target"), ibfd);
3862 goto fail;
3863 }
3864
3865 /* Allow linking RVC and non-RVC, and keep the RVC flag. */
3866 elf_elfheader (obfd)->e_flags |= new_flags & EF_RISCV_RVC;
3867
3868 return true;
3869
3870 fail:
3871 bfd_set_error (bfd_error_bad_value);
3872 return false;
3873 }
3874
3875 /* Delete some bytes from a section while relaxing. */
3876
3877 static bool
3878 riscv_relax_delete_bytes (bfd *abfd, asection *sec, bfd_vma addr, size_t count,
3879 struct bfd_link_info *link_info)
3880 {
3881 unsigned int i, symcount;
3882 bfd_vma toaddr = sec->size;
3883 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (abfd);
3884 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
3885 unsigned int sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
3886 struct bfd_elf_section_data *data = elf_section_data (sec);
3887 bfd_byte *contents = data->this_hdr.contents;
3888
3889 /* Actually delete the bytes. */
3890 sec->size -= count;
3891 memmove (contents + addr, contents + addr + count, toaddr - addr - count);
3892
3893 /* Adjust the location of all of the relocs. Note that we need not
3894 adjust the addends, since all PC-relative references must be against
3895 symbols, which we will adjust below. */
3896 for (i = 0; i < sec->reloc_count; i++)
3897 if (data->relocs[i].r_offset > addr && data->relocs[i].r_offset < toaddr)
3898 data->relocs[i].r_offset -= count;
3899
3900 /* Adjust the local symbols defined in this section. */
3901 for (i = 0; i < symtab_hdr->sh_info; i++)
3902 {
3903 Elf_Internal_Sym *sym = (Elf_Internal_Sym *) symtab_hdr->contents + i;
3904 if (sym->st_shndx == sec_shndx)
3905 {
3906 /* If the symbol is in the range of memory we just moved, we
3907 have to adjust its value. */
3908 if (sym->st_value > addr && sym->st_value <= toaddr)
3909 sym->st_value -= count;
3910
3911 /* If the symbol *spans* the bytes we just deleted (i.e. its
3912 *end* is in the moved bytes but its *start* isn't), then we
3913 must adjust its size.
3914
3915 This test needs to use the original value of st_value, otherwise
3916 we might accidentally decrease size when deleting bytes right
3917 before the symbol. But since deleted relocs can't span across
3918 symbols, we can't have both a st_value and a st_size decrease,
3919 so it is simpler to just use an else. */
3920 else if (sym->st_value <= addr
3921 && sym->st_value + sym->st_size > addr
3922 && sym->st_value + sym->st_size <= toaddr)
3923 sym->st_size -= count;
3924 }
3925 }
3926
3927 /* Now adjust the global symbols defined in this section. */
3928 symcount = ((symtab_hdr->sh_size / sizeof (ElfNN_External_Sym))
3929 - symtab_hdr->sh_info);
3930
3931 for (i = 0; i < symcount; i++)
3932 {
3933 struct elf_link_hash_entry *sym_hash = sym_hashes[i];
3934
3935 /* The '--wrap SYMBOL' option is causing a pain when the object file,
3936 containing the definition of __wrap_SYMBOL, includes a direct
3937 call to SYMBOL as well. Since both __wrap_SYMBOL and SYMBOL reference
3938 the same symbol (which is __wrap_SYMBOL), but still exist as two
3939 different symbols in 'sym_hashes', we don't want to adjust
3940 the global symbol __wrap_SYMBOL twice.
3941
3942 The same problem occurs with symbols that are versioned_hidden, as
3943 foo becomes an alias for foo@BAR, and hence they need the same
3944 treatment. */
3945 if (link_info->wrap_hash != NULL
3946 || sym_hash->versioned == versioned_hidden)
3947 {
3948 struct elf_link_hash_entry **cur_sym_hashes;
3949
3950 /* Loop only over the symbols which have already been checked. */
3951 for (cur_sym_hashes = sym_hashes; cur_sym_hashes < &sym_hashes[i];
3952 cur_sym_hashes++)
3953 {
3954 /* If the current symbol is identical to 'sym_hash', that means
3955 the symbol was already adjusted (or at least checked). */
3956 if (*cur_sym_hashes == sym_hash)
3957 break;
3958 }
3959 /* Don't adjust the symbol again. */
3960 if (cur_sym_hashes < &sym_hashes[i])
3961 continue;
3962 }
3963
3964 if ((sym_hash->root.type == bfd_link_hash_defined
3965 || sym_hash->root.type == bfd_link_hash_defweak)
3966 && sym_hash->root.u.def.section == sec)
3967 {
3968 /* As above, adjust the value if needed. */
3969 if (sym_hash->root.u.def.value > addr
3970 && sym_hash->root.u.def.value <= toaddr)
3971 sym_hash->root.u.def.value -= count;
3972
3973 /* As above, adjust the size if needed. */
3974 else if (sym_hash->root.u.def.value <= addr
3975 && sym_hash->root.u.def.value + sym_hash->size > addr
3976 && sym_hash->root.u.def.value + sym_hash->size <= toaddr)
3977 sym_hash->size -= count;
3978 }
3979 }
3980
3981 return true;
3982 }
3983
3984 /* A second format for recording PC-relative hi relocations. This stores the
3985 information required to relax them to GP-relative addresses. */
3986
3987 typedef struct riscv_pcgp_hi_reloc riscv_pcgp_hi_reloc;
3988 struct riscv_pcgp_hi_reloc
3989 {
3990 bfd_vma hi_sec_off;
3991 bfd_vma hi_addend;
3992 bfd_vma hi_addr;
3993 unsigned hi_sym;
3994 asection *sym_sec;
3995 bool undefined_weak;
3996 riscv_pcgp_hi_reloc *next;
3997 };
3998
3999 typedef struct riscv_pcgp_lo_reloc riscv_pcgp_lo_reloc;
4000 struct riscv_pcgp_lo_reloc
4001 {
4002 bfd_vma hi_sec_off;
4003 riscv_pcgp_lo_reloc *next;
4004 };
4005
4006 typedef struct
4007 {
4008 riscv_pcgp_hi_reloc *hi;
4009 riscv_pcgp_lo_reloc *lo;
4010 } riscv_pcgp_relocs;
4011
4012 /* Initialize the pcgp reloc info in P. */
4013
4014 static bool
4015 riscv_init_pcgp_relocs (riscv_pcgp_relocs *p)
4016 {
4017 p->hi = NULL;
4018 p->lo = NULL;
4019 return true;
4020 }
4021
4022 /* Free the pcgp reloc info in P. */
4023
4024 static void
4025 riscv_free_pcgp_relocs (riscv_pcgp_relocs *p,
4026 bfd *abfd ATTRIBUTE_UNUSED,
4027 asection *sec ATTRIBUTE_UNUSED)
4028 {
4029 riscv_pcgp_hi_reloc *c;
4030 riscv_pcgp_lo_reloc *l;
4031
4032 for (c = p->hi; c != NULL; )
4033 {
4034 riscv_pcgp_hi_reloc *next = c->next;
4035 free (c);
4036 c = next;
4037 }
4038
4039 for (l = p->lo; l != NULL; )
4040 {
4041 riscv_pcgp_lo_reloc *next = l->next;
4042 free (l);
4043 l = next;
4044 }
4045 }
4046
4047 /* Record pcgp hi part reloc info in P, using HI_SEC_OFF as the lookup index.
