63c131649b62201df93de302807e1720192b5c0b
[deliverable/binutils-gdb.git] / bfd / elfxx-ia64.c
1 /* IA-64 support for 64-bit ELF
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4 Contributed by David Mosberger-Tang <davidm@hpl.hp.com>
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "opcode/ia64.h"
27 #include "elf/ia64.h"
28 #include "objalloc.h"
29 #include "hashtab.h"
30
31 #define ARCH_SIZE NN
32
33 #if ARCH_SIZE == 64
34 #define LOG_SECTION_ALIGN 3
35 #endif
36
37 #if ARCH_SIZE == 32
38 #define LOG_SECTION_ALIGN 2
39 #endif
40
41 /* THE RULES for all the stuff the linker creates --
42
43 GOT Entries created in response to LTOFF or LTOFF_FPTR
44 relocations. Dynamic relocs created for dynamic
45 symbols in an application; REL relocs for locals
46 in a shared library.
47
48 FPTR The canonical function descriptor. Created for local
49 symbols in applications. Descriptors for dynamic symbols
50 and local symbols in shared libraries are created by
51 ld.so. Thus there are no dynamic relocs against these
52 objects. The FPTR relocs for such _are_ passed through
53 to the dynamic relocation tables.
54
55 FULL_PLT Created for a PCREL21B relocation against a dynamic symbol.
56 Requires the creation of a PLTOFF entry. This does not
57 require any dynamic relocations.
58
59 PLTOFF Created by PLTOFF relocations. For local symbols, this
60 is an alternate function descriptor, and in shared libraries
61 requires two REL relocations. Note that this cannot be
62 transformed into an FPTR relocation, since it must be in
63 range of the GP. For dynamic symbols, this is a function
64 descriptor for a MIN_PLT entry, and requires one IPLT reloc.
65
66 MIN_PLT Created by PLTOFF entries against dynamic symbols. This
67 does not require dynamic relocations. */
68
69 #define NELEMS(a) ((int) (sizeof (a) / sizeof ((a)[0])))
70
71 typedef struct bfd_hash_entry *(*new_hash_entry_func)
72 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
73
74 /* In dynamically (linker-) created sections, we generally need to keep track
75 of the place a symbol or expression got allocated to. This is done via hash
76 tables that store entries of the following type. */
77
78 struct elfNN_ia64_dyn_sym_info
79 {
80 /* The addend for which this entry is relevant. */
81 bfd_vma addend;
82
83 /* Next addend in the list. */
84 struct elfNN_ia64_dyn_sym_info *next;
85
86 bfd_vma got_offset;
87 bfd_vma fptr_offset;
88 bfd_vma pltoff_offset;
89 bfd_vma plt_offset;
90 bfd_vma plt2_offset;
91 bfd_vma tprel_offset;
92 bfd_vma dtpmod_offset;
93 bfd_vma dtprel_offset;
94
95 /* The symbol table entry, if any, that this was derived from. */
96 struct elf_link_hash_entry *h;
97
98 /* Used to count non-got, non-plt relocations for delayed sizing
99 of relocation sections. */
100 struct elfNN_ia64_dyn_reloc_entry
101 {
102 struct elfNN_ia64_dyn_reloc_entry *next;
103 asection *srel;
104 int type;
105 int count;
106
107 /* Is this reloc against readonly section? */
108 bfd_boolean reltext;
109 } *reloc_entries;
110
111 /* TRUE when the section contents have been updated. */
112 unsigned got_done : 1;
113 unsigned fptr_done : 1;
114 unsigned pltoff_done : 1;
115 unsigned tprel_done : 1;
116 unsigned dtpmod_done : 1;
117 unsigned dtprel_done : 1;
118
119 /* TRUE for the different kinds of linker data we want created. */
120 unsigned want_got : 1;
121 unsigned want_gotx : 1;
122 unsigned want_fptr : 1;
123 unsigned want_ltoff_fptr : 1;
124 unsigned want_plt : 1;
125 unsigned want_plt2 : 1;
126 unsigned want_pltoff : 1;
127 unsigned want_tprel : 1;
128 unsigned want_dtpmod : 1;
129 unsigned want_dtprel : 1;
130 };
131
132 struct elfNN_ia64_local_hash_entry
133 {
134 int id;
135 unsigned int r_sym;
136 struct elfNN_ia64_dyn_sym_info *info;
137
138 /* TRUE if this hash entry's addends was translated for
139 SHF_MERGE optimization. */
140 unsigned sec_merge_done : 1;
141 };
142
143 struct elfNN_ia64_link_hash_entry
144 {
145 struct elf_link_hash_entry root;
146 struct elfNN_ia64_dyn_sym_info *info;
147 };
148
149 struct elfNN_ia64_link_hash_table
150 {
151 /* The main hash table. */
152 struct elf_link_hash_table root;
153
154 asection *got_sec; /* the linkage table section (or NULL) */
155 asection *rel_got_sec; /* dynamic relocation section for same */
156 asection *fptr_sec; /* function descriptor table (or NULL) */
157 asection *rel_fptr_sec; /* dynamic relocation section for same */
158 asection *plt_sec; /* the primary plt section (or NULL) */
159 asection *pltoff_sec; /* private descriptors for plt (or NULL) */
160 asection *rel_pltoff_sec; /* dynamic relocation section for same */
161
162 bfd_size_type minplt_entries; /* number of minplt entries */
163 unsigned reltext : 1; /* are there relocs against readonly sections? */
164 unsigned self_dtpmod_done : 1;/* has self DTPMOD entry been finished? */
165 bfd_vma self_dtpmod_offset; /* .got offset to self DTPMOD entry */
166
167 htab_t loc_hash_table;
168 void *loc_hash_memory;
169 };
170
171 struct elfNN_ia64_allocate_data
172 {
173 struct bfd_link_info *info;
174 bfd_size_type ofs;
175 bfd_boolean only_got;
176 };
177
178 #define elfNN_ia64_hash_table(p) \
179 ((struct elfNN_ia64_link_hash_table *) ((p)->hash))
180
181 static bfd_reloc_status_type elfNN_ia64_reloc
182 PARAMS ((bfd *abfd, arelent *reloc, asymbol *sym, PTR data,
183 asection *input_section, bfd *output_bfd, char **error_message));
184 static reloc_howto_type * lookup_howto
185 PARAMS ((unsigned int rtype));
186 static reloc_howto_type *elfNN_ia64_reloc_type_lookup
187 PARAMS ((bfd *abfd, bfd_reloc_code_real_type bfd_code));
188 static void elfNN_ia64_info_to_howto
189 PARAMS ((bfd *abfd, arelent *bfd_reloc, Elf_Internal_Rela *elf_reloc));
190 static bfd_boolean elfNN_ia64_relax_section
191 PARAMS((bfd *abfd, asection *sec, struct bfd_link_info *link_info,
192 bfd_boolean *again));
193 static void elfNN_ia64_relax_ldxmov
194 PARAMS((bfd_byte *contents, bfd_vma off));
195 static bfd_boolean is_unwind_section_name
196 PARAMS ((bfd *abfd, const char *));
197 static bfd_boolean elfNN_ia64_section_flags
198 PARAMS ((flagword *, const Elf_Internal_Shdr *));
199 static bfd_boolean elfNN_ia64_fake_sections
200 PARAMS ((bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec));
201 static void elfNN_ia64_final_write_processing
202 PARAMS ((bfd *abfd, bfd_boolean linker));
203 static bfd_boolean elfNN_ia64_add_symbol_hook
204 PARAMS ((bfd *abfd, struct bfd_link_info *info, Elf_Internal_Sym *sym,
205 const char **namep, flagword *flagsp, asection **secp,
206 bfd_vma *valp));
207 static int elfNN_ia64_additional_program_headers
208 PARAMS ((bfd *abfd));
209 static bfd_boolean elfNN_ia64_modify_segment_map
210 PARAMS ((bfd *, struct bfd_link_info *));
211 static bfd_boolean elfNN_ia64_is_local_label_name
212 PARAMS ((bfd *abfd, const char *name));
213 static bfd_boolean elfNN_ia64_dynamic_symbol_p
214 PARAMS ((struct elf_link_hash_entry *h, struct bfd_link_info *info, int));
215 static struct bfd_hash_entry *elfNN_ia64_new_elf_hash_entry
216 PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
217 const char *string));
218 static void elfNN_ia64_hash_copy_indirect
219 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *,
220 struct elf_link_hash_entry *));
221 static void elfNN_ia64_hash_hide_symbol
222 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *, bfd_boolean));
223 static hashval_t elfNN_ia64_local_htab_hash PARAMS ((const void *));
224 static int elfNN_ia64_local_htab_eq PARAMS ((const void *ptr1,
225 const void *ptr2));
226 static struct bfd_link_hash_table *elfNN_ia64_hash_table_create
227 PARAMS ((bfd *abfd));
228 static void elfNN_ia64_hash_table_free
229 PARAMS ((struct bfd_link_hash_table *hash));
230 static bfd_boolean elfNN_ia64_global_dyn_sym_thunk
231 PARAMS ((struct bfd_hash_entry *, PTR));
232 static int elfNN_ia64_local_dyn_sym_thunk
233 PARAMS ((void **, PTR));
234 static void elfNN_ia64_dyn_sym_traverse
235 PARAMS ((struct elfNN_ia64_link_hash_table *ia64_info,
236 bfd_boolean (*func) (struct elfNN_ia64_dyn_sym_info *, PTR),
237 PTR info));
238 static bfd_boolean elfNN_ia64_create_dynamic_sections
239 PARAMS ((bfd *abfd, struct bfd_link_info *info));
240 static struct elfNN_ia64_local_hash_entry * get_local_sym_hash
241 PARAMS ((struct elfNN_ia64_link_hash_table *ia64_info,
242 bfd *abfd, const Elf_Internal_Rela *rel, bfd_boolean create));
243 static struct elfNN_ia64_dyn_sym_info * get_dyn_sym_info
244 PARAMS ((struct elfNN_ia64_link_hash_table *ia64_info,
245 struct elf_link_hash_entry *h,
246 bfd *abfd, const Elf_Internal_Rela *rel, bfd_boolean create));
247 static asection *get_got
248 PARAMS ((bfd *abfd, struct bfd_link_info *info,
249 struct elfNN_ia64_link_hash_table *ia64_info));
250 static asection *get_fptr
251 PARAMS ((bfd *abfd, struct bfd_link_info *info,
252 struct elfNN_ia64_link_hash_table *ia64_info));
253 static asection *get_pltoff
254 PARAMS ((bfd *abfd, struct bfd_link_info *info,
255 struct elfNN_ia64_link_hash_table *ia64_info));
256 static asection *get_reloc_section
257 PARAMS ((bfd *abfd, struct elfNN_ia64_link_hash_table *ia64_info,
258 asection *sec, bfd_boolean create));
259 static bfd_boolean elfNN_ia64_check_relocs
260 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *sec,
261 const Elf_Internal_Rela *relocs));
262 static bfd_boolean elfNN_ia64_adjust_dynamic_symbol
263 PARAMS ((struct bfd_link_info *info, struct elf_link_hash_entry *h));
264 static long global_sym_index
265 PARAMS ((struct elf_link_hash_entry *h));
266 static bfd_boolean allocate_fptr
267 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
268 static bfd_boolean allocate_global_data_got
269 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
270 static bfd_boolean allocate_global_fptr_got
271 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
272 static bfd_boolean allocate_local_got
273 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
274 static bfd_boolean allocate_pltoff_entries
275 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
276 static bfd_boolean allocate_plt_entries
277 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
278 static bfd_boolean allocate_plt2_entries
279 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
280 static bfd_boolean allocate_dynrel_entries
281 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
282 static bfd_boolean elfNN_ia64_size_dynamic_sections
283 PARAMS ((bfd *output_bfd, struct bfd_link_info *info));
284 static bfd_reloc_status_type elfNN_ia64_install_value
285 PARAMS ((bfd_byte *hit_addr, bfd_vma val, unsigned int r_type));
286 static void elfNN_ia64_install_dyn_reloc
287 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *sec,
288 asection *srel, bfd_vma offset, unsigned int type,
289 long dynindx, bfd_vma addend));
290 static bfd_vma set_got_entry
291 PARAMS ((bfd *abfd, struct bfd_link_info *info,
292 struct elfNN_ia64_dyn_sym_info *dyn_i, long dynindx,
293 bfd_vma addend, bfd_vma value, unsigned int dyn_r_type));
294 static bfd_vma set_fptr_entry
295 PARAMS ((bfd *abfd, struct bfd_link_info *info,
296 struct elfNN_ia64_dyn_sym_info *dyn_i,
297 bfd_vma value));
298 static bfd_vma set_pltoff_entry
299 PARAMS ((bfd *abfd, struct bfd_link_info *info,
300 struct elfNN_ia64_dyn_sym_info *dyn_i,
301 bfd_vma value, bfd_boolean));
302 static bfd_vma elfNN_ia64_tprel_base
303 PARAMS ((struct bfd_link_info *info));
304 static bfd_vma elfNN_ia64_dtprel_base
305 PARAMS ((struct bfd_link_info *info));
306 static int elfNN_ia64_unwind_entry_compare
307 PARAMS ((const PTR, const PTR));
308 static bfd_boolean elfNN_ia64_choose_gp
309 PARAMS ((bfd *abfd, struct bfd_link_info *info));
310 static bfd_boolean elfNN_ia64_final_link
311 PARAMS ((bfd *abfd, struct bfd_link_info *info));
312 static bfd_boolean elfNN_ia64_relocate_section
313 PARAMS ((bfd *output_bfd, struct bfd_link_info *info, bfd *input_bfd,
314 asection *input_section, bfd_byte *contents,
315 Elf_Internal_Rela *relocs, Elf_Internal_Sym *local_syms,
316 asection **local_sections));
317 static bfd_boolean elfNN_ia64_finish_dynamic_symbol
318 PARAMS ((bfd *output_bfd, struct bfd_link_info *info,
319 struct elf_link_hash_entry *h, Elf_Internal_Sym *sym));
320 static bfd_boolean elfNN_ia64_finish_dynamic_sections
321 PARAMS ((bfd *abfd, struct bfd_link_info *info));
322 static bfd_boolean elfNN_ia64_set_private_flags
323 PARAMS ((bfd *abfd, flagword flags));
324 static bfd_boolean elfNN_ia64_merge_private_bfd_data
325 PARAMS ((bfd *ibfd, bfd *obfd));
326 static bfd_boolean elfNN_ia64_print_private_bfd_data
327 PARAMS ((bfd *abfd, PTR ptr));
328 static enum elf_reloc_type_class elfNN_ia64_reloc_type_class
329 PARAMS ((const Elf_Internal_Rela *));
330 static bfd_boolean elfNN_ia64_hpux_vec
331 PARAMS ((const bfd_target *vec));
332 static void elfNN_hpux_post_process_headers
333 PARAMS ((bfd *abfd, struct bfd_link_info *info));
334 bfd_boolean elfNN_hpux_backend_section_from_bfd_section
335 PARAMS ((bfd *abfd, asection *sec, int *retval));
336 \f
337 /* ia64-specific relocation. */
338
339 /* Perform a relocation. Not much to do here as all the hard work is
340 done in elfNN_ia64_final_link_relocate. */
341 static bfd_reloc_status_type
342 elfNN_ia64_reloc (abfd, reloc, sym, data, input_section,
343 output_bfd, error_message)
344 bfd *abfd ATTRIBUTE_UNUSED;
345 arelent *reloc;
346 asymbol *sym ATTRIBUTE_UNUSED;
347 PTR data ATTRIBUTE_UNUSED;
348 asection *input_section;
349 bfd *output_bfd;
350 char **error_message;
351 {
352 if (output_bfd)
353 {
354 reloc->address += input_section->output_offset;
355 return bfd_reloc_ok;
356 }
357
358 if (input_section->flags & SEC_DEBUGGING)
359 return bfd_reloc_continue;
360
361 *error_message = "Unsupported call to elfNN_ia64_reloc";
362 return bfd_reloc_notsupported;
363 }
364
365 #define IA64_HOWTO(TYPE, NAME, SIZE, PCREL, IN) \
366 HOWTO (TYPE, 0, SIZE, 0, PCREL, 0, complain_overflow_signed, \
367 elfNN_ia64_reloc, NAME, FALSE, 0, -1, IN)
368
369 /* This table has to be sorted according to increasing number of the
370 TYPE field. */
371 static reloc_howto_type ia64_howto_table[] =
372 {
373 IA64_HOWTO (R_IA64_NONE, "NONE", 0, FALSE, TRUE),
374
375 IA64_HOWTO (R_IA64_IMM14, "IMM14", 0, FALSE, TRUE),
376 IA64_HOWTO (R_IA64_IMM22, "IMM22", 0, FALSE, TRUE),
377 IA64_HOWTO (R_IA64_IMM64, "IMM64", 0, FALSE, TRUE),
378 IA64_HOWTO (R_IA64_DIR32MSB, "DIR32MSB", 2, FALSE, TRUE),
379 IA64_HOWTO (R_IA64_DIR32LSB, "DIR32LSB", 2, FALSE, TRUE),
380 IA64_HOWTO (R_IA64_DIR64MSB, "DIR64MSB", 4, FALSE, TRUE),
381 IA64_HOWTO (R_IA64_DIR64LSB, "DIR64LSB", 4, FALSE, TRUE),
382
383 IA64_HOWTO (R_IA64_GPREL22, "GPREL22", 0, FALSE, TRUE),
384 IA64_HOWTO (R_IA64_GPREL64I, "GPREL64I", 0, FALSE, TRUE),
385 IA64_HOWTO (R_IA64_GPREL32MSB, "GPREL32MSB", 2, FALSE, TRUE),
386 IA64_HOWTO (R_IA64_GPREL32LSB, "GPREL32LSB", 2, FALSE, TRUE),
387 IA64_HOWTO (R_IA64_GPREL64MSB, "GPREL64MSB", 4, FALSE, TRUE),
388 IA64_HOWTO (R_IA64_GPREL64LSB, "GPREL64LSB", 4, FALSE, TRUE),
389
390 IA64_HOWTO (R_IA64_LTOFF22, "LTOFF22", 0, FALSE, TRUE),
391 IA64_HOWTO (R_IA64_LTOFF64I, "LTOFF64I", 0, FALSE, TRUE),
392
393 IA64_HOWTO (R_IA64_PLTOFF22, "PLTOFF22", 0, FALSE, TRUE),
394 IA64_HOWTO (R_IA64_PLTOFF64I, "PLTOFF64I", 0, FALSE, TRUE),
395 IA64_HOWTO (R_IA64_PLTOFF64MSB, "PLTOFF64MSB", 4, FALSE, TRUE),
396 IA64_HOWTO (R_IA64_PLTOFF64LSB, "PLTOFF64LSB", 4, FALSE, TRUE),
397
398 IA64_HOWTO (R_IA64_FPTR64I, "FPTR64I", 0, FALSE, TRUE),
399 IA64_HOWTO (R_IA64_FPTR32MSB, "FPTR32MSB", 2, FALSE, TRUE),
400 IA64_HOWTO (R_IA64_FPTR32LSB, "FPTR32LSB", 2, FALSE, TRUE),
401 IA64_HOWTO (R_IA64_FPTR64MSB, "FPTR64MSB", 4, FALSE, TRUE),
402 IA64_HOWTO (R_IA64_FPTR64LSB, "FPTR64LSB", 4, FALSE, TRUE),
403
404 IA64_HOWTO (R_IA64_PCREL60B, "PCREL60B", 0, TRUE, TRUE),
405 IA64_HOWTO (R_IA64_PCREL21B, "PCREL21B", 0, TRUE, TRUE),
406 IA64_HOWTO (R_IA64_PCREL21M, "PCREL21M", 0, TRUE, TRUE),
407 IA64_HOWTO (R_IA64_PCREL21F, "PCREL21F", 0, TRUE, TRUE),
408 IA64_HOWTO (R_IA64_PCREL32MSB, "PCREL32MSB", 2, TRUE, TRUE),
409 IA64_HOWTO (R_IA64_PCREL32LSB, "PCREL32LSB", 2, TRUE, TRUE),
410 IA64_HOWTO (R_IA64_PCREL64MSB, "PCREL64MSB", 4, TRUE, TRUE),
411 IA64_HOWTO (R_IA64_PCREL64LSB, "PCREL64LSB", 4, TRUE, TRUE),
412
413 IA64_HOWTO (R_IA64_LTOFF_FPTR22, "LTOFF_FPTR22", 0, FALSE, TRUE),
414 IA64_HOWTO (R_IA64_LTOFF_FPTR64I, "LTOFF_FPTR64I", 0, FALSE, TRUE),
415 IA64_HOWTO (R_IA64_LTOFF_FPTR32MSB, "LTOFF_FPTR32MSB", 2, FALSE, TRUE),
416 IA64_HOWTO (R_IA64_LTOFF_FPTR32LSB, "LTOFF_FPTR32LSB", 2, FALSE, TRUE),
417 IA64_HOWTO (R_IA64_LTOFF_FPTR64MSB, "LTOFF_FPTR64MSB", 4, FALSE, TRUE),
418 IA64_HOWTO (R_IA64_LTOFF_FPTR64LSB, "LTOFF_FPTR64LSB", 4, FALSE, TRUE),
419
420 IA64_HOWTO (R_IA64_SEGREL32MSB, "SEGREL32MSB", 2, FALSE, TRUE),
421 IA64_HOWTO (R_IA64_SEGREL32LSB, "SEGREL32LSB", 2, FALSE, TRUE),
422 IA64_HOWTO (R_IA64_SEGREL64MSB, "SEGREL64MSB", 4, FALSE, TRUE),
423 IA64_HOWTO (R_IA64_SEGREL64LSB, "SEGREL64LSB", 4, FALSE, TRUE),
424
425 IA64_HOWTO (R_IA64_SECREL32MSB, "SECREL32MSB", 2, FALSE, TRUE),
426 IA64_HOWTO (R_IA64_SECREL32LSB, "SECREL32LSB", 2, FALSE, TRUE),
427 IA64_HOWTO (R_IA64_SECREL64MSB, "SECREL64MSB", 4, FALSE, TRUE),
428 IA64_HOWTO (R_IA64_SECREL64LSB, "SECREL64LSB", 4, FALSE, TRUE),
429
430 IA64_HOWTO (R_IA64_REL32MSB, "REL32MSB", 2, FALSE, TRUE),
431 IA64_HOWTO (R_IA64_REL32LSB, "REL32LSB", 2, FALSE, TRUE),
432 IA64_HOWTO (R_IA64_REL64MSB, "REL64MSB", 4, FALSE, TRUE),
433 IA64_HOWTO (R_IA64_REL64LSB, "REL64LSB", 4, FALSE, TRUE),
434
435 IA64_HOWTO (R_IA64_LTV32MSB, "LTV32MSB", 2, FALSE, TRUE),
436 IA64_HOWTO (R_IA64_LTV32LSB, "LTV32LSB", 2, FALSE, TRUE),
437 IA64_HOWTO (R_IA64_LTV64MSB, "LTV64MSB", 4, FALSE, TRUE),
438 IA64_HOWTO (R_IA64_LTV64LSB, "LTV64LSB", 4, FALSE, TRUE),
439
440 IA64_HOWTO (R_IA64_PCREL21BI, "PCREL21BI", 0, TRUE, TRUE),
441 IA64_HOWTO (R_IA64_PCREL22, "PCREL22", 0, TRUE, TRUE),
442 IA64_HOWTO (R_IA64_PCREL64I, "PCREL64I", 0, TRUE, TRUE),
443
444 IA64_HOWTO (R_IA64_IPLTMSB, "IPLTMSB", 4, FALSE, TRUE),
445 IA64_HOWTO (R_IA64_IPLTLSB, "IPLTLSB", 4, FALSE, TRUE),
446 IA64_HOWTO (R_IA64_COPY, "COPY", 4, FALSE, TRUE),
447 IA64_HOWTO (R_IA64_LTOFF22X, "LTOFF22X", 0, FALSE, TRUE),
448 IA64_HOWTO (R_IA64_LDXMOV, "LDXMOV", 0, FALSE, TRUE),
449
450 IA64_HOWTO (R_IA64_TPREL14, "TPREL14", 0, FALSE, FALSE),
451 IA64_HOWTO (R_IA64_TPREL22, "TPREL22", 0, FALSE, FALSE),
452 IA64_HOWTO (R_IA64_TPREL64I, "TPREL64I", 0, FALSE, FALSE),
453 IA64_HOWTO (R_IA64_TPREL64MSB, "TPREL64MSB", 4, FALSE, FALSE),
454 IA64_HOWTO (R_IA64_TPREL64LSB, "TPREL64LSB", 4, FALSE, FALSE),
455 IA64_HOWTO (R_IA64_LTOFF_TPREL22, "LTOFF_TPREL22", 0, FALSE, FALSE),
456
457 IA64_HOWTO (R_IA64_DTPMOD64MSB, "DTPMOD64MSB", 4, FALSE, FALSE),
458 IA64_HOWTO (R_IA64_DTPMOD64LSB, "DTPMOD64LSB", 4, FALSE, FALSE),
459 IA64_HOWTO (R_IA64_LTOFF_DTPMOD22, "LTOFF_DTPMOD22", 0, FALSE, FALSE),
460
461 IA64_HOWTO (R_IA64_DTPREL14, "DTPREL14", 0, FALSE, FALSE),
462 IA64_HOWTO (R_IA64_DTPREL22, "DTPREL22", 0, FALSE, FALSE),
463 IA64_HOWTO (R_IA64_DTPREL64I, "DTPREL64I", 0, FALSE, FALSE),
464 IA64_HOWTO (R_IA64_DTPREL32MSB, "DTPREL32MSB", 2, FALSE, FALSE),
465 IA64_HOWTO (R_IA64_DTPREL32LSB, "DTPREL32LSB", 2, FALSE, FALSE),
466 IA64_HOWTO (R_IA64_DTPREL64MSB, "DTPREL64MSB", 4, FALSE, FALSE),
467 IA64_HOWTO (R_IA64_DTPREL64LSB, "DTPREL64LSB", 4, FALSE, FALSE),
