1 /* RISC-V-specific support for NN-bit ELF.
2 Copyright (C) 2011-2019 Free Software Foundation, Inc.
4 Contributed by Andrew Waterman (andrew@sifive.com).
5 Based on TILE-Gx and MIPS targets.
7 This file is part of BFD, the Binary File Descriptor library.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING3. If not,
21 see <http://www.gnu.org/licenses/>. */
23 /* This file handles RISC-V ELF targets. */
31 #include "elfxx-riscv.h"
32 #include "elf/riscv.h"
33 #include "opcode/riscv.h"
35 /* Internal relocations used exclusively by the relaxation pass. */
36 #define R_RISCV_DELETE (R_RISCV_max + 1)
40 #define MINUS_ONE ((bfd_vma)0 - 1)
42 #define RISCV_ELF_LOG_WORD_BYTES (ARCH_SIZE == 32 ? 2 : 3)
44 #define RISCV_ELF_WORD_BYTES (1 << RISCV_ELF_LOG_WORD_BYTES)
46 /* The name of the dynamic interpreter. This is put in the .interp
49 #define ELF64_DYNAMIC_INTERPRETER "/lib/ld.so.1"
50 #define ELF32_DYNAMIC_INTERPRETER "/lib32/ld.so.1"
52 #define ELF_ARCH bfd_arch_riscv
53 #define ELF_TARGET_ID RISCV_ELF_DATA
54 #define ELF_MACHINE_CODE EM_RISCV
55 #define ELF_MAXPAGESIZE 0x1000
56 #define ELF_COMMONPAGESIZE 0x1000
58 /* RISC-V ELF linker hash entry. */
60 struct riscv_elf_link_hash_entry
62 struct elf_link_hash_entry elf
;
64 /* Track dynamic relocs copied for this symbol. */
65 struct elf_dyn_relocs
*dyn_relocs
;
75 #define riscv_elf_hash_entry(ent) \
76 ((struct riscv_elf_link_hash_entry *)(ent))
78 struct _bfd_riscv_elf_obj_tdata
80 struct elf_obj_tdata root
;
82 /* tls_type for each local got entry. */
83 char *local_got_tls_type
;
86 #define _bfd_riscv_elf_tdata(abfd) \
87 ((struct _bfd_riscv_elf_obj_tdata *) (abfd)->tdata.any)
89 #define _bfd_riscv_elf_local_got_tls_type(abfd) \
90 (_bfd_riscv_elf_tdata (abfd)->local_got_tls_type)
92 #define _bfd_riscv_elf_tls_type(abfd, h, symndx) \
93 (*((h) != NULL ? &riscv_elf_hash_entry (h)->tls_type \
94 : &_bfd_riscv_elf_local_got_tls_type (abfd) [symndx]))
96 #define is_riscv_elf(bfd) \
97 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
98 && elf_tdata (bfd) != NULL \
99 && elf_object_id (bfd) == RISCV_ELF_DATA)
101 #include "elf/common.h"
102 #include "elf/internal.h"
104 struct riscv_elf_link_hash_table
106 struct elf_link_hash_table elf
;
108 /* Short-cuts to get to dynamic linker sections. */
111 /* Small local sym to section mapping cache. */
112 struct sym_cache sym_cache
;
114 /* The max alignment of output sections. */
115 bfd_vma max_alignment
;
119 /* Get the RISC-V ELF linker hash table from a link_info structure. */
120 #define riscv_elf_hash_table(p) \
121 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
122 == RISCV_ELF_DATA ? ((struct riscv_elf_link_hash_table *) ((p)->hash)) : NULL)
125 riscv_info_to_howto_rela (bfd
*abfd
,
127 Elf_Internal_Rela
*dst
)
129 cache_ptr
->howto
= riscv_elf_rtype_to_howto (abfd
, ELFNN_R_TYPE (dst
->r_info
));
130 return cache_ptr
->howto
!= NULL
;
134 riscv_elf_append_rela (bfd
*abfd
, asection
*s
, Elf_Internal_Rela
*rel
)
136 const struct elf_backend_data
*bed
;
139 bed
= get_elf_backend_data (abfd
);
140 loc
= s
->contents
+ (s
->reloc_count
++ * bed
->s
->sizeof_rela
);
141 bed
->s
->swap_reloca_out (abfd
, rel
, loc
);
146 #define PLT_HEADER_INSNS 8
147 #define PLT_ENTRY_INSNS 4
148 #define PLT_HEADER_SIZE (PLT_HEADER_INSNS * 4)
149 #define PLT_ENTRY_SIZE (PLT_ENTRY_INSNS * 4)
151 #define GOT_ENTRY_SIZE RISCV_ELF_WORD_BYTES
153 #define GOTPLT_HEADER_SIZE (2 * GOT_ENTRY_SIZE)
155 #define sec_addr(sec) ((sec)->output_section->vma + (sec)->output_offset)
158 riscv_elf_got_plt_val (bfd_vma plt_index
, struct bfd_link_info
*info
)
160 return sec_addr (riscv_elf_hash_table (info
)->elf
.sgotplt
)
161 + GOTPLT_HEADER_SIZE
+ (plt_index
* GOT_ENTRY_SIZE
);
165 # define MATCH_LREG MATCH_LW
167 # define MATCH_LREG MATCH_LD
170 /* Generate a PLT header. */
173 riscv_make_plt_header (bfd
*output_bfd
, bfd_vma gotplt_addr
, bfd_vma addr
,
176 bfd_vma gotplt_offset_high
= RISCV_PCREL_HIGH_PART (gotplt_addr
, addr
);
177 bfd_vma gotplt_offset_low
= RISCV_PCREL_LOW_PART (gotplt_addr
, addr
);
179 /* RVE has no t3 register, so this won't work, and is not supported. */
180 if (elf_elfheader (output_bfd
)->e_flags
& EF_RISCV_RVE
)
182 _bfd_error_handler (_("%pB: warning: RVE PLT generation not supported"),
187 /* auipc t2, %hi(.got.plt)
188 sub t1, t1, t3 # shifted .got.plt offset + hdr size + 12
189 l[w|d] t3, %lo(.got.plt)(t2) # _dl_runtime_resolve
190 addi t1, t1, -(hdr size + 12) # shifted .got.plt offset
191 addi t0, t2, %lo(.got.plt) # &.got.plt
192 srli t1, t1, log2(16/PTRSIZE) # .got.plt offset
193 l[w|d] t0, PTRSIZE(t0) # link map
196 entry
[0] = RISCV_UTYPE (AUIPC
, X_T2
, gotplt_offset_high
);
197 entry
[1] = RISCV_RTYPE (SUB
, X_T1
, X_T1
, X_T3
);
198 entry
[2] = RISCV_ITYPE (LREG
, X_T3
, X_T2
, gotplt_offset_low
);
199 entry
[3] = RISCV_ITYPE (ADDI
, X_T1
, X_T1
, -(PLT_HEADER_SIZE
+ 12));
200 entry
[4] = RISCV_ITYPE (ADDI
, X_T0
, X_T2
, gotplt_offset_low
);
201 entry
[5] = RISCV_ITYPE (SRLI
, X_T1
, X_T1
, 4 - RISCV_ELF_LOG_WORD_BYTES
);
202 entry
[6] = RISCV_ITYPE (LREG
, X_T0
, X_T0
, RISCV_ELF_WORD_BYTES
);
203 entry
[7] = RISCV_ITYPE (JALR
, 0, X_T3
, 0);
208 /* Generate a PLT entry. */
211 riscv_make_plt_entry (bfd
*output_bfd
, bfd_vma got
, bfd_vma addr
,
214 /* RVE has no t3 register, so this won't work, and is not supported. */
215 if (elf_elfheader (output_bfd
)->e_flags
& EF_RISCV_RVE
)
217 _bfd_error_handler (_("%pB: warning: RVE PLT generation not supported"),
222 /* auipc t3, %hi(.got.plt entry)
223 l[w|d] t3, %lo(.got.plt entry)(t3)
227 entry
[0] = RISCV_UTYPE (AUIPC
, X_T3
, RISCV_PCREL_HIGH_PART (got
, addr
));
228 entry
[1] = RISCV_ITYPE (LREG
, X_T3
, X_T3
, RISCV_PCREL_LOW_PART (got
, addr
));
229 entry
[2] = RISCV_ITYPE (JALR
, X_T1
, X_T3
, 0);
230 entry
[3] = RISCV_NOP
;
235 /* Create an entry in an RISC-V ELF linker hash table. */
237 static struct bfd_hash_entry
*
238 link_hash_newfunc (struct bfd_hash_entry
*entry
,
239 struct bfd_hash_table
*table
, const char *string
)
241 /* Allocate the structure if it has not already been allocated by a
246 bfd_hash_allocate (table
,
247 sizeof (struct riscv_elf_link_hash_entry
));
252 /* Call the allocation method of the superclass. */
253 entry
= _bfd_elf_link_hash_newfunc (entry
, table
, string
);
256 struct riscv_elf_link_hash_entry
*eh
;
258 eh
= (struct riscv_elf_link_hash_entry
*) entry
;
259 eh
->dyn_relocs
= NULL
;
260 eh
->tls_type
= GOT_UNKNOWN
;
266 /* Create a RISC-V ELF linker hash table. */
268 static struct bfd_link_hash_table
*
269 riscv_elf_link_hash_table_create (bfd
*abfd
)
271 struct riscv_elf_link_hash_table
*ret
;
272 bfd_size_type amt
= sizeof (struct riscv_elf_link_hash_table
);
274 ret
= (struct riscv_elf_link_hash_table
*) bfd_zmalloc (amt
);
278 if (!_bfd_elf_link_hash_table_init (&ret
->elf
, abfd
, link_hash_newfunc
,
279 sizeof (struct riscv_elf_link_hash_entry
),
286 ret
->max_alignment
= (bfd_vma
) -1;
287 return &ret
->elf
.root
;
290 /* Create the .got section. */
293 riscv_elf_create_got_section (bfd
*abfd
, struct bfd_link_info
*info
)
297 struct elf_link_hash_entry
*h
;
298 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
299 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
301 /* This function may be called more than once. */
302 if (htab
->sgot
!= NULL
)
305 flags
= bed
->dynamic_sec_flags
;
307 s
= bfd_make_section_anyway_with_flags (abfd
,
308 (bed
->rela_plts_and_copies_p
309 ? ".rela.got" : ".rel.got"),
310 (bed
->dynamic_sec_flags
313 || !bfd_set_section_alignment (s
, bed
->s
->log_file_align
))
317 s
= s_got
= bfd_make_section_anyway_with_flags (abfd
, ".got", flags
);
319 || !bfd_set_section_alignment (s
, bed
->s
->log_file_align
))
323 /* The first bit of the global offset table is the header. */
324 s
->size
+= bed
->got_header_size
;
326 if (bed
->want_got_plt
)
328 s
= bfd_make_section_anyway_with_flags (abfd
, ".got.plt", flags
);
330 || !bfd_set_section_alignment (s
, bed
->s
->log_file_align
))
334 /* Reserve room for the header. */
335 s
->size
+= GOTPLT_HEADER_SIZE
;
338 if (bed
->want_got_sym
)
340 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
341 section. We don't do this in the linker script because we don't want
342 to define the symbol if we are not creating a global offset
344 h
= _bfd_elf_define_linkage_sym (abfd
, info
, s_got
,
345 "_GLOBAL_OFFSET_TABLE_");
346 elf_hash_table (info
)->hgot
= h
;
354 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
355 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
359 riscv_elf_create_dynamic_sections (bfd
*dynobj
,
360 struct bfd_link_info
*info
)
362 struct riscv_elf_link_hash_table
*htab
;
364 htab
= riscv_elf_hash_table (info
);
365 BFD_ASSERT (htab
!= NULL
);
367 if (!riscv_elf_create_got_section (dynobj
, info
))
370 if (!_bfd_elf_create_dynamic_sections (dynobj
, info
))
373 if (!bfd_link_pic (info
))
375 /* Technically, this section doesn't have contents. It is used as the
376 target of TLS copy relocs, to copy TLS data from shared libraries into
377 the executable. However, if we don't mark it as loadable, then it
378 matches the IS_TBSS test in ldlang.c, and there is no run-time address
379 space allocated for it even though it has SEC_ALLOC. That test is
380 correct for .tbss, but not correct for this section. There is also
381 a second problem that having a section with no contents can only work
382 if it comes after all sections with contents in the same segment,
383 but the linker script does not guarantee that. This is just mixed in
384 with other .tdata.* sections. We can fix both problems by lying and
385 saying that there are contents. This section is expected to be small
386 so this should not cause a significant extra program startup cost. */
388 bfd_make_section_anyway_with_flags (dynobj
, ".tdata.dyn",
389 (SEC_ALLOC
| SEC_THREAD_LOCAL
390 | SEC_LOAD
| SEC_DATA
392 | SEC_LINKER_CREATED
));
395 if (!htab
->elf
.splt
|| !htab
->elf
.srelplt
|| !htab
->elf
.sdynbss
396 || (!bfd_link_pic (info
) && (!htab
->elf
.srelbss
|| !htab
->sdyntdata
)))
402 /* Copy the extra info we tack onto an elf_link_hash_entry. */
405 riscv_elf_copy_indirect_symbol (struct bfd_link_info
*info
,
406 struct elf_link_hash_entry
*dir
,
407 struct elf_link_hash_entry
*ind
)
409 struct riscv_elf_link_hash_entry
*edir
, *eind
;
411 edir
= (struct riscv_elf_link_hash_entry
*) dir
;
412 eind
= (struct riscv_elf_link_hash_entry
*) ind
;
414 if (eind
->dyn_relocs
!= NULL
)
416 if (edir
->dyn_relocs
!= NULL
)
418 struct elf_dyn_relocs
**pp
;
419 struct elf_dyn_relocs
*p
;
421 /* Add reloc counts against the indirect sym to the direct sym
422 list. Merge any entries against the same section. */
423 for (pp
= &eind
->dyn_relocs
; (p
= *pp
) != NULL
; )
425 struct elf_dyn_relocs
*q
;
427 for (q
= edir
->dyn_relocs
; q
!= NULL
; q
= q
->next
)
428 if (q
->sec
== p
->sec
)
430 q
->pc_count
+= p
->pc_count
;
431 q
->count
+= p
->count
;
438 *pp
= edir
->dyn_relocs
;
441 edir
->dyn_relocs
= eind
->dyn_relocs
;
442 eind
->dyn_relocs
= NULL
;
445 if (ind
->root
.type
== bfd_link_hash_indirect
446 && dir
->got
.refcount
<= 0)
448 edir
->tls_type
= eind
->tls_type
;
449 eind
->tls_type
= GOT_UNKNOWN
;
451 _bfd_elf_link_hash_copy_indirect (info
, dir
, ind
);
455 riscv_elf_record_tls_type (bfd
*abfd
, struct elf_link_hash_entry
*h
,
456 unsigned long symndx
, char tls_type
)
458 char *new_tls_type
= &_bfd_riscv_elf_tls_type (abfd
, h
, symndx
);
460 *new_tls_type
|= tls_type
;
461 if ((*new_tls_type
& GOT_NORMAL
) && (*new_tls_type
& ~GOT_NORMAL
))
463 (*_bfd_error_handler
)
464 (_("%pB: `%s' accessed both as normal and thread local symbol"),
465 abfd
, h
? h
->root
.root
.string
: "<local>");
472 riscv_elf_record_got_reference (bfd
*abfd
, struct bfd_link_info
*info
,
473 struct elf_link_hash_entry
*h
, long symndx
)
475 struct riscv_elf_link_hash_table
*htab
= riscv_elf_hash_table (info
);
476 Elf_Internal_Shdr
*symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
478 if (htab
->elf
.sgot
== NULL
)
480 if (!riscv_elf_create_got_section (htab
->elf
.dynobj
, info
))
486 h
->got
.refcount
+= 1;
490 /* This is a global offset table entry for a local symbol. */
491 if (elf_local_got_refcounts (abfd
) == NULL
)
493 bfd_size_type size
= symtab_hdr
->sh_info
* (sizeof (bfd_vma
) + 1);
494 if (!(elf_local_got_refcounts (abfd
) = bfd_zalloc (abfd
, size
)))
496 _bfd_riscv_elf_local_got_tls_type (abfd
)
497 = (char *) (elf_local_got_refcounts (abfd
) + symtab_hdr
->sh_info
);
499 elf_local_got_refcounts (abfd
) [symndx
] += 1;
505 bad_static_reloc (bfd
*abfd
, unsigned r_type
, struct elf_link_hash_entry
*h
)
507 reloc_howto_type
* r
= riscv_elf_rtype_to_howto (abfd
, r_type
);
509 (*_bfd_error_handler
)
510 (_("%pB: relocation %s against `%s' can not be used when making a shared "
511 "object; recompile with -fPIC"),
512 abfd
, r
? r
->name
: _("<unknown>"),
513 h
!= NULL
? h
->root
.root
.string
: "a local symbol");
514 bfd_set_error (bfd_error_bad_value
);
517 /* Look through the relocs for a section during the first phase, and
518 allocate space in the global offset table or procedure linkage
522 riscv_elf_check_relocs (bfd
*abfd
, struct bfd_link_info
*info
,
523 asection
*sec
, const Elf_Internal_Rela
*relocs
)
525 struct riscv_elf_link_hash_table
*htab
;
526 Elf_Internal_Shdr
*symtab_hdr
;
527 struct elf_link_hash_entry
**sym_hashes
;
528 const Elf_Internal_Rela
*rel
;
529 asection
*sreloc
= NULL
;
531 if (bfd_link_relocatable (info
))
534 htab
= riscv_elf_hash_table (info
);
535 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
536 sym_hashes
= elf_sym_hashes (abfd
);
538 if (htab
->elf
.dynobj
== NULL
)
539 htab
->elf
.dynobj
= abfd
;
541 for (rel
= relocs
; rel
< relocs
+ sec
->reloc_count
; rel
++)
544 unsigned int r_symndx
;
545 struct elf_link_hash_entry
*h
;
547 r_symndx
= ELFNN_R_SYM (rel
->r_info
);
548 r_type
= ELFNN_R_TYPE (rel
->r_info
);
550 if (r_symndx
>= NUM_SHDR_ENTRIES (symtab_hdr
))
552 (*_bfd_error_handler
) (_("%pB: bad symbol index: %d"),
557 if (r_symndx
< symtab_hdr
->sh_info
)
561 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
562 while (h
->root
.type
== bfd_link_hash_indirect
563 || h
->root
.type
== bfd_link_hash_warning
)
564 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
569 case R_RISCV_TLS_GD_HI20
:
570 if (!riscv_elf_record_got_reference (abfd
, info
, h
, r_symndx
)
571 || !riscv_elf_record_tls_type (abfd
, h
, r_symndx
, GOT_TLS_GD
))
575 case R_RISCV_TLS_GOT_HI20
:
576 if (bfd_link_pic (info
))
577 info
->flags
|= DF_STATIC_TLS
;
578 if (!riscv_elf_record_got_reference (abfd
, info
, h
, r_symndx
)
579 || !riscv_elf_record_tls_type (abfd
, h
, r_symndx
, GOT_TLS_IE
))
583 case R_RISCV_GOT_HI20
:
584 if (!riscv_elf_record_got_reference (abfd
, info
, h
, r_symndx
)
585 || !riscv_elf_record_tls_type (abfd
, h
, r_symndx
, GOT_NORMAL
))
589 case R_RISCV_CALL_PLT
:
590 /* This symbol requires a procedure linkage table entry. We
591 actually build the entry in adjust_dynamic_symbol,
592 because this might be a case of linking PIC code without
593 linking in any dynamic objects, in which case we don't
594 need to generate a procedure linkage table after all. */
599 h
->plt
.refcount
+= 1;
606 case R_RISCV_RVC_BRANCH
:
607 case R_RISCV_RVC_JUMP
:
608 case R_RISCV_PCREL_HI20
:
609 /* In shared libraries, these relocs are known to bind locally. */
610 if (bfd_link_pic (info
))
614 case R_RISCV_TPREL_HI20
:
615 if (!bfd_link_executable (info
))
616 return bad_static_reloc (abfd
, r_type
, h
);
618 riscv_elf_record_tls_type (abfd
, h
, r_symndx
, GOT_TLS_LE
);
622 if (bfd_link_pic (info
))
623 return bad_static_reloc (abfd
, r_type
, h
);
627 case R_RISCV_JUMP_SLOT
:
628 case R_RISCV_RELATIVE
:
634 /* This reloc might not bind locally. */
638 if (h
!= NULL
&& !bfd_link_pic (info
))
640 /* We may need a .plt entry if the function this reloc
641 refers to is in a shared lib. */
642 h
->plt
.refcount
+= 1;
645 /* If we are creating a shared library, and this is a reloc
646 against a global symbol, or a non PC relative reloc
647 against a local symbol, then we need to copy the reloc
648 into the shared library. However, if we are linking with
649 -Bsymbolic, we do not need to copy a reloc against a
650 global symbol which is defined in an object we are
651 including in the link (i.e., DEF_REGULAR is set). At
652 this point we have not seen all the input files, so it is
653 possible that DEF_REGULAR is not set now but will be set
654 later (it is never cleared). In case of a weak definition,
655 DEF_REGULAR may be cleared later by a strong definition in
656 a shared library. We account for that possibility below by
657 storing information in the relocs_copied field of the hash
658 table entry. A similar situation occurs when creating
659 shared libraries and symbol visibility changes render the
662 If on the other hand, we are creating an executable, we
663 may need to keep relocations for symbols satisfied by a
664 dynamic library if we manage to avoid copy relocs for the
666 reloc_howto_type
* r
= riscv_elf_rtype_to_howto (abfd
, r_type
);
668 if ((bfd_link_pic (info
)
669 && (sec
->flags
& SEC_ALLOC
) != 0
670 && ((r
!= NULL
&& ! r
->pc_relative
)
673 || h
->root
.type
== bfd_link_hash_defweak
674 || !h
->def_regular
))))
675 || (!bfd_link_pic (info
)
676 && (sec
->flags
& SEC_ALLOC
) != 0
678 && (h
->root
.type
== bfd_link_hash_defweak
679 || !h
->def_regular
)))
681 struct elf_dyn_relocs
*p
;
682 struct elf_dyn_relocs
**head
;
684 /* When creating a shared object, we must copy these
685 relocs into the output file. We create a reloc
686 section in dynobj and make room for the reloc. */
689 sreloc
= _bfd_elf_make_dynamic_reloc_section
690 (sec
, htab
->elf
.dynobj
, RISCV_ELF_LOG_WORD_BYTES
,
691 abfd
, /*rela?*/ TRUE
);
697 /* If this is a global symbol, we count the number of
698 relocations we need for this symbol. */
700 head
= &((struct riscv_elf_link_hash_entry
*) h
)->dyn_relocs
;
703 /* Track dynamic relocs needed for local syms too.