4048 The HI_ADDEND, HI_ADDR, HI_SYM, and SYM_SEC args contain info required to
4049 relax the corresponding lo part reloc. */
4050
4051 static bool
4052 riscv_record_pcgp_hi_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off,
4053 bfd_vma hi_addend, bfd_vma hi_addr,
4054 unsigned hi_sym, asection *sym_sec,
4055 bool undefined_weak)
4056 {
4057 riscv_pcgp_hi_reloc *new = bfd_malloc (sizeof (*new));
4058 if (!new)
4059 return false;
4060 new->hi_sec_off = hi_sec_off;
4061 new->hi_addend = hi_addend;
4062 new->hi_addr = hi_addr;
4063 new->hi_sym = hi_sym;
4064 new->sym_sec = sym_sec;
4065 new->undefined_weak = undefined_weak;
4066 new->next = p->hi;
4067 p->hi = new;
4068 return true;
4069 }
4070
4071 /* Look up hi part pcgp reloc info in P, using HI_SEC_OFF as the lookup index.
4072 This is used by a lo part reloc to find the corresponding hi part reloc. */
4073
4074 static riscv_pcgp_hi_reloc *
4075 riscv_find_pcgp_hi_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
4076 {
4077 riscv_pcgp_hi_reloc *c;
4078
4079 for (c = p->hi; c != NULL; c = c->next)
4080 if (c->hi_sec_off == hi_sec_off)
4081 return c;
4082 return NULL;
4083 }
4084
4085 /* Record pcgp lo part reloc info in P, using HI_SEC_OFF as the lookup info.
4086 This is used to record relocs that can't be relaxed. */
4087
4088 static bool
4089 riscv_record_pcgp_lo_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
4090 {
4091 riscv_pcgp_lo_reloc *new = bfd_malloc (sizeof (*new));
4092 if (!new)
4093 return false;
4094 new->hi_sec_off = hi_sec_off;
4095 new->next = p->lo;
4096 p->lo = new;
4097 return true;
4098 }
4099
4100 /* Look up lo part pcgp reloc info in P, using HI_SEC_OFF as the lookup index.
4101 This is used by a hi part reloc to find the corresponding lo part reloc. */
4102
4103 static bool
4104 riscv_find_pcgp_lo_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
4105 {
4106 riscv_pcgp_lo_reloc *c;
4107
4108 for (c = p->lo; c != NULL; c = c->next)
4109 if (c->hi_sec_off == hi_sec_off)
4110 return true;
4111 return false;
4112 }
4113
4114 typedef bool (*relax_func_t) (bfd *, asection *, asection *,
4115 struct bfd_link_info *,
4116 Elf_Internal_Rela *,
4117 bfd_vma, bfd_vma, bfd_vma, bool *,
4118 riscv_pcgp_relocs *,
4119 bool undefined_weak);
4120
4121 /* Relax AUIPC + JALR into JAL. */
4122
4123 static bool
4124 _bfd_riscv_relax_call (bfd *abfd, asection *sec, asection *sym_sec,
4125 struct bfd_link_info *link_info,
4126 Elf_Internal_Rela *rel,
4127 bfd_vma symval,
4128 bfd_vma max_alignment,
4129 bfd_vma reserve_size ATTRIBUTE_UNUSED,
4130 bool *again,
4131 riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED,
4132 bool undefined_weak ATTRIBUTE_UNUSED)
4133 {
4134 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
4135 bfd_vma foff = symval - (sec_addr (sec) + rel->r_offset);
4136 bool near_zero = (symval + RISCV_IMM_REACH / 2) < RISCV_IMM_REACH;
4137 bfd_vma auipc, jalr;
4138 int rd, r_type, len = 4, rvc = elf_elfheader (abfd)->e_flags & EF_RISCV_RVC;
4139
4140 /* If the call crosses section boundaries, an alignment directive could
4141 cause the PC-relative offset to later increase, so we need to add in the
4142 max alignment of any section inclusive from the call to the target.
4143 Otherwise, we only need to use the alignment of the current section. */
4144 if (VALID_JTYPE_IMM (foff))
4145 {
4146 if (sym_sec->output_section == sec->output_section
4147 && sym_sec->output_section != bfd_abs_section_ptr)
4148 max_alignment = (bfd_vma) 1 << sym_sec->output_section->alignment_power;
4149 foff += ((bfd_signed_vma) foff < 0 ? -max_alignment : max_alignment);
4150 }
4151
4152 /* See if this function call can be shortened. */
4153 if (!VALID_JTYPE_IMM (foff) && !(!bfd_link_pic (link_info) && near_zero))
4154 return true;
4155
4156 /* Shorten the function call. */
4157 BFD_ASSERT (rel->r_offset + 8 <= sec->size);
4158
4159 auipc = bfd_getl32 (contents + rel->r_offset);
4160 jalr = bfd_getl32 (contents + rel->r_offset + 4);
4161 rd = (jalr >> OP_SH_RD) & OP_MASK_RD;
4162 rvc = rvc && VALID_CJTYPE_IMM (foff);
4163
4164 /* C.J exists on RV32 and RV64, but C.JAL is RV32-only. */
4165 rvc = rvc && (rd == 0 || (rd == X_RA && ARCH_SIZE == 32));
4166
4167 if (rvc)
4168 {
4169 /* Relax to C.J[AL] rd, addr. */
4170 r_type = R_RISCV_RVC_JUMP;
4171 auipc = rd == 0 ? MATCH_C_J : MATCH_C_JAL;
4172 len = 2;
4173 }
4174 else if (VALID_JTYPE_IMM (foff))
4175 {
4176 /* Relax to JAL rd, addr. */
4177 r_type = R_RISCV_JAL;
4178 auipc = MATCH_JAL | (rd << OP_SH_RD);
4179 }
4180 else
4181 {
4182 /* Near zero, relax to JALR rd, x0, addr. */
4183 r_type = R_RISCV_LO12_I;
4184 auipc = MATCH_JALR | (rd << OP_SH_RD);
4185 }
4186
4187 /* Replace the R_RISCV_CALL reloc. */
4188 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), r_type);
4189 /* Replace the AUIPC. */
4190 riscv_put_insn (8 * len, auipc, contents + rel->r_offset);
4191
4192 /* Delete unnecessary JALR. */
4193 *again = true;
4194 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + len, 8 - len,
4195 link_info);
4196 }
4197
4198 /* Traverse all output sections and return the max alignment. */
4199
4200 static bfd_vma
4201 _bfd_riscv_get_max_alignment (asection *sec)
4202 {
4203 unsigned int max_alignment_power = 0;
4204 asection *o;
4205
4206 for (o = sec->output_section->owner->sections; o != NULL; o = o->next)
4207 {
4208 if (o->alignment_power > max_alignment_power)