468 IA64_HOWTO (R_IA64_LTOFF_DTPREL22, "LTOFF_DTPREL22", 0, FALSE, FALSE),
469 };
470
471 static unsigned char elf_code_to_howto_index[R_IA64_MAX_RELOC_CODE + 1];
472
473 /* Given a BFD reloc type, return the matching HOWTO structure. */
474
475 static reloc_howto_type *
476 lookup_howto (rtype)
477 unsigned int rtype;
478 {
479 static int inited = 0;
480 int i;
481
482 if (!inited)
483 {
484 inited = 1;
485
486 memset (elf_code_to_howto_index, 0xff, sizeof (elf_code_to_howto_index));
487 for (i = 0; i < NELEMS (ia64_howto_table); ++i)
488 elf_code_to_howto_index[ia64_howto_table[i].type] = i;
489 }
490
491 if (rtype > R_IA64_MAX_RELOC_CODE)
492 return 0;
493 i = elf_code_to_howto_index[rtype];
494 if (i >= NELEMS (ia64_howto_table))
495 return 0;
496 return ia64_howto_table + i;
497 }
498
499 static reloc_howto_type*
500 elfNN_ia64_reloc_type_lookup (abfd, bfd_code)
501 bfd *abfd ATTRIBUTE_UNUSED;
502 bfd_reloc_code_real_type bfd_code;
503 {
504 unsigned int rtype;
505
506 switch (bfd_code)
507 {
508 case BFD_RELOC_NONE: rtype = R_IA64_NONE; break;
509
510 case BFD_RELOC_IA64_IMM14: rtype = R_IA64_IMM14; break;
511 case BFD_RELOC_IA64_IMM22: rtype = R_IA64_IMM22; break;
512 case BFD_RELOC_IA64_IMM64: rtype = R_IA64_IMM64; break;
513
514 case BFD_RELOC_IA64_DIR32MSB: rtype = R_IA64_DIR32MSB; break;
515 case BFD_RELOC_IA64_DIR32LSB: rtype = R_IA64_DIR32LSB; break;
516 case BFD_RELOC_IA64_DIR64MSB: rtype = R_IA64_DIR64MSB; break;
517 case BFD_RELOC_IA64_DIR64LSB: rtype = R_IA64_DIR64LSB; break;
518
519 case BFD_RELOC_IA64_GPREL22: rtype = R_IA64_GPREL22; break;
520 case BFD_RELOC_IA64_GPREL64I: rtype = R_IA64_GPREL64I; break;
521 case BFD_RELOC_IA64_GPREL32MSB: rtype = R_IA64_GPREL32MSB; break;
522 case BFD_RELOC_IA64_GPREL32LSB: rtype = R_IA64_GPREL32LSB; break;
523 case BFD_RELOC_IA64_GPREL64MSB: rtype = R_IA64_GPREL64MSB; break;
524 case BFD_RELOC_IA64_GPREL64LSB: rtype = R_IA64_GPREL64LSB; break;
525
526 case BFD_RELOC_IA64_LTOFF22: rtype = R_IA64_LTOFF22; break;
527 case BFD_RELOC_IA64_LTOFF64I: rtype = R_IA64_LTOFF64I; break;
528
529 case BFD_RELOC_IA64_PLTOFF22: rtype = R_IA64_PLTOFF22; break;
530 case BFD_RELOC_IA64_PLTOFF64I: rtype = R_IA64_PLTOFF64I; break;
531 case BFD_RELOC_IA64_PLTOFF64MSB: rtype = R_IA64_PLTOFF64MSB; break;
532 case BFD_RELOC_IA64_PLTOFF64LSB: rtype = R_IA64_PLTOFF64LSB; break;
533 case BFD_RELOC_IA64_FPTR64I: rtype = R_IA64_FPTR64I; break;
534 case BFD_RELOC_IA64_FPTR32MSB: rtype = R_IA64_FPTR32MSB; break;
535 case BFD_RELOC_IA64_FPTR32LSB: rtype = R_IA64_FPTR32LSB; break;
536 case BFD_RELOC_IA64_FPTR64MSB: rtype = R_IA64_FPTR64MSB; break;
537 case BFD_RELOC_IA64_FPTR64LSB: rtype = R_IA64_FPTR64LSB; break;
538
539 case BFD_RELOC_IA64_PCREL21B: rtype = R_IA64_PCREL21B; break;
540 case BFD_RELOC_IA64_PCREL21BI: rtype = R_IA64_PCREL21BI; break;
541 case BFD_RELOC_IA64_PCREL21M: rtype = R_IA64_PCREL21M; break;
542 case BFD_RELOC_IA64_PCREL21F: rtype = R_IA64_PCREL21F; break;
543 case BFD_RELOC_IA64_PCREL22: rtype = R_IA64_PCREL22; break;
544 case BFD_RELOC_IA64_PCREL60B: rtype = R_IA64_PCREL60B; break;
545 case BFD_RELOC_IA64_PCREL64I: rtype = R_IA64_PCREL64I; break;
546 case BFD_RELOC_IA64_PCREL32MSB: rtype = R_IA64_PCREL32MSB; break;
547 case BFD_RELOC_IA64_PCREL32LSB: rtype = R_IA64_PCREL32LSB; break;
548 case BFD_RELOC_IA64_PCREL64MSB: rtype = R_IA64_PCREL64MSB; break;
549 case BFD_RELOC_IA64_PCREL64LSB: rtype = R_IA64_PCREL64LSB; break;
550
551 case BFD_RELOC_IA64_LTOFF_FPTR22: rtype = R_IA64_LTOFF_FPTR22; break;
552 case BFD_RELOC_IA64_LTOFF_FPTR64I: rtype = R_IA64_LTOFF_FPTR64I; break;
553 case BFD_RELOC_IA64_LTOFF_FPTR32MSB: rtype = R_IA64_LTOFF_FPTR32MSB; break;
554 case BFD_RELOC_IA64_LTOFF_FPTR32LSB: rtype = R_IA64_LTOFF_FPTR32LSB; break;
555 case BFD_RELOC_IA64_LTOFF_FPTR64MSB: rtype = R_IA64_LTOFF_FPTR64MSB; break;
556 case BFD_RELOC_IA64_LTOFF_FPTR64LSB: rtype = R_IA64_LTOFF_FPTR64LSB; break;
557
558 case BFD_RELOC_IA64_SEGREL32MSB: rtype = R_IA64_SEGREL32MSB; break;
559 case BFD_RELOC_IA64_SEGREL32LSB: rtype = R_IA64_SEGREL32LSB; break;
560 case BFD_RELOC_IA64_SEGREL64MSB: rtype = R_IA64_SEGREL64MSB; break;
561 case BFD_RELOC_IA64_SEGREL64LSB: rtype = R_IA64_SEGREL64LSB; break;
562
563 case BFD_RELOC_IA64_SECREL32MSB: rtype = R_IA64_SECREL32MSB; break;
564 case BFD_RELOC_IA64_SECREL32LSB: rtype = R_IA64_SECREL32LSB; break;
565 case BFD_RELOC_IA64_SECREL64MSB: rtype = R_IA64_SECREL64MSB; break;
566 case BFD_RELOC_IA64_SECREL64LSB: rtype = R_IA64_SECREL64LSB; break;
567
568 case BFD_RELOC_IA64_REL32MSB: rtype = R_IA64_REL32MSB; break;
569 case BFD_RELOC_IA64_REL32LSB: rtype = R_IA64_REL32LSB; break;
570 case BFD_RELOC_IA64_REL64MSB: rtype = R_IA64_REL64MSB; break;
571 case BFD_RELOC_IA64_REL64LSB: rtype = R_IA64_REL64LSB; break;
572
573 case BFD_RELOC_IA64_LTV32MSB: rtype = R_IA64_LTV32MSB; break;
574 case BFD_RELOC_IA64_LTV32LSB: rtype = R_IA64_LTV32LSB; break;
575 case BFD_RELOC_IA64_LTV64MSB: rtype = R_IA64_LTV64MSB; break;
576 case BFD_RELOC_IA64_LTV64LSB: rtype = R_IA64_LTV64LSB; break;
577
578 case BFD_RELOC_IA64_IPLTMSB: rtype = R_IA64_IPLTMSB; break;
579 case BFD_RELOC_IA64_IPLTLSB: rtype = R_IA64_IPLTLSB; break;
580 case BFD_RELOC_IA64_COPY: rtype = R_IA64_COPY; break;
581 case BFD_RELOC_IA64_LTOFF22X: rtype = R_IA64_LTOFF22X; break;
582 case BFD_RELOC_IA64_LDXMOV: rtype = R_IA64_LDXMOV; break;
583
584 case BFD_RELOC_IA64_TPREL14: rtype = R_IA64_TPREL14; break;
585 case BFD_RELOC_IA64_TPREL22: rtype = R_IA64_TPREL22; break;
586 case BFD_RELOC_IA64_TPREL64I: rtype = R_IA64_TPREL64I; break;
587 case BFD_RELOC_IA64_TPREL64MSB: rtype = R_IA64_TPREL64MSB; break;
588 case BFD_RELOC_IA64_TPREL64LSB: rtype = R_IA64_TPREL64LSB; break;
589 case BFD_RELOC_IA64_LTOFF_TPREL22: rtype = R_IA64_LTOFF_TPREL22; break;
590
591 case BFD_RELOC_IA64_DTPMOD64MSB: rtype = R_IA64_DTPMOD64MSB; break;
592 case BFD_RELOC_IA64_DTPMOD64LSB: rtype = R_IA64_DTPMOD64LSB; break;
593 case BFD_RELOC_IA64_LTOFF_DTPMOD22: rtype = R_IA64_LTOFF_DTPMOD22; break;
594
595 case BFD_RELOC_IA64_DTPREL14: rtype = R_IA64_DTPREL14; break;
596 case BFD_RELOC_IA64_DTPREL22: rtype = R_IA64_DTPREL22; break;
597 case BFD_RELOC_IA64_DTPREL64I: rtype = R_IA64_DTPREL64I; break;
598 case BFD_RELOC_IA64_DTPREL32MSB: rtype = R_IA64_DTPREL32MSB; break;
599 case BFD_RELOC_IA64_DTPREL32LSB: rtype = R_IA64_DTPREL32LSB; break;
600 case BFD_RELOC_IA64_DTPREL64MSB: rtype = R_IA64_DTPREL64MSB; break;
601 case BFD_RELOC_IA64_DTPREL64LSB: rtype = R_IA64_DTPREL64LSB; break;
602 case BFD_RELOC_IA64_LTOFF_DTPREL22: rtype = R_IA64_LTOFF_DTPREL22; break;
603
604 default: return 0;
605 }
606 return lookup_howto (rtype);
607 }
608
609 /* Given a ELF reloc, return the matching HOWTO structure. */
610
611 static void
612 elfNN_ia64_info_to_howto (abfd, bfd_reloc, elf_reloc)
613 bfd *abfd ATTRIBUTE_UNUSED;
614 arelent *bfd_reloc;
615 Elf_Internal_Rela *elf_reloc;
616 {
617 bfd_reloc->howto
618 = lookup_howto ((unsigned int) ELFNN_R_TYPE (elf_reloc->r_info));
619 }
620 \f
621 #define PLT_HEADER_SIZE (3 * 16)
622 #define PLT_MIN_ENTRY_SIZE (1 * 16)
623 #define PLT_FULL_ENTRY_SIZE (2 * 16)
624 #define PLT_RESERVED_WORDS 3
625
626 static const bfd_byte plt_header[PLT_HEADER_SIZE] =
627 {
628 0x0b, 0x10, 0x00, 0x1c, 0x00, 0x21, /* [MMI] mov r2=r14;; */
629 0xe0, 0x00, 0x08, 0x00, 0x48, 0x00, /* addl r14=0,r2 */
630 0x00, 0x00, 0x04, 0x00, /* nop.i 0x0;; */
631 0x0b, 0x80, 0x20, 0x1c, 0x18, 0x14, /* [MMI] ld8 r16=[r14],8;; */
632 0x10, 0x41, 0x38, 0x30, 0x28, 0x00, /* ld8 r17=[r14],8 */
633 0x00, 0x00, 0x04, 0x00, /* nop.i 0x0;; */
634 0x11, 0x08, 0x00, 0x1c, 0x18, 0x10, /* [MIB] ld8 r1=[r14] */
635 0x60, 0x88, 0x04, 0x80, 0x03, 0x00, /* mov b6=r17 */
636 0x60, 0x00, 0x80, 0x00 /* br.few b6;; */
637 };
638
639 static const bfd_byte plt_min_entry[PLT_MIN_ENTRY_SIZE] =
640 {
641 0x11, 0x78, 0x00, 0x00, 0x00, 0x24, /* [MIB] mov r15=0 */
642 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, /* nop.i 0x0 */
643 0x00, 0x00, 0x00, 0x40 /* br.few 0 <PLT0>;; */
644 };
645
646 static const bfd_byte plt_full_entry[PLT_FULL_ENTRY_SIZE] =
647 {
648 0x0b, 0x78, 0x00, 0x02, 0x00, 0x24, /* [MMI] addl r15=0,r1;; */
649 0x00, 0x41, 0x3c, 0x70, 0x29, 0xc0, /* ld8.acq r16=[r15],8*/
650 0x01, 0x08, 0x00, 0x84, /* mov r14=r1;; */
651 0x11, 0x08, 0x00, 0x1e, 0x18, 0x10, /* [MIB] ld8 r1=[r15] */
652 0x60, 0x80, 0x04, 0x80, 0x03, 0x00, /* mov b6=r16 */
653 0x60, 0x00, 0x80, 0x00 /* br.few b6;; */
654 };
655
656 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
657
658 static const bfd_byte oor_brl[16] =
659 {
660 0x05, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MLX] nop.m 0 */
661 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* brl.sptk.few tgt;; */
662 0x00, 0x00, 0x00, 0xc0
663 };
664
665 static const bfd_byte oor_ip[48] =
666 {
667 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MLX] nop.m 0 */
668 0x00, 0x00, 0x00, 0x00, 0x00, 0xe0, /* movl r15=0 */
669 0x01, 0x00, 0x00, 0x60,
670 0x03, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MII] nop.m 0 */
671 0x00, 0x01, 0x00, 0x60, 0x00, 0x00, /* mov r16=ip;; */
672 0xf2, 0x80, 0x00, 0x80, /* add r16=r15,r16;; */
673 0x11, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MIB] nop.m 0 */
674 0x60, 0x80, 0x04, 0x80, 0x03, 0x00, /* mov b6=r16 */
675 0x60, 0x00, 0x80, 0x00 /* br b6;; */
676 };
677
678 static size_t oor_branch_size = sizeof (oor_brl);
679
680 void
681 bfd_elfNN_ia64_after_parse (int itanium)
682 {
683 oor_branch_size = itanium ? sizeof (oor_ip) : sizeof (oor_brl);
684 }
685
686 #define BTYPE_SHIFT 6
687 #define Y_SHIFT 26
688 #define X6_SHIFT 27
689 #define X4_SHIFT 27
690 #define X3_SHIFT 33
691 #define X2_SHIFT 31
692 #define X_SHIFT 33
693 #define OPCODE_SHIFT 37
694
695 #define OPCODE_BITS (0xfLL << OPCODE_SHIFT)
696 #define X6_BITS (0x3fLL << X6_SHIFT)
697 #define X4_BITS (0xfLL << X4_SHIFT)
698 #define X3_BITS (0x7LL << X3_SHIFT)
699 #define X2_BITS (0x3LL << X2_SHIFT)
700 #define X_BITS (0x1LL << X_SHIFT)
701 #define Y_BITS (0x1LL << Y_SHIFT)
702 #define BTYPE_BITS (0x7LL << BTYPE_SHIFT)
703 #define PREDICATE_BITS (0x3fLL)
704
705 #define IS_NOP_B(i) \
706 (((i) & (OPCODE_BITS | X6_BITS)) == (2LL << OPCODE_SHIFT))
707 #define IS_NOP_F(i) \
708 (((i) & (OPCODE_BITS | X_BITS | X6_BITS | Y_BITS)) \
709 == (0x1LL << X6_SHIFT))
710 #define IS_NOP_I(i) \
711 (((i) & (OPCODE_BITS | X3_BITS | X6_BITS | Y_BITS)) \
712 == (0x1LL << X6_SHIFT))
713 #define IS_NOP_M(i) \
714 (((i) & (OPCODE_BITS | X3_BITS | X2_BITS | X4_BITS | Y_BITS)) \
715 == (0x1LL << X4_SHIFT))
716 #define IS_BR_COND(i) \
717 (((i) & (OPCODE_BITS | BTYPE_BITS)) == (0x4LL << OPCODE_SHIFT))
718 #define IS_BR_CALL(i) \
719 (((i) & OPCODE_BITS) == (0x5LL << OPCODE_SHIFT))
720
721 static bfd_boolean
722 elfNN_ia64_relax_br (bfd_byte *contents, bfd_vma off)
723 {
724 unsigned int template, mlx;
725 bfd_vma t0, t1, s0, s1, s2, br_code;
726 long br_slot;
727 bfd_byte *hit_addr;
728
729 hit_addr = (bfd_byte *) (contents + off);
730 br_slot = (long) hit_addr & 0x3;
731 hit_addr -= br_slot;
732 t0 = bfd_getl64 (hit_addr + 0);
733 t1 = bfd_getl64 (hit_addr + 8);
734
735 /* Check if we can turn br into brl. A label is always at the start
736 of the bundle. Even if there are predicates on NOPs, we still
737 perform this optimization. */
738 template = t0 & 0x1e;
739 s0 = (t0 >> 5) & 0x1ffffffffffLL;
740 s1 = ((t0 >> 46) | (t1 << 18)) & 0x1ffffffffffLL;
741 s2 = (t1 >> 23) & 0x1ffffffffffLL;
742 switch (br_slot)
743 {
744 case 0:
745 /* Check if slot 1 and slot 2 are NOPs. Possible template is
746 BBB. We only need to check nop.b. */
747 if (!(IS_NOP_B (s1) && IS_NOP_B (s2)))
748 return FALSE;
749 br_code = s0;
750 break;
751 case 1:
752 /* Check if slot 2 is NOP. Possible templates are MBB and BBB.
753 For BBB, slot 0 also has to be nop.b. */
754 if (!((template == 0x12 /* MBB */
755 && IS_NOP_B (s2))
756 || (template == 0x16 /* BBB */
757 && IS_NOP_B (s0)
758 && IS_NOP_B (s2))))
759 return FALSE;
760 br_code = s1;
761 break;
762 case 2:
763 /* Check if slot 1 is NOP. Possible templates are MIB, MBB, BBB,
764 MMB and MFB. For BBB, slot 0 also has to be nop.b. */
765 if (!((template == 0x10 /* MIB */
766 && IS_NOP_I (s1))
767 || (template == 0x12 /* MBB */
768 && IS_NOP_B (s1))
769 || (template == 0x16 /* BBB */
770 && IS_NOP_B (s0)
771 && IS_NOP_B (s1))
772 || (template == 0x18 /* MMB */
773 && IS_NOP_M (s1))
774 || (template == 0x1c /* MFB */
775 && IS_NOP_F (s1))))
776 return FALSE;
777 br_code = s2;
778 break;
779 default:
780 /* It should never happen. */
781 abort ();
782 }
783
784 /* We can turn br.cond/br.call into brl.cond/brl.call. */
785 if (!(IS_BR_COND (br_code) || IS_BR_CALL (br_code)))
786 return FALSE;
787
788 /* Turn br into brl by setting bit 40. */
789 br_code |= 0x1LL << 40;
790
791 /* Turn the old bundle into a MLX bundle with the same stop-bit
792 variety. */
793 if (t0 & 0x1)
794 mlx = 0x5;
795 else
796 mlx = 0x4;
797
798 if (template == 0x16)
799 {
800 /* For BBB, we need to put nop.m in slot 0. We keep the original
801 predicate only if slot 0 isn't br. */
802 if (br_slot == 0)
803 t0 = 0LL;
804 else
805 t0 &= PREDICATE_BITS << 5;
806 t0 |= 0x1LL << (X4_SHIFT + 5);
807 }
808 else
809 {
810 /* Keep the original instruction in slot 0. */
811 t0 &= 0x1ffffffffffLL << 5;
812 }
813
814 t0 |= mlx;
815
816 /* Put brl in slot 1. */
817 t1 = br_code << 23;
818
819 bfd_putl64 (t0, hit_addr);
820 bfd_putl64 (t1, hit_addr + 8);
821 return TRUE;
822 }
823
824 static void
825 elfNN_ia64_relax_brl (bfd_byte *contents, bfd_vma off)
826 {
827 int template;
828 bfd_byte *hit_addr;
829 bfd_vma t0, t1, i0, i1, i2;
830
831 hit_addr = (bfd_byte *) (contents + off);
832 hit_addr -= (long) hit_addr & 0x3;
833 t0 = bfd_getl64 (hit_addr);
834 t1 = bfd_getl64 (hit_addr + 8);
835
836 /* Keep the instruction in slot 0. */
837 i0 = (t0 >> 5) & 0x1ffffffffffLL;
838 /* Use nop.b for slot 1. */
839 i1 = 0x4000000000LL;
840 /* For slot 2, turn brl into br by masking out bit 40. */
841 i2 = (t1 >> 23) & 0x0ffffffffffLL;
842
843 /* Turn a MLX bundle into a MBB bundle with the same stop-bit
844 variety. */
845 if (t0 & 0x1)
846 template = 0x13;
847 else
848 template = 0x12;
849 t0 = (i1 << 46) | (i0 << 5) | template;
850 t1 = (i2 << 23) | (i1 >> 18);
851
852 bfd_putl64 (t0, hit_addr);
853 bfd_putl64 (t1, hit_addr + 8);
854 }
855 \f
856 /* These functions do relaxation for IA-64 ELF. */
857
858 static bfd_boolean
859 elfNN_ia64_relax_section (abfd, sec, link_info, again)
860 bfd *abfd;
861 asection *sec;
862 struct bfd_link_info *link_info;
863 bfd_boolean *again;
864 {
865 struct one_fixup
866 {
867 struct one_fixup *next;
868 asection *tsec;
869 bfd_vma toff;
870 bfd_vma trampoff;
871 };
872
873 Elf_Internal_Shdr *symtab_hdr;
874 Elf_Internal_Rela *internal_relocs;
875 Elf_Internal_Rela *irel, *irelend;
876 bfd_byte *contents;
877 Elf_Internal_Sym *isymbuf = NULL;
878 struct elfNN_ia64_link_hash_table *ia64_info;
879 struct one_fixup *fixups = NULL;
880 bfd_boolean changed_contents = FALSE;
881 bfd_boolean changed_relocs = FALSE;
882 bfd_boolean changed_got = FALSE;
883 bfd_vma gp = 0;
884
885 /* Assume we're not going to change any sizes, and we'll only need
886 one pass. */
887 *again = FALSE;
888
889 /* Don't even try to relax for non-ELF outputs. */
890 if (!is_elf_hash_table (link_info->hash))
891 return FALSE;
892
893 /* Nothing to do if there are no relocations or there is no need for
894 the relax finalize pass. */
895 if ((sec->flags & SEC_RELOC) == 0
896 || sec->reloc_count == 0
897 || (!link_info->need_relax_finalize
898 && sec->need_finalize_relax == 0))
899 return TRUE;
900
901 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
902
903 /* Load the relocations for this section. */
904 internal_relocs = (_bfd_elf_link_read_relocs
905 (abfd, sec, (PTR) NULL, (Elf_Internal_Rela *) NULL,
906 link_info->keep_memory));
907 if (internal_relocs == NULL)
908 return FALSE;
909
910 ia64_info = elfNN_ia64_hash_table (link_info);
911 irelend = internal_relocs + sec->reloc_count;
912
913 /* Get the section contents. */
914 if (elf_section_data (sec)->this_hdr.contents != NULL)
915 contents = elf_section_data (sec)->this_hdr.contents;
916 else
917 {
918 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
919 goto error_return;
920 }
921
922 for (irel = internal_relocs; irel < irelend; irel++)
923 {
924 unsigned long r_type = ELFNN_R_TYPE (irel->r_info);
925 bfd_vma symaddr, reladdr, trampoff, toff, roff;
926 asection *tsec;
927 struct one_fixup *f;
928 bfd_size_type amt;
929 bfd_boolean is_branch;
930 struct elfNN_ia64_dyn_sym_info *dyn_i;
931 char symtype;
932
933 switch (r_type)
934 {
935 case R_IA64_PCREL21B:
936 case R_IA64_PCREL21BI:
937 case R_IA64_PCREL21M:
938 case R_IA64_PCREL21F:
939 /* In the finalize pass, all br relaxations are done. We can
940 skip it. */
941 if (!link_info->need_relax_finalize)
942 continue;
943 is_branch = TRUE;
944 break;
945
946 case R_IA64_PCREL60B:
947 /* We can't optimize brl to br before the finalize pass since
948 br relaxations will increase the code size. Defer it to
949 the finalize pass. */
950 if (link_info->need_relax_finalize)
951 {
952 sec->need_finalize_relax = 1;
953 continue;
954 }
955 is_branch = TRUE;
956 break;
957
958 case R_IA64_LTOFF22X:
959 case R_IA64_LDXMOV:
960 /* We can't relax ldx/mov before the finalize pass since
961 br relaxations will increase the code size. Defer it to
962 the finalize pass. */
963 if (link_info->need_relax_finalize)
964 {
965 sec->need_finalize_relax = 1;
966 continue;
967 }
968 is_branch = FALSE;
969 break;
970
971 default:
972 continue;
973 }
974
975 /* Get the value of the symbol referred to by the reloc. */
976 if (ELFNN_R_SYM (irel->r_info) < symtab_hdr->sh_info)
977 {
978 /* A local symbol. */
979 Elf_Internal_Sym *isym;
980
981 /* Read this BFD's local symbols. */
982 if (isymbuf == NULL)
983 {
984 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
985 if (isymbuf == NULL)
986 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
987 symtab_hdr->sh_info, 0,
988 NULL, NULL, NULL);
989 if (isymbuf == 0)
990 goto error_return;
991 }
992
993 isym = isymbuf + ELFNN_R_SYM (irel->r_info);
994 if (isym->st_shndx == SHN_UNDEF)
995 continue; /* We can't do anything with undefined symbols. */
996 else if (isym->st_shndx == SHN_ABS)
997 tsec = bfd_abs_section_ptr;
998 else if (isym->st_shndx == SHN_COMMON)
999 tsec = bfd_com_section_ptr;
1000 else if (isym->st_shndx == SHN_IA_64_ANSI_COMMON)
1001 tsec = bfd_com_section_ptr;
1002 else
1003 tsec = bfd_section_from_elf_index (abfd, isym->st_shndx);
1004
1005 toff = isym->st_value;
1006 dyn_i = get_dyn_sym_info (ia64_info, NULL, abfd, irel, FALSE);
1007 symtype = ELF_ST_TYPE (isym->st_info);
1008 }
1009 else
1010 {
1011 unsigned long indx;
1012 struct elf_link_hash_entry *h;
1013
1014 indx = ELFNN_R_SYM (irel->r_info) - symtab_hdr->sh_info;
1015 h = elf_sym_hashes (abfd)[indx];
1016 BFD_ASSERT (h != NULL);
1017
1018 while (h->root.type == bfd_link_hash_indirect
1019 || h->root.type == bfd_link_hash_warning)
1020 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1021
1022 dyn_i = get_dyn_sym_info (ia64_info, h, abfd, irel, FALSE);
1023
1024 /* For branches to dynamic symbols, we're interested instead
1025 in a branch to the PLT entry. */
1026 if (is_branch && dyn_i && dyn_i->want_plt2)
1027 {
1028 /* Internal branches shouldn't be sent to the PLT.