704 We really need local syms available to do this
709 Elf_Internal_Sym
*isym
;
711 isym
= bfd_sym_from_r_symndx (&htab
->sym_cache
,
716 s
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
720 vpp
= &elf_section_data (s
)->local_dynrel
;
721 head
= (struct elf_dyn_relocs
**) vpp
;
725 if (p
== NULL
|| p
->sec
!= sec
)
727 bfd_size_type amt
= sizeof *p
;
728 p
= ((struct elf_dyn_relocs
*)
729 bfd_alloc (htab
->elf
.dynobj
, amt
));
740 p
->pc_count
+= r
== NULL
? 0 : r
->pc_relative
;
745 case R_RISCV_GNU_VTINHERIT
:
746 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
750 case R_RISCV_GNU_VTENTRY
:
751 if (!bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_addend
))
764 riscv_elf_gc_mark_hook (asection
*sec
,
765 struct bfd_link_info
*info
,
766 Elf_Internal_Rela
*rel
,
767 struct elf_link_hash_entry
*h
,
768 Elf_Internal_Sym
*sym
)
771 switch (ELFNN_R_TYPE (rel
->r_info
))
773 case R_RISCV_GNU_VTINHERIT
:
774 case R_RISCV_GNU_VTENTRY
:
778 return _bfd_elf_gc_mark_hook (sec
, info
, rel
, h
, sym
);
781 /* Find dynamic relocs for H that apply to read-only sections. */
784 readonly_dynrelocs (struct elf_link_hash_entry
*h
)
786 struct elf_dyn_relocs
*p
;
788 for (p
= riscv_elf_hash_entry (h
)->dyn_relocs
; p
!= NULL
; p
= p
->next
)
790 asection
*s
= p
->sec
->output_section
;
792 if (s
!= NULL
&& (s
->flags
& SEC_READONLY
) != 0)
798 /* Adjust a symbol defined by a dynamic object and referenced by a
799 regular object. The current definition is in some section of the
800 dynamic object, but we're not including those sections. We have to
801 change the definition to something the rest of the link can
805 riscv_elf_adjust_dynamic_symbol (struct bfd_link_info
*info
,
806 struct elf_link_hash_entry
*h
)
808 struct riscv_elf_link_hash_table
*htab
;
809 struct riscv_elf_link_hash_entry
* eh
;
813 htab
= riscv_elf_hash_table (info
);
814 BFD_ASSERT (htab
!= NULL
);
816 dynobj
= htab
->elf
.dynobj
;
818 /* Make sure we know what is going on here. */
819 BFD_ASSERT (dynobj
!= NULL
821 || h
->type
== STT_GNU_IFUNC
825 && !h
->def_regular
)));
827 /* If this is a function, put it in the procedure linkage table. We
828 will fill in the contents of the procedure linkage table later
829 (although we could actually do it here). */
830 if (h
->type
== STT_FUNC
|| h
->type
== STT_GNU_IFUNC
|| h
->needs_plt
)
832 if (h
->plt
.refcount
<= 0
833 || SYMBOL_CALLS_LOCAL (info
, h
)
834 || (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
835 && h
->root
.type
== bfd_link_hash_undefweak
))
837 /* This case can occur if we saw a R_RISCV_CALL_PLT reloc in an
838 input file, but the symbol was never referred to by a dynamic
839 object, or if all references were garbage collected. In such
840 a case, we don't actually need to build a PLT entry. */
841 h
->plt
.offset
= (bfd_vma
) -1;
848 h
->plt
.offset
= (bfd_vma
) -1;
850 /* If this is a weak symbol, and there is a real definition, the
851 processor independent code will have arranged for us to see the
852 real definition first, and we can just use the same value. */
855 struct elf_link_hash_entry
*def
= weakdef (h
);
856 BFD_ASSERT (def
->root
.type
== bfd_link_hash_defined
);
857 h
->root
.u
.def
.section
= def
->root
.u
.def
.section
;
858 h
->root
.u
.def
.value
= def
->root
.u
.def
.value
;
862 /* This is a reference to a symbol defined by a dynamic object which
863 is not a function. */
865 /* If we are creating a shared library, we must presume that the
866 only references to the symbol are via the global offset table.
867 For such cases we need not do anything here; the relocations will
868 be handled correctly by relocate_section. */
869 if (bfd_link_pic (info
))
872 /* If there are no references to this symbol that do not use the
873 GOT, we don't need to generate a copy reloc. */
877 /* If -z nocopyreloc was given, we won't generate them either. */
878 if (info
->nocopyreloc
)
884 /* If we don't find any dynamic relocs in read-only sections, then
885 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
886 if (!readonly_dynrelocs (h
))
892 /* We must allocate the symbol in our .dynbss section, which will
893 become part of the .bss section of the executable. There will be
894 an entry for this symbol in the .dynsym section. The dynamic
895 object will contain position independent code, so all references
896 from the dynamic object to this symbol will go through the global
897 offset table. The dynamic linker will use the .dynsym entry to
898 determine the address it must put in the global offset table, so
899 both the dynamic object and the regular object will refer to the
900 same memory location for the variable. */
902 /* We must generate a R_RISCV_COPY reloc to tell the dynamic linker
903 to copy the initial value out of the dynamic object and into the
904 runtime process image. We need to remember the offset into the
905 .rel.bss section we are going to use. */
906 eh
= (struct riscv_elf_link_hash_entry
*) h
;
907 if (eh
->tls_type
& ~GOT_NORMAL
)
910 srel
= htab
->elf
.srelbss
;
912 else if ((h
->root
.u
.def
.section
->flags
& SEC_READONLY
) != 0)
914 s
= htab
->elf
.sdynrelro
;
915 srel
= htab
->elf
.sreldynrelro
;
919 s
= htab
->elf
.sdynbss
;
920 srel
= htab
->elf
.srelbss
;
922 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0 && h
->size
!= 0)
924 srel
->size
+= sizeof (ElfNN_External_Rela
);
928 return _bfd_elf_adjust_dynamic_copy (info
, h
, s
);
931 /* Allocate space in .plt, .got and associated reloc sections for
935 allocate_dynrelocs (struct elf_link_hash_entry
*h
, void *inf
)
937 struct bfd_link_info
*info
;
938 struct riscv_elf_link_hash_table
*htab
;
939 struct riscv_elf_link_hash_entry
*eh
;
940 struct elf_dyn_relocs
*p
;
942 if (h
->root
.type
== bfd_link_hash_indirect
)
945 info
= (struct bfd_link_info
*) inf
;
946 htab
= riscv_elf_hash_table (info
);
947 BFD_ASSERT (htab
!= NULL
);
949 if (htab
->elf
.dynamic_sections_created
950 && h
->plt
.refcount
> 0)
952 /* Make sure this symbol is output as a dynamic symbol.
953 Undefined weak syms won't yet be marked as dynamic. */
957 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
961 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info
), h
))
963 asection
*s
= htab
->elf
.splt
;
966 s
->size
= PLT_HEADER_SIZE
;
968 h
->plt
.offset
= s
->size
;
970 /* Make room for this entry. */
971 s
->size
+= PLT_ENTRY_SIZE
;
973 /* We also need to make an entry in the .got.plt section. */
974 htab
->elf
.sgotplt
->size
+= GOT_ENTRY_SIZE
;
976 /* We also need to make an entry in the .rela.plt section. */
977 htab
->elf
.srelplt
->size
+= sizeof (ElfNN_External_Rela
);
979 /* If this symbol is not defined in a regular file, and we are
980 not generating a shared library, then set the symbol to this
981 location in the .plt. This is required to make function
982 pointers compare as equal between the normal executable and
983 the shared library. */
984 if (! bfd_link_pic (info
)
987 h
->root
.u
.def
.section
= s
;
988 h
->root
.u
.def
.value
= h
->plt
.offset
;
993 h
->plt
.offset
= (bfd_vma
) -1;
999 h
->plt
.offset
= (bfd_vma
) -1;
1003 if (h
->got
.refcount
> 0)
1007 int tls_type
= riscv_elf_hash_entry (h
)->tls_type
;
1009 /* Make sure this symbol is output as a dynamic symbol.
1010 Undefined weak syms won't yet be marked as dynamic. */
1011 if (h
->dynindx
== -1
1012 && !h
->forced_local
)
1014 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
1019 h
->got
.offset
= s
->size
;
1020 dyn
= htab
->elf
.dynamic_sections_created
;
1021 if (tls_type
& (GOT_TLS_GD
| GOT_TLS_IE
))
1023 /* TLS_GD needs two dynamic relocs and two GOT slots. */
1024 if (tls_type
& GOT_TLS_GD
)
1026 s
->size
+= 2 * RISCV_ELF_WORD_BYTES
;
1027 htab
->elf
.srelgot
->size
+= 2 * sizeof (ElfNN_External_Rela
);
1030 /* TLS_IE needs one dynamic reloc and one GOT slot. */
1031 if (tls_type
& GOT_TLS_IE
)
1033 s
->size
+= RISCV_ELF_WORD_BYTES
;
1034 htab
->elf
.srelgot
->size
+= sizeof (ElfNN_External_Rela
);
1039 s
->size
+= RISCV_ELF_WORD_BYTES
;
1040 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, bfd_link_pic (info
), h
)
1041 && ! UNDEFWEAK_NO_DYNAMIC_RELOC (info
, h
))
1042 htab
->elf
.srelgot
->size
+= sizeof (ElfNN_External_Rela
);
1046 h
->got
.offset
= (bfd_vma
) -1;
1048 eh
= (struct riscv_elf_link_hash_entry
*) h
;
1049 if (eh
->dyn_relocs
== NULL
)
1052 /* In the shared -Bsymbolic case, discard space allocated for
1053 dynamic pc-relative relocs against symbols which turn out to be
1054 defined in regular objects. For the normal shared case, discard
1055 space for pc-relative relocs that have become local due to symbol
1056 visibility changes. */
1058 if (bfd_link_pic (info
))
1060 if (SYMBOL_CALLS_LOCAL (info
, h
))
1062 struct elf_dyn_relocs
**pp
;
1064 for (pp
= &eh
->dyn_relocs
; (p
= *pp
) != NULL
; )
1066 p
->count
-= p
->pc_count
;
1075 /* Also discard relocs on undefined weak syms with non-default
1077 if (eh
->dyn_relocs
!= NULL
1078 && h
->root
.type
== bfd_link_hash_undefweak
)
1080 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
1081 || UNDEFWEAK_NO_DYNAMIC_RELOC (info
, h
))
1082 eh
->dyn_relocs
= NULL
;
1084 /* Make sure undefined weak symbols are output as a dynamic
1086 else if (h
->dynindx
== -1
1087 && !h
->forced_local
)
1089 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
1096 /* For the non-shared case, discard space for relocs against
1097 symbols which turn out to need copy relocs or are not
1103 || (htab
->elf
.dynamic_sections_created
1104 && (h
->root
.type
== bfd_link_hash_undefweak
1105 || h
->root
.type
== bfd_link_hash_undefined
))))
1107 /* Make sure this symbol is output as a dynamic symbol.