4209 max_alignment_power = o->alignment_power;
4210 }
4211
4212 return (bfd_vma) 1 << max_alignment_power;
4213 }
4214
4215 /* Relax non-PIC global variable references to GP-relative references. */
4216
4217 static bool
4218 _bfd_riscv_relax_lui (bfd *abfd,
4219 asection *sec,
4220 asection *sym_sec,
4221 struct bfd_link_info *link_info,
4222 Elf_Internal_Rela *rel,
4223 bfd_vma symval,
4224 bfd_vma max_alignment,
4225 bfd_vma reserve_size,
4226 bool *again,
4227 riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED,
4228 bool undefined_weak)
4229 {
4230 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
4231 bfd_vma gp = riscv_global_pointer_value (link_info);
4232 int use_rvc = elf_elfheader (abfd)->e_flags & EF_RISCV_RVC;
4233
4234 BFD_ASSERT (rel->r_offset + 4 <= sec->size);
4235
4236 if (gp)
4237 {
4238 /* If gp and the symbol are in the same output section, which is not the
4239 abs section, then consider only that output section's alignment. */
4240 struct bfd_link_hash_entry *h =
4241 bfd_link_hash_lookup (link_info->hash, RISCV_GP_SYMBOL, false, false,
4242 true);
4243 if (h->u.def.section->output_section == sym_sec->output_section
4244 && sym_sec->output_section != bfd_abs_section_ptr)
4245 max_alignment = (bfd_vma) 1 << sym_sec->output_section->alignment_power;
4246 }
4247
4248 /* Is the reference in range of x0 or gp?
4249 Valid gp range conservatively because of alignment issue. */
4250 if (undefined_weak
4251 || (VALID_ITYPE_IMM (symval)
4252 || (symval >= gp
4253 && VALID_ITYPE_IMM (symval - gp + max_alignment + reserve_size))
4254 || (symval < gp
4255 && VALID_ITYPE_IMM (symval - gp - max_alignment - reserve_size))))
4256 {
4257 unsigned sym = ELFNN_R_SYM (rel->r_info);
4258 switch (ELFNN_R_TYPE (rel->r_info))
4259 {
4260 case R_RISCV_LO12_I:
4261 if (undefined_weak)
4262 {
4263 /* Change the RS1 to zero. */
4264 bfd_vma insn = bfd_getl32 (contents + rel->r_offset);
4265 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
4266 bfd_putl32 (insn, contents + rel->r_offset);
4267 }
4268 else
4269 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_I);
4270 return true;
4271
4272 case R_RISCV_LO12_S:
4273 if (undefined_weak)
4274 {
4275 /* Change the RS1 to zero. */
4276 bfd_vma insn = bfd_getl32 (contents + rel->r_offset);
4277 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
4278 bfd_putl32 (insn, contents + rel->r_offset);
4279 }
4280 else
4281 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_S);
4282 return true;
4283
4284 case R_RISCV_HI20:
4285 /* We can delete the unnecessary LUI and reloc. */
4286 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
4287 *again = true;
4288 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset, 4,
4289 link_info);
4290
4291 default:
4292 abort ();
4293 }
4294 }
4295
4296 /* Can we relax LUI to C.LUI? Alignment might move the section forward;
4297 account for this assuming page alignment at worst. In the presence of
4298 RELRO segment the linker aligns it by one page size, therefore sections
4299 after the segment can be moved more than one page. */
4300
4301 if (use_rvc
4302 && ELFNN_R_TYPE (rel->r_info) == R_RISCV_HI20
4303 && VALID_CITYPE_LUI_IMM (RISCV_CONST_HIGH_PART (symval))
4304 && VALID_CITYPE_LUI_IMM (RISCV_CONST_HIGH_PART (symval)
4305 + (link_info->relro ? 2 * ELF_MAXPAGESIZE
4306 : ELF_MAXPAGESIZE)))
4307 {
4308 /* Replace LUI with C.LUI if legal (i.e., rd != x0 and rd != x2/sp). */
4309 bfd_vma lui = bfd_getl32 (contents + rel->r_offset);
4310 unsigned rd = ((unsigned)lui >> OP_SH_RD) & OP_MASK_RD;
4311 if (rd == 0 || rd == X_SP)
4312 return true;
4313
4314 lui = (lui & (OP_MASK_RD << OP_SH_RD)) | MATCH_C_LUI;
4315 bfd_putl32 (lui, contents + rel->r_offset);
4316
4317 /* Replace the R_RISCV_HI20 reloc. */
4318 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_RVC_LUI);
4319
4320 *again = true;
4321 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + 2, 2,
4322 link_info);
4323 }
4324
4325 return true;
4326 }
4327
4328 /* Relax non-PIC TLS references to TP-relative references. */
4329
4330 static bool
4331 _bfd_riscv_relax_tls_le (bfd *abfd,
4332 asection *sec,
4333 asection *sym_sec ATTRIBUTE_UNUSED,
4334 struct bfd_link_info *link_info,
4335 Elf_Internal_Rela *rel,
4336 bfd_vma symval,
4337 bfd_vma max_alignment ATTRIBUTE_UNUSED,
4338 bfd_vma reserve_size ATTRIBUTE_UNUSED,
4339 bool *again,
4340 riscv_pcgp_relocs *prcel_relocs ATTRIBUTE_UNUSED,
4341 bool undefined_weak ATTRIBUTE_UNUSED)
4342 {
4343 /* See if this symbol is in range of tp. */
4344 if (RISCV_CONST_HIGH_PART (tpoff (link_info, symval)) != 0)
4345 return true;
4346
4347 BFD_ASSERT (rel->r_offset + 4 <= sec->size);
4348 switch (ELFNN_R_TYPE (rel->r_info))
4349 {
4350 case R_RISCV_TPREL_LO12_I:
4351 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_TPREL_I);
4352 return true;
4353
4354 case R_RISCV_TPREL_LO12_S:
4355 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_TPREL_S);
4356 return true;
4357
4358 case R_RISCV_TPREL_HI20:
4359 case R_RISCV_TPREL_ADD:
4360 /* We can delete the unnecessary instruction and reloc. */
4361 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
4362 *again = true;
4363 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset, 4, link_info);
4364
4365 default:
4366 abort ();
4367 }
4368 }
4369
4370 /* Implement R_RISCV_ALIGN by deleting excess alignment NOPs.