1029 Leave this for now and we'll give an error later. */
1030 if (r_type != R_IA64_PCREL21B)
1031 continue;
1032
1033 tsec = ia64_info->plt_sec;
1034 toff = dyn_i->plt2_offset;
1035 BFD_ASSERT (irel->r_addend == 0);
1036 }
1037
1038 /* Can't do anything else with dynamic symbols. */
1039 else if (elfNN_ia64_dynamic_symbol_p (h, link_info, r_type))
1040 continue;
1041
1042 else
1043 {
1044 /* We can't do anything with undefined symbols. */
1045 if (h->root.type == bfd_link_hash_undefined
1046 || h->root.type == bfd_link_hash_undefweak)
1047 continue;
1048
1049 tsec = h->root.u.def.section;
1050 toff = h->root.u.def.value;
1051 }
1052
1053 symtype = h->type;
1054 }
1055
1056 if (tsec->sec_info_type == ELF_INFO_TYPE_MERGE)
1057 {
1058 /* At this stage in linking, no SEC_MERGE symbol has been
1059 adjusted, so all references to such symbols need to be
1060 passed through _bfd_merged_section_offset. (Later, in
1061 relocate_section, all SEC_MERGE symbols *except* for
1062 section symbols have been adjusted.)
1063
1064 gas may reduce relocations against symbols in SEC_MERGE
1065 sections to a relocation against the section symbol when
1066 the original addend was zero. When the reloc is against
1067 a section symbol we should include the addend in the
1068 offset passed to _bfd_merged_section_offset, since the
1069 location of interest is the original symbol. On the
1070 other hand, an access to "sym+addend" where "sym" is not
1071 a section symbol should not include the addend; Such an
1072 access is presumed to be an offset from "sym"; The
1073 location of interest is just "sym". */
1074 if (symtype == STT_SECTION)
1075 toff += irel->r_addend;
1076
1077 toff = _bfd_merged_section_offset (abfd, &tsec,
1078 elf_section_data (tsec)->sec_info,
1079 toff);
1080
1081 if (symtype != STT_SECTION)
1082 toff += irel->r_addend;
1083 }
1084 else
1085 toff += irel->r_addend;
1086
1087 symaddr = tsec->output_section->vma + tsec->output_offset + toff;
1088
1089 roff = irel->r_offset;
1090
1091 if (is_branch)
1092 {
1093 bfd_signed_vma offset;
1094
1095 reladdr = (sec->output_section->vma
1096 + sec->output_offset
1097 + roff) & (bfd_vma) -4;
1098
1099 /* If the branch is in range, no need to do anything. */
1100 if ((bfd_signed_vma) (symaddr - reladdr) >= -0x1000000
1101 && (bfd_signed_vma) (symaddr - reladdr) <= 0x0FFFFF0)
1102 {
1103 /* If the 60-bit branch is in 21-bit range, optimize it. */
1104 if (r_type == R_IA64_PCREL60B)
1105 {
1106 elfNN_ia64_relax_brl (contents, roff);
1107
1108 irel->r_info
1109 = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1110 R_IA64_PCREL21B);
1111
1112 /* If the original relocation offset points to slot
1113 1, change it to slot 2. */
1114 if ((irel->r_offset & 3) == 1)
1115 irel->r_offset += 1;
1116 }
1117
1118 continue;
1119 }
1120 else if (r_type == R_IA64_PCREL60B)
1121 continue;
1122 else if (elfNN_ia64_relax_br (contents, roff))
1123 {
1124 irel->r_info
1125 = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1126 R_IA64_PCREL60B);
1127
1128 /* Make the relocation offset point to slot 1. */
1129 irel->r_offset = (irel->r_offset & ~((bfd_vma) 0x3)) + 1;
1130 continue;
1131 }
1132
1133 /* We can't put a trampoline in a .init/.fini section. Issue
1134 an error. */
1135 if (strcmp (sec->output_section->name, ".init") == 0
1136 || strcmp (sec->output_section->name, ".fini") == 0)
1137 {
1138 (*_bfd_error_handler)
1139 (_("%B: Can't relax br at 0x%lx in section `%A'. Please use brl or indirect branch."),
1140 sec->owner, sec, (unsigned long) roff);
1141 bfd_set_error (bfd_error_bad_value);
1142 goto error_return;
1143 }
1144
1145 /* If the branch and target are in the same section, you've
1146 got one honking big section and we can't help you unless
1147 you are branching backwards. You'll get an error message
1148 later. */
1149 if (tsec == sec && toff > roff)
1150 continue;
1151
1152 /* Look for an existing fixup to this address. */
1153 for (f = fixups; f ; f = f->next)
1154 if (f->tsec == tsec && f->toff == toff)
1155 break;
1156
1157 if (f == NULL)
1158 {
1159 /* Two alternatives: If it's a branch to a PLT entry, we can
1160 make a copy of the FULL_PLT entry. Otherwise, we'll have
1161 to use a `brl' insn to get where we're going. */
1162
1163 size_t size;
1164
1165 if (tsec == ia64_info->plt_sec)
1166 size = sizeof (plt_full_entry);
1167 else
1168 size = oor_branch_size;
1169
1170 /* Resize the current section to make room for the new branch. */
1171 trampoff = (sec->size + 15) & (bfd_vma) -16;
1172
1173 /* If trampoline is out of range, there is nothing we
1174 can do. */
1175 offset = trampoff - (roff & (bfd_vma) -4);
1176 if (offset < -0x1000000 || offset > 0x0FFFFF0)
1177 continue;
1178
1179 amt = trampoff + size;
1180 contents = (bfd_byte *) bfd_realloc (contents, amt);
1181 if (contents == NULL)
1182 goto error_return;
1183 sec->size = amt;
1184
1185 if (tsec == ia64_info->plt_sec)
1186 {
1187 memcpy (contents + trampoff, plt_full_entry, size);
1188
1189 /* Hijack the old relocation for use as the PLTOFF reloc. */
1190 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1191 R_IA64_PLTOFF22);
1192 irel->r_offset = trampoff;
1193 }
1194 else
1195 {
1196 if (size == sizeof (oor_ip))
1197 {
1198 memcpy (contents + trampoff, oor_ip, size);
1199 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1200 R_IA64_PCREL64I);
1201 irel->r_addend -= 16;
1202 irel->r_offset = trampoff + 2;
1203 }
1204 else
1205 {
1206 memcpy (contents + trampoff, oor_brl, size);
1207 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1208 R_IA64_PCREL60B);
1209 irel->r_offset = trampoff + 2;
1210 }
1211
1212 }
1213
1214 /* Record the fixup so we don't do it again this section. */
1215 f = (struct one_fixup *)
1216 bfd_malloc ((bfd_size_type) sizeof (*f));
1217 f->next = fixups;
1218 f->tsec = tsec;
1219 f->toff = toff;
1220 f->trampoff = trampoff;
1221 fixups = f;
1222 }
1223 else
1224 {
1225 /* If trampoline is out of range, there is nothing we
1226 can do. */
1227 offset = f->trampoff - (roff & (bfd_vma) -4);
1228 if (offset < -0x1000000 || offset > 0x0FFFFF0)
1229 continue;
1230
1231 /* Nop out the reloc, since we're finalizing things here. */
1232 irel->r_info = ELFNN_R_INFO (0, R_IA64_NONE);
1233 }
1234
1235 /* Fix up the existing branch to hit the trampoline. */
1236 if (elfNN_ia64_install_value (contents + roff, offset, r_type)
1237 != bfd_reloc_ok)
1238 goto error_return;
1239
1240 changed_contents = TRUE;
1241 changed_relocs = TRUE;
1242 }
1243 else
1244 {
1245 /* Fetch the gp. */
1246 if (gp == 0)
1247 {
1248 bfd *obfd = sec->output_section->owner;
1249 gp = _bfd_get_gp_value (obfd);
1250 if (gp == 0)
1251 {
1252 if (!elfNN_ia64_choose_gp (obfd, link_info))
1253 goto error_return;
1254 gp = _bfd_get_gp_value (obfd);
1255 }
1256 }
1257
1258 /* If the data is out of range, do nothing. */
1259 if ((bfd_signed_vma) (symaddr - gp) >= 0x200000
1260 ||(bfd_signed_vma) (symaddr - gp) < -0x200000)
1261 continue;
1262
1263 if (r_type == R_IA64_LTOFF22X)
1264 {
1265 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1266 R_IA64_GPREL22);
1267 changed_relocs = TRUE;
1268 if (dyn_i->want_gotx)
1269 {
1270 dyn_i->want_gotx = 0;
1271 changed_got |= !dyn_i->want_got;
1272 }
1273 }
1274 else
1275 {
1276 elfNN_ia64_relax_ldxmov (contents, roff);
1277 irel->r_info = ELFNN_R_INFO (0, R_IA64_NONE);
1278 changed_contents = TRUE;
1279 changed_relocs = TRUE;
1280 }
1281 }
1282 }
1283
1284 /* ??? If we created fixups, this may push the code segment large
1285 enough that the data segment moves, which will change the GP.
1286 Reset the GP so that we re-calculate next round. We need to
1287 do this at the _beginning_ of the next round; now will not do. */
1288
1289 /* Clean up and go home. */
1290 while (fixups)
1291 {
1292 struct one_fixup *f = fixups;
1293 fixups = fixups->next;
1294 free (f);
1295 }
1296
1297 if (isymbuf != NULL
1298 && symtab_hdr->contents != (unsigned char *) isymbuf)
1299 {
1300 if (! link_info->keep_memory)
1301 free (isymbuf);
1302 else
1303 {
1304 /* Cache the symbols for elf_link_input_bfd. */
1305 symtab_hdr->contents = (unsigned char *) isymbuf;
1306 }
1307 }
1308
1309 if (contents != NULL
1310 && elf_section_data (sec)->this_hdr.contents != contents)
1311 {
1312 if (!changed_contents && !link_info->keep_memory)
1313 free (contents);
1314 else
1315 {
1316 /* Cache the section contents for elf_link_input_bfd. */
1317 elf_section_data (sec)->this_hdr.contents = contents;
1318 }
1319 }
1320
1321 if (elf_section_data (sec)->relocs != internal_relocs)
1322 {
1323 if (!changed_relocs)
1324 free (internal_relocs);
1325 else
1326 elf_section_data (sec)->relocs = internal_relocs;
1327 }
1328
1329 if (changed_got)
1330 {
1331 struct elfNN_ia64_allocate_data data;
1332 data.info = link_info;
1333 data.ofs = 0;
1334 ia64_info->self_dtpmod_offset = (bfd_vma) -1;
1335
1336 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_data_got, &data);
1337 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_fptr_got, &data);
1338 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_local_got, &data);
1339 ia64_info->got_sec->size = data.ofs;
1340
1341 if (ia64_info->root.dynamic_sections_created
1342 && ia64_info->rel_got_sec != NULL)
1343 {
1344 /* Resize .rela.got. */
1345 ia64_info->rel_got_sec->size = 0;
1346 if (link_info->shared
1347 && ia64_info->self_dtpmod_offset != (bfd_vma) -1)
1348 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
1349 data.only_got = TRUE;
1350 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_dynrel_entries,
1351 &data);
1352 }
1353 }
1354
1355 if (!link_info->need_relax_finalize)
1356 sec->need_finalize_relax = 0;
1357
1358 *again = changed_contents || changed_relocs;
1359 return TRUE;
1360
1361 error_return:
1362 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
1363 free (isymbuf);
1364 if (contents != NULL
1365 && elf_section_data (sec)->this_hdr.contents != contents)
1366 free (contents);
1367 if (internal_relocs != NULL
1368 && elf_section_data (sec)->relocs != internal_relocs)
1369 free (internal_relocs);
1370 return FALSE;
1371 }
1372
1373 static void
1374 elfNN_ia64_relax_ldxmov (contents, off)
1375 bfd_byte *contents;
1376 bfd_vma off;
1377 {
1378 int shift, r1, r3;
1379 bfd_vma dword, insn;
1380
1381 switch ((int)off & 0x3)
1382 {
1383 case 0: shift = 5; break;
1384 case 1: shift = 14; off += 3; break;
1385 case 2: shift = 23; off += 6; break;
1386 default:
1387 abort ();
1388 }
1389
1390 dword = bfd_getl64 (contents + off);
1391 insn = (dword >> shift) & 0x1ffffffffffLL;
1392
1393 r1 = (insn >> 6) & 127;
1394 r3 = (insn >> 20) & 127;
1395 if (r1 == r3)
1396 insn = 0x8000000; /* nop */
1397 else
1398 insn = (insn & 0x7f01fff) | 0x10800000000LL; /* (qp) mov r1 = r3 */
1399
1400 dword &= ~(0x1ffffffffffLL << shift);
1401 dword |= (insn << shift);
1402 bfd_putl64 (dword, contents + off);
1403 }
1404 \f
1405 /* Return TRUE if NAME is an unwind table section name. */
1406
1407 static inline bfd_boolean
1408 is_unwind_section_name (abfd, name)
1409 bfd *abfd;
1410 const char *name;
1411 {
1412 size_t len1, len2, len3;
1413
1414 if (elfNN_ia64_hpux_vec (abfd->xvec)
1415 && !strcmp (name, ELF_STRING_ia64_unwind_hdr))
1416 return FALSE;
1417
1418 len1 = sizeof (ELF_STRING_ia64_unwind) - 1;
1419 len2 = sizeof (ELF_STRING_ia64_unwind_info) - 1;
1420 len3 = sizeof (ELF_STRING_ia64_unwind_once) - 1;
1421 return ((strncmp (name, ELF_STRING_ia64_unwind, len1) == 0
1422 && strncmp (name, ELF_STRING_ia64_unwind_info, len2) != 0)
1423 || strncmp (name, ELF_STRING_ia64_unwind_once, len3) == 0);
1424 }
1425
1426 /* Handle an IA-64 specific section when reading an object file. This
1427 is called when bfd_section_from_shdr finds a section with an unknown
1428 type. */
1429
1430 static bfd_boolean
1431 elfNN_ia64_section_from_shdr (bfd *abfd,
1432 Elf_Internal_Shdr *hdr,
1433 const char *name,
1434 int shindex)
1435 {
1436 asection *newsect;
1437
1438 /* There ought to be a place to keep ELF backend specific flags, but
1439 at the moment there isn't one. We just keep track of the
1440 sections by their name, instead. Fortunately, the ABI gives
1441 suggested names for all the MIPS specific sections, so we will
1442 probably get away with this. */
1443 switch (hdr->sh_type)
1444 {
1445 case SHT_IA_64_UNWIND:
1446 case SHT_IA_64_HP_OPT_ANOT:
1447 break;
1448
1449 case SHT_IA_64_EXT:
1450 if (strcmp (name, ELF_STRING_ia64_archext) != 0)
1451 return FALSE;
1452 break;
1453
1454 default:
1455 return FALSE;
1456 }
1457
1458 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1459 return FALSE;
1460 newsect = hdr->bfd_section;
1461
1462 return TRUE;
1463 }
1464
1465 /* Convert IA-64 specific section flags to bfd internal section flags. */
1466
1467 /* ??? There is no bfd internal flag equivalent to the SHF_IA_64_NORECOV
1468 flag. */
1469
1470 static bfd_boolean
1471 elfNN_ia64_section_flags (flags, hdr)
1472 flagword *flags;
1473 const Elf_Internal_Shdr *hdr;
1474 {
1475 if (hdr->sh_flags & SHF_IA_64_SHORT)
1476 *flags |= SEC_SMALL_DATA;
1477
1478 return TRUE;
1479 }
1480
1481 /* Set the correct type for an IA-64 ELF section. We do this by the
1482 section name, which is a hack, but ought to work. */
1483
1484 static bfd_boolean
1485 elfNN_ia64_fake_sections (abfd, hdr, sec)
1486 bfd *abfd ATTRIBUTE_UNUSED;
1487 Elf_Internal_Shdr *hdr;
1488 asection *sec;
1489 {
1490 register const char *name;
1491
1492 name = bfd_get_section_name (abfd, sec);
1493
1494 if (is_unwind_section_name (abfd, name))
1495 {
1496 /* We don't have the sections numbered at this point, so sh_info
1497 is set later, in elfNN_ia64_final_write_processing. */
1498 hdr->sh_type = SHT_IA_64_UNWIND;
1499 hdr->sh_flags |= SHF_LINK_ORDER;
1500 }
1501 else if (strcmp (name, ELF_STRING_ia64_archext) == 0)
1502 hdr->sh_type = SHT_IA_64_EXT;
1503 else if (strcmp (name, ".HP.opt_annot") == 0)
1504 hdr->sh_type = SHT_IA_64_HP_OPT_ANOT;
1505 else if (strcmp (name, ".reloc") == 0)
1506 /* This is an ugly, but unfortunately necessary hack that is
1507 needed when producing EFI binaries on IA-64. It tells
1508 elf.c:elf_fake_sections() not to consider ".reloc" as a section
1509 containing ELF relocation info. We need this hack in order to
1510 be able to generate ELF binaries that can be translated into
1511 EFI applications (which are essentially COFF objects). Those
1512 files contain a COFF ".reloc" section inside an ELFNN object,
1513 which would normally cause BFD to segfault because it would
1514 attempt to interpret this section as containing relocation
1515 entries for section "oc". With this hack enabled, ".reloc"
1516 will be treated as a normal data section, which will avoid the
1517 segfault. However, you won't be able to create an ELFNN binary
1518 with a section named "oc" that needs relocations, but that's
1519 the kind of ugly side-effects you get when detecting section
1520 types based on their names... In practice, this limitation is
1521 unlikely to bite. */
1522 hdr->sh_type = SHT_PROGBITS;
1523
1524 if (sec->flags & SEC_SMALL_DATA)
1525 hdr->sh_flags |= SHF_IA_64_SHORT;
1526
1527 /* Some HP linkers look for the SHF_IA_64_HP_TLS flag instead of SHF_TLS. */
1528
1529 if (elfNN_ia64_hpux_vec (abfd->xvec) && (sec->flags & SHF_TLS))
1530 hdr->sh_flags |= SHF_IA_64_HP_TLS;
1531
1532 return TRUE;
1533 }
1534
1535 /* The final processing done just before writing out an IA-64 ELF
1536 object file. */
1537
1538 static void
1539 elfNN_ia64_final_write_processing (abfd, linker)
1540 bfd *abfd;
1541 bfd_boolean linker ATTRIBUTE_UNUSED;
1542 {
1543 Elf_Internal_Shdr *hdr;
1544 asection *s;
1545
1546 for (s = abfd->sections; s; s = s->next)
1547 {
1548 hdr = &elf_section_data (s)->this_hdr;
1549 switch (hdr->sh_type)
1550 {
1551 case SHT_IA_64_UNWIND:
1552 /* The IA-64 processor-specific ABI requires setting sh_link
1553 to the unwind section, whereas HP-UX requires sh_info to
1554 do so. For maximum compatibility, we'll set both for
1555 now... */
1556 hdr->sh_info = hdr->sh_link;
1557 break;
1558 }
1559 }
1560
1561 if (! elf_flags_init (abfd))
1562 {
1563 unsigned long flags = 0;
1564
1565 if (abfd->xvec->byteorder == BFD_ENDIAN_BIG)
1566 flags |= EF_IA_64_BE;
1567 if (bfd_get_mach (abfd) == bfd_mach_ia64_elf64)
1568 flags |= EF_IA_64_ABI64;
1569
1570 elf_elfheader(abfd)->e_flags = flags;
1571 elf_flags_init (abfd) = TRUE;
1572 }
1573 }
1574
1575 /* Hook called by the linker routine which adds symbols from an object
1576 file. We use it to put .comm items in .sbss, and not .bss. */
1577
1578 static bfd_boolean
1579 elfNN_ia64_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1580 bfd *abfd;
1581 struct bfd_link_info *info;
1582 Elf_Internal_Sym *sym;
1583 const char **namep ATTRIBUTE_UNUSED;
1584 flagword *flagsp ATTRIBUTE_UNUSED;
1585 asection **secp;
1586 bfd_vma *valp;
1587 {
1588 if (sym->st_shndx == SHN_COMMON
1589 && !info->relocatable
1590 && sym->st_size <= elf_gp_size (abfd))
1591 {
1592 /* Common symbols less than or equal to -G nn bytes are
1593 automatically put into .sbss. */
1594
1595 asection *scomm = bfd_get_section_by_name (abfd, ".scommon");
1596
1597 if (scomm == NULL)
1598 {
1599 scomm = bfd_make_section_with_flags (abfd, ".scommon",
1600 (SEC_ALLOC
1601 | SEC_IS_COMMON
1602 | SEC_LINKER_CREATED));
1603 if (scomm == NULL)
1604 return FALSE;
1605 }
1606
1607 *secp = scomm;
1608 *valp = sym->st_size;
1609 }
1610
1611 return TRUE;
1612 }
1613
1614 /* Return the number of additional phdrs we will need. */
1615
1616 static int
1617 elfNN_ia64_additional_program_headers (abfd)
1618 bfd *abfd;
1619 {
1620 asection *s;
1621 int ret = 0;
1622
1623 /* See if we need a PT_IA_64_ARCHEXT segment. */
1624 s = bfd_get_section_by_name (abfd, ELF_STRING_ia64_archext);
1625 if (s && (s->flags & SEC_LOAD))
1626 ++ret;
1627
1628 /* Count how many PT_IA_64_UNWIND segments we need. */
1629 for (s = abfd->sections; s; s = s->next)
1630 if (is_unwind_section_name (abfd, s->name) && (s->flags & SEC_LOAD))
1631 ++ret;
1632
1633 return ret;
1634 }
1635
1636 static bfd_boolean
1637 elfNN_ia64_modify_segment_map (abfd, info)
1638 bfd *abfd;
1639 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1640 {
1641 struct elf_segment_map *m, **pm;
1642 Elf_Internal_Shdr *hdr;
1643 asection *s;
1644
1645 /* If we need a PT_IA_64_ARCHEXT segment, it must come before
1646 all PT_LOAD segments. */
1647 s = bfd_get_section_by_name (abfd, ELF_STRING_ia64_archext);
1648 if (s && (s->flags & SEC_LOAD))
1649 {
1650 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
1651 if (m->p_type == PT_IA_64_ARCHEXT)
1652 break;
1653 if (m == NULL)
1654 {
1655 m = ((struct elf_segment_map *)
1656 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
1657 if (m == NULL)
1658 return FALSE;
1659
1660 m->p_type = PT_IA_64_ARCHEXT;
1661 m->count = 1;
1662 m->sections[0] = s;
1663
1664 /* We want to put it after the PHDR and INTERP segments. */
1665 pm = &elf_tdata (abfd)->segment_map;
1666 while (*pm != NULL
1667 && ((*pm)->p_type == PT_PHDR
1668 || (*pm)->p_type == PT_INTERP))
1669 pm = &(*pm)->next;
1670
1671 m->next = *pm;
1672 *pm = m;
1673 }
1674 }
1675
1676 /* Install PT_IA_64_UNWIND segments, if needed. */
1677 for (s = abfd->sections; s; s = s->next)
1678 {
1679 hdr = &elf_section_data (s)->this_hdr;
1680 if (hdr->sh_type != SHT_IA_64_UNWIND)
1681 continue;
1682
1683 if (s && (s->flags & SEC_LOAD))
1684 {
1685 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
1686 if (m->p_type == PT_IA_64_UNWIND)
1687 {
1688 int i;
1689
1690 /* Look through all sections in the unwind segment
1691 for a match since there may be multiple sections
1692 to a segment. */
1693 for (i = m->count - 1; i >= 0; --i)
1694 if (m->sections[i] == s)
1695 break;
1696
1697 if (i >= 0)
1698 break;
1699 }
1700
1701 if (m == NULL)
1702 {
1703 m = ((struct elf_segment_map *)
1704 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
1705 if (m == NULL)
1706 return FALSE;
1707
1708 m->p_type = PT_IA_64_UNWIND;
1709 m->count = 1;
1710 m->sections[0] = s;
1711 m->next = NULL;
1712
1713 /* We want to put it last. */
1714 pm = &elf_tdata (abfd)->segment_map;
1715 while (*pm != NULL)
1716 pm = &(*pm)->next;
1717 *pm = m;
1718 }
1719 }
1720 }
1721
1722 /* Turn on PF_IA_64_NORECOV if needed. This involves traversing all of
1723 the input sections for each output section in the segment and testing