1108 Undefined weak syms won't yet be marked as dynamic. */
1109 if (h
->dynindx
== -1
1110 && !h
->forced_local
)
1112 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
1116 /* If that succeeded, we know we'll be keeping all the
1118 if (h
->dynindx
!= -1)
1122 eh
->dyn_relocs
= NULL
;
1127 /* Finally, allocate space. */
1128 for (p
= eh
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
1130 asection
*sreloc
= elf_section_data (p
->sec
)->sreloc
;
1131 sreloc
->size
+= p
->count
* sizeof (ElfNN_External_Rela
);
1137 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
1138 read-only sections. */
1141 maybe_set_textrel (struct elf_link_hash_entry
*h
, void *info_p
)
1145 if (h
->root
.type
== bfd_link_hash_indirect
)
1148 sec
= readonly_dynrelocs (h
);
1151 struct bfd_link_info
*info
= (struct bfd_link_info
*) info_p
;
1153 info
->flags
|= DF_TEXTREL
;
1154 info
->callbacks
->minfo
1155 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
1156 sec
->owner
, h
->root
.root
.string
, sec
);
1158 /* Not an error, just cut short the traversal. */
1165 riscv_elf_size_dynamic_sections (bfd
*output_bfd
, struct bfd_link_info
*info
)
1167 struct riscv_elf_link_hash_table
*htab
;
1172 htab
= riscv_elf_hash_table (info
);
1173 BFD_ASSERT (htab
!= NULL
);
1174 dynobj
= htab
->elf
.dynobj
;
1175 BFD_ASSERT (dynobj
!= NULL
);
1177 if (elf_hash_table (info
)->dynamic_sections_created
)
1179 /* Set the contents of the .interp section to the interpreter. */
1180 if (bfd_link_executable (info
) && !info
->nointerp
)
1182 s
= bfd_get_linker_section (dynobj
, ".interp");
1183 BFD_ASSERT (s
!= NULL
);
1184 s
->size
= strlen (ELFNN_DYNAMIC_INTERPRETER
) + 1;
1185 s
->contents
= (unsigned char *) ELFNN_DYNAMIC_INTERPRETER
;
1189 /* Set up .got offsets for local syms, and space for local dynamic
1191 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link
.next
)
1193 bfd_signed_vma
*local_got
;
1194 bfd_signed_vma
*end_local_got
;
1195 char *local_tls_type
;
1196 bfd_size_type locsymcount
;
1197 Elf_Internal_Shdr
*symtab_hdr
;
1200 if (! is_riscv_elf (ibfd
))
1203 for (s
= ibfd
->sections
; s
!= NULL
; s
= s
->next
)
1205 struct elf_dyn_relocs
*p
;
1207 for (p
= elf_section_data (s
)->local_dynrel
; p
!= NULL
; p
= p
->next
)
1209 if (!bfd_is_abs_section (p
->sec
)
1210 && bfd_is_abs_section (p
->sec
->output_section
))
1212 /* Input section has been discarded, either because
1213 it is a copy of a linkonce section or due to
1214 linker script /DISCARD/, so we'll be discarding
1217 else if (p
->count
!= 0)
1219 srel
= elf_section_data (p
->sec
)->sreloc
;
1220 srel
->size
+= p
->count
* sizeof (ElfNN_External_Rela
);
1221 if ((p
->sec
->output_section
->flags
& SEC_READONLY
) != 0)
1222 info
->flags
|= DF_TEXTREL
;
1227 local_got
= elf_local_got_refcounts (ibfd
);
1231 symtab_hdr
= &elf_symtab_hdr (ibfd
);
1232 locsymcount
= symtab_hdr
->sh_info
;
1233 end_local_got
= local_got
+ locsymcount
;
1234 local_tls_type
= _bfd_riscv_elf_local_got_tls_type (ibfd
);
1236 srel
= htab
->elf
.srelgot
;
1237 for (; local_got
< end_local_got
; ++local_got
, ++local_tls_type
)
1241 *local_got
= s
->size
;
1242 s
->size
+= RISCV_ELF_WORD_BYTES
;
1243 if (*local_tls_type
& GOT_TLS_GD
)
1244 s
->size
+= RISCV_ELF_WORD_BYTES
;
1245 if (bfd_link_pic (info
)
1246 || (*local_tls_type
& (GOT_TLS_GD
| GOT_TLS_IE
)))
1247 srel
->size
+= sizeof (ElfNN_External_Rela
);
1250 *local_got
= (bfd_vma
) -1;
1254 /* Allocate global sym .plt and .got entries, and space for global
1255 sym dynamic relocs. */
1256 elf_link_hash_traverse (&htab
->elf
, allocate_dynrelocs
, info
);
1258 if (htab
->elf
.sgotplt
)
1260 struct elf_link_hash_entry
*got
;
1261 got
= elf_link_hash_lookup (elf_hash_table (info
),
1262 "_GLOBAL_OFFSET_TABLE_",
1263 FALSE
, FALSE
, FALSE
);
1265 /* Don't allocate .got.plt section if there are no GOT nor PLT
1266 entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
1268 || !got
->ref_regular_nonweak
)
1269 && (htab
->elf
.sgotplt
->size
== GOTPLT_HEADER_SIZE
)
1270 && (htab
->elf
.splt
== NULL
1271 || htab
->elf
.splt
->size
== 0)
1272 && (htab
->elf
.sgot
== NULL
1273 || (htab
->elf
.sgot
->size
1274 == get_elf_backend_data (output_bfd
)->got_header_size
)))
1275 htab
->elf
.sgotplt
->size
= 0;
1278 /* The check_relocs and adjust_dynamic_symbol entry points have
1279 determined the sizes of the various dynamic sections. Allocate
1281 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
1283 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
1286 if (s
== htab
->elf
.splt
1287 || s
== htab
->elf
.sgot
1288 || s
== htab
->elf
.sgotplt
1289 || s
== htab
->elf
.sdynbss
1290 || s
== htab
->elf
.sdynrelro
1291 || s
== htab
->sdyntdata
)
1293 /* Strip this section if we don't need it; see the
1296 else if (strncmp (s
->name
, ".rela", 5) == 0)
1300 /* We use the reloc_count field as a counter if we need
1301 to copy relocs into the output file. */
1307 /* It's not one of our sections. */
1313 /* If we don't need this section, strip it from the
1314 output file. This is mostly to handle .rela.bss and
1315 .rela.plt. We must create both sections in
1316 create_dynamic_sections, because they must be created
1317 before the linker maps input sections to output
1318 sections. The linker does that before
1319 adjust_dynamic_symbol is called, and it is that
1320 function which decides whether anything needs to go
1321 into these sections. */
1322 s
->flags
|= SEC_EXCLUDE
;
1326 if ((s
->flags
& SEC_HAS_CONTENTS
) == 0)
1329 /* Allocate memory for the section contents. Zero the memory
1330 for the benefit of .rela.plt, which has 4 unused entries
1331 at the beginning, and we don't want garbage. */
1332 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->size
);
1333 if (s
->contents
== NULL
)
1337 if (elf_hash_table (info
)->dynamic_sections_created
)
1339 /* Add some entries to the .dynamic section. We fill in the
1340 values later, in riscv_elf_finish_dynamic_sections, but we
1341 must add the entries now so that we get the correct size for
1342 the .dynamic section. The DT_DEBUG entry is filled in by the
1343 dynamic linker and used by the debugger. */
1344 #define add_dynamic_entry(TAG, VAL) \
1345 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1347 if (bfd_link_executable (info
))
1349 if (!add_dynamic_entry (DT_DEBUG
, 0))
1353 if (htab
->elf
.srelplt
->size
!= 0)
1355 if (!add_dynamic_entry (DT_PLTGOT
, 0)
1356 || !add_dynamic_entry (DT_PLTRELSZ
, 0)
1357 || !add_dynamic_entry (DT_PLTREL
, DT_RELA
)
1358 || !add_dynamic_entry (DT_JMPREL
, 0))
1362 if (!add_dynamic_entry (DT_RELA
, 0)
1363 || !add_dynamic_entry (DT_RELASZ
, 0)
1364 || !add_dynamic_entry (DT_RELAENT
, sizeof (ElfNN_External_Rela
)))
1367 /* If any dynamic relocs apply to a read-only section,
1368 then we need a DT_TEXTREL entry. */
1369 if ((info
->flags
& DF_TEXTREL
) == 0)
1370 elf_link_hash_traverse (&htab
->elf
, maybe_set_textrel
, info
);
1372 if (info
->flags
& DF_TEXTREL
)
1374 if (!add_dynamic_entry (DT_TEXTREL
, 0))
1378 #undef add_dynamic_entry
1384 #define DTP_OFFSET 0x800
1386 /* Return the relocation value for a TLS dtp-relative reloc. */
1389 dtpoff (struct bfd_link_info
*info
, bfd_vma address
)
1391 /* If tls_sec is NULL, we should have signalled an error already. */
1392 if (elf_hash_table (info
)->tls_sec
== NULL
)
1394 return address
- elf_hash_table (info
)->tls_sec
->vma
- DTP_OFFSET
;
1397 /* Return the relocation value for a static TLS tp-relative relocation. */
1400 tpoff (struct bfd_link_info
*info
, bfd_vma address
)
1402 /* If tls_sec is NULL, we should have signalled an error already. */
1403 if (elf_hash_table (info
)->tls_sec
== NULL
)
1405 return address
- elf_hash_table (info
)->tls_sec
->vma
- TP_OFFSET
;
1408 /* Return the global pointer's value, or 0 if it is not in use. */
1411 riscv_global_pointer_value (struct bfd_link_info
*info
)
1413 struct bfd_link_hash_entry
*h
;
1415 h
= bfd_link_hash_lookup (info
->hash
, RISCV_GP_SYMBOL
, FALSE
, FALSE
, TRUE
);
1416 if (h
== NULL
|| h
->type
!= bfd_link_hash_defined
)
1419 return h
->u
.def
.value
+ sec_addr (h
->u
.def
.section
);
1422 /* Emplace a static relocation. */
1424 static bfd_reloc_status_type
1425 perform_relocation (const reloc_howto_type
*howto
,
1426 const Elf_Internal_Rela
*rel
,
1428 asection
*input_section
,
1432 if (howto
->pc_relative
)
1433 value
-= sec_addr (input_section
) + rel
->r_offset
;
1434 value
+= rel
->r_addend
;
1436 switch (ELFNN_R_TYPE (rel
->r_info
))
1439 case R_RISCV_TPREL_HI20
:
1440 case R_RISCV_PCREL_HI20
:
1441 case R_RISCV_GOT_HI20
:
1442 case R_RISCV_TLS_GOT_HI20
:
1443 case R_RISCV_TLS_GD_HI20
:
1444 if (ARCH_SIZE
> 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value
)))
1445 return bfd_reloc_overflow
;
1446 value
= ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value
));
1449 case R_RISCV_LO12_I
:
1450 case R_RISCV_GPREL_I
:
1451 case R_RISCV_TPREL_LO12_I
:
1452 case R_RISCV_TPREL_I
:
1453 case R_RISCV_PCREL_LO12_I
:
1454 value
= ENCODE_ITYPE_IMM (value
);
1457 case R_RISCV_LO12_S
:
1458 case R_RISCV_GPREL_S
:
1459 case R_RISCV_TPREL_LO12_S
:
1460 case R_RISCV_TPREL_S
:
1461 case R_RISCV_PCREL_LO12_S
:
1462 value
= ENCODE_STYPE_IMM (value
);
1466 case R_RISCV_CALL_PLT
:
1467 if (ARCH_SIZE
> 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value
)))
1468 return bfd_reloc_overflow
;
1469 value
= ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value
))
1470 | (ENCODE_ITYPE_IMM (value
) << 32);
1474 if (!VALID_UJTYPE_IMM (value
))
1475 return bfd_reloc_overflow
;
1476 value
= ENCODE_UJTYPE_IMM (value
);
1479 case R_RISCV_BRANCH
:
1480 if (!VALID_SBTYPE_IMM (value
))
1481 return bfd_reloc_overflow
;
1482 value
= ENCODE_SBTYPE_IMM (value
);
1485 case R_RISCV_RVC_BRANCH
:
1486 if (!VALID_RVC_B_IMM (value
))
1487 return bfd_reloc_overflow
;
1488 value
= ENCODE_RVC_B_IMM (value
);
1491 case R_RISCV_RVC_JUMP
:
1492 if (!VALID_RVC_J_IMM (value
))
1493 return bfd_reloc_overflow
;
1494 value
= ENCODE_RVC_J_IMM (value
);
1497 case R_RISCV_RVC_LUI
:
1498 if (RISCV_CONST_HIGH_PART (value
) == 0)
1500 /* Linker relaxation can convert an address equal to or greater than
1501 0x800 to slightly below 0x800. C.LUI does not accept zero as a
1502 valid immediate. We can fix this by converting it to a C.LI. */
1503 bfd_vma insn
= bfd_get (howto
->bitsize
, input_bfd
,
1504 contents
+ rel
->r_offset
);
1505 insn
= (insn
& ~MATCH_C_LUI
) | MATCH_C_LI
;
1506 bfd_put (howto
->bitsize
, input_bfd
, insn
, contents
+ rel
->r_offset
);
1507 value
= ENCODE_RVC_IMM (0);
1509 else if (!VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (value
)))
1510 return bfd_reloc_overflow
;
1512 value
= ENCODE_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (value
));
1530 case R_RISCV_32_PCREL
:
1531 case R_RISCV_TLS_DTPREL32
:
1532 case R_RISCV_TLS_DTPREL64
:
1535 case R_RISCV_DELETE
:
1536 return bfd_reloc_ok
;
1539 return bfd_reloc_notsupported
;
1542 bfd_vma word
= bfd_get (howto
->bitsize
, input_bfd
, contents
+ rel
->r_offset
);
1543 word
= (word
& ~howto
->dst_mask
) | (value
& howto
->dst_mask
);
1544 bfd_put (howto
->bitsize
, input_bfd
, word
, contents
+ rel
->r_offset
);
1546 return bfd_reloc_ok
;
1549 /* Remember all PC-relative high-part relocs we've encountered to help us
1550 later resolve the corresponding low-part relocs. */
1556 } riscv_pcrel_hi_reloc
;
1558 typedef struct riscv_pcrel_lo_reloc
1560 asection
* input_section
;
1561 struct bfd_link_info
* info
;
1562 reloc_howto_type
* howto
;
1563 const Elf_Internal_Rela
* reloc
;
1566 bfd_byte
* contents
;
1567 struct riscv_pcrel_lo_reloc
* next
;
1568 } riscv_pcrel_lo_reloc
;
1573 riscv_pcrel_lo_reloc
*lo_relocs
;
1574 } riscv_pcrel_relocs
;
1577 riscv_pcrel_reloc_hash (const void *entry
)
1579 const riscv_pcrel_hi_reloc
*e
= entry
;
1580 return (hashval_t
)(e
->address
>> 2);
1584 riscv_pcrel_reloc_eq (const void *entry1
, const void *entry2
)
1586 const riscv_pcrel_hi_reloc
*e1
= entry1
, *e2
= entry2
;
1587 return e1
->address
== e2
->address
;
1591 riscv_init_pcrel_relocs (riscv_pcrel_relocs
*p
)
1594 p
->lo_relocs
= NULL
;
1595 p
->hi_relocs
= htab_create (1024, riscv_pcrel_reloc_hash
,
1596 riscv_pcrel_reloc_eq
, free
);
1597 return p
->hi_relocs
!= NULL
;
1601 riscv_free_pcrel_relocs (riscv_pcrel_relocs
*p
)
1603 riscv_pcrel_lo_reloc
*cur
= p
->lo_relocs
;
1607 riscv_pcrel_lo_reloc
*next
= cur
->next
;
1612 htab_delete (p
->hi_relocs
);
1616 riscv_zero_pcrel_hi_reloc (Elf_Internal_Rela
*rel
,
1617 struct bfd_link_info
*info
,
1621 const reloc_howto_type
*howto
,
1624 /* We may need to reference low addreses in PC-relative modes even when the
1625 * PC is far away from these addresses. For example, undefweak references
1626 * need to produce the address 0 when linked. As 0 is far from the arbitrary
1627 * addresses that we can link PC-relative programs at, the linker can't
1628 * actually relocate references to those symbols. In order to allow these
1629 * programs to work we simply convert the PC-relative auipc sequences to
1630 * 0-relative lui sequences. */
1631 if (bfd_link_pic (info
))
1634 /* If it's possible to reference the symbol using auipc we do so, as that's
1635 * more in the spirit of the PC-relative relocations we're processing. */
1636 bfd_vma offset
= addr
- pc
;
1637 if (ARCH_SIZE
== 32 || VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (offset
)))
1640 /* If it's impossible to reference this with a LUI-based offset then don't
1641 * bother to convert it at all so users still see the PC-relative relocation
1642 * in the truncation message. */
1643 if (ARCH_SIZE
> 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (addr
)))
1646 rel
->r_info
= ELFNN_R_INFO(addr
, R_RISCV_HI20
);
1648 bfd_vma insn
= bfd_get(howto
->bitsize
, input_bfd
, contents
+ rel
->r_offset
);
1649 insn
= (insn
& ~MASK_AUIPC
) | MATCH_LUI
;
1650 bfd_put(howto
->bitsize
, input_bfd
, insn
, contents
+ rel
->r_offset
);
1655 riscv_record_pcrel_hi_reloc (riscv_pcrel_relocs
*p
, bfd_vma addr
,
1656 bfd_vma value
, bfd_boolean absolute
)
1658 bfd_vma offset
= absolute
? value
: value
- addr
;
1659 riscv_pcrel_hi_reloc entry
= {addr
, offset
};
1660 riscv_pcrel_hi_reloc
**slot
=
1661 (riscv_pcrel_hi_reloc
**) htab_find_slot (p
->hi_relocs
, &entry
, INSERT
);
1663 BFD_ASSERT (*slot
== NULL
);
1664 *slot
= (riscv_pcrel_hi_reloc
*) bfd_malloc (sizeof (riscv_pcrel_hi_reloc
));
1672 riscv_record_pcrel_lo_reloc (riscv_pcrel_relocs
*p
,
1673 asection
*input_section
,
1674 struct bfd_link_info
*info
,
1675 reloc_howto_type
*howto
,
1676 const Elf_Internal_Rela
*reloc
,
1681 riscv_pcrel_lo_reloc
*entry
;
1682 entry
= (riscv_pcrel_lo_reloc
*) bfd_malloc (sizeof (riscv_pcrel_lo_reloc
));
1685 *entry
= (riscv_pcrel_lo_reloc
) {input_section
, info
, howto
, reloc
, addr
,
1686 name
, contents
, p
->lo_relocs
};
1687 p
->lo_relocs
= entry
;
1692 riscv_resolve_pcrel_lo_relocs (riscv_pcrel_relocs
*p
)
1694 riscv_pcrel_lo_reloc
*r
;
1696 for (r
= p
->lo_relocs
; r
!= NULL
; r
= r
->next
)
1698 bfd
*input_bfd
= r
->input_section
->owner
;
1700 riscv_pcrel_hi_reloc search
= {r
->addr
, 0};
1701 riscv_pcrel_hi_reloc
*entry
= htab_find (p
->hi_relocs
, &search
);
1703 /* Check for overflow into bit 11 when adding reloc addend. */
1704 || (! (entry
->value
& 0x800)
1705 && ((entry
->value
+ r
->reloc
->r_addend
) & 0x800)))
1707 char *string
= (entry
== NULL
1708 ? "%pcrel_lo missing matching %pcrel_hi"
1709 : "%pcrel_lo overflow with an addend");
1710 (*r
->info
->callbacks
->reloc_dangerous
)
1711 (r
->info
, string
, input_bfd
, r
->input_section
, r
->reloc
->r_offset
);
1715 perform_relocation (r
->howto
, r
->reloc
, entry
->value
, r
->input_section
,
1716 input_bfd
, r
->contents
);
1722 /* Relocate a RISC-V ELF section.
1724 The RELOCATE_SECTION function is called by the new ELF backend linker
1725 to handle the relocations for a section.
1727 The relocs are always passed as Rela structures.
1729 This function is responsible for adjusting the section contents as
1730 necessary, and (if generating a relocatable output file) adjusting
1731 the reloc addend as necessary.
1733 This function does not have to worry about setting the reloc
1734 address or the reloc symbol index.
1736 LOCAL_SYMS is a pointer to the swapped in local symbols.
1738 LOCAL_SECTIONS is an array giving the section in the input file
1739 corresponding to the st_shndx field of each local symbol.
1741 The global hash table entry for the global symbols can be found
1742 via elf_sym_hashes (input_bfd).