4371 Once we've handled an R_RISCV_ALIGN, we can't relax anything else. */
4372
4373 static bool
4374 _bfd_riscv_relax_align (bfd *abfd, asection *sec,
4375 asection *sym_sec,
4376 struct bfd_link_info *link_info,
4377 Elf_Internal_Rela *rel,
4378 bfd_vma symval,
4379 bfd_vma max_alignment ATTRIBUTE_UNUSED,
4380 bfd_vma reserve_size ATTRIBUTE_UNUSED,
4381 bool *again ATTRIBUTE_UNUSED,
4382 riscv_pcgp_relocs *pcrel_relocs ATTRIBUTE_UNUSED,
4383 bool undefined_weak ATTRIBUTE_UNUSED)
4384 {
4385 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
4386 bfd_vma alignment = 1, pos;
4387 while (alignment <= rel->r_addend)
4388 alignment *= 2;
4389
4390 symval -= rel->r_addend;
4391 bfd_vma aligned_addr = ((symval - 1) & ~(alignment - 1)) + alignment;
4392 bfd_vma nop_bytes = aligned_addr - symval;
4393
4394 /* Make sure there are enough NOPs to actually achieve the alignment. */
4395 if (rel->r_addend < nop_bytes)
4396 {
4397 _bfd_error_handler
4398 (_("%pB(%pA+%#" PRIx64 "): %" PRId64 " bytes required for alignment "
4399 "to %" PRId64 "-byte boundary, but only %" PRId64 " present"),
4400 abfd, sym_sec, (uint64_t) rel->r_offset,
4401 (int64_t) nop_bytes, (int64_t) alignment, (int64_t) rel->r_addend);
4402 bfd_set_error (bfd_error_bad_value);
4403 return false;
4404 }
4405
4406 /* Delete the reloc. */
4407 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
4408
4409 /* If the number of NOPs is already correct, there's nothing to do. */
4410 if (nop_bytes == rel->r_addend)
4411 return true;
4412
4413 /* Write as many RISC-V NOPs as we need. */
4414 for (pos = 0; pos < (nop_bytes & -4); pos += 4)
4415 bfd_putl32 (RISCV_NOP, contents + rel->r_offset + pos);
4416
4417 /* Write a final RVC NOP if need be. */
4418 if (nop_bytes % 4 != 0)
4419 bfd_putl16 (RVC_NOP, contents + rel->r_offset + pos);
4420
4421 /* Delete the excess bytes. */
4422 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + nop_bytes,
4423 rel->r_addend - nop_bytes, link_info);
4424 }
4425
4426 /* Relax PC-relative references to GP-relative references. */
4427
4428 static bool
4429 _bfd_riscv_relax_pc (bfd *abfd ATTRIBUTE_UNUSED,
4430 asection *sec,
4431 asection *sym_sec,
4432 struct bfd_link_info *link_info,
4433 Elf_Internal_Rela *rel,
4434 bfd_vma symval,
4435 bfd_vma max_alignment,
4436 bfd_vma reserve_size,
4437 bool *again ATTRIBUTE_UNUSED,
4438 riscv_pcgp_relocs *pcgp_relocs,
4439 bool undefined_weak)
4440 {
4441 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
4442 bfd_vma gp = riscv_global_pointer_value (link_info);
4443
4444 BFD_ASSERT (rel->r_offset + 4 <= sec->size);
4445
4446 /* Chain the _LO relocs to their cooresponding _HI reloc to compute the
4447 actual target address. */
4448 riscv_pcgp_hi_reloc hi_reloc;
4449 memset (&hi_reloc, 0, sizeof (hi_reloc));
4450 switch (ELFNN_R_TYPE (rel->r_info))
4451 {
4452 case R_RISCV_PCREL_LO12_I:
4453 case R_RISCV_PCREL_LO12_S:
4454 {
4455 /* If the %lo has an addend, it isn't for the label pointing at the
4456 hi part instruction, but rather for the symbol pointed at by the
4457 hi part instruction. So we must subtract it here for the lookup.
4458 It is still used below in the final symbol address. */
4459 bfd_vma hi_sec_off = symval - sec_addr (sym_sec) - rel->r_addend;
4460 riscv_pcgp_hi_reloc *hi = riscv_find_pcgp_hi_reloc (pcgp_relocs,
4461 hi_sec_off);
4462 if (hi == NULL)
4463 {
4464 riscv_record_pcgp_lo_reloc (pcgp_relocs, hi_sec_off);
4465 return true;
4466 }
4467
4468 hi_reloc = *hi;
4469 symval = hi_reloc.hi_addr;
4470 sym_sec = hi_reloc.sym_sec;
4471
4472 /* We can not know whether the undefined weak symbol is referenced
4473 according to the information of R_RISCV_PCREL_LO12_I/S. Therefore,
4474 we have to record the 'undefined_weak' flag when handling the
4475 corresponding R_RISCV_HI20 reloc in riscv_record_pcgp_hi_reloc. */
4476 undefined_weak = hi_reloc.undefined_weak;
4477 }
4478 break;
4479
4480 case R_RISCV_PCREL_HI20:
4481 /* Mergeable symbols and code might later move out of range. */
4482 if (! undefined_weak
4483 && sym_sec->flags & (SEC_MERGE | SEC_CODE))
4484 return true;
4485
4486 /* If the cooresponding lo relocation has already been seen then it's not
4487 safe to relax this relocation. */
4488 if (riscv_find_pcgp_lo_reloc (pcgp_relocs, rel->r_offset))
4489 return true;
4490
4491 break;
4492
4493 default:
4494 abort ();
4495 }
4496
4497 if (gp)
4498 {
4499 /* If gp and the symbol are in the same output section, which is not the
4500 abs section, then consider only that output section's alignment. */
4501 struct bfd_link_hash_entry *h =
4502 bfd_link_hash_lookup (link_info->hash, RISCV_GP_SYMBOL, false, false,
4503 true);
4504 if (h->u.def.section->output_section == sym_sec->output_section
4505 && sym_sec->output_section != bfd_abs_section_ptr)
4506 max_alignment = (bfd_vma) 1 << sym_sec->output_section->alignment_power;
4507 }
4508
4509 /* Is the reference in range of x0 or gp?