1724 for SHF_IA_64_NORECOV on each. */
1725 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
1726 if (m->p_type == PT_LOAD)
1727 {
1728 int i;
1729 for (i = m->count - 1; i >= 0; --i)
1730 {
1731 struct bfd_link_order *order = m->sections[i]->map_head.link_order;
1732 while (order)
1733 {
1734 if (order->type == bfd_indirect_link_order)
1735 {
1736 asection *is = order->u.indirect.section;
1737 bfd_vma flags = elf_section_data(is)->this_hdr.sh_flags;
1738 if (flags & SHF_IA_64_NORECOV)
1739 {
1740 m->p_flags |= PF_IA_64_NORECOV;
1741 goto found;
1742 }
1743 }
1744 order = order->next;
1745 }
1746 }
1747 found:;
1748 }
1749
1750 return TRUE;
1751 }
1752
1753 /* According to the Tahoe assembler spec, all labels starting with a
1754 '.' are local. */
1755
1756 static bfd_boolean
1757 elfNN_ia64_is_local_label_name (abfd, name)
1758 bfd *abfd ATTRIBUTE_UNUSED;
1759 const char *name;
1760 {
1761 return name[0] == '.';
1762 }
1763
1764 /* Should we do dynamic things to this symbol? */
1765
1766 static bfd_boolean
1767 elfNN_ia64_dynamic_symbol_p (h, info, r_type)
1768 struct elf_link_hash_entry *h;
1769 struct bfd_link_info *info;
1770 int r_type;
1771 {
1772 bfd_boolean ignore_protected
1773 = ((r_type & 0xf8) == 0x40 /* FPTR relocs */
1774 || (r_type & 0xf8) == 0x50); /* LTOFF_FPTR relocs */
1775
1776 return _bfd_elf_dynamic_symbol_p (h, info, ignore_protected);
1777 }
1778 \f
1779 static struct bfd_hash_entry*
1780 elfNN_ia64_new_elf_hash_entry (entry, table, string)
1781 struct bfd_hash_entry *entry;
1782 struct bfd_hash_table *table;
1783 const char *string;
1784 {
1785 struct elfNN_ia64_link_hash_entry *ret;
1786 ret = (struct elfNN_ia64_link_hash_entry *) entry;
1787
1788 /* Allocate the structure if it has not already been allocated by a
1789 subclass. */
1790 if (!ret)
1791 ret = bfd_hash_allocate (table, sizeof (*ret));
1792
1793 if (!ret)
1794 return 0;
1795
1796 /* Call the allocation method of the superclass. */
1797 ret = ((struct elfNN_ia64_link_hash_entry *)
1798 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1799 table, string));
1800
1801 ret->info = NULL;
1802 return (struct bfd_hash_entry *) ret;
1803 }
1804
1805 static void
1806 elfNN_ia64_hash_copy_indirect (info, xdir, xind)
1807 struct bfd_link_info *info;
1808 struct elf_link_hash_entry *xdir, *xind;
1809 {
1810 struct elfNN_ia64_link_hash_entry *dir, *ind;
1811
1812 dir = (struct elfNN_ia64_link_hash_entry *) xdir;
1813 ind = (struct elfNN_ia64_link_hash_entry *) xind;
1814
1815 /* Copy down any references that we may have already seen to the
1816 symbol which just became indirect. */
1817
1818 dir->root.ref_dynamic |= ind->root.ref_dynamic;
1819 dir->root.ref_regular |= ind->root.ref_regular;
1820 dir->root.ref_regular_nonweak |= ind->root.ref_regular_nonweak;
1821 dir->root.needs_plt |= ind->root.needs_plt;
1822
1823 if (ind->root.root.type != bfd_link_hash_indirect)
1824 return;
1825
1826 /* Copy over the got and plt data. This would have been done
1827 by check_relocs. */
1828
1829 if (ind->info != NULL)
1830 {
1831 struct elfNN_ia64_dyn_sym_info *dyn_i;
1832 struct elfNN_ia64_dyn_sym_info **pdyn;
1833
1834 pdyn = &dir->info;
1835 while ((dyn_i = *pdyn) != NULL)
1836 pdyn = &dyn_i->next;
1837 *pdyn = dyn_i = ind->info;
1838 ind->info = NULL;
1839
1840 /* Fix up the dyn_sym_info pointers to the global symbol. */
1841 for (; dyn_i; dyn_i = dyn_i->next)
1842 dyn_i->h = &dir->root;
1843 }
1844
1845 /* Copy over the dynindx. */
1846
1847 if (ind->root.dynindx != -1)
1848 {
1849 if (dir->root.dynindx != -1)
1850 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1851 dir->root.dynstr_index);
1852 dir->root.dynindx = ind->root.dynindx;
1853 dir->root.dynstr_index = ind->root.dynstr_index;
1854 ind->root.dynindx = -1;
1855 ind->root.dynstr_index = 0;
1856 }
1857 }
1858
1859 static void
1860 elfNN_ia64_hash_hide_symbol (info, xh, force_local)
1861 struct bfd_link_info *info;
1862 struct elf_link_hash_entry *xh;
1863 bfd_boolean force_local;
1864 {
1865 struct elfNN_ia64_link_hash_entry *h;
1866 struct elfNN_ia64_dyn_sym_info *dyn_i;
1867
1868 h = (struct elfNN_ia64_link_hash_entry *)xh;
1869
1870 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
1871
1872 for (dyn_i = h->info; dyn_i; dyn_i = dyn_i->next)
1873 {
1874 dyn_i->want_plt2 = 0;
1875 dyn_i->want_plt = 0;
1876 }
1877 }
1878
1879 /* Compute a hash of a local hash entry. */
1880
1881 static hashval_t
1882 elfNN_ia64_local_htab_hash (ptr)
1883 const void *ptr;
1884 {
1885 struct elfNN_ia64_local_hash_entry *entry
1886 = (struct elfNN_ia64_local_hash_entry *) ptr;
1887
1888 return (((entry->id & 0xff) << 24) | ((entry->id & 0xff00) << 8))
1889 ^ entry->r_sym ^ (entry->id >> 16);
1890 }
1891
1892 /* Compare local hash entries. */
1893
1894 static int
1895 elfNN_ia64_local_htab_eq (ptr1, ptr2)
1896 const void *ptr1, *ptr2;
1897 {
1898 struct elfNN_ia64_local_hash_entry *entry1
1899 = (struct elfNN_ia64_local_hash_entry *) ptr1;
1900 struct elfNN_ia64_local_hash_entry *entry2
1901 = (struct elfNN_ia64_local_hash_entry *) ptr2;
1902
1903 return entry1->id == entry2->id && entry1->r_sym == entry2->r_sym;
1904 }
1905
1906 /* Create the derived linker hash table. The IA-64 ELF port uses this
1907 derived hash table to keep information specific to the IA-64 ElF
1908 linker (without using static variables). */
1909
1910 static struct bfd_link_hash_table*
1911 elfNN_ia64_hash_table_create (abfd)
1912 bfd *abfd;
1913 {
1914 struct elfNN_ia64_link_hash_table *ret;
1915
1916 ret = bfd_zmalloc ((bfd_size_type) sizeof (*ret));
1917 if (!ret)
1918 return 0;
1919
1920 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
1921 elfNN_ia64_new_elf_hash_entry))
1922 {
1923 free (ret);
1924 return 0;
1925 }
1926
1927 ret->loc_hash_table = htab_try_create (1024, elfNN_ia64_local_htab_hash,
1928 elfNN_ia64_local_htab_eq, NULL);
1929 ret->loc_hash_memory = objalloc_create ();
1930 if (!ret->loc_hash_table || !ret->loc_hash_memory)
1931 {
1932 free (ret);
1933 return 0;
1934 }
1935
1936 return &ret->root.root;
1937 }
1938
1939 /* Destroy IA-64 linker hash table. */
1940
1941 static void
1942 elfNN_ia64_hash_table_free (hash)
1943 struct bfd_link_hash_table *hash;
1944 {
1945 struct elfNN_ia64_link_hash_table *ia64_info
1946 = (struct elfNN_ia64_link_hash_table *) hash;
1947 if (ia64_info->loc_hash_table)
1948 htab_delete (ia64_info->loc_hash_table);
1949 if (ia64_info->loc_hash_memory)
1950 objalloc_free ((struct objalloc *) ia64_info->loc_hash_memory);
1951 _bfd_generic_link_hash_table_free (hash);
1952 }
1953
1954 /* Traverse both local and global hash tables. */
1955
1956 struct elfNN_ia64_dyn_sym_traverse_data
1957 {
1958 bfd_boolean (*func) PARAMS ((struct elfNN_ia64_dyn_sym_info *, PTR));
1959 PTR data;
1960 };
1961
1962 static bfd_boolean
1963 elfNN_ia64_global_dyn_sym_thunk (xentry, xdata)
1964 struct bfd_hash_entry *xentry;
1965 PTR xdata;
1966 {
1967 struct elfNN_ia64_link_hash_entry *entry
1968 = (struct elfNN_ia64_link_hash_entry *) xentry;
1969 struct elfNN_ia64_dyn_sym_traverse_data *data
1970 = (struct elfNN_ia64_dyn_sym_traverse_data *) xdata;
1971 struct elfNN_ia64_dyn_sym_info *dyn_i;
1972
1973 if (entry->root.root.type == bfd_link_hash_warning)
1974 entry = (struct elfNN_ia64_link_hash_entry *) entry->root.root.u.i.link;
1975
1976 for (dyn_i = entry->info; dyn_i; dyn_i = dyn_i->next)
1977 if (! (*data->func) (dyn_i, data->data))
1978 return FALSE;
1979 return TRUE;
1980 }
1981
1982 static bfd_boolean
1983 elfNN_ia64_local_dyn_sym_thunk (slot, xdata)
1984 void **slot;
1985 PTR xdata;
1986 {
1987 struct elfNN_ia64_local_hash_entry *entry
1988 = (struct elfNN_ia64_local_hash_entry *) *slot;
1989 struct elfNN_ia64_dyn_sym_traverse_data *data
1990 = (struct elfNN_ia64_dyn_sym_traverse_data *) xdata;
1991 struct elfNN_ia64_dyn_sym_info *dyn_i;
1992
1993 for (dyn_i = entry->info; dyn_i; dyn_i = dyn_i->next)
1994 if (! (*data->func) (dyn_i, data->data))
1995 return 0;
1996 return 1;
1997 }
1998
1999 static void
2000 elfNN_ia64_dyn_sym_traverse (ia64_info, func, data)
2001 struct elfNN_ia64_link_hash_table *ia64_info;
2002 bfd_boolean (*func) PARAMS ((struct elfNN_ia64_dyn_sym_info *, PTR));
2003 PTR data;
2004 {
2005 struct elfNN_ia64_dyn_sym_traverse_data xdata;
2006
2007 xdata.func = func;
2008 xdata.data = data;
2009
2010 elf_link_hash_traverse (&ia64_info->root,
2011 elfNN_ia64_global_dyn_sym_thunk, &xdata);
2012 htab_traverse (ia64_info->loc_hash_table,
2013 elfNN_ia64_local_dyn_sym_thunk, &xdata);
2014 }
2015 \f
2016 static bfd_boolean
2017 elfNN_ia64_create_dynamic_sections (abfd, info)
2018 bfd *abfd;
2019 struct bfd_link_info *info;
2020 {
2021 struct elfNN_ia64_link_hash_table *ia64_info;
2022 asection *s;
2023
2024 if (! _bfd_elf_create_dynamic_sections (abfd, info))
2025 return FALSE;
2026
2027 ia64_info = elfNN_ia64_hash_table (info);
2028
2029 ia64_info->plt_sec = bfd_get_section_by_name (abfd, ".plt");
2030 ia64_info->got_sec = bfd_get_section_by_name (abfd, ".got");
2031
2032 {
2033 flagword flags = bfd_get_section_flags (abfd, ia64_info->got_sec);
2034 bfd_set_section_flags (abfd, ia64_info->got_sec, SEC_SMALL_DATA | flags);
2035 /* The .got section is always aligned at 8 bytes. */
2036 bfd_set_section_alignment (abfd, ia64_info->got_sec, 3);
2037 }
2038
2039 if (!get_pltoff (abfd, info, ia64_info))
2040 return FALSE;
2041
2042 s = bfd_make_section_with_flags (abfd, ".rela.IA_64.pltoff",
2043 (SEC_ALLOC | SEC_LOAD
2044 | SEC_HAS_CONTENTS
2045 | SEC_IN_MEMORY
2046 | SEC_LINKER_CREATED
2047 | SEC_READONLY));
2048 if (s == NULL
2049 || !bfd_set_section_alignment (abfd, s, LOG_SECTION_ALIGN))
2050 return FALSE;
2051 ia64_info->rel_pltoff_sec = s;
2052
2053 s = bfd_make_section_with_flags (abfd, ".rela.got",
2054 (SEC_ALLOC | SEC_LOAD
2055 | SEC_HAS_CONTENTS
2056 | SEC_IN_MEMORY
2057 | SEC_LINKER_CREATED
2058 | SEC_READONLY));
2059 if (s == NULL
2060 || !bfd_set_section_alignment (abfd, s, LOG_SECTION_ALIGN))
2061 return FALSE;
2062 ia64_info->rel_got_sec = s;
2063
2064 return TRUE;
2065 }
2066
2067 /* Find and/or create a hash entry for local symbol. */
2068 static struct elfNN_ia64_local_hash_entry *
2069 get_local_sym_hash (ia64_info, abfd, rel, create)
2070 struct elfNN_ia64_link_hash_table *ia64_info;
2071 bfd *abfd;
2072 const Elf_Internal_Rela *rel;
2073 bfd_boolean create;
2074 {
2075 struct elfNN_ia64_local_hash_entry e, *ret;
2076 asection *sec = abfd->sections;
2077 hashval_t h = (((sec->id & 0xff) << 24) | ((sec->id & 0xff00) << 8))
2078 ^ ELFNN_R_SYM (rel->r_info) ^ (sec->id >> 16);
2079 void **slot;
2080
2081 e.id = sec->id;
2082 e.r_sym = ELFNN_R_SYM (rel->r_info);
2083 slot = htab_find_slot_with_hash (ia64_info->loc_hash_table, &e, h,
2084 create ? INSERT : NO_INSERT);
2085
2086 if (!slot)
2087 return NULL;
2088
2089 if (*slot)
2090 return (struct elfNN_ia64_local_hash_entry *) *slot;
2091
2092 ret = (struct elfNN_ia64_local_hash_entry *)
2093 objalloc_alloc ((struct objalloc *) ia64_info->loc_hash_memory,
2094 sizeof (struct elfNN_ia64_local_hash_entry));
2095 if (ret)
2096 {
2097 memset (ret, 0, sizeof (*ret));
2098 ret->id = sec->id;
2099 ret->r_sym = ELFNN_R_SYM (rel->r_info);
2100 *slot = ret;
2101 }
2102 return ret;
2103 }
2104
2105 /* Find and/or create a descriptor for dynamic symbol info. This will
2106 vary based on global or local symbol, and the addend to the reloc. */
2107
2108 static struct elfNN_ia64_dyn_sym_info *
2109 get_dyn_sym_info (ia64_info, h, abfd, rel, create)
2110 struct elfNN_ia64_link_hash_table *ia64_info;
2111 struct elf_link_hash_entry *h;
2112 bfd *abfd;
2113 const Elf_Internal_Rela *rel;
2114 bfd_boolean create;
2115 {
2116 struct elfNN_ia64_dyn_sym_info **pp;
2117 struct elfNN_ia64_dyn_sym_info *dyn_i;
2118 bfd_vma addend = rel ? rel->r_addend : 0;
2119
2120 if (h)
2121 pp = &((struct elfNN_ia64_link_hash_entry *)h)->info;
2122 else
2123 {
2124 struct elfNN_ia64_local_hash_entry *loc_h;
2125
2126 loc_h = get_local_sym_hash (ia64_info, abfd, rel, create);
2127 if (!loc_h)
2128 {
2129 BFD_ASSERT (!create);
2130 return NULL;
2131 }
2132
2133 pp = &loc_h->info;
2134 }
2135
2136 for (dyn_i = *pp; dyn_i && dyn_i->addend != addend; dyn_i = *pp)
2137 pp = &dyn_i->next;
2138
2139 if (dyn_i == NULL && create)
2140 {
2141 dyn_i = ((struct elfNN_ia64_dyn_sym_info *)
2142 bfd_zalloc (abfd, (bfd_size_type) sizeof *dyn_i));
2143 *pp = dyn_i;
2144 dyn_i->addend = addend;
2145 }
2146
2147 return dyn_i;
2148 }
2149
2150 static asection *
2151 get_got (abfd, info, ia64_info)
2152 bfd *abfd;
2153 struct bfd_link_info *info;
2154 struct elfNN_ia64_link_hash_table *ia64_info;
2155 {
2156 asection *got;
2157 bfd *dynobj;
2158
2159 got = ia64_info->got_sec;
2160 if (!got)
2161 {
2162 flagword flags;
2163
2164 dynobj = ia64_info->root.dynobj;
2165 if (!dynobj)
2166 ia64_info->root.dynobj = dynobj = abfd;
2167 if (!_bfd_elf_create_got_section (dynobj, info))
2168 return 0;
2169
2170 got = bfd_get_section_by_name (dynobj, ".got");
2171 BFD_ASSERT (got);
2172 ia64_info->got_sec = got;
2173
2174 /* The .got section is always aligned at 8 bytes. */
2175 if (!bfd_set_section_alignment (abfd, got, 3))
2176 return 0;
2177
2178 flags = bfd_get_section_flags (abfd, got);
2179 bfd_set_section_flags (abfd, got, SEC_SMALL_DATA | flags);
2180 }
2181
2182 return got;
2183 }
2184
2185 /* Create function descriptor section (.opd). This section is called .opd
2186 because it contains "official procedure descriptors". The "official"
2187 refers to the fact that these descriptors are used when taking the address
2188 of a procedure, thus ensuring a unique address for each procedure. */
2189
2190 static asection *
2191 get_fptr (abfd, info, ia64_info)
2192 bfd *abfd;
2193 struct bfd_link_info *info;
2194 struct elfNN_ia64_link_hash_table *ia64_info;
2195 {
2196 asection *fptr;
2197 bfd *dynobj;
2198
2199 fptr = ia64_info->fptr_sec;
2200 if (!fptr)
2201 {
2202 dynobj = ia64_info->root.dynobj;
2203 if (!dynobj)
2204 ia64_info->root.dynobj = dynobj = abfd;
2205
2206 fptr = bfd_make_section_with_flags (dynobj, ".opd",
2207 (SEC_ALLOC
2208 | SEC_LOAD
2209 | SEC_HAS_CONTENTS
2210 | SEC_IN_MEMORY
2211 | (info->pie ? 0 : SEC_READONLY)
2212 | SEC_LINKER_CREATED));
2213 if (!fptr
2214 || !bfd_set_section_alignment (abfd, fptr, 4))
2215 {
2216 BFD_ASSERT (0);
2217 return NULL;
2218 }
2219
2220 ia64_info->fptr_sec = fptr;
2221
2222 if (info->pie)
2223 {
2224 asection *fptr_rel;
2225 fptr_rel = bfd_make_section_with_flags (dynobj, ".rela.opd",
2226 (SEC_ALLOC | SEC_LOAD
2227 | SEC_HAS_CONTENTS
2228 | SEC_IN_MEMORY
2229 | SEC_LINKER_CREATED
2230 | SEC_READONLY));
2231 if (fptr_rel == NULL
2232 || !bfd_set_section_alignment (abfd, fptr_rel,
2233 LOG_SECTION_ALIGN))
2234 {
2235 BFD_ASSERT (0);
2236 return NULL;
2237 }
2238
2239 ia64_info->rel_fptr_sec = fptr_rel;
2240 }
2241 }
2242
2243 return fptr;
2244 }
2245
2246 static asection *
2247 get_pltoff (abfd, info, ia64_info)
2248 bfd *abfd;
2249 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2250 struct elfNN_ia64_link_hash_table *ia64_info;
2251 {
2252 asection *pltoff;
2253 bfd *dynobj;
2254
2255 pltoff = ia64_info->pltoff_sec;
2256 if (!pltoff)
2257 {
2258 dynobj = ia64_info->root.dynobj;
2259 if (!dynobj)
2260 ia64_info->root.dynobj = dynobj = abfd;
2261
2262 pltoff = bfd_make_section_with_flags (dynobj,
2263 ELF_STRING_ia64_pltoff,
2264 (SEC_ALLOC
2265 | SEC_LOAD
2266 | SEC_HAS_CONTENTS
2267 | SEC_IN_MEMORY
2268 | SEC_SMALL_DATA
2269 | SEC_LINKER_CREATED));
2270 if (!pltoff
2271 || !bfd_set_section_alignment (abfd, pltoff, 4))
2272 {
2273 BFD_ASSERT (0);
2274 return NULL;
2275 }
2276
2277 ia64_info->pltoff_sec = pltoff;
2278 }
2279
2280 return pltoff;
2281 }
2282
2283 static asection *
2284 get_reloc_section (abfd, ia64_info, sec, create)
2285 bfd *abfd;
2286 struct elfNN_ia64_link_hash_table *ia64_info;
2287 asection *sec;
2288 bfd_boolean create;
2289 {
2290 const char *srel_name;
2291 asection *srel;
2292 bfd *dynobj;
2293
2294 srel_name = (bfd_elf_string_from_elf_section
2295 (abfd, elf_elfheader(abfd)->e_shstrndx,
2296 elf_section_data(sec)->rel_hdr.sh_name));
2297 if (srel_name == NULL)
2298 return NULL;
2299
2300 BFD_ASSERT ((strncmp (srel_name, ".rela", 5) == 0
2301 && strcmp (bfd_get_section_name (abfd, sec),
2302 srel_name+5) == 0)
2303 || (strncmp (srel_name, ".rel", 4) == 0
2304 && strcmp (bfd_get_section_name (abfd, sec),
2305 srel_name+4) == 0));
2306
2307 dynobj = ia64_info->root.dynobj;
2308 if (!dynobj)
2309 ia64_info->root.dynobj = dynobj = abfd;
2310
2311 srel = bfd_get_section_by_name (dynobj, srel_name);
2312 if (srel == NULL && create)
2313 {
2314 srel = bfd_make_section_with_flags (dynobj, srel_name,
2315 (SEC_ALLOC | SEC_LOAD
2316 | SEC_HAS_CONTENTS
2317 | SEC_IN_MEMORY
2318 | SEC_LINKER_CREATED
2319 | SEC_READONLY));
2320 if (srel == NULL
2321 || !bfd_set_section_alignment (dynobj, srel,
2322 LOG_SECTION_ALIGN))
2323 return NULL;
2324 }
2325
2326 return srel;
2327 }
2328
2329 static bfd_boolean
2330 count_dyn_reloc (bfd *abfd, struct elfNN_ia64_dyn_sym_info *dyn_i,
2331 asection *srel, int type, bfd_boolean reltext)
2332 {
2333 struct elfNN_ia64_dyn_reloc_entry *rent;
2334
2335 for (rent = dyn_i->reloc_entries; rent; rent = rent->next)
2336 if (rent->srel == srel && rent->type == type)
2337 break;
2338
2339 if (!rent)
2340 {
2341 rent = ((struct elfNN_ia64_dyn_reloc_entry *)
2342 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent)));
2343 if (!rent)
2344 return FALSE;
2345
2346 rent->next = dyn_i->reloc_entries;
2347 rent->srel = srel;
2348 rent->type = type;
2349 rent->count = 0;
2350 dyn_i->reloc_entries = rent;
2351 }
2352 rent->reltext = reltext;
2353 rent->count++;
2354
2355 return TRUE;
2356 }
2357
2358 static bfd_boolean
2359 elfNN_ia64_check_relocs (abfd, info, sec, relocs)
2360 bfd *abfd;
2361 struct bfd_link_info *info;
2362 asection *sec;
2363 const Elf_Internal_Rela *relocs;
2364 {
2365 struct elfNN_ia64_link_hash_table *ia64_info;
2366 const Elf_Internal_Rela *relend;
2367 Elf_Internal_Shdr *symtab_hdr;
2368 const Elf_Internal_Rela *rel;
2369 asection *got, *fptr, *srel, *pltoff;
2370
2371 if (info->relocatable)
2372 return TRUE;
2373
2374 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2375 ia64_info = elfNN_ia64_hash_table (info);
2376
2377 got = fptr = srel = pltoff = NULL;
2378
2379 relend = relocs + sec->reloc_count;
2380 for (rel = relocs; rel < relend; ++rel)
2381 {
2382 enum {
2383 NEED_GOT = 1,
2384 NEED_GOTX = 2,
2385 NEED_FPTR = 4,
2386 NEED_PLTOFF = 8,
2387 NEED_MIN_PLT = 16,
2388 NEED_FULL_PLT = 32,
2389 NEED_DYNREL = 64,
2390 NEED_LTOFF_FPTR = 128,
2391 NEED_TPREL = 256,
2392 NEED_DTPMOD = 512,
2393 NEED_DTPREL = 1024
2394 };
2395
2396 struct elf_link_hash_entry *h = NULL;
2397 unsigned long r_symndx = ELFNN_R_SYM (rel->r_info);
2398 struct elfNN_ia64_dyn_sym_info *dyn_i;
2399 int need_entry;
2400 bfd_boolean maybe_dynamic;
2401 int dynrel_type = R_IA64_NONE;
2402
2403 if (r_symndx >= symtab_hdr->sh_info)
2404 {
2405 /* We're dealing with a global symbol -- find its hash entry
2406 and mark it as being referenced. */
2407 long indx = r_symndx - symtab_hdr->sh_info;
2408 h = elf_sym_hashes (abfd)[indx];
2409 while (h->root.type == bfd_link_hash_indirect
2410 || h->root.type == bfd_link_hash_warning)
2411 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2412
2413 h->ref_regular = 1;
2414 }
2415
2416 /* We can only get preliminary data on whether a symbol is
2417 locally or externally defined, as not all of the input files
2418 have yet been processed. Do something with what we know, as
2419 this may help reduce memory usage and processing time later. */
2420 maybe_dynamic = FALSE;
2421 if (h && ((!info->executable
2422 && (!info->symbolic
2423 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
2424 || !h->def_regular
2425 || h->root.type == bfd_link_hash_defweak))
2426 maybe_dynamic = TRUE;
2427
2428 need_entry = 0;
2429 switch (ELFNN_R_TYPE (rel->r_info))
2430 {
2431 case R_IA64_TPREL64MSB:
2432 case R_IA64_TPREL64LSB:
2433 if (info->shared || maybe_dynamic)
2434 need_entry = NEED_DYNREL;
2435 dynrel_type = R_IA64_TPREL64LSB;
2436 if (info->shared)
2437 info->flags |= DF_STATIC_TLS;
2438 break;
2439
2440 case R_IA64_LTOFF_TPREL22:
2441 need_entry = NEED_TPREL;
2442 if (info->shared)
2443 info->flags |= DF_STATIC_TLS;
2444 break;
2445