1744 When generating relocatable output, this function must handle
1745 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
1746 going to be the section symbol corresponding to the output
1747 section, which means that the addend must be adjusted
1751 riscv_elf_relocate_section (bfd
*output_bfd
,
1752 struct bfd_link_info
*info
,
1754 asection
*input_section
,
1756 Elf_Internal_Rela
*relocs
,
1757 Elf_Internal_Sym
*local_syms
,
1758 asection
**local_sections
)
1760 Elf_Internal_Rela
*rel
;
1761 Elf_Internal_Rela
*relend
;
1762 riscv_pcrel_relocs pcrel_relocs
;
1763 bfd_boolean ret
= FALSE
;
1764 asection
*sreloc
= elf_section_data (input_section
)->sreloc
;
1765 struct riscv_elf_link_hash_table
*htab
= riscv_elf_hash_table (info
);
1766 Elf_Internal_Shdr
*symtab_hdr
= &elf_symtab_hdr (input_bfd
);
1767 struct elf_link_hash_entry
**sym_hashes
= elf_sym_hashes (input_bfd
);
1768 bfd_vma
*local_got_offsets
= elf_local_got_offsets (input_bfd
);
1769 bfd_boolean absolute
;
1771 if (!riscv_init_pcrel_relocs (&pcrel_relocs
))
1774 relend
= relocs
+ input_section
->reloc_count
;
1775 for (rel
= relocs
; rel
< relend
; rel
++)
1777 unsigned long r_symndx
;
1778 struct elf_link_hash_entry
*h
;
1779 Elf_Internal_Sym
*sym
;
1782 bfd_reloc_status_type r
= bfd_reloc_ok
;
1784 bfd_vma off
, ie_off
;
1785 bfd_boolean unresolved_reloc
, is_ie
= FALSE
;
1786 bfd_vma pc
= sec_addr (input_section
) + rel
->r_offset
;
1787 int r_type
= ELFNN_R_TYPE (rel
->r_info
), tls_type
;
1788 reloc_howto_type
*howto
= riscv_elf_rtype_to_howto (input_bfd
, r_type
);
1789 const char *msg
= NULL
;
1790 char *msg_buf
= NULL
;
1791 bfd_boolean resolved_to_zero
;
1794 || r_type
== R_RISCV_GNU_VTINHERIT
|| r_type
== R_RISCV_GNU_VTENTRY
)
1797 /* This is a final link. */
1798 r_symndx
= ELFNN_R_SYM (rel
->r_info
);
1802 unresolved_reloc
= FALSE
;
1803 if (r_symndx
< symtab_hdr
->sh_info
)
1805 sym
= local_syms
+ r_symndx
;
1806 sec
= local_sections
[r_symndx
];
1807 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
1811 bfd_boolean warned
, ignored
;
1813 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rel
,
1814 r_symndx
, symtab_hdr
, sym_hashes
,
1816 unresolved_reloc
, warned
, ignored
);
1819 /* To avoid generating warning messages about truncated
1820 relocations, set the relocation's address to be the same as
1821 the start of this section. */
1822 if (input_section
->output_section
!= NULL
)
1823 relocation
= input_section
->output_section
->vma
;
1829 if (sec
!= NULL
&& discarded_section (sec
))
1830 RELOC_AGAINST_DISCARDED_SECTION (info
, input_bfd
, input_section
,
1831 rel
, 1, relend
, howto
, 0, contents
);
1833 if (bfd_link_relocatable (info
))
1837 name
= h
->root
.root
.string
;
1840 name
= (bfd_elf_string_from_elf_section
1841 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
));
1842 if (name
== NULL
|| *name
== '\0')
1843 name
= bfd_section_name (sec
);
1846 resolved_to_zero
= (h
!= NULL
1847 && UNDEFWEAK_NO_DYNAMIC_RELOC (info
, h
));
1853 case R_RISCV_TPREL_ADD
:
1855 case R_RISCV_JUMP_SLOT
:
1856 case R_RISCV_RELATIVE
:
1857 /* These require nothing of us at all. */
1861 case R_RISCV_BRANCH
:
1862 case R_RISCV_RVC_BRANCH
:
1863 case R_RISCV_RVC_LUI
:
1864 case R_RISCV_LO12_I
:
1865 case R_RISCV_LO12_S
:
1870 case R_RISCV_32_PCREL
:
1871 case R_RISCV_DELETE
:
1872 /* These require no special handling beyond perform_relocation. */
1875 case R_RISCV_GOT_HI20
:
1878 bfd_boolean dyn
, pic
;
1880 off
= h
->got
.offset
;
1881 BFD_ASSERT (off
!= (bfd_vma
) -1);
1882 dyn
= elf_hash_table (info
)->dynamic_sections_created
;
1883 pic
= bfd_link_pic (info
);
1885 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, pic
, h
)
1886 || (pic
&& SYMBOL_REFERENCES_LOCAL (info
, h
)))
1888 /* This is actually a static link, or it is a
1889 -Bsymbolic link and the symbol is defined
1890 locally, or the symbol was forced to be local
1891 because of a version file. We must initialize
1892 this entry in the global offset table. Since the
1893 offset must always be a multiple of the word size,
1894 we use the least significant bit to record whether
1895 we have initialized it already.
1897 When doing a dynamic link, we create a .rela.got
1898 relocation entry to initialize the value. This
1899 is done in the finish_dynamic_symbol routine. */
1904 bfd_put_NN (output_bfd
, relocation
,
1905 htab
->elf
.sgot
->contents
+ off
);
1910 unresolved_reloc
= FALSE
;
1914 BFD_ASSERT (local_got_offsets
!= NULL
1915 && local_got_offsets
[r_symndx
] != (bfd_vma
) -1);
1917 off
= local_got_offsets
[r_symndx
];
1919 /* The offset must always be a multiple of the word size.
1920 So, we can use the least significant bit to record
1921 whether we have already processed this entry. */
1926 if (bfd_link_pic (info
))
1929 Elf_Internal_Rela outrel
;
1931 /* We need to generate a R_RISCV_RELATIVE reloc
1932 for the dynamic linker. */
1933 s
= htab
->elf
.srelgot
;
1934 BFD_ASSERT (s
!= NULL
);
1936 outrel
.r_offset
= sec_addr (htab
->elf
.sgot
) + off
;
1938 ELFNN_R_INFO (0, R_RISCV_RELATIVE
);
1939 outrel
.r_addend
= relocation
;
1941 riscv_elf_append_rela (output_bfd
, s
, &outrel
);
1944 bfd_put_NN (output_bfd
, relocation
,
1945 htab
->elf
.sgot
->contents
+ off
);
1946 local_got_offsets
[r_symndx
] |= 1;
1949 relocation
= sec_addr (htab
->elf
.sgot
) + off
;
1950 absolute
= riscv_zero_pcrel_hi_reloc (rel
,
1957 r_type
= ELFNN_R_TYPE (rel
->r_info
);
1958 howto
= riscv_elf_rtype_to_howto (input_bfd
, r_type
);
1960 r
= bfd_reloc_notsupported
;
1961 else if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs
, pc
,
1962 relocation
, absolute
))
1963 r
= bfd_reloc_overflow
;
1971 bfd_vma old_value
= bfd_get (howto
->bitsize
, input_bfd
,
1972 contents
+ rel
->r_offset
);
1973 relocation
= old_value
+ relocation
;
1983 bfd_vma old_value
= bfd_get (howto
->bitsize
, input_bfd
,
1984 contents
+ rel
->r_offset
);
1985 relocation
= old_value
- relocation
;
1990 /* Handle a call to an undefined weak function. This won't be
1991 relaxed, so we have to handle it here. */
1992 if (h
!= NULL
&& h
->root
.type
== bfd_link_hash_undefweak
1993 && h
->plt
.offset
== MINUS_ONE
)
1995 /* We can use x0 as the base register. */
1996 bfd_vma insn
= bfd_get_32 (input_bfd
,
1997 contents
+ rel
->r_offset
+ 4);
1998 insn
&= ~(OP_MASK_RS1
<< OP_SH_RS1
);
1999 bfd_put_32 (input_bfd
, insn
, contents
+ rel
->r_offset
+ 4);
2000 /* Set the relocation value so that we get 0 after the pc
2001 relative adjustment. */
2002 relocation
= sec_addr (input_section
) + rel
->r_offset
;
2006 case R_RISCV_CALL_PLT
:
2008 case R_RISCV_RVC_JUMP
:
2009 if (bfd_link_pic (info
) && h
!= NULL
&& h
->plt
.offset
!= MINUS_ONE
)
2011 /* Refer to the PLT entry. */
2012 relocation
= sec_addr (htab
->elf
.splt
) + h
->plt
.offset
;
2013 unresolved_reloc
= FALSE
;
2017 case R_RISCV_TPREL_HI20
:
2018 relocation
= tpoff (info
, relocation
);
2021 case R_RISCV_TPREL_LO12_I
:
2022 case R_RISCV_TPREL_LO12_S
:
2023 relocation
= tpoff (info
, relocation
);
2026 case R_RISCV_TPREL_I
:
2027 case R_RISCV_TPREL_S
:
2028 relocation
= tpoff (info
, relocation
);
2029 if (VALID_ITYPE_IMM (relocation
+ rel
->r_addend
))
2031 /* We can use tp as the base register. */
2032 bfd_vma insn
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2033 insn
&= ~(OP_MASK_RS1
<< OP_SH_RS1
);
2034 insn
|= X_TP
<< OP_SH_RS1
;
2035 bfd_put_32 (input_bfd
, insn
, contents
+ rel
->r_offset
);
2038 r
= bfd_reloc_overflow
;
2041 case R_RISCV_GPREL_I
:
2042 case R_RISCV_GPREL_S
:
2044 bfd_vma gp
= riscv_global_pointer_value (info
);
2045 bfd_boolean x0_base
= VALID_ITYPE_IMM (relocation
+ rel
->r_addend
);
2046 if (x0_base
|| VALID_ITYPE_IMM (relocation
+ rel
->r_addend
- gp
))
2048 /* We can use x0 or gp as the base register. */
2049 bfd_vma insn
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2050 insn
&= ~(OP_MASK_RS1
<< OP_SH_RS1
);
2053 rel
->r_addend
-= gp
;
2054 insn
|= X_GP
<< OP_SH_RS1
;
2056 bfd_put_32 (input_bfd
, insn
, contents
+ rel
->r_offset
);
2059 r
= bfd_reloc_overflow
;
2063 case R_RISCV_PCREL_HI20
:
2064 absolute
= riscv_zero_pcrel_hi_reloc (rel
,
2071 r_type
= ELFNN_R_TYPE (rel
->r_info
);
2072 howto
= riscv_elf_rtype_to_howto (input_bfd
, r_type
);
2074 r
= bfd_reloc_notsupported
;
2075 else if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs
, pc
,
2076 relocation
+ rel
->r_addend
,
2078 r
= bfd_reloc_overflow
;
2081 case R_RISCV_PCREL_LO12_I
:
2082 case R_RISCV_PCREL_LO12_S
:
2083 /* We don't allow section symbols plus addends as the auipc address,
2084 because then riscv_relax_delete_bytes would have to search through
2085 all relocs to update these addends. This is also ambiguous, as
2086 we do allow offsets to be added to the target address, which are
2087 not to be used to find the auipc address. */
2088 if (((sym
!= NULL
&& (ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
))
2089 || (h
!= NULL
&& h
->type
== STT_SECTION
))
2092 msg
= _("%pcrel_lo section symbol with an addend");
2093 r
= bfd_reloc_dangerous
;
2097 if (riscv_record_pcrel_lo_reloc (&pcrel_relocs
, input_section
, info
,
2098 howto
, rel
, relocation
, name
,
2101 r
= bfd_reloc_overflow
;
2104 case R_RISCV_TLS_DTPREL32
:
2105 case R_RISCV_TLS_DTPREL64
:
2106 relocation
= dtpoff (info
, relocation
);
2111 if ((input_section
->flags
& SEC_ALLOC
) == 0)
2114 if ((bfd_link_pic (info
)
2116 || (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
2117 && !resolved_to_zero
)
2118 || h
->root
.type
!= bfd_link_hash_undefweak
)
2119 && (! howto
->pc_relative
2120 || !SYMBOL_CALLS_LOCAL (info
, h
)))
2121 || (!bfd_link_pic (info
)
2127 || h
->root
.type
== bfd_link_hash_undefweak
2128 || h
->root
.type
== bfd_link_hash_undefined
)))
2130 Elf_Internal_Rela outrel
;
2131 bfd_boolean skip_static_relocation
, skip_dynamic_relocation
;
2133 /* When generating a shared object, these relocations
2134 are copied into the output file to be resolved at run
2138 _bfd_elf_section_offset (output_bfd
, info
, input_section
,
2140 skip_static_relocation
= outrel
.r_offset
!= (bfd_vma
) -2;
2141 skip_dynamic_relocation
= outrel
.r_offset
>= (bfd_vma
) -2;
2142 outrel
.r_offset
+= sec_addr (input_section
);
2144 if (skip_dynamic_relocation
)
2145 memset (&outrel
, 0, sizeof outrel
);
2146 else if (h
!= NULL
&& h
->dynindx
!= -1
2147 && !(bfd_link_pic (info
)
2148 && SYMBOLIC_BIND (info
, h
)
2151 outrel
.r_info
= ELFNN_R_INFO (h
->dynindx
, r_type
);
2152 outrel
.r_addend
= rel
->r_addend
;
2156 outrel
.r_info
= ELFNN_R_INFO (0, R_RISCV_RELATIVE
);
2157 outrel
.r_addend
= relocation
+ rel
->r_addend
;
2160 riscv_elf_append_rela (output_bfd
, sreloc
, &outrel
);
2161 if (skip_static_relocation
)
2166 case R_RISCV_TLS_GOT_HI20
:
2170 case R_RISCV_TLS_GD_HI20
:
2173 off
= h
->got
.offset
;
2178 off
= local_got_offsets
[r_symndx
];
2179 local_got_offsets
[r_symndx
] |= 1;
2182 tls_type
= _bfd_riscv_elf_tls_type (input_bfd
, h
, r_symndx
);
2183 BFD_ASSERT (tls_type
& (GOT_TLS_IE
| GOT_TLS_GD
));
2184 /* If this symbol is referenced by both GD and IE TLS, the IE
2185 reference's GOT slot follows the GD reference's slots. */
2187 if ((tls_type
& GOT_TLS_GD
) && (tls_type
& GOT_TLS_IE
))
2188 ie_off
= 2 * GOT_ENTRY_SIZE
;
2194 Elf_Internal_Rela outrel
;
2196 bfd_boolean need_relocs
= FALSE
;
2198 if (htab
->elf
.srelgot
== NULL
)
2203 bfd_boolean dyn
, pic
;
2204 dyn
= htab
->elf
.dynamic_sections_created
;
2205 pic
= bfd_link_pic (info
);
2207 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, pic
, h
)
2208 && (!pic
|| !SYMBOL_REFERENCES_LOCAL (info
, h
)))
2212 /* The GOT entries have not been initialized yet. Do it
2213 now, and emit any relocations. */
2214 if ((bfd_link_pic (info
) || indx
!= 0)
2216 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
2217 || h
->root
.type
!= bfd_link_hash_undefweak
))
2220 if (tls_type
& GOT_TLS_GD
)
2224 outrel
.r_offset
= sec_addr (htab
->elf
.sgot
) + off
;
2225 outrel
.r_addend
= 0;
2226 outrel
.r_info
= ELFNN_R_INFO (indx
, R_RISCV_TLS_DTPMODNN
);
2227 bfd_put_NN (output_bfd
, 0,
2228 htab
->elf
.sgot
->contents
+ off
);
2229 riscv_elf_append_rela (output_bfd
, htab
->elf
.srelgot
, &outrel
);
2232 BFD_ASSERT (! unresolved_reloc
);
2233 bfd_put_NN (output_bfd
,
2234 dtpoff (info
, relocation
),
2235 (htab
->elf
.sgot
->contents
+ off
+
2236 RISCV_ELF_WORD_BYTES
));
2240 bfd_put_NN (output_bfd
, 0,
2241 (htab
->elf
.sgot
->contents
+ off
+
2242 RISCV_ELF_WORD_BYTES
));
2243 outrel
.r_info
= ELFNN_R_INFO (indx
, R_RISCV_TLS_DTPRELNN
);
2244 outrel
.r_offset
+= RISCV_ELF_WORD_BYTES
;
2245 riscv_elf_append_rela (output_bfd
, htab
->elf
.srelgot
, &outrel
);
2250 /* If we are not emitting relocations for a
2251 general dynamic reference, then we must be in a
2252 static link or an executable link with the
2253 symbol binding locally. Mark it as belonging
2254 to module 1, the executable. */
2255 bfd_put_NN (output_bfd
, 1,
2256 htab
->elf
.sgot
->contents
+ off
);
2257 bfd_put_NN (output_bfd
,
2258 dtpoff (info
, relocation
),
2259 (htab
->elf
.sgot
->contents
+ off
+
2260 RISCV_ELF_WORD_BYTES
));
2264 if (tls_type
& GOT_TLS_IE
)
2268 bfd_put_NN (output_bfd
, 0,
2269 htab
->elf
.sgot
->contents
+ off
+ ie_off
);
2270 outrel
.r_offset
= sec_addr (htab
->elf
.sgot
)
2272 outrel
.r_addend
= 0;
2274 outrel
.r_addend
= tpoff (info
, relocation
);
2275 outrel
.r_info
= ELFNN_R_INFO (indx
, R_RISCV_TLS_TPRELNN
);
2276 riscv_elf_append_rela (output_bfd
, htab
->elf
.srelgot
, &outrel
);
2280 bfd_put_NN (output_bfd
, tpoff (info
, relocation
),
2281 htab
->elf
.sgot
->contents
+ off
+ ie_off
);
2286 BFD_ASSERT (off
< (bfd_vma
) -2);
2287 relocation
= sec_addr (htab
->elf
.sgot
) + off
+ (is_ie
? ie_off
: 0);
2288 if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs
, pc
,
2290 r
= bfd_reloc_overflow
;
2291 unresolved_reloc
= FALSE
;
2295 r
= bfd_reloc_notsupported
;
2298 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2299 because such sections are not SEC_ALLOC and thus ld.so will
2300 not process them. */
2301 if (unresolved_reloc
2302 && !((input_section
->flags
& SEC_DEBUGGING
) != 0
2304 && _bfd_elf_section_offset (output_bfd
, info
, input_section
,
2305 rel
->r_offset
) != (bfd_vma
) -1)
2311 case R_RISCV_RVC_JUMP
:
2312 if (asprintf (&msg_buf
,
2313 _("%%X%%P: relocation %s against `%s' can "
2314 "not be used when making a shared object; "
2315 "recompile with -fPIC\n"),
2317 h
->root
.root
.string
) == -1)
2322 if (asprintf (&msg_buf
,
2323 _("%%X%%P: unresolvable %s relocation against "
2326 h
->root
.root
.string
) == -1)
2332 r
= bfd_reloc_notsupported
;
2335 if (r
== bfd_reloc_ok
)
2336 r
= perform_relocation (howto
, rel
, relocation
, input_section
,
2337 input_bfd
, contents
);
2339 /* We should have already detected the error and set message before.