4510 Valid gp range conservatively because of alignment issue. */
4511 if (undefined_weak
4512 || (VALID_ITYPE_IMM (symval)
4513 || (symval >= gp
4514 && VALID_ITYPE_IMM (symval - gp + max_alignment + reserve_size))
4515 || (symval < gp
4516 && VALID_ITYPE_IMM (symval - gp - max_alignment - reserve_size))))
4517 {
4518 unsigned sym = hi_reloc.hi_sym;
4519 switch (ELFNN_R_TYPE (rel->r_info))
4520 {
4521 case R_RISCV_PCREL_LO12_I:
4522 if (undefined_weak)
4523 {
4524 /* Change the RS1 to zero, and then modify the relocation
4525 type to R_RISCV_LO12_I. */
4526 bfd_vma insn = bfd_getl32 (contents + rel->r_offset);
4527 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
4528 bfd_putl32 (insn, contents + rel->r_offset);
4529 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_LO12_I);
4530 rel->r_addend = hi_reloc.hi_addend;
4531 }
4532 else
4533 {
4534 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_I);
4535 rel->r_addend += hi_reloc.hi_addend;
4536 }
4537 return true;
4538
4539 case R_RISCV_PCREL_LO12_S:
4540 if (undefined_weak)
4541 {
4542 /* Change the RS1 to zero, and then modify the relocation
4543 type to R_RISCV_LO12_S. */
4544 bfd_vma insn = bfd_getl32 (contents + rel->r_offset);
4545 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
4546 bfd_putl32 (insn, contents + rel->r_offset);
4547 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_LO12_S);
4548 rel->r_addend = hi_reloc.hi_addend;
4549 }
4550 else
4551 {
4552 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_S);
4553 rel->r_addend += hi_reloc.hi_addend;
4554 }
4555 return true;
4556
4557 case R_RISCV_PCREL_HI20:
4558 riscv_record_pcgp_hi_reloc (pcgp_relocs,
4559 rel->r_offset,
4560 rel->r_addend,
4561 symval,
4562 ELFNN_R_SYM(rel->r_info),
4563 sym_sec,
4564 undefined_weak);
4565 /* We can delete the unnecessary AUIPC and reloc. */
4566 rel->r_info = ELFNN_R_INFO (0, R_RISCV_DELETE);
4567 rel->r_addend = 4;
4568 return true;
4569
4570 default:
4571 abort ();
4572 }
4573 }
4574
4575 return true;
4576 }
4577
4578 /* Delete the bytes for R_RISCV_DELETE. */
4579
4580 static bool
4581 _bfd_riscv_relax_delete (bfd *abfd,
4582 asection *sec,
4583 asection *sym_sec ATTRIBUTE_UNUSED,
4584 struct bfd_link_info *link_info,
4585 Elf_Internal_Rela *rel,
4586 bfd_vma symval ATTRIBUTE_UNUSED,
4587 bfd_vma max_alignment ATTRIBUTE_UNUSED,
4588 bfd_vma reserve_size ATTRIBUTE_UNUSED,
4589 bool *again,
4590 riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED,
4591 bool undefined_weak ATTRIBUTE_UNUSED)
4592 {
4593 if (!riscv_relax_delete_bytes (abfd, sec, rel->r_offset, rel->r_addend,
4594 link_info))
4595 return false;
4596 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
4597 *again = true;
4598 return true;
4599 }
4600
4601 /* Called by after_allocation to check if we need to run the whole
4602 relaxations again. */
4603
4604 bool
4605 bfd_elfNN_riscv_restart_relax_sections (struct bfd_link_info *info)
4606 {
4607 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
4608 bool restart = htab->restart_relax;
4609 /* Reset the flag. */
4610 htab->restart_relax = false;
4611 return restart;
4612 }
4613
4614 /* Relax a section.
4615
4616 Pass 0: Shortens code sequences for LUI/CALL/TPREL relocs.
4617 Pass 1: Shortens code sequences for PCREL relocs.
4618 Pass 2: Deletes the bytes that pass 1 made obsolete.
4619 Pass 3: Which cannot be disabled, handles code alignment directives.
4620
4621 The `again` is used to determine whether the relax pass itself needs to
4622 run again. And the `restart_relax` is used to determine if we need to
4623 run the whole relax passes again from 0 to 2. Once we have deleted the
4624 code between relax pass 0 to 2, the restart_relax will be set to TRUE,
4625 and we should run the whole relaxations again to give them more chances
4626 to shorten the code.
4627
4628 Since we can't relax anything else once we start to handle the alignments,
4629 we will only enter into the relax pass 3 when the restart_relax is FALSE. */
4630
4631 static bool
4632 _bfd_riscv_relax_section (bfd *abfd, asection *sec,
4633 struct bfd_link_info *info,
4634 bool *again)
4635 {
4636 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (abfd);
4637 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
4638 struct bfd_elf_section_data *data = elf_section_data (sec);
4639 Elf_Internal_Rela *relocs;
4640 bool ret = false;
4641 unsigned int i;
4642 bfd_vma max_alignment, reserve_size = 0;
4643 riscv_pcgp_relocs pcgp_relocs;
4644
4645 *again = false;
4646
4647 if (bfd_link_relocatable (info)
4648 || (sec->flags & SEC_RELOC) == 0
4649 || sec->reloc_count == 0
4650 || (info->disable_target_specific_optimizations
4651 && info->relax_pass < 2)
4652 || (htab->restart_relax
4653 && info->relax_pass == 3))
4654 return true;
4655
4656 riscv_init_pcgp_relocs (&pcgp_relocs);
4657
4658 /* Read this BFD's relocs if we haven't done so already. */
4659 if (data->relocs)
4660 relocs = data->relocs;
4661 else if (!(relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
4662 info->keep_memory)))
4663 goto fail;
4664
4665 if (htab)
4666 {
4667 max_alignment = htab->max_alignment;
4668 if (max_alignment == (bfd_vma) -1)
4669 {
4670 max_alignment = _bfd_riscv_get_max_alignment (sec);
4671 htab->max_alignment = max_alignment;
4672 }
4673 }
4674 else
4675 max_alignment = _bfd_riscv_get_max_alignment (sec);
4676
4677 /* Examine and consider relaxing each reloc. */
4678 for (i = 0; i < sec->reloc_count; i++)
4679 {
4680 asection *sym_sec;
4681 Elf_Internal_Rela *rel = relocs + i;
4682 relax_func_t relax_func;
4683 int type = ELFNN_R_TYPE (rel->r_info);
4684 bfd_vma symval;
4685 char symtype;
4686 bool undefined_weak = false;