2446 case R_IA64_DTPREL32MSB:
2447 case R_IA64_DTPREL32LSB:
2448 case R_IA64_DTPREL64MSB:
2449 case R_IA64_DTPREL64LSB:
2450 if (info->shared || maybe_dynamic)
2451 need_entry = NEED_DYNREL;
2452 dynrel_type = R_IA64_DTPRELNNLSB;
2453 break;
2454
2455 case R_IA64_LTOFF_DTPREL22:
2456 need_entry = NEED_DTPREL;
2457 break;
2458
2459 case R_IA64_DTPMOD64MSB:
2460 case R_IA64_DTPMOD64LSB:
2461 if (info->shared || maybe_dynamic)
2462 need_entry = NEED_DYNREL;
2463 dynrel_type = R_IA64_DTPMOD64LSB;
2464 break;
2465
2466 case R_IA64_LTOFF_DTPMOD22:
2467 need_entry = NEED_DTPMOD;
2468 break;
2469
2470 case R_IA64_LTOFF_FPTR22:
2471 case R_IA64_LTOFF_FPTR64I:
2472 case R_IA64_LTOFF_FPTR32MSB:
2473 case R_IA64_LTOFF_FPTR32LSB:
2474 case R_IA64_LTOFF_FPTR64MSB:
2475 case R_IA64_LTOFF_FPTR64LSB:
2476 need_entry = NEED_FPTR | NEED_GOT | NEED_LTOFF_FPTR;
2477 break;
2478
2479 case R_IA64_FPTR64I:
2480 case R_IA64_FPTR32MSB:
2481 case R_IA64_FPTR32LSB:
2482 case R_IA64_FPTR64MSB:
2483 case R_IA64_FPTR64LSB:
2484 if (info->shared || h)
2485 need_entry = NEED_FPTR | NEED_DYNREL;
2486 else
2487 need_entry = NEED_FPTR;
2488 dynrel_type = R_IA64_FPTRNNLSB;
2489 break;
2490
2491 case R_IA64_LTOFF22:
2492 case R_IA64_LTOFF64I:
2493 need_entry = NEED_GOT;
2494 break;
2495
2496 case R_IA64_LTOFF22X:
2497 need_entry = NEED_GOTX;
2498 break;
2499
2500 case R_IA64_PLTOFF22:
2501 case R_IA64_PLTOFF64I:
2502 case R_IA64_PLTOFF64MSB:
2503 case R_IA64_PLTOFF64LSB:
2504 need_entry = NEED_PLTOFF;
2505 if (h)
2506 {
2507 if (maybe_dynamic)
2508 need_entry |= NEED_MIN_PLT;
2509 }
2510 else
2511 {
2512 (*info->callbacks->warning)
2513 (info, _("@pltoff reloc against local symbol"), 0,
2514 abfd, 0, (bfd_vma) 0);
2515 }
2516 break;
2517
2518 case R_IA64_PCREL21B:
2519 case R_IA64_PCREL60B:
2520 /* Depending on where this symbol is defined, we may or may not
2521 need a full plt entry. Only skip if we know we'll not need
2522 the entry -- static or symbolic, and the symbol definition
2523 has already been seen. */
2524 if (maybe_dynamic && rel->r_addend == 0)
2525 need_entry = NEED_FULL_PLT;
2526 break;
2527
2528 case R_IA64_IMM14:
2529 case R_IA64_IMM22:
2530 case R_IA64_IMM64:
2531 case R_IA64_DIR32MSB:
2532 case R_IA64_DIR32LSB:
2533 case R_IA64_DIR64MSB:
2534 case R_IA64_DIR64LSB:
2535 /* Shared objects will always need at least a REL relocation. */
2536 if (info->shared || maybe_dynamic)
2537 need_entry = NEED_DYNREL;
2538 dynrel_type = R_IA64_DIRNNLSB;
2539 break;
2540
2541 case R_IA64_IPLTMSB:
2542 case R_IA64_IPLTLSB:
2543 /* Shared objects will always need at least a REL relocation. */
2544 if (info->shared || maybe_dynamic)
2545 need_entry = NEED_DYNREL;
2546 dynrel_type = R_IA64_IPLTLSB;
2547 break;
2548
2549 case R_IA64_PCREL22:
2550 case R_IA64_PCREL64I:
2551 case R_IA64_PCREL32MSB:
2552 case R_IA64_PCREL32LSB:
2553 case R_IA64_PCREL64MSB:
2554 case R_IA64_PCREL64LSB:
2555 if (maybe_dynamic)
2556 need_entry = NEED_DYNREL;
2557 dynrel_type = R_IA64_PCRELNNLSB;
2558 break;
2559 }
2560
2561 if (!need_entry)
2562 continue;
2563
2564 if ((need_entry & NEED_FPTR) != 0
2565 && rel->r_addend)
2566 {
2567 (*info->callbacks->warning)
2568 (info, _("non-zero addend in @fptr reloc"), 0,
2569 abfd, 0, (bfd_vma) 0);
2570 }
2571
2572 dyn_i = get_dyn_sym_info (ia64_info, h, abfd, rel, TRUE);
2573
2574 /* Record whether or not this is a local symbol. */
2575 dyn_i->h = h;
2576
2577 /* Create what's needed. */
2578 if (need_entry & (NEED_GOT | NEED_GOTX | NEED_TPREL
2579 | NEED_DTPMOD | NEED_DTPREL))
2580 {
2581 if (!got)
2582 {
2583 got = get_got (abfd, info, ia64_info);
2584 if (!got)
2585 return FALSE;
2586 }
2587 if (need_entry & NEED_GOT)
2588 dyn_i->want_got = 1;
2589 if (need_entry & NEED_GOTX)
2590 dyn_i->want_gotx = 1;
2591 if (need_entry & NEED_TPREL)
2592 dyn_i->want_tprel = 1;
2593 if (need_entry & NEED_DTPMOD)
2594 dyn_i->want_dtpmod = 1;
2595 if (need_entry & NEED_DTPREL)
2596 dyn_i->want_dtprel = 1;
2597 }
2598 if (need_entry & NEED_FPTR)
2599 {
2600 if (!fptr)
2601 {
2602 fptr = get_fptr (abfd, info, ia64_info);
2603 if (!fptr)
2604 return FALSE;
2605 }
2606
2607 /* FPTRs for shared libraries are allocated by the dynamic
2608 linker. Make sure this local symbol will appear in the
2609 dynamic symbol table. */
2610 if (!h && info->shared)
2611 {
2612 if (! (bfd_elf_link_record_local_dynamic_symbol
2613 (info, abfd, (long) r_symndx)))
2614 return FALSE;
2615 }
2616
2617 dyn_i->want_fptr = 1;
2618 }
2619 if (need_entry & NEED_LTOFF_FPTR)
2620 dyn_i->want_ltoff_fptr = 1;
2621 if (need_entry & (NEED_MIN_PLT | NEED_FULL_PLT))
2622 {
2623 if (!ia64_info->root.dynobj)
2624 ia64_info->root.dynobj = abfd;
2625 h->needs_plt = 1;
2626 dyn_i->want_plt = 1;
2627 }
2628 if (need_entry & NEED_FULL_PLT)
2629 dyn_i->want_plt2 = 1;
2630 if (need_entry & NEED_PLTOFF)
2631 {
2632 /* This is needed here, in case @pltoff is used in a non-shared
2633 link. */
2634 if (!pltoff)
2635 {
2636 pltoff = get_pltoff (abfd, info, ia64_info);
2637 if (!pltoff)
2638 return FALSE;
2639 }
2640
2641 dyn_i->want_pltoff = 1;
2642 }
2643 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
2644 {
2645 if (!srel)
2646 {
2647 srel = get_reloc_section (abfd, ia64_info, sec, TRUE);
2648 if (!srel)
2649 return FALSE;
2650 }
2651 if (!count_dyn_reloc (abfd, dyn_i, srel, dynrel_type,
2652 (sec->flags & SEC_READONLY) != 0))
2653 return FALSE;
2654 }
2655 }
2656
2657 return TRUE;
2658 }
2659
2660 /* For cleanliness, and potentially faster dynamic loading, allocate
2661 external GOT entries first. */
2662
2663 static bfd_boolean
2664 allocate_global_data_got (dyn_i, data)
2665 struct elfNN_ia64_dyn_sym_info *dyn_i;
2666 PTR data;
2667 {
2668 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
2669
2670 if ((dyn_i->want_got || dyn_i->want_gotx)
2671 && ! dyn_i->want_fptr
2672 && elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0))
2673 {
2674 dyn_i->got_offset = x->ofs;
2675 x->ofs += 8;
2676 }
2677 if (dyn_i->want_tprel)
2678 {
2679 dyn_i->tprel_offset = x->ofs;
2680 x->ofs += 8;
2681 }
2682 if (dyn_i->want_dtpmod)
2683 {
2684 if (elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0))
2685 {
2686 dyn_i->dtpmod_offset = x->ofs;
2687 x->ofs += 8;
2688 }
2689 else
2690 {
2691 struct elfNN_ia64_link_hash_table *ia64_info;
2692
2693 ia64_info = elfNN_ia64_hash_table (x->info);
2694 if (ia64_info->self_dtpmod_offset == (bfd_vma) -1)
2695 {
2696 ia64_info->self_dtpmod_offset = x->ofs;
2697 x->ofs += 8;
2698 }
2699 dyn_i->dtpmod_offset = ia64_info->self_dtpmod_offset;
2700 }
2701 }
2702 if (dyn_i->want_dtprel)
2703 {
2704 dyn_i->dtprel_offset = x->ofs;
2705 x->ofs += 8;
2706 }
2707 return TRUE;
2708 }
2709
2710 /* Next, allocate all the GOT entries used by LTOFF_FPTR relocs. */
2711
2712 static bfd_boolean
2713 allocate_global_fptr_got (dyn_i, data)
2714 struct elfNN_ia64_dyn_sym_info *dyn_i;
2715 PTR data;
2716 {
2717 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
2718
2719 if (dyn_i->want_got
2720 && dyn_i->want_fptr
2721 && elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, R_IA64_FPTRNNLSB))
2722 {
2723 dyn_i->got_offset = x->ofs;
2724 x->ofs += 8;
2725 }
2726 return TRUE;
2727 }
2728
2729 /* Lastly, allocate all the GOT entries for local data. */
2730
2731 static bfd_boolean
2732 allocate_local_got (dyn_i, data)
2733 struct elfNN_ia64_dyn_sym_info *dyn_i;
2734 PTR data;
2735 {
2736 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
2737
2738 if ((dyn_i->want_got || dyn_i->want_gotx)
2739 && !elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0))
2740 {
2741 dyn_i->got_offset = x->ofs;
2742 x->ofs += 8;
2743 }
2744 return TRUE;
2745 }
2746
2747 /* Search for the index of a global symbol in it's defining object file. */
2748
2749 static long
2750 global_sym_index (h)
2751 struct elf_link_hash_entry *h;
2752 {
2753 struct elf_link_hash_entry **p;
2754 bfd *obj;
2755
2756 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2757 || h->root.type == bfd_link_hash_defweak);
2758
2759 obj = h->root.u.def.section->owner;
2760 for (p = elf_sym_hashes (obj); *p != h; ++p)
2761 continue;
2762
2763 return p - elf_sym_hashes (obj) + elf_tdata (obj)->symtab_hdr.sh_info;
2764 }
2765
2766 /* Allocate function descriptors. We can do these for every function
2767 in a main executable that is not exported. */
2768
2769 static bfd_boolean
2770 allocate_fptr (dyn_i, data)
2771 struct elfNN_ia64_dyn_sym_info *dyn_i;
2772 PTR data;
2773 {
2774 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
2775
2776 if (dyn_i->want_fptr)
2777 {
2778 struct elf_link_hash_entry *h = dyn_i->h;
2779
2780 if (h)
2781 while (h->root.type == bfd_link_hash_indirect
2782 || h->root.type == bfd_link_hash_warning)
2783 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2784
2785 if (!x->info->executable
2786 && (!h
2787 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2788 || (h->root.type != bfd_link_hash_undefweak
2789 && h->root.type != bfd_link_hash_undefined)))
2790 {
2791 if (h && h->dynindx == -1)
2792 {
2793 BFD_ASSERT ((h->root.type == bfd_link_hash_defined)
2794 || (h->root.type == bfd_link_hash_defweak));
2795
2796 if (!bfd_elf_link_record_local_dynamic_symbol
2797 (x->info, h->root.u.def.section->owner,
2798 global_sym_index (h)))
2799 return FALSE;
2800 }
2801
2802 dyn_i->want_fptr = 0;
2803 }
2804 else if (h == NULL || h->dynindx == -1)
2805 {
2806 dyn_i->fptr_offset = x->ofs;
2807 x->ofs += 16;
2808 }
2809 else
2810 dyn_i->want_fptr = 0;
2811 }
2812 return TRUE;
2813 }
2814
2815 /* Allocate all the minimal PLT entries. */
2816
2817 static bfd_boolean
2818 allocate_plt_entries (dyn_i, data)
2819 struct elfNN_ia64_dyn_sym_info *dyn_i;
2820 PTR data;
2821 {
2822 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
2823
2824 if (dyn_i->want_plt)
2825 {
2826 struct elf_link_hash_entry *h = dyn_i->h;
2827
2828 if (h)
2829 while (h->root.type == bfd_link_hash_indirect
2830 || h->root.type == bfd_link_hash_warning)
2831 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2832
2833 /* ??? Versioned symbols seem to lose NEEDS_PLT. */
2834 if (elfNN_ia64_dynamic_symbol_p (h, x->info, 0))
2835 {
2836 bfd_size_type offset = x->ofs;
2837 if (offset == 0)
2838 offset = PLT_HEADER_SIZE;
2839 dyn_i->plt_offset = offset;
2840 x->ofs = offset + PLT_MIN_ENTRY_SIZE;
2841
2842 dyn_i->want_pltoff = 1;
2843 }
2844 else
2845 {
2846 dyn_i->want_plt = 0;
2847 dyn_i->want_plt2 = 0;
2848 }
2849 }
2850 return TRUE;
2851 }
2852
2853 /* Allocate all the full PLT entries. */
2854
2855 static bfd_boolean
2856 allocate_plt2_entries (dyn_i, data)
2857 struct elfNN_ia64_dyn_sym_info *dyn_i;
2858 PTR data;
2859 {
2860 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
2861
2862 if (dyn_i->want_plt2)
2863 {
2864 struct elf_link_hash_entry *h = dyn_i->h;
2865 bfd_size_type ofs = x->ofs;
2866
2867 dyn_i->plt2_offset = ofs;
2868 x->ofs = ofs + PLT_FULL_ENTRY_SIZE;
2869
2870 while (h->root.type == bfd_link_hash_indirect
2871 || h->root.type == bfd_link_hash_warning)
2872 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2873 dyn_i->h->plt.offset = ofs;
2874 }
2875 return TRUE;
2876 }
2877
2878 /* Allocate all the PLTOFF entries requested by relocations and
2879 plt entries. We can't share space with allocated FPTR entries,
2880 because the latter are not necessarily addressable by the GP.
2881 ??? Relaxation might be able to determine that they are. */
2882
2883 static bfd_boolean
2884 allocate_pltoff_entries (dyn_i, data)
2885 struct elfNN_ia64_dyn_sym_info *dyn_i;
2886 PTR data;
2887 {
2888 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
2889
2890 if (dyn_i->want_pltoff)
2891 {
2892 dyn_i->pltoff_offset = x->ofs;
2893 x->ofs += 16;
2894 }
2895 return TRUE;
2896 }
2897
2898 /* Allocate dynamic relocations for those symbols that turned out
2899 to be dynamic. */
2900
2901 static bfd_boolean
2902 allocate_dynrel_entries (dyn_i, data)
2903 struct elfNN_ia64_dyn_sym_info *dyn_i;
2904 PTR data;
2905 {
2906 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
2907 struct elfNN_ia64_link_hash_table *ia64_info;
2908 struct elfNN_ia64_dyn_reloc_entry *rent;
2909 bfd_boolean dynamic_symbol, shared, resolved_zero;
2910
2911 ia64_info = elfNN_ia64_hash_table (x->info);
2912
2913 /* Note that this can't be used in relation to FPTR relocs below. */
2914 dynamic_symbol = elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0);
2915
2916 shared = x->info->shared;
2917 resolved_zero = (dyn_i->h
2918 && ELF_ST_VISIBILITY (dyn_i->h->other)
2919 && dyn_i->h->root.type == bfd_link_hash_undefweak);
2920
2921 /* Take care of the GOT and PLT relocations. */
2922
2923 if ((!resolved_zero
2924 && (dynamic_symbol || shared)
2925 && (dyn_i->want_got || dyn_i->want_gotx))
2926 || (dyn_i->want_ltoff_fptr
2927 && dyn_i->h
2928 && dyn_i->h->dynindx != -1))
2929 {
2930 if (!dyn_i->want_ltoff_fptr
2931 || !x->info->pie
2932 || dyn_i->h == NULL
2933 || dyn_i->h->root.type != bfd_link_hash_undefweak)
2934 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
2935 }
2936 if ((dynamic_symbol || shared) && dyn_i->want_tprel)
2937 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
2938 if (dynamic_symbol && dyn_i->want_dtpmod)
2939 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
2940 if (dynamic_symbol && dyn_i->want_dtprel)
2941 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
2942
2943 if (x->only_got)
2944 return TRUE;
2945
2946 if (ia64_info->rel_fptr_sec && dyn_i->want_fptr)
2947 {
2948 if (dyn_i->h == NULL || dyn_i->h->root.type != bfd_link_hash_undefweak)
2949 ia64_info->rel_fptr_sec->size += sizeof (ElfNN_External_Rela);
2950 }
2951
2952 if (!resolved_zero && dyn_i->want_pltoff)
2953 {
2954 bfd_size_type t = 0;
2955
2956 /* Dynamic symbols get one IPLT relocation. Local symbols in
2957 shared libraries get two REL relocations. Local symbols in
2958 main applications get nothing. */
2959 if (dynamic_symbol)
2960 t = sizeof (ElfNN_External_Rela);
2961 else if (shared)
2962 t = 2 * sizeof (ElfNN_External_Rela);
2963
2964 ia64_info->rel_pltoff_sec->size += t;
2965 }
2966
2967 /* Take care of the normal data relocations. */
2968
2969 for (rent = dyn_i->reloc_entries; rent; rent = rent->next)
2970 {
2971 int count = rent->count;
2972
2973 switch (rent->type)
2974 {
2975 case R_IA64_FPTR32LSB:
2976 case R_IA64_FPTR64LSB:
2977 /* Allocate one iff !want_fptr and not PIE, which by this point
2978 will be true only if we're actually allocating one statically
2979 in the main executable. Position independent executables
2980 need a relative reloc. */
2981 if (dyn_i->want_fptr && !x->info->pie)
2982 continue;
2983 break;
2984 case R_IA64_PCREL32LSB:
2985 case R_IA64_PCREL64LSB:
2986 if (!dynamic_symbol)
2987 continue;
2988 break;
2989 case R_IA64_DIR32LSB:
2990 case R_IA64_DIR64LSB:
2991 if (!dynamic_symbol && !shared)
2992 continue;
2993 break;
2994 case R_IA64_IPLTLSB:
2995 if (!dynamic_symbol && !shared)
2996 continue;
2997 /* Use two REL relocations for IPLT relocations
2998 against local symbols. */
2999 if (!dynamic_symbol)
3000 count *= 2;
3001 break;
3002 case R_IA64_DTPREL32LSB:
3003 case R_IA64_TPREL64LSB:
3004 case R_IA64_DTPREL64LSB:
3005 case R_IA64_DTPMOD64LSB:
3006 break;
3007 default:
3008 abort ();
3009 }
3010 if (rent->reltext)
3011 ia64_info->reltext = 1;
3012 rent->srel->size += sizeof (ElfNN_External_Rela) * count;
3013 }
3014
3015 return TRUE;
3016 }
3017
3018 static bfd_boolean
3019 elfNN_ia64_adjust_dynamic_symbol (info, h)
3020 struct bfd_link_info *info ATTRIBUTE_UNUSED;
3021 struct elf_link_hash_entry *h;
3022 {
3023 /* ??? Undefined symbols with PLT entries should be re-defined
3024 to be the PLT entry. */
3025
3026 /* If this is a weak symbol, and there is a real definition, the
3027 processor independent code will have arranged for us to see the
3028 real definition first, and we can just use the same value. */
3029 if (h->u.weakdef != NULL)
3030 {
3031 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
3032 || h->u.weakdef->root.type == bfd_link_hash_defweak);
3033 h->root.u.def.section = h->u.weakdef->root.u.def.section;
3034 h->root.u.def.value = h->u.weakdef->root.u.def.value;
3035 return TRUE;
3036 }
3037
3038 /* If this is a reference to a symbol defined by a dynamic object which
3039 is not a function, we might allocate the symbol in our .dynbss section
3040 and allocate a COPY dynamic relocation.
3041
3042 But IA-64 code is canonically PIC, so as a rule we can avoid this sort
3043 of hackery. */
3044
3045 return TRUE;
3046 }
3047
3048 static bfd_boolean
3049 elfNN_ia64_size_dynamic_sections (output_bfd, info)
3050 bfd *output_bfd ATTRIBUTE_UNUSED;
3051 struct bfd_link_info *info;
3052 {
3053 struct elfNN_ia64_allocate_data data;
3054 struct elfNN_ia64_link_hash_table *ia64_info;
3055 asection *sec;
3056 bfd *dynobj;
3057 bfd_boolean relplt = FALSE;
3058
3059 dynobj = elf_hash_table(info)->dynobj;
3060 ia64_info = elfNN_ia64_hash_table (info);
3061 ia64_info->self_dtpmod_offset = (bfd_vma) -1;
3062 BFD_ASSERT(dynobj != NULL);
3063 data.info = info;
3064
3065 /* Set the contents of the .interp section to the interpreter. */
3066 if (ia64_info->root.dynamic_sections_created
3067 && info->executable)
3068 {
3069 sec = bfd_get_section_by_name (dynobj, ".interp");
3070 BFD_ASSERT (sec != NULL);
3071 sec->contents = (bfd_byte *) ELF_DYNAMIC_INTERPRETER;
3072 sec->size = strlen (ELF_DYNAMIC_INTERPRETER) + 1;
3073 }
3074
3075 /* Allocate the GOT entries. */
3076
3077 if (ia64_info->got_sec)
3078 {
3079 data.ofs = 0;
3080 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_data_got, &data);
3081 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_fptr_got, &data);
3082 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_local_got, &data);
3083 ia64_info->got_sec->size = data.ofs;
3084 }
3085
3086 /* Allocate the FPTR entries. */
3087
3088 if (ia64_info->fptr_sec)
3089 {
3090 data.ofs = 0;
3091 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_fptr, &data);
3092 ia64_info->fptr_sec->size = data.ofs;
3093 }
3094
3095 /* Now that we've seen all of the input files, we can decide which
3096 symbols need plt entries. Allocate the minimal PLT entries first.
3097 We do this even though dynamic_sections_created may be FALSE, because
3098 this has the side-effect of clearing want_plt and want_plt2. */
3099
3100 data.ofs = 0;
3101 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_plt_entries, &data);
3102
3103 ia64_info->minplt_entries = 0;
3104 if (data.ofs)
3105 {
3106 ia64_info->minplt_entries
3107 = (data.ofs - PLT_HEADER_SIZE) / PLT_MIN_ENTRY_SIZE;
3108 }
3109
3110 /* Align the pointer for the plt2 entries. */
3111 data.ofs = (data.ofs + 31) & (bfd_vma) -32;
3112
3113 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_plt2_entries, &data);
3114 if (data.ofs != 0 || ia64_info->root.dynamic_sections_created)
3115 {
3116 /* FIXME: we always reserve the memory for dynamic linker even if
3117 there are no PLT entries since dynamic linker may assume the
3118 reserved memory always exists. */
3119
3120 BFD_ASSERT (ia64_info->root.dynamic_sections_created);
3121
3122 ia64_info->plt_sec->size = data.ofs;
3123
3124 /* If we've got a .plt, we need some extra memory for the dynamic
3125 linker. We stuff these in .got.plt. */
3126 sec = bfd_get_section_by_name (dynobj, ".got.plt");
3127 sec->size = 8 * PLT_RESERVED_WORDS;
3128 }
3129
3130 /* Allocate the PLTOFF entries. */
3131
3132 if (ia64_info->pltoff_sec)
3133 {
3134 data.ofs = 0;
3135 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_pltoff_entries, &data);
3136 ia64_info->pltoff_sec->size = data.ofs;
3137 }
3138
3139 if (ia64_info->root.dynamic_sections_created)
3140 {
3141 /* Allocate space for the dynamic relocations that turned out to be
3142 required. */
3143
3144 if (info->shared && ia64_info->self_dtpmod_offset != (bfd_vma) -1)
3145 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
3146 data.only_got = FALSE;
3147 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_dynrel_entries, &data);
3148 }
3149
3150 /* We have now determined the sizes of the various dynamic sections.
3151 Allocate memory for them. */
3152 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
3153 {
3154 bfd_boolean strip;
3155
3156 if (!(sec->flags & SEC_LINKER_CREATED))
3157 continue;
3158
3159 /* If we don't need this section, strip it from the output file.