2340 If the error message isn't set since the linker runs out of memory
2341 or we don't set it before, then we should set the default message
2342 with the "internal error" string here. */
2348 case bfd_reloc_overflow
:
2349 info
->callbacks
->reloc_overflow
2350 (info
, (h
? &h
->root
: NULL
), name
, howto
->name
,
2351 (bfd_vma
) 0, input_bfd
, input_section
, rel
->r_offset
);
2354 case bfd_reloc_undefined
:
2355 info
->callbacks
->undefined_symbol
2356 (info
, name
, input_bfd
, input_section
, rel
->r_offset
,
2360 case bfd_reloc_outofrange
:
2362 msg
= _("%X%P: internal error: out of range error\n");
2365 case bfd_reloc_notsupported
:
2367 msg
= _("%X%P: internal error: unsupported relocation error\n");
2370 case bfd_reloc_dangerous
:
2371 /* The error message should already be set. */
2373 msg
= _("dangerous relocation error");
2374 info
->callbacks
->reloc_dangerous
2375 (info
, msg
, input_bfd
, input_section
, rel
->r_offset
);
2379 msg
= _("%X%P: internal error: unknown error\n");
2383 /* Do not report error message for the dangerous relocation again. */
2384 if (msg
&& r
!= bfd_reloc_dangerous
)
2385 info
->callbacks
->einfo (msg
);
2387 /* Free the unused `msg_buf` if needed. */
2391 /* We already reported the error via a callback, so don't try to report
2392 it again by returning false. That leads to spurious errors. */
2397 ret
= riscv_resolve_pcrel_lo_relocs (&pcrel_relocs
);
2399 riscv_free_pcrel_relocs (&pcrel_relocs
);
2403 /* Finish up dynamic symbol handling. We set the contents of various
2404 dynamic sections here. */
2407 riscv_elf_finish_dynamic_symbol (bfd
*output_bfd
,
2408 struct bfd_link_info
*info
,
2409 struct elf_link_hash_entry
*h
,
2410 Elf_Internal_Sym
*sym
)
2412 struct riscv_elf_link_hash_table
*htab
= riscv_elf_hash_table (info
);
2413 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
2415 if (h
->plt
.offset
!= (bfd_vma
) -1)
2417 /* We've decided to create a PLT entry for this symbol. */
2419 bfd_vma i
, header_address
, plt_idx
, got_address
;
2420 uint32_t plt_entry
[PLT_ENTRY_INSNS
];
2421 Elf_Internal_Rela rela
;
2423 BFD_ASSERT (h
->dynindx
!= -1);
2425 /* Calculate the address of the PLT header. */
2426 header_address
= sec_addr (htab
->elf
.splt
);
2428 /* Calculate the index of the entry. */
2429 plt_idx
= (h
->plt
.offset
- PLT_HEADER_SIZE
) / PLT_ENTRY_SIZE
;
2431 /* Calculate the address of the .got.plt entry. */
2432 got_address
= riscv_elf_got_plt_val (plt_idx
, info
);
2434 /* Find out where the .plt entry should go. */
2435 loc
= htab
->elf
.splt
->contents
+ h
->plt
.offset
;
2437 /* Fill in the PLT entry itself. */
2438 if (! riscv_make_plt_entry (output_bfd
, got_address
,
2439 header_address
+ h
->plt
.offset
,
2443 for (i
= 0; i
< PLT_ENTRY_INSNS
; i
++)
2444 bfd_put_32 (output_bfd
, plt_entry
[i
], loc
+ 4*i
);
2446 /* Fill in the initial value of the .got.plt entry. */
2447 loc
= htab
->elf
.sgotplt
->contents
2448 + (got_address
- sec_addr (htab
->elf
.sgotplt
));
2449 bfd_put_NN (output_bfd
, sec_addr (htab
->elf
.splt
), loc
);
2451 /* Fill in the entry in the .rela.plt section. */
2452 rela
.r_offset
= got_address
;
2454 rela
.r_info
= ELFNN_R_INFO (h
->dynindx
, R_RISCV_JUMP_SLOT
);
2456 loc
= htab
->elf
.srelplt
->contents
+ plt_idx
* sizeof (ElfNN_External_Rela
);
2457 bed
->s
->swap_reloca_out (output_bfd
, &rela
, loc
);
2459 if (!h
->def_regular
)
2461 /* Mark the symbol as undefined, rather than as defined in
2462 the .plt section. Leave the value alone. */
2463 sym
->st_shndx
= SHN_UNDEF
;
2464 /* If the symbol is weak, we do need to clear the value.
2465 Otherwise, the PLT entry would provide a definition for
2466 the symbol even if the symbol wasn't defined anywhere,
2467 and so the symbol would never be NULL. */
2468 if (!h
->ref_regular_nonweak
)
2473 if (h
->got
.offset
!= (bfd_vma
) -1
2474 && !(riscv_elf_hash_entry (h
)->tls_type
& (GOT_TLS_GD
| GOT_TLS_IE
))
2475 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info
, h
))
2479 Elf_Internal_Rela rela
;
2481 /* This symbol has an entry in the GOT. Set it up. */
2483 sgot
= htab
->elf
.sgot
;
2484 srela
= htab
->elf
.srelgot
;
2485 BFD_ASSERT (sgot
!= NULL
&& srela
!= NULL
);
2487 rela
.r_offset
= sec_addr (sgot
) + (h
->got
.offset
&~ (bfd_vma
) 1);
2489 /* If this is a local symbol reference, we just want to emit a RELATIVE
2490 reloc. This can happen if it is a -Bsymbolic link, or a pie link, or
2491 the symbol was forced to be local because of a version file.
2492 The entry in the global offset table will already have been
2493 initialized in the relocate_section function. */
2494 if (bfd_link_pic (info
)
2495 && SYMBOL_REFERENCES_LOCAL (info
, h
))
2497 BFD_ASSERT((h
->got
.offset
& 1) != 0);
2498 asection
*sec
= h
->root
.u
.def
.section
;
2499 rela
.r_info
= ELFNN_R_INFO (0, R_RISCV_RELATIVE
);
2500 rela
.r_addend
= (h
->root
.u
.def
.value
2501 + sec
->output_section
->vma
2502 + sec
->output_offset
);
2506 BFD_ASSERT((h
->got
.offset
& 1) == 0);
2507 BFD_ASSERT (h
->dynindx
!= -1);
2508 rela
.r_info
= ELFNN_R_INFO (h
->dynindx
, R_RISCV_NN
);
2512 bfd_put_NN (output_bfd
, 0,
2513 sgot
->contents
+ (h
->got
.offset
& ~(bfd_vma
) 1));
2514 riscv_elf_append_rela (output_bfd
, srela
, &rela
);
2519 Elf_Internal_Rela rela
;
2522 /* This symbols needs a copy reloc. Set it up. */
2523 BFD_ASSERT (h
->dynindx
!= -1);
2525 rela
.r_offset
= sec_addr (h
->root
.u
.def
.section
) + h
->root
.u
.def
.value
;
2526 rela
.r_info
= ELFNN_R_INFO (h
->dynindx
, R_RISCV_COPY
);
2528 if (h
->root
.u
.def
.section
== htab
->elf
.sdynrelro
)
2529 s
= htab
->elf
.sreldynrelro
;
2531 s
= htab
->elf
.srelbss
;
2532 riscv_elf_append_rela (output_bfd
, s
, &rela
);
2535 /* Mark some specially defined symbols as absolute. */
2536 if (h
== htab
->elf
.hdynamic
2537 || (h
== htab
->elf
.hgot
|| h
== htab
->elf
.hplt
))
2538 sym
->st_shndx
= SHN_ABS
;
2543 /* Finish up the dynamic sections. */
2546 riscv_finish_dyn (bfd
*output_bfd
, struct bfd_link_info
*info
,
2547 bfd
*dynobj
, asection
*sdyn
)
2549 struct riscv_elf_link_hash_table
*htab
= riscv_elf_hash_table (info
);
2550 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
2551 size_t dynsize
= bed
->s
->sizeof_dyn
;
2552 bfd_byte
*dyncon
, *dynconend
;
2554 dynconend
= sdyn
->contents
+ sdyn
->size
;
2555 for (dyncon
= sdyn
->contents
; dyncon
< dynconend
; dyncon
+= dynsize
)
2557 Elf_Internal_Dyn dyn
;
2560 bed
->s
->swap_dyn_in (dynobj
, dyncon
, &dyn
);
2565 s
= htab
->elf
.sgotplt
;
2566 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
2569 s
= htab
->elf
.srelplt
;
2570 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
2573 s
= htab
->elf
.srelplt
;
2574 dyn
.d_un
.d_val
= s
->size
;
2580 bed
->s
->swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2586 riscv_elf_finish_dynamic_sections (bfd
*output_bfd
,
2587 struct bfd_link_info
*info
)
2591 struct riscv_elf_link_hash_table
*htab
;
2593 htab
= riscv_elf_hash_table (info
);
2594 BFD_ASSERT (htab
!= NULL
);
2595 dynobj
= htab
->elf
.dynobj
;
2597 sdyn
= bfd_get_linker_section (dynobj
, ".dynamic");
2599 if (elf_hash_table (info
)->dynamic_sections_created
)
2604 splt
= htab
->elf
.splt
;
2605 BFD_ASSERT (splt
!= NULL
&& sdyn
!= NULL
);
2607 ret
= riscv_finish_dyn (output_bfd
, info
, dynobj
, sdyn
);
2612 /* Fill in the head and tail entries in the procedure linkage table. */
2616 uint32_t plt_header
[PLT_HEADER_INSNS
];
2617 ret
= riscv_make_plt_header (output_bfd
,
2618 sec_addr (htab
->elf
.sgotplt
),
2619 sec_addr (splt
), plt_header
);
2623 for (i
= 0; i
< PLT_HEADER_INSNS
; i
++)
2624 bfd_put_32 (output_bfd
, plt_header
[i
], splt
->contents
+ 4*i
);
2626 elf_section_data (splt
->output_section
)->this_hdr
.sh_entsize
2631 if (htab
->elf
.sgotplt
)
2633 asection
*output_section
= htab
->elf
.sgotplt
->output_section
;
2635 if (bfd_is_abs_section (output_section
))
2637 (*_bfd_error_handler
)
2638 (_("discarded output section: `%pA'"), htab
->elf
.sgotplt
);
2642 if (htab
->elf
.sgotplt
->size
> 0)
2644 /* Write the first two entries in .got.plt, needed for the dynamic
2646 bfd_put_NN (output_bfd
, (bfd_vma
) -1, htab
->elf
.sgotplt
->contents
);
2647 bfd_put_NN (output_bfd
, (bfd_vma
) 0,
2648 htab
->elf
.sgotplt
->contents
+ GOT_ENTRY_SIZE
);
2651 elf_section_data (output_section
)->this_hdr
.sh_entsize
= GOT_ENTRY_SIZE
;
2656 asection
*output_section
= htab
->elf
.sgot
->output_section
;
2658 if (htab
->elf
.sgot
->size
> 0)
2660 /* Set the first entry in the global offset table to the address of
2661 the dynamic section. */
2662 bfd_vma val
= sdyn
? sec_addr (sdyn
) : 0;
2663 bfd_put_NN (output_bfd
, val
, htab
->elf
.sgot
->contents
);
2666 elf_section_data (output_section
)->this_hdr
.sh_entsize
= GOT_ENTRY_SIZE
;
2672 /* Return address for Ith PLT stub in section PLT, for relocation REL
2673 or (bfd_vma) -1 if it should not be included. */
2676 riscv_elf_plt_sym_val (bfd_vma i
, const asection
*plt
,
2677 const arelent
*rel ATTRIBUTE_UNUSED
)
2679 return plt
->vma
+ PLT_HEADER_SIZE
+ i
* PLT_ENTRY_SIZE
;
2682 static enum elf_reloc_type_class
2683 riscv_reloc_type_class (const struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
2684 const asection
*rel_sec ATTRIBUTE_UNUSED
,
2685 const Elf_Internal_Rela
*rela
)
2687 switch (ELFNN_R_TYPE (rela
->r_info
))
2689 case R_RISCV_RELATIVE
:
2690 return reloc_class_relative
;
2691 case R_RISCV_JUMP_SLOT
:
2692 return reloc_class_plt
;
2694 return reloc_class_copy
;
2696 return reloc_class_normal
;
2700 /* Given the ELF header flags in FLAGS, it returns a string that describes the
2704 riscv_float_abi_string (flagword flags
)
2706 switch (flags
& EF_RISCV_FLOAT_ABI
)
2708 case EF_RISCV_FLOAT_ABI_SOFT
:
2709 return "soft-float";
2711 case EF_RISCV_FLOAT_ABI_SINGLE
:
2712 return "single-float";
2714 case EF_RISCV_FLOAT_ABI_DOUBLE
:
2715 return "double-float";
2717 case EF_RISCV_FLOAT_ABI_QUAD
:
2718 return "quad-float";
2725 /* The information of architecture attribute. */
2726 static riscv_subset_list_t in_subsets
;
2727 static riscv_subset_list_t out_subsets
;
2728 static riscv_subset_list_t merged_subsets
;
2730 /* Predicator for standard extension. */
2733 riscv_std_ext_p (const char *name
)
2735 return (strlen (name
) == 1) && (name
[0] != 'x') && (name
[0] != 's');
2738 /* Predicator for non-standard extension. */
2741 riscv_non_std_ext_p (const char *name
)
2743 return (strlen (name
) >= 2) && (name
[0] == 'x');
2746 /* Predicator for standard supervisor extension. */
2749 riscv_std_sv_ext_p (const char *name
)
2751 return (strlen (name
) >= 2) && (name
[0] == 's') && (name
[1] != 'x');
2754 /* Predicator for non-standard supervisor extension. */
2757 riscv_non_std_sv_ext_p (const char *name
)
2759 return (strlen (name
) >= 3) && (name
[0] == 's') && (name
[1] == 'x');
2762 /* Error handler when version mis-match. */
2765 riscv_version_mismatch (bfd
*ibfd
,
2766 struct riscv_subset_t
*in
,
2767 struct riscv_subset_t
*out
)
2770 (_("error: %pB: Mis-matched ISA version for '%s' extension. "
2773 in
->major_version
, in
->minor_version
,
2774 out
->major_version
, out
->minor_version
);
2777 /* Return true if subset is 'i' or 'e'. */
2780 riscv_i_or_e_p (bfd
*ibfd
,
2782 struct riscv_subset_t
*subset
)
2784 if ((strcasecmp (subset
->name
, "e") != 0)
2785 && (strcasecmp (subset
->name
, "i") != 0))
2788 (_("error: %pB: corrupted ISA string '%s'. "
2789 "First letter should be 'i' or 'e' but got '%s'."),
2790 ibfd
, arch
, subset
->name
);
2796 /* Merge standard extensions.
2799 Return FALSE if failed to merge.
2803 `in_arch`: Raw arch string for input object.
2804 `out_arch`: Raw arch string for output object.
2805 `pin`: subset list for input object, and it'll skip all merged subset after
2807 `pout`: Like `pin`, but for output object. */
2810 riscv_merge_std_ext (bfd
*ibfd
,
2811 const char *in_arch
,
2812 const char *out_arch
,
2813 struct riscv_subset_t
**pin
,
2814 struct riscv_subset_t
**pout
)
2816 const char *standard_exts
= riscv_supported_std_ext ();
2818 struct riscv_subset_t
*in
= *pin
;
2819 struct riscv_subset_t
*out
= *pout
;
2821 /* First letter should be 'i' or 'e'. */
2822 if (!riscv_i_or_e_p (ibfd
, in_arch
, in
))
2825 if (!riscv_i_or_e_p (ibfd
, out_arch
, out
))
2828 if (in
->name
[0] != out
->name
[0])
2830 /* TODO: We might allow merge 'i' with 'e'. */
2832 (_("error: %pB: Mis-matched ISA string to merge '%s' and '%s'."),
2833 ibfd
, in
->name
, out
->name
);
2836 else if ((in
->major_version
!= out
->major_version
) ||
2837 (in
->minor_version
!= out
->minor_version
))
2839 /* TODO: Allow different merge policy. */
2840 riscv_version_mismatch (ibfd
, in
, out
);
2844 riscv_add_subset (&merged_subsets
,
2845 in
->name
, in
->major_version
, in
->minor_version
);
2850 /* Handle standard extension first. */
2851 for (p
= standard_exts
; *p
; ++p
)
2853 char find_ext
[2] = {*p
, '\0'};
2854 struct riscv_subset_t
*find_in
=
2855 riscv_lookup_subset (&in_subsets
, find_ext
);
2856 struct riscv_subset_t
*find_out
=
2857 riscv_lookup_subset (&out_subsets
, find_ext
);
2859 if (find_in
== NULL
&& find_out
== NULL
)
2862 /* Check version is same or not. */
2863 /* TODO: Allow different merge policy. */
2864 if ((find_in
!= NULL
&& find_out
!= NULL
)
2865 && ((find_in
->major_version
!= find_out
->major_version
)
2866 || (find_in
->minor_version
!= find_out
->minor_version
)))
2868 riscv_version_mismatch (ibfd
, in
, out
);
2872 struct riscv_subset_t
*merged
= find_in
? find_in
: find_out
;
2873 riscv_add_subset (&merged_subsets
, merged
->name
,
2874 merged
->major_version
, merged
->minor_version
);
2877 /* Skip all standard extensions. */
2878 while ((in
!= NULL
) && riscv_std_ext_p (in
->name
)) in
= in
->next
;
2879 while ((out
!= NULL
) && riscv_std_ext_p (out
->name
)) out
= out
->next
;
2887 /* Merge non-standard and supervisor extensions.
2889 Return FALSE if failed to merge.
2893 `in_arch`: Raw arch string for input object.
2894 `out_arch`: Raw arch string for output object.