4687
4688 relax_func = NULL;
4689 if (info->relax_pass == 0)
4690 {
4691 if (type == R_RISCV_CALL
4692 || type == R_RISCV_CALL_PLT)
4693 relax_func = _bfd_riscv_relax_call;
4694 else if (type == R_RISCV_HI20
4695 || type == R_RISCV_LO12_I
4696 || type == R_RISCV_LO12_S)
4697 relax_func = _bfd_riscv_relax_lui;
4698 else if (type == R_RISCV_TPREL_HI20
4699 || type == R_RISCV_TPREL_ADD
4700 || type == R_RISCV_TPREL_LO12_I
4701 || type == R_RISCV_TPREL_LO12_S)
4702 relax_func = _bfd_riscv_relax_tls_le;
4703 else
4704 continue;
4705 }
4706 else if (info->relax_pass == 1
4707 && !bfd_link_pic (info)
4708 && (type == R_RISCV_PCREL_HI20
4709 || type == R_RISCV_PCREL_LO12_I
4710 || type == R_RISCV_PCREL_LO12_S))
4711 relax_func = _bfd_riscv_relax_pc;
4712 else if (info->relax_pass == 2 && type == R_RISCV_DELETE)
4713 relax_func = _bfd_riscv_relax_delete;
4714 else if (info->relax_pass == 3 && type == R_RISCV_ALIGN)
4715 relax_func = _bfd_riscv_relax_align;
4716 else
4717 continue;
4718
4719 if (info->relax_pass < 2)
4720 {
4721 /* Only relax this reloc if it is paired with R_RISCV_RELAX. */
4722 if (i == sec->reloc_count - 1
4723 || ELFNN_R_TYPE ((rel + 1)->r_info) != R_RISCV_RELAX
4724 || rel->r_offset != (rel + 1)->r_offset)
4725 continue;
4726
4727 /* Skip over the R_RISCV_RELAX. */
4728 i++;
4729 }
4730
4731 data->relocs = relocs;
4732
4733 /* Read this BFD's contents if we haven't done so already. */
4734 if (!data->this_hdr.contents
4735 && !bfd_malloc_and_get_section (abfd, sec, &data->this_hdr.contents))
4736 goto fail;
4737
4738 /* Read this BFD's symbols if we haven't done so already. */
4739 if (symtab_hdr->sh_info != 0
4740 && !symtab_hdr->contents
4741 && !(symtab_hdr->contents =
4742 (unsigned char *) bfd_elf_get_elf_syms (abfd, symtab_hdr,
4743 symtab_hdr->sh_info,
4744 0, NULL, NULL, NULL)))
4745 goto fail;
4746
4747 /* Get the value of the symbol referred to by the reloc. */
4748 if (ELFNN_R_SYM (rel->r_info) < symtab_hdr->sh_info)
4749 {
4750 /* A local symbol. */
4751 Elf_Internal_Sym *isym = ((Elf_Internal_Sym *) symtab_hdr->contents
4752 + ELFNN_R_SYM (rel->r_info));
4753 reserve_size = (isym->st_size - rel->r_addend) > isym->st_size
4754 ? 0 : isym->st_size - rel->r_addend;
4755
4756 /* Relocate against local STT_GNU_IFUNC symbol. we have created
4757 a fake global symbol entry for this, so deal with the local ifunc
4758 as a global. */
4759 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
4760 continue;
4761
4762 if (isym->st_shndx == SHN_UNDEF)
4763 sym_sec = sec, symval = rel->r_offset;
4764 else
4765 {
4766 BFD_ASSERT (isym->st_shndx < elf_numsections (abfd));
4767 sym_sec = elf_elfsections (abfd)[isym->st_shndx]->bfd_section;
4768 #if 0
4769 /* The purpose of this code is unknown. It breaks linker scripts
4770 for embedded development that place sections at address zero.
4771 This code is believed to be unnecessary. Disabling it but not
4772 yet removing it, in case something breaks. */
4773 if (sec_addr (sym_sec) == 0)
4774 continue;
4775 #endif
4776 symval = isym->st_value;
4777 }
4778 symtype = ELF_ST_TYPE (isym->st_info);
4779 }
4780 else
4781 {
4782 unsigned long indx;
4783 struct elf_link_hash_entry *h;
4784
4785 indx = ELFNN_R_SYM (rel->r_info) - symtab_hdr->sh_info;
4786 h = elf_sym_hashes (abfd)[indx];
4787
4788 while (h->root.type == bfd_link_hash_indirect
4789 || h->root.type == bfd_link_hash_warning)
4790 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4791
4792 /* Disable the relaxation for ifunc. */
4793 if (h != NULL && h->type == STT_GNU_IFUNC)
4794 continue;
4795
4796 if (h->root.type == bfd_link_hash_undefweak
4797 && (relax_func == _bfd_riscv_relax_lui
4798 || relax_func == _bfd_riscv_relax_pc))
4799 {
4800 /* For the lui and auipc relaxations, since the symbol
4801 value of an undefined weak symbol is always be zero,
4802 we can optimize the patterns into a single LI/MV/ADDI
4803 instruction.
4804
4805 Note that, creating shared libraries and pie output may
4806 break the rule above. Fortunately, since we do not relax
4807 pc relocs when creating shared libraries and pie output,
4808 and the absolute address access for R_RISCV_HI20 isn't
4809 allowed when "-fPIC" is set, the problem of creating shared
4810 libraries can not happen currently. Once we support the
4811 auipc relaxations when creating shared libraries, then we will
4812 need the more rigorous checking for this optimization. */
4813 undefined_weak = true;
4814 }
4815
4816 /* This line has to match the check in riscv_elf_relocate_section
4817 in the R_RISCV_CALL[_PLT] case. */
4818 if (bfd_link_pic (info) && h->plt.offset != MINUS_ONE)
4819 {
4820 sym_sec = htab->elf.splt;
4821 symval = h->plt.offset;
4822 }
4823 else if (undefined_weak)
4824 {
4825 symval = 0;
4826 sym_sec = bfd_und_section_ptr;
4827 }
4828 else if ((h->root.type == bfd_link_hash_defined
4829 || h->root.type == bfd_link_hash_defweak)
4830 && h->root.u.def.section != NULL
4831 && h->root.u.def.section->output_section != NULL)
4832 {
4833 symval = h->root.u.def.value;
4834 sym_sec = h->root.u.def.section;
4835 }
4836 else
4837 continue;
4838
4839 if (h->type != STT_FUNC)
4840 reserve_size =
4841 (h->size - rel->r_addend) > h->size ? 0 : h->size - rel->r_addend;
4842 symtype = h->type;
4843 }
4844
4845 if (sym_sec->sec_info_type == SEC_INFO_TYPE_MERGE
4846 && (sym_sec->flags & SEC_MERGE))
4847 {
4848 /* At this stage in linking, no SEC_MERGE symbol has been
4849 adjusted, so all references to such symbols need to be
4850 passed through _bfd_merged_section_offset. (Later, in
4851 relocate_section, all SEC_MERGE symbols *except* for
4852 section symbols have been adjusted.)