3160 There were several sections primarily related to dynamic
3161 linking that must be create before the linker maps input
3162 sections to output sections. The linker does that before
3163 bfd_elf_size_dynamic_sections is called, and it is that
3164 function which decides whether anything needs to go into
3165 these sections. */
3166
3167 strip = (sec->size == 0);
3168
3169 if (sec == ia64_info->got_sec)
3170 strip = FALSE;
3171 else if (sec == ia64_info->rel_got_sec)
3172 {
3173 if (strip)
3174 ia64_info->rel_got_sec = NULL;
3175 else
3176 /* We use the reloc_count field as a counter if we need to
3177 copy relocs into the output file. */
3178 sec->reloc_count = 0;
3179 }
3180 else if (sec == ia64_info->fptr_sec)
3181 {
3182 if (strip)
3183 ia64_info->fptr_sec = NULL;
3184 }
3185 else if (sec == ia64_info->rel_fptr_sec)
3186 {
3187 if (strip)
3188 ia64_info->rel_fptr_sec = NULL;
3189 else
3190 /* We use the reloc_count field as a counter if we need to
3191 copy relocs into the output file. */
3192 sec->reloc_count = 0;
3193 }
3194 else if (sec == ia64_info->plt_sec)
3195 {
3196 if (strip)
3197 ia64_info->plt_sec = NULL;
3198 }
3199 else if (sec == ia64_info->pltoff_sec)
3200 {
3201 if (strip)
3202 ia64_info->pltoff_sec = NULL;
3203 }
3204 else if (sec == ia64_info->rel_pltoff_sec)
3205 {
3206 if (strip)
3207 ia64_info->rel_pltoff_sec = NULL;
3208 else
3209 {
3210 relplt = TRUE;
3211 /* We use the reloc_count field as a counter if we need to
3212 copy relocs into the output file. */
3213 sec->reloc_count = 0;
3214 }
3215 }
3216 else
3217 {
3218 const char *name;
3219
3220 /* It's OK to base decisions on the section name, because none
3221 of the dynobj section names depend upon the input files. */
3222 name = bfd_get_section_name (dynobj, sec);
3223
3224 if (strcmp (name, ".got.plt") == 0)
3225 strip = FALSE;
3226 else if (strncmp (name, ".rel", 4) == 0)
3227 {
3228 if (!strip)
3229 {
3230 /* We use the reloc_count field as a counter if we need to
3231 copy relocs into the output file. */
3232 sec->reloc_count = 0;
3233 }
3234 }
3235 else
3236 continue;
3237 }
3238
3239 if (strip)
3240 sec->flags |= SEC_EXCLUDE;
3241 else
3242 {
3243 /* Allocate memory for the section contents. */
3244 sec->contents = (bfd_byte *) bfd_zalloc (dynobj, sec->size);
3245 if (sec->contents == NULL && sec->size != 0)
3246 return FALSE;
3247 }
3248 }
3249
3250 if (elf_hash_table (info)->dynamic_sections_created)
3251 {
3252 /* Add some entries to the .dynamic section. We fill in the values
3253 later (in finish_dynamic_sections) but we must add the entries now
3254 so that we get the correct size for the .dynamic section. */
3255
3256 if (info->executable)
3257 {
3258 /* The DT_DEBUG entry is filled in by the dynamic linker and used
3259 by the debugger. */
3260 #define add_dynamic_entry(TAG, VAL) \
3261 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
3262
3263 if (!add_dynamic_entry (DT_DEBUG, 0))
3264 return FALSE;
3265 }
3266
3267 if (!add_dynamic_entry (DT_IA_64_PLT_RESERVE, 0))
3268 return FALSE;
3269 if (!add_dynamic_entry (DT_PLTGOT, 0))
3270 return FALSE;
3271
3272 if (relplt)
3273 {
3274 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
3275 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
3276 || !add_dynamic_entry (DT_JMPREL, 0))
3277 return FALSE;
3278 }
3279
3280 if (!add_dynamic_entry (DT_RELA, 0)
3281 || !add_dynamic_entry (DT_RELASZ, 0)
3282 || !add_dynamic_entry (DT_RELAENT, sizeof (ElfNN_External_Rela)))
3283 return FALSE;
3284
3285 if (ia64_info->reltext)
3286 {
3287 if (!add_dynamic_entry (DT_TEXTREL, 0))
3288 return FALSE;
3289 info->flags |= DF_TEXTREL;
3290 }
3291 }
3292
3293 /* ??? Perhaps force __gp local. */
3294
3295 return TRUE;
3296 }
3297
3298 static bfd_reloc_status_type
3299 elfNN_ia64_install_value (hit_addr, v, r_type)
3300 bfd_byte *hit_addr;
3301 bfd_vma v;
3302 unsigned int r_type;
3303 {
3304 const struct ia64_operand *op;
3305 int bigendian = 0, shift = 0;
3306 bfd_vma t0, t1, dword;
3307 ia64_insn insn;
3308 enum ia64_opnd opnd;
3309 const char *err;
3310 size_t size = 8;
3311 #ifdef BFD_HOST_U_64_BIT
3312 BFD_HOST_U_64_BIT val = (BFD_HOST_U_64_BIT) v;
3313 #else
3314 bfd_vma val = v;
3315 #endif
3316
3317 opnd = IA64_OPND_NIL;
3318 switch (r_type)
3319 {
3320 case R_IA64_NONE:
3321 case R_IA64_LDXMOV:
3322 return bfd_reloc_ok;
3323
3324 /* Instruction relocations. */
3325
3326 case R_IA64_IMM14:
3327 case R_IA64_TPREL14:
3328 case R_IA64_DTPREL14:
3329 opnd = IA64_OPND_IMM14;
3330 break;
3331
3332 case R_IA64_PCREL21F: opnd = IA64_OPND_TGT25; break;
3333 case R_IA64_PCREL21M: opnd = IA64_OPND_TGT25b; break;
3334 case R_IA64_PCREL60B: opnd = IA64_OPND_TGT64; break;
3335 case R_IA64_PCREL21B:
3336 case R_IA64_PCREL21BI:
3337 opnd = IA64_OPND_TGT25c;
3338 break;
3339
3340 case R_IA64_IMM22:
3341 case R_IA64_GPREL22:
3342 case R_IA64_LTOFF22:
3343 case R_IA64_LTOFF22X:
3344 case R_IA64_PLTOFF22:
3345 case R_IA64_PCREL22:
3346 case R_IA64_LTOFF_FPTR22:
3347 case R_IA64_TPREL22:
3348 case R_IA64_DTPREL22:
3349 case R_IA64_LTOFF_TPREL22:
3350 case R_IA64_LTOFF_DTPMOD22:
3351 case R_IA64_LTOFF_DTPREL22:
3352 opnd = IA64_OPND_IMM22;
3353 break;
3354
3355 case R_IA64_IMM64:
3356 case R_IA64_GPREL64I:
3357 case R_IA64_LTOFF64I:
3358 case R_IA64_PLTOFF64I:
3359 case R_IA64_PCREL64I:
3360 case R_IA64_FPTR64I:
3361 case R_IA64_LTOFF_FPTR64I:
3362 case R_IA64_TPREL64I:
3363 case R_IA64_DTPREL64I:
3364 opnd = IA64_OPND_IMMU64;
3365 break;
3366
3367 /* Data relocations. */
3368
3369 case R_IA64_DIR32MSB:
3370 case R_IA64_GPREL32MSB:
3371 case R_IA64_FPTR32MSB:
3372 case R_IA64_PCREL32MSB:
3373 case R_IA64_LTOFF_FPTR32MSB:
3374 case R_IA64_SEGREL32MSB:
3375 case R_IA64_SECREL32MSB:
3376 case R_IA64_LTV32MSB:
3377 case R_IA64_DTPREL32MSB:
3378 size = 4; bigendian = 1;
3379 break;
3380
3381 case R_IA64_DIR32LSB:
3382 case R_IA64_GPREL32LSB:
3383 case R_IA64_FPTR32LSB:
3384 case R_IA64_PCREL32LSB:
3385 case R_IA64_LTOFF_FPTR32LSB:
3386 case R_IA64_SEGREL32LSB:
3387 case R_IA64_SECREL32LSB:
3388 case R_IA64_LTV32LSB:
3389 case R_IA64_DTPREL32LSB:
3390 size = 4; bigendian = 0;
3391 break;
3392
3393 case R_IA64_DIR64MSB:
3394 case R_IA64_GPREL64MSB:
3395 case R_IA64_PLTOFF64MSB:
3396 case R_IA64_FPTR64MSB:
3397 case R_IA64_PCREL64MSB:
3398 case R_IA64_LTOFF_FPTR64MSB:
3399 case R_IA64_SEGREL64MSB:
3400 case R_IA64_SECREL64MSB:
3401 case R_IA64_LTV64MSB:
3402 case R_IA64_TPREL64MSB:
3403 case R_IA64_DTPMOD64MSB:
3404 case R_IA64_DTPREL64MSB:
3405 size = 8; bigendian = 1;
3406 break;
3407
3408 case R_IA64_DIR64LSB:
3409 case R_IA64_GPREL64LSB:
3410 case R_IA64_PLTOFF64LSB:
3411 case R_IA64_FPTR64LSB:
3412 case R_IA64_PCREL64LSB:
3413 case R_IA64_LTOFF_FPTR64LSB:
3414 case R_IA64_SEGREL64LSB:
3415 case R_IA64_SECREL64LSB:
3416 case R_IA64_LTV64LSB:
3417 case R_IA64_TPREL64LSB:
3418 case R_IA64_DTPMOD64LSB:
3419 case R_IA64_DTPREL64LSB:
3420 size = 8; bigendian = 0;
3421 break;
3422
3423 /* Unsupported / Dynamic relocations. */
3424 default:
3425 return bfd_reloc_notsupported;
3426 }
3427
3428 switch (opnd)
3429 {
3430 case IA64_OPND_IMMU64:
3431 hit_addr -= (long) hit_addr & 0x3;
3432 t0 = bfd_getl64 (hit_addr);
3433 t1 = bfd_getl64 (hit_addr + 8);
3434
3435 /* tmpl/s: bits 0.. 5 in t0
3436 slot 0: bits 5..45 in t0
3437 slot 1: bits 46..63 in t0, bits 0..22 in t1
3438 slot 2: bits 23..63 in t1 */
3439
3440 /* First, clear the bits that form the 64 bit constant. */
3441 t0 &= ~(0x3ffffLL << 46);
3442 t1 &= ~(0x7fffffLL
3443 | (( (0x07fLL << 13) | (0x1ffLL << 27)
3444 | (0x01fLL << 22) | (0x001LL << 21)
3445 | (0x001LL << 36)) << 23));
3446
3447 t0 |= ((val >> 22) & 0x03ffffLL) << 46; /* 18 lsbs of imm41 */
3448 t1 |= ((val >> 40) & 0x7fffffLL) << 0; /* 23 msbs of imm41 */
3449 t1 |= ( (((val >> 0) & 0x07f) << 13) /* imm7b */
3450 | (((val >> 7) & 0x1ff) << 27) /* imm9d */
3451 | (((val >> 16) & 0x01f) << 22) /* imm5c */
3452 | (((val >> 21) & 0x001) << 21) /* ic */
3453 | (((val >> 63) & 0x001) << 36)) << 23; /* i */
3454
3455 bfd_putl64 (t0, hit_addr);
3456 bfd_putl64 (t1, hit_addr + 8);
3457 break;
3458
3459 case IA64_OPND_TGT64:
3460 hit_addr -= (long) hit_addr & 0x3;
3461 t0 = bfd_getl64 (hit_addr);
3462 t1 = bfd_getl64 (hit_addr + 8);
3463
3464 /* tmpl/s: bits 0.. 5 in t0
3465 slot 0: bits 5..45 in t0
3466 slot 1: bits 46..63 in t0, bits 0..22 in t1
3467 slot 2: bits 23..63 in t1 */
3468
3469 /* First, clear the bits that form the 64 bit constant. */
3470 t0 &= ~(0x3ffffLL << 46);
3471 t1 &= ~(0x7fffffLL
3472 | ((1LL << 36 | 0xfffffLL << 13) << 23));
3473
3474 val >>= 4;
3475 t0 |= ((val >> 20) & 0xffffLL) << 2 << 46; /* 16 lsbs of imm39 */
3476 t1 |= ((val >> 36) & 0x7fffffLL) << 0; /* 23 msbs of imm39 */
3477 t1 |= ((((val >> 0) & 0xfffffLL) << 13) /* imm20b */
3478 | (((val >> 59) & 0x1LL) << 36)) << 23; /* i */
3479
3480 bfd_putl64 (t0, hit_addr);
3481 bfd_putl64 (t1, hit_addr + 8);
3482 break;
3483
3484 default:
3485 switch ((long) hit_addr & 0x3)
3486 {
3487 case 0: shift = 5; break;
3488 case 1: shift = 14; hit_addr += 3; break;
3489 case 2: shift = 23; hit_addr += 6; break;
3490 case 3: return bfd_reloc_notsupported; /* shouldn't happen... */
3491 }
3492 dword = bfd_getl64 (hit_addr);
3493 insn = (dword >> shift) & 0x1ffffffffffLL;
3494
3495 op = elf64_ia64_operands + opnd;
3496 err = (*op->insert) (op, val, &insn);
3497 if (err)
3498 return bfd_reloc_overflow;
3499
3500 dword &= ~(0x1ffffffffffLL << shift);
3501 dword |= (insn << shift);
3502 bfd_putl64 (dword, hit_addr);
3503 break;
3504
3505 case IA64_OPND_NIL:
3506 /* A data relocation. */
3507 if (bigendian)
3508 if (size == 4)
3509 bfd_putb32 (val, hit_addr);
3510 else
3511 bfd_putb64 (val, hit_addr);
3512 else
3513 if (size == 4)
3514 bfd_putl32 (val, hit_addr);
3515 else
3516 bfd_putl64 (val, hit_addr);
3517 break;
3518 }
3519
3520 return bfd_reloc_ok;
3521 }
3522
3523 static void
3524 elfNN_ia64_install_dyn_reloc (abfd, info, sec, srel, offset, type,
3525 dynindx, addend)
3526 bfd *abfd;
3527 struct bfd_link_info *info;
3528 asection *sec;
3529 asection *srel;
3530 bfd_vma offset;
3531 unsigned int type;
3532 long dynindx;
3533 bfd_vma addend;
3534 {
3535 Elf_Internal_Rela outrel;
3536 bfd_byte *loc;
3537
3538 BFD_ASSERT (dynindx != -1);
3539 outrel.r_info = ELFNN_R_INFO (dynindx, type);
3540 outrel.r_addend = addend;
3541 outrel.r_offset = _bfd_elf_section_offset (abfd, info, sec, offset);
3542 if (outrel.r_offset >= (bfd_vma) -2)
3543 {
3544 /* Run for the hills. We shouldn't be outputting a relocation
3545 for this. So do what everyone else does and output a no-op. */
3546 outrel.r_info = ELFNN_R_INFO (0, R_IA64_NONE);
3547 outrel.r_addend = 0;
3548 outrel.r_offset = 0;
3549 }
3550 else
3551 outrel.r_offset += sec->output_section->vma + sec->output_offset;
3552
3553 loc = srel->contents;
3554 loc += srel->reloc_count++ * sizeof (ElfNN_External_Rela);
3555 bfd_elfNN_swap_reloca_out (abfd, &outrel, loc);
3556 BFD_ASSERT (sizeof (ElfNN_External_Rela) * srel->reloc_count <= srel->size);
3557 }
3558
3559 /* Store an entry for target address TARGET_ADDR in the linkage table
3560 and return the gp-relative address of the linkage table entry. */
3561
3562 static bfd_vma
3563 set_got_entry (abfd, info, dyn_i, dynindx, addend, value, dyn_r_type)
3564 bfd *abfd;
3565 struct bfd_link_info *info;
3566 struct elfNN_ia64_dyn_sym_info *dyn_i;
3567 long dynindx;
3568 bfd_vma addend;
3569 bfd_vma value;
3570 unsigned int dyn_r_type;
3571 {
3572 struct elfNN_ia64_link_hash_table *ia64_info;
3573 asection *got_sec;
3574 bfd_boolean done;
3575 bfd_vma got_offset;
3576
3577 ia64_info = elfNN_ia64_hash_table (info);
3578 got_sec = ia64_info->got_sec;
3579
3580 switch (dyn_r_type)
3581 {
3582 case R_IA64_TPREL64LSB:
3583 done = dyn_i->tprel_done;
3584 dyn_i->tprel_done = TRUE;
3585 got_offset = dyn_i->tprel_offset;
3586 break;
3587 case R_IA64_DTPMOD64LSB:
3588 if (dyn_i->dtpmod_offset != ia64_info->self_dtpmod_offset)
3589 {
3590 done = dyn_i->dtpmod_done;
3591 dyn_i->dtpmod_done = TRUE;
3592 }
3593 else
3594 {
3595 done = ia64_info->self_dtpmod_done;
3596 ia64_info->self_dtpmod_done = TRUE;
3597 dynindx = 0;
3598 }
3599 got_offset = dyn_i->dtpmod_offset;
3600 break;
3601 case R_IA64_DTPREL32LSB:
3602 case R_IA64_DTPREL64LSB:
3603 done = dyn_i->dtprel_done;
3604 dyn_i->dtprel_done = TRUE;
3605 got_offset = dyn_i->dtprel_offset;
3606 break;
3607 default:
3608 done = dyn_i->got_done;
3609 dyn_i->got_done = TRUE;
3610 got_offset = dyn_i->got_offset;
3611 break;
3612 }
3613
3614 BFD_ASSERT ((got_offset & 7) == 0);
3615
3616 if (! done)
3617 {
3618 /* Store the target address in the linkage table entry. */
3619 bfd_put_64 (abfd, value, got_sec->contents + got_offset);
3620
3621 /* Install a dynamic relocation if needed. */
3622 if (((info->shared
3623 && (!dyn_i->h
3624 || ELF_ST_VISIBILITY (dyn_i->h->other) == STV_DEFAULT
3625 || dyn_i->h->root.type != bfd_link_hash_undefweak)
3626 && dyn_r_type != R_IA64_DTPREL32LSB
3627 && dyn_r_type != R_IA64_DTPREL64LSB)
3628 || elfNN_ia64_dynamic_symbol_p (dyn_i->h, info, dyn_r_type)
3629 || (dynindx != -1
3630 && (dyn_r_type == R_IA64_FPTR32LSB
3631 || dyn_r_type == R_IA64_FPTR64LSB)))
3632 && (!dyn_i->want_ltoff_fptr
3633 || !info->pie
3634 || !dyn_i->h
3635 || dyn_i->h->root.type != bfd_link_hash_undefweak))
3636 {
3637 if (dynindx == -1
3638 && dyn_r_type != R_IA64_TPREL64LSB
3639 && dyn_r_type != R_IA64_DTPMOD64LSB
3640 && dyn_r_type != R_IA64_DTPREL32LSB
3641 && dyn_r_type != R_IA64_DTPREL64LSB)
3642 {
3643 dyn_r_type = R_IA64_RELNNLSB;
3644 dynindx = 0;
3645 addend = value;
3646 }
3647
3648 if (bfd_big_endian (abfd))
3649 {
3650 switch (dyn_r_type)
3651 {
3652 case R_IA64_REL32LSB:
3653 dyn_r_type = R_IA64_REL32MSB;
3654 break;
3655 case R_IA64_DIR32LSB:
3656 dyn_r_type = R_IA64_DIR32MSB;
3657 break;
3658 case R_IA64_FPTR32LSB:
3659 dyn_r_type = R_IA64_FPTR32MSB;
3660 break;
3661 case R_IA64_DTPREL32LSB:
3662 dyn_r_type = R_IA64_DTPREL32MSB;
3663 break;
3664 case R_IA64_REL64LSB:
3665 dyn_r_type = R_IA64_REL64MSB;
3666 break;
3667 case R_IA64_DIR64LSB:
3668 dyn_r_type = R_IA64_DIR64MSB;
3669 break;
3670 case R_IA64_FPTR64LSB:
3671 dyn_r_type = R_IA64_FPTR64MSB;
3672 break;
3673 case R_IA64_TPREL64LSB:
3674 dyn_r_type = R_IA64_TPREL64MSB;
3675 break;
3676 case R_IA64_DTPMOD64LSB:
3677 dyn_r_type = R_IA64_DTPMOD64MSB;
3678 break;
3679 case R_IA64_DTPREL64LSB:
3680 dyn_r_type = R_IA64_DTPREL64MSB;
3681 break;
3682 default:
3683 BFD_ASSERT (FALSE);
3684 break;
3685 }
3686 }
3687
3688 elfNN_ia64_install_dyn_reloc (abfd, NULL, got_sec,
3689 ia64_info->rel_got_sec,
3690 got_offset, dyn_r_type,
3691 dynindx, addend);
3692 }
3693 }
3694
3695 /* Return the address of the linkage table entry. */
3696 value = (got_sec->output_section->vma
3697 + got_sec->output_offset
3698 + got_offset);
3699
3700 return value;
3701 }
3702
3703 /* Fill in a function descriptor consisting of the function's code
3704 address and its global pointer. Return the descriptor's address. */
3705
3706 static bfd_vma
3707 set_fptr_entry (abfd, info, dyn_i, value)
3708 bfd *abfd;
3709 struct bfd_link_info *info;
3710 struct elfNN_ia64_dyn_sym_info *dyn_i;
3711 bfd_vma value;
3712 {
3713 struct elfNN_ia64_link_hash_table *ia64_info;
3714 asection *fptr_sec;
3715
3716 ia64_info = elfNN_ia64_hash_table (info);
3717 fptr_sec = ia64_info->fptr_sec;
3718
3719 if (!dyn_i->fptr_done)
3720 {
3721 dyn_i->fptr_done = 1;
3722
3723 /* Fill in the function descriptor. */
3724 bfd_put_64 (abfd, value, fptr_sec->contents + dyn_i->fptr_offset);
3725 bfd_put_64 (abfd, _bfd_get_gp_value (abfd),
3726 fptr_sec->contents + dyn_i->fptr_offset + 8);
3727 if (ia64_info->rel_fptr_sec)
3728 {
3729 Elf_Internal_Rela outrel;
3730 bfd_byte *loc;
3731
3732 if (bfd_little_endian (abfd))
3733 outrel.r_info = ELFNN_R_INFO (0, R_IA64_IPLTLSB);
3734 else
3735 outrel.r_info = ELFNN_R_INFO (0, R_IA64_IPLTMSB);
3736 outrel.r_addend = value;
3737 outrel.r_offset = (fptr_sec->output_section->vma
3738 + fptr_sec->output_offset
3739 + dyn_i->fptr_offset);
3740 loc = ia64_info->rel_fptr_sec->contents;
3741 loc += ia64_info->rel_fptr_sec->reloc_count++
3742 * sizeof (ElfNN_External_Rela);
3743 bfd_elfNN_swap_reloca_out (abfd, &outrel, loc);
3744 }
3745 }
3746
3747 /* Return the descriptor's address. */
3748 value = (fptr_sec->output_section->vma
3749 + fptr_sec->output_offset
3750 + dyn_i->fptr_offset);
3751
3752 return value;
3753 }
3754
3755 /* Fill in a PLTOFF entry consisting of the function's code address
3756 and its global pointer. Return the descriptor's address. */
3757
3758 static bfd_vma
3759 set_pltoff_entry (abfd, info, dyn_i, value, is_plt)
3760 bfd *abfd;
3761 struct bfd_link_info *info;
3762 struct elfNN_ia64_dyn_sym_info *dyn_i;
3763 bfd_vma value;
3764 bfd_boolean is_plt;
3765 {
3766 struct elfNN_ia64_link_hash_table *ia64_info;
3767 asection *pltoff_sec;
3768
3769 ia64_info = elfNN_ia64_hash_table (info);
3770 pltoff_sec = ia64_info->pltoff_sec;
3771
3772 /* Don't do anything if this symbol uses a real PLT entry. In
3773 that case, we'll fill this in during finish_dynamic_symbol. */
3774 if ((! dyn_i->want_plt || is_plt)
3775 && !dyn_i->pltoff_done)
3776 {
3777 bfd_vma gp = _bfd_get_gp_value (abfd);
3778
3779 /* Fill in the function descriptor. */
3780 bfd_put_64 (abfd, value, pltoff_sec->contents + dyn_i->pltoff_offset);
3781 bfd_put_64 (abfd, gp, pltoff_sec->contents + dyn_i->pltoff_offset + 8);
3782
3783 /* Install dynamic relocations if needed. */
3784 if (!is_plt
3785 && info->shared
3786 && (!dyn_i->h
3787 || ELF_ST_VISIBILITY (dyn_i->h->other) == STV_DEFAULT
3788 || dyn_i->h->root.type != bfd_link_hash_undefweak))
3789 {
3790 unsigned int dyn_r_type;
3791
3792 if (bfd_big_endian (abfd))
3793 dyn_r_type = R_IA64_RELNNMSB;
3794 else
3795 dyn_r_type = R_IA64_RELNNLSB;
3796
3797 elfNN_ia64_install_dyn_reloc (abfd, NULL, pltoff_sec,
3798 ia64_info->rel_pltoff_sec,
3799 dyn_i->pltoff_offset,
3800 dyn_r_type, 0, value);
3801 elfNN_ia64_install_dyn_reloc (abfd, NULL, pltoff_sec,
3802 ia64_info->rel_pltoff_sec,
3803 dyn_i->pltoff_offset + ARCH_SIZE / 8,
3804 dyn_r_type, 0, gp);
3805 }
3806
3807 dyn_i->pltoff_done = 1;
3808 }
3809
3810 /* Return the descriptor's address. */
3811 value = (pltoff_sec->output_section->vma
3812 + pltoff_sec->output_offset
3813 + dyn_i->pltoff_offset);
3814
3815 return value;
3816 }
3817
3818 /* Return the base VMA address which should be subtracted from real addresses
3819 when resolving @tprel() relocation.
3820 Main program TLS (whose template starts at PT_TLS p_vaddr)
3821 is assigned offset round(2 * size of pointer, PT_TLS p_align). */
3822
3823 static bfd_vma
3824 elfNN_ia64_tprel_base (info)
3825 struct bfd_link_info *info;
3826 {
3827 asection *tls_sec = elf_hash_table (info)->tls_sec;
3828
3829 BFD_ASSERT (tls_sec != NULL);
3830 return tls_sec->vma - align_power ((bfd_vma) ARCH_SIZE / 4,
3831 tls_sec->alignment_power);
3832 }
3833
3834 /* Return the base VMA address which should be subtracted from real addresses
3835 when resolving @dtprel() relocation.