2895 `pin`: subset list for input object, and it'll skip all merged subset after
2897 `pout`: Like `pin`, but for output object. */
2900 riscv_merge_non_std_and_sv_ext (bfd
*ibfd
,
2901 riscv_subset_t
**pin
,
2902 riscv_subset_t
**pout
,
2903 bfd_boolean (*predicate_func
) (const char *))
2905 riscv_subset_t
*in
= *pin
;
2906 riscv_subset_t
*out
= *pout
;
2908 for (in
= *pin
; in
!= NULL
&& predicate_func (in
->name
); in
= in
->next
)
2909 riscv_add_subset (&merged_subsets
, in
->name
, in
->major_version
,
2912 for (out
= *pout
; out
!= NULL
&& predicate_func (out
->name
); out
= out
->next
)
2914 riscv_subset_t
*find_ext
=
2915 riscv_lookup_subset (&merged_subsets
, out
->name
);
2916 if (find_ext
!= NULL
)
2918 /* Check version is same or not. */
2919 /* TODO: Allow different merge policy. */
2920 if ((find_ext
->major_version
!= out
->major_version
)
2921 || (find_ext
->minor_version
!= out
->minor_version
))
2923 riscv_version_mismatch (ibfd
, find_ext
, out
);
2928 riscv_add_subset (&merged_subsets
, out
->name
,
2929 out
->major_version
, out
->minor_version
);
2937 /* Merge Tag_RISCV_arch attribute. */
2940 riscv_merge_arch_attr_info (bfd
*ibfd
, char *in_arch
, char *out_arch
)
2942 riscv_subset_t
*in
, *out
;
2943 char *merged_arch_str
;
2945 unsigned xlen_in
, xlen_out
;
2946 merged_subsets
.head
= NULL
;
2947 merged_subsets
.tail
= NULL
;
2949 riscv_parse_subset_t rpe_in
;
2950 riscv_parse_subset_t rpe_out
;
2952 rpe_in
.subset_list
= &in_subsets
;
2953 rpe_in
.error_handler
= _bfd_error_handler
;
2954 rpe_in
.xlen
= &xlen_in
;
2956 rpe_out
.subset_list
= &out_subsets
;
2957 rpe_out
.error_handler
= _bfd_error_handler
;
2958 rpe_out
.xlen
= &xlen_out
;
2960 if (in_arch
== NULL
&& out_arch
== NULL
)
2963 if (in_arch
== NULL
&& out_arch
!= NULL
)
2966 if (in_arch
!= NULL
&& out_arch
== NULL
)
2969 /* Parse subset from arch string. */
2970 if (!riscv_parse_subset (&rpe_in
, in_arch
))
2973 if (!riscv_parse_subset (&rpe_out
, out_arch
))
2976 /* Checking XLEN. */
2977 if (xlen_out
!= xlen_in
)
2980 (_("error: %pB: ISA string of input (%s) doesn't match "
2981 "output (%s)."), ibfd
, in_arch
, out_arch
);
2985 /* Merge subset list. */
2986 in
= in_subsets
.head
;
2987 out
= out_subsets
.head
;
2989 /* Merge standard extension. */
2990 if (!riscv_merge_std_ext (ibfd
, in_arch
, out_arch
, &in
, &out
))
2992 /* Merge non-standard extension. */
2993 if (!riscv_merge_non_std_and_sv_ext (ibfd
, &in
, &out
, riscv_non_std_ext_p
))
2995 /* Merge standard supervisor extension. */
2996 if (!riscv_merge_non_std_and_sv_ext (ibfd
, &in
, &out
, riscv_std_sv_ext_p
))
2998 /* Merge non-standard supervisor extension. */
2999 if (!riscv_merge_non_std_and_sv_ext (ibfd
, &in
, &out
, riscv_non_std_sv_ext_p
))
3002 if (xlen_in
!= xlen_out
)
3005 (_("error: %pB: XLEN of input (%u) doesn't match "
3006 "output (%u)."), ibfd
, xlen_in
, xlen_out
);
3010 if (xlen_in
!= ARCH_SIZE
)
3013 (_("error: %pB: Unsupported XLEN (%u), you might be "
3014 "using wrong emulation."), ibfd
, xlen_in
);
3018 merged_arch_str
= riscv_arch_str (ARCH_SIZE
, &merged_subsets
);
3020 /* Release the subset lists. */
3021 riscv_release_subset_list (&in_subsets
);
3022 riscv_release_subset_list (&out_subsets
);
3023 riscv_release_subset_list (&merged_subsets
);
3025 return merged_arch_str
;
3028 /* Merge object attributes from IBFD into output_bfd of INFO.
3029 Raise an error if there are conflicting attributes. */
3032 riscv_merge_attributes (bfd
*ibfd
, struct bfd_link_info
*info
)
3034 bfd
*obfd
= info
->output_bfd
;
3035 obj_attribute
*in_attr
;
3036 obj_attribute
*out_attr
;
3037 bfd_boolean result
= TRUE
;
3038 const char *sec_name
= get_elf_backend_data (ibfd
)->obj_attrs_section
;
3041 /* Skip linker created files. */
3042 if (ibfd
->flags
& BFD_LINKER_CREATED
)
3045 /* Skip any input that doesn't have an attribute section.
3046 This enables to link object files without attribute section with
3048 if (bfd_get_section_by_name (ibfd
, sec_name
) == NULL
)
3051 if (!elf_known_obj_attributes_proc (obfd
)[0].i
)
3053 /* This is the first object. Copy the attributes. */
3054 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
3056 out_attr
= elf_known_obj_attributes_proc (obfd
);
3058 /* Use the Tag_null value to indicate the attributes have been
3065 in_attr
= elf_known_obj_attributes_proc (ibfd
);
3066 out_attr
= elf_known_obj_attributes_proc (obfd
);
3068 for (i
= LEAST_KNOWN_OBJ_ATTRIBUTE
; i
< NUM_KNOWN_OBJ_ATTRIBUTES
; i
++)
3072 case Tag_RISCV_arch
:
3073 if (!out_attr
[Tag_RISCV_arch
].s
)
3074 out_attr
[Tag_RISCV_arch
].s
= in_attr
[Tag_RISCV_arch
].s
;
3075 else if (in_attr
[Tag_RISCV_arch
].s
3076 && out_attr
[Tag_RISCV_arch
].s
)
3078 /* Check arch compatible. */
3080 riscv_merge_arch_attr_info (ibfd
,
3081 in_attr
[Tag_RISCV_arch
].s
,
3082 out_attr
[Tag_RISCV_arch
].s
);
3083 if (merged_arch
== NULL
)
3086 out_attr
[Tag_RISCV_arch
].s
= "";
3089 out_attr
[Tag_RISCV_arch
].s
= merged_arch
;
3092 case Tag_RISCV_priv_spec
:
3093 case Tag_RISCV_priv_spec_minor
:
3094 case Tag_RISCV_priv_spec_revision
:
3095 if (out_attr
[i
].i
!= in_attr
[i
].i
)
3098 (_("error: %pB: conflicting priv spec version "
3099 "(major/minor/revision)."), ibfd
);
3103 case Tag_RISCV_unaligned_access
:
3104 out_attr
[i
].i
|= in_attr
[i
].i
;
3106 case Tag_RISCV_stack_align
:
3107 if (out_attr
[i
].i
== 0)
3108 out_attr
[i
].i
= in_attr
[i
].i
;
3109 else if (in_attr
[i
].i
!= 0
3110 && out_attr
[i
].i
!= 0
3111 && out_attr
[i
].i
!= in_attr
[i
].i
)
3114 (_("error: %pB use %u-byte stack aligned but the output "
3115 "use %u-byte stack aligned."),
3116 ibfd
, in_attr
[i
].i
, out_attr
[i
].i
);
3121 result
&= _bfd_elf_merge_unknown_attribute_low (ibfd
, obfd
, i
);
3124 /* If out_attr was copied from in_attr then it won't have a type yet. */
3125 if (in_attr
[i
].type
&& !out_attr
[i
].type
)
3126 out_attr
[i
].type
= in_attr
[i
].type
;
3129 /* Merge Tag_compatibility attributes and any common GNU ones. */
3130 if (!_bfd_elf_merge_object_attributes (ibfd
, info
))
3133 /* Check for any attributes not known on RISC-V. */
3134 result
&= _bfd_elf_merge_unknown_attribute_list (ibfd
, obfd
);
3139 /* Merge backend specific data from an object file to the output
3140 object file when linking. */
3143 _bfd_riscv_elf_merge_private_bfd_data (bfd
*ibfd
, struct bfd_link_info
*info
)
3145 bfd
*obfd
= info
->output_bfd
;
3146 flagword new_flags
, old_flags
;
3148 if (!is_riscv_elf (ibfd
) || !is_riscv_elf (obfd
))
3151 if (strcmp (bfd_get_target (ibfd
), bfd_get_target (obfd
)) != 0)
3153 (*_bfd_error_handler
)
3154 (_("%pB: ABI is incompatible with that of the selected emulation:\n"
3155 " target emulation `%s' does not match `%s'"),
3156 ibfd
, bfd_get_target (ibfd
), bfd_get_target (obfd
));
3160 if (!_bfd_elf_merge_object_attributes (ibfd
, info
))
3163 if (!riscv_merge_attributes (ibfd
, info
))
3166 new_flags
= elf_elfheader (ibfd
)->e_flags
;
3167 old_flags
= elf_elfheader (obfd
)->e_flags
;
3169 if (! elf_flags_init (obfd
))
3171 elf_flags_init (obfd
) = TRUE
;
3172 elf_elfheader (obfd
)->e_flags
= new_flags
;
3176 /* Check to see if the input BFD actually contains any sections. If not,
3177 its flags may not have been initialized either, but it cannot actually
3178 cause any incompatibility. Do not short-circuit dynamic objects; their
3179 section list may be emptied by elf_link_add_object_symbols.
3181 Also check to see if there are no code sections in the input. In this
3182 case, there is no need to check for code specific flags. */
3183 if (!(ibfd
->flags
& DYNAMIC
))
3185 bfd_boolean null_input_bfd
= TRUE
;
3186 bfd_boolean only_data_sections
= TRUE
;
3189 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
3191 if ((bfd_section_flags (sec
)
3192 & (SEC_LOAD
| SEC_CODE
| SEC_HAS_CONTENTS
))
3193 == (SEC_LOAD
| SEC_CODE
| SEC_HAS_CONTENTS
))
3194 only_data_sections
= FALSE
;
3196 null_input_bfd
= FALSE
;
3200 if (null_input_bfd
|| only_data_sections
)
3204 /* Disallow linking different float ABIs. */
3205 if ((old_flags
^ new_flags
) & EF_RISCV_FLOAT_ABI
)
3207 (*_bfd_error_handler
)
3208 (_("%pB: can't link %s modules with %s modules"), ibfd
,
3209 riscv_float_abi_string (new_flags
),
3210 riscv_float_abi_string (old_flags
));
3214 /* Disallow linking RVE and non-RVE. */
3215 if ((old_flags
^ new_flags
) & EF_RISCV_RVE
)
3217 (*_bfd_error_handler
)
3218 (_("%pB: can't link RVE with other target"), ibfd
);
3222 /* Allow linking RVC and non-RVC, and keep the RVC flag. */
3223 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_RISCV_RVC
;
3228 bfd_set_error (bfd_error_bad_value
);
3232 /* Delete some bytes from a section while relaxing. */
3235 riscv_relax_delete_bytes (bfd
*abfd
, asection
*sec
, bfd_vma addr
, size_t count
,
3236 struct bfd_link_info
*link_info
)
3238 unsigned int i
, symcount
;
3239 bfd_vma toaddr
= sec
->size
;
3240 struct elf_link_hash_entry
**sym_hashes
= elf_sym_hashes (abfd
);
3241 Elf_Internal_Shdr
*symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3242 unsigned int sec_shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
3243 struct bfd_elf_section_data
*data
= elf_section_data (sec
);
3244 bfd_byte
*contents
= data
->this_hdr
.contents
;
3246 /* Actually delete the bytes. */
3248 memmove (contents
+ addr
, contents
+ addr
+ count
, toaddr
- addr
- count
);
3250 /* Adjust the location of all of the relocs. Note that we need not
3251 adjust the addends, since all PC-relative references must be against
3252 symbols, which we will adjust below. */
3253 for (i
= 0; i
< sec
->reloc_count
; i
++)
3254 if (data
->relocs
[i
].r_offset
> addr
&& data
->relocs
[i
].r_offset
< toaddr
)
3255 data
->relocs
[i
].r_offset
-= count
;
3257 /* Adjust the local symbols defined in this section. */
3258 for (i
= 0; i
< symtab_hdr
->sh_info
; i
++)
3260 Elf_Internal_Sym
*sym
= (Elf_Internal_Sym
*) symtab_hdr
->contents
+ i
;
3261 if (sym
->st_shndx
== sec_shndx
)
3263 /* If the symbol is in the range of memory we just moved, we
3264 have to adjust its value. */
3265 if (sym
->st_value
> addr
&& sym
->st_value
<= toaddr
)
3266 sym
->st_value
-= count
;
3268 /* If the symbol *spans* the bytes we just deleted (i.e. its
3269 *end* is in the moved bytes but its *start* isn't), then we
3270 must adjust its size.
3272 This test needs to use the original value of st_value, otherwise
3273 we might accidentally decrease size when deleting bytes right
3274 before the symbol. But since deleted relocs can't span across
3275 symbols, we can't have both a st_value and a st_size decrease,
3276 so it is simpler to just use an else. */
3277 else if (sym
->st_value
<= addr
3278 && sym
->st_value
+ sym
->st_size
> addr
3279 && sym
->st_value
+ sym
->st_size
<= toaddr
)
3280 sym
->st_size
-= count
;
3284 /* Now adjust the global symbols defined in this section. */
3285 symcount
= ((symtab_hdr
->sh_size
/ sizeof (ElfNN_External_Sym
))
3286 - symtab_hdr
->sh_info
);
3288 for (i
= 0; i
< symcount
; i
++)
3290 struct elf_link_hash_entry
*sym_hash
= sym_hashes
[i
];
3292 /* The '--wrap SYMBOL' option is causing a pain when the object file,
3293 containing the definition of __wrap_SYMBOL, includes a direct
3294 call to SYMBOL as well. Since both __wrap_SYMBOL and SYMBOL reference
3295 the same symbol (which is __wrap_SYMBOL), but still exist as two
3296 different symbols in 'sym_hashes', we don't want to adjust
3297 the global symbol __wrap_SYMBOL twice. */
3298 /* The same problem occurs with symbols that are versioned_hidden, as
3299 foo becomes an alias for foo@BAR, and hence they need the same
3301 if (link_info
->wrap_hash
!= NULL
3302 || sym_hash
->versioned
== versioned_hidden
)
3304 struct elf_link_hash_entry
**cur_sym_hashes
;
3306 /* Loop only over the symbols which have already been checked. */
3307 for (cur_sym_hashes
= sym_hashes
; cur_sym_hashes
< &sym_hashes
[i
];
3310 /* If the current symbol is identical to 'sym_hash', that means
3311 the symbol was already adjusted (or at least checked). */
3312 if (*cur_sym_hashes
== sym_hash
)
3315 /* Don't adjust the symbol again. */
3316 if (cur_sym_hashes
< &sym_hashes
[i
])
3320 if ((sym_hash
->root
.type
== bfd_link_hash_defined
3321 || sym_hash
->root
.type
== bfd_link_hash_defweak
)
3322 && sym_hash
->root
.u
.def
.section
== sec
)
3324 /* As above, adjust the value if needed. */
3325 if (sym_hash
->root
.u
.def
.value
> addr
3326 && sym_hash
->root
.u
.def
.value
<= toaddr
)
3327 sym_hash
->root
.u
.def
.value
-= count
;
3329 /* As above, adjust the size if needed. */
3330 else if (sym_hash
->root
.u
.def
.value
<= addr
3331 && sym_hash
->root
.u
.def
.value
+ sym_hash
->size
> addr
3332 && sym_hash
->root
.u
.def
.value
+ sym_hash
->size
<= toaddr
)
3333 sym_hash
->size
-= count
;
3340 /* A second format for recording PC-relative hi relocations. This stores the
3341 information required to relax them to GP-relative addresses. */
3343 typedef struct riscv_pcgp_hi_reloc riscv_pcgp_hi_reloc
;
3344 struct riscv_pcgp_hi_reloc
3351 bfd_boolean undefined_weak
;
3352 riscv_pcgp_hi_reloc
*next
;
3355 typedef struct riscv_pcgp_lo_reloc riscv_pcgp_lo_reloc
;
3356 struct riscv_pcgp_lo_reloc
3359 riscv_pcgp_lo_reloc
*next
;
3364 riscv_pcgp_hi_reloc
*hi
;
3365 riscv_pcgp_lo_reloc
*lo
;
3366 } riscv_pcgp_relocs
;
3368 /* Initialize the pcgp reloc info in P. */
3371 riscv_init_pcgp_relocs (riscv_pcgp_relocs
*p
)
3378 /* Free the pcgp reloc info in P. */
3381 riscv_free_pcgp_relocs (riscv_pcgp_relocs
*p
,
3382 bfd
*abfd ATTRIBUTE_UNUSED
,
3383 asection
*sec ATTRIBUTE_UNUSED
)
3385 riscv_pcgp_hi_reloc
*c
;
3386 riscv_pcgp_lo_reloc
*l
;
3388 for (c
= p
->hi
; c
!= NULL
;)
3390 riscv_pcgp_hi_reloc
*next
= c
->next
;
3395 for (l
= p
->lo
; l
!= NULL
;)
3397 riscv_pcgp_lo_reloc
*next
= l
->next
;
3403 /* Record pcgp hi part reloc info in P, using HI_SEC_OFF as the lookup index.
3404 The HI_ADDEND, HI_ADDR, HI_SYM, and SYM_SEC args contain info required to
3405 relax the corresponding lo part reloc. */
3408 riscv_record_pcgp_hi_reloc (riscv_pcgp_relocs
*p
, bfd_vma hi_sec_off
,
3409 bfd_vma hi_addend
, bfd_vma hi_addr
,
3410 unsigned hi_sym
, asection
*sym_sec
,
3411 bfd_boolean undefined_weak
)
3413 riscv_pcgp_hi_reloc
*new = bfd_malloc (sizeof(*new));
3416 new->hi_sec_off
= hi_sec_off
;
3417 new->hi_addend
= hi_addend
;
3418 new->hi_addr
= hi_addr
;
3419 new->hi_sym
= hi_sym
;
3420 new->sym_sec
= sym_sec
;
3421 new->undefined_weak
= undefined_weak
;
3427 /* Look up hi part pcgp reloc info in P, using HI_SEC_OFF as the lookup index.
3428 This is used by a lo part reloc to find the corresponding hi part reloc. */
3430 static riscv_pcgp_hi_reloc
*
3431 riscv_find_pcgp_hi_reloc(riscv_pcgp_relocs
*p
, bfd_vma hi_sec_off
)
3433 riscv_pcgp_hi_reloc
*c
;
3435 for (c
= p
->hi
; c
!= NULL
; c
= c
->next
)
3436 if (c
->hi_sec_off
== hi_sec_off
)
3441 /* Record pcgp lo part reloc info in P, using HI_SEC_OFF as the lookup info.
3442 This is used to record relocs that can't be relaxed. */
3445 riscv_record_pcgp_lo_reloc (riscv_pcgp_relocs
*p
, bfd_vma hi_sec_off
)
3447 riscv_pcgp_lo_reloc
*new = bfd_malloc (sizeof(*new));
3450 new->hi_sec_off
= hi_sec_off
;
3456 /* Look up lo part pcgp reloc info in P, using HI_SEC_OFF as the lookup index.