4853
4854 gas may reduce relocations against symbols in SEC_MERGE
4855 sections to a relocation against the section symbol when
4856 the original addend was zero. When the reloc is against
4857 a section symbol we should include the addend in the
4858 offset passed to _bfd_merged_section_offset, since the
4859 location of interest is the original symbol. On the
4860 other hand, an access to "sym+addend" where "sym" is not
4861 a section symbol should not include the addend; Such an
4862 access is presumed to be an offset from "sym"; The
4863 location of interest is just "sym". */
4864 if (symtype == STT_SECTION)
4865 symval += rel->r_addend;
4866
4867 symval = _bfd_merged_section_offset (abfd, &sym_sec,
4868 elf_section_data (sym_sec)->sec_info,
4869 symval);
4870
4871 if (symtype != STT_SECTION)
4872 symval += rel->r_addend;
4873 }
4874 else
4875 symval += rel->r_addend;
4876
4877 symval += sec_addr (sym_sec);
4878
4879 if (!relax_func (abfd, sec, sym_sec, info, rel, symval,
4880 max_alignment, reserve_size, again,
4881 &pcgp_relocs, undefined_weak))
4882 goto fail;
4883 }
4884
4885 ret = true;
4886
4887 fail:
4888 if (relocs != data->relocs)
4889 free (relocs);
4890 riscv_free_pcgp_relocs (&pcgp_relocs, abfd, sec);
4891
4892 if (*again)
4893 htab->restart_relax = true;
4894
4895 return ret;
4896 }
4897
4898 #if ARCH_SIZE == 32
4899 # define PRSTATUS_SIZE 204
4900 # define PRSTATUS_OFFSET_PR_CURSIG 12
4901 # define PRSTATUS_OFFSET_PR_PID 24
4902 # define PRSTATUS_OFFSET_PR_REG 72
4903 # define ELF_GREGSET_T_SIZE 128
4904 # define PRPSINFO_SIZE 128
4905 # define PRPSINFO_OFFSET_PR_PID 16
4906 # define PRPSINFO_OFFSET_PR_FNAME 32
4907 # define PRPSINFO_OFFSET_PR_PSARGS 48
4908 # define PRPSINFO_PR_FNAME_LENGTH 16
4909 # define PRPSINFO_PR_PSARGS_LENGTH 80
4910 #else
4911 # define PRSTATUS_SIZE 376
4912 # define PRSTATUS_OFFSET_PR_CURSIG 12
4913 # define PRSTATUS_OFFSET_PR_PID 32
4914 # define PRSTATUS_OFFSET_PR_REG 112
4915 # define ELF_GREGSET_T_SIZE 256
4916 # define PRPSINFO_SIZE 136
4917 # define PRPSINFO_OFFSET_PR_PID 24
4918 # define PRPSINFO_OFFSET_PR_FNAME 40
4919 # define PRPSINFO_OFFSET_PR_PSARGS 56
4920 # define PRPSINFO_PR_FNAME_LENGTH 16
4921 # define PRPSINFO_PR_PSARGS_LENGTH 80
4922 #endif
4923
4924 /* Write PRSTATUS and PRPSINFO note into core file. This will be called
4925 before the generic code in elf.c. By checking the compiler defines we
4926 only perform any action here if the generic code would otherwise not be
4927 able to help us. The intention is that bare metal core dumps (where the
4928 prstatus_t and/or prpsinfo_t might not be available) will use this code,
4929 while non bare metal tools will use the generic elf code. */
4930
4931 static char *
4932 riscv_write_core_note (bfd *abfd ATTRIBUTE_UNUSED,
4933 char *buf ATTRIBUTE_UNUSED,
4934 int *bufsiz ATTRIBUTE_UNUSED,
4935 int note_type ATTRIBUTE_UNUSED, ...)
4936 {
4937 switch (note_type)
4938 {
4939 default:
4940 return NULL;
4941
4942 #if !defined (HAVE_PRPSINFO_T)
4943 case NT_PRPSINFO:
4944 {
4945 char data[PRPSINFO_SIZE] ATTRIBUTE_NONSTRING;
4946 va_list ap;
4947
4948 va_start (ap, note_type);
4949 memset (data, 0, sizeof (data));
4950 strncpy (data + PRPSINFO_OFFSET_PR_FNAME, va_arg (ap, const char *),
4951 PRPSINFO_PR_FNAME_LENGTH);
4952 #if GCC_VERSION == 8000 || GCC_VERSION == 8001
4953 DIAGNOSTIC_PUSH;
4954 /* GCC 8.0 and 8.1 warn about 80 equals destination size with
4955 -Wstringop-truncation:
4956 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85643
4957 */
4958 DIAGNOSTIC_IGNORE_STRINGOP_TRUNCATION;
4959 #endif
4960 strncpy (data + PRPSINFO_OFFSET_PR_PSARGS, va_arg (ap, const char *),
4961 PRPSINFO_PR_PSARGS_LENGTH);
4962 #if GCC_VERSION == 8000 || GCC_VERSION == 8001
4963 DIAGNOSTIC_POP;
4964 #endif
4965 va_end (ap);
4966 return elfcore_write_note (abfd, buf, bufsiz,
4967 "CORE", note_type, data, sizeof (data));
4968 }
4969 #endif /* !HAVE_PRPSINFO_T */
4970
4971 #if !defined (HAVE_PRSTATUS_T)
4972 case NT_PRSTATUS:
4973 {
4974 char data[PRSTATUS_SIZE];
4975 va_list ap;
4976 long pid;
4977 int cursig;
4978 const void *greg;
4979
4980 va_start (ap, note_type);
4981 memset (data, 0, sizeof(data));
4982 pid = va_arg (ap, long);
4983 bfd_put_32 (abfd, pid, data + PRSTATUS_OFFSET_PR_PID);
4984 cursig = va_arg (ap, int);
4985 bfd_put_16 (abfd, cursig, data + PRSTATUS_OFFSET_PR_CURSIG);
4986 greg = va_arg (ap, const void *);
4987 memcpy (data + PRSTATUS_OFFSET_PR_REG, greg,
4988 PRSTATUS_SIZE - PRSTATUS_OFFSET_PR_REG - ARCH_SIZE / 8);
4989 va_end (ap);
4990 return elfcore_write_note (abfd, buf, bufsiz,
4991 "CORE", note_type, data, sizeof (data));
4992 }
4993 #endif /* !HAVE_PRSTATUS_T */
4994 }
4995 }
4996
4997 /* Support for core dump NOTE sections. */
4998
4999 static bool
5000 riscv_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
5001 {
5002 switch (note->descsz)
5003 {
5004 default:
5005 return false;
5006
5007 case PRSTATUS_SIZE: /* sizeof(struct elf_prstatus) on Linux/RISC-V. */
5008 /* pr_cursig */
5009 elf_tdata (abfd)->core->signal