3836 This is PT_TLS segment p_vaddr. */
3837
3838 static bfd_vma
3839 elfNN_ia64_dtprel_base (info)
3840 struct bfd_link_info *info;
3841 {
3842 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
3843 return elf_hash_table (info)->tls_sec->vma;
3844 }
3845
3846 /* Called through qsort to sort the .IA_64.unwind section during a
3847 non-relocatable link. Set elfNN_ia64_unwind_entry_compare_bfd
3848 to the output bfd so we can do proper endianness frobbing. */
3849
3850 static bfd *elfNN_ia64_unwind_entry_compare_bfd;
3851
3852 static int
3853 elfNN_ia64_unwind_entry_compare (a, b)
3854 const PTR a;
3855 const PTR b;
3856 {
3857 bfd_vma av, bv;
3858
3859 av = bfd_get_64 (elfNN_ia64_unwind_entry_compare_bfd, a);
3860 bv = bfd_get_64 (elfNN_ia64_unwind_entry_compare_bfd, b);
3861
3862 return (av < bv ? -1 : av > bv ? 1 : 0);
3863 }
3864
3865 /* Make sure we've got ourselves a nice fat __gp value. */
3866 static bfd_boolean
3867 elfNN_ia64_choose_gp (abfd, info)
3868 bfd *abfd;
3869 struct bfd_link_info *info;
3870 {
3871 bfd_vma min_vma = (bfd_vma) -1, max_vma = 0;
3872 bfd_vma min_short_vma = min_vma, max_short_vma = 0;
3873 struct elf_link_hash_entry *gp;
3874 bfd_vma gp_val;
3875 asection *os;
3876 struct elfNN_ia64_link_hash_table *ia64_info;
3877
3878 ia64_info = elfNN_ia64_hash_table (info);
3879
3880 /* Find the min and max vma of all sections marked short. Also collect
3881 min and max vma of any type, for use in selecting a nice gp. */
3882 for (os = abfd->sections; os ; os = os->next)
3883 {
3884 bfd_vma lo, hi;
3885
3886 if ((os->flags & SEC_ALLOC) == 0)
3887 continue;
3888
3889 lo = os->vma;
3890 hi = os->vma + os->size;
3891 if (hi < lo)
3892 hi = (bfd_vma) -1;
3893
3894 if (min_vma > lo)
3895 min_vma = lo;
3896 if (max_vma < hi)
3897 max_vma = hi;
3898 if (os->flags & SEC_SMALL_DATA)
3899 {
3900 if (min_short_vma > lo)
3901 min_short_vma = lo;
3902 if (max_short_vma < hi)
3903 max_short_vma = hi;
3904 }
3905 }
3906
3907 /* See if the user wants to force a value. */
3908 gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
3909 FALSE, FALSE);
3910
3911 if (gp
3912 && (gp->root.type == bfd_link_hash_defined
3913 || gp->root.type == bfd_link_hash_defweak))
3914 {
3915 asection *gp_sec = gp->root.u.def.section;
3916 gp_val = (gp->root.u.def.value
3917 + gp_sec->output_section->vma
3918 + gp_sec->output_offset);
3919 }
3920 else
3921 {
3922 /* Pick a sensible value. */
3923
3924 asection *got_sec = ia64_info->got_sec;
3925
3926 /* Start with just the address of the .got. */
3927 if (got_sec)
3928 gp_val = got_sec->output_section->vma;
3929 else if (max_short_vma != 0)
3930 gp_val = min_short_vma;
3931 else if (max_vma - min_vma < 0x200000)
3932 gp_val = min_vma;
3933 else
3934 gp_val = max_vma - 0x200000 + 8;
3935
3936 /* If it is possible to address the entire image, but we
3937 don't with the choice above, adjust. */
3938 if (max_vma - min_vma < 0x400000
3939 && (max_vma - gp_val >= 0x200000
3940 || gp_val - min_vma > 0x200000))
3941 gp_val = min_vma + 0x200000;
3942 else if (max_short_vma != 0)
3943 {
3944 /* If we don't cover all the short data, adjust. */
3945 if (max_short_vma - gp_val >= 0x200000)
3946 gp_val = min_short_vma + 0x200000;
3947
3948 /* If we're addressing stuff past the end, adjust back. */
3949 if (gp_val > max_vma)
3950 gp_val = max_vma - 0x200000 + 8;
3951 }
3952 }
3953
3954 /* Validate whether all SHF_IA_64_SHORT sections are within
3955 range of the chosen GP. */
3956
3957 if (max_short_vma != 0)
3958 {
3959 if (max_short_vma - min_short_vma >= 0x400000)
3960 {
3961 (*_bfd_error_handler)
3962 (_("%s: short data segment overflowed (0x%lx >= 0x400000)"),
3963 bfd_get_filename (abfd),
3964 (unsigned long) (max_short_vma - min_short_vma));
3965 return FALSE;
3966 }
3967 else if ((gp_val > min_short_vma
3968 && gp_val - min_short_vma > 0x200000)
3969 || (gp_val < max_short_vma
3970 && max_short_vma - gp_val >= 0x200000))
3971 {
3972 (*_bfd_error_handler)
3973 (_("%s: __gp does not cover short data segment"),
3974 bfd_get_filename (abfd));
3975 return FALSE;
3976 }
3977 }
3978
3979 _bfd_set_gp_value (abfd, gp_val);
3980
3981 return TRUE;
3982 }
3983
3984 static bfd_boolean
3985 elfNN_ia64_final_link (abfd, info)
3986 bfd *abfd;
3987 struct bfd_link_info *info;
3988 {
3989 struct elfNN_ia64_link_hash_table *ia64_info;
3990 asection *unwind_output_sec;
3991
3992 ia64_info = elfNN_ia64_hash_table (info);
3993
3994 /* Make sure we've got ourselves a nice fat __gp value. */
3995 if (!info->relocatable)
3996 {
3997 bfd_vma gp_val;
3998 struct elf_link_hash_entry *gp;
3999
4000 /* We assume after gp is set, section size will only decrease. We
4001 need to adjust gp for it. */
4002 _bfd_set_gp_value (abfd, 0);
4003 if (! elfNN_ia64_choose_gp (abfd, info))
4004 return FALSE;
4005 gp_val = _bfd_get_gp_value (abfd);
4006
4007 gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
4008 FALSE, FALSE);
4009 if (gp)
4010 {
4011 gp->root.type = bfd_link_hash_defined;
4012 gp->root.u.def.value = gp_val;
4013 gp->root.u.def.section = bfd_abs_section_ptr;
4014 }
4015 }
4016
4017 /* If we're producing a final executable, we need to sort the contents
4018 of the .IA_64.unwind section. Force this section to be relocated
4019 into memory rather than written immediately to the output file. */
4020 unwind_output_sec = NULL;
4021 if (!info->relocatable)
4022 {
4023 asection *s = bfd_get_section_by_name (abfd, ELF_STRING_ia64_unwind);
4024 if (s)
4025 {
4026 unwind_output_sec = s->output_section;
4027 unwind_output_sec->contents
4028 = bfd_malloc (unwind_output_sec->size);
4029 if (unwind_output_sec->contents == NULL)
4030 return FALSE;
4031 }
4032 }
4033
4034 /* Invoke the regular ELF backend linker to do all the work. */
4035 if (!bfd_elf_final_link (abfd, info))
4036 return FALSE;
4037
4038 if (unwind_output_sec)
4039 {
4040 elfNN_ia64_unwind_entry_compare_bfd = abfd;
4041 qsort (unwind_output_sec->contents,
4042 (size_t) (unwind_output_sec->size / 24),
4043 24,
4044 elfNN_ia64_unwind_entry_compare);
4045
4046 if (! bfd_set_section_contents (abfd, unwind_output_sec,
4047 unwind_output_sec->contents, (bfd_vma) 0,
4048 unwind_output_sec->size))
4049 return FALSE;
4050 }
4051
4052 return TRUE;
4053 }
4054
4055 static bfd_boolean
4056 elfNN_ia64_relocate_section (output_bfd, info, input_bfd, input_section,
4057 contents, relocs, local_syms, local_sections)
4058 bfd *output_bfd;
4059 struct bfd_link_info *info;
4060 bfd *input_bfd;
4061 asection *input_section;
4062 bfd_byte *contents;
4063 Elf_Internal_Rela *relocs;
4064 Elf_Internal_Sym *local_syms;
4065 asection **local_sections;
4066 {
4067 struct elfNN_ia64_link_hash_table *ia64_info;
4068 Elf_Internal_Shdr *symtab_hdr;
4069 Elf_Internal_Rela *rel;
4070 Elf_Internal_Rela *relend;
4071 asection *srel;
4072 bfd_boolean ret_val = TRUE; /* for non-fatal errors */
4073 bfd_vma gp_val;
4074
4075 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4076 ia64_info = elfNN_ia64_hash_table (info);
4077
4078 /* Infect various flags from the input section to the output section. */
4079 if (info->relocatable)
4080 {
4081 bfd_vma flags;
4082
4083 flags = elf_section_data(input_section)->this_hdr.sh_flags;
4084 flags &= SHF_IA_64_NORECOV;
4085
4086 elf_section_data(input_section->output_section)
4087 ->this_hdr.sh_flags |= flags;
4088 return TRUE;
4089 }
4090
4091 gp_val = _bfd_get_gp_value (output_bfd);
4092 srel = get_reloc_section (input_bfd, ia64_info, input_section, FALSE);
4093
4094 rel = relocs;
4095 relend = relocs + input_section->reloc_count;
4096 for (; rel < relend; ++rel)
4097 {
4098 struct elf_link_hash_entry *h;
4099 struct elfNN_ia64_dyn_sym_info *dyn_i;
4100 bfd_reloc_status_type r;
4101 reloc_howto_type *howto;
4102 unsigned long r_symndx;
4103 Elf_Internal_Sym *sym;
4104 unsigned int r_type;
4105 bfd_vma value;
4106 asection *sym_sec;
4107 bfd_byte *hit_addr;
4108 bfd_boolean dynamic_symbol_p;
4109 bfd_boolean undef_weak_ref;
4110
4111 r_type = ELFNN_R_TYPE (rel->r_info);
4112 if (r_type > R_IA64_MAX_RELOC_CODE)
4113 {
4114 (*_bfd_error_handler)
4115 (_("%B: unknown relocation type %d"),
4116 input_bfd, (int) r_type);
4117 bfd_set_error (bfd_error_bad_value);
4118 ret_val = FALSE;
4119 continue;
4120 }
4121
4122 howto = lookup_howto (r_type);
4123 r_symndx = ELFNN_R_SYM (rel->r_info);
4124 h = NULL;
4125 sym = NULL;
4126 sym_sec = NULL;
4127 undef_weak_ref = FALSE;
4128
4129 if (r_symndx < symtab_hdr->sh_info)
4130 {
4131 /* Reloc against local symbol. */
4132 asection *msec;
4133 sym = local_syms + r_symndx;
4134 sym_sec = local_sections[r_symndx];
4135 msec = sym_sec;
4136 value = _bfd_elf_rela_local_sym (output_bfd, sym, &msec, rel);
4137 if ((sym_sec->flags & SEC_MERGE)
4138 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
4139 && sym_sec->sec_info_type == ELF_INFO_TYPE_MERGE)
4140 {
4141 struct elfNN_ia64_local_hash_entry *loc_h;
4142
4143 loc_h = get_local_sym_hash (ia64_info, input_bfd, rel, FALSE);
4144 if (loc_h && ! loc_h->sec_merge_done)
4145 {
4146 struct elfNN_ia64_dyn_sym_info *dynent;
4147
4148 for (dynent = loc_h->info; dynent; dynent = dynent->next)
4149 {
4150 msec = sym_sec;
4151 dynent->addend =
4152 _bfd_merged_section_offset (output_bfd, &msec,
4153 elf_section_data (msec)->
4154 sec_info,
4155 sym->st_value
4156 + dynent->addend);
4157 dynent->addend -= sym->st_value;
4158 dynent->addend += msec->output_section->vma
4159 + msec->output_offset
4160 - sym_sec->output_section->vma
4161 - sym_sec->output_offset;
4162 }
4163 loc_h->sec_merge_done = 1;
4164 }
4165 }
4166 }
4167 else
4168 {
4169 bfd_boolean unresolved_reloc;
4170 bfd_boolean warned;
4171 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
4172
4173 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
4174 r_symndx, symtab_hdr, sym_hashes,
4175 h, sym_sec, value,
4176 unresolved_reloc, warned);
4177
4178 if (h->root.type == bfd_link_hash_undefweak)
4179 undef_weak_ref = TRUE;
4180 else if (warned)
4181 continue;
4182 }
4183
4184 hit_addr = contents + rel->r_offset;
4185 value += rel->r_addend;
4186 dynamic_symbol_p = elfNN_ia64_dynamic_symbol_p (h, info, r_type);
4187
4188 switch (r_type)
4189 {
4190 case R_IA64_NONE:
4191 case R_IA64_LDXMOV:
4192 continue;
4193
4194 case R_IA64_IMM14:
4195 case R_IA64_IMM22:
4196 case R_IA64_IMM64:
4197 case R_IA64_DIR32MSB:
4198 case R_IA64_DIR32LSB:
4199 case R_IA64_DIR64MSB:
4200 case R_IA64_DIR64LSB:
4201 /* Install a dynamic relocation for this reloc. */
4202 if ((dynamic_symbol_p || info->shared)
4203 && r_symndx != 0
4204 && (input_section->flags & SEC_ALLOC) != 0)
4205 {
4206 unsigned int dyn_r_type;
4207 long dynindx;
4208 bfd_vma addend;
4209
4210 BFD_ASSERT (srel != NULL);
4211
4212 switch (r_type)
4213 {
4214 case R_IA64_IMM14:
4215 case R_IA64_IMM22:
4216 case R_IA64_IMM64:
4217 /* ??? People shouldn't be doing non-pic code in
4218 shared libraries nor dynamic executables. */
4219 (*_bfd_error_handler)
4220 (_("%B: non-pic code with imm relocation against dynamic symbol `%s'"),
4221 input_bfd,
4222 h ? h->root.root.string
4223 : bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
4224 sym_sec));
4225 ret_val = FALSE;
4226 continue;
4227
4228 default:
4229 break;
4230 }
4231
4232 /* If we don't need dynamic symbol lookup, find a
4233 matching RELATIVE relocation. */
4234 dyn_r_type = r_type;
4235 if (dynamic_symbol_p)
4236 {
4237 dynindx = h->dynindx;
4238 addend = rel->r_addend;
4239 value = 0;
4240 }
4241 else
4242 {
4243 switch (r_type)
4244 {
4245 case R_IA64_DIR32MSB:
4246 dyn_r_type = R_IA64_REL32MSB;
4247 break;
4248 case R_IA64_DIR32LSB:
4249 dyn_r_type = R_IA64_REL32LSB;
4250 break;
4251 case R_IA64_DIR64MSB:
4252 dyn_r_type = R_IA64_REL64MSB;
4253 break;
4254 case R_IA64_DIR64LSB:
4255 dyn_r_type = R_IA64_REL64LSB;
4256 break;
4257
4258 default:
4259 break;
4260 }
4261 dynindx = 0;
4262 addend = value;
4263 }
4264
4265 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
4266 srel, rel->r_offset, dyn_r_type,
4267 dynindx, addend);
4268 }
4269 /* Fall through. */
4270
4271 case R_IA64_LTV32MSB:
4272 case R_IA64_LTV32LSB:
4273 case R_IA64_LTV64MSB:
4274 case R_IA64_LTV64LSB:
4275 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4276 break;
4277
4278 case R_IA64_GPREL22:
4279 case R_IA64_GPREL64I:
4280 case R_IA64_GPREL32MSB:
4281 case R_IA64_GPREL32LSB:
4282 case R_IA64_GPREL64MSB:
4283 case R_IA64_GPREL64LSB:
4284 if (dynamic_symbol_p)
4285 {
4286 (*_bfd_error_handler)
4287 (_("%B: @gprel relocation against dynamic symbol %s"),
4288 input_bfd,
4289 h ? h->root.root.string
4290 : bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
4291 sym_sec));
4292 ret_val = FALSE;
4293 continue;
4294 }
4295 value -= gp_val;
4296 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4297 break;
4298
4299 case R_IA64_LTOFF22:
4300 case R_IA64_LTOFF22X:
4301 case R_IA64_LTOFF64I:
4302 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4303 value = set_got_entry (input_bfd, info, dyn_i, (h ? h->dynindx : -1),
4304 rel->r_addend, value, R_IA64_DIRNNLSB);
4305 value -= gp_val;
4306 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4307 break;
4308
4309 case R_IA64_PLTOFF22:
4310 case R_IA64_PLTOFF64I:
4311 case R_IA64_PLTOFF64MSB:
4312 case R_IA64_PLTOFF64LSB:
4313 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4314 value = set_pltoff_entry (output_bfd, info, dyn_i, value, FALSE);
4315 value -= gp_val;
4316 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4317 break;
4318
4319 case R_IA64_FPTR64I:
4320 case R_IA64_FPTR32MSB:
4321 case R_IA64_FPTR32LSB:
4322 case R_IA64_FPTR64MSB:
4323 case R_IA64_FPTR64LSB:
4324 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4325 if (dyn_i->want_fptr)
4326 {
4327 if (!undef_weak_ref)
4328 value = set_fptr_entry (output_bfd, info, dyn_i, value);
4329 }
4330 if (!dyn_i->want_fptr || info->pie)
4331 {
4332 long dynindx;
4333 unsigned int dyn_r_type = r_type;
4334 bfd_vma addend = rel->r_addend;
4335
4336 /* Otherwise, we expect the dynamic linker to create
4337 the entry. */
4338
4339 if (dyn_i->want_fptr)
4340 {
4341 if (r_type == R_IA64_FPTR64I)
4342 {
4343 /* We can't represent this without a dynamic symbol.
4344 Adjust the relocation to be against an output
4345 section symbol, which are always present in the
4346 dynamic symbol table. */
4347 /* ??? People shouldn't be doing non-pic code in
4348 shared libraries. Hork. */
4349 (*_bfd_error_handler)
4350 (_("%B: linking non-pic code in a position independent executable"),
4351 input_bfd);
4352 ret_val = FALSE;
4353 continue;
4354 }
4355 dynindx = 0;
4356 addend = value;
4357 dyn_r_type = r_type + R_IA64_RELNNLSB - R_IA64_FPTRNNLSB;
4358 }
4359 else if (h)
4360 {
4361 if (h->dynindx != -1)
4362 dynindx = h->dynindx;
4363 else
4364 dynindx = (_bfd_elf_link_lookup_local_dynindx
4365 (info, h->root.u.def.section->owner,
4366 global_sym_index (h)));
4367 value = 0;
4368 }
4369 else
4370 {
4371 dynindx = (_bfd_elf_link_lookup_local_dynindx
4372 (info, input_bfd, (long) r_symndx));
4373 value = 0;
4374 }
4375
4376 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
4377 srel, rel->r_offset, dyn_r_type,
4378 dynindx, addend);
4379 }
4380
4381 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4382 break;
4383
4384 case R_IA64_LTOFF_FPTR22:
4385 case R_IA64_LTOFF_FPTR64I:
4386 case R_IA64_LTOFF_FPTR32MSB:
4387 case R_IA64_LTOFF_FPTR32LSB:
4388 case R_IA64_LTOFF_FPTR64MSB:
4389 case R_IA64_LTOFF_FPTR64LSB:
4390 {
4391 long dynindx;
4392
4393 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4394 if (dyn_i->want_fptr)
4395 {
4396 BFD_ASSERT (h == NULL || h->dynindx == -1);
4397 if (!undef_weak_ref)
4398 value = set_fptr_entry (output_bfd, info, dyn_i, value);
4399 dynindx = -1;
4400 }
4401 else
4402 {
4403 /* Otherwise, we expect the dynamic linker to create
4404 the entry. */
4405 if (h)
4406 {
4407 if (h->dynindx != -1)
4408 dynindx = h->dynindx;
4409 else
4410 dynindx = (_bfd_elf_link_lookup_local_dynindx
4411 (info, h->root.u.def.section->owner,
4412 global_sym_index (h)));
4413 }
4414 else
4415 dynindx = (_bfd_elf_link_lookup_local_dynindx
4416 (info, input_bfd, (long) r_symndx));
4417 value = 0;
4418 }
4419
4420 value = set_got_entry (output_bfd, info, dyn_i, dynindx,
4421 rel->r_addend, value, R_IA64_FPTRNNLSB);
4422 value -= gp_val;
4423 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4424 }
4425 break;
4426
4427 case R_IA64_PCREL32MSB:
4428 case R_IA64_PCREL32LSB:
4429 case R_IA64_PCREL64MSB:
4430 case R_IA64_PCREL64LSB:
4431 /* Install a dynamic relocation for this reloc. */
4432 if (dynamic_symbol_p && r_symndx != 0)
4433 {
4434 BFD_ASSERT (srel != NULL);
4435
4436 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
4437 srel, rel->r_offset, r_type,
4438 h->dynindx, rel->r_addend);
4439 }
4440 goto finish_pcrel;
4441
4442 case R_IA64_PCREL21B:
4443 case R_IA64_PCREL60B:
4444 /* We should have created a PLT entry for any dynamic symbol. */
4445 dyn_i = NULL;
4446 if (h)
4447 dyn_i = get_dyn_sym_info (ia64_info, h, NULL, NULL, FALSE);
4448
4449 if (dyn_i && dyn_i->want_plt2)
4450 {
4451 /* Should have caught this earlier. */
4452 BFD_ASSERT (rel->r_addend == 0);
4453
4454 value = (ia64_info->plt_sec->output_section->vma
4455 + ia64_info->plt_sec->output_offset
4456 + dyn_i->plt2_offset);
4457 }
4458 else
4459 {
4460 /* Since there's no PLT entry, Validate that this is
4461 locally defined. */
4462 BFD_ASSERT (undef_weak_ref || sym_sec->output_section != NULL);
4463
4464 /* If the symbol is undef_weak, we shouldn't be trying
4465 to call it. There's every chance that we'd wind up
4466 with an out-of-range fixup here. Don't bother setting
4467 any value at all. */
4468 if (undef_weak_ref)
4469 continue;
4470 }
4471 goto finish_pcrel;
4472
4473 case R_IA64_PCREL21BI:
4474 case R_IA64_PCREL21F:
4475 case R_IA64_PCREL21M:
4476 case R_IA64_PCREL22:
4477 case R_IA64_PCREL64I:
4478 /* The PCREL21BI reloc is specifically not intended for use with
4479 dynamic relocs. PCREL21F and PCREL21M are used for speculation
4480 fixup code, and thus probably ought not be dynamic. The
4481 PCREL22 and PCREL64I relocs aren't emitted as dynamic relocs. */
4482 if (dynamic_symbol_p)
4483 {
4484 const char *msg;
4485
4486 if (r_type == R_IA64_PCREL21BI)
4487 msg = _("%B: @internal branch to dynamic symbol %s");
4488 else if (r_type == R_IA64_PCREL21F || r_type == R_IA64_PCREL21M)
4489 msg = _("%B: speculation fixup to dynamic symbol %s");
4490 else
4491 msg = _("%B: @pcrel relocation against dynamic symbol %s");
4492 (*_bfd_error_handler) (msg, input_bfd,
4493 h ? h->root.root.string
4494 : bfd_elf_sym_name (input_bfd,
4495 symtab_hdr,
4496 sym,
4497 sym_sec));
4498 ret_val = FALSE;
4499 continue;
4500 }
4501 goto finish_pcrel;
4502
4503 finish_pcrel:
4504 /* Make pc-relative. */
4505 value -= (input_section->output_section->vma
4506 + input_section->output_offset
4507 + rel->r_offset) & ~ (bfd_vma) 0x3;
4508 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4509 break;
4510
4511 case R_IA64_SEGREL32MSB:
4512 case R_IA64_SEGREL32LSB:
4513 case R_IA64_SEGREL64MSB:
4514 case R_IA64_SEGREL64LSB:
4515 if (r_symndx == 0)
4516 {
4517 /* If the input section was discarded from the output, then
4518 do nothing. */
4519 r = bfd_reloc_ok;
4520 }
4521 else
4522 {
4523 struct elf_segment_map *m;
4524 Elf_Internal_Phdr *p;
4525
4526 /* Find the segment that contains the output_section. */
4527 for (m = elf_tdata (output_bfd)->segment_map,
4528 p = elf_tdata (output_bfd)->phdr;
4529 m != NULL;
4530 m = m->next, p++)
4531 {
4532 int i;
4533 for (i = m->count - 1; i >= 0; i--)
4534 if (m->sections[i] == input_section->output_section)
4535 break;
4536 if (i >= 0)
4537 break;
4538 }
4539
4540 if (m == NULL)
4541 {
4542 r = bfd_reloc_notsupported;
4543 }
4544 else
4545 {
4546 /* The VMA of the segment is the vaddr of the associated
4547 program header. */
4548 if (value > p->p_vaddr)
4549 value -= p->p_vaddr;
4550 else
4551 value = 0;
4552 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4553 }
4554 break;
4555 }
4556
4557 case R_IA64_SECREL32MSB:
4558 case R_IA64_SECREL32LSB:
4559 case R_IA64_SECREL64MSB:
4560 case R_IA64_SECREL64LSB:
4561 /* Make output-section relative to section where the symbol
4562 is defined. PR 475 */
4563 if (sym_sec)
4564 value -= sym_sec->output_section->vma;
4565 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4566 break;
4567
4568 case R_IA64_IPLTMSB:
4569 case R_IA64_IPLTLSB:
4570 /* Install a dynamic relocation for this reloc. */
4571 if ((dynamic_symbol_p || info->shared)
4572 && (input_section->flags & SEC_ALLOC) != 0)
4573 {
4574 BFD_ASSERT (srel != NULL);
4575
4576 /* If we don't need dynamic symbol lookup, install two
4577 RELATIVE relocations. */
4578 if (!dynamic_symbol_p)
4579 {
4580 unsigned int dyn_r_type;
4581
4582 if (r_type == R_IA64_IPLTMSB)
4583 dyn_r_type = R_IA64_REL64MSB;
4584 else
4585 dyn_r_type = R_IA64_REL64LSB;
4586
4587 elfNN_ia64_install_dyn_reloc (output_bfd, info,
4588 input_section,
4589 srel, rel->r_offset,
4590 dyn_r_type, 0, value);
4591 elfNN_ia64_install_dyn_reloc (output_bfd, info,
4592 input_section,
4593 srel, rel->r_offset + 8,
4594 dyn_r_type, 0, gp_val);
4595 }
4596 else
4597 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
4598 srel, rel->r_offset, r_type,
4599 h->dynindx, rel->r_addend);
4600 }
4601
4602 if (r_type == R_IA64_IPLTMSB)
4603 r_type = R_IA64_DIR64MSB;
4604 else
4605 r_type = R_IA64_DIR64LSB;
4606 elfNN_ia64_install_value (hit_addr, value, r_type);
4607 r = elfNN_ia64_install_value (hit_addr + 8, gp_val, r_type);
4608 break;
4609
4610 case R_IA64_TPREL14:
4611 case R_IA64_TPREL22:
4612 case R_IA64_TPREL64I:
4613 value -= elfNN_ia64_tprel_base (info);
4614 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4615 break;
4616
4617 case R_IA64_DTPREL14:
4618 case R_IA64_DTPREL22:
4619 case R_IA64_DTPREL64I:
4620 case R_IA64_DTPREL32LSB:
4621 case R_IA64_DTPREL32MSB:
4622 case R_IA64_DTPREL64LSB:
4623 case R_IA64_DTPREL64MSB:
4624 value -= elfNN_ia64_dtprel_base (info);
4625 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4626 break;
4627
4628 case R_IA64_LTOFF_TPREL22:
4629 case R_IA64_LTOFF_DTPMOD22:
4630 case R_IA64_LTOFF_DTPREL22:
4631 {
4632 int got_r_type;
4633 long dynindx = h ? h->dynindx : -1;
4634 bfd_vma r_addend = rel->r_addend;
4635
4636 switch (r_type)
4637 {
4638 default:
4639 case R_IA64_LTOFF_TPREL22:
4640 if (!dynamic_symbol_p)
4641 {
4642 if (!info->shared)
4643 value -= elfNN_ia64_tprel_base (info);
4644 else
4645 {
4646 r_addend += value - elfNN_ia64_dtprel_base (info);
4647 dynindx = 0;
4648 }
4649 }
4650 got_r_type = R_IA64_TPREL64LSB;
4651 break;
4652 case R_IA64_LTOFF_DTPMOD22:
4653 if (!dynamic_symbol_p && !info->shared)
4654 value = 1;
4655 got_r_type = R_IA64_DTPMOD64LSB;
4656 break;
4657 case R_IA64_LTOFF_DTPREL22:
4658 if (!dynamic_symbol_p)
4659 value -= elfNN_ia64_dtprel_base (info);
4660 got_r_type = R_IA64_DTPRELNNLSB;
4661 break;
4662 }
4663 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4664 value = set_got_entry (input_bfd, info, dyn_i, dynindx, r_addend,
4665 value, got_r_type);
4666 value -= gp_val;
4667 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4668 }
4669 break;
4670
4671 default:
4672 r = bfd_reloc_notsupported;
4673 break;
4674 }
4675
4676 switch (r)
4677 {
4678 case bfd_reloc_ok:
4679 break;
4680
4681 case bfd_reloc_undefined:
4682 /* This can happen for global table relative relocs if
4683 __gp is undefined. This is a panic situation so we
4684 don't try to continue. */
4685 (*info->callbacks->undefined_symbol)
4686 (info, "__gp", input_bfd, input_section, rel->r_offset, 1);
4687 return FALSE;
4688
4689 case bfd_reloc_notsupported:
4690 {
4691 const char *name;
4692
4693 if (h)
4694 name = h->root.root.string;
4695 else
4696 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
4697 sym_sec);
4698 if (!(*info->callbacks->warning) (info, _("unsupported reloc"),
4699 name, input_bfd,
4700 input_section, rel->r_offset))
4701 return FALSE;
4702 ret_val = FALSE;
4703 }
4704 break;
4705
4706 case bfd_reloc_dangerous:
4707 case bfd_reloc_outofrange:
4708 case bfd_reloc_overflow:
4709 default:
4710 {
4711 const char *name;
4712
4713 if (h)
4714 name = h->root.root.string;
4715 else
4716 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
4717 sym_sec);
4718
4719 switch (r_type)
4720 {
4721 case R_IA64_PCREL21B:
4722 case R_IA64_PCREL21BI:
4723 case R_IA64_PCREL21M:
4724 case R_IA64_PCREL21F:
4725 if (is_elf_hash_table (info->hash))
4726 {
4727 /* Relaxtion is always performed for ELF output.