3457 This is used by a hi part reloc to find the corresponding lo part reloc. */
3460 riscv_find_pcgp_lo_reloc (riscv_pcgp_relocs
*p
, bfd_vma hi_sec_off
)
3462 riscv_pcgp_lo_reloc
*c
;
3464 for (c
= p
->lo
; c
!= NULL
; c
= c
->next
)
3465 if (c
->hi_sec_off
== hi_sec_off
)
3470 typedef bfd_boolean (*relax_func_t
) (bfd
*, asection
*, asection
*,
3471 struct bfd_link_info
*,
3472 Elf_Internal_Rela
*,
3473 bfd_vma
, bfd_vma
, bfd_vma
, bfd_boolean
*,
3474 riscv_pcgp_relocs
*,
3475 bfd_boolean undefined_weak
);
3477 /* Relax AUIPC + JALR into JAL. */
3480 _bfd_riscv_relax_call (bfd
*abfd
, asection
*sec
, asection
*sym_sec
,
3481 struct bfd_link_info
*link_info
,
3482 Elf_Internal_Rela
*rel
,
3484 bfd_vma max_alignment
,
3485 bfd_vma reserve_size ATTRIBUTE_UNUSED
,
3487 riscv_pcgp_relocs
*pcgp_relocs ATTRIBUTE_UNUSED
,
3488 bfd_boolean undefined_weak ATTRIBUTE_UNUSED
)
3490 bfd_byte
*contents
= elf_section_data (sec
)->this_hdr
.contents
;
3491 bfd_signed_vma foff
= symval
- (sec_addr (sec
) + rel
->r_offset
);
3492 bfd_boolean near_zero
= (symval
+ RISCV_IMM_REACH
/2) < RISCV_IMM_REACH
;
3493 bfd_vma auipc
, jalr
;
3494 int rd
, r_type
, len
= 4, rvc
= elf_elfheader (abfd
)->e_flags
& EF_RISCV_RVC
;
3496 /* If the call crosses section boundaries, an alignment directive could
3497 cause the PC-relative offset to later increase, so we need to add in the
3498 max alignment of any section inclusive from the call to the target.
3499 Otherwise, we only need to use the alignment of the current section. */
3500 if (VALID_UJTYPE_IMM (foff
))
3502 if (sym_sec
->output_section
== sec
->output_section
3503 && sym_sec
->output_section
!= bfd_abs_section_ptr
)
3504 max_alignment
= (bfd_vma
) 1 << sym_sec
->output_section
->alignment_power
;
3505 foff
+= (foff
< 0 ? -max_alignment
: max_alignment
);
3508 /* See if this function call can be shortened. */
3509 if (!VALID_UJTYPE_IMM (foff
) && !(!bfd_link_pic (link_info
) && near_zero
))
3512 /* Shorten the function call. */
3513 BFD_ASSERT (rel
->r_offset
+ 8 <= sec
->size
);
3515 auipc
= bfd_get_32 (abfd
, contents
+ rel
->r_offset
);
3516 jalr
= bfd_get_32 (abfd
, contents
+ rel
->r_offset
+ 4);
3517 rd
= (jalr
>> OP_SH_RD
) & OP_MASK_RD
;
3518 rvc
= rvc
&& VALID_RVC_J_IMM (foff
);
3520 /* C.J exists on RV32 and RV64, but C.JAL is RV32-only. */
3521 rvc
= rvc
&& (rd
== 0 || (rd
== X_RA
&& ARCH_SIZE
== 32));
3525 /* Relax to C.J[AL] rd, addr. */
3526 r_type
= R_RISCV_RVC_JUMP
;
3527 auipc
= rd
== 0 ? MATCH_C_J
: MATCH_C_JAL
;
3530 else if (VALID_UJTYPE_IMM (foff
))
3532 /* Relax to JAL rd, addr. */
3533 r_type
= R_RISCV_JAL
;
3534 auipc
= MATCH_JAL
| (rd
<< OP_SH_RD
);
3536 else /* near_zero */
3538 /* Relax to JALR rd, x0, addr. */
3539 r_type
= R_RISCV_LO12_I
;
3540 auipc
= MATCH_JALR
| (rd
<< OP_SH_RD
);
3543 /* Replace the R_RISCV_CALL reloc. */
3544 rel
->r_info
= ELFNN_R_INFO (ELFNN_R_SYM (rel
->r_info
), r_type
);
3545 /* Replace the AUIPC. */
3546 bfd_put (8 * len
, abfd
, auipc
, contents
+ rel
->r_offset
);
3548 /* Delete unnecessary JALR. */
3550 return riscv_relax_delete_bytes (abfd
, sec
, rel
->r_offset
+ len
, 8 - len
,
3554 /* Traverse all output sections and return the max alignment. */
3557 _bfd_riscv_get_max_alignment (asection
*sec
)
3559 unsigned int max_alignment_power
= 0;
3562 for (o
= sec
->output_section
->owner
->sections
; o
!= NULL
; o
= o
->next
)
3564 if (o
->alignment_power
> max_alignment_power
)
3565 max_alignment_power
= o
->alignment_power
;
3568 return (bfd_vma
) 1 << max_alignment_power
;
3571 /* Relax non-PIC global variable references. */
3574 _bfd_riscv_relax_lui (bfd
*abfd
,
3577 struct bfd_link_info
*link_info
,
3578 Elf_Internal_Rela
*rel
,
3580 bfd_vma max_alignment
,
3581 bfd_vma reserve_size
,
3583 riscv_pcgp_relocs
*pcgp_relocs ATTRIBUTE_UNUSED
,
3584 bfd_boolean undefined_weak
)
3586 bfd_byte
*contents
= elf_section_data (sec
)->this_hdr
.contents
;
3587 bfd_vma gp
= riscv_global_pointer_value (link_info
);
3588 int use_rvc
= elf_elfheader (abfd
)->e_flags
& EF_RISCV_RVC
;
3590 BFD_ASSERT (rel
->r_offset
+ 4 <= sec
->size
);
3594 /* If gp and the symbol are in the same output section, which is not the
3595 abs section, then consider only that output section's alignment. */
3596 struct bfd_link_hash_entry
*h
=
3597 bfd_link_hash_lookup (link_info
->hash
, RISCV_GP_SYMBOL
, FALSE
, FALSE
,
3599 if (h
->u
.def
.section
->output_section
== sym_sec
->output_section
3600 && sym_sec
->output_section
!= bfd_abs_section_ptr
)
3601 max_alignment
= (bfd_vma
) 1 << sym_sec
->output_section
->alignment_power
;
3604 /* Is the reference in range of x0 or gp?
3605 Valid gp range conservatively because of alignment issue. */
3607 || (VALID_ITYPE_IMM (symval
)
3609 && VALID_ITYPE_IMM (symval
- gp
+ max_alignment
+ reserve_size
))
3611 && VALID_ITYPE_IMM (symval
- gp
- max_alignment
- reserve_size
))))
3613 unsigned sym
= ELFNN_R_SYM (rel
->r_info
);
3614 switch (ELFNN_R_TYPE (rel
->r_info
))
3616 case R_RISCV_LO12_I
:
3619 /* Change the RS1 to zero. */
3620 bfd_vma insn
= bfd_get_32 (abfd
, contents
+ rel
->r_offset
);
3621 insn
&= ~(OP_MASK_RS1
<< OP_SH_RS1
);
3622 bfd_put_32 (abfd
, insn
, contents
+ rel
->r_offset
);
3625 rel
->r_info
= ELFNN_R_INFO (sym
, R_RISCV_GPREL_I
);
3628 case R_RISCV_LO12_S
:
3631 /* Change the RS1 to zero. */
3632 bfd_vma insn
= bfd_get_32 (abfd
, contents
+ rel
->r_offset
);
3633 insn
&= ~(OP_MASK_RS1
<< OP_SH_RS1
);
3634 bfd_put_32 (abfd
, insn
, contents
+ rel
->r_offset
);
3637 rel
->r_info
= ELFNN_R_INFO (sym
, R_RISCV_GPREL_S
);
3641 /* We can delete the unnecessary LUI and reloc. */
3642 rel
->r_info
= ELFNN_R_INFO (0, R_RISCV_NONE
);
3644 return riscv_relax_delete_bytes (abfd
, sec
, rel
->r_offset
, 4,
3652 /* Can we relax LUI to C.LUI? Alignment might move the section forward;
3653 account for this assuming page alignment at worst. In the presence of
3654 RELRO segment the linker aligns it by one page size, therefore sections
3655 after the segment can be moved more than one page. */
3658 && ELFNN_R_TYPE (rel
->r_info
) == R_RISCV_HI20
3659 && VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (symval
))
3660 && VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (symval
)
3661 + (link_info
->relro
? 2 * ELF_MAXPAGESIZE
3662 : ELF_MAXPAGESIZE
)))
3664 /* Replace LUI with C.LUI if legal (i.e., rd != x0 and rd != x2/sp). */
3665 bfd_vma lui
= bfd_get_32 (abfd
, contents
+ rel
->r_offset
);
3666 unsigned rd
= ((unsigned)lui
>> OP_SH_RD
) & OP_MASK_RD
;
3667 if (rd
== 0 || rd
== X_SP
)
3670 lui
= (lui
& (OP_MASK_RD
<< OP_SH_RD
)) | MATCH_C_LUI
;
3671 bfd_put_32 (abfd
, lui
, contents
+ rel
->r_offset
);
3673 /* Replace the R_RISCV_HI20 reloc. */
3674 rel
->r_info
= ELFNN_R_INFO (ELFNN_R_SYM (rel
->r_info
), R_RISCV_RVC_LUI
);
3677 return riscv_relax_delete_bytes (abfd
, sec
, rel
->r_offset
+ 2, 2,
3684 /* Relax non-PIC TLS references. */
3687 _bfd_riscv_relax_tls_le (bfd
*abfd
,
3689 asection
*sym_sec ATTRIBUTE_UNUSED
,
3690 struct bfd_link_info
*link_info
,
3691 Elf_Internal_Rela
*rel
,
3693 bfd_vma max_alignment ATTRIBUTE_UNUSED
,
3694 bfd_vma reserve_size ATTRIBUTE_UNUSED
,
3696 riscv_pcgp_relocs
*prcel_relocs ATTRIBUTE_UNUSED
,
3697 bfd_boolean undefined_weak ATTRIBUTE_UNUSED
)
3699 /* See if this symbol is in range of tp. */
3700 if (RISCV_CONST_HIGH_PART (tpoff (link_info
, symval
)) != 0)
3703 BFD_ASSERT (rel
->r_offset
+ 4 <= sec
->size
);
3704 switch (ELFNN_R_TYPE (rel
->r_info
))
3706 case R_RISCV_TPREL_LO12_I
:
3707 rel
->r_info
= ELFNN_R_INFO (ELFNN_R_SYM (rel
->r_info
), R_RISCV_TPREL_I
);
3710 case R_RISCV_TPREL_LO12_S
:
3711 rel
->r_info
= ELFNN_R_INFO (ELFNN_R_SYM (rel
->r_info
), R_RISCV_TPREL_S
);
3714 case R_RISCV_TPREL_HI20
:
3715 case R_RISCV_TPREL_ADD
:
3716 /* We can delete the unnecessary instruction and reloc. */
3717 rel
->r_info
= ELFNN_R_INFO (0, R_RISCV_NONE
);
3719 return riscv_relax_delete_bytes (abfd
, sec
, rel
->r_offset
, 4, link_info
);
3726 /* Implement R_RISCV_ALIGN by deleting excess alignment NOPs. */
3729 _bfd_riscv_relax_align (bfd
*abfd
, asection
*sec
,
3731 struct bfd_link_info
*link_info
,
3732 Elf_Internal_Rela
*rel
,
3734 bfd_vma max_alignment ATTRIBUTE_UNUSED
,
3735 bfd_vma reserve_size ATTRIBUTE_UNUSED
,
3736 bfd_boolean
*again ATTRIBUTE_UNUSED
,
3737 riscv_pcgp_relocs
*pcrel_relocs ATTRIBUTE_UNUSED
,
3738 bfd_boolean undefined_weak ATTRIBUTE_UNUSED
)
3740 bfd_byte
*contents
= elf_section_data (sec
)->this_hdr
.contents
;
3741 bfd_vma alignment
= 1, pos
;
3742 while (alignment
<= rel
->r_addend
)
3745 symval
-= rel
->r_addend
;
3746 bfd_vma aligned_addr
= ((symval
- 1) & ~(alignment
- 1)) + alignment
;
3747 bfd_vma nop_bytes
= aligned_addr
- symval
;
3749 /* Once we've handled an R_RISCV_ALIGN, we can't relax anything else. */
3750 sec
->sec_flg0
= TRUE
;
3752 /* Make sure there are enough NOPs to actually achieve the alignment. */
3753 if (rel
->r_addend
< nop_bytes
)
3756 (_("%pB(%pA+%#" PRIx64
"): %" PRId64
" bytes required for alignment "
3757 "to %" PRId64
"-byte boundary, but only %" PRId64
" present"),
3758 abfd
, sym_sec
, (uint64_t) rel
->r_offset
,
3759 (int64_t) nop_bytes
, (int64_t) alignment
, (int64_t) rel
->r_addend
);
3760 bfd_set_error (bfd_error_bad_value
);
3764 /* Delete the reloc. */
3765 rel
->r_info
= ELFNN_R_INFO (0, R_RISCV_NONE
);
3767 /* If the number of NOPs is already correct, there's nothing to do. */
3768 if (nop_bytes
== rel
->r_addend
)
3771 /* Write as many RISC-V NOPs as we need. */
3772 for (pos
= 0; pos
< (nop_bytes
& -4); pos
+= 4)
3773 bfd_put_32 (abfd
, RISCV_NOP
, contents
+ rel
->r_offset
+ pos
);
3775 /* Write a final RVC NOP if need be. */
3776 if (nop_bytes
% 4 != 0)
3777 bfd_put_16 (abfd
, RVC_NOP
, contents
+ rel
->r_offset
+ pos
);
3779 /* Delete the excess bytes. */
3780 return riscv_relax_delete_bytes (abfd
, sec
, rel
->r_offset
+ nop_bytes
,
3781 rel
->r_addend
- nop_bytes
, link_info
);
3784 /* Relax PC-relative references to GP-relative references. */
3787 _bfd_riscv_relax_pc (bfd
*abfd ATTRIBUTE_UNUSED
,
3790 struct bfd_link_info
*link_info
,
3791 Elf_Internal_Rela
*rel
,
3793 bfd_vma max_alignment
,
3794 bfd_vma reserve_size
,
3795 bfd_boolean
*again ATTRIBUTE_UNUSED
,
3796 riscv_pcgp_relocs
*pcgp_relocs
,
3797 bfd_boolean undefined_weak
)
3799 bfd_byte
*contents
= elf_section_data (sec
)->this_hdr
.contents
;
3800 bfd_vma gp
= riscv_global_pointer_value (link_info
);
3802 BFD_ASSERT (rel
->r_offset
+ 4 <= sec
->size
);
3804 /* Chain the _LO relocs to their cooresponding _HI reloc to compute the
3805 * actual target address. */
3806 riscv_pcgp_hi_reloc hi_reloc
;
3807 memset (&hi_reloc
, 0, sizeof (hi_reloc
));
3808 switch (ELFNN_R_TYPE (rel
->r_info
))
3810 case R_RISCV_PCREL_LO12_I
:
3811 case R_RISCV_PCREL_LO12_S
:
3813 /* If the %lo has an addend, it isn't for the label pointing at the
3814 hi part instruction, but rather for the symbol pointed at by the
3815 hi part instruction. So we must subtract it here for the lookup.
3816 It is still used below in the final symbol address. */
3817 bfd_vma hi_sec_off
= symval
- sec_addr (sym_sec
) - rel
->r_addend
;
3818 riscv_pcgp_hi_reloc
*hi
= riscv_find_pcgp_hi_reloc (pcgp_relocs
,
3822 riscv_record_pcgp_lo_reloc (pcgp_relocs
, hi_sec_off
);
3827 symval
= hi_reloc
.hi_addr
;
3828 sym_sec
= hi_reloc
.sym_sec
;
3830 /* We can not know whether the undefined weak symbol is referenced
3831 according to the information of R_RISCV_PCREL_LO12_I/S. Therefore,
3832 we have to record the 'undefined_weak' flag when handling the
3833 corresponding R_RISCV_HI20 reloc in riscv_record_pcgp_hi_reloc. */
3834 undefined_weak
= hi_reloc
.undefined_weak
;
3838 case R_RISCV_PCREL_HI20
:
3839 /* Mergeable symbols and code might later move out of range. */
3840 if (! undefined_weak
3841 && sym_sec
->flags
& (SEC_MERGE
| SEC_CODE
))
3844 /* If the cooresponding lo relocation has already been seen then it's not
3845 * safe to relax this relocation. */
3846 if (riscv_find_pcgp_lo_reloc (pcgp_relocs
, rel
->r_offset
))
3857 /* If gp and the symbol are in the same output section, which is not the
3858 abs section, then consider only that output section's alignment. */
3859 struct bfd_link_hash_entry
*h
=
3860 bfd_link_hash_lookup (link_info
->hash
, RISCV_GP_SYMBOL
, FALSE
, FALSE
,
3862 if (h
->u
.def
.section
->output_section
== sym_sec
->output_section
3863 && sym_sec
->output_section
!= bfd_abs_section_ptr
)
3864 max_alignment
= (bfd_vma
) 1 << sym_sec
->output_section
->alignment_power
;
3867 /* Is the reference in range of x0 or gp?