5010 = bfd_get_16 (abfd, note->descdata + PRSTATUS_OFFSET_PR_CURSIG);
5011
5012 /* pr_pid */
5013 elf_tdata (abfd)->core->lwpid
5014 = bfd_get_32 (abfd, note->descdata + PRSTATUS_OFFSET_PR_PID);
5015 break;
5016 }
5017
5018 /* Make a ".reg/999" section. */
5019 return _bfd_elfcore_make_pseudosection (abfd, ".reg", ELF_GREGSET_T_SIZE,
5020 note->descpos + PRSTATUS_OFFSET_PR_REG);
5021 }
5022
5023 static bool
5024 riscv_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
5025 {
5026 switch (note->descsz)
5027 {
5028 default:
5029 return false;
5030
5031 case PRPSINFO_SIZE: /* sizeof(struct elf_prpsinfo) on Linux/RISC-V. */
5032 /* pr_pid */
5033 elf_tdata (abfd)->core->pid
5034 = bfd_get_32 (abfd, note->descdata + PRPSINFO_OFFSET_PR_PID);
5035
5036 /* pr_fname */
5037 elf_tdata (abfd)->core->program = _bfd_elfcore_strndup
5038 (abfd, note->descdata + PRPSINFO_OFFSET_PR_FNAME,
5039 PRPSINFO_PR_FNAME_LENGTH);
5040
5041 /* pr_psargs */
5042 elf_tdata (abfd)->core->command = _bfd_elfcore_strndup
5043 (abfd, note->descdata + PRPSINFO_OFFSET_PR_PSARGS,
5044 PRPSINFO_PR_PSARGS_LENGTH);
5045 break;
5046 }
5047
5048 /* Note that for some reason, a spurious space is tacked
5049 onto the end of the args in some (at least one anyway)
5050 implementations, so strip it off if it exists. */
5051
5052 {
5053 char *command = elf_tdata (abfd)->core->command;
5054 int n = strlen (command);
5055
5056 if (0 < n && command[n - 1] == ' ')
5057 command[n - 1] = '\0';
5058 }
5059
5060 return true;
5061 }
5062
5063 /* Set the right mach type. */
5064
5065 static bool
5066 riscv_elf_object_p (bfd *abfd)
5067 {
5068 /* There are only two mach types in RISCV currently. */
5069 if (strcmp (abfd->xvec->name, "elf32-littleriscv") == 0
5070 || strcmp (abfd->xvec->name, "elf32-bigriscv") == 0)
5071 bfd_default_set_arch_mach (abfd, bfd_arch_riscv, bfd_mach_riscv32);
5072 else
5073 bfd_default_set_arch_mach (abfd, bfd_arch_riscv, bfd_mach_riscv64);
5074
5075 return true;
5076 }
5077
5078 /* Determine whether an object attribute tag takes an integer, a
5079 string or both. */
5080
5081 static int
5082 riscv_elf_obj_attrs_arg_type (int tag)
5083 {
5084 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
5085 }
5086
5087 #define TARGET_LITTLE_SYM riscv_elfNN_vec
5088 #define TARGET_LITTLE_NAME "elfNN-littleriscv"
5089 #define TARGET_BIG_SYM riscv_elfNN_be_vec
5090 #define TARGET_BIG_NAME "elfNN-bigriscv"
5091
5092 #define elf_backend_reloc_type_class riscv_reloc_type_class
5093
5094 #define bfd_elfNN_bfd_reloc_name_lookup riscv_reloc_name_lookup
5095 #define bfd_elfNN_bfd_link_hash_table_create riscv_elf_link_hash_table_create
5096 #define bfd_elfNN_bfd_reloc_type_lookup riscv_reloc_type_lookup
5097 #define bfd_elfNN_bfd_merge_private_bfd_data \
5098 _bfd_riscv_elf_merge_private_bfd_data
5099
5100 #define elf_backend_copy_indirect_symbol riscv_elf_copy_indirect_symbol
5101 #define elf_backend_create_dynamic_sections riscv_elf_create_dynamic_sections
5102 #define elf_backend_check_relocs riscv_elf_check_relocs
5103 #define elf_backend_adjust_dynamic_symbol riscv_elf_adjust_dynamic_symbol
5104 #define elf_backend_size_dynamic_sections riscv_elf_size_dynamic_sections
5105 #define elf_backend_relocate_section riscv_elf_relocate_section
5106 #define elf_backend_finish_dynamic_symbol riscv_elf_finish_dynamic_symbol
5107 #define elf_backend_finish_dynamic_sections riscv_elf_finish_dynamic_sections
5108 #define elf_backend_gc_mark_hook riscv_elf_gc_mark_hook
5109 #define elf_backend_plt_sym_val riscv_elf_plt_sym_val
5110 #define elf_backend_grok_prstatus riscv_elf_grok_prstatus
5111 #define elf_backend_grok_psinfo riscv_elf_grok_psinfo
5112 #define elf_backend_object_p riscv_elf_object_p
5113 #define elf_backend_write_core_note riscv_write_core_note
5114 #define elf_info_to_howto_rel NULL
5115 #define elf_info_to_howto riscv_info_to_howto_rela
5116 #define bfd_elfNN_bfd_relax_section _bfd_riscv_relax_section
5117 #define bfd_elfNN_mkobject elfNN_riscv_mkobject
5118
5119 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
5120
5121 #define elf_backend_can_gc_sections 1
5122 #define elf_backend_can_refcount 1
5123 #define elf_backend_want_got_plt 1
5124 #define elf_backend_plt_readonly 1
5125 #define elf_backend_plt_alignment 4
5126 #define elf_backend_want_plt_sym 1
5127 #define elf_backend_got_header_size (ARCH_SIZE / 8)
5128 #define elf_backend_want_dynrelro 1
5129 #define elf_backend_rela_normal 1
5130 #define elf_backend_default_execstack 0
5131
5132 #undef elf_backend_obj_attrs_vendor
5133 #define elf_backend_obj_attrs_vendor "riscv"
5134 #undef elf_backend_obj_attrs_arg_type
5135 #define elf_backend_obj_attrs_arg_type riscv_elf_obj_attrs_arg_type
5136 #undef elf_backend_obj_attrs_section_type
5137 #define elf_backend_obj_attrs_section_type SHT_RISCV_ATTRIBUTES
5138 #undef elf_backend_obj_attrs_section
5139 #define elf_backend_obj_attrs_section ".riscv.attributes"
5140
5141 #include "elfNN-target.h"
This page took 0.160325 seconds and 4 git commands to generate.