4728 Overflow failures for those relocations mean
4729 that the section is too big to relax. */
4730 (*_bfd_error_handler)
4731 (_("%B: Can't relax br (%s) to `%s' at 0x%lx in section `%A' with size 0x%lx (> 0x1000000)."),
4732 input_bfd, input_section, howto->name, name,
4733 rel->r_offset, input_section->size);
4734 break;
4735 }
4736 default:
4737 if (!(*info->callbacks->reloc_overflow) (info,
4738 &h->root,
4739 name,
4740 howto->name,
4741 (bfd_vma) 0,
4742 input_bfd,
4743 input_section,
4744 rel->r_offset))
4745 return FALSE;
4746 break;
4747 }
4748
4749 ret_val = FALSE;
4750 }
4751 break;
4752 }
4753 }
4754
4755 return ret_val;
4756 }
4757
4758 static bfd_boolean
4759 elfNN_ia64_finish_dynamic_symbol (output_bfd, info, h, sym)
4760 bfd *output_bfd;
4761 struct bfd_link_info *info;
4762 struct elf_link_hash_entry *h;
4763 Elf_Internal_Sym *sym;
4764 {
4765 struct elfNN_ia64_link_hash_table *ia64_info;
4766 struct elfNN_ia64_dyn_sym_info *dyn_i;
4767
4768 ia64_info = elfNN_ia64_hash_table (info);
4769 dyn_i = get_dyn_sym_info (ia64_info, h, NULL, NULL, FALSE);
4770
4771 /* Fill in the PLT data, if required. */
4772 if (dyn_i && dyn_i->want_plt)
4773 {
4774 Elf_Internal_Rela outrel;
4775 bfd_byte *loc;
4776 asection *plt_sec;
4777 bfd_vma plt_addr, pltoff_addr, gp_val, index;
4778
4779 gp_val = _bfd_get_gp_value (output_bfd);
4780
4781 /* Initialize the minimal PLT entry. */
4782
4783 index = (dyn_i->plt_offset - PLT_HEADER_SIZE) / PLT_MIN_ENTRY_SIZE;
4784 plt_sec = ia64_info->plt_sec;
4785 loc = plt_sec->contents + dyn_i->plt_offset;
4786
4787 memcpy (loc, plt_min_entry, PLT_MIN_ENTRY_SIZE);
4788 elfNN_ia64_install_value (loc, index, R_IA64_IMM22);
4789 elfNN_ia64_install_value (loc+2, -dyn_i->plt_offset, R_IA64_PCREL21B);
4790
4791 plt_addr = (plt_sec->output_section->vma
4792 + plt_sec->output_offset
4793 + dyn_i->plt_offset);
4794 pltoff_addr = set_pltoff_entry (output_bfd, info, dyn_i, plt_addr, TRUE);
4795
4796 /* Initialize the FULL PLT entry, if needed. */
4797 if (dyn_i->want_plt2)
4798 {
4799 loc = plt_sec->contents + dyn_i->plt2_offset;
4800
4801 memcpy (loc, plt_full_entry, PLT_FULL_ENTRY_SIZE);
4802 elfNN_ia64_install_value (loc, pltoff_addr - gp_val, R_IA64_IMM22);
4803
4804 /* Mark the symbol as undefined, rather than as defined in the
4805 plt section. Leave the value alone. */
4806 /* ??? We didn't redefine it in adjust_dynamic_symbol in the
4807 first place. But perhaps elflink.c did some for us. */
4808 if (!h->def_regular)
4809 sym->st_shndx = SHN_UNDEF;
4810 }
4811
4812 /* Create the dynamic relocation. */
4813 outrel.r_offset = pltoff_addr;
4814 if (bfd_little_endian (output_bfd))
4815 outrel.r_info = ELFNN_R_INFO (h->dynindx, R_IA64_IPLTLSB);
4816 else
4817 outrel.r_info = ELFNN_R_INFO (h->dynindx, R_IA64_IPLTMSB);
4818 outrel.r_addend = 0;
4819
4820 /* This is fun. In the .IA_64.pltoff section, we've got entries
4821 that correspond both to real PLT entries, and those that
4822 happened to resolve to local symbols but need to be created
4823 to satisfy @pltoff relocations. The .rela.IA_64.pltoff
4824 relocations for the real PLT should come at the end of the
4825 section, so that they can be indexed by plt entry at runtime.
4826
4827 We emitted all of the relocations for the non-PLT @pltoff
4828 entries during relocate_section. So we can consider the
4829 existing sec->reloc_count to be the base of the array of
4830 PLT relocations. */
4831
4832 loc = ia64_info->rel_pltoff_sec->contents;
4833 loc += ((ia64_info->rel_pltoff_sec->reloc_count + index)
4834 * sizeof (ElfNN_External_Rela));
4835 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
4836 }
4837
4838 /* Mark some specially defined symbols as absolute. */
4839 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
4840 || h == ia64_info->root.hgot
4841 || h == ia64_info->root.hplt)
4842 sym->st_shndx = SHN_ABS;
4843
4844 return TRUE;
4845 }
4846
4847 static bfd_boolean
4848 elfNN_ia64_finish_dynamic_sections (abfd, info)
4849 bfd *abfd;
4850 struct bfd_link_info *info;
4851 {
4852 struct elfNN_ia64_link_hash_table *ia64_info;
4853 bfd *dynobj;
4854
4855 ia64_info = elfNN_ia64_hash_table (info);
4856 dynobj = ia64_info->root.dynobj;
4857
4858 if (elf_hash_table (info)->dynamic_sections_created)
4859 {
4860 ElfNN_External_Dyn *dyncon, *dynconend;
4861 asection *sdyn, *sgotplt;
4862 bfd_vma gp_val;
4863
4864 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4865 sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
4866 BFD_ASSERT (sdyn != NULL);
4867 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
4868 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
4869
4870 gp_val = _bfd_get_gp_value (abfd);
4871
4872 for (; dyncon < dynconend; dyncon++)
4873 {
4874 Elf_Internal_Dyn dyn;
4875
4876 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
4877
4878 switch (dyn.d_tag)
4879 {
4880 case DT_PLTGOT:
4881 dyn.d_un.d_ptr = gp_val;
4882 break;
4883
4884 case DT_PLTRELSZ:
4885 dyn.d_un.d_val = (ia64_info->minplt_entries
4886 * sizeof (ElfNN_External_Rela));
4887 break;
4888
4889 case DT_JMPREL:
4890 /* See the comment above in finish_dynamic_symbol. */
4891 dyn.d_un.d_ptr = (ia64_info->rel_pltoff_sec->output_section->vma
4892 + ia64_info->rel_pltoff_sec->output_offset
4893 + (ia64_info->rel_pltoff_sec->reloc_count
4894 * sizeof (ElfNN_External_Rela)));
4895 break;
4896
4897 case DT_IA_64_PLT_RESERVE:
4898 dyn.d_un.d_ptr = (sgotplt->output_section->vma
4899 + sgotplt->output_offset);
4900 break;
4901
4902 case DT_RELASZ:
4903 /* Do not have RELASZ include JMPREL. This makes things
4904 easier on ld.so. This is not what the rest of BFD set up. */
4905 dyn.d_un.d_val -= (ia64_info->minplt_entries
4906 * sizeof (ElfNN_External_Rela));
4907 break;
4908 }
4909
4910 bfd_elfNN_swap_dyn_out (abfd, &dyn, dyncon);
4911 }
4912
4913 /* Initialize the PLT0 entry. */
4914 if (ia64_info->plt_sec)
4915 {
4916 bfd_byte *loc = ia64_info->plt_sec->contents;
4917 bfd_vma pltres;
4918
4919 memcpy (loc, plt_header, PLT_HEADER_SIZE);
4920
4921 pltres = (sgotplt->output_section->vma
4922 + sgotplt->output_offset
4923 - gp_val);
4924
4925 elfNN_ia64_install_value (loc+1, pltres, R_IA64_GPREL22);
4926 }
4927 }
4928
4929 return TRUE;
4930 }
4931 \f
4932 /* ELF file flag handling: */
4933
4934 /* Function to keep IA-64 specific file flags. */
4935 static bfd_boolean
4936 elfNN_ia64_set_private_flags (abfd, flags)
4937 bfd *abfd;
4938 flagword flags;
4939 {
4940 BFD_ASSERT (!elf_flags_init (abfd)
4941 || elf_elfheader (abfd)->e_flags == flags);
4942
4943 elf_elfheader (abfd)->e_flags = flags;
4944 elf_flags_init (abfd) = TRUE;
4945 return TRUE;
4946 }
4947
4948 /* Merge backend specific data from an object file to the output
4949 object file when linking. */
4950 static bfd_boolean
4951 elfNN_ia64_merge_private_bfd_data (ibfd, obfd)
4952 bfd *ibfd, *obfd;
4953 {
4954 flagword out_flags;
4955 flagword in_flags;
4956 bfd_boolean ok = TRUE;
4957
4958 /* Don't even pretend to support mixed-format linking. */
4959 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
4960 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
4961 return FALSE;
4962
4963 in_flags = elf_elfheader (ibfd)->e_flags;
4964 out_flags = elf_elfheader (obfd)->e_flags;
4965
4966 if (! elf_flags_init (obfd))
4967 {
4968 elf_flags_init (obfd) = TRUE;
4969 elf_elfheader (obfd)->e_flags = in_flags;
4970
4971 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
4972 && bfd_get_arch_info (obfd)->the_default)
4973 {
4974 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
4975 bfd_get_mach (ibfd));
4976 }
4977
4978 return TRUE;
4979 }
4980
4981 /* Check flag compatibility. */
4982 if (in_flags == out_flags)
4983 return TRUE;
4984
4985 /* Output has EF_IA_64_REDUCEDFP set only if all inputs have it set. */
4986 if (!(in_flags & EF_IA_64_REDUCEDFP) && (out_flags & EF_IA_64_REDUCEDFP))
4987 elf_elfheader (obfd)->e_flags &= ~EF_IA_64_REDUCEDFP;
4988
4989 if ((in_flags & EF_IA_64_TRAPNIL) != (out_flags & EF_IA_64_TRAPNIL))
4990 {
4991 (*_bfd_error_handler)
4992 (_("%B: linking trap-on-NULL-dereference with non-trapping files"),
4993 ibfd);
4994
4995 bfd_set_error (bfd_error_bad_value);
4996 ok = FALSE;
4997 }
4998 if ((in_flags & EF_IA_64_BE) != (out_flags & EF_IA_64_BE))
4999 {
5000 (*_bfd_error_handler)
5001 (_("%B: linking big-endian files with little-endian files"),
5002 ibfd);
5003
5004 bfd_set_error (bfd_error_bad_value);
5005 ok = FALSE;
5006 }
5007 if ((in_flags & EF_IA_64_ABI64) != (out_flags & EF_IA_64_ABI64))
5008 {
5009 (*_bfd_error_handler)
5010 (_("%B: linking 64-bit files with 32-bit files"),
5011 ibfd);
5012
5013 bfd_set_error (bfd_error_bad_value);
5014 ok = FALSE;
5015 }
5016 if ((in_flags & EF_IA_64_CONS_GP) != (out_flags & EF_IA_64_CONS_GP))
5017 {
5018 (*_bfd_error_handler)
5019 (_("%B: linking constant-gp files with non-constant-gp files"),
5020 ibfd);
5021
5022 bfd_set_error (bfd_error_bad_value);
5023 ok = FALSE;
5024 }
5025 if ((in_flags & EF_IA_64_NOFUNCDESC_CONS_GP)
5026 != (out_flags & EF_IA_64_NOFUNCDESC_CONS_GP))
5027 {
5028 (*_bfd_error_handler)
5029 (_("%B: linking auto-pic files with non-auto-pic files"),
5030 ibfd);
5031
5032 bfd_set_error (bfd_error_bad_value);
5033 ok = FALSE;
5034 }
5035
5036 return ok;
5037 }
5038
5039 static bfd_boolean
5040 elfNN_ia64_print_private_bfd_data (abfd, ptr)
5041 bfd *abfd;
5042 PTR ptr;
5043 {
5044 FILE *file = (FILE *) ptr;
5045 flagword flags = elf_elfheader (abfd)->e_flags;
5046
5047 BFD_ASSERT (abfd != NULL && ptr != NULL);
5048
5049 fprintf (file, "private flags = %s%s%s%s%s%s%s%s\n",
5050 (flags & EF_IA_64_TRAPNIL) ? "TRAPNIL, " : "",
5051 (flags & EF_IA_64_EXT) ? "EXT, " : "",
5052 (flags & EF_IA_64_BE) ? "BE, " : "LE, ",
5053 (flags & EF_IA_64_REDUCEDFP) ? "REDUCEDFP, " : "",
5054 (flags & EF_IA_64_CONS_GP) ? "CONS_GP, " : "",
5055 (flags & EF_IA_64_NOFUNCDESC_CONS_GP) ? "NOFUNCDESC_CONS_GP, " : "",
5056 (flags & EF_IA_64_ABSOLUTE) ? "ABSOLUTE, " : "",
5057 (flags & EF_IA_64_ABI64) ? "ABI64" : "ABI32");
5058
5059 _bfd_elf_print_private_bfd_data (abfd, ptr);
5060 return TRUE;
5061 }
5062
5063 static enum elf_reloc_type_class
5064 elfNN_ia64_reloc_type_class (rela)
5065 const Elf_Internal_Rela *rela;
5066 {
5067 switch ((int) ELFNN_R_TYPE (rela->r_info))
5068 {
5069 case R_IA64_REL32MSB:
5070 case R_IA64_REL32LSB:
5071 case R_IA64_REL64MSB:
5072 case R_IA64_REL64LSB:
5073 return reloc_class_relative;
5074 case R_IA64_IPLTMSB:
5075 case R_IA64_IPLTLSB:
5076 return reloc_class_plt;
5077 case R_IA64_COPY:
5078 return reloc_class_copy;
5079 default:
5080 return reloc_class_normal;
5081 }
5082 }
5083
5084 static const struct bfd_elf_special_section elfNN_ia64_special_sections[] =
5085 {
5086 { ".sbss", 5, -1, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_IA_64_SHORT },
5087 { ".sdata", 6, -1, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_IA_64_SHORT },
5088 { NULL, 0, 0, 0, 0 }
5089 };
5090
5091 static bfd_boolean
5092 elfNN_ia64_object_p (bfd *abfd)
5093 {
5094 asection *sec;
5095 asection *group, *unwi, *unw;
5096 flagword flags;
5097 const char *name;
5098 char *unwi_name, *unw_name;
5099 bfd_size_type amt;
5100
5101 if (abfd->flags & DYNAMIC)
5102 return TRUE;
5103
5104 /* Flags for fake group section. */
5105 flags = (SEC_LINKER_CREATED | SEC_GROUP | SEC_LINK_ONCE
5106 | SEC_EXCLUDE);
5107
5108 /* We add a fake section group for each .gnu.linkonce.t.* section,
5109 which isn't in a section group, and its unwind sections. */
5110 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5111 {
5112 if (elf_sec_group (sec) == NULL
5113 && ((sec->flags & (SEC_LINK_ONCE | SEC_CODE | SEC_GROUP))
5114 == (SEC_LINK_ONCE | SEC_CODE))
5115 && strncmp (sec->name, ".gnu.linkonce.t.", 16) == 0)
5116 {
5117 name = sec->name + 16;
5118
5119 amt = strlen (name) + sizeof (".gnu.linkonce.ia64unwi.");
5120 unwi_name = bfd_alloc (abfd, amt);
5121 if (!unwi_name)
5122 return FALSE;
5123
5124 strcpy (stpcpy (unwi_name, ".gnu.linkonce.ia64unwi."), name);
5125 unwi = bfd_get_section_by_name (abfd, unwi_name);
5126
5127 amt = strlen (name) + sizeof (".gnu.linkonce.ia64unw.");
5128 unw_name = bfd_alloc (abfd, amt);
5129 if (!unw_name)
5130 return FALSE;
5131
5132 strcpy (stpcpy (unw_name, ".gnu.linkonce.ia64unw."), name);
5133 unw = bfd_get_section_by_name (abfd, unw_name);
5134
5135 /* We need to create a fake group section for it and its
5136 unwind sections. */
5137 group = bfd_make_section_anyway_with_flags (abfd, name,
5138 flags);
5139 if (group == NULL)
5140 return FALSE;
5141
5142 /* Move the fake group section to the beginning. */
5143 bfd_section_list_remove (abfd, group);
5144 bfd_section_list_prepend (abfd, group);
5145
5146 elf_next_in_group (group) = sec;
5147
5148 elf_group_name (sec) = name;
5149 elf_next_in_group (sec) = sec;
5150 elf_sec_group (sec) = group;
5151
5152 if (unwi)
5153 {
5154 elf_group_name (unwi) = name;
5155 elf_next_in_group (unwi) = sec;
5156 elf_next_in_group (sec) = unwi;
5157 elf_sec_group (unwi) = group;
5158 }
5159
5160 if (unw)
5161 {
5162 elf_group_name (unw) = name;
5163 if (unwi)
5164 {
5165 elf_next_in_group (unw) = elf_next_in_group (unwi);
5166 elf_next_in_group (unwi) = unw;
5167 }
5168 else
5169 {
5170 elf_next_in_group (unw) = sec;
5171 elf_next_in_group (sec) = unw;
5172 }
5173 elf_sec_group (unw) = group;
5174 }
5175
5176 /* Fake SHT_GROUP section header. */
5177 elf_section_data (group)->this_hdr.bfd_section = group;
5178 elf_section_data (group)->this_hdr.sh_type = SHT_GROUP;
5179 }
5180 }
5181 return TRUE;
5182 }
5183
5184 static bfd_boolean
5185 elfNN_ia64_hpux_vec (const bfd_target *vec)
5186 {
5187 extern const bfd_target bfd_elfNN_ia64_hpux_big_vec;
5188 return (vec == & bfd_elfNN_ia64_hpux_big_vec);
5189 }
5190
5191 static void
5192 elfNN_hpux_post_process_headers (abfd, info)
5193 bfd *abfd;
5194 struct bfd_link_info *info ATTRIBUTE_UNUSED;
5195 {
5196 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5197
5198 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
5199 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
5200 }
5201
5202 bfd_boolean
5203 elfNN_hpux_backend_section_from_bfd_section (abfd, sec, retval)
5204 bfd *abfd ATTRIBUTE_UNUSED;
5205 asection *sec;
5206 int *retval;
5207 {
5208 if (bfd_is_com_section (sec))
5209 {
5210 *retval = SHN_IA_64_ANSI_COMMON;
5211 return TRUE;
5212 }
5213 return FALSE;
5214 }
5215
5216 static void
5217 elfNN_hpux_backend_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
5218 asymbol *asym)
5219 {
5220 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
5221
5222 switch (elfsym->internal_elf_sym.st_shndx)
5223 {
5224 case SHN_IA_64_ANSI_COMMON:
5225 asym->section = bfd_com_section_ptr;
5226 asym->value = elfsym->internal_elf_sym.st_size;
5227 asym->flags &= ~BSF_GLOBAL;
5228 break;
5229 }
5230 }
5231
5232 \f
5233 #define TARGET_LITTLE_SYM bfd_elfNN_ia64_little_vec
5234 #define TARGET_LITTLE_NAME "elfNN-ia64-little"
5235 #define TARGET_BIG_SYM bfd_elfNN_ia64_big_vec
5236 #define TARGET_BIG_NAME "elfNN-ia64-big"
5237 #define ELF_ARCH bfd_arch_ia64
5238 #define ELF_MACHINE_CODE EM_IA_64
5239 #define ELF_MACHINE_ALT1 1999 /* EAS2.3 */
5240 #define ELF_MACHINE_ALT2 1998 /* EAS2.2 */
5241 #define ELF_MAXPAGESIZE 0x10000 /* 64KB */
5242
5243 #define elf_backend_section_from_shdr \
5244 elfNN_ia64_section_from_shdr
5245 #define elf_backend_section_flags \
5246 elfNN_ia64_section_flags
5247 #define elf_backend_fake_sections \
5248 elfNN_ia64_fake_sections
5249 #define elf_backend_final_write_processing \
5250 elfNN_ia64_final_write_processing
5251 #define elf_backend_add_symbol_hook \
5252 elfNN_ia64_add_symbol_hook
5253 #define elf_backend_additional_program_headers \
5254 elfNN_ia64_additional_program_headers
5255 #define elf_backend_modify_segment_map \
5256 elfNN_ia64_modify_segment_map
5257 #define elf_info_to_howto \
5258 elfNN_ia64_info_to_howto
5259
5260 #define bfd_elfNN_bfd_reloc_type_lookup \
5261 elfNN_ia64_reloc_type_lookup
5262 #define bfd_elfNN_bfd_is_local_label_name \
5263 elfNN_ia64_is_local_label_name
5264 #define bfd_elfNN_bfd_relax_section \
5265 elfNN_ia64_relax_section
5266
5267 #define elf_backend_object_p \
5268 elfNN_ia64_object_p
5269
5270 /* Stuff for the BFD linker: */
5271 #define bfd_elfNN_bfd_link_hash_table_create \
5272 elfNN_ia64_hash_table_create
5273 #define bfd_elfNN_bfd_link_hash_table_free \
5274 elfNN_ia64_hash_table_free
5275 #define elf_backend_create_dynamic_sections \
5276 elfNN_ia64_create_dynamic_sections
5277 #define elf_backend_check_relocs \
5278 elfNN_ia64_check_relocs
5279 #define elf_backend_adjust_dynamic_symbol \
5280 elfNN_ia64_adjust_dynamic_symbol
5281 #define elf_backend_size_dynamic_sections \
5282 elfNN_ia64_size_dynamic_sections
5283 #define elf_backend_relocate_section \
5284 elfNN_ia64_relocate_section
5285 #define elf_backend_finish_dynamic_symbol \
5286 elfNN_ia64_finish_dynamic_symbol
5287 #define elf_backend_finish_dynamic_sections \
5288 elfNN_ia64_finish_dynamic_sections
5289 #define bfd_elfNN_bfd_final_link \
5290 elfNN_ia64_final_link
5291
5292 #define bfd_elfNN_bfd_merge_private_bfd_data \
5293 elfNN_ia64_merge_private_bfd_data
5294 #define bfd_elfNN_bfd_set_private_flags \
5295 elfNN_ia64_set_private_flags
5296 #define bfd_elfNN_bfd_print_private_bfd_data \
5297 elfNN_ia64_print_private_bfd_data
5298
5299 #define elf_backend_plt_readonly 1
5300 #define elf_backend_want_plt_sym 0
5301 #define elf_backend_plt_alignment 5
5302 #define elf_backend_got_header_size 0
5303 #define elf_backend_want_got_plt 1
5304 #define elf_backend_may_use_rel_p 1
5305 #define elf_backend_may_use_rela_p 1
5306 #define elf_backend_default_use_rela_p 1
5307 #define elf_backend_want_dynbss 0
5308 #define elf_backend_copy_indirect_symbol elfNN_ia64_hash_copy_indirect
5309 #define elf_backend_hide_symbol elfNN_ia64_hash_hide_symbol
5310 #define elf_backend_fixup_symbol _bfd_elf_link_hash_fixup_symbol
5311 #define elf_backend_reloc_type_class elfNN_ia64_reloc_type_class
5312 #define elf_backend_rela_normal 1
5313 #define elf_backend_special_sections elfNN_ia64_special_sections
5314
5315 /* FIXME: PR 290: The Intel C compiler generates SHT_IA_64_UNWIND with
5316 SHF_LINK_ORDER. But it doesn't set the sh_link or sh_info fields.
5317 We don't want to flood users with so many error messages. We turn
5318 off the warning for now. It will be turned on later when the Intel
5319 compiler is fixed. */
5320 #define elf_backend_link_order_error_handler NULL
5321
5322 #include "elfNN-target.h"
5323
5324 /* HPUX-specific vectors. */
5325
5326 #undef TARGET_LITTLE_SYM
5327 #undef TARGET_LITTLE_NAME
5328 #undef TARGET_BIG_SYM
5329 #define TARGET_BIG_SYM bfd_elfNN_ia64_hpux_big_vec
5330 #undef TARGET_BIG_NAME
5331 #define TARGET_BIG_NAME "elfNN-ia64-hpux-big"
5332
5333 /* These are HP-UX specific functions. */
5334
5335 #undef elf_backend_post_process_headers
5336 #define elf_backend_post_process_headers elfNN_hpux_post_process_headers
5337
5338 #undef elf_backend_section_from_bfd_section
5339 #define elf_backend_section_from_bfd_section elfNN_hpux_backend_section_from_bfd_section
5340
5341 #undef elf_backend_symbol_processing
5342 #define elf_backend_symbol_processing elfNN_hpux_backend_symbol_processing
5343
5344 #undef elf_backend_want_p_paddr_set_to_zero
5345 #define elf_backend_want_p_paddr_set_to_zero 1
5346
5347 #undef ELF_MAXPAGESIZE
5348 #define ELF_MAXPAGESIZE 0x1000 /* 1K */
5349
5350 #undef elfNN_bed
5351 #define elfNN_bed elfNN_ia64_hpux_bed
5352
5353 #include "elfNN-target.h"
5354
5355 #undef elf_backend_want_p_paddr_set_to_zero
This page took 0.227534 seconds and 4 git commands to generate.