3868 Valid gp range conservatively because of alignment issue. */
3870 || (VALID_ITYPE_IMM (symval
)
3872 && VALID_ITYPE_IMM (symval
- gp
+ max_alignment
+ reserve_size
))
3874 && VALID_ITYPE_IMM (symval
- gp
- max_alignment
- reserve_size
))))
3876 unsigned sym
= hi_reloc
.hi_sym
;
3877 switch (ELFNN_R_TYPE (rel
->r_info
))
3879 case R_RISCV_PCREL_LO12_I
:
3882 /* Change the RS1 to zero, and then modify the relocation
3883 type to R_RISCV_LO12_I. */
3884 bfd_vma insn
= bfd_get_32 (abfd
, contents
+ rel
->r_offset
);
3885 insn
&= ~(OP_MASK_RS1
<< OP_SH_RS1
);
3886 bfd_put_32 (abfd
, insn
, contents
+ rel
->r_offset
);
3887 rel
->r_info
= ELFNN_R_INFO (sym
, R_RISCV_LO12_I
);
3888 rel
->r_addend
= hi_reloc
.hi_addend
;
3892 rel
->r_info
= ELFNN_R_INFO (sym
, R_RISCV_GPREL_I
);
3893 rel
->r_addend
+= hi_reloc
.hi_addend
;
3897 case R_RISCV_PCREL_LO12_S
:
3900 /* Change the RS1 to zero, and then modify the relocation
3901 type to R_RISCV_LO12_S. */
3902 bfd_vma insn
= bfd_get_32 (abfd
, contents
+ rel
->r_offset
);
3903 insn
&= ~(OP_MASK_RS1
<< OP_SH_RS1
);
3904 bfd_put_32 (abfd
, insn
, contents
+ rel
->r_offset
);
3905 rel
->r_info
= ELFNN_R_INFO (sym
, R_RISCV_LO12_S
);
3906 rel
->r_addend
= hi_reloc
.hi_addend
;
3910 rel
->r_info
= ELFNN_R_INFO (sym
, R_RISCV_GPREL_S
);
3911 rel
->r_addend
+= hi_reloc
.hi_addend
;
3915 case R_RISCV_PCREL_HI20
:
3916 riscv_record_pcgp_hi_reloc (pcgp_relocs
,
3920 ELFNN_R_SYM(rel
->r_info
),
3923 /* We can delete the unnecessary AUIPC and reloc. */
3924 rel
->r_info
= ELFNN_R_INFO (0, R_RISCV_DELETE
);
3936 /* Relax PC-relative references to GP-relative references. */
3939 _bfd_riscv_relax_delete (bfd
*abfd
,
3941 asection
*sym_sec ATTRIBUTE_UNUSED
,
3942 struct bfd_link_info
*link_info
,
3943 Elf_Internal_Rela
*rel
,
3944 bfd_vma symval ATTRIBUTE_UNUSED
,
3945 bfd_vma max_alignment ATTRIBUTE_UNUSED
,
3946 bfd_vma reserve_size ATTRIBUTE_UNUSED
,
3947 bfd_boolean
*again ATTRIBUTE_UNUSED
,
3948 riscv_pcgp_relocs
*pcgp_relocs ATTRIBUTE_UNUSED
,
3949 bfd_boolean undefined_weak ATTRIBUTE_UNUSED
)
3951 if (!riscv_relax_delete_bytes(abfd
, sec
, rel
->r_offset
, rel
->r_addend
,
3954 rel
->r_info
= ELFNN_R_INFO(0, R_RISCV_NONE
);
3958 /* Relax a section. Pass 0 shortens code sequences unless disabled. Pass 1
3959 deletes the bytes that pass 0 made obselete. Pass 2, which cannot be
3960 disabled, handles code alignment directives. */
3963 _bfd_riscv_relax_section (bfd
*abfd
, asection
*sec
,
3964 struct bfd_link_info
*info
,
3967 Elf_Internal_Shdr
*symtab_hdr
= &elf_symtab_hdr (abfd
);
3968 struct riscv_elf_link_hash_table
*htab
= riscv_elf_hash_table (info
);
3969 struct bfd_elf_section_data
*data
= elf_section_data (sec
);
3970 Elf_Internal_Rela
*relocs
;
3971 bfd_boolean ret
= FALSE
;
3973 bfd_vma max_alignment
, reserve_size
= 0;
3974 riscv_pcgp_relocs pcgp_relocs
;
3978 if (bfd_link_relocatable (info
)
3980 || (sec
->flags
& SEC_RELOC
) == 0
3981 || sec
->reloc_count
== 0
3982 || (info
->disable_target_specific_optimizations
3983 && info
->relax_pass
== 0))
3986 riscv_init_pcgp_relocs (&pcgp_relocs
);
3988 /* Read this BFD's relocs if we haven't done so already. */
3990 relocs
= data
->relocs
;
3991 else if (!(relocs
= _bfd_elf_link_read_relocs (abfd
, sec
, NULL
, NULL
,
3992 info
->keep_memory
)))
3997 max_alignment
= htab
->max_alignment
;
3998 if (max_alignment
== (bfd_vma
) -1)
4000 max_alignment
= _bfd_riscv_get_max_alignment (sec
);
4001 htab
->max_alignment
= max_alignment
;
4005 max_alignment
= _bfd_riscv_get_max_alignment (sec
);
4007 /* Examine and consider relaxing each reloc. */
4008 for (i
= 0; i
< sec
->reloc_count
; i
++)
4011 Elf_Internal_Rela
*rel
= relocs
+ i
;
4012 relax_func_t relax_func
;
4013 int type
= ELFNN_R_TYPE (rel
->r_info
);
4016 bfd_boolean undefined_weak
= FALSE
;
4019 if (info
->relax_pass
== 0)
4021 if (type
== R_RISCV_CALL
|| type
== R_RISCV_CALL_PLT
)
4022 relax_func
= _bfd_riscv_relax_call
;
4023 else if (type
== R_RISCV_HI20
4024 || type
== R_RISCV_LO12_I
4025 || type
== R_RISCV_LO12_S
)
4026 relax_func
= _bfd_riscv_relax_lui
;
4027 else if (!bfd_link_pic(info
)
4028 && (type
== R_RISCV_PCREL_HI20
4029 || type
== R_RISCV_PCREL_LO12_I
4030 || type
== R_RISCV_PCREL_LO12_S
))
4031 relax_func
= _bfd_riscv_relax_pc
;
4032 else if (type
== R_RISCV_TPREL_HI20
4033 || type
== R_RISCV_TPREL_ADD
4034 || type
== R_RISCV_TPREL_LO12_I
4035 || type
== R_RISCV_TPREL_LO12_S
)
4036 relax_func
= _bfd_riscv_relax_tls_le
;
4040 /* Only relax this reloc if it is paired with R_RISCV_RELAX. */
4041 if (i
== sec
->reloc_count
- 1
4042 || ELFNN_R_TYPE ((rel
+ 1)->r_info
) != R_RISCV_RELAX
4043 || rel
->r_offset
!= (rel
+ 1)->r_offset
)
4046 /* Skip over the R_RISCV_RELAX. */
4049 else if (info
->relax_pass
== 1 && type
== R_RISCV_DELETE
)
4050 relax_func
= _bfd_riscv_relax_delete
;
4051 else if (info
->relax_pass
== 2 && type
== R_RISCV_ALIGN
)
4052 relax_func
= _bfd_riscv_relax_align
;
4056 data
->relocs
= relocs
;
4058 /* Read this BFD's contents if we haven't done so already. */
4059 if (!data
->this_hdr
.contents
4060 && !bfd_malloc_and_get_section (abfd
, sec
, &data
->this_hdr
.contents
))
4063 /* Read this BFD's symbols if we haven't done so already. */
4064 if (symtab_hdr
->sh_info
!= 0
4065 && !symtab_hdr
->contents
4066 && !(symtab_hdr
->contents
=
4067 (unsigned char *) bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
4068 symtab_hdr
->sh_info
,
4069 0, NULL
, NULL
, NULL
)))
4072 /* Get the value of the symbol referred to by the reloc. */
4073 if (ELFNN_R_SYM (rel
->r_info
) < symtab_hdr
->sh_info
)
4075 /* A local symbol. */
4076 Elf_Internal_Sym
*isym
= ((Elf_Internal_Sym
*) symtab_hdr
->contents
4077 + ELFNN_R_SYM (rel
->r_info
));
4078 reserve_size
= (isym
->st_size
- rel
->r_addend
) > isym
->st_size
4079 ? 0 : isym
->st_size
- rel
->r_addend
;
4081 if (isym
->st_shndx
== SHN_UNDEF
)
4082 sym_sec
= sec
, symval
= rel
->r_offset
;
4085 BFD_ASSERT (isym
->st_shndx
< elf_numsections (abfd
));
4086 sym_sec
= elf_elfsections (abfd
)[isym
->st_shndx
]->bfd_section
;
4088 /* The purpose of this code is unknown. It breaks linker scripts
4089 for embedded development that place sections at address zero.
4090 This code is believed to be unnecessary. Disabling it but not
4091 yet removing it, in case something breaks. */
4092 if (sec_addr (sym_sec
) == 0)
4095 symval
= isym
->st_value
;
4097 symtype
= ELF_ST_TYPE (isym
->st_info
);
4102 struct elf_link_hash_entry
*h
;
4104 indx
= ELFNN_R_SYM (rel
->r_info
) - symtab_hdr
->sh_info
;
4105 h
= elf_sym_hashes (abfd
)[indx
];
4107 while (h
->root
.type
== bfd_link_hash_indirect
4108 || h
->root
.type
== bfd_link_hash_warning
)
4109 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4111 if (h
->root
.type
== bfd_link_hash_undefweak
4112 && (relax_func
== _bfd_riscv_relax_lui
4113 || relax_func
== _bfd_riscv_relax_pc
))
4115 /* For the lui and auipc relaxations, since the symbol
4116 value of an undefined weak symbol is always be zero,
4117 we can optimize the patterns into a single LI/MV/ADDI
4120 Note that, creating shared libraries and pie output may
4121 break the rule above. Fortunately, since we do not relax
4122 pc relocs when creating shared libraries and pie output,
4123 and the absolute address access for R_RISCV_HI20 isn't
4124 allowed when "-fPIC" is set, the problem of creating shared
4125 libraries can not happen currently. Once we support the
4126 auipc relaxations when creating shared libraries, then we will
4127 need the more rigorous checking for this optimization. */
4128 undefined_weak
= TRUE
;
4131 if (h
->plt
.offset
!= MINUS_ONE
)
4133 sym_sec
= htab
->elf
.splt
;
4134 symval
= h
->plt
.offset
;
4136 else if (undefined_weak
)
4139 sym_sec
= bfd_und_section_ptr
;
4141 else if (h
->root
.u
.def
.section
->output_section
== NULL
4142 || (h
->root
.type
!= bfd_link_hash_defined
4143 && h
->root
.type
!= bfd_link_hash_defweak
))
4147 symval
= h
->root
.u
.def
.value
;
4148 sym_sec
= h
->root
.u
.def
.section
;
4151 if (h
->type
!= STT_FUNC
)
4153 (h
->size
- rel
->r_addend
) > h
->size
? 0 : h
->size
- rel
->r_addend
;
4157 if (sym_sec
->sec_info_type
== SEC_INFO_TYPE_MERGE
4158 && (sym_sec
->flags
& SEC_MERGE
))
4160 /* At this stage in linking, no SEC_MERGE symbol has been
4161 adjusted, so all references to such symbols need to be
4162 passed through _bfd_merged_section_offset. (Later, in
4163 relocate_section, all SEC_MERGE symbols *except* for
4164 section symbols have been adjusted.)
4166 gas may reduce relocations against symbols in SEC_MERGE
4167 sections to a relocation against the section symbol when
4168 the original addend was zero. When the reloc is against
4169 a section symbol we should include the addend in the
4170 offset passed to _bfd_merged_section_offset, since the
4171 location of interest is the original symbol. On the
4172 other hand, an access to "sym+addend" where "sym" is not
4173 a section symbol should not include the addend; Such an
4174 access is presumed to be an offset from "sym"; The
4175 location of interest is just "sym". */
4176 if (symtype
== STT_SECTION
)
4177 symval
+= rel
->r_addend
;
4179 symval
= _bfd_merged_section_offset (abfd
, &sym_sec
,
4180 elf_section_data (sym_sec
)->sec_info
,
4183 if (symtype
!= STT_SECTION
)
4184 symval
+= rel
->r_addend
;
4187 symval
+= rel
->r_addend
;
4189 symval
+= sec_addr (sym_sec
);
4191 if (!relax_func (abfd
, sec
, sym_sec
, info
, rel
, symval
,
4192 max_alignment
, reserve_size
, again
,
4193 &pcgp_relocs
, undefined_weak
))
4200 if (relocs
!= data
->relocs
)
4202 riscv_free_pcgp_relocs(&pcgp_relocs
, abfd
, sec
);
4208 # define PRSTATUS_SIZE 204
4209 # define PRSTATUS_OFFSET_PR_CURSIG 12
4210 # define PRSTATUS_OFFSET_PR_PID 24
4211 # define PRSTATUS_OFFSET_PR_REG 72
4212 # define ELF_GREGSET_T_SIZE 128
4213 # define PRPSINFO_SIZE 128
4214 # define PRPSINFO_OFFSET_PR_PID 16
4215 # define PRPSINFO_OFFSET_PR_FNAME 32
4216 # define PRPSINFO_OFFSET_PR_PSARGS 48
4218 # define PRSTATUS_SIZE 376
4219 # define PRSTATUS_OFFSET_PR_CURSIG 12
4220 # define PRSTATUS_OFFSET_PR_PID 32
4221 # define PRSTATUS_OFFSET_PR_REG 112
4222 # define ELF_GREGSET_T_SIZE 256
4223 # define PRPSINFO_SIZE 136
4224 # define PRPSINFO_OFFSET_PR_PID 24
4225 # define PRPSINFO_OFFSET_PR_FNAME 40
4226 # define PRPSINFO_OFFSET_PR_PSARGS 56
4229 /* Support for core dump NOTE sections. */
4232 riscv_elf_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
4234 switch (note
->descsz
)
4239 case PRSTATUS_SIZE
: /* sizeof(struct elf_prstatus) on Linux/RISC-V. */
4241 elf_tdata (abfd
)->core
->signal
4242 = bfd_get_16 (abfd
, note
->descdata
+ PRSTATUS_OFFSET_PR_CURSIG
);
4245 elf_tdata (abfd
)->core
->lwpid
4246 = bfd_get_32 (abfd
, note
->descdata
+ PRSTATUS_OFFSET_PR_PID
);
4250 /* Make a ".reg/999" section. */
4251 return _bfd_elfcore_make_pseudosection (abfd
, ".reg", ELF_GREGSET_T_SIZE
,
4252 note
->descpos
+ PRSTATUS_OFFSET_PR_REG
);
4256 riscv_elf_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
4258 switch (note
->descsz
)
4263 case PRPSINFO_SIZE
: /* sizeof(struct elf_prpsinfo) on Linux/RISC-V. */
4265 elf_tdata (abfd
)->core
->pid
4266 = bfd_get_32 (abfd
, note
->descdata
+ PRPSINFO_OFFSET_PR_PID
);
4269 elf_tdata (abfd
)->core
->program
= _bfd_elfcore_strndup
4270 (abfd
, note
->descdata
+ PRPSINFO_OFFSET_PR_FNAME
, 16);
4273 elf_tdata (abfd
)->core
->command
= _bfd_elfcore_strndup
4274 (abfd
, note
->descdata
+ PRPSINFO_OFFSET_PR_PSARGS
, 80);
4278 /* Note that for some reason, a spurious space is tacked
4279 onto the end of the args in some (at least one anyway)
4280 implementations, so strip it off if it exists. */
4283 char *command
= elf_tdata (abfd
)->core
->command
;
4284 int n
= strlen (command
);
4286 if (0 < n
&& command
[n
- 1] == ' ')
4287 command
[n
- 1] = '\0';
4293 /* Set the right mach type. */
4295 riscv_elf_object_p (bfd
*abfd
)
4297 /* There are only two mach types in RISCV currently. */
4298 if (strcmp (abfd
->xvec
->name
, "elf32-littleriscv") == 0)
4299 bfd_default_set_arch_mach (abfd
, bfd_arch_riscv
, bfd_mach_riscv32
);
4301 bfd_default_set_arch_mach (abfd
, bfd_arch_riscv
, bfd_mach_riscv64
);
4306 /* Determine whether an object attribute tag takes an integer, a
4310 riscv_elf_obj_attrs_arg_type (int tag
)
4312 return (tag
& 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL
: ATTR_TYPE_FLAG_INT_VAL
;
4315 #define TARGET_LITTLE_SYM riscv_elfNN_vec
4316 #define TARGET_LITTLE_NAME "elfNN-littleriscv"
4318 #define elf_backend_reloc_type_class riscv_reloc_type_class
4320 #define bfd_elfNN_bfd_reloc_name_lookup riscv_reloc_name_lookup
4321 #define bfd_elfNN_bfd_link_hash_table_create riscv_elf_link_hash_table_create
4322 #define bfd_elfNN_bfd_reloc_type_lookup riscv_reloc_type_lookup
4323 #define bfd_elfNN_bfd_merge_private_bfd_data \
4324 _bfd_riscv_elf_merge_private_bfd_data
4326 #define elf_backend_copy_indirect_symbol riscv_elf_copy_indirect_symbol
4327 #define elf_backend_create_dynamic_sections riscv_elf_create_dynamic_sections
4328 #define elf_backend_check_relocs riscv_elf_check_relocs
4329 #define elf_backend_adjust_dynamic_symbol riscv_elf_adjust_dynamic_symbol
4330 #define elf_backend_size_dynamic_sections riscv_elf_size_dynamic_sections
4331 #define elf_backend_relocate_section riscv_elf_relocate_section
4332 #define elf_backend_finish_dynamic_symbol riscv_elf_finish_dynamic_symbol
4333 #define elf_backend_finish_dynamic_sections riscv_elf_finish_dynamic_sections
4334 #define elf_backend_gc_mark_hook riscv_elf_gc_mark_hook
4335 #define elf_backend_plt_sym_val riscv_elf_plt_sym_val
4336 #define elf_backend_grok_prstatus riscv_elf_grok_prstatus
4337 #define elf_backend_grok_psinfo riscv_elf_grok_psinfo
4338 #define elf_backend_object_p riscv_elf_object_p
4339 #define elf_info_to_howto_rel NULL
4340 #define elf_info_to_howto riscv_info_to_howto_rela
4341 #define bfd_elfNN_bfd_relax_section _bfd_riscv_relax_section
4343 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4345 #define elf_backend_can_gc_sections 1
4346 #define elf_backend_can_refcount 1
4347 #define elf_backend_want_got_plt 1
4348 #define elf_backend_plt_readonly 1
4349 #define elf_backend_plt_alignment 4
4350 #define elf_backend_want_plt_sym 1
4351 #define elf_backend_got_header_size (ARCH_SIZE / 8)
4352 #define elf_backend_want_dynrelro 1
4353 #define elf_backend_rela_normal 1
4354 #define elf_backend_default_execstack 0
4356 #undef elf_backend_obj_attrs_vendor
4357 #define elf_backend_obj_attrs_vendor "riscv"
4358 #undef elf_backend_obj_attrs_arg_type
4359 #define elf_backend_obj_attrs_arg_type riscv_elf_obj_attrs_arg_type
4360 #undef elf_backend_obj_attrs_section_type
4361 #define elf_backend_obj_attrs_section_type SHT_RISCV_ATTRIBUTES
4362 #undef elf_backend_obj_attrs_section
4363 #define elf_backend_obj_attrs_section ".riscv.attributes"
4365 #include "elfNN-target.